Multigraded Structures and the Depth of Blow-up Algebras Gemma Colomé i Nin

A first goal of this thesis is to contribute to the knowledge of cohomological properties of non-standard multigraded modules. In particular we study the Hilbert function of a non-standard multigraded module, the asymptotic depth of the homogeneous components of a multigraded module and the asymptotic depth of the Veronese modules. To reach our purposes, we generalize some cohomological invariants to the non-standard multigraded case and we study properties on the vanishing of local cohomology modules. In particular we study the generalized depth of a multigraded module.

In chapters 2, 3 and 4, we consider multigraded rings S, finitely generated over the local ring S_0 by elements of degrees $\gamma_1, \ldots, \gamma_r$ with $\gamma_i = (\gamma_1^i, \ldots, \gamma_i^i, \ldots, 0) \in \mathbb{N}^r$ and $\gamma_i^i \neq 0$ for $i = 1, \ldots, r$. In Chapter 2, we prove that the Hilbert function of a multigraded S-module is quasi-polynomial in a cone of \mathbb{N}^r . Moreover the Grothendieck-Serre formula is satisfied in our situation as well.

In Chapter 3, using the quasi-polynomial behavior of the Hilbert function of the Koszul homology modules of a multigraded S-module M with respect to a system of generators of the maximal ideal of $S_{\underline{0}}$, we can prove that the depth of the homogeneous components of M is constant for degrees in a subnet of a cone of \mathbb{N}^r defined by $\gamma_1, \ldots, \gamma_r$. In some cases we can assure constant depth in all the cone. By considering the multigraded blow-up algebras associated to ideals I_1, \ldots, I_r in a Noetherian local ring (R, \mathfrak{m}) , we can prove that the depth of $R/I_1^{n_1} \cdots I_r^{n_r}$ is constant for n_1, \ldots, n_r large enough.

In Chapter 4, we study the depth of Veronese modules $M^{(\underline{a},\underline{b})}$ for $\underline{a},\underline{b}$ large enough. In particular we prove that in almost-standard case (i.e. with $\gamma_i = (0, \ldots, 0, \gamma_i^i, 0, \ldots, 0)$, $\gamma_i^i > 0$, for $i = 1, \ldots, r$) with $S_{\underline{0}}$ a quotient of a regular local ring, this depth is constant for $\underline{a},\underline{b}$ in some regions of \mathbb{N}^r . To reach this result we need a previous study about Veronese modules and about the vanishing of local cohomology modules. In particular we prove that, in the more general case, if $S_{\underline{0}}$ is a quotient of a regular local ring, the generalized depth is invariant by taking Veronese transforms. Moreover in the almost-standard case the generalized depth coincides with the index of finite graduation of the local cohomology modules with respect to the homogeneous maximal ideal.

A second goal of the thesis is the study of the depth of blow-up algebras associated to an ideal. In Chapter 5 we obtain refined versions of some conjectures on the depth of the associated graded ring of an ideal. By using certain non-standard bigraded structures, the integers that appear in Guerrieri's Conjecture and in Wang's Conjecture can be interpreted as a multiplicities of some bigraded modules. In particular we have given an answer to the question formulated by A. Guerrieri and C. Huneke in 1993. We have proved that given an \mathfrak{m} -primary ideal I in a Cohen-Macaulay local ring (R,\mathfrak{m}) of dimension d>0 with minimal reduction J, assuming that the lengths of the homogeneous components of the Valabrega-Valla module of I and J are less than or equal to 1, then the depth of the associated graded ring of I is greater than or equal to d-2.

Finally, in Chapter 6, the study of the Hilbert function of certain submodules of the bigraded modules studied before, allows us to prove some cases in which the Hilbert function of an **m**-primary ideal in a one-dimensional Cohen-Macaulay local ring is non-decreasing.