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Introduction to interval
censored data and overview of
the two parts of the thesis

Interval censored data arises naturally in medical longitudinal follow-up stud-
ies in which the event of interest can not be easily observed, for instance
cancer recurrence or the elevation of levels of a biomarker without noticeable
symptoms. In these situations, the patients are usually examined at clinical
visits that take place only in certain time intervals, and the event of interest
may then occur between two consecutive clinical visits. Then, one observes
only a certain time interval [Xp, Xg] which is known to include the true
time X of onset of the event of interest. This type of interval censoring is
called interval censoring case II. As special cases it includes left censoring and
right censoring for X, equal to zero and Xy infinity, respectively. Another
type of interval censoring occurs when the event is only known to be smaller
or larger than an observed monitoring time. This kind of data is referred
to interval censoring case I, or current status data. Finally, one speaks of
doubly censored data if one observes min {max{X, X;}, Xg}. For a more
extensive review of the different types of interval censored data see Gémez et
al. (2001b). In this thesis, interval censoring case II will be considered and
the censoring intervals will be taken to be closed on both sides in order to
account for exact observations.

An example for interval censored data is given in Betensky and Finkel-
stein (1999) who introduce the AIDS clinical trial group protocol 181, a
natural history substudy of a comparative trial of three anti-pneumocystis
drugs. The patients were monitored periodically for evidence of bacterial and
viral infections, with the objective of understanding the relationship between
these two events, and eventually the natural history of AIDS. Many patients



missed several of the prescheduled clinic visits, and when they returned to
the hospital for examination, new laboratory indications for the two events
were found. Thus, their times until occurrence of the bacterial or viral infec-
tion were censored into the time intervals between their last and their new
clinic visits.

Another example is the AIDS clinical trial group protocol 359, a random-
ized clinical trial designed to compare six different anti-retroviral treatment
regimens for HIV-infected persons who had previously failed on the protease
inhibitor Indinavir (see Gulick et al., 2000). The patients were monitored
periodically for their viral load levels with the aim to determine the time
period these levels remained below the threshold of 500 viral copies/ml. Tt
happened that the viral load levels climbed above the threshold between two
consecutive clinic visits so that the exact time below 500 copies/ml was in-
terval censored into the time interval [X;, X;], where X is the elapsed time
between the first viral load observation below 500 copies/ml and the last
observation before the viral load is subsequently observed to be above 500
copies/ml. Similarly, X, is the elapsed time between the visit prior to the
first viral load observed below 500 copies/ml and the first visit that the viral
load is subsequently observed to be above this threshold.

Methods for interval censored data have been strongly developed in the
past decades. An approach for the estimation of the distribution function
when the data is interval censored is found in the article by Peto (1973).
Turnbull in 1976 presented a theory for nonparametrically estimating the
distribution function of interval censored variables, incorporating in the esti-
mation process the idea of self-consistency developed by Efron (1967). Turn-
bull’s work had a strong impact on the further development of all kind of
statistical methods for interval censored data, including the field of linear
regression. The statistical properties of Turnbull’s nonparametric maximum
likelihood estimator (NPMLE) have been studied very extensively. Concern-
ing uniqueness, consistency and asymptotic properties see for example Gen-
tleman and Geyer (1994), Yu, Schick, Li and Wong (1998), Pan and Chappell
(1999) or Yu, Li and Wong (2000). Resulting from problems in developing a
distribution theory of Turnbull’s NPMLE, Groeneboom and Wellner (1992)
characterized the NPMLE using isotonic regression theory and thereof de-
rived a distribution theory for it.

Some research has also been done on variance estimation of the estimated



survival function for interval censored data. Two methods for this problem
are studied in Sun (2001). Since the underlying survival function can be as-
sumed to be smooth in many applications, and the NPMLE as a step function
does not efficiently use this information, some proposals for smooth estima-
tion of the survival function for interval censored data have been made. See
for example Li, Watkins and Yu (1997) or Pan (2000). Recently, an exten-
sion of Turnbull’s NPMLE to the case of bivariate interval censored data was
proposed by Betensky and Finkelstein (1999).

Concerning parameter estimation in linear models with interval censored
data, Finkelstein and Wolfe in 1985 developed estimation theory for lin-
ear models when the response is interval censored. They proposed a semi-
parametric approach using an EM algorithm for the maximization of the
likelihood function under different parametric models for the covariate dis-
tribution, but without assuming a parametric form for the distribution of
the response variable. Li and Pu (1999) applied a least squares approach to
the log-linear model with interval censored response. For regression analysis
with an interval censored covariates, Gémez, Espinal and Lagakos (2002)
proposed a semiparametric approach by maximizing the data likelihood un-
der the assumption of a normal distribution for the response. The covariate
distribution is estimated nonparametrically via Turnbull’s (1976) method.
Recently, Gil, Lépez-Garcia, Lubiano and Montenegro (2001) considered lin-
ear relations between two interval censored variables by defining a metric for
the distance between the observed values of the response and those predicted
from the model.

The estimation of the regression parameters of a linear model is also
considered in the first part of this thesis where a new estimation theory is
presented for models with both interval censored response and covariate. Un-
like Gil et al. (2001), it does not use certain distances between the observed
and predicted data but is an extension of the method of Gémez et al. (2002)
and considers a semiparametric maximum likelihood approach.

Closely related to linear model estimation is the field of residual analysis.
In regression theory, the analysis of residuals is an integrated tool necessary to
complete the process of fitting linear models. However, in connection with in-
terval censored data, only very few research has been done. For proportional
hazard models, Farrington (2000) derived interval censored counterparts to
the right censored Cox-Snell, martingale, deviance, and Schoenfeld residuals.



For linear models, Gémez et al. (2002) proposed an intuitive definition of
residuals coming from linear models that incorporate interval censored co-
variates. The second part of this thesis presents a new residual theory for
regression analysis with interval censored covariates, which is shown to be
superior to that proposed by Gémez et al. (2002).



Introduction

The first part of this thesis deals with linear regression analysis when both
response and covariate are interval censored. Linear regression analysis is a
statistical technique for investigating and modelling relationships between
different variables. A statistical relation between two random variables (Y
and Z, say) is defined such that one variable can be expressed in terms of a
mathematical function of the other variable, for example Y = f(Z) +¢. In
this case, Y is called the dependent variable or response, Z is the independent
variable or covariate, and ¢ is an error term. To examine the linear relation-
ship between Y and Z (or some more Z), an appropriate model should be
chosen on the nature of the statistical relation and the variable types under
consideration.

When saying a relationship between some variables is ’linear’, this usu-
ally refers to linearity in the parameters. In contrast, the value of the highest
power of the independent variable in the model is called the ’order’ of the
model. For example, Y = By + 317 + B:Z% + € is a second-order (in the
covariate Z) linear (in the parameters f3;, i = 0, 1, 2) regression model. The £
are called 'model errors’ and are a random component reflecting the inaccu-
racy of the relationship between the variables which can never be exact due
to e.g. measurement errors in the observations.

The history of linear models can be traced back to the early 19th century
where Legendre was the first to introduce a linear model. The principle for
the determination of the unknown parameters (3;, i = 0,1,2, was to mini-
mize the sum of squares of the residuals e =Y — 3y — 31 Z — 3,Z?. Among
the various approaches of performing regression, the least squares method is
probably the most widely used.

Applications of linear regression analysis are numerous and occur in al-
most every field, including engineering, physical sciences, economics, man-
agement, life and biological science, and the social sciences. In this thesis,



the main focus is on variables coming from the field of medicine, and more
specifically, the interest will be on variables that are interval censored, that
is, the response Y and the covariate Z are not observed directly but only
known to lie in some interval [Y7, Yz] and [Z;, Zg], respectively.

Chapter 1 of this part of the thesis presents the statistical methods nec-
essary for the development of the new regression theory. It contains an
introduction of the theory for nonparametrically estimating the distribution
function of interval censored variables, both in the one-dimensional case and
the two-dimensional case. Furthermore, it introduces the regression method
of Gémez et al. (2002) who proposed an approach for parameter estimation
in linear models with exactly observed response and interval censored covari-
ates. Their method will be extended in Chapter 2 when developing a new
regression theory for the case that the response variable is interval censored
as well. It uses a maximum likelihood approach for the estimation of the
regression parameters while estimating at the same time the unknown distri-
bution function of the interval censored covariate. The performance of the
proposed method is assessed via a simulation study as described in Chapter
3. Finally, Chapter 4 contains a discussion of possible alternative approaches
for the estimation of the regression parameters in the given context.



Contents

1 Methods for interval censored variables 11
1.1 Nonparametric estimation of the distribution of an interval
censored variable . . . . . ... ... L0 11
1.2 Nonparametric estimation of the distribution of two interval
censored variables . . . . . . ... ... 0L 14
1.3 Linear regression models with exactly observed response and
interval censored covariate . . . . . .. ... ... ... .. 16
1.3.1 Nonparametric estimation of w when 6 is known . . . . 17
1.3.2 Maximum likelihood estimation of # when w is known 19
2 Linear regression with interval censored response and covari-
ate 21
2.1 Estimation procedure . . . . . . . . ... 22
2.2 Confidence intervals for the model parameters . . . . . . . .. 28
2.3 Multiple regression . . . . . .. ... Lo 28
2.4 Model errors coming from the exponential family or Weibull
distribution . . . . . ..o 29
2.4.1  Weibull distribution . . . . .. ... ... .. ..... 32
3 Simulations 35
3.1 Simulation theory . . . . . . . . ..o 37
3.2 Results of the simulations . . . .. ... .. .. ... ..... 38
4 Discussion of other approaches 43
4.1 Empirical approach . . . . . . ... ..o 43
4.2 Least squares approach . . . . . . . ... ... 0L 45
5 Outlook a7



Derivation of the ML equations when the errors are normally
distributed 49

Maple program for the calculation of approximate confidence
intervals 55

C Derivation of the MLE for the multiple regression setting 59

Derivation of the MLE when the errors come from the ex-
ponential family 63

Derivation of the MLE when the errors come from the Weibull
distribution 67



Chapter 1

Methods for interval censored
variables

This chapter gives an overview of the methods used in the development of
the new regression theory for interval censored data. It describes density es-
timation in the context of interval censored random variables as introduced
by Turnbull (1976) for the one-dimensional case, and generalized by Beten-
sky and Finkelstein (1999) for the two-dimensional case. Furthermore, the
regression theory for linear models with observed response and interval cen-
sored covariate as proposed by Goémez et al. (2002) is presented. Their
method will be extended later to the case that both covariate and response
are interval censored.

1.1 Nonparametric estimation of the distri-
bution of an interval censored variable

Suppose X to be a continuous, interval censored random variable with distri-
bution function F' and realizations x;, i = 1,...,n. Due to interval censoring,
the x; are not observed directly but only their respective censoring intervals
[xr,, xR,]. These are known to include the true value x; with probability one.

Turnbull (1976) proposed a maximum likelihood approach for determin-
ing an estimate for the distribution function F'. It is a maximum likelihood
approach which makes use of the equivalence between maximum likelihood
estimates and self-consistent estimates as described in the following.

9
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The construction of the likelihood for the data in the given context follows
from the fact that the contribution of each individual i is F(zg,) — F(zy,),
which results from X being interval censored. The complete likelihood ac-
counting for all individuals is therefore given by

n

L(F) = [[ (F(zr,) = F(x1,))-

=1

Maximizing this likelihood with respect to F' would yield the maximum like-
lihood estimate for the distribution function of X. Turnbull shows that this
maximization problem can be reduced to a simpler one: After sorting all
observed interval endpoints z, and zpg, in ascending order, one constructs a
set of disjoint intervals [q1, p1],- - -, [gm, Pm] in the following way: Firstly, each
[¢j, p;] must not contain any other member z;, or zp, except at their end-
points, and secondly, it must hold that ¢; < p; < ¢ < ... < ¢n < Pm. An
example for the construction of the Turnbull intervals [g;,p;], j = 1,...,m,
is given in Figure 1.1. It shows six observed patient time intervals [0,1], [4,6],
12,6], 0,3], [2,4], [5,7] and the resulting Turnbull intervals [0,1], [2,3], [4,4],
[5,6] obtained with the two construction rules given above.

Figure 1.1: Illustration of the construction of Turnbull’s intervals

patient

Turnbul} : : : 8 : :

ai p1 az P2  a3=p3 qa pa
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Turnbull proved that:

1. Any cumulative distribution function which increases outside the set
Uj~[gj, pj] can not be a maximum likelihood estimate of I, and

2. for fixed values of F'(p;j+) and F(¢;—), the likelihood is independent of
the behavior of F' within each interval [g;, p;].

This means that it suffices to consider only those distribution functions which
increase in some or all of the intervals [g;, p;| and are constant outside these
intervals. Furthermore, the behavior of the distribution function inside these
intervals is not defined but can be imagined to be arbitrary. Thus, the
problem of maximizing L(F') reduces to that of maximizing

L(S1y...,8m) = HZO@'S]‘;

i=1 j=1

where s; = F(pj+) — F(g;—) with Z;”:l s; = 1, and ay; = 1 if [g,p;] C
[zr,,vg,] and O otherwise. The meaning of the indicator «;; is that only
those individuals contribute to the likelihood, whose observed censoring in-
tervals contain one or more Turnbull intervals. The estimate of the density
of X is given through the weight vector s = (s, ..., sp).

In order to determine the maximum likelihood estimate of s, Turnbull
proposed to apply an algorithm which is based on the equivalence between
the maximum likelihood estimates and the self-consistent estimates and is
described in the following. For details on the self-consistency equations see
Efron, 1967.

Define I;;=1 if z; € [g;,p;] and 0 otherwise. Because of censoring the
value of I;; is not known, but its expectation is given by

E(1i) = s = pii(s).

That is, p;;(s) represents the probability that the i-th observation lies in
[¢j, pj]. Furthermore, the proportion of observations in the interval [g;, p;] is

ZMij(S)/M(S) = m;(s),
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where

n m

M(s) =) wijls).

i=1 j=1

The self-consistent estimate of the s; is then defined to be any solution
of the simultaneous equation

S = ﬂj(Sl,...,Sm).

Turnbull incorporates these formulas in an iterative procedure in order
to derive the nonparametric estimate for the s;:

Step 1: Chose initial estimates sg, j = 1,...,m. This can be any set of
positive numbers summing to unity, e.g. s; = % for all 7.

Step 2: Evaluate 11;;(s?), M(s®) and 7;(s®) using the formulas given above.
Step 3: Obtain the improved estimates sj by setting sj = 7;(s%).

Step 4: Return to Step B replacing s® by s!.

Step 5: Stop when the values of s! and s° do not differ anymore.

Turnbull shows that the algorithm converges monotonely for those initial
vectors s° that are close to the true density vector s. Gentleman and Geyer
(1994) provide easily verifiable conditions for the self-consistent estimator to
be a maximum likelihood estimator and for checking whether the maximum
likelihood estimate is unique.

1.2 Nonparametric estimation of the distri-
bution of two interval censored variables

Betensky and Finkelstein (1999) generalized Turnbull’s estimation procedure
to bivariate discrete interval censored data. Unlike Turnbull, the likelihood
function is not maximized using a self-consistent algorithm, but an extension
of the method of Gentleman and Geier (1994) is applied.
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In the bivariate case, one observes for each individual 7,7 = 1,...,n, the
data rectangle [zp,,, xRr,,| X [¥L,;, Tr,,] Which are known to contain the real-
izations of Xy; and Xo;. Denoting F'(z1, x5) the joint cumulative distribution
function of X; and Xs, the likelihood for the data in this setting is

n

[ (Fr.+, riot) = Flap,+, 21,—)

=1

_F(I‘Lﬂ_a xRi2+) + F(I‘Ln_a xLiQ_)) :

Similar to the one-dimensional case, the support of the maximum likelihood
estimate of F'is contained in that set of rectangles which is formed by inter-
secting the observed data rectangles such that no other rectangle is contained
within them. This mechanism is equivalent to the one used in the construc-
tion of the Turnbull intervals explained in the previous section. Figure 1.2
gives an illustration.

Figure 1.2: Final rectangles (thick lines), resulting from intersecting the
observed regions (thin lines)

[ ]

Denote the final rectangles as [r;, s;] % [t;,u;], j = 1,...,J. Define further-
more the probability associated with rectangle j to be p; = F(s;+,u;+) —
F(sj+,tj—) — F(rj—,u;+) + F(rj—,t;—). Then, adopting the argumenta-
tion of Turnbull (1976), the search for the maximum likelihood estimate for F°
can be restricted to those vectors p = (py, ..., ps) having strictly non-negative
components and summing to one. The maximum likelihood estimate even-
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tually results from maximizing

Lp)=[]>_ aiun;.

i=1 j=1

where Qg equals 1 if [Tj,Sj] g [xLli;lei] and [tj,’u]‘] g [ILQi,.(ERQi], and 0
otherwise.

Under the constraints for the p; given above, the authors propose to max-
imize the likelihood L(p) directly by solving a concave programming problem
with linear constraints as described in Gentleman and Geier (1994).

1.3 Linear regression models with exactly ob-
served response and interval censored co-
variate

Goémez et al. (2002) proposed a theory for linear regression analysis with
interval censored covariates. The idea of their approach is to simultaneously
maximize the data likelihood and estimate the unknown distribution func-
tion of the covariate.

The authors consider a continuous response variable Y with exactly ob-
served realizations y;, and a discrete and interval censored covariate Z whose
realizations z; are not observed but only the corresponding covariate inter-
vals [zr,, zg,], @ = 1,...,n. These intervals are known to include z; with
probability one. The model to be established is

Y=a+ 57 +e¢, model 1

where the error term ¢ is said to be independent of Z and normally dis-
tributed with expectation zero and variance 0. The aim is to estimate the
parameter vector § = (a, 3,0?) from the observed data (y;, [2L., 2r.])-

Since 7 is taken to be a discrete random variable, the authors suppose
that it assigns positive mass w; to the points s;, 7 = 1,...,m. From the
normality of the model errors follows that the conditional density f of the
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response Y given s; as a realization of Z is also normally distributed, with
expectation « + 3s; and variance 0%

SYEUETETaY

202

1
f(y|5j; 9) = \/W

This density is used in the construction of the data likelihood

L(0,w;) = Hzaijwjf(yi|8j; 0),

i=1 j=1

where

o 1 SjE[ZLi;ZRi] o .
a”—{ 0 i s ¢l and w; = P(Z = s;).

Due to the unknown covariate distribution w = (wy, ..., wy,), this like-
lihood can not be maximized directly to obtain the maximum likelihood
estimates for the model parameters. Therefore, the authors maximize L si-
multaneously for # and w using a two-step algorithm which first maximizes
L with respect to w for fixed 6, and then resolves the maximization problem
for @ with w known. These two steps are described in detail below.

1.3.1 Nonparametric estimation of w when 6 is known

Assuming that the value for 6 is known, the maximization of the likelihood
L reduces to the problem of finding a vector w that maximizes

Lr(w) = [ [ D2 cuswif (wlsy),

i=1 j=1
subject to the constraints Z;":l w; = 1 and w; > 0 for all j.

The authors propose an algorithm for this maximization problem which
is similar to Turnbull’s density estimation procedure described in Chapter
1.1. Tt consists of the following steps: First, the authors fix a value for # and
chose start values for w. With these, they calculate the probability v;; that
the covariate of the i-th individual is equal to s;. This quantity is then used
to determine the expected number 7; of individuals with Z; = s;. Finally,
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7; is taken to be an improved estimate of the covariate density w, and can
later be used to recalculate v;; and 7;. This procedure is repeated until the
improved estimate and the old estimate are sufficiently close. The following
scheme illustrates this estimation procedure:

Step la: Fix the value for § using 0° = (a°, 8%, 02), where

B
U e _ .
o = y n Zz:; ela
BU — _ Z:%l (yz - g)éz
S (02— e?) — (1/n)(X0, é)?
nog =3 (i —a®)? = (6923 (v2 +€2),
=1 =1

and

~
~

ei:(xLi+$Ri)/2a and UZ-ZZ((I‘Li—éi)2+($Ri—éi)2)/2.

Step 1b: Chose initial estimates for the w, for instance take w? = L.

Step 1c: Evaluate v;;(6, w®) defined as

_ oy f(wilsii O)w,
Sy i f (yilsi; 0)wy”

vij = P(X = sjlyi, [v1,, TR,])

replacing w; by w?, and calculate
gw0) = 130 (0, w0
(0, w") = EZZ:;VU( W),
Step 1d: Obtain the improved estimate w; by setting w; = 7;(6, w®).
Step le: Return to step lc replacing w® by wl.

Step 1f: Repeat steps lc to le until the value of wl does not change any-
more. Denote it by Ww!.
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1.3.2 Maximum likelihood estimation of § when w is
known

When the covariate density w is known, the maximization of the likelihood
L™(0) = H Z aijwjf(yiw)
i=1 j=1

with respect to 6 can be achieved via the usual maximum likelihood approach:
The logarithm of L** is derived with respect to a, B and o2, and these
derivations are set to zero and solved for the parameters. The authors show
that the solution of the maximum likelihood equations ZlogL**(#) = 0 is

d/:y_gzei(gaw)a (1)
i=1

> i1 (i — a)ei(f, w)

0= S (6 w) + 26, w)) @
ne® = Z (i — )’ —522 (vi(0, W) + e2(6, w)), (3)
where

> ket aikskwkﬁ exp {—#(yi —a — fs;)*}

el W) =~y , 4
(0 w) ke Qg ae— exp { — 5o (y; — o — Bise)?} (4)
and
1) oo — €m0, )P b ex gy — o o)’
’Ui(G,W):Zk | ik (S, (6, w)) N {—5=( k)}(S)

Py aikwkﬁ exp {—#(yz —a— fBsg)?}

The algorithm proposed by the authors maximizes L** by first choosing
initial values for equations (4) and (5), which are then used to calculate the
estimates given in (1) to (3). Afterwards, (4) and (5) are determined again
using the newly calculated estimates and the covariate density vector that re-
sulted from the algorithm of the previous section. This procedure is repeated
until the values for &, 8 and 62 stabilize. The following scheme illustrates
the estimation process.



18

Step 2a: Calculate 0° from formulas (1) to (3) by choosing the initial values
for e;(6, w) and v;(#, w) to be

ZL; + ZR;
2

and

e(0,w) =
(ZLi — 69)2 + (ZRi — 6?)2

5 :
Step 2b: Evaluate ¢;(0°, w!) and v;(6°, W') using equations (4) and (5) em-
ploying #° and Ww! from step 1f above.

v?(ﬂ,w) =

Step 2c: Obtain the improved estimate #' from formulas (1) to (3), replac-
ing e;(0, w) and v;(6, w) by €;(0°, W) and v;(0°, w1).

Step 2d: Return to step 2a replacing 8° by 6.

Step 2e: Repeat steps 2a to 2c¢ until the difference between 0° and 6! is
sufficiently small. Denote the final estimate by 6.

In total, the two-step algorithm for calculating simultaneously the den-
sity w of the interval censored covariate and the estimator for the parameter
vector 6, results in the combination of the two algorithms given above and
is summarized in the following scheme:

Step I: Execute Step la up to Step 1f.

Step II: Execute Step 2a up to Step 2e.

Step III: Return to Step lc replacing 6° by ' and w® by w.
Step IV: Repeat steps I to III until convergence of 6 and w.



Chapter 2

Linear regression with interval
censored response and covariate

This chapter presents a new estimation theory for linear regression models
when both covariate and response are interval censored. It is an extension of
the method of Gémez et al. (2002) introduced previously. The model to be
considered here is

Y, =a+pZ;+¢;, 1=1,...,n model 2

where the response Y; is continuous and censored into the interval [Y7,, Yz,],
and the covariate Z; is discrete and censored into the interval [Zy,, Zg,|. The
model errors € are assumed to have a normal distribution with mean zero
and variance o2

Let s; be the possible values for Z with corresponding weights w;, j =
1,...,m, and denote the covariate density and distribution function as w
and W, respectively. From the errors’ normal distribution follows that the
distribution of Y given s; as a value of Z is also normal with mean o + fs;

and variance o?:
(y —a —Ps;)?
exp < 53 )

1
f(y|8j76) = \/W

Here, § = (o, 3,0?) is the vector of the model parameters which we want to
estimate.

19
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It will be assumed that the interval censoring for the covariate and the re-
sponse occurs noninformatively. If a variable X is subject to noninformative
censoring, this means that for any given values gy, x1, x9, the conditional
density of this variable is the same as the density of the uncensored variable
truncated into the observed censoring interval:

P(X:xo)

P(X = 29| Xy =21, Xp=13) = { (I)D(Xe[ml,:m]) zo € [21, 2]

otherwise

Goémez et al. (2001b) show that the contribution to the likelihood of an
unique individual with observed censoring interval [z, xg] which includs the
true value of interest x, is proportional to f dW (z) where W = P(X < x).
With this fact, the hkehhood for the observed data of model 2 can be con-
structed as given in the next section.

2.1 Estimation procedure

The observed data for model 2 consists of n independent and identically
distributed realizations of Y and Z. Since these two variables are interval
censored, one observes the intervals ([y.., yr.], [21;, 2r;]), i = 1,...,n. In order
to obtain the estimates for the model parameters o, 8 and 02, a maximum
likelihood approach will be proposed as described in the following.

The likelihood for the observed data can be constructed by noting the fol-
lowing facts: The contribution of an arbitrary individual 7 to the likelihood
consists of the contribution of this individual with respect to both the covari-
ate and the response. Since the covariate Z is interval censored, its density
must be estimated with a method similar to the one given in Turnbull (1976),
yielding as a result the weights w; (for more details on the method of Turn-
bull see Chapter 1.1). Thus, the contribution of individual ¢ with respect
to 7 is Z;nzl a;jw;, where the indicator variable «;; specifies whether or not
the covariate value s; is contained in the observed covariate interval [z, zg,].
On the other hand, the contribution of this individual with respect to the
response Y given a fixed value of 7, is determined by the conditional density
f(ylsj,@). Since the value of Y is not exactly observed but only its censoring
interval [yr.,yr,|, the conditional density must be integrated over the range
of this censoring interval in order to obtain the respective contribution to the
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likelihood. The total contribution of individual ¢ to the likelihood is then the
combination of these two single likelihood contributions, and the complete
likelihood accounting for all individuals is therefore given by

L(ﬂ,’w]‘) = HP(YZ € [YLi’YRi]azi € [ZLHZRi])

=1

n m YRi
= HZ%%‘/Y S (yls;; 0)dy, (2.1)

i=1 j=1

1 S € [ZL”ZRZ-]
0 : otherwise

Y

where «;; = {
and w; = P(Z = s;) is the weight the covariate assigns to the point s;.

The estimation of the parameter vector # will be achieved through max-
imizing L. Similar as in the context of the regression theory of Gémez et al.
(2002), this maximization can not be carried out directly because of the un-
known covariate density function w = (wy,...,wy). Thus, L is maximized
through an algorithm that iterates between maximizing L with respect to w
while holding 6 fixed, and maximizing L with respect to § while holding w
fixed. These two steps are described in detail below.

Nonparametric estimation of w when 6 is known

For a fixed value of #, the maximum likelihood estimate of the vector w,
given the constraints Z;’;l w; = 1 and w; > 0 for all j, is determined by
using a procedure based on the equivalence between the maximum likelihood
and the self-consistent estimators as explained in Turnbull (1976): First, ini-
tial values for the covariate density weights w;, are chosen. With these, the
conditional probabilities v;; that the covariate Z; equals a given value s; are
calculated. Summing these probabilities over all individuals 7 leads to the
expected number 7; of individuals with a covariate value equal to s;. This
expected number is then taken to be an improved estimate of the covariate
density w, and can be used to recalculate v;; and 7;. The whole procedure
is repeated until the difference of the values of the improved and the old
estimate is sufficiently small. The following scheme gives a summary:
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Step A1 Take initial estimates for the wf, for example w) = = for j =

1,...,m. Denote w° = (w{, ..., w?).

Step A2 Evaluate v;;(w?,6) and 7;(w°, 6) defined as
vij(w®,0) = P(Z; = sjl[21,, 2], [y, yR.)
aijw] [ f(yls;; 0)
T g Jyr f(ylss;0)’

n

1
7 (w°,0) = — Zl/ij(wo, 6).
n

i=1
Step A3 Obtain the improved estimate w! setting
w! =1;(w°0).

Step A4 Go to step A2 replacing w° by w! and repeat the whole procedure
until their values are sufficiently close.

Maximum likelihood estimation of 8 when w is known

When the covariate density is known, the maximization of the likelihood L
with respect to # can be achieved by solving the score equation %logL = 0.
The resulting estimates for o, 3 and o2 are derived in Appendix A. They are
calculated to

. d—ab

L 2.2
& =a— (b, 2.3
52 = ¢ — 24aa + &2 — A7, (2.4)

where @, b, ¢, d and € is the average of a;, b;, ¢, d; and e;, i = 1,...,n,
respectively, defined as

a; = E(Yz‘HZLi; ZRi]; [YLi; YRi]):

bi - E(ZZHZLZJ ZRi]; [YLia YRi]):
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C; = E(Zﬂ[ZLi, ZR:‘], [YLi; YRi])a
d; = E(Zz'Yz‘HZLz‘, ZRi]; [YLia YRi])a
ei = E(Y?|[Z1i, Zri)s [Y1is Yi))-

The following propositions show that the estimates &, B and 62 are similar

to the maximum likelihood estimators in a simple linear model with exactly
observed response and covariate.

Proposition 1
It holds that 3 as defined above converges in probability to the value Cx%g).

Proof
Applying the law of large numbers, it holds that

= Zai TH_O)O E(az) = E(E(}/;‘[ZLza ZRi]’ [YLi’ YRl])) = E(}/l)a

a=—
n i=1
S
b= E sz — E(bl) = E(E(ZZHZLN ZRi]’ [YLHYRi])) = E(ZZ)’
i=1
I oo
c=—3 "= Bla) = E(BE(Z]|[Z1,, Zr), [Y1., Yr]) = E(Z}),
i=1
and
R
d=—=>"di =¥ E(d;) = E(E(ZY;|[Z1,, Zr,), V1., Y&)))) = E(Z:Y7).

n
=1

Thus, it holds for the numerator of /3 that
d—ab="3E(ZY) - E(Y)E(Z) = Cov(Z,Y),
and for the denominator that
- 0% E(7%) - E(Z)* =Var(Z,Y).
In total, this means that

b = Cov(Z,Y)
2 Var(Y) ~

d—

Cc —

QI

B =

SH
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Proposition 2
It holds that & as defined above converges in probability to the value E(Y') —

BE(Z).

Proof
Applying the law of large numbers it holds that

a= % Qg TH_O)O E(az) = E(E(}/ZHZLN ZRi]’ [YLH YRz])) = E(Y;)

=1
and
D R
b= ﬁzbz ; E } E(E(ZiHZLwZRi]’ [YLi’YRi])) = E(ZZ)
i=1

Thus, together with Proposition 1, this means that
a=a—pb =3 E(Y) - BE). O

Pr0p051t10n 3
It holds that 6% as defined above converges in probability to the value Var(Y)—

BVar(Z).

Proof
Again, with the law of large numbers and Proposition 1, one obtains

62 "2X B(Y?) - 2aE(Y) + &% — B2E(Z?%)
=EB(Y?) - ( (Y) = BE(Z)) E(Y)
(BE(Y) - BE(Z))" — B*E(Z%)

= E(Y?) - E(Y)? - 5* (E(2%) — BE(2)?)
=Var(Y) — g*Var(Z). O

+

For the determination of the parameter estimates of model 2, a procedure is
proposed that uses start values for @ to €. It iterates between calculating &,
$ and 6% and re-determining the values for @ to € as explained in the scheme
given below.



25

Step B1 Take initial estimates for a;, b;, ¢;, d; and e;, for example

0 __ yLi + yRi
a, = —/——,
2
iy
2
0 (ZLz‘ - b?)Z + (ZRi - 69)2
¢, = 5 ,
o — (= bi)(ye, — ai) + (2r, = bi) (yr, — ai)
T 2 )
6(_] — (yLi B a?)2 + (yRi B a?)Z
(3 2 °

Step B2 Use these values in (2.2) to (2.4) to compute the initial estimate
0 = (o, 3, 5.

Step B3 Re-evaluate a; up to e; with their theoretical formulas given in
Appendix A by employing 6.

Step B4 Obtain the improved estimate §' by solving equations (2.2) to (2.4).
Step B5 Go to step B3 substituting #° by 6.

Step B6 Cycle steps B3 to B5 until the difference between the values of §°
and 6! is sufficiently small.

The complete algorithm to obtain the joint maximum likelihood estimate
for w and 6 follows from the combination of the two conditional algorithms
given above. It has been implemented in the program semipara.cpp and can
be found on the floppy disc. The criteria for convergence of the estimates
was chosen to be the relative norm differences of the estimates at iteration
stage [:

[t — '] 161 -8
[t 1] 16=1]]
The estimates were defined to converge if the respective relative norm dif-

ference was less than 0.001. A flow-chart of the structure of this program is
given in Chapter 3.
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2.2 Confidence intervals for the model pa-
rameters

The MAPLE program given in Appendix B can be used to construct ap-
proximate confidence intervals for the parameter estimates resulting from
the newly proposed estimation procedure. It uses the observed information
matrix and quantiles of the normal distribution, and the different steps in
the calculation process of the program are explained in the following:

Consider a given data set which consists of values yz. and yg, for the ob-
served response intervals, values s; for the discrete covariate with respective
density weights w;, and the estimated regression parameters a, B and 62. The
first part of the program reads this data into variables. With these, the log-
likelihood as defined in equation (2.1) is constructed and its first and second
derivatives with respect to the regression parameters are calculated. Then,
the Hessian matrix is formed from all second derivatives and the observed
information matrix is calculated by multiplying the Hessian with minus one.
Eventually, the inversion of the observed information matrix provides an es-
timate for the variances of &, B and 6%. These estimated variances are then
employed in the construction of the approximate confidence intervals.

2.3 Multiple regression

This section extends the proposed regression theory to the case that model 2
additionally incorporates an exactly observed covariate vector. This means,
the model now under consideration is

Y=a+#X+5Z+e

where X = (X,...,X,) is a vector of exactly observed covariates, /3 is the
corresponding p-dimensional parameter vector, Y is the interval censored re-
sponse, Z is an interval censored covariate, and ¢ is a continuous N (0, 0?)

random variable independent of X and Z.

The observed data for individual 7 is then ; = (z1,,...,%,,)", [21,, 2R,]
and [yr,,yr,]. By defining § = (a, 3, f2,0?) and using the notation and
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assumptions of model 2, the likelihood function in the new context is given
as

YR

L) = [T s [ 101G 5):0) (2.5
=1 ] 1 L;
where w = (wy,...,wy,), w; = P(Z = sj), aij = I{s; € [z1,,2r,]} and

f(y|(@i, s;);0)) is the conditional density of Y given (X = 7j, Z = s;):

— 2
f(y|(ff“ S]), 0)) = 1 exp <_ (yz —a— ﬁlxi — /823]‘)2) .

V2mo? 202

The idea of the estimation procedure for the model parameters «, E{, Bo
and o2 is the same as for model 2, only that the likelihood function is now
given by (2.5). This means, L* is maximized simultaneously for w and 6
by cycling between steps A und B of the earlier proposed algorithm. In the
present context, Step A now consists of the same self-consistent equations as
given earlier but using the new expression for v;;(w, §), which is

QW ?}R (y‘(fzasj)aa)

i 79 :PZZZ j ) il ) '7_’2': m ; i :
v, 0) = P = il v o 2n 80 = S T S

Step B is modified in so far that it now incorporates the maximum likelihood
estimators resulting from the new context of the multiple regression. These
are obtained from maximizing the logarithm of likelihood (2.5) for fixed w
and are derived in Appendix C.

2.4 Model errors coming from the exponen-
tial family or Weibull distribution

In the previous sections, the regression parameters were estimated assuming
the model errors to be normally distributed with mean zero and variance o2.
The normal distribution is known to be a member of the so-called exponen-
tial family of distributions, which is defined in the following way:
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Definition

Let X be a random variable with density function f determined by the pa-
rameter vector n. One says that f belongs to the exponential family of dis-
tributions if it can be expressed as

fz;n) = h(z)e(n)exp[Q(n)t(x)],

where Q(n) and t(x) are vectors of common dimension k such that Q(n)t(x) =

SF L Qun)ti(x).

For example, the N(0,c?)-distribution is obtained when taking h(x) = 1,
c(n) = 2mo?) 12, Q(n) = (0, 7) and t(z) = (z, —z?). Other members of
the exponential family are the gamma, binomial and Poisson distribution.

In what follows it will be shown that the proposed regression theory still
holds when the model errors come from any distribution which is a member
of the exponential family. This means that the likelihood to be considered
now is

n m YR,
L™(0,w;) = Hzaz‘jwa‘/ fyilsy: 0)dy,
YLi

i=1 j=1

where

f(wils:0) = Wy — a — Bsj)e(n)explQn)t(yi — o — Bs;)]
and 0 = («, 5, 1n).

The proceeding for obtaining the maximum likelihood estimate for # in
the new context is the same as in the original setting, namely maximizing the
logarithm of L** with respect to the parameters o, § and 7. The resulting
partial derivatives are given in Appendix D. It can be shown that the solu-
tions (F'1) — (F'3) of Appendix D include equations (E1) — (E3) for normally
distributed e:

Corollary 1
Equation (F1) reduces to equation (E1) when the model errors are normal.

Proof

When the e are normally distributed, it holds that h(g;) = 1, ¢(n) = \/2;7,
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Q(n) = —5= and t(;) = (y; — o — Bs;)?. With that, equation (F1) results

m Yr, k' (e; .
n (ST g [y =L (il 55 0)dy

(F1) = Z ici(e)

Sy gy [y f(yilsg: 0) Qe ()] dy
Ci(0)

n [ D00 cijw; fff — 8 f (sl sy 0)dy
Ci(9)

dom ijw; féR F(ilsg; 0)[—5a2 (=2) (i — a — Bs;)]dy
Ci(0)

_ E oy o fils )G — o= Bsldy .
- C0 ~ (Y

Corollary 2
Equation (F2) reduces to equation (E2) when the model errors are normal.

Proof

When the ¢ are normally distributed, it holds that h(e;) =1, ¢(n) = W
Q(n) = —5 and ¢(g;) = (y; — a — Bs;)?. With that, equation (F2) results
to

(F2) =) .(9)

i=1

- ] 1%1wa Sj (yz\S], 0)dy
Cz

Z;n:l W fffl f(yilss: 0)[Q(n)s;t'(€:)]dy
Ci(0)

m Yr. s;0
- (Zjl Qi W fYL = f (yils;: 0)dy

C;(0)
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Z] 1 Qi Wy fy fyilsj; 0)[— #(_2)(% — o — Bs;)s;]dy
Ci(0)

D iy ffj‘ I (wilsg: )5 (yi — o = Bsj)s;ldy o -
B Ci(0) = (£2)

Corollary 3
Equation (F3) reduces to equation (E3) when the model errors are normal.

Proof
When the e are normally distributed, it holds that h(g;) = 1, ¢(n) = 27r0
Q(n) = —5 and (g;) = (y; — a — fBs;)?. With that, equation (F3) results
to
(F3) Z ] o1 W fYL %f(yi\sj;ﬁ)dy
=1 Cz(g)
m YR,
N 2 i cigwy Jy, f (yilsg; 0)1Q' (m)(e:)]dy
Ci(0)
m YR, c
oy [ (S [Q e ) Sl 0)dy
i=1 Ci(0)
m YR,
B " Zj:l Qi Wi fyL}? (_,,_12 + [%4(% —a— 559‘)2]) f(yilsj; 0)dy _ (B30
N i=1 Ci(0) -

2.4.1 Weibull distribution

The proposed regression theory can also be applied when the model errors
come from the Weibull distribution, as will be shown in the following. The
likelihood of the data in this context is

L0, w;) Hzamwj/ I (yilsj; 0)dy,

i=1 j=1
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where
fyils;; 0) = aﬁs?fl exp (—as?)
and 0 = (a, f).

Setting the partial derivatives of [*** = log L*** to zero and solving for o and
B yields the maximum likelihood estimates given in Appendix E.
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Chapter 3

Simulations

Since theoretical results for the goodness of the proposed estimates are dif-
ficult to obtain, their performance is checked through a simulation study.
It involves different data scenarios for model 2 with the aim to assess to
what extend the proposed parameter estimates are able to reflect these data
situations. Table 3.1 shows the simulation scenarios used in the study.

Table 3.1: Scenarios for the simulation study
number of observations | 200 and 500
covariate distributions | Exp(z), Weib(z, 3), N(6,4)
percentage of censoring | 0.3 and 0.7

value for a 4
values for 2 and 5
value for o2 1

The simulations are carried out by the program semipara.cpp on the floppy
disc, and a short summary of how this program works is given now: The
model errors € are generated from a N(0, 1)-distribution, and the values for
the covariate Z are simulated from the exponential, Weibull or normal dis-
tribution. These values are used to construct the covariate intervals [Z;,, Z|
after the following scheme: Depending on the covariate distribution, there
is a certain number of values j, 7 = 1,...,k, which the covariate can take
on. An indicator variable ¢;; determines with a given probability p, whether
or not the covariate for individual 7 is observed at value j. Then, one looks
at each value z; and goes back to the nearest observed value j and takes

33



34

it as the value for z7,. Similarly, zg, is that observed value j coming first
after z;. The corresponding response intervals [y, yg,| result from the for-
mulas yr, = o+ Bzr, + &; and yr, = a + Bzg, + ;. Eventually, the two-step
algorithm described in Chapter 2 is applied to the generated response and
covariate intervals for the estimation of the model parameters o, 8 and o2.

The following flow-chart illustrates the simulation process of the program
semipara.cpp. The steps of the program are written inside the boxes and the
arrows indicate which step enters in the calculation of another step. As most
calculations are executed by procedures within the program, their names are
written outside the corresponding box which will make it easier to find one’s
way when looking at the code of the program.

expon
wel
covariate values |"0"™ values for ¢
covariate intervals model errors
- Resp
response intervals
Steps

parameter estimation via
the two-step algorithm

Other procedures used in this program are listed below together with a short
description of their usage:

FileOpen: opens all files needed for reading and writing.

Spalloc: allocates memory for the vectors and matrices.

ran2: generates random uniform variates.

Simpson: integrates an user-defined function applying Simpson’s method.
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The last mentioned procedure Simpson is used for the calculation of dif-
ferent integrals over the conditional density f(y|s;;#) which is needed among
others in the calculation of the conditional means a; to e; given in Chapter 2.
As these integrals cannot be calculated analytically in C, a numerical approx-
imation applying Simpson’s method is used. The idea of Simpson’s method
is to approximate the area under a given graph by a sequence of quadratics.
That is, the range of the upper and lower interval limit is divided into an
even number of subintervals and their width is calculated. Then, the func-
tion value at the left endpoints of the first three subintervals in calculated as
well as the area of the parabola through these three points. This process is
repeated moving two subintervals to the right. Simpson’s method is said to
be the most exact among those existing for numerical integration. Though,
it is obviously not as exact as the analytical form. This must be taken into
consideration when assessing the simulation results of the estimates.

The performance of the program semipara.cpp with respect to speed and
convergence is highly satisfying. Running it on a 400 megahertz Pentium
IT processor with 128 MB RAM main memory using the SUSE LINUX 7.1
operating system yielded convergence of the parameter estimates after 5 to
30 iterations depending on the number of observations and the level of cen-
soring. The time needed for the calculations varied between 5 and 60 seconds.

3.1 Simulation theory

The simulation study involves the generation of data coming from different
statistical distributions. The theory applied for the generation of these dis-
tributions is given now (for references see Box and Miiller, 1958, or Morgan,
1984).

Uniform distribution

For the generation of a Uniform(0,1) random variable, a Congruential Pseudo-
Random Number Generator is used. By applying the recursion formula
Tn_1 = ax, + b mod m with seed zy and a, b, m given numbers, a sequence
of integers will be obtained, each of which lies between 0 and m — 1. An
approximation to Uniform(0,1) random variables u; can then be achieved by
setting u; = x;/m.
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Exponential and Weibull distribution

As the Exponential and Weibull distributions are continuous, one can make
use of the Inversion Method to generate their distribution functions. Sup-
pose one wishes to simulate a continuous random variable X with distribution
function F(z) = P(X < x), and suppose further that the inverse function
F~'(u) is well-defined for u € [0,1]. Then, it is well known that if U is a
(0, 1)-Uniform random variable, X = F~'(U) has the required distribution.

Normal distribution

For the simulation of the Normal distribution, the Polar Marsagliar Method
is applied: If U is a Uniform(0,1) random variable, then V' = 2U — 1 is a
Uniform(-1,1) random variable. By selecting two independent Uniform(-1,1)
random variables V; and V3, a random point in the square [—1, 1] x[—1, 1] can
be specified which has polar coordinates (R, ©) given by R? = V2 4+ V3 and
tan(©) = V5/Vi. The repeated selection of such points provides a random
scatter of points inside this square, and rejection of points outside the unit-
circle produces a uniform random scatter of points within this circle. For
any of these points, the polar coordinates ? and © are independent random
variables, © is a Uniform(0,27) random variable and R? is a Uniform(0,1)
random variable. One can write
E N cos(©) = 4

R V2 Vy VVEFVE

Eventually, a pair of independent N (0, 1)-variables is obtained by defining
M, and M, as

~ Vo ~ Vi
M, = \/—2l0g(R?) ——2 My =1/—2l0g(R?) ———_.
V) G MmN

3.2 Results of the simulations

sin(©) =

Table 3.2 and 3.3 show the results of the simulation study for model 2 under
the different scenarios given in Table 3.1 above. Each column gives the
median and mean value [standard deviation] calculated using 500 replicates
for the estimated model parameters.
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Table 3.2: Estimated regression parameters when a =4, =2 and 02 =1

Median | Mean [Std] | Median | Mean [Std] | Median | Mean [Std]
for « for for o2
Exponential(é)

n=200,p=0.3 3.801 3.799 [0.228] 2.011 2.011 [0.032] 1.193 1.192 [0.130]
n=500,p=0.3 3.827 | 3.823 [0.141] | 2.007 | 2.007 [0.032] | 1.199 | 1.201 [0.084]
n=200,p=0.7 3971 | 3.972 [0.159] | 1.997 | 1.997 [0.021] | 0.994 | 1.100 [0.111]
n=500,p=0.7 3.974 | 3.977 [0.099] | 1.997 | 1.997 [0.013] | 1.005 | 1.010 [0.068]
Weibull($,2)
n=200,p=0.3 4.030 4.028 [0.246] 1.973 1.972 [0.069] 1.309 1.317 [0.134]
n=>500,p=0.3 4.043 4.033 [0.163] 1.971 1.973 [0.044] 1.330 1.327 [0.091]
n=200,p=0.7 3.977 | 3.979 [0.183] | 1.999 | 1.999 [0.049] | 0.958 | 0.961 [0.101]
n=500,p=0.7 3.981 | 3.981 [0.117] | 2.001 | 2.000[0.032] | 0.978 | 0.980 [0.071]
Normal(6,4)
n=200,p=0.3 4.219 | 4.215[0.497] | 1.937 | 1.940[0.085] | 0.950 | 0.945 [0.118]
n=>500,p=0.3 4.213 4.223 [0.303] 1.939 1.938 [0.052] 0.948 0.952 [0.069]
n=200,p=0.7 4.055 4.033 [0.358] 1.983 1.984 [0.059] 0.930 0.933 [0.105]
n=>500,p=0.7 4.059 4.058 [0.222] 1.980 1.981 [0.037] 0.931 0.938 [0.069]

Table 3.3: Estimated regression parameters when a =4, =15 and 02 =1

Median | Mean [Std] | Median | Mean [Std] | Median | Mean [Std]
for o for for o2
Exponential(é)

n=200,p=0.3 3.531 3.510 [0.288] 5.062 5.064 [0.045] 1.882 1.879 [0.235]
n=500,p=0.3 3.559 3.549 [0.180] 5.056 5.058 [0.028] 1.866 1.885 [0.138]
n=200,p=0.7 3.944 | 3.939 [0.168] | 5.004 | 5.003[0.022] | 1.093 | 1.093 [0.123]
n=>500,p=0.7 3.952 3.951 [0.100] 5.003 5.002 [0.012] 1.106 1.105 [0.072]
Weibull($,2)
n=200,p=0.3 3.817 3.817 [0.306] 5.040 5.043 [0.090] 2.233 2.253 [0.303]
n=500,p=0.3 3.836 3.833 [0.193] 5.038 5.039 [0.056] 2.267 2.258 [0.203]
n=200,p=0.7 3.970 | 3.974 [0.198] | 5.005 | 5.004 [0.053] | 1.042 | 1.042 [0.110]
n=500,p=0.7 3.972 | 3.974 [0.118] | 5.004 | 5.005[0.032] | 1.078 | 1.076 [0.071]
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Normal(6,4)
n=200,p=0.3 4.423 | 4.409 [0.568] | 4.921 | 4.920 [0.100] ]
n=500,p=0.3 | 4.436 | 4.433 [0.347] | 4.918 | 4.917 [0.060] | 1.277 | 1.282 [0.100]
] ] ]
] ] ]

1.283 | 1.294 [0.166

n=200,p=0.7 | 4.107 | 4.125 [0.378 4.971 | 4.969 [0.063 0.960 | 0.970 [0.110

4.970 | 4.970 [0.039 0.984 | 0.984 [0.075

n=500,p=0.7 | 4.124 | 4.124 [0.232

Both tables show that the values of the median and the mean do not differ
much within the simulation scenarios. For [ = 2, the estimation results for
the parameter a are best when the covariate distribution is Weibull. For an
exponential covariate distribution, this parameter is slightly underestimated,
and for a normal distribution it is slightly overestimated. It can be also no-
ticed that the standard deviation is twofold when the covariate distribution is
normal. The estimation of the parameter [ is very accurate for all covariate
distributions and the standard deviations are also smaller than those for the
parameter . The results for the estimation of the error variance o is most
satisfying for an exponential and Weibull covariate distribution with a low
level of censoring (p = 0.7). At a high censoring level, the value of the error
variance is overestimated. The results for a normally distributed covariate
are similar for both low and high censoring levels but generally underesti-
mate the error variance.

For § = 5, the estimation results for the parameter o are most satisfy-
ing when the percentage of censored data is low, regardless of the covari-
ate distribution. When the percentage of censoring is high, the value of «
is underestimated in case of the exponential and Weibull distribution, and
overestimated in case of the normal distribution. Among these three co-
variate distributions, the Weibull performs best. With respect to the model
parameter (3, the simulation results show that the estimation procedure per-
forms well for all three covariate distributions and estimates close to the true
parameter value are obtained. The error variance o? is estimated most sat-
isfactorily for a low censoring level, otherwise it is overestimated. The value
of the slope [ has obviously an effect in the estimation of the error variance
because the overestimation was not that high for g = 2.

It can be also noticed that the number of observations affects the value
of the standard deviation of the estimates in so far that it gets smaller if the
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number of observations gets larger.

Table 3.4 gives a summary of those simulation scenarios for which the

parameter estimates perform best.

Table 3.4: Summary of the simulation results
best performance for =5

best performance for =2
Q Weib, exp/norm and p=0.7 | exp/norm/Weib and p=0.7
15} all scenarios all scenarios
o2 exp/Weib and p=0.7 exp/norm/Weib and p=0.7
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Chapter 4

Discussion of other approaches

Two other approaches for the estimation problem of model 2 were investi-
gated in addition to the semiparametric approach described in Chapter 2.
The first approach is an empirical one with the idea of adapting the well-
known uncensored regression estimators to the context of interval censored
data. The second approach imitates the least squares method of uncen-
sored regression analysis and transfers it to the interval censored setting.
The following sections summarize the problems encountered in the process
of examining these approaches.

4.1 Empirical approach

Consider the linear model Y = a+ 7 4+ ¢ where Y is the response variable
and Z the covariate, both uncensored. It is known from regression theory
that for this model the least squares estimates

%) and @:E(Y)—BE(Z) (+)

are unbiased and have minimum variance when the conditions of the Gauss-
Markov theorem are met.

When Y and Z are interval censored, one could think in trying to estimate
the involved covariance, variance and expected values through the common
density function of Z and Y, which can be calculated with the method devel-
oped by Betensky and Finkelstein (1999) described in Chapter 1.2. From the
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estimated common density iL, say, one could then calculate the marginal den-
sities f and g, say, of Y and Z, respectively. From these three distribution
functions one could finally estimate the covariance, variance and expected
values from

7R,

Mm=L 29(2)dz, MHz/mw@m

L; Y

i

mmzwaéR%n—Ew»%@ma

7R,

con(Y, Z) = /

L
Zr,

YRI A A
"= B - Bty 2)dyaz,
Yr
and calculate the estimators & and /3 with the formulas given in ().

Simulations using the same simulation scenarios as in the semiparametric
approach showed that the estimates for « resulting from the empirical ap-
proach are not very accurate. Table 4.1 below gives the means [mean squared
errors| of & and B, calculated from 1000 replications of each setting.

Table 4.1: Simulation results for the empirical approach where a =4 and g = 2

distribution parameters & [MSE] 5 [MSE]
Exponential(é) n=100, p=0.3 | 4.390 [0.41 2.086 [0.02]
n=500,p=0.3 | 4.329 [0.41] | 2.086 [0.02]
n=100,p=0.7 | 4.547 [0.40] | 2.022 [<0.01]
n=500,p=0.7 | 4.478 [0.25] | 2.024 [<0.01]

Weibull(,3) n=100,p=0.3 | 4.611 [0.52 1.984 [0.03]

]
]
]
]
]
n=500,p=0.3 | 4.662 [0.47] | 1.939 [<0.01]
]
]
]
]
]
]

n=100,p=0.7 | 4.593 [0.42] | 1.995 [<0.01]
n=500,p=0.7 | 4.559 [0.33] | 1.976 [<0.01]
Normal(6,4) n=100,p=0.3 | 4.145[0.98] | 2.112 [0.05]
n=500,p=0.3 | 4.099 [0.20] | 2.103 [0.02]
n=100,p=0.7 | 4.168 [0.48] | 2.111 [0.03]
n=500,p=0.7 | 4.091 [0.10] | 2.103 [0.01]
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It can be seen that the value of « is strongly overestimated when the
covariate distribution is exponential or Weibull. Only in case of a normally
distributed covariate, this estimate is near the true value. The mean squared
error is quite high for all three covariate distributions, so it must be con-
cluded that the values of the estimator differ considerately within the 1000
replications. With respect to the parameter 3, the simulation results show
that the estimates are quite accurate and the mean squared errors are small.

One could conclude from Table 4.1 that the estimation results for a nor-
mally distributed covariate are not too bad, but this conclusion is not very
appropriate due to the high mean squared errors for &. Furthermore, the es-
timation results are only stable when the number of observation is very high
(n = 500), which does indicate a poor performance on small data sets. Also,
the percentage of censoring effects the value of the mean squared error, but
the influence seems not to be as high as that of the number of observations,
especially in the case of a normally distributed covariate.

The main disadvantage, though, of the empirical approach is that it does
not provide an estimate for the model error variance o2. In the uncensored
data setting, 62 is calculated from the formula

. 1 < A
0% = Z(yz —a - fz)?

n—14%
i=1

which has no proper equivalent in the interval censored data setting. The
method of replacing the unobserved values y; and z; by the midpoints of their
observed censoring intervals is generally known to lead to considerable biases
in the estimators and is also not a methodologically correct approach.

4.2 Least squares approach

The least squares method in uncensored regression analysis achieves param-
eter estimation by minimizing the sum of squares

n

> (yi—a—Bz)

=1

that is, the vertical distances between the observed data points and the fitted
line. One could think in applying this method to the interval censored data
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setting by minimizing the distances between the observed data rectangles
and the fitted line. To avoid the definition of such a distance, one could
directly try to minimize

ZE ((yl —a— ﬁ21)2‘zz S [zLiazRi]ayi € [yLiayRi]) )
=1

which is the expected sum of squares conditioned on the observed data rect-
angles (21, 2r;| X [yL:,Yr,].- This would be equivalent to minimizing

n ZR; YR;
Z/ / (y — = B2)*hi(z, y)dydz, (%)
i=1 Y ?L; yL;

where h;(z,y) is the joint density of Z and Y truncated into the rectangle
[ZLH ZRi] X [yLi: yRi]'

The solution of this equations would require the calculation of the den-
sity h;, which can be achieved with the method of Betensky and Finkelstein
(1999), as well as the mathematical minimization of the given sum with
respect to the parameters a and 3, which could be carried out by a math-
ematical software like MAPLE. For the purpose of running simulations in
order to assess the performance of the estimators, the problem occurrs how
to connect these two steps so that they can be executed consecutively by the
computer without interference from the outside. This problem could not be
solved until now because of two facts: The MAPLE software is too ineffi-
cient to calculate the common density h;, and the C language can not be
used to solve minimization problems. Trying to calculate first h; in C and
then solving the minimization problem in MAPLE fails because it does not
seem to exist a command that automatically starts a MAPLE program from
the C interface. Theoretical calculations of the properties of the parameter
estimates resulting from minimizing (**) are quite complex and difficult to
interpret.



Chapter 5

Outlook

For the purpose of assessing the goodness of the estimated model 2, a residual
theory should be developed in the future to complete the proposed regression
theory. It is not sufficient to consider an ad-hoc approach like Gémez et al.
(2002) did, because it could be seen from the results of the simulation study
in Chapter 3 that these residuals perform quite unsatisfactorily in most of
the considered data situations. It is rather desirable to extend the concept of
the residual theory given in Part II of this thesis to the case that the response
variable is interval censored as well.

45



46



Appendix A

Derivation of the ML equations
when the errors are normally
distributed

Consider the likelihood function

L= HZ%/ f(yls;. 0 wﬂdy_HZawwy f (yls;, 0)dy,

=1 j=1 i=1 j=1

where a;; equals one if s; € [z7,, 2g,] and zero elsewhere. 6 = (a, 3,0?) is
the parameter vector to be estimated, and f(y|s;, ) is given by

_ ]' 1 2
f(yls;, 0) = QWUQBIP(_W(?J —a— fs5)°).
Define
L:=]]cu0)

=1

where C;(f) is the contribution of the i-th individual to the likelihood L.
Then,

logL = Z logC;(6)

=1
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In order to get the ML-estimators of #, the ML equations are solved:

OlogL

OlogL
(E2) 55 =0

OlogL
(E3) 507 = 0.

Consider the quantities a;, b;, ¢;, d; and e; defined as

D iy Qi fYYLR yf(yls;, 0)dy
Ci(9) ’

a; ‘= E(YHZLH ZRi]J [YLH YRz]) =

YR,
Z;nzl Sj QW fyjl f(yls;, 0)dy

b; == E(ZHZLH ZRi]a [YL“ YRz]) =

Ci(0) ’
S stagwy [oT f(yls; 0)dy
i B2 20, 2], Vi Y)) = = ,
S siouw ) uf (yls 0)dy
d; = B(ZY|[Z1,. Zr), [Yi,, Y]) = =~ 2 2 170 J |
oo et Ci(0)
S asgwy [y y? f (yls. 0)dy
€ = E(Y2|[ZLN ZRi]a [YLia YRZ]) = d CLZZ(Q) .
Then, solving equation (E1) leads to
n 1 m YRi y—a— 53]
(E1) & Z C;(0) Zaijwj —————f(yls;,0)dy =0
i=1 N\ = Y, g




@ZQZ ZCZ Zaljw]/‘R a—i_ﬁsj) (y|8ja9)dy

] iy Qijw ny fyls;, 0)dy
Py =
Zaz az 2(9)
] jo1 Sj W fy f(yls;s, 0)dy

) 0
@iai:na—l—ﬁibi@na:iai—ﬁibi
i=1 i=1 i=1 i=1
NS
= 0= EZ

i=1

1 & .
i - bz =qaq — b
ai = B~ Zl a—p
Equally, solving equation (E2) results in

YRi y —a — fBs;
o

(E2) &

- 1 /YRi
& QWi S y—a)f(yls;, 0)dy
2@ & i |, W Tl
- 1 zm: YR,
= Qijw; s fyls;, 0)dy
> G 2 st [, Sk)
- 1 s YR, n
< < Cy(0) z;aijszj/y (?J—a)f(ylsjﬂ)dyzﬁz;ci
1= Jj= L; i=

YR, m
- / uF s, Oy — o> au;s;
YL,

=1

j=1 i

Yr.

Cfylss, e)dy)
Y,

L;
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@idl—aibz :ﬂzn:Cl
i=1 i=1 i=1

o | —ab
ed-ab=pee =2 EO‘,

and replacing « by its estimate & from (E1) results that

&\
Q
=

b=

2"

Q\
jpll

Finally, from equation (E3) one obtains

f y\s], )<__1_|_ (y—a—ﬁsjh)dyzo

FE
(£3) 202 204

YRi

1 Z Zamwj S5 0)(y — o - Bs;)dy

1 1 R;
T2 Z Ci(0) Zaijwj/y fyls;, 0)dy
i=1 j=1 L;

n 1 m /YRi , ,
PN — W5 f(yls;, 0)(y — o — Bs;)°dy = no”.
Cz(g) ]z:; ] YLi J J

Noting that (y —a — fs5;)* = (y — a)® + %s5 — 205;(y — ), this is equal to

n n

n 1 m YR,
Z%‘wj/ (y—a)*f(yls;, 0)dy = no” =B i +26° Y ¢

=1 =1

j=1 Y,

n

<:>ZC’Z Z l]w]/y y—a)Qf(y|sj,9)dy:n02+EQZci
j=1 r '

=1
n

@ZCZ Z ZJw]/ (y* — 20y + o) f (y|sj,9)dy:na2+6220i

=1

YR,

R; m
@ZCZ Z%wa/_ ygf(ysjﬂ)dy—?a‘zaz‘jwj/y yf(yls;, 0)dy

Jj=1

3




+o Zamw]/ f(yls;, 0)dy = no® —i—ﬁQZcz
@Zez—QaZaszna = no +5QZ

i=1

12N Zei — QOzZai—l—naQ —62201- = no?
im1 im1 i—1

= 02 = ¢ — 2aa + &* — e

ol
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Appendix B

Maple program for the
calculation of approximate
confidence intervals

> with(LinearAlgebra):

Specifying the number of observations n and the number of
examinations m

> n:=2; m:=6;
Reading the data
> data:=matrix(9,6,readdata(‘A:\\data.txt‘,9));

Assigning the variables needed in the loglikelihood

\4

ID:=matrix(n,m);

for i from 1 to n do for j from 1 to m do
ID[i,j]:=datali,j] end do end do;

for j from 1 to m do w[j]:=datal3,j] end do;
for j from 1 to m do s[j]l:=datal4,j] end do;
for i from 1 to n do yl[i]l:=datal[5,i] end do;
for i from 1 to n do yr[i]l:=datal[6,i] end do;
alphahat:=datal7,1];

\4

V V V V V
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> betahat:=datal8,1];
> sigma2hat:=datal9,1];

Definition of the log-likelihood

> i:=7i’; j:=;j;;
> for j from 1 to m do
f[j1:=(1/(sqrt(2xPixsigma~2)))*exp(-((y-alpha-beta*s[jl)~2)/
(2xsigma~2)) end do;
> loglike:=
sum(’log(sum(’ID[i, jl*w[jl*int (£[j]1,y=y1l[i]..yr[i])’,
’j?=1..6))’,’i’=1..n);

Calculation of the score function of loglike

> 1i:=’17; j:="37;

> der11l:=diff (loglike,alpha);

> der12:=diff (loglike,beta);

> der13a:=algsubs(sigma~2=V,loglike);
> der13b:=subs(sigma=sqrt (V) ,der13a);
> der13c:=diff (der13b,V);
> der13:=subs(V=sigma~2,der13c);

Calculation of the second derivatives of loglike

der111:=diff(derl1l,alpha);
der112:=diff(deril,beta) ;
der113a:=algsubs(sigma~2=V,der11);
der113b:=subs(sigma=sqrt (V) ,der113a);
der113c:=diff (der113b,V);
der113:=subs(V=sigma~2,der113c) ;

der122:=diff(der12,beta) ;
der123a:=algsubs(sigma~2=V,der12);
der123b:=subs (sigma=sqrt (V) ,der123a);
der123c:=diff (der123b,V);
der123:=subs (V=sigma~2,der123c) ;

VVVVVVVVVYVVYVYVYV

der133a:=algsubs(sigma~2=V,der13);



)

> der133b:=subs(sigma=sqrt (V) ,der133a);
> der133c:=diff (der133b,V);
> der133:=subs(V=sigma~2,der133c);

Construction of the Hessian matrix

> matt:=Matrix(1..3,1..3,[[der111,der112,der113],
[der112,der122,der123], [der113,der123,der13311);

Calculating the observed information matrix

> alpha:=alphahat;beta:=betahat;sigma:=sqrt(sigma2hat) ;
> evalf(matt);
> fish:=evalf (-1*matt);

Inverting the observed information matrix which is an estimate
for the variance of \hat{alpha}, \hat{beta} and \hat{sigma}~2

> variance:=MatrixInverse(fish);

Constructing the confidence intervals for the
regression parameters

> alpha:=’alpha’;beta:=’beta’;sigma:=’sigma’;
> CI(alpha):=[alphahat-1.96#*sqrt(variance[1,1])/sqrt(n),
alphahat+1.96*sqrt (variance[1,1])/sqrt(n)];
> CI(beta):=[betahat-1.96%sqrt(variance[2,2])/sqrt(n),
betahat+1.96*sqrt(variance[2,2])/sqrt(n)];
> CI(sigma) :=[sigma2hat-1.96*sqrt(variance[3,3])/sqrt(n),
sigma2hat+1.96*sqrt(variance[3,3])/sqrt(n)];
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Appendix C

Derivation of the MLE for the
multiple regression setting

With the notations given in Appendix A, setting the partial derivations of
the likelihood to zero and solving for the parameters, one yields the following
solutions:

For the parameter « it holds that

n

dlogL* iy—a— BT — Pas !
da Zc Zo‘”w]/ 1 =L F(y|(@,5,); 0)dy = 0

o2

n 1 m /YRi
s QW yf(y|(Z;, s5);0)dy
p Cz(e) Jz:; J ) Vi, ( |( ]) )
n 1 m /YRi
= QW o+ By%; + Pas y|(Z;,s:); 0)dy
pa Ci(G) ; R vi, ( 1 2 J) ( ‘( ]) )
n n 1 m Yr, B
@Zai:naqLZC‘(e)Zaijwj . l‘f(y‘($z,5] dy—i-ﬁQZb
i=1 i=1 ! j=1 L;
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For the parameter 51 it holds that

c Z%wa / Ao B 5, 0y

n

8logL

o2

=0

n n P n n

= g TpiQ; = Q g Tpi + E Bu E ki + P2 g Zpibi,
i=1 i=1 I=1 i=1 i=1
n n n p n

& E Tpilli — E Ti — o E Tpib; = E B E T1iThi,
i=1 i=1 i=1 =1 i=1

for k=1,....p.
For the parameter (35 it holds that

dlogL* & YR; i : R
5 Zc Z%wa | sl =0 = B ) )01y

852 o2

=0
- 1 s YR, 9
= Z C’~(9) Z Qi Wj 525; (y|($u S])a H)dy
i=1 ° j=1 L;
- 1 i Yr;
=3 e e [ s —a— ) @ s 0y
i=1 i(0) j=1 YL
g 62202 - Zdz - azbz - Zﬁlllezbz
i=1 i=1 i=1 =1 i=1

For the parameter o? it holds that

m@L " 1 2y —a— B — fas;)’
o Z% 7. (‘f.ﬁ 1o

fyl(Z;,s5);0)dy =0

n

1
© 557 2 T c Z%wy " (@, 5): 0)dy
i=1 L;

Z
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n

1 1 <
:T‘Z}Zm;aijwj/

i=1 Y,

Yr

(y—a—BFi—Bos)2f (U] (T, 5,0 Oy, (%)

Noting that (y — o — 314 — B2s4)? is equivalent to (y —a — Bz + B3s5 —
28,5;(y — a — (), it holds that

(e B a2y e
=1 =1

m Y&,

1 o
Ci(6) Zaijwﬂ'/ (y—a- 5ifi)2f(y\(fi, 55);0)dy
i=1 !

n n n P n
<:>n02+ﬁ2§ CZ':E ei—2a2 ai—2E B”E Ty
i=1 i=1 i=1 =1 i=1
p n p n
_9 _ 2 2 2
Q B Zi; +na” + B Ly
1=1 i=1 1=1 i=1
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Appendix D

Derivation of the MLE when
the errors come from the
exponential family

Setting logL** to zero and solving for the parameters yields the following
maximum likelihood estimates:

With respect to a one gets

OlogL**
do 2 Ci(0)

=1

m Yr. Oh(y;—a—@s;
i (zﬂ gy [y PUGIE e()eaplQ(n)t(y: — o — Bs,)]

| X s o Flailss0) |QUn) 2=t | dy
C;(0)

m Yr. h'(g; )
" (zjl iy [~ § (4] 0)dy

=2 Ci(6)

=1

= (F1).

Sy sy [y (il 0) Qe ()] dy
Ci(0)
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With respect to [ one gets

m Yr. i —a—[s;
dlogL™ <& (zﬂ gy [y P ) eaplQ(n)t(y: — o — Bs,)]

0p 2 C:(0)

i=1

S sy [y f (il 0) | Q) 20Tl ay
: &0

B> Ci(9)

i=1

Yr, s;h'(ei
- (Z;nl Qi Wy fY:Z _S]h(g(;))f(yz‘|5j§ 0)dy

o iy [y f(yz'Sj;9)[Q(n)5jt'(€i)}dy> _ (F2).

Ci(0)

With respect to n one gets

OlogL**
on Z C;(0)

=1

n (2?1 W ffj‘ h(yi — a — Bs;)c' (n)expQ(n)t(y; — o — Bs;)]

D i Qijw; fYYLR fyilss; 0)[Q (mt(yi — o — Bsy)] dy
i Ci(0)

=2 Ci(6)

=1

Yr. ¢
- (2?1 ijwy fy, = 8 £ (4] 5; 0)dy

= (F3).

Sy ey [ f (wilsi: 0)[Q (m)t(e)]dy
* 0
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Setting these equations to zero and solving for the parameters one obtains
the maximum likelihood equations

Z hi = —=Q(n) Zt;’,
i=1 i=1

> zhi=—Qn) Y 2t
~ )N,
;nc(n) =-Q (n);t“
where
ti=FE (t(g)”yLi: yRi]; [xLH sz]) )
t; = E( 1(8)‘[yLi7yRi]; [xL xRi]):

Zt' L., yr,]; 2L, TR.])

t
B
= (o lovon )

ot = B (25 o om sl )

>
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Appendix E

Derivation of the MLE when
the errors come from the
Weibull distribution

Setting [*** to zero and solving for the parameters yields the following solu-
tions:
For the parameters & it holds that

o 1 % o g 8 b1 8 .8
o ;:1 0 jEZl QW /YLi Bs;  exp (—asj>—a53j exp (—asj> s;dy

n n
ﬁg:Zfi =  a=n/Y f
=1 =1

For the parameters B it holds that

n

al*** 1 m Y] i
= s [, (o s =15 e (~as)
i=1 j=1 Li

+a53?71 exp (—as?) (—aﬁsé.#l) dy

1 s Yg; 1 |
:ZmZazng‘/y f(yils;;0) <E+(6_1)Sj_a68?1> dy =0
Jj=1 L;

=1
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@%+(6—1)Zbi:aﬁzgi
=1 i=1

G5B b—aBY =Y b
=1 i=1 i=1

In these expressions, the following conditional expected values are used:
1 i Yr, 5 ,
mzaijwj/y s F(yilsj; 0)dy = E(Z°|ly,. yr.), 21, 2r)) = i
¢ j=1 L;

and

1 n Yr, - )
Ci(0) Zaijwj/ Sf 1f(yz‘|8j;9)dy = B(Z* Yyp ynls lon., 20]) = g5
! j=1 Y,



