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Introduction

The main purpose of this thesis is to contribute to the understanding
of cohomological properties on non-standard multigraded modules. We
mainly study the depth of non-standard multigraded modules and related
structures, as well as the Hilbert function and quasi-polynomial, focusing
the study on the depth of blow-up algebras.

In commutative algebra, graded modules, as well as standard multi-
graded ones, have been object of study by many authors. Although some
results of non-standard graded modules are known, this is not the case of
non-standard multigraded modules.

On the other hand, under the name of blow-up algebras, some graded al-
gebras associated to an ideal I in a Noetherian local ring (R, m) are known.
They are the Rees algebra R(I), the associated graded ring gr;(R) and the fiber
cone Fy (I) defined as

" "
RIH=Pr", gnR) =g  WO=B_ =

n>0 n>0 n>0

The blow-up algebras are used to study properties and numerical char-
acters of the local ring (R, m) and the ideal I. Moreover, they also have a
geometrical relevance.

Vasconcelos, [Vas94b], added to the list of blow-up algebras the so-
called Sally module Sj(I) of an ideal I with respect to a minimal reduction
J. This is the graded R (J)-module

In+1

;D= ——.
J gjl

The name was motivated by the work of Sally that was intended to recover
properties of R(I) and gr;(R) from the better and well-known structure of

vii



viii Introduction

R()).

The Rees algebra and the associated graded ring can be generalized in
a multigraded setting for a set of ideals Iy, .. ., I, in a Noetherian local ring
(R, m) as follows: the multigraded Rees algebra associated to I, ..., I is
defined by,

R(L,....I)= @ L' - It CR[ty, ..., 1],
nelN”"

and for k = 1,...,r, the k-th associated multigraded ring of I, ..., I, in R
is,
1{11 ...Il’:k P st  R(I,... L)

1,50 (R) = _ '
8"n k gé.ﬂil’ Ifl ce [I:lkH N IkR(h,. . -/Ir)

In what follows we introduce the main problems that we have studied,
giving some motivations and after that we explain in detail the main results
obtained in the thesis.

Hilbert functions of graded modules over standard graded algebras are
well studied since the famous paper of Hilbert [Hil90]. Assuming that all
the homogeneous pieces of a graded module have finite length, it can be
proved that the Hilbert function, which measures their length, is asymptot-
ically polynomial. The study of Hilbert functions, Hilbert polynomials and
the coefficients of these polynomials plays an important role in commuta-
tive algebra. This study can be generalized in several ways by considering
a non-standard graded algebra, a standard multigraded algebra, or a non-
standard multigraded algebra.

The first two cases are also well known. In the first case, if we consider
a positively graded algebra, and a graded module, the Hilbert function is
asymptotically a quasi-polynomial, see [BH93] and [DS99]. When we con-
sider a standard multigraded algebra and a multigraded module, that is
with generators of multidegrees (1,0,...,0), (0,1,...,0), ..., (0,...,0,1),
then the Hilbert function is polynomial in r indeterminates for homoge-
neous pieces of degree n = (ny...,n,) € N” with ny,...,n, large enough,
see for example [HHRT97], [VKM94] and [Rob98].

In the non-standard case, some cases have been studied. For instance
in [Lav99] and [Rob98], it has been studied the case in which the gene-
rators have multidegrees (1,0,...,0), (d%,l,O,...,O), s, (dy, . dl 1),
In this case, the Hilbert function is a polynomial in r indeterminates for
n = (ny,...,n,) in a region (a cone) of Z". This situation in the bigraded
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case has also been studied in [HT03]. In [Rob00], another Hilbert function
is defined; the author considers a cumulative Hilbert function of a finitely
generated bigraded module over a polynomial ring with coefficients in a
field and generators of degrees (1,0), (0,1) and (1,1). This function at
(m,n) corresponds to the sum of the dimensions of the pieces of degree
(m,j) for j up to n. The author proves that this function is polynomial in
a region of IN?. This definition allows to study the module from a graded
and bigraded point of view.

A more general setting was studied by Fields in his PhD thesis, [Fie00]
(see also [Fie02]). He considers the general definition of quasi-polynomial
and proves that the Hilbert function of a IN"-graded module is quasi-
polynomial in a region of Z'. In his proof, however, the region was not
explicitly described.

For our purposes, we need to control the cone where the Hilbert func-
tion is a quasi-polynomial. So, we start by studying the asymptotic beha-
vior of the Hilbert function of a non-standard multigraded module by con-
sidering M to be a Z’-graded S-module, where S is a Z"-graded ring with
generatorsgg, i=1,...,r,j=1,...,u; of degree y; = (75,...,75,0...,0) IS
IN" and 7} # 0, over an Artinian local ring Sy. In particular we prove that
there exists an element B € IN" such that the Hilbert function is a quasi-
polynomial in a cone defined by the elements n = (ny,...,n,) € IN" such
thatn = 5+ 2;’:1 Aivi with Aq,..., A € R>o.

The problem of the asymptotic stability of the depth of the homoge-
neous pieces of a multigraded module, has its origins in the result of Burch,
[Bur72], where it is proved that for an ideal I in a Noetherian local ring
(R, m) the following inequality holds,

I(I) < dim(R) — rnn>i€1{depth(R/I")}

where [(I) = dim(R(I)/mR(I)) is the analytic spread of I. Some years
later, Brodmann, [Bro79a], replaced the minimum of these depths by the
asymptotic value of depth(R/I") for large n, a value that he proved that
it exists. In particular, in [Bro79b], he studied the associated primes of
M/I"M for M a finitely generated R-module, and proved that, for n > 0,
Ass(M/I"M) is stable. As a consequence, depth(M/I"M) is constant for
n > 0and
I(I, M) < dim(M) — nlgrolo depth(M/I"M)
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being (I, M) = dim(p,, ["M/mI"M).

Recently, Herzog and Hibi generalized in [HHO05] these inequalities for
graded modules over a standard graded algebra. They proved that for a
graded module E,

lim depth(E,) < dim(E) — dim(E/mE).
In this case, the authors did not consider to study the asymptotic stability
of Ass(E,) to assure the stability of the depths. The key was to use the
Hilbert polynomial of the graded Koszul homology modules.

Branco Correia and Zarzuela, in [BZ06], proved that for R-modules
E ¢ G =R e >0, depth(G,/E,) takes a constant value for large n, and
the inequality

Ig(R) <dim(R) +e—1— mg?{depth(Gn/En)}

where Ig(E) = dim(Rg(E)/mRg(E)). Here the constant depth is based
in the asymptotic stability of the associated primes.

In [Hay06] Hayasaka proved the most general result until now. He
considers the standard multigraded situation. His study is based on the
associated primes of a multigraded module. In particular, he proves that
for a standard multigraded rings A C B with Ag = By = R a local ring,
then Ass(B,/A,) is stable for n > 0. As a consequence, depth(B,/A;)
is asymptotically constant. Hayasaka, generalizes also the inequality and
shows that

s(A) < s(B) + dim(R) — depth(A, B)

if depth(A, B) < oo, being such value the asymptotic depth of B,/ A, and
s(G) = dimProj’ (G/mG) + 1 the spread of G, defined for G a Noetherian
standard multigraded ring with Gy = R a local ring with maximal ideal m.

Then, it is natural to ask what happens in a non-standard multigraded
case. Are the depths of the graded pieces of a multigraded module cons-
tant, for degrees large enough? How does graduation affect this? The
approximation to the problem of Herzog and Hibi gave us the way to fol-
low. By using the Hilbert function of the Koszul homology modules of a
non-standard multigraded module and its quasi-polynomial behavior, we
can prove that this depth is constant in a sub-net of a cone in IN". In some
cases when the Hilbert function has a polynomial behavior, we can assure
constant depth in a cone of IN". For the multigraded blow-up algebras,
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we prove that the homogeneous pieces of the Rees algebra and the ones
of the k-th associated graded ring, have constant depth for large enough
degrees. Moreover, all k-th associated graded rings have the same asymp-
totic depth, and we can prove that R/} - - I/ have also constant depth
for large enough n, ..., n;.

Another interesting problem is the study of the multigraded blow-up
algebras defined for a set of powers of ideals. Studying properties for
powers of ideals, instead of ideals themselves, can be very useful, since in
many occasions one can deduce good properties related to the ideals, from
properties related to powers of the same ideals. For instance, in the graded
case, it can be proved that in the situation of having depth(gr;(R)) >
dim(R) — 1 it holds that ¢;(I) > 0 for all i = 0,...,dim(R), being e;(I)
the Hilbert coefficients of the ideal I, [Mar89]. However this is a strong
condition. On the other hand, under some assumptions one can prove
that depth(grp(R)) > dim(R) — 1, and hence ¢;(I") > 0. For instance, if
dim(R) = 2 and [ is a normal ideal, then gr«(R) is Cohen-Macaulay for
n > 0, [HH99]. But now the coefficients e;(I) can be easily written in terms
of ¢;(I"), and therefore one can deduce properties from the “asymptotic”
behavior of the coefficients of an enough large power of the ideal I. Ano-
ther example would be the result in [CPR05], where, in dimension 3, it is
proved that e3(I) > 0 under the assumption of being " integrally closed
for some n > 0. The result is deduced from the behavior of e3(I").

In the multigraded case, one can consider the multigraded Rees algebra

R(IY, ..., I7).

In [HHR93], [HHR95] and [Hyr99], it has been studied Cohen-Macaulay
and Gorenstein properties of multigraded Rees algebras of powers of ide-
als. For instance, in [HHR93], it is proved that if R(I,...,I) is Cohen-
Macaulay for some number r of copies of a height positive ideal I, then
R (1) is Cohen-Macaulay for all g > r.

One can observe that R(I{'l, L0 = R(L,. .., I,)(ﬂ) is the Veronese
transform of the multigraded Rees algebra associated to ideals I, ..., L,
with a = (ay,...,4,) € IN*". So, it seems natural to study Veronese mo-
dules as a way to approach to the multigraded Rees algebras of powers of
ideals, and more generally, to study Veronese transforms of non-standard
multigraded modules.

In the graded case, Elias proved that depth(R(I")) is constant for n
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large enough provided that R is a quotient of a regular local ring via
Veronese modules, [Eli04].

Again, the natural question arises. Can we get similar results for multi-
graded Rees algebras or non-standard multigraded modules? In the thesis
we obtain some results on the asymptotic behavior of the depth of non-
standard multigraded Veronese modules, some of them in the more gen-
eral setting that we consider, while the others in a restricted case.

One of the classical problems in commutative algebra is to estimate the
depth of the associated graded ring gr;(R) = @,>¢I"/1 n+1 and the Rees
algebra R(I) = @,>o I"t" for ideals I having good properties. Let (R, m)
be a Cohen-Macaulay local ring of dimension d. Let I be an m-primary
ideal of R with minimal reduction J.

Valabrega and Valla proved that ¢r;(R) is Cohen-Macaulay if and only
if PN ] = IP] for all p > 0, [VV78]. In fact, the R(])-module

rting
]

p=0

is the so-called Valabrega-Valla module of I with respect to J. Related to
this, Guerrieri, in her PhD thesis, [Gue93], proved that if

Z length (W]) =1

p=0

then depth(gr;(R)) > d — 1. Based on these results, Guerrieri, [Gue93],
[Gue94] conjectured that

depth(gr(R)) = d — A(L,]),

. +1
with A(L, ]) = ¥, > lengthy (IPT]QI)
Guerrieri proved also some partial cases for A(I, ]) = 2 in [Gue93] and
[Gue95], to be more precise, she proved that if length, (%r]v) = 1 and
PN ] = IP] for all p > 2 then depth(gr;(R)) > d — 2. Some years later,

Wang proved the general case for A(I, ]) = 2, [Wan00].
In [Gue93], Guerrieri gave some examples of some ideals such that

ring 1, for finitely many integers p;
lengthR< IP] ) _{ 0, otherwise,
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with depth(gr;(R)) = d — 1. That is why Guerrieri, and Huneke, asked if
the conditions length, (Ip;,l ]ﬂ] ) <1, p > 1, imply that depth(gr;(R)) >
d — 1, [Gue93], Question 2.23. Wang in [Wan02], Example 3.13, gave a
counterexample to the question and asked if this question would have an
affirmative answer assuming that R was a regular local ring.

By considering other lengths, Huckaba and Marley proved that

Ip+1
e1(I) < ) lengthy (U"])

p=0

and in case of having the equality, then depth(gr;(R)) > d — 1, [HM97].
Hence one can consider the non-negative integer

Ip+1
5(1,]) = Y lengthy (ﬂ’]) —e(I) > 0.

p=0
Wang conjectured that, [Wan00],
depth(gr;(R)) >d—1—-46(L,]).

He proved that 6(I,]) < A(I,]) and that Guerrieri’s Conjecture was im-
plied by his one. Huckaba proved the conjecture in the case 6(I,]) = 0,
[Huc96], [HM97]. If 6(I,]) = 1 Wang proved the conjecture, [Wan00], and
Polini gave a simpler proof, [Pol00]. For §(I,]) = 2 Rossi and Guerrieri
proved Wang’s Conjecture assuming that R/ I is Gorenstein, [GR99]. How-
ever, Wang gave a counterexample to the conjecture for d = 6, [Wan01].

It has been proved that in general these conjectures are not always true.
However some examples show a relation between the integers and the
depth, and hence one can think of trying to refine the conjectures by con-
sidering other configurations of the integers.

In the main result of Chapter 5 we prove a refined version of Wang’s
Conjecture. What we do is to decompose the integer (I, ]) as a finite sum
of non-negative integers 6,(I, J), with lengthR(%]]m) > 6p(L]) > 0. If
6(1,]) is the maximum of the integers 6,(I, J) for p > 0, when §(I,]) <1,
we are able to prove that depth(R(I)) > d —(1,]) and depth(gr(R)) >
d—1-46(1,]). As a consequence we can answer the question formulated
by Guerrieri and Huneke about consider lengthR(%) <1forallp >0.
In this situation we can prove that depth(gr;(R)) > d — 2. The key tool is
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to interpret these integers as multiplicities of some non-standard bigraded
modules.

Some of the results of this thesis have been published in:

[CEO6] G. Colomé-Nin and ]. Elias. Bigraded structures and the
depth of blow-up algebras. Proceedings of the Royal Society
of Edinburgh, 136A, 1175-1194, 2006.

In the following we summarize the contents and the main results ob-
tained in this thesis.

Chapter 1 is devoted to recall some definitions and properties that serve
to us as a background for the rest of the work.

In Chapter 2 we study properties related to the Hilbert function of
a non-standard multigraded module. In particular we consider a IN'-
graded ring S generated over Sy by elements g’,..., gl}-l" of degree y; =
(Y- 7,0...,0) € N’, with o} # 0, fori = 1,...,r, with (Sp,m) an
Artinian local ring, and M a finitely generated Z"-graded S-module.

Observe that this graduation admits in particular the standard case.
However, by abuse of language, we refer to this more general graduation as
a non-standard, to bear in mind the differences with the standard situation.
That is, the standard graduation is not excluded from our definition.

In this setting, we can define the irrelevant ideal S of S tobe S4 1 =
I -- - I, where [; is the ideal of S generated by the homogeneous com-
ponents of degree (bl,...,b]-,O...,O), with b; # 0. Then we can define
Proj’ (S) as the set of all relevant homogeneous prime ideals on S, which is
the set of all homogeneous prime ideals p in S such thatp 2 S ;.

We define the relevant dimension of a multigraded S-module M as the
integer

r—1 if Supp;+ (M)

rel.dim(M) = { =2
o | max{dim(5/p) | p € Supp+(M)} if Supp,+ (M) # ©.

Denoting n = (ny,...,n,), the Hilbert function of M is defined by

hMZ 7' — Z
n+— lengthg (My).
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In Section 2.3.1, we introduce the definition of a quasi-polynomial in
the Z"-graded case and we study some properties that are useful in order
to prove that the Hilbert function is quasi-polynomial.

We say that a function f : N" — Z is a quasi-polynomial function of
polynomial degree d on B,v1,...,7, if there exist some periodic functions
o :IN" = Z, fora € IN” and |a| < d, with respect to 71,...,7, such that

forn € Cé 2
= ca(n)n®

o] <d

and f(n) = 0 when n ¢ Cg, and there is some a € IN" with |a| = d such
that ¢, # 0. We call quasi-polynomial an expression Y|a|<d Ca(n)n®. Here, a

cone is defined by Cp := {g EN'[a=B+Yi 4 iti, M€ ]Rzo}
Then we prove that the Hilbert function is quasi-polynomial.

Proposition 2.3.10. Let S be a IN"-graded ring as considered before. Let M be a
finitely generated Z'-graded S-module. Then there exists a quasi-polynomial Py
of polynomial degree rel. dim(M) — r and a cone Cg C IN', such that for any
ne Cﬁ B

hp(n) = Py(n).

As in the standard graded case, we can prove in our situation the
Grothendieck-Serre formula that relates the Hilbert function, the Hilbert
quasi-polynomial and the length of the local cohomology modules of M
with respect to the irrelevant ideal.

Proposition 2.4.3. Let M be a finitely generated Z'-graded S-module. Then for
alln e 77,

hy(n) — Pp(n) =) (—1)i1ength5g(H§++ (M)n)

i>0

The last part of the chapter is devoted to generalize the Hilbert-Samuel
function of an m-primary ideal I in a Noetherian local ring (R, m) to a set
of m-primary ideals I;,...,I,. We can prove that for all k = 1,...,r the
function fi(n) = lengthy (R/L}* - - nk+1 -+ ;') is polynomial for nzp,
for some B, € IN". We denote by Pk such polynomial. After that, we can get
a similar formula to the Grothendieck-Serre one that relates this function,
this polynomial and the length of some local cohomology modules of the
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k-th extended Rees algebra R} of I;..., I, with respect to the irrelevant
ideal of the Rees algebra of the ideals.
For an element § € IN”", we define H’g as the set of n € Z" such that

ng € Zand (ny,..., Mg 1,041, 1) 2 (61, 061, 0k41, -+, Or)-

Theorem 2.4.8. There exists an element § € IN" such that for all n € HE,

pe(n) — fr(n) = Y (=1) lengthg (Hy (R)n+e,)-

i>0

In Chapter 3 we are interested in the study of the depth of the graded
pieces of a multigraded module over a Noetherian non-standard multi-
graded ring with the graduation considered in the previous chapters. In
the first section, we look at the Koszul complex and Koszul homology in
the multigraded case, a concept that we need to reach our purpose.

Let S be a IN"-graded ring, generated over Sy by elements of multide-
grees 71,...,7%r, where y; = ('yﬁ,...,'yf,o,...,o) € IN” with 'yf # 0 for
alli =1,...,r. Let M be the maximal homogeneous ideal of S, that is
M =m & P, Sn, where m is the maximal ideal of the Noetherian local
ring So.

Let M be a finitely generated Z’-graded S-module. In Section 3.2 we
study the asymptotic depth, with respect to m, of the multigraded pieces
M,. The key point in the proof is the existence of the Hilbert quasi-
polynomial for the Koszul homology modules of M with respect to a
system of generators of m. The quasi-polynomial behavior of the Hilbert
function allows to prove the theorem.

Theorem 3.2.1. Let M be a finitely generated Z'-graded S-module. There exists
an element p € IN" and an integer p € IN such that,

depth(My) > p
forall n € Cg with My, # 0, and
depth(My,) = p
for some § € Tg and foralln € {3+ Yi_; Aivi | Ai € N} C Cp.

When the quasi-polynomial is, in fact, a polynomial, we can assure the
constant depth in all the cone:
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> Proposition 3.2.3: If S is an algebra generated over 5y by elements
of degrees (1,0,...,0), (x,1,0,...,0), ..., (*x,%,%,...,1) € N’, then
depth(M,) = p for n € Cg.

> Corollary 3.2.4: If S is a standard algebra, then depth(M,) = p for
nzp.

In Section 3.3, we consider the multigraded Rees algebra associated
to ideals I, ..., I, of a Noetherian local ring (R,m), and for k = 1,...,7,
the k-th associated multigraded ring of Ij,..., I, in R. In both cases, they
are finitely generated standard Z"-graded R (1, ..., I;)-modules, and each
component, R(Iy,...,Ir)y and gry . 1.1 (R)y, is a finitely generated R-
module. Then using the previous results we can prove:

Proposition 3.3.1, 3.3.3. There exists an element p € IN" and an integer 6 € N
such that for all n > B it hold

depth(I[1---I[") =6 +1

1171...1;”
depth| ——————+ | =90
p [1“1...11?...[:“

and

forallk=1,...,r.

We are interested in the depth of R/I}--- I} for n large enough. In
this case, we can take advantage of the constant asymptotic depth of these
last two modules and the relation with R/I}"--- I} by means of some
short exact sequences of R-modules where we can use the depth counting
techniques.

Theorem 3.3.6. There exists an element ¢ € IN" and an integer p € IN such that

R

forall n > e. Moreover, if there exists an n > B such that depth (I’”RI”’) >0,
P T

then p = 6.
Finally, we bound the asymptotic depth of the modules R/ I} - - - I},

Proposition 3.3.7. Let p € N be the asymptotic depth of R/I}* - - - I;". Then,

' . . R(Il,~--117’)
< - \oraL )
p < dim(R) — dim Proj (mR(Il,---,Ir)>
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The aim of Chapter 4 is to study the Veronese modules associated to a
non-standard multigraded S-module M by means of some cohomological
properties of the module. We mainly study the vanishing of the local
cohomology modules of M and of Veronese modules of M, generalizing
some results on the depth of Veronese modules associated to Rees algebras.
We also study the asymptotic behavior of the Veronese modules.

We are still considering the general situation in which 5 is a Noetherian
IN"-graded ring generated as Sp-algebra by homogeneous elements g{ for
i=1,---,rand j = 1,...,p; of multidegrees v; = (7},...,7},0,...,0) €
IN", respectively, with 7j # 0. We assume that Sy is a local ring with
maximal ideal m and infinite residue field.

Given a € IN*" we denote ¢, (1) = Y;_;(n;a;)y; foralln € Z".

The Veronese transform of S with respect to a € IN*/, or (a)-Veronese,

is the subring of S
59 = D Spu)

nelN”"

where ¢, (n) = Y| (n;a;)y; foralla € N* and n € Z".

Given an Z'-graded S-module M we denote by M@ the Veronese
transform of M with respect to a,b € IN*", or (a,b)-Veronese, is the sla)_
module

M = B My, ()15
neZ’r S

In Proposition 4.1.6, we prove that Veronese functor commutes with
local cohomology with respect to M. This fact is important for many of
the results of this thesis.

In Section 4.2, among other properties, we study the generalized depth
of a multigraded module and its Veronese modules. This is an impor-
tant invariant to reach our purposes. We start by proving several results
(Proposition 4.2.1, Proposition 4.2.2, Proposition 4.2.3, Proposition 4.2.4)
relating properties of non-standard Z"-graded rings and modules with
their Veronese transforms.

For a finitely generated Z"-graded S-module M, we define the gener-
alized depth of M with respect to the homogeneous maximal ideal M of S
as

gdepth(M) = max{k € N | S C rad(Anng(H((M))) for all i < k}.
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We also define the projective Cohen-Macaulay deviation of M as

pemd (M) = max{dim(S,)) — depth(M,)) | p € Proj’(S)}.

In the case of being Sy a quotient of a regular ring, we relate these last
two integers:

Theorem 4.2.7. Let M be a finitely generated Z'-graded S-module. If Sy is the
quotient of a regular ring then

gdepth(M) = dim(S) — pcmd(M).

Then, with this assumption, we prove the invariance of gdepth under
Veronese transforms:

Corollary 4.2.8. Let M be a finitely generated Z"-graded S-module. If Sy is the
quotient of a regqular ring, for all a,b € IN*" it holds

gdepth(M@)) = gdepth(M).

In Section 4.3 we want to study the depth of the Veronese modules
M@b) for large values a4,b € IN’. As a partial solution, under the general
hypothesis on the multidegrees of the chapter, we prove that the depth of
some Veronese modules M@ are constant for a in a net of IN”. Note that
M@ = pM@0),

We denote by vad(M*)) (resp. vad(M"*))) the Veronese asymptotic
depth of M, that means the maximum of depth(M(@)) (resp. depth(M(@t)))
for all a € IN*" (resp. for all 4,b € IN*).

Proposition 4.3.1. Let M be a finitely generated Z'-graded S-module. Let
s = vad(M™)). There exists a = (ay,...,a;) € IN*" such that for all b €
{()\1111,. . .,)\rﬂr) | A € N*}

depth(M®)) =s.

The previous result can be used in order to study of the depth of the
multigraded Rees algebras of some powers of ideals.
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Proposition 4.3.2. Let Iy, . .., I, be ideals in a Noetherian local ring (R, m). Let
s = vad(R(I4,. .., I,)(*)). There exists a = (ay,...,a,) € N*" such that for all
be {()\1&1,.. .,/\,a,) ‘ )\1' S N*}

depth(R(Ilbl,...,If’)) =s.
Moreover, if depth(R(Iy,..., 1)) =s, then for allb € IN*,

depth(R(I,...,1Ir)) = s.

In order to extend the previous results on the asymptotic depth of the
Veronese modules to regions of IN”, we have to study the vanishing of the
local cohomology modules of a multigraded module M.

We say that a Z"-graded S-module M is I'-finitely graded if there exists a
cone Cg C IN" where M, = O forall n € Z" such that n* = (|n1},...,[ns]) €
Cp. We denote by I'-fg(M) the greatest integer k > 0 such that Hi\, (M) is
I'-finitely graded for all i < k.

Due to technical reasons, we have to restrict the degrees of the gene-
rators of S, see Remark 4.3.6 and Remark 4.3.11. For the rest of the chap-
ter, we assume that the graduation is almost-standard, i.e. the degrees are
Y1, -, Yr With ; = (0,...,0,75,0,...,0) and 'yf >0foralli=1,...,r.

An important fact in our proofs is to assure in the almost-standard case,
that HY (M) is T-finitely graded for all k > 0 providing that M is I-finitely
graded as well, see Proposition 4.3.5.

In the next result we relate the two integers attached to M studied in
the chapter, gdepth(M) and I'-fg(M).

Theorem 4.3.7. Let S be an almost-standard multigraded ring. Let M be a finitely
generated Z"-graded S-module, then it holds

I'-fg(M) = gdepth(M).

As a consequence, assuming that Sy is the quotient of a regular local
ring we prove the invariance of I'-fg under Veronese transforms in Corol-
lary 4.3.8.

Now, we have new tools to prove the theorem that assures constant
depth for the (a,b)-Veronese in a region of IN" x IN", instead of a net.
However the restriction to the almost-standard case is still necessary.
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Theorem 4.3.12. Let S be an almost-standard multigraded ring such that Sy is
the quotient of a regular ring. Let M be a finitely generated Z'-graded S-module
and let s = vad(M(*'*>). Then, there exists Be IN" such that for all b > B and

forall a € N" such that a; > (B; + bi)/'ﬂ: it holds

depth(M@b)) = 5.

For general Z-graded modules, we obtain:

Proposition 4.3.13. Let S be a Z-graded ring such that Sy is the quotient of a
regular ring. Let M be a finitely generated graded S-module. Then depth(M(®))
is constant for a >> 0.

For the multigraded Rees algebra, the best approach to the solution of
the problem is the following proposition.

Proposition 4.3.15. If R is the quotient of a reqular ring, there exist an integer s
and é € N’ such that for all b > E and a > é + b it holds

depthM(ﬂ)((Ifl YR, TE)) = s,

In Chapter 5 we want to find refined versions of the conjectures on
the depth of blow-up algebras that we have mentioned before in this in-
troduction. The main idea is to study the depth of blow-up algebras by
means of certain bigraded modules. We interpret the lengths that appear
in the conjectures as the multiplicities of some non-standard bigraded mo-
dules. Thanks to this interpretation we are able to refine the Conjecture of
Wang, by adding new cases where it works and recovering the known true
cases. As a corollary, we can answer the question of Guerrieri and Huneke
regarding the lengths of the pieces of the Valabrega-Valla module.

For a Cohen-Macaulay local ring (R, m) of dimension d > 0 with infinite
residue field and an m-primary ideal I of R with minimal reduction ], we
consider the integers that appear in the conjectures:

Pl nJ p+1
A(L]) = pg%)lengthR <1p}> A(L]) = pg%)lengthR (m)

P+ P+l
Ap(1,]) = lengthy (Ip]m> , Ap(L]) = lengthy (m)
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for p > 0, and
5(1/]) = A(I/]) _61(1) > 0.

Sections 5.2 and 5.3 are mainly devoted to recall some preliminary re-
sults on the Sally module and the cumulative Hilbert function of non-
standard bigraded modules. Recall that the cumulative Hilbert function
of an A-module M is defined by hy(m,n) = ¥, length, (M, ;). In
particular, we prove

Theorem 5.34. Let S = A[Xq,..., X, Y1,...,Ys,Zy,...,2Z] be a bigraded
polynomial ring over an Artin ring A with indeterminates Xq,..., Xy, Y1,...,Ys
and Zy,...,Zs, where each X; has bidegree (1,0), each Y; has bidegree (1,1),
and each Z; has bidegree (0,1). Let M be a finitely generated bigraded S-module.
Then, there exist integers mqy and no and a polynomial in two variables pp(m,n)
such that
pm(m,n) = hy(m,n)
forall (m,n) with m > mgy and n > ny + m.

In Section 5.4 we introduce a non-standard bigraded module X!/ natu-
rally attached to I and a minimal reduction | of I, this module can be con-
sidered as a refinement of the Sally module. From a natural presentation
of '/ we define two bigraded modules K/ and M!J, and we consider
some diagonal submodules of them: pr]] and K[Ip]] We summarize these
constructions in the following.

We consider the associated graded ring of R(I) with respect to the

homogeneous ideal JtR(I) = @, JI" 1"

URDY

gri(R(1) = € oy

j>0

This ring has a natural bigraded structure. If we consider the bigraded ring
B := R[V4,...,Vy; T1,..., T;] with deg(V;) = (1,0) and deg(T;) = (1,1),
then there exists an exact sequence of bigraded B-rings

R(I)

K4 L=
0— —C TR

[Ty, ..., Ta]—grp(R(I)) — 0

where KU/ is the ideal of initial forms of JtR(I).
Given a bigraded B-module M and an integer p € Z, we denote by
M) the additive subgroup of M defined by the direct sum of the pieces
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My, ) such that m —n = p+1. In our case, the modules K[ng, C{p{ and
grt(R(1))[p) are R(J)-modules, and, eventually, they do not vanish for a
finite set of indexes p € Z (Lemma 5.4.1).

From now on, we will be interested in considering the non-negative
diagonals of these modules and so, let us consider the following bigraded
finitely generated B-modules:

irp+1 o
== @ grff( [P] @ @ ]i-i-llp P
p>0 p=>0i>0 J
L._ P
M =Py =D th [Ty, ..., Ty]
p=0 Pz

and from now on, we consider the new B-module

L] . L]
A
p=>0
We call = the bigraded Sally module of I with respect J.
From Lemma 5.4.1 there exists a natural isomorphism of R(])-modules

gri(R(1) = R(J)) .

Since the modules 2"/ and M/ are annihilated by ], we have an exact
sequence of bigraded A = R/]J[V,..., Vis Ty, ..., T4]-modules

0— KM — M — 3] 0.

By considering each diagonal, for all p > 0 we have an exact sequence
of R/J[Ty,..., T;]-modules,

p+1
0 — K — Ml = Im Ty Tl — = —0,
which are, in fact, graded modules, and so we can consider for them the
(classic) Hilbert function.

By using the cumulative Hilbert function with the modules %!/, M/
and K!J, that in this case are polynomials in one variable in a region of
N2, we can proof the following results that allows to us to interpret the
integers e1(I), A(I,]) and é(I, J) in the Wang’s Conjecture as multiplicities
of our modules (Proposition 5.5.2, Proposition 5.5.3, Proposition 5.5.4,
Proposition 5.5.6):
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> priy(m) = T (e (D" 15,
> deg(pps) =d —1and eg(MM) = A(L]).

> If 21 = 0 then gr;(R) is a Cohen-Macaulay ring.
If 21 # 0 then deg(pys1;) = d — 1 and eg(Z)) = eq(I).

> eo(KI) = 6(1,]). If KI'J # 0 then deg(px1y) =d — 1.
In particular, A(1,]) > e1(I).

> Forall p >0, eo(Zf;]]) = length, (%) - eo(KI’]) >0 and

[p]
61(1) = szo(lengthR (%) _ EO(K[%))

> For all p > 0, length, (%) > eo(K[%) and
5(L,]) = eo(KM) = Lpmpeo (Kpjp) = 0.

We define
5,(L]) = eo(K[%).

In Section 5.6 we prove a refined version of Wang’s Conjecture by con-
sidering some special configurations of the set {d,(I,])},>0 instead of
6 = Yp>00p(L]). Let us consider 5(,]) to be the maximum of the in-
tegers 6,(I,]) for p > 0.

Theorem 5.6.3. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be and m-primary ideal of R and | a minimal reduction of I. If 6(1,]) < 1,
then

depth(R(1)) > d — §(1,])

and
depth(gri(R)) > d —1— &(1, ).

Observe that for 5(I, J) = 0,1 we recover the known cases of the Wang’s
Conjecture.

For the proof we need the following important results. In particular,
we need to study the depth of the associated bigraded ring gr;(R(I)).
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Theorem 5.6.1. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 3.
Let I be an m-primary ideal of R and let | be a minimal reduction of 1. Let us
assume that KU # 0, and either K[% = 0or K[Ip]] is a rank one torsion free

K[Ty, ..., Ty]-module for p > 0. Then,
depth(gry(R(I))) >d —1.

The following lemma is also important because assures how are the
diagonals K[% in case of having eo(K[IF’]] ) = 1, and so how is K/ in the
decomposition of §(1, J) that we consider in the main theorem.

Lemma 5.6.2. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an wm-primary ideal of R with minimal reduction . If 6,(1,]) = 1 then
K[Ip]] is a rank one torsion free K[Ty, . .., Ty]-module.

Finally, we are able to give an answer the question the Guerrieri and
Huneke mentioned before.

Theorem 5.6.5. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be and m-primary ideal of R and | a minimal reduction of I. If Ap(1,]) <1
forall p > 1, then

depth(gr;(R)) > d — 2.

In Chapter 6 we study, in the first section, some submodules D; (Z!/)
of the bigraded Sally module %!/ with respect to a line I, generalizing the
concept of the diagonal submodules prl] .

For each set of non negative integers a1, ap, w3, g > 0, with ag +ap > 1,
we define the line I, in the plane (m,n) as

{ m(s) = a1s + ag
Iy :
n(s) = aps + ay

for s > 0. Then, we define the diagonal submodule D; (X!)) of 1) as the
direct sum of the pieces of %"/ of bidegrees (m(s) + n(s),n(s)), s >0,

J’_
D, (24) = @ Bl "
(m,n) €
]ns
S N e O
Ims ’

$>0 1]ns
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and we define the Hilbert function of Dj, (=) as

m(s) nis) )

H]“ (S) = lengthR (IWL(SHIH(S)H

Then we prove the following result on the growth of the Hilbert function
H,, of the diagonal submodule D; (2!/) by considering hypotheses on the
minimal number of generators of the pieces of this diagonal. This result
will be crucial in order to study the monotony of the Hilbert function of
an m-primary ideal I in the one-dimensional case in Section 6.2.

Proposition 6.1.6. Let (R,m) be a Cohen-Macaulay local ring of dimension
d > 0. Let I be an m-primary ideal and let | be a minimal reduction of 1. Let
Dy, (217) be the diagonal submodule of bigraded Sally module £ associated to
the line l,. Let s > 2 be an integer such that one of the following conditions hold,

7m(s) ]n(S)
(1) vr 71”1(5)_1]”(5)“ <2, o0r
) . m(s) yn(s)
(2) there exist an integer e > 1 such that lengthp (Im(s)_e]n(s)% <s.

Then for all t > s it holds H, (t) > H; (t+1).
Moreover, under the hypothesis of (1) there exists an element a € I1*1 ]*2 such that

Im(t)]n(t) » Im(t+1)]n(t+l)
(D=1 pr(n+1 — (D)~ (1) +1

is an epimorphism for all t > s — 1. In particular it holds
Hp (t) > Hp (t+1)
forallt >s—1.
In the Cohen-Macaulay one-dimensional case, we can prove the follow-

ing results on the growth of the Hilbert function of an m-primary ideal.

Proposition 6.2.3. Let (R, m) be a one-dimensional Cohen-Macaulay local ring.
Let I be an m-primary ideal, and x € I a degree one superficial element of I. Let
t > 2 be an integer such that the pair I, x verify one of the following conditions:

(1) "N (x) =xI""foralln < t—1,and vg(I'/xI*"1) < 2,
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(2) I"N (x) = xI"" forall n < t, and length (I'/x*I'=") <t <t a > 1.
Then hy is non-decreasing.

For an m-primary ideal I of a Cohen-Macaulay local ring R of dimen-
sion d, we denote by b(I) = length(I/I?) the embedding dimension of
I

Proposition 6.2.4. Let R be a one-dimensional Cohen-Macaulay local ring. Let I
be an m-primary ideal of R. Then

(i) eo(I) = 1if and only if b(I) = 1. In this case we have I = m and R is a
reqular local ring.

(it) If b(I) = 2 then it holds

{ length,(R/I) n=0

hi(n) =¢ n+1 n=1,...,e(I) -1

60(1) n 260(1).
The Hilbert function hy is non-decreasing if and only if length (R/I) < 2.
(iii) If b(I) < eo(I) < b(I) + 2 then the Hilbert function is non-decreasing.

(iv) If 1N (x) = xI, b(I) = 4, and eo(I) = 7 then lengthy(R/1) < 4 and
the Hilbert function is non-decreasing.






Chapter 1

Preliminaries

This chapter is devoted to give and recall some definitions and results in
Commutative Algebra that we need as a background for the development
of the thesis. Throughout the work a ring will always mean a commutative
ring with unit, and we will assume that all the rings are Noetherian, other-
wise is stated. Most of the definitions and results can be found in standard
references such as [BH93], [Mat80] and [Mat89].

For an R-module M, we denote by vg(M) the minimal number of ge-
nerators of M as an R-module.

Depth

One of the important invariants that we study in the thesis is the depth,
or the grade, of a module. So, let we introduce some definitions, [BH93]:

Definition 1. Let R be a Noetherian ring and M be an R-module. We say that
x € R is regular on M if xz = 0 (for some z € M) implies z = 0. In other
words, x is not a zero-divisor on M.

A sequence xq, . . ., xs of elements of R is called a regular sequence on M, or
an M-regular sequence, if the following conditions hold:

(i) x;jisan M/(x1,...,x;_1)M-regular element, fori =1,...,s; and

(ii) M/ (x1,...,x5)M # 0.
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Definition 2. Let R be a Noetherian ring, I an ideal of R, and M a finite R-
module such that IM # M. We define the grade of I in M, grade(I, M), as the
length of all maximal M-sequences contained in 1. If, in particular, R is a local
ring and w is its maximal ideal, we define the depth of M as

depth(M) = grade(m, M).

Also, if R is a graded ring, M its unique homogeneous maximal ideal, and M is
a graded R-module, we define depth(M) = grade(M, M).

Sometimes, if p is a prime ideal of R, we denote depth, (M) instead of
grade(p, M).

A very important technique in order to prove many results on the depth
of a module, is based on the following proposition, and we refer to it as
depth counting, see [BH93]. It is useful to bound the depth of a module that
is inside a short exact sequence.

Proposition 3. Let R be a Noetherian ring, I C R an ideal, and
0—U—M—N—0
an exact sequence of finite R-modules. Then

grade(I, M) > min{grade(I, U), grade(I,N)},
grade(I, U) > min{grade(I, M), grade(I,N) +1},
grade(I, N) > min{grade(I,U) — 1,grade(I, M) }.

Blow-up algebras

Let R be a d-dimensional Noetherian ring and I an ideal of R. With the
name of blow-up algebras we refer to some graded rings that arise naturally
from algebraic geometry in the process of blowing-up the variety Spec(R)
along the subvariety V(I). We set I' = 0 fori < 0, I' = R for i = 0. A good
reference on the subject is the book of Vasconcelos [Vas94a].

Definition 4. The Rees algebra of R associated to I is the graded ring defined

R(I) =PIt

n>0



and the associated graded ring of R with respect to I is the graded ring defined
as
ng(R) — @ In/In-H
n>0

Clearly, gr;(R) = R(I)/IR(I).

These algebras play an important role in algebraic geometry. In fact,
Proj(R(I)) is the blow-up of the variety Spec(R) along the subvariety V(I).
When R is the localization at the origin of the coordinate ring of an affine
variety at the origin, grm(R) is the coordinate ring of the tangent cone of
the variety at the origin. Then Proj(g¢rm(R)) is the exceptional set of the
blow-up of the variety at the origin.

If R is a local ring we know the dimension of the previous graded rings,
[HIO88]:

Proposition 5. Let (R, m) be a Noetherian local ring of dimension d and let I an
ideal of R. Then dim(gr;(R)) = d and

d+1, if I ¢ p, for some p of R such that dim(R/p) = d
d, otherwise.

dim(R(1) = {

If d > 0 and I is an m-primary ideal of R, we get that dim(R(I)) =
d+1. Also we have that lengthy (I"/I"*1) < o0 and gr/(R) is a graded
ring of dimension d.

Another important result is the relation between the depth of a Noethe-
rian local ring and its associated graded ring with respect to an ideal. So,
if I is an ideal of a Notherian local ring we have that, [AA82]

depth(R) > depth(gr(R)).

Several times we use some depth formulas proved by Huckaba and
Marley in [HM94] that relate the depth of the blow-up algebras R(I) and
8r1(R):

Theorem 6. Let (R, m) be a local ring of dimension d > 0, and let I be an ideal
of R. Then
depth(R(I)) > depth(gr;(R)).

If depth(gr1(R)) < depth(R) then
depth(R(I)) = depth(gr;(R)) + 1.
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Clearly, if R is Cohen-Macaulay and I an m-primary ideal, the second
statement occurs when gr;(R) is not Cohen-Macaulay since dim gr;(R) =

d.

Another interesting and useful tool are the reductions of an ideal:

Definition 7. The ideal ] C I is said to be a reduction of I if there exists an
integer r > 0 such that I'*1 = JI". An ideal ] is a minimal reduction of I if |
is a reduction of I an | itself does not have any proper reduction. If | is a minimal
reduction of I, we define the reduction number of I with respect to | is

r7(I) = min{r > 0|I"*! = JI"}.
The reduction number of [ is defined as
r(I) = min{r;(I)|] is a minimal reduction of I}

Clearly, R(J) < R(I). But sometimes it is easier to study R(J) than
R(I). In fact, R(]) is very well understood, [Vaz95]:

Proposition 8. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0,
and infinite residue field k = R/m. Let I an m-primary ideal of R and let | be a
minimal reduction of 1. Then

o | =(xq,...,x4), where x1,...,xy is a reqular sequence on R;

e ¢rj(R) = (R/]))[Th, ..., T4, which is a Cohen-Macaulay ring of dimension
d;

e R(J]) = R[Ty,...,T4]/L, which is a Cohen-Macaulay ring of dimension
(d + 1), where L is the ideal generated by the 2 x 2 minors of the matrix

... Ty
< X1 ... X4 )
Superficial elements

Superficial elements are elements that maintain properties of I when
we take a quotient. They are very used in proofs based on induction on
the dimension. Moreover, superficial sequences are strongly related with
minimal reductions.



Definition 9. Let R be a Noetherian ring and I an ideal of R. An element
x € I'\ I'"! is called a superficial element of degree t for I if there exists ¢ > 0
such that

(It x)nIic=1"

forn > c.
Proposition 10. Some properties of superficial elements are:
(i) For some t > 1 there always exists a superficial element of degree t.

(ii) If R is local with infinite residue field, then there is always a superficial
element of degree 1.

(iii) If grade(I) > 1 and (,>oI" = 0, then every superficial element is a
non-zero divisor in R

Definition 11. A set of elements x1,...,xs € 1 is called a superficial sequence of
Lif x1 € I is a superficial element, and for all2 < i <s,x; € I/(x1,...,x;_1) is
a supetficial element.

See [Z575], [Sal78], [KM82], [Rho71], [HM97] as a main references.

Hilbert function

The Hilbert function of an m-primary ideal in an important numerical
function in local algebra. It is defined from the Hilbert function of the
associated graded ring of the ideal.

Definition 12. The Hilbert function of an m-primary ideal I in a d-dimensional
Noetherian local ring (R, m) is defined by

I"
h[(ﬂ) = 1engthR (I”‘H) ’
forn > 0.

It is well known that there exists a polynomial p; € Q[Z] such that
hi(n) = py(n) for n > ny, and that can be written in following form

-1 . —i—
pix0 = Lm0,

i=0 !
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The polynomial p; is called the Hilbert polynomial of I. It is a polynomial
of degree d — 1 and the integers ey(I),...,e;_1(I) are called the Hilbert
coefficients of I.

Definition 13. Given a positive integer d, any a € IN can be written uniquely in

the form
= () () (7)

withk(d) > k(d —1) > -+ > k(j) > j > 1 integers. It is called the d-binomial
expansion of g, or d-th Macaulay representation of a.
We define

et = (KON (KD (RO

When a < d, then a<?> < 4. See [BH93] for more details.

These expansions play an important role in the Macaulay’s Theorem
and to study the growth of the Hilbert function.

Theorem 14 (Macaulay). Let K be a field, and let H : IN — IN be a numerical
function. The following conditions are equivalent:

(i) HO) =1and H(n+1) < H(n)<"~ foralln > 1,
(ii) there exists a homogeneous K-algebra R with Hilbert function hg = H.

A good reference on Hilbert functions of ideals, or in a more general
case, Hilbert functions of filtrations of modules is the monograph of Rossi
and Valla [RV07].



Chapter 2

Multigraded structures

In this chapter we deal with some general aspects of non-standard
multigraded structures. A general reference on the subject is [GW78]. In
particular we study the behavior of the Hilbert function of a non-standard
multigraded module, which in this case is a quasi-polynomial function,
and the Grothendieck-Serre formula that relates the difference between the
Hilbert function and the Hilbert quasi-polynomial with the characteristic
of the local cohomology modules.

In the first section, we set some notations. In Section 2.2 we define
Proj’(S) and we introduce the relevant dimensions of a ring and of a mod-
ule. In order to study the multigraded Hilbert function in Section 2.3,
we define and prove some results on quasi-polynomial functions in 2.3.1.
Then, in Section 2.4 we study the Grothendieck-Serre formula after proving
some results on the vanishing and finite generation of some local cohomol-
ogy modules. Finally, we generalize the notion of Hilbert-Samuel function
of an ideal to a set of ideals. We prove that is a polynomial function and
we get a similar formula to the Grothendieck-Serre one relating this last
function and its polynomial to the characteristic of the local cohomology
modules of the k-th extended multigraded Rees algebra with respect to the
irrelevant ideal of the multigraded Rees algebra.

7
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2.1 Notations

In this section we set the basic definitions and notations on multigraded
rings used in the following chapters.

In the thesis, we use multi-index notation as follows: we denote n =
(n1,...,ny) € Z"and |n| = |n1|+ - - - +|n;| € N. The sum of two elements
m,n € Z" is defined by m +n = (my + ny,...,my + n,), the product by
m-n = (mny,...,mmn,), and we order these elements componentwise,
thatisn > m (n > m) if n; > m; (n; > m;) foreachi =1,...,r.

A Z'-graded ring, or a multigraded ring if no confusion may arise, is a
ring S endowed with a direct sum decomposition S = P,,cz Su, such that
SmSn C Spyyn forany mn € Z'.

We define a Z"-graded S-module M as an S-module with a decompo-
sition M = @,,czr My, such that S;;M,, C My4y, for any m,n € Z'. M, is
the homogeneous component of M of multidegree 1. An element x € M,
is called homogeneous of multidegree n.

Given a Z'-graded S-module, we can consider the category of Z’-
graded S-modules, and we denote it by M7 (S). The objects in this category
are Z’-graded S-modules, and the morphisms f : M — N are S-module
morphisms such that f(M,) C N, foralln € Z'.

We can shift a Z"-graded S-module as follows: given a k € Z", M(k) is
the Z'-graded S-module with the grading given by M(k),; = M.

2.2 Topological structure of Proj (S)

In this section we introduce some definitions that provide the set of
all relevant homogeneous prime ideals in a multigraded ring with a struc-
ture of a topological space. We also define the relevant dimensions of a
multigraded ring and of a multigraded module.

From now on, let S = @,cnr Su be a Z'-graded ring, where S is a

Noetherian local ring. Let S be generated over Sy by elements g1, .. ., gi‘l,

g%,...,ggz, ., 8k, ek with g]1 of multidegree y; = (7%,0...,0) c N’
forj=1,...,u1 with 7] #0, g]2 of multidegree 7, = (72,73,0...,0) € N’
forj=1,..., up with 7% # 0, and gi of multidegree v, = (7],...,7) € N’
forj=1,...,u, with 9} # 0.

Let M be the maximal homogeneous ideal of S, M = m ® @49 Su,
where m is the maximal ideal of the local ring So. As usual, we write
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S + = GBE#Q SE .
We should remark that some of the following definitions can be set also
in a more general context.

Definition 2.2.1. Fori = 1,...,r, let I; be the ideal of S generated by the ho-
mogeneous components of S of multidegree (by,...,b;,0,...,0) with b; # 0. We
define the irrelevant ideal of Sas Sy =11 - - - I;.

Note that S+ B} S++.

Definition 2.2.2. Let Proj’ (S) be the set of all relevant homogeneous prime ideals
on S, i.e. the set of all homogeneous prime ideals p in S such thatp 2 Si 4.

Definition 2.2.3. Given a homogeneous ideal I of S, we denote by V4 (I) :=
{p € Proj’(S) | p D I}. Proj’ (S) has a structure of a topological space given by
the family of the closed subsets V. (I), with I a homogeneous ideal of S.

Following the definition in [VKM94], where the standard bigraded case
was studied, we define the relevant dimension of S as follows:

Definition 2.2.4. The relevant dimension of S is the integer

sy LT 1 if Proj’(S) =@
1. dim($) { max{dim(5/p) | p € Proj’(S)} if Proj’(S) # .

The following lemma was proved in [Hyr99], Lemma 1.2, however we
rewrite its proof for the sake of completeness.

Lemma 2.2.5. dim(Proj’(S)) = rel. dim(S) —r.

Proof. If Proj’ (S) = @, the formula holds trivially, so we can assume that
Proj (S) # @. In this case, let p € Proj’(S) be a closed point. Since the
projection morphism

Proj’ (S) — Spec(Sp)

is a proper morphism, pg = pN Sy is a closed point in Spec(Sp). Hence,
(S/p)o =2 So/po is a field and S/p a catenary algebra. Moreover, since p is
a closed point, we have that dim(Proj"(S/p)) = 0.

Sincep A Syy =1 ---I,fori=1,...,r let ]; be theideal of S/p gener-
ated by the homogeneous components of S/p of degree (by,...,b;,0,...,0)
with b; # 0. Using these ideals we get a maximal chain of prime ideals

OCIrC]rflJF]rC"'C]1‘|‘"'+]r
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and so dim(S/p) = r because S/p is catenary.
Now, any maximal chain of homogeneous prime ideals of S, starting
from a minimal prime qg € Proj’(S) is of the type

with g5 a closed point of Proj"(S). Finally, we have

dim(Prof(S)) = sup{ht(a) | a € Prof'(S)}
sup{dim(S/q) | g € Proj’(S)} —r
= rel.dim(S) —r.

For a module we have the following definitions:

Definition 2.2.6. Given a finitely generated Z'-graded S-module M, we define
the homogeneous support of M as

Suppy+ (M) = {p € Proj’(S) | M, # 0}
Observe that Supp (M) = V4 (Ann(M)) is a closed subset of Proj’(S).

Definition 2.2.7. The relevant dimension of a module M is the integer

rel. dim = r—1 ifS”PP++(M) 2
1. dim(M) { max{dim(S/p) | p € Supp+(M)} if Supp.+(M) #

@
@

It is clear from the definition that

dim(Supp4+(M)) = rel. dim(M) —r.

In order to use induction on the relevant dimension to prove some
results, we need the following lemma.
Lemma 2.2.8. Let M be a finitely generated Z'-graded S-module, and a € S such
that a ¢ p for any p € Ass(M). Then

rel. dim(M/aM) = rel. dim(M) — 1.
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Proof. We may assume that Supp (M) # @, otherwise it makes no sense
to reduce the relevant dimension.
Hence,

rel. dim(M) = max{dim(S/p) |p € Supp++(M)}
= max{dim(S/p) | p € Supps+(M)N Min(M)}.
Now, for all p € Suppy1 (M) N Min(M), since a ¢ p, we have that
dim(S/p) = dim(S/p + (a)) + 1.

Then,
rel. dim(M) = max{dim(S/p+ (a)) |p € Supp++ (M)} +1
= rel.dim(M/aM) +1,
since Supp14(M/aM) = {p+ (a) | p € Supp4(M)}. O

Remark 2.2.9. Let us consider the polynomial ring S = K[Tj, ..., T;] with
coefficients in a field K with indeterminates T,...,T,. We denote by
e1,...,e the canonical basis of R".

We can consider S as a (standard) multigraded ring by providing it with
the multigraduation deg(T;) = ¢;, fori =1,...,r. S can be also considered
as a graded ring by grading it with respect to the total degree. In this case,
this is the same as assigning the graduation deg(T;) = 1foralli=1,...,r.
A monomial T% = T --- T/ has degree n € IN" as a multigraded ring,
and |n| € N as a graded ring.

Note that, when we consider S as a graded module, the dimension
over K of the homogeneous piece S;, with d = |n|, is (rjgd_;l), whereas
in the multigraded case, the dimension of S, is 1, since there is a unique
monomial of such degree.

Hence the only homogeneous ideals in the multigraded setting are the
monomial ones. As a multigraded ring, the irrelevant ideal is S, =
(Ty---Ty). Therefore, Proj’(S) = {(0)}. In fact, if p is a homogeneous
(monomial) prime such that p % (T;---T;), then p can not contain any
indeterminate T;. So p C K, and hence p = (0). This does not happen
neither in the graded case nor in the multigraded case when we have more
generators of the same degree. In the graded case, S+ = (Ty,...,T;) =
S+.

Then, dim(Proj’(S)) = 0, rel. dim(S) = r, dim(Proj!(S)) = r — 1 and
dim(S) =r.
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2.3 Multigraded Hilbert function

If we consider a Noetherian multigraded Sp-algebra S and a multi-
graded S-module M = @,z My , assuming that all pieces M,, have finite
length, the Hilbert function is defined by

hy: 28 — Z
n  +— lengthg (My)

where n = (ny,...,n;).

When we consider a standard graduation, that is when the generators
have multidegrees (1,0,...,0), (0,1,...,0), ..., (0,...,0,1), then it is well
known that this function is polynomial in r indeterminates for ny,...,n,
large enough. See for example [HHRT97], [VKM94] and [Rob98].

In the non-standard setting some cases have been studied. For instance
in [Lav99] and [Rob98], the authors studied the case in which the gene-
rators have multidegrees (1,0,...,0), (d%, 1,0,...,0), ..., (dy,...,d,_4,1).
They proved that the Hilbert function is a polynomial in r indeterminates
for (ny,...,n,) in a region (a cone) of Z’. Other references are [HT03] and
[Rob00].

A more general setting was studied by J.B. Fields in his PhD thesis,
[Fie00] (see also [Fie02]). He considers the general definition of quasi-
polynomial and proves that the Hilbert function of a IN"-graded module
is quasi-polynomial in a region of Z’. In his proof, however, the cone was
not explicitly described.

For our purposes, we need to control the cone where the Hilbert func-
tion is a quasi-polynomial. So, in this section we want to study the asymp-
totic behavior of the Hilbert function of a non-standard multigraded mod-
ule by considering the general setting of this thesis. That is, M is a Z’-
graded S-module, where S is a Z’-graded ring with generators gjl of de-
gree v; = (7},---,7:,0...,0) € N" and 9} # 0, over an Artinian local ring
Sg, fori = 1,...,1",j = 1,...,]41'.

Observe that this graduation admits in particular the standard case.
However, by abuse of language, we refer to this more general graduation as
a non-standard, to bear in mind the differences with the standard situation.
That is, the standard graduation is not excluded from our definition.
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2.3.1 Quasi-polynomial functions

Before studying the behavior of the Hilbert function of a Z’-graded
S-module, let us introduce the definition of a quasi-polynomial in the Z’-
graded case. We also give some definitions and results that we will need in
order to study the Hilbert function. See [Fie00] and [Fie02] as a reference
on general quasi-polynomials.

Given m = (my,...,my), & = (a1,...,0,) € N', we set m® = []/_, m}".
Given a degree m € IN’, the total degree is denoted by |m| =Y ; m; € N.

Definition 2.3.1. Let 71, ...,7v, € IN” be linearly independent vectors over R. A
function f : IN" — Z is periodic with respect to y,..., 7, if f(a +7) = f(a)
forany a € N" and for any v € Ny + -+ - + Ny

Definition 2.3.2. Given € IN" and v1,...,v, € IN' linearly independent
vectors , we define the cone with vertex § with respect to y1,...,7; as

r
Cp:= {066 a=p+) Aivi )\iER>0}-

i=1

Given a cone Cﬁ with vertex at E € IN" with respect to 1, ...,7r, we define
the basic cell TTg as

r
Hﬁ—{aeNrM—ﬁ—kme, 0§m1-<1}.

i=1

For any element o € Cg C IN', there is a unique representative of a modulo
Yi,---,Yrin Hé-

Definition 2.3.3. We say that a function f : N" — Z is a quasi-polynomial
function of polynomial degree d on E, Y1,- -, if there exist periodic func-
tions, for « € IN" and |a| < d,

G :N'—2Z

with respect to 1, ..., 7, such that for n € Cﬂ

n) =Y, ca(n)n®

la| <d

and f(n) = 0 when n ¢ Cp, and there is some & € IN" with || = d such that
¢y # 0. We call quasi-polynomial an expression Y| <d Ca ()%,
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This definition of a quasi-polynomial P(n) = Y <4 ca(1)n* is equiva-
lent to give a collection of polynomials of total degree < d

fs(m) =Y ca(é)n* € Z[n]
aeIN”
for each § € Ig.
Since 71,...,7, are linearly independent, any vector n € Cp can be
written uniquely as n = 6 + Y/, m;7;, with d € g and m € IN’. Elearly,

f(n) = fs(n)

foralln € + (71,...,7r)N, because ¢, are periodic functions with respect
toy1,..., Y

We exemplify this fact in the following picture where we consider r = 2,
and we represent the cone, the basic cell, and for each element in the basic
cell, a sub-net of the cone where the quasi-polynomial is defined for the
same polynomial.

According to the literature, these kind of quasi-polynomials are called
simple quasi-polynomials with respect to B, 1, ..., 7. In [Fie00] and [Fie02],
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a quasi-polynomial is the sum of simple quasi-polynomials, each one with
respect to different sets of vectors and cones.

In this work, we only deal with simple ones. Since in our case the
vectors 71,...,7, are fixed, we refer to a simple quasi-polynomial with
respect to B, 71,...,7r as a quasi-polynomial.

Definition 2.3.4. Given a numerical function f : IN" — Z, we define the gen-
erating function of f as

F(x1,...,%) = Zﬂ:\wf(ﬁ)gﬂ €Z[[x1,...,%]]

The aim of the following proposition is to relate quasi-polynomials with
the rationality of their generating functions.

Proposition 2.3.5. Let f : IN" — Z be a numerical function with generating
function F(x1,...,x,). Then, f is a quasi-polynomial function of polynomial
degree d on B,y1,..., 7y if and only if

A gxl
F(xy,...,x) = Z o=

T _ i
setiy |t rea = (1= x77)7

with integers Ay 5 € Z such that there exist a t € IN", with |t| = d +r, and a
6 € Ig such that Ay s # 0.
Proof. First of all, observe that
1 . _ 2 ﬁ(b]—l—i-n])Zn
(=27 wenrj nj

In fact, since

then

b
1 i
-2y - <2> :

which is a power series on z where the coeficient of z" is the cardinal of
the set of monomials zt - - - z% with i1 + - - - + i, = m, and so

b—1+m)

#{(in,-ip) €N [iy - iy =m} = ( "
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Therefore,

1 bi—1+n by—1+n
SN y (T (o ()
j:l(l —zj)" n1>0 m 1,20 1y

¥ (H (-1 ))

Note that I—[]r-:1 (bfjfr”f) is a polynomial on 1y, ..., 1, of total degree |b| —r.
]

Let us now assume that f is a quasi-polynomial function. We want to
see how is its generating function.

Since f is a quasi-polynomial function of polynomial degree d with
respect to é, Y1,---,Yr, We can write for all n € Cg

|| <d

f(n) =) ca(nm)n*

with ¢, periodic functions with respect to 71,...,7,, and f(n) = 0 for
né¢ C/g
For any n € Cg, there exists an element § € I1 B such that

.
n=_58+)Y myy,
i=1

with m; € IN. Since ¢, are periodic functions with respect to 7y, ..., 7 we
have that ¢y (1) = cx(8) € Z foralln € §+ (7y1,...,7r)N- SO,

fn) =Y cu(d)n* € Z[ny,...,n

|a|<d

is a polynomial in #ny,...,n, foralln € § 4+ (y1,...,7r)N. We denote f;
each one of these polynomials. B

For each ¢ € Iz and an element n = § + Yi_; m;7y; with m; € IN, we
can rewrite fs (n) as a polynomial in my, ..., m;, and so we denote

f(n) = f5(6+ ﬁmm — Y @@+ Zl ) = gs(m),

Qo 9 = = 3

where g5(m) € Z[m].
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Then, we have

F(x1,...,xr) = Z f(ﬂ)gﬂz Z Z f(é_|_ imiryi)lé"‘&r:lmi%

neCp S€llg meN” i=1
5 T . .
= Y x| ) gs(m)xmamn).
selly  \meNr

Now, since g;(m) are polynomials of total degree < d in my,...,m,, we

can write
-1
=) At&H < Ty )

\t\ r<d =1

because the polynomials [Tj_, (i _;]”m ) with [t| —r < d form a Z-basis of

the polynomials in my, . .., m, with coefficients in Z of total degree < d, see

[CC97] Proposition XL.1.12. Since f is a quasi-polynomial of polynomial

degree d, there exists a A5 # 0, for some ¢ € Iz and |t =d+r.
Therefore, since

1 r (i’] -1+ 71]>> "
- = Z H z,
L(l-z)f LS (jl nj

by considering z; = x7, we have that

Y glmptomm — Y A( L (7 L) z>

meN" |t|—r<d meN’ j=1 nj
Z /\Lé
57 <a [Tjma (1 =275
with [t —r < dand Ay 5 € Z.
Finally, we can write

d )= Y Appd
X1,e0e,Xy) = Mg

with [t| —7 < d, A;5 € Z, and there exists a Ay 5 # 0, for some J € I1z and
|t =d+r. a

Conversely, assume that the generating function is as stated in the
proposition. We want to prove that f is a quasi-polynomial function.
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Since,

1 Yt —14+m; r
— ] ] i=1 Mi%i
7 1(1_£'yj)tj 2 H( mj )x

7 (ti— 1+ m; ey
F(X1, sy xr) = Z Z Z /\Lé ( ] ‘ ]) &é""Zz:l m;yi
dellgmeN’ \ |t—r<d  j=1 j

for n = 6 + Y7, m;7;, which is a polynomial in m;, ..., m, of total degree
|t} —r < d. Therefore, f is a quasi-polynomial function of polynomial
degree d with respect to E, YiseeorVre O

Concerning the first derivative of quasi-polynomials, the following re-
sult will be crucial to prove the existence of a quasi-polynomial for the
Hilbert function:

Proposition 2.3.6. Let f,g : IN" — Z be functions, 1, ...,7vr € IN" be linearly
independent vectors and é € IN', such that for all « € IN" and somei =1,...,r
it holds

fla) = fla—m) = g(a).
If g is a quasi-polynomial on B, 1, ..., vy of polynomial degree d, then f is also a
quasi-polynomial on B, 1, ..., vy of polynomial degree d + 1.

Proof. We denote by F and G the generating functions of f and g respec-
tively: F(x1,...,%;) = Lpenr f(m)x™ and G(xq,..., %) = Lyenr §(1)xX™

By Proposition 2.3.5, since g is a quasi-polynomial function of polyno-
mial degree d with respect to é, Y1,---,Yr, We have

G Apsx’
- Z 7 1— Yj t/'
sty 1t e [j=1 (1 = 27)

with A5 # 0 for some [t| = d +r and J € Tp.
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The relation f(a) — f(a — ;) = g(a) can be expressed in terms of the
generating functions by

G(x1,...,%)
F(xll . /x7'> (1 — X%,)
Then
F= Y Argx®
€Tl |t|—r<d (1 —x7)i T (1= x7)
- j#i

This means that f is also a quasi-polynomial on é, 1, .., of polyno-
mial degree
h+- o+ H+AD) 4+ —r=d+ 1.

2.3.2 Hilbert function of a multigraded module

As explained in the introduction, we are interested in the case where
S = @nenr S is a Z'-graded ring, where Sy is an Artinian local ring, and
S is generated over Sy by elements

1 1 1 iz
Q1181 1o 18rrves8r

with g{ of multidegree v; = (’yé, ) ..,’y;:,O,. ..,0) € N" with 'y;: # 0, for all
i=1,...,randj=1,..., ;.

Now we are ready to prove that the Hilbert function of a multigraded
module is a quasi-polynomial function, but we first need a technical propo-
sition that we will use more than once.

Let T = (71,...,7)N be the semigroup generated by 71,...,7r, and G
be the non-singular r X r triangular matrix whose columns are the vectors
Y1,---, % Given n = (ny,...,n,) € Z" we denote n* = (|n1},...,|n,|) €
IN".

For a finitely generated Z"-graded S-module M, with hy, ..., hs gene-
rators of multidegrees d' = (d%,. cdh), . d = (d5,...,d7) € Z" respec-
tively, we denote by I'ys the I'-invariant subset of Z"
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i.e. Z"\ Ty is the set of multi-index for which there is no non-zero ele-
ments of M.

Lemma 2.3.7. Forall é € Z" and ¢ € N there exists ¢ € T'py such that « > ¢
(c,...,c)and x € B+T.

Proof. The conditiona € (B+1T)N 41 +I') is equivalent to the equation
P q q

SO

Proposition 2.3.8. Let M be a finitely generated Z-graded S-module such that
S+t C rad(Anng(M)). Then there exists B = (B1,...,Br) € Ty such that
My =0, for all n € Z" such that n* € Cg.

Proof. We prove the result first assuming that M is IN" generated, i.e. we
assume that /y, .. ., hs are the generators of the S-module M with multide-
grees (d%,...,d}),...,(dﬁ,...,dﬁ) € N’ respectively. Let « = (ay,...,ar) €
Z! be the maximum componentwise of these multidegrees, i.e. we con-
sider a; = max{dil,~ it =1,

The elements of M, n € IN’, are linear combinations with coefficients
on Sy of elements of the type

&ﬂ. . .&ﬂhj

. . " .
where, using multi-index notation, we write g/t = (g} )m} o (ght )M with

m¢ = (m},...,m") € NM. This element has multidegree

| 4]
n= deg(&ﬂ. . .&ﬂhj) =G : + :
|| 4

Let u be a non-negative integer such that (S4+)*M = 0. We define
recursively:

Bi = uvi+ By - Bl
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fori=r,...,1.
Given a multi-index n = B + Yio1Aivi € CgN Ty, Aj > 0, we have to
prove that M,, = 0. This is equivalent to prove that if
M 1 |4 d
N RN N el N N
Ay Br |y | d.
then [mq| > u+ Ay, -+, |my| > u+ A
We will prove by recurrence a stronger result:

I=
|
)

Bi+Ai > |mi| > u+A;
fori=1,...,r. From the definition of 8, = u<y; + &, and

Br + Ay = [my |y} + )

we deduce that ‘
Yr(lme| — (u+ 7)) = ap —dl > 0.

Since 7; > 1 we get
|me| > u+ A,

On the other hand
Br+Ar — |my| = d} + (v) — 1)(Jms| — A) > 0.

Let us assume that B, + A, > |m,| > u+Ap, -+, Biy1 +Aig1 > |mipq| >
u+ Air1. We will prove that B; +A; > |m;| > u+ A;, i > 1. We have

Bit vt + Ay A = [l iy ]+ ]
SO

. r .
Yi(u A+ Ai = [mil) + Y 7B+ A — [my]) + i — d} = 0.
I=i+1

By induction we deduce that
|mi| > u+A;.

A simple computation shows that

. r X
Bit+ A —|mi| = (v = D)(|mu| — A)) + Y At (Imy| = A) +d) > 0.
I1=i+1
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Hence we have proved that M, = 0 for all n € Cg.

Let us assume now that M is generated by hy,..., hs with multide-
grees (d%,...,d}),...,(di,...,dﬁ) € Z’ respectively. Let us consider ¢ =
| min{0, d?,j =1,---,5,i=1,---,r}|. Let N be the following submodule

of M:
N = @Mﬂ.

n>0

From Lemma 2.3.7 there is & € I'y witha > cand & € Ty N (B(N) +T).
Since Cy C Cg and a > ¢ we get that M, = 0 for all n € Z" and n* €
Cp. B O

Corollary 2.3.9. Let M be a finitely generated Z"-graded S-module and N C M
a submodule. We assume that (S4)*(M/N) = 0 for u € Z. Then there exists
B € Iy such that My C Ny, for all n € Z" such that n* € Cg.

Proof. We only need to apply Proposition 2.3.8 to the finitely generated
module M/ N. There exists a cone Cg where (M/N), =0 forn* € Cg, and
hence M, C Nj. a O

Now, for the main proof in this section we follow the idea used in the
standard case in [HHRT97].

Proposition 2.3.10. Let S be a IN"-graded ring as considered before. Let M be a
finitely generated Z"-graded S-module. Then there exists a quasi-polynomial Py
of polynomial degree rel. dim(M) — r and a cone Cg C IN", such that

hm(n) = Py(n)
forany n € Cp.

Proof. Since M is a finitely generated Z"-graded S-module, there is a chain
of Z"-graded submodules of M

0O=MyCcM;C---CM=M

such that foreach j =1,...,1, M;/M; 1 = (§/p;)(m;), where p; € Ass(M)
is a homogeneous prime ideal and m; € Z'.
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In fact, assuming that M # 0, we choose a homogeneous prime ideal
p1 € Ass(M). Hence, there exist a Z'-graded submodule M; C M such
that My = (S/p1)(myq). If My # M, we can repeat this procedure with
M/M; and we get a Z’-graded submodule My C M such that M,/ M; =
(S/p2)(m,). Since M is Noetherian, this process finishes after a finite num-
ber of steps.

Now the Hilbert function of M can be computed by

l

hy(n) = Zlengfh s, ((Mj/M;_1)n)
=

ZhS/P] n+m

Hence, we can reduce to the case that M = S/p, with p € Ass(M).

Now, we prove the proposition by induction on the relevant dimension
of M, or equivalently on the dimension of Supp, 4 (M).

Assume that rel. dim(M) = r — 1 (ie. dim(Supp44+(M)) = —1). In
this case Supp44+ (M) = @, and hence @ = V (Ann(M)) = V44 (S++4),
so there exists an u € IN such that (Sy+)* C Ann(M). Now, since
(S4+)*M = 0, by Proposition 2.3.8, there exists a p € IN" and a cone
Cp where M, = 0 for all n € Cg. Now, clearly, there will be a quasi-
polynomial Py; = 0, of degree rel. dim(M) — r = —1, such that /(1) =
Pyp(n) =0 forall n € Cg.

Assume now that rel. dim(M) > r — 1 (i.e. dim(Supp;(M)) > 0).
Since S++ gZ p, there exists an element g/ OF gjr(r) € S44 such that

gll(l) . g£ ¢ p. Itis clearthatg? gpforalli=1,...,r
For each i = 1,...,r we consider the Z"-graded S-module N; defined

as
M S

gfwM b+ (gi(l))
Since g{(i) has multidegree v; = ('yi,...,'yf, 0,...,0), with 'yf # 0, we
can consider the Z"-graded exact sequence

Ni =

i)
0 — M(—7i) — M — N; — 0,

and so for all n € Z" we have

hp(n) —hv(n— ;) = hy,(n).
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By Lemma 2.2.8, rel. dim(Nj;) = rel.dim(M) — 1, and thus we can apply
the induction hypothesis on N;, i.e. there exists a quasi-polynomial Py, of
degree rel. dim(M) — r — 1 and a cone Cg, B € Z', such that

hp(n) —hy(n— ;) = Py, (n)

for all n € Cg. Now by Proposition 2.3.6, there exists a quasi-polynomial
Py of degree rel. dim(M) — r, such that hp; (1) = Py(n) for all n € Cs. O

We refer to the quasi-polynomial Py as the Hilbert quasi-polynomial
of M.

Remark 2.3.11. Since giving a quasi-polynomial of degreed on 8, 71,...,7;
is equivalent to give a collection of polynomials fs(n) € Z[n] of total de-
gree < d (at least one of them has total degree d) for all § € g, the pre-
vious result can be interpreted as follows: if we consider, for each § € g,
the submodule of M

Msyr = @ M tmyyy+tmyyys

my,...,my >0

it has a standard multigraded structure, so the Hilbert function will be
asymptotically a polynomial, that is fs. Considering @éenﬁ Mg, we
cover all the pieces of M of multidegrees in the cone Cyg. -

Example 2.3.12. Let us conclude the section with an example that illus-
trates the quasi-polynomials and our definitions in the multigraded case.

We consider the bigraded ring S = K|[x, y,z], with K a field, deg(x) =
(2,0) and deg(y) = deg(z) = (1,1). In this case the semigroup is I' =
((2,0),1,1))n = {@A+u,pu) | A,p € N}. It is clear that S, = 0 if
n ¢ T. Since S(3)4,,) is generated over K by monomials {xAyizf"i}izoww
we have that dimg(Sioa4yy)) = #+ 1. So, dimg(S(y, ) = n2 + 1 if
(n1,n7) € T, and 0 otherwise.

The cone with vertex at (0,0) with respect to (2,0) and (1,1) is

Co = {(n1,m) € N? | (n1,m2) = A(2,0) + u(1,1),A, 4 € Rxo},

and hence the basic cell has only two elements Il = {(0,0), (1,0)}. So the
cone is composed by two nets:

Co={(0,0)+T}uU{(1,0)+T}.
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The quasi-polynomial of S for n € Cy is

00) _

ps(n) = c(o1) (m)n O + ¢ (0,0) (n)n' (0,1) ()n2 + () (n)

with periodic functions with respect to I' given by

con(m={ Y ifne(00)+I; w={ v ifne(0,0)+T;
OOV 0, ifne (1,004, OV T 0, ifne(1,0)+T.

This expression for the quasi-polynomial is equivalent to give polyno-
mials

foo(n) =n+1,
f(1,0) (n) =0,
such that

| foo(n), forn=(0,0)+T;
pst) = { f(?,o)(ﬂ), forn = (1,0) +T.

Let us consider now the S-module
M=885(-1,-2)= @D Swm) ®Sm-1m 2
(n1,np) €22

By the previous computation,

dimg (My) = dimg (S, ny)) + MK (S, —1,0,-2))
{ np+1, if (ny,m) €T;

np, —1, if (111 —1,np —2) erl;
0, otherwise.

Notice that (n1,np) € T if and only if (17 — 1,1, —2) ¢ T.
Then, in the cone C(;,) with basic cell IT;,) = {(1,2),(2,2)}, the
Hilbert quasi-polynomial is

pm(n) = cqp) (ﬂ)ﬂ(o’l) +¢(0,0) (ﬂ)ﬂ(o’o) = co)(n)n2 + ¢(o0)(12)
with periodic functions with respect to I

-1, ifne(1,2)+T;

o) (1) = { 1, ifne (2.2)+T; co1)(n) =1foralln € Cp ).
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So, the polynomials are

and

| fap(m), forn=(1,2)+T;
puale) = { f(;,; (n), forn=(2,2)+T.

24 Local cohomology and the Grothendieck-Serre
formula

Again, in this section, let S = @, .nr Su be a Noetherian multigraded
ring, with Sy a local ring. If m is the maximal ideal of Sy, then M =
m & Py, Sn is the unique homogeneous maximal ideal of S.

In the category of Z’-graded S-modules M (S) we introduce the lo-
cal cohomology functor. We mainly follow [HHR93]. Let us consider a
homogeneous ideal I C S and M a Z'-graded S-module. We define the
local cohomology functor I';(-) with support in I in the traditional way as
follows:

I;(M) = {x € M: I¥x = 0 for some k > 0}.

We can observe that I';(M) C M is a Z"-graded S-submodule of M. Now,
the local cohomology functors Hi(-) are the right derived functors of I';(+)
in the category of Z’-graded modules. For abuse of notation, we keep the
notation used for the traditional local cohomology modules. It is clear that
H}(M) = T;(M).

In the classical case, it is well known that we can relate the Hilbert func-
tion of a graded module and its Hilbert polynomial with local cohomology
modules. To be more precise, the difference between the Hilbert function
and the Hilbert polynomial can be expressed as an alternate sum of the
length of the local cohomology modules, namely the Grothendieck-Serre
formula.

In this section we prove that in our setting, the Grothendieck-Serre
formula still holds, considering the Hilbert quasi-polynomial instead. We
follow the ideas of the proofs in [Lav99] in our case.

Some of the arguments used in this section work also in a more general
context, but at some steps we will be able to assure the existence of homo-
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geneous regular elements for proceeding by induction. For that purpose
we need a homogeneous version of the Prime Avoidance Lemma. This
lemma will require a major control on the multidegrees in order to find a
homogeneous element, so we need to fix the hypothesis on the multide-
grees of the generators of the multigraded ring S.

Thus, the Z’-graded ring S will be generated over Sy, a Noetherian
local ring, by elements

gt g8 g
with 317 of multidegree v; = (’ya,...,'y;:, 0,...,0) € N" with ')/f # 0, for all
i=1,...,randj=1,...,u;.

Lemma 2.4.1. Homogeneous Prime Avoidance. Let py,...,pm € Proj’(S).
If I is any homogeneous ideal of S such that I ¢ p; fori = 1,...,m, then there
exists a homogeneous element a such thata € Iand a & p1 U -+ - U py.

Proof. We proceed by induction on m.

Assume that m = 1. Since I ¢ p1, there exists a homogeneous element
x € I such that x & p;.

Assume now that m > 1. We may suppose that p;, is a minimal element
of {p1,...,pm} and that there is a homogeneous element x’ € I such that
X' ¢ prU-Uppyot.

If x' ¢ p,,;, we are done. Otherwise, assume that x' € p,,. Then, there
exists a homogeneous element r € (ﬂ;-”:*llpi) \ pm. In fact, since p;, is min-
imal over {p1,...,pm—1}, foreachi =1,...,m — 1 there exists a homoge-
neous element r; € p; \ p. We can define v := ry-... 1,1, and clearly
repinN---Npyu_q butr & py. Since I ¢ py, we can choose a homo-
geneous element y € I\ p,. Now, x’ and ry are not necessarily of the
same multidegree. Let (dq,...,d,) € Z' be the multidegree of x’, and
(e1,...,er) € Z" be the multidegree of ry. Clearly these multidegrees are a
Z-linear combination of the multidegrees of the generators of S.

~ Since pyy B S+ = I --- I, then there exists an element of the form
9187 .. g7 & pp. Since pyU---Upy_1 D Siy, there exists an element

of the form gjl'l géz e g]r" ¢ ppU---Upy—1. Multiplying x’ by an adequate
power of g, and ry by an adequate power of gi’, we can assume that
d, = e,. Now we can repeat this process with adequate powers of g;’j and

g;rj, and assume that d, = ¢, and d,_1 = e,_;. Repeating this process with
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each gﬁs and gés, at the end we can assume that (dq,...,d,) = (e1,...,e),
and hence x := x’ + ry will be a homogeneous element such that x € I and
x & ppU---Upy as we wanted to prove. O

Proposition 2.4.2. Let M be a finitely generated Z'-graded S-module. Then,
(i) Foralli >0, n € Z" the So-module Hg++ (M)y, is finitely generated.

(ii) There exists p € Z" such that Hé.++ (M) =0 foralli>0,n € Cg.

Proof. We prove both assertions together by induction on i.

Since Hé++(M) = 0 for i > u(S4+4), where u(Syy) is the minimal
number of generators of Sy, it suffices to prove that for every i there
exists a cone C/3 satisfying (ii). Since there will be a finite number of such
cones, we may to consider a common cone C s (taking B := ¥ /3 it satisfies
that Cg C Cﬂ for all i, for instance) satisfying (ii) for any i > 0

Assume that i = 0. In this case HOH(M) I's, (M) C M is a sub-
module of M and hence Hg++ (M), is finitely generated for any n € Z'.
Moreover, there exists an m € Z such that (S++)’"Hg++ (M) =0, and so
by Proposition 2.3.8, there is a f € Z' such that HgH(M)ﬂ = 0 for any
ne C/S

Assume now that i > 0. From the exact sequence

0— HY (M) — M-— M/H{_ (M) —0
we get the long exact sequence of local cohomology

0= Hi, (HY, (M) — Hi, (M) —H; (M/H (M)
—HL(HY, (M) =0,

St

Hence, we get the Z"-graded isomorphism
H.é++ (M) = Hé++ (M/Hg++ (M))’

so replacing M by M/Hg++ (M) we can assume that Hg++ (M) =0.

Now, assuming that H(S)++(M) = 0, we have that S ¢ p forall p €
Ass(M). Thus by the Homogeneous Prime Avoidance Lemma 2.4.1 there
exists a homogeneous element x € S of multidegree k = (ky,...,k,) €
IN" such that x ¢ p for all p € Ass(M). It is clear that k € Cp since x € S.
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We can consider the exact Z"-graded sequence
0 — M(—k) = M — M/xM — 0
and the long exact sequence of local cohomology, for all n € Z,
- Hlszi (M/xM)y — Hé++ (M)n—k = HEH (M)n — Hé++ (M/xM)y —

By the induction hypothesis Hlsjr (M/xM), = 0 for all n € Cy for
some é’ € Z'". Since for all s > 1, n + sk € Cﬁ/ as well, we have the exact
sequence B

0— Hé++(M)ﬂ—k = Hé++ (M)g+(s—1)k

and hence,
Hls++(M)ﬂ—k = x*Hg, (M)

Since Hé++ (M) is an S44-torsion module and x € S;, we have that
Hé++ (M),— = 0. Considering now f := B’ — k, we have that Hé++ (M), =
0 forall n € Cg.

It remains to prove that the local cohomology modules Hg++ (M), are
finitely generated for all n € Z'.

Fixne Z' Ifn e CE’ then HQH(M)ﬂ = ( as we have seen before,
and this is clearly a finitely generated Sp-module. If n ¢ Cg, and since we
are assuming that Hg++ (M) = 0, again by Homogeneous Prime Avoidance
Lemma 2.4.1 there exists an element y € 51 such that y & Uycass(m) P
and as we did in the proof of Lemma 2.4.1, we can assume that the multi-
degree [ = (I3,...,1;) issuch thatn +1 € Cp-

Considering the Z’-graded exact sequence

0— ML M1 — M/yM(l) -0

we take the long exact sequence of local cohomology

Y i

. — H L (M/yM) ) — HE, (M)y —> HE_ (M)ysy — ...

Since n +1 € Cg, H§++ (M),+1 = 0 and by induction hypothesis we have

that Hlszi (M/yM),,4; is a finitely generated Sp-module, and so, HEH (M)
is a finitely generated Sp-module as we wanted to prove. O
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Assume now that the local ring Sp is Artinian in order o assure the
existence of the Hilbert quasi-polynomial of M, Py;. Now, we prove the
Grothendieck-Serre formula in our case.

Proposition 2.4.3. Grothendieck-Serre formula. Let M be a finitely gener-
ated Z7-graded S-module. Then for all n € Z7,

(1) — P (1) = ) (—1)' lengthg, (H§ (M)
i>0 B
Proof. For a finitely generated Z’-graded S-module M, we define, using
always multi-index notation, the generating functions

Hyi(x) = Y. (ha(n) — Ppa(n))x™

neZ’

and
Hy(x) = ), () (—1)lengthg (Hg,  (M)y))x™
nezZ’" i>0 B
It is clear that proving the required formula is equivalent to prove that
Hyy (x) = Hj (x).

We proceed by induction on rel. dim(M). If rel. dim(M) = r — 1 (equiv-
alently dim(M) = —1), then Supp, (M) = @, and hence V., (Ann(M)) =
Vi1 (S4++) = @. Then, there exists an u € IN such that (S44)* C Ann(M).
Therefore, Hg++ (M) =Ts, (M) = M. Thus, Hg++ (M) =0 foralli >
1. Now, since the Hilbert quasi-polynomial has degree —1, by Proposi-
tion 2.3.10, and hence Py;(n) = 0, we get that

H}(x H;ZV lengthg (HS, , (M))ux" = nezzr ha(n)x™ = Hiy(x)
as we wanted to prove.
Assume now that rel. dim(M) > r. Let us consider M’ = M/Hg++ (M).

By Proposition 2.4.2, HY (M), = 0 for all n € Cg, for some g € Z’ and
since hpg(n) = hyp(n) +length (H? s, (M)n), we get that Py(n) = Ppy(n).
So we need only prove the result for M’ since for any n € Z" we have that

ha(n) — Pag(n) = hyp(n) +lengthg (HY,  (M),) — Py (n)
= L (1) lengthg, (B (M) + length, (K, (M),)

Y-(~1) lengthg (X, (M),)

i>0
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because H(S)++(M/) =0 and Hg++ (M) = Hg++(M) fori>1.

Hence, let us assume that Hg++ (M) =0. Then Sy ¢ p, forall p €
Ass(M), and by Lemma 2.4.1, there exists a homogeneous element x € 54 4
of multidegree k = (ky,...,k;) € N" such that x ¢ p for all p € Ass(M).

Now we have the following Z'"-graded exact sequence

0 — M(—k) > M — M/xM —0

with rel. dim(M/xM) < rel. dim(M) by Lemma 2.2.8.
From the exact sequence we have that

hyem(n) =l (n) = b (n — k)
for any n € Z" and hence,
Pyyxm(n) = Py(n) — Py (n — k).
So, we deduce that
Hiytam(x) = (1= x*)Hy (x).

Considering the long exact sequence of local cohomology associated to
the previous short exact sequence, for each 1,

— H ' (M/xM)y — H§, (M), — H§, (M)y — H§_ (M/xM), —
and since the alternate sume of lengths is zero, we deduce that

HX

Ko@) = (1= HE (2).

Now, since rel. dim(M/xM) < rel.dim(M), by induction hypothesis
H]%/I/xM(l) = HJ)\(A/xM(x), and then

Hpy(x) = Hy(x)
as we wanted to prove. O

For an m-primary ideal I in a local ring (R, m), one can consider the
Hilbert-Samuel function

hi(n) = lengthg (R/I")
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and the Hilbert-Samuel polynomial p}(n) such that h}(n) = p}(n) for all
n > 0. In [Bla97], the author proves that

pi(n) —hi(n) = Y_(~1)"lengthg (g (R*(I))n+1)

i>0

for all n € Z, where R*(I) = @,z I"t" is the extended Rees algebra of I
and Ry = @,,-¢ ["t" is the irrelevant ideal of the Rees algebra R(I).

In the following, we generalize the definitions of the blow-up algebras
for some ideals Iy, ..., I;, and we prove an analogous formula in the multi-
graded case.

Let us consider the multigraded Rees algebra associated to some ideals
Iy, ..., I of a Noetherian local ring (R, m),

R(L,.... L) = @ LIt CR[t, ..., t].
nelN"

We consider the k-th extended multigraded Rees algebra

Ri(li,....I) = @ L' I"tr CR[t,. .. bt ]
n €Z
(nl.”,nAk,.f(.,eur)eN”l

fork=1,...,r.

For k =1,...,r let us consider the k-th associated multigraded ring of
Li,...,IinR,

[fl...[l’gk...[fr R(L,..., 1)

grl P ) (R) = =
R ﬂ%%, g kR(L, L)

To simplify, we denote by R, R} and G the Rees algebra, the k-th ex-
tended Rees algebra and the k-th associated multigraded ring, respectively.

To deal with the Rees algebra and the k-th extended one at the same
time, we set that negative powers of ideals are 0 in the Rees algebra, and
they are R in the k-th extended one.

We denote by ey, ..., e, the canonical basis of R’.

Theorem 2.4.4. For all i > 2 there is an isomorphism of Z"-graded R-modules
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and there is an exact sequence of Z7-graded R-modules

0— H%++ (R) — H%++ (Rf) = R /R — H713++ (R) — H713++ (Ry) —

In particular, H%H(R)ﬂ = H%H (R{)nfori=0,1and n € N'.
Proof. Let us consider the exact sequence of Z"-graded R-modules
0—R—R{— R{/R—0

and the long exact sequence of local cohomology

0.

- — Hg! (Ri/R) = Hg,  (R) — Hy, (R) — Hg, (R{/R) — ...

Notice that (R}f/R), = 0 for n € IN". Otherwise, when n; < 0,

(Ri/R)u = LM} -+ REK - It

and hence
Ri/R= € L't --Rex-- It
n<0

(nl...,@,..)inr)e]l\l"’l
Therefore,

HY, (Ri/R)=R;/R
and hence

Hg. (Rg/R) =0

fori > 1.

Using now the long exact sequence we get
Hr, (Ri) = Hy  (R)

for i > 1, the exact sequence

0— Hy, (R) — Hg,  (Rg) = R{/R — Hy_ (R)— Hg  (R)—

and forn e N",i=0,1,

Hi  (R)y = Hy, (Ri)n-

0



34 Multigraded structures

Remark 2.4.5. We can consider the (complete) extended Rees algebra de-
fined as

R¥(L,....I) = @ L' - It C Rt bt
nezZ’

Notice that in this case (R*/R), = 0 for n € N, and otherwise

71,‘1

* _ 711 s s i
(R /R)ﬂ_ Ii] ti] Iis tis t]1 tju

for some indexes {iy,...,is} U{j1,...,ju} = {1,...,7} such that n;, > 0
and nj, < 0. Also in this case

Hy (R*/R)=R*'/R
and '
H%z++ (R*/R)=0
for i > 1 and the previous theorem follows as well.

From now on, we assume that [j,..., I, are m-primary ideals of the
Noetherian local ring (R, m). For k =1,...,r, we denote

R
fk(ﬂ) = lengthR (I{ll o I]:lk+l o I,’?r> ’
Notice that this length is finite since it is an R/ Iy-module with R/ I Artin.
One of the first references on the study of this kind of functions is [Bha57]
for the two ideals case.

Proposition 2.4.6. There exists a polynomial py € Z[ny, ..., n,) and an element
B, € IN" such that

(1) = pi(n)
forn > B,
Proof. Since Gy is a standard IN"-graded algebra finitely generated over

the Artinian local ring R/ I, there exists a polynomial pg, an an element
B, € N such that

11”1 N
hgk (ﬂ) = lengthR ... I”k+1 I = Pg; (ﬂ)
1 k r
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forn > ék, see Proposition 2.3.10.
From the exact sequence of R-modules

00— I?1~~~Irn' —_— R — R — 0
If1~~~lg"+1~~~1f’ [Tl...lzk“...[r"r Lt nr

we deduce that fi(n) — fi(n —ex) = hg (n) for all n € IN". Then, by
Proposition 2.3.6, we have that f(n) is a polynomial function for n > f, .
We denote by pj such polynomial. O

Remark 2.4.7. Notice from the exact sequence in the proof that
pi(n) = pi(n — ex) = pg, (n).

For an element § € IN", we define H’g as the set of elements n € Z" such
that (1’[1, ce M, Mg, e .,1’[,) > ((51, .. ~/5k—1/5k+1r‘ . '/51‘) and n, € Z.

Theorem 2.4.8. There exist an element § € IN" such that for all n € HS it holds
pr(n) = fie(n) = }_(=1)"lengthg (HR , (Ri)u+e,)-
i>0
Proof. Consider the exact sequence of Z’-graded R-modules
-1

-t
0 — Ri(er) ~> Rf — G — 0

Since Gy, = R4+40k, we have that Hng (Gr) = 72++ (Gk). Then we
have the long exact sequence of local cohomology

0— Hy,, (Ri)uie, = Hi, (Ri)w — Hg, (G — Hy, (Ri)ure, = -

- ng;Lr (gk>ﬂ - H;z++ <R;)ﬂ+€k - H;Q++ (RZ)Q - Hé/'k++ (gk)ﬂ -

By Proposition 2.4.2 and Theorem 2.4.4 , there exist a p € IN" such that
foralln > B, HE, (Ri)n = HE, (RE)n=0foralli>0.

Since the length of the local cohomology of Gy is finite due to Propo-
sition 2.4.2 and to the fact that (Gx)o = R/ is Artin, by induction on 1y,
using also the exact sequence, we prove that lengthR(Hé2++ (Ri)n) < o

k
fOI‘ﬂEHé.



36 Multigraded structures

We denote x(n) = Zizo(—l)ilengthR(H%H(R,’(‘)ﬁgk) foralln € Z'.
From the long exact sequence and the Grothendieck-Serre formula,
Proposition 2.4.3 for Gy, since (Gy)o = R/ I; is Artin, we have

Xi(1) = xi(n—e) = = Y (=1)"lengthg (HG,  (Gk)n) = pg, (1) — hg, (n)
i>0
forall n € 'H’é.
If we write
o (n) = pr(n) — fi(n),
it holds

0x(n) — ox(n — ex) = pg, (n) — hg, (n) = xx(n) — xx(n—ex) (%)

see the previous remark.

From Proposition 2.4.6, there exists &« € IN" such that ox(n) = 0 for
n=a.

Let us consider an element § € IN" such that § > a and § > B. Then it
holds that for n > J, B

ok(n) = xx(n) =0
and then by induction on ny, using (*), we prove that
ok(n) = xr(n)
forall n € HE. O
Remark 2.4.9. Notice that there is not an exact sequence
0— R*(ey) — R" — Gy —0

by considering the complete extended Rees algebra. In fact, if r = 2, for
instance, and n € Z2 with n; < 0 and np > 0,

Np 4117 (12
12 tl t2

(R*/R*(e2))n = i 70
1 2 2

and hence it cannot be isomorphic to (G;), = 0.

Other references to Hilbert functions of multigraded algebras, with spe-
cial emphasis in multigraded blow-up algebras and mixed multiplicities
are [TV08] and [Swa07].
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In the following chapter we will use some of results in this chapter.
In particular we will use the fact that Hilbert functions of multigraded
modules are quasi-polynomial in a cone of IN” to study the asymptotic
depth of the homogeneous pieces of the module. In particular the behavior
of the Hilbert function of the Koszul homology modules will allow us to
reach our purpose.






Chapter 3

Asymptotic depth of
multigraded modules

The aim of this chapter is to study the depth of the graded pieces of
a multigraded module over a Noetherian non-standard multigraded ring
with the graduation considered in the previous chapter.

To reach our purposes we will need to use the Koszul complex and the
Koszul homology. Therefore, in the first section we recall these tools in the
multigraded case.

In the second section, we study the depth of the pieces M, of a multi-
graded module M. The key point in the proof is to use the asymptotic
behavior of the Hilbert function of the Koszul homology modules. In a
more general case, we are able to prove that this depth is constant in a
sub-net of a cone, since the Hilbert function is quasi-polynomial in a cone,
see Theorem 3.2.1. In some specific cases in which the Hilbert function is
eventually polynomial, we can assure a constant depth of M, for n in all
the cone, see Proposition 3.2.3 and Corollary 3.2.4.

As a consequence, we are able to prove in the Section 3.3, that the
asymptotic depth for the modules I} --- I/ and R/} --- I/ is constant
for n = (ny,...,n,) large enough, being Iy, ..., I, ideals in a Noetherian
local ring R, see Proposition 3.3.1 and Theorem 3.3.6. This study involves
the asymptotic depth of I}'* --- " /I}* - - - I;:kH .-+ I, that we are able to
prove that takes the same value for all k = 1,...,r, see Proposition 3.3.3.

39
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3.1 Koszul homology

In this section, we introduce the Koszul complex and the Koszul ho-
mology in the multigraded case. As a main reference, we follow [BH93]
and [Bla97].

Let S be a Noetherian positively multigraded (IN"-graded) ring. Let
M(S) be the category of S-modules and M’ (S) the category of multi-
graded S-modules with multigraded morphisms. Let xi,...,xs € S be
homogeneous elements of multidegrees kq,...,k;, € IN" respectively. We
now proceed to define the (multigraded) homological Koszul complex
Ki(x1,...,%s;S) with respect to x1, ..., Xs, .

Let F be a free S-module F = @;_; S(—k;), with basis e1,...,es. We
consider the homogeneous morphism of multigraded modules f : F — S
defined by f(e;) = x;. Then the Koszul complex K. (x1,...,xs;S) is the
homological complex such that the n-th graded piece is

Kn(xl,. . .,XS;S) - /\nP

and the differential d,, : \" F — A" ! F is defined by
n .
du(ar A+ Aag) =Y (1) f(a) ag A AGEA - Aay.
i=1

One can observe that K, (x1,...,xs;S) is also a Z"-graded ring, with

Kn(x1,...,x;8)m = P /\nle-,

211:1 mi=m

and that each differential is a homogeneous morphism. In fact, considering
{ei, Ao Nejy, |1 <ip <--- <iy <s} abasis for \" F,

M-

I
—

dulei, Ao Ney) = (=) flei) ey A== A& Ao A,

]

I
™=

I
—

(=) xi e Ao NG A N,
j

anddeg(xijeilA~--/\é{j/\~~~Aein) Zkij+(ki1+~~~+k:-].+---+kin) =

ki +---+k; forallj=1,...,n. So we have that deg(du(e; N---Ae;,)) =
deg(eil ARER /\ein) :kil + - +kin'
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Now, identifying e;, A--- Ae;, withe; ; for each element of the basis
of A" F, we can identify

Ky(x1,...,%58) = P S(—(ky+---+k,)) = B Se .

1<ip<--<ip<s 1<ip<-<in<s

where deg(e;, .;,) = ki +- - +k; .

From this presentation the multigraded structure of K, (x1,...,xs;S)
becomes clear, since Ky(x1,...,%s;S)m = @D1<ij<-...<i,<s(S€i,. i,)m, and
clearly

SkKn(xl, . S)m - Kn(xl, R S)k+m'

So, Ky(x1,...,%s;S) is a multigraded free S-module of rank () and
with (homogeneous) differential

n
s = B
et / ll/ el

We define the Koszul homology modules as the homology modules of
the Koszul complex, that is, for n > 0 we define the n-th Koszul homology
module as the multigraded S-module

Kerd,
Im dn+1 .

Hy(x1,...,%5;S) = Hy(Ki(xq,...,%5S)) =

For a multigraded S-module M, we consider the homological Koszul
complex Ky (x1,...,xs;; M) with respect to x1,...,xs as the complex given
by

Ky(x1,..., %5 M) = Ky(x1,...,%5;S) @ M
with differentials d,, ® idys. It is clear that K, (x1,...,xs; M) has a struc-

ture of a multigraded S-module. In the same way, we define the Koszul
homology modules of M as

Ker (d, ® idp)

Hn(X1,...,Xs,‘M) = m

for n > 0. The modules H.(xy, ..., xs; M) are finitely generated Z"-graded
S-modules and, for all n > 0 and k € Z', it holds Hn(xl,...,xs;M)E =
Hy(x1,...,xs; Mg).

We know that (xq, ..., xs) kills the homology module H, (x1, ..., xs; M)
for all n € N, ([BH93] Proposition 1.6.5), and so, Hy(x1,...,xs; M) are
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S/(x1,...,xs)-modules. In the case when (Sp, m) is a Noetherian local ring
and x4, ..., Xs is a system of generators of m we get, from Proposition 2.3.10,
the existence of the Hilbert quasi-polynomial of Hy,(xq,...,xs; M). This
will be the key tool in the proof of Theorem 3.2.1.

In order to compute the depth of a module with respect to an ideal,
we can use the Koszul homology of this module with respect to a system
of generators of the ideal. The following result, from [BH93], is proved
in general for a module over a Noetherian ring. In addition, when the
ring and the module have a multigraded structure and the morphisms
are homogeneous, the Koszul homology modules inherit that multigraded
structure as well.

Theorem 3.1.1 ([BH93] Theorem 1.6.17). Let S be a Noetherian ring, and M a
finite S-module. Let I be the ideal I = (x1,...,xs) of S.

(i) All the modules Hi(x1,...,xs; M), i=0,...,n, vanish if and only if M =
IM.

(ii) If Hi(x1,...,xs; M) # 0 for some i, then
depth;(M) = grade(I, M) =s —¢
where ¢ = max{i | H;j(xy,...,xs; M) # 0}.

3.2 Asymptotic depth of multigraded modules

Let S be a IN"-graded ring, generated over Sy by elements of multide-
grees y1,...,%r, where v; = ('yi,...,'yf,o,...,O) € N with ’ﬁ # 0, for
alli =1,...,r. Let M be the maximal homogeneous ideal of S, that is
M = m D D, Sp, where m is the maximal ideal of the Noetherian local
ring So.

Let M be a finitely generated Z"-graded S-module. We want to study
the asymptotic depth, with respect to m, of the multigraded pieces M,.
In our setting, by asymptotic we mean the elements n € IN" in a suitable
cone Cﬁ. In the graded case, r = 1, this is the same as considering a large
enough n. In the standard multigraded case, it is the same as considering
elements n € IN" with large enough components n; foralli =1, ..., r, since
in this case the cone is defined as the elements m € IN" such that m > B.
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In the following theorem we generalize part of Theorem 1.1 in [HHO5]
to the non-standard multigraded case. In that paper, the authors consider
standard graded modules instead. The proof will follows very similarly
since we can compute the depth by means of the Koszul homology that
works also in this case, but using the differences of the Hilbert function of
a non-standard multigraded module. As previously pointed out, the key
point in the proof is the existence of the Hilbert quasi-polynomial for the
Koszul homology modules. In our case, the Hilbert function is not always
a polynomial, but a quasi-polynomial in a cone of IN", so we will not be
able to assure constant depth in a cone, but in a sub-net of it. In other non-
standard multigraded settings in which the Hilbert function is eventually
polynomial, we can assure constant depth in all the cone.

Theorem 3.2.1. Let M be a finitely generated Z'-graded S-module. There exists
an element p € IN" and an integer p € IN such that
depth(My) > p,
forall n € Cg with My # 0, and
depth(M,) = p,
for some § € g and forall n € {6+ Yy Aivi | Ai € N} C Gy

Proof. Let x1,...,x, be a minimal set of generators of m. To simplify the
notation, we denote x = x1,...,x;. By Theorem 3.1.1, Theorem 1.6.17 in
[BH93], if M) # 0,

depth(My) = n — max{i | H;(x; M) # 0}.
Since rel. dim(M) > r — 1 for any Z"-graded S-module, we define
¢ = max{i | rel. dim(H;(x; M)) > r — 1}.

Then, for all i > ¢, rel. dim(H;(x; M)) = r — 1, which is equivalent to
dim(Supp++(H;(x; M))) = —1. Since H;(x; M) is a finitely generated Z'-
graded S-module, by Proposition 2.3.8, there exists a cone C/g C IN’, with
,B € IN’, such that for all k € Clg , it holds H;(x; M) = 0. Thus, taking a
,B > B, for all i > ¢, we conclude that for all k e Cg, with M # 0,

depth(My) >n —c=p.
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On the other hand, since rel. dim(H.(x; M)) > r — 1, or equivalently
dim(Suppy4(He(x; M))) = d > 0, there exists a quasi-polynomial P of
degree d > 0, i.e P # 0, and a cone Cﬁ/ C IN” with vertex at é' € IN" such
that forallk € C g we have B

lengthSQ(HC(x; M)y) = P(k).

We can assume that B = g/, readjusting the cone if necessary.

This means that for a?ly 6 € Ilg in the basic cell, (see Remark 2.3.11),
there exists a polynomial f; € Z[n] such that P(k) = fs(k) for k = § +
Y.i_q ni7vi, with n; € IN. Since d is the maximum of the total degrees of these
polynomials fs for § € I1g, this means that at least one of these polynomials
has degree d, but we cannot control the degree of the others. So, there is a
J € Ig such that |deg(fs)| = d. Therefore, lengthg (Hc(x; M)i) = f5(k) #
Oforallk €6+ {My1+ -+ Ay | A € N} Hence Hc(x; M)y # 0 for all
ke d+{My1+--+ A7 | A € N}, which is a sub-net of Cg.

In conclusion, we have proved that depth(M;) = n — ¢, which is a
constant value, for all k € {§+ A1+ -+ Ay | A € N} C Cp, and
depth(My) > n —c = p for k € Cg with M # 0. O

Remark 3.2.2. Observe that we cannot assure that the depth will be cons-
tant in all the cone, as it would be desirable, since we cannot control the de-
grees of all the collection of polynomials that define the quasi-polynomial.
So, if all the polynomials have non-negative degree, i.e. they are not iden-
tically zero, we can assure constant depth in all the cone.

In general, we cannot improve this result. If we consider M = S as a
multigraded S-module, it is clear that for all k € Cg \ T, we have M; =0,
for any cone Cs C IN". So depth(M;) turns out to be different in CgNT
from the rest of the cone.

When the quasi-polynomial is, in fact, a polynomial, we can assure the
constant depth in all the cone.

Proposition 3.2.3. Let S be an IN"-graded algebra generated over Sy by elements
of degrees (1,0,...,0),(%,1,0,...,0),...,(%,%,%,...,1) € N". Let M be a
finitely generated Z'-graded S-module. There exist an element B € IN" and an
integer p € IN such that, for n € Cg, B

depth(M,) = p.
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Proof. See the proof of the existence of the Hilbert polynomial in this case
in [Lav99], see also [Rob98]. In this case, since the Hilbert function is, in
fact, polynomial, in the second part of the proof of Theorem 3.2.1, we have
that He(x; M), # 0 for k € Cp, and hence,

depth(My) =n—c=p

forall k € Cp. O

Corollary 3.2.4. Let S be a standard IN"-graded algebra. Let M be a finitely
generated Z'-graded S-module. There exist an element p € IN" and an integer
o € IN such that, for n > é,

depth(M,,) = p.

Proof. This is clearly a corollary of the previous proposition since in the
standard case, the degrees of the generators of S are e; = (1,0,...,0), ...,
er = (0,...,0,1) and a cone Cg is defined by the elements of the form

B+ Y Aiei = (B1+A1,..., Br+ Ar) € N7 with A; € N. O

3.3 Asymptotic depth of multigraded blow-up al-
gebras

Let us consider the multigraded Rees algebra associated to some ideals
L, ..., I of a Noetherian local ring (R, m),

R(L,....L)= @ L' It CR[t, ..., t].
nelN"

For k =1,...,r let us consider the k-th associated multigraded ring of
L,...,I inR,

[fl...ll?k...[fr R(L,..., 1)

871, 1 (R) = - _
v ﬂgﬂ'irlflml,fk“...mr LR(L, .. 1)

They are finitely generated standard Z"-graded R (I3, ..., I;)-modules,
in both cases, and each component, R(I,...,I;), and gry, . 1.1, (R)y, is a
finitely generated R-module.
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In the next proposition we generalize Theorem 1.2 in [HHO5] in order to
study the depth with respect to m of the pieces of the previous multigraded
modules.

Proposition 3.3.1. There exist elements p, B, € IN" and integers a, 6 € N, for
k=1,...,r, such that
depth([1--- ") =

foralln = (ny,...,n,) > B, and

1111 N
depth ... [Zkﬂ R =%

foralln = (ny,...,n,) > ék, and forany k =1,...,r.
Proof. By Corollary 3.2.4 applied to the multigraded modules R (I3, ..., ;)

and gry,,. 1.1, (R), there exist some é’ék € N’ and integers a,6y € N
such that depth(li11 ") = aforn > B, and for all n > ék it holds

depth (I} - 177 /I - I 1) = 6 =

In [HHO5], Theorem 1.2, the authors prove that 6y = a —1 whenr = 1.
In our case we want to prove that 5y = «a —1 forall k = 1,...,r, and
hence §; = --- = J,. In order to prove this, we first need the next lemma
generalizing Lemma 1 in [Lev78].

Lemma 3.3.2. Let (R,m) be a local ring and I C R an ideal. Let K, =
Ky (x1,...,%n; R) be the Koszul complex of R with respect to x1, ..., Xy, a mini-
mal set of generators of m. Let M be a finitely generated R-module. Then, there
exists a positive integer ¢ such that the induced morphism

Ho(x1,...,%0; I'M) — Hy(x1, ..., %0; I°M)
is zero for all [ > c.
Proof. Since Im(d, 41 ®idpy) = I'Im(d, 1 ®idpy),

(Ky ® I'M) NKer(d, ® id )

H.(xI'M) =
(M) 'Tm(dy 11 ® idy)

7

where x = x1,...,xy.
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By the Artin-Rees lemma, there exists a positive integer c such that for
all [ > c it holds

I'(Ky ® M) NKer(dy ® idy) = I'"°(I° (K, © M) NKer(d, @ idpr)).

Now, since H.(x; IIM) is killed by the elements in (x1,...,%,) = m,
([BH93] Proposition 1.6.5), and I C m, then

I'=¢(I°(K, ® M) NKer(d, @ idpg)) C I°Im(dyqq ® idpy).
Therefore,

'K, @ M) NKer(d, ®@idy) = I'"°(I°(Ky ® M) NKer(d, ® idp))
C IFIm(d,qq @ idy).

Thus, the induced morphism
H.(x; I'M) — H.(x; I°M)

is zero for all I > c. O

Now we can prove that all asymptotic depths for the multigraded pieces
of the k-th associated multigraded graded ring in Theorem 3.3.1 coincide.
Proposition 3.3.3. Forallk=1,...,r

(Sk =a—1.

Proof. By Proposition 3.3.1 there exist positive integers &, J; and elements
EO’Ek € IN", fork=1,...,r, such that

depth(I}' - I[") = a

foralln = (ny,...,n.) > B, and

[{11 N
depth T I,':"H T =6
P

forall n = (ny,...,n,) > X If B € N is an element such that g > Ei,
componentwise, for all i = 0,...,r, then all asymptotic depths hold for
n>p.
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Forallk =1,...,r,and n = (ny,...,1n,) € IN" we consider the exact
sequence of A-modules

n ny
R

— 0.
. "I;:kH N

0— [ g

For all n > B, by depth counting on this exact sequence, we have that
O > min{a,a — 1} =a — 1.

Assume that 6 > o« —1. Let x = xy,...,x, be a minimal system of
generators of m. Then

a =depth([*--- ") = n —max{i | Hi(x; I;* - - - ') # 0}
and so, for all n > é,
Hoa(xi [ 1) 0.
On the other hand,

1111 N i
O = depth [ Il:lk+1 T

) A (2
= n—max{i| H; | x; 1 d # 0}

1111...1]’(7k+1...1fr

> a—1

and hence, in particular,

1111 N
H,_ +1 | X5 =0.
e [1”1...[I?k+1...[;1r
From the long exact sequence of homology, we have that

1;“1...1;17
0 = H,_ +1 | X5 —
e 1;11...1;:k+1...1;’r

N Hn_a(x;llnl o [I:‘k'H I — Hn_,,((x;lf1 eIy — L

and thus, H,_,(x; I{ll N I;:"H Y — Hy—a(x; I{ll -+ - I") is an injective
morphism for n > B.
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By composition of injective maps,

Huma (G I B0 1) — Hya o I - T )
is injective for A > T > 1and n > é
Moreover, by Lemma 3.3.2, there exists a positive integer ¢ such that for
[ > c the morphism
Hy ol I - I;:Hl D) = Hyg OG I - IO )
is zero. Therefore, H,_,(x; Ifl e I,:”‘H <oy =0for!>0and n > B,
that give us a contradiction.
Hence,
(Sk =a—1

forallk=1,...,r. O

We are interested on the depth of R/Ij!---I/" for n large enough.
In this case, we cannot directly apply results such as Theorem 3.2.1 or
Corollary 3.2.4, since @ﬂ R/ If 1... I does not have a multigraded mod-
ule structure as the multi-Rees algebra or the associated multigraded ring
have. In this case, we can take advantage of the constant asymptotic depth
of these last two modules and the relation with R/I;*---I" by means
of some short exact sequences of R-modules where we can use the depth
counting techniques.

Example 3.3.4. With CoCoA, [CoC], one can easily check the behavior of
depth(R/I}* - - - I/'") for some n € IN" with the instruction Depth.

For example, considering the ring R = K[[x,y,z, t,u,v]], with K a field,
and the ideals of R I} = (x% x%y,xy°, %), b = (x*y*z, x*y*t) and I3 =

(x*u?03, y*uv?), we conjecture that

R
depth <I{” 1321513 ) =

for (nq,ny,n3) > (4,1,1).

In the following table, there are the results of our test for elements
(0,0,0) < n < (8,8,8). Notice that the depth is variable outside the cone
with vertex at (4,1,1) and generators ey, ey, e3.
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R
(n1,ny,n3) depth <W>
(1,1,2) < (ny,nz,n3) < (3,8,8) 1

(1,0,2) < (n1,0,m2) < (3,0,8)
(1L,1,1) < (n1,m2,1) < (3,8,1) 2
(4,1,1) < (n1,n2,n3) < (8,8,8)

(0,1,1) < (0,np,n3) < (0,8,8)
(1,1,0) < (n1,n2,0) < (8,8,0) 3
(4,0,1) < (n1,0,13) < (8,0,8)
(1,0,1) < (n1,0,1) < (3,0,1)

(1,0,0) < (n1,0,0) < (8,0,0)
(0,1,0) < (0,15,0) < (0,8,0) 4
(0,0,1) < (0,0,n13) < (0,0,8)

(0,0,0) 6

If we denote by 6 = 0, =a —1, forall k =1,...,r, then from Proposi-
tion 3.3.1 and Proposition 3.3.3 we get:

Corollary 3.3.5. There exists an element p € IN" such that for all n > B it holds

depth(I{1--- ") =6 +1

[111...1;77
depth| —————+ | =9
p Ifl...ll’zk...lfr

and

forallk=1,...,r.

Proof. By Proposition 3.3.1, there are some elements ék eN',k=0,...,r,
and «,6 € IN such that depth(Ifl Yy =a=6+1forn > éo and for

any k=1,...,r, depth(I{*--- " /I] - --IZ"H <oy =¢foralln > B,
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We only need to consider an element f € IN" (componentwise) greater
than the other E{ forallk=0,...,r. Then for all n > é it holds

depth(L}'...I") =6+1
..o
depth | — 1n+1r =9
[1...[kk N

1
forallk=1,...,r. O

and

Let B € IN" be as in the above Corollary, that is from where all the
previous asymptotic depths hold.

Theorem 3.3.6. There exist an element ¢ € IN" and an integer p € IN such that

R
depth | 7—— | =p <6

forall n > e. Moreover, if there exists an n > é such that depth (I,,R) >4,

11 I;’r

then p = 4.

Proof. Let B be as in the previous Corollary. We write

R
d =depth | -———+
() = dep (1;11...1;%)

and we denote by e, ..., e, the canonical basis of R".
Forall k =1,...,r there is the short exact sequence of R-modules

Lt A A
0— nq n+1 Ny - n n+1 ny - 1”1 It 0.
JEEER KA I L MR &
Using depth counting on this exact sequence we have that for n > g,
6 > min{d(n +ex),d(n) + 1} M
d(n+e) > min{d(n), 0} 2)

Assume now that there exists an 1y > B such that d(ny) > 6. From (2),
we deduce that d(ng + e;) > J, and then by (1), we get that d(ny +ex) = ¢
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for all k =1,...,r. Using recursively (2) and (1) we deduce that d(n) = o
for all n > n,. We put ¢ = n; in this case.

Assume now that for all n > g it holds d(n) < J. By (2) we have that
dn+e;) > d(n) for all k = 1,...,r, since, by hypothesis, d(n + e;) < 9,
using (2) recursively we deduce that 6 > d(m) > d(n) for all m > n. So,
d(n) is an increasing function, bounded from above by J. Therefore, there
exist an element ¢ > B such that

d(n) =d(a) =p

forall n > e. In fact, if we assume the contrary, for an element ny > §, there
exist an 1; > 1y such that d(n;) > d(ny). Again, there exists an element
n, > ny such that d(n,) > d(n;). Recursively, we obtain an increasing
sequence of elements in IN’,

B<ny<mn <mp<---<n<...

that give us an strictly increasing sequence of positive integers
d(ng) <d(nmy) <d(np) <--- <d(n) <...

bounded from above by . Hence, it has to stabilize, and we get the con-
tradiction.

Summarizing the two cases, we get that there exist an element ¢ and an
integer p, such that for all n > ¢

R
depth | ———— | = 0.
ep (Ifl.««lff> %

R
Moreover, if there exist an n > B such that depth (H> > 0, then
= Il 1... IV r

o =29.
O

In [KR94], it is defined the spread of a multigraded ring A with (Ag, m)
a local ring as

s(A) = dimProj’ (A/mA) + 1.
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When A = R(I) is the Rees algebra of an ideal I C R, the analytic spread of
I is defined as, [NR54],

dim(R(I)/mR(I)) = dim Proj! (R(I)/mR(I)) + 1.

Although in this chapter we have not studied bounds for the asymptotic
depth of a multigraded module in the more general case, we can take
advantage of the formula proved by Hayasaka in [Hay06], Theorem 4.1,
in the standard multigraded case, to bound the asymptotic depth of the
modules R/I}*- - - I

Proposition 3.3.7. Let p € IN be the asymptotic depth of R/ I} - - - II'". Then,

p < dim(R) — s(R(I;,..., L)) +1,

or equivalently,

. o (R, L)
< o r - 7 .
p < dim(R) — dim Proj <mR(11/ .. .,Ir)>

Proof. By Theorem 4.1 in [Hay06],
s(R(I,..., Ir)) <s(R[ty,...,t]) +dim(R) — p,
which is equivalent to
. . R(l],...,lr) . . R[tl,...,tr] .
r < r —
dim Proj (mR(Ilr---/Ir> < dim Proj wR[t, ., b] +dim(R) — p.

By Remark 2.2.9, dim Proj” (%) = 0, or s(R[t1,...,t]) = 1, and

hence,
R(L,..., L)

: T < 1 —
dim Proj (mR(Il,...,Ir)> < dim(R) —p,

s(R(I, ..., I;)) =1 < dim(R) — p

or equivalently,

O

Remark 3.3.8. As a corollary of the results of this section we partially
get Theorem 3.3 in [BZ06], concerning the asymptotic depth of standard
graded modules, [Hay06], Theorem 3.1 in the standard multigraded mo-
dules case, and [HHO05], Theorem 1.1; all of them in a standard framework.
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Notice that [Hay06], Theorem 3.1, is deduced from the asymptotic stabil-
ity of Ass(M,). Here we get a direct proof by using the Hilbert quasi-
polynomials of the Koszul homology. The asymptotic stability of Ass(M,)
is an open question that we do not address here.



Chapter 4

Veronese multigraded
modules

Let S = @, enr Sn be a Noetherian IN"-graded ring generated as Sp-

algebra by homogeneous elements g{ fori=1,---,randj=1,...,u;, of
multidegrees v; = (7},...,7,0,...,0) € N’, respectively, with 7} # 0. We
assume that Sy is a local ring with maximal ideal m and infinite residue
field.

The main purpose of this chapter is to study the Veronese modules
associated to a non-standard multigraded S-module M by means of some
cohomological properties of the module. We mainly study the vanishing
of the local cohomology modules of M and of the Veronese modules of M,
generalizing some results on the depth of Veronese modules associated to
Rees algebras proved in [Eli04].

In Section 4.2 we extend several results on homogeneous ideals of Z-
graded rings to homogeneous ideals of non-standard Z'"-graded rings,
Propositions 4.2.1, 4.2.2 and 4.2.3. We consider the multigraded scheme
Proj’(S) and we define the projective Cohen-Macaulay deviation of a multi-
graded module and we link this number with the generalized depth, stud-
ied by Brodmann and Faltings (see [Bro83] and [Fal78]), Theorem 4.2.7.
As a corollary we prove that the generalized depth remains invariant by
taking Veronese modules, Proposition 4.2.8.

In the first part of Section 4.3 we prove, under the general hypothe-
sis on the degrees of S, that the depth of the Veronese modules M®) is

55
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constant for special asymptotic values of b, Proposition 4.3.1. In the rest
of the section we extend to a non-standard framework the notion of finite
graduation, [Mar95]. At this point we need to restrict our setting to the
almost-standard case, that is with positive multiples of the canonical basis
of R" as a multidegrees of the generators. Under these special degrees of
S we prove that the generalized depth of a multigraded module coincides
with its finitely graduation order, Theorem 4.3.7. We use it to get that
the depth of the Veronese modules M(@b) ig constant for large a,b € IN,
Theorem 4.3.12, and we apply this result to the multigraded Rees algebras
associated to a finite set of ideals, Proposition 4.3.15.

4.1 Veronese modules

Given integral vectors v; = ('yi, ... ,'yf, 0,...,00eN",i=1,---,r,such
that 7} # 0, we denote by ¢ the map

¢p: 720 — 7
noo— Y nYi
Note that Im(¢) = I'(7y1,...,7r) is the subgroup of Z" generated by 7;,
i=1,---,r
We denote by G the r x r triangular matrix whose columns are the
vectors 1, ...,7r. Note that G is a non-singular matrix and that the multi-

index t171 + - - - + £y, is the column vector Gt.
Given g € IN*” we denote by ¢, the map

$o: 28 — Z
n o ¢u(n) =¢(na),

with ¢, (n) = ¢p(n.a) = Y;_;(na;)y; foralln € Z'.

Definition 4.1.1. The Veronese transform of S with respect to a € IN*", or the
(a)-Veronese, is the ring
S(ﬂ) = @ S‘f’n(ﬂ)'

nelN”"

S@ is a subring of S. The degrees of its generators have the same
triangular configuration as the degrees of S.
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Definition 4.1.2. Given a Z'-graded S-module M we denote by M@) the
Veronese transform of M with respect to a,b € IN*", or the (a,b)-Veronese,

MED) = @ My, ()1
nezZ’

M@b) i an $@-module. Observe that when b = (0,...,0) we recover
the classical definition of Veronese of a module.

Let M be a finitely generated Z"-graded S-module. By using a sim-
ilar argument as in [HHR93], Lemma 1.13 and Lemma 1.14, where the
standard case was studied, (see also [GW78]), we next prove that the local
cohomology functor and the Veronese functor commute, i.e.,

HY, o (M) 2 (H (M) (@)

where M = m @ S, is the maximal homogeneous ideal of Sand a,b € IN*".
For the basic properties of local cohomology we use [BS98] as a general
reference.

If M is a Z"-graded S-module, we denote by Es(R) the homogeneous
injective hull of M in the category M’ (S) of Z’-graded S-modules with
homogeneous morphisms. We consider the functor Extg in this category.
For the sake of completeness we include the following results proved in
[GW78].

Lemma 4.1.3 ([(GW78] Lemma 1.3.1). Let E be a Z’-graded S-module. Then
the following conditions are equivalent:

(i) E is an injective object of M'(S).
(i) Ext(S/1,E) = 0 for every homogeneous ideal I of S.

(iii) Exti(-,E) = 0 for every integer i > 0.

Theorem 4.1.4 (|[GW78] Theorem 1.3.3).
(i) Asss(Es(M)) = Asss(M) for every Z"-graded S-module M.

(ii) Let E be a Z'-graded S-module. Then E is an indecomposable injective
object of M"(S) if and only if E = (Es(S/B)) (k) for some homogeneous
prime ideal B of S and some k € Z". In this case, Asss(E) = {B} and P
is uniquely determined for E.
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(iii) Every injective object E of M"(S) can be decomposed into a direct sum of
indecomposable injective objects of M (S). This decomposition is uniquely
determined by E up to isomorphisms.

We say that a Z’-graded S-module M satisfies condition (A) if it satis-
fies one of the following properties:

(A1) For each x € M there is a t > 0 such that M'x = 0.

(Az) For some 1 € IN", there is a s € M, such that M(—n) —> M is an
isomorphism.

If M is a Z"-graded S-module with the property (A), then H§\4 (M) = 0 for
i>0.

Proposition 4.1.5. Let S be a Z"-graded ring generated by elements of degrees
Y1,---,Yr over a local ring Sy, and let I be an injective S-module. For any
a,b € (N*), the Veronese module 1Y) has the property (A).

Proof. We denote by M for the homogeneous maximal ideal of S and by m
the maximal ideal of the local ring Sp.

By Theorem 4.1.4, it suffices to prove the case in which I = E5(S/) (a
homogeneous injective hull) with 8 a homogeneous prime ideal of S.

If B = M, then I and I(@2) clearly satisfy the property (A;), and hence
(A).

If f # M, then we prove that 1@ has the property (A,), by distin-
guishing between two cases:

Assume first that P9 # m. Then there exists an element z € m (z
has degree 0) such that z ¢ 3. Multiplication by z gives an isomorphism
I - I that induces an isomorphism (@) =, [(@b) Tn fact, -z is injective
since z ¢ P is not a zero-divisor of [ = E5(S/3) and it is surjective thanks
to the isomorphism theorem that assures that Im(-z) = I.

Now assume that By = m. Since P # M and 74, ..., 7, are the degrees
of the generators, there exists an <; such that S,, ¢ B. In fact,if S, C P
for all i, then M = ‘B. Let z € S,, be an element such that z  PB. As in
the previous case, multiplication by z gives an isomorphism I(—7;) —— I,
and also the multiplication by a™ for all m > 1. If x € (I@b)), = Loy (n)+bs
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where ¢q (1) = Y;_;(ajn;)7;, then the degree of z%ix is
14
aivi+ Y (an)yj+b =Y (ajnj)yj+ (aj(ni +1))yi+b = a(n+e;) +b,
j=1 j#
where ¢y, ..., ¢, is the canonical basis of IR". Therefore, multiplication by z%
gives an isomorphism 1(@4)(—¢;) 2 pab), being z% € Mg, = (M@),,
since P (e;) = a;7i.

Summarizing the two cases, we get that I(22) has the property (Ay),
and thus (A). O

Now we can prove that the Veronese functor commutes with local co-
homology.

Proposition 4.1.6. Let M be a finitely generated Z-graded S-module. Then,
(Hiy (M))@h) = ij(z) (M(@b)
foralli > 0anda,b € N*.
Proof. Let us consider an injective resolution of M
0—M—1I°

By Proposition 4.1.5,
0 — M@b) __, re(ab)

is an injective resolution of M (@b) that satisfies (A). Then,
. -
Hlyo (V%) = 0

fori > 0 and j € IN. So, we can use the resolution to compute the local
cohomology of M(@b).,
Finally we prove that for any Z"-graded S-module N, it holds

F o (NO) = (Tag () @4

In particular, for N = I/ the claim is proved. We prove both inclusions:
if x € (T q(N))@D), then x € N@b and M!x = 0 for some t > 0. In
particular M@y = 0, because M@ C M, and hence, (I (N))@b) C
FM@(N(E&))-
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Now, if x € T ) (N (@b)), then x € N@ and M@ty = 0 for some
t > 0. So, we have to prove that there is an s > 0 such that M*x = 0.

The generators of M are f,..., fu, € m of degree 0 and g/, .. .,g?" of
degree v; fori =1,...,r. We put y = po + p1 + - - - + pr. Then, (gf(l))“i €
M@ foreachi=1,...,rand j(i) = 1,...,p; and ' € m = (M@), for
allk=1,...,4pand i = 1,...,7. We denote by g" := (g})" --- (gl

1 1o
and f™0 := TO"'f:zo , with m; =m} +---+ml foreachi=0,...,r

Let us consider an s > ay---ayut. If z = fmgl" ... ¢l € M® with
mg +mq + - - - +m, = s, then there existi: 0,...,rand j=1,...,p; such
that m{ > ay---a,t. If i = 0, since m{) > at for all k, we put z = (f].”k)ty,

1
withy = (f 0. fmo k. f ) --- ¢/, and hence, zx = y(f;z")tx =0
by hypothesis. If i > 1, since m] > a;t, we put z = ((g{:)”i)ty, with

1 il g ‘i ;
y=frogi gl (g™ - (g () ) g g

and hence, zx = y((g{)ai)tx = 0 by hypothesis. Then M°x = 0, and thus
T g0 (N@D) C (T (N))(@b), e

4.2 Generalized depth

In this section, we study, among other properties, the generalized depth
of a multigraded module and its Veronese modules.

Recall that Proj"(S) is the set of all relevant homogeneous prime ideals
on S, i.e. the set of all homogeneous prime ideals p of S such thatp 2 Sy .
Note thatp A S if and only if foreach 1 < i < r thereexists 1 < j(i) < y;
such that gf(z ¢ p. Given a homogeneous ideal p C S we denote by U
the multiplicative closed subset of S of homogeneous elements of S\ p;
we denote by S, the set of fractions m/s € U~1S such that deg(m) =
deg(s) € N; S(,) is a local ring with maximal ideal p u-tsn Sp)-

In the next three propositions we prove several results relating prop-
erties of non-standard Z'"-graded rings and modules with their Veronese
transforms.
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Proposition 4.2.1. For all p € Proj (S) the ring extension
S(p) — Sp
is faithfully flat with closed fiber k(p).

Proof. Since p 5 S44, for eachi € {1,---,r} there exists a generator such
that gf(l) ¢ p, 1 <j(i) < p;. In particular gf(l) eUforalli=1,...,r
Let us consider the ring map

q) S( )[Tll 1 l"'/TV/Tyil]—)uils

defined by ¢(T;) = gf(l) and qo(Tl.*l) = (gz.(l))’l, i=1,...,r. We will prove
that ¢ is a ring isomorphism.

Let m /s be a fraction of U~1S; let D = Yi_1 Divi, Di € N, be the degree
of m,and letd = Y/_; d;v;, d; € N, be the degree of s. We define

r

= H(g{(i))dﬁDi.

i=1

Hence, let us consider the identity

M () 1
s (s t) i
Note that 't € S, and that 1 = (T, TZ.D"fdi), so ¢ is an epimor-
phism.

Let z = Y ez cu T" be an element of the ring Sp) [Ty, Tl_l,. T, T
such that ¢(z) = Yz cn[Ti= 1(g/())"l =0,n = (ny,...,n). Since the

element ¢, € S(,), we can write ¢, = a,/by with deg(a,) = deg(bu),
ay € S and b, & p. We write

r . (gJ:(il))Ylil (gJ:(iS))nis
(gé(l))n,» — _%h is
g (ggl(h))—njl N (g;'t(]t))_njt

with (g1 .. (g)))m € s and (g)V) .. (gl) M € S\, ie.

Moo, Mg >0 and Mjyeo 1, < 0.

Now, y »
o(z)= ¥ (V) (s
wez bﬂ(gj:l(h))—n g/(]t —nj,
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and by reducing to a common denominator we get

0(2) = ¥ (gl (gl = o

Now, deg(b) = deg(d,) + Zztc:1 —1j,Yj-
Hence there exists § € U such that,

Y ody (gl (gl =0,

nez’

We have that if A, = (5dﬂ(g{1(i1))"i1 (gf:fis))”is # 0, then

deg(Ayn) = deg(d) + deg(dy) + 2 n; vi, = deg(d) + deg(b) + Z niy;.

Since the r x r matrix (1, - - ,y,) is upper triangular and non-singular,
the degrees deg(A,) are different when n ranges over Z". Hence we get
A =0foralln € Z".

Let us consider the following identities in 5,

- d, (8;1(]1)) (g;:t(jt))_n]t g_/(]l) g;fjt))_n Y

an
- bﬂ b b(;(g/( ))"11 (gJi(lS))nis

S

so z = 0, and hence ¢ is a monomorphism.
Let us consider the multiplicative closed subset W = U~1S\ pU~!S.
Then S, = WU ~1S], and furthermore

Sp =W (ST, T L ..., T, T

From this identity we deduce that the ring extension S(,) — Sy, is faith-
fully flat. A simple computation shows that the closed fiber of S,) — S
is k(p). O

Proposition 4.2.2. The extension S\@ < § is integral, dim(5@) = dim(S)
and there is a homeomorphism of topological spaces

Proj’ (5)) = Proj’(S),

or all a € N*". Moreover, for all p € Proj’ (S) it holds ht(p@) = ht(p).
)
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Proof. First we prove that the ring extension
s@W s

is integral. Let x € S be an element of degree n € Z". We write n =
Yiq by, a=a; --a,,andr = (“H—bj;i =1,---,r). Then it is easy to se that
an = ¢,(r), so x" € Sy () = (S@),. Hence x is a zero of f(T) = T% —x? €
S@[T]. Therefore S is integral over 5@ and then dim(5(®) = dim(S).

Notice that p # S, if and only if p@ = pnS@ 3 s(ﬂ, SO we can
define a continuous map

¢: Proj’(S) — Proj(S@)
p — p(ﬂ)

this map is surjective and closed since the the extension $@ < § is inte-

gral.
The map ¢ is injective: let p1, po € Proj’(S) such that p%) = péﬂ). Given
X € py, by the argument previously done to prove that the extension is

integral, we have
2 € p NS =pl? =pP Cpy,

SO X € Py, i.e. p; C pp. By the symmetry of the problem we have p; = p».
Hence 1 is an homeomorphism of topological spaces.

The identity ht(p(@)) = ht(p) follows from the above homeomorphism.

O

Proposition 4.2.3. Let M be a finitely generated Z'-graded S-module. For all
p € Proj’(S) and b € N7, it holds

(@b) _
M(Z@) = M(b)p).

Proof. Notice that we always have

Moy © M)y,

(ab)
(@)

Mg, (n)+p and s € (s@), = Spy(n) bUt 5 & p@, n ez Sinces € S@\ p@
we have that s & p, so m/s € M(b) ).

In fact, let m/s be an element of M\*”) , it means that m € (M@b)), =
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Let us consider m/s € M(b),) a fraction such that deg(m) —b =
deg(s) = n € N" and s ¢ p. Since s is a homogeneous element of de-
gree 1, we can decompose s in a sum of monomials on the generators g’
of S: s =51+ ---+ 5, with deg(s;) =nforalli=1,...,t. Sinces € S\ p,
there exist k € {1,...t} such that s; ¢ p. If we write

r K :
o= T,
df:E]N,so

r Hi
deglsr) =n= Y. (z df) "

i=
Since sx ¢ p, for each coefficient o; = Z]H;l & i # 0 there exist a generator

g{:(i) ¢ p. Let iy, 1 €{1,...,e}, be such a non-zero coefficients. For each
I =1,...,e, letc; € N\ {0} and f; € N\ {0} be non-negative integers
such that

O ¢ = fizail'
We putc; = f; =0foralli ¢ {iy,--- ,i.}. We define

e

z=T1(s[") ¢ .

=1

Since s ¢ p is homogeneous, zs ¢ p is still homogeneous and then
deg(zm) — b = deg(zs) = deg(zs) Zfz i = a((f1, -, fr)),

som/s = (zm)/(zs) € Mgi(%). O

Given an ideal p € Spec(S) we denote by p* the prime ideal generated
by the homogeneous elements belonging to p, (see [GW78] section 2). We
can relate the depths of the localization on a prime p with the localization
on p*.

Proposition 4.2.4. Assume that S is a catenary ring. Let M be a finitely gener-
ated Z"-graded S-module. Given an ideal p € Spec(S) such that p 2 S and
M, # 0, then it holds

depth(My) + dim(S/p) = depth(M,+)) + dim(S/p").
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Proof. We put d = dim(S,/p*Sy). From [GW78], Proposition 1.2.2 and
Corollary 1.2.4, we have that depth(M,) = depth(M,+) + d and also that
dim(Mp) = dim(Mp+) + d. On the other hand, since S is catenary we have
dim(Sp) = dim(S) — dim(S/p) and dim(Sy+«) = dim(S) — dim(S/p*).
From these identities we get

depth(M;) + dim(S/p) = depth(My+) +d + dim(S) — dim(S,)
= depth(M;+) +d + dim(S) — dim(Sy+) — d
= depth(M;+) 4+ dim(S/p™).

Since the morphism S,y — Sy, is faithfully flat with closed fiber k(p)
we get, by [Mat89] Theorem 23.3, that depth(My+) = depth(M,+)). Hence
the claim is proved. O

We next define the generalized depth of a module and its projective
Cohen-Macaulay deviation in the multigraded setting. In the graded case
they are defined in [HM94] and in [Eli04], respectively.

Let M be a finitely generated Z’-graded S-module.

Definition 4.2.5. The generalized depth of M with respect to the homogeneous
maximal ideal M of S, denoted by gdepth(M), is defined as the greatest integer
k > 0 such that

Si4 C rad(Anng(H)(M)))

foralli <k.
It is clear from the definition that gdepth(M) > depth(M).

Definition 4.2.6. The projective Cohen-Macaulay deviation of M, denoted by
pemd (M), is defined as the maximum of the differences

dlm(S(p)) — depth(M(p))

where p € Proj’ (S).

In the case when Sy is a quotient of a regular ring, we can relate these
last two integers. This relation is crucial in order to prove that the gen-
eralized depth of a module coincides with the generalized depth of its
Veronese transform. Next theorem generalizes Proposition 2.2. in [HM99].
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Theorem 4.2.7. Let M be a finitely generated Z'-graded S-module. If Sy is the
quotient of a regular ring then

gdepth(M) = dim(S) — pcmd(M).
Proof. From [Fal78], Satz 1, (see also [Mar95]) we get

gdepth(M) = meig{depth(Mp) +dim(S/p)}
p

with ¥ = {a | a € Spec(S),a p Si+}. From Proposition 4.2.4, we have that
depth(My) + dim(S/p) = depth(M,+)) + dim(S/p”),
so we can assume that p € Proj’(S). Therefore we get

gdepth(M) = min {depth(M,)) +dim(S/p)}.
peProj’ (S)

Since § is catenary dim(S/p) = dim(S) — dim(S,,)), and hence
gdepth(M) = dim(S)— max {dim(S
peProj’ (S)
= dim(S) — pcmd(M).

p) — depth(M(p))}
O

Now, based on this assumption, we can prove the invariance of gdepth
under Veronese transforms:
Corollary 4.2.8. Let M be a finitely generated Z'-graded S-module. If Sy is the
quotient of a reqular ring, then it holds

gdepth(M(@?)) = gdepth(M)
forall a, b € N*.
Proof. From Theorem 4.2.7 we get
gdepth(M#Y)) = dim(5@) — pemd(M©@D)),

and from Proposition 4.2.2 , dim(5@) = dim(S). Now, from Proposi-
tion 4.2.3 we deduce

dim(5@) — pemd(M@t)) = dim(S) — pemd (M (b)).
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Again from Theorem 4.2.7 gdepth(M(b)) = dim(S) — pemd(M(b)).
Using the definition of gdepth we have that gdepth(M(b)) = gdepth(M),
and so we see that

gdepth(M#)) = gdepth(M)

as claimed. O

4.3 Vanishing theorems and depth of Veronese
modules

In this section we generalize the concept of fg(M) to the multigraded
case. In the graded case this notion allows to us to control the finite grad-
uation of the local cohomology modules of a graded module M with re-
spect to the maximal homogeneous ideal of S. We prove some results on
the vanishing of a module and of its local cohomology modules and we
relate this with the generalized depth. To reach our goal, we need to fit
the generalization of fg(M), that we call I-fg(M), to the multigraduation.
We also study the asymptotic depth of Veronese modules. We are able to
prove that, by restricting our graduation, this depth is constant for (a,b)-
Veronese modules, for a,b in suitable asymptotic regions of IN” by using
the previous work done in the chapter.

4.3.1 Asymptotic depth of Veronese modules (I)

We want to study the depth of the Veronese modules M@ for large
values a,b € IN". As a partial solution of our purposes, under the general
hypothesis on the multidegrees of this chapter, we prove in this section
that the depth of some Veronese modules M(®) is constant for a in a net of
N’

We denote by vad(M™)) (resp. vad(M**))) the Veronese asymptotic
depth of M, that means the maximum of depth(M@)) (resp. depth(M(@b)))
forall a € IN*" (resp. for all a,b € IN*).
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Proposition 4.3.1. Let M be a finitely generated Z'-graded S-module, and let
s = vad(MW™). There exists a = (ay,...,a,) € IN*' such that for all elements
b S {()\1&1,.. .,/\,a,) ‘ )\1' S N*},

depth(M®)) =5,
1.e. is constant.

Proof. Let s = vad(M*)). This means that there exists an 2 € IN*" such
that

HjM@(M@) =0
fori=0,...,s—1.

Let us consider b € {(Aay,...,Ava,) | A; € N*}
Then for all n € Z’, since ¢} (n) = ¢(
that

HY ) (M), = Hiy((M) g, () = Hig (M) g, (am) = H]

fori =0,...,s — 1. From this, we deduce that depth(M@) > s, but s was
the maximum. Therefore,

depth(M@) =5
forallb € {()\1(11,. . .,/\7{17) ‘ )Ll' S N*}

O
Let us consider the multigraded Rees algebra associated to some ideals
L, ..., I in a Noetherian local ring (R, m),

R(L,....I)= @ '] --- "t} C R[ty,

ol
nelN"

By considering this ring, the previous result can be used in order to
ideals.

study of the depth of the multigraded Rees algebras of some powers of

Proposition 4.3.2. Let I3, ..., I, be ideals in a Noetherian local ring (R, m). Let
s = vad(R(Ly,...,I,)*)). There exists a = (ay,...,a,) € N*" such that for all
be {()\1{11,.. .,/\ra,) ‘ Ai c N*}

depth(R(Ifl,...,If’)) =s
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Moreover, if depth(R(Ly,...,1;)) = s, then
depth(R(Ifl,...,Irb’)) =s,
i.e is constant, for all b € IN*".

Proof. Observe that the multigraded Rees algebra has a standard gradua-
tion and hence, for a = (a3, ..., 4a,),

R(Ii’l,...,[fr) - R(h,--.,b)@

and then the claim is a consequence of the previous proposition. The
second statement follows from the first one by considering a = (1,...,1).
O

4.3.2 T-finite graduation

We would like to extend the previous results on the asymptotic depth
of the Veronese modules to regions of IN" instead of some nets there. First
we have to study the vanishing of the local cohomology modules of a
multigraded module M.

We recall that a cone Cg C IN" with vertex at p € IN" with respect to
Y1,--.,7ris aregion of N” whose points are of the form f+3Y7_; Ajy; € N”
with A; € Ry fori =1,...,r. Givenn = (nl,...,nrj € Z7 we denote
n* = (|m),...,|n|) € N".

In [Mar95], a notion of finite graduation is defined for Z-graded modu-
les. This means that the graded pieces are zero except for a finite number
of them. Then to control the finite graduation of the local cohomology mo-
dules is defined the invariant fg that we extend, adapted to our situation,
as follows.

Definition 4.3.3. We say that a Z"-graded S-module M is I'-finitely graded if
there exists a cone Cg C IN" where My = 0 for all n € Z" such that n* € Cg.
We denote by T-fg(M) the greatest integer k > 0 such that ij (M) is T-finitely
graded for all i < k.
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Remark 4.3.4. Note that in the standard graded case, i.e. r = 1, the defini-
tion of I'-fg(M) coincides with the classical

fg(M) = max{k > 0 | H,(M) is finitely graded for all i < k}.

In this case a module is finitely graded if the pieces of degree n are 0 for
|n| > np, for some ny € IN, which is, in fact, a cone with vertex in n, so

fg(M) = T-fg(M).

In the multigraded case, we cannot generalize the definition of being M
finitely graded to have only a finite number of n € Z" with M, # 0. The
aim is to prove that gdepth(M) = I'-fg(M) as in the graded case, but even
if we could assure that H 5‘\4 (M) would be finitely generated, the hypothesis
Syy C rad(AnnS(H’/‘M(M))) could only assure H’/‘\/I(M)E =0 forn* € Cg
for some B € IN" as we have seen in Proposition 2.3.8.

Due to technical reasons, in the following we have to restrict the degrees
of the generators of S, see Remark 4.3.6. From now on we assume that the
graduation is almost-standard. By almost-standard multigraded (or Z’-
graded) ring S we mean a multigraded ring with generators over Sy of
multidegrees

"= (7%/0110) = ’)/%81
7i=1(0,...,0,7,0,...,0) = 7le;

Yr = (O/"'/O/r)/;r‘) = 'y;e,

with 'y}, ...,vr > 0and ey, ..., e the canonical basis of R". Note that in
this case we have
Cé = (é+ (Rzo)r) NIN"

for all é € Z'. Note that the intersection of two cones is a cone:

CQQCIBICQ

with § = (max{a;, B;i};i=1,---,r).

An important point in the proof of the main Theorem in this section
is to assure that HI/(\A (M) is T-finitely graded for all k > 0 in case that the
module M is I'-finitely graded as well. For that reason we have to restrict
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the graduation to the almost-standard case. We prove that in the next
proposition.

Proposition 4.3.5. Let S be an almost-standard multigraded ring. Let M be a
finitely generated Z"-graded S-module. If M is T-finitely graded then Hf\/l (M) is
also T-finitely graded for all k > 0.

Proof. Since M is I'finitely graded, there exists an element f € IN" such
that M, = 0 for all n € Z" with n* € Cz. We want to prove that
H]/‘\/I(M)H = 0for n € Z" with n* € Cg as well.

Since HY (M) = I'yy(M) C M, then the claim is obviously true for
k = 0. Let us assume that k > 0.

The ideal M is generated by a system of generators of m, say hy,- - -, hy,

andbygjl-,j =1,---,u;,i=1,---,r. If we denote by f1,- -, f, the above
system of generators of M then the local cohomology modules H} (M)
are the cohomology modules of the Koszul complex

o
0—>M—>@Mfi—> @ Mfif]'_’”'_’Mflwfa—’O

i=1 1<i<j<o

The module H]/‘V[(M) is S-graded: the grading is induced by the grading
defined on the localizations Mg, where g is an arbitrary product of k dif-
ferent generators of M. Given z = x/g' € M, we have

deg(z) = deg (;t) = deg(x) —t deg(g).

If we assume that deg(z) = n with n* € Cg then there exists a vector
e = (€1,...,&) € {—1,+1}" such that en = E—i— GA with A; € R>g. We
denote e.n for the termwise product of € and n. So,

n=c¢e(p+GA).

On the other hand we may assume, without loss of generality, that deg(g) =
Gkwithk = (ky, -+ ,ky,0,-+-,0) withk; #20,i=1,- -, w. Hence we have

deg(xg°) = deg(z) + (t +5) deg(g) = &.(B+ GA) + (t +5)Gk

forall s > 0.
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We want to prove that deg(xg®)* € Cp, for some s > 0, so we have to
assure that there exists p € (R>¢)" and Q% {=1,+1}" such that

1.[e.(B+ GA) + (t +5)Gk] = B+ Gp.

Fori=w+1---,r we have the equation
7 &(Bi + Aivh) = Bi+ pivhs

we set ; = ¢; and p; = A; > 0.
Fori=1,---,w we set i7; = 1, and then we have to consider the equation

ei(Bi + M) + (4 s)kivt = Bi + i’

Ife; =1 then
pi = A+ (t+s)k; > 0.

If &, = —1 then
#iz—zﬁ%—)\ﬂr(ﬂrs)kizO

1
for an integer s > 0.
We have proved that wa (M), = 0forn € Z" with n* € Cg, so H]/‘Vl (M)
is I'-finitely graded. a O

Remark 4.3.6. In the proof of the previous Proposition, we considered an
element z = x/g' € M, with deg(z) = n with n* € Cz. We wanted to

*

find an integer s > 0 such that deg(xg*)* € Cg. By hypothesis xg° = 0
and hence we would get z = 0 as well. Since z = xg®/ ¢S, we have
deg(xg®) = deg(z) + (t+s) X kivi, withk; >0 foralli=1,...,r.

Unfortunately, in the most general case that we are considering here, it
is not possible to find such an s > 0 satisfying the desired equations. For
instance, we can assume that r = 2 and that g is a product of k generators
of degree 7. In this case k; = 0 and k = k. If deg(z)* € Cg, with degz
in the second quadrant and (deg(z) + tky2)* ¢ Cg, then for all s > 0,
deg(xg®)* = (deg(z) + (t +s)ky2)* & Cp since all these points are in a
parallel line to the 7y-axis of the cone Cg, as it can be easily seen in the
following picture:
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deg(z)+(t+s)kr2

T2 C,S

Hence, we cannot prove that H]/‘M(M) is I'-finitely graded for all k > 0,
without restrict the hypothesis on the generators.

In the next result we relate the two integers attached to M studied in
this chapter, gdepth(M) and I'-fg(M). The result follows [Mar95], Propo-
sition 2.3. or [TI89], Lemma 2.2. Since these papers extensively use results
on Z-graded modules we will adapt them to the almost-standard multi-
graded case considered by us.

Theorem 4.3.7. Let S be an almost-standard multigraded ring. Let M be a finitely
generated Z7-graded S-module, then it holds

I-fg(M) = gdepth(M).

Proof. First we prove the inequality T-fg(M) < gdepth(M). If H) (M) is
I-finitely graded then there exists a cone Cg with vertex in some f € IN',
such that H (M), = 0 for all n € Z" with n* € Cg.

We have to prove that Sy C rad(Anns(Hj\/l(M))), i.e. for all genera-
tors x = g/" - g/ of Syq, m; € {1,--+ ,u;},i=1,---,r, we have to find
a suitable a > 0 such that for all n € Z', x"H', ; (M), = 0.
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If n* € Cg then ij(M)ﬂ =0, so for all 2 > 0 it holds x”HﬁM (M), =0.
We put a = 2max{pB1,- -, Br}. Let us assume that n* ¢ Cg. This means
that, without loss of generality, —p; < n; < B;, i =1,...,u, and |n;| > B;

fori=u+1,---,r. If we decompose x = z1z, with z; = g;”l - gy and

_ oMut1 m
22 =8,41 "8, then

(n+deg(z1))" € Cg,
so z4H' ; (M), = 0. Furthermore
X"H'\ (M) = 0.

Notice that a does not depends on 7, so, in fact, we have proved that
Sty C rad(Anng(H',,(M))), and hence

I'-fg(M) < gdepth(M).

Now, we prove the other inequality, i.e. T-fg(M) > gdepth(M). If
Si+ C rad(Anng(M)) then there exists a € IN such that for all x € S,
x"M = 0. Since M is finitely generated, by Lemma 2.3.8 there exists a
cone Cg C IN" with vertex in some B € IN', such that M, = 0 for all

n* € Cg. Then by Proposition 4.3.5, for all i H (M) is I-finitely graded,
so T-fg(M) = +co > gdepth(M).

We can assume that S;4 ¢ rad(Anng(M)). Let Ass(M) = {p1,...,pt}
be the set of the associated prime ideals of M. Let us consider a minimal

primary decomposition of 0 € M
0=NiN---NNsNNgp1N--- NNy

where Ass(M/N;) = {p;}. We can assume that py,...,ps do not contain
Si+y,and pgyq,...,pr contain S, 4.

Since the residue field of Sy is infinite there is an element z € S | such
that z ¢ p; U---Ups. We will prove that (0 :p z) is a [finitely graded
S-module.

Since z & py U--- Ups, then (0 :p1 2) € Ny N -+ N Ns. In fact, since N;
is a p;-primary submodule of M and z ¢ p;, then (N; :ps z) = N;. This last
equality is well known: let us assume that there exists x € (N; :p z) \ N;,
so zx € Nj. Since N; is p;-primary z" € (N; :x M) C p; for some n > 0, so
z € p;, and we get a contradiction. Thus, (0 :p; z) C (N 1 z) = Nj for all
i=1,...,s.
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On the other hand, p; = rad((N; :x M)) for all i = 1,...,t by the
definition of primary submodule. In particular, for i = s+1,...,¢, since
Si4+ C p;, there is an a € N such that S9 M C N;. Being M finitely
generated, by Corollary 2.3.9, there exists a cone Cg C IN" with vertex in
some B € IN" such that M, C (Nj), for all n* € Cp. -

By combining these two facts we get

(O:MZ)EC(Nlm"'mNsﬂNs—&-lﬂ"'mNt)ﬂ:O

for n* € Cg, so (0 :y z) is I-finitely graded. Therefore, Hi ((0 iy 2)) s
also I'-finitely graded for all i > 0 by Proposition 4.3.5.

Since T-fg((0 :p1 z)) = +oo, from the first part of the proof we get that
gdepth((0 :p1 z)) = +o00. Let us consider the exact sequence

M
0— (0:p2) HMHWHO

Since I'-fg((0 :pr z)) = gdepth((0 :p z)) = +oo, from the long exact se-
quence of local cohomology we deduce I'-fg(M) = I'-fg(M/(0 :pr z)) and
gdepth(M) = gdepth(M/(0 :p z)). On the other hand there exists b € N
such that z" H (M) = 0 forall i < gdepth(M). Hence we may assume that
M is a S-module for which z € S, is a non-zero divisor and zH [ (M) = 0
for all i < gdepth(M).

We will show by induction on ¢ thatif 0 < ¢ < gdepth(M) then it holds
¢ < T-fg(M). The case ¢ = 0 is trivial. Let us assume that ¢ > 0, and let us
consider the degree zero exact sequence, r = deg(z),

z M
0 — M(-r) HM*)%HO'
From the long exact sequence of local cohomology we can deduce that
gdepth(M) — 1 < gdepth(M/zM), so
0<c—1<gdepth(M) —1 < gdepth(M/zM).

By induction on ¢ we get c — 1 < I'-fg(M/zM). In particular Hf\ZZ(M /zM)
is I'-finitely graded. Let us consider the exact sequence on n, for n* € Cp,

0 = Hy2(M/zM)y — HS (M) y—y == HH (M)

Since sz\Zl (M) = 0 we deduce that Hj\gl (M) is I'-finitely graded. Hence
¢ < T-fg(M). O
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The invariance of I'-fg under Veronese transforms is now an easy con-
sequence:

Corollary 4.3.8. Let S be an almost-standard multigraded ring such that S is
the quotient of a regular ring. If M is a finitely generated Z'-graded S-module
then for all a,b € IN*" it holds

I-fg(M@b)) = I-fg(M).
Proof. It follows immediately from Theorem 4.3.7 and Corollary 4.2.8. [

4.3.3 Asymptotic depth of Veronese modules (II)

As a continuation of 4.3.1, where we have proved the asymptotic depth
for Veronese modules in some nets of IN” in the non-standard case, we
now have new tools to solve the problem in a region of IN" x IN” instead
of a net. However the restriction to the almost-standard graduation is still
needed.

Definition 4.3.9. Let M be a finitely generated graded S-module. We denote by
opm :INY x N¥ — N

the numerical function defined by Sp1(a,b) = depth(M(ﬂ'@), ab € IN*. We
write 6p1(a) = dm(a,0).

Before studying the asymptotic depth of the Veronese of a module, we
need a technical proposition. The following result does not work in the
more general multigraded case, see Remark 4.3.11, so the restriction to the
almost-standard case is necessary.

Proposition 4.3.10. Let Cg C IN" be a cone of vertex at p € IN". Foralln € IN',
b € Z" such that b; > ﬁl;f n; =0, and a € N” such that a; > (B; + bi)/'yf,
i=1,...,r, we have that

($a() + )" € Cp.
In particular, for allb > B and a € N" such that a; > (B; + bi)/'y;f, i=1,...,r,
we have that for alln € 727

(ga(n) +1)" € Cp.
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Proof. For n € Z" we have that ¢,(n) +b = (ayn171 + by, ..., a7y} + by)
and hence, (¢a(n) +b)* = (|amiyi + bal,..., laneyl + by).

We have to find conditions on a,b € IN*" in order to assure that (¢, (1) +
b)* e Cp foralln € Z'. So, we have to impose that foralli = 1,..., 7, there
exist some A; € R>¢ such that |ainl~'yf +b;| = Bi + /\ﬁf. Since 75 € IN¥,
then it is only necessary to assure that |a;n;7} 4+ b;| > B; foralli =1,...,r.

If n; # 0, since |a;n;yt + bj| > |ainivi| — |bi| = |nilaiy! — b;, then we
have to impose that

|nilaiyi — bi > Bi
which is equivalent to
Bi + b
ni| > —=——.
aiy;
Hence we must impose that
g > Pitbi
P> .
7i

i=1,---,r. If n; = 0 then we have to impose b; = |b;| > B;,i=1---,r.
The second part of the result follows from the first one. O

Remark 4.3.11. Although we have needed to restrict our multigraduation
in Proposition 4.3.5 and Theorem 4.3.7, we give here a counterexample on
this last proposition for the non-standard case that we are considering in
the chapter that justifies again the necessity of the restriction.

To simplify the notation, we assume that the generators of S over Sp
have degrees 71 = (A,0) and v, = (B,C), with A, B,C € IN*.

The elements of the cone of vertex B = (B1,82) € IN? with respect to
Y1, 72, are elements in IN? of the type

2
B+ Y Aivi = (B1+AA + A2B, B2 + A2C)
i=1
with A1, Ay € Rsg. Moreover, with a = (a1,a2) and b = (b1, bp) in N*2 it
holds
(¢a(n) +b)" = (Ja1m A+ apnaB + by, |a2n2C + by ).
In this case we are not able to find conditions on 2 and b in order to
assure that (¢,(1) +b)* € Cg for all n € Z2.
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Assume that the problem has solution. That is, there exists a,b € IN*2
such that for each n € Z? there exist A1, Ay € R>¢ such that

{ |ain1 A + axnaB + b1| = B1 + M A+ A2B
|a2n2C + b2| = B2+ AC

We choose an 11 > 0 (that we will determine in the following) and let
ny < 0 a sufficiently negative integer such that a;n; A +ayny;B+ b1 < 0and
anyC+ by <0 (le. np < min{—bz/azC, (—bl — alnlA)/azB} < 0). With
these integers, we have the system

{ —aymA —aynpB — by = 1+ M A+ AyB
—Elzl’lzc — bz = ﬁz + /\zc.

We solve this system of equations and we obtain

by + B2

)\2 = —dNy — C

(ba +B2)B— (b1 + B1)C
AC )

AM = —agng +
Notice that Ay > 0 if and only if

(ba + B2)B — (b1 + B1)C

n < ’
! 11 AC

so, if we consider 17 > max{ wﬁﬁﬂ{i;‘(gﬁﬁl)c, 0}, we have that A; < 0 and
therefore there is a contradiction with the assumption of the existence of

a,b € N*? such that (¢,(n) +b)* € Cp foralln € 72,

Now, we are ready to prove the theorem that assures constant depth
for the (a,b)-Veronese in a region of IN" x IN".

Theorem 4.3.12. Let S be an almost-standard multigraded ring such that Sg is
the quotient of a reqular ring. Let M be a finitely generated Z’-graded S-module
and let s = vad(M*)). The numerical function 5y; is asymptotically constant:
there exists f € IN" such that for all b > B and for all a € IN" such that
a; > (B; +b;) /! it holds

om(ab) =s.
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Proof. We put s = vad (M), thus
I-fg(M) = gdepth(M) = gdepth(M@t)) > s

by Theorem 4.3.7 and Corollary 4.2.8. Since I'-fg(M) > s there exist a a
cone Cg C N’, B € N’, such that H' (M), = 0 forall n € Z" with n* € Cy
andi=0,...,s—1.

By Lemma 4.3.10, for b > B and a € N’ such that a; > (B; + b;) /7! for

alli =1,...,7, we have that (¢,(n) +b)* € Cp for all n € Z'. Hence, we
get that for all n € Z7, B

Hiy o (M) = (Hiy (M) @2y = (Hiyg (M) g, ()45 = O
because (¢a(n) +b)* € Cg. So, we have proved that
val(g)(M(M)) =0
fori =0,...,s — 1. Therefore,
depth ) (M) >,

and by the definition of s we get the claim. O

In the next result we generalize [Eli04], Proposition 2.1, to general Z-
graded modules.

Proposition 4.3.13. Let S be a Z-graded ring such that Sy is the quotient of
a reqular ring. Let M be a finitely generated graded S-module. The numerical
function 8y is asymptotically constant: there exist s(M) € IN and o € IN such
that for all a > « it holds

om(a) =s(M).

Proof. If s = s(M) = vad(M™*)) then
I-fg(M) = gdepth(M) = gdepth(M(”)) >s

by Theorem 4.3.7 and Corollary 4.2.8. Since I'-fg(M) > s there exist an
integer B € N, such that H) (M), = 0 for all n € N with |n| > B and for
i =0,...,5— 1. From the first part of Proposition 4.3.10, for all elements
a>w = ,B/’y% we have that

Hj\/tﬂ(M(a))n = (Hi\A(M)(H))n = Hj\/t(M)an =0
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for all n # 0. On the other hand we have
Hija (M) = (Hiy (M)®)g = Hjy((M)o = 0
fori=0,...,5s — 1. So, we have proved that
Hi o (M@)) =0
fori=0,...,s — 1. Therefore,

depth , (o) (M@)) > s,

and by the definition of s we get the claim. O

Considering the Rees algebra of an ideal, we recover the following re-
sult as an easy corollary.

Corollary 4.3.14 ([Eli04], Proposition 2.1). Let R be a Noetherian local ring
quotient of a reqular ring. Let I C R be an ideal. Then the depth of R(I)\® is
constant for a > 0.

For the multigraded Rees algebra, the best approach to the solution of
the problem is the following proposition.

Proposition 4.3.15. If R is the quotient of a regular ring, there exist an integer s
and pe IN" such that for all b > B and a > B+ b it holds

depthM@ ((Iijl e Ifr)R(Ifl, tt /Ify)) =Ss.

Proof. Note that, since the Rees algebra R(Iy,---,I;) is standard multi-
graded, we have

R(L, - ,Ir)(ﬂ/b) — (Ifl . Ifr)R(Ilall. I,

with a = (ay,...,a;) and b = (by,...,b;). Now, from Theorem 4.3.12 we
get the claim. ]

For more results on Cohen-Macaulay and Gorenstein properties of the
multigraded Rees algebras see [Hyr99] and its reference list.



Chapter 5

Bigraded structures and the
depth of blow-up algebras

The aim of this chapter is to study the depth of blow-up algebras by
means of certain bigraded modules. First, we overview some conjectures of
Guerrieri and Wang that relate the depth of the associated graded ring to
an ideal with the lengths of certain modules. We interpret these lengths as
the multiplicities of some non-standard bigraded modules. Thanks to this
interpretation we are able to refine the Conjecture of Wang, by including
new cases where it works and recovering the known true cases. As a
corollary, we can answer a question of Guerrieri and Huneke regarding
the lengths of the pieces of the Valabrega-Valla module. In the first section
we introduce these conjectures and questions and we explain the structure
of the present chapter.

5.1 Conjectures on the depth of blow-up algebras

Let (R, m) be a Cohen-Macaulay local ring of dimension d. Let I be an
m-primary ideal of R with minimal reduction J. One of the major problems
in commutative algebra is to estimate the depth of the associated graded
ring gr1(R) = @,>0I"/I"™ and the Rees algebra R(I) = @, ["t" for
ideals I having good properties. Attached to the pair I, ] we can consider

81
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the integers

p+1 p+1
A(L]) = 2 length <11p?]) , NA()) = Z length (Iﬂp> ,

p=0 p=0

Pty Jp+1
Ap(1,]) = lengthg (m> and  Ap(I,]) = lengthg (m)

for p > 0.

Related to these integers there are some results and conjectures on the
depth of the associated graded ring gr;(R) that we next review.

Valabrega and Valla proved that A(I,]) = 0 if and only if gr;(R) is
Cohen-Macaulay, [VV78]. In fact, the R(J)-module

rting
7]

p>0

is the so-called Valabrega-Valla module of I with respect to J.
Based on this result, Guerrieri proposed the following conjecture in
[Gue94]:

Conjecture 5.1.1 (Guerrieri). Let I be an m-primary ideal of R with minimal
reduction J. Then
depth(gri(R)) > d — A(L ).

Guerrieri proved the case A(I,]) = 1 and some partial cases for A(I,]) =
2, [Gue95]. Wang proved the case A(I,]) = 2 without any restriction,
[Wan00].

Guerrieri and Huneke asked if the conditions A,(I,]) <1, p > 1, imply
that depth(gr;(R)) > d — 1, [Gue93], Question 2.23. Wang in [Wan02],
Example 3.13, gave a counterexample to Guerrieri’s question and asked
whether this question would have an affirmative answer whenever R was
a regular local ring.

Huckaba and Marley proved that e (I) < A(I,]) and that if the equality
holds then depth(gr;(R)) > d — 1, [HM97]. Hence one can consider the
non-negative integer

5(1,]) = A(L]) — ey (I) > 0.

Wang showed that §(1,]) < A(I,]) and that Guerrieri’s Conjecture is im-
plied by the following one, [Wan00],
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Conjecture 5.1.2 (Wang). Let I be an m-primary ideal of R with minimal reduc-
tion J. Then
depth(gri(R)) >d—1—-46(L]).

Huckaba proved the conjecture in the case 6(1, ) = 0, [Huc96], [HM97]. If
d(I,]) = 1 Wang proved the conjecture, [Wan00], and Polini gave a sim-
pler proof, [Pol00]. For 6(I,]) = 2 Rossi and Guerrieri proved Wang's
Conjecture assuming that R/I is Gorenstein, [GR99]. Wang gave a coun-
terexample to the conjecture for d = 6, [Wan01].

In the main result of this chapter we prove a refined version of Wang’s
Conjecture, Theorem 5.6.3. We naturally decompose the integer 6(I,]) as
a finite sum of non-negative integers 5P(I,]), with AP(I,]) > (SP(I,]) >0,
see Section 5.5. If (I, ]) is the maximum of the integers d,(I,]) for p > 0,
when §(I,]) < 1, we are able to prove that depth(R(I)) > d —5(1,]) and
depth(gr;(R)) > d—1—5(1,]). As a consequence we give an answer
to the question formulated by Guerrieri and Huneke about considering
Ap(1,]) < 1forall p > 0, Theorem 5.6.5.

The aim of this chapter is to introduce a non-standard bigraded module
2 in order to study the depth of the associated graded ring gr;(R) and
the Rees algebra R(I) of I. A secondary purpose is to present a unified
framework where several results and objects appearing in the papers on
the above conjectures can be studied, Remark 5.5.5. The key tool of this
chapter is the Hilbert function of non-standard bigraded modules.

Sections 5.2 and 5.3 are mainly devoted to recall some preliminary re-
sults on the Sally module and the cumulative Hilbert function of non-
standard bigraded modules.

In Section 5.4 we introduce a non-standard bigraded module 2!/ natu-
rally attached to I and a minimal reduction | of I. This module can be con-
sidered as a refinement of the Sally module previously introduced by W.
Vasconcelos. From a natural presentation of £!/ we define two bigraded
modules K and M/, and we consider some diagonal submodules of
them: pr]] and K[Ip]] .

In Section 5.5, using the cumulative Hilbert function, we can interpret
the integers appearing in the conjectures as multiplicities of the modules
defined. In particular, for all p > 0, we consider the integer d,(I,]) =

eO(K[%) and we can prove that A, (I, ]) > 6,(1,]) = Ap(L,]) — 60(2%) >0

and e(I) = L0 eo(Z[I']])~
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Section 5.6 is devoted to prove the refined version of Wang’s Conjecture
by considering some special configurations of the set {6, (I, ])},>0 instead
of 6(I,]) = Lp>00p(I,]), Theorem 5.6.3. Then we can give some appli-
cations to other related questions. An essential point of this section is to
follow Polini’s ideas developed in [Pol00], where the case 6(I,]) = 1 was
studied, and generalize part of her work.

5.2 Sally module

In this work, we talk about the Sally module and we construct an anal-
ogous for the bigraded case. This module is useful in order to calculate or
estimate the depth of the associated graded ring if we know the depth of
the Sally module.

The Sally module was introduced by Vasconcelos in [Vas94b], with this
name after the previous work of Sally on the pieces of the module. It was
deeply studied by Vaz Pinto in her PhD Thesis, [Vaz95]. Other references
about the Sally module are [Vaz97], [CPV98], [Pol00], and [RV00] among
others.

In this section we collect some definitions and properties of the Sally
module, specially the ones regarding Hilbert functions and the depth of
blow-up algebras. We follow [Vas94b] and [Vaz95].

Definition 5.2.1. Let R be a Noetherian ring and let I an ideal of R with reduction
J. The exact sequence of R(])-modules

0— IR(J) — IR(I) — =2 — 0

defines the Sally module of I with respect to |

n—+1
S = ﬁgg -D II"I ‘

n>1

Along this section we consider the case in which (R, m) is a Cohen-
Macaulay local ring of dimension 4 > 0 and infinite residue field k = R/m,
and [ is an m-primary ideal of R with | a minimal reduction of I.
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Proposition 5.2.2. Let (R, m) a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R and | a minimal reduction of 1. Then,

(i) If S;(I) # 0 then dim Sj(I) = d as R(J)-module.
(it) If S;(I) = 0 then gri(R) is Cohen-Macaulay.

(iti) If Sj(I) = 0 and d > 2, then R(I) is Cohen-Macaulay.

Proposition 5.2.3. Let (R, m) a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R and | a minimal reduction of I. Then

depth(gr;(R)) > depth(S;(I)) — 1.
If depth(gr;(R)) < d, then
depth(S;(I)) = depth(gr;(R)) + 1.

We define the Hilbert function of the Sally module S;(I) as

In+1
hS](I)(n) = length, (m> .

If Sj(I) # 0 then dim S;(I) = d, and for n > 0, hs, (1) (n) = PS,(I)(”) where

d-1 '
i (n+d—i—1
psm = L")
1) = "\ d-i-1
is the Hilbert polynomial of S;(I) of degree d — 1.

Finally, we want to relate the Hilbert coefficients of I with the ones of
the Sally module, [Vas94b]. Next proposition will be crucial in Section 5.5.

Proposition 5.2.4. Let (R, m) a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R and | a minimal reduction of 1. Then

eo(I) = lengthy (R/])
e1(I) = eg(I) —length (R/1I) + sy = sg + length; (I/])
€i<1) = 5;1 122,,d



86 Bigraded structures and the depth of blow-up algebras

5.3 Cumulative Hilbert function

Roberts proves in [Rob00] the existence of Hilbert polynomials for cu-
mulative Hilbert functions of bigraded modules over bigraded polynomial
rings K[X, ..., X;] over a field K in variables Xj, ..., X; of bidegrees (1,0),
(0,1), and (1,1), (see also [HT03]). In this section, following Section 3 of
[Rob00], we can easily generalize those results to polynomial rings with
coefficients in an Artin ring.

Let S = A[Xy,..., X, Y1,...,Ys,Z1,...,Z] be a bigraded polynomial
ring over an Artin ring A in variables Xy,...,X;,Y1,...,Ys and Z;,...,Z;.
We assume that the variables X; have bidegree (1,0), the variables T; have
bidegree (1,1), and the variables Z; have bidegree (0,1).

For any finitely generated bigraded S-module M, and for any m,n € Z,
let M, ,) be the piece of M of bidegree (m,n).

If M is a bigraded module, let M(«, B) be the module M with degrees
shifted by (a, B), i.e., M(&, B) (u,n) = M(mian+p) for all m and n.

Remark 5.3.1. Note that we can consider the ring S as a Z-graded ring by
grading it in the first variable

S =B Simn)-
nez
Observe that S, is not necessarily a finite length A-module. In the same
way, we can consider a bigraded S-module M as a Z-graded module.

Definition 5.3.2. The (cumulative) Hilbert function of M, hy(m,n), is defined
as
hat(m,n) = ZlengthA(M(m,i)).
i<n

Note that as A in an Artin ring, the length over S is equal to the length
over A. In this case, we prove that there exist integers myg, 1y such that
the Hilbert function is be given by a polynomial in (m,n) for m > mgy and
n > m+ np.

We use multi-index notation. For a vector n = (ny,...,1n,) € IN’, we
denote the monomial X% := X;” - X)7,and |n| = ny + -+ ny.

In order to prove the existence of Hilbert polynomials, we will need to
know that certain graded subsets of M have Hilbert polynomial.

Let B be the subring of S defined as

B = A[Xl,...,Xr,Yl,...,YS, {X,Z]}IZ%;} C S.
i=1,...,
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Here, the generators of B have bidegree (1,0) or (1,1). B is a bigraded
subring of S.
Let k be an integer and we define the B-submodule of M

Dk(M): @ M(m,n)'

n<m-+k

It is clear that Dy(M) is a B-module. In fact, if n < m +k, X;M,, ) C
M(erl,n)r YjM(m,n) - M(m+1,n+1) and XiZjM(m,n) C M(m+1,n+l)‘ Then in
allcasesn < (m+1)+kand (n+1) < (m+1) +k.

As before, we can consider B as a Z-graded ring, and D;(M) can be
considered as a Z-graded B-module.

Lemma 5.3.3. For all k integer, Dy (M) is a finitely generated B-module.

Proof. Since A is an Artin ring, we can suppose that M is finitely generated
over S. Let fq,..., fu be the homogeneous generators of M as S-module
with bidegrees deg(f;) = (m;, n;) foreachi=1,...,u.

First, we assume that f1,..., fy € Di(M), i.e., n; < m; +k for all i.

We will prove that the generators of Di(M) as a B-module are ZXf;, for
all i and for all k such that n; + |k| < m; + k. Obviously, these elements are
in Di(M) and this set is finite.

To prove that, we will show that each component M, ,) of Dy(M) is
generated as an A-module by multiples of these elements by monomials
in B.

Consider a component M, ,y with n < m +k. It is generated as an
A-module by elements of the form Xiylzk fi, where i, ],k are r-,s-,t-tuples
of non-negative integers, and with deg(XiYZZk) = (li + ljl, ]| + |k|) =
(m—m;,n—n;). o

If some factor Y; or X;Z; appears in this monomial, then Y; or X;Z;
can be factorized, and, since deg(Y;) = deg(X;Z;) = (1,1), this generator
is multiple of an element in M,,_;,_1) by an element of B, and we can
conclude the result by using induction on m.

If no factor Y; or X;Z; appears in Xiylzk fi, then Xiylzk fi is of the form
Xif; or ZEf;. In the first case, since we have supposed that f; € Dy(M),
the generator is multiple of an element in M,,_; ;) by an element of B, so,
dividing by some X; we conclude by induction on m. In the second case,

Zkf; will be a generator of Dy(M).
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Therefore, we have proved that XiYZZkfi is a multiple of some Zkf;,
with n; + |k| < m; + k, by an element of B. Thus, Dy(M) is finitely gener-
ated as B-module.

If some of the f; are not in Dy(M), we can choose another k' large
enough such that all the f; € Dy(M) for i = 1,...,u. Then Dy (M) is
finitely generated. Being B a Noetherian ring and Dy(M) a sub-B-module
of Dy (M), we conclude that Dy(M) is finitely generated as well. O

Now, we can prove our main result.

Theorem 5.3.4. Let S = A[Xy,..., X, Y1,...,Ys,Zy,..., 2] be a bigraded
polynomial ring over an Artin ring A with indeterminates Xq,..., Xy, Y1,...,Ys
and Z4, ..., Z, where each X; has bidegree (1,0), each Y; has bidegree (1,1), and
each Z; has bidegree (0,1). Let M be a finitely generated bigraded S-module.
Then, there exist integers mqy and ng and a polynomial in two variables pp(m,n)
such that

pm(m,n) = hy(m,n)

for all (m,n) with m > mg and n > ny + m.

Proof. We prove the theorem by induction on the number ¢ of indetermi-
nates of bidegree (0,1), Z;.

Assume that t = 0, i.e., there are no variables of bidegree (0,1). Let
f1,..., fu be the generators of the module M. Assume that the bidegrees
are deg(f;) = (m;,n;) for each i = 1,...,u. Consider an integer 1y such
that ngp > max{n; —m; |i=1,...,u}.

A bigraded piece M,,,) # 0 is generated by products of some fi
with monomials in Xj,...,X, and Yj,...,Ys. So, a monomial generator
of M) will be X'Y!f; for some i € N and j € N° and (m,n) =
(li| + [j| + my, |j| + ng) since deg(X;) = (1,0) and deg(Y;) = (1,1). Then,
n—m = ng —my — |i| < np—my, and since we have chosen 7y to be
the maximum of all differences n; — m;, we have that n —m < ng. So, if
n—m > ng then M, .y = 0. Therefore,

2 length 4 (M(m,l-) )

i<n

= Z lengthA(M(m,i)) = hM(m,m + no)

i<m+ng

hy(m,n)
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when n > m + ny. Then, for each m, hy;(m,n) is constant in n for large n,
and is hp(m,n) = Yz length, (M, ;). Therefore, if we denote /i (m)
the Hilbert function of M as a graded Z-module, we have that

hp(m,n) = ha(m)

for n > m 4+ ny. Finally, thanks to the classical theory of Hilbert functions,
there exists an integer mg such that hys(m) is a polynomial in m for all
m > mg. So, for all m > my and n > m + ng,

ha(m, n) = pum(m),

where pp(m) is a polynomial in m. Notice that in this case, i.e. when
there are no ring generators with bidegree (0,1), the polynomial does not
depend on n.

Now, we suppose that ¢t > 0, i.e., there are some indeterminates Z; of
bidegree (0,1). We consider the submodule of M

(0 ‘M Zt) = {X S Mth X = 0}
Then, we have the following exact sequence:

0 — (0 Z6)(0,—1) — M(0, 1) 25 M — M/Z:M — 0.

Since (0 :pr Zt) and M/Z;M are annihilated by Z;, they are finitely
generated modules over A[Xy,..., X, Y1,...,Ys,Z1,...,Z;_1] and hence,
by induction on f, the theorem holds for (0 :p; Z¢) and M/Z;M.

From the exact sequence, we have that

hyv(m,n) —hpy(m,n —1) = hygyz,m(m,n) — hg.,, 7,y (m,n —1)
and so, there exists a polynomial p;(m, n) such that
hM(mln> - hM(m,Tl - 1) = pl(mln)

for pairs of integers (m,n) with m > mg and n > m + n, for some my, ny.

We can consider the B-module D,,,(M) that we have defined before. By
Lemma 5.3.3, Dy, (M) is a finitely generated bigraded B-module. There-
fore, since B has no variables of bidegree (0, 1), there is a polynomial p; ()
such that py(m) = length 4 (Dy,(M)y,) for large m. We can choose a suit-
able my such that works for both polynomials, p1(m,n) and p,(m).
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It is well known that a polynomial in two variables m, n can be written

as a linear combination of the products (m)(';) of binomial numbers for

1
some i and j. So, we can put py(m,n) = ZCU(":)(?)

We define

= 3) 312) B (5) () o

and we want to prove that

hyp(m,n) = pp(m,n)

for m > mgy and n > m + ny.

Clearly, we can see that py;(m, m + ng) = pa(m). In fact, since we have
(Dno (M))m = @nngrno M(m,n)/ then pz(m) = Zn§m+n0 lengthA(M(m,n)) =
hp(m, m+ng). So, hyr(m, m +ng) = pp(m, m+ ng) for m > my.

Thus, the claim holds when n = m + ng. If n > m + ng, we have that

pum(m,n) = pu(m,n —1) =} c; (T) <1111> R (T) <]~11>

2 ()0)
=p1(m,n) = hy(m,n) —hpy(m,n—1)

Hence these polynomials agree for all (m,n) with m > mg and n > m + ny,
as we wanted to prove.
O

Remark 5.3.5. As we can see in the first induction step, in case there are
no ring generators of bidegree (0,1), the (cumulative) Hilbert function in
a region is a polynomial in one indeterminate. In this chapter we will con-
sider some bigraded modules over a polynomial ring with indeterminates
of bidegrees (1,0) and (1,1).

Remark 5.3.6. In Chapter 2, we studied the Hilbert function of a (non-
standard) multigraded module as the length of the homogeneous pieces of
the module. The case considered in the following sections is covered by
that case, but precisely for the kind of structures considered, we have that
they vanish for a suitable cone defined in Chapter 2, see Lemma 5.4.1. For
that reason, and since we wish to consider our modules both bigraded and
graded with respect the first index, it is best to consider the cumulative
Hilbert functions instead.
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5.4 Bigraded Sally module

Let (R, m) be a Cohen-Macaulay local ring of dimension 4 > 0. Without
loss of generality we may assume that the residue field k = R/m is infinite.
For an ideal I of R, we set that I' = 0 fori < 0 and I° = R.

Let I = (by,...,b,) be an m-primary ideal of R and let | = (ay,...,a,)
be a minimal reduction of I. Since JtR(I) is a homogeneous ideal of the
graded ring R(I) we can consider the associated graded ring of R(I) with
respect to the homogeneous ideal JtR(I) = @, JI" 1"

gr(R(D)) = @mw.

j=0
This ring has a natural bigraded structure that we briefly describe. Note
that 0 ]
R(I I
R~ L

i>0

is a homomorphic image of the graded ring R[Vj,...,V,] by the degree
one R-algebra homogeneous morphism

R(I) I
R~ Dt

i>0

o:RVy,..., V] —

defined by o(V;) = bit € %t. Here, R[Vj,...,V,] is endowed with the
standard graduation.

Let us consider the bigraded ring B := R[Vy,...,V;; Ty,..., T;] with
deg(V;) = (1,0) and deg(T;) = (1,1). Then there exists an exact sequence
of bigraded B-rings

R(I)

1] L.
0 — K'Y — C': ]tT\’,(I)

[Ty, ..., Ty] == grp(R(I)) — 0 (1)

with 7(T;) = a;tU, i =1,...,d, and where K% is the ideal of initial forms
of JtR(I). The (i + j,j)-graded pieces of gr;;(R(I)) and C!/ are

rjg
8r (R isjj) = et W
and

[ '
Ciaip = gt Mo Ty
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respectively. Notice that we have an R-algebra isomorphism
(P : R[Tl, . Td}/({a,T] - ajTi}i,j) = RUtU] = R(])

defined by ¢(T;) = a;tU, i =1,...,d. Observe that we write tU instead of
only f to bear in mind the bigraduation.

Given a B-bigraded module M and an integer p € Z, we denote by
M) the additive subgroup of M defined by the direct sum of the pieces
M, ) such that m —n = p + 1. Notice that the product by the variable

T; induces an endomorphism of R[Ty, ..., Ty]-modules M, N M), and
V.
the product by V; a morphism of R[Ty, ..., T]-modules M) - My

Hence M>, = @, M, is a sub-B-module of M, and we can consider
the exact sequence of R[Ty, ..., T;]-modules

0— M[p] e MZP e MZP-H — 0.

Moreover, in our case, the modules K[% , C[ng and grj+(R(I)), are in par-
ticular R(J)-modules.

I,] CII]
_ o _ [pl” ~lpl
vanish for a finite set of indexes p € Z.

Next lemma shows that K and grj(R(1))(, eventually do not

Lemma 5.4.1. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R with minimal reduction |.

() Forall p < ~2or p 2 rj(1), Cpy = 0, grye(RAD) ) = 0 and Ky = 0.

(ii) 7t induces the following isomorphisms of R(])-modules:
ool o 1
gr]t(R(I))[O] - C[O] - Tt[Tlf sy Td]/

gri(R(1)) -y = R(J)),
cH  ~R[Ty,..., T

Moreover, K[IO{ =0.
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Proof. In order to prove (i), we first describe C[ng and grji(R(I)), are.
Since CI'/ = @~ H{—ilti[ﬂ, ..., T;], we have that

I, I, p+1
C[Pg = @ C(ri,n) = Wtrprl [Tl, ey Td}/
m—n=p+1

and

]in-‘r
gr]t(R(I))[p] = @ gr]t(R(I))(m,n) = @ ]’-‘rl[p ppH1+ g
m—n=p-+1
Since I' = 0 for all i < 0, we have that C[% = 0and gr;;(R(I))(, = 0 for
all p < —2. By the definition of r;(I) we have [P™! = JI? for all p > r/(I),
SO C[p] = 0 and grj;(R(I))[,) = 0 for all p > r;(I). Notice that we have that

[I ]] C C[ ] for each p € Z. Therefore, we have that K[ { =0forallp < -2

and p > ry(I).
(ii) When p = 0 we have

clf = %m,...,m = It(R/])[Ty, .., Tu]

and

grit(R @ ]z+1 t’“ui = Jtgri(R).
i>0

Since grj(R) = (R/])[Ty, ..., T,], clearly we have that C[Ié]] = gri(R(I))(g)-

From the exact sequence (1) we deduce K[IO]] = 0. If p = —1 then we have

CLy = R[T1,..., Ty) and grj; (R(1)) 1] = Bizo J'HU = R()). O

From now on, we will be interested in considering the non-negative
diagonals of these modules and so, let us consider the following bigraded
finitely generated B-modules:

ZI’] = @g?’]t(R(I))[p]
p>0

L. L
MY =P Cy)
p>0
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and from now on, we consider the new

L. L
K= DK
p=0

Note that by Lemma 5.4.1 there exists a natural isomorphism of R(])-
modules

gri(R(I)) 2 R(J) X,

We can observe how this decomposition corresponds to the [—1]-diagonal
and to the non-negative ones.

A complete description of the first two modules in terms of their graded
pieces is the following;:

s = DD Jirtt ppligi
- N JitL]p
p>0i>0
1] o
MY g@IT]tp [T1,...,Td]

p>0

Since the modules X!/ and M/ are annihilated by J, from the exact
sequence (1) we deduce the following exact sequence of A = B®g R/ [ =
R/JW,...,Vy; Ty, ..., T;)-bigraded modules

0— KM — M — 3l 0. ©)

Note that from Lemma 5.4.1 all relevant information of (1) is encoded in
the exact sequence (S).
By considering each diagonal, for all p > 0 we have an exact sequence
of R/]J[Ty,..., Tg]-modules
0 kM ] = I (Ty,...,Ty) — =" —0, (S
[p) b~ Jrp Ul [p] ’ [¥)
which are, in fact, graded modules, and so we can consider the (classic)

Hilbert function of Z[I;]I] , pr]} and K[lpg with respect the variables T7, ..., Tj.

Definition 5.4.2. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal and let | be a minimal reduction of I. We call L1 the
bigraded Sally module of I with respect to |.
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The A-module M/ has some interesting properties that will be useful
in some of the proofs of this chapter, especially in counting depths. In the
next result we show some of its properties.

Proposition 5.4.3. Let (R, m) be a Cohen-Macaulay local ring of dimension
d > 0. Let I be an m-primary ideal of R with minimal reduction ]. Then
Assg(MIT) = {mA+ (Vy,...,V,)} and M1 is a Cohen-Macaulay A-module
of dimension d.

Proof. First we prove that Ass, (M) = {Q} with Q = mA+ (Vy,..., V).
Let p = Ann(c) be an associated prime ideal of Ass, (M) where ¢ €
MU = M.

Let us recall that

so by using multi-index notation we can write ¢ = Y. (L, FIP<)TI< with

The by

Let « € m be an element of the maximal ideal. Since I is an m-primary
ideal and ] is the minimal reduction of I then &" € | for an r > 0. For each
pair of indexes p, K we have a” - aﬁ e JIPt C JIP, so a” ~E§ =0in I]p%,,l
Then a" € Ann(c) = p, and, since p is a prime ideal, we deduce a € p.
Hence we have proved that mA C p.

Now we will prove that (V3,...,V)) C p. Let us recall that

[pH1+s
]Ip+s

=P yrs _ =P 1548
o Vi = oybit’ €

where I = (by,...,b,) and s > 0. Since | is a minimal reduction of I there
exists an integer sg such that for all s > s; it holds IFt1 = JI°. Hence
if s > sy then I;;T]:: = 0 for all p > 0 and we obtain EQVZ-S = 0. Thus
V# € Ann(o) = p and V; € p because p is a prime ideal. This proves that

(Vi,...,Vu) Cpand
Q=mA+(Vi,...,V,) Cp.

It remains to prove that Q = p. Notice that A/Q = (R/m)[Ty,..., T;]. If
we assume that Q & p then there exists a polynomial f € p\ Q. Since



96 Bigraded structures and the depth of blow-up algebras

f € p = Ann(c) we have f-o = 0 and we can write f = g+ h with
g€ Qandh # 0in A/Q. Notice that & can be written as h = Y agTK
with ag € R\ m. Since g € Q C Ann(c) we have that fo = ho = go =0,
so f -0 = ho. As before we can write ¢ = Y g oxTX and ox = Z?ﬁ with

— Ip+1 _
O'Ip< S TP so och = ZK/LUKOCLTK+L.

order in A. Let Ltr(c) = oxTK = (Zh—o 7% )TX be the leading term of ¢
with 7% # 0 in I%l and Lt(h) = a,T" be the leading term of k. Then
the leading term of ¢ - h is Ltp(o - h) = ox@r TXHE because oxwy, # 0. In
fact, oxa; = Z;ZO ‘7§RL # 0 because, as a; is an invertible element of R,
we have that oga; # 0 in 1%,1 Thus, o -h # 0. Hence, f -0 # 0 which
contradicts the fact that f € p = Ann(c). Therefore, we have proved that

Let us consider the lexicographic

Ass g (M) = {mA + V1,0, Vu)}

Clearly, Ann(MU) C Q. And with the same previous proof, we have that
Q C Ann(MU)). Thus, Ann(M!) = Q. Then

dim(M!) = dim(A/ Ann(M)) = dim(A/Q)
=dim((R/m)[Ty,..., T4]) =d

and since Ty,...,T; is a regular sequence in A, we have that M/ is a
Cohen-Macaulay module of dimension 4. O

Remark 5.4.4. Observe that the length, as an R-module, of

=1 psi—jyj
s @ I iy
(m+1,%) =0 Im—]]]+1

is equal to the length of
jm

S](I)m @ W/

where S;(I), is the degree m piece of the Sally module Sj(I).
On the other hand

]i1p+l

]l'+1 T tp+1+i Ui

£ = gri(R(1) ) = D

i>0

is isomorphic as R(J)-module to the module L, defined by Vaz-Pinto in
[Vaz95] for all p > 1.
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In several papers of Wang appear the modules Tj ,,, Sy, defined as the
kernel and co-kernel of some exact sequence, see [Wan97a], [Wan97b],
[Wan00], [Wan01] and [Wan02]. One of the key results of Wang’s papers
is to prove that there exist the Hilbert functions of Ty, and Si,. In our
framework these results follows from the following commutative diagram:

L] o _ vyl
0—> Tkr” K(k+n,n) - Skn Z:(k—',-n,n) —0
L]
M(k+n,n)

Finally the R(J)-module

Ii+p
=-@L
p ’
i I'P

defined by Vaz-Pinto, can be linked to ZIZJP by means of the following
sets of exact sequences of R(J)-modules, [Vaz95], [Vaz97]. Here we set
r = rj(I). There exist two sets of exact sequences of R(])-modules:

0 — Zfi{ - S =¢ — C, — 0
0 - T - & - G =0 &
0o - =M - ¢, = Gau=xt. =0

[r—2] [r—1]

and
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0 - Iy - =M=zl - =Y - 0
L] L] L]
L L U sl

0 = Xy = Z5ho XL =Xpoy — 0

5.5 Multiplicities of the bigraded Sally module

We would like to compute the Hilbert functions of the bigraded modu-
les defined in the previous section. These functions will be of polynomial
type in a region of IN?, and the coefficients of such polynomials will be the
object of study in this section.

Given a bigraded A-module M, where A = R/J[Vy,...,V;Th,..., Ty,
with deg(V;) = (1,0) and deg(T;) = (1,1), we can consider the Hilbert
function of M defined as

hM(Wl,l’l): Z lengthA(M(m,j))‘

0<j<n

By Theorem 5.3.4, there exist integers f;;(M) € Z, i > 0, j > 0, with
i+j < c—1, for some integer c > 0, such that the polynomial

= 2 160 (7)()

i+j<c—1 ]

verifies ppr(m,n) = hy(m,n) for all m > my and n > ny + m for some
integers mq, ng > 0.

Next lemma shows that in the case when the bigraded module has a
finite number of diagonals, the Hilbert polynomial does not depend on
the second indeterminate, so it will be a polynomial on m. This fact is also
consequence of not having generators of degree (0,1) as it can be seen in
the proof of Theorem 5.3.4.
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Lemma 5.5.1. Let M be a bigraded A-module for which there exist integers a < b
such that M, = 0 for all p & [a,b]. Then f; ;(M) = 0 forall j > 1.

Proof. Since M, = @ n—p1 M(mn), if M|p) = 0forall p ¢ [a,b], we have
that M,,, ,,y = 0 for all pair (m, n) such thatm —n >b+1lorm—n <a+1.
If we take m > mgy, n > ng + m we have

) = paatont) = z+]<2c 1f1] ( )(1;)

We can suppose that m > b+1and n > m — b — 1, so we have

hp(m,n) = Z lengthA(M(m,]-))

0<j<n

= Z lengthA(M(m,j))

m—-b—-1<j<m—-a-1

= Z lengthA(M(m,j))

jez

because M, ;) =0 when j <m—b—1andj>m—a—1. Hence, for m,n
large enough we have that

hp(m,n) = pp(m, n) = hpy(m) = ppy(m).

L sien(7)(5) = za()

Since {('}) (7) }i is a basis of the polynomial ring in m and 1, we have that
£,j(M) =0 forallj > 1. O

Therefore

Given an A-module under the hypothesis of the above Lemma we can
write

1

pm(m,n) = pp(m Zfz <m+c_>,

and hy(m,n) = ppy(m) for m > mg and n > ng + m, for some integers
mg, 1ng. From Lemma 5.4.1 we see that we can apply the last result to the
A-modules '/, M!J, and K!'/, since they are composed by a finite number
of diagonals.
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Proposition 5.5.2. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be an m-primary ideal of R with minimal reduction ]. Then

d—1 ;

; m—14+d—i—1

pos(m) = T (e (0 ("7, T,
i=0

Proof. Since the length of Zgr{l 11,4 I8 equal to the length of S 7(Dm ® ]Im]%

as R-modules, we have that

I]mfl
hy1y(m,n) = lengthg (S,,—1) + lengthy ( i >

for all m > mgy, n > ng + m, for some integers my, ng.
Since grj(R) = (R/])[Ty,...,T4], then we clearly get that Igrj(R) =

(I/N)[T,...,T4]. Thus, the lengthR(U]m%) coincides with the length of the
piece of degree m — 1 of (I/])[Ty, ..., T;]. So we have

lengthR(I]]m ) = length,(I/]) (m 7;jld B 1).

Hence we deduce that for all m > mg, n > ng + m, by Lemma 5.5.1,

m—1+d-—1
pxi(m) = psiy(m,n) = ps,py(m —1) +lengthR(1/])( J-1 )

m—1

Let us recall that there exist integers sy, ...,s;_1 such that

d—1 :
i (n+d—i—1
pom = L -0 ("7 4T
(1) = "\ d—-i-1
and that s9 = e1(I) — lengthg(I/]), si = eix1(I) fori = 1,...,d -1,
[Vas94b]. Hence, we have

d-1 ’ _— i
pS}(I)(m -1)= Z(_l)leiﬂ(l)( ;jldi 1 1)

i=0
— lengthg (I/]) (m 7;:Lf B 1)

and then
m—1+d—1
prs () =psyn (m = 1)+ tengtg (/1) (" 7 1 )

d—1 . m— —i-
— Z(l)lei+1(1)< ;jzd— 1l 1)

i=0
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Since the Hilbert polynomial of these bigraded modules depends only
on the first indeterminate, it makes sense to consider the coefficients of the
polynomials as multiplicities, because, in fact, it is as if were considering
the modules as Z-graded modules with respect to the first term of the
bidegrees.

In the next proposition we compute the multiplicities of the modules
MU, 2] and KIJ. Notice that they are related with the integer A(I,])
defined in the introduction. From now on we consider the integer

(S(I/]) = A(I/]) _61(1)'

Proposition 5.5.3. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be an m-primary ideal of R with minimal reduction |. The
following conditions hold:

(i) deg(ppqy) =d —1and eg( M) = A(L, ).

(ii) If 1) = 0 then gr;(R) is a Cohen-Macaulay ring. If £ # 0 then
deg(psiy) = d —1and eg(Z) = e (I).

(iii) eo(K") = 6(1,]). If KM # 0 then deg(py1y) = d — 1. In particular,

A(I/]) Z 31(1)’

Proof. (i) We know that the module M/ is Cohen-Macaulay of dimen-
sion d, Proposition 5.4.3. By Lemma 5.4.1 and Lemma 5.5.1 we have that
P (m,n) = pyuy(m), and so deg(p ) = d — 1. Since we know that
MU =@ g P/ 1P #PF1[Ty, ..., Ty] we have that

n
hpqry(m,n) =) lengthy (Mén]u))
i=0

m m-1

m—n
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Notice that for n > m > 0 we have

m
PMI,](m,i’l) :hMl,](m,n) = lengthR (Im 1][T1, .. Td]O) +
m—1
+ lengthp (I"‘ 2][T1, ..,Td]l) +

+ -+ +length, (l

][Tl,...,mm_l) .

Moreover, for m > rj(I) we have

Ii
pMz,](m,n) = ZlengthR (Il_lf[Tl’ -~/Td]m—i>

I m—i+d—1

Each binomial number is a polynomial in m of degree d — 1, and the lead-
ing coefficient of this polynomial p 1 gives us the multiplicity

eo(M!T) = Y lengthy ( 111]) = A(L]).

i>1

(i) If £ = 0 then Sj(I) = 0 and gr;(R) is Cohen-Macaulay, [Vaz95]
Remark 5.4.4. Let us assume that £/ # 0. Since, by Proposition 5.5.2,

d—1 ;
; m—1+d—i—-1
pos(m) = D (-Dea ("7, ),
i=0
then deg(ps1;) =d — 1 and eo(Z) = e (I).
(iii) From the additivity of the multiplicity in (S) and by (i) and (ii) we get
eo(K") = eg( M) —eo(Z")
= A(I/]) - €1<I)-

If KI'J 3 0 then deg(pgiy) = d — 1. Note that deg(py1/) = deg(prus) =
d—1,s0 eg(K") > 0and then A(I,]) > e (I). O

So, we have interpreted the integers e;(I), A(I,]) and (1, ]) as multi-
plicities of the bigraded modules 2"/, M!/ and K/, respectively. We recall
that these integers are the ones that appear at the Wang’s Conjecture.
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A similar result can be obtained in terms of the diagonals of such bi-
graded modules. This interpretation will play an important role to im-
prove Wang’s Conjecture on the depth of the blow-up algebras in the next
section.

Proposition 5.5.4. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be an m-primary ideal of R with minimal reduction |. The
following conditions hold:

(i) Forallp >0

p+1 I]
eo(X [p]) length, < G ) eo(K [p]) >0,
and

1
er(I) = Z(length <I]p;)> eO(K[pg))

p>0
(ii) Forall p >0

length, (m) > eo(K[m),

and

5(L,]) = eg(K") = Y eg(K

p>0
Proof. (i) From Proposition 5.5.3 we have
el(D) = eo(EY) = 1 eo(Z)),
p=0
where x stands for the integers p such that deg(py.1;) = d — 1.
7]

From the exact sequence of R-modules

Ip-i—l
0— K

[r] g [T1,..., Ty — =) —0,

(p]

we deduce that if deg(pzu) < d —1 then lengthR(IPH/]I”) — EO(K[%)-
[Pl
Let us assume deg(py1/) = d — 1, from the additivity of the multiplicity
(]

we deduce

Ip+1
e(* [P]) lengthy (]117) eo(K [Irfq)
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SO

(ii) Since K[ | is the kernel of the morphism

P+l i

p

i>0

which sends each T; to the correspondent a;. Considering the morphism
on each piece, we have that

P+l 1y
]Ip T, Tyl — W

K[% = Ker(7p), so an element m;T;, ... T; € K[, is sent to mjaj ...aj; €
7]+, Since | = (ay,...,a4), we have that m; € (IPJ"*1: JI) C (i1 . 1),
Now, since grj(R) = R/]J[Ty,...,T;], we have that (]H'1 : ]l) C J, and

hence m; € J. Then clearly K[Ipf] is a submodule of

rting

(T Tl

From this we deduce
length, (m> > e (K[p})

The second part of the claim follows from Proposition 5.5.3 (iii)

S(L]) = A(L]) —ex(I)
= eo(KM)

= ) eo(K [p]

p=0
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Remark 5.5.5. Notice that some of the results on Ty, = ng]Jrn n) in the
papers [Wan97a], [Wan97b], [Wan(00], [Wan01] and [Wan(2] are corollaries
of Proposition 5.5.3 and Proposition 5.5.4.

Let us recall that, from [Wan00] and [HM97], we have

In the next result we show that these inequalities can be deduced from
some local inequalities. For all p > 0 we define the following the integers

1p+1
Ap(1,]) = lengthg (][pm]) ,

6p(L,]) = EO(K[%)/
p+1

I
Ap(I,]) = lengthy (HP) .

From the last result we deduce:

Proposition 5.5.6. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be an m-primary ideal of R with minimal reduction |. For all
p > 0 the following inequalities hold

Ap(L]) = 6p(L]) = Ap(L]) —eo(Z7) = 0.
Adding these inequalities with respect to p we get

A(LT) 2 6(L]) = A(L]) = ex(I) = 0.

5.6 On the depth of blow-up algebras

The aim of this section is to prove a refined version of Wang’s Con-
jecture by considering some special configurations of the set {3, (I,])},>0
instead of 6 = }_,> dp(I,]), Theorem 5.6.3. As a by-product we recover the
known cases of Wang’s Conjecture, Corollary 5.6.7, and we prove a weak
version of Sally’s Conjecture, Corollary 5.6.9.
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A second goal is to answer a question of Guerrieri and Huneke, [Gue93].
They wondered if the depth of gr;(R) would be at least d — 1 assuming that
Ap(I,J) < 1forall p > 1. As explained before, Wang found a counterex-
ample to the question, [Wan02]. We can improve this bound in the general
case by proving that under these assumptions, depth(gr;(R)) > d —2,
Theorem 5.6.5.

Recall that throughout the chapter we are considering the case in which
(R,m, k) is a local ring of dimension d > 0 with infinite residue field k,
and [ is an m-primary ideal of R with a minimal reduction J.

To prove the main theorem, we need to study the depth of the asso-
ciated bigraded ring grj;(R(I)). The following theorem will be crucial in
order to refine the Wang’s Conjecture.

Inspired by Polini’proof, the theorem generalizes Claim 3 of [Pol00].

Theorem 5.6.1. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 3.
Let I be an m-primary ideal of R and let | be a minimal reduction of 1. Let us

assume that KIJ # 0, and either K[Ip]] = 0or K[Ipq is a rank one torsion free

K[Ty, ..., Ty]-module for p > 0. Then
depth(gry(R(I))) = d — 1.

Proof. Let p1 < ... < py be the sequence of integers such that K[Ip] # 0,

i =1,...,n. By Lemma 5.4.1 we have a finite number of these integers.
Hence, from the sequence (S|,)) we get

Ip+1
ZI’] ~ MI

J_
) = My = T T

for p # p1,..., pn, and the following exact sequences of R-modules

i+1
iy it
0= Ky — T

[Tl, ey Td] — Zﬁ)]’] —0, (S[Pz])

I,

i =1,...,n. Notice that by hypothesis K[p_

D= k[Tl,...,Td], i= 1,...,71.

Let p be a height 1 > 2 prime ideal of D. Since D = R(J)/mR(]), there
exists a prime ideal q of R(]) such that p = q/mR(]).

Since depth, (S;(I)) > 1, [Pol00], by depth counting in the set of exact

sequences of R(J)-modules (SQ1) we get that depth, (prjl ]) > 1. In fact,

| is isomorphic to an ideal I; of
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for i < p; we have that Z[Il.’]] = M[Il.’]], so depth, (ZH) > d > 2. Thus, if
p1 # 1 then

depth, (Cz) > min{depth,(C;), depth, (X [1]) -1} > 1.
Hence, while i < p; we have that depth, (C;11) > 1, and this implies that
depth, (=! i ]) > min{depth, (Cp,),depth, (Cp, 1) +1} > 1.
Otherwise, if p; = 1 then

depth, (X ]) > min{depth,(Cy),depth, (C2) +1} > 1.

[

Hence we have depth (Zf;]l ]) > 1.
Depth counting on (Sy,,) yields

IP1+1

L] .
depth, (K[Pﬂ) > min{depth, (——— T

[Ty, ..., Ty]), depth( v ])—1—1}22

because depth, (1]1111; [T1,..., Ta]) = d and depth, (pr]ﬂ) > 1. Then

depth(I;), = depth(I;)q >depth( i ]) 2,

[Mat80]. In particular we have that p ¢ Assp (), because depth, (I;) > 2,
so I; is an unmixed ideal of D of height one. In fact, all the associated
primes of I; have height < 1, and being D a domain and I; # 0, the
associated ideals of I; are height 1 ideals. Smce D is factorial we deduce

that I; C D is principal, and then depth(K' v ]) d.
Since depth, (7};1 Ty,...,T;]) > d and depthq(K[I];]1 ]) = d, by depth
counting on (S|,)), we deduce that depth,, (=! v ]) >d—12>2.

By depth counting on (SQ1) we get that depth, (Cp, 1) > 1. In fact,
depth, (Cp,+1) = min{depth, (Cp, ), depth, (=! v ]) -1} >1,

since depth, (Cp,) > 1. Then we can iterate this process, and we get that
depth, (Z[Ip]]) > d —1 for all p, in particular we get that the R(])-module

YL verifies

depth( ) >d—1.

[p]
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From the last row of the sequence (SQ2) we get that
depth(le’]r_z) > min{depth(Zfiz]),depth(Zfil])} >d-1
Iterating this process in (SQ2) we deduce that
depth(z") > d —1.
Now, let us consider the exact sequence of R(])-modules
0 — R(J) — grp(R(1) — £ — 0.
By depth counting in this sequence we prove the claim, because
depth(gry; (R(I))) > min{depth(R(J)), depth(£"])}

with depth(R(J)) = d + 1 and depth(Z!/) > d — 1. O

The following lemma it is also important for the main theorem, because
it allow us to determine the diagonal K[Ip]] in case eo(K[Ir’]} ) = 1. This way we

may determine K!”/ in the decomposition of 6(I,]) considered in the main
theorem.

Lemma 5.6.2. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R with minimal reduction J. If 5,(I,]) = 1 then

K[ng is a rank one torsion free k[T, ..., Ty]-module.

Proof. Let us recall that

[Ip]] with respect

. 1, .. . .
to Ty,...,Ty. Since % is a finite length R-module there exists a composi-
tion series

We denote by K[Ip]] ; the homogeneous piece of degree j of K

Ip+1
= 17

such that N; is a sub-R-module of IPT1/]I7 and N;/N;;; = k for all i =
0,...,1 =1, ie. lengthp(IP*1/]JIP) = I. Hence we have a sequence of

0=NCN_1C---CNy
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R[Ty,..., T;]-modules

OZNZ[Tl,...,Td] CNl—l[le--wTd] cC...

Ip+1
. CNO[Tll--~er] = W[Tl,...,Td].
We denote by
B K[p]ﬂN[Tll...,Td] Ni[Ty,..., T,] [T .
_K AN T T N: 1[T1 T] - 1,---,1g
[P] 1+1[ 17/ d] i+ s dyg

Since ep(K [1) = 1 we have that K” #0. IfW; =0foralli=0,...,/ then

K[ i = 0, so there exists a set of mdexes 0<i <...<ig <Isuch that
W #0,j=1,...,s

We denote by W; ,, the degree m piece of W; with respect to Ty,..., T,.
Let m( be an integer such that forall j = 1,...,s we have Wi]-,mo = 0. This
integer exists. In fact, for each Wi, # 0, there exists an integer mj; such that
Wi]-,m,-], # 0. Then, for any t > 0 we have that Wij,ml-jﬂ # 0. So, we can

choose the maximum of these m;, ..., m; . Then we have

length, ( Zlength )
= Zlength Wismg = Wism - my)
j=1
> Zlength (W, ijm— mo)
j=1
>S(1’I’l—ﬂ10+d—1>
- d-1

for all m > my.

Since eO(K[%) = 1 we deduce that s = 1, because deg(pK{l,,,]) =d-1

and the binomial number is a polynomial of the same degree. Hence,

W; = 0 for all i # i1. Therefore, K[Ip]] NAN;[Ty,...,Ty]=0fori=i;+1,...,1

and K[ ] NAN;[Ty,..., Ty = K[ng for i = 0,...,i;. From this we get that

] =W, CK[T,...,Ty], so K[Ip]] is a rank one torsion free k[Ty, ..., Ty|-
module. 0
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Next theorem is one of the main results of this chapter. We prove a
refined version of Wang’s Conjecture by considering some special config-
urations of the set {J,(I,])}p>o instead of 6(I,]) = ¥,>00p(I,]). This
theorem, allows to recover the known cases of the Wang’s Conjecture as
well as to add new ones. Then we will be able to give an answer to a
question raised by Guerrieri and Huneke.

Let us consider 6(I,]) to be the maximum of the integers d,(I,]) for
p > 0.

Theorem 5.6.3. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal of R and | a minimal reduction of I. If 6(1,]) < 1,
then

depth(R(I)) >d—45(1,])

and
depth(gri(R)) > d —1—&(1,]).

Proof. 1f §(1,]) = 0 then KJ = 0, Proposition 5.5.3. The exact sequence
(S) shows that M!J = L] as A-modules, so depth(Z!/) = d, Proposi-
tion 5.4.3. Let us consider the exact sequence of A-modules

0— =M — grp(R(I)) — R(J) — 0

Depth counting shows that depth(gr;(R(I))) > d, since depth(Z!/) = d
and depth(R(J)) = d + 1. Hence

depth(R(I)) > d.

If gr7(R) is a Cohen-Macaulay ring then depth(gr;(R)) =d > d — 1. Oth-
erwise, when depth(gr;(R)) < d = depth(R), from [HM94],

depth(gr;(R)) = depth(R(I)) —1>d—1

which proves the claim.

Suppose that 6(I,]) = 1. When d = 1,2 we have the claim eas-
ily. So we assume d > 3. From Lemma 5.6.2 and Theorem 5.6.1 we get
depth(grj:(R(I))) > d -1, s0

depth(R(I)) >d —1.
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Now, if gr;(R) is Cohen-Macaulay, then depth(gr;(R)) = d > d — 2. Oth-
erwise, if depth(gr;(R)) < d = depth(R) then, [HM94],

depth(gr;(R)) = depth(R(I)) —1>(d—1)—1=d—2

and the theorem is proved. O

Remark 5.6.4. The example of Wang in [Wan(2], Example 3.13 (reproduced
below), shows that the last result is sharp in the sense that we cannot expect
to have depth(gr;(R)) > d — 1 provided that §(I,]) = 1. Precisely, this is
a counterexample for the question formulated by Guerrieri and Huneke
in [Gue93]. They asked if it were true that depth(gr;(R)) > d — 1 for an
m-primary ideal I in a d-dimensional Cohen-Macaulay ring provided that
AP(I, J) <1Vp > 1. Wang reformulated the question in the regular case.

Related to this question, we are able to give an answer to the Guerrieri
and Huneke’s question improving the bound for the Cohen-Macaulay case.

Theorem 5.6.5. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be and m-primary ideal of R and | a minimal reduction of I. If Ap(I,]) <1
forall p > 1, then

depth(gr;(R)) > d — 2.

Proof. Observe that §,(I,]) < Ay(I,]) <1 for all p > 1, Proposition 5.5.4.

For p = 0 we have that 6y(I,]) = eo(K[I(')]) = 0 by Lemma 5.4.1. Then the

claim follows from Theorem 5.6.3. O

Example 5.6.6. [Wang] Let S = K[x1, X2, X3, X4, X5] (x, x,x3,x,,x5) With K a
field, and x1, xp, X3, x4, x5 are indeterminates. Consider the ring R = 5/Q,
where Q = (x%, X3Xy4, X3X5, X4X5, xi — xzxg,xg — x3x%)8. The maximal ideal
of Ris m = (x1, X2, x3, x4, x5)R. Then (R, m) is a Cohen-Macaulay local ring
of dimension d = 2. We consider I = (x1, x2, x4, X5)R an m-primary ideal
of R and | = (x1,x2)R a minimal reduction of I.

With these ideals we have that

12

Aq(I,]) = lengthy ( IF;]> =1
Bn

Ay (I, ]) = lengthy <12]]> =1
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and rj(I) = 3 (ie. I* = I3]). From this last fact, Ap(I,]) = 0 for all
p > 3. Hence, Ay(I,]) < 1forall p > 1 and, since d,(I,]) < Ap(I,]), then
5(1,]) < 1.

Wang shows that depth(gr;(R)) = 0. This depth agrees with Theo-
rem 5.6.3, since d — 1 — &(I, ]) = 0 in this case.

In the following corollary, we are able to prove Wang’s Conjecture in
the known cases, [Wan(0], using the previous results and the bigraded
modules defined before. Notice that in general we have

8(L]) =} 6p(L]) = 8(1,]) = max{é,(L]) | p = 0},

p=0

so from Theorem 5.6.3 we deduce:

Corollary 5.6.7. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideal and | a minimal reduction of 1. Then it holds

depth(gri(R)) >d —1—46(L,])
for6(1,]) =0,1.
Proof. 1tis clear that §(I,]) > 6(1,]), and then we apply Theorem 5.6.3. [

Let us recall that Valabrega and Valla characterized under which con-
ditions gr(R) is Cohen-Macaulay. They proved that given a minimal re-
duction | of I then gr;(R) is Cohen-Macaulay if and only if for all n > 1
the n-th Valabrega-Valla’s condition holds, [VV78]:

mnj=r1-1j,
ie. Ay_1(L]) =0.

There is another well-known conjecture that considers some conditions
on the modules IPT1/]IP and IP N J/IP71], it is Sally’s Conjecture:

Theorem 5.6.8 (Sally’s Conjecture). Let (R, m) be a Cohen-Macaulay local ring
of dimension d > 0. Let I be an m-primary ideal of R with minimal reduction J.
Frrnj=1-'Yfrn=2,...,tand lengthR(%) =€ <min{l,d — 1} then
it holds

d — e < depth(gr;(R)) < d.
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This conjecture was proved by Corso-Polini-Vaz-Pinto, Elias, and Rossi,
[CPV98], [ELi99], [Ros00].

In the next result we prove a weak version of Sally’s Conjecture as a
corollary of the previous results in this section.

Corollary 5.6.9. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0.
Let I be an m-primary ideul ofR with minimal reduction J. If " N ] = I""'] for

n=2,...,tand length( IIt ) =¢ <min{1,d — 1} then it holds

d—1—e€ < depth(gr;(R)) <d.

Proof. From Proposition 5.5.6 we get that §,(I,]) =0 forall p <t —1.
Let us consider the finitely generated (R/])-algebra A

R(I) R g
T+ JR(D) @@H” ‘

n>1

A:

Notice that 4> is the positive part of the degree zero piece with respect
to U of XIJ. We can consider the Hilbert function of A, n > 0,

ha(n) = lengthg, ( (I"/J1" 1),

From [Bla98] and [BN99] we deduce that

It-‘rl-‘rn

hg(t+1+n) =length(—— T

)<e<1
foralln > 0,s06,(I,]) <1 forall p > t, Proposition 5.5.6.

So, we know that 6,(I,]J) < 1 forall p > 0, and using Theorem 5.6.3 we
prove the claim. O






Chapter 6

Diagonals of X!/ and the
growth of the Hilbert
function

Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0, let I be
an m-primary ideal of R and ] C I a minimal reduction of I.

In the first part of this chapter, Section 6.1, we generalize the concept of
the diagonal submodules s of the bigraded Sally module X"/ associated

(¥l
to I and | defined in Chapter 5. The diagonals Zf;]] were used in order to

estimate the depth of gr;(R). Here we consider a more general definition.
We define a submodule D; (£!)) of !/ with respect to a line I,. It will
be a graded module and we will study the growth of its Hilbert function
considering some hypothesis on the minimal number of generators of some
pieces of these diagonals, see Proposition 6.1.6.

The second aim of this chapter, Section 6.2, is to study the growth of
the Hilbert function h; of an m-primary ideal I in the one-dimensional
case. We take advantage of the structure of the modules I"*1/]I" to study
the growth of /i, see Corollary 6.2.1. The direct sum of these modules
corresponds to a diagonal submodule DI“B (2 of £ by considering a
concrete line. In particular, we study this growth in the one-dimensional
case considering the minimal number of generators of I"*!/]I", see Propo-
sition 6.2.3.

115
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Moreover, we also study some cases in which we consider the embed-
ding dimension of I, b(I) = lengthy (I/I%). We cover some cases where
is non-decreasing, see Proposition 6.2.4.

6.1 Diagonal submodules of the bigraded Sally
module

Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0. Without
loss of generality, we can assume that k = R/m is infinite. Let I be an m-
primary ideal of R and let | be a minimal reduction of I.

In Chapter 5 we defined the bigraded Sally module

iy
L] — +
=P [ anii

i>1j>0

This is a bigraded A-module, with A = (R/])[V4,...,V;; Th, ..., T] with
deg(V;) = (1,0),i = 1,...,p, and deg(T;) = (1,1),j = 1,...,d. Also in
Chapter 5, for all p > 0, we defined the p-th diagonal of %!/ as

1
Ly _ Ly _ 7 n+p+1ymn
2 = D Z ) = D [p]n+lt u-.
(mn) n>0
m—n=p+1

Now, we want to extend this definition by considering bigraded pieces on
2 of degrees running on a parametric line of the plane IN?.

Definition 6.1.1. For each set of non negative integers ay, &3, 03,04 > 0, with
a1 + ay > 1, we define the line 1, in the plane (m,n) as

{ m(s) = a5+ ag
Iy :
n(s) = aps + ay

fors > 0.

Definition 6.1.2. For each line l,, we can define the diagonal submodule
Dy, (27 of =1 which corresponds to the direct sum of the pieces of ="/ of bide-
grees (m(s) +n(s),n(s)),s >0
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m-+njyn
@Zernnt u

(m,n) €1y

_ ]ns ms+ns n(s
@Ims) 1]n(s © ()u ()'

Example 6.1.3. Notlce that with this definition, we generalize the concept
of the diagonals Z[ ] forall p > 0. In fact,

Irt ]
L] _ +1+
Z[}ﬂ] @ [P]S+1 tP SUs

which corresponds, according to this new definition, to Dlm,, (ZI'] ), with

Lo m(s)=p+1

e n(s) =s
In this case, a1 = 0,42 =1, a3 =p+1and ay = 0.
Example 6.1.4. In Section 6.2 the standard graded (R/])-algebra

R(I) I’

= = ts
R ~ D

will have an important role. This algebra is another diagonal submodule
of X1, Dy, (x]), considering the line I3,

] m(s) =s
s {9 o

In this case, a1 =1, ap =0, a3 = 0 and a4 = 0.

Notice that we have

Iocls+oc3 ]azs+a4

Dla (ZIJ) — (t(a1+a2)ua2)sta3+a4ua4

g 1a15+a371]a2s+a4+1
with t%+%J% a fix monomial. Now, shifting by (—az — ay, —a4) and
defining a new variable W = M1 722 we have

L 10(1$+1X3 ID(25+IX4
Dy, (B (—a3 =g, —ag) = Jruastaz—1jups+as+1
s>0
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Definition 6.1.5. From now on, we will write

szls+1X3 ]azs+v¢4

L]\ _
Dla (Z ) - @ I“ls+“371]“25+a4+1 we
s>0

for the diagonal of Z1'/ with respect to a line I,. Observe that D, (£1)) is a graded
870 jar (R)-module generated in degree .

Now we can consider the Hilbert function of D; (£!) as

[m(s) yn(s)
H;, (s) = length, (m(s)_l]n(sm> .
In the next result we study the growth of the Hilbert function H;, of the
diagonal submodule D; (£!/) by considering hypotheses on the minimal
number of generators of the pieces of this diagonal. This result applied
to the diagonal submodule of Example 6.1.4 will be crucial in order to
study the monotony of the Hilbert function of an m-primary ideal I in the
one-dimensional case in Section 6.2.

Proposition 6.1.6. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be an m-primary ideal and let | be a minimal reduction of 1. Let
Dy, (217 be the diagonal submodule of the bigraded Sally module 1) associated
to the line I,. Let s > 2 be an integer such that one of the following conditions
hold:

m(s) yn(s)
(1) UR m S 2, or

’ ’ Im(s)]n(s)
ere exist an imnteger € =~ 1 SUC at len S S,
(2) th t teger e > 1 such that length, <

Then for all t > s it holds
Hi (5) 2 Hy, (+1).
Moreover, under the hypothesis of (1) there exists an element a € I*1 J*2 such that

Im(t)]n(t) » Im(t+1)]n(t+l)
Im(t)fl]n(t)Jrl - I

(t+1)—1]n(t+1)+1
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is an epimorphism for all t > s — 1. In particular it holds
M (1) = Hy, (t+1)

forallt >s—1.

N Im(s)]n(s) _
Proof. (1) Let us assume that vg m <2

(a) If () yn(s) = p(s)=1yn(s)+1 4 pqpm(s) jn(s) 4 oK for a € [*1]*2 and some
ideal K [~ n(s=1) then it holds
s pu(s+1) — o g pm(s) pns)
= 1!11]042(1"1(5)*1]”(5)Jrl + m[mE) ) 4 aK)
— Im(s+1)—1]n(s+1)+l +m1m(s+l)]n(s+1) + aKI*1 %2
C Im(s+1)—1]n(s+l)+l +m1m(s+l)]n(s+1) +a1a1]a2(1m(s—1)]n(s—1))
— Im(s+1)—1]n(s+l)+1 +m1m(s+l)]n(s+1)+

+ alm(s)—ljn(s)-&-l + amlm(s)]n(s) + 2K

— Im(s+1)—1]n(s+l)+1 +m1m(s+1)]n(s+1) + 2K (i)
C Im(s-‘rl)]n(s—i—l) + mIm(S+1)]n(S+1) + ﬂZK (11)
C Im(s+1)]n(s+l) (iif)

where (i) holds because aI™(s)=1jn(s)+1 — m(st1)=1n(st1)+1 anq since
am ") 1)« s+ prs+1) | (ii) holds since | C I, and (iii) holds be-
cause a € [M]% and K c [m=D (=1 Therefore, ["(s+D) n(s+1) —
Im(s+1)—1]n(s+1)+1 + mlm(s+1)]n(s+1) + 2K,

Then by induction we get that for all ¢+ > s it holds
Im(t)]n(t) — Im(t)—ljn(t)-H + mlm(t)]n(t) + ﬂt_s—‘rlK.
From this we get that the map

Im(t)]n(t) p Im(t+1)]n(t+l)
Im(t)fljn(t)+l + m[m(t)]n(t) - Im(t+1)71]n(t+1)+l + m[m(t+l)]n(t+1)

is an epimorphism for ¢ > s — 1. Since we have isomorphisms

Im(t)]n(t) Im(t)In(t) /Im(t)—ljn(t)—i-l
Im(t)flfn(t)+1 + mlm(t)]n(t) m(Im(t)]n(t) /Im(t)fl]n(t)Jrl)

1%
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for all t > 0, then we get the epimorphism

m(t)In(t) /Im(t)—ljn(t)-l—l i, Im(t-‘rl)]n(t—‘rl) /Im(t-i-l)—l]n(t-‘rl)-‘rl

m(1m(® (6 / (O =1 n(H+1) - () (i) ) (1)1
Hence, by Nakayama’s Lemma we deduce that

Im(t)]n(t) " Im(t+1)]n(t+l)

EYTIGES! — (D) =1 (D) +1

is an epimorphism for t > s — 1. Hence, for t > s — 1 we have that
Im(t)]n(t) m(t+1) ]n (t+1)
length, (Im(t)—lfn(t)ﬂ > length, [(Er )1 i+ ,

Hi (1) = H (1)

SO

and the claim is proved.

m(s)]n(s)

(b) We can assume that for some s > 2, vg <1m(s)—1]n(s)+1

) > 1. Other-
wise, Hy (s) = 0 for all s > 2. So, there exists a generator
x € Im(s)]n( N Im l]i’l +1 +m1m ]n

This generator a is a combination of monomials in () ]”(S), and since
a ¢ [mE)=1n(s)+1 g m(s) n(s) | there exists a monomial a € [™(5) [1(s)
m(s)=1yn(s)+1 4 mm(s) 1(s), By Nakayama’s Lemma, we can choose this

monomial as a generator
[m( s) ]”(S)
-1 ]n s)

If v R(%) = 1, we apply @. If vg(7; ) = 2, there is

another generator g € ["(5) J(s)  [m(s)=1n(s)+1 —i—ml’"( )] () 4 (g). Using
the same argument as before, we deduce that there are two monomials
a,b e 1) prls) < pm(s)=1pn(s)+1 L gqpm(s) n(s) that generate the module.

So, from (a) we may assume that there exist monomials a,b € I m(s) ] n(s),
with @ = 40,055 1)n(s—1) A b = DayayUp(s—1)n(s—1) With no common
factor in I"1]*2, where auay, by, € 11", @yy(s_1yn(s—1)r bm(s—1)n(s—1) €
Im(s—l)]n(s—l) and

(s)]n(s) _ Im(s)fl]n(s)le +m1m(s)]n(s) + (a,b).

We write 8/ 0,0, = Gn(s—1yn(s—1) b/ Baray = bin(s—1yns—1) € """
Notice that if one of the following conditions does not hold
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() (a/0m85)bayay € IO TIHEH () 1) 4 (a),
(i) (b/bayay)anay € IO IHOH L) 1) 4 (a),
then we have
) prls) = &)Ll ) 1) 4 (4, (a/ g0, baras),

or
Im(s)]n(s) _ Im(s)flln(s)Jrl + mIm(s)]n(s) + (Q, (b/blezxz)atxltxz)-

In fact, if we assume that (i) doesn’t hold, we get that

0 75 Im(s)—ljn(s)-&-l 4 mlm(s)]n(s) T (Q) C Im(s)—ljn(s)-&-l 4 mlm(s)]n(s)+

+(ﬂ, (ﬂ/at’élt’éz)bﬂllﬂlz)
C [m(s)yn(s),

m(s) pn(s)
but VR W S 2, SO we get
Im(s)]n(s) _ Im(s)fljn(s)Jrl + mIm(s)]n(s) + (Q, (Q/aalaz)blezxz)-

We write Am(s—1)n(s—1) = CararCm(s—2)n(s—2) with Caqny € I“1]*2 and with

Cim(s—2)n(s—2) € Im(572)]n(372), SO

(ﬂ/ (Z/aﬂqlxz)bﬂtlﬂtz) = Cajay (aﬂé1ﬂézcm(s—2)n(s—2)/ bﬂé1ﬂézcm(s—2)n(s—2))'

Then, from (a) and s > 2 we get the result. The other case is proved
similarly.

Hence we may assume that conditions (i), (ii) hold, so there exist ele-
ments 11,7, € I’”(s)’lfn(s)*l + ml’"(s)]”(s), and «, B € R such that

(iﬁ) (ﬂ/aalaz)blezxz =71 +uaaq,
(IV) (b/blxlﬂéz)alxll)éz == 72 + ﬁg
Let us consider the pair

A - (ﬂ/alxlvéz)(aﬂtlﬂtz + )\blezxz)/
B = (b/bﬂélﬂéz)(amm + /\blxltxz)f
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with A € R an element to be determined. Hence in the k-vector space
[m(s) yn(s)
Im(S)*l]i’l(S)Jrl + m[m(s)]n(s)

AY (14+Aa O a
B) \ B AJ\b
Since k is infinite we have A(1 + Aw) # 0 for a generic A € R, so
Im(s)]n(s) _ Im(s)—lfn(s)-&-l + mIm(s)]n(s) + (A,B)

we have

and we are in the case (a). In fact, (A,B) = c(a/anay,b/baja,) wWith
C = dpa, + )\baltxz € ["1]%2 and (ﬂ/aalazzb/balaz) - Im(s—l)]n(s—l).

m(s) yn(s)
Im(s)feln(s)ﬁe
Im(S)*EIH(S)ﬁ’E C Im(s)fl]n(s)+1, 50

(2) We assume that length ( ) <. Since | C I, we get that

m(s) yn(s) m(s) pns)
Im(s)—e]n(s)-i—e - Im(s)—l]n(s)-H

is an epimorphism and hence,

[m(s) yn(s) m(s) Jn(s)
Hla (S) = lengthR W < lengthR W <s.

Since Dy, (X)) is a graded grp j22 (R)-module generated in degree 0,
from [BEOOQ] Corollary 3.5, we get that
H, (t+1) < le(t)<t>
for all t > 1. Since H,, (s) < s we have
H,, (s+1) < H,, (S)<s> <™H, (s).

By recurrence we prove the claim. In fact, if the claim holds for t — 1 > s,
then for f > s we have that

Im(t)]n(t)
1engthR Im(t)—l]n(t)+1

IN

Im(tfl)]n(tfl)
lengthy (=)= n(i—1)+1

m(s) pn(s)
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Again, since H; (t) < t, we have that
My, (E+1) < H;, (557 < Hy, ()

and the claim is proved. O

6.2 Monotony of the Hilbert function

In this section we study the monotony of the Hilbert function #; of
an ideal I in a one-dimensional Cohen-Macaulay local ring R. We prove
some cases where the function h; is non-decreasing by assuming some
hypothesis on the components of the R/ J-algebra

R()

5= mray

see Example 6.1.4.
We can consider the Hilbert function of B

hp(n) = lengthy (I" /1" 1)

for n > 0. From now on we will write H;; = hpg. Notice that H;; depends
on J, and if depth(gr;(R)) > d — 1 then does not, see [CPV98], Proposition
2.3. We use H;j in order to study the monotony of h;.

The result obtained for a general diagonal submodule of %!/, Proposi-
tion 6.1.6, for dimension d > 0, can be reformulated in our case as follows:

Proposition 6.2.1. Let (R, m) be a d-dimensional Cohen-Macaulay local ring
with d > 0. Let I be a m—primary ideal and | a minimal reduction of I. Let t > 2
be an integer such that one of the following conditions hold:

It
(1) vg (]It—1> <2,0r

It
(2) there exist an integer e > 1 such that length (]e[t—e) <t

Then for all n > t it holds

H[J(Yl) > H”(n + 1).
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Moreover, under the hypothesis of (1) there exists an element a € I such that
& _,1 In+l
e T
is an epimorphism for all n > t — 1. In particular it holds
Hiy(n) > Hyy(n+1)
foralln >t —1.

In the one-dimensional case | = (x), where x € I is a superficial ele-
ment of degree one. In that case we can relate the behavior of H;; with
the growth of the Hilbert function by means of the identity

Hi v (1) = eo(I) — hy(n —1).

In fact, since x € | C I,

& Infl Infl
length, <x1”1> = length, <xl”1> — length, (I”) .
Since x is also a non-zero divisor of R, from [Lip71] remark (b) to Corol-
lary 1.10, we get that
rmt R
xI"=1 " xR

SO - .
length, (xl"‘l) = length, (xR) =eo(I)
Therefore we get the above formula

Hiyj(n) =ep(I) —hi(n—1).

We denote by pn(I) the postulation number of /iy, i.e. the least integer
t such that hj(t +n) = p;(t+n) for all n > 0.

Next result is known for the maximal ideal, [Eli86] and also for m-
primary ideals, [Eli05].

Proposition 6.2.2. Let R be a one-dimensional Cohen-Macaulay local ring, and
let x be a degree one superficial element of an m-primary ideal 1. Then the follow-
ing conditions hold true:
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(i) pn(I) is the least integer n such that I" /1" =% ["+1/["42 js ap iso-

morphism,
(ii) pn(I) is the least integer n such that ["*1 = xI",

(iii) pn(I) <ep(I)—1.

In [Eli99] it is proved that if " N (x) = xI""! foralln < t—1 and
length, (I t/xI t’l) < 2 then hj is non-decreasing. In the next result we will
consider the number of generators instead of the length of the R—module
I'/xIt-1.

Proposition 6.2.3. Let (R, m) be a one-dimensional Cohen-Macaulay local ring.
Let I be a m—primary ideal, and x € I a degree one superficial element of 1. Let
t > 2 be an integer such that the pair I, x verify one of the following conditions:

It
(1) I"N (x) = xIn—lfor alln <t—1,and vg (xlt1> <2,

t
2) I"N (x) = xIn—lfor all n < t, and length, (ﬂ;ta) <t<ta>1

Then hy is non-decreasing.
Proof. (1) Let us consider the projection

I" Infl
x[n—1 - x[n—2

Since I"N (x) = xI" L, n < t—1, we get that it is injective in this range.
In fact, if y € I" such that y € xI""2 = [""1 N (x), we get that y € (x). So,
y € I"N (x) = xI"~L. Then, H;j(n —1) > H;;(n), and from the identity
of Proposition 6.2.2, we get that ij(n — 1) < hj(n). So, h; is non-decreasing
forn <t—1.

Now, from Proposition 6.2.1 (1) we get that Hjj(n) > Hj;(n + 1) for
n>t—1,s0hi(n) < hr(n+1). Hence, we get that h is non-decreasing.

(2) Proceeding in a similar way as we did in the case (1) we get that
I"n(x) =xI"1foralln <t implies that i is non-decreasing for n < t,
and by Proposition 6.2.1 (2) we get that /i is non-decreasing for n > t. [
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Let I be an m-primary ideal of a Cohen-Macaulay local ring R of di-
mension d. We denote by b(I) = lengthg (I/1?) the embedding dimension
of I. If I = m then we write b(m) = b(R). Valla proved that, [Val79],

2
b(I) = ep(I) + (d — 1) length, (1;) —length, <§I)
where ] is a minimal reduction of I. In particular we have
b(I) <eo(I) + (d —1)lengthg (R/I),

and if the equality holds then gr;(R) is Cohen-Macaulay.

Considering the embedding dimension of I and the Valla’s formula,
we study some cases where the Hilbert function /; of I is non-decreasing
depending on b(I).

Proposition 6.2.4. Let R be a one-dimensional Cohen-Macaulay local ring. Let
I be a m-primary ideal of R. Then

(i) eo(I) = 1if and only if b(I) = 1. In this case we have I = m and R is a
reqular local ring.

(ii) If b(I) = 2 then it holds

{lengthR(R/I) n=20

hi(n) =<¢ n+1 n=1,...,e(I)—1

eo(I) n > eo(I).
The Hilbert function hy is non-decreasing if and only if lengthy (R/I) < 2.
(iii) If b(I) < eo(I) < b(I) + 2 then the Hilbert function is non-decreasing.

(iv) If >N (x) = xI, b(I) = 4, and eg(I) = 7 then lengthg (R/I) < 4 and
the Hilbert function is non-decreasing.

Proof. Notice that Valla’s formula takes the form
eo(I) — b(I) = lengthg (I?/xI).

(i) If b(I) = lengthg (I/1?) = 1 then there exists an integer a € I such that
I = I? + (a). Clearly, I" = I"*! 4+ aI"! for all n > 1. Then the morphism
" p I}’H—l
2
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is surjective for all n > 0, so hj(n) < 1 for all n > 1. In fact, from
the morphism, we get that length (I"/I"1) > length,y (I"*1/1""2), so
hi(n) > hy(n+1) for all n > 0, and hence, for n > 1, it holds that
hi(n) < hi(1) = lengthg (1/1%) = b(I) = 1.

Since R is one-dimensional and I m—primary we get h(n) = 1 for all
n > 1, in particular ¢y(I) = 1, because py(n) = ey(I).

Let us assume ¢(I) = 1. We have that b(I) = lengthy(I/1%) > 0. If
b(I) = 0 then I = I?, and hence, I" = I"*! for n > 1, and therefore
eo(I) = pr(n) = 0, which is a contradiction. From Valla’s formula we have
1=-ep(I) > b(I) >0, sowe getb(I) =1.

Let us assume that ep(I) = b(I) = 1. From Valla’s formula, we get that
lengthR( 12/xI )=0,s0 12 = xI, and hence, we can consider the injection

I
2

X
—

~| =

Thus, lengthg (R/I) < lengthy(I/1?) = 1. Since I is an m-primary ideal,
we get that length, (R/I) = 1. Considering the epimorphism

we get that the morphism length, (R/m) < lengthy (R/I) = 1. Then we
get that R/I — R/m is an isomorphism, and hence I = m.
In this case, since b(m) = lengthy (m/m?) = 1 we get that vg(m) =1 =
dim(R), and hence, R is a regular local ring.
(ii) Let us assume b(I) = 2. If vg(I/I?) < 1 then there exists an element
a € I such that I = I2 + (a). Then, I" = ["*1 +aI"~! for n > 1. Hence, we
have an epimorphism
I" a In+1
T

for n > 1. Then, hy(n) > hi(n+1) for n > 1. Since b(I) = lengthy (I/I?) =
hi(1) =2 we get that hj(n) <2forn > 1. Forn > 0,e9g = (I) = hy(n) < 2.
Since b(I) < eg(I), we get that ey(I) = 2. Now, since p;(n) = ey(I) = 2,
hi(1) = 2 and hy(n) > hy(n+1) for n > 1, we have that h;(n) = 2 for
n > 1. Then, the claim is proved, because

length,(R/I) n=0
hi(n) =< n4+1=2 n=1
eo(l) =2 n>2.
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Clearly, h; is non-decreasing if and only if lengthR(R/ I ) < 2.

Hence we may assume vg(I/I%) = 2, then there exist aj,a, € I such
that I = I? + (ay,a2) with a; # ap, aqm C I?, i = 1,2. It is easy to prove
that for all n > 1 we have

"= 1" 4 (@, ey, ),

since lengthy (I"/1"*1) = lengthg (I"*! + (af,al 'ay,...,a})/1"*!) and
am C 12, we gethy(n) <n+1foralln > 1.

Since hj verifies Macaulay’s condition, [Bla98], [BN99], we get that
hi(n+1) < hy(n)<"> for n > 1. We distinguish two cases. If hj(n) < n
then hj(n+1) < hy(n)<"> < hy(n). Thus, if there exists an integer 1 <
nyg < 60([) such that h[(i’lo) < ng then h[(?’lo + 1) < h[(no) <nyg<mnyg+1
and proceeding by induction we get that hj(n+1) < hj(n) < ng < eg(I)
for n > ng. Since hi(n) = ep(I) for n > 0 we get a contradiction. Hence,
hiin)=n+1forn=1,...,e0(I) — 1.

Then we get that

h](n): n+1 Tl:1,...,€0(1)—1

{lengthR(R/I) n=0
eo(1) n > e(I).

Again, hj is non-decreasing if and only if length, (R/I) < 2.
(iii) From Valla’s formula we get

2
2 > ¢o(I) — b(I) = lengthy (L) .

Since lengthy (12/xI) > vg(I?/xI), from Proposition 6.2.3 (1), taking t = 2,
we get (iii), because I N (x) = (x). Hence hj is non-decreasing.

(iv) If b(I) = 4, eg(I) = 7 then we have lengthg (I>/xI) = eo(I) — b(I) = 3.
So, we have

I? I?

I? I?

If vg(I?/xI) < 2 then from Proposition 6.2.3 (1), taking t = 2, we get
that h is non-decreasing.
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Let us assume that VR(IZ/XI) = 3, then we have I2/xI = I?/xI + I3,
and hence I° C xI. Since

IS xI 1

x2 T x2 T P
we get lengthy (I3/xI?) < lengthy(I/1%) = b(I) = 4, and the equality
holds if and only if I° = xI.

If I3 = xI then for all n > 1 it holds I"*2 = xI", so
In+2 xI" &

~

x[n+1 = x[n+1 T+l

From this we get H; (,) (1 +2) = hj(n) for all n > 1. On the other hand we
know that H; () (1) = 0 for n > 0 and hy(n) = ey(I) for n > 0, so we get
a contradiction.

Let us assume I3 # xI, then we have 3 > Hj(x)(3). From Proposi-
tion 6.2.1 (2), we get 3 > H; () (1) > Hj () (n +1) for all n > 3. Using the
identity Hyj(n) = eo(I) — hy(n —1), we get 4 < hy(n) < hy(n+ 1) for all
n>2.

Since I2 N (x) = xI we can consider the exact sequence

R x 1 I

T—>I—2—>7—>O

12 + (x)

00—
so we have /1;(0) = lengthg(R/I) < lengthg(I/1?) = h;(1) = b(I) = 4,
and hj is non-decreasing. O

As a corollary we recover Proposition 3.4 from [Eli99]:

Corollary 6.2.5. Let (R, m) be an equi-characteristic Cohen-Macaulay local ring
on dimension 1 and embedding dimension b. If one of the following conditions
hold then hy is non-decreasing:

(i) b=1,2,3,
(i) b< ey <b+2,
(iii)) b=4,¢e0=7.

Proof. From the above result we know that /iy is non-decreasing except for
the case b = 3. The main result of [Eli93] established Sally’s conjecture on
the Hilbert function, i.e. the case b = 3. O
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Observe that, for the maximal ideal m the first case for which we don’t
know if the Hilbert function is non decreasing is b = 4, ¢y = 8. The first
known example with a decreasing Hilbert function for b = 4 has multi-
plicity e9 = 32, [GR83]. Other examples of a locally decreasing Hilbert
function are for b = 10, ¢y = 30, [HW75], b = 10, ¢y = 13, [MT99] and
b =12, eg = 15, [ES76].

In the following diagram we represent in black dots the known cases
of non-decreasing Hilbert function in terms of b and ¢yp. White dots are the
known examples of locally decreasing Hilbert function.

€0

[GR83]
32 e o - O
31 o o
[HW75]
30 ° [ 3 o
[ES76]
15 o o o e
14 o o o o
[MT99]
13 o o . e )
12 o o ¢ o @
11 o o L S
10 ° [ 3 . ) o
9 L3 3 1 ] . 1 ]
8 o o o o o
7 L3 [ 3 ° L3 [} L]
6 . [ o 3 o
5 o o o o
4 ¢ o
3 [ 4
2 .
1 ']

1 2 3 4 5 6 7 8 9 10 11 12 13
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L’objectiu principal d’aquesta tesi és contribuir al coneixement de pro-
pietats cohomologiques dels moduls multigraduats no-estandard. Princi-
palment estudiem la profunditat de moduls multigraduats no-estandard i
d’estructures relacionades, aixi com la funcié i el quasi-polinomi de Hilbert,
centrant I'estudi en la profunditat de les algebres de blow-up.

En algebra commutativa, els moduls graduats, aixi com els multigrad-
uats estandard, han estat objecte d’estudi per molts autors. Tot i que també
es coneixen resultats per moduls graduats no-estandard, el cas multigrad-
uat no-estandard no és tan comd.

Per altra banda, sota el nom d’algebres de blow-up, es coneixen algunes
algebres graduades associades a un ideal I d'un anell local Noetheria
(R,m). Son, entre d’altres, l'algebra de Rees R(I), l'anell graduat associat
¢r1(R) iel con de la fibra F, (I) definits com a

" "

R =PI,  gnR) =@ e (D)= b T

n>0 n>0 n>0

Les algebres de blow-up s’utilitzen per estudiar propietats i caracters
numerics de 'anell local (R, m) i de I'ideal I. A més a més, tenen rellevan-
cia geometrica.

Vasconcelos, [Vas94b], va afegir a la llista d’algebres de blow-up I'anom-
enat modul de Sally S;(I) d’un ideal I respecte d’una reduccié minimal J.
Es el R(J)-modul graduat

In+1
S](I) :@ il

n>1

El nom venia motivat pel treball de Sally que estava enfocat en recuperar
propietats de R(I) i gr;(R) a partir de l'estructura, més coneguda i més
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bona, de R(J).

L’algebra de Rees i l’anell graduat associat, es poden generalitzar al cas
multigraduat per un conjunt d’ideals Ij, ..., I, d'un anell local Noetheria
(R, m) de la segiient manera: 1'algebra de Rees multigraduada associada a
I,..., I es defineix com

R(L,.... L) = @ LIt CR[t,...,t],
nelN"

iperacadak =1,...,7, el k-esim anell multigraduat associat a I1,...,I; a
R és
1{11...1?...1;“7 R(Ly,..., 1)

1,50 (R) = = )
s ‘ ngn% Ifl"'lf"+1~-~lr”' LR(L,..., 1)

A continuacié introduim i motivem els principals problemes que hem
estudiat, i seguidament detallarem els resultats més importants obtinguts
a la tesi.

Les funcions de Hilbert de moduls graduats sobre algebres graduades
estandard han estat ben estudiades des del famés article de Hilbert [Hil90].
Suposant que totes les peces homogenies d'un modul graduat tinguin lon-
gitud finita, es pot demostrar que la funcié de Hilbert, que mesura aque-
stes longituds, és asimptoticament polindomica. L'estudi de les funcions
de Hilbert, els polinomis de Hilbert i els seus coeficients tenen un paper
important en l'algebra commutativa. Aquest estudi es pot generalitzar
de diverses maneres considerant una algebra graduada no-estandard, una
algebra multigraduada estandard, o bé, una algebra multigraduada no-
estandard.

Els dos primers casos sén coneguts. En el primer cas, si considerem una
algebra positivament graduada, i un modul graduat, la funcié de Hilbert
és asimptoticament un quasi-polinomi. Vegeu [BH93] i [DS99]. Quan con-
siderem una algebra multigraduada estandard i un modul multigraduat,
que té generadors de multigraus (1,0,...,0), (0,1,...,0),...,(0,...,0,1),
aleshores la funci6 de Hilbert és un polinomi en r indeterminades per
peces homogenies de graun = (n7...,n,) € N amb ny,...,n, prou grans.
Vegeu per exemple [HHRT97], [VKM94] i [Rob98].

En el cas no-estandard s’han estudiats algunes situacions. Per exemple,
a [Lav99] i [Rob98], s’ha estudiat el cas en que els generadors tenen multi-
graus (1,0,...,0), (d%, 1,0,...,0), ..., (d},...,d._;,1). En aquest cas, la
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funci6 de Hilbert és un polinomi en r indeterminades per n = (ny,...,1;)
en una regié (un con) de Z’. En el cas bigraduat, aquesta situaci6 ha estat
també estudiada en [HT03]. En [Rob00], es defineix una altra funcié de
Hilbert; I’autor considera una funcié de Hilbert acumulativa d’un modul
graduat finitament generat sobre un anell de polinomis amb coeficients en
un cos i generadors de graus (1,0), (0,1) i (1,1). Aquesta funci6 en (m, n)
es correspon a la suma de les dimensions de les peces de graus (m, j) per
j fins a n. L'autor demostra que aquesta funci6 és polindmica en una regié
de IN?. Aquesta definicié permet estudiar el modul tant des d’un punt de
vista graduat com bigraduat.

Una situacié més general, és la que estudia Fields en la seva tesi doc-
toral, [Fie00] (vegeu també [Fie02]). Ell considera la definici6 general
de quasi-polinomi i demostra que la funci6 de Hilbert d’'un modul IN’-
graduat és quasi-polindmica en una regié de Z". Malgrat tot, en la seva
demostracio, el con no esta descrit explicitament.

Per als nostres proposits, necessitem controlar el con on la funcié de
Hilbert és un quasi-polinomi. Per aixd, comencem estudiant el compor-
tament asimptotic de la funcié de Hilbert d'un modul multigraduat no-
estandard considerant M com a S-modul Z'-graduat, on S és un anell
Z"-gradugt amb generadors gf, i=1...,r,j=1,...,u; de graus 7; =
(73, 750...,0) € N"i 9} # 0, sobre un anell local Artinia Sg. En
particular, demostrem que existeix un element p € IN" tal que la fun-
ci6 de Hilbert és un quasi-polinomi en un con definit pels elements n =
(n1,...,n;) € N"tals quen = B+ Y;_ 1 Ajyiamb Ay, ..., A € Rxo.

El problema de I'estabilitat asimptotica de la profunditat de les peces
homogenies d'un modul multigraduat, té els seus origens en un resultat de
Burch, [Bur72], quan demostra que per un ideal I d"un anell local Noether-
ia (R, m) es té que

I(I) < dim(R) — rz;ir;{depth(R/I")}

essent [(I) = dim(R(I)/mR(I)) la dispersi6 analitica de I. Alguns anys
després, Brodmann, [Bro79a], va poder canviar el nombre minim d’aque-
stes profunditats pel valor asimptotic de depth(R/I") per n grans, un val-
or que va demostrar que existeix. En particular, a [Bro79b], va estudiar
els primers associats a M/ I"M per un R-modul finitament generat M, i va
demostrar que Ass(M/I"M) és estable per n > 0. Com a conseqiiéncia,
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depth(M/I"M) és constant per n > 0 i
I(I, M) < dim(M) — Jin;odepth(M/I"M)

essent [(I, M) = dim(,, ["M/mI"M).

Recentment, Herzog i Hibi van generalitzar a [HHO05] aquestes de-
sigualtats per moduls graduats sobre algebres graduades estandard. Van
demostrar que per un modul graduat E,

r}irrog depth(E,) < dim(E) — dim(E/mE).

En aquest cas, els autors no consideren l'estudi de 1’estabilitat asimptoti-
ca de Ass(E,) per assegurar l'estabilitat de les profunditats. La clau va
ser utilitzar el polinomi de Hilbert dels moduls graduats d’homologia de
Koszul.

Branco Correia i Zarzuela, en [BZ06], van demostrar per a R-moduls
E ¢ G = R% e > 0, que depth(G,/E,) pren un valor constant per valors
de n prou grans, i la desigualtat

Ig(R) <dim(R) +e—1— mg?{depth(Gn/En)}

essent Ig(E) = dim(Rg(E)/mRg(E)). Aqui, la profunditat constant es
basa en I'estabilitat asimptotica dels primers associats.

A [Hay06], Hayasaka va demostrar el cas més general considerat fins
ara. Estudia la situacié multigraduada estandard. El seu estudi es basa en
els primers associats a un modul multigraduat. En particular, va demostrar
que per anells multigraduats estandard A C B amb Ay = By = R un anell
local, es té que Ass(B,/Ay) és estable per n > 0. Com a conseqiién-
cia, depth(B,/A,) és asimptdticament constant. Hayasaka, va generalitzar
també la desigualtat i va demostrar que

s(A) < s(B) + dim(R) — depth(A, B)

si depth(A, B) < oo, essent aquest valor la profunditat asimptotica de
B,/Au, i s(G) = dimProj’ (G/mG) + 1 la dispersié de G, definida per
un anell multigraduat estandard G amb Gy = R un anell local amb ideal
maximal m.

Aleshores, és natural preguntar-se que passa en un cas multigraduat
no-estandard. S6n constants les profunditats de les peces homogenies d'un
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modul multigraduat per graus prou grans? Com es veuen afectades per
la graduacié? L'aproximacié al problema de Herzog i Hibi ens va donar
el cam{ a seguir. Utilitzant la funcié de Hilbert dels moduls d’homologia
de Koszul d"un modul multigraduat no-estandard i el seu comportament
quasi-polindmic, podem demostrar que aquesta profunditat és constant en
una sub-xarxa d’un con a N". En algun casos en que la funcié de Hilbert
és realment un polinomi, podem assegurar profunditat constant en un con
de IN". Per les algebres de blow-up multigraduades, podem demostrar
que les peces homogenies de l'algebra de Rees i les dels k-ésims anells
multigraduats associats, tenen profunditat constant per graus prou grans.
A més, tots els k-eésims anells multigraduats associats tenen la mateixa
profunditat asimptotica i podem demostrar que R/I{" - - - I;' tenen també
profunditat constant per #y, ..., n, prou grans.

Un altre problema interessant, és l'estudi de les algebres de blow-up
multigraduades definides per un conjunt de potencies d’ideals. Estudi-
ar propietats per poténcies d’ideals en lloc d’estudiar-les directament per
ideals és molt 1til, ja que en moltes ocasions es poden deduir bones pro-
pietats relacionades amb els ideals, a partir de propietats relacionades
amb les potencies dels mateixos ideals. Per exemple, en el cas gradu-
at, es pot demostrar que quan depth(gr;(R)) > dim(R) — 1 es té que
e;(I) > 0 per a tot i = 0,...,dim(R), on ¢;(I) sén els coeficients de
Hilbert de l'ideal I, [Mar89]. Malauradament, aquesta és una condicié
molt forta. Per altra banda, sota algunes hipotesis, es pot demostrar que
depth(gry«(R)) > dim(R) — 1, i per tant e;(I") > 0. Per exemple, aixd
passa quan dim(R) = 2 i I és un ideal normal, ja que aleshores gr:(R) és
Cohen-Macaulay per n >> 0, [HH99]. En aquest cas, els coeficients ¢;(I) es
poden escriure facilment en termes dels e;(I"), i per tant es poden deduir
propietats del comportament “asimptotic"dels coeficients d'una potencia
prou gran de l'ideal I. Un altre exemple, pot ser el resultat de [CPR05], on,
en dimensio6 3, es demostra que e3(I) > 0 suposant que I" és integrament
tancat per algun n > 0. El resultat es dedueix del comportament de e3(I").

A el cas multigraduat, podem considerar 1'algebra de Rees multigrad-
uada

R(ITY, ..., I7).
En [HHR93], [HHR95] i [Hyr99], han estat estudiades les propietats Cohen-
Macaulay i Gorenstein per algebres de Rees multigraduades per poténcies
d’ideals. Per exemple, en [HHR93], s’ha demostrat que si R(I,...,I) és
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Cohen-Macaulay per algun nombre r de copies d'un ideal I d’altura posi-
tiva, aleshores R (17) és Cohen-Macaulay per a tot g > r.

Podem observar que ’R(Ifl,...,lf’) = R(Il,...,ly)(ﬂ) és la transfor-
mada Veronese de l'algebra de Rees multigraduada associada a ideals
L,...,I;, amb a = (ay,...,a,) € N*". Per tant, sembla natural estudiar
els moduls Veronese com a via per aproximar-nos a les algebres de Rees
multigraduades de potencies d’ideals, i més en general, estudiar les trans-
formades Veronese de moduls multigraduats no-estandard.

En el cas graduat, Elias, utilitzant moduls Veronese, va demostrar que
depth(R(I")) és constant per n prou gran suposant que 1'anell R és quo-
cient d’un anell local regular, [E1i04].

De nou sorgeix la pregunta natural. Podem obtenir resultats simi-
lars per algebres de Rees multigraduades o per moduls multigraduats
no-estandard? A la tesi obtenim alguns resultats sobre el comportament
asimptotic de la profunditat de moduls Veronese multigraduats, alguns
d’ells en el cas més general no-estandard que hem estat considerant, men-
tre que d’altres en un cas més restringit

Un dels problemes classics de 1’algebra commutativa és estimar la pro-
funditat de l'anell graduat associat gr;(R) = @, ["/I""! i de I'algebra
de Rees R(I) = @,>0 ["t" per ideals I amb bones propietats. Sigui (R, m)
un anell local Cohen-Macaulay de dimensié d. Sigui I un ideal m-primari
de R amb una reduccié minimal .

Valabrega i Valla van demostrar que grj(R) és Cohen-Macaulay si i
només si [P N ] = IP] per a tot p > 0, [VV78]. De fet, el R(J)-modul

wting
v

p=0

és I’anomenat modul de Valabrega-Valla de I respecte a J. Relacionat amb
aix0, Guerrieri, a la seva tesi doctoral, [Gue93], va demostrar que si

Z length (W) =1

p=0

aleshores depth(gr;(R)) > d — 1. Basant-se en aquests resultats, Guerrieri,
[Gue93], [Gue94] va conjecturar que

depth(gr1(R)) > d — A(L,]),
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+1
on A(L,]) = ¥p>o lengthy, (WT?I)
Guerrieri també va provar alguns casos parcials per A(,]) = 2, [Gue93],

[Gue95], més concretament, va demostrar que si length, (%?I) =1i

1PN ] = IP] per a tot p > 2 aleshores depth(gr;(R)) > d —2. Alguns
anys més tard, Wang va demostrar el cas general per A(I,]) = 2, [Wan00].
Guerrieri va donar alguns exemples a la seva tesi d’ideals tals que

oy 1, per un nombre finit d’enters p;
1 h - r — 7 7
engthg ( IP] ) { 0, altrament,

amb depth(gr;(R)) = d — 1. Per aixd Guerrieri, i Huneke, es van pre-
guntar si les condicions length (%) <1, p > 1, implicarien que
depth(gr;(R)) > d — 1, [Gue93], Question 2.23. Wang a [Wan02], Exam-
ple 3.13, va trobar un contraexemple a la pregunta i es va preguntar si la
resposta seria afirmativa en el cas en que I'anell R fos regular.

Considerant unes altres longituds, Huckaba i Marley van demostrar
que

p+1
er(I) < y;: length <IP])
p=>0

i que en cas de tenir la igualtat, aleshores depth(gr;(R)) > d — 1, [HM97].
Aixi podem considerar l'enter no negatiu

p+1
6(1,]) = ) _ lengthy <U’]> —e(I) > 0.

p=0
Wang va conjecturar que, [Wan00],
depth(gri(R)) >d—1—46(L]).

Va demostrar que 6(I,]) < A(I,]) i que la seva conjectura implicava la de
Guerrieri. Huckaba va demostrar la conjectura per 6(I,]) = 0, [Huc96],
[HM97]. Wang la va demostrar per 6(I,]) = 1, [Wan00], i Polini en va
donar una demostracié més senzilla, [Pol00]. Per 6(I,]) = 2 Rossi i Guer-
rieri van provar la Conjectura de Wang suposant que 1’anell R/ fos Go-
renstein, [GR99]. Malgrat tot, Wang va donar un contraexemple de la seva
conjectura per d = 6, [Wan01].

Ja que ha estat provat que, en general, aquestes conjectures no sén
sempre certes, pero en alguns exemples es veu una relacié entre els enters i
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la profunditat, es pot pensar en intentar refinar les conjectures considerant
altres configuracions dels enters.

En el resultat del capitol corresponent, demostrem una versi6 refinada
de la Conjectura de Wang. El que fem és descompondre l'enter 6(I,])
com a suma finita d’enters no negatius d,(I,]), amb lengthR(Ip;,1 ]ﬂI ) >
6p(1,]) = 0. Si é(1,]) és el maxim dels enters 6,(1,]) per p > 0, quan
5(1,]) < 1, som capagos de demostrar que depth(R(I)) > d —5(1,]) i
depth(gr;(R)) > d —1—5(1,]). Com a consequéncia, podem respondre
la pregunta formulada per Guerrieri i Huneke sobre considerar per a tot
p =0, lengthR(Ip;p1 ]m I ) < 1. En aquesta situacié podem demostrar que
depth(gr;(R)) > d — 2. El punt clau és la interpretaci6 d’aquests enters

com a multiplicitats d’alguns moduls bigraduats no-estandard.

Alguns dels resultats de la tesi han estat publicats a:

[CEO6] G. Colomé-Nin and ]. Elias. Bigraded structures and the
depth of blow-up algebras. Proceedings of the Royal Society
of Edinburgh, 136A, 1175-1194, 2006.

Resum dels resultats
A continuacié resumim els continguts i resultats principals obtinguts
en aquesta tesi.

El Capitol 1 esta dedicat a recordar algunes definicions i propietats que
ens serveixen con a material de base per a la resta del treball.

Estructures multigraduades

Al Capitol 2 estudiem propietats relacionades amb la funcié de Hilbert
d’un modul multigraduat no-estandard. En concret considerem un anell
S IN'"-graduat generat sobre Sy per elements gl glyi que tenen graus
¥i=(Yy---,7,0...,0) € N, amb 7} # 0, peri = 1,...,7, on (Sp,m) és
un anell local Artinia, i M és un S-modul Z’-graduat finitament generat.

Es pot observar que aquesta graduacié admet el cas estandard com
a cas particular. Tot i aixi, per abus del llenguatge, ens referim a aquesta
graduaci6é més general com a no-estandard, per tenir presents les diferencies
amb la situaci6 estandard. En cap cas excloem la graduaci6 estandard de
la nostra definicio.

Utilitzant aquesta graduaci6, podem definir I'ideal irrellevant S 4 de S
com Sy =1Ij--- I, on I; és I'ideal de S generat per les peces homogenies
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de grau (by, .. ., bj,0. ..,0), amb b; # 0. Aleshores podem definir Proj’(S)

com el conjunt de tots el ideals primers homogenis rellevants de S, que és

el conjunt de tots els ideals primers homogenis p de S tals que p 2 S 4.
Definim la dimensi6 rellevant del S-modul multigraduat com l'enter

r—1 si Supp4+ (M)

| - =0
rel. dim(M) = { max{dim(S/p) | p € Supp, (M)} siSupp, (M) # .

Denotant n = (ny,...,n,), definim la funci6é de Hilbert de M com

hMI 7 — Z
n — lengthg (My).

A la Secci6 2.3.1, introduim la definicié de quasi-polinomi en el cas Z’-
graduat i n’estudiem algunes propietats que seran ttils per demostrar que
la funcié de Hilbert és quasi-polindmica.

Diem que una funcié f : N" — Z és una funcié quasi-polinomica de grau
polinomic d en B, y1, ..., Y, si existeixen funcions periddiques ¢, : N™ — Z,
pera € N" i |E| < d, respecte de 71,...,7, tals que per n € Cg

if(n) =0quann ¢ Cg, i existeix algun & € N" amb || = d tal que ¢, # 0.
Anomenem quasi-polinomi a una expressié Y, <q ca(n)n*. Aqui, definim
un con com Cg := {g EN"|a=B+Yi 1 iti, A€ IRZO} .

Aleshores demostrem que la funcié de Hilbert és quasi-polinomica.

Proposicié 2.3.10. Sigui S un anell IN"-graduat com abans. Sigui M un S-modul
Z7-graduat finitament generat. Aleshores existen un quasi-polinomi Pyy de grau
polinomic rel. dim(M) — r i un con Cg C IN, tals que per a tot n € Cg

hm(n) = Py(n).

Com en el cas estandard, podem demostrar en la nostra situacié, la
férmula de Grothendieck-Serre, que relaciona la funcié de Hilbert, el quasi-
polinomi de Hilbert i les longituds dels moduls de cohomologia local M
respecte de 1'ideal irrellevant.
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Proposici6 2.4.3. Sigui M un S-modul Z'-graduat finitament generat. Aleshores
peratotn € 77,

hw(n) — Pu(n) = Y (—1)'lengthg (H§, | (M)y)

i>0

L’'daltima part del segon capitol esta dedicada a generalitzar la funcié de
Hilbert-Samuel d'un ideal m-primari I d’un anell local Noetheria (R, m) a
un conjunt d’ideals m-primaris Iy, ..., I,. Podem demostrar que per a tot
k=1,...,rlafuncié fi(n) = lengthg (R/L}" - ""+1 -+ I;') és polindmica
per n > ,B B, per algun B, € IN". Anomenem py, a aquest polinomi. Després
d’aix0, podem obtenir una férmula semblant a la de Grothendieck-Serre,
que relacioni aquesta funci6 i aquest polinomi amb les longituds d’alguns
moduls de cohomologia local de la k-esima algebra de Rees extesa R; de
Iy ..., I, respecte de l'ideal irrellevant de 1’algebra de Rees multigraduada
dels ideals.

Per un element § € IN’, definim H’g com el conjunt dels n € Z" tals que
ng € Zi (1’11, e M1, Mg 1y - - .,ﬂr) > ((51, c.. 15k7115k+1r' . .,57).

Teorema 2.4.8. Existeix un element § € IN" tal que per a tot n € H¥ es satisf

pe(n) — fr(n) = Y (=1) lengthg (Hy  (R{)n+e,)-

i>0

Profunditat asimptotica de moduls multigraduats

Al Capitol 3 estem interessats en 1’estudi de la profunditat de les peces
graduades d"un modul multigraduat sobre un anell Noetheria multigrad-
uat no-estandard amb la graduacié considerada en el capitol precedent.
A la primera seccié, donem un cop d’ull al complex de Koszul i a 'ho-
mologia de Koszul en el cas multigraduat, un concepte que necessitem per
assolir el nostre objectiu.

Sigui S un anell IN"-graduat, generat sobre Sy per elements de multi-
graus yi,..., %, ON Y; = ('yi,. i .,’y::,O,...,O) € N"i 'yf # 0 per a tot
i=1,...,r. Sigui M = m® @, Sy 'ideal maximal homogeni de S, on
m és 'ideal maximal de I’anell local Noetheria Sp.

Sigui M un S-modul Z"-graduat finitament generat. A la Secci6 3.2 es-
tudiem la profunditat asimptotica, respecte de m, de les peces multigradu-
ades M;. El punt clau de la demostraci6 és l'existencia del quasi-polinomi
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de Hilbert pels moduls d’homologia de Koszul de M respecte d'un sis-
tema de generadors de m. El comportament quasi-polinomic de la funcié
de Hilbert ens permet demostrar el teorema.

Teorema 3.2.1. Sigui M un S-modul Z'-graduat finitament generat. Existeixen
un element B € IN" i un enter p € IN tals que,

depth(M,) > p
peratotn € Cgamb My # 0, i
depth(M,) = p

peralgun § € Tgiperatotn € {d+ Y1 Aiyi | A € N} C Cp.
Quan el quasi-polinomi és de fet un polinomi, podem assegurar la pro-
funditat constant en tot el con:

> Proposicié 3.2.3: Si S és una algebra generada sobre Sy per ele-
ments de graus (1,0,...,0), (%,1,0,...,0), ..., (%, %,%,...,1) € N,
aleshores per 1 € Cg es té depth(M,) = p.

> Corollari 3.2.4: Si S és una algebra estandard, aleshores per n > é es
té depth(M,) =p .

A la Secci6 3.3, considerem l'algebra de Rees multigraduada associada
a ideals Iy, ..., I, d'un anell local Noetheria (R, m), i per k = 1,...,r, el
k-ésim anell multigraduat associat a Iy, ..., I en R. En els dos casos, sén
R(L,...,I;)-moduls Z"-graduats estandard i finitament generats, i cada
component, R(Iy,...,I)u i 871, 1,1, (R)u, és un R-modul finitament gen-
erat. Utilitzant els resultats previs podem demostrar:

Proposicié 3.3.1, 3.3.3. Existeixen un element p € IN" i un enter 6 € N tals
que per a tot n > B es té

depth(* - I[") =6 +1

( I
depth | ———7—— | =9
111...[kk...[f
peratotk=1,...,r.

Estem interessats en la profunditat de R/I}" - I/ per n prou grans.

En aquest cas, podem treure profit de la profunditat asimptotica dels dos
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darrers moduls i la relacié amb R/ - -- I/ per mitja de algunes succes-
sions exactes curtes de R-moduls on podem utilitzar tecniques de comptar
profunditats.

Teorema 3.3.6. Existeixen un element ¢ € IN" i un enter p € IN tals que

R

per a tot n > e. A més a més, si existeix un n > B tal que depth <I"1RI”V> >0,
[t LT
aleshores p = 0.

Finalment, podem també afitar la profunditat asimptotica dels moduls
R/LV--- I

Proposicié 3.3.7. Sigui p € N la profunditat asimptotica de R/I"* --- I;".
Aleshores,

. . . R(Il,n"llr)
< - er0L 1)
p < dim(R) — dim Proj (mR(Ilz--"I’)>

Moduls Veronese multigraduats

L’objectiu del Capitol 4 és estudiar els moduls Veronese associats a S-
moduls multigraduats no-estandard M per mitja d’algunes propietats co-
homologiques del modul. Principalment estudiem 1’anullacié dels moduls
de cohomologia local de M i dels moduls Veronese de M, generalitzant
alguns resultats sobre la profunditat asimptotica dels moduls Veronese as-
sociats a algebres de Rees. També estudiem el comportament asimptotic
dels moduls Veronese.

Estem encara considerant la situacié general en la que S és un anell
Noetheria IN"-graduat generat com a Sp-algebra per elements homogenis
gﬁ peri=1,---,rij=1,...,u; de multigraus y; = (75,...,75,0,...,0) S
IN", respectivament, amb <} # 0. Suposem que Sy és un anell local amb
ideal maximal m i cos residual infinit.

Per a € N*" denotem ¢, (n) = Y;_;(na;)y; peratotn € Z'.

La transformada Veronese de S respecte de a € N*/, o (a)-Veronese, és

el subanell de S
S = @ Sp,m)-
nelN"
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Per un S-modul Z"-graduat M, denotem per M%) la transformada
Veronese de M respecte de a4,b € IN*', o (a,b)-Veronese, que és el sla)_
modul

MEE = B My, (1) 11
nezZ’

A la Proposicié 4.1.6, demostrem que el functor Veronese commuta
amb la cohomologia local respecte de M. Aquest fet és important per
molts dels resultats.

A la Secci6 4.2, entre d’altres propietats, estudiem la profunditat gen-
eralitzada d’un modul multigraduat i dels seus moduls Veronese. Aquest
és un invariant important per aconseguir el nostre objectiu. Comencem
demostrant alguns resultats (Proposicié 4.2.1, Proposicié 4.2.2, Proposi-
cié 4.2.3, Proposicié 4.2.4) relacionant propietats d’anells i moduls Z'-
graduats no-estandard amb les seves transformades Veronese.

Per un S-modul Z"-graduat M finitament generat, definim la profunditat
generalitzada de M respecte de 1'ideal maximal homogeni M de S com

gdepth(M) = max{k € N | S; C rad(Anns(H'\,(M))) per a tot i < k}.
També definim la desviacié Cohen-Macaulay projectiva de M com

pemd (M) = max{dim(S,)) — depth(M,)) | p € Proj’(S)}.

P)
Quan Sy és el quocient d'un anell regular, podem relacionar aquests
dos enters:

Teorema 4.2.7. Sigui M un S-modul Z7-graduat finitament generat. Si Sy és el
quocient d’un anell reqular, aleshores

gdepth(M) = dim(S) — pcmd(M).

Aleshores, amb aquesta hipotesi, podem demostrar la invariancia de
gdepth sota transformades Veronese:

Corollari 4.2.8. Sigui M un S-modul Z'-graduat finitament generat. Si Sy és el
quocient d’un anell regular, per a tot a,b € IN*™" es té que

gdepth(M@)) = gdepth(M).
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A la Secci6 4.3 volem estudiar la profunditat dels moduls Veronese
M@b) per valors grans de a,b € IN’. Com a soluci6 parcial, sota les hipote-
sis generals dels multigraus d’aquest capitol, podem demostrar que la pro-
funditat d’alguns moduls Veronese M(@) és constant per a en una xarxa de
IN". Observeu que M@ = M(@0),

La profunditat asimptotica Veronese de M, la denotem vad (M (*)) (resp.
vad(M(**))), que és el maxim del valor depth(M(@) (resp. depth(M(@b)))
per a tot a € N*" (resp. per a tot g,b € IN*).

Proposicié 4.3.1. Sigui M un S-modul Z'-graduat finitament generat. Sigui
s = vad(M™). Existeix un element a = (ay,...,a,) € IN*' tal que per a tot
be {()\1611,.. .,/\,ar) ‘ Ai € N*}

depth(M®)) =5,

El resultat anterior es pot utilitzar per tal d’estudiar la profunditat de
les algebres de Rees multigraduades d’algunes poteéncies d’ideals.

Proposici6 4.3.2. Siguin Iy, ..., I, ideals d’un anell local Noetheria (R, m). Sigui
s = vad(R(Iy,...,I,)*")). Existeix a = (ay,...,a,) € IN*" tal que per a tot
be {()\1(11,.. .,/\le) ‘ Ai c N*}

depth(R(Ilbl,...,If’)) =s.
A més a més, si depth(R(I4,...,1;)) = s, aleshores, per a tot b € IN*/,

depth(R(Ifl,...,If”)) =s.

Per tal d’extendre els resultats anteriors sobre la profunditat asimptoti-
ca dels moduls Veronese a regions de IN’, cal que estudiem 1’anullaci6 dels
moduls de cohomologia local del modul multigraduat M.

Direm que un S-modul Z"-graduat M és I'-finitament graduat si existeix
un con Cg C IN" on My, = 0 per a tot n € Z' tal que n* = (|n1,...,|ns]) €
Cg. Denotem per I-fg(M) l'enter més gran k > 0 tal que H’ (M) és I-
finitament graduat per a tot i < k.

Per raons técniques, hem de restringir els graus dels generadors de S,
vegeu Remark 4.3.6 i Remark 4.3.11. Durant la resta del capitol, suposarem
que la graduaci6 és quasi-estandard, i.e. els graus sén 71,...,7 amb v; =
(0,...,0,75,0,...,0) i'ﬁ >0peratoti=1,...,r.
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Un fet important en les demostracions és poder assegurar en el cas
quasi-estandard, que H 5\/1 (M) és T'-finitament graduat per a tot k > 0 en el
cas en que M també sigui I'-finitament graduat, vegeu Proposicié 4.3.5.

En el proper resultat relacionem els dos enters estudiats al capitol as-
sociats a M, gdepth(M) i I'-fg(M).

Teorema 4.3.7. Sigui S un anell multigraduat quasi-estandard. Siqui M un
S-modul 77 -graduat finitament generat. Aleshores,

I-fg(M) = gdepth(M).

Com a conseqiiéncia, suposant que Sy sigui el quocient d'un anell
local regular podem demostrar l'invariancia de I'-fg sota transformades
Veronese al Corollari 4.3.8.

Ara, tenim noves eines per demostrar el teorema que assegurar profun-
ditat constant per les (a,b)-Veronese en una regié de N” x IN", en lloc d'u-
na xarxa. Malauradament, la restricci6 al cas quasi-estandard és necessaria
encara.

Teorema 4.3.12. Sigui S un anell multigraduat quasi-estandard tal que Sy és el
quocient d'un anell regular. Sigui M un S-modul Z'-graduat finitament generat
i sigui s = vad(M*)). Aleshores, existeix un p € IN" tal que per a tot b > B i
per a tot a € N' tal que a; > (B; +b;) /! es té

depth(M@t)) = 5.

Per moduls Z-graduats generals obtenim:

Proposicié 4.3.13. Sigui S un anell Z-graduat tal que Sy és el quocient d’un anell
regular. Sigui M un S-modul graduat finitament generat. Aleshores depth(M(®))
és constant per a >> 0.

Per I’algebra de Rees multigraduada, la millor aproximacié al problema
és la segiient proposici6.

Proposicié 4.3.15. Si R és quocient d'un anell regular, existeixen un enter s i
B €N tals queperatoth > Bia> B+besté

depthM(,,)((Ifl .. Ifr)'R(Iill,. L, I0) =,
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Estructures bigraduades i profunditat d’algebres de blow-up

Al Capitol 5 volem trobar versions refinades de les conjectures sobre la
profunditat de les algebres de blow-up de les que hem parlat al principi.
La idea principal és estudiar la profunditat de les algebres de blow-up
mitjancant uns certs moduls bigraduats. Interpretem les longituds que
apareixen a les conjectures com a multiplicitats d’alguns moduls bigradu-
ats no-estandard. Gracies a aquesta interpretacié, som capagos de refinar la
Conjectura de Wang, afegint nous casos on funciona i recuperant-ne es ca-
sos coneguts. Com a corollari, podem respondre la pregunta de Guerrieri
i Huneke sobre les longituds de les peces del modul de Valabrega-Valla.

Per un anell local Cohen-Macaulay (R, m) de dimensié d > 0 i cos
residual infinit i un ideal m-primari I de R amb una reduccié minimal ],
considerem els enters que intervenen a les conjectures :

p+1

p+1
A(L,]) =Y lengthy (IIP]HI> , A(L]) =) lengthy (I]Ip) ,

p=0 p=0

r+1 r+1
Ap(I,]) = lengthy (mﬂ]> , Ap(I,]) = lengthy (Hp>

perp >0,i
5(L]) = ML) —e(I) = 0.

Les seccions 5.2 i 5.3 estan dedicades principalment a recordar alguns
resultats preliminars sobre el modul de Sally i la funcié de Hilbert acu-
mulativa d'un modul bigraduat no-estandard. Recordem que la funcié
de Hilbert acumulativa d’'un A-mddul M esta definida com a hp;(m,n) =
Yj<nlength . (M, j)). En particular, demostrem que

Teorema 5.3.4. Siqui S = A[Xy,..., X, Y1,...,Ys,Z1,...,Zs] un anell de
polinomis bigraduat sobre un anell Artinia A amb indeterminades Xy,..., Xy,
Y1,...,Ys1Zy,..., 2, on cada X; té bigrau (1,0), cada Y; té bigrau (1,1), i cada
Z; té bigrau (0,1). Sigui M un S-modul bigraduat finitament generat. Aleshores,
existeixen enters mg i ng i un polinomi en dues variables pp(m,n) tal que

pm(m,n) = hy(m,n)

per a tot (m,n) ambm > mgin > ng+ m.
A més a més, en el cas en que no tinguem generadors de bigrau (0,1),
el polinomi no depen de n.
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A la Secci6 5.4 introduim un modul bigraduat no-estandard £/ nat-
uralment associat a I i a una reduccié minimal | de I, aquest modul pot
ser considerat com un refinament del modul de Sally. A partir d’una pre-
sentaci6 natural de 2!/, definim dos moduls bigraduats més K i M1/,
i en considerem alguns submoduls diagonals: Z[p]] i KH . Tot seguit re-
sumirem aquestes construccions.

Considerem 1’anell graduat associat a R(I) respecte I'ideal homogeni

JIR(I) = @y JI" 1"

tR(D) .
gri(R(I)) :g}o(]({mg))j{rlu!.

Aquest anell té una estructura natural bigraduada. Si considerem 1’anell
bigraduat B := R[Vj,...,V,; Ty,..., T;] amb deg(V;) = (1,0) i deg(T;) =
(1,1), aleshores tenim uns successi6 exacta de B-anells bigraduats

R(I)
JER(1)
on K!'J és I'ideal de les formes inicials de JtR(I).

Per un B-modul bigraduat M i un enter p € Z, denotem per M, el
subgrup additiu de M definit per la suma directa de els peces M, ) tals

0— KM — ¢l .=

[Tl,. . er]—)gr]t(R(I)) —0

que m —n = p+ 1. En el nostre cas, els moduls K[Ip]], C[ { igry(R(I))(y son

R(J)-moduls, i no s’anullen per un nombre finit d’indexos p € Z (Lema
5.4.1).

A partir d’ara, estarem interessats en prendre les diagonals no negatives
d’aquests moduls i per tant, considerem els segtients B-moduls bigraduats
finitament generats:

Lj._ JIPH i i
=M= @gr]t( [P] @EB ]z—l—l[p ¥ u'
p=>0 p=>0i>0
Jptl
MU = c”— YT T,
Bl = @ oy v

i d’ara en endavant, considerem el nou

. 1]
K= @ K.

p>0
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Anomenarem a !/ el modul de Sally bigraduat de I respecte de ].
Del Lema 5.4.1 existeix un isomorfisme natural de R (J)-moduls

grir(R(I)) = R(J) & .

Com que els moduls '/ i M!/ s’anullen per ], tenim una successi6
exactade A = R/]J[Vy,...,V;; T, ..., Ty]-moduls bigraduats

0— K — M — 3l 0.

Considerant-ne cada diagonal, per a tot p > 0 tenim una successié
exacta de R/]J[Ty, ..., T;]-moduls

0— K” MI'] = e

—_— I’]—>
) p = T Do Tl — X — 0,

que de fet son moduls graduats, i per tant, podem considerar la funci6 de
Hilbert (classica) per a ells.

Utilitzant la funci6 de Hilbert acumulativa amb els moduls =/, M1/ §
K"/, que en aquest cas és polindmica en una variable en una regié de IN?,
podem demostrar els segiients resultats que ens permeten interpretar els
enters e1(I), A(I,])16(I,]) de la Conjectura de Wang com a multiplicitats
dels nostres moduls (Proposicié 5.5.2, Proposicié 5.5.3, Proposicié 5.5.4,
Proposicié 5.5.6):

> pyny(m) = T (< Dera (D(" 15,
> deg(ppy) =d—Lieg(MM) = A(L]).

> Si ) = 0 aleshores gr;(R) és un anell Cohen-Macaulay.
Si ') #£ 0 aleshores deg(ps1) = d — 1ieg(Z) = eq(I).

> eg(KM) = 6(1, 7). Si KV # 0 aleshores deg(py1) =d — 1.
En particular, A(I,]) > ey (I).

> Peratotp >0, e(Z [p]) length, ( TP ) - eo(K[I;)]]) >0i
p+1
ex(1) = pzo(lengthy () = eo(K[):

> Peratotp >0, length < 1 I) > EO(K[IPD i
8(1,1) = eo(KM) = Tysp oKL > 0.
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Definim
55(L]) = eO(K[% ).

A la Secci6 5.6 demostrem una versi6 refinada de la Conjectura de
Wang considerant configuracions especials del conjunt {6, (1, ]) } p>0 en lloc
de 6 = Y5 0p(I, ]). Sigui 6(I,]) el maxim dels enters 6, (I, ]) per a p > 0.

Teorema 5.6.3. Sigui (R, m) un anell local Cohen-Macaulay de dimensié d > 0.
Sigui I un ideal m-primari de R i | una reduccié minimal de 1. Si 5(1,]) < 1,
aleshores

depth(R(I)) = d — §(1,])
depth(gri(R)) = d —1— (1, ]).

Observeu que per 6(I,]) = 0,1 recuperem els casos coneguts de la
Conjectura de Wang.

Per a la demostraci6 necessitem els resultats importants segiients. En
particular, hem d’estudiar la profunditat de 1’anell gr;(R(I)).

Teorema 5.6.1. Sigui (R, m) un anell local Cohen-Macaulay de dimensié d > 3.
Sigui I un ideal m-primari de R i sigui | una reduccié minimal de I. Suposem
que K £ 0, i que, 0 bé K[ng =0,00b¢ K[ij] és un k[T, ..., Ty]-modul lliure de
torsié de rang 1 per p > 0. Aleshores,

depth(grj:(R(I))) > d —1.

El lema seglient és també important perque assegura com sén les di-

agonals K[Ip]] en el cas de tenir eo(K[IJ] ) = 1, i per tant, com és K/ en la

descomposici6 de (I, ]) que considerem en el teorema principal.

Lema 5.6.2. Sigui (R, m) un anell local Cohen-Macaulay de dimensié d > 0.
Sigui I un ideal m-primari de R amb reduccié minimal . Si 6,(1, ]) = 1 aleshores

K[Ip]] ésun k[Ty, ..., Ty|-modul lliure de torsié de rang 1.

Finalment, som capagos de donar una resposta a la pregunta de Guer-
rieri i Huneke mencionada abans.



150 Resum en catala

Teorema 5.6.5. Sigui (R, m) un anell local Cohen-Macaulay de dimensié d > 0.
Sigui I un ideal w-primari de R i | una reduccié minimal de 1. Si A,(I,]) <1
per a tot p > 1, aleshores

depth(gr;(R)) > d —2.

Diagonals de ©!/ i el creixement de la funcié de Hilbert

Al Capitol 6 definim, a la primera secci6, alguns submoduls D; (Z5)
del modul de Sally bigraduat LT respecte d’una recta I, generalitzant el
concepte de submoduls diagonals Z[II;].

Per a cada conjunt d’enters no negatius w1, ap, a3, 04 > 0, tals que es
satisfa w; + ap > 1, definim la recta I, en el pla (m, n) com

- m(s) = a15 + a3
“ n(s) = aps + ay

per s > 0. Llavors, definim el submodul diagonal D; (X!7) de £ com la
suma directa de les peces de !/ de bigraus (m(s) +n(s),n(s)), s > 0,

Dla (ZIJ) = @ Z&Iﬂrn n)tm+n ur
(m,n) €l
@ O sy nts) poce)
_ tm S n(s un S
Im(s 1]n (s)+1 /

i definim la funci6 de Hilbert de D; (£!/) com

Im(s)]n(s)
Hla (S) = lengthR W .

Aleshores demostrem el segiient resultat sobre el creixement de la fun-
ci6 de Hilbert H;, del submodul diagonal D; (£!/) considerant algunes
hipotesis sobre el nombre minim de generadors de les peces d’aquesta di-
agonal. Aquest resultat sera decisiu per tal d’estudiar la monotonia de la
funcié de Hilbert d"un ideal I m-primari en el cas 1-dimensional a la Seccié
6.2.

Proposicié 6.1.6. Sigui (R, m) un anell local Cohen-Macaulay d-dimensional
amb d > 0. Sigui I un ideal m-primari i sigui | una reduccié minimal de I.
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Sigui Dy (S17) el submodul diagonal del modul de Sally bigraduat ¥ associat
a una recta l,. Sigui s > 2 un enter tal que se satisfa una de les dues condicions
segtients:

Im(s)]n(s) )
(1) VR m <2,0bé

m(s) pn(s)
(2) existeix un enter e > 1 tal que lengthy ( | ) <s.

Im(s)*E]H(S)ﬁ’E

Aleshores per a tot t > s es té que H; (t) > H; (t+1).
A més a més, sota les hipotesis de (1), existeix un element a € 1“1 ]*2 tal que

Im(t)]n(t) P Im(t+l)]n(t+1)
(=1 () +1 - (D)~ (D) +1

és un epimorfisme per a tot t > s — 1. En particular es té, per a tot t > s — 1,

H (1) = Hy, (E+1).

En el cas Cohen-Macaulay 1-dimensional, podem demostrar els resul-
tats segtlients sobre el creixement de la funcié de Hilbert d'un ideal m-
primari.

Proposici6é 6.2.3. Sigui (R, m) un anell local Cohen-Macaulay de dimensié 1.
Sigui I un ideal m-primari, i x € I un element superficial de grau 1 de 1. Sigui
t > 2 un enter tal que el parell I, x satisfa una de les condicions segiients:

(1) I"n(x) =xI"peratotn <t—1,ivg(I*/xI'"1) <2,
(2) I"N (x) = xI"Lperatot n <t ilength (I'/x"I'"") <f<ta>1
Llavors hj és no-decreixent.

Per un ideal m-primari I d’un anell local Cohen-Macaulay, denotem per
b(I) = lengthg (1/1%) la dimensié d’embedding de I.

Proposicié 6.2.4. Sigui R un anell local Cohen-Macaulay de dimensio 1. Sigui I
un ideal m-primari de R. Aleshores

(i) eo(I) = 1 siinomés si b(I) = 1. En aquest cas tenim I = m i R és un
anell local regular.
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(ii) Si b(I) = 2 aleshores es té

{lengthR(R/I) n=0

hi(n) =<¢ n+1 n=1,...,e(I)—1

eo(I) n > eo(I).
La funcié de Hilbert hy és no-decreixent si i només si lengthp (R/1I) < 2.
(iii) Sib(I) < eg(I) < b(I)+ 2 aleshores la funcié de Hilbert és no-decreixent.

(iv) Si >N (x) = xI, b(I) = 4, i ey(I) = 7 llavors lengthp(R/I) < 4ila
funcié de Hilbert és no-decreixent.
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