
Chapter 1

Introduction

Turbulent motion has proved to be one of the most untractable problems of the

physical sciences in the last century and has a wide range of applications in many

�elds of engineering and science. It is therefore important to understand the funda-

mental mechanisms at work in such complex ows. Turbulence ows are unsteady

and contain uctuations in space and time, which are the result of a subtle balance
of terms involving many di�erent length-scales and frequencies, and a detailed de-

scription of all possible states is not possible. This fact presents some of the most

di�cult problems in the fundamental understanding of the physics of turbulence,

which is still unresolved.

In everyday life one may observe turbulence on a number of occasions: the smoke

from a cigarette or over a �re exhibits a disordered behavior characteristic of the

motion of the air which transports it. When we walk on the beach with wind in

our face, when we watch the unsteady performance of our kite high up in the air we

are experiencing turbulence. During air travel, one often hears the word turbulence

generally associated with the fastening of seat-belts. The ow of water in rivers is

turbulent. The wakes of cars, ships, submarines and aircraft are turbulent. The
photosphere of the sun and the photospheres of similar stars are all in turbulent

motion. All these turbulent motions show that large vortices in such motion are

unstable and break up into smaller vortices. However, it is very di�cult to give a

precise de�nition of turbulence. Until now, there is still no universal description of

turbulence, and most researchers try to describe it in one sentence:"Turbulence is

the disordered behavior of a uid in space and time".

Hinze (1959) in his book de�nes turbulence as follows:"Turbulent uid motion

is an irregular condition of ow in which the various quantities show a random

variation with time and space coordinates, so that statistically distinct average values

can be discerned.". According to Hinze, the turbulent motion of each part of the

uid is irregular in space and time. For a more detailed introduction to the subject
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the reader is referred to Bachelor (1953), Townsend (1956), Lin (1959), Lumley

and Panofsky (1964), Monin and Yaglom (1975), Frisch (1995) and Lesieur (1997).
Figure 1.1 shows the random velocity uctuations of cylinder wake turbulence as a

function of time, where the complexity of the velocity random uctuations may be

observed.

0.000 0.001 0.002 0.003 0.004
t(s)

0

10

20

30

40

u
(m

/s
)

Figure 1.1: Velocity uctuations as a function of time, measured in cylinder wake

turbulence.

Tennekes (1972) proposed a list of some basic characteristics of turbulent ows.
So, a turbulent ow is or exhibits:

� Irregularity or randomness: the turbulent ow is unpredictable.

� Di�usivity: which causes rapid mixing and increased rates of momentum, heat
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and mass transfer.

� High Reynolds number: turbulent ows always occur at high Reynolds num-
bers.

� Three-dimensional vorticity uctuations: Turbulence is rotational and three

dimensional.

� Dissipation: turbulent ows are always dissipative.

� Continuum: turbulence is a continuum phenomenon, governed by equations

of uid mechanics.

� Flows: turbulence is a feature of uid ows and not of uids.

One of the principal parameters controlling the turbulence is the Reynolds num-

ber, which is a dimensionless characteristic parameter of the ow,

Re =
LV

�
; (1.1)

where V is the mean velocity of the ow, � is the kinematic viscosity of the uid and
L is the integral scale of the large eddy can be generated in the ow. If the Reynolds

number is not too large, the ow will be laminar. At higher Reynolds number, the

ow becomes chaotic in both space and time. It is this spatiotemporal chaos that is

called uid turbulence.

In fact it is not easy to solve the turbulence problem, because it is not a totally

random process, and it has not been possible to �nd a theory that describes the

phenomenon completely. We do not yet have a set of equations that could be used

to e�ciently compute turbulent ows. The complexity of turbulence is also related

to the fact that it is not a perfect random process, with a large number of scales

of the ow playing an important role. The fundamental dynamical equations that

govern turbulent ow are the Navier-Stokes equations, their computational com-
plexity becomes intractable for large Reynolds numbers. This is a system of coupled

non-linear partial di�erential equations and must be supplemented by initial and

boundary conditions. The development of a statistical theory for turbulent uctu-

ations from the Navier-Stokes equations is always faced with the closure-problem.

This means that one has a set of n�1 equations with at least n unknown variables in

it. Many attempts have been made to realize plausible closures, as in Computational

Fluid Dynamics the one-equation models, the two-equation models (e.g. the mixing

length model and the k � � model) and the second-order closure models. Moreover,

since computers have recently become powerful enough to simulate some ows of

(engineering) interest, there exist some models for some speci�c ows. However,

these models are not universal.
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Hence, turbulence is often referred to as the unsolved problem of classical physics

and is often an important item of discussion at conferences. Most studies of tur-
bulent ow were only devoted to homogeneous and isotropic turbulence. However,

homogeneity and isotropy can even be questionable in the small scales. Figure 1.2

shows three di�erent ows con�gurations: cylinder wake turbulence, jet turbulence

and grid turbulence respectively. These pictures of the experimental facets of tur-

bulence, taken from the book of Van Dyke (1982) \An Album of Fluid Motion" and

from Lesieur (1997) Book \Turbulence", are visualized by the laser induced uores-

cence illumination technique, and show clearly the important role of the large scale

coherent structures and the induced non-homogeneity.

Richardson (1922) proposed fully developed turbulence as a hierarchy of eddies

of di�erent size. In his scenario, he assumed a cascade process of eddies breaking

down. At eddies of size L energy is injected, then energy is transmitted to smaller
and smaller eddies, and �nally it is dissipated in small eddies of scale � where

viscosity plays a dominant role. The mean rate of energy transfer per unit mass

plays a central role in this scheme. The Navier-Stokes equation, which describes the

evolution of the velocity �eld v of the uid is:

@~v

@t
+ ~v:r~v = �

1

�
rp+ �r2~v + ~f (1.2)

where � is the mass density, p the pressure and � the dynamic viscosity. The

term ~v:r~v is called the nonlinear term and implies a breaking of bigger eddies into

smaller eddies, the term �r2~v is called the viscous term and represents a dissipation

of kinetic energy as internal energy of uid, while the term ~f represents the external

forcing acting on the uid. However, though the main ideas of energy supply, energy

transfer and energy dissipation are common to both schemes, it is very di�cult to

produce a de�nitive quantitative relation between the two descriptions.

Further, Kolomogorov (1941) based on Richardson's cascade idea, studied fully

developed turbulence, i.e. turbulence which is free to develop without imposed

constraints, from an especially illuminating perspective, which is reviewed in any
standard textbook on turbulence or uid mechanics (Landau and Lifshitz (1987),

Monin and Yaglom (1975), Frisch (1995)). Kolmogorov (1941) made the bold as-

sumption that turbulence should exhibit universal and isotropic statistics for scales

smaller than the integral scale L. Moreover, for scales larger than the Kolmogorov's

scale �, the viscosity should play no dynamical role. There is then a range of length

scales called the inertial range, in which the ow statistics are expected to be uni-

versal, isotropic and independent of the viscosity. Since then extensive experimental

and numerical studies have attempted to describe the statistical behavior of fully

developed turbulence. Landau (see Frisch (1995)) was the �rst to point out that

the Kolmogorov's theory of 1941 could not be true because he did not take into

account intermittency. Landau stated that the energy dissipation displays impor-



5

tant uctuations about its mean value. A consequence is that Kolmogorov's (1941)

theory, which does not take into account the uctuations of the energy dissipation
must certainly be corrected in order to contemplate this intermittent character. By

taking note of Landau's suggestion, Kolmogorov and Oboukhov (1962) introduced a

re�ned similarity hypothesis called log-normal model. In this version, they assumed

that the energy dissipation is log-normally distributed.

Figure 1.2: Turbulent ows in three di�erent con�gurations, from the top down:

cylinder wake turbulence (Van Dyke 1982), jet turbulence (Van Dyke 1982) and

grid turbulence (Lesieur 1997).
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After the re�ned similarity hypothesis, di�erent types of intermittency models

were proposed to describe the turbulence cascade and particularly the behavior of
scaling exponents (Novikov & Stewart (1964), Frisch et al: (1978), Meneveau &

Sreenivasan (1987), Frisch & Vergassola (1991) and She & Leveque (1994)). Most of

these models have been formulated in terms of either the moments of absolute values

of velocity di�erences or the moments of dissipation. The success of these models can

be evaluated chiey on the basis of how well they agree with experiments. However,

there are no models that agree with all experiments, although each model works

quite well within a limited domain of available data. Therefore, it is not possible to

generally recommend one model over the others. Some of the most popular models

for fully developed turbulence are: She-Leveque model (She and Leveque (1994)),

p-model (Meneveau and Sreenivasan (1987)), �-model (Frisch et al: (1978)) and

random �-model (Benzi et al: (1984)).

Unfortunately, real turbulent ows, such as geophysical ows, are neither homo-

geneous nor isotropic. It is di�cult to study their dynamics because of the increase

of the ow complexity. Most of these ows show the presence of coherent struc-

tures, which a�ect the statistical properties of the structure functions and increase

the inhomogeneity of turbulent ows. These coherent structures can be de�ned as

a region of space which at a given time has some kind of organization regarding
any quantity related to the ow ( velocity, vorticity, pressure, density, temperature,

etc.).

The central topic of this research is the understanding of the dynamics of non-

homogeneous turbulent motions. Measurements of the absolute scaling exponents of

the velocity structure functions for the three di�erent ow con�gurations at di�erent

locations on the turbulent ows, show them to be scale-dependent. The Extended
Self Similarity proposed recently by Benzi et al: (1993) gives a new scaling based on

relative scaling exponents that seems to be a scale-independent but not uniform. It

would be di�erent in various ows or various locations of the same ow. So, the basic

question is the following: is the intermittency a general tool able to determine the

most important dynamical properties of non-homogeneous turbulence? Recently,

Babiano et al: (1997) proposed a model to analyze non-homogeneous turbulence.

This model is based on the statistical properties of the absolute energy transfer at

scale `, which is related to the non-linear term of the Navier-stokes equation and

is estimated from the third-order structure function. In this model the nonlocal

dynamics on the velocity structure functions is separated from the intermittency

phenomenon, and I will apply this new tool to di�erent complex and realistic ows.
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1.1 Outline

In this thesis the second chapter on Homogeneous turbulence reviews the most im-

portant models for fully developed turbulence, starting with Kolmogorov's theory

K41, the log-normal model K62 and She-Leveque model. In these models the impor-

tance of structure function and their scaling exponents are stressed. Furthermore

the search for more general homogeneous models, which lead the way to more real-

istic theories, is contained in this chapter.

Chapter 3 describes the theory of Non-homogeneous turbulence. We start with

a non-uniform energy dissipation random �eld, then we describe the method of Ex-

tended Self Similarity (ESS), Benzi et al: (1993). Finally, we describe the Dubrulle

(1994) and Babiano et al: (1997) models. The last one will be used as the key model
of non-homogeneous turbulence throughout this thesis.

In chapter 4 we describe the Experimental set-ups used to generate the non-

homogeneous ows and to measure longitudinal velocity uctuations. Di�erent tech-

niques were used such as: hot-wire with constant temperature anemometry (CTA)

and sonic velocimeter Sontek 3D. We also describe the wind tunnel, the water chan-
nel and the three di�erent basic ow con�gurations contained in this thesis: cylinder

wake turbulence, jet turbulence and grid turbulence.

In chapter 5 we present the Experimental results of the three types of experi-

ments. For the cylinder wake turbulence, which was measured at the highest fre-
quency and accuracy, we present the experimental results of energy spectrum, third

order structure function, absolute scaling exponents, relative scaling exponents up

to the sixth order, hierarchy transfer, intermittency and probability distribution

function at di�erent downstream distances and for three lateral distances from the

cylinder symmetry plane. Due to the lower resolution and lower statistical accu-

racy of jet and grid data, only the third order structure function, absolute scaling

exponents, relative scaling exponents and intermittency are presented at di�erent

downstream distances in the axisymmetric axis of the ows.

In chapter 6 we give some applications in real life Geophysical ows. The data

were collected in the Ebro Delta (Spain) and in Knebel Vig Bay (Denmark). In the

�rst experiment, the velocity uctuations were collected by means of 2D Electro-

magnetic sensors (EMS) that will described in the same chapter and in the second,

the velocity uctuations were collected by means of sonic velocimeter SONTEK-3D

described in chapter 4. We report similar data to those presented for the labora-

tory experiments stressing how to evaluate the intermittency caused by the non-



8 Introduction

homogeneous structure of the wave generated turbulence.

In chapter 7 we give some general conclusions concerning laboratory and geo-

physical data.


