UNIVERSITAT POLITECNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informatics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST
LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

| Chapter 7

Representation of finite-state

BRI

-
yeets

networks and the active
‘grammatical inference methodology

In this chapter, an algebraic framework to represent finite state machines (FSMs) in
SLRNNs and two-layer ASLRNNs is presented, which unifies and’ generalizes some
of the previous proposals for encoding FSMs in RNNs [Mins:67, SaAl:92, AlSa:93,
GoGC:94]. This theoretical work has been published in the Neural Computation journal
[AlSa:95b]. The algebraic framework is based on the formulation of both the state
transition function and the output function of an FSM as a linear system of equations,
and it permits an analytical explanation of the different representational capabilities of
first-order and higher-order SLRNNs. - Moreover, two methods based on this linear
model are given for the implementation of FSMs in first-order 2L-ASLRNNs and
second-order SLRNNs (or 2L-ASLRNNs), respectively, which cover the implementation
of DFAs and stochastic FSAs as particular cases. However, these methods do not yield
in general the network of minimum size capable of implementing the given FSM. On
the other hand, it is explained how the proposed framework can help in the search of
a solution with fewer units.

'

In addition, the presented linear model can be used to insert FSMs (symbolic
knowledge) in RNNs, through linear system solving, prior to learning from examples
and to force the RNN to keep this knowledge while it is being trained, through the
maintenance of some linear relations among the network weights. In contrast with
other reported approaches [FrGM:91,0m@Gi:96], the insertion method proposed is valid
for a wide range of activation functions, whenever some stability conditions are met.

255

“machines in recurrent neural =~ -

256 Chapter 7. Representation of FSMs in RNNs and the AGI methodology

In the last part of the chapter, a hybrid connectionist-symbolic methodology for
RGI, called active grammatical inference (AGI) [SaAl:95], is described which uses the
insertion and learning techniques derived from the preceding algebraic model, together
with the connectionist RGI and UFSA extraction methods described in Chapter 6. This
new methodology allows a variety of heuristic methods (with the common feature that
RNNs are used as the basic learning tool) to infer UFSAs or FSAs from string examples
and a-priori knowledge, if available. Both fully-automated and semi-automated RGI
approaches can be devised within the AGI methodology. In the latter approaches, a
teacher may guide the learning process by introducing positive and/or negative rules
and validating partial results in several steps (cycles). Hence, the AGI methodology is
based on.a combination of neural and symbolic techniques and representations, with
the interesting feature that the inductive inference performed by the RNN may be

-guided:by means-of ‘the-inserted symbolic rules: -In the most general case,-the whole - - -+ =

RGI process is conceived as a sequence of learning cycles, each one including the steps
of automaton insertion, neural training, automaton extraction, symbolic manipulation
and validation.

7.1 Antecedents and related work

Some complex neural networks with rational weights and a certain type of sigmoidal
units have been demonstrated to be as powerful in computational ability as Turing
machines [SiS0:91,5iS0:92], though learning techniques for these networks are not
known yet. On the other hand, the representation of finite-state machines (FSMs)
in recurrent neural networks (RNNs) has attracted the attention of researchers
for a variety of reasoms, ranging from the pursuit of hardware implementations
to the integration (and improvement) of symbolic and connectionist approaches to
grammatical inference and recognition. Several researchers have discussed the problem
of representing FSMs or FSAs in different types of RNN architectures and have
proposed some encoding techniques: '

1) the Minsky’s method for first- order two- layer ASLRNNs with threshold units
- [Mins:67];
2) the method by Alon et al. for a type of ‘three-layer RNNs with threshold cells
[AIDO:91];
3) the method by Goudreau et al. for second-order SLRNNs with threshold
activation function [GoGC:94]; B C
4) the method by Frasconi et al. for a type of first-order SLRNNs with
bistable elements based on a squash actlvatlon function (the hyperbolic tangent)
~ [FrGM:91];
5) the method by Omlin and Giles for second order SLRNNS with sigmoid activation
function [OmGi:92,0mGi:96].

7.1. Antecedents and related work - Sl | 257

The former three works listed [Mins:67, AIDO:91, GoGC:94] have shown how to
build different RNN models with a hard-limiting activation function that perfectly
simulate a given FSM. Nevertheless, none of these approaches yields the minimum size
RNN which is required.

Minsky’s method [Mins:67] uses a recurrent layer of McCulloch-Pitts’ units to
implement the state transition function, and a second layer of OR gates to cope with
the output function. The recurrent layer has n x m units, where n is the number of
states and -m is the number of input symbols, and the second layer has as many units
as the number of output symbols. In terms of the RNN architectures presented in

- Chapter 4, the network proposed by Minsky is a first-order 2L-ASLRNN. The much
more recent method by Alon et al. [AIDO:91] uses a three-layer recurrent .network

.. which needs. a.number.of threshold. cells of order n®* x m.. In the.same work, some

lower bounds were established for the minimum size network capable of simulating any
n-state machine.

More recently, Goudreau et al. [GoGC:94] proved that, while second-order SLRNNs
can easily implement any Mealy machine, first-order SLRNNs can not. In order to
implement an FSM with n states, m input and p output symbols, a second-order
SLRNN with n+p recurrent units and a total number of (n+p)2 x m weights was shown
to be enough. On the contrary, a first-order SLRNN may require to be augmented to
implement some FSMs (e.g. the odd parity recognizer), either by using an additional
output layer, i.e. a 2L-ASLRNN [GoGC:94] as in Minsky’s approach, or by allowing
a one-time-step lag before reading the output values [GoGi:93). Moreover, it was also
shown that first-order ASLRNNs may need to simulate non-minimal FSMs that are
equivalent to the optimal size FSMs [GoGC:94]; again, the odd parity recognizer was
provided as an example where state splitting is required. This property exhibited by
first-order SLRNNs was considered ”intriguing” by Goudreau et al. In this chapter, a.
theorem is demonstrated that explains the causes of this limitation. o

Other studies have been .devoted to the design of methods for incorporating
symbolic knowledge into trainable RNNs. This may yield faster learning and better
generalization performance, as it permits a partial substitution of training data by
symbolic rules, when compared with full inductive approaches that infer FSAs from
examples [Poll:91, GiMC:92, WaKu:92]. The last two methods in the previously
displayed list [FrGM:91,0mGi:92] allow the insertion of an FSA into an RNN with
sigmoidal units for subsequent learning from examples.

Frasconi et al. [FrGM:91] proposed a method to insert the transitions of a DFA
into a type of first-order SLRNNs with hyperbolic tangent activation function, in which
the units are seen as bistable elements. The dynamics of such a network is not the
same than the dynamics of the usual SLRNNs described in Chapter 4: once an input

258 - Chapter 7. Representation of FSMs in RNNs and the AGI meth,odology

is entered, each unit evolves freely a certain number of time steps (with all incoming
connections disabled except self feedback) up to determine whether the sign of the
unit’s activation changes or not. In this way, the sigmoidal units can be forced to

implement bistable elements. Given a DFA and an encoding for inputs and states,
a set of inequalities can be established, so that the weights of the recurrent units
must satisfy these inequalities in order to simulate the transitions of the DFA, and a
region of admissible solutions may be found by using linear programming techniques
[FrGM:91]. However, Frasconi et al. did not demonstrate that any transition function
could be implemented in this manner. In addition, they proposed an RNN architecture
to integrate the explicit inserted rules and learning by examples, which consists
of two SLRNN subnetworks with common inputs, one subnet with the constrained
weights implementing the inserted rules and another subnet with free weights, that are

augmented-by -a-shared output-layer. Using this type of- ASLRNN -architecture, the -

inserted transition rules are not destroyed during learning.

. Omlin and Giles proposed a method to insert DFAs in second-order SLRNNs with
sigmoid activation function g, and a bias weight in each unit [OmGi:92], and recently,
these authors reported a variation of their method that allows a stable encoding of any
DFA in the mentioned architecture [OmGi:96]. To implement a DFA with n states

and m input symbols, a second-order SLRNN with n + 1 units and m input signals is
~ constructed, using a local one-hot encoding for states and symbols, Where the first unit
So is consulted to accept or reject strings. For each transition 6(ax,q;) = ¢; of a DFA|
at most three weights of the network (wjk;j, w;j, Wok;,) have to be programmed to a
value, which is either H (a large positive constant called strength) or —H; in addition,
all the bias weights are set to, —H/2 and the rest of network weights are set to zero to
ensure that all neurons which do not correspond to the previous or current state have
a low output. To guarantee a stable behavior, the strength H- scales with the network
size and thus with the number of states of the given DFA, although in most cases a
value of H ~ 6 is enough in practice [OmGi:96].

In order to insert a partial DFA for subsequent learning from examples in the
preceding second-order SLRNNs, an excess of units is recommended (with respect to the
size of the inserted DFA) and all the weights that are not programmed to —H, —H/2
or ‘H, are initialized to small random values [OmGi:92]. Moreover, all the network
weights including the programmed ones are adaptable by the learning algorithm, thus
allowing rule refinement. Giles and Omlin reported some experimental results showing
that, for small values of H, the larger the number of inserted rules, the shorter the
convergence time to learn -a training set, whereas the generalization performances of
networks trained with and without prior knowledge were comparable [GiOm:93].

In the following section, a linear model for FSM representation in SLRNNs and 2L-
ASLRNNS is described, which improves the models reported in [SaAl:92, AlSa:93]. A

7.2. The FS-SLRNN linear model of FSM represeiitation in RNNs 250

study of the conditions that are needed to ensure the stability of the state representation
is included. This model explains the limitations of first-order SLRNNs and serves
to unify and generalize the FSM implementation methods by Minsky [Mins:67] and
Goudreau et al. [GoGC:94] (Section 7.3). A related technique for injecting symbolic -
knowledge (a partial FSM) in SLRNNs and 2L-ASLRNNSs prior to learning, which
- is valid for a wide class of activation functions, is described in Section 7.4. Finally,
a methodology for regular grammatical inference that uses the FSM insertion and
learning techniques derived from the model is presented in Section 7.5.

7.2 The FS-SLRNN llnear model of FSM represen-—
o oatation in-RININs S e

In the following let us consider single-layer recurrent neural networks (SLRNNs), such
as the one shown in Figure 4.1, and let us recall the definitions and notation given in
Section 4.1.1. To refresh them, an excerpt is repeated here.

An SLRNN has M inputs, with values z;(t), 1 < ¢ < M, at time ¢, and a recurrent
fully-connected single-layer of N units, with activation values y;(¢), 1 < j < N,
computed at time t. Let S! = [y;(¢ — 1),...,yn(t — 1)]T and I* = [z,(2), .. mM(t)]T
denote the current state vector and the input vector, respectively, just before updatmg
the activations of the network units at time ¢. In principle, let us assume that the first
P neurons, 1 < P < N, are output units, so that Of = [y;(2), ...,yp(#)]T is the output
vector at' time ¢. Note that the time counter ¢ is increased by one after updating the
activations and before reading the next input values. Hence, a general equation that
describes the dynamics of an SLRNN is : '

u(t) = g (f (WgI,S)) for1<k<N, (7.1)

where W is the weight vector of the k-th unit, g is an activation function (of one -
variable), and f is an aggregation function of inputs and activation values, which is
given by Eq.(4.3) for first-order SLRNNs and by Eq.(4.4) for second-order SLRNNs.

 On the other hand, let us recall the definition of the two types of FSMs: a Mealy
machine is a sixtuple (I, 0, S, go, 6,7), where I is a set of input symbols, O is a set of
output symbols, S is a set of states, go is the start state, § : I x S — S is a state
transition function, and : I x S — O is an output function; whereas in a Moore
machine, all is as in a Mealy machine except that the output function depends only on
the states, i.e. 7 : S.— O. It is well-known that for every Mealy machine, there is.an
equivalent Moore machine, and viceversa [Booth:67].

260 - Chapter 7. Representation of FSMs in RNNs and the AGI methodology

It is shown next that the representation of an FSMin an SLRNN can be modelled as
two linear systems of equations, one for the state transition function § and another one
for the output function 5. This algebraic representation is referred to as an FS- SLRNN

model.

7.2.1 The representation of the state transition function

Let A = (I,0,5,q,6,7) be a Mealy machine with m input symbols, n states and p
output symbols. Let N be an SLRNN with M input signals, N units and a subset of
P output units, that is wanted to emulate A. First, it is shown how to construct a

linear system for the state transition function 4, Wthh involves the weights, inputs and ... -

activation values of . The representation of the output function n will be discussed ~
later.

, When A is running at a discrete time step ¢, one can think of the input signals z;(t)
as encodmg a symbol a € I of the machine input alphabet, the feedback of recurrent
units y;(t — 1) as representing the current state ¢ € S reached after the sequence of
previous symbols, and the activation values y;(t) as standing for the destination state
¢' that results from the current transition. Thus, the set of N units can be seen as
implementing the state transition é(a,q) = ¢’ that occurs at time ¢. ‘ '

" Let D be the number of transitions (the number of arcs in the state transition
diagram) of the FSM A, where D < mn, and let d be an index of these transitions.
Without loss of generality, let us say that 6 is complete, i.e. it is defined for all the
pairs (a € I,q € S), and thus D = mn. At every time step ¢, the network A should
implement one of the D transitions. Therefore, the weights of N should satlsfy, at any
arbitrary time step ¢, the set of nonlinear equatlons

yh, = g(f(wk,Ig,sg)) for1<d<D, for1<k<N, (7.2)

where, if the d-th transition is §(a,q) = ¢/, then I} and S) refer to the input and
state vectors that encode the input symbol a and current state ¢, respectively, and the
activation values y%, (1 < k < N) are related to the code of the destination state ¢'.
It should be noted that the ordering defined by the index d is static and arbitrary; for
instance, we may use the following ordering: 6(a1,q1), 8(a1,q2), -, 6(a1,¢n), 6(az, 1),

- 6(@m, ¢r). In the case of a partial function 8, where D < mn, it will be considered
that the dynamics of the network A are 1rrelevant from the moment when an input a
is entered in state ¢ and é(a, ¢) is not defined.

The nonlinear system of equations (7.2) describes a deterministic state transition
function § where, once an encoding scheme is selected for the input symbols and the

7.2. The FS-SLRNN.linear model of FSM representation in RNNs 261

states, only the weights Wi, 1 < k < N, of the SLRNN A are unknown. Due to
the difficulty of studying nonlinear systems analytically, it is often desirable to convert
them into linear systems if possible. In this case, we can transform equations (7.2) into
a manageable linear system by performing the two followmg steps:

1. Drop the time variable, i.e. convert the dynamic equations into static ones.
2. Use the inverse of the nonlinear activation function g.

The first step is justified by the fact that the set of equations (7.2) must be fulfilled
for arbitrary time steps t. However, this simplification can be made as long as the
stability of the state codes is guaranteed (see next subsection). In addition, the SLRNN
must be initialized to reproduce the code of the start state qo on the unit actlvatlon

~valueés’ before running any sequéence of transitions.’ R T A

Concerning the use of the inverse function g~1, it must be satisfied that for all points
y which can appear in the state codes, either a unique g~1(y) exists, or if the inverse
is not unique (as for a threshold function) then there exists an established criterion for
selecting a proper value in every casel.

Therefore, the preceding transformations convert the nonhnear system of equations
(7.2) into the static linear system :

Odik = g—l(ydk) = f (Wk,Id,Sd) . forl S d S D, for 1 S k S N, (73)
which can be described in matrix representation as ,
AW = B | o (1.4)

where A (D x E) is the array of the neuron inputs, W (E x N) is the (transposed)
weight array, B (D x N) is the array of the neuron net inputs, and E is the number of
inputs to each neuron.

~ For a first-order SLRNN, £ = M + N, and equation (7.4) takes'the following form: -

nhi . hym Sn .. SN wir . wWiM WiM41) - YI(M4N) o1 . N
Isn, . Iapmg¢ San - San Wy . WkM Wr(M41) - WE(M4N) = 041 - O4N
Ipy - Ipm Sp1 -+ SbpwN wNp T WNM WN(M41) - WN(M4N) \ D1 - ODN

1Such a criterion will be applied in the representation of Minsky’s general solution using the FS-

SLRNN model.
2Caution: this does not mean that a linear sequential machine [Booth:67] is involved. A linear

machine would require a linear activation function g.

262 - Chapter 7. Representation of FSMs in RNNs and the AGI methodology

where Iz and Sy refer to the i-th element of the vectors that respectively encode
the input symbol a and the state g of the d-th transition of the FSM, §(a,q). The
dimension M is increased by one if a bias term, corresponding to a weighted fixed
input 1, is included for each unit. : ~

For a second-order SLRNN, E = MN, and equation (7.4) takes the following form:

Iy Sy - InSiy .. LiMSu .. hmSin wilg . WipMN T o113 . ON

TanSar - IaaSan o« TamSan . IamSan W1y . WRMN = g41 . O4N

Ip1Spy-. - IpiSpy - IbmSpr - ‘IpmMSDN r\Nwn o wanmn /| nX 9p1 - DN/
. . . « . VNS L.

The above construction will be illustrated with an example. Consider the state
transition function § of the odd-parity recognizer shown in Figure 7.1 (where the start
state is ¢;). The coefficient arrays A and B that are obtained for a first-order SLRNN
and for a second-order SLRNN, both with the sigmoid activation function g, of Eq.(4.5),
by using local encoding and applying the procedure explained ‘so far, are shown in
Figures 7.2 and 7.3, respectively. In these figures, each row of the linear system is
labeled by the associated transition §(a,q) = ¢’, and the positive value H is chosen
such that g;(H) ~ 1 and g;(—H) ~ 0. Note that the system displayed in Fig. 7.2 for
a first-order SLRNN is not solvable. On the other hand, the use of local encoding for
both symbols and states in a second-order SLRNN implies an identity diagonal matrix
A (see Fig. 7.3), and therefore a solvable system.

7.2.2 Stability of state representation

In the preceding construction of the linear model for the state transition function, it has
been assumed implicitly that the state codes yielded by the recurrent unit activations
are stable regardless of the length of the input strings. This assumption is true only
if some conditions on the input and state encodings, the activation function g, and
the network implementation, which are stated below, are met. Otherwise, the linear
“model-is just an approximation, and the state stability cannot be guaranteed when
long strings are fed into the net.

Let X and Y be the sets of numbers used in the input and state encodings
respectively, and let ¥ = {¢ | Jy € Y, 0 = ¢g7'(y)} be the set of numbers that
are’obtained by applying the inverse of a given activation function to each member of
Y. Then, three conditions are sufficient to guarantee the stability of states:

- g
7.2. The FS-SLRNN linear model of FSM representation in RNNs 263

Fig. 7.1 Odd parity recognizer of minimal size.

- (0, q1) 11010 H -H o

s § (0 ge) T 1 0001 > ~-H -H q2 '
§('1,¢r) | 1 01 10 | -H H q2
6('1,,Q2) 1 01 01 H -H 0

- .Fig. 7.2 Representation in a first-order FS-SLRNN model of the state transition
function for the odd parity recognizer.

(5(/0,,(]1) ‘ 10 00 H -H q1.
6(’0',Q2) 01 00 W = -H H q2
(1, ¢) | 00 1 0 | -H H | ¢
6(/11,Q2) 0 0 01 H -H Q1

o

Fig. 7.3 Representation in a second-order FS-SLRNN model of the state transztzon
function for the odd parity recognizer.

(c1) all the values used in the input encoding (z € X) are rational numbers;

(c2) the activation function g and the set Y of state encoding activation values satisfy
" the condition that Vy € Y, Jo; 0 = ¢~'(y) and both y and o are rational
numbers. o .

(c3) there exists an error bound e > 0 in the computation by the SLRNN of the
values ¢ € ¥ from weights in W and values in A, such that Vy e Y Jo, Vs €
[0 —€e,0+€] g(s)=y. '

The two former conditions above are related to the exactness of a linear system
solution, whereas the third condition is related to the precision in the network
computation.

264 - Chapter 7. Representation of FSMs in RNNs and the AGI methodélogy

It is well known that, if AW = B is solvable, the solution W will be exact, if and only
if, the coefficients of the A and B arrays are rational numbers and integer arithmetic is
used to compute the elements of W (which, consequently, are also rational). In the case
of the linear system of Eq.(7.4), the values contained in array A are either members
of X or members of Y (for first-order SLRNNs), or the product of members of X and
Y (for second-order SLRNNs); and the values contained in array B are members of X.
Therefore, the conditions (c1) and (c2) are necessary to be able to compute an exact
solution, if some solution exists, of the linear system of Eq.(7.4).

In practice one pair of values is enough both for X and Y. X = {0,1} is a common
choice for input encoding that meets (c1). Y = {0, 1} is adequate for the hard-limiting

threshold function - - ,
Life >0 C e e ey

“gi(0) = {0 wif'azo‘ N R (7m) |

since two rational inverse values can be selected, e.g. ¥ = {—1,1}, but not for the
sigmoid g,, for which 0 and 1 can only be approximated by taking ¥ = {—H, H} and
a large H, as in Figs. 7.2 and 7.3. However, there are other sigmoidal functions for
which a set Y satisfying (c2) can be found; for example,

1
143

gxs(0) = (1.6)

and Y = {0.1,0.9}, for which ¥ = {-2,2}.

Concerning the. candition (c3), if certain continuous and differentiable activation

functions g are used in the SLRNN, then an exact emulation of the transition function
based on the FS-SLRNN model may only be guaranteed if the network is able to achieve
e = 0, i.e. full precision. Activation functions of this kind are the sigmoid functions like
gs, gs3 (above), or the hyperbolic tangent, the sinusoidal function ggi,, the Gaussian
function gg, the antisymmetric logarithm g¢,;, and the simple linear function gj;,,. All
of these functions share the property that, for € > 0, a set Y of at least two values
cannot. be found such that Vy € Y, Jo, Vs € [c —¢,0 + €] g(s) = y. Note that to
achieve full precision (¢ = 0), the SLRNN should operate with integer arithmetic and
integer-based representation for rational weights and activation values. '

Nevertheless, continuous and differentiable activation functions ¢ can be devised
that allow a stable state encoding using the FS-SLRNN model without the previous
strong requirement. For instance, let us define a sinusoidal-based sigmoid function

Isinsgm as

0 ifac < —7w/2 .
Gsinsgm (@) = ¢ 3(1+sin(ao)) ifao € [-7/2,7/2] (7.7)
: 1 if ac > w/2

T~

7.2. The FS-SLRNN linear model of FSM representation in RNNs 265

where a is a positive constant, which parameterizes a family of similar functions
with a different interval of non-saturation. It is clear that, even for a large error
bound €, we can select many sets of two rational values ¥ = {00,041}, such that
Gsinsgm (00) = 0, Gsinsgm(01) =1, 0o < —e—7/2 and 0y > e+ 7/2, which allow a stable
state encoding with values Y = {0,1}.

If a discrete activation function ¢ is used in the SLRNN, such as the hard-
limiter g, or a discretized approximation of one of the continuous activation functions
aforementioned, then it is also easy to select sets Y and ¥ that meet the condition
(c3) for any reasonable error bound €. Hence, any of these discrete functions g allows
a stable state encoding. It is worthwhile to remember that SLRNNs with discrete
activation functions can be trained using some neural learning algorlthms, like the

_pseudo-gradient technique proposed by'Zeng et-al. {ZeGS:93]."

Furthermore, in the case of a discrete g or a saturated continuous function like
Gsinsgm, if the error bound e takes into account the ‘error caused by solving a real-
valued linear system, which depends on the system matrix condition number, then the
stability conditions (c1) and (c2) may be removed since they collapse into (c3).

7.2.3 The representation of the output function

With respect to the output function : I x S — O of a Mealy machine, two different
representations are possible using the FS-SLRNN model, one that applies to SLRNNS
and another one that applies to 2L-ASLRNNS.

If, as introduced in the beginning of this section, the output vector O is considered
as part of the state vector S, then the representation of the output function just
corresponds to some part of the linear system AW = B of Eq.(7.4); more precisely, it
corresponds to the first P columns (P < N) in arrays W and B, that is:

Ogr = g_l(ydk) = f (Wk,Id,Sd) for1<d<D, forl<k<P (7.8)

Goudreau et al. [GoGC:94] demonstrated that second-order SLRNNs can
implement any output function n for all the FSMs following this scheme, whereas
first-order SLRNNs need to be augmented to implement some 5 functions, either by
adding a feed-forward layer of output units, as in Minsky’s and Elman’s networks
[Mins:67, Elman:90], or by allowing a one-time-step delay before reading the output
[GoGi:93].

Therefore, an alternative approach is to separate the representation of the output

26 Chapter 7. Repre'(sentatz'on of FSMs in RNNs and the AGI methodology

function 7 from that of the'state transition function § by means of using a 2L-ASLRNN
architecture. This can be done for both first- and second-order networks, and it is
the appropriate choice if first-order RNNs are used to emulate FSMs. It may also be
preferable in the case of second-order RNN, since the total number of network weights
is reduced and the output encoding is not involved in the state transition function.

Thus, in a 2L-ASLRNN, the N recurrent units are preserved for state encoding,
and an output layer of P non-recurrent units O; (with a bias weight in each unit) is
added to provide an output vector O = [0,(?), ..., 0p(t)], which is given by

=1

o(t) = g (wn + Zwl(lﬂ)y](t)) for1<I<P (7.9)

where ¢ is not necessarily the same activation function of the recurrent layer, o;(t)
refers to the activation value of output unit O; at time ¢, wy; is the bias weight of unit
Oy, and wy(14j), 1 <j < N, are the weights associated with the connections from the
recurrent units U; to the output unit O;.

“In this case, after a ”linearization” process similar to the one explained in subsection
7.2.1, a second linear system is obtained that represents n and affects to the weights
of the output units:

N : .
g o) = wy + Zwl(].l_j)yij for1<i<n, forl1<I<P (7.10)

i=1

where the values oy (1 < 1 < oP) are related to the code of the output symbol
corresponding to the :-th state of the FSM. The preceding linear system of equatlons
can be expressed in matrix form as : :

AoWo = Bo : (7.11)

where Ao (n x (N + 1)) is the array of the output-unit inputs, Wo ((V + 1) x P)
is the (transposed) array of the output-unit weights, Bo (n x P) is the array of the
output-unit net inputs, and n is the number of states in the FSM.

Note that a 2L-ASLRNN actually represents a Moore machine, where 7 : S — O,
unless the state encoding in some way incorporates the information of the previous
input, as occurs in a split-state representation of Mealy machines [Mins:67).

In order to clarify the notation, from now on, we will refer to the linear system that
only represents the state transition function § as AsWs = Bs, instead of AW = B,
which will be reserved for the case where the output values are part of the state
representation vector (i. e. non- augmented SLRNNS) and AW = B includes both §
and 5 functions.

4

7.3. Implementation of FSMs in RNNs using the FS-SLRNN model 267-

7.3 Implementation of FSMs in RNNs using the
FS-SLRNN model

- The FS-SLRNN model is used here to explain the representational limitations of first-
order SLRNNs and to show that the FSM encoding methods by Minsky [Mins:67]
and Goudreau et al. [GoGC:94] (for RNNs with a threshold activation function gh)
can be generalized, so that many other solutions exist for FSM implementation in
SLRNNs and 2L-ASLRNNs, even with rather arbitrary activation functions, whenever
the stability requirements mentioned in the previous section are met. The simulations
of DFAs and stochastic DFAs in these architectures, based on the FS-SLRNN model,

~are discussed as well.

The generalized methods proposed for FSM implementation in first-order
ASLRNNs and second-order SLRNNs (or ASLRNNs) do not necessarily yield the
minimal size networks, but it is explained how the FS-SLRNN model may also be
used to search a solutlon with less units. With this aim, a variation of the FS-SLRNN
model that specifically deals with RNNs built with the threshold activation function
-gn of Eq.(7.5) is described.

7.3.1 Implem‘entation of FSMs in first-order ASLRINNSs

Let A=(1,0,8,qo,6,n) be an FSM. Let us first concentrate on the implementation of
the state transition function § : I x S — S in a first-order SLRNN, which is represented
by a linear system AsWs = Bs using the FS-SLRNN model. It is assumed that for
all the m input symbols and for all the n states of the FSM A, there is only one
corresponding code, given, respectively, by the M input signals and the N recurrent
units of the SLRNN (i.e. both the input and state encodings are uniquely-defined).
Recall that the number of rows in As is mn for a completely defined §, since each row
is associated with a different pair (a; € I,¢; € S). The following theorem establishes
an upper bound on the rank of Ag for first-order SLRNNs, which, in general, renders
the solution of the system AsWs = Bs unfeasible. : '

Theorem 7.1. The rank of matriz As in a first-order FS-SLRNN model is at most
m+n—1 for all the possible (uniquely-defined) encodings of the m inputs and n states
of an FSM.

Proof. Let r; be the first row of Ag, associated with the pair (al,-ql) let r;
be the row of the pair (a1,¢;); let r;_q), 4+ 1 be the row of the pair (a;,¢1); and
let r(;_1)» + ; be the row of the pair (a;,q;). Regardless of the encoding chosen, the

268 Chapter 7. Representation of FSMs in RNNs and the AGI methodology

following (m — 1)(n — 1) linear relations among As rows always hold:
Ti—t)n + 5 =Ti—n +1+ =11 for2<i<m, andfor2<j <n.

Hence, there are at most mn-— (m — 1)(n — 1) = m + n — 1 linearly independent rows
in As. O

The rank of Ag is equal to the upper limit m 4+ n — 1 if this is the number of
linearly independent columns; for example, this occurs if a local orthogonal encoding
is used for both inputs and states, with M = m and N = n. Since the number of
rows (equations) in As is mn for a complete §, the system AsWs = Bs is in general
unsolvable for ﬁrst order SLRNNs

In order to design an SLRNN ca,pa,ble of implementing any é function of an FSM,
there are two possible alternatives for overcoming the above restriction. One is to
increase the order of the SLRNN (see next subsection), and the other consists of
representing the state transition function of an equivalent machine with ”split” states
keeping the first-order architecture. In this second approach, the goal is to find a model
in which the linear relations among the rows of Ag are also satisfied by the rows of Bg
for any 6, thus allowing a solution Ws. It is shown hereinafter that this apparently
strict condltlon is met by Minsky’s method [Mins:67).

The key point is that instead of representing the original FSM A = (1,0, S, qo, 6, 1)
with n states, the maximally-split equivalent FSM A’ = (1,0, 5’, q;, 6, ') with at most
mn + 1 states is represented, where for each original state ¢x € S there are as many
states gkij € S’ as the number of incoming transitions to g in A, each one associated
with a transition é(ai, ¢;) = gx; in the case that go had no incoming transition, another
state would be needed in S’ to be assigned as the start state ¢j. The 8’ and 5’ functions
of A’ are built accordingly to keep the same input/output behavior. For example,
Figure 7.4 displays the (maximally-split) 4-state automaton equivalent to the 2-state
odd. parity recognizer shown in Fig. 7.1, where the start state can be either the state
labeled ‘0’g; or the state labeled ‘1’gs.

The next theorem generalizes Minsky’s method for the implementation of any
transition function é in the recurrent layer of a first-order 2L-ASLRNN (this is, in
fact, a first-order SLRNN). To illustrate the construction given in the theorem, Figure
7.5 displays the linear model, corresponding to the described solution, for the state
transition function. of the maximally-split odd parity recognizer shown in Fig. 7.4.

Theorem 7.2. A set of sufficient conditions on a first-order SLRNN to implement
the state transition function § of an FSM A = (1,0, S, qo,6,n) with m inputs and n
states is the following:

7.3. Implementation of FSMs in RNNs using the FS-SLRNN model 269

(i) The first-order SLRNN has m input signals and as many units as states (at most
mn + 1) in the mazimally-split equivalent FSM A’ = (1,0,5",45,6',1').

(ii) An orthogonal encoding with 0 and 1 values is followed for both inputs (X =
{0,1}) and states (Y = {0,1}).

(iii) The activation function g must meet that, there exist three rational numbers
001,002, 01 such that oy = 2(0o1 — 002) + 002, g(001) = 0, g(002) = 0 and
g(o1) = L. ‘

(iv) The activation function g and the precision of the first-order SLRNN must satisfy
the stability condition (c8) for Y = {0,1} and ¥ = {001, 002,01}

(v) Let w =001 —00y and 0 = gop. Let the pair (u,v), u > 0, be the label of the

' unit associated with the transition 6(ay,q,), and let (0,0) be the label of the unit
associated with a possible start state qu with no incoming transition, if any. A
solution weight matriz Wg is given by the assignment:

6 i 1=0 (thisis the bias weight)
w if | stands for the connection from input a, € I, u >0
Wy = { w ifl stands for the connection from any of the units that code the
' states in S’ equivalent to (and split from) ¢, € S
0 otherwise

Proof.

Let AsWs = Bs be the linear model that represents the state transition function ¢’
of the maximally-split FSM A’ (with m inputs and at most mn + 1 states) equivalent
to the given FSM A (with m inputs, n states, and transition function §), using a
first-order SLRNN and an orthogonal encoding W1th values {0,1} for both states and
inputs.

Without loss of generality, let us assume that § is complete. Then, the number
of units in the first-order SLRNN (and states in S’) will be N = mn if Ja € I,
Jq € S, 6(a,q) = go, and N = mn + 1 otherwise. Ag is a matrix of mN rows and
(m+ N +1) columns (including a fixed input 1); whereas Bg has also m/N rows but just
N columns. The rows of both Ag and Bg can be organized into m blocks of N rows,
where each block (RA and R?, respectively) corresponds to the transitions with the
input symbol a;. Let r and rB denote the j-th row of blocks R# and RZ, respectively,
which are associated W1th transmon &'(ai, ¢%) of the maximally-split FSM. Each block
of rows is divided into n sub-blocks (as many as states in the original FSM A), and
each sub-block (R# and R,k, respectively) has as many rows as states resulting from
split the state g;. The rows in any sub-block RE of matrix B are identical since they
code the same destination state, which is associated with the pair (a,, gx).. Let K(7)
be a function that indicates the number of sub-block k£ to which the j-th row of any
block belongs. - . . ‘

270 .. Chapter 7. . Representation of FSMs in RNNs and the AGI methodology

t

]
—

o .
[\

Fig. 7.4 Maxg'rh_a{ly~split odd-parity recognizer

§('0" 0'qr) ('1 10100 0\ Ww4+0 w+b w+t 6 -\ Vg
8(0'/1¢2) 1110 00 0 1 2w+l w+l w+6 6 | 'OVqr
8('0'/0'q2) {11 001 0 0 w+8 2w+8 0 w+ 6 "0qy
§(0'/1'¢1) |11 000 10 We = w+l 2w+ 0 w6 '0'q,
§(10q) |1 0110001} ST w+b 8 2w+ wtl | Vg
8(1"1¢;) 11 0100 0 1 w46 6 2w+0 w+6 "1'q
8('1/0¢) | 1 0101 00 6. w+0 w+b 2w+6 | Vg
§('1/1'qg) \1 0100 10) \ 0§ v+l w6 2w+0) Vg
_ 0 w 0 w 0 0 w T

6 w 0 0 w w 0

Ws = 0 0 ww 0 0 w

6 0 w 0 ww 0

Fig. 7.5 Linear model fepresenqqtion of a first-order SLRNN that implements the
state transition function of the (mazimally-split) odd-parity recognizer.

The columns of Bs, denoted as ¢, are labeled by two sub-indexes, u,v, which

associate c2 with the unit that flags the state of the maximally-split FSM characterized
by ”being the 'destination of a transition with the input symbol a, from a state
equivalent to the state ¢, of the original FSM”, if u > 0, or by "being a start state
with no incoming transition”, if u = 0. ' :

7.3. Implementation of FSMs,in: RNNs using the IS-SLRNN model 271

Finally, lgt O (ij)(uv) be the element of Bgs in the row rg- and in the column cB,, and

let yt;j)(uv) = g(0(ij)(uv)) be the corresponding activation value.

Since we deal with a first-order SLRNN and an orthogonal encoding is followed for
both inputs and states, Theorem 7.1 establishes that the rank of Agis NV + m — 1
and there exist (N — 1)(m — 1) linear relations among the rows of Ag, these being the
following: - ‘ o '
rp=rh4rg o 2<i<m, 2<j<N. (7.12)

l]=

In order to prove the theorem we need to demonstrate that for all the mN
transitions of &, the orthogonal code of the destination state is obtained in the
-unit activation values, given the selected weight_-as'signment;and the properties of the
activation function g. In addition, it will ‘be shown that Bs satisfies the same linear
relations among rows than Ag, that is

2=rf+rf-rf 2<i<m, 2<ji<N (7.13)

i3

By multiplying matrix As by the matrix Ws built up with the proposed weight
assignment, it results that the net inputs of the network units can be expressed as

follows: :
w40 fu=i A v=K(j)

O(ij)(u) = {w+0 fu=1® v=K(j) (7.14)
0 ifuti A v# K(j) ')

Due to the orthogonal encoding which is followed, the required activation values

are:
1 ifu=1i A v=K(j)

Yew) = {_0 otherwise (7.15)

Therefore, since g(2w + 8) = 1, g(w +6) = 0, and g(§) = 0 , the desired code
for the destination state is obtained for all the mNN transitions of ¢’. This proves. the
theorem. o

In order to show that the assignment of Bs elements given by Eq.(7.14) implies the
satisfaction of the linear relationships

O (i) (wv) ='0(i1)(uv)+a(1j)(uv) — O(11)(uv) 2<: < m, 2< .7 < N, I<u<m,1<v <n,
. ' (7.16)
a case-by-case analysis can be performed as follows. o

272 Chapter 7. Representation of FSMs in RNNs and the AGI methodology

Firstly, when K(j) = K(1) it follow's immediately that a(,J)'(m,) = O(i1)(w) and
O(1j)(uv) = O(11)(uv), Since all the ro%vs r in the same subblock RtK(J) are identical
because they code the same destlnatlon state

When K(j) # K (1), only the next four cases may occur, where we replace cr(,J)(m,),
O(i1)(uv)> O(15)(uv) a0d 0(11)(uu) in Eq. (7 16) by the values given by Eq.(7.14):

a) u=1: A v=K(])

2w+6 = (w+0) + (w+0) 0
b)d#@ﬂv#K@) : | N
{w+o==@w+@-+o—(w+m if v = K(1)
w+l = (w+0) +0 -6 if v # K(1)
) u#ti A v=K())

~ w+0
w+0

d) u#i A.v#K(j)

(2w+0) ~ (w+0) ifu=1

0 +
0+ (w+6) — 6 ifus1

o

l{0=ﬁﬁw+@+(w+0)—(&w+® fu=1 A v'=K(1)
{0 =0+ (wt+) — (w+90) fu=1@ v=K(1)
0=06+0-0 furtl A vetK(1)

‘Minsky’s proposal-for the implementation of the state transition function of any
Mealy machine in networks of McCulloch-Pitts neurons [Mins:67] is a particular case
of the solution established in Theorem 7.2, in which the activation function is the
hard-limiter g, of Eq.(7.5), w = 1 and § = —2 (i.e. © = {-2,~1,0}). For a first-
order SLRNN with error bound ¢, and using the same activation function g4, thereis a
stable solution for any positive number w > 2¢, where a negatlve number 8 satisfying
—0 € (w+ €,2w — €] can be chosen. Other solutlons with dlfferent activation functions,
such as gsinsgm of Eq.(7.7), can be 1mag1ned '

Concerning the output function 7 : I x S — O of the FSM, Goudreau et al.
[GoGC:94] proved that first-order SLRNNs cannot implement all the possible output
mappings. Therefore, the linear system AoWo = Bo of Eq (7.11), which results from

7.3. Implementation of F SMiS’:-in-iRNNs using theFS-SLRNN model 273.

the incorporation of an output layer of P units, must be solved. For this purpose, it
is enough to use an orthogonal state encoding to obtain a full-rank matrix Ao, which
guarantees a weight solution Wp for any P > 1 and any possible matrix Bo. Moreover,
the only requirement on the activation function g of the output layer is that the range
of ¢ must include the values used in the encoding of the output symbols.

In summary, in order to implement all FSMs, first-order SLRNNs need both to use
state splitting (to implement all § functions) and to be augmented (to implement all 7
functions), i.e. first-order 2L-ASLRNNs are required®.

7.3.2 Implementatlon of FSMs in second- and hlgher-order
. SLRNNs" B

In order to represent any state transition function é of an FSM with m inputs and n
states in an SLRNN without the need of state splitting, the rank of matrix As in the
FS-SLRNN model must become mn, so that network weights Wg can always be found
for any Bs. To this end, some terms of second or higher order are needed as neuron
inputs to provide the required number of linearly independent columns in As. There
are several solutions of this kind, which can be proven to yield rank(As) = mn. For
example, the following two approaches: :

- Use a second-order SLRNN with activation function g, and select an orthogonal
one-hot encoding for both inputs and states (this is the solution described by
Goudreau et al. [GoGC:94]). In this case, it is easy to show that Ag is always
an identity diagonal matrix (see, for instance, Fig. 7.3).

- Use a high-order SLRNN of just one recurrent unit with multiple rational values in
the range of its activation function g (e.g. a discrete approximation of a sigmoid),
and just one input signal z;, for coding the states and inputs, respectively; and
let the neuron input terms be given by a family of high-order functlons indexed
by ¢ (1 < ¢ < mn), .

fe(m1,51) = 2i9y° o (7.17)

where u, and v, are positive integers such that u, = ((¢ — 1)mod m) + 1 and
v. = ((¢c — 1)div m) + 1, and the operators div and mod refer to integer division
and module operations. This SLRNN can be regarded as an extreme case in
which the required linear independence is achieved through- the variable-order
nonlinear connections. '

3Equivalently, the output units might be put with zeroed outgoing connections in a first-order
SLRNN and read with one-time-step delay [GoGi:93].

274 - Chapter 7. Representation of FSMs in RNNs and the AGI methodology

The following theorem permits the use of quite arbitrary activation functions in
second- or higher-order SLRNNs to implement any é of an FSM.

Theorem 7.3. If the aggregation function f of the SLRNN and the input and state
encodings are selected such that the rank of the matriz As in the FS-SLRNN model is
equal to the number of transitions of a given FSM A = (1,0, S, q0,6,7), then, in order
to implement the state transition function §, the only requirement is the satzsfactzon of
the stability conditions (c1), (c2) and (c3). o

Proof. The rows of matrix As represent, under the given encoding, the pairs
(input,state) for which the state transition function 6 is defined. The activation
function g'and the chosen encoding determine the contents of matrix Bs for the given

6. However, since.the rank of As is equal to the number of rows, then for:any possible - - -

Bgs there exists a corresponding Weight'rria‘trix Wy that solves AsWs = Bs. Therefore,
it is only required that matrix Bg can be constructed given the predetermined state
encoding (condition (c2)) and that the state codes be stable during network operation
(conditions (cl),(c2) and (c3)). O /

On the other hand, the output function n:1 xS — O of any Mealy machine can
easily be implemented by extending any of the configurations of high-order SLRNN and
data encoding characterized by a full rank of matrix As. For example, second-order
SLRNNs with. local orthogonal encoding for both states and inputs may be used. As
commented in Section 7.2, the system AsWs = Bs can be extended to a larger system
AW = B that also includes the output function 7, in which P recurrent units are
added to encode, the p output symbols of the FSM. This causes P new- columns in A,
W and B, and also P new rows in W, but the number of rows in the extended matrices
A and B are the same than in the matrices As and Bs. Hence, if the rank of Ag is
equal to the number of rows, then rank(A) =rank(As). Consequently, all the possible
stable encodings of the p output symbols in the P output units, using rational values
in the range of the selected activation function g, are feasible, since there is always a
weight solution W for any B, due to the full rank of A.

Finally, the output function 5 : § — O of any Moore machine with n states may
be implemented as well in the output.layer of a second- or higher-order 2L-ASLRNN,
subject to the same conditions mentioned for the case of first-order 2L-ASLRNNS.
This is, to use a state encoding (with a number of recurrent units N > n) such that
rank(Ao) = n, in order to solve the linear system AoWo = Bo, which represents 5 in
the output layer, for any possible output encoding.

7.3. Implementation of FSM$'iii RNNs usirig th6S-SLRNN model 275

7.3.3 . Implementation of DFAs and stochastic DFAs

Let Ap = (@,%,6,q0, F) be a DFA accepting some regular language. It is clear that
Ap is equivalent to a Moore machine (I, 0, S, g0, 6,7), where I = £, 0 = {0,1}, S = Q,
FCS, and the output function 5 : S — O is defined as

(@) = 1 1fq€F(1e q is a final state)
na = 0 otherwise

Hence, since Ap is a Moore machine, it can be implemented in an RNN using one
of the approaches based on the FS-SLRNN model that have been explained previously.
In all cases, only a single output unit is enough (P = 1) to encode the two output

.. ~symbols.of, the F'SM, associated. with the:”accept”.and ”reject” ;actions: of .the DFA,."

using a pair of different values-in the range of the activation function g. Let us say that’
Ap contains n states and |X| = m. Then, Ap may be implemented, for instance, using
a local orthogonal encoding for inputs and states and a proper activation function ¢
(recall the stability conditions), in a first-order 2L-ASLRNN with mn recurrent units
and 1 output unit, in a second-order SLRNN with n + 1 units, or in a second-order
2L-ASLRNN with n recurrent units and 1 output unit. '

The case of deterministic UFSAs (DUFAS) can be handled similarly. Let Up =
(Q,%,6,9, Fp, FN) be a DUFA. Then, Up is equivalent to a Moore machine with
output set O = {-1,0,1} and output.function :

—1 if g€ Fy (i.e. ¢is afinal negatlve state)

' 1 if g € Fp (i.e. g is a final positive state)
n(q)
0 otherwise

A DUFA Up may be implemented, for example, in the same RNN configurations than
a DFA Ap of the same size, except that the activation function of the output. unit
should provide three different values, not necessarily {—1,0,1}, to encode the three
output symbols. Note also that the complete DUFAs, where all states are either final
positive or final negative, can be implemented as DFAs. '

The FS-SLRNN model can also be adapted to represent and implement stochastic
DFAs in 2L-ASLRNNSs, as is shown next, whenever the activation function of the output
units is selected to include the interval [0,1] in its range. Thus, activation functions
like giin, (6.3), gar (6.18), gsin (6.24) OT gsinsgm (7.7) may be used in the output units;
a sigmoid function like g5 (4.5) or g (7.6) could in principle be used too, taking into
account that the output values 0 and 1 could only be approximated.

Let Asp = (@, %, 6, g0, p) be a stochastic DFA accepting some stochastic regular
language, where ¥’ = ¥ U {8} is an extended input alphabet that includes a special

276 -+ Chapter 7., Répres,entation of FSMs in RNNs and the AGI methodology:

symbol § (which is used as mark of the end of a string), 6 : £ xQ — @ is a deterministic
state transition function, and p: &' x @ — [0,1] is an associated probability function
such that

Vg € Q: Z plai,gi) = 1;

a;€L’ ,
Va; €XE, Vg; €Q p(a;,qj) >0 < dqg €Q, §(ai,q;) = q;

p($,¢;) is the conditional probability of reading (or generating) the end mark of a
grammatical string? in state ¢; (and accepting the string read in so far); and p(a;, g;),
a; € X, is the conditional probability of reading (or generating) the input symbol
a; in state g; as the next symbol of a grammatical string (and moving to the state
given by 6(a;,q;)). - All the states ¢ € @ such that p($,qs) > 0. are considered as

final states. Each:string s = ¢i¢g...¢|s| in the stochastic régular language represented-by "~

Asp has an associated probability p,; which is computed as the product of probabilities
p(c1, qo) plca,8(ca,q0)) ... p($,q5), where g; is the final state reached after reading (or
generating).the last symbol . :

-Although a stochastic DFA is not exactly an FSM, it can be represented using the
FS-SLRNN model by defining an equivalent pseudo Moore machine with a probabilistic
output function . Thus, a pseudo Moore machine associated with a stochastic DFA
Asp = (@, 2U{8}, 6,90, p) can be defined as the sixtuple (I, 0, S, qo, 6,7), where I = X,
O = L U{$}, S = Q, and the probabilistic output function n : S x O — [0,1] is s1rnply
given by the next-symbol probabllltles of each state, n(q, a) = p(a,q).

“Hence, we can use a 9L-ASLRNN to implement the state transition function é of
a stochastic DFA' (of n states and m input symbols) in the recurrent layer, and take
P = m + 1 output units, one for each input symbol plus one for the end-symbol §, to
implement the probabilistic 7-in the output layer. To this end, each of the activation
values 05, 1 <71 <n, 1 <1< P in Eq.(7.10) must correspond to the probability
n(g, @) = pla;¢;) and the inverse values g~'(o;) must exist (or be chosen) for the
activation function g of the output layer, in order to build matrix Bo and solve the
linear system AoWpo = Bp. '

It can be seen that this representation of stochastic DFAs is similar to the one that
can be inferred from positive examples of a stochastic regular language by training a
2L-ASLRNN to learn the next-symbol prediction task (recall Sections 4.2.1 and 6.2.2).
Moreover, the 2L-ASLRNN built from the stochastic DFA can be used to accept the
grammatical strings and reject the ungrammatlcal ones, as explained in Section 4.2.1,
provided that a prediction threshold u is selected in the proper range given by Eq. (4.95).

4A grammatical string is a string in the stochastic regular language accepted (and generated) by
the stochastic DFA.

7.3. Implementation of FSM&'it*RNNs using theiFS-SLRNN model 277

To_the contrary of the learning case, where it may be difficult to select u, there is no
problem to choose u when the stochastic DFA is known.

Finally, a consequence that can be extracted from the work by Goudreau et al.
[GoGC:94] is that first-order SLRNNs may not be able to represent any possible
probabilistic output mapping of a stochastic DFA, and therefore, they need to be
augmented to implement all the stochastic DFAs. On the other hand, second-order
SLRNNSs can implement all the stochastic DFAs, whenever a stable encoding of the
required probability values associated to each state is guaranteed®.

7. 3 4 The problem of searchmg mlnlmal size networks that
““implement-a’ glven FSM - PR i

Although some methods to implement FSMs or FSAs in first- and second-order RNNs
have been proposed, both here and elsewhere [Mins:67, AIDO:91, GoGC:94, OmGi:96],
none of them returns the smallest neural network (of first- or second-order type) that is .
able to emulate a given FSM or FSA. It would be very interesting to design a method
‘which built the smallest network required. However, it is generally believed that the
problem of finding the minimal size second-order SLRNN implementing a given FSM
or FSA is an NP-complete problem [SiSG:92, OmGi:96] (and a similar belief applies
to the case of first-order 2L-ASLRNNs). :

In a work related to this tapic, Siegelmann et al. [SiSG:92] showed that the number
of neurons required in second-order SLRNNs with linear activation function to accept
a regular language (I-complezity) is an upper bound for second-order SLRNNs with
sigmoidal and saturated activation functions. Moreover, they reported a method to
compute an upper bound of the [-complezity of a regular language L, the so-called
H-complezity, such that VL : H-complezity(L) < n, where n is the number of states
of the minimal DFA accepting L (i.e. the canonical automaton for L). Note that
in the methods by Omlin and Giles [OmGi:96], Goudreau et al. [GoGC:94], and
the generalization of the latter given in 7.3.2, a second-order SLRNN of size n + 1
is constructed to implement a DFA of n states. Indeed, Siegelmann et al. claimed
that a linear-activation network with H-complezity(L) size can be built from a regular
expression R describing L in time polynomial in the size of R, using techniques from
the theory of rational power series in noncommuting variables [SiSG:92].

In the following, it is discussed how the FS-SLRNN model presented might help in

5A possible way to achieve this is by setting to zero the weights corresponding to the connections
from the output units to all the units of the SLRNN.

. .
o Teo L U Foptas 2loces, ‘.\."».‘J\‘ Yaatirg

278:- Chapter 7. Representation of FSMs in RNNs and the AGI methodology

the 'search of smaller solutions than those provi'ded by the methods described in the
previous subsections which used a unary state encoding.

Let us first consider the problem of implementing a given Mealy machine A =
(1,0, S, qo, 6,n) with m inputs, n states and p outputs in a second-order SLRNN using
a denser representation of states. Assume that a dense state encoding is selected that
uses less than n units, and that a certain output encoding is chosen, where the number
of output units is P < p, so that the total number of units is N < n + p. In addition,
assume that a fixed encoding is taken for the m input symbols through the M input
signals of the SLRNN. Once these encodings are known, the matrix A of a linear system
AW = B representing both é and 7 of A can be written. Let Y be the set of values used
in the state and output codes, e.g. Y = {0,1} in a binary represéntation. If, thanks to

. the P:columns ‘corresponding to the output values, it results that rank(A) = mn (the

number of rows), then many solutions can be easily obtained with activation functions
that include Y in their range. But, normally for dense representations, the rank of A
will be less than mn and a number of mn— rank(A) linear relations among the rows of

A will hold.

'If the activation function g of the SLRNN is such that a single inverse value g~1(y)
exists for each of the values y € Y, forming a unique possible set L of inverse values ‘
associated with Y, then a unique linear system AW = B representing A under the
given encodings can be established. In such a case, it suffices to test the solvability of
this system to know whether the selected encoding scheme allows the implementation
of the given FSM; to this end, if rank(A) < mn, then the rows of B must satisfy the
same linear relations. However, if two or more inverse values can be chosen for some of
the values in Y for the activation function g, then an exponential number of possible
systems AW = B, all with same A but different B, should be checked in principle.
In some cases, as for the threshold activation functlon gh of Eq.(7.5), the number of
p0351ble systems to test would be even infinite. -

To avoid this shortcoming, an extension of the FS-SLRNN model is presented next
that enables to know whether a selected encoding of a given FSM A is implementable
by an SLRNN with the threshold activation function g; and a bias weight in each unit,
by meéans of solving at most N linear programming problems and one linear system of
equations.’ Once an aggregation function f is chosen, that determines whether a first-,
‘second-; or higher-order SLRNN is involved, and some binary encoding is selected for
state and output representation, a nonlinear system of equations

v = o (f (W;,1;,8)) for1<i<mn, forl<j<N, (7.18)

can be established that represents § and 7 of A, where W is the vector of weights of
the j-th unit, the vectors I;, S; encode the i-th (input,state) pair, and y;; € {0,1}.

13

7.3. Implementation of F. SMs*in"RNNs usin?gf',’tﬁ‘:é’}ﬁ“?FgS-SLRNN model 279

Now, instead of forcing some specific inverse values in the domain of g, for the 0
and 1 values, we relax each equation in the preceding system to a constraint

oij 2 0o0r g5 <0 forl<i<mn, forl<j<N, (7.19)

depending on whether y;; = 1 or y;; = 0, where oy; = f (W;,1,S;), and the
availability of bias weights allows setting the threshold in the constraints to zero without
loss of generality. We still can adopt a flexible matrix representation

AW = By - S (7.20)

for the above linear system of constraints, which means that the elements o;; of the
product of matrices- AW, where W is unknown, must satisfy either.o;; > 0 or. o;; < 0
_depending on;the selected encoding-of the-FSM; as given: by the matrix-of-constraints

By.

Again, if all the rows of A are linearly independent, i.e. rank(A) = mn, then a
solution W is easily determined by first setting all the variables o;; to arbitrary values
in the allowed ranges and then solving an actual linear system AW = B. However,
when rank(A) < mn, the method described in Algorithm 7.1 may be used to check the -
existence of a solution and to obtain a weight matrix W satisfying the constraints, if
possible. This method tries to build a matrix B, column by column, such that it meets
the inequalities expressed by By and, at the same time, satisfies the same row linear
relations than A. If such a matrix B can be constructed, then a solution W is found

by solving AW = B.

Now, the problem of finding a minimal-size second-order SLRNN with the threshold
activation function g, that implements a given DFA Ap = (Q,X%,6, 4, F) with n
states can be transformed into the problem of finding a state (and output) encoding
¥ : Q — [0,2Y — 1] with minimum N for which there exists a weight matrix W
satisfying the set of constraints AW = By associated with the representation of Ap
using 7 (and a local orthogonal input encoding). Unfortunately, this seems to be a hard
problem. Only to illustrate the combinatorial complexity of the task, Algorithm 7.2
describes an exponential-time method, which would (theoretically) solve the problem
by exhaustive search. In the worst case, the solution derived from Theorem 7.3 with
N =n 41 and a local one-hot state encoding would be returned. Algorithm 7.2 has a
worst-case time complexity of O(n2"2). Even though a lot of computations, which are
redundant in the exhaustive search, might be avoided by structuring the search space
in some intelligent manner that pruned the encodings to test, it is probably impossible
to devise a polynomial-time algorithm that found the minimal network due to the
combinatorial nature of the problem. As far as I know, this remains an open question
for research. '

280 - Chapter 7. Representation of FSMs in RNNs and the AGI methodology

ALGORITHM 7.1: Determines thé ezistence ofa weight solution to implement an FSM
in a threshold-based SLRNN with a given binary encoding for states and outputs, and
finds one such solution if any. ~

Inputs: :
N is the number of units in the SLRNN (including output units); -

A is a matrix of values such that rank(A) < number_of-rows(4) = mn; ,
By is a matrix of constraints such that number_of_rows(B) = number_of-rows(A),
and every element of the matrix is either o;; > 0 or gi; < 0;

Outputs:

eristence is a boolean variable which tells whether or not there exists some weight
matrix W for which the product AW satisfies the constraints By; '
B when ezristence=TRUE, it contains a matrix of values that satisfies By;
e WL when ezistence=TRUE, it contains the solution-of AW = B;..

begin_algorithm

Let‘r;-4 denote a real-valued variable associated with the i-th row of 4, 1 <17 < mn;

Establish an homogeneous system of equations ZRA =0 that represents the linear

* relations found among the rows of A, where R4 = (r{l,...,74)T and Z is the
matrix of coefficients given by the linear relations;

Solve ZR# = 0 in a parametric way (because the system is underdetermined), thus
obtaining a parameterized vector R4 which stands for a linear subspace including
the origin in the space R™"; |

eristence := TRUE; '

for 7:=1 to N do

Let By; be the j-th column of the matrix of constraints By;.
{ Bup,; represents a cone of R™" which corresponds approximately to a 2™"-
orthant of the space } ’ ' ‘
if RANBy;)# 0
{ the Simplex algorithm can be used to test the feasibility of the intersection
space, since this is a linear programming problem }
then _ .
Select some arbitrary point P= (r1,..., "mn) € (R4 N By ;) to set the values
gij (1 <t < mn) in the j-th column of matrix B;
else '
ezistence := FALSE;
break { theloop j };
end_if
end _for
if ezistence then
Solve AW = B, since both A and B have the same linear relations among rows.
end_if

end_algorithm

P PR AR PR T N

7.3. Implementation of FSMs:intRNNs using the:FS:SLRNN model 281:

ALGORITHM 7.2: Finds a threshold-based second-order SLRNN of minimal size that
implements a given DFA by ezhaustive search.

Inputs:
Ap is a given DFA (@, X, 6, go, F') with n states;
Outputs:

Nyin is the minimal number of units that are needed to implement Ap in a
- threshold-based second-order SLRNN;
Woin contains a solution of weights for a second-order SLRNN with N,,;, units;
Ymin is the state (and output) binary encoding Ymin : @ — [0,2Nmin — 1]
used in the solution;
begm algorlthm

for N = |'log2n] +1tendo " T e e Tav e Coo
N-1
for i:=1to (2 n) {different code sets of n elements with N — 1 bits}
do
for j:=1to n! {different permutations of n elements within a code set}
do : o
for k :=1to 2 {possible output encodings with 1 bit} do
Generate a new encoding table v : Q@ — [0,2N ~ 1];
Write matrix A and constraints By of Eq.(7.20) associated with
the representation of Ap using 7;
<ezistence,B,W >:= Run_Algorithm_7.1 (A, By);
if ezistence then :
Npin :=N; Wyin =W, Ymin 1= 7;
break { the loops k,],z,N }i
end_if
end_for { %}
end_for {j}
end for {1}
end_for { N}

if Npin = n+1then
Store the orthogonal one-hot encoding in Ymin;

Write matrix A and constraints By of Eq.(7.20) associated w1th
the representation of Ap using Ymin;

Choose an arbitrary matrix B satisfying Byy;
Solve AWpin, = B;
end_if

end_algorithm

282 Chapter 7. Representation of FSMs in RNNs and the AGI methodology

- It must be remarked that the general problem of finding a minimal-size second-
order SLRNN with the threshold activation function g, that implements a given FSM
A = (I,0,8,q0,6,n) with n states and p output symbols is still more difficult than
the previous one, since p is simply 2 for a DFA. Note that if the exhaustive search
method described by Algorithm 7.2 were extended to the case of an FSM with p output
symbols, a number exponential in p of possible output encodings should be tested in
the innermost loop instead of just the two output encodings that were tested for the
case of a DFA. Moreover, if one deals with first-order ASLRNN instead of second-order
SLRNNS, the situation is even worse, since in order to implement an FSM with n states
and m inputs, more than n units may be needed (up to N = mn, recall Theorem 7.2),
and therefore, an exhaustive search procedure for first-order ASLRNNS would have to
check not only the given FSM but also other equivalent FSMs resulting from splitting
_ up to n states; which would further increase the time complexity by a-factor of 2" :«--

7.4 .Insertion of FSMs in. RNNs for subsequent
. learning

The FS-SLRNN model can be employed to insert symbolic knowledge, in the form of
an incomplete FSM, into 2L-ASLRNNs or second-order SLRNNs and to preserve this
knowledge (i.e. the emulation of the inserted FSM) while the network is trained from
examples to complete an input/output behavior that” minimizes the error in a given
task. This is useful when an RNN-based inductive process is to be guided according to
a-prior: knowledge of the problem or from a symbolic partial solution. To be applied
in such a guided learning approach, an RNN of one of the above types Can_ be made up
of any activation function g that supports a neural learning scheme, provided that the
stability conditions mentioned in Section 7.2.2 are fulfilled. Remember that learning
algorithms are available even for RNNs with a discrete g such as the hard-limiter g,
(e.g. the pseudo-gradient technique described by Zeng et al. in {ZeGS:93)).

"We have seen that two linear systems, AsWs = Bs and AoWo = Bo, are
constructed in the FS-SLRNN model to represent the transition and output functions,
respectively, of an FSM in a 2L-ASLRNN from a selected encoding of inputs, states
-and outputs. In general, these linear systems can be overdetermined, determined or
underdetermined, depending on the given FSM, the data encodings (which determine
the number of input, state and output units in the net), and the specific architecture
(usually first- or second-order). The key point is that, given a sufficient number of
recurrent units in the network, underdetermined systems ASWS = Bgand AoWp = Bp -
can be built, in which some of the network weights are free parameters in the solutions
Ws and Wo and the rest are determmed by a linear combmatlon of the former. Hence

AR T s

7.4. Insertion of FSMs.in RNNstfor subsequent 164ting : 283

a learning algorithm can be adapted to search for error minima in a linear subspace,
with the free weights as variables, for which all the corresponding networks implement
at least the 1nserted FSM.

A similar argument applies to the case of second-order SLRNNs, where an
underdetermined system AW = B can be obtained, given sufficient recurrent units,
that represents both § and 7 functions of an FSM. On the other hand, it has been
demonstrated that first-order SLRNNs are not able to represent all FSMs, whatever
the number of units, and therefore, they are not appropriate for FSM insertion.

-In the following, only the insertion of Moore machines in 2L-ASLRNNs is described,
where the emulation of the transition and output functions is clearly separated: the .,

.. recurrent, layer.takes care of .6 .and the output.layer takes care.of 5. . However, a similar..

method to the one explained next can be easily derived to insert Mealy machines in
second-order SLRNNs.

Let A = (1,0,S5,qo,6,n) be a Moore machine with m inputs, n states and p
outputs. It is assumed that A corresponds to a part of an unknown target machine .
AT = (1,0,57, 0,67,77) to be learned by the 2L-ASLRNN, where ST 2 §, §is a
partial definition of 67, and 7 is a partial definition of »7. At first, the number of .
states nT in the target FSM is considered to be unknown, though n7 > n. The FSM
insertion method consists of two steps, to be performed prior to the learning stage:

1. Establish underdetermined linear systems AsWs = Bs and AoWp = Bp, that
. represent the § and 5 functions of A, using a 2L-ASLRNN architecture and a
data encoding suitable for FSM implementation, but including more units than
those required to solve the systems (e.g. use a second-order 2L-ASLRNN with
~ orthogonal encoding for inputs and states and N > n).
2. Initialize the weights of the hidden and output units to any of the solutlons
‘Ws. and Wp, respectively, that result from solving the underdetermined linear
systems built in the previous step.

The problem of fixing the number of additional units is similar to the problem of
fixing N when the network starts from scratch (no a-priori knowledge) to learn a task
from examples. The selection of the number of additional units is easier if there is an
estimate of n7, #7, since in that case, an upper bound is given by 27 — n.

Concerning the selection of a particular initialization for the network weights, this
should help to provide a good starting point for the learning algorithm to be applied
afterwards. For gradient-based learning algorithms, a preferred initialization may be
one in which the sum of squared weights is minimal (or near minimal) among the
possible solutions and all the network weights are non-zero. Indeed, it is easy to show

284" Chapter 7. Representation of FSMs in RNNs and the AGI mefhodology

that the assignment of the free weights that produces the minimal sum of squared
weights can always be found by solving, for each unit, a linear system with the free
weights in that unit as variables. Likewise, it must be noted that every dependent
weight is a linear combination of free weights within the same neuron, since for every
column of the solutions Ws and Wy there is a set of linear relations involving only the
weights in that column.

Obviously, if all the network weights are freely modified by the neural learning
algorithm, then the emulation of the inserted FSM is no longer guaranteed. Thus,
if any of the true gradient-descent algorithms described in Section 4.1.2 for training
ASLRNNs, which update all the network weights, were used after FSM insertion, then
the injected knowledge would probably be degraded and eventually forgotten. Although
this 'behavior- allows for knowledge refinement and it might -be-valid: to learn a given
task, an alternative approach that preserved the inserted FSM would be preferable if
this were known to be part of a task solution.

“To keep the inserted FSM, a constrained neural learning procedure is proposed. It
basically consists of minimizing the error function with respect to the free weights,
taking into account their influence on the rest of weights of the net, and updating the
latter to maintain the relationships. In this way, just a linear subspace of the whole
weight space is explored to minimiﬁe the error, where all the points in this subspace
correspond to networks that emulate the inserted FSM.

For example, if a gradient-descent algorithm based on BPTT is used to train the
2L-ASLRNN, then the free weights of a recur;ent hldden unit Uy, 1<k < N, should
be changed according to

o otat(1, . 6Buai(l,ty) Swpa ‘
Dwy = — (——-———~5E‘“(1 1), 3 OBorail, by) S) | (7.21)

dwi wraeD(Wi) Swi, dwyy

where o is the learning rate, Eiq(1,%) is the overall network error in a training
sequence, D(W}) denotes the subset of dependent weights in unit Uy, and the partial
derivatives %‘-3“ are known constants given by the linear relations among weights. The
same algorlthm described in Section 4.1.2 can be employed to compute both the partial
derivatives 6E“:;;’:ll) 4nd 5E"§;‘(1). On the other hand, the welghts Wi in D(Wy)
should be changed after updatmg all the free weights wy, to meet again the linear
constraints specified in the underdetermined solution of the system AsWs = Bs. A
similar approach should be used to modify the free and dependent weights, respectively,
of each of the output units O;, 1 < ¢ < P, subject to the linear constraints in the
solution of ApWo = Bo. ' '

“The gradient-descent methods for training 2L-ASLRNNs based on RTRL (for on-
line learning) and Schmidhuber’s algorithm can also be adapted easily to follow this

£

7.5. The active grammaticaltinference (AGI):metligdology 285.

constrained neural learning procedure. For instance, the counterpart of Eq.(7.21) in
the case of using RTRL for the recurrent layer is

Awult) = —a (5_@+ > 5’5“—”“’"“) oy

Swn o, eDwyy OWhe Otk

where E(t) is the overall network error at time step ¢, and the partial derivatives %—ﬂ?

and %? are calculated forward in time at each step .

Sinc‘:e DFAs, DUFAs, and stochastic DFAs can all be represented as Moore g
machines, as shown in Section 7.3.3, the insertion and constrained learning methods
that have been.described here are perfectly applicable when the symbolic knowledge

- to be:injected into the network-takes the form of one of these:types of -automata®. This . « .-

opens the door to the possibility of incorporating a priori knowledge in the connectionist
approaches to regular grammatical inference, as is discussed in the.next section. This
knowledge will typically be given as a (partial) DUFA in the case of learning the
classification task from positive and negative examples, and as a (partial) stochastic
DFA in the case of learning the next-symbol prediction task from only positive strings.

7.5 The active grammatical inference (AGI) -
methodology

We call active grammatical inference (or AGI, for short) to a methodology for the
inference of DFAs or DUFAs from examples and optional a-priori knowledge, in which
RNNs are used as the inductive inference engine [SaAl:95]. The AGI.methodology
encompasses a large variety of heuristic connectionist and hybrid RGI approaches,
with the novel feature that the learning process performed by the neural network
can be guided. In the most general case, the whole process is conceived as a
sequence of learning cycles, where a cycle includes the steps of automaton insertion,
(possibly constrained) neural training, automaton extraction, symbolic manipulation,
and validation. Hence, the neural training step in each cycle can be biased by inserting
some symbolic knowledge prior to learning from examples. ’ '

If the learning examples are restricted to only positive strings, the RNN is trained
for a prediction task (as explained in Section 4.2.1), whereas if both positive and

6 Actually, stochastic DFAs can only be associated with pseudo-Moore machines having a
probabilistic output function (see Section 7.3.3), but this extended class of FSMs can also be inserted
using the proposed approach.

286 7 Chapter 7. Represem}qtion_ of FSMs in RNNs and the AGI methodology

negative strings are supplied, the RNN is trained for a classification task (as explained
in Section 4.2.2). Second-order RNNs are preferred to first-order RNNs, since in the
latter the insertion of a DFA may require the insertion of its equivalent maximally
split automaton, and consequently, a much larger number of neurons. Also, 2L-
ASLRNNSs are preferred to SLRNN, because they allow a clean separation between
the representation of the state transition function § and the output function 7, which
is related to final state 1nformat10n or symbol prediction probabilities. As already
mentioned, the recurrent layer in a 2L-ASLRNN is just concerned with learning or
simulating §, while the output layer is just concerned with 5. To sum up, second-order
2L-ASLRNNs are recommended for AGI.

The global general procedure of the AGI approach is as follows (see also Figure

Step 1: Initialization of RNN and learning mode.
The weights of the RNN are initialized by the FSM insertion procedure if some a-
priori knowledge is available, or randomly otherwise; the learning mode is selected
- respectively as constrained or free. '

Repeat

Step 2: Neural run.
In free learning mode, all the weights of the RNN are trained using a gradient-
descent learning algorithm either to predict or to classify the given training
strings. In constrained learning mode, only some of the weights of the RNN
are trained, and the rest are updated to keep the inserted rules. The neural run
ends when a stop criterion is satisfied that depends on the trained task.

Step 3: FSA extraction from RNN.
_ A DFA or a DUFA is extracted from the RNN dynamics, which is always
v con51stent with the given examples

“Step 4: Validation. '
If the extracted automaton passes a validation test, typically related to
" generalization performance, then Exit loop and Stop,
otherwise Continue.

Step 5: Symbolic manipulation.
The extracted automaton is transformed (by sta,tlstlcal filtering, deletion or
addition of states and transitions, ...) to improve or simplify the current
hypothesis, according to prior knowledge of the problem, general heuristics, or
from the results of the validation test.

" Step 6: FSA insertion into RNN.
The transformed automaton is inserted into a new RNN, through (underdeter-
mined) linear system solving, using a chosen encoding to represent the states.
The learning mode of the next neural run is selected.

End_repeat

TR

7.5. The active grammatical_gf’i_nfqrence (AGI){met;h&dology : 287

-y 112=k-0-nl . : . nF=N
examples examples) examples
] , l , ' \
| Newral {FSA FSA| Neural |FSA . FSA| Newal |FSA
INMT Run [Extr)V| SMilnsed Run {Bute]V e o o |SMineq Rum (Exc|Y]
time
First Second . . . Last
cycle cycle cycle
) b t § 3| g
INTT. Initialization of RNN and learning mode V. Validation of the inferred FSA
Neural run: Free or constrained ncural learning stage “SM. Symbolic manipulation of extracted FSA
v
- FSA Extr. " Extraction of FSA from RNN dynamics ' FSA Inser. Insertionof FSA into RNN and leaming mode selection -

Fig. 7.6 Time diagram of an Active Grammatical Inference process

Most of the steps in the AGI general procedure can be carried out using techniques
that have been described in previous chapters and sections. In the neural run (Step
2), the true gradient-descent algorithms explained in Sections 4.1.1 and 4.1.2 can
be used for free learning, when no rule has been inserted or it is not wanted to fix
the injected knowledge; the learning method given in Section 7.4 must be used for
constrained learning, when the emulation of the inserted automaton is wanted to be
preserved. Depending on whether a prediction or a classification task has been trained
in the neural run, the corresponding extraction method described in Section 6.1 can be
applied in Step 3. Likewise, depending on the trained task, prediction or classification,
a stochastic DFA or a DUFA, respectively, may be inserted in Step 6 (and Step 1), using
in both cases the FSM insertion procedure proposed in Section 7.4. The validation test
(Step 4) is considered as a user-defined procedure, that may be adapted to different
requirements, although typically, it will be related to the generalization performance
of the current hypothesis on a test sample. Remember that the consistency of the
hypothesis with the training examples is ensured by the UFSA extraction algorithm.

The symbolic manipulation (Step 5) is viewed also as an open process, since in
this step, an operator (teacher) may intervene to select the next automaton to be
inserted, according to some problem-dependent criteria. Nevertheless, some automatic
procedures may be applied in Step 5, which are related to general heuristics. For
example, the states and transitions in an extracted DUFA that have been seldom
used in classifying the training examples may be removed (statistical filtering), where
the heuristic assumption is that infrequently visited paths are associated with poorly
generalized data and do not probably belong to the target automaton. Moreover, the
states and transitions to be deleted may be determined automatically from the analysis

288 Chapter 7. Representation of FSMs in RNNs and the AGI methodology

of the validation test errors. In some cases, it might be decided not to keep anything
of the current hypothesis and simply run a new learning cycle in which some of the
strings erroneously classified in the test were incorporated to the training set.

Hence, if the learning process takes several cycles, the available examples may be
supplied incrementally during some cycles until completely learned (as in Fig. 7.6), or
they may also be used integrally as training set in all runs, if desired. It is important
to note that the AGI general procedure includes as particular cases the connectionist
RGI methods tested in Chapter 6, which consist of just a single learning cycle with no
prior knowledge. Running several cycles makes sense mainly when an active teacher is
available to guide the inference. Hdwéver, even if this is not the case, fully automated
methods can be devised that take several cycles, where the strategy for supplying
the examples and the validation .and symbolic manipulation steps must be completely -
specified in advance. An example of application of such a method to a particular RGI
problem, that is illustrated in Fig. 7.7, is reported next.

The complete learning sample S, = (S*,S;) consisted of 16 positive and 48
negative examples, that represented the types of contours shown in the top of Fig. 7.7.
This complete sample was given as input both to the symbolic RPNI method (Oncina’s
algorithm) and to a second-order 2L-ASLRNN with one output unit (Fig. 6.6) trained
to classify the examples. In addition, a DUFA was éxtracted from the second-order
ASLRNN. The trained net, the extracted automaton, and the automaton inferred by
the RPNI method, all classified correctly the sample but failed to generalize properly on
a test set, yielding the error rates displayed in the figure. On the other hand, the same
network was trained using al] the positive examples ST but only a subset S; of the
negative sample in a first learning cycle. In this case, the extracted DUFA contained
the basic structure of the target adtomaton,__and moreover, this could be selected by
automatic statistical filtering. Then, the resulting partial DUFA was inserted in a
new network of the same type, and the complete sample was given in a second cycle, -
using the constrained learning method to train the net. Fmally, the target DUFA” was
extracted in the second cycle (see Fig. 7.7).

Obviously, the above example only serves to demonstrate that the AGI approach
is feasible, and that in some cases, an incremental learning strategy may improve
the performance of a connectionist RGI method. It is not claimed that the
heuristic methods that follow the AGI methodology are better than other symbolic
or connectionist- RGI methods. AGI is merely a very flexible tool that extends the -
possibilities of RNNs for grammatical inference by permitting the insertion, extraction
and refinement of symbolic knowledge. '

From this automaton,a description of a target context-sensitive language representmg the positive
examples can be inferred using a learning technique described in Chapter 9.

7.5.. The active grammaticalinference (AGI) ‘mggb:qgology ‘ 289 .
; Projective view st S '
" Primitives (16 ex.) (24 ex.)
— — a .
<= ¢ 9§ “°
|~ e s
. - \ d (48 ex.)

aaaaacccbdecccaaaaaccechdece

Sample data: S;=(5".S}) Sz=(S*,‘S§).‘

Symbolic G.I. (Oncina’s algorithm) <
16.7 % Generalization. Error
7 states, 22 transitions

N SRS B T L NG O -
ab,.c ‘b, b.c
X d a a
d [
- a
b a
- c
b b
c
. C.

y

Active Grammatical Inference (AGI)

<~ - 315 % Generalization-Emmor~
B T Tk LS PN X) . .-

Neural G.L
Second-Order Recurrent Network
RTRL learning algorithm -

]

s -

P
e

4 -

FSA Extraction

33.3 % Generalization Error
29 states, 53 transitions

0 % Generalization Error after 2nd cycle

aca

a,b.cd

acb

cbd ch

AGIL: 2nd cycle S=(5%S3) constrained learning

Fig. 7.7 An ezample of application of Active Grammatical Inference.

