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Chapter 1

Introduction

Tt is often maintained that statistics starts with the data, and this thesis tries
to follow that principle, since it is in large part dedicated to the analysis of
(multivariate) data originating from marine environmental monitoring surveys,
as well as to aspects of the statistical methodology used in this kind of studies.

Such (expensive) surveys are carried out in order to gain insight in the impact
of human industrial activities on biological systems, and their results are, as we
hope, to some extent taken into account by authorities as part of their environ-
mental policy.

In Norway, oil companies exploiting platforms in the North Sea are obliged by
law to carry out impact studies on a regular basis. Akvaplan-Niva in Trgmso
is involved in the realization of such studies. Reinhold Fieler of Akvaplan-Niva,
involved in the analysis of the data produced by these surveys, kindly provided
the data sets used in this thesis.

The data sets obtained in the annually repeated surveys fall broadly into two
categories. We have counts of many organisms at various locations (biological
data) and measurements of chemicals at the same locations (chemical or envi-
ronmental data). We are not able to control the level of any of these variables,
but merely observe the values they happen to take; data is observational, and
of multivariate nature.

We proceed to give a general outline of this thesis, and at the same time sum-
marize some of the main results. Chapter 2 explains the details of the sampling
procedure and provides a univariate analysis of the variables involved. Relia-
bility calculations show that the biological data has in general poor reliability,
except for a small group of highly abundant species. The Poisson distribution
is the natural candidate for describing the biological abundance, but is seen to
be inadequate, except for rare species. After the use of an appropriate transfor-
mation, the chemical variables are seen to be approximately normal.

In chapter 3 the problem of finding a particular probability distribution for



species counts is addressed in more detail. The Poisson distribution is often not
satisfying, due to many zeros and occasionally high counts. Tn chapter 3 we try
to take the sparseness of the data into account by introducing an extra para-
meter for the zero outcome. The mathematics of such a zero-inflated Poisson
distribution are studied in detail, where we obtain expressions for the expec-
tation and variance of such a distribution, and derive the likelihood equations
necessary to estimate the parameters. For most species, the extra parameter
for the zero outcome turns out to be statistically significant. A truncated zero-
inflated Poisson and mixtures of Poisson distributions are also considered.

The abundance of a species at a certain site is thought to be determined by
the physical and chemical characteristics of the environment, though biological
factors like competition, cooperation and predator-prey relationships can also
play their role. Tn chapter 4 we start, after some bivariate explorative analysis,
to model the survey data with the use of regression models, on a species by
species basis, with abundance as the response variable and the chemical data as
predictors. Some particular species have been selected for this purpose. Many
of the problems that complicate regression analysis are encountered with the
survey data: outliers, multicollinearity due to very high correlations between
the environmental variables, and violation of the independence assumption due
to the fact that repeated observations made at the same site resemble. Though
it 1s hard to generalize, very rare species are probably best modelled by logistic
regression, rare species by Poisson regression, and abundant species by random
coefficient models. Tn general, a unimodal response model seems not very apt
for the data, as most species display a pattern of decrease with increasing con-
centrations of the heavy metals.

Treatment of the data on a species by species basis is too elaborate, making it
necessary to follow a multivariate approach where all data are used simultane-
ously. Reciprocal averaging is an algorithm that has been used by ecologists for
the analysis of tables of species counts since the seventies, though nowadays the
procedure is probably better known under the name of correspondence analysis
(CA). Chapter b gives a brief review of CA| with attention for some more theo-
retical details. Tt provides a new proof for the bounds of the singular values in
CA, and also shows that the standard coordinates obtained by CA can be used
to construct centring matrices.

Applications of CA to the species data are described in chapter 6. We dedi-
cate some attention to stability issues, and compare different ordinations from
different replicates by procrustes rotation. Stacking data matrices from differ-
ent years into one large matrix allows us to analyze data from different years
simultaneously, and gives very well interpretable output. The analysis of the
species data is kept separate from the analysis of the chemical data, where for
the analysis of the latter we present some results obtained by doing principal
component analysis. Chemical changes experienced by the stations are also re-
vealed by an integrated analysis of the combined annual data matrices.

Chapter 7 addresses the problem of the representation of the environmental data
as supplementary variables in a biplot obtained by CA. In fact, the representa-
tion of a supplementary continuous variable in a CA biplot is a topic of interest
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beyond the particular ecological context. Chapter 7 develops some methodol-
ogy for obtaining optimal directions for supplementary variables in CA. This 1s
done by minimizing projection errors obtained when site coordinates from CA
are projected onto supplementary variables. Attention is given to aspects such
as the quality of the display of these variables, type of scaling used, relationships
with other methods, and the geometrical properties of the solution. Tt is shown
with both real and artificial data that these supplementary variables are of great
help in interpreting CA output. The same problem of displaying supplementary
variables is also of interest in the context of PCA, and is taken up again in
chapter 8, where we develop the same methodology for PCA. Tf the right type
of scaling is used in CA and PCA| the optimal directions for supplementary
variables can be obtained by calculating correlation coefficients.

In chapter 7, environmental information is used in an indirect manner, posterior
to the analysis of the species data. Canonical Correspondence Analysis (CCA),
proposed by Ter Braak (1986), is probably the most popular method for using
environmental information in a direct manner. Chapter 9 is a theoretical chap-
ter on CCA | describing how CCA can be obtained by working linear restrictions
into the basic CA equations. The chapter also contains many interesting theo-
retical results, such as bounds obtained for inertias, use of generalized inverses,
specification of the trivial dimension, conditional optimality of the represen-
tation of the environmental data, and so on. Tt is shown that CCA can also
be performed by doing a principal coordinates analysis of a particular distance
matrix. Most important, we find out that CCA does not optimize the represen-
tation of species optima, and that the quality statistics in use only resume the
quality of the display of the abundance data. Therefore, statistics for the quality
of representation of the species optima in CCA are needed and proposed. Qual-
ity statistics for the representation of the environmental data are also provided.
Biplots in CCA are discussed, and an algorithm for the automated calibration
of biplot axes has been developed.

Chapter 10 deals with some applications of CCA to the survey data. CCA re-
veals the preferences of some of the more abundant species in the survey. A
few species are seen to prefer the contaminated conditions. We also do some
attempts to reduce the amount of variables, and to partial out spatial effects.

Chapter 11 is an attempt to modify CCA 1n such a way that it does represent
species optima in an optimal way. A weighted principal component analysis of
the matrix of weighted averages is seen to be capable to explain more variance
of the species optima, and is proposed as an alternative. Samples can be rep-
resented in this analysis in a supplementary manner, where one can choose to
optimize the representation of the species data or of the environmental data.
Artificial data and survey data illustrate this alternative approach, and suggest
that the environmental data are also better represented this way.

Some suggestions for further research are commented on in the last chapter, and
a selection of the many computer programs used in this thesis are presented in
an appendix. Most of the standard types of analysis (regression, anova) were
performed with the statistical package STATA, whereas all the multivariate work
was done with self-written programs in MaTLAR. Finally, this thesis itself was



typeset, with the Emtex version of I'TEX on a Pentium PC.



Chapter 2

Sampling & Univariate
Aspects

This chapter describes the sampling procedure and the characteristics of the
data obtained, and discusses some results of a descriptive univariate analysis of
the data.

2.1 The Sampling Procedure

A network of stations has been established in the Norwegian oil field Ekofisk in
the North Sea. Geographical maps of the stations are shown in figures 2.1, 2.2
and 2.3. Ekofisk is located west of Stavanger (Norway). All stations are located
at a particular distance from a pollution source, an oil platform. The latter
is represented by the origin of the three figures. Fach station is visited once
a year, in May, and eight grab samples are taken at the bottom of the ocean
floor of each station (also called “site”). Data from three consecutive years are
considered in this thesis: 1990, 1991 and 1992. The station network has un-
dergone some changes from year to year, as the number of stations has been
reduced over the years in order to reduce expenses. In 1990 about 40 stations
were sampled within a radius of about six kilometers, where the stations form a
star-like orientation (see figure 2.1). A more detailed map of the stations close
to the platform is shown in figure 2.2. Tn 1992 most stations visited were within
a radius of 2.5 kilometers from the platform (see figure 2.3). A few stations
(40,42) are farther away, about 30 kilometers eastward from the platform, and
are called “reference” stations, since they are supposed to experience no influ-
ence of pollution, and to reflect more “natural” conditions.

A team of specialized biologists analyzes five of the eight grab samples, count-
ing all the animals they find. The animals, more than 200 species, are benthic
organisms and consist mainly of worms and molluses. The other three grab
samples are used for chemical analysis, and the concentration of about 13 en-
vironmental variables is measured: Total Hydrocarbon Content (THC), Total
Organic Content (TOC), Pelite (Pel), heavy metals like Lead (Pb), Zinc (7n),
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Cadmium (Cd), Copper (Cu), Tron (Fe) and Mercury (Hg), Barium (Ba), Pris-
tane and the ratios n-C17/pristane and n-C18/pristane. Most of these variables
were recorded each year. Other variables of potential interest are the distance of
each station to the pollution source, temperature and depth. The temperature
is not, recorded as 1t is being considered too variable. The depth of all stations
in the Ekofisk field is between 67 and 72 meters. The variability in depth 1s
considered irrelevant, as changes in depth of less than 10 meters do not affect
the species composition (Reinhold Fieler, personal communication).

We notice here that the chemical sampling is destructive; a grab used for chem-
ical analysis cannot be used for biological analysis any more. This is the reason
that separate samples are taken for chemical and biological analysis. Tn later
chapters we will want to try to explain species abundance in terms of the chem-
ical variables, for instance by regression. We note here that in such regressions,
the chemical measurements of the biological sample are in fact not available,
but are estimated from different samples at the same location.

Taking distance apart, we thus have two types of variables, the biological vari-
ables and the chemical variables, the latter often also being referred to as envi-
ronmental variables. A separate section 1s dedicated to each category.

2.2 The Biological Variables

The biological variables are the species abundances for each year, and consist
of counts of species at a series of locations (called stations or sites). Abundance
data is known to be bulky, sparse and noisy. (Jongman et al.; 1987). Bulky
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because of the large number of species involved (e.g. 152 in 1990), sparse be-
cause of the fact that many species are absent at many locations, and noisy
since repeated sampling can produce vastly different values. Tt is impossible to
describe all biological variables one by one, as there are too many. There are
species which are highly frequent and others which are absent or rare. A rough
indication of this: in 1990 152 species were found; 73 (48%) of these had a total
abundance (summing the b replicates) in the range 1-10, 52 (34%) of these were
in the range 11-100, 23 (15%) in the range 101-1000 and 4 (3%) > 1000.

A few species ranging from highly abundant to rare are selected in order to give
an impression of the distribution of the variable abundance. The boxplots of
Amphiura filiformis (1), Chaetozone selosa (2), Nephlys longosetosa (3), Pri-
onospio cirrifera (4), Nephlys caeca (5) and Jassa marmoraia (6) are shown in
figure 2.4 (upper panel). These boxplots illustrate that species abundance tends
to be positively skewed, with occasional high outliers, and high probabilities for
the lower values (0 in particular). The lower panel of figure 2.4 shows the hox-
plots of the same species, where the abundance has been transformed by taking
the square root. This reduces the positive skew considerably, and symmetrizes
the distributions. This transformation will therefore often be applied before any
further analysis. To give an impression of the high amount of zero counts, the
sparseness of the abundance matrix has been calculated for each year, using only
species actually present in at least one of the samples: 1990: 70.7 %, 1991: 59.7
% and 1992: 63.4 % sparse. For individual replicates the degree of sparseness
will even be higher.
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2.2.1 The Reliability of the Biological Data

The fact that we dispose of replicates enables us to calculate reliabilities, also
called intraclass correlation coefficients of reliability (Fleiss, 1986, p. 3). An
observed value (2) is considered to be the sum of a “signal” plus an error,
x =t + e, and if the distribution of the errors is independent of signal #, one
has that 02 = ¢7 4+ 2. The intraclass coefficient of reliability (R) is defined as
the fraction:

2

__ %
= = 5 -
o; + 07

(2.1)

Since R is a fraction, theoretically we have that 0 < R < 1. Tn practice however,
reliability coefficients are estimated from an analysis of variance. In particular,
reliabilities can be calculated as (Fleiss, 1986, p. 11):

- BMS-WMS
 BMS+ (k- 1HWMS’

where BMS and WMS are the “between” and “within” mean sum of squares of

(2.2)

the analysis of variance table, and k is the number of replicates. With estimator
(2.2) it can occasionally happen that small negative reliabilities are found. Tn
practice, this happens quite frequently with abundance data of rare species (see
below). When all replicate measurements coincide with their mean, the WMS
term vanishes, and R reaches its upper bound of 1. On the other hand, when
the means of the replicates at each station coincide with the overall mean of
all observations, term BMS in (2.2) vanishes, and R achieves a lower bound
of —1/(k — 1). This in contrast to the ordinary correlation coefficient, which
is bounded below by -1. For the data at hand, biological reliabilities are thus
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bounded below by -0.25. Some reliability calculations for the species data can
also be found in Fieler and Greenacre (1994). Figure 2.5 plots the reliability
(indicated by a + sign) of 152 species (abundances transformed by taking square
roots) versus the natural logarithm of their total abundance. Tt is clear that
there are many species with a low reliability. 89.5% of the species has a relia-
bility below 0.4, 7.2% of the species has a reliability between 0.4 and 0.75, and
3.3% has a reliability above 0.75. These categories correspond with what Fleiss
(1986) calls poor, fair to good and excellent, reliability respectively, although,
as Fleiss describes, there are no universal standards as to what represents poor
or excellent reliability. Figure 2.5 shows that reliability is related to total abun-
dance in the sense that highly frequent species have good to excellent reliability,
whereas rare species have poor reliability.
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FI1GURE 2.5: RELIABILITY OF SPRECIES TN 1990

The species with the better reliability are labelled with their abbreviated names
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in graph 2.5. These are: Capitella capitata (0.83), Goniada maculata (0.82),
Scoloplos armiger (0.80), Sthenelais limicola (0.78), Amphiura filiformis (0.76),
Myriochele oculata (0.75), Chaelozone setosa (0.60), Fudorella sp. (0.59), Pho-
ronis sp. (0.57), and Nemertini indet. (0.54). These are the species that will
be preferentially used in subsequent chapters whenever we try to model species
abundance in terms of other variables. As a consequence of the low reliability
of the species data, possible correlations between the abundances of different
species will be attenuated, and may even be rendered insignificant. Fleiss (1986,
p. 12) also gives an expression for an approximate 95% one-sided confidence
interval for the reliability. These confidence limits are indicated by a dot for
each species in figure 2.5. The reliability of 60% of the species does not differ
significantly from zero. This means that for 60% of the species, the differences
observed between the stations are due to random measurement error only.

2.2.2 The Distribution of the Biological Variables

What would be an adequate probability distribution to describe species abun-
dance? Counts of phenomena in time or space are often described by a Poisson
distribution, and Poisson distributions were fitted to the abundance of some of
the species. If the species distributions do follow a Poisson distribution, then
the sum of the five replicates should theoretically also follow a Poisson distri-
bution, with a mean that is the sum of the means of the individual replicates.
In the first instance, we try to assess whether the sum of five replicates is in
agreement with a Poisson distribution. Figure 2.6 shows expected probabilities
(open circles) and observed probabilities (plusses) for the six species previously
mentioned. This figure shows that if we use the Poisson probability distribution
to describe species abundance, we systematically underestimate the amount of
zeros, we overestimate the probability of obtaining intermediate values, and we
underestimate the outlying higher values. By mere visual inspection, only for
the rarer species like Nephtys caeca and Jassa marmorata the fit of the Poisson
distribution seems acceptable.
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We note that summing the five replicates increases the counts. There are how-
ever, only 41 samples. Summing the counts then makes that many theoretical
outcomes under the Poisson distribution, are in practice never observed in the
data. This is especially evident in the graphs of Amphiura filiformis and Chaeto-
zome selosa above.

The sample means (/\) and sample variances (s?) of the six selected species are
shown in table 2.1. The variance exceeds the mean for all species. For Poisson
distributed data the variance theoretically equals the mean, so that the sample
variance 18 higher than expected under a Poisson distribution. Phrased in other
words, there 1s considerable overdispersion.

As a way of assessing whether the abundance of a particular species follows
a Poisson distribution, bootstrap resampling was used as described by Noreen
(1989, chapter 4), Hamilton (1998, appendix 2) and Manly (1997). The test-
statistic considered (T') is the quotient of the sample mean and the sample
variance. For data which truly follow a Poisson distribution this statistic is 1.
With bootstrapping the theoretical distribution of the test-statistic does not
need to be specified, and is in practice often unknown. Using 500 bootstrap
samples, a 95% confidence interval for the test statistic was obtained by using
the 2.5 and 97.5 percentiles of the bootstrap distribution. If the value of 1 1s
not included in this interval, the hypothesis that the data follow a Poisson dis-
tribution is rejected. Tn practice, the bootstrap distribution of the test statistic
has a mean that does not coincide exactly with the value of 7" obtained from
the original sample. To correct for this bias, the bootstrap distribution can be
shifted (Noreen, 1989, chapter 4), so that it is centred on the value of T" obtained
from the original sample. The tfest statistic, confidence intervals and the bias
for the six species considered are shown in table 2.1, as well as the species’ total
abundance (N).

Species N A 52 T bias 95% CT
Amp.fil. 1067 26.68 357.15 0.075 0.005 (0.050 - 0.122)
Cha.set. 413 1033 197.35 0.0562 0.009 (0.039 - 0.125)
Nep.lon. 152 3.80 9.14 0.416 0.018 (0.323 - 0.601)
Pri.cir. 103 258  13.69 0.188 0.013 (0.149 - 0.287)

( )

( )

Nep.cae. 31 0.78 1.26  0.617 0.071 (0.420 - 1.130
Jas.mar. 15 0.38 2.04 0.184 0.090 (0.129 - 1.000

TABLE 2.1: BOOTSTRAP CONFIDENCE INTERVALS OF T

Table 2.1 shows that statistic T is less than one for all species considered. The
rarer the species, the wider the confidence interval. The hypothesis that the
summed species abundances follow a Poisson distributions must in general be
rejected expect for rare species. The bootstrap distributions showed a little bias
and positive skew.

Bootstrapping was also applied to a single replicate only, in order to see if in-
dividual replicates are in better agreement with a Poisson distribution. The
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species N A 57 T bias 95% CT
Amp. fil 207 5.05 1930 0.261 0.031 (0.178 - 0.480)
Cha.set. 70 1.71 7.61 0.224 0.079 (0.131- 0.677)
Nep.lon. 30 0.73  1.40 0522 0.089 (0.331-1.143)
Pri.cir. 29  0.71 3.61 0.196 0.138 (0.123- 1.116)
Nep.cae.® 8 0.20 036 0.541 0.086 (0.383- 1.111)
Jas.mar.? 3 0.07 022 0333 0.258 (0.333-1.000)

5 bootstrap samples all zero
b38 % of bootstrap samples all zero

TABLE 2.2: BOOTSTRAP CONFIDENCE INTERVALS OF T, ONE REPLICATE ONLY

results are shown in table 2.2. For the two most abundant species, the Pois-
son distribution has to be rejected. For species with a total abundance of 30
or lower, the Poisson distribution can, in general, not be rejected. Note that,
when we correct the confidence interval of Jassa marmorata for bias, the Poisson
distribution has to be rejected. For very rare species, bootstrapping becomes
problematic, as many bootstrap samples arise that consist only of zeros. For
such bootstrap samples the test statistic is not defined. However, a bootstrap
sample consisting of zeros only has equal mean and variance, both zero, and this
s in perfect agreement with a Poisson distribution. One could therefore argue
that these bootstrap samples should be assigned the value T'= 1, as 1s done for
the two rarest species in table 2.2. The confidence intervals for statistic T are
wider when using a single replicate, suggesting that data gets closer to being
Poisson distributed as smaller volumes are considered.

From a more formal point of view, one could apply Pearson’s y2-test for good-
ness of fit to test the null hypothesis that data are Poisson distributed. However,
this requires that the data is grouped into bins with at least b observations per
bin (Rice, 1995, p. 242). This grouping can be done in many ways, and each
grouping will give a different value for the y2-statistic. Also, 40 samples is
a rather small number to divide over bins with a minimum of 5 counts. A
Kolmogorov-Smirnov test for “Poissonness” can neither be applied because the
data is discrete. Tests for discrete distributions based on the empirical distri-
bution function (EDF), analogous to the Kolmogorov-Smirnov test, have been
described by Stephens (1986) and Pettitt and Stephens (1977), but seem not to
be available for the Poisson distribution (Agostino and Stephens; 1986, pp. 176).

The bootstrap test was applied to the whole database of 152 species. For 46%
of the species the Poisson distribution had to be rejected, and for 54% it could
not be rejected. A separate chapter (3) is dedicated to trying to describe the
species distributions more accurately, where we try to take the sparseness of the
data into account.
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2.3 The Chemical Variables

A total of about 13 chemical variables were measured at each station anually.
The variables considered are Total Hydrocarhbon Content (THC), Total Organic
Content, (TOC), the heavy metals Lead (Pb), Zine (7n), Cadmium (Cd), Copper
(Cu), Mercury (Hg) and Tron (Fe), Barium (Ba), the ratios n-C17/pristane, n-
(C18/phytane, Pristane and Pelite. Most of these chemicals are related to the
drilling process (Reinhold Fieler, personal communication).
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FIGURE 2.7: BOXPLOTS OF 1.OG-TRANSFORMED CHEMICAT, VARTABILES

Barium sulfate is introduced together with other chemicals as a weight compo-
nent in the drilling fluid that serves to smear the drilling process. The other
heavy metals come along with Barium sulfate. Barium is known not to have bi-
ological effects but the other heavy metals do. Pristane, a natural component of
oil, is an indicator of oil degradation. The ratios n-C17/pristane, n-C18/phytane
are used to measure the degree of oil degradation. Pelite is a sedimentological
variable, all particles less than 0.063 mm in diameter are called pelite (silt).
All chemical variables are measured in milligrams per kilogram (mg/kg) except
n-C17/pristane and n-C18/phytane, which are ratios, and TOC which is a per-
centage. Figure 2.7 shows boxplots of the chemical variables, where the variables
have been transformed by taking natural logarithms. Among the heavy met-
als, Barium and Tron tend to have high concentrations, whereas Cadmium and
Mercury have lower concentrations. The logarithmic transformation has con-
siderably symmetrized the distributions of the chemical variables, though some
positive skew remains for several variables. Tt is difficult to find a single trans-
formation that is satisfactory for all the variables simultaneously. Occasionally
a zero observation is found among the means of the chemical variables. The
natural logarithm of zero 1s not defined. Tn order to be able to proceed with the
analysis, a small value of 0.01 was assigned to these observations. These recod-
ings pop up as outliers in the boxplots of C17,CC18 and Pristane, and correspond
to reference station 40, where these components were not detectable. These ob-
servations are also outliers in the original scale of measurement, though the
arbitrary values assigned will determine how outlying they are in transformed
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scale.

Since there are three replicates of each chemical sample, reliability calculations
were also performed for the chemical variables. The reliability coefficients (R)
for the variabl