
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informàtics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST

LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

£ Chapter 2

*~ Regular grammatical inference:
theory and symbolic methods

, This chapter begins with the statement of the basic definitions and theory about formal
4E| languages and grammars, finite-state machines (FSMs), finite-state automata (FSA),

and regular expressions (REs). The included contents serve as a basis for the study of
^^ grammatical inference, and they will be used frequently throughout the work.

Next, the theory of regular grammatical inference (RGI) is reviewed, following
ÍÈÈ closely a recent formalization of the subject in which RGI is viewed as a search problem

[DuMV:94]. A brief summary of the current knowledge about the complexity of regular
^- language identification is also included.

The chapter ends with an overview of the symbolic RGI methods that have been
Jfc reported previously. These methods are classified in three groups, depending on the

type of the supplied data:

^^ 1) RGI techniques from positive examples,

^^ 2) RGI techniques from both positive and negative examples, and

^^ 3) RGI methods using queries.

The first group is further divided into heuristic and characterizable techniques. For
each method, the main features and technical aspects are described.

32 Chapter 2. Regular grammatical inference: theory and symbolic methods

2.1 Basic concepts, definitions and notation

This section includes the basic definitions and concepts of formal languages and
automata theory that are used in the sequel. Many books have been published that
cover this issue (e.g. [Booth:67,Salo:73,Koha:78,Harr:78,HoUl:79]).

2.1.1 Languages and grammars

Let S denote: a finite alphabet of symbols; and let S* denote the set of all the strings
over E. Let \u\ represent the length of the string u. Let A denote the empty string, i.e.
the only string of length zero. A language (over E) is any subset of E*.

Let u,v,w denote strings over S, and let uv denote the concatenation of u and v.
We say that u (v) is a prefix (suffix) of w if there exists v (u) such that uv = w. If L is
a language over S, let Pr(L) = {u G S* | 3v G S*, uv G L} denote the set of prefixes
of L, and let L/u = {v G S* | uv G L} denote the left-quotient of L by u. It is clear
that L/u 7¿ 0 <£> u G Pr(L).

Let L,LI,LI be languages over S. The concatenation of LI and ¿2) denoted L\L-2,
is the language {xy \ x G LI A t/ G ¿2}- Let L° = {A} and L' = LL*~l for ¿ > 1. The
closure of L, denoted L*, is the language ,

oo

¿* = U ¿'-
i=0

A grammar is a four-tuple G = (V/v, Vr,P, S1), where Vjv and Vy are disjoint
finite sets of nonterminal and terminal symbols, respectively, P is a finite set of
production rules, and S is a special nonterminal called the start symbol. Grammars
can be classified according to the allowed forms of the production rules. The Chomsky
hierarchy [Chom:59] establishes four types of grammars: unrestricted, context-sensitive,
context-free, and regular grammars. However, other types can be defined that are sub-
types of the above. .

Let V — V/v U VT and let V* denote the set of all the strings composed by terminal
and/or nonterminal symbols. The most general family of grammars is the (type 0}
unrestricted grammars, which permits productions of the form a —> /? (a, fi G V*,
a I . . • • - • •

2.1. Basic concepts, definitions and notation < '"'• 33

Let Q —> /? be a production rule of P for a grammar G = (V/v, Vr,P, S). By
applying a —>• ¡3 to a string 7018 (where 7,6 6 V*) the string 7/?¿ is obtained, and we
say that 7/?¿ is directly derived from 70^ in grammar G, denoted 70:6 =>G 7/3£. For
any a, f3 € V*, we say /? ¿5 derived from a in grammar G or a =>-G /? if /3 follows from
a by application of zero or more production rules of P. That is, =>G is the reflexive
and transitive closure of =>Q.

Every grammar G generates a language L(G), which is defined as {it; | w € Vf A
S =>G w}. That is, a string is in L(G) if it consists solely of terminals and it
can be derived from the start symbol. Two grammars G\ and G2 are equivalent if
L(Gi) = L(G-¿). It can be proved that the languages generated by the unrestricted

JÈL grammars.are exactly the recursively enumerable languages (or r.e. sets), which are
^^ : - the languages accepted by Turing machines [HoUl:79]. • • ' • ' " •/ ••• * -

A grammar G is (of type 1 or) context-sensitive if every production rule a —+ 0
satisfies |a| < \/3\ (with maybe the only exception of 5" —> A [Salo:73]). The languages
generated by context-sensitive grammars (CSGs) are called context-sensitive languages
(CSLs). A normal form for CSGs is given by restricting the production rules to the
form «1^0:2 —»• otipa-ï where A e VN, «1,0:2,/? € V", ft ^ A.

G is a (type 2 or) context-free grammar (CFG) if every production rule p € P is
of the form A —> a, where A G V/v, a Ç V*. The languages generated by CFGs are
called context-free languages (CFLs). If every p 6 P is of one of the forms A —> BC
or A —> a, where A, £, C e VAT, a € Vj-, then G is in Chomsky normal form. If every
p 6 P is of the form A —> aa, where a £ VJy, then G is in Greibach normal form. In
both cases, the rule S —* A must be added whenever A € L(G).

Let A, B € V/v, w>. G Vf. We say that a CFG G is right-linear (left-linear) if all
the production rules of G are of the form A —> iuj0 or A —> iw (A —* JSu; or A —> to,
respectively). G is a (íype S or) regular grammar (RG) if it is a right- or left-linear
grammar. A normal form for right-linear grammars restricts the production rules to the
form A —> aB or A —> a, where a G Vy, except for the possible rule S —> A. A similar
normal form applies to the left-linear grammars. It can be proved [HoUl:79] that the
languages generated by RGs are exactly the regular languages (or regular sets), which
are the languages accepted by finite-state automata and denoted by regular expressions
(see next subsections).

The Chomsky hierarchy is based on the following theorem, the proof of which is
available elsewhere (e.g.[HoUl:79j).

Theorem 2.1. Regular languages C CFLs C CSLs C r.e. sets.

34 Chapter 2. Regular grammatical inference: theory and symbolic methods

2.1.2 Finite-state machines and finite-state automata w

Informally,,a. finite-state machine (FSM) is an abstract device that reads a sequence ^^
of input symbols (from a tape) and writes an associated sequence of output symbols
(to another tape) under the control of a finite set of states. There are two models of
FSMs: the Mealy machines and the Moore machines [Booth:67].

A Mealy machine is a six-tuple M = (Q,£,r,£, rj,q0), where Q is a finite set of
states, S is a finite alphabet of input symbols, F is a finite alphabet of output symbols,
8 : Q x S —> Q is the state transition function, 77 : Q x E —> F is the output function,
and ço is the initial state. A Moore machine is also a six-tuple M — (Q,^,T,8,r),q0),
.where^all is as in the Mealy machine, except that, the.,output function depends only
on the states, i.e. 77 : Q —>• F. It can be proved that these two FSM types produce "
the same class of input-output mappings (called sequential functions) by designing two
algorithms that, given a machine of one type, they construct an equivalent machine of
the other type [Booth:67].

A 'deterministic finite-state automaton (DFA) is a five-tuple A = (Q,H,8,qo,F),
where Q, E, 8 and c0 are as in a FSM, and F C Q is the set of accepting or final states.
A DFA may be viewed as a special case of a Moore machine where the output alphabet
is F = {0,1} and. a state ç € Q is an accepting state if and only if rj(q) = 1.

Given a DFA A = (Q, E,8,qo,F), an associated function 8 : Q x E* —> Q can be
defined, such that 8(q, w) indicates the state reached after reading the string w starting
in state ç, in the following manner:

= c A

ii) Vw; e E* Va <G E : 8(q,wa) = 8(8(q,w),a) ~

A string w is said to be accepted by A if 8(qo, w) € F. Every DFA A accepts a language ^k
L(A), which is defined as {w \ 8(q0,w) e F}. It is clear that L(A) C S*.

A nondeterministic finite-state automaton (NFA) is a five-tuple A = (Q, E, 8, <?o, F), ^P
where Q, E, q0 and F have the same meaning as for a DFA, but now 8 : Q x S — * 2^ is
a nondeterministic transition function, such that 8(q, a) indicates the set of all states
to which there is a transition labeled a from state q. The function 8 can be extended
to a function 8 : Q x S* — > 2^ as follows:

ü) Vu; e S* Va € S : 8(q,wa) = {p \ 3r € 8(q,w) : p € 8(r,a)}

Every NFA A = (Q,E,¿, qo,F) accepts & language L(A), which is defined as
{w \

2.1. Basic concepts, definitions and notation • 1 35

We will refer to the union of the set of all DFAs and the set of all NFAs as the class of
finite-state automata (FSA). A directed graph, called a transition diagram,is associated
with each FSA, where the vertices of the graph correspond to the states of the FSA,
and there is an arc labeled a from state q to state p whenever p G 8(q, a); graphically,
final states are marked as encircled vertices and the start state is distinguished in some
way1 (see Fig. 2.1). Two FSA AI and A2 are equivalent if L(Ai) = L(A-¿).

The classes of languages accepted respectively by DFAs and NFAs are identical
(namely, the regular languages], and this is proved by designing an algorithm that
for every NFA constructs an equivalent DFA [HoUl:79] (since, in addition, every DFA
is an NFA). The way a DFA simulates an NFA is to allow the states of the DFA to
correspond to sets of states of the NFA, and to keep track of all the states that the NFA
could be in'after reading an input./Therefore, in the worst case, the number of'states-
of the equivalent DFA is exponential with the number of states of the given NFA.

The model of the NFA can be extended to include transitions on the empty
input A. Hence, a nondeterministic finite-state automaton with X-moves is a five-
tuple A = (Q, £,£, co,-^1)) where now the state transition function is a mapping
8 : Q x (E U {A}) -4 2Q. Again, a transition function extended to strings 8 can
be defined for an NFA with A-moves [HoUl:79], and this allows to define L(A), the
language accepted by A, similarly. Any NFA with A-moves can be simulated by an
associated NFA without A-moves [HoUl:79], and thus, the class of accepted languages
is not increased by the addition of the A-moves. However, NFAs with A-moves can be
useful as an intermediate step when constructing an FSA from a regular expression or
from a regular grammar [HoUl:79].

A direct mapping from regular grammars to NFAs (without A-moves) is provided by
the following simple algorithm. Let G = (VJv, Vj, P, S) be a regular grammar in right-
linear normal form. Let Q = VN U {?/}, E = VT and q0 = S. Let 8 : (Q x S) -+ 2Q be
defined as follows: for each production rule of the form A -4 aB let B G S(A,a),
and for each production rule of the form A —»• a let ç/ G 8(A,à). Finally, if
S -4 A G P, then F = {?o,9/}5 and otherwise F = {q/}- It can be proved that
the NFA A = (Q, E, <5, q0, F) so formed satisfies L(A] = L(G).

It is also easy to construct a regular grammar equivalent to a given NFA A =
(Q,S,<$, qo,F). Let G = (Q,T,,P,q0), where P consists of production rules p —> aq
whenever q G 8(p, a) and also p —» a whenever 8(p, a) n F ^ 0; if ÇQ G F then the rule
Co -4 A is added to P. Again2, it can be demonstrated that L(G) = L(A).

1For instance, by means of an unlabeled incoming arrow, or by the special state labels go or A (the
last when shortest prefixes are used for state labeling).

2The proofs of this and the previous statement are omitted for concision and clarity purposes.

36 Chapter 2. Regular grammatical inference: theory and symbolic methods ^^

2.1.3 Regular expressions w

Let S = {oi,...,am} be an alphabet. The regular expressions (REs) over S and the ^^
languages that they describe are defined recursively as follows.

i) 0 is a regular expression and describes the empty set.
ii) A is a regular expression and describes the set {A}. ^^

iii) For. each a,- G S (1 < i < m), a,- is a regular expression and describes the set ^^

"{«.-}• • • : ^
iv) If P and Q are regular expressions describing the languages Lp and LQ, ^P

. . , - respectively, then (P + Q), ,(PQ], and (P*) are regular expressions that describe
. , the .languages Lp U LQ (their union), LpLq (their concatenation) .and L*P (the £|

closure of -Lp), respectively.
v) No other expressions are regular unless they can be generated in a finite number ^^

of applications of the above rules. ^V

By: convention, the precedence of the operations in decreasing order is * (star),
(concatenation), + (union). This precedence together with the associativity of the ^P
concatenation and union operations allows to omit many parentheses in writing a
regular expression. gfe

We write L(R) for the language described by RE R. Two regular expressions P ^^
and Q are said to be equivalent, denoted by P = Q, if they describe the same language. ^P
The following are some basic equivalence rules:

0 + fl = R ' (2.1) 9
. - , ®R = R$ = 0 (2.2)

: \R = R\ = R (2.3) •

. A* = A (2.4)

0* = A (2.5) £

R + R - R (2.6)
PQ + PR = P(Q + R) (2.7) f
PQ + RQ = (P + R)Q (2.8)

R*R* = R* (2.9) ^
RR* = ^*.R (2.10)

'(^*)* - í?* (2.11) ^
= R* (2.12)

= P(QP)* (2.13) 0
= (P*g*)* = (P* + Q*)* (2.14)

= p*(Qp*y = (p*g)*p* (2.15)

2.1. Basic concepts, definitions and notation < • • > 37

Although the algebraic manipulation of regular expressions, using the preceding
(and other derived) identities, can be used to simplify them or to demonstrate their
equivalence, it does not provide an automatic tool for determining the equivalence of
two regular expressions. It is a better approach to convert the two given REs into their
equivalent FSA and to test these for equivalence [HoUl:79].

A language is said to be rational if and only if it can be described by a regular
expression. Every language accepted by an FSA can be represented by a regular
expression and every language denoted by a regular expression can be recognized by
an FSA (Kleene's theorem [Koha:78]), and thus, rational and regular languages are the
same family of languages. An NFA with A-moves A\ is easily constructed that accepts
L(R) for a given RE R [HoUl:79]; then A\ can be further transformed into an NFA
without'A-moves, or a DFA if desiredr • - • • - '•-• '•- — _».. . . , -

Given an FSA A, there can be many equivalent REs R such that L(A) = L(R).
Several algorithms have been proposed to find a regular expression that describes
the language accepted by a given FSA [Koha:78, HoUl:79]. By selecting a specific
algorithm, a deterministic mapping t¡> can be established from FSA to REs, this is, a
canonical RE R can be chosen for each FSA A, R — i¡>(A). In Chapter 8, a modification
of Arden's algorithm [Arden:60] will be proposed as the mapping t¡) in the context of
learning augmented REs3. Arden's algorithm is based on the following theorem, known
as Arden's lemma, the proof of which can be found in [Koha:78].

' •
Theorem 2.2. Let Q, P and R be regular expressions over a finite alphabet. Then,

if A £ L(P), the equation R = Q + RP has a unique solution given by R — QP*.
.

The following theorem summarizes the equivalence relationships among the different
representations of regular languages. The proof can be done by parts showing pairwise
equivalence, and each part is indeed a known theorem, which proof is based on giving
the algorithms for going from one description to the other and viceversa [HoUl:79].

Theorem 2.3. Regular grammars, FSA, and regular expressions are distinct
classes of descriptions of the same class of languages, the so-called regular languages.

In Fig. 2.1, given the regular language described by the RE over {0,6}
R = (6a + 6(aa)*), we show an NFA with A-moves A*, an NFA without A-moves
AN, a DFA AD, and a regular grammar G, such that L(R) = L(A\) — L(A^} =
L(Arj) = L(G). In fact, the sequence of automata A\,AN, AD, is obtained from R
by applying the aforementioned algorithms [HoUl:79], and G is obtained from AN by
applying the NFA-to-RG algorithm described previously.

3Augmented regular expressions will be defined in Chapter 8.

38 Chapter 2. Regular grammatical inference: theory and symbolic methods

R = (ba + b(aa)*)

(a) s
s
s •
A

B

C

C

bA

bB

b

a

aC

aB

a

(b) (c) (d)

Fig. 2.1 .Different descriptions for the regular language denoted by (ba + 6(aa)*).
(a) NFA with X-moves A\ (b) NFA AN (c) DFA AD (d) Regular grammar G

2.2 Basic theory for regular grammatical
inference

This section comprises the. material of automata theory and the theoretical
developments of previous researchers that provide the basis for regular grammatical
inference (RGI). Most of the contents presented here are picked from a recent paper
by Dupont et al [DuMV:94], which gives a comprehensive statement of RGI as a
search problem. Other references that may be consulted about this topic are [FuBo:75,
Gold:78, Fu:82, AnSm:83, KuSh:88, Micl:90, OnGa:92a-b, Greg:94].

2.2. Basic theory for regular grammatical inference 39

2.2.1 Statement of the RGI problem

A sample of a language L over an alphabet E is a tuple S = (S+, S~), where S+ is a
finite subset of L (called positive sample), and S~ is a finite subset of the complementary
language S* — L (called negative sample). Consequently, S+ and S~ are two disjoint
finite subsets of E*.

The problem of regular grammatical inference (RGI), or simply regular inference,
can be stated as follows: given a sample S = (S+,S~), such that 5"+ ^ 0, discover the
unknown FSA AT, called the target automaton, from which S+ is supposed to have
been generated (and which does not accept any of the strings in S~, whenever S~ ^ 0).
Hence, 'Ax must satisfy ¿(Ax) 2 S+ A (£* — L(Ar)) 2 S~, i-e. AT must be consistent
with the supplied data.

Recall that an equivalent regular grammar is easily obtainable from any FSA AT,
so the term "grammatical inference" is perfectly valid. Also note that the unknown
language L, from which the sample S is taken, is assumed to be regular. If this were not
true, any FSA yielded by a RGI method applied to S would only represent a regular
approximation of L, that may be quite imperfect.

Even when L is actually regular, there are theoretical and practical difficulties in
solving the problem. Since S is a finite set, it is clear that a huge (infinite) number of
FSA consistent with S exist. By establishing some reasonable assumptions (namely,
the structural completeness of the sample, to be defined later), the AT candidates
can be reduced to a finite but still excessively large number. In practice, one or
more criteria (inductive biases) must be imposed to select just one or a few plausible
solutions. Simplicity and maximal generalization are the usually preferred inductive
criteria; however, other heuristic criteria can be applied, specially when there is some
prior (partial) knowledge of the solution.

2.2.2 Further definitions

Next, some additional definitions are introduced that involve FSA (derived FSA,
canonical DFA, acceptances), FSA associated with language samples (the MCA, PTA,
CDA, and universal automata), and lattices of FSA, which are required to characterize
the RGI problem and its possible solutions.

40 Chapter 2. Regular grammatical inference: theory and symbolic methods

2.2.2.1 Derived automata <

For any set Z, a partition TT is a set of pairwise disjoint nonempty subsets of Z whose
union is Z. Let z G Z and let B(z, TT) denote the unique element, or block, of TT
containing z. A partition TTJ refines, or is finer than, other partition tr^ if and only if
every block of K^ is either a block of TTI or a union of two or more blocks of TTI.

Let A = (Q,2,6,q0,F) be an FSA. The FSA derived from A with respect to
the partition TT of Q, also called the quotient automaton A/IT, is defined as A/TT =
(Q',Z,6',B(qQ,ir),F'), where

Q1 = Q I* =,{B(qi*)\q€Q},
. F' = {B£Q'\BnF¿®}, and

¿' : Q' x £ -».2«' is given by V£,5'GQ', Va G £ : ! '
5' € ¿'(5, a) <£> 3?, q'€Q,q£B,q'€B' A ç' G %, a).

The states of Q that belong to the same block B of the partition TT are said to be
merged together.

2.2.2.2 Canonical automaton of a regular language, k-tails and DFA minimization

Let L be a regular language over S. Let A(L) = (Q,lu,o,qo,F) be a DFA, such that
Q = {L/u | u e Pr(L)}, 9o = L / X , F = {L/u \ u G L} and 8(L/u,a] = L/ua where
u, ua G Pr(L). A(L) is called the canonical automaton of L, and it can be proved that
every DFA which accepts exactly L and contains the minimal number of states for this
language is isomorphic to A(L) [HoUl:79]. °

Let A = (Q, S, 8, qo, F) be an FSA. A string u is a tail oí a state q G Q if ¿>(9> «) € F;
u is a k-tail of ç if it is a tail of q and |u| < k. The set of A;-tails of q is written $£.
We say that two distinct states q,q' of A are distinguishable by u € S* if either

A 8(q',u) ^ F oi 8(q,u) £ F f\ 8(q',u) G F; and 9,9' are k-equivalent,
k

denoted q = q', if they are not distinguishable by any string u such that \u\ < k. This
is, q and q' are k-equivalent if and only if they have the same set of ¿-tails, i.e.

Finally, 9 and 9' are equivalent, denoted 9 = 9' or simply 9 = 9', if they have the same

set of tails. It is easily shown that both = and = are true equivalence relations on the
set of states Q.

"The following property is at the basis of Moore's algorithm for DFA minimization:

V9, 9' G Q : qk= q' ̂ q = q' A Va G S : ¿(9, a) = %', a) (2.16)

2.2. Basic theory for regular grammatical inference 41

Let TTjt and TT^ be the partitions of the states of AQ = (Q, £, ¿, qo, F] resulting from

the relations = and =, respectively. Then, it follows that, if AQ is a DFA, the derived
automaton AQ/T:^ is the minimal DFA accepting L(A0), i.e. AQ/TT^ is the canonical
automaton of L(A0); and the DFA minimization algorithm can be described as follows:

ALGORITHM 2.1: Moore's algorithm (A0)

begin

k:=Q

compute the partition TT^ for the relation = on Q

convergence :=FALSE

while k < \Q\ — 2 and not convergence do

k:=k + l
compute Kk as a function of Kk-i using eq.(2.16);
convergence := (TT¿ = Kk-i)

end-while

compute the derived automaton Ao/Kk { i.e. merge the ¿-equivalent states }

returns AQ/TT^ { since Ao/irk = AQ/TTOO after convergence }

end-algorithm

It should be noted that if Moore's algorithm is applied to a non-deterministic FSA
AQ, there is no guarantee that the result be the canonical automaton A(L(AQ}} nor ihe
minimal NFA recognizing L(Ao).

2.2.2.3 Structural completeness of a sample

An acceptance of a string u = ai...a¡ by an FSA A — (Q, S, 6, q0, F), denoted AC(u, A),
is a sequence of / + 1 states (c°,..., q1) such that q° = qo, ql € F, and qt+l Ç. ò(q%, a¿+i),
for 0 < i < (I — 1), i.e. a path of the associated transition diagram starting at qo and
ending in a final state that is labeled by u. The / + 1 states in the path are said to
be reached for AC(u, A) and the state q1 is said to be used as accepting state. The /
transitions (elements of 6) traversed in the path are said to be exercized by AC(u,A).

A state q of an FSA A is useful if there exists a string u € L(A) for which ç may be
reached for some acceptance of u. Otherwise, the state is said to be useless. An FSA
that contains no useless state is said to be stripped. An FSA A is ambiguous if there is
at least one string u for which there are several acceptances; clearly, only NFAs may
be ambiguous. . ,

42 Chapter 2. Regular grammatical inference: theory and symbolic methods

An acceptance of a set of strings Sa by an FSA A, denoted AC(Sa,A), is a set
of acceptances AC(u, A) of the strings u • G Sa by A, such that there is only one
acceptance for each string. The set of transitions exercized by (respectively states
reached for) AC(Sa^ A) is the union of the sets of transitions exercized by (respectively
states reached for) each string acceptance in AC(Sa, A). A similar extension serves to
define the set of states used as accepting states for AC(Sa, A).

According to the new correct definition given in [DuMV:94], a positive sample S+

is said to be structurally complete with respect to an FSA A = (Q, S, ¿, <?o, F), if there
exists an acceptance AC(S+, A) of S+ such that

i) every transition in 6 of A is exercized by AC(S+, A), and
ii) every state in F of A is used as accepting state for AC(S+, A).

Note that the existence of AC(S+, A) implies S+ C L(A). By extension, we say that
a sample 5 = (S+,S~) is structurally complete with respect to an FSA A if S+ is
structurally complete with respect to A and S~ D L(A) = 0.

2.2.2.4 Automata related to a positive sample

Let S+ = {«i, ...,UM} be a positive sample, where u¿ = a^i.-.a,-^!, 1 < i < M.
A canonical FSA with respect to S+ is any FSA AC such that L(Ac) = S+.. Three
significant FSA related to S+ are defined as follows.

The maximal canonical automaton with respect to S+ is the FSA MCA(S+) =
' (Q, S,¿,90, F), where

E is composed of all the symbols that appear in S1"1",
Q = {vitj \l<i<M, l<j< |w,-|, Vij = a,-,i...a,j} U {A},
_ \ T7I Ç+ • ' . •
ÇO — A, z* = O ,

Va G E : ¿(A, a) = {v.-.i | v,-,i = a, 1 < » < Af), and

Hence, L(MCA(S+)) = S+ and MCA(51+) is the FSA having the largest number of
useful states, with respect to which S+- is structurally complete. MCA(S+) is generally
an'NFA, where the only possible nondeterministic transitions are from the start state.

The prefix tree acceptor of S+, denoted PTA(S+), is the quotient automaton
MCA(S+)/irpr, where the partition irpT is defined by

= Pr(q')

That is, the prefix tree acceptor P,TA(S+) is obtained from the MCA(S+) by merging
the states that share the same prefixes. Note that PTA(S+) is always a DFA. •".

00 D . ,, , .· .„2.2. Basic theory tor regular grammatical inference 43

The canonical derivative acceptor, denoted CDA(S+), is the canonical automaton
of the language S+, i.e. CDA(S+) = A(S+), and thus CDA(S+) is the DFA that is the
minimal canonical automaton with respect to S+. The canonical derivative acceptor
CDA(S+) can be obtained from the PTA(S+) by merging the states that share the.
same set of tails, i.e. CDA(S+) = PTA(S+)/Trt¡, where the partition 7rt/ is defined by

q) = S+/Pr(q').

The universal automaton over an alphabet £ is the DFA U A = (Q, E, 8, qo, F),
where Q = F = {q0} and Va € S : f>(q0,a) = q0. It is clear that L(UA} = S* and
U A is the smallest FSA with respect to which every positive sample of S* including

v all the symbols in S is structurally complete.""

2.2.2.5 Lattices of automata

Let P(A] denote the set of partitions TT of the set of states Q of an FSA A. Let
ITT,-) denote the number of blocks of the partition TT,-. Let TTI = {Biti...Bit\Vl\} and
7T2 be two partitions of P(A). We say that 7T2 is directly derived from TTI, denoted
n'ï 1̂ i"2> if 7T2 is constructed from TTJ as 7r2 = {-Sij U Bitk} U (TTI — {Bij,Bi¿}) for
some _/, fc G [1, |TTI|],J 7^ ¿. Consequently, |7r2| = \TTI\ — 1. By extension to quotient
automata, we also say that A/ir^ is directly derived from A/KI, or A/TTJ ^ A/TT^.

The preceding operation ^ defines a partial orden relation on P(A). Let <C denote
the reflexive and transitive closure of X. It follows that TTJ ¿s derived from TT,- or
7T,- <C TTj ' O· 7T,- is finer than TTJ. In that case, we also say that A/KJ is derived from
A/KÍ (denoted A/TT,- ̂ A/KJ). By the way a quotient automaton is built, it is readily
proved [FuBo:75] that

A/** < A/7Tj =» L(A/*i) ç L(A/Vj) (2.17)

The set of FSAs derived from a given FSA A is partially ordered by the relation ^, and
furthermore, it is a lattice, denoted Lat(A), of which A and the universal automaton
U A are respectively the null and universal elements4. The depth of an FSA A/TT in
Lat(A) is given by n — |TT|, where n is the number of states of A. Therefore, the depths
of A and U A in Lat (A) are 0 and n — 1, respectively.

4Strictly speaking, I7>1 is the universal element of Lat(A) whenever the set of final states F of A
is not empty; otherwise (a degenerated case), the universal element is similar to U A except that its
unique state is not accepting, and all the FSA in Lat(A) accept the empty language. .

44; Chapter 2. Regular grammatical inference: theory and symbolic methods

2.2.3 The search space of the RGI problem

As commented before, the statement of the RGI problem allows for an infinite number
of candidates to be the target automaton AT. Given the additional hypothesis of
structural completeness of the sample S, the RGI problem may be considered as a
search through a (finite) lattice built from the positive sample S+. This property
follows from the following three theorems, the proof of which is available in [DuMV:94].
Three corollaries are appended here, one for each theorem, that cover the general case
of having both a positive and a negative sample.

' ' Theorem 2.4. Let S+ be a positive sample of any regular language L and let AT
be any FSA accepting-exactly L. If S't is structurally complete with respect to AT then
AT belongs to Lat(MCA(S+)).

Corollary 1. Let S = (S+,S~} be a sample of any regular language L and let AT
be any FSA accepting exactly L. If S is structurally complete with respect to AT then
AT belongs to Lat(MCA(S+)).

complete with respect to AT (implying S+ Ç L(AT)) and S~ H L(AT) = 0. Hence, AT
is consistent with S and by Theorem 2.4 it belongs to Lat(MCA(S+)). ü

Theorem 2.5. Let S+ be a positive sample of any regular language L and let A(L)
be (the DFA that is) the canonical automaton of L. If S+ is structurally complete with
respect to A(L) then A(L) belongs to Lat(PTA(S+)).

Corollary 1. Let S = (S+,S~) be a sample of any regular language L and let
A(L] be the canonical automaton of L. If S is structurally complete with respect to
A(L) then A(L) belongs to Lat(PTA(S+)).

Proof. The same argument than in the previous corollary holds substituting A(L)
for AT, PTA(S+) for MCA(S+), and Theorem 2.5 for Theorem 2.4. D

Theorem 2.6. Let 5+ be a positive sample. Let A$+ be the set of FSAs such that
S* is structurally complete with respect to any FSA belonging to A$+ • The set AS+ is
equaltoLat(MCA(S+)).

Corollary 1. Let S = (S+,S~) be a sample. Let AS be the set of FSAs such that
S is structurally complete with respect to any FSA belonging to AS- The set AS is a
subsetofLat(MCA(S+)).

2.2. Basic theory for regúïafgrammatical inference 45

Proof. The set As is the intersection of the set AS+ and the set A'$ of FSA
consistent with 5. Since AS+ = Lat(MCA(S+)) by Theorem 2.6, it follows that
As Ç Lat(MCA(S+)). When S~ = 0, As = Iaí(MCíA(5·f)), but otherwise
^5 C Lat(MCA(S+)), since at least the universal automaton U A 6 Lat(MCA(S+))
is inconsistent with any S with nonempty 5~. Also, AS ^ 0, since at least
MCA(S+) € ,4s always. D

The so-called minimal DFA consistency problem consists of finding the DFA that
is consistent with a sample S = (S+,S~) and has the minimal number of -states.
This problem has been proved to be NP-hard [Gold:78,Angl:78]. The minimal DFA
consistency problem can be viewed as the search of the DFA in AS with minimal
number of states, where the simplicity of the inferred FSA is used as criterion to select
the . -target ̂ Ar, ,, ;.,Howeyer, .the -search^ space; for this problem, can be; further, delimitad
using the concept of border set [DuMV:94], which is introduced next.

An antistring (Ts in a lattice of FSAs is a set of FSAs such that any element of as
is not related by <C with any other element of ~as. An FSA A is at a maximal depth
in a lattice of FSAs with respect to a negative sample S~, if there is no FSA A' which
may be derived from A such that L(A') H S~ = 0. Given a sample 6" = (5+,5~),
the border set BSMCA($), respectively BSpxA(S}, is the antistring in Lat(MCA(S+)),
respectively Lat(PTA(S+)), of which each element is at a maximal depth with respect

• to - 5-.'

The search space of the RGI problem presents some interesting properties that are
listejd next.

1. Lat(PTA(S+}) Ç Lat(MCA(S+)).

2. Wl € Lat(MCA(S+)) : A is a DFA => A € Lat(PTA(S+}).

3. There exist positive samples S+ for which the languages which may be identified
from Lat(PTA(S+)) is properly included in the set of languages which may
be identified from Lat(MCA(S+)); in particular, some languages5 are only
represented by NFAs in Lat(MCA(S+)).

4. BSPTA(S) Ç BSMCA(S).

5. There may be several distinct languages represented by the FSAs belonging to

6. There may exist NFAs belonging to BSMCA(S) which contain less states. than
the minimal consistent DFA.

5Necessarily, S"1" is not structurally complete with respect to the canonical automata of these
languages.

46 Chapter 2. Regular grammatical inference: theory and symbolic methods

7. All the DFAs belonging to BSpTA(S) are necessarily minimal for the language
they accept.

8. There may exist canonical automata (for some languages) consistent with S which
do not belong to BSpTA(S], since other FSAs in BSpTA(S) may be derived from
them. '

The property #2 can be proved by showing that all the FSAs that belong to
Lat(MCA(S+}} but not to Lat(PTA(S+}} are quotient automata MCA(S+)/ir for
which the partition TT include two distinct blocks 5, and B j such that 3qi G Bi,3qj €
Bj : B(qi,Kpr) = -B(cj,7rpr), i.e. there exists a common prefix of g¿ and Çj and also
of BÍ and BJ, and thus, these FSAs are necessarily NFAs. The rest of the previous
properties a r e shown i n [DuMV:94]. '
._-..•',,,,.-.. i. JJ...C.. - -.--- *• ,-••... ..<•:• - • . . , ; . . - . j r , . W-• • : • - • •« • ~ / . • . . . - . - . ! . . ; • . . • . - . .«í- , . .-^~y r •-•.;„!. j , ! . ' . ; . j.t ' i . r .

The minimal DFA consistency problem might be considered as the discovery of
the smallest DFA in BSpxA(S). However, the minimal DFA consistent with S could
belong or not to BSpxA(S) (by property 8). Therefore, to delimit the search space for
the minimal consistent DFA precisely, the concept of deterministic border set has to
be introduced as follows.

• ' Given a sample S = (5+, 5~), the DBSPTA(S), is the antistring in Lat(PTA(S+)),
of which each element is a DFA A such that there is no DFA A' which may be.derived
from A satisfying L(A') D S~ = 0. It is obvious that the minimal consistent DFA must
belong to the deterministic border set

2.2.4 The complexity of regular language identification

In a classical paper [Gold:67], Gold showed that all the recursively enumerable classes
of languages (context-sensitive and below) can be identified in the limit using both
positive and negative examples. On the other hand, no superfinite class of languages,
i.e. one that contains all finite languages and at least a language that is infinite,
can be identified in the limit using only positive examples. Both statements apply to
the case of regular languages. However, there are certain (not superfinite) sub-classes
of regular languages that can be identified in the limit using only positive examples,
e.g. the classes of k-reversible languages [Angl:82], k-testable languages [GaVi:90], and
terminal distinguishable regular languages [RaNa:87]. The conditions that are required
to identify in the limit a class of languages from just positive data were stated by
Angluin [Angl:80a]. . .

On the other hand, there has been a long controversy about the practical tractability
of learning DFAs from both positive and negative examples. The reader is referred to

2.2. Basic theory for regular grammatical inference 47

[Pitt:89] for an overview on the computational complexity of DFA learning. Dupont et
al. [DuMV:94] summarized the key negative theoretical evidence in the following three
points:

• The problem of finding the minimal DFA consistent with S = (S+,S~) is NP-
hard [Gold:78,Angl:78].

• The minimal DFA consistency problem cannot be approximated within any
polynomial of the size of the optimal solution [Pitt:89].

• Approximate inference of FSAs from sparse labeled examples is NP-hard if an
adversary chooses both the target automaton and the sample [KeVa:89].

The relationship between the minimal DFA consistency problem and the regular
language identification problem is given by the fact that an algorithm which solved *
the former for each new (positive or negative) example would identify in the limit any
regular language. However, this does not mean that there do not exist polynomial-time
algorithms which return a possible solution of the RGI problem and identify in the limit
any regular language from a positive and negative sample; indeed, some methods with
these properties have been reported [Gold:78,OnGa:92a-b,Lang:92] (see next section).

Even earlier, Trakhtenbrot and Barzdin proposed a state-merging algorithm for
building the smallest DFA consistent with a complete sample [TrBa:73]. This complete
sample is made of all the strings up to the length /, each of them being labeled either
as positive or negative. The length / depends on some features of the target DFA
and has been shown to be equal to 2n — 1, in the worst case, where n is the size of
the target DFA [TrBa:73]. The time complexity of Trakhtenbrot-Barzdin method is
0(mn2), where m is the size of the PTA(S+). However, whenever n is large, the size
of the complete sample becomes prohibitive. Furthermore, in the worst case, the exact
FSA identification is not feasible if a vanishingly small fraction of the complete sample
is lacking [Angl:78].

Nevertheless, the computational complexity is better in the average case. For DFAs
randomly drawn from a well defined probability distribution, the expected value of the
complete sample size \S\ is (|S|2nc/o5f2n — l.)/(|£| — 1), where C only depends on
S [TrBa:73]. Although, for small alphabets, the expected average size of a complete
sample might suggest that exact identification of random DFAs is feasible, there is
no practical guarantee to have a complete sample available, whatever its size, unless
an oracle which answers membership queries is accessible (see next section). A more
realistic assumption is to consider the availability of only sparse data, i.e. two disjoint
sets S+ and S~ without any further restriction.

In this framework, Lang showed empirically that highly accurate approximate
identification may be achieved by using a (randomly drawn) vanishingly small fraction

48 Chapter 2. Regular grammatical inference: theory and symbolic methods

of the complete sample (needed by the Trakhtenbrot and Barzdin's method); that is, a
fraction which decreases as the size of the "target DFA increases [Lang:92]. Furthermore,
Oncina and Garcia have shown that if the sample contains a representative set of the
target regular language, their RGI algorithm is proved to produce the canonical DFA
for this language (which is also the minimal consistent DFA for the sample); the size
of the representative sample is only of order 0(n2), where n is the number of states of
the canonical DFA [OnGa:92a-b] .

Finally, Angluin has demonstrated that, whenever a teacher is available, the
combined use of a structurally complete sample and membership queries to identify
the target language can lead to an improvement in efficiency [Angl:81]. This is shown
by defining a procedure for this setting that identifies any regular language using a
number of queries'that, is polynomial iri n, |£|, and the size of the sample, and, which
can be run in time polynomial in these variables.

2.3 Symbolic methods for regular grammatical
inference

In this section, an overview of the most outstanding symbolic methods proposed for
regular grammatical inference is given. The reader is referred to a recent survey by
Gregor [Greg:94] and to the original papers describing the methods for more details.
See also the previous surveys by Fu [Fu:82] and Miclet [Miel: 90].

2.3.1 Methods for RGI from a positive sample

Since the class of regular languages cannot be identified in the limit from only positive
data [Gold:67], most of the methods for RGI from a positive sample are heuristic
techniques that are based on selecting one or more inductive biases (heuristic criteria)
to determine a plausible hypothesis. Nevertheless, some other methods have been
proposed that are able to identify from positive data a subclass of the regular languages;
these are called characterizable techniques [AnSm:83] because their results, i.e. the
hypotheses selected, are characterizable according to some restriction.

Besides the discrimination between heuristic and characterizable techniques
[AnSm:83], the methods for RGI from positive data can be classified into three groups:
equivalence relation methods, miscellaneous methods and error correcting procedures
[Greg:94]. In the two former groups, the data is assumed to be perfect positive

2.3. Symbolic methods fot regular grammatical'inference 49

examples, and the methods can often cope with the availability of a negative sample
by adjusting some parameter in order to choose a consistent hypothesis. On the other
hand, the error correcting procedures handle (potentially) imperfect examples and
therefore they do not allow for a negative sample.

2.3.1.1 Heuristic techniques

The methods in the following list use a variety of equivalence relations to form either
a few sets, or a unique set, of equivalence classes among the states of a canonical
automaton with respect to S+. For each one of these partitions, a derived FSA AD is
obtained that can be selected as the inferred FSA. However, there is no guarantee that
any ,of these AD correspond to the target,FSA AT. Moreover, if a negative sample S~
is'available; the inferred FSA' AD could'be' inconsistent with 'S~. Ih"the methods'which
offer a limited set of hypotheses, the consistency requirement may be used to filter this
set.

1) The k-tails method [BiFe:72].

2) The tail-clustering method [Micl:80].

3) The successor method [RiVe:84].

4) The predecessor-successor method [VeRi:84].

5) The partial similarities method [KuSh:88].

The k-tails method [BiFe:72] offers a family of FSAs Ak derived from a canonical
FSA with respect to S+ (e.g. MCA(S+) or PTA(S+)) using the k-equivalence relation

¡f
= (for 0 < k < \Q\ — 2), where \Q\ is the number of states of the canonical FSA.
Adjusting the parameter k affects the characteristics of the inferred FSA considerably.
If k > maxu65+ |ii| then L(Ak) = S+, and if, in addition, the starting FSA is the
PTA(S+), then Ak = CDA(S+), i.e the canonical derivative acceptor. If S~ is non-
empty, the value of k may initially be set to 0 and then increased until an FSA is
found that is consistent with S = (S+,S~). Because the k-tails method gives great
weight to the string terminations in selecting the hypothesis, it is ill adapted to pattern
recognition problems, where the result should take into account the overall properties
of the sample.

The tail-clustering method [Micl:80] is a generalization of the ¿-tails approach.
There is no parameter k to be adjusted and a unique FSA is returned as selected
hypothesis. This method iteratively groups the states of the MCA(S+) using distance
measures between sets of tails and a hierarchical clustering algorithm. It provides better
results than the fc-tails method [GrJu:92], at the expense of a higher computational
cost.

50 Chapter 2. Regular grammatical inference: theory and symbolic methods

The successor method [RiVe:84] infers a minimal DFA by analysing pairwise
successions of symbols in the strings of S+. For each symbol a in SA = S U {A},
the set Succ(a) is defined as the symbols succeeding a in 51"1", where A succeeds any
trailing symbol and it is succeeded by any starting symbol. Firstly, a DFA is created
containing just one state for each symbol in SA; then, the symbols that have identical
sets of successors are said to be equivalent and a derived DFA is built according to the
resulting equivalence classes. Usually, the result is a strong generalization with respect
to S+; in many cases (e.g. for samples including long strings in comparison with |SA|)
the sets S'ucc(a), for a € SA, tend to include most symbols and, hence, the universal
automaton U A is likely inferred.

The predecessor-successor method [VeRi:84] also infers a DFA (though not
necessarily minimal)'and it compensates'," to' s'omè extent, 'for the drawbacks "of the
successor method. It consists of establishing a relabeling scheme for the sample S+

(giving rise to a new alphabet and sample set), applying afterwards the successor
method, and translating the resulting DFA to the original alphabet. The relabeling
is aimed at associating each symbol in S with a non-unique number of states. To
this end, an equivalence relation is defined for the different occurrences in S+ of each
'symbol that is based on the predecessor symbols.

The partial similarities method [KuSh:88] is indeed a general framework which
embodies a large number of "reasonable" ways by which the states of the MCA(S+) can
be partitioned. Its flexibility is achieved through the definition of several equivalence
relations based on similarities of either predecessor or succesor substrings, or both. The
partial similarities framework covers the fc-tails and successor methods and allows for
other strategies of which the authors proposed three parameterized methods: A(m,n),
V(m,n) and +(k) [KuSh:88].

Let Predm(q) and Succn(q) denote the predecessor and successor substrings of
length m and n, respectively, for a state q G MCA(S+), such that an entire prefix or
suffix shorter than the specified length can be adopted. The equivalence relations 7lpm

and HSn are given by qRpmq' & Predm(q) = Predm(q') and qKSnq' & Succn(q) =
Succn(q'}, respectively. Then, for A(m,n), two states are considered equivalent when
q'R-pmq' f\qR-Snq' (i-e. both their predecessors and successors are identical). For V(m, n),
the equivalence relation is given by the transitive closure of q^pmq' Vç7^Snç' (i.e. either
predecessors or successors identical). Finally, for -f(fc), two states are equivalent if
they share a common substring of length k in the concatenation of predecessor and
successor substrings (m + n = k with variable m), and again the transitive closure is
required. By adjusting the length parameters, these three methods each offer a family
of derived FSA, from which a hypothesis can be chosen on basis of generalization degree
or compatibility with a negative sample.

. • - ' • . ' • - ¡ ,
2.3. Symbolic methods for regular grammatical inference 51

Other miscellaneous heuristic methods [Greg:94], which are not based on state
equivalence relations, are listed and commented below.

6) The uvkw method [Micl:76].

7) The Itoga's recursive merging method [Itoga:81].

8) The morphic generator methods [GaVC:87].

The uvkw method [Miel:76] infers a regular expression by detecting repeated
substrings in S+ and generalizing the sample using the pumping lemma for regular
languages:.- -,, , ,. , : • ; - . . ; . ' - , " . . _ • . . , : . . ' . , ' ' • - ' . . '

If L is a regular language over S, then 3p 6 M such that \/s G L with \s\ > p, s
can be written s = uvw, where \v\ > 2, so that Vk > 0, uvkw € L.

The assumption behind this method is that the sample contains strings that are
long in relation to the number of states of the generating FSA. Different candidate
substrings can be detected that fit in the searched pattern, and one is selected that
provides the "best matching" to S+. When a possible recursion has been identified,
an inference step is completed by rewriting the sample with a new symbol replacing
each occurrence of the selected substring. Several inference steps can be made until no
substring is found that is "sufficiently consistent" with 5+. The sample is thus rewritten
several times, each time giving a regular expression that includes its predecessor. The
size of the inferred language (denoted by the inferred regular expression) can be reduced
by augmenting the required number of repetitions k of the searched substring, since it
can be shown that L(k + 1) C L(k). The uvkw method is computationally expensive,
and the notions of "best matching" and "sufficiently consistent" are not well-defined.

The Itoga's method [Itoga:81] infers a DFA by recursively merging the states of the
CDA(S+). The rule for state merging is not based on an equivalence relation but on
the following heuristic criterion: two states ç,-, Çj are merged (into ç,-) if Rj C R{, where
Ri == {(a,Cfc) | <5(c,-,a) = c¿, a e E}. The process is repeated until no more states can
be merged. During the recursive merging of states, Çj could be merged with several
candidate states c¿, and the choice may influence the structure of the inferred DFA.
This method tends to produce low-complexity DFA and is claimed to perform well for
small samples while it might be unsuitable for larger sets.

The morphic generator methodology [GaVC:87] permits to use a GI algorithm
together with symbol renaming functions which incorporate application-dependent
knowledge. This methodology is based on the following property: 'for any regular

52 Chapter 2. Regular grammatical inference: theory and symbolic methods

language L there exists a local language6 I and a letter-to-letter morphism7 h such that
L = h(l). Firstly, a symbol renaming function g : S* —» S'* is applied to S+ yielding
a transformed sample S'+ = g(S+), under the assumption that a local language l(S'+)
captures more of the underlying structure of the sample than does l(S+). Then, an FSA
accepting a local language l(S'+) is built; for example, using the successor method, the
minimal DFA associated with a local language l(S'+) is produced. Finally, a letter-to-
letter morphism h : £'* —> E* is applied to obtain a translation back into the original
alphabet, thus giving an FSA that accepts the regular language L — h(l(g(S+))). The
morphism h is typically (but not necessarily) the inverse of g; in such a case, it follows
that S+ Ç L Ç l(S+}.

The mòrphic generator methodology covers the predecessor-successor method, but
a great number of other renaming functions can be devised.. Howeve^ it is unclear, how
to define suitable symbol renaming functions that ensure a good generalization. An
application of the methodology to speech recognition has been reported [GaSV:90].

A third class of RGI heuristic techniques is given by the error-correcting procedures.
Usually, in a real application, the examples in S+ are imperfect representations
due to an original noisy input and/or segmentation errors. These imperfections
may be modelled as insertion,"deletion and substitution edit operations on an ideal
string: During recognition, error correction permits to compensate for this problem by
temporarily adding states and transitions to an FSA that account for the allowed edits;
a local cost is assigned to each of the edit operations, and dynamic programming is
used to optimize the global cost for a full edit sequence, so that each string is recognized
with a certain cost. By making the edit-derived states and transitions permanent, the
error correction concept can also be applied for FSA inference.

• Two such error-correcting RGI methods are commented next, which have some
common properties. An ambiguous NFA A is generally inferred, that contains no
loops or cycles in its transition diagram, so that L(A) is finite; however, S+ C L(A),
i.e. some generalization is made. Moreover, each state of A has all of its incoming
transitions labeled by the same symbol, and there is only one final state. The first
given example constitutes the initial structure of the FSA, and subsequent examples
are optimally aligned (by computing the lowest-cost edit sequence) and incorporated
(by editing the FSA) one-by-one using an error correction scheme. Both methods are
well-suited for applications where substrings occur at approximately the same locations
in many examples in 5+, and they differ mainly on the choice of the cost function.

6Local languages are a subclass of the regular languages, such that each local language can be
characterized by a finite set of substrings of length two that are allowed to occur.

7A letter-to-letter morphism is a function h : E'* —> E* which preserves concatenation and ensures
that Va e E' : h(a) 6 E.

2.3. Symbolic methods fo'r'ïéjfalafgrammàticafiïïïference 53

9) The Markov network inference method [ThGr:86].
10) The ECGIalgorithm [RuVi:87].

The method by Thomason and Granum [ThGr:86] infers stochastic FSA called
Markov networks. The cost function used for dynamic programming error correction
is designed such that an example is optimally aligned when the edited automaton will
generate it with maximum probability. The cost of a specific edit operation is thus
the probability with which it is part of an alignment, and it is computed as a relative-
frequency estimate of the corresponding transition probability. These estimates are
obtained from frequency counts asigned to each transition and incrementally updated
when the transition is used in an alignment. The same cost function is also applied for
error correction by use of stochastic FSA. In addition, several global characteristics of

. 5/tí.éxarnples, aré [preserved, 'e.g.. average,.number of appearances: c-f';specific. ^ymbpls,
average string lengths, and average distance between two identical symbols.

The ECGI algorithm by Rulot and Vidal [RuVi:87] infers FSAs that are not
necessarily stochastic. The cost function used for dynamic programming error
correction computes a normalized weighted Levenshtein distance between an example
string and the nearest string belonging to the language accepted by the unedited FSA.
The ECGI algorithm can be extended to infer stochastic FSA by computing relative-
frequency estimates of the transition probabilities based on frequency counts of use (as
before). Each type of error correction (depending only on the symbols involved) has
its probability approximated in a similar way. A different cost function is defined for
error correction by use of stochastic FSA [Greg:94].

o

2.3.1.2 Characterizable techniques

The following GI methods permit to identify in the limit a certain subclass of
regular languages using only positive examples. If there is some a-priori knowledge
which indicates that the target language belongs to one of these subclasses, then the
corresponding method should prevail.

1) The k-reversible languages method [Angl:82].
2) The skeleton method [RaNa:87].
3) The k-testable languages method [GaVi:90j.

A regular language L is k-reversible [Angl:82], if whenever two prefix strings, whose
last k symbols are identical, have one tail in common then they have all tails in common,
i.e. uivw,ii2vw e L A v 6 Sfc => (Vz € S* : u^vz e L O u?vz € L). Let Rk
denote the class of ¿-reversibles languages over E for a specific value of k. The union
of all Rk, k = 0,1,2,..., is a hierarchy of classes that contains all finite languages over

54 Chapter 2. Regular grammatical inference: theory and symbolic methods

£ where Rk C Rk+i- This hierarchy defines the class of reversible languages, which
is a proper subclass of the regular languages, ¿-reversible languages are accepted by
fc-reversible FSAs. An FSA A = (Q,^,S,q0,F) is fe-reversible iff A is a DFA and the
FSA Ar ~ (Q, E,<5r,.F, {?o})5 obtained by reversing each of the transitions of A, is
deterministic with lookahead k. An FSA is deterministic with lookahead k if Vç, q' €
Q : (3q" G Ç, a € S : ç, q' G 8(q" , a)) =» -.(3v € S* : ¿(ç, v) € Q A ¿(ç', u) € Q).

The k-reversible languages method [Angl:82] is an equivalence relation based method
[Greg:94], that builds from the MCA(S+) a derived (fc-reversible) DFA which generates
the smallest fe-reversible language containing S+. For a fixed value of fe, the method
provides a well-defined FSA from S+ in a non-heuristic manner. When the parameter
k is an estimate, a setting of k lower than that of the target language results in an, over-
generalization, while "a higher setting yields a too conservative inference! If a negative"
sample S~ is available, the value of k may initially be set to 0 and then increased until
a consistent DFA is found.

The class of terminal distinguishable regular languages (TDRLs) [RaNa:87] is
defined as follows. Let S(w) C E denote the set of distinct symbols in a string
w € S*. A regular language L is terminal distinguishable iff Vu, u, iü, z € E* : uw, vw G
L A S(tu) = S(z) =¿> (uz € L & vz € L}. The class of TDRLs properly contains
the class of zero- reversible languages, some languages from the class of k- reversible
languages for all values of k, and also some nonreversible languages.

. The skeleton method [RaNa:87] is also an equivalence relation based method
[Greg:94]," that builds from the MCA(S+) a derived unambiguous FSA A which
generates the smallest language in the class of TDRLs containing S+. If S+ is a positive
sample of a target regular language L, then it can be shown that S+ C L(A) C L.

The class of k-testable languages in the strict sense (fc-TLSS) [GaVi:90] is a subclass
of the regular languages, such that each fc-testable language can be characterized by a
finite set of substrings of length k that are allowed to occur. This is a generalization
of the local languages, for which k = 2. The class of fc-TLSS is included in the class of
fc-reversible languages.

The k-testable languages method [GaVi:90] infers a DFA Ak which accepts the
smallest language in fc-TLSS containing S+. Adjusting the parameter k has a
considerable influence on the resulting DFA. For example, L(A\) = S* while L(Ak) =
S+ if k > maXu£5+ \u\. In general, S+ Ç L(Ak+i) Ç L(Ak). The choice of k is
tentative, but if S~ ^ 0, the value of k may initially be set to 2 and then increased
until a consistent DFA is found.

2.3. Symbolic methods forf¡regular grammaticaLjnference 55

The main advantages of the three methods here discussed are the same:
identification in the limit from positive presentation, and a well-characterized language
accepted by the inferred FSA.

2.3.2 Methods for RGI from a positive and a negative sample

The following methods infer FSAs that are solutions of the RGI problem, given a
sample containing both positive and negative examples (which, in general, represents
sparse data). Some of them can be proved to identify in the limit the class of regular
languages.

1) The Gold's identification method [Gold:78]. , .,
2-) The Tomita's hill climbing method, [Tomi:82]. . . . , •'¡ . - - . - . ' „ > , ' . - .
3) The Oncina's recursive merging methods [OnGa:92a,OnGa:92b].
4) The border set finding (BIG and RIG) methods [MiGe:94j.
5) The border set heuristic pruning (BRIG) method [MiGe:94j.
6) The genetic search (GIG) method [Dupo:94].
7) The RPNI2 method [Dupo:96]. .

In the same paper where Gold demonstrated that the problem of finding the minimal
DFA consistent with a given sample S = (S+,S~) is NP-hard [Gold:78], he proposed
a non-incremental algorithm to identify in the limit any regular language. Gold's
algorithm is polynomial in time (obviously, it is not based on finding the minimal
consistent DFA), but ij; has an important drawback, it cannot generalize S+ unless
this sample contains a characteristic set. When there are not enough examples, the
algorithm does not ensure the consistency with the data, and therefore, it is not
appropriate for pattern recognition tasks, where the lack of data is usual.

Tomita presented an algorithm for finding an FSA consistent with 5" based on
heuristic search by hill climbing [Tomi:82]. A function of merit to be optimized was
defined for the FSAs in a set which was not explicitly related to the lattice of FSA
derived from a canonical automaton. .

More recently, Oncina and Garcia [OnGa:92a-b] have proposed two polynomial-time
algorithms that identify in the limit the regular languages from a sample S = (S+, S~),
and which overcome the practical limitations of Gold's method. Both algorithms are
very similar, they perform a greedy search in Lat(PTA(S+}) that yields a "locally
optimal" solution to the consistency problem, with the basic difference that the first
one [OnGa:92a] may return an NFA AN as solution (such that AN € BSpTA($)), while
the second one [OnGa:92b], sometimes called the RPNI method, constrains the set of
hypotheses to DFAs and always returns a DFA AD G

56 Chapter 2. Regular grammatical inference: theory and symbolic methods

In both versions, the selected FSA is usually small with respect to the PTA(S+),
since the algorithms try to maximize the generalization of positive information, but
they do not necessarily obtain the' minimal DFA consistent with 5, except if the
data contain a representative sample. Oncina and Garcia have characterized the
representative sample ST •==• (Sy",.i>70 pr°Per ^° their algorithms to identify a regular
language L, and they have shown that its size is of order 0(n2), where n is the number
of states of the canonical DFA. A(L). When Sr C 5, the returned solution is always
isomorphic to A(L) [OnGa:92a]. It should be pointed that the RPNI algorithm was
also developed independently by Lang [Lang:92].

Since this algorithm will be extended in a later chapter, it is worthwhile to describe
it more precisely. The key idea consists of establishing a lexicographic order among the
states of the prefix tree acceptor of the positive sample PTA(S+) and "trying to merge
pairwise the states following this order. The lexicographic order in E* (let refer to it as
<) gives a breadth-first trajectory on the tree, since each state is labeled by its single
prefix. Once a partition TT'of PTA($+) is defined, the lexicographic order is extended
to the blocks B € TT in the following way: B¡ < B j iff 3u € BÍ : Vu € Bj,u < 'v. A
deterministic merge operation DMergèfa, J5t-, B j) is employed at each step, which yields
a cascade of simple merge operations (beginning with merge(TT, jE?¿, B j)) that stops when
a deterministic FSA is reached. The whole algorithm has a worst time complexity of
O((||S+|| + ||5-||) I IS+H 2) and it can be described as follows: '

ALGORITHM 2.2: Oncina-Garcia non-incremental DFA-based RGI

begin
o

Ai ':= PTA(S+); let m be the number of states of PTA(S+); and
let TTj := {{u} | tí € Pr(S+)} = {{^i}, ••., {^m}} be the initial partition, where
the prefixes are indexed in lexicographic order, so ui = A;

for j:= 2 to m do

if 3B € 7Tj_i : Uj e B A B < u j then KJ := KJ_I

else find within B € Kj-i,B < Uj, the lowest block BÍ such that
S- n L(PTA(S+)/DMerge(Trj_l,Bi,uj)) = 9 .

if found such BÍ then TT,- := DMerge(irj-\,Bi,Uj)
' else TTj := 7Tj_i

encLif

endLif

Aj := PTA(S+}/TTj (which is always a DFA)

encLfor

return Am = PTA(S+}/Km as the selected solution

end-algorithm

2.3. Symbolic methods for regular grammatical inference 57,

Two exponential-time algorithms, BIG and RIG, have been recently presented by
Miclet and Gentile [MiGe:94] that find the complete border set BSMCA(S], containing
all the consistent maximal generalizations of the positive sample (in close agreement
with Mitchell's version space scheme for concept learning [Mitc:82]). Both algorithms
are breadth-first search methods, which use to prune the search space the property
that once an inconsistent FSA is found, all of its derived FSAs are also inconsistent.
Whereas the BIG method requires the storage, at each step i, of all the partitions
corresponding to the FSAs of depths i and i + 1 in Lat(MCA(S+)), the RIG method
only requires the storage of the subsets of partitions corresponding to the consistent
FSA of depths i and i + 1. The main purpose of the RIG method is to obtain the
subset B* of the border set BSMCA(S) that contains the FSAs of maximal depth (i.e.
with minimal number of states).

T-- « . : . _ . - " ':•; . . . -1 • • • : . . - ; . ^' ' - . - : • ' , . ' ' • . , • r , . . . : , ' ' ; • ' . . ; , , . ü : " . . , ' • „ ' •
Besides their theoretical interest, the BIG and RIG algorithms solve the minimal

consistent DFA problem, and therefore, they identify in the limit any regular language,
but their exponential complexity makes them completely unpractical. Consequently,
the same authors have proposed a polynomial-time heuristic version, the BRIG
algorithm, that is based on a random pruning of the consistent FSAs and returns
just a subset of the FSAs in BSMCA(S) with minimal number of states, i.e. a subset
BfjL C B* [MiGe:94]. The BRIG algorithm is still a breadth-first approach but which
uses a beam-search strategy to reduce the complexity; the BRIG method is provided
with two parameters H and L, which determine the number of consistent FSAs
randomly selected at each depth, and the percentage of FSAs directly derived from
them that are tested, respectively. This method tries to exploit the great redundancy
in the lattice of derived automata, since any FSA of depth i can be directly derived
from many FSAs of depth i —' 1. Some experiments have been reported which show
that the underlying assumption is reasonable, since the BRIG method was usually
able to obtain the target FSA in the set of returned solutions, for a few simple regular
languages [MiGe:94].

Dupont has recently reported a genetic algorithm approach, the GIG method, to the
RGI problem from a sample S = (S+,S^) [Dupo:94]. The RGI problem is regarded
as an optimization problem, that is, the search through the lattice Lat(MCA(S+})
for the FSA A for which an evaluation function is minimal. The evaluation function
proposed is related to the number of states of the automaton and strongly penalizes
the acceptance of negative examples, thus it is aimed at rewarding the consistent FSA
of maximal depth. In order to apply the genetic search scheme, each individual in the
population corresponds to a partition TT of the set of states of the MCA(S+), and a
left-to-right canonical group-number encoding is selected to represent each partition as
a chromosome (or genotype) [Dupo:94]. Moreover, two genetic operators are defined
(structural mutation and structural crossover) that perform simple transformations on
partitions but which actually work on the associated genotypes.

58 Chapter 2. Regular grammatical inference: theory and symbolic methods

As the sample size grows the complexity of the genetic search increases, and to cope
with this drawback, Dupont proposes a "semi-incremental" version of the GIG method,
in which all the examples are available at once, but the positive ones are processed
sequentially [Dupo:94]. Both versions are heuristic techniques, which do not guarantee
to arrive, at the minimal consistent DFA. The GIG algorithms were experimentally
compared to Oncina's method for inferring simple regular languages, and a similar
performance was reported for the task of inferring the target FSA [Dupo:94].

A pseudo-incremental version of the RPNI algorithm, the so-called RPNI2
algorithm, has been presented very recently by Dupont in the ICGI'96 colloquium held
in Montpellier (France) in September 1996 [Dupo:96]. The RPNI2 algorithm maintains
the prefix tree of the positive sample and the list of negative examples and keeps a
record of the par.ti'tion of prefix tree states associated with-the current hypothesis: "It is
a split-and-merge based method that guarantees the identification in the limit property.
It should be pointed here that two split-and-merge pseudo-incremental RGI methods
will be described in Chapter 5, which work also from positive and negative examples
and are rather similar to the RPNI2 algorithm, but these methods were reported
previously in a communication to the SSPR'94 workshop held in Nahariya (Israel)
in October 1994 [AlSa:95a]. One of the differences between the RPNI2 algorithm and
the methods described in Chapter 5 is that the former uses classical FSAs while the
latter are based on UFSAs (a type of representation defined in [AlSa:95a] and Chapter
5). The RPNI and RPNI2 algorithms displayed nearly identical classification rates and
converged at the same rate in the experiments reported in [Dupo:96].

2.3.3 Methods for RGI using queries

The following methods are able to identify the regular languages using an oracle to
which certain types of queries can be addressed:

1) The Pao-Carr method [PaCa:78].

2) The Angluin's ID procedure [Angl:81].

3) The Angluin's L* algorithm [Angl:87].

4) The Trakhtenbrot-Barzdin complete sample method [TrBa:73].

5) The Porat-Feldman lexicographically-ordered complete sample method [PoFe:91].

6) The Sempere-Garcia lexicographically-ordered complete sample method [SeGa:93].

The Pao-Carr method [PaCa:78] uses a mixture of given data and membership
queries to identify regular languages. Initially, a structurally complete positive sample
S+ is given, and then the algorithm makes membership queries to a teacher (who
knows the language to be inferred) in order to complete the identification. The

2.3. Symbolic methods for regular grammatical 'inference 59

algorithm uses the information from the teacher to construct a trajectory in the lattice
Lat(MCA(S+))j starting from the MCA(S+) and merging states according to the
answers.

At a node in the lattice, corresponding to an FSA A, the Pao-Carr method has to'
choose between different possible merges of the states of A. For a candidate pair of
states çi,Ç2 to be merged, the resulting derived FSA A' is computed and a string x
is selected such that x € L(A') A x $ L(A). Then the algorithm asks the informant
whether x is in the target language. If it is, A' is taken as the next FSA in the trajectory;
and otherwise, all the FSAs derived from A' (including itself) can be removed from
the lattice of valid hypotheses, and a different pair of states of A is tried. The process
continues until there is a single FSA remaining as valid in the lattice.

The Pao-Carr method is rather unrealistic, since the number of queries must be
huge for a non-very-small sample, due to the number of partitions of the MCA(S+) to
be considered, and therefore, the computation time becomes astronomical. However,
it is theoretically interesting because of its identification property, in the case of a
structurally complete S+, and the use of a teacher instead of an a-priori heuristic
criterion.

The Pao-Carr method was considerably improved by Angluin [Angl:81]. Given the
same setting of a structurally complete positive sample S+ and a teacher answering
membership queries, the ID procedure [Angl:81] identifies the target regular language
L using no more than kmn queries, where k = |S| (the alphabet size), n is the number
of states of the (completed)8 canonical DFA for L, and m = \PTA(S+)\ +1. Moreover,
the ID procedure may be implemented to run in time polynomial in k, n and m; more
precisely, its time complexity can be shown to be 0(fcm2n). In contrast, it is also
proved that if the teacher is only complemented by the information of the number of
states n (i.e. a structurally complete sample is not given), then the required number
of queries is exponential in n.

Let P = Pr(S+) and P' = P U {do}, where d0 is a special symbol introduced
for labeling a possible useless state in the completed canonical DFA A(L) =
(Q,T,,8,q0,F). Let / be a function on P1 x S such that f (d 0 , a) = d0 Va G S and
f (u, a) = ua V(w, a) € -P x E. The value f (u, a) represents the state reached on input
a from the state represented by u € P'. Let T' = P'U range(f) and let T = T1- {d0}.
The procedure ID constructs a partition of 7" that places all the elements representing
a single state in a single block of the partition.

8Angluin [Angl:81] considers as the target FSA the minimal DFA A(L) extended to contain a
fully-defined transition function 6; this means that at most one useless or dead state may be added
with respect to A(L).

60 Chapter 2. Regular grammatical inference: theory and symbolic methods

Firstly, ID builds an initial partition of T' (with two blocks) by discriminating
between accepting and non-accepting states (asking the teacher when required). Then,
ID successively refines this partition in a manner that is analogous to the DFA
minimization procedure. In the process, ID builds up a set of strings V = {VQ =
A, ui,..., vm} such that any two distinct states ç, ç' of the completed A(L) are
distinguishable by some v¿ 6 V, i.e. 3i € [0, m] : S(q, t>,-) € F A 6(q', u,-) £ F
or viceversa. For every iteration i G [O, m] and u € T, the sets of tails Ei(do) = 0 and
EÍ(U) = {vj I O < j < i A uvj G L} are defined. The ¿-th partition is defined by putting
all elements u with a common value of E¡(u) into the same block. It is clear that if
Wi,«2 € T and ¿(ço,«i) = ¿(coj^z) t^en -^i(ui) = -^«(^2) for i € [0,ra]. At the final
partition, the value of Em(u) uniquely determines which state of the completed A(L)
the string u E T represents, and hence, a DFA that is isomorphic to the completed A(L)
can-be obtained. Note that the returned DFA is an FSA derived from an "extended"
prefix tree acceptor PTA'(S+), given by the above function /.

The L* algorithm, also by Angluin [Angl:87], is able to identify the regular
languages, for the case where the target language L is presented by a minimally
adequate teacher, which can answer membership queries about the language and
equivalence queries, i.e. to test a conjecture and indicate whether it is equal to the
unknown L and provide a counterexample if not. A counterexample is a string in the
symmetric difference of L and the conjectured language. The L* algorithm may be
implemented to run in time polynomial in the number of states of the canonical DFA
A(L] and the maximum length of any counterexample provided by the teacher. In the
adopted scheme [Angl:87], the conjectures are described by minimal DFAs (i.e. the set
of hypotheses is the set of minimal DFAs), and therefore, to answer conjectures, tne
teacher may perform a standard polynomial-time algorithm for testing the equivalence
of two DFAs, which yields a counterexample in the case they are not equivalent.

The availabilty of a minimally adequate teacher seems a rather demanding
assumption in practice, due to the intrinsic difficulties in answering equivalence
queries. Taking this into account, Angluin [Angl:87] proposed a modification of the
L* algorithm, the so-called approximate learner £*, which identifies regular languages
in the PAC (probably approximately correct) learning criterion established by Valiant
[Vali:84]. The key point is that the equivalence queries can be replaced by a random
sampling oracle. In this stochastic setting, it is assumed that there is some probability
distribution Prob (unknown to the learner) on the set of all strings over E, so that
the random sampling oracle selects a string s € £* according to the distribution Prob
and returns the pair (s , d) , where d is yes if s € L and no otherwise. The algorithm
L*a is given, at the start of the computation, two positive numbers between 0 and 1,
the accuracy e and the confidence ¿, from which it is able to determine the number of
queries to the random sampling oracle that are needed to test each conjecture.

2.3. Symbolic methods foríregular.grammatical¿nference 61

In addition, the Trakhtenbrot-Barzdin algorithm [TrBa:73], discussed in Section
2.2.4, could be regarded as a query-based method, since a complete sample is required,
and this can be built using a teacher and membership queries.

Finally, I will mention two incremental algorithms [PoFe:91,SeGa:93] that identify
any regular language L from a lexicographically-ordered complete sample by converging
to a DFA that is isomorphic to the canonical DFA A(L). Again, since we cannot expect
in general that this kind of sample be directly available in a given data framework, it
is reasonable to assume that the strings are generated in lexicographic order, and for
each one, a membership query is addressed to an oracle (i.e. a requested data scheme).
Whereas the Porat-Feldman method uses NFAs as current hypotheses [PoFe:91], the
S empece- García method constrains the set of hypotheses to DFAs [SeGa:93]. The
latter method, uses ̂ constructive technique for state grouping whichjs inspired on .the.
RPNI algorithm. The total time complexity of both algorithms is of the same order,

'(A; + 1), where n = |A(L)|, k = |S|, and / is the string length required to obtain
1=1

a complete sample for L (recall that / = 2n — 1 in the worst case). Although the
authors claimed that this complexity could be considered "polynomial in an amortized
sense" [PoFe:91,SeGa:93], it should be noted that the number of generated strings and
queries needed to identify L is exponential in n, as it was proved previously by Angluin
[Angl:81].

