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Introduction

This thesis seeks to contribute to a deeper understanding of the moduli spaces
Mx g(r;c1, -+ 5 Cmin{rn)) of rank r, H-stable vector bundles E on an n-dimensional
variety X, with fixed Chern classes ¢;(E) = ¢; € H*(X,z), displaying new and
interesting geometric properties of My g(r;¢y, - - ;Cm,in{'r,'n,}) which nicely reflect the
general philosophy that moduli spaces inherit a lot of geometrical properties of the

underlying variety X.

More precisely, we consider a smooth, irreducible, n-dimensional, projective va-
riety X defined over an algebraically closed field k of characteristic zero, H an ample
divisor on X, r > 2 an integer and ¢; € H*(X,z) for i = 1,--- ,min{r,n}. We
denote by Mx g (r;c¢q,--- ,Cmm{r,n,}) the moduli space of rank 7, vector bundles £ on
X, H-stable, in the sense of Mumford-Takemoto, with fixed Chern classes ¢;(F) = ¢;

fori=1,---,min{r,n}.
The main questions and problems we have considered are:

(1) Let X be a smooth, irreducible, rational surface, H an ample divisor on X
and 0 << ¢; € Z. Is the moduli space Mx y(2;c1,cz) rational?

More generally,

(2) Let X be a smooth, irreducible, rational surface, H an ample divisor on X
and 0 << ¢y € Z. Is the moduli space Mx g(r;c1, cy) rational?

(3) Let X be an algebraic K3 surface and H an ample divisor on X. Determi-
ne invariants (r, ¢y, cz,!) for which the moduli space Mx x(r;cy,c;) and the
punctual Hilbert scheme Hilb'(X) are birational.
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(4) What can be said about the geometry of moduli spaces Mx 5(2; ¢y, o) if X is a
variety of arbitrary dimension? Is My y(2; ¢y, c2) connected, smooth, rational

and irreducible?

Questions (1) and (2) were formulated in [Sch90]; Problem 21, [Sch85]; Problem
2 and [OV88]; Problem 2 and question (3) was stated by Nakashima in [Nak97]. The
aim of the fourth question is to show that on varieties X of higher dimension, pro-
vided that we choose the ample divisor H on X closely related to co, Mx g(2; ¢y, ¢2)

inherits a lot of the geometric properties of X.

Moduli spaces for semistable (resp. stable) torsion free sheaves (resp. vector
bundles) on smooth, irreducible, algebraic, projective varieties were constructed in
the 1970’s. Once the existence of the moduli space is established, the question
arises as what can be said about its local and global structure. Many authors have
studied its structure, from the point of view of algebraic geometry, of topology and
of differential geometry; giving very pleasant connections between these areas. In

this work, we will take an algebraic-geometric point of view.

Many subtle and interesting results have been proved regarding the moduli spa-
ces Mx g(r;cy,- - acmin{r,n}) when the underlying variety X has dimension n = 2,
and almost nothing is known if the variety has dimension n greater or equal than
three. Let us briefly recall some of the main results. To this end, we will de-
note by MX’H(’I"; €1, s Cmin{rm}) the moduli space of rank r, torsion free sheaves
E on X of dimension n, semistable with respect to H, in the sense of Gieseker-
Maruyama, with fixed Chern classes ¢;(E) = ¢;, i = 1,--- ,min{r,n}. Notice that

Mx u (7'; Cy, acmin{r,n}) is an open subset of M X,H(T; Cy, - :cmi'n,{r,n})~

In the 1980’s, Donaldson proved that if X is a smooth, irreducible, projective
surface then, the moduli space My g(2;0,c,) is generically smooth of the expected
dimension 4cy — 4x(Ox) + py(X) + 1, provided ¢, is large enough ([Don86]). As
a consequence, he obtained some spectacular new results on the classification of
C*™ four manifolds. Since then, many interesting results have been proved. For

instance, it is well known that MX,H(’I‘; c1,¢) (resp. My g(r;c1,cs)) is a projective



(resp. quasi-projective) variety and for ¢, sufficiently large, it is non-empty ([Sor97],
[Mar77] and [Mar78]), generically smooth, irreducible, normal ([Don86], [Zuo91],
[GL96] and [OGr96]) of the expected dimension 2rcy— (r—1)c? —r2x(Ox ) +p,(X) +1.

As a consequence of Mukai’s work ([Muk84]) we have that, if X is a smooth,
irreducible, K3 surface then M x 5(2;c1, c;) has Kodaira dimension 0 and, very re-
cently, Li has proved that if X is a minimal surface of general type with a reduced
canonical divisor then My g(2;c;,c,) is of general type ([Li94]). This shows that
the geometry of the surface and of the moduli spaces of sheaves on the surface are

intimately linked.

We turn now our attention to the study of the rationality of the moduli space
My g(r;cy,¢). For X = P?, Maruyama (resp. Ellingsrud and Stromme) pro-
ved that if ¢? — dc; # 0 (mod 8), then the moduli space ]\4111’2,0]?2(1)(2;61’62) of
Opz(1)-stable, rank 2 vector bundles on P? with Chern classes ¢; and ¢, is rational
([Mar85] and [ES87]). Later on, Maeda proved that the rationality of the moduli
(2;¢1,¢2) holds for all (c1,c;) € Z° provided Mpz , (25 c1,c2) is

]P;Q(l) IP)2
non-empty ([Mae90]). Maeda’s result together with the remark that there is no

space Mp: ,

counterexample known to the fact that the moduli space Mx y(2;¢,¢2) is always
rational provided the underlying surface is rational, gives rise to the first question

considered in this work, which we have reformulated here:

QUESTION (1): Let X be a smooth, irreducible, rational surface. Fix ¢; €
Pic(X) and 0 << ¢y € Z. Is there an ample divisor H on X such that My y(2;c1, c2)

is rational?

We give an affirmative answer to this question. Furthermore, we prove that if X
is a minimal rational surface or a Fano surface then for any ample divisor H on X,
the moduli space Mx, g(2;c1,co) is rational provided it is non-empty. For all other
rational surfaces, Mx p(2;¢c;, c2) is rational provided ¢; >> 0 and (Kx + F)H < 0,
being F' a fiber of the ruling and Ky the canonical divisor of X.

As main tools we use the theory of prioritary sheaves introduced by Lazlo and
Hirschowitz and developed by Walter, the theory of moduli spaces of stable vector
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bundles on blown up surfaces (see [Nak93]), and the birational properties of moduli
spaces of rank two, stable vector bundles on algebraic surfaces. It is clear that
the definition of stability depends on the choice of the ample divisor. Hence, it is
natural to ask for the changes of My y(r;c1,cz) when H varies. It turns out that
the ample cone of X has a chamber structure such that Mx 5 (r; ¢y, c2) only depends
on the chamber of H and, in general, Mx g(7;c1, c2) changes when H crosses a wall

between two chambers.

In this setup, we have proved that if X is a smooth, irreducible, anticanoni-
cal, rational surface, then the moduli spaces Mx p(2;c1,c2) and Mx g (2; ¢y, ¢c2) are
birationaly equivalent, whenever non-empty and cy is bigger than some constant,
depending on X, which we give explicitly. In case X is a smooth, rational surface,
not necessarily anticanonical, we have proved that if ¢y >> 0 then the moduli spa-
ces Mx g (r;cy, cz) and My g (r; ¢y, c2) are birational, provided H(K y + F') < 0 and
H'(Kx + F) < 0. Again, F denotes the ruling of the rational surface X — P' and
Kx the canonical divisor of X.

All these results imply that for many purposes we can fix the ample divisor H
and this is.what we usually do to study the birational geometry of moduli spaces
Mx u(r;cy,ca). .

In order to solve question (1), we have established two criterions of rationality
| for moduli spaces Mx g (2;¢1,¢z) of rank two, H-stable, vector bundles E on a
smooth, irreducible, rational surface X, with fixed Chern classes ¢;(E) = ¢; and
c2(E) = cy. The first one works for anticanonical rational surfaces, i.e., rational
surfaces with effective anticanonical divisor. The second one works for arbitrary
rational surfaces. Then, using either these criterions or constructing irreducible
families of simple, prioritary torsion free sheaves (resp. stable vector bundles) over

a big enough rational basis, we have completely solved question (1).

We have extended the results concerning the rationality of the moduli spaces
Mx u(2;¢1,c2) of rank two, H-stable vector bundles, to arbitrary rank, partia-
lly answering question (2). The affirmative answer to question (1) together with
our contribution to question (2) strongly support the fact that the moduli space

My y(7; ¢1,co) is rational whenever X is rational.
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Regarding question (3) we have extended results of Zuo ([Zuo91b]) and Nakas-
hima ([Nak93b]) from rank two to arbitrary rank. It is well known that if X is an
algebraic K3 surface, then the Hilbert scheme Hilb'(X) of zero dimensional subs-
chemes of X of length ! has a symplectic structure. On the other hand, in 1984,
Mukai showed that the moduli space of simple sheaves has also a symplectic struc-
ture. Hence, it seems natural to look for a closer relation between Hilbert schemes
and moduli spaces. Using Serre’s correspondence and elementary transformations
we have determined invariants (7, cy, ¢z, 1) for which there is a birational map bet-
ween the Hilbert scheme Hilb'(X) and the moduli space My g (r;cy,cy) of rank r,
H-stable, vector bundles £ on a smooth, irreducible, algebraic K3 surface, with

fixed Chern classes ¢;(F) = ¢;.

For moduli spaces of vector bundles on higher dimensional varieties X, no general
results are known and, as we will stress, the situation changes drastically. Results
like the smoothness and irreducibility of moduli spaces of vector bundles on algebraic
surfaces, turn to be false for moduli spaces of vector bundles on higher dimensional
algebraic varieties. The existence of moduli spaces of stable vector bundles on
a higher dimensional variety which are neither irreducible nor smooth is rather
common. Indeed, in [Ein88] (resp. [AO95]), Ein (resp. Ancona and Ottaviani)
proved that the minimal number of irreducible components of the moduli space of
rank two (resp. rank 3) stable vector bundles on P? (resp. P°) with fixed c; and c;
going to infinity, grows to infinity. See [BM97] for a generalization of Ein’s result
to arbitrary projective 3-folds and [MO97] for examples of singular moduli spaces

of vector bundles on P?**! with ¢, >> 0.

However, our contributions to question (4) show that for a P4-bundle, X, over a
smooth curve C, and for a suitable choice of an ample divisor L on X, the moduli
space Mx 1.(2; ¢, cp) of rank 2, L-stable vector bundles F on X is a smooth, irreduci-
ble, projective variety. Namely, we prove that the moduli space is a PY-bundle over
Pic®(C) x Pic®(C). If, in addition, X is a rational normal scroll, then the moduli
space Mx g(2;c¢1,cp) is also rational. Once again these results reflect that a lot of
the geometrical properties of the moduli space are related to the corresponding ones

of the underlying variety.
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Nevertheless, we want to point out that our result strongly depends on the
polarization we have fixed. We will see how the moduli space Mx 1(2; ¢;, cz) changes
when the ample divisor L varies and we will show, by means of examples, that our

results turn to be false for other ample divisors.

As byproduct of the methods we use throughout this work, we also compute the
Picard group of some of the moduli spaces we deal with. We use the Picard group
to see that, in general, given two ample divisors H and H' on X, the birational map

between My j(r;cy, ) and Mx g (7;c1,¢2) is not an isomorphism.

Part of the results of this thesis will appear in:

e L. Costa and R.M. Mird-Roig, On the rationality of moduli spaces of vector
bundles on Fano surfaces, Journal Pure Appl. Algebra, to appear, ((CM97]).

o L. Costa, K& surfaces.; moduli spaces and Hilbert schemes, Collectanea Mat-

hematica, to appear, ([C0s98]).

The contents of this Thesis is the following: Chapter 1 is devoted to provide
the reader with the general background that we will need in the sequel. In the first
two sections, we have collected the main definitions and results concerning coherent
sheaves and moduli spaces, at least, those we will need through this work.

In section 1.3, we review some facts on walls and chambers that we will use
to understand and describe how the moduli space Mx 1,(2; ¢y, ¢c3) changes when the
ample divisor L varies.

Finally, in section 1.4 we ovefhaul the classification, up to isomorphism, of smo-
oth, irreducible, rational surfaces and for the sake of completeness we prove some
facts on the cohomology of line bundles on smooth, rational surfaces, which we have

not found explicitly in the literature.

The aim of Chapter 2 is to establish the criterions of rationality for moduli
spaces My g (2; ¢y, ¢o) of rank two, H-stable vector bundles on a smooth, irreducible,

rational surface X that will be used as one of our tools for answering Question (1).

In section 2.1, using the theory of chambers and walls introduced in section 1.3,

we will prove that if X is a smooth, irreducible, anticanonical, rational surface and
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dey ~ 2 > 2 — %ZA then, for any two ample divisors H; and H, on X, the modu-
li spaces Mx m,(2;¢1,¢2) and Mx m,(2;c1,¢;) are birationaly equivalent, whenever
non-empty (Theorem 2.1.10). As an important consequence, we will obtain the
first criterion of rationality (Criterion 2.1.13) valid for moduli spaces My g (2; ¢y, c2)
of rank two, H-stable vector bundles F, on a smooth, irreducible, anticanonical,
rational surface, with fixed Chern classes ¢;(EF) = ¢;.

Along section 2.2 we will show, by means of a family of examples that the
birational map between My g(r;c1,c2) and Mx g (r; ¢y, ¢2) is not an isomorphism.

In section 2.3, we generalize Theorem 2.1.10 and Criterion 2.1.13 to arbitrary
smooth, rational surfaces. As a main tool, we will use prioritary sheaves which were
introduced on P? by Hirschowitz-Laszlo ([HL93]) and on birationaly ruled surfaces by
Walter ([Wal93]). Using the fact that the moduli space of simple prioritary sheaves is
smooth and irreducible (Theorem 2.3.5) and the fact that, under some conditions on
H, H-stable vector bundles are prioritary (Lemma 2.3.2), we obtain Theorem 2.3.6
which extends Theorem 2.1.10 to arbitrary rational surfaces and the second criterion
of rationality for moduli spaces My y(2;c1, c2) of rank two, H-stable, vector bundles
E on a smooth, irreducible, rational surface X with fixed Chern classes ¢;(F) = ¢
and cy(E) = ¢y (Criterion 2.3.7) which generalizes Criterion 2.1.13 to arbitrary

rational surfaces.

Let 7 : X — P! be a smooth, algebraic, rational surface and H an ample divisor
on X such that H(Kx + F) < 0, being F the ruling of 7 and Kx the canonical
divisor of X. In Chapter 3 we prove that the moduli space My g (2;¢y,c2) of
rank two, H-stable, vector bundles £ on a smooth, irreducible, rational surface X,
with fixed Chern classes ¢;(E) = ¢; € Pic(X) and 0 << ¢3(E) = ¢3 € Z is a
smooth, irreducible, rational, quasi-projective variety (Theorem 3.3.7) which solves
Question (1).

According to the classification, up to isomorphism, of smooth, projective, ratio-
nal surfaces (Theorem 1.4.1) and the methods we use, we have divided this Chapter

in three sections.

In section 3.1, we deal with the case of minimal rational surfaces. For any

smooth, irreducible, minimal, rational surface X and for any ample divisor H on X,



we prove the rationality of the non-empty moduli spaces Mx g (2; ¢y, ¢;) of rank two,
H-stable, vector bundles £ on X with Chern classes ¢;(E) = ¢; (Theorem 3.1.8).
We prove this result using either Criterion 2.1.13 or constructing suitable families
of rank two, H-stable (resp. simple, prioritary) vector bundles (resp. torsion free
sheaves), over a big enough rational base.

In section 3.2, X is a Fano surface and for any ample divisor H on X, we prove
the rationality of the moduli space Mx y(2;cy,cz) of rank two, H-stable, vector
bundles £ on X with Chern classes ¢;(E) = ¢; (Theorem 3.2.7). We want to stress
that in this section, we strongly use the fact that X is an anticanonical rational
surface. So, we are able to use Criterion 2.1.13 and this is in fact what we will
do (together with the construction of families of simple, prioritary vector bundles
over a big, rational base), in order to prove the rationality of the moduli space
My ;(2;¢1,¢2).

Finally, in section 3.3, we prove the rationality of the moduli space Mx g (2; ¢, ¢2)
for the remaining rational surfaces, i.e. for non-minimal, rational surface obtained
blowing up at least 8 points of a Hirzebruch surface. As a main tool, we use Crite-
rion 2.3.7. In the case where this second criterion cannot be applied, we construct
families of rank two, simple, prioritary, torsion free sheaves, over a rational base.
Then, using the fact that for any ample divisor H on X such that (Ky + F)H < 0,
H-stable vector bundles are prioritary (Lemma 2.3.2), we will deduce the rationality
of the moduli space Mx g (2; ¢y, c2) (Theorem 3.3.6). We remark that the assumption
H(Kx + F) < 0 is only used in this last section.

In Chapter 4 we study moduli spaces Mx g (7;c1, ¢3) of rank 7, H-stable vector

bundles on either minimal rational surfaces or on algebraic K3 surfaces.

In section 4.1 we will come back to the delicate problem concerning the rationality
of the moduli space Mx g (r;c1,c2) when X is a minimal, rational surface. First of
all, by means of constructing a family of simple prioritary sheaves over a big enough
rational base, we will prove the rationality of some moduli spaces My, g(r;c1,c2)
of rank r, H-stable vector bundles E on a smooth, Hirzeburch surface X,, with
fixed Chern classes ¢;(E) = ¢; and ¢c3(F) = ¢; (Theorem 4.1.13). As a consequence,
we will obtain the rationality of some moduli spaces MPZ,OHﬂ(l)(T; c1,cg) of rank 7,
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Op2(1)-stable vector bundles on the projective plane P?, with fixed Chern classes
(c1,¢y) € Z? (Theorem 4.1.14).

We want, emphasize that Theorem 4.1.13 and Theorem 4.1.14 constitute an im-
portant contribution to the problem whether moduli spaces Mx y(7; ¢y, co) are al-
ways rational provided X is rational. They round off the series of works developped
by Gottsche ([Got96]), Katsylo ([Kat92]), Yoshioka ([Yos96]) and Li ([Li97]).

In section 4.2, we will turn our attention to studying moduli spaces Mx g (7; c1, ¢2)
of rank r, H-stable vector bundles F on a smooth, algebraic K3 surface X, with
fixed Chern classes c;(F) € Pic(X) and c2(E) € Z. We determine invariants
((r,c1,¢2),1) € (Zx Pic(X)x2Z)xZ for which there is a birational map ¢ between the
moduli space Mx g (r; ¢y, ¢2) and the Hilbert scheme Hilb'(X) of 0-dimensional subs-
chemes of X (Theorem 4.2.1). The pullback of the symplectic structure on Hilb'(X)
([Bea78]) via the birational map ¢, gives a symplectic structure on Mx z(r; ¢, ¢2),
which coincides with the symplectic structure constructed on Mx j(r; ¢y, c2) by Mu-
kai in [Muk84].

In Chapter 5 we deal with moduli spaces Mx 1.(2; ¢y, c3) of rank two, L-stable
vector bundles F, on P%bundles of arbitrary dimension, with fixed Chern classes
G(E)=c¢,i1=12.

To begin section 5.1 we recall some basic facts on P%bundles over a smooth,
projective curve of genus ¢ > 0, in order to supply the reader with the background
that we will use in forthcoming sections. We will end this section with a key Propo-
sition that will allow us to guarantee the existence of a section of a suitable twist of
a rank two vector bundle, whose scheme of zeros has codimension greater or equal
than two (Proposition 5.1.13).

In section 5.2 we prove our main results of moduli spaces of rank two, vector
bundles on normal scrolls X = P(£) — C, which are defined over a smooth, projec-
tive curve C of genus g > 0 (i.e. on P%-bundles). Namely, we state that the moduli
space My 1(2; ¢, ¢a) of rank two, L-stable vector bundles F on X, with fixed Chern
classes ¢;(F) = ¢; is a smooth, irreducible, projective variety and we compute its
dimension (Theorem 5.2.4, Theorem 5.2.8 and Theorem 5.2.12). If, in addition, X is

a rational, normal scroll, we obtain that Mx 1(2;c1, ¢z) is, as well, a rational variety
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(Corollary 5.2.5 and Corollary 5.2.9).

The proof of this results will allow us to compute the Kodaira dimension (Co-
rollary 5.2.14) and to describe the Picard group (Corollary 5.2.15) of these moduli
spaces. Notice that, once again, the moduli space captures a lot of information of
the underlying variety.

The main idea is to construct non-trivial rank two vector bundles as an extension
of two line bundles. Despite what happens on other projective varieties, for instance
on Fano manifolds and on projective spaces, where any extension of two line bundles
splits, on normal scrolls X, there are huge families of rank two, L-stable vector
bundles, given by a non-trivial extension of two line bundles, being L a suitable
ample divisor on X.

Section 5.3 is devoted to illustrate, by means of an example, how moduli spaces
Mx 1.(2; ¢1, ¢z) vary when the ample divisor L crosses different walls (Theorem 5.3.2).
Roughly speaking, we will see that there is a ”extremal” wall W such that if L crosses
it, in some direction, then the moduli space Mx 1(2;¢1,¢2) is empty, meanwhile, if
L sits in a chamber close to W, then the moduli space can be nicely described.

During the realization of this work I have had a grant from the Ministerio de

Educacién y Cultura.

It has been a great opportunity for me to have Rosa Maria Miré-Roig as my
advisor both in aspects related to mathematics as well as human matters. I feel
fortunate to have been able to share her neverending working capacity, her patience
and her good temper.

I also wish to thank my fellows at the Departament d’Algebra 1 Geometria,
especially Joan Elias and Javier Orus.

Finally, let me thank my friends Xavi and Gemma, my family and especially Joan
Jordi, who have made possible this work, for their encouragement and support.



Notation and conventions

Throughout this work £ will be an algebraically closed field of characteristic zero.

For any smooth, irreducible, projective variety X of dimension n, we denote
by Pic(X) the group of divisors modulo linear equivalence, by Num(X) the group
of divisors modulo numerical equivalence, and by Cyx the cone in Num(X) ® R
generated by all ample divisors. A polarization on X is an element in Cx. We will
identify H?"(X,z) with Z and we will denote by K = Ky the canonical divisor of
X.

We will use the words vector bundles and locally free sheaves indistinctly and

we will talk about ample divisors instead of ample line bundles.

For any coherent sheaf E on a smooth, projective algebraic variety X, we will
often write H'E (resp. h'E) to denote H(X, F) (resp. dimH* (X, E)) and we will
denote by c;(F) € H*(X,z) the i-th Chern class of F. The dual of E is written as
E* := Hom(E,Ox). We will say that F is simple if Hom(E, F) = k. Given two
coherent sheaves E and F', we will often write ext'(E, F) to denote dimyExt*(E, F).

The symbol ” O ” will stand for ”end of proof ”.



Chapter 1

Generalities on moduli spaces and
surfaces

As we pointed out in the introduction, this first chapter essentially does not
contain new results. However, considering that most of the material concerning
moduli spaces on vector bundles is scattered through the literature, we have thought
convenient to recall here the main definitions and results, at least those which we

will need through this work, in order to provide a general background on the subject.

The lay out of this Chapter is as follows: We start in section one, by collecting
some well known facts on Chern classes of coherent sheaves (resp. vector bundles),
as well as by reviewing Serre’s duality and Hirzebruch-Riemann-Roch’s Theorem.
We also introduce the notion of H-stability (resp. G-stability with respect to H)
in the sense of Mumford-Takemoto (resp. Gieseker-Maruyama) of vector bundles
(resp. torsion free sheaves) on a smooth, projective variety X, being H an ample
divisor on X.

- In section two, we first go over the concept of moduli space from a general point of
view. As a general reference on moduli spaces the reader can look up, for example,
[MFK92] or [NewT78]. Then, we restrict our attention to moduli spaces of vector
bundles on smooth, projective varieties and, in particular, on srﬁooth, projective
surfaces. We will gather the results on moduli spaces of vector bundles that are
important to our study. For more information on moduli spaces of vector bundles

on smooth, projective varieties, the reader can consult, among others, [Mar77],



2 1. Generalities on moduli spaces and surfaces

[Mar78], [GL96] or [OGr96], being the main source [HL97].

The dependence of the different notions of stability on the fixed ample divisor
H on the variety X is clear. Among others, Friedman and Qin have studied the
problem from various angles and revealed interesting phenomena. Since in Chapter
2 and in Chapter 5 we go back to the problem of how the moduli space changes
when the polarization varies, in section three we recall the basic facts on walls and
chambers used in Chapters 2 and 5. The main source is [Qin93].

Finally, in section four we summarize some facts on the classification, up to
isomorphism, of smooth, rational surfaces and we prove some easy results about
cohomology groups of line bundles on smooth, rational surfaces which we have not

found explicitly in the literature.

1.1 Coherent sheaves and stability

In this first section, we give a general account of basic properties of coherent
sheaves and vector bundles on smooth, projective varieties and we recall the different
notions of stability needed in the sequel.

1.1.1. Let E be a coherent sheaf of rank r > 0 on a non-singular projective variety

of dimension n and let L be a line bundle on X. Then,

k

(B =Y (2 ) :) e(B)er (L)F

1=0

1.1.2. Let B be a rank two vector bundle on a non-singular projective variety of
dimension n. Then,
E* = E(—Cl)

being ¢y = ¢;(E).

1.1.3. Let E be a coherent sheaf of rank r > 0 on a non-singular projective variety
X of dimension n. Let ¢; be the Chern classes of E. The discriminant of E is
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dq?ined by
( ) (T' ) : 1( : ! 2)
A(E A ;C1,C2) _T Cy — o i)

Notice that for any line bundle L on X, A(F) = A(E ® L).

Let us recall the well known Hirzebruch-Riemann-Roch’s Theorem.

1.1.4. Hirzebruch-Riemann-Roch’s Theorem: Let E be a torsion free sheaf
of rank r > 0 on a non-singular projective variety X of dimension n. Let td(T) be
the Todd class of the tangent bundle of X. Then,

x(E) = Xn—:l)‘aimHi(X, E) = deg(ch(E).td(T)),

where (), denotes the component of degree n in A(X)®Q and ch(E) is the Chern

character of E.

In particular, if X is a smooth, projective surface we have

1.1.5. Let E be a torsion free sheaf of rank r > 0 on a non-singular projective
surface X. Let ¢; and ¢y be the Chern classes of E. Then,

aK N ¢ — 202'
2 2

x(r;c1, ) = x(E) = ZdimHi(X, E)=7r(1+p.(X)) -

=0

Throughout the thesis we will very often use the well known Serre’s duality

Theorem which we recall now.

1.1.6. Serre’s duality Let X be a smooth, algebraic variety of dimension n,
with canonical line bundle Kx and Fy, F two torsion free sheaves on X. Then,
Ext'(Fy, Fy) is canonically isomorphic to the dual of Ext"*(Fy, F} ® Kx). If, in
addition, Fy is locally free then, H'(X, F}) is canonically isomorphic to the dual of
H" (X, F} ® Kx).



4 1. Generalities on moduli spaces and surfaces

The main objects of our study are moduli spaces of vector bundles on smooth,
projective varieties. There are very few classification problems for which a fine
(resp. coarse) moduli space exists (see Definition 1.2.2 and Definition 1.2.1). To
get a moduli space of vector bundles we must somehow restrict the class of vector
bundles that we consider. What kind of vector bundles should we consider? The
answer to this question is stable vector bundles. Now we will recall the different

notions of stability that we will use later on.

Definition 1.1.7. Let X be a smooth projective variety of dimension n and H an

ample divisor on X. For a torsion free sheaf I on X one sets

Cq (}71)17[”“1

ui (F) = rk(F)

The sheaf F is H-semistable if
pr(E) < py(F)

for all non-zero subsheaves E C F with rk(E) < rk(F). If strict inequality holds,
then F is H-stable.

Definition 1.1.8. Let X be a smooth projective variety of dimension n and H an

ample divisor on X. For a torsion free sheaf F' on X one sets

_ X(F ®Ox(mH))
Fe(m) := rk(F)

The sheaf F is G-semistable with respect to H if

Pg(m) < Pp(m) for m >>0
and all non-zero subsheaves E C F with vk(E) < rk(F). If strict inequality holds,
then F' is G-stable with respect to H.
Using Hirzebruch-Riemann-Roch Theorem (1.1.4) one easily checks the following

implications

L — stable = G — stable = G — semistable = L — semistable.
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Remark 1.1.9. It easy follows from the definition of stability and 1.1.1 that a rank
r vector bundle £ on X is L-stable if, and only if, for any D € Pic(X), E® Ox(D)
1s L-stable.

1.1.10. Let X be a smooth algebraic surface with canonical line bundle K and let
V' be a rank 2 vector bundle on X. It holds

(1) If V is H-stable and c;(V)H < 0 then HV = 0.

(2) If V is H-stable, x(V) > 0 and ¢;(V* ® K)H < 0 then H°V # 0.

Remark 1.1.11. We want to emphasize that both notions of stability depend on
the ample divisor we fix on the underlying variety X. We deeply study this problem
in Chapter 2 and we will go back to it in Chapter 5.

1.2 Moduli spaces of vector bundles

Moduli spaces are one of the fundamental constructions of Algebraic Geometry
and they arise in connection with classification problems. Roughly speaking, a
moduli space for a collection of algebraic objects A and an equivalence relation ~
is a "space” (in some sense of the word) which parameterizes equivalence classes of
objects in a ”continuous way”, i.e., it takes into account how the equivalence classes
of objects change in one or more parameter families. In our setting, the objects are
algebraic and therefore we want an algebraic structure on our classification space

A/ ~. Moreover, we want our moduli space to be unique up to isomorphism.

In this section, we will gather the results of moduli spaces of torsion free sheaves
(resp. vector bundles) on a smooth, projective variety that are important to our
study; all of them are well known to the experts. Let us start with a formal definition

of a moduli space.

Let (Sch/k) be the category of Noetherian schemes over an algebraically closed

field k. Suppose we are given a contravariant functor

F:(Sch/k) — (Sets).
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Definition 1.2.1. A fine moduli space of the functor F is a scheme M such that
Mor(., M) represents F', i.e. F and Mor(., M) are isomorphic functors.

If a fine moduli space exists, it is unique up to isomorphism. Unfortunately,
there are very few classification problems for which a fine moduli space exists and it
is necessary to find some weaker conditions, which nevertheless determine a unique
algebraic structure on A/ ~. This leads to the following definition.

Definition 1.2.2. A coarse moduli space of the functor F is a scheme M with the

following properties.

i) There is a natural transformation ¥ : F — Mor(., M), such that
U (Spec(k)) : F(Spec(k))—=>Mor(Spec(k), M)
WS a bijection.

ii) For any other scheme N with natural transformation ® : F — Mor(,,N)
there is a unique morphism of schemes f : M — N such that the diagram of

natural transformations

F z Mor(., M)

Mor(.,N)

commutes.

Again, if a coarse moduli space exists, it is unique up to isomorphism. A fine
moduli space of the functor F'is always a coarse moduli space of this functor but,

in general, not vice versa. In fact, there is a priorsi no reason why the map
U(S): F(S) = Mor(S, M)

should be bijective for varieties S other than {pt}. General facts on moduli spaces
can be found, for instance, in [MFK92] or [New78].
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From now on, we will restrict our attention to moduli spaces of vector bundles
on smooth, projective varieties. The first step in the classification of vector bundles
is to determine which cohomology classes on a projective variety can be viewed as
Chern classes of vector bundles. On curves the answer is known. On surfaces the
existence of vector bundles was settled by Schwarzenberger and it remains open on
higher dimensional varieties. The next step aims at a deeper understanding of the
set of all vector bundles with a fixed rank and Chern classes. This naturally leads

to the concept of moduli spaces which we will shortly recall.

We fix a smooth, projective scheme X of dimension n, an ample divisor H on X
and a numerical polynomial P € Q[z]. We define a T-family of vector bundles on X
as a vector bundle V over X x T flat over T". Two T-families V', W are equivalent,
which is denoted V' ~ W, if there is a line bundle £ on 7" such that V@mniLr = W,
being 75 : X X T — T the natural projection. Note that if a vector bundle V' on
X x T is flat over T and T is irreducible, then the Hilbert polynomial x(V (n)
does not depend on t € 7" ([Har77]; Theorem II1.9.9 and Corollary I11.9.10).

Xx{t})

We now consider the following contravariant functor
Fx p: (Sch/k) — (Sets)
where

Fxp(T) = { T-families of vector bundles on X with Hilbert polynomial P} / ~

and if f : 7" — T is a morphism in (Sch/k), then Fx p(f) is the map obtained by

pulling-back sheaves via fy :=1idx X f, i.e.

Fx’p(f)l Fx)p(T) — FXJJ(T/)

[E]  —  XE]

Definition 1.2.3. A fine moduli space of vector bundles on X with Hilbert polyno-
mial P € Q[z] is a scheme Mx (P) together with a family (Poincaré bundle) of vector
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bundles U on Mx(P) x X such that the contravariant functor Fx p is represented
by (Mx(P),U) -

As we pointed out before, there are very few classification problems for which a
fine moduli space exists. To get at least a coarse moduli space we must restrict our
attention to stable vector bundles. A T-family V' of vector bundles on X is H-stable
ifV,=V

xx{t} 15 H-stable for every geometric point ¢ € T
We now consider the following contravariant functor
Fexmy,p (Sch/k) — (Sets)

where

Foemp(T) = {T-families of H-stable vector bundles on X with Hilbert polynomial P} / ~

and if f:T" =T is a morphism in (Sch/k), then F¢y g »(f) is the map obtained
by pulling-back sheaves via fy :=1idx X f, i.e.
F(iY,H),P(~f) 3 F(SX,I-I),P(T> — F(SX,H'),P<TI)

B} —  [fxEl

Theorem 1.2.4. The functor Fix ) p has a coarse moduli scheme Mx g (P) which

is a separated scheme and locally of finite type over k. This means
(1) There is a natural transformation
v F(SX,H),P — Hom(., ]\IX’H(P)),
which s bijective for any reduced point xy.

(2) For every scheme N and every natural transformation ® : Fée mp = Hom(.,N)
there is a unigue morphism f : My g(P) — N for which the diagram
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Féx my.p L Mor(., My 3 (P))

commutes.
In addition,

(i) There is a natural map A : Mx g(P) — Pic(X) such that if a geometric
point v corresponds to a vector bundle V on X, then \(v) corresponds to the
line bundle det(V).

(ii) Mx g(P) decomposes into a disjoint union of schemes

MX,H(T; Ci," 7cmin,{7‘,n})>

where n = dimX and Mx g(r;cq,- - , Crmin{rn}) S the moduli scheme of H-

stable rank v vector bundles with Chern classes (cy, - - - ,cmm{qv,n}) up to nume-

rical equivalence.
Proof. See [Mar77]; Theorem 5.6. O
Remark 1.2.5. The moduli space My, g(7;¢1,- -, Cringrn}) is contained in a pro-
jective variety MX)H(T; €1, s Cmin{r;}) With a natural moduli interpretation. It is
the closure of Mx g (7;¢1,"* , Cmin{r,n)) in the moduli space M x g (r;c1,- -+, Crmin{rn})

of G-semistable with respect to H, torsion free sheaves on X. See [Mar78]; Corollary
5.9.1 for the details.

It is one of the deepest problems in algebraic geometry to determine when the
moduli space of H-semistable (resp. H-stable) vector bundles is non-empty. If the
underlying variety is a curve C of genus g > 2, it is well known that the moduli
space of H-stable vector bundles on C of rank r and fixed determinant bundle is
smooth of dimension (r? — 1)(g — 1) ([HL97]; Corollary 4.5.5).
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If the underlying variety X has dimension greater or equal to three, there are no
general results which guarantee the non-emptiness of the moduli space of H-stable
(resp. H-semistable) vector bundles on X. Finally, if the underlying variety is a
smooth, projective surface X, then the existence conditions are well known whenever
X is P? or P' x P! and, in general, it is known that the moduli space My y(r;c1, c;)
of H-stable, rank r, vector bundles E on X with Chern classes ¢;(E) = ¢; and
c3(F) = ¢y is non-empty provided A(r;cy, ¢a) >> 0 (see for instance [GL96], [HLI3],
[Mar77], [Mar78], [LQI6b] and [OGr96]) and empty if A(r;c1,co) < 0 (Bogomolov’s
inequality).

Recently, Sorger in [Sor97] has given an explicit lower bound for A(r; ¢y, cy) in
order to assure that My gy(r;ci,cp) is non-empty. Namely, he has proved that if
A(r;cy, ) > C(X, H,c1,+/c,) being C(X, H,c1,+/c,) a real constant which only
depends on X, H, ¢; and /c,, then the moduli space My gy(r;cy,ce) of H-stable,
rank 7, vector bundles E on X, with Chern classes ¢;(E) = ¢; and c3(E) = ¢, is

non-empty.

We now turn to the question under which conditions the functor F(SX’H)}P is
represented by My z(P) or, equivalently, whether we have a universal family on
My = Mx yg(r;cy, - )Cmin{r,n}) i.e. a My-family of vector bundles ¥ on X such
that if t € My is a generic point, then E, on X x {t} = X corresponds to t. The
existence of such a universal family (Poincaré sheaf) is guaranteed by the following

criterion.

For any ¢; € Num(X) we denote by a(c;) the greatest integer such that ¢; is divisible
by a(cy) in Num(X) if ¢; # 0 and a(c;) =0if ¢; = 0.

Theorem 1.2.6. Let X be a smooth, algebraic surface, ¢; € Num(X) and c; € Z.
If ged(r, acr), x(r; ¢1,¢2)) = 1, then Mx y(r; c1,c2) has a universal family.

Proof. See [Dre91]; Theoreme D. O
To state our next result we need to fix some more notations.

Let H' := Hilb'(X) be the Hilbert scheme of zero-dimensional subschemes of
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length [ on X and let Zz be the ideal sheaf of the universal subscheme Z; in
X x H. Let 7 and px be the projections of X x H' to H' and X respectively. For
any D, c; € Pic(X), we define Gy := py(—D) and Gy :=Zz, ® pi (D + ¢;). We put

5D’C1 = E.’Et}r(Gg,Gl)
where Extl(Gy,.) is the right derived functor of Hom,(Gy,.) := m, Hom (G, .).

Lemma 1.2.7. Let U (resp. F) be the family of rank 2 torsion free sheaves (resp.

vector bundles) E on X given by a non-trivial extension
0>0x(-D) > E—-0x(D+c¢1)®Iz—0

where Z C X s a O-cycle of length |. Assume that £(2D + ¢1) and 2D +¢; + K
are non effectve diwisors. Then, U (resp. F) is an irreducible, rational, projective

(resp. quasi-projective) variety.
Proof. We apply [Rot79]; Corollary 11.44 to the functor F' = 7, and to the functor
G = Hom(G,,.) and we get the long exact sequence

0 — R, (Hom(Ga, G1)) = RY(m.Hom(Gs, .))(G1) = m(R'Hom(G3, G1))

— R%m,(Hom(Gs, G1)) = R¥(m,Hom(Ga, ))(Gy) = -+ - .

By base-change Theorem, we can see, arguing as in [Got96b]; Lemma 3.2 (see also
[HS80]), that

gD,C]

is a locally free sheaf of rank r = dimExt'(Ox(D +¢;) ® Iz, Ox(—D)) and there is

a natural bijective morphism
w : Ip(gp,cl) — U.

Therefore, U (resp. F) is an irreducible, rational, projective (resp. quasi-projective)

variety. _ (]
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Remark 1.2.8. The conclusions of Lemma 1.2.7 are true if instead of assuming that
+(2D +¢;) and 2D + ¢; + K are non effective divisors, we assume that —(2D + ¢;)
and 2D + ¢; + K are non effective divisors and H°E(D) = 1 for a generic E of U
(resp. F).

Once the existence of the moduli space is established, the question arises as
what can be said about its local and global structure. In spite of the great progress
made during the last decades in the problem of moduli spaces of vector bundles on
smooth projective varieties (essentially in the framework of the Geometric Invariant
Theory by Mumford) a lot of problems remain open and very little is known for
varieties of arbitrary dimension. We refer to [HL97]; section 4.5 for general facts on
the infinitesimal structure of Mx g(7;¢1, -+ , Cminfrn}) and here, we only recall the

results which are basic for us.

Theorem 1.2.9. Let X be a smooth, projective variety of dimension n and F' o H-
stable, rank r vector bundle on X with Chern classes ¢;(F') = ¢;. Then the Zariski
tangent space of the moduli space Mx g(r;c1, -+, Cminfra}) 0t [F] is canonically
given by

TirMx g (ri¢1,+ , Cmingry) = Bat'(F, F).

If Ext?*(E,E) = 0 then Mx g(ricy, -+ ,Cmm{r,n}) is smooth at [F|. In general, we

have the following bound
ext*(F,F) > dimpMx g (r5¢1, * , Cmin{rmn)) = ext' (F, F) — ext*(F, F).
Proof. See for instance [HL97]; Corollary 4.5.2. O

If F is a locally free sheaf on X, then the trace map tr : End(X) — Ox induces
maps trt : Ext'(F,F) — H'Ox. We denote the kernel of ¢r* by Ext*(F, F)o. If
we fix L € Pic(X) and we denote by Mx 5 (r; L, 2, , Cmin{r,ny) the moduli space
of rank r, H-stable vector bundles E with fixed determinant det(E) = L € Pic(X)
and ¢;(F) = ¢ € H¥*(X,z) for 2 < i < min{r,n}, then we have the analogous

result.
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Theorem 1.2.10. Let X be a smooth, projective variety of dimensionn and F a H-
stable, rank r vector bundle on X with fized det(F) = L € Pic(X) and ¢;(F) = ¢; for
2 < i < min{r,n}. Then the Zariski tangent space of Mx g(r;L,ca," "+, Cmin{rn})
at [F] is canonically given by TimMxm(r;L,ca, -, Cningrny) = Ext!(F, F)y. If
Ext*(E,E)y = 0 then the moduli space Mx y(r;L,ca, -, Cmin{rm}) 1S smooth at

[F']. In general, we have the following bound
GIEtl(F, F)o Z d?;’n’L[F]MXJ{(’I"; L, Co, - ;cmm{r,n}) 2 extl(F, F)o - GIEtQ(F, F)o
Proof. See for instance [HL97|; Theorem 4.5.4 . Qg

In case X is a smooth surface,. we can make the dimension bound more explicit.
Indeed, for any H-stable vector bundle F' on X with det(F') = L and cp(F) = ¢z,

we have
ext!(F, F)o — ext?(F, F)y = x(0x) — S22 y(—1)lext!(F, F)
= 2rcy(F) — (r — Ddet(F)? — (r? — 1)x(Ox)

where the last equality follows from Hirzebruch-Riemann-Roch’s Theorem. The
number
orcy — (r — 1)L — (r* = 1)x(Ox)

is called the expected dimension of My g(r; L, c2).

Remark 1.2.11. For any smooth, projective, rational surface X we have the iso-
morphism Num(X) = Pic(X). Hence, for any rank r vector bundle E on X,
we can identify ¢, = ¢;(F) € Num(X) with L = det(F) € Pic(X). Therefore,
there is no difference between My g (7; ¢y, ) and Mx g(r; L, cz) and we will write

MX,H(’I‘; Ci, 62) instead Of MX,H(’I“; C1, 62).

Convention 1.2.12. Given a smooth, projective variety X of diemension n, an
ample divisor H on X, r € Z, ¢; € H*(X,2) and L € Pic(X), we will denote
Mx u(r;cr, Cmingrmy) BY Mu(r;cr, -, Cmingrny) and Mx g (7L, -+, Crmingrin))
by Mpg(r;L,- -+, Cmin{rny) if there is no confusion. :



14 1. Generalities on moduli spaces and surfaces

For small values of the discriminant A(r;cy,cy), moduli spaces My(r;cy,co)
(resp. Mpg(r;c1,c2)) of H-semistable torsion free sheaves (resp. H-stable vector
bundles) on a smooth projective surface can look rather wild: their dimension need
not be the expected one, they need not be neither irreducible nor reducible, let alone
non-singular (see for instance [GL96], [0Gr96], [Mar78], [Mes96]). This changes
if the discriminant increases: moduli spaces become irreducible, normal, of the
expected dimension and the codimension of the locus of points which are singular

increases. We have summarized more precisely this ideas in the next Theorem.

Theorem 1.2.13. Let X be a smooth algebraic surface, H an ample divisor on X
and L € Pic(X). For all c; >> 0, the modult space My(r; L, cy) of G-semistable
with respect to H, rank r torsion free sheaves on X (res{). My (r; L, cy) of H-stable,
rank r vector bundles on X ), is a generically smooth, irreducible, projective (resp.

quasi-projective) variety of the expected dimension 2rcy — (r—1)L* = (r? = 1)x(Ox).

Proof. See [GL96], [OGr96] and [OGr96b]. O

Remark 1.2.14. For smooth, projective, anticanonical, rational surfaces (i.e. ra-
tional surfaces X whose anticanonical divisor —Kx is effective) and for the rank
two case,.we can omit the hypothesis ¢; >> 0. The irreducibility and smooth-
ness of My (2;cy,ce) holds whenever My (2;¢,cy) is non-empty. Indeed, assume
My (2;¢1,¢0) # 0. Since —K is effective, for any vector bundle E € My (2;¢y, ),
we have Ezt?(E, E)o = 0. Hence, My (2; ¢y, cy) is smooth at [E] and

dimp M (2; 1, c0) = 4ey — ¢ — 3.
The irreducibility of Mg (2;¢y,cp) follows from [Bal87]; Theorem 2.2 and Theo-

rem 2.1.10 below. O

To end with generalities on moduli spaces of vector bundles we recall the fo-
llowing nice result due to Nakashima that will be used in Chapter 3. Let X be a

smooth, projective surface, H an ample divisor on X, L € Pic(X) and ¢, an integer.
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We consider © : X — X the blow up of X at [ distinct points pi, 1 <1< 1, and
we denote by E; be the exceptional divisors. For n >> 0, H,, := nn7*H — 22=1 F;is
an ample divisor on X and we have

Theorem 1.2.15. For sufficiently large n, there ezists an open immersion
@ : Mpy(r;L,cy) — My, (r;7*L, c3)
defined by o(V) = n*(V') on closed points.

Proof. See [Nak93]; Theorem 1. O

1.3 Walls and chamber structures

Let X be a smooth, irreducible, projective variety of dimension n. In [Qin93],
Qin considered the problem: What is the difference between My r,(r; ¢, ¢2) and
Mx 1,(r;¢1,c2) where Ly and L, are two different polarizations 7.

It turns out that the ample cone of X has a chamber structure such that
Mx 1(r; c1, cp) only depends on the chamber of L and the change of My (r; ¢y, ¢2)
when L passes through the wall between chambers can be somehow controlled.

In this section we will recall the basic results about walls and chambers due to Qin
([Qin93]). In Chapters 2 and 5, we will use these notions in order to study when
two moduli spaces Mx r,(r;c1, ) and My r,(r;¢1,¢o) are birational. Moreover,
an accurate study of these structures will allow us to give a very useful criterion of

rationality for moduli spaces of rank two vector bundles on rational surfaces.

Definition 1.3.1. Let Ly, Ly be two polarizations on a smooth, irreducible, projec-
tive variety of dimension n. We define LliLz if every rank two vector bundle with
c1 and ¢y as its first and second Chern classes is Ly-stable whenever is Lo-stable.
We define Li2Ly if both Ly > Ly and Ly>L,.

Remark 1.3.2. Notice that for fixed ¢; € Pic(X) and ¢, € H*(X, z) if L; =Ly, then

the moduli spaces Mx 1,(2; ¢, ¢c2) and Mx 1,(2; ¢1,¢c2) can be naturally identified.
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Definition 1.3.3. (i) Let S € A"22(X) and £ € Num(X) ® R. We define

WES) .= Cx N {z € Num(X) ® R|z£S = 0}.

(i) Define W(cy, cy) as the set whose elements consist of W&S) where S is a com-

plete intersection surface in X, and & is the numerical equivalence class of a divisor

G on X such that Ox(G + ¢1) is divisible by 2 in Pic(X), and that

G* - 2
4

G?*S < 0; cy + = [Z]

for some locally complete intersection codimension-two cycle Z in X.

(111) A wall of type (c1,¢2) 1s an element in W(cy,cz). A chamber of type (c1,c2)
is a connected component of Cx \ W(cy,¢3). A Z-chamber of type (c1,cz) is the
intersection of Num(X) with some chamber of type (ci1,ca).

() A face of type (c1,ca) is F = WEI NC, where W) is a wall of type (c1, )
and C is a chamber of type (ci1,¢ca).

We say that a wall W(&S) of type (c1,c,) separates two polarizations L and L'
if, and only if, £SL < 0 < ESL'.

Notice that when dim(X) = 2, S disappears in the definition of wall and we will
denote by W¢ a wall of type (1, c;) defined by ¢ instead of W{65).

Remark 1.3.4. In [Qin93]; Corollary 2.2.2 and Remark 2.2.6, Qin proves that the
moduli space M 1(2; ¢y, ¢2) only depends on the chamber of L and that the study
of moduli spaces of rank two vector bundles stable with respect to a polarization
lying on walls may be reduced to the study of moduli spaces of rank two vector
bundles stable with respect to a polarization lying on Z-chambers. ,

We will denote by M¢(2; ¢y, ¢c2) (resp. M#(2; ¢y, ¢2)) the moduli space M (2; ¢y, co)
where L is a polarization lying in the chamber C (resp. face F).

Proposition 1.3.5. If dim(X) = 2, then the set of walls of type (cy,c) is locally
finite.
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Proof. See [Qin93]; Proposition 2.1.6. |

If dim(X) > 2, Proposition 1.3.5 will no longer hold. This will limit the appli-
cation of the theory of walls and chambers structures in higher-dimensional cases.
Nevertheless, this theory is quite satisfactory in dimension two and an accurate des-
cription of these structures will allow us to give a criterion of rationality of moduli

spaces of rank two vector bundles on rational surfaces.

Let us now focus our attention on the case where X is an algebraic surface. We
will introduce some extra notations and Remarks about the theory of chambers and

walls that will be very useful for us in Chapter 2.

Definition 1.3.6. Let & be a numerical equivalence class defining a wall of type
(¢1,¢2). We define E¢(cy,cp) as the quasi-projective variety parameterizing rank 2

vector bundles £ on X given by an extension
02 0x(G) > E—=0Ox(ct—G)®@I7; =0

where G is a divisor with 2G —c¢; = € and Z is a locally complete intersection 0-cycle
of length ¢y + (62 — ¢2)/4. Moreover, we require that F is not given by the trivial
extension when &2 = ¢ — 4¢,.

We define D(&) := dimE¢(cy,c2) and we put

de(cy, ¢2) 1= d(€) = D(€) — (4c, — ¢ — 3x(Ox)).

In other words, d(£) is the difference between the dimension of E¢(ci,c2) and the

expected dimension of a non-empty moduli space Mp(2; ¢y, c3).

Remark 1.3.7. By [Qin93]; Theorem 1.2.5, if L; and L, are two ample divisors on
X and F is a rank 2 vector bundle on X which is L;-stable but L,-unstable, then
we have E € E¢(c1, cp) where £ defines a non-empty wall of type (ci, ¢o) separating
L, and Ly (i.e. €L; < 0 < &L,; moreover, we can consider the ample divisor
L := (§Ly)L; — (€L1)Ly on X and we have LE = 0).
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We end this section with a remark that is essential in the study of the birational

equivalence between moduli spaces.

Remark 1.3.8. If d(¢) < 0 for any ¢ which defines a non-empty wall of type (¢;, ¢z),
then any two moduli spaces My, (2; ¢, ¢2) and My, (2; ¢, ¢p) are birational whenever
non-empty and any polarization L is trivial of type (ci, c2) provided My (2, ¢, ¢3) is
non-empty (see introduction of Chapter two for the precise definition).

1.4 Background on surfaces

In this section we will gather all relevant results on smooth, irreducible, rational
surfaces and cohomology of divisors on rational surfaces which we will need in the

sequel.

First of all, we will recall the classification, up to isomorphism, of smooth, irre-

ducible, projective, rational surfaces.

Theorem 1.4.1. Let X be a smooth, minimal, rational surface. Then, X is either

isomorphic to P? or to a Hirzebruch surface X, with e # 1.

Proof. See [BeaT78]; Theorem V.10. O

Remark 1.4.2. Recall that P? with one point blown up is isomorphic to the Hir-

zebruch surface X, with e = 1.

Remark 1.4.3. It follows from Theorem 1.4.1 and Remark 1.4.2 that every smooth,
irreducible, projective, rational surface is either isomorphic to P?, or to a Hirzebruch
surface X, or to the blow up of a Hirzebruch surface at a finite set of s > 0 points.
Indeed, we identify the blow up of P? at s > 1 points with the Hirzebruch surface

Xe=1 with s — 1 points blown up.

Going ahead with this summary of smooth, rational surfaces, we introduce the

notion of anticanonical, rational surface and of Fano surface.
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Definition 1.4.4. A smooth, irreducible, rational surface X is said to be anticano-
nical if its anticanonical divisor — Kx is effective and X is said to be a Fano surface

of —Kx is ample.

Smooth projective rational surfaces X whose anticanonical divisor — Ky is ef-
fective constitute an interesting class of surfaces with Kodaira dimension x(X) < 0.
For instance, they include all Del Pezzo surfaces, all blowing up of relatively minimal
models of rational surfaces at 8 or fewer points, and all smooth complete toric surfa-
ces, but also include surfaces for which there is an effective but highly non-reduced

anticanonical divisor.

The following Theorem gives us the classification, up to isomorphism, of smooth

Fano surfaces.

Theorem 1.4.5. Let X be a smooth Fano surface. Set d = Kx - Kx. We have
(i) 1 <d<09.

(ii) e Ifd=9 then X = P2
o Ifd=28then X 2P x P! or X is the blow up of P? in a point.

e If1<d<7then X is the blow up of P? in 9 — d different points.

Proof. See [BeaT78]. O

Remark 1.4.6. It easily follows from the definition and Theorem 1.4.1 that Fano
surfaces and smooth, minimal, rational surfaces are anticanonical and the only mi-
nimal Fano surfaces are P? and the quadric surface X = P! x P*. Furthermore, if
X is obtained by blowing up a Hirzebruch surface X, at s > 8 points, the question
whether X is anticanonical strongly depends on the position of the points that we

blow up.

Our aim is to study moduli spaces of vector bundles on rational surfaces. Ac-

cording to the methods we will use, we distinguish the following cases:
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X = P2
e Minimal rational surfaces

X =X, with e#1.

Fano surfaces.
e Non-minimal rational surfaces

Blow up of X, at s points.

From now, until the end of the section we will describe the Picard group, in-
tersection product of divisors on rational surfaces and we will prove some technical
lemma on divisors that will be very useful for us in Chapters 2, 3 and 4.

Hirzebruch surfaces X..

For any integer e > 0, let X, = P(Op @ Op1(—¢)) be a non singular, Hirzebruch
surface; i.e., a rational, ruled surface defined by the vector bundle on P!

We denote by Cy and F the standard basis of Pic(X,) & Z @ Z such that C? = —e.
They correspond to sections and w-fibers respectively of the natural projection map
7 X, — P'. ([Har77]; V, Proposition 2.3). We have C2 = —e, F? = 0, CoF =1

and the canonical divisor
Kx, =-2Cy— (e+2)F.
So K% =8 and —Ky, is effective.
Remark 1.4.7. It is well known that a divisor L = aCy + bF on X, is ample if|

and only if, is very ample, if and only if, @ > 0 and b > ae, and that D = o'Cy +0'F
is effective if and only if ¢’ > 0 and ' > 0 ([Har77]; V, Corollary 2.18).

In the following Lemma we will compute the cohomology groups of line bundles
on a smooth Hirzebruch surface X,.
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Lemma 1.4.8. We consider the line bundle Ox,(aH+bF) on a smooth, Hirzebruch
surface X, and w : X, = P(E) — P! the natural projection. We have

r

0 ifa=—1

H'(X.,Ox,(aH +bF)) = ¢ Hi(p!,5%(€) @ Op: (b)) ifa >0

\ H?>71(PH S~ (E) @ Opi(—e —b—2)) ifa < -2
being S*(E) the a-th symmetric power of £.
Proof. By the projection formula we have

R'm.Ox,(aH +bF) = R'r,0p g, (a) ® Op: (b)

being le*OP(g)(a,) = 0 for a > —2. Moreover, using the Base Change Theorem we
get R'm.Opg)(a) = 0 for i > 2.
Since, R'7,Ox,(aH +bF) =0 for i > 0 and a > —2, by the degeneration of the

Leray Spectral sequence
H' (P, RjW*O]F(g)(aH +0F)) = H™(P(E), OP(g)(aH +bF))
we obtain
HY(X,,Ox,(aH + bF)) = H(P*, 7,0x,(aH + bF)) for all a > —2

with m,Ox, (aH +bF) = S*(€) ® Op1 (b) if a > 0 and 0 otherwise. The case a < —2
follows from the case a > 0 and Serre’s duality. Hence, the Lemma is proved. 0

We also have the following easy Lemma that will be of crucial importance in

forthcoming chapters.

Lemma 1.4.9. Let X, be a smooth, Hirzebruch surface. Then, for any ample divi-
sor H on X, and any non-zero effective divisor C on X,, CH > 0. In particular,
(I{Xe -+ F)H < 0. J
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Despite we know that the blow up of P? at s points can be naturally identified
with the blow up of X.-; at s — 1 points, in order to fix the notations that we will

use later on, we prefer to describe this two blow ups separately.
Blowing up points in P?

Let Z = {Py,---,P,} be a set of s distinct points in P2 = P2, et X := Bl (P?)
be the rational surface obtained from P? by blowing up the points of Z and let
7. X := Bly(P?) — P? be the blow up. Let Ej,---, E; be the divisor classes in
Pic(X) which contain the exceptional lines corresponding to the blow ups of the
points Py, --- , Py, respectively and Ey the divisor class in Pic(X) which contains

the transform of a line in P? which misses all the points of Z. Then
Pic(X) 2z 2< Ey, By, -+ , B, >,

with B2 =1=-FE? =---=—F? and E;E; =0if i # ;.

Once we have obtained X, there may be other such morphisms X — P? and
any such morphism factors into a sequence of blowings-up at points giving rise, as
before, to a basis of Pic(X). Such a basis, arising from a morphism X — P2, is

called an exceptional con figuration.

The canonical divisor is given by
S
Kx=-3E+ Y _E;
=1

Notice that for s < 8, the anticanonical divisor —Kx is effective and hence X
is an anticanonical rational surface. Moreover, by Theorem 1.4.5, X is also a Fano

surface.

Remark 1.4.10. On any smooth, rational surface X obtained by blowing up P? at
s > 1 different points, there exist ample divisors L on X such that,

L(I{X + Ey — El) < 0.
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Indeed, we consider on X the ample divisors (see [Kuc96])

L, =1tF, — Z;?:l E;, t>>0 and
Ly, = 3(mE0 - (m - I)El) - 25:2 E;, m>>0.
They verify

Lt(I(X + By — El) =-2t+s—-—1<0 and

Lm(Kx+E0—E1) =—6m+s—-1<0
which proves what we want. |

As we pointed out in Remark 1.4.2, P? with one point blown up is isomorphic
to the Hirzebruch surface X.—;. Let us describe the corresponding isomorphism

between the Picard groups according the notation just introduced.

Remark 1.4.11. Let X be the rational surface obtained by blowing up one point

of P? and X, a Hirzebruch surface. Then, we have the following isomorphism

Pic(Xe—1) — Pic(X)
Co — El
F — Ey— F

between the corresponding Picard groups.

The following Lemma will be very useful to compute the cohomology groups
of line bundles on a smooth, rational, surface X obtained blowing up P? at s > 1

points.

Lemma 1.4.12. Let X be a smooth, irreducible, rational surface obtained blowing
up s different points of P* and D = aEy — Y i, b;E; a divisor on X. The following

conditions hold
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(a) If DE; < 0, then H°Ox(D + nE;) = H°Ox(D) for alln > 1;
(b) If a <0, then H°Ox (D) = 0.
Proof. (a) Assume n > 1 and consider the long exact cohomology sequence
0 — H°Ox(D + (n - 1)E;) — H°Ox(D +nE;) — H°Og,(D +nE;) — ---
associated to the exact sequence
0 — Ox(D+ (n—-1)E;) — Ox(D +nkE;) — Og,(D + nE;) — 0.

Since by assumption DE; < 0, we have E;(D + nFE;) < —n < 0 which implies that
H°Op,(D + nE;) = 0. Hence,

HOO)((D + ?’?Ez) = HOO)((D + (77, - I)EZ)
and iterating the process we deduce H°Ox (D + nE;) = H°Ox(D) for all n. > 1.

(b) If a < 0, then DL; = at — >_;_, b; < 0 for £ >> 0, which implies that D is not
effective or, equivalently, H°Ox (D) = 0 (recall that for t >> 0, L, = tEy — > .., E;

is an ample divisor on X). O
Blowing up points in Hirzebruch surfaces.

For any e > 0, we consider X, = P(Op @ Op1(—e¢)) a non singular Hirzebruch
surface. As before, we denote by Cy and F the standard basis of Pic(X,) Xz @ Z.

Let Z = {Py,---, P} be aset of s distinct points in X, and consider the rational
surface X := Blz(X,) obtained from X, by blowing up the points of Z. Consider
the blow up 7 : X — X, and 7* : Pic(X,) — Pic(X) the associated map
between the Picard groups. Let Ey,-- -, E; be the divisor classes in Pic(X) which
contain the exceptional lines corresponding to the blow ups of the points Py, - - - , P,
respectively. It is well known that the Picard group of X is generated by 7*Cy, 7*F,
Ey,...Es, with (7*Cp)? = —e, m*Com*F = 1, (7r*F)2 =0, 7*CoF; = n*FE; = 0, for
1<i<s,1=—-F!=...=—E? and E,E; =01ifi # .

The canonical divisor has the form

s ) K
Kx =m"Kx, + Y Ei=-2r"Co— (e +2)r"F + Y E;

=1 i=1
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(See [Har77]; V, Propositions 3.2 and 3.3). For simplicity we will write Cy and F

instead of 7*Cy and 7*F'. Therefore, we have

Pic(X) 2 z5¥2 2< Gy, F, F,,--- ,E; > and

Kx =—2C,— (e+2)F+ Y5, Ei.

Remark 1.4.13. Let X be a smooth rational surface obtained by blowing up a
Hirzebruch surface X, at s > 1 different points. Then there exist ample divisors L
on X such that L(Kx + F) < 0.

Indeed, let I~/1 = Cyp+(e+3s)F and I:z = Cp+nF with n >> 0 be two ample divisors
on X, (Remark 1.4.7). By [Kuc96],

Ly :=3Cy+3(e+s)F—-> ;| E and
Ly = 3Cy + 3nF — Y0, E;

are two ample divisors on X and they verify

Li(Kx+F)=6e—3(e+1)—6(e+s)+s<0 and
Ly(Kx+ F)=6e—3(e+1)—6n+s<0
which proves what we want.
Now, we are going to give two lemmas on cohomology groups of line bundles

that we will use in Chapter 3.

Lemma 1.4.14. Let X be a smooth, irreducible, rational surface obtained blowing
up s different points of a Hirzebruch surface X, and D = aCo +bF + Y ;_, b;E; a
divisor on X. The following is satisfied

(a) If a <0 orb <0, then H'Ox(D) = 0;
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(b) If DE; <0, then H'Ox (D + oF;) = H'Ox(D) for all o > 0.

Proof. (a) Assume that a < 0. By [Kuc96|, the divisor L = 3Cy + 3tF — >}, E;
with ¢ >> 0 on X is ample. We have '

S
DL:—3a,e+3b+3a,t+Zbi<0.

_ i=1
So D is not effective or, equivalently, H'Ox (D) = 0. If b < 0, we consider the ample
divisor H = 3nCy + 3(ne+ 1)F = Y ;_, E; with n >> 0 on X (see [Kuc96]) and we
get
DH =3nb+3a+ ) b <0.
=1

Hence, D is not effective or, equivalently, H°Ox (D) = 0 which proves (a).

(b) For all @ > 0 we have F;(D + aE;) < 0. Therefore, for all o > 0 we obtain
H°Op (D + aF;) = 0. Thus, from the exact cohomology sequence

0— .HOO,\’(D + (OI — 1)E7) — HOOX(D -+ OlEl) — HOOEi(D + CVEZ) —_— e
associated to the exact sequence
0— Ox(D + (O’, — 1)E,) — O,\'<D + G’EZ) — OE1(D + O,’Ei) — 0

we deduce that H°Ox (D + (a — 1)E;) = H°Ox (D + aF;) and iterating the process
we deduce that H°Ox (D + aFE;) = H°Ox(D), which proves what was stated.  [J

Lemma 1.4.15. Let X be a smooth, irreducible, rational surface obtained blowing
up one point p of a Hirzebruch surface X, and D = aCy + bF — 2E with a,b > 0 a
divisor on X. If a > 0 or b > 0 then h°Ox (D) < maz{0,h°Ox(aCy + bF) — 3}.

Proof. Since a > 0 or b > 0 we can think of D as the strict transformation of a curve
aCy + bF on X, which has p as a double point. Hence, the dimension of H°Ox (D)
coincides with the dimension of the linear system of curves aCy + bF on X, which
has a node at p. Therefore, h°0Ox (D) < maz{0,h°Ox(aCy+bF') — 3}, which proves

what we want. . .

We will end this Chapter with the following easy but very useful Lemma.
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Lemma 1.4.16. Let X be a smooth, projective surface and Z C X a generic 0-cycle
in the Hilbert scheme Hulb'(X). If 1 > h°Ox(D), then H%Iz(D) = 0.

Proof. It easily follows after a straightforward computation. )



Chapter 2

Criterion of rationality for moduli
spaces on surfaces

The aim of this chapter is to supply criterion of rationality for moduli spaces
M, (2; ¢, ¢y) of L-stable, rank 2, vector bundles over a smooth, irreducible, rational
surface X, which will allow us to give, in the forthcoming chapters, an affirmative
answer to the following question (see [Sch90]; Problem 21, [Sch85]; Problem 2,

[OV88]; Problem 2):

QUESTION: Let X be a smooth, rational, projective surface. Fix a polarization
L, ¢; € Pic(X) and 0 << ¢; € Z. Is M1 (2;¢1,cs) rational?

As a main tool we use the birational properties of the moduli spaces My, (2; ¢, ¢3)
of rank 2, L-stable vector bundles on algebraic surfaces. In [Qin91], [Qin91b] and
[Qin93], Qin studies the change of My (2; ¢y, cz) when L varies. It turns out that the
ample cone of X has a chamber structure such that My (2;c¢,cz) only depends on
the chamber of L and, in general, My, (2;c;, cz) changes when L passes through the
wall between two chambers (see [Qin93] and [Qin91]).

We say that an irreducible component M of a moduli space M (2; ¢y, cy) is tri-
vial if for any polarization H, there exists a sheaf in M which is also H-stable. A
polarization L is trivial of type (cy, cp) if every irreducible component of the moduli
space M (2; ¢y, co) is trivial. In [Qin91], Qin states the following conjecture:

CONJECTURE ([Qin91]): Trivial polarizations of type (ci,c2) € Pic(X) x
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exist when 4cy — c? is larger than some constant ¢ = ¢(X) depending on X.

The first goal of this chapter is to prove Qin’s conjecture for smooth, projective,
anticanonical, rational surfaces, i.e. smooth, irreducible, rational surfaces X whose
anticanonical divisor —Kx is effective. To be more precise, we prove that if X is
an anticanonical rational surface then any polarization L is trivial of type (¢, ¢a)
provided My,(2; ¢1, c;) is non-empty and 4c, —c? > 2—3K%/2; and for any two ample
divisors L, and L, the moduli spaces My, (2;¢1, co) and My, (2; ¢y, ¢2) are birational
whenever non-empty and 4cy — ¢ > 2 — 3K%/2 (Theorem 2.1.10 ). Therefore, for
many purposes we can fix the polarization L and this is what we will always do

when we want to study the rationality of the moduli space My,(2; ¢y, cy).

The second objective of this chapter is to give criterion of rationality for moduli
spaces My, (2;¢1,cz) of rank two, L-stable, vector bundles over smooth, irreducible,

rational surfaces.

The techniques we use, strongly depend on whether —Kx is effective or not.
According to this fact, we distinguish two cases: in section 1, X is an anticanonical

rational surface and in section 3, X is a non-anticanonical rational surface.

We start section 1, computing the invariant d(¢) (see Definition 1.3.6 and Co-
rollary 2.1.4) and proving Theorem 2.1.10, which fully solves Qin’s conjecture for
smooth, projective, anticanonical, rational surfaces X. Moreover, we give explicitly
the constant ¢ = ¢(X) which only depends on X. As an application, we give suffi-
cient conditions on ¢; € Pic(X) and ¢y € Z in order to assure, for any polarization
L, the rationality of the moduli space M (2;c1,ce) of rank two, L-stable, vector
bundles with Chern classes (c1, c2) on a smooth, projective, anticanonical, rational
surface X, i.e. the first criterion of rationality (Criterion 2.1.13). In section 2, by
means of an example, we will see that if L; and L, are two polarizations on a smo-
oth, rational, anticanonical surface, lying in different chambers, then the birational
map between My, (2;¢;,¢2) and My, (2;¢q,¢o) is not, in general, an isomorphism.
In section 3 we will turn our attention to the question whether two moduli spaces
My, (2;¢1,¢0) and Mg, (2;¢y,co) are birational when the underlying variety X is a

smooth, irreducible, non-anticanonical, rational surface (Theorem 2.3.6). As an ap-
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plication we will give the second criterion of rationality (Criterion 2.3.7). The proof
of the results of section 3 relies on Walter’s results on the stack of prioritary sheaves.

The results of section 1 of this chapter will appear in [CM98].

2.1 Anticanonical rational surfaces

Throughout this section X will be a smooth, irreducible, projective, anticanoni-
cal, rational surface, i.e. a smooth, irreducible, rational surface whose anticanonical
divisor —Ky is effective. In particular, p,(X) = py(X) = ¢(X) = 0. From now
on, we fix ¢; € Pic(X) and we assume that the numerical equivalence class £ on
X determines a non-empty wall of type (cy,¢;) and G is any divisor such that
& = 2G — ¢; (see Definition 1.3.3). The first goal of this section is to compute D(¢)
and d(£), i.e. the dimension of E¢(cy,c2) and the difference between the dimension
of E¢(ci,c) and the expected dimension of a non-empty moduli space My(2; ¢, ¢3)
(see Definition 1.3.6).

Lemma 2.1.1. With the above notation it holds
(1) H'Ox(2G —¢;) =0 and H°Ox(—2G +¢;) = 0.
(2) H'Ox(Kx — (2G — ¢1)) = 0 and H°Ox(Kx + (2G — ¢;)) = 0.

Proof. (1) Since € defines a non-empty wall we have {L; > 0 > €L, for some ample
divisors L; and L. Thus 2G — ¢; and ¢; — 2G are not effective divisors and we get
HOOx(QG — Cl) = HOOX<—2G + Cl> =0.

(2) Since X is a smooth, irreducible, projective, anticanonical surface, the divisor
—Kx is effective and —KxL > 0 for any ample divisor L. If Kx + 2G — ¢; or
Kx — 2G + ¢; are effective, then (Kx +2G —¢;)L > 0or (Kx —2G +¢;)L > 0 for
any ample divisor L; i.e., (2G — ¢;)L > —KxL or (=2G + ¢;)L > —KxL for any
ample divisor L. However, the inequalities 0 > (2G — ¢;)L, and 0 > (=2G + ¢1) L,
give us —KxL; < 0 and —K x L, < 0 which contradicts the fact that —Kx is effec-
tive. O



32 2. Criterion of rationality for moduli spaces on surfaces

Remark 2.1.2. Assume that ¢ determines a non-empty wall of type (ci, ¢y). Then,
(1) —h'Ox(=€) = x(Ox(-¢€)) = &(§ + Kx)/2+ 1 and

(2) —h'Ox(€) = x(Ox(€)) = £(6 — Kx)/2+ 1.
Proof. It easily follows from Lemma 2.1.1 and the Riemann-Roch’s Theorem (1.1.5).

In particular, we have

(1) €€+ Kx)/2+1<0 and

(2) £(€—-Kx)/2+1<0. -

Lemma 2.1.3. Let Z C X be a locally complete intersection 0-cycle of length

(Z) = cy+ (€2 — c2)/4. Then, we have

4oy — 2 — €2 . EKx
4 2

Proof. We apply the functor Hom(.,Ox(2G — c;)) to the exact sequence

dimExt' (I, 0x(2G — ¢1)) = - 1.

0_>[Z_)OX_—)OZ_>O
and we get the exact sequence
0— Hlo;\'(QG - Cl) — EiL‘tl(Iz,Ox(QG - Cl)) — HOOZ

— H?0x(2G — ¢1) — Ext?(Iz,0x(2G — ¢1)) — 0.

Using Lemma 2.1.1, Serre’s duality and Riemann-Roch’s Theorem, we obtain
H?0x(2G — ¢;) = 0 and
' 2 _¢(Ky
R'Ox(2G - ¢1) = —x(0x(2G — ¢1)) = -1 — 5—;—’\
~ Therefore, we have

dimExt*(I7,0x(2G — ¢1)) = h%0z + h'Ox(2G — ¢;)

__dey—ci-¢? | Ky
=2 L OX L O

We are now in position to calculate d(&).
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Corollary 2.1.4. With the above notation, we have
(1) D(§) = 3(4ca — cf) /4 + £ /4 + (EKx)/2 - 2
(2) d(§) = (c} —4cs) 4+ E2/4+ (EKx)/2+ 1.
Proof. (1) Any vector bundle E in E¢(cy, cz) sits in a non-trivial extension
0—0x(G) — E-—0x(c—G)®I; — 0

where G is a divisor with 2G — ¢; = £ and Z C X is a locally complete intersection
0-cycle of length ¢y 4+ (€2 — ¢2)/4 (Definition 1.3.6). Moreover, the invertible sheaf
Ox(G) and the 0-cycle Z are uniquely determined by E. Therefore,

dimE¢(c1,c2) = #moduliOx (G) + #moduli(Z)
+dimEzt' (I7,0x(2G — ¢;)) — h°E(~G).
- On the other hand, we have
WE(-G) = h0x =1,
#moduliOx(G) = ¢(X) =0,

. des +€2_ 2
#moduli(Z) = 2length(Z) = ==,

dimEzt*(Iz,0x(2G — ¢1)) = 4c2—zf—§2 +x g
where the last equality follows from Lemma 2.1.3. Thus, we obtain

462—C%+f_2+ fI{X _
4 4 2

D() =3 2.

(2) By definition we have

d(€) := de(c1,c2) = D(§) — (4cz — ¢} — 3x(Ox))

2_ : -
Y
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Remark 2.1.5. Notice that for any numerical equivalence class & which defines
a non-empty wall of type (c1,cz) we have d(§) < 0. In fact, it follows from Re-
mark 2.1.2 and the inequality c? — 4cy < &2 O

Now, we will give a technical result to be used later on.

Proposition 2.1.6. Let X be a smooth, projective, anticanonical, rational surface,
L a polarization and & a numerical equivalence class defining a wall of type (¢, c3).
Assume d(€) = 0. It holds

(a) If B € My(2;c1,¢2) then x(B(-23%)) = 1.

(b) If E € My(2;c1,c5) and dcy — ¢ > 2 — 25X then ROE(—254) > 0.

Remark 2.1.7. We point out that E(—C—lg—&) has sense because £ + ¢; is divisible
by 2 in Pic(X) (see Definition 1.3.3).

Proof. First of all, notice that, by Remark 2.1.5, the hypothesis d(¢) = 0 is equivalent
t0 £2 = c? —4dcy and 2+ EKx +2 = 0. ‘
(a) Applying 1.1.1 and 1.1.5 we easily see that

__61+§
2

D=6 aBEE275) =0 and (BC-2TE)=1

(b) First we prove that the divisor —(2Kx + ) is effective. Indeed, since ¢ is not
effective and —Kx is effective we have h%0x (€ + 3Kx) = 0 and by Serre’s duality
h?0Ox (=& — 2Kx) = 0. Therefore, applying Riemann-Roch’s Theorem we get

]7,00)((—5 — 21{/\’) — thX(——f — 2[()() = X(Ox(—f - ZI(X))

_ (-g-z;{x)z(—g—sl(x) 1

=2(dcy — 2 —2) +3K% >0
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which gives us h°Ox (—¢—2Kx) > 0 or, equivalently, —(£+2Kx) is effective. Hence,
—(2Kx + &)L > 0 for any ample divisor L on X or, equivalently,

a((B(-2 $)) @ Kx)L = (2Kx + )L < 0.
If the last inequaﬁty is strict we obtain (Fact 1.1.10)
hOE(—c—lg—g) > 0.
If o ((B(—2))* @ Kx)L = 0 we get
hOE(—%-g) >0 or h,2E(—51—;—§) >0
and we will prove that the last inequality is not possible. Indeed, by Serre duality,
0< /ﬁE(-f-l-?ﬁ) = hPE*(% + Kx).

A non-zero section o € H OE’“(Q-;—6 + Ky ) defines an injection

c1+¢§
2

Ox(- - Kx) = E* = E(—¢),

or, equivalently,
» Ox(61—€—1{)()‘—>E.

2
From the L-stability of £ we have
Ci — f ClL
- Ky)L < —
(A KL<
which contradicts the fact that (2Kx + &)L =0 O

Remark 2.1.8. Notice that if the moduli space M, (2; ¢;, ¢2) is non-empty, by Bogo-
molov’s inequality, ¢ —4c, < 0, the condition 4¢cy —c? > 2—3K% /2 is automatically

satisfied whenever the underlying surface is a Hirzebruch surface or a Fano surface.

The following Proposition will be the key point for proving the first main result

of this section.
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Proposition 2.1.9. Let X be o smooth, projective, anticanonical, rational surface,
L a polarization and & a numerical class defining a wall of type (c1,cz). Assume
d(€) =0. IfEL >0 and dey — ¢ > 2 — 3K% /2 then Mp(2;¢1,¢) = 0.

Proof. Assume Mp(2;ci,¢3) # 0. For any E € ML(2;¢1,¢;) we apply Propo-
sition 2.1.6 and we take a nonzero section s € H°E(—2f8) # 0. It defines an

injection
0x(2F SO R
Since E is L-stable, we have
c1 + f ClL
25y« 22
(=)<
i.e.; €L < 0, which contradicts the hypothesis £L > 0. O

In the next Theorem, we prove that for any two ample divisors L; and L, on a
smooth, irreducible, projective, anticanonical, rational surface X, the moduli spaces
My, (2;¢1,¢3) and My, (2;¢1,cy) with dep — ¢2 > 2 — 3K% /2 are birational whenever

non-empty.
Theorem 2.1.10. Let X be a smooth, projective, anticanonical, rational surface,
2
¢ € Pic(X) and ¢y € Z. Assume dcy — ¢ > 2 — 2% We have
(a) Any polarization L is trivial of type (c1, c2) provided My (2; ¢1, ¢3) is non-empty.

(b) For any two ample divisors Ly and Ly on X the moduli spaces My, (2; ¢y, ca)

and My, (2; ¢, ca) are birational whenever non-empty.

Proof. By Remark 1.3.4 we may assume that L, and L, lie in chambers. Let C; be
the chamber containing L; and C; the chamber containing L. If C; = Cy, then the
moduli spaces can be naturally identified (see [Qin93]; Proposition 2.2.2). Assume
Cy # C,. Since the set of walls of type (¢, ¢z) is locally finite (Proposition 1.3.5),

we can choose finitely many ample divisors
Ly =W @ - 1=,

on the line segment connecting L; and L, in such a way that we have
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(1) L® lies in some chamber for all s = 1, ..., and
(2) L% and LGV are separated by a single wall for all i = 1,...,7 — 1.

So, without loss of generality, we may suppose that C; and C, share a common
wall W of type (c1,c2). Take £ € Num(X) such that Wé = W. Since d(¢) = 0
and L€ > 0 implies ML(2;¢1,c2) = 0 (Proposition 2.1.9) and the moduli spaces
My, (2;¢,¢2) and Mp,(2;¢1,cy) are non-empty we deduce d(€) # 0 and, hence,
d(§) < 0 (Remark 2.1.5). Therefore, we have ([Qin93]; Theorem 1.3.3)

My, (c1,¢2) = (M, (c1,¢2) \ Uy E_y(e1, ¢2)) U (Uy By (e, c2))

where 7 satisfies n. < 0 for some L € C; and runs over all numerical equivalence
classes which define the common wall W = W¢. Moreover, d(n) < 0 (Remark 2.1.5
and Proposition 2.1.9) and we conclude that My, (2;¢;1,¢c2) and Mp,(2; ¢y, co) are

birationally equivalent. O

As an application we have

Corollary 2.1.11. Let X be a smooth Fano surface, ¢; € Pic(X) and ¢y € Z. We

have
(a) Any polarization L is trivial of type (c1, ca) provided My, (2; ¢y, ¢3) is non-empty.

(b) For any two ample divisors L, and Ly on X the moduli spaces My, (2; ¢y, cp)
and My, (2; ¢y, co) are birational whenever non-empty.

Proof. Any smooth Fano surface X is rational and anticanonical (see Remark 1.4.6).

So, the result follows from Theorem 2.1.10 because if the moduli space My (2; ¢y, ¢z2)
2702

is non-empty then by Bogomolov’s inequality we have 4c; — ¢ >0 > 2 — % O

Remark 2.1.12. We will see in the next section that, in general, the birational

map between My, (2; ¢y, co) and My, (2; ¢, ¢2) is not an isomorphism.
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We are going to finish this section proving a very useful criterion of rationality
for moduli spaces M, (2; ¢y, c;) of rank two, L-stable, vector bundles over a smooth,
irreducible, projective, anticanonical, rational surfaces.

First criterion of rationality 2.1.13. Let X be a smooth, projective, anticano-

3K%

nical, rational surface, ¢ € Pic(X) and c¢; € Z. Assume 4c; — ¢ > 2 — 2% and

that there exists a numerical equivalence class €& which defines a non-empty wall of
type (c1,cz) such that d(€) =0 (i.e. €2 =c? —4dcy and E2 +EKx +2 =0). Then,
the following holds

(1) There exists an ample divisor L on X such that the moduli space M;(2; ¢y, cs)
is a smooth, irreducible, rational projective variety of dimension 4cy — c? — 3

and Pic(M;(2; ¢, c2)) = Z whenever non-empty.

(2) For any ample divisor L on X, the moduli space M1,(2; ¢y, ¢2) is a smooth, irre-
ducible, rational, quasi-projective variety of dimension 4c, — ¢ — 3, whenever

non-empty.

Proof. By Theorem 2.1.10 (b), it is enough to see that if L is an ample divisor such
that €L < 0 and L € C with W¢NC # 0 then M;(2;¢1,¢) = P** 3. For such L
and C we have ([Qin93]; Proposition 1.3.1)

M (2;¢1,¢0) = Mx(25¢1,¢0) U (UuE (e, ¢2))

where F is the face of C contained in W¢, L < 0 for some L € C and  runs over all
numerical equivalence classes which define the wall W¢. For any L' € F, L'¢ = 0.
So, since d(§) = 0, M#(2;¢,¢) = 0 (Proposition 2.1.9). Moreover, W* = W7 if,

and only if, u = An, for some A € R. Therefore, we conclude
]\lf,(27 C1, 02) = Ef(clu C?)‘

Let us see that Fg(ci,c) = P*=¢=3_ By definition, for any F in Ee(cy, ca), we
have the exact sequence (see Definition 1.3.6)

0— 0x(G) — E—Ox(ci—G)®I; — 0
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where G is a divisor with 2G —¢; = € and Z is a locally complete intersection 0-cycle
with I(Z) = ¢y + i;ci. By hypothesis d(¢) = 0. Thus, &2 = ¢? — 4¢, and Z = 0.
Therefore, E is given by a non-trivial extension

0 — Ox(G) — E — Ox(c; —G) — 0

where G = HTCI ie; E € P(H'Ox(£)). Finally, using Riemann-Roch’s Theorem, we
get P(H'Ox(§)) = plea—ci—3. -

Remark 2.1.14. We want to stress that the ample divisors L on X such that
M3 (25 ¢1, c) is a projective variety strongly depends on ¢, (Criterion 2.1.13). Indeed,
in [OGr96]; Theorem A, O’Grady proves that if we fix an ample divisor L on X
and ¢y > n(X, L) being n(X, L) a numerical function which depends on X and L,
then the dimension of complete subvarieties of My (2; ¢y, cz) is strictly less than the

expected dimension 4c, — ¢2 — 3.

Remark 2.1.15. The results that we have proved in this section also work for
smooth, irreducible, projective surfaces with anticanonical divisor — K x numerically
effective (a divisor is said to be numerically effective if its intersection number with
any effective divisor is nonnegative) and arithmetic genus p, = 0. See [CP92] for
a complete classification of smooth projective surfaces with anticanonical divisor

numerically effective.

2.2 Examples

The aim of this section is to illustrate by means of a family of examples that
if Ly and Ly are two polarization on a smooth, irreducible, projective, anticanoni-
cal, rational surface lying in different chambers, then the birational map between
My, (2;¢1,¢0) and Mp,(2;¢1,¢2) is not, in general, an isomorphism. More preci-
sely, in the following example we will see that two moduli spaces M, (2; ¢y, ¢c) and
My, (2; ¢y, o) are birational but, Pic(Mg,(2; ¢, ¢)) # Pic(Mp,(2;¢1,¢z)), which in
particular proves that My, (2;¢;,¢y) and Mz,(2; ¢y, c3) are not isomorphic. To this

end, we start recalling some basic facts on Picard groups.

N
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Proposition 2.2.1. Let Z be an irreducible subset in a smooth variety Y. It holds
a) If Z has codimension greater or equal than 2 then,

Pic(Y) = Pic(Y \ 2).

b) If Z has codimension 1, then there exists an ezact sequence
0— Gz — Pic(Y) — Pic(Y\Z) — 0
where Gz 1is the cyclic subgroup of Pic(Y') generated by Oy (Z).
Proof. See [Har77]; II, Proposition 6.5. O

Let us start with the precise family of examples.

Let X, be a smooth, irreducible Hirzebruch surface with e > 2, 1 < ¢, an integer,
¢y = Cy € Pic(X,) and £ € Num(X,) defining a non-empty wall of type (Cy, co). It
follows from Remark 2.1.2; Corollary 2.1.4 and Remark 2.1.5 that d(§) < 0 and

i) d(€) = 0 if, and only if, £ = ¢? — 4cy and €% + (K y, + 2 = 0;

ii) d(¢) = —1if, and only if, £ = ¢? — dcy + 4 and €2 + EKx, +2 = 0 or,
£2=c?—4cyand 2+ €Ky, +4=0.

In the two following Lemmas we will determine all possible numerical equivalence
classes ¢, defining a non-empty wall of type (Cy, c2) with d(¢) = 0 (Lemma 2.2.2) or
d(¢) = -1 (Lemma 2.2.3).

Lemma 2.2.2. With the above notations we consider the numerical equivalence
class & = Cy — 2c2F. &, defines a non-empty wall of type (Co,c2) and d(&) = 0.
Moreover, & is the only numerical equivalence class defining a non-empty wall of
type (Co, cz) such that d(&y) = 0.

Proof. Since & + ¢; = 2Cy — 2¢oF, d(&) = 0 and ¢ — 4¢; = &% < 0, we only have
to check (see Definition 1.3.3 and Remark 1.3.7) that there exist ample divisors L
and L' on X, such that

&L <0 < &L
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We take the ample divisors L = Cy+ (e + 1)F and L' = Cy + (e + 2¢, + 1) F on
X. (see Remark 1.4.7). We have

L§0=~6—~202+(6+1):—2CQ+1<0 and

Ll§0:—€—262+€+262+1=1>0

which proves that &, defines a non-empty wall of type (Co, c3).

Assume that there exists a numerical equivalence class, say £ = aCy+bF, defining
a non-empty wall of type (Cy, cy) such that d(€) = 0. Since d(&) = d(§) = 0 we
have |
E=cl—de=¢ and E€+EKy, +2=6 +&Kx, +2=0
which implies that E Ky, = { K x,, or equivalently, 2b = ae — 2a — e + 2 — 4¢,, which
together with the equality

—ae? +2ab=§2 =cf —4cy = —e — 4oy

gives us

(1-a)(2a+e+4c;) = 0.
Hence, a = 1 or2a+e+4c; = 0. If 2a = —e — 4cy, then b = —% —ecy + 1 and
& does not define a non-empty wall of type (Cp, ca) because €L < 0 for any ample
divisor L on X,. Indeed, since a < 0 and b < 0, for any ample divisor L = aCy+ SF
on X, we get

€L = (aCy + bF)(aCy + BF) = —a(ce — f)+ab < 0

where the last inequality follows from the fact that since L is ample we have 8 > «e
(see Remark 1.4.7). If a = 1, then b = —2¢y and & = &. Therefore, &, is the only
numerical equivalence class ¢ defining a non-empty wall of type (Co, cz) such that
d(¢) = 0. O

Lemma 2.2.3. With the above notations we consider the numerical equivalence
class & = Cy — 2(co — 1)F. & defines a non-empty wall of type (Co,cy) and
d(&) = —1. Moreover, & is the only numerical equivalence class defining a non-
empty wall of type (Co, c2) such that d(&;) = —1.
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Proof. Since & +¢; =2Cy—2(c;—1)F, 2 —dey =62 -4 < 0and 24+ 6 Kx, +2 =0,
we have d(£;) = —1. Let us see that there exist ample divisors L and L' on X, such
that

6L<0<&L,

We take the ample divisors L = Cy + (e + 1)F and L' = Cy + (e + 2¢, + 1) F on
X. (Remark 1.4.7). We have

L& =—e—2(ca—1)+(e+1)=—-2c,+3<0 and
L'é&=-e—2(cp—1)+e+2+1=3>0
which proves that £; defines a non-empty wall of type (Co, ¢2).

Assume that there exists a numerical equivalence class, say ¢ = aCy+bF, defining
a non-empty wall of type (Cy,cy) such that d(¢) = —1. Since d(¢) = —1, we have

two possibilities
(a) €2 =1c? —4cyand €2+ €Ky, +4=0or
(b) € =c?—dc, +4and €2+ EKy, +2 = 0.
(a) If €2 = ¢ — 4cy and €2+ €K x, +4 = 0, we have
—e—4cz+4:cf —dcy +4=—-EKx, = 2a — ae + 2b.

The equality
—ea? + 2ab = €2 = c% — 4y = —e — 4oy

together with 20 = ae — 2a — e — 4cy + 4, gives us
(e+4c)(1—a)—2a(a—2)=0

which implies that ¢ < —1 and b = “("——2“—22 — 2 —2c+2 < 0. Arguing as in
Lemma 2.2.2 we see that £ does not define a non-empty wall of type (Cy, c3).

(b) If 2 =¢2 —dcy +4 and E2+EKx, +2 =0 we have —¢{Kyx, = —e — 4cy + 6, i.e.

20 = ae — 2a — e — 4cy + 6.
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This equality together with £2 = ¢ — 4c, + 4 gives us .
(1 —a)(4—4c; —e—2a) =0.

Therefore,a =1ord—4co—e—2a=0. [f2a =4—4cy—e, thenb=1+e—ecy — 9}
and again £ does not define a non-empty wall of type (Co,cz). If @ = 1 then
b= —2(cy — 1) and & = £, which proves what was stated. , d

By Remark 2.1.5, for all numerically equivalence class ¢ defining a non-empty
wall of type (Cp,cz) we have d(§) < 0. Hence, using the above two Lemmas we

obtain

Corollary 2.2.4. For all numerical equivalence class € € {&, &} defining a non-
empty wall of type (Co, cz), we have d(€) < 2.

Now we will describe how the Picard group of the moduli space My (2; ¢y, o)
changes when L crosses different walls. To this end we need to recall the following
result due to Qin ([Qin93]; Theorem 1.3.3). Given Ly and L, two polarizations lying

on chambers C; and C,, sharing a common wall, we have
(21) ]\4[/1 (27 C1, CQ) = (MLz (2’ 1, Cz) \ L‘le—é(cl’ 62)) U (UEE§(01: 02)),

where ¢ satisfies £L; < 0 and runs over all numerical equivalence classes which define

the common wall W.

Let L; and L, be two polarizations sharing a common wall W = WE. Assume
&Ly > 0 and €L, < 0. We distinguish 3 cases:

o If & & {&,& 1}, then d(§) < —2 (Corollary 2.2.4). Hence, applying (2.1) and
Proposition 2.2.1 we obtain

])Z'C(]M-L1 (2, 1, Cz)) = Pic(ﬁ4L1 (2, Ci, Cz) \ UgE{(Cl, Cg))
= Pic(Mp,(2;¢1,¢0) \ UeE_¢(c, ¢2))

= Pic(Mp,(2; 1, ).
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o If { = &, then §oL, > 0 and by Proposition 2.1.9 we have

]\4L2 (2, Cy, Cg) = @

Moreover, L; lies on a chamber C with C N W # () and from the proof of

Criterion 2.1.13 we deduce

Pic(Myp,(2;¢1,¢q)) = Pic(pl-3) > 7,

If € = &, then &Ly > 0 and d(&;) = —1. By (2.1) and Proposition 2.2.1 we

have an exact sequence
0 — Gg, — Pic(My,(2;¢1,¢2)) — Pic(Mp,(2;¢1,¢2)) — 0

being G, the cyclic subgroup of Pic(My,(2;c1,¢;)) generated by the line
bundle Op,, (261,¢2) (B, ). Let Cy be the chamber such that C,NWE # ¢ and
L& < 0 for any L € C;. Fix Ly € C;. By Proposition 1.3.5 we can choose

finitely many ample divisors

!

L=, 19, Ly LY = I,
on the line segment connecting Ly and L, in such a way that we have

(1) LY lies in some chamber for all i = 1, ..., and

(2) L and LYY are separated by a single wall W& for all i = 1,...,r — 1,
such that d(£%) < —2.

Hence, we have

Pic(Mp,(2;¢1,¢)) Pic(MLg,:)(Q; ¢1,¢2)) = Pic(My, (25¢1,¢2)) 2

where the last isomorphism follows from the second case we have studied.

Therefore, we obtain the exact sequence

0 — GE§1 — P?:C(]\4L1 (2, Cl,Cg)) — Z — 0.
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We have seen that indeed, there are moduli spaces with different Picard group,
which in particular implies that they are not isomorphic; but since X, is an antica-
nonical rational surface, by Criterion 2.1.13 they are birational whenever non-empty

(for instance when ¢y >> 0).

We denote by Cy the chamber such that CoN W #£ () and for any L € Co,
L& > 0, Cy the chamber with C; N W #£ () and for any L € Cy, L& < 0, C; the
chamber such that C, N W% # @ and for any L € Cy, L&; < 0 and C a chamber,
different from Cy, C; and Cs, such that for all L € C, we have L& < 0.

Given a polarization L = aCy + bF', we can represent L as a point of coordinates

(a,b) in the plane. The following picture gives us an idea of the situation just
described

Wéo
wé
Wweé
ol
® L2

Co

Let us summarize what has been seen in the example

o If Lo € C(), then ]\4L0(2; Cy, Cg) - w and P?;C(MLO(Z Cy, Cg)) =0.
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e If L, € Cy, then My, (2;¢1,09) & piez=ci—3 and Pic(My,(2;¢1,¢0)) = 2.
e If L, € Cy, then Pic(My,(2;c1, o)) sits in the exact sequence

0— GE§1 — P7C(]\4L2(2, Cl,Cz)) — Z — 0.

e If L €C, we have Pic(M(2;¢1,¢2)) = Pic(ML,(2;¢1,¢2)).

In forthcoming chapters, we will give more examples where the moduli spaces

are birational but not isomorphic (see for instance, Chapter 5; section 3).

2.3 Non-anticanonical rational surfaces

The main tool we will use to prove the birational equivalence between moduli
spaces of rank 2 vector bundles on non-anticanonical, rational surfaces, stable with
respect, to different polarizations will be prioritary sheaves. Prioritary sheaves were
introduced on P? (resp. on birationaly ruled surfaces) by Hirschowitz-Laszlo (resp.
Walter) as a generalization of semistable sheaves. (The reader can see [HL93] and
[Wal93] for more information on prioritary sheaves). Let us start recalling the precise
definition of prioritary sheaf.

Definition 2.3.1. Let 7 : X — P! be a birationaly ruled surface and we consider
F € Num(X) the numerical class of a fiber of 7. A coherent sheaf E on X is said
to be prioritary if it is torsion free and if Ext*(E, E(—F)) = 0.

The following Lemma allows us to use prioritary sheaves in order to deduce
results on moduli spaces of stable vector bundles. We want to stress that this result
is due to Walter (see [Wal93]) but, because of its importance, we prefer to reproduce

here its proof.

Lemma 2.3.2. Let 7 : X — P! be a birationaly ruled surface, F € Num(X) the
numerical class of a fiber of m and H an ample divisor on X with H(Kx + F) < 0.

Then any H -semistable, torsion free sheaf E is prioritary.
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Proof. If E is a H-semistable torsion free sheaf on X, then any nonzero torsion-free
quotient ) of £ would have H-slope satisfying pg(Q) > 1y (E), while any nonzero
subsheaf S of E would have H-slope satisfying pug(S) < py(E). So if E were not

prioritary, there would exist a nonzero homomorphism
¢ € Hom(E,E(Kx + F)) = Ext*(E, E(-F))".
The image of ¢ would then satisfy
pr(E) < pr(im(e)) < pn(E(Kx + F)) = pu(B) + H(Kx + F),

contradicting H(Kx + F) < 0. O

Remark 2.3.3. Since every rational surface is a birationaly ruled surface, the above
results, together with the forthcoming facts on prioritary sheaves can, and will, be

applied to studying the moduli spaces we deal with.

Remark 2.3.4. See Lemma 1.4.9 (resp. Remarks 1.4.10 and 1.4.13) for the exis-
tence of ample divisors L on a Hirzebruch surface X, (resp. on the blow-up X of a
Hirzebruch surface) such that the condition L(Kx, + F) < 0 (resp. L(Kx + F) < 0)

is satisfied.

Fora given 1 <r € Z, ¢; € Pic(X), and ¢; € Z, we will denote by Prior(r;cy, ca)
the stack of prioritary sheaves E on X of rank r and Chern classes ¢; and ¢;, and
by Spl(r;ci,cz) the moduli space of simple prioritary torsion free sheaves E on X
of rank r and Chern classes ¢; and ¢,. In [Wal93]; Proposition 2, Walter proves that
the stack Prior(r;c;,cg) of prioritary sheaves is irreducible and smooth. It follows
from Lemma 2.3.2 that for any ample divisor H on X verifying (Kx + F)H < 0,
the moduli space My (7; ¢y, c2) (resp. Spl(r;cy, ¢z)) of H-stable vector bundles (resp.
sirﬁple prioritary sheaves) on X is an open substack of Prior(r; ¢, cs). We would
like to mention that the reader unfamiliar with algebraic stacks only has to know
that algebraic stacks are some sort of generalization of schemes and that there
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always exists a moduli stack of coherent sheaves with fixed rank and Chern classes.

Moreover, there are notions of smoothness and irreducibility.

In the following Theorem we have summarized more precisely the results we will

need later on.

Theorem 2.3.5. Let w: X — P* be a birationaly ruled surface and F € Num(X)
the numerical class of a fiber of m. Suppose 2 < r € Z, ¢; € Pic(X) and ¢, € Z
are given. Then, the stack Prior(r;cy,cy) is smooth and irreducible. Let H be
an ample divisor on X such that (Kx + F)H < 0. For any integer co such that
A(r; ¢y, ¢9) >> 0 the moduli space My(r; ¢y, c2) is a non-empty, smooth, irreducible,

quasi-projective variety of the expected dimension 2rcy — (r — 1)c? — 72 4+ 1.
Proof. See [Wal93]; Theorem 1 and Proposition 2. O

Now we will prove that for any two polarizations L; and L, verifying the ine-
quality Li(Kx + F) < 0,4 = 1,2, the moduli spaces M, (r; c1, ca) and My, (r; ¢y, cz)
are birationaly equivalent whenever non-empty. This result can be considered as

generalization of Theorem 2.1.10 to arbitrary rational surfaces.

Theorem 2.3.6. Let 7 : X — P! be a birationaly ruled surface, F € Num(X) the
numerical class of a fiber of m, ¢; € Pic(X) and cy € Z such that A(r;cy,cy) >> 0.
Then, for any two ample divisors Ly and Ly on X with Li(Kx + F) <0, 1= 1,2,

the moduli spaces My, (r;c1,c2) and My, (r;ci,¢o) are birationaly equivalent.

Proof. By Theorem 2.3.5 and Lemma 2.3.2, the moduli sp;aces My, (r;¢1,¢0) and
M, (r; ¢, ¢2) are non-empty open substacks of Prior(r; ¢, ¢c;) and the result follows

from the smoothness and irreducibility of Prior(r;c;,cs). O

In the next Proposition we will give a criterion of rationality for moduli spaces
of rank two vector bundles on arbitrary rational surfaces. This second criterion can

be viewed as a generalization of Criterion 2.1.13 to arbitrary rational surfaces.
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Second criterion of rationality 2.3.7. Let 7 : X — P! be a birationaly ruled

surface, F € Num(X) the numerical class of a fiber of 7, ¢; € Pic(X) and cy € Z.

3K . . .
Assume 4cy — ¢ > 2 — =% and that there ezists a numerical equivalence class &

which defines a non-empty wall of type (c1,c2) and that it satisfies

(22) & =ct—dey, E+EKx+2=0,
(23) HOOx(€+3I{X) = HOO)((f + Kx +F) = HOO}((I(X + F - é) =0.
Then, the following holds

(1) There exists an ample divisor L on X such that the moduli space M;(2;¢1,¢2)
is a smooth, irreducible, rational projective variety of dimension 4cy, — 2 — 3

and Pic(M;(2;c1,c2)) = Z whenever non-empty.

(2) For c; >> 0 and any ample divisor L on X such that L(Kx + F) < 0, the
moduli space M (2;c1,cz) is a smooth, irreducible, rational, quasi-projective

variety of dimension dcy — 2 — 3.

Proof. (1) Let L be any ample divisor on X, ¢z € Z with 4c; — ¢ > 2 — §f_;i_ and &

a numerical equivalence class verifying (2.2) and (2.3).
Claim 1: For any E € M,(2;¢1,¢a)

RE-98 S

2
Proof of Claim 1: Applying 1.1.1 and 1.1.5 we easily see that
¢+ ¢+ ¢y +
aB-255) = € B2 ) =0 md x(B-21) =1

2 2 2
By hypothesis, H'Ox (§+3Kx) = 0 and by Serre’s duality H2Ox (—£—-2Kx) = 0.
Therefore, applying Riemann-Roch’s Theorem we get
hOOX(‘—f - ZI{X) - ]7,10,\’(—§ - 2[(,\) = X(O,\’(—f - 2]{)())

_ (=¢—2Kx)(-¢(-3Kx
= ! 3 <1

=2(dc; -} —2)+3K%Z >0
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which gives us h°Ox(—£—2Kx) > 0 or, equivalently, — (£ +2Kx) is effective. Hence,
—(2Kx + &)L > 0 for any ample divisor L on X or, equivalently,

e (B(-275) @ Kx)L = (2Kx + )L <0

If the last inequality is strict we obtain (Fact 1.1.10)

c1+¢

WE(—
vV E( )

) > 0.

If ¢ ((BE(—4£4))* ® Kx)L = 0 we get

¢ +¢§
2

¢ +¢€

R E(— )>0 or RhE(—

) >0
and we will prove that the last inequality is not possible. Indeed, by Serre’s duality,
0< h,QE(——‘ﬁ—;—g-) = h,OE*(f-l-—;.—é + Kx).

A non-zero section 0 € H 0E*(ﬂ’——;—é + Kx) defines an injection

Ox (2 2_-5 —Kx) > E
and from the L-stability of F we have
(612_5 — Kx)L < al

which contradicts the fact (2Kx + )L = 0 . Therefore, h®E(—2F £) > 0, which

proves Claim 1.

Claim 2: If €L > 0 then, Mp(2;¢1,¢3) = 0.

Proof of Claim 2: Assume M,(2;¢1,¢2) # 0. For any E € M,(2; ¢y, ¢p), we can take
a nonzero section s € HYE(—%2%). It defines an injection

c+¢€
5

Ox( — F.

Since E is L-stable, we have
o+ &
2

)L<£

( 2
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i.e; €L < 0 which contradicts the hypothesis £L > 0. Hence, My (2;c¢1,c3) = 0
which proves Claim 2.

Let L be an ample divisor on X such that §I: <0and L € C with WénC # (.
Let us see that ]
M;(2;¢1,c0) = pie—ci=3,

For such L and C we have ([Qin93]; Proposition 1.3.1)
ML(2§ c1,¢) = M]-'(2§ C1, Cz) L (LJ,U,E;L(Cla Cz))

where F is the face of C contained in W¢, uL < 0 for some L € C and 4 runs over all
numerical equivalence classes which define the wall W¢. For any L' € F, L'¢ = 0.
So, by Claim 2, M#(2;¢;,c3) = 0. Moreover, W# = W if, and only if, 4 = An, for
some A € R. Therefore, we conclude

Mi(z; c1,Co) & Ef(Cl, Ca)-
By definition, any E € E¢(c1,cs), sits in an exact sequence
0 —*-)Ox(G) —>E—>OX(01—G)®IZ — 0

Where G is a divisor with 2G —¢; = € and 7 is a locally complete intersection 0-cycle
with [(Z) = ¢, + 52;‘:%. By hypothesis £2 = ¢ — 4c, (see (2.2)). Therefore, Z = )

and

]‘4'1'/(2, Cl,CQ) = E{(C]_, 02) = P(Eﬁtl(Ox(Cl — G), Ox(G)))

= p(HOx(¢)) & Pt~

where the last isomorphism follows from the hypothesis (2.3), the fact that since &

defines a non-empty wall of type (c1, ¢2),
]’L2OX(§) = hOOx(I(X — f) S hOOX(KX - f + F) =0

and we have h’Ox () = h?Ox(£) = 0, and Riemann-Roch’s Theorem.

Therefore, the moduli space M;(2; ¢y, c2) is a smooth, irreducible, rational, pro-

jective variety of dimension 4c, — ¢? — 3 and

P?:C(MI'J(2; Ci, CQ)) =Z
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whenever the moduli space is non-empty.

(2) Let L be an ample divisor on X with L(Kx + F) < 0. By Theorem 2.3.5, we
only need to prove that the moduli space M (2;c;,cy) is rational. It follows from

the proof of (1) that there exists an ample divisor L on X such that
Mi(2; Cy, CQ) = Eg(cl, Cg).

Claim 8: Any E € E¢(ci, co) is a prioritary sheaf.

Proof of Clatm 3: Since FE is a rank two vector bundle, we only need to check that
Ext*(E, E(—F)) = 0. By assumption, £? = ¢ —4c,, so every E € E¢(cy, ¢p) is given
by a non-trivial extension

e —¢
2

c1+¢&

5 ) — 0.

(24)  0— Ox(222) — B — Ox(

By Serre’s duality, we have dimEzt*(E, E(—F)) = dimHom(E, E(Kx + F)). Ap-
plying the functor Hom(., E(Kx + F)) to the exact sequence (2.4) we get the long

exact sequence

0 — Hom(Ox(25%), E(Kx + F)) — Hom(E,E(Kx + F))

— Hom(Ox(22), E(Kx + F)) — -+

We consider the long exact cohomology sequence

0 — HOx(F+Kx +£) — HOE(5 _201 +Kx+F) — HOx(F+Ky) — -
associated to the exact sequence (2.4). Since F' + K is not an effective divisor and
by assumption H'Ox(F + Kx + &) = 0, we get

é_Tcl+I{X+F):O.

Hom(Ox (% 2- 5),E(KX + F)) = HB(

Using the long exact cohomology sequence

_f'*“Cl
2

0 — H'Ox(F+Kx) — H'E( +Kx+F) — HOx(F+Kx~€) — -+
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associated to the exact sequence (2.4) and the hypothesis H'Ox(F + Kx — £) = 0,

we obtain

c1+¢&
2

_f‘l‘cl.

HO'I’H(O);( ),E(Kx-’r-F)):HOE( T+I{X+F):O

which proves that Hom(E, E(Kx + F)) = 0. Therefore, E is a prioritary sheaf and
Claim 3 is proved.

It follows from Claim 3 that

M;(2;¢1,¢2) =2 Eelcy, ) = plez—¢i—3 Prior(2; ¢, ¢).

Since A(2; ¢1, ¢2) >> 0, the moduli spaces M} (2; ¢1, ¢2) and My (2; ¢y, c2) are smo-
oth and irreducible. It follows from Claim 3 (resp. Lemma 2.3.2) that M} (2; ¢y, ¢2)
(resp.  Mp(2;c1,¢2)) is an open substack of Prior(2;c¢;,cz). By Theorem 2.3.5,
Prior(2;ci, ¢) is smooth and irreducible and we have proved that M;(2;¢;,c2) is

rational. Therefore M (2; ¢y, o) is rational, which proves what we want. O

In the next Chapter, we will use Criterion 2.1.13 and Criterion 2.3.7 in order to

prove the rationality of some moduli spaces.



Chapter 3

Rank 2 vector bundles on surfaces

Moduli spaces of vector bundles with fixed determinant on smooth, algebraic
curves are unirational and very often even rational. For moduli spaces of vector
bundles on smooth, algebraic surfaces the situation differs drastically and, from
the point of view of birational geometry, discloses highly interesting features. The
general philosophy is that the geometry of a smooth surface X and of the moduli
'spaces of vector bundles on X are intimately related. For example, based on Li’s
work [Li94], one should expect that the moduli space of stable vector bundles over
a surface of general type is also of general type. Similarly, moduli spaces associated

to rational surfaces are expected to be rational.

There is at present no counterexample known to the question whether the moduli
spaces are always rational provided the underlying surface X is rational. For X = P2
Maruyama (resp. Ellingsrud and Stromme) proved that if ¢} — 4cy # 0 (mod 8),
then the moduli space Mﬁpz’olpﬂ (1)(2; c1,¢2) of Op2(1)-stable, rank 2 vector bundles
on P? with Chern classes ¢; and c, is rational ([Mar85] and [ES87]). Later on,
Maeda proved that the rationality of the moduli space ]\/[Pz’ow(l)(Q;cl,cQ) holds
for all (c1,¢p) € 2* provided MIP’2,OH,,2(1)(25 c1,¢2) is non-empty ([Mae90]). In recent
papers [Li97], [LQ96], [LQI6b], [Got96], [Kat92] and [Yos96], the question of the
rationality of the moduli space My (r;cy,c;) of rank r > 2, L-stable vector bundles
on P? and other rational surfaces was investigated. All these results give rise to the
following question (see [Sch90]; Problem 21, [Sch85]; Problem 2, [OV88]; Problem
2): '
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QUESTION: Let X be a smooth, rational, projective surface. Fix a polarization
L, ¢; € Pic(X) and 0 << ¢y € Z. Is M(r; 1, cy) rational?

The goal of this chapter is to give for » = 2 an affirmative answer to the above
question. More precisely, we will prove that if X is a smooth, rational, projective
surface and we fix an ample divisor L, ¢; € Pic(X) and 0 << ¢3 € Z, then the moduli
space My 1,(2;¢1,cz) is rational (Theorem 3.3.7). When there is no confusion, we
will write M(2;¢1,co) instead of My 1,(2;¢1,¢p).

Next we outline the ideas used to prove the main Theorem of this chapter (Theo-
rem 3.3.7). According to the classification, up to isomorphism, of smooth, projective,
rational surfaces and Remark 1.4.6, we have divided this chapter in three sections. In
the first one, we will prove the rationality of the moduli space Mx 1,(2;c1, ¢2) (The-
orem 3.1.8) of L-stable, rank two, vector bundles E with Chern classes ¢;(F) = ¢
and cy(E) = ¢, over a smooth, minimal, rational surface X, i.e. X is either P? or
a smooth Hirzebruch surface X, (Theorem 1.4.1). In section 2, we will study the
rationality of the moduli space Mx 1,(2; ¢y, c2) of rank 2, L-stable vector bundles over
a smooth Fano surface X. We want to point out that in this case we will strongly
use the fact that X is an anticanonical rational surface and, therefore, we will study
this case separately from the case of other non-minimal rational surfaces, which will

be studied along the last section of this chapter.

In all sections, we analyze separately all possible values of the first Chern class
and we prove the rationality using either the Criterion 2.1.13 or the Criterion 2.3.7;
or constructing suitable families of rank two stable vector bundles (resp. prioritary

torsion free sheaves) over a big enough rational base.

3.1 Moduli spaces of vector bundles on minimal
rational surfaces

The goal of this section is to prove the rationality of the moduli spaces M (2; ¢y, ¢a)
of rank two, L-stable vector bundles £ on smooth, minimal, rational surfaces X with
fixed Chern classes ¢; € Pic(X) and ¢, € Z. According to Theorem 1.4.1, if X is a



3.1 Moduli spaces of vector bundles on minimal rational surfaces 57

minimal rational surface, then. X is either isomorphic to P? or a Hirzebruch surface
X, with e # 1.

As we pointed out in the introduction, the case X = P? has been studied by seve-
ral authors (see [ES87], [Mae90] and [Mar85]) and it is summarized in the following

Theorem

Theorem 3.1.1. For any pair of integers (c1, ¢3), the moduli space MOIP"“(” (2;¢1, ¢2)
of rank two, Op2(1)-stable vector bundles E on P* with fized Chern classes ¢;(E) =
c1 and ca(E) = ¢y is a smooth, irreducible, rational, quasi-projective variety of

dimension 4c, — ¢ — 3, provided it is non-empty.

Proof. See [Mar75]; Proposition 4.15 for the smoothness. The irreducibility follows
from [Bar77]; 4.3 Corollary 1 (resp. [Hul79]; Theorem 2.1) if ¢; is even (resp. odd)
and the rationality was proved by Maeda in [Mae90]. O

Hence, we will study the rationality of the moduli space My (2;cy,cy) of rank
two, L-stable vector bundles E on a Hirzebruch surface X, with fixed Chern classes

c1 € Pic(X,) and ¢; € Z.

Remark 3.1.2. We will prove the rationality of M (2; ¢y, c,) distinguishing diffe-
rent cases, according to the value of ¢; € Pic(X,). Since a rank 2 vector bundle E on
X, is L-stable if, and only if, £ ® Ox,(G) is L-stable for any divisor G € Pic(X,),
we may assume, without loss of generality, that c¢;(F) is one of the following: 0,
Co + aF with o € {0,1} or F.

Let us start with the case ¢; = Cy + oF with o € {0, 1}.

Proposition 3.1.3. Let X, be a smooth, Hirzebruch surface, ¢y €Zanda € {0,1}.
Then, the following is satisfied

(1) There ezists an ample divisor L on X, such that Mj;(2; Co+aF, cp) is a smooth,
irreducible, rational, projective variety of dimension 4cy + e — 2a — 3 and

Pic(M;(2; Co + aF, c3)) = Z whenever non-empty.
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(2)- For any ample divisor L on X,., the moduli space My (2;Co + oF,cy) is a
smooth, irreducible, rational, quasi-projective variety of the expected dimension

4dcy + e — 200 — 3, whenever non-empty.

Proof. First of all, notice that by [Nak93]; Theorem 1.5 we have: ¢; > 1. Now, we
will apply Criterion 2.1.13. To this end, we take the numerical equivalence class,
say £ = Cop — (2co — ) F'.

Claim: £ defines a non-empty wall of type (Cy + aF, ¢;) and d(¢) = 0.
Proof of the Claim: Notice that £ + ¢; = 2C; — 2(ca — o) F' and

{2:2a—e—4c2:c%—4cz<0.

Moreover, we have (see Corollary 2.1.4)

dg) =92+ G+ e

=& 4 x4y

= q— e+£162 + (Co—(262—a)F)Q(—QCo—(6+2)1’) +1=0.

Hence, we only have to check (see Definition 1.3.3 and Remark 1.3.7) that there

exist ample divisors L and L' on X, such that

EL<0< €L

We take the ample divisors L = Cy + (e+ 1)F and L' = Cy + (e + 2¢c, + 1) F
(Remark 1.4.7) on X,. We have

LE=—-e—-2co+a+e+l=a—-2c+1<0
LéE=-e—2co+a+e+2c+1=a+1>0.
Since a smooth, Hirzebruch surface is an anticanonical, rational surface we can

apply Criterion 2.1.13 (see Remark 2.1.8) and this leads us to prove the proposition.
O
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Before studying the case ¢; = 0, we need a low bound for ¢, which is given by

the following result.

Lemma 3.1.4. Let X, be a smooth, Hirzebruch surface and L an ample divisor on
Xe. If E is a rank two, L-stable, vector bundle on X, with Chern classes (0, c3),
then cy > 2.

Proof. 1t follows from Bogomolov’s inequality, 4c; — ¢? > 0, that ¢; > 0. Assume
that c; = 1. By Riemann-Roch’s Theorem we have

x(E) =1.

Since E is L-stable and ¢;(F) = 0, we get h’E = h’E(Ky,) = 0 and h°FE > 1. On
the other hand, a non-zero section defines an injection

OXE‘—>E

i

which contradicts the L-stability of E. Therefore, c; > 2 which proves what was
stated. O

Now we will deal with the case ¢; = 0.

Proposition 3.1.5. Let X, be a smooth, Hirzebruch surface, co € Z and L any
ample divisor on X.. Then, the moduli space Mp(2;0,cy) is either empty or a

smooth, irreducible, rational, quasi-projective variety of dimension 4cy — 3.

Proof. Since ¢; > 2 (Lemma 3.1.4), the result follows from Theorem 3.1.1 and
[Art90]; Theorem 1.7 and Corollary 3.4. O

In order to study the last case, which corresponds to ¢; = F', we will distinguish

two cases according to the parity of c;. Let us start with the odd case.

Proposition 3.1.6. Let X, be a smooth, Hirzebruch surface, o € {1,3} and L an
ample divisor on X,. Then, the moduli space M1 (2; F,4m+ «) is either empty or a

smooth, irreducible, rational, quasi-projective variety of dimension 4(4m + ) — 3.



60 3. Rank 2 vector bundles on surfaces

Proof. Let L be an ample divisor on X, such that the moduli space M, (2; F, 4m+ )
is non-empty. We consider X the smooth, rational surface obtained by blowing up
one point of X, and the divisor on X

L, =nn"L - E;

where m : X — X, is the blow up and FE; is the exceptional divisor. For n
sufficiently large, L, is an ample divisor on X and there is an open immersion (see
Theroem 1.2.15)

Mx, 1(2; F,dm + @) < Mx 1, (2; F,4m + o).

Furthermore, by Remark 1.2.14, the moduli space My, 1(2; F,4m + «) is a smooth,
irreducible, quasi-projective variety of dimension 4(4m+«)—3 and the moduli space
Mx 1, (2; F,4m + «) is a smooth, irreducible, quasi-projective variety of the same
dimension. Therefore, we only need to check that My 1 (2; F,4m + «) is rational.
To this end, we consider the irreducible family F of rank two torsion free sheaves

E on X given by a non-trivial extension
(3.1) €:0—0x(-D) —FE—Ox(D+F)®I; —0

where Z is a locally complete intersection 0-cycle of length |Z| = 6m + iga—z_—ll
verifying H°I;(2D + F) = 0 and

(

Co+(m+n—-1F ife=2n and a=1

Co+{(m+n)F—E; ife=2n and a=3
DZCO+bF—CE1:

Co+{m+n)F—FE) ife=2n+1 and a=1

Co+ (m+n)F ife=2n+1 and a=3.

\

Let us see that such a 0-cycle Z exists. Indeed, applying Lemma 1.4.8 we get
(3.2)  hPOx(2Cy + (20+ 1)F) = h'Op(2b+1 — 2¢) + h°Opr (2b+ 1 — ¢)
+h%0p: (2b+ 1)

=6b+6 — 3e.
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Ifa=1ande=2nora=3and e=2n+1, then

=\2|.

h°Ox (2D + F) = K°0Ox(2Cy + (2b + 1)F) = 6m + 3(0‘2'" }

So, for a generic Z € Hilbl?!(X) we have H°I;(2D + F) = 0 (see Lemma 1.4.16).

Assume o =3 ande=2nora=1and e =2n+ 1. By Lemma 1.4.15 we have
hOx(2D + F) = h°0x(2Cy + (2b+ 1)F — 2E))
< hOx(2C, + (26+1)F) - 3
= 6m + ﬂ%ﬂ

where the last equality follows from (3.2). Hence, since |Z] = 6m + ggaz;l)’ for a
generic Z € Hilb?/(X) we have H°I;(2D + F) =0 (see Lemma 1.4.16).

Let us show:

(a) WE(D) = 1.
(b) dimF = 4(4m + o) — 3.

(c) Any E € F is a simple prioritary sheaf with Chern classes ¢;(F) = F and
co(E) = 4m + o

(a) We have the long exact cohomology sequence
0 — H°Ox — H°E(D) — H°I;(2D+ F) — - -~
associated to the exact sequence (3.1). By hypothesis, we have
| (3.3)  HI,(2D +F) = 0.
Therefore, h° E(D) = 1 which proves (a).
(b) By construction we have
(3.4) dimF = #moduli(Z) + dimEzt'(I;(D + F),Ox(~D)) — h°E(D)
= 2length(Z) + dimExt*(Iz(D + F),0x(=D)) — h°E(D)

= 2length(Z) + dimExzt*(Iz(D + F),0x(-=D)) — 1
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where the last equality follows from (a).

By Serre’s duality (see 1.1.6) we have
dimEzt!(Iz(D + F),0x(=D)) = dimExzt'(Ox(-D),Iz(D+ F + Kx))

= ]Zlfz(2D + F + [{/\)

Since Z is a O-cycle, h*I;(2D + F + Kx) = h?0Ox (2D + F + Ky) and using again
Serre’s duality and Lemma 1.4.14; (a) we get

H?0Ox(2D + F + Kx) = H°Ox(-2D — F)*
= H'0Ox(~2Cy — (2b+ 1)F + 2cE,)* = 0.
Using Lemma 1.4.8 and Lemma 1.4.14; (b) we obtain |
RROx(2D +F+ Kx) =h0x((2b—1-¢e)F — (2c— 1)Ey)
< hP0x((2b -1 —¢€)F)
= h'Op (2b — 1- e) =2b—e.

Hence, since |Z| = 6m + 3—(52_—12 > h0x (2D + F + Kx), using Lemma 1.4.16, for a
generic Z € Hilb?l(X) we have

(35)  HI;2D+F+Kyx)=0.
Therefore, putting this results together we get

h,llz(ZD + F + I(x) = —X(Iz(ZD + F + [(X))

= —‘X(O/\'(QD—F F + I(X)) + ’Z]

By Riemann-Roch’s Theorem (see 1.1.5) we have

x(Ox(2D + F + Ky)) = GRHIEK)@DEE) 4 4

2Co+(204+1)F —2¢F1)((2b—e—1) F—(2¢~1)E
— (OvHE =268 ) (e P =(e-D)E) |

=% —e—2c+c.
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Finally, we substitute in (3.4) and we get

dimF = 2(6m+ ) et 20— cp om s Bt
=4(dm+a) -3
which proves (b).

(c) It is easy to check that any E € F is a rank two torsion free sheaf with Chern
classes ¢;(E) = F and c3(E) = 4m + «. Let us see that E is a prioritary sheaf.
Since E is torsion free, we only need to check that Ezt?*(E, E(—F)) = 0 (see Defi-
nition 2.3.1). Applying the functor Hom(., E(—F)) to the exact sequence (3.1), we

get the long exact sequence

- — Ext*(Iz(D + F),E(=F)) — Ezt*(E, E(-F)) —
Ezt*(Ox(-D), E(-F)) — 0.

Claim 1: Ext*(Ox(—D),E(-F)) = 0.

Proof of Claim 1: We consider the exact cohomology sequence
oo — H*Ox(~F) — H?E(D — F) — H?I;(2D) — 0

associated to the exact sequence (3.1). By Serre’s duality and Lemma 1.4.14 we

have
H?0x(—F) = HOx(F + Kx)* = H'Ox(-2Cy — (e+ 1)F + E;)* = 0,
H2I,(2D) = H?0Ox(2D) = HOx(—2D + Kx)*.

Since the divisor —2D + Ky = —4Cy — (2b+ e+ 2)F + (2c + 1) E} is non effective
(Lemma 1.4.14; (a)) we get

HOx(-2D + Kx)* =0,

and hence, Ext*(Ox(—D), E(~F)) = H*E(D — F) = 0 which proves Claim 1.
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Claim 2: Ext?(Iz(D + F),E(—F)) = 0.
Proof of Claim 2: Applying the functor Hom(Iz(D + 2F),.). to the exact sequence

(3.1), we get the long exact sequence

.. — Ba2(I(D + 2F),Ox(~D)) — Ext*(I;(D + 2F), E) —s
EﬂItZ(]Z(D + 2F),Iz(D + F)) — 0.

By Serre’s duality we have

E.'Etz(fz(D + QF), Ox(—D>) = HO’In(Ox(—D), Iz(D + 2F + I{X))*

= H'I;(2D +2F + Kx)* =0
where the last group vanishes for a generic Z € Hilb?/(X) due to the fact that

|Z| > h°Ox(2D + 2F + Kx).
Using again Serre’s duality we get

dimEzt?*(I;(D + 2F),Iz(D + F)) =dimHom(Iz(D + F),Iz(D +2F + K))
< dimHom(Iz(D+ F),Ox(D +2F + K))
= hOx(F + Kx) = 0.
Therefore, Ext?(Iz(D + 2F), E) = 0 which proves Claim 2.
It easily follows from Claim 1 and Claim 2 that E is a prioritary sheaf.

Let us see that E is simple, i.e., dimHom(E,F) = 1. We always have the
inequality 1 < dimHom(E, E). Let us see the other one.
Applying the functor Hom(., E) to the exact sequence (3.1), we get the long

exact sequence

0 — Hom(Iz(D+ F),E) — Hom(E,E) — Hom(Ox(—D),E) — - --
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From (a) we have

dimHom(Ox(-D),E) = i°E(D) = 1.

Hence, we only need to check that Hom(I;(D + F), E) = 0. To this end, we apply
the functor Hom(Iz(D + F'),.) to the exact sequence (3.1) and we obtain the long

exact sequence

0 — Hom(Iz(D + F),0x(-D)) — Hom(Iz(D + F),E) —
Hom(Iz(D + F),Iz(D + F)) -2 Ezt'(Iz(D + F),Ox(=D)) — - - - .

Applying Serre’s duality and Lemma 1.4.14; (a) we get

Hom(Iz(D + F),0Ox(—-D)) = Extz(OX(—D),IZ(D + F+ Kx))*

= H?I[;(2D + F + Kx)*
= H*Ox(2D + F + Kx)*
= H%Ox(-2D - F)
= H°Ox(-2Cy — (2b+ 1)F' + 2¢cE;) = 0.

Since the extension € given in (3.1) is non-trivial, the map

Hom(Iz(D + F),I(D + F)) = k=5 Ezt!(I(D + F), Ox(-D))
defined by 6(1) = ¢, is an injection. Hence, Hom(Iz(D+F), E) = 0 and E is simple.
We have a morphism
¢: F — Spl(2; F,dm + «)

from F to the moduli space Spl(2; F, 4m + ) of simple prioritary sheaves, which is

an injection. Indeed, assume that there are two non-trivial extensions
0 — Ox(=D)HE-"%0x(D + F)® Iz — 0;

0 — Ox(-D) 2EL505(D+ F) @ I — 0.
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From (3.3), we have
Hom(Ox(=D),1;(D + F)) = HI;(2D + F) = 0,

Hom(OX(—D),IZI(D--i- F)) = HOIZ/(2D + F) =0.

Thus, By 0y = az o f; = 0. So, there exists v € Aut(Ox(—D)) = k such that

B1 = ay 0. Therefore, Z = Z' and ¢ is an injection.

Now, let us see that Spl(2; F,4m + «) is rational. In fact, since the moduli
space Spl(2; F,4m + «) of simple prioritary sheaves is smooth and irreducible (The-
orem 2.3.5), its rationality follows from the fact that ¢ is an injection, Remark 1.2.8,
which states that F is rational and the fact that dimF = dimSpl(2; F, 4m + o).

By Lemma 1.4.9, L(Kx, + F) < 0. Thus, L,(Kx + F) < 0 for n >> 0 and
the moduli space Mx 1.,(2; F,4m + «) is an open subscheme of the moduli space
Spl(2; F, 4m + «) of simple prioritary sheaves (Lemma 2.3.2). Therefore, the moduli
space Mx,1,(2; F,4m+«) is also rational and, as we pointed out at the beginning of
the proof, this implies that the moduli space My, 1,(2; F,4m + o) is rational, which

proves what we want. O

Now we will deal with the remaining case: ¢; = F' and ¢, € Z even.

Proposition 3.1.7. Let X, be a smooth, Hirzebruch surface and L an ample divisor
on X,.. Then, the moduli space My (2; F,2n) is either empty or a smooth, irreducible,

rational, quasi-projective variety of dimension 4(2n) — 3.

Proof. Assume that the moduli space My (2; F, 2n) is non-empty. Then, from Bogo-

molov’s inequality we get
2

3K%
4(2n) > 2 — —2—\-

Therefore, since X, is an anticanonical rational surface, we can apply Theorem 2.1.10
and Remark 1.2.14 and we only need to check the Irationa.lity of My (2; F,2n) for a
suitable ample divisor L on X,. We take L = Cy + (2¢* + n)F (see Remark 1.4.7).
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We consider the irreducible family F,, of rank 2 vector bundles E on X, given

by a non trivial extension
(36) 0—O0x,(-D)—=E—O0x,(D+F)®I; -0

where D = (n — 1)F and Z is a locally complete intersection 0-cycle of length 2n
such that H°I;(2D + F) = 0.

Notice that since |Z| = 2n, 2D + F = (2n — 1)F and h°Ox((2n — 1)F) = 2n
(see Lemma 1.4.8), the condition

HI;(2D+F) =0

is satisfied for all generic Z € Hilb**(X) (see Lemma 1.4.16). By [Mir93]; Proposi-
tion 1.3, F, is non-empty.

Let us show:
(a) WE(D) = 1.
(b) dimF, = 4(2n) - 3.
(c) There is an injection F,, — M(2; F,2n).

(a) It follows from the exact cohomology sequence associated to the exact sequence
(3.6) and the fact that HIz(2D + F) = 0.

(b) By definition we have

dimF, = #moduli(Z) + dimExt*(Iz(D + F),Ox,(-D)) — h°E(D)
= 2length(Z) + dimExt'(I5,0x,(—2D — F)) — h°E(D)
= 2length(Z) + dimEzt*(Iz,0x,(-2D - F)) — 1

where the last equality follows from (a).

Applying the functor Hom(., Ox,) to the exact sequence

0 — Iz(2D+ F) — Ox,2D + F) — 032D+ F) — 0
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we get the long exact sequence
0 — H'Ox,(—2D — F) — Ext'(Iz,0x,(-2D — F)) —
H0Oy; — H?Ox,(—2D — F) — Eat*(I5,0x,(—2D — F)) = 0.
But the divisor —2D — F'is not effectivé, SO §ve obtain
dimEzt' (I, Ox,(=2D — F)) = dimEzt?(Iz,Ox,(-2D — F))
+h°0; - X(Ox,(~2D - F)).
By Serre’s duality, we have
Ext*(I;,0x,(=2D — F)) = Hom(Ox,(-2D — F),Iz(Kx,))*
= H°I;(2D + F + Kx,)*
= HI;(—2Cy+ (2n—e —3)F)* =0
and applying Riemann-Roch’s Theorem, we get

x(Ox,(=2D — F)) = (22=DC2D-FKxa) |y

2Co+(e+3—-2n)F}{(2n—-1)F
= GO TITE ) | g

=2 - 2n.
Therefore,
dimExt' (Iz,0x,(-2D — F)) = length(Z) — (2 — 2n) = 4n — 2

and
dimF, = 2(2n) + (4n — 2) — 1 = 4(2n) — 3

which proves (b).
(c) Let E € F, be a rank two vector bundle on X, given by a non-trivial extension

0—>OXE(—D)—)E—>OX6(D+F)®12—)O
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where Z C X, is a locally complete intersection 0-cycle of length 2n such that

It is easy to check that ¢;(F) = F and c3(F) = 2n. Let us see that E is L-
stable; i.e., for any rank 1 subbundle O, (G) of E we have ¢;(Ox,(G))L < 1 or,

equivalently,

Cl(E)L

c1(Ox,(G))L < 5

Indeed, since F sits in an extension
0= Ox,(~(n—-1)F)—>E—>Ox,(nF)®1Iz—0
we have
(1) Ox,(G) = Ox,(—=(n—1)F) or

(2) Ox,(G) = Ox,(nF)® I.

In the first case, —G — (n — 1)F is an effective divisor. Since L is an ample
divisor we have (-G — (n — 1)F)L > 0 and

Cy (E)L

a(Ox,(G)L=GL< -(n-=1)FL=—-(n—-1)< 5

[N

If Ox, (G) < Ox,(nF) ® Iz then nF — G is an effective divisor. On the other

hand, we have

HOOXC(G-F (’l’L— 1)F) C HOIZ((2n— 1)F)

= H°I;(2D + F) = 0.

So G + (n — 1)F is not an effective divisor and writing G = aCy + SF, we have
either f+n —1 <0 or @ <0 (see Remark 1.4.7).

Assume that § +n — 1 < 0 (in particular § < 0). Since nF' — G is an effective
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divisor it must be a < 0 (Remark 1.4.7) and we have

a(Ox,(G)L=GL = —oce+a(2¢®+n)+f

=a(2e? —e+n)+f

1 ci(E)L
2 2

<

Assume that o < 0 and f+n — 1 > 0. Using again the fact that nF' — G is an

effective divisor and hence § < n, we obtain

c1(Ox,(G)L =GL = —ae+a(2e*+n)+
< —ae+a2e+n)+n

=nla+1)+ex(2e — 1)

c1(E)L
2 3

<

B |

which proves the L-stability of £. Thus, we have a morphism
¢ Fn — ML(27F7277’)
which is an injection because by assumption H°Iz(2D + F) = 0.

Finally, since the moduli space My (2; F,2n) is smooth and irreducible (Re-
mark 1.2.14), its rationality easily follows from (c), Remark 1.2.8 and the fact that
dimF, = dimM(2; F,2n). O

Putting this results together we get the main result of this section.

Theorem 3.1.8. Let X be a smooth, irreducible, projective, minimal, rational sur- -
face, ¢y € Pic(X) and c; € Z. Then, for any polarization L on X, the moduli space

M71,(2;¢1,c2) is a smooth, irreducible, rational, quasi-projective variety of dimension

dey — ¢ — 3, whenever non-empty.

Proof. It follows from Theorem 1.4.1, Propositions 3.1.3, 3.1.5, 3.1.6, 3.1.7 and
- Theorem 3.1.1. 0



3.2 Moduli spaces of vector bundles on Fano surfaces 71

3.2 Moduli spaces of vector bundles on Fano sur-
faces

In this section, we will prove the rationality of moduli spaces M, (2; ¢, ¢z) of rank
two, L-stable, vector bundles on a Fano surface X. According to Theorem 1.4.5,
X is isomorphic to either P2, or the quadric surface in P? or the blow up of P? at s
different points with 1 < s < 8. Since the cases X = P? and X = X, with e = 0 (i.e
X is the quadric surface in P?) have been studied in the first section of this Chapter,
now we will deal with the remaining cases. So, throughout this section, X is the
blow up of P? at s different points with 1 < s < 8.

Remark 3.2.1. Since a rank 2 vector bundle F on X is H-stable if, and only if,
E®Ox(Q) is H-stable for any divisor G € Pic(X), we may assume, without loss of
generality, that ¢, (E) is one of the following: 0, Eo, E; with i =1,---,s, 3f_, By,
with 2 < p < sor Eg+ )7, Eij with 1 < p < s; and ¢p(E) > 1([Mir93]; Theorem
2.1 and Theorem 2.2). For simplicity, we will write 3/, E; instead of > °_, E;;.

We will discuss separately all possible values of ¢; (Remark 3.2.1). Let us start

with the case ¢; = 0.

Proposition 3.2.2. Let X be a Fano surface obtained blowing up s, 1 < s <8, dif-
ferent points of P* and L any ample divisor on X . Then the moduli space M1,(2;0, c3)
is either empty or a smooth, irreducible, rational, quasi-projective variety of dimen-

ston 4cy — 3.

" Proof. For t >> 0, the divisor H = tEy — ) ._, E; is ample on X and there is an

open immersion (Theorem 1.2.15)
MP2,0P2(1)(2; 0, Cg) —> MX,H(2§ 0, Cg).

Furthermore, Mp2 , 2(1)(2;0,(:2) is a smooth, irreducible, rational, quasi-projective
P
variety of dimension 4¢, — 3 (Theorem 3.1.1) and My 1 (2;0, ¢;) is a smooth, irredu-

cible, quasi-projective variety of dimension 4c, — 3. Hence, My 5 (2;0, ¢;) is rational
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and the moduli space Mp(2;0, cy) is empty or a smooth, irreducible, rational, quasi-
projective variety of dimension 4c; — 3 (Corollary 2.1.11 and Remark 1.2.14). O

In the next two propositions, we will consider the case ¢; = Fy and the case
= Z;?:]_ E;, and using Criterion 2.1.13 we will prove the rationality of the moduli

space ML (2; ¢, co).

Proposition 3.2.3. Let X be a Fano surface obtained blowing up s, 1 < s < 8,
different points of P2. Then, the following holds

(1) There exists an ample divisor L on X such that the moduli space M;(2; Eq, c;)
is a smooth, irreducible, rational, projective variety of dimension 4cy — 4 and

Pic(M;(2; Eo, ¢2)) = 2 whenever non-empty.

(2) For any ample dwisor L on X, the moduli space My (2; Ey,cy) is a smooth,
irreducible, rational, quasi-projective variety of dimension 4cy — 4, whenever

non-empty.
Proof. We take the numerical equivalence class, say £ = (1 — 2¢;)Ey + 2¢,E;. For
all g > 0, £ = (1 — 2¢9)Ep + 2c2E; defines a non-empty wall of type (Ey, c2) and
d(€) = 0 (see Definition 1.3.3 and Corollary 2.1.4). Indeed, since
c?—4dcy=1-4c, =€ <0,
§+ C1 = (2 - 202)E0 + 202E1

and
c?—4c; :
dlg) =922 4 € 4 x4

_ g2 Ky
T+

_ 1-dey | ((1—2¢2)Bo+2c2B1)(=3Eo+3 7 Ei)
===+ 5 —= 41

=0,
we only have to check that there exist ample divisors L; and L on X such that

€L, <0< €L
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It is well known that the divisor L; = tEy — ) ;_, E; is ample for ¢ > 3 and we have

Ltf = (tEQ - 2;___1 EZ)((l — 202)E0 + 202E1)

= t(l - 262) + 2¢3 < 0.

On the other hand, we take the divisor

L; = 7’&((462 -+ 1)E0 - (462 - l)El) — ZE]

For n. >> 0, L, is ample (see [Kuc96]) and we have
EL. = ((1 = 2¢3) By + 2¢:F1 ) (ndcy + 1)Ey — ndcy — 1)E) =n > 0

which proves what we want.

If the moduli space My (2; Eo, c2) is non-empty, using Bogomolov’s inequality
¢ — 4cy < 0 and the fact that K% = 9 — s > 0, we obtain

3K?%
4cy — C? > 2 — X .
. ’ 2
Thus, we can apply Criterion 2.1.13 and we deduce what was stated. O

Now we will deal with the case ¢; = Y7_, E;,.

Proposition 3.2.4. Let X be a Fano surface obtained blowing up s, 1 < s < 8§,
different points of P2. Then, the following is satisfied

(1) There exists an ample divisor L on X such that M(2; 370, Bijyc0) is a
smooth, irreducible, rational, projective variety of dimension 4n + p — 3 and
Pic(M(2; 320, Eij, c2)) = Z whenever non-empty.

(2) For any ample divisor L on X, the moduli space Mr(2;3 %_, E;;, ¢3) is a smo-
oth, irreducible, rational, quasi-projective variety of dimension 4n + p — 3,

whenever non-empty.
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Proof. We take the numerical equivalence class, say
f = —262E0 + (202 + 1)E1,1 - Ez — . E,;p, with 1 S p S S.

Forall c; > 0, £ = =22 By + (2, + 1) E;, — By, — ... — E;, defines a non-empty wall of
type (Z;’zl E;;, cy) and d(£) = 0 (see Definition 1.3.3 and Corollary 2.1.4). Indeed,

since
2 —dey=—p—4dc; =E2 <0,
E+c=2(—cEy+ (ca +1)Ey,)
and
de) =952+ 5+ 8x 4
=8+ &4

_ ptdey |, (2e2Bo+(2c2+1) By =30, Bi)(~3Eo+307_ Ei)
=-5=+ 5 +1

=0
we only have to check that there exist ample divisors L; and L, on X such that
EL, <0 < €L,

We take the divisors L; = tEq— Y ;_, E; and Lj, = n(desBo— (4o~ 1) E;)) =30, B,
on X. For ¢ >> 0 (resp. n >> 0) the divisor L, (resp. L} ) is ample (see [Kuc96]).
Moreover, for ¢ >> 0 and n >> 0, we have

Li§ = =2ct+ (2c04+1) = (p—1) <0
L& = —=2con(de) +nldey — 1)(2c0+1) = (p—1) =n(2co— 1) — (p—1) > 0,

which proves that ¢ defines a non-empty wall of type (3 _7_, Ei;, c) (see Remark 1.3.7).

If the moduli space My (2; Z§=1 E;;, ¢y) is non-empty, using Bogomolov’s inequa-
lity, ¢? — 4cy < 0, and the fact that K% =9 — s > 0, we obtain

3K2

deyg —c2 > 2 — 5



3.2 Moduli spaces of vector bundles on Fano surfaces 75

Thus, we can apply again Criterion 2.1.13 and we deduce what we want. (|

For the remaining values of ¢y, there is not a numerical equivalence class & satisf-
ying the hypothesis of Criterion 2.1.13. In these cases, we will prove the rationality
constructing a suitable family over a big enough rational variety. Let us start with
the case ¢; = Ey+ > 4, Ei.

Proposition 3.2.5. Let X be a Fano surface obtained blowing up s, 1 < s <
8, different points of P? and L any ample divisor on X. Then, the moduli space
My (2, Eg+> 0 Ei,c2), 2 < p < s, 1is either empty or a smooth, irreducible, rational,

quasi-projective variety of dimension 4cy + p — 4.

Proof. By Corollary 2.1.11 we only need to check the rationality of the moduli space
M (2; Ey+ >0, Ej, cz) for a suitable ample divisor L on X and by Theorem 1.2.15
we can assume s = p. To this end, we take an ample divisor L on X such that
L(Kx + (Ey — E1)) < 0 (see Remark 1.4.10).

We consider ¢, = 2n+ f with § € {0,1} and the irreducible family F, g of rank

2 vector bundles E on X given by a non-trivial extension

P
(37) ¢: 0 0x(-D)>E—-Ox(D+Ey+» E)®I;—0

=1

where D =(n+1—f)Ey— (n+2— B)E; — (2— B)E; and Z is a locally complete
intersection O-cycle of length 2n — 2 + 33 verifying HI;(2D + Eo + Y.7_, E;) = 0.
Applying Lemma 1.4.12; (a) and using the fact that there is no plane curve of
degree 2n + 3 with a point of multiplicity 2n + 3 and a point of multiplicity three

we get
4 0 if =0

h'0x(2D + Ey + Y Ej) =

i=1 o if B=1

and we infer the existence of such a 0-cycle Z from the inequality

p
2] > h°Ox (2D + Eo + Y Ej)

2=1

(see Lemma 1.4.16). By [Mir93]; Proposition 1.3, F,, s is non-empty. Let us show
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(a) WE(D) = 1.

(b) dimF, g =4c; +p— 4.

(c) Any E € F,pis a éimple prioritary vector bundle and it has Chern classes
(Eo + Zle Ei, Cz).
(a) From the exact cohomology sequence

p
0 — H°Ox — H'E(D) — HI;(2D + By + > E;) =0

=1
associated to the exact sequence (3.7) and the fact H'Iz(2D + Ey+ > 0_ E;) =0

we get
hE(D) = h°0Ox + h°I,(2D + E; + iE) =1
which p-roves .(a,). -
(b) By definition we have
dimF, g = #moduli(Z) + dimExt!(I;(D + Ey + 3, Ei),Ox(—D)) — h*E(D)

= 2length(Z) + dimExt' (Iz,0x(—-2D — Ey - > ¢, E;)) —1

where the last equality follows from (a). Applying the functor H om(.,Ox) to the

exact sequence

P P P
0— Iz(2D+E()+Z El) —_— OX(2D+E0+Z EZ) — Oz(2D+E0+Z E7) — 0

=1 1=1 =1

we get the long exact cohomology sequence
0— HlO,\'(—2D — Ey — 2;}:1 El) — ECEtl(Iz, Ox(—-2D - FEy - Zle E,)) —
HOOZ — HQOx(—QD - E() — Zle Ez) — E.’L’t2(_[2, Ox(—QD — EO = Zf:l E1)) — 0.

Since the divisor —2D — Ey — Zle E; is not effective (Lemma 1.4.12; (b)), we

have

P p ' . p
W'Ox(=2D—Eq— Y E;)=h?0Ox(-2D—Ey— Y E;) = —x(Ox(-2D-Ey— Y _ Ej))

=1 : =1 =1
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and hence, we obtain
dimExt'(I,0x(-2D — Ey — > _7_| E;)) = dimExt*(I;,0x(—2D — Ey — >.0_| E;))
+h°07 — x(Ox (2D — Ey - Y F_| EY)).
By Riemann-Roch’s Theorem (see 1.1.5) we have

x(Ox(—2D — Ey — 2?:1 E)) = (=(2D+Eo+3°7_; Ei))(—(2D+2E0+Z§’=1 Ei)+3Eo—3F Ei) +1

__ (=(2n+3-28)Eo+(2n4+3-20) E1+(3-26)E2 =303 Ei)((2n—26) Eo)
- 2 ,

+ (—(2n+3—2[3)Eo+(2n+3—2,6)E1 +(:23—2ﬂ)E2 —Zf::; E,j)((27l+2—-2,3)E1 )

n (—(2n+3-28)Eo+(2n+3-20)E1 +(3—26)E2—Y."_, Fi)((2—28)E2)
2

_ (=(2n+3-28)Eo+(2n+3-26)E1+(3-20) B2~ 300 _4 Bi)(2 3203 Ei) +1
2

_ (2n43-20)(2n—26)~ (2n+3-26)(2n+2-28)~(3-28)(2-26)~2(p=2) | |
= 2

= -2 +28-p—(3-26)(1-f),
and using Serre’s duality, we get
EiEtQ(Iz, O)((—QD — Eo — Zle E,)) = Hom(OX(—2D - EO - Zle E1),Iz(l{x))*
= Hojz(QD + Eo -+ Z;Z).—_l Ei - I(X)* =0
where the last equality follows from the fact that

p p
2D+ Ey+ Y Ei+Kx = (2n—28)Ey — 2n+2~28)Ey — (2 - 2B)E2 +2 )  E;

i=1 =3
is a non effective divisor. Indeed, it follows from Lemma 1.4.12; (a) and the fact that

there is no plane curve of degree (2n — 2(4) with a point of multiplicity 2n + 2 — 2(.

Putting all this together we obtain
dimEzt'(Iz,0x(—2D — Ey — Y0 _| E;)) =length(Z) — (—2n+20— p— (3 —26)(1 — B))

=dn+B+p-2+(3-28)(1-0)
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and
dimFns =202n—2+38)+@n+B+p—2+3-20)1-6)) -1
=8n-2(1-p)(B+2)+p
=dcy+p—4
which proves (b).

(c) It is easy to see that for any £ € Fp g, ci(E) = Ey + ) _, E; and ¢;(E) = cs.
Let us see that E is a simple prioritary sheaf. Since E is torsion free, in order to see
that E is a prioritary sheaf, we only need to see that Ezt*(E, E(—(FEy — E))) = 0
(see Definition 2.3.1 and Remark 1.4.11).

Applying the functor Hom(., E(—Ey + E1)) to the exact sequence (3.7), we get

the long exact cohomology sequence

e — E'L‘t2(Iz(D -+ E() + Zle E7),E(—E0 =+ El)) —
E(Btz(E, E(“Eo + El)) — ECL’tz(O,\’(—D),E(—EO + E])) — 0
Claim 1: Ext*(Ox(~D), E(~FE, + E;)) = H*E(D — Ey + E;) = 0.

Proof of Claim 1: We consider the exact cohomology sequence

p
— HZOx(—Eo-’{-El) — HQE(D“EQ+E1) — H212(2D+2E]+ZE7) — 0

=2
associated to the exact sequence (3.7). Using Serre’s duality and the fact that Z is

a zero dimensional subscheme we get
H?*I;(2D + 2B, + 377, Bi) = H*Ox(2D + 2B, + Y/_, Ey)
=HOx(-2D -2E, -0 B+ Kx)* =0
where the last equality follows from the fact that the divisor

p
~2D ~ 2B, ~ > Ei+ Kx =—(2n+5—28)Eo + (2n + 3 — 26)E, + (4 — 20)E;

1=2
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is non eﬁ’ectivei(Lemma 1.4.12; (b)). Therefore, since
|
' H*Ox(—Eo+ E1) = HOx(Ey — By + Kx)* =0

we obtain
|

E%t2(OX(—D), E(‘-—Eo + El)) = HQE(D - E() + El) = O,

l

which proves Cilaim 1.
Cla,zm 2: E’l)tg(jz(D + E() + Zle Ei), E(—Eo -+ El)) = 0.

Proof of Claim ‘2 Applying the functor Hom(Iz(D + Eo+ Y .%_, E;),.) to the exact
sequence (3.7), lwe get the long exact sequence

— E.’l?t2(lz, Ox(—QD - 2E, — 2522 El)) — E.”Etz(fz(D + 28y + Zf:Q Ei), E)

|
— E$t2([z,.(z(—E0 + El)) — 0.

3

Since Z is a O-d;imensional subscheme, by Serre’s duality we get

dimEzt}z(IZ, I(=Eo + B)) = dimHom(Iz(~Eo + Ey), Is(Kx))
% < dimHom(Iz(—Ey + E1),Ox(Kx))

| = h0x(Ey— F1 + Kx) =0

where the last équality follows from Lemma 1.4.12; (b). Finally, using once again

Serre’s duality we obtain

E.’l?t2(fz, Ox(—2D b 2E0 — Z;’?:Z El)) = HOTI’L(OX, Iz(ZD — Eo + E1 +2 2522 Ei))*
| = HOL, (2D — By + By + 250, B)* =0

where the last eiquality follows from the fact that the divisor

top p
2D~ Eo+Ei+2Y Ei=(2n+1-28)Ey— (2n+3-28)E, — (2-28)E,+2 )  E;
[

1=2 =3
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is not effective. Indeed, it follows from Lemma 1.4.12; (a) and the fact that there
is no plane curve of degree 2n + 1 — 2 with a point of multiplicity 2n + 3 — 2.
Therefore, ’
4
Ext’(Iz(D+Eo+ Y Ei),E(~Eo+ E) =0
=1

which proves Claim 2.

It easily follows from Claim 1 and Claim 2 that E’is a prioritary sheaf.

Now we will see that E is a simple sheaf, i.e., dimHom(E, E) = 1.
Applying the functor Hom(., E) to the exact sequence (3.7) we get the long exact

sequence

14
0— Hom(IZ(D+E0+Z E;)),E) — Hom(E,E) — Hom{(Ox(-D),E) — - -

=1

From (a) we have

.

dimHom(Ox(~D),E) = h°E(D) = 1.

Hence, we only have to see that Hom(Iz(D + Ey+ >.¢_, E;), E) = 0. To this end,
we apply the functor Hom(Iz(D+ Ey+ Y %_, E;),.) to the exact sequence (3.7) and

we get the long exact sequence

p P
0 — Hom(Iz(D+ Ey+ Y Ei),Ox(-D)) — Hom(Iz(D + Ey + Y _ E;), E) —

i=1 =1

P P p
Hom(I;(D+Eo+Y | Ey), I2(D+Eg+Y | E))-Ext'(Iz(D+Eg+ | E;),Ox(~D)) — .
=1 =1 i=1

Since F is given by a non-trivial extension €, the map

& HOm(Iz, Iz) 2k — ECL’tl(Iz(D + Eo + Zf:l Ei), O,\<-D))
1 — €

is an injection, which together with

P 4
Hom(Iz(D+ Ey+ Y  E),Ox(=D)) = H'Ox(-2D — Ey — Y E;) =0

=1 =1
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!

gives us
p
=1

which proves t}iat E is simple and hence (c).

It follows fré)m (c) that there is an open injection

p
| $: Fup— Spl(2;Eo+ > Ei,cy)
! =1
5
that maps the i?reducible family F, g into the moduli space Spl(2; Eg+ > 0, Ei, ¢3)

of simple prioritary sheaves. Indeed, assume that there are two non-trivial extensions

’ p
0/— Ox(~D) 2 E50x(D + Bo + S B) @ I7 = 0;

1=1

' P
0 Ox(—D)"HE-50x(D + Ey+ Y _ Ei) ® I — 0.
' =1
Since HOT)’L(%O)((—D), Iz(D + E() + Ele El) = Hofz(2D + E() + Zle E7) =0
we have Ay 0 ) = ap 0 A; = 0. So, there exists u € Aut(Ox(—D)) = k such that
07 = A1 O [ Th{'erefore, Z = 7' and ¢ is an injection.

Since the deuli space Spl(2; Ey + Y °_, E;, c3) of simple prioritary sheaves is
smooth and irreducible (Theorem 2.3.5) of dimension 4¢,+p—4, its rationality easily
follows from Refrnark 1.2.8 and the fact that dimF, g = dimSpl(2; Eq+Y _, Ei, c2).
Moreover, since L(Kx +Ey— Ey) < 0, the moduli space M1,(2; Eo+> " | Ei,c3) is an
open dense subset of Spl(2; Eg+ Y, Ei, c;) (Lemma 2.3.2). Therefore, the moduli
space My (2; Eoi+ > 0, Ei,cp) is a smooth, irreducible, rational, quasi-projective

variety of dimerilsion 4co + p — 4, whenever non-empty. O

Notice that iin the previous Proposition we have studied the rationality of the
moduli space M (2; Eo + Y ", Ei, ), assuming that p > 2. Hence, it remains the
case ¢; = Ey — Ey, that will be treated in the next Proposition.

i
I
!
]
1
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Proposition 3.2.6. Let X be a Fano surface obtained blowing up s, 1 < s <
8, different points of P* and L any ample divisor on X. Then, the moduli space
My, (2; Eg+Ey, cy), is either empty or a smooth, irreducible, rational, quasi-projective

variety of dimension 4cy — 3.

Proof. By Remark 1.2.14 and Corollary 2.1.11 we only need to check the rationality
of My (2; Ey + Ei,c) for a suitable ample divisor L on X and by Theorem 1.2.15
we can assume that s = 1, i.e., that X is obtained by blowing up one point of P2

Since X = X, with ¢ = 1, the Proposition follows from Remark 1.4.11 and
Propositions 3.1.6 and 3.1.7. ]

The results of this section will appear in [CM98] and they can be summarized

in the following Theorem.

Theorem 3.2.7. Let X be a Fano surface, ¢; € Pic(X) and c; € Z. Then, for
any polarization L on X, the moduli space My (2;c1,ca) is a smooth, irreducible,

rational, quasi-projective variety of dimension 4cy — ¢3 — 3, whenever non-empty.

Proof. 1t follows from Theorem 1.4.5, Propositions 3.2.2-6 and Theorem 3.1.8. O

3.3 Moduli spaces of vector bundles on non-minimal
rational surfaces

In this section we prove the rationality of the moduli space M, (2; ¢;, ¢3) of rank
two, L-stable vector bundles F with Chern classes ¢;(E) = ¢; and ¢3(F) = c,, over
a smooth, non-minimal, rational surface X, i.e. the underlying surface X of the
moduli spaces we deal with is a smooth, irreducible, Hirzebruch surface X, blown
up at s different points. Since in section two we have studied moduli spaces of vector
bundles on Fano surfaces, in this section we can assume that X is obtained blowing

up s > 8 different points of X,.

Remark 3.3.1. Since a rank 2 vector bundle E on X is H-stable if, and only if,
E ® Ox(G) is H-stable for any divisor G € Pic(X), we may assume, without loss
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of generality, tilat c1(E) is one of the following: 0, >°%_, E;; with 1 < p <'s, Gy,
F, Cy+ F, Cé + Z?zl E;; with 1 < p <5, F + Zle E;; with 1 < p < s or
Co+ F+37%_, Ei; with 1 < p < s. For simplicity, we will write }7_, E; instead of

;'):1 Eij : :
We will anailyze separately different values of ¢; (Remark 3.3.1). Let us start

with the case '} .
| | ¢ € {0,Co, F,Cyo + F} C Pic(X).
i

Proposition 3.3.2. Let X be a smooth, rational surface obtained blowing up s
different points of X., H any ample divisor on X with H(Kx + F) < 0 and
a1 € {0,Co, F,Co + F} C Pic(X). For c; >> 0, the moduli space My (2;¢1,¢3)

is a smooth, irreducible, rational, quasi-projective variety of dimension 4cy — ¢ — 3.

!
Proof. Let L 'be an ample divisor on X,. Since ¢; >> 0, the moduli space

Myx, 1,(2; ¢1, c2) jis non-empty. We consider on X the divisor
: s
Ly=nn"L-) E;.
=1

Since L(Kx, + F) < 0 (Lemma 1.4.9) we also have L,(Kx + F) < 0 for n
sufficiently large. Moreover, for n >> 0, L, is an ample divisor on X and there is

an open immersion (see Theorem 1.2.15)

MXE,L(2; G, Cz) — MX,Ln(2; Cy, Cg).

Furthermore, for ¢; >> 0 the moduli space Mx, 1,(2;¢1,¢2) is a smobth, irredu-
cible, rational, Equasi—projective variety of dimension 4cy — ¢? — 3 (Theorem 3.1.8)
and Mx r, (2; ci,CQ) is a smooth, irreducible, quasi-projective variety of the same
dimension (Theorem 2.3.5). Hence, Mx 1, (2; ¢1, c2) is rational and the moduli space
Mx 1(2;¢1,¢9) 1s a smooth, irreducible, rational, quasi-projective variety of dimen-
sion 4cy — ¢2 — ;3 (Theorem 2.3.6). O

{
Now using l‘Criterion 2.3.7, we will deal with the cases ¢; = Cy + Zle E; and
cp = Co+ F + )%, E; respectively.

)
1
!
‘
t
t
i
i



84 3. Rank 2 vector bundles on surfaces

Proposition 3.3.3. Let X be a smooth, rational surface obtained blowing up s dif-

: 2
ferent points of X, and c2 € Z with 4cy > maz{2+a— i’—gi, (s+a)} and o € {0,1}.

Then, the following holds

(1) There exists an ample divisor L on X such that M (2; Co+aF+30_. E;, ¢;) is
a smooth, irreducible, rational projective variety of dimension 4co+e—2a+p—3
and Pic(M;(2;Co + oF + > ¢, Ei,c2)) = Z whenever non-empty.

(2) For c; >> 0 and any ample divisor L on X such that L(Kx + F) < 0, the
moduli space Mp(2;Co + oF + >0 E;, ¢3) is a smooth, irreducible, rational,

quasi-projective variety of dimension 4cy +e — 200+ p — 3.
Proof. We take the numerical equivalence class, say £ = Cp — (2¢c; —a)F — >0 | E;.

Claim: For all ¢y > ”Ta, §=Cy— (2¢c; — a)F — Y F_, E; defines a non-empty wall
of type (Co + aF + 3¢, Ej, ¢p) and it satisfies

(1) 2= —4dcy, E2+¢Kx+2=0,
(2) HOOX(f + 3](,\) = HOOx(f -+ K:\ =+ F) = HOO,\*([(X + F - 5) = 0.
Proof of the Claim: (1) Notice that since

E4+c¢ =2C) — (2¢c; — 2a)F,
£ =2a—e—4cy— p=c?—dc
and
E+EKx+2 =(Co— (2co—a)F =37 E)(—=2C, — (e+2)F + Y i E)
+2o0—e—4dcyg—p+2
=2a—e—4c—pt+(e—2+4c;—20+p)+2=0

we only need to check (see Definition 1.3.3 and Remark 1.3.7) that there exist ample
divisors Ly and Ly on X such that

(L) <0< ELs.



|
|
E
3.3 Moduli spaces of vector bundles on non-minimal rational surfaces 85

In fact, if we take the ample divisors on X

| Ly =3C,+3(e+s)F-Y._,E and
Ly =3Co+3(2c; +e+p)F - Y5 F;
l

(see [Kuc96] for the ampleness of L; and L) then we get

(L = —-3e+3e+3s—6c;+3a—p<0 and

&Ly = —3e+ 6¢2 + 3e + 3p — 6cy + 3 — p = 2p+ 3a > 0,

where the first inequality follows from the assumption 2¢; > s+ «. This finishes the

proof of (1).

(2) It is easily seen that

]
1

!

£+ 3[@; =-5Cy — (2c2+3e+6—-a)F +25° E, + 3Zf:p+1 E;,
§+KXI+F: -Cp — (202+6+1*Q)F+Z:=p+1Ei,
Kx+F—-¢=-3Co+Q2c—e-1-a)F+23 7  Ei+3._ . B

Therefore, by Lemma 1.4.14; (a) we obtain

HOOX(§+31{X) = HOO,\'(f-i-I{X +F) = HOO,\’(I{X + F —f) =0

[
which proves (2) and the Claim.

3K%

: . 5
Since by hypothesis 4c; > 2 + a — =X, we also have 4¢; — ¢ > 2 — 3—1;’-‘—

(c? = 2a— e — p). Thus, we can apply Criterion 2.3.7 and we get what we want. O
!

For the rem\gining values of ¢; there is no numerical equivalence class ¢ verifying
the hypothesis bf Criterion 2.3.7. In these cases, we will prove the rationality of the
moduli space M 1.(2; c1, ¢2) constructing a suitable family of simple prioritary vector
bundles (see Déﬁnition 2.3.1 and Lemma 2.3.2) over a big enough rational base. We
will start with Elhe case ¢; = y o, By
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Proposition 3.3.4. Let X be a smooth, rational surface obtained blowing up s dif-
ferent points of X, and L any ample divisor on X with L(Kx+F) < 0. Forcy >> 0,
the moduli space Mr(2;> 0 | Ei,c2), 1 < p <'s, is a smooth, irreducible, rational,

quasi-projective variety of dimension 4cy + p — 3.

Proof. By Theorem 2.3.5 we only need to check the rationality of My, (2,30 | Ei,co)

and by Theorem 1.2.15 we can assume s = p.

We write ¢ = 2n + [ with g € {0,1} and we consider the irreducible family

Fnp of rank 2 vector bundles E on X given by a non-trivial extension

p
(38) €: 0= 0x(-D) = E—Ox(D+> E)®I;—0

1=1

where D = nF — (1 —f)E) and Z is a locally complete intersection 0-cycle of length
2n + B such that H°Iz(2D + "_, E;) = 0.

Let us see that such a O-cycle Z exists. To this end, we call p;,---,p, the p
points of X, we blow up and we distinguish two cases: f =0 and § = 1.

If # =1, then 2D+ > E, = 2nF + %" FE; and |Z] = 2n + 1. Since
HI;(2nF + Y0_| E;) = H°Iz(2nF), it is enough to take Z to be 2n + 1 points
sitting on 2n + 1 different fibers.

If $ =0, then 2D+ Y0 F; = 2nF — E; + Y. ,F; and |Z| = 2n. Since
HOI;(2nF — By + Y0 B;) = HI;(2nF — E,), it is enough to take Z to be 2n
points such that Z U {p;} sits on 2n + 1 different fibers.

By [Mir93]; Proposition 1.3, F, s is non-empty. Indeed, the divisor

p p
2D+ Ei+Kx=-20+(2n—e—2)F +28E; +2> E

i=1 i=2
is not effective (Lemma 1.4.14; (a)).

Let us show:
(a) hOE(D) = 1.

(b) dimF, g =4co+ p— 3.
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(c) Any F € Funp is a simple prioritary vector bundle and it has Chern classes

(i1 Bis ca)-

+

(a) From the exact cohomology sequence
| /
; 0— H'Ox — H°E(D) » H'I;(2D + 3 E;) = 0
. l =1
associated to the exact sequence (3.8) we get
}

P
. W"B(D) = 1"0x + h°I(2D + Y E)=1
i=1

where the last equality follows from the assumption HI(2D + 37_, E;) = 0 and

we have provedé (a).

i
(b) By deﬁnitiofn we have

dimFnp = #moduli(Z) + dimExt* (I;(D + Y.0_, E;),Ox(=D)) — h°E(D)

t

= 2length(Z) + dimBExt' (I, Ox(~2D — °°_, E;)) — h°E(D)

=| 2length(Z) + dimEil?tl(Iz, Ox(—ZD — Zle Ez)) -1

where the last (Lquality follows from (a). If we apply the functor Hom(.,Ox) to the

exact sequence |
|

N 14 p r
0— I;2D+ Y E;) — Ox(2D+ Y E) — 072D+ Y _E;) — 0

i=1 =1 i=1

we get the long‘= exact sequence
0 H'Ox(=2D = Y20, By) = Eat*(Iz, Ox(~2D = L, E7)) =

H°0y — H?0x(=2D — S0, E;) = Ext?(I,0x(—2D — Y0 E,)) = 0.
But the divisor —2D — 37 E; = —2nF + (1 —=28)E; — > _%_, E; is not effective
(see Lemma 1.4.14; (a)), so we obtain

dimEzt!(I7,0x(—2D — S0 E))) = dimEst?(I,0x(~2D — S0, Ey))

iZ7

] 4405~ x(0x(~2D ~ T, B
|

|

i
[
i
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By Riemann-Roch’s Theorem (1.1.5) we have

X(Ox(-2D = £, ) = CP-hmBIEnig Pteeliobin B) 4

_ (=2nF+(1-2B8)E =31, E;)(2Co+(e+2—2n)F=28E1 -2 3 0_, Ei) +1
= 5 : -

=-2n+B-28+2-p

and using Serre’s duality, we get
El’tz (Iz, Ox(—zD — Zle Ez)) = Hom(OX(—2D —_ 25:1 Ez), Iz(I{X))*

= HI;(2D + Y0, i+ Kx)* = 0.

The last equality follows from the fact that the divisor

, p
2D+ 3 B+ Kx = —2Cy + (2n — e = 2)F + 2, + 23 B,

=1 =2

is non effective (see Lemma 1.4.14; (a)). Putting this results together we obtain

dimEzt'(I7,0x(—2D = 3! E;)) = length(Z) — (=2n +  — 26° + 2 — p)

=4n+262-2+p

and

dimFns =202n+0)+ {@n+p+262-2) -1

=8n+20+262+p-3=42n+p)+p-3

which proves (b).

(c) It is easy to see that for any E € F 4, c1(E) =Y 0 E; and cp(E) = 2n+ = c,.
Let us see that E is a prioritary sheaf. Since F is a torsion free sheaf, we only have
to check that Ext?(E, E(—F)) = 0 (see Definition 2.3.1). Applying the functor
Hom(., E(—F)) to the exact sequence (3.8) we get the long exact sequence

- — Bxt*(I;(D + 30, B), E(=F)) —

Ext*(E, E(—F)) — Ezt*(Ox(-D), E(~F)) — 0. .
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)

Claim 1: Ext*(Ox(-D), E(—F)) = 0.

Proof of Ola,z'm; 1: We consider the exact cohomology sequence

i p
+++ — HOx(~F) — HE(D ~ F) — HI[;(2D - F+ 3" E;) — 0

¢ =1
associated to the exact sequence (3.8). Since Z is a 0-dimensional subscheme, using

Lemma 1.4.14 and Serre’s duality we get
H?Ox(+F) = HOx(Kx + F)* =0 and
H[;(2D ~ F + Y0, E;) = H'Ox(~2D + F = Y0, By + Kx)* =0

which proves that H2E(D — F) = 0 or, equivalently, Ezt*(Ox(-D), E(~F)) = 0,

and this proves; Claim 1.

Claim 2: Ext*(I;(D+ .0 | E;), E(-F)) = 0.

Proof of C’laimtl 2: Applying the functor Hom(Iz(D + .7 | E;),.) to the exact
sequence (3.8) we get the long exact sequence

— El‘tz(fz,Ox(—ZD —F — Zle Ez)) — EfEtz(Iz(D + Zg’;l Ei), E(“F))

— Ext*(I5,1,(~F)) — 0.

Using once more Serre’s duality we obtain

Efl?tz(]z, O,\(TQD - F - Zle El)) = HO?TL(OX, Iz(2D + F + Zle Ez + I{X))*

|
|

where the last équality follows from the fact that the divisor

= Hofz(ZD—FF—FZf:l E7+I(,\')* =0

) p P
2D+ F+ Y Ei+Kx=-2C0+@2n—e—-1)F+26E,+2) E

i=1 =2

is non effective (Lemma 1.4.14; (a)). Finally, we have

i
t

: d’l;mE.’Etz(Iz,Iz(—F)) SdimE.’L‘tz(Ox,lz(—F))

= hOOx(I{X + F) = 0,



1

90 ' 3. Rank 2 vector bundles on surfaces

which gives us Ezt?(Iz(D + Y0, E;), E(~F)) = 0 and this proves Claim 2.

It easily follows from Claim 1 and Claim 2 that E is a prioritary sheaf.

Let us see that E is a simple vector bundle, i.e., dimHom(E, E) = 1.

We always have 1 < dimHom(FE, E). Let us prove the other inequality. Applying

the functor H om(., E) to the exact sequence (3.8) we get the long exact sequence
p !

0 — Hom(Iz(D+ Y E;),E) — Hom(E, E) — Hom(Ox(-D), E) — -+

i=1 : :

By (a) we have
dimHom(Ox(~D), E) = h°E(D) = 1.

Hence, we only have to check that

Hom(Iz(D + Zp: E;),E) = 0.

=1 ) |

To this end, we consider the long exact sequence

0 — Hom(Iz(D+ 3.%_, E;),Ox(=D)) — Hom(Iz(D+ %7, Ei)., E) —

Hom(Iz(D + Y1, E), I(D + S0, E)) -5 Ext' (I(D + S, E;), Ox (- D)) —>

obtained applying the functor Hom(Iz(D+ > %_ E;),.) to the exact sequence (3.8).
By Lemma 1.4.14; (a) we have ﬂ
;

[
p o !
Hom(Iz(D+ Y E;),Ox(~D)) = HOx(-2D - >_ E;) = 0.
1=1 =1
On the other hand, since E is given by a non-trivial extension €, the map

0 HO’m,(Iz,Iz) =2k — E.’Etl(Iz(D + Ele E,;),O,\*(——“D))

1 — €

is an injection. Therefore, Hom(Iz(D + > "_ E;), E) =0 and E is a simple vector
bundle, which proves (c). ' |
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It follows from (c) that there is an open injection
p
¢ Fnp— Spl(2; Y Ei,c2)
=1
from the irreducible family F, g to the moduli space Spl(2;3 ", E;, cz) of simple

. f .. .
prioritary sheaves. Indeed, assume that there are two non-trivial extensions

p
0— O‘,\'(—D)—Oﬂ-)Eﬂ)O)((D + ZE1) ®IZ — 0;

=1
A A <
10— Ox(~=D)"HE-50x(D+ > E)®Iz — 0.
i =1

Since by assumption
1

: p p
Hom(Ox(=D),Iz(D+Y_E)=HIz(2D+>» E;) =0
: i=1 =1
we have Ay o all = ago A\ = 0. So, there exists y € Aut(Ox(—D)) = k such that

a1 = A1 0 . Therefore, Z = 7' and ¢ is an injection.

Now, let us éee that Spl(2;>_5_, Ei, co) is rational. In fact, since the moduli spa-
ce Spl(2; 37, Ei, cp) of simple prioritary sheaves is smooth and irreducible (Theo-
rem 2.3.5), its fationality follows from the fact that ¢ is an injection, Remark 1.2.8
and the fact that dimF, s = dimSpl(2; Y0, Ei, ¢2).

Since L(Kx + F) < 0, the moduli space My (2,57, Ei,c) is an open dense
subset of the moduli space Spl(2;3 "_, E;, cz) of simple prioritary sheaves (Lem-
ma 2.3.2). The'{efore, the moduli space M(2; > 0, E;, cz) is a smooth, irreducible,
rational, quasi-fprojective variety of dimension 4c, + p — 3 which proves what we

want. f d

Now we will deal with the last case, namely, ¢; = FF+ > %_ E,.

Proposition 3.3.5. Let X be a smooth, rational surface obtained blowing up s dif-
ferent points of X, and L any ample divisor on X with L(Kx+F) <0. Forcy >> 0,
the moduli spaée Mp(2;F+ > | Ei,c2), 1 < p<s, is a smooth, irreducible, ratio-

nal, quasi-projective variety of dimension 4ca + p — 3.
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Proof. By Theorem 2.3.5 we only need to check the rationality of the moduli space
My (2, F+ 3", E;,c3) and by Theorem 1.2.15 we can assume s = P!

We write ¢; = 2% + B with f € {0,1} and we consider the irreducible family
F.p of rank 2 vector bundles £ on X given by a non-trivial extension

n .
(39) €: 0 O0x(-D) = E—Ox(D+F+» E)®I; >0

a=1 )
where D = (n+ f — 1)F — BE; and Z is a locally complete intersection 0-cycle of
length 2n + B such that H°Iz(2D + F' + 7| E;) = 0.

Arguing as in Proposition 3.3.4 we can show:
(a) WE(D) = 1.
(b) dimF, g =4co+p— 3. ‘

(c) Any E € F, g is a simple prioritary vector bundle and it has Chern classes

Once more, from (c) we can deduce, using Theorem 2.3.5 and Lemma 2.3.2,
that the moduli space Mp(2;F + Y i_, E;,cp) is a smooth, irreducible, rational,
quasi-projective variety of dimension 4c; + p — 3. ' (]

Gathering this results we obtain the main result of this section ¢

Theorem 3.3.6. Let X be a smooth, rational surface obtained blowing up s different
points of X, and L any ample divisor on X such that L(Kx + F) < 0. For any
integer co >> 0, the moduli space ML(2;cy,c2) is a smooth, irreducible, rational,

quasi-projective variety of dimension 4cy — ¢ — 3.
Proof. 1t follows from Propositions 3.3.2-5 . O

Finally, we are ready to state the main result of this chapter. |
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Theorem 3.3.‘7. Let X be a smooth, algebraic, rational surface. For any divisor
¢ € Pic(X), O£"<< ¢2 € Z and any polarization L on X such that L(Kx + F) < 0,
being F' € Pic(X) the ruling of 7 :

smooth, 1rreducible, rational, quasi-projective variety of dimension 4cy — ¢

X — P!, the moduli space My (2;cy,co) is a
2 - 3.
Proof. It is a c

of smooth, rati

onsequence of Theorems 3.1.8, 3.2.7 and 3.3.6 and the classification

onal, algebraic surfaces (Theorem 1.4.1). a

- Final Remark 3.3.8. Let X be a smooth, irreducible, rational surface. We have

seen that the moduli space Mx 1,(2; c1, cz) of rank two, L-stable vector bundles E on
X, with fixed (

we are led to p

“hern classes ¢1(E) = ¢; and cy(E) = ¢; >> 0 is rational. Therefore,

ose the following question

QUESTION: Fix a smooth, irreducible, projective surface, an ample divisor L
on X, 0 << ¢y € Zand ¢; € Pic(X). Assume that the moduli space Mx 1(2;¢1, ¢2)

is rational. Is X rational?

The answer

precise we have

Proposition 3

pg(X) #0 orgq
¢y >> 0. Then

variety.

Proof. If py(X
by [Zu092]; |

Theorem 1 the moduli space

is affirmative provided that p,(X) = 0 or ¢(X) = 0. To be more

.3.9. Let X be a smooth, irreducible, projective surface satisfying
X) # 0. Fiz an ample divisor L on X, ¢; € Pic(X) and an integer

, the moduli space Mx 1(2;c1,¢2) is a non rational, quasi-projective

) # 0, then there exists a nontrivial regular 2-form on X. Hence,

Mx 1,(2;¢1, ¢) has also a non-zero regular

2-form. Indeed, Zuo shows that for ¢; >> 0, there is a natural injective map
HO(X,0?) — f:‘JO(MX,L(Z; c1,¢2), 2%). Therefore, the moduli space Mx 1,(2; ¢, ¢2) is

an irrational variety.

In case thatlg(X) 5 0, by [HL97]; Theorem 11.1:4 the moduli space My 1,(2; c1, ¢2)

is not unirational and hence not rational. Alternatively, by [Li97b]; Theorem 0.2,
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bi(Mx 1,(2;¢1,¢0)) = bi(X), being b1 (Y) the first Betti number of a variety Y. Hen-
ce, the result follows from the fact that for any smooth, projective surface X,
b1(X) = 2¢(X) and the fact that the first Betti number is a birational invariant
of the variety. Indeed, since ¢(X) # 0, we have

bi(Mx 1(2;¢1,¢2)) #0

which proves that My r,(2;c1,¢2) is not rational. O



I
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Chapter 4

Rank r vector bundles on surfaces

|
0
|
i

!
In this chapter we take up the study of moduli spaces My (r;c;,c2) of rank
" 1 vector bundles E, L-stable with fixed Chern classes ¢;(E) = ¢; € Pic(X) and
c(E) = ¢ € Z on X where in section 1, X is a smooth, minimal, rational surface

and in section 2, X is a smooth, algebraic K3 surface.
|

In the first section of this chapter, we will turn our attention to the delicate
problem concerning the rationality of the moduli space Mx 1 (r;c1,cz2) when X is a
smooth, minimal, rational surface. At present, there is no counterexample known
to the question whether moduli spaces My 1,(7;¢1,¢2) are always rational provided
X is rational. For r = 2, we have seen in chapter 3 that the answer is affirmative.
In recent pape!rs, [Li97], [LQY6] and [LQI6b] the rationality of the moduli space
MIP"Z,OPZ(l)(33 ci, ¢z) of rank 3, Op2(1)-stable vector bundles on P? was investigated
and not much is known about the rationality when the rank is greater than 3 (see
[Got96], [Kat92] and [Yo0s96]). The aim of the first section of this chapter is to
prove the rationality of many moduli spaces M 1,(7; ¢, ¢2) provided X is a smooth,
minimal, ratiorilal surface (see Theorem 4.1.13 and Theorem 4.1.14). The proof relies

on Walter’s results on the stack of prioritary sheaves.

In the second section of this chapter, we will study the moduli space M x g (r; ¢1, c2)
of rank r, H-stable vector bundles E on a smooth, algebraic K3 surface X with fixed
Chern classes ¢;(E) = ¢ € Pic(X) and c3(E) = ¢; € Z.

In 1984, lelkai showed that the moduli space of simple sheaves on a K3 surface
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X has a symplectic structure (see [Muk84]). On the other hand, it is well known that
the Hilbert scheme Hilb'(X) of 0-dimensional subschemes of X has also a symplectic
structure (see [Bea83]). So, it seems natural to look for a closer relation between the
moduli space My g (7; ¢1, c2) and the Hilbert scheme Hilb'(X). The goal of section 2
is to determine invariants (7; ¢y, ¢z) € Z X Pic(X) x Z and [ € Z for which the moduli
space My 1,(r; 1, ¢5) and the Hilbert scheme Hilb'(X) of 0-dimensional subschemes
of X of length [ are birationaly equivalent, partially answering the question proposed
by Nakashima in [Nak97]. ' ;

The results of section 2 of this chapter will appear in [Cos98] and generalize

previous results of Zuo in [Zuo91b] and Nakashima in [Nak93b] and [Nak97).

4.1 Moduli spaces of rank r vector bundles on
rational surfaces '

Keeping the notations introduced in chapter 1 we denote by My 1(r; ¢y, c2) the
moduli space of rank r, vector bundles E on X, L-stable (in the sense of Mumford-
Takemoto) with Chern classes ¢;(E) = ¢; € Pic(X) and c(E) = ¢ € Z. We will

write M, (r; ¢y, co) when there is no confusion.

Recall that if X is a smooth, minimal, rational Surfaée, then X is either isomorp-
hic to a Hirzebruch surface X, with e # 1 or P? (see Theorem 1.4.1). The goal of
this section is to prove the rationality of the moduli space My, y(7;cy,¢o) of rank
r vector bundles £ on a Hirzebruch surface X,, H-stable, with fixed Chern classes
ci(E) = ¢ € Pic(Xe), co(E) = ¢3 € Z and A(r;e1,¢9) >> 0, provided one of the

following conditions is verified
e cyF=1orr—1(mod r);
e ¢y =7—2(mod 7)and cy— Ezi — 91—2[—( —(r—=1)=0 (mod 2);

e ciF =2 (mod ) and02+c16’0—2—¥+9121—(+1=0(m0d 2) ’

being F the fiber of 7 : X, — P! and K = Ky, the canonical divisor ‘Iof X..
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i

t

Asa corollairy we will deduce the rationality of the moduli space Mp: , 2 (1) (r5¢1,¢2)

of rank r, Opz(1)-stable vector bundles E on the projective plane with A(r;cy, c;)
sufficiently large, provided one of the following conditions is verified
i‘ ,

ec =1 or?r —1 (mod r);

. clzr—?(mod r)andcz—%i+3%—(r—l)=()(mod 2);

e =2 (né,od r) and cz—I—cl—%?Z-—-?’—gi%—l:O(mod 2).
i

|
‘We will end the section with some comments and remarks.

As we pointed out in the introduction of this chapter, the main tool we will
use to prove the rationality of our moduli spaces will be prioritary sheaves (see
Definition 231|) and some of their basic properties (see Theorem 2.3.5).

!
We want to stress that Lemma 2.3.2 and Theorem 2.3.5 enable us to reduce our

problem of proiving the rationality of My (r;c1,c) to the construction of a family
of simple prioritary vector bundles over a big enough rational base. To this end,
we will distingfuish different cases according to the value of ¢; F'. In each case we
will construct iour irreducible family of rank  vector bundles on X, by means of
extensions of vector bundles on X, of lower rank. The first case that we will study

is the following

Theorem 4.1@1. Let X, be a smooth, Hirzebruch surface, H an ample divisor on
X, 2<re ZL d € Z and ¢, = Cy + dF € Pic(X.). For any integer cy such that
A(r; ey, co) >>f 0, the moduli space My(r; ¢y, c2) is a non-empty, smooth, irreducible,

rational, quasi-projective variety of dimension 2rc; — (r—=1)c—(r2 -1).

Remark 4.1.2. Theorem 4.1.1 generalizes to arbitrary rank Proposition 3.1.3 pro-
ved in chapter|3 of this thesis.

|

Remark 4.1.3. For any ample divisor H on X, we have (K + F)H < 0 (Lem-

ma 1.4.9). Heilce, H-stable torsion free sheaves are prioritary (see Lemma 2.3.2)
I
H

i
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and for A(r;cy,co) >> 0, the moduli space My(r;cy,co) (resp. Spl(r;cy,cz)) of
rank 7 vector bundles (resp. torsion free sheaves) H-stable (resp. simple prioritary)
with Chern classes (cy, ¢) is irreducible and non-empty of the expected dimension
2rcy—(r—1)c? —(r?—1) (Theorem 2.3.5). In addition, My (r;cy, ) is smooth. The-
refore, to prove Theorem 4.1.1 we only need to check the rationality of the moduli
space My (r;c,cz).

Let us start with a technical lemma which will be very useful for us.

Lemma 4.1.4. Let X, be a smooth, Hirzebruch surfaqe, Co, d and v > 2 integers
such that d — ¢y — "72_:{1 —1<0,beinga=c; (modr—1),0<a<r — 1. Consider
the family H, of vector bundles Eyyq1 on X, given by an extension
Cy— O
r—1
where € = (e1, - ,e,) with e; € Ext'(Ox, ((1 + 2=2)F),0x,(Co + (d — c2)F)),
1 < i< a, are k-linearly independent. We have -

(41) e€: 0= 0x,(Co+(d—c2)F) = Egp1 — Ox, ((1+ VF)* =0

(a) Eoy1 is a rank (o + 1) simple, priom'tary vector bundle on X, with Chern
classes .
(ca—a), . afca+r—1- o)

r—1 r—1

(c&,c;)=(00+(d+a—02+a )F, ).

(b) Ha is a non-empty, irreducible, rational family of the expected dimension
2a+1)cy — oc)® — (@ +1)2 + 1.

In addition, if the moduli space My(a+1; ¢}, ch) is non-empty, then it is a rational,

smooth, wrreducible, quasi-projective variety of dimension
a+1)dy, —ac? — (@ +1)2 + 1.

Proof. (a) It easily follows from the construction that E,; is a rank (a4 1) vector

bundle on X, with Chern classes
¢ =ci(Bay1) =Co+(d+a—c + ﬂ%2)17 and

¢y =cy(Foy1) = a+ 9(—?_%"‘2
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Let us shov{r that E,41 is a prioritary sheaf. Since E,y; is a torsion free sheaf,
we only have to check that Ext?(Eyi1, Ear1(—F)) = 0 (Definition 2.3.1). Applying
the functor Hom(Fa41,.) to the exact sequence (4.1) twisted by Ox. (—F), we get

the long exact sequence

1
l

R ijtz(EaH’ Ox,(Co+ (d—co = 1)F)) = Ext*(Eqq1, Eaq1(—F))

— Ezt*(EBoy, Ox, (22 F)*) — 0.

By Serre’s dua}ity and using again the exact sequence (4.1), we get

1

Ext*(Eas1, Ok, (Co + (d = ¢ = 1)F)) = H'Eos (~=Co — (d — ¢ — )F + K)* =0,

-1

Ezt*(Eyyp, o,;\'e(cg—a )) = H'Eq (K — 2=2F)* = 0,

where K = Ky, is the canonical divisor of X,. Thus, Ext?*(Eys1, Ear1(—F)) =0

. ..
and E,,, is a prioritary vector bundle.

Next we will see that Eqy1 is simple, i.e., dimHom(Ey.1, Eqr1) = 1. Applying
the functor H ofm(., E,41) to the exact sequence (4.1) we get the following long exact

sequence

0'— Hom(Ox, (2=24=1LF)e E,\ ) = Hom(Eoy1, Eat1)

— Hom(Ox,(Co + (d = ¢2)F), Egy1) = -+

Since H°Ox,(+Co — (d — c; — 1 — 2=2)F) = 0, from the exact sequence (4.1) we

deduce

dimHom(OXe (Co + (d - CQ)F), Ea-H) = ]?,OE(_H_l(——CO - (d — CQ)F) =1.
|
Consider the long exact cohomology sequence

|
0 — IL{OOXe(Co +(d=cy— M)F) — HOF 4 (—@2=0tr=1p)
|

r—1 r—1

— H0% L H'Ox (Co+ (d — ¢ — 2=23r=YF) 5 ...

|
i

|
e
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associated to the exact sequence

co—a+r—1
r—1

- -1
uj—T—~—~F;) - 0%, — 0.

0—)0)(8(00-}-((1—62— 1 .

)F) - Ea-i-l(_

Since (O = Ox,)

o —a+r—1
r—1

c—a+r—1

r—1 F)aO(OO'f_(d_'CZ)F)%

IflO(Co—i-(d—Cg— )F) = Fxt! (O(

the map

r—1

o HOOf\Y,—E — HlOX,_, (CO + (d —cy — cz—a+r—1)F)
given by ‘
(5((0, s 1, S 0)):61 for 1§'L§Oﬁ,

is an injection. By hypothesis d — ¢c; — =% — 1 < 0, hence the divisor on X,
Co + (d — ¢y — 2=2"=1)F is not effective (Remark 1.4.7) and

r—1

co—a+r—1
r—1

HOOXE(CO-}—(d'-CQ— )F)IO

The latest, together with the fact that § is an injection gives us

cp—a+r—1

HE, (-
H( r—1

F)=0.
Therefore, dimHom(Eq41, Eqt1) = 1 which proves (a).

(b) Let us compute the dimension of H,. We set -

s =dimBxt' (Ox,((1+ 2=2)F),Ox,(Co + (d — c2) F)),

= WOx.(Co+ (d — ¢ — 1 — 2=2)F).

r—1

We have
dimH, = dimGrass(a, s) = a(s — )

being Grass(a, s) the Grassmann variety of a-dimensional linear subspaces of

2—2)F), Ox.(Co + (d = c2)F).

Extl(OXe ((1 -+
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|

Since al—CQ!—Eﬂ 1 <0, H'Oy,(Co+(d—cy—1—2=2)F) = 0 (see Remark 1.4.7)

r—1 r—1

and by Serre’s ﬁuality

r—1 —

H?0x,(Co+ (d— ¢y — 1 — 2=2)F) = H°Ox, (K — Co — “=D—D=rerta oy

= H'0x,(~3C, — &ttdi=lrerta pys — g,

r—1
|
|
Therefore, a,pp}ying Riemann-Roch’s Theorem we obtain

|
s. = =X(0x,(Co + (d — ¢ — #H=E=1)F))

r—1

_ (Co+(d—cp— 2E=2=LYF)(3Co+(e+2+d—cy— 2E 221 F) B
2

1

. r—1

|

1

i

; =e—2—2(d— ¢y — 2tr=2zl)
Therefore, i

dimH, =as—a? =ale—~2-2(d—cy —

[

Cz—{-;‘:f’.-l )) _ CY2

=20+ (=) — o—¢ + 3(d - )

;
I r—1
P
i 2
’ : —2(p+r—a-1)—(a+1)°+1
|
i =2a+1)d, —ad® — (a+1)2+1
.
= dimSpl(a + 1; ¢}, cy)
|

where the last éequality follows from Remark 4.1.3.

Let us see that the induced map
|
| ¢ : Ho — Spl(a+ 1;¢,¢)

l

is an open emb;edding. Assume that there are two nontrivial extensions

0= Ox,(Co+ (d = c2) F) 25 Bay 2505, (1 + c; - f)F)a — 0;
0— Oxe (Co+ (d = ) F) " Eoy1 —50x, (1 + e CY)F)O“ — 0.

r—1
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Since we have (O = Oy,)

1-d)(r=1)+rca—a
r—1

7"—1+Cz—-01

F)) = H°O(~
] ) O(-Co+

Hom(O(Co+(d—ca) F), O(

~we get By 091 = a0 1 = 0. Thus, there exists A € Aut(Ox,(Co + (d — 2)F)) = k
such that v; = §; o A and hence ¢ is an open embedding.

Since ¢ is an open embedding and H,, is a non-empty, irreducible, rational family
with dimension equal to the dimension of Spl(a + 1;¢},c;), we can also state the
rationality of Spl(a + 1;¢},¢;). Finally, since My(a + 1;¢},ch) is an open dense
subset of Spl(a + 1; ¢}, cy), we have the rationality of My (a + 1; ¢}, ¢;) whenever it

1s non-empty. (I

Remark 4.1.5. With the above notation, if the moduli space M H(d + 1;¢),ch) is
non-empty (namely, in case that A(a+1; ¢}, ch) >> 0), then a generic vector bundle
E € My(a+ 1;c),cy) sits in an exact sequence of the following type "

Cy — Qv
r—1

(4.2) 0—)OX6(00+(d—02)F) —-)E—)OXE((l-’r )F)"‘—>0.

From now on, we will call H{, the open subset of My (a+1; ¢}, ¢;) parameterizing

H-stable, vector bundles given by extensions of type (4.2).

Proof of Theorem 4.1.1. We write ¢c; = A(r—1)+a with 0 < a < r—1. We consider

the irreducible family F of vector bundles E on X, given by an extension

Cy —

(4.3) €:0—= E,y » E— Ox,( Fy—et O,'
where € = (e, ,€r—q-1) With ¢; € Ext'(Ox, (%£F), Eat1), 1 <1 <1 —a -1,

are k-linearly independent and E,;; € H%, being MY the family of vector bundles

described in Remark 4.1.5. i
I
(]

Let us show:

(a) dimHom(Bas1, E) = 1. -i
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(b) dimF > orcg — (r — 1)c? — (r? = 1).
(¢c) Any FE & F is a rank r, simple, prioritary vector bundle on X, with Chern
classes cllz Co + dF and c,.

(a) Applying the functor Hom(Ea41,.) to the exact sequence (4.3), we get the long
exact sequence,

Cy — (¥

T—a—l R
7“—1F) ) -

0 = Hom(Ea41, Fag1) = Hom(Eai1, E) = Hom(Eqy1, Ox,(
Since E,4; is simple (i.e. Hom(Eg41, Eat1) = k), we only need to check that

3

Cy — Q&
r—1

Hom(Eas1, Ox. Fy-e1) = .

Since Eq41 € Hg, applying the functor Hom(.,Ox,(2=2F)) to the exact sequence
|

(4.4) (:) — OXG(CO + (d — CQ)F) - Ea+1 — OXE((l +

b
we obtain the l}’ong exact sequence

Co — (v

FOC
7"—1) )* =0

0 = Hom(Ox, (14 2=2)F)*, Ox, (252 F)) = Hom(Eaq1, Ox, (257 F))

r—1

1

— Honz(OXe(Co + (d = c2)F),Ox, (22F)) = - -

Since E
Hom(Dx, (27T 2L R), 05, (222 ) = HOOx, (-F)* =0
and |
. Hom(Ox, (Co+ (d—n)F), Ox, (21 F)) = H'Ox,(~Co+ (= d+ Z—)F) =,

we get Hom,(Ea+1, Ox,(2=2F)"~*"1) = 0 which proves (a).

(b) Set n = n(a) := dimExt'(Ox,(22F), Ea41). Since dimHom(Eqaq1, E) = 1,
i
|
i

we have .
' dimF = dimH, + dimGrass(r — o — 1,n)
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being Grass(r — oo — 1,n) the Grassmann variety of linear subspaces of dimension
(r —a—1) of BExt'(Ox, (257 F), Eay1). '
Notice that

a — Cy Q. — Co

> —
1F)_ X(EO‘H(r—l

n=~m Ea+1( F))

Since

¢1(Bot1) = Co + (d 4 o — ¢y + 222= a)F and
Cz(Ea+1) = W:

using 1.1.1 we deduce

1 Eq1(8=%F) = Co+ (d+ o —c + 5=3)F,

€ Baii(522F) = ime) 4 2l =

and by Riemann-Roch’s Theorem 1.1.5 we obtain

Fas1(2=2F)K Basr (222 F »
X(Ecr+1(6:.__ch)) a1 +1(27_1 ) +(C1 +1(2,-1 )? CgEa.H( 2 )

—a+1- 61E412+1K + (a+lr)£01_02) + (clE;_H)2

+LQ—HT)§—_CZ)01E(1+1F — B0y — a(a_ Z)ClEa-{—lF
Therefore, we have
dimF =dimH,+ (r—a—1)n—(r— a - 1)?
=2(a+1)cEay1 —a(1Bps1)? — (@ + 12+ 1+ (r—a—-1)n—(r—a—1)2

> 2+ 1)pBayy — a(c1 Bayr)? — (0 +1)2 + 1

Bop1 K (a+1){a—
+(r—a—1)(—a—1+ 222 2 r)g 2))

+(r—a- 1)(_(61E§+1)2 o;_clz)(‘lEaHF +2Bot1) = (r—a—1)?

=2rcyE — (r — 1)1 B — (r2 — 1)
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where the last équality follows after a straightforward computation using

aE = cliEaH + 5—————7_0‘;1_)5”—&)17

i

= o+ (dt o=+ el 4 Coolomtlp = g and
ol = C2zEa+1 + e el By F

- —*J(Tf'—a;l_)fz—“ (Co+ ([d+a—c+ 22\ p ) 2atidoa) _ )
|
(c) It easily follows from the construction that E is a rank r vector bundle on X, with
Chern classes i E = ¢, and coF = ¢y. Let us see that F is a prioritary sheaf. Since
E is a rank r t?orsion free sheaf, we only have to check that Ezt?(E, E(~F)) = 0
(see Definition E2.3.1). Applying the functor Hom(., E(—F)) to the exact sequence

(4.3) we get th(fe long exact sequence

i
Cy — &

Ext*(Ox,( F) =1 B(—F)) = Ext*(E, E(~F)) = Ext*(Bay1, BE(—F)) — 0.

i

|
First of all,’ we will see that Ezt*(Ox, (2=2F) =1, E(~F)) = 0. To this end,
consider the long exact sequence

Co — Co —

+1)F) — HQE(—-( 1 +1)F) — HZOXG(—F)T_O‘_l 0

r— r—

o= H2 B (—(

associated to the exact sequence

Cy— @ Cy —

-t DF) = Ox, (=F) 7> 0.

+1)F) = E(—(

r—1 r—

0 = Eoyr(—(

1

Since H?Ox, :' 0 and (O = Ox,)

f
H2O(Co+ (d';— Cy — —6-2—__?0[ — 1)F) = HOO(_C’O — (d—CQ _ a-a _ 1)F+I{)* =0;

r r—1

using the exact sequence (4.4) one can see that H*E,,,(—(2=% +1)F) = 0. Hence,
since H2Ox,(—=F) =0 we get
.
Ext*(Oy,(

i

Co —
r—1

Cy —

Fy=, B(-F)) = H*B(— (2=

+1)F) =t =0,

H

i



106 | 4. Rank r vector bundles on surfaces

Now we will see that Ext?(E,41, E(—F)) = 0. To this end, we apply the functor
Hom(., E(—F)) to the exact sequence (4.4) and we get the long exact sequence

o Bxt?(Oy, (2221 F)e B(=F)) = E2t?(Bo1, B(—F))

— E.’Et2(OXc(C0 -+ (d — CQ)F),E(—F)) — 0.

Using once more the exact sequences (4.3) and (4.4) we obtain

dimEzt?(Ox, (2 =2=1F)*, E(-F)) = ah*E(—(2=2 +2)F)

< ah? By (—(222 + 2)F) =0,

r—1

dimExt*(Ox,(Co + (d — ) F), E(=F)) =h?*E(=Cy— (d—cy+ 1)F)

< B2 Bnir(~Coy — (d — ¢y + 1)F) = 0.

Gathering this results we get Ezt*(E, E(—F)) = 0. This proves that E is a priori-

tary vector bundle.
Let us see that F is simple. Applying the functor Hom(., E) to the exact se-
quence (4.3), we get the long exact sequence

Co — &
r—1

0 — Hom(Ox,( F)Y~*' E)— Hom(E,E) — Hom(Ey41, E) — - - -

In (a) we have proved that dimHom(Eq4,, E) = 1, therefore we only need to check
that Hom(Ox,(2=2F), E) = HE(—%=2F') = 0. To this end, we consider the long

r—1
exact cohomology sequence

0 — HOEpui (%3 F) - HOE(-%2F) —

HOy * 'S5 H By (—922F) — -+ .

2
r~1

Claim:
Cy —

0 —

F)=0.
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|
Proof of the Claim: Take the ample divisor H = Cy + (e + 1)F on X, (see Re-
mark 1.4.7). By hypothesis

: 1 r—1
? A(’I’; 01,62) = ;(Cz - "“2-;‘—'—0%) >> 0,

so we have

'A(a'*‘l};ClEaH,CQEaH) = - (w)

: a1 r—1
|
|

~2(Co+(d+a—cy+ %)F)2

2(a+1)?
i = 1 (aletr=iza)y
| T oatl r—1
%
| _m&d—eﬂ-za—ZcZ.}.W)
* _ 1
| ' N Q_H(Gﬂ%cz-ka)

|

|
t
1

~ sy (—e +2d + 20+ 22) >> 0

and hence, the moduli space My (a + 1;¢1Eq11,c2Eq+1) is non-empty.

Assume HF,.1(—%2=2F) # 0. The H-stability of any vector bundle Eoy; € H,
implies '

co—a . cp—0a cEapH 1 acy a?
= = —e+d+1
r—1 i r—1 a+1 a+1(a c * )

or, equivalently,

r—1 r—-1

g r—1 a? a(a+1)

(@+d+1-—0)+ —3—,

T r2

which contradicts the fact that
: 1 r—1 1 r—1
. A(ﬁ; €1, C2) = ;(62 or i) = ;(cz o
Therefore, H*E,1(—%2=2F) = 0 which proves our claim.

Since the morphism

'

(2d - €)) >> 0.

5:H00f\,:o‘_1 — H'E . (—2=2F)

T
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given by

i)
§5((0, -+, 1, ---, 0)=¢ for 1<i<r—a-1,

is an injection, we have HOE(—2=2F) = 0 which proves that F is simple.
Let A% — Hg x X, be a Poincaré sheaf of H-stable vector bundles on X, such

that for any h € H2, Agl{h}x X, 1s isomorphic to the bundle E,,; corresponding to
h € H2. Consider the natural projections

7 H, x X, — HY  and

pHY x X, — X,

Set
= Ea:t},(p*Oxe(cj - fF),Ag).
&o is a locally free sheaf of rank n = dimBExt* (Ox, (2=2F), E,41) on HY and com-

patible with arbitrary base change.

Define B, := Gr(r —a—1,€,). B, is rational as a locally free fibre bundle with
a Grassmannian as fibre over the rational variety Ho.

It follows from (b) and (c) that there is a C(:)mponent W of Spl(r; c1, cz) which is
birational to B, and thus rational. The simple prioritary sheaves form an open subs-
tack in the irreducible substack Prior(r;ecy, c!z) Thus the moduli space of simple
prioritary sheaves is also irreducible and rational. Assume now that My(r; ¢y, co) is
non-empty for an ample divisor H on X,. Since (K + F)H < 0 (Lemma 1.4.9), the
moduli space My (r; ¢y, cz) is an open subscheme of the moduli space of simple prio-
ritary sheaves (Lemma 2.3.2). Therefore, the moduli space My(r; ¢y, ¢;) is rational

which proves what we want. _ O

t
Remark 4.1.6. Fix ¢, = Co+dF € Pic(X,) and ¢y € Z such that A(r; ¢y, cy) >> 0.

It follows from the above construction that a generic £ € Spl(r; Cy + dF, c;) sits in
an extension (O = Oy,)

Cy — & C (0%

(45) 0= O(Co+(d=c)F) = B = O((1+—)F)*®0( ;: gy 0
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t
i

where ¢, = )\(r: — 1)+ o with 0 < @ < r — 1. The same holds for a generic vector
bundle E € ]\4?]1 (r;Co + dF, cz). Indeed, a generic E € Spl(r; Cy + dF, cy) belongs
to an exact seqﬁence

i
|

Cy —
r—1

0 Eap1 = E > Oy, ( Fy 150

f
where E,y1 € H2, being H? the family of vector bundles described in Remark 4.1.5.
So, E,,q lies ini an exact sequence

! —— /
0 —) @Xc (CO + (d - CQ)F) — Ea+1 —> O/\’e((l + C2 o

: JF)® — 0.

i
L]

Therefore, we have the following commutative diagram (O = Ox,)

0 0

e 3
O(Co +§(d ~)F) = O(Co + (d — &) F)

:

0— Eo1 — E — O(2=2F)f -0
E ! [

0  O(=Eg=2p)r o O(=Em=2p)e@O(2EF) - O(2£F)’ =0
|¢ )
10 0

where 8 :=r + o — 1. This proves what we want.
I

Since dualitf,y preserves H-stability, we get, as by-product of Theorem 4.1.1, the
following result.

{
Theorem 4.1:7. Let X, be a smooth, Hirzebruch surface, H an ample divisor on
X, 2<r1€2 d€zandc = (r—1)Cy+dF € Pic(X,). For any integer c;
such that A(r; ¢y, c) >> 0, the moduli space My(r;cyi, c) is a non-empty, smooth,

irreducible, rational, quasi-projective variety of dimension 2rca — (r —1)c2 — (r2 —1).
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Proof. Since a rank r torsion free sheaf F on X, is H-stable if, and only if, for any
L € Pic(X), E®Ox(L) is H-stable if, and only if, its dual E* is H-stable, we have
an isomorphism

My(r;c1,¢0) — Myg(r;é, é2)

which sends E € My (r;c1,¢3) to (E® Ox, (—Ch))* € My(r; é, é;) where
C~1 = O() —dF and

C~2:CQ+(T;1§1——2)6—(7"—1)61.

Let H be an ample divisor on X, such that the moduli space My (r;cy,cy) is

non-empty. Since by hypothesis
A(ricr, ) = 2(ca — )

=L — =g 4 0% 550,

r

we have
A(r;é1,6) = e+ E@e — (r—1)d - Z=(Cy — dF)?)

—1)(r—2 - —1)?
= L(c, + TR 4 1ol 2 gy 5 .

Therefore, it follows from Theorem 4.1.1 that the moduli space My(r;ép,é) is a
smooth, irreducible, rational, quasi-projective variety of the expected dimension
2réy — (r —1)6% — (r? — 1) i.e. of dimension 2rc; — (7 — 1)c¢2 — (r? — 1). Therefore,

the same holds for the moduli space Mg(r;cy, ¢s). O

Remark 4.1.8. Fix ¢; = (r — 1)Cy + dF' € Pic(X,) and an integer c, such that
A(r; ey, ¢3) >> 0. Using the notations introduced in the proof of Theorem 4.1.7 and
Remark 4.1.6 we can state that a generic E € Spl(r; (r — 1)Cy + dF, cy) sits in an

extension

(4.6) 0— Ox,(Co+ (=2 - 1)F)*® Ox,(Co + =2F) "1 —

r—1

E — Ox, ((é+d)F) =0
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where & = A(r' — 1) + @ with 0 < & < 7 — 1. The same holds for a generic vector
bundle F € ‘M[;{('r; (r—1)Cy + dF, cy).

From now (!m we denote by G%(r; (r — 1)Co + dF, c;) the open subset of the
moduli space My(r;(r — 1)Cy + dF,c;) parameterizing rank r, H-stable, vector
bundles given by an extension of type (4.6).

!
Next we will deal with the case ¢iF' = r — 2.

Theorem 4.1.?9. Let X, be a smooth, Hirzebruch surface, H an ample divisor on
Xe, 2 <71 € Z, d €z c = (r—2)Cy+dF € Pic(X,) and an i?ite_qer cy such
that co — % - 071_25 —(r—=1) =0 (mod 2). For A(r;c,c3) >> 0 the moduli space
My (r; e, c) isj a non-empty, smooth, wrreducible, rational, quasi-projective variety

of dimension 2rcy — (r — 1)c2 — (r2 — 1).

Remark 4.1.f0. We want to stress that once we fix ¢;, the equation

! 2
-3 _9K 120 (mod 2)

only determines the parity of c,.

Proof of Theorfem 4.1.9. By Remark 4.1.3, we only need to check the rationality of

the moduli spaice My (r; ¢y, c3).
1

To this end, wega take D = bF € Pic(X,) with

(4.7) 20=cy— = — —— —(r—1).
;
In order to simplify the notation we set

i

d:=b—d and

2

i ch =y — (r—2)(e+d) + L=,
|
i
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We consider the ample divisor L = Cp+ (e+1)F on X, and the irreducible, rational

family
G =Gl(r—1;(r—2)Co+ (d—b)F,co — (r — 2)b)

of rank (r — 1), L-stable vector bundles W on X, with fixed Chern classes
(etW,coW) = ((r — 2)Co + (d — b)F, cy — (1 — 2)b)

such that any W € G} sits in an exact sequence of the following type

(48) 0 Ox,(Co+ (=% — 1)F)* & Oy, (  pyr-o-2

W — Ox.((ch —d)F) = 0

where ¢b = A(r —2) 4+ a with 0 < @ < 7 — 2. GJ is non-empty. Indeed, by
Remark 4.1.8 it is enough to check that the hypothesis A(r;c¢y,c2) >> 0 implies

that A(W) = (W — DI 2., W?) >> 0. In fact,

A(T;Ch@) = %(Cz + (r=1)(r = 2)26 B (r—1){r— Q)d)

>>0
2r T

implies that

A(‘/I/) = T]T"l(CQVVv ~ 31

. , r— r r—2)3 r—2)2
e+ 2HE + 49 + 17+ fhe - ) >>0

where the last equality follows from (4.7). Hence, My (r —1; ¢; W, coW) is non-empty
([Sor97]).

Let F be the irreducible family of rank r vector bundles E on X, given by a

non-trivial extension

(4.9) €e: 0-W->E—->0x(D)—>0
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|

where W € G9, being G% the family of L-stable vector bundles and D = bF fixed

above.

|
|
Let us shov&f:
(a) dimHo7nkW/, E)=1.
(b) dimF > ?TCQ —(r=1c - (r2-1).

(c) F is a rank r, simple, prioritary vector bundle on X, with Chern classes
c1 = (r —i2)Cp + dF and c,.

(a) Applying the functor Hom(W,.) to the exact sequence (4.9), we get the long

exact sequencej
0 —+;Hom(W, W) —= Hom(W, E) - Hom(W,Ox, (D)) — --- .
Since W is sim?ple (i.e. Hom(W, W) = k), we only need to check that
| Hom(W,Ox, (D)) =0.

Applying the f;unctor Hom(.,Ox,(D)) to the exact sequence (4.8) we obtain the

long exact sequ;ence
0 — Hom(Ox, ((¢, — d')F),0x,(D)) = Hom(W, Ox, (D)) —

1
3

.[{O’I’)’L(OXe (Co !+ (%——_—62,2‘ - 1)F)a, OXE(D)) & Hom(OXe,(Co + %F)T“Q—Q, OXe(D)) — .

Since

Hom(Ox, (Co + (222 — 1)F), Ox, (D)) = HOx,(~Co + (b — 2=% + 1)F) = 0,

Hom(Ox, (Co + S22 F), Ox,(D)) = H°Ox,(—Co + (b — 2=2)F) = 0,
|

we only have to{ see that Hom(Ox,((cy—d')F),Ox, (D)) = H°Ox, ((b—cy+d')F) = 0.

‘.
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To this end, notice that by (4.7)

b—ch+d =2—c,—d

—o— G 8K (1) —d—cy+ (r - 2)(e+d)

_ (r—2 26 B (7‘ - Q)d— 6(7“ B 2) +d+ (e+2)2(r—2)
—(r—=1)—d+(r—2)d+(r—2)e— —————(T_]')Q(T_z)e

- 1.
Therefore HOx, ((b— ¢y + d')F) = H'Ox,(—F) = 0 which proves (a).

(b) By definition we have

dimF = dimG$ + dimExt'(Ox, (D), W) — dimHom(W, E)
=dimG) + h"'W(-D) - 1

> dimG§ — x(W(-D)) — 1.
From the exact sequence (4.9) we get
aW(=D)=c —rD and cW(-D)=cy— (r—1),D.

Applying Riemann-Roch’s Theorem 1.1.5, we obtain

X(W(=D)) = (r—1) - @=DE  @aDF ¢, 4 (r —1)De

K c?
:(T—l)*clT+'7nD2—K+‘2L~CQ—DC1.



I
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i

Therefore, i

dimF > 2(r = 1)eaW — (r = 2)e W2 — (r — 1)+ 1 — (r — 1)
CZ
+af DK _ % 4 ¢+ Doy — 1

I
=2(r—1)(ca—aD)~(r—=2)(ca—=D)>=(r—1)>=(r—1)
!
! c T c
L e B — 3 4+ Dey
i
| 2r—3)c2

= (o7~ 1)es= B D st 2B
i

=2rc;— (r— 1) —r?2+1
where the last equality follows from (4.7).

(c) It easily fol;lovvs from the construction that E is a rank r vector bundle on X,
with Chern claéses aE=c¢ =(r—2)Cy+dF and o E = cy. Let us see that E is a
prioritary sheaf. Since F is a rank r torsion free sheaf, we only have to check that
Ext?(E, E(~F)) = Hom(E, E(K + F))* = 0 (see Definition 2.3.1). Applying the

functor Hom(E,.) to the exact sequence

f
0= W(K+F)—EK+F)—=Ox,(D+K+F)—0
we get the loné exact sequence
!

0 — Hom(E, W (K+F)) — Hom(E, E(K+F)) = Hom(E, Ox,(D+K+F)) = -+ -

Let us see Hoén(E,OXe(D + K+ F)) = H*E(-D — F)* = 0. Using the exact

sequence (4.9) e get the long exact sequence
-+ H*W(-D — F) — H*E(-D - F) = H*Ox,(-F) — 0.
I

Using the exact sequence (4.8) and Serre’s duality we have

H*W(=D—F)=0 and

H?Ox,(—F) = H'Ox, (K + F)* = 0.
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Hence, we obtain H2E(—D — F) = 0.

Now we will see that Hom(E, W (K + F)) = 0. To this end, we apply the functor
Hom(.,W(K + F)) to the exact sequence (4.9) and we get the long exact sequence

0 — Hom(Ox, (D), W(K+F)) = Hom(E, W (K+F)) = Hom(W, W (K+F)) — ---

Since W is a prioritary vector bundle, Hom(W, W (K + F')) = 0 and using once
again the exact sequence (4.8) we get

Hom(Ox,(D),W(K + F)) = H*W(K + F — D) = 0.

Therefore, Hom(E, W (K + F)) = 0 and Hom(E, E(K + F)) = 0 which proves that

E is a prioritary sheaf.

Let us see that E is simple, i.e. Hom(E, E) = k. Applying the functor Hom(., F)
to the exact sequence (4.9), we get the long exact sequence

0 — Hom(Ox,(D),E) - Hom(E,E) — Hom(W,E) — --- .

By (a) we have dimHom(W, E) = 1. Since we always have dimHom/(E, E) > 1, we
only need to check that
Hom(Ox,(D),E) =0.

To this end, we apply the functor Hom(Ox,(D),.) to the exact sequence (4.9) and

we get the long exact sequence
0 — Hom(Ox,(D),W) = Hom(Ox, (D), E) —
Hom(Ox, (D), Ox,(D))—=Ext!(Ox, (D), W) = - - .

Since W € G is L-stable, if Hom(Ox, (D), W) = H*W (—D) # 0 we have
cﬂ/VL . (C]_ - D)L

DL =50 =
< r—1 r—1
which is equivalent to
2 K
rDL:rb:Z(cz—%—%—(r—l))<clL—r—2+d
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or, equivalently,
2
_9 | _
[ 2 _ T e—d 1+2(7" 2+d)
r o 2r 2r T K

and this clearlyt contradicts the hypothesis A(7; ¢y, ¢3) = 2(c; — S52c2) >> 0.

Therefore, Hom(Ox,(D),W) = 0. Since the extension (4.9) is non-trivial, the

map

§:HOx, — Ext'(Ox,(D), W)

1 —» €

is an injection ?Lnd hence, Hom(Oyx, (D), E) = 0 which proves that F is simple.

|

By Theorerﬁ 4.1.7 and Remark 4.1.8, W sits in a smooth, irreducible, rational,
quasi-projectiveé variety of dimension 2(r — 1)co(W) = (r — 2)ey (W)2 = (r — 1)2 + 1.
Set a(c; W) thej" greatest integer such that ¢; W is divisible by a(c; W) in Pic(X,) if
aW # 0 and a(c;W) = 0 if- ¢, W = 0. Since

' ged(r — La(aW),x(r — L, aW, W) =1,
there exists an open dense subset U C My (r—1; ¢ (W), co(W)) and a Poincaré sheaf
(Theorem 1.2.6:)

!

' w
3

U x X,

of L-stable ran;R r — 1 vector bundles on X, with Chern classes (c;(W), c2(W)),
parameterized by U such that for all u € U,

1

W} x.
I
is isomorphic to the vector bundle W corresponding to u € U.
Consider the projections

: M UX X, — U and
3

¢
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T U X X, — X,.

Let 9 := 7150x, (D) and consider the relative extension sheaf
& := Ext} (9, W)

which is a coherent sheaf over U.
For any element (W] € U, &|w) = Ext'(Ox, (D), W) has constant dimension.
Hence, £ is a locally free sheaf over ¢/ and compatible with arbitrary base change.
Define B := P(£). B is a projective bundle over Y. Let v : B — U be the natural

projection and we consider the morphism
pi=7yXxudy, : Bx X, — U x X,.

It follows from [Lan83]; Corollary 4.5 that over B x X, there is a tautological ex-

tension
0 —p*(h) —V-—p(0)®0g(-1) — 0 .

such that for each ¢ € B the restriction to {t} x X, is isomorphic to the extension

corresponding to %, i.e.
0— W — F— Oy, (D) — 0.
Moreover, there is a natural bijective morphism
B:=P¢&) — F.

Therefore, the family F which parameterizes all such E’s is a smooth, irreducible,
rational variety of dimension 2rc; — (r —1)¢? — (r? —1). On the other hand, we have

a morphism

P F 2B — Splr;c,c),
P(t) = V|gxx, =L

from F to the moduli space of simple prioritary sheaves, which is an injection.

Indeed, assume that there are two non-trivial extensions

0 — W2LE2504,(D) — 0;
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0 — W'2HE2,04 (D) — 0.

From the correfsponding exact sequences of W and W' we deduce that
~ Hom(W',0x,(D)) = Hom(W,Ox,(D)) = 0.

Thus, By 0 oy : a0 By = 0. So, there exists v € Aut(W) ~ k (W is simple) such
that 8, = oy o 'fy Therefore, W = W' and v is an injection.

|

Since dim]-?' = dimSpl(r;c1,cz) , we conclude that the moduli space of simple
prioritary shea}ffes is also rational. Since (K + F)H < 0 (Lemma 1.4.9), the moduli
space My(r;cy,cy) is an open subscheme of the moduli space of simple prioritary
sheaves. - Theréfore, the moduli space My(r;cy,cy) is rational which proves what

was stated. | O

t

Since H-stébility is preserved by duality, we get as a consequence of Theo-

rem 4.1.9 the following result.

E
Theorem 4.1:11. Let X, be a smooth, Hirzebruch surface, H an ample divisor on
Xe, an integer :CQ such that co +¢;Cy — 92% <+ %-Ii +1=0(mod 2),2<r€z,dez
and ¢, = 2Cy ~H dF € Pic(X,.). For A(r;cy,cg) >> 0 the moduli space My (r;cy,ca)
s a non-empty', smooth, irreducible, rational, quasi-projective variety of dimension
2rcy — (r — 1)c;f —(r?=1).

|
Remark 4.1.12. We want to stress that once we have fixed c1, the condition

{ 2
’ K
E cz+cho—c2—1+912—+1-——0 (mod 2)

is equivalent tq fix the parity of c,.
Proof of Theorgem 4.1.11. Since a rank r torsion free sheaf F on X, is H-stable if,
and only if, forf any L € Pic(X,), E® Ox(L) is H-stable if, and only if, its dual E*

. | . .
is H-stable, we have an isomorphism

| My (r;cy,ca) — My(r; 1, é)

|
|



120 4. Rank r vector bundles on surfaces

which sends E € Mg(r;c1,¢) to B* ® Oy, (Cy) € My(r; é, é;) where

¢ =(r—2)Cy—dF and

¢ =c2—(—"~_—%9—:96—(7"—1)d.

2

Hence, using Theorem 4.1.9 and arguing as in Theorem 4.1.7 we get the desired

result.

Now we are in a position to prove the main result of this section.

Theorem 4.1.13. Let X, be a smooth, Hirzebruch surface, F' a fiber of the ruling,
H an ample divisor on X,, 2 <1 € Z, ¢; € Pic(X,) and c; € Z. Assume that one

of the following conditions is satisfied
i) o F=1orr—1(mod r);

i) aF =r—2(mod 7)andcy — % — a9k _(r—1)=0 (mod 2);

ii) e =2 (mod 1) and c3 + c1Cy — %i + 284+ 1=0 (mod 2).

If A(r;ey,c0) >> 0, then the moduli space My (r;cy,c2) is a non-empty, smooth,
irreducible, rational, quasi-projective variety of dimension 2rcy — (r —1)c? — (r2 —1).

Proof. Since a rank r torsion free sheaf E on X, is H-stable (resp. simple, prioritary)
if, and only if, for any L € Pic(X,), E®Ox, (L) is H-stable (resp. simple, prioritary)
we may assume, without loss of generality, that ¢;(E) = aCy + dF with 0 < a < 7.
Hence, Theorem 4.1.13 easily follows from Theorems 4.1.1, 4.1.7, 4.1.9 and 4.1.11.

O

To close this section, we will apply Theorem 4.1.13 to study the rationality of
the moduli space ]\4111,2701?2(1)(1"; ¢1,¢2) of rank 7, Opz(1)-stable vector bundles on P?

with given Chern classes ¢; and c;.

In chapter 3 we have reviewed what is known about the rationality of the mo-
duli space J\lﬂpz’ow(l) (2; c1, ¢2) of rank two, Opz(1)-stable, vector bundles on P? with
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“Cher’n classes ¢; and ¢;. However not much is known aboﬁt rationality when the
rank is greater than two, in general. Recent progress has been made for the rank
3 case. Indeed, it follows from [LQQﬁ.b], [LQI6] and [Li97] that ]\411;,2,01?2(1)(3; 1,¢)
with ¢ > 1 and Mﬂpz’oﬁhz(l)(i’);Z,cz) with ¢, > 1 are rational, and it follows from
[Got96] that the moduli space MPZ’OE’Q(U(?);O’CZ) with ¢; = 1 (mod 3) is rational.
As far as we know, the only contributions to the rationality when the rank is greater
than 3 are due to Gottsche, Katsylo and Yoshioka. We easily deduce from [Got96]
that MPZ,OPQ(U(T; 0,¢) is rational when ¢; = 1 (mod r). In [Kat92], Katsylo ge-
ngralizes Gléttsche result and he proves that Mp: ,O]Pz(l)(r; 0, ¢o) is rational provided
- ged(r,cp) = 1,2,3 or 4. In [Yos96], Yoshioka proves that ]\41}”2,01?,2(1) (r;¢1,c) is
rational provided ged(r, 3¢;) = 1.

Our main result in this direction is the following

Theorem 4.1.14. Takecy,co € Z and2 <7 € Z . Assume that one of the following

conditions holds
i)eg=1orr—1(mod r);
i) ¢y =r—2 (mod 1) andc; — % +3 —(r—1)=0 (mod 2);

iii) ¢; =2 (mod 1) andcy+c¢; — % — 32 +1=0 (mod 2).
If A(r;c1,¢0) >> 0, then the moduli space MPZ,OPQ(U(T; c1, Ca) @8 a non-empty, smo-

oth, 1rreducible, rational, quasi-projective variety of dimension

2rcy — (r— 1)t — (r* = 1).

Proof. By Theorem 2.3.5 we only need to check the rationality of the moduli space
]\/[H”Z,OPQ(1)(T301’C2)' We consider X = X,—; a smooth, Hirzebruch surface with

invariant e = 1. It is well known that X is obtained by blowing up P? at one point
(see Remark 1.4.2). Let [ be a line generating Pic(P?) and 7 : X — P? be the blow
up of P? at one point not contained in [. We consider on X the ample divisor

H, = n*l — Cy = n(Cy + F) — Cj
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N

3
\

with n >> 0. Under our assumptlons by Theorem 4.1.13, the moduli space\
Mx g, (r;c1(Co + F'),c3) & Mx g, (15017 ‘| ,C2) is an irreducible, smooth, ratlonal
quasi-projective variety of dimension Irey — (r—1)c? — (r2 —1).

Applying Theorem 1.2.15, we get an-open immersion

- ]\4IP2,01P2(1)(T; c1,Co) — Mx m, (r;em*l;eo)

defined by (V) = 7*(V) on closed points, bétween two smooth moduli spaces of the

|

same dimension. Therefore, the moduli space MP2,0P2(1j (75 ¢1, ¢2) is rational. O

We want to point out that part (¢) of Theorem 4.1.14 extends to arbitrary rank |
Li’s Theorem ([Li97); Theorem 0.3). Moreover, Theorem 4.1.14 works for arbitrary '
rank 7 while Yoshioka’s Theorem does not apply when r = 0 (mod 3).

Final Remarks: Let X be a smooth rational surface obtained by blowing up ;
s > 0 different points of a smooth, Hirzebruch surface X, (resp. P?). Denote by E;, [
1 <1 < s, the exceptional divisors. Fix ¢; = aCo+dF — >0, fiE;, with 3; € {0,1} 5
(mod 1), ¢; € Z and H an ample divisor on X . Using either Nakashima’s Theorem
or arguing as in the proof of Theorem 4.1.13 , we can prove that if A(r; ¢y, cp) >> 0,
then the moduli space My (r;¢1, o) is a non-empty, irreducible, smooth, rational,
quasi-projective variety of dimension 2rcy — (r — 1)c? — (r? — 1) provided one of the

following conditions is satisfied

i) F =1orr—1(mod r);

i) qF =r—2(mod r)and c, —C—j~ ak _ (r~1) =0 (mod 2);

. ) 1
i) e1F' =2 (mod r) and ¢z + ¢1Cp — % + 4K +1=0(mod 2). f

The results of this section toge:cher with the fact that there is at present no

counterexample known to the question whether moduli spaces are always rational ,

provided X is rational, strongly support the followmg

Conjecture: The moduli space My(r;cq, cp) of rank 'T,_ H-stable vector bunles on E

a smooth surface X, with Chern classes ¢; and ¢, is rational provided X is rational. |
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Notice that once more an affirmative answer to this question will show that
the moduli space of vector bundles inherits a lot of geometric properties from the

underlying surface.

4.2 Moduli spaces of rank r vector bundles on
K3-surfaces

Let X be a smooth, algebraic, K3 surface defined over an algebraically closed
field %k of characteristic 0, i.e., X is a smooth, algebraic surface with trivial canonical
line bundle Ky ~ Ox and vanishing irregularity ¢(X) = 0. Fix an ample divisor H
on X, L € Pic(X) and ¢, € Z. As usual, let My(r; L, c;) be the moduli space of
rank r, H-stable vector bundles F on X with det(F) = L and ¢3(E) = ¢o. The goal
of this section is to determine invariants (r;L,c3) € Z x Pic(X) X Z and | € z for
which the moduli space My(r; L, c;) is birational to the Hilbert scheme Hilb'(X)
of 0-dimensional subschemes of X of length [.

In 1984, Mukai ([Muk84]; Corollary 0.2) proved that the moduli space of simple
sheaves on X has a symplectic structure. On the other hand, it is well known that
the Hilbert scheme Hilb'(X) of O-dimensional subschemes of X with length | has
also a symplectic structure (see [Muk84]; Example 0.4 and [Bea83]). Hence, it seems
natural to look for a closer relation between Hilbert schemes Hilb'(X) and moduli
spaces My (r; L, cp). In [Nak97], Nakashima proposes the following

Problem: To determine for arbitrary K3 surfaces X, all invariants (r; L, cy) for
which My (r; L, c;) are birational to some Hilb'(X).

For the rank 2 case, the first contribution to this problem is due to Zuo. He

proved

Theorem ([Zuo91b]; Theorem 1) Suppose X is an algebraic K3 surface and H
is an ample divisor on X. Let Myg(2;0,k(n)) be the moduli space of H-stable rank
2 vector bundles E on X with det(E) = 0, c3(E) = k(n) := n?H?+ 3, n € NT and
let Hilb*(™)=3(X) be the Hilbert scheme of 0-dimensional subschemes of X of length
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2k(n) — 3. Then there is a birational map

¢ Mg(2;0,k(n)) — Hilb*™=3(X)

Later on, Nakashima generalized Zuo’s Theorem to the triples (r; L, ¢3) = (2; L, k(n))

where k(n) := (n* + n+ 3)L? + 3 and L is an ample divisor ([Nak93b]). In the ar-

bitrary rank case almost nothing is known. Very recently, Nakashima has proved

Theorem ([Nak97]; Theorem 0.2; see also [OGr95]) Let S be a K3 surface
with (D, H) of degree one. If c = DTZ +7r+1 and c > h°(D) + 1 then My(r; D,c)

is birational to the Hilbert scheme Hilb*(S) of zero dimensional cycles of length c.

We would like to stress that the hypothesis (D, H) being of degree one is very
"restrictive”. The goal of this section is to prove the following Theorem

Theorem 4.2.1. Let X be an algebraic, K3 surface and H an ample divisor on X.
Let My(r;cy, k(n)) be the moduli space of H-stable, rank r vector bundles E on X
with det(E) = ¢; € Pic(X), c2(F) = k(n) := %i + In?H* + neyH + (r + 1) and let
Hilb™) (X)) be the Hilbert scheme of 0-dimensional subschemes of X of length 1(n).

Forn >> 0 there is a birational map
¢ Mpg(r;er, k(n)) — Hilbl(")(X)

where I(n) := k(n) + "Un2H2 4 (r — V)ne, H.

Remark 4.2.2. Notice that when r = 2 we recover the results of Zuo and Nakas-

hima.

Let us start recalling the notation that we will use in this section. Until the
end of this section, X will be an algebraic K3 surface. Given a divisor ¢; on X,
an integer ¢; and an ample divisor H on X, we will denote by Mg(r;ci,c,) the
moduli space of rank r, torsion free sheaves F' on X, G-semistable with respect to
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H with det(F) = ¢; and ¢;(F) = ¢ and by Mg(r;c1,ca) C My(r; ey, cy) the open
subset parameterizing rank r, H-stable vector bundles F' on X with det(F) = ¢
and cy(F) = c,.

In order to establish the birational correspondence, we will construct a suitable
family of torsion free sheaves on X. To this end, let us fix ¢; € Pic(X) and an
ample divisor H on X. Let ng be an integer such that for all n > ny, ¢; + rnH is
ample. Set
2
1

k(n) := =

=2 + In?H? +ne H + (r +1);

I(n) :=k(n) + ﬂr—z_—ansz + (r—1)ne H.

Construction 4.2.3. Let F be the irreducible family of rank r torsion free sheaves
F on X, G-semistable with respect to H with det(F) = ¢; and co(F) = k(n), given

by a non-trivial extension
0 — Ot — F(nH) — Iz(c; + rnH) — 0

where Z is a 0-dimensional subscheme of X of length
1Z] = ca(F(nH)) = cy(F) + (r — 1)ney(F)H + T2 2
=k(n) + (r — )ne H + "Np2 g2 = (n)

such that HIz(c; +rnH) = 0.

Lemma 4.2.4. Forn >> 0, F is non-empty.

Proof. We fix ¢, € Z such that My(r;ci,cy) # 0 ([Sor97]). It is well known
that there exists an integer ny € Z such that for all n > n. and for any rank
r vector bundle E € Myg(r;ci,c,), E(nH) is generated by its global sections and
x(E(nH)) > r — 1. We choose (r — 1) generic sections of E(nH) and we get an

exact sequence

0— O% ' — E(nH) — I;(ci +™nH) — 0
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where Z is a 0-dimensional subscheme of X of length

r(r—1)
2

|Z] = ca(E(nH)) = c, + n?H? + (r — 1)ne, H.

Moreover, there exists an integer /o € Z such that for all [ > I, if we choose [

generic points py, - - - ,p; appropriately and a surjective map
a:E— &k,

then F', the kernel of ¢, is a rank r, torsion free sheaf, G-semistable with respect to

H, sitting into an exact sequence
0— 0% — F(nH) — Iz(c; + rnH) — 0

where Z = Z U {py,--- ,p}. Indeed, since F = Ker(a) C E and det(F) = det(E),
the H-stability of F implies the G-semistability of F' with respect to H.

For n. >> 0 we can assume k(n) — ¢y > Iy and n > maz{ng,ne}. Define
l:=k(n) — cy > lg. As we have seen, there exists an exact sequence

0— O%!' — F(nH) — Iz(c; +nH) — 0
where Z is a 0-dimensional subscheme of X of length
1Z)=12)+1 = (cb+"=0n2H2 + (r — ey H) +
= k(n) + “Un2H? 4 (r ~ V)ne, H

and F'is a rank r, torsion free sheaf, G-semistable with respect to H with det(F) = ¢;
and cp(F) = k(n).

Since ¢; +rnH is ample, by Kodaira’s Vanishing Theorem H'Ox(c; +rnH) =0
for 4 > 0 and applying Riemann-Roch’s Theorem (see 1.1.5) we get

¢z rin?H?
h°Ox(cy +rnH) = x(Ox(c; + rnH)) = 5 5+ rneiH + 2.

On the other hand,

r(r—1)

|Z] = k(n) + n*H? 4+ (r — U)neH
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¢ 7
= 51 + —n’H? + rneH + (r + 1).

2
Therefore, since 0 < r —1,
(4.10) Ox(ci +rnH) —|Z]=~-(r-1) <0
and hence for [ >> 0 and ! generic points,

HTz(c;+rnH)=0

(see Lemma 1.4.16). Putting this results together we get F' € F, which proves our

Lemma. (]
The following two Lemmas are crucial for the definition of a birational correspon-
dence between the Hilbert scheme H4lb"™ (X) and the moduli space Mg (r; ¢y, k(n)).
Lemma 4.2.5. With the above notation
dimF = 2l(n).

Proof. By definition

dimF = 2|Z|+ dimGrass(r — 1, Ext'(Iz(c; + rnH),Ox))
—dimGrass(r — 1, H'F(nH))

where Grass(s,V) is the Grassmann variety of s-dimensional subspaces of V' and
dimGrass(s,V) = s - dimV — s2.

Consider the exact cohomology sequence
0 — H°OY' — H°F(nH) — HIz(c; + TnH) — - -
associated to the exact sequence
0 — 0% — F(nH) — Iz(c, +rnH) — 0.
Since HIz(c; +rnH) = 0, we obtain

RF(nH)=h05 =r-1.
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On the other hand, the exact cohomology sequence

0 — H%Iz(c; +nH) — H°Ox(c; + nH) — H°Oz(c; + rnH) —
— H'Iz(c; +mnH) — HOx(c; + rnH) —» - -
associated to the exact sequence
0 — Iz(c; +mnH) — Ox(ci'+rnH) — Oz(c; + rnH) — 0,

together with the fact that ¢; + rnH is ample and hence H*Ox(c; + rnH) = 0 for

1 > 0, gives us

dimEzt*(Iz(c; + rnH),Ox) = h'Iz(c; +rnH)
=1Z] - h0x(c; +rnH) =7 —1

where the last equality follows from (4.10). Putting these results together we get

dimF =2l(n)+ (r — )dimExt' (Iz(c; + rnH),Ox) — (r — 1)
—((r = DA’F(nH) = (r — 1)?)
= 2l(n)
which proves the Lemma. _ ’ O

Remark 4.2.6. It follows from the definition of {(n), k(n) and Lemma 4.2.5 that
forn >>0

dimF = dimHilb"™M(X) = 2l(n)
=2rk(n) — (r — 1)c2 — 2(r? — 1)

= dimMy(r;cy, k(n)).

Lemma 4.2.7. Any torsion free sheaf F' € F is simple.
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Proof. Applying the functor Hom(F(nH),.) to the exact sequence
(4.11) 0— O% ' — F(nH) — Iz(ci + rnH) — 0

we get the long exact sequence

0 — Hom(F(nH),0% ") — Hom(F(nH), F(nH))
- — Hom(F(nH),Iz(c; +rnH)) — - - -.
Since n >> 0, by Serre’s duality we have

Hom(F(nH),0%") = H*F(nH)"™' = 0.

Therefore, it suffices to see that dimHom(F (nH),Iz(ci +rnH)) = 1. To this end,

we consider the exact cohomology sequence

0 — Hom(Iz(c1 +rnH),Iz(c; + rnH)) — Hom(F(nH), Iz(c; + rnH))
— Hom(O% Y, Iz(c; + rnH)) — - - -

obtained applying the functor Hom(:, Iz(c; + rnH)) to the exact sequence (4.11).
Since F € F, HIz(¢c; + rnH) = 0 and we get

dz’kaom(F(nH), Iz(c; +rmnH)) = dimHom(Iz(c; + rnH), Iz(c; + rnH)) =1
which proves the Lemma. O

Keeping in mind previous results, we can prove the main result of this section.

Proof of Theorem 4.2.1. For n >> 0, we have two natural rational morphisms
7 F — Hilb™(X) and

e: F — My(r;ci,k(n)).
The fiber 7=1(Z) over Z € Hilb"™(X) is identified with a non-empty open subset

of the Grassmann variety

Grass(r — 1, Ext'(Iz(c; + rnH), Ox))
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and the fiber e *(F) over F' € My(r;cy, k(n)) is canonically isomorphic to a non-
empty Zariski open subset of
Grass(r — 1, H'F(nH)).
Notice that from the above dimension computations, we have
dim(n~Y(Z)) = dim(e”(F)) =0
for all generic Z € Hilb"™ (X) and for all generic F € My(r; c;, k(n)) respectively.
Let us see that e is an injection. Assume that there are two non trivial extensions
0 — O ' 2B F(nH) 2% I(cy + rnH) — 0;
0 — O S F(nH) 2515 (et + rrH) — 0
where Z and Z’ are 0-dimensional subschemes of X of length I(n).
From the fact that HIz(c; +mnH) = HIz(c; +mnH) = 0 we get
Hom(O Y, Iz(c; +rnH)) = Hom(O ', Iz(c; + rnH)) = 0.

Thus, 2 0 a; = az o f; = 0. So, there exists v € Aut(F(nH)) ~ k (Lemma 4.2.7)

such that 8; = v o «y. Therefore, Z ~ Z' and hence, e is an injection.
Since h°F(nH) =r — 1, 7 is also an injection and by Remark 4.2.6,
dimF = dimHilb"™ (X) = dimMy(r; c;, k(n)).
Hence, e and 7 are birational maps. Composing, we get a birational map
Toe =1 My(r;cy, k(n)) — Hilb™W(X).

Moreover, since My (r;c1, k(n)) is an open dense subset of My (r; ¢y, k(n)), res-
tricting v to My(r;ci, k(n)) we obtain the birational morphism claimed in Theo-
rem 4.2.1. O
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Remark 4.2.8. The pullback of the symplectic structure on H4l0X™ (X) via the
birational map ¢ of Theorem 4.2.1, gives a symplectic structure on My(r; ¢y, k(n)).

This symplectic structure coincides with the symplectic structure given by Mukai
([Muk84]).

Remark 4.2.9. It is possible to describe explicitly the birational map
¢ My(r;cr, k(n)) — Hilb'™(X)

and, as an application, we check that the Hodge numbers of My(r;c;, k(n)) and
the Hilbert scheme Hilb"™(X) coincide. Furthermore, since the Hodge numbers
of Hilb"™(X) can be expressed in terms of the Hodge numbers h79(X) of X (see
[GS93];[Che93]), we deduce that the Hodge numbers of My (r;c;, k(n)) can be com-
puted in terms of AP9(X).



Chapter 5

Vector bundles on higher
dimensional varieties

This chapter is devoted to moduli spaces of vector bundles on P*-bundles. Once
the existence of the moduli space is established (see [Mar77], [Mar78]), the question
arises as what can be said about its local and global structure. More precisely,
what does the moduli space look like as an algebraic variety 7 Is it, for example,
connected, irreducible, rational or smooth? How does it look as a topological space?
What is its geometry?

Very little is known concerning moduli spaces My 1(r;¢1," -, Cmin{rn}) Of rank
r, L-stable (in the sense of Mumford-Takemoto) vector bundles E with fixed Chern
classes ¢;(E) = ¢; € H*(X,Z), on a n-dimensional, smooth, irreducible, projective
variety, X, if the underlying variety has dimension greater or equal than three.
Up to now, there are no general results about these moduli spaces concerning the
number of connected components, dimension, smoothness, rationality, topological
invariants, etc.

It was a major result in the theory of vector bundles on an algebraic surface S,
the proof that, for large ¢z, the moduli space Mg 1(r; ¢y, ¢cz) of rank 7, L-stable, vec-
tor bundles on S with fixed ¢; and fixed polarization, L, is irreducible, generically
smooth and of the expected dimension 2rcy — (1 — 1)c? — r2x(Os) + p,(S) + 1. For
moduli spaces of vector bundles on a higher dimensional variety, X, the situation
changes drastically. Smoothness and irreducibility turn to be false when dimX > 3.
For instance, in [BM97]; Theorem 0.1, Ballico and Miré-Roig prove that under a
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certain technical restriction on ¢;, the number of irreducible components of the mo-
duli space Mx 1,(2; ¢, ¢) of L-stable, rank 2 vector bundles on a smooth, projective
3-fold, (X,L), with fixed ¢; and c;L going to infinity, grows to infinity. See [MO97]

for examples of singular moduli spaces of vector bundles on P?**! with ¢, >> 0.

Let X = P(§) — C be a P.-bundle over a smooth, projective curve C of genus
g > 0. The goal of this chapter is to compute the dimension, prove the irreducibility
and smoothness and describe the structure of the moduli space My, (2;¢y,cy) of L-
stable, rank 2 vector bundles £ on X wich certain Chern classes and for a suitable
polarization L closely related to c;. More precisely, we will cover the study of all
moduli spaces M,(2;¢;, ca) such that the general point [E] € ML(2; ¢, co) is given
as a non-trivial extension of line bundles (see Theorems 5.2.4, 5.2.8 and 5.2.12; and
Remark 5.2.13). In particular, for rational normal scrolls, i.e. P%-bundles over P!,
and for a certain choice of ¢;, ¢, and L, we get that the moduli space My, (2; ¢y, o)
is rational (see Corollaries 5.2.5 and 5.2.9). Notice that once again, the geometry of

the underlying variety and of the moduli spaces are intimately related.

Next, we outline the ideas used for proving our results and the structure of the
chapter. In section 1, we first recall some basic facts on P%bundles over a smooth,
projective curve of genus g > 0 needed later on. We also include the key Proposition
of our results. Namely, the existence of a section s of a suitable twist of a rank 2
vector bundle E on a P%bundle, X = P(§) — C, whose zero scheme, (s)y, has
codimension greater or equal than two (Proposition 5.1.13).

Section 2 contains our main results on moduli spaces, namely the irreducibility,
smoothness and structure of the moduli space M, (2; ¢y, ¢2) of L-stable, rank 2 vector
bundles on a P%bundle X = P(£) — C with certain Chern classes and a suitable
polarization L. Our approach is to write L-stable, rank 2 vector bundles £ on X
as an_extension of two line bundles. A well known result for vector bundles over
curves is that any vector bundle of rank » > 2, can be written as an extension of
lower rank vector bundles. For higher dimensional varieties we may not to be able
to get such a nice result. (For instance it is not true for X = P", n > 2). However,
it turns out to be true for certain L-stable, rank 2 vector bundles E on P%-bundles
X.
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In section 3, we illustrate by means of an example the changes of the moduli
space M1 (2;ci,cy) that occur when the polarization L varies (Theorem 5.3.2).

5.1 General results and preliminaries

Let us start this section reviewing some facts about P4-bundles over non-singular,

projective curves of genus g > 0 that we will need in the sequel.

Definition 5.1.1. Let £ be a vector bundle over a smooth, projective curve C. The
vector bundle € is said to be normalized if h°E # 0 but h°E(L) = 0 for all L € Pic(C)
with deg(L) < 0.

From now until the end of chapter 5, we fix a smooth, irreducible, projective
curve C of genus g > 0. Let £ be a rank (d + 1) vector bundle on C' and consider

X =P(£) = Proj(Sym&)-—C

the projectivized vector bundle associated to £ with the natural projection 7. X is
a (d+ 1)-dimensional variety called a P%-bundle over C. When d = 1, we simply say

that X is a ruled surface.

Notice that two vector bundles £ and £ on C define the same P%-bundle if, and
only if, there is an invertible sheaf £ on C such that £ ¥ & ® L.

Let # := Opg)(1) be the tautological line bundle and for any point p € C
we write F, := 7*Oc¢(p) and F, := 7"p. Let H be the numerical equivalence
class associated to the tautological line bundle A on X and let F' be the numerical

equivalence class associated to F,. We have
Pic(X) 2 zZH & n*Pic(C) and Num(X) =7z’ zZH & ZF
with the intersection product given by
H*' = deg(£), H'F =1 and F?=0.
The canonical divisor is

Kx ~ —(d+1)H + n*(det(E) + K¢)
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being K¢ the canonical divisor of C. )
Moreover, if D ~ aH + 7*b with a € Z and degb = b, then D = oH + bF and
if, in addition, a > 0, then m,D = S%(£) ® O¢(b), being S*(£) the a-th symmetric

power of £.

Example 5.1.2. If £ is a rank two vector bundle on a smooth, projective curve C

of genus g > 0, then X is a ruled surface with p, = —g, p, = 0 and irregularity

q=g.

Example 5.1.3. Let
d
£ =P Op:(a:)
i=0

be a rank d+ 1 vector bundle on P* and assume 0 = ay < ay < --- < ag with ag > 0.
Let Y = Y(aq, -+ ,aq) := P(E) = Proj(Sym&)—P! be the projectivized vector
bundle and let Op 5)(1) be the tautological line bundle.

The line bundle Op, 5)(1) is generated by its global sections and defines a bira-
tional map
Y =Y(ao, - ,aq) = P(E)-LspV
with N := d + Z;]:o a;. We write V(&) for the image of this map. It is a variety
of dimension d + 1 and minimal degree ¢ = Z?:o a;, called rational normal scroll.
By abusing, sometimes Y is also called rational normal scroll (see [EH87] for more
details). In case d = 1, we get the Hirzebruch surfaces described in chapter 1.

The Lemma below gives a characterization of ample divisors on a P%bundle X

over a smooth projective curve C'.

Lemma 5.1.4. Let £ be a rank d+ 1 vector bundle over a smooth, projective curve
C of genus g > 0 and X = P(E). If D = aH + bF is a diwisor on X, then D is
ample if, and only if,

a>0 and b+au (€)>0

being p~ (&) = min{pu(Q)|€ = Q — 0}.
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Proof. See [Miy85]; Theorem 3.1 O

Remark 5.1.5. Notice that if d = 1 and C = P!, we recover the ampleness criterion

for divisors on Hirzebruch surfaces (see Remark 1.4.7).

Notation 5.1.6. Given X = P(€) a P4-bundle over C we will write
v =7(€) :=maz{-p"(£) + 1,1}

being u~(£) = min{u(Q)|E — Q — 0}.

Remark 5.1.7. We deduce from Lemma 5.1.4 that the divisor L = H + vF' is
ample. Hence, the following inequality holds for any effective divisor D = nH +mF

0 < (nH +mF)(H ++vF)* = nH*! 4+ ndy + m.

Now we shall compute some cohomology groups of line bundles on X needed
later on, and the dimension of the irreducible family of codimension two closed
subschemes Z of X which are complete intersection of type (H, F,) being p a point
of C. '

Lemma 5.1.8. For any b € Pic(C), we consider the line bundle Ox(aH + 7*b) on
a P*-bundle 7 : X = P(E) = C over C. We have

p

0 if—-d—1<a<0

H'(X,0x(aH +7'b)) = ¢ H(C, S*(€) ® Oc(b)) ifa>0

HH1=4H(C, S~ 179(E) ® O¢(b)) ifa< —d—1

being b = —b + det(§) + K¢, K¢ the canonical divisor of C and S%(E) the a-th

symmetric power of £.

Proof. By the projection formula we have

R'm,Ox(aH + 7*b) = Rivr*O]P(g)(a) ® O¢(b)
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being R'm,Opgy(a) = 0 for 0 < i < d and all @ € Z and Rdw*OP(g)(a) = 0 for
a > —d — 1. Moreover, using the Base Change Theorem we get R’W*Op(g)(a,) =0
for:>d+ 1.

Since, R'm,Ox(aH + 7*b) =0fori>0anda> —d— 1, by the degeneration of
the Leray Spectral sequence

H'(C, R'm.Opg,(aH + 7°b)) = H™*(P(E), Op g, (aH + D))
we obtain o
H{(X,0x(aH + 7*b)) = H(C, 7.0x(aH 4+ 7*b)) foralla > —d — 1
with 7,0 x (aH+7*b) = S"'(E)@OC(B) ifa > 0 and 0 otherwise. The casea < —d—1

follows from the case a > 0 and Serre’s duality. Hence, the Lemma is proved. [

Lemma 5.1.9. Let X = P(€) be a P*-bundle over C and let L be the irreducible
family of codimension two closed subschemes Z of X which are complete intersection
of type (H, F,) being p a point of C. Then, dimL = h°E + h°Oc(p) — h°E(—p) — 2.
Moreover, if € is normalized then dimfL = h°E + h%Oc(p) — 2.

Proof. From the exact sequence
(5.1) 0— Ox(—H —F,) — Ox(-H)® Ox(-F,) — Iz — 0
we deduce
dimL = dimHom(Ox(—H — F,),Ox(—H) ® Ox(—F,)) — dimAut(Ox(—H — F,))
—dimAut(Ox(—H) ® Ox(—F,)) + dimlI;

where f € Hom(Ox(—H — F;,),Ox(—H) ® Ox(—F,)) is a general element and I;
denotes its isotropy group under the action of

Aut(Ox(—H — F,)) x Aut(Ox(—H) & Ox(—F,)).
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From Lemma 5.1.8 we obtain

dimAut(Ox(—H) ® Ox(~F,)) = 2h°0x + h90x (H — F,) = 2 + h%(—p),
dimAut(Ox(—H — F,)) = h°0x =1,
dimHom(Ox(—H — F,),Ox(—H) ® Ox(=F,)) = h®Ox(H) + h°Ox(F,).
Finally, since h’°Ox (H) = h¢, hOIOX(Fp) = h%0¢(p) and dimlI; = 1 we get
dimL = h°€ + K00q(p) — hO&(—p) — 2.

If € is normalized H°E(—p) = 0 and hence dimL = h°E + h°0O¢(p) — 2 which proves
the Lemma. 0

Let E be a rank 2 vector bundle on a P%-bundle X. Since H2(X,Z) is generated
by the classes H, F' and H*(X, Z) is generated by the classes H* and HF, the Chern
. classes ¢;(F) € H*(X,z), 1 = 1,2 of E may be written as ¢;(E) = aH + bF and
co(F) = H? + yHF with a,b, 2,y € Z.

By 1.1.1 and Remark 1.1.9, we may assume, without loss of generality, that for
any rank two vector bundle E on a P4-bundle X, ¢;(E) is numerically equivalent to
one of the following classes: H, H + F, F, 0.

We also need the following result

Lemma 5.1.10. Let I; be the ideal sheaf of the codimension two closed subscheme
Z = aH? +bHF on a P*-bundle X. Then,

ci(Iz(pH + 7*q)) = pH + ¢F,
co(Iz(pH + 7*q)) = aH*+ bHF and

cs(Iz(pH + 7*q)) = —a(p — 1 — a)H? + (2ab — aq — pb + b)H*F

being q = deg(q).
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Proof. Let b € Pic(C) be a divisor on C with deg(b) = b. The exact sequence
0 — Ox(—aH —7*b — H) — Ox(—aH —7*6) ® Ox(—H) — I; — 0

gives us
c(Ox (~aH — b + pH + 0))c(Ox (pH + 79 ~ H)
= ci(Ox(pH +7'q = ol —n"b — H))ey(Iz(pH +7"q))
being ¢;(G) the Chern polynomial of G. The Lemma follows after a straightforward

computation. O

We shall end this section with two results that will be very useful for us in the

sequel.
Lemma 5.1.11. Let E be a rank two vector bundle on P%. If cy(E) < 0, then
H°(p, E) #0.

Remark 5.1.12. We identify the Chern classes ¢; = ¢;(E) € H*(P%, Z) of a vector
bundle E on P? with integers.

Proof of Lemma 5.1.11. Since cy(E) < 0, we have ¢2(E) — 402(E) > 0. Notice that
Schwarzenberger’s inequality ¢? — 4c, < 0 for stable rank 2 vector bundles on P2
together with Barth’s Theorem which states that the restriction of a stable rank 2
vector bundle on P? to a general hyperplane is again stable (with exception of the

Null-correlation bundle on P*) implies that E is not stable.
Since F* 2 E(—q), c1(E*) = —c1(F) and ¢3(E*) = ¢u(E), being E* the dual of
E, we may assume ¢;(F) < 0 and ¢3(F) < 0.

Let n be the least integer such that H°(P%, E(n)) # 0. We have to show that
n < 0. We take a non-zero section s € H°E(n). Then the scheme of zeros of s

represents the second Chern class of F(n). Hence,

0 < co(E(n)) = co( E) + ney(E) +n?.
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Since ¢3(E) < 0 it follows that n(c;(E) +n) > 0. If n >*0, then
ca(E)+2n>c¢(E)+n>0.

Let us see that in such case E is stable. To this end, we take a rank one subbundle
Opa(r) of E. Since h°E(—r) # 0 we have n < —r. Therefore,

2r < =2n < ¢ (F)
and F is stable which is a contradiction.Therefore, n < 0 and the Lemma follows. O

The following proposition will be the key point for proving our main results on
moduli spaces of vector bundles on P%-bundles. It will assure us the existence of
sections vanishing in codimension > 2, that will allow us to prove the irreducibility

and smoothness of the moduli spaces we deal with.

Proposition 5.1.13. Let X be a P-bundle over C, ¢, an integer, L = dH + bF
an ample divisor on X, e € {0,1} and E a rank two, L-stable vector bundle on X.

Assume that one of the following conditions is satisfied

(z')' cE=H+eF,E=(c;+e)HF, b=2c,— H*' +e—1 and

1.
2 5

Cy >

(i) c,E = eF, ;B = —H*+ (25 +e)HF, b=cy — H* + e~ 1 and

co > dy + H 4 2.

Then, E(—H + *¢y) has a non-zero section whose scheme of zeros has codimension

greater or equal than two, being ¢a € Pic(C) a divisor on C with deg(cz) = cz.

Proof. (i) First of all, notice that Lemma 5.1.4 implies that L = dH + bF with
b=2c ~ H™ +e—1and 2¢c; > dy+ H¥! + 2 is an ample divisor on X. For
any L-stable rank two vector bundle E on X with Chern classes c; £ = H +eF and
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coE = (cy + e)HF we consider E := E(—H + m*c,) being ¢, € Pic(C) a divisor on
C of degree cy. Using 1.1.1 we obtain

ci(E)= —H+ (2c; +¢)F,

c(E) = E + (H +eF)(—H + ¢oF) + (—=H + ¢, F)? = 0.

Since, c;(E) = 0 and F & P%, from Lemma 5.1.11 we deduce h’(F,E|r) # 0.
Therefore, there exists an integer a > 0 such that

This injection induces an injection Ox (aH + 7*b') — E for some divisor b’ on C.

Take 0 # s € HOE(—-CLH — 7*b’) and let Y be its scheme of zeros. Let A be
the maximal effective divisor contained in Y. s can be regarded as a section of

F(—aH — m*b' — A) and its scheme of zeros has codimension > 2. Then, if

'H+7m'm'=aH +7"0'+A with I'>0,

E(-I'H — m*m’) with / > 0 has a non-zero section whose scheme of zeros has
codimension > 2. Therefore, E(—/H — 7*m), being [ > 0 and m a divisor on C with
deg(m) = m, has a non-zero section whose scheme of zeros has codimension > 2.
To end the proof of (i) we only need to show that | = 1 and m = —c.

Since E' is L-stable and Ox (IH + n*m) — E we have

; d d d+1
(lH +mF)Ld = dd(lHd"'l +1b+m) < CI(E2)L _ d*(H 2+ b+e)

which, since b = 2¢c, — H%*! + ¢ — 1, is equivalent to
?

2m < —2(21 = 1)ep — (21 = 1)(e — 1) +e.

On the other hand, since E(—IH — n*m) has a non-zero section whose scheme

of zeros has codimension > 2, we get
0 < c(E(—IH —m*m))H"! = ((ca+e+2lm—m—el)HF +1(l — 1)H*)H*!

=cp+e(l—=10)+ (20— )ym+1(l — 1)H*,
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Therefore,
—I(l—=1H —c; +e(l - 1)
2l -1 '

By hypothesis 2¢c, > dy+ H%! +-2. Hence, putting all these inequalities together

m 2

we get
—2(-les _ ¢ =Ddy | 20(1-1) | e(i-1)
(5.2) T ey T ot et T ot S M
< —(20 = 1)ep — EMeml) 4 e

which implies that
1
12(2¢cy + dry + 2¢) — 1(2co + dy + 2¢) — 5 <0 withl>1
Hence, | = 1 and using again (5.2) we obtain m = —c,, which proves (i).

(43) By Lemma 5.1.4, L = dH +bF with b = ¢ — H¥*! +¢—1 is an ample divisor on
X. For any L-stable rank two vector bundle £ on X with Chern classes ¢; E = eF'
and cF = —H? + (2¢y + e)HF we have c3(E(—H + 7*¢z)) = 0 and arguing as in
the case (i) we get that E(—IH — n*m) with { > 0 and m € Pic(C) of degree m,
has a non-zero section whose scheme of zeros has codimension > 2. Therefore, to

end the proof of (iz) we only need to see that [ =1 and m = —c,.

Since E is L-stable and Ox(IH + 7*m) — E we have

E)L*  ed®
(IH + mF)L* = d*(IH"" + b+ m) < al 2) = %

which, since b = ¢; — H*! + e — 1, is equivalent to 2m < —2lc, — 2l(e — 1) +e.

"On the other hand, since F(—!H — 7*m) has a non-zero section whose scheme

of zeros has codimension > 2, we get

0 < c(E(—IH —mm))H¥ ! = ((2c; +e+2im—el)HF + (I* - 1)H?*)H!
=2cy+e(l —1)+2lm+ (1> - 1)H.

Therefore,
. 2 e(l-0) (P - I)Hd“.
- 2] 21 2l
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By hypothesis ¢; > dy + H%! + 2. Hence, putting all this together we get
Plcg+dy+2e) = (ca+dy+e+2) <0 withl>1.

Hence, I = 1 and m = —c;, which proves the Proposition. a

5.2 Moduli spaces of vector bundles on r*-bundles

Throughout this section X will be a P4-bundle over a smooth, projective curve
C of genus g > 0 and we will keep the notations introduced in the first section of

this chapter.

As usual, we will denote by Mx 1,(2; ¢1, ¢z) the moduli space of L-stable, rank two
vector bundles on X, with Chern classes ¢; and ¢;. If there is no possible confusion
we will write M (2;¢y,¢2) instead of My 1(2;¢1,c2). The goal of this section is
to compute the dimension, prove the irreducibility and smoothness and describe
the structure of moduli spaces M (2; ¢y, ¢y) of L-stable, rank 2 vector bundles with
certain Chern classes and for a suitable polarization L closely related to ¢;. We
want to stress that the polarization L that we choose, strongly depends on ¢; and
our results turn to be untrue if we fix ¢;, L and ¢, L%" goes to infinity. Indeed, for
d = 2 and fixed L, the minimal number of irreducible components of the moduli
space My (2; ¢y, co) of L-stable, rank 2 vector bundles with fixed ¢; and ¢y L going to
infinity grows to infinity ([BM97]; Theorem 0.1).

One way to study rank 2 vector bundles over an algebraic variety X is to use

extensions of line bundles. Using this idea we construct the following families.

Construction 5.2.1. For ¢; = H+eF € Num(X) with e € {0,1} and any integer
cy > ”d—gfﬂ + 1, we construct a rank 2 vector bundle E on X as a non-trivial

extension
(53) €: 0— Ox(H —7"c;) — E — Ox(n* ¢+ 7*¢) — 0
where ¢y, ¢, € Pic(C) are divisors on C of degree c, and ¢ € Pic(C) is a divisor

of degree e. We shall call F the irreducible family of rank two vector bundles

constructed in this way.
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Proposition 5.2.2. Let X be a P -bundle over C , Z 3 ¢ > Ej—;—m +1, an
ample divisor L = dH + bF on X with b = 2c; — H¥*!' — (1 —¢), e € {0,1} and
¢2, ¢y, ¢ € Pic(C) divisors on C with deg(cy) = deg(ch) = ¢ and deg(e) = e. For
any vector bundle E € F, we have

(a) H°E(—7*cy — 7*e) = 0.

(b) E is a rank two, L-stable vector bundle with Chern classes c,(E) = H + eF
and co(E) = (co + e)HF'.

(c) dimF = h'Ox(H — w*cy — m*cy — m*e) + 29 — 1.

Proof. First of all, notice that since b = 2¢y — H¥*! — (1 —¢€) > d, by Lemma 5.1.4

L is an ample divisor on X.

(a) We will start proving that H°Ox(H — n*¢cy — m*c, — n*¢) = 0. By Lemma 5.1.4
L = H + «F is an ample divisor. If HOx(H — m*c; — m*c, — 7*¢) # 0, since
deg(cy) = deg(c,) = c; and deg(e) = e, applying Remark 5.1.7 we get

0< (H— (204 e)F)(H+~yF)=H" +dy~2c, — e
which contradicts the assumption 2¢; > dy + H%! + 2. Therefore,
H°Ox(H — m*cy — m*cy — m*e) = 0.
Now we consider the long exact cohomology sequence

(5.4) 0 — H°Ox(H — 7*cy — m*cy — 7¢) — HOE(~7"cy — 7%¢) —>
H'Ox 23 H'Ox (H — m*¢cy — m*¢y — m*e) — H E(—m"cy — m*¢)
— H'Ox — H?Ox(H — n*¢y — "¢y — m*e) — H2E(—7*cy — 7*¢)
— H?*0x — ---
associated to the exact sequence (5.3). Since

H'Ox(H - 7%¢c; — m*cy — 7%¢) = Ext' (Ox (1" ¢y + 7%¢), Ox (H — 7*¢y)),



146 - 5. Vector bundles on higher dimensional varieties

the map
§: HOx — H'Ox(H —7*¢y — 7r*cl2 —7"e)

given by (1) = € is an injection. This fact, together with
H°Ox(H — "¢y — 7r*c'2 —7"¢) =0
gives us HYE(—7*¢y — m*¢) = 0, which proves (a).

(b) It is easy to see that for any £ € F, ¢;(E) = H +eF and c3(E) = (c; + e)HF.
Let us see that F is L-stable, i.e., for any rank 1 subbundle Ox (D) of E € F we
have
a(F)LY

2

DL%* <

For any subbundle Ox (D) of F we have

(1) Ox(D) — O}((H.— 7T*C12) or
(2) Ox(D) — Ox(W*CQ + 7T*€).

In the first case, D = H — co F' — C being C numerically equivalent to some effective

divisor. Hence,

DL? = (H — ¢;F — C)L¢ < (H — ¢y F)L4

= dd(Hd+1 -+ b— Cg)

dA(H 4bte) _ ¢ (B)LG

2 2

where the last inequality follows from the fact that b < 2c, — H4! + e,

Assume Ox (D) < Ox(7*cy + m*e). From (a) we have HOE(—m*cy — %) = 0.
Therefore, D = (¢c; + ¢)F — C' being C' = nH + mF numerically equivalent to a
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non-zero effective divisor. Hence,
DLY= ((c+e)F —C")L? = ((cg+e)F —nH — mF)L*
= d%cy + € — nH*' — nb — m)

= d%(cy + € — 2ncy +n(l — ) — m)

a(B)LY _ d*(2e3+42e—1)
2

< - 2

if, and only if,
—4ncy + 2n(l —e) — 2m < —1.

Since C' is numerically equivalent to a non-zero effective divisor, by Remark 5.1.7
we have —m < n(H%*! +dy) andn > 0 orn = 0 and m > 0 . By hypothesis
cy > ﬂ?—‘” + 1, therefore —4ncy + 2n(1 —e) — 2m < —1 and E is L-stable.

(c¢) Since F is a PV-bundle over Pic’(C) x Pic’(C) where
N = dimEzt' (Ox(n* ¢y + 1°¢), Ox (H — 7*c,))
we have
dimF = dimExt*(Ox(1*cy + n*e), Ox (H — 7*¢y)) + 2dimPic®(C) — 1
= h'Ox(H — T*cy — Ty — m*e) + 29 — 1

which proves (¢). O
Remark 5.2.3. The existence of big families of indecomposable rank 2 vector bund-
les over P%-bundles of arbitrary dimension faces up to Hartshorne’s conjecture on

the non-existence of indecomposable rank two vector bundles on projective spaces
P", n > 6 ([Har74]).

Now we are ready to state one of the main theorems of this section
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Theorem 5.2.4. Let X be a P4-bundle over C' and cy an integer such that ¢y >
HH#LH' We fiz the ample divisor L = dH+bF on X with b = 2¢c,— H! —(1—e¢)
and e € {0,1}. Then the moduli space M(2; H + eF,(c; + e)HF) is a smooth,
irreducible, projective variety of dimension h*Ox(H — m*¢cy — T*cy — m*e) + 2g — 1,
being cq, ¢, € Pic(C) of degree c, and ¢ € Pic(C) of degrec e. Namely, it is a
PN -bundle over Pic®(C) x Pic®(C) being N := h*Ox(H — 7*¢y — m*cy — m*e) — 1.

Proof. Using Proposition 5.2.2 and the universal property of the moduli space
Mp(2; H + eF, (cy + e)HF') we obtain a morphism

¢:F — M(2,H+eF,(c2+e)HF)
which is an injection. In fact, assume that there are two non-trivial extensions

’

0 — Ox(H — 1°¢)) 25 E-5 0 (n*cy + 1°¢) — 0;
0 — Ox(H — 7)) 25 EL504 (ne, + %) — 0.
Since
Hom(Ox(H — m*c,), Ox(7*Ca + 1°¢)) = H'Ox(—H + m*cy + 7 + 7°¢) = 0
Hom(Ox(H — 7*%,), Ox(m*cy + 7*¢)) = H'Ox(—H + 7'y + m*cy + 7*¢) = 0

(see Lemma 5.1.8), we have S0 = azo ff = 0. So, there exists an automorphism
X € Aut(Ox(H — m*c,)) = k such that 8; = oy o \. Therefore, ¢ is an injection.

Let us see that ¢ is surjective. To this end, we take a rank two vector bundle

E € My(2; H+eF, (c;+e)HF). It follows from Proposition 5.1.13 that E(—H+7"c,)

with ¢, € Pic(C) of degree cy, has a non-zero section s whose scheme of zeros has

codimension > 2. Since co E(—H +7*c,) = 0, the section s defines an exact sequence
0 — Ox(H — 7*¢cy) — E — Ox(n*cy + 7%e) — 0

of type (5.3). Therefore, ¢ is surjective.

Claim: For any E € M[(2; H + eF, (co + ¢)HF) we have

dimTig M (2; H + eF, (c; + e)HF) = h'Ox(H — "¢ — m*cy — 7°¢) + 29 — 1.
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Proof of the Claim: Take E € Mp(2; H + eF, (c; + ¢)HF). By deformation theory

we know that (see Theorem 1.2.9)
TieMr(2; H + eF, (c; + e)HF) = Ext'(E, E).

Let us compute dimExzt!(E, E). We have just seen that any rank two vector bundle
E € Mp(2;H + eF,(c; + e)HF) sits in an extension of type (5.3). Applying the
functor Hom(., E) to the exact sequence (5.3) we get the long exact sequence

(56.5) 0 — Hom(Ox(w*cy +7*e), E) — Hom(E,E) —
- Hom(Ox(H — 7*¢cy), E) — Ext*(Ox(r*cy + 7m*e), E) —
Ext'(E,E) — Ext'(Ox(H — 7*cy), E) — Ext?(Ox(n*cy + m*¢), E) —> - -
Since h'Ox = g, H?*Ox(H — 7*¢y — n*cy — 7%¢) = H?Ox = 0 (Lemma 5.1.8)

and HOE(—m*cy — m*e) = 0 (Proposition 5.2.2; (a)) from the exact sequence (5.4)

we get
(5.6) hIE(—m*cy —w*e) = h'Ox(H — m*cy — m*ca —m*¢) + g — 1 and
Ext?(Ox(1*cy + m%e), E) = H2E(—7m*cy — m*¢) = 0.
We consider the exact cohomology sequence

(5.7) 0 — H'Oy — HOE(—H + 1*c,) — HOx(~H + 1°¢, + m*¢y + 7"¢)

— H'Ox — H'E(—H +m*¢y) — H'Ox(—H + 7*cy + 7"¢cq + 1*e¢) —> - -

associated to the exact sequence (5.3).
Since
HOx(—H +7*c, + m*cy + w°¢) = H'Ox(—H + 7*cy + 7*cy + 7%¢) = 0
and h'Ox = g (Lemma 5.1.8) we get

WE(—H + 7)) =1 and R'E(-H +7"c) = g.
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Therefore, from the exact sequence (5.5) we obtain

dimEzt (E,E) = h'E(~7n*c; — 1%e) + W E(—H + 7*¢,) — h°E(—H + 7*c,)
+dimHom(E, E)
= h'Ox(H —m*cy — m*cy —m%e) + 29 — 1

where the second equality follows from the fact that E is L-stable (and therefore
simple) and (5.6), which proves our Claim.

Since dimF = h'Ox(H — m*c, — m°cy — 7*¢) + 29 — 1 (Proposition 5.2.2), it
follows from the Claim that the moduli space M, (2; H +eF, (c; +¢)HF') is smooth.

Moreover, we have
Mp(2; H + eF, (c; + e)HF) = P(BExt}(Ox(n*cy + 7*¢), Ox (H — n*¢y))) x T,

being T := Pic’(C) x Pic®(C), i.e. Mp(2;H + eF,(cz + e)HF) is a PY-bundle
over Pic®(C) x Pic®(C) where N := h'Ox(H — m*cy — m*cy — 7*¢) — 1. Therefore,
the moduli space My (2; H + eF, (cy + €)HF') is a non-empty, smooth, irreducible,
projective variety of dimension h'Ox (H — 7*c, — m*¢y — 7*¢) + 2g — 1 which proves
the Theorem. O

As a corollary we obtain the rationality of the following moduli spaces on rational

normal scrolls

Corollary 5.2.5. LetY :=Y (ag,- -, aq) be a (d+1)-dimensional, rational, normal
scroll as in Example 5.1.8 and ¢y an integer such that ¢; > w + 1. We fix the
ample divisor L = dH + bF on'Y with b = 2¢c; — H¥*' — (1 — €) and e € {0,1}.
Then the moduli space My, (2; H+eF, (co+e)HF) is a smooth, irreducible, rational,
projective variety of dimension 2(d + 1)c; — H* +e(d+ 1) — (d + 2).

Proof. Tt follows from Example 5.1.3, that a (d 4+ 1)-dimensional, rational, normal
scroll is a P%-bundle over a smooth, projective curve of genus g = 0. Thus, the result
follows from Theorem 5.2.4. O
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Now, we will deal with the cases ¢; = 0 and ¢; = F. To this end, we will consider

the following family of rank two vector bundles

Construction 5.2.6. For ¢; = eF' € Num(X) with e € {0,1} and any integer
cy > H%*! 4 dy + 2, we construct a rank 2 vector bundle £ on X as a non-trivial

extension -
(5.8) €: 0— Ox(H—7"c¢)) — E — Ox(—H + 7" cy +7%¢) — 0

where ¢g, ¢, € Pic(C) are divisors on C of degree ¢, and ¢ € Pic(C) is a divisor
on C of degree e. We shall call G the irreducible family of rank two vector bundles

constructed in this way.

Proposition 5.2.7. Let X be a PL-bundle over C, Z > ¢; > H™ 4+ dy + 2, an
ample divisor L = dH +bF on X withb = c; — H*' — (1 —¢) , e € {0,1} and
C2, €, ¢ € Pic(C) divisors on C with deg(cy) = deg(ch) = ¢y and deg(e) = e. For

any vector bundle E € G, we have
(o) H'E(H — 7*cy — m*e) = 0.
(b) E is a rank two, L-stable vector bundle with Chern classes ¢;(E) = eF and
c(E) = —H?+ (2c, + e)HF.
(¢) dimG = h'Ox(2H — m*cy — mrey — mre) + 29 — 1.
Proof. First of all, notice that since b = ¢, — H* — (1 — ¢) > dv, L is an ample

divisor on X (see Lemma 5.1.4).

(a) We will start checking that H°Ox(2H — m*c, — m*cy — 7*¢) = 0. Since H + vF
is numerically equivalent to an ample divisor, if H°Ox (2H — T, —Tr ey — ') # 0,
we get '

0< (2H — (2¢c; + e)F)(H + yF)* = 2H* +2dy — 2¢c, — ¢

which contradicts the assumption ¢; > dy + H%! + 2. Therefore,

H°Ox(2H — "¢, — "¢y — 7%¢) = 0.
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Now we consider the long exact cohomology sequence
(5.9) 0 — H°Ox(2H — m*cy — m*cy —'7r*e) — H°E(H — 7*cy — 7%¢) —
HOx -5 H'Ox (2H — m*cy — ey — w'e) — H'E(H — m*cy — 1*e)
— H'Ox — H?0Ox(2H — 1*c;, — ¢y — *¢) — H?E(H — 7%cy — m*e)
— H2O0x — -+

associated to the exact sequence (5.8).
Since H'Ox (2H —m*c, —m*cy—m*e) = Ext' (Ox(—H+7*cp+7*e), Ox(H—7"c,)),
the map
§: H'Ox — H'Ox(2H — 7%c, — m*cy — 7*¢)
given by §(1) = € is an injection. This fact, together with
H°Ox(2H = 7%¢cy — m*cy — %) = 0
gives us H'E(H — 7" ¢y — m*¢) = 0, which proves (a).

(b) It is easy to see that for any F € G, ¢;(E) = eF and ¢3(E) = —H*+(2co+e)HF.
Let us see that F is L-stable, i.e., for any rank 1 subbundle Ox (D) of E € G we

have

d
DM<Q€M.

For any subbundle Ox (D) of E we get

(1) Ox(D) — O}((H — W*CIQ) or

(2) O)((D) — Ox(—H+7(*C2 +7l'*e).

In the first case, D = H — ¢ F' — C being C' numerically equivalent to some effective

divisor. Hence,
DL% = (H — &,F — C)L* < (H — ¢y F)L*

= dd(der1 +b—cy)

ed _ ci(B)L
< 2 2
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where the last inequality follows from the fact that b < ¢y — H* + z.

Assume Ox (D) < Ox(—H + 7*cy + m*e). Since HOE(H — m*¢; — w*e) = 0 (see
(a)) we have D = —H + (ca+¢e)F' = C' being C' = nH +mF numerically equivalent
to a non-zero effective divisor. Therefore, we obtain

DL = (~H+ (e +¢e)F -~ C)L¢* =(-H + (c; +e)F —nH —mF)L4
=dY(~H™! —b+cy+ e —nHT —~nb—m)
=d*(-nc; +n(l—e)+1—m)
< a(E L @

2 2

if, and only if,
—2nca+ (2n+2)(1—e) +e—2m < 0.

Since €' is numerically equivalent to a non-zero effective divisor, we have n > 0
and —m < n(H™! +dy) or n = 0 and m > 0 (see Remark 5.1.7). By hypothesis
cy > H + dy + 2, therefore

—2nca+ 2n+2)(1—e)+e—2m <0

unless e = 0, n = 0 and m = 1. Let us see that this case cannot occur.

Ifn=0,e=0and m =1, take ¢, — p € Pic(C) a divisor on C of degree c; — 1
and a non-zero section s € HE(H — 7*(c, — p)). We have the associated exact

sequence
(5.10) 0 — Ox((z — 1)H +*(cy — p) + 7*y) — E
s Iy (1 = 2)H — 1%(cg — ') — 1) — 0

being zH + 7*y an effective divisor with deg(y) = y, v’ € Pic(C) of degree vy,
¢, —p € Pic(C) a divisor on C of degree c; — 1 and

2] = eB((1—0)H -1 (c, — p) - )

=((1-2)—1)H?>+ (2c2+2(1 —z)(1 =y — y))HF.
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Applying Lemma 5.1.10, we get

es(Iz((1~2)H = m*(ca — ¢ +1)) =(1—(1-2)?)( - 2)zH
+(ea+y—1)((1 —2)? —1)(4z — 3)H?F
—(cg +y—1)2z(1 — 2)H*F
+(4c((1 = )% — 1) + 2wcy) H2F.

Using the exact sequence (5.10) we obtain

c3(E) = co(lz((1 —2)H — m*(ca — ') — m7p))cr (Ox ((z — 1) H + 7" (c; — p) + 7))
+es(Iz((1—z)H = 7*(e2 — p') — 7))
=(1-(1-2)?*)(1-z)(z+1)H?
+e+y—-1)([(1-2)?-1)4z-3)-2(1 —2z)(2z - 1)+ (1 —z)? — 1)H?’F
+(4ca((1 = )2 = 1) + 4dzey — 205) H2F
=: oH?® + BH?F.

On the other hand, since E is a rank 2 vector bundle we have c3(F) = 0.
Therefore, oo = § = 0. The equality '

a=(1-(1-2))1-z)(z+1)=0

implies that z € {—1,0,1,2}. Notice that since zH +7*y is an effective divisor, the
case z = —1 cannot occur.
If 2 = 1 we have
0=08==2(ca+y—1)—2¢

or, equivalently, ¥y = 1 — 2¢,, which contradicts the fact that xH +7*1 is an effective
divisor.
If x = 2, using once more that f§ = 0 we get y = —2¢, + 1 which again is a

contradiction.
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Finally, if z = 0 we get that y = 1 and thus HOE(H —7*¢,) # 0 which contradicts
(a). Therefore, the case n =0, e = 0 and m = 1 cannot occur and F is L-stable.

(c) Since G is a PM-bundle over Pic®(C) x Pic’(C) with
M = dimExt* (Ox(—H + n*cy + 7*¢), Ox (H — m*c,))
we have
dimG = dimEzt"(Ox(=H + m*cy + 7*¢), Ox (H — 7*¢y)) + 2dimPic®(C) — 1
= h'Ox(2H — m*cy — m*cg — m¥e) + 29 — 1

which proves (c). O
Theorem 5.2.8. Let X be a P4-bundle over C with d > 1 and cy an integer such
that c; > H' + dy + 2. We fiz the ample divisor L = dH + bF on X being
b=cy— H' — (1 —¢) and e € {0,1}. Then My(2;eF,~H?+ (2co + e)HF) is a
smooth, irreducible, projective variety of dimension h'Ox(2H —m*cy — 7r*c'2 —7*e) +

2g — 1, where ¢a, ¢y, ¢ € Pic(C) are divisors on C with deg(cy) = deg(ch) = ¢y and
deg(e) = e. Namely, it is a PM-bundle over Pic®(C) x Pic®(C) being

M :=h*Ox(2H — 7%¢; — m¥cy — 7%e) — 1.

Proof. Using Proposition 5.2.7 and the universal property of the moduli space
M, (2;eF, —H? + (2c; + e)HF) we obtain a morphism

¢:G —> My (2;eF,—H*+ (2c, +e)HF)
which is an injection. Indeed, assume that there are two non-trivial extensions
0 — Ox(H — 7%¢)) =S E-250x(—H + 7*cg + 7*¢) — 0;
0 — Ox(H — 7))L E-L05 (—H + n% + 7F) — 0.
Since
Hom(Ox(H — n*¢,), Ox(—H + m*¢; + 7*€)) = H°Ox(—2H + m*¢; + 7*cy + W*E)‘Z 0,

Hom(Ox(H — 7*%,), Ox(—H + 7*cy + 7%¢)) = H°Ox(—2H + n*¢cy + 7*C, + 7*¢) = 0,
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we have By 0 oy = ap 0 B; = 0. So there exists A € Aut(Ox(H — 7*c;)) = k such

that 81 = ay o A. Therefore, ¢ is an injection.

Let us see that ¢ is surjective. To this end, we take a rank two vector bundle
E € Mp(2;eF,—H? + (2¢; + e)HF). By Proposition 5.1.13, E(—H + 7*c,) has a
non-zero section s whose scheme of zeros has codimension greater or equal than two,
being ¢, € Pic(C) of degree c,. Since c,E(—H + 7*¢,) = 0, the section s defines an

exact sequence
0 — Ox(H —7*¢y) — E — Ox(—H + "¢y + 7¢) — 0
of type (5.8). Therefore, ¢ is surjective.
Claim: For any E € Mp(2;eF, —H? + (2¢c; + e)HF) we have
dimTyz ML (2; eF, —H? 4+ (2¢c; + e)HF) = h'Ox(2H — 7*¢cy — 7r*c'2 —7e) + 29 — 1.

Proof of the Claim: Take E € Mp(2;eF,—H? + (2¢; + ¢)HF). By deformation

theory we know that
Tig)My(2;eF, —H* + (2c; + €)HF) = Ezt' (E, E)

(see Theorem 1.2.9). Let us compute dimExt'(E, E). We have just seen that any
rank two vector bundle E € My (2;eF,—H? + (2c, + e)HF) sits in an extension of
type (5.8). Applying the functor Hom(., E) to the exact sequence (5.8) we get the

long exact sequence
(5.11) 0 — Hom(Ox(—=H 4 n*cy + 7*¢), E) — Hom(E, E) —
Hom(Ox(H — 7*¢y), E) — Bxt*(Ox(—H + 7*cy + 7%¢), E)
— Ext'(E, E) — Ext'(Ox(H — 7*c,), E)
— Ext?(Ox(—H 4+ m*cy + %), E) — -+ - .

Since h'Ox = g, H*Ox(2H — 7*¢cy — n*c, — m*¢) = H?Ox = 0 (Lemma 5.1.8)
and H'E(H — 7*¢y — m*¢) = 0 (Proposition 5.2.7; (a)) from the exact sequence (5.9)
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we get

(5.12)  AW'E(H — m*cy — m*e¢) = h*Ox (2H — ¢y — ¢, — m¥e) + g — 1;

Ext*(Ox(—H + m*cy + m*¢), E) = H*E(H — 7*¢y — 7*¢) = 0.

Consider the long exact sequence

(5.13) 0 — H°Ox — H°E(~H + 7*c;) — H°Ox(—2H + 7*cy + 7*cy + 7e)
— H'Ox — H'E(—H + 7*¢;) — H'Ox(—2H + 7*cy + m*cy + m*e)

associated to the exact sequence (5.8).
Since H'Ox(—2H + m*cy +m*cy +7%¢) = H'Ox(—2H + w*c, + 7*cy + 7*¢) = 0 and
h*Ox = g (Lemma 5.1.8) we get

WE(~H+7"¢) =1 and W'E(—H +7"¢) = g.

Notice that in the computation of h'Ox(—2H + n*¢, + 7*¢y + 7*¢) we strongly
use the fact that d > 1.
Therefore, from the exact sequence (5.11) we obtain

dimEzt'(E,E) = hE(H —7*c; — 7%¢) + ' E(—H + 7*cy) — W E(—H + 7*c,)
+dimHom(E, E)
= h'Ox(2H — 7*cy — ey — m*e) + 29 — 1

where the second equality follows from the fact that £ is L-stable (hence simple)
and (5.12). This proves our Claim.

Since dimG = h'Ox(2H — n*c, — ¢y — 7*¢) + 29 — 1 (Proposition 5.2.7; (c)),
it follows from the Claim that the moduli space My, (2;eF, —H? + (2¢; + e)HF) is

smooth. Moreover, we have

My (2; eF, —H?+ (2¢co+e)HF) = ]P’(Ea:tl(OX(—H—}—vr*cz +7%e), Ox(H—W*C;))) x T,



158 5. Vector bundles on higher dimensional varieties

being
T := Pic®(C) x Pic’(C),

i.e., My (2;eF,—H? + (2c; + e)HF') is a PM-bundle over T where
M =h'Ox(2H — 7%¢c, — w*cy — m'e) — 1. .

Therefore, the moduli space My, (2;eF, —H?+ (2c, +e)HF) is a non-empty, smooth,

irreducible, projective variety of dimension h'Ox (2H —m*cy—m*cg—m*e)+2g—1. [

As a corollary we obtain the rationality of the following moduli spaces on rational

normal scrolls

Corollary 5.2.9. LetY :=Y(ag, - ,aq) be a (d+1)-dimensional, rational, normal
scroll as in Ezample 5.1.3 with d > 1 and Z 3 ¢y > H¥™ +d + 2. We fiz the ample
divisor L = dH + bF onY with b = ¢; — H*' — (1 —¢e) and e € {0,1}. Then
the moduli space My (2;eF,—H? + (2c; + €)HF) is a smooth, irreducible, rational,
projective variety of dimension 2(ed + 1)cy — e(d + 2)H + 2(e — 1).

Proof. It follows from Example 5.1.3, that a (d + 1)-dimensional, rational, normal
scroll is a P4-bundle over a smooth, projective curve of genus g = 0. Thus, the result
follows from Theorem 5.2.8. , O

Remark 5.2.10. Using again Bogomolov’s inequality (¢;(F)? — 4ey(E))H*! < 0,
one can see that the hypothesis 2c; > H 4 dy + 2 (resp. ¢ > H™! + dy + 2)
when ¢;(E) = H + eF (resp. ¢1(E) = eF) with e € {0, 1}, is not too restrictive.

Remark 5.2.11. 1) Theorem 5.2.4 generalizes to P%-bundles results on moduli
spaces of vector bundles on ruled surfaces obtained by Qin in [Qin92]; Propo-
sition 3.4 and in [Qin92b] Theorem A, by Hoppe and Spindler in [HS80}; main
Satz and by Brosius in [Bro83|; Propositions 3 and 8.

2) Corollary 5.2.5 generalizes to rational normal scrolls Proposition 3.1.3 on mo-
duli spaces of vector bundles on smooth, irreducible, Hirzebruch surfaces ob-

tained in chapter 3.
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3) Once again, Theorem 5.2.4, Theorem 5.2.8, Corollary 5.2.5 and Corollary 5.2.9,
reflect the general philosophy that the moduli space inherits some of the geo-

metric properties of the underlying variety.

In the following Theorem we will generalize Theorem 5.2.4 (resp. Theorem 5.2.8)
to other classes of ¢y. Since the proof is essentially the same, we will skip it.

Theorem 5.2.12. Let X be a P*-bundle over C with d > 1, integers b,a,e with
e € {0,1} and we fir an ample divisor L = oH + BF on X. Assume that the

following conditions holds

0>-2a>-d-1, a=ad, f= b—aH™ fe—1 and
—ab > a?H%! + a’dy + a(a + 2).

(resp. 0>1—-2a>-d-1, a=2a-1)d, f=-20—(2a—1)H"' +e-1
and  — 2ab > (2a — 1‘)aHd+1 + (2a — 1)ady +a(2a — 1) + 1.)

Then the moduli space M1,(2;eF,—a?H? + (ae — 2ab)HF) (resp. the moduli space
My (2; H + eF,a(1 — a)H? + (b + ae — 2ab)HF)) is a smooth, irreducible, projective
variety of dimension h'Ox(2aH + n*(b + b’ —¢)) + 29 — 1 (resp. of dimension
h'Ox((2a — 1)H + 7*(b +¢)) + 29 — 1), being b,b',e € Pic(C) of degree b and e
respectively. Namely, it is a PY -bundle (resp. PM-bundle) over Pic®(C) x Pic’(C)
being N := h*Ox(2aH +7*(b+b' —¢)) (resp. M := h'Ox((2a — 1)H +7*(b+¢))).

Remark 5.2.13. We want to stress that with the above result we have covered
the study of all moduli spaces My (2; ¢, cs) such that the general point [E] of
M71,(2;¢1,cq) is given as a non-trivial extension of line bundles. Indeed, the Chern
classes of vector bundles E studied in Theorem 5.2.12 are the only ones which can
be obtained as Chern classes of a vector bundle E constructed as a non-trivial ex-
tension of line bundles. In fact, if a rank two vector bundle F sits in a non-trivial

extension
0 — Ox(aH +7b) — E — Ox(a'H + 7*0') — 0
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where b, b’ € Pic(C) are two divisors of degree b and b’ respectively and ¢;(F) = eF
(resp. ¢i(E) = H + eF') with e € {0,1}, then

a+a =0 and b+b =e

(resp. a+a' =1 and b+ =e)

which implies that
cy(E) = —a*H? + (ae — 2ab)HF

(resp. c(E) =a(l —a)H?*+ (b+ ae — 2ab)HF). .

We will finish this section computing the Kodaira dimension and the Picard

group of moduli spaces that we have studied above.

Corollary 5.2.14. Let X be a P4-bundle over C and cy,d € Z such that d > 0 and ’
cy > Hﬂ%ﬁl +1 (resp. co > H*' +dy+2 and d > 1). We fiz the ample divisor
L=dH +bF on X withb=2c,— H*™' — (1 —¢) (resp. b=cy— H*' — (1 —¢))
and e € {0,1}. Then

Kod(Mp(2; H + eF,(ca +e)HF)) = —oc0
(resp. Kod(Mp(2;eF,—H?*+ (2¢c; + ¢)HF)) = —00).

Proof. It follows from the fact that the moduli space My (2; H + eF,(c; + €)HF)
(resp. My (2;eF,—H? + (2¢c; + €)HF)) is a PY-bundle (resp. PM-bundle) over the
~variety Pic®(C) x Pic®(C) being N := h*Ox(H — m*c, — n*cy — m*e) — 1 (resp.
M = hW'Ox(2H — 7*c, — m*cy — 7*e) — 1) with ¢y, ¢, € Pic(C) of degree ¢, and
¢ € Pic(C) of degree e. : | O

The fact that My (2; H +eF, (c;+e)HF) (resp. ML (2;eF,—H?+ (2¢c; +e)HF))
is a PY-bundle (resp. PM-bundle) over Pic®(C) x Pic®(C) with natural projection
IT (resp. IT') allows us to describe in the next result the Picard group of the moduli
space My, (2; H + eF, (c; + e)HF) (vesp. Mp(2;eF, —H?+ (2¢; + ¢)HF)).
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Corollary 5.2.15. Let X be a P?-bundle over C and cy,d € Z such that d > 0 and
cy > H—H;Ld’l +1 (resp. ¢co > H*' +dy+2 and d > 1). We fix the ample divisor
L=dH+bF on X withb=2cy — H¥* — (1 —¢) (resp. b=c, ~ H™' — (1 —¢))
and e € {0,1}. Then
Pic(My(2; H + eF, (c; + e)HF)) 2 7 & [I* Pic(Pic®(C) x Pic’(C)).
(resp. Pic(Mp(2;eF,—H?+ (2c; + e)HF)) & 2 & IT* Pic(Pic’(C) x Pic®(C)) ).

In particular, if X is a rational normal scroll, then

Pic(My,(2; H + eF, (c; + e)HF)) = Pic(M(2;eF, ~H? + (2c; + e)HF)) = 7.

5.3 Change of polarizations.

In section 2 we have studied the moduli space My (2;c;,c;) for fixed ¢;, ¢, and
a suitable polarization L on a P%-bundle X over a smooth, projective curve. In this
section, we will illustrate some of the changes of the moduli space M (2; ¢y, ¢cz) that

occur when the polarization L varies.
We keep the notations introduced in sections 5.1 and 5.2. In particular
X =p(€)-C

is 'a P%bundle over a smooth, projective curve C of genus g > 0. For technical
reasons, we will also assume that £ is normalized (see Definition 5.1.1). Under these

assumptions, for any integer n >> 0 we have

(1) deg(Oc(—n—n'+p+p + K¢)) <0,
(11) hPE + KOs (P) < W*E(—n — '),
d+1 »

(i5) n > TN 43

being n,n' € Pic(C) divisors on C of degree n, and p,p’,p € C points of C. Indeed,
(i) and (i72) are trivial. Let us check (41). Since &€ is a normalized vector bundle on
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a smooth, projective curve C, h%€(—n — n') = 0 and by Riemann-Roch’s Theorem,

the inequality (i7) is equivalent to
hPE + hOc(p) < 2n(d + 1) + (d + 1)(g — 1) — deg(E)

which clearly holds for n >> 0.

In chapter 1 we introduced the concepts of walls and chambers due to Qin. Let

us discuss a precise example.

Example 5.3.1. Let X be a P*-bundle over C. We fix ¢; = H € Num(X) and for
any Z > n > ﬂtil +3,co =nHF € HY(X,z). We consider S,S' € A%-1 and
¢ € Num(X) ® R defined by

S:=dH"! + BH"2F,
S’ = dH*! 4 (§ — 2) H'2F,
¢:= H - 2nF,

being 8 = (2n — H**')(d — 1) + 2. Notice that £ is the numerical equivalence class
of a divisor D on X such that D + ¢; is divisible by 2 in Pic(X) and

€28 = (H? — 4nHF)(dH* ! + SH2F) = dH*' + 8 — 4nd < 0,
£28' = (H? — 4nHF)(dH* ' + (8 — 2)H?F) = dH% + f ~ 2 — dnd < 0,
oo+ €8 4 Hmirent

Therefore, both W5 and W65) define a wall of type (cy,cy). Moreover W(5)

and W5 are non-empty. In fact, take
L=dH+@2n—-H*' - 2)F and L'=dH + (2n- H*YHF
For n >> 0, L and L' are ample divisors on X (Lemma 5.1.4) and we have
LES = (dH + (2n — H¥ — 2)F)(dH® + (B — 2nd)H*'F) = 0,

L'ES" = (dH + (2n — H¥*Y)F)(dH® + (6 — 2 — 2nd)H*'F) = 0
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which is equivalent to L € W&9 and L' € W&S). Finally, if we consider the

polarizations (Lemma 5.1.4)

L=dH +(2n— H*' —1)F, L'=dH+ (2n— H*' - 3)F and
L' =dH + (2n — H#*' + 1)F,

since L'€S < 0 < LES and LES' < 0 < L"ES', the wall W5 separates L and L/
and the wall W5 separates L and L". We will denote by C (resp. C' and C") the

chamber containing L (resp. L' and L").

Given a polarization L = aH + bF', we can represent the class of L as a point of
coordinates (a, b) in the plane. The following picture gives as an idea of the situation

described in Example 5.3.1

W (&S

W &S)
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Now we will determine and compare the moduli spaces My (2; H,nHF') corres-
ponding to polarizations L lying in the chambers C, C' and C" respectively. Keeping

the notation introduced in Example 5.3.1, we have

Theorem 5.3.2. Let X be a P4-bundle over C and 0 << n € Z. The following
holds

(a) For all L' € ", the moduli space Mz (2; H nHF) is empty.

(b) Forall L € C, the moduli space M7 (2; H,nHF) is a PN -bundle over the variety
Pic®(C) x Pic®(C) being N := h*Ox(H — 7*n’ — 7™n) — 1 with n,n’ € Pic(C)
divisors of degree n. In particular, it is a non-empty, smooth, irreducible,
projective variety of dimension h'Ox(H — m*n’ — 7*n) 4+ 29 — 1 and Kodaira

dimension —oo.

(¢) For all L' € C', the moduli space ME’(Q; H,nHF) is a non-empty open subset
of the moduli space My(2; HynHF') and

dim(M (2 H,nHF)\ My (2 H,nHF)) = hOE + 1°0¢(p) + 2(g — 1),

with p € C a point of C. In particular, Mf(2;H, nHF) is a non-empty,

smooth, 1rreducible, quasi-projective variety of dimension
WOx(H — 7'’ — 7*n) 4+ 29 — 1

with n,w € Pic(C) of degree n and Kod(MZ:(2; H,nHF)) = —oo0.

Proof. (a) It follows from Proposition 5.3.3 and Remark 5.3.4.
(b) Tt follows from Theorem 5.2.4 and Remark 1.3.4.
(c) It follows from Proposition 5.3.5 and Remark 1.3.4. O

Let us start discussing what happens for polarizations lying on the chamber C".
Proposition 5.3.3. Let X be a P-bundle over C, 0 < a € Z, n an integer such that

n > Ed%m +3 and Ly = aH + bF an ample divisor on X such that g > w
Then the moduli space Mp,(2; H,nHF) is empty.
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Remark 5.3.4. Keeping the notations introduced in Example 5.3.1 we have that
b s 2n—HH!

o > ="— is equivalent to {S'Ly > 0. Hence, Mp,(2; H,nHF) is empty for any
polarization Ly on the shaded area
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In particular for any L € C".

. Proof of Proposition 5.5.3. We consider an ample divisor Ly = aH + bF with
g > 2‘“—“# on X (Lemma 5.1.4) and a Lg-stable, rank two vector bundle E on X
with Chern classes c;E = H and ¢oE = nHF. Since cy(E(—H + 7*n)) = 0 being
n € Pic(C) of degree n, arguing as in Proposition 5.1.13, we get that F(—/H —7*m)
being I > 0 and m € Pic(C) of degree m, has a non-zero section whose scheme of

zeros has codimension > 2.

Since F is Lo-stable and Ox (IH + n*m) < E we have

(IH + mF)Ly* = a®(alH* + dlb + am)

c1(B)Lo® _ at~1(aH4t4db)
<=5 = 2

which is equivalent to
2am < —a(2l — 1)H* — (21 — 1)db.

> 2n—~Hd+1
- d

Since by hypothésis 3 we get

m < —(20 = 1)n.

On the other hand, since E(—IH — n*m) has a non-zero section whose scheme

of zeros has codimension > 2, we get

0 < (E(=IH —m*m))H4! = ((n+2lm—-m)HF +1(l — 1)H?)H%!
=n+ (20— )m~+1(l - 1)HI*.

—I(I-1)H*l—n
Hence, m > ————.

- By hypothesis 2n > H%! + dy + 6. Therefore, putting all this inequalities
together we obtain
1(1-1)

=2(1-)n n I(I-1)d 6 (o] _
(5.14) =S -5t gttt <m< =2 - 1)n
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which implies that
(20 + dy + 6) — 1(2n + dy + 6) < 0.

Since, | > 0 we get a contradiction and hence the moduli space M, (2; H,nHF) is
empty, which proves what was stated. O

In the next Proposition, we compare moduli spaces corresponding to polariza-

tions L lying in the chambers C and C’ respectively.

Proposition 5.3.5. Let X be a P*-bundle over C and 0 << n € Z. We fiz an
ample divisor L = dH +bF € C' on X with b = 2n — H¥' — 3. Then the
moduli space ]\([Z/(Q; H,nHF) is a non-empty open subset of MZ(Q; H,nHF) being

L =dH + (2n -~ H™*' — 1)F € C. In particular, Alfr(2;H, nHF) is a smooth,

irreducible, quasi-projective variety of dimension

ROx(H—m"n—7"n) +29 —1=h'E(—m"n—n"n) + 29— 1
being n and n' two divisors on C of degree n.
Proof. We consider the open subset I/ of MZ(2; H nH F) defined by

U:={E€Mz(2H, nHF)|HE(—7*(n —p')) = 0}

being n—p' € Pic(C) of degree n—1. In order to prove the Proposition it is enough

to see that U/ is non-empty, that U = Mf(?'; H,nHF) and that

dim(Mz(2; H,nHF) \U) = I°€ + 1°Oc(p) + 29 — 2 < dimM7(2; H,nHF)

where p is a point of C.
Claim 1: U is a non-empty open subset of ME(2; H,nHF) and
dim(Mp (2, H,nHF) \U) = h°E + 1 Oc(p) + 29 — 2

being p a point of C.
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Proof of Claim 1: For any E € ]\{ZE(Q;H, nHF)\ U, we take a non-zero section

s € H'E(—n*(n — p')) with deg(n — p’) =n — 1 and the associated exact sequence
(5.15) 0 —Ox(D+7"(n—p))—E —Iz;(H-7"(n"-p)-D') —0

where D' = D = zH + yF are numerically equivalent to some effective divisor,
n' —p € Pic(C) is a divisor on C of degree n— 1 and [Z] is a codimension two closed
subscheme of X.

Since E is L-stable we have

(D+(n—1)FI' =d{zH* + z(2n —H" 1) 4y + (n 1))

=d'(2nz -2 +y+n—1)

—d
< dd@g—l) _ ¢1(E2)L

which is equivalent to
dzn —2x 4+ 2y —1 < 0.

Since D is numerically equivalent to an effective divisor, z =0 and y >0 orz >0
and —y < z(H%! + dy) (see Remark 5.1.7). By hypothesis n >> 0, in particular
n > Hd#ﬂ + 3 and hence the only solution is z = y = 0. Thus D = D' = 0 and

we have the exact sequence
(5.16) 0 — Ox(n*(n—p") — E — Iz(H—7"(n"-p)) — 0

where [Z] = co( E(—7*(n —p'))) is a complete intersection of type (H, Fj) being p a
point of C and n' — p,n — p’ € Pic(C) are two divisors on C of degree n — 1.

Let us call M the irreducible family of rank 2 vector bundles given by an exact

sequence of type (5.16). We have
dz’m(]\/lz(2; H,nHF)\U) =dimM
= dimEzt'(Igr(H — 7*(w — p)), Ox(7*(n — p')))

—KE(—=7*(n —p')) + 2dimPic®(C) + dimL
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- being L the family of codimension two closed subschemes Z of X, complete inter-
section of type (H, Fy) being p € Pic(C) a point of C.

Applying the functor Hom(.,Ox(—H + 7*(w' — p) + 7*(n — p'))) to the exact
sequence

0 — Ox(—H - F5) — Ox(-H)® Ox(—F5) — Iz — 0
we get the long exact sequence
0— Hom(Iz,Ox(—=H + n*(n' = p) + 7*(n —p'))) —
HOx (m*(n' = p) + 7" (n = p)) & H”OX(FH +7t(n" = p) + 7" (n = p') + Fp)
— HOx(m*(n' —p) + 7 (n — p') + F5) > Ext*(Iz,0x(—H + (W — p) + 7*(n — p")))

— H'Ox(m*(W —p) +7*(n—p')) @ H'Ox(—H +7*(W —p) + 7*(n —p') + F5) = ---.

Once more, applying Lemma 5.1.8 and Serre’s duality, together with the hypothesis
deg(Oc(—m+p' —n' +p+ K¢)) <0 we get

dimHom(Iz, Ox(—=H+m"(W'=p)+7*(n—p"))) = h°Ox (= H+m"(w'=p)+7* (n—p')) = 0,
RO (m*(n' — p) + 7*(n — p')) =h0c(n' —p+n—yp')
=X(Oc(' —p+n—p))=2n-1-g,
hOx(m* (W = p) + 7 (n = p") + Fy) =h"Oc(w' —p+n—p'+p)

=x(Oc(W —p+n—p +p))=2n—g,

POx(m*(n —p)+7*(n—p") = h'Oc(W —p+n—yp') =0,
]ZOOX(—H + W*(n’ - p) + W*(n - pl) + FE) = O,

W Ox(—H +m* (' —p) + 7*(n —p') + F5) = 0.
Therefore,

dimBExt' (I(H — 7*(n' = p)),Ox(r*(n —p'))) =2n—g—2n+14+g=1.
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From the exact sequence (5.16) we get
RE(—7*(n —p")) = h’Ox =‘1.
Putting all these results together we obtain
dimM =1—1+2g+ dimL = h°E + h’Oc(p) + 29 — 2

where the last equality follows from Lemma 5.1.9.
By hypothesis h°E + h°O¢(p) < hE(—n —1'), so

ROE + h00¢(p) + 29 — 2 = dimM
< dimM—L-(2; H,nHF)
=h'€(=n—-n")+29 -1
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where the last equality follows from Theorem 5.2.4. Therefore, U is a non-empty,

open dense subset of Mf(2; H,nHF) and
dim(M7(2; H,nHF) \U) = h°€ + R°Oc(p) +2g — 2

which proves Claim 1.

Claim 2: Take any E € M(2; H,nHF). E is T'-stable if, and only if, E € U.

Proof of Claim 2: Let us see that any £ € U is T'-stable or, equivalently, that for

any rank 1 subbundle Ox (D) of E we have

By Theorem 5.2.4 any E € U C M+(2; H,nHF) sits in an exact sequence

L

0 — Ox(H—-7"n") — E — Ox(7™) — 0

where n,n' € Pic(C) are two divisors of degree n.
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Hence, for any subbundle Ox (D) of E € U we have
(1) Ox(D) = Ox(H —7*n') or
(2) Ox(D) — Ox(ﬂ'*n).
In the first case, D = H - nF — C being C numerically equivalent to an effective

divisor. Hence,

1d —1d —d,

DL =(H-nF-C)L <(H-nF)L

= d4(H™ +b—n)

e d

_ a®L
2

dd(Hd+1 ‘H))
< 2

where the last inequality follows from the fact that b < 2n — H1,

Assume Ox (D) < Ox(m*n). From Proposition 5.2.2; (a), H°E(~7*n) = 0.
Therefore D = 7*n — C’ being C' = I|H + mF numerically equivalent to a non-zero

effective divisor. Hence,

1d

DI = (nF — 1H = mP)L"* = di(n — LH™ — Ib — m)

=d%n —2ln+ 3l —m)

—d

c E)L _d*(2n-3
< 1(2 — (2 )

if, and only if, —4in + 6l + 3 — 2m < 0. Since C' = [H + mF is numerically
equivalent to a non-zero effective divisor, I > 0 and —m < [(H* + dy)orl =0
and m > 0 (see Remark 5.1.7) . Since by hypothesis n > ‘qd—+;ﬂ1 + 3, if I > 0 then
—4In+61+3—2m < 0. IfI'=0, since E € U, H'E(—n*(n—p’)) = 0 for any divisor
n—p’ on C of degree n — 1. Therefore, we have m > 1 and 3 — 2m < 0 which proves

that E is L -stable.

Assume that E € Mz-(z; H,nHF)\U. Let us see that E is not L -stable. Since

E ¢ J\JZ(Z; H,nHF)\U, we have

OX(_vr*(n - p'))‘—> E
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being n — p’ € Pic(C) of degree n — 1. If E is L -stable, we have

—rd d _
(n—1)FT" = di(n - 1) < cl(?[’ _ 4 (2’; 3)

which is a contradiction. Therefore, E is not L -stable and we have proved Claim 2.

Clatm 8: Any F € Mf’(2; H,nHF) sits in a non-trivial exact sequence
0— Ox(H — 7&’*11,) — F — O,\’(T(*n) — 0
being n,n’ € Pic(C) two divisors on C of degree n. In particular,

M(2; H,nHF) C M7(2; H,nHF),

Proof of Claim 8: Since co(E(—H + n*n’)) = 0, arguing as in Proposition 5.1.13 we
get that E(—IH — n*m) being [ > 0 and m € Pic(C) of degree m, has a non-zero
section whose scheme of zeros has codimension > 2. To end the proof of Claim 3

we only need to show that [ =1 and m = —n.

Since F is L -stable and Ox (IH + n*m) < E we have
—d

— d( frd+1
(lH+mF)Ld =dYIH" +1b+m) < Cl(?L Al 5 +9)

which is equivalent to m < —(2/ — 1)n + ————-—3(252_1)-

On the other hand, since F(—!H — n*m) has a non-zero section whose scheme

of zeros has codimension > 2, we get
0 < c(B(=IH —mm))H*? = ((n+2lm—-m)HF +1(l — 1)H?)H*!
=n+ (20— 1)m+1( — 1)H*,

Therefore, m > _—lﬁl“—;%%[f—l—‘—"
By hypothesis 2n > H%! + dvy + 6. Hence, putting these inequalities together

we obtain

(5.07) A=l on Moy G0N <y o (0] - 1) 4 322D

20-1  21-1 20-1 2[-1
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which implies that
3
P(2n +dvy) — 1(2n + dy) - 5 <0 with | > 1.
Hence, | = 1 and using once more (5.17) we obtain m = —n +1 or m = —n.

In the first case, let n; € Pic(C) be a divisor on C of degree n — 1. Since
c2(E(-H + n*ny)) = Z = HF and E(—H + 7*n;) has a non-zero section whose

scheme of zeros has codimension > 2, we have the exact sequence
0 — Ox(H —7*n) — E — Iz(r"n,) — 0

where ny,n; € Pic(C) are two divisors on C of degree n — 1. Hence, from Lem-

ma 5.1.10 we have
e3(E) = cs(Iz(m*n))) + co(Iz(7*n)))er (Ox (H — 7*ny)) = 2H?F

which contradicts the fact that for any rank two vector bundle E we have c3(E) = 0.
Therefore, m = —n and E sits in the exact sequence

00— Ox(H— 71"*1’1’) — F — O,\'(W*I‘l) — 0

where n,n’ are divisors on C' of degree n.

Since n > H—dgﬂi + 1, by Proposition 5.2.2, E is L-stable which proves our last

Claim.
From Claims 2 and 3, we deduce

MZ,(Z;H, nHF)= U C ME(Q;H, nHF)

is a non-empty open dense subset. Indeed,

d?lm(]\/[z(Q; H,nHF)\U) = h° + h°0¢(p) + 29 — 2
< dz’m(M—E(H, nHF))

=htE(—m*'n — ') + 29 — 1
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and this proves what we want. O

Final Remark: We want to finish this chapter showing, by means of two examples,
that moduli spaces M (2;c;,c2), we have studied, strongly depends on the fixed

ample divisor L.

(1) Let X be a P2-bundle over a smooth, projective curve C of genus g > 0 and
L = H + 2F an ample divisor on X. It follows from [BM97]; Theorem 0.1,

that the number of irreducible components of the moduli space
ML(2; H, CQHF) = ]\4[,(2, H+ 2F, (CQ + 1)HF)

grows to infinity when c, goes to infinity.

(2) Let X be a P2-bundle over a smooth, projective curve C of genus g > 0, an

| integer k > 2, ¢; € H4X,Z) and L an ample divisor on X such that c;L =
2k2L3. Tt follows from [Bal98]; Theorem 0.1, that Sing(M(2;0,c;)) # 0, i.e.,

the moduli space My (2;0,c2) of rank two, L-stable, vector bundles E on X

with fixed Chern classes ¢;(E) = 0 and c,(E) = ¢, is a singular variety.

This two examples show again that the moduli space My, (2; H, coHF') strongly de-
pends on the fixed polarization L.



Appendix A

Resum en Catala

En aquesta tesi estudiem els espais de moduli Mx (7;c1, " -, Cmin{rn}) de fibrats
vectorials F de rang r, H-estables, en una varietat projectiva X amb classes de Chern
ci(E) € H*(X, z) fixades, tot mostrant noves i interessants propietats geometriques
de Mx g(r;ci,- - ,Cmin{r,n}) que clarament reflecteixen la filosofia general la qual
sosté que els espais de moduli hereten moltes de les propietats geometriques de la

varietat base X.

De manera més precisa, considerem X una varietat projectiva, llisa i irreductible,
de dimensié n, definida sobre un cos algebraicament tancat de caracteristica zero, k,
H un divisor ample en X, r > 2 un enter i ¢; € H*(X,Z) per i =1,--- ,min{r,n}.
Denotem per Mx p(7;c1, ", Cmin{rn}) 'espai de moduli de fibrats F, de rang r,
H-estables segons la nocié de Mumford-Takemoto, amb classes de Chern ¢;(E) = ¢;

per i =1,--- ,min{r,n}.
Les principals giiestions i problemes que s’han considerat son:

(1) Sigui X una superficie racional, llisa, irreductible, H un divisor ample en X i

0 << ¢z € Z. L’espai de moduli Mx g(2;c;, o) és racional?
De forma més general,

(2) Sigui X una superficie racional, llisa, irreductible, H un divisor ample en X i

0 << ¢ € Z. L’espai de moduli Mx y(r;c1,¢;) és racional?



178 A. Resum en Catala

(3) Sigui X una superficie K3 algebraica i H un divisor ample en X. Determinar
invariants (7, ¢y, ¢2, 1) pels quals espai de moduli Mx g(7; ¢y, c2) és biracional
a I’ esquema de Hilbert Hilb'(X).

(4) Que es pot dir de la geometria de I’espai de moduli My g (2; ¢y, ¢2) si X és una
varietat de dimensi6 arbitraria?. Es connex, llis, irreductible i racional?

Les dues primeres qiiestions varen ser formulades en [Sch90]; Problema 21,
[Sch85]; Problema 2 i [OV88]; Problema 2 i la qiiestié (3) va ser formulada per
Nakashima en [Nak97]. El principal objectiu de la quarta gilestié és provar que
per varietats X de dimensié més gran que dos, si triem adequadament un divisor
ample H en X, estretament lligat a cs, aleshores M x.1(2; ¢1, ¢3) reflecteix molts dels

atributs geometrics de X.

Els espais de moduli de feixos lliures de torsié (resp. de fibrats vectorials) se-
miestables (resp. estables) en una varietat projectiva, algebraica, llisa i irreductible,
varen ser introduits en la decada dels setanta. Un cop s’ha establert I’existéencia de
I’espai de moduli, la pregunta natural que sorgeix és: que es pot dir sobre la seva
estructura local i global?. Diversos autors s’han dedicat a estudiar-ne I’ estructura,
des del punt de vista de la geometria. algebraica, de la topologia i de la geome-
tria diferencial, tot establint interessants connexions entre aquestes disciplines. En

aquesta memoria, nosaltres pendrem un punt de vista algebraic i geometric.

Al llarg dels anys, s’han provat molts resultats interessants referents als espais de
moduli Mx g (7;¢1,- -, Cmin{rn}) €1 el cas en que la varietat base X té dimensié dos,
1 es coneix molt poc en el cas en que la varietat base té dimensio tres o superior a tres.
Permeteu-nos recordar breument algun d’aquests resultats. Per aix0, denotarem per
MX’H(’I”; C1," ", Cmin{rn}) 1'espai de moduli de feixos lliures de torsié £ de rang r,
semiestables respecte H segons la nocié de Gieseker-Maruyama, en una varietat
X de dimensié n, amb classes de Chern ¢;(F) = ¢;, i = 1,--- ,min{r,n} fixades.

Observis que Mx z(7;¢1," "+, Cmin{r,n}) €s un obert de My g(7;¢1,- | Cminiran})-

En els anys vuitanta, Donaldson va provar que els espais de moduli My (2;0, ¢;)
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de fibrats vectorials de rang dos, H-estables en una superficie projectiva, llisa i irre-
ductible X, sén genéricament llisos i de la dimensié esperada 4c; — ¢? — 4x(Oyx) +
Pg(X) + 1, sempre i quan ¢, sigui prou gran ([Don86]). Com a conseqiiéncia va ob-
tenir espectaculars resultats sobre la classificacié de varietats C° de dimensié qua-
tre. Des d’aleshores, han estat provats molts i interessants resultats. Per citar-ne
algun, és conegut que My y(r;ci,co) (resp. Mx g(r;ci,cz)) és una varietat pro-
jectiva (resp. quasi projectiva) i que per ¢, suficientment gran, no és buit ([Sor97],
[Mar77] 1 [Mar78]), genéricament llis, irreductible i normal ([Don86], [Zuo91], [GLI6]
i [OGr96)) de la dimensié esperada 2rc; — (r — 1)ef — r2x(Ox) + p,(X) + 1.

Els espais de moduli de fibrats vectorials en corbes algebraiques llises amb deter-
minant fixat sén sempre uniracionals i molt sovint racionals. Per espais de moduli de
fibrats vectorials en superficies algebraiques, llises i irreductibles, la situacié canvia
drasticament i1 des del punt de vista de la geometria biracional, revela interessants
trets. Per exemple, com a conseqiiéncia dels treballs de Mukai ([Muk84]) sabem que
si X és una superficie K3, algebraica, llisa i irreductible, aleshores HX, g(2;¢1,¢2)
té dimensi6é de Kodaira 0. Molt recentment Li ha provat que si X és una superficie
minimal de tipus general, amb divisor canonic reduit, aleshores Mx y(2;c;,co) és
també de tipus general ([Li94]), tot mostrant que la gveometria de la superficie i la

de 'espai de moduli estan estretament lligades.

A continuacié centrarem la nostra atencié en ’estudi de la racionalitat dels espais
de moduli Mx g(r;c1,cz). Per X = P?, Maruyama (resp. Ellingsrud i Stromme) va-
ren provar que si ¢; —4c; # 0 (mod 8), aleshores I'espai de moduli MP2,OP2(1)(2; c1,C2)
de fibrats vectorials de rang dos en P? que sén Op2 (1)-estables, amb classes de Chern
c1 1 ¢y és racional ([Mar85] and [ES87]). Temps més tard, Maeda va provar la racio-
nalitat de ’espai de moduli MIF‘z,oH,,zu)(zi c1,¢y) per a tot parell d’enters (cy, ¢;) € 22
sempre i quan ]\4]}»2,0[?2(1)(2;01,62) no sigui buit ([Mae90]). EI resultat de Maeda
juntament amb el fet que fins ara no es coneix cap contraexemple al fet que I’espai
de moduli My g (2;c1,¢2) és racional quan la superficie base ho és, déna lloc a la

primera qiiestié considerada en aquest treball, la qual reformulem a continuacié:

QUESTIO (1): Sigui X una superficie racional, llisa i irreductible. Fixem ¢, €
Pic(X) 10 << ¢y € Z. Existeix algun divisor ample H en X pel qual Mx 5(2; ¢, ¢2)
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és racional?

En aquest treball donem una resposta afirmativa a aquesta qiiestid. A més a
més, provem que si X és una superficie racional minimal o una superficie de Fano,
aleshores per tot divisor ample H en X, I'espai de moduli Mx z(2; ¢y, ¢c2) és racional
sempre i quan no és buit. Per a totes les altres superficies racionals, provem que
Mx 1(2;¢1,c2) és racional sempre i quan ¢; >> 01 (Kx + F)H < 0, sent F' una
fibra de 7 : X — P' i Kx el divisor canonic de X.

Com a principals ingredients utilitzem: la teoria de feixos prioritaris introduida
per Lazlo i Hirschowitz i desenvolupada més tard per Walter; la relacié que hi ha
entre espais de moduli de fibrats vectorials en una superficie llisa i irreductible X
i els espais de moduli de fibrats vectorials en la superficie X obtinguda explotant
un nombre finit de punts de X, desenvolupada per Nakashima en [Nak93b]; i les
propietats biracionals dels espais de moduli de fibrats vectorials estables de rang
dos en superficies algebraiques. Si recordem la definicié d’estabilitat en el sentit de
Mumford-Takemoto i en el sentit de Gieseker-Maruyama

Definicié: Sigui X una varietat projectiva i llisa de dimensié n i H un divisor

ample en X. Per a un feix lliure de torsié6 F' en X es defineix

pi (F) = %,
_ X(F ®Ox(mH))
PF(’ITL) = Tk(F)

El feix F' és H-semiestable, en el sentit de Mumford-Takemoto, si
pa(E) < pr(F)

per a tot subfeix no nul £ ¢ F amb rk(E) < rk(F). Si es verifica la designaltat
estricta, diem que F' és H-estable en el sentit de Mumford-Takemoto

i diem que el feix F' és G-semiestable respecte H, en el sentit de Gieseker-Maruyama,
sl

Pg(m) < Pp(m) sent m >> 0
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per a tot subfeix no nul E C F amb rk(E) < rk(F). Si es verifica la desigualtat
estricta, diem que F' és G-estable en el sentit de Gieseker-Maruyama

veiem, sense cap mena de dubte, que la definicié d’estabilitat depén del divisor
ample H triat. Aixi doncs, és natural preguntar-nos pels canvis que experimenta
Mx g (r;c1,¢c2) quan H varia. Sabem que el con de divisors amples de X té una
estructura de cambres tal que Mx g(r; ¢, c2) només depén de la cambra de H i, en

general, My (r; ¢y, c2) varia quan H travessa una paret entre dues cambres.

Es diu que una component irreductible M de Mx 1,(2; ¢, cz) és trivial si per a
qualsevol polaritzacié H, existeix un feix en M que és H-estable. Una polaritzacid
L és trivial de tipus (c1,c2) si tota component de l’espai de moduli My 1 (2; ¢, c2)

és trivial. En [Qin91], Qin va formular la segiient conjectura

CONJECTURA.: Existeixen polaritzacions trivials de tipus (¢, cz) € Pic(X) x z
si 4cy — c? és més gran que certa constant ¢ = ¢(X) que depén només de X.

Nosaltres hem provat aquesta conjectura de Qin per a superficies projectives,
anticanoniques, llises i irreductibles. En altres paraules, hem vist que si X és una
superficie llisa, racional i anticanonica, aleshores els espais de moduli Mx y(2; ¢, ¢2)
1 Mx 3(2;¢1, c2) s6n biracionalment equivalents, quan no sén buits i la ¢, és més
gran que certa constant ¢ = ¢(X), que només depen de X i que nosaltres cal-
culem explicitament. En el cas en qué X és una superficie llisa, racional, no ne-
cessariament anticanonica, hem provat que si c; >> 0, aleshores els espais de moduli
Mx g (r;cr,c2) 1 Mx g (r; c1, ¢2) sén biracionals, sempre i quan H(Kx + F') < 0 i
H'(Kx + F) < 0. Com abans, F denota la fibra de 7 : X — P! i Kx el divisor

canonic de X.

Tots aquests resultats ens permeten, en moltes ocasions, fixar convenientment
el divisor ample H en X i aix0 és justament el que sovint fem quan volem estudiar
propietats biracionals de I’espai de moduli Mx g(r; ¢, c2).

Per tal de resoldre la qiiesti6 (1), hem establert dos criteris de racionalitat per als
espais de moduli Mx g(2;c1,cy) de fibrats vectorials £ de rang dos, H-estables, en
una superficie racional, llisa i irreductible, amb classes de Chern ¢;(F) = ¢; i co(E) =

¢y fixades. El primer criteri funciona per superficies racionals anticanoniques, en
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altres paraules, en superficies racionals que tenen el divisor anticanonic efectiu. El
segon, funciona per superficies racionals arbitraries. Aleshores, utilitzant aquests
criteris o construint families irreductibles de fibrats vectorials (resp. feixos simples
i prioritaris) sobre una base racional suficientment gran, hem resolt completament

la qiiesti6 (1).

Hem extés els resultats sobre la racionalitat dels espais de moduli Mx (2;¢1, ¢2)
de fibrats vectorials de rang dos a espais de moduli Mx g(r; ¢, cz) de fibrats vecto-
rials de rang arbitrari, tot donant una resposta parcial a la qiiesti6 (2). La resposta,
afirmativa a la qiiestié (1) juntament amb les noves aportacions a la qiiestid (2)
donen un ferm suport al fet que 'espai de moduli Mx g(7; ¢y, c2) és racional sempre

1 quan X sigui racional.

En relacié a la qiiestié (3), hem generalitzat a rang arbitrari els resultats de
rang dos provats independentment per Zuo ([Zuo91b]) i per Nakashima ([Nak93])
que fan referéncia a aquesta qiiestio. Es ben conegut el fet que si X és una superficie
algebraica K3 aleshores I'esquema de Hilbert Hilb'(X) de subesquemes zero dimen-
sionals de X de longitud / té una estructura simplectica (veure [Bea83]). D’altra
banda, en 1984, Mukai va demostrar que I’espai de moduli de feixos simples també
té una estructura simpléctica. Per tant, és natural que ens preguntem si els es-
quemes de Hilbert Hilb'(X) i els espais de moduli Mx y(r;c1, c2) estan relacionats.
Utilitzant la correspondencia de Serre i transformacions elementals hem determinat
invariants (7, c1, ca, [) per als quals existeix una aplicacié biracional entre ’esquema
de Hilbert Hilb'(X) i I'espai de moduli Mx g(r;c1,cp) de fibrats vectorials E de
rang r, H-estables en una superficie K3, llisa i irreductible, amb classes de Chern
¢;i(E) = ¢; fixades. '

En la literatura, no és possible trobar resultats generals sobre espais de moduli
de fibrats vectorials estables en varietats de dimensié més gran o igual a tres. No
ens cansarem de remarcar el fet que quan es treballa amb fibrats vectorials estables
en varietats de dimensié arbitraria la situacié canvia drasticament i quasi no té
res a veure amb la que ens trobem quan treballem en superficies. Resultats com

ara la llisor i la irreductibilitat dels espais de moduli de fibrats vectorials estables
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en superficies esdevenen falsos per espais de moduli de fibrats vectorials estables
en varietats de dimensié més gran o igual a tres. Es for¢a freqiient I’existéncia
d’espais de moduli de fibrats vectorials en varietats de dimensié més gran o igual
a tres que no sén ni llisos ni irreductibles. Per citar-ne algun, en [Ein88] (resp.
[AO95]), Ein (resp. Ancona i Ottaviani) prova (resp. proven) que el nombre minim
de components irreductibles de ’espai de moduli de fibrats vectorials estables de
rang dos (resp. rang 3) en P* (resp. P°) amb ¢, fixada i ¢, tendint cap a infinit,
creix cap a infinit. El lector pot consultar [BM97] per tenir una generalitzacié del
resultat d’Ein a varietats projectives de dimensié tres i [MO97] per veure exemples

d’espais de moduli de fibrats vectorials en P?"*! amb ¢; >> 0, que sén singulars.

Donada C una corba projectiva, llisa i irreductible 1 £ un fibrat de rank d + 1 en
C, anomenem P*-fibrat a la varietat X de dimensié d definida per X = P(£). Les
nostres contribucions a la qiiestié (4) proven que per a P’fibrats, X, i per un divisor
ample L en X convenientment escollit, I'espai de moduli Mx 1(2;c1,c2) de fibrats
vectorials F de rang dos, L-estables en X, amb classes de Chern fixades, és una
varietat projectiva, llisa i irreductible. En altres paraules i de forma més precisa,
provem que I’esmentat espai de moduli és un PY-fibrat sobre Pic’(C) x Pic®(C).
Si, a més a més, X és un P’fibrat racional, i.e. X és un P%fibrat definit sobre
C = P, aleshores Pespai de moduli My (2;¢1, ¢2) és també racional. Un cop més,
aquest resultats desvetllen el fet que moltes de les propietats geometriques de ’espai
de moduli estan lligades a les corresponents propietats geometriques de la varietat

base.

De tota manera, volem fer esment que el nostre resultat depen fortament de la
polaritzacié que hem fixat. Veurem com lespai de moduli My 1(2;¢;,cy) canvia
quan el divisor ample L varia i provarem, mitjancant uns exemples, que els nostres

resultats esdevenen falsos per altres divisors amples.

Com a conseqiiéncia dels metodes que utilitzem al llarg d’aquest treball, també
calculem el grup de Picard d’alguns espais de moduli. Utilitzarem els grups de
Picard per veure que, en general, donats dos divisors amples H i H' en X, I'aplicacié

biracional existent entre Mx g (7;c1,¢2) 1 Mx g/(7;¢1,¢2) no és un isomorfisme.
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Part dels resultats d’aquesta tesi apareixeran publicats en:

e L. Costa and R.M. Miré-Roig, On the rationality of moduli spaces of vector
bundles on Fano surfaces, Journal Pure Appl. Algebra, to appear, [CM97].

e L. Costa, K3 surfaces: moduli spaces and Hilbert schemes, Collectanea Mat-

hematica, to appear, [Cos98].

Els continguts d’aquesta tesi sén els segiients: Capitol 1 esta dedicat a proveir
el lector dels coneixements més elementals que es faran servir al llarg del treball.
En les primeres dues seccions, hem recopilat les principals definicions i els principals
resultats referents a feixos coherents i a espais de moduli, com a minim aquells que
es faran servir al llarg de la memoria.

En la seccié 1.3, revisem alguns fets sobre parets i cambres que més endavant
utilitzarem per tal d’entendre i descriure com Pespai de moduli Mx 1(2; ci, ¢p) canvia
quan variem el divisor ample L.

Finalment, en la seccié 1.4, recordem la classificacié, llevat isomorfisme, de su-
perficies racionals, llises i irreductibles. A més a més, per tal que el treball sigui el
maxim autocontingut possible, provarem alguns resultats referents a grups de coho-
mologia de fibrats de linia en superficies racionals, llises i irreductibles, que nosaltres

no hem trobat explicitament en la literatura.

El designi del Capitol 2 és establir criteris de racionalitat per espais de mo-
duli Mx (2;¢1,¢p) de fibrats vectorials E de rang 2, H-estables en una superficie
racional, llisa i irreductible X. Aquests criteris seran basics per tal de donar una

resposta afirmativa a la Qiestié (1).

En la seccié 2.1, tot utilitzant la teoria de parets i cambres introduida en la
seccié 1.3, estudiarem com canvia ’espai de moduli Mx g (2; ¢, ¢2) quan H travessa
una paret que separa dues cambres adjacents. Més concretament, provarem:

Teorema 2.1.10: Sigui X una superficie racional, anticanonica, llisa i irreductible,

2
c1 € Pic(X) i cy € Z. Suposem que 4¢y — ¢? > 2 — S—I;& Aleshores tenim

(a) Tota polaritzaci6é L de tipus (ci, cz) és trivial sempre i quan My 5(2; ¢y, c2) no

sigui buit.
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(b) Donades dues polaritzacions Ly i L, els espais de moduli My 1,(2;¢y,¢2) 1

Mx 1,(2;¢1, ¢2) sén biracionals si no sén buits.

Aquest resultat prova la conjectura de Qin, esmentada anteriorment, en el cas en

que la superficie base X és una superficie racional, anticanonica, llisa i irreductible.

Com a conseqiiencia important obtindrem el primer criteri de racionalitat, valid
per a espais de moduli My 5(2; c1, ¢2) de fibrats vectorials E de rang dos, H-estables
en una superficie racional, anticanonica (i.e. —Kx és efectiu), llisa i irreductible,
amb classes de Chern ¢;(F) = ¢; fixades.

Primer criteri de racionalitat 2.1.13: Sigui X una superficie racional, anti-
canonica, llisa i irreductible, ¢; € Pic(X) i ¢, € Z. Suposem 4dcy — ¢ > 2 — %i i
que existeix una classe d’equivalencia numerica ¢ que defineix una paret no buida
de tipus (c1, cp) isatisfa d(§) =0 (ie. 2 =2 —4cy i E2+EKx +2 = 0). Aleshores,

es verifica el seglient

(1) Existeix un divisor ample L en X tal que lespai de moduli Mj;(2;¢1,c2) és buit
0 és una varietat projectiva, racional, llisa i irreductible de dimensi6 4¢, —c?—3
1 PZC(.AII'J(Z C1, Cg)) = 7.

(2) Per qualsevol divisor ample L en X, 1'espai de moduli Mp(2; ¢y, ¢;) és buit o
és és una varietat quasi projectiva, racional, llisa i irreductible de dimensié

462 —C%—g.

L’objectiu de la seccié 2.2 és el d’il.lustrar mitjancant una série d’exemples, el
fet que si L; i Ly s6n dues polaritzacions en una superficie projectiva, anticanonica,
llisa 1 irreductible, que es troben en dues cambres diferents, aleshores I’aplicacié
biracional existent entre els espais de moduli Mx 1, (2; ¢1, ¢2) 1 Mx 1,(2;¢1, c2) no és,
en general, un isomorfisme.

De manera més precisa, fixem X, una superficie de Hirzebruch, llisa i irreduc-
tible amb e > 1, 1 < ¢, un enter i ¢; = Cp € Pic(X,). Considerem les classes

d’equivaléncia numerica

§o=Co—200F 1 &, =Cp—2(ca — 1)F
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sent < Cp, F > els generadors de Pic(X,) i les corresponents parets Wé i W&
definides per &y i & respectivament.

Denotem per Cg la cambra tal que CoNW £ ()i per a qualsevol L € Co, L&y > 0,
per Cy la cambra amb C; N W # () i per a qualsevol L € Cy, L& < 0, per C; la
cambra tal que Co N W& # () i per a qualsevol L € Cy, L& < 0 i finalment per C
una cambra, diferent de Cy, C; i C,, tal que per tot L € C, tenim L& < 0.

Donada una polaritzacié L = aCy + bF, podem representar L com un punt de
coordenades (a,b) en el pla. El segiient dibuix ens descriu la situacié de parets i

cambres que estem considerant

&
. we e
0

L
oL/] .L2

oL

Co

Nosaltres en aquest exemple hem provat que

o Si Lo € Cy, aleshores My, (2;c1,¢2) = 01 Pic(Mp,(2;¢1,¢2)) = 0.

e Si Ly € Cy, aleshores My, (2;c1,co) & PA2~43 {1 Pic(My, (2;¢1,¢)) = Z.
e Si Ly € Cy, aleshores Pic(My,(2;c¢1,cs)) es troba en la succesi6 exacta

0— GEfl — P’L‘C(]\fLZ(Q;Cl,Cz)) — 7Z — 0.

Si L € C, tenim Pic(My(2;c1,c)) = Pic(My,(2;¢1, ¢3)).
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En particular aixo ens diu que els espais de moduli sén biracionals perd no

isomorfs, que és justament el que es pretenia veure.

En la secci6 2.3, hem generalitzat el Teorema 2.1.101 el Criteri 2.1.13 a superficies
racionals, llises i irreductibles arbitraries. Per fer possible aquesta generalitzacid, fem
servir feixos prioritaris, com a principal ingredient. Aquests van ser introduits per
primer cop en P? per Hirschowitz-Laszlo ([HL93]) i en superficies reglades en general
per Walter ( [Wal93]). Tot fent ds del fet que l’espai de moduli de feixos simples i
prioritaris és llis i irreductible (Theorem 2.3.5) i del fet que sota certes condicions en
H (que (Kx+F)H < 0sent K el divisor canonic de X i1 F' la fibrade 7 : X — P')
, els fibrats H-estables sén prioritaris (Lemma 2.3.2), obtenim el Teorema 2.3.6 que

extén el Teorema 2.1.10 a superficies racionals arbitraries. En concret, obtenim

Teorema 2.3.6 Sigui 7 : X — P! una superficie biracionalment reglada, F €
Num(X) la classe d’equivaléncia numerica d’una fibra de 7, ¢; € Pic(X) ic, € Z
tal que A(r;cy,co) >> 0. Aleshores, donats dos divisors amples qualssevols L; i
L, en X verificant L;(Kx + F) < 0, 1 = 1,2, els espais de moduli My, (7;¢y,¢2) i

My, (r; ¢y, ¢2) s6n biracionalment equivalents.

També hem obtingut un segon criteri de racionalitat, aplicable en el cas en
que X és una superficie racional, llisa i irreductible qualsevol, que ens garanteix la
racionalitat de I’espai de moduli Mx g (2;¢1,c2) de fibrats vectorials E de rang dos,
H-estables en X, amb classes de Chern ¢;(E) = ¢; i c(E) = ¢y fixades. Aquest
criteri generalitza el Criteri 2.3.7 a superficies racionals arbitraries i és formulat com

seguelix

Segon criteri de racionalitat 2.3.7 Sigui 7 : X — P! una superficie biracio-
nalment reglada, F' € Num(X) la classe d’equivaléncia numeérica d’una fibra de 7,
c1 € Pic(X) icy € Z. Suposem que 4cy — 2 > 2 — y—;i 1 que existeix una classe
d’equivaléncia numerica ¢ que defineix una paret no buida de tipus (c¢;,¢2) 1 que

verifica

(1) 2=c—4dey, E+EKx+2=0,

(2) HOOX(§+3[(X) = HOOx(f—f-]{X -f—F) = HOOX(-[{X -+ F * é) = O
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Aleshores,

(1) Existeix un divisor ample L en X tal que I’espai de moduli M; (2; ¢, ¢;) és buit
o és una varietat projectiva, racional, llisa i irreductible de dimensi6 4cy —c? —3
1 Pic(M;(2;¢1,¢2)) = Z.

(2) Per ¢ >> 0 i qualsevol divisor ample L en X tal que L(Kx + F) < 0,
lespai de moduli M(2; ¢y, cy) és una varietat quasi projectiva, racional, llisa

i irreductible de dimensié 4c; — ¢ — 3.

Sigui 7 : X — P! una superficie llisa, biracionalment reglada i H un divisor
ample en X verificant L(Kx + F) < 0, sent F' € Num(X) la classe d’equivaléncia
numeérica d’una fibra de 7 i Kx el divisor canonic de X. En el Capitol 3 provem
que l'espai de moduli My g(2; ¢y, c2) de fibrats vectorials £ de rang dos, H-estables
en una superficie racional, llisa i irreductible X, amb classes de Chern ¢;(E) =¢; €
Pic(X) 10 << ca(E) = c; € Z fixades, és una varietat quasi projectiva, racional,
llisa i irreductible de la dimensié esperada. En efecte, provem el segiient Teorema

que resolt completament la Qiiestié (1)

Teorema 3.3.7 Sigui X una superficie racional, algebraica, llisa i irreductible. Per
a qualsevol divisor ¢; € Pic(X), 0 << ¢ € Z i qualsevol polaritzacié L en X tal
que L(Kx + F) <0, sent F' € Pic(X) la classe d’equivaléncia numeérica d’una fibra
de 7 : X — P!, l'espai de moduli My 1(2;¢1,c2) és una varietat racional, quasi

projectiva, llisa i irreductible de dimensi6 4c; — ¢ — 3.

Ens agradaria remarcar que un cop fixada la primera classe de Chern ¢; €

Pic(X), la condicié ¢; >> 0, o equivalentment,

1
A(r;er,c) = ;(02 -

c;) >>0
—ct)
ens garanteix que l’espai de moduli M 1.(r; ¢y, c2) és no buit.

Segons la classificacid, llevat isomorfisme, de les superficies racionals, llises i

irreductibles,

Teorema 1.4.1 Sigui X una superficie minimal, racional, llisa i irreductible . Ales-

hores, X és isomorfa a P? o a una superficie de Hirzebruch X, amb e # 1.
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Al llarg de la seccid 3.1, centrem la nostra atencié al cas en el que la varietat base
és una superficie racional minimal. Per a qualsevol superficie racional, minimal, llisa
i irreductible X, i qualsevol divisor ample H en X, provem la racionalitat de tot
espai de moduli My g(2;cy, c) de fibrats vectorials E de rang dos, H-estables en X
amb classes de Chern ¢;(E) = ¢; fixades, que sigui no buit. Dit d’una altra manera,
utilitzant el primer criteri de racionalitat ( Criteri 2.1.13) o construint families de
fibrats vectorials de rang dos, H-estables o construint families de feixos simples i
prioritaris de rang dos, totes elles sobre una base racional de dimensié prou gran,

provem el segiient resultat

Teorema 3.1.8 Sigui X una superficie racional, minimal, llisa i irreductible, ¢; €
Pic(X) 1 ¢; € Z. Aleshores, per a qualsevol polaritzacié L en X, l'espai de mo-
duli My 1(2;c1,c2) és una varietat quasi projectiva, racional, llisa i irreductible de

dimensié 4c, — ¢ — 3, sempre i quan no sigui buit.

En la secci6 3.2, X és una superficie de Fano i per a qualsevol divisor ample H en
X, provem la racionalitat de 'espai de moduli Mx g(2;c¢;,ce) de fibrats vectorials
E de rang dos, H-estables en X amb classes de Chern ¢;(E) = ¢;. Aix0 és, provem

el seglient resultat

Teorema 3.2.7 Sigui X una superficie de Fano, ¢; € Pic(X) i ¢ € Z. Aleshores,
per a qualsevol polaritzacié L en X, I’espai de moduli My 1(2; ¢y, ¢2) és una varietat
quasi projectiva, racional, llisa i irreductible de dimensié 4c, — c? — 3, sempre i quan
no sigui buit.

Volem remarcar que en aquesta seccié és de vital importancia el fet que X és
una superficie racional i anticanonica i que per tant podem utilitzar el Criteri 2.1.13
de racionalitat. Es precisament aixd el que fem (juntament amb la construccié de
families de fibrats vectorials de rang dos H-estables, sobre una base racional prou
gran) per tal de provar la racionalitat de I'espai de moduli My 5 (2; ¢y, c2).

Finalment, en al seccié 3.3, provem la racionalitat de Mx g (2;c;,c2) per a la
resta de casos de superficies racionals, i.e. per superficies racionals, no-minimals,
obtingudes en explotar una superficie de Hirzebruch en, com a minim, més de vuit
punts diferents, tot utilitzant el segon criteri de racionalitat (Criteri 2.3.7). En el
cas en que aquest segon criteri no es pot aplicar, construim families de feixos de rang
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dos, simples i prioritaris, sobre una base racional adequada. 'Aleshores, utilitzant
el fet que per a qualsevol divisor ample H en X tal que (Kxy + F)H < 0, els
fibrats vectorials H-estables sén prioritaris (Lemma 2.3.2), deduirem la racionalitat
de V'espai de moduli My (2;¢1,¢s) (Theorem 3.3.6). Es a dir, el segiient Teorema

Teorema 3.3.6 Sigui X, una superficie de Hirzebruch i sigui X una superficie
racional i llisa obtinguda en explotar X, en s punts diferents i L un divisor ample
en X tal que L(Kx + F) < 0. Per a qualsevol enter ¢c; >> 0, 'espai de moduli
M7,(2; ¢y, co) és una varietat quasi projectiva, racional, llisa i irreductible de dimensié

4ey — 2 - 3.

Volem remarcar que la hipotesi H(Kx + F') < 0 tan sols es fa servir en aquesta

darrera seccio.

En el Capitol 4 estudiem espais de moduli My g(r; ¢1, cz) de fibrats vectorials
de rang r, H-estables en superficies racionals, minimals o en superficies K3 alge-

braiques.

Durant la seccié 4.1, ens tornem a dedicar a estudiar el delicat problema de
la racionalitat de ’espai de moduli Mx g(r;cy,c) sent X una superficie racional i
minimal. En primer lloc, tot construint una familia de feixos simples i prioritaris
sobre una base racional prou gran, provarem la racionalitat de determinats espais
de moduli Mx, g(r;c1,co) de fibrats vectorials E de rang 7, H-estables, en una
superficie de Hirzeburch X, llisa i irreductible, amb classes de Chern ¢;(F) = ¢; i
ca(E) = ¢y fixades. Permeteu-nos precisar que volem dir amb aixd de determinats,

tot enunciant el resultat que es prova.

Teorema 4.1 Sigui X, una superficie de Hirzebruch, llisa i irreductible, H un divisor
ample en X, ¢1(E) = ¢; € Pic(X,) i co(F) = ¢ € Z tal que A(r;ep,cy) >> 0.

Suposem que es verifica una de les seglients condicions
e cF=10r—1(mod r);
o c;F=r—2(mod r)icQ—%i—gi—(T—l):O(mod 2);

2

e i\ F =2 (mod 71)ica+cCy— 52‘%—+ % +1=0 (mod 2),
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sent F' la fibra de 7 : X, — P'. Aleshores, 'espai de moduli My, g (r;ci,c) és
una varietat quasi projectiva, racional, llisa i irredcutible de la dimensié esperada
2rcy — (r —1)c — (r2 —1).

Com a corolari deduim la racionalitat de I’espai de moduli MHDZ:OP?U) (r;c1,co) de
fibrats vectorials E de rang 7, Opz( 1)-estables en el pla projectiu amb discriminant
A(r; ¢y, ¢2) prou gran (Teorema 4.1.14), sempre i quan es verifiqui una de les seglients

condicions
ecg=1o0r—1(mod r)

e ¢, =7 —2(mod r)icz—%i-l-?’—gi—(r—l):O(mod 2);

e ¢, =2 (mod r)icQ—I—cl—%i—g—gl—#l:O(mod 2).

Volem remarcar que el Teorema 4.1.13 i el Teorema 4.1.14 constitueixen una im-
portant contribucié al problema de demostrar que els espais de moduli Mx z(r; ¢1, c2)
s6n sempre racionals si X és racional. Aquest resultats amplien, i en diversos sentits
milloren, treballs anteriors duts a terme per Gottsche ([Got96]), Katsylo ([Kat92]),
Yoshioka ([Yos96]) i Li ([Li97]).

En la secci6 4.2, centrarem la nostra atencié en ’estudi dels espais de moduli
Mx g(r;c1,c0) de fibrats vectorials E de rang r, H-estables en una superficie K3,
algebraica, llisa i irreductible X, amb classes de Chern ¢;(E) € Pic(X)icy(E) € Z
fixades. Determinarem invariants ((r, ¢, ¢2),1) € (Z X Pic(X) X Z) X Z per als quals
existeix una aplicacié biracional ¢ entre ’espai de moduli My g(r; ¢y, c2) i 1’esquema
de Hilbert Hilb'(X) de subesquemes zero dimensionals de X (Theorem 4.2.1). Con-

cretament, provarem el segiient resultat

Teorema 4.2.1 Sigui X una superficie algebraica K3 i H un divisor ample en
X. Considerem l'espai de moduli Mg (r; ¢y, k(n)) de fibrats vectorials F de rang r,
H-estables, en X amb classes de Chern det(E) = ¢; € Pic(X) i

ct

e2(B) = k(n) := 5 + gnQH2 +neiH + (r +1).

D’altra banda, considerem ’esquema de Hilbert Hilb"™(X) de subesquemes zero
dimensionals de X de longitud I(n) := k(n) + r—(%,:l—)nsz + (r — 1)ncy H. Aleshores,
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per n. >> 0 hi ha una aplicacié biracional

¢ Mpy(r;ci, k(n)) — Hild™ (X).

Notem que el ”pullback” de Pestructura simpleéctica de Hilb'(X) ([Bea78]) via
Paplicacié biracional ¢ déna una estructura simpléectica a Mx 5 (r; c1, ¢2), que coin-
cideix amb ’estructura simpléctica de My y(r;c,ca) determinada per Mukai en
[Muk84].

Al llarg del Capitol 5 estudiem espais de moduli Mx 1(2; ¢y, c2) de fibrats vec-
torials E de rang dos, L-estables en P’-fibrats definits sobre una corba C projectiva,
llisa i irreductible, de dimensi6 arbitraria, amb classes de Chern ¢;(E) = ¢;, 4 = 1,2

fixades.

Iniciem la seccié 5.1 recordant fets basics sobre P’fibrats definits sobre una
corba projectiva, llisa i irreductible, de génere g > 0, amb la finalitat de proveir el
lector dels coneixements que es faran servir al llarg de la resta de les seccions. En

destaquem:

Lema 5.1.8'Donat b € Pic(C), considerem el fibrat de linia Ox(aH + 7*b) en un
pé-fibrat X = P(E) sobre una corba C. Tenim

(
0 si—d—1<a<0

H'(X,0x(aH +7'6)) = ¢ Hi(C,5%(€) ® Oc(b)) Csia>0

H**1=(C, 5~ 1=%(€) ® Og(b)) sia < —d—1
\

sent b := —b +det(€) + K¢, K el divisor candnic de C i S4(&) I’ a-éssima poténcia,
simetrica de &.

Finalitzarem aquesta seccié amb una Proposicié clau per al desenvolupament
dels posteriors resultats. Aquest resultat ens permet garantir l'existéncia d’una

seccid, o, de cert torsat d’un fibrat vectorial de rang dos, amb lloc de zeros, oq, de

codimensié més gran o igual que dos. El resultat és el segiient

Proposicié 5.1.13 Sigui X un P%-fibrat sobre una corba C, ¢, un enter, L = dH+0F
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un divisor ample en X, e € {0,1} i F un fibrat vectorial de rang dos, L-estable en
X. Suposem que una de les segiients condicions es verifica

(i) aE=H+eF,oE=(cg+e)HF,b=2c,— H*' +e—~ 11

dy + H+!1
ST a

1.
2 + i

Ca

(i) aF =eF,E=-H*+ (2c;+e)HF,b=cy — H* 4+ ¢~ 11

cy > dy+ H¥' 42,

Aleshores, F(—H + m*cy) té una seccid, o, tal que el seu esquema de zeros, og, té
codimensié més gran o igual que dos, sent ¢ € Pic(C) un divisor de grau deg(cy) =

Co.

En la seccié 5.2 provem els nostres resultats principals sobre espais de moduli
Mx 1(2;¢1,¢2) de fibrats vectorials de rang dos, en P’fibrats, X = P(£) — C,
definits sobre una corba C' projectiva, llisa i irreductible, de genere g > 0.

Alhora d’estudiar els espais de moduli My 1(2;¢1,c¢z) hem considerat diferent
casos, segons la classe d’equivaléncia numerica }de cy. Els resultats obtinguts, jun-

tament amb la posterior generalitzacid, sén els segiients

Teorema 5.2.4 Sigui X un P¢-fibrat sobre C i ¢, un enter tal que ¢, > w +1.
Fixem un divisor ample L = dH + bF en X amb b = 2¢c; — H*™! — (1 —¢) i
e € {0,1}. Aleshores, ’espai de moduli My (2; H + eF, (c; + ¢)HF) és una varietat
projectiva, llisa i irreductible de dimensié h'Ox(H — m*cy — m* ¢y — m*e) + 29 — 1,
sent ¢y, ¢, € Pic(C) de grau ¢, i ¢ € Pic(C) de grau e. En efecte , és un PN-fibrat
sobre Pic®(C) x Pic®(C) sent,

N :=h*'Ox(H — m*cy — w*cy — we) — 1.

Teorema 5.2.8 Sigui X un P%-fibrat sobre C amb d > 11i ¢, un enter tal que c; >
H%*'4dy+2. Fixem un divisor ample L = dH+bF en X sent b = c;— H™'—(1—¢) i
e € {0,1}. Aleshores, M (2;eF, —H?+ (2c,+¢e)HF) és una varietat projectiva, llisa
i irreductible de dimensié h*Ox (2H —7*cy—T*cy —m*e) +2g—1, on ¢y, ¢y, ¢ € Pic(C)
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sén divisors en C amb deg(cs) = deg(cy) = coideg(e) = e. En efecte, és un PM-fibrat
sobre Pic®(C) x Pic’(C) sent

M := h'Ox(2H — 7% ¢y — 7*¢, — m'e) — 1.

Com a conseqiiéncia dels resultats anteriors veiem que si X és un P%fibrat,
normal i racional, i.e. C' = P!, aleshores, 'espai de moduli My 1(2; ¢y, ;) és també

racional.

Arribats a aquest punt, ens agradaria remarcar que amb el segiient resultat, el
qual generalitza els anteriors, queden estudiats tots els espais de moduli Mx 1.(2; ¢1, ¢2)
de fibrats vectorials £ de rang dos en un P%fibrat, X, tals que un punt genéric

[E] € Mx 1(2;c1,c2) esta donat per una extensié no trivial de dos fibrats de linia.

Teorema 5.2.12 Sigui X un P4-fibrat sobre C amb d > 1. Considerem enters b, a, e
amb e € {0,1} i fixem un divisor ample L = ol + BF en X. Suposem que es

verifiquen les segilients condicions

0>-2a>-d-1, a=ad, B=-b—aH™+e-1 i
—ab > a?H* + a’dy + afa + 2).
(resp. 0>1-2a>-d-1, a=2a-1)d, f=-2b—(2a~1)H" +e—-1

i —2ab> (2a — 1)aH*" + (2a — 1)ady + a(2a — 1) + 1.)

Aleshores, 1'espai de moduli M (2;eF,—a?H? + (ae — 2ab)HF) (resp. l'espai de
moduli My, (2; H + eF,a(l — a)H? + (b + ae — 2ab)HF)) és una varietat projectiva,
llisa i irreductible de dimensié h'*Ox(2aH + 7*(b + b’ — ¢)) + 29 — 1 (resp. de
dimensié A*Ox((2a — 1)H +7*(b+¢)) +2g — 1), sent b, b’, e € Pic(C) de grau bie
respectivament. Es a dir, és un PN-fibrat (resp. PM-fibrat) sobre Pic?(C) x Pic®(C)
sent N := h*Ox(2aH + 7*(b + b’ —¢)) (resp. M :=h'Ox((20 — 1)H + 7*(b + ¢))).

La prova de tots aquests resultats ens permet calcular la dimensié de Kodaira
(Corolari 5.2.14) i descriure el grup de Picard (Corollary 5.2.15) d’aquests espais de
moduli. Aixi, doncs, tenim els seglients resultats
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Teorema 5.2.14 Sigui X un P-fibrat sobre una corba C i cy,d € Z tal que d > 0
ic > Hﬂ%@ +1 (resp. ¢; > H¥*' +dy+2id > 1). Fixem un divisor ample
L=dH +0bF en X amb b= 2c; — H¥*' — (1 —¢) (resp. b=cy — H¥* — (1 —¢)) i
e € {0,1}. Aleshores,

Kod(Mp(2; H+eF,(c; +e)HF)) = —c0

(resp. Kod(Mp(2;eF,—H*+ (2¢c; + e)HF)) = —00).

Teorema 5.2.15 Sigui X un P¢-fibrat sobre una corba C'i cy,d € Z tal que d > 0
1cy > H—H# +1 (resp. ¢ > H®*!' +dy+2id > 1). Fixem un divisor ample
L=dH +bF en X amb b=2c; — H¥*! — (1 ~¢) (resp. b=1cy — H*' — (1 —¢)) i
e € {0,1}. Aleshores,

Pic(Mp(2; H + eF, (c; + e)HF)) = 7 & IT* Pic(Pic®(C) x Pic’(C)).
(resp. Pic(My(2;eF,—H?+ (2c; + €)HF)) 2 2 & IT* Pic(Pic’(C) x Pic®(C)) ).
En particular, si X és un P?-fibrat racional, aleshores

Pic(Mp(2; H + eF, (co + €)HF)) & Pic(My(2;eF, —H* + (2c, + ) HF)) 2 Z.

Notem que, un cop més, els espais de moduli capturen molta informacié de la
varietat base.

La clau per obtenir aquests resultats és la construccié de fibrats vectorials no
trivials de rang dos com a extensi6 de dos fibrats de linia. En contra del que passa en
altres varietats projectives, com per exemple en les varietats de Fano o en els espais
projectius, on tota extensié escindeix i per tant no és possible aquesta construccio,
en P%fibrats és possible construir bones families de fibrats vectorials de rang dos,
L-estables, donats per una extensié no trivial de dos fibrats de linia, essent L un
divisor ample en X triat adequadament.

En la seccié 5.3 il.lustrem, mitjancant una col.leccié d’exemples, com canvia
I'espai de moduli Mx 1,(2; ¢, ¢2) quan el divisor ample L travessa diferents parets.

De manera planera, el segiient resultat ens diu que hi ha una paret "critica” W tal
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que si L la travessa, aleshores ’espai de moduli My 1,(2; ¢y, ¢2) és buit, i per contra, si
L esta en certa cambra propera a W, aleshores I’espai de moduli queda elegantment
descrit. Per tal d’enunciar aquest resultat, ens cal introduir més notacié, si més no,
ens cal fer una descripcié geometrica de la situacié de la qual partim en el Teorema.
Donada una polaritzacié L = aH + bF', podem representar la classe de L com a un

punt del pla de coordenades (a,b). El segiient esquema ens dona una idea de les

parets i cambres que apareixen en el resultat que segueix a continuacié.
W (&8

W&S)

Teorema 5.2.12 Sigui X un P%fibrat sobre una corba C' i 0 << n € 2. Es verifica

el segiient
(a) Peratot L' € C", 'espai de moduli Myn(2; H,nHF) és buit.

(b) Per a tot L € C, lespai de moduli Mz(2; HnHF) és un PY-fibrat sobre
Pic®(C) x Pic®(C) sent N := h'Ox(H — n*n’ — 7*n) — 1 amb n,n’ € Pic(C)
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divisors de grau n. En particular, és una varietat projectiva, llisa i irreductible

de dimensié h'Ox(H — *n" — 7*n) + 29 — 1 i té dimensié de Kodaira —co.
Per a tot L' € C', lespai de moduli MZ/(2; H,nHF) és un obert no buit de
Pespai de moduli M7(2; H,nHF) i

dim(M (2 H,nHF) \ Mp(2; H,nHF)) = K€ + K°0c(p) +2(g — 1),

amb p € C un punt de C. En particular, MZI(Z;H ,nHF) és una varietat

quasi-projectiva, llisa i irreductible de dimensié
R Ox(H — n*n —7*n) + 29 — 1

amb n,n’ € Pic(C) de grau n i Kod(]\lzl (2; H,nHF)) = —o0.
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