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“There is nothing like looking, if you want to find something.

You certainly usually find something, if you look, but

it is not always quite the something you were after.”

Gandalf, from The Hobbit, by J.R.R. Tolkien

“No matter how you spend your life, your wit will

defend you more often than a sword. Keep it sharp!”

Abenthy, from The Name of the Wind, by Patrick Rothfuss

“Surprising what you can dig out of books if you read long enough, isn’t it?”

Rand al’Thor, from The Shadow Rising, by Robert Jordan

“Too many scholars think of research as purely a cerebral pursuit.

If we do nothing with the knowledge we gain, then we have wasted our

study. Books can store information better than we can..., what we we do

that books cannot is interpret. So if one is not going to draw conclusions,

then one might as well just leave the information in the texts.”

Jasnah Kholin, from The Way of Kings, by Brandon Sanderson
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Resum

Amb l’augment permanent de l’adopció de sistemes intel·ligents de tot tipus

en la societat actual apareixen nous reptes. Avui en dia quasi tothom en

la societat moderna porta a sobre almenys un telèfon intel·ligent, si no és

que porta encara més dispositius capaços d’obtenir dades personals, com po-

dria ser un smartwatch per exemple. De manera similar, pràcticament totes

les cases tindran un comptador intel·ligent en el futur pròxim per a fer un

seguiment del consum d’energia. També s’espera que molts més dispositius

del Internet de les Coses siguin instal·lats de manera ubiqua, recol·lectant

informació dels seus voltants i/o realitzant accions, com per exemple en sis-

temes d’automatització de la llar, estacions meteorològiques o dispositius per

la ciutat intel·ligent en general. Tots aquests dispositius i sistemes necessiten

enviar dades de manera segura i confidencial, les quals poden contindre infor-

mació sensible o de caire privat. A més a més, donat el seu ràpid creixement,

amb més de nou mil milions de dispositius en tot el món actualment, s’ha de

tenir en compte la quantitat de dades que cal transmetre.

En aquesta tesi mostrem la utilitat de les corbes algebraiques sobre cos-

sos finits en criptosistemes de clau pública, en particular la de les corbes

de gènere 2, ja que ofereixen la mida de clau més petita per a un nivell de

seguretat donat i això redueix de manera significativa el cost total de co-

municacions d’un sistema, a la vegada que manté un rendiment raonable.

Analitzem com la valoració 2-àdica del cardinal de la Jacobiana augmenta

en successives extensions quadràtiques, considerant corbes de gènere 2 en

cossos de caracteŕıstica senar, incloent les supersingulars. A més, millorem

els algoritmes actuals per a computar la meitat d’un divisor d’una corba de

gènere 2 sobre un cos binari, cosa que pot ser útil en la multiplicació escalar,

que és l’operació principal en criptografia de clau pública amb corbes.

Pel que fa a la privacitat, presentem un sistema de pagament d’aparcament

per mòbil que permet als conductors pagar per aparcar mantenint la seva

privacitat, i per tant impedint que el provëıdor del servei o un atacant obtin-

guin un perfil de conducta d’aparcament. Finalment, presentem protocols

de smart metering millorats, especialment pel que fa a la privacitat i evitant

l’ús de terceres parts de confiança.



ii

Resumen

Con el aumento permanente de la adopción de sistemas inteligentes de todo

tipo en la sociedad actual aparecen nuevos retos. Hoy en d́ıa prácticamente

todos en la sociedad moderna llevamos encima al menos un teléfono in-

teligente, si no es que llevamos más dispositivos capaces de obtener datos

personales, como podŕıa ser un smartwatch por ejemplo. De manera similar,

en el futuro cercano la mayoŕıa de las casas tendrán un contador inteligente

para hacer un seguimiento del consumo de enerǵıa. También se espera que

muchos más dispositivos del Internet de las Cosas sean instalados de manera

ubicua, recolectando información de sus alrededores y/o realizando acciones,

como por ejemplo en sistemas de automatización del hogar, estaciones me-

teorológicas o dispositivos para la ciudad inteligente en general. Todos estos

dispositivos y sistemas necesitan enviar datos de manera segura y confiden-

cial, los cuales pueden contener información sensible o de ámbito personal.

Además, dado su rápido crecimiento, con más de nueve mil millones de dis-

positivos en todo el mundo actualmente, hay que tener en cuenta la cantidad

de datos a transmitir.

En esta tesis mostramos la utilidad de las curvas algebraicas sobre cuerpos

finitos en criptosistemas de clave pública, en particular la de las curvas de

género 2, ya que ofrecen el tamaño de clave más pequeño para un nivel

de seguridad dado y esto disminuye de manera significativa el coste total de

comunicaciones del sistema, a la vez que mantiene un rendimiento razonable.

Analizamos como la valoración 2-ádica del cardinal de la Jacobiana aumenta

en sucesivas extensiones cuadráticas, considerando curvas de género 2 en

cuerpos de caracteŕıstica importa, incluyendo las supersingulares. Además,

mejoramos los algoritmos actuales para computar la mitad de un divisor de

una curva de género 2 sobre un cuerpo binario, lo cual puede ser útil en la

multiplicación escalar, que es la operación principal en criptograf́ıa de clave

pública con curvas.

Respecto a la privacidad, presentamos un sistema de pago de aparcamiento

por móvil que permite a los conductores pagar para aparcar manteniendo su

privacidad, y por lo tanto impidiendo que el proveedor del servicio o un

atacante obtengan un perfil de conducta de aparcamiento. Finalmente, ofre-

cemos protocolos de smart metering mejorados, especialmente en lo relativo

a la privacidad y evitando el uso de terceras partes de confianza.
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Abstract

With the ever increasing adoption of smart systems of every kind through-

out society, new challenges arise. Nowadays, almost everyone in modern

societies carries a smartphone at least, if not even more devices than can

also gather personal data, like a smartwatch or a fitness wristband for ex-

ample. Similarly, practically all homes will have a smart meter in the near

future for billing and energy consumption monitoring, and many other In-

ternet of Things devices are expected to be installed ubiquitously, obtaining

information of their surroundings and/or performing some action, like for

example, home automation systems, weather detection stations or devices

for the smart city in general. All these devices and systems need to securely

and privately transmit some data, which can be sensitive and personal infor-

mation. Moreover, with a rapid increase of their number, with already more

than nine billion devices worldwide, the amount of data to be transmitted

has to be considered.

In this thesis we show the utility of algebraic curves over finite fields

in public key cryptosystems, specially genus 2 curves, since they offer the

minimum key size for a given security level and that significantly reduces

the total communication costs of a system, while maintaining a reasonable

performance. We analyze how the 2-adic valuation of the cardinality of

the Jacobian increases in successive quadratic extensions, considering genus

2 curves with odd characteristic fields, including supersingular curves. In

addition, we improve the current algorithms for computing the halving of a

divisor of a genus 2 curve over binary fields, which can be useful in scalar

multiplication, the main operation in public key cryptography using curves.

As regards to privacy, we present a pay-by-phone parking system which

enables drivers to pay for public parking while preserving their privacy, and

thus impeding the service provider or an attacker to obtain a profile of parking

behaviors. Finally, we offer better protocols for smart metering, especially

regarding privacy and the avoidance of trusted third parties.
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Chapter 1

Introduction

The security and privacy of modern society rely heavily on cryptographic

protocols to protect electronic systems, from personal smartphones to com-

panies and government infrastructures. Every day, more and more personal

data is generated, sent and stored worldwide, which makes the use of better

cryptographic and privacy protocols necessary. Besides, many of the new

devices that will be connected to the Internet are going to have small com-

putational power, since the Internet of Things will be coed of a vast array

of different, small and simple devices, which in turn will generate more data,

making Big Data an even bigger topic.

Furthermore, some classical systems are being updated and/or upgraded

to work with modern technology, such as electricity consumption meters,

loyalty systems, paid parking spots and even election voting. Each of them

requires different considerations in order to ensure, at least, that they enjoy

the same benefits as the classical counterpart as well as their privacy, with

some other benefits being desirable. For example, regarding privacy, in an

electronic voting system each ballot should not be able to be linked to a

specific voter; in parking systems, it should not be possible to create a profile

of a driver automatically by centralizing the data of where and when has she

parked; and smart meters should not transmit information often enough such

that a detailed profile of a consumer can be created, allowing the company

(or an attacker) to determine when someone is at home or not.

In this thesis, several contributions are presented related to elliptic and

1



2 CHAPTER 1. INTRODUCTION

genus 2 curves used in cryptography, as well as new protocols on smart

metering and parking systems that improve user’s privacy. In the rest of

this chapter, we are going to introduce some basic concepts in relation to

public key cryptography and how the use of elliptic and hyperelliptic curves

can improve some protocols. Then several ideas about the need of privacy

are explained, as well as the introduction to two topics touched upon in our

contributions. And finally, the structure of this thesis is presented.

1.1 Algebraic curve cryptography

Most of the computers and devices connected to the Internet use public

key cryptography [DH76] at some point or another, which typically requires

larger keys and messages than symmetric encryption protocols. Their se-

curity is based on the intractability of some mathematical problem which is

believed to be hard to solve, such as the Integer Factorization Problem (IFP)

and the Discrete Logarithm Problem (DLP). The DLP can be described over

the multiplicative group of a finite field, over the group of points of an el-

liptic curve defined over a finite field, known as the Elliptic Curve Discrete

Logarithm Problem (ECDLP) or over the Jacobian of a hyperelliptic curve

(denoted by HCDLP). The main cryptographic cryptosystems that are based

on these problems are the RSA [RSA78], based on the IDP, and the ElGamal

[ElG85], based on the DLP and its variants [Mil85, Kob87, Kob89].

The required size of the values for each problem to achieve the same

level of security depends on the efficiency of the best known algorithm for

solving it. For the IFP this is the Number Field Sieve [LLMP93] and for

the DLP, the Index-Calculus [How98], both with subexponential cost, and

therefore the values used are very large, of around 3072 bits at least (for

an equivalent 128 bits of security) as of 2018. On the other hand, for the

ECDLP, a field of 256 bits would suffice while attaining the same security,

and just 128 bits for the HCDLP over a genus 2 curve, since the group of

divisors of a hyperelliptic curve is much bigger for a given field size. There

are attacks for hyperelliptic curves of genus bigger than 2, hence they are

not considered suitable for cryptography. It is therefore desirable to use

elliptic or genus 2 curves, especially on devices with limited resources (be it
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in memory or computation), such as smart cards, smart meters, smartphones

and in general for the Internet of Things, which will add many millions or

billions of devices, all of which will require some form of communication and

have restricted power consumption.

1.1.1 Point counting algorithms

In order to start using elliptic curves, a suitable one must be chosen. Nev-

ertheless, not all curves are useful for cryptographic purposes. In order to

determine the validity of an elliptic curve over a finite field Fq, it is necessary

to know its cardinality over Fq [BSS99]. The same applies for the Jacobian

of a genus 2 curve. However, although doable, it is still time consuming to

compute the cardinality of a cryptographic size curve.

The best known algorithms are the Schoof-Elkies-Atkin (SEA) algorithm

[Sch95, Elk98, Atk88] for elliptic curves, and an extension of Schoof’s al-

gorithm for genus 2 curves [GS04, GS12]. In both cases, they construct

elements of the `k-torsion subgroup, for very small values of ` [MMRV05,

MMRV09, MPR10]. In one of our contributions [GMPT18], we study the 2-

adic valuation of the cardinality of Jacobians of genus 2 curves over of a field

of odd characteristic, and their quadratic extensions, which can be useful in

the initial steps of the algorithm.

1.1.2 Curve scalar multiplication

The fundamental operation when encrypting or decrypting a message using

ElGamal, the main cryptosystem that is based on the ECDLP and HCDLP,

is scalar multiplication (see Section 2.3.2 for more detailed information).

There are several algorithms for performing a group element multiplication

by a scalar, some with different curve equations (being the Weierstraß the

most common) and/or different coordinate types other than affine . The

basic algorithm is the regular double-and-add, which uses the binary rep-

resentation of the scalar and is similar to the multiply-and-square used in

modular exponentiation. An alternative is to write the scalar with a differ-

ent representation, and use instead a halve-and-add algorithm, substituting

the doubling of points or divisors by halvings (see Section 2.1.3 for more de-
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tails), that is, given an element y, find x such that 2x = y. Both algorithms

can be combined and executed in parallel in order to faster compute a scalar

multiplication, so that one processor executes the double-and-add and the

other one the halve-and-add, and they combine their outputs to obtain the

final result, speeding up the process [TFHA+11].

For curves of genus 2 over fields with characteristic 2, this alternative

becomes more interesting since the Cantor algorithm [Can87] (see Algorithm

1) for doubling divisors is less efficient than the equivalent for elliptic curves.

However, the halving of a divisor in a genus 2 curve is not unique (unless

it is supersingular, which already makes it undesirable for cryptography), so

the type of curve must be chosen carefully such that the halving can be used

reliably. Seeing that, we studied and improved the method to compute the

halving of any divisor in genus 2 curves of a specific type over binary fields

in one of our contributions [GMP16], giving explicit formulae for each case.

1.2 Privacy and smart systems

With the increase in the use of technologies in modern days, more and more

devices are in use that may collect data from the population. It is well known

that Big Data is becoming a very relevant topic since the amount of informa-

tion generated around the world has increased severalfold during the last few

years. In turn, governments as well as citizens have become concerned about

the collection and use of private data by companies. For example, anyone

who uses about any service online has probably received several emails around

May 2018, regarding the General Data Protection Regulation (GDPR), a Eu-

ropean Union law on data protection and privacy for all individuals in the

EU, which aims to give control to citizens and residents over their personal

data.

On the one hand, there are services which inherently use and need per-

sonal data, sometimes given voluntarily, such as Google, Facebook, Twitter

etc, or even banks and Internet service providers. In theory, at least, there

are laws and regulations in regard to how they store and treat the informa-

tion, such as to minimize possible data leaks and reduce their effect, but they

are not always correctly followed and every now and then some major leak
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or hack occurs.

On the other hand, some services are susceptible to be used in a more

inherently private way. Privacy can be defined as the ability of an individual

or group to keep information secret. The possible instances where privacy is

required and/or desired are plenty, and some come with the electronic variant

of classic situations. We are going to focus on two of these situations, which

are the ones we touch upon in some of our contributions: smart metering

systems, and parking systems using e-cash.

1.2.1 Smart metering

The classic method to record domestic electric energy consumption was to

use a meter, the reading of which was checked by someone working for the

company every so often, e.g. every 2 months. Sometimes, the value was

estimated in the meantime depending on previous data, in the case the meter

could not be checked, for instance if access to the residence was needed to

check the meter and nobody was present.

Nowadays, classic meters are being substituted by smart meters, which

are able to relate electricity consumption automatically to the company,

among other things. They have been set up in many countries around the

world, and in Spain for example, at the present time, the vast majority of

the meters have already been substituted by smart meters, and all of them

up to 15 kW must be changed before the end of 2018 [Esp]. In theory, they

send the consumption every hour in this case, for billing purposes, in the

case that the user has a contract with hour-depending prices. This also helps

consumers to be informed “in real time” about their consumption and to

consult historical data online.

These meters (or other ones in different countries) could send data more

frequently, and even with just hourly consumptions, it could allow a possible

attacker (or the company itself) to gather a great amount of sensitive infor-

mation, inferring the users’ daily routine or whether they are on vacation, for

example, if proper care has not been taken. In other situations, the electric-

ity company may have legitimate reasons to want to know more fine-grained

data about total consumption, like for monitoring purposes in order to find
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consumption patterns and adjust energy generation accordingly.

Nevertheless, transmitting such data regularly, i.e., every 15 or 30 min-

utes, raises some concerns about privacy. Since in these cases the exact values

of each individual customer are not needed to be known, several techniques

have been proposed, achieving privacy by different means:

• Anonymization: the link between the electricity reading and customer

identity is removed before sending the data [EK10, FB13, Pet10].

• Perturbation: random noise is added by smart meters to the readings

before they are transmitted. In general, this noise will not be removed,

so the system must be tuned in such a way that the noise cancels

out, or to provide an adequate trade-off between privacy and accuracy

[ÁC11, BSU10].

• Aggregation: smart meters are divided into neighborhoods and add

together their readings before they are transmitted. They can be ag-

gregated using the homomorphic property of some cryptosystems or by

a trusted third party [CMT05, MSP+13, BPS+16, NZLS16].

Our contributions regarding smart meters use aggregation: the first one an-

alyzes and repairs an existing system, proposing a way to fix a security flaw

that we found [GLMS], and the other one improves another system by re-

moving the trusted dealer in the key establishment step [GMMS].

1.2.2 Parking systems

With the increase in the amount of vehicles in cities around the world, and

the total on-street parking space being limited, with little to no option to

increase it, it becomes necessary to restrict the maximum time a vehicle is

allowed to occupy a parking spot in order to encourage regular turnover of

parking bays, at least in the busiest areas of a city. In doing so, drivers

are encouraged to shorten their parking time and therefore give others a

reasonable chance of finding parking.

Classically, the solution has been to require drivers to go to a nearby

paying station and pay for a specific amount of time using cash or a credit
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card: then the machine issues a parking ticket, valid for that amount of time,

which has to be placed in a visible area on the dashboard of the vehicle. The

price per minute may vary depending on the area of the city, and usually

has a maximum time allowed. To enforce the system, parking officers patrol

the controlled zones and check each vehicle for violations, either an expired

ticket or no ticket at all, and issue fines as needed.

Some obvious drawbacks and inconveniences are:

• Drivers need to estimate the duration of their parking in advance, and

pay for it: this both means that the driver needs to have enough cash

(if credit cards are not supported), and in the case the parking takes

less time than expected, the unused time (money) is lost. Moreover,

most machines do not give change back, making people more prone to

pay more than they would really need.

• Drivers need to go to the pay station and back to their car in order

to place the ticket, and they are not alway near or easy to find, which

implies more time lost for the driver.

• If the driver needs to extend her stay, she needs to get back to her car

from wherever she was and obtain a new ticket.

Many cities nowadays have the option to pay for parking by phone, using

an app like [EYS]. There they need to create an account, usually intro-

ducing some personal data, like an e-mail and some source for funding such

as a credit card, as well as a license plate number, and maybe some other

information like name, ID number etc.

With that app, a driver may pay for her parking stay introducing or

selecting her license plate number, the city area she is in, and the expected

parking duration. The payment is then performed, either charging directly

the credit card, or from credit balance in the app. Some applications may

allow to end a parking session before its time expires so that the unused

money is refunded. Note that all these transactions can be performed while

being away from the car, even an extension of parking time. In this scenario,

parking officers use a mobile device where they can check, by typing a license

plate number, whether a payment for a parked car has been made.
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At first glance, this may seem like an ideal solution, as it solves the

previously stated drawbacks. However, new challenges arise from the use of

such technology. In that kind of system, some central server controls and

collects information of all the parking operations in a city/area, since the

parking officers need to be able to query it. Moreover, the data can be

stored and linked to a specific user/license plate number, and thus allowing

to create a profile of the user over time, inferring the parking habits of car

owners. Furthermore, the app and system are usually provided by a private

company, which can give rise to even more concerns with respect to the

privacy of the users’ data.

With all this in mind, a system which makes use of the advantages of the

mobile payment while maintaining the same level of privacy as legacy systems

would be desirable. Some approaches can be found in [LLZS10, YYRO11].

For this reason, we present a privacy-preserving pay-by-phone parking system

in one of our contributions [GMS17], such that the only way to know if a

vehicle is parked (or when and where) is for a person (the parking officer)

to be on the street near the car itself, while allowing remote payment for

the user, as well as the ability for a driver to complain in the case she has

been fined unfairly. Moreover, the parking officer will only get to know if

the driver has paid at the specific time she checks the license plate, but will

not know how much time is left, so even less information is provided to the

officer, just the minimum needed.

1.3 Structure

The first chapter has been devoted to introduce the core concepts touched

upon in this thesis. Chapter 2 details the notation and concepts, as well

as mathematical and cryptographic background, required to understand the

proposals. Our contributions can be found in Chapter 3, and are the follow-

ing:

• Halving in some genus 2 curves over binary fields [GMP16].

• The 2-adic valuation of the cardinality of Jacobians of genus 2 curves

over quadratic towers of finite fields [GMPT18].
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• A Privacy-Preserving Pay-by-Phone Parking System [GMS17].

• Repairing an aggregation-based smart metering system [GLMS].

• Improving a smart metering system using elliptic curves and removing

the trusted dealer [GMMS].

The content of the papers has not been added in order to prevent copyright

infringement. Finally, conclusions are explained in Chapter 4.





Chapter 2

Preliminaries

In this chapter we are going to introduce some mathematical background

and cryptographic protocols as well as some concepts that will be useful to

understand the contributions presented in Chapter 3.

In Section 2.1 some base definitions regarding algebraic curves in general

are presented, while Sections 2.1.1 and 2.1.3 give more details about ellip-

tic and genus 2 curves respectively. Section 2.2 the basic concepts needed

for computing scalar multiplication through halvings are introduced. And

finally, Section 2.3 gives an introduction to some cryptographic protocols

used in some of our contributions, for encrypting, signing or authenticating

messages.

2.1 Hyperelliptic curves

We are going to introduce first a general description of an algebraic hyperel-

liptic curve of any genus as well as some of their properties and characteris-

tics. For more details see [Sil09, Kob12].

Let Fq be a finite field with q = pm, with p being a prime, and let Fq
be the algebraic closure of Fq. A hyperelliptic curve C of genus g over Fq is

given by an equation of the form

C : y2 + h(x)y = f(x), h(x), f(x) ∈ Fq[x, y], (2.1)

11
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where deg(h) ≤ g + 1 and deg(f) ≤ 2g + 2 with no singular points, that

is, there are no solutions (x, y) ∈ Fq × Fq which simultaneously satisfy y2 +

h(x)y = f(x) and the partial derivatives 2y+h(x) = 0 and h′(x)y−f ′(x) = 0.

If the field has even characteristic, that is, p = 2 and therefore q = 2m,

then h(x) 6= 0. Otherwise, if it has odd characteristic, with a change of

variables the equation can be simplified such that y2 = f(x) [MWZ96].

We denote by C(Fq) the set of all points P = (x, y) ∈ Fq×Fq which satisfy

Equation 2.1 of the curve C, together with the points at infinity, which are

the points at the intersection of C with the line at infinity in the projective

plane P2(Fq).
If there is only one point P∞ and f(x) has no repeated roots, the degree

of f(x) is equal to 2g + 1 and the curve is an imaginary hyperelliptic curve;

otherwise the degree is 2g + 2 and it is called a real hyperelliptic curve

[CFA+05].

Let P = (x, y) ∈ C(Fq). Then the opposite or conjugate of P is the

point P̃ = (x,−y − h(x)). The opposite of P∞ is defined as itself. If a point

satisfies that P = P̃ the point is called special, otherwise it is said to be

ordinary. The map P 7→ P̃ is an involution, that is, ˜̃P = P , and it is called

the hyperelliptic involution.

2.1.1 Elliptic curves

A hyperelliptic curve of genus 1 defined over Fq is also called an elliptic curve,

which we denote by E, and with the general Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Fq

If the characteristic p of the field is neither 2 nor 3, then every elliptic curve

can be written in the simplified form

E : y2 = x3 + ax+ b, (2.2)

using invertible linear transformations. In this case, which will be the one

used in this thesis, in order for the curve to be nonsingular, the discriminant

∆E of E, which is equal to the polynomial discriminant of f(x), i.e., ∆E =
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−16(4a3 + 27b2), must be different from 0.

Group law

An addition operation can be defined over the set E(Fq), using the chord-

tangent method. Let P = (xP , yP ), Q = (xQ, yQ), P,Q ∈ E(Fq) be two points

with xP 6= xQ, represented in affine form. The addition point R = P + Q

is defined as the symmetric point with respect to the x-axis resulting from

the intersection of the curve and the straight line defined by the points P

and Q, giving the point R, as can be seen in Figure 2.1a. Analytically, the

coordinates of the resulting point R = (xR, yR) are calculated as:

xR = λ2 − xP − xQ, yR = λ(xP − xR)− yP , (2.3)

where λ =
yP − yQ
xP − xQ

.

The computation of 2P follows the same equations as in Equation 2.3,

taking Q = P , except that now λ =
3x2P + a

2yP
, where a is the coefficient of

the Equation 2.2 of E. It can be seen as taking the symmetric point with

respect to the x-axis of the intersection point of the tangent line to the curve

at P and the curve, as in Figure 2.1b. It is relevant to note that there are

other formulas used for different types of coordinates, such as projective or

Jacobian, that are more efficient in some cases, and some are optimized for

curves with some fixed coefficient, e.g. a = −3.

With this operation, the set of points E(Fq) forms an abelian group, in

which the point at infinity O = P∞ serves as the identity element [Sil09].

A multiplication of a point P ∈ E by a scalar (integer) n is defined as the

repeated addition of n times a point in that curve, denoted as

nP = P+
n· · · +P.

The order of a point P is the smallest integer n such that nP = O. By

Lagrange’s theorem, we know that the order of any point must divide the

number of points on the curve, #E(Fq), which can be expressed as

#E(Fq) = q + 1− t
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(a) P +Q = R. (b) 2P = R.

Figure 2.1: Addition and doubling of points of E : y2 = x3 − x+ 1 in R.

being t the trace of the Frobenius endomorphism of E. The Frobenius endo-

morphism of a curve E is defined as:

ϕ : E(Fq)→ E(Fq)

(x, y) 7→ (xq, yq)

O 7→ O

This endomorphism satisfies the equation

X2 − tX + q = 0.

Taking this into account, the Hasse inequality [Has33] states that

|t| ≤ 2
√
q.

Concerning the group structure, it is isomorphic to either Z/nZ or Z/n1Z×
Z/n2Z, where n1 · n2 = n = #E(Fq) with n2|n1 and n2|(q − 1).

A point P is an `-torsion point if and only if `P = O. The set of all

`-torsion points of E(Fq), denoted by E[`](Fq), is a subgroup of (E(Fq),+).

The `-Sylow subgroup, with ` prime, of E over Fq is defined as

E[`∞](Fq) = {P ∈ E(Fq) | order(P ) = `k, k ≥ 0}.
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Both subgroups E[`](Fq) and E[`∞](Fq) can be either trivial, cyclic or of

rank 2.

2.1.2 Divisors

For curves of genus g ≥ 2 it is not possible to define a group law on the set

of points of the curve C in a geometric way. Instead, sets of points are used,

called divisors.

A divisor D is a finite formal sum of points P ∈ C(Fq) of the form

D =
∑

P∈C(Fq)

nP (P ), nP ∈ Z

where only a finite amount of nP are different from 0. In order for the divisor

to be defined over Fq it must be invariant by the action of the Galois group

G = Gal(Fq/Fq).

The degree of D, deg(D), is the sum of its coefficients:

deg(D) =
∑

P∈C(Fq)

nP .

The set of all divisors of a hyperelliptic curve C is denoted by DC , and

it forms an abelian group with the natural addition operation. The set of

divisors of degree 0, which is a subgroup of DC , is denoted by D0(C).

Consider a polynomial function ω over C, that is, a class of polynomials

in the variables x and y equivalent modulo y2 + h(x)y − f(x). A rational

function R over C is a quotient
ω1

ω2

of two polynomial functions over C. Given

a polynomial function R over C, the divisor formed by the zeros and poles

of R over C, counted with their multiplicities, is called divisor of R, denoted

by div(R).

A divisor D ∈ D0(C) is a principal divisor if D = div(R) for some rational

function R over C. The group of all principal divisors is denoted by

P(C) = {div(R) | R ∈ Fq(C)}.
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The quotient group

Jac(C)(Fq) =
D0(C)

P(C)

is an algebraic variety called Jacobian variety of the curve C. In particular,

Jac(C)(Fq) is a finite abelian group, and the neutral element is represented

as 0. The order of a divisor D is the smallest integer n such that nD = 0.

The cardinality of the Jacobian of a curve C of genus g defined over Fq,
#Jac(C)(Fq), is bounded by the Weil bounds [Wei49]:

(
√
q − 1)2g ≤ #Jac(C)(Fq) ≤ (

√
q + 1)2g.

Since the size is of the order of qg, much smaller fields can be used in com-

parison to elliptic curves while maintaining the same security level.

Mumford representation

Let C be a genus g hyperelliptic curve with deg(f) = 2g+1, deg(h) ≤ g. We

are going to use the Mumford representation so that each element of D ∈
Jac(C)(Fq) is represented uniquely by a pair of polynomials D = (u(x), v(x)),

u, v ∈ Fq[x].

By Riemann-Roch’s theorem [Ful72], for each divisor class in Jac(C)(Fq)
there exists a unique divisor D =

∑r
i=1 Pi − rP∞, where Pi 6= P∞, Pi 6= −Pj

for i 6= j and r ≤ g, called a reduced divisor. Let Pi = (xi, yi). Then the

divisor can be represented by D = (u(x), v(x)) where

u(x) =
r∏
i=1

(x− xi)

and v(x) satisfying v(xi) = yi, with appropriate multiplicity.

Therefore, a reduced divisor D = (u(x), v(x)) fulfills the following prop-

erties:

1. u is monic.

2. u | v2 + vh− f .

3. deg(v) < deg(u) ≤ g.
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The value r = deg(u), that is, the number of points of the support of D, is

called the weight of the divisor.

Cantor’s algorithms

The original Cantor’s algorithms [Can87], improved by Koblitz [Kob89], and

shown in Algorithm 1, is completely general and can be used for any field and

genus to obtain the resulting reduced divisor of the addition of two divisors.

Algorithm 1 Cantor’s algorithm for divisor addition.

Cantor’s algorithm

Input: Two divisors D1 = (u1, v1) and D2 = (u2, v2) on the curve C :
y2 + h(x)y = f(x).

Output: The unique reduced divisor D3 such that D3 = D1 +D2.
1: d1 = gcd(u1, u2) . d1 = e1u1 + e2u2
2: d = gcd(d1, v1 + v2 + h) . d = c1d1 + c2(v1 + v2 + h)
3: s1 = c1e1, s2 = c1e2, s3 = c2

4: u =
u1u2
d2

, v =
s1u1u2 + s2u2v1 + s3(v1v2 + f)

d
(mod u)

5: while deg(u) ≤ g do

6: u′ =
f − vh− v2

u
, v′ = (−h− v) (mod u′)

7: u = u′, v = v′

8: Make u monic
9: return D = (u, v)

Nevertheless, there are specific algorithms depending on the genus of the

curve and characteristic of the field, as well as for other coordinate types,

which are more efficient for certain operations (like doublings) or curves.

In Figure 2.2 a geometrical equivalent to elliptic curves can be seen for

divisor addition on a genus 2 curve: two pairs of points representing each

a divisor, a cubic curve that intersects them and the curve in another two

points, which are the inverse of the result of the operation.
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Figure 2.2: Sum of the divisors represented by the points (P1, P2) and
(Q1, Q2), with result (R1, R2), on a genus 2 curve over R.

2.1.3 Genus 2 curves

All genus 2 curves are hyperelliptic, but for genus g ≥ 3 there are non-

hyperelliptic curves. In general, the higher the genus of the curve, the bigger

the group, however for g ≥ 3 there are attacks for the Hyperelliptic Curve

Discrete Logarithm Problem that are faster than the generic ones, hence they

are not considered suitable for cryptographic purposes [Thé03].

A genus 2 curve C of over Fq is given by an equation of the form

C : y2 + h(x)y = f(x), h(x), f(x) ∈ Fq[x, y], (2.4)

where f(x) has no repeated roots and deg(f) ≤ 6. In the real model, C has

two different points at infinity and h(x) is either 0 if p is odd or deg(h(x)) = 3

if p is even. In the imaginary model C has only one point at infinity, and

deg(f(x)) = 5, with h(x) = 0 for odd p, and deg(h(x)) ≤ 2 otherwise.

The Frobenius endomorphism φ of C can be extended to its Jacobian

variety. Its characteristic polynomial has the form

χ(x) = x4 − ax3 + bx2 − qax+ q2
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where a and b are integers, |a| ≤ 4
√
q and |b| ≤ 6q. Its roots are complex

numbers α1, α1, α2, α2 such that |α1| = |α2| =
√
q.

From this, the cardinality of the Jacobian is

#Jac(C)(Fq) = χ(1) = (q2 + 1)− a(q + 1) + b.

Therefore,

(
√
q − 1)4 ≤ #Jac(C)(Fq) ≤ (

√
q + 1)4.

The group structure of Jac(C)(Fq) has rank up to 4. The n-torsion subgroup

of Jac(C)(Fq) is formed by divisors D ∈ Jac(C)(Fq) such that nD = 0,

and it is denoted by Jac(C)(Fq)[n]. The l-Sylow subgroup Jac(C)(Fq)[l∞] of

Jac(C)(Fq) is defined in the same way as in elliptic curves.

Imaginary model in binary fields

In binary fields, genus 2 curves can be expressed as:

y2 + (h2x
2 + h1x+ h0)y = x5 + f4x

4 + f3x
3 + f2x

3 + f1x+ f0, hi, fi ∈ F2m .

As already stated, since the field has even characteristic, h(x) 6= 0. Depend-

ing on the coefficients of h, these curves can be divided into three types,

following the notation from [CY02]:

• Type I: h2 6= 0.

• Type II: h2 = 0, h1 6= 0.

• Type III: h2 = h1 = 0, h0 6= 0.

Since we are interested in curves for cryptosystems based on the Discrete

Logarithm problem, type III curves are not interesting, since there is a result

by Galbraith [Gal01] proving that a characteristic 2 hyperelliptic curve is of

type III if and only if it is supersingular.

Using isomorphisms, curves of type II can be written as

y2 + xy = x5 + f3x
3 + f2x

2 + f0, f2 ∈ F2,



20 CHAPTER 2. PRELIMINARIES

and if f2 = 1, then the Jacobian of such a curve has order 2 · n, where n is

an odd number [BT08]. Moreover, it was concluded in [BD04] that curves of

this form are the best for cryptographic use out of the three, both from the

arithmetic and security point of view.

Therefore, this is the type of curves that we used in one of our con-

tributions, since appropriate Jacobians should have a large prime in their

cardinality and a small cofactor, and it is desirable that this cofactor is ex-

actly 2; this is also helpful in our contribution, which presents a method to

compute halvings of a divisor.

2.2 Scalar multiplication using halvings

In elliptic curve cryptography over binary fields, Knudsen [Knu99] and Schro-

eppel [Sch00] proposed an alternative method which replaces the doubling of

points for halvings. Since Cantor’s algorithm [Can87] for doubling a divisor is

less efficient for curves of genus 2 over binary fields than its equivalent for el-

liptic curves, the alternative of using halve-and-add algorithms for computing

the multiple of a divisor, instead of the classic double-and-add, is more inter-

esting. Some existing algorithms for computing halvings in genus 2 curves or

halve-and-add can be found in [FHLM04, KKT05, Bir06, BT08, MMPR09].

2.2.1 Binary field arithmetic

When performing computations in binary fields, some operations are quite

different, and have different complexities. For instance, the cost of element

addition is negligible and if the field F2m is defined by a square-root friendly

polynomial, the square and square-root operations are very cheap and ef-

ficient, much more than field multiplications. Inversions remain the most

expensive operation, costing several times more than a multiplication.

Here are some results concerning the resolution of quadratic equations

in a binary field, which are necessary in our contribution to compute the

halving of a divisor. Let a, b ∈ F2m :

• Every element in F2m is a quadratic residue: a2
m

= a, therefore if

x2 = a, then x = a2
m−1

.
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• The Trace function is Tr(a) =
∑m−1

i=0 a2
i
, and assuming m odd, the

half-trace function is HT (a) =
∑(m−1)/2

i=0 a2
2i

[FHLM04].

• The equation x2 + x + a = 0 has a solution in F2m if and only if

Tr(a) = 0, and its solution is x = HT (a). The other solution, if it

exists, is x′ = x+ 1.

• An equation ax2 + x + b = 0 can be solved similarly, considering the

change of variables y = ax and d = ab, solving then y2 + y + d = 0,

obtaining y = HT (d), and finally x = y
a
. The other solution is y′ =

y + 1, and therefore x′ = y
a

+ 1
a
.

2.2.2 Non-Adjacent Form

In order to use halvings for scalar multiplication, we first need a different

representation of the scalar k, called Non-Adjacent Form (NAF), or more

generally, a NAFω, with an ω-wide window. This is a representation where,

of every ω digits, at most one is different from 0. Apart from 0, the other

digits are odd and can be negative, and their absolute value is less than

2ω−1. All this assures a unique representation of any positive integer while

minimizing the Hamming weight of the value. The classic algorithm for

obtaining the corresponding representation is presented in Algorithm 2.

Algorithm 2 Compute NAFω(k)

Input: A positive integer k, window width ω.
Output: The representation NAFω(k)
1: i = 0
2: while k ≥ 1 do
3: if k is odd then
4: ki = k (mod 2ω)
5: k = k − ki
6: else
7: ki = 0

8: k = k/2
9: i = i+ 1

10: return (ki−1, ki−2, . . . , k1, k0)
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2.2.3 Halve-and-add algorithm

Suppose we have a curve C defined over Fq with n = #Jac(C)(Fq), t =

blog2 nc + 1. We want to obtain kD using halvings, where D ∈ Jac(C)(Fq)
and 0 ≤ k ≤ n. We first need the representation k′ = NAFω(2tk (mod n)).

Note that

k′ =
t∑
i=0

k′i2
i, |k′i| < 2ω−1.

Then we can see that

k =
t∑
i=0

k′t−i
2i

(mod n) =
k′0
2t

+ · · ·+
k′t−1

2
+ k′t (mod n).

Finally the scalar multiplication can be simply computed as

kD =
k′0
2t
D + · · ·+

k′t−1
2
D + k′tD.

Algorithm 3 shows how to perform a scalar multiplication using the right-

to-left version of the halve-and-add algorithm, using the windowed Non-

Adjacent-Form NAFω. There is also the left-to-right version, where the result

is obtained after finishing the while loop immediately, but it needs some

precomputed divisors.

2.2.4 Halving in genus 2

The halving algorithm reverses the doubling algorithm by finding one of the

preimages of doubling. We want to find D1 such that

2D1 = D2,

where D2 = (x2 + u21x + u20, v21x + v20), D1 = (x2 + u11x + u10, v11x +

v10). Following [KKT05], if the reduction step in the doubling algorithm

is “undone”, it leads to an equality between coordinates of “unreduced”

divisors. For 2D1 these are ((x2 + u11x + u10)
2, s3x

3 + s2x
2 + s1x + s0) for

certain indeterminates si. The method consists in considering an unreduced

divisor D′2 = (u′2(x), v′2(x)) corresponding to D2, obtained using an auxiliary
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Algorithm 3 Scalar multiplication using halve-and-add and NAFω (right-
to-left)

Input: Window ω, integer k, divisor D, curve C, Jacobian cardinality n
Output: The divisor kD
1: t = blog2 nc+ 1
2: k′ = NAFω(2tk (mod n)) . Note that k′ =

∑t
i=0 k

′
i2
i, |ki| < 2ω−1

3: for d ∈ l = {1, 3, . . . , 2ω−1 − 1} do
4: Qd = P∞

5: i = t
6: while i ≥ 0 do
7: if k′i > 0 then
8: Q|k′i| = Q|k′i| +D
9: else if k′i < 0 then
10: Q|k′i| = Q|k′i| −D

11: D =
D

2
12: i = i− 1

13: return Q =
∑

d∈l dQd

polynomial k(x) = k1x + k0, and equating the first components of 2D1 and

D′2.

Note that if D1 is a half divisor of D2, the remaining halved divisors of

D2 can be found by computing D1 +W , where W is a divisor of order 2.

We show here the method from [KKT05] for weight 2 divisors only.

Even characteristic

For q = 2m, C is a genus 2 curve over Fq with one point at infinity P∞, and

therefore C has an imaginary model

C : y2 + h(x)y = f(x),

where f(x) = f5x
5 + f4x

4 + ... + f0 ∈ Fq[x], deg(f) ≤ 5, and h(x) = h2x
2 +

h1x+ h0 ∈ Fq[x], h(x) 6= 0.

In this case, to obtain the divisors D1 = (u(x), v(x)) such that 2D1 = D2,
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with D2 = (u2(x), v2(x)), notice that the coordinates of an unreduced D′2

v′2(x) = v2(x) + h(x) + k(x)u2(x)

u′2(x) =
f(x) + h(x)v′2(x) + v′2(x)2

u2(x)

Equating the first coordinate of D′2 with the first coordinate of 2D1, which

is (x2 + u21x+ u20)
2, we see that

k1h2 + u21k
2
1 + 1 = 0,

k1h1 + k0h2 + k21u20 + k20 + c2 = u211k
2
1,

k1h0 + u21k
2
0 + u221 + k0h1 + c1 = 0,

k0h0 + k20u20 + c0 = u210k
2
1.

where
c2 = f4 + u21,

c1 = f3 + h2v21 + u20 + c2u21,

c0 = f2 + h2v20 + h1v21 + v221 + c2u20 + c1u21.

Odd characteristic

In this case, following [MPR09], the unreduced divisor D′2 = (u′2(x), v′2(x))

of D2 can be expressed as :

v′2(x) = v2(x) + k(x)u2(x),

u′2(x) =
v′2(x)2 − f(x)

k21u2(x)
.

It follows that u1(x)2 = x4 +2u11x
3 +(2u10 +u211)x

2 +2u10u11x+u210 must

be equal to

u′2(x) = x4 + 1
k21

[x3(−1 + 2k0k1 + u21k
2
1)+

x2(k20 + u20k
2
1 + u21 + 2k0u21k1 + 2v21k1)+

x(−f3 + u20 + 2k0u20k1 + k20u21 − u221 + 2v20k1 + 2k0v21)+

(−f2 + k20u20 + f3u21 − 2u20u21 + u321 + 2k0v20 + v221)].
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Equating u11 and u10 from the degree 3 and 2 terms respectively one obtains

u11 = 1
2k21

(k21u21 + 2k0k1 − 1)

u10 = 1
8k41

(−k41(u221 − 4u20) + k31(4k0u21 + 8v21) + 6k21u21 + 4k1k0 − 1),

(2.5)

and substituting the values of u10 and u11 above into the degree 1 and 0

monomials and clearing denominators, we find two multivariate polynomials

of degrees 2, 6 and 2, 8 in k0 and k1 respectively.

p1(k0, k1) = k61(u221 − 4u20)u21 + 2k51(8v20 − 4u21v21 − k0(u221 − 4u20))+

k41(12u20 − 15u221 − 8f3) + 4k31(2v21 − 3k0u21)+

k21(7u21 − 8k20) + 6k1k0 − 1

p2(k0, k1) = k81(u221 − 4u20)
2 + 8k71(u221 − 4u20)(k0u21 + 2v21)+

4k61(−4k20(u221 − 4u20) + 16k0(2v20 − u21v21) + 16f3u21−
16f2 + 19u321 − 44u20u21)− 8k51(5k0u

2
21 + 4k0u20 + 12u21v21)+

2k41(4u20 − 32k0v21 − 16k20u21 − 19u221) + 8k31(2v21 − 5k0u21)+

4k21(3u21 − 4k20) + 8k1k0 − 1

Finally, with them we obtain the degree 16 polynomial

pD2(x) := Res(p1(k0, x), p2(k0, x)),

in the variable k1 alone, by computing the resultant of p1(k0, k1) and p2(k0, k1)

with respect to k0. This resultant is a degree 16 polynomial.

pD2(x) = x16(u221 − 4u20)
5 + 16x15(u221 − 4u20)

4v21+

8x14(u221 − 4u20)
3(8f2 − 12f3u21 + 20u20u21 − 15u321)+

...

16x3(20u21v20 + 16f3v21 − 20u20v21 + 35u221v21)+

8x2(8f2 − 12f3u21 + 20u20u21 − 15u321)+

16x (2v20 − u21v21) + (u221 − 4u20)
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Substituting the k1 values in 2.5 by the roots of this polynomial the divisors

D1 are obtained such that 2D1 = D2.

The degrees of the irreducible factors of pD2(x) depend on the degrees of

the irreducible factors of f(x), which can be found in Table 2.1.

Factorization type of f(x) Factorization types of pD2(x)
[1, 1, 1, 1, 1] [1, ..., 1︸ ︷︷ ︸

16

], [2, ..., 2︸ ︷︷ ︸
8

]

[1, 1, 1, 2] [1, ..., 1︸ ︷︷ ︸
8

, 2, 2, 2, 2], [2, ..., 2︸ ︷︷ ︸
8

], [4, 4, 4, 4]

[1, 1, 3] [1, 1, 1, 1, 3, 3, 3, 3], [2, 2, 6, 6]
[1, 2, 2] [1, 1, 1, 1, 6, 6], [4, 4, 4, 4]

[2, 3] [1, 1, 2, 3, 3, 6], [4, 12]
[1, 4] [1, 1, 2, 4, 4, 4], [8, 8]

Table 2.1: Factorization types of pD2(x)

The equivalent polynomial pD2(x) for weight 1 divisors can be obtained

by a similar process.

2.3 Cryptographic protocols

In this section we introduce protocols that are necessary in our contributions

and some of their properties. Firstly, in Section 2.3.1 some miscellaneous

properties are introduced. Then, in Section 2.3.2 the ElGamal cryptosystem

is explained, including a threshold variant, which is used in [GLMS] and

[GMMS]. Digital signatures using elliptic curves and blind signatures using

RSA can be found in Sections 2.3.3 and Sections 2.3.4 respectively, which are

used in [GMS17]. Finally, a message authentication code using hashes can

be found in Section 2.3.5, also used in [GMS17].

2.3.1 Some general properties

Here we give a brief introduction to some properties that a cryptographic

protocol may have and that can be helpful to better understand our contri-
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butions.

In public key cryptography, a protocol has provable security if its secu-

rity requirements can be stated formally in an adversarial model, with some

assumptions such that the adversary has access to the system and enough

computational power. The security is proven by showing that, in order to

break the security of the protocol, the attacker must solve an underlying

problem that is considered to be hard. This is a useful way to prove the

security of a system.

This concept was first introduced in [SM84] for semantic security, which

formally means that, given a probabilistic, polynomial-time algorithm (PPTA)

and a ciphertext of some message and its length, the algorithm cannot obtain

any partial information about the message with higher probability than any

other PPTA that only has the message length and not the ciphertext. In

summary, information cannot be feasibly extracted from the ciphertext.

It is important to distinguish the difference between the concepts of

anonymity and privacy. Anonymity refers to the possibility to communicate

a message, hiding who the sender is, so that people knows some information

without revealing the author of such communication. An example could be

a political dissident that posts an anonymous blog online.

Privacy is about hiding some information, regardless that the author is

known [Bra14]. This includes many scenarios, like email, private messages,

web browsing or even personal habits: there is some information that is to

be kept secret from other people or entities, even if its owner or sender is

known.

2.3.2 ElGamal cryptosystem

ElGamal cryptosystem [ElG85] is an asymmetric key probabilistic algorithm,

whose security depends upon the difficulty of computing discrete logarithms

over a cyclic group, known as the Discrete Logarithm Problem (DLP).

Discrete Logarithm Problem

Let G be a cyclic group of order q and let g be a generator of G, and denote

its group operation by multiplication. The discrete logarithm problem is as
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follows:

Given an element y ∈ G, find an integer x such that y = gx.

Solving a discrete logarithm is in general considered to be computationally

intractable, if the group is chosen carefully. Especially, the group order q must

have a large prime factor to prevent the use of the Pohlig-Hellman algorithm

[PH78], a special-purpose algorithm for computing discrete logarithms in a

finite abelian group whose order is a smooth integer that reduces the DLP

over G into small instances over subgroups whose orders are factors of q.

Some groups that are used to implement the ElGamal cryptosystem are:

• The multiplicative group F∗pm , with p prime, where pm − 1 has a large

prime factor q.

• The group of points of an elliptic curve E(Fpm), with a subgroup of

prime order q.

• The Jacobian of a genus 2 curve C, with a subgroup of Jac(C)(Fpm)

with prime q.

The size of the group used is determined by the difficulty of solving the

discrete logarithm in such group, depending on the best known algorithm.

The best known general algorithm for computing discrete logarithms on any

cyclic group is Pollard’s rho [Pol78], with a time complexity of O(
√
q). In

the case of F∗pm , with p prime, the Index Calculus [COS86, How98] takes

subexponential time. This algorithm is not applicable in general to other

groups, however the MOV [MOV93] attack transfers the ECDLP in E(Fpm)

to the DLP in F∗
pkm

, with k being the embedding degree. Recently some

weaknesses [AMORH13, AMORH15] have been found in some supersingular

elliptic curves used to implement pairing-based cryptosystems [Sha84, BF01].

For a 128-bit security level, that is, so that it would take 2128 operations

to crack the key, an elliptic curve E(Fpm) with pm ≈ 2256 is needed, while the

key size required for F∗pm is 3072 bits. In the case of a Jacobian of a genus

2 curve Jac(C)(Fpm), since its cardinality is of the order (pm)2, just 128

bits would be enough. In Table 2.2 the security equivalence among different

public key cryptosystems and their key size in bits can be found.
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DLP & RSA ECDLP HECDLP
(bits) (bits) (bits)

1024 160 80

2048 224 112

3072 256 128

7680 384 192

15360 512 256

Table 2.2: NIST guidelines for security equivalence

In the following description of the ElGamal cryptosystem’s steps [HMV06],

multiplicative notation is used. Note however, that for elliptic and genus 2

curves, the same steps apply but with additive notation instead. The setup

and key generation steps only have to be performed once.

Setup

A group G is chosen (a subgroup of F∗p orF∗2m , the points of an elliptic curve

or the Jacobian of a genus 2 curve), with order a big prime q, and a generator

G = 〈g〉. The values q, G and g are published.

Key generation

Each user generates her own private key by taking a random integer such

that x ∈R [1, q − 1], and computes and publishes the corresponding public

key y = gx.

Encryption

The message to be sent is converted into an element of the group m ∈ G,

and encrypted under the public key y as

Ey(m) = (c, d) = (gr,m · yr),

with r ∈R [1, q − 1] being a random integer.
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Decryption

Given a ciphertext (c, d), the original message is recovered using the corre-

sponding private key x as

m = d · c−x.

Homomorphic property of ElGamal

In an homomorphic cryptosystem [RAD78], there exist at least two binary

operations, that we denote by ⊗ and ⊕ (which may or may not be the

same), where ⊗ is defined over the set of ciphertexts and ⊕ is defined over

the cleartext space. Then, given two messages m1 and m2 encrypted under

the same key y, we have that

Ey(m1)⊗ Ey(m2) = Ey(m1 ⊕m2).

This property allows computations to be performed on the ciphertext without

decrypting the messages, and depending on the operation ⊕, a system can

have for example, multiplicative or additive homomorphism. Some notable

cryptosystems with such property are ElGamal and Paillier [Pai99].

ElGamal is a multiplicative homomorphic cryptosystem in which ⊗ is the

component-wise product of the ciphertext, and ⊕ is the product of cleartext

messages:

Ey(m1)⊗ Ey(m2) = Ey(m1 ·m2) = (gr1+r2 ,m1 ·m2 · yr1+r2).

Over elliptic curves, it becomes additively homomorphic with ⊗ repre-

senting the component-wise addition, obtaining the encryption of the addi-

tion of the two points or divisors.

The ElGamal over F∗p can be modified in order to provide additive ho-

momorphism, by encrypting gm instead of m. The corresponding ciphertext,

would then be:

Ey(g
m1)⊗ Ey(gm2) = Ey(g

m1+m2) = (gr1+r2 , gm1+m2 · yr1+r2).

Note that in this case, in order to retrieve the value m1 + m2, a discrete
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logarithm must be performed. If the value falls in a known, relatively small

range [a, . . . , b], it can be performed efficiently using Pollard’s lambda algo-

rithm [PH78], with an average complexity cost of O(
√
b− a).

Threshold ElGamal

The n-out-of-n threshold ElGamal is a variation in which the secret key is

distributed (and may be generated) among n users, and all n users need to

collaborate to decrypt a message [Ped91, Des92].

The setup and encryption steps remain unchanged, and the rest are mod-

ified as follows:

• Key generation: each user Ui generates (or receives from a trusted third

party) a private and public key pair, yi = gxi , and makes yi public

together with a zero-knowledge proof on logg yi. The shared public key

is computed as y =
∏n

i=1 yi.

• Decryption: Given a ciphertext Ey(m) = (c, d), each user Ui computes

a partial decryption Ti = cxi and sends it to all the users that are

allowed to obtain the cleartext, that finally can obtain the plain text

by computing m = d · (
∏n

i=1 Ti)
−1.

2.3.3 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) [ANS99] is a vari-

ant of the Digital Signature Algorithm (DSA) which uses elliptic curve cryp-

tography. A digital signature is a scheme for proving the authenticity of a

digital message. Some desired properties of a digital signature are:

• Integrity : to ensure that the message has not been altered in any way

during transmission.

• Authentication: the recipient has reasons to believe that the message

was created by a known sender.

• Non-repudiation: only the sender (signer) could have validly signed a

message, so it cannot later deny having signed it.
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A digital signature scheme typically consists of 3 algorithms: key gener-

ation, signature generation and signature verification.

Key Generation

Starting with the Setup step from Section 2.3.2, using elliptic curves: consider

a group G = E(Fpm), with a subgroup of prime order q, a point P ∈ E(Fpm)

or order q.

A random secret key x ∈R [1, q− 1] is selected, with the public key being

Q = xP .

Signature generation

The steps required to sign a message M are the following:

1. Calculate h = H(M), where H is a cryptographic hash function that

should output the same amount of bits as the bitlength of q (since the

overall security of the signature scheme will depend on the smallest of

the two values). The value h shall be converted to an integer.

2. Select a cryptographically secure random integer k ∈R [1, q − 1].

3. Compute the point kP = (x1, y1).

4. Compute r = x1 (mod q). If r = 0, go back to step 3. Note that this

is an utterly improbable occurrence.

5. Compute s = (h + xr)k−1 (mod q). If s = 0, go back to step 3. This

is similarly improbable.

6. The pair (r, s) is the signature of M .

Signature verification

Given the public key Q, the verifier first checks that Q ∈ E(Fpm), Q 6= O
and qQ = O. Then the verification steps are:

1. Check that both r and s are integers that lie in the interval [1, q − 1],

otherwise reject the signature.
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2. Compute h = H(M), using the same hash function as in the signature

generation.

3. Compute w = s−1 (mod q).

4. Compute u1 = hw (mod q) and u2 = rw (mod q).

5. Compute the point (x1, y1) = u1P + u2Q. If the resulting point is O,

the signature is invalid.

6. The signature is valid if and only if r ≡ x1 (mod q).

It is of paramount importance that the value k is not only secret and

with good randomness, but different for different signatures. Otherwise,

given two signatures (r, s) and (r, s′) with the same unknown k for different

known messages M and M ′, and attacker could obtain the private key x.

A possible approach to ensure that k is unique and different for every

message is to generate deterministic signatures, by obtaining the value k

using an HMAC (see Section 2.3.5) with the private key and the message, as

defined in [Por13].

2.3.4 Blind signatures

A blind signature is a special digital signature in which a message is in some

way disguised (blinded) before it is signed such that it can be publicly verified

against the original, unblinded message, as it would be done with a regular

digital signature. This kind of signatures are usually employed in privacy-

related protocols where the author of the message and the signer are different

entities, for example, in e-voting protocols or digital cash. This concept was

first introduced in [Cha83].

In a more formal way, it can be described as a cryptographic protocol

involving two entities, a user U that wants to obtain a signature on a message

m, and a signer S with the secret key for signing, who signs m but without

her learning anything about the message.

The main security requirements of a blind signature scheme are blindness

and unforgeability. The blindness condition implies that it must be infeasible
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for a malicious signer S∗ to decide which of two messages m0 and m1 has

been signed first in two executions with an honest user U . For unforgeability,

an efficient adversary U∗ should not be able to generate k+ 1 valid signature

pairs with different messages after at most k completed interactions with the

honest signer [PS00]. Another, mores strict definition, honest-user unforge-

ability is proposed in [SU12], that states that after performing k interac-

tions with the signer, an adversary that requests signatures for the messages

m1, · · · ,mn from the user (which produces these signatures by interacting

with the signer), then the adversary cannot produce signatures for pairwise

distinct message m∗1, · · · ,m∗k+1 with {m∗1, · · · ,m∗k+1} ∩ {m1, · · · ,mn} = ∅.

There are many blind singing schemes using different cryptosystems, but

here we are going to introduce only the one based on RSA, as it is the one

used in one of our contributions.

RSA blind signature

RSA [RSA78] is a well known public key cryptosystem, the security of which

holds on the assumed intractability of the Integer Factorization Problem.

Key generation

Following an RSA key generation, we have the public modulus N = pq, with

p and q secret primes of similar size, the public key e such that 1 < e < λ(N)

and gcd(e, λ(N)) = 1, and the private key d ≡ e−1 (mod λ(N)), where λ(N)

is Carmichael’s totient function, which is defined as the smallest positive

integer t such that

at ≡ 1 (mod N), for every integer a coprime with N.

In other words, it is the exponent of the multiplicative group of integers

modulo N , and it divides the order of the group, φ(N). It can be seen as a

sharpening of Euler’s theorem.
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Blind signature generation

A traditional RSA signature would be computed as md (mod N). In the

blinded version, a random r is chosen such that is coprime with N , its en-

cryption

re (mod N)

computed, and then used as a a blinding factor. The user with the message

m to be signed computes the blinded message as

m′ ≡ mre (mod N)

and then sends m′ to the signer, who then calculates the blinded signature

as:

s′ ≡ (m′)d (mod N).

The blinded signature is sent back to the user, who then removes the blinding

factor to obtain s, the actual valid RSA signature of m:

s ≡ s′ · r−1 (mod N).

Signature verification

The signer, to accept the validity of a signature, it just needs to check whether

s ≡ md (mod N).

Notice that since RSA keys satisfy red ≡ red (mod λ(N)) ≡ r (mod N), the

following shows that s is indeed the signature of the message m:

s ≡ s′ · r−1 ≡ (m′)d · r−1 ≡ mdredr−1 ≡ mdrr−1 ≡ md (mod N).

The main advantage of using RSA to perform a blind signature is that it is

simpler to implement and faster to execute than, for example, the equivalent

blind signature using elliptic curve cryptography. However, it is important

to remark that, since the signing process is equivalent to that of decrypting,

an attacker that intercepts a ciphered message may blind it and send it to
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sign, and in turn it would be able to obtain the corresponding plain text.

Therefore, it is essential that the same keys are never used to both encrypt

and sign messages.

2.3.5 Hash-based Message Authentication Codes

A hash-based message authentication code (HMAC) [BCK96] is a keyed cryp-

tographic one-way hash function, used for calculating an authentication code

of a message m given a secret key K. We denote by HMACK(m) the resulting

code.

It shares the main properties of a hash (one-way function and collusion-

secure) as well as incorporating the property that HMACK(m) can only be

computed if the secret key K and the message m are known. Therefore, for

an HMAC to be secure, it is required that given HMACK(m) and K, it is

infeasible to obtain m, and given HMACK(m) and m, it is also infeasible to

find K.

The cryptographic strength of the HMAC depends upon the crypto-

graphic strength of the underlying hash function, the size of its hash output,

and the size and quality of the key.

The message must be sent together (encrypted or not) with HMACK(m),

and then, whoever has the key K, can validate the message’s integrity (that

it has not been modified during transmission) and authenticity (since the

code can only have been computed by someone who has the secret key).

The following definition, taken from the RFC 2104 standard, [KCB97],

defines how to compute an HMACK(m):

• Denote by B the byte-length of the blocks of data of the hash function

H (for MD5, SHA-1 and SHA-256, B = 64) and by L the byte-length

of the hash output (for SHA-256, L = 32).

• The secret key K can be of any length but it needs to be converted to

a B bytes key K ′:

– If K is smaller than B bytes, append zero bytes 0x00 to the end

of K to obtain K ′.
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– If K is bigger, then K ′ = H(K).

– Otherwise, K ′ = K.

• We define two fixed different numbers, ipad and opad (’i’ and ’o’ for

inner and outer):

– ipad = the byte 0x36 repeated B times.

– opad = the byte 0x5c repeated B times.

Finally, to compute the authentication code of a message m:

HMACK(m) = H

(
(K ′ ⊕ opad) ‖ H( (K ′ ⊕ ipad)‖m )

)
,

where ‖ denotes concatenation and ⊕ denotes bitwise exclusive OR (XOR).

The exact values of ipad and opad are not critical, but were defined in such

a way to have a large Hamming distance from each other and so the inner

and outer keys will have fewer bits in common. They need to be different in

at least one bit.
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Contributions

The proposals of this thesis are presented as articles published or submitted

to journals or conferences, following a thematic ordering: the first two contri-

butions are related to genus 2 curves, studying properties of the cardinality of

their Jacobian varieties and offering improvements for some necessary cryp-

tographic operations; the next one introduces a novel parking system that

improves drivers’ privacy; finally the last two describe enhancements on pri-

vacy on some smart metering systems.

A brief description of each article is presented next, highlighting the most

relevant aspects of our contributions. For copyright reasons, the articles can

not be shown in this thesis.

1. [GMPT18] Ricard Garra, Josep M. Miret, Jordi Pujolàs, and Nicolas

Thériault. “The 2-adic valuation of the cardinality of Jacobians of

genus 2 curves over quadratic towers of finite fields”. Accepted for

publication in Journal of Algebra and its Applications.

In the first contribution we focus on genus 2 curves over fields of odd

characteristic. We study how the 2-adic valuation of the cardinality of

the Jacobian of a curve increases when performing successive quadratic

extensions, taking into account all types of curves, including supersin-

gular ones. By carefully looking at the curve equation f(x) and the

coefficients of the Frobenius endomorphism, as well as the initial 2-adic

valuation, we are able to show and proof how that valuation increases

at each extension, with an exact value if it exists or its bounds oth-

39
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erwise. This information could be of use in some steps of the SEA

algorithm for point counting.

2. [GMP16] Ricard Garra, Josep M. Miret, and Jordi Pujolas. “Halv-

ing in some genus 2 curves over binary fields”. IEEE Latin America

Transactions, 14(6):2885–2889, 2016.

In the second contribution we show all the process of how we obtained

explicit formulae for computing the halving of each possible divisor

class, for type II genus 2 curves over binary fields. Our formulae are,

to the best of our knowledge, the fastest known for the studied type of

curves, improving the ones given by Birkner and Thériault in [BT08].

The halving operation is useful for computing scalar multiplication,

which is the main operation in cryptographic protocols based on the

discrete logarithm on algebraic curves.

3. [GMS17] Ricard Garra, Santi Mart́ınez, and Francesc Sebé. “A Privacy-

Preserving Pay-by-Phone Parking System”. IEEE Transactions on Ve-

hicular Technology, 66(7):5697–5706, 2017.

In this article we study and discuss existing solutions that use a mobile

phone application in order to pay for parking time, as well as their

drawbacks, especially privacy-wise, and we introduce a novel system

that preserves the privacy of drivers, all while maintaining the flexibility

that a phone app offers and the ability to complain in case of an unfair

fine, with the ability to prove that a payment for the corresponding

car and time slot had been made. The privacy that the system offers

ensures that an attacker (or a corrupt company running it) can not

collect more information out of the system than a person patrolling

the city would, checking parked cars in the street. Several protocols

are used as building blocks, including elliptic curve cryptography, blind

digital signatures and HMAC.

4. [GLMS] Ricard Garra, Dominik Leibenger, Josep M. Miret and Francesc

Sebé. “Repairing an aggregation-based smart metering system”. Sub-

mitted for publication.
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While researching several smart metering proposals, particularly ag-

gregation based ones, we found a security flaw in an existing protocol

[BPS+16] that would allow a corrupted substation to obtain all the

readings of any one individual meter in the neighborhood. We decided

to repair the mentioned security flaw and modify the protocol so it can

ensure meter’s privacy against a corrupted substation. The reasons to

repair this proposal are many, but in general we find that it has several

advantages, making it a very good option among the literature, since

it offers low communication costs, it does not require a trusted third

party for generating or storing secret keys and it offers data integrity

without digital signatures or message authentication codes.

5. [GMMS] Ricard Garra, Santi Mart́ınez, Josep M. Miret, and Francesc

Sebé. “Improving a smart metering system using elliptic curves and re-

moving the trusted dealer”. Accepted for publication in the proceedings

of Reunión Española sobre Criptologia y Seguridad de la Información

2018.

Finally, in the last contribution we combined different approaches in

order to obtain a smart metering system with many desirable advan-

tages: we eliminate the need of a trusted third party to establish the

keys used in the protocol, only a single message is required to be sent

to the substation by each smart meter when transmitting consumption

readings and no communication among meters is needed, and therefore

it is easily scalable to thousands of meters. It uses homomorphic addi-

tion to aggregate the readings in such a way that only the sum of the

honest smart meters could be obtained by a corrupt substation. The

protocol uses elliptic curve cryptography to reduce communication and

key storage costs.
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Conclusions and future work

In this thesis we study some properties of genus 2 curves related to the

cardinality of their Jacobians as well as the halving operation, due to their

usefulness in cryptographic protocols used in modern society since they offer

the smallest key size for a given security level compared to other options. We

also address possible privacy problems that arise from new technologies used

in the e-society, proposing new protocols to address those concerns.

In the elliptic and hyperelliptic versions of ElGamal, it is important to

carefully choose the curve such that it meets some specific criteria, and in

particular it is necessary to know the cardinality of the group of points or

divisors. We started with genus 2 curves over a field with odd characteristic,

and we a studied of how the 2-adic valuation of their Jacobian grows after

successive quadratic extensions [GMPT18]. This can help in a step required

in the SEA algorithm, which is the best known algorithm to compute the

cardinality of a Jacobian to date. Since this can be a time-consuming task

for cryptographic level curves, it is desirable to lower its complexity.

When a suitable curve has been found and we want to set up and use

an ElGamal cryptosystem, the basic operation needed for every computation

is scalar multiplication. There exist several algorithms for performing that

operation, with the simplest one probably being the classic double-and-add

strategy, which is equivalent to the double-and-add used to compute integer

modular exponentiations. We focused on a different approach, halve-and-

add, which instead of the double of a divisor, it uses its halved one: from a

43
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divisor D, we need D′ such that 2D′ = D. In [GMP16] we give improved

algorithms for computing that divisor D′ for all possible divisors of type

II curves over binary fields. These can be used to enhance halve-and-add

versions of the scalar multiplication in those curves, reducing their cost and

execution time.

We then shifted our focus from more theoretic approaches to more prac-

tically applied protocols. After pointing out the main drawbacks of existing

solutions for pay-by-phone parking systems, especially regarding privacy, we

propose a new system that ensures the privacy of the drivers [GMS17]. By re-

moving the possibility of collecting parking information and behavior of each

car, like having a record of exactly where and when a car has been parked,

the system offers a level of privacy equivalent to a person patrolling the city

and seeing what cars are parked and where. Additionally, in case a parking

officer issues an unfair fine, the driver has the possibility of complaining by

proving that a payment had been made for the time slot of the fine.

After finding a security flaw in an existing smart metering protocol, but

that otherwise had some desirable properties, we decided to present a new

system that fixes the aforementioned flaw while retaining the other main

properties [GLMS]. More specifically those advantages are: no trusted third

party deals with or stores secret keys, and therefore the privacy can not be

compromised if that party is corrupted; the communication cost per round

is O(n), where n is the number of smart meters, and the individual readings

can only be obtained if the substation and all the other meters are corrupt;

and finally it offers data integrity without the use of digital signatures or

message authentication codes.

Inspired by the previous proposal and some other interesting approaches

to aggregative solutions for smart metering, we devised a protocol [GMMS]

that does not need a trusted third party either, and it requires only one

message to be sent by the meters for each round of communication, when

transmitting energy consumption readings, with no communication among

meters. Additionally, the protocol uses elliptic curve cryptography to reduce

even more the communication cost as well as the size of the keys.

Possible further research could be done in some related areas, like study-
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ing the 2-adic valuation of genus 2 curves but over binary fields this time, or

even using other primes to analyze their `-adic valuation after different field

extensions, like it has been done in [MPV15] for elliptic curves, which would

further help to improve the efficiency of the SEA algorithm.

The proposed mobile application for pay-by-phone parking could be ex-

panded and improved with, for example, functionalities to allow it to help to

find a parking spot, like the proposal in [CMC15] but extended to outdoors.

In regards to aggregation-based smart metering systems, they have the

inherent problem that if enough meters are corrupted, the system’s privacy

could be compromised. There are other approaches, like the ones based on

perturbation that add noise to the reading before sending it, but they need to

be carefully tuned so that they more or less cancel out. It could be interesting

to research and develop a system like that with the benefits we achieved in

our contributions, like the avoidance of a trusted third party, while providing

good aggregation accuracy without sacrificing privacy nor efficiency.
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Rodŕıguez-Henŕıquez. Weakness of F36·509 for Discrete Loga-

rithm Cryptography. In International Conference on Pairing-

Based Cryptography, pages 20–44. Springer, 2013.

[AMORH15] Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco
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[BPS+16] Núria Busom, Ronald Petrlic, Francesc Sebé, Christoph Sorge,
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[GS04] Pierrick Gaudry and Éric Schost. Construction of secure ran-

dom curves of genus 2 over prime fields. In International Con-

ference on the Theory and Applications of Cryptographic Tech-

niques, pages 239–256. Springer, 2004.
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