
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informàtics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST

LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

*
0

Chapter 5

Regular grammatical inference from
positive and negative data using
unbiased finite state automata

In this chapter, a type of (possibly non-deterministic) finite-state machines, called
Unbiased Finite State Automata (or UFSAs), is defined which allows a symmetric
representation and processing of positive and negative information and permits to
handle the language of strings of uncertain classification. The concept can be extended
to cope with C-classes recognition problems giving rise to a type of (possibly non-
deterministic) FSMs called C-classes Unbiased 'Finite State Automata (or (7-UFSAs).

Both the basic theory and the search space for the RGI problem from positive
and negative examples is reformulated in terms of UFSAs. A well-known RGI non-
incremental algorithm due to Oncina and Garcia, the RPNI algorithm [OnGa:92b], is
generalized using UFSAs, and some variations are presented, each with a particular
inductive bias. Then, two new pseudo-incremental methods for RGI from positive
and negative examples using UFSAs are described, which are based on the previous
algorithm and can take any of the former biases. These methods, which work in
polynomial time and improve the average time complexity of the non-incremental
algorithm, always obtain a deterministic UFSA that is consistent with the given
examples. The solution is updated for each new sample string, but the prefix tree of all
the previous strings must be stored (hence the term pseudo-incremental). Indeed, it is
derived that a fully incremental approach cannot preserve data consistency, except for
trivial solutions.

183

184 Chapter 5. RGI from positive and negative data using UFSAs

A new feature of the presented methods is the capability of generalizing negative
information, in the same way that is usually done for positive data. The ultimate aim
is to reduce the number of negative examples that may be required to obtain a proper
solution or to avoid a possible over-generalization caused by limiting the consistency
constrain to a given finite set of negative examples. Some experiments have been
carried out to show the behaviour of the methods.

i

The proposed representation and methods were already reported in a communica-
tion to the SSPR'94 workshop held in Nahariya (Israel) [AlSa:95a], and part of the
results of the experimental study have been included in a recently submitted paper
[AlSa:97b].

5.1 Unbiased Finite State Automata

Definition 5.1. An unbiased finite state automaton1 (or UFSA for short) is defined
as a six-tuple U = (Q, S, ¿, ç0) Fp, FN), where Q is a finite set of states, S is a finite set
of input symbols (alphabet), qoeQ is the initial state, Fp C Q and FN C Q are sets of
positive and negative final states respectively, and 8 : Q x S —> 2^ is a state transition
(possibly partial) function.

Definition 5.2. The language accepted by an UFSA U = (Q,E,S,q0,Fp,FN) is
defined as LA(U) = {aeS* | 6(q0,ci)r\Fp ^ 0}, where 8 : Q x S* -> 2Q is the transition
function extended to strings of symbols. Symmetrically, the language rejected by U is
defined as LR(U) = {/3e£* | 6(qQ,p) D FN ± 0}. The language of strings from E* that
are neither included in LA(U) or Lp,(U) is said to be ignoredby U, and it can be defined
formally as L j (U) = {weS* | 6(qQ,u) is undefined V (6(q0,w) D (FPVFN)=-ty}. The
languages Ls(U) = LA(U) U LR(U) and S* are called the scope and the domain of U,
respectively.

Definition 5.3. An UFSA U = (Q, E, 6, ço, FP,FN] is deterministic if and only if
the range of the transition function è is restricted to singletons in Q, i.e. 8 : Q x S —> Q.

Deterministic UFSAs will also be denoted DUFAs, while non-deterministic UFSAs
will also be denoted NUFAs.

' Definition 5.4. An UFSA U is consistent if and only if LA(U] n LR(U) = 0.

term "unbiased" is adopted to emphasize that the representation is symmetric with respect to
the positive and negative information, this being inspired by other types of well-known representations
such as predicate logic.

5.1. Unbiased Finite State'Automata • ' *:v 185

Definition 5.5. An UFSA U is complete if and only if U is consistent and its scope
coincides with its domain (i.e. Ls(U) = LA(U) U Ln(U) = S*).

A link between "classical" FSAs and UFSAs is established by the following
algorithm, which maps DFAs into equivalent complete DUFAs:

ALGORITHM 5.1. Maps a DFA into an equivalent complete DUFA.
Input: A given DFA A - (Q, S, Í, qQ, F).
Output: A complete WFA U- (C',S,<$',c¿,Fp,FN).
begin
if 6 is fully defined for all q 6 Q and a 6 E then

Q' := Q- q'Q := 9o; FP := F; FN := Q - F
V ç e < 2 , < z € S : S'(q,a}:=S(q,a) - .

else
Q':=Q\j{qG}; q'0:=q0] FP := F; FN := (Q - F) U {qG}
V c e < 2 , a < E S :

S(q, a) is defined =>• ¿'(9, a) := o(q,a)
<5(c, a) is undefined => 8'(q,a] := qo

Va6 S : S'(qGla) := qG

end_if
end_algorithm

Given any regular grammar (7, there exists a DFA that accepts the language L(G\
generated by G (recall Chapter 2); therefore, by the above algorithm, there also exists
a complete DUFA U for which LA(U) = L(G) and LR(U] = S* -L(G). It should be
noted that all the consistent UFSA U such that LR(U) U L¡(U) = S* - L(G) will also
(positively) recognize L(G).

It is quite obvious that "classical" FSAs and complete UFSAs have the same
classification power, that of recognizing the class of regular languages. However, a
complete UFSA is unbiased with respect to positive and negative information, since
both types of data are explicitly and symmetrically represented. Furthermore, the class
of consistent UFSAs actually extends the expressive capacity of FSAs, since it tackles
the existence of strings that cannot be classified with certainty using the available
knowledge. In my opinion, these simple and nice properties make UFSAs well-suited (as
hypothesis space) for the problem of regular grammatical inference from both positive
and negative examples, as I will try to show in following sections. Previously, it is
mandatory to establish some basic theory about UFSAs. The next theorems are easily
derived from well-known automata theory [HoUl:79].

Theorem 5.1. Given any NUFA U, there exists an equivalent DUFA UD, that
satisfies LA(UD] = LA(U] A LR(UD] = LR(U}.

18Ç Chapter 5. RGI from positive and negative data using UFSAs

Proof. Let <^> be the algorithm which transforms an NFA A into an equivalent
DFA AD [HoUl:79]. Now let <// be the algorithm (working on UFSAs) that results
from adding to <j> the following rule: mark as negative final state any state of the
deterministic automaton that is built from a set of states of the initial automaton that
includes at least one negative final state. Then <j>' can be applied to obtain UD from
Í7, since it can be derived symmetrycally both that LA(UD) = L¿(U) (considering U
as an FSA A in which F = Fp and the negative final state labels are ignored) and
LR(UD) = Ln(U) (considering U as an FSA A in which F = FN and the positive final
state labels are ignored), ü

Theorem 5.2. There exists an algorithm to determine whether a given UFSA U
is consistent.

Proof. ', If U is a DUFA,'~then it is obvious that U will be consistent if and'only
if Fp n FN = 0. If U is an NUFA, the consistency test algorithm is closely related
to algorithm <f>' of Theorem 5.1. If in the process of applying <}>' to transform U into
a deterministic UD a state is ever created and marked both as positive and negative
final state, then U is inconsistent, and otherwise, U can be declared consistent once the
algorithm <j>' halts. This method is correct because each state of UD represent a subset
of states of U for which a same string leads to, and hence, if a state were labeled both
as positive and negative final state, this would mean that at least one string would had
led both to a positive and a negative final state in U, so U would be inconsistent. Note
that the case of an NUFA having FP fl FN ^ 0 is also covered by this method, ü

Corollary 1. There exists an algorithm to determine whether a given UFSA U is
complete. s °

Proof. Firstly, it may be tested whether U is consistent following the method given
in the proof of Theorem 5.2. If U is inconsistent, it is also incomplete, by definition.
Otherwise, U is complete if and only if the transition function 6 of the corresponding
DUFA UD = (Q,%,8,qo,Fp,FN) is fully-defined for the pairs (qeQ,aeE) and every
state of UD is either a positive or a negative final state (i.e. VqeQ,qeFp 0 qeF^}. d

The transition diagrams corresponding to several examples of UFSAs are displayed
in Fig. 5.1. Note that, to discriminate graphically between positive and negative final
states, the former are marked as encircled vertices whereas the latter are marked as
squared 'vertices. '

The concept of UFSA can be generalized naturally to cope with (7-classes
recognition problems giving rise to a type of FSMs called C -classes Unbiased Finite
State Automata:

5.1:. Unbiased Finite State Automata 187

UN, = (Q. I. S , q 0 . F p , F N) where I = { a, b) ,

F p = { q 2 . q 3) . FN = { q 4)

(a)

UD1 = (Q, Z. S , q 0 , F p , F N) where

Z = { a , b . c , d } , F P = (q 5) , FN = (q 2 . q f i }

(C)

UN2 = (Q, Z , S , q 0 . F p . F N) where Z = (a , b) ,

F p = (q 2 . q 3) , FN = (q , . q 4)

(b)

UD2=(Q, Z . S , q 0 . F p , F N) where Z = (a , b) ,

F p = (q , . q 2 , q 3) , FN = (q0 > q4 , qs)

(d)

Fig. 5.1 Several examples of unbiased finite state automata (UFSAs).
(a) A consistent NUFA UNI (b) An inconsistent NUFA
(c) A consistent DUFA Um (d) A complete D UFA UD2

Definition 5.6. A C-classes unbiased finite state automaton (or C-UFSA for
short) is defined as a five-tuple M = (<3,S,¿, ço,.?7), where Q, S, S and ç0 are as in
an FSA, and J- is a collection of G subsets of final states, i.e. F = (Fi, ..., FC] where
Ve €'[!', C]: FCÇQ.

Definition 5.7. A (7-UFSA M — (Q, E, í, ç0, F) accepts a collection of C languages
(£i(M), ..., LC(M}}, that are defined as Ve e [1, C] : LC(M) = {aeS* | %0, «) n Fc ¿
0). The language of strings Lj(M) = E* - (jf=i LC(M) is said to be ignored by U, and
it can also be defined as Lj(M) = {u;e£* | o(q0,u) is undefined V (<$(<7o,k>)n(j£Li Fc =
0)}. The languages L$(M} = U^Li LC(M] and E* are called the scope and the domain
of M , respectively.

Definition 5.8. A (7-UFSA M = (Q, E, o, go, f) is deterministic if and only if the
range of the transition function 6 is restricted to singletons in Q, i.e. 8 : Q x S —» Q.

188 ChapterS. RGI from positive and negative data using UFSAs

Theorem 5.3. Given any non- deterministic C-UFSA M, there exists an equivalent
deterministic C-UFSA MD, that satisfies Vc € [1,C] : LC(MD] = LC(M).

Proof. It is a generalization of the proof of Theorem 5.1. Let <f>'c be the algorithm
(working on C-UFSAs) that results from modifying the NFA-to-DFA algorithm (/> using
the following rule: for each c € [1, C], any state of the deterministic automaton that is
built from a set of states of the initial automaton that includes at least one final state
in Fc of M must belong to Fc of Mrj. Then <j>'c can be applied to obtain Mrj from M,
and this is demonstrated by the same kind of argument used in the proof of Theorem
5.1. n

Definition 5.9. A C-UFSA M is consistent if and only if Vi, j € [1, C] :

Definition 5.10. A C-UFSA M is complete if and only if M is consistent and
LS(M) = Uc

c
=1 LC(M) = £*.

Theorem 5.4. There exists an algorithm to determine whether a given C-UFSA
M is consistent.

Proof. If M is a deterministic C-UFSA, then it is obvious that M will be consistent
if and only if Vz, j € [1, C] : i ^ j => F¡ n Fj = 0. If M is a non-deterministic C-
UFSA, the consistency test algorithm is based on the algorithm <f>'c of Theorem 5.3:
whenever a state is ever created and marked to belong to more than one subset Fc of
final states, then M is inconsistent, and otherwise, M can be declared consistent once
the algorithm <f>'c halts. D

Corollary 1. There exists an algorithm to determine whether a given C-UFSA M
is complete.

Proof. Firstly, it may be tested whether M is consistent following the method given
in the proof of Theorem 5.4. If M is inconsistent, it is also incomplete, by definition.
Otherwise, M is complete if and only if the transition function S of the corresponding
deterministic C-UFSA MD = (S,Q,¿, qo,F) is fully-defined for the pairs
and every state of MD is a final state (i.e. Q — \J^=l Fc). O

It can be seen that UFSAs, as defined in the beginning of this section, correspond
to C-UFSAs for the particular case of C = 2. In the rest of the chapter, I will
only deal with UFSAs and their relationship with the RGI problem, although many
of the concepts and algorithms that will be introduced may be reformulated for the
general case of C-UFSAs as well (e.g. the predicates consistently- extends(Mz, MI) and
consistently-covers(M2,Mi)). However, the problem of learning C-UFSAs will not be
discussed here and it is left for future research.

5.2J Basic theory for regular grammatical inference using UFSAs 189

5.2 Basic theory for regular grammatical
inference using UFSAs

5.2.1 Further definitions and theory about UFSAs

5.2.1.1 Canonical UFSA of a regular language and universal UFSAs

Definition 5.11. Let A(L) be the (minimal-size DFA that is the) canonical
automaton of a regular language L. The canonical UFSA of L, denoted U(L), is the
complete DUFA that results from applying Algorithm 5.1 (DFA to complete DUFA
transformation) to A(L). ' , " . ' " ' '•*—•'"• ~~-¿ *•••-•«*••• \ > <-; •

It is obvious that U(L) is the minimal size complete DUFA.C/ such that L¿(U) = L
and LR(U) = E* — L. Furthermore, the number of states of U(L) is bounded by
[A(L)\£\U(L)\<\A(L)\ + 1.

Definition 5.12. A universal UFSA over an alphabet S is a DUFA UU =
(Q,Z,6,q0,Fp,FN) where Q = {q0} and Va 6 S : ¿>(q0,a) = qQ. There are four
universal UFSAs: the positive universal UFSA (Fp = Q A FN = 0), the negative
universal UFSA (Fp = 0A.Fjv = £?), the inconsistent universal UFSA (Fp = FN = Q),
and the empty universal .UFSA (Fp — FN = 0).

4 .
5.2.1.2 UFSAs related to a sample

Definition 5.13. Let S = (S+¡S~) be a sample of a language L. A canonical
UFSA with respect to S is any UFSA Uc such that LA(UC) = S+ and LR(UC) = S~.

Definition 5.14. Let S = (5l+,5'~) = ({«i, ...,UAÍ}, {UM+I,...,UM+N}) (containing
M positive examples and ./V negative examples), where ií¿ = a^i...^^, 1 < i <
M + N. The maximal canonical UFSA with respect to S is the UFSA MCU(S) =
(Q, S, ¿, ço, FP, FN), where

E is composed of all the symbols that appear in S,

Q = {qi,j \l<i<M + N, l<j< \Ui\, qitj = aitl...aitj} U {q0 \ q0 = A},

FP = S+ = {9fi|U|.| | 1 < t < M}, FN = S- = {qi,]ui\ \M + l<i<M + N},

Va G S : ¿(A,a) = {c¿)1 | gfil = a, 1 < i < M + TV), and

)°) = {Ctj+i | 9«,j+i = qi,jdi,j+i A a.-j+i =-a} for 1 < i < M +-N and

190 Chapter 5. RGI from positive and negative data using UFSAs

The MCU(S) is the UFS A having the largest number of states, with respect to which S
is structurally complete. The MCU(S] is generally an NUFA, where the only possible
nondeterministic transitions are from the start state ÇQ.

Definition 5.15. The (canonical) prefix tree UFSA of a sample S = (S+,S~) is
defined as PTU(S) = (Pr(S),£,¿,A,S+,S-), where Pr(S) is the set of prefix over
the finite language S+ U 5~, and 8 is given by: V« € Pr(S),Va € S : ua € Pr(S) =$>
¿(u,a) = ua (otherwise, ¿>(u,a) is undefined). The PTU(S) is always a DUFA.

5.2.1.3 The extends and consistently-extends predicates • ...„ ' r:

Definition 5.16. Given two UFSAs Ui and t/a, [72 extends Ui iff LA(U2] 3 LA(Ui)
and LR(U-¿) 3 LR(U\). If, in addition, C/2 is consistent, then C/2 consistently-extends
U\. Finally, if 1/2 is complete and consistently-extends £/i, then C/2 completely- extends
U,.

Theorem 5.5. All the UFSAs that extend an inconsistent UFSA are inconsistent.

Proof. It is immediate from the definitions of a consistent UFSA (Def.5.4) and the
predicate extends (Def.5.16). D

Likewise, it may be shown that the4 relation consistently- extends(U-2, U\) provides a
partial order in the class of consistent UFSAs.

Theorem 5.6. There exists an algorithm to determine whether, given two UFSAs
U\ and Ui, U<¿ extends U\. '

Proof. In the same manner that it is decidable if a regular grammar (or FSA)
is more-general-than other regular grammar (or FSA) based on the effective closure
properties of regular sets under union, complementation and intersection, it is likewise
decidable if an UFSA extends other UFSA. The method simply consists of testing
twice the regular language superset property (more-general-than predicate), once
for the accepted language (¿^(f/a) 2 LA(U\)} and once for the rejected language
(LR(U-¿) ^ LR(UI)). In order to perform the test, four FSAs are initially defined,
two that respectively accept the positive and negative languages of C/i, and two that
respectively accept the complements of the positive and negative languages of C/2-
Then, two further FSAs can be built that accept LA(U\) nL^t^) and
respectively; if both 'only accept the empty language then C/2 extends U\ and otherwise
not. G •

5.2. Basic theory for regular grammatical inference using UFSAs 191

Corollary 1. There exists an algorithm to determine whether, given two UFSAs
U\ and 1/2, C/2 consistently- extends U\.

Proof. A simple procedure is to test whether C/2 is consistent (Theorem 5.2)
and whether C/2 extends U\ (Theorem 5.6). However, whenever U\ is known to be
inconsistent, it directly follows (by Theorem 5.5) that C/2 consistently-extends C/i is
false for any UFSA C/2. n

Although the above procedure may be used to test the consistently- extends(U-¿, U\)
predicate, it is not a good tool for the grammatical inference problem, because it says
nothing about how to obtain a "proper" C/2 from an UFSA U\ canonical with respect
to a sample S. Instead, another partial order within the class of consistent UFSAs will
be used, which is given by the predicate consistently-covers(U-2, C/i), to be defined next.

. < ' . : • : • '• -••.!•• ~ ; • : - • . . . ' .' , U.-, , ,,. J ([- < ! V - i . '• • ¡ . ; . • . ,'.

5.2.1.4 Derived UFSAs and lattices of UFSAs

Definition 5.17. Given an UFSA U = (Q, S, <5, q0, FP, FN) and a partition TT of Q,
let B(q, TT) denote the only block that contains q and let Q/TT denote the quotient set
{B(q, TT) | q e Q}; then, the quotient UFSA C//TT is defined as

U I-K =

where 8' is given by

VB.B'eQ/TT.VaeE, B' e6'(B,a)iï3q,q'£Q: q € B A ç' G B' A </€%,a)
. . - . ' • .

The UFSA U/TT is also said to be derived from U with respect to the partition TT of Q.

Definition 5.18. Given two UFSAs U\ and C/2, f/2 covers Ui, also denoted
f/i <C C/2, if and only if C/2 = C/I/TT for some partition TT of the states of U\. If,
in addition, C/2 is consistent, then C/2 consistently-covers U\ (and we say that TT is a
consistent partition of the states of C/i).

Theorem 5.7. Given two UFSAs U\ and C/2, i^e two following rules are always
true:

i) covers(C/2,C/i) =» extends(C/2,C/i)
nj consistently-covers(C/2, C/i) => consistently-extends(C/2, C/i).

Proof. The first rule is based on Eq.2.17 [FuBo:75], this is, the language accepted by
a derived FSA is a superset of the language accepted by the FSA from which is derived.
Using this property twice, it follows both that L^(Ui) Ç LA(U^) (considering C/i, C/2 as
FSAs AI,AI, where positive final states are taken as final states) and LR(UI) C

192, Chapter 5. RGI from positive and negative data using UFSAs

(considering C/i, C/2 as FSAsyl^, A2, where negative final states are taken as final states).
The second rule immediately follows by adding the consistency condition on C/2 to both
sides of the first rule, ü

Corollary 1. All the UFSAs that cover an inconsistent UFSA are inconsistent.

Proof. It is immediate from Theorem 5.5 and the first rule of Theorem 5.7. ü

Definition 5.19. .Given an UFSA U = (Q,^,S^qo,Fp,FN) and two states
9i>9j € QJ a merge operation on U is defined as UMÍJ = merge(^)9i)9j) = U/^ij,
where the partition TT.-J = {{q € Q} \ q ̂ qi,q ̂ Qj} U {<?,-, <?j}. We also say that UMÍJ
is directly derived from U, or U ^ UMÍJ-

It is clear that Ui covers U\ (or 'U\ -C U-¿) iff Ui results from zero or more successive
merge operations starting on the states of U\. This is, <C corresponds to the reflexive
and transitive closure of X.

Definition 5.20. A merge operation on an UFSA U is said to be consistent if its
result UMÍJ is a consistent UFSA.

It is easy to show that U-¡ consistently-cover s U\ iff Ui results from zero or
more successive consistent merge operations starting on the states of C/i, since once
an inconsistent derived UFSA is produced any further merge will not remove the
inconsistency.

c

. The set of UFSAs derived from a given UFSA U = (Q, S, 6, q0, FP, FN) is partially
ordered by the relation X, and furthermore, it is a lattice, denoted Lat(U), of which
U and a universal UFSA UU are respectively the null and universal elements^. The
depth of an UFSA C//TT in Lat(U] is given by n — |TT|, where n is the number of states
of U. Therefore, the depths of U and UU in Lat(U) are 0 and n — 1, respectively.

5.2.1.5 Structural completeness of a sample with respect to an UFSA

Definition 5.21. An acceptance (respectively rejection) of a string s = ai...a¡
by an UFSA U'= (Q,Z,6,q0,FP,FN), denoted AC(s,U) (respectively ft£(s,t/)), is a
sequence of/+! states (ç0,...,?') such that 9° = q0, q

t+l € <$(c',a¿+i), for 0 < i < (/—I) ,
and ql £ FP (respectively q1 € FN). The / + 1 states in the sequence (which form a
path in the transition diagram of U) are said to be reached for AC(s, U) (respectively

2The particular universal UFSA which is the universal element of Lat(U) will depend on whether
either Fp, or Fjv, or both, are empty or not.

5.2. Basic theory for regular grammatical inference using UFSAs 193

, t/)) and the state ql is said to be used as accepting (respectively rejecting) state.
The / transitions traversed in the path are said to be exercizedby AC(s, U) (respectively

Definition 5.22. Given a finite set of strings Ss, AC(SS,U) (respectively
KS(Sa,U)) is a set of acceptances (respectively rejections) of the strings s e Ss by
[/, such that there is only one acceptance (rejection) for each string.

Definition 5.23. A sample S = (S+,S~) is said to be structurally complete with
respect to an UFSA U — (Q, S, <5, go, Fp, FJV), if there exists an acceptance AC(S+ , U)
of S+ and a rejection 'R,£(S~ , U} of S~ by U such that

: i) every transition -in è is exercized by AC(S+,U) or

ii) every state in Fp is used as accepting state for AC(S+, [/), and

iii) every state in FN is used as rejecting state for 7i£(S~ , U).

Note that the existence of AC(S+,U) and K£(S~ ,U] implies LA(U) D S+ and
LR(U) 2S-.

5.2.2 Restatement of the RGI problem

In terms of UFSAs, the problem of regular grammatical inference (RGI) can now
be stated as follows: given a sample S = (S+,S~) of a language L, such that
5 + ^ 0 V S~ T¿ 0, discover the unknown consistent UFSA UT, called the target
UFSA, from which S+ and S~ are supposed to have been (positively and negatively)
generated (respectively). Hence, UT must satisfy LA(UT) 2 S+ A LR(UT) 2 S~ and

At first, it is clear that all the UFSAs U that consistently- extend a canonical
UFSA Uc with respect to S are possible candidates to be the target UFSA. Again, a
reasonable assumption, when the size of the sample is large enough, is to consider that
S is structurally complete for the unknown target UFSA UT- We will see in the next
subsection that, under this assumption, UT consistently-covers the MCU(S), so the
search of UT can be constrained to Lat(MCU(S}}. Moreover, if the target UFSA is
restricted to be a DUFA, then UT consistently-covers the PTU(S), and only the lattice
Lat(PTU(S)) has to be explored. In practice, the corollary of Theorem 5.7 can be
used to filter this set, and one or more criteria (inductive biases) must be imposed to
select just one or a few plausible solutions among the set of UT candidates.

194 Chapter 5. RGI from positive and negative data using UFSAs

5.2.3 The search space of the RGI problem using UFSAs

The two following theorems establish the basis to approach the RGI problem using
UFSAs. They are straightforward extensions of Theorems 2.4 and 2.5, respectively
[DuMV:94],

Theorem 5.8. Let S = (S+,S~) be a sample of any regular language L and let
UT be any consistent UFSA accepting exactly L and rejecting a language L' such that
S~ C L' C S* — L. If S is structurally complete with respect to UT then UT belongs to
Lat(MCU(S}}.

. .Proof. : Let .S. - (5+,5~) = (-{«i, ...,UM), {UM+I,V,«M+AT}), where u,- .=
aí,i"-ai,|u¡|j 1 5: z < M + N. The maximal canonical UFSA with respect to
S, MCU(S) = (Q,E,6, <?o, FP,FN), is constructed as described in Def.5.14. Let
UT = (Q1-, 2,¿', qQ,F'P,Fx). A partition TT will be defined such that UT is isomorphic
to MCU(S)/ir.

Firstly, let us define M + TV sequences of states from an acceptance AC(S+,Uj}
and a rejection *R,£(S~ ¡ UT) as follows: for each string u,- a sequence (c,')0, ...,9,MUji) of
|ii,-| + 1 states is defined,, where q'io = q'Q and 9Í¿+i € ¿'(gt'j,a,-¿+i), 1 < i < M + TV,
O < j < \Ui\ - 1; furthermore, q(M € F'P, 1 < i' < M, and q'i>M € F^, M + 1 < t <
M + N. Next, a function </? : Q — > Q' ÏS defined as

i) V(9o) = ?£,, and
«j) = ?') whenever ç' = 9,-^, 1 < ¿ < M + ./V, 1 < j < |u,-|.

Let the partition TT be given by Vqk,q¡ e Q : B(qk,Tr) = B(qi,x) & <¿>(qk) —
Then, UT is isomorphic to MCU(S)/ir, since the structural completeness of 5 with
respect to UT implies the three following equalities:

i) 6 of MCU(S}/'K exactly corresponds to 6' (since all transitions in 8' are
exercized),

ii) FP of MCU(S)/TT exactly corresponds to FP (since Vc' € FP : 3i,
1 < z < M such that g-^.j = <?'),

iii) FJV of MCU(S)/K exactly corresponds to F^ (since Vç' G Fj^ : 3z,
M + l<i<M + N such that 9,̂ ., = q').

Hence, t/r belongs to Lat(MCU(S)). ü

Theorem 5.9. Lei S = (S+,S~) be a sample of any regular language L and let
U(L) be the canonical UFSA of L. If S is structurally complete with respect to U(L)
then U(L] belongs to Lat(PTU(S)).

5.2: Basic theory for regular grammatical inference using UFSAs 195

Proof. A similar argument than in the previous theorem holds, except that, now,
since U(L) is deterministic, there is a unique acceptance AC(S+, U(L)} and a unique
rejection 7££(5~, U(L)), from which a tree of states of U(L) can be built that has the
same structure than PTU(S). A function y> can be defined which maps states of the
PTU(S) into states of U(L) located in the corresponding nodes of the tree. Again, the
partition TT is given by B(qk,ir) = B(q¡,ir) 44» <¿>(cfc) = V>(9')> and i* follows that U(L]
is isomorphic to PTU(S)/Tr, because of the structural completeness of S with respect
to U(L). n

Similarly, a straightforward extension of Theorem 2.6 [DuMV:94] yields the
following theorem:

"Theorem"5;ÏO. Let S• = (S+,'S~) be a sample.' Let U"s bé the set of'UFSAs
such that S is structurally complete with respect to any UFSA belonging to U's, and let
Us Ç U's be the subset of its consistent UFSAs. Then, U's is equal to Lat(MCU(S)),
and consequently, Us Ç Lat(MCU(S)}.

Proof.

i) If S is structurally complete with respect to an UFSA _£/, then U belongs to
Lat(MCU(S}). This can be proved by removing the consistency requirement on
UT in Theorem 5.8 and realizing that its proof is still valid.

ii) If an UFSA U belongs to Lat(MCU(S)), then S is structurally complete with
respect to U. It is clear that S is structurally complete with respect to MCU(S)
and, from the definition of a derived UFSA, it is also structurally complete with
respect to any UFSA U € Lat(MCU(S}}. ü

Whenever S+ ^ 0 and S~ ^ 0, Us C Lat(MCU(S)}, since at least the inconsistent
universal UFSA belongs to Lat(MCU(S}}. Also, Us ¿ 0, since at least MCU(S) G Us

and PTU(S) <E Us always. .

Given a sample S = (5'+,S'~), the minimal complete DUFA problem consists of
finding the complete DUFA U such that S is structurally complete with respect to U
and U has the.minimal number of states. This problem is NP-hard, since it is always
possible to obtain the minimal consistent DFA from the minimal complete DUFA, by
removing any garbage negative final state (at most one), together with its incoming and
outgoing transitions, and ignoring the rest of negative final state labels. It is obvious
that the minimal complete DUFA U belongs to Us] indeed, the search space for this
problem can be further delimited using a reformulation of the concept of deterministic
border set, which is given next.

Definition 5.24. An antistring a? in a lattice of UFSAs is a set of .UFSAs such
that any element of as is not covered by any other element of as.

196 Chapter 5. RGI from positive and negative data using UFSAs

Definition 5.25. An UFSA U is at a maximal depth in a lattice of UFSAs, if U
is a consistent UFSA and there is no other consistent UFSA U' which may be derived
from U.

Definition 5.26. Given a sample S = (S+,S~), the border set
respectively BSPTu(S), is the antistring in Lat(MCU(S)), respectively Lat(PTU(S)),
of which each element is at a maximal depth.

Definition 5.27. Given a sample S = (5+,5~), the deterministic border set
DBSpTu(S], is the antistring in Lat(PTU(S)), of which each element is a consistent
DUFA U such that there is no other consistent DUFA U' which may be derived from
U.'

Some interesting properties of the search space of the RGI problem using UFSAs,
which may be derived from the related properties in the FSA case [DuMV:94], are the
following:

1. Lat(PTU(S)) Ç Lat(MCU(S)).
2. VC/ € Lat(MCU(S)) : U is & DUFA => U G Lat(PTU(S}}.

3. BSpTu(S) Ç BSMcu(S).
4: There may be several distinct languages accepted (and several distinct languages

rejected) by the UFSAs belonging to BSMCu(S).
5. There may exist canonical UFSAs (for some languages) which belong to

Lat(PTU(S)) but do not belong to BSPTu(S), since other UFSAp in BSPTU(S)
may be derived from them.

6. The minimal complete DUFA could belong or not to BSpTu(S) (by the previous
property), but it must belong to the deterministic border set DBSpTu(S)',
therefore, the minimal complete DUFA problem can be considered as the
discovery of the smallest complete DUFA in DBSpTu(S).

5.3.' Basic method for non-incremental RGI from positive and negative examples 197'

5.3 Basic method for non-incremental RGI from
positive and negative examples

In order to design a method for RGI from positive and negative examples using
UFSAs, we should choose whether to search the target UFSA UT in Lat(MCU(S}}
or in Lat(PTU(S}}. The latter is adequate if we look for a DUFA UT, such as the
canonical UFSA U(L) of the target regular language, and we assume that the sample
S is structurally complete with respect to it. In such a case, Theorem 5.9 guarantees
that there exists a partition TC of the states of PTU(S) which yields a derived UFSA
isomorphic to UT, i.e. PTU(S}/-K = UT- Hence, we can restrict ourselves to select a
solution among the DUFAs that consistently-cover PTU(S) (the prefix tree of S)...

However, there is a technical problem that must be considered. It concerns
the process of testing the consistency of the UFSAs generated during the search in
Lat(PTU(S}}. Whereas the computational cost of this test is negligible for a derived
DUFA, since it reduces to check whether a positive and a negative final state have been
merged, the cost of the test for a derived NUFA may be considerable in the worst case,
since an NUFA-to-DUFA transformation is involved (recall Theorem 5.2). To avoid
this possible source of inefficiency, we can constrain the hypothesis space to DUFAs,
by defining and using a deterministic merge operation which takes a DUFA and always
returns another DUFA (after performing possibly several simple merge operations).
This restriction is perfectly applicable, since we are looking for a DUFA UT', note that
an identical restriction is used in the RGI method by Oricina and Garcia that returns
a DFA [OnGa:92b].

Definition 5.28. Given a DUFA U = (Q, S, <$, c0, Fp, FN) and two states c¿, q¿ e Q,
a deterministic merge operation on U is defined as UDMÍJ = Dmerge(t/, <?¿,<?j) =
D(t/Aftv/), where the operation D : UFSA —> DUFA is defined recursively as follows

„,-..,. f D(merge({7, qi,qm}} if 3a e T,,3qk,q¡,qm in U: q¡ € <H<?fc>°) A qm G 6(qk,a]
JJ(U) = <

U otherwise

This is, Dmerge(U, c¿, Çj) starts by running merge(U, c¿, c¿) and continues by merging
any two states that are destination of a non-deterministic transition until a DUFA
UDMÍJ is obtained. If U is consistent, then UDMÍJ will De consistent if no new state
is created from a merge of a positive and a negative final state. It is also clear that

is derived from U, although it is not necessarily directly derived from U.

198 Chapter 5. RGI f rom'positive and negative data using UFSAs

On the other hand, the set of DUFAs that consistently-cover the prefix tree PTU(S)
may be quite large, and thus, any practical RGI scheme has to impose some additional
conditions to select just one or a few UT candidates. The three following inductive
biases should yield meaningful solutions:

1. Try to maximize the generalization of positive data.
2. Try to maximize the generalization of negative data.

3. Try to maximize the generalization of both positive and negative data.

The method proposed by Oncina and Garcia [OnGa:92b] (using DFAs), that has
been described in Chapter 2 (see Algorithm 2.2), is a good representative for the first
bias above. Next, -let ;us explain how to reformulate this algorithm in, terms of UFSAs
and how to derive similar procedures for the two other biases. To this end, some more
definitions are required.

Definition 5.29. Let qi,qj be two distinct states in a prefix tree PTU(S), and
let s¿, Sj e Pr(S) be the corresponding unique prefixes that lead from the start state
to c,-,9j in PTU(S), respectively. We say that c¿ < q¡ iff s¿ < Sj according to the
lexicographic order in £*. Moreover, let us think of s,- as an identifier for the state c¿,
so that, for notational purposes, we can use either s¿ or ?,- to denote the same state in
PTU(S). "

Definition 5.30. Let ?r be a partition of the states of a prefix tree PTU(S).
If ç is a state in the quotient UFSA PTU(S)/K, let Bq denote the block of the
partition associated with q (i.e. the set of states of PTU(S) that have been merged
together into q). Let g,-,Cj be two distinct states in PTU(S)/ir, and let Bq.,Bqi G TT
be their corresponding blocks. We say that ç,- < q j (and also Bqi < Bqj) iff
3w e Bqi: Vu 6 Bqj : u <v.

Consequently, for every state q in PTU(S)/ir, we may choose the lowest prefix (in
lexicographic order) in Bq as an identifier for q. This enables to establish a total order
in the set of states. It should also be remarked that the operation merge(U,qi,qj)
updates the block information by creating Bq = Bq (JBq and removing both Bq and

Definition 5.31. Given a state qeQ in an UFSA U = (Q,T,,6, q0,Fp,FN), the
following regular languages are defined:

Heads(q) = {a € S* | q € %0, a)};
PosJails(q} = {ij> G S* I o(q,^) n FP ^ 0}; and

NegJails(q) = {u € S* | o(q,u) n FN ^ 0).

5.3. Basic method for non-incremental RGI from positive and negative examples 199 -

Any state q contained in U can be labeled as uncertain, positive, negative, or mixed,
according to Table 5.1.

Neg-tails(q) = 0
Neg.tails(q) ^ 0

PosJails(q) = 0
uncertain
negative

Pos.tails(q) 5¿ 0
positive
mixed

Table 5.1. Labeling of a state q in an UFSA.

The labels of the states in any prefix tree PTU(S) are easily computable. For
example, in a constructive manner: for each new string s € S+, the states in the
acceptance AC(s, PTU(S)) are labeled mixed if they were previously labeled as negative
or mixed, and they, are labeled .positive otherwise; a symmetric .procedure applies,to.
the strings s € S~.

After any merge operation merge(U,q{,qj), the label of the new state c,-j can
be assigned from the labels of the merged states qi,qj as shown in Table 5.2.
Likewise, the labels of the new states resulting from any deterministic merge operation
Dmerge(U,qi,qj) are readily computed according to the sequence of merge operations
that are performed.

9f

uncertain
positive
negative
mixed

9j
uncertain

uncertain
positive
negative
mixed

positive

positive
positive
mixed
mixed

negative

negative
mixed

negative
mixed

mixed

mixed
mixed
mixed
mixed

Table 5.2: Labeling of the new state resulting from a merge operation.

Given two states q,q' of an UFSA U (in particular, U can be a quotient UFSA
PTU(S)/Tr), a boolean function mergeable(q,q',bias] may be defined to determine
whether the states q and q' are allowed to be merged depending on a certain
parameter bias. If we take the three inductive biases aforementioned, we can define an
instance of this function, which is depicted hereinafter. More sophisticated functions
mergeable(q, q', bias) could be defined by introducing additional biases, for example,
by establishing equivalence relationships among the states of U based on partial
similarities [KuSh:88].

200 Chapter 5. RGI from positive and negative data using UFSAs

function mergeable(q, q', bias) returns boolean
var 6: boolean
begin
case
bias = maximize-positive-generalization :

b := ç is labeled positive or mixed and q' is labeled positive or mixed
bias = maximize-negative-generalization :

b := q is labeled negative or mixed and q' is labeled negative or mixed
bias = maximize-positive-and-negative-generalization :

if q is labeled positive and q' is labeled negative or
. . ,. :.: q':is labeled positive, andç i s labeled negative . . , _ , .

then 6:= FALSE
else fe:= 7W£
end_if

end-case
return 6
end-function

Now, we have all the elements required to write formally a general non-incremental
RGI method using UFSAs (Algorithm 5.2), that permits to introduce inductive
biases through the user-defined boolean function mergeable(q,q',bias). The worst-
time complexity of Algorithm 5.2 is Gdl^H3), or more precisely, 0(\PTU(S)\3)] hence,
it remains in cubic polynomial order as in Algorithm 2í2 (Oncina and García's).
Both algorithms return exactly the same automaton when the bias "maximize positive
generalization" is selected and the DUFA Um is pruned by removing all the negative
labeled states together with their incoming and outgoing transitions.

Therefore, Algorithm 5.2 with the "maximize positive generalization" bias (plus
the post-processing step) is guaranteed to identify in the limit any regular language,
since for each target automaton a representative sample can be built which (possibly
augmented with further examples) leads to the solution [OnGa:92a]. By symmetry, it
follows that Algorithm 5.2 with the "maximize negative generalization" bias and a post-
processing step of pruning the positive labeled states (and associated transitions) of Um

is guaranteed to identify in the limit the complement of the target regular language.
Furthermore, it can be proved that Algorithm 5.2 with the "maximize positive and
negative generalization" bias (and no post-processing step) also identifies in the limit
any regular language, as stated in Theorem 5.11.

*̂ 5.3. ^Basic method for non-incremental.RGI from¥positive and negative examples 201

ALGORITHM 5.2: Non-incremental RGI using DUFAs
Inputs: A sample S = (S+,S~) of an unknown language L.

A parameter bias that determines the condition to be met to allow
the merge of two states.

Outputs: A consistent DUFA Um G Lat(PTU(S}}.

begin
m := \PTU(S}\ { let m be the number of states of the prefix tree UFSA of S }
Ui := PTU(S) { let take the PTU(S) as initial hypothesis }
Arrange the set of prefixes Pr(S) in lexicographic order: {si, ...,sm}, where Si = A.
for j:= 2 to m do

= if 3q e Q of.Uj-i : s j € Bq.,-.-A . q < Sj-. {.the state identified by the prefix s j
has already been merged in a previous iteration }' ' . - . - • -

then U j := Uj-\ { do not change the hypothesis }
else

Find within the set {q 6 Q of Uj-i \ q < s¿}, the lowest state ç,- in
lexicographic order such that mergeable(qi,Sj,bias) is TRUE and
Dmerge(Uj-i,qi,Sj) is a consistent DUFA.

if found such ç,
then U j := DMerge(Uj-i,qi,Sj) {update the current hypothesis }
else U j :='Uj-i { do not change the hypothesis }
endJf

end_if
endJbr 0

{ Um is the selected solution }
end_algorithm

Theorem 5.11. Let L be a regular language. Let A(L] and A(L) be the canonical
DFAs of L and S* — L, respectively, and let U(L) be the canonical UFSA of L.
Let Spos = (S+03,S~OS) and Sneg = (S+eg,S~eg) be the representative samples that
ensure the convergence of Oncina-Garcia's RGI method (Algorithm 2.2) to A(L) and
A(L), respectively. If the sample S = (S+,S~) of L is such that S+ 3 S*oa U Sñeg

and S~ 3 S+eg U S~os then Algorithm 5.2 with the "maximize positive and negative
generalization" bias infers the U(L).

Proof. Firstly, it is clear that U(L] only contains states and transitions that are
present either in A(L) or A(L) or both. On one hand, the condition S+ 3, SpOS

and S~ 3 S* guarantees that S is structurally complete with respect to U(L).
On the other hand, imposing additionally S~ .3 S~ ensures that any pair of the
states in A(L) will not be merged together [OnGa:92a]. Symmetrically, imposing
the condition S+ 3 S~eg ensures that any pair of the states in A(L] will not be

202 Chapter 5. RGI from positive and negative data using UFSAs

merged together.. Finally, the process of merging the states of the prefix tree of a
structurally complete sample in lexicographic order according to the "maximize positive
and negative generalization" bias guarantees that, in the inferred UFSA, both there
is no state labeled positive or mixed which does not belong to A(L) and there is
no state labeled negative or mixed which does not belong to A(L) (since otherwise,
further state merges could have been done). Therefore, it follows necessarily that when
S+ D S+os U S~eg and S~ ^ S+eg U S~os, the inferred UFSA is always isomorphic to the
canonical UFSA U(L). ü

Corollary 1. The size of the representative sample S = (S*,S~) (i.e the number
of strings) that guarantees the induction of the canonical UFSA U(L) by Algorithm 5.2
with the "maximize positive and negative generalization" bias is o/0(n2), where n is
the number of states of the canonical' DFA A(L). ' , , , , . . , ; . . . ,.-.-.,. .

Proof. It is known that the size of both Spos and Sneg are of 0(n2) [OnGa:92a]
(the latter because |;4(-£)| < n + 1). Hence, since the size of S is bounded by the sum
of the number of examples in Spos and Sneg, it follows that the size of S is also 0(n2).
D

5.4 Pseudo-incremental methods for RGI using
UFSAs

Now let us turn our attention to the problem of incremental RGI. A weak statement of
this problem, using UFSAs as hypothesis space, is: given a prior (possibly null) sample
Soldí a prior compatible hypothesis U0¡¿, and a new (positive or negative) example s,
obtain an updated consistent UFSA t/, such that L¿(U} D S+ A LR(U) 3 S~. The
weakness resides on the requirement of the storage of S0¡¿, and this is the reason for
the term "pseudo-incremental".

It is not difficult to conclude that a strong (fully-incremental) statement of
the problem, in which the prior sample is not stored, constrains the solutions to
"uninteresting" UFSAs, with null or partial sample generalization, in order to ensure
the data compatibility of the successive hypotheses. One such trivial solution would
consist of maintaining a canonical UFSA Uc (i.e. LA(UC) = S+ A Ln(Uc) — S~).
Otherwise, once a hypothesis generalize either 5+, 5~, or both, inconsistent new
positive (negative) examples may arrive which will oblige to reduce the extension
of the set of rejected (accepted) strings by the current UFSA. In that case, and
if the prior sample is not stored, some previous positive (negative) examples could
be not accepted (rejected) by the resulting UFSA, unless a "trivial" reduction were

5.4: Pseudo-incremental methods for RGI using UFSAs 203-

carried out. A "trivial" reduction would consist of discriminating the successively
found inconsistent strings by putting them in a list of exceptions3. This tricky strategy
could be even performed keeping the UFSA representation, but probably, it would
lead to bad solutions, since only some (arbitrary) part of the provided examples would
contribute to the inferred generalization.

Therefore, only pseudo-incremental methods for RGI will be discussed here. In the
methods to be presented next, the whole sample S is stored and updated in the form
of a prefix tree UFSA PTU(S}. Furthermore, any current hypothesis U consistently-
covers PTU(S), i.e. U = PTU(S)/Tr, and a record of the corresponding partition TT is
needed. To this end, each state q of U keeps a record of the set of states of PTU(S)
that have been merged into q (i.e. the block Bq). Algorithm 5.3 depicts the basic
pseudo-incremental procedure that is proposed. • ' • * - v¡; * • ;.:" ,.̂ . r ^-,;^' : " " - " • ' ' ' -

i

ALGORITHM 5.3: Pseudo-incremental RGI using DUFAs
Inputs: A sequence of examples e\,..., e¿,..., where each example e¡ is a pair

formed by a string s,- and a positive or negative label (depending on
whether s¿ belongs to a target unknown language L or not).

A parameter bias that determines the condition to be met to allow the
merge of two states.

Outputs: A sequence of consistent DUFAs U\,..., [/,-,..., where each DUFA £/,- is
compatible with the sequence of examples up to e,-.

begin

PTUo := ({A}, 0, 0, A, 0, 0) { set an empty initial prefix tree }
UQ := PTUo { set an empty initial hypothesis }
i ;= O {i counts the number of examples that have been read } • . .
read_example(s,c/ass) { where s is a string and class is "+" or "-"•}
while not end of example sequence do

i:=i + l '
PTUi := expa.ndjpTefLxJ,iee(PTUi-i,s,class,tpath,tplen,pins) { this opera-

tion updates the sample prefix tree, and it also returns tpath, the path of
states of PTUi visited by s; its length tplen; and pins, the position in tpath
of the lowest new state due to s } . .

p := recognize(s, i/,-_i, upath, uplen) { where p can be accepted, rejected or
ignored, and this operation also returns upath, the path of states of t/,-_i
visited by s, and its length uplen }

3Actually, a list of positive exceptions and a list of negative exceptions.

204 Chapter 5. RGI from positive and negative data using UFSAs

if (p = accepted A class = "+") V (p = rejected A class = "-") then
{ the new example is consistent with current hypothesis [/,-_! }
Ui := add_new_treestates_to_partition(C/,-_i,íipaí/i,<paí/i,íp/en,p/ns)

else
if (p = accepted A class = "-") V (p = rejected A c/ass = "+") then

{ the new example is inconsistent with current hypothesis C/,-_i }
{/,-:= split-and_merge(í7,-_i, PTUi, upath, tpath, tplen,plns, bias)

else
{ the new example is ignored by the current hypothesis Ui-i }
Ui := restrictedJ·emerge(t/,·_i, upath, uplen, tpath, tplen,plns, bias)

endJf
end Jf

'" write_UF'S'À(í/ij "' " " - " ' " • ' . ' '' ~ " ' ' ' ' ' : ' ^
read_example(s,c/ass) { where s is a string and class is "+" or "-" }

end-while
end-algorithm :

.The name of the procedure "add_new_treestates_to_partition" is almost self-
explanatory. In this procedure, the new states in the prefix tree PTUi(S) due to the
current example (which are stored in tpath from pins to tplen positions) are included
in the partition blocks Bq of the corresponding states q of £/,-_i that have been visited
during the recognition and recorded in the path upath. Except for this partition update,
the UFSA hypothesis itself is not changed when the current example is compatible with
it; hence, Algorithm 5.3 is a conservative inductive inference method.

The procedure "restricted_remerge" firstly augment the hypothesis Ui-\ in the
simplest way to accept (or reject) the current positive (negative) example: either'a
non-final state is made final, or a single-path tail is appended to the state of upath
where an undefined transition occurred for the current example. Then, in order to
generalize according to the predefined bias, the states in the new tail (if any) are
tested for a consistent merge with the rest of states of i/,-_i, and also with themselves,
in lexicographic order. Note that it is not needed to try new merges among the previous
states, since they would fail: if any two previous states remained separated was because
their merge would cause an inconsistency with a previous example, and this fact is not
altered by the addition of an ignored string.

Concerning the procedure "split_and_merge", that is applied when an inconsistency
is detected, two possible approaches are described next, which give rise to two distinct
pseudo-incremental methods:

5.4.' Pseudo-incremental methods for RGI using UFSAs 205.

1, Maximal splitting (SAO)
2. Minimal splitting (SM_£)

The first one, SAO, simply gets rid of the current partition and UFSA hypothesis,
i.e. maximizes the split step, and builds a new hypothesis from PTU{(S) through
lexicographically-ordered new consistent merges. This causes the same output (UFSA
hypothesis) that is yielded by the non-incremental Algorithm 5.2 from the same sample.
This behaviour permits to inherit the convergence property of Algorithm 5.2 (as shown
in Theorem 5.12), but at a lower average cost in a sequential processing. Both
algorithms perform exactly the same steps when an inconsistent string is found, with
a worst-case cost of 0(\PTU(S)\3). But when strings that are consistent or ignored by
the current hypothesis are supplied, the computational burden is much reduced due

• to the less costly " add-new _treestatesi.to_partition" (0(/)) and ''restricted_rernerge"
(0(/-|t/|2)) operations, respectively, where / refers to the length of the current example
string and \U\ refers to the number of states of the (extended) UFSA hypothesis.

It must be noted, however, that the output of both algorithms is not necessarily the
same at each step, since, for example, the introduction of a compatible example does
not change the hypothesis in the pseudo-incremental method, but it could lead to a
different UFSA if the partition were computed again through lexicographically-ordered
merges from the expanded prefix tree (non-incremental method). In the next section,
it will be shown empirically that in the very most part of cases, the non-incremental
and the SAO pseudo-incremental methods lead to the same UFSA hypothesis, given
a finite sample.

Theorem 5.12. Let L be a regular language and let U(L) be the canonical UFSA
of L. Algorithm 5.3 with spliL·and^merge procedure SM_1 and the "maximize positive
and negative generalization" bias identifies in the limit L by converging to U(L) or an
equivalent non-minimal DUFA after some finite number of examples.

Proof. After some finite step í, the representative sample S = (S+,S~) of L that
ensures the convergence of Algorithm 5.2 with the "maximize positive and negative
generalization" bias will be included in the presented sample. If the Algorithm 5.3
with SAO procedure has not converged to a DUFA equivalent to U(L) by then, an
inconsistent example will eventually be presented after some more finite number of
steps, and, at this point, the SAO procedure with the "maximize positive and negative
generalization" bias is guaranteed to yield the U(L), since the representative sample is
already included in the presented sample, ü

A similar proof can be established to demonstrate that Algorithm 5.3 with SAO
procedure and the "maximize positive generalization" bias (followed by negative state
pruning) or the "maximize negative generalization" bias (followed by positive state

206 Chapter 5. RGI from positive and negative data using UFSAs

pruning) is able to identify in the limit any target regular language, based on the
corresponding property of Algorithm 5.2 with the same bias and the related post-
processing.

The second " split _and_merge" procedure, SM-2, tends to be more conservative
about the current hypothesis J7,-_i, and it further reduces the computational cost, but
at the severe expense of losing the identification in the limit property. In addition, it
shows a quite greater sensitivity with respect to the presentation order. Nevertheless,
a DUFA Ui that consistently-covers PTUt(S) is guaranteed at every step, and the
number of states of [/,- tends to be small in comparison with the size of PTUi(S).
The procedure SM.2 firstly transform [/¿_i in the simplest way to accept (or reject)
the current positive (negative) example, through repeated split of states of upath in
backward direction until à consistent DUFA U- is obtained. Such a DUFA U-.is always,
attainable, since, in the worst case, a single-path tail from the start state ÇQ is produced
for the current string. Afterwards, a remerge of the states of U- is carried out, subject
to the UFSA consistency restriction, following the lexicographic order.

function SM-2 (U0id, PTU, upath, tpath, tplen, pins, bias) returns UFSA

begin
if pins > tplen then { there are no new state in PTUnew }

q\ := upath[tplen]; q^ := tpath[tplen]
U := split Jst&te(U oíd, qi,qz, PTU, deterministic)
/=-:= tplen

else

9i := upath\plns — 1]; q-i := tpath\plns — 1]
U := split_state(Z70/(i,gi,C2,-FTí7, deterministic)
U := append-new J,TeeJ,aí\(U,q2, tpath, pins, tplen)
f^:= pins — 1

endJf

while not deterministic do

{ the non-determinism of U is checked in the previous split .state operation }
h-:=h— 1;

U := split ̂ state(U,qi,q2,PTU, deterministic)

end_while

return remerge(f/, bias) { try all pairwise merges over U states in lexicographic order }

end_function

The operation split_state(t/, q\,q-2,PTU, deterministic] returns the UFSA that
results from splitting the state q\ of U in two states q[and qi such that Bq< = Bgi — {q-¿}

5.4. Pseudo-incremental methods for RGI using UFSAs 207

and Bq2 = {92}, i-e. the state of the prefix tree identified by §2 is segregated from
the partition block of ci, and the incoming and outgoing transitions of q[and q-¿ are
recomputed using the information of the current partition and the prefix tree PTU'. In
addition, it is evaluated whether the returned UFSA is deterministic or not by seeking
a non-deterministic transition ¿(<?,a) = {9^,92}) a € S, in the state q whose block Bq

includes the father of q-i in the prefix tree PTU.

The worst-case time complexity of the operation split-state is 0(\PTU\), due to the
recomputation of the involved transitions. Since this operation is called at most tplen
times (the length of the current example) in SM-2, and on the other hand, the operation
remerge(i7, bias) has a worst-case cost of 0(|C/|3), it is derived that the worst-case time
complexity of SMJZ is 0(/ • \PTU(S)\ + \U\3), where / is the length of the current
example and \U\ is: the number of states of-.the extended UFSA hypothesis :(after the -
split operations). Recall that the worst-case time complexity of the split_and_merge
procedure SM.l was 0(\PTU(S}\3), and that usually, \U\ < \PTU(S)\.

For both the SM.l and SM-2 procedures, a predetermined inductive bias (see the
function mergeable in the preceding section) must be imposed to obtain a unique and
meaningful solution. In addition to the aforementioned three general biases (for which
the .SAO-based method is guaranteed to identify in the limit the target language),
state equivalence relationships based on partial similarities may be defined [KuSh:88],
e.g. two states can be considered equivalent, and thus mergeable, if the symbols of the
incoming transitions are the same for both (successor method).

Other biases may be specified in the form of constraints to be satisfied for each
new merged state and the resulting transition function 8; for example, the following
constraints might be imposed on every positive path of any UFSA hypothesis:

- a certain symbol a\ Ç £ must not be followed by other symbol a^ E E (e.g. in
smooth chain-coded contours);

- if a certain substring c*i G S* ends a head leading to a positive state q e Q, then
other substring a^ € S* must not begin a positive tail of q;

- disable loop construction (to avoid substrings of potentially infinite length).

This kind of constraints, which imply some degree of a-priori knowledge about the
language being learned, can be used to save the introduction of a large number of
negative and positive examples, that could be required to reach the same solution in
an unconstrained inductive run. However, it should be emphasized that the use of other
biases different from the three general biases included in the function mergeable cannot
ensure, in principle, the identification of the target language or even the convergence
of the 5M_í-based method. On the other hand, the 5MJ?-based method may not to
converge even with any of the three general biases.

208 Chapter 5. RGI from positive and negative data using UFSAs

5.5 Experimental assessment

In order to evaluate the RGI methods described in the previous sections, two
experiments were carried out, the first one aimed at assessing the classification rate
of the UFSAs inferred from sparse samples, and the second one aimed at testing the
convergence of the algorithms.

The set of fifteen regular languages selected by Dupont as a benchmark for RGI
methods [Dupo:94,MiGe:94], and which include the seven languages introduced by
Tomita [Tomi:82] (used in several studies about RGI using recurrent neural networks
[Poll:91,MiGi:93]), were chosen as test languages. Figure 5.2 displays the minimal-
size D FA A(L) and the minimal-size complete DTJFA. U(L) for each one of them. A_
compact description of the test languages is given here below: = . .

Li: a*

Li : (ah)*

LZ '. any sentence without an odd number of consecutive a's after an odd number of
consecutive 6's. .

.Z/4 : any sentence without more than two consecutive a's.

¿5 : any sentence with an even number of a's and an even number of 6's.

Z/6 : anY sentence such that the number of a's differs from the number of 6's by 0
modulo 3.

L7 : a*6*a*6*

L& : a*6 «
¿9 : (a* + c*)6 .

'10

'12

'13

L
L,

14

(ao)*(666)*

any sentence with an even number of a's and an odd number of 6's.

a(aa)*6
any sentence with an even number of a's.

(aa)*6a* '
6c*6 + ac*a

Note that all the'test languages are over the binary alphabet {a, 6), except the
languages Lg and Li5, which are over the alphabet {a, 6, c}.

5.5.1 RGI from sparse samples

The first experiment followed the protocol described by Dupont [Dupo:94];
furthermore, the same test data was used for comparison purposes.

5.5. Experimental assessment 209

(LID (L15)

Fig. 5.2 Minimal-size DFA A(L) (left) and minimal-size complete DUFA U(L~) (right)
for each one of the fifteen test languages.

210 Chapter 5. RGI from positive and negative data using UFSAs

For each test language L, ten learning samples were available. Each learning sample
5 = (S+, S~) had been originally generated in the following manner: (i) 5+ consisted
of a structurally complete positive sample randomly generated from the DFA A(L),
such that |5+| = 3\S+ \sc, where \S+\SC was the number of examples initially generated
up to yield a structurally complete positive sample; (ii) S~ was constructed similarly
using the minimal DFA accepting S* — L. Both S+ and S~ could contain repeated
strings. The average number of positive, negative, and total examples in the learning
samples of each test language can be seen in Table 6.4 (in Chapter 6).

To assess the goodness of the inferred hypotheses, the correct classification rate,
according to the target automaton, was computed on three sets of strings for each
language L and sample S: T = E' — S, the set of all the strings up to a given length

,./:but,the learning examples, T+ = S+ — 5+, the set of all the language"strings up to
length / but the positive examples, and T~ = £'_ — S~, the set of all the strings up to
length / not belonging to L but the negative examples. The length / was equal to 9 for
the languages over {a, b} and 7 for the languages over {a, 6, c}. In some cases, T+ or
T~ were enlarged conveniently to contain at least 10 strings.

y

The results that are displayed in Tables 5.3 and 5.4 correspond to five features for
each language and RGI method (associated with the five wide columns). The former
three are averages over the ten learning samples of the correct positive, negative, and
total classification rates, respectively. The fourth one refers to the.arithmetic mean
of the positive and negative classification rates [Dupo:94j. The fifth one refers to the
identification rate, the percentage, of times the target automaton was inferred. In the
computation of the classification rates, the test strings that were ignored by the inferred
UFSA were classified as negative strings. The last row of the tables displays the above
features averaged over the 15 test languages.

Table 5.3 shows the good quality of the UFSAs inferred by the non-incremental
approach (Algorithm 5.2) from the sparse samples, both with the "maximize positive
generalization" (left) and the "maximize positive and negative generalization" (right)
biases. The first method is equivalent to Algorithm 2.2 (Oncina-García's) if the inferred
UFSA is stripped by removing the states that are labeled negative; this post-processing
was carried out in order to emulate the Oncina-Garcia's method. It must be noted that
the identification criteria for the two tested methods are therefore distinct, since the
target automaton is the minimal-size DFA A(L) for the first method, whereas it is the
minimal-size complete DUFA U(L) for the second one. This explains the remarkable
difference in identification rate, mainly in the languages for which the U(L) contains
much more transitions than the A(L) (e.g. L10, ¿12, -£-15). Concerning the classification
rates, the former method outperformed the latter, with the exceptions of L4 and L5.

5.5. Experimental assessment ", 211

¿1
£2
¿3

¿4
¿5

¿6

XT
¿8
¿9

¿10
¿11

'¿12

¿13

¿14

¿15

Pos. class
Pos.
100.0
97.1

100.0
90.7
43.0
82.4
91.1

100.0
100.0

.100.0
93.7

100.0
81.4
97.7

100.0

P-N
100.0
85.7

100.0
98.3
47.6
77.7
94.5

100.0
100.0
100.0

...86.8.
100.0
89.8
86.1
93.8

Neg.class
Pos.
100.0
99.9

100.0
90.4
88.8
97.3
93.2

100.0
98.2
99.9
97.0

100.0
98.6
99.8
99.6

P-N
100.0
89.6
88.6
88.8
88.0
91.7
89.9
82.3
92.3
91.2
95.6
91.6
90.1
83.8
89.7

Tot. class
Pos.
100.0
99.8

100.0
90.5
81.1
92.3
92.5

100.0
98.2
99.9

,,95.9
100.0-
90.0
99.8
99.6

P-N
100.0
89.5
93.0
94.3
81.2
87.0
91.6
82.5
92.3
91.3
92.6
91.6
89.9
83.8
89.7

Av. class
Pos.
100.0
98.5

100.0
90.5
65.9
89.8
92.2

100.0
99.1
99.9
95.4

100.0
90.0
98.8
99.8

P-N
100.0
87.7
94.3
93.6
67.8
84.7
92.2
91.2
96.1
95.6
91.2

" 95'.8 -
89.9
84.9
91.7

Identif.
Pos.
100.0
90.0

100.0
80.0
20.0
80.0
80.0

100.0
0.0

90.0
9.0.0

'100.0'
80.0
90.0
70.0

P-N
100.0
10.0
50.0
80.0
20.0
70.0
80.0
30.0
0.0
0.0

80.0
0.0

80.0
10.0
0.0

Mean || 91.8 | 90.7 || 97.5 [90.2 || 96.0 | 90.0 || 94.7 | 90.5 || 78.0 | 40.7

Table 5.3. Classification results of the non-incremental method, with
"maximize positive generalization" and "maximize positive and negative generalization"

biases respectively, for sparse samples of the test languages.

¿1
¿2

¿3

¿4

¿5

¿6

¿7

¿8

¿9

¿10

¿11

¿12

¿13

¿14

¿15

Pos. class
SM.1 | SM.2
100.0
85.7
97.7
98.3
48.6
78.2
94.5

100.0
100.0
100.0
86.8

100.0
89.8
86.1
93.8

100.0
74.3
51.4
33.5
57.7
61.1
44.4
86.4

100.0
65.0
75.2
93.8
81.4
75.8
88.7

Neg.class
SM_1
100.0
89.6
87.0
88.8
88.9
91.2
89.9
82.3
92.3
91.2
95.6
91.6
90.1
83.8
89.7

SM_2
100.0
74.2
62.9
76.9
65.8
60.0
76.9
74.5
77.7
83.7
62.1
79.9
68.9
76.1
80.0

Tot. class
SM_1
100.0
89.5
91.1
94.3
82.1
86.8
91.6
82.5
92.3

•91.3
92.6
91.6
89.9
83.8
89.7

SM.2
100.0
74.2
58.3
51.6
64.4
60.4
65.1
74.6
77.8
83.4
66.4
80.0
75.2
76.0
80.1

Av. class
SM.1
100.0
87.7
92.3
93.6
68.8
84.7
92.2
91.2
96.1
95.6
91.2
95.8
89.9
84.9
91.7

SM.2
100.0
74.2
57.2
55.2
61.8
60.5
60.7
80.5
88.9
74.3
68.7
86.8
75.2
75.9
84.4

Identif.
SM.1
100.0
10.0
40.0
80.0
20.0
70.0
80.0
30.0
0.0
0.0

80.0
0.0

80.0
10.0
0.0

SM.2
100.0

0.0
0.0
0.0
0.0

10.0
0.0
0.0
0.0
0.0
0.0
0.0

40.0
0.0
0.0

I Mean || 90.6 | 72.6 || 90.1 | 74.6 || 89.9 | 72.5 || 90.4 | 73.6 || 40.0 | 10l)

Table 5.4. Classification results of the pseudo-incremental methods 5M.1 and S M-2,
with "maximize positive and negative generalization" bias, for the test languages.

212 Chapter 5. RGI from positive and negative data using UFSAs

Table 5.4 displays the features of the UFSAs inferred by the pseudo-incremental
approach (Algorithm 5.3) using the split-and-merge procedure SM-1 (left) and the
SM.2 (right), with the "maximize positive and negative generalization" bias in both
cases. The presentation order was given by the random generation of the examples,
alternating a positive and a negative string. The 5M_l-based method (maximal
splitting) returned the same UFSAs than the non-incremental method with the same
bias in 145 of the 150 runs; this caused just slight differences in the figures computed
for the languages £3,- L$ and L6, while the figures were identical for the rest of test
languages. On the other hand, the performance of the SM_2-based method (minimal
splitting) was considerably worse, including a poor identification ability, although the
global classification rates were still above the 70%.

ALGORITHM |[Pos.class | Neg.class | Tot.class | Av.class | Identif.-
Non-incremental Max. Pos.
Non-incremental Max.P-N

Incremental SM_1 Max.P-N
Incremental SM_2 Max.P-N

91.8
90.7
90.6
72.6

97.5
90.2
90.1
74.6

96.0
90.0
89.9
72.5

94.7
90.5
90.4
73.6

78.0
40.7
40.0
10.0

Table 5.5. Summary of results for the experiment using sparse samples.

' Table 5.5 shows the summary of the experiment results for the four RGI methods
tested. The Oncina-García's method (non-incremental max.pos.) provided the
best results. Both the non-incremental and the pseudo-incremental S'Af-l-based
method, with "maximize positive and negative generalization" bias, also showed a
high performance with classification rates around 90%. For comparison, Dupont
reported figures corresponding to the "Av.class." column of 85.4% and 94.4% for his
non-incremental and semi-incremental genetic RGI methods, respectively [Dupo:94].

5.5.2 RGI from complete samples

The second experiment consisted of testing the RGI algorithms when a complete sample
is provided. This complete sample E' = (£+, £'_) was made of all the strings over the
involved alphabet' E up to a given length /, each of them being declared either as
positive or negative, according to the target language.

Firstly, the two non-incremental methods, corresponding to the "maximize positive
generalization" (Oncina-Garcia's) and "maximize positive and negative generalization"
biases, were applied to learn the test languages from a complete sample S', where for
each language L the length / was initially set to 1 and iteratively increased until the
A[L) and the U(L) were inferred'by the first and the second method, respectively.
Note that once the target DFA or DUFA is inferred, supplying more examples will

" ¿-'f'-:.'

5.5. Experimental assessment 213

not modify the output of the algorithm, and thus, we can say that the method has
converged.

Table 5.6 shows the length values / for which convergence occurred for each test
language and method. Let n be the number of states of the target automaton (either
A(L) or U(L))\ in all cases, the empirical convergence length / was < n + 1. Recall
that the Trakhtenbrot and Barzdin method converges to the A(L] from a complete
sample with / = 2n — 1 in the worst case. Likewise, it is interesting to comment that
in the best results reported with (second-order) recurrent neural networks [MiGi:93],
the presentation of a complete sample with / = 9 did not yield the convergence to
a perfect classifier for Tomita's languages (£3 — ¿7), even using FSA extraction and
minimization techniques.

It can be observed that in the languages where the first non-incremental method
(Oncina-Garcia's) converged earlier, the U(L) contains one more state than the A(L).
On the other hand, the second method converged earlier in languages L\\ and L\-$;
this was due to the fact that, in these languages, the complete sample for which the
second method converged was structurally complete with respect to U(L), while the
associated positive sample was not structurally complete with respect to A(L). Hence,
this is a typical case when the symmetric generalization of positive and negative data
causes an inference improvement.

LI j LI I ¿3 | ¿4 I ¿5 j ¿7 \ L\Q \ L\\ ¿13

Max.Pos.
Max.P-N

1
2

2
3

5
5

3
M

4
4

3
3

5
5

2
4

4
4

6
6

5
4

4
5

3
2

4
5

3
5

Table 5.6. Convergence length of the two non-incremental methods, corresponding to the
"maximize positive generalization" and "maximize positive and negative generalization"

biases, for complete samples of the test languages.

Next, the pseudo-incremental SM.l-b&sed method with "maximize positive and
negative generalization" bias was tested following the same protocol, except that now,
each complete sample was given to the algorithm in three different presentation orders:
lexicographic, alphabetical and random. For all the test languages and presentation
orders, the convergence length of the method was identical to that of the non-
incremental procedure with the same bias (second row of Table 5.6). Therefore, this
result is an empirical validation of the convergence property of the SM-l-ba,sed method.

Finally, the learning performance of the pseudo-incremental SM-2-based method
(also with "maximize positive and negative generalization" bias) from complete samples
was tested. Here, the experimental protocol was a little bit different. For each language,
the parameter / of the complete sample was set to the convergence value of the SM-1-

214 Chapter 5. RGI from positive and negative data using UFSAs

based method (except that a minimal length / = 3 was set for the languages L\ and
L\s). Again, each complete sample was presented in lexicographic, alphabetical and
random order.

Table 5.7 displays the classification rates (with respect to longer strings) of the
UFSAs inferred by the 5M_£-based method, together with their number of states and
transitions, for each test language and presentation order. The minimal complete
DUFA U(L) was obtained in the cases where a 100% total classification rate is
displayed. The behaviour of the method was irregular; in average, a total classification
rate around 85% was computed for the lexicographic and alphabetical complete
presentations, and this grew up to a 90% for the random order. In general, and
specially for the test languages associated with the largest U(L) in the set, the SM-2-
based method showed a tendency towards the induction of excessively complex UFSAs.

Ll
¿2

¿3

¿4

£ » .
¿6

¿7

¿8

¿9
LIO
Lii
¿12

¿13

¿14

¿15

Pos .class
Lex. j Alph. | Rand.
100.0
100.0
97.8

100.0
100.0
100.0
100.0
100.0
100.0
53.3
48.8

100.0
100.0
100.0
50.0

100.0
100.0
100.0
100.0
78.8 .
33.9

100.0
100.0
100.0
40.0
10.1
0.0

100.0
100.0
100.0

100.0
0.0

81.9
100.0
80.0

100.0
83.9
0.0

100.0
73.3
58.3

100.0
100.0
100.0
50.0

Neg.class
Lex.
100.0
100.0
55.4
49.8

100.0
100.0
33.1
68.2
84.1
82.0
82.9
88.9

100.0
82.0
88.5

Alph. | Rand.
100.0
100.0
61.2

100.0
80.8
67.0
33.9
72.0
88.2
91.7
91.8
98.5

100.0
87.8
94.0

100.0
100.0
70.8
44.3
85.1

100.0
54.0

100.0
99.0

100.0
78.7
99.4

100.0
93.6
99.9

Tot .class
Lex.
100.0
100.0
71.5
78.7

100.0
100.0
56.0
68.7
84.2
81.6
71.4
89.1

100.0
82.4
88.3

Alph.
100.0
100.0
75.9

100.0
80.4
56.0
56.6
72.5
88.2
90.8
64.1
97.3

100.0
88.1
94.0

Rand.
100.0
99.2
75.0
76.4
84.3

100.0
64.3
98.5
99.0
99.6
71.8
99.4

100.0
93.8
99.7

(states, transitions)
Lex. | Alph.
(2,4)
(3,6)

(17,34)
(6,12)
(4,8)
(3,6)

(10,20)
(9,18)
(12,36)
(20,40)
(5,10)
(14,28)

(2,4)
(12.24J
(30,90)

(2,4)
(3,6)

(19,38)
(4,8)
(8,16)
(4,8)

(11,22)
(9,18)

(14,42)
(18,36)
(8,16)
(8,16)
(2,4)

(11,22)
(15,45)

Rand.
(2,4)
(4,8)

(21,42)
(6,12)
(8,16)
(3,6)

(20,40)^
(6,12)
(11,33)
(9,18)
(6,12)
(5,10)
(2,4)

(11,22)
(13,39).

Mean 90.0 77.5 75.2 81.0 | 84.5 88.3 84.8 | 84.3 90.7

Table 5.7. Inference results of the pseudo-incremental method S M 3.
for differently ordered complete samples of the test languages.

