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1
Introdu
tion to interval
ensored data and overview ofthe two parts of the thesis

Interval 
ensored data arises naturally in medi
al longitudinal follow-up stud-ies in whi
h the event of interest 
an not be easily observed, for instan
e
an
er re
urren
e or the elevation of levels of a biomarker without noti
eablesymptoms. In these situations, the patients are usually examined at 
lini
alvisits that take pla
e only in 
ertain time intervals, and the event of interestmay then o

ur between two 
onse
utive 
lini
al visits. Then, one observesonly a 
ertain time interval [XL; XR℄ whi
h is known to in
lude the truetime X of onset of the event of interest. This type of interval 
ensoring is
alled interval 
ensoring 
ase II. As spe
ial 
ases it in
ludes left 
ensoring andright 
ensoring for XL equal to zero and XR in�nity, respe
tively. Anothertype of interval 
ensoring o

urs when the event is only known to be smalleror larger than an observed monitoring time. This kind of data is referredto interval 
ensoring 
ase I, or 
urrent status data. Finally, one speaks ofdoubly 
ensored data if one observes min fmax fX;XLg ; XRg. For a moreextensive review of the di�erent types of interval 
ensored data see G�omez etal. (2001b). In this thesis, interval 
ensoring 
ase II will be 
onsidered andthe 
ensoring intervals will be taken to be 
losed on both sides in order toa

ount for exa
t observations.An example for interval 
ensored data is given in Betensky and Finkel-stein (1999) who introdu
e the AIDS 
lini
al trial group proto
ol 181, anatural history substudy of a 
omparative trial of three anti-pneumo
ystisdrugs. The patients were monitored periodi
ally for eviden
e of ba
terial andviral infe
tions, with the obje
tive of understanding the relationship betweenthese two events, and eventually the natural history of AIDS. Many patients



2missed several of the pres
heduled 
lini
 visits, and when they returned tothe hospital for examination, new laboratory indi
ations for the two eventswere found. Thus, their times until o

urren
e of the ba
terial or viral infe
-tion were 
ensored into the time intervals between their last and their new
lini
 visits.Another example is the AIDS 
lini
al trial group proto
ol 359, a random-ized 
lini
al trial designed to 
ompare six di�erent anti-retroviral treatmentregimens for HIV-infe
ted persons who had previously failed on the proteaseinhibitor Indinavir (see Guli
k et al., 2000). The patients were monitoredperiodi
ally for their viral load levels with the aim to determine the timeperiod these levels remained below the threshold of 500 viral 
opies/ml. Ithappened that the viral load levels 
limbed above the threshold between two
onse
utive 
lini
 visits so that the exa
t time below 500 
opies/ml was in-terval 
ensored into the time interval [X1; X2℄, where X1 is the elapsed timebetween the �rst viral load observation below 500 
opies/ml and the lastobservation before the viral load is subsequently observed to be above 500
opies/ml. Similarly, X2 is the elapsed time between the visit prior to the�rst viral load observed below 500 
opies/ml and the �rst visit that the viralload is subsequently observed to be above this threshold.Methods for interval 
ensored data have been strongly developed in thepast de
ades. An approa
h for the estimation of the distribution fun
tionwhen the data is interval 
ensored is found in the arti
le by Peto (1973).Turnbull in 1976 presented a theory for nonparametri
ally estimating thedistribution fun
tion of interval 
ensored variables, in
orporating in the esti-mation pro
ess the idea of self-
onsisten
y developed by Efron (1967). Turn-bull's work had a strong impa
t on the further development of all kind ofstatisti
al methods for interval 
ensored data, in
luding the �eld of linearregression. The statisti
al properties of Turnbull's nonparametri
 maximumlikelihood estimator (NPMLE) have been studied very extensively. Con
ern-ing uniqueness, 
onsisten
y and asymptoti
 properties see for example Gen-tleman and Geyer (1994), Yu, S
hi
k, Li and Wong (1998), Pan and Chappell(1999) or Yu, Li and Wong (2000). Resulting from problems in developing adistribution theory of Turnbull's NPMLE, Groeneboom and Wellner (1992)
hara
terized the NPMLE using isotoni
 regression theory and thereof de-rived a distribution theory for it.Some resear
h has also been done on varian
e estimation of the estimated



3survival fun
tion for interval 
ensored data. Two methods for this problemare studied in Sun (2001). Sin
e the underlying survival fun
tion 
an be as-sumed to be smooth in many appli
ations, and the NPMLE as a step fun
tiondoes not eÆ
iently use this information, some proposals for smooth estima-tion of the survival fun
tion for interval 
ensored data have been made. Seefor example Li, Watkins and Yu (1997) or Pan (2000). Re
ently, an exten-sion of Turnbull's NPMLE to the 
ase of bivariate interval 
ensored data wasproposed by Betensky and Finkelstein (1999).Con
erning parameter estimation in linear models with interval 
ensoreddata, Finkelstein and Wolfe in 1985 developed estimation theory for lin-ear models when the response is interval 
ensored. They proposed a semi-parametri
 approa
h using an EM algorithm for the maximization of thelikelihood fun
tion under di�erent parametri
 models for the 
ovariate dis-tribution, but without assuming a parametri
 form for the distribution ofthe response variable. Li and Pu (1999) applied a least squares approa
h tothe log-linear model with interval 
ensored response. For regression analysiswith an interval 
ensored 
ovariates, G�omez, Espinal and Lagakos (2002)proposed a semiparametri
 approa
h by maximizing the data likelihood un-der the assumption of a normal distribution for the response. The 
ovariatedistribution is estimated nonparametri
ally via Turnbull's (1976) method.Re
ently, Gil, L�opez-Gar
��a, Lubiano and Montenegro (2001) 
onsidered lin-ear relations between two interval 
ensored variables by de�ning a metri
 forthe distan
e between the observed values of the response and those predi
tedfrom the model.The estimation of the regression parameters of a linear model is also
onsidered in the �rst part of this thesis where a new estimation theory ispresented for models with both interval 
ensored response and 
ovariate. Un-like Gil et al. (2001), it does not use 
ertain distan
es between the observedand predi
ted data but is an extension of the method of G�omez et al. (2002)and 
onsiders a semiparametri
 maximum likelihood approa
h.Closely related to linear model estimation is the �eld of residual analysis.In regression theory, the analysis of residuals is an integrated tool ne
essary to
omplete the pro
ess of �tting linear models. However, in 
onne
tion with in-terval 
ensored data, only very few resear
h has been done. For proportionalhazard models, Farrington (2000) derived interval 
ensored 
ounterparts tothe right 
ensored Cox-Snell, martingale, devian
e, and S
hoenfeld residuals.



4For linear models, G�omez et al. (2002) proposed an intuitive de�nition ofresiduals 
oming from linear models that in
orporate interval 
ensored 
o-variates. The se
ond part of this thesis presents a new residual theory forregression analysis with interval 
ensored 
ovariates, whi
h is shown to besuperior to that proposed by G�omez et al. (2002).



5Introdu
tion
The �rst part of this thesis deals with linear regression analysis when bothresponse and 
ovariate are interval 
ensored. Linear regression analysis is astatisti
al te
hnique for investigating and modelling relationships betweendi�erent variables. A statisti
al relation between two random variables (Yand Z, say) is de�ned su
h that one variable 
an be expressed in terms of amathemati
al fun
tion of the other variable, for example Y = f(Z) + ". Inthis 
ase, Y is 
alled the dependent variable or response, Z is the independentvariable or 
ovariate, and " is an error term. To examine the linear relation-ship between Y and Z (or some more Z), an appropriate model should be
hosen on the nature of the statisti
al relation and the variable types under
onsideration.When saying a relationship between some variables is 'linear', this usu-ally refers to linearity in the parameters. In 
ontrast, the value of the highestpower of the independent variable in the model is 
alled the 'order' of themodel. For example, Y = �0 + �1Z + �2Z2 + " is a se
ond-order (in the
ovariate Z) linear (in the parameters �i, i = 0; 1; 2) regression model. The "are 
alled 'model errors' and are a random 
omponent re
e
ting the ina

u-ra
y of the relationship between the variables whi
h 
an never be exa
t dueto e.g. measurement errors in the observations.The history of linear models 
an be tra
ed ba
k to the early 19th 
enturywhere Legendre was the �rst to introdu
e a linear model. The prin
iple forthe determination of the unknown parameters �i, i = 0; 1; 2, was to mini-mize the sum of squares of the residuals e = Y � �0 � �1Z � �2Z2. Amongthe various approa
hes of performing regression, the least squares method isprobably the most widely used.Appli
ations of linear regression analysis are numerous and o

ur in al-most every �eld, in
luding engineering, physi
al s
ien
es, e
onomi
s, man-agement, life and biologi
al s
ien
e, and the so
ial s
ien
es. In this thesis,



6the main fo
us is on variables 
oming from the �eld of medi
ine, and morespe
i�
ally, the interest will be on variables that are interval 
ensored, thatis, the response Y and the 
ovariate Z are not observed dire
tly but onlyknown to lie in some interval [YL; YR℄ and [ZL; ZR℄, respe
tively.Chapter 1 of this part of the thesis presents the statisti
al methods ne
-essary for the development of the new regression theory. It 
ontains anintrodu
tion of the theory for nonparametri
ally estimating the distributionfun
tion of interval 
ensored variables, both in the one-dimensional 
ase andthe two-dimensional 
ase. Furthermore, it introdu
es the regression methodof G�omez et al. (2002) who proposed an approa
h for parameter estimationin linear models with exa
tly observed response and interval 
ensored 
ovari-ates. Their method will be extended in Chapter 2 when developing a newregression theory for the 
ase that the response variable is interval 
ensoredas well. It uses a maximum likelihood approa
h for the estimation of theregression parameters while estimating at the same time the unknown distri-bution fun
tion of the interval 
ensored 
ovariate. The performan
e of theproposed method is assessed via a simulation study as des
ribed in Chapter3. Finally, Chapter 4 
ontains a dis
ussion of possible alternative approa
hesfor the estimation of the regression parameters in the given 
ontext.
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Chapter 1Methods for interval 
ensoredvariablesThis 
hapter gives an overview of the methods used in the development ofthe new regression theory for interval 
ensored data. It des
ribes density es-timation in the 
ontext of interval 
ensored random variables as introdu
edby Turnbull (1976) for the one-dimensional 
ase, and generalized by Beten-sky and Finkelstein (1999) for the two-dimensional 
ase. Furthermore, theregression theory for linear models with observed response and interval 
en-sored 
ovariate as proposed by G�omez et al. (2002) is presented. Theirmethod will be extended later to the 
ase that both 
ovariate and responseare interval 
ensored.1.1 Nonparametri
 estimation of the distri-bution of an interval 
ensored variableSuppose X to be a 
ontinuous, interval 
ensored random variable with distri-bution fun
tion F and realizations xi, i = 1; : : : ; n. Due to interval 
ensoring,the xi are not observed dire
tly but only their respe
tive 
ensoring intervals[xLi ; xRi ℄. These are known to in
lude the true value xi with probability one.Turnbull (1976) proposed a maximum likelihood approa
h for determin-ing an estimate for the distribution fun
tion F . It is a maximum likelihoodapproa
h whi
h makes use of the equivalen
e between maximum likelihoodestimates and self-
onsistent estimates as des
ribed in the following.9



10 The 
onstru
tion of the likelihood for the data in the given 
ontext followsfrom the fa
t that the 
ontribution of ea
h individual i is F (xRi) � F (xLi),whi
h results from X being interval 
ensored. The 
omplete likelihood a
-
ounting for all individuals is therefore given byL(F ) = nYi=1 (F (xRi)� F (xLi)) :Maximizing this likelihood with respe
t to F would yield the maximum like-lihood estimate for the distribution fun
tion of X. Turnbull shows that thismaximization problem 
an be redu
ed to a simpler one: After sorting allobserved interval endpoints xLi and xRi in as
ending order, one 
onstru
ts aset of disjoint intervals [q1; p1℄,: : :,[qm; pm℄ in the following way: Firstly, ea
h[qj; pj℄ must not 
ontain any other member xLi or xRi ex
ept at their end-points, and se
ondly, it must hold that q1 � p1 < q2 � : : : < qm � pm. Anexample for the 
onstru
tion of the Turnbull intervals [qj; pj℄, j = 1; : : : ; m,is given in Figure 1.1. It shows six observed patient time intervals [0,1℄, [4,6℄,[2,6℄, [0,3℄, [2,4℄, [5,7℄ and the resulting Turnbull intervals [0,1℄, [2,3℄, [4,4℄,[5,6℄ obtained with the two 
onstru
tion rules given above.Figure 1.1: Illustration of the 
onstru
tion of Turnbull's intervals
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11Turnbull proved that:1. Any 
umulative distribution fun
tion whi
h in
reases outside the setSmj=1[qj; pj℄ 
an not be a maximum likelihood estimate of F , and2. for �xed values of F (pj+) and F (qj�), the likelihood is independent ofthe behavior of F within ea
h interval [qj; pj℄.This means that it suÆ
es to 
onsider only those distribution fun
tions whi
hin
rease in some or all of the intervals [qj; pj℄ and are 
onstant outside theseintervals. Furthermore, the behavior of the distribution fun
tion inside theseintervals is not de�ned but 
an be imagined to be arbitrary. Thus, theproblem of maximizing L(F ) redu
es to that of maximizingL(s1; : : : ; sm) = nYi=1 mXj=1 �ijsj;where sj = F (pj+) � F (qj�) with Pmj=1 sj = 1, and �ij = 1 if [qj; pj℄ �[xLi ; xRi ℄ and 0 otherwise. The meaning of the indi
ator �ij is that onlythose individuals 
ontribute to the likelihood, whose observed 
ensoring in-tervals 
ontain one or more Turnbull intervals. The estimate of the densityof X is given through the weight ve
tor s = (s1; : : : ; sm).In order to determine the maximum likelihood estimate of s, Turnbullproposed to apply an algorithm whi
h is based on the equivalen
e betweenthe maximum likelihood estimates and the self-
onsistent estimates and isdes
ribed in the following. For details on the self-
onsisten
y equations seeEfron, 1967.De�ne Iij=1 if xi 2 [qj; pj℄ and 0 otherwise. Be
ause of 
ensoring thevalue of Iij is not known, but its expe
tation is given byEs(Iij) = �ijsj = �ij(s):That is, �ij(s) represents the probability that the i-th observation lies in[qj; pj℄. Furthermore, the proportion of observations in the interval [qj; pj℄ isnXi=1 �ij(s)=M(s) = �j(s);



12whereM(s) = nXi=1 mXj=1 �ij(s):The self-
onsistent estimate of the sj is then de�ned to be any solutionof the simultaneous equationsj = �j(s1; : : : ; sm):Turnbull in
orporates these formulas in an iterative pro
edure in orderto derive the nonparametri
 estimate for the sj:Step 1: Chose initial estimates s0j , j = 1; :::; m. This 
an be any set ofpositive numbers summing to unity, e.g. sj = 1m for all j.Step 2: Evaluate �ij(s0), M(s0) and �j(s0) using the formulas given above.Step 3: Obtain the improved estimates s1j by setting s1j = �j(s0).Step 4: Return to Step B repla
ing s0 by s1.Step 5: Stop when the values of s1 and s0 do not di�er anymore.Turnbull shows that the algorithm 
onverges monotonely for those initialve
tors s0 that are 
lose to the true density ve
tor s. Gentleman and Geyer(1994) provide easily veri�able 
onditions for the self-
onsistent estimator tobe a maximum likelihood estimator and for 
he
king whether the maximumlikelihood estimate is unique.1.2 Nonparametri
 estimation of the distri-bution of two interval 
ensored variablesBetensky and Finkelstein (1999) generalized Turnbull's estimation pro
edureto bivariate dis
rete interval 
ensored data. Unlike Turnbull, the likelihoodfun
tion is not maximized using a self-
onsistent algorithm, but an extensionof the method of Gentleman and Geier (1994) is applied.



13In the bivariate 
ase, one observes for ea
h individual i, i = 1; : : : ; n, thedata re
tangle [xL1i ; xR1i ℄� [xL2i ; xR2i ℄ whi
h are known to 
ontain the real-izations of X1i and X2i. Denoting F (x1; x2) the joint 
umulative distributionfun
tion of X1 and X2, the likelihood for the data in this setting isnYi=1 (F (xRi1+; xRi2+)� F (xRi1+; xLi2�)�F (xLi1�; xRi2+) + F (xLi1�; xLi2�)) :Similar to the one-dimensional 
ase, the support of the maximum likelihoodestimate of F is 
ontained in that set of re
tangles whi
h is formed by inter-se
ting the observed data re
tangles su
h that no other re
tangle is 
ontainedwithin them. This me
hanism is equivalent to the one used in the 
onstru
-tion of the Turnbull intervals explained in the previous se
tion. Figure 1.2gives an illustration.Figure 1.2: Final re
tangles (thi
k lines), resulting from interse
ting theobserved regions (thin lines)

Denote the �nal re
tangles as [rj; sj℄ � [tj; uj℄, j = 1; :::; J . De�ne further-more the probability asso
iated with re
tangle j to be pj = F (sj+; uj+) �F (sj+; tj�) � F (rj�; uj+) + F (rj�; tj�). Then, adopting the argumenta-tion of Turnbull (1976), the sear
h for the maximum likelihood estimate for F
an be restri
ted to those ve
tors p = (p1; :::; pJ) having stri
tly non-negative
omponents and summing to one. The maximum likelihood estimate even-



14tually results from maximizingL(p) = nYi=1 JXj=1 �ijpj;where �ij equals 1 if [rj; sj℄ � [xL1i ; xR1i ℄ and [tj; uj℄ � [xL2i ; xR2i ℄, and 0otherwise.Under the 
onstraints for the pj given above, the authors propose to max-imize the likelihood L(p) dire
tly by solving a 
on
ave programming problemwith linear 
onstraints as des
ribed in Gentleman and Geier (1994).1.3 Linear regression models with exa
tly ob-served response and interval 
ensored 
o-variateG�omez et al. (2002) proposed a theory for linear regression analysis withinterval 
ensored 
ovariates. The idea of their approa
h is to simultaneouslymaximize the data likelihood and estimate the unknown distribution fun
-tion of the 
ovariate.The authors 
onsider a 
ontinuous response variable Y with exa
tly ob-served realizations yi, and a dis
rete and interval 
ensored 
ovariate Z whoserealizations zi are not observed but only the 
orresponding 
ovariate inter-vals [zLi ; zRi ℄, i = 1; : : : ; n. These intervals are known to in
lude zi withprobability one. The model to be established isY = � + �Z + "; model 1where the error term " is said to be independent of Z and normally dis-tributed with expe
tation zero and varian
e �2. The aim is to estimate theparameter ve
tor � = (�; �; �2) from the observed data (yi; [zLi ; zRi℄).Sin
e Z is taken to be a dis
rete random variable, the authors supposethat it assigns positive mass wj to the points sj, j = 1; : : : ; m. From thenormality of the model errors follows that the 
onditional density f of the



15response Y given sj as a realization of Z is also normally distributed, withexpe
tation � + �sj and varian
e �2:f(yjsj; �) = 1p2��2 exp��(y � �� �sj)22�2 � :This density is used in the 
onstru
tion of the data likelihoodL(�; wj) = nYi=1 mXj=1 �ijwjf(yijsj; �);where�ij = � 1 : sj 2 [zLi ; zRi ℄0 : sj 62 [zLi ; zRi ℄ ; and wj = P (Z = sj):Due to the unknown 
ovariate distribution w = (w1; :::; wm), this like-lihood 
an not be maximized dire
tly to obtain the maximum likelihoodestimates for the model parameters. Therefore, the authors maximize L si-multaneously for � and w using a two-step algorithm whi
h �rst maximizesL with respe
t to w for �xed �, and then resolves the maximization problemfor � with w known. These two steps are des
ribed in detail below.1.3.1 Nonparametri
 estimation of w when � is knownAssuming that the value for � is known, the maximization of the likelihoodL redu
es to the problem of �nding a ve
tor w that maximizesL�(w) = nYi=1 mXj=1 �ijwjf(yijsj);subje
t to the 
onstraints Pmj=1wj = 1 and wj � 0 for all j.The authors propose an algorithm for this maximization problem whi
his similar to Turnbull's density estimation pro
edure des
ribed in Chapter1.1. It 
onsists of the following steps: First, the authors �x a value for � and
hose start values for w. With these, they 
al
ulate the probability �ij thatthe 
ovariate of the i-th individual is equal to sj. This quantity is then usedto determine the expe
ted number �j of individuals with Zi = sj. Finally,



16�j is taken to be an improved estimate of the 
ovariate density w, and 
anlater be used to re
al
ulate �ij and �j. This pro
edure is repeated until theimproved estimate and the old estimate are suÆ
iently 
lose. The followings
heme illustrates this estimation pro
edure:Step 1a: Fix the value for � using �0 = (�0; �0; �20), where�0 = �y � �0n nXi=1 êi;�0 = Pni=1 (yi � �y)êiPni=1 (v̂2i � ê2i )� (1=n)(Pni=1 êi)2 ;n�20 = nXi=1 (yi � �0)2 � (�0)2 nXi=1 (v̂2i + ê2i );and êi = (xLi + xRi)=2; and v̂2i = ((xLi � êi)2 + (xRi � êi)2)=2:Step 1b: Chose initial estimates for the w0j , for instan
e take w0j = 1m .Step 1
: Evaluate �ij(�;w0) de�ned as�ij := P (X = sjjyi; [xLi ; xRi℄) = �ijf(yijsj; �)wjPmk=1 �ikf(yijsk; �)wk ;repla
ing wj by w0j , and 
al
ulate�j(�;w0) = 1n nXi=1 �ij(�;w0):Step 1d: Obtain the improved estimate w1j by setting w1j = �j(�;w0).Step 1e: Return to step 1
 repla
ing w0 by w1.Step 1f: Repeat steps 1
 to 1e until the value of w1 does not 
hange any-more. Denote it by ŵ1.



171.3.2 Maximum likelihood estimation of � when w isknownWhen the 
ovariate density w is known, the maximization of the likelihoodL��(�) = nYi=1 mXj=1 �ijwjf(yij�)with respe
t to � 
an be a
hieved via the usual maximum likelihood approa
h:The logarithm of L�� is derived with respe
t to �, � and �2, and thesederivations are set to zero and solved for the parameters. The authors showthat the solution of the maximum likelihood equations ��� logL��(�) = 0 is�̂ = �y� �n nXi=1 ei(�;w); (1)�̂ = Pni=1 (yi � �)ei(�;w)Pni=1 (vi(�;w) + e2i (�;w)) ; (2)n�̂2 = nXi=1 (yi � �)2��2 nXi=1 (vi(�;w) + e2i (�;w)); (3)whereei(�;w) = Pmk=1 �ikskwk 1p2�� exp f� 12�2 (yi � �� �sk)2gPmk=1 �ikwk 1p2�� exp f� 12�2 (yi � �� �sk)2g ; (4)andvi(�;w) = Pmk=1 �ik(sk � expi(�; w))2wk 1p2�� exp f� 12�2 (yi � �� �sk)2gPmk=1 �ikwk 1p2�� exp f� 12�2 (yi � �� �sk)2g : (5)The algorithm proposed by the authors maximizes L�� by �rst 
hoosinginitial values for equations (4) and (5), whi
h are then used to 
al
ulate theestimates given in (1) to (3). Afterwards, (4) and (5) are determined againusing the newly 
al
ulated estimates and the 
ovariate density ve
tor that re-sulted from the algorithm of the previous se
tion. This pro
edure is repeateduntil the values for �̂, �̂ and �̂2 stabilize. The following s
heme illustratesthe estimation pro
ess.



18Step 2a: Cal
ulate �0 from formulas (1) to (3) by 
hoosing the initial valuesfor ei(�;w) and vi(�;w) to bee0i (�;w) = zLi + zRi2 andv0i (�;w) = (zLi � e0i )2 + (zRi � e0i )22 :Step 2b: Evaluate ei(�0; ŵ1) and vi(�0; ŵ1) using equations (4) and (5) em-ploying �0 and ŵ1 from step 1f above.Step 2
: Obtain the improved estimate �1 from formulas (1) to (3), repla
-ing ei(�;w) and vi(�;w) by ei(�0; ŵ1) and vi(�0; ŵ1).Step 2d: Return to step 2a repla
ing �0 by �1.Step 2e: Repeat steps 2a to 2
 until the di�eren
e between �0 and �1 issuÆ
iently small. Denote the �nal estimate by �̂1.In total, the two-step algorithm for 
al
ulating simultaneously the den-sity w of the interval 
ensored 
ovariate and the estimator for the parameterve
tor �, results in the 
ombination of the two algorithms given above andis summarized in the following s
heme:Step I: Exe
ute Step 1a up to Step 1f.Step II: Exe
ute Step 2a up to Step 2e.Step III: Return to Step 1
 repla
ing �0 by �̂1 and w0 by ŵ1.Step IV: Repeat steps I to III until 
onvergen
e of � and w.



Chapter 2Linear regression with interval
ensored response and 
ovariateThis 
hapter presents a new estimation theory for linear regression modelswhen both 
ovariate and response are interval 
ensored. It is an extension ofthe method of G�omez et al. (2002) introdu
ed previously. The model to be
onsidered here isYi = �+�Zi+"i; i = 1; : : : ; n model 2where the response Yi is 
ontinuous and 
ensored into the interval [YLi; YRi℄,and the 
ovariate Zi is dis
rete and 
ensored into the interval [ZLi ; ZRi℄. Themodel errors " are assumed to have a normal distribution with mean zeroand varian
e �2.Let sj be the possible values for Z with 
orresponding weights wj, j =1; : : : ; m, and denote the 
ovariate density and distribution fun
tion as wand W, respe
tively. From the errors' normal distribution follows that thedistribution of Y given sj as a value of Z is also normal with mean � + �sjand varian
e �2:f(yjsj; �) = 1p2��2 exp��(y � �� �sj)22�2 � :Here, � = (�; �; �2) is the ve
tor of the model parameters whi
h we want toestimate. 19



20 It will be assumed that the interval 
ensoring for the 
ovariate and the re-sponse o

urs noninformatively. If a variable X is subje
t to noninformative
ensoring, this means that for any given values x0, x1, x2, the 
onditionaldensity of this variable is the same as the density of the un
ensored variabletrun
ated into the observed 
ensoring interval:P (X = x0jXL = x1; XR = x2) = ( P (X=x0)P (X2[x1;x2℄) : x0 2 [x1; x2℄0 : otherwise :G�omez et al. (2001b) show that the 
ontribution to the likelihood of anunique individual with observed 
ensoring interval [xL; xR℄ whi
h in
luds thetrue value of interest x, is proportional to R xRxL dW (x) where W = P (X � x).With this fa
t, the likelihood for the observed data of model 2 
an be 
on-stru
ted as given in the next se
tion.2.1 Estimation pro
edureThe observed data for model 2 
onsists of n independent and identi
allydistributed realizations of Y and Z. Sin
e these two variables are interval
ensored, one observes the intervals ([yLi; yRi℄; [zLi; zRi ℄), i = 1; :::; n. In orderto obtain the estimates for the model parameters �, � and �2, a maximumlikelihood approa
h will be proposed as des
ribed in the following.The likelihood for the observed data 
an be 
onstru
ted by noting the fol-lowing fa
ts: The 
ontribution of an arbitrary individual i to the likelihood
onsists of the 
ontribution of this individual with respe
t to both the 
ovari-ate and the response. Sin
e the 
ovariate Z is interval 
ensored, its densitymust be estimated with a method similar to the one given in Turnbull (1976),yielding as a result the weights wj (for more details on the method of Turn-bull see Chapter 1.1). Thus, the 
ontribution of individual i with respe
tto Z isPmj=1 �ijwj, where the indi
ator variable �ij spe
i�es whether or notthe 
ovariate value sj is 
ontained in the observed 
ovariate interval [zLi ; zRi℄.On the other hand, the 
ontribution of this individual with respe
t to theresponse Y given a �xed value of Z, is determined by the 
onditional densityf(yjsj; �). Sin
e the value of Y is not exa
tly observed but only its 
ensoringinterval [yLi ; yRi℄, the 
onditional density must be integrated over the rangeof this 
ensoring interval in order to obtain the respe
tive 
ontribution to the



21likelihood. The total 
ontribution of individual i to the likelihood is then the
ombination of these two single likelihood 
ontributions, and the 
ompletelikelihood a

ounting for all individuals is therefore given byL(�; wj) = nYi=1 P (Yi 2 [YLi ; YRi℄; Zi 2 [ZLi; ZRi ℄)= nYi=1 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy; (2.1)where �ij = � 1 : sj 2 [zLi ; zRi ℄0 : otherwise ;and wj = P (Z = sj) is the weight the 
ovariate assigns to the point sj.The estimation of the parameter ve
tor � will be a
hieved through max-imizing L. Similar as in the 
ontext of the regression theory of G�omez et al.(2002), this maximization 
an not be 
arried out dire
tly be
ause of the un-known 
ovariate density fun
tion w = (w1; : : : ; wm). Thus, L is maximizedthrough an algorithm that iterates between maximizing L with respe
t to wwhile holding � �xed, and maximizing L with respe
t to � while holding w�xed. These two steps are des
ribed in detail below.Nonparametri
 estimation of w when � is knownFor a �xed value of �, the maximum likelihood estimate of the ve
tor w,given the 
onstraints Pmj=1 wj = 1 and wj � 0 for all j, is determined byusing a pro
edure based on the equivalen
e between the maximum likelihoodand the self-
onsistent estimators as explained in Turnbull (1976): First, ini-tial values for the 
ovariate density weights wj, are 
hosen. With these, the
onditional probabilities �ij that the 
ovariate Zi equals a given value sj are
al
ulated. Summing these probabilities over all individuals i leads to theexpe
ted number �j of individuals with a 
ovariate value equal to sj. Thisexpe
ted number is then taken to be an improved estimate of the 
ovariatedensity w, and 
an be used to re
al
ulate �ij and �j. The whole pro
edureis repeated until the di�eren
e of the values of the improved and the oldestimate is suÆ
iently small. The following s
heme gives a summary:



22Step A1 Take initial estimates for the w0j , for example w0j = 1m for j =1; : : : ; m. Denote w0 = (w01; :::; w0m).Step A2 Evaluate �ij(w0; �) and �j(w0; �) de�ned as�ij(w0; �) = P (Zi = sjj[zLi; zRi ℄; [yLi; yRi℄)= �ijw0j R yRiyLi f(yjsj; �)Pmj=1 �ijw0j R yRiyLi f(yjsj; �) ;�j(w0; �) = 1n nXi=1 �ij(w0; �):Step A3 Obtain the improved estimate w1 settingw1 = �j(w0; �):Step A4 Go to step A2 repla
ing w0 by w1 and repeat the whole pro
edureuntil their values are suÆ
iently 
lose.Maximum likelihood estimation of � when w is knownWhen the 
ovariate density is known, the maximization of the likelihood Lwith respe
t to � 
an be a
hieved by solving the s
ore equation ��� logL = 0.The resulting estimates for �, � and �2 are derived in Appendix A. They are
al
ulated to�̂ = �d� �a�b�
� �b2 ; (2.2)�̂ = �a� �̂�b; (2.3)�̂2 = �e� 2�̂�a+ �̂2 � �̂2�
; (2.4)where �a, �b, �
, �d and �e is the average of ai, bi, 
i, di and ei, i = 1; :::; n,respe
tively, de�ned asai = E(Yij[ZLi; ZRi℄; [YLi; YRi℄);bi = E(Zij[ZLi; ZRi℄; [YLi; YRi℄);



23
i = E(Z2i j[ZLi; ZRi℄; [YLi; YRi℄);di = E(ZiYij[ZLi; ZRi℄; [YLi; YRi℄);ei = E(Y 2i j[ZLi; ZRi℄; [YLi; YRi℄):The following propositions show that the estimates �̂, �̂ and �̂2 are similarto the maximum likelihood estimators in a simple linear model with exa
tlyobserved response and 
ovariate.Proposition 1It holds that �̂ as de�ned above 
onverges in probability to the value Cov(Z;Y )V ar(Z) .ProofApplying the law of large numbers, it holds that�a = 1n nXi=1 ai n!1�! E(ai) = E(E(Yij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Yi);�b = 1n nXi=1 bi n!1�! E(bi) = E(E(Zij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Zi);�
 = 1n nXi=1 
i n!1�! E(
i) = E(E(Z2i j[ZLi; ZRi℄; [YLi; YRi℄)) = E(Z2i );and �d = 1n nXi=1 di n!1�! E(di) = E(E(ZiYij[ZLi; ZRi℄; [YLi; YRi℄)) = E(ZiYi):Thus, it holds for the numerator of �̂ that�d� �a�b =n!1�! E(ZY )� E(Y )E(Z) = Cov(Z; Y );and for the denominator that�
� �b2 n!1�! E(Z2)� E(Z)2 = V ar(Z; Y ):In total, this means that�̂ = �d� �a�b�
� �b2 n!1�! Cov(Z; Y )V ar(Y ) : �



24Proposition 2It holds that �̂ as de�ned above 
onverges in probability to the value E(Y )��E(Z).ProofApplying the law of large numbers it holds that�a = 1n nXi=1 ai n!1�! E(ai) = E(E(Yij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Yi)and �b = 1n nXi=1 bi n!1�! E(bi) = E(E(Zij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Zi):Thus, together with Proposition 1, this means that�̂ = �a� �̂�b n!1�! E(Y )� �E(Z): �Proposition 3It holds that �̂2 as de�ned above 
onverges in probability to the value V ar(Y )��V ar(Z).ProofAgain, with the law of large numbers and Proposition 1, one obtains�̂2 n!1�! E(Y 2)� 2�̂E(Y ) + �̂2 � �2E(Z2)= E(Y 2)� 2 (E(Y )� �E(Z))E(Y )+ (E(Y )� �E(Z))2 � �2E(Z2)= E(Y 2)� E(Y )2 � �2 �E(Z2)� E(Z)2�= V ar(Y )� �2V ar(Z): �For the determination of the parameter estimates of model 2, a pro
edure isproposed that uses start values for �a to �e. It iterates between 
al
ulating �̂,�̂ and �̂2 and re-determining the values for �a to �e as explained in the s
hemegiven below.



25Step B1 Take initial estimates for ai, bi, 
i, di and ei, for examplea0i = yLi + yRi2 ;b0i = zLi + zRi2 ;
0i = (zLi � b0i )2 + (zRi � b0i )22 ;d0i = (zLi � bi)(yLi � ai) + (zRi � bi)(yRi � ai)2 ;e0i = (yLi � a0i )2 + (yRi � a0i )22 :Step B2 Use these values in (2.2) to (2.4) to 
ompute the initial estimate�0 = (�̂0; �̂0; �̂20).Step B3 Re-evaluate ai up to ei with their theoreti
al formulas given inAppendix A by employing �0.Step B4 Obtain the improved estimate �1 by solving equations (2.2) to (2.4).Step B5 Go to step B3 substituting �0 by �1.Step B6 Cy
le steps B3 to B5 until the di�eren
e between the values of �0and �1 is suÆ
iently small.The 
omplete algorithm to obtain the joint maximum likelihood estimatefor w and � follows from the 
ombination of the two 
onditional algorithmsgiven above. It has been implemented in the program semipara:
pp and 
anbe found on the 
oppy dis
. The 
riteria for 
onvergen
e of the estimateswas 
hosen to be the relative norm di�eren
es of the estimates at iterationstage l:jjŵl�1 � ŵljjjjŵl�1jj and jj�̂l�1 � �̂ljjjj�̂l�1jj :The estimates were de�ned to 
onverge if the respe
tive relative norm dif-feren
e was less than 0.001. A 
ow-
hart of the stru
ture of this program isgiven in Chapter 3.



262.2 Con�den
e intervals for the model pa-rametersThe MAPLE program given in Appendix B 
an be used to 
onstru
t ap-proximate 
on�den
e intervals for the parameter estimates resulting fromthe newly proposed estimation pro
edure. It uses the observed informationmatrix and quantiles of the normal distribution, and the di�erent steps inthe 
al
ulation pro
ess of the program are explained in the following:Consider a given data set whi
h 
onsists of values yLi and yRi for the ob-served response intervals, values sj for the dis
rete 
ovariate with respe
tivedensity weights wj, and the estimated regression parameters �̂, �̂ and �̂2. The�rst part of the program reads this data into variables. With these, the log-likelihood as de�ned in equation (2.1) is 
onstru
ted and its �rst and se
ondderivatives with respe
t to the regression parameters are 
al
ulated. Then,the Hessian matrix is formed from all se
ond derivatives and the observedinformation matrix is 
al
ulated by multiplying the Hessian with minus one.Eventually, the inversion of the observed information matrix provides an es-timate for the varian
es of �̂, �̂ and �̂2. These estimated varian
es are thenemployed in the 
onstru
tion of the approximate 
on�den
e intervals.2.3 Multiple regressionThis se
tion extends the proposed regression theory to the 
ase that model 2additionally in
orporates an exa
tly observed 
ovariate ve
tor. This means,the model now under 
onsideration isY = � + ~� 01 ~X + �2Z + ";where ~X = (X1; : : : ; Xp) is a ve
tor of exa
tly observed 
ovariates, ~� 01 is the
orresponding p-dimensional parameter ve
tor, Y is the interval 
ensored re-sponse, Z is an interval 
ensored 
ovariate, and " is a 
ontinuous N(0; �2)random variable independent of ~X and Z.The observed data for individual i is then ~xi = (x1i ; : : : ; xpi)0, [zLi ; zRi℄and [yLi; yRi℄. By de�ning � = (�; ~� 01; �2; �2) and using the notation and



27assumptions of model 2, the likelihood fun
tion in the new 
ontext is givenas L�n(w; �) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yj(~xi; sj); �)); (2.5)where w = (w1; : : : ; wm), wj = P (Z = sj), �ij = Ifsj 2 [zLi ; zRi℄g andf(yj(~xi; sj); �)) is the 
onditional density of Y given ( ~X = ~xi; Z = sj):f(yj(~xi; sj); �)) = 1p2��2 exp �(yi � �� ~� 01~xi � �2sj)22�2 !2 :The idea of the estimation pro
edure for the model parameters �, ~� 01, �2and �2 is the same as for model 2, only that the likelihood fun
tion is nowgiven by (2.5). This means, L� is maximized simultaneously for w and �by 
y
ling between steps A und B of the earlier proposed algorithm. In thepresent 
ontext, Step A now 
onsists of the same self-
onsistent equations asgiven earlier but using the new expression for �ij(w; �), whi
h is�ij(w; �) = P (Zi = sjj[yLi; yRi℄; [zLi ; zRi℄; ~xi) = �ijwj R yRiyLi f(yj(~xi; sj); �)Pmj=1 �ijwj R yRiyLi f(yj(~xi; sj); �) :Step B is modi�ed in so far that it now in
orporates the maximum likelihoodestimators resulting from the new 
ontext of the multiple regression. Theseare obtained from maximizing the logarithm of likelihood (2.5) for �xed wand are derived in Appendix C.2.4 Model errors 
oming from the exponen-tial family or Weibull distributionIn the previous se
tions, the regression parameters were estimated assumingthe model errors to be normally distributed with mean zero and varian
e �2.The normal distribution is known to be a member of the so-
alled exponen-tial family of distributions, whi
h is de�ned in the following way:



28De�nitionLet X be a random variable with density fun
tion f determined by the pa-rameter ve
tor �. One says that f belongs to the exponential family of dis-tributions if it 
an be expressed asf(x; �) = h(x)
(�)exp[Q(�)t(x)℄;where Q(�) and t(x) are ve
tors of 
ommon dimension k su
h that Q(�)t(x) =Pki=1Qi(�)ti(x).For example, the N(0; �2)-distribution is obtained when taking h(x) = 1,
(�) = (2��2)�1=2, Q(�) = (0; 12�2 ) and t(x) = (x;�x2). Other members ofthe exponential family are the gamma, binomial and Poisson distribution.In what follows it will be shown that the proposed regression theory stillholds when the model errors 
ome from any distribution whi
h is a memberof the exponential family. This means that the likelihood to be 
onsiderednow isL��(�; wj) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yijsj; �)dy;wheref(yijsj; �) = h(yi � �� �sj)
(�)exp[Q(�)t(yi � �� �sj)℄and � = (�; �; �).The pro
eeding for obtaining the maximum likelihood estimate for � inthe new 
ontext is the same as in the original setting, namely maximizing thelogarithm of L�� with respe
t to the parameters �, � and �. The resultingpartial derivatives are given in Appendix D. It 
an be shown that the solu-tions (F1)� (F3) of Appendix D in
lude equations (E1)� (E3) for normallydistributed ":Corollary 1Equation (F1) redu
es to equation (E1) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, 
(�) = 1p2��2 ,



29Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F1) resultsto (F1) = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)t0("i)℄dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi �01f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[� 12�2 (�2)(yi � �� �sj)℄dyCi(�) 1A= Pmj=1 �ijwj R YRiYLi f(yijsj; �)[ 1�2 (yi � �� �sj)℄dyCi(�) = (E1) �Corollary 2Equation (F2) redu
es to equation (E2) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, 
(�) = 1p2��2 ,Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F2) resultsto (F2) = nXi=1 0�Pmj=1 �ijwj R YRiYLi � sjh0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)sjt0("i)℄dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � sj01 f(yijsj; �)dyCi(�)



30 � Pmj=1 �ijwj R YRiYLi f(yijsj; �)[� 12�2 (�2)(yi � �� �sj)sj℄dyCi(�) 1A= Pmj=1 �ijwj R YRiYLi f(yijsj; �)[ 1�2 (yi � �� �sj)sj℄dyCi(�) = (E2) �Corollary 3Equation (F3) redu
es to equation (E3) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, 
(�) = 1p2��2 ,Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F3) resultsto (F3) = nXi=1 0�Pmj=1 �ijwj R YRiYLi � 
0(�)
(�) f(yijsj; �)dyCi(�)+ Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q0(�)t("i)℄dyCi(�) 1A= nXi=1 Pmj=1 �ijwj R YRiYLi �� 
0(�)
(�) + [Q0(�)t("i)℄� f(yijsj; �)dyCi(�)= nXi=1 Pmj=1 �ijwj R YRiYLi �� 1�2 + [ 1�4 (yi � �� �sj)2℄� f(yijsj; �)dyCi(�) = (E3)�2.4.1 Weibull distributionThe proposed regression theory 
an also be applied when the model errors
ome from the Weibull distribution, as will be shown in the following. Thelikelihood of the data in this 
ontext isL���(�; wj) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yijsj; �)dy;



31wheref(yijsj; �) = ��s��1j exp���s�j �and � = (�; �).Setting the partial derivatives of l��� = log L��� to zero and solving for � and� yields the maximum likelihood estimates given in Appendix E.
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Chapter 3SimulationsSin
e theoreti
al results for the goodness of the proposed estimates are dif-�
ult to obtain, their performan
e is 
he
ked through a simulation study.It involves di�erent data s
enarios for model 2 with the aim to assess towhat extend the proposed parameter estimates are able to re
e
t these datasituations. Table 3.1 shows the simulation s
enarios used in the study.Table 3.1: S
enarios for the simulation studynumber of observations 200 and 500
ovariate distributions Exp(18), Weib(16 ; 32), N(6; 4)per
entage of 
ensoring 0.3 and 0.7value for � 4values for � 2 and 5value for �2 1The simulations are 
arried out by the program semipara:
pp on the 
oppydis
, and a short summary of how this program works is given now: Themodel errors " are generated from a N(0; 1)-distribution, and the values forthe 
ovariate Z are simulated from the exponential, Weibull or normal dis-tribution. These values are used to 
onstru
t the 
ovariate intervals [ZL; ZR℄after the following s
heme: Depending on the 
ovariate distribution, thereis a 
ertain number of values j, j = 1; : : : ; k, whi
h the 
ovariate 
an takeon. An indi
ator variable Æij determines with a given probability p, whetheror not the 
ovariate for individual i is observed at value j. Then, one looksat ea
h value zi and goes ba
k to the nearest observed value j and takes33



34it as the value for zLi . Similarly, zRi is that observed value j 
oming �rstafter zi. The 
orresponding response intervals [yLi; yRi℄ result from the for-mulas yLi = �+ �zLi + "i and yRi = �+ �zRi + "i. Eventually, the two-stepalgorithm des
ribed in Chapter 2 is applied to the generated response and
ovariate intervals for the estimation of the model parameters �, � and �2.The following 
ow-
hart illustrates the simulation pro
ess of the programsemipara:
pp. The steps of the program are written inside the boxes and thearrows indi
ate whi
h step enters in the 
al
ulation of another step. As most
al
ulations are exe
uted by pro
edures within the program, their names arewritten outside the 
orresponding box whi
h will make it easier to �nd one'sway when looking at the 
ode of the program.
ovariate values exponweibnormSSSw values for Æ�����=
ovariate intervalsCCCCCCCCCW
SSSw model errors����=response intervals Resp���/parameter estimation viathe two-step algorithm StepsOther pro
edures used in this program are listed below together with a shortdes
ription of their usage:FileOpen: opens all �les needed for reading and writing.Spallo
: allo
ates memory for the ve
tors and matri
es.ran2: generates random uniform variates.Simpson: integrates an user-de�ned fun
tion applying Simpson's method.



35The last mentioned pro
edure Simpson is used for the 
al
ulation of dif-ferent integrals over the 
onditional density f(yjsj; �) whi
h is needed amongothers in the 
al
ulation of the 
onditional means ai to ei given in Chapter 2.As these integrals 
annot be 
al
ulated analyti
ally in C, a numeri
al approx-imation applying Simpson's method is used. The idea of Simpson's methodis to approximate the area under a given graph by a sequen
e of quadrati
s.That is, the range of the upper and lower interval limit is divided into aneven number of subintervals and their width is 
al
ulated. Then, the fun
-tion value at the left endpoints of the �rst three subintervals in 
al
ulated aswell as the area of the parabola through these three points. This pro
ess isrepeated moving two subintervals to the right. Simpson's method is said tobe the most exa
t among those existing for numeri
al integration. Though,it is obviously not as exa
t as the analyti
al form. This must be taken into
onsideration when assessing the simulation results of the estimates.The performan
e of the program semipara:
pp with respe
t to speed and
onvergen
e is highly satisfying. Running it on a 400 megahertz PentiumII pro
essor with 128 MB RAM main memory using the SUSE LINUX 7.1operating system yielded 
onvergen
e of the parameter estimates after 5 to30 iterations depending on the number of observations and the level of 
en-soring. The time needed for the 
al
ulations varied between 5 and 60 se
onds.3.1 Simulation theoryThe simulation study involves the generation of data 
oming from di�erentstatisti
al distributions. The theory applied for the generation of these dis-tributions is given now (for referen
es see Box and M�uller, 1958, or Morgan,1984).Uniform distributionFor the generation of a Uniform(0,1) random variable, aCongruential Pseudo-Random Number Generator is used. By applying the re
ursion formulaxn�1 = axn + b mod m with seed x0 and a, b, m given numbers, a sequen
eof integers will be obtained, ea
h of whi
h lies between 0 and m � 1. Anapproximation to Uniform(0,1) random variables ui 
an then be a
hieved bysetting ui = xi=m.



36Exponential and Weibull distributionAs the Exponential and Weibull distributions are 
ontinuous, one 
an makeuse of the Inversion Method to generate their distribution fun
tions. Sup-pose one wishes to simulate a 
ontinuous random variableX with distributionfun
tion F (x) = P (X � x), and suppose further that the inverse fun
tionF�1(u) is well-de�ned for u 2 [0; 1℄. Then, it is well known that if U is a(0; 1)-Uniform random variable, X = F�1(U) has the required distribution.Normal distributionFor the simulation of the Normal distribution, the Polar Marsagliar Methodis applied: If U is a Uniform(0,1) random variable, then V = 2U � 1 is aUniform(-1,1) random variable. By sele
ting two independent Uniform(-1,1)random variables V1 and V2, a random point in the square [�1; 1℄�[�1; 1℄ 
anbe spe
i�ed whi
h has polar 
oordinates ( ~R;�) given by ~R2 = V 21 + V 22 andtan(�) = V2=V1. The repeated sele
tion of su
h points provides a randoms
atter of points inside this square, and reje
tion of points outside the unit-
ir
le produ
es a uniform random s
atter of points within this 
ir
le. Forany of these points, the polar 
oordinates ~R and � are independent randomvariables, � is a Uniform(0,2�) random variable and ~R2 is a Uniform(0,1)random variable. One 
an writesin(�) = V2~R = V2pV 21 + V 22 ; 
os(�) = V1pV 21 + V 22 :Eventually, a pair of independent N(0; 1)-variables is obtained by de�ningM1 and M2 asM1 =q�2log( ~R2) V2pV 21 + V 22 ; M2 =q�2log( ~R2) V1pV 21 + V 22 :3.2 Results of the simulationsTable 3.2 and 3.3 show the results of the simulation study for model 2 underthe di�erent s
enarios given in Table 3.1 above. Ea
h 
olumn gives themedian and mean value [standard deviation℄ 
al
ulated using 500 repli
atesfor the estimated model parameters.



37Table 3.2: Estimated regression parameters when � = 4, � = 2 and �2 = 1Median Mean [Std℄ Median Mean [Std℄ Median Mean [Std℄for � for � for �2Exponential( 18 )n=200,p=0.3 3.801 3.799 [0.228℄ 2.011 2.011 [0.032℄ 1.193 1.192 [0.130℄n=500,p=0.3 3.827 3.823 [0.141℄ 2.007 2.007 [0.032℄ 1.199 1.201 [0.084℄n=200,p=0.7 3.971 3.972 [0.159℄ 1.997 1.997 [0.021℄ 0.994 1.100 [0.111℄n=500,p=0.7 3.974 3.977 [0.099℄ 1.997 1.997 [0.013℄ 1.005 1.010 [0.068℄Weibull( 16 , 32 )n=200,p=0.3 4.030 4.028 [0.246℄ 1.973 1.972 [0.069℄ 1.309 1.317 [0.134℄n=500,p=0.3 4.043 4.033 [0.163℄ 1.971 1.973 [0.044℄ 1.330 1.327 [0.091℄n=200,p=0.7 3.977 3.979 [0.183℄ 1.999 1.999 [0.049℄ 0.958 0.961 [0.101℄n=500,p=0.7 3.981 3.981 [0.117℄ 2.001 2.000 [0.032℄ 0.978 0.980 [0.071℄Normal(6,4)n=200,p=0.3 4.219 4.215 [0.497℄ 1.937 1.940 [0.085℄ 0.950 0.945 [0.118℄n=500,p=0.3 4.213 4.223 [0.303℄ 1.939 1.938 [0.052℄ 0.948 0.952 [0.069℄n=200,p=0.7 4.055 4.033 [0.358℄ 1.983 1.984 [0.059℄ 0.930 0.933 [0.105℄n=500,p=0.7 4.059 4.058 [0.222℄ 1.980 1.981 [0.037℄ 0.931 0.938 [0.069℄Table 3.3: Estimated regression parameters when � = 4, � = 5 and �2 = 1Median Mean [Std℄ Median Mean [Std℄ Median Mean [Std℄for � for � for �2Exponential( 18 )n=200,p=0.3 3.531 3.510 [0.288℄ 5.062 5.064 [0.045℄ 1.882 1.879 [0.235℄n=500,p=0.3 3.559 3.549 [0.180℄ 5.056 5.058 [0.028℄ 1.866 1.885 [0.138℄n=200,p=0.7 3.944 3.939 [0.168℄ 5.004 5.003 [0.022℄ 1.093 1.093 [0.123℄n=500,p=0.7 3.952 3.951 [0.100℄ 5.003 5.002 [0.012℄ 1.106 1.105 [0.072℄Weibull( 16 , 32 )n=200,p=0.3 3.817 3.817 [0.306℄ 5.040 5.043 [0.090℄ 2.233 2.253 [0.303℄n=500,p=0.3 3.836 3.833 [0.193℄ 5.038 5.039 [0.056℄ 2.267 2.258 [0.203℄n=200,p=0.7 3.970 3.974 [0.198℄ 5.005 5.004 [0.053℄ 1.042 1.042 [0.110℄n=500,p=0.7 3.972 3.974 [0.118℄ 5.004 5.005 [0.032℄ 1.078 1.076 [0.071℄



38 Normal(6,4)n=200,p=0.3 4.423 4.409 [0.568℄ 4.921 4.920 [0.100℄ 1.283 1.294 [0.166℄n=500,p=0.3 4.436 4.433 [0.347℄ 4.918 4.917 [0.060℄ 1.277 1.282 [0.100℄n=200,p=0.7 4.107 4.125 [0.378℄ 4.971 4.969 [0.063℄ 0.960 0.970 [0.110℄n=500,p=0.7 4.124 4.124 [0.232℄ 4.970 4.970 [0.039℄ 0.984 0.984 [0.075℄Both tables show that the values of the median and the mean do not di�ermu
h within the simulation s
enarios. For � = 2, the estimation results forthe parameter � are best when the 
ovariate distribution is Weibull. For anexponential 
ovariate distribution, this parameter is slightly underestimated,and for a normal distribution it is slightly overestimated. It 
an be also no-ti
ed that the standard deviation is twofold when the 
ovariate distribution isnormal. The estimation of the parameter � is very a

urate for all 
ovariatedistributions and the standard deviations are also smaller than those for theparameter �. The results for the estimation of the error varian
e �2 is mostsatisfying for an exponential and Weibull 
ovariate distribution with a lowlevel of 
ensoring (p = 0:7). At a high 
ensoring level, the value of the errorvarian
e is overestimated. The results for a normally distributed 
ovariateare similar for both low and high 
ensoring levels but generally underesti-mate the error varian
e.For � = 5, the estimation results for the parameter � are most satisfy-ing when the per
entage of 
ensored data is low, regardless of the 
ovari-ate distribution. When the per
entage of 
ensoring is high, the value of �is underestimated in 
ase of the exponential and Weibull distribution, andoverestimated in 
ase of the normal distribution. Among these three 
o-variate distributions, the Weibull performs best. With respe
t to the modelparameter �, the simulation results show that the estimation pro
edure per-forms well for all three 
ovariate distributions and estimates 
lose to the trueparameter value are obtained. The error varian
e �2 is estimated most sat-isfa
torily for a low 
ensoring level, otherwise it is overestimated. The valueof the slope � has obviously an e�e
t in the estimation of the error varian
ebe
ause the overestimation was not that high for � = 2.It 
an be also noti
ed that the number of observations a�e
ts the valueof the standard deviation of the estimates in so far that it gets smaller if the



39number of observations gets larger.Table 3.4 gives a summary of those simulation s
enarios for whi
h theparameter estimates perform best.Table 3.4: Summary of the simulation resultsbest performan
e for � = 2 best performan
e for � = 5�̂ Weib, exp/norm and p=0.7 exp/norm/Weib and p=0.7�̂ all s
enarios all s
enarios�̂2 exp/Weib and p=0.7 exp/norm/Weib and p=0.7



40



Chapter 4Dis
ussion of other approa
hesTwo other approa
hes for the estimation problem of model 2 were investi-gated in addition to the semiparametri
 approa
h des
ribed in Chapter 2.The �rst approa
h is an empiri
al one with the idea of adapting the well-known un
ensored regression estimators to the 
ontext of interval 
ensoreddata. The se
ond approa
h imitates the least squares method of un
en-sored regression analysis and transfers it to the interval 
ensored setting.The following se
tions summarize the problems en
ountered in the pro
essof examining these approa
hes.4.1 Empiri
al approa
hConsider the linear model Y = �+ �Z + " where Y is the response variableand Z the 
ovariate, both un
ensored. It is known from regression theorythat for this model the least squares estimates�̂ = ^
ov(Y; Z)^var(Z) and �̂ = Ê(Y )� �̂Ê(Z) (�)are unbiased and have minimum varian
e when the 
onditions of the Gauss-Markov theorem are met.When Y and Z are interval 
ensored, one 
ould think in trying to estimatethe involved 
ovarian
e, varian
e and expe
ted values through the 
ommondensity fun
tion of Z and Y , whi
h 
an be 
al
ulated with the method devel-oped by Betensky and Finkelstein (1999) des
ribed in Chapter 1.2. From the41



42estimated 
ommon density ĥ, say, one 
ould then 
al
ulate the marginal den-sities f̂ and ĝ, say, of Y and Z, respe
tively. From these three distributionfun
tions one 
ould �nally estimate the 
ovarian
e, varian
e and expe
tedvalues fromÊ(Z) = Z ZRiZLi zg(z)dz; Ê(Y ) = Z YRiYLi yf(y)dz;^var(Z) = Z ZRiZLi (z � Ê(Z))2g(z)dz;^
ov(Y; Z) = Z ZRiZLi Z YRiYLi (z � Ê(Z))(y � Ê(Y ))h(y; z)dydz;and 
al
ulate the estimators �̂ and �̂ with the formulas given in (�).Simulations using the same simulation s
enarios as in the semiparametri
approa
h showed that the estimates for � resulting from the empiri
al ap-proa
h are not very a

urate. Table 4.1 below gives the means [mean squarederrors℄ of �̂ and �̂, 
al
ulated from 1000 repli
ations of ea
h setting.Table 4.1: Simulation results for the empiri
al approa
h where � = 4 and � = 2distribution parameters �̂ [MSE℄ �̂ [MSE℄Exponential( 18 ) n=100, p=0.3 4.390 [0.41℄ 2.086 [0.02℄n=500,p=0.3 4.329 [0.41℄ 2.086 [0.02℄n=100,p=0.7 4.547 [0.40℄ 2.022 [<0.01℄n=500,p=0.7 4.478 [0.25℄ 2.024 [<0.01℄Weibull( 16 , 32 ) n=100,p=0.3 4.611 [0.52℄ 1.984 [0.03℄n=500,p=0.3 4.662 [0.47℄ 1.939 [<0.01℄n=100,p=0.7 4.593 [0.42℄ 1.995 [<0.01℄n=500,p=0.7 4.559 [0.33℄ 1.976 [<0.01℄Normal(6,4) n=100,p=0.3 4.145 [0.98℄ 2.112 [0.05℄n=500,p=0.3 4.099 [0.20℄ 2.103 [0.02℄n=100,p=0.7 4.168 [0.48℄ 2.111 [0.03℄n=500,p=0.7 4.091 [0.10℄ 2.103 [0.01℄



43It 
an be seen that the value of � is strongly overestimated when the
ovariate distribution is exponential or Weibull. Only in 
ase of a normallydistributed 
ovariate, this estimate is near the true value. The mean squarederror is quite high for all three 
ovariate distributions, so it must be 
on-
luded that the values of the estimator di�er 
onsiderately within the 1000repli
ations. With respe
t to the parameter �, the simulation results showthat the estimates are quite a

urate and the mean squared errors are small.One 
ould 
on
lude from Table 4.1 that the estimation results for a nor-mally distributed 
ovariate are not too bad, but this 
on
lusion is not veryappropriate due to the high mean squared errors for �̂. Furthermore, the es-timation results are only stable when the number of observation is very high(n = 500), whi
h does indi
ate a poor performan
e on small data sets. Also,the per
entage of 
ensoring e�e
ts the value of the mean squared error, butthe in
uen
e seems not to be as high as that of the number of observations,espe
ially in the 
ase of a normally distributed 
ovariate.The main disadvantage, though, of the empiri
al approa
h is that it doesnot provide an estimate for the model error varian
e �2. In the un
ensoreddata setting, �̂2 is 
al
ulated from the formula�̂2 = 1n� 1 nXi=1 (yi � �̂� �̂zi)2;whi
h has no proper equivalent in the interval 
ensored data setting. Themethod of repla
ing the unobserved values yi and zi by the midpoints of theirobserved 
ensoring intervals is generally known to lead to 
onsiderable biasesin the estimators and is also not a methodologi
ally 
orre
t approa
h.4.2 Least squares approa
hThe least squares method in un
ensored regression analysis a
hieves param-eter estimation by minimizing the sum of squaresnXi=1 (yi � �� �zi)2;that is, the verti
al distan
es between the observed data points and the �ttedline. One 
ould think in applying this method to the interval 
ensored data



44setting by minimizing the distan
es between the observed data re
tanglesand the �tted line. To avoid the de�nition of su
h a distan
e, one 
oulddire
tly try to minimizenXi=1 E �(yi � �� �zi)2jzi 2 [zLi ; zRi℄; yi 2 [yLi; yRi℄� ;whi
h is the expe
ted sum of squares 
onditioned on the observed data re
t-angles [zLi ; zRi℄� [yLi ; yRi℄. This would be equivalent to minimizingnXi=1 Z zRizLi Z yRiyLi (y����z)2hi(z; y)dydz; (��)where hi(z; y) is the joint density of Z and Y trun
ated into the re
tangle[zLi ; zRi℄� [yLi; yRi℄.The solution of this equations would require the 
al
ulation of the den-sity hi, whi
h 
an be a
hieved with the method of Betensky and Finkelstein(1999), as well as the mathemati
al minimization of the given sum withrespe
t to the parameters � and �, whi
h 
ould be 
arried out by a math-emati
al software like MAPLE. For the purpose of running simulations inorder to assess the performan
e of the estimators, the problem o

urrs howto 
onne
t these two steps so that they 
an be exe
uted 
onse
utively by the
omputer without interferen
e from the outside. This problem 
ould not besolved until now be
ause of two fa
ts: The MAPLE software is too ineÆ-
ient to 
al
ulate the 
ommon density hi, and the C language 
an not beused to solve minimization problems. Trying to 
al
ulate �rst hi in C andthen solving the minimization problem in MAPLE fails be
ause it does notseem to exist a 
ommand that automati
ally starts a MAPLE program fromthe C interfa
e. Theoreti
al 
al
ulations of the properties of the parameterestimates resulting from minimizing (��) are quite 
omplex and diÆ
ult tointerpret.



Chapter 5OutlookFor the purpose of assessing the goodness of the estimatedmodel 2, a residualtheory should be developed in the future to 
omplete the proposed regressiontheory. It is not suÆ
ient to 
onsider an ad-ho
 approa
h like G�omez et al.(2002) did, be
ause it 
ould be seen from the results of the simulation studyin Chapter 3 that these residuals perform quite unsatisfa
torily in most ofthe 
onsidered data situations. It is rather desirable to extend the 
on
ept ofthe residual theory given in Part II of this thesis to the 
ase that the responsevariable is interval 
ensored as well.
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Appendix ADerivation of the ML equationswhen the errors are normallydistributedConsider the likelihood fun
tionL = nYi=1 mXj=1 �ij Z YRiYLi f(yjsj; �)wjdy = nYi=1 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy;where �ij equals one if sj 2 [zLi ; zRi℄ and zero elsewhere. � = (�; �; �2) isthe parameter ve
tor to be estimated, and f(yjsj; �) is given byf(yjsj; �) = 1p2��2 exp(� 12�2 (y � �� �sj)2):De�neL := nYi=1 Ci(�);where Ci(�) is the 
ontribution of the i-th individual to the likelihood L.Then,logL = nXi=1 logCi(�): 47



48In order to get the ML-estimators of �, the ML equations are solved:(E1) �logL�� = 0;(E2) �logL�� = 0;(E3) �logL��2 = 0:Consider the quantities ai, bi, 
i, di and ei de�ned asai := E(Y j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 �ijwj R YRiYLi yf(yjsj; �)dyCi(�) ;bi := E(Zj[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 sj�ijwj R YRiYLi f(yjsj; �)dyCi(�) ;
i := E(Z2j[ZLi; ZRi ℄; [YLi; YRi℄) = Pmj=1 s2j�ijwj R YRiYLi f(yjsj; �)dyCi(�) ;di := E(ZY j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 sj�ijwj R YRiYLi yf(yjsj; �)dyCi(�) ;ei := E(Y 2j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 �ijwj R YRiYLi y2f(yjsj; �)dyCi(�) :Then, solving equation (E1) leads to(E1), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� �sj�2 f(yjsj; �)dy = 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi yf(yjsj; �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (� + �sj)f(yjsj; �)dy



49, nXi=1 ai = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (�+ �sj)f(yjsj; �)dy, nXi=1 ai = � nXi=1 Pmj=1 �ijwj R YRiYLi f(yjsj; �)dyCi(�)+� nXi=1 Pmj=1 sj�ijwj R YRiYLi f(yjsj; �)dyCi(�), nXi=1 ai = n� + � nXi=1 bi , n� = nXi=1 ai � � nXi=1 bi) �̂ = 1n nXi=1 ai � �̂ 1n nXi=1 bi = �a� �̂�b:Equally, solving equation (E2) results in(E2), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� �sj�2 sjf(yjsj; �)dy = 0, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi (y � �)f(yjsj; �)dy= nXi=1 1Ci(�) mXj=1 �ijwj�s2j Z YRiYLi f(yjsj; �)dy, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi (y � �)f(yjsj; �)dy = � nXi=1 
i, nXi=1 1Ci(�)  mXj=1 �ijwjsj Z YRiYLi yf(yjsj; �)dy � � mXj=1 �ijwjsj Z YRiYLi f(yjsj; �)dy!= � nXi=1 
i, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi yf(yjsj; �)dy � � nXi=1 bi = � nXi=1 
i



50 , nXi=1 di � � nXi=1 bi = � nXi=1 
i, �d� ��b = ��
, � = �d� ��b�
 ;and repla
ing � by its estimate �̂ from (E1) results that�̂ = �d� �a�b�
� �b2 :Finally, from equation (E3) one obtains(E3), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)��12�2 + (y � �� �sj)22�4 � dy = 0, 1�4 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)(y � �� �sj)2dy= 1�2 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)(y � �� �sj)2dy = n�2:Noting that (y � �� �sj)2 = (y � �)2 + �2s2j � 2�sj(y � �), this is equal tonXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y��)2f(yjsj; �)dy = n�2��2 nXi=1 
i+2�2 nXi=1 
i, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y � �)2f(yjsj; �)dy = n�2 + �2 nXi=1 
i, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y2� 2�y+�2)f(yjsj; �)dy = n�2+�2 nXi=1 
i, nXi=1 1Ci(�)( mXj=1 �ijwj Z YRiYLi y2f(yjsj; �)dy�2� mXj=1 �ijwj Z YRiYLi yf(yjsj; �)dy



51+�2 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy = n�2 + �2 nXi=1 
i, nXi=1 ei � 2� nXi=1 ai + n�2 = n�2 + �2 nXi=1 
i, nXi=1 ei � 2� nXi=1 ai + n�2 � �2 nXi=1 
i = n�2) �̂2 = �e� 2�̂�a + �̂2 � �̂2�
:
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Appendix BMaple program for the
al
ulation of approximate
on�den
e intervals> with(LinearAlgebra):Spe
ifying the number of observations n and the number ofexaminations m> n:=2; m:=6;Reading the data> data:=matrix(9,6,readdata(`A:\\data.txt`,9));Assigning the variables needed in the loglikelihood> ID:=matrix(n,m);> for i from 1 to n do for j from 1 to m doID[i,j℄:=data[i,j℄ end do end do;> for j from 1 to m do w[j℄:=data[3,j℄ end do;> for j from 1 to m do s[j℄:=data[4,j℄ end do;> for i from 1 to n do yl[i℄:=data[5,i℄ end do;> for i from 1 to n do yr[i℄:=data[6,i℄ end do;> alphahat:=data[7,1℄; 53



54> betahat:=data[8,1℄;> sigma2hat:=data[9,1℄;Definition of the log-likelihood> i:='i'; j:='j';> for j from 1 to m dof[j℄:=(1/(sqrt(2*Pi*sigma^2)))*exp(-((y-alpha-beta*s[j℄)^2)/(2*sigma^2)) end do;> loglike:=sum('log(sum('ID[i,j℄*w[j℄*int(f[j℄,y=yl[i℄..yr[i℄)','j'=1..6))','i'=1..n);Cal
ulation of the s
ore fun
tion of loglike> i:='i'; j:='j';> der11:=diff(loglike,alpha);> der12:=diff(loglike,beta);> der13a:=algsubs(sigma^2=V,loglike);> der13b:=subs(sigma=sqrt(V),der13a);> der13
:=diff(der13b,V);> der13:=subs(V=sigma^2,der13
);Cal
ulation of the se
ond derivatives of loglike> der111:=diff(der11,alpha);> der112:=diff(der11,beta);> der113a:=algsubs(sigma^2=V,der11);> der113b:=subs(sigma=sqrt(V),der113a);> der113
:=diff(der113b,V);> der113:=subs(V=sigma^2,der113
);>> der122:=diff(der12,beta);> der123a:=algsubs(sigma^2=V,der12);> der123b:=subs(sigma=sqrt(V),der123a);> der123
:=diff(der123b,V);> der123:=subs(V=sigma^2,der123
);>> der133a:=algsubs(sigma^2=V,der13);



55> der133b:=subs(sigma=sqrt(V),der133a);> der133
:=diff(der133b,V);> der133:=subs(V=sigma^2,der133
);Constru
tion of the Hessian matrix> matt:=Matrix(1..3,1..3,[[der111,der112,der113℄,[der112,der122,der123℄,[der113,der123,der133℄℄);>Cal
ulating the observed information matrix> alpha:=alphahat;beta:=betahat;sigma:=sqrt(sigma2hat);> evalf(matt);> fish:=evalf(-1*matt);Inverting the observed information matrix whi
h is an estimatefor the varian
e of \hat{alpha}, \hat{beta} and \hat{sigma}^2> varian
e:=MatrixInverse(fish);Constru
ting the 
onfiden
e intervals for theregression parameters> alpha:='alpha';beta:='beta';sigma:='sigma';> CI(alpha):=[alphahat-1.96*sqrt(varian
e[1,1℄)/sqrt(n),alphahat+1.96*sqrt(varian
e[1,1℄)/sqrt(n)℄;> CI(beta):=[betahat-1.96*sqrt(varian
e[2,2℄)/sqrt(n),betahat+1.96*sqrt(varian
e[2,2℄)/sqrt(n)℄;> CI(sigma):=[sigma2hat-1.96*sqrt(varian
e[3,3℄)/sqrt(n),sigma2hat+1.96*sqrt(varian
e[3,3℄)/sqrt(n)℄;
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Appendix CDerivation of the MLE for themultiple regression settingWith the notations given in Appendix A, setting the partial derivations ofthe likelihood to zero and solving for the parameters, one yields the followingsolutions:For the parameter � it holds that�logL��� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� ~� 01~xi � �2sj�2 f(yj(~xi; sj); �)dy != 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi yf(yj(~xi; sj); �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (� + ~� 01~xi + �2sj)f(yj(~xi; sj); �)dy, nXi=1 ai = n�+ nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ~� 01~xif(yj(~xi; sj); �)dy+�2 nXi=1 bi, nXi=1 ai � pXl=1 �1l nXi=1 xli � �2 nXi=1 bi = n�:
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58For the parameter ~�1 it holds that�logL��~� 01 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ~xi(y � �� ~� 01~xi � �2sj)�2 f(yj(~xi; sj); �)dy!= 0, nXi=1 xkiai = � nXi=1 xki + pXl=1 �1l nXi=1 xlixki + �2 nXi=1 xkibi;, nXi=1 xkiai � � nXi=1 xki � �2 nXi=1 xkibi = pXl=1 �1l nXi=1 xlixki;for k = 1; : : : ; p:For the parameter �2 it holds that�logL���2 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi sj(y � �� ~� 01~xi � �2sj)�2 f(yj(~xi; sj); �)dy!= 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi �2s2jf(yj(~xi; sj); �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi sj(y � �� ~� 01~xi)f(yj(~xi; sj); �)dy, �2 nXi=1 
i = nXi=1 di � � nXi=1 bi � pXl=1 �1l nXi=1 xlibi:For the parameter �2 it holds that�logL���2 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi  � 12�2 + 2(y � �� ~� 01~xi � �2sj)24�4 !
f(yj(~xi; sj); �)dy != 0, 12�2 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yj(~xi; sj); �)dy



59= 12�4 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y���~� 01~xi��2sj)2f(yj(~xi; sj); �)dy: (�)Noting that (y � �� ~� 01~xi � �2sj)2 is equivalent to (y � �� ~� 01~xi)2 + �22s2j �2�2sj(y � �� ~� 01~xi), it holds that(�), n�2 � �2 nXi=1 
i + 2�2 nXi=1 
i= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y � �� ~� 01~xi)2f(yj(~xi; sj); �)dy, n�2 + �2 nXi=1 
i = nXi=1 ei � 2� nXi=1 ai � 2 pXl=1 �1l nXi=1 xliai�2� pXl=1 �1l nXi=1 xli + n�2 + pXl=1 �21l nXi=1 x2li:
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Appendix DDerivation of the MLE whenthe errors 
ome from theexponential familySetting logL�� to zero and solving for the parameters yields the followingmaximum likelihood estimates:With respe
t to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h(yi����sj)�� 
(�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) hQ(�)�t(yi����sj)�� i dyCi(�) 1A
= nXi=1 0�Pmj=1 �ijwj R YRiYLi �h0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)t0("i)℄dyCi(�) 1A = (F1):61



62With respe
t to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h(yi����sj)�� 
(�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) hQ(�)�t(yi����sj)�� i dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � sjh0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)sjt0("i)℄dyCi(�) 1A = (F2):With respe
t to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi h(yi � �� �sj)
0(�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) [Q0(�)t(yi � �� �sj)℄ dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � 
0(�)
(�) f(yijsj; �)dyCi(�)+ Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q0(�)t("i)℄dyCi(�) 1A = (F3):



63Setting these equations to zero and solving for the parameters one obtainsthe maximum likelihood equationsnXi=1 hi = �Q(�) nXi=1 t0i;nXi=1 zhi = �Q(�) nXi=1 zt0i;nXi=1 n
0(�)
(�) = �Q0(�) nXi=1 ti;whereti = E (t(")j[yLi; yRi℄; [xLi ; xRi℄) ;t0i = E (t0(")j[yLi; yRi℄; [xLi ; xRi ℄) ;zt0i = E (Zt0(")j[yLi; yRi℄; [xLi ; xRi℄) ;hi = E �h0(")h(") k[yLi; yRi℄; [xLi ; xRi ℄� ;zhi = E �Zh0(")h(") j[yLi; yRi℄; [xLi ; xRi℄� :
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Appendix EDerivation of the MLE whenthe errors 
ome from theWeibull distributionSetting l��� to zero and solving for the parameters yields the following solu-tions:For the parameters �̂ it holds that�l����� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi �s��1j exp���s�j ����s��1j exp ���s�j � s�j dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yijsj; �)� 1� � s�j� dy != 0, n� = nXi=1 fi ) �̂ = n= nXi=1 fi:For the parameters �̂ it holds that�l����� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ��s��1j + ��(� � 1)s��2j � exp ���s�j �+��s��1j exp ���s�j �����s��1j � dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yijsj; �)� 1� + (� � 1)sj � ��s��1j � dy != 065



66 , n� + (� � 1) nXi=1 bi = �� nXi=1 gi, n� + � nXi=1 bi � �� nXi=1 gi = nXi=1 bi:In these expressions, the following 
onditional expe
ted values are used:1Ci(�) mXj=1 �ijwj Z YRiYLi s�j f(yijsj; �)dy = E(Z�j[yLi; yRi℄; [zLi ; zRi ℄) = fiand 1Ci(�) mXj=1 �ijwj Z YRiYLi s��1j f(yijsj; �)dy = E(Z��1j[yLi; yRi℄; [zLi ; zRi℄) = gi:


