Chapter 3

Non-homogeneous turbulence

In recent years many efforts have been made to explain the intermittency phe-
nomenon, particularly in homogeneous flows. In this context, many intermittency
models have been proposed as discussed in chapter 2 and in Appendix A. In Con-
trast, in non-homogeneous flows which are more complex and have more practical
interest, less attention has been given to the study of non-local dynamics which
seems separated from intermittency and also seems to play an important role in
non-homogeneous turbulence.

In the following we start by focusing our attention on the Landau remark (Frisch
(1995)) concerning the energy dissipation rate, then we describe the Extended Self
Similarity (ESS) technique which is a key way to analyze both homogeneous and
non-homogeneous flows. Finally, we describe the Dubrulle (1994) and Babiano et
al. (1997), hereafter BDF models (see also Babiano (2000)). The latter takes into
acount the non-uniformity in scale of the variance of transfer random field and it is
based on the statistical properties of the absolute energy transfer at scale £, related
to the non-linear term of the Navier-Stokes equation. This theory will be used as
the key model of non-homogeneous flows throughout this thesis.

3.1 Non-uniform energy dissipation random field

Kolmogorov (1962) and Oboukhov (1962) introduced the refined version of Kol-
mogorov’s similarity hypothesis taking into account intermittency. They assumed
that for locally homogeneous and isotropic turbulence, the energy dissipation field
strongly fluctuates in both space and time. On the other hand, the average am-
plitude of the dissipation random field scales quite uniformly in both space and
time.
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24 Non-homogeneous turbulence

In contrast, when the turbulence is non-homogeneous and non-isotropic, the dis-
sipation random field is non-uniform in scale. This means that the fluctuations and
the amplitude of the variance of the energy transfer are scale dependent quantities.
In this case, the correction 7,3 of relation (2.16) is associated with both the inter-
mittency phenomenon linked to the rarest events and the anomalous dependence
as a function of the length scale of transfer properties in the energy cascade scales.
Therefore, the relation (2.16) is not valid, because £, are anomalous and scale de-
pendent. The methodology proposed in K62 is not valid for non-local dynamics on
the velocity structure functions.

One can summarize, that in non-homogeneous and non-isotropic flows, we have
two coupled anomalies.

The first is a deviation from a scale-independent quasi-Gaussian distribution of
the largest but rarest events (intermittency) and the second is the non-uniformity
in scale of the energy transfer random field (deviation from local homogeneity).

The non-uniform distribution of €;, which is reflected in the even moments of
the dissipation rate, can also be detected using the absolute value (| ¢, |) even for
p = 3, which is related to (| du, |?). Consequently, the statistical properties of
odd order velocity structure functions is analyzed using the average of the absolute
values of velocity increments using the concept of the Extended self similarity (ESS)
introduced by Benzi et al. (1993).

Moreover, it is well known that in the framework of K41 and K62 theories, only
the longitudinal component to the separation vector # is relevant (Frisch (1995)).
In this case, the contribution to the energy transfer from the transversal to 7 veloc-
ity components and the pressure forces vanish statistically because of homogeneity.
Concerning the contribution of the third-order velocity structure function to the
statistical description of the non-homogeneous turbulence, the question is the fol-
lowing: is the longitudinal structure function the only main characteristic in such a
description, as in the homogeneous case, or when the turbulence is non homogeneous
we should use the total velocity structure function.

3.2 Extended Self similarity

Extended self similarity (ESS) is a property of velocity structure functions of homo-
geneous and non-homogeneous turbulence. It was introduced by Benzi et al. (1993)
and has been extensively used in recent years, see for example the reviews of Ca-
mussi et al. (1996) and Sreenivasan and Antonia (1997). Instead of obtaining scaling
exponents in the usual way by plotting structure functions of the absolute velocity
increments (| duy |P) against ¢, they plot them against the third-order structure
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function of the absolute velocity increment (| duy |2) (figure 3.1), then we have

(| Sug [P) ~ (| bug [)r/%, (3-1)

where (,/(3 is a relative scaling exponent and ¢, is defined by

(| dug [P) ~ £, (3.2)

where, (, is now the absolute scaling ezponent and may be different from ¢, for odd
values of p because absolute values of velocity increments are used. Using relation
(3.1), many experimental analyses indicate that the relative scaling exponents ¢, /(3
tend to be scale independent for a large class quasi-homogeneous turbulent flows,
even if both absolute scaling exponents (, and (3 depend on £. This technique can be
used in situations where an inertial range is absent such as in low Reynolds number
experiments (Briscolini et al. (1994)) or in non-homogeneous turbulence (Babiano
et al. (1997)) and also at high Reynolds number flows. Benzi et al. (1993) suggested
that the ESS may extend the scaling range. Further, Stolovitzky and Sreenivasan
(1993) found that the ESS works well only for low-order structure functions and
they provided an alternative method for making dissipation range corrections to
higher-order structure functions. Recently, Arneodo et al. (1996) used the ESS to
analyze some 3D turbulent flows characterized by different Reynolds numbers and
suggested that ESS works very well. Evidently, recovered scale-invariance for rela-
tive exponents when ¢, and (3 are scale-dependent cannot be easily interpreted with
the models K41 and K62.

Some limitations of ESS were mentioned by Stolovitzky & Sreenivasan (1993)
and by Benzi et al. (1994). They pointed out that the ESS does not seem to work
when the shear is strong, such as in the shear behind a cylinder and in boundary
layer turbulence. In contrast with these results, Babiano et al. (1997) and Gaudin
et al. (1998) found that the ESS also works well in these situations. This suggests
that the ESS may be also a specific and convenient tool to analyze non-homogeneous
turbulence.
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Figure 3.1: Extended Self Similarity scaling ranges for grid turbulence for different
conditions (Camussi and Guj (1995)).

The use of (| dug |*) instead of (§u3) in ESS may be physically explained because
it refers to the scale by scale absolute balance of transferred energy at a given scale
£ (Babiano (2000)), and includes both energy transfers from larger to smaller scales
(normal cascade) and the anomalous energy transfers from smaller to larger scales
(inverse cascade). This fact suggests that the ESS relation (3.1) must be expressed
in term of | duy |3. Figure 3.2 shows the relative scaling exponents calculated using
the ESS in homogeneous flows (Arneodo et al. (1996)).
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Figure 3.2: The relative scaling exponents in various flow configurations (Arneodo
et al. (1996)).

3.3 Dubrulle model

Dubrulle (1994), was slightly modified the SL model by including the ESS property
(Benzi et al. (1993)) and using (6u3)/e,; instead of the scale £. The corresponding
model was based on three hypotheses concerning the statistical properties of the
non-dimensional energy dissipation 7y,

T = o (3.3)
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(00)

where ¢/ is a scale independent quantity and €,  is a normalization function, which
has a scale-divergent behavior.
The three main hypotheses are the following:

i) Similarity:

Ouj taw € _ M (3.4)

where "2 indicates that the terms have the same scaling properties.

ii)Moment hierarchy:

B
T1>] : (3.5)

where A, are numerical constants and 3 is a positive constant smaller than or equal
to 1. The straightforward development for p =0, 1,2, ..p leads to the formula

(r) ~ (mg) =B/ (=B) (3.6)

iii) Power-law intermittency:

(me) = [@] , (3.7)

€° €on

where 7 is the Kolmogorov scale and -y is an adjustable parameter characterizing the
degree of heterogeneity of the transfer field and of the most intermittent structures
participating in the transfers. The relation (3.7) holds irrespective of the geometry
of the dissipative structures, which are characterized by v (Dubrulle (1994)).

The combination of the three assumptions implies that the velocity structure
functions follow the extended self-similarity relationship:

(5uB) = Cplouf)/es, (3.8)
with a relative scaling exponent given by:

1— 3pr/3
S _1_)[1—’)’]‘*'7%-

&= (3.9)
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Taking £&3 = 1 and v = 8 = 2/3 leads to the She-Leveque formula (She and Leveque
(1994)) for fully developed homogeneous turbulence. In the non-intermittent ho-
mogeneous situation corresponding to the K41 theory Kolmogorov (1941) we have
g=1.

The interest of this model is that the parameter v determined by relation (3.7)
also depends on the degree of non-uniform scale of (m,) and (6u3). This behavior
was shown in Babiano et al. (1995) in 2D turbulence. Taking the absolute value
in relations (3.4) and (3.7) the Dubrulle model may be useful for non-homogeneous
turbulence.

3.4 BDF non-homogeneous model

3.4.1 Energy transfer

In recent works, Babiano et al. (1997) and Babiano (2000) proposed a model for non-
homogeneous turbulence characterized by residual intermittency. The tool applied
is basically founded on the statistical properties of the absolute energy transfer at
scale £, related to the non-linear term of the Navier-Stokes equation rather than to
the dissipation term. For a given length-scale £, the instantaneous absolute value
of the energy transfer due to the non-linear terms of the equation of motion of
incompressible flow is given by

O'EZVZ

/ (u® 4+ v% + P)uds,|, (3.10)
Se

where u = V.ii is the velocity component along E: which is also normal to the element
dsy of surface Sy containing the control volume defined at scale £ and centered at
the space-position Z + Z/ 2, P is the pressure and v is the transversal component of
V, (| V [>= u?+v?).

Defining the integrand of (3.10) as the differences at opposite sides of the con-
trol surface Sy and maintaining all the non-homogeneous contributions it is easy to
demonstrate that (3.10) is equivalent to:

op = / (7 + 8 — u(F)® — B — Cldsy|, (3.11)
2Vl Js,
or to:
1
op = / [5ud — (B — 34) — Cldsd|, (3.12)
2Vl Js,
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where the terms A, B and C are expressed as:

A = u(Z + Hu(Z) — w(@)>u(Z + 0) (3.13)
B = v*(B)u(Z) — v3(& + Du(Z + £) (3.14)
C = P(2)u(Z) — P(Z + Du(Z + 0). (3.15)

The positions Z and Z + 7 correspond to the opposite sides of the control surface Sy.
In homogeneous flows, the cross-correlation terms tend to be negligible quantities so
A = B = C = 0. In this situation, the energy transfer (3.11) is related only to the
third order longitudinal structure function of the velocity increments. In contrast,
in non-homogeneous flows the situation is much more complicated since in general
A # B # C # 0 in a statistical sense. Then both longitudinal and transversal terms
are likely to be important.

3.5 Non-local dynamics

Continuing with equation (3.11), it is necessary to evaluate the dominant terms in
the non-homogeneous case. Monin and Yaglom (1975) gave a relationship between
the longitudinal (§u?) and transversal (§v}) second-order velocity structure function
in the non-divergent case as a homogeneous case

d
(6v3) = (1 + qﬁﬁ)@uf). (3.16)
The factor ¢ characterizes the flow geometry. In 3D turbulence ¢ = 1/2 while ¢ = 2
in 2D turbulence. The equation (3.16) is called Karman’s relation and is often used
to characterize isotropy. It has an important role in our understanding of the transfer
properties in incompressible turbulent flows. Dividing relation (3.16) by (§u?) one
obtains:

(dv7)
(0uf)

d(log(dup))
dlogl

=1+gl =Q. (3.17)

Taking (5u§) ~ %2 where & is the scaling exponent of the second order velocity
structure function, a simple form of (3.17) is derived as follows:

63
<5u%)
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31
Defining Q* = 6 2, in terms of non-averaged quantities, we can write:
[0(Z + £) — v(&)]dve ~ (1 + g&2)[u(& + £) — u(Z)]duy. (3.19)

=

Multiplying (3.19) by factors v(Z+£)v (&) and u(Z+£)u(Z) and combining the result
using relations (3.13) and (3.14), we obtain:

i (% + £)v(Z) 02 (& 4 £) — v2(2)

An approximate relationship between A and B can be obtained from relation (3.13)

B~ QA1 - 1T,

(3.21)
where, in terms of averaged quantities, T" is given by

+5)>]
< ()
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A
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(0@ + Bul@) (ol + Dul@) 529
(u2(z + 1)) (u?(%))
Terms R; and Rs refer to the velocity correlation coefficients respectively.
It was demonstrated in turbulent flows when the dynamic is non-local, that T’

is negligible compared to 1, except for the statistical parallelism between u(Z)v(Z)
and u(Z + £)v(Z + £) (Babiano (2000)), consequently (3.21) can be estimated as

B—-Q*A=0. (3.24)
Accordingly, the energy transfer can be estimated as
1
o0 = 5| [ [6uj — (Q" —3)A - Cldsq, (3.25)
2Ve| Js,

and the relationship (3.25) can be expressed as

gy =

1 %
ﬁ‘ /SZ (02 + [Q(1 — T) — 34 — Cldsy|, (3.26)

In 3D homogeneous turbulence, the energy flux in relation (3.11) is related only to
the longitudinal third order structure function, because in relation (3.13) and (3.14)
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the terms containing cross correlations are cancelled (B = A = 0). In this case, we
have & = 2/3 and by taking ¢ = 1/2 we find Q = 4/3.

In the non-homogeneous case, the energy spectrum can be steeper than k—%/3

and saturates to k~3. This behavior is illustrated in figure 3.3, which shows clearly
the transition from homogeneous and local dynamics k~5/3 to non-local and non-
homogeneous dynamics k3. On the other hand, the scaling exponent of the second-
order velocity structure function £ shows an important deviation from Kolmogorov’s
2/3 prediction. In this case @ saturates to 3 for 2D turbulence and to 2 for 3D
turbulence. This behaviour is illustrated in figures 3.4 and 3.5 for 2D and 3D
turbulence, respectively.

10
10" - ]
) e T -5/3
10° - (homogeneous) 3
L
10° - ]
-3
non-local dynamics
. (non-local d ics)
107 - i
10” - ‘
10° 10" 10°

Figure 3.3: The evolution of energy spectrum E(k) from non-local to local dynamics.
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Figure 3.4: The behavior of @ as a function of non-dimensional distance X' for 2D
turbulence.
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Figure 3.5: The behavior of @) as a function of non-dimensional distance X’ for 3D
turbulence.
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One can conclude that in nonlocal and non-homogeneous turbulence, when &5
deviates from Kolmogorov’s 2/3 prediction and @) deviates from 5/3 for 2D and from
4/3 for 3D, we have two cases:

i) 5/3 < @ < 3 for 2D turbulence and 4/3 < @ < 2 for 3D turbulence, which
characterizes the deviation from locally homogeneous turbulence and from the equi-
librium state. This implies that the transversal structure is transferred by the mean
longitudinal velocity.

ii) @ = 3 for 2D turbulence and @ = 2 for 3D turbulence, this situation is called
transfer collapse (Babiano (2000)), where {5 = 2 and the second term (@ — 3)A of
relation tends to be a negligible quantity in 2D turbulence and tends to —A in 3D
turbulence. This indicates that the transversal energy component is accumulated at
the scales at which it is generated. In other words, the transversal energy component
is no longer transferred by the non-linear term of the Navier-Stokes equation and
the contributions to the global flux o, of the terms A and B tends to be inhibited.
Consequently, the corresponding energy spectrum should be steeper than k~%/3 and
saturates with a dependence of k3.

Figure 3.6: The local energy transfer o; as a function of time for cylinder wake
turbulence (described in chapter 4) at the downstream distances X/D = 2 and
X/D = 20 for different scales £ (¢1 = 10n, £5 = 207, £3 = 30n).
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Figure 3.6 shows the local energy transfer o; for cylinder wake turbulence for
different scales ¢, at the downstream distances X/D = 2 and X/D = 20 from the
cylinder. Due to the experimental limitations for transversal velocity, o} is calcu-
lated only using the longitudinal velocity. The energy transfer will be discussed in
more detail in chapter 5. The figure illustrates two different anomalies, the non-local
dynamics related to the non-uniformity in scale of the energy transfer random field
and the intermittency related to the largest but rarest events. The two anomalies
are more pronounced at downstream distance X/D = 2 near the cylinder than at
X/D = 20 due to the strong non-homogeniety near the cylinder.

3.6 Transfer hierarchy

Babiano et al. (1997) and Babiano (2000) defined the energy transfer hierarchy as:

H(p,¢) = : (3.27)

It is bounded by two limits 02 and o7° defined as

of = lim H(p,4), (3.28)
p—0
o 1
op° = plggo H(p,?). (3.29)

The quantity 02 is equivalent to the mean absolute energy flux, while o7° charac-
terizes the relative contribution of the most intermittent structures at scale £. The
numerical studies performed by Babiano et al. (1997) and Babiano (2000) show that
the transfer hierarchy (3.27) saturates for a value of p of the order 10 in 2D and 3D
numerical turbulence (figure 3.7). From the two limits of the transfer hierarchy we
can define the following local scaling exponents:

dino?

So = — dlnll (3.30)
dino$®

Soo = — 0k (3.31)

dint
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do and &, are the local scaling exponents, characterizing respectively the relative
contribution of the least or most intermittent fluctuations of o, at given scale £. The
measurement of dy and do provides interesting information about the internal struc-
ture and spatial distribution of the structures responsible for the energy transfer. d
is a good indicator of the increase or decrease of the amplitude of the most frequent
transfer fluctuations as a function of the length scale. In contrast, do, characterizes
the scaling properties of the structures responsible for the largest but rarest transfer.
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Figure 3.7: The transfer hierarchy as function of non-dimensional scale, (A): p =0,
(M): p =12, (Babiano et al. (1997)).

It is important to point out that there are four different cases:
i) 0o = 0o = 0; this means that energy transfer is uniform in scale and that the
turbulence is non intermittent. This situation corresponds to Kolmogorov’s theory

K41 (Kolmogorov (1941)).

ii) 0o = 0 and do # do; i.e. when the energy transfer variance is uniform in
scale this corresponds to the homogeneous and intermittent case. This corresponds
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to Kolmogorov’s theory K62 (Kolmogorov (1962)).

iii) dp # 0 and 6o = dp; this is the situation where the turbulence is non-
homogeneous, but the degree of non-homogeneity does not increase with p. This is
the non-homogeneous but non intermittent case.

iv) 6o # 0 and doc # do; this represent the maximal deviation from both K41
and K62 theories, because both non-homogeneity and intermittency prevail.

According to the relation (3.27), for any value of p, one can define the local
scaling exponent 9, as:

PHY — dln(o?
5, = _dInH(p,¢) _ _dln{oy ) n( Z>_ (3.32)
dln? dIn/

Assuming that ., > dg, and that J, obeys the following relation
dp = 0o + (00 — 0o ) h(p), (3.33)

where (0o — dp) is related to the maximum amplitude of the intermittency phe-
nomenon in the turbulent flow and h(p) is a monotonous decreasing positive func-
tion of p smaller or equal to 1. The consistency of relations (3.30), (3.31) and (3.33)
requires that h(p) tends to 1 when p tends to 0, and h(p) tends to 0 when p tends
to oo.

Babiano et al. (1997) gave, as a plausible approximation, one of the simplest
functions which satisfies the above constraints:

h(p) = exp(—ap), (3.34)
where a is the factor characterizing the slope of h(p) at p = 0, and is expressed as:

9(0)
600 - 50 ’

a=—h(0) = (3.35)

where §,(0) is seen to be positive, because d; is a monotone increasing function.

In the methodology proposed by Babiano et al. (1997), the scaling of (o} 1y s

+1

determined by the relation involving (¢}) and (0§°). Specifically, the ratio <‘Z§ p)>
4

satisfies the relation:

(o) [ {gf)  qaw)/me-D 5.36
o~ lor ) ' (339
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It is of interest to point out that this equation is compatible with the hierarchy
proposed by She and Leveque (1994). It follows from (3.34) and (3.36) that,

h(p)
hp—1) B = exp(—a), (3.37)
where (3 is a characteristic parameter characterizing the degree of intermittency of
energy transfers of the flow. As mentioned in chapter 2, She and Leveque (1994)
showed that the parameter § is universal in homogeneous and isotropic turbulence
with the value 5 = 2/3. In contrast, the numerical investigation made by Babiano et
al. (1997) showed that the quantity h(p)/h(p—1) = (6p—0c)/(0p—1 —d0o) depends on
p. Therefore, the universality of § in the case of non-homogeneous and non-isotropic
flows is not necessary.

From the hierarchy (3.27), the recurrent development for p = 0,1,2,3, ... leads
to the relationship between < Jf > and < gp >P as

<og> ({60 =30)1(2) P, (3.38)
< gp>P
where
p—1
I(p) = 3" h(g). (3.39)
q=0

We also consider that the generalized similarity hypothesis is valid in the case of
non-homogeneous turbulence.

|5“2| law Oy
= — A4
Bl (o) (3.40)

where "2 means that the terms have the same scaling properties; i.e., that the
moments of the corresponding distribution are everywhere proportional, up to a
(moment-dependent) numerical constant. Then, from (3.38) and (3.40) the relative

scaling exponents (,/(3, defined in the framework of the ESS relation (3.1), are given
by

Cp/Cs =p/3+A[I(p/3) —p/3], (3.41)
where a new important parameter has been defined as
N (3.42)

(3
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Assuming the simple choice h(p) = exp(—ap), relation (3.41) converges to that
proposed by She and Leveque (1994), provided that {3 = 1 and 9 = 0. The function
I(p/3) is then related to the intermittency factor g as:

1— pr/3

I(p/3) :ﬁa

where 8 = exp(—a) (Babiano (2000)).

(3.43)

In locally homogeneous turbulence, (3 = &3 = 1 and (doc — d0 = doo = 3/2); this
provides A = 2/3, which corresponds to the value proposed by She and Leveque
(1994).

When the homogeneity is violated, the universality is recovered for A as defined
in (3.42). The connection between (doc — dg) and (3 in a non-homogeneous case is
an explicit consequence of (3.25) and of the average procedure taking the absolute
values. Babiano (2000) assumed that §y must be more sensitive to the change than
5005

The numerical measurements made by Babiano (2000) showed that even when
the localness of the flow dynamics changes in space or time the ESS works well in
non-homogeneous flows.

This remarkable property was observed first in numerical 2D non-stationary
and non-homogeneous inverse cascade of energy. It can explain the compensation
effect which operates in (3.42), and consolidates the scale-invariance of the relative
exponents, i.e the ESS property in non-homogeneous flow.

The observations, on the one hand, that A is scale-invariant and shows a constant
universal behavior, as pointed out by Babiano et al. (1997) and, on the other hand,
that the relative exponents may be spatially dependent in non-homogeneous flow,
do not contradict each other.

The scale-invariance of A sustains the idea that the ESS basically concerns the
most important anomalous behavior in the transfer dynamics, whereas I(p/3) relates
the residual intermittency, and must be interpreted in terms of a correction linked
with largest but rarest anomalous transfers, persisting for a given underlying level
of inhomogeneity. We assume that the framework of the theory described above
is also valid in complex non-homogeneous three dimensional flows. Therefore, the
main goal here is to explore the above physically sound conjectures on the basis of
several laboratory experiments reported by Gaudin et al. (1998), Mahjoub et al.
(1998) and Mahjoub et al. (2000a).

It is important to emphasize that relation (3.40) basically assumes that the sta-
tistical properties of both the energy transfer and the third-order longitudinal veloc-
ity structure functions are entirely connected, even in the absence of self-similarity
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in the usual Kolmogorov sense. From (3.25) we see that this assumption is valid
when the contribution to the energy transfer o, coming from both the transversal
velocity structure and pressure may be neglected. This happens when the tur-
bulence is locally homogeneous, and in the opposite case, when the turbulence is
non-homogeneous but the transfer dynamics is dominated by the non-local properies
(Q — 2 in 3D turbulence and @) — 3 in 2D turbulence).



