
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Llenguatge i Sistemes Informàtics
Ph.D. Programme: Artificial Intelligence

SYMBOLIC AND CONNECTIONIST

LEARNING TECHNIQUES FOR
GRAMMATICAL INFERENCE

Autor: René Alquézar Mancho
Director: Alberto Sanfeliu Cortés

March 1997

Chapter 9

Inductive inference of augmented
regular expressions

As can be seen in the review of GI methods presented in the first part of this thesis, most
of the GI research has been devoted to the theory and methods for learning regular and
context-free languages (and the associated types of grammars and automata). On the
contrary, work on learning of context-sensitive languages (CSLs) has been extremely
scarce in the literature of GI and there is a lack of methods to infer context-sensitive
grammars (CSGs). Nevertheless, there is a need for GI methods capable of inferring
CSLs, specially for pattern recognition tasks in computer vision, where objects usually
contain (Structural relationships that are not describable by CFLs.

In Chapter 3, two isolated works that referred to the matter of CSL learning have
been recalled: an old paper by Chou and Fu on the inference of ATNs [ChFu:76], and
a rather recent paper by Takada on the inference of a hierarchy of controlled grammars
[Taka:94]. In the former, twenty years ago, a semi-automated heuristic procedure was
described that relied on the availability of a teacher providing a-priori knowledge of
the target grammar in the form of transformational rules; however, no other work on
ATN learning has been reported since then (as far as I know). In the latter, a hierarchy
of language families that includes the class of ELLs and is properly contained in the
class of CSLs was defined for which RGI algorithms can be used; however, the subclass
of CSLs learnable by this approach seems to be rather restricted and does not cover
most of the typical context-sensitive structures associated with most objects in pattern
recognition problems, such as symmetries, relative sizes of different parts, or contour
closing restrictions.

On the other hand, the augmented regular expressions (AREs) defined in the
previous chapter represent a non-trivial subclass of CSLs that can describe these kind

345

346 Chapter 9. Inductive inference of augmented regular expressions

of context-sensitive structures, and moreover, their parsing is rather efficient to the
contrary of CSGs. Hence, learning AREs from examples, which is the topic addressed
in this chapter, is an interesting challenge both for theoretical and practical purposes.
In principle, it is reasonable to expect that the problem of inferring AREs be not so
hard as the problem of inferring general CSGs from string examples.

An ARE permits to describe a CSL by including a set of constraints that reduce
the extension of an underlying regular language (see Fig. 9.1). This property can
be exploited to face the problem of learning AREs. Thus, a general approach to
infer AREs from string examples is presented in this chapter, that is based on a RGI
step followed by an inductive process which tries to discover the maximal number
of constraints. This approach, which has been reported in a communication to the
ICPR'96-conference held-in Vienna (Austria) [AlSa:96]i avoids the difficulty of learning
CSGs for inferring some CSL acceptors. Indeed, two general methods are described
depending on whether only positive or both positive and negative examples are given.
An algorithm that carries out the step of constraint induction in low-polynomial time
is also described, which is applied in both cases. Then, a specific method for learning
AREs can be obtained simply by selecting for the former step an RGI algorithm that
yields a regular expression.

As an example, a specific method to infer AREs from positive strings is also
presented in this chapter, in which the RGI step is carried out by training a second-order
ASLRNN for the next-symbol prediction task, extracting afterwards a DFA from the
trained network, and finding finally an equivalent RE. This particular method has been
implemented and tested using a set of eight target CSLs associated with ideal models of
real patterns. The experimental results obtained, which have also been reported in the
recent ICGF96 colloquium held in Montpellier (France) [A1SC:96], show the feasibility
of the proposed approach for learning CSLs.

9.1 A general approach to infer AREs from string
examples

Two different statements of the problem of learning AREs from examples can be given.
A strong statement concerns the identification problem: given a complete presentation
of a CSL L over E described by un unknown target ARE RT — (Ri-, VT,TT,CT},
identify RX, or at least an equivalent ARE R'T describing L, in finite time, using the
presented examples (and maybe some other information about RT or L, if available).
An algorithm that solved this problem for every complete presentation of every CSL
represented by an ARE would identify in the limit the subclass of CSLs described by
AREs. A weaker statement concerns data compatibility: given a sample (S+,S~) of

9.1. A general approach to infer AREs from string examples 347

an unknown language L over S, infer an ARE R — (R, V, T,C) such that S+ Ç L(R),
S~ (~]L(R) = 0, and R is selected through some heurístic bias. The methods presented
in this chapter approach this second statement of the ARE learning problem, but some
aspects related to the identification problem are also discussed in this section.

A possible ARE learning approach is to split the inductive inference in two main
stages: inferring the underlying RE R, and afterwards, inducing the constraints C to
be included in the inferred ARE. A nice property of this approach is expressed in the
following theorem.

Theorem 9.1. Let A be an ARE learning algorithm consisting of an RGI method
AR that returns a regular expression, followed by a constraint induction method AC-
Let .us assume that the method AC always1 uses'the RE inferred by -An -and-finds'the •
maximal number of linear relations and the largest lower bounds on the associated star
variables, that are satisfied by every string in a positive sample. For every target ARE
RT = (RT,VT,TT,CT), where CT = (£T,BT), if AR identifies the RE RT in the limit,
then A identifies the ARE RT in the limit.

Proof. If the target underlying RE RT is identified at some time step <j, all the
AREs proposed by A from this time step in a sequential presentation of strings will
belong to-the set of AREs with RT as underlying RE. After ¿i, AC will obtain the
maximal number of linear relations £ defined over VT that are satisfied by the star
instances resulting from parsing by RT each of the strings in the positive sample of
L(RT) seen so far. If this sample is large enough, some actual instances will have been
recorded for each one of the dependent star variables determined by CT, and therefore,
all the relations in CT will be reflected in the inferred set £, i.e. £ D £y. For each
relation in C but not in CT, a positive string 5, such that SIs(Vr) does not satisfy this
relation, will eventually be provided in a positive or a complete presentation of L(ET).
Hence, the sequence of sets £ proposed after ti must necessarily converge to CT- Once
LT is identified at some time step ti > t\, the subset of independent star variables in
VT is correctly determined, and Ac will return a set of bounds B that will contain, for
each of these variables, the minimal instance value found in the positive sample seen
so far. If any of the lower bounds in B, say v j > ¿^ is greater than the corresponding
one in BT, Vj > GJ, i.e. c1- > Cj, a positive string giving rise to an actual instance of Vj
with value GJ will eventually be given in a positive or a complete presentation of L(ET),
and thus, the sequence of sets B proposed after ¿2 must necessarily converge to BT-
In summary, if the sequence of REs proposed by AR converges to RT, the sequence of
sets of constraints proposed by Ac will converge to CT = (£j,<Br), and therefore, the
target ARE RT = (RT, VT,TT,CT) will be identified in the limit, ü

The constraint induction method Ac of Theorem 9.1 always infers the ARE that
describes the smallest language containing the given positive sample among those ARE

348 Chapter 9. Inductive inference of augmented regular expressions

with the same underlying RE. This is obvious, since the larger the number of dependent
star variables, the smaller the extension of the language described by the ARE, and for a
fixed set of independent star variables, the larger the lower bounds on these variables,
the smaller the extension of the represented language. Angluin demonstrated that,
for some non-superfinite classes of formal languages, if the learning algorithm always
proposes the smallest language in the class (in the sense of set containment) that
covers a positive sample, then that class of languages can be identified in the limit
from only positive presentation [Angl:80a,AnSm:83]. Something similar occurs in the
case of Theorem 9.1: provided that RT is identified previously, the target R? can be
identified in the limit within the set of AREs with RT as underlying RE by Ac from
the presentation of the strings in L(Rx).

Unfortunately, Theorem- .9.1 does not help much in practice, since it is not clear at
all how can the underlying RE RT be identified. What is well known is that it cannot be
identified from a positive presentation of L(R-j-} or L(Rj}. A minimal DFA for L(RT]
could be identified in the limit from a complete presentation of L(RT) [OnGa:92],
but not from a complete presentation of L(RT). Even if the minimal DFA accepting
L(RT) were determined, it would remain the problem of finding RT in the set of REs
equivalent to that DFA.

Hence, a significant drawback of the preceding two-stage approach concerns how to
determine the input data to be supplied to the RGI method. Let (S+, S~] be a given
sample of a target language L(R). In order to learn the underlying RE R, or at least
some equivalent RE, we should be able firstly to partition the negative sample S~ in the
two subsets SQ and (S~ — 5¿"), characterized by Sor\L(R) — 0 and (S~ — 5¿") Ç L(R)>
where SQ is the correct negative sample for the RGI step. *

Fig. 9.1 displays the situation for a target ARE R with k constraints: starting with
the language described by the underlying RE, each time an additional constraint of the
ARE is imposed the extension of the represented language disminishes up to reach the
target language, and some of the negative examples can be due to the insatisfaction of
one or more constraints. Thus, unless a teacher is available to partition the negative
examples and determine S$ correctly, or it is guaranteed that S~ — S$, it is not proper
to supply the negative examples to the RGI method, since typically, an overfitting of
the positive examples will occur. Consequently, a heuristic method based only on the
positive examples may be preferred in sorrie cases for the regular inference step. In fact,
two different general methods for inferring AREs, which rely on an RGI technique for
the inference of the underlying RE, are presented next for the two distinct cases of
knowing or ignoring the part of the sample that must be supplied in the RGI step.

If only positive examples S+ are given, or if it is known which part of the negative
sample corresponds to SQ , then the learning process depicted in Fig. 9.2 may be applied.
In the first case (only positive examples), either a heuristic or a characterizable method

-rS ,",í i - •
,pV¡ ÍÍHCÁvr-fí < kj*;, ¿¿o í,-í, j¡(¿! <•>

9. J. A general approach to infer AREs f rom" siring'examples 349

Fig. 9.1 Representation of the languages involved in the ARE learning problem.

can be selected for the RGI step. In the second case, the use of an RGI algorithm with
the identification in the limit property (e.g. the RPNI algorithm [OnGa:92]) may be
preferred. In both cases, if the RGI algorithm returns an FSA, which is the usual case,
an FSA-to-RE mapping has to be applied to yield an RE, and the one described in
Section 8.1 is recommended. Anyway, the RGI procedure must return an unambiguous
RE R, and optionally, it may also yield an FSA A, whenever R has been obtained from

«A. Note that the identification in the limit of the minimal DFA of the regular language
described by a target RE does not imply the identification in the limit of this RE, and
therefore, even if the RPNI algorithm is used in the RGI step, this does not guarantee
the identification in the limit of the target ARE by the global method.

Once an RE R is inferred, the associated star variables V and star tree T are
easily determined using Algorithm 8.2. Then, an array of star instances ASI is built
containing the information recorded from parsing all the positive examples by R. The
efficiency of this parsing step is improved if a DFA A equivalent to R is available
from the RGI step (remember Section 8.4.1). Finally, the gathered star instances are
analysed to induce the set of constraints C = (£, B) of the inferred ARE R, which
includes the maximal number of linear relations and the largest lower bounds satisfied
by ASI. Thus, the constraint induction method Ac of Theorem 9.1 is actually split
in the tasks of building the star tree, parsing a set of example strings, and inferring as
many constraints as possible from the collected star instances.

However, in the most general case, a sample 5" = (5+, S~} may be given such that

350 Chapter 9. Inductive inference of augmented regular expressions

-»• S

-a-A ---->
Parsing

A - -

R -=»
Star tree

construction

•* v -

> -x* /

by

R

\

Èr-

r
< R , v , T . c > = R

Fig. 9.2 ... Block diagram of a general method to learn AREs from positive examples
(and maybe negative examples of the underlying regular language).

Parsing

„ +

-^
Star tree

construction

^V¡-

~ 7 Í

->•
by

-ASI:

É

Vj-

7Í-

C:

Parsing

S"

by ,

ARE

R ;

. C, > .= R¡

Fig.. 9.3 Block diagram of a general method to learn AREs from
positive and negative examples.

SQ is not known. Then, some strategy must be adopted to cope with the negative
examples. A possible general method that ensures the data compatibility of the
inferred ARE is depicted in Fig. 9.3. Initially, an ARE is inferred from just the
positive examples, and if it accepts some string in S~, then the RGI step is run again
incorporating the conflictive negative examples. Several such cycles may be required to
infer a consistent ARE, and in the worst case, all the negative sample would be supplied
to the RGI method at the last cycle. In that case, the aforementioned overfitting
behavior could arise, but the consistency of the -inferred ARE with the given sample
would be guaranteed.

9.1. A general approach íó;infer AREs from'siring1 examples 351

Projective view

Primitives

— a

/ b

I . c

\ d

s- n
(16 ex.)

S"
(48 ex.)

Sample data: S = (S *S 5

aaaaacccbdccccaaaaaccccbdccc

Regular Expression

a(a*cc*bdcc*a)*a*cc*bdcc*

Induction of

constraints

a(avlccv2bdccv3a)v4av5ccv%.dccv7

with

Regular

Active Grammatical Inference (AGI)

method

Deterministic FSAAugmented Regular Expression

Fig. 9.4 A case of inference of an ARE from string examples.

Let us illustrate the ARE learning method depicted in Fig. 9.2 by using an actual
example that is shown in Fig. 9.4. The problem was to learn a recognizer for the
class of contours coming from a frontal view of variable-size cylinders with a fixed-size
dent at a variable position along the axis. It is clear that the associated language is
context-sensitive, and hence, we cannot expect that an RGI or a CFGI algorithm infers
a suitable recognizer. Nevertheless, an adequate description like amcnbdcpamcpbdcn

should be reachable from a few examples. In fact, the ARE learning method is a rather
straightforward approach for inferring syntactic descriptions of this kind from examples.
In the case of Fig. 9.4, a sample 5 = (5+, 5~) of 16 positive and 48 negative examples
was given, corresponding to some variable-size instances of the contours shown in
the top of the figure. Assuming S~ = SQ , the active grammatical inference method
described in Chapter 7 was applied to the entire S, and the DFA displayed in Fig. 9.4
was obtained. This DFA accounts for the basic repetitive structure of the model, but it
over-generalizes a lot, accepting many invalid contours without any length restriction.
From this DFA, an equivalent RE R = a(a*cc*bdcc*a)*a*cc*bdcc* was obtained as base
of the ARE by applying the FSA-to-RE mapping explained in Section 8.1. Finally,
from the automatic analysis of the star instances produced by parsing the positive
examples by the RE, a set of constraints could be induced that, in conjunction with
the RE, perfectly described the target language. The algorithm used for constraint
induction is described in the following section.

352 Chapter 9. Inductive inference of augmented regular expressions

It is worthwhile to point that, without the proposed modification of Arden's
method, the application of Algorithm 8.1 to the DFA of Fig. 9.4 leads to the RE
R = a(a + cc*bdcc*a)*cc*bdcc*, from which not all the constraints required to describe
the target pattern class are inferrable. On the other hand, although R could be further
transformed into the more intuitive description R" — aa*cc*bdcc*(aa*cc*bdcc*)* by
using some RE equivalence rules (Eqs.(2.13) and (2.10)), the inferred R is good enough
as underlying RE to allow the inference of all the contextual constraints involved in
the modelled patterns.

In the preceding example, a single cycle of RE inference and constraint induction
was enough to obtain an ARE consistent with the given sample, because all the negative
examples were forced to be rejected by the underlying RE. As commented before, this
is..not an adequate, strategy in general, because, some of the negative examples might
belong indeed to the language described by the unknown target RE. In such a case, it
would be helpful to have available an informant who partitioned the negative sample
in the two subsets of strings to be accepted and rejected respectively by the underlying
RE, but this is a rather unrealistic learning condition.

Therefore, several cycles (each yielding a tentative ARE) may be required to reach
a consistent ARE, according to the process displayed in Fig. 9.3. Algorithm 9.1 is given
to implement the ARE learning method sketched in Fig. 9.3, which always infers a data
compatible ARE, but trying to minimize the number of negative strings supplied in
the RGI step, with the aim of promoting the maximal generalization of the positive
sample by the underlying RE. It can be seen that Algorithm 9.1 uses all the algorithms
described in Chapter 8, together with Algorithm 9.2, which is the constraint induction
method that will be explained in Section 9.2. °

It must be remembered that a wide range of symbolic and connectionist techniques
is available to select an RGI algorithm ARQI for the RGI step in Algorithm 9.1
[Greg:94]. This must not be interpreted, however, as if the choice of the RGI method
were irrelevant. On the contrary, the implicit or explicit biases of the selected method
may help or not to reach a "suitable" regular expression that allows the discovery of
the target context constraints. Moreover, in order to apply the RE parsing methods
of Chapter 8, it is mandatory that an unambiguous RE be inferred in the RGI step.
This unambiguous RE may be obtained directly by ÁRGI or computed from an inferred
DFA using the FSA-to-RE mapping of Section 8.1. The method used for parsing the
strings by the inferred RE will also depend on whether the FSA-to-RE transformation
is performed or not in the RGI step.

' '!-:*;•% „. (...I

9.1. A general approach to'infer'ÀREs from èïríagtexamples 353

ALGORITHM 9.1: Infers an ARE consistent with a given learning sample.
Inputs:

5 = (5+, S~) is a sample of an unknown language L over an alphabet S;
ARGI is an RGI algorithm that guarantees the inference of a DFA or

an unambiguous RE that is consistent with the examples
supplied in the RGI step;

RGI-provides-RE is a boolean parameter whose value is TRUE whenever ARGI
directly infers an RE and FALSE otherwise (ARGI returns a DFA);

Outputs:

R = (R,V,T,C] is the inferred ARE, where
R is the underlying RE inferred by the RGI step;
V is the set of star variables associated with R;

""'•""-"T1 ' ' " ' ' . ' , i s the star tree associated with 7?; ' ' ' . . , ' .
C = (C,B) . is the set of induced constraints, where
£ is a set of linear relations among the star variables in V;
B is a set of lower bounds defined on the star variables that are

considered independent in £;

begin_algorithm

SQ '•= 0> { set UP the negative sample for the RGI step }

repeat { an ARE inference until an ARE consistent with S = (S+,S~) is obtained }

if RGI .provides-RE then

R := ARGI($+, SQ); { apply the RGI algorithm returning an RE }

else 0

A := ARGI(S+, SQ); { apply the RGI algorithm returning a DFA }
n := number_ofjstates (A);

modified_Algorithm_8.1 (A, n, R'-, Cj, R";, a^-, a^, a™¿, IR'-, ICj, IR'j{);
{ returns the REs ̂ , C¿, #",-, a£,a^-, a£ and the indices IR'{j, ICj, IR'-f
for 0 < j < n - 1, O < i < j }

< R,skelR >:= simplify _equi valent _RE (A, n, R'^Cj); { the "canonical"
RE R = ijj(A) and its skeleton skelR are obtained from the REs CQ and
RÍJ = R'ijCj, for 1 < j < n - 1, O < i < j }

end_if
{ L(R) D 5+ and L(R) n SQ = 0 }

< V, T >:= Algorithm_8.2 (R); { returns the set of star variables V and the star
tree T associated with R}

k := 0; resetJist(5'+); { S+ is considered as a list of strings }
while not end_oOst(5+) do

s := get .current _element (S+~); { where s is a string over S }

354 Chapter 9. Inductive inference of augmented regular expressions

if RG I -provides -RE then
< parsed, SI >:- 'Algorithm_8.3 (R, V, T, s); { parse s by RE R }

else '
< parsed, SI >:= Algorithm_8.4 (A, n, R, skelR, R'-, C j, R'^, a£, a£, a£,

IR'ijJCjJR'-nViTts); { parse 5 by RE R using the equivalent
DFA}

end_if
{ parsed = TRUE, since s € L(K) }
k := k + l;
ASI[k] := SI] { store the star instances resulting from parsing s }
move_to_next_element(5'+);

end-while
number -positive-examples := k;

' "< £,B,nd >:= Algorithm_9.2 (V,T, ASI, number jjositive-examples); { infers £,
a set of nd linear relations, and B, a set of lower bounds, both satisfied by ASI}

R := (R, V, T, (£,£?)); { construct the inferred ARE from its components }
{ L(R) D 5+ and L(R) n 50~ = 0 }

consistent-ARE := TRUE;
Sç := S~ — SQ; { Sç contains the negative examples not used in the RGI step }
reset_list(5£); { 5^ is considered as a list of strings }
•while not end_ofJist(5¿) do { check the consistency of R }

s := get .current .element (•$£); { where s is a string over S }
if RGI -provides .RE then

< parsed, SI >:= Algorithm_8.3 (R, V, T, s); { parse s by RE R }
< else

< parsed, SI >:- Algorithm.8.4 (A, n, R, skelR, R'^, Cj, R'^, a^,a^,a^,
IR'ij,ICj,IR"i,V,T,s}\ { parse s by RE R using the equivalent
DFA}

end_if
if parsed then

satis f y -constraints := Algorithm_8.5 (F, T, SI,C,B};
if satis f y -constraints then { s is recognized by the ARE R }

SQ := SQ U {s}; { append s to negative sample for next RGI step

}
consistent-ARE := FALSE; { because L(R) D S~ ¿ 0 }

end_if
end_if
move_to_next_element(S¿;);

end_while
until consistent-ARE;

{ the inferred jR .= (R, V, T, (£, 5)) is consistent with 5 = (S+, S~) }

end_algorithm

9.2. Induction of ARE constraints from recordeu star instances 355

9.2 Induction of ARE constraints from recorded
star instances

Once an RE R has been inferred by the chosen RGI method, and the associated star
variables V and star tree T have been determined by Algorithm 8.2, the aim is to
infer an ARE J? = (R,V,T,(£,B)) such that £ contains the maximal number of
linear relations met by all the provided positive examples and B specifies the largest
lower bounds for the independent star variables. In other words, R should describe the
smallest language L such that L 3 S+ and L is accepted by an ARE with the given R
as underlying RE. The theoretical goodness of this scheme has been shown in Theorem
9.1; if R is the correct RE, it will lead to the correct ARE whenever a sufficiently large

-'number of -positive examples is given.- To this end, firstly, the. positive strings in S+

must be parsed by R (using one of the algorithms presented in Section 8.4.1), thus
giving rise to an array of sets of star instances ASIg+(V).

Algorithm 9.2 implements the desired method for constraint induction, which
returns the maximal set of constraints C = (£,B) satisfied by all the sets of star
instances in ASIs+(V). This is, SIS(V) satisfies C = (£,B) for all s 6 S4", there is no
£' with more equations than C satisfied by SIS(V) for all 5 € 5"+, and there is no B'
satisfied by SIS(V) for all s € S+ such that B' involves the same star variables than
B and for at least one variable the lower bound in B' is greater than in B. Before
describing Algorithm 9.2, let us introduce some required definitions, which are simple
extensions of some counterparts given in Chapter 8.

0

Definition 9.1. Given a star tree T, an array of sets of star instances ASIs+(V)
for a certain set of strings 5+, and two nodes u¿, Vj € V, we say that u¿ is a degenerated
ancestor of Vj for S+ iff

i) Vi is an ancestor of Vj in T, and
ii) for each instance of Vi in ASIs+ (vi), all the values of the instances of v j in ASIs+ (vj}

that are derived from it are constant.

Again, the root r of T is considered, by definition, as a non- degenerated ancestor of any
other node Vj for every set of strings. An alternative valid definition is the following:
Vi is a degenerated ancestor of Vj for S+ iff u,- is a degenerated ancestor of Vj for all

Definition 9.2. Let u¿ € V U {r}, v j (E V; we say that u¿ is the housing ancestor
of Vj for a set of strings S+ iff v¿ is the nearest non-degenerated ancestor of v j for S+ .

Note that the housing ancestor of Vj for 5+ is not necessarily the housing ancestor
of Vj for every string in S+ . The procedure determine.housing-ancestor.and-instances,

356 Chapter 9. Inductive inference of augmented regular expressions

that was described in Section 8.4.2, can be used to find the housing ancestor of a star
variable v j for a set of strings and to form the corresponding vector containing the
non-redundant star instances of Vj.

Algorithm 9.2 is based on establishing a tree of linear systems according to the
housing ancestor concept. Each housing ancestor will have its own partition of
independent and dependent star variables among its housed descendants. To construct
this partition, each ancestor node of T keeps track of its housed descendants that have
been found independent.

Algorithm 9.2 follows the star tree T by levels and, for each star variable Vj,
determines its housing ancestor for S+, say h(vj), forms a vector B with its non-
redundant star instances in ASIs+(V), and tries ̂ to establish a possible linear relation
with respect to the housed descendants of h(vj] previously labeled as "independent".
This is, a linear system A • X — B is built, where matrix A contains the instances
of the independent housed descendants of h(vj). Next, the rank of the matrix A
is evaluated and any linearly dependent column is removed from A. Finally, it is
determined whether the vector B of actual instances of v j is linearly dependent on the
columns of the matrix A. If the system A • X = B has a solution then X contains
the coefficients of a linear relation, and this relation is appended to £.; otherwise, v¡
is put in the list of independent housed descendants of'h(vj), the associated vector B
is stored for further constraint discovery, and the minimal value Cj in B is taken to
establish a bound v j > Cj, which is appended to B.

ALGORITHM 9.2: Induces a set of constraints on the values of the star variables (linear
relations and bounds) that hold among the instances resulting from parsing a set of
strings. .

Inputs:

V is a set of star variables, that includes, for each variable, the
address of the corresponding node in the star tree T;

T is a star tree containing the variables in V as nodes;
ASI is an array of sets of star instances ASIg+(V) that stores the

instances resulting from parsing a set of strings S+ by the RE
from which V and T have been built;

number .of ..strings is the size of the array ASI;
Outputs:

£ is a set of linear relations among the star variables in V,
that comprises all the linear relations satisfied by all the sets
of star instances in ASI;

B is a set of lower bounds defined on the star variables that are
considered independent in £, and which is directly inferred
from the star instances in ASI;

nd is the number of relations in £;

9.2. Induction of ARE constraints from recordeu^st'àr instances 357

begin_algorithm

L := create_emptyJist_of_relations(); { initialize X as an empty set }

B := create_emptyJist_of_bounds(); { initialize B as an empty set }

nd := 0; { initialize the number of linear relations in £ (and dependent star variables) }

maxJevel := depth.oLstartree (T); { this is the level of the deepest node in T }

for / := 0 to maxJevel - 1 do { visit the father nodes of T by levels }

N := startree_nodesJnJevel (T, /);

resetJist(JV); { N is an ordered list with pointers to the nodes in level / of T }

while n o t end_of_list(7V) do •

• * • • " • ' • • fáthér':= g e t .current .element (TV);

father-id := nodeJdentifier.of (father);

number.oj'.indep.housed.descendants [father Jd] := 0;

list .o f .indep-housed.descendants [father-id] := create_emptyJist();

max-number.of.rows.o f system-matrix [father-id] :=
sum.ofJnstance.values (ASI, number jy f .strings, father-id);
{ when father-id = 0 (for the root node), the value returned by the
function is number .of-strings}

for k := 1 to nsons_of (T, father) do

son := k-th_son_of (T, father, k);

son.id := nodeJdentifier.of (son);
', determineJiousing_ancestor_andJnstances (T,son,son.id,ASI,

number.of .strings, 0, ancJd, instances[son.id]);
{ returns anc.id, the identifier of the housing ancestor of son, and
instances[son.id], the values of the instances of vson_id derived from
the instances of vanc_i¿ in ASI }

row-max.number := max.number -o f.rows.o f^system .matrix [anc.id];

' column.max .number :=
• number.o f-indep Jioused.descendants [anc.id] + 1;

build_systemjtnatrix (son-id, list-Of .indep-housedjdescendants[anc-id],
instances, row-max.number, col umnjnax.number, row .actual .number,
B,A); { vector B is given by the actual instances of vson_id, and
the system matrix A is given by the star instances of the independent
housed descendants of vancj¿, after removing the rows corresponding
to dummy instances of vson_i¿ }

if row .actual-number > 0 then

rank A := rank_of _matrix (A, row jactual-number, column jnax.number);

358 Chapter.9. Inductive inference of augmented regular expressions

if rankA < columnjnax-number then
remove_dependent_columnsJromjsystem_matrix (A,rankA,

row-actual-number, column-actual-number, columnsjnask)]
{ matrix A is reduced by removing (in increasing order)
those columns that are a linear combination of the previ-
ous ones, column-actual-number = rankA, and columns.mask
is a binary mask that marks the selected columns }

else
column-actual-number := column-max.number]
columns-mask := fully-marked-mask (columnjnax-number)',

end_if
AB := build_extended_system_matrix (A,B,rowMctual.number,

column-actual-number]; { matrix AB is built by appending
• > . , ' . . : ; . ; . to . matrix A a column with vector B } ,. , , . .*.. .

rankAB := rank_of_matrix (AB, rowjactual-number, •,
column-actual.number + 1);

if rankAB < (column jactual -number + 1) then { the appended
column is a linear combination of the columns of A }
X := solve_linear_system (A, B, row jactual-number, column-actual.

{vector X is obtained by solving A • X — B]
rightJiand-side.coefficients :— X]
right -hand'-side, independent -variables :=

extract .masked Jist (Hst-of-indepJioused-descendants[anc.id],
column-max.number,columnMctual-number,columns-mask)]

right-hand-side := removeJndep_variables_with_coef_zero
(right Jiand-side];

nd := nd + 1; { the number of dependent star variables is
increased and the new constraint is appended to £ }

L := put_elementJn_list_of_relations(£, < son-id, rightJiand-side >);
else { the appended column is linearly independent }

number-o/'-indep-housed.descendants [ancJd] :=
number .o f-indep-housed-descendants [ancjd] + l;

list -O f' -indep Jtoused -descendants [ancJ,d] :— put_element JnJist
(list-0 f-indepJioused-descendants[anc-id], son-id];

low .bound :— find_minimal_value (B, row .actual-number)]
B :=put_elementJnJist_of_bounds(#, < son-id, low-bound >)

end_if

else

B := put_element JnJist_oLbounds (B, < son-id, 0 >);
end_if

end_for
move_tojiext_element(7V);

end-while
end_for
end_algorithm

9.2. Induction of ARE constraints from recorded "star instances 359

The time complexity of Algorithm 9.2 is 0(\V\3-I(ASIS+(V)}), where I(ASIS+(V))
is the maximal number of instances of a star variable yielded by parsing the
set of strings S+. This cost comes from a number of calls of order 0(1^1) to
the functions rank.of-matrix and solveJinear^system, whose worst-case complexity
is 0(| V|2 • I(ASIS+(V))). The rest of processes carried out in Algorithm 9.2
have a lower complexity. Thus, the global cost of all the calls to the procedure
determine-housing.ancestor.and.instances is 0(|y| • height(T) • I(ASIs+ (^)))5 whereas
the cost of all the calls to the procedure build-system.matrix is 0(|V|2 • I(ASIs+(V))).

Let us illustrate the constraint induction method using the set of strings displayed
in Fig. 9.5, that belong to L(R2), where the ARE R2 = (R2, V2, T2, (£2, #2)) was already
defined in Section 8.3 but is recalled herebelow:

=Vi+V5- l>7, Viz = U6,

V2 = V4 - 1, V3 = V4 - 1,

vs — O.Suio + 0.5, v9 = O.Suio + 0.5} and

#2 = {v4 > 2; v6,vio,vï3 > 1; Vi,vs,v7 > 0).

First, the sons of the root node of T2 are processed; in this case, ^13 is the only one
and it is found independent by Algorithm 9.2, since its instances [2 2 3 3]r are not
constant. Then, the sons of vis are visited. It turns out that ^13 is the housing ancestor
of all of its sons. The star variables Vi,v4,v5,v&,vj and vw are successively found
independent. At this point, the instances of vu are stored in vector B to be analysed,
while the matrix A contains the instances of the independent housed descendants of
t>i3 already processed. Fig. 9.6 displays the corresponding linear system. It turns out
that vector B is a linear combination of the columns of A, and solving the system
yields Vu = Vi + v¿ — v7. This constraint is put into £. Then, the last son v\2 is
visited and the second linear relation, v\2 = v6, is obtained similarly. Next, v2 and
t>3, the sons of v4, are processed; Vi3 is determined as their housing ancestor (since
their instances are constant for each instance of ^4), and both are found dependent
according to v2 = v$ — 1, v3 = v4 — I . Finally, v$ and t»g, the sons of VIQ, are also housed
by f is and the analysis of their instances gives rise to the two last linear relations:
v8 = 0. 5^x0 + 0.5, fg = 0.5uio + 0.5. At the end, the inferred set of relations C. coincides
with the target £2 of R2.

On the other hand, the set of bounds inferred from the four strings in Fig. 9.5 is
B = {vi > 1, V4 > 2, t!5 > 1, ve > 5, v-r > 1, VIQ > 1, t>i3 > 2}, which does not
fully coincide with the target set B2. Some more positive examples would be needed
to infer B — B2, since for each independent star variable, an actual instance with the
value given by the lower bound in B2 would be required to induce the corresponding
bound correctly.

360 " Chapter 9. Inductive inference of augmented regular expressions'

52 .=

•S3 =.

= cd3ò3d3ò3d363(/363c2a5cò3(Z363d363a363d363d3c2e5c2dòdòc2a5c36dce5

Fig. 9.5 Four example strings from L(Ri) which lead to the inference of the set £2-

1st
2nd
1st
2nd
1st
2nd
3rd
1st
2nd
3rd

cycle of instance 1^3 = 2 in s\
cycle

cycle of instance ^13 = 2 in ¿2
cycle

cycle of instance vi3 = 3 in s3

cycle
cycle
cycle of instance ^13 = 3 in ¿4
cycle
cycle

-

1
1
1
1
1
1
1
1
1
1

«i
5
6
2
4
2
3
2
1
2
1

«4

4
2
3
2
2
3
3
4
2
2

«5

3
8
4
6
2
4
2
2
2
1

V6

10
10
7
9
8
6
8
5
5
8

V7

3
4
2
5
2
4
2
1
3
1

«10 "
3
1
1
5
3
1
3
5
1
3

X -

vn
5
10
4
5
2
3
2
2
1
1

Fig. 9.6 The linear system A • X = B for the star variable Vu (the top row of the displayed
A and B is just for labeling purposes). The solution is X — [0 1 0 1 0 -1 0]T.

9.3. Experimental assessment of a specific mèttiód for inferring AREs 361

9.3 Experimental assessment of a specific method
for inferring AREs from positive examples

In order to test the general approach proposed in Section 9.1 for inferring AREs
from examples, some specific method based on a selected RGI algorithm had to be
implemented. The first question that affects the selection of a particular method is
to know whether only positive examples or both positive and negative examples are
supplied as learning data. If only positive examples are given, the learning scheme
shown in Fig. 9.2 is applicable, and this simplifies the global process to infer an ARE,
since just one RGI step and one constraint induction step need to be performed for a
training sample. If both positive and negative examples are given, the simple scheme of
Fig. 9.2 can only be applied if.an informant partitions the negative sample properly, and
otherwise, the scheme displayed in Fig. 9.3 (and described in Algorithm 9.1) must be
followed, possibly involving several cycles of RE inference and constraint induction. In
this latter case, the procedure ARGI, which is in charge of the RGI step, should actually
call a different RGI method for the first cycle (when only the positive examples are
taken into account) than for the rest of cycles (when the consistency with a set of both
positive and negative examples is required).

As a consequence, for the sake of simplicity and efficiency in the experimental tests,
it was decided to implement and assess a method for inferring AREs from just positive
examples, following the process depicted in Fig. 9.2 and using an RGI method based
only on a positive sample. Any of the symbolic methods for RGI from a positive
sample reviewed in Section 2.3.1 could have been chosen, but it was preferred«to try an
RNN-based approach for the RGI step, taking profit of the AGI tools that had been
developed and used in the tests reported in Section 6.2.2.

9.3.1 A method for inferring AREs from positive examples

The particular method that .was selected for the regular inference stage consists of three
steps:

i) to train a second-order 2L-ASLRNN (with an antisymmetric logarithm activation
function in the recurrent layer and a sigmoid function in the output layer) for
the next-symbol prediction task from the given positive examples, using a true
gradient-descent learning algorithm;

ii) to extract afterwards a DFA from the net through the use of the FSA extraction
method reported in Section 6.1 for the case of only positive examples; and

iii) to perform finally the DFA to RE mapping recommended in Section 8.1.

362 Chapter 9. Inductive inference of augmented regular expressions

In the first step, the set of training examples is supplied to the net several times
(epochs) up to reach a predetermined number of epochs, which must be large enough
to let the network arrive at a minimum of the error function, where the total prediction
error on the training set stabilizes. The network input/output requirements and
training procedure for the next-symbol prediction task have already been explained
in Section 4.2.1, so they will not be repeated here. Likewise, the dynamics of second-
order ASLRNNs and the learning algorithm used to train them have also been described
previously (see Section 4.1.2).

After the neural training phase, the recurrent layer of the 2L-ASLRNN is supposed
to have inferred approximately the state transition function of a DFA, while the output
layer is supposed to have learned a function that, for each state, gives the probabilities
of each symbol.to be.the next symbol in a valid string. Thus, it is assumed that the
net has developed its own states in the form of clusters of the (recurrent) hidden unit
activation vectors. A hierarchical clustering of the recurrent unit activation vectors,
based on inter-cluster minimal distance, serves to guide a state merging process from
the sample prefix tree, which stops when the inter-cluster minimal distance exceeds a
certain threshold d. This threshold is fixed depending on the number of recurrent units
N, according to the heuristic rule d = 2\X7V/3, that relates it to the diameter of the
A^-dimensional activation space.

Then, in the third step, the extracted DFA A is supplied to the proposed
modification of Arden's algorithm (see Section 8.1) to obtain an equivalent RE R. The
resulting RE R is always unambiguous (thus easing the RE parsing) and such that the
star subexpressions due to self-loops are distinguished from those corresponding to the
rest of circuits of the DFA. Since self-loops may represent indefinite length or duration
of a basic primitive, this separation allows for a later induction of constraints relating
the lengths or durations of the different parts of a pattern.

Once the underlying RE R is inferred by'the above three-step procedure, the rest
of processes shown in Fig. 9.2 are carried out to infer an ARE R = (R, V, T, C), using
the DFA-assisted RE parsing method (Algorithm 8.4) and the constraint induction
algorithm described in the preceding section (Algorithm 9.2).

9.3.2 Experimental assessment

The specific method for inferring AREs just described was applied to learn a set of
eight test CSLs, associated with ideal models of real patterns, which are shown in
Fig. 9.7. Test languages L\-L$ are over the alphabet EI = {a, 6, c, d, e,/, g, h} and test
languages L5-Ls, are over the alphabet E2 = £1 U {z',jf, &,/}.

9.3. Experimental assessment of à specific metho'd^for inferring AREs 363

Ll) L-SHAPE

{ a m g n a n g m e m + n c m + n l m , n ï l }

[Ul
L2) 4-SHAPE

(arag" apcn

L3) 1-DENT-CYLINDER

(amg"fhgpemcpbdcn \ mè2, n.pí

Primitives

d e b
\

e •

f g h

f~\ i (convex)

W j (concave)
. S k (concave)
' N 1 (convex)

L5) CHROMOSOME

(jbm if'khn idnjfn ibnkdm ihm I m,n? 1)

L6) COFFEE-POT

' (cmda (bn h" + a2n+ ca2nhe) gp lg2Pe
2" I m=3p+2, n ï 2, p 2 1)

L7) RESPONSE-SIGNAL

{(c m (i j)"aPg m (j i) n a p) + I m ï 2, n,p2 1) -

I L4) PLUG L8) ECG-LIKE-SIGNAL

{a m c n ag"aac n ag n a m g p f q e r d q c p I r=2m-2q+4, m,n,p,q,r £ 1 } { (Íamcng2nc"a2mlap)+ I m.n.p S 1 }

Fig. 9.7 The eight test CSLs and the patterns described by them.

The experiment was performed according to the following protocol. For each test
language Z,,- (1 < i < 8), a global sample SLi = (SLf,SL^) containing 64 positive
and 64 negative examples (without repetitions) was generated manually. The positive
sample SL¡~ was written by giving several values to each parameter (degree of freedom)
of the language. The negative sample SL~ was divided in two groups: 48 strings
(75%) corresponded to counterexamples for the target regular language L(Ri) and
they were generated from the positive examples by removing, inserting or substituting
some subpatterns (i.e. near-misses); 16 strings (25%) corresponded to strings in L(Ri)
which did not satisfy at least one constraint in the target CSL £,-. Then, for each
language, eight training samples S^ (1 < j < 8), each containing 16 positive examples,
were defined such that the whole set SLf was used and each block of 8 strings was
included in two consecutive samples S^ and S^^. Every training sample 5^ was
structurally complete with respect to the minimal DFA describing L(Ri}.

For each test language Z/¿, a second-order 2L-ASLRNN with 4 recurrent units, but
different initial random weights, was trained from each sample Sfj to learn the next-

364 Chapter 9. Inductive inference of augmented regular expressions

symbol prediction task. Every sample was processed 300 times (training epochs), using
a learning rate of 0.005 and momentum of 0.5 in all the runs. A DFA AÍJ was extracted
from each trained net and used to infer an equivalent RE RÍJ. Finally, an ARE R¿j
was inferred using RÍJ to parse the strings in Sjj and the resulting star instances for
constraint induction.

¿1
Ll
¿3

¿4

:LS
Le

L7

Ls

Pos. class
ARE

100.0
87.6

100.0
85.7,

100.0-
100.0
94.5
93.5

Mean || 95.2

DFA

100.0
94.0

100.0
93.5

100.0
100.0
95.6

100.0

97.9

Neg. class
ARE | DFA

100.0
79.1
99.2
91.6
99.6-
96.9
93.4
81.5

92.7

75.8
49.6
44.2
48.4

"72.6
59.5
70.1
59.2

Tot. class
ARE | DFA

100.0
82.6
99.5
89.0
99.8
98.2
93.9
86.6

59.9 || 93.7

86.1
67.9
68.1
67.7

•84.4
76.9
81.0
76.7

Av. class
ARE

100.0
83.3
99.6
88.6
99.8
98.4
93.9
87.5

76.1 || 93.9

DFA

87.9
71.8
72.1
71.0
86.3
79.7
82.8
79.6

78.9

Success rate
ARE

100.0
0.0

37.5
0.0

^0.0
12.5
0.0
0.0

18.7

DFA

-
-
-
-

-
-
-
-

s.

Table 9.1. Performance features obtained by the ARE inference method (left) and
just the (DFA) regular inference procedure (right) for the test languages.

To assess the generalization performance of both the inferred ARE RÍJ and
underlying RE RÍJ (or the previously inferred DFA A-J), an associated test sample
was defined as TÍJ = (SLf — S¿~j,SL~) (i.e. the 48 positive examples not used for
training and the whole 64 negativea examples), and the correct classification rates on
TÍJ were computed. The results of the experiment are summarized in Table 9.1. Five
features are displayed for each test language: the former three are averages over the
eight learning samples of the correct positive, negative, and total classification rates,
respectively; the fourth one refers to the arithmetic mean of the positive and negative
classification rates [Dupo:94]; and the fifth one (success rate) is the percentage of times
the whole test sample was correctly classified. In such successful cases, and due to
the simplicity of the target AREs, it was possible to check that the inferred ARE was
equivalent to the target ARE, although an algorithm to check in general the equivalence
of two AREs is not available. The last row of Table 9.1 displays the above features
averaged over the 8 test languages. For illustrative purposes, Fig. 9.8 shows one of the
DFAs and the subsequent ARE inferred for languages LI and ¿6, together with their
classification performance.

Table 9.1 shows the over-generalization carried out by the RGI step, which is
indeed desirable to enable the discovery of context constraints afterwards, and the
good classification results of the inferred AREs, with average positive, negative and
total classification rates above 92%.

9.3. Experimental assessment òf'ti specific mèth&dtfor inferring AREs 365

R(V/*) = a(av*ggV3ay*a"*ggv*eeVeccv-' R(V/*) = cc">da((a + ca)(aa)U3a(ii + he)(gV3lgg)Vt

C-={v3 = liV4 = wvs-vl; . -; : _ . _ , £ ; = {t>4 =;!; «5_= 2/3 "i- 8/3;. w¿;=;2 ^2 + 1;;
VG — v4 + v5 + 1; v7 = V4 + vs + 1} ti8 = "7 + 1; f9 = 1/3 t/i -4/3; VIQ = 1;

un = 2/3 vi - 8/3; v12 = 2 z;7 + 3}
ARE: Pos. = 100%, Neg. = 100%, Tot. = 100% ARE: Pos. = 100%, Neg. = 95.3%, Tot. = 97.3%
DFA: Pos. = 100%, Neg. = 75%, Tot. = 85.7% DFA: Pos. = 100%, Neg. = 65.6%, Tot. = 80.4%

(a) (b)

Fig. 9.8 a) Inferred ARE Rn and DFA An from sample S& of LI (L-SHAPE).
b) Inferred ARE R6i and DFA A6i from sample 5¿i of L6 (COFFEE-POT).

Only for the test languages LI, L^ and .Z/g, the average correct classification rate was
below 90%. On the other hand, only LI was perfectly learned in all runs, and for the
rest of test CSLs, only LZ and LQ could be learned in some runs. As it was expected,
the inferred AREs notably outperformed the extracted DFA in the correct classification
of the negative strings (by a rate difference that approaches to the percentage of
"non-regular" negative examples included in the sample), at the expense of a slight
impairment in positive string recognition, which is due to the eventual induction of
erroneous constraints.

To sum up, the inferred AREs classified quite correctly the test samples of positive
and negative strings not used during learning, and a significant improvement in correct
classification rate with respect to the inferred DFA or RE was yielded by using the
ARE as acceptor. However, although the test CSLs were rather simple, the exact
identification of the target language was rarely accomplished. The results of the
experiment show that the specific method used for inferring AREs from positive
examples could reach a similar generalization performance on simple CSLs than the
one displayed by the symbolic RGI methods tested in Chapter 5 on simple regular
languages, after processing learning samples of comparable small size. Moreover, the
feasibility of the proposed approach for learning CSL acceptors was confirmed.

