
 1

Using an Ontology for Guiding Natural Language
Interaction with Knowledge Based Systems

Memòria presentada al Departament de Llenguatges i Sistemes Informàtics de
la Universitat Politècnica de Catalunya per a optar al grau de Doctora en

Informàtica

Marta Gatius i Vila

sota la direcció del Doctor Horacio Rodríguez Hontoria

Barcelona, setembre de 2000

 2

AGRAÏMENTS

Voldria fer arribar el meu sincer agraïment a totes les persones que m'han ajudat durant
aquest anys de recerca, que queden reflectits en aquest treball.

D'una manera especial, agraeixo al meu director de tesi, l'Horaci Rodríguez, tot el que
m'ha ensenyat, la sàvia manera de guiar (i ordenar) la meva recerca, la inquietud
intelectual que contagia.

Voldria donar les gràcies també a tots els companys del grup de Recerca en Processament
del Llenguatge Natural i d’una manera especial a la Núria Castell, que em va introduir en
aquest mon. Apendre i “digerir” amb ells els nous conceptes relacionats amb el llenguatge
ha estat molt interessant.

En general, a tots als companys del Departament de LSI i especialment al grup de
professors de Terrassa i als meus companys de despatx, amb els que ha estat un plaer
compartir les hores de feina.

Vull agrair-li al Jordi la seva serena manera d'estar al meu costat en tot moment, la seva
vitalitat i coratge que fa que qualsevol cosa sigui possible.

També vull donar les gràcies a la meva mare, als meus germans i als meus oncles, pel seu
interès en el meu treball durant aquests tots aquests anys.

 3

ABSTRACT

Since the 1980’s, knowledge based systems (KBSs), programs that use knowledge to
model situations and solve problems, have spread throughout industry, finance and science.
Human communication with these systems deals with complex concepts and relationships
that are not present in other software applications. Allthough the natural language (NL) is
especially appropriate for expressing these concepts, there are not many KBSs
incorporating NL interfaces. The main reasons for this are problems of efficiency in NLI
performance, lack of adequacy to the communication needs of the applications and the
high cost of developing and maintaining them.

The aim of this thesis is to study how the communication process and engineering features
can be improved in NL interaction with KBSs. This study has been focused on the efficient
and reusable representation of the knowledge involved in NL communication with KBSs.
GISE (Generador de Interfaces a Sistemas Expertos), a system supporting NL
communication with KBSs has been developed. This system adapts the general linguistic
resources to application requirements in order to automatically obtain application-restricted
grammars.

The main issue of the system design is a separate and reusable representation of all types of
knowledge involved in communication with KBSs. This knowledge consists of the
application knowledge appearing in the communication, the tasks of communication, the
linguistic knowledge supporting their expression and the general relationships between
conceptual knowledge and its linguistic realization. Three general bases were designed to
represent all this knowledge: the Conceptual Ontology (CO), the Linguistic Ontology
(LO) and a set of control rules.

Conceptual knowledge is represented in the CO. This conceptual knowledge includes
domain and functionality issues. All knowledge required to model the applications as well
as the description of all possible communication acts is provided in the CO. The CO is the
skeleton for anchoring the domain and the functionality of the applications. The
complexity of KBS performance makes a formal and explicit representation of their
domain and functionality necessary.

 4

The general linguistic knowledge needed to cover the expression in NL of the tasks the
system performs is represented by means of the LO and a set containing all possible
realizations of the application terms. The LO is domain and application independent.

The control information to relate the general linguistic knowledge to conceptual
application knowledge in order to generate the application-restricted grammars is
represented by a set of production rules.

The modular organization of the relevant knowledge into separate data structures provides
great flexibility for adapting the system to different types of applications and users.

The grammars generated by GISE use expressive and precise language tuned to the
application and adapted to the evolution of the communicative process. A menu-system to
guide the user in introducing the NL is integrated into the GISE interface.

GISE has been applied to a couple of applications: SIREDOJ, an ES in law and a railway
communication system.

 5

CONTENTS

Chapter 1. INTRODUCTION
 1.1 Background
 1.1.1 Communication with KBSs
 1.1.2 NL communication
 1.1.3 Reusing the knowledge involved in the NL communication with KBSs
 1.2 Aim of the study
 1.3 Overview of the thesis

Chapter 2. STATE OF THE ART
 2.1 The evolution of NL Communication
 2.1.1 The first NLI systems

 15
 16
 16
 17
 18
 19
 21
 25

 25
 25

 2.1.2 Improvements in the NLI development process: Transportable systems 27
 2.1.3 Dealing with more complex applications: The NLIs for KBSs 30
 2.1.4 Enriching the linguistic resources 31
 2.1.5 The use of ontologies in NLI systems 34
 2.1.6 The linguistic coverage in current commercial systems 34
 2.1.7 Dialogue modeling 36
 2.1.8 Multimodality 37
 2.1.9 Speech 40
 2.2 The use of ontologies 42
 2.2.1 The purpose of most relevant ontologies 43
 2.2.2 Ontologies for NLP 43
 2.2.3 Ontologies for knowledge sharing and integration 44
 2.2.4 Ontologies for modeling KBSs 45
 2.2.5 Ontologies for formalizing domain knowledge 46
 2.2.6 Ontologies to formalize the enterprise environment 47
 2.3 The use of ontologies in NL systems 47

 6

Chapter 3. THE FUNCTIONALITY AND ARCHITECTURE OF GISE 52
 3.1 The functionality of GISE 52
 3.1.1 Main goals in the functionality of NLIs to KBSs 52
 3.1.2 Main issues of the functionality of GISE 53
 3.1.3 The functionality of the interfaces generated by GISE 55
 3.1.4 Applications of GISE 56
 3.2 The architecture of GISE 57
 3.2.1 Conceptual Ontology 59
 3.2.2 Linguistic Ontology 60
 3.2.3 The control rules 60
 3.3 The process of generating the interface 61
 3.3.1 Providing domain-specific knowledge 62
 3.3.2 Tuning to task-specific communication 63
 3.3.3 Tuning to specific NL coverage 64

Chapter 4. CONCEPTUAL ONTOLOGY 65
 4.1 Introduction 65
 4.2 The general commitments followed in the CO design 66
 4.2.1 Basic relations 66
 4.2.2 Inheritance 67
 4.2.3 The organization 67
 4.3 The taxonomy of concepts 70
 4.4 The syntactic -semantic taxonomy of attributes 72
 4.5 Operations 81
 4.6 Preconditions 84

Chapter 5. LINGUISTIC ONTOLOGY 89
 5.1 Introduction 89
 5.2 Representing the linguistic structures required for communication with KBSs 91
 5.2.1 The basic principles followed in the LO design 91
 5.3 General linguistic classes 93
 5.3.1 The rank dimension 93
 5.3.1.1 The CLAUSE class 93
 5.3.1.2 The GROUP class 94
 5.3.1.3 The WORD class 95
 5.3.2 The Metafunction dimension 97
 5.3.2.1 Ideational information 98
 5.3.2.2 Interpersonal information 101
 5.3.2.3 Textual information 103
 5.4 Subclasses expressing the operations 104
 5.4.1 The CLAUSE class 105
 5.4.2 The GROUP class 112
 5.4.3 The WORD class 114
 5.5 Information represented in the linguistic classes 115
 5.5.1 The LO objects having more than one constituent 116
 5.5.2 The LO objects having one constituent 117

 7

Chapter 6. THE CONTROL RULES 129
 6.1 Introduction 129
 6.2 Relating the CO to the LO in order to obtain application-restricted interfaces 130
 6.3 The formalism of the control rules 133
 6.4 The basic set of control rules 141
 6.4.1 The functions used in the basic set of control rules 142
 6.4.2 The rulesets 148
 6.4.3 The performance 150
 6.5 Following an example 178

Chapter 7. THE NATURAL LANGUAGE INTERFACE 189
 7.1 An overview of the NLI 189
 7.2 The grammar and the lexicon 191
 7.2.1 The resulting grammar 192
 7.2.2 The semantic interpretation 193
 7.2.3 The syntactic and semantic features associated with the categories 194
 7.2.4 The resulting lexicon 196
 7.2.5 Providing the grammar and lexicon of dynamic mechanisms 197
 7.2.6 A new example: The grammar rules generated for the operation filling the
 attributes in the class IS 200
 7.2.7 Preconditions attached to the grammar rules 203
 7.3 The parser 206
 7.3.1 The left-corner algorithm 206
 7.3.2 The GISE parser 209
 7.3.3 Following an example 211
 7.3.4 The parser data structures 218
 7.4 The menu system 221
 7.5 The dialogue component 224
 7.6 The communication manager 227

Chapter 8. APPLICATIONS OF GISE 231
 8.1 Introduction 231
 8.2 The application of GISE to SIREDOJ, an expert system for law 232
 8.2.1 Representation of the domain and functionality 234
 8.2.2 The interface generated 240
 8.2.3 Assessment of the NLI generated 243
 8.3 The application of GISE to a railway consulting system 246
 8.3.1 Representation of the domain 237
 8.3.2 Assessment of the NLI generated 249

 Chapter 9. CONCLUSIONS 251
 9.1 Comparing GISE with other existing NLI systems 251
 9.1.1 The process of building NLIs 251
 9.1.2 The performance of the resulting interface 252
 9.2 The main contributions 257

 8

 9.2.1 The reusable organization of the different types of knowledge

 involved in the communication process 261

 9.2.2 Improving communication 265

 9.3 Further research work 267

 9.3.1 Enriching the GISE knowledge bases 267

 9.3.2 Adapting the NLIs generated to different types of communication 268

 9.3.3 Using knowledge bases for purposes other than communication 269

 BIBLIOGRAPHY 271
 APPENDIX 281

LEGENDS OF THE FIGURES

 9

Figure 3.1. The process of generating an application-restricted NLI 54

Figure 3.2. The knowledge bases involved in the communication process 58

Figure 4.1. A fragment of the CO general level 69

Figure 4.2. The representation of the class TRAIN_STATION 71

Figure 4.3. The class PERSON and its instance JUAN 77

Figure 4.4. The representation of the attributes describing the concept PERSON 78

Figure 4.5. A fragment of the taxonomy of operations in the CO 83

Figure 4.6. The formalism used to represent preconditions 86

Figure 4.7. The representation of the concept BUILDING_CONTRACT 87

Figure 5.1. The classification of clauses in the dimension rank 94

Figure 5.2. The classification of groups in the dimension rank 94

Figure 5.3. The classification of clauses according to the content information 100

Figure 5.4. The representation of the classes: CLAUSE, MAJOR_CLAUSE and

 MINOR_CLAUSE 117

Figure 5.5. The classes ATTRIBUTIVE_CLAUSE and

 the PREDICATIVE_CLAUSE 119

Figure 5.6. The class EXISTENTIAL_CLAUSE_CREATE_INSTANCE

 WITH_NO_NAME 121

Figure 5.7. The class ATTRIBUTIVE_CLAUSE CREATE_INSTANCE_WITH_NAME 122

Figure 5.8. The SIMPLE_COMMON_NOMINAL_GROUP class

 and its subclasses 124

Figure 5.9. The INDEFINITE_NOMINAL_GROUP_CONCEPT class 125

Figure 5.10. The representation of the adverb NO 127

 10

Figure 5.11. The representation of the DEFINITE_ARTICLE class

 and two of its members 128

Figure 6.1. The WM object representing a partial description

 of the concept OBRA 133

Figure 6.2. The WM object representing a partial description of the CO concepts 134

Figure 6.3. The syntax of the basic operations 135

Figure 6.4. The syntax for defining the rulesets 136

Figure 6.5. The syntax for defining the rules 137

Figure 6.6. The syntax of the allowed operations in the action part of the PRE rules 138

Figure 6.7. A trace of the ruleset creating_instance 140

Figure 6.8. The predicates used in the assign-statement in the basic set of

 control rules 144

Figure 6.9. The LO object representing the attribute fulfilled of the concept

 BUILDIND_REQUIREMENT 145

Figure 6.10. A fragment of the operation

 FILL_TRANSITIVE_CONCEPT_BUILDING_CONTRACT_PARTS 147

Figure 6.11. The rulesets definition in the basic set of rules 149

Figure 6.12. The first step of the process of obtaining application-restricted

 linguistic resources 150

Figure 6.13. The second step of the process of obtaining

 application-restricted linguistic resources 151

Figure 6.14. The ruleset activation in the basic set 152

Figure 6.15. The definite nominal group representing the concept ARCHITECT 155

Figure 6.16. The ruleset TOP 156

 11

Figure 6.17. The ruleset creating_instance 158

Figure 6.18. The ruleset filling_attribute 161

Figure 6.19. The ruleset consulting_instance 163

Figure 6.20. The ruleset consulting_attribute 164

Figure 6.21. Rules of the ruleset grammar 166

Figure 6.22. Rules of the ruleset grammar 168

Figure 6.23. Rules of the ruleset grammar 170

Figure 6.24. The alternative rules in the ruleset grammar 171

Figure 6.25. Rules of the ruleset arguments 172

Figure 6.26. Rules of the ruleset arguments 174

Figure 6.27. Rules of the ruleset arguments 175

Figure 6.28. Rules of the ruleset lex_entries 177

Figure 6.29. The concept ARCHITECT 179

Figure 6.30. The performance of the first step of the generation process

 for the concept ARCHITECT 180

Figure 6.31. The instance CRINNOARCHITECT, for creating an instance

 of the concept ARCHITECT without giving its name 181

Figure 6.32. The instance CRIWNOARCHITECT, for creating an instance

 of the concept ARCHITECT giving its name 181

Figure 6.33. The performance of the second step of the generation process

 for the concept ARCHITECT 183

Figure 6.34. The WM object representing information associated with the

 12

 parameter con of the operation CRINNOARCHITECT 185

Figure 6.35. The WM object representing syntactic and semantic information

 associated with the parameter ins of the operation CRIWNOARCHITECT 186

Figure 6.36. The indefinite nominal group representing the concept ARCHITECT 187

Figure 6.37. The definite nominal group representing the concept ARCHITECT 187

Figure 6.38. The definite nominal group representing an instance

 of the concept ARCHITECT 188

Figure 7.1. The NLI module 190

Figure 7.2. The processing of a user intervention 191

Figure 7.3. A grammar rule for expressing the operation to create an instance

 without giving its name 192

Figure 7.4. The grammar rule for expressing the operation to create an instance

 giving its name 192

Figure 7.5. Two grammar rules for creating an instance together with their semantic

 interpretation 194

Figure 7.6. Representing the syntactic and semantic features in the grammar rule

 for creating an instance without name 195

Figure 7.7. Representing the syntactic and semantic features in the grammar rule

 for creating an instance giving its name 195

Figure 7.8. Lexical categories representing the verb ser 196

Figure 7.9. Examples of lexical entries representing concepts

 of the application SIREDOJ 197

Figure 7.10. Examples of lexical entries representing instances of concepts 198

Figure 7.11. Examples of lexical entries representing names and quantities 199

 13

Figure 7.12. Examples of lexical entrie s representing menus 199

Figure 7.13. The grammar rules expressing the operation filling an attribute

 belonging to the class IS 200

Figure 7.14. Two grammar rules for filling attributes in the class IS, augmented

 with their syntactic and semantic features 201

Figure 7.15. Lexical entries representing concepts of the application SIREDOJ 201

Figure 7.16. Lexical entries representing attributes of the application SIREDOJ 202

Figure 7.17. Lexical entries representing concepts of the railway

 communication application 202

Figure 7.18. Lexical entries representing attributes of the railway

 consult ing application 203

Figure 7.19. A rule for creating a conceptual instance without giving its name

 together with its associated preconditions 204

Figure 7.22. The lexicon necessary for creating instances of the

 concept ARCHITECT 212

Figure 7.23. A view of the system of menus 221

Figure 7.24. Guiding the user to build a NL sentence 222

Figure 7.25. Introducing sentences manually 223

Figure 7.26. Displaying the words contained in the lexicon 224

Figure 7.27. A first possible architecture for integrating the NLI 238

Figure 7.28. A second possible architecture for integrating the NLI 229

Figure 7.29. A third possible architecture for integrating the NLI 230

Figure 8.1. Applying GISE to SIREDOJ 236

 14

 15

CHAPTER 1

INTRODUCTION

Since the 1980’s, knowledge based systems (KBSs), programs that use knowledge to

model situations and solve problems, have spread throughout industry, finance and science.

Human communication with these systems deals with complex concepts and relationships

that are not present in other software applications. The natural language (NL) mode seems

to be an appropriate mode, especially for communication with KBSs. It is easier to use NL

to express complex information than to use other modes of communication. However,

there are not many KBSs incorporating a NL interface (NLI). The main reasons for this are

problems of efficiency in NLI performance, lack of adequacy to the communication needs

of the applications and the high cost of developing and maintaining them.

In this thesis, entitled “Using an ontology for guiding natural language interaction with

knowledge based systems”, NL communication between users and KBSs is analyzed.

Some solutions to the most important problems in this communication are proposed.

 16

1.1 BACKGROUND

1.1.1 Communication with KBSs

Significant efforts in commercial and research software have focused on the development

of human-computer interfaces. Person-machine technology has evolved towards

improvements both in the quality of the functionality of the interface and in the

engineering features of the development process. Several lines have been followed in this

evolution. The most significant of these are the separation of the application and

communication information modules, and the adaptation of the communication process to

applications and users.

Systems and tools to deal with the construction and maintenance of transportable

communicative modules have been developed. The conceptual coverage of dialogues has

been expanded to deal with more complex domains and applications. Important

improvements in the friendliness of the interaction have been achieved by integrating

different modes and media. Help tools that guide the user with respect to the interface

possibilities have been incorporated.

Following this evolution, significant improvements in communication with simple

applications have been achieved. There are, however, important problems still to be solved

in interfaces to KBSs. Interfaces to KBSs deal with complex concepts not present in other

software applications. Besides, in these applications, extremely complex communicative

relationships arise, producing a closely coupled communicative/functional modular

structure. Standard tools for building communicative modules widely used in conventional

software engineering are not well suited to knowledge- intensive applications.

Therefore, an important quantity of research work developing interface systems for KBSs

is being undertaken. Most of the systems developed in these research projects on

communication with KBSs include the NL mode. The NL is a friendly mode used to

express the complex concepts appearing in communication with KBSs.

 17

1.1.2 NL communication

NLI technology started in the 1970’s with NL access to databases, and has subsequently

taken several directions, following the main trends of the evolution of human-computer

interfaces and natural language processing (NLP). NLIs have evolved from simple

interfaces recognizing a restricted form of NL towards more complex systems supporting

rich enough linguistic coverage to deal with the increasing complexity of applications.

Although the basic techniques and systems were developed years ago and many attempts

have been made to adapt NLIs to the application requirements, the introduction of NLI

technology in software applications has not reached the level that was once expected.

The main reason for the poor presence of NLIs is the performance problems they still

present. The run-time requirements necessary to process user interventions are large.

Besides, because of the ambiguity of NL, mistakes are not infrequent. Another important

problem in the functionality of the NLIs is lack of user knowledge with reference to the

limits of the system capabilities.

The high cost of developing and maintaining NLIs is another important reason for their

poor industrial presence. Linguistic sources needed in these systems are expensive to

develop and neither the tools nor any standard methodologies facilitating this task currently

exist.

NLIs adapted to the communication needs of the application reduce large run-time

requirements. Linguistic resources adapted to the application have proven efficient

especially when the sentences introduced by the user are limited to those supported by the

grammar and lexicon. For this reason, many NLIs using an application-restricted grammar

include a menu-system to guide the user in introducing the NL.

However, application-dependent linguistic resources are expensive to develop and difficult

to reuse. Several ways have been attempted to reduce the cost of creating these resources.

Most approaches adapt general linguistic resources to specific applications. The cost of

such adaptation can be reduced when carried out automatically.

There are other relevant approaches for adapting linguistic resources to applications, such

as incorporating dynamic mechanisms to the general grammar as a means of restricting the

 18

grammatical options at run-time, or obtaining a general grammar adapted to a specific type

of application.

These approaches have been followed successfully for simple applications, such as

database consulting systems. Systems automatically generating application-restricted NLIs

to relational databases have been developed. These systems reduce the cost of obtaining

application-restricted grammar by adapting general grammar rules supporting consulting

and updating to the concepts and relations of a specific database. However, these systems

cannot be easily adapted to KBSs. The complexity of the knowledge involved in KBSs

appears to be a major obstacle to obtaining application-restricted NLIs at a reasonable cost.

1.1.3 Reusing the knowledge involved in the NL communication with KBSs

The knowledge involved in the communication becomes larger as the complexity of the

application grows. The reuse of the knowledge involved in communication reduces the

cost of developing NLIs for different applications. A step can be made towards the

transportability of NLIs and the reuse of their constituents by isolating and representing, in

a declarative form, the conceptual and linguistic knowledge involved in a specific

application. Increasingly, such information is represented in ontologies because this formal

representation assures the consistency and reusability of the knowledge represented.

In order to adapt general linguistic resources to specific applications, general relationships

between conceptual and linguistic knowledge must be defined. The optimal representation

of the relationships between conceptual knowledge of general and application kind, and the

specific language details needed for its linguistic realization, is a problem that has not yet

been completely solved.

This thesis will propose GISE, a system supporting NL communication with KBSs. This

system outlines a new approach in improving the development and performance of NLIs

for complex systems. The approach consists of using a conceptual ontology for guiding NL

interaction. General linguistic resources are adapted automatically to cover the application

communication tasks represented in a conceptual ontology. The main issue of the system

design is a separate and reusable representation of all types of knowledge involved in

communication with KBSs.

 19

1.2 AIM OF THE STUDY

The aim of this thesis is to study how the communication process and engineering features

can be improved in NL interaction with KBSs. This study has been focused on the efficient

and reusable representation of the knowledge involved in NL communication with KBSs.

GISE (Generador de Interfaces a Sistemas Expertos), a system supporting NL

communication with KBSs has been developed. This system adapts the general linguistic

resources to application requirements in order to automatically obtain application-restricted

NL-guided interfaces. The interfaces generated by GISE use expressive and precise

language tuned to the application and adapted to the evolution of the communicative

process.

In the system proposed in this thesis, the different types of knowledge relevant to

communication with KBSs are represented in independent and general bases. These

knowledge bases are easily adapted to specific applications. Such bases represent the

application knowledge appearing in the communication, the tasks of communication, the

linguistic knowledge supporting their expression and the general relationships between

conceptual knowledge and its linguistic realization. The general bases representing all this

knowledge are: Conceptual Ontology (CO), Linguistic Ontology (LO) and the set of

control rules.

Conceptual knowledge is represented in the CO. This conceptual knowledge includes

domain and functionality issues. All knowledge required to model the applications as well

as the description of all possible communication acts is provided in the CO. The CO is the

skeleton for anchoring the domain and the functionality of the applications. The

complexity of KBS performance makes a formal and explicit representation of their

domain and functionality necessary.

The general linguistic knowledge needed to cover the expression in NL of the tasks the

system performs is represented by means of the LO. The LO is domain and application

independent.

The control information to relate the general linguistic knowledge to conceptual

 20

application knowledge in order to generate the application-restricted NLIs is represented

by a set of production rules.

The modular organization of the relevant knowledge into separate data structures provides

great flexibility for adapting the system to different types of applications and users.

The general linguistic bases were designed for communicating in Spanish and Catalan.

Although transporting them to other languages has not been considered, it is not expected

to pose major problems given that the LO was organized following the basic principle s of a

general grammar, the Nigel grammar, which is a large systemic functional grammar. The

examples presented in this thesis are translated into English.

A menu-system to guide the user in introducing the NL is integrated into the interfaces

generated by GISE.

GISE has been applied to a couple of applications: SIREDOJ, an ES in law domain and a

consulting system in the railway domain.

 21

1.3 OVERVIEW OF THE THESIS

This section describes the content and the organization of the thesis.

The thesis has been organized into nine chapters. This chapter introduces the work

developed in the thesis. In the second chapter, an overview of NLI evolution is given,

together with a survey of the use of ontologies in NLP systems. The third chapter describes

the functionality and architecture of GISE, the system designed for improving NL

communication with KBSs. The GISE CO representing all conceptual information required

in the communication is described in the fourth chapter. The LO of the system is detailed

in Chapter 5. Chapter 6 describes the production rules controlling the process of adapting

the general linguistic knowledge to the CO in order to obtain the most appropriate

application-restricted grammar and lexicon. The characteristics of the resulting NLIs

supporting the NL communication with KBSs are given in Chapter 7. The applications of

the system are described in Chapter 8. Finally, the general conclusions are provided in the

last chapter.

All examples appearing in this thesis are obtained from the two applications quoted above.

The content of each chapter is summarized bellow.

Chapter 2: State of the Art

In this chapter a survey of the state-of-the-art of NL communication as well as of the use of

ontologies in different types of applications is given. It is divided into two sections. In the

first section, an overview on the most relevant work in the area of NLIs is given. Current

trends in the related areas of NLP resources, dialogue modeling, multi-modal interfaces

and speech mode are presented. In the second section, the use of ontologies to represent

knowledge and its incorporation in current applications is discussed. The chapter concludes

with an overview on the use of ontologies in most relevant NLP systems.

 22

Chapter 3: The functionality and architecture of GISE

The main issues of the functionality and architecture of GISE, a system designed for

communication with KBSs, are described in this chapter. The functionality and

architecture of the system design is detailed in the two first sections. The process of

adapting general knowledge to the specific knowledge needed for an application is

described in the last section. The separate knowledge bases representing the different types

of knowledge involved in this communication are detailed in the following chapters.

Chapter 4: Conceptual Ontology

CO, representing all conceptual knowledge necessary for supporting communication with

KBSs, is described in this chapter. The general commitments followed in the CO design as

well as examples of application concepts and relations represented in the CO are discussed.

Chapter 5: Linguistic Ontology

The LO, representing all general linguistic knowledge needed in the communication

process is described in this chapter. Main decisions in its design are discussed. Examples

of the linguistic structures required for expressing the communications tasks are given.

Chapter 6: Control rules

In this chapter, the production rules controlling the process of adapting the general

linguistic resources to the application communication tasks are described. These rules

generate the sublanguage required for communication with a specific application. The first

section introduces the functionality of the control rules. The three steps to this adapting

process are described in the second section. The formalism of the control rules is defined in

next section. The basic set of control rules designed and implemented for generating the

 23

interfaces for a broad type of applications is detailed in the third section. Finally, the last

section provides an example following the performance of this basic set of ontrol rules.

Chapter 7: The Natural Language Interface

In this chapter, the characteristics of the application-restricted NLI used by GISE are

given. The first section of this chapter gives a general gives a general description of the

NLI. The different components of this interface are described in the following sections.

The several possible forms of integrating the interfaces generated into the whole system

are discussed in last section.

Chapter 8: Applications of GISE

Several applications of GISE are discussed in this chapter. Particularly, the application of

the system to SIREDOJ, an advising ES in the domain of law is described in first section.

Section 2 describes the application of GISE to a consulting system in the railways domain.

Chapter 9: Conclusions

The last chapter compares the main features of GISE with other systems following similar

approaches and provides general conclusions. The contributions to this thesis as well as a

number of suggestions for further research are outlined.

 24

 25

 26

CHAPTER 2

STATE OF THE ART

This chapter presents a general survey of the state of the art in the two main areas related

with the content of this thesis: NL communication and the ontologies.

2.1 THE EVOLUTION OF NL COMMUNICATION

Starting at the onset of the seventies, NLI systems have evolved towards improvement both

in the functionality and the engineering features of the development process. The most

significant lines followed in this evolution are the portability of the systems to different

applications and domains, the expansion of the conceptual and linguistic coverage to deal

with more complex applications and the integration of the NL mode with othe r modes of

interaction.

An overview of the trends of this evolution and the most relevant NLI systems is given

below.

2.1.1 The first NLI systems

The first NLI systems were developed during the seventies. Most of those first systems

were designed for consulting DBMS. The greater part were built as monolithic systems

with communicative and functional tasks fully integrated. They used simplistic pattern-

matching and special purpose grammars developed on an ad-hoc experimental basis. In

most of these systems, the NL process consisted of matching NL sentences to a

 27

predetermined set of keywords. Besides, they were simply question/answer systems; they

did not incorporate a rigorous treatment of the dialogue structure.

Some of the systems developed during the seventies however, made significant

contributions to the NLI technology. Examples of those systems are LUNAR ([Woods72]),

RENDEZVOUS ([Codd74]) and LADDER ([Hendrix77]).

LUNAR was the first system using Augmented Transition Networks (ATN) for NL

processing.

RENDEZVOUS used a dialogue system for knowledge acquisition and disambiguation

during the user consult.

LADDER was the first complete system supporting NL access to different relational

databases. It used a semantic grammar.

The first commercial NLI systems were developed from these early systems. The most

successful of the first commercial interfaces was NLI Intellect. It was developed from a

previous research system, ROBOT. NLI Intellect supported interaction with different types

of systems. It was developed by A.I.C. and commercialized by IBM. It was introduced in

the market in the 70's but expanded in the 80's.

Despite several attempts being made, the commercial success of NLIs did not reach the

level expected. The first NLIs had several important problems. Although NL

communication has improved since then, some of its drawbacks have not been completely

solved.

One of the most important problems inherent in the use of NL is the lack of user

knowledge about the limits of the language recognized by the system. Even when the user

is able to introduce any sentence, the systems can only correctly process a limited set of

them.

The strategy of matching NL sentences to a predetermined set of keywords, although easy

to develop, had very severe limitations:

- It was not possible to be precise enough in the match process.

- The amount of synonymy made exact keyword matching nearly useless.

 28

Besides, as pointed out by Odgen in his study on existing NLIs ([Odgen88]), a principal

problem in those NLIs was that they were adapted neither to the application functionality

nor to the users.

Major improvements in interface design and development have been achieved by isolating

communication and functional design (as proposed by Took in [Took90]).

The functionality of the interfaces has been improved with the use of a sublanguage

adapted to the application. The friendliness of the communication improved when

extending the coverage of the NL to support specific linguistic phenomena of this

communication, such as abbreviations, acronyms, pronouns, ellipsis and coordination. The

efficiency and friendliness of the communication process also improved with the

incorporation of dialogue modeling to cooperate with users in expressing their needs.

However, NLIs adapted to the application and supporting a wide NL coverage are

expensive to develop and maintain. For this reason, the design of transportable interfaces

was a step forward in the evolution of the engineering development process. Since the

middle of the eighties, relevant NL systems adaptable to different applications have been

developed.

2.1.2 Improvements in the NLI development process: Transportable systems

The first transportable systems were consulting database systems. The transportable part of

those systems was restricted to the conceptual domain. Adapting the linguistic resources of

those systems to a relational database schema allows the portability of the interface to all

relational databases. As the engineering features of the process of developing NLIs

improve, transportable systems for other types of applications and languages were also

built.

Relevant database consulting systems specially designed for transportation are TEAM

([Grosz87]), DATALOG ([Hafner85]), HAM_ANS ([HAM_ANS_85]) and ASK

([Thomson85]).

TEAM(Transportable English Access Data Manager) is a database consulting system. In

TEAM, the transportable part is restricted to the conceptual domain and database

organization. The language model uses an Extended Sintagmatic Grammar (AnaGram) to

 29

parse user interventions. The parser information is represented in an internal logic. An

independent module translates this information to the database consulting language.

DATALOG is a NLI system for DBMSs allowing the portability of the syntax and

semantic process to different DBMS.

ASK is an NLI system designed to be adaptable to different DBMS, different database

consulting languages, different linguistic coverage and even different software

environments.

The system HAM-ANS is the first system supporting a rigorous treatment of dialogue.

This system can be adapted to different applications, types of users and the types of

dialogues.

Relevant work developed during the 80s for applications other than DBMSs are the

XCALIBUR ([Carbonell83]), LDC-1 ([Ballard83]), UC ([Wilensky84]), KLAUS

([Grosz83]) and KING KONG ([Kalish87]) systems. The communication supported by the

three first systems does not present more complexity than communication supported by

consulting database systems. The actions and objects expressed in this communication are

not very complex. The two lasts mentioned systems support communication with KBSs.

The NLIs for KBSs require more linguistic and conceptual resources to deal with the

complex phenomena that arise in this type of communication.

XCALIBUR is a system designed for accessing a DBMS that was adapted for accessing

ESs and the Operating Systems. The performance of the final interface, however,

resembles that of the NLIs to databases: it has been designed to retrieve information rather

than to solve a problem. For processing using interventions, the system uses a semantic

grammar close to the application.

The LDC-1 is an American system designed for developing NLIs for office environments.

The UC (Unix Consultant) is an NLI to the Operating System UNIX. It uses a semantic

grammar close to the system. This system has made an interesting contribution in the area

of NL generation. Its NL generation component, KING ([Jacobs87]) builds NL responses

from semantic descriptions represented in frames.

KLAUS (Knowledge Learning And Using Systems) is a project for developing acquisition

knowledge systems. The resulting systems would be the NLIs to different types of

applications. The main contributions of the system are the treatment of the conceptual and

 30

lexical knowledge acquisition as well as that of the logical inferences supported by the

system. The syntactic representation is PATR_II. The semantic representation is an

internal logic similar to the first order logic.

KING KONG is a system developed using the TEAM initial model. It was designed for

ESs oriented to task execution. It was applied to different types of ESs, such as air mission

planning and an automatic software generator.

Following the main trends of the evolution of human computer interfaces and NLP,

systems and tools to deal with the construction and maintenance of transportable

communicative modules and their integration into the whole system have been developed

since the late eighties. These systems incorporated different types of modules: lexicon,

grammar, knowledge base graphic modules, menu modules, etc. Examples of relevant

work in this area are the FRED ([Jackobson86]), INKA ([Freiling84]), NAT ([Coch91])

and NL_MENU ([Thomson86]) systems.

FRED is an Intelligent Database Assistant. It incorporates different mechanisms to

cooperate with the user. It allows consultation with DBMS implemented in different

database languages (such as Focus, Oracle and SQL).

NAT contains a set of tools for building interfaces for different languages and different

types of applications.

INKA is a tool for knowledge acquisition during the building of an ES. It uses an Interface

Structured Language. The syntax of the Interface Structured Languages is similar to

English, and the semantics is close to the tasks to be performed. The most relevant

example of these languages is INGLISH (INterface enGLISH), a language developed by

Phillips to create task model-based English interfaces. Using a language similar to English

and semantically restricted to the tasks is an efficient approach, because the language

options available to the user are completely application-restricted. However, it requires a

formal application model because all the information that is needed to determine whether a

particular statement can be executed must be encoded in the language.

This approach has been applied successfully for building NLIs to consult databases, as

proved in the NL-Menu, a commercial system developed by Texas Instruments. The NL-

Menu is a system generating NLIs to relational databases. The NLIs generated by the

system include a menu-system to help the user when introducing the sentences. The menu-

system controls the displaying in the screen of the NL options acceptable to the system at

 31

each step of the communication process. The cost of the construction of the linguistic

sources required in these interfaces is low, because a limited number of statements are

needed in database consulting interfaces, and the semantic restrictions encoded in the

grammar are few. Nevertheless, the construction cost grows in interfaces to complex

applications, such as KBSs, in which the number of statements the users may need to say

increases. Furthermore, in most KBSs, no schema or description is available. The

propositions in those systems may have arbitrary meanings. Relations between

propositions are not clearly defined.

2.1.3 Dealing with more complex applications: The NLIs for KBSs

The great complexity and the size of the accepted language in NLIs for KBSs is a problem

when developing, tailoring and maintaining the sources needed for NLIs. The absence of

tools to lend assistance and the low level of reusability of language modules make these

processes expensive.

Another major difficulty comes from the KBSs functionality. The processing of a broad

language is time consuming. Besides, while DBMS are only expected to supply the

information the user requests, KBSs are designed to be problem solvers. Users consult

these systems about an issue, and the systems must then gather information in order to

advise the users. NLIs to KBSs handle a number of questions that could not be previously

handled by the application, such as questions about general properties. The NLI must be

responsible for managing all the new information to translate user inputs into facts and

goals of an underlying KBS. A structure providing a foundation for the translation is

necessary. It is also desirable that such a structure be general and transportable from one

system to another. The NLIs may also answer specific questions without invoking the

inference process.

An additional problem inherent in the use of NL for KBSs is that it allows the user to enter

information in no particular order, whereas other modes, such as menus, predefine this

order.

Despite all these problems, NL seems an appropria te mode for interfaces to KBSs because

NLIs prove to be concise and efficient when the universe of possible messages is large.

 32

The semantic complexity of NL becomes more useful as the problem-solving and

reasoning capabilities of target programs grow. Discussions on the advantages and

disadvantages of NLIs for KBSs can be found in different articles such as those of

[Pollack82], [Rich84] and [Carbonell88].

NLIs for KBSs are used not only during the exploitation phase but also in the building

phase, in which the application knowledge acquisition is done through NLIs. Examples of

NLIs used in knowledge acquisition are the system KLAUS, described above and those

described in [Freiling84] and [Datskovsky87]. Examples of NLIs used in the exploitation

phase are the KING KONG system described above, the system described in [Ryan88] and

that described in [Moerdler87].

The improvement of the friendliness and the efficiency in NLIs for complex applications

has been achieved by enriching language coverage, incorporating knowledge about the

system, following dialogue modeling methodologies, and the application and integration of

different modes and media of interaction. All these trends in NLI evolution are discussed

bellow.

2.1.4 Enriching the linguistic resources

The need for a rich enough language to deal with the increasing complexity of applications

as well as the evolution of NL resources has resulted in interfaces incorporating complex

NLP. NL communication has a strong need for different types of linguistic resources,

especially for grammars and parsers for processing user interventions. New trends and

improvements in this area are rapidly incorporated in NLIs.

There have been interesting works on NLIs implementing modern theories of grammars.

An interesting antecedent of those works is CHAT-80 ([Warren82]). This system is the

most well-known of the Logic Program based Interfaces. It was the first system in using a

Definite Clause Grammar (DCG). The system knowledge as well as the semantic

interpretation is represented in first order logic. Although unlike those described above, it

is not a complete system, its treatment of specific linguistic problems, such as plurals and

quantification is especially interesting.

 33

One of the first successful attempts to implement a grammatical theory in a rigorous and

efficient way was LOQUI ([BIM87]). This system was developed from the HAM-ANS

system. LOQUI, a multilingual database interface system. LOQUI was developed as the

NL component of the European project LOKI ([Binot88]), a Logic Oriented Approach to

Data and Knowledge Bases supporting NL Interaction. The aim of the LOKI project was to

provide a set of advanced tools based on Prolog for improving the support of, andaccess to,

data and knowledge bases. The portability of LOKI is provided by a general domain-

independent logical representation of the meaning of the input sentences. This logical

representation supports reasoning and inferences on the knowledge of the application

domain. LOQUI is a highly modular multilingual portable system, which can be adapted to

new domain and database management systems. The system supports English and French,

although the modular organization of the system also allows the incorporation of other

languages. The English module uses a rigorous and efficient implementation of the

Generalized Phrase Structure Grammar (GSPG). The German module uses a LFG

formalism.

There are many other interesting systems using a well-developed implementation of a

modern grammar. Most of these works use unification grammar, integrating syntax and

semantic analysis, such as those described in [Moreno92], [Moreno93] and [Rodríguez89].

An overview of the unification grammar formalisms and their treatment is given in

[Rodríguez95]. A more general survey of the state of the art on the rule-based grammar

resources in current NLP systems is given in [Cole96].

There are also NLI systems supporting multilingual access, such as the European project

SESAME ([Sabbagh90]), a French and English database interface system, NAT

([Coch91]) for French, English and Spanish, DABINAL ([Solak91]) for Polish and English

and HSQL([Ljungberg91]) for Nordic languages.

Linguistic resources for NLP are expensive to develop and maintain. As pointed out in the

recent survey of the state of the art in the multilingual information management given in

[Hovy99], special interest has been paid in recent years to defining standards in developing

and evaluating linguistic resources in order to facilitate their reuse and improvement. There

are many projects in this field developed by the American government programs (DARPA)

and the European Community programs (CEC).

 34

As discussed in the first chapter of the above-mentioned report, the most relevant point in

the evolution of the development of grammars is the gradual recognition of the

impossibility of generating a complete grammar for any language, and so, the development

of grammars for broad-coverage applications. The recognition of the amount of domain-

specific essential lexical and syntactic information has led to the development of domain

and application adapted grammars.

Linguistic resources for language processing and for generation have not yet come

together, as pointed out by Bateman in [Bateman97b]. Since early works in generation

(such as that of [Appelt85] and [McKeown85]), the functional and pragmatic issues have

been considered as the central areas when organizing linguistic resources. In contrast, most

relevant works on analysis consider structure and syntax as the central areas. Different

approaches in generation focus the role of function to a greater or less degree. Some

subordinate it entirely to structure, some attempt to combine structure and function, others

consider communicative functions as occupying first place. Many of the approaches

belonging to the third group use grammars based on systemic-functional linguistics (SFL),

as the KMPL, described in [Bateman97a]. These approaches emphasize the role of the

paradigmatic organization of resources in contrast to their syntagmatic organization.

As Bateman states in [Bateman97b], a paradigmatic organization has proved appropriate

for the design of grammar development environments, especially for working

multilingually. Paradigmatic functional organizations are more likely to show substantial

similarities across languages than are syntagmatic structural descriptions.

Most existing NL generation systems do not use, however, reusable, general resources.

There are many generation systems using simple, task-oriented template-based techniques.

There are also intermediate approaches using restricted linguistic resources adaptable to

different domains or applications. An example of theses systems is that described in

[Caldwell94], a system for generating job descriptions in English and French. These

descriptions are generated from a domain conceptual representation related to its linguistic

expression. The language generator is based on a Montague type grammar. The system

described in [Busemann98], which uses a domain-motivated linguistic ontology supporting

rapid adaptation to new tasks and domains, is also a work of some interest.

 35

Another useful distinction when comparing generation systems refers to the unit of

language they generate: single phrases, single sentence or connected text. A detailed

current state of the art on NL generation systems is given in [Zock96].

2.1.5 The use of ontologies in NLI systems

The complexity of conceptual and linguistic knowledge involved in NLIs for KBSs makes

its representation more important in separate and declarative sources. A step can be taken

towards the transportability of NLIs and the reuse of their constituents by isolating and

representing the conceptual and linguistic knowledge involved in a specific domain or

application in a declarative form. For this reason, many of the recently developed NLIs for

KBSs incorporate an efficient and transportable representation of the linguistic

components. Additionally, some of them incorporate ontologies to represent the conceptual

knowledge needed in the processing of language.

Recent research work on knowledge representation and NLP emphasizes the advantages of

organizing conceptual knowledge according to an ontology in which objects, concepts,

relations and other entities appearing in a domain are explicitly defined. The representation

of this information in an explicit and formal organization improves clarity, consistency,

accessibility, extendibility and reusability. An overview of the state of the art of the use of

ontologies in NLP and in other computational applications is given in Section 2 of this

chapter.

2.1.6 The linguistic coverage in current commercial systems

The evolution towards the building of transportable systems incorporating complex NLP

has achieved good results in the functionality and development of NLIs. The language

coverage has been extended to support complex linguistic phenomena, such as

quantification, negation, simple cases of references, ellipsis, incorrect words, etc. There

are, however, other linguistic phenomena still to work on, such as subordination, different

types of anaphora, nominal groups supporting various complements, the use of non-

grammatical expressions.

 36

The evolution described above has obtained especially good results in the functionality and

development of NLI to DBMSs. A more in-depth description of NLIs to DBMSs is given

in [Androutsopoulos95]. Also interesting are the works of [DeJong93] and [Sijtsma93]

comparing the language supported by commercial NLI to databases. As discussed in these

works, the treatment of complex linguistic phenomenon is also incorporated into current

commercial interfaces. There are commercial interfaces supporting coordination of

nominal groups and sentences, the use of pronouns, ellipsis, reference and negation. Many

of these systems also support synonyms and different ways of expressing a request.

Besides, most of them incorporate some kind of process for mistake recovery.

The most successful commercial systems during the middle of the decade were Q&A and

HAL. Q&A was developed by Symantec. It runs over PC and supports many languages.

HAL is an interface to Lotus 1-2-3 and was developed by Lotus Inc.

In the late eighties, two products from the BBN Laboratories, PARLANCE and NLI

DATATALKER, attracted significant financial support. There were also other interesting

systems such as the NL-Menu, described above, and the NLI, developed by NLI Inc. Some

of the systems resulting from the research projects outlined in this discussion were also

commercialized, such as LOQUI, commercialized by BIM, NAT and SESAME.

Nevertheless, these systems did not achieve the commercial success expected. As

described in [Brunner90], the functionality of the NLIs not only depends on the

sophistication and breadth of their linguistic coverage but also on how well this is

integrated with direct manipulation methods to help usability. Direct manipulation

methods, such as graphics and gestures are most appropriate for expressing simple queries,

while complex questions require a language with richer semantics.

NL seems an appropriate mode for complex queries, such as those supported in intelligent

consulting systems, as, for example, the TAMIC system ([Bagnasco96]), an Italian system

for public administration consulting supporting deduction.

Furthermore, the integration of the NL with other modes in order to achieve friendly and

efficient communication is currently an active area of research. The increasing complexity

of the communication supported in the resulting systems makes the incorporation of

dialogue modeling methodologies more necessary.

 37

2.1.7 Dialogue modeling

The incorporation of dialogue modeling to adapt communication to the different tasks,

modes and users of the applications improves efficiency and effectiveness in

communication.

As described in the survey of the state of the art of discourse and dialogue given in

[Cole96], current approaches are based on the five predominant theories given below.

Hobbs theory ([Hobbs85]) proposes a limited set of coherence relations to be applied to

discourse segments.

Grosz and Sidner theory ([Grosz86]) describes the structure of the discourse according to

the speaker’s focus of attention (the attentional state), the structure of the speaker’s

purpose (the intentional structure) and the structure of sequences of utterances (the

linguistic structure). This theory, as that of Hobbs is appropriate for NL processing.

The Mann and Thompson theory ([Mann87]) is also known as the Rhetorical Structure

Theory (RST). This theory proposes a hierarchical organization of text spans, spans being

either the nucleus or satellite of one of a set of discourse relations. This theory is

appropriate for generation.

Mckeown theory ([McKeown85]) proposes a hierarchical organization of discourse around

fixed schemata. This schemata drives content selection in generation.

Kamp theory ([Kamp81]) is known as Discourse Representation Theory (DRT). This

theory was developed for representing and computing trans-sentential anaphora and others

forms of text cohesion. Previously mentioned theories are sentenced based and therefore

did not deal with the cross-references appearing in dialogues. This theory has already been

used in the design of sophisticated question-answering systems.

The procedures developed for modeling dialogue follow three different approaches:

dialogue grammars, plan-based models and joint action theories.

Dialogue grammars try to model the sequencing regularities in dialogue ([Sachs78]), such

as questions being followed by answers, proposals followed by acceptances, etc. These

grammars are a useful computational tool in expressing simple regularities of dialogue, but

they need to function with plan-based approaches for complex systems.

 38

Plan-based models of dialogue consider utterances as communication actions or speech

acts ([Searle90]), such as requesting, informing and confirming. These theories assume that

the speaker’s speech acts are part of a plan, and this has to be uncovered. The main

drawback of this theory is that the processes of plan-recognition and planning can be

combinatorially intractable.

The joint action theories are theories regarding dialogue as a joint activity, something that

agents undertake together ([Clark86]). These theories propose a new strategy to deal with

reference and confirmations.

One problem of the theories described above is that most of them are based on dialogues

between humans. Human computer interactions have their own sublanguages whose

characteristics often allow a much simpler dialogue model than models capturing human

interaction.

Many existing NLI systems incorporate a dialogue model much simpler than those theories

described above. NLI systems achieve a friendly and efficient communication when users

are able to express the commands and queries that the background system can deal with

and that the system can react to both quickly and accurately.

A recent study on dialogue management in NL systems is that of Luperfoy in

[Luperfoy96].

2.1.8 Multimodality

Important improvements in the friendliness and efficiency of NL communication has been

achieved during the 90s thanks to the development of multimodal interfaces incorporating

NL mode.

Multi-modal interfaces, integrating human perceptual processes such as vision, audition

and tactility, have focused a great amount of computational effort. The integration of NL

with other modes of interaction such as menus, speech, graphics and gesture provide the

most efficient and natural communication for a broad range of applications.

The distinction between multimodal and multimedia systems is not the same for all

authors. For example, Maybury in [Maybury98] defines multimedia as the physical means

 39

through which information is input, output and/or stored, defining multimodal as the

human perceptual processes. Other researchers, such as those in project MMI2 ([Binot90])

consider that the multimodal systems are only those including several input and output

media and committed to a single internal representation language for the information. They

consider multimedia systems to be those using individual-specialized representation for

each mode.

Using individual-specialized representation is more efficient for storage and processing.

However, using a single internal representation language permits the same representation

to be presented in any mode and, as a consequence, the selection of the most appropriate

mode at each state of the communication. The representation of the information expressed

in such different modes, such as NL and graphics or gesture in a single language deals with

important difficulties. Restricting this information to a specific domain solves most of

these difficulties.

Initial work in this area is that of Hayes and his Carnegie-Mellon group ([Hayes87]). The

system developed by this group integrates the NL and graphic mode. This system deals

with the problems that arise when using more than one mode of interaction in a

cooperative way. The two basic problems are deciding the most appropriate mode at each

step of the communication, and treating the anaphoric reference between the two modes.

Some of the most important studies carried out on NLIs for KBSs are in the area of multi-

modal interfaces. An overview of NLI systems for KBSs during the late eighties and early

nineties is given in [Gatius92]. As pointed out in this work, the use of a common meaning

representation for the information introduced through the different modes is a major

problem in these systems. This representation must efficiently support NL semantic

complexity as well as the different characteristics of other modes, such as graphics. A

difficult problem to solve is reference between the modes.

XTRA ([Allgayer89]), SAUCI ([Tyler88]), ACCORD ([Chappel89]) and MMI2

([Binot90]), are examples of some relevant multimodal systems for KBSs integrating NL.

XTRA is an Interface system for System Experts. The input modes supported by the

system are NL and gesture and the output mode uses graphics and tables.

The ACCORD system (Construction and Interrogation of knowledge bases using natural

language text and graphics) support English, French and German access. The processing of

English and French is carried out using a Categorial Unification Grammar (UCG). The

 40

processing of German uses an LFG. The semantic interpretation uses the Indexed

Language, a typed first order logic based on the Discourse Representation Theory of

Kamp.

SAUCI (A Self Adaptative User Computer Interface) is a multimodal system applied to the

automatic manufacture domain. The input modes are English and graphics. The meaning

representation language used is first order logic. This language supports anaphoric

references between the two modes. It uses a complex dialog control.

MMI2 (A Multi-Modal Interface for Man Machine Interaction with Knowledge Based

Systems) is a multimodal interface system for building KBSs in different domains. The

input modes of the system are NL English, French and Spanish, gesture, direct

manipulation of graphics and command language. The output modes are English, graphics

and non-verbal audio. The meaning representation language used for all information is a

typed first order logic with relativised quantification and second order relation symbols.

The dialogue control in multimodal systems is complex. An interesting work in this area is

the project CFID ([Harper87]). The goal of the project CFID (Communication Failure in

Discourse: Techniques for detection and repair) was to study mistakes in human-machine

communication. The project developed a Database Consulting System using NL and

gestures. The NLs supported are English and French. The grammar formalism is LFG. The

common meaning representation is situation semantics. The developers determined that,

although situation semantics was interesting at the sentential level, the theory did not cover

discourse very well.

Mutimodal systems have also been developed for applications providing access to different

types of knowledge (text, maps, pictures, etc.), such as the CUBRICON system ([Neal90]),

and the Italian ALFresco system ([Stock91]), for an information system on art. The two

systems interact with the users using NL (spoken and typed) and graphics. They also

provide multimedia access in the form of various physical devices to interact with the user.

Recently, multimodal/multimedia systems have been developed for a broad variety of

applications. Many systems in the area have been developed during the last decade, such as

the HITS system, described in [Holland91] and the DETENTE system ([Wroblewski91]).

Other relevant multimodal/multimedia systems are described in [Maybury93]: the COMET

and the WIP systems, generating coordinated explanation in NL and graphics, the AIMI

system, on the domain of military maps and the JETA system, for repairing jet engines.

 41

The complexity of the new applications, as well as the development of the different modes

and media of communication, increases the need to incorporate knowledge information

into the systems. This knowledge allows the adaptation of the system at each state and

mode of the communication, and to assist the users. Because these systems incorporate

knowledge, they are also called intelligent multimodal systems. Most of the multimodal

systems mentioned adapt the theories of discourse developed for NL mode to other modes

of interaction. A central point in the design of current multimodal systems is the automatic

generation of coordinated and coherent multimodal presentations during communication

with the user.

The integration of different modes and languages offers new research opportunities, such

as summaries in different languages using different media. An example of such current

works is that described in [Merlino99], on the optimal presentation of multimedia

summaries of Broadcast News.

As pointed out by Maybury and Stock in the overview on multimedia communication

given in [Hovy99], once the problem of integrating different modes and media in

increasing development is solved, the multimodal and multimedia systems will be those

best suited to many applications. Interaction in these systems will be more efficient,

enabling more rapid task completion with less work, more effective, adapting the

interaction to the context (user, task and dialogue) and more natural, supporting different

modes as interacting with a human interlocutor.

2.1.9 Speech

One of the most relevant facts in the NLI technology evolution is the increasing

commercial presence of spoken language applications (i.e. Dragon Systems, IBM, Apple,

Kurzweil) during this decade.

Even though the use of the speech mode has been a topic of interest since the beginnings of

the development of NLIs, its importance increased throughout the eighties and nineties.

The main causes of this increasing importance were the gradual commercialization of the

interfaces using speech and its integration into the multimodal systems.

 42

The increasing interest in spoken system is reflected in the high participation is the main

congress in the field, such as EUROSPEECH, ICSLP, IEEE and ICASSP.

There is work still to be done on spoken interfaces in order to integrate them into

multimodel systems, where the user and the systems select the most appropriate mode of

communication.

Spoken interfaces are necessary in applications where no other mode of communication is

possible, such as applications for handicapped, telephone applications, applications from

vehicles, such as those giving information about the traffic or a route. They may also

render more efficient current services with important performance shortcomings.

The most relevant projects in spoken systems are the European CEC SUNDIAL

([Peckham93], [Gerbino93], [Giachin97]) and the ATIS, founded by ARPA ([Seneff91],

[Ward94], [Pieraccini97]).

The Dialogos system for accessing the Italian Railways timetables ([Popovici97]) and the

RailTeL system for accessing the French Railways timetables ([Lamel97]) are examples of

telephone consulting systems in the domain of trains. Examples of spoken consulting

systems in other domains are the Danish dialogue system for consulting and booking

flights ([Dybkjaer96]) and the Dutch SCHISMA system for consulting theatre information

and booking ([Hoven94]).

There are also relevant projects currently being developed, such as ACCeSS (Automated

Call Center trough Speech Systems), REWARD (Real World Applications of Robust

Dialogue) and ARISE (Automatic Railway Information Systems for Europe), a train

consulting system supporting Dutch, French and Italian.

The most important recent work in the area has studied solutions to solving the problems

of recognizing spontaneous speech. A substantial body of this work proposes the use of

spoken dialogue models. Examples of these are: the works of Bilange ([Bilange91])

describing a task independent oral dialogue model, Bobrow ([Bobrow77]) describing a

frame driven dialog system, Popovici ([Popovici97]) on language modeling for task-

oriented domains, and Huguenard ([Huguenard97]) describing a model of phone-based

interaction to generate predictions about possible failures for an application. There are also

many other interesting proposals for improving the robustness of conversational systems,

such as the work of Goerz ([Goerz99]) on interactivity in all levels of processing and the

 43

work of Nakana ([Nakana99]) on understanding unsegmented user utterances in real-time

systems.

An increasingly important issue for spoken interfaces is their evaluation. Interesting works

in this area are Johnston's study on the advantages and disadvantages of multi-modal

interaction over speech-only interaction ([Johnston97]) and that of Walker [Walker97],

describing a general framework for evaluating spoken dialogue agents where user

satisfaction, task success and dialogue cost performance measures are combined.

2.2 THE USE OF ONTOLOGIES

The word ontology is controversial in the context of AI. Guarino discusses the possible

interpretations of ontology in his terminological clarification in [Guarino95]. A common

general interpretation of this word is Grüber’s definition: an ontology is an explicit

specification of a conceptualization. In Grüber’s definition, the meaning of

conceptualization is an abstraction of the entities assumed to exist in an area, and the

relationships between these entities.

From the theoretical point of view, some of the most important contributions in the modern

evolution of knowledge representation are the works of Brachman and Newell, supporting

distinguished representation levels. The epistemological level proposed by Brachman

([Brachman79]), in which primitives defining concept types and structured inheritance

relations are established, is present in all current languages used in implementing

ontologies. The stringent separation between conceptual and linguistic knowledge and its

representation, proposed by Newell in his theory describing The Knowledge Level

([Newell82]), is assumed in ontology design. A new level, the ontological level, has

recently been distinguished by Guarino ([Guarino93]) to constrain knowledge primitives

and thus build more understandable and consistent ontologies.

The need for agreement on the basic primitives and ontological commitments in ontologies

has been stressed in most works on the subject, as in Gómez-Pérez ([Gómez-Pérez98]), in

which most well-known ontologies are summarized. The Frame Ontology, described in

 44

[Gruber93], plays an important role as an example of metaontology. It captures the

representation of the primitives most commonly used in frame-based representation

languages. The Frame Ontology is used in Ontolingua, a language for building shared

ontologies.

2.2.1 The purpose of most relevant ontologies

Although the high cost of the development of large knowledge bases highlights the need

for methodologies to develop ontologies and to enable knowledge sharing and reuse, most

systems are developed from scratch (the design of ten of the most representative ontologies

was compared by Fridman and Hafner in [Fridman97]. There is no consensus regarding a

sound methodology for building ontologies, nor are there any standard tools for assistance.

Important recent works defining theoretical principles in ontology design include Guarino

(mentioned above) and Grüinger (described in [Grüinger95]). The need to define the

purpose of the ontology in order to organize it appropriately has been widely recognized.

The main issues in current ontology design are the expression of knowledge in NLP,

knowledge sharing and integration, and the formal representation of applications and

domains where complex organizations are required. All these issues are described below.

2.2.2 Ontologies for NLP

Increasingly, NLP systems use an ontology to represent the conceptual knowledge needed

in the processing of knowledge. As pointed out in the survey on multilingual resources in

[Hovy99], the ontologies of NL systems are usually simple, the concepts and the relations

between them are not formally defined, and the number of concepts represented is not very

large. Most of these ontologies are linked to lexicons to provide the words for expressing

the concepts and relations represented. The Generalized Upper Model (GUM)

([Bateman90]), a general knowledge representation for use in different NLP systems, is

one of the best-known examples of a general ontology organized for NLP. GUM contains

approximately 300 high- level abstractions of English syntax and was designed as the top

level of the SENSUS system, described in [Hovy88]. The SENSUS system integrates

 45

large-scale linguistic ontologies for the machine translation of several languages, text

summarization and generation. The concepts in the SENSUS ontology are linked to

lexicons of different languages: Japanese, Spanish, Arabic and English.

There are also general world representations designed for general purposes that are

organized, either wholly or in part, according to the expression of knowledge in natural

language. A well-known example of these ontologies is CYC ([Lenat90]), a massive effort

to formalize common-sense knowledge, containing approximately 40,000 concepts. A

more detailed description of the use of ontologies in NLP is given below.

2.2.3 Ontologies for knowledge sharing and integration

Knowledge sharing between applications has been the objective of many ecently

developed ontologies. A clear example of the importance of knowledge sharing is the

Knowledge Sharing Effort, a consortium for developing conventions and supporting

technology for knowledge representation ([Neches98]). This project involves participants

from over a dozen different research centres. The main subjects developed within this

project are the translation between different representation languages (Interlingua), the

knowledge representation system specifications and the consensus on contents of sharable

general and domain knowledge bases. The most important results of this project are the

Knowledge Interchange Format (KIF), the Process Interchange Format (PIF) ([Lee96]), the

Frame Ontology and Ontolingua. KIF is a format for representing and interchanging

knowledge. PIF is a format for sharing heterogeneous software process descriptions. The

Frame Ontology is a metaontology implemented in KIF. Ontolingua is a language for

writing portable ontologies based on KIF. Translators from Ontolingua into some of the

main representation languages (such as LOOM, Epikit and KIF) have been built.

Ontolingua is also the language used in the Ontology Server, a set of tools and services to

build shared ontologies between geographically distributed groups developed by the ARPA

project.

There are other important works for knowledge sharing and translation, like the

METHAONTOLOGY framework ([Fernández97]) and the Ontology Design Environment

(ODE) ([Blázquez98]). The METHAONTOLOGY framework describes the different tasks

implied when building an ontology. ODE is a software environment providing the user a

 46

set of knowledge representations independent of the target language that can be translated

to different languages (SQL, SFK and Ontolingua).

The integration of ontologies has also been the subject of major works. Two examples are

the ONIONS project (Ontological Integration on Naïve Sources) to integrate medical

ontologies and the SENSUS project to integrate large-scale linguistic ontologies.

The ONIONS project, described in [Gangemi96], proposes a methodology for integrating

taxonomic knowledge that has been applied to task-oriented expert medical knowledge

bases. The basic problem described in building a general ontology to integrate several

different knowledge bases in a medical domain is the lack of a formal description of

explicitly intended meanings. Specific ontologies for different taxonomic sources have

been defined and integrated in a general ontology.

The SENSUS ontology ([Hovy88]), referred to above, is a combination of some well-

known linguistically motivated ontologies: the GUM ([Bateman90]), the top level of the

ONTOS ontology ([Nirenburg92]), the LDOCE (Longman Dictionary of Contemporary

English) ([LDOCE78]) and WORDNET ([WODNET98]).

A major problem in most of these works on knowledge sharing and integration is the

necessity to agree upon a shared terminology for ontologies. As there are many ontologies

that are not formally defined, some projects in the area focus on formalizing informal

ontologies. A methodology for formalizing already developed ontologies is described by

Grüninger in [Grüninger95]. Experiences converting an informal ontology to Ontolingua

formalism are described in [Uschol96]. Ontology libraries are also described as an

important aid for ontology construction. New ontologies can be built from library

ontologies, as a specialization of a generic ontology or as an aggregation of more than one

ontology (each generic ontology being a lattice in the generated ontology).

2.2.4 Ontologies for modeling KBSs

The most complex task of building KBSs is building its knowledge base. Reasoning

engines are available off-the-shelf in many software tools. But there are no off- the-shelf

knowledge bases. Ontologies are also used for modeling knowledge-based applications

(such as expert systems and distributed multi-agent applications) and business processes.

 47

Some important work has been done on defining methodologies for the construction of

ontologies for representing expert systems (ESs). ESs are good examples of systems that

require detailed real knowledge in given domains. The organization of this knowledge is

tailored to support the particular inferences the system needs to draw. ESs usually lack

formal functional specifications. The increasing complexity in domain knowledge and

functionality in ESs favors the use of ontologies in representing both the application

specifications and the domain knowledge. Examples of methodologies for ES modeling

are: Task-Based Specification Methodology (TBSM) ([Yen93]) and the

METHONTOLOGY methodology, mention above. In TBSM, conceptual information is

composed of a model specification, including a domain model and a state model, and a

process specification, including functional and behavioural issues. Similar distinctions are

proposed by the METHONTOLOGY methodology, in which two phases are distinguished

in the conceptualization design: analysis to build the domain model, and synthesis to build

the static and the dynamic model. Examples of projects using ontologies for modeling

KBSs are the KACTUS project (described in [Schreiber95]), Comet and Cosmos projects

(both described in [Mark95]). KACTUS is an ESPRIT project on modeling the knowledge

of complex technical systems for multiple use. It has been applied to various domains:

electrical networks, off-shore oil production and ship design and assessment. The Comet

project supports the design of software systems and the Cosmos project supports

engineering negotiation.

2.2.5 Ontologies for formalizing domain knowledge

The main purpose of many ontologies is the organization of knowledge in specific

domains. The EngMath ontology ([Gruber94]), a mathematical ontology, the PhysSys

([Borst96]), an ontology modeling, simulating and Designing Physical Systems and the

CHEMICALS ontology ([Fernández96]), an ontology for chemical substances, are

examples of ontologies designed to model domain knowledge. The CHEMICALS

ontology was designed following the METHONTOLOGY methodology mentioned above.

 48

2.2.6 Ontologies to formalize the enterprise environment

In the business environment, proper knowledge representation becomes more important as

complexity increases. Business process re-engineering requires an integrated model of the

enterprise and its processes, organizations and objectives. Examples of this importance are

the PIF, mentioned above, for sharing ontologies in business applications, mentioned

above, the Enterprise Project ([Stader96]) and the Toronto Virtual Enterprise (TOVE)

project. The PIF ontology was designed to exchange process descriptions between business

process modeling and a tool repository. The basic criterion followed in PIF is that

generality is preferred over efficiency; only the minimal set of classes is used and is

expanded as needed. The Enterprise Project is a major project using an ontology to model

business environment. The Enterprise Ontology was developed to archive integration for a

variety of enterprise tools used in the project. The ontology is a set of terms frequently

used in enterprises, and it focuses on the following areas: organization, strategy, activities,

processes and marketing. All terms used in the project are committed to this ontology. The

ontology is encoded in KIF (Knowledge Interchange Format). The TOVE project was

developed by Grüninger and Fox. Its basic goal is to create enterprise models capable of

answering queries by using what is explicitly represented and what can be deduced. It is a

formal approach to ontology engineering.

2.3 THE USE OF ONTOLOGIES IN NATURAL LANGUAGE SYSTEMS

Some systems that currently deal with NLP already adopt some type of ontology for their

more abstract levels of information. Complex NLP systems need to represent knowledge of

the world, both general common-sense (in general-purpose systems) and domain

specialized (in specialized systems). Most of these systems incorporate linguistic

knowledge into their world knowledge representations. Bateman studies the use of

ontologies in the main NLP systems in [Bateman91]. He distinguishes three different types

 49

of ontologies representing three different approaches to organizing world knowledge in

NLP systems: conceptual ontologies, mixed ontologies and interface ontologies.

Conceptual ontologies

Conceptual ontologies are abstract organizations of essentially non- linguistic world

knowledge. Some NLP systems use language-neutral ontologies to organize concepts in

the domain world. Most AI designed ontologies (e.g., CYC) belong to this group.

Mixed ontologies

Mixed ontologies are abstract semantic-conceptual representations of world knowledge

used as semantics for grammar and lexicon. Lexical entries directly contain categories of

the ontology, which are categories of real-world knowledge. Important examples of

systems using this type of ontology are: the LILOG natural language understanding

project, the ACE system ([Jacobs87]), a framework for language generation in interfaces

for KBSs, and Mikrokosmos ([Malesh95]), a machine translation system.

In the ACE system, the main principle followed in knowledge organization is the encoding

of metaphorical relationships and other associations among concepts that capture certain

generalizations about language use. In this system, linguistic structures are directly

associated with conceptual categories in which world knowledge is represented.

In the Mikrokosmos system, the ontology is used in language interpretation and generation.

The meaning of natural text is represented in a language-neutral interlingual format as

instantiated elements of the ontology. The lexical items are defined in terms of their

mappings onto ontological concepts.

Interface ontologies

Interface ontologies are abstract organizations that act as interfaces between world

knowledge and grammar and lexicon. The purpose of this approach is to establish a

linguistically motivated organization of objects and relations in which application

specifications could be represented. Relations between categories and linguistic

distinctions can be more or less direct. The GUM and Accord are examples of systems

using this approach. Systems using an interface ontology may also need a conceptual

ontology when applied to complex domains and/or applications. This is the case of the

system ONTOGENERATION, described in [Aguado98]. ONTOGENERATION is a

Spanish information retrieval system pertaining to the chemical domain. It uses an

 50

ontology for chemicals (called CHEMICALS) to represent this domain and the GUM

ontology to interface domain knowledge and linguistic resources.

The approach used in mixed ontologies, distinguishing only the syntax level and the

conceptual level, is supported by many linguistic works. One relevant example of this

work is that of Jackendoff, defining the grammatical constraint ([Jackendoff83]) and the

X-theory ([Jackendoff77]), in which the linguistic categories proposed are closely related

to semantic-conceptual categories.

The approach used in interface ontologies, stratification between lexico-grammatical

information, semantic information and conceptual information, is also supported by some

linguistic theories, such as the systemic-functional theory, defined by Halliday

([Halliday85]) and used in the GUM.

According to Bateman, language is the best criterion to follow in ontology design,

although since many linguistic details are domain-dependent it is not easy to achieve a

domain- independent knowledge organization where specific linguistic distinctions are

considered. Different solutions to this problem are presented in mixed and interface

ontologies. In mixed ontologies, of the general conceptual classes proposed, few maintain

contact with details of linguistic realization (e.g., action, state, object, place, etc.). There is

no such methodology for expanding these general classes in a particular domain

representing specific linguistic distinctions. Conceptually and linguistically motivated sorts

are usually mixed, and the resulting ontologies are loose. In interface ontologies, classes

are usually not so abstract and are directly related to linguistic distinctions. The dilemma is

that, while abstract classes are necessary for improving the functionality of the system,

classes closely related to linguistic distinctions are the best suited for NLP systems dealing

with a wide variety of linguistic phenomena. The dilemma can be summarized as general

versus domain specific and, particularizing it to conceptual knowledge representation,

conceptual versus lexical ontologies.

Those ontologies that are particularly close to language are used to represent the lexicon

directly. The most relevant projects working conceptual-based versus lexical-based

representations are WORDNET ([WORDNET98]) and EDR ([Matsukawa91]).

WORDNET is an English lexical/conceptual ontology, in which lexical objects are

organized semantically. In WORDNET, the lexical unit is the synset, a set of words

 51

assumed to be quasi-synonyms1 related by means of conceptual-semantic and lexical

relations, such as relations of hyponym (superclass) and metonymy (part-whole).

EUROWORDNET (EUROWORDNET98]) can be seen as a multilingual extension of

WORDNET. The aim of the project is to build wordne ts for several European languages

linked by means of semantic relations. EDR is a Japanese project to construct a conceptual

dictionary for English and Japanese. A promising methodology in the development of

these ontologies closed to language is that based on automatically extracting syntactic and

semantic information from large parsed corpora. Classifications could be built

automatically or semi-automatically by using this methodology.

An important work in the area of ontologies for natural language processing is that of the

ANSI group on Ontology Standards and that of the EAGLES Lexicon/Semantics Working

Group for creating a consensus on the design of ontologies for NLP.

1Used as synonyms in some context

 52

CHAPTER 3

THE FUNCTIONALITY AND ARCHITECTURE OF GISE

As mentioned in the introduction, the aim of this thesis is to study how the NL

communication between users and KBSs can be improved. This thesis proposes a new

approach to improving the development and functionality of NLIs for KBSs. The approach

is based on the study of the most appropriate representation of the different types of

knowledge involved in communication with KBSs. GISE (Generador de Interfaces a

Sistemas Expertos), a system using an ontology to automatically generate the most

appropriate NLI for each application is proposed. The central issues of the system design

are discussed in this chapter.

This chapter has been organized into three sections. The first section describes the

functionality of the system proposed. Its architecture is detailed in the second section. The

third section describes the process of generating an NLI for a specific application.

 53

3.1 THE FUNCTIONALITY OF GISE

3.1.1 Main goals in the functionality of NLIs to KBSs

As pointed out in the previous chapter, most improvements in human-computer technology

have been achieved by adapting the interfaces to the performance of the applications and

users. Interfaces have been adapted to the different types of users by incorporating

techniques guiding the user with respect to system capabilities, such as menu-systems,

helping tools and explanations. These techniques help in preventing mistakes and

misunderstandings during the communication process, improving its friendliness and

effectiveness.

Several approaches have been followed when adapting NLIs to applications. Most of these

approaches consist of adapting the linguistic resources to the communication tasks required

for each application. These approaches have been successfully followed for developing

interfaces to systems using restricted linguistic resources, such as database consulting

systems.

Application-restricted resources for KBSs are more difficult to obtain because they require

larger linguistic resources to express all the tasks involved in communication. Besides, no

schema or description is available for KBSs. This means that there is no easy way to obtain

information about propositions. Propositions may have arbitrary meanings. Another major

difference in the functions of KBSs and DBSM is in that DBMS is only expected to supply

user requests. A KBS is a problem solver. Users consult it about an issue and it must

gather information in order to advise them. For these reasons, the cost of developing,

maintaining and tailoring the linguistic resources adapted to the functionality of the

specific KBS is high. Different profiles of expertise are needed (linguistic, expert on the

domain, expert on the application, etc.).

One of the main goals of this work is to study how general resources can be adapted to

each specific KBS automatically or semi-automatically. For this purpose, a system is

 54

proposed that provides a framework to represent the specification of the domain and the

functionality of the application in a conceptual ontology supporting NL interaction.

3.1.2 Main issues of the functionality of GISE

GISE was designed to automatically generate application-restricted NLIs from application

specifications. The central issue in the system design is the study of the appropriate

representation of the different types of knowledge involved in the communication. These

different types of knowledge have been represented in separate reusable bases.

The general knowledge needed to model the KBSs as well as the knowledge representing

the tasks involved in their communication with the users is defined in the CO. It is to be

noted that only entities and tasks involved in the communicative process need to be

modeled. It is not necessary to build a model of the whole KBS. In the case of the whole

KBS being organized around an ontology, only those concepts appearing in the

communication would have to be adapted to the CO.

The tasks of communication mainly consist of operations consulting and describing

particular knowledge on the application. These tasks are represented as operations on the

concepts modeling the application in the CO. Examples of basic operations are those

creating or removing instances of concepts modeling the application, filling their slots,

connecting instances, and querying their properties.

The linguistic knowledge needed to express all possible communication tasks is

represented in a linguistic ontology (LO).

Finally, there is a set of general rules controlling the process of adapting the general

resources to those required for a specific application. This process consists of adapting the

general communication tasks to the application knowledge represented in the CO and then

the linguistic knowledge represented in the LO, in order to express these application tasks.

This process is described in Figure 3.1.

As shown in the figure, obtaining the specific grammar and lexicon for an application is

performed by a set of control rules using conceptual (both general and domain/application

specific) and linguistic information as knowledge sources. The cost of developing NLIs is

reduced because the knowledge sources necessary for the communication are reused.

 55

GISE

APPLICATION LEXICON

CONTROL DESCRIPTION

CONCEPTUAL ONTOLOGY

LINGUISTIC ONTOLOGY

GENERAL LEVEL

APPLICATION LEVEL

DATA DESCRIPTION

APPLICATION GRAMMAR

NL INTERFACE

CONTROL RULES

Figure 3.1: The process of generating an application-restricted NLI

Building an interface is an incremental process of acquiring the knowledge sources

involved. First, the domain and functionality of the application must be represented in the

CO. The possible lexical realizations of the concepts involved in the communication must

be represented in the set of application terms. Once all these knowledge sources have been

updated, the control rules adapt the general linguistic knowledge in the LO to cover the

specific communication tasks for an application.

A basic set of control rules was defined to generate interfaces supporting the linguistic

coverage needed in the communication with different types of KBSs. However, this set of

rules can be extended and modified to enrich the language coverage.

The resulting interface and the CO are integrated into the KBSs. Several forms of

integration are allowed. The NLIs generated could also be integrated together with other

modes of communication. Chapter 7 describes more precisely the interfaces generatedby

GISE, and how they can be integrated into the application.

 56

3.1.3 The functionality of the interfaces generated by GISE

The aim of this thesis is to improve the NL communication process with any KBS.

However, in order to reuse the different types of knowledge involved in the development

of an interface, the system designed was restricted to a class of KBSs: the ESs performing

heuristic classification. Most currently existing industrial ESs belong to this category. This

limitation involves a reduction of the type of communicative tasks to be covered by the

interface, but does not affect the architecture and functionality of the system. The system

design can easily be extended to cover other communicative tasks following the same

methodology.

As the basic task in the ESs considered here is classification, the knowledge in these ESs

and the information provided by the user (directly or as a result of a query) is used to

classify a case into one of a set of defined classes. In these systems, communication with

users usually relies on a taxonomy of objects having different properties and relationships.

System intervent ions consist of describing parts of this taxonomy and querying the user

about unknown or poorly established facts. User interventions are contributions enriching

the taxonomy and queries for a partial description of it.

The functionality of GISE is to obtain user- interfaces, that is, interfaces supporting the

communication between the users and the KBS during the exploitation phase, when the

final users execute the application. In this phase, the KBS acts as a consultant for solving

problems in its domain, such as asking questions about a problem at hand, answering

queries and displaying results. However, the functionality of the interfaces generated could

easily be extended to the acquisition phase. The design proposed could be adapted for

generating expert- interfaces, supporting the communication with the expert when the

knowledge acquisition is undertaken, in the building phase.

The interfaces generated by GISE use expressive and precise language adapted

dynamically to the evolution of the communicative process and the application tasks.

These interfaces support the language required to express, in a natural way, operations

consulting and describing the application knowledge represented in the CO.

Users can introduce the sentences either by typing them in or by using a menu-system

guiding the users in introducing the NL options that are acceptable to the system at each

stage of the communication. The incorporation of a menu-system guiding the user in

 57

building NL sentences solves the problem of lack of user knowledge of the sublanguage

acceptable to the system, thereby improving user satisfaction. By restricting the language

to the application and by incorporating a menu mode guiding the users, mistakes and

misunderstandings in the communication are avoided. The task is entirely successful

because only the expressions of the tasks that the application can perform are supported by

the grammar. The cost of dialogue is low because users are guided in introducing each

word of the sentence.

The friendliness of the generated interfaces has been improved with the incorporation of

helping tools, such as an option giving information about the interface lexicon and another

option that allows the user to correct previously introduced NL options.

The system design could also be adapted to performing other tasks requiring the definition

of general relations between global linguistic knowledge and specific application

knowledge, such as generating explanations, descriptions and summaries.

3.1.4 Applications of GISE

GISE was initially applied to an ES in law, SIREDOJ (Intelligent System for Legal

Information Retrieval). SIREDOJ simulates a specialist in duty inquiries in the field of

building contracts. It simulates different tasks: it establishes the type of contract, the

subjects involved, knowledge of content, etc. The user introduces all the information about

a case and the application then displays the juridical conclusions with the legal

justifications, just as a specialist would do.

The SIREDOJ knowledge base is restricted to a set of types of contracts. The

representation of the application on the GISE CO includes the description of different

concepts involved in building contracts. The most relevant concepts represented are:

CONTRACT, BUILDING_CONTRACT, CONTRACT_PARTS, CONTRACT

INFORMATION, REQUIREMENT and the three different types of duties in the

building contracts: BUILDING_REQUIREMENT, DELIVERY_REQUIREMENT and

PAYMENT_REQUIREMENT. The description of these concepts is provided by a set of

attributes. These attributes are also represented as CO entities and are described by a set of

descriptors or facets.

 58

In order to enrich the different knowledge sources involved in the process of generating

NLIs, GISE was applied to a different type of application: consulting system in the

railways domain. The concepts involved in this type of application are simpler than those

in SIREDOJ. The number of concepts and attributes representing this application in the CO

is, however, larger. The main concepts represented are: TRAIN (and its subclasses

representing the different types of trains), TRAIN_STATION, LINE, SEAT_FARE,

PRICE and DISCOUNT. These concepts were described by a set of attributes. For

example, the attributes describing the concept TRAIN give information about departure

and destination stations, schedule, seats, etc.

The grammars generated by GISE for these two applications are described in Chapter 8.

All the examples illustrating particular decisions on the system design in the following

chapters are obtained from these two applications. The concepts identifiers are presented in

bold upper case letters. The identifiers of the attributes describing these concepts are

presented in bold lower case letters. Although the concepts and attribute identifiers are in

English, its superficial realization is in Spanish.

3.2 THE ARCHITECTURE OF GISE

The appropriate organization of the different types of knowledge involved in the NL

communication with KBSs is crucial in order to favor its efficient processing and reuse. As

Bateman discusses in his survey on the ontologies for NLP in [Bateman91], representing

conceptual and linguistic knowledge separately is especially necessary to capture

generalizations between conceptual information and its expression. Bateman proposes a

methodology for constructing ontologies for NLP. This proposal consists of representing

world knowledge in a CO, and semantic-syntactic knowledge in a separate ontology, acting

as an interface between the lexico-grammatical resources and the CO.

Organizing the information in multiple strata or levels is justified for theoretical and

practical reasons. This organization supports theoretical positions that assume a higher

degree of stratification of the linguistic system between lexico-grammatical information,

 59

semantic information and conceptual information. It provides a more flexible and efficient

representation of the relationships between conceptual categories and the linguistic

categories supporting their expression. Besides, this organization also captures general

relations between knowledge represented in different levels. The relationships between the

levels are strong, the design of the interface ontology is guided by the lexico-grammar

constructions and the classes (or sorts) in the CO.

A similar organization has been adopted in GISE to represent all knowledge involved in

NL communication with KBSs. This knowledge consists of the application knowledge

appearing in communication, communication tasks, the linguistic knowledge supporting

the expression of such tasks, and the general relations between the different types of

knowledge involved. This knowledge has been organized in separate data structures: the

CO, a semantic-syntactic taxonomy of the attributes describing the concepts, the LO and

the control rules. These knowledge bases are represented in Figure 3.2.

CONTROL KNOWLEDGE: CONTROL RULES

 CONCEPTUAL ONTOLOGY

 GENERAL LEVEL

 APPLICATION LEVEL

 APPLICATION DOMAIN AND
 FUNCTIONALITY

LINGUISTIC
ONTOLOGY

Figure 3.2: The knowledge bases involved in the communication process

 60

3.2.1 Conceptual Ontology

The CO provides a conceptual framework allowing the automatic construction of NLIs

that, once included in the overall application, could be responsible for all the

communicative tasks between user and application.

All the knowledge in the CO is organized at two levels: the general level and the

application level. The general level describes the conceptual knowledge common to all

applications. The application level describes a specific application as well as its

communication tasks.

The basic entities distinguished in the CO are concepts, attributes and operations. Concepts

are described by a set of descriptors or attributes. Attributes describing concepts and

operations concerning these concepts are described by other attributes called facets2. There

is a set of obligatory structural properties that must be used when describing application

concepts and attributes. These properties are also represented as facets in the objects

description. This information is used by the system when generating the most appropriate

interface for a specific application. An example of these structural properties is the facet

interface_entity, which must be present in all application concepts and attributes. Its

value, yes or no, indicates whether or not the concept or attribute is used during

communication.

Concepts, attributes and operations are organized in three separate but related taxonomies.

The taxonomy classifying the attributes is semantic-syntactic motivated. The purpose of

the taxonomy of attributes proposed is to organize the meanings that need to be expressed.

These meanings basically consist of operations regarding the attributes of the concepts in

the CO. This taxonomy acts as an interface between the conceptual knowledge

2 Although in literature the term facet is used for attributes describing conceptual attributes, in this thesis the
use of this term is not restricted to that type of attributes. The term attribute is used for referring to conceptual
attributes giving conceptual information. The term facet is used for all other attributes: the attributes describing
structural properties of concepts as well as those describing conceptual attributes, operations and LO objects.

 61

representing the application in the CO and the linguistic structures required for its

expression in the LO.

3.2.2 Linguistic Ontology

Linguistic knowledge is represented in the LO. The LO represents the linguistic structures

required to express all possible communication tasks. The LO was organized following the

basic principles of the Nigel grammar (described in [Nigel88]). The linguistic structures

constituting the general grammar are described as classes in the LO. Representing the

general grammatical structures in an LO facilitates the process of obtaining the particular

grammatical structures adapted to each application. To improve this process, a domain

level with the linguistic structures required to express the communication tasks was also

included.

The words common to all applications, such as auxiliary verbs, articles and prepositions

are incorporated into the LO. For each application, the realization of the application terms

used in the communication must be described. The syntactic information associated with

each possible lexical realization must also be provided. This information consists of the

category and the syntactic features (gender, number, tense, etc).

3.2.3 The control rules

The relationships between conceptual and linguistic knowledge determining the linguistic

resources most appropriate to a specific application are represented by a set of general

control rules. These rules control the process of relating the general linguistic structures in

the LO to the application requirements. This process is carried out in two steps. First, the

CO operations representing the general communication tasks are adapted to the application

concepts. Then, the application-specific communication tasks are related to the linguistic

structures in the LO supporting their expression.

 62

The description of all these knowledge bases is detailed in the following chapters.

Application knowledge, communication tasks in addition to the semantic-syntactic

taxonomy of the conceptual attributes represented in the CO are described in Chapter 4.

The LO is detailed in Chapter 5. The formalism of the control rules as well as the basic set

of rules defined for different types of KBSs are described in Chapter 6.

3.3 THE PROCESS OF GENERATING THE INTERFACE

The use of large coverage linguistic resources for specific applications has proved

unsatisfactory. The space and run-time requirements are too large. Application-restricted

grammars improve efficiency in language processing but are expensive to develop and

difficult to reuse, especially for complex systems like KBSs. Several strategies have been

attempted that are aimed at reducing the cost of creating application-dependent grammars.

This adaptation process can be performed by generating a specific application subgrammar

or by providing the grammar of a dynamic mechanism to restrict the grammatical options

at run-time. The cost of generating application-tuned subgrammars is reduced when

undertaken automatically, as is the case in some recent work, such as that described in

[Henschel97]. In most systems, application-restricted grammars are obtained from

linguistic resources restricted to supporting communication with one type of application

(or more). Examples of such work are described in [Caldwell94] and in [Busemann98].

Using dynamic mechanisms is also an efficient way of restricting grammar, as established

by the dynamic rule pruning mechanism described in [Dowing88]. This pruning

mechanism is based on information available at run-time and is used to reduce the

grammatical options that must be considered.

In this proposal, the LO is adapted automatically to the communication tasks required for

an application in order to obtain application-restricted dynamic grammars and lexicons.

Although the LO describes general linguistic structures, it also includes a domain-

motivated level restricting general structures to those required in communication with

different types of applications. This level improves the efficiency of the adapting process.

 63

The current section describes general aspects involved in the generation of the most

appropriate grammar and lexicon for each application. The general process of adapting

general linguistic knowledge to the communication tasks required for a KBS consists of

three steps. These three steps are:

Step 1. Providing the application with domain-specific knowledge.

Step 2. Adapting the general communication tasks to cover application knowledge.

Step 3. Adapting general linguistic knowledge to express the communication tasks

required for an application.

The system designer must perform the first step. A set of general control rules is in charge

of the two other steps. These three steps are described below.

3.3.1 Providing domain-specific knowledge

The first step in generating an application-restricted interface consists of providing the

system of the domain and functional knowledge of a specific KBS. In order to generalize

this process to different applications, a general organization of the knowledge needed to

represent the application is defined in the general level of the CO, as described in the

previous section. The application’s domain-specific knowledge must be represented in the

CO application level. Additionally, the application’s functionality and domain must be

described following the basic commitments in the CO design.

Because the general knowledge needed in communication with KBSs has been already

represented in the CO, the process of building the domain ontology for a specific

application is reduced to organizing application knowledge that appears in communication

as an instantiation of the CO general level. This process can be described as follows:

Step 1.1. Providing the description of the concepts of the domain. Each concept must be

described by an identifier, a primitive relation (isa or instance) relating it to the taxonomy

of concepts in the CO, a set of attribute-values and the obligatory structural properties.

Optionally, preconditions on the concepts can be incorporated into its description.

 64

Step1.2. Providing the description of the attributes describing the concepts of the domain.

The identifier, the domain, the range, the class they belong to and the structural properties

must describe all attributes appearing in the definition of concepts. If the range of the

attribute is a closed set of values, this set must be included in the attribute definition.

Closed values can be represented either as a simple set of individual terms or as menus ,

that is, lists of values that are displayed in the screen during the communication.

All the attributes describing the concepts have to be classified according to the taxonomy

of attributes containing semantic-syntactic classes. New subclasses of attributes adding

new semantic-syntactic information can be incorporated into the taxonomy of attributes. In

order to add a new class to the basic ones already established, it is only necessary to

provide the name, its upper classes and other attribute facets (if necessary) in the CO. If

new linguistic classes supporting the realization of the attributes in this new class are

required, they have to be incorporated into the LO.

Step1.3. Providing the lexical realization of the application concepts, attributes and values

and their linguistic description. A link to its lexical realization represented in the set of

terms is provided only for objects defined as interface entities. Each application term can

be linked to one or more lexical realizations. For each term realization, the syntactic

category and its the syntactic features (in current design, gender, number and tense) must

be provided. The realization of a term is not reduced to single word; a nominal group and a

multi-word phrase can also represent it. Optionally, synonyms and abbreviations (such as

acronyms) can also be incorporated to provide a friendlier expression. More than one term

can be provided to represent different realizations of the same concept or attribute.

As the approach proposed is independent of the implementation language, existing tools

and environments helping to build ontologies in different languages can also be used to

implement or translate the domain-restricted ontology.

3.3.2 Tuning to task-specific communication

 65

As mentioned before, the functionality of the NLIs has been improved by restricting the

linguistic resources to those needed in the communication between the user and the KBS.

For this reason, not only must the application domain knowledge be specified, but so too

must the communication tasks over this domain. The communication tasks basically

depend on the type of application.

The linguistic structures required to express these operations have to be represented in the

LO. For this reason, the communication tasks considered in GISE were restricted to those

appearing in a specific type of KBSs, the ESs relying on heuristic classification. The

communication tasks in these ESs basically consist of providing and consulting

information about particular cases in a specific domain. These communication tasks have

been represented in the CO as operations that create, describe and consult CO concepts.

However, the incorporation of new operations to cover the communication tasks appearing

in other types of application will not represent any change in the process of obtaining the

most appropriate interface for an application.

For each application, once the domain-specific knowledge is provided, the general

communication tasks are adapted to that which is necessary for a specific application. This

process consists of creating instances of the CO operations that are applied to the concepts

modeling the application.

This process is performed automatically. It only requires the intervention of a system

specialist when new operation needs to be incorporated into the general taxonomy of

operations in the CO. The specific details of this automatic process-tuning to task-specific

communication are given in Chapter 6.

3.3.3 Tuning to specific NL coverage

The process of adapting general linguistic knowledge to a specific application consists of

adapting the knowledge in the LO to cover the specific communication tasks required for

an application. In order to generalize this process for different KBSs, gene ral relations

between conceptual and linguistic knowledge must be established. The study of the general

relations between the conceptual knowledge needed in the communication tasks and its

linguistic expression has been one of the most important objectives to this work. In order to

capture the specific syntactic details with regard to the realization of specific concepts, an

 66

appropriate representation of the conceptual and linguistic knowledge involved is required.

The CO and the LO were designed to support these general, application-independent

relations. The syntactic-semantic taxonomy of attributes, together with the control rules

relating the communication tasks for an application to its expression, provides the

knowledge necessary to automatically obtain the application-restricted grammar and

lexicon.

CHAPTER 4

CONCEPTUAL ONTOLOGY

4.1 INTRODUCTION

CO provides a conceptual framework for representing the conceptual knowledge involved

in the communication with KBSs. CO allows the automatic construction of application-

restricted NLIs.

Not all the concepts involved in the performance of the KBSs need to be modeled and

represented in the CO; this is required only for the concepts relevant to any communicative

task. This knowledge could be obtained from any internal explicit representation of domain

and behavior, but most KBSs lack this explicit representation. If the KBSs already use an

 67

ontology for its internal representation, this ontology could easily be adapted to the CO

proposed in this design.

Representing the application knowledge involved in the communication in a CO allows the

reusability of the interface-generating process in different domains/applications. It also

allows a separate development and a robust integration of communicative and application-

specific tasks. In order to generalize the process of obtaining application-restricted NLIs to

KBSs, not only the basic concepts and relations common to all KBSs need to be

represented but also the communication tasks needed in the exploitation phase, when the

user informs and asks about particular knowledge.

All conceptual knowledge needed in the communication process (general and application-

dependent knowledge) is described and structured in the CO. This knowledge is organized

following the Task-Based Specification Methodology (TBSM) for system modeling

described in [Yen93]. In such a methodology, the conceptual information is organized in a

Model Specification, including a Domain Model and a State Model, and a Process

Specification that includes functional and behavioral issues. All these aspects are covered

in the CO.

The CO represents the general knowledge common to all applications. This general

knowledge is instantiated for each application. The general knowledge is the skeleton for

anchoring the application knowledge for each KBS.

4.2 THE GENERAL COMMITMENTS FOLLOWED IN THE CO DESIGN

The main goals in this design are to build a reusable, extendible, comprehensible ontology

that is easy to integrate. The general commitments followed when representing the

conceptual knowledge in the CO are described below.

4.2.1 Basic relations

 68

The ontology is designed in an object- like fashion, where basic objects are concepts,

attributes describing concepts and operations on these concepts. There are two basic

relationships classifying these objects: subsumption (isa) and instantiation (instance). The

isa relation classifies a general object (a class) as a member of a more general object. The

instance relation classifies a concrete object (an instance) as a particular instantiation of a

general object.

4.2.2 Inheritance

The system allows orthogonal multiple inheritance; more than one dimension can be

considered when classifying objects. Information acquisition is carried out monotonically.

All attributes describing a class are inherited in the subclass. In the subclass, the range of

these attributes can be restricted to add new information. The information added in a class

(the attributes and their range) must be consistent with the information inherited.

Exceptions are allowed for specific cases, for example, the range of an attribute may not

belong to the range of the attribute in the upper class.

4.2.3 The organization

The basic entities distinguished in the CO are concepts, attributes and operations.

Concepts

Concepts include both physical and abstract entities. Their conceptual properties are

described by a set of descriptors called attributes. These attributes are also described as CO

entities. The structural properties of the concepts are described by a set of predefined

 69

descriptors called facets (as has been mentioned in previous chapter). For each

application, the concepts and their attributes appearing in the communication are

represented in the CO. There are, however, concepts and attributes not expressed during

the communication that also need to be represented in the CO for reasons of consistency.

The facet interface_entity attached to all CO entities indicates whether they are expressed

(the value of this facet is yes) or not (its value is no). Concepts and attributes appearing in

the communication must be linked to their linguistic realization by the facet lex.

Concepts in the application level either represent an individual or a collective. In this

design, collections are represented by sets, although other types of collections could also

be considered. A conceptual set is a particular type of concept represented by a set of

concepts belonging to the same class. The facets collective and has_member must be

attached to those concepts description. The members of the set must be also described in

the application level. The facet member_of relates the members to their set. If all the

members in a set have the same conceptual and structural properties, then there is only one

concept representing the prototype of the members. Their description must include the

facet prototype . If the members are not described exactly by the same attributes and

facets, then each member in the set is represented by a different concept.

Optionally, preconditions on the concepts can be incorporated into their description.

Attributes

Attributes are conceptual properties attached to concepts. Attributes are also represented as

objects described by other attributes, called facets. The obligatory facets for all attributes

are: interface_entity, domain, range and value .

The facet domain indicates the concept or concepts described by the attribute. The range

of the attributes can be open or closed. A closed range consists of a finite number of

possible values. The description of attributes having a close range must include the set of

all possible values. There are three different types of closed sets of values: yes/no, lists and

menus . The difference between these two types is that menus are displayed in the screen at

run-time to show the user all the possible values of an attribute. Menus are especially

useful for guiding the user on specific domain information. For example, in the CO

describing the ES in law SIREDOJ, several menus were defined: one for all types of

 70

contracts considered, one for all possible types of payment, one for all possible reasons for

not building, etc.

There are also attributes which values cannot be restricted to a predefined set, their ranges

is an open set. These values can be instances of concepts, quantities, proper names and

text. If the value of the concept must be a conceptual instance, all existing instances of that

concept are displayed on-screen and the user must select one (or more) of them. In the case

of the range of the attribute being a quantity or a proper name, a dynamic function asks

the user to introduce the value during the communication. Attribute values can also be

text, representing descriptions or comments.

An attribute describing a concept can have more than one value. The structural property

multiple must be included in the description of those attributes having more than one

value.

Operations

All allowed operations over the concepts are also represented as objects in the CO. These

operations represent all required communication tasks. The information describing an

operation is represented by a set of specific facets. These facets represent information

about the operation parameters and the operation preconditions.

Concepts, attributes and operations are organized in three separate but related taxonomies.

A similar conceptual organization in three separated taxonomies is followed in other well-

known conceptual ontologies for different purposes, including NLP. The organization of

these three basic entities in separate taxonomies is described in the following section.

All the knowledge in the CO is organized into two levels: the general level and the

application level. The general level describes the conceptual knowledge common to all

applications. This knowledge consists of the definition of the basic entities needed in all

applications.

A fragment of the general level describing the most general objects is shown in Figure 4.1.

 71

TOP

 CONCEPT ATTRIBUTE OPERATION

ABSTRACT_CONCEPT SIMPLE_CONSTRUCTIVE_OOF

isa isaisa

isa isa isa

isaisa...
...

...

Figure 4.1: A fragment of the CO general level

The application level represents the application concepts and attributes involved in the

communication as well as all possible operations on those concepts. The domain and

functional knowledge for a specific application is represented on the basis of the

knowledge described in the general level. Two sublevels were distinguished on the

application level: the description level and the case level.

The description level represents all concepts, attributes and operations describing the

application knowledge. The concepts and attributes must be defined manually following

the commitments described above. All communication tasks needed for a specific

application are obtained automatically by adapting the communication tasks in the general

level to the application concepts and attributes. This level cannot be modified during the

communication.

The case level describes all information about the specific cases examined by the KBS

during the exploitation phase. All knowledge represented at the case level is an

instantiation of the description level. While the description level is static, the case level is

dynamic. The case level is built incrementally during the communication process.

4.3 THE TAXONOMY OF CONCEPTS

 72

The basic concepts common to all applications are described in the gene ral level. GISE

does not provide an exhaustive classification of concepts. The system design could include

a general conceptual ontology, such as the CYC Top Ontology, available in [CYC98] and

the EuroWordNet Top Ontology, described in [EuroWordnet98]. A different possible

strategy would be to include a complete description of the domain and functional issues

common to all KBSs in the CO. However, because GISE was designed for communication

with different applications and domains, the criteria followed in the CO design was to

represent the minimum knowledge common to applications.

Each concept is described by an identifier, a primitive relation (isa or instance) relating it

to the taxonomy of concepts, a set of attributes and a set of facets. As described in the

previous section, attributes represent conceptual properties and their description must be

incorporated into the CO taxonomy of attributes. Facets represent structural properties.

The only obligatory facet for all concepts is interface_entity, indicating if they are

expressed during communication or not. If the value of this facet is yes, the concept

description must include a pointer, lex, to all its corresponding realizations.

Figure 4.2 shows an example of a class of concept, the class TRAIN_STATION. This

concept, as any other concept in the ontology, is described by a set of attributes, facets and

their values. The primitive relation isa indicates that TRAIN_STATION is a subclass of

the conceptual class PHYSICAL_CONCEPT. The value yes of the facet interface_entity

indicates that this concept appears in communication. lex is a pointer to its linguistic

realizations, described in the set of application terms. The rest of attributes describing the

class give the conceptual information necessary to describe particular instances of this

class during interaction with the user. These attributes must be defined in the general

taxonomy of attributes.

 73

 TRAIN_STATION

 isa: PHYSIC_ENTITY
 interface_entity: yes
 lex: (train_station)
 name
 city
 connects_to
 taxi
 car_park

Figure 4.2: The representation of the class TRAIN_STATION

The attribute name represents the station's name. Its value must be a proper name. The

range of this attribute is open; a dynamic function called name will request the attribute

value from the user during communication. The attribute city represents the name of the

city in which the train station is located. Its value must also be a proper name. The function

name will ask the user to introduce the city name at run-time.

The attribute connects_to represents the names of all the train-stations connected. Its value

can be zero, one or more names representing instances of the class TRAIN_STATION. Its

value is defined as an instance value. All the existing instances of the concept

TRAIN_STATION will appear on-screen at run-time to guide the user to introduce the

correct value. By showing all acceptable options on-screen at each state of the

communication, the user is compelled to appropriately relate the new instance to the

existing instances in the case ontology, thereby assuring its consistence.

The attribute taxi indicates if there is a taxi station close to the train station. The attribute

car_park indicates if there is a station car park. The range of the two attributes is the

closed set yes/no.

4.4 THE SYNTACTIC-SEMANTIC TAXONOMY OF ATTRIBUTES

 74

As mentioned in the introduction, one of the most important problems to solve in the

conceptual representations used in NLP is how application knowledge can be related to its

linguistic realization in a general way.

In terms of Bateman’s classification, there are three different types of ontologies in NLP:

conceptual ontologies, representing only conceptual knowledge, mixed ontologies, where

conceptual and linguistic knowledge is mixed, and interface ontologies, where the

organization of knowledge is basically linguistic. According to this classification, the CO

proposed is conceptually motivated because only conceptual knowledge is considered

when defining the taxonomy of concepts. Linguistic knowledge is not considered.

However, the basic classes of concepts in the CO can be related to general linguistic

categories because there is a strong relationship between the organization of language and

knowledge, as supported by many current linguistic theories.

The taxonomy of attributes acts as an interface between the conceptual knowledge

representing the application, and the linguistic knowledge needed for its expression. It

facilitates the generalizing of the process obtaining the linguistic structures required for the

expression of the application specific conceptual knowledge. The linguistic realization of

the attributes is very important in this design because the communication tasks supported

basically consist of the expression of operations on the attributes of concepts representing a

specific application. All conceptual attributes are classified in the taxonomy according to

their linguistic behavior. The syntactic-semantic classification of attributes allows a variety

of different linguistic coverage for each attribute class.

This approach has proved satisfactory because it avoids the problem of mixing ontologies,

where conceptually motivated and linguistically motivated classes are mixed, which results

in these ontologies being loose. In this proposal, the conceptual and linguistic knowledge is

represented as completely separate and the syntactic-semantic taxonomy acts an

intermediate level relating both. Although this classification was incorporated into the

general level of the CO, where conceptual knowledge common to all applications is

represented, it is completely independent of the conceptual knowledge.

The problem of relating attributes to the different grammatical structures for obtaining

interfaces to software applications has been studied in several works. The most important

of these is Perkins ([Perkins89]), categorizing the attributes into 16 types and assigning to

each attribute type a question template, a declaration template and an uncertain template.

 75

These types of attributes were obtained by analyzing the linguistic behavior of existing

interfaces to KBSs. Only a restricted type of simple sentences was considered when

establishing this classification.

The attribute taxonomy proposed in this thesis is the result of considering existing

classifications of attributes of concepts, such as that by Perkins and the GUM

([Bateman90]), and by means of an empirical evaluation of the sentences used in different

KBSs. In this taxonomy, linguistic behavior is considered when defining the basic attribute

classes. All the attribute classes distinguished are necessary to reflect different surface

realizations.

The linguistic information associated with each attribute class is represented in its facets.

This information relates the attributes in the class to the LO structures representing the

different forms of expressing the operations of consulting and filling the attributes. The

facet decsent, links the attribute class to the to the linguistic structures required to express

the filling operation and the facet intsent links it to those linguistic structures expressing

the consulting operation. The information represented in these facets includes, as well,

specific constituents of the LO structures associated with the attribute class, such as

prepositions, interrogation pronouns and adverbs.

The basic attribute classes are:

- WHO_DOES

- WHO_OBJECT

- WHAT_OBJECT

- IS

- HAS

- OF

- DOES

These seven basic attribute classes are associated with grammatical roles: participants

(WHO_DOES, WHO_OBJECT, WHAT_OBJECT), being (IS), possession (HAS),

descriptions and relationships between two or more objects (OF) and related processes

(DOES).

Subclasses are obtained from basic classes considering other information relevant for the

linguistic realization of attributes. The OF class was subdivided into three classes:

- OF_PERSON

 76

- OF_OBJECT

- OF_DESCRIPTION

The class OF_PERSON describes relations between the concept representing a person and

one or more persons. The class OF_OBJECT represents relations between the concept

and one or more objects. The class OF_DESCRIPTION represents qualities and

circumstances related to the concept.

The class OF_PERSON_SIM was distinguished in the class OF_PERSON. This subclass

represents relations between persons that are expressed by two different words: one for

each direction of the relation. Examples of attributes belonging to this class are father-son,

teacher-student and boss-employee.

The class OF_DESCRIPTION was subdivided into the classes:

- OF_TIME

- OF_PLACE

- OF_MANNER

- OF_CAUSE

- OF_QUANTITY

- OF_NAME

- OF_TYPE

These subclasses represent attributes describing time, place, manner, cause, quantity, name

and type respectively. They have been further subclassified considering specific linguistic

details in the expression of the attributes in the class, such as having an associated verb or

preposition.

Each attribute class is associated with one or more general forms to express the basic

operations of filling and consulting the attributes represented by the class. These forms

correspond to linguistic structures represented in the LO, described in next chapter. For

example, the filling of attributes in the class OF in Spanish is expressed using an

attributive clause of the form:

 <attribute_name> de <concept_name> es <attribute_value>

 (<attribute_name>of <concept_name> is <attribute_value>)

 77

where the concept name, the attribute name and the attribute value are represented by

nominal groups.

The general form for consulting the value of the attributes in this class is:

¿<interrogative pronoun> es <attribute_name> de <concept_name>?

 (<interrogative pronoun> is <concept_name> <attribute_name>?)

Depending on the subclass of the attribute, the interrogative pronoun would be cuál

(which), quién (who) or qué (what).

Although the consulting and filling of attributes belonging to the subclasses of the class

OF can be expressed following the general forms described above; there are patterns

associated with each subclass to express these operations more naturally.

For example, the class OF_QUANTITY describes attributes referring to quantities.

Attributes in this class always involve the use of a unit of measure. The interrogative

adverb cuánto/cuántos (how much/how many) appearing in the interrogation clauses

expressing consult operations on these attributes is also included in the description of the

class. In Spanish, attributes expressing a quantity have an associated verb (which

corresponds to an associated adjective in English).

Examples of attributes describing concepts and their classification in the taxonomy of

attributes are given next. These attributes belong to the classes OF_QUANTITY,

OF_NAME, OF_PLACE and DOES. The patterns associated with these classes are

described below.

The general form to express the filling of the attributes in the class OF_QUANTITY in

Spanish corresponds to simple transitive clauses of the form:

 <concept_name> <associated_verb> <attribute_value>

 (<concept_name> is <attribute_value> <associated_adjective>)

 There are two different consulting forms for attributes in this class:

 ¿Cuántos <associated_unit><associated_verb> <concept_name>?

 ¿Cuánto <associated_verb> <concept_name>?

 (How <associated_adjective> is <concept_name>?)

The pattern to express the filling of the attributes in the class OF_NAME is:

 <concept_name> se llama <attribute_value>

 78

 (<concept>’s name is <value_name>)

The pattern to consult the attributes in this class is:

 ¿Cómo se llama <concept_name>?

 (What’s <concept-name> name?)

The expression of the operation to fill attributes in the class OF_PLACE is a clause of the
form:

 <concept_name> está en <attribute_name> <value>

 (<concept_name> is in <attribute_name> <value>)

 The operation to consult these attributes is a sentence of the form:

 ¿Dónde está <concept_name>?

 (Where is <concept_name>?)

The more natural form of expressing the operation of filling the value of the attributes in

the class DOES is an intransitive clause of the form:

 <concept_name> <attribute_name> <attribute_value>

 (The same form would be used in English)

The consulting of attributes in this class follow the form:

 ¿<attribute_name> <concept_name> <attribute_value>?

 ¿<concept_name> <attribute_name> <attribute_value>?

 (Does <concept_name> <attribute_name> <attribute_value>?)

An example adapted to show how highly language-dependent information is represented in

this taxonomy is given in Figure 4.3 and Figure 4.4. Only the relevant classes and instances

for a particular example are represented in these figures. The plain arrows represent a link

between a class (or instance) and its direct upper class. The dash arrows represent a link

between a class and an upper class indicating that the direct upper class is not shown in the

figure.

Figure 4.3 shows the representation of the conceptual class PERSON and its instance

JUAN. Several of the attributes describing these concepts are also shown in the figure. The

class PERSON possesses, among others, the attributes age, father and height. All of these

attributes are classified in the attribute taxonomy on the basis of their linguistic realization.

For example, let us consider the attribute age describing the concept JUAN. It is realized

 79

as the definite nominal group la edad (the age). This attribute belongs to the class

OF_QUANTITY. For this reason, the value of the attribute can be consulted following the

general form of attributes in class OF. The resulting clause will be:

 ¿Cuál es la edad de Juan? (What is Juan's age?)

However, the most natural form of consulting this attribute is following the general form

associated with the class OF_QUANTITY. That is using the clause:

 ¿Cuántos años tiene Juan? (How old is Juan?)

TOP

PERSON

lex: (persona)
age
height
father

ATTRIBUTEisa

JUAN

instance

lex: (Juan)
age: 30
father: Pedro
heigth: 170

CONCEPT

...

isa

isa

 OPERATION

 simplified link

direct link

isa
isa

isa

Figure 4.3: The class PERSON and its instance JUAN

Figure 4.4 shows the representation of the attributes describing the concept PERSON in

the taxonomy of attributes. The attributes age and height belong to the subclass

OF_QUANTITY. The attribute father belongs to the class OF_PERSON_SIM. The

 80

links to the linguistic realizations associated with the attribute are represented in the facet

lex.

TOP

ATTRIBUTE

domain
range
cardinality

 OF_QUANTITY OF_PERSON_SIM

range: quantity
unit
decsent:
(ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE)
(TRANSITIVE_CLAUSE_FILL_ATTRIBUTE)
intsent:
(PARTIAL_INTERROGATIVE_ATTRIBUTIVE
CLAUSE_CONSULT_ATTRIBUTE (introd que))
(PARTIAL_INTERROGATIVE_TRANSITIVE
CLAUSE_CONSULT_ATTRIBUTE (introd cuanto))

domain: person
range: person
decsent:
(ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE)
intsent:
(PARTIAL_INTERROGATIVE_ATTRIBUTIVE
CLAUSE_CONSULT_ATTRIBUTE (introd quien))
sim

 AGE

lex: (edad tener)
unit: (año)

 HEIGHT

lex: (altura medir)
unit: (cm)

 FATHER

 lex: (padre)
 sim: (hijo)

isa isa

isa

direct link

 simplified link

isa

instance instance
instance

...

...

Figure 4.4: The representation of the attributes describing the concept PERSON

The LO structures associated with the filling of the attributes are represented in the facet

decsent. This facet relates the class OF_QUANTITY to the LO classes

ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE, representing the general form for

filling attributes in class OF and TRANSITIVE_CLAUSE_FILL_ATTRIBUTE. The

 81

class OF_PERSON_SIM is also related to the LO classes ATTRIBUTIVE_CLAUSE

FILL_ATTRIBUTE.

The facet intsent relates the classes to the structures necessary for consulting them. The

class OF_QUANTITY is related to the LO classes PARTIAL INTERROGATIVE

ATTRIBUTIVE_CLAUSE_CONSULT_ATTRIBUTE and PARTIAL

INTERROGATIVE_TRANSITIVE_CLAUSE_CONSULT_ATTRIBUTE. The

interrogative pronoun associated with the clauses in the first class would be qué (what) and

the interrogative adverb associated with the second would be cuánto/cuántos (how

much/how many). The facet intsent relates the attributes belonging to the class

OF_PERSON_SIM to the LO class PARTIAL_INTERROGATIVE

ATTRIBUTIVE_CLAUSE_CONSULT_ATTRIBUTE. The interrogative pronoun

associated with clauses in this class is quién (who).

The same classification would be used for describing these attributes in English. The only

relevant difference in the realization of the classes of attributes described is that the

attributes in the class OF_QUANTITY expressed by an specific adjective in English (such

as in Juan is 170 cm tall), in Spanish are expressed by means of a specific verb (such as in

Juan mide 170 cm).

From the representations in Figure 4.3 and Figure 4.4, in order to fill the attributes age,

height and father of the instance JUAN, the interface would be able to accept the

following sentences:

Juan tiene 30 años (Juan is 30 years old)

La edad de Juan es 30 años (Juan’s age is 30)

Juan mide 170 cm. (Juan is 170 cm. tall)

La altura de Juan es 170 cm. (Juan’s height is 170 cm.)

El padre de Juan es Pedro (Juan's father is Pedro)

Juan es hijo de Pedro (Juan is Pedro's son)

Examples of sentences that could never be accepted from this representation are the
following:

 Juan mide 30 años (Juan is 30 years tall),

 Juan tiene 30 cm. (Juan is 30 cm old),

 82

 Juan is Pedro's father (Juan is Pedro's father)

All attributes describing concepts are represented in the attribute taxonomy. For example,

all attributes describing the concept TRAIN_STATION, shown in Figure 4.4, were

classified regarding its linguistic realization.

The attribute name belongs to the subclass OF_NAME. The attributes in the class

OF_NAME can be consulted using the form general to attributes in the class OF. In this

example, <concept_name> would correspond to the group la estación (the station) and the

<attribute_name> to el nombre (the name). The resulting clause will be:

 ¿Cuál es el nombre de la estación? (What is the station's name?)

However, following the more specific form for consulting attributes in the class

OF_NAME the resulting clause will be:

 ¿Cómo se llama la estación? (What is the station's name?)

The attribute city belongs to the basic class OF_PLACE. The filling of this attribute is
expressed in the clause:

 La estación de Sants está en la ciudad de Barcelona

 ([The] Sants station is in the city of Barcelona)

The attribute connects_to belongs to the basic class DOES. The more natural form of
expressing the operation of filling this attribute is:

 La estación conecta con <attribute_value>

 (The station connects with <attribute_value>)

Compound attributes, those expressed by two different terms, each representing a different

grammatical role were also considered. Two subclasses of compound attributes were

distinguished: the class IS_SUBJECT and the class DOES_SUBJECT. The first term

associated with attributes in these two classes represents an entity related to the concept

and the second term describes this entity. The class IS_SUBJECT is a subclass of the class

IS. It details the being or state of an entity describing the concept. The class

DOES_SUBJECT is a subclass of the class DOES describing the action carried out by an

entity describing the concept. The expression of attributes in these classes requires a simple

clause where the first term plays the role of subject. For example, the attribute

expenses_justified describing the concept PAYMENT_REQUIREMENT belongs to the

 83

compound class IS_SUBJECT. The range of this attribute is the set yes/no. The filling of

this attribute is expressed by an attributive clause having as its subject the first term (the

expenses) and as its attribute the second term (justified).

New classes can be added to the basic taxonomy when required.

The taxonomy of attributes is intended to be reusable across several languages. As

mentioned above, the NL used in the interfaces generated by GISE is Spanish. Thus, the

attribute classification is based on Spanish linguistic distinctions. Because most linguistic

considerations in classifying attributes are relevant in other languages, this taxonomy could

be reused with few changes. As an example of this, the same classification has been used

to obtain interfaces in Catalan. Experiences in multilingual systems, such as those with the

GUM, described in [Bateman94], demonstrate that linguistically motivated representations

are easily reusable across other languages when the abstract distinctions considered are

close enough to surface regularities, but are beyond specific surface realizations.

4.5 OPERATIONS

All communication tasks required during the exploitation phase are described in the CO.

These tasks are represented as a taxonomy of operations over the concepts representing the

application in the CO. This taxonomy of operations is included in the general level of the

CO. The operations required for a particular application are obtained from the general

operations. Specific application operations are represented in the application level.

Communication with the user is reduced to the expression of most of these operations.

Although the proposed design has been focused on the operations expressed in the

interaction with the user, a few of these operations perform tasks assuring the consistence

of CO that are not expressed during the communication. These operations are described as

internal entities, the value of the facet interface_entity is no. An example of such

operations is the operation for removing unconnected concepts.

In this design, the consistence of the CO is assured by guiding the user in introducing

correct sentences, those corresponding to consistent operations. However, because the

 84

interface design allows the introduction of the user sentences not only by choosing the

guided-menu options but also by typing them, operation-performing consistence tasks have

also been considered.

The operations are considered both in isolation and in combination. They are classified as

constructive or consultative and as simple or complex. Simple operations are those

operations over one single object. Simple constructive operations include creating and

removing unconnected concepts, filling attributes of a concept, adding or removing values

and connecting instances. Simple consultative operations include querying for the

instances of a class and obtaining the values of an attribute. Complex operations involve

several of these simple ones, e.g., creating a new instance with its attributes and classifying

it in the ontology.

All operations have a signature composed by a set of arguments (operands). Arguments can

be optional or obligatory and can be constrained in several ways. Preconditions can be

attached to operations to allow them to be triggered.

Operations, like concepts and attributes, are represented as objects in a taxonomic

structure. The arguments and preconditions of each operation are represented as facets. The

operation arguments are CO objects: concepts (classes and instances), attributes, values

and other operations. For each specific application, all allowed operations are generated.

Figure 4.5 shows a fragment of the CO representing several operations. As shown in this

figure, operations are represented as objects and their arguments as facets describing these

objects. These facets are con, representing a conceptual class, ins , representing a

conceptual instance, attr, representing a conceptual attribute and val, representing an

attribute value. The facets pco and pcc describing the classes of operations represent

precondit ions governing the operation performance. The formalism defining the

preconditions is explained in next section.

The operations described in Figure 4.5 belong to the class

SIMPLE_CONSTRUCTIVE_O, representing all simple operations modifying the

application case level of the CO. These operations perform the creation or modification of

an instance of a conceptual class defined in the application case level.

 85

OPERATION

 SIMPLE_CONSTRUCTIVE_O
 con

CREATE_INSTANCE_O
 pcc: (pcon _con)

 FILL_ATTRIBUTE_O
 ins
 attr
 val
 pco: (isa _attr attribute)
 pcc: ((instance _ ins _con)
 (pcon _ins _attr))

FILL_ATTRIBUTE_OF_QUANTITY_O
 pco: (isa _attr of_quantity)

 isa isa

…

…

CREATE_INSTANCE_WITH_NAME_O
ins

isa

FILL_ATTRIBUTE_O FILL_MORE_ONE_ATTRIBUTE_O

isaisa

isa isa

…

isa

isaisa

Figure 4.5: A fragment of the taxonomy of operations in the CO

Simple operations filling attributes of instances are classified according to the class of the

attribute to fill. For example, the FILL_ATTRIBUTE_OF_QUANTITY_O class, shown

in the figure, represents the operation of filling one attribute belonging to the class

OF_QUANTITY.

In order to consider only reasonable modes of interaction and offer them to the user by

means of the generated grammar, the system allows the definition of macro-operations or

complex operations. These macro-operations are used to implement some common ways

the users have of describing their information. People usually communicate their

knowledge by following paths attached to the possible connections between the objects

they are referring to. For example, after mentioning a new object, users usually want either

 86

to describe it or to connect it to previously defined objects. This can be accomplished by

defining the corresponding macro-operation in the CO application level.

An example of macro-operation is that involved in creating an instance, filling its attributes

and creating and describing all concepts appearing in its description that were not

previously created. The simple operation of filling one attribute (shown in Figure 4.5)

allows relating the instance described to another instance only if both instances have

previously been created. The macro-operation describing both a new and related instance

allows a more natural way of introducing new information.

Macro-operations can also be used to force the user to fill a mandatory attribute after

creating a new instance. Once the user has introduced a sentence to create an instance, only

choices relating to the instance-mandatory attributes appear on the screen.

4.6 PRECONDITIONS

Preconditions are attributes used in operations to represent the conditions that must hold in

order for an operation to be executed. Like other object descriptors, preconditions are

inherited through taxonomic links. The preconditions associated with the operations are

those concerning the correctness of its arguments. There are, in addition, preconditions that

can be associated with the concepts. Those preconditions describe the conditions that must

hold in order to create an instance of a specific concept, as well as those to fill each of its

attributes described in the conceptual class.

Preconditions can only be defined in the classes of the objects. Preconditions are

considered both during the process of obtaining the application-restricted grammar and

during communication. They ensure that only consistent grammar rules are generated and

that they are activated correctly during the communication process.

Two types of preconditions are distinguished: ontology preconditions and case

preconditions.

Ontology preconditions are preconditions constraining specific CO conceptual classes and

their attributes. Because this information would not be modified during the

 87

communication, ontology preconditions can be evaluated during the process of obtaining

the linguistic structures for an application. These preconditions are represented as the value

of the facet pco.

Case preconditions are dynamic conditions that must be checked during the

communication process. Most constraints between objects and their attributes cannot be

checked when generating the subgrammar for an application. These constraints depend on

the instances existing at each specific moment of the communication process. Case

preconditions are conditions governing instance existence and the values of their attributes.

These preconditions ensure, for example, that an instance exists before its attributes are

filled. These preconditions are represented as the value of the facet pcc. They are

incorporated into interface grammar rules and activated during the communication process.

The formalism used to represent preconditions is described in Figure 4.6.

As shown in Figure 4.5, the ontology precondition of the operation

FILL_ATTRIBUTE_O states that the attribute to fill must be previously defined in the

attribute taxonomy of the CO. This precondition is represented by the predicate: (isa _attr

attribute). This predicate indicates that the attribute to fill, represented by the variable

_attr is related to the class ATTRIBUTE by the relation isa.

The arguments of the operations are represented as facets. In the operation precond itions,

the arguments are represented by the variable which name consists of the underscore

character followed by the facet identifier. For example, the variable _attr in the

precondition described above, represents the value of the facet attr.

The case preconditions of the operation FILL_ATTRIBUTE_O ensure that the instance

is created before its attribute is filled and that the preconditions associated with the

attribute in the concept description are satisfied. The first case precondition is represented

by the predicate (instance _ins _con). It indicates that the instance, represented by the

variable _ins , is related by the relation instance to a concept class represented by the

variable _con. The last precondition, represented by the predicate (pcon _ins _attr), is a

reference to the preconditions on the attribute associated with the concept description. The

attribute is represented by the variable _attr and the conceptual instance is represented by

the variable _ins . All subclasses of the operation FILL_ATTRIBUTE_O inherit these

preconditions.

 88

< operation-preconditions > ::=
 < conceptual-preconditions > < case-preconditions >

< conceptual-preconditions > ::=
 pco: ({< consulting-class-predicate >})

< case-preconditions > ::=
 pcc: ({< consulting-instance-predicate >} /
 {< reference-concept-preconditions >})

< consulting-class-predicate > ::=
 < isa-predicate > / < has-value-predicate >

< consulting-instance-predicate > ::=
 < instance-predicate > / < has_value-predicate >

< reference-concept-preconditions > ::=
 (pcon concept-identifier) /
 (pcon concept-identifier attribute-identifier)

< concept-preconditions > ::=
 {(attribute-identifier < consulting-instance-predicate >)})

< isa-predicate > ::=
 (isa object-identifier object-identifier)

< instance-predicate > ::=
 (instance object-identifier object-identifier)

< has-value-predicate > ::=
 (has_value object-identifier object-identifier)

< object-identifier > ::=
 concept-identifier / attribute-identifier / value-identifier / < variable >

< variable > ::= _identifier

Figure 4.6: The formalism used to represent preconditions

An example showing how case preconditions are attached to a conceptual class is shown in

Figure 4.7. This figure describes the conceptual class BUILDING_REQUIREMENT.

This concept belongs to the CO representing SIREDOJ, the ES in law described in the

previous chapter. SIREDOJ is specialized in demands on duty related to building contracts.

The building requirement is one of the duties assumed in a building contract. If for a

specific case this duty has not been fulfilled, the specialist has to know the reasons in order

to advise the user about legal actions to be taken.

 89

 BUILDING_REQUIREMENT

 isa: REQUIREMENT
 interface_entity: yes
 lex: (building_requirement)
 bfulfilled
 reasonotbuilt
 reasontorefuseb
 pcc:
 ((instance _x contract_information)
 (reasonotfulfilled (has_value building_requirement bfulfilled no))
 (reasontorefuse (has_value building_requirement reasonotbuilt refuse)))

Figure 4.7: The representation of the concept BUILDING_REQUIREMENT

The case preconditions associated with the concept BUILDING_REQUIREMENT are

represented in the facet pcc. This facet is filled with a list of three specific preconditions

following the formalism described in Figure 4.6. These preconditions will guide the user to

introduce information about the building requirement for a specific contract. These three

preconditions are described below.

The first precondition is (instance _x contract_information). This precondition states

that an instance of the class BUILDING_REQUIREMENT can only be created if an

instance of the class CONTRACT_INFORMATION exists. In this precondition the

variable _x represents any existing instance of the CONTRACT_INFORMATION class.

The second precondition states that the attribute reasonotbuilt (representing the reasons

for not building) can only be filled if the value of the attribute bfulfilled is no. That is, the

user will have to enter the reasons for not building only in the event of construction not

being undertaken.

The third precondition states that the attribute reasontorefuseb (representing the reasons

to refuse to build) can only be filled if the value of the attribute reasonotbuilt is refuse.

That means the user will have to enter the reasons for refusing to build only if the party

that assumed building obligations has refused.

The following section details the attachment of the case preconditions to the grammar rules

generated for an application, as well as their evaluation during the communication process.

 90

 91

CHAPTER 5

LINGUISTIC ONTOLOGY

This chapter describes the linguistic ontology representing the linguistic knowledge

required for communication with KBSs.

5.1 INTRODUCTION

None of the general available linguistic resources was easy to adapt to the general design

proposed in this work. The main reason was the language, because there are few NLP

systems supporting NL communication in Spanish. Another problem was that existing

linguistic resources were not easy to adapt to generate application-restricted subgrammars

supporting communication with KBSs.

Most works on grammar development environments are oriented to analysis. The few

grammar development environments oriented to generation follow different approaches to

those that are analysis-oriented. Linguistic resources for language processing and for

generation have not yet come together, as pointed out by Bateman in [Bateman97b]. Since

early work on generations, functional and pragmatic issues have been cons idered as the

central areas, while most relevant works on analysis consider structure and syntax the

central areas when organizing linguistic resources. Different approaches in generation

focus the role of function to a greater or lesser degree.

 92

Although the linguistic resources in GISE are not used for generating NL but for

generating grammars to analyze user interventions, a linguistic organization focussing the

role of function was considered appropriate. For this reason, the linguistic knowledge was

organized following the basic principles of the Nigel grammar ([Nigel88]), a large

systemic functional grammar (SFG) of English based on Halliday’s work ([Halliday81]).

This grammar has been implemented as a component of the Penman text generation

system. As a result of many years of linguistic research and having been implemented for a

NLP system independent of any particular knowledge domain, the Nigel grammar covers

most important details to be considered in NLP. This grammar supports a broad coverage

of linguistic descriptions that provides mappings from enriched semantic specifications to

corresponding surface strings.

The main reason for adapting the basic principles followed by this grammar to our

proposal is that it places the communication function in the foreground. The functional

information concerning the communicative intent of some utterance determines the basic

organizations.

Functional grammars interpret language as a resource used in context. These grammars

assume that language is generated with some goal, to satisfy a particular need. For this

reason, they are especially appropriate for systems generating language or linguistic

resources for different domains and applications. Functional grammars are based on the

assumption that the differentiation of syntactic phenomena is always determined by the

function.

Grammatical structures (or units) are seen as configurations of functions in these

grammars. The constituents are viewed as fulfilling identifiable grammatical functions in

the context of the grammatical unit of which they form part.

Systemic-functional grammar is a particular kind of functional grammar. It is a theory of

grammar as a resource for expressing meanings. Meanings are realized by a network of

interlocking options. Grammatical forms are obtained by making choices in this network.

Three different types of metafunctions are distinguished in order to organize the different

kinds of functinalities that all uses of language achieve. These metafunctions cover all

kinds of functionalities that all uses of language achieve. These metafunctions are the

Interpersonal, the Ideational and the Textual. The Interpersonal metafunction is concerned

with how we interact with others in the environment. It determines the type of interaction

 93

(the mood, the modality, etc.). The Ideational metafunction is concerned with propositional

meaning and content. The Textual metafunction involves organizing the information to

reflect the emphases of the speakers. This metafunction is especially important in

multisentential texts.

The Nigel component has been designed and implemented following these theoretical

distinctions. It consists of the grammar and an interface between that grammar and the

environment. The information from the environment is obtained by making inquiries about

conceptual knowledge. The information required by the inquiries is provided by the

linguistically-motivated taxonomy, called the upper model. The upper model serves to

organize the conceptual knowledge that needs to be expressed in the language. All

concepts in the conceptual base representing any domain are related to the concepts in the

upper model taxonomy.

5.2 REPRESENTING THE LINGUISTIC STRUCTURES REQUIRED FOR

COMMUNICATION WITH KBSs

The design and implementation of the linguistic knowledge in this proposal, although

following the basic principles, differs significantly from that of the Nigel grammar. In the

design proposed in this work only the linguistic knowledge necessary for Spanish

communication with KBSs has been considered. However, this knowledge could easily be

extended in order to consider other languages and applications following the Nigel

grammar, which is a well-developed account of English grammar.

This general linguistic knowledge has been represented as an ontology. We have

considered it to be the form of representation best suited to this our proposal.

5.2.1 The basic principles followed in the LO design

 94

The linguistic structures constituting the general grammar are described as classes. The

distinctions represented in the class subsume all kinds of grammatical variations.

Defining the general grammatical structures needed for communication with KBSs in a

declarative and reusable form optimizes the process of obtaining the particular

grammatical structures adapted to each application. Besides, it facilitates the enlarging of

the linguistic resources when considering their different purposes.

The LO was designed by using the same form of representation as used in the CO, in an

object- like fashion where basic elements are objects described by a set of facets. Using the

same form of representation for conceptual and linguistic sources simplifies the

implementation of the relations between the two data structures.

Following the basic principles appearing in the Nigel grammar, the linguistic knowledge is

organized in two dimensions: rank and metafunction. Rank determines the scale at which

the grammatical structures are represented: clause, group and word. Metafunction

describes the three types of meaning described above: the Interpersonal, the Ideational and

the Textual. These two dimensions intersect and give all required grammatical structures

(or units). These structures are obtained by the making of appropriate choices of their

functions. The grammatical units are represented as linguistic classes.

Two levels are distinguished in the LO: the general level and the domain level. The

general level describes general linguistic classes. The various grammatical structures

required for communication with all KBSs were defined in the domain level. In this level,

the linguistic information in the general level is particularized to support the expressions of

the communication acts required in interfaces to KBSs. Including the domain level in the

LO improves the process of adapting the general grammatical structures to those required

for each specific application. In the domain level, the general classes are further

subclassified considering the taxonomy of operations representing the communication

tasks in the CO. The resulting classes represent all grammatical structures required for

communication with KBSs. These classes are used to obtain the grammatical resources

required to express the specific operations that can be performed for each application.

The linguistic classes represented in the general level are described in next section. The

classes described in the domain level are described in Section 5.4. The process of obtaining

the specific linguistic structures for each application is described in Chapter 6.

 95

5.3 GENERAL LINGUISTIC CLASSES

As mentioned above the linguistic knowledge is organized in two dimensions: rank,

representing the scale and metafunction, representing the different functions. The most

general classes in the LO are organized following the dimension rank and then are

subclassified considering the different possible functions within each class.

5.3.1 The rank dimension

The top class of the LO is rank. Within the top class, three main subclasses were defined:

the CLAUSE class, the GROUP class and the WORD class.

5.3.1.1 The CLAUSE class

A user intervention is simply any combination of clauses, minimally one clause. Clauses

may combine to form clause complexes but these clause complexes do not constitute a

rank higher than the clause.

The CLAUSE class has two subclasses: the MAJOR_CLAUSE class and

MINOR_CLAUSE class. Figure 5.1 shows how clauses are classified in the dimension

rank.

The MAJOR_CLAUSE class has a subject and a finite verb, although in Spanish the

subject can be elliptic. An example of major clause is the user intervention Las

obligaciones del contrato están cumplidas (The contract requirements are fulfilled),

appearing in the communication with the ES SIREDOJ.

The MINOR_CLAUSE class represents those clauses not containing a finite verb. Such

clauses contain one or more nominal groups. An example of minor clause is the user

 96

intervention Estación destino (Final station), in a consulting train system. Calls (Sir!),

greetings (Hello!) and exclamations (Ole!) are also included in the MINOR_CLAUSE

class.

RANK

CLAUSE WORD

MAJOR
CLAUSE

MINOR
CLAUSE

GROUP

isa

isa isa

isaisa

Figure 5.1: The classification of clauses in the dimension rank

5.3.2.2 The GROUP class

The grammatical unit group is structured as a group of words. The basic principle of

structural organization in groups is modification. A group has a head and a variable

number of modifiers.

 97

GROUP

ADVERBIAL
 GROUP

 NOMINAL_LIKE
 GROUP

 VERBAL
 GROUP

ADJECTIVAL
 GROUP

NOMINAL
 GROUP

QUANTITY
 GROUP

isa isaisa

isa isa isa

Figure 5.2: The classification of groups in the dimension rank

The class GROUP, representing all groups was subdivided into three subclasses: the class

NOMINAL_LIKE_GROUP, the class VERBAL_GROUP, and the class

ADVERBIAL_GROUP. These three classes cover all possible realizations of the

participants in the class. Nominal- like groups represent actors, goals, attributes, etc.; verbal

groups represent processes, and adve rbial groups represent circumstances (manner, cause,

etc.).

The NOMINAL_LIKE_GROUP class is subdivided into three classes according to the

class of word serving of the head. The NOMINAL_GROUP class has a noun as head. The

ADJECTIVAL_GROUP class has an adjective. The QUANTITY_GROUP class has a

quantity.

Figure 5.2 shows the classification of groups in the dimension rank.

5.3.1.3 The WORD class

The WORD class represents the minimum linguistic unit. Elements in the class WORD

cannot be decomposed. The classes distinguished in this rank are: NOUN, VERB,

ADJECTIVE, ARTICLE, ADVERB, PREPOSITION and CONJUNCTION and their

subclasses.

 98

The NOUN class was further subclassified into three classes: the COMMON_NOUN

class, the PROPER_NOUN class and the PRONOUN class.

Pronouns were considered as a subclass of nouns because pronouns have most of the same

functions and positions as nouns. Following traditional Spanish grammar pronouns were

subdivided into the following classes:

- PERSONAL, representing pronouns such as yo (I), tu (you)

 - POSSESSIVE, such as mío (mine), tuyo (yours)

 - DEMOSTRATIVE, such as éste (this), ése (that)

- RELATIVE, such as que (that), cual (which)

- INDEFINITE, such as algo (something), alguien (someone) and

- INTERROGATIVE, such as qué (what), cuál (which).

Verbs were classified according to the kind of complement they may have. The VERB

class was subdivided into the two classes: PREDICATING_VERB and

COPULATIVE_VERB.

Copulative or linking verbs are those of incomplete predication; they merely announce that

the real predicate follows. Copulative verbs were subdivided into ser/estar (be) and all the

others. One of the most important differences is that, whereas the other linking verbs are

followed mostly by predicative adjectives, be may be followed by many types of

complement such as adjectives, nouns, adverbs, noun clauses, etc.

The predicating verbs are those that are not copulative. A predicating verb always denotes

an event. Predicating verbs are subdivided into two classes: TRANSITIVE_VERB and

INTRANSITIVE_VERB. A transitive verb takes a direct object while an intransitive verb

does not require an object. Verbs that may be used either transitively or intransitively are

represented as members of both classes.

The ADJECTIVE class was subdivided into the CONNOTATIVE_ADJECTIVE and

NOT_CONNOTATIVE_ADJETIVE classes according to the information they give.

Connotative adjectives are those having meaning. They were classified in the

DESCRIPTIVE_ADJECTIVE class and the NUMERAL_ADJECTIVE class.

Descriptive adjectives usually indicate an inherent quality or a physical state such as age

and size. Numeral adjectives are subdivided into CARDINAL_ADJECTIVE,

 99

determining a quantity, and ORDINAL_ADJECTIVE, determining a position. The

remaining adjectives are not connotative; they add no new meaning.

The ARTICLE class has two subclasses: The DEFINITE_ARTICLE and the

INDEFINITE_ARTICLE classes.

The class ADVERB was subdivided, according to the function the adverb perform, in the

following classes:

- CONCEPTUAL_ADVERB

- CLAUSE_ADVERB

- CONJUNTIVE_ADVERB

- EXPLANATORY_ADVERB

- REALTIVE_ADVERB

- INTERROGATIVE_ADVERB

Conceptual adverbs are those modifying the meaning of the verb, adjectives and other

adverbs. They have been subdivided according to the meaning they have in the following

classes:

- MANNER_ADVERB

- PLACE_ADVERB

- TIME_ADVERB

- QUANTITY_ADVERB

Clause adverbs modify the whole clause. Such adverbs may be considered as equivalents

of a sentence or a clause. Three subclasses are distinguished in this class:

- AFFIRMATION_ADVERB, representing adverbs such as si (yes) and
 ciertamente (certainly)
- NEGATION_ADVERB, representing adverbs such as no
- POSSIBILITY_ADVERB class, representing adverbs such as quizás
 (maybe) and posiblemente (possibly)

Conjunctive adverbs establish a relationship between one clause and the preceding clause.

Examples of these adverbs are entonces (then) and sin embargo (however).

 100

Explanatory adverbs illustrate or enumerate. Examples of these adverbs are por ejemplo

(for example) and como (such as).

Relative adverbs introduce subordinate clauses, such in the clause El hombre que assignó

un contrato de obra al constructor no ha pagado (The man who assigned a building

contract to the constructor has not paid).

Interrogative adverbs are those introducing questions, such in ¿Cuando llegará el tren?

(When will the train arrive?) and clauses derived from questions such as He preguntado

cuando llegará el tren (I asked when the train would arrive).

5.3.2 The metafunction dimension

The linguistic classes representing clauses and nominal groups, described above, were

further subclassified according to metafunctional information. New subclasses were

obtained considering the several functions that the CLAUSE and NOMINAL_GROUP

classes can achieve to express the communications tasks represented in the CO. This

metafunctional information determines the linguistic features associated with each

grammatical class. Three types of functions are distinguished: Interpersonal, Ideational

and Textual. Functions belonging to these three different types of meaning are combined.

Not all combinations of functions are possible. The resulting classes obtained when

considering the information appearing in communication with KBSs are described bellow.

5.3.2.1 Ideational information

The ideational information is the resource for representing the world and its organization:

configurations of processes, participants, and circumstances, objects, qualities, etc.

Ideational information concerns logical and experiential information. The experiential

information determines the content expressed while logical information determines the

logical relations between the conceptual entities. The logical information basically

determines the complexity at clause and group level.

 101

In this work proposal, all this ideational information is represented in the functions: verb,

subject, attribute, direct object, indirect object, circumstances, reference and simple.

The content information is the kind of meaning that has received the greatest attention.

Following the Nigel grammar, all major clauses describe a process, state or event.

The process/state/event consists of three components:

 - The process/state/event

 - The participants

 - The circumstances associated with it

This content information about the components at clause level is represented by the

functions: verb, subject, attribute, direct object, indirect object, circumstances and

reference.

The function verb represents the process or state described by the clause. It is realized by a

verbal group.

The function subject represents the main participant of the clause. In clauses describing a

process, the function subject determines its actor. In clauses describing a state the subject

determines the entity described. The subjects of clauses are realized by nominal groups. In

Spanish, the participant subject is present in most clauses. In some clauses, however, the

subject can be elliptic, which means it can be understood although it is not expressed in the

clause. There are also impersonal clauses, clauses that do not include a subject, such as the

Spanish clause Se cumplieron las claúsulas esenciales.

The function attribute represents the participant describing the subject in clauses outlining

a state. This function is realized by nominal- like groups.

The different types of circumstances describing a process or state are represented by the

function circumstance. They are realized by adverbial and nominal like groups.

Following this information, the MAJOR_CLAUSE class was subclassified into two

classes: the ATTRIBUTIVE_CLAUSE and the PREDICATIVE_CLAUSE classes.

Attributive clauses are those defined by the functions subject, verb and attribute. The

verb belongs to the class COPULATIVE_VERB. Attributive clauses always describe a

state. The clause La obligación de pago está cumplida (The payment requirement is

fulfilled) is an example of attributive clause.

 102

The remaining major clauses are represented in the class PREDICATIVE_CLAUSE. The

verb in these classes is a copulative verb. Predicative clauses are subdivided into two

classes according to the function direct object: the class TRANSITIVE_CLAUSE and

the class INTRANSITIVE_CLAUSE. In transitive clauses the participant direct object is

always represented, while in intransitive clauses it is not. The clause El propietario pagó la

casa (The owner paid for the house) is an example of transitive clause. An example of

intransitive clause is the clause El tren llega a las 8:15 (The train arrives at 8:15).

A subclass of transitive clauses is further distinguished: the class

INDIRECT_OBJECT_CLAUSE, representing all clauses having the participants direct

object and indirect object. An example of such clauses is El propietario encargó una

construcción al constructor (The owner assigned a building to the constructor).

In Spanish, there are also intransitive clauses having an indirect object, that is, having the

participant indirect object but not the participant direct object. Those clauses, however,

were not considered in this proposal because they do not usually appear in the context of

communication with KBSs.

MAJOR
CLAUSE

PREDICATIVE
 CLAUSE

ATTRIBUTIVE
 CLAUSE

TRANSITIVE
 CLAUSE

INTRANSITIVE
 CLAUSE

INDIRECT_OBJECT
 CLAUSE

EXISTENTIAL
 CLAUSE

isa isa

isaisa

isa isa

Figure 5.3: The classification of clauses according to the content information

 103

The classification of major clauses according to the content information is shown in

Figure 5.3.

The class EXISTENTIAL_CLAUSE is a subclass of the class INTRANSITIVE

CLAUSE representing those clauses having as constituents a subject and a verb

representing existence. Examples of such clauses are Existe un contrato (A contract exists)

and Hay obligaciones (There are duties). Existential clauses are important in this proposal

because they express the operation to create an instance of a CO concept. The class

EXISTENTIAL_CLAUSE is described in Figure 5.6.

A function that is also important in the language used in user interventions is that of

reference. This function indicates whether or not there is a participant in the clause

referring to a participant appearing in a previous clause. In the dialogues supported in this

proposal, user interventions consist of clauses expressing operations over the CO concepts.

If the clause does not contain the name of the concept, it must refer to a concept appearing

in a previous clause. For instance, in the sentence Existe un contrato y la obligación de

pago está cumplida (There is a contract and the payment requirement is fulfilled), the

subject of the second clause, la obligación de pago (the payment requirement), refers to the

subject of the first clause, the concept realized as un contrato (a contract). This

information is obtained from the participants of the clause. All clauses have been

subclassified into clauses that support reference and clauses that do not.

At group level, the content information considered is that determining the type and

function of the nominal group, and if it refers to a nominal group appearing in a previous

clause. Three subclasses were distinguished according to the nominal group type:

- COMMON_NOMINAL_GROUP, representing common names

- PROPER_NOMINAL_GROUP, representing proper names

- PRONOMINAL_GROUP, representing pronouns

Common nominal groups consist has as constituents the head and a variable number of

modifiers. Proper nominal groups and pronominal groups consist of only on the constituent

head.

Nominal groups can also be modifiers of other common nominal groups. Those modifiers

were subdivided into direct and indirect. Direct modifiers are directly related to the

nominal group. Indirect modifiers are linked to the nominal group by a preposition.

 104

Information indicating whether or not there is a reference to a previous nominal group is

also considered at group level.

Following logical information, major clauses and nominal groups are described by the

function simple, indicating the complexity of the class. According to this function, the

MAJOR_CLAUSE class was subdivided into COMPLEX_CLAUSE and

SIMPLE_CLAUSE classes. Complex clauses are described as the combination of one or

more simple clauses. Nominal groups have also been subdivided into complex nominal

groups and simple nominal groups, complex nominal groups being those having more than

a one member of the WORD class as its head.

5.3.2.2 Interpersonal information

Interpersonal information involves personal relationships (i.e. power, formality) and it

determines types of interaction. The relation between speaker and listener can determine

how a certain speech act is presented. For example, a command is normally realized as an

imperative clause, such as the clause Déme información sobre los trenes a Barcelona (Give

me information about the trains to Barcelona), but can also be realized as an interrogative

clause, such as ¿Podría darme información sobre los trenes a Barcelona? (Would you give

me information about the trains to Barcelona, please?).

In the LO design, this information controls mood and polarity choice at the clause level

and person at group level. That is, the functions mood and polarity are represented in all

clauses and the function person in the groups.

The function polarity determines if the clause is positive or negative. The function mood

determines whether a clause is declarative, interrogative or imperative. This feature

constrains the ordering of the constituents subject and verb. It also determines the

presence of other constituents, such as interrogative pronouns as well as interrogative

marks. Therefore, three subclasses of the CLAUSE class were distinguished according to

the value of the function mood. These classes are: DECLARATIVE_CLAUSE,

INTERROGATIVE_CLAUSE and IMPERATIVE_CLAUSE.

Interrogative clauses were subdivided into two classes: INDIRECT_INTERROGATIVE

CLAUSE and DIRECT_INTERROGATIVE_CLAUSE.

 105

The indirect interrogative clauses are introduced by a major clause within a verb

representing an interrogative action and, optionally a conjunction. An example of an

indirect interrogative clause is Quiero saber si el tren a Barcelona ha salido (I want to

know if the train to Barcelona has left).

Direct interrogative clauses are characterized in Spanish by a question mark at the

beginning and the end. Direct clauses were further subdivided into two subclasses:

COMPLETE_INTERROGATIVE_CLAUSE and PARTIAL_INTERROGATIVE

CLAUSE.

Complete interrogative clauses are those having yes and no as possible answers. Examples

of these clauses are the questions ¿Existe un tren directo a Terrassa? (Is there a direct

train to Terrassa? and ¿Está cumplida la obligación de pago? (Has the payment

requirement been fulfilled?). The rest of interrogative questions are partial. Partial clauses

are always introduced by an interrogative pronoun or interrogative adverb, such as in the

question ¿Cuándo sale el tren a Barcelona? (When does the train leave for Barcelona?).

In the type of NL communication this work is concerned imperative clauses are equivalent

to interrogative clauses, imperative clauses always express consulting operations. Usually

these classes are represented as a nominal group, as in the user intervention Trenes a

Barcelona (Trains to Barcelona).

At group level, the interpersonal information determines the person describing the nominal

groups. Usually, in this type of communication, the third person is used.

5.3.2.3 Textual information

Textual information concerns the organization of the text. Textual information is used for

creating text in context. This information is represented in the functions: theme ,

conjunction, voice and ellipsis at clause level, and determination at group level.

The function theme represents the theme or subject expressed in the clause. Voice is

represented by the function voice. According to this function, clauses were classified into

the class PASSIVE_CLAUSE and the class ACTIVE_CLAUSE.

The function conjunction determines how clauses are linked in a user intervention.

Because interventions in dialogues between users and applications must be very simple and

 106

concise, the only conjunction considered in the current design of the LO is the conjunction

y (and), connecting two or more clauses. However, other conjunctions can easily be

incorporated to consider a higher level of complexity in the organization of clauses.

At group level, the function determination represents textual information. Following this

information, the classes DEFINITE_NOMINAL_GROUP and INDEFINTE

NOMINAL_GROUP were distinguished in the class NOMINAL_GROUP.

The function ellipsis is concerned with the absence of the constituent subject. The ellipsis

of the subject was restricted to specific cases due to the fact that, although it can improve

conciseness, it increases the complexity of language processing. In current design, only the

subject can be elliptic and only in the case of it corresponding to the name of a concept

appearing in a previous clause.

5.4 SUBCLASSES EXPRESSING THE OPERATIONS

The general linguistic classes described above were adapted to support the expression of

the different tasks performed during communication.

As described in the previous section, the tasks performed during the communication

consist of operations over the CO. In order to obtain the linguistic structures expressing

these operations, the general classes in the LO were adapted to the taxonomy of operations

in the CO. The three ranks (clause, group and word) were considered when obtaining the

grammatical structures (or classes) required to express these operations. In the LO domain

level, new subclasses were defined at the clause level according to the basic operations

describing and consulting the CO concepts and their attributes. New subclasses were

defined at the group and word level considering the arguments of these operations.

The linguistic structures required to express each operation filling or consulting a specific

conceptual attribute are determined according to the syntactic-semantic properties of the

attribute class. The taxonomy of attributes as well as the taxonomy of operations in the CO

represent the information from the environment required to adapt the general grammatical

 107

structures to express all possible communication acts. The basic classes of attributes

determine the content of the constituents (subject, verb, object, attribute, circumstances) of

the clauses expressing the operations.

For a specific application, new subclasses of attributes can be added to the basic taxonomy

in the CO. In such a case, the linguistic classes expressing the operations dealing with

attributes that belong to the new classes of attributes are obtained from the classes

represented in the LO domain level.

In the LO, the objects representing the linguistic structures necessary to express the

operations consulting and modifying the CO concepts assumed to be common to all

applications are represented as classes in the domain level. The specific structures

supporting the expression of all operations that can be performed for a specific application

are obtained adapting these structures.

The subclasses defined in the LO domain level supporting the expression of modifying and

consulting operations are described below.

5.4.1 The CLAUSE class

5.4.1.1 Classes expressing the simple operations modifying instances

Creating instances

Two classes were defined as representing the expression of the two operations for creating

an instance. A subclass of the class ATTRIBUTIVE_CLAUSE, the class

ATTRIBUTIVE_CLAUSE_CREATE_INSTANCE_WITH_NAME, was defined to

express the operation of creating a conceptual instance with a specific name. In this class,

the subject expresses the name of the instance and the attribute, the conceptual class

identifier. A subclass of the class EXISTENTIAL_CLAUSE, the class

EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME, was defined

to express the operation of creating the instance without giving its name. The subject of

this class represents the concept identifier.

 108

Filling attributes

Several classes were distinguished in the classes ATTRIBUTIVE_CLAUSE and

PREDICATIVE_CLAUSE to express the operation filling one attribute.

One or more subclasses representing the realization of the simple operation filling one

attribute are associated with each attribute class. These linguistic classes describe the

attributive, transitive and intransitive declarative clauses expressing the operation, filling

one attribute. The three parameters in this operation (the concept, the attribute and the

value) are expressed in the clause. However, in the referential clauses the name of the

concept does not appear. Referential clauses are used only when the name of the concept

has appeared in a previous clause and it is not necessary to mention it again.

The attributive classes expressing the operation to fill one attribute are the following:

- ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE

- REFERENTIAL_ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE

- ATTRIBUTIVE_CLAUSE_FILL_ IS

- REFERENTIAL_ATTRIBUTIVE_CLAUSE_FILL_IS

 - REFERENTIAL_ATTRIBUTIVE_CLAUSE_FILL_IS_SUBJECT

The first two subclasses represent the general form of the filling of the attributes belonging

to the classes: HAS, WHO_SUBJECT, WHAT_OBJECT, WHO_OBJECT, OF and its

subclasses. These two classes have three constituents: the constituent subject, representing

the name of the attribute to be filled, the constituent attribute, representing the value of

the attribute and the verb ser (be), linking the subject with the attribute. In the class

ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE the head of the subject corresponds to

the name of the attribute modified by the name of the concept. In the class

REFERENTIAL_ATTRIBUTIVE_CLAUSE_FILL_ATTRIBUTE the subject is the

name of the attribute and the name of the concept does not appear.

The class ATTRIBUTIVE_CLAUSE_FILL_IS and the class REFERENTIAL

ATTRIBUTIVE_CLAUSE_FILL_IS represent the realization of the operations filling

attributes in the class IS. In the clauses represented by these classes the constituent subject

is the name of the concept and the constituent attribute is the name of the attribute.

Operations over the attributes in this class can also be expressed without mentioning the

name of the concept in clauses where the subject is elliptic. The range of the attributes in

this class is usua lly the closed set yes/no. If it is the case that the value of the attribute is

 109

no, this value is represented as a negation adverb modifying the head of the constituent

attribute. In the specific case of the value of the attribute being yes, then it does not

appear in the clause. If the range of the attribute is a close set of values, then the value of

the attribute is represented as an adverb or adjective modifying the head of the constituent

attribute.

The REFERENTIAL_ATTRIBUTIVE_CLAUSE_FILL_IS_SUBJECT class

represents those clauses expressing the filling of attributes in the class IS_SUBJECT.

Those attributes are composed by two words, corresponding to the constituent subject and

attribute respectively.

The transitive clauses expressing the filling of one attribute are represented in the two

following subclasses:

- TRANSITIVE_CLAUSE_FILL_ATTRIBUTE, a subclass of the

 TRANSITIVE_CLAUSE

- REFERENTIAL_TRANSITIVE_CLAUSE_FILL_ATTRIBUTE, a

 subclass of the REFERENTIAL_ TRANSITIVE_CLAUSE

These two classes have three constituents: the subject, representing the name of concept,

the verb and the direct object, representing the value of the attribute. If the subject is

elliptic then these transitive clauses refer to the name of the concept that has appeared in a

previous clause.

These classes represent the clauses expressing the filling of attributes in the class HAS and

attributes in the class OF_DESCRIPTION having an associated verb with. When the

attribute belongs to the class HAS the verb of the clause is tener (have). When the attribute

belongs to the class OF_NAME, a subclass OF_DESCRIPTION, the verb of the clause is

llamarse. In Spanish, different verbs are associated with attributes in the class

OF_QUANTITY, for example pesar with peso (weight) and medir with altura (height).

The subclasses of the INTRANSITIVE_CLASS defined to express the filling of one

attribute are the following:

- INTRANSITIVE_CLAUSE_FILL_ATTRIBUTE

- REFERENTIAL_INTRANSITIVE_CLAUSE_FILL_ATTRIBUTE

- INTRANSITIVE_CLAUSE_FILL_WHO_SUBJECT

- REFERENTIAL_INTRANSITIVE_CLAUSE_FILL_WHO_SUBJECT

 110

- REFERENTIAL_INTRANSITIVE_CLAUSE_FILL_DOES_SUBJECT

The class INTRANSITIVE_CLAUSE_FILL_ATTRIBUTE and the class

REFERENTIAL_INTRANSITIVE_CLAUSE_FILL_ATTRIBUTE represent

intransitive clauses expressing the filling of one attribute belonging to the class DOES and

to the classes OF_TIME, OF_PLACE, OF_MANNER and OF_CAUSE.

The clauses represented in these two first classes have three constituents: the subject,

representing the concept and the verb, representing the attribute and the circumstance,

representing the value. Prepositions can also be associated with the attributes. In Spanish,

the subject may be elliptic. In this particular case, the clause would referrer to a previous

clause describing the concept. And in such a case, the range of the attribute in the class

DOES is yes/no, hence the value no is expressed by the adverb no, and the value yes is not

expressed.

An example of attribute belonging to the class OF_TIME is the attribute departure_time

describing the concept TRAIN. This attribute is associated with the verb salir (leave) and

the preposition de (at). The filling of this attribute can be expressed in the clause El tren

sale a las 9 (The train leaves at 9 o’clock). Another example of attribute describing the

concept TRAIN is destination. This attribute belongs to the class OF_PLACE and is

associated with the verb llegar (arrive) and the preposition a (at). The clause expressing

this filling will be El tren llega a la estación de Sants (The train arrives at Sants Station).

Intransitive clauses expressing the operation FILL_ATTRIBUTE_WHO_SUBJECT_O

have only two constituents: the subject, representing the value of the attribute and the

verb, representing either the attribute or the concept. Attributes in this class can also be

associated with a verb. An example of attribute belonging to this class is the attribute

driver, describing the concept BUS_TRIP. This attribute is associated with the verb

conducir (drive). The filling of this attribute can be expressed in the referential intransitive

clause <driver-name> conduce (<driver-name> drives).

There is also a specific class expressing the filling of an attribute in class

DOES_SUBJECT. The attributes in the class DOES_SUBJECT are represented by two

words: the first word corresponds to the subject and the second word to the verb.

The expression in a sentence of more complex operations modifying an instance, such as

the operation filling more than one attribute and the operation creating an instance and

 111

filling one or more of its attributes is represented in the class

COORDINATE_CLAUSE_MODIFY. In this particular case the attributes to be filled

belong to the classes WHO_SUBJECT, WHO_OBJECT and WHAT_OBJECT, the

filling of these attributes can also be expressed by transitive clauses with indirect objects

belonging to the class INDIRECT_OBJECT_CLAUSE_MODIFY. An example of this

particular case is detailed in Chapter 7.

5.4.1.2 Classes expressing consulting operations

Consulting concepts

There are three classes expressing the two basic operations consulting the existence of a

concept.

These classes are:

- COMPLETE_INTERROGATIVE_CONSULT_CLASS, a subclass of the class

COMPLETE_INTERROGATIVE, expressing the operation consulting the

existence of a conceptual class

- COMPLETE_INTERROGATIVE_CONSULT_INSTANCE, a subclass of the

class COMPLETE_INTERROGATIVE, expressing the operation consulting if

any instance of a conceptual class exist

- PARTIAL_INTERROGATIVE_CONSULT_CLASS, a subclass of the class

PARTIAL_INTERROGATIVE expressing the operation requesting for all

members of a conceptual class

The complete interrogative clauses consulting the existence of specific classes and

instances of concepts consist of existential clauses where the subject represents the class

and the instance respectively. The clauses consulting the existence of instances are the

interrogative form of the declarative clauses for the creation of those instances without

 112

giving their name. In Spanish, the only difference is that interrogative clauses are delimited

by question marks. For example, the declarative clause for creating an instance of the

concept ARCHITECT, existe un arquitecto (There is an architect), is expressed in an

interrogative form, ¿Existe un concepto? (Is there an architect?), for consulting its

existence.

Consulting attributes

The expression of the operations consulting a conceptual attribute was represented in a

similar form of that of operations filling an attribute. Several classes representing the

different forms of expressing the operations consulting an attribute were defined

considering the basic classes of the attributes. These classes correspond to the interrogative

form of the declarative classes for filling the attributes.

The interrogative complete clauses for consulting an attribute class have the same

constituents and patterns as the declarative clauses for filling it. In Spanish, the only

difference is that interrogative clauses are introduced and finalized by question marks.

The partial interrogative clauses also include all constituents in the declarative clauses for

filling an attribute. The patterns, however, differ. In Spanish, the main difference between

the declarative and interrogative clauses consists of the interrogative pronoun or adverb

introducing the clause as well as the question marks. The interrogative pronoun or adverb

is associated with the class of the attribute. The syntactic function is not the same for all

interrogative words. The order of the constituents also differs in interrogative clauses.

Complete interrogative clauses express the consulting of attributes having as value the

closed set yes/no. The attributes belonging to the classes IS, IS_SUBJECT, HAS, DOES,

DOES_SUBJECT may have the set yes/no as value. Therefore, the class

COMPLETE_INTERROGATIVE and the class REFERENTIAL_COMPLETE

INTERROGATIVE were subclassified to express the consulting of all the attributes

having that range.

The resulting classes are:

- COMPLETE_INTERROGATIVE_CONSULT_ATTRIBUTE

- REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_ ATTRIBUTE

 113

- REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_IS_SUBJECT

- COMPLETE_INTERROGATIVE_CONSULT_HAS

- COMPLETE_INTERROGATIVE_CONSULT_DOES

- REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_ DOESSUBJECT

The consulting of an attribute in the class IS having as value yes/no is supported by the

attributive clause for filling this attribute, described above, expressed as a complete

interrogative clause. The clause representing the realization of this consulting operation is

COMPLETE_INTERROGATIVE_CONSULT_ATTRIBUTE. Its constituents are

those appearing in the declarative attributive clause for filling the attributes is this class:

the subject representing the name of the concept, the verb ser/estar (be) and the attribute

representing the attribute. Those clauses having the subject elliptic are represented by the

class REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_ATTRIBUTE

The consulting of an attribute in the class IS_SUBJECT is represented in the class

REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_IS_SUBJECT

which represents the consulting form of the class supporting the filling of attributes in this

class. The constituent subject and the constituent attribute of these clauses correspond to

the two words associated with the attribute.

The consulting of the attributes in the class HAS having as value yes/no is supported by

the transitive clauses for filling these attributes expressed in a consulting form. These

clauses are represented by the class COMPLETE_INTERROGATIVE_CONSULT

HAS, having as constituents the subject, expressing the concept, the verb has and the

direct object expressing the value.

The consulting of the attributes in the class DOES and DOES_SUBJECT having as value

yes/no are supported by the intransitive clauses for filling these attributes expressed as

complete interrogative clauses. The COMPLETE_INTERROGATIVE_CONSULT

DOES class has two constituents: the subject, expressing the concept, and the verb,

expressing the attribute.

In the REFERENTIAL_COMPLETE_INTERROGATIVE_CONSULT_DOES

SUBJECT class the subject and the verb correspond to the two words expressing the

attribute.

 114

The consulting of the remaining attributes is expressed by partial interrogative clauses.

That is, attributes belonging to the classes OF, WHO_SUBJECT, WHAT_OBJECT,

WHO_OBJECT and those belonging to the classes HAS, IS and DOES and having a

range different of the set yes/no. The classes WHO_SUBJECT, WHO_OBJECT and

OF_PERSON are associated with the interrogative pronoun quién (who). This

interrogative pronoun always represents the constituent subject.

The class HAS is associated with the interrogative pronoun qué (what). This interrogative

pronoun, introducing the interrogative transitive clauses asking for the value of the

attributes in class HAS, represents the constituent direct_object.

The classes WHAT_OBJECT, OF and its subclasses OF_DESCRIPTION and

OF_TYPE are associated with the interrogative pronoun cuál (which). The consulting of

the value of the attributes in these classes is expressed by partial interrogative attributive

clauses where the pronoun which represents the constituent attribute.

The classes OF_MANNER as well as the classes DOES and IS, having a different range

of yes/no, are associated with the interrogative adverb cómo (how). The class OF_PLACE

is associated with the adverb dónde (where). The class OF_TIME is associated with the

adverb cuándo (when). The class OF_CAUSE is associated with the adverb por qué (why).

The value of the attributes in these classes is expressed by partial interrogative intransitive

clauses. The function of the interrogative adverbs introducing these clauses is to describe

the circumstances of the action.

Finally, the class OF_QUANTITY is associated with the adverbs cuánto/cuántos (how

much/how many). The consulting of attributes in this class is expressed by partial

interrogative transitive clauses where the adverb represents the constituent direct_object.

New linguistic classes, not considered in the current design, could also be easily

incorporated to cover more complex operations. For example, to express the operation to

fill the attribute of a conceptual instance when this instance is not expressed by its name,

but by the value of one of its attributes, the function subordination will have to be

incorporated in the LO general level.

5.4.2 The GROUP class

 115

The expression of the arguments of the operations is represented in the classes belonging to

the rank group and word. Subclasses representing all types of arguments in the operations

were distinguished.

At group level, subclasses of the NOMINAL_LIKE_GROUP, VERBAL_GROUP and

ADVERBIAL_GROUP classes were defined to express concepts, attributes and values.

Nominal groups expressing the name of concepts are represented in the classes:

- DEFINITE_NOMINAL_GROUP_CONCEPT

- INDEFINITE_NOMINAL_GROUP_CONCEPT

 - INDIRECT_NOMINAL_GROUP_CONCEPT

Nominal groups expressing the name introduced by the user to identify a conceptual

instance are described in the following classes:

- DEFINITE_NOMINAL_GROUP_INSTANCE

- INDEFINITE_NOMINAL_GROUP_ INSTANCE

 - INDIRECT_NOMINAL_GROUP_ INSTANCE

Nominal groups representing the identifiers of all instances of a conceptual class are

represented in the classes PROPER_NOMINAL_GROUP_INSTANCE and

INDIRECT_PROPER_ NOMINAL_GROUP_INSTANCE.

Nominal groups expressing the name of conceptual attributes are represented in the

classes:

- DEFINITE_NOMINAL_GROUP_ATTRIBUTE

- INDEFINITE_NOMINAL_GROUP_ATTRIBUTE

- INDIRECT_NOMINAL_GROUP_ATTRIBUTE

Nominal groups expressing the values of the attributes are represented in the classes:

- DEFINITE_NOMINAL_GROUP_VALUE

- INDEFINITE_NOMINAL_GROUP_VALUE

- INDIRECT_NOMINAL_GROUP_VALUE

The class ADJECTIVAL_GROUP was further subclassified in order to represent

attributes as well as values. The resulting classes are:

 116

- ADJECTIVAL_GROUP_ATTRIBUTTE

- ADJECTIVAL_GROUP_VALUE

A subclass of the QUANTITY_GROUP class was distinguished, the class

QUANTITY_GROUP_VALUE, representing the values of those conceptual attributes

expressing quantities.

The class VERBAL_GROUP was further subclassified into the two following classes:

- VERBAL_GROUP_CONCEPT

- VERBAL_GROUP_ATTRIBUTE

The class ADVERBIAL_GROUP was further subclassified into the two following

classes:

- ADVERBIAL_GROUP_ ATTRIBUTE

- ADVERBIAL_GROUP_VALUE

5.4.3 The WORD class

At word level, the NOUN, VERB, ADJECTIVE and ADVERB classes expressing

concepts, attributes and values were subdivided.

The class PROPER_NOUN_INSTANCE, a subclass of the PROPER_NOUN class, was

defined to represent conceptual instances.

The class COMMON_NOUN was subdivided in the following classes:

- COMMON_NOUN_CONCEPT

- COMMON_NOUN_ATTRIBUTE

- COMMON_NOUN_VALUE

The class TRANSITIVE_VERB and the class INTRANSITIVE_VERB were subdivided

into the classes:

- TRANSITIVE_VERB_CONCEPT

 117

- TRANSITVIE_VERB_ATTRIBUTE

- INTRANSITIVE_VERB_CONCEPT

- INTRANSITVIE_VERB_ATTRIBUTE

The class DESCRIPTIVE_ADJECTIVE was subdivided into the classes:

- DESCRIPTIVE_ADJECTIVE_ATTRIBUTE

- DESCRIPTIVE_ADJECTIVE_VALUE

The class CONCEPTUAL_ADVERB was subdivided in:

- CONCEPTUAL_ADVERB_ATTRIBUTE

- CONCEPTUAL_ADVERB_VALUE

The process of obtaining the linguistic structures required for an specific application from

the LO domain level is detailed in Chapter 6.

5.5 INFORMATION REPRESENTED IN THE LINGUISTIC CLASSES

In the LO, information describing a class is represented as a set of descriptors or facets.

The LO allows the same type of inheritance as the CO. The facets described in the general

classes are inherited by all subclasses. The same default mechanism is valid here.

Orthogonal multiple inheritance is also allowed; more than one dimension can be

considered when defining linguistic classes.

The information describing the linguistic structures in the LO consists of general linguistic

features describing the classes as well as features giving detailed information about their

constituents. The ideational, interpersonal and textual functions describing a class are

represented as a set of facets. These facets are simple, reference, ellipsis, polarity, mood,

voice and theme at clause level and simple, reference, type , person and determination at

 118

group level. The range of these facets is a closed set of values. Specific linguistic

information about constituents of the linguistic structures is also represented as facets.

As mentioned before, the specific application-restricted linguistic structures are obtained

from those represented in the LO. Although for reasons of efficiency the linguistic

structures generated for a specific application are represented in a different formalism, a

definite context grammar (DCG), all information expressed by this formalism can also be

expressed in the LO. All information appearing in DCG rules (the left-hand side category,

representing the linguistic structure, the right-hand side categories, representing its

constituents, the semantic and syntactic features associated with these categories as well as

all possible presentations of these constituents) are represented in the LO as facets

describing the classes.

Linguistic classes may have one or more than one constituent. Linguistic objects belonging

to the class MAJOR_CLAUSE have more than one constituent. Most of the objects in the

classes MINOR_CLAUSE and GROUP have more than one constituent, although there

are also elements in these classes having only one constituent. Linguistic objects belonging

to the class WORD have only one constituent.

When generating the grammar, the objects having more than one constituent are

represented as non-terminal categories, those that appear in the left-hand of a grammar

rule. The LO objects having only one constituent are represented as terminal categories in

the generated grammar.

The information describing the LO objects having more than one constituent is not the

same than tha t describing the objects having only one constituent. The facets needed to

describe all LO objects are detailed below.

5.5.1 LO objects having more than one constituent

All linguistic objects have an associated linguistic category, described in the facet

category. Each constituent of the class is represented by a facet whose value corresponds

to an existing linguistic object. As in lexico-functional grammars, the sequence of the

syntactic constituents that occur in each class is represented in the constituent set,

 119

represented by the facet cset, and information on the superficial presentations of class by

means of a different set, represented by the facet pattern.

The value of the facet pattern is the set of all presentations allowed for the constituents of

a class. A list of numbers indicating the order of interpretation of the constituents is

associated with each possible pattern. This list of numbers represents information for

further semantic interpretation. The semantics is based on lambda calculus.

If the linguistic category representing the class is augmented with syntactic features, those

are represented in the facet synfeatures. The syntactic agreement between the class

constituents is represented by the facet synagreement. The value of this attribute is a list in

which the constituents are associated with their syntactic features. Only constituents having

associated linguistic features are represented in the list.

The description of the most general classes, CLAUSE and its two subclasses,

MAJOR_CLAUSE and MINOR_CLAUSE is shown in Figure 5.4.

The metafunction information associated with the MAJOR_CLAUSE class is represented

in the facets polarity, mood, reference, theme , simple, voice and ellipsis. The first four

facets and their value are inherited from the upper class CLAUSE. The facet polarity

indicates that all clauses can be expressed both in a positive and negative form. The value

of the facet mood is declarative /interrogative / imperative, indicating that the modality

of the clauses can be declarative, interrogative and imperative. The facet reference

indicates whether or not there is a reference in the clause to a constituent appearing in a

previous clause. Its value can be yes or no. The facet theme indicates the theme expressed

in a clause. In the LO domain level objects, the value of this facet always corresponds to

the identifier of an operation.

The facets simple, ellipsis and voice are defined only for major clauses. The value of the

facet simple is yes/no, indicating that the major clauses can be simple or complex. The

voice indicates that elements in this clause can be presented both in an active and in a

passive voice. The facet ellipsis indicates whether the subject of the clause is elliptic or

not.

 120

category: clause
mood
polarity
reference
theme

CLAUSE

 category: major_clause
 simple
 voice
 ellipsis
 subject: NOMINAL_GROUP
 verb: VERBAL_GROUP
 circumstance: ADVERBIAL_GROUP
 cset: subject verb circumstance
 pattern:
 (((subject verb circumstance) ((2 3) 1))
 ((subject circumstance verb) ((3 2) 1))
 ((subject verb) (2 1))...)
 synagreement:
 (subject (num) verb (num))

MAJOR_CLAUSE MINOR_CLAUSE

 category: minor_clause

isa isa

Figure 5.4: The representation of the classes: CLAUSE, MAJOR_CLAUSE and
MINOR_CLAUSE

Information about the constituents of the major clauses is represented in the rest of the

facets. The facet cset of the class MAJOR_CLAUSE represents the constituents of the

major clauses considered in the LO design. These constituents are subject, circumstance

and verb. There is a facet representing each of these constituents, its value being the name

of a LO object. The constituent subject must be a member of the class

NOMINAL_GROUP. The constituent verb is an element in the class

VERBAL_GROUP. The constituent circumstance belongs to the class

ADVERBIAL_GROUP. All these constituents belong to the class GROUP.

The facet synagreement indicates that the value of the feature num (number) of the

constituent subject and that of the constituent verb must be the same.

 121

When representing a LO object having more than one constituent following the DCG

formalism, each possible representation of the constituents will correspond to a different

grammar rule. The category associated with the LO object will correspond to the left-hand

part of the rules and the constituents to the right-hand part. Each category in the resulting

grammar can be augmented with syntactic and semantic features. The syntactic features

associated with the category will be obtained from the facet synfeature , incorporated,

when necessary in the LO object description. The semantic features will be obtained from

the facet semfeature .

The name of each feature is represented as a functor associated with the category and its

value in brackets. If the value is not defined is represented as a variable (i.e. the object

NOMINAL_GROUP will be represented by the category

nominal_group(syn(gen(G),num(N))) where gen(G) represents the feature gender and

num(N) the number). During the analysis this variable will be instantiated with a specific

value. A feature agreement between two or more constituents is represented by the same

value (or the same variable representing the value) associated with their functors

representing the corresponding feature. For example, the number agreement between the

constituents subject and verb in a grammar rule will be represented by using the same

variable associated with the functor num, in the categories representing the two

constituents.

Figure 5.5 shows how information describing the MAJOR_CLAUSE class is inherited by

its two subclasses: the ATTRIBUTIVE_CLAUSE and the PREDICATIVE_CLAUSE

classes. The ATTRIBUTIVE_CLAUSE class represents a subset of major clauses: the

attributive clauses. In this class, the information inherited from the MAJOR_CLAUSE

class is restricted. Only attributes adding new information are incorporated into the

description of this class. These facets are category, voice, verb, attribute, cset, pattern

and synagreement.

The facet voice indicates that attributive clauses can only be expressed in an active form.

The facet cset defines the four possible constituents of these clauses: subject, verb,

attribute and circumstances. The facet pattern represents the possible superficial

presentation of these constituents. There is no additional information describing the subject

and the circumstances in attributive clauses. The verb belongs to the class

COPULATIVE_VERB. The attribute belongs to the class NOMINAL_LIKE_GROUP.

The syntactic agreement between these constituents indicates that, as in all major clauses,

 122

the number and person of the subject and the verb must be the same. It also indicates that

the number and gender of the subject and attribute must be the same.

MAJOR_CLAUSE

category: attributive_clause
voice: active
verb: COPULATIVE_VERB
attribute: NOMINAL_LIKE_GROUP
cset:
 subject verb attribute circumstance
pattern:
 (((subject verb attribute) ((2 1) 3))
 ((attribute verb subject) ((2 3) 1))...)
synagreement:
 (subject (gen num)
 verb (num)
 attribute (gen num))

ATTRIBUTIVE_CLAUSE

category: predicative_clause
verb: PREDICATIVE_VERB

 PREDICATIVE_CLAUSE

isa isa

Figure 5.5: The classes ATTRIBUTIVE_CLAUSE and the PREDICATIVE_CLAUSE

Only two facets, the facet category and the facet verb describe the

PREDICATIVE_CLAUSE class.

In the LO domain level, the description of the classes incorporates linguistic and

conceptual information. The conceptual information about the class and its constituents is

represented in its categories and the conceptual features associated with them.

The category associated with the class is an abbreviation of the name of the class. The

names of the LO classes incorporate conceptual information about the operations or the

arguments expressed. For example, the category ec_cinn is the abbreviation of the name of

the class EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME,

 123

described in Figure 5.6. The category indefngcon is associated with the class

INDEFINITE_NOMINAL_GROUP_CONCEPT, represented in Figure 5.9.

The semantic features associated with the category representing the class are described by

the facet semfeature . These features represent the concept and/or the attribute appearing in

the linguistic class.

The agreement between the semantic features associated with the class constituents is

described by the facet semagreement. This attribute is represented as a list where each

constituent is associated with its semantic features.

Classes expressing operations incorporate the name of the operation in the facet theme .

They also incorporate the facet pcc, representing the case preconditions associated with it.

An example of a class belonging to the domain level is described in Figure 5.6. The

EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME class shown

in the figure represents simple and declarative existential clauses expressing the operation

of creating an instance of a CO concept, without giving its name. It is a subclass of the

SIMPLE_DECLARATIVE_EXISTENTIAL_CLAUSE class, which is a

EXISTENTIAL_CLAUSE subclass.

Only the facets adding new information to the upper class are incorporated into the

description of the class. In this example, these facets are category, polarity, reference,

simple, subject, verb, cset and pattern, giving linguistic information and semfeature ,

semagreement, theme and pcc, giving conceptual information.

The value of the category associated with this class is ec_cinn. The constituent set is

subject and verb. The constituent subject belongs to the class

INDEFINITE_NOMINAL_GROUP_CONCEPT. The constituent verb belongs to the

class VERB_EXISTIR, a subclass of EXISTENTIAL_VERB. The most natural

presentation of these two constituents is represented by the facet pattern.

 124

EXISTENTIAL_CLAUSE

isa: INTRANSITIVE_CLAUSE
category: existential_clause
voice: active
subject: NOMINAL_GROUP
verb: EXISTENTIAL_VERB

 EXISTENTIAL_CLAUSE
 CREATE_INSTANCE_WITH_NO_NAME

category: ec_cinn
polarity: afirmative
reference: no
simple: yes
subject: INDEFINITE_NOMINAL_GROUP_CONCEPT
verb: VERB_EXISTIR
cset: subject verb
pattern: (((verb subject) (1 2)))
semfeature: con
semagreement: (subject (con) ec_cinn (con))
theme: crinno
pcc: ((pcon _con))

isa

Figure 5.6: The class EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME

The facet semfeature represents the semantic features associated with the class, the feature

con. When representing this object as a grammar rule, the category in the left-hand part of

the rule will be ec_cinn and will be augmented with the feature con. This feature will be

represented as the functor con and a value in brackets. The value associated with the

functor con will represent the parameter con (corresponding to the concept) of the

operation (i.e. ec_cinn(sem(con(architect)))).

The facet semagreement represents the semantic agreement between the constituents in

the class. It indicates that the value associated with the functor con in the category

representing the class and in that representing the constituent subject must be the same.

 125

 The facet theme represents the abbreviation of the name of the operation, crinno. The

facet pcc represents the case preconditions associated with the operation, indicating the

preconditions that must be satisfied to create a conceptual instance.

 ATTRIBUTIVE_CLAUSE
 CREATE_INSTANCE_WITH_NAME

category: ac_ciwn
reference: no
simple: yes
subject: DEFINITE_NOMINAL_GROUP_INSTANCE
verb: VERB_SER
attribute: INDEFINITE_NOMINAL_GROUP_CONCEPT
cset: subject verb attribute
pattern:
(((subject verb attribute) ((2 3) 1)))
semfeature: con
semagreement:
 (subject (con) attribute(con) ac_ciwn (con))
theme: criwno
pcc: ((pcon _con))

isa

ATTRIBUTIVE_CLAUSE

Figure 5.7: The class ATTRIBUTIVE_CLAUSE_CREATE_INSTANCE_WITH_NAME

Figure 5.7 shows the description of the ATTRIBUTIVE_CLAUSE class and one of its

subclasses, the ATTRIBUTIVE_CLAUSE_CREATE_INSTANCE_WITH_NAME

class. This class represents all simple declarative clauses expressing the operation of

creation a conceptual instance giving its name.

The facets adding new linguistic information to those facets inherited from its upper

classes were incorporated into the class description. These facets are: category, reference,

simple, cset, subject, verb, attribute and pattern. Conceptual information is represented

by the facets: semfeature , semagreement, theme and pcc.

 126

The value of the category associated with this class is ac_ciwn. The constituent set consists

of the subject, verb and attribute. The constituent subject is an element in the class

DEFINITE_NOMINAL_GROUP_INSTANCE, representing conceptual instances

which name is introduced by the user. The constituent subject is inherited from the upper

class. The constituent verb corresponds to the verb ser (be), represented by the class

VERB_SER. It is a subclass of the COPULATIVE_VERB class. The constituent

attribute is a member of the class INDEFINITE_NOMINAL_GROUP_CONCEPT.

The only possible presentation of these constituents is described by the facet pattern.

The facet semfeature represents the semantic feature associated with the class, con. In the

grammar generated, the category representing this LO object, ac_ciwn, will be augmented

with the feature con. The value associated with this value represents the parameter con of

the operation.

The facet semagreement represents the semantic agreement between the constituents in

the class. It indicates that the value of the feature con associated with the class, the value of

the feature con associated with the constituent subject and that associated with the

constituent attribute must be the same.

The facet theme represents the name of the operation. The facet pcc represents the case

preconditions associated with the operation.

The SIMPLE_COMMON_NOMINAL_GROUP class, the DEFINITE_SIMPLE

COMMON_NOMINAL_GROUP class and the INDEFINITE_SIMPLE

COMMON_NOMINAL_GROUP class are described in Figure 5.8.

The SIMPLE_COMMON_NOMINAL_GROUP class is a subclass of the

COMMON_NOMINAL_GROUP class. As can be seen in the figure, this class is

described by the facets giving information about the class and facets describing its

constituents. The facets giving information about the class are category, reference,

simple, determination, type , and synfeature .

 127

SIMPLE_COMMON_NOMINAL_GROUP

isa : COMON_NOMINAL_GROUP
category: nominal_group
reference
simple: yes
determination
type: common
person: third
det: ARTICLE
head: COMMON_NOUN
modifier: NOMINAL_LIKE_GROUP
cset: det head modifier
pattern:
 (((det head modifier) (1 (3 2)))
 ((det head) (1 2)) ...)
synfeature: gen num
synagreement:
 (det (gen num)
 head (gen num)
 modifier (gen num)
 nominal_group (gen num))

INDEFINITE_SIMPLE_COMMON
 NOMINAL_GROUP

 category: indefngcon
 determination: indefinite
 det: INDEFINITE_ARTICLE
 synagreement:
 (det (gen num)
 head (gen num)
 indefngcon (gen num))

isa

DEFINITE_SIMPLE_COMMON
 NOMINAL_GROUP

 category: defngcon
 determination: definite
 det: DEFINITE_ARTICLE
 synagreement:
 (det (gen num)
 head (gen num)
 defngcon (gen num))

isa

Figure 5.8: The SIMPLE_COMMON_NOMINAL_GROUP class and its subclasses

The facets describing the constituents are cset, det, head, modifier, pattern and

synagreement. The constituent set of the class is det (determiner), head and modifier.

The facet det represents the class ARTICLE. The facet head represents the class

COMMON_NOUN. The modifier is an object belonging to the class

NOMINAL_LIKE_GROUP.

 128

The possible superficial representations of the simple common nominal groups are <det

head modifier>, <det modifier head> and <det head>. These three representations,

together with the list of numbers indicating the constituent order interpretation for each, are

represented in the facet pattern.

The facet synfeature represents the syntactic features associated with the class; in Spanish

the gender (gen) and the number (num). The facet synagreement indicates that the value

of these features in the nominal group and its constituents det, head and modifier must be

the same.

 INDEFINITE_SIMPLE_COMMON
 NOMINAL_GROUP

category: indef_nominal_group
det: INDEFINITE_ARTICLE

INDEFINITE_NOMINAL_GROUP_CONCEPT

category: indefngcon
head: COMMON_NOUN_CONCEPT
cset: det head
patttern: (((det head) (1 2)))
synagreement:
 (det (gen num) head (gen num) indefngcon (gen num))
semfeature: con
semagreement: (head (con) indefngcon (con))

...isa

isa

Figure 5.9: The INDEFINITE_NOMINAL_GROUP_CONCEPT class

The DEFINITE_SIMPLE_COMMON_NOMINAL_GROUP class represents those

nominal groups having the definite article as constituent det. The INDEFINITE

SIMPLE_COMMON_NOMINAL_GROUP class represents those nominal groups

having introduced by an indefinite article. One example of its subclasses in the LO domain

level is the INDEFINITE_NOMINAL_GROUP_CONCEPT class, described in Figure

 129

5.9. The two only constituents of this class are described by the facet cset. The facet

pattern describes its allowed presentation. The facet synfeature the syntactic agreement

between the constituent det and head. The facet semfeature represents the semantic

feature associated with the class, con (concept). The facet semagreement indicates that the

feature con, associated with the constituent head and with the class, must be the same.

For each interface, an instance of this class is created from each concept in the CO that can

be realized as a nominal group.

5.5.2 The LO objects having one constituent

Linguistic objects having only one constituent are further classified as closed and open.

Closed classes represent a closed set of words that are the same for all applications.

Examples of these classes are the class ARTICLE and the class PREPOSITION. Open

classes, such as the class NOUN, represent a wide range of words, different for each

application.

The description of classes having only one constituent consists of category, the syntactic

features, and the semantic information. The linguistic category is represented in the facet

category. If syntactic features are associated with the object, these are represented in the

facet synfeature . The semantic features are represented in the facet semfeature . The facet

sem represents semantic interpretation.

The semantic interpretation of objects having one constituent consists of a lambda function

or value. Lambda functions are represented by a list, in which the first part defines the

parameters the function has, and the second part defines the value to be returned. The

semantic interpretation associated with closed classes consists of a lambda function giving

information about how the other constituents in the clause should be linked. In open

classes, semantic interpretation is a function related to the CO (i.e., the name of the

concept represented by the linguistic instance).

Words are represented in the LO as terminal objects belonging to the classes having only

one constituent. The words belonging to the closed classes are represented in the LO.

These objects represent the lexical entries common to all applications. The words

representing application terms belong to the open classes, such as NOUN, ADJECTIVE

 130

and VERB. These objects are generated for each application. They are also represented as

LO terminal objects.

In terminal objects, the features and their value are incorporated into the category. An

additional facet, type , is incorporated in the definition of terminal objects representing the

application terms. This facet indicates if the term is associated with one word (or more) or

with a dynamic function. The value lex indicates the object is associated with a word. The

value dyn indicates it is associated with a function asking the user to introduce a value at

run-time.

An example of a terminal object is that representing the adverb no, described in Figure

5.10. This object belongs to the class NEGATION_ADVERB, a subclass of the

CLAUSE_ADVERB class. It is a closed class having only one constituent. Its category is

no. Its semantic interpretation is the lambda function: ((l _x) (no _x)). The first part of the

function ((l _x)) indicates that it has one parameter; the second part ((no _x)) indicates that

this function returns a list with the value no, followed by the value of the parameter. The

string associated with this object is no.

NO

 isa: NEGATION_ADVERB
 category: no
 sem: ((l _x) no _x)
 lex: no

Figure 5.10: The representation of the adverb no

A new example of class having one constituent is described in Figure 5.11. This figure

describes the class DEFINITE_ARTICLE, belonging to the class ARTICLE and two of

its four members, the articles el and la. The category of the class is defart. The semantic

interpretation of all members in the class is the lambda function ((l _x) (_x)), indicating

that definite articles are functions with a parameter and that these functions do not modify

the semantic value of the parameter. The syntactic features associated with the class are

number and gender. The articles el and la are represented as terminal objects, subclasses of

the DEFINITE_ARTICLE class. The features gen and num and their values were

incorporated into the category.

 131

This description also includes the superficial presentation, represented in the facet lex.

 isa: ARTICLE
 category: defart
 sem: ((l _x) _x)

DEFINITE_ARTICLE

synfeatures: gen num

EL

 category:
 defart(syn(gen(m),num(s)))
 lex: el

category:
 defart(syn(gen(f),num(s)))
 lex: la

LA

isa isa isa

...

Figure 5.11: The representation of the DEFINITE_ARTICLE class and two of its members

 132

CHAPTER 6

THE CONTROL RULES

6.1 INTRODUCTION

In this work, general control rules performing the creation, modification and consulting of

ontology concepts have been designed. These rules make it possible to establish general

relations between concepts in different ontologies as well as between concepts in the same

ontology. The control rules are of the form:

conditions -> actions

They are applied on the objects in the ontology satisfying the conditions. Because they can

be easily adapted to relate to different types of knowledge represented in one or more

ontologies, they can be used for several purposes and applications. For example, they could

be used to perform the integration of various ontologies or the creation of a specialized

ontology from a general ontology. In this work, however, the control rules are used to

perform the mapping of the CO onto the LO.

The control rules represent the relations between the concepts and operations represented

in the CO as well as the relations between the CO objects and the linguistic structures

represented in the LO. Representing this knowledge separately from the CO and LO allows

the easy adaptation of the design proposed in this thesis to new domains and applications.

 133

The control rules are responsible for adapting the general conceptual and linguistic

knowledge to different applications. The general relations established by the control rules

are intended to be application independent. A set of rules defining basic relations between

the application conceptual knowledge and its specific realization has been reused for

different types of applications.

The control rules perform the process of obtaining the linguistic resources necessary in the

application-restricted interfaces by relating the application knowledge represented in the

CO to the general linguistic knowledge represented in the LO. First, application concepts

are related to the CO operations representing the general communication tasks. Then, the

application specific communication tasks are related to the linguistic structures in the LO

supporting their expression.

This chapter has been organized in five sections. The general process of relating the

application representation in the CO to the LO in order to obtain the application-restricted

grammar is described in second section. The formalism of the control rules ensuring this

process is defined in the next section. The basic set of control rules designed and

implemented for generating the interfaces for a broad type of applications is detailed in the

fourth section. Finally, in the last section, an example following the performance of this

basic set of control rules is detailed.

6.2 RELATING THE CO TO THE LO IN ORDER TO OBTAIN APPLICATION

RESTRICTED INTERFACES

As described in Chapter 3, application knowledge is represented in the CO and general

linguistic knowledge necessary to express this knowledge is represented in the LO. The

lexical information associated with the terms appearing in an application is represented in a

set. This information consists of a set of surface realization associated with a term. Each

linguistic realization is associated with a syntactic category and its syntactic features.

Information in the CO, LO and application terms set has to be related in order to obtain the

 134

linguistic resources of the application-restricted interfaces. One of the main goals in the

design of the CO and the LO was to facilitate the performance of this generation task.

In the CO, pointers to the set containing all possible linguistic realizations were

incorporated into the descriptions of the concepts and attributes. A taxonomy of the

attributes linguistically motivated was established. In the LO domain level, general

conceptual information was incorporated into the description of the linguistic classes (the

name of the category, the semantic features and the preconditions). However, in order to

assure a separate design, implementation and update of the CO and the LO, the specific

relations between the two ontologies have been defined in a separate knowledge base. This

knowledge base consists of a set of control rules ensuring the CO mapping onto the LO.

By relating the CO to the LO, these rules control the process of obtaining the linguistic

structures necessary in application-restricted interfaces.

Control rules have been chosen to express conceptual and linguistic relations because of

their clarity and explicitness. They are a powerful and flexible way to express different

relations between ontology objects. The control rules are applied over the objects in the

CO and the LO, satisfying the conditions. The actions performed by the rules are

operations consulting and modifying objects in the CO and LO. The control rules establish

relations at three different levels: relations between objects in the CO, relations between

CO and LO objects and relations between LO objects.

Different control rules can establish different relations between ontology objects.

Linguistic coverage can be as broad as necessary. Current LO, through the performance of

the appropriate control rules, makes it possible to generate grammars covering ellipsis,

subordinate clauses, a variety of anaphoric references, etc.

Different control rules can be built to encode the conceptual information representing the

application functionality in the grammar rules and lexical categories, following different

criteria. Rules for different types of user (casual or habitual, expert or novice) can also be

incorporated.

A basic set of control rules has been built defining the conceptual and linguistic relations

for a broad set of applications. These relations are intended to be domain and application-

independent. Although these relations between conceptual and linguistic information are

the same for different applications; they also cover details about the linguistic realization

of each application concept. New relations can be incorporated by considering different

 135

linguistic details. The basic set of control rules is responsible for generating the grammar

rules to express, in a natural way, operations over the CO for different applications.

Several linguistic realizations for the same operation were considered.

The proposed design allows the extension of the CO and the LO in order to enrich the

linguistic and conceptual coverage without modifying the control rules. However, it is also

possible to adapt the proposed design to different applications by modifying the basic set

of rules.

The basic set of rules performs the process of obtaining the linguistic structures required

for an application in two steps. The first step consists of relating the general

communication tasks represented in the CO to the specific application concepts. The

second step consists of relating the application specific communication tasks to the LO

classes representing its linguistic expression. Next, the resulting linguistic structures are

translated into DCG.

In the first step, a set of rules ensures the process of adapting the CO operations

representing the general communication tasks to the concepts modeling a specific

application. For each concept representing the application, instances of operations creating,

modifying and consulting it are generated.

In the second step of the process, a different set of control rules ensure the relating of

operations generated in the first step to the LO. In this step, LO instances covering the

expression of the application operations are created. As described in Chapter 5, the LO

classes are assumed to be common to all applications, while linguistic objects representing

the specific aspects of the information to be expressed for each application are represented

as instances of the LO classes. When obtaining the appropriate linguistic objects for an

application, instances of the linguistic classes in the rank clause, group and word are

generated. Instances in the rank clause are created to express the operation instances

generated in the first step. Instances of the rank group and word are created to express the

arguments of these operations. When generating these instances, the class of the operation,

the class of the CO concept and the class of the concept attributes involved in the operation

are considered.

Finally, there is a third step consisting of generating the grammar rules and lexical entries

necessary for an interface. Basically, this step consists of writing the LO instances

generated in the second step as a DCG.

 136

A more detailed description of the performance of the basic set of control rules is given in

Section 6.4.

6.3 THE FORMALISM OF THE CONTROL RULES

Control rules are implemented in the Production Rules Environment (PRE), a rule-based

environment specially built for NL, described in [Ageno93]. PRE incorporates the

capabilities necessary for control rules performance: the use of rulesets, a powerful and

flexible control mechanism and a dynamic data storage device, the working memory

(WM), where objects can be created, consulted and modified.

The function of the WM is that of a blackboard where objects can be modified and

consulted efficiently (more about blackboard architecture can be found in [Engelmore88]).

In the WM, partial and complete descriptions of objects of the CO and LO are represented.

A word or name representing the type of the object and a list of attribute-value pairs

describe all objects in the WM. Each pair attribute-value is represented by the attribute

followed by a value. The attribute is represented by the character ^ followed by the

attribute identifier. A variable, a name or a list of variables and/or names can represent the

value. The symbol ? precedes the names of variables. Variables in the WM can be

matched by any value.

An example of a WM object is shown in Figure 6.1. The object in this figure represents a

partial description of a particular concept in the CO. The descriptions of this concept

consists of the word object, the attribute ĉon and the attribute ^pcc. The value of the

attribute ^con is obra, representing the identifier of the concept. The attribute ^pcc

represents the case preconditions associated with the concept, its value nil indicates that

there are no preconditions associated with the concept obra.

 object ^con obra ^pcc nil

Figure 6.1: The WM object representing a partial description of the concept OBRA

 137

The general WM object describing the identifier and preconditions of CO concepts is

represented in Figure 6.2. The value of the attribute ĉon and ^pcc are represented by the

variables ?con and ?pcc, respectively.

 object ^con ?con ^pcc ?pcc

Figure 6.2: The WM object representing a partial description of the CO concepts

There are basic operations managing the WM objects for creating, deleting, consulting and

modifying WM objects.

There are two operations for creating WM objects. The operation create-wm creates one

WM object represented by a name (or the identifier of the type of the object) and an

optional list of pair attribute-value. The operation create-all-wm creates a set of objects

(one or more) having the same type and attributes, but different attribute values.

There are three operations for deleting WM objects. The operation delete-wm deletes the

first object in the WM matching a specific definition (a name and an optional list of

attribute-value pairs). The operation delete-all-wm deletes all objects in the WM having

the name specified in the operation call. The operation empty-wm deletes all objects in the

WM.

There are two operations for consulting WM objets. The operation get-wm obtains the first

object in the WM matching a specific definition (a name and an optional list of attribute-

value pairs). The operation get-all-wm returns all WM objects having a specific name.

There is also an operation for modifying WM objects, this is the operation modify-wm,

changing the attribute-value pairs of a WM object matching a specific definition.

In PRE, rules are grouped into rulesets. Each ruleset has a variable number of rules. Two

basic operations ensure the activation of rulesets: apply-ruleset and apply-ruleset-top.

The operation apply-ruleset activates a ruleset given its name. The operation apply-

ruleset-top activates the TOP ruleset, described below.

The programs responsible for applying the control rules can perform the basic operations

managing the WM objects and activating the rulesets. The actions performed by the rules

 138

are higher operations over these basic operations. The syntax of the basic operations is

described below in Figure 6.3.

 < WM-operations > ::=
 < create-operation > / < delete-operation > / < consult-operation > /
 < modify-operation > / < apply-ruleset-operation >
< create-operation > ::=
 (create-wm < wm-object > {< attribute-value-pair >}) /
 (create-all-wm < wm-object > ({< attribute-id > < list-val >}))
< delete-operation > ::=
 (delete-wm < wm-object > {< attribute-value-pair >}) /
 (delete-all-wm < wm-object >) / (empty-wm)
< consult-operation > ::=
 (get-wm < wm-object > {< attribute-value-pair >}) /
 (get-all-wm < wm-object >)
 < modify-operation > ::=
 (modify-wm < wm-object > {< attribute-value-pair >}
 {< attribute-value-pair >})
< apply-ruleset-operation > ::=
 (apply-ruleset < ruleset-name >) / (apply-ruleset-top)
 < wm-object > ::= identifier
 < attribute-value-pair > ::= < attribute-id > < value-attr >
 < attribute-id> ::= ^identifier
 < list-val > ::= (< value-attr > {< value-attr >})
 < value-attr > ::= < variable > / identifier / (< variable > < variable >)
 < variable > ::= ?identifier

Figure 6.3: The syntax of the basic operations

In PRE, the rulesets are organized in a multilevel hierarchy allowing inheritance. Each

ruleset has an upper ruleset and inherits features from it. The top of the hierarchy is the

TOP ruleset. The TOP ruleset is the only ruleset not having any upper ruleset. This ruleset

must be present in any PRE application, whilst other rulesets are optional. Each ruleset

controls the activation of the rules that belong to it. The rulesets are described by a set of

features. These features are the ruleset name, the name of the upper ruleset, the type of

control activating the rules in the ruleset, the name and the type of the sort procedure

applied to the rules, and the final condition. If the features describing the type of control,

the sort mechanism and the final condition do not appear in the ruleset definition, they are

inherited by default from the upper ruleset.

 139

< rulesets definition > ::= < ruleset definition > {< ruleset definition > }

< ruleset definition > ::=
 (ruleset < ruleset-name >

 isa < ruleset-name >
 [control < control-ruleset >]
 [sort-proc < sort-proc>]
 [sort-type < sort-type >]
 [final-cond < final-condition >]
) /
 (ruleset top

 control < control-ruleset >
 sort-proc < sort-proc >
 sort-type < sort-type >
 final-cond < final-condition >
)

< ruleset-name > ::= identifier
< control-ruleset > ::= forever / until/ one-cycle / first
< sort-proc > ::= < Lisp-sort-proc >
< sort-type > ::= dynamic / static
< final-cond > ::= nil / (< Lisp-final-function > {< Lisp-final-function > })
< Lisp-sort-proc > ::= stardard-sort-procedure / < Lisp-sort-function >

Figure 6.4: The syntax for defining the rulesets

The type of control mechanism states the ruleset application mode. There are four types of

control in the rulesets: forever, until, one-cycle and first. The control type forever states

the activation of all the rules in the ruleset until there is an empty cycle, which means until

there are no rules satisfying their own conditions. The control type until states the

activation of all the rules in the ruleset until the final condition of the ruleset is satisfied.

The control type one-cycle states the activation of one cycle over all rules in the ruleset.

Finally, the type first activates the first rule satisfying its own conditions.

The sort procedure applied over the rules in the ruleset can be the standard-sort-

procedure , which sorts the rules by their priority or any other sort procedure previously

defined. The type of sort mechanism can be dynamic, if it is evaluated each time the

ruleset is applied, or static, if it is evaluated only once. The final condition is a list of a

variable number of final predicates (which can be empty).

The syntax for defining the rulesets is described below in Figure 6.4. The rules belonging

to each set are declared following the syntax shown in Figure 6.5.

 140

For each rule, the condition set and the action set have to be declared. The condition set

consists of all the statements describing the rule and the conditions governing the rule

application. The action set consists of all the actions to be performed when applying the

rule. The symbol -> separates the two sets.

 <rules definition> ::= <rule definition> {<rule definition > }
 < rule definition > ::=
 (rule < rule-name >
 ruleset < ruleset-name >
 priority number
 control < control-set >
 < pattern-conditions >
 ->
 < rule-actions >
)
< rule-name > ::= identifier
< control-rule > ::= forever / one / stop
< pattern-conditions > ::= {< simple-pattern-condition > }
< simple-pattern-condition > ::=
 ([< negation >] < wm-object > {< attribute-value-pair >})
< negation > ::= no

Figure 6.5: The syntax for defining the rules

The features provided in the condition set describing the rule are the rule identifier, the

ruleset identifier, the type of rule control mechanism, the rule priority in the ruleset and the

statements establishing the conditions governing the working memory objects in applying

the rule. There are three types of control mechanism stating the rule application mode:

forever, one and stop. The type forever states the application of the rule until no WM

object satisfies the conditions, the type one states its application once at each cycle and the

type stop only once. The priority of the rule is a number controlling the application rule

order within the ruleset. The conditions governing the rule application are a variable

number of object descriptions. This description consists of an object identifier and a

variable number of attribute-value pairs. Optionally, the word no can precede the object

identifier to express the negation of the condition.

 141

< rule-actions > ::=
 < create-statement > / < modify-statement >/
 < delete-statement >/ < assign-statement > /
 < apply-ruleset-assignment >
< create-statement > ::=
 (create < wm-object > {< attribute-value-pair >})
< delete-statemnet > ::=
 (delete < wm-object >) /
 (delete < wm-object >{< attribute-value-pair >}) /
 (delete < wm-object-number >)
< modify-statement > ::=
 (modify < wm-object > {< attribute-value-pair >}{< attribute-value-pair >})
 (modify <wm-object-number> {<attribute-value-pair>})
< assign-statement > ::=
 (assign < variable > < expression >) / <variable > := <expression >
< apply-ruleset-statement > ::=
 (apply-ruleset-top){(apply-ruleset < ruleset-name >)} /
 (apply-ruleset < ruleset-name >){(apply-ruleset < ruleset-name >)}
< expression > ::= < Lisp-function >
< wm-object-number > ::= number

Figure 6.6: The syntax of the allowed operations in the action part of the PRE rules

The action set consists of all the actions to be performed when applying the rule. Only five

statements are accepted in the action part of the rule:

- create

- delete

- modify

- apply-ruleset

 - assignment

The syntax defining the possible statements in the action set of the rules is shown in Figure

6.6. The statements create, delete, modify and apply-ruleset are implemented using the

basic WM operations described above, in Figure 3. The assignment statement performs the

assignment of values and functions to variables. The use of functions in this statement

enriches the power of the formalism. In the basic set of control rules defined for obtaining

the application-restricted interfaces, these functions have been restricted to a set of

predefined ones.

The definition of all rulesets and rules performing a task are included in a file. The

functions necessary for controlling and sorting these rulesets and rules are included in an

 142

auxiliary file. For each file containing rulesets, there is a particular file containing the

auxiliary functions used in the rulesets. This file includes, at least, the sort procedure.

Once the set of control rules organized into rulesets is complete, the top rule can be applied

in order to perform the obtention of application-restricted linguistic resources. The top rule

is activated when the operation apply-ruleset is called from any program executed in the

environment.

PRE includes a menu-based user interface to simplify the use of this environment during

the tuning and debugging phase. The PRE user interface consists of a menu in which all

available tools and actions are displayed.

The options appearing in the PRE menu are four: Switch Explain, Load Rulesets , Load

aux fn (for loading auxiliary functions) and Execute Rulesets .

The first option either enables or disables the full trace of rulesets and rule execution. The

option Load Ruleset loads and tests the file containing the rulesets. The syntactic errors

detected when testing this file are described on-screen. The option Load aux fn loads the

file containing the auxiliary functions. Finally, the Execute Rulesets option calls the

operation apply-ruleset-top, which activates the ruleset TOP. This ruleset must be in the

file, previously loaded, containing all rulesets. The operation apply-ruleset-top, which

starts the application of all rulesets loaded, can also be called from any program executed

in the environment.

Examples of the explanations appearing on-screen when the Switch Explain option is

active are shown in Figure 6.7. These explanations correspond to the execution of the

ruleset creating_instance (described in the next section) over the WM object described in

Figure 6.1. The details of the performance of the rules in the ruleset appear on-screen, as

shown in the Figure 6.7. When the ruleset TOP calls the action apply-ruleset

creating_instance, all rules in this ruleset are activated. First, the description of this action

is displayed on-screen (the name of the action, the name of the object, the type of the

object and the pattern). Then, the ruleset name, creating_instance and the type of control

mechanism applied in the ruleset, one-cycle, appear.

 143

Action : APPLY-RULESET
Object name : NIL
Object type : CREATING_INSTANCE
Pattern : NIL

Ruleset : CREATING_INSTANCE
Control : ONE-CYCLE

Rule : CIO
Priority : 1
Control : FOREVER

Object name : $1
Object type : OBJECT
Pattern in : (*? ^CON ?CON *? ^PCC ?PCC *?)
Pattern out: (^CON OBRA ^PCC NIL)

Action : ASSIGN
Object name : NIL
Object type : (CREATE-NAME 'CRINNO ?CON)
Pattern : ?CRINNO

Action : ASSIGN
Object name : NIL
Object type : (CREATE-OBJECT ?CRINNO 'CRINNO)
Pattern : ?CONCRINNO

Action : ASSIGN
Object name : NIL
Object type : (ADD-SLOTS ?CRINNO '((CON ?CON) (PCC ?PCC)))
Pattern : ?OPARG

Figure 6.7: A trace of the ruleset creating_instance

Next, the first rule in the ruleset to be applied is described: its name, cio, its priority, 1, the

control mechanism stating the rule application mode, forever, and the condition governing

the rule. In rule cio, this condition consists of the description of the WM object shown in

Figure 6.2. It represents all WM objects of type object matching the pattern ^con ?con

^pcc ?pcc.

The description of the actions performed by the rule also appears on-screen. In the figure,

the first three statements executed by the rule are described. Each one of the three

statements performs an assignment. The first statement assigns to the variable ?crinno the

symbol returned by the function create-name . This function concatenates two or more

words. In this statement, it concatenates the name crinno (representing the

 144

CREATE_INSTANCE_WITH_NO_NAME_O) to the concept identifier represented in

the variable ?con. In the example considered, the function create-name returns the symbol

crinnoobra. In the second statement, the operation assign followed by the call to the

function create-object creates a new object in the CO. In this example, the operation

crinnoobra (for creating an instance of the concept obra) will be represented in the CO as

an instance of the operation crinno. In the third statement, the operation assign followed

by the call to the function add-slots fills the facet con of the operation generated with the

concept identifier (in the example obra) and the facet pcc with the concept preconditions

(nil).

PRE has been implemented in LISP. The PRE interface has been integrated into the

Common Lisp user interface3.

6.4 THE BASIC SET OF CONTROL RULES

The formalism supporting the control rules makes it possible to define a rich variety of

rules relating objects in one or more ontologies. Different rules can be defined according to

the desired level of coverage. However, to incorporate a new rule it is necessary to know

the definition formalism (described above) as well as the details of the CO and LO

implementation. In order to make the implementation of the system transparent to the user

and to facilitate its use, a general basic set of control rules for generating application-

restricted NLIs was defined and implemented. This basic set of rules establishes general

relations between the CO and the LO in order to obtain the linguistic resources necessary

for application-restricted interfaces.

The same basic set of control rules can be used for different types of applications.

Basically, three different types of interfaces have been taken into account when defining

the basic set of rules. These types are interfaces guiding the users to describe particular

cases of the application general knowledge, interfaces allowing the users to consult

application knowledge, and interfaces supporting both, consultations and descriptions.

 145

The most important goals in the design of the basic set of control rules were the

friendliness and efficiency of the NLIs generated. The control rules in this set have been

defined to generate the minimum number of grammar rules to express all possible

operations over the CO in a natural way. One or two linguistic realizations for each

operation were considered. Current implementation ensures the generation of linguistic

structures covering elliptical reference, coordination, direct and indirect interrogation and

other linguistic phenomenon. The basic set of control rules does not cover other complex

linguistic phenomenon not favoring the efficiency of the NL processing.

Additionally, there is an alternative set of rules controlling the generation of larger

grammars. The process of obtaining this grammar is the same for the two sets of rules. The

alternative set of rules only differs from the basic set in that several linguistic realizations

for each operation are generated. The alternative set only differs in a coup le of rules from

the basic set. For this reason, the description of the basic set of rules given in this section

covers both the alternative and the basic set of rules.

The grammars representing only one or two paraphrases of each allowable operation are

appropriate when the input is introduced using a menu-system displaying all possible

options. However, when users type the sentences without any guide, grammars supporting

several forms of expressing each operation are more appropriate. That is, when a menu-

system is used, the grammars generated by the alternative set are not as efficient as those

generated by the basic set, but they are more appropriate when the menu-system is not

used.

The syntax of the control rules allows the definition of different rules for other purposes,

such as the generation of explanations about the tasks performed by the applications and

the generation of the linguistic resources for other types of NLIs.

6.4.1 The functions used in the basic set of control rules

The basic set of control rules was implemented in PRE, following the formalism described

above. Although PRE allows indiscriminate use of functions in the assignment operation,

the formalism used in the basic set constrains such a powerful mechanism, limiting the

3 There is also a recent implementation of PRE in PEARL.

 146

functions to a set of predefined ones. This set of functions performs all actions needed

when relating the CO to the LO in order to generate the linguistic sources in the

application-restricted NLI. The set consists of eight functions.

These functions are:

- opco

- create_name

- create-object

- add-slots

- get-slot-value

- get-immediate-slot-value

- obtain_semfeatures

- create-lambda-function

The syntax of these eight functions is described in Figure 6.8.

Four of these functions perform the basic operations of creating, modifying and consulting

ontology objects. These functions are: create-object, performing the creation of ontology

instances, add-slots, performing the modification of them and get-slot-value and get-

immediate-slot-value , both performing the consult of the attributes (and facets) of the

ontology objects.

The parameters of the function create-instance are two identifiers, the first name

corresponds to the instance to be generated and the second one to the name of the ontology

object. The parameters of the function add-slots are the identifier of an instance and a list

of attribute-value pairs. The two functions consulting the ontology objects, get-immediate-

slot-value and get-slot-value , have two parameters: the object identifier and the attribute

identifier. The first function returns all values of the attribute object while the second only

returns the first value.

The other four functions used in the basic set of control rules are functions especially built

for dealing with specific aspects in the generation of the application-restricted linguistic

structures. The performance of these functions is described below.

The function opco performs the creation of all WM objects representing the concepts

describing the application in the CO. This function has only one argument: a CO object

 147

identifier. For each interface concept in the CO, this function creates the WM representing

the concept identifier and the WM object representing each of its attributes.

< Lisp-function-NLI > ::=
 < inicialization-function > /
 < create-name-function > / < create-object-function >/
 < add-slots-function > / < get-slot-value-function > /
 < create-lambda-f-function > / < obtain-semfeatures-function >
< inicialization-function > ::=
 (opco <object-identifier>)
< create-object-function > ::=
 (create-object < object-identifier > < object-identifier >)
< add-slots-function > ::=
 (add-slots <object-identifier> {(< attribute-identifier > {<attribute-value>})})
 < get-slot-value-function > ::=
 (get-slot-value < object-identifier >< attribute-identifier >) /
 (get-immediate-value < object-identifier >< attribute-identifier >)
< create-instance-function > ::=
 (create-name identifier ({< name >}))
< create-lambda-f-function > ::=
 (create-lambda-function < name > ({< attribute-identifier >}))
< obtain-semfeatures-function > ::=
 (obtain_semfeatures ({< attribute-identifier >}) < operation-identifier >)
< object-identifier > ::= variable / identifier
< attribute-identifier > ::= variable / identifier
< attribute-value> ::= variable / identifier
< name > ::= variable / identifier
< operation-identifier > ::= < object-identifier >

Figure 6.8: The predicates used in the assign-statement in the basic set of control rules

The function create-name performs the concatenation of two or more words. It is used to

create names of ontology objects. The resulting names are used in the four functions

accessing the ontologies described above.

The function obtain-semfeatures returns the value of one or two facets (or attributes)

describing a CO object. This function has two parameters. The first parameter consists of a

list of one or two facets of the CO object. The second parameter of the function is the

identifier of the CO object. The function returns a list containing the facets passed as the

first parameter and their values.

The function obtain-semfeatures is used to obtain the semantic features associated with

terminal linguistic instances generated for an application. More precisely, it obtains the

semantic features associated with the terminal linguistic instances expressing the

parameters of the allowable operations. These parameters can be concepts (con), attributes

 148

(attr) and values (val). The terminal instances representing concepts are associated with

the semantic feature con. The terminal instances representing attributes and values are

associated with the semantic features con and attr. When generating the terminal linguistic

instances necessary to express an operation, the value of these features is obtained by

means of the function obtain-semfeatures. This function is called with two parameters:

the list of the semantic features associated with the linguistic instance and the operation

identifier.

For example, the operation FILL_ATTRIBUTE_IS_BUILDING_REQUIREMENT

FULFILLED (for filling the attribute fulfilled of the concept

BUILDING_REQUIREMENT) has three parameters: the parameter con (representing

the concept BUILDING_REQUIREMENT), attr (representing the attribute fulfilled)

and val (representing the value). The LO instance expressing the value of the parameter

attr of this operation, fulfilled, is shown in the Figure 6.9. This LO instance is described

by the facets: category, lex, sem and type .

DESCRIPTIVE_ADJECTIVE_FULFILLED

 instance: DESCRIPTIVE_ADJECTIVE_ATTRIBUTE_IS
 category: dadjattris(syn(gen(f),num(p)),sem(con(buildingrequirement),attr(fulfilled)))
 lex: cumplidas
 sem: fulfilled
 type: lex

Figure 6.9: The LO object representing the attribute fulfilled of the concept
BUILDING_REQUIREMENT

The category of the instance is dadjattris, associated with descriptive adjectives (dadj)

representing attributes belonging to the class IS. This category is augmented with syntactic

and semantic features. The syntactic category, the syntactic features as well as the

superficial presentation, cumplida, are obtained from the set containing the syntactic

description of all application terms.

The semantic interpretation is fulfilled and it corresponds to the attribute identifier. The

semantic features associated with all LO objects representing conceptual attributes are con

and attr. The value of these features is obtained by calling the function obtain-

semfeatures. The call to the function obtain-semfeatures with the parameters (con attr)

 149

and FILL_ATTRIBUTE_IS_BUILDING_REQUIREMENT_FULFILLED, returns the

list (con(buildingrequirement),attr(fulfilled)). The values of the features are in brackets.

This list represents the semantic features associated with the category dadjattris.

Finally, the function create-lambda-function generates the lambda functions

corresponding to the semantic interpretation of the LO instances expressing the arguments

of specific operations.

As described in Chapter 5, the semantic interpretation associated with the LO instances

expressing the CO objects involved in the communication is represented using the lambda

calculus. The semantic interpretation of LO objects having more than one constituent

consists of a list of numbers indicating the interpretation order of its constituents. This

information is obtained from the linguistic upper class. The semant ic interpretation of a LO

object representing one word (or more) consists of a lambda function or a lambda value,

depending on the linguistic class. For example, articles are always associated with a

lambda function and nouns with a lambda value.

In the basic set of rules, the linguistic instances representing the parameters of the simple

operations (filling or consulting a conceptual attribute) have as semantic interpretation a

lambda value. A terminal linguistic instance expressing a concept, an attribute or a value in

these operations has the concept identifier, the attribute identifier or the value, respectively,

as semantic interpretation.

The instances of transitive verbs representing a concept in operations expressing the filling

of more than one attribute have a lambda function as semantic interpretation. The name of

this lambda function is the concept identifier and its parameters correspond to the

conceptual attributes to be filled. The function create-lambda-function returns the lambda

function for the terminal linguistic instances representing a concept in these operations.

The function create-lambda-function has two parameters: the identifier representing the

concept and the identifier representing the operation.

In current implementation, only one class of operation that fills more than one conceptual

attribute is considered, the class representing operations realized as transitive clauses. In

these operations, the attributes to fill belong to the attribute classes WHO_SUBJECT,

WHAT_OBJECT and WHO_OBJECT. In the clauses expressing these operations, the

argument representing the concept is realized as a transitive verbal group. The arguments

 150

representing the attributes to be filled are represented by linguistic instances with the roles

subject, direct_object and indirect_object, respectively.

For example, the operation FILL_TRANSITIVE_CONCEPT_BUILDING

CONTRACT_PARTS fills the attributes subject1, subject2 and object of the concept

BUILDING_CONTRACT_PARTS. This operation is shown in Figure 6.10.

FILL_TRANSITIVE_ATTRIBUTE_BUILDING CONTRACT_PARTS

con: BUILDING_CONTRACT_PARTS
ins
subject1
subject2
object

Figure 6.10: A fragment of the operation

FILL_TRANSITIVE_CONCEPT_BUILDING_CONTRACT_PARTS

The semantic interpretation associated with the linguistic instance expressing the argument

con of this operation (whose value is BUILDING_CONTRACT_PARTS) is obtained by

the function create-lambda-function. When calling this function with the concept

identifier (BUILDING_CONTRACT_PARTS) as a first parameter and the operation

identifier (FILL_TRANSITIVE_CONCEPT_BUILDING_CONTRACT_PARTS) as a

second parameter, a lambda function is return. The returned function has the form:

(((l, _subject1),(l, _object),(l, _subject2)),

(buildingcontractparts, subject1, _subject1, object, _object, subject2, _subject2))

The first part of the function is a sublist defining the three parameters. Each parameter (i.e.

(l, _subject1)) is represented by a sublist of two elements: the symbol l and a variable

(represented by an underscore and the attribute identifier, as in _subject1). The second part

of the function corresponds to the resulting list where the variables representing the

parameters must be substituted by the value when applying the function.

When applying this function over the lambda value owner, associated with the nominal

group expressing the value of the attribute subject1, the result will be:

(((l, _object),(l, _subject2)),

(buildingcontractparts, subject1, owner, object, _object subject2, _subject2))

 151

The resulting function will be applied next on the two lambda values associated with the

nominal group expressing the value of the attribute object and the value of the attribute

subject2, respectively.

The functions used in the basic set of rules are implemented in Lisp. They have been

implemented using the predicates creating and consulting objects of the language frame-

kit ([Carbonell86]).

6.4.2 The rulesets

Following the PRE formalism, in the basic set of control rules proposed, rules are grouped

into rulesets. Each ruleset performs a different action and each rule in the ruleset is applied

over a different type of object. The basic set of control rules is organized into 8 rulesets.

The definition of these rulesets is shown in Figure 6.11.

These basic rulesets are activated by typing the activation function in the PRE user

interface. There are three possible activation functions: inic, inim and inicm. These

functions state the initial conditions for generating the appropriate linguistic resources for

each type of interface: consulting, describing and consulting-describing.

The activation functions load the initial lexicons necessary for each type of application.

They also create a WM object representing the type of the interface that must be generated.

The first ruleset is the TOP ruleset. The TOP ruleset is responsible for the initialization

process. This ruleset is described in Figure 6.16. It checks the initial conditions and

activates the appropriate ruleset for each case. The initial conditions state the type of

interface to be generated. These conditions are represented in the WM, just before the TOP

ruleset is applied. The ruleset TOP activates the rulesets responsible for the first step of the

generation process. In this step, the rulesets perform the creation of operations for each

application concept represented in the CO. Four different rulesets ensure this step of the

process. Each one of these rulesets performs the generation of instances of a different class

of operation.

 152

(ruleset top
 control one-cycle
 sort-proc standard-sort-proc
 sort-type static
 final-cond nil)
 (ruleset creating_instance
 isa top)

(ruleset filling_attribute
 isa top)

 (ruleset consulting_instance
 isa top)

(ruleset consulting_attribute
 isa top)

(ruleset grammar
 isa top)

(ruleset arguments
 isa top)
(ruleset lex_entries
 isa top)

Figure 6.11: The rulesets definition in the basic set of rules

The rulesets are:

 - creating_instance

 - filling_attribute

 - consulting_instance

 - consulting_attribute

These rulesets are described in Figures 6.17-6.20.

Three different rulesets are responsible for the second step of the process, when instances

are created of the LO objects supporting the NL expression of the allowed operations for

an application. These rulesets are the ruleset grammar, relating operations created for an

application to the LO, the ruleset arguments, classifying the different types of operation

arguments and the ruleset lexical_entries, creating the LO objects representing these

arguments. They are described in Figures 6.21-6.29. The ruleset activation is described in

Figure 6.14.

 153

6.4.3 The performance

As mentioned before, the basic set of control rules is responsible for the process of

generating the linguistic resources needed in the application-restricted interfaces. This

generating process is carried out in three steps.

The first step

The first step of the process consists of generating operations representing the

communication tasks required for an application. For this purpose, the general operations

are adapted to the CO concepts representing the application. Instances of the necessary

operations are generated for each concept. A scheme of this first step is shown in

Figure 6.12.

for each CONCEPT in APPLICATION_ONTOLOGY do
 generate_CO_instance_operations_modifying_concept (CONCEPT)
 generate_CO_instance_operations_consulting_concept (CONCEPT)

 endfor

Figure 6.12: The first step of the process of obtaining application-restricted linguistic
resources

The CO operations modifying or consulting attributes are classified according to the

attribute class. As described in the scheme in Figure 6.12, instances of the appropriate

operation subclasses for filling and consulting attributes are created for each concept

attribute. In the basic set of control rules, only simple operations are generated, that is,

operations performed only over one concept.

Operations for filling more than one attribute of a conceptual instance are represented as

instances of the class FILL_MORE_ONE_ATTRIBUTE_O, shown in Figure 4.5. In

current implementation, these operations have been considered as combinations of the

simpler operations filling a conceptual attribute. However, a specific subclass of this

operation, the FILL_TRANSITIVE_CONCEPT_O, has been considered as a special

case because it represents operations expressed more naturally in a simple transitive clause.

This class represents operations filling the conceptual attributes belonging to the classes

WHO_SUBJECT, WHAT_OBJECT and WHO_OBJECT.

 154

The second step

The most complex step of the process fo r obtaining the appropriate linguistic resources for

an application is the second one. In this step, the LO general structures are adapted to cover

the expression of the CO objects generated in the first step. A scheme of the performance

of this step is shown in Figure 6.13.

for each OPERATION_INSTANCE in CASE_ONTOLOGY do
 generate_CLAUSE_instances (OPERATION_INSTANCE)
 for each ARGUMENT in OPERATION_INSTANCE do

generate_GROUP/WORD_instances (OPERATION_INSTANCE, ARGUMENT)
 endfor
endfor

Figure 6.13: The second step of the process of obtaining application-restricted linguistic
resources

As described in Chapter 5, the LO general linguistic classes were adapted to represent the

taxonomy of operations described in the CO. In the LO domain level, subclasses

supporting the expression of all operations were described. In this second step, instances of

the LO domain level classes were defined in order to support the specific operations for an

application.

Three rulesets are responsible for this step: the ruleset grammar, the ruleset arguments

and the ruleset lexical_entries.

The ruleset grammar ensures the process of generating LO instances representing the CO

operations created in the first step of the process. Different linguistic instances are

generated to support the expression of each class of operation.

If operations creating conceptual instances have been generated then the linguistic classes

EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME (shown in

Figure 5.6) and ATTRIBUTIVE_CLAUSE_CREATE_INSTANCE_WITH_NAME

(shown in Figure 5.7) are marked as active rules. Grammar rules representing these classes

will be incorporated into the application-grammar at the third step of the process.

 155

RULESET TOP

 RULESET
CREATING_INSTANCE

 RULESET
CONSULTING_INSTANCE

RULESET
FILLING_ATTRIBUTE

RULESET
CONSULTING_ATTRIBUTE

RULESET GRAMMAR

RULESET ARGUMENTS

RULESET LEX_ENTRIES

Figure 6.14: The ruleset activation in the basic set

If operations consulting conceptual instances have been generated then the linguistic

classes COMPLETE_INTERROGATIVE_CONSULT_CLASS, COMPLETE

INTERROGATIVE_CONSULT_INSTANCE and PATIAL_INTERROGATIVE

CONSULT_INSTANCE are marked as active rules.

The realization of operations for filling one attribute of a conceptual instance is represented

as instances of the classes ATTRIBUTIVE_CLAUSE, TRANSITIVE_CLAUSE and

INTRANSITIVE_CLAUSE.

Operations for consulting the existence of a conceptual instance as well as those consulting

one of its attributes are represented as instances of the classes

 156

COMPLETE_INTERROGATIVE_CLAUSE and PARTIAL_INTERROGATIVE

CLAUSE.

Operations filling more than one instance attribute are related to the class

COORDINATE_CLAUSE. The constituents of this class are the simple major clauses

expressing operations creating conceptual instances and filling one of its attributes.

Operations in the class FILL_TRANSITIVE_CONCEPT_O are related to the class

INDIRECT_OBJECT_CLAUSE_MODIFY.

The linguistic objects representing operations to create and to consult concepts and

operations for filling more than one attribute are application independent. They are always

expressed by the same linguistic structures. For this reason, the linguistic objects

representing these operations belong to the general linguistic knowledge represented in the

LO and the rules in the ruleset grammar mark these instances when they are necessary for

an application.

The linguistic structures representing operations to fill and to consult one attribute concept

depend on the classes of the attributes of the application concepts. Operations filling and

consulting one concept attribute are subclassified regarding the attribute class. New

subclasses of attributes can be incorporated when representing the application in the CO,

thus, different subclasses of operations filling and consulting attributes can be created for

different applications.

The rules in the ruleset grammar generate different linguistic instances for each operation

created in the first step. The linguistic information in the instances generated is inherited

from their linguistic classes. In the linguistic structures expressing operations, this

information consists of the pattern or correct distribution of the constituents and the

syntactic and semantic agreement between them. Conceptual information describing the

operation is also incorporated. The operation parameters are represented as the constituents

of the linguistic instances generated. The category associated with each constituent

represents the type of argument (i.e. defngcon, for definite nominal groups representing

concepts). For arguments representing attributes and values, the category includes

information about the class of the attribute (e.g. defngattrof, for definite nominal groups

representing attributes in the class OF and defngvalwhodoes for values of attributes in the

class WHO_DOES). The name of the operation and the operation preconditions are also

incorporated into the linguistic instances.

 157

Once the ruleset grammar has been applied, the rulesets arguments and lexical_entries

are activated. These two rulesets ensure the process of creating terminal linguistic

instances expressing each parameter of the operations created for an application. The

ruleset arguments creates WM objects representing all the semantic and syntactic

information necessary for generating these linguistic objects. These WM objects are used

by the ruleset lexical_entries to generate the terminal linguistic instances.

The ruleset arguments obtains the syntactic information associated with each parameter of

the operation from the corresponding entries in the set defining the application terms. All

the parameters of operations (concepts, attributes and values) are linked to one (or more)

entries in this set. The linguistic information contained in this set for each entry consists of

the syntactic category, the syntactic features (number, gender, and tense) and the surface

realization.

Different types of parameters are considered when obtaining the appropriate syntactic and

semantic information associated with the linguistic instances generated. The rules in the

ruleset arguments considers the several types of parameters: conceptual classes,

conceptual instances, simple attributes, compound attributes, closed values, open values,

menu values and values representing concepts. These types of parameters are classified

into lexical and dynamic objects depending on whether their value is set during the

generation process (by the ruleset argument) or at run-time.

The description of a lexical instance consists of its linguistic realization, its category and

its semantic interpretation. The semantic interpretation associated with lexical objects is a

lambda function or value.

Dynamic linguistic instances are terminal instances described by the category and the name

of the function that will obtain the argument value at run-time. As has been said above,

there are three different types of dynamic functions: functions obtaining instances of

concepts existing in the case level, functions asking the user to introduce a value at run-

time and functions activating a menu screen where a set of allowed attribute values are

displayed.

The ruleset lexical_entries ensures the creation of linguistic instances incorporating all

syntactic and semantic information describing the operation parameter. This information is

obtained from the WM objects created by the ruleset arguments. For each of the linguistic

realizations associated with an operation argument, a linguistic instance is created. The

 158

linguistic realizations are obtained from set of application terms. An example of a

linguistic instance generated, representing the concept ARCHITECT, is shown in Figure

6.15.

DEFNGCONARCHITECT

instance: defngcon
type: lex
cat: defngcon(syn(gen(m), num(s)), sem(con(architect)))
lex: el_arquitecto
sem: architect

Figure 6.15: The definite nominal group representing the concept ARCHITECT

The ruleset lexical_entries incorporates semantic information into the linguistic category.

This information consists of the type of argument (con, attr, val), the class of the attribute

(only for attributes and values, such as attrhas and valof) and the semantic restrictions

associated with the category (the concept and attribute name). The semantic features

associated with a category are obtained from the LO class. The values of these semantic

features for a specific parameter are obtained from the instance of the operation.

As shown in Figure 6.15, in the terminal instances the syntactic and semantic features

describing the linguistic object are directly associated with the category. For example, the

object in Figure 6.15 is a terminal lexical instance representing the definite nominal group

el_arquitecto (the_architect). The category of this instance is defngcon. This category has

been augmented with syntactic and semantic features. The syntactic feature is num

(abbreviation of number) and its value is s (the abbreviation of singular). The semantic

feature associated is con (representing the concept) and its value, architect, is obtained

from the operation parameter con. The semantic interpretation architect and it is

represented in the facet sem. Its linguistic realization is represented in the facet lex. The

type of the terminal instance is described in the facet type . Its value can be lex (if the

instance is associated with a string) or dyn (if it is associated with a dynamic function).

A more detailed description of this basic set of rules is given below.

 159

The ruleset TOP

The ruleset TOP is the initial one. This ruleset checks the initial conditions indicating the

type of the interface that has to be generated and activates the appropriate rulesets for each

case.

The ruleset TOP contains two rules: the rule consulting, which starts the process of

generating interfaces for consulting, and the rule modifying, which initiates the generation

of interfaces guiding the user to describe particular information. When the communication

with a specific application requires user consults and descriptions, both rules are applied to

obtain the appropriate interface.

The implementation of the two rules in the ruleset TOP is shown in Figure 6.16.

As can be seen in the figure, the condition set of each rule states: rule name, ruleset name,

rule priority and the conditions governing the rule. The two rules in the ruleset have

priority 1, maximum priority. The type of control in these rules is one , meaning that they

are applied just once over the initial conditions. The initial conditions are represented as

object identifiers in the WM. If the initial condition is the identifier consult, then the rule

consulting is applied; if it is the identifier modify, then the rule modifying is applied. If

both the identifier consult and the identifier modify are represented, then the two rules in

the TOP ruleset are applied.

(rule consulting
 ruleset top
 priority 1
 control one
 (consult)
 ->
 (?x1 := (opco 'concept))
 (apply-ruleset consulting_instance))

(rule modifying
 ruleset top
 priority 1
 control one
 (modify)
 ->
 (?x1 := (opco 'concept))
 (apply-ruleset creating_instance))

Figure 6.16: The ruleset TOP

 160

The action part of the two rules consists of two statements. The first statement is a call to

the function opco responsible for representing the CO concepts in the WM. The second

statement in both rules is the activation of the next ruleset to be applied: the rule

consulting activates the ruleset consulting_instance and the rule modifying the ruleset

creating_instance.

The CO application concepts and their attributes are represented as WM objects and the

following rules are applied over these WM objects. The parameter of the function opco

indicates the CO concepts that have to be represented in the WM. In the basic set of rules,

all concepts and attributes described as interface entities, representing all objects appearing

in the communication, are represented in the WM.

The ruleset creating_instance

The ruleset creating_instance is responsible for generating instances of the two operations

for creating instances of application concepts:

CREATE_INSTANCE_WITH_NO_NAME_O, for creating instances of concepts

without giving their identifier and CREATE_INSTANCE_WITH_NAME_O, for

creating conceptual instances having a given identifier. This ruleset is applied over the CO

application concepts described as interface entities. For each concept, instances of the two

operations are created in the CO case level. The implementation of the two rules is shown

in Figure 6.17.

The ruleset creating_instance contains two rules: the rule cio, creating the instances of

operations and the rule next_fa, activating the next ruleset to be applied.

The control type of the rule cio is forever, which states the application of the rule until no

object in the WM satisfies the conditions. The rule condition is the description of a CO

concept represented in the WM. This description corresponds to the WM shown in Figure

6.2. Each CO concept is described by the word object, its name (represented by the

attribute ^con and the variable ?con, containing the concept name) and the preconditions

associated with the concept (^pcc ?pcc). This rule is applied over all WM objects

satisfying this description.

 161

(rule cio
 ruleset creating_instance
 priority 1
 control forever
 (object ^con ?con ^pcc ?pcc)
 ->
 (?crinno := (create-name 'crinno ?con))
 (?concrinno := (create-object ?crinno 'crinno))
 (?oparg := (add-slots ?crinno '((con ?con) (pcc ?pcc))))

 (?criwno := (create-name 'criwno ?con))
 (?concriwno := (create-object ?criwno 'criwno))
 (?oparg := (add-slots ?criwno '((con ?con) (pcc ?pcc))))

 (create ocinn ^name ?crinno ^con ?con ^pcobject ?pcc)
 (create ociwn ^name ?criwno ^con ?con ^pcobject ?pcc)
 (delete 1))

(rule next_fa
 ruleset creating_instance
 priority 3
 control one
 ->
 (apply-ruleset filling_attribute))

Figure 6.17: The ruleset creating_instance

The action part of the rule consists of nine statements. The three first statements are

responsible for creating a CO instance of the operation creating a conceptual instance

without giving its name, for each WM object satisfying the rule condition. The first

statement assigns (:=) to the variable ?crinno the symbol resulting from concatenating the

abbreviation of the name of the operation (crinno), to the name of the concept (represented

in the variable ?con). In the second statement, the operator assign followed by the call to

the function create-object creates the instance of the operation crinno. The name of this

instance is given by the variable ?crinno, which has been instantiated in the previous

statement. In the third statement, the function add-slots fills the attribute con of the

operation generated with the concept name and the attribute pcc with the concept

preconditions. The three next statements are responsible for creating an instance of the

CREATE_INSTANCE_WITH_NAME_O (abbreviated criwno). The seventh and eighth

statements create the WM objects representing the new instances of operation created in

the case level in the CO. The first attribute of the two WM objects generated is ^name and

its value is given by the variable representing the instance name (?crinno and ?criwno

respectively). The second attribute is ^con and its value is represented by the variable

?con. The third attribute is ^pcobject and its value is represented in the variable ?pcc.

 162

Finally, the last statement uses the operator delete to remove the previously matched object

from the WM.

Once this rule has been applied for all objects satisfying the condition statement, other

rules in the same ruleset are applied. In this ruleset, there is only one further rule, the rule

next_fa. This rule has the lowest priority, and it is applied once. The only action of the rule

is a call to the next ruleset to be executed by means of the operator apply-ruleset and the

name of the ruleset, filling_attribute.

The ruleset filling_attribute

The ruleset filling_attribute is responsible for generating instances of operations filling

the attributes of conceptual instances in the case ontology. In this ruleset, instances of two

different simple operations filling attributes are generated: instances of the operation filling

one attribute of a conceptual instance and instances of the operation filling more than one

attribute of a conceptual transitive instance. The rules contained in this ruleset are shown in

Figure 6.18.

Each one of the first four rules in the ruleset generates instances of a different class of

operation. The fifth rule activates the next ruleset to be applied. The rule fa_op generates

one instance of the simple operation filling one attribute of a conceptual instance for each

conceptual attribute in the CO. The rules fatid_op, fati_op and fad_op generate instances

of operations filling more than one attribute concept that can be expressed by transitive

clauses. The rule fatid_op creates instances of the operation to fill transitive concepts, that

is, to fill conceptual attributes belonging to the three classes WHO_SUBJECT,

WHO_OBJECT and WHAT_OBJECT. The rule fad_op creates instances of operations

to fill conceptual attributes belonging to the classes WHO_SUBJECT and

WHAT_OBJECT. The rule fati_op creates operations to fill the attributes belonging to

the classes WHO_SUBJECT and WHO_OBJECT.

The first four rules in the ruleset have a similar structure. The rule condition consists of the

description of the WM object representing a CO concept and one (or more) of its

attribute(s). The statements in the action part of the rules create an instance of the

corresponding operation in the CO case level as well as in the WM. The first statement

creates the name of the instance. The second statement creates the instance in the CO case

 163

level. The third statement fills the arguments of the instance generated with the concept

and attribute(s) identifiers. The forth statement creates the WM representing the instance.

The sixth statements deletes the WM matched.

The rule fa_op creates the appropriate subclass of the FILL_ATTRIBUTE_O for each

conceptual attribute. It is applied over all WM objects representing the attribute of the

application concepts in the CO. These WM objects are described by the word attrcon, the

attribute class (^attrclass ?attrclass), the concept name (^con ?con), the attribute name

(^attr ?attr) and the concept preconditions (^pcc ?pcc).

Because of the organization of operations filling an instance attribute according to the class

of the attribute to be filled, one instance of the appropriate operation subclass is generated

for each conceptual attribute. Finally, the rule next_grammar is responsible for activating

the next ruleset to be applied, the ruleset grammar.

 164

(rule fa_op
 ruleset filling_attribute
 priority 1
 control forever
 (attrcon ^attrclass ?attrclass ^con ?con ^attr ?attr ^pcc ?pcc)
 ->
 (?opclass := (create-name 'fa ?attrclass))
 (?opgen := (create-name ?opclass '(?con ?attr)))
 (?op := (create-object ?opgen ?opclass))
 (?oparg := (add-slots ?opgen '((con ?con)(attr ?attr)(pcc ?pcc))))
 (create argop ^attrclass ?attrclass ^name ?opgen ^attr ?attr)
 (create operation ^opclass ?attrclass ^name ?opclass ^mod decsent)
 (delete 1))

(rule fatid_op
 ruleset filling_attribute
 priority 1
 control forever
 (cfat ^con ?con ^whos ?whos ^whob ?whob ^whato ?whato ^pcc ?pcc)
 ->
 (?opfatran := (create-name 'fatid ?con))
 (?op := (create-object ?opfatran 'fat))
 (?oparg := (add-slots ?opfatran '((con ?con)(?whos)(?whob)(?whato)(pcc ?pcc))))
 (create argtrop ^op ?opfatran ^con ?con ^whos ?whos ^whob ?whob ^whato ?whato)
 (delete 1))

(rule fati_op
 ruleset filling_attribute
 priority 2
 control forever
 (cfat ^con ?con ^whos ?whos ^whob ?whob ^pcc ?pcc)
 ->
 (?opfatran := (create-name 'fati ?con))
 (?op := (create-object ?opfatran 'fat))
 (?oparg := (add-slots ?opfatran '((con ?con)(?whos)(?whob)(pcc ?pcc))))
 (create argtrop ^op ?opfatran ^con ?con ^whos ?whos ^whob ?whob)
 (delete 1))

(rule fad_op
 ruleset filling_attribute
 priority 2
 control forever
 (cfat ^con ?con ^whos ?whos ^whato ?whato ^pcc ?pcc)
 ->
 (?opfatran := (create-name 'fatd ?con))
 (?op := (create-object ?opfatran 'fat))
 (?oparg := (add-slots ?opfatran '((con ?con)(?whos)(?whato)(pcc ?pcc))))
 (create argtrop ^op ?opfatran ^con ?con ^whos ?whos ^whato ?whato)
 (delete 1))

(rule next_grammar
 ruleset filling_attribute
 priority 3
 control one
 ->
 (apply-ruleset grammar))

Figure 6.18: The ruleset filling_attribute

 165

The ruleset consulting_instance

The ruleset consulting_instance is responsible for generating instances of the three

operations for consulting ontology concepts. These three operations are: the

CONSULT_CONCEPT_CLASSES_O, for consulting whether a conceptua l class exists,

the CONSULT_CONCEPT_INSTANCES_O, for consulting whether a specific

conceptual instance exists and the CONSULT_ALL_CONCEPT_INSTANCES_O, for

asking all existing instances of a specific conceptual class.

For each CO concept, instances of the three operations are created in the CO case level.

Rules in this ruleset are similar to the rules in the ruleset creating_instance. The

implementation of the two rules in this ruleset is described in the Figure 6.19.

The rule ci_op controls the generation of an instance of the three consulting operations for

each application concept in the CO. This rule is similar to the rule cio, belonging to the

ruleset creating_instance. The action part of the rule consists of thirteen statements. These

statements are responsible for creating instances of the consulting operations for each CO

concept in the case level together with the WM objects representing them. The first three

statements are involved in the construction of the instances of the operation

CONSULT_CONCEPT_INSTANCES_O. The first statement generates the name of the

instance, the second generates the instance in the CO case level and the third statement fills

the facet con (representing the argument con). The next three statements perform the same

functions for generating an instance of the CONSULT_CONCEPT_CLASSES_O: the

fourth statement generates the name, the fifth creates the instance and the sixth fills the

facet con. The next three statements carry out the same functions for creating an instance

of the CONSULT_ALL_CONCEPT_INSTANCES_O. The ninth, tenth and eleventh

statements create the three objects representing the generated instances in the WM. Finally,

the last statement deletes the conceptual object matched.

Once all instances of the consulting operations have been created, the ruleset next_ca

activates the next ruleset to be applied, the ruleset consulting_attribute.

 166

(rule ci_op
 ruleset consulting_instance
 priority 1
 control forever
 (object ^con ?con)
 ->
 (?cio := (create-name 'cio ?con))
 (?concioi := (create-object ?cio 'cio))
 (?opargi := (add-slots ?cio '((con ?con))))
 (?cco := (create-name 'cco ?con))
 (?concioc := (create-object ?cco 'cco))
 (?oparg := (add-slots ?cco '((con ?con))))
 (?callio := (create-name 'callio ?con))
 (?concioc := (create-object ?callio 'callio))
 (?oparg := (add-slots ?callio '((con ?con))))
 (create oconsi ^name ?cio ^con ?con)
 (create oconsc ^name ?cco ^con ?con)
 (create oconsalli ^name ?callio ^con ?con)
 (delete 1))

(rule next_ca
 ruleset consulting_instance
 priority 3
 control one
 ->
 (apply-ruleset consulting_attribute))

Figure 6.19: The ruleset consulting_instance

The ruleset consulting_attribute

The ruleset consulting_attribute is represented in Figure 6.20. This ruleset is responsible

for generating instances of the simple operations for consulting the attributes of the

concepts in the CO.

The rule ca_op creates one instance of the operation for consulting the value of an attribute

for each conceptual attribute in the CO. Operations consulting a conceptual attribute are

organized as subclasses of the CONSULT_ATTRIBUTE_O according to the class of the

attribute. As shown in Figure 6.20, the condition set of the rule states: the rule name, the

ruleset name, the rule priority and the conditions over the WM objects according to which

the rule must be applied. In this rule the control type is forever, which states the

application of the rule while the conditions over the WM objects are satisfied. The

condition on rule application is a WM object representing a concept attribute.

 167

(rule ca_op
 ruleset consulting_attribute
 priority 2
 control forever
 (attrcon ^attrclass ?attrclass ^con ?con ^attr ?attr)
 ->
 (?opclass := (create-name 'ca ?attrclass))
 (?opgen := (create-name ?opclass '(?con ?attr)))
 (?op := (create-object ?opgen ?opclass))
 (?oparg := (add-slots ?opgen '((con ?con) (attr ?attr))))
 (?role := (get-slot-value ?attrclass 'es_un))

 (create argop ^attrclass ?attrclass ^name ?opgen ^attr ?attr)
 (create operation ^opclass ?attrclass ^name ?opclass ^mod intsent)
 (delete 1))

(rule catid_op
 ruleset consulting_attribute
 priority 1
 control forever
 (cfat ^con ?con ^whos ?whos ^whob ?whob ^whato ?whato ^pcc ?pcc)
 ->
 (?opcatran := (create-name 'catid ?con))
 (?op := (create-object ?opcatran 'cat))
 (?oparg := (add-slots ?opcatran '((con ?con)(?whos)(?whob)(?whato)(pcc ?pcc))))

 (create argtrop ^op ?opcatran ^con ?con ^whos ?whos ^whato ?whato ^whob ?whob)
 (delete 1))

(rule cad_op
 ruleset consulting_attribute
 priority 2
 control forever
 (cfat ^con ?con ^whos ?whos ^whato ?whato ^pcc ?pcc)
 ->
 (?opcatran := (create-name 'catd ?con))
 (?op := (create-object ?opcatran 'fat))
 (?oparg := (add-slots ?opcatran '((con ?con)(?whos)(?whato)(pcc ?pcc))))

 (create argtrop ^op ?opcatran ^con ?con ^whos ?whos ^whato ?whato)
 (delete 1))

(rule next_grammarc
 ruleset consulting_attribute
 priority 3
 control one
 ->
 (apply-ruleset grammar))

Figure 6.20: The ruleset consulting_attribute

The action part of the rule ca_op consists of seven statements. In the first statement, the

result of the function create-name , concatenating the name of the operation ca to the

 168

attribute class (represented in the variable ?attrclass), is assigned to the variable ?opclass.

The second concatenates the name resulting in previous statement to the concept and

attribute identifier. The third statement creates an instance of the CO operation ?opclass (a

subclass of the operation ca) by calling the predicate create-object. The fourth statement

calls the add-slots function to fill the attributes con, attr and val of the instance generated.

The fifth and sixth statements represent the operation instance generated as a WM object.

The WM object generated in the fifth statement represents information necessary to

generate the LO objects corresponding to the parameters and that generated in the sixth is

used when generating the LO clause expressing the operation. Finally, the last statement

deletes the WM object representing the attribute of the CO concept.

The rules catid_op, cad_op and cao_op generate instances of operations consulting one

attribute of concept that can be expressed by transitive clauses. The expression of these

operations includes the description of other conceptual attributes belonging to the classes

WHO_SUBJECT, WHO_OBJECT and WHAT_OBJECT. These three rules are similar

to the rules fatid_op, fati_op and fad_op in the ruleset filling_attribute.

The ruleset next_grammarc is responsible for activating the next ruleset to be applied, the

ruleset grammar.

The ruleset grammar

The ruleset grammar ensures the process of generating LO instances representing the CO

operations created in the first step of the process. This ruleset has 14 rules, shown in

Figure 6.21, Figure 6.22 and Figure 6.23. There are different rules for controlling the

linguistic structures required for each operation.

The linguistic instances representing operations creating and consulting concepts as well as

operations on more than one attribute are the same for all applications. For this reason, the

linguistic structures representing these operations belong to the LO domain level. These

linguistic objects are marked (their identifier is stored in the set activerule) when they are

necessary for an application. The rules responsible for marking these linguistic objects are

shown in Figure 6.21.

 169

(rule cc_s
 ruleset grammar
 priority 1
 control one
 (modify)
 ->
 (?adcc := (add-to-value 'activerule 'value 'rcc))
 (?adroot := (add-to-value 'root 'value 'rcc)))

 (rule ci_s
 ruleset grammar
 priority 1
 control one
 (consult)
 ->
 (?adcc := (add-to-value 'activerule 'value 'rcic))
 (?adroot := (add-to-value 'root 'value 'rcic)))

(rule cinn_s
 ruleset grammar
 priority 1
 control one
 (ocinn)
 ->
 (?adas := (add-to-value 'activerule 'value 'ac_ciwn)))

(rule ciwn_s
 ruleset grammar
 priority 1
 control one
 (ociwn)
 ->
 (?adas := (add-to-value 'activerule 'value 'ec_cinn)))

(rule ci
 ruleset grammar
 priority 1
 control one
 (oconsi)
 ->
 (?adas := (add-to-value 'activerule 'value 'cic_ci)))

(rule cc
 ruleset grammar
 priority 1
 control one
 (oconsc)
 ->
 (?adas := (add-to-value 'activerule 'value 'cic_cc)))

(rule allc
 ruleset grammar
 priority 1
 control one
 (oconsalli)
 ->
 (?adas := (add-to-value 'activerule 'value 'pic_cc)))

Figure 6.21: Rules of the ruleset grammar

 170

The rule cc_s (shown in Figure 6.21) marks linguistic objects representing the expression

of more than one operation creating and modifying instances at the CO case level. The rule

ci_s marks linguistic objects representing the expression of more than one operation

consulting concepts. The linguistic objects representing the realization of operations

creating conceptual instances are obtained by the rule cinn_s (for instances with no name)

and the rule ciwn_s (for instances with name). The rules ci, cc and allc are responsible for

obtaining the linguistic objects expressing operations consulting ontology concepts.

The three rules in Figure 6.22 ensure the generation of the most appropriate linguistic

instances for each of operations over a conceptual attribute created for an application. The

rule attr_c controls the generation of different linguistic instances for the different

subclasses of the FILL_ATTRIBUTE_O and the CONSULT_ATTRIBUTE_O. The

expression of operations on concept attributes depends on the attribute class. For this

reason, different operations have been created regarding the attribute class. The most

appropriate linguistic instances associated with each operation are obtained from the

attribute class (which is also considered in the class of the operation). The description of

the classes of attributes includes a facet (decsent) indicating the linguistic structures

expressing the filling of the attributes in this class, and a facet (insent) for linguistic

structures associated with their consulting.

For each operation subclass generated in the first step of the process, the rule attr_c

obtains the linguistic instances necessary to express this operation in a clause. It considers

two possible expressions for each operation: one corresponds to a referential clause and

one to a non-referential clause. The constituents of the linguistic instances generated are

also obtained from the information represented in the facets. Two types of constituents are

distinguished: open and closed.

 171

(rule attr_c
 ruleset grammar
 priority 2
 control forever
 (operation ^opclass ?class ^name ?opgen ^mod ?mod)
 ->
 (?assclass := (get-slot-value ?class ?mod))
 (?upclass := (first ?assclass))
 (?attro := (second ?assclass))
 (?attrc := (third ?assclass))

 (?cfa := (create-name ?upclass ?class))
 (?claufa := (create-object ?cfa ?upclass))
 (?catr := (add-slots ?cfa '((oper ?opgen))))

 (?rupclass := (create-name 'r ?upclass))
 (?rcfa := (create-name ?rupclass ?class))
 (?clauserfa := (create-object ?rcfa ?rupclass))
 (?cattr := (add-slots ?rcfa '((oper ?opgen))))

 (?adc := (add-to-value 'activerule 'value ?cfa))
 (?adrc := (add-to-value 'activerule 'value ?rcfa))
 (delete 1)
 (create opattr ^c ?cfa ^upc ?upclass ^opclass ?class ^attr ?attro)
 (create opattr ^c ?rcfa ^upc ?upclass ^opclass ?class ^attr ?attro)
 (create clattr ^c ?cfa ^attr ?attrc)
 (create clattr ^c ?rcfa ^attr ?attrc))

(rule add_opconstituents
 ruleset grammar
 priority 3
 control forever
 (opattr ^c ?cfa ^upc ?upclass ^opclass ?class ^attr (?constituent *rest))
 ->
 (?cons := (car (get-value ?upclass ?constituent)))
 (?conclass := (create-name ?cons ?class))
 (?sconst := (add-slots ?cfa '((?constituent ?conclass))))
 (delete 1)
 (create opattr ^c ?cfa ^upc ?upclass ^opclass ?class ^attr (*rest)))

(rule add_clconstituents
 ruleset grammar
 priority 3
 control forever
 (clattr ^c ?cfa ^attr ((?constituent ?value) *rest))
 ->
 (?sconst := (add-slots ?cfa '((?constituent ?value))))
 (delete 1)
 (create clattr ^c ?cfa ^attr (*rest)))

Figure 6.22: Rules of the ruleset grammar

The condition over the rule attr_c is a WM object representing an instance of an operation

over a conceptual attribute. The first statement in the action part of the rule obtains the

linguistic information related to the most appropriate form of expressing the operation over

the attribute. This information is obtained from the attribute class. The variable ?mod

 172

indicates if the operation over the attribute is to fill it (the value is decsent) or to consult

(the value is intsent). The second statement obtains the most appropriate LO class

representing the operation over the attribute. The third and fourth statements obtain the

constituents associated with the class. The third statement obtains the open constituents

(i.e. nouns and verbs). The fourth statement obtains the close constituents (i.e. prepositions

and interrogative pronouns). The next three statements generate an instance of the

linguistic class obtained in the first statement: one generates the instance name, the next

creates the instance in the LO and the third adds the operation identifier to the instance

generated. Then, the next four statements generate an instance of the same linguistic class

represented in referential form. The next two statements mark the two linguistic instances

generated as active. Then, the delete statement deletes the WM object over which the rule

has been applied. Finally, the last four statements create the WM necessary to create the

linguistic structures representing the constituents of the generated linguistic instance.

The rules add_opconstituents and add_clconstituents are responsible for adding the

constituents in the linguistic instances generated. The operation parameters are represented

as constituents in these instances generated. The category associated with each constituent

represents the type of the argument (con, attr, val) and the class (e.g. defngattrof,

defngvalwho_does). In the linguistic instances generated, information about the pattern or

correct distribution of the constituents and the syntactic and semantic agreement between

them is inherited from their linguistic classes.

Figure 6.23 shows the other rules in the ruleset grammar. The rule fa_pt marks the

linguistic objects representing operations filling more than one instance attribute expressed

by transitive clauses. The rule ca_pt marks the linguistic objects representing interrogative

transitive clauses expressing operations consulting more than one instance attribute. The

rule ind_ng marks the indirect nominal groups expressing concepts. The rule

next_arguments activates the next ruleset to apply, the ruleset arguments.

 173

(rule fa_pt
 ruleset grammar
 priority 4
 control one
 (modify)
 (argtrop)
 ->
 (?tc := (add-to-value 'activerule 'value 'tc_fma))
 (?rtc := (add-to-value 'activerule 'value 'rtc_fma))
 (?indc := (add-to-value 'activerule 'value 'indtc_fma))
 (?indrc := (add-to-value 'activerule 'value 'rindtc_fma)))

(rule ca_pt
 ruleset grammar
 priority 4
 control one
 (consult)
 (argtrop)
 ->
 (?tc := (add-to-value 'activerule 'value 'itc_cma))
 (?rtc := (add-to-value 'activerule 'value 'ritc_cma))
 (?indc := (add-to-value 'activerule 'value 'iindtc_cma))
 (?indrc := (add-to-value 'activerule 'value 'riindtc_cma)))
(rule ind_ng
 ruleset grammar
 priority 4
 control one
 ->
 (?ading := (add-to-value 'activerule 'value 'indngcon))
 (?ading := (add-to-value 'activerule 'value 'indngconi)))

(rule next_arguments
 ruleset grammar
 priority 5
 control one
 ->
 (apply-ruleset arguments))

Figure 6.23: Rules of the ruleset grammar

The alternative set of rules only differs from this basic set in that it considers all linguistic

instances associated with the expression of each operation. That is, there are two

alternative rules obtaining all linguistic instances associated with the class of the attribute

involved in the operation. The two new rules incorporated in the alternative set are shown

in Figure 6.24.

 174

(rule attr_tc
 ruleset grammar
 priority 2
 control forever
 (operation ^opclass ?class ^name ?opgen ^mod ?mod)
 ->
 (?asclass := (get-immediate-value ?class ?mod))
 (create cl ^op ?opgen ^class ?class ^asclass ?asclass)
 (delete 1))

(rule attr_uc
 ruleset grammar
 priority 3
 control forever
 (cl ^op ?op ^class ?class ^asclass (?asclass *rasclass))
 ->
 (?upclass := (first ?asclass))
 (?attro := (second ?asclass))
 (?attrc := (third ?asclass))

 (?cfa := (create-name ?upclass ?class))
 (?claufa := (create-object ?cfa ?upclass))
 (?catr := (add-slots ?cfa '((oper ?op))))

 (?rupclass := (create-name 'r ?upclass))
 (?rcfa := (create-name ?rupclass ?class))
 (?clauserfa := (create-object ?rcfa ?rupclass))
 (?cattr := (add-slots ?rcfa '((oper ?op))))

 (?adc := (add-to-value 'activerule 'value ?cfa))
 (?adrc := (add-to-value 'activerule 'value ?rcfa))
 (delete 1)

 (create opattr ^c ?cfa ^upc ?upclass ^opclass ?class ^attr ?attro)
 (create opattr ^c ?rcfa ^upc ?upclass ^opclass ?class ^attr ?attro)
 (create clattr ^c ?cfa ^attr ?attrc)
 (create clattr ^c ?rcfa ^attr ?attrc)

 (create cl ^op ?op ^class ?class ^asclass (*rasclass)))

Figure 6.24: The alternative rules in the ruleset grammar

The ruleset arguments

The ruleset arguments is responsible for creating WM objects representing all semantic

and syntactic information necessary for generating the terminal linguistic instances

corresponding to the arguments of operations created. Rules in this ruleset generate WM

objects representing the concepts, attributes and values of the operation instances generated

in the first step of the process. These rules obtain the linguistic information associated with

each operation argument from the linguistic description of the application terms and the

semantic information from the operation instance.

 175

The rules generating the WM objects representing the parameter con (representing the

concept) of the simple operations creating and consulting concepts are shown in Figure

6.25.

(rule crcon_ng
 ruleset arguments
 priority 1
 control forever
 (ocinn ^name ?op ^con ?con ^pcobject ?pcc)
 ->
 (?adpcc := (add-to-value 'precobject 'valor (cons ?con ?pcc)))
 (?lexcon := (get-immediate-value ?con 'lex))
 (create con ^op ?op ^sem ?con ^lex ?lexcon)
 (delete 1))

(rule coni_ng
 ruleset arguments
 priority 1
 control forever
 (ociwn ^name ?op ^con ?con)
 ->
 (?lexcon := (get-slot-value ?con 'lex))
 (?lexdic := (get-immediate-value ?lexcon 'inf))
 (?nomins := '(name))
 (create termdyn ^op ?op ^arg (ins ins) ^sem ?nomins ^lex ?lexdic)
 (create termdyins ^op ?op ^sem ?con)
 (delete 1))

(rule cocon_ng
 ruleset arguments
 priority 1
 control forever
 (oconsc ^name ?op ^con ?con)
 ->
 (?lexcon := (get-immediate-value ?con 'lex))
 (create con ^op ?op ^sem ?con ^lex ?lexcon)
 (delete 1))

(rule cocoi_ng
 ruleset arguments
 priority 1
 control forever
 (oconsi ^name ?op ^con ?con)
 ->
 (?lexcon := (get-slot-value ?con 'lex))
 (?lexdic := (get-immediate-value ?lexcon 'inf))
 (?nomins := '(name))
 (create termdyn ^op ?op ^arg (ins ins) ^sem ?nomins ^lex ?lexdic)
 (create termdyins ^op ?op ^sem ?con)
 (delete 1))

Figure 6.25: Rules of the ruleset arguments

 176

The rule crcon_ng generates a WM object representing the parameter con (concept) from

each operation creating a conceptual instance with no name. The semantic information

associated with these objects is the concept identifier. The preconditions associated with

these concepts are represented in the object precobject. These preconditions will be

consulted at run-time to activate the appropriate lexical entries and grammar rules at each

state of the communication. Next, the rule con_ng will use the WM objects created by this

rules to generated a different WM for each pointer to the application terms included in the

concept description (represented in the facet lex).

The rule coni_ng generates WM objects corresponding to the parameter ins of the

CREATE_INSTANCE_WITH_NAME_O, representing the name of the instances of

concepts that will be created by these operations. As this name will be set by the user at

run-time, the semantic interpretation associated with these objects is the name of a function

(a PROLOG predicate) responsible for requesting the user to introduce the name of the

instance.

The rule cocon_ng creates WM objects representing the parameter con of the operation by

consulting whether there is a conceptual class in the CO. The rule cocoi_ng creates WM

objects representing the parameter ins of the operation by consulting whether there is a

conceptual instance in the CO case level.

Rules responsible for generating the WM objects representing the parameters of operations

to fill and consult the values of the concept attributes are shown in Figure 6.26. The rule

cofat_o generates a WM object representing the parameters attr (attribute) and val (value)

of the simple operations filling and consulting one concept attribute.

The syntactic and semantic information associated with concepts and attributes is obtained

by other rules in this ruleset, shown in the Figure 6.26. Figure 6.27 shows rules obtaining

this information for the different types of values (yes/no value, function value, function

and associated unit value and instance value).

 177

(rule fat_o
 ruleset arguments
 priority 1
 control forever
 (argop ^attrclass ?class ^name ?opgen âttr ?attr)
 ->
 (?lexattr := (get-immediate-value ?attr 'lex))
 (?range := (get-slot-value ?attr 'range))
 (?card := (get-slot-value ?attr 'cardinality))
 (create attr ^opclass ?class ^op ?opgen ^sem ?attr ^lex ?lexattr)
 (create val ^opclass ?class ^op ?opgen ^range ?range ^card ?card)
 (delete 1))
 (rule fatid_o
 ruleset arguments
 priority 1
 control forever
 (argtrop ^op ?op ^con ?con ^whos ?whos ^whob ?whob ŵhato ?whato)
 ->
 (?lexdic := (get-immediate-value ?con 'lexverb))
 (?semverb := (create-lambda-function ?con '(?whos ?whob ?whato)))
 (create con ^op ?op ^sem ?semverb ^lex ?lexdic)
 (delete 1))
(rule fati_o
 ruleset arguments
 priority 2
 control forever
 (argtrop ^op ?op ^con ?con ^whos ?whos ^whob ?whob)
 ->
 (?lexdic := (get-immediate-value ?con 'lexverb))
 (?semverb := (create-lambda-function ?con '(?whos ?whob)))
 (create con ^op ?op ^sem ?semverb ^lex ?lexdic)
 (delete 1))
(rule fatd_o
 ruleset arguments
 priority 2
 control forever
 (argtrop ^op ?op ^con ?con ^whos ?whos ^whato ?whato)
 ->
 (?lexdic := (get-immediate-value ?con 'lexverb))
 (?semverb := (create-lambda-function ?con '(?whos ?whato)))
 (create con ^op ?op ^sem ?semverb ^lex ?lexdic)
 (delete 1))
(rule con_ng
 ruleset arguments
 priority 3
 control forever
 (con ^op ?op ŝem ?sem ^lex (?lex *rest))
 ->
 (?lexdic := (get-immediate-value ?lex 'inf))
 (create termlex ^op ?op ^arg (con con) ^sem ?sem l̂ex ?lexdic)
 (create con ^op ?op ^sem ?sem ^lex (*rest))
 (delete 1))
(rule attr_ng
 ruleset arguments
 priority 3
 control forever
 (attr ^opclass ?class ^op ?opgen ^sem ?attr l̂ex (?lex *rest))
 ->
 (?attrty := (create-name 'attr ?class))
 (?lexdic := (get-immediate-value ?lex 'inf))
 (create termlex ^op ?opgen ^arg (?attrty attr) ŝem ?attr l̂ex ?lexdic)
 (create attr ^opclass ?class ^op ?opgen ^sem ?attr ^lex (*rest))
 (delete 1))

Figure 6.26: Rules of the ruleset arguments

 178

(rule valyn
 ruleset arguments
 priority 3
 control forever
 (val ^opclass ?class ^op ?op ^range yes/no)
 ->
 (delete 1))
(rule valset
 ruleset arguments
 priority 3
 control forever
 (val ^opclass ?class ^op ?op ^range (cj ?val) ^card ?card)
 ->
 (?valty := (create-name 'val ?class))
 (?lexdic := (get-immediate-value ?val 'inf))
 (?insf := (create-name 'instance ?card))
 (?semval := '(?insf (?val)))
 (create termdyn ^op ?op ^arg (?valty val) ^sem ?semval ^lex ?lexdic)
 (delete 1))
(rule valdynunit
 ruleset arguments
 priority 3
 control forever
 (val ^opclass ?class ^op ?op ^range (?dyn ?val ?unit) ^card ?card)
 ->
 (?valty := (create-name 'val ?class))
 (?lexval := (get-slot-value ?val 'lex))
 (?lexdic := (get-immediate-value ?lexval 'inf))
 (?dynf := (create-name ?func ?card))
 (?semval := '(?dynf (?unit)))
 (create termdyn ^op ?op ^arg (?valty val) ^sem ?semval ^lex ?lexdic)
 (delete 1))
(rule valmenu
 ruleset arguments
 priority 3
 control forever
 (val ^opclass ?class ^op ?op ^range (menu ?name ?val) ^card ?card)
 ->
 (?valty := (create-name 'val ?class))
 (?lexdic := (get-immediate-value ?name 'inf))
 (?funcf := (create-name 'menu ?card))
 (?semval := '(?funcf (?name)))
 (create termdyn ^op ?op ^arg (?valty val) ^sem ?semval ^lex ?lexdic)
 (delete 1))
(rule valfunction
 ruleset arguments
 priority 4
 control forever
 (val ^opclass ?class ^op ?op ^range (?func ?val) ^card ?card)
 ->
 (?valty := (create-name 'val ?class))
 (?lexdic := (get-immediate-value ?val 'inf))
 (?funcf := (create-name ?func ?card))
 (?semval := '(?funcf (?val)))
 (create termdyn ^op ?op ^arg (?valty val) ^sem ?semval ^lex ?lexdic)
 (delete 1))

Figure 6.27: Rules of the ruleset arguments

 179

The ruleset lexical_entries

The ruleset lexical_entries ensures the creation of linguistic instances representing all

possible realizations of the operation parameters. These linguistic instances incorporate

syntactic and semantic information associated with each. This information consists of the

surface realization, the category, the semantic interpretation, the general linguistic class the

category belongs to and the type of instance (lexical or dynamic). The semantic

information, that is, the semantic restrictions associated with the category and the semantic

interpretation, is obtained from the operation argument. The syntactic information, the

category, the syntactic restrictions (number and gender) and the string, is obtained from the

set containing the linguistic information of the application terms by the ruleset arguments.

These instances represent the interface lexical entries.

The ruleset lexical_entries contains three rules: the rule lexentry, the rule dynentry and

the rule dynentryins . The three rules are shown in Figure 6.28. The rule lexentry performs

the generation of lexical instances. The surface realization of these instances is obtained

from the syntactic description of the application terms. The rule dynentry is responsible

for generating the instances representing arguments associated with a dynamic predicate.

The rule dynentryins controls the generation of conceptual instances existing in the CO

case level.

As can be seen in the figure, the WM objects representing all semantic and syntactic

information associated with an operation argument are used by the two rules to create the

linguistic instances.

The semantic information represented in the WM object consists of the operation

indentifier (op), the type of argument (arg) and the semantic interpretation associated with

the parameter (sem). The syntactic information is represented in the attribute lex. It

consists of the syntactic category and, for lexical objects, the surface realization and the

syntactic features. It is obtained from the entries in the term description set associated with

an argument.

 180

(rule lexentry
 ruleset lex_entries
 priority 1
 control forever
 (termlex ^op ?op ^arg (?arg ?targ) ^sem ?sem ^lex ((?cat ?str ?synf) *rest))
 ->
 (?upsemcat := (create-name ?cat ?targ))
 (?semr := (get-slot-value ?upsemcat 'semf))
 (?semf := (obtain-semfeatures ?semr ?op))
 (?semcat := (create-name ?cat ?arg))
 (?catfi := '(?semcat '(?synf ?semf)))
 (?aux := (create-object ?semcat ?upsemcat))
 (?lexname := (create-name ?op ?str))
 (?termf := (create-object ?lexname ?semcat))
 (?tfslotg := (add-slots ?lexname '((type 'lex)
 (cat ?catfi)(lex ?str)(sem ?sem))))
 (?adcl := (add-to-value 'activelex 'value ?lexname))
 (delete 1)
 (create termlex ^op ?op ^arg (?arg ?targ) ^sem ?sem ^lex (*rest)))
(rule dynentry
 ruleset lex_entries
 priority 1
 control forevee
 (termdyn ^op ?op ^arg (?arg ?targ) ^sem ?val ^lex ((?cat *str) *rest))
 ->
 (?upsemcat := (create-name ?cat ?targ))
 (?semr := (get-slot-value ?upsemcat 'semf))
 (?semf := (obtain-semfeatures ?semr ?op))
 (?semcat := (create-name ?cat ?arg))
 (?catfi := '(?semcat '(?semf)))
 (?aux := (create-object ?semcat ?upsemcat))
 (?lexdin := (create-name ?semcat ?op))
 (?termf := (create-object ?lexdin ?semcat))
 (?tfslotg := (add-slots ?lexdin '((type 'dyn)(cat ?catfi)(lex ?val))))
 (?adcl := (add-to-value 'activelex 'value ?lexdin))
 (delete 1)
 (create termdyn ^op ?op ^arg (?arg ?targ) ^sem ?val ^lex (*rest)))
(rule dynentryins
 ruleset lex_entries
 priority 1
 control forever
 (termdyins ^op ?op ^sem ?con)
 ->
 (?semf := (obtain-semfeatures '(con) ?op))
 (?catfi := '(pngi '(?semf)))
 (?lexdin := (create-name ?con ?op))
 (?termf := (create-object ?lexdin 'pngi))
 (?val := '(instance (?con)))
 (?tfslotg := (add-slots ?lexdin '((type 'dyn)(cat ?catfi)(lex ?val))))
 (?adcl := (add-to-value 'activelex 'value ?lexdin))
 (delete 1))

Figure 6.28: Rules of the ruleset lex_entries

The statements in the action part of the rule lexentry, the rule dynentry and the rule

dynentryins generate an LO instance encoding all necessary information about the

operation argument. The category of these linguistic instances is augmented with syntactic

and semantic features.

 181

These rules generate a linguistic instance for each possible realization of the operation

parameter. These instances represent the interface lexical entries.

6.3 FOLLOWING AN EXAMPLE

A simplified example of the performance of the basic set of control rules is described

below.

As discussed earlier, the grammars generated by the two basic sets of rules represent

queries and descriptions about the application concepts represented in the CO. For

example, if ARCHITECT is a CO concept, several ways to state the existence of a

particular architect are supported by the grammar generated by GISE. Clauses such as

Existe un arquitecto (there is an architect) and <Nombre Propio> es un arquitecto

(<Proper Noun> is an architect) can be introduced to express the creation of an instance

of the concept ARCHITECT. In the first case, the system automatically gives a new name

to the instance, while in the second case, <Proper Noun> will be the name of the instance

generated.

The process of generating the grammar rules and lexical entries necessary for accepting the

expression of this operation in Spanish is described next.

The concept ARCHITECT, belonging to the CO in the SIREDOJ application, is shown in

Figure 6.29. Three facets describe the concept: isa, interface_entity and lex. The facet isa

indicates that all members in the class belong to the upper class PERSON. The facet

interface_entity and its value yes indicate that the concept is expressed during

communication between the user and the interface. The facet lex contains a list of pointers

to the linguistic realizations of the concept contained in the application terms set. In this

example, the only pointer is arquitecto.

 182

ARCHITECT

isa: PERSON
interface_entity: yes
lex: (arquitecto)

Figure 6.29: The concept ARCHITECT

The process for obtaining the linguistic resources necessary to express the operation to

create an instance of the concept ARCHITECT is divided into the three steps described

bellow.

Step1

The process performed in this step is depicted in Figure 6.30.

The process starts when the basic set of rules described in the previous section is activated.

First, the function to initiate the process is called up. As described above, there is one

different function for each type of interface considered. The function inim is called up to

generate interfaces that only accept the incorporation of new information to enrich the CO,

preventing its consultation. This is the case of the interface to SIREDOJ. The initialization

function activates the ruleset TOP, shown in Figure 6.15. As described in Section 6.3.2,

this ruleset checks the initial conditions indicating the type of interface that must be

generated, and activates the appropriate ruleset. When the initialization function is inim,

the only ruleset activated is the ruleset creating_instance, described in Figure 6.16.

In this first step, the existing concepts in the CO are related to the operations performing

the creation of concept instances in the case level of the CO. These operations are the

CREATE_INSTANCE_WITH_NO_NAME_O, performing the creation of instances

whose name is generated automatically and the CREATE_INSTANCE

WITH_NAME_O, creating instances whose name is specified in the operation call. Each

of these two operations is represented as a CO object. The operation parameters, as well as

the conditions governing its execution, are represented as facets. The facets describing

these two operations are ins , representing the name of the instance, con, representing the

concept identifier and pcc, representing the conditions governing the conceptual instance

creation.

 183

STEP 1

CO

ENTITY

CONCEPT ATTRIBUTE OPERATION

ARCHITECT

CREATE_INSTANCE
WITH_NO_NAME_O

CREATE_INSTANCE
 WITH_NAME_O

RULESET
CREATING_INSTANCE

CRINNOARCHITECT CRIWNOARCHITECT

direct link

indirect link
input object

out object

Figure 6.30: The performance of the first step of the process for the concept ARCHITECT

The rule cio, belonging to the ruleset creating_instance generates the corresponding

instances of the two operations mentioned above. If the concept ARCHITECT exists

alone in the CO, then only one instance of these two operations will be generated4.

4Because it is more efficient to access objects in the WM than objects in the ontology, when a rule generates
ontology instances that are accessed by the following rules, it also creates the WM objects representing the
instances. Initially, a set of metarules is responsible for the representation of the CO concepts as WM objects.

 184

Figure 6.31 shows the instance of the CREATE_INSTANCE_WITH_NO_NAME_O

operation generated for the concept ARCHITECT. This operation,

CRINNOARCHITECT, creates an instance of the concept ARCHITECT and generates

a new name that identifies the instance.

CRINNOARCHITECT

instance: CREATE_INSTANCE_WITH_NO_NAME_O
con: architect
pcc: nil

Figure 6.31: The instance CRINNOARCHITECT, for creating an instance of the concept
ARCHITECT without giving its name

Figure 6.32 shows the operation CRIWNOARCHITECT, the instance of the

CREATE_INSTANCE_WITH_NAME_O generated for the concept ARCHITECT.

CRIWNOARCHITECT

instance: CREATE_INSTANCE_WITH_NAME_O
con: architect
ins
pcc: nil

Figure 6.32: The instance CRIWNOARCHITECT, for creating an instance of the concept
ARCHITECT giving its name

Of course, in a real situation, many concepts exist and thus the performance of the rule will

iterate for each of these concepts, leading to the construction of other instances for the two

operations. In the same way, other rules belonging to the ruleset filling_attribute will be

fired in order to create the permitted operations for modifying the instance attributes. In

this example, the concept ARCHITECT has no attributes to be filled by the user

 185

Step 2

Figure 6.33 describes the second step of the process to obtaining the linguistic structures

for creating instances of the concept ARCHITECT.

The second step of the process consists of mapping the instances of operations generated in

the first step onto the corresponding LO objects. The first ruleset applied in this step is the

ruleset grammar, described in Figures 6.20-6.22. This ruleset is responsible for obtaining

the linguistic objects necessary to express the operations created in the first step.

Following the example, the identifiers of the LO objects representing the realization of the

two operations creating conceptual instances are stored in the object activerules, indicating

that they must be included in the grammar. These LO classes are the

EXISTENTIAL_CLAUSE_CREATE_INSTANCE_WITH_NO_NAME class, shown

in Figure 5.6 and the class ATTRIBUTIVE_CLAUSE_CREATING_INSTANCE

WITH_NAME, shown in Figure 5.7.

Obtaining the linguistic structures for more complex operations, such as operations filling

and consulting conceptual attributes, is not so direct. New linguistic instances must be

generated according to the classes of the attributes to fill.

Once the ruleset grammar has been applied, the ruleset arguments and the ruleset

lexical_entries are activated. These two rulesets are responsible fo r creating the linguistic

instances expressing the parameters of the operations generated. First, the rules in the

ruleset arguments are applied to the operation instances generated in the first step of the

process. These rules create WM objects describing information associated with the

parameters of the operations generated in Step 1. Then, the rules in the ruleset

lexical_entries use these WM objects to create the LO instances supporting the expression

of the parameters. The LO instances generated will be incorporated into the interface

lexicon.

 186

STEP 2

 RANK

CLAUSE GROUP

CRIWNOARCHITECT CRINNOARCHITECT

CO

RULESET GRAMMAR
RULESET ARGUMENTS

 RULESET
 LEXICAL_ENTRIES

ATTRIBUTIVE_CLAUSE
CREATE_INSTANCE
WITH_NAME

DEFNGINS
ARCHITECT

INDEFNGCON
ARCHITECT

LO

EXISTENTIAL_CLAUSE
CREATE_INSTANCE
WITH_NO_NAME

Figure 6.33: The performance of the second step of the process for the concept
ARCHITECT

The rules in the ruleset arguments create WM objects representing the syntactic and

semantic information associated with the parameters of the operations generated. These

parameters correspond to CO concepts, attributes and values. The syntactic information

associated with these parameters is obtained from the facet lex, containing the pointers to

the entries in the set of application terms. Each of these CO objects is related to one or

more entries in this set. The syntactic information describing each application term consists

 187

of category, superficial presentation and syntactic features.

The semantic information associated with the operation parameters consists of the

semantic interpretation and the semantic features. This information is obtained from the

object representing the operation.

The generated objects representing the operation parameters will be classified as lexical

terms (termlex), dynamic terms (termdyn) and instance terms (termdyins). The lexical

terms represent the arguments expressed by a word (or sequence of words) included in the

lexicon generated for an application. The dynamic terms correspond to values that will be

requested from the user during communication. An instance term represents all the

instances of a specific concept existing in the CO case level at any state of the

communication process.

The preconditions associated with these concepts will be incorporated into the object

precobject. This object represents all preconditions associated with the concepts involved

in the communication. These preconditions together with the preconditions associated with

the operations will be incorporated into the grammar generated as predicates to be

executed at run-time.

In our example, only three rules of the ruleset argument are applied. These rules are:

crcon_ng , coni_ng and con_ng, described in Figure 6.25. The rule crcon_ng is applied to

the instances of the operation creating conceptual instances whose name must be generated

by the system. For each operation instance, this rule creates a WM object describing the

information associated with the parameter con. This parameter represents the identifier of

the concept (i.e. architect). The WM object created for this parameter corresponds to

lexical terms, that is, this WM object will be used to generate the lexical entries with its

superficial realizations. This WM object represents the syntactic information obtained from

the application term’s description and the concept and operation identifiers.

Following the example, the rule crcon_ng is applied to the operation

CRINNOARCHITECT (for creating an instance with no name for the concept

ARCHITECT). As a result, a WM object representing the parameter con will be

generated. This WM object is described in Figure 6.34.

 188

con ^op crinnoarchitect ^sem architect ^lex (arquitecto)

Figure 6.34: The WM object representing the information associated with the parameter
con of the operation CRINNOARCHITECT

As shown in this figure, the name of the WM object created is con. The attributes

describing this object are op, sem and lex. The value of the attribute op represents the

name of the operation, crinnoarchitect. The attribute sem represents the semantic

interpretation of the parameter architect. Finally, the attribute lex represents the pointers to

the entries in the set of application terms. In this example, there is only onepointer:

arquitecto.

The rule con_ng is applied to the WM objects created by the crcon_ng. For all pointers

associated with a conceptual description, this rule creates a WM object. The attributes

describing the resulting object are op, sem, arg and lex. The value of the attribute arg

consists of a list of two words representing the type of parameter. One word represents the

name of the parameter (con, ins , attr or val). The other word represents the name of the

parameter and, in the case of it being an attribute or value, the basic class to which the

attribute belongs (i.e. attris, valdoes). In this example, the value of the attribute arg is

(con con). The attribute lex in the resulting object represents all syntactic information

associated with one of the pointers included in the concept description. This information

consists of all possible realizations related with an entry in the set of application terms and

the corresponding syntactic category. In this example, there are two different realizations

of the concept: one represents the definite nominal group, el arquitecto (the architect); the

other represents the indefinite nominal group, un arquitecto (an architect).

The rule coni_ng is applied to the operations generated for creating instances with a given

name. The two parameters of these operations are: con, representing the name of the

concept and ins , representing the name of the instance. The value of the parameter con is

the same as that of the parameter con in the operations creating a conceptual instance,

whose name is generated by the system. Because the rule crcon_ng is performed over the

parameter con , the rule coni_ng only considers the parameter ins . For all instances of the

CREATE_INSTANCE_WITH_NAME_O, this rule creates a WM object describing the

information associated with the parameter ins. The objects created correspond to dynamic

terms; they represent the conceptual instance name introduced by the user at run-time. The

 189

name of the WM objects created for this rule is termdyn. These objects are described by

the same attributes describing the lexical terms: op, arg, sem and lex. In this case, the

value of the attribute sem is the function that will request the user to introduce the name of

the instance at run-time.

In our example, the rule coni_ng will be applied on the operation

CRIWNOARCHITECT (for creating an instance of the concept ARCHITECT giving it

a specific name). The WM object generated to represent the parameter ins of this operation

is shown in Figure 6.35.

The next ruleset applied is lexical_entries, responsible for generating the linguistic

instances in the LO representing the parameters of the operations generated in the first

step. This ruleset, described in Figure 6.28, is applied to the WM objects created by the

ruleset arguments.

termdyn ^op criwnoarchitect ^arg (ins ins) ^val name
 ^lex ((defng el_aquitecto (syn (gen m) (num s)))
 (indefng un_arquitecto (syn (gen m) (num s))))

Figure 6.35: The WM object representing syntactic and semantic information associated
with the parameter ins of the operation CRIWNOARCHITECT

As shown in Figure 6.28, this ruleset contains three rules: the rule lexentry, the rule

dynentry and the rule dynentryins . The rule lexentry performs the generation of

instances representing operation arguments whsoe surface realization is obtained from the

description of the application terms. The rule dynentry is in charge of generating the

instances representing arguments associated with a dynamic function. The rule

dynentryins controls the generation of the instances for arguments representing all

existing instances of a specific concept at run-time.

As can be seen in Figure 6.28, the WM objects representing all semantic and syntactic

information associated with an operation argument are used to create the corresponding

linguistic instances. The rule lexentry is applied to WM objects representing lexical terms,

the rule dynentry to WM objects representing dynamic terms and the rule dynentryins to

WM objects describing conceptual instances.

 190

All LO instances representing a word (or a sequence of words) are described by the facets

cat (category), lex (superficial presentation), sem and type . The facet cat represents the

category associated with linguistic objects and is augmented with syntactic and semantic

features. The facet lex is a word (or words) representing the superficial form. The semantic

interpretation is represented in the facet sem. The attribute type indicates whether the entry

represents a lexical or dynamic entry. Dynamic instances, those associated with a dynamic

function, are described by the facets cat, lex (representing the function identifier) and type .

Following the example, the rule lexentry is applied to the WM object representing the

parameter architect of the operation for creating an instance with no name of the concept

ARCHITECT. This WM object is used to create two instances representing the

expression of the parameter in Spanish: one instance for the indefinite nominal group

realized as un arquitecto (an architect), and the other for the definite nominal group el

arquitecto (the architect). The first instance is described in Figure 6.36 and the second in

Figure 6.37. These two instances correspond to the two realizations associated with the

concept.

INDEFNGCONARCHITECT

instance: INDEFINITE_NOMINAL_GROUP_CONCEPT
type: lex
cat: indefngcon(syn(gen(m), num(s)), sem(con(architect)))
lex: un_arquitecto
sem: architect

Figure 6.36: The indefinite nominal group representing the concept ARCHITECT

DEFNGCONARCHITECT

instance: DEFINITE_NOMINAL_GROUP_CONCEPT
type: lex
cat: defngcon(syn(gen(m), num(s)), sem(con(architect)))
lex: el_arquitecto
sem: architect

Figure 6.37: The definite nominal group representing the concept ARCHITECT

 191

All syntactic information (category, string and syntactic features) is obtained from the attribute

lex of the WM object. In this example, both entries are associated with the syntactic feature

gen (gender), whose value is m (masculine) and the feature num (number), whose value is s

(singular). The semantic information associated with these two instances consists of the

semantic feature con and the semantic interpretation, both representing the concept identifier

architect.

When applying the rule dynentry to the WM object shown in Figure 6.35, two LO instances

are created. They represent the name introduced by the user to identify the instances of the

concept ARCHITECT generated. This name will be asked from the user at run-time. One of

these two instances corresponds to the indefinite nominal group and the other instance

represents the definite nominal group. The linguistic instance representing the definite nominal

group is shown in Figure 6.38.

DEFNGINSARCHITECT

instance: DEFINITE_NOMINAL_GROUP_INSTANCE
type: dyn
cat: defngins(sem(con(architect)))
lex: name

Figure 6.38: The definite nominal group representing an instance of the concept
ARCHITECT

The identifiers of all the instances representing a word (or a group of words) created for an

application are stored in the object activentry. This object is used in the next step to generate

the application lexicon.

The third step

In the third step of the process, the grammar is generated. Grammar rules are obtained from the

linguistic objects marked as active rules (those having its identified stored in the object

activerules). The lexical entries are obtained from the instances marked as active entries (those

having its identified stored in the object activentries). Once the grammar rules and lexical

entries are obtained, a compiler translates them to their final form, checking for errors such as

the existence of non-accessing categories or repeated information.

 192

Following the example, two grammar rules and six lexical entries are obtained for expressing

the creation of instances for the concept ARCHITECT in Spanish. They are described in the

next chapter, where the formalism of the grammar and lexicon are detailed.

CHAPTER 7

THE NATURAL LANGUAGE INTERFACE

This chapter describes the architecture and functionality of the interface designed to

control the NL communication between users and application. This interface has been

designed as an independent module to be integrated into the application and the CO

representing it. More than one possible architecture to integrate the interface into the

application is allowed. The linguistic resources used by the interface are obtained by

adapting the CO, the LO and the control rules to the application, as described in previous

chapters.

This chapter has been organized in six sections. The first section gives a general

description of the NLIs used by GISE. The components of this interface are described in

the following sections.

7.1 AN OVERVIEW OF THE NLI

The interface designed for controlling the NL communication between the user and the
application consists of two modules: the NLI and the communication manager (CM).

The NLI guides the user to introduce correct NL sentences, and once those sentences have
been analyzed, it passes the resulting interpretation to the CM. The NLI module consists of
all the components involved in the NL communication between the user and the

 193

application. These components are the grammar and lexicon, the parser, the menu system
and the dialogue component (DC). Figure 7.1 shows the components of the NLI, described
in the following Sections 7.2-7.5.

NLI

MENU SYSTEM

GRAMMAR
LEXICON

PARSER

DIALOG
COMPONENT

Figure 7.1: The NLI module

Figure 7.2 shows the flow of information through the different components in the interface.
The menu system displays all possible NL options on screen. Once the user has select an
option, the menu system passes it to the parser. Subsequently, the parser analyzes it and
passes the set of next possible options to the menu system. Once a whole sentence has been
recognized and interpreted by the parser, it is passed to the DC. If necessary, the DC
completes the resulting interpretation and passes it to the CM. The CM controls the
information exchange between the NLI and the application. The information arriving at the
CM consists of one or more operations. The CM is in charge of executing these over the
CO. When the application needs particular information from the user, it first consults the
CO. If the necessary information is not found in the CO, it is requested directly from the
user. The CM also allows for other forms of communication than NL, as described in
Section 7.6.

All the components in the NLIs have been implemented in standard Prolog. The menu
system, uses PC Arity Prolog predicates to display the menus containing the NL options
the user can choose.

 194

NLI

MENU SYSTEM

PARSER GRAMMAR
 LEXICON

DIALOGUE
COMPONENT

COMMUNICATION MANAGER

APPLICATION

USER

CASE ONTOLOGY

Passing processed information
Accesing Data Structures

Figure 7.2: The processing of a user intervention

7.2 THE GRAMMAR AND THE LEXICON

As detailed in previous chapters, the process of generating the application-restricted
grammar consists of adapting the LO to the communication tasks required for an
application. When obtaining the appropriate linguistic structures for an application from its
conceptual representation, instances of the linguistic classes in the LO domain level are
generated. These instances are represented as definite-clause grammar (DCG) rules and
lexical entries.

The DCG formalism has been chosen because:

 195

- It is more expressive than conventional CFG.

- In a limited domain, DCGs can be efficiently parsed (using Prolog).

- The grammar being automatically created by the system, it is not necessary to use a
more friendly formalism (such as Patr-II).

7.2.1 The resulting grammar

The grammar and lexicon are obtained from the LO instances created in the process of
relating the LO to the tasks of communication necessary for an application. The LO
instances described by more than one component correspond to grammar rules. In these
LO objects, all allowed sequences of constituents appear in the facet pattern. One
grammar rule is obtained from each presentation allowed for the constituents. The left-
hand part of the grammar rule corresponds to the category associated with the linguistic
object, represented in the facet category. The right-hand part of the rule is the sequence of
categories representing the constituents of the instance. Each of these categories
corresponds to an object in the LO.

For example, Figure 7.3 shows the DCG rule representing a possible expression in Spanish
of the operation to create an instance without giving its name. It has been obtained from
the LO domain level class EXISTENTIAL_CLAUSE_CREATING_INSTANCE
WITH_NO_NAME, described in Figure 4.6.

ec_cinn -> verbexistir indefngcon

Figure 7.3: A grammar rule for expressing the operation to create an instance without
giving its name

The left-hand part of the rule is the category of the linguistic class, ec_cinn. The right-hand
part of the rule consists of two categories representing the two constituents of the linguistic
class: the category indefngcon, representing the subject and the category verbexistir
representing the verb.

An expression of the operation to create an instance giving its name is represented in the
LO class ATTRIBUTIVE_CLAUSE_CREATING_INSTANCE_WITH_NAME,
described in Figure 5.7. The grammar rule representing this class is shown in Figure 7.4.

ac_ciwn -> defngins verbser indefngcon

 196

Figure 7.4: A grammar rule for expressing the operation to create an instance giving its
name

Additional information describing the linguistic class is also represented in the grammar
rules. This information consists of the syntactic and semantic features augmenting the
categories, the semantic interpretation and the preconditions associated with each rule. The
information incorporated into the rules is described below.

7.2.2 The semantic interpretation

The semantic interpretation associated with the linguistic resources generated for an
application is based on lambda calculus. Semantic information is associated with each rule
to indicate the order of interpretation of its constituents. This information consists of a list
of the numbers representing the constituents. This semantic list is defined recursively as a
list of two elements. Each element in the list can be either a number or a list of two
elements, that in turn can be either a number or a list of two elements. In the particular case
of the rule having only one constituent, the semantic list associated with the rule is empty.
The semantic interpretation associated with each lexical entry consists of a lambda
function or a lambda value.

At run-time, once the parser has recognized all constituents of the rule, it interprets them
according to the semantic list. The result of evaluating the first element of the list is
applied to the result of evaluating the second element in the list. If the element is a number,
the result of its evaluation is the semantic interpretation associated with the constituent
represented by the number. If the element is a list, then the result is obtained by applying
the result of evaluating the first element to the result of evaluating the second.

Additionally, if the grammar rule represents an operation, the identifier of the operation is
incorporated into the rule description. This information improves the processing of user
interventions. The result of the semantic interpretation process is a list of words
representing CO operations and their parameters (which correspond to concepts, attributes
and values).

Incorporating the semantic interpretation into the grammar rules shown in Figure 7.3 and
Figure 7.4, expressing the creation of conceptual instances will result in the two grammar
rules shown in Figure 7.5. The semantic information associated with the first rule is the list
(2 1). This indicates that the semantic interpretation of the second constituent recognized
by the rule (that associated with the category verbexistir) has to be applied to the semantic
interpretation of the first one (that associated with the category indefngcon). The identifier

 197

of the operation expressed by the rule, CREATE_INSTANCE_WITH_NO_NAME_O
(abbreviated crinno) is also incorporated into the rule description.

ec_cinn -> verbexistir indefngcon (1 2) crinno

ac_ciwn -> defngins verbser indefngcon ((2 3) 1) criwno

Figure 7.5: Two grammar rules for creating an instance together with their semantic

interpretation

The semantic information associated with the second rule is list ((2 3) 1). The first element
in the list is a sublist indicating that the semantic interpretation of the second constituent
recognized by the rule (that associated with the category verbser) has to be applied to the
semantic interpretation of the third one (associated with the category indefngcon). The
resulting lambda function has to be applied to the semantic interpretation of the first
constituent recognized by the rule (that associated with the category defngins). The
semantic information also includes the identifier of the operation expressed,
CREATE_INSTANCE_WITH_ NAME_O (abbreviated criwno).

7.2.3 The syntactic and semantic features associated with the categories

If the communication tasks in an application were restricted to a limited number of
operations over few entities representing the domain, then the process of generating the
grammar and lexicon required would be much simpler. In that case, each concept, attribute
and value in the CO could be represented by a different category. The grammatical
categories could be directly related to each object in the CO. The existence of different
grammar rules representing the same operation performed over different concepts and
attributes is not a problem when the number of concepts and operations to represent is not
high. This strategy simplifies the process of generating the grammar and lexicon, and the
processing of user interventions.

However, when the complexity of the communication tasks and concepts increases and the
language required to express the meanings is larger, the strategy described above is not
appropriate. In complex applications, general syntactic information must be represented in
the grammar to cover the different linguistic phenomena appearing in the communication
tasks. Syntactic and semantic features are incorporated into the categories to improve
efficiency in the processing of user interventions. These features indicate the concordance

 198

between the syntactic and semantic characteristics of the constituents represented in the
rule.

The syntactic features incorporated into the categories of the grammars generated by GISE
are limited to giving information about the gender, number and tense of the word (or
words) represented by the categories. The specific conceptual information representing the
identifiers of the CO concepts and attributes is incorporated into the semantic features
associated with the categories.

The features are obtained from the description of the LO object. The attributes synres and
semres in the LO objects describe the agreement between the features associated with the
categories representing the constituents.

Augmenting the categories in the rule with features representing existential clauses
creating conceptual instances, shown in Figure 7.5, results in the rule shown in Figure 7.6.
The category in the left-hand part of the rule, ec_cinn is augmented with the semantic
feature con, representing the concept. The value of this feature must be the same as the
value of the feature con associated with the category indefngcon. The number agreement
between the subject (category indefngcon) and the verb (category verbexistir) is
controlled by the syntactic feature num associated with both categories. The category
representing the verb verbexistir is also augmented with the syntactic feature tense. The
category indefngcon is also augmented with the syntactic feature gen.

ec_cinn(sem(con(C))) -> verbexistir(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) (1 2) crinno

Figure 7.6: Representing the syntactic and semantic features in the grammar rule for
creating an instance without name

Figure 7.7 shows the second grammar rule in Figure 7.5 when augmenting its categories
with their corresponding syntactic and semantic features.

The incorporation of this syntactic and semantic information into the grammar categories
restricts the number of available options at each state of the analysis, as well as simplifying
the interpretation of the constituents recognized by a rule.

ac_ciwn(sem(con(C))) -> defngins(sem(con(C))) verbser(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) ((2 3) 1) criwno

 199

Figure 7.7: Representing the syntactic and semantic features in the grammar rule for
creating an instance giving its name

7.2.4 The resulting lexicon

The lexical entries are obtained from the LO instances corresponding to words or
sequences of words. These instances represent the parameters of the application operations
as well as the general words belonging to closed syntactic classes, such as auxiliary verbs
and articles. The general words are represented in the LO and are reused for all
applications. The semantic interpretation associated with these general instances consists
of lambda functions. The semantic interpretation associated with the instances expressing
operation parameters generated for each application consists of either a lambda function or
value. The fields describing the lexical entries are obtained from the instance facets. The
lexical entries consist of three fields: category, semantic interpretation and string (or
linguistic realization)

Figure 7.8 shows the lexical entries representing the two forms of the verb ser (be) in the
present tense. These two lexical entries belong to the LO. As shown in this figure, the two
entries in Figure 7.8 are associated with the category verbser, augmented with the
syntactic features num, representing the number and tense, representing the tense of the
verbal form.

verbser(syn(num(s),tense(p))) (((l,X),(l,Y)),(X,Y)) < es >
verbser(syn(num(p),tense(p))) (((l,X),(l,Y)),(X,Y)) < son >

category semantic interpretation string

Figure 7.8: Lexical categories representing the verb ser

The semantic interpretation of the lexical entries in Figure 7.8 is a lambda function
represented by the list: ((l, X), (l, Y), (X,Y)). The first sublist indicates that the function
has two lambda arguments, represented by the variables X and Y. The second sublist
establishes that the function returns a list containing the value of the two variables. This
semantic interpretation indicates that the verb ser (be) acts as a link between two semantic
values.

Examples of the lexical entries generated for a specific application are shown in Figure 7.9.

 200

These two lexical entries are recognized by the rules described above for creating
conceptual instances. The categories associated with these entries exemplify how semantic
and syntactic information is encoded in the categories representing CO objects. For
example, the syntactic features associated with the category indefngcon are
syn(gen(G),num(N)), indicating the lexical entry gender (m for masculine and f for
feminine) and number (s for singular and p for plural). The semantic feature (sem(con(C)))
represents the concept identifier1 (i.e. architect, owner).

indefngcon(syn(gen(m),num(p)),sem(con(architect))) architect <unos_arquitectos>
indefngcon(syn(gen(m),num(s)),sem(con(owner))) owner <un_propietario>

category semantic string

Figure 7.9: Examples of lexical entries representing concepts of the application SIREDOJ

7.2.5 Providing the grammar and lexicon of dynamic mechanisms

Dynamic mechanisms were incorporated into the grammar and lexicon generated in order
to use the contextual information available at run-time to reduce the grammar rules and
lexical entries that need to be considered. Dynamic mechanisms consist of preconditions
attached to the grammar rules and the dynamic entries whose value is set during the
communication process. These dynamic mechanisms are independent of the grammar
formalism, although they are especially well suited to unification based grammars.

The dynamic entries

Dynamic entries are incorporated into the application-restricted grammar to improve the

efficiency and friendliness of the NL communication. Their superficial representation, as

well as the semantic interpretation associated with them, is set at run-time, while the string

and interpretation in the remaining (non-dynamic) entries is set during the generation

phase. The use of dynamic entries reduces the number of lexical entries to be considered at

run-time and allows the user to introduce new values.

1 Notice the semantic feature con represents the identifier of the concept (architect), not its linguistic
realization. In the examples appearing in this chapter, the concepts and attributes identifiers are in English
while their corresponding linguistic realizations are in Spanish.

 201

Dynamic entries consist of two fields: the linguistic category and the dynamic function.
The categories of these entries are augmented with semantic features. Syntactic features
are not associated with the categories of dynamic entries, because of their superficial form,
and thus their syntactic features are unknown in the generation phase.

The dynamic function associated with these entries is a function requesting the user to
introduce specific values during the communication process. The value introduced by the
user will be set as the semantic interpretation associated with the category. Dynamic
functions are written as Prolog predicates.

There are three different types of dynamic entries:

 - Those entries representing instances of concepts

 - Those entries representing a proper noun or a number that will be requested to

 the user at run-time

 - Those entries associated with a menu (or window) that will be displayed on the

 screen at run-time

Dynamic entries representing instances of concepts are associated with the operation that
obtains all identifiers for existing instances of a specific CO concept in the very moment of
the communication, and displays them. Examples of this type of dynamic entry are
represented in Figure 7.10. The function associated with these entries is the Prolog
predicate instance having the identifier of a concept as parameter. When the user selects
these entries, all instances of the concept in the case level of the CO are displayed on
screen.

pngi(sem(con(person))) instance(person)
pngi(sem(con(building))) instance(building)
defngvalwho_subject(sem(con(buildingcontract_parts),attr(subject1))) instance(person)

category dynamic fuction

Figure 7.10: Examples of lexical entries representing instances of concepts

The two first entries in the figure represent instances of concepts. The third entry
represents the value of the attribute subject1 in an instance of the concept
ASSIGNMENT_PARTS (representing the parts involved in a contract). The attribute
subject1 represents the subject that assigns. Its va lue must be an instance of the concept
PERSON.

The function associated with the second type of dynamic entries is a function requesting

 202

the user to introduce an open value, that is, a proper noun or a number. Three examples of
these entries are represented in Figure 7.11. The first lexical entry in the figure is
associated with the category defngins . It represents the name given by the user when
creating a conceptual instance. The function asks the user to introduce the name of the new
instance created at run-time.

defngins(sem(con(person))) name
defngvalof_name(sem(con(train_station), attr(city))) name
nadjvalof_quantity(sem(con(person), attr(age))) number(years)

category dynamic function

Figure 7.11: Examples of lexical entries representing names and quantities

The second dynamic entry in Figure 7.11 is associated with the category
defngvalof_name , representing the name that corresponds to the value of an attribute
belonging to the class OF_NAME. This second entry in the figure corresponds to the
proper name filling the attribute city of the instances of the concept TRAIN_STATION,
described in Figure 4.2. It is associated with the function name .

The third dynamic entry represents the value of the attribute age of instances for the
concept PERSON, described in Figure 4.3. Its category is nadjvalof_quantity,
corresponding to the numeral adjectives representing the value of adjectives in the class
OF_QUANTITY. It is associated with the function number, requesting the user to
introduce a quantity at run-time. This function has an argument representing the unit of
measurement.

Finally, the third type of dynamic entries are those associated with functions responsible
for displaying a specific menu with a set of fixed values at run-time. The user has to
choose only one or more of the values in the menu. Two examples of these entries are
represented in Figure 7.12. The two lexical entries in the figure correspond to two different
instantiations of the same category, defngvalof_cause. This category corresponds to the
value of an attribute in the class OF_CAUSE. The first entry represents the value of the
attribute reasonotbuilt for the concept BUILDING_REQUIREMENT, described in
Figure 4.7. When the user selects this option, a menu with all possible reasons why the
requirement to build has not been fulfilled are displayed on screen.

 203

defngvalof_cause(sem(con(building_requirement), attr(reasonotbuilt))) menu(reasonotbuilt)
defngvalof_cause(sem(con(payment_requirement), attr(reasonotpaid))) menu(reasonotpaid)

category dynamic function

Figure 7.12: Examples of lexical entries representing menus

The second lexical entry represents the value of the attribute reasonotpaid for the concept
PAYMENT_REQUIREMENT. The range of this attribute is a set of predefined options
describing all possible reasons why a party to a building contract has refused to fulfill the
duty to pay.
A new example of grammar rule generated to support the expression of a CO operation is
given in next section.

7.2.6 A new example: The grammar rules generated for the operation filling the
attributes in the class IS

As described before, the process of obtaining the appropriate grammar and lexicon for an

application consists of obtaining the linguistic resources necessary to express all operations

allowed for an application. This process mainly consists of mapping the object

representing an operation onto the corresponding linguistic objects in the LO. In this

process, both the class of the operation and the class of the conceptual attributes involved

in the operation are considered.

Two grammar rules obtained from the operation filling one attribute belonging to the class
IS are described immediately below. These two rules express the operation of filling a
concept attribute belonging to the class IS and having the closed set yes/no as possible
values. These two rules represent the two general forms to express this operation in
Spanish:

<concept name> <verb be> <attribute name>

<concept name> <no> <verb be> <attribute name>

The resulting grammar rules are shown in Figure 7.13. There are also several other
possible combinations of these constituents not represented in the grammar rules shown in
this figure.

 204

ac_fais --> defngcon verbestar dadjattris ((2 1) 3) fais

ac_fais --> defngcon no verbestar dadjattris ((3 1) (2 4)) fais

Figure 7.13: The grammar rules expressing the operation filling an attribute belonging to

the class IS

The left-hand part of the two rules is represented by the category ac_fais. This category
corresponds to the category of the attributive clause expressing the filling of a conceptual
attribute belonging to the class IS. This clause is represented in the LO application level as
a subclass of the ATTRIBUTIVE_CLAUSE class, shown in Figure 5.5.

The right-hand of the two rules is represented by the categories associated with the
constituents of the clause. These categories are defngcon, representing the definite noun
expressing the concept, verbestar, no and dadjattris, representing the connotative
adjective expressing the attribute.

The categories in the rules are augmented with syntactic and semantic features. The
resulting grammar rules are shown in Figure 7.14. The category defngcon is augmented
with the syntactic features gen and num. It is also augmented with the semantic feature
con. Its semantic interpretation is a lambda value representing the concept identifier. The
string associated with this category corresponds to the superficial representation of the
concept.

ac_fais(sem(con(C))) -->
 defngcon(syn(gen(G),num(N)),sem(con(C)))
 verbestar(syn(num(N),tense(T)))
 dadjattris(syn(gen(G),num(N)),sem(con(C),attr(A))) ((2 1) 3) fais

ac_fais(sem(con(C))) -->
 defngcon(syn(gen(G),num(N)),sem(con(C)))
 no verbestar(syn(num(N),tense(T)))
 dadjattris(syn(gen(G),num(N)),sem(con(C),attr(A))) ((3 1) (2 4)) fais

Figure 7.14: Two grammar rules for filling attributes in the class IS, augmented with

syntactic and semantic features

The category dadjattris is augmented with the same syntactic features: gen and num. It is,
additionally, augmented with the semantic features con, representing the concept and attr,
representing the attribute. Its semantic interpretation is a lambda value representing the
identifier of the attribute. The attribute realization is represented in the field string.

 205

category interpretation string

 defngcon(syn(gen(f),num(s)), sem(con(delivery_requirement))) (delivery_requirement) <la_obligacion_de_entrega>
 defngcon(syn(gen(f),num(s)), sem(con(payment_requirement))) (payment_requirement) <la_obligacion_de_pago>

Figure 7.15: Lexical entries representing concepts of the application SIREDOJ

Examples of Spanish lexical entries recognized by these two grammar rules are shown in
the Figures 7.15-7.18. The lexical entries shown in Figure 7.15 and Figure 7.16 are
generated for the application SIREDOJ. These entries are associated with the categories
defngcon and dadjattris, appearing in the grammar rules in Figure 7.14.

category inter. string

 dadjattris(syn(gen(f),num(s)),sem(con(delivery_requirement),attr(dfulfilled))) (dfulfilled) <cumplida>
dadjattris(syn(gen(f),num(s)),sem(con(payment_requirement),attr(pfulfilled))) (pfulfilled) <cumplida>

Figure 7.16: Lexical entries representing attributes of the application SIREDOJ

Examples of lexical entries associated with the same categories for the railway
communication system are shown in Figure 7.17 and Figure 7.18. These lexical entries are
used to express the filling of the attribute full of the concepts INTERCITY1 and
EUROMED1, belonging to the conceptual class TRAIN. Examples of clauses expressing
this operation are El Intercity está completo (The Intercity is full) and El Euromed no
está completo (The Euromed is full).

category interpretation string

 defngcon(syn(gen(f),num(s)), sem(con(intercity1))) (intercity1) <el_intercity>
 defngcon(syn(gen(f),num(s)), sem(con(euromed1))) (euromed1) <el_euromed>

Figure 7.17: Lexical entries representing concepts of the railway communication

application

The incorporation of semantic information into the categories restricts the number of
entries the analyzer must consider at run-time. For example, if the grammar rules described
above were the only active, then if the user introduces the string el_intercity, associated
with the category defngcon(syn(gen(m),num(s)),sem(con(intercity1))), and, following

 206

this, introduces the string esta, associated with the category
verbestar(syn(num(s),tense(p))), only the entries whose category matches the next
category in the rule, dadjattris(syn(gen(m),num(s)),sem(con(intercity1),attr(A))), will
be accepted as a result. The accepted entries will be those corresponding to the attributes
describing the concept intercity1, belonging to the class IS and having the associated
preconditions satisfied. If the only possible lexical entries were those in Figures 7.17 and
Figure 7.18, then the only accepted string will be completo.

category interpretation string

dadjattris(syn(gen(m),num(s)), sem(con(intercity1), attr(full))) (full) <completo>
dadjattris(syn(gen(m),num(s)), sem(con(euromed1), attr(full))) (full) <completo>

Figure 7.18: Lexical entries representing attributes of the train consulting application

The semantic list associated with the first rule in Figure 7.14 indicates that the lambda
function associated with the constituent recognized by the category verbestar must first be
applied to the lambda value associated with that recognized by the category defngcon.
Next, the resulting function must be applied to the lambda value associated with the
constituent recognized by the category dadjattris.

The identifier of the operation expressed by the rules, fais, is also included in the rules
description. It is incorporated in the list resulting of the lambda calculus described above.

For example, considering the lexical entries shown in the Figure 7.15 and Figure 7.16, if
the clause introduced is La obligación de entrega está cumplida the resulting interpretation
will be: (fais, delivery_requirement, dfulfilled). If the clause introduced is La obligación
de pago está cumplida the result will be: (fais, payment_requirement, pfulfilled). The
different phases in the interpretation process are detailed in next section.

7.2.7 Preconditions attached to the grammar rules

Preconditions are incorporated into the grammar rules to dynamically adapt the linguistic
resources to the application requirements. Thus, at each stage of the communication, only
the entries that the application can process are accepted by the NLI.

As described in Chapter 4 in Section 4.6, there are preconditions associated with the
operations and preconditions associated with concepts. For example, the performance of all
simple operations filling the attributes of the conceptual instances is governed by the

 207

existence of the instances. The preconditions associated with concepts are case conditions
(that must be evaluated at run-time) governing the creation of instances of concepts and the
filling of their attributes. They condition the creation of instances of a specific concept to
the previous existence of instances of other concepts. They may also condition the value of
an instance attribute to the values of other attributes. Examples of these conditions are
those associated with the concept BUILDING_REQUIREMENT, shown in Figure 4.7.

When adapting the general structures to express the specific operations required for an
application, the preconditions associated with the operations and concepts are represented
as facets of the corresponding LO instances. Such precond itions are attached to the
grammar rules representing these LO instances.

Figure 7.19 shows the preconditions associated with the rule representing the existential
clauses that the creation of conceptual instances without giving their name.

pcg([pcon(C)]) ec_cinn(sem(con(C))) ->
 verbexistir(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) (1 2) crinno

Figure 7.19: A rule for creating a conceptual instance without giving its name together

with its associated preconditions

As shown in the figure, the predicate pcg ([pcon(C)]) is attached in front of the left-hand
part of the rule. It is represented as a Prolog predicate. The argument of the predicate pcg
is a list containing all preconditions. In this example, there is only one element in the list,
the predicate pcon(C), representing all preconditions associated with concept C. This
precondition indicates that a conceptual instance can be created if all preconditions
associated with the concept are satisfied.

Only the lexical entries associated with the concepts and attributes satisfying the grammar

rule conditions at run-time will be accepted by the interface. The user will know the correct

options at each stage of the communication because a system of menus has been integrated

into the interface. All possible entries that the user can choose to build the sentence are

displayed in menus.

The preconditions attached to a grammar rule representing the operation to fill attributes in
the class IS are shown in Figure 7.20. There are two preconditions attached to the left-hand
part of the grammar rules. These preconditions are obtained from those governing the
operation FILL_ATTRIBUTE_IS_O. The case preconditions associated with this
operation are inherited from the FILL_ ATTRIBUTE_O, described in Figure 4.5. These

 208

preconditions are: ((instance _ins _con) (pcon _con _attr))

These two preconditions establish that the operation filling an attribute of a conceptual
instance can only be performed if the instance exists, and if it satisfies the case precond
tions included in the concept description governing the filling of the attribute. These
preconditions are attached to the grammar rules recognizing the expression of the operation
as a list of two Prolog predicates.

The resulting Prolog list is:

 [instance(I,C), pcon(C, A)]2

The predicate arguments are variables whose value is set at run-time using the Prolog
unification mechanism. These two Prolog predicates ensure that only the correct entries
will be accepted at run-time. The accepted entries will be those representing the existing
conceptual instances and those representing the attributes of these instances satisfying the
preconditions defined in the concept.

The first precondition attached to the grammar rules shown in Figure 7.20 is represented
by the Prolog predicate instance(X, C). This predicate will be satisfied if and only if in the
CO there is at least one instance of the concept represented in the variable C. This
associated precondition prevents the description of a conceptual instance before its creation
(i.e., only if there is an instance of the concept DELIVERY_REQUIREMENT, can its
attribute dfulfilled be filled).

The second precondition represents the case preconditions included in the conceptual
definition governing the filling of the attribute. They are represented by the predicate
pcon(X,A), which will be satisfied if the conceptual case preconditions governing the
filling of the attribute represented in the variable A are satisfied for the instance
represented in the variable X. If no preconditions governing the filling of the attribute are
associated with the concept, then this predicate is always satisfied. For example, as there is
no preconditions associated with the concept INTERCITY, this second predicate has no
effect when building the clause: el intercity está completo (the intercity is full).

As shown in Figure 7.20, the list containing the preconditions associated with the rules is
represented as a term of the Prolog predicate pcg. This predicate is attached in front of the
left-hand part of the rule.

2 The name of each variable in the precondition is represented as an underscore followed by the name of the
argument. In this example, the name of the variable associated with the Prolog predicates representing the
preconditions is indicated by a capital letter

 209

 pcg ([instance (X, C), pcon (X, A)])
 ac_fais(sem(con(C))) -->
 defngcon(syn(gen(G),num(N)),sem(con(C)))
 verbestar(syn(num(N),tense(T)))
 cadjattris(syn(gen(G),num(N)),sem(con(C),attr(A))) ((2 1) 3) fais

Figure 7.20: A grammar rule for filling the attribute IS and its preconditions

New preconditions for adapting the generated grammar to other considerations not
depending on the CO, such as screen size, can also be attached to the grammar rules during
the generation phase. Examples of these preconditions are those conditions limiting the
number of active instances at a given time.

7.3 THE PARSER

The parser used in the NLIs is a left-corner unification based chart parse. The
implementation follows the modified left-corner algorithm described in [Ross82]. The
central points of this parser are described in Section 7.3.1. The modifications of this basic
algorithm are detailed in Section 7.3.2

7.3.1 The left-corner algorithm

The NBT (Non-selective Bottom to Top) algorithm applied to a CFG proposed by Griffiths
and Petrick in 1965 is known as the left-corner algorithm. Since its efficiency in NL
processing was demonstrated by Slocum in [Slocum81], several versions of this algorithm
have been implemented for NLIs. These versions include that used in the NLMENU
([Thomson86]), a head-corner parser developed for the OVIS system, a Dutch spoken
dialogue system [VanNoord97] and a probabilistic version described in [Manning97].

The main advantage of this algorithm is it satisfies the condition on the prefix correctness.
This conditions guaranties that from a correct prefix there is always a correct choice to
continue. This condition is especially important when the sentences to parse are introduced
incrementally, as is the case in the interfaces incorporating a system-menu that guides the

 210

user to introduce one by one the word (or sequence of words) in a sentence.

Ross proposed an improved modification to transform the recognition algorithm proposed
by Griffiths and Petrick into a parsing algorithm. This modified algorithm is given below.

The algorithm uses three push-down stacks called alpha, beta and gamma. The alpha
stack contains the next symbols (categories) to be recognized. The beta stack contains the
symbols of the rules that have been selected in previous analysis steps and have
subsequently to be recognized. The gamma stack contains the symbols that have already
been recognized.

Initially, the terminals (or symbols) to be parsed followed by an END are pushed on stack
alpha. The non-terminal that is to be the root (or bottom symbol) followed by END is put
on the beta stack. The gamma stack only contains END. The ultimate goal is constructing
a tree that has as the root node the non-terminal symbol on the bottom of the beta stack as
a single element.

Three rules of the follow the form can then be applied:

[A,B,C] -> [D,E,F] if Conditions,

A, B, C, D, E and F being arbitrary terminal and non-terminal symbols (or categories).
This general form must be interpreted as: if A is on the top of alpha, B is on top of beta,
C is on top of gamma and Conditions are satisfied, then replace A by D, B by E and C by
F. The three rules are:

Rule 1

[V1,X,Y] -> [? ,V2...VntX, V1AY] if A ->V1V2...Vn is a production of the grammar, X is
in the set of nonterminal symbols and Y is anything

This rule states that if there is a grammar rule having as left-corner the symbol to be
recognized, then the symbol is popped from alpha, the rest of the symbols in the right-
hand part of the rule are pushed into beta and the symbol in the left-hand part is pushed
into gamma. The t is pushed into stack beta to mark the end of the grammar rule symbols.
The symbol recognized is also stored in gamma, attached beneath the symbol in the left-
hand part or the rule (resulting in V1AY in the top of the gamma stack).

To increase the efficiency of the algorithm, a condition eliminating bad parse paths before
trying them is added to this rule. This condition states that the symbol X may reach down
to the symbol A. X may reach A if A is a left-corner and if there is at least one rule having
as right-hand part X and as a left-corner either A, or a symbol that may reach down to the
symbol A. A reachability matrix may be used to facilitate the evaluation of this task.

 211

Rule 2

 [X,t,A] -> [AX,? ,?] if A is in the set of nonterminals

The t in top of the beta stack indicates that all the symbols of the last grammar rule
selected have been recognized. In that case, the sub-tree just built is popped from gamma
and pushed into alpha.

In this situation, the semantic analysis of the symbols recognized can proceed. To perform
the semantic interpretation, however, the symbols representing the words introduced must
be associated with their semantic interpretation. Once the semantic interpretation is
performed, the result is then attached to the root of the syntactic sub-tree just built and
pushed into gamma.

Rule 3

[B,B,Y]->[? ,? ,Y] if B is in the set of nonterminals or terminals

This rule states that if the symbol in the top of alpha is the same as that on top of beta, the
symbol has been recognized. In that case this symbol is popped from alpha and beta and
attached as the right daughter of the top symbol on gamma (resulting BY on top of
gamma).

The repeated application of the three rules described above always lead to the final state.
The final state is reached when either none of three rules can be applied or a parse is found.
When END is on top of each stack, the symbol has been recognized. The resulting parse is
one possible parse for the sentence. If none of the three rules can be applied and END is
not on top of each stack, a bad path has been followed.

In the particular case the algorithm is used to parse a word at a time, a final state is also
reached when the top of alfa is END, indicating that the word has already been recognized.
In this situation, the stacks beta and gamma resulting from the parse, along with the next
word introduced, are passed to the analyzer.

There are two situations in which the performance of the algorithm is not deterministic.
The first situation is that in which both Rule 1 and Rule 3 can be applied. That is, the top of
alpha is the same symbol on the top of beta and there is also a grammar rule having this
symbol as left-corner. The second non-deterministic situation is when searching for a new
grammar rule to apply Rule 1, and there is more than one possible choice. That is, there is
more than one grammar rule having as left-corner the symbol on top of alpha.

Each of the parse paths resulting from an application of a different rule and from the
selection of a different rule could result in a valid parse. Thus, all these paths must be
followed to completion. The strategy followed in these non-deterministic situations is to
continue parsing in a depth-oriented manner. That is, apply one rule (or select one rule),

 212

get a new state, and then apply one of the applicable rules to that new state. This continues
until the final state is reached. To assure that all alternatives are pursued, once the final
state is reached, backtracking to the last choice-point must be done to pick another
applicable rule (or grammar rule).

The parser could easily be adapted to analyze the input in a breath-oriented manner.
However, when the algorithm is used to parse a word at a time, as with GISE, the NL-
MENU system and in other NLIs, a depth-oriented manner is more appropriate.

The Ross enhance version of the algorithm incorporates the ability to predict the set of all
possible nth words of a sentence, given the first n-1 and this is the main reason of choosing
this algorithm. The possible words to continue the sentence are those words reachable from
the top of the beta stack, which represents the next category to be recognized in the rule
selected. These words can easily be obtained using the reachability matrix mentioned
above. Displaying all the next NL options on screen is very useful for guiding the user to
build the NL sentences acceptable to the system.

The Ross version also includes a modification for dealing with grammar rules that employ
conventions of abbreviations that are often used when writing grammars. This
modification, however, has not been incorporated into the version implemented for GISE.
This new ability does not significantly increase efficiency when using the grammars
generated by GISE, given the preconditions attached to the grammar rules.

The modifications introduced when adapting this algorithm to the GISE NLI are described
below.

7.3.2 The GISE parser

The parser used in the NLIs in GISE is based on the left-corner algorithm described above.
Few modifications have been required to adapt it to the system functionality. The GISE
parser has been adapted to DCG where categories are augmented with syntactic and
semantic features. The original algorithm was designed for CFG. GISE parser can deal
with the more complex phenomena that arise when using DCG, such as the feature
agreement between two or more categories. The evaluation of the agreement of the features
associated with the categories has been implemented using the Prolog unification
mechanism.

An also important aspect of the modified algorithm is that it can deal efficiently with
grammar rules having preconditions attached. As described earlier, preconditions are
incorporated into the grammar rules to restrict user entries to those the application can

 213

process at each state of the communication. Thus, when selecting the next reachable rules
from a given state of analysis, only the rules satisfying the preconditions must be
considered. To perform this process efficiently, additionally to the tree push down stacks
described above, a queue containing all grammar preconditions that are satisfied at each
state is used. The grammar preconditions are on the case level of the CO. They are
evaluated once a change to the ontology has been performed; that is, when either a
sentence introduced by the user or an application statement has been executed.

The parser has also been adapted to deal with more than one possible lexical entry
associated with the string introduced by the user. That produces a new situation in which
the performance of the parser in not deterministic. If there is more than one entry
associated with the word to recognize, then all alternatives are pursued.

The GISE parser, as well as the Ross modified version, can be used to parse a whole
sentence and to parse a word at a time. When incrementally parsing, once a word has been
recognized, the next possible words are obtained. No final marks are used in the GISE
parser (such as END and t used in the original algorithm described above). When using the
parsing a word at a time, the process ends each time the stack alpha is empty. When
parsing a whole sentence at a time, the process ends when either the three stacks are empty
or when no rule can be applied.

Semantic analysis

In GISE, the parser performs the syntactic and semantic analyses in parallel. Once the
categories in a rule have been recognized, they are interpreted. To perform the semantic
analysis, semantic information is associated with the grammar rules and the symbols (or
categories) representing the words introduced by the user. This semantic information is
also stored in the alpha and beta stacks described above.

The elements stored in alpha are named item. Each item consists of a list of three
elements. The first element is the syntactic category to be recognized. The second element
is the superficial representation associated with a lexical entry, or the last syntactic sub-tree
built. The third element is semantic interpretation. This information corresponds to the
interpretation associated with either the lexical entry, or with the sub-tree that has been
built. The information in the grammar rules selected (both their left-hand part and their
semantic interpretation) are stored in gamma. This stack also contains the lexical entries
that have been recognized by the categories of the rules that are being processed.

As described earlier, the semantic analysis used is based on lambda calculus. Lambda
calculus allows a simple and efficient interpretation process. Once all constituents in the

 214

rule have been recognized, they are analyzed semantically following the order indicated in
the semantic list associated with the rule. The semantic interpretation associated with each
category consists of a lambda function or value. The semantic analysis consists of applying
the lambda functions over the lambda values following the order indicated in the rule. The
result of the semantic analysis consists of a list of all possible semantic interpretations for
the input.

In the resulting NLI, each user intervention consists of a sentence expressing one or more
operations over the CO. Each possible semantic interpretation of this sentence contains the
information needed to execute those operations. For each operation expressed, the
semantic interpretation consists of the name of the operation, the parameters expressed in
the sentence and additional information to deduce those parameters not expressed. This
additional information consists of the left-hand category of the grammar rule recognizing
the sentence and the name of the concept over which the operation is applied.

The semantic interpretation built by the parser will subsequently be passed to the dialogue
component. This component will complete the information in order to perform the
corresponding operations.

7.3.3 Following an example

An example of the process of analysis is detailed below. The analysis of the sentence existe
un arquitecto (there isan architect), expressing the creation of an instance of the concept
ARCHITECT is described.

The grammar generated for creating an instance of a CO concept contains the two rules
described in the previous section. As discussed earlier, preconditions and the name of the
operation are included in the rule description. If the root category is c, two new rules have
to be added to the grammar in order to reach the rules mentioned. The resulting grammar is
shown in Figure 7.21.

 215

pcg ([]) c -> ec_cinn(sem(con(C))) () ()

pcg ([]) c -> ac_ciwn(sem(con(C))) () ()

pcg ([pcon(C)]) ec_cinn(sem(con(C))) ->
 verbexistir(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) (1 2) (crinno)

pcg ([pcon(C)]) ac_ciwn(sem(con(C))) ->
 defngins(sem(con(C))) verbser(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) ((2 3) 1) (criwno)

Figure 7.21: A grammar for generating conceptual instances

The lexicon required to express the creation of instances of the concept ARCHITECT is
shown in Figure 7.22.

verbbe(syn(num(s), tense(p))) (((l, X), (l, Y)), (X,Y)) is
verbbe(syn(num(p), tense(p))) (((l, X), (l, Y)), (X,Y)) are

category semantic interpretation string

verbexist(syn(num(s), tense(p))) (((l, X)), (X)) exists
verbexist(syn(num(p), tense(p))) (((l, X)), (X)) exist

 indefngcon(syn(num(s)), sem(con(architect))) architect an_architect
 defngins (sem(con(architect))) name(architect)

verbser(syn(num(s), tense(p))) (((l, X), (l, Y)), (X,Y)) <es>
verbser(syn(num(p), tense(p))) (((l, X), (l, Y)), (X,Y)) <son>

category semantic interpretation string

verbexistir(syn(num(s), tense(p))) (((l, X)), (X)) <existe>
verbexistir(syn(num(p), tense(p))) (((l, X)), (X)) <existen>

 indefngcon(syn(gen(m),num(s)), sem(con(architect))) (architect) <un_arquitecto>
 defngins (sem(con(architect))) name

Figure 7.22: The lexicon necessary for creating instances of the concept ARCHITECT

In the initial state, the alpha and gamma stacks are empty. The beta stack contains the
root category, in this case c. The list of satisfied preconditions will contain all the
preconditions attached to the grammar rules that are satisfied in the initial state. In this
grammar, the only precondition attached is pcon(C). This precondition, as explained
above, indicates that a conceptual instance can be created if all preconditions associated
with the concept are satisfied. Most concepts, such as the concept ARCHITECT, do not
have associated preconditions. For these concepts, the precondition pcon(C) is always
satisfied. The precondition pcon(architect) will be the only element in the list of satisfied
preconditions in the example described.

First, the parser will obtain the correct options to start. That is, all NL options that can be
reach from the root category, c, stored in stack beta. In this example, the only possible
options will be the word existe and the function name that ask for the name of the instance.
The menu system will display these options on screen and will pass the value introduced

 216

by the user to the parser. If the user chooses a word displayed in the menu, then the parser
selects the first lexical entry associated with this word (it can be more than one) and pushes
it into alpha. Each lexical entry contains three values: category, string and semantic
interpretation. If the user is asked to introduce a value by a dynamic function, then a list
containing the syntactic category, the symbol ins and the value introduced by the user, is
passed to the parser.

If the user introduces the proper name Juan, the list

 [indefng(sem(con(architect))),[Juan],ins]

is passed to the parser and pushed into alpha.

The three rules of the algorithm are then evaluated. Rule 1 is the only one that can be
executed. The category of the item on top of alpha is indefng(sem(con(architect))), the
top of beta is c and there is one grammar rule reachable from category c, having
indefng(sem(con(architect))) as left-corner category and its preconditions satisfied.

The only one grammar rule that can be selected in this example is:

pcg ([pcon(C)]) ac_ciwn(sem(con(C))) ->
 defngins(sem(con(C))) verbser(syn(num(N),tense(T)))
 indefngcon(syn(gen(G),num(N)),sem(con(C))) ((2 3) 1) (criwno)

As a result of executing Rule 1, the three stacks change their values. The left-hand part of
this rule as well as its semantic information and the lexical entry are pushed into gamma.
The item recognized is popped from alpha. The rest of the categories in the right-hand part
of the rule selected are pushed into beta.

In the example, the resulting stacks once Rule 1 is executed are:

 217

stack alpha = ()

stack beta =
 ((verbser(syn(num(N),tense(T))),
 indefngcon(syn(gen(G),num(N)),sem(con(architect)))) , c)

stack gamma =
 ((((defngins(sem(con(architect))),(Juan),ins)),
 ((2, 3), 1),ac_ciwn(sem(con(architect))),criwno))

precondition list = (pcon(architect))

An empty alpha stack indicates that a word has been parsed. Subsequently, the next
acceptable words are obtained and displayed on screen by the menu system. In this case,
the only possible word to continue the input sentence is es. Once the user selects it, the
corresponding lexical entry is obtained. The entry for the word es is:

(verbser(syn(num(s),tense(p))), (((l,X),(l,Y)),(X,Y)) , es)

This entry is pushed into the alpha stack. The resulting stacks are:

stack alpha =
 ((verbser(syn(num(s),tense(p))),(((l,X),(l,Y)),(X,Y)),es))

stack beta =
 ((verbser(syn(num(N),tense(T))),
 indefngcon(syn(gen(G),num(N)),sem(con(architect)))) ,c)

stack gamma =
 ((((defngins(sem(con(architect))),(Juan),ins)),
 ((2, 3),1),ac_ciwn(sem(con(architect))),criwno))

precondition list = (pcon(architect))

The three rules are evaluated again. At this step, Rule 3 is the only one that can be
executed. It can be executed because the category of the item on top of alpha and that on

 218

top of beta is the same. This rule pops the item recognized from the alpha stack and
pushes it into the gamma stack. It also pops the top of the beta stack, containing the last
category recognized.

The resulting stacks are:

stack alpha = ()

stack beta =
 ((indefngcon(syn(gen(G),num(s)),sem(con(architect)))),c)

stack gamma =
 (((verbser(syn(num(s), tense(p))),(((l,X),(l,Y)),(X,Y)),es) ,
 (defngins(sem(con(architect))),(Juan),ins)),
 ((2, 3), 1),ac_ciwn(sem(con(architect))),criwno))

precondition list = (pcon(architect))

The alpha stack is empty again and thus, the next acceptable words are obtained and
displayed on screen. The only possible option to continue the input sentence is
un_arquitecto. Once the user selects it, the corresponding lexical entry is obtained and
pushed into stack alpha. The entry for these two words is:

 (indefngcon(syn(gen(m),num(s)),sem(con(architect))), (architect), un_arquitecto)

The resulting stacks are:

stack alpha =
 ((indefngcon(syn(gen(m),num(s)),sem(con(architect))),(architect),un_arquitecto)

stack beta =
 ((indefngcon(syn(gen(G),num(s)),sem(con(architect)))) ,c)

stack gamma =
 (((verbser(syn(num(s),tense(p))),(((l,X),(l,Y)),(X,Y)),es) ,
 (defngins(sem(con(architect))),(Juan),ins)),
 ((2, 3), 1),ac_ciwn(sem(con(architect))),criwno))

precondition list = (pcon(architect))

 219

The only rule that can be executed next is Rule 3. This rule pops the lexical entry from the
top of alpha and pushes it into gamma. It also pops to the top of beta, the category
indefngcon(syn(gen(G),num(s)),sem(con(architect))) that has matched the category
indefngcon(syn(gen(m),num(s)),sem(con(architect))), associated with the recognized
item. The resulting stacks are:

 stack alpha = ()

 stack beta = (() ,c)

 stack gamma =
 (((indefngcon(syn(gen(m),num(s)),sem(con(architect))),(architect),un_arquitecto),
 (verbser(syn(num(s),tense(p))),(((l,X),(l,Y)),(X,Y)),es) ,
 (defngins(sem(con(architect))),(Juan),ins)),
 ((2, 3), 1), ac_ciwn(sem(con(architect))),criwno))

precondition list = (pcon(architect))

The top of the beta stack is an empty list, indicating a rule has been recognized. At this
step, Rule 2 is the only one that can be executed. Information stored in gamma is used to
interpret the lexical entries recognized by the last rule.

Following the semantic list in the rule (((2, 3), 1)), the semantic interpretation of the item
recognized by the second category is applied to the semantic interpretation of the item
recognized by the third category. That is, the lambda function associated with the category
verbser(syn(num(s),tense(p)) is applied to the lambda value associated with the category
indefngcon(syn(gen(m),num(s)),sem(con(architect))). The result of applying the
function ((l, X), (l, Y), (X, Y)) to the value architect is the function ((l, Y), (architect, Y)).
This resulting function is then applied to the lambda value associated with the category
indefng(sem(con(architect))). As a result, the list (architect, Juan) is obtained.

Next, additional information necessary for executing the operation expressed by the
sentence is incorporated into the semantic interpretation. This information consists of the
left-hand category of the grammar rule (ac_ciwn), the name of the operation associated
with the rule (criwno) and the name of the concept over which the operation is performed
(architect). The resulting semantic interpretation is:

(ac_ciwn, criwno, architect, architect, Juan)

This semantic interpretation indicates that the sentence expresses the operation criwno, for

 220

creating a conceptual instance giving its name. The two parameters of this operation are
the name of the concept, architect and the name of the instance Juan.

The execution of Rule 2 will also pop up a list containing the left-hand category, the
semantic interpretation and a sublist with the categories recognized and their
corresponding strings into alpha. The resulting stacks will be:

stack alpha =
 ((ac_ciwn(sem(con(architect))),(ac_ciwn,criwno,architect,architect,Juan),
 ((verbser(syn(num(s),tense(p))),
 indefngcon(syn(gen(m),num(s)),sem(con(architect))),
 defngins(sem(con(architect)))), (es ,el_arquitecto,ins))))

stack beta = (c)

stack gamma = ()

precondition list = (pcon(architect))

At this step, the only rule to execute is Rule 1, once more. A new rule to reach the category
ac_ciwn(sem(con(architect))) from the top category on beta, c, must be selected. The
only rule that can be applied is:

pcg ([]) c -> ac_ciwn(sem(con(C))) () ()

The left-hand category of this rule (c) and its semantic information (two empty lists) is
pushed into gamma. The semantic interpretation of the rules having only one category in
the right-hand part, such as this rule, consists of an empty list. The second list indicates
that the rule does not express any operation. The item containing the category recognized
is also pushed into gamma. Once Rule 1 is executed, the information stored in the stacks
is:

 221

stack alpha = ()

stack beta = (() , c)

stack gamma =
 (((ac_ciwn(sem(con(architect))),(ac_ciwn,criwno,architect,architect,Juan),
 ((verbser(syn(num(s),tense(p))),
 indefngcon(syn(gen(m),num(s)),sem(con(architect))),
 defngins(sem(con(architect)))), (es ,el_arquitecto,ins)))),(),c,())

precondition list = (pcon(architect))

Again the top in beta is an empty list, indicating that all categories in a rule have been
recognized. Rule 2 must be applied. The categories recognized by the rule as well as the
information stored about the rule are popped from gamma. The semantic analysis must be
undertaken. When there is only one category in the rule, the resulting semantic
interpretation corresponds to the semantic interpretation of the item recognized by the rule.
A list containing the left-hand category of the last rule processed, the categories
recognized, together with the resulting semantic interpretation is popped into alpha.

The information contained in the stacks at this stage is:

stack alpha =
((c,(ac_ciwn,criwno,architect,architect,Juan),
 ((verbser(syn(num(s),tense(p))),
 indefngcon(syn(gen(m),num(s)),sem(con(architect))),
 defngins(sem(con(architect)))), (es ,el_arquitecto,ins))))

stack beta = (c)

stack gamma = ()

precondition list = (pcon(architect))

Rule 3 is applied next. The only category to recognize (the category of the only element in
alpha) is the initial category (the only element in beta) and it corresponds to the root
category, c. The top of alpha and beta are popped. As a result, all three stacks are empty.
Thus, the final state is reached. The element popped from alpha is stored as the final
result. It contains three elements: the root category, the syntactic tree, and the final
semantic interpretation.

7.3.4 The parser data structures

 222

Previously to the analysis process, the global data structures containing information about
the grammar and lexicon are built. These data structures are represented as Prolog
predicates and stored in the program database.

These data structures are described below:

sintactica. This data structure represents each grammar rule. Rules are represented
following the format:

 sintactica(Pcc, Num, [Left, Sem, Mom, Right], Op)

where Pcc represents the preconditions attached to the rule; Num is the number identifying
the rule; Left is the left-corner category; Sem contains the interpretation order of the
constituents of the rule; Mom is the category of the left-hand part of the rule; Right is the
list of the categories in the right-hand part of the rule without the left corner and Op is the
operation expressed by the rule (if the rule does not express any operation it is an empty
list).

lexic. This data structure represents all lexical entries. Each lexical entry is represented
following the format:

 lexic(String, [Cat, Sem, String])

where String is the realization, Cat is the category and Sem is the semantic interpretation.

accessible. This data structure represents all reachable categories from the left-corner
categories. Because a left-corner parser is used, information about the categories reachable
from each left-category is frequently required. Compiling this information improves the
performance of the parser. The categories reachable from each left-corner category are
represented following the format:

 accessible(Left-corner, Reachable)

where Left-corner is the left-corner category of a grammar rule and Reachable is a list
containing all categories that can be reached from the Left-corner.

sfinals. This data structure represents the categories in the left-hand part of the rules
expressing operations. It also includes the root category. This information is consulted
when building semantic interpretation. The category of the left-hand part of a rule is
incorporated (without its associated features) into the list resulting from the semantic
analysis corresponding to the rule. This global variable is represented as follows:

 sfinals(ListFinalCategories)

where ListFinalCategories contains all categories in the left-hand part of the rules
expressing operations.

The compiler also builds global data structures to adapt the parsing to the menu-guided

 223

NLI. These data structures facilitate the process of displaying all possible NL options on
screen that the user can choose when building a sentence. The data structures contain
information about the terminal categories and their distribution in menus (or windows).
These data structures are:

terminals. This structure represents all terminal categories in the grammar. The
information is represented in the format

 terminals(ListTerminalCategories)

grup. This structure represents the distribution of the lexical entries in menus. Lexical
entries having the same category are grouped and represented following the format:

 grup(Cat, Entries, Menu)

where Cat is a category, Entries is the list of superficial presentations associated with this
category and Menu is the name of the menu where they will be displayed.

All lexical entries that can be accepted will be displayed on screen distributed in menus
regarding their upper category, that is, the general class they belong. These menus are
represented as a global data structure to improve the NLI performance. Although there is a
basic configuration of menus, it can be modified when desired.

There is also conceptual information represented in this module. There are global variables
containing information about the CO application level, where the application is modeled.
There is a global variable representing the values of the conceptual attributes of menu type.
The set of possible values of each of these attributes is displayed as a menu (or window)
during communication. This global variable is called menu.

The data structures representing the set of the possible values for these attributes follow the
form:

 menu (Menu, Attribute, Value)

where Menu represents the name of the menu, Attribute represents the attribute identifier
and Value represents the list of all possible values for the attribute.

Preconditions associated with the CO concepts are also represented as data structures in the
database to improve the performance of the analysis. This information is represented in the
data structure pcon.

The preconditions attached to the concepts are represented following the format:

 pcon (Con) :- Preconditions

where Con represents the concept and Preconditions represents the set of predicates that
must be executed to create an instance of the concept.

 224

The preconditions governing the filling of an attribute of a conceptual instance are
represented following the format:

 pcon (Con, Attribute) :- Preconditions

where Attribute represents the attribute to fill.

Verifying the grammar

The possible errors in the grammar and lexicon are detected before building the parser data
structures, described above.

The grammar and lexicon generated by GISE for a specific application are obviously error
free but they can be modified manually by the user, if desired. There is also the possibility
of incorporating a grammar completely developed by the user in the NLI. Different types
of errors could be introduced in the case of the grammar having been modified manually or
having been generated by control rules defined by the user.

In the case of the grammar having been generated by one of the basic set of control rules
described in Chapter 6, then the only possible corrections consist of eliminating non-
necessary information. This information basically consists of repeated grammar rules and
general lexical entries that are not required in the specific application.

The compiler detects errors in the form, consistence, accessibility, redundancy and cycles.
It eliminates all grammar rules and lexical entries not correctly expressed (not following
the form described above) as well as those that are redundant. The compiler also detects
the rules that are not accessible from the root category and those that belong to a cycle.
Finally, consistence between the grammar and lexicon is also checked: all terminal
categories of the grammar (those not appearing in the left-hand part of any rule) must
appear in the lexicon and the categories in the lexicon must be terminal grammar
categories.

