
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informàtics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST

LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

Chapter 8

Augmented regular expressions: a
formalism to describe and recognize
a class of context-sensitive
languages

In order to extend the potential of application of the syntactic approach to pattern
recognition, the efficient use of models capable of describing context-sensitive structural
relationships is needed, since most objects cannot be represented adequately by
regular or context-free languages [BuSa:90, Tana:95]. Moreover, learning such models
from examples is interesting to automate as much as possible the development of
applications.

Context-sensitive grammars (CSGs) are not a good choice, since their parsing is
computationally expensive and there is not any available algorithm to learn them
automatically. Augmented transition networks (ATNs) [Woods:70] are powerful models
that have been used in natural language processing, but which are very difficult to infer,
as have been discussed in Section 3.3. Pattern languages [Angl:80b] provide a very
limited mechanism to take into account some context influences, and some algorithms
have been proposed to infer them from examples and queries (which have been reviewed
in Section 3.4), but their expressive power is clearly insufficient since they are not even
able to cover the regular languages.

On the other hand, it is known that controlled context-free grammars can generate
some context-sensitive languages (CSLs) [Salo:73]. By using a recursive sequence of
control sets on universal even-linear grammars, Takada showed that a hierarchy of

291

292 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

language families that are properly contained in the class of CSLs can be learned using
regular inference algorithms [Taka:94], as has been recalled in Section 3.2. Furthermore,
an efficient parsing procedure can be devised for each language in any of these families,
which is based on parsing successively by a set of universal even-linear grammars
[Taka:94]. However, the gap in expressive power between each of these language families
and the class of CSLs seems to be rather large, and it is not clear what types of context
relations can be described by the controlled grammars.

We propose a new formalism to describe, recognize and learn a large subclass of
CSLs: the so-called augmented regular expressions (or AREs). In this chapter, the
augmented regular expressions are formally defined, their expressive power is studied,
and an efficient method (low-polynomial in time) to recognize a string as belonging or
not to the language represented by an unambiguous ARE is described. The material
presented here is basically included in a paper that has been published recently in
the Pattern Recognition journal [AlSa:97a], and also in a previous technical report
[AlSa:95c] and a communication to the SSPR'96 workshop held in Leipzig (Germany)
[SaAl:96]. The problem of learning AREs from examples and the methods proposed
for this problem will be discussed in Chapter 9.

AREs are neither the context-free expressions, that are known to describe the family
of CFLs, nor a type of regulated rewriting [Salo:73]. An ARE is a compact description
based on a regular expression, in which the star symbols are replaced by natural-valued
variables (called star variables) and these variables are related through a finite number
of linear equations. Hence, AREs augment the expressive power of regular expressions
(REs) by including a set of constraints, that involve the number of instances in a string
of the operands of the star operations of an RE. In this way, REs are reduced to AREs
with zero constraints among the star variables, and regular languages are obviously
covered by the class of languages associated with AREs.

Although it is demonstrated that neither all CSLs nor all CFLs can be described by
AREs, a large subclass of CSLs capable of describing planar shapes with symmetries
and other context-dependent structures is represent able, which is important for pattern
recognition tasks. Likewise, it is proved that AREs cover all the pattern languages.
The efficient method proposed for string recognition is split in two stages: parsing the
string by the underlying RE and checking that the result of a successful RE parsing
satisfies the constraints in the given ARE.

Prior to the formal definition of AREs, a preliminary section is included next that
describes a method to select an RE equivalent to a given FSA, which is relevant in
some cases for both parsing and learning AREs.

8J. Obtaining regular expressions from FSAs*." ;¡¿̂ . 293

8.1 Obtaining regular expressions from FS As

The formal definition of regular expressions (REs) has been given in Section 2.1.3,
together with some of their properties and equivalence rules. It has also been
remembered that REs and FSAs are alternative representations of the class of regular
languages, and that some algorithms are known to find an FSA equivalent to a given
RE and viceversa [Koha:78,Hoül:79].

The topic of obtaining REs from FSAs is discussed here because of two reasons
related to AREs. First, in order to parse a string by an ARE, a previous parsing of
that string by the underlying RE is needed to construct a certain data structure, and

• the parsing process; can-be, made much more efficient if-the-RE has been pbtained from
a known equivalent DFA and some information about their relationship is available
(see Section 8.4). Second, in order to learn an ARE from examples, the underlying RE
must also be learned, and since the very most part of RGI methods do not infer an RE
but an FSA, an FSA-to-RE mapping will be needed if any of those methods is used
(see Chapter 9). Moreover, to facilitate the induction of AREs, the selection of an RE
equivalent to a given FSA should be done taking into account some heuristic criteria.
Hence, a specific algorithm is proposed as the mapping ^ : FSA —> RE to be chosen
in the context of learning AREs, whose outputs help to parse strings by the RE very
efficiently.

On the other hand, the complexity of transforming an FSA into an RE is exponential
in the worst case, and therefore, the use of RGI methods which directly return an RE
is encouraged. It must be emphasized that, indeed, AREs can be inferred and parsed
(still rather efficiently) without the need of an FSA-to-RE mapping for the underlying
RE. In summary, the following practical guidelines are suggested concerning this point:

1) try to avoid the FSA-to-RE transformation in the method employed for inferring
AREs;

2) if an FSA-to-RE mapping is performed anyhow, then use the algorithm that is
proposed in this section;

3) if the transformation ends successfully in reasonable time with a reasonably long
RE1, then use the outputs of this algorithm for parsing strings by the resulting
RE more efficiently.

The proposed mapping ip is based on a classical method, the Arden's algorithm
[Arden:60,Koha:78], but an inner modification and a final simplifyng step are included.

1In practice some timeout and/or some maximal length can be defined to stop the process.

294 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

The original Arden's algorithm is recalled in subsection 8.1.1, whereas the suggested
changes are presented in 8.1.2 and 8.1.3.

8.1.1 The original Arden's algorithm

Let A — (Q, S, 6, ço? F) be an FSA containing n states, and let < be a total order
defined among them, which can be arbitrary except that the first element must be the
initial state qo, i.e. Q = (qo,,..,qn-i). The order < can also be applied to the final
states, i.e. F = (q f l , ...,9/|F|), where 0 < ft < ... < f\F\ < n - 1.

Let a'y. denote the RE that describes the set of strings from E* that take the
automaton from state </,- to state qj without passing through a state qk with k < I.
The RE denoted by a^- will consist of the union of symbols from £ that correspond to
direct transitions from ç,- to qj (or 0, if there is no direct transition), whereas the RE
denoted by a°y will describe the whole set of strings that lead from ç,- to qj. Let Rj be
a synonim for a° -, which denotes the RE that describes the set of strings that take the
automaton from the initial state ÇQ to a state qj.

Then, it is clear that a valid RE R equivalent to A is given by

Hence, a procedure that determines all the Rj, for 0 < j < n, can be used to yield
R. The Arden's method (Algorithm 8.1) is such a procedure, which is based on solving
the following system of symbolic equations:

(ej): R! = Root^ + R^ + ... +

where e" are labels to identify each equation. This system can be solved in n steps.
At each step from j = n — 1 down to j = 0, equation (ej+1) is processed using the rule
given by Theorem 2.2, A £ L(P) => (Rj = Q + RjP <& Rj = QP*}, and then Rj is
substituted into the rest of equations (e¿+1), i ^ j. Whenever Theorem 2.2 (Arden's
lemma) is not applicable, the right hand side of the equation (ej+1) can be directly
used to replace Rj.

8.1.. Obtaining regular expressions from FSAs ?'&^' 295,

ALGORITHM 8.1: Arden's method for finding an RE equivalent to an FSA.
Inputs:

A is a given FSA ($, E, 6, qQ, F) with an ordered set of states Q;
n is the number of states of A;

Outputs:
a\j (I < I < n, Q < j < n, Q < i < I), are REs associated with different sets of

paths of A, where a'^ describes the language of strings that take A from
state qi to state q¿ without passing through a state cjt with k < /;

R j (O < j < n), are the REs that describe the languages corresponding to each
one of the states of A;

R is the returned RE equivalent to A;

begin_algorithm

{ build the initial: system of equations } ,. •>• . . , „, ,,. ., , •' , , •„.
for j := 0 to n — 1 do

for i := 0 to n — 1 do
Find {ak \ ak 6 S and q¡

-' end_for
if j = 0 then

Write eq.(cj) as "R0 = RQa%0 + ... + Rn-ia^n_l)0 + A"
else

Write eq.(ej) as "Rj = R0a^ + ... + Rn-K*^^
end_if

end_for

{ solve the equations }
for I := n — 1 down to 1 do

{ solve eq.(e{+1): R¡ = R0a'+l + ... + R^a1^, + Ria'+l }

if QJ+1 ¿ 0 then
{ Apply Arden's lemma to eq.(ej+1), R\ =. (Roa1^1 + ... + Ri-iafi^) al¡¡ }

a\¡ := formjstar_type_RE(ají
+1) { i.e. a\, := aj/"1* }

for i := 0 to I- 1 do
if al+l ï 0 then a\, := a$la'u
else a'it := 0
end_if

end_for
else

for i := 0 to / - 1 do

«Í. '= «í1 , . '
end_for

end_if
Write eq.(e{) as nR¡ = R0a'ol + ... + Ri

296 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

{ substitute the right hand side of eq.(e') for R¡ into the rest of equations }

for j := 0 to n — 1 do
if j ^ I then

if ajt1 ¿ 0 then
for í := 0 to / - 1 do

if a'j T¿ 0 then
if ajt1 jé 0 then

/ / / f i t xJxv'fl^

«¿j • ^"tj ' . ¿/"ij /

else

endJf
else

endJf
endJbr

else
for í := 0 to / — 1 do

end_for
end_if
if j = 0 then

Write eq.(e'-) as "Ro = RoOfl
00 + ... + R¡-ial,¡_^o + A"

else
Write eq.(ej-) as »RS = R0a

l
oj +... +ft-ia'^f

end_if
endJf

end.for .
end_for

{ solve the equation (e¿) : RO = -Ro^oo + ^ }
if ajo 7^ 0 then RQ := ccJo*
else RO := A
end_if

{ substitute RO in the rest of equations }
for j := 1 to n — 1 do

if a¿ T¿ 0 then J2j := ROOÍQJ
else J2j := 0
end_if

end_for

{ build R from the REs Rf corresponding to the final states }

•R '•= E9/6F Rf { app!y Eq.(s.i)}
end_algorithm

8.1. Obtaining regular expressions from FSAs Jj? 297'

In the preceding algorithm, the function form-star.type-RE, that is called in the
application of Arden's lemma, is simply defined as

function form-star-type-RE (aj/"1) returns RE
begin
return ajj1"1*

end-function

Algorithm 8.1 calculates all the REs Rj (0 < j < n), and therefore it is able to
obtain the equivalent R as given by Eq.(S.l). In addition, it also computes the REs
a\i (1 < I 5í w, O < j < n, O < i < /), although some of these REs may be empty.
A, subset of 2n2 of the REs a\j are used by an algorithm described in Section 8.4 to
parse a string by an RE efficiently with the help of á "source DFA. More precisely,-the
required REs are those denoted by of*1, (Xjf1, a?-, a"t- for 1 < j < (n — 1), O < i < j,
and oj-j"1, a*j for 0 < j < (n — 1). Consequently, Algorithm 8.1 can save each of these
REs once it is computed, needing to store at each step only the REs a\j for the current
value of /, i.e. a number of n2 REs.

However, it must be noticed that the time complexity of Arden's algorithm is
exponential 0(2n) in the number of states of the given FSA in the worst case, due
to the fact that the length of the equivalent RE might be exponential in n. This occurs
for example when the FSA is fully-connected (i.e. its state transition diagram is a
clique). Nevertheless, in many cases, when the given FSA presents some limitations
on the connectivity and degree of circuit embedment in its state transition graph, a
run-time polynomial in n can be achieved in practice (e.g. for FSA equivalent to REs
of the form ajOi...a*a,-...a*an (a¿ 6 S), a run-time cubic in n is obtained). Indeed, a
best-case complexity of íí(re3) can be shown by realizing that a number cubic in n of
REs -ot\j are computed.

8.1.2 A modification of Arden's algorithm to discriminate
loops from other circuits in the resulting RE

The application of Arden's algorithm to a DFA gives rise to an unambiguous RE, where
an RE R is said to be unambiguous if for all the strings s 6 L(R) a unique parsing
of s by R can be made. This is an important feature that permits the use of efficient
parsing methods for REs derived from DFAs, as will be explained in Section 8.4.

Note, however, that we could further transform the RE .R returned by Arden's
method into some other REs, which would also be equivalent to the given FSA, by

298 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

applying some RE equivalence rules like those given by Eqs.(2.1) to (2.15) in Section
2.1.3. This makes sense if there is some kind of preference within equivalent REs that
can be translated into a well-defined sequence of equivalence rules to apply.

In order to be able to induce and represent the greatest number of constraints
using the ARE formalism, the underlying RE should be selected among the REs in its
equivalence class according to the following two (somewhat opposite) heuristics:

1. Maximize the number of star symbols.

2. Preserve unambiguity.

The aim of the first heuristic is to increase the potential for inferring context
relations that involve the number of consecutive matches of the star operands in parsing
strings by the RE. The aim of the second one is to ease both the RE parsing and
constraint induction processes.

It can be observed that applying any of the rules P* = P*P*, P* = (P*)*,
(P + QY = (P* + Q*)", (P + Q)* = (P*Q*)*, to an RE leads to an equivalent RE with
a larger number of stars. However, these rules introduce a great deal of ambiguity in
the resulting RE. For example, let P* = a* and take a5 as input string, it follows that
a°a5, a1a4, a2a3, ... are possible ways of parsing by a*a*, and a1 a1 a1 a1 a1, a2a°a1a2,
a^a1, ... are possible ways of parsing by (a*)*.

' On the other hand, the equivalence rule (P + Q)* = (P*Q)*P*, given by Eq,(2.15),
can be used to increase the number of stars and does not only preserve but even enforces
unambiguity, since an RE containing a union operation is transformed into an RE
containing just concatenation and star operations. For instance, let (P + Q)* = (a+ 6)*
and take o36a36a3 as input string, it results that (a + 6)11 is the unique parsing by
(a + 6)* (in which the repetitive pattern a3b is not reflected) whereas (o36)2ct3 is the
unique parsing by (a*6)*a*.

All the star symbols in the output RE of Algorithm 8.1 are originated by
instantiating the rule of Theorem 2.2 in solving the equations (eft1}, 0 < / < n,
this is

Ri =

Therefore, if the RE aft1 is of the form (P + Q), we may apply Eq.(2.15) to the
subexpression aft1* to yield a "better" result, in terms of the above heuristics. In the
general case, there can be many ways of decomposing aft1 into the P and Q union
operands. A meaningful decomposition is given by P = aj}. and Q — aft1 — af¡, where

8.1. Obtaining regular expressioñfTírom FSA&'*''í5®, 299,

P denotes the direct transitions from q¡ to itself (the loops of ç/) and Q denotes the
circuits starting and ending in q¡ that only can traverse states çjt with k > I.

Hence, the proposed modification consists of replacing the previous definition of
the function form.starJype-RE, which is called in Algorithm 8.1, by the following one:

function form-starJype-RE (aj/"1) returns RE
begin
if a}/"1 = a}} V aj} = 0 then

return aj/"1* { do not decompose aj/"1 }

else { ajf1 = K.+9) }
Q ;= aj/"1 — a¡} { actually remove the term'(s) of òj}'froiri'the' ' "'"'*

union-type RE a'/"1 }

return (aJ}*C)*aJ}* { apply Eq.(2.15), where P = aft }

encLif
end-function

In this way, loops are discriminated from the rest of circuits of the given FSA in the
resulting equivalent RE. This can be interesting for pattern recognition tasks, where
the loops of an FSA model usually account for (indefinite) length or duration of a
basic primitive, a meaningful structure in the pattern, specially if tools are provided to
relate the lengths, or durations, of the different parts. The usefulness of the proposed
modification for inferring AREs will be illustrated with an example that is presented
in Section 9.1. •

8.1.3 Simplifying the regular expression obtained by Arden's
algorithm

For both the original Arden's algorithm and the modified version that has been
described, the RE R that is obtained at the end by applying Eq.(8.1) can be simplified
a lot by determining the common prefixes in the terms of the union operation and
using the rule PQ + PS = P(Q + S) repeatedly. Next, it is explained how to. build the
simplified equivalent RE, that results from the extraction of common prefixes, directly
from some of the REs a'j computed by Algorithm 8.1.

, First, let us find a simplified RE for the union of the regular languages R j for all
the states q¿ € Q of the given FSA A. By replacing recursively the RÍ variables in

300 Chapter 8; AREs: a formalism to describe and recognize a class of CSLs

equations (e3j) by the expressions given in equations (ej), for 0 < j < n and 0 < i < j,
the following equivalence is obtained:

E Rj = RQ + ... + Rn-i = -Ro(A + -Roi-Pj^.-!) + ... + Ro(n-l)P(n-l)(n-i)) = #0-^0^-1)
9j€Q

(8.2)
where RÍJ = a3^ and P® denotes an RE that represents the set of strings that lead
from state <?¿ to any state q¿ e Q with i < j < k without passing through a state ç/
with / < i. The RE P® can be defined recursively as

«;>/«>
P?k = A + £ % P?k (8-3)

Now, we define a relation g¿ ~ Çj in the following way:

qi ~ qj <& (j < ¿) A RJÍ T¿ 0

Let Q' C Q be any subset of states, and let C(Q') be the transitive closure of Q' with
respect to the relation ~. It turns out that

V» 0 < 7 <- n \/l· i < 1c <f n • P®' — Cl ¿2> n- (i- C(Cí'\ (R 4^V i » U *̂ 6 ***> lí+ V n/ • I _^ AJ Vs It t J. *L — v VT Wj C v-'I VK J » v^" /

Hence, P$. can be computed recursively using the closure set C(Q') for filtering null
terms as follows

«ij/0 A gj€C(Q')

A +

(8.5)
?0/0 A í^ecíQ')

otherwise

Then the union of the regular languages associated with the states of Q' is equivalent
to a simplified RE with the extracted common prefixes:

Rj = tfoPo-i) (8-6)

Furthermore, if Q' ^ 0 then -Po(n_1) = PQZ , where qz is the state of Q' with the largest
index.

Finally, the RE R — t^(A) that is selected among the REs equivalent to the given
automaton A can be expressed as

R = RoPofin (8.7)

8.1. Obtaining regular expressions from FSAs•>^-^ 301.

where the set of final states F plays the role of the subset Q', and therefore, R is
equivalent to the RE Z)?/£F Rf-

We refer to the string that is obtained by substituting in R the REs corresponding
to RO and each of the RÍJ by some special symbols "RO" and "Ri_j" as the skeleton of
R. This skeleton, skel(R), can be constructed in parallel with the RE R after running
Arden's algorithm, using Eqs.(8.7) and (8.5).

a)

RO = ((a + 6a*6)(6aa*6)*(a + 66))*
Rl = ((a + 6a*6)(6aa*6)*(a + 66))* (a + 6a*6)(6aa*6)*
R2 ' = ((a + 6a*6)(6aa*6)*(a + 66))* (6a* + (a + 6a*6)(6aa*6)*6aa*)
R3 = ((a + 6a*6)(6aa*6)*(a + 66))* (a + 6a*6)(6aa*6)*6

b)

((a + 6a*6)(6aa*6)*(a + 66))* (6a* + (a + 6a*6)(6aa*6)*6aa*)
((a + 6a*6)(6aa*6)*(a + 66))* (a + 6a*6)(6aa*6)*6

)* (6aa* + 6) + 6a*)

skel(R) = RO (£0.1 (#1-2 + #1-3) + /20_2)

Fig. 8.1 a) An F5A A = (£,£,£,90,^) '̂̂ 4 síaíes, lü/zere F =
b) The regular languages associated with the states of A given by Algorithm 8.1
c) The straightforward RE for A: ^ R f

d) The simplified RE for A: R = ^f(A) = Bo
e) The skeleton of R

302 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

Consider; for example, the 4-state DFA that is displayed in Fig. 8.la). The two
equivalent REs, given by Eqs.(8.1) and (8.7), that are obtained for this DFA, are
shown in Fig. 8.1c) and d), respectively. The skeleton of the simplified RE is displayed
in Fig. 8.1e).

8.2 Augmented regular expressions (AREs)

In order to define the augmented regular expressions (AREs) some preliminary concepts
are needed, which are introduced in the following subsections.

8.2.1 The star variables and the star tree of a regular
expression

Definition 8.1. Let R be a given RE and let us say that R includes ns star
symbols (ns > 0). The set of star variables associated with R is an ordered set of
natural-valued variables V = {ui,...,vns}) which are associated one-to-one with the
star symbols that appear in R in a left-to-right scan.

Let pos(V,i) be a function that returns the position in R of the star symbol
associated with the star variable u,-. Actually, this position can be represented as an
attribute of each star variable.o Moreover, if p is the position in R of a star symbol, then
the inverse function pos~1(V^p) returns the index i of the corresponding star variable
v¡. The function pos is used to order the set V: u,- -< v j & pos(V,i) < pos(V,j).

Definition 8.2. For u,-,Uj G V, we say that u,- contains v j iff the operand of the
star associated with u,- in R includes the star symbol corresponding to u,-; and we say
i»,- directly-contains Vj iff u,- contains Vj and there is no t»¿ €. V such that u,- contains Vk
and Vk contains Vj.

Definition 8.3. Given an RE R, its associated star tree T = (TV, E, r) is a general
tree in which the root node r is a special symbol, the set of nodes is N = V U {r}, and
the set of edges E is defined by the containment relationships of the star variables:

i) an edge (r, i>,-) is created for each u,- £ V that is not directly-contained by other
star variable (where u,- is said to be located in the first level of the tree and to be
a son of the root r, which is at level 0);

ii) for all u,-, Vj G V, if t>,- directly-contains v j then an edge (vi,Vj) is created (where
Vj is said to be a son of i>,-).

8.2. Augmented regular expressions (AREs) 303

Furthermore, let us assign an integer identifier to each node of the star tree T: let
the identifier of the root r be 0, and let the identifier of any other node be the index i of
the star variable u,- corresponding to that node (1 < ¿i < ns). Algorithm 8.2 describes
how to build the star tree T associated with a given RE R; its time complexity is
0(|.n| • h(R)), where h(R) is the depth of non-removable parentheses in R.

ALGORITHM 8.2: Builds the star tree associated with a given RE.
Inputs:

R is a given regular expression over an alphabet S;

Outputs:
. .. F is the set of star variables associated with .R, that is ordered by

the position of the corresponding stars in R and contains this
position information, which is required for the functions pos and pos"1;

T is the star tree associated with R.

begin_algorithm

V := obtain_star_variables_of_RE (R) { build a representation for V that includes the star
positions by scanning R from left to right }

r := createjstartreejiode(O) { create a node with 0 as identifier and no son }
T := tree_whose_root Js(r) { initialise the star tree T with only the root node }
concatenation-analysis (R, 0, V, T, r) { analyse R as a concatenation of REs, linking its

outermost star variables as sons of r and their corresponding trees as subtrees of T }

end-algorithm ' . > . .

procedure concatenation-analysis (P, pQ, V, T, father)
input arguments: ' • ,

P is an RE over E included in'.R;
pO is the position of P in the whole RE R;
V is the set of star variables associated with R;

input/output arguments: ,
T is the star tree associated with R that is being built;
father is the node of T that is the root of the current subtree being built;

begin

U := nndJactors(P) { U is a list of triples (< UI ,PI , / I > ... < um,pm,lm >) where the
íí¿'s are REs such that P = ui...um, m > 1, pi is the position of the RE u¡ in P, and
/,- is the length of u,- }

reset .list ({/);

304 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

while not end _of.list (Ï7) do
< u,p, / >:= get .current .element (U);
if is_a_terminal_symbol(«) { u = a for some o € S } then { Do nothing }
elseif is_a_simple_startypeJlE(u) { u — a* for some a 6 S } then

pp := pO + p + 1; { is the position of star * in R }
j :— pos~1(V,pp); { is the index of the associated star variable Vj }
node := create_startree_node(j'); { with j as identifier and no son }
create_edge_injstartree(T, father, node); { from father to node }

elseif is_a_uniontype_RE(u) { u = (P') where (P') is an RE over £ } then
union-analysis (u,pO + p, V, T, father); { analyse u as a union of REs, linking

its outermost star variables as sons of father and creating their subtrees}
elseif is_a_parenthesised_startype_RE(u) { u = (P1)* } then

pp := pQ + p + I — 1; {is the position of star * in R }
: "" ~ . -" j := pos~l(V,pp); ~{ is the index of the associated star variable Vj }

node := create_startree_node(j); { with j as identifier and no son }
create_edgeJn_startree(T, father, node); { from father to node }
u :— remove-star-from(·u); { u = (P') }
union .analysis (u, pQ + p, V, T, node); { analyse (P') as a union of REs, linking

its outermost star variables as sons of node and creating their subtrees }
endJf
move_to_next .element (U) ;

end-while

end-procedure

procedure union-analysis (P,pQ,V, T, father)
input arguments:

P is an RE over S of the form (P');
pQ is the position of P in the whole RE R;
V is the set of star variables associated with R;

input/output arguments:
T is the star tree associated with R that is being built;
father is the node of the star tree T that is the root of the subtree being built;

begin

T := find.terms(P); { T is a list of triples (< ÍI,PI,/I > ... < tn,pn,ln >) where the i,-'s
are REs such that P — (ti + ... + tn), n > 1, p, is the position of the RE í,- in P, and
/,- is the length of í,- } . •

resetJist(T);
while not end_ofJist(T) do

< t,p, I >:= get .current-element (T);
concatenation-analysis (t,pQ + p, V, T, father); { analyse í as a concatenation of

REs, linking its outermost star variables as sons of father and creating their
subtrees)

move_to_tiext .element (T);
end-while

end-procedure

8.2. Augmented regular expressions (AREs) '''^^· 305

Definition 3.4. We say that a star variable v € V is instantiated, during the.
parsing of a string s by the RE R from which V has been defined, each time the
operand of the corresponding star (an RE) is matched some number of consecutive
times (possibly zero) against a substring of s. The number of consecutives matches
(cycles) of the star operand in an instance of v will be the value of v for that instance.

Hence, star variables can only take natural numbers as values. However, we will
see that, for computational purposes, it is useful to assign a special value, say —1, to
a star variable ü, whenever v is not instantiated during a cycle of an instance of its
father in T. This can occur when union-type REs included in R are matched against
substrings of s. For example, if a star operand in R associated with a star variable v/
consists of a union of two or more REs (called terms), it can be traced during parsing
which term is.used forreach match of the operand, and therefore, for each cycle of an
instance of u/, only the star variables that are located in the matched term can be
actually instantiated, whereas the special value —1 will be given to the rest of star
variables that are directly-contained by u/ (sons of v f in T). In this way, all the star
variables that are brothers in the star tree T will have the same structure of instances
for ,a given string, and we will distinguish between the actual instances (those with a
natural value) and the dummy instances (those with value —1). •

In the next subsection, a data structure is presented which is designed to store the
information of the instances of the star variables that occur in parsing a string by a
regular expression.

8.2.2 The star instances data structure

Given an RE R over an alphabet S and a string s € £*, it may be desired to parse s
with respect to R. A parsing algorithm must return yes or not depending on whether
s € L(R) or not, and in the first case, it must also return a kind of "instantiation" of R
that just describes s, i.e. something similar to a derivation tree in the case of parsing
a string by a grammar. The star instances data structure, which is defined next, can
be regarded as a partial representation of such an "instantiation", since the matched
sub-expressions theirselves are not recorded2.

Let V = {ui, ...,vns} be the ordered set of star variables associated with an
unambiguous RE R. Given a certain string s belonging to the language L(R), a data

2Indeed, some information of the RE parsing may be lost if some of the matched sub-expressions
belong to a union-type RE and do not contain any star symbol, but this information is not relevant
for parsing by an ARE (see Section 8.4).

306 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

structure SIS(V) = {SIa(vi)t...SIs(vns)}, called the set of star instances of the star
variables in V for s, can be built during the process of parsing s by R. If the RE R
were ambiguous, then a diiferent set of star instances SI%(V) should be constructed
for each different way p of parsing s by R.

Each member of the set SIS(V) is a list of lists containing the instances of a
particular star variable:

V» e [l,ns] : SI.(vi) = (l\ ... £/t..t.(i)) where nlists(i) > 0

Vi € [l,ns] Vj € [l,nlists(i)] : /} = (ej-j ... e}(ne/emi(t.i:0)) where nelems(ij) > 1

The star instances stored in SIa(V) are organized according to the containment-
relationships described by the star tree T. To this end, each list Ij is associated with-
two integer pointers fatherJist(l*j) and father-elem(l'j) that identify the instance of the
father star variable from which the instances of v¡ in /} are derived. Fig. 8.2 shows
an example of set of star instances, obtained for a given string and RE, where the
corresponding star tree has four levels of star variables; for each list of instances, a
pair of superindexes is given, where the first superindex denotes the father .list and the
second one denotes the father.elem.

In general, for all the star variables that are in the first level of T, the following
structure arises:

Vt*: fcvOeT.^' SIs(Vi) = (l{) A /Í = (e'u) A
fatherJist(l{) = —1 A father-elem(l\) = —I.

For these variables, nlists(i) =.1, nelems(i, 1) = 1, and the fatherJist and father-elem
pointers take an arbitrary null value; furthermore, if u,- is not instantiated in parsing s
then e*n — — 1 else el

n > 0 is the number of consecutive matches of the corresponding
star operand in the only instance of u,-.

Otherwise, let u/ be the father of u, in T'. For all the star variables that are in
the second level of T, the list of instance lists is either empty (when e^ < 0) or its
structure is given by

VVi : (r.t;/),^,-) € T A e^ > 0 => SIs(vt) = (/() A l(= (e'n ... e\(e^) A

father-list^) = 1 A father.elem(l\) = 1,

i.e. nlists(i) = 1, nelems(i, 1) = e^, and, if t>,- is not instantiated in the fc-th match of
the star operand of vj then e\k = —I else e\k > 0 is the number of matches of the star
operand of v,- in the k-th cycle.

8.2. Augmented regular ex°pressïóns:(AREs) : *:;1' 307

R
" ' V

R(v/*)
1
s
SI3(v5)
SI.(v4)
SI.M
S75(ui)
SI.W

,

=
=
=

(a(6(ce*c + <
{ul5i;2,i;3,U4,'

(0(6(06^0 +

(V U r, {(r, v5

i/*d)*)*)*
ys)
d/*ad)«3)**)V5

), (ü5j U4), (ü4, U3), («3, Ui), (U3

•

,U2)}j^)

= abccdffdcecbddbdfdceecabceeec
=
^
=
=

—

((2)^-1'-1>)
¡(31){1'1})
((3 1 2)<1·1>
((0 -1 l)^'^
((-1 2 -l)^'^

(1){1,2>)

(.1)0.2} ^ 2){1,3} (3){2,1>

(0){1'2> (1 -l)^1.3} (-^í2-1)

)

)

(0 -1 l)-(-l)-(-l 2) "(3)- i (-1 2 -1)-(0)-(1 -l)-(-l)

Fig. 8.2 An example of star instances data structure.

Finally, for all the star variables that are in the second or higher levels of T, we
have the following general rule for the instances of u,- with father v/:

nlists(i) = #{ej,k, | ej,k, > 0} A Vj e [l..nlists(i)] : nelems(i^j} = eí·,k, A-

father Jist(l]} - j' A father.elem(lj} = k'

and eljk is either a natural value (if u,- is actually instantiated in the fc-th cycle of the
instance of v¡ identified by the pointers {j',k'}) or —1 (if u,- is not actually instantiated
in such cycle).

Two efficient algorithms for parsing strings by unambiguous REs that construct the
star instances structure will be reported in Section 8.4.1; the first one just needs the RE
and can always be applied, whereas the second one can only be applied if the RE has

308 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

been obtained from a known DFA using the FSA-to-RE mapping proposed in Section
8.1 and it needs some inputs provided by that step. These RE parsing algorithms call
some operations that deal with the star instances data structure, which are listed next
together with their pre- and post-conditions. In what follows, SI[i] is a computational
representation of SIs(vi), the star instances of u,- for a certain string 5.

function initialise ̂ star-instances (F, T) returns staranstances
Precondition: F is a set of star variables and T is a star tree defined on V.

Postcondition: Let SI be the returned structure; Vi 6 [l-IV]] :
Vi G firstJevel(T) => SI[t\ = ((-l)*-1.-1)) A
Vi Í first Jevel(T) =» 5/[i] = (•).

procedure append-newJisLof-instancesJo-son (Si, i,j',k',m)' • J.'-'•"•' '-.. -. •"••• '•'••'.••..•-•

Precondition: SI[i] = (l\...ll
n) where n = nlists(i) > 0,

{j1, k'} identify an instance of the father v¡ of v;, and m = e-,k, > 0.

Postcondition: SI[i] = (l\---lnln+i) where nlists(i) — n + 1 A nelems(i,n + 1) = m
A father-list^^) = f A father.elem(li

n+l) = k' A VA; 6 [l..m] : e|n+1)fc = -1.

procedure assign.value-to.star.instance (5/,z,j, k, value)
Precondition: value > 0 and el-k = — 1, where eljk is the fc-th element of

the j'-th list of instances in SI[i].
Postcondition: ejfc = value.

function readjvalue.of.star.instance (SI, ¿,j,A;) returns integer
Precondition: el-k = — 1 V e'-fc > 0, where e'jk is the Ar-th element of

the j'-th list of instances in 5/[t].
Postcondition: e'-fc is returned.

function number.ofJists (57, i) returns integer
Precondition: 1 < i < \V\, and nlists(i) > 0 is the number of lists of instances in SI[i].
Postcondition: nlists(i) is returned.

function number.of-elements (SI, i, j) returns integer
Precondition: 1 < i < |V|, 1 < j < nlists(i), and nelems(i,j) > 1 is the number of,

elements in the j'-th list of instances in SI[i].
Postcondition: nelems(i,j) is returned.

8.2: Augmented regular expressions (AREs)f'lf^$ 309

8.2.3 Definition of ARE and language described by an ARE

Definition 3.5. Given a set of star variables V, C = (£, B) is a set of constraints
on the values (of the instances) of the star variables in V, which consists of a set of
independent linear equations £ = {/j, ..., ln¿}, where 0 < nd < \V\, and a set of bounds
B = {&i,.. .,&ni}» where ni = \V\ — nd. The linear relations £ = {/i,...,/n<¿} partition
the set V into two subsets Vtnd, Vdep of independent and dependent star variables,
respectively; this is

s vdep = ailvind + .. + aijvjnd + .. + ai(ni)V
i
n
rld + aio, for 1 < t < nd,

where ni and nd are the number of independent and dependent star variables,
respectively, and \V\ = rad-pm. 'The1 set-'of- bounds S •=•{ 61; \.v,6¿,-}' specifies -a lower
bound for each independent star variable; this is

dis uf > Cj, Cj-eJV, for l < j < n i .

The equations in £ represent constraints that are only well-defined for natural
values of the involved variables. Moreover, the coefficients a,-j of the linear relations
will always be rational numbers. Likewise, the lower bounds c¿ are always natural
numbers, which, unless otherwise stated, are assumed to be zero by default.

To test the satisfaction of a set of linear equations £ by a set of star instances, it
is useful to rewrite each constraint /,- € £ by removing all the terms of independent
variables with coefficient zero in the right hand sides of the equations; this is

/,- is vfp = a'^vn + .. + a'ikivik, ; + «¿o, for 1 < i < nd,

where V* G [l,nd\,j € [1, Jb¿] : a^ ^ O A v0- e V
ind.

Definition 3.6. An augmented regular expression (or ARE for short) is a four-tupla
(R, V,T ,C}, where R is a regular expression over an alphabet S, V is its associated set
of star variables, T is its associated star tree, and C — (£,#) is a set of constraints
formed by a set of independent linear equations £ = {/i,...,/nd} and a set of bounds
B = {&i, ..., 6m-}, where nd + ni = \V\.

In order to define formally the language described by an ARE, some other definitions
must be introduced previously, which are given next.

Definition 3.7. Given a star tree T, a set of star instances SIS(V) for a certain
string s, and two nodes Vi,Vj G V, we say that V{ is a degenerated ancestor of Vj for 3
iff

310 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

i) Vi is an ancestor of Vj in T, and

ii) for each instance of i>,- in S/s(u,-), all the values of the instances of Vj in SI3(vj)
that are derived from it are constant.

The root r of T is considered, by definition, as a non- degenerated ancestor of any other
node Vj for every string.

Definition 3.8. Let u,- € V U {r}, v j € V; we say that u,- is the housing ancestor
of Vj for a string s iff u,- is the nearest non-degenerated ancestor of Vj for s.

Definition 3.9. Let T be a star tree defined on V, and let £ be a set of
linear equations defined on V in which only the independent variables with non-zero
coefficient appear in the right hand sides of the equations. Let vci € V U {r} be the
deepest common ancestor in T of the nodes {u;ep, u,i, ..., v,-*,-}, which are labeled by the
star variables involved in the equation /,• 6 £. Given a set of star instances SIS(V) for
a certain string s, we say that SIS(V) satisfies an equation /,• € £ iff

i) the housing ancestors for s of the nodes {v t-
ep,u;i,..Mu,-jfe,-} are either vci or an

ancestor of uci, or they satisfy a strict equality constraint, and

ii) the linear relation /,• is met by the values of the corresponding instances of

The first condition above implies structural similarity of instance lists, while the
second one requires the satisfaction of the equation. The problem of constraint

.satisfaction is further discussed in Section 8.4.2, where an explanation of the above
conditions is given.

Definition 3.10. A set of star instances SIS(V) satisfies a set of nd linear equations
£ iff SIa(V) satisfies every equation /,• 6 £, for 1 < i < nd. Every set of star instances
SI3(V) satisfies an empty set £ with zero relations.

Definition 3.11. Given a set of star instances SIS(V) for a certain string s and a
set of bounds B, we say that SIg(V) satisfies a bound bj £ B, Vjnd > GJ, iff the values
of all the actual instances in SIs(v™d) are > Cj.

Definition 3.12. A set of star instances SIS(V) satisfies & set of ni bounds B
iff SIS(V) satisfies every bound bj G B, for 1 < j < ni. Every set of star instances
SIS(V) satisfies a set B in which all the lower bounds are zero (i.e. bj is Vjnd > 0, for
1 < j 5: ni) and a set B with ni = 0 bounds3.

3The latter is only possible if all the star variables are dependent and constant: v$-
ep = a,-Q, for

1 < * < \V\.

8.3. Expressive power of AREs . . n-ífé 311,

Definition 3.13. A set of star instances SIS(V) satisfies a set of constraints
C = (£,#) iff SIS(V) satisfies £ and B.

An algorithm for constraint testing that evaluates the predicate satisfies(SIs(V),C)
is described in Section 8.4.2.

Definition 3.14. Let R = (R,V,T,C) be an ARE over E. The language L(R)
represented by R is defined as L(R) = {s € S* | s € L(R) and there exists a parsing
of s by R in which the set of star instances SIS(V) satisfies C}.

8.3 Expressive power of AREs

The AREs permit to describe a class of context-sensitive languages by imposing a set
of rules that constrain the language of a regular super-set. A very simple example
is the language of rectangles { ambnambn \ m,n > 1 }, which is well-known to be
context-sensitive (see grammar G\ in Fig. 8.3), and which is described by the ARE
£i = (fli,tí,7ï,(£i,8i)), where .

Rl =± a*6*a*6*

Vi = {«i,«2,«3,«4}

T\ = (ViUr,{(r,ui),(r,t;2), '(r,t;3),(r,t;4)},r) •
d = {«3 = «i, «4 = «2} (Vdep = {v3,v4} and nd = 2)

Bi = {vi > 1, u2 > 1} (Vind = {vi,v3} and nt = 2).

Fig. 8.5 displays some pattern classes that can be represented by AREs.
Furthermore, quite more complex languages with an arbitrary level of star embedment
and multiple linear constraints, even among stars at different levels of embedment,
can be described as well by the ARE formalism. Consider, for instance, the ARE

£2 = {«11 = «1 + «5 - «7,

«12 = «6,

«2 = «4 - 1,

«3 = «4 - 1,

v8 = 0.5v10 + 0.5,

«9 = 0.5«io + 0.5} and

#2 = {«4 > 2; «6, «10, «13 > 1; «1,«5,«7 > 0}.

312 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

1) 5 — »• a&aò 2)
4) A — > aF 5)
7) G[aC] —» [aC]b 8)

10) H[aC] — •• [aC]H 11)
13) Eb — > bE 14)
16) Fb — •• bF 17)

Fig. 8.3 A grammar G\ for the

S — > aAbB[aC][bD] 3) A — >• aAE
B — > bBG Q) B —* bH
Gb — » bb 9) G[bD] — > 6[6D]
Hb — . bH 12) H[bD] — » bb
Ea — > aa 15) E[aC] — > a[aC]
Fa — >• aF 18) F[aC] — »• aa

context-sensitive language { ambnambn | m,n > 1 }.

1)
4)
7)

10)
13)
16)
19)
22)
25)
28)
31)
34)
37)
40)
42)
45)
48)
51)
54)
57)
60)
63)
65)
68)
71)
74)
77)

S
..F'-

J(aG]
E
[cK]
[cO]
[LO]
[cN]L
[LN]a
M[PQR]
M[cP]
[aN][cP]
M[QR]
(cN]Q
L
L
T[UW]
b[UW]
T[XW]
d[XW]
[VT][UW]
(dV]X
Q
Q'
dX'
bU'
[VX']d

— f
'-+
—).
-+
— >
-+
-*
— ».
-*
-»
— »
-+
— >
-+
— >
-»•

— ̂
—t-

— >

— >

-c

-+
-+
— ̂
— >

".->.

AS
aFI • -•

~aG
[LN]
c[cK]M
c
L[cO]M
c[LN]
L[aN]
M[QR]
[cP]M
a[cN]
Q(Rc]
c(QN] .
[VT\[LW]
TU
T[XW]b
[XW]bb
[UW]d
[UW]dd
db
d[dV]
[VT']U'
T'U'
X'd
U'b
bd

2)
.-5)

8)
H)
14)
17)
20)
23)
26)
29)
32)
35)
38)
41)
43)
46)
49)
52)
55)
58)
61)
64)
66)
69)
72)
75)
78)

s-
•F

I(eH]
E
[cK]
M [LO]
[LN]c
Ma
[aN]a
M[PQR]
M[cP]
[aN]Q
MQ
[QN][Rc]
[LW]
L
bU
b[XW]
dX
d[UW]
[VX]X
[dV][XW]
Q
T'U'
T'X'
[VT]U'
[bV']X'

->.
— s-

—f
-f
—í
—t.
— ».
—f
— >
— c

— >
— >•

— »

— l·-*
-*.
'->.
— »•
— ».
—).
-*
— f
— >•
-f
—f
— »

A
J
[eF]e
[Z,AT][cO]M
[cAT]
[LO] M
L[cJV]
aM
a[aAT]
[cP][Qn]
[cP]c
a[(?JV]
QM
Qc
T[UW]
TLU

eXbb
[XW]b
Udd
[UW]d
[dV]X
dd
[VT']T'Q'U'
T'X'd
U'b
[VX^d
b[bV]

3)
6).
9)

12)
15)
18)
21)
24)
27)
30)
33)
36)
39)

44)
47)
50)
53)
.56)
59)
62)

67)
70)
73)
76)
79)

A
I[aG] , -.
G(eH]
E
[cO]
[cN][LO]
[cN]c
[cN]a
G
[aN][PQR]
Me
[cN][QR]
M[Rc]

[LW]
TU
bX
T X
dU
[VT]U
[VX][XW]

Q'
dU'
bX'
[VX']X'
[bV']d

,
>.->

-»•
— »•
— >

— >
— »•
— >•
-*
— t-
->
— *
-+

— >
— >
—f
->•
-»
— v

— »•

-»
— >
->
— >
->

17* Ff « ̂ "*1 Ti»
f v f |CZ^7|ICj

[aG]/
Ge"
[c/í]M[LC
c[cO]M
c[LAT]
c[cN]
c[aN]
[PQR]
aQ
cM
cQ
[Rc]c

TL[UW]
TXb
Xb
Ud
Ud
[VX]b
[dV][XW]

T'T'Q'U'
X'dd
U'bb
[bV']X'
bd

Fig. 8.4 A grammar GI for the CSL {

VQ = 0.5uio + 0.5; V4 > 2; v@,
rules 3 — 9 implement the constraint-

" 10-41
" 42 — 64 implement the constraints

65-79

s,t;7 > 0}, where
vu = v&,

1̂1 = ^1+^5-^7,
v% = v$ — 1, ^3 = ^4 — 1,
v8 = Q.Svio + 0.5, v9 = O

0.5;

+ 0.5.

8.3. Expressive >power of AREs 313

r^
^~_^j

Primitives

— a

/ b

1 c

\ rt

-

1

{ amcn bdcp amcp bdc" I m.n.p 2 1 }

a) Frontal views of variable-size cylinders
with a fixed-size dent at a variable position.

—<- Primitives • • ••*•=

r\ (convex): a

/ (line): b

W (concave): c

v, / (concave): d

cbm abm db" abn cbn abn dbmabm I n > m

c) Submedian chromosomes

{ c" an can+I cn+1 a I n

b) L-shape

Primitives,,
A p

i e

"1 ' i •*

{(pcman e2" a" c2"1 t c s)+ I m.n.s 2 1 }

d) ECG-like signals

Fig. 8.5 Some pattern classes that can be described by AREs.

The context-sensitive grammar GI in Fig. 8.4 generates L(R-¿). The reader is
encouraged to compare the compact and descriptive representation provided by the
ARE RI with the obscure grammar GI, that comprises 79 rules. Fig. 8.7 shows an
example that belongs to L(R-¿), given an alphabet of graphical primitives {| a, / b,
->c,\d,j e}.

The following question naturally arises: Can all the CSLs be represented by AREs?

Theorem 8.1. The augmented regular expressions do not describe all the context-
sensitive languages.

Proof. A counterexample is given by the CSL {ak \ k = 2' A i > 1} [HoUl:79],
which is generated by the context-sensitive grammar G$ displayed in Fig. 8.6. This
language is not describable because AREs can only filter the range of values of the star
variables through linear relations and lower bounds, and the relations only involve the
star variables but not any external variable (such as i in L(Gs}). Therefore, there is no
ARE R = (R,V,T,(C,B}) such that £ can represent the constraint v± = 2'' A i > 1
for RV* = av>. D

314 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

1)
4)
7)

10)
13)
16)
19)

5
[ACa]a
[CaB]
a[Da]
a[DaB]
a[Ea]
[AEa]

->

—>•
— >
— >
->

— *

[ACaB]
[Aa]a[Ca]
a[aCB]
[Da]a
[Da][aB]
[£?a]a
a

2)
5)
8)

H)
14)
17)

[Ca] a -c aa[Ca] 3)
UCa][a5] -H. [Aa]a[CaB] 6)
[aCB] -f [a£>B]
[aDB] -*• [£>aS]
Ua][UaB] -^ [ADa][aB.
[aE] — »• [-£>Q]

9)
12)

1 15)
18)

[Ca][ofl]
[ACaB]
[aC B]
[Aa][Da]
[ADa]
[Aa][Ea]

-» aa[CaS]
-H- [Aa][a<75]
— * laE]
'-* [ADa]a
-» [ACo]
-* [AE'aja

Fig. 8.6 A grammar GS for the context-sensitive language { ak \ k = 2' A i > 1 }.

The context-sensitive language {ak \ k is a prime } is another counterexample.
Indeed, it seems reasonable to expect that a large class of CSLs will not be described
by AREs either, due to the limited type of context constraints that can be represented.
A still more negative result is stated in the following theorem.

Theorem 8.2. The augmented regular expressions do not describe all the context-
free languages.

Proof. A counterexample is given by the even-linear language L(Gpai) that repre-
sents the set of palindromes over an alphabet S = {0,1), where Gpa¡ = ({S}, {O,1}, P, S)
and P = {S. -> A, £.-» O, S .-> 1, S -> 050, S -* 151}. An ARE that might
be proposed to represent L(Gpai) would be jRpa; = (Rpa¡, Vpai,Tpa¡, (£pa/,#paf)) with
Rpai(Vpai/*) = (OM^O^O-f 1 + A)0"«(10ws)t* and £pa, = {v4 = v3, v6 = v2,
us = u!}, but it turns out that L(Rpai) / L(Gpai), since the equation v$ = i>j is
not correct and should be replaced by a constraint like "t>s = Reverse(vi)n, that ex-
pressed the fact, that the value of the first instance of v\ must be equal to the value
of the last instance of v5, the value of the second instance of v\ must be equal to the
value of the penultimate instance of «5, etc. Clearly, this kind of constraint cannot be
expressed by any ARE, according to the given definition of ARE. ü

Consider now the language {xx \ x G (O + 1)+} generated by the context-sensitive
grammar Gp that was displayed in Fig. 3.4. L(GP] also corresponds to the pattern
language L(p) defined by the one-variable pattern p = xx over the binary alphabet
E = {0,1}, where the variable x stands for any string in E+ [Angl:80b]. The ARE
given by (0 + l)*1^ + I)"2 with C, = {u2 = 1*1} and B = {vi > 1} cannot express
that the substrings associated with the instances of the operands of the stars denoted
by Vi and v^ are identical. However, if the equivalence rule (0 -f 1)* = (0* + 1*)*,
Eq.(2.14), is applied before, then the ARE given by (0U1 + !"»)«»(Ov< + I1*)"» with
C = {v4 = i>i, t>s = t>2, t>6 = ^3} and B = {vi > 1, t>2 > 1, fs > 1} is able to
describe the pattern language L(p). A similar approach can be followed to represent
any pattern language using an ARE, as demonstrated in the following theorem.

8.3. "Expressive power, of AREs ; .. . * iPf 315

Theorem 8.3. The class of languages described by augmented regular expressions
properly contains the class of pattern languages.

Proof. Let p be a pattern over (S,X), where S = {GI, ...,am}~ (m > 2) is a
set of constant symbols and X = {xi,...,x¿} (k > 0) is a set of variables. A
variable x can be represented by an ARE R% = (Rz, Vz,Tz,(£z,Bx)) given by
#E(V£/*) = '(a?+... + <O"»"H with£E = 0 and 5S = {Vl > l,...,um > l,um+i > 1},
which describes E+. Let t(i) be the number of occurrences of the variable x,- in
the pattern p, for 1 < ¿ < ¿. Each occurrence £,•_/ of each variable x,- in p can
be associated in principle with a duplicate of R% containing new and different star
variables vijh for 1 < t < ¿, 1 < ; < t(i), 1 < / < (m + 1). Then, an ARE
Rp = (/2p, Vp,Tp,(£p,Bp)) describing the pattern language defined by p can be stated
where .the__, underlying ,RE ,is .Rp =F, .p[Rz/xi)i=i ,arid,.the s;e,t..Q.f...cons.traints,.is,giyen
'by £p = {Vij¡'i='vm \ "Í < i "^ A;, 2 < j '< i(»), 1 < / < m + 1} and"
^P = {VHI > 1 | 1 < i < k, 1 < / < m + 1}.

On the other hand, it is obvious that the class of pattern languages does not cover
the class of languages represented by AREs. For example, the language of rectangles
L(Ri) and the CFL {QM^O"3 1 ^ 2 = 1^+ v3} cannot be represented by any pattern
language, ü

Corollary 1. For every pattern p over (E, X) with k variables in X and m constant
symbols in £, an ARE Rp that is equivalent to p can be constructed whose size is in
0(m-\p\).

k
Proof. Let \p\ = n +]TX¿) be the length of p, where n is the number of constant

1=1
symbols in 'p and t (i) is the number of occurrences of variable x¿ in p, for 1 < i < k.
The size of the equivalent ARE Rp = (Rp, VP,TP, (£P,BP)) constructed in the proof of
Theorem 8.3 is in 0(m-|p|), since \RP\ = n + (3m + 2)(|p| -n), \VP\ = (m + l)(|p| -n),
|£p| = (m + l)(|p| - n - A:) and \BP\ = (m + l)k. D

316 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

8.4 String recognition through AREs

Given an ARE R = (R, V, T, C), the recognition of a string s as belonging to the
language L(R) can be clearly divided in two steps: parsing s by the underlying RE R,
and if success, checking the satisfaction of constraints C = (C, B) by the star instances
SIS(V) that result from the parsing. If the RE R is unambiguous, then a unique set of
star instances SI3(V) is possible for each s € L(R), and therefore a single satisfaction
problem must be analysed to test whether s 6 L(R).

8.4.1 Parsing strings by REs to build the star instances
, • _ structure . " ; ' , . . / • . ; • " ; / ; . , ' • . , ' . . ' - ' ; ' . . • : " : ' ' . • ?..-

Two methods for unambiguous RE parsing are described in the next subsections which,
given a string s and an unambiguous RE R, respond whether s € L(R) or not, and
in the first case, build the corresponding set of star instances SIS(V). The processing
of the input string in both methods is divided in two phases: the recognition and
construction phases.

-The first method, described by Algorithm 8.3, uses the RE R itself for recognition,
and the construction phase is a kind of re-run of the recognition phase in which it
is known in advance that the string will be successfully parsed by the RE, and thus,
the true instances of the star variables can be recorded. To this end, the current star
variable that is involved in parsing "is tracked, and the value of each new instance is
computed by counting the number of consecutive matches of the operand of the related
star. The time complexity of the first method is 0(|s|·|.n|) globally and for both phases.

The second method, described by Algorithm 8.4, is a more efficient parsing method
that can be run if the unambiguous RE 'R has been obtained from an equivalent DFA
A by applying the FSA-to-RE mapping proposed in Section 8.1. This will be the case
if the RE has been inferred from examples using an RGI algorithm that returns a DFA
(see Chapter 9). This second parsing method uses, besides the DFA A, some of the
REs a\j yielded by (the modified) Algorithm 8.1 and the skeleton of R formed in the
subsequent simplifying step, which has been explained in Section 8.1.3. The key point
is that A (instead of R) is used for recognition in 0(|s|), and that the path of visited
states guides the construction of the star instances structure SIS(V). There are two
achievements that permit to reduce the time complexity of the construction phase too:
the former is to locate the substrings of s that are associated with the cycles of the
involved star-type REs by finding subpaths of visited states that start and end with the
same state without passing through it; the latter is to select directly the term of the
involved union-type REs that actually matches the corresponding substring without

. .
8.4. String recognition through AREs ' . 317

the need of attempting to parse the non-matched terms. Hence, the second method
has a time complexity of 0(max{\skel(R)\, n • |s|}), due to the construction phase,
where n is the number of states of A, \s\ and \skel(R)\ denote the lengths of the input
string and the skeleton of R, respectively, and \skel(R)\ < \R\.

8.4-1-1 An algorithm to determine the star instances based on parsing by an RE alone

Algorithm 8.3 is intended to recognize whether a given string s belongs to the
language described by a given unambiguous RE R and, if it belongs, to determine the
corresponding set of star instances SIS(V). In the recognition phase, only the input
string and the RE are involved; whereas in the construction phase, the star variables
V, the star tree TTand the set of star instances SIS(V) being built'are involved as-well.
The set of star variables V and the star tree T associated with the RE R are assumed
to be inputs of the algorithm; recall that they can be determined from the RE using
Algorithm 8.2.

Algorithm 8.3 uses three basic functions (concatenation-parsing, union-parsing and
star-parsing) for matching the three types of REs that can appear as subexpressions
within the given RE. These functions are recursive, since they call each other to parse
shorter and shorter substrings. A concatenation-type RE is regarded as a sequence of
factors, where each factor is either an alphabet symbol, a union-type RE or a star-type
RE. A union-type RE is a sequence of (mutually exclusive) terms, where each one of
them is a concatenation-type RE. Finally, a star-type RE is either an alphabet symbol
or a union-type RE affected by a star symbol, which means that the star operand can
be matched consecutively zero or more times. The worst-time complexity of Algorithm
8.3 is O(|s| • \R\), where the factor |jR| is due to the need of trying to parse sometimes
a substring by the different terms of a union-type RE.

It can be noted that the three parsing functions receive a boolean argument,
buildJSI, that indicates whether to build or not the star instances structure while
parsing. This allows the determination of the star instances without the need of
backtracking and deleting instances, since the argument build-Si will only be TRUE
when the involved substring has been successfully parsed by the same subexpression
previously (with build-Si—FALSE) and it is known that the whole string s has been
successfully parsed by the whole RE R. Hence, in the main body of the algorithm a
call to concatenation-parsing with buildJSI=FALSE is firstly performed to recognize
s by /?, and if the parsing is successful then a new call to the same function with
6uz7cLS7=TRUE is carried out to construct the lists of star instances.

In the construction phase (when £mz/cL<S/=TRUE), the star instances structure SI
constitutes an input/output argument of the three parsing functions, and a node of

318 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

the star tree, referred to as the "current father", is implicitly followed at every step.
This node corresponds to the star variable associated with the star-type RE currently
involved in parsing, if any, or to the root of T, otherwise. An input argument of the
parsing functions, father .cycle, is used to track the cycle of the current instance of
the current father and to indicate, for all the star variables that are sons of the current
father, which is the element of the current list of instances to which a value must be
assigned next. If the root node r is the current father, then father-cycle = 1 by
definition.

In the case of parsing by a star-type RE, the maximum number of consecutive
matches of the star operand is always attempted, and in the case of parsing by a
union-type RE, the first term that matches the substring is always selected. In this
way, Algorithm 8.3 works properly when the given RE R is unambiguous, but if R-is
ambiguous, then it should be noted that the algorithm only attempts one of the several
possible ways of parsing the string and the result in that case is not meaningful (i.e.
the parsing might fail for a string in L(R)). Therefore, another algorithm should be
used for parsing ambiguous REs, which should be capable of exploring all the parsing
possibilities and building a new set of star instances SI% (V) for each successful way p
of parsing s by R.

ALGORITHM 8.3: Parses a string by an RE alone and builds the lists of instances of
the associated star variables if the parsing is successful.

Inputs:

R is a given unambiguous RE over an alphabet E;
• V . is the set of star variables associated with R, that includes the «

star position information required for the functions pos and pos"1

and the address of the corresponding node in the star tree T;
T is the star tree associated with R]
s is a given string from S*;

Outputs:

parsed is a boolean value that will be TRUE if s is successfully parsed by R
and FALSE otherwise;

SI is the set of lists of instances of the star variables in V resulting from
the parsing of s by R (only when parsed =TRUE).

begin_algorithm

{ Recognition phase }
build-Si :=FALSE; { build-Si is a flag used to signal whether the star instances must be

computed in the next parsing function to be called }
{ Try to parse s by R, considering R as a concatenation of REs }
parsed := concatenation-parsing (s, length(s),R,length(R),Q,V,T, build-Si, 1, SI,

parsed Jength);

8.4. String recognition through AREs . •'"$&• 319

if parsed and parsedJength = length(s) then { Construction phase }

57 := initialise.starJnstances (F,T); { initialises 57 by creating one list of one
dummy instance for each star variable Vj in the first level of T }

buildJSI :=TRUE;

father .cycle := 1; { where r is implicitly considered as the current father }

{ Parse again s by R, now building the structure of star instances SI }

parsed := concatenation-parsing (s,length(s),R,length(R),Q,V,T,buildJSI,
father-cycle, SI,parsedJength);

else

parsed :=FALSE;

end jf

end-algorithm

function concatenation-parsing (s, slength, P, Plength, pQ, V, T, build-Si,
father-cycle, SI, parsed length] returns boolean

input arguments:

s is a string of length slength;
P is an RE over S of length Plength]
pO is the position of P in the whole RE R;
V and T are the star variables and star tree associated with R, respectively;
build-Si tells whether to build 57 or not while parsing;
father-cycle indicates the position of the next instance to be assigned in the

current list of instances of the star variables that are sons of the
current father (only relevant if 6m7cLS7=TRUE);

input/output arguments:

57 is updated with the star instances resulting from the parsing of s by the RE P
(only when 6t«7<LS/=TRUE);

output arguments:

parsedJength is the length of the longest prefix of s that is parsed by the RE P;

returned value:
if P = A then TRUE is returned iff s = A
else {P T¿ A) TRUE is returned iff there is a prefix of s that is parsed by P;

begin .

if P = A then

parsedJength := 0;

return (slength — 0);

else

320 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

U := fmdJactors(P); { U is a list of triples (< tíi,pi,/i > ... < um,pm,lm >) where
the u,-'s are REs such that P = ui...um, m > 1, p¿ is the position of the RE w,-
in P, and /,• is the length of u,- }

k := 0; { k is the length of the prefix of s already parsed }
reset-list^); parsed :=TRUE;
while parsed and not end_of_list(J7) do

< u,p, I >:= get .current .element (U);
if is_a_terminal_symbol(«) { u = a for some a e S } then

parsed := (s[k] — P[p]);

elseif is_a-simple_startype_RE(u) { u = a* for some a € S } then
value := 0; a := P[p];
while s[k] = a do

k := k -f 1; value := value + 1;
end_while

pp := pQ + p + 1; { is the position of * in R }
j := pos~1(F,pp); { is the index of the associated star variable Vj

current-list := mimber_ofJists (57, j);
current-elem := father.cycle; { currentJist and current-elem

point to the instance where to assign the value for Vj }
assign_value_to_starJnstance (SI,j, currentJist, current.elem, value);

end_if
elseif is_a_uniontype_RE(u) { u = (P') where (P') is an RE over S } then

substring := string_elements_from_to (s,k,slength);
{ Try, to parse substring by u, a union-type RE }
parsed := union-parsing (substring, slength—k, u,l,pQ+p, V, T, build-Si,

father-cycle, SI, substring-parsedJength);
k := k + substring.parsedJength;

elseif is_a_parenthesised_startypeJRE(u) { u = (P')* } then
substring := string_elements_from_to (s,k, slength);
{ Parse substring by u, a star-type RE }
parsed := star-parsing (substring,slength — k,u,I,pO + p,V,T,build-Si,

father-cycle, SI, substring parsedJength);
k :— k 4- substring.parsedJength]

end_if
move-to-next .element (U) ;

end-while
if parsed then parsedJength := k;
else parsedJength := 0;
end_if
return parsed;

end_if

end-function

8.4. 'String recognition through AREs _• .<••'•;•$&' 321

function union-parsing (s,slength,P,Plength,pQ,V,T, build-Si,
father-cycle, SI,parsedJength) returns boolean

input arguments:
s is a string of length slength;
P is an RE of length Plength and form (P') over E;
pO is the position of P in the whole RE R;
V and T are the star variables and star tree associated with R, respectively;
build-Si tells whether to build 57 or not while parsing;
father-cycle indicates the position of the next instance to be assigned in the

current list of instances of the star variables that are sons of the
current father (only relevant if build-SI=TR\JE)]

input/output arguments:
SI is updated with the star instances resulting from the parsing of s by the RE P

(only when & w 7 c L 5 7 = T R U E) ; • , ; ; , . _ , < , . , , . : :...,,
output arguments:

parsedJength is the length of the longest prefix of 5 that is parsed by the RE P;
returned value:
, , TRUE if there is a prefix of s that is parsed by the RE P, and

FALSE otherwise;

begin

T ;== find-terms(P); { T is a list of triples (< ¿i,pi,/i > ... < tn,pn,ln >) where the i,-'s
are REs such that P = (t\ + ... + tn), n > 1, pi is the position of the RE <,• in P, and
/,- is the length of í,- }

reset Jist(r); parsed :=FALSE; . .
while not parsed and not end.ofJist(T) do

< t,p, I >:= get .current _element(T);
{ Try to parse s by í, considering í as a concatenation-type RE }•'
parsed :== concatenation-parsing (s,slength,t,l,pO +p, V, T,FALSE,

father-cycle, SI, k); •
if parsed then { the parsed term is the current t } ,

if buildJSI then
{ Parse again s by / now computing the star instances }
parsed := concatenation-parsing (s, slength, t, /, pO + p, V, T,TRUE,

. father-cycle, SI, &);
end_if

endJf
move_to_next.element(T); .

end_while
if parsed then parsedJength := k;
else parsedJength := 0;
end_if
return

end_function

322 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

function star.parsing (s, slength, P, Plength, pQ, V, T, build-Si,
father.cycle, S I, par sed Jength) returns boolean

input arguments:
s is a string of length slength;
P is an RE of length Plength and form (P')* over S;
pO is the position of P in the whole RE R;
V and T are the star variables and star tree associated with R, respectively;
build JSI tells whether to build SI or not while parsing;
father-cycle indicates the position of the next instance to be assigned in the

current list of instances of the star variables that are sons of the
current father (only relevant if buildJ7/=TRUE);

input/output arguments:
51 is updated with the star instances resulting from the parsing of s by the RE P

(only when buiicLS7=TRUE); • . -
output arguments:

parsedJength is the length of the longest prefix of s that is parsed by the RE P;
returned value:

TRUE is always returned, since at least (P')° is matched;
begin

L := create_emptyJist_oLstrings();
k := 0; { k is the length of the prefix of s already parsed }
parsed := TRUE; i := 0; { i is the number of matches of (P') found }
while parsed and k < slength do

substring := string_elements_from_to (s,k, slength);
{ Try to parse substring by (P'), a union-type RE }
parsed := union-parsing (substring, slength — k, (P'), Plength — l,pO, V,T,FALSE,

father-cycle, SI, substring .parsed Jength);
if parsed then

¿ : = i + l;
substring := string_elements_from_to (s, k, k + substring.parsed Jength);
L := put.element Jn_h'st_of_strings(£, substring);
k :— k + substring.par sed Jength;

end_if
end_while
parsedJength := k;
value := i; .

if buildJSI then
pp :— pO + Plength — 1; {is the position of * in R }
j := pos~1(Vr,pp); { is the index of the associated star variable Vj }
currentJist := number_of_lists(5'/, j) ;
current.elem := father.cycle; { currentJist and current.elem point to the instance

where to assign the value for Vj }
assign_value_tojstarJnstance (SI, j, currentJist, current.elem, value);

8.4. String recognition ttíroúgh AREs • ' • ' # * ' ' 323

if value > O then

father := startree_node_with_given identifier (T, V, j); { v j is now the current
father }

f other Jist := current Jist;

father.elem := current-elem;

{ father Jist and father-elem point to the instance of the current father in
57 that generates a new list of instances for its sons }

father-value := value; { father-value determines the length of the new list
of instances to be created for the sons of the current father }J

for k := 1 to nsons.of (T, father) do
node := k-th_son_of (T , father, k); •. •

; son-id := nodeJdentifier_of;(node); .. j ' , ' . „ ' . ..•/ , •,.;,iw*
{ Create a new list of dummy instances for t>Son_td> with as much elements

as father-value }
append_new_list_ofJnstances.tojson (SI, sonJd, father Jist,

father.elem, father rvalue);

end-for
reset-list(i);

for i := 1 to father-value do '

substring := get_element_from_list_of_strings(/y);
/ := length(substring);
new-father.cycle := ¿;
{ Parse again substring by (P')> a union-type RE, now computing the

« star instances }
parsed := union-parsing (substring, I, (/"), Plength — 1,^0,1^, 7",TRUE,

new-father-cycle, S I, substring parsed Jength);
move_to_next_element(¿);

end_for

endJf

endJf

return TRUE;

end_function

324 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs ^^

8.4-1-2 An algorithm to determine the star instances based on parsing by an RE with ^P
the help of an equivalent DFA

A parsing method for unambiguous REs more efficient than the previous one is
attainable if the given RE R has been obtained from an equivalent DFA A = ^^
(Q,2,<$, 9o, F) using the FSA-to-RE mapping proposed in Section 8.1. Algorithm 8.4 ^^
describes such a method, which, in addition to the source DFA, requires some other
data provided by the FSA-to-RE transformation. afc

In this case, the recognition phase is carried out in 0(|s|) time, where \s\ is the ^^
length of the given string, using the DFA A, because L(A) = L(R), and recording the ^^
path of visited states. When a positive string s € L(A) is recognized, then, in the

, construction phase, the path of visited states is split in a certain number of subpaths, ^p
which depend on the final state arrived and on the last visit to the states with lower
index. This process can be regarded as finding an instantiation of the skeleton of R jfe
that matches the path of visited states. Remember that the skeleton of an RE R (over ^^
E) is an RE over a set of special symbols {"RO", "RO-l",...,"Ri-j",...,"R(/|F|-l)-/|F|"},
1 5; j' <• /|F|) 0 < z < j, that describes R in a synthetic way, where "RO" refers to the |̂
RE RO = «¿Q*, "Ri-j" refers to the RE RÍJ = o^-, and q^F{ 6 F is the final state with
the largest index within the ordered set of states Q. £k

We say that a subpath of states is matched to RÍJ if the first element in the subpath ^^
corresponds to the last visit of 9,- in the whole path, all the visits to states cjt < ç, have ^P
been done previously, and the last element in the subpath corresponds to the last visit
of qj in the whole path. The subpaths of visited states that are matched to the REs 4fc
RÍJ = o¿j are further split in two parts, which correspond respectively to a union-type
RE (R¡j = a^1) and a star-type RE (Cj = aj*1*); these two parts are separated by ^^
the first visit to qj in the subpath. The subpath of states formed from the beginning ^P
of the whole path to the last visit of the initial state q0 is matched to RQ. If RQ ^ A,
the subpath matched to RQ correspond to a star-type RE Co = a¿0*. áfc

Hence, the input string s can be split in substrings according to the path j^
segmentation, using the length of each subpath. In this way, each substring so formed ^^
is parsed by the corresponding segment of the RE (either a union-type or a star-type
RE) and, furthermore, the parsing process is guided by the associated subpath of |̂
visited states. To describe how the guiding mechanism works, the REs R'^ and Cj,
0 < j < (n — 1), O < i < j, where n is the number of states of A, must be decomposed A
recursively in terms of the shorter REs from which Algorithm 8.1 has built them. By ™
analysing Algorithm 8.1, the following relations can be established:

*
*

8.4. String recognition through AREs ••--&%$' 325

where some of the terms in these REs may represent the empty language 0 for a given
DFA A. Symmetrically, a similar relation can be established for the REs R"{ = aj*1 ,
1 < j < (n - 1), O < i < j:

For clarity purposes, the three preceding relations can be rewritten as follows:

(8.8)

)' (8-9)
(8.10)

Consequently, from all the REs a\j (1 < / < n, O < j < n, O < i < 1) yielded by
Algorithm 8.1, just a subset of at most 2-n2 REs are needed to parse R efficiently, which
correspond to the REs denoted by K^, K^, a%, a£ (for 1 < j < (n - 1), O < i < j),
Cj and a£ (for 0 < j < (n - 1)).

Let us explain now how the parsing proceeds when matching a certain substring
to a union-type RE of the form R'^ (a similar argument applies to the R'^ REs
and to the union-type REs included in the C j REs). Let the subpath of states
associated with the substring be p — Po---Pr, where we know that p0 = i, pT = j
and Vi G [l,r — 1] : (pt > i) A (pt > j). If r = 1 then the term a£ is selected as
the matched term. Otherwise, the subpath must be scanned to find the state with the
lowest index; let h be such a state, and let zl and z2 be the position^ of the first and
last occurrence of h in the subpath p. Then, it is clear that the term R'ihChR'hj is the
matched term of R'-, and moreover, the three substrings associated with the subpaths
Po---Pzi, Pzi---Pz2 and Pz2...pr must be matched to the REs R'{h, C h and R'^j, respectively
(if zl = z2 then the second substring is empty, and the star-type RE Ch is instantiated
zero times).

Since the terms representing empty languages will not appear in the union-type REs
included in /2, an indexing mechanism is required to access directly to the selected term
R'ihChR'hj of R'^, given the state h. For example, an array of n elements, indexed by
states, can contain the relative position of the terms that are actually present or a flag
denoting absence. Such an array is needed for each one of the non-empty REs R'^,
C j and /?J,-,,and it will be referred to as the index of the corresponding subexpression.
Although it is not shown here, Algorithm 8.1 can be modified easily to compute and
store these indices.

Concerning the process of matching a certain substring to a star-type RE of the
form Cj, the first step is to split the associated subpath according to the occurrences

326 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

of its first state. In this way, the substrings that are matched in each cycle of a star
instance can be identified quickly. Then each of these substrings must be parsed by
the RE that is the operand of the star in Cj (i.e. a union-type RE).

Algorithm 8.4 uses two guided parsing functions (guided-union.parsing and
guided-star.parsing), which implement the irrevocable parsing strategy that has
been described. The worst-case time complexity of the construction phase is
0(max{\skel(R)\,n • \s\}), where \s\ and \skel(R)\ denote the lengths of the input
string and the skeleton of R, respectively. The cost n • \s\ arises from the repeated
scanning of subpaths in the search of the state with lowest index (less than n scans
for each element of the global path of length |5|). The cost \skel(R)\ is due to the
highest-level segmentation of the input string s, that involves scanning the skeleton of
R. Since the recognition phase can be run in linear 0(|s|) time, the above complexity
of the construction phase is also the one for the entire Algorithm 8.4.

ALGORITHM 8.4: // an input string is accepted by a given DFA, the string is then
parsed by a given equivalent RE, using the path of visited states and building the lists
of instances of the associated star variables.

Inputs:

is a given DFA (Q, S, S, qo, F) containing n states;
is the unambiguous RE obtained from A by applying
Algorithm 8.1 and the simplification step given by Eq.(8.7);
is the skeleton of R found in the simplification step;

",-, for 0 < j < n — 1, O < i < j, are REs given by Algorithm 8.1;
afj, a^j, a£, for 0 < j < n - I , 0 < i < j, are REs given by Algorithm 8.1;
IR'ij, ICj, IR"i, for 0 < j < n — 1, O < i < j, are the indices of the terms in

the REs R'-, Cj, J2"t-, respectively;
V is the set of star variables associated with R, that includes the

star position information required for the functions pos and pos"1

and the address of the corresponding node in the star tree T]
T is the star tree associated with R;
s is a given string'from S*;

A
R

skelR
T>> n

Outputs:

parsed

path
skelR.instance

SI

is a boolean value that will be TRUE if 5 is accepted by A
and FALSE otherwise;
is the path of states visited by A during the recognition of s;
is the instance of the skeleton of R resulting from "parsing s by R
(only when parsed =TRUE);
is the set of lists of instances of the star variables in V resulting
from parsing s by R (only when parsed =TRUE);

8.4. String recognition through AREs " ' * 327

begin_algorithm

{ Recognition phase }
parsed := recognize (s, A, path); { path is an output argument of this function }

if parsed then { Construction phase }

slength := length(s);
last-state := path[slength]; { last-state is the index of the final state arrived in

the recognition of s }

{ Find the last visit in path of each state lower than q¡ast-state such that qiast-state is
reachable from it }

Q' := {qiast-state}', { Q' Ç F is a set whose only member is qiast^tate }

t C'.:== <7(Q'); { G Ç Q is the,transitive closure of Q',with.respect to the relation ~:
" :" ' " qi ~W'^' C/<"0 A ¿j¿V0r ;" -"' ' • ' • ' • - • • ' • ' • '

for z := 0 to n — 1 do

if 9, € G then
/así_vzs¿/[¿] := findJast_occurrence_of_stateJn_path (i,path);

end_if

end-for

{ Initialise 57 by creating one list of one dummy instance for each star variable Vj in
the first level of T }

57 := initialise-starJnstances (V, 7^;
father-cycle := 1; { where r is implicitly considered as the current father }

{ Parse 6 by R guided by path and skelR }

pO := 0; { pO is the length of the part of R already scanned }

if C0 ̂ A then

substring := string_elements_from_to (5,0, lastjuisit[0] — 1); {go € G always}

4fe subpath := path_elements_from_to (path, Q,last-visit[Q])]

I := length(substringy,

{ Parse substring by Co, a star-type RE, using subpath and computing the star
instances }

guided_star_parsing (substring,subpath, I, Co, length(Co),pO, V,T,
father .cycle, S Í);

end_if

PO := pO + length(C0);
skelR-instance :="RO"; { since RQ — Co }
pskO := /enjf//i("RO"); { pskO is the length of the part of skelR already scanned }

328: Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

i :=0;
while i ̂ last-State do

j := findjninimum-ÇjJn.G-visitedJater_than_c¿ (i,G,last-visit);

pQ := find_next_Ri-j_in_skeleton (i,j,skelR,R,pskO); { scans skelR from
position pskO to find the next occurrence of "Hi-;" and returns the position
of next RÍJ in R }

subpath := path_elements_from_to (path, last-visit[i],last-visit[j]);

nexi-visit-j := find_first_occurrence_of_:Jn_subpath (j, subpath);

substring^ := string_elements_from_to (s,Iast-visit[i],next-visit.j - 1);

subpathA :— path_elements_from_to (path, last-visit[i],next jvisit.j);

• l:= length(substring-l); • ' '"

{ Parse substring-l by R'-, a union-type RE, using subpathA and computing
the star instances }

guided_union_parsing (substring-l,subpath-l, I, R'-, length(R'-),pQ,V,T,
father,cycle, S I);

if C j ¿ A then
substring^ :— string_elements_from_to (s,next^visit_j,last-.visit[j] — 1);
subpathJ2 :— path_elementsJ-rom_to (path,next_visit-j,last_visit[j]);
/ := length(substringJ2);

{ Parse substring_2 by Cj, a star-type RE, using subpath-2 and
computing the star instances }

guided_star_parsing (substring^, subpath.2,1, Cj, length(Cj),
pQ + length(R^), V, T, father,cycle, SI);

end_if

'pO := pO + length(R'{j) + length(Cj);

skelR-instance := append_to_skeletonJnstance (skelRJnstance"Ri-~", i, j);

pskQ := pskQ + length("1ti-;n); { pskO is the length of the part of skelR
already scanned } •

-=,; ,
end_while

end_if

end-algorithm

8.4. String recognition through AREs 329

procedure gmded.union.parsing (s, path, slength, P, Plength, pO, V, T, father-cycle, SI)

input arguments:

s is a string of length slength;
. path is a state-index array of length slength + 1;

P is a union-type RE of length Plength over E;
pO is the position of P in the whole RE R;
V and T are the star variables and star tree associated with R, respectively;
father.cycle indicates the position of the next instance to be assigned in the

current list of instances of the star variables that are sons of the
current father;

input/output arguments: •

SI is updated with the star instances resulting from the parsing of s by the RE P;

begin • ' ' ' " - ' • • • • ' • •

i := path[0]; j := path[slength};

{ The RE P is of the form (¿i + ... + ¿¿) where k > 1, and it corresponds to R'^ if i < j,

R'lj if i > j, or a*1 if i - j, where d = a^1* }

if slength = 1 then

{ ti = a?j is the matched term, and the star instances 57 are not affected. }

{ Do nothing }

else { slength > 1 }

< h, zl,z2 >:= findJowest_state_in_subpath (path, slength + 1); { always h > i and
h > j; this function also returns the position of the first and last occurrence of
h in path: zl and z2, respectively }

' • • - ' - '
if i < j then

< m, p >:= find .matched _term (/i,/./?(••); { using the index of R'- }

elseif i > j then

< m,p >:= find-jnatched_term (h,IR'f-)] { using the index of R"- }

else { i - j}

< m,p >:= find_matched_term (h,Id); { using the index of C,-}

end_if

{ tm = R'ihChR'hj is the matched term and p is the position of tm in P }

substring-}. := string_elements_from_to (s,0,zl — 1);

subpathA := path_elements_from_to (path, 0,zl);

/ := length(substring.l);
{ Parse substring,1 by R'ih, a union-type RE, using subpathA and computing the

star instances }

guided_union_parsing (substring.I, subpathA, I, R'ih, length(R'íh),pQ + p, V, T,
father.cycle, SI);

330 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs ^^

p:=p + length(R'ih); W

if Ch ¿ A then

substring_2 := string_elements_from_to (s,zl,z2 — 1); ^^

subpathJl. := path_elements Jrom_to (pai/i,zl,z2);

/ := length(substringJ2); ^P

{ Parse substring.!! by C/i, a star-type RE, using subpath.2 and computing the
star instances } 4fc

guided_star_parsing (substring_2, subpath.2, I, C^, length(Ch),pQ + P, V, T,
father-cycle, SI); £±

p:=p + length(Ch); **

end_if . ĵ

substring^ := string_elements_from_to (s,z2,slength — 1);
subpathJO := p at h .element s-from Jo (path,z2,slength); jy^
/ := length(substring.3); ^^
{ Parse substring.3 by j R V - , a union-type RE, using subpath.3 and computing the ^^

star instances } , ^^
guided_union_parsing (substring_3, subpath.3,1, R'^, length(R'^}^pQ + p, V, T,

father-cycle, S I); á^

end_if

end_procedure ^̂

procedure guided-star-parsing (s, path, slength, P, Plength,pQ, V, T, father-cycle, SI)

input arguments:

s is a string of length slength;
path is a state-index array of length slength + 1;
P is a star-type RE of length Plength over £

(actually, P = (7, = o^1*, where i = path[0]);
pO is the position of P in the whole RE R;
V and T are the star variables and star tree associated with R, respectively;
father.cycle indicates the position of the next instance to be assigned in the

current list of instances of the star variables that are sons of the
current father;

input/output arguments:

SI is updated with the star instances resulting from the parsing of 5 by the RE P

begin

i := path[0]; { and it always holds that i — path[slength] }

8.4. String recognition through AREs » 331

< 5, e >:= find_cycle_substrings(s, path, slength); { 5 is a list of triples (< substri,pi,li >,
...,< substre,pe,le >), where e > O, s = substr\...substre such that, for 1 < k < e,
path[begin(substrk)] = path[end(substrk)} = i and path[z] > i for begin(substrk) <
z < end(substrk), pk is the position of substr^ in s, and /¿ is the length of substrk }

value := e; { e is the number of consecutive substrings of s that are matched by a}*1 }

{ Determine the star variable Vj that has been instantiated }
pp := pO + Plength — 1; {is the position of * in R }
j := pos~l(V,pp); { is the index of the associated star variable v j }

{ Update the list of star instances of the star variable Vj }
currentJist := number.ofJists (S I , j) ;
current-elem := father-cycle; { currentJist and current-elem point to the instance

where to assign the value for Vj } •
assign_value_to_star .instance (SI, j, current Jist, current jelem, value);

if value > 0 then
father := startree_node_with_givenJdentifier (T, V,j); {vj is now the current father}
father Jist := currentJist;
father.elem := cur-rent.elem;
{ father Jist and father.elem point to the instance of the current father in 57 that

generates a new list of instances for its sons }
father-value := value; { father-value determines the length of the new list of

instances to be created for the sons of the current father }

for k :— 1 to nsons.of (T, father) do
node :— k-thjson_of (T, father, k);
son-id :— node Jdentifier.of (node);

t { Create a new list of dummy instances for vson_i¿, with as much elements as
• • father-value }

append_newJist_ofJnstances_to_son (57, son-id, father Jist, father-elem,
father-value);

encLfor

reset Jist (S);
for k := 1 to father-value do

< substring, p,l >:= get .current .element (S);
subpath := path_elements_from_to (path,p,p+'l);
new-father-cycle := k;
{ Parse substring by aj-j1"1, a union-type RE, using subpath and computing the

star instances }
guided_union_parsing (substring, subpath, I, a]*1, Plength — l,pO,V,T,

new-father-cycle, SI);
move_to_next .element (S) ;

end_for
end_if

end_procedure

332 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

8.4.2 Testing the satisfaction of ARE constraints by star
instances

Let SIS(V) be a set of star instances obtained from successfully parsing a certain string
5 by the underlying RE R of an ARE R = (R\ V, T, C), where C = (£, B). To determine
whether 5 6 L(R) or not, the predicate satisfies(SIs(V),C) must be evaluated. The
conditions under which a set of star instances SIS(V) satisfies a set of constraints C of an
ARE have been formally established in Definitions 3.9 to 3.13 in Section 8.2.3. To sum
up, SIS(V) satisfies C if and only if it fulfils all the linear relations /,- e £, for 1 < i < na,
and all the bounds b j € B, for 1 < -j < ni. A method to evaluate the. predicate
satisfies(SIs(V),C) is presented in Algorithm 8.5, whose theoretic time complexity is
0(|£| ;|V| •;Ae^i(T),-:/(5/s(y))), where I(S.I,(V)) = max'E"iiia(0ne/ems(i,j)'is

the maximal number of instances of a star variable yielded by parsing s. A justification
of this cost will be given after describing Algorithm 8.5.

In order to fulfil a linear relation /¿ of an ARE, which is

def> i , . i ivi
 F = a^vn +-f aik,viki + aio,

it is first required that the star variables involved in /,-, {u,dep,í;!·1, ...^-¿J, share a
common structure of instances for the given string 5. In other words, the total number
of instances4 of each one of these star variables should be the same in SIS(V), and the
corresponding instance values should be grouped, one for each variable, in rows, one
row for each 4cycle of the instances of a common ancestor.

At first, it would seem that the set of related star variables should be brothers in
T and their father should be the common ancestor. However, if a constant value is
found for the actual instances of a certain son Vj that are derived from an instance of
its father u,-, and this occurs for all the father instances, then a unique instance value
of the son may be associated with each instance value of the father, and therefore,
regarding the structure SIS(V), the son may be promoted to a lower level in the tree
of instance lists. In such a case, we say that the father u¿ is a degenerated ancestor of
its son Vj for s.

This promotion process may continue (towards the root of T) until a non-
degenerated ancestor Vh is found, called the housing ancestor of u,- for s, or a pre-
established node of T is reached as housing ancestor by default. The housing ancestor
by default can be a. selected ancestor vc that is shared with other star variables or the
root node r of T. Each time a star variable is promoted to a lower level in the tree of

Including actual and dummy instances

8.4. String recognition through AREs * ' » • ' * ' 333

instance lists, all of its redundant instances are collapsed into a single one in order to
fit in the same structure of instances of the degenerated ancestor. The procedure
determine-housing-ancestor-andjnstances, whose cost is 0(/i(T) • I(SIS(V})), just
implements the promotion process described.

Moreover, even if a common housing ancestor is not found, a set of star variables
{ufep, Vii, • • •) Viki] might meet a linear relation /,- whenever all of their housing ancestors
for a given string s satisfy a strict equality constraint. This fact ensures that a
common structure of instances is available, even though the involved star variables
cannot be promoted to an equivalent position (brothers) in the tree of instance lists,
as it occurs in the AREs describing pattern languages. For example, in the ARE
(0"> + i«a)«s(0«*.+ I"')"6 with £•=• {v6 = v3,-v4 = «j, v5 = vj} and B = {v3 >1,
*>!..> ¿r ;U2 > 1}), the relation v4 ••== vi !might be met by a' set,of 'star,'instances SIS(V)
if VQ and ^3 are the housing ancestors of u4 and v\, respectively, for s and the equality
constraint VQ = v$ is previously demonstrated to be met.

In the case that, finally, the instances of the star variables {vfep, VH, ...,u,-^} can
be arranged5 in a two-dimensional array, one column for the instances of each star
variable, one row for the instances corresponding to the same cycle, then the linear
equation /,- can be actually checked on the instance values in each row of the array. To
satisfy /,-, the linear relation must be met by all the rows.

On the other hand, to test a bound b j : Vjnd > Cj, it is only required to check
whether all the actual instances in SIs(Vjnd) satisfy the given lower bound. Next,
Algorithm 8.5 is described in more detail: 0

For each linear relation /,- in £, the instances of the dependent star variable v,-ep,
stored in 57s(i>,-ep), are analysed. If there is no actual instance of v,-ep, the constraint
/,- is considered to be met. Otherwise, the deepest common ancestor vc of the star
variables {vfep,vn,...,Viki}, i.e. the first common ancestor going from each of these
nodes to the root of T, is selected as candidate to common housing ancestor. To verify
the linear constraint /,- it is mandatory that the instances of all the independent star
variables involved in the relation can be arranged in the structure of instances caused
by the housing ancestor of vfep (let us call it v hi)- Consequently, if any of them (say
Vij) has a housing ancestor (let us call it Vhj) that is deeper than vc in T and the
equation Vhj = v hi is not met by the instances, then it means that a shared structure of
instances is not available for the string s, and therefore, the constraint /,• is considered
to be violated. In the case of a constraint of the form u¿ep = a;o, no matter the level
of vfep in T, its housing ancestor must be the root node and all the actual instances of
vdep must be collapsed to the constant value a¿o to verify the constraint.

5 (after some possible collapses of redundant instances)

334 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

Primitives
and

symbols

a b
K C
e d

7 (bvs d"a "1 ' "12

((38)0.1}) '
((10 : 10)0-1} j

' ((42)0 .1))

= ((3 3 3 3)O,i}

SISl(v7)
SIsl(vn)

((3 4)0,1} }

((5 10)0-1})
((1010)0.1}) ' ' ' • '
((3 1)0,1} }

((2 2 2)0-1} (!){i,2}
((2 2 2)0-1}

Fig. 8.7 An example of string (and associated pattern) recognized by the ARE R-¿ and the
set of star instances obtained during its parsing by the RE R-¿.

1st cycle of instance v\^ = 2 in
2nd cycle of instance v\s = 2 in

1
1

v\
5
6

^5

3
8

vr
3
4

0
1
1
-1

5
10

Fig. 8.8 Verification of the constraint v\\ = vi + ^5 — vj through the matrix product
A • X — B (the top row of the displayed matrices A and B is just for labeling purposes).

When the housing ancestor of all the star variables in /¿ coincides with vc or all
the housing ancestors are related by strict equality, the constraint is tested on all the
actual instances of vt-

ep. To this end, these instances are arranged in a column vector B,
whereas the corresponding instances of the involved independent variables are orderly
put as columns in a matrix A, together with an all-l's column associated with the
constant term of the equation (see the procedure build-system-matrix). Then, it suffices
to test A, • X = B, where X is the vector of coefficients in the right hand side of the
equation /¿. The cost of the linear system construction and test is of 0(|V| • I(SIS(V))).
If all the linear relations in C are satisfied in this way, then the bounds in B are checked
on the actual instances of the corresponding independent star variables, until one of
them is violated or all of them are successfully tested.

8:4. String recognition through AREs • • 335

In the following pages, Algorithm 8.5 and their principal subprograms
(determine-housing-ancestor-and-instances, equal-instances and build-system-matrix}
are displayed. Note that equal-instances is a recursive function.

Consider the example of Fig. 8.7, where a string Si € L(Ri) and a pattern described
by it are shown; the ARE R-i = (/?2, V2,7^,(£2,#2)) has been defined in Section 8.3.
Given the constraints Ci = (£2, #2) and the set of star instances displayed, which
results from parsing s\ by R2, Algorithm 8.5 would set Ui3 as housed descendent of the
root node r, and the rest of star variables in V¿ as housed descendents of ^13. In the
two main loops of the algorithm, the six constraints in £2 and the seven bounds in B<i
would be checked, respectively. The first linear relation, v\\ = v\ + v$ — VT, would lead
to the successful test of the system A • X = B shown in Fig. 8.8. The rest of constraints
in £2 would be-verified similarly, and, the satisfaction of the. bounds in #2,,would also
be confirmed. Hence, the string Si of Fig. 8.7 would be accepted by Algorithm 8.5 as
belonging to L(Ri}.

Now, let us discuss the complexity of Algorithm 8.5. The initialization step
and the test of the bounds B have both a cost of 0(|V| • 1(SIS(V}}}. The global
cost of all the calls to the procedure determine-housing-ancestor-and-instances is
0(\V\-height(T)-I(SIs(V))), since at most one call for each star variable is performed,
whereas the cost of all the calls to the procedure build-system-matrix and the function
test-linear-system in the test of the relations £ is 0(|£| • \V\ • I(SIS(V))). Finally,
the global cost of all the calls to the function equal-instances, in the worst-case sense,
is 0(|£| • |V| • height(T) • I (S I S (V)) } , where the two former factors result from the
number of calls to the function in the main loop of Algorithm 8.5, and the two latter
factors come from the worst-case cost of the runs of the function test-vector-equality
that may be carried out within a recursive chain of calls to equal-instances. Hence, the
time complexity of Algorithm 8.5 is the sum of the above costs, of which the last one,
0(|£| • \V\ • height(T) • 7(S7S(V))), is the maximum (for a non-empty £). On the other
hand, the space complexity is 0(\V\ • I (S I S (V })) , which is related to the size of the set
of star instances SIS(V),

If the function equal-instances were applied to each pair of star variables in V
and the results stored prior to the test of £, then the theoretical time complexity of
Algorithm 8.5 might be somewhat dismimshedO((\£\ + \V\+height(T))-\V\-I(SIs(V)})
= 0(| V|2 • I(SIS(V))), at the expense of introducing a storage requirement of 0(|V|2).
However, it is not clear whether this modification would improve or impair the average
running time of the algorithm, and therefore, some empirical evidence of its benefits
should be demonstrated.

336 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

ALGORITHM 8.5: Evaluates the predicate satisfies(SIs(V),C), where C = (£,£).

Inputs:

V is a set of star variables, that includes, for each variable, the
address of the corresponding node in the star tree T\

' T is a star tree containing the variables in V as nodes;
SI is a' set of star instances SIS(V] resulting from parsing a

string s by the RE from which V and T have been built;
£ is a set of nd linear relations among the star variables in V;
B is a set of ni bounds defined on V;

Outputs:

satis f y-constraints is a boolean value that will be TRUE if 5/s(V) satisfies (£,#)
and FALSE otherwise;

begin_algorithm

{ Initialization step }

nstrings := 1; A5/[l] := SI] { the set 51 is placed in the first position of an array of
. sets of star instances ASI just for compatibility with the arguments of the functions

determine_housing_ancestor_and jnstances and sum_of Jnstance_values }

for k := 1 to \V\ do

housing .ancestor-O f ,node[k] := —1; { marks that the housing ancestor of the star
variable Vk has not been computed yet }

node := startree_node_with_given_identifier (T, V, &);

if nsons.of (T, node] > 0 then

ninstances-of-housed..descendents[k] :— sum_ofJnstance_values (ASI,nstrings,k);
{ computes the sum of the values of all the actual instances in SIs(vk} }

encLif

end _for

ninstances-of-housed-descendents[Q] := nstrings; { for the root node (identified by 0) }

{ Check the set of linear relations £ }

resetJist(£); satis f y-constraints :=TRUE;

while satis f y-constraints and not end_oOist(£) do { check a constraint /,• }

< vdep-id,rightJiand_side >:= get_current_element(£);

X := rightJiand-side.coefficients;

list-of-indep_variables := right Ji.and-side.independent-variables\

common Jiousing-anc-id := deepest ..common-ancestor (T,V,vdepJd,
list-ofJndep-variables};

8.4. String recognition through AREs "•• 337

if housing ..ancestor .o / -node [vdepJd] < Q then

node := startree_node_with_givenJdentifier (T, V, vdepJd);

determineJiousing_ancestor_and Jnstances (T, node, vdepJd, ASI, nstrings,
common Jiousing.anc.id, ancJd, instances[vdep.id]); { returns ancJd,
the identifier of the housing ancestor of node, and instances[vdep.id], the
values of the instances of vvdepJd derived from the instances of vanc ,-<f in
¿S 1(1]}

housing .ancestor -o f .node [vdepJd] := ancJd;

endJf

if number_of_actualJnstances (instances[vdep.id\) > 0 then

exists. common Jiousing .ancestor := TRUE;

if housing. ancestor. of .node [vdepJd] ^ common Jiousing jane .id then

exists.commonJiousing. ancestor := FALSE;

end_if

resetJist (list.of.indep.variables)\

while satisfy. constraints and not enà.oïJist(list.of.indep.variables') do

v.id := get .current .element (list.of.indep.variables);
if housing .ancestor. o f .node [v.id] < 0 then

node := startree_node_with_given Jdentifier (T, V, vJd);
determine_housing_ancestor_and Jnstances (T, node, v.id, ASI, nstrings,

common Jiousing. anc.id, anc-id, instances[v.id]);
{ returns anc.id, the identifier of the housing ancestor of node,
and instances[v.id], the values of the instances of vv_i¿ derived
from the instances of vanc_i¿ in A5/[l] }

housing. ancestor. o f .node [v.id] := anc.id;
endJf
if housing .ancestor. o f .node [v.id] ^ common Jiousing. anc.id then

• exists-common Jiousing. ancestor := FALSE;
endJf
if not exists.commonJiousing.ancestor then

hi := housing. ancestor. o f .node [vdepJd];
hj := housing. ancestor. o f .node [v.id]',
if not equal Jnstances (hi, hj, ASI, nstrings, T, V,

ninstances.of-housed-descendents, housing. ancestor. o f .node,
instances) then

satisfy. constraints := FALSE;
end_if

endJf

end-while

338 Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

if satis f y .constraints then

anc.id := housing -ancestor _o /-node [vdep-id];
row.max-number := ninstances-0 f-housed -descendents [anc-id];
column-number := length(/zsi_o/-indep-variables) + 1;
build_system_matrix (vdepjid, list-of-indep.variables, instances,

row-max-number, column jnumber, r owjactual.number, B, A);
{ vector B is given by the actual instances of vvdepjd, and the system
matrix A is given by the star instances of the independent variables
in the r.h.s. of the linear equation, after removing the rows corre-
sponding to dummy instances of vvdep_i¿ }

satis f y-constraints := test Jinear .system (A, X, B, r owMctual-number,
column-number);

encLif

end_if

move-to _next_element(£);

end .while

{ satis f y-constraints = satisfies(SIs(V),£) }

{ Check the set of bounds B, if satisfies(SIs(V),C) }

resetJist(#);

while satis f y-constraints and not end_of Jist(#) do { check a bound bj : Vjnd > GJ }

< vind-id, lower-bound >:= get_current_element($);
satis f y-constraints '.= test .lower-bound0 (ASI, nstrings, vindJd, lower .bound);
move.to jnext_element(#);

end-while

{ satis f y-constraints = satisfies(SIs(V),C) }

end_algorithm

8.4. String recognition through AREs 339

procedure determine-housing-ancestor-and-instances (T, son, son-id,
ASI, number j) j-strings, defaultJiousing-ancJd, ancJid, insi)

input arguments:
T is the star tree containing the variables in V as nodes;
son is a node of the star tree T;
son-id is the integer identifier of son;
ASI is an array of sets of star instances of the variables in V;
number .o f ^strings is the size of the array ASI',
default-housing-anc-id is the identifier of a node of T to be chosen as housing

ancestor of son when its nearer ancestors are degenerated;
output arguments:

anc-id is the node identifier of the housing ancestor of son;
inst is a vector containing the values of the "non-redundant" instances

of the star variable vson_j¿i throughout the array ASI;

begin

node := son; node-id := son-id;
current-ancestor := father_of (T, node);
ancJd := node Jdentifier_of (current-ancestor);
current-ancestor-is-father :=TRVE;
found :=FALSE;

while not found do ,

redundancy :=TRUE;
i := 1; i-prime :— 1;

6

for n := 1 to number jo f-strings do

nlists := number.ofJists (ASI[n], node-id);

for j :=• 1 to nlists do
nelements :— number.oLelements (ASI[n],nodeJd,j);
still -no -actual -instance -in Jist :=TRUE;
common-value := —1;
for k :— 1 to nelements do

{ j and k successively point to the instances of vnodejd in ASI[n] }
value := read_value_of_star jnstance (ASI[n],nodeJd,j,k);
{ determine the corresponding value in the vector inst }
if current-ancestor-is-father then

inst-value := value; { the assigned value comes directly
from ASI[n][sonJd] }

340 • Chapter 8. AREs: a formalism to describe and recognize a class of CSLs

else { current ancestor is not the father of son)
if value > 0 then

{ find the common value of the instances of vsonj¿ derived
from this instance of vnode_id }

inst-value := — 1;
for e := 1 to value do

if inst.value < 0 and inst-backup[i.prime] > 0 then
inst.value := inst.backup[i aprime];

end_if
i-prime := i-prime + 1;

end_for
else { no instance of vson_id is derived }

inst.value := — 1;
endJf - , . . ,

end_if
msi[z] := inst.value;
i := i + 1;
{ check the redundancy of the instances for the current list }
if still ..no ̂ actual .instance J,n Jist then

if instjualue > 0 then
still .no .actual .instance -in Jist :—FALSE;
common-value, := inst-value;

endJf
else {already found an actual instance in current list}

if inst-value > 0 and instjualue ^ common-value then
redundancy :=FALSE;

endJf
end_if

end_for
end_for

end_for

if redundancy and anc.id jí de fault -housing _ancJc? then
{ the current ancestor is degenerated }

copy .integer-vector (inst, inst -backup, i — 1);

node := cur rent.ancestor; node.id := node_identifier_of (node);

cur rent.ancestor := father_of (T, node);

anc.id := nodeJdentifier^of (current-ancestor);
current-ancestor Js-father :=FALSE;

else { the housing ancestor of son has been determined }

found :=TRUE;
end_if

end_while

end_procedure

8.4. String recognition through AREs ; 341

function equal-instances (left-vid, right-vid, ASI, numbers f-strings, T, V,
ninstances-of-housed-descendents, housing-ancestor ,o f-node, instances)
returns boolean

input arguments:

left-vid and right-vid are the identifiers of two nodes of the star tree T
(maybe the same);

ASI is an array of sets of star instances (of V);
numberjof ^strings is the size of the array ASI;
T is the star tree containing the variables in V as nodes;
V is the set of star variables whose instances are in ASI;

ninstances-o f .housed-descendents is an array that stores this number
for each father node in T;

input/output arguments: -

housing .ancestor-O f-node is an array containing the identifiers of the housing
ancestors of each star variable;

instances is an array containing the values of the "non-redundant"
instances of each star variable throughout the array ASI;

returned value:
TRUE if left-vid = right-vid or there is a strict equality between the instances

of the star variables vieft_vi¿ and vright_v¡d throughout the array ASI, and
FALSE otherwise;

begin

if left-vid = right-vid then result :=TRUE;

else

if (left-vid = 0 A right-vid ^ 0) V (left-vid ¿ 0 A right.vid = 0) then

result :=FALSE;

else

if housing-ancestor-O f -node [left-vid] < 0 then

node :— startree_node_with_givenJdentifier (T,V,left-vid);

determine_housing_ancestor_andJnstances (T, node, left-vid, ASI,
number jo f -strings, 0, left-anc-id, instances[left-vid});

housing-ancestor-o f-node [left-vid] := left-anc.id;

end_if
if housing-ancestor .o f-node [right -vid] < 0 then

node := startree_node_with_givenidentifier (T, V, right.vid);

determine_housing_ancestor_andJnstances (T, node, right-vid, ASI,
number-o f-strings, 0, right janc-id, instances[right-vid});

housing-ancestor-o f-node [right-vid] := right-ancJd;

end_if

342' Chapter 8. AREs: a formalism to describe, and recognize' a class of CSLs

hi := housing-ancestor-O f-node [left.vid];
hr :— housing-ancestor .of .node [right juid];
if equal .instances (hl,hr, ASI, number j) f .string s, T, V,

ninstances-O f -housed-descendents, housing.ancestor _o /-node, instances)
then

dimension := ninstances.of-housed-descendents[hl\;

result := test .vector .equality (instances[left.vid],instances[right-vid],
dimension);

else

result —FALSE;

end .if

end_if

end_if

return result;

end-function

procedure build-system.matrix (star-id, list-o f-indep-star-variables, instances,
row-max ̂ number, column jmaxjnumber, r owMctual.number, B, A)

input arguments:

is the identifier of a star variable;
is a list of identifiers of star variables (u¿);
is an array containing the values of the
"non-redundant" instances of each star variable;
is the size of the array instances[star-id]
and of each of the arrays instances[k] for all
the Vk in list.of -indep-star-variables;
is the number of columns in the returned matrix A,
which is length(list-O f-indep-star-variables) + 1;

star-id
list.o f'.indep-star -variables
instances

row-max-number

col .max-number

output arguments:

row-actual-number

B

A

is the number of rows in the returned matrix A
and the number of elements in the returned vector B;
is a vector which contains the values of the "non-redundant"
actual instances of the star variable vstarjd;
is a matrix with a column of 1's and some more columns
containing the instances of the star variables Vk in the
given list-of-indep-star-variables;

8.4. String recognition through AREs 343

begin { of build-system.matrix }

nrow := 0;

for i := 1 to row.max.number do

value := instances[star-id][i];

{ for each actual instance of star variable vatarjd write the corresponding row of
instance values of the independent variables }

if value > 0 then

nrow := nrow + 1;

B[nrow] := value;

A[nrow, 1] := 1;

reset-list (list.o j.indepMar.variables);

for j := 2 to column.max.number do

k :— get .current .element (list .o f .indep^star .variables);

value := instances[k][i];

if value < 0 then

value :— 0; {convert dummy instances into zero-valued instances}

end jf

A[nrow,j] :=• value;

move.tojiext.element (list.of.indep^tar.variables);

end_for

end jf

end _for

row.actual.number := nrow;

end-procedure

