
UNIVERSITAT POLITÈCNICA DE CATALUNYA 
 

Departament de Llenguatge i Sistemes Informàtics 
Ph.D. Programme: Artificial Intelligence 

 
 
 
 
 
 
 
SYMBOLIC AND CONNECTIONIST 

LEARNING TECHNIQUES FOR 
GRAMMATICAL INFERENCE 

 
 
 

 
 

 
 

Autor: René Alquézar Mancho 
Director: Alberto Sanfeliu Cortés 

 
March 1997 



Chapter 4

Grammatical inference through
connectionist approaches

In this chapter, an overview of the most significant previous works on grammatical
inference by means of neural networks is given. Most of them have dealt with the
problem of learning regular languages, and just a few have addressed the problem of
learning CFLs. The reader is referred to the original papers and the excellent survey
by Castaño and Casacuberta [CaCa:96] for further information.

The chapter begins with a review of the neural network architectures that have been
proposed to approach the problem of grammatical inference. These include several
types of discrete-time recurrent neural networks, which can be applied indeed to a
variety of learning tasks involving sequences. For each type of architecture, there is
one or more learning algorithms that can be used to train the network for a given task.

The reported connectionist methods for GI have been based either on a next-
symbol prediction task or on a sequence classification task. While the former allows
an inference to be made from just positive strings, the latter requires the presentation
of both positive and negative examples in the training set. Typically, a neural learning
scheme is applied to infer a network that is supposed to act as a recognizer for the
language from which the training set is taken. To this end, several factors must be fixed,
such as the symbol encoding, the training procedure (including the stop criterion), and
the learning parameters. In some cases, a post-processing step is added to extract from
the trained network a symbolic representation of the language, usually an FSA.

107



'108 . . . Chapter 4. Grammatical inference through conneciionist approaches

4.1 Architectures and learning algorithms

,A great number of different neural network architectures have been proposed and
studied in the last decades, either aimed at supervised or unsupervised learning tasks
[RuMc:86,HeKP:91]. The popular multi-layer feed-forward networks trained by the
back-propagation algorithm [RuMc:86] are well-suited to the approximation of functions
consisting of static vector mappings from a given set of points (input/output vector
pairs). They can also be applied to some sequential tasks involving a time-varying
input/output by using a moving window that selects a fixed number of consecutive
events in the input sequence as the input vector (time-delay networks). However, feed-
forward networks are not adequate in general for sequential, tasks,, since the sequences
may be arbitrarily long and distant contingencies in the past sequence may determine
the correct output at the present step.

Hence, recurrent neural networks (RNNs) [HeKP:91], which are naturally dynamic,
have been preferred for learning and processing sequences because of their inherent
ability to model "internal state" information and process temporal signals. RNNs can
be classified in two main groups depending on whether they operate in continuous-
time or in discrete-time. It is clear that discrete-time RNNs are the proper choice for
learning tasks that involve discrete-time signals, such as symbol strings. Consequently,
the reported connectionist approaches to grammatical inference have used different
types of discrete-time RNNs, which are reviewed in the next subsections. From now
on, discrete-time RNNs will be simply referred to as RNNs, for short.

In.order to emphasize the common features of some of the proposed RNNs and to
define a suitable notational framework for the studies presented in Chapters 6 and 7,
two basic general models, termed single-layer RNN (SLRNN) and augmented single-
layer RNN (ASLRNN) respectively, which have been introduced firstly by Goudreau
et al. [GoGi:93, GoGC:94], will be presented. These general models cover different
architectures as particular cases, where the specific network to be used in a learning
task is normally fixed before the training begins. A distinct approach is to construct
incrementally a network during the course of learning with the aim of reaching a kind
of "optimal" network for the given task. The following review will also include an
architecture of this type that has been applied to the GI problem, the Recurrent
Cascade-Correlation (RCC) architecture proposed by Fahlman [Fahl:91a]. Finally,
the DOLCE architecture reported by Das and Mozer [DaMo:94], which integrates a
clustering module into an ASLRNN, and the first-order 2-layer RNN proposed by
Manolios and Fanelli [MaFa:94] will be reviewed.
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4.1.1 Single-layer recurrent neural networks (SLRNNs)

An SLRNN is a, fully-connected discrete-time recurrent network model (see Figure 4.1)
that has M inputs, which are labelled X\,XI,...,XM-¡ and a single-layer of TV units (or
neurons) t/j, t/2, •••577/v, whose output (or activation values) are labelled 3/1,3/2, ••••>yN-
The values at time t of inputs x,- (1 < í < M) and unit outputs y j (1 < j < TV)
are denoted by z,-(f) and yj(t) respectively. The activation values of the neurons
represent collectively the state of the SLRNN, which is stored in a bank of latches
for a delay of one time step. Each unit computes its output value based on the
current state vector S* = [yi(t — 1),y^t — I),...,J/AT(Í — l)]r and the input vector
I* = [xi(i), #2(2), • • • > XM(t)Yi so ^ne network is fully-connected. Some number P of the
neurons (1 < P .< TV), called the output units,, can be trained and-used to supply an
output'vector (>''= [yi(i)\yz(t), ."..,yp(t)]Trin order to accómplislTà'given't'ask." In the
most general case, the trainable (output) units may vary at each time step. Those
neurons that are never trained are called hidden units.

The equations that describe the dynamic behavior of an SLRNN are

o-k(t) = /(Wfc,I í,S í) f o r l < f c < T V , '" (4.1)

yk(t) = g (o-k(t)) for 1 < k < TV, ' (4.2)

where / is a weighted sum of terms that combines inputs and received activations to
give the net input values cr¿, g is usually a non-linear function, and W¿ is a vector of
weights that are associated with the incoming connections of unit t/¿. The SLRNNs
can be classified according to the types of their / and g functions, which will be referred
to as the aggregation and activation functions of the SLRNN, respectively.

The usual choices for the aggregation function f characterize an SLRNN either as
first-order type [WiZi:89]

M • N

tani) + ^wk(M+j)yj(t-l), (4.3)

or second-order type [GiMC:92]

. M N

!)- • • (4-4)
i=1 ¿=1 •

In the first-order case, the SLRNN has N x (M + TV) weights, while in the second-order
case the number of weights rises to TV2 x M.
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Fig. 4.1 Single-layer recurrent neural network (SLRNN).

The usual choice for the activation function g has been the sigmoid function

9* W = , , „-„„ . • (4.5)

where a is a positive constant (normally a = 1). However, other types of activation
function can be selected instead of the sigmoid function, as it will be discussed later.
Any differentiable function g allows the use of a gradient descent method to train the
SLRNN to learn a sequential task.

4.1.1.1 First-order SLRNNs

A formal description of the first-order SLRNNs was given by Williams and Zipser
together with the RTRL learning algorithm [WiZi:89], although they simply called
them "fully recurrent neural networks" in their paper. The notation used here slightly
differs from theirs to adapt it to the general SLRNN model just defined. The basic
difference resides on the instant when the time step delay is introduced: while they
put the delay in the computation of the activation function, we put it after, assuming
that the rate of external input update is slower than the net computation speed.
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In a first-order SLRNN, each unit has weighted connections from all the neurons
of the net, each unit receives weighted signals from all the inputs, and each unit can
be trained at each time step if desired. From (4.1), (4.2) and (4.3), we obtain a single
system of equations that describes the dynamic behavior of a first-order SLRNN

M N

y*(0 = 9 ( Eu>*i*i(0 + 5>fc(A,+j)W(* - 1) ) for 1 < A: < AT, (4.6)
^ «= =i

where the sigmoid function gt given by (4.5) has been typically used as activation
ájL function g [WiZi:89,SmZi:89]. To allow each unit to have a bias weight, an input
^^ whose value is always 1 is included among the M input signals. Let us say that

the network starts running at time step t = 1 and the corresponding state vector
^} ,.,,; S1 = [yi(0), ...,yw(Q)]T is initialized in. some arbitrary manner". 1, ._;. Z..". '. | ',

For notational convenience, let us concatenate the current input and state vectors,
and S*, to form an (M + 7V)-dimension vector Z' = [zi(¿), ...,ZM+N(Í)]T, such that

j ( t ) ifj<M
Zj(t) = (4.7)

j-M(t^l) \ij>M

Then, the network dynamics can be rewritten as follows

M+Ñ . "
<Tk(t) = É WkjZj(t) for 1 < k < N, (4.8)

£ yk(t) = g (ffk(t)) forl<k<N. • • (4.9)

all Now, let us discuss the supervised training of first-order SLRNNs. A training
sequence with t¡ time steps starts at time step i = 1 and ends at time step t = t¡. Let

•

T(t) denote the set of indices of (output) units for which there exists a specified target
' value at time í, i.e. T(i) = { k \ 1 < k < N, 3 dk(t] }. Then we define the error of a

unit Uk at time step t as

««) = /*«-»« i f*€T« ' • ' (4.10)
. v ' (^ 0 otherwise . v

and the total squared error of the network at time step t as .

E(t)=1- ¿MOJV (4.11)
- ¿ k=l
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The objective is the minimization of the total squared error over the whole training
sequence •

• - (4.12)

This minimization can be done by a gradient descent procedure, adjusting the weights
W of the SLRNN along the negative of Vw-Etota/(M/), i.e.

for 1 < i < TV, 1 < j < M + TV, (4.13)

where a is some fixed positive learning rate.

The following learning algorithms have been proposed to train a first-order SLRNN:

1) the Back-Propagation Through Time (BPTT) algorithm [WiPe:90],
2) the Run-Time Recurrent Learning (RTRL) algorithm [WiZi:89],
3) the Schmidhuber's algorithm (a cross between BPTT and RTRL) [Schm:92].

The three algorithms above are gradient-descent learning techniques which differ in
the way the gradient Vw^toto/íl^/) is calculated. Each algorithm has a distinct time
complexity and different storage requirements (the better the time complexity, the
worse the space requirements, and viceversa).

The BPTT algorithm is based on unfolding the recurrent network into a kind of
multilayer feedforward network that grows by one layer on each time step [RuHW:86,
WiPe:90j. In ordeï to distinguish between different "instances" of the weight Wij
at different times, u>¿¿(¿) will denote a variable for the weight of the j-ih incoming
connection of unit £/,- at time f; this is just for notational convenience, since Wij(t) = Wij
for all t € [1,¿/]- In other words, Wij(t) can be seen as a weight of a unit in the f-th
(non-input) layer of a feedforward network constructed by unfolding the SLRNN in
time. Then, we have

t r \ 11

~—~* (111) • . | T | * '• '

< •• \J U/4 1 I C I 4 1— 1 *J \ / t=l

where
c (j.\ oEtotal(\)tf) / . ., P N
Oi(t) = — — ^4. lo)

and <5;(¿) can be computed for all i (E [IjTV] and t G [lj¿/] by the recursive backward
propagation:

g'[ffi(t)] e,-(i) if t = tf

1 i f l < * < < / (4-16)
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The number of floating-point operations involved in the preceding calculation of the
gradient is O(tfN2), and hence, the BPTT algorithm needs only O(N2) computations
per time step. However, it must be noted that the storage of the values e,-(<), g'[cri(t)],
and Zj(t) is required, for 1 < i < N, 1 < j < M + N, and 1 < t < t}. Therefore,
BPTT requires potentially unlimited storage in proportion to the length of the longest
training sequence, and thus, it cannot be used for arbitrarily long training sequences,
i.e. when there is no known upper bound for the sequence length. In addition, BPTT
is not suited for on-line learning, since weight changes can be performed only when the
entire training sequence has been processed.

Williams and Zipser proposed the RTRL algorithm to perform gradient-descent
learning in continually running first-order SLRNNs, allowing an indefinite length of the

-à . training sequence [WiZi:89]. The RTRL algorithm .is based on a. forward .calculation
of the gradient, and it can be applied both for off-line and on-line learning, though in
the second case the weight change no longer follow the precise negative gradient of the
total error.

Since the total error is just the sum of the errors at the individual time steps, one
way to compute the gradient Vw-£<o<a/(l, ¿/) is by accumulating the values of V\vE(t)
for each time step. Thus, the overall weight change for any particular weight w^j in
the network can be written as

i), (4.17)
<=i

where

-« = « £ «<«) • - <«•«>
Let

for 1 < i, k < N, 1 < j < M + N.' • (4.19)

The partial derivatives p£,-(í) can be computed forward in time using a dynamical
system with variables {pfj} and dynamics given by

with initial conditions

where 8ik denotes the Kronecker delta, and it is assumed that the -initial state of the
network has no functional dependence on the weights.
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The RTRL algorithm starts by applying (4.21) to initialize the p^j variables, and
afterwards, it consists of computing, at each time step from í = 1 to í = í/, the
values Pij(t), using Eq.(4.20), and then determining the errors ejt(i), through (4.10), to
compute the weight changes

N

(0 = a £ efc(i) 4(i) . (4.22)

XI I*** v,,* x^xxv, j.^M-.xxxxj.g, ^v-^xxxv, xu u~x~~.,v,~, ^v, ~.~x«« v~xx~v,v,~^ vv ^« .̂̂  ,,v,*6*iu i~tj xxx

the net, given by Eq.(4.17), is applied at the end of the training sequence (t = í/).
Otherwise, in an on-line learning scheme, each weight w¡j is updated at each time step
t using the individual AIÜ,-J(Í) values given by Eq.(4.22).

• > . , = • . . r . - . - • . ' • . - • - . . . - , . . . • • : , . ; • . - . - . . • . • ' . ' - . • - • - • . < : .
The RTRL algorithm requires only fixed-size storage of the order 'O(N3) (due to

the variables pfj), but it is computationally expensive, requiring 0(N4) operations per
time step (due to the computation of the Pij(t) values).

Schmidhuber has proposed a third algorithm to compute the gradient
Vw^íoíoKM/) f°r learning in first-order SLRNNs, which is a compromise between
the BPTT and the RTRL methods [Schm:92]. His algorithm also requires fixed-size
0(N3) storage, thus allowing arbitrarily long training sequences too, but the average
time complexity per time step is reduced to 0(N3).

Schmidhuber's algorithm is based on decomposing the calculation of the gradient
into blocks, each covering a number h of time steps, with h in 0(N] (e.g. h = N).
For each block, N + 1 BPTT-like passes are performed, one pass for calculating error
derivatives, and N passes for calculating derivatives of the net-inputs to the TV units at
the end of each block. An RTRL-like calculation of the order 0(N4) is performed at the
end of each block for integrating the results of these BPTT-like passes into the results
obtained from previous blocks. In fact, in the last block of the training sequence, a
single BPTT-like pass to compute the error derivatives is only needed, and thus, when
t j < h the algorithm is equivalent to BPTT. In general (for training sequences longer
than the block size /i), the algorithm performs an average of O(N3} computations per
time step, since the N + 1 BPTT-like passes imply 0(N3) computations per time step,
arid the RTRL-like 0(7V4) computations are spread over 0(N) time steps.

Let

4(i) = ̂ 1 = ¿ «221 (4.23)J 9wij Tti dwij(T)

for 1 < i,k < N, 1 < j < M + N, and t > 0, where WÍJ(T) denotes the "instance"
of Wij at time step r, as in the BPTT algorithm. We can think of {<?£•} as a set of
variables of a dynamical system that is updated once at each block of h time steps; the
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{?£•} variables play a similar role than the {p^} variables used in the RTRL algorithm
(though their meaning is not exactly the same). It is clear that the initial values of
these variables are given by c£-(0) = 0 for all possible i,j, k.

Let ÍQ represent the beginning of the current block of h time steps of the training
sequence from t = t0 + 1 to t = ÍQ + h (or the beginning of the last block of the sequence
from t = to + 1 to t = í/, if to < t¡ < to + h; in this case, assume that the value ¿/ — to
is assigned to h). Then, both the gradient quantities dj£<0ta/(Mo)/dtt>,-j and the values
9Jj-(£o) are already known for all appropriate i,j,k, either calculated in the previous
block or initialized to zero if to = 0.

The gradient Vw-E^oía/íl, ¿o + h) of the total error up to the' time step ¡to + ft cari'be
.calculated as the sum of V\v-£Vo<a/(l',io) and V\v-Eíoía/(¿o + Mo + ft)-' The latter can
also be decomposed in two terms, distinguishing the effect on the current block error
caused by the weights in the previous blocks from the effect caused by the weights in
the current block. Hence, for any particular weight w¡j in the network, we have the
following equation with three terms:

dEtotal(l,tQ) t * t o t a l 0 , 0 [

( }

The first term of the above equation is already known, as'remarked earlier. The
third term can be calculated as

t=t0+l owij\l) t=t0+l •

where
= _ dEtotal(t0 + lt0 + h) 6

and ¿i(t) can be computed for all ¿ € [1, TV] and t e [ÍQ> ¿o+ft] by the recursive backward
propagation of the BPTT algorithm (note the similarity with Eq.(4.16) of BPTT):

if t = t0 + ft

ift0.<t<t0 + h' ^ ' '

except for the particular case of t0 =• 0 (in the first block of the training sequence),
where, for 1 < ¿ < /V, <5¿(0) = 0 because f,-(0) is undefined. • :
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The second term of Eq.(4.24) can be calculated as

E
<0 flffto*at(*o.+ Mo + fr) _ v-" x d },,k d \ í A os'*- ó— TTx - = - L· o*(*o)9tf(<o) (4.28)

1=1 owl3(i) k=l

where, for 1 < k < TV, ¿¿(¿o) has been computed previously by Eq.(4.27) and the <7¿¿(ío)
values are already known from the previous block. It is clear that in the first block of

the sequence, when ÍQ = 0, this second term vanishes, i.e. J^ — ° " . ' — = 0 for all
t=i vwij(t)

the weights Wij.

: What -remains is the updating of the {<?,*•} variables, which is needed except for the
last block. It follpws- (see [Schm:92] for the derivation) that ., ,v . , , ; ... ;?, •

N to+h

' i«(*o + *) = £ 7«(*o)9«(*o) + • £ 7«(<)*XO (4.29)
/=!

where

and 7fci(i) can be computed for all k,i € [1,/V] and í € [f0,*o + h] by TV BPTT-like
propagations:

if í = f o + h

Ew'(M+i)Ki(t + 1) if ^o < í «o + * (4'31)

/=!

except for ÍQ = O, where 7fc¿(0) = O for 1 < fc, i < N. Again, ók¡ denotes the Kronecker
delta.

The Schmidhuber's algorithm may be used both for off-line and quasi on-line weight
updating. In the first case, Eq.(4.13) is applied at the end of the last block, when the
gradient of the total error over the sequence is known. In the second case, the weights
are changed at the end of each block, using the gradient V\vEtotai(to + l,io + h) (this
is, the sum of the second and third terms of Eq.(4.24)).

Concerning the storage requirements of the algorithm, besides the {<?£•} variables,
which imply an associated space size of 0(/V3) equivalent to that of RTRL, the values
e,-(i), <7'[<7,-(i)], and Zj(i] must also be stored to perform the BPTT-like passes, for
1 < * < N, 1 < j < M + TV, and t0 < t < t0 + h. Since h is O(TV), the storage of
these values requires a space size of order <9(TV2). Finally, the {7*,-} variables need also
O(TV2) space. Hence, the total storage required by Schmidhuber's algorithm is of order
O(TV3), which is due to the {qfj} variables.
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Normally, a training set S consists of some finite number of training sequences
{SI,...,SK}- The three preceding algorithms permit to compute the gradient
Vw-E'¡So<o/(l>^/(s«)) corresponding to a pass through a given training sequence 5,-. A
pass through the whole training set S is called an epoch. During an epoch, the state
of the network is reinitialized each time a new training sequence is started; obviously,
the partial derivatives required by the particular learning algorithm must also be reset
for each sequence. The total error over S is defined simply as

, </(«))• (4.32)
¿=i

and the corresponding gradient V\<fEfotal is just the sum of the gradients

The procedure of updating the weights of the network only at the end of an epoch
is called batch learning, while the procedure of updating the weights after each training
sequence is called pattern-by-pattern1 learning. Using a gradient-descent technique,
the weights are adjusted along the negative of V\vEfotai in the former case, while
in the latter, the negatives of the individual gradients ^7\vE^ta¡(l,tf(si)) are taken.
In addition, we have seen that the RTRL algorithm allows an on-line learning with
weight updating every time step, and the Schmidhuber's algorithm allows a quasi on-
line learning with weight updating every block of h time steps.

\

Whatever the mode of learning, a gradient-descent based algorithm updates the
weights according to the general equationí

ATW = -aVw£(WT) (4.33)

where T is used as a counter of the number of weight updates computed so far during
training, and V\v-£(WT) is the gradient of the total error accumulated for the current
inter-update interval, which is evaluated at the point given by the current weight vector
Wr. If the learning rate a is small, gradient descent can be very slow but yields a
stable convergence on local minima of the error surface over the weight space. If a
is too large, the trajectory of the weight vector can oscillate widely or may overshoot
small minima basins. The problem essentially comes from error surface valleys with
steep sides but a shallow slope along the valley floor. Furthermore, the error surface
can be full of non-optimal local minima, some of them with large attractor basins, from
which the algorithm may not be able to escape.

, a pattern refers to a whole training sequence and not to an input-output pair within a
sequence.
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There are a number of ways of dealing with these problems, including the
replacement of gradient descent by more sophisticated minimization algorithms2

[HeKP:91], but a much simpler commonly used approach, the addition of a momentum
term, is often effective. This scheme is implemented by giving a contribution from the
previous change to the current weight update: .

. ATW = -aVw£(WT) + ̂ A^W (4.34)

where the momentum parameter /3, 0 < beta < 1, specifies the strength with which the
previous update influences the current one. The net effect of the momentum term is
that the local gradient deflects the trajectory through the weight space, but does not
completely dominate it.

• • • - .;-,:•.-. j". • • - . . . . . . . • . - . ' . . . . . • . . . . . . . . ; . , : . - , .

' In this casej the'recursive definition of ATW can be expanded in r to give "

ATW = -a £ /3''VW£(WT-'), (4.35)
i=0

where it is clear that the weight update at any time T is actually influenced by many
local gradients, each evaluated at earlier points WT~' along the trajectory. The result
is an "average" gradient which tends to lead to fewer attractor basins by avoiding small
minima basins. The larger the momentum parameter, the greater the averaging effect.
Furthermore, for plateau regions of the error surface, the successive local gradients are
about the same, and then it can be shown that Eq.(4.35) converges to

with an effective learning rate of a/(l — /?) [HeKP:91]. On the other hand, in
an oscillatory situation, the weight update responds only with coefficient a to
instantaneous fluctuations of the gradient. The overall effect is to accelerate the long
term trend by a factor of 1/(1 — /?), without magnifying the oscillations.

The use of a momentum term seems adequate mainly with pattern-by-pattern or
batch learning modes. If on-line learning is selected, it must be taken into account
that the distribution of errors along the different time steps within a training sequence
may be quite irregular, possibly with no error signal (zero gradient) during some time
intervals.

2As far as we know,-neither conjugate gradient methods nor quasi-Newton techniques have been
adapted to be used in RNNs up to now.
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/J.L2 Second-order SLRNNs • •

Second-order SLRNNs have been proposed by Giles et al [GiMC:92,GiSC:90,SuCG:90]
and Pollack [Poll:91] to be used for grammatical inference. The fundamental feature
that supports the use of second-order SLRNNs for the regular GI problem resides
on the fact that the architecture is implicitly oriented to represent the transitions
6(state, input) = next^state of a DFA. The explicit representation of finite-state
machines in both second-order and first-order SLRNNs will be studied in depth in
Chapter 7.

In a second-order SLRNN, each unit has a weighted connection for each pair formed
by an input and a unit. Each weight modifies the corresponding product of the input
Value by the unit activation value. As in first-order SLRNNs, each unit can be trained
at each time step if desired. From (4.1), (4.2) and (4.4), we obtain a single system of
equations that describes the dynamic behavior of a second-order SLRNN

M N

Vk(t) = 9 ( £ E "W *.'(*) Vi(* ~ 1) ) for 1 < ¿ <7V, (4.37)
t'=i j=i

where again the sigmoid function gs given by (4.5) has been typically used as activation
function g [Poll:91,GiMC:92]. As in first-order SLRNNs, the network starts running
at time step t — 1 with a state vector S1 = [?/i(0),...,y^(0)]T that is arbitrarily
initialized; an interesting alternative has been studied by Forcada and Carrasco, who
have proposed to include the search of an optimal initial state in the learning algorithm
[FoCa:95]:

Some variations on the basic second-order SLRNN architecture given by (4.37)
have been reported [MiGi:93,WaKu:92,ZeGS:93]. A bias weight Who may be optionally
added to each unit Uk of the SLRNN, i.e.

M N

y*(í) = 9 Ko + £ £ WMÍ *••(<) VA* - !) ) for 1 < A: < TV, (4.38)

although it has been demonstrated empirically that the inclusion of bias weights does
not improve the learning performance of the network [MiGi:93]. Watrous and Kuhn
[WaKu:92] have used a type of second-order SLRNN, in which output units are not
recurrent, that includes both first-order and second-order connections for each unit,
i.e.

M M N-P

where an input whose value is always 1 is included among the M input signals.
Nevertheless, the results that have been published for a regular GI task using
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Tomita's languages [Tomi:82] as benchmark using the basic second-order SLRNN
[GiMC:92,MiGi:93], and using the Watrous and Kuhn's architecture [WaKu:92], with
a true gradient-descent training algorithm in both cases, have shown a better learning
performance of the former model. Finally, Zeng et ol. [ZeGS:93] have proposed a
modification on the basic second-order SLRNN that mainly consists of using a discrete
activation function g¿ when the network runs, but using the corresponding values
given by a (differentiable) sigmoid activation function ga for training the net through a
pseudo-gradient learning technique; this last variation will be discussed in more detail
later.

Now, for clarity purposes, let us decompose the dynamics of a second-order SLRNN
a s . - • ' • • • > • • • ' ' " . ' .

M N

• " <^(0 - E E "W *«'(*) %(< - !') for !<* '<#>

yk(t) = g MO) for 1 < k < N. (4.41)

As before, let us assume that a training sequence, from time step t — 1 to t = í/,
is given, where for each í, there are target values dk(t) for a certain subset of units
T(0- Then, the definitions of the errors e*(0, E(t), and jEio<af(M/)> given by Eqs.
(4.10), (4.11), and (4.12), respectively, also apply here. Again, a gradient-descent
procedure for error minimization implies adjusting the weights along the negative of

= _Q 0 a for i<kJ<N,l<i<M, (4.42)

where a is some. fixed positive learning rate, and a momentum term could be added
optionally as discussed earlier.

The three gradient-descent learning algorithms for training first-order SLRNNs that
have been described in the preceding subsection (BPTT, RTRL, and Schmidhuber's)
may be adapted easily for training second-order SLRNNs as well. As far as we know,
only the second-order version of RTRL has been reported previously [GiMC:92], in
which the weight changes corresponding to each time step are given by

= a £ e,(0 f^ (4.43)

and the partial derivatives pj¿,-j(0 == dy¡(t)/dwkij, I < I, k, j < N, 1 < i < M, can be
computed forward in time using the dynamical system

M N ]
Slk*i(t)yj(t - 1) + E E ™lmnXm(t) Pn

kij(t ~ 1) (4.44)
m=\ n=l J
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with initial conditions •
rio-(0). = 0. (4.45)

This second-order version of the RTRL algorithm can be applied on-line, using
Eq.(4.43) directly, or off-line, updating the weights at the end of the training sequence
according to the overall correction

&vkij = E Au*0-(<). í4-46)

The method requires fixed-size storage of the order 0(N3M), due to the variables pl
k-,

and it is computationally expensive, requiring 0(N4M2) operations per time step, due
to1 the computation of the p[,-/(i) values. " • - - . , . - • < > . . . -

The BPTT algorithm for second-order SLRNNs takes the following form:

< - l ) (4.47)
t=i

where ¿¿(f) can be computed for all k e [1, AT] and í € [M/] by the recursive backward
propagation

<7'M¿)] e*(í) if t = t¡
f, (i\ — N M

"( j ~
1=1 ° \i=i /

In this case, the storage of the values ejt(í), g'[&k(t)], Xi(t), and yj(t — 1) is required,
for 1 < ¿ < M, 1 < k,j < N, and 1 < t < t¡. On the other hand, the second-order
version of the BPTT algorithm needs only O(N2M) computations per time step.

For arbitrarily long training sequences, an efficient learning algorithm for second-
order SLRNNs can be defined by modifying adequately the Schmidhuber's gradient-
descent algorithm. The method can be summarized as follows: '

| dEtota,(t0 + l,tp + h) |

dwkij J dwkij(t)

E
(=1 t=to+l

i¿o) - E í/(*o)9i«(<o) -
t=to+l

(4.50)
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where the first term of (4.50) is already known from the previous block of time steps,
the ¿>k(t) can be computed for all k € [1, N] and t 6 [to, to + h] as

r N (M M
efc(*) + $>(* + !) (^iikXi(t + l } ) \ Íft0<t<t0 + h,

L /=i \t=i / J
(4.51)

and the g[,-j(<o) values are also known from the previous block.

Initially, for t0 = 0, we have that qkij(0) - 0, for 1 < /, kJ < N, 1 < i < M]
afterwards, the ql

kij variables are updated at the end of each block (except for the last
one of the training sequence) using

. " ' • • ' ' ' N ' • '• ' to+h . • , • ,

¿y(*o + *) = E 7(n(io)9fe
nu^o) 4- "

n=l

where 7/¿(í) can be computed for all /, k Ç. [1,N] and t € [ío^o + h] as

if í = ¿o + h
' AT ' / M

nifc*i(* + 1) if *0 < í < *0 + A-
n=l \f=l /

For the particular case of tQ = 0, we have 7/fc(0) = 0 and ¿¿(0) = 0, for 1 < /, k < N.

Provided that the block size h is of order O(N) (e.g. h = TV), the second-order
version of Schmidhuber's algorithm performs an average of 0(N3M) computations per
time step and requires fixed-size spacesof the order O(N3M), which is due, respectively,
to the calculation and storage of the <?[t-j(io) values. When i¡ < h, the method is
equivalent to the second-order version of BPTT, requiring only O(N^M) computations
per time step.

Now, let us turn our attention to the pseudo-gradient learning algorithm reported
by Zeng et al. for training second-order SLRNNs with a discrete activation function
[ZeGS:93]. With the aim of allowing the network to form stable states during training,
Zeng et al. suggested to add a discretization step for computing the activation values
of the units, this is

M N

hk(t) = ^ ( E E «>*ü *«•(<) VA* ~ !) ) for 1 < * < #, (4.54)

= D ( hk(t) ) for 1 < A; < TV, (4.55)

where the sigmoid function gs given by (4.5) was taken as g, and

/ 0.8 if /i > 0.5
= 0.2 if fc < 0.5.
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In addition, Zeng et al. assumed that the input vector I* does always belong to an
orthonormal basis, with just one input on, %i(t)(t) = 1, and the rest off, xm(i) = 0 for
m T¿ z(í), which corresponds to a local representation of a finite set of input symbols
[ZeGS:93]. In this way, the second-order SLRNN can be seen as M first-order SLRNNs
sharing the units, such that at each time step t, the input vector I* acts like a switching
control to enable just one of the nets and disable the others. Hence, their second-order
SLRNN dynamics can be rewritten as

N

yk(t) — 9d ( E wki(t)j y j ( t — 1) ) for 1 < k < TV, (4-57)

where . . . .
• , . / 0.8 if a- > 0.0 . , .

9d^ =-(0.2 if a < 0.0. " ' (4'58)

In operational mode, the network is equivalent to a network with a hard-limiting
activation function only (as shown above), but during training, however, both the
derivative of the soft sigmoid function ga and the analog activation values A*(<) are
made use of in a pseudo-gradient learning algorithm for updating the weights. Thus, the
weights of this type of second-order SLRNN can be adjusted during training according
to

w = _a *o*a for i<kJ<N,l< i < M, (4.59)

where d/dwkij denotes the "pseudo-gradient" with respect to a weight Wkij- An
approximation of the second-order version of RTRL was proposed to compute the
pseudo-gradient dEtotai(l,tf)/dwkij for all the weights [ZeGS:93]. Indeed, Zeng et
al. described an algorithm for the particular case in which there is an error value
only at the end of the sequence and only for one unit (string classification task), i.e.
Etotal(l,tf) = E(tf] = ¿(do(tf) - h0(tf))

2, but it is straightforward to define a similar
learning algorithm for the general case, when there may be errors for various units at
several time steps, as follows:

(4.60)
dwkij

where the pseudo-gradients pl
kij(t] = dh¡(t)/dwkij, 1 < /, k, j < TV, 1 < i < M, can be

computed forward in time at each time step as

N ^ I

n=l kt3 J

from the initial values
pL-(0)=0. (4.62)
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In fact, the preceding learning algorithm could be further generalized by removing
the restriction of the input local encoding. Moreover, the computation of the pseudo-
gradient dEtota.i(l,tf)/dwkij may be performed using an approximation of the second-
order version of BPTT or Schmidhuber's algorithm instead of using the RTRL-like
approach described.

In any case, it is clear that, in carrying out the chain rule for the gradient, the
real gradient dy¡(t)/dwkij, which is zero almost everywhere, is replaced by the pseudo-
gradient dh¡(t)/dwkij. Zeng et al justified the use of the pseudo-gradient in the
following manner [ZeGS:93]: Suppose the net-input of a unit is <TQ > 0, so the activation
value stands on the upper side of the hard threshold function gd(&}, and we wish to
move it downhill. The derivative of <7d(cr) does not provide any information, since it is
zero at cr0. On the other hand, the derivative oi-gs(e) is positive at <TO and increases as
<TO —» 0; so it indicates that the downhill direction is to decrease CTQ¡ which is also the
case in <7d(<r), and the magnitude of g's(cro) indicates how close we are to a step down
in gd(<r)- Therefore, the gradient g's(cro) can be used as a heuristic hint as to which
direction and how close a step down is. This heuristic hint is what supports the use of
the pseudo-gradient in the learning algorithm.

To end this subsection, I will mention briefly some other learning algorithms that
have been used for training second-order SLRNNs. Pollack [Poll:91] used a truncated
gradient-descent algorithm to train a second-order SLRNN, given by (4.37), such
that the backward computation (through time) of the gradient only arrived at the
penultimate time step, thus reducing the computational cost. However, the results
reported for a string classification task using this truncated gradient learning algorithm
were very poor [Poll:91]. Watrous and Kuhn [WaKu:92] trained their second-order
SLRNN, with dynamics given by Eq.(4.39), using a BPTT-like computation of the true
gradient and the BFGS algorithm for gradient-descent optimization [Luen:84]. Finally,
Forcada, and Carrasco proposed an extension of the second-order RTRL algorithm
[FoCa:95], in which the gradient of the total error with respect to the activation values
of the units at t = 0, dEt0tai/dyk(G) for 1 < k < TV, was also computed in order to
learn the initial state (in addition to the weights). . .
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4.1.2 Augmented single-layer recurrent neural networks
(ASLRNNs) ' ' '

The concept of augmented single-layer recurrent neural network (ASLRNN) was
introduced by Goudreau and Giles in the context of studying the abilities and
limitations of SLRNNs for representing finite state machines (FSMs) [GoGi:93,
GoGC:94]. An ASLRNN is formed by adding one or more layers of feed-forward
neurons to an SLRNN, with the output units in the highest layer. In this way, the
single-layer of recurrent units is concerned with the internal state representation and
the state transitions of an FSM, whereas the output function of the states is associated
with the feed-forward layer(s).

Goudreau [GoGi:93] pointed that an ASLRNN including just one additional feed-
forward layer is approximately equivalent, in terms of representational abilities, to an
SLRNN with non-recurrent output units in which an extra time step is allowed before
the output is read. This approach is closely related to the use of an end-of-string
symbol for the task of sequence classification, where the output is only required at the
end of the sequence, and therefore, the end symbol gives the SLRNN an extra time
step to process the solution.

In the sequel, we will only deal with the former (and more general) interpretation of
augmented SLRNNs. This is, we define an ASLRNN as a general layered architecture,
such that the first-layer of (non-input) units is a fully-connected discrete-time RNN
model, either a first-order or a second-order SLRNN, and the rest of layers contain
feed-forward neurons that receive (first-order) connections from all the units in the
previous layer. Hence, the activation values of the recurrent units are also fed into the
feed-forward neurons of the second layer, and the neurons of the last layer constitute the
output units of the network. It is assumed that the activation values of the output units
are computed before new external inputs are introduced and the activation values of
the recurrent units are fed back; i.e. the time discretization of the network operation
is carried out by putting the time step delay after the computation of the network
outputs.

Let L be the total number of layers in an ASLRNN, L > 2, where for / 6 [1, L], N¡
denotes the number of units in layer /. For compatibility with previous notation, let
N = NI be the number of recurrent units and let P = Nj_, be the number of output
units. Again, assume that the network has M external inputs that are fed into the
recurrent layer, which are labelled XI,...,XM- The net-input and activation values of
the units U{,...,U1

N{ in layer / are labelled a[,..., ffl
N¡ and t/{, ...,yht, respectively. Let

S* = [yl(t — 1), ...,ypf(t — 1)]T and I* = [xi(í), ...,:TM(Í)]T represent the current state
and input vectors, respectively, that contain the data supplied to the recurrent layer
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at time step t. Activations are forward propagated throughout the network within a
single time step, and consequently, O* = [ y i ( t ) , ...,yp(t)]T represents the output vector
that is obtained in response to the pair (I'jS*).

The equations that describe the dynamic behavior of an //-layer ASLRNN are

yl(t) = 9l (/(Wl.I'.S*)) for ! < * < # , " (4.63)

for the recurrent layer, and

Wi-i

for'the higher feed-forward layers, where

denotes the vector of weights of the recurrent unit Uk ,
• wl

ko is the bias weight of the feed-forward neuron t/¿,

• wl
kj is the weight corresponding to the incoming connection of unit Ul

k from unit

c/j-,
• a possibly different activation function g¡ is allowed for each layer /, but all the

units in the same layer use the same activation function, and finally,

• the aggregation function of the recurrent units is given by

M N

/(w},r,s') = X>«*.-(0 + Ewi(M+J-)»J(*-i) . (4-65)
t=l j=l

in a first-order ASLRNN, and it is given by

M N

/(wi.r.s') = £ E «^ *,-(*) yjc*-1) • (4-66)t=i .3=1
in a second-order ASLRNN.

For the supervised training of ASLRNNs, we can use a gradient- descent learning
method that applies common backpropagation [RuHW:86] to the feed-forward layers
and either first-order (second-order) BPTT, RTRL, or Schmidhuber's algorithm, to
the first-order (second-order) recurrent layer, where the error signals for the recurrent
units are back-propagated from the output layer.

Again, we consider that the network starts running at time step í = 1, using an
arbitrary initial state vector S1 = [?/í(0), ••·,yh(Q)]T, and a training sequence of t f time
steps is provided, where T(t) denotes the set of indices of output units U^ for which
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there exists a specified target value <4(i) at time t. The error of an output unit U% at
time step t is defined as

/ , \ j "fc(i) — y k (t) ií K t j. i í i f. „_,
errk(t) = [Q" otherwise; í4'67)

the total squared error of the network at time step t is

W = \ ¿ í«T*(f)]a-, (4.68)
t.—1

and the total squared error over the whole training sequence Etota/(l,i/) is-just the
sum of the errors E(t], for 1 < t < i¡. The weights of the ASLRNN are adjusted along
the negative of V\v-Eíoíaf(M/) in a pure gradient-descent scheme, but a momentum
term might be added optionally to smooth the weight trajectory.

In order to calculate the gradient of the total error for each weight, we need to
define

-j, , _ dEtotai(l,tf) _ Y^ dE(r) i^i^ri-^'-fN í A. KQ\
da\(t) ~ ¿Í da\(t] ' ~ l ~ '' .

It is clear that the net-input of the feed-forward neurons at time step t only affects the
error of the network at time step t; therefore,

and these derivatives can be computed by common backpropagation as follows:

/ » \ • _T 1 __ T
C/ / j I 6 í JJL í *~~ JLs»

Wl+1 (4.71)
i f 2 < / < L . { }

Hence, the weights of the feed-forward neurons (for layers / € [2, L]) are updated
according to

= —a '; ' • = 2_, ¿±wïj(t] (4-72)

where
a *#) if ^ = °'1 if j > o.
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OUTPUT UNITS j

OUTPUT UNITS NON-RECURRENT HIDDEN UNITS

RECURRENT HIDDEN UNITS RECURRENT HIDDEN UNITS

One time step delay • . . . One time step delay. .

INPUT SIGNALS INPUT SIGNALS

Fig. 4.2 Two-layer ASLRNN (left) and three-layer ASLRNN (right) architectures.

Now, let

«(*) - - 4M2'«) for 1 < i < N. (4.74)

As shown above, these e,-(i) values are obtained by back-propagating the error E(t) to
the units in the first-layer.

The weights of the recurrent neurons (for layer / = 1) can be updated from
the information given by Eq.(4.74) using the proper version (either first- or second-
order, depending on the type of ASLRNN) of either BPTT, RTRL, or Schmidhuber's
algorithm. To this end, just substitute the e,-(i) values given by (4.74) for the e,-(i)
or ek(t) errors appearing in Eqs. (4.16) and (4.48) for BPTT, (4.22) and (4.43) for
RTRL, or (4.27) and (4.51) for Schmidhuber's algorithm. In particular, the first-layer
derivatives <5¿ (í), 1 < i < TV, defined in Eq.(4.69), can be computed for 1 < í < t¡
using Eq.(4.16) or (4.48), for first-order or second-order ASLRNNs, respectively.

Since we have simply applied the chain rule, it can be shown that the resulting
learning algorithms for ASLRNNs correctly compute the true gradient of the total
error with respect to the weights of the recurrent layer. In any case, all the weights
of the network should be updated at the same time, e.g. at the end of the training
sequence (using any of the three algorithms), or after a block of h time steps (using
Schmidhuber's or RTRL), or at each time step (only with RTRL).
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It is well-known that at most 2 hidden layers are enough for a feed-forward network
to approximate any function and just one hidden layer is enough to approximate any
continuous function [HeKP:91]. Consequently, the number L of layers in an ASLRNN
is typically 2 or 3, giving rise to the general two-layer and three-layer ASLRNN models
sketched in Fig. 4.2, where the recurrent hidden units may have first- or second-order
connections.

The Simple Recurrent Network (SRN) architecture proposed by Elman [Elman:90]
and used by several researchers [C1SM:89, DaDa:91, SeCM:91], which is displayed in
Fig. 4.3, was conceived as a modified feed-forward network with one hidden layer
(trained by common backpropagation) such that the activation pattern of the hidden
units is copied onto a set of "context" units, which feed into the hidden layer along
with the input unitsr Actually, an SRN is simply a,two-layer.first-order ASLRNN,
that is trained using the backpropagation algorithm to update all the weights of the
network. This implies, of course, that a severely truncated gradient is computed for
the weights of the recurrent hidden units, and therefore, the learning performance is
normally impaired with respect to the case of using a true gradient-descent learning
method for the same network, such as the combined learning methods for ASLRNNs
aforementioned.

OUTPUT UNITS

HIDDEN UNITS

/^
'

CONTEXT UNITS INPUT UNITS

Fig. 4.3 The. Simple Recurrent Network (SRN) architecture proposed by Elman.
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4.1.3 Recurrent Cascade-Correlation (RCC) architecture

The Recurrent Cascade-Correlation (RCC) [Fahl:91a] is a recurrent version of the
Cascade-Correlation learning architecture of Fahlman and Lebiere [FaLe:90]. As the
SLRNNs and the ASLRNNs described previously, RCC can learn from examples to
map a sequence of inputs into a desired sequence of outputs. However, in this case, the
network is constructed incrementally: new hidden units with recurrent connections are
added to the network one at a time, as they are needed during training.

The original Cascade-Correlation is a supervised learning architecture that builds a
near-minimal multi-layer network topology in the course of training [FaLe:90]. Initially,
the .network,contains only inputs, output units, and the connections between them.
The single layer of connections is trained using the Quickprop algorithm [Fahl:88] (a
variation on back-propagation) to minimize the error on the training set. When the
level of error stops decreasing, the performance of the network is evaluated. If the
performance is good enough, the learning ends. Otherwise, a new hidden unit is added
to the network in an attempt to reduce the residual error.

Before adding a new hidden unit in the Cascade-Correlation approach, a pool of
candidate units is tested, such that each of these units receives weighted connections
from the network's inputs and from any hidden units already present in the net, but
their output activations are not yet connected to the output units. Then, the weights
of each candidate unit are adjusted to maximize the correlation between the activation
value of the unit and the residual error yielded by running the current network over the
patterns in the training set. When the correlation scores stop improving, the candidate
unit with the best correlation is selected as the new hidden unit, the weights associated
with its incoming connections are frozen, and all the weights of the output units are
re-trained, including those from the new hidden unit. The process of adding a new
hidden unit and re-training the output layer is repeated until the error is small enough.
Note that each new hidden unit effectively adds a new layer to the net, since it receives
connections from all the old hidden units.

The main advantage of Cascade-Correlation is that a reasonably small (near-
minimal) network is built automatically, thus eliminating the.need for the user to
determine in advance the number of layers and hidden units in a feed-forward network.
In addition, learning is fast, as only a single layer of weights is being trained at any
given time, and a good generalization can be expected, due to the.small size of the
constructed network.

The Recurrent Cascade Correlation (RCC) architecture [Fahl:91a] adds recurrent
operation to the original Cascade-Correlation. To this end, each of the hidden and
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candidate units is provided with a single weighted self-recurrent link that feeds back
its own activation value on the previous time step.

Let M be the number of network inputs and let P be the number of output units in
the network. At a certain stage during the training process TV hidden units will have
been added. Let Xj(t) denote the network's j-ih input at time step £, and let y¿(¿)
and Ok(t) denote the activation value of the z'-th hidden unit and the k-ih output unit,
respectively, at time step t. The equations that describe the dynamic behavior of the
active network (without candidate units) at the current training stage are:

M+t-l . -

y,-(f) = g ( w^yí(t - 1) + Ç wízj(t) ) for 1 < ¿ < N, • (4.75)

M+N
ok(t) = g ( E w°kjZj(t) ) for 1 < k < P, (4.76)

• j=i

where g is the activation function (Fahlman proposed the sigmoid-like hyperbolic
tangent), w^0 refers to the weight of the self-recurrent link of the z'-th hidden unit,
and the inputs Zj(t) of the incoming non-recurrent connections are given by

'j(t) ifj<M
*i(t) = | (4.77)

For the process of selecting a new hidden unit, some number C of candidate units
are incorporated, with dynamics given by

M+N

Vi(t) = g ( wc
ioVi(t - 1) + £ u£*XO) f o r l ' < t < C 7 , (4.78)

where v,-(i) denotes the activation value of the z'-th candidate unit at time step ¿, and
WJQ refers to the weight of its self-recurrent link. This weight is trained together with
the rest of weights of the candidate unit to maximize the correlation of the unit's
activation value with the residual error. More precisely, the goal of the adjustment of
the z'-th candidate weights is to maximize the value of

= E M = E
•\s\ */(

EEZ—/ Z—/
s=l <=1

(4.79)

where S is the training set of sequences, ek(t) denotes the error of the k-ih output unit
at time í of a given sequence 5, and the quantities v] and e£ are the values of Vi(t) and
e¿(í) averaged over all the time steps of the sequences in the training set.



132 Chapter 4. Grammatical inference through connectionist approaches

In order to maximize /?,-, the partial derivative of ./?, with respect to each of the
candidate unit's weights wfj must be computed:

rifí- p '5' t/^ r)v-(f}L/jClt V—^ . / \ K—v X~v / / , \ \ UUt\L) . _.„•.
— x çicmf T*-I ï \ \ ipi i / i f i i f 4. Xillf \ c — ' j °ioli\'tk} / j / j \*-·K\II ^k) n c > ^t.OU^

Uwij k=l s=l t-l °W\j

where the derivatives dvi(t)/dw¿j are given by

«j

if 3 = 0

It is assumed that the candidate activation value and the derivatives are all zero at
t = 0. Hence, the derivatives dvi(t — l)/dwjj are always known from the previous
time step, and it is only required to store these values (one for each weight), plus the
previous activation Vi(t — 1), to compute the derivatives at the current step t.

When the correlations R¿ (1 < i'• < C} do not improve with further training, the
candidate unit associated with the highest correlation RÍ is selected as the new hidden
unit (with index N -f 1), its weights w>(jv+i)¿ = wij (O ^ J' ^ M + N) are frozen, and
new connections are established from the new unit to each of the output units. Then,
the weights wjy (1 < k < P, 1 < j <M + 7V-fl)of the output units are re-adjusted to
minimize the total error on the training set. Several such cycles, one for each hidden
unit, are performed until the residual error is considered acceptable or stabilizes.

The RCC architecture described above retains the advantages of the original
feed-forward version (automatic choice of network topology, fast learning, good
generalization, ability to create complex high-order feature detectors through the
cascade of hidden units), while it permits to learn tasks involving sequences.

4.1.4 The DOLCE architecture

If a recurrent neural network (RNN) is wanted to learn to emulate a finite-state machine
(FSM), as in the case of regular grammatical inference, the fact that the state dynamics
in the continuous state space of the network, which is due to a continuous activation
function in the hidden units, does not match well to the discrete behavior of an FSM
should be taken into account. We will see in a later section that a DFA can be extracted
from the dynamics of the internal states of a trained RNN by using clustering techniques
a posteriori. An alternative is to use a discrete activation function, as in the work by
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Zeng et al. [ZeGS:93] commented earlier, but then, a heuristic pseudo-gradient learning
algorithm must be used to train the RNN.

Das and Mozer [DaMo:94] have proposed a different alternative, that consists of
integrating an adaptive clustering module within the network, whose parameters are
adjusted during training, along with the network weights, using a true gradient-descent
scheme. The DOLCE architecture proposed by Das and Mozer, which is sketched
in Fig. 4.4a, allows discrete states to evolve in a net as learning progresses, where
the clustering module is used to quantize the state space dynamically. The DOLCE
architecture is based on the assumption that a finite set of discrete internal states is
required for the task, and that the actual network state belongs to this set but has
been corrupted by noise. In this setting, DOLCE learns to recover the discrete state
with maximum a posteriori probability from the noisy state.

RECURRENT HIDDEN UNITS

One time step delay

OUTPUT AND STATE UNITS

One time step delay

INPUT SIGNALS

a)

INPUT SIGNALS

b)

Fig. 4.4 a) The DOLCE architecture proposed by Das and Mozer.
b) The first-order 2LRNN proposed by Manolios and Fanelli.

The DOLCE architecture is similar to a two-layer second-order ASLRNN, with the
difference that the hidden layer activities are processed by the clustering module before
being propagated. The dynamic behavior of the network can be specified as

MO =

M N

£ E
t=i j=i

for (4.82)

yk(t) = Dk ( h¿, clustering-parameters ) for I < k < N, (4.83)

Oi(t) = <?2 «o + E <•&(<) ) for 1 < i < P> (4-84)
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where #1,52 are different} able activation functions for the hidden and output layer,
respectively, and for every time step í, I* = [xi(t),...,XM(t)]T '1S the input vector,
h* = [/í1(í),...,/ijv(í)]T is the hidden state vector (i.e. the activation pattern observed
in the hidden units at time step í), S* = [yi(t), ...,yN(t)]T is the state vector obtained
after clustering, and O* = [oi(í), ...,OP(Í)]T is the output vector of the network; finally,
Dk is a differentiate function that computes the fc-th component of the state vector
from the hidden pattern, depending on some clustering parameters.

At first, the objective of the clustering module is to map regions in state space to
a single point in the same space, thus partitioning the state space in clusters, where
each cluster corresponds to a discrete internal state. Moreover, the clusters must be
adaptive and dynamic, changing over the course of learning. To be used in DOLCE, a
clustering algorithm must incorporate a pressure to produce a small number of clusters,
and it must allow for a soft or continuous clustering during training, in order to be
integrated into a gradient-based learning procedure. Das and Mozer proposed the
use of a Gaussian mixture model for the clustering module, where the mixture model
parameters are adjusted to minimize the performance error of the network.

The assumptions underlying the use of a Gaussian mixture model are the following
[DaMo:94]:

1) a finite set of n true internal states C = {ci, ...,cn} is required, where each ci is
a vector of TV activation values;

2) any observed hidden activation pattern h belongs to C but has been corrupted
by noise due to inaccuracy in the network weights;

3) the noise is Gaussian and decreases as the weights are adjusted to better perform
the task.

A Gaussian mixture distribution that models the observed hidden states is

), «r, q) =

where erf is the variance of the noise that corrupts state Ci, ç, is the prior probability
that the true state is c¡, and TV is the dimensionality of the state space (i.e. the number
of hidden units). The parameters of the mixture distribution (n,C,cr, and q) are all
known at every time step, but they are changed during training, except the number of
true states n, that is only modified indirectly, as will be explained.

Given a noisy observed hidden state h, the maximum a posteriori (MAP) estimator
of h in C, denoted h, should be determined to replace the noisy state in all subsequent
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computation. The probability of an observed state h being generated by a given true
state c¡ is

p(h|ci) = (27Tcr,2)-JV/2 e-|h-c¡lW5 (4.86)

and, using Bayes' theorem, the posterior probability of true state cj given h is

-. (4.87)

Therefore, the MAP estimator is h = c¡, where c¡ is the true state that maximizes
p(cj|h), for 1 < j < n. However, because a differentiable transformation is required
for gradient-descent learning, a "soft" version of MAP, given by

. -
was proposed and used by Das and Mozer instead of h.

Now, we can write the soft transformation performed by the clustering module at
time step í as

c,,
tl '" £?=i «,- (2™?)-'

(4.89)

During training, the weights of the network can be updated along the negative of
the gradient of the total error, using a gradient-descent method based on one of the
combined algorithms mentioned in Section 4.1.2, such that the derivatives of the above
transformation are included in the application of the chain rule. For instance, if RTRL
is the underlying algorithm for training the weights of the recurrent layer, then the
required partial derivatives Pkij(t) = dy¡(t)/dwkij, 1 < /, k, j' < N, 1 < i < M, can be
decomposed as

P'..(t) = y Mil ^ m
tj

 r=1 dhr(t)

and computed forward in time using

N PÍ,. u\ r M N,
PU(¿) = E 9((°r(t}} ^X,-(*)y,.(< - 1) + E E

r=l onr(l) L m=l o=l
(4.91)

instead of Eq.(4.44), where dy¡(t}/dhr(t), I < /, r < N, can be calculated by derivating
the system of equations (4.89) with respect to each component hr(i) of the hidden state
vector h*.
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Concerning the learning of the clustering parameters, the following approach was
proposed by Das and Mozer [DaMo:94]. The number of clusters or Gaussian bumps n
is initially set to a large value (since n should not be less than the number of states
in the target FSM), and the training procedure includes a technique for eliminating
implicitly the unnecessary true states in C. At the start of training, each Gaussian
center Q is initialized to a random location in the hidden state space, the standard
deviation of each Gaussian <T,- is set to a large value, and the prior probabilities are set
uniformly to 9,- = 1/n, for 1 < i < n. The mixture model parameters C,a, and q are
adjusted by gradient descent in a global cost measure C defined as

n
C= Etotai(l,tf) - A £ c.-lrifc (4.92)

where Et0tai(l^tf) is the total squared error related to the performance of the network
over a training sequence, which is measured at the output units, and the second term
is a complexity cost, the entropy of the prior distribution q, where A is a regularization
parameter. The complexity cost is minimal when only one Gaussian has a nonzero
prior probability, and maximal when all the prior probabilities are equal. Hence, the
second term of the cost measure encourages unnecessary Gaussians to drop out of the
mixture model.

. Das and Mozer used an extension of BPTT to calculate the gradient of C with
respect to the model parameters C, <r, and q. Actually, they proposed an optimization
procedure that is performed not over <r and q directly but rather over hyper-parameters
a and b, where of = exp(a,-)//? and ç,- = exp(—b]) / £)"=1 exp(—6]), for 1 < i < n. The
temperature parameter ¡3 scales the overalt spread of the Gaussians, which corresponds
to the level of noise in the model. Since the level of noise should decrease as performance
on the training set improves, /? oc l/Etotai is recommended. In this way, if Etotai —»• 0,
then /3 —> oo and the probability density under one Gaussian at h will become infinitely
greater than the density under any other; hence, in such a case, the soft MAP estimator
h becomes equivalent to the MAP estimator h, and a set of discrete states is obtained.
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4.1.5 First-order 2-layer RNNs

To end this section, the first-order 2-layer RNN architecture proposed by Manolios and
Fanelli [MaFa:94], which is sketched in Fig. 4.4b, is briefly discussed3. Motivated by
the fact that feed-forward networks with one hidden layer are universal approximators
[HoSW:89], Manolios and Fanelli argued that their architecture is the simplest first-
order network with two recurrent layers that is a universal approximator for discrete-
time, time-invariant dynamic systems [MaFa:94]. Such a system can be described by

s(0 = *[s(<-l),

o(i) = íl[s(í-l),x(0]

-where s(i)' € 9ft" is the 'state of the system at time t, x(i) € Sft*™ is- the input of the
system at time ¿, o(i) € 3ftp is the output of the system at time í, í is a non-negative
integer, $ is the state transition function and ü is the output function of the system.
Note that FSMs can be seen as a particular case of the above systems such that contain
a finite number of states, inputs and outputs.

The dynamic behavior of the network in Fig. 4.4b can be specified as

( M N \

«4 + E <•*,•(*) + E «W)^* - 1) for 1 < ¿ < H, (4.93)
3=1 k=l )

y*(0 = 92 ( u& -f E «WO ) foTl<k<N, (4.94)

where g\,g-i are differentiate activation functions with range [0, 1] for the hidden and
output/state layer, respectively, and for every time step ¿, I' = [xi(t),...,XM(t)]T

is the input vector, h* = [hi(t),...,hH(t)]T is the hidden activation vector, and
S* = [yi(0>--->2//v(0]T ^s *ne state vector. A subset of the state units corresponds
to the output units, which are treated exactly as the state units, except that they are
trainable units and their activations are considered the output of the network, e.g.
O* = [ï/i(0>···>í/p(0]:r (with P < NJ can be defined as the output vector.

Manolios and Fanelli proposed a gradient-descent learning technique to train the
above architecture using a modification of the BPTT algorithm to compute the full
gradient. They also suggested to use batch learning, i.e. to modify the weights only at
the end of each training epoch, so that the order in which the training set is presented
is irrelevant [MaFa:94].

3Do not confuse it with a first-order 2-layer ASLRNN, as displayed in Fig. 4.2.
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4.2 Grammatical inference and recognition using
recurrent neural networks

In this section, the two approaches that have been followed to use RNNs for
grammatical inference and recognition are reviewed. The former consists of training a
network to predict the next symbol in a gramatically valid string, and therefore, only
positive examples are included in the training set. The latter consists of training a
network to classify strings according to an unknown target grammar j and to this end,
both positive and negative examples must be included in the training set. For both
approaches, the related learning task is defined in terms of network's input/output,
data representation and training scheme, together with the corresponding procedure
for string'recognition.: Likewise, a summary of the results of the empirical studies
carried out by different researchers using some of the architectures described in the
preceding section is presented.

4.2.1 GI from positive examples: the next-symbol prediction
task

Let S+ be a positive sample (maybe including repeated strings) of a language L over
an alphabet S. Let E' = S U {$} be an extended alphabet including a special symbol
$ that is used as a mark of both the end and beginning of a string, an let 5$~ be the
sample obtained by converting each string 5 € S+ into the form $5$. A recurrent
neural network can be trained to predict the next input symbol (from E') at each step
of the presentation of any string in S$ (next-symbol prediction task). If the sample
S+ is "sufficiently representative".4 of the language L and the RNN is small enough to
generalize the examples, the network obtained after a successful training may be used
as an acceptor of the language L, i.e. to accept the grammatical strings and reject
the ungrammatical ones. In this sense, we can say that a GI process from positive
examples is carried out.

Some reported works have followed this approach for inferring RNNs (of distinct
architectures) that behave as regular language acceptors [SeCM:88, C1SM:89, SmZi:89,
Fahl:91b, CaCV:93]. In most of these works, an alternative extended alphabet
S".= E U {B,E}, B,E £ S, with different special symbols for marking the beginning
and end of a string, has been used, but this representation is somewhat redundant, since
symbol B is only used as a network input and symbol E is only used as a network
output (as explained next).

4The meaning of "sufficiently representative" here will be discussed later.
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A local encoding is typically used to represent the symbols of the language in the
RNN, with one input signal and one output unit for each symbol in S'. This is,
M = P = IE'|, the presentation of an input symbol is performed by setting to 1 its
associated input signal and setting to 0 the rest of input signals5, and when the network
is wanted to predict a given symbol during training, the target value for the output
unit corresponding to that symbol will be 1 and the target value for the rest of output
units will be 0. In addition, the activation value of the output unit associated with
a given symbol, which should be in the interval [0,1], is interpreted as the prediction
value (or probability) for that symbol to be the next symbol in the current string.
Indeed, the local encoding is only required for the output units (with P = |S'|) to
yield the prediction values, whereas a distributed encoding (with M not necessarily
equal to |S'|) could be used for the input symbol presentation.

"Z -'.'• • • ••• O ' >-~ J • > -*' I - •;• -•" - - - ' •' - - , . , . . , , *- • - .' ,-^.- . . - ~ - ^ t - . . - • • . > - . -.1 ,. - ._ ->,*.,. . ^r.^^ 1 TT», .l·Ol·, - ..

Hence, the process of recognizing a string s = ci...c\s\ by the network is carried out
by presenting the symbols of the string s' = $s$ sequentially, one at each time step,
starting with the initial $ and ending with the actual last symbol qs|, and checking,
at each time step, whether the activation value of the output unit associated with the
next symbol in s' is greater than a predetermined threshold. The string s is accepted
when all of its symbols, plus the $ marking the end of the string, are successively
predicted by the network, and it is rejected as soon as one of them is not predicted
(i.e. its output unit activation does not exceed the threshold). Note that, to reject all
the ungrammatical strings, the activation values of the output units corresponding to
all the illegal successors at each step must be below the selected threshold.

In order to learn the next-symbol prediction task, for each string s' = $ci...C|s|$ in
Sj", the network is trained using the sequence of pairs of consecutive symbols in s',
i.e. ($,c1),(ci,c2),...,(c|a|,$), where the first element of each pair refers to the input
symbol and the second one refers to the target symbol to be predicted. Each of these
input/output pairs is translated into an input/output vector representation following
the local encoding aforementioned. Now, it is obvious that using two special symbols
B and E, for the beginning and end of string respectively, instead of the unique special
symbol $ implies an unnecessary symbol addition. In any case, the internal state of
the network must be reset at the start of each string.

The process of grammatical inference, that is carried out during network training,
is implicitly based on the statistics of the presented positive sample. In fact, it has
been pointed out [SeCM:91] and empirically shown [CaCV:93] that the RNN obtained
after training represents a stochastic regular grammar, or stochastic DFA, where the.
state transition probabilities through each symbol are approximately inferred and used
as prediction values for the next symbol in a valid string. Therefore, the positive

5In first-order RNNs, M = |E'| + 1 if a fixed 1-valued input is included for the bias weight.
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sample S1*, that is supplied during training, should be considered as a stochastically
generated sample, which depends on the state transition probabilities of the target
stochastic source. It can be assumed that if the sample S+ is large enough, then S+

will also be structurally complete with respect to the target stochastic DFA containing
the transitions with non-zero probability.

This stochastic nature of the learning problem also affects the selection of the
prediction threshold to be used for string recognition by the net. In the case of
stochastic regular languages, it is clear that the range of suitable values for the
prediction threshold depends oh the target stochastic DFA. More precisely, since the
output-unit activation values are related to the state transition probabilities, the value
« of the prediction threshold must satisfy

. . • , , - , . . ) : ' • • . : . ' • / • • • . : / ; - , • . • ; . • #

0 < u < min {p(9¿,c¿,a*) \ p(c¿,9¿»fl*) > 0} (4.95)
Vg¡,5j6Q,

where Q is the set of states in the target stochastic DFA and p(qi,qj,a,k) denotes the
probability of a transition from state ç,- to state q j through the symbol a¿. If the
minimal non-zero probability of a transition in the target stochastic DFA is unknown,
then the prediction threshold may be set heuristically to some small positive value u
(e.g. a value in the real interval [0.05,0.20]), expecting that the chosen value satisfies
the above condition.

On the other hand, the criterion for ending the training stage should be independent
of a-priori knowledge of the target grammar or DFA, because otherwise, the problem
becomes that of training a 'network to implement a known grammar, and it is not
proper to refer to it as grammatical inference. Some possible criteria for ending the
training stage are to reach a maximum number of string presentations or to stop when
the total prediction error on the training set stabilizes [C1SM:89]. The criterion used
by Smith and Zipser [SmZi:89], consisting of overpassing a predetermined number of
correct predictions, requires prior knowledge of the target stochastic DFA to establish
which are the legal succesor symbols at each step, and which threshold u is adequate
to confront with the activation values of the output units. .

Servan-Schreiber, Cleeremans, and McClelland presented the results of learning
the next-symbol prediction task for the two regular grammars shown6 in Fig. 4. 5 using
Elman's SRNs trained by back-propagation [SeCM:88, C1SM:89]. These two grammars
have also been used as benchmark by other authors to compare the performance of their
recurrent networks for next-symbol prediction [SmZi:89, Fahl:91b, SoAl:94]. For the
simple Reber grammar (Fig.4.5a), the memory of at least two precedent symbols is

6Properly speaking, what is displayed is the corresponding DFAs for the two grammars.
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a) Simple Reber grammar b) Symmetrical Reber grammar

Fig. 4.5 Two regular grammars used as benchmark for next-symbol prediction.

•
é

needed to predict correctly the next symbol at every step7. For the more complex
symmetrical Reber grammar (Fig.4.5b), the last symbol of a valid string is determined
by the first one (without considering the start and end $ symbols) and is independent
of the substring in betwee'n. Therefore, the memory of the past sequence required to
predict the last symbol is considerably larger in this case, since the net must note the
initial V or 'p' and must retain this information while processing an embedded string
of arbitrary length, what makes the prediction task much harder.

For each one of the two Reber grammars, Cleeremans et al. [C1SM:89] generated
a training set of positive strings randomly, such that a probability of 0.5 was given
to each of the two possible continuations for the states with two legal successors.
The prediction threshold was set to 0.3, and two special symbols 'B' and 'E' were
used to mark the beginning and end of the strings, respectively.,- Cleeremans et al.
reported that the simple Reber grammar could be learned after 60,000 training strings

7It must be taken into account that when there are two (or more) legal successors from a given
state, the network will never be able to do a perfect job of prediction. During training, the net will
see contradictory examples, sometimes with one successor and sometimes the other, so the net will
eventually learn to partially activate both legal outputs. In such cases, à prediction will be correct if
the activations of the output units for the two legal successors are above the chosen threshold whereas
the rest of output-unit activations are below it.
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using an SRN with 3 hidden units and after 20,000 strings using an SRN with 15
hidden units. These were the. best results obtained, not averages over a number of
runs. On the other hand, the SRN was unable to learn the prediction task for the
symmetrical Reber grammar, even with 15 hidden units and 300,000 training strings
[C1SM:89]. It must be noted, however, that the SRNs (see Fig.4.3) were trained using
back-propagation as learning algorithm, what means that the error gradient is only
approximated by a truncated computation. Interestingly, the learning performance
of the SRN for the difficult second grammar improved (correct prediction in about
70% of test strings) when the transition probabilities in the upper and lower copies of
the embedded grammar were slightly altered so that the upper and lower copies were
stochastically different.

• Hence, Cleeremans et al. concluded that SRNs are-not able to learn grammars in
which the previous context is relevant for prediction at mid- or long-term but is not
relevant at the intermediate steps before. Nevertheless, the SRNs are able to encode
long distance sequential contingencies if the statistical properties of the embedded
strings depend (even subtly) on the early information. The size of the network, i.e. the
number of hidden units, is also a key factor that affects the temporal memory capacity
and the required learning time. And, of course, the degree of success of the GI process,
for a given network configuration, depends ultimately on the complexity of the target
grammar.

A modification of the SRN architecture termed "Forced SRN" (or FSRN) was
proposed by Maskara and Noetzel to improve the learning power of the SRN model
[MaNo:92]. Specifically, they tried to overcome the failures in prediction that occur
when two different states of the target DFA have the same output (i.e. the same legal
successors and associated probabilities) and the SRN is not able to distinguish them,
because it develops a similar code for both in the hidden layer activation pattern.
The proposed modification consisted of adding two more pools of output units (in the
output layer) which must be trained to reproduce the current input symbol and the
contents of the context units, respectively. This tends to avoid the development of a
similar activation pattern for two different states. Maskara and Noetzel reported better
prediction results and GI performance of the FSRNs for two simple DFAs, which were
not inferred by SRNs with the same number of hidden units due to the above state
discrimination problem [MaNo:92].

Smith and Zipser presented the results of learning the next-symbol prediction task
for the two Reber grammars in Fig.4.5 using first-order SLRNNs trained by the RTRL
algorithm [SmZi:89j. These SLRNNs were also trained by means of pairs {current
symbol, next symbol} within valid strings (positive examples) that were generated
stochastically from each grammar. But, to the contrary of the works cited before,
the state of the network was not reset at the beginning of each string; instead, the
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network ran continuously over a sequence of examples by including a special pair {E,
B} to link any two consecutive strings. A local encoding of the symbols was adopted
both for the input signals and the trainable (output) units. In addition, some number
of hidden units were included to provide the network with a representation space for
state or context information. The recognition of grammatical strings was performed
symbol by symbol in the way described previously, using the activation values of the
output units as predictors of the corresponding symbols and a threshold of value 0.3
to decide the acceptability of the arriving input symbols.

Smith and Zipser reported the following results [SmZi:89]. Between 19,000 and
63,000 training strings were required for a first-order SLRNN, with 2 hidden units and
sigmoid activation function, to learn the simple Reber grammar. The symmetric Reber

• grammar .was/ only ; learned; in some unspecified .fraction of attempts,,and, ;sucqessful
runs ranged from 25,500 strings with 12 hidden units to 173,000 with 3 hidden units.
These results, compared with those reported by Servan-Schreiber et al. for the same
task using Elman's SRNs [SeCM:88], seem to indicate that first-order SLRNNs trained
by RTRL, a true gradient-descent learning algorithm, learn better than SRNs trained
by simple back-propagation.

As remarked earlier, the criterion to stop the training phase used by Smith and
Zipser, which consisted of exceeding a predetermined number of correct predictions,
either during weight updating or with frozen weights, is somewhat tricky from the point
of view of grammatical inference, since the knowledge of the target DFA is needed to
check the correctness of the prediction at each step (i.e. to know which symbols must
have an associated activation above.or below the threshold).

Fahlman further studied the prediction task for the two Reber grammars using
the constructive recurrent cascade-correlation (RCC) approach [Fahl:91b]. Ten and
twenty trials were run for the simple and symmetrical Reber grammars, respectively,
each using a different training set. Each training set consisted of a fixed set of 128
(256) positive strings generated by the simple (symmetrical) Reber grammar, which
was presented repeatedly. Fahlman reported an average of 25,000 string presentations
to learn the simple Reber grammar using a pool of 8 candidate units; RCC achieved
perfect prediction performance after building 2 hidden units in nine of the ten trials
and 3 hidden units in the other. For the symmetrical Reber grammar, RCC needed an
average of 202,000 string presentations to learn the prediction task in 11 of the 20 trial
runs (55% success ratio), using a pool of 32 candidate units; for the successful runs, the
number of hidden units built ranged from 5 to 15 [Fahl:91b]. Hence, the performance
of the RCC architecture was rather similar in both cases to that of the RTRL-trained
first-order SLRNNs.
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. In all the preceding works, the sigmoid function was used as activation function
in all the units of the networks. In Chapter 6, the results of learning the next-
symbol prediction task for the two Reber grammars using first-order SLRNNs and
ASLRNNs with different activation functions are presented. These results, which have
been partially reported in [AlSa:94a, AlSo:94, SoAl:94], display a great improvement
both in learning time and success ratio with respect to the results of the studies that
have been reviewed here.

To end this section, I will mention a work by Castaño et al. [CaCV:93] that dealt
explicitly with the inference of stochastic regular grammars by recurrent networks
through next-symbol prediction. The neural net and learning algorithm (Elman's SRNs
trained by back-propagation), trained task, and symbol representation were identical to
those used by Gleeremaris et,al. [C1SM:89], which have been already described. Three
stochastic DFAs were studied; the former two, which only differed in the adopted
transition probabilities, generated strings that begin with the substring "ba", include
any number of 'c's except two and four, and end with "ae"; the third stochastic
DFA corresponded to the simple Reber grammar, but such that the probability of
the loops was increased over 0.5. For each stochastic grammar, a training set of 30,000
strings was generated. The training scheme consisted of iterating a process of selecting
randomly 5,000 strings from the training set and evaluating the net on a validation
set, until a total number of 200,000 (repeated) training strings were presented to the
net. The validation set for each grammar contained 10,000 examples not included in
the training set.

Let p\pi...p\s\ be the probability of generating a given string s = CiC2...c\s\ by
the stochastic regular grammar to be simulated, where each pi corresponds to the
probability of the grammar rule used to generate the z'-th symbol; and let q\q-2-..q\s\
be the predicted probability of the same string with the inferred network, where ç,-
corresponds to the output activation associated with the z'-th symbol of the string.
Castaño et al. considered that the string s was correctly estimated by the inferred net
if the condition . .

< Thr (4.96)

was verified, where Thr is a chosen threshold and the expression between brackets
corresponds to the normalized likelihood quotient. Since the aim is to achieve p,- = 9,-,
for i = 1,..., |s|, the leftmost term should be very close to zero for every string in the
validation set [CaCV:93].

However, the above criterion presents the drawback of being independent with
respect to the ordering within the string. This is, let s be a string such that
3z,j £ [l--|-s|], i T¿ j, Pi = qj, PJ = c¿, and pi¡ = qk for k G [l--|s|], k ^ i, j; the
criterion given by Eq.(4.96) would compensate these two wrong probabilities and the
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string s would be erroneously considered as correctly estimated. To avoid this kind of
situations, Castaño et al. [CaCV:93] suggested another criterion, which is given by the
following expression:

i 1*1
n £ [In Pi - In c,-.| < Thr. (4.97)
I51 1=1

The results reported by Castaño et al. for the inference of the three stochastic
DFAs aforementioned using Elman's SRNs and the two preceding .criteria showed
that the outputs of the trained networks really approached the probabilities of the
corresponding DFAs. Moreover, the correct string estimation ratio on the validation
set after training was close to 100% in all the cases studied (using the former criterion

...and, taking ¡ Thr,-. Q. 08. for the.first; -two DFAs and Thr,- = ,0.15 .for. the third ¿one)-
[CaCV:93]. More recently, Carrasco et al. have studied the inference of stochastic
DFAs using second-order ASLRNNs with similar good results [CaFS:96].

4*2.2 GI from positive and negative examples: the string
classification task

Let S = (S+, S ) be a sample of a language L over an alphabet S. Again, let S' refer
to the extended alphabet E U {$}, where now the special symbol $ is only used as an
end-of-string mark, and let S$ denote the sample obtained by converting each string
s G S into the form s$. A recurrent neural network can be trained to classify the strings
in S (or 5$), i.e. to discriminate between the positive and negative examples (string
classification task). If the RNN is powerful enough to learn the task but small enough
to generalize the supplied data, the trained network may be used as an acceptor of a
language L' such that L' D S+ and L' D S~ — 0. In the best cases, the final network
accepts the target language, i.e. L' = L. Hence, by training a RNN to learn the string
classification task, a GI process from positive and negative examples is carried out.

Unfortunately, the conditions on the language L, the sample S, and the used
RNN, that are required for the net to perform a successful inference, are still not
well understood. The reported works that have followed this connectionist approach
to GI have basically dealt with the problem of inducing regular languages [Poll:91,
GiMC:92, WaKu:92, MiGi:93, ZeGS:93j. Some techniques to extract a DFA from the
trained network have also been proposed, which will be reviewed in the next section.
Although it was not clearly stated in the cited papers, if the network is wanted to
emulate a target DFA accepting L, then the sample S taken as training set should be
structurally complete with respect to such DFA. This requirement becomes apparent,
according to the RGI theory, if the trained network is used to guide a symbolic state
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merging process from the sample prefix tree automaton [AlSa:94b] (see Chapter 6).

As in the works reported on the next-symbol prediction task, a local encoding has
been typically used, to represent the alphabet symbols in the RNNs aimed at learning
the string classification task8. In this case, there is one binary input signal associated
with each symbol, that is activated when the corresponding symbol is input during
the sequential presentation of a string. In some of the works reported on the string
classification task, a special end-of-string symbol is appended to each string presented
to the network (e.g. [GiMC:92, MiGi:93]), so that the sample S$ over the alphabet
£' is presented during the training stage; in other works, however, the end-of-string
symbol is not used and the original sample 5 over £ is supplied to the net [ZeGS:93|.
Anyway, the internal state of the'network, given by the recurrent unit activations, is
normally reset; at'the start of each, string./.T.., l , . , . , ; „ * . ; . , : o ' ^A •.;•«=:-

*i j\i-; "

If a local encoding is followed, the number of input signals M will be equal to
|S| + 1 or |S| depending on whether the end-of-string symbol is used or not (plus one,
if a fixed 1-valued input is included for the bias weight). In fact, for most of the RNN
architectures, the addition of the end-of-string symbol is not needed to learn the string
classification task. Goudreau and Giles have shown that first-order SLRNNs need to
be augmented to implement any DFÀ, and the use of the end-of-string symbol can be
seen as a way of augmenting the network, since it allows for an additional time step
before the network output for the string js yielded [GoGi:93].

On the other hand, just a single output unit (P = 1) is required to classify a given
string s as positive or negative. The activation value of this output unit after the
string presentation, GI(Í/(S)), which is a value in the interval [0,1], is interpreted as
the degree'of acceptance granted by'the net to the string 5. Thusj s will be accepted if
Oi(tf(s)) > 1 — e and it will be rejected if.oi(i/(s)) < e, where e is a tolerance threshold
such that 0 < e < 0.5. Note that, for e < 0.5, a string s may be neither accepted nor
rejected by the net9.

In order to learn the string classification task, the network is trained using a set
of string-response (s,r) pairs, that includes all the strings in 5", where r — Toccep< if
s 6 S+ and r = Treject if s € 5~, and the constant target values Taccept, Treject are
chosen such that Taccept ~ 1 and Treject c±; 0. Although Taccept = 1 and Trejecí = 0 seems
the most logical selection [MiGi:93, ZeGS:93], other target response values have been

8Actually, nothing forces to do so, and a non-local distributed representation of the input symbols
might be valid as well.

9This kind of symmetry with a possible uncertainty, that is implicit in the problem of GI from
both' positive and negative examples, has inspired the use of Unbiased FSA, which will be defined and
studied in Chapter 5, for symbolic and hybrid RGI.
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used in some works (e.g. Taccept = 0.8 and Treject = 0.2 in [GiMC:92]; Taccept = 0.9 and
Treject — 0.1 in [WaKu:92]). In any case, the proper response r is used as target value
¿i(tf(s)) for the output unit at the time step t/(s), when the full string s has just been
presented10. The error value éi(í), corresponding to the output unit at time step í,
will be zero for all the previous instants from the beginning of the string presentation,
í¿(s), and therefore, the error E t 0 t a ¡ ( t b ( s ) , t f ( s ) ) associated with the string s will be
given by

Unlike the next-symbol prediction task, the total error on the training set should
approach to zero after a successful learning. Hence, this is a possible criterion to stop
•training the net. Another stop criterion', which is less strict,.consists'of.reaching a 0% .
percentage of string classification error over the whole sample; i.e., all the strings in
S+ must be accepted and all the strings in S~ must be rejected by the trained net,
according to the chosen tolerance e. Other stop criteria can be used when a network
fails to learn the task, such as to reach a maximum number of training epochs or to
detect that the network has converged to a (local) minimum of the total squared error
(TSE) function. Note that, in the string classification task, the TSE value in a global
minimum is expected to be approximately zero.

A set of seven simple regular grammars, originally selected for study by Tomita
[Tomi:82], has been used as benchmark in several studies about RGI using different
types of RNNs trained to learn the string classification task [Poll:91, GiMC:92,
WaKu:92, MiGi:93, DaMo:94]. Fig.4.6 displays the minimal-size fully-defined DFA
for each one of the Tomita's grammars. It can be observed that the number of states
in these DFAs is between 2 and 5. The corresponding regular languages, all of which
are over the binary alphabet E = {0,1), can be described as follows:

Tl : 1*

T2 : (10)*

T3 : all the strings not containing an odd number of consecutive O's after an odd
number of consecutive 1 's

T4 : all the strings not containing "000" as a substring

T"5 : all the strings with an even number of O's and an even number of 1's

T6 : all the strings such that |#l's - #0's| mod 3 = 0

T7 : 0*1*0*1*

10As indicated previously, the final time step tf(s) may be defined as the one when the last symbol
of s (or the end-of-string symbol $, if used) is presented to the net.
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Tl T3

T4 T6

Fig. 4.6 77ie seven Tomita's regular grammars used as benchmark for
string classification by RNNs.

Tomita also selected for each language a set of positive and negative examples to be
used as a learning set. Around 20 short strings, with a rather similar number of positive
and negative examples, were contained in each of his training sets. Hence, the selected
training sets were really small sparse samples of the target languages. Nevertheless,
since languages Tl and T2 are very sparse, their corresponding positive samples covered
practically all the short grammatical strings up to length 10; the rest of languages are
more dense, and they were sparsely covered by their positive samples. By using a
method of heuristic search over the space of FSA with up to eight states, Tomita was
able to induce a recognizer for each of the.seven languages defined [Tomi:82].

Pollack [Poll:91] and Watrous and Kuhn [WaKu:92] tried the induction of
recognizers for languages T1-T7 from the original Tomita's training sets11, using a
type of second-order SLRNNs with a non-recurrent output unit and 3 recurrent hidden

11 With the only difference that the occurrences of the empty string A were removed in the training
sets used by Pollack [Poll:91]. '- •• • '
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units, including both second-order and first-order connections12. In both works, a
single input signal was used to represent the input symbols in a non-local manner, but
an end-of-string symbol was only used in [WaKu:92]. However, the main difference
between both studies was that while Pollack used a learning algorithm that computed
a truncated approximation to the gradient, Watrous and Kuhn used a real gradient-
descent algorithm where the complete gradient was calculated through BPTT.

Pollack performed 10 runs on each training set with distinct random starting weights
and trained the networks until all the examples were correctly classified (using e = 0.4)
or a total number of 1,000 epochs was reached. He reported that none of the seven
Tomita's languages were induced, and furthermore, only for Tí and T4 his architecture
was able to learn to classify the sample strings in the 10 runs [Poll:91].

Watrous and Kuhn [WaKu:92] performed 5 runs on each training set, training
the networks until a minimum of the mean-squared error measure was reached, using
Taccept — 0.9 and Treject = 0.1, with no maximum number of epochs fixed. All the
binary strings up to length 10 were used for testing the generalization of the trained
networks (using e = 0.1). For languages Tl and T2, two of the five runs led to a
100% successful generalization, and the language was recognized nearly correctly by a
third network. For the rest of Tomita's languages, even though the training sets could
be correctly learned, none of the runs led to the target language recognition, yielding
rather poor classification rates on the test sample.

Watrous and Kuhn performed two further experiments [WaKu:92]. Using a larger
training set containing 205 randomly selected strings of length 10 or less, language
T4 was perfectly induced in 1 run and nearly correctly induced in other 3 of the 5
runs attempted. On the other hand, language T5 was not inferred .in any of the 5
runs performed using a larger network with 11 hidden units, obtaining in every case a
convergence to a small MSE value in the training phase, but a bad generalization on
the test set.

Giles et al. presented in [GiMC:92] some results of learning the string classification
task for the language T4 using second-order SLRNNs with dynamics given by Eq.(4.37)
and trained by the second-order version of the RTRL algorithm (i.e. a true gradient-
descent algorithm). Instead of using Tomita's small training set, Giles et al. randomly
chose a global training set S of 1,024 strings from the set of all binary strings of length
less than 16, and they trained the networks incrementally in several cycles, starting on
a small working set SQ (of 32 strings) and adding up at each cycle some small number
of strings from S that had not been correctly classified at the previous cycle, until the
whole training set S was learned (using e = 0.2) or a maximum nunber of 20 cycles

12Equation (4.39) gives the dynamics of a recurrent network of this type.
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was reached. For each cycle, a maximum number of epochs was also set. The target
response values were Taccept — 0.8 and Treject = 0.2. An end-of-string symbol was used,
and the initial hidden unit activation values were never reset for on-line training.

Giles et al. [GiMC:92] measured the generalization capacity of the trained nets using
three different combinations of test'sample and tolerance. The largest test sample
consisted of a randomly chosen set of 850,000 strings of length 16 to 99, for which
the maximum tolerance e = 0.5 was used. For'this test set, the number of runs,
with distinct starting random weights, that led to perfect generalization for T4, after
varying the number of neurons N between 3 and 5, was 6 of 10 for N — 3, 4 of 11
for N- = 4, and 2 of 6 for N = 5 (i.e. 'the smaller the number of neurons, the better
the generalization performance). Curiously, although the size of the final working set
for each run swas much smaller 'than ¡the size'of the training set S (between 42 and
72 strings in front of the 1,024 strings in 5), nearly'all networks converged duririg
training, what it means that the complete training set S was learned. For all cases
that converged, the FSA accepting T4; which is shown in Fig.4.6, was extracted from
the trained net through a clustering technique (see next section) followed by an FSA
minimization. Indeed, some of the extracted FSA were perfect recognizers for language
T4: whereas the trained networks, from which the FSA were extracted^ were not. Giles
et al. reported that similar generalization and FSA extraction results were obtained
for the other Tomita's languages, but these experimental results were not presented
[GiMC:92]., • ' :

Miller and Giles presented in [MiGi:93] an experimental comparison of first-order
and second-order SLRNNs (both'with sigmoid3 activation function), as applied to the
string classification task for grammatical inference, using the seven regular grammars
by Tomita13 and a randomly generated DFA of 10 states as benchmark. The training
scheme used was very similar to the one that has been described for the preceding work
([GiMC:92]). In this case, an incremental training was performed using as training set
a complete sample (instead of a random sparse sample) containing all the binary strings
up to length 9 (1,023 total), presented in alphabetical order. Training proceeded for
a maximum of 10 cycles of 500 epochs each, starting on a working set of 50 strings
and-adding up to 50 additional (incorrectly classified) strings at each cycle. Miller and
Giles [MiGi:93] performed training simulations for first- and second-order SLRNNs
with 3 to 9 neurons; more precisely, 10 runs were performed for each of these 14
network configurations using training sets (5+, S~) corresponding to the 8 benchmark
grammars. The successfully converged networks were tested for generalization on all
strings of length 10 to 15 (64,512 total). '

13Actually, the language T5 described earlier was replaced by the language T5' = ((01|10)(01|10))*,
associated with a minimal fully-defined DFA of 7 states.
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« «Second-order SLRNNs converged,' i.e. the training set was learned, •> in all the runs
! on Tomita's languages except a few for T5' and T7 with.JVt == 3, whereas.jfirst- ,,

itfÉ order SLRNNs (without bias weights) converged a lesser number of times, with the
main difficulties in languages T6 and T7 up to N, = 8 and in languages T3 and

•
' T5''uip to*"N — 4. Concerning the'-mo're 'difficult random 10-state • DFAV first-order,

SLRNNs consistently failed to converge' while second-order SLRNNs showed consistent j
convergence' success for N = 7, 8, Q.^Therefdre, it was tconcluded that "fifs't-ordernets1'

|fc are less' reliable, in terms of livelihood of convergence, particularly with small numbers
oÇneurons".; In general, a lower average" number of .epochs (for the runs which did'

•
' converge) ( was shown for second-order SLRNNs, 'although it must be noted that the

computation time of an epoch for second-order SLRNNs is longer than the time for "
1 first-order' SLRNNs" with the same W/due to the greater.cost .of the'learning algorithm. '

•
. ... Also!, as it might be expected, faster convergence" was aehieved<for larger .numbers of r

•"í. - , i j; í»?-'-V<i- -!'•-!>*''•; • <-• V'!.' «'•• l !a f v '<* i ',;•;-. • • • • » , • . í í t . - » ;<..- , t>..5í. :°%. . í • i ' - . -»«. i ., ,.,i.'..,j^..>: <;*, .f...'«'-*'v .w-V» /-?,4.p • *r-¡t-i- • - » • - .̂ » .

neurons., Miller and Giles reported ] that no improyement on successful convergence,

•
occurred by adding a bias weight to.each unit. both, for first- and second-order t SLRNNs,

. • - ^̂  \ - -° / • '- • s « ' j - ' ' 1 •• T - " . * s . •** . - * .> t ;

[MiGi:93]. ' ' ' ...... ' . .*:. '• . . ' * , ../ V, - '
! L , . , J - • , . . , í . •. • t *• H • ' .• - - • * ' * - , . ' -t >L
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•
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c Two generalization tests were carried out at tolerance e = 0.2 and e = 0.5,

! respectively, for the networks that converged. For f. =A0.5, both first- and second-order
|·| nets performed well, since languages T.I and Tt1 were perfectly induced and the average

; number of errors for the other languages was less than 1% of the test set in all cases, with, t
s-i.^ the worst performance on T5' and T7. However, the generalization results for f. ='0.2
W were considerably worse, except ïor tíl and T2,' for which the test results were near^,

perfect. In this test, two trends were observed: (a) second-order SLRNNs generalized,
|E| worse than first-order nets; and (b)'the classification errors generally increased .with

larger numbers of neurons. The vwprst results were obtained for language T6 and
• ¿^ second-order SLRNNs, for which the error'rates ranged from 12% to'25% of the test
^P set. In addition, Miller and.Giles presented diagrams in which convergence time and ,

generalization performance appear,not to be correlated, i.e. neither quick nor slow ,
,. • ̂ "". \ . v ' j _: ' • f ' * „" -f * * I '

áÉ|i convergence implies a better generalization [MiGi:93j.

j, „ . . . ' . >: . • . • . - . " • ' . • • • . ' ;' •
¿^ Finally, Miller and Giles applied a DFA extraction method (described in [GiMC:92]) .
^^ to the successfully converged networks ,and counted the number of matches between,.

the resulting DFAs and the target.DFAs.' They reported results showing that target ",
^P DFAs were more often extracted from second-order SLRNNs, except for-language TV-, ^

though for this language both architectures performed rather poorly.- -Thei random,.

•
10-state DFA could also be extracted by second-order SLRNNs in some unspecified

. • • J ' i L I • ' :• t •' • • - -f >
t fraction of attempts. The average classification performance of the ^extracted DFAs
; on the test set was not reported. On the other hand, the average size<of,the DFAs,.« - • " " ' T . y ' i l1 before minimization was always larger.for the DFAs extracted from first-prder neis.,

This was interpreted as a corroboration of the studies by Goudreau -et al. [GoGi;93,
a^ GoGC:94], which indicated that first-order SLRNNs must use state-splitting to learn ,
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• ; í Finally,'-" Manolios J and Fanelli [MaFa':94] applied the first-order 2-layer RNN
architecture''that has been described 'iri'Séctión^.'l. 5 to'the problem1 of-inferring-the1

DFAsc-associated-with1 Tomita's lariguageS'''jTl,'T2; T4 and T6, from positive and
negative string examples. The networks-'selected included one input signal and'just
.two state units with 'one of*them designated as output^uriit; in addition, two hidden'
units were used for Tl and T2, while-three hidden units were'used for T4 and T6. The
target response values were Taccept = Ofand. Treject — 0.0.

*'" The training sets-; used'for^ all the tested 'Tomita's languages consisted only of all'
strings up to length 4,' including the'ernpty string. Thus] the set of training 'strings'used •
was'srnall'(31 strings) and their lèrigth'/yèry short;5 For'the generalization test .phase, 8
test sets' were 'chosen,'namelyr all strings of'length <• 5* <'6,'..., < 12; and for language1

TGJ'tworad^^
strings of length < T, 000, were selected'respectively. Á-DFÁ extraction method, which'
is described'in the next section, was also4applied for each'trained network and test set
[MaFa:94].K -, ' j- • '" ' '* • ' ' ' '<« '^ . - ;"-* '"v • • ' ' ' ' ' ' , ( • . ' " '

. .v ." ' •'' ' :i i:.. " " . --I ?'!''• i j> -• x-..'' t'ïí> '' •' í. • i ''í • ' ' ï i ' '

Manolios and Fanelli reported that the small first-order 2-layer RNNs
* . . ' • . . . ' - • , ' •', ' !.'• . , - • ' ; ' , ' .t . • , • í . • « . . • • • '

afórementiòried were able to learn'the í string classification" task for all the Tomita's
languages'attempted, and "many of'the'networks (without'saying precisely which part
of them) couldrgénérálize from the training'sets to strings' of length' 12. For the language
T6, 2 of the'4 runs led to networks thátngéiíeralizéd perfectly on strings up to'length
1/000. In' most cases, the'extracted DFAs were either the target minimal DFAs or
larger''equivalent DFAs that could be reduced-to the "former by D FA minimization
[MaPa:94].'. ¿>" >' V . '• '". ™M--tar ^'** b ' l ' ^ ' " • " ' ^ ' '
r¡i''¡ ' • ' • . ' ' > • ' - • . ' í :'* • > > • • , : "t v*;i,-i < ' ' • < « |i •• J '"'".. • ,- ', i' , "> !' • • • . ' - ' - ¿
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4.3 FSA extraction from RNNs for regular GI
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We have .seen in ,the preceding .section* that .several'-.types • of RNNs can be used
for grammatical inference, either by learning'to! predict 'the next symbol_in a
valid string*from a given set of positive examples, *or ;by learning to'classify the
grammatical/ungrammatical strings from a set of •b'pth'positive and negative examples."
Although, in principle,1 the complexity of the tàrget*làngúages to be induced is not
restricted by'the definition or the implementation'of these two learning tasks, the
reported works have only dealt with the inference of (simple) regular languages. In
these cases, the trained network-is wanted to emulate an FSA accepting the target
regular language. The topic of the 'similarity between RNNs and FSA, or in other
words, how a trained RNN manages to'behave as an FSA', has been studied by several
researchers. Moreover, it has been shown "that the symbolic representation of an FSA,
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which is approximately emulated by the net, can be extracted from the dynamics of the
RNN, and various FSA extraction methods have been proposed, which are summarized
in this section.

Some previous studies have shown, either by means of hierarchical clustering '
analysis or through graphical representations, that both SLRNNs and ASLRNNs tend
to develop an internal state representation in form of clusters in the activation space of'
the recurrent hidden units when they are trained to learn the next-symbol prediction
or the string classification tasks [C1SM:89, SmZi:89, GiMC:92, ZeGS:93]. A similar
behavior has been shown for the recurrent state units in 2LRNNs [MaFa:94]. The
following related phenomena have been discovered:

* • • . . - í » »

• f:á')Hdurin'g the earlier steps'of 'learning'^(decide'stage),I'the'-clusters •correspónding'.tó- "
distinct states overlap [ZeGS:93,MaFa:94];

b) during the later learning (reinforce stage), the formed clusters contract, i.e.
decrease their variance [ZeGS:93,MaFa:94];

c) after a successful learning with a sufficient small number of hidden units, the
activation pattern clusters may represent the states of the minimal target FSA
[SeCM:88,SmZi:89j;

d) after a successful learning with a non-minimal number of units, more than one
pattern cluster may be formed for the same state of the minimal target FSA, each
one associated with a different group of incoming paths15 [SmZi:89, C1SM:89];
usually, an equivalent FSA containing a larger number of states is simulated that
reduces to the target FSA after minimization [GiMC:92,MiGi:93];

e) during the generalization test with strings longer than those used in the training
set, the state clusters are typically unstable due to drifting activations, and
this causes a severe impairment in the network generalization performance
[ZeGS:93,MiGi:93];

f) after training 2LRNNs, when the clusters are sufficiently tight (their standard
deviations are below some threshold) the network is able to generalize perfectly,
i.e. to classify strings of arbitrary length correctly; on the other hand, when

, clusters deviations are larger .(above some threshold), the clusters loosen as
the network is presented with longer strings and string 'misclassification occurs

. [MaFa:94j.

Consequently, a symbolic description of the FSA that is approximately simulated
by a trained RNN can be extracted from the network dynamics along a pass through
the training set (non-training epoch) by determining the distinct activation clusters,

15The influence of the previous context in the state representation decays rapidly and depends on
the network size [SmZi:89].
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mapping them to states, and annotating the transitions that move the activation
pattern from one cluster to another or make it stay within the same cluster.

The.problem of the unstability of state clusters for long input strings may be solved
by using a self-clustering RNN with discretized activations (rigid quantization; Zeng et
al. [ZeGS:93]) or a clustering module integrated in the learning architecture (adaptive
quantization; Das and Mozer [DaMo:94]). In both approaches, which have been already
described, the trained network develops a discrete state representation, such that each
state is associated with a single isolated point in the activation space of the hidden
units. In the former case, a heuristic pseudo-gradient learning algorithm can be used
to train the network weights [ZeGS:93], while in the latter case, a true gradient-descent
learning technique can be applied to obtain both the network weights and the clustering
parameters [DaMo:94].', In these two discrete network approaches16,,the FSA extraction-
method is simply based on labeling the different vectors in the activation space with
distinct states (since there are only isolated points instead of clusters) and recording
the input symbols that.yield the transitions between them. Note that, obviously, only
regular languages can be inferred using these discrete neural GI approaches.

. On the other hand, if a continuous network (i.e. an RNN with a continuous
activation function in the recurrent units and no clustering module) is selected or
preferred for learning a regular GI task and a symbolic result is desired, then a
clustering-based FSA extraction method is required. Indeed, it has been demonstrated
that by using.clustering techniques, it is possible to extract a symbolic FSA from the
RNN dynamics during or after learning [GiMC:92,MaFa:94] and to improve the network
generalization performance a posteriori [DaDa:91,GiOm:93]. Several techniques
have been proposed: hierarchical clustering [SeCM:88,ClSM:89], dynamic clustering
[DaDa:91], search on a regular partition [GiOm:93] (also used in [GiMC:92,MiGi:93]),
moving markers [MaFa:94], and the ¿-means algorithm [ZeGS:93]. The last two
methods return FSA that contain a predetermined number of states; for these two
methods and for the regular partition method as well, a subsequent symbolic process of
FSA minimization (recall the Moore's minimization algorithm described in Chapter 2)
has been suggested to.obtain the final extracted FSA. Since the hierarchical clustering
and the.fcmeans algorithm are well-known methods for non-supervised*classification
in statistical pattern recognition (e.g. see [DeKi:82]),.only the rest of FSA extraction
methods proposed, which incorporate some specific features of the problem domain
into a clustering algorithm, are reviewed hereinafter.

Das and Das [DaDa:91] proposed an iterative process using a dynamic clustering
algorithm and a performance test to stabilize Elman's SRNs after learning (i.e. to solve
the drifting activations problem), which,can be used as well to extract a DFA from a

16 and also in the recovery of an inserted FSA (see Chapter 7)
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trained SRN. Once the training stage is complete, the set Ç of all hidden activation
patterns over a non-training epoch must be collected. The clustering algorithm uses
a parameter 7, which determines how close the state representations can be in the
activation space, and which is initialized to a large value. If a pattern £,- is close
enough to any of the existing clusters (i.e. if the distance between £,- and the cluster'
mean is less than 7), then it is included in the nearest cluster, and the mean and,
variance of that cluster are updated. If £,• is not close enough to any of the current
clusters then a new cluster is formed with mean as d and variance as 7. .

- After all patterns from ( have been classified, the network performs a new pass
through the training set to test the goodness of the clustering. In this non-training
epoch, instead of feeding back the actual activations of the hidden layer, the mean
activation _:p!attern of the cluster ¡to. which .the. actual "pattern' belongs- is 'fed:;b'a'ck in;
the next time step. If the total squared error Etotai over this epoch is below a certain
tolerance (another parameter), the process is stopped; otherwise, the value of 7 is
decremented by a small amount and the whole procedure of clustering is repeated until
performance is satisfactory. Das and Das claimed that the above method converges
with certainty only after the network has reasonably learned the task, and the obtained
clusters tend to become well defined once an adequate value of 7 has been determined
[DaDa:91].

During the generalization test on unseen strings, the prototype pattern (cluster
mean) of the state to which the actual hidden activation pattern belongs is fed back,
where an activation pattern is considered to belong to a state if it falls within the
variance of the corresponding cluster. Alternatively, a DFA can be extracted from the
network, just by registering the transitions among the obtained clusters that occur in
the test pass through the training set, and this DFA can be used thereafter instead
of the stabilized network. Das and Das reported that the automata extracted in their
experiments were not the minimal target DFAs (for mod 2, mod 3, and mod 4 regular
languages), but they were equivalent to them [DaDa:91].

Giles and Omlin [GiOm:93] described a simpler approach to partition the activation
space of the recurrent units in second-order SLRNNs and extract a DFA from the
dynamics of a network trained to learn a string classification task. Since an activation
function g with range [0,1] (e.g. a sigmoid) is assumed to be used in the network,
the objective was to identify clusters in the bounded activation space (or state
space) [0,1]^, where N is the number of recurrent units. Giles and Omlin proposed
a dynamical state space exploration to identify the DFA states, which avoids the
computationally infeasible exploration of the entire space.

Their DFA extraction method divides the activation range of each of the N neurons
into q intervals or quantization levels of equal size, producing a partition of qN regions in
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the-state space. Starting in a defined initial network state, a string of inputs causes the
network to follow a discrete state (region) trajectory connecting the actual activation
patterns in the continuous space [0,1]^. All strings up to a certain length are presented
to the net in lexicographic order, thus generating a search tree with the initial state as
its root and arity equal to |S|, the number of alphabet symbols. In this search tree,
nodes correspond to hypothetical DFÀ states and arcs correspond to transitions. A
breadth-first search is performed trying to discover new states and transitions according
to the three following rules: ;

i) when a region is reached that has not been visited previously, then a new DFA
state is created and a new transition is defined between the preceding and the
current state;

•' : ii')v"when a:previously visited region-is reached, then only the new transition is defined
between the preceding and the current state and the search tree is pruned at that
node; '

iii) when an input causes a transition to the same region, then a loop transition is
created and the search tree is pruned at that node.

A DFA state is designated as final (or accepting) state if the activation value of the
unique output unit (one of the recurrent units) is larger than 0.5; otherwise, the state
is designated as non-final. The DFA extraction algorithm terminates when no new
DFA states are created from the string set chosen and all possible transitions from all
the created states have been extracted. Usually, only a small subset of all the partition
regions are visited in the search and become DFA states [GiOm:93].

0 ;

It is clear that the DFA extracted by Giles and Omlin's method depends on the
quantization level q chosen, arid, in general, different DFAs will be extracted for
different values of q. ' Furthermore, different DFAs may be extracted depending on
the order of strings presented which leads to different successors of a node visited
by the search tree. However, by applying a DFA minimization algorithm a posteriori,
many different DFAs extracted for a variety of initial conditions (q and N values, string
orders) will typically collapse into the same equivalence class represented by a minimal
DFA [GiMC:92, GiOm:93].

It must be remarked that the above extraction method does not guarantee the
obtaining of 'a DFA consistent with the given training set (i.e. one that correctly
classifies all the involved strings). On the other hand, if several DFAs are extracted
with different quantization levels, then one or more of them may be consistent with
the training set. For such a case, Giles and Omlin [GiOm:93] proposed a heuristic
algorithm that selects the "best" hypothesis among the consistent extracted DFAs.
Let Aq be the minimized extracted DFA corresponding to a given quantization level
q. Then, a sequence of DFAs A2, A3, ..., can be generated, and the best model is
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the first consistent DFA A* found in this order. This heuristic rule was motivated
by some simulation results, which showed that the consistent DFAs extracted using
small values of q provided the best generalization performance. In general, consistent
DFAs always outperform the trained network from which are extracted, and their
generalization performance seems to approach asymptotically the network performance
with increasing quantization level q [GiOm:93]. An explanation for these results was
given by Giles and Omlin: "large consistent DFAs tend to overfit the given training
set and thus yield poorer generalization performance" .

Manolios and Fanelli [MaFa:94] developed a DFA extraction method based on vector
quantization, and they applied it to the activation space of the state units in first-
order 2LRNNs. Again, the state space was considered to be the TV-dimensional unit
hypercupe,'.[Ojíl]^..-,-,-Théir.DFA extraction, algorithm is. given; as. input, a. set of. network -
states (activation patterns) yielded by the network in response to a string set, and
analyzes them trying to identify the underlying clusters. To this end, n markers are
distributed randomly within the hypercube, and for every network state, the closest
marker is moved toward it a certain distance a, which is equal to the distance between
the marker and the network state divided by the number of times the marker has been
moved plus one. This guarantees that any marker moved will be exactly in the centroid
of the network states it is closest to. Consequently, every marker moved represents one
cluster of network states.

Nevertheless, the FSA that is built from the final clusters may sometimes be non-
deterministic, since two or more network states within one cluster may have different
transitions for the same symbol. Manolios and Fanelli suggested that whenever an NFA
is obtained after clustering, the extraction algorithm must restart itself with a different
set of randomly distributed markers. Several such iterations may be performed until
a DFA can be extracted. Finally, the application of a minimization algorithm to the
extracted DFA was recommended to obtain the final DFA [MaFa:94].

Manolios and Fanelli did not explain how the DFA states are designated as ¡accepting
or non-accepting. At first, there are two options: either the activation value of the
output unit is used to discriminate the network states (as in [GiOm:93]), or the
positive/negative labels of the training strings are used to label the network states
reached after string presentation. However, in both cases, it could happen that a
cluster contained both an accepting network state and a non-accepting network state,
and thus an inconsistent DFA were obtained. Actually, the issue of the DFA consistency
with the given training set was not discussed in [MaFa:94]. However, a possible solution
could be to restart the clustering procedure whenever an inconsistent DFA is obtained
(similarly to the case of NFAs).
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4.4 Connectionist approaches to context-free GI

All the RNN.s seen so far basically behave as FSAs or FSMs, since the network's next
state and output depend only on the current state and input. It must be noted,
however, that the.network state space is potentially infinite if continuous activation
functions are employed in the recurrent state units (and an analog or high precision
computation capability is assumed for network operation). In fact, this continuous state
space is what obliges to use clustering techniques for FSA extraction from such an RNN.
Nonetheless, the described RNNs display severe limitations in processing and learning
high-level languages beyond the regular languages. A discussion of the approaches
that have been.attempted to overcome these limitations, and a nice hybrid architecture

•specifically/oriented to the representation and learning of pushdown-automata (PDA^,
which will be reviewed later in this section, were presented by Sun et al. in [SuGC:93].

' A brute-force method to enhance the computational power of an RNN is to increase
the size of the existing network structure while training on a more complex language
such as a CFL. The assumption is that the RNN size has no bound, and the knowledge
gained as the network grows gives clues to the representation of the underlying
grammar. In. practice, this is difficult to achieve, and what usually happens is that the
trained RNN. will only recognize the complex language up to a certain string length (i.e.
a.regular language), and to generalize correctly on longer unseen strings, it will need
to be re-trained on those strings. This kind of approach was followed, for example,
in the connectionist natural language works by Allen [Allen:90] and Moisl [Moisl:92].
Allen reported that a certain type of RNN, which behaves like ano FSM, was able to
learn some finite CFGs [Allen:90]. Moisl trained Elman's SRNs to implement FSMs
which simulated some deterministic pushdown transducers (DPDTs) [Moisl:92].

Also aimed at natural language processing, Wyard and Nightingale presented a
simple non-recurrent network (HODYNE) that learns to behave as a CFL recognizer
when supplied with a training set of positive and negative strings [WyNi:90j. The
HODYNE architecture consists of a (so-called) "high-order" input layer, in which each
input node is associated with a different tuple (pair, triple, etc.) of consecutive terminal
symbols17 in the input strings, an output layer with a number of units, each connected
to all or, part of the input nodes, and- no hidden layer. The network is dynamic in
the sense that new input nodes and connections can be created during training as new
tuples of symbols appear. For a given input string, the input nodes are just "ON"
(valued 1) or "OFF" (0), depending on whether the corresponding tuple is present in

17The terminal symbols of the grammars in the paper are called preterminals [WyNi:90], since
they correspond to syntactic categories of words, so that the grammatical strings represent language
sentences as sequences of such preterminal symbols (e.g. del adj noun verb prep det noun).
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the string or not, and the output units compute a simple weighted sum of their inputs,
with no thresholding or activation function. Only the output unit with the highest
net-input fires, so there is a single output unit winner. For the task of grammatical
recognition, only two output units are needed to answer "YES" or "NO", respectively.

The learning algorithm proposed for HODYNE was quite simple and rather similar
to the perceptron convergence procedure of Rosenblatt [Rose:62]. Weights are only
adjusted when the network produces the wrong output. In this case, the links
between the activated input nodes and the output winning unit are weakened, and
the links between the activated input nodes and the desired response output" unit are
strengthened. A particular mathematical function was selected to compute the weight
changes, such that the weight values are modified smoothly and they "do not depart

-tooi far from their initial valué (w = l)'.[WyNi':90ji In addition, 'an'increméMaVtràining
procedure including several cycles was recommended, in which the complete training
set is splitted and a new group of examples is only added to the current training set
when classification performance on the latter is satisfactory (e.g. 95% of correctness).

Despite the simplicity of the approach, the results reported in [WyNi:90] are quite
impressive: a 99% generalization performance was achieved by networks using only
symbol pairs and triples for two test CFGs (of around 10 rules), after learning a training
set-of around 2,000 positive and 2,000 negative strings, where recursion was limited
in the positive examples and negative examples were generated randomly; however,
the classification performance was degraded by using near-misses instead of random
negative strings (ranging from 79% for one-error negative strings to 93% for four-
errors negative strings) . Altogether, HODYNE infers CFL recognizers by learning the
tuples of consecutive symbols which are most commonly and strongly indicative of both
legal and illegal strings. Hence, HODYNE operates in a way similar to the large-scale
statistical speech recognition systems based on n-grams, with the main difference being
that in the latter the statistical information is stored as a table of frequencies, while
in the former it is indirectly represented in the weights of the net.

A different strategy was reported by Williams and Zipser [WiZi:89]. They coupled
a first-order SLRNN to a potentially infinite memory tape to emulate a Turing machine
and to learn an FSA controller for the balanced-parentheses CFG. Actually, the SLRNN
was trained to be the correct finite-state controller of a given Turing machine by
supervising the input-output pairs, where the input is the tape reading from' a target
Turing machine and the output is the desired action of the controller. Hence, the
behavior of the target controller was known a priori and not learned by the net, and
therefore, it is not properly a case of grammatical inference.

The possible connectionist representations of a stack, a device which, is intimately
related to CFL generation and recognition, have also been studied:
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Pollack proposed an internal neural network emulator of a stack memory, the
recursive auto-associative memory (RAAM) model, as a plausible model for cognitive
processing [Poll:90]. The RAAM model consists of a 3-layer feed-forward network
trained by back-propagation, in which the input and output layers contain two sets
of units, one to represent the stack and one to represent a symbol (the top), and the
hidden units encode the stack representations. A coding process is performed by the
hidden layer to emulate a push action, while a decoding process is performed by the
output layer to emulate a pop action. At each step of a sequence of push actions, the
contents of the hidden layer is copied into the stack input units. During training, the
output units must reproduce-the contents of the input units. For a stack with limited
length, this model is equivalent to training an FSA, but theoretically, the stack may
have an infinite length. Even for a limited length stack, the RAAM model is inefficient,
;since to;be able to represent all the possible configurations of a-stack with length L and
m alphabet symbols, an FSA with mL states must be built or learned by the network.

Siegelmann and Sontag presented a connectionist Turing machine model, and they
showed that a stack can be simulated in terms of binary representations of a fractional
number which are manipulated by neural network generated actions [SiSo:91, SiSo:92].
The focus of their work was on representational issues and not on a practical learning
system. Indeed, this type of stack representation is difficult to handle by a learning
algorithm based on continuous space optimization, because, although a fractional
number is continuous, any small perturbation of the fraction causes a discrete change
of the stack contents the fraction is representing.

In th.e following subsections, two of the most outstanding connectionist approaches
to context-free GI, the neural network pushdown automata (NNPDA) model proposed
by Sun et al. [SuCG:90,SuGC:93] and the CFG production rule learning architecture
proposed by Das and Mozer [DaMo:93,MoDa:93], are described in detail, together with
a summary of the results reported about their application to CFGI from positive and
negative raw examples.

4.4.1 The neural network pushdown automaton (NNPDA)

The NNPDA model is sketched in Fig. 4.7. It consists of two major components: a
high-order SLRNN controller and an external continuous stack memory. At each time
step, the network carries out an input-output mapping. Three input vectors are given
to the SLRNN: the current internal state S*, the input symbol representation I* and the
stack reading R*. The outputs obtained from the network are the next-time internal
state S<+1 and stack action Ai+1. This action is performed on the external stack, which
in turn renews the next stack reading. The weights of the SLRNN controller are trained
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Fig. 4.7 The NNPDA architecture: a high-order SLRNN coupled with
an external continuous stack.

by minimizing an error function, which depends on the final state and the stack length
at the end of a string presentation. • *

The following assumptions are made in the model, that restrict the class of CFLs
the NNPDA can learn and recognize:

a) only deterministic pushdown automata are considered;
b) the same set of symbols is used both for the input and stack alphabets;
c) only one action unit is used, that can represent three operations: a push of the

current input symbol onto the stack; a pop of the current stack; and no-operation
(no-op) on the stack.

Hence, only a certain class of deterministic CFGs may be inferred by the NNPDA
model. To use the NNPDA as a classifier, input strings are fed into the NNPDA one
symbol at a time, and the contents of both a special state unit (output unit) and the
stack at the end of the string presentation, after processing an end-of-string symbol,
will determine whether the input string is accepted or not. Thus, the task to be learned
is almost identical to the string classification task described in 4.2.2, except that, now,
the controlled external stack is also involved in the classification decision. • '
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4-4-1-1 NNPDA architecture and learning algorithm

The neural network controller in the NNPDA is an extension of the second-order
SLRNN used by Giles et al [GiMC:92]. In fact, Sun et al. described three different
extended versions that can be used for the NNPDA architecture [SuGC:93]:

1) a "natural" third-order SLRNN;

2) a variation of the second-order SLRNN; and

3) a so-called "full-order" network,- with third-order connections for the state units
and a high-order computation for the action unit.

•'* Let'the high-order RNN controller have a single-layer òf N recurrent state units
i/i, £/2,..., UN, whose activation values are labelled y\, yi,..., yw, and one non-recurrent
action unit18 A\ with an activation value denoted a\. Let the RNN also have M
input symbol signals, which are labelled x\, x?,..., XM, and M stack top reading signals,
denoted r1,r2, ...,TM- It must be emphasized that the same number of signals is used
for both the input symbol and the stack reading. This is due to the fact that the same
alphabet is assumed for both sets of symbols and the same local representation of the
symbols is required (as explained later).

Let S< = [yl(t-l),y2(t-l),...,yN(t-l)]T, I* = [ X l ( t ) , x 2 ( t ) , ...,xM(t}]T, and R* =
[ r i ( t ) , r 2 ( t ) , ...,rA/(i)]T be the internal state, input, and stack reading vectors at time
step t, respectively, and let ai(t] be the activation value of the action unit computed
from the previous vectors. Some number P of the state units ( ! < / * < N), called
the output units, can be used to supply an output vector O* = [ y i ( t ) , y 2 ( t ) , . . . , y p ( t ) ] T

at every time step t; for the CFGI-oriented string classification task, P '= 1, and
Oi(t) = yi(t) is the only output unit value at t.

The discrete-time dynamics of the high-order RNN controller can be written in
general form as

^R*) f o r l < f c < 7 V , . (4.99)

'.I'.R') (4.100)

where Wj£ is the vector of weights of the state unit Uk, WJ is the vector of weights of
the action unit A\, and F$, FA refer to high-order nonlinear functions associated with
the state transition and action mappings, respectively. Note that a third mapping is
needed for the stack reading R*, which depends on the entire history of input symbols

18More action units could be used if desired to represent the different operations allowed on the
continuous stack, but one action unit is enough [SuGC:93].
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and actions, but this mapping is determined by the definition of the stack mechanism
and is considered external to the RNN controller.

The most natural option for the high-order RNN controller is given by third-order!
SLRNNs driven by equations:

N M M

E E £
i=l j=l /=!

N . M M

E E,•=1 j=i

-**|jwhere,<7 is typically, the sigmoid f unction, defined -in Eq.(4.5) wi.th, range ,[0,1]. .Using
unary local representations for S*, I*, and R*, a [1,0, —1] encoding of the [push,
no-op,pop] operations in the action unit, and a proper discretization of the activation
function g, any given deterministic PDA could be implemented by a third-order SLRNN
of the above type, by setting the weights of the network according to the following rules
[SuGC:93]:

i) for every transition defined from a state <?,- to a state c¿ through input symbol c j
and stack top symbol z/, let wl^ = 1 and wy

hi-t = 0, for h ̂  k]

ii) for every push, no-op, or pop operation to be performed upon reading input
symbol c,- and stack top symbol z¡ in state <?,-, let w^¡ = 1, 0, —1, respectively.

°However, to simplify the network and learning algorithm requirements, second-order
SLRNNs can be used in practice to infer some deterministic PDAs [SuGC:93]. In this
case, the network dynamics is given by

( N 1M \

01 + E E <• *•(* - 1) *}(*) for 1 < ¿ < TV, (4.103)
f=i ¿=i /

( N 2M \

^ + E E "w vti - 1) «5(0 - i (4-104)¿=i j=i j
where

Xj(t) if j <M
(4.105)

thus concatenating the two vectors I4 and R* in a single input vector IR*. Das et al.
[DaGS:92] reported some experimental comparisons between third-order and second-
order based NNPDAs in which the third-order nets gave better learning results.
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A third type of SLRNN controller was proposed and used by Sun et al. to learn
difficult CFGs, such as the palindrome grammar [SuGC:93j. This so-called "full-order"
network combined the third-order state dynamics of Eq.(4.101) with a high-order
calculation for the action unit, given by the equation

0l+ E E I>ï«i tf(* - 1) MO n(0 -1 (4-106)

where, representing the subscript i as an TV-bit binary number ijv_1...zm...ip, (im Ç.
{0, 1}, m = 0, .., N - 1), the values yj(i - 1), (i = 0, 1, ..., 2^ - 1), are computed as
JV-th order products of the S* components as follows:

-V. V v'j/í(^;l) -=f ET («mtòi (*.-'!) ..+•'•(! •-•im)(l-ym+i(t- I:)))-'' " (4:107)
m=0

It is obvious that full-order networks can only be built with a small number of state
neurons Ñ, since the number of weights is proportional to the exponential factor 2^.

Concerning the external stack memory, a continuous stack is needed if the stack
memory is wanted to be manipulated by a gradient-descent learning algorithm. This
means to make the stack variables a continuous function of the network weights, so
that an infinitesimal change of weights will cause an infinitesimal change of the action
value, which in turn causes an infinitesimal change of the stack reading. In this way,
the stack variable can be included in the error function to be minimized, and the error
gradient with respect to the weights can be computed.

In a discrete stack, the pop action simply removes the top symbol and the push
action places the symbol read from input string onto the top of the stack. In the
continuous stack, "continuous" symbols are stored, each being a normal symbol but
with an associated length 0 < L < 1, and the discrete pop and push actions are replaced
by continuous actions. The value of the action unit Oi(i), which is always within the
interval [—1,1], is interpreted as the intensity of the actions to be taken on the stack
and affects the length of the symbols to be pushed or popped. Given a small number
e close to zero, a push is performed if «i(i) > e, and a pop is performed if GI(Í) < —e;
otherwise, a no-op takes place. The magnitude |<Zi(i)| determines the length of the
input symbol to be pushed or the length of the top segment to be popped (maybe
affecting one or more consecutive symbols). Other continuous action representations
may be devised, e.g. with two action units, for pop and push operations respectively,
an additional replace operation could be performed [SuGC:93].

In a discrete stack, a read operation only reads one symbol from the top of the
stack and sees nothing below. This reading method is not suitable for the continuous
stack, since it can lead to discontinuities in the contents of the stack reading vector
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(i.e. a small change in the action value may cause a discrete jump in stack reading).
Hence, to avoid these situations, the continuous stack is read with unit depth (L = 1)
from the stack top. In this way, a continuous reading function can be constructed
with respect to the network weights (although this fact alone does not guarantee the
differentiability of the reading function), and a probabilistic interpretation of the stack
top reading can be made, where symbol probabilities are given by the total length of
each symbol in the stack top, and reading with L = 1 ensures the required probability
normalization. When the stack length is less than 1, the difference can be interpreted
as the probability to read the empty stack.

From the above discussion, the proper neural representation of the stack top
reading, given by vector R*, can be established. Fistly, it must be fully compatible with

•the inpsut symbol representation ̂ proyided by. I*, since the same ;set :pf discrete-symbols
must be encoded, and in the discrete limit, the learned NNPDA is required to behave
as a conventional PDA. Secondly, during training, the stack reading should be able to
represent the symbol probabilities related to the contents of the stack top segment of
length 1. In addition, a one-to-one mapping between each vector R* and the stack top
symbol composition it represents is needed. For the first requirement, a unary local
representation using M signals (one for each symbol) is selected to encode the discrete
symbols for both R' and I', while for the second requirement, a linear combination of
the vectors corresponding to the discrete symbols appearing in the stack top, weighted
by the above probabilities, is written in the stack reading vector R*.

However, it must be remarked that this neural representation of the stack top
proposed by Sun et al. [SuGC:93] has one drawback: it is not sensitive to the order
among the stack top symbols, and hence, is somewhat ambiguous. Also note that,
during the operation of the NNPDA, the contents of the entire stack is conventionally
stored by means of two arrays, one to store the symbols and one for their lengths,
plus an integer variable that counts the total number of symbol occurrences inside the
stack (i.e. the dimension of the two arrays). Thus, the stack top reading signals r,-(i),
1 < i < M, can be easily updated from this information and the last value of the action
unit a\(t — 1). The initial values of Oi(0) and r,-(0), 1 < i < M, are zero, whereas the
initial state of the network S1 = [j/i(0), ...,^(0)] may be an arbitrary constant vector
in [0,1]". '

Finally, let L(i] denote the stack length at time t. This length can be evaluated
recursively through the simple equation

L(t) = ¿(<-l) + ai(i), ' ' (4.108)

because only the push or pop actions can change the stack length. Initially, L(0) = 0,
and at every time step t > 0, the constraint L(i) > 0 should be imposed. Consequently,
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whenever a "pop empty stack" occurs (detected by L(t) < 0) the current input sequence
is interrupted and the input string being presented is considered illegal.

'Up to here, the architecture and operation mode of the NNPDA have been
described. Now, for training the NNPDA, a suitable learning algorithm is needed. A
possible learning algorithm is derived by minimizing an error function using a gradient-
descent optimization method. In general, the error function Efotai to be minimized will
be the sum over an input sequence s (or over a training set including several sequences)
of an error function at each time step E(t). The function E(t) will be defined as a
scalar error measure which depends on both the output unit(s) value(s) and the stack
length at time t. In the next subsection, the specific objective function to be used
for CFGI by training the NNPDA to learn the string classification taskas discussed.
For theLtime being, just assume that weight updating is carried out by: means of , the.
common gradient rule r

AW = -aVwfiZ*., (4.109)

and that Vw-S/oíaí 1S Jus* the sum of the gradients V\vE(t) for all t in the sequence s.
Furthermore, assume that E(i) is a simple differentiate function of L(t) and t/,-(i), for
1 < i < P. Then, the preceding gradients are readily calculated using the chain rule
as far as the derivatives 3jL(£)/3W and <?y,-(i)/dW, 1 < i < N, can be computed for
every t. From Eq.(4.108), it follows that

dL(t) dL(t-i)
~ dw aw '

where dL(Q)/dVf — 0, and the computation of dai(t)/dVi is required.
c

As we have seen in Section 4.1, there are two basic ways to perform gradient
computations in RNNs, depending on whether the chain rule differentiation is
propagated forward (RTRL) or backward in time (BPTT). In principle, both methods
can be extended to train the NNPDA. But, since the derivation of the forward
propagation algorithm is more direct, Sun et al. presented and proposed three
extensions of RTRL for training each of the NNPDAs resulting from using a second-
order, third-order, or full-order SLRNN, respectively [SuGC:93]. In all the cases,
the needed recursions for dai(t)/dW and dy¡(t)/dW, 1 < i < N, were found
by differentiating the controller dynamical equations, but these recursions required
to express the derivatives dr¡(t -f 1)/5W in terms of @ai(t)/dW, dyi(t)/dW and
dr,(t)/dW, l<l<M,l<i<N.

With this aim, Sun et al. [SuGC:93] demonstrated that an approximate recursive
relation for the derivatives dr¡(t -f 1)/<9W is given by
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where /i+1 and /2+1 are the ordinal numbers of the stack reading signals that represent
the top and the bottom symbols respectively in the stack top reading R<+1, ¿,-j refers
to the Kronecker delta, and «;,-_,•/ is an abbreviated notation for the weights wy

kiji
(1 < k < N) and tüj,-j7. It only remains to set the initial conditions ¿?ai(0)/dW = 0
and £?y,-(0)/dW = 0, 1 < i < TV, to obtain forward propagated dynamical systems
that provide the partial derivatives required to compute the gradients V-wE(t).

4-4-1 -2 Context-free grammatical inference through NNPDAs

In-order to infer an NNPDA acting as acceptor of a target language generated by a
tdeterministic.QFG, an NNPDA is trained to learn the string classification task*for.<a set
of positive and negative sample strings. The approach is quite similar to that described
in Section 4.2.2., with the difference that, now, the controlled stack is also involved in
the classification decision.

Let S — (51"*", S~) be a sample of a CFL L over S, which is used as training set.
Again, let E' = S U {$}, where $ is a special end-of-string symbol, and let S$ denote
the sample obtained by converting each string s € S into the form s$. An NNPDA
can be trained to classify the strings in S or 5$, so that after convergence, the NNPDA
accepts a language L' such that L' 3 S+ and L' fl S~ = 0. In some cases, a perfect
generalization may be achieved, and the trained NNPDA accepts the target CFL,
L' = L, by simulating a deterministic pushdown automaton for L.

6

The strings are presented one symbol at a time to the NNPDA through the input
symbol signals. Sun et al. [SuGC:93] used an end-of-string symbol, thus giving the
NNPDA an extra time step to yield the proper response to every input string. However,
the use of an end-of-string symbol is not mandatory. As commented earlier, a local
encoding must, be followed to represent the symbols in both the input and stack reading
signals, implying M = |S'| (if the end-of-string symbol is included). A single state
unit is designated as output unit (P = 1) to distinguish between final and non-final
states. The classification of a given string s by the NNPDA will be determined by
examining both the final activation value of this output unit Oi(tf(s)) and the stack
length resulting from the last action L ( t f ( s ) ) , once the whole string has been processed.

For a conventional pushdown automaton, if either the state reached after string
presentation is a final state, or the stack is ended empty, the input string is accepted
(and otherwise rejected) [HoUl:79]. However, Sun et al. claimed that a combination
of the two criteria seems necessary to train an NNPDA, and they proposed to define a
legal string (for an NNPDA) as one that leads both to a final state and an empty stack
[SuGC:93]. Hence, for legal strings, the target value of the output (final-state) unit
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activation after the string presentation is Oi(tj(s)) = 1 (recall that <>i(¿/(s)) € [0,1]), ^P
and the target value of the stack length is L(tf(s)) = 0. On the other hand, the
target values of these variables for illegal strings cannot be clearly determined (for á^
example, it is difficult to decide which must be the desired value of stack length for
an illegal string). Thus, the target condition selected by Sun et d. for illegal strings ^
was that either <?i(i/(s)) = 0 (non-final state) or L ( t / ( s ) ) > 1 (non-empty stack). The ^P
corresponding error function to be minimized for both positive and negative strings
can be defined as A

E3
totai = £(*/(')) = \ (v + £(*/(*)) - *i(*/(')) )2, (4-112) A¿ w

where v is a parameter assigned as global target value for each training example, "such
that .v.-.—.^l for- positive. examples and v. = min{0, oi(i/(s)) — L(tf(s))} for negative' -. • • ̂ ^
examples. By definition, the error measure E(i) is zero for all the previous instants
from the beginning of the presentation of string s. ^±

Therefore, in order to learn the string classification task, the NNPDA is trained
using a set of pairs {(.s,i/) | s '€ S, v € íK~ U {0,1}}, that includes all the examples D
in the given sample, where v is determined on-line for the strings in S~ at the end of
each string presentation. Using the gradient-descent learning algorithm aforementioned Jfc
from the above error function, we obtain from Eqs.(4.109) and (4.112) that the NNPDA
weights are updated at the end of each string19 according to ^^

AW = -„(„ + i(«,(.)) - *(*,(.)) - - (4.113)
\ / t> ^^^B

where the partial derivatives of L(tj(s}) and Oi(tf(s)) with respect to the weight matrix
W can be calculated recursively, as explained in the previous subsection (recall that ^
Oi(tj(s)} is actually a state unit activation, e.g. Oi(tf(s)) = yi(tf(s))). However,
whenever a negative stack length appears (L(t) < 0), the presentation of the current j^
string s is stopped and some heuristic weight correction rule is applied: the weights will ^^
be modified to increase the stack length L(i) for positive strings (AW ~ dL(i)/dW}
and will be unchanged or even modified to reduce the stack length for negative strings ^fc
(AW - -dL(t)/dW).

For each presented string, the expression H = oi(tf(s)) — L(tf(s)) can be ^^
considered as. a measure of how well both of the two conditions "final state" and
"empty stack" are satisfied. Thus, H = 1 and H < 0 is desired for positive and f^
negative strings, respectively. After training, the same measure H can be used to test
the generalization performance of the NNPDA on unseen input strings. A given string ^fc

19Batch weight updating might also be used.
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s will be accepted if H > 1 — € and it will be rejected if H < e (or a "pop empty
stack" action is performed previously• during its presentation), where e is a tolerance
threshold such that 0 < c < 0.5. Sun et d. used e — 0.5, the maximum tolerance, in
their experiments [SuGC:93]. The correct classification of the whole training set can
be used as stop criterion for the training stage, but some maximum number of training
epochs should be fixed a priori for the case that the NNPDA fails to converge.

4.4-1-3 Extraction of pushdown automata from trained NNPDAs

Although a trained NNPDA could generalize perfectly in some cases, classification'
^errors wilLnormàlly occur for strings longer than those-included in the^ training-set due'
to an unstable behavior of the analog NNPDA. Therefore, to improve the generalization
performance, the extraction of a discrete PDA from a trained NNPDA is desirable. Sun
et al. proposed the following quantization procedure to carry out this PDA extraction
process [SuGC:93]:

First, the action unit is quantized into three discrete values (—1,0,1) according to

f 0 if |ai(f)| < A
fli(f) = < -1 if a i ( i )<-A . (4.114)

( 1 if ai(i) > A

whereo the threshold A = 0.5 was recommended. In this way, discrete no-op, pop
and push actions are generated, which make the continuous stack behave as a discrete
conventional stack.

Second, a cluster analysis of the internal states is performed. All the input strings
that have been recognized correctly are fed into the trained NNPDA and a set of
internal state vectors (points in [0,1]^) is obtained. This set is partitioned into several
clusters using the ¿-means clustering algorithm [DeKi:82], where the number of clusters
k is determined by minimizing the average distance from "each state to its cluster
center. After clustering, the cluster centers are stored as the representative points of
the quantized internal states, which correspond to the k states of the discrete PDA
being built. During further testing, each analog internal state is quantized to its nearest
cluster center, and the state transition rules of the PDA can be extracted.

A regular quantization method, similar to that by Giles and Omlin [GiOm:93]
described in Section 4.3, which divides the activation range of each state unit into q
intervals of equal size, was also proposed as an alternative to the above method for
state clustering and extraction [SuGC:93].
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Likewise, to simplify the state structure of the extracted PDA, a minimization
procedure was described. Even though it is well-known that there exists no
minimization algorithm for obtaining a unique minimal PDA, nor for finding whether
two PDAs (or CFGs) are equivalent [HoUl:79], a reduction algorithm can be applied for
deterministic PDAs in which the input and stack symbols are the same and only one
symbol is involved in the push and pop operations. For this type of PDA, each state
transition between any two states can be characterized by a three-tuple (a, /?, 7), where
a is the input symbol, /? is the stack reading symbol, and 7 = 1, — 1,0 represents push,
pop and no-op actions. By considering each combination of (a, /?, 7) as an input symbol
of a regular grammar, an equivalent FSA can be built from the extracted PDA, where
state transitions are caused by the («,^,7) "symbols". Hence, by applying an FSA
minimization algorithm to this FSA, the extracted PDA can be effectively reduced.

4-4-1-4 Some experimental CFG I results using NNPDAs

Sun et al. reported some experiments of CFGI from positive and negative examples
using NNPDAs [SuGC:93]. Three simple deterministic CFGs were tested:

. 1) the balanced parenthesis grammar over S = {'('/)'};

2) the lnO" grammar;

3) the deterministic palindrome grammar generating { XCXR \ x 6 (a -f 6)* }.

Different types of NNPDA and training procedures were used for each particular
problem.

1) Balanced parenthesis grammar

Second-order NNPDAs with N — 3 state units were trained to recognize sequences
of balanced parentheses. An end-of-string symbol was used, and a unary input
representation was followed with M — 3. The training set consisted of 50 strings:
all 30 strings up to length 4 and 20 randomly selected longer strings up to length 8.
Five runs were performed, in which the NNPDAs required approximately 100 training
epochs to learn the training set. During the generalization tests, all the strings up to
length 20 could be correctly recognized, but due to analog error accumulation, some
longer strings were incorrectly classified. However, the target PDA for this grammar
could be extracted from the trained NNPDA using the regular partition search method
[GiOm:93] with quantization level q = 5.
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2) In0n grammar

The language of the In0n CFG is a subset of the language generated by the balanced
parenthesis CFG. A second-order NNPDA with TV = 5 state units was trained to
recognize this language. The end-of-string symbol was used again. A small training
set containing 27 short strings (12 positive and 15 negative strings) was initially used for
training. After 100 training epochs, the NNPDA correctly classified the training set "and
only failed to classify 6 strings among all the strings up to length 8. These incorrectly
classified strings were added to the training set and the NNPDA was retrained for
another 100 epochs. After performing 5 such cycles of test-retrain steps on strings of
gradually increased length, the trained NNPDA correctly classified all the strings up
to length 20 and 20 randomly chosen strings up to length 160. A correct PDA for the

'•grammar was extracted fronvthe trained NNPDA using the7regular partition search
method with 9 = 2, and this extracted PDA could be simplified to an equivalent PDA
with 4 states through the reduction algorithm described in the last subsection.

3) Deterministic palindrome grammar

The language generated by the deterministic palindrome CFG is { XCXR \ x G
(a + 6)* }, where XR is the reversed order form of x, and c is a symbol used to mark the
boundary between x and XR. The minimal PDA for this CFL contains 3 states: one to
push the symbols read before the c, another to pop matched symbols after seeing the
c, and a third, "trap state", which is reached whenever after reading the c the input
and stack top symbols do not match. The input string is legal only if the PDA ends
at the second state with empty stack.

Neither second-order nor third-order NNPDAs were able to learn a correct PDA for
the deterministic palindrome CFG [DaGS:92, SuGC:93]. Two major difficulties were
detected. First, an insufficient information to supervise the stack actions for the illegal
strings. Second, some structural limitations of the second- and third-order NNPDAs
to implement certain PDAs when a unary or mutually orthogonal state representation
is not used, as it is typically the case when the internal states evolve freely during
learning.

To solve the first problem, heuristic hints (requiring some a-priori knowledge of the
target CFG) were introduced in the objective function to be minimized [DaGS:93],
in order to discriminate the "trap state" and to supervise somehow the stack length.
To overcome the second problem, Sun et al. [SuGC:93] proposed a variation of the
"full-order" network described previously, in which a linear activation function is used
in the action unit, i.e. the equation that describes the dynamics of the action unit is
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in this case
2N-l M M

• « i ( 0 = E EE«*<,-iví(í-iK(On(0 (4.115)
t=0 j=l /=!

instead of Eq.(4.106), where still the y((i - 1) values are given by Eq.(4.107). To
guarantee that the action unit value oi(i) is in the desired range [—1,1], the action unit
weights w"{ji are truncated to the range [—1,1]; moreover, by quantizing each weight
of the action unit to three levels (— 1, 0, 1) after learning, each weight can represent an
action rule (note that this kind of encoding may also be used to insert prior knowledge
before training).

For the palindrome CFG, the error function that was minimized during training
was distinct from the one described by the general case given by Eq. (4. 112). Instead.
of using the output unit to discriminate between final and non-final states, the output
unit was trained to discriminate between "trap state" (definitely illegal string) and
"non-trap states" (potentially legal string). To implement this hint, whenever a prefix
of the input string is read that leads to the trap state, a target value T = 0 is supplied
for the output unit and the input string is interrupted; otherwise, for potentially legal
strings, the weight correction is made at the end of the string and the target value for
the output unit is T = 1. Thus, the weight correction could be written in this case as

where T is one of the above target values of "trap state" and "non- trap .state", and L
is the target value of stack length, which is defined as L = 0 for legal strings, and it is
adapted on-line for illegal strings to increase the stack length according to the rule -

r ¿(<)+o.i i f- i( í)>o.9 ,
L ~ \ 1 i fL ( í )<0 .9

with the aim of avoiding the confusion with the legal strings.

Another a-priori knowledge hint was used to initialize and fix some weights during
training. These weights were determined to force a push action whenever a special
"empty stack" symbol is seen in the stack top reading (except for the particular case
of the legal string "c").

The full-order network trained to learn the palindrome CFG contained N = 4 state
neurons, M = 3 input symbol signals (for a, b and c, since no end-of-string symbol was
used) and M-f 1 stack top reading signals (to include a special "empty stack" symbol).
Two training sets were used: the former included all the strings up to length 3, and the
latter included all the strings up to length 5; in addition, a few more positive strings
were added to each set trying to balance the weight correction forces of the positive
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and negative strings. The first training set was used to train the NNPDA for 200
epochs, and then the second training set was used for another 200 epochs. During the
generalization tests after learning, every input string s was entirely presented (no "trap
state" interruptions) and accepted by the NNPDA if (oi(*/(s)) > 0.5)A(£(</(s)) < 0.5)
(otherwise rejected). All the 29,523 strings up to length 9 were used as test set, and
only 4 classification errors were made by the trained NNPDA [SuGC:93].

A quantization of the trained NNPDA was also carried out by substituting the
sigmoid activation function by a step function in the state units, and by quantizing
each of the action unit weights to three levels (—1,0,1) using —0.5 and 0.5 as threshold
values. This last quantization can be shown to be equivalent in discrete behavior to the
quantization of the action unit activation value. All the 21,523,359 strings up to length
15-were-correctly classified by the quantized NNPDA, using-the previpusxlassification

•rule, except that as soon as 0i(i) becomes zero the input string is rejected. Finally, a
discrete PDA was extracted from the quantized NNPDA which perfectly recognized the
deterministic palindrome CFG. This PDA could be further reduced to an equivalent
PDA with seven states (one of them the "trap state")20.

The preceding experiments revealed some interesting aspects concerning NNPDA
operation and training for CFGI. Namely,

• the lack of supervision knowledge for the stack length of illegal strings is a problem
in training NNPDAs, which can be alleviated by enforcing a-priori knowledge in
the training stage (through the error function and/or initially fixed weights);

• the introduction of «the "full order" connection and its linear formulation for the
stack action unit augments the learning power of the NNPDA (at the expense
of a number of weights exponential in N) and provides a way to insert discrete
action rules into a continuous NNPDA trained by gradient-descent;

• although some simple deterministic CFGs could be inferred by the NNPDA
approach, Sun et ol. acknowledged that it is not clear whether their connectionist
approach is an efficient way to learn CFGs or how well it can perform for larger
and more complex CFGs [SuGC:93].

20Remember that the minimal PDA for the target grammar contains only 3 states.
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Fig. 4.8 The architecture proposed by Das and Mozer to induce CFG productions.

4.4.2 A connectionist symbol manipulator that induces CFG
production rules

Das and Mozer [DaMo:93, MoDa:93] presented a connectionist symbol manipulator
that can be trained to induce CFG productions (or rewrite rules). Whereas in the
approach by Sun et al. [SuGC:93] just described, the primary interest was to learn
the dynamics of a deterministic pushdown automaton recognizing an unknown target
CFG, the approach by Das and Mozer focused on learning the explicit production
rules of a target CFG to parse correctly the strings generated by the grammar. In
this case, however, the system requires some prior knowledge about the target CFG
G = (VN,VT,P,S): the number of non-terminal symbols |V¡v| and the maximum
number of rules K that have the same left-hand side must be specified in advance.
Moreover, the target CFG G is assumed to be in a normal form such that all the
production rules in P reduce two symbols to a nonterminal.

The architecture proposed by Das and Mozer [DaMo:93] is depicted in Fig. 4.8.
It consists of a single layer network controller (but not an SLRNN) coupled with
an external continuous scratch-pad memory. The scratch pad is implemented as a
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combination of a continuous stack, which is similar to the one in the NNPDA model
except in the fact that two composite symbols are readable simultaneously from the
stack top, and an input queue. The purpose of the scratch pad is to hold the transitional
stages of an input string during a reduction process, that leads to the start symbol S
of the grammar when the string is recognized by bottom-up LR parsing.

Before a string is presented, the continuous stack is reset to contain only a single
special symbol, the null symbol $, with an "infinite" length. Then the string is placed
in the input queue, and the network is allowed to run for 2Í — 2 time steps, which is
exactly the number of steps required to parse any grammatical string of length / (due
to the implicit restrictions on the production rules). At each time step, a read-head
determines the location on the scratch pad memory of two unit-length symbols to be
supplied to 'the network, which'correspond to the:'stack top and undertop symbols.
These (possibly composite) symbols are represented in two vectors RI* and R2', for
the stack undertop and top respectively, and introduced to the network by means of
two sets of M input signals each.

The network consists of a single-layer of N demon units, each one receiving the stack
reading signals, plus one special default unit. Each demon unit is explicitly associated
with a particular nonterminal B € VAT, but several demons may be associated with
the same nonterminal, each representing a production rule with B in the left hand
side. The weights of a given demon unit represent a pattern of two symbols, which
correspond to the right hand side of the rule. When a demon unit matches its pattern
to the read-head symbols, it fires (maybe partially depending on the matching degree)
and produces a (maybe partial) replacement of the symbols under the read-head by ¡
the nonterminal associated with that demon. This action corresponds to a string
reduction in accordance with the demon's production rule. When none of the demon
units fire, the default unit fires and yields a shift of the read-head from left to right,
i.e. the first symbol in the input queue is pushed onto the stack. Actually, both the
default unit activation and the corresponding push action are not necessarily discrete
but continuous (or partial). Hence, the vector of activations of the default and demon
units at time í, denoted A*, determines the overall (maybe combined) action that is
performed on the scracth pad, which in turn renews the symbols under the read-head.

If a grammatical string is reduced correctly, the final contents of the scratch pad
will be an empty queue and a stack of unit total length just containing the start symbol
S; in practice, S must be the top symbol coded in R2*, while the null symbol $ must
be coded in RI*. The length of the null symbol is not computed in the stack total
length. Therefore, the weights of the network controller can be trained by maximizing
an objective function, which depends on both the stack top symbol and total length
at the end of a string processing, and also on whether the supplied example string is
positive or negative.
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The described model, displayed in Fig. 4.8, was actually designed to learn and
parse LR(0) grammars, a subclass of CFGs, but Das and Mozer pointed that the
architecture can be easily extended to LR(n) CFGs by including connections from the
first n composite symbols in the input queue to the demon units. On the other hand,
the neural representation of symbols and production rules in the network presents the
following features [DaMo:93]:

'

• ____ _________ „. „.£,„ ___ — „-! _____ ._ -_r _______ __ j ______ „ 0 ____ ~j —

\Vr\ + \VN\ — \V\, i.e. the total number of terminal and nonterminal symbols in
the target grammar (which must be known a priori);

• •the terminal and nonterminal discrete symbols, or non-composite symbols of
; , , . ; unit length, ;are jointly represented using a tocal unary encoding (by means, of

M-dimensional vectors Sc = [SCI,'---,SCM]T, 1 < c < \V\, where sc; = 1 if c =r¿,
,and sci = 0 otherwise, for 1 < i < M); •

• a composite symbol is represented by an M-dimensional vector R = (7*1, ..., r^Y
such that 53j!ii ri = 1 and each component r,- (1 < i < M) expresses the part

, (length) of the composite symbol that is assigned to the z'-th discrete symbol;

• a lower bound on the number of demon units the network may have is given by
N = /^|V;v|, although strictly, the minimum required number is N = \P\ if the
number of production rules for each nonterminal is known;

1 • the number of demon units TV and the fixed identity of each (i.e. its associated
• nonterminal) must be specified before learning, but an excess of demon units

with respect to \P\ does not necessarily degrade the performance of the network,
since redundant productions may arise in the demon units.

Now let us describe the operation and training of the model more precisely. Let
X* = [xi(t),...,x-2M(t)]T denote the input vector resulting from the concatenation of
the read-head symbol vectors RI* and R2*. Each demon unit D,- computes the distance
between the input vector X* and its weight vector W,-:

2AÍ

distat) = bi 2 (WH ~ xi(t)}2 for !<* '<#, (4.118)

where o¿ is an adjustable bias associated with the unit, whereas the special default
unit DQ just contains an adjustable bias b0, which is used to define disto(t) = 60.
The activation value of unit DÍ at time step t, denoted a,-(i), is computed non-locally
according to a normalized exponential transform

-distat)

fl|.(í) = — - for O < i < N, (4.119)

k=0
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which enforces a competition among the units. Note that the activation of the default
unit, which determines the amount of right shift to be made by the read-head, is
computed like that of any other demon unit.

Let A* = [ao(f),ai(i),...,'ajv(<)]T denote the action vector that is output by the
single-layer network at time step t. Reduction of a pair of symbols on the scratch pad
corresponds to popping the top two symbols from the stack and pushing the nonterminal
associated with the demon unit that matched the symbols. On the other hand, the
left-to-right shift of the read-head, forced by the default unit, is achieved by moving
the next symbol from the input queue on the top of the stack. However, since both the
default and demon units can be partially active, reduction and shift actions need to
be performed partially and simultaneously on the scratch pad. The continuous stack

.allows this, type of combined operation while providing a differentiable,function that
•.permits to back 'propagate error through 'the stack during learning. At every time
step í, the action vector A* performs two basic operations on the continuous stack
[DaMo:93]:

- pop: the length of all items on the stack contributing to the top two composite
symbols is multiplied by a0(t); when ao(i) = 0 (meaning that one or more demon
units are strongly active) the top two symbols will be popped, and when ao(t) = 1
no pop operation will take place;

- push: the symbol pushed onto the stack is the composite symbol given by
the linear combination Y^k=o ak(t}Sk, where S¿, 1 < k < TV, is the vectorial
representation of the discrete nonterminal associated with demon unit Z)¿, and
SQ is defined to be the first (maybe composite) symbol of unit length in the input
queue, where a fraction a,o(t) of the So symbol is removed from the input queue
and pushed onto the stack.

The system is trained using a sample (S+,S~) of positive and negative example
strings from a CFL. The task to be learned is to classify each string in the training set
correctly. Let us define

as the probability that the stack top contains the start symbol S after presentation of
the string s, where Sj is the vectorial unary representation of nonterminal 5; and let
us define

^length _ e-c(L(tj(s))-l)* (4.121)

as the probability that the stack total length Z/(i/(s)) after processing s be 1, where c
is a constant. Then, the product ps = ps

s
tartpl^n9^ ~1S a measure of how well the input

string s has been parsed by the model. The value of ps should be close to 1 for positive
examples and close to 0 for negative examples. Hence, a string s may be accepted if
Ps > I — c and rejected if ps < e, where e is a tolerance such that 0 < e < 0.5.



180 Chapter 4. Grammatical inference through connectionist approaches

Furthermore, a likelihood objective function can be defined [DaMo:93] as

# = n rf*8 Ttplr9th
365+ s€S-

and the logarithm of this function can be taken as the objective function to be
maximized during training:

Z = log H = £ log (pf rtrf^*) + £ log (1 -pf»rtrf"**). (4.123)

The. gradient V\yZ is just the sum of the gradients V-wZ(tf(s)) for all s € (S+,S~),
where . . .

and Z(i) = 0 for the rest of time steps during the processing of the training set. The
gradients V\vZ(tf(s)) can be computed using an adaptation of the BPTT algorithm,
which involves back-propagating through the stack. Then, the weights of the network
(including unit biases) can be updated at the end of each string presentation during
training using the gradient-ascent rule

AW = aVwZ(</(3)) (4.125)

where a is the learning rate.

Das and Mozer employed the connectionist approach described to infer the following
%imple target CFGs: ,

1) the balanced parenthesis grammar with P = {5 — > QKA'JIiS'S, X — * S)}
2) the anbn grammar with P = {S -» ab\aX, X -» Sb}
3) the postfix grammar with P = {S -> aX\SX, X -» 6 + \S+}
4) the pseudo-nip grammar with P = {S —* Nv\nV, V —* un, TV — >• an}

from short positive and negative strings selected by hand [DaMo:93]. Since, for a given
grammar, the number of negative examples was much greater than the number of
positive examples, the positive strings were repeated in the training set to constitute
half of the total training examples. The number of demon units TV and the fixed identity
of each demon was specified in advance of learning. The initial weights Wij were selected
from a uniform distribution over the interval [0.45,0.55] and the unit biases 6,- were
initialized to 1. Das and Mozer reported a network generalization performance of 100%
for the first three grammars above. Finally, it was noted that the learned weights can
be interpreted as right hand sides of symbolic production rules, with one production
per demon unit, and therefore, an explicit representation of the CFG can be extracted
from the trained network [DaMo:93].
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4.5 Concluding remarks

In the latest years, recurrent neural networks (RNNs), as well as some other
connectionist models, have been investigated as an alternative approach to learn
grammars or acceptors from example strings. A variety of architectures (both first-
order [Elman:90, SmZi:89, Fahl:91, MaFa:94, SoAl:94] and higher-order [Poll:91,
GiMC:92, SuGC:93, DaMo:94]) and related learning algorithms (RTRL [WiZi:89,
GiMC:92], BPTT [WiPe:90], time-block based RTRL [Schm:92], ...) have been
proposed. Some works have focused on training the network to predict the next input
symbol at each step of a positive string sequential presentation (next-symbol prediction
task) [C1SM:89, SmZi:89, Fahl:91, SoAl:94]. Other works have focused on training
the network to-respond, after a whole string-presentation,: whether the input string
belongs to a target language or not (classification task) [GiMC:92, WaKu:92, MiGi:93,
MaFa:94, SuGC:93].

The capability of neural networks to learn some simple regular and context-
free grammars (or their corresponding automata) have been shown. However, some
problems have appeared altogether: bad generalization for long strings caused by
state unstability, possible learning failure due to local minima of the error function
and/or an inadequate number of units, difficulty of biasing and controlling the inference
process, etc. Moreover, the performance of the reported neural models in learning large
grammars is still unknown.

On the other hand, some clustering methods have been proposed to extract
symbolic representations (both FSAs [SeCM:88, DaDa:91, GiOm:93, MaFa:94] and
PDAs [SuGC:93]) from trained networks with a continuous state space. Likewise,
quantization techniques have been applied to use RNNs as discrete machines both
during [ZeGS:93, DaMo:94] and after learning [DaDa:91, SuGC:93]. In general, the
extracted automata and the quantized networks outperform the trained continuous
networks in classifying unseen data (generalization performance). Nevertheless, the
conditions that must be met by the network and the training set in order to identify a
target grammar or automaton are still not well understood.

In Chapters 6 and 7 some techniques will be proposed to improve the learning
performance of RNNs, as well as to extract and insert FSAs in RNNs, which attempt
to overcome some of the deficiencies aforementioned about the application of RNNs
to grammatical inference (e.g. the difficulty in controlling and biasing the inference
process carried out by the network). The FSA extraction and insertion methods
that will be proposed also improve and extend the ones reported previously by other
researchers.




