
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informàtics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST

LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

M. -v

Chapter 6

Regular grammatical inference
using recurrent neural networks

In this chapter, some contributions on the topic of regular grammatical inference (RGI)
using recurrent neural networks (RNNs) are reported together with the results of some
experimental studies that have been carried out to assess a variety of connectionist
approaches to RGI.

The chapter begins with the presentation of two methods to extract UFSAs from
previously trained RNNs, one to be used after learning the next-symbol prediction task
from a set of positive examples, and another one to to be used after learning to classify <
a set of positive and negative strings. Both methods are based on the well-known
hierarchical clustering algorithm, and they basically differ in the stop criterion. In the
first case, there is no difference between extracting UFSAs or FSAs from the net, and a
straightforward implementation of the hierarchical clustering algorithm is done, where
the only new feature is in the automatic computation of the distance threshold.

The method proposed for the second case (positive and negative examples) is
more interesting and novel, since it takes advantage of the UFSA representation
and processing (merge operations, which are performed along with the clustering of
activation patterns) to guarantee the extraction of a consistent deterministic UFSA in
a single run after neural learning1. Moreover, the automaton returned by the simplest
version of the algorithm is the one with minimal size with respect to the consistent

xln the previous FSA extraction methods proposed by Das and Das [DaDa:91], Giles and Omlin
[GiOm:93], and Manolios and Fanelli [MaFa:94], it may be necessary to repeat the clustering process
several times with different parameters until a DFA consistent with the sample data is obtained (see
Section 4.3).

215

216 Chapter 6. Regular grammatical inference using RNNs

DUFAs extractable by hierarchical clustering from the given sample and network. This
version was reported in the ICGF94 colloquium held in Alicante (Spain) [AlSa:94b],
A more generic version of the extraction algorithm is suggested here to reach a UFSA
in the deterministic border set DBSpru(S} (recall Section 5.2.3) associated with the
input sample S = (S+,S~).

• • '

Next, the choice of the activation function to be used in the RNN units for
'

learning sequential tasks is discussed. Some drawbacks of the commonly used sigmoid
function are pointed out and some alternative activation functions are proposed: the
antisymmetric logarithm for the recurrent hidden units, and a sinusoidal function for
the output units and non-recurrent hidden units (if any). Likewise, the effect of different
types of activation functions and RNN architectures on the capability of learning the
next-symbol prediction task for the two benchmark Reber grammars is reported. This
empirical study includes a comparison between training ASLRNNs by a full-gradient^
or a truncated-gradient learning algorithm2. The results obtained using full-gradient
learning algorithms when the sigmoid function was substituted are significantly better
than those reported in previous works for the same grammars [C1SM:89, SmZi:89,
Fahl:91b]. Partial results of these experiments were already reported in [AlSa:94a,
SoAl:94].

The last part of the chapter is devoted to RGI from positive and negative examples
by training RNNs to learn the string classification task. An experimental study on
the generalization performance of the trained RNNs and the UFSAs extracted from
them is reported, which includes both first-order and second-order two-layer ASLRNNs.
The same te^t languages and sparse sample sets used as benchmark in [Dupo:94] and
Chapter 5 have been employed for the study. In this way, the results yielded by the
connectionist approach, with and without UFSA extraction, can be fairly compared
with those displayed in the preceding chapter for pure symbolic methods. Even though
the UFSA extraction post-processing is demonstrated to improve the generalization
performance of the networks, the average quality of the inference using RNNs is not
so good as the one shown by some of the symbolic methods tested previously. The
results of this experimental study have been partially reported in [A1SS:97] as well as
included in a recently submitted paper [AlSa:97b].

2Remember from Chapter 4 that when simple back-propagation is applied to train SRNs or other
ASLRNNs, as in the earlier works with Elman's model (e.g. [C1SM:89]), only a truncated gradient is
actually computed for gradient descent. - • '

6.1. UFSA extraction from 1ra¡ñkd'ENNs for K&í^' 217

6.1 UFSA extraction from trained RNNs for
regular grammatical inference

As it has been observed in different studies [C1SM:89, GiMC:92, ZeGS:93] reviewed in
Section 4.3, RNNs with continuous activation functions, typically the sigmoid function,
develop an internal state representation in form of clusters in the activation space of
the recurrent hidden units when they are faced to a sequential learning task. Therefore,
by using clustering techniques, a symbolic description of an "approximately simulated"
FSA can be obtained from the network dynamics during or after learning. There are at
least three reasons why the extraction of a finite automaton from a recurrent network
can.be,wished: . , , . .., . . . ,

- it helps to understand the learning process of the RNN and to. gain an insight
into what is the network doing;

- the ultimate aim of the task is precisely to obtain or learn an FSA;

- it serves to counteract the unstability of network states for long strings which
leads to a bad generalization performance of the RNN.

The last two reasons are specially applicable to the problem of regular grammatical
inference using RNNs. On the other hand, self-clustering RNNs with discretized
activations [ZeGS:93] or adaptive discrete states [DaMo:94] can be employed to ease
the FSA extraction or even to fully substitute for an FSA in the learned task, since
they perform identically to a DFA. .

Several clustering techniques have been proposed by other researchers to extract an
FSA from the activation patterns of a trained continuous RNN: dynamic clustering
[DaDa:91], search on a regular partition [GiOm:93], ¿-means algorithm [ZeGS:93],
moving markers [MaFa:94] (see Section 4.3). In general, these methods may be used
independently of whether the network has been trained to learn a prediction or a
classification task. It must be noted, however, that at least one key parameter of
each algorithm must be set arbitrarily, such as the minimal inter-cluster distance for
dynamic clustering, the cell width for the regular partition search algorithm, and the
number of clusters for the ¿-means and moving markers methods.

The variability caused by the selection of different parameter values may be reduced
to some extent by applying a DFA minimization algorithm to the initially extracted
automaton; in fact, this step simply groups equivalent DFAs into their minimal
canonical representatives. Nevertheless, an NFA could be extracted instead by the
above methods, since a transition with a given symbol from two.patterns in the same

218 Chapter 6. Regular grammatical inference using RNNs

cluster (state) could lead to patterns in distinct clusters3. •

When the RNN has been trained to classify a set of both positive and negative
strings, the preceding FSA extraction methods present a more serious drawback,
namely, they cannot guarantee the consistency with the examples of the returned FSA.
The two possible causes of the extraction of an inconsistent FSA are the following:

a) an inadequate value has been assigned to some parameter of the clustering
algorithm;

b) the RNN itself is not fully consistent with the training set due to a faulty or
incomplete learning (e.g. gradient-descent may have driven the net to a non-
optimal local minimum).

" . ' ' ' . ' * ' . ' . ",

In the first case, a consistent FSA could be finally obtained by repeating one or more
times the clustering process with different parameter values, but in the second case,
the preceding FSA extraction algorithms may not be able to repair what the RNN has
failed to classify, since the natural clusters formed by the net may lead irremediably
to an inconsistent FSA.

Two methods based on hierarchical clustering are presented next to extract a
consistent deterministic UFSA4 (or DUFA) from the dynamics of a RNN trained to
learn the next-symbol prediction or the string classification task, respectively. However,
since both methods 'share the same basic structure, they will be described jointly in a
single algorithm to which a boolean parameter is given to «select which non-common
operations must be executed in each case. Let onlypos be the name of this boolean
parameter, that will be assigned to TRUE if the RNN has been trained previously for
a prediction task from only positive examples and to FALSE otherwise (the RNN has
been trained for a classification task from both positive and negative examples). An
important property of the proposed algorithm is that the returned DUFA is always
a consistent DUFA compatible with the training sample, even if the RNN has not
completely learned to classify the supplied strings. Note that in the case of only
positive examples, the consistency of the extracted DUFA can be trivially achieved.

3In the regular partition search method by Giles and Omlin [GiOm:93], the possibility of reaching
an NFA is eliminated by selecting, for each state and symbol, the destination state corresponding to
the first transition visited with the given symbol from a pattern in the origin state; as a consequence,
different DFAs may be extracted from the same network and set of strings depending on the string
presentation order. In the other methods, where the mean of each cluster is stored, one way to avoid
the extraction of NFAs is to use the cluster means as the only network states from which the transitions
are recorded.

4 Unbiased finite-state automata (UFSA) and their use in grammatical inference from positive and
negative data have been discussed in the previous chapter.

6,1. UFSA extraction frorri ifàinel RNNs '}or JÍ(jP 219

The two-stage process of neural learning and UFSA extraction can be regarded as
a hybrid approach to RGI, such that the internal state representation developed by
the RNN in the former stage is used in the second stage to guide, through hierarchical
clustering, a symbolic state merging process which starts on the sample prefix tree.
For a review of how to train a RNN for the prediction and classification tasks see
Sections 4.2.1 and 4.2.2, respectively. Here, we just assume that a certain RNN with
TV recurrent hidden units has been trained from a sample 5" until a stable minimum
of the total error function has been reached. If the sample contains both positive and
negative strings, S — (S+,S~), then it is not required that all the examples in 5" be
correctly classified by the final net. But, in any case, it is expected that the RNN has
developed previously its own states as clusters of the hidden unit activation patterns.
This information, together with a size-minimization heuristic, is used as inductive bias

.in the selection of a DUFA U that consistently-covers PTU(S),; the prefix treeUFSA
of the sample. The top-level definition of the UFSA extraction procedure, common to
t h e t w o methods aforementioned, i s given i n Algorithm 6.1. . . .

ALGORITHM 6.1: Consistent DUFA extraction from RNN dynamics

Inputs: . .
onlypos is a boolean parameter that selects the extraction method;
S is a sample of a language, represented as a list of pairs (s, class),

where s is a string and class is "+" or "-",
depending on whether s belongs to the language or not;

net is a RNN that has been trained previously either to predict
(cm/ypos=TRUE) or to classify (onlypos=FALSE) the strings in 5;

N is the number of recurrent hidden units in net.

Outputs:
. U is a deterministic UFSA that consistently-covers PTU(S), which is obtained

through hierarchical clustering of the hidden unit activations of. net over 5.
Internal Variables:

. PTU is the prefix tree UFSA of the sample S;
nc is an integer variable storing the number of clusters;
mean-dus is an array containing the cluster mean vectors (of dimension N);
npt.clus is an array containing the number of points in each cluster.

begin_algorithm

clusterJnitialization_and_prefixtree_buildup (onlypos, S, net, N; returns PTU, nc,
mean.clus, npt.clus)]

U := hierarchical_clustering_and_state_mergmg (onlypos, N, PTU, nc, mean.clus,
npt-dus);

end-algorithm

Algorithm 6.1 consists of two operations. In the first one, the prefix tree UFSA
is built and, at the same time, single-point clusters are initialized with the hidden

220. Chapter 6. Regular grammatical inference using RNNs

unit activation patterns resulting after each symbol transition of the strings in the
sample. In principle, there is a one-to-one correspondence between the initial clusters
and the states of the .prefix tree UFSA. However, if the learning task has been string
classification, one might delete the single-point clusters associated with incorrectly
classified strings (under a given tolerance e) while keeping the corresponding states in
the prefix tree. This step, that is carried out to remove the activation patterns leading
to erroneous decisions from the process of hierarchical clustering, might also be skipped
(e.g. by setting e = 1), since it is not needed to ensure the extraction of a consistent
UFSA. Its effect on the extracted UFSA is to preserve some tails or branches of the
prefix tree that are related to the strings the net has classified incorrectly (if any).

procedure clusterJnitialization_and_prefixtree_buildup (onlypos, S, net, N;
returns PTU, nc, mean.clus, npt.clus) -

i := 0; PTU :='({A},0,0, A,0,0); nstr := number_ofjstrings_in_training_set (5);
nc := 1; mean_c/«s[0]:= filLwith_reset.activations (net, N); npt-dus[Q]:= 1;

while i < nstr do
í :=t + l;
•<s,class>:= get.example (S,i); {where s is a string and class is "+" or "-"}
PTU := expand_prefix_tree (PTU,s,class; returns tpath,tplen,ty;

{where tpath is the path of states of PTU visited by s, tplen is its length,
and Ms the position in tpaih of the first new state due to s}

resetjnetworkjstate (net); {initializes the recurrent unit activations}
for j := 1 to tplen do *

compute_network-activations_from.input (s[j],nei);
4 {where s[j] is the symbol encoded in the input signals}

i f j>Mhen "-'
st := tpath\j]; {where st is an integer identifier of a state}
mean-clus[st]:= fill_with_rec_hidden_unit.activations (net, N);
npt-dus[st]:= 1; nc == nc + 1;

end _if
end_for
if not onlypos then

p := activation_output_unit (net); { p G [0,1] }
if (p< (1 - c) and class = "+") or (p > e and class = "-") then

for j := h-to tplen do
st := tpath[j]; nc = nc— 1; t
npt.clus[st]:= 0; ^{the cluster is marked as deleted}

end_for
end_if

end_if

end-while

end-procedure

6.1. í UFSA, extraction from Yratnáf RNNs 'for SRÏM^ 221

In the following function, a hierarchical clustering is carried out, so that the two
closest clusters (under a certain distance measure, e.g. euclidean distance between
cluster mean vectors) are determined and merged at each step. Each time two clusters
are merged, a parallel merge of their associated states is performed in the UFSA
representation. This is repeated until a stop condition is satisfied. The stop condition
is what actually distinguishes the two UFSA extraction methods:

1) After training a prediction task (onlypos=TR\JE), the stop condition is met when
the distance between the two closest clusters is greater than a predetermined
distance threshold dist.thr. Although this threshold might be set ad-hoc as a free
parameter, an automatic procedure to compute it from the dimensionality N of
the hidden activation space is proposed: to set distJ.hr as a fixed ratio (e.g. 1/3)
of the diameter of the associated JV-dimensional hypercube. ,^

2) After training a classification task (on/?/pos=FALSE), the stop condition is met
when the deterministic merge of the two selected states yields an inconsistent
DUFA. Once an inconsistency occurs, any subsequent merge will not remove it,
so the clustering process is stopped and the last consistent DUFA is returned.
By construction, the result is the minimum-size DUFA which consistently-covers
PTU(S) among the UFSA extractable from the trained RNN and sample through
hierarchical clustering.

function hierarchical_clustering.and_state_merging (onlypos,N,PTU,nc,meanjclus,npt.clus)
returns UFSA;

if onlypos then
distJhr := \X]V/3; { for activation functions with range [0,1] }

£

endJf
U := PTU;
repeat

find_closest_clusters (nc,mean.clus,npt.clus; returns cll,cl2,distance);
if onlypos then

stop := (distance > dist.thr);
else

stop := not consistent (Dmerge({7, c/l,c/2)); {see Definition 5.28}
end_if
if not stop then

merge.clusters (c/l,c/2; returns mean-dus,npt-clus); nc := nc — 1;
U := merge (Í7, c/l,c/2); {merges states ell and cl2, see Definition 5.19}

end_if
until stop; -,
return D(U); {D(U} is a consistent DUFA, see Definition 5.28}
end_function

222 • Chapter 6. Regular grammatical inference using RNNs

It can be-observed that neither the first nor the second method needs the input
of any arbitrary clustering parameter, to the contrary of the previously reported
FSA extraction approaches, although a distance measure between clusters must be
selected in advance (e.g. centroid euclidean distance). In addition, the consistency
analysis, that provides the stop criterion in the case of both positive and negative
examples, is eased by using UFSAs, and this permits to guarantee the extraction of
a consistent deterministic automaton in a single clustering process. Note also that, if
the second method were applied to a sample containing only positive examples, then,
independently of the RNN and the formed clusters, the extraction algorithm would
always return the positive universal UFSA over the given alphabet S. Therefore, it is
clear that, in the case of only positive examples for RGI, the first extraction method
should be used after training the RNN to learn the next-symbol prediction task.

The computational cost of Algorithm 6.1 is the sum of the costs of the two
subprograms just described. It is easily derived that the time complexity of the
procedure "clusterJnitialization^and_prefixtree_buildup" is 0(||5|| • N2), where ||5||
denotes the total length of the sample S and the N2 factor corresponds to the cost of
computing the activations of all the RNN units5 from the current inputs. On the other
hand, the time complexity of the function "hierarchical_clustering_andjstate_merging"
is at first 0(|Pr£/(5)|3-T(distance_computation)), due to the search of the closest pair
of clusters that is carried out at each iteration of the main loop. Nevertheless, if an
additional data structure, formed by a heap plus an indexing array, with a total space
requirement of O(\PTU(S)\2), were used to store and maintain the cluster distances
in a partial order, then the time complexity of the function would be reduced to
O(\PTU(S)\2 • (log(\PTU(S}\) +-T(distancejcomputation))). Concerning the cost of
computing the distance between two clusters, it will depend on the distance measure
selected, but a lower bound of T(distance_computation) = O(N) is obtained for the
simple euclidean distance between cluster means. Therefore, the time complexity of
both UFSA extraction methods described is Od^H-JV2 + \PTU(S)*-N)t but since the
second term cost is larger, the time complexity may be simplified to 0(\PTU(S)\3-N),
and it could reach 0(\PTU(S)\2 • (log(\PTU(S)\) + TV)) at the expense of increasing
the associated space complexity from O(\PTU(S)\) up to 0(\PTU(S)\2).

Figure 6.1 illustrates the whole RGI approach by showing an example of application
of the second extraction method to a real case. A first-order ASLRNN with 3 recurrent
hidden units and 1 output unit was trained to classify all the binary strings of length < 4
according to the odd-parity predicate. After learning, when the net classified correctly
all the strings in the training set, the parallel process of hierarchical clustering in 3-D

5Assuming that either an SLRNN or an ASLRNN is used with a total number of weights in the
order of TV2. In the case of a second-order SLRNN or ASLRNN, however, the number of weights and
the associated cost are actually in the order of TV2M, where M is the number of input signals.

6.1. UFSA extraction from:tmineà RNNs for'RGI^ 223

space and state merging was performed, and it led from the sample prefix tree to a
3-state DUFA equivalent to the target (2-state) odd-parity recognizer. Hence, the
target UFSA could be obtained by applying a state minimization algorithm to the
extracted DUFA.

However, after intensive experimentation, we have realized that, in the most part
of the tested cases and specially when the input sample (and the prefix tree UFSA) is
large, the stop criterion for the merging process in the second method described is too
strict, and consequently, excessively large DUFAs are returned which do not generalize
the input data as much as desired. In other words, although the method chooses a
consistent DUFA U in Lat(PTU(S)), U does not belong usually to the deterministic
border set DBSpTu(S) containing the "-best" hypotheses (i.e. the deterministic and
consistent maximal generalizations of the sample, see Def.5.27). In order-to arrive at
the deterministic border set, or at least to come close to it, an extension of the UFSA
extraction method for positive and negative examples is presented next, that permits to
reduce further the size of the extracted DUFA while still guaranteeing its consistency.
The price to pay for this improvement is a somewhat higher computational cost and,
the introduction of a parameter in the extraction algorithm.

i

The proposed change consists of replacing in Algorithm 6.1 the call to the former
function "hierarchical_clustering_and_state_merging" by a call to the new function
"extended_hierarchical_clustering_and_state_merging", which is defined hereinafter,
after entering a positive integer value for the new argument k. Now, in the method for
positive and negative strings (onlypos = FALSE), instead of finding the pair of closest
clusters, an ordered list with the (at most) k pairs of closest clusters is determined.
The first cluster pair in the ordered list that yields a consistent DUFA, after the
deterministic merge of the corresponding states, is selected to be actually merged, and
the merging process is stopped when all the pairs in the list lead to inconsistent DUFAs.

Hence, the former function is covered by the particular case of k = 1. The extracted
UFSA is guaranteed to be a consistent DUFA for every k > 1, but a higher level of
generalization is achieved (the returned DUFA is smaller) as a larger value of k is
supplied. If k > nc(nc — l)/2, for the final number of clusters nc, then it is sure
that the extracted UFSA belongs to the deterministic border set DBSpru(S); it could
also belong to DBSpxu(S) although the above inequality were not satisfied, but in
that case it is not known whether the deterministic border set has been reached. In
practice, for relatively small target UFSAs, a value of k in the interval [50,100] may
be enough to obtain a solution in the DBSpTu(S) or close to it, whenever the RNN
has reasonably learned the string classification task6.

6Of course, this is only a heuristic figure taken from empirical results.

224 Chapter 6. Regular grammatical inference using RNNs

Target UFSA that generates the sample

'0'

O

Prefix tree of the sample
with strings of length <= 4_ ..--*"

Hidden unit activation patterns of a
RNN trained to classify the sample

""-- . ._ with strings of length <= 4

2 f-
1 -

'prefixtree.clus' O
'prefixtree.clus' .r—

clustering

Final result

'prefixtree.clus' O
'finalresult.clus' —

Fig. 6.1 Inference of an odd-parity recognizer by neural learning and UFSA extraction,
using a first-order ASLRNN with 3 recurrent hidden units.

6.1. UFSA extraction from trained RNNs for RG'li- 225

function extended_hierarchical_clustering-andjstate_nierging
(k-,onlypos,N,PTU,nc,mean.clus,npt-clus) returns UFSA;

if onlypos then

distJ.hr := \/]V/3; { for activation functions with range [0,1] }

end Jf

U:=PTU;

repeat

if onlypos then
find-closest .clusters (nc,mean.clus,npLclus; returns cll,cl2,distance);
stop := (distance > distJhr);

else

returns CL1,CL2, DISTANCES);
i := 1; found := FALSE; maxi := min(£-, nc(nc — l)/2);
while not found and i < maxi do

ell := CLl[i\; cl2:=CL2[i];
if consistent (Dmerge(i7,c/l,c/2)) then found := TRUE;
else i := i+ 1;
endJf

end_while
stop := not found;

end_if
if not stop then

merge_clusters (c/l,c/2; returns mean.clus,npt.clus); nc := nc — 1;
U := merge (Í7,c/l,c/2); '{merges states ell and c/2, see Definition 5.19}

end_if

until stop;

return D(U); {D(U~) is a consistent DUFA, see Definition 5.28}
end-function

It must be noted that, for a non small k, the latest cluster merges peformed
(when several previous attempts are rejected) may be somewhat artificial or forced,
since two distant or well separated clusters may be merged. For this reason, a small
value of k should be chosen if the aim is to extract a DUFA that is approximately
simulated by the trained network. In that case, an alternative way to reach a DUFA
in the DBSpTu(S) is to apply a lexicographically-ordered state merging process (as in
Algorithm 5.2) starting on the extracted DUFA. Likewise, the systematic application
of a state minimization algorithm to the DUFA returned by the clustering algorithm
is recommended to simplify the result, although this does not affect the inferred
languages.

226 Chapter 6. Regular grammatical inference using RNNs

Finally, the time computational cost of the UFSA extraction method for a positive
and negative sample augments linearly in proportion to k. The worst-time complexity
is now of O(\PTU(S)\3 • (k -f N)), due to the procedure "find_k_closest_cluster.pairs",
and a k factor is also involved in the cost of finding a consistent DUFA derived from
the current UFSA during clustering, as the introduction of the inner "while" loop in
the new function indicates.

6.2 Effect of different activation functions on
learning performance of RNNs

As it has been reviewed in Chapter 4, several RNN architectures have been devised
in recent years to deal with tasks involving sequences. Likewise, the learning
capabilities of the different models on some benchmark problems of RGI have been
reported [ClSM:89, SmZi:89, Fahl:91b, Poll:91, WaKu:92, MiGi:93, ZeGS:93, MaFa:94,
DaMo:94].

It is evident that the neural learning algorithm used is a very important component
of the connectionist methods (besides the network's topology and activation function)
that may have a notable influence both in the learning efficiency and the performance
of the trained network. Even though some kind of gradient-based optimization scheme
has been proposed as learning algorithm for each one of the RNN architectures devised,
some remarkable differences can be ncticed. Thus, the reported gradient-based learning
techniques can be classified in three groups:

1) .those that compute the real gradient of the error function with respect to all the
weights of the RNN (the so-called full gradient or complete gradient algorithms
[WiZi:89, WiPe:90, Schm:92, GiMC:92, WaKu:92]);

2) those that compute an approximation of the real gradient for the weights of the
recurrent units by truncating the time backward recursion (truncated gradient
algorithms [Elman:90, Poll:91]); and

3) those that 'compute the gradient through a differentiable activation function that
• approximates the discrete activation function actually used in the units (pseudo-
gradient algorithms [ZeGS:93]).

Normally, the learning algorithms in the first group should work better than those
in the other two groups. Indeed, some researchers [SmZi:89, WaKu:92, GiMC:92] have
pointed to the use of truncated gradient algorithms as one of the causes of the relatively
poor learning capabilities shown in some of the previous studies [SeCM:88, Poll:91]. In
that respect, it is proper to remember that the same backpropagation algorithm used for
training multi-layer feed-forward nets was proposed as learning rule for Elman's simple

6.2. Effect of different activation, functions 'on>4earaing performance of RNNs 227

recurrent networks (SRNs) [Elman:90], and it was actually used, despite of its truncated
gradient characteristic for the recurrent model, in the former published studies with
this architecture [SeCM:88, C1SM:89, SeCM:91, DaDa:91, CaCV:93]. However, as
SRNs are a particular case of first-order ASLRNNs, they can be trained as well by the
complete gradient learning procedure described in Section 4.1.2.

On the other hand, the topic of the influence of the activation function on the
learning performance of RNNs has not been analysed in the preceding works. Thus,
the use of a sigmoid activation function, either the one given by Eq.(4.5) or the very
similar hyperbolic tangent, has been common and, as far as we know, unquestioned
in all the studies reported about RNNs, independently of the specific architecture and
learning rule employed. This is quite surprising, since the sigmoid activation function
presents-some theoretical drawbacks for its usage both'in RNNs and multi-layer feed-
forward nets, which are explained in the next subsection.

Later on, some experimental results are reported, that have confirmed the
conjectures raised about an improvement in the learning capabilities of RNNs if the
sigmoid function is replaced by other "more suitable" activation functions. In addition,
the complete-gradient learning algorithm for training ASLRNNs has been shown to be
clearly superior to the truncated-gradient learning scheme (simple backpropagation).

6.2.1 Alternatives to the use of the sigmoid function as
activation function in RNNs

In order to analyse the effect of the activation function on the computational and
learning behaviors of RNNs, let us first study the case of the first-order SLRNN
architecture. Hence, a fully-connected single-layer of N recurrent units, with first-
order connections from a set of M input signals and a set of N previous activation
values of the units, is considered. The same notation used in Section 4.1.1 for input
and state vectors and network dynamics is followed.

Let us split the weights of the first-order SLRNN in two groups, corresponding to
the connections from inputs and recurrent units, respectively. This is, let Wj (N x M)
be the matrix of weights associated with the inputs, and let We (N x TV) be the square
matrix of weights associated with the (state) recurrent connections, where in both
matrices, the weights of the k-ih unit are placed in the k-th row,-1 < k < N. Now,-if
g : 3£ —»• 3Ï denotes the activation function used in all the units, let G : 3?N —> $tN

denote the corresponding vectorial mapping in the A^-dimensional space, which is
defined as

G([ff1,...,(TN]T} = [<7(<71),...,5(crAr)]r.. ; (6.1)

228 Chapter 6. Regular grammatical inference using RNNs

In this way, starting on an initial network state S1 = [?/i(0), ..., J/jv(0)]r, the sequence
of state vectors S2,S3,...,St+1, computed by the SLRNN in response to a sequence of
input vectors I1, 12,..., I*, can be expressed as follows

52 = G(Wjll + WcS1)
53 = G(Wi? + WcG(WiLl +

t~2-1 + WcG(WIT

The last equation can be fully expanded in terms of the entered inputs and the initial
state:

WcG(WIl
t-1 + WCG(.,- G(WjI1 + WcS1) • • •))) • (6.2)

Therefore, it can be observed that the past history is internally stored in the SLRNN as
a state vector resulting from a sum of terms that is recursively filtered by the activation
function.

In the particular case of a linear activation function

9iin (¿0 = a <7, (6.3)

the contribution of each term to the network state is clearly distinguished, .as given by

Si+1 - = a'W£ S1 + ¿ a<+1-TW¿rTW/ IT. (6.4)
T = l

However, for a non-linear activation function, the contribution of each one of the past
inputs is more difficult to see.

Intuitively, one may expect that the use of a bounded monotonic function like the
sigmoid excessively filters the previous inputs, thus possibly cutting information about
the sequence which is relevant to perform the task at hand (e.g. for predicting the next
input). Consequently, a linear activation function or a non- linear unbounded function
would allow a better performance of the SLRNN for complex tasks that require to
remember or take into account non-recent inputs, since a "better" record of the entered
input sequence would be maintained in the recurrent hidden units.

In order to discuss the above topic more formally, let us proceed to analyse the
sensitivity of the state vector St+l — [yi(t), ...,j/jv(i)]r with respect to an input vector
I<-fc = [x-i(t — fc), ...,XM(Í — k)]T that has been entered to the SLRNN k time steps
before. Let 5S<+1 /dlt~h denote the corresponding sensitivity matrix, that contains the
partial derivatives d y i (t) / d x j (t — k) , for 1 < i < N, 1 < j < M. In addition, let

6.2. Effect of different activation functions on learning performance of RNNs 229

<J* = [0"i(i),..., ovv(i)]r denote the vector of the recurrent unit net-input values at time
step ¿, which are given by Eqs.(4.1) and (4.3).

By applying the chain rule, we have that

(6.5)

Assuming that the network weights are not changed during the sequence computation,
it turns out that, for every t > 1,

dSt+1

where D(t) denotes the diagonal matrix

D(t) =

and

also,'for every t > 2,

—i = ñwñ^ = WcD(t-l).

(6.6)

0 "g

, o
da1

di*
da*

• • Q - - - ..-. ' v - - Q ' - " A

'M*)) • • • 'o
r\ f / / j \ \

/f

.'.'.'•.' 1 i* !.',

(6.7)

.

(6.8)

!/!/„. í A Q\

(6.10)

Hence, by substituting conveniently the factors in the right hand side of Eq.(6.5) by
the matrices given by the above equations, we obtain the following general expression

POÍ+1

-^ = D(t)WcD(t-l) . . -

that, for the particular case of k = 0, is reduced to

«Ci+l

(6.11)

(6.12)

In the same way, it is easily derived that the sensitivity of the state vector Si+1

with respect to the initial state S1 is given by

dS
— = D(t) Wc Wc D(l) Wc. (6.13)

230 Chapter 6. Regular grammatical inference using RNNs

Now, if the network weights can be modified at each time step, as in the case of
on-line learning using the RTRL algorithm, then Eqs.(G.ll), (6.12) and (6.13), are
respectively converted in the following ones:

^ = D(t) Wc(t) D(t-l) ••• Wc(t - f r+1) D(t - k) Wj(t - fc), (6.14)

+1

- = D(t) W/(t), (6.15)

dS<+1

= D(t) Wc(i) £>(<-!) ••• Wc(2) D(l) Wc(l), (6.16)

where the matrices W/(i) and Wc(¿) contain the network weights at time step t
associated with the input and recurrent unit connections, respectively.

Either the weights are changed or not during the computation of the sequence
of states, it is clear from the preceding equations that the derivative g' of the
activation function plays a fundamental role in the sensitivity of the current state
of the first-order SLRNN with respect to the past history, since g' is involved in the
multiplying diagonal matrices D(t),... ,D(l). A similar conclusion could have been
drawn from the analysis of the dynamics of second-order SLRNNs. Moreover, if we
take a look to the full-gradient learning algorithms described in Section 4.1.1 both
for first- and second-order SLRNNs, we will realize that multiplying factors <7'(cr¿.(r)),
1 < k < N, 1 < T < í, intervene in the computation of the error gradient Vw-E^O»
thus affecting the contribution of the past events to the current weight update. The
problem resides on the fact that, if many values </'(cr¿(r)) are close to zero, both the
current state of the SLRNN and the current weight change for learning a task will
depend almost exclusively on the very recent inputs; in other words, the network will
have a very short memory of the previous inputs to perform and learn the required
task.

Trying to avoid the above problem, Sopeña proposed the use of a linear activation
function in the recurrent units of a first-order three-layer ASLRNN, within a
connectionist approach to natural language parsing [Sope:91]. Thus, if gnn (Eq.6.3)
is used in the recurrent layer, then the sensitivity matrix dSt+1/dït~k for the case of
fixed weights is given by

pct+i
^p- = a^WeWj, (6.17)

and if the slope parameter a is set to 1, then the influence of each of the previous
inputs on the network state will only depend on the (trainable) network weights.

f í i ' O ,-- -i -ï • •' . <t»S*Á-
V' ' ' ' - .'. • ••? * *A i-tv tf'fv

6.2. Effect of different activation functions on learning performance of RNNs 231

^^ On the other hand, the use of a linear activation function bears two drawbacks:

^P a) only linear mappings from inputs to states (and linear state transition functions)
can be implemented7;

Jfe b) un unstable behavior of the network may occur such that the magnitudes of
the activation values, as well as the weights during learning, shoot up causing

.¿^ overflow errors8.

Therefore, a nonlinear activation function that combined the respective advantages
^É of the linear and sigmoid functions while avoiding their drawbacks would be helpful.

This basic idea has led us to propose the use of the antisymmetric logarithm as an

•
adequate activation function for recurrent units in RNNs. The antisym-log function is
, - f , ,' . . ' , . ? ¡,! , , .,, ; • : t (! • ; - - " , . • ' , ' ' f t i « Tí /•>., S •* .*?>•• •,''(.' '\':i*

defined as
gal(ff) = sgn((7) log(l + aH), (6.18)

IP where sgn(cr) = +!(—!) for a > O (<r < 0), respectively, log denotes the natural
logarithm9, and a is a positive parameter, the slope at the origin.

The function ga¡ can be thought of as a compromise between the linear function #/,-„

•
of Eq.(6.3) and the antisymmetric sigmoid function gas ranged in the interval (-1,1),
given by

as can be observed in the top of Fig. 6. 2, where a = 1 has been set for the three
functions. The corresponding first derivatives

*L(<0 = «, (6-20)

¿M = ï^pf, ; (6.21)
9'M = 2a0,.(<7)(l -$„(*)), ' (6.22)

are displayed in the bottom of Fig. 6. 2 (also for a = 1). It can be seen that the derivative
of the sigmoid is only significant for a small domain centered at 0, whereas the derivative
.of the antisym-log is always greater and decays less abruptly, being significant for a
much wider interval. Hence, for the aforementioned reasons, the learning performance
of an SLRNN should improve by using gai instead of gas (or gs] as activation function.

7An SLRNN with a linear activation function would implement a linear sequential machine
[Booth:67] in the case that only a finite set of state vectors could be reached at any time step from a
given finite set of input vectors.

8This problem can be somewhat alleviated in practice by setting a small positive a < I , e.g.
a = I/TV or a = l/(N + M), though the smaller the value of a, the lesser sensitivity of the state with
respect to the previous inputs, as can be seen in Eq.(6.17).

9Other logarithmic bases (e.g. 2, 3, . . .) might be chosen as well.

232 Chapter 6. Regular grammatical inference using RNNs

10 20

Fig. 6.2 The linear, antisym-log and antisym-sigmoid functions (top)
and their corresponding first derivatives (bottom).

6.2. Effect of different activation functions on learning performance of RNNs 233

Moreover, the antisym-log function possesses other interesting properties:

a) although it is unbounded like the linear function, it does not cause unstable
behaviors in RNNs, since in the case of large weights and net-input values, the
successive activation values of the units in the recurrent layer do not shoot up;

b) a multilayer feedforward (MLFF) network with the antisym-log activation
function in the hidden units is a universal approximator, since the antisym-log is
a nonpolynomial function [LeLP:93];

c) the antisym-log can also be used as activation function in the output units of a
universal approximator MLFF network (instead of a linear function), since it is
an invertible function [Funa:89];

. d) it is monotonic, like the sigmoid and linear functions, and monotonic activation
functions have been recommended to be used in networks trained by the
generalized delta rule (backpropagation) in order to avoid a certain type of local
minimum problems typical of some nonmonotonic functions [RuHW:86,DaSc:92].

Due to the above features, the antisymmetric logarithm can be proposed as a kind of
"standard" nonlinear unbounded activation function for neural networks.

Now, let us turn our attention to the ASLRNN architectures, in which one or more
layers of feedforward units with first-order connections and bias weight are added to
an SLRNN, with the purpose of improving the capability of learning and implementing
output functions [GoGi:93]. In these cases, the recurrent layer is mainly involved in
the inference of some state transition function for the task, for which ¿the net builds
its own state representation, whereas the additional feedforward layer(s) contribute to
the approximation of a mapping from current input and state to target output. What
types of activation function are adequate for the units of the feedforward layers in
ASLRNNs? The logical but indirect answer is "those that are adequate for the units
in MLFF networks". Hence, it is worthwhile to recall some theoretical results about
MLFF networks and their approximation abilities.

If a sigmoid activation function is used in the hidden units and a linear activation
function is used in the output units, an MLFF network with two hidden layers and
sufficiently many hidden units per layer can approximate any function arbitrarily
well [HeKP:91]. This can be shown by noting that any "reasonable" function can
be represented by a linear combination of localized bumps, which are each non-
zero only in a small region of the domain, and such bumps can be constructed
with two hidden layers of sigmoid units [LaFa:88j. It has also been proved that
only one hidden layer with sufficiently many sigmoid units is enough to approximate
any continuous function [Cybe:89,HoSW:89], and this result has been generalized to
bounded continuous activation functions that are nonconstant [Horn:91] and later

234,> Chapter 6. Regular grammatical inference using RNNs

to locally bounded piecewise continuous activation functions that are nonpolynomial
[LeLP:93]. In all cases, the hidden units are supposed to include a bias weight (which
is often called threshold).

In the radial basis function (RBF) networks [HaKK:90], the hidden units themselves
have a localized bump-like response, each becoming activated only for inputs in some
small region of the input space, so that only one hidden layer of such units and an
output layer of linear units are needed to represent any reasonable function. The
hidden units in RBF networks are characterized by a Gaussian activation function

gG(tr) = e~™\ (6.23)

where the net-input a is defined as the distance between the input vector and the
weight vector of the unit, which represents a point in the input space

For both the RBF and MLFF nets that are universal approximators of mappings
from 31M to 3RP, the linear activation function in the output units can be replaced
by a nonlinear invertible activation function [Funa:89j. Furthermore, if the range of
the possible output values is bounded, e.g. for mappings from 3iM to [0, l]p, then the
activation function in the output units needs only to be invertible for the given range.

Although the universal approximation capability is desirable, the utility of these
theoretical results for practical purposes is somewhat limited, since the number of
hidden units that are necessary is not known in general, and in many cases it may
grow exponentially with the number of input units (as occurs in the case of the general
Boolean functions [HeKP:91]). Also, the bump-based constructions say nothing about
learning or generalization, and it is possible that some functions are representable
but extremely difficult to learn with two hidden layers of sigmoid units, perhaps
because of local minima. In fact, the use of alternative activation functions may reduce
considerably the number of required units or may speed up learning [DaSc:92].

Moreover, when discrete pattern classification, rather than approximation of
continuous real mappings, is the goal, then the computational power of the network
rests with how the units carve up an input space into arbitrary regions [Lipp:87]. In this
sense, MLFF networks with different types of activation functions and RBF networks
are equivalent in that networks of one type can emulate how networks of another type
carve the input space up. However, for a given classification problem, the size of a
specific network solution and the easiness of learning such a solution from the training
set may vary notably from one type of network to another.

Consider, for instance, the well-known XOR problem. As it is displayed in
Fig.6.3, a single sigmoid unit (or a single threshold unit) cannot approximate the
XOR function, always failing at least in one of the four points, whereas a single unit

6.2. Effect of different activation functions on learning performance of RNNs 235.

0.8- -

0 . 6 - •

yi

0.4-

0 .2-

x2

• Fig. 6.3 The XOR function approximated by a single unit: a sigmoid unit •
cannot represent the function, whereas a unit with a • •

sinusoidal activation function can perfectly do it.

with. a nonmonotonic activation function like a sinusoidal or a Gaussian10 function
can represent it. Of course, this is due to the fact that a unit with a monotonic
activation function like a sigmoid or a step function is restricted to make linearly
separable discriminations. In order to build or learn an MLFF network with sigmoid
units that solves the XOR problem, two hidden unit and one output unit are needed
at least; to learn such a solution using backpropagation typically requires hundreds of
epochs [HeKP:91]. On the other hand, just a few epochs are enough to learn the XOR
function using a single sinusoidal unit.

Dawson and Schopflocher [DaSc:92] proposed the use of the Gaussian activation
function given by Eq.(6.23) in the output and hidden units of MLFF networks for
classification tasks, where the net-input a of a Gaussian unit is not a distance as in

10Not as it is used in RBF networks, but simply applied to the net-input resulting from the sum of
the bias plus the inner product of the input and weight vectors.

236;' Chapter 6. Regular grammatical inference using RNNs

RBF nets, but a weighted sum of inputs plus a bias weight (as usually in MLFF nets).
The difference between hidden RBF units and Gaussian units in MLFF nets is better
appreciated by comparing their respective receptive fields. A hidden unit in an RBF
network has a symmetric, Gaussian shaped receptive field in input space centered at
the point represented by the unit weights, and the decision region that is obtained
by setting a threshold on the unit activation value is a hypersphere. In contrast, the
receptive field of a Gaussian unit is a Gaussian-contoured "hyperhill" that cuts through
the input space at an orientation that is perpendicular to the unit weight vector, and
therefore, the corresponding decision region is bounded by two parallel hyperplanes.
In addition, a Gaussian unit in an MLFF net has a nonmonotonic activation function
with respect to the net-input a, whereas the activation function of an RBF hidden unit
is actually decreasing monotonic, since a is a distance in RBF units and thus always
non-negative*. " ; " ; ' ' " - , . . ^ ;.;-• :••• • • • - •,.-.:,•;•:-,..--,.•-,- :-

Dawson and Schopflocher performed some experiments comparing the ability of
MLFF nets with sigmoid and Gaussian units, respectively, to learn some pattern
classification problems, including the XOR. The results reported showed that MLFF
nets with Gaussian units learn pattern discriminations more quickly than standard
MLFF nets with sigmoid units. Furthermore, because the Gaussian activation function
is nonmonotonic, fewer units are required in general in Gaussian-based MLFF nets to
make the discriminations that solve the classification tasks [DaSc:92].

,
and Schopflocher needed to change the cost function used in the backpropagation
algorithm, in such a wayo that two terms were involved: the first one measuring the
square error between observed and desired output, which is normally the only one,
and the second one measuring how far from the center of the Gaussian is the observed
net-input (of an output unit) when the desired output is 1. This modification indeed
requires that the target output of a unit be either 0 or 1, i.e. it restricts the possible
tasks to mappings from 3£M (or some subset of 3?^) to {0,1}P. The introduction of
the second term in the error function is aimed at avoiding to fall during learning in a
type of local minima, which are often reached if only the first term is included, and
which are characterized by pulling all the net-inputs towards either negative or positive
infinity '[DaSc:92].

We claim that using a sinusoidal activation function in the units of an MLFF
network should lead to even better results in terms of learning time and network size,
without the need of changing the standard cost function nor restricting the target
outputs to binary values. Let us define

; . . , .(/.¿n(a) = !(l+sin(a<7)) , ' . (6.24)

where a is a constant, as a sinusoidal activation function ranged in [0,1].

6.2. Effect of different activation functions^on learning performance of RNNs 237

0.8--

0 . 6 - -

yi

0.4- -

0 . 2 - -

-2

x2

Fig. 6.4 The receptive fields, in two-dimensional input space,.
of a sigmoid unit and a sinusoidal unit.

Some arguments can be given to prefer gs{n (6.24) instead of the sigmoid ga (4.5)
or the Gaussian go (6.23), which are explained next.

First, a sinusoidal activation function is more powerful to make discriminations
and carve up a pattern space, and this should allow the existence of learnable solutions
for classification tasks using MLFF networks with fewer units. The receptive field
of a single unit with gsin as activation function, which is displayed in Fig.6.4 for à
2D input space, is a "sine-contoured" (infinite) succession of parallel "hyperhills" and
"hypervalleys" of adjustable width that cut through the input space at an orientation
that is perpendicular to the unit weight vector; the corresponding decision region for
binary classification is given by a succession of alternate ON/OFF "hyperslices" of
adjustable width limited by a succession of parallel hyperplanes. In contrast, the
decision region for a sigmoid unit is just the semi-space defined by one hyperplane
(Fig.6.4), what is obvious if a sigmoid is regarded as a smoothed step function. Also,
the decision region for a Gaussian unit corresponds to just one of the parallel ON
hyperslices obtained using a sinusoidal unit.

238 Chapter 6. Regular grammatical inference using RNNs

Second, MLFF nets with sinusoidal hidden units should also be excellent universal
approximators of continuous mappings, since they can be seen as generalized discrete
Fourier series with adjustable frequencies [LaFa:87]. Consider an MLFF net with a
single hidden layer of sinusoidal units and an output layer of linear units. Then it is
not hard to see that the weights of the output layer act like Fourier amplitudes, the
weights of the hidden layer act like frequencies (in addition to determine the orientation
of the receptive field of each hidden unit), and the bias weights of the hidden units act
like phases. Note however that in contrast to a common Fourier decomposition in which
the values of the frequencies are fixed, the MLFF net has the ability to adjust the values
of the frequencies to obtain the minimum least mean square error, where the number
of adjustable frequencies is given by the number of hidden units. Once this number
is specified, the net adjusts the numerical value of these variable frequencies, together
with,the.amplitudes.and phases, to produce a best fit. It is expected that by adding
more hidden units (i.e. morè adjustable frequencies) the accuracy of the approximation
will improve. Lapedes and Farber termed this kind of mode decomposition performed
by the MLFF net as "generalized Fourier decomposition", where "generalized" refers
to the ability to adjust frequencies, because in conventional Fourier mode analysis only
the amplitudes are adjusted whereas the frequencies are fixed [LaFa:87].

The above analogy is perfect in the case of a single input unit with real values. If
a multidimensional input is involved, i.e. a vector in $tM, then each hidden unit is
associated not only with a frequency but also with an adjustable hyperplane that
determines the orientation of a wave front. Further generalization is achieved by
allowing two or more hidden layers of sinusoidal units, although in this case the
geometry of the approximation is more difficult to understand. Likewise, a sinusoidal
activation function gsin may" also replace the linear function in the output units of an
MLFF net whenever the range of the mapping is restricted to a hypercube [0, l]p.

Third, MLFF nets with sinusoidal units should learn more quickly (less training
epochs) than the MLFF nets with sigmoid or Gaussian units, due to the fact that the
derivative of the sinusoidal activation function is more suitable to backpropagate error
information during-training. This argument is quite similar to the one that has been
given in the case of training SLRNNs, with the difference that in SLRNNs the net is
unfolded in time for backpropagation. By analysing the sensitivity of MLFF network
outputs with respect to the weights of the different layers using the chain rule, in a
similar way to that described for SLRNNs, it can be seen that a poor sensitivity will
be obtained in general if the derivative of the activation function used in the units of
the net is (practically) zero for most of the possible net-input values. Moreover, the
sensitivity becomes poorer for the weights in moire distant layers. Again, while the first
derivatives of the sigmoid and Gaussian functions are practically null for the most part
of the domain, the derivative of the sine (i.e. the cosine) takes significant values for all
points except those very close to the extremes of each period.

6.2. Effect of different activation functions on learning performance of RNNs 239

From a different point of view, it may be expected that the landscape of the error
function with respect to the weights of an MLFF net be much smoother if a sinusoidal
activation function is used, thus easing gradient-descent learning, since the plateau
regions that are typical in error landscapes of sigmoid-based or Gaussian-based MLFF
nets may be avoided. Note that plateau regions in error landscapes basically correspond
to situations where all or most of the units are "saturated" (due to large positive or
negative net-inputs) for some region of the weight space and a given set of inputs,
so that changing the weights in a local neighborhood does not affect significantly to
the network outputs and errors. For this reason, the type of modification in the error
function that was recommended for Gaussian units to pull net-input values to the
Gaussian centers [DaSc:92] is not required in the case of sinusoidal units.

Nevertheless, Lapedes and Farber pointed out that using gs{n sometimes leads to
numerical problems and nonglobal minima in the learning stage [LaFa:87]. A numerical
problem may arise if high frequencies are reached in the units, due to a large magnitude
of the. unit weight vector. In this case, small weight changes during gradient descent
may produce jumps of the net-input value for the same input between different periods
of the sine function, thus difficulting a smooth local adjustment of the unit activation
value to reduce error. A possible way to alleviate this problem is to "normalize"
the net-input value with respect to the unit fan-in, e.g. by setting the constant a in
Eq.(6.24) to TT/ fan-in. Another approach is to add a regularizaron term to the cost
function being minimized, which impedes the weights to grow excessively.

Finally, it should be noted that even though an MLFF net with sinusoidal units
may learn a trained task more quickly than another MLFF net with sigmoid units and
same topology, the sinusoidal-based net may generalize worse than the sigmoid-based
net. This is because the MLFF net with sinusoidal units can be more powerful in
mapping approximation capability, due to the reasons aforementioned, and therefore,
an overfitting of the training set may sometimes occur.

In summary, the learning performance and memory capacity of both SLRNNs and
ASLRNNs may improve if the commonly used sigmoid activation function is replaced
by other functions. In particular, it has been argued that the antisymmetric logarithm
ga¡ may be more adequate for the recurrent hidden units, where the net represents
state information, and that the sinusoidal function gsin may be more adequate for
the rest of units, which are aimed at yielding some output function from inputs and
states. In order to test these conjectures in a benchmark GI problem, some RNNs were
trained to learn the next-symbol prediction task for the two Reber grammars studied
in some previous works [C1SM:89, SmZi:89, Fahl:91b], using different combinations
of activation functions. In addition, both complete and truncated gradient learning
algorithms were tried for ASLRNNs to assess the relevance of this choice. The results
of this experimental study, which are reported next, confirmed the conjectures raised.

240 Chapter 6. Regular grammatical inference using RNNs

i

6.2.2 An empirical study on the next-symbol prediction task

6.2.2.1 Architectures and learning algorithms used in the tests

The three types of RNN architectures shown in Fig.6.5 were used for the experimental
study. The one on the top left corner corresponds to a fully-connected first-order
SLRNN, where some neurons are trained to predict the next-symbol (output units)
and the rest are not trained (hidden units). The one on the bottom left corner is a
two-layer first-order ASLRNN, which is similar to Elman's SRN, except in the fact that
it is trainable with a true gradient-descent learning algorithm. Finally, the one on the
right is a three-layer' first-order ASLRNN, which is more powerful than the previous
ones for learning output functions. Four different combinations of activation functions
were tested for each architecture: (sigmoid, sigmoid), (linear, sigmoid), (antisym-log,
sigmoid) and (antisym-log, sinusoidal), where, for each pair, the first function was
used in the recurrent hidden units, and the second one in the rest of the network units,
including the output units. Sigmoid and sinusoidal functions were ranged in [0,1], i.e.
the functions gs (Eq.(4.5)) and gain (Eq.(6.24)) were used. The constant parameter a
was set as follows: a = 1 for gs and gun, a = 2 for ga¡, and a = TT/fan-in for gsin,
respectively.

First-order SLRNNs were trained using the Schmidhuber's efficient RTRL algorithm
[Schm:92] described in Section 4.1.1.1, which computes the true error gradient. For
first-order ASLRNNs, two learning schemes were tried:

1) a complete gradient-descent algorithm (described in Section 4.1.2), such that
backpropagation is used to update the weights of the higher layer units and
supply the error values e,-(i) for the recurrent hidden units, and Schmidhuber's
RTRL is applied to the first layer; and

2) a truncated gradient-descent algorithm, which simply consists of applying
backpropagation to all layers as in Elman's SRNs [C1SM:89], by considering the
activation values of the recurrent units in the previous time step as a set of
additional input signals (usually called context units [Elman:90]).

In order not to introduce additional variability, the learning rate a and the momentum
parameter /? were fixed for all the tests: a = 0.025, 0 = 0.

6.2.2.2 Procedure and results

The two. regular grammars displayed in Fig.4.5, the Reber grammars, that had been
employed as benchmark in some previous studies on the next-symbol prediction
learning task [C1SM:89, SmZi:89, Fahl:91b] were chosen for the tests. First, the simple

•e '«í?,/¡t*

6.2. Effect of different activation functions on learning performance of RNNs 241

One time step delay One time step delay

OUTPUT UNITS j HIDDEN UNITS
Element t+1 ;

INPUT SIGNALS: Element t

SLRNN

OUTPUT UNITS: Element t+1

OUTPUT UNITS: Element t+1 NON-RECURRENT HIDDEN UNITS

RECURRENT HIDDEN UNITS RECURRENT HIDDEN UNITS

One time step delay

INPUT SIGNALS: Element t

2L-ASLRNN

One time step delay

INPUT SIGNALS: Element t

3L-ASLRNN

Fig. 6.5 The three layered RNN architectures (SLRNN, 2L-ASLRNN, and 3L-
ASLRNN) used in the empirical study on RGI through next-symbol prediction. .

Reber grammar (Fig.4.5a) was selected to generate random sequences of valid strings,
by distributing a uniform probability among the successor symbols of each state.

Three specific network configurations were trained to predict the next symbol in a
sequence of legal transitions: network SLRNN-a, that consisted of 6 input signals (one
for each grammar symbol, including an end-of-string symbol $) and 9 fully-connected
recurrent units (3 hidden and 6 output units, again one for each symbol); network
2L-ASLRNN-a, that consisted of 6 input signals, 6 recurrent hidden units, and 6
non-recurrent output units; and network 3L-ASLRNN-a, that had an additional
layer of 6 feed-forward hidden units between the recurrent and the output layers. As
usual, a local encoding was used to represent the language symbols both in the input
signals and the output units, and pairs of consecutive symbols in a sequence of positive
strings, each ended with $, were given for training (see Section 4.2.1).

Likewise, as in previous studies [ClSM:89,SmZi:89], a prediction was considered
correct when the activation values of output units associated -with the possible
successors were above some threshold whereas the rest were below it; the prediction

242 Chapter 6. Regular grammatical inference using RNNs

threshold was set to 0.25. Valid strings were continuously generated for on-line
training, but the recurrent-unit activations were reset to 0.1 after the end of each
string. Learning was regularly stopped after groups of 2,000 training transitions, when
a sequence of 1,000 transitions (around 143 strings in average) were tested for next-
symbol prediction. Training ended either when all predictions in a test phase were
correct, or when a maximum number of 2 million training transitions (approximately
285,700 strings) were reached without success. Ten trials, with different random initial
weights in the interval [-0.25,0.25], were run for each model and each pair of activation
functions. -

The results of learning the prediction task for the simple Reber grammar are shown
in Tables 6.1 and 6.2. Three performance figures are placed inside each entry, from top
to bottom: à) number of successful runs (up to 10), b) mean and standard deviation
(over the successful runs), and c) minimum and maximum, of the number of training
transitions (expressed in thousands) required to reach 0% prediction error.

The results corresponding to the ASLRNNs trained with a truncated gradient
approach (backpropagation) are displayed in Table 6.1. We first observe that some
of the runs performed using 2L-ASLRNN-a with only sigmoid units did not converge
to a solution (after 2 million transitions). Some of the runs performed using a linear
activation function in the recurrent units did not converge either, but in this case, it was
due to network unstability during training. The (antisym-log, sigmoid) configurations
learnt the task in all runs and around 5 times faster than the networks with only sigmoid
units. Furthermore, the (antisym-log, sin) nets learnt 8 and 49 times faster than the
all-sigmoid nets, for 2L-ASLRNN-a and 3L-ASLRNN-a, respectively. The best
result using the truncated gradient computation was obtained by the 3L-ASLRNN-a
net with the (antisym-log, sin) pair of activation functions: an average of 1,970 training
strings (13,800 transitions) to reach a solution.

On the other hand, all the 120 runs performed using a true gradient computation
were successful for the simple Reber grammar (Table 6.2). Likewise, the number of
required training transitions dropped, with respect to the former results, for 2L- and
3L-ASLRNNs and all four combinations of activation functions; this improvement was
specially remarkable in the case of the two-layer nets. Here, the (antisym-log, sin)
configurations'learnt 3, 16 and 20 times faster than the all-sigmoid nets, for SLRNN-
a, 2L-ASLRNN-a and 3L-ASLRNN-a, respectively. The (antisym-log, sigmoid)
nets performed rather similarly to the (antisym-log, sin) ones for the SLRNN and
two-layer ASLRNN architectures, a little faster learning with SLRNN-a and a little
slower learning with 2L-ASLRNN-a; however, a quite large upgrade was obtained
again by the sigmoid to sinusoidal replacement in the non-recurrent units of the three-
layer ASLRNN (yielding 5 times faster learning). The nets with linear units in the
recurrent layer learnt more quickly than the ones with sigmoid units but more slowly

6.2. Effect of different activation functions on learning performance of RNNs 243

than .the ones with the antisym-log activation function. Finally, the fact that 2L-
ASLRNNs learnt more quickly than 3L-ASLRNNs can be attributed to the simplicity
of the target prediction task, so that a correct generalization of the examples was more
rapidly accomplished with a lesser number of neurons.

Rec. hidden-unit Act.Func. /
Other-unit Act.Func.

Network 2L-ASLRNN-a
6 i.+ 6 r.h.u.-t- 6 o.u.

Network 3L-ASLRNN-a
6 i.+ 6 r.h.u.+ 6 h.u.+ 6 o.u.

Sigmoid /
Sigmoid

6
997.0 ± 451.8
[532 - 1742]

10
673.4 ± 440.4
[230 - 1668]

Linear /
Sigmoid

5
570.0 ± 663.8
[114- 1700]

8
98.8 ± 85.9
[44 - 286]

Antisym-Log /
Sigmoid

10
205.6 ± 212.3

[22 - 504]
10

119.8 ± 173.6
[30 - 574]

Antisym-Log /
Sinusoidal

10
120.4 ± 168.1

[18 - 580]
10

13.8 ± 5.6
[10 - 28]'

Table 6.1 Learning performance figures for the simple Reber grammar
using ASLRNNs trained with backpropagation (truncated gradient).

Rec. hidden-unit Act.Func. /
Other-unit Act.Func.

Network SLRNN-a
6 i.+ 3 r.h.u.+ 6 r.o.u.

Network 2L-ASLRNN-a
6 i.+ 6 r.h.u.+ 6 o.u.

Network 3L-ASLRNN-a
6 i.-f 6 r.h.u.-t- 6 h.u.+ 6 o.u.

Sigmoid /
Sigmoid

10
44.0 ± 6.3
[36 - 56]

10
116.6 ± 18.6
[90 - 146]

10
195.0 ± 71.4
H 38 - 388]

Linear /
Sigmoid

10
18.4 ± 2.8
[14 - 24]

10
11.2 ± 2.7
[8 - 1 6]

10.
90.0 ± 74.1
[36 - 284]

Antisym-Log /
Sigmoid

10
12.4 ± 2.8
[8-18]

10
9.0 ± 4.0
[6 -18]

10
49.8 ± 22.6
[18 - 78]'

Antisym-Log /
Sinusoidal

10
15.4 ± 2.7
[12 - 20]

10
7.2 ± 3.7
[4-.16]

10
9.4 ± 3.3
[6 - 14]

Table 6.2 Learning performance figures for the simple Reber grammar
using full-gradient computation.

Rec. hidden-unit Act.Func. /
Other-unit Act.Func.

Network SLRNN-b
6 i.+ 12 r.h.u.+ 6 r.o.u.

Network 2L-ASLRNN-b
6 i.+ 12 r.h.u.+ 6 o.u.

Network 3L-ASLRNN-b
6 i.+ 12 r.h.u.+ 12 h.u.+ 6 o.u.

Sigmoid /
Sigmoid

0

1
1970.0
[1970]

6
1487.3 ± 373.0
[980 - 1920]

Linear /
Sigmoid

0

0

7
294.6 ± 56.2
[200 - 358]

Antisym-Log /
Sigmoid

0

9
238.4 ± 81.4
[120 - 402]

10
265.2 ± 232.3
[102 - 846]

Antisym-Log /
Sinusoidal

6
909.0 ± 601.4
[362 - 1844]

10
235.0 ± 122.8
[122 - 480]

.10
144.0 ± 33.5
[80 - 192]

Table 6.3 Learning performance figures for the symmetric Reber grammar
using full-gradient computation. • ;

244 Chapter 6. Regular grammatical inference using -RNNs

From Tables 6.1 and 6.2, we see that the best result for the simple Reber grammar
was achieved by the 2L-ASLRNN-a net with the (antisym-log, sin) activation
functions trained by the true gradient-descent algorithm: an average of 1,030 training
strings (7,200 transitions) for fully successful performance. It is interesting to compare
this result with those reported elsewhere for the same task and grammar: Cleeremans et
al. [C1SM:89] reported a best result of 60,000 training strings with 3 hidden units, and
20,000 with 15 hidden units, using a sigmoid-based SRN trained by backpropagation.
Smith and Zipser [SmZi:89] reported to learn the task after 19,000 to 63,000 string
presentations using a sigmoid-based SLRNN of 2 hidden units-and RTRL; Fahlman
[Fahl:91b] reported an average of 25,000 string presentations using the constructive
recurrent cascade-correlation approach with sigmoid activation functions. In contrast,
our two-layer ASLRNN with 6 hidden units, trained by Schmidhuber's RTRL in the
recurrent layer, needed an average of 17,000 strings with the sigmoid function, but
only 1,030 with the (antisym-log, sin) pair!

Afterwards, the prediction task for the more complex symmetrical Reber grammar
(Fig.4.5b) was tested using three larger net structures: network SLRNN-b, that
consisted of 6 input signals and 18 fully-connected recurrent units (12 hidden and
6 output units); network 2L-ASLRNN-b, that had the same number number of
inputs, hidden and output units than SLRNN-b, but with the neurons organized
in two layers, a recurrent layer of hidden units and a non-recurrent output layer; and
network 3L-ASLRNN-b, that had an additional layer of 12 feed-forward hidden units.

In order to generate random sequences of positive strings, a uniform probability
distribution among the successor symbols of each state was set. This implies that the
two embedded simple Reber grammars are completely identical, thus difficulting the
prediction task [ClSM:89j. The training and test procedure was the same as before.
The first outstanding result was that, using the truncated-gradient computation, the
prediction task for the symmetrical Reber grammar could not be learned in any of the
80 runs performed with 2L- and 3L-ASLRNN architectures and distinct activation
functions; This demonstrates that using just backpropagation, as in the original
Elman's SRN, is a bad choice when the RNN must learn a task which requires to
remember an event occurred several time steps ago.

Table 6.3 displays the learning performance measures that were obtained for the
symmetrical Reber grammar using the true-gradient computation. Even though larger
nets were employed, it can be observed, by comparing with Table 6.2, that the next-
symbol prediction task for this grammar was much harder to learn. Indeed, the
SLRNN-b and 2L-ASLRNN-b nets with sigmoid or linear activation function in the
recurrent, hidden units were not able to converge after 2 million training transitions,
except for a single run with 2L-ASLRNN-b and sigmoid units.

6.2. Effect of different activation functions,on learning performance of RNNs 245

Curiously, the (antisym-log, sigmoid) function pair worked quite well for the 2L-
ASLRNN architecture, with only 1 failure, but not for the SLRNN, where the 10 runs
failed to converge. However, by replacing the sigmoid by a sinusoidal function in the
output units of the SLRNN, a 60% success rate was achieved. These and the previously
commented results show the bad effect on learning performance that was caused by
using a sigmoid activation function in all or part of the recurrent units. It is important
to note also that the 2L-ASLRNNs learnt much better and faster than the SLRNNs,
even though both models had the same number of neurons, in the cases where the
antisym-log activation function was used in the hidden units.

In contrast with Table 6.2, the results of the 3L-ASLRNN architecture for the
complex symmetrical Reber grammar outperformed those of the 2L-ASLRNN.,For
instance,-6 of the 10 runs carried out:using 3L-ASLRNN-b- with only sigmoidainits.
converged to a solution, requiring an average of 165,250 strings. Finally, and .in
accordance with the expectations derived from the theoretical discussion stated in
Subsection 6.2.1, the (antisym-log, sin) function pair contributed to the best learning
performance for the three architectures tested: 100% success, after an average of 16,000
and 26,000 string presentations, with 3L-ASLRNN-b and 2L-ASLRNN-b nets,
respectively; and 60% success, after an average of 101,000 string presentations, with
SLRNN-b. To compare with, the following results were achieved in the previous
studies: Cleeremans et al. [C1SM:89] reported failure in learning the prediction task on
the symmetrical grammar using an SRN with sigmoid function and backpropagation,
even with 15 hidden units and 250,000 training strings; Smith and Zipser [SmZi:89]
reported that sigmoid-based SLRNNs trained by RTRL learnt the task in some
(unspecified) fraction of attempts (best result: 25,000 training strings with 12 hidden
units); Fahlman [Fahl:91b] needed an average of 182,000 string presentations using
recurrent cascade correlation (7 — 9 hidden units), and perfect learning was achieved
in just half the trial runs.

In summary, both for the simple and the symmetrical Reber grammars, the learning
performance obtained by using first-order ASLRNNs trained by a true gradient-descent
algorithm, with the antisym-log activation function in the recurrent hidden units and
a sinusoidal activation function in the rest of the units, greatly improved the results
reported in the previous studies by other researchers, where different RNN architectures
with sigmoid units were employed.

On the other hand, the FSA extraction algorithm based on hierarchical clustering
for only positive examples, that has been described in Section 6.1, was applied to some
of the networks reached as solution in the preceding study. In the most part of the
trials, the target DFAs of Fig.4.5 were returned. In the rest of cases, similar DFAs
were extracted containing one more or one less state. This result may be attributed to
the difficulty of setting a distance threshold to stop clustering suitable for every run.

246; Chapter 6. Regular grammatical inference using RNNs

6.3 RGI from positive and negative examples by
training RNNs to learn the string classification
task: experimental assessment

In this section, the ability of RNNs for RGI from positive and negative examples
is investigated. As in several previous works [WaKu:92, MiGi:93, ZeGS:93, MaFa:94,
DaMo:94], RNNs were trained to learn the string classification task from sparse samples
of some target regular languages. In addition, the UFSA extraction method described
in Section 6.1 was applied to each one of the trained networks to obtain a symbolic
description of the inference outcome.

The results of the former study on the next-symbol prediction task were taken into
account to select the types of RNNs and activation functions used. However, in this new
experimental study, the focus was not on comparing the convergence speed of different
RNNs to learn the training set, but on assessing the generalization performance of the
trained nets on unseen test strings and the corresponding classification rates of the
extracted UFSÁs.

Although the Tomita's languages [Tomi:82] had been chosen as target regular
languages in all the empirical studies reviewed in Section 4.2.2, both the given training
sets (samples) and the parameters of the training procedure had varied widely from one
work to another. Hence, a precisely defined benchmark was not available to compare
with the previous conneçtionist works on RGI from positive and negative examples.
Moreover, as far as we know, the RGI methods based on RNNs had not been confronted
yet with symbolic RGI algorithms on common data.

Due to the above reasons, the same 15 test languages, which include Tomita's
languages, and sparse samples used as benchmark in Chapter 5 (and in some other
studies with symbolic and genetic RGI methods [MiGe:94, Dupo:94]) were selected
as input data. In this way, the results produced by the proposed symbolic and
connectionist approaches, both with and without UFSA extraction, could be compared.

6.3.1 Architectures and algorithms used in the tests

From the analysis of the results reported in Section 6.2.2, first-order ASLRNNs with
the antisym-log activation function in the recurrent units were preferred with respect to
first-order SLRNNs or other ASLRNNs with sigmoid units in the recurrent layer. Also,
it was decided to use 2L-ASLRNNs instead of more powerful 3L-ASLRNNs to avoid
sample overfitting, i.e. to promote the generalization of the given classified examples.

6.3., RGI from positive and'negative examples..! .-experimental assessment 247;

xM(t)

y,(t-D

c

Fig. 6.6 A generic 2L-ASLRNN architecture for RGI through-
classification of positive and negative examples.

More precisely, since a single output unit is enough for the string classification task
(recall Section 4.2.2), 2L-ASLRNNs with only one output unit were chosen for the
study (see Fig.6.6).

Both sigmoid and sinusoidal activation functions were tested for the output
unit, because both (antisym-log, sigmoid) and (antisym-log, sinusoidal) 2L-ASLRNN
configurations had learned nicely in the former study on the Reber grammars, and we
wanted to assess their respective generalization abilities11. Finally, since second-order
RNNs had been used by other researchers with rather good results for the same task

11Actually, the (antisym-log, sinusoidal) nets had learned somewhat faster, but it was unknown
whether they would generalize better or worse than the (antisym-log, sigmoid) nets on the classification
task. •

248' Chapter 6. Regular grammatical inference using RNNs

[GiMC:92, MiGi:93, DaMo:94], it was also decided to test both first- and second-order
2L-ASLRNNs. The dynamic behavior of 2L-ASLRNNs is described by Eqs. (4.63)
and (4.64), together with Eq.(4.65) for first-order type or Eq.(4.66) for second-order
type. Note that the 2L-ASLRNN displayed in Fig.6.6 is intentionally ambiguous with
regards to the weights of the recurrent layer, so that the figure may represent both
first-order and second-order architectures in a generic way.

To sum up, four types of 2L-ASLRNNs, with some number N of recurrent hidden
units and 1 output unit, were tested corresponding to first- and second-order 2L-
ASLRNNs with the antisym-log activation function ga{ in the recurrent layer and either
a sigmoid ga or a sinusoidal gs{n activation function in the output layer. The constant
a in Eqs. (6.18), (4.5), and (6.24), was set respectively to a — 2 for ga¡, a = 1 for ga,
and a= .'if./(N-'+1) for gain. '•. "' - " •• - ' ' • - . ' • • ' • . ' • . ' - . • • - • '

A complete gradient-descent learning algorithm was used to train the 2L-ASLRNNs
for the classification task, such that backpropagation was applied to update the weights
of the output unit and supply the error values e,-(i) (1 < i < N) for the hidden units,
and either the first-order (Section 4.1.1.1) or the second-order (Section 4.1.1.2) version
of Schmidhuber's RTRL was applied to train the recurrent layer. The learning rate a
and the momentum parameter /? were fixed for all the runs: a = 0.025 and /3 — 0.5.
The truncated gradient-descent algorithm for ASLRNNs [Elman:90] was not tried in
this case, since the results of the former study clearly showed its inferiority with respect
to the complete gradient-descent method.

In order to extract a consistent DUFA from a 2L-ASLRNN previously trained
to classify a sample S = (S+,S~], the version of Algorithm 6.1 with the
" extended Jiierarchical_clustering^and_state_merging'' function (described in Section
6.1) was used with on/ypos=FALSE and k = 50, followed by a DUFA state
minimization. In this way, it was expected that a DUFA in the deterministic border
set DBSpTu(S) would be, obtained in most cases. For k = 50, the extracted DUFA
is guaranteed to meet .this property if the final number of clusters is < 10, though it
could also belong to DBSpTu(S) for a larger number of final clusters.

6.3.2 Procedure and results

The set of 15 regular languages selected by Dupont [Dupo:94, MiGe:94], which include
the well-known Tomita's seven languages [WaKu:92, MiGi:93, DaMo:94], were chosen
again as target languages. A compact description of each one of these languages has
been given in Section 5.5, together with the associated minimal-size DUFA that accepts
it and rejects its complement (Figure 5.2).

6.3. RG I from positive and negative examples..."^experimental assessment 249

II ¿1
Neurons || 3

Pos.Ex.
Diff.P.Ex.
Neg.Ex.
Diif.N.Ex.
Tot.Ex.
Diif.T.Ex.

4
4
12
12
16
16

¿2
3
4
4
22
17
26
21

¿3

4
31
24
48
46
79
70

£4
3
19
15
14
14
33
29

¿5
3
10
10
28
23
38
33

¿e
3
9
9
18
15
27
24

L7
4
41
31
18
17
59
48

Ls
3
4
4
17
14
21
18

¿9

4
15
10
54
44
69
54

£10
4
10
8
79
63
89
71

£11
3
13
13
20
17
33
30

l'li
3
6
4
38
31
44
35

¿13

3
8
8
10
9
18
17

¿14

3
5
5
27
22
32
27

¿15

4
11
8
65
55
76
63

Table 6.4. Number of recurrent hidden units in the trained ASLRNNs and ••
average number of examples for each one of the test languages.

Likewise, the, same 10 samples of each language that were, used ̂ in : the experiment
reported in Section 5.5.1 were also employed here. Each sample was structurally
complete with respect to the corresponding minimal-size DUFA. To this end, the
original benchmark samples generated by Dupont were slightly modified just to include
the empty string A in S+ or S~ appropriately. In addition, ten negative samples were
generated for language LI = a*, since only positive samples had been defined for LI
by Dupont12 [Dupo:94]. '

Table 6.4 shows the average number of positive, negative, and total examples in
the training sets of each test language. It also displays the average number of different
positive, negative, and total examples, since most of the benchmark samples contained
repeated strings, due to the random way they were generated [Dupo:94j. Larger
training sets had been used in most of the previous works with Tomita's languages
and RNNs [MiGi:93, ZeGS:93, DaMo:94], whereas the Tomita's original sets of strings
used in [Poll:91, WaKu:92] were even smaller (specially for languages Lz and LT).

' In addition, Table 6.4 shows the number N of recurrent hidden units that were
included in both the first- and second-order networks for each target language. A small
N was preferred to favour generalization, and thus, N was set to 3 or 4, depending
on the size of the minimal DUFA associated with the language (see Figure 5.2). Two
trials, with different random initial weights in the interval [-0.25,0.25], were run for
each training set and each type of 2L-ASLRNN tested, so that a total number of 20
runs were performed with each of the four network models for each of the fifteen test
languages.

Each network was trained to classify the strings in the given training set, following
the normal procedure described in the beginning of Section 4.2.2. Thus, a set of

12Because he considered LI to be defined over a unary alphabet, to the contrary of Tomita's L\,
which was defined over a binary alphabet.

250 Chapter 6. Regular grammatical inference using RNN s

string-response pairs were given to the net at each training epoch, where the response
corresponds to the target value of the output unit at the last time step of the string
presentation^ which was defined as TaCcept = 1 for positive strings and TTeject = 0 for
negative strings. As in the previous studies, a string was considered to be correctly
classified by the net if the absolute difference between the desired response and the
final activation value of the output unit was less than a tolerance threshold t.

A local encoding was used to represent the language symbols in the input signals.
The recurrent-unit activations were reset to 0.1 at the start of each string presentation,
and no end-of-string symbol was used. The training phase ended when all the strings
in the training set were correctly classified, using e = 0.1 as tolerance threshold, and
a minimum number of 1,000 epochs were performed. The requirement of a minimum
number of training epochs was aimed at giving the net enough time to contract .the
clusters formed in the hidden unit activation space [ZeGS:93, MaFa:94]. Then, a
consistent DUFA was extracted from the final net dynamics on the given sample by
applying the clustering algorithm aforementioned.

The same test samples that had been used in the experiment of Section 5.5.1 (and
in [Dupo:94]) were again employed. This is, for each run, all the strings up to length
/ but the given training examples were included, where / was set to 9 or 7 for target
languages over {a, 6} or {a,6, c}, respectively. After training, the test strings were
classified both by the final net and the extracted DUFA. A test string was accepted by
a trained net if the final activation value of the output unit after string presentation
was greater than 0.5, and it was rejected otherwise (i.e. e = 0.5 was used in this
step). On the other hand, a test string was accepted by an extracted DUFA if it drove
the automaton to a positive final state, and it was rejected otherwise. For both 2L-
ASLRNNs and extracted DUFAs, the correct classification rates on the three sets of
positive, negative, and all test strings were computed.

For each language and each type of inference, the averages of the above rates over
the 20 runs were calculated, and they are displayed in the former three wide columns of
Tables 6.5 to 6.8. The fourth wide column refers to the arithmetic mean of the positive
and negative classification rates. In Tables 6.5 and 6,.6, the fifth wide column shows, for
each language and type of 2L-ASLRNN, the percentage of times the whole test sample
was correctly classified by the trained net (success rate); whereas in Tables 6.7 and 6.8,
it shows the percentage of times the target DUFA was extracted (identification rate).
The bottom row of the tables displays the averages of these five features over the 15
test languages.

6.3. RGIfrom positive and Negative examples.'.'.'^eícperimental assessment 251

F.O.
nets

Li
¿2
L3

L4

L5

¿6

¿7
¿8
¿9
LIQ

• ¿n.
- '¿12'

¿13

¿14

¿15

Mean

Pos. class
Sigm
90.0
92.1
53.2
66.6
49.0
37.1
59.2
82.3
87.7
46.0
69.2

-94:3

50.7
39.1
58.0

65.0

Sin

70.2
90.5
58.1
67.2
41.8
42.1
57.1
68.6
81.7
51.3
60.7
76Í2
50.7
45.7
43.3

60.3

Neg.class
Sigm
99.6
92.6
79.3
67.6
74.1
63.8
60.7
89.6
92.9
93.7
55.8
96.4
51.1
85.2
89.7

79.5

Sin

91.1
84.0
76.4
72.9
76.7
58.4
71.1
78.3
86.4
90.6
51.9
95.3
60.3
78.3
83.4

77.0

Tot. class
Sigm

99.5
92.6
68.8
67.0
69.9
54.9
60.1
89.5
92.9
92.7
60.3

-9'6.3-
50.9
83.7
89.5
77.9

Sin

90.8
84.1
68.9
69.5
70.9
53.0
66.0
78.1
86.4
89.8
54.8

' 95.1
55.5
77.2
83.1

74.9

Av. class
Sigm

94.8
92.4
66.3
67.1
61.6
50.5
60.0
86.0
90.3
69.9
62.5

' .95.4.-
50.9
62.2
73.9
72.3

Sin

80.7
87.3
67.3
70.1
59.3
50.3
64.1
73.5
84.1
71.0
56.3

, 85.8.
55.5
62.0
63.4

68.7

Success
Sigm
45.0
20.0
0.0
0.0
0.0
0.0
0.0

10.0
0.0
0.0.
0.0
0.0:.
0.0
0.0
0.0

5.0

Sin

25.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

. 0.0 ^
0.0
0.0
0.0
1.7

Table 6.5. Classification results of trained first-order ASLRNNs, with an
antisymmetric logarithm activation function in the recurrent units and
either a sigmoid or a sinusoidal activation function in the output unit.

s.o.
nets

¿i
¿2

¿3

¿4

¿5

¿6

¿7

¿8

¿9

¿10

¿11

¿12

¿13

¿14

¿15

Mean

Pos. class
Sigm
86.0
84.5
78.5
74.7
52.4
44.0
77.4
84.6
90.0
53.7
76.0
88.3
81.1
65.3
75.9
74.2

Sin
68.6
85.9
63.9
52.1
39.7
46.4
67.9
65.1
73.9
53.0
60.5
90.7
60.0
56.3
69.1
63.5

Neg.class
Sigm
96.5
89.7
72.9
58.8
76.6
60.4
45.5
72.0
81.1
93.4
70.2
90.7
81.1
79.7
84.5
76.9

Sin

86.1
4 82.0

75.1
78.3
64.2
61.3
54.8
74.3
80.1
85.4
52.2
90.7
62.5
76.5
80.7
73.6

Tot. class
Sigm
96.4
89.7
74.9
68.0
72.5

' 54.9
57,0
72.2
81.2
92.6
72.1
90.6
81.1
79.2
84.4
77.8

Sin

85.9
82.0
70.6
63.0
60.1
56.3
59.5
74.1
80.1
84.8
55.0
90.7
61.3
75.8
80.6
72.0

Av.class
Sigm
91.3
87.1
75.7
66.8

1 64.5
52.2
61.5
78.3
85.6
73.6
73.1
89.5
81.1
72.5
80.2

75.5

Sin
77.4
84.0
69.5
65.2
52.0
53.9
61.4
69.7
77.0
69.2
56.4
90.7
61.3
66.4
74.9
68.6

Success
Sigm
35.0
10.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
5.0
5.0

45.0
0.0
0.0
7.0

Sin
10.0
0.0
5.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0

15.0
5.0
0.0
0.0
2.7

Table 6.6. Classification results of trained second-order ASLRNNs.

252 Chapter 6. Regular grammatical inference using RNNs

F.O.
DUFA

Li
¿2

¿3
¿4
¿s
¿e
L7

Ls
L9

LIQ
•'•:-Lil

LIZ
LIS
¿14

£l5

Pos. class
Sigm

100.0
96.7
47.3
55.6
38.3
31.0
53.8

100.0
96.0
54.2
59.8

100.0
41.3
39.3
72.1

Mean || 65.7

Sin
95.0
96.6
52.0
60.2
38.9
33.9
53.8
88.4
97.7
62.7

; 48.2

'92.7
40.5
50.5
63.0

Neg. class
Sigm

100.0
96.4
89.5
84.5
82.4
70.8
71.3
96.4
95.6
93.5
62.9
97.6
71.4
91.1
93.2

64.9 || 86.4

Sin
99.6
91.5
82.0
78.0
82.0
69.9
7.7.7
91.0
92.2
92.4
66.9
97.9
74.5
86.2
91.3

Tot. class
Sigm

100.0
96.4
72.8
67.6
75.0
57.5
64.9
96.5
95.6
92.7
61.8 •

- 97.6
56.3
89.5
93.0

84.9 || 81.1

Sin
99.5
91.6
70.0
67.6
74.9
57.9
69.0
90.9
92.2
91.7
60.7
97.9
57.5
85.0
91.1

Av. class
Sigmj

100.0
96.6
68.4
70.1
60.4
50.9
62.6
98.2
95.8
73.9
61.4
98.8
56.4
65.2
82.7

79.8 || 76.1

Sin
97.3
94.1
67.0
69.1
60.5
51.9
65.8
89.7
95.0
77.6
57.6
95.3
57.5
68.4
77.2

Identif.
Sigm

100.0
55.0
0.0
5.0
0.0
0.0
0.0

70.0
5.0
0.0
0.0

40.0
10.0
0.0
0.0

74.9 || 19.0

Sin
90.0
15.0
0.0
5.0
0.0
0.0
5.0

45.0
0.0
0.0

. 0.0,
40.0'
5.0
0.0
0.0

13.7

Table 6.7. Classification results of DUFAs extracted from trained
first-order ASLRNNs for the fifteen test languages.

s.o.
DUFA

Li
L2

¿3
¿4

¿5

¿6

¿7

Ls
LQ

¿10
Ln
¿12

¿13

¿14

¿15

Pos. class
Sigm

100.0
93.7
59.4
53.8
42.4

.31.6
61.4
90.0
91.7
55.6
65.3
96.5
78.7
61.8
75.3

Sin
100.0
85.0
51.6
44.3
27.1
34.7
59.9
89.5

. 89.4
49.9
48.2

100.0
57.9
56.3
78.2

Neg. class
Sigm

100.0
94.4
85.3
82.4
82.8
76.1
71.0
81.1
88.8
94.7
75.8
93.9
87.0
83.7
93.4

Sin
100.0
88.5
85.5
79.8
77.5
73.3
75.8
87.6
88.2
93.4
66.9
96.2
78.0
87.8
92.6

Tot. class
Sigm

100.0
94.4
75.0
65.7
76.1
61.2
67.4
81.2
88.8
93.9
72.3
93.9
82.9
83.0
93.2

Sin
100.0
88.4
72.1
59.1
69.1
60.4
70.0
87.6
88.2
92.4
60.6
96.2
68.0
86.8
92.5

Av. class
Sigm

100.0
94.1
72.4
68.1
62.6
53.9
66.2
85.6
90.3
75.2
70.6
95.2
82.9
72.8
84.4

Sin
100.0
86.8
68.6
62.1
52.3
54.0
67.9
88.6
88.8
71.7
57.6
98.1
68.0
72.1
85.4

Identif.
Sigm

100.0
25.0
5.0'

10.0
15.0
0.0

10.0
10.0
0.0
0.0

20.0
30.0
65.0
0.0
0.0

Sin
100.0

5.0
5.0
0.0
0.0
5.0
5.0

30.0
0.0 .
0.0
5.0

40.0
30.0
10.0
0.0

Mean || 70.5 | 64.8 || 86.0 | 84.7 || 81.9 | 79.4 || 78.3 | 74.8 || 19.3 | 15.7

Table 6.8. Classification results of DUFAs extracted from trained
second-order ASLRNNs for the fifteen test languages.

RGI from positive and negative examples':..': f Experimental assessment 253

The results of the generalization tests for the trained first- and second-order 2L-
ASLRNNs are presented in Tables 6.5 and 6.6, respectively. It can be observed that
both architectures performed rather similarly. On the other hand, the nets with the
sigmoid output unit (left) generalized better than those with the sinusoidal output unit
(right): a 3% and a 7% better average classification rate for first- and second-order nets,
respectively. Note also that, even for the model with best results (the second-order
ASLRNNs with sigmoid output unit), all global classification rates were below the 80%;
furthermore, the success rate was very poor (7%), since for most of the languages, a
perfect classification of the test sample was not achieved in any of the 20 runs.

The classification results of the DUFAs extracted from first- and second-order
2L-ASLRNNs are presented in Tables 6.7 and 6.8, respectively, together with the
identification•-rates, of the target DUFAs. In general, the inferred DUFAs performed
better than the trained nets from which they were obtained, improving the global
average classification rates between a 3% and a 6%. The best results were yielded by
the DUFAs extracted from second-order 2L-ASLRNNs with sigmoid output unit, with
78.3% average correct classification and 19.3% identification rate. The quality of the
extracted DUFAs was similar for first- and second-order nets, and somewhat better for
the nets with a sigmoid output unit than for the nets with a sinusoidal unit. For all
the test languages except Lw and Li5, the target DUFA was inferred in at least one
run for some of the tested ASLRNNs, but the identification rates were poor for most
of the languages.

For comparison purposes, Table 6.9 shows the summary of the results obtained
by the eight "connectionist" RGI methods tested in the experiment (i.e. the four
pure connectionist methods returning a 2L-ASLRNN, and the associated four hybrid
methods returning a DUFA), together with those obtained by the four symbolic RGI
methods tested in Section 5.5. As can be observed, both with and without DUFA
extraction, the inference quality shown by the connectionist methods was notably
worse than the one shown by three of the four symbolic methods, where the exception
was the incremental SM_2 algorithm (split and merge with minimal splitting). The
average correct classification rates were also worse than the ones reported by Dupont
for his genetic RGI approaches (85.4% and 94.4% for the non-incremental, and semi-
incremental methods, respectively) [Dupo:94].

The best results in Table 6.9 correspond to the symbolic RPNI algorithm
[OnGa:92b] (which is labeled "non-incremental max.pos." in the table) with total
and' average correct classification rates of 96.0% and 94.7%, respectively, and a
high identification rate of 78.0%. However, it might be argued that the benchmark
samples were specially suitable to the RPNI method, since they often included the
representative samples that allowed the identification of the target automata by this
algorithm. On the other hand, the small number of examples in the training sets (an

254 Chapter 6. Regular grammatical inference using RNNs

RGI METHOD |pPos.class j Neg.class | Tot.class | Av.class | Success
F.O. ASLRNNs (An.log, Sigm.)
S.O. ASLRNNs (An.log, Sigm.)
F.O. ASLRNNs (An.log, Sin)
S.O. ASLRNNs (An.log, Sin)

DUFAs F.O.nets (An.log, Sigm.)
DUFAs S.O.nets (An.log, Sigm.)
DUFAs F.O.nets (An.log, Sin)
DUFAs S.O.nets (An.log, Sin)

Non-incremental Max.Pos.
Non-incremental Max.P-N

Incremental SM_1 Max.P-N
.., Incremental SML2 Max.P-N

65.0
74.2
60.3
63.5
65.7
70.5
64.9
64.8
91.8
90.7
90.6
72.6

79.5
76.9
77.0
73.6
86.4
86.0
84.9
84.7
97.5
90.2
90.1
74.6

77.9
77.8
74.9
72.0
81.1
81.9
79.8
79.4
96.0
90.0
89.9
72.5 f ..

72.3
75.5
68.7
68.6
76.1
78.3
74.9
74.8
94.7
90.5
90.4

-7.3,6 '

5.0
7.0
1.7
2.7

19.0
19.3
13.7
15.7
78.0

.40.7
40.0

¿ 10.0 -

Table 6.9. Summary of results for the RGI experiments from
positive and negative sparse samples.

average of 37 different strings) might be insufficient, from the statistical point of view,
to allow the networks generalize correctly, this being probably the cause of the middling
results obtained.

The preceding argument would be in agreement with the results reported by
Watrous and Kuhn for the inference of Tomita's languages from the small Tomita's
sets that contained positive and negative examples (around 20 strings in each set)
[WaKu:92]. Using a similar network size (3 hidden units and 1 output unit) in their
second-order SLRNN architecture, a sigmoid activation function in all unjts, and a
lower tolerance threshold (e = 0.1) for classification, the trained nets achieved only an
average of 56.1% total correct classification rate for the seven languages, ranging from
23.2% for LQ to 91.2% for L?. Moreover, Watrous and Kuhn presented further results
showing that by increasing the number of strings in the training set from 20 to 200,
the total correct classification rate for £4 augmented from 42.5% to 98.2% [WaKu:92].
We conjecture that a similar high generalization performance might be achieved by the
2L'-ASLRNNs tested here by increasing enough the size of the training set.

This hypothesis is supported by other experimental results reported in some
previous studies on RGI using RNNs [MiGi:93, DaMo:94]. Miller and Giles [MiGi:93]
reported that second-order SLRNNs with N = 4 units (including the output unit)
learned to classify the 1,023 binary strings up to length 9 used as training sets for the
7 Tomita's languages, and then they achieved a 99.9% total correct classification rate on
the strings of lengths 10 to 15, using e = 0.5 as tolerance threshold in the generalization
test. The first-order SLRNNs with N — 4 did not learn the training set in some of the
runs, but the networks that converged also reached a 99.9% generalization performance.
Similar results were obtained for N = 5,.., 9 for both architectures [MiGi:93].

