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Chapter 3

Non-regular grammatical inference
through symbolic approaches

In this chapter, an overview of the different symbolic approaches that have been
proposed previously to learn non-regular languages is given. The reader is referred
to the original papers describing the methods for more details (see also the GI surveys
by Fu [Fu:82] and Miclet [Micl:90]). The matter of non-regular GI is of great concern
since, usually, most of the patterns involved either in syntactic pattern recognition
problems or natural language processing are not describable by regular languages.

In some of the methods referenced hereinafter a grammar of a certain class is
inferred, whereas in some others, the learning algorithm outputs another type of
language representation (e.g. a transition network). All these approaches share the
property that the inferred hypothesis is able to represent structures which are beyond
the expressive power of regular languages; in addition, the learning procedure uses some
type of symbolic representation (maybe extended with probabilistic information). In
other words, the GI methods included in this chapter are not based on any class of
neural network (subsymbolic representation). The few connectionist approaches to
non-regular grammatical inference that have been reported will be commented in the
next chapter.

Although the contents of this chapter may be regarded to some extent as
miscellanea, it is mandatory to establish a certain classification of the specific topics
discussed in order to locate precisely each work within the GI field. The following
grouping has been chosen:
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64 Chapter 3. Non-regular grammatical inference through symbolic approaches

a) Context-free grammatical inference (CFGI).

b) Inference of controlled grammars.

c) Inference of transition networks.
d) Inference of pattern languages.

Most of the reviewed material belongs to the first cathegory. The second and
third points comprise isolated works that have attempted the inductive inference of (at
least some family of) context-sensitive languages; they have been set apart since the
two approaches are quite distinct, each using its own type of representation. Finally,
the topic of pattern language learning has been included because pattern languages,
although not comparable,to the Chomsky hierarchy, are able to describe some context-
sensitive languages. " . , ; .

3.1 Context-free grammatical inference (CFGI)

It is clear that there is an interest of trying to develop learning algorithms for classes
of languages more powerful than the regular languages. This is motivated both by
theoretical and practical reasons, as remarked in the previous introduction. Therefore,
it appears that the class of context-free languages (CFLs), which follows the class of
regular languages in expressive power in the Chomsky hierarchy, is a good candidate
for the object space of such inductive inference methods.

0

CFLs can properly account for subtle language constraints and admit compact
representations in the form of context-free grammars (CFGs). Remember that a CFG
is a grammar G = (Vjv, Vr,P, 5"), such that every production p e P is of the form
A —» a, where A £ Vyv, a € V* (with V — VN U Vj). Moreover, some moderately
efficient parsers exist for CFGs, thus allowing the use of CFG models in pattern
recognition tasks [BuSa:90]. Other alternative descriptions of CFLs are pushdown
automata [HoUl:79], regular-like expressions [Salo:73], and basic transition networks
[Woods:70].

It should be recalled that identification of CFLs in the limit is theoretically possible
using both positive and negative examples [Gold:67], though no efficient method is
known so far. On the other hand, CFLs cannot be identified in the limit from only
positive data, since they form a superfinite class of languages. As in the RGI case,
the negative information, that is needed to control overgeneralization, may be replaced
by statistical information gathered from the positive data. Indeed, it is known that
stochastic CFLs can be identified in the limit with probability 1 from stochastic
presentations, which include no explicit negative examples, but positive examples
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that are generated by a stochastic CFG [Horn:69]. Other approach is presentation
by informant, where a teacher is available, to which the learning algorithm can ask
membership and equivalence queries [Angl:88]; the theoretical bounds of this setting
are quite related to the case of complete presentation of CFLs (positive and negative
examples), i.e. identification in the limit is possible, but no polynomial-time method
is known.

Finally, another way of compensating the lack of negative data consists of presenting
the positive examples accompanied with their corresponding unlabeled derivation trees
(skeletons). These structural descriptions can be obtained by adequately adding
brackets to the strings; of course, this requires some knowledge of the target grammar.
Alternatively, it may be assumed that the structural descriptions are directly available
from the data source.:-It has been shown that certain classes of CFGs can be identified
in the limit from positive samples of structural descriptions (bracketed" examples)
[CrGM:78,Saka:92]. Also, a well-known result states that, for any CFG (?, the set
of skeletons of all the strings of L(G) is a regular tree language [Saka:92,Maki:92].
This permits to apply learning algorithms for regular tree languages from the skeletons
and to infer afterwards an associated CFG.

Hence, the context-free grammatical inference (CFGI) methods can be classified
according to the above paradigms in the following groups: •

1) Inference methods for (subclasses of) CFGs from positive structural examples.
2) Inference methods for (subclasses of) CFGs from unstructured data.
3) Inference methods for stochastic CFGs. °
4) Inference methods for (subclasses of) CFGs from queries.

The techniques reported within each group are reviewed in next subsections.
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3.1.1 CFGI from positive structural examples

Let G = (VN,VT,P,S) be a CFG. The parenthesis grammar oi G, denoted by [G], is
formed by replacing every production A — »• a by A — > [a], where [ and ] are special
symbols not in V?. Any string 5+ belonging to ¿([G]) is called a positive structural
example (or bracketed example) of G. Then, a positive structural sample of G is a subset

It can be seen that a bracketed example of a CFG G corresponds to an unlabeled
derivation tree of the grammar (?, that is, a derivation tree whose internal nodes have
no labels. Let us put it more formally through the introduction of some basic definitions
about trees. .

A ranked alphabet V is a finite set of symbols associated with a finite relation called
the rank relation ry Ç V x M. Vn denotes the subset {/ e V \ (/, n) € rv} C V, that
contains the symbols (also called function symbols) of arity n.

• A tree over V is a mapping t : Domt — >• V, where the domain Domt is a finite
subset of J\f* such that

i) If a; Ç Domt, then V?/ e M* such that 3z € Af*, x = yz, y € Domt

(i.e. the domain is closed by prefix);

ii) If y i G Domt (i € ./V), then y j 6 Domt, for 1 < j < ¿;
o

iii) Vx 6 -Domt, í(#) € V^, whenever x í (E Dom/ <=> 1 < ¿ < n
(i.e. the arity constraints are fulfilled).

An element of the tree domain Domt is called a node of t. If t(x) = A, then we say
that A is the label of the node x of t. A node y of ¿ is called a terminal node (or /eo/)
iff Vx € Dom/, x T¿ y => -"Bz G A/"*, x = j/z. A node x of í is an internal node iff it is
not a leaf. The frontier of Domt is the set of all terminal nodes of ¿, and the interior
of Domt is the set Domt—frontier(Domt).

' Now, let G = (V7v,Vr,P,5) be a CFG and let V = VN U Vj. For each symbol
A € V, the set DA(G) of trees over V is recursively defined as

= í {«} if A = a € Vr
- \ {A(tl,...,tk)\A-*B1...Bk,ti€DBi(G)í l<i<k} ÍÍAeVN .

A tree in D¿(G) is called a derivation tree of G from A, and a tree in D$(G) = D(G)
is simply a derivation tree of G.
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A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol a
with the rank relation r$k Ç {cr} x {1,2, ...,r}, where r is the maximum rank (arity)
of the symbols in Sk. A tree defined over Sk U VT, where VT is a set of terminal
symbols (of arity zero), is called a skeleton. It follows that all the internal nodes of a
skeleton are labeled by the special label a, whereas the leaves are labeled by symbols
in VT. Let í be a tree, the skeletal description of ¿, denoted sk(t), is a skeleton with
Domsk(t) = Domt such that

» / . \ / \ _ í t(x) if x G frontier(Domt)
{ a if x G interior (Domt)

Let T be a set of trees. The corresponding skeletal set, denoted K(T), is {sk(t) \ t G T}.

A skeleton in "K(D(G)) is called a (positive) structural description of (G, ,and
K(D(G)) is the set of structural descriptions of G. Two CFGs G and G' are said
to be structurally equivalent iff K(D(G}} = K(D(G'}}. If G and G' are structurally
equivalent, they are equivalent, too.

Finally, given a CFG G, there exists a bijection (/> of £([(?]) onto K(D(G)} such
that, for each bracketed string s G L([G]), there is a skeleton <j>(s) = sk(i) G K(D(G))
(and viceversa), where t is a derivation tree of G which results from any sequence of
productions generating the bracketed string 3 by the associated parenthesis grammar
[G] (recall that productions of G and [G] are mapped one-to-one). Hence, bracketed
strings and skeletons (unlabeled derivation trees) are alternative representations for
the positive structural examples of a CFG G.

t

The following CFGI methods have been proposed to infer CFGs from positive
structural examples:

1) The abstract profiles method by Crespi-Reghizzi [Cres:72,CrGM:78].

2) The RC algorithm [Saka:92].
3) The k-TTI algorithm [RuGa:94].

Crespi-Reghizzi [Cres:72] described a method for inferring a CFG G' in the class
of free operator precedence grammars from a positive structural information sequence
of L(G) (i.e. a sequence of strings from ¿([G])). Later, the method was extended to
the inference of a more general subclass of CFGs, the k-distinct k-homogeneous CFGs
[CrGM:78]. If we consider the equivalent skeleton representation for the input data,
Crespi-Reghizzi's approach may be regarded as the application of a fixed function,
which depends on the subtree rooted at a node and/or the environment of this subtree
in the skeleton, whose result is used to label the internal nodes. In order to explain
the method more precisely, some more definitions are introduced.
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Let G = (V5v, VT,P, S) be a CFG and let V = VN U Vr. Given a string x e V+,
the leftmost and rightmost terminal sets of x, denoted by Lt(x) and .R* (z), are defined
respectively as

Lt(x) = {a\x^Gaa V (x 4>G A/3 A 06

flt(z) = {a | x 4>G aa V (x 4Q £A A a € Rt(A))}

where a € VT, A € Vyv, a, /? e V*. We can say that L<(x) (respectively i?t(x)) consists
of the terminals that are the leftmost (rightmost) in some derivation from x. Now, let
Vj, = VT U {[, ]} and let x be a string € (V/v U Vy)+. The left and right profiles of order
k of x, denoted by Lk(x) and jRfc(x), are_defined respectively as

\ í i * T^/ í 2/i---2/fc if m > A- 11
) = u I * =.(G] y,...ym, Vi € VT, « = . . j t -» it ro < t

= . , n „..*., W 6 , .=
í . ' '

1
' . ' ' • ' -

where $ is a special symbol such that $ ^ Vp. Finally, the k profile of a string
x € (VAT U ^r)+> denoted by P/t(x), is a pair formed by the left and right profiles
of order k of x, i.e. Pk(x) = ( L k ( x ) , Rk(x)).

A CFG G = (VN, VT,P, S) is a free operator precedence grammar if it has the
following properties:

. a •• > .

i) every two distinct nonterminals A, B 6 VN cannot have an identical pair of
leftmost and rightmost terminal sets, i.e. (Lt(A),Rt(A)) ^ (Lt(J3),Rt(B));

ii) for any two distinct productions of the form A — » x and A — > ?/, it holds that

iii) there are no repeated right parts in the productions;

iv) there may be some rules of the type S —* B, where B E VN.

A CFG G is k-distinct if for any two distinct nonterminals A and 5, it holds that
Pk(A) =£ Pk(B} (they have a distinct k profile). Grammar G is k-homogeneous if for any
two distinct productions of the form A — * x and A — > y, it holds that Pk(x) = Pk(y) (i-e.
all the right parts of the same nonterminal have identical k profiles). The languages
generated by the class of k-distinct k-homogeneous CFGs are a subclass of CFLs called
non-counting CFLs [CrGM:78].

Crespi-Reghizzi's method for inferring a, free operator precedence grammar [Cres:72]
can be summarized in two steps:
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1) For each bracketed string s,- in a positive structural information sequence,
construct a CFG GÍ that exactly generates s,- in the following manner: substitute
a nonterminal Aj for each substring x in s¿ such that x contains no left or right
brackets (a distinct Aj is created when the pair (£<(#), Rt(x)) is new), and create
a production Aj —» x; repeat this process until 5,- contains a single nonterminal;
then define this nonterminal as the start symbol S.

2) Let the inferred grammar be G = U¿ GÍ.

In order to infer a k-distinct k-homogeneous CFG, the method is changed by
replacing the step number 2 above by steps 2 and 3 below:

2) For each grammar (?,- (obtained from string s,-), combine all nonterminals haying
the-same_k profile, thus yielding a grammar G\. -" •

3) Let the inferred grammar be G' = U» G(.

Given a positive structural sample £+, Crespi-Reghizzi's method returns the
grammar that generates the smallest language among the grammars in the target
subclass that are compatible with Sf. It can be shown that the target subclass of CFGs
(either free operator precedence grammars or k-distinct k-homogeneous grammars) can
be identified in the limit by the corresponding version of the method from a (complete)
positive structural information sequence. Moreover, the algorithm runs in polynomial
time and produces a characterizable result. Note, however, that only the subclass of
non-counting CFLs can be identified in the limit using this method.

Sakakibara presented an efficient method, the RC algorithm, to infer a grammar
in the class of reversible CFGs from a set of positive structural descriptions (skeletons)
[Saka:92]. A CFG G — (Vw, VT, P, S) is said to be reversible if and only if

i) G is invertible, i.e. A —» a and B —> a implies A = B (there are no repeated
right parts in the productions), and

ü) G is reset-free, i.e. for any two nonterminals B, C G Vjv, and a, /3 6 (Vyy U VT)*,
A -» aBfi and A -> aCft implies B = C.

Sakakibara proved that for any CFL L, there is a reversible CFG G such that L(G) = L.
In other words, reversible CFGs are a normal form for CFGs, since the class of reversible
CFGs can generate all of the CFLs. To describe Sakakibara's method, we need to
introduce firstly some basic definitions about tree automata.
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Let V be a ranked alphabet and m be the maximum rank of the symbols in V. A
tree automaton over V is a quadruple A = (Q,V,8, F) such that Q is a finite set of
states (Q D VQ = 0), F C Q is a set of final states, and 8 = (80,81, ...,8m) is the state
transition function of A, which consists of the following maps:

8o(a) = a Va 6 VQ (the terminal symbols in V)
8k : Vkx(QUVQ}k -> 1Q for k=l,...,m.

8 can be extended to VT, the set of trees over V, by letting

U ^*(/>9i•»•••> 9*) if & > Q

The terminal symbols on the frontier of the tree are taken as "initial" states. A tree
t is accepted by A iff 8(t) D F ^ 0. The set of trees accepted by A, denoted T(A),
is defined as T(A) = {í G VT | 8(t) (~\ F ^ 0). A tree automaton is deterministic iff
for each fc-tuple qi,...,qk Ç. (Q U V0)

k and each symbol / € 14, there is at most one
element in ¿fc(/,9i, ...,<?*)• It is known that both nondeterministic and deterministic
tree automata accept the same class of trees, namely, the class of regular tree languages.

A tree automaton over Sk U Vj, where S k is a skeletal alphabet and Vp is a set
of terminal symbols, is called a skeletal tree automaton. Next, it can be shown that
for each CFG G = (VJv, Vr,P, S), a corresponding skeletal tree automaton A(G) =
(VN,Sk(J VT,8, {S}), with 80(a) = a Va e VT and 8k(cr,Bi,...,Bk} 9 A whenever
A -> Bi...Bk is in P, can be defined such that T(A(G}} = K(D(G)); that is, the
set of trees accepted by A(G) is equal to the set of (positive) structural descriptions
(or skeletons) of G. Similarly, for each deterministic skeletal tree automaton A =
(Q,Sk\J VT,8,F) a corresponding CFG G(A) can be built such that K(D(G(A))) =
T(A); that is, the set of (positive) structural descriptions of G(A) is equal to the
set of trees accepted by A [Saka:92]. Therefore, the problem of learning a CFG from
positive structural examples can be reduced to the problem of learning a tree automaton
(accepting a regular tree language).

A skeletal tree automaton is said to be reversible iff it is deterministic, has at
most one final state, and is reset-free (see [Saka:92] for the definition of the reset-free
requirement). Basically, the reversible skeletal tree automaton is the extension of the
zero-reversible FSA defined by Angluin [Angl:82]. It follows that, if G is a reversible
CFG, then A(G) is a reversible skeletal tree automaton such that T(A(G}} = K(D(G}).
Conversely, if A is a reversible skeletal tree automaton, then a corresponding reversible
CFG G'(A) can be constructed such that K(D(G'(A)}) = T (A) [Saka:92]. Therefore,
the problem of structural identification of reversible CFGs is reduced to the problem
of identification of reversible skeletal tree automata.
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Given a reversible skeletal tree automaton A, a positive sample CS of A (i.e.
a finite subset CS Ç T(A)) is a characteristic sample for A if and only if for any
reversible skeletal tree automaton A', T (A1) 3 C S implies T (A) C T (A'}. Sakakibara
presented the algorithm RT that, from a finite nonempty set of skeletons S'c, it
outputs a reversible skeletal tree automaton A/ = RT(Sa) whose characteristic sample
is precisely the input sample Sa. The algorithm RT is an extension of Angluin's
learning algorithm for zero-reversible FSA [Angl:82] (already mentioned in Chapter 2).
RT first constructs AQ, the base tree automaton for S'à, and then generalizes it by
merging states, until it finds the finest partition Try of the set of states of AQ with the
property that A¡ = A0/irj is reversible. The algorithm RT is efficient, since it may be
implemented to run in time of 0(n3), where n is the sum of the sizes of the skeletons
in Sot, and the size of a skeleton (or tree) is the number of its nodes. Sakakibara also
showed that the algorithm RT may be used at the finite stages of an infinite learning
process to identify the reversible skeletaltree automata in the limit from positive
samples, simply by running RT on the sample at the z'-th stage and proposing the
result as the i-th guess [Saka:92]. Moreover, RT can be modified to operate in a full
incremental mode, such that A,-+1 may be obtained from AÍ and the skeleton s,-+i.

Finally, the algorithm RC to learn reversible CFGs from positive structural
examples is simply defined as RC(Sa) = G(RT(Sa)), this is, RC returns the reversible
CFG Gf corresponding to the reversible skeletal tree automaton A/ inferred by
algorithm RT from the set of skeletons Sa. In this case, Sa is shown to be a
characteristic structural sample for Gf, i.e. for any reversible CFG G, K(D(G}} 2 Sa
implies K(D(G/)) C K(D(G}}. In the same manner, the time complexity of RC is
O(n3), and RC can be proved to identify in the limit any reversible CFG G from a
positive structural presentation of G [Saka:92]. Consequently, the full class of CFLs can
be learned efficiently whenever a positive structural presentation of a reversible CFG
for the target language is available to the learning algorithm RC. It must be noted
that this does not imply that all CFGs can be identified in the limit from positive
structural examples, because a given CFG may not have any structurally equivalent
reversible CFG, and in such a case, the algorithm RC will fail to identify it.

Ruiz and Garcia have proposed a method to learn another family of CFGs from -
skeletons of their derivation trees, that is based on another algorithm for inferring
regular tree languages (tree automata) from positive samples: the k—TTI algorithm,
which can be proved to identify in the limit the class of k-TS (k-Testable in the Strict
sense) tree sets [RuGa:94]. Let V be a ranked alphabet, let VT be the set of finite
trees over V, and A; > 2. For every tree t e VT, let ST(t) denote the set of its subtrees.
The k-test vector of t is defined as Testk(t) = (rk-i(t),lk-i(t),Pk(t)), where

M - í t if depth(t) < k - 2,
rk-l(t)~\tr ifdepth(t)>k-2 ' '•

*
*
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and tr is a tree formed from t that contains all the nodes of t with a depth < k — 2
and identical labels;

/fc-i(í) = {f e ST(t) | depth(t') < k - 2};

a n d . . • • " •

, , _ J 0 if depth(t] < k - 2,
' Pk( ' ~ \ {rk(t') | i'.e ST(i) A depífc(í') > fc - 2} if depífc(í) > k - 2.

An equivalence relation =k can be defined in VT as:

V s , f € Vr : s=kt "

A tree language T C VT is said to be k-Testable (fc-T) iff it is the union of some of the
equivalence classes defined by =k, and it is said to be k-Testable in the Strict sense
(Ar-TS) iff there exist three finite sets R, L, and P, such that Vi G T : rk-i(t) € #,
lk-i Ç L, pk(t) Ç P. . .

Given a sample S C VT, let V(S) be the ranked alphabet from 5, and let Rk(S),
, Pk(S) bé three finite sets defined constructively as follows

Rk(S) = {rk^(t) | t € S}, -Lk(S) = (J í*-i(0, Pk(S) = (J Pk(t):
tes <es

• ' • '
Now consider that S C V7 is a set of skeletons, and thus, V(S) = Sk U VT, where
S k is a skeletal alphabet and VT is a set of terminal symbols (of arity zero). Given
S and k > 2, the k.~ TTI. algorithm returns a deterministic skeletal tree automaton
Ak(S) = (Q,F(5),i,F), where- the set of states is Q = Rk(S) U Lk(S) U Pk-i(Pk(S)),
the subset of. final states is F = Rk(S), and the transition function 6 is defined by

SQ(t) = t, and

The ¿—TTI inference algorithm satisfies the following properties:

a) SCT(Ak(S));

b) T(Ak(S)) is the smallest k-TS tree set containing S]

c) 5'Ç S1 =» T(^(5'))ÇT(A,(S'))

d) T(Ak+l(S}) Ç T(Ak(S))

e) If k > 1 + m&x{depth(t)} then ^(^¿(5)) == 5.
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Ruiz and Garcia have presented some preliminary experimental results comparing
the behaviour of the k—TTI and RT algorithms when they are used to infer CFLs
from derivation tree skeletons of arbitrary (not necessarily k-TS or reversible) CFGs
[RuGa:94]. Algorithm RT classified correctly about 90% of the test strings and about
5% more strings than k—TTI (for k — 3), but the run time of the former was much
longer than the latter. For greater values of k, the algorithm ¿—TTI achieved better
classification rates, at the expense of less generalization and longer computation time.
It was also shown that the CFGs obtained with both algorithms classify correctly all
the positive strings of the target language, and they only may fail in over-generalizing
it when the grammar is not of the appropriate subclass.

3.1.2 1:: GFGI from unstructured data ••••'-.

3.1.2.1 Inference of even-linear grammars

A well studied subclass of CFLs is the class of even linear languages (ELLs), introduced
by Amar and Putzolu [AmPu:64]. The class of ELLs properly contains the class of
regular languages and is properly contained in the class of linear languages. The
outstanding feature of ELLs is that they possess similar set-theoretic properties as
regular sets; namely, the class of ELLs is closed under Boolean operations, and, for two
ELLs L\ and L2, the questions LI C L2 and LI = L2 are solvable.

A grammar G = (VN, VT, P, S) is linear iff every production p € P is of the form
A —» x or A —» yBz, where A, B € VN, x,y,z G Vf. Grammar G is even-linear iff it is
linear and for all the productions of the form A —» yBz, it holds that \y\ = \z\. Linear
and even linear languages are generated by linear and even linear grammars (ELGs)
respectively. Given an ELG, there exists an equivalent ELG where every production
is in one of the two forms: i) A —>• aBb, where A, B 6 VN, a, b € VT', or ii) A —* a,
where A Ç. VN, a e VT U {A} [SeGa:94]. Another normal form for ELGs is obtained by
replacing the above second rule type by productions of the forms S —»• A, A —> a, and
A —> ab, where A € VN, a,b (E VT [Taka:88]; note that S —> A is only required when
A € L(G). Some works, listed below, have focused on the learning problem of ELLs.

1) The "skeleton" method by Radhakrishnan and Nagaraja [RaNa:88].

2) The regular control set method by Takada [Taka:88].
3) The transformation method by Sempere and Garcia [SeGa:94].

As explained in Chapter 2, Radhakrishnan and Nagaraja proposed a constructive
characterizable technique for RGI, that allows the identification of the subclass
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of terminal distinguishable regular languages (TDRLs) [RaNa:87]. These authors
extended this method to the inference of ELLs [RaNa:88]. Their method starts with
the construction of the skeletons corresponding to a set of positive examples1. The
procedure then assigns nonterminals to the nodes of the skeletons. For assigning one
nonterminal to more than one node (i.e. to generalize), the method uses an equivalence
relation taking into account the context of the subskeleton rooted at these nodes.

The "skeleton" learning method for ELLs [RaNa:88] has the following properties:

- It does not identify in the limit the class of ELLs (obviously, since ELLs are a
superfinite language class and a positive presentation is given).

. . ..-. A pseudo-incremental version is available for on-line learning.

- If 'the sample is from some noii- even "linear language, the method does riot'
generalize and it infers in the limit a grammar with an infinite number of
productions and nonterminals; hence, target non ELGs can be detected.

The skeleton method was applied for the inference of simple objects represented in the
Picture Description Language (PDL) [MaRW:82], and the authors showed how to use
the method in a hierarchical manner in order to infer CFGs more complex than ELGs
[RaNa:88].

\

Let S = {ai,...,am} be an alphabet. A universal ELG over S is an ELG
U. = ({S}, S, \I>, 5) such that $ consists of the following productions:

, *-,{^= S -» aSb, Va, 6 e £} U {V>; : S -> a, Va 6 S} U {i¡>x:-S-*X} •

For any alphabet E, it follows that L(U) — S*, U is unambiguous and unique up to
renaming of the start symbol 5", and U has m2 + m + 1 number of productions.

Let G — (V/v,S,P, 5) be a grammar (e.g. an ELG) over S. A subset C of P* is
called a control set on G and L(G,C) ='{u G E* | S =r>G u A a G C} is called the
language generated by G with the control set C, where x =^G y denotes a derivation
from x to y (x, y € (Vw U E)*) by applying a sequence of productions a — p\...pj € P*.

Takada demonstrated that every ELL L over an alphabet can be generated by the
universal ELG U over the alphabet with a regular control set C that regulates the
application of its rules (i.e. a regular language over the alphabet of production labels

the apparent contradiction of including the "skeleton" method within the group of CFGI
techniques from unstructured data. This is explained by the fact that the input data do not need to
be skeletons but raw positive strings, since a unique skeleton can be determined for each example if
target ELGs are in normal form (the same occurs in the case of regular grammars).
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of U) [Taka:88]. Furthermore, for any ELL L there exists a unique regular control set
C with which a universal ELG U generates L. This permits to reduce the problem of
learning ELLs to the RGI problem, since to identify an unknown ELL, a GI algorithm
for ELLs has only to identify its corresponding unknown regular control set.

Takada's method [Taka:88] is based on converting the input strings into rule strings
by parsing through the universal ELG U, learning the regular control set C using
any RGI algorithm, and obtaining the ELG G that generates the same language than
U with the control set C. If the RGI method used identifies in the limit the class of
regular languages [Angl:87,OnGa:92b], then the GI algorithm for ELLs will also identify
in the limit the class of ELLs. To that end, it should be noted that both positive and
negative strings [OnGa:92b] or queries answers [Angl:87] must be provided. The whole
procedure can be run in polynomial time. Obviously, Takada's method cannot identify
ELLs"frbrn'dnly'positive datà. ' " ' ' '"" " ' • • - • - - • •

Let us define a transformation a : £* —» (E2 U £)* recursively as follows: i)
o~(a) = a, Va G SU{A}, ii) a(axb] = ab-cr(x), Va ,&€ S, Vx G £*, where the operation
• denotes concatenation. By extension, given a language L, cr(L) = {cr(x) \ x G L}. A
similar definition and extension is straightforward for the inverse transformation cr"1,
and it follows that a~l(a(L}} — L. Sempere and Garcia [SeGa:94] demonstrated that
if L C S* is an ELL, then a(L) is a regular language (over an alphabet S' = E2 U S).

The transformation method by Sempere and Garcia [SeGa:94] is also based on
reducing the ELL learning problem to the RGI problem. Given a sample S of an
ELL, the transformation a above is applied and a regular language sampje cr(S') (over
alphabet E') is obtained. Then, any RGI algorithm can be applied on the transformed
sample, and from the inferred FSA A and the inverse transformation cr"1, an ELG
G is determined such that L(G) = cr~l(L(A)). Again, as in Takada's method, ELL
(efficient) identification in the limit is possible by using a regular language (efficient)
identification method, and this requires the presentation of positive and negative data
(either by examples or queries answers). In their work, Sempere and Garcia also
proposed a characterization of the class of ELLs, using a relation of finite index, which
allows to associate a canonical minimal-size deterministic ELG in a normal form with
any given ELL. '

3.1.2.2 Inference of other subclasses of CFG s from positive examples

Also within the group of GI techniques that have been proposed to infer CFGs of a
certain subclass from unstructured data, we may mention the two following heuristic
methods:
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4) The pivot grammar inference method by Gips [FeGH:69].
5) The non-recursive CFG inference method by Chirathamjaree [ChAc:80].

Both methods are provided with just a positive sample S+ and apply an ad-hoc criterion
to construct a CFG in the target class.

In an early work, Gips [FeGH:69] described a heuristic method to infer a pivot
grammar horn positive examples. A pivot grammar is a grammar G = (V)v, Vr,-P, -S"),
in which the set of terminals VT can be partitioned into two disjoint sets, denoted by
VTP and VTO, and the allowed types of production rules are of the forms: i) A — > BaC,
ii) A -» Bb, iii) A -> bB, or iv) A -» 6, where A, £, C e Vjv, « € Vyp and 6 € VTO- The
class of pivot grammars properly contains the. class of linear grammars and is properly

'."-. contained in the general class of CFGsr Hence, pivot grammars should be more difficult
to infer than ELGs.

Gips' method is based on finding the self-embedding in the sample S+. The method
is carried out in two steps. In the former, each string in S+ is examined to check if
it has a proper substring that appears in 5+; if it does not, it becomes a string in
the working set, otherwise the longest such substring is replaced by a nonterminal and
the resulting string is placed in the working set. In the second step, a simple pivot
grammar is built for the working set. It is clear that the method is not well-founded
theoretically, and the initial choice of S+ is quite critical.

Chirathamjaree and Ackroyd have proposed an incremental constructive method
to infer a non-recursive GFG in Chomsky normal form from a set of positive examples
[ChAc:80]. Their method is a kind of error-correcting (conservative) procedure. The
first input, string si is used to build an initial CFG (?i, which generates only that
string. The inference procedure is then applied iteratively, with the (i + l)-th input
string s,-+i being matched against the z-th CFG GÍ. The matching process involves
the. computation of a minimization matrix M, that reveals the shortcomings of GÍ
related to the generation of s,-+i. If G¡ generates s,-+i (a certain element of M is 0)
then Cr,-+i == GÍ, otherwise, the information from the M matrix is used to augment GÍ
by appending the minimal number of additional terminals, nonterminals and rules, as
appropriate, to ensure that the augmented CFG GÍ+I generates the string s,-+i. This
process is repeated until all strings in the positive sample have been processed.

Chirathamjaree's method always returns a non-recursive CFG G = (V^v, Vx,P, S),
in which nonterminals are hierarchically ordered and the types of production rules are
restricted to terminating rules A — > a (A G V/y,a G VT) and bielement rules A — > BC
(A,B,C G VAT) such that B, C, or both, are in the terminating rules. In this way,
G only generates a finite set of finite-length strings, that includes the sample strings
together with other strings that resemble them. The method is efficient and can be
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easily extended to the construction of stochastic CFGs.. The authors claimed that their
method is appropriate for pattern recognition problems where finite-length strings only
are involved (e.g. recognition of isolated spoken words).

3.1.2.3 Inference of CFGs from positive and negative examples

Two closely related methods based on the version space induction algorithm by Mitchell
[Mitc:82] have been reported that approach the problem of inferring CFGs from both
positive and negative (unstructured) examples:

—,6) The ̂ derivational version space method, by Vanlehn and-Ball [VaBa:87j:

7) The structural containment version space method by Giordano [Gior:94].

In both methods, a sample 5" = (S+,S~) is presented incrementally, and the method
maintain a set of CFG hypotheses that are compatible with the examples seen so far
and that are the most general grammars in a certain class of CFGs, according to a
certain generalization partial ordering.

Many induction problems can be stated as the search of one or more hypotheses,
that are consistent with a set of positive and negative examples (instances), in a
partially ordered set of hypotheses which contains the possible generalizations of the
instances. Instead of the simple linear list used in identification by enumeration, the
partial ordering organizations of the hypotheses space allows the elimination of more
hypotheses than just the current one when an incompatibility with the examples is
detected. For example, if a grammar G does not generate a string in the target
language (positive example), all the grammars covered by G (more-specific-than G)
will not generate it either and they can be discarded. In Chapter 2, we have seen
that the problem of regular GI can be characterized as a search in a partially-ordered
space by defining a lattice of FSAs derived from a canonical automaton [DuMV:94].
Likewise, many RGI methods have used the inherent pruning technique associated
with such an algebraic structure of the hypotheses space [BiFe:72, PaCa:78, Micl:80,
Angl:81, Angl:82, OnGa:92, MiGe:94].

The version space formalism developed by Mitchell [Mitc:82] allows a systematic
exploration of a set of hypotheses that potentially describe the examples given so far.
Indeed, a version space is just defined as the set of all the hypotheses (generalizations)
that are consistent with a given set of instances in a set partially ordered by a
generalization predicate. However, the version space strategy proposed by Mitchell
is a particular induction algorithm, that takes advantage of the mentioned pruning
possibility, and which is based on a compact way of representing the version space.
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This compact representation consists of keeping only the most general and most specific
descriptions at each step of the presentation. Let M(h, z) be a matching predicate of two
arguments, a hypothesis h and an instance ¿, that is true if the hypothesis matches the
instance. A generalization relation can be defined in terms of the matching predicate:
a hypothesis hi is less general than a hypothesis h-¿, denoted hi <C h-¿, if hi matches a
subset of the elements matched by h^.

Given a presentation of instances, the version space for that presentation is partially
ordered by the <C relation and it has a subset of minimal elements S and a subset of
maximal elements Q. This is, the sets S and Q contain the most specific and the
most general consistent generalizations, respectively. The pair (<S, <7) can be used
to represent the version space, since it can be proved that, given a presentation, a

.hypothesis :/i is contained in the version space for that,presentation iff there is some
s €E S and g € G such that s <C h and h <^ g. Then, the hypotheses space is
explored by means of generalization/specialization operators. These operators permit
to maintain the current subsets S and Q of the version space for the presented
instances by producing the most specific generalization/most general specialization
of a given hypothesis. A function Update((S,C),i) —> (<S', Q'} was given by Mitchell
[Mitc:82], that takes the current version space boundaries and an instance i which
is marked as either positive or negative, and it returns the boundaries for the new
version space. The implementation of the Update function in a particular induction
problem depends both on the representation language of the hypotheses and on the
generalization/specialization operators.

In principle, there are two important problems to apply the versioji space approach
to the inference of CFGs from examples:

. a) The size of the version space containing all the consistent CFGs is infinite,
b) The less general than relationship, that .compares the strings generated by two

grammars, also called weak containment, is undecidable for CFGs.

~

the search space [VaBa:87]. A CFG G is simple iff i) no rule has an empty right hand
side; ii) if a rule has just one symbol on its r.h.s., then the symbol is a terminal; and iii)
every nonterminal appears in a derivation of some string. Simple CFGs can generate
all the CFLs [HoUl:79]. Given a presentation of examples P, a grammar is reduced
if it is consistent with P and there is no proper subset of its rules that is consistent
with P. Vanlehn and Ball proved that given a finite presentation P, there are finitely
many reduced simple CFGs consistent with P-, and consequently, the S and Q sets of
the reduced version space are each finite [VaBa:87]. However, Vanlehn and Ball could
not find an Update algorithm for some generalization predicate on CFGs that could
maintain the boundaries S and G of exactly the reduced version space.
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Instead, they defined and used the so-called derivational version .space, that was
proved to be a finite superset of the reduced version space for any finite presentation.
Given a set of positive examples, the simple tree product is defined as the Cartesian
product over the sets of simple unlabeled derivation trees (i.e. simple skeletons) that are
possible for each string, where a simple skeleton (of a simple CFG) does not include any
node having a single son that is not a leaf (terminal). Then, given a set of positive and
negative strings, the derivational version space is the set of simple CFGs corresponding
to all possible labelings of each skeleton sequence in the simple tree product for the
positive strings minus those CFGs that generate any of the negative strings [VaBa:87],

Next, a partial order for this set was given by the following covering relation
[VaBa:87]: given two CFGs G\ and Cr2, G\ is fast-covered by GI iff i) both grammars
are obtained by^ labeling the same sequence of skeletons, and ii) the partition of the set-
of (interior) nodes caused by the labeling of G\ is a refinement of the partition caused
by the labeling of GI. It can be shown that G\ is fast-covered by G-¿ implies G\ is
less general than GI (i.e. G\ <C G-i). Moreover, to the contrary of <C, the fast-cover
relation is computable, thus solving the second problem aforementioned.

The derivational version space under the fast-cover relation can be seen as a set
of separate partition lattices (slices), one lattice (slice) for each skeleton sequence in
the simple tree product, because the fast-cover relation can only be true inside the
slices, and each slice has one maximal (top) partition, containing just one class for
all the nodes, and one minimal (bottom) partition, containing singleton classes. If
no negative instance is given, then Ç consists of the top partition in each lattice. As
negative strings are presented, the Q set expands and the derivational version space
shrinks (as the maximal generalizations for each slice may descend in the lattice). The
set S always consists of the bottom partition in each lattice, and it is not affected
by the presentation of negative instances. On the other hand, the presentation of
positive strings increases both the number of partition lattices (slices) and the sizes of
the partition lattices. As new positive strings are presented, the set S trivially grows,
while the set Q may grow or not, since the number of maximal sets grows but the size
of the maximal set for each slice may decrease.

Vanlehn and Ball described an Update algorithm for the above version space, which
is basically aimed at maintaining the set Q (of maximal generalizations), whereas the set
of all the positive strings presented is stored instead of the uninteresting set S. In order
to find the most general specializations of the members of Ç, a splitting specialization
operator is used that consists of dividing an element of a partition in two elements.
However, the cost of the proposed Update algorithm is extremely high, specially in
the process of updating Q when a new positive string is given (which also requires the.
storage of all the negative strings presented so far).
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Despite its theoretical interest, the method described by Vanlehn and Ball is
absolutely unpracticable, not only due to the exponential breadth-first search that
is inherent in Mitchell's version space approach, but also because of the huge
combinatorial explosion of different skeleton sequences and the number of partitions
for each sequence, that affect the cost of the Update algorithm. It must be noted that
if the skeletons of the positive examples are given in the presentation, then just one
partition lattice or slice is involved, and the cost may be considerably reduced (though
it still is very high).

Giordano has proposed another type of version space for the inference of CFGs from
positive and negative examples, which is based on the structural containment relation
[Gior:94]. This generalization relation is computable in polynomial time on a normal
form of CFGs,,, the, uniquely invertible C~EGs. ; , , , ,„„. , . . ' , : . , . . : ,-,,. : ..,-„, ,/ . ^

We have seen in section 3.1.1 that two CFGs G\ and G-¿ are said to be structurally
equivalent iff the set of skeletons of the grammar derivation trees is the same for both,
i.e. K(D(G\)} = K(D(Gi)}. Similarly, a CFG G\ is structurally contained in a
CFG G-Ï iff the set of skeletons generated by G\ is contained in the set of skeletons
generated by G2, K(D(G\}} Ç K(D(G^)). In other words, GI produces the strings
generated by G\ in the same way (in terms of structure, not necessarily of the involved
nonterminals) and possibly more strings. It is clear that structural containment implies
weak containment, i.e. K(D(Gi}} Ç K(D(Gi}} => GI < (72.

A CFG G is uniquely invertible iff no two productions in G have the same right-hand
side. The uniquely invertible CFGs can represent all the CFLs (so they are a normal
form for CFGs). Furthermore, a polynomial time algorithm is available [Gior:94] that
determines whether, given two uniquely invertible CFGs G\ and G<¿, GI is structurally
contained in G? or not. Therefore, uniquely invertible CFGs can be considered as
hypotheses and structural containment as a generalization relation in a version space
approach to CFG inference. However, in order to limit the size of the search space,
Giordano used uniquely invertible CFGs with no useless symbol and a fixed number of
nonterminals, which is set a priori arbitrarily.

As in Vanlehn and Ball's method, the Update algorithm for Giordano's version
space 'is aimed at maintaining the set Q of maximal generalizations consistent with
the given examples, and only specialization operators are defined, which allow to find
the most general specializations of the members of Q (to be used when some of the
grammars in Q match a negative example). On the other hand, a given positive string
just removes from Q the CFGs that do not generate it. Giordano did not explain clearly
how the set Q is initialized in his method, although it seems that the set of CFGs in
Chomsky normal form that are uniquely invertible and contain the assumed number
of nonterminals may be selected as the initial Q.
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In order to reduce the redundancy in the set of hypotheses, Giordano studied the
nature of the equivalence classes induced by structural containment on the search
space, and he defined representatives of these classes (though each class may have
several representatives indeed), so that his algorithm only processed these grammars.
To this end, the notions of equivalent symbols and context of a nonterminal were used.

Let G = (N, S, P, S) be a uniquely invertible CFG and [G] = (N, E', P', S) its
associated parenthesis grammar, where S' = S U {[, ]} and P' is obtained by enclosing
the right hand sides of the productions in P with parentheses. Given a nonterminal
A e N, the context of A, denoted C(A), is the set {(wi,^) € £'* x E'* | S 4»[G] u>i A^}-
Two nonterminals A\,Ai G TV are equivalent symbols iff they have the same contexts,
i.e. iff C(Ai) —,.C(A-2). Also, A\,A-2 are two .equivalent nonterminals .of ..G;iff the
grammar G' obtained by replacing each occurrence of ~A\ and A-¿ in 'P by 'a nonterminal
symbol not in TV — {Ai, A-¿] is structurally equivalent to G. There is an algorithm that
determines in polynomial time whether two given nonterminals of a uniquely invertible
CFG are equivalent [Gior:94].

If G has no equivalent symbols, then all the most general specializations of G
are reduced uniquely invertible CFGs with no equivalent symbols that can be obtained
by changing left-hand sides of productions or deleting productions of G. If G has
some equivalent symbols, then the most general specializations of G are obtained by
applying the same specialization operators to each of the representatives of G, where
these representatives are taken in principle as a maximal set of grammars equivalent
to G and not isomórphic between them. However, the computation of the whole set
of representatives of G (by processing equivalent symbols in different ways) can be too
costly, and Giordano suggested to apply heuristics to select just a few of them.

Hence, two types of specialization operators were considered: substitution and
deletion. If A, B are two nonterminals of G such that C(B] C C(A), a grammar
structurally contained in G (i.e. a specialization) is obtained by changing A into B in
the left-hand side of any production of G. Giordano presented a polynomial algorithm
that determines the pairs (A, B) of nonterminals satisfying C(B) C C(A) for a given
grammar G. Then, given a set of possible substitutions in (7, the set of maximal
specializations of G reached by substitutions may be computed [Gior:94]. The set of
maximal specializations reached by deletion are obtained by deleting only one rule,
unless its left-hand side may be changed. When one of the preceding transformations
leads to a CFG G' with useless symbols, then G' must be reduced (thus decreasing
the number of nonterminals), and therefore, some grammars with the preset number
of nonterminals and equivalent to the produced grammar must be introduced in the
set Q.
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Although the version space approach by Giordano seems to involve much less
computational burden than the one by Vanlehn and Ball, the author acknowledged
that its efficiency is not clear on significant samples (presumably exponential due to
the breadth-first search). Moreover, some heuristics have to be used to limit the growth
of the search space, thus impeding the identification in the limit. In particular, the
requirement of fixing the number of nonterminals seems too restrictive. In addition, the
computation and handling of the representatives of the classes of structurally equivalent
grammars is somewhat obscure.

To end this subsection, I will also mention a recently reported work that investigated
the application of the genetic algorithm (GA) to the inference of CFGs from a sample
of both positive and negative strings [Wyard:94]. The paper by Wyard focused mainly

.on¿the representational issues of the problem, which include three interrelated factors:

- the selected type of CFGs (among normal forms) and their encoding in the
chromosomes corresponding to the individuals of the evolving population;

- the choice of genetic operators and parameters; and
: the evaluation function chosen to determine the fitness of the individuals.

Wyard presented some encouraging results on the inference of some small CFGs from
positive and negative examples using a GA and taking some decisions about the above
factors, at the expense of a very long run-time ("the evaluation of a generation may
take a number of hours on a SPARC station"). IJowever, the challenge remains to
devise suitable representations to enable the G A to operate effectively on any CFL,
and to learn non-small CFGs in reasonable time [Wyard:94j.

3.1.3 , Inference of stochastic CFGs

A stochastic CFG is a grammar G = (Vyy, Vj, P3, S) such that \VN\ = \Pa\ and for every
nonterminal A j (E VAT there is a production of the form A j — > ajij...^^. (PJ\, • ••·,pjij}·,
where •«_,•,• G (V/y U Vj)*, ]̂  pjj = 1, and the basic rewriting rule Aj — *• ctji (pj,-)

. . . .means that A j can be rewritten in a,-,- with probability PJÍ. For every string x 6 Vf
that is generated by a stochastic CFG (9, there is an associated probability P(x\G),
computed as the sum over all possible derivations leading to x of the products of the
probabilities of the rules used in each derivation. A stochastic positive sample Ss of
a stochastic CFG G is a set of strings (possibly including some repetitions) such that
each string s Ç. Ss is stochastically generated according to the rule probabilities of G.
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Two classical methods for the problem of inferring a stochastic CFG from a
stochastic positive sample will be recalled here:

1) The enumerative Bayesian algorithm by Horning [Horn:69].

2) The hill climbing method by Cook et al. [CoRA:76].

A Bayesian approach to an inductive inference problem requires certain probability
measures and it is based on looking for a hypothesis that maximizes the conditional
probability of a hypothesis given that a particular sample is observed. Let P(h) be a
probability measure defined on the hypothesis space, let P(S) be a probability measure
defined on the, sample space, and let P(S\h) be the probability .with which a given
sample-.S can be generated by a given -hypothesis- h. By using-Bayes' -Theorem/ thea--
posteriori conditional probability P(h\S) of hypothesis h when the sample 5" is observed
can be computed as

Therefore, in order to maximize P(h\S), it suffices to maximize P(h)P(S\h), and it
is not required to know the sample a-priori probability P(S). To use this approach,
a computable way to assign probabilities to the elements of the hypothesis space is
needed. Typically, P(h) will be a measure of the simplicity of the hypothesis h, with
higher probability assigned to simpler hypotheses, and P(S\h) will be a measure of
the goodness of fit of h to the sample S, with higher probability assigned to a better
fit. Consequently, a Bayesian approach can combine the measures of simplicity of the
hypothesis and goodness of fit to the data to select the "best guess" for a given sample.

Horning used the above Bayesian approach for the inference of stochastic CFGs
[Horn:69]. In this case, the probability of a sample S given a stochastic grammar
G is defined as P(S\G) = ¿2xesP(x\G) if a^ the strings in S can be generated by
G, and P(S\G) = 0 otherwise, and the probability measure P(G) is defined by a
stochastic CFG generator. Horning described an enumerative algorithm for finding G
to maximize P(G)P(S\G), given a sample of strings S as input, and he proved that, if
the input is a stochastic positive sample Ss, then the enumerative Bayesian algorithm
leads to correct identification in the limit (for larger and larger samples) of the target
stochastic language with probability 1. Note that even though CFLs are not identifiable
in the limit from positive presentations, stochastic CFLs are identifiable in the limit
with probability 1 from stochastic positive presentations. The enumerative Bayesian
algorithm determines at most one of a set of equivalent stochastic CFGs maximizing
P(G\SS), but, unless the class of considered stochastic CFGs be dramatically restricted,
the method is absolutely unpractical due to the huge computational cost of enumerating
and testing all grammars in the class.
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Cook et ,al. proposed a hill climbing method for inferring a stochastic CFG G from
a stochastic positive sample Ss [CoRA:76]. A detailed description of their method
can also be found in the survey by Miclet [Micl:90]. Cook's method is based on two
measures: a measure of grammar complexity C(G), which is derived from information
theory concepts, and that only involves the information contained in the production
rules of G; and a measure of the discrepancy D(L(G),Sa) between the language
generated by G and the given sample 54, whose computation requires the knowledge
of all the strings in L(G) (together with their associated probabilities) up to the length
of the longest string in 5"s. To search for the optimal grammar, a positive linear
combination of these two measures (e.g. M(G, Sa) = C(G) -f D(L(G}, Ss)) is taken as
the global measure M(G, Ss) to be minimized.

- . • f • - . " . .

.'.....Copk.e.f a/.., also, defined several grammar transformations (substitution, disjunction,-
reduction) designed to decrease the global measure M(G, Ss) without changing very
much the generated language, in order to constrain the search space to the set of
possible solutions (stochastic CFGs generating all the strings in Ss)- Their algorithm
starts with a canonical grammar, that generates precisely the observed sample, with
high complexity and low discrepancy. Then, it searches the neighborhood that consists
of all the grammars obtained by applying a single transformation to the current
grammar. If any of these transformed grammars is better than the current one
according to the measure M (G, Ss), the procedure moves to the best grammar in
the neighborhood and iterates the search. Otherwise, the algorithm stops and outputs
the locally optimal grammar that has been found. Again, the computational cost is
very great, and therefore, the Cook's method is not generally applicable.

'

____________ .. ____ r ________ 0 __________ _____ _ _ _ , ________ _______ ̂  ____________ ___
from a' stochastic positive sample, a two-step general approach can also be followed to
infer stochastic CFGs, as it is commented next.

A stochastic CFG G = (VNtVr,Pa,S) can be seen as a pair of two components
G = (Gc, ?),, where Gc is the characteristic grammar corresponding to G, this is the
CFG GC = (VN, VT, P, S] obtained by removing all the probabilities of the productions,
and q is a function q : P — > (0, 1] (where P contains basic rewriting rules of the form
A -> a, A 6 VN, a e V*) such that VA £ VN : ^ q(A -> a) = 1.

Therefore, both components of a stochastic CFG can be learned from a sample
S '— (S+, S~) (with maybe S~ = 0) by first using a (non-stochastic) CFGI algorithm to
infer the characteristic grammar Gc from S and then a probability estimation technique
to infer the corresponding rule probabilities from 5"+ and Gc.
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The most popular technique for probabilistic estimation of stochastic CFGs is the
Inside-Outside algorithm (see e.g. [LaYo:90,LaYo:91]). However, for the application of
this algorithm, the characteristic CFG must be in Chomsky normal form. Casacuberta
[Casa:94] has extended the applicability of this technique to the probability estimation
of stochastic CFGs with simple characteristic CFGs (the definition of a simple CFG
has been given in section 3.1.2). The extension is based on using the well-known
transformation from a simple CFG to a CFG in Chomsky normal form [AhUl:72], prior
to the Inside-Outside algorithm, and a posterior (easy) assignment of probabilities to
the rules of the original grammar. Casacuberta showed that the extended algorithm
does not bear a significant increase in the time complexity with respect to the Inside-
Outside algorithm. Kupiec [Kupi:92] has proposed a different method to estimate the
probabilities of an unrestricted stochastic CFG, which is based on an extension of the

* • " • ' - • • - , ' ' <• -

concepts -used in the estimation of parameters of-Hidden Markov Models'to a type of
Transition Networks (see section 3.3 for the definition of Transition Networks and their
relationship with CFGs).

3.1.4 Inference of CFGs from queries

The following methods have been proposed to learn a CFG using an oracle to which
certain types of queries can be addressed:

1) The recursive structure discovery method by Solomonoff [Solo:64].
2) The Lcf algorithm by Angluin [Angl:87].
3) The method based on structural membership and equivalence queries by

Sakakibara [Saka:88].

Solomonoff [Solo:64] described a heuristic method by which to discover the recursive
structure of a CFL L from a positive sample S+, that uses an informant who answers
membership queries. The strategy consists of two main steps that must be iterated:

i) Select a string s € 5"+, delete some substring(s) of s, and ask the oracle if the
remaining string belongs to the target language;

ii) If the answer is "yes", reinsert the deleted substring(s) with several repetitions
and ask the informant whether each of the resulting strings is also in the target
language; if all the strings built in this manner are accepted by the oracle, then a
recursive construction is formed consisting of some rules of a CFG (e.g. A —> aAa
and A—>• b).
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The size of the given sample S+ is a critical factor in discovering the recursive
constructions of the target CFL. If S+ is too small, some of the recursive constructions
might not be discovered, whereas if S+ is too large, the number of substrings to be
considered becomes astronomically large.

The Lef algorithm by Angluin [Angl:87] is aimed at identifying a CFG G =
(VN, VT,P,S) in Chomsky normal form, such that VN, Vr and S are known a
priori, and it uses to this end a minimally adequate teacher, which can answer two
types of questions. The first type is a membership query, MEMBER(x,A), where
x 6 Vp, A 6 VN, in which the teacher determines whether the string x can be derived
from A using the rules of G and he answers "yes" or "not". The other type of question
is an equivalence query, EQUIV(#), in.which;a CFG H.is conjectured-as.solution and
the teacher determines whether H is equivalent to G (i.e. they generate the same set
of terminal strings from the start symbol S), answering "yes" if they are equivalent
and providing a counterexample t if not. A counterexample will be a string generated
by G but not H or viceversa.

The Le? algorithm starts by enumerating explicitly all the possible productions of
G and placing them in the hypothesized set of productions P. This can be effectively
done in time bounded by a polynomial in \VN\ and \Vr\, because of the Chomsky
normal form restriction and the a priori knowledge of VN and VT. Then, Lc* asks
an EQUIV(#) query for the current grammar H — (Vjv, VT, P, S). If H is equivalent
to G, then Lc* halts with output H. Otherwise, it diagnoses the counterexample t
returned, which results in one production being removed from P, and it asks again for
the resulting grammar. These steps are repeated until a CFG H (in Chomsky normal
form) equivalent to G is obtained. The current set of productions P will always contain
the productions of G as a subset, so the current grammar H will always generate a
superset of L(G). Hence, the only type of counterexample is one that is generated by H
but, not by G. To diagnose the counterexample t, Lc* finds a derivation tree of t from S
using the productions in P, and it asks some membership queries concerning the parse
of t until a single production is found which necessarily cannot be in G [Angl:87].

It is easy to show that the running time of Lc* is bounded by a polynomial in
VN, VT, and the maximum length of any counterexample provided during the run.
However, since the question EQUIV(#) is not in general decidable for CFGs, there is no
computable implementation of the minimally adequate teacher; moreover, the shortest
counterexample will not in general be bounded by a polynomial in |Vyy| and \Vj\.
Although the former problem may be overcome by replacing the equivalence queries
by a stochastic presentation of examples by the teacher (similar to that explained for
the algorithm L*, see Chapter 2), the very strong requirements of the Lci algorithm
make it quite unrealistic to cope with practical situations.
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Finally, I will mention a work by Sakakibara [Saka:88], where a polynomial-time
algorithm is proposed to learn the full class of CFGs from positive structural examples
whenever a teacher is available to answer both structural membership and structural
equivalence queries. The former type of question demands the teacher to determine
whether a certain skeleton s belongs to K(D(G)), the set of unlabeled derivation
trees of the target grammar G. The second type of question demands the teacher
to determine whether a given grammar G' is structurally equivalent to G (i.e. if
K(D(G')) = K(D(G))) and to return a skeleton counterexample if not. The algorithm
always end by obtaining a CFG G' that is structurally equivalent to the target G.

3.2 Inference of controlled grammars- ... •-. /*-•* - - . - -». •- - _ , . _ . _ • ' . . • . ^j . .

Recently, Takada demonstrated that there exists a hierarchy of language families,
properly contained in the class of context-sensitive languages (CSLs), in which the
learning problem for each family is reduced to the learning problem for regular
languages [Taka:94]. This paper extended his previous work on the learning of even-
linear languages (ELLs) through the inference of regular control sets [Taka:88], which
has been commented in Section 3.1.2.

Let G = (VJv,E,P, S) be a grammar over S. Let us assume that each production
in P is labeled by its own label symbol and therefore uniquely referred with its label.
We write x =>G y to mean that y is derived from x using the production p G P, where
xi y € (t^US)*, and x =$•<-, y to denote that y is derived from x by applying a sequence
of productions a = p\...pj (E P*. In this case, x =I>G y is called a derivation from x to y
with the associate word a. in G. In addition to the language generated by G, defined as
L(G) = {u € S* | 3o; € -P* : S 4>Q u }, we can define the associate language of G as
the set A(G) = {<* £ P* \ 3u> e E* : S =§>G w }. Finally, a control set on G is simply
a subset C of P*, and the language generated by G with the control set C is defined as

The definition of a universal even-linear grammar (ELG) U = ( { S } , S, ty, S) over an
alphabet E has been given in Section 3.1.1. Recall that, for any alphabet S, L(U) = £*,
U is unambiguous and unique up to renaming of the start symbol S, and U has exactly
|E|2 + |E| + 1 productions. Let U denote the collection of all universal ELGs and
'R. denote the class of regular languages. Takada defined inductively the following
language families [Taka:94]:

A> = n
jfc A- = {L(U,C) | U e U A Ce £;_!} for any integer t > 1.
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'• Given' an alphabet E arid an integer i > 1, a unique sequence of universal ELGs
f/i, f/2, • • - , Ui is obtained such that £/,- = ({5}, $j-i, #j, S) for 1 < j < ¿, where $0 = E.
Given a regular language R over $,-, the universal ELGs Ui, Ui, ..., Ui specify exactly
one language in £,-, namely L(Ui,L(U2,...,L(Ui,R)...)). Takada proved the following
theorem that establishes a hierarchy among the preceding language families [Taka:94]:

Theorem 3,1. "R, = £Q C C\ C LI C • • • C CS, where C,\ is the class of ELLs and
CS denotes the class of CSLs.

In order to demonstrate that for each integer i : > 1, £,• is contained in the class
of CSLs, Takada presented a constructive algorithm [Taka:94] which, given a universal
ELG U = ({S}, £, $,S) and a CSG G = (VN,$,P,SG) that generates a language
,X(G)='C'€£,-, it builds another CSG G' = (VN'U9 U {S,SG,SG>},Z,P',SG>)'svich
that L(G') = L(UjC) € A+ii since £1 is the class of ELLs, and hence a CSG (an
ELG indeed) can be defined for each language in £1, the base of the induction is
established. In order to demonstrate that the class of CSLs properly contains all the
language families in the hierarchy, a counterexample, the CSL Lp = {ap \ p is a prime },
was given that did not meet the "pumping lemma" for every family £, [Taka:94], thus
showing Lp ^ £i ' V¿ > 0.

For any integer i > 1 and any alphabet E, let L be a language over S in the family
£,-. Then, a language C is called a canonical control set for L if and only if

i) L = L(V^L(Ui,...,L(UhC)...}) for universal ELGs Ui, U*,..., t/,-, and

ii) for any a € C, 3u e E*, {u} =

Takada demonstrated that for each integer j ; > 1 and any language L 6 £,-, there exists
a unique canonical control set C for L, and C is a regular language. This permits
to reduce the problem of learning each family £,• (i > 1) to the problem of learning
7£, since to identify an unknown language L € £¿, a GI algorithm for £,- has only to
identify the corresponding regular canonical control set for L.

For each family £,-, Takada proposed a learning algorithm that is based on using
a front-end processing algorithm, which is specific for each £,-, and a RGI algorithm
to learn the regular canonical control set. The front-end processing algorithm has
to convert the input strings over S into associate words, which are supplied to the
RGI algorithm, by iteratively parsing in the universal ELGs C/i, C/2; • • • , Ui. If the RGI
algorithm outputs associate words (e.g. when equivalence queries are answered by
means of counterexamples), then the front-end processing algorithm must also convert
the associate words to strings over S by iteratively generating in the universal ELGs
Ui, [/¿-i, ..., U\. The representation of the inferred language L G £¿ consists of the
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sequence of universal ELGs f/i,t/2, ••-,£/,• plus the regular language C inferred by the
RGI algorithm.

If the RGI algorithm that is used identifies in the limit the class of regular languages
7£ (e.g. [Angl:87,OnGa:92b]), then Takada's learning algorithm for £,• will also identify
in the limit the family £,. It must be recalled that, to this end, both positive and
negative strings [OnGa:92b] or an informant (answering membership and equivalence
queries) [Angl:87] must be available. Given a polynomial-time RGI algorithm such as
Angluin's [Angl:87] or Oncina-Garcia's [OnGa:92b], the whole learning procedure for
£,- can be run in polynomial time, since both parsing and generating in universal ELGs
have a polynomial time complexity.

.-;,Anrppen.problem is learning with a-variable ¿, i.e. to find a suitable: fcsuch that'the.
target language L is in the class £,-. A possible strategy is to start with some arbitrary
i and to increase or decrease i only after determining that the target L is not in £,-.
However, it may be quite difficult to decide whether the unknown L is in £,• or not. On
the other hand, the gap in expressive power between each of the language families £,-
and the class of CSLs is not very clear, although it seems to be rather large, according
to the "pumping lemma" given by Takada for each family £,- [Taka:94]. Furthermore,
the author does not present any real-world or, at least, interesting pattern which can
be described by a language in a class £, with i > 2. This would have been helpful
to assess the applicability of his GI approach to learn language models of patterns for
syntactic pattern recognition tasks.
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3.3 Inference of transition networks

Transition networks were introduced by Woods as models for natural language analysis
[Woods:70]. The basic transition network (BTN), which was called recursive transition
network in Woods' paper, is a generalized pushdown automaton and it is equivalent to
a CFG. The augmented transition network (ATN) is an extension of the BTN in which
each arc carries also a test condition that must be satisfied before it can be selected
and a sequence of actions that are executed if the arc is selected. ATNs have been
shown to be as powerful as Turing machines, and all the acceptors associated with the
classes of languages in the Chomsky's hierarchy (including CSLs) can be derived from
special cases or restrictions of ATNs [ChFu:75]. •

^Chou and Fu discussed the matter of inferring transition networks from positive
samples of strings [ChFu:76]. They proposed an inference method for BTNs which is
an extension of the ¿-tails RGI technique. Since BTNs are equivalent to CFGs, their
BTN inference method may have been included also in the group of CFGI methods.
They presented afterwards in the same paper a sketch of a semi-automated inference
procedure for ATNs, that involves a teacher and a trial-and-error process. Chou and
Fu's approaches for the inference of BTNs and ATNs are summarized in the two
following subsections, respectively.

3.3.1 Inference of BTNs

A basic transition network (BTN) is a directed graph with labeled states and arcs, a
distinguished state called the start state, and a distinguished set of states called final
states. It differs from an FSA transition diagram in that the label on an arc may be
not only a terminal symbol of the input alphabet but also the name of a state. The
interpretation of an arc with a state name as its label is that the state at the end
of the arc will be saved on a stack and the control will jump (without advancing the
input pointer) to the state that is the arc label. When a final state is encountered, the
control is transferred to the state which is named on the top of the stack and the stack
is "popped". An attempt to pop an empty stack when the last input symbol has just
been processed is the criterion for acceptance of an input string. The state names that
can appear on arcs represent certain constructions that may be found as substrings (or
"phrases") of the input string (or sentence). The effect of a state-labeled arc is that
the transition that it represents may take place if a construction of the indicated type
is found as a substring at the appropriate point in the input string.

The BTN model is fundamentally a non-deterministic mechanism, and any parsing
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algorithm for BTN grammars must be capable of following all the analysis paths for
any given string. A BTN can be viewed as a finite set of FSAs controlled by a stack,
and this is essentially a pushdown automaton [HoUl:79] whose stack vocabulary is a
subset of its state set. On the other hand, it is quite direct to build a BTN equivalent
to a given CFG, and this CFG may be selected as equivalent to a given pushdown
automaton. Hence, the recognition power of BTNs and pushdown automata is the
same, namely, that of accepting the class of CFLs.

Formally, a BTN N can be defined as a six-tuple TV = (E,Q,Q0,QF,go,A), where
S is a finite set of input symbols, Q is a finite set of states, Qo Ç Q is the set of
initial states of the FSAs contained in the network, QF Ç Q is the set of final states
of the FSAs, go € Qo is the initial state of the BTN, and A is a finite set of arcs. For
each state, there can be several outgoing-arcs^ each-of which must-belong to one of the
following cathegories:

1. CAT arc: (CAT c). A transition is made from the present state to the state at
the end of the arc consuming an input symbol c 6 S.

2. PUSH arc: (PUSH g). The destination state of the arc is saved on the stack and
the next state is g G Qo, that is the label of the arc.

3. POP arc: (POP). The next state is the one shown on the top of the stack, and
the stack is popped one element up. Note that POP arcs can only depart from
final states.

The language accepted by a BTN TV is denoted L(N).
0

The method proposed by Chou and Fu for the inference of BTNs [ChFu:76] concerns
the revealing of the self-embedding structures from a positive sample set using the idea
of formal derivatives. As in the Solomonoff's CFGI method [Solo:64], the approach is
based on the pumping lemma for context-free languages:

Theorem 3.2. For any CFL L, there exists integers p and g such that if a "string
s 6 L with \s\ > p then 5 can be decomposed to the form s = uvwxy, where vx ^ A,
\vwx\ < ç, and V¿ > 0 : uvlwxly G L.

Let S be a set of strings over E and u, x € S*,

DV(S, k) = {w € S* I vw £ S A \w\ < k} is the set of right ¿-derivatives of S by v,
Ex(S,k) = {w 6 E* I wx (ES A \w\ < k} is the set of left ¿-derivatives of 5 by x,

and

vgx(S,k) = {w 6 S* I vwx Ç S A \w\ < k} = Dv(Ex(S,oo),k) is the set of interior
¿-derivatives of S by the string pair v,x.
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By Theorem 3.2, if a structurally complete (large enough) positive sample 5+ of
a CFL L is given, then for some k, k = \w\, vvigxiy(S

+, k) 3 {w} for some values
of i > 0, where uv'wx%y Ç. L for all i > 0, and vx ^ X. It can be seen that the
substrings in {v'lwa;' | i > 0} are accepted by the recursive subnetwork (BTN) shown
in Fig.3.1 (a); this subnetwork can be constructed as the canonical derivative acceptor
(see Chap.2, Sect.2.2), CDA(S¿), of a sample set S¿ = {w, vAx}, where A is the
name of the subnetwork. If such a recursive structure is found after the analysis of
the interior ¿-derivatives of 5+, then the sample set S+ is rewritten by replacing the
substrings in {v*wxl \ ii > 0} by the name of the subnetwork A, and the search of
another self-embedding is performed on the new sample set, treating the nonterminal
A as a terminal symbol. The search procedure is repeated until no more recursive
subnetwork can be found. Finally, the main subnetwork, named S, where S is the
start .-state of the inferred BTN, is built as the canonical derivative acceptor of the last
rewritten sample set. The inferred BTN is the set of all the subnetworks constructed
during the process.

CAT* v , _ PUSH A _ CAT* x ^ POP CAT c

CAT* v means a sequence of CAT arcs

accepting a substring v

CAT a

PUSH A J

CAT a

(a) (b)

Fig. 3.1 (a) The BTN accepting {viwxi \ i > O, v, w,x e £*}.
(b) The BTN accepting L = {b'abkcbkabl \ k, I > 1}.

In order to search for a self-embedding, all the derivative sets v1</x_,(·5'+,n) are

computed for every prefix u,- and suffix x j of S+ , where n is an integer such that
Vs € S+ : \s\ < n. Then, for k = 1,2,..., (k < n), the list of equivalence classes
Uk,i (I = l,.. ' .,jLjt) of the derivatives vgx(S

+, k) is obtained. A recursive structure is
detected when a class Uk,i includes a nonempty subset of the set {uvígxiy | ¿ > 0} for
some u,u,a; ,y € £*, vx ^ A. In such a case, let i\ be the smallest integer i > 0
such that uvigxiy is in Uk,i, and let the value of the class Uk,i, denoted Uk,t, be a set
of strings U_k,i =. uv^g^y^.k) = {wm | m > 1, |iom| < k}. Then, a sample
S A — {v*1 Uk,i xtl } U {^z} can be written that allows the construction of the recursive
subnetwork A for the self-embedding just detected.
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Chou and Fu [ChFu:76] presented an example of application of their method using
a sample of the CFL L = {b'abkcbkabl \ kJ > 1} that led to the inference of the
BTN shown in Fig.3.1 (b), which accepts the target language L. Although their BTN
inference heuristic procedure is not too difficult to implement, it should be noted that
a sample set S+ large enough to comprise the self-embedding structures of the target
CFL is required, whereas for a large sample set, the computational cost of the method
may be considerable both in space and time resources.

3.3.2 Inference of ATNs

Amaugrnented-transition* network (A.T:N)'differs from' a-BTN:in that:each• arc of'the'
network may include an arbitrary condition, which must be satisfied in order for the
arc to be followed, and a set of structure building actions to be executed if the arc is
followed [Woods:70]. The ATN builds up a partial structural description of the string
as it proceeds from state to state through the network. The pieces of this partial
description are held in registers which can contain any rooted tree or list of rooted
trees, and which are automatically pushed down when a recursive application of the
transition network is called for and restored when the lower level recursive computation
is completed. The structure-building actions on the arcs specify changes in the contents
of these registers in terms of their previous contents, the contents of other registers,
the current input symbol, and/or the result of lower level computations. In addition,
the registers may also be used to hold flags or other indicators to be interrogated
by conditions on the arcs. Each final state of the ATN has associated with it a test
condition, which must be satisfied in order for that state to cause a "pop", and a
function which computes the value to be returned by the (sub)network storing it in a
special register.

Formally, an ATN TV can be defined as a six-tuple N = (S, Q, Q0, Qp, qo, A), where
2) Q, QO,QF, qo are as in a BTN, and A is a finite set of arcs, each departing from a
specified state and belonging to one of the following four cathegories [Woods:70]:

1. CAT arc: (CAT c test action* term-act). A CAT arc is followed if the current
input symbol is c e S and the test is satisfied.

2. PUSH arc: (PUSH q test action* term-act}. If the test is satisfied, a PUSH arc
saves the destination state q' on the stack and transfers control to state q (E Qo-

3. TST arc: (TST test action* term-act). A TST arc permits an arbitrary test.to
determine whether the arc is followed.

4. POP arc: (POP test form). A POP arc is a dummy arc which indicates under
what conditions the state is to be considered a final state, and the form to be
returned as the value of the computation if the POP alternative is chosen. In
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such a case, it transfers control to the state on the top of the stack, and the stack
is popped.

In the three former types of arcs, the actions on the arc are structure-building
actions, which consist of setting a specified register to the value of an indicated form,
whereas the terminal action specifies the destination state q' of the arc. The two
possible terminal actions, TO q' and JUMP ç', indicate whether the current input
symbol is to be consumed or not, respectively. The forms as well as the tests of the
ATN may be arbitrary functions of the register contents, represented in some functional
specification language such as LISP. This great computational capability makes ATNs
as powerful as Turing machines, but it difficults enormously the eventual development
of learning techniques for the inference of ATNs.

Chou and Fu presented an outline of a semi-automated approach to the inference of
ATNs accepting context-sensitive languages (CSLs) [ChFu:76]. The type of ATN they
dealt with was rather more restricted than the general ATN model defined by Woods
which has been recalled in the preceding paragraphs. More precisely, their model of
ATN allowed the following augmentations with respect to the features of BTNs:

- An optional action HOLD may be placed in a CAT arc in order to save the
consumed input symbol in a hold list (a register). This serves for future tests of
context relationship.

- A particular type of TST arc (VIR c),-called VIR arc, may be included that
makes a transition to its destination state when the symbol c € S displayed in

o the arc is in the hold list.
- A JUMP arc is also allowed, that transfers control to its destination state without

advancing the input pointer if a certain condition is satisfied. Thus, a JUMP arc
corresponds to a TST arc of the form (TST test JUMP q') with no associated
action.

*• i

It is well-known that a CSG can be seen as a CFG (base) plus a set of
transformational rules [Chom:65, ChFu:75]. This is, a CSL is obtained by applying
a sequence of transformations to the strings in the CFL generated by a CFG. In terms
of transition networks, the CFL accepted by a given BTN can be transformed in a CSL
by adding to the network some proper "augmented arcs" and/or by including certain
test and actions on the existing arcs. On the other hand, if the reverse transformations
are known, then by applying them to a given positive sample of a CSL, a CFL sample
set can be obtained. The ATN inference system proposed by Chou and Fu [ChFu:76]
(see Fig.3.2) follows this idea by combining their BTN inference method with a teacher
who defines a set of hypothesized transformation rules, which determine both the
prior sample rewriting (reverse transformations) and the augmented arcs that must be
added to the inferred BTN (forward transformations). Chou and Fu claimed that this
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inference system may be operated by the teacher in the fashion of trial and error. They
also presented a simple inference example, in which, assuming a reverse transformation
"66c -> bob", a positive sample of the CSL L = {anbncn \ n > 1} led to an ATN
accepting L, that is shown in Fig.3.3.

S+ (CSL) — s>

T

Reverse

Transformations

Application

t
Reverse

ransformation Rules

1 i

" ' — ICdtllCl •6-

— *• S+ (CFL) — » BTN

Inference
— s- BTN— »

T

Augmented

Arcs

Addition

t
Forward •

ransformation Rules

I f tlTt\\\ rf-,.. , ,

—a- ATN — r

Fig. 3.2 Diagram of Chou and Fu's approach to the inference of ATNs.

It is apparent, however, that many important aspects of the above ATN inference
method are extremely unclear, such as the availability of the reverse transformations,
the process followed to add the proper augmented arcs to the inferred BTN, the criteria
to restart or to stop the inference, and the modifications carried out by the teacher on
the transformation rules when several inference cycles are run. In general, the problem
of inferring ATNs seems to be very difficult, since it is unclear how to infer automatically
the test conditions and register-setting actions that permit to represent the context-
sensitive structures. Unfortunately, but not surprisingly, the line of research started
by Chou and Fu in the seventies on the subject of inference of transition networks has
not been continued so far, as no other related work has been reported since then.

CAT b HOLD

./' "»
CAT b 4_J CAT c POP

CAT a VIR b

Fig. 3.3 An ATN accepting L = {anbncn \ n > 1} (the dashed arcs denote
the "augmented" arcs not included in the inferred BTN).
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3.4 Inference of pattern languages

The class of pattern languages was first introduced by Angluin [Angl:80b]. Roughly
speaking, a pattern p is & finite string of constant and variable symbols, and
the pattern language L(p) represented by p is the set of strings of constant
symbols that can be obtained from p by substituting a specific constant string
for each variable in p. For example, OxOlx and lOxj/lxOy are patterns over
constants 0 and 1 with one and two variables respectively, and L(OxOlx) =
{00010, 01011, 0000100, 0010101, 0100110, 0110111, 000001000, ... }. A more formal
definition follows.

, .Given an alphabet:S of symbols called constants and a countable set X of symbols
called variables (disjoint from S), a pattern over (S,X) is a finite string in (E U X)+.
Let p be a pattern over (S, X ] , the number of variables in p is the number k of distinct
elements in X, i.e. X — {xi, ...,£&}. Let PN denote the set of all patterns and, for
k > 0, let PNf, denote the set of all patterns of k variables. A substitution over (S, X)
is a mapping / : X —»• S+. A substitution / can be extended to strings in (E U X)+

in a natural way: i) /(a) = a, if a G E; ii) f ( u v ) — f ( u ) f ( v ) , for all u, v Ç. ( E U X}+.
Given a pattern p € P-/Vfc, P[/I/XI, ...,Í£/Xfc], or p[ti/Xi]i=i, denotes the string in S+

obtained from p by the substitution / that maps each x,- to í,-, í = 1,..., k. For example,
if p = xix2x2, then p[00/xi, 10/x2] = 001010.

The pattern language defined by a pattern p € PNk is the set { p[ti/xi\f=l \ í¿ € S+,
¿.= 1, ...,&}. It is assumed that equivalent patterns (those that can be obtained from
each other by renaming the variables) have only one canonical representation. Namely,
the variables in a k- vari able pattern p are always xi,...,x¿ and i f l < m < n < f c
then jm < jn, where jm,jn refer to the positions of the first occurrence of xm ,xn in
p, respectively. Under this canonical representation, it can be said that each pattern
p with k variables represents a different pattern language L(p), i.e. let p and q be
patterns in PNk for some k > 0, then p = q iff L(p} = L(q).

Although pattern languages are not comparable to the Chomsky's hierarchy of
languages, it is clear that patterns provide a limited mechanism to describe some
context influences, namely, the repetition of variable substrings along the strings of a
language. Consider, for example, the simple pattern p = xx over ({0,1}, {x}), p 6 PN\.
Thelanguage L(p) = {xx | x € (0 + 1)+} is a CSL that can be generated by a CSG
Gp containing the 28 productions shown in Fig.3.4. However, the expressive power
of patterns is insufficient to describe even simple CSLs such as {anbncn | n > 1).
Furthermore, most of the CFLs and regular languages cannot be represented by
patterns either, e.g. the CFL {Omlm+nO" | m,n > 1} and the even-parity regular
language (0*10*1)*0*.
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The inductive inference of pattern languages has been studied by several researchers.
The reported methods can be classified in two groups, depending on whether the input
data is restricted to just positive strings or some type of queries are used.

3.4.1 Inference of pattern languages from positive examples

If the number k of variables" in a target pattern p is known, then p can be identified
in the limit from a positive presentation of constant strings by an algorithm that, for
each sample S+, outputs a ¿-variable pattern p' such that L(p'} is a smallest pattern
language containing S+ that is defined by a ¿-variable pattern [Ang:80b].

Let k > 0. For a given set S+ of strings in £*, a minimal k-variable pattern for .S+

is a pattern p € PNk such that S+ Ç L(p) and for any q e PNk such that S+ Ç L(q),
L(q) is not a proper subset of L(p). The k-variable pattern finding problem is to find,
for a given set S+ of strings, a minimal ¿-variable pattern for S+. It can also be
regarded as the search of one of the longest ¿-variable patterns for 5+. Some works
have dealt with the ¿-variable pattern finding problem, and some algorithms that solve
it for particular cases of ¿ have been reported:

1) The one-variable pattern finding algorithm by Angluin [Angl:80b].
2) The two-variable pattern finding algorithm by Ko and Hua [KoHu:87].

3) The k-variable pattern finding algorithm by Jantke [Jant:84].
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Angluin presented an algorithm that solves the one-variable pattern finding problem
in polynomial time, using pattern automata to represent concisely the set of all the
patterns that could have generated a given string or set of strings [Angl:80b]. Next,
pattern automata are defined formally, and later, Angluin's algorithm is reviewed.

Let s be a string and w a nonempty substring of s. Let pattl(s;w) denote the set
of one-variable patterns that generate 5 by substituting w for each occurrence of the
variable, i.e. pattl(s;w) = {p € PN\ \ s = p[w/x]}. In order to recognize the set
pattl(s;w), a corresponding pattern automaton A(s;w) = (Q>£ U X, 6, qo,F) is built
as follows: The states in Q are the ordered pairs ( i , j ) C Wx jV such that i+ j\w\ < \s\;
the initial state is ÇQ = (0,0); the final states in F are all states ( i , j ) such that j > 1
and i + j\w\ = |s|; and the transition function 6 is defined by

^ '•'''' I undefined otherwise;

s,(t • -\ \ _ / (*» J "I" 1) if w occurs in 5 beginning at position 1 + i + j\w\,
\\ iJ)i j \ undefined otherwise.

Hence, the states of the automaton A(s; w) are numbered in such a way that the
state (¿,j) will be reached after i constants and j x's are processed. For example, for
s = OHIO and w = 11, the automaton A(s;w) is shown in Fig.3.5 and it recognizes
the set pattl(s;w) = {0x10, 01x0).

Fig. 3.5 An example of one-variable pattern automaton.

Let A! = (Qi,S \J-X,8i,q0,Fi) and A2 = (Qi,E U X,<52,90,^2) be two finite
automata with state sets Q\,Qi C A/" x J\f and-go = (0,0). Then, a relation A\ C AI is
defined, that is true iff Q\ C $2, F\ Ç jP2 and whenever ¿i is defined, 63 is also defined
and agrees with 61. A finite automaton A is called a one-variable pattern automaton
iff A C A(s; w] for some string s and substring w in S+. The set of patterns accepted
by A is denoted L(A).
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Let AI = (Qi, £ U X, ¿i, ço, -Fi) and A2 = (Q2, S U X, S2, ?o, ^2) be two one-variable
pattern automata. Then the intersection of automata AI and AI is the finite automaton
A! n A2 = (Ci n Ç2, S U ̂ C, ¿, ço, Fa n F2), where

,-, \ __ í ¿i(?,a) if ¿i((7>a) and ¿2(9,0) are both defined and equal,
undefined otherwise.

Angluin proved that AiC\A^ is also a one-variable pattern automaton, and
L(Ai) n L(AI) [AnghSOb]. The intersection f); A' of i pattern automata AÍ, 1 < i < t
can be computed in time 0(t • n), where n is the number of states of the largest AÍ.

Now, for each one-variable pattern p, .the three following attributes are defined: ..

(i) count(£, p) = the number of constant symbols in p, . ; , . , . . .

(ii). count(o;,p) = the number of occurrences of x in p,

(iii) first(x,p) = the position of the first occurrence of x in p.

Let PN(i,j,k) be the set of all patterns p € PNi such that count(£,p) = ¿,
count(x,p) = j, and first(x,p) = k. It is obvious that PNi is partitioned into pairwise
disjoint sets PN(i,j,k).

A triple (i,j,k) is feasible for a string s if there is potentially a pattern p G
PN(i,j,k) such that s € ¿(p), more precisely, if 0 < i < \s\, 1 < j < \s\,
1 < k < (i + 1), and (|s| — ¿) modj = 0. If (z',j, k) is feasible for s, let w be the
substring of s beginning at position k with length (|s| — i)/j', then, it can be shown
that for any pattern p G PN(i,j,k) such that s € £(p), s = p[w/x]. Thus, for each
string s and each triple (i,j, k) that is feasible for 5, a pattern automaton A(s; w) can
be constructed, where w is uniquely determined.

Let S+ — {si,...,St} be a set of strings in £+ given to the inductive algorithm.
A triple (z,j, fc) is feasible for a set S+ if it is feasible for all sr € S+, 1 < r < t.
Let F(S+) be the set of all feasible triples for S+. Then, each triple (i, j, k) in F(S+)
defines t automata Ar(i, j, k), 1 < r < t, where each Ar(i, j, k) is the pattern automaton
A(sT;wr) defined by sr and (¿, j, k), with some useless states and transitions removed.
Ar(i, j, k) recognizes all patterns p e PN(i,j, k) such that sr € L(p). The one-variable
pattern finding method by Angluin [Angl:80b], defined in Algorithm 3.1, is based on
the following property:

{p e PN, I S+ ç L(P}} = (J Ç ] L ( A r ( i , j , k ) ) = U L Ç ] A r ( i , j , k )
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ALGORITHM 3.1: Angluin's one-variable pattern finding algorithm
Input: S+ = {si,...,st}.
Output: a minimal one-variable pattern p for S+.
begin
for each (i,j, k) in F(S+) do

for r := 1 to t do
construct automaton Ar(i,j, k)

end_for t
A(iJ,k) := C]Ar(i,j,k)

r=l

end_for
-.sort F(S+) in descending order; according to the -value of ¿ + J|' .,_,.. . - . , . - • ;

for each (i,j, k) in sorted F(S+) do
if L(A(i,j,k))¿q>then

return any p € L(A(i,j,k)) and exit
end_if

end _for
end-algorithm

The time complexity of the above algorithm is determined by two factors: the
number of feasible triples for S1"1", i.e. |.F(5+)|, and the amount of time to construct
A(i,j, k}. Let n be the length of the longest string in S+. It can be shown that the
size of F(S+) is 0(n2log2n), and that the automaton A(z,j, k) can be constructed
in time O(in2), since each of the automata Ar(i,j, k) contains a number of states of
<9(n2). Therefore, Angluin's algorithm runs in time 0(in4 Iog2 n). Angluin pointed out
that although her algorithm may be generalized to the ¿-variable cases for k > 1 in a
straightforward manner, the generalized algorithm does not seem to run in polynomial
time in the cases k > 1 [Angl:80b].

Ko and Hua further investigated the generalization of Angluin's algorithm to the
two-variable pattern finding problem [KoHu:87]. To this end, they defined the two-
variable pattern automata in a similar way and showed that, for two-variable pattern
automata Aj, AI, their intersection A\ D AI is also a two-variable pattern automaton
such that L(A\ fl A-¿) = L(A\) D L(Ai). They also defined the feasible 6-tuples
(i,j, k, / ,m,n) as an extension of the feasible triples in the one-variable case, so that
the set of all two-variable patterns PN% may be partitioned in sets PN(i,j, fc, /, m,n)
and the set Fz(S+) of feasible 6-tuples for a given set of strings S+ may be found. The
number of feasible 6-tuples in Fi(S+) is O(n6), each representing a group of patterns.

Unfortunately, for some 6-tuples (i,j, k, /, m,n) in ^2(5+), the set of patterns in
PN(i, j, k, / ,m,n) that generate a string s 6 S+ may require more than one pattern
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automaton to represent them. Thus, the problem of finding whether there exists a
pattern p in PN(i,j, ¿, /, m,n) generating the sample S+ becomes the Intersection
of Pattern Automata (IPA) problem: given a set of two-variable pattern automata
{Aij | 1 < z < t, 1 < .7 < w,-}, find an automaton A that accepts the patterns
in f|¿=i {P I P € -M^i,.?)* f°r some j, 1 < j < u¡}. Ko and Hua showed that the
IPA problem is NP-hard, and hence provided an explanation why the straightforward
generalization of Angluin's algorithm to the ¿-variable case for k > 2 does not run in
polynomial time [KoHu:87].

On the other hand, Jantke proposed, for each k > 1, a generalized algorithm for the
¿-variable pattern finding problem that was slightly different from the generalization
of Ko and Hua, and he claimed that his algorithm runs in polynomial time [Jant:84].
However, the proof-of-the polynomial time bound of a critical step "of;his algorithm
was omitted. Although the proof of the NP-hardness of the IPA problem cannot be
directly transformed into a proof of the NP-hardness of the ¿-variable pattern finding
problem for k > 2, it is generally suspected that in fact the latter may be NP-hard.

3.4.2 Inference of pattern languages using queries

The following methods have been reported for the identification of pattern languages
using some type of queries:

1) The identification methods from examples and membership queries by Marrón
and Ko [MaKo:87].

2) The superset queries methodby Angluin [Angl:88].

3) The prefix queries methodby Siromoney et al. [SiSM:92].

Marrón and Ko addressed the problem of identifying pattern languages from both
positive data and membership queries [MaKo:87]. In this setting it is assumed that
there exists a predetermined unique target pattern p and the goal is to identify p
precisely. The problem can be viewed as a two-person game, in which the first player
A (the learner) attempts to identify a ¿-variable pattern p that was chosen by (and
is known only to) the second player B (the oracle). The number k of variables in the
target pattern is assumed to be known. Initially, B provides A with a finite set S+ of
strings in L(p); then B answers questions of whether 5 6 L(p) for each string s queried
by A.

Marrón and Ko showed that it is easy to identify p by asking s G L(p) for all
constant strings s of length \s\ < \p\ (indeed without the need to know |p|) [MaKo:87],
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and thus A can always identify the target pattern p by making (|S|lpl+1 — 1)/(|S| — 1)
queries, i.e. O(|E|'P'). Hence, their interest was in developing more efficient algorithms
leading to the identification of p through a polynomial number of queries, but subject
to certain assumptions about the initial sample. Thus, a target pattern p is said to
be polynomially inferable from the initial sample S+ if the learner A can identify p by
making only <^(|p|) many queries to the oracle B for some fixed polynomial <£.'

Marrón and Ko gave simple sufficient conditions on the initial sample 5+ for the
polynomial inferability of patterns together with the corresponding inference algorithms
for the cases k — 1 and k > 2. From the point of view of a two-person game, a condition
on the initial sample is (polynomially) sufficient if A has a strategy that can always
identify a pattern p with <^(|p|) queries for some polynomial (j>, whenever the initial
sample 'S+ "provided by- B satisfies '"' this condition. The 'sufficient condition on" S*~
typically involves not only properties of the strings in 5+, but also the inter-relations
between the example strings and the target pattern.

For the case of patterns with one variable (k = 1), the sufficient conditions on S+

are the following:

(i) The total length of the strings in S+ is bounded by a polynomial in \p\,
(ii) S+ contains two strings WQ and wi which are obtained from p by substituting the

variable x by two incompatible strings UQ and u\ respectively, i.e. WQ = P[UQ/X]
and wi = p[ui/x], where two strings UQ and u\ are incompatible if neither is both
a prefix and a suffix of the other.

For example, a simple sufficient sample S+ is created by substituting two strings u and
v for x, where |ti| = \v\ and u ^ v. The first condition above is required so that the
two examples WQ and Wi can always be found in polynomial time. Marrón and Ko also
demonstrated that the above sufficient conditions are also necessary to identify p by
a polynomial number of queries. In particular, there is no polynomial time algorithm
that finds patterns using membership queries alone (without any given example string).

Now, two sequences of strings (ui, ..., Uk) and (ux, ..., Vk) are uniformly incompatible
if either, for all ¿, 1 < i < k, Ui and u¿ are not prefixes of each other, or, for all i,
1 < i < k, Ui and u¿ are not suffixes of each other. Then, for the case of fe-variable
patterns with k > 2, the sufficient condition on S+ turns out to be the following:

(i) S+ contains a subset of k + l strings S' = {P[UÍ/XÍ]¿=I} U {P[VÍ/XÍ, Uj/Xj]j=l • -¿ |

1 < i < k} where («»),fc=1 and (vi)*=l are two sequences of strings that are
/ |5+| \

uniformly incompatible, V¿ < k : |ut-|, |u,-| < <^>(|p|), and I \ni\ ] <'<f>(\P\),
' . V Io I /

some polynomial
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Basically, the subset S' contains a basis string P[UÍ/XÍ]^=I and k additional strings which
differ" from the basis string only by a single substitution. Again, the necessity of the
incompatibility of the substitution strings was shown.

It must be remarked that the identification algorithms given by Marrón and Ko
work only if the assumption about the number k of variables in the target pattern is
correct (i.e. if k is known in advance). In other words, the discovery of k cannot be
included in the general algorithm if the polynomial inferability of p from S+ is desired.
The main reason is the fact that (polynomially) sufficient samples for patterns in PNk
can be viewed also as insufficient samples for an unknown pattern of k' variables with
k' > k. Hence, there may be cases where the pattern that is output as solution by the
identification algorithm will not correspond to the target pattern.

- i~ ' ,..- " , . ' • ' * t. ; / - - - - ' • .";.-'"• • ' . . - •• • \./; ""'.. -'- r - » ;.'.;'.",/ , . ; * ' > " : . . . ';'
In another paper, Angluin reported "a polynomial-time" learning'algorithm for'

identifying pattern languages that uses restricted superset queries [Angl:88]. Let
p be the unknown target pattern. In a restricted superset query, the learner asks
"L(p') 2 L(p) ?", for some pattern p', and the oracle answers "yes" or "no", without
giving any counterexample. The algorithm proposed by Angluin to identify p using
this type of queries is as follows.

Firstly, the length of the pattern p is determined. Note that if p is a pattern of
length n, then L(p) contains only strings of length n or greater and at least one string
of length n. Also, L(xiX2...xn) is precisely the set of all the strings over £ of length n
or greater. Thus, the length n of p can be determined by asking superset queries on
the sequence of patterns xi, xix?, x\x-¿X3, and so on, until L(xix^...xn+i) is found to
be not a superset of L(p).

Secondly, the positions and values of the constant symbols in p are determined. For
each a € £ and i = 1,2, ...,n, it is asked whether L(xi...x,-_iax,-+i...xn) 3 L(p). If the
answer is positive, then the z'-th symbol of p is the constant symbol a. Otherwise, if
the answer is negative for all a € S, then the z'-th symbol of p is a variable symbol.

Thirdly, for each pair of positions containing variables, it is determined whether
the variables are the same or not. For each pair (z, j), i < j, of positions of variable
symbols in p, it is queried whether L(pi,j) 2 L(p), where the pattern p.-j is obtained
from x\x<¿...xn by replacing both x,- and x j by a new variable x. If the answer is "yes",
then positions z and j of p contain the same variable; otherwise, they contain different
variables.

Once all the above tests have been completed, the canonical form of p can be
directly constructed. The total number of queries used by this method is bounded by

(ri —1)/2. Hence, the computation time for Angluin's superset queries
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method for identifying pattern languages is of 0(|p|2). Angluin also demonstrated that
any algorithm that exactly identifies all the patterns of length n using membership,
equivalence, and subset queries2 must make at least 2n — 1 queries in the worst case
[Angl:88].

The previous works on pattern inference that have been commented [KoHu:87,
MaKo:87, Angl:88] point out that, if no restriction is placed on the pattern (such as
the number of variables k) or the strings substituted for variables in the examples,
learning pattern languages using positive examples and/or queries such as membership
and equivalence queries takes exponential time. We have seen that the Angluin's
algorithm using superset queries is a method for learning pattern languages without any
restriction in time polynomial in the length of the pattern. More recently, Siromoney

:.et a/., introduced.. the concept of prefix query, and they formulated another simple
identification algorithm for unrestricted patterns using prefix queries that also runs in
0(M2) [SiSM:92].

Let p = pip2---pn be the target pattern in canonical form (i.e. the leftmost
occurrence of variable a;,- in p always appear before the leftmost occurrence of £¿+1,
for'l < i < fe), where both the length n and the number of variables k are unknown.
In a prefix query, a pattern p' is proposed by the learner, and the oracle answers
"yes" if p' is a prefix of p, and "no" otherwise. The following algorithm leads to the
identification of p using prefix queries [SiSM:92].

The algorithm starts by trying to determine whether the first symbol p\ of p is a
constant. Hence, for each a € E, it is asked whether Jhe string a is a prefix of p. If
the answer is negative in all cases, then pi is a variable, and since p is in canonical
form, pi = x\. Suppose that, at some stage ¿, the algorithm has found that p\...pi is a
prefix of'p and j is the largest index of a variable Xj 6 {pi, ••-,£'»}• Then, it is checked
whether p,-+i is a constant by asking whether pi.-.p^a is a prefix of p for each a G S. If
all ,the answers are negative, then p,-+i should be a variable, and therefore, it is queried
whether pi...p,-xm is a prefix of p for I < m < j + 1. If a negative answer is received
for each of these queries, then it is clear that the pattern p has been learnt, so the
algorithm halts.

The total number of prefix queries required is bounded by n(S + k), and thus, the
time complexity of the algorithm is 0(n2) (since k < n).

2In a subset query, the learner asks "L(p'} C L(p) ?", for some pattern p', the oracle answers
"yes" or "no" and, if the answer is negative, the oracle also supplies a string s g L(p') — L(p) as a
counterexample.
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Although Siromoney's algorithm is very simple and efficient and it does not impose
any assumption on the target pattern p, the availability of a teacher answering prefix
queries about p, besides being too ideal, converts the learning task into a rather trivial
one. A similar comment may be applied to the superset queries based method by
Angluin, which has been described previously. Hence, the interest of these pattern
identification methods is mainly theoretical.

On the other hand, Siromoney et d. showed that certain simple picture and contour
languages can be considered as interpretations of pattern languages, and thus, pattern
learning algorithms can be applied for their inference [SiSM:92]. In particular, they
proposed three variations on the definition of pattern languages that result in three
types of languages with applications in the representation of pictorial data.

The first variation involves requiring the patterns to contain only variables and
restricting the strings u, used to replace the variables x,-'s to be of equal length. Let
LI be the class of languages described by patterns of this kind. A language L\(p) can
be considered as a family of arrays (pictures) by writing the strings u,- replacing each
variable £,• in the pattern as a separate column. The class of languages LI can be
identified in the limit from positive examples in polynomial time using an algorithm
proposed by Lange and Weihagen [LaWe:90] (which does not identify the ordinary
pattern languages).

A second variation of the concept of pattern language involves associating with
each of the variables xi,...,Xk, a corresponding variable xi,...,£*, respectively, and
partitioning the alphabet E into two disjoint subsets E' and S', where S' = {a | a € £'}.
Whenever a string «,- E £* is substituted for x,- in the pattern, the corresponding
string ni is substituted for of,-. A canonical form is assumed, such that, for each z,
the leftmost occurrence of x¿ occurs before the leftmost occurrences of both x,- and
x,-+i. The language described by a pattern p of this kind is denoted Li(p). The
pattern identification algorithm based on prefix queries can be modified easily (by
adding queries of whether p\...pixm is a prefix of p] to learn pattern languages in L2.

As an example of application, let £ = {r, /, u, d} denoting right, left, up, and down
segments, respectively, with E' = {r,u} and E7 = {/,£?}, where / = r and d = ü.
Pattern languages over this E represent line drawings in the form of strings using
chain codes with 4 primitives . Note that pattern languages of the type L2 are able to
represent families of closed contours with certain symmetries, since the contours can
be constrained to have the same number of /'s and r's and the same number of w's and
d's.
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Finally, a third type of extension, which gives rise to the class of pattern languages
£13, involves fixing sets A\,...,Ak Ç £+ such that the strings «,- to be substituted for
the variable z,- are taken from the set AÍ. For example, rectangles can be described by
a pattern p = XiX^xix^ over E = {r, /, u, d} with x\ replaced by a word in r+ and x-¿
replaced by a word in u*. Again, the prefix query algorithm can be applied, but the
learning of a language L$(p) is not complete unless the sets of string's AÍ, i — 1,..., k are
identified. Siromoney et d. claimed that the problem of identifying a pattern language
in La can be solved if the sets A,-'s are chosen from some class of learnable sets such as
regular languages [SiSM:92], but they did not present any global learning procedure to
solve it.




