
Chapter 2

Individual-based Models in

microbiology

2.1 Interest and background

Grimm (1999) de�nes Individual-based Modelling (IbM) as 'simulation models that
treat individuals as unique and discrete entities which have at least one property in
addition to age that changes during the life cycle'. IbM has been used in ecology since
the 1970s, and during the last decade it has also come to be used in microbiology (Ginovart
et al., 2002a; Kreft et al., 1998).

2.1.1 Why Individual-based Modelling in microbiology?

IbMs are bottom-up approaches. Several rules are applied to individuals (microor-
ganisms) and environment, and the outcoming behaviour of statistical systems is studied.
Although IbM is sometimes used in microbiology for its predictive scope, its strong point
is its use to improve understanding of systems. Continuous mathematical modelling at a
population level is usually a good way to extract relationships among di�erent parame-
ters, so that the predictions are immediately given by the mathematical equations. These
models are sometimes too general or, on the contrary, too speci�c. The improvement
in the understanding of systems, in which IbM has an important role to play, produces
progress in the mathematical models.

Experiments are essential for proving new theories or detecting unexpected situations.
Nevertheless, they are often time-consuming and expensive. Sometimes IbM simulations
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can contribute to the experimental approach by means of virtual experiments (Hilker et
al., 2006). For instance, IbM simulations may help in experiment design by testing the
possible con�gurations, or they can be used for large-scale experimental conditions that
can not be assessed in the laboratory.

In this section we are going to present a small review of some IbM applications in
the study of microbial systems to review their evolution in the past decade. This review
will include some examples of the use of INDISIM in di�erent areas. INDISIM is the
modelling and simulation technique that will be used in subsequent chapters to tackle the
bacterial lag phase. Therefore, in Section 2.2 an outline of INDISIM, including a small
review of its historical evolution and an explanation of the generic model for bacteria and
space, will be presented. Then, the adaptation of INDISIM to the study of the bacterial
lag phase, which is one of the aims of this thesis, will be introduced in greater detail in
Section 2.3.

2.1.2 Individual-based Modelling of microbial systems: some ex-

amples

IbM of microbial systems has been applied to the study of di�erent microorganisms
and situations. The fundamental unit is always the cell, which may be prokaryotic or
eukaryotic. In this section we present several examples of IbMs applied to the study of
microbial systems.

IbM of prokaryotic cells

INDISIM (Ginovart et al., 2002a) and BacSim (Kreft et al., 1998) are two IbMs
designed to simulate the growth and behaviour of prokaryotic cells. Both of them take
bacteria as the fundamental unit, and simulate their growth in a culture medium. The
major rules that govern the bacteria refer to their motion or shoving, nutrient uptake,
metabolism and maintenance, reproduction cycle and death or lysis.

Ginovart et al. (2002a) presented two nice examples of emergent behaviours. First, the
use of Blackman kinetics at an individual level resulted in the well-known experimental
relationship between the culture's growth rate and the nutrient concentration (Bermúdez
et al., 1989) (Fig. 2.1). Then, a mechanistic and local de�nition of the temperature at an
individual level resulted in a global behaviour that reproduced Ratkowstky's experimental
observations (Ratkowsky et al., 1982; Ratkowsky et al., 1983).

Another example of IbM of prokariotic cells is the paper by Kreft et al. (1998). It
showed that, in BacSim simulations, the use of the Donachie (1968) model for the cellular
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Figure 2.1: The assumption of Blackman kinetics at the individual level (solid line) provides

good results for the IbM simulations (triangles) that �t the experimental data (circles) better than

Monod kinetics does (dashed line) (Bermúdez et al., 1989).

cycle at the individual level reproduced the cell size dependence on growth rate.

IbM of eukaryotic cells

In the framework of the eukaryotic cells, we �nd several adaptations of INDISIM to
study di�erent individuals. INDISIM-YEAST was designed to simulate the growth of
yeast populations in batch culture (Ginovart et al., 2007). The basic unit are the yeast
cells (Saccharomyces cerevisiae), which are governed by speci�c rules that model their
uptake, metabolism, budding reproduction and viability. The growth takes place in a
liquid medium, modelled as a three dimensional closed spatial grid with two kinds of
particles (glucose and ethanol). The results of the simulations are in good qualitative
agreement with established experimental trends.

We also �nd an INDISIM adaptation called INDISIM-RBC (Ferrer et al., 2007), which
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took the red blood cells (RBC) as the fundamental unit for the model and simulations.
It is an adaptation of INDISIM to simulate in vitro cultures of Plasmodium falciparum

(the parasite of malaria) infected red blood cells. The major rules governed the RBC
behaviour (motion, uptake and metabolism, infection process and viability), and the
nutrient di�usion and the parasites spread were also modelled to study their e�ect on the
in vitro culture. The study concluded that the spreading of the parasites and susceptibility
to invasion are thresholds for the evolution of the infection in the culture.

Figure 2.2: Example of INDISIM-RBC simulations for studying in vitro cultures of Plasmodium

falciparum infected red blood cells (Ferrer et al., 2007). The plot shows the simulation output

data compared to experimental results obtained from two di�erent commercial culture mediums,

performed according to the MR4 protocol Week culture. Large dots represent experimental results.

Small dots represent simulation results. (a) Sample of a synchronous culture. (b) Sample of an

asynchronous culture.

Knudsen et al. (2006) presented a third example of IbM of eukaryotic cells. It modelled
the hyphal growth of a biocontrol fungus in soil. The basic units were the fungal segments.
This study was a step towards the prediction of fungal growth in natural habitats.

There are some IbMs that model the behaviour of phytoplankton (El Saadi and Bah,
2006; Hellweger and Kianirad, 2007). The term phytoplankton encompasses all photoau-
totrophic microorganisms in aquatic foodwebs, and it incorporates both eukaryotic and
prokaryotic cells. The IbM simulator iAlgae was used by Hellweger and Kianirad (2007).
The phytoplankton cells are the fundamental unit, and the rules model their mass bal-
ances, photosynthesis, respiration, reproduction, death and motion. Their growth in a
batch culture and in a river (real system) were simulated, and the use of the IbM instead of
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lumped-system (population level) modelling in di�erent situations was commented upon.

The di�erent IbMs and the associated simulators usually evolve from the study of
speci�c cases. That is, their complexity is increased step by step when required by
the characteristics of the system to be studied. At the same time, the strategies that
are developed for tackling speci�c processes or systems are incorporated for later use in
cases. We may consider several cases that have forced IbMs to improve their capacity for
studying systems with temporal, spatial or structural complexity.

Temporal complexity

The temporal evolution of a bacterial culture or any other microbial system is not
linear or constant along a time period. Usually, the temporal evolution is characterized
by �uctuations or by di�erent phases that are related to the changes in the environment.

An example of an IbM used for tackling a system with a speci�c temporal complexity
was presented by Ginovart et al. (2002a). They used INDISIM to study the metabolic
oscillations in batch bacterial colonies. They found an explanation at an individual level
that reproduced the experimental results about the heat dissipation and the pressure
evolution of a population of Escherichia coli in a batch colony. The oscillations in heat
and pressure that appear in atypical regimes were reproduced by the simulations.

A second example is the study of the intermediate lag phase due to changes in tem-
perature that was undertaken by Dens et al. (2005a and 2005b). The I+C+D theory of
cell division (Képès, 1986) was explored to study the cellular adaptation to medium and
temperature shifts. Several simulations were performed with BacSim, assuming di�erent
models for the adaptation at an individual level. They found an unexpected result: the-
ory predicted no intermediate lag due to temperature shifts, while experiments showed
that this lag exists. Two explanations were proposed: (i) the product µ · (C + D) is not
constant, because it decreases at lower temperatures; and (ii) a lag in biomass growth
appears for shifts from low temperatures. BacSim simulations assuming each model pro-
duced results consistent with the experimental data, but they could not elucidate which
was the correct model. Thus, the conclusion was drawn that further research was needed
in order to distinguish between the two proposed mechanisms.

Spatial complexity

The spatial e�ects in real systems are often essential. For instance, if the spatial
properties are not homogeneous or some �uxes or priviliged directions exist, the spatial
e�ects acquire a special importance.
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An interesting IbM approach for examening a spatially complex system was the study
of bacterial growth on agar plates by Ginovart et al. (2002c). The bacteria were again
the fundamental unit, but in this case they were �xed in the environment (agar plate).
The spatial growth of the colony was only due to the bacterial reproductions. INDISIM
simulations reproduced di�erent colony patterns by changing the inoculation conditions
and the nutrient distribution (Fig. 2.3).

Figure 2.3: Three di�erent stages in the simulated growth of the bacterial colony on agar plates.

The squares and circles identify branches which have stopped growing (Ginovart et el., 2002c).

BacSim was also used to study a spatially complex system. It was used to simulate
bacterial growth in bio�lms (Kreft et al., 2001). It considered spherical bacteria in a con-
tinuous space, and the spreading occured by shoving of cells to minimize overlap between
them. The substrate and product di�usion and reaction were modelled. The bacteria
of the inoculum were put on a solid substratum layer with surrounding liquid where the
nutrient transport took place. Spreading and di�usion-reaction processes produced a high
heterogeneity of substrate concentrations in the bio�lm.

Structural complexity

Real systems are usually very complex in many senses. We have already talked about
the temporal and the spatial complexities, but often there is a third kind of complexity.
We talk about structural complexity, for instance, when di�erent microbial species coexist
and interact in a culture.

A nice example of this is the INDISIM-SOM model (Ginovart et al., 2005; Gras,
2004). It was developed for studying the mineralization of C and N and nitri�cation
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processes in soil. Due to the high complexity of the real system, two di�erent prototypes
of microbial cells were considered: nitri�er and ammoni�er bacteria. Their modelled
behaviour took into account motion, uptake, metabolism, reproduction, death and lysis.
Then, nine di�erent types of substrate were considered: �ve groups of organic compounds
and four groups of mineral compounds. Several mass transfer processes among them were
modelled. An outline of this complex model is shown in Figure 2.4. After the scaling
process and calibration, the simulations were in agreement with the experimental data
obtained from laboratory incubations of three di�erent Mediterranean soils.

Figure 2.4: Sketch of the mineralization and immobilization of C and N model and the nitri�-

cation process due to the microbial activity in soils, implemented with INDISIM-SOM (Ginovart

et al., 2005).

A similar example is the INDISIM adaptation for studying the composting process.
INDISIM-COMP is in its �rsts stages, but an overview of the biological model is given by
Gras et al. (2006). In this case, three groups of microorganisms were considered, namely
mesophilic bacteria, thermophilic actinomycets and mesophilic fungi. Six di�erent types
of organic substrates were considered, as well as �ve groups of gases and two mineral
compounds in their liquid phase (water and ammonium). The model took into account
several processes such as input and output �ows to and from the system, di�usion of
the labile compounds, mass transfer and heat transfer. The simulations reproduced the
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succession of the di�erent microbial prototypes, as well as the cumulative CO2 evolution.
Prats et al. (2006) presented a preliminary version of the spatial model developed for
inclusion in an improved version of INDISIM-COMP.

In the framework of eukaryotic cells, INDISIM-FLOC was used to study �occulation
in brewing yeasts (Ginovart et al., 2006). The model was used to compare two published
theoretical mechanisms for �occulation of brewing yeasts at an individual level. The
simulation results allowed the authors to discriminate which was the best mechanism,
according to experimental data.

2.2 INDISIM

2.2.1 Background and history

The acronym INDISIM stands for INDividual DIScrete SIMulation. The origin of this
methodology dates back to the 80s. Scienti�c discussions among Dr. Margalef, one of the
fathers of modern ecology, Dr. Wagensberg, professor of Thermodynamics of Irreversible
Processes (TIP) at the Universitat de Barcelona (UB), and Dr. Giró and Dr. Padró,
from the Molecular Dynamics research group at the UB, suggested the idea of applying
simulation techniques typically used by physics in solving N-bodies problems (Monte Carlo
and Molecular Dynamics) to theoretical ecology. The convergence of scientists coming
from di�erent scienti�c disciplines was the key point for the subsequent development of
this approach and the philosophy behind it, which was assembled by Giró et al. (1985).
This initial process culminated in the appearence of the simulator Barcelonagram (Giró
et al., 1986; Valls, 1986).

This methodology was adapted to simulate bacterial growth. Interesting results in
the framework of microbiology were obtained, as well as succeessful results in general
ecology. Wagensberg et al. (1988b) matched the mathematical theory of information
with the biological adaptation through the Maximum Entropy principle. This conceptual
work succeeded in explaining the typical biomass distribution of a bacterial culture in
exponential growth conditions: experimental measurements, Monte Carlo simulations
and theory predictions were in agreement (Wagensberg et al., 1988a). Bermúdez et al.
(1989) succeeded in simulating the growth of Serratia marcesens and Escherichia coli

in di�erent situations, in accord with experimental data. In the framework of complex
systems, Solé et al. (1992) studied the existence of self-organized criticality in ecosystems
by means of Monte Carlo simulations of a simple ecosystem. The Monte Carlo simulations
of predator-prey populations showed the chaotic dynamics that reported in Solé and Valls
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(1992).
López (1992) ventured fully into the discrete simulation of bacterial cultures. He

presented a study of the dynamics of a bacterial culture, as well as a thermodynamic
approach to this concern. The simulator was improved by Ginovart (1996), where it
began to be applied to the study of non-bacterial processes such as yeast �occulation and
fermentation and the growth of �lamentous fungi.

Ginovart et al. (2002a) presented, for the �rst time, a simulation methodology IN-
DISIM as such. In this paper, the general methodology is explained in detail. From
there, INDISIM evolved by studying speci�c cases of interest, as noted in the previous
section. INDISIM simulations have succeeded in topics as varied as bacterial growth in
agar plates (Ginovart et el., 2002c) and the study of the in�uence of bacteria size and
shape in yoghurt processing (Ginovart et al., 2002b), in which the interaction between
two bacterial species (S. thermophilus and L. bulgaricus) was tackled by means of the
study of axenic and mixed cultures.

At that point, INDISIM was ready to take on more complex microorganisms, processes
and systems. This marked the birth of several adaptations such as INDISIM-YEAST
(Ginovart et al., 2006; Ginovart et al., 2007), which simulates �occulation in brewing
yeasts, INDISIM-RBC (Ferrer et al., 2007), for studying the spread of the malaria parasite
in in vitro red blood cell cultures, INDISIM-SOM (Ginovart et al., 2005; Gras, 2004),
which considers organic matter dynamics in soil, and INDISIM-COMP (Gras et al., 2006;
Prats et al., 2006), which focuses on the modelling and simulation of the composting
process (see Section 2.1.2).

The INDISIM methodology has improved tremendously since its beginnings. Every
application to the study of a speci�c system has required development of new strategies
that have then been used by other studies. For instance, INDISIM-SOM required a great
e�ort in modelling di�erent kinds of microorganisms and substrate particles that were
used when building the INDISIM-COMP biological model. The spatial complexity was
tackled in INDISIM-COMP, and the strategies developed were useful in building the
INDISIM-RBC spatial model.

In some specialized reviews the authors have shown their interest in INDISIM method-
ology. For instance, O'Donnell et al. (2007) says, in his review of modelling and prediction
in soil microbiology published in Nature reviews, that Ginovart et al. (2005) were 'the
�rst to use an approach similar to this to model the dynamics of carbon and nitrogen in
soil and included the spatio-temporal dynamics of nine di�erent resource components in
a simulated soil sample that contained 1 g of soil and 107 individual bacterial cells'.
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2.2.2 General outline of INDISIM in bacterial systems

INDISIM is designed to simulate the growth and behaviour of microbial cultures (Gi-
novart et al., 2002a). In its basic and simplest version, it simulates bacterial growth in a
certain culture medium. The growth takes place in a two-dimensional space, but it can
be extended to three dimensions when this is required by the system under study.

The basic unit is the bacterial cell, each one being de�ned by means of a vector
−→
Bi.

This vector contains the bacterium label (integer number i), its spatial position, and its
characteristics (instantaneous mass, mass to initiate the reproduction cycle, or reproduc-
tion cycle status, among others). Some of these properties may change throughout the
bacterial life, which is governed by the 'model of bacteria' (Section 2.2.3).

INDISIM is discrete in space and time. The environment is divided into spatial cells
that contain the bacteria and the nutrient particles (Fig. 2.5). Each spatial cell is labeled
with its coordinates (x,y), and its properties are also gathered in a vector

−−→
Exy (nutrient

content or temperature, among others). The processes a�ecting the environment also
constitute a set of rules (Section 2.2.4).

Figure 2.5: The environment is discretized into spatial cells that contain the bacteria and nutrient

particles.

The time is split into discrete time steps. At each time step, every bacterium of
the system acts sequentially and, after that, actions on the environment are carried out.
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Figure 2.6 shows a certain moment of a time step when a speci�c bacterium is chosen to
act by following the rules. It has a series of particular properties that can be modi�ed at
the end of the time step, according to the actions carried out (Section 2.2.5).

Figure 2.6: At each time step, all the bacteria of the system act consecutively. The vector that

de�nes each acting bacterium contains its label, which is an integer i, its spatial position, which

is the spatial cell coordinates (x,y), and its characteristics such as the instantaneous mass, the

mass to initiate the reproduction cycle or the reproduction cycle status. This vector is updated

after the actions are carried out.

2.2.3 Modelling the bacteria

The basic unit of INDISIM is the bacterial cell. Each bacterium has its own properties,
and it is subject to a set of rules that de�nes its evolution and, therefore, that may modify
its individual properties throughout its life (Fig. 2.6).

The major rules for bacteria that are growing in a culture medium are detailed below.
This is the basic model for de�ning bacterial behaviour in INDISIM simulations. In each
application, this model is adapted to the system under study by taking into account the
kind of microorganism, the environmental conditions and the speci�c features.
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Motion

The position of a bacterial cell i may change to a new position in space, according to
a given probability pmov. The new position is randomly chosen from the available sites
within a radius dmax. The motion is considered from one spatial cell to another, since it
is the basic spatial unit. Therefore, small displacements inside the spatial cells are not
considered.

Nutrient uptake

The nutrient particles are spread in the medium. A mechanistic model for the nutrient
uptake is considered. The amount of nutrient that can be taken up by the cell is limited by
two factors: the nutrient's capacity to reach the cellular surface, and the cellular capacity
to consume the nutrient particles.

The nutrient particles are considered to be in random movement caused by essential
Brownian motion. These particles are not considered one-by-one, but together. During a
certain time interval (in the simulations, �xed by the time step), the nutrient particles in
a certain radius around the bacterium may potentially reach the cellular surface. From
these available particles, only a percentage will reach one cellular entrance in the surface.
An outline of this mechanistic model is shown in Figure 2.7.

A summary of the involved parameters in the nutrient uptake model is detailed below:

1. Umax is the mean maximum number of nutrient particles that can be consumed per
unit of time and per unit of cellular surface.

2. Umax = Z1 · (c · mα) is the maximum number of nutrient particles that can be
taken up by the bacteria. Z1 is a random variable with mean Umax and standard
deviation σ, m is the mass of the cell, α is a parameter related to its geometry and c

is a normalization constant whose value depends on the value of α. For a spherical
bacterial cell, α = 2/3 if the uptake is considered to be proportional to the bacterial
surface.

3. Dmax determines the maximum uptake range. From the position of a given bac-
terium, Dmax de�nes the number of sites, or spatial cells, that may be reached for
the purpose of nutrient particle consumption.

4. k is a given percentage of the n(Dmax) available nutrient particles within the given
range Dmax. This takes into account probabilistic considerations regarding the
entry of nutrient particles into the bacterial cell through the cellular membrane.
Therefore, the number of available nutrient particles is k · n(Dmax).
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Figure 2.7: Outline of the uptake model. The small circles represent the nutrient particles,

which are in Brownian motion. The dashed circumference contains the nutrient particles that

may potentially reach the cell surface during the time interval considered. Some nutrient particles

may bump into the cell entrances and, therefore, they are taken up by the cell.

5. At each time step, every bacterium takes up the minimum quantity between Umax

and k · n(Dmax), which we denote U .

It is important to emphasize the use of random values around a mean, given by a gaussian
function with a certain standard deviation: this is an essential part of the simulation
program, since it reproduces the diversity of the real systems. In this case the randomness
a�ects the maximum number of nutrient particles that can be consumed per unit of time
and per unit of cellular surface, as was seen in the summary of the uptake model detailed
above.

This model is based on Blackman kinetics for its simplicity, in spite of known lim-
itations. It is important to stress that the chosen kinetics applies to each individual.
When each individual follows Blackman kinetics, the culture behaviour �ts well with the
experimental results (Fig. 2.1), allowing the study of the e�ect of temperature (Ginovart
et al., 2002a; Bermúdez et al., 1989).
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The widely used Michaelis-Menten's (or Monod's) kinetics does not �t correctly with
the experimental results. Other kinetics with 3 or more parameters have been suggested,
developed and tested over the years, but they are case-speci�c and require re-�tting of
these parameters to the system under study (Koch, 2005; Kóvarová-Kovar and Egli, 1998;
Button, 1998; Dabes et al., 1973).

Metabolism

Bacterial cells need to obtain energy and structural matter in order to maintain and
repair their structure, and increase their biomass. These processes are regulated by the
metabolism (catabolism and anabolism). The primary source for energy and structural
compounds is the uptaken nutrient. Nevertheless, the cells have some reservoirs to be
used when they are under stress conditions, resulting sometimes in a decrease in their
biomass.

In the INDISIM model for catabolism and anabolism, the following parameters are
introduced:

1. I denotes a prescribed number of nutrient particles per unit of biomass or surface
(or biomass+surface) that a bacterial cell needs in order to maintain its optimum
state. It depends on the medium conditions.

2. Y denotes the metabolic e�ciency that accounts for the synthesized biomass units
per metabolized nutrient particle, and depends on the chemical reactions. We con-
sider Y as a constant.

By using the above parameters, and recalling the meaning of U (uptaken nutrient parti-
cles), we set the following control rules (Fig. 2.8):

1. Maintenance energy for the viability of a bacterial cell, mI.

2. A control relation to check whether the nutrient particles absorbed by a bacterial
cell are su�cient for its maintenance, U ≥ mI ?

3. If there is no possibility of covering the maintenance requirements of a bacterial
cell, check the possibility of its lysis or inactivation.

4. Once the viability of the bacterial cell is achieved, allow for the increase of its mass
from m to (m + B), where B = (U −mI)Y .
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5. Allow for biomass reserves within each bacterial cell, which can be used up in
the above processes whenever the local and external level of nutrient particles is
too low for the supply of su�cient maintenance requirements (Nyström, 2004). In
such situations, the bacterial biomass can be degraded to cover the maintenance
requirements, mI, only if this biomass is higher than a minimum boundary mmin

(that is, mI > (m−mmin)).

Although Y is constant, variations in I result in di�erent yields when the nutrient is
catabolized to synthesize biomass.

Figure 2.8: Outline of the metabolism model in proper conditions (nutrient availability in excess).

The circles symbolize the uptaken nutrient, which is spent in maintenance and biomass increase.

Reproduction

The model for the reproduction cycle is based on the I+C+D model (Képès, 1986;
Cooper, 2004). Our reproduction model considers a threshold in mass in order to initiate
the division process, which has a �xed duration. Therefore, two important parameters
regulate the reproduction cycle: the mass to initiate the reproduction cycle, mR, and the
reproduction cycle duration, tR.

When a bacterium is in a culture medium, it grows at a certain rate (µ). If the
conditions are proper, it reaches the mass to initiate the reproduction cycle after a while
(depending on the growth rate, µ). At that point, the reproduction cycle starts with no
possibility of return. While the DNA replication and the physical division take place, the
bacterial cell keeps uptaking nutrients and growing. Since the reproduction process has a
�xed duration, the growth rate determines the bacterial mass at the moment of division
and, therefore, the masses of the new cells. Thus, the growth rate µ determines the mean
mass of the culture. An outline of the cell cycle is depicted in Figure 2.9.

The steps that are followed by the cells in INDISIM simulations are described below:

1. To initiate the reproduction cycle, the mass of the bacterial cell must reach a speci�c
mass mR > mR,min, where mR,min is an absolute minimum mass for beginning the
reproduction cycle, and mR is the individual mass to initiate the reproduction cycle,
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Figure 2.9: Outline of the cell cycle, including the reproduction model: a threshold mass, mR,

sets the initiation of the reproduction cycle. It is given as a mean value, MR, with a deviation

σR. The bacteria keep growing during the process, which has a �xed duration tR, so that the �nal

mass at division md depends on growing conditions.

which is obtained from the normal random distribution with mean mass MR and
standard deviation σR. Again, this randomness is essential for the soundness of
the simulation results; it is inseparable from the real bacteria due to the inherent
diversity.

2. When the microorganism reaches the mass mR, the bacterial cell must wait for a
�xed period of time, tR, before the physical separation into two new bacterial cells
takes place. At the moment of the division, the mass of the bacterium is md. This
mass depends on the growth rate during the period tR.

3. When the duplication is completed, two new bacteria appear in the medium with
characteristics similar to those of the original bacterial cell. These new cells have
birth masses m1 and m2 that are equal to half of the original bacterial cell with a
certain deviation, keeping the relationship m2 = md −m1.
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4. The new bacterial cells are allowed to take up new neighbour positions in the phys-
ical lattice, or one may remain in the original spatial cell.

Viability

Whenever the environmental conditions become unfavourable (for instance, the nu-
trient runs out), bacteria may lose their viability. As a result, when the bacterial mass
drops below a certain value (a fraction of its mR), either the inactivation or the lysis of
the bacterium take place.

2.2.4 Modelling the environment

The basic spatial unit is the spatial cell. The properties of each spatial cell are
de�ned and controlled. The variables that characterize the environment may be related,
for instance, to single or multicomponent nutrient particles, to residual or end products
arising from the cellular activity, or to extracellular enzyme particles. They can also take
into account some physical properties such as the temperature or the porosity. Every
speci�c study determines which variables must be de�ned, and in all cases they are
assumed to be time dependent. The bacterial activity, the external manipulations such
as agitation or medium renewals, and the di�usion processes are the major activities that
may modify the environment properties and their spatial distribution.

Bacterial activity

The bacterial activity can modify the environment properties in di�erent ways. For
instance, the nutrient uptake changes the medium composition. If the bacterial heat
production is modelled, the environment temperature changes according to that. Usually,
the e�ect of bacterial activity is de�ned by the biological model, so it is not speci�cally
modelled for the environment.

External manipulations

The external manipulations are a characteristic of the speci�c systems that are studied.
Therefore, they have to be speci�cally modelled for each case and there is no need for a
generic model of the external manipulations.
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Di�usion

The nutrient particles (or product particles) di�usion is used in almost all INDISIM
simulations. The di�usion model is based on discrete Fick's law (Bormann et al., 2002),
and it is considered between neighbouring spatial cells (Fig. 2.10). Let us study the �ux
of a certain substance between two neighbouring cells. If we denote ∆cs as the gradient
(di�erence) in the concentration of the substance and d as the mean distance between
them, the �ux of this substance, Js, will be (Eq. 2.1):

Js = −Ds ·
∆cs

d
(2.1)

where Ds is the di�usion coe�cient of the mentioned substance.

Figure 2.10: Matter transport: di�usion between neighbouring cells. A factor 1/
√

2 is considered

in the diagonals (dotted arrows).

2.2.5 Simulation program setup

The bacteria and environment models are implemented in Compaq Visual Fortran
Professional Edition 6.1.0. This consists of three parts: (i) the initialization of the system,
with the reading of the input data, which ends with the initial con�guration of the whole
system; (ii) the main loop (time step), where the actions over the bacteria and the medium
are carried out and repeated until the simulation ends; and (iii) the �nal calculations (at
the end of each time step or at the and of the simulation) to obtain the simulation results
(output data). Figure 2.14, in the next section, shows a depiction of the basic INDISIM
�ow chart.
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Together with the detailed models, some speci�c simulation strategies must be imple-
mented: periodic boundary conditions and statistical arguments.

Boundary conditions

The conditions for the boundaries of the systems must be �xed: is it an open or a
closed system? Are we simulating the entire system or a small part of it?

Since computer capacity is still limited, it is usually impossible to simulate the growth
of an entire real system. There is a speci�c strategy that is widely used in molecular
dynamics: the periodic boundary conditions (PBC) (Allen and Tildesley, 1987). These
are a set of boundary conditions that are used to simulate an e�ectively in�nitely tiled
system.

PBC can be used in the simulation of bacterial cultures when the space is homogeneous
and isotropic. It consists of simulating a small part of the entire system that is large
enough to be representative of the whole system. Then, the simulated part is assumed
to be surrounded by several replicas. That is, what is happening in a certain point at
a certain time interval is probably being happening in a similar way in several points of
the real system. Figure 2.11 depicts a simple example of the PBC in a bacterial system.
When a bacterium or a nutrient particle goes out of the main (simulated) system, an
identical bacterium or nutrient particle (its image) enters through the symmetric point.

Statistical arguments

Statistical arguments must be introduced at two di�erent stages in the implementation
of INDISIM. First, random variables must be used in setting the individual properties
and rules, as was seen in previous sections. Every individual variable, such as the mass to
initiate the reproduction cycle or mass at birth, is set following a Gaussian distribution
centered at the experimentally observed mean value, and truncated beyond the ±1.96 σ

range in order to prevent the existence of unlikely cells. This is an indispensable strategy
in order to reproduce the diversity of the real cultures, and it is also useful to cover
non-explicit parts of the model.

The second stage is at the end of the process, when the 'microscopic' description of
the bacterial colony is related to its 'macroscopic', or global, description, namely the
properties observed by experiment. Hence, once the single-cell variables are obtained we
take a simple arithmetic average to obtain the population-averaged properties.
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Figure 2.11: Outline of the periodic boundary conditions. The large central square is the main

system, and it is surrounded by the eight replicas. If a bacterium goes out of the main system

from an upper spatial cell, an identical bacterium (image) enters the main system through the

symmetric lower spatial cell. The same process occurs with all the system compounds.

2.3 INDISIM for studying the lag phase

The modelling and simulation of bacterial cultures to study the lag phase has been
carried out with essentially the basic version of INDISIM (Section 2.2). It is important to
point out that the culture's lag phase is a phenomenon that takes place during the �rst
stages of its growth, when there is no nutrient limitation. Moreover, we are simulating the
growth of a culture under spatially homogeneous conditions (batch culture and agitated
medium). Therefore, the basic INDISIM model for bacterial behaviour is valid under
these conditions.

Only a few modi�cations have been made in order to adjust the simulator for the
case under study. They refer to the speci�c conditions of the performed simulations
and to some small new parts of the bacterial model. Furthermore, some mathematical
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calculations have been implemented in the simulation program in order to obtain the
required results. These are detailed below.

2.3.1 General outline

The simulator deals with the bacterial lag phase in batch agitated cultures. The
culture's growth simulations take place in a two-dimensional space; because we consider
an agitated and spatially homogeneous culture, the results in a three-dimensional space
would be the same. Periodic boundary conditions are used, as the simulated system is
homogeneous and isotropic.

2.3.2 Modelling the bacteria

The rules that govern bacterial behaviour are essentially the same as those explained
in Section 2.2, with these particularities:

• Motion: when a non-agitated culture is simulated, the bacteria follow the rules
explained above. If the growth of an agitated culture is simulated, the individual
bacteria motion is not taken into account because it is performed by the external
agitation process.

• Metabolism: the maintenance constant is proportional to the individual mass.

• Viability: the cell inactivation when the bacterial mass falls below the minimum is
considered (thus, no lysis is modelled).

An important part of this study of the bacterial lag phase is the metabolic adaptation of
the bacteria to a new nutrient source. In this way, a speci�c model of the enzyme e�ects
has been developed. The amount of enzyme particles, as well as their synthesis rate and
cost, will be monitored when this limiting factor is considered.

2.3.3 Modelling the enzyme e�ects

In some simulations, a metabolic adaptation to a new nutrient source is introduced. It
is modelled as an enzymatic synthesis (Pirt, 1975), so the enzyme presence and activity
must be controlled. Two di�erent situations are considered: �rst, a culture in which
the bacteria need to synthesize intracellular enzymes to catabolise the uptaken nutrient;
second, a culture medium with polymers that are not assimilable by the bacteria, so
extracellular enzymes must be synthesized by the cells and dropped into the medium to
hydrolyze the polymers into assimilable monomers.
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Intracellular enzyme

As the enzyme limits nutrient use, it will indirectly restrict the cellular uptake rate.
Therefore, in our model the intracellular enzyme will limit the maximum number of
nutrient particles that can be consumed per unit of time and per unit of cellular surface
(Umax).

Four new parameters are introduced at the individual level:

1. a mean maximum enzyme quantity per cell per unit of mass, Enzmax, and its typical
deviation, σ(Enzmax);

2. an initial quantity of enzyme per bacterial cell, Enz0;

3. the mean synthesis rate per unit of mass and time step, V enz, and its typical
deviation, σ(V enz); and

4. the energy cost of this synthesis per simulation unit of generated enzyme, Yenz.

If the bacterial cell does not have any intracellular enzyme particle, it has to synthesize
some enzymes before being able to take up nutrients from the medium.

In our model, at each time step each bacterial cell can synthesize a certain quantity of
enzyme. This synthesis takes place while the intracellular enzyme quantity is under the
maximum and once the cellular maintenance requirements are satis�ed, according to the
bacterial mass, the synthesis rate and the bacterial energy availability. That is:

1. The number of enzyme particles to be synthesized by the cell at the current time
step, nenz, is chosen as nenz = Venz ·m.

2. After satisfying the maintenance requirements, m · I, check if the enzyme synthesis
can be carried out with the uptaken particles (U − mI) > Yenznenz or with the
biomass resources, (m−mI −mmin) > Yenznenz.

3. Once the viability of the bacterial cell is achieved and the enzyme particles synthe-
sized, allow for the increase of its mass from m to (m + B), where B = (U −mI −
Yenznenz)Y .

The intracellular enzyme quantity limits the cellular uptake with a factor Enz (t)/Enzmax.
That is:

1. Evaluate the maximum number of nutrient particles that can be taken up by the
bacteria, Umax, and the avaliable nutrient particles, k · n(Dmax), as detailed in
Section 2.2.3.
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2. Transform the maximum particles that can be taken up as
U ′

max = (Enz (t)/Enzmax) · Umax.

3. Uptake U , which is the minimum number between U ′
max and k · n(Dmax).

Once the intracellular enzyme quantity reaches the �xed maximum value, the bacterial
metabolism is adjusted to the available nutrient and uptake goes on as usual. When
reproduction takes place, the enzyme quantity is distributed proportionally to the new
cells' masses.

Extracellular enzyme

The nutrient particles are considered to be polymers that can not be incorporated
through the cellular membrane. Therefore, extracellular enzymatic activity is necessary.
Enzymes must be synthesized by the bacteria, hydrolyzing the polymers into assimilable
monomers. In this situation the monomer concentration is the limiting factor for the
growth rate of the culture.

The parameters for describing this process are:

1. the mean synthesis rate per unit of mass and time step, V enz, and its typical
deviation, σ(V enz);

2. the energy cost of this synthesis per simulated unit of generated enzyme, Yenz;

3. the number of monomers contained in a polymer, Nmon;

4. the initial enzyme quantity per spatial cell, Enz0; and

5. the mean time duration of the simulated extracellular enzyme particles, tenz, in
time steps.

At each time step and for each individual cell, if there are polymers in the culture medium
and a lack of monomers around the bacterium, the cell synthesizes enzymes according to
its own mass, the synthesis rate and its energy availability. These enzymes are dumped
into the spatial cell where the bacterium is located. At each time step, each simulated
enzyme particle breaks down a certain number of polymers into the �xed number of
monomers.

In summary:

1. During the uptake process, if the medium limits the nutrient uptake and there are
polymers to be hydrolyzed, an index Igen is put to 1.
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2. During the metabolism, if Igen = 1 the bacteria synthesizes ne enzyme particles
according to the model described in previous section (intracellular enzyme). The
index is changed again into Igen = 0.

3. The nenz generated enzyme particles are dumped into the medium.

4. Extracellular enzymes are di�used within the medium, following the di�usion model.
At the end of each time step and at each spatial cell, each enzyme particle hydrolyzes
a polimer into Nmon monomers. A certain fraction of the enzyme particles (1/t̄enz)
of each spatial cell is denaturized.

2.3.4 Modelling the environment

The simulation space is divided into 300× 300 square spatial cells. Each one is iden-
ti�ed by its coordinates x and y, and its nutrient particle content is controlled. Periodic
boundary conditions are used.

The simulations reproduce the bacterial growth in agitated liquid medium. We work
with batch cultures; that is, the initial nutrient is �xed and no input or output is pro-
grammed. At each time step, and after the bacterial activity, the nutrient particles are
redistributed, either uniformly (if agitation exists) or by means of di�usion. It should be
noted that, since during the lag and exponential phases there is no nutrient limitation, for
the purposes of this study the e�ect of redistribution is the same as the e�ect of di�usion;
it has no e�ect on the results whether one or the other is chosen.

In the case of extracellular enzymes, the enzyme motion is signi�cant for the simulated
culture growth. In this case discrete enzyme di�usion is also considered. The extracellular
enzyme particle di�usion takes place after the bacterial activity.

2.3.5 Mathematical methods

Lag time calculation

We take the classic lag parameter de�nition (see Section 1.1.3). At the end of the
simulation, we make a logarithmic regression of an interval in the exponential growth to
obtain the straight line lnN = µ·t+b. We must be sure that the used interval is part of the
exponential phase. In general, if N0 is the initial number of bacteria and Nf the �nal one,
we take the interval between [lnN0+ρinf ·(lnNf−lnN0)] and [lnN0+ρsup ·(lnNf−lnN0)],
being ρinf ∈ [0.5 0.6] and ρsup ∈ [0.8 0.9]. This means that we take the upper part of
the curve, where the synchronism that sometimes a�ects the �rst part of the growth has
disappeared.
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The intersection of the prolongation of this straight line with the lnN0 line gives the
lag time (Eq. 2.2):

λ =
lnN0 − b

µ
(2.2)

Biomass distribution

In order to study the distribution of cell biomass, 25 discrete intervals of biomass with
the same width are considered and identi�ed with km; the number of bacteria in each
interval is counted to obtain the relative frequency (pkm). In Table 2.1 the values for
establishing these intervals are speci�ed. In this study we will focus on the study of the
evolution of the biomass distribution during the culture's growth.

Table 2.1: Values for setting the biomass distribution (s.u. = simulation unit).

Parameter Value

Minimum mass (s.u.) 1000

Maximum mass (s.u.) 31000

Mass interval (s.u.) 1200

2.3.6 Simulation program setup

We usually work with inocula of 100 bacteria, except when we want to study the
growth of small inocula or the e�ect of inoculum size. The initial mean mass and biomass
distribution vary with each simulation. We speak of homogeneous inoculum if the bacteria
have an initial mass equal to a �xed value, and we call it heterogeneous inoculum when
we use a sample population from a previous simulation, taken from the exponential or
the �nal phase, among which bacteria have di�erent initial individual masses (Fig. 2.12).
The former case is useful to perfectly control the initial conditions and their relationship
with the growth, but the second one is more realistic.

In this study, a standard Pentium IV computer (minimum 512 Mb) is used, with a
maximum number of 2.5 × 105 simulated cells. This number of cells is large enough, as
periodic boundary conditions are used. The simulations run for periods of between 10
and 30 min. A more detailed �ow chart of the used simulation program is outlined in
Figure 2.14.



46 Chapter2. Individual-based Models in microbiology

Figure 2.12: Initial cellular biomass distribution of a homogeneous (a) and a heterogeneous (b)

inoculum.

2.3.7 Overview of a simulation

We present an example of an INDISIM simulation that has been �tted to an experi-
mental dataset to illustrate the general operation of the simulator, as well as to quantify
some of the above-mentioned parameters. The experimental data and the corresponding
simulated curve are plotted in Figure 2.13.

In Table 2.2, the physical parameters (regarding space and time equivalences) are
speci�ed. In Table 2.3 the di�erent parameters in simulation units (s.u.) are shown.
In order to provide an understanding of these s.u., the values of three parameters in a
speci�c point of the exponential growth (t = 202.12h) are speci�ed in Table 2.4. Finally
the obtained results of this simulation (lag phase and maximum growth rate) are presented
in Table 2.5.
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Figure 2.13: Simulated growth curve (straight line) that �ts experimental points from McKellar

and Lu (2003). The calculation of the lag time by means of the geometrical method is also shown

(dotted lines).

Table 2.2: Physical parameters of the simulation for the speci�c case of Figure 2.13.

Parameter Value

Simulated system volume, VS(10−10m3) 1.13

Spatial cell volume, VC(10−15m3) 1.26

Maximum number of bacteria per spatial cell, IC(bacterial cells) 4

Time step equivalence, tSeq (min) 4.19

Initial bacterial cell concentration, C0(104cell/ml) 4.42

Maximum movement radium1, dmax(10−5m) 2.1

Maximum uptake range, Dmax(10−5m) 1.0

Fixed period of time for the reproduction, tR(min) 41.9
1In this case, it does not represent the real bacterial motion. It is used to represent the culture

agitation.
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Figure 2.14: Flow chart of the computer code (INDISIM for studying the lag phase). Note that

there are three main parts: a) the initialization, where the input parameters are read (1), the

spatial structure is de�ned according to the cellular method and periodic boundary conditions (2)

and the environment and initial population are con�gured (3); b) the main loop, where at each

time step the actions described in Figure 2.15 are taken for every bacteria of the medium (4),

the actions over the medium (nutrient di�usion or redistribution, enzyme action over polymers,

extracellular enzyme di�usion, etc.) are taken (5) and a new con�guration is obtained (6); and

c) the �nal part of the code, where the necessary calculations are made to obtain the results (7).
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Figure 2.15: Main loop of the computer code (INDISIM for studying the lag phase), where

actions on each biological element of the system are carried out (Section 2.2.3).



50 Chapter2. Individual-based Models in microbiology

Table 2.3: Simulation parameters in simulation units (s.u.) for the speci�c case of Figure 2.13.

Parameter Value

Initial mean cellular mass, m0(s.u.) 2663.4

Maximum uptake constant, Umax(s.u.) 315

Standard deviation in Umax, σ(Umax) 0.3

Mean mass to begin the reproduction cycle, MR(s.u.) 15000

Standard deviation in MR, σ(MR) 0.4

Minimum mass to initiate the reproduction cycle, mR,min(s.u.) 5000

Initial nutrient particles per spatial cell2, Nutxy,0(s.u.) 145000

Nutrient particles per unit of biomass for maintenance, I (s.u.) 0.0070

Biomass synthesis e�ciency, Y 1

Maximum enzyme per unit of mass, max(s.u.) 10

Standard deviation in Enzmax, σ(Enzmax) 0.5

Enzyme generation rate per unit of mass and time step, Venz(s.u.) 1
2One nutrient particle of the simulation is not equivalent to one real nutrient particle.

Table 2.4: Some values at a speci�c point during the exponential growth (t1 = 202.12h) for the

example of Figure 2.13 (s.u. = simulation units).

Variable Value

Mean mass, m(t1) (s.u.) 9731.6

Mean energy for the cellular maintenance, m∆I(t1) (s.u.) 67.41

Mean number of uptaken particles3, U(t1) (s.u.) 96.98
3One nutrient s.u. can be used to generate a biomass s.u. or an energy s.u. for the cellular

maintenance.

Table 2.5: Results (lag phase and maximum growth rate) of the simulation example (Fig. 2.13).

Result Value

Lag-parameter, λ (h) 30.12

Maximum growth rate (exponential phase), µmax(10−2h−1) 4.39




