
Universitat Politècnica de Catalunya

Department d’Arquitectura de Computadors

Computer-Language based Data
Prefetching Techniques

Rizkallah Touma

Advisors:

Dr. Anna Queralt Dr. Toni Cortes

A dissertation submitted in fulfillment of the requirements
for the degree of

Doctor from the Universitat Politècnica de Catalunya
in the

Doctoral Program of the Department d’Arquitectura de Computadors

Barcelona, November 26, 2018

1

Acknowledgements

I would like to express my sincere gratitude to my supervisors Dr. Anna Queralt and

Dr. Toni Cortes for their continuous supervision and their patience. Thank you for

believing in my work even when I didn’t.

I want to thank Dr. David Carrera, Dr. Gabriel Antoniu and Prof. André

Brinkmann for dedicating the time to evaluate my thesis and be part of my defense

committee.

I would also like to thank Prof. María S. Pérez from the Ontology Engineering

Group (OEG) at the Universidad Politécnica de Madrid for her insightful feedback

and guidance through the different stages of the thesis, as well as for giving me the

opportunity to do my secondment in the OEG. I also want to thank Dr. Mariano Rico

for his commitment to the success of my collaboration with the group.

Many thanks to my colleagues in the Storage Systems Group at the Barcelona

Supercomputing Center; Jonathan Martí, Alex Barceló, Pierlauro Sciarelli, Enrico La

Sala, Georgios Koloventzos, and especially Dani Gasull, for their friendship and their

help in implementing the work presented in this thesis.

I am eternally grateful to my parents, Kamal and Nayla, who have taught me that

I can accomplish great things in life through hard work and perseverance. You have

always been a source of inspiration to me.

Last but not least, I thank Alex for being there for me and providing me with the

much-needed emotional support to complete this journey. I am truly blessed to have

you in my life.

This work has been supported by the European Union’s Horizon 2020 research and

innovation program under the BigStorage European Training Network (grant H2020-

MSCA-ITN-2014-642963), the Spanish Ministry of Science and Innovation (contract

TIN2015-65316) and the Generalitat de Catalunya (contract 2014-SGR-1051)

3

Abstract

Data prefetching has long been used as a technique to improve access times to persistent

data. It is based on predicting which data records are relevant to future requests and

retrieving them from persistent storage to main memory before they are needed. Data

prefetching has been applied to a wide variety of persistent storage systems, from file

systems to Relational Database Management Systems and NoSQL databases, with the

aim of reducing access times to the data maintained by the system and thus improve

the execution times of the applications using this data.

However, most existing solutions to data prefetching have applied predictions based

on information that can be retrieved from the storage system itself, whether in the form

of heuristics based on the data schema or data access patterns detected by monitoring

access to the system. There are multiple disadvantages of these approaches in terms of

the rigidity of the heuristics they use, the accuracy of the predictions they make and /

or the time they need to make these predictions, a process often performed while the

applications are accessing the data and causing considerable overhead.

In light of the above, this thesis proposes two novel approaches to data prefetch-

ing based on predictions made by analyzing the instructions and statements of the

computer languages used to access persistent data. The proposed approaches take

into consideration how the data is accessed by the higher-level applications, make ac-

curate predictions and are performed without causing any additional overhead. The

first of the proposed approaches aims at analyzing instructions of applications written

in object-oriented languages in order to prefetch data from Persistent Object Stores.

On the other hand, the second approach analyzes statements and historic logs of the

declarative query language SPARQL in order to prefetch data from RDF Triplestores.

Keywords: Data Prefetching, Persistent Object Stores, Object-Oriented Languages,

RDF Triplestore, SPARQL

5

Contents

Acknowledgements 1

Abstract 3

Contents 5

List of Figures 9

List of Tables 15

1 Introduction 17

1.1 Background . 19

1.1.1 Object-Oriented Programming Languages 19

1.1.2 Declarative Query Languages . 20

1.1.3 Persistent Object Stores . 21

1.1.4 RDF Triplestores . 23

1.2 Problem Statement . 25

1.3 Hypothesis and Proposed Solution . 27

1.4 Research Questions . 29

1.5 Contributions . 29

1.6 Thesis Structure . 31

2 State of the Art 33

2.1 Hardware-Based Prefetching . 33

2.2 Software-Based Prefetching . 34

2.3 Prefetching in Persistent Object Stores 35

2.3.1 Schema-Based Prefetching . 35

6

2.3.2 Data-Based Prefetching . 36

2.3.3 Computer Language-Based Prefetching 38

2.3.4 Other Types of Approaches . 38

2.3.5 Taxonomy . 39

2.3.6 Discussion . 40

2.4 Prefetching in RDF Triplestores . 41

2.4.1 Schema-Based Prefetching . 41

2.4.2 Data-Based Prefetching . 41

2.4.3 Computer Language-Based Prefetching 42

2.4.4 Discussion . 43

3 Static Code Analysis of Object-Oriented Applications 45

3.1 Motivating Example . 46

3.2 Solution: Static Code Analysis . 48

3.3 Proposed Approach . 50

3.3.1 Application Type Graph . 50

3.3.2 Method Type Graph . 51

3.3.3 Branch-Dependent Navigations 52

3.3.4 Augmented Method Type Graph 54

3.3.5 Access Hints . 55

3.3.6 Overridden Methods . 56

3.4 Approach Implementation . 57

3.4.1 Wala Abstract Syntax Tree . 58

3.4.2 Wala Intermediate Representation 59

3.4.3 Analysis Scopes . 62

3.4.4 Method and Augmented Method Type Graphs 63

3.4.5 Access Hints . 67

3.5 Approach Validation . 67

3.5.1 RQ1: What is the percentage of applications for which static

code analysis can predict access to persistent objects? 70

7

3.5.2 RQ2: Can the proposed static code analysis be performed within

a reasonable amount of time? . 71

3.5.3 RQ3: What is the prediction accuracy of the proposed static code

analysis? . 72

3.5.4 RQ4: How much in advance can the proposed static code analysis

predict access to persistent objects? 74

3.6 Summary . 76

4 Prefetching in Persistent Object Stores 77

4.1 dataClay Overview . 78

4.1.1 Schema Registration . 79

4.1.2 Data Generation and Persistence 80

4.1.3 Remote Execution . 80

4.1.4 Lazy Tasks . 81

4.2 Static Code Analysis Module . 81

4.2.1 Generating Type Graphs and Access Hints 82

4.2.2 Generating Prefetching Methods 83

4.2.3 Invoking Generated Prefetching Methods 84

4.2.4 Parallelization of Prefetching Methods 85

4.3 Prefetching Data at Runtime . 86

4.4 Evaluation . 89

4.4.1 Benchmarks . 90

4.4.2 RQ5: Does our prefetching approach improve application execu-

tion times? . 93

4.4.3 RQ6: What is the object hit rate of the prefetching approach? . 99

4.5 Summary . 101

5 Prefetching in RDF Triplestores 103

5.1 RDF and SPARQL Preliminaries . 104

5.2 Motivating Example . 105

5.3 Proposed Approach . 107

8

5.3.1 Query Types . 109

5.3.2 Triple-Pattern Mappings . 111

5.3.3 Machine Learning Models . 112

5.3.4 Constructing Augmented Queries 113

5.3.5 Augmented Queries Cache . 115

5.4 Approach Validation . 116

5.4.1 RQ7: What is the prediction accuracy of the proposed query-log

analysis approach? . 117

5.4.2 RQ8: Can the predictions be made within a reasonable amount

of time? . 120

5.4.3 RQ9: What is the cache hit rate of the proposed prefetching

approach? . 123

5.5 Summary . 124

6 Conclusions and Future Work 127

6.1 Conclusions . 127

6.2 Future Work . 128

6.2.1 Smart Cache Replacement Policies 129

6.2.2 Dynamic Data Placement . 129

6.2.3 Additional Predictions of SPARQL Queries 129

6.2.4 Human Query Sessions vs. Machine Query Sessions 130

6.2.5 Index-Only Query Answering for SPARQL Endpoints 130

6.3 Results Dissemination and Collaborations 131

Bibliography 133

9

List of Figures

1.1 Example of program code written in an object-oriented language (Java). 20

1.2 Example code written in a declarative query language (SPARQL). . . . 21

1.3 Structure of a generic Persistent Object Store (POS). The used storage

mechanism depicted in the storage layer depends on the type of the POS. 22

1.4 RDF data graph containing resources (blue circles) and properties (yellow

rectangles). 24

1.5 Structure of an RDF Triplestore and its SPARQL endpoint. 25

1.6 Abstraction of our proposed solution. 28

3.1 Example of a Persistent Object Store (POS) schema. The schema rep-

resents a banking system with 7 entities, each of which corresponds to

an object type in the POS. 47

3.2 Example application code written in an OOP language. 49

3.3 Type graph GT of the application from Figure 3.1. Solid lines represent

single associations and dashed lines represent collection associations. . . 51

3.4 Type graph Gm of the method getAccount() from Figure 3.2 (lines 6

to 13). Branch-dependent navigations (Section 3.3.3) are highlighted in

orange. 52

3.5 Augmented type graph AGm of the method setAllTransCustomers()

from Figure 3.2 (lines 30 to 34). The navigations that cross method

boundaries are caused by the invocations of methods getAccount() and

setCustomer(newCust) on line 32 in Figure 3.2. Branch-dependent nav-

igations (Section 3.3.3) are highlighted in orange. 55

10

3.6 Class diagram of the implemented static code analysis. Classes in blue

represent internal Wala classes that are relevant to our analysis. Classes

in orange represent additional data structures that we implemented to

store the necessary data. Classes in green represent the main classes

that we implemented to perform the analysis. 58

3.7 Abstract Syntax Tree (AST) generated by Wala of the method setAll-

TransCustomers() from Figure 3.2. Nodes in blue represent the internal

structure of the tree while nodes in orange represent the names of the

variables and methods used in the instructions. 59

3.8 Intermediate Representation (IR) generated by Wala of the instructions

of the method setAllTransCustomers() from Figure 3.2. Line numbers

represent the instruction indexes given by Wala. SSAInstruction names

are in bold, invoked methods in blue and loaded class fields in red. . . . 61

3.9 Constructed Analysis Scopes of two methods from the application code

in Figure 3.2. The instructions shown in this figure are a simplified

representation of the Wala IR instructions. 63

3.10 For each interval, we report the number of applications used in our study

that have the number of classes, methods, conditional statements and

loop statements (as detected by our approach) in that interval. 69

3.11 For each 5% or 10% interval, we report the number of applications that

have the proportion of conditional statements, loop statements or meth-

ods that do not trigger any branch-dependent navigations (Section 3.3.3)

in that interval. 70

3.12 For each time interval, we report the number of applications for which

our approach finishes within that interval. 72

11

3.13 True Positive Ratio (TPR) and False Positive Ratio (FPR) of our ap-

proach (left of the dashed line) compared with the ROP with a depth of

1 and 3 (right of the dashed line). Columns represent the following:

- ¬BDNs∩OMs : excl. branch-dependent navigations / inter. of over-

ridden methods

- ¬BDNs∪OMs : excl. branch-dependent navigations / union of over-

ridden methods

- BDNs ∩ OMs : incl. branch-dependent navigations / inter. of over-

ridden methods

- BDNs ∪ OMs : incl. branch-dependent navigations / union of over-

ridden methods . 73

3.14 The x-axis represents the distance, in number of persistent accesses,

between the prediction of an access to a persistent object o and the

actual access to o. The y-axis represents the percentage of accesses that

are predicted for each distance. 75

4.1 Overview of the system architecture of dataClay. In this example, a de-

ployment of a Logic Module and three Data Services on different nodes

is depicted. Communications between the client and dataClay and in-

tercommunication between the Logic Module and Data Services are de-

picted as well [60]. 79

4.2 A detailed view of the Static Code Analysis Module of dataClay. 82

4.3 Generated prefetching method for the method setAllTransCustomers()

from Figure 3.2. 83

4.4 Modified code of the method setAllTransCustomers() in the stubs gen-

erated by dataClay. Notice the injected call to add a lazy task with the

prefetching method on line 3. 85

4.5 Automatic parallelization of prefetching method setAllTransCustomers_prefetch(). 86

4.6 A complete example of the code of the class stub BankManagement. . . 87

4.7 A detailed view of the resources and communications that occur to per-

form data prefetching when an application is executed with dataClay. . . 88

12

4.8 Class diagram of the OO7 benchmark. 90

4.9 Class diagram of the Wordcount benchmark. 91

4.10 Class diagram of the K-Means benchmark. 92

4.11 Class diagram of the Princeton Graph Algorithms benchmark. 92

4.12 Execution times of the traversal t1 of the OO7 benchmark without any

prefetching, with ROP with different depths and with our prefetching

approach in both sequential and parallel implementations. 94

4.13 Execution times of the traversal t2b of the OO7 benchmark without any

prefetching, with ROP with different depths and with our prefetching

approach in both sequential and parallel implementations. 95

4.14 Execution times of the Wordcount benchmark without any prefetching,

with ROP with different depths and with our prefetching approach in

both sequential and parallel implementations. 96

4.15 Execution times of the K-Means benchmark without any prefetching,

with ROP with different depths and with our prefetching approach in

both sequential and parallel implementations. 98

4.16 Execution times of the Princeton Graph Algorithms benchmark without

any prefetching, with ROP with different depths and with our prefetch-

ing approach in both sequential and parallel implementations. 99

4.17 The object hit rate obtained in the benchmarks without any prefetching,

with ROP with different depths and with our prefetching approach. . . . 100

5.1 Example query session of SPARQL SELECT queries 106

5.2 Design of a prefetching and caching system for SPARQL endpoints using

our approach. 108

5.3 Parse tree of the query Q1 from Figure 5.1. Nodes in orange represent

the surface form of the query while nodes in blue represents its inner tree.110

5.4 Parse tree of the SELECT query Q2 from Figure 5.1. Nodes in orange

represent the surface form of the query while nodes in blue represents

its inner tree. 110

13

5.5 Surface form of the predicted augmented query based on the queries

in Session 2 (Figure 5.1 (b)), using classifiers that were trained on the

queries of Session 1 (Figure 5.1 (a)). 114

5.6 Example query that will be prefetched by the augmented query in Figure

5.5. 115

5.7 Number of queries (in log scale) corresponding to each of the computed

Q-Types. The x-axis ranks the Q-Types from most common (left) to

least common (right). 117

5.8 Precision of the Q-Type classifier. 118

5.9 Q-Type classifier precision and recall for each of the included Q-Types.

The x-axis ranks the Q-Types from most common (left) to least common

(right). Each marker represents the precision (black) or recall (orange)

for a Q-Type. 119

5.10 Precision of the triple patterns classifiers. For improved clarity, not all

data labels are displayed on the chart. 120

5.11 Training and prediction times of the Q-Type classifier. The Training

Time is the time taken to train the entire model (in seconds). The

Prediction Time is the time taken to run 1,000 predictions through the

trained model (in milliseconds). 121

5.12 Training and prediction times of the Triple-Pattern Mappings classifiers.

The Training Time is the time taken to train the entire model (in sec-

onds). The Prediction Time is the time taken to run 1,000 predictions

through the trained model (in milliseconds). 122

5.13 Cache Hit Rate based on the constructed augmented queries. 123

15

List of Tables

2.1 Taxonomy of prefetching techniques in Persistent Object Stores 39

3.1 A summary of the Wala SSAInstructions used in our static code analysis

approach. 64

3.2 The changes and exclusions we made in our experiments to the applica-

tion from the SF110 corpus. 68

3.3 Summarized statistics of the corpus of applications used in our approach

study. 69

3.4 Summarized statistics of the experimental results. The first three rows

show the percentage of conditional statements, loop statements and

methods that do not trigger any branch-dependent navigations. The

last row shows the analysis time of the studied applications. 71

5.1 Characteristics of the datasets used in our experiments. The numbers

of queries and distinct queries refer to SELECT queries only. The query

frequency is calculated as the number of SELECT queries received by the

SPARQL endpoint per minute. 116

17

Chapter 1

Introduction

In spite of the recent technological advances in computer science, access to disk is still

the bottleneck in many computer applications that require persistent data. Between

1980 and 2000, microprocessor performance has improved at an average rate of 60%

per year. By contrast, disk access speeds have only experienced a 10% improvement

per year over the same period [69, 83]. This growing gap between processing speed

and the speed of access to the data needed by the applications has produced significant

amount of research in methods to minimize data access times.

In the field of databases and data storage systems, two methods to improve this

access time have prevailed. The first of these methods is caching, which is based on

the idea of keeping recently retrieved data in memory cache for faster access with sub-

sequent requests. However, this solution only works if the exact same data is accessed

multiple times. In reality, it is more common to have consecutive requests that access

several different, albeit related, data records [26, 72].

The second method that was proposed in order to deal with this issue is data

prefetching. Data Prefetching is defined as retrieving data records from per-

sistent storage to main memory in anticipation of later use. Unlike caching,

prefetching aims to predict additional data records that are likely to be accessed by

subsequent requests and retrieve them before they are needed. In order to predict

which data records should be prefetched, several approaches have been studied.

The first such approach is based on the schema of the data. This approach

analyzes the schema of the data being manipulated and predicts which data records

should be prefetched based on the relations found in the schema. Given that the data

18 Chapter 1. Introduction

schema is predefined in most database applications, the schema analysis is simple, is

only performed once and does not need to be modified. However, this also means

that this type of approaches does not take into consideration the different applications

accessing the data nor the actual values of the data records.

Another approach to data prefetching was put forward based on monitoring access

to the data records and detecting recurring access patterns. The detected patterns

are then used to predict which data records should be prefetched. However, this moni-

toring process needs to take place while applications are being executed and accessing

data. Thus, it can add a non-negligible overhead to application execution time and/or

consume a considerable amount of memory.

The third and least-studied approach tries to tackle these limitations by basing

the predictions on the computer language instructions and statements used

to access the data. The reasoning behind this approach is that it can lead to more

accurate prediction, given that it takes into account how the data is accessed by the

higher-level program code. Moreover, if needed, the prediction can be improved by

studying historical executions and trying to detect repeated execution patterns, which

in turn indicate which data records are going to be accessed.

In view of the above, this thesis investigates approaches to data prefetching based

on predictions obtained from analyzing the instructions and statements of computer

languages. In particular, we develop two such approaches using two different types of

languages: object-oriented programming languages and declarative query languages.

First, we develop an approach that analyzes the code of applications written in

object-oriented languages, defined in Section 1.1.1, and predicts which data objects

are accessed by the application. The approach is based on static code analysis that

is done prior to the application execution and hence does not add any overhead. We

also propose various strategies to deal with cases that require runtime information

unavailable prior to the execution of the application. Moreover, we integrate this code

analysis approach into a Persistent Object Store, defined in Section 1.1.3, to perform

data prefetching based on the predictions made by the approach.

1.1. Background 19

Afterwards, we propose a second approach that analyzes the statements of declar-

ative query languages, defined in Section 1.1.2. We use as a case study the query

language SPARQL and develop an approach to predict data to be prefetched by analyz-

ing historic SPARQL query logs and detecting recurring query patterns. Furthermore,

we design a prefetching and caching system to be integrated into RDF Triplestores,

defined in Section 1.1.4, in order to prefetch the predicted data.

1.1 Background

This thesis draws concepts from various areas in the fields of Computer Languages

and Persistent Storage. As such, we present in this section an overview of object-

oriented Languages (Section 1.1.1), Declarative Query Languages, Persistent Object

Stores (Section 1.1.3) and RDF Triplestores (Section 1.1.4).

1.1.1 Object-Oriented Programming Languages

Object-Oriented Programming (OOP) is a programming paradigm based on the con-

cept of "objects", which may contain data, in the form of attributes; and code, in the

form of methods [49]. The object’s methods can access and modify the object’s data

attributes. OOP languages are class-based, meaning that objects in those languages

are instances of classes, which also determine their type.

For example, Figure 1.1 shows the program code of an application written in Java,

an OOP language. In this example, we can see the different classes, i.e. object types,

defined by the application, such as the class Transaction or the class Employee. We can

also distinguish two types of attributes in these classes: attributes of primitive types

and attributes of user-defined types.

Attributes of primitive types, such as Integer, String or Date, contain the data of

each object of the class. For instance, the class Employee in Figure 1.1 has the field

salary of the primitive type Integer and the field dateOfBirth of the primitive type Date.

On the other hand, a class may also have attributes of complex types that represent

relationships between two different types. A relationship from type t to type t’ is

represented by an attribute of type t’ defined in type t. For instance, the relationship

20 Chapter 1. Introduction

1 public class Transaction {
2 private Account account;
3 private Employee emp;
4 private TransactionType type;
5 ...
6 }
7

8 public class Employee {
9 private Company company;

10 private String name;
11 private Integer salary,
12 private Date dateOfBirth;
13 ...
14 }
15

16 public class BankManagement {
17 private ArrayList<Transaction> transactions;
18 private Customer manager;
19

20 public void setAllTransCustomers() {
21 for (Transaction trans : this.transactions) {
22 trans.getAccount().setCustomer(this.manager);
23 }
24 }
25 }
26

27 ...

Figure 1.1: Example of program code written in an object-oriented language (Java).

from the type Transaction to the type Account is implemented in Figure 1.1 by an

attribute of type Account defined inside the type Transaction.

Finally, Figure 1.1 also contains the method setAllTransCustomers() defined in the

class BankManagement. This method can access, and manipulate, the attributes of the

object to which it belongs. Furthermore, it can invoke other methods on the objects

related to its owning object.

1.1.2 Declarative Query Languages

Query languages are computer languages used to make queries in database and infor-

mation systems. Most modern query languages follow the Declarative Programming

(DP) paradigm, which means that they express the logic of a computation without

describing the exact instructions to be executed. That is, DP languages describe what

1.1. Background 21

1 PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT * WHERE {
4 dbr:Iker_Casillas dbo:formerTeam ?team .
5 }

Figure 1.2: Example code written in a declarative query language (SPARQL).

the program must accomplish in terms of the problem domain, rather than how to

accomplish it as a sequence of explicit steps.

Some examples of database query languages that follow the DP paradigm include

SQL, XQuery and SPARQL. Figure 1.2 shows an example query written in SPARQL

query language. SPARQL is a high-level query language used to access data stored in

the RDF format (explained in detail in Section 1.1.4). In the example in Figure 1.2,

the query asks for entities related to the entity dbr:Iker_Casillas through the property

dbo:formerTeam.

Regardless of the details of the language, this example shows that declarative query

languages do not use specific statements or steps that should be followed, but rather

describe what should be done. In the case of the query in Figure 1.2, the query asks

for the former teams of Iker Casillas.

1.1.3 Persistent Object Stores

Persistent Object Stores (POSs) are data storage systems that record and retrieve

persistent data in the form of complete objects [13]. In this context, an object is

defined as an instance of a particular type defined by the schema of the POS. The

object consists of a combination of fields, which can either be of primitive types (e.g.

String, Integer, Float), or of another type defined by the schema, in which case they

represent a relationship between two objects.

POSs were developed to avoid the impedance mismatch that occurs when develop-

ing object-oriented applications on top of Relational Database Management Systems

(RDBMSs). This impedance mismatch is caused by the conceptual and technical dif-

ficulties in mapping application data, in the form of objects, to persistent data stored

22 Chapter 1. Introduction

O
bj

ec
t-O

rie
nt

ed
A

pp
lic

at
io

n

Transaction

Employee

Department

Account

Customer
Company

Type

Pe
rs

is
te

nt
 O

bj
ec

t S
to

re

Binary
Serialization Objects Relational

Tables

Transformation Layer

Presentation Layer

Storage Layer

Transaction

Employee

Department

Account

Customer
Company

Type

Figure 1.3: Structure of a generic Persistent Object Store (POS). The used storage mechanism
depicted in the storage layer depends on the type of the POS.

in the RDBMS in the form of tables. By contrast, using a POS the application objects

can be directly mapped to objects stored in the POS.

Figure 1.3 shows the architecture of a generic POS and how it can be used by

an OO application to solve this impedance mismatch. The top layer in the figure

shows the objects manipulated by the OO application. In order to store or retrieve the

objects, the application communicates with the presentation layer of the POS, without

the need to perform any type of transformation on the objects. Inside the POS, this

layer then communicates with the transformation layer, which proceeds to transform

the objects into a format suitable for persistent storage (e.g. serializing the objects,

converting them to relational tables, etc). Finally, the transformation layer sends the

1.1. Background 23

transformed objects to the storage layer, which stores the objects in one of various

storage mechanisms, depending on the type of the POS.

The underlying storage mechanism of a POS varies from simple binary serializa-

tion of objects to complex Object-Oriented Databases (OODB), which store objects

directly onto disk, and Object-Relational Mapping Systems (ORM), which internally

transform objects into tables and store them in an RDBMS. The most popular OODBs

include Caché and Versant1, while some of the most used ORMs include Hibernate,

Apache OpenJPA and Data Nucleus2. The rise of NoSQL databases has also led to the

development of object mapping systems for other types of databases such as Neo4J’s

Object-Graph Mapping (OGM)3.

Regardless of their internal storage mechanism, POSs provide a conceptual ab-

straction for mapping database records to objects in object-oriented languages. This

abstraction avoids the impedance mismatch that occurs with other types of databases

and makes it easier to access persistent data without having to worry about database

access and query details, which amount to 30% of the total code of an application

according to previous studies [4] [20]. Moreover, this symmetry between OOP

programming languages and the underlying storage opens the door to new

approaches when it comes to detecting data access patterns.

1.1.4 RDF Triplestores

The Resource Description Framework (RDF) is a simple, extensible graph data

model for representing information on the web [81]. Its main structure consists of triples

that link two resources; called the subject and object of the triple, through a property;

called the predicate of the triple.

Figure 1.4 shows an example RDF data graph. In this graph, we can identify four

different resources: Iker Casillas, Real Madrid, Zinedine Zidane and Spain and three

different properties: was born in, played for and is managed by. The triples present in
1Caché: http://www.intersystems.com/our-products/cache/cache-overview/, Ver-

sant: http://www.actian.com/products/operational-databases/versant/
2Hibernate: http://hibernate.org/, Apache Open JPA: http://openjpa.apache.org/,

Data Nucleus: http://www.datanucleus.org/
3Neo4J OGM: https://neo4j.com/docs/ogm-manual/current/

http://www.intersystems.com/our-products/cache/cache-overview/
http://www.actian.com/products/operational-databases/versant/
http://hibernate.org/
http://openjpa.apache.org/
http://www.datanucleus.org/
https://neo4j.com/docs/ogm-manual/current/

24 Chapter 1. Introduction

Iker Casillas Spain

Real Madrid

played for

was born in

Zinedine Zidane
is managed by

Figure 1.4: RDF data graph containing resources (blue circles) and properties (yellow rectangles).

this RDF graph are the ones resulting from a property linking two different resources.

For example in the triple Iker Casillas played for Real Madrid, we have the predicate

played for linking the object of the triple Iker Casillas to the subject Real Madrid.

The importance of RDF comes from this triple-based structure, which gives it

great flexibility in representing semantic information in a machine-understandable way.

Moreover, RDF graphs do not follow a fixed, predefined schema and hence are easily

extensible with new information. These advantages made RDF the de facto standard

for publishing data within the Linked Data project [7].

An RDF Triplestore is a purpose-build database for the storage and retrieval of

RDF data graphs through semantic queries. RDF triplestores are a cornerstone of Linked

Data, the standard for publishing structured data on the Semantic Web [7], which has

grown to provide a wealth of publicly-available data, with some repositories containing

millions of concepts described by RDF triples (e.g. DBpedia4, FOAF5, GeoNames6).

Figure 1.5 shows the structure of an RDF triplestore. An application can access

the data in these triplestores by issuing semantic queries using SPARQL, the standard,

high-level, declarative query language for RDF stores. The SPARQL queries are received

by the triplestore’s SPARQL Endpoint, which proceeds to execute the queries on the

triplestore’s data and returns the corresponding results in RDF format.

For instance, in the previous section Figure 1.2 shows an example SPARQL query

that asks for the former teams of the player Iker Casillas. If we evaluate this query

against the data graph shown in Figure 1.4, it would return the resource Real Madrid.
4DBpedia: https://wiki.dbpedia.org/
5FOAF: http://www.foaf-project.org/
6GeoNames: http://www.geonames.org/

https://wiki.dbpedia.org/
http://www.foaf-project.org/
http://www.geonames.org/

1.2. Problem Statement 25

SPARQL Endpoint

RDF

Query Log

Client

Human Machine

SPARQL

RDF
Triplestores

Figure 1.5: Structure of an RDF Triplestore and its SPARQL endpoint.

SPARQL endpoints of popular Linked Data repositories, such as DBpedia, often need

to execute a big number of queries coming at high-frequency from multiple clients.

The increasing workload that these SPARQL endpoints face can result in high query

response times which negatively influence the user experience when accessing the data

of the triplestore [54, 84]. However, SPARQL endpoints also tend to keep a log of

all the queries received from clients, which can be used to detect repetitive

access patterns to the triplestore’s data.

1.2 Problem Statement

In general, regardless of the used computer language and persistent storage system,

access times to data dominate the execution time of applications. This is due to the

fact that access to persistent storage is orders of magnitude slower than CPU execution

time. The exact latency of this access depends on the type of medium used to store the

persistent data. For instance, accessing data on HDD is 107 slower than executing a

CPU instruction while for SSD this number stands at 105 and for NVM (Non-Volatile

Memory) it is estimated to be around 102 times slower [83].

26 Chapter 1. Introduction

This latency can be mitigated by keeping the data that is likely to be accessed by an

application in the near future in main memory (i.e. RAM). Reading data from RAM

is 103 to 105 times faster than reading data from persistent storage, due in part to the

fact that RAMs allow data items to be read or written in almost the same amount of

time irrespective of the physical location of data inside the memory. However, main

memory is usually smaller in size than persistent storage and can only hold a fraction of

the data kept on persistent storage. Moreover, main memory is volatile and cannot be

used to maintain persistent copies of data after the execution of applications is finished.

While keeping a copy of the data previously accessed by an application in main

memory might help when the same data is repeatedly accessed, a more effective solu-

tion would be to predict which data an application is going to access and prefetch this

data from persistent storage before it is needed by the application. Prefetching has long

been studied as an important approach to improve access times to data. However,

current approaches to prefetching do not always take full advantage of the

information that can be retrieved from the different layers of the techno-

logical stack to make predictions on which data should be prefetched.

For instance, previous approaches to prefetching in Persistent Object Stores either

use fixed heuristics based on the schema of the data or try to detect data access patterns

by monitoring application execution. These approaches are based on a most-common

case scenario, which does not always provide accurate prediction, and are done dur-

ing application execution, which might cause overhead and / or consume additional

memory. Other approaches base the prefetching on predictions made by analyzing the

code of the OO applications that access the POS, but these have been largely theo-

retical without any in-depth analysis of the prediction accuracy or the improvement

that can be achieved in application execution time [8, 43]. Section 2.3 details previous

approaches to prefetching in POSs and highlights their shortcomings.

On the other hand, given that RDF is a flexible, schema-less data format, there has

been a limited amount of research into prefetching based on schema analysis of RDF

Triplestores. By contrast, previous prefetching techniques in this area have been based

on data retrieved from the triplestore, which is not always available across triplestores,

1.3. Hypothesis and Proposed Solution 27

while others aimed at using prefetching to reduce data access latency in specific graph

traversal problems only. While there has been some work on prefetching data based

on analysis of SPARQL queries, these approaches have been limited to prefetching the

results of the most frequent previous queries or applying query augmentation based on

data found in the RDF Triplestore [54, 55, 84]. A detailed overview of the related work

in prefetching in RDF Triplestores is provided in Section 2.4.

1.3 Hypothesis and Proposed Solution

Based on the technologies described in Section 1.1 and the problems stated in Section

1.2, this thesis presents the following hypothesis:

In a technological setting where applications need access to persistent

data, it is possible to perform data prefetching based on predictions made

by analyzing the instructions and statements of the used computer language,

without involving the underlying data storage system.

Figure 1.6 shows an abstraction of how this hypothesis can be tested on an appli-

cation using a persistent data system. The figure indicates that, regardless of the used

computer language and data store, the application communicates with the store using

a set of predefined calls to store and retrieve data. Our proposed solution, shown in

the blue rectangles in Figure 1.6, takes as input the computer language statements of

the application, which it utilizes to perform a prediction process that generates pre-

dictions of which data should be prefetched. Afterwards, the predictions are used by a

prefetching process to retrieve the data from the persistent data store into a memory

cache, where it can be found by the application when it is needed. The implementation

of how this process is performed depends on the used technologies.

In the case of Persistent Object Stores, the objects are retrieved by the object-

oriented application directly from the store through a set of instructions that automat-

ically convert the persistent objects to the corresponding object type defined by the

application, as explained in Section 1.1.3. Thus, our proposed solution in this setting

consists of applying static code analysis on the object-oriented application to predict

which persistent objects are accessed. We then prefetch the predicted objects into the

28 Chapter 1. Introduction

statements
Application

Data Store

Memory Cache

prefetched data

Pr
op

os
ed

 S
ol

ut
io

n

predictions

Prediction
Process

prefetched data Prefetching
Process

Figure 1.6: Abstraction of our proposed solution.

memory cache of the system, and thus the application retrieves them from the cache

when they are needed.

As for RDF Triplestores, data is retrieved from the store through SPARQL queries

which return data in RDF format. Unlike the case with object-oriented languages

where the entire application code is known beforehand, the SPARQL queries are received

consecutively and are not known in advance. Thus, instead of performing the prediction

statically we needed to adopt another approach that can predict upcoming queries. We

achieve this by analyzing historic query logs of SPARQL queries to detect recurring query

patterns and predict which data should be prefetched.

Another difference between the implementation of the two solutions is the fact

that RDF Triplestores do not have an integrated memory cache. Hence, an external

memory cache should be constructed into which the predicted data is prefetched. This

difference is depicted in Figure 1.6 by situating the cache in between the borders of the

store, indicating that the cache could be either internal or external depending on which

technological setting is used. While the approach developed in this thesis focuses on

the prediction of which data should be prefetched from the RDF Triplestore, we also

detail the design of a caching and prefetching system in Chapter 5 to be integrated into

a Triplestore as part of the future work of the thesis.

1.4. Research Questions 29

1.4 Research Questions

We evaluated the hypothesis and solution proposed in Section 1.3 by answering the

following set of research questions:

(1) In the case of Persistent Object Stores and object-oriented applications:

RQ1: What is the percentage of applications for which static code analysis can

predict access to persistent objects?

RQ2: Can the proposed static code analysis be performed within a reasonable

amount of time?

RQ3: What is the prediction accuracy of the proposed static code analysis?

RQ4: How much in advance can the proposed static code analysis predict access

to persistent objects?

RQ5: Does the proposed prefetching approach improve application execution

times?

RQ6: What is the object hit rate of the prefetching approach?

(2) In the case of RDF Triplestores and the declarative query language SPARQL:

RQ7: What is the prediction accuracy of the proposed query-log analysis ap-

proach?

RQ8: Can the predictions be made within a reasonable amount of time?

RQ9: What is the cache hit rate of the proposed prefetching approach?

1.5 Contributions

This thesis presents three novel contributions to the scientific community that aim to

prove the hypothesis formulated in Section 1.3:

C1 - An approach to predict access to persistent objects by statically an-

alyzing the source code of object-oriented applications.

30 Chapter 1. Introduction

In this contribution, we develop an approach that analyzes the source code of

object-oriented applications that access data stored in a POS in order to predict

access to persistent objects. Our approach takes advantage of the symmetry be-

tween application objects and persistent objects to perform the prediction pro-

cess before the application is executed and hence does not cause any overhead.

The predictions made by our approach can then be used to apply a variety of

techniques that aim to improve access to persistent data, such as prefetching,

cache replacement policies and dynamic data placement.

This contribution aims to answer the research questions RQ1, RQ2, RQ3 and

RQ4.

C2 - An approach to data prefetching for Persistent Object Stores.

We developed this contribution by integrating our static code analysis approach

into an existing POS in order to prefetch the predicted persistent objects. We

also optimize the prefetching approach with automatic parallelization in order

to take advantage of data distribution and maximize the benefits obtained from

prefetching. Moreover, we demonstrate in this contribution that prefetching

data based on our approach reduces the times spent by applications waiting for

data to be accessed, thus improving the overall application execution time.

This contribution aims to answer the research questions RQ5 and RQ6.

C3 - A query-log analysis approach to prefetch data in RDF Triplestores.

In this contribution, we present an approach to prefetching in RDF Triplestores

based on analysis of historic query logs of the SPARQL declarative query lan-

guage. The approach detects recurring query patterns in previous queries and

uses the detected patterns to prefetch data relevant to subsequent queries. The

novelty of our approach is that we measure two independent types of similar-

ity between queries: structural similarity and triple-pattern similarity. Using

these two similarities, we apply machine learning algorithms to detect recurring

patterns in the query logs and prefetch data relevant to subsequent queries.

This contribution aims to answer the research questions RQ7, RQ8 and RQ9.

1.6. Thesis Structure 31

1.6 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 discusses previous approaches

to prefetching in the two domains to which this thesis belongs: (1) Persistent Object

Stores (POSs), and (2) RDF Triplestores, underlining their shortcomings and highlight-

ing how our proposed approach tackles these problems.

Afterwards, Chapter 3 presents the first contribution of this thesis (C1) by detailing

the theoretical background and formalization of the first of our proposed approaches

to prefetching; static code analysis of object-oriented applications. The chapter also

validates our proposed approach by analyzing the source code of a representative sample

of Java applications.

Chapter 4 then presents the second contribution (C2) by discussing how the pro-

posed static code analysis approach was implemented in dataClay, a Persistent Object

Store. The chapter also offers an evaluation of performance using two benchmarks, one

standard benchmark for POSs and one benchmark commonly used for Big Data appli-

cations. The experimental results demonstrate that our proposed approach can indeed

improve data access times, and thus application execution times, when compared to

other approaches to prefetching.

We then present the last contribution of the thesis (C3) in Chapter 5, which exposes

our approach to prefetch data from RDF Triplestores by analyzing SPARQL query logs.

The chapter also validates the proposed approach on real-world query logs and shows

that it can achieve a higher cache-hit rate than previous approaches.

Finally, Chapter 6 outlines the conclusions achieved with this thesis and highlights

future directions to be taken.

33

Chapter 2

State of the Art

Data Prefetching is defined as retrieving objects from persistent storage to main mem-

ory in anticipation of later use. Prefetching techniques are usually split into two broad

categories: hardware-based and software-based [14]. In this section, we first expose

a summary of the most important prefetching techniques in each of these categories

before giving a detailed overview of approaches in the two domains to which this thesis

belongs: (1) Persistent Object Stores in Section 2.3, and (2) RDF Triplestores in Sec-

tion 2.4. We also discuss the limitations of previous approaches in both domains and

highlight the benefits of our proposed approach.

2.1 Hardware-Based Prefetching

The first approaches to prefetching were based solely on computer hardware, with the

aim of prefetching data from the hard disk into the embedded memory buffer of the

disk. These approaches do not take into consideration any higher-level information,

such as that produced by analyzing the data stores or program code.

The most basic such technique is the One Block Look-Ahead (OBL) and its variants.

This technique is based on the memory addresses of the data and prefetches the block

adjacent to the one currently accessed. A popular variant of this technique is the N-

Blocks Look-Ahead which allows to prefetch the N blocks adjacent to the current block

[67]. Another variant is presented by Baer and Chen who propose a "hardware support

unit" that looks ahead in the instructions to be executed and prefetches the data from

the memory addresses associated with the load and store instructions [5].

34 Chapter 2. State of the Art

Combined caching and prefetching policies are more sophisticated hardware-based

techniques that take both caching and prefetching into consideration. Several ap-

proaches have been proposed in this category, such as dividing the cache into various

parts, some for accessed blocks and others for prefetched blocks and managing each

part separately [45, 70]. Other proposals suggest multi-layered prefetching to manage

global memory in multi-machine distributed systems [80]. For more information on

combined caching and prefetching approaches, Cao et al. provide an extensive study

on this type of techniques [16].

Most other approaches simply offer improvements on these traditional techniques,

such as arranging the blocks to prefetch in order of storage on disk to reduce disk-seek

times [79], or associating each access request with the ID of a "logical context", such

as thread IDs, to provide context-aware prefetching [76].

2.2 Software-Based Prefetching

Software-based prefetching techniques are newer than their hardware-based counter-

parts and allow the programmer or compiler to insert prefetch instructions into pro-

grams. The motivation behind these strategies is the higher possibility of a compiler or

developer having better knowledge of the application’s data requirements, which makes

it more promising in terms of prefetching accuracy [14]. Given that these approaches

are performed at a higher level, they do not prefetch data into the disk buffer but rather

into the database’s memory cache.

The first type of software-based prefetching techniques is history-based; these

techniques analyze the execution traces of the program in order to find data access

patterns that can be used to prefetch data in subsequent executions. For instance,

some approaches detect access patterns by monitoring miss addresses of the program

instructions and prefetch data in future executions from these addresses [24, 65].

Another type of software-based prefetching uses query rewriting techniques. This

type is particularly popular when dealing with relational databases, with several pro-

posals on how relational queries can be statically moved forward in the program code

or combined to prefetch the query results before they are accessed [10, 11, 73].

2.3. Prefetching in Persistent Object Stores 35

Several prefetching approaches targeting specific data structures have also been

developed. These approaches try to tackle the limitations of generic prefetching ap-

proaches by offering specific improvements for the data structures that they address,

such as DNA sequences [61], hash structures [19], linked list structures [18, 15, 47],

pointer-based structures [56, 78] or dense matrices [63].

Similarly, while most of the prefetching techniques presented so far can be applied

independently of the database type, researchers have developed other approaches that

take advantage of the properties of a specific type of databases. Examples include

prefetching techniques for in-memory key-value stores [85], graph databases [66] and

document stores [41].

All of the approaches discussed in the rest of this chapter fall into this last category,

they are software-based approaches designed to prefetch data from a specific type of

database; either Persistent Object Stores or RDF Triplestores. For a more refined

analysis, we further divide the approaches in both fields into the following categories:

• Techniques based on schema analysis,

• Techniques based on analysis of the data in the store, and

• Techniques based on analysis of the computer language used to access the data.

2.3 Prefetching in Persistent Object Stores

Perhaps the most-studied type of NoSQL databases when it comes to prefetching is

Persistent Object Stores (POSs). This is due to the fact that POSs precede other

NoSQL databases and that the structure in which they expose data, in the form of

objects and relations between these objects, is rich in semantics that can produce

detailed information and patterns about how the data is accessed.

2.3.1 Schema-Based Prefetching

The only technique to predict access to persistent objects that falls into this category is

the Referenced-Objects Predictor (ROP). This approach is based on the following

heuristic: each time an object is accessed, all the objects referenced from it are likely to

36 Chapter 2. State of the Art

be accessed as well [21]. The technique can be applied by using different fetch depths,

which indicate the number of object relations that should be crossed when performing

the prefetching. For instance, using a fetch depth of 1 would only prefetch the objects

directly referenced from an object o while a fetch depth of 2 would also prefetch the

objects referenced from these objects as well, and so on.

While this approach does not always provide accurate prediction of which data

should be prefetched, it is widely used in commercial POSs because it does not involve

a complex and costly prediction process. Hibernate [21], Data Nucleus [23], Neo4JOGM

[64] and Spring Data JPA [33] all support this technique through specific configuration

settings with varying degrees of flexibility (e.g. apply the prefetching on system level

or only to specific object types).

On the other hand, Han et al. tackle a major drawback of previous prefetching

approaches in [36]; they have been usually done on object or page level meaning that

they only work when the exact same object or page is repeatedly accessed. However,

real-world applications tend to be repetitive on the level of the types of objects accessed.

In other words, applications have patterns of the form "each time an object of type A

is accessed, the referenced objects of types B and C are accessed along with it".

The authors of [36] exploit this repetitiveness by analyzing access patterns at the

type-level instead of the object or page level. They apply machine-learning techniques

in order to detect type-level access patterns at runtime and use the discovered patterns

to prefetch objects that are predicted to be accessed next.

In an optimization of their work, Han et al. propose constructing a materialized

database view for each detected access pattern [34]. According to the authors, this has

the benefit of reducing the number of disk accesses and improves the overall performance

when compared with the original type-level access patterns approach.

2.3.2 Data-Based Prefetching

The vast majority of research done in prefetching in POSs has been based on analyzing

access patterns to the persistent objects. Knafla presents the first such work by using

the additional information obtained through analyzing objects and their relationships

2.3. Prefetching in Persistent Object Stores 37

with each other [50]. His approach is based on the idea that when an object a references

an object b which resides in a different page than a, then this page becomes a candidate

for prefetching. The approach also includes an optimization to improve the accuracy

of the prefetching prediction by delaying the prefetch when an object has more than

two outgoing references to objects residing in other pages.

The same author presents an extension of his work by modeling object relationships

as a Discrete-Time Markov Chain and calculating the probability that a certain page

will be accessed [51]. The decision to prefetch a page is based on several cost metrics

that compare the benefits of a correct prefetch with the costs of an incorrect one.

Curewtiz et al. propose a novel approach to prefetching in POSs by using common

compression algorithms [22]. In particular, the authors use three different compres-

sion algorithms, the Lempel-Zev, Prediction-by-Partial-Match and Markov-Predictor

compressors, to model relations between object and predict which objects should be

prefetched. They conclude that the Prediction-by-Partial-Match algorithm offers the

best prefetching accuracy.

He and Marquez present a prefetching technique based on the concepts of cache

and path consciousness in [39]. Their approach is based on two main ideas: dividing

pages into "memory resident" and "memory non-resident" pages (cache consciousness),

and storing features in the object trace during training, these features are then used to

identify the current path of navigation (path consciousness).

The notion of an object’s "context" was first suggested by Bernstein in [6] where an

object is loaded as a predictor of future accesses. A context in this case can be a stored

collection of relationships, a query result or a complex object with compositions. This

context is then used when a new access to the main object is made and, for instance,

if some attribute a of an object is accessed, the system prefetches attribute a for all

objects in the accessed object’s context.

Garbatov et al. use stochastic methods to analyze the runtime behavior of object-

oriented applications in order to predict object accesses of future executions in [31].

The approach automatically modifies the Java bytecode of the applications in order to

mark the start and end of each context (in this case, a class method).

38 Chapter 2. State of the Art

2.3.3 Computer Language-Based Prefetching

Using static code analysis to prefetch persistent objects was first suggested by Blair

et al. The approach analyzes the program code of OO applications at compile-time

in order to model object relations and detect when the invocation of a method causes

access to a different page [8]. This information is then used at runtime in order to

prefetch the page once the execution of the method starts.

Ibrahim and Cook [43] propose AutoFetch, a tool that automatically profiles the

traversals resulting from queries made to a POS, and uses this information to calculate

a traversal profile. This profile is then used to predict future traversals and augment

queries with the prefetch specification. The profile is generated at runtime and the

queries are classified using their call-stack and the query string.

2.3.4 Other Types of Approaches

Ahn et al. present an interesting approach based on prefetching objects from a set of

selected candidate pages [1]. The main distinctive feature of this approach is that, while

being oriented towards POSs, it only prefetches objects from selected candidate pages

without using any object semantics. The authors argue that this technique is easier to

implement and less intrusive than keeping track of object semantics and relationships,

which is followed by most other approaches. The algorithm is explained in detail in [2].

Finally, some commercial POSs, such as Django [27], allow the developer to man-

ually supply prefetching hints by using predefined prefetching instructions that the

developer needs to explicitly invoke with each access to the POS. This manual specifi-

cation might result in more accurate prefetching, given that the developer has better

knowledge of the data accesses of the application, but it is a tedious task that requires

manual inspection of the entire application code. Moreover, correct prefetching hints

are difficult to determine and incorrect ones are hard to detect [43].

For more information, [52] includes an extensive, albeit outdated, survey of dif-

ferent prefetching techniques while both [32] and [8] present taxonomies categorizing

prefetching techniques in object-oriented databases.

2.3. Prefetching in Persistent Object Stores 39

Table 2.1: Taxonomy of prefetching techniques in Persistent Object Stores

Ref. Prediction
Technique

Prediction
Time

Prediction
Level

Prefetching
Granularity

[21] Schema-based Compile-time Type Object
[36] Schema-Based Runtime Type Object
[34] Schema-Based Runtime Type Object
[50] Data-Based Runtime Object Page
[51] Data-Based Runtime Object Page
[22] Data-Based Runtime Object Page
[6] Data-Based Runtime Object Object, Attribute
[39] Data-Based Runtime Object Page
[31] Data-Based Runtime Object Page

[8] Computer
Language-Based Compile-time Type Page

[43] Computer
Language-Based Runtime Object Page

[2] Other Runtime Type Page

2.3.5 Taxonomy

This section presents a taxonomy of prefetching approaches targeted towards POSs. We

based the categorization on the taxonomies included in [32] and [8], modifying them to

accommodate new techniques and approaches that were not considered. Moreover, we

added a new dimension that includes the categories discussed in Section 2.2.

Table 2.1 shows the taxonomy including the approaches previously discussed in this

section. The dimensions according to which the approaches were categorized are:

• Prediction technique: indicates whether the prediction is schema-based, data-

based or computer language-based.

• Prediction time: indicates whether the prediction is done before application

execution (i.e. compile-time) or during application execution (i.e. runtime).

• Prediction level: indicates whether the prediction is made at the object-level or

type-level. While all schema-based techniques do the prediction at the type-level,

computer language-based techniques may use either object-level prediction (e.g.

[43]) or type-level prediction (e.g. [8]).

• Prefetching granularity: indicates whether the approach prefetches objects or

entire pages of objects from persistent storage. In a minority of cases, specific

attributes of an object can be prefetched separately.

40 Chapter 2. State of the Art

2.3.6 Discussion

Following the taxonomy presented in Table 2.1, our approach would fall into the cate-

gories of computer language-based, compile-time, type-level prediction, with an object-

level prefetching granularity. The benefits of using computer language-based pre-

diction for prefetching are highlighted by Gerlhof et al., who provide a quantitative

comparison between a runtime predictor and a computer language-based technique and

conclude that static computer language-based techniques are a promising alternative

to expensive monitoring-based predictors [32].

Moreover, using computer language-based prediction allows us to take into account

information about how applications access the data without needing runtime monitor-

ing of application execution, which is not possible to do at the store-level. Finally, in

the cases where various applications access the same store, computer language-based

techniques also allow to provide more accurate, application-specific prediction on which

objects should be prefetched.

The advantage of performing the prediction process at compile-time is the absence

of overhead present in techniques which need information gathered at runtime, which

can amount to roughly 10% of the execution time [31]. Similarly, performing the

prediction at the type-level has more advantages than doing the process at the object-

level since it does not store the information for each individual object, thus reducing

the amount of memory needed [36]. Moreover, it can capture access patterns occurring

even when different objects of the same type are accessed [35]. Finally, prefetching

individual objects instead of entire pages of objects reduces the amount of memory

occupied by other objects in the same page that will not necessarily be accessed.

Table 2.1 shows that the most similar work to the approach proposed in this thesis

is the approach presented in [8], which uses static code analysis to perform the predic-

tion process at compile-time. However, this work does not offer any in-depth analysis

of common code constructs, such as loop and branching statements. Moreover, the

authors do not provide any implementation or evaluation of the proposed approach.

Finally, the proposal in [8] prefetches entire pages of objects at once, which is far less

accurate than our approach of prefetching individual objects.

2.4. Prefetching in RDF Triplestores 41

2.4 Prefetching in RDF Triplestores

RDF Triplestores are a much newer technology than POSs and hence there has been less

research in prefetching in this domain. Given the structure of the RDF data graph and

the fact it is a schema-flexible data format, most previous approaches have been data-

based, analyzing the access patterns to the resources in the triplestore and modeling

the relationships between them.

2.4.1 Schema-Based Prefetching

Similarly to Persistent Object Stores, prefetching approaches based on schema analysis

have not received considerable amount of research. An example of a schema-based

approach to prefetching in RDF triplestores is the one presented by Ding et al., which

uses application-specific schema design to store large RDF graphs [25]. The authors

also claim that the discovery of subject-property query sequences aids in the design of

prefetching strategies. However, they do not go into any further details about how the

prefetching approach can be designed or implemented.

2.4.2 Data-Based Prefetching

The first approaches to data-based prefetching in RDF Triplestores offered simple solu-

tions that aim at improving the execution times of specific applications and use cases.

One such approach is presented by Gao et al., who propose prefetching a predetermined

set of path expressions while solving multi-source multi-destination (MSMD) problems

on RDF graphs [30]. They evaluate their prefetching technique and conclude that a

more optimal prefetching strategy is needed in the future, given that their technique

does not always improve performance.

Hartig et al. propose a more general approach that dereferences resource URIs as

soon as the URI becomes part of a query solution [38]. This is in contrast with the

general practice of only dereferncing URIs at the time when the corresponding RDF

graph is needed. Another approach is proposed by Pan et al., who assign weights

to different triple patterns based on the occurrence frequency of each triple pattern

42 Chapter 2. State of the Art

in previous accesses [68]. The RDF triples corresponding to the patterns that cross a

specified frequency threshold are then prefetched into memory.

By far the most popular technique used to prefetch data in RDF Triplestores has

been query augmentation. This technique, also called ‘query relaxation’, aims at re-

laxing the conditions of a query in order to prefetch additional data that is potentially

needed for subsequent queries. While query augmentation predates RDF triplestores, it

has been adapted many times to SPARQL queries as an approach to perform prefetching.

Using this technique, Hurtado et al. suggest relaxing SPARQL queries by logical

relaxation of their triple patterns based on logical entailment and ontological metadata

retrieved from the triplestore [42]. In contrast, Hogan et al. propose an approach to

query augmentation that relies on precomputed similarity tables for attribute values [40]

and evaluate different distance measures to calculate this similarity. Finally, Elbassuoni

et al. utilize a language model derived from the knowledge base to perform query

augmentation [28].

Given that these query augmentation techniques need data from the data source,

they require at least some precomputations to be performed before they can be ap-

plied. Furthermore, they are not readily portable across triplestores since the required

information might not always be available.

2.4.3 Computer Language-Based Prefetching

In the context of RDF Triplestores, computer language-based approaches are based on

analyzing SPARQL queries in order to obtain relevant information in developing more

accurate prefetching. Zhang et al. present such an approach by measuring similarity

between SPARQL queries using a Graph Edit Distance (GED) function [84]. The authors

then use previous queries similar to the current query to ‘suggest’ data for prefetching.

A major drawback of this approach is that it only works if the exact same query is

launched several times, making it more similar to caching than prefetching.

In the area of query augmentation, Lorey et al. propose an approach that mea-

sures the similarity between past SPARQL queries based on a bottom-up graph pattern

2.4. Prefetching in RDF Triplestores 43

matching algorithm [55]. These measurements are used to cluster similar queries to-

gether and create a query template for each cluster. The authors extend their work by

combining the query templates with four different query augmentation strategies but

do not reach any conclusive results on which strategy offers the best results [54].

2.4.4 Discussion

Our approach belongs to the last category of prefetching techniques, it is a computer

language-based approach that analyzes SPARQL query logs to predict data for prefetch-

ing. It also applies query augmentation in order to prefetch the predicted data.

However, unlike previous approaches that fall into the same category (e.g. [55]),

we do no directly launch an augmented query but use a two-step prediction process

to predict the structure of the augmented query before individually predicting which

triple patterns to use (as discussed in Chapter 5). This separation allows us to take

the query structure into account without performing any graph matching between each

pair of SPARQL queries.

When compared to approaches that use query augmentation based on data found

in the triplestore, our approach is more flexible given that it does not require any

specific information that might not be found in the store. Instead, we apply our query

augmentation when needed using the query logs of the SPARQL endpoint.

45

Chapter 3

Static Code Analysis of

Object-Oriented Applications

This chapter details the first contribution of this thesis (C1) by presenting an approach

that uses static code analysis of object-oriented applications to predict access to data

in Persistent Object Stores (POSs). The analysis is performed before the application

is executed and hence does not cause any overhead. Moreover, the approach is fully

automatic and does not require any manual input from the developer.

We start by introducing a motivating example that shows the limitations of current

approaches to predict access to data in POSs, in Section 3.1, and the type of information

we can retrieve by statically analyzing the source code of an OO application in Section

3.2. Afterwards, we formalize our proposed approach using the concept of type graphs

in Section 3.3. We then implement the proposed static code analysis and discuss the

implementation details in Section 3.4. Afterwards, we move on to study the viability of

the implemented approach in Section 3.5 by answering the following research questions:

RQ1: What is the percentage of applications for which static code analysis can predict

access to persistent objects?

RQ2: Can the proposed static code analysis be performed within a reasonable amount

of time?

RQ3: What is the prediction accuracy of the proposed static code analysis?

46 Chapter 3. Static Code Analysis of Object-Oriented Applications

RQ4: How much in advance can the proposed static code analysis predict access to

persistent objects?

Finally, we summarize our findings and conclude this chapter in Section 3.6.

3.1 Motivating Example

Figure 3.1 shows the POS schema of a bank management system. In the figure, we

can see various classes representing the entities of the system, such as Transaction,

Account and Customer. Let’s say that we want to update the customers of the accounts

responsible for all the transactions to be in the name of the manager of the bank.

However, as a security measure, the system restricts updates on accounts to customers

of the same company as the customer currently owning the account.

In order to achieve this task, we need to retrieve and iterate through all the Transac-

tion objects. We then navigate to the referenced Account and Customer until reaching

the Company of each customer. Finally, we need to compare the company of the

customer currently owning the account with the company of the bank manager.

The simplest prediction technique that can be applied in this case is the Referenced-

Objects Predictor (ROP), as defined in Section 2.3. Applying ROP to our example

means that, for instance, each time a Transaction object is accessed, the referenced

Transaction Type, Account and Employee objects are predicted to be accessed along

with it.

However, in order to accomplish our task we also need to access the Customer and

Company objects which will not be prefetched. On the other hand, the Transaction

Type and Employee objects will be prefetched with Transaction but in reality are not

needed for the task at hand. To put this in numbers, if we have 100,000 Transactions

the ROP would wrongfully predict access to as many as 200,000 objects in the worst

case while missing another 200,000 objects that will be accessed.

The prediction accuracy of ROP can be improved by increasing the "fetch depth",

i.e. the number of levels of referenced objects to predict. For instance, instead of

only predicting access to Transaction Type, Account and Employee, which are directly

3.1. Motivating Example 47

Account

+ accountID : Integer

+ balance : Integer

+ status : Integer

Company

+ compID : Integer

+ name : String

+ address : String

+ phone : String

Transaction

+ transID : Integer

+ dateTime : Date

+ creditDebit : Boolean

+ amount : Integer

Employee

+ empID : Integer

+ salary : Integer

+ level : Integer

+ dateOfBirth : Date

Transaction Type

+ typeID : Integer

+ name : String

+ desc : String

Customer

+ custID : Integer

+ type : String

+ name : String

+ custSince : Date

Department

+ deptID : Integer

+ name : String

type

1

emp

1

account

1

cust

1

company

1

dept

1

Figure 3.1: Example of a Persistent Object Store (POS) schema. The schema represents a banking
system with 7 entities, each of which corresponds to an object type in the POS.

referenced from Transaction, having a fetch depth equal to 2 would also predict the

objects referenced from them, which are Department and Customer in this example.

Increasing the fetch depth of ROP may help in predicting more relevant objects but

it does not solve the problem of predicting access to objects that are not necessary. As

a matter of fact, the more the fetch depth is increased the more likely it is to predict

irrelevant objects as well. This is due to the fact that the ROP applies a heuristic based

on the schema of the POS that does not take into account the application behavior.

Another more complex approach would be to monitor accesses to the POS and

generate predictions based on the most commonly accessed objects [36, 43, 31]. For

instance, monitoring accesses to the POS shown in Figure 3.1 might tell us that in 80%

of the cases where a Transaction object is accessed, its related Account and Customer

objects are accessed as well.

This would work perfectly for our task, we will only need to load the referenced

Company object and all the other necessary objects will have been already prefetched.

However, in the 20% of cases where a transaction’s Account and Customer are not

needed, they will still be prefetched despite the fact that they will not be accessed.

Moreover, retrieving the necessary information for this approach requires runtime mon-

itoring of the application which adds overhead to the application execution time [31].

The problem faced in both cases is that sometimes we prefetch objects that are not

needed into memory and at the same time we don’t prefetch objects that are actually

accessed. This partially stems from the fact that the prediction heuristics are applied

without taking into consideration the actual applications being used to access the data.

48 Chapter 3. Static Code Analysis of Object-Oriented Applications

3.2 Solution: Static Code Analysis

Continuing with the same example, assume that we have an application with the par-

tial implementation shown in Figure 3.2, written in an object-oriented language, to

control access to the POS in Figure 3.1. The task that was described in Section 3.1 is

implemented by the method setAllTransCustomers() (lines 30 to 34) in Figure 3.2. By

analyzing the code of this method, we can see that whenever it is executed it accesses:

• the object manager defined in BankManagement.

• all of the Transaction objects defined in BankManagement by iterating through

them in a for loop.

These objects are accessed directly by the method setAllTransCustomers() but the

method also invokes other methods that may access persistent objects themselves. In

particular, we see that setAllTransCustomers() invokes two methods:

• the method getAccount() which accesses the objects Type, Employee and Account

referenced from a Transaction. Moreover, this method might also access the

Department of the Employee of a Transaction, depending on which branch of the

conditional statement starting on line 7 is executed.

• the method setCustomer() which accesses the objects Customer and Company

referenced from the Account object returned by the invocation of getAccount().

By combining the information obtained from analyzing the method setAllTransCus-

tomers() with that obtained from analyzing its invoked methods, we can get a better

idea of which objects the method will access when executed. Performing this inter-

procedural analysis also permits to predict access to a persistent object with more time

in advance. This is crucial to have sufficient time to prefetch the predicted objects

before they are accessed by the application.

On the other side, performing a static analysis does not always give us certain infor-

mation about which objects are accessed, such as the case with the method getAccount()

which may or may not access the object Department depending on which branch of the

3.2. Solution: Static Code Analysis 49

1 public class Transaction {
2 private Account account;
3 private Employee emp;
4 private TransactionType type;
5

6 public Account getAccount() {
7 if (this.type.typeID == 1) {
8 this.emp.doSmth();
9 } else {

10 this.emp.dept.doSmthElse();
11 }
12 return this.account;
13 }
14 }
15

16 public class Account {
17 private Customer cust;
18

19 public void setCustomer(Customer newCust) {
20 if (this.cust.company == newCust.company) {
21 this.cust = newCust;
22 }
23 }
24 }
25

26 public class BankManagement {
27 private ArrayList<Transaction> transactions;
28 private Customer manager;
29

30 public void setAllTransCustomers() {
31 for (Transaction trans : this.transactions) {
32 trans.getAccount().setCustomer(this.manager);
33 }
34 }
35 }
36

37 ...

Figure 3.2: Example application code written in an OOP language.

conditional statement is taken. The branching behavior of an application is dynami-

cally determined during runtime and cannot be fully studied statically. However, we

demonstrate in the approach study in Section 3.5 that the branching behavior of an

application has minimal effects on its access patterns to persistent objects.

Using all of this information obtained by statically analyzing the source code of an

application, we can automatically generate method-specific access hints that predict

which objects are going to be accessed by a method in the application. The clear

50 Chapter 3. Static Code Analysis of Object-Oriented Applications

advantage of this approach is that it is performed statically before the application is

executed and hence does not add any overhead to the application execution time. The

second advantage, which we show in Section 3.5, is that the prediction accuracy of this

approach is higher than other approaches performed at compile-time.

3.3 Proposed Approach

The formalization of our approach is based on the notion of application type graphs

presented in [43]. However, the approach in [43] predicts access to persistent objects

by monitoring application execution while our approach performs the process by stat-

ically analyzing the application’s code prior to its execution. To that end, we extend

this formalism by introducing method type graphs, branch-dependent navigations and

augmented method type graphs. We also formalize how access hints that predict access

to persistent objects are obtained from a method’s augmented type graph.

Let us assume that we have an object-oriented application that uses a POS with

a one-to-one mapping between application objects and POS objects (i.e. each object

in the application is exposed by the POS as an object regardless of how it is stored

internally). Further assume that the application is already checked by a compiler and

does not contain any compile-time errors.

We define T as the set of types (i.e. classes) and F as the set of fields of the

application. Also, ∀t ∈ T we define the two following sets:

Ft : the set of member fields of t

Mt : the set of member methods of t

3.3.1 Application Type Graph

An application type graph is a graph that captures the schema of the underlying POS

by statically analyzing the source code of an application. Formally, the type graph of

an application, as defined in [43], is a directed graph GT = (T,A) where:

• T is the set of types defined by the application.

3.3. Proposed Approach 51

Employee

Department

Customer

Company

Account Type

Bank
Management

Transaction

cust account
type emp

dept

transactions
manager

company

Single CollectionAssociations:

Figure 3.3: Type graph GT of the application from Figure 3.1. Solid lines represent single associ-
ations and dashed lines represent collection associations.

• A is a function T×F → T×{single, collection} representing a set of associations

between types. Given types t and t′ and field f , if A(t, f) → (t′, c) then there

is an association from t to t′ represented by f ∈ Ft where type(f) = t′ with

cardinality c, where c indicates whether the association is single-valued (single)

or multi-valued (collection).

Example. Figure 3.3 shows the type graph of the application from Figure 3.1.

There are two collection associations, namely employees and transactions. Some of the

associations included in this type graph are formalized as:

• A(Employee, dept) 7→ (Department, single)

• A(Transaction, account) 7→ (Account, single)

• A(Bank Management, transactions) 7→ (Transaction, collection)

3.3.2 Method Type Graph

While the application type graph represents the general schema of the underlying POS,

it does not capture how the associations between the different types are traversed by

the methods of the application. In order to do so, we extend the formalism by defining

a method type graph.

52 Chapter 3. Static Code Analysis of Object-Oriented Applications

Employee

Department

Account
Type

Transaction
account

type emp
dept

Employee

emp

Single CollectionAssociations:

Figure 3.4: Type graph Gm of the method getAccount() from Figure 3.2 (lines 6 to 13). Branch-
dependent navigations (Section 3.3.3) are highlighted in orange.

When a method m is executed, some of its instructions trigger the navigation of a

subset of the associations in the application type graph. An association navigation

t ⇁f t′ is triggered by accessing a field f in an object of type t to navigate to an

object of type t′ such that A(t, f)→ (t′, c). We call the object of type t the navigation

source and the object of type t′ the navigation target. A navigation of a collection

association has multiple target objects corresponding to the collection’s elements. The

set of all association navigations in a method m form a method type graph Gm, which

is a sub-graph of GT .

Example. Figure 3.4 shows the method type graph Gm of method getAccount()

with the implementation shown in Figure 3.2 (lines 6 to 13). Notice that expressions

such as typeID are not part of the graph because they do not trigger a navigation

between objects (typeID is a field of a primitive type (integer) which is stored and

retrieved automatically with its parent object).

3.3.3 Branch-Dependent Navigations

Since the execution of a method depends on the branching behavior of the program,

not all of the association navigations are always triggered. For example, the navigation

Employee ⇁dept Department from Figure 3.4 is triggered inside the else branch of

the conditional statement starting on line 7 in Figure 3.2. This navigation might or

3.3. Proposed Approach 53

might not be triggered during execution depending on which branch of the conditional

statement is executed.

We call this type of navigations branch-dependent navigations, they are caused by

the program’s branching behavior, which depends on a method’s conditional and loop

statements. We identified two types of branch-dependent navigations:

• Navigations not triggered inside all the branches of a conditional statement. Since

only one of the statement’s branches is executed, a navigation that is not triggered

in all of the statement’s branches might not be triggered at all.

• Navigations of collection associations triggered in loop statements with branching

instructions (i.e. continue, break, return) or increments greater than 1. The

execution of such loops might be interrupted before all of the navigation’s target

objects (i.e. the elements of the target collection) are accessed.

Given that our analysis is done statically prior to the execution of the applica-

tion, we cannot know which branch of the method will be executed, and thus which

branch-dependent navigations will be triggered. To deal with the lack of this runtime

information, we devised two different strategies to treat branch-dependent navigations;

either include them in or exclude them from the method type graph Gm.

Including branch-dependent navigations in Gm might result in false positives if the

branch from which the navigation is generated is not taken during execution. On the

other hand, excluding them might result in a miss if the branch is indeed taken. In our

approach study (Section 3.5), we evaluate both strategies and discuss which should be

used in different circumstances.

Example. Looking at Figure 3.4 again, we can say the following about the navi-

gations triggered inside the conditional statement starting on line 7 in Figure 3.2:

• Employee ⇁dept Department (highlighted in orange) is branch dependent since

it is only triggered in one of the branches of the conditional statement.

• Transaction ⇁emp Employee is not branch-dependent (it is triggered inside both

branches).

54 Chapter 3. Static Code Analysis of Object-Oriented Applications

3.3.4 Augmented Method Type Graph

The method type graph, defined in Section 3.3.2, captures the association navigations

directly triggered by the instructions of a method. However, a method m might also

invoke other methods of the applications, which in turn trigger other association nav-

igations. Since our goal is to predict access to persistent objects as early as possible,

we also perform an inter-procedural analysis that links the method type graph of a

method m with the type graphs of the methods invoked by m.

We do this analysis by constructing an augmented method type graph. An aug-

mented method type graph AGm = (Tm ⊆ T,Am) considers association navigations

that cross the boundaries of a single method through method invocations. When a

method m defined in type t invokes a second method m′ defined in t′, we construct

AGm by augmenting the type graph of m in two orthogonal ways:

• The type graph of the invoked method Gm′ is added to AGm through the navi-

gation t ⇁f t′ that caused the invocation of m′.

• When a persistent object is passed as a parameter to m′, the instructions of m′

might also trigger navigations starting from the passed parameter and all such

navigations are added to AGm. Note that these navigations do not form part of

Gm′ since parameters are considered local variables in their method’s body.

Example. Figure 3.5 shows the augmented method type graph AGm of method

setAllTransCustomers() with the implementation shown in Figure 3.2 (lines 30 to 34).

We can observe the following from this figure:

• BankManagement ⇁transactions Transaction ⇁transType TransactionTypemean

that the navigation Transaction ⇁transType Transaction Type is triggered for

each target object of the multi-valued association navigation Bank Management

⇁transactions Transaction.

• Account ⇁cust Customer is the result of invoking the method setCustomer(newCust)

on the return object of method getAccount().

3.3. Proposed Approach 55

Employee

Department

Account
Type

Transaction
account

type emp
dept

Employee

emp

Customer

Company Bank
Management

transactions

manager
company

Customer

Company

company
cust

Single CollectionAssociations:

Figure 3.5: Augmented type graph AGm of the method setAllTransCustomers() from Figure 3.2
(lines 30 to 34). The navigations that cross method boundaries are caused by the invocations
of methods getAccount() and setCustomer(newCust) on line 32 in Figure 3.2. Branch-dependent
navigations (Section 3.3.3) are highlighted in orange.

• BankManagement ⇁manager Customer ⇁company Company are triggered by

passing manager as a parameter to the method setCustomer(newCust). They are

independent of the navigation triggered to invoke the method since parameters

are orthogonal to the method invocation object.

3.3.5 Access Hints

After constructing the augmented type graph of a method AGm, we generate the set

of access hints that predict access to persistent objects AHm by traversing the graph.

Each access hint ah maps to a unique path in the graph AGm and indicates a sequence

of accesses to persistent objects starting at the instruction triggering the first navigation

in the path.

A path might contain navigations of both single and collection associations. In the

case of a single association, the corresponding access hint indicates that a single object

is accessed, namely the navigation’s target object. On the other hand, a navigation of

a collection association has multiple target objects and the corresponding hint in this

case indicates that all of these objects are accessed.

56 Chapter 3. Static Code Analysis of Object-Oriented Applications

Thus, we define the set of access hints of a method AHm as:

AHm = {ah | ah = f1.f2.fn where Am(ti, fi)→ (ti+1, c) : 1 ≤ i < n} (3.1)

Example. The augmented method type graph AGm of Figure 3.5 results in the fol-

lowing set of access hints for method setAllTransCustomers(). Note that hints starting

with the collection transactions indicate that all its elements are accessed.

AHm = {transactions.transType, transactions.emp,

transactions.account.cust.company, manager.company}

3.3.6 Overridden Methods

A main feature of OOP languages is type inheritance, which allows a type t′ to be

defined as a subclass of another type t. Inheritance allows applications to define an

object of a type t but initialize it of any subtype of t. Moreover, any method m defined

in t can have overridden versions, with different implementations, in any subtype of t.

Thus, when a method is executed on an object defined of type t and initialized to a

subtype, the application actually executes the overridden version of m.

This behavior is called Dynamic Binding, in which the type of an object and the

methods being executed are not known until runtime [9]. Similar to branch-dependent

navigations (defined in Section 3.3.3), this information cannot be retrieved by our static

analysis, given that is it only available when the application is executed. Hence, we

also devises different strategies to deal with this

Formally, if we have a type t ∈ T that has one or more subtypes STt ⊂ T , we define

the set of overridden versions of a method in that type m ∈Mt as:

OMm = {m′|m′ ∈ t′ where t′ ∈ STt} (3.2)

Due to Dynamic Binding, always using the access hints of m might lead to wrong

predictions of which persistent objects should be prefetched when an overridden method

of m is executed. In order to handle this case, we propose adding further access hints

3.4. Approach Implementation 57

to AHm using one of the following strategies, both of these strategies are evaluated and

discussed in Section 3.5:

•
⋂

m′∈OMm
AHm′ : adding the intersection of the access hints of all the overridden

versions of m to AHm.

•
⋃

m′∈OMm
AHm′ : adding the union of the access hints of all the overridden ver-

sions of m to AHm.

3.4 Approach Implementation

In order to validate our static code analysis approach, as defined in Section 3.3, we

implemented it in Java using IBM Wala [82]. Wala is an open-source tool that uses

Eclipse Java Development Tools (JDT) libraries to parse and manipulate Java source

code. We chose to implement our approach on Java as it is the most common object-

oriented language. However, the theoretical concepts of the approach can be applied to

any other object-oriented language. We chose Wala as it was the most adequate static

code analysis tool that contained the features we needed to implement our approach.

We used the Abstract Syntax Tree (AST) that Wala constructs in order to identify

the conditional and loop statements of each method. We identified two loop patterns

used to iterate collections: using indexes or using iterators, each of which can be imple-

mented with a for or a while loop. We also took if, if-else and switch-case statements

into consideration when identifying conditional statements.

Wala also generates an Intermediate Representation (IR) of Java source code that

contains Java bytecode instructions along with a control flow graph, a symbol table

and a local variable value-to-name mapping. We used this IR in our analysis in order

to detect the instructions that trigger association navigations and construct the type

graph and augmented type graph of each method of the application.

Figure 3.6 shows a class diagram of the implemented static code analysis approach.

The diagram depicts both internal classes of Wala that were used in our implementation

(in blue), as well as additional classes that we implemented to construct the type graphs

and generate the access hints (in orange and green).

58 Chapter 3. Static Code Analysis of Object-Oriented Applications

JavaSourceAnalysisEngine

+ sourceEntries : Set<String>

+ libEntries : Set<String>

- buildClassHierarchy()

1

classHierarchy

ClassHierarchy

JavaClass

JavaMethod

AnalysisScope

MultiBranchAnalysisScope LoopAnalysisScope

SSAInstruction
- visit()

IR

AST

AST2ScopesTranslator
- visitNode()

SourceCodeAnalyzer
- analyzeApplication()

MethodAnalyzer

- analyzeMethod()

- visitScope()

- visitInstruction()

AccessHint

AssociationNavigation

SingleNavigation CollectionNavigation

1..*

classes

1..*

methodIRs

0..*

methods

0..*

scopes

0..*

instrs

1

ast 0..*

hints

1..*

navigations

0..* subScopes

engine

1

0..*

instrs

method

1

method

1

Figure 3.6: Class diagram of the implemented static code analysis. Classes in blue represent
internal Wala classes that are relevant to our analysis. Classes in orange represent additional data
structures that we implemented to store the necessary data. Classes in green represent the main
classes that we implemented to perform the analysis.

3.4.1 Wala Abstract Syntax Tree

The analysis starts with the class SourceCodeAnalyzer that initializes Wala’s Java-

SourceAnalysisEngine with the set of source classes and required libraries of the appli-

cation to be analyzed. Once it is initialized, this analysis engine builds a class hierarchy

of the application classes and generates a JavaClass object for each class. It also gen-

erates a JavaMethod object for each method in the class as well as an Abstract Syntax

Tree (AST) for each JavaMethod.

Example. Figure 3.7 depicts the AST of the method setAllTransCustomers() from

Figure 3.2. We can see different types of nodes that represent the different instructions

and statements from the method. For instance, the node DECL_STMT represents a

variable declaration and has two child nodes; (1) the name of the defined variable and

(2) the value which is assigned to it. In this case, a DECL_STMT node is used for the

implicit declaration of the iterator of the collection transactions used in the for loop.

3.4. Approach Implementation 59

SCOPE

DECL_STMT

"itr0" CALL

"transactions" "iterator()"

LOOP

CALL

"itr0" "hasNext()"

SCOPE

CALL

"trans" "getAccount()"

DECL_STMT

"trans" CALL

"itr0" "next()"

CALL

"setCustomer()" "manager"

Figure 3.7: Abstract Syntax Tree (AST) generated by Wala of the method setAllTransCustomers()
from Figure 3.2. Nodes in blue represent the internal structure of the tree while nodes in orange
represent the names of the variables and methods used in the instructions.

Similarly, the node CALL is used to represent a method invocation and has at least

two child nodes; the first represents the object on which the method is invoked and the

second represents the invoked method. The CALL node can also have more children

representing the parameters passed to the invoked method, such as the case with the

node "manager", which is a parameter of the invocation of the method setCustomer().

3.4.2 Wala Intermediate Representation

Afterwards, the Wala analysis engine constructs the Intermediate Representation (IR)

for each method and maintains a map of IRs separately from the JavaMethod objects.

The IR objects contain a unique value number for each local variable defined in the

method, including its parameters. For a non-static method, v1 represents the this

parameter. The parameters to the method are next (v2, v3, etc). For a static method,

v1 represents the first parameter. The local variables defined inside a method’s body

follow the parameters in numbering.

Moreover, the IR includes a set of SSAInstructions representing the bytecode in-

structions of the corresponding method. Each SSAInstruction consists of three parts:

• The instruction type (e.g. invocation, conditional branch) and the parameters of

the instruction (e.g. the invoked method and its parameters),

60 Chapter 3. Static Code Analysis of Object-Oriented Applications

• At most one variable defined by the instruction, which is given a new unique

value number, and

• Zero or more variables that are already defined and used by the instruction,

indicated by their corresponding value numbers.

Each SSAInstruction is also given an Instruction Index (II) which uniquely iden-

tifies it in the list of instructions inside the IR. Note that since the IR uses bytecode

instructions as a basis, Wala might add additional instructions implicitly invoked in

the original Java source code (such as converting loops to conditional branches and

goto instructions).

Example. Figure 3.8 shows the IR instructions of the method setAllTransCus-

tomers() from Figure 3.2. As explained above, the value v1 represents the this param-

eter and given that the method does not have any declared parameters, the numbering

of the values corresponding to the local variables of the method starts with v2.

The line numbers shown in Figure 3.8 correspond to the index of each instruction

inside the Wala IR. Note that the instructions II2, II3, II4, II5, II6 and II10 are im-

plicit instructions that Wala generates due to the for loop and are not explicitly invoked

by the original method code. The instructions depicted in Figure 3.8 are the following:

• II1: getfield instruction that loads the field transactions, of type ArrayList,

defined in the class BankManagement. The instruction uses the value number v1

(this parameter) to load the field and defines the value v2.

• II2: invokemethod instruction that invokes the method iterator defined in

the class ArrayList on the value number v2, which corresponds to the loaded

transactions field defined by II1. The returned iterator of the invoked method is

assigned the value number v3.

• II3: invokemethod instruction that invokes the method hasNext() defined in

the class Iterator on the value number v3. The result of the invocation, a variable

of type boolean, is assigned the value number v4.

3.4. Approach Implementation 61

1 v2 = getfield < BankManagement, transactions, java/util/ArrayList > v1
2 v3 = invokemethod < java/util/ArrayList, iterator()java/util/Iterator > v2
3 v4 = invokemethod < java/util/Iterator, hasNext()B > v3
4 conditionalbranch (eq, to iindex = -1) v4, true
5 v5 = invokemethod < java/util/Iterator, next()java/lang/Object > v3
6 v6 = checkcast < Transaction > v5
7 v7 = invokemethod < Transaction, getAccount()Account > v6
8 v8 = getfield < BankManagement, manager, Customer > v1
9 invokemethod < Account, setCustomer(Customer)V > v7, v8

10 goto (from iindex = 10 to iindex = 3)

Figure 3.8: Intermediate Representation (IR) generated by Wala of the instructions of the method
setAllTransCustomers() from Figure 3.2. Line numbers represent the instruction indexes given by
Wala. SSAInstruction names are in bold, invoked methods in blue and loaded class fields in red.

• II4: conditionalbranch instruction that checks if the variable v4 equals the

value true (i.e. if the iterator has more objects to load) and indicates the start

of the loop statement in the original source code.

• II5 an II6: correspond to a method invocation that invoke the method next on

the iterator defined by value number v3 and check the type of the loaded object to

correspond to the defined type of the original array list Transaction. If the type

cast is successful, a new value number v6 is given to the result of the operation,

which corresponds to the explicitly defined local variable trans.

• II7: an invokemethod instruction that performs the explicit invocation of the

method getAccount() on the types object v6. The returned object, of type Ac-

count, is given the value number v7.

• II8: a getfield instruction that loads the field manager, used as a parameter of

the next instruction II9, and assigns it the value number v8.

• II9: an invokemethod instruction that performs the explicit invocation of the

method setCustomer(). This instruction uses two value numbers: v7 correspond-

ing to the object of type Account on which the method is invoked, and v8 corre-

sponding to the field manager used as a parameter of the invoked method.

• II10: a goto instruction indicating the end of the loop statement and returning

the execution to II3.

62 Chapter 3. Static Code Analysis of Object-Oriented Applications

3.4.3 Analysis Scopes

The internal Wala analysis engine keeps the AST and IR separate from each other.

However, in order to perform our analysis, we need the AST created by Wala to detect

conditional and loop statements and the IR to detect the instructions that trigger

association navigations. Therefore, to facilitate the analysis, we construct Analysis

Scopes.

The Analysis Scopes correspond to conditional and loop statements of the method

and are used to identify branch-dependent navigations later on in the analysis. We

create the scopes by implementing the visitor class AST2ScopesTranslator, which visits

all the nodes in a method’s AST and generates the corresponding scopes in a recursive

manner. The visitor also stores the IR instructions generated by Wala inside the

corresponding scopes before storing the scopes into the JavaMethod objects.

For each created analysis scope, we also identify the indexes of the first and last

instruction inside the scope. These indexes are then used to more easily switch between

the different scopes of a method when iterating through the method’s instructions and

performing our analysis, as detailed in Section 3.4.4.

Example. Figure 3.9 shows the analysis scopes constructed for two methods from

Figure 3.2. In Figure 3.9 (a), we can see the analysis scopes of the method setAll-

TransCustomers() including the Loop Analysis Scope which corresponds to the for

loop statement of the method. On the other hand, Figure 3.9 (b) depicts the analysis

scopes of the method getAccount() and shows how the if-else conditional statement

is represented by using one Multi-Branch Analysis Scope with two sub-scopes, each

corresponding to one branch of the conditional statement.

Note that in both cases the IR instructions that are used in the conditions of the

statements, namely the instruction invokemethod hasNext() in Figure 3.9 (a) and the

instructions getfield type and getfield typeID in Figure 3.9 (b) belong to the parent

scope of the scope representing the loop or conditional statement. We implemented

this special case given that the instructions used to evaluate the conditions are always

executed regardless of which branch is taken afterwards.

3.4. Approach Implementation 63

2 = getfield transactions : 1
3 = invokemethod iterator() : 2
4 = invokemethod hasNext() : 3
- Loop Analysis Scope

Analysis Scope
5 = invokemethod next() : 3
6 = checkcast Transaction : 5
7 = invokemethod getAccount() : 6
8 = getfield manager : 1
invokemethod setCustomer(Customer) : 7, 8

Loop Analysis Scope

(a) method setAllTransCustomers()

- MultiBranch Analysis Scope
7 = getfield account
return : 7

Analysis Scope
2 = getfield type : 1
3 = getfield typeID : 2
- Branch Analysis Scope 1
- Branch Analysis Scope 2

MultiBranch Analysis Scope
4 : getfield emp : 1
invokemethod doSmth() : 4

Analysis Scope

5 = getfield emp : 1
6 = getfield dept : 5
invokemethod doSmthElse() : 6

Analysis Scope

(b) method getAccount()

Figure 3.9: Constructed Analysis Scopes of two methods from the application code in Figure 3.2.
The instructions shown in this figure are a simplified representation of the Wala IR instructions.

3.4.4 Method and Augmented Method Type Graphs

After creating the analysis scopes, the SourceCodeAnalyzer moves on to the main part of

our analysis. It iterates through the engine’s JavaMethod objects, now each containing

the analysis scopes, and invokes another visitor class, MethodAnalyzer, for each method.

MethodAnalyzer is the class responsible for visiting the scopes and instructions of a

method and creating the method and augmented method type graphs. While these

graphs are core concepts in our approach, they are never materialized or stored since

they are intermediate structures used for the final goal of generating access hints.

Table 3.1 summarizes the IR SSAInstructions that were taken into consideration

in our analysis. In order to detect single association navigations, we use the instruc-

tion getfield with the restriction that the type of the used field should be user-defined

(i.e. the type should correspond to a class defined in the application). As for de-

tecting collection association navigations, our analysis takes into account two types

of instructions: (1) arrayload instructions, and (2) invokemethod instructions of the

next() method of the java.util.Iterator class. A further restriction is also added to limit

these navigations to instructions found inside loop analysis scopes.

Constructing the method type graph is then done by utilizing the used value num-

bers that Wala generates with the IR. For instance, when an instruction I1 has in its

64 Chapter 3. Static Code Analysis of Object-Oriented Applications

Table 3.1: A summary of the Wala SSAInstructions used in our static code analysis approach.

SSA Instruction Restrictions Used to Detect..
getfield User-defined field type Single association navigations
arrayload Inside loop analysis scope

Collection association
navigations

invokemethod Inside loop analysis scope,
method java.util.Iterator.next()

checkcast Inside loop analysis scope, User-
defined cast type

invokemethod Method of user-defined class Method invocations
return N/A Returned object of a method

used values the value number defined by I2, the subgraph resulting from I2 is linked

to the node that represents the field accessed by I1. In this case, I2 can be any one of

the instructions considered in the analysis as shown in Table 3.1.

Moreover, if the used value number corresponds to a method parameter, we mark

it as such. This is important to bind the parameter to its value when constructing

the augmented method type graph (see Section 3.3.4). We also take into consideration

return instructions, if any, to detect the object that was returned by a method. The

returned object is then used to link the result of a method invocation with further

instructions (e.g. getAccount().setCustomer()).

In order to detect branch-dependent navigations, we considered the branching in-

structions continue, break and return when they occur inside a loop analysis scope. If

such an instruction is detected, the navigations resulting from instructions inside the

loop scope are marked as branch-dependent. On the other hand, all navigations result-

ing from the instructions of a child scope of a multi-branch analysis scope are marked

as branch-dependent. These branch-dependent navigations are then dealt with later

on during the generation of the access hints.

As for the augmented method type graph, it is constructed by detecting invokemethod

instructions and augmenting the type graph of the method m in two orthogonal ways

(as discussed in detail in Section 3.3.4): (1) The type graph of the invoked method is

added to the type graph of m by linking it to the node representing the object that

caused the invocation, and (2) The parameters of the invoked method are bound to

the values used in the invocation and if these values correspond to persistent objects,

their association navigations are added to the type graph of m.

3.4. Approach Implementation 65

These steps are detailed by the pseudo-code of Algorithm 1, which takes as input

the source code of a method m and returns as output the augmented type graph AGm.

The algorithm iterates through the instructions of the method and creates new nodes

in AGm through the method createNode(), which takes as parameters the name of the

node and whether it corresponds to a navigation of a single or collection association.

The method createEdge() is used to add an edge to AGm between the node of

the current instruction and the nodes of previous instructions, depending on the used

and defined value numbers of the SSAInstructions. Finally, the algorithm switches the

currentScope depending on the indexes of the first and last instruction in each scope

of the method, in order to detect branch-dependent navigations when necessary.

Example. Applying the steps of Algorithm 1 on the instructions and analysis scopes of

the method setAllTransCustomers() depicted in Figure 3.9 (a) results in the following

(note that the instructions II2, II3 and II5 do not access any persistent objects and

hence do not cause changes to AGm):

• The instruction II1 = getfield transactions accesses a field of type collection.

Hence, no changes are made to AGm.

• II4 is the first instruction of the loop analysis scope, hence the current scope

is switched. The algorithm then detects that it is an invocation of the mthod

java.util.Iterator.next(), which indicates that it is accessing elements of the col-

lection transactions and a new node is added to AGm.

• II6 is an invocation of getAccount(). Hence, the type graph of getAccount() is

added to AGm. Similarly, II7 results in adding the type graph of setCustomer()

to AGm, binding the method’s parameter to the object manager.

Following this algorithm results in the construction of the augmented method

type graph of setAllTransCustomers() depicted in Figure 3.5. An example of branch-

dependent navigations is found in the analysis scopes of the method getAccount() de-

picted in Figure 3.9 (b), where we can see that the instructions getfield emp and getfield

dept are found in child scopes of a Multi-Branch Analysis Scope. As such, the nodes

and edges constructed from these instructions are marked as branch-dependent.

66 Chapter 3. Static Code Analysis of Object-Oriented Applications

Algorithm 1: Construct Augmented Method Type Graph
Input : m ∈Mt: Source code of the method to analyze
Output: AGm: Augmented Type Graph of the input method m

AGm ← (φ, φ)
currentScope ← φ
foreach param ∈ Pm do

AGm ← AGm∪ createNode (param, isSingleOrCollection (param))

foreach instr ∈ Im do
// Switch scopes depending on instruction index
if instrIndex = scopeStart (m) then

currentScope ← getScope (m, instrIndex)
else if instrIndex = scopeEnd (m) then

currentScope ← parent (currentScope)

// Identify branch-dependent navigations
if type (parent (currentScope)) = multibranchanalysisscope ||
(type (instr) ∈ {return, break, continue} && type(currentScope) =
loopanalysisscope) then

isBranchDependent ← true

// Handle SSA Instructions and create nodes in AGm

if type (instr) = getfield && fieldType (instr) ∈ T then
AGm ← AGm∪ createNode (fieldName (instr), ‘single’)

if ((type (instr) = arrayload)
|| (type (instr) = invokemethod && invokedMethod (instr) =
‘java.util.Iterator.next()’))

&& type (currentScope) = loopanalysisscope then
AGm ← AGm∪ createNode (usedValueName (instr), ‘collection’)

if type (instr) = invokemethod && invokedMethod (instr) ∈MT then
m′ ← invokedMethod (instr)
AGm′ ← getMethodGraph (invokedMethod(instr))
foreach node ∈ AGm′ do

if isParameterNode (node) then
replaceNode (AGm′ , node, bindParameter (node))

AGm ← AGm ∪AGm′

if type (instr) = return then
usedNode ← getNode(usedValueName (instr))
setIsReturnObject (usedNode)

// Create edges between new nodes and used nodes
definedNode ← getNode (defValueName (instr))
foreach usedValueName ∈ usedValueNames (instr) do

usedNode ← getNode (usedValueNumber)
AGm ← AGm∪ createEdge (usedNode, definedNode,
isBranchDependent))

return AGm

3.5. Approach Validation 67

3.4.5 Access Hints

The final step in the analysis is also performed by the MethodAnalyzer. After creating a

method’s augmented type graph, as defined in Algorithm 1, the visitor generates Access

Hints, each containing one or more Association Navigations, and stores them into the

method being analyzed m. At this point, given that the nodes and edges of AGm are

marked to indicate branch-dependent navigations, we identify these navigations and

either exclude or include them in the generation of the access hints, as discussed in

Section 3.3.3. Finally, we apply one of the strategies defined in Section 3.3.6 to deal

with overridden methods by supplementing the set of generated access hints of each

method.

3.5 Approach Validation

To answer the research questions set out at the beginning of this chapter, we executed

a set of experiments using the implementation of our approach explained in Section

3.4. We evaluated the implemented approach by analyzing the source code of the

SF110 corpus of applications. As proven in [29], SF110 is a statistically representative

sample of 100 Java applications from SourceForge, a popular open source repository,

extended with the 10 most popular applications from the same repository. Since the

SF110 corpus is statistically representative, we believe that analyzing the source code

of its applications gives us an accurate idea on the applicability of static code analysis

of object-oriented applications to the generation of access hints.

We made several changes to the applications of the SF110 corpus for compatibility

reasons with Wala. Table 3.2 reports these changes and indicates that four applications

were excluded for the same motive, bringing the number of analyzed applications from

the SF110 corpus to 106. Detailed information about the applications included in the

SF110 corpus is available in [29].

For the sake of completeness, we supplemented the SF110 corpus with four addi-

tional applications. These applications include two benchmarks specifically designed

for POSs and two benchmarks typically used for computation-intensive workloads:

68 Chapter 3. Static Code Analysis of Object-Oriented Applications

Table 3.2: The changes and exclusions we made in our experiments to the application from the
SF110 corpus.

Application Changes / Exclusions Justification
heal Include javax.servlet source

code instead of JAR file
Used JAR file not readable by
Walajavaviewcontrol

jwbf Use a newer version (3.0.0) Old version contained compile
errors

corina Exclude method:
DecadalModel.setValueAt()

Do-while statement inside a
case of a Switch-case statement
not supported by Wala

weka Exclude methods: Linear-
Regression.findBestModel(),
GUIChooser.GUIChooser()

wheelwebtool Exclude method: JSONTo-
kener.nextClean()

summa Exclude methods: SolrResponse-
Builder.parseDoc(), SummonRe-
sponseBuilder.extractRecord()

Anonymous classes not
supported by Wala

sweethome3d

Exclude entire application

vuze
jcvi Generic types where names are

changed not supported by Wala
liferay Java HeapSpace Exception is

thrown by Wala while creating
AST

• OO7: the de facto standard benchmark for POSs and object-oriented databases

[17]. The benchmark’s model is meant to be an abstraction of different CAD/-

CAM/CASE applications and hence contains a recursive data structure involving

many classes with complex inheritance and composition relationships.

• JPAB 1: a benchmark that measures the performance of ORMs compliant with

the Java Persistent API (JPA) using four types of workloads (persist, retrieve,

query and update).

• K-Means: a clustering algorithm typically used as a big data benchmark.

• Princeton Graph Algorithms (PGA) 2: a set of various graph algorithms

with different types of graphs (undirected, directed, weighted). More specifically,

we executed the Depth-First Search, Breadth-First Search, Dijkstra Shortest Path

and Bellman-Ford Shortest Path algorithms.
1JPAB: http://www.jpab.org/Benchmark_FAQ.html
2PGA: http://algs4.cs.princeton.edu/40graphs/

http://www.jpab.org/Benchmark_FAQ.html
http://algs4.cs.princeton.edu/40graphs/

3.5. Approach Validation 69

0 20 50 100 200 500 1,000 2,000 5,000 20,000 30,000

0

5

10

15

20

25

30

35

40

Number of:

N
u
m
b
er

o
f
A
p
p
lic
at
io
n
s

Classes Methods Cond. Stmts. Loop Stmts.

Figure 3.10: For each interval, we report the number of applications used in our study that have
the number of classes, methods, conditional statements and loop statements (as detected by our
approach) in that interval.

Table 3.3: Summarized statistics of the corpus of applications used in our approach study.

Min Max Median Avg Std. Dev. Total
Classes 1 2,292 38 139 381 14,760
Methods 2 26,261 335 1,379 3,517 146,182
Cond. Stmts. 0 17,935 162 656 1,893 69,495
Loop Stmts. 0 6,747 46 185 674 19,634

Figure 3.10 shows an aggregation of relevant characteristics of the applications used

in our study: number of classes, methods, conditional statements and loop statements.

Table 3.3 shows some summarized statistics of these characteristics and indicates that

the test suite covers a wide range of applications, from very small applications to large

applications containing over 20,000 methods.

The rest of this section explains the results obtained from our experiments and is

divided into four parts, each answering one of the research questions we address. To

answer RQ1 and RQ2, we performed our experiments on the entire corpus of applica-

tions. Afterwards, we select a representative set of applications to use as benchmarks

to answer RQ3 and RQ4, which require runtime information that cannot be easily

gathered for over 100 applications.

70 Chapter 3. Static Code Analysis of Object-Oriented Applications

0

5

10

15

20

25

30

35

40

Percentage of:

N
u
m
b
er

o
f
A
p
p
lic
at
io
n
s

Conditional Statements Loop Statements

(a) Conditional and Loop Statements

0

5

10

15

20

25

30

35

40

Percentage of Methods

N
u
m
b
er

o
f
A
p
p
lic
at
io
n
s

(b) Methods

Figure 3.11: For each 5% or 10% interval, we report the number of applications that have the
proportion of conditional statements, loop statements or methods that do not trigger any branch-
dependent navigations (Section 3.3.3) in that interval.

3.5.1 RQ1: What is the percentage of applications for which static

code analysis can predict access to persistent objects?

To answer this question, we first analyzed the conditional and loop statements in the

studied applications. Figure 3.11 (a) shows the number of applications per percentage of

conditional and loop statements that do not trigger any branch-dependent navigations.

The category axis of Figure 3.11 (a) starts at 20% as none of the analyzed applications

scored less in either case. It should be noted that one of the studied applications,

greencow, does not have any conditional statements while two, greencow and dash-

framework, do not have any loop statements. Table 3.4 shows that an average of 67.5%

of conditional statements and 82% of loop statements do not trigger branch-dependent

navigations, and hence do not pose a problem when generating access hints.

We aggregated these results to calculate the percentage of methods of each applica-

tion that do not trigger any branch-dependent navigations, i.e. the methods for which

our approach predicts the exact set of persistent objects that will be accessed. Figure

3.11 (b) shows the results of this experiment, its category axis starts at 60% as only

one of the studied applications, jmca [77], scored a lower percentage of 44.05%.

Figure 3.11 (b) shows that only 5 of the studied applications scored below 80%,

which indicates that for 95.5% of the studied applications, our approach can generate

3.5. Approach Validation 71

Table 3.4: Summarized statistics of the experimental results. The first three rows show the
percentage of conditional statements, loop statements and methods that do not trigger any branch-
dependent navigations. The last row shows the analysis time of the studied applications.

Min Max Median Avg Std. Dev.
Cond. Stmts. (%) 26.8% 100% 67.1% 67.5% 17%
Loop Stmts. (%) 24.8% 100% 85.7% 82% 15.7%
Methods (%) 44% 100% 89.9% 88.8% 7.9%
Analysis Time (ms) 1 15,648 133 651 1,691

the exact set of access hints for over 80% of methods. Table 3.4 indicates that on

average, 88.8% of an application’s methods do not trigger branch-dependent naviga-

tions, which is significantly higher than the average reported for conditional and loop

statements, and also reports a low standard deviation of 7.9%.

These results indicate that the prediction errors stemming from branch-dependent

navigations are confined to a limited number of methods, while our static code analysis

approach can accurately predict access to persistent objects in most cases. This is also

in line with the intuition of the authors of [43] that accesses to persistent data are, in

general, independent of an application’s branching behavior.

3.5.2 RQ2: Can the proposed static code analysis be performed

within a reasonable amount of time?

To answer this question, we measured the time that our proposed approach needed

to analyze the studied applications. Figure 3.12 plots the number of applications per

range of analysis time in milliseconds and shows that our approach only needs more

than 2 seconds for 6 of the studied applications. Table 3.4 reports an average analysis

time of 651 milliseconds and a maximum of just over 15 seconds which was measured

when analyzing weka, the second largest application with over 20,000 methods.

As expected, the analysis time of our approach is correlated with the number of

classes and methods of an application. However, with an average analysis time of 651

milliseconds and a maximum of roughly 15 seconds, we believe that the analysis finishes

within a reasonable time for all of the analyzed applications. It is worth mentioning

again here that this static analysis is done prior to application execution and does not

add any overhead to its execution time.

72 Chapter 3. Static Code Analysis of Object-Oriented Applications

0

5

10

15

20

25

30

35

40

45

Analysis Time (milliseconds)

N
u
m
b
er

o
f
A
p
p
lic
at
io
n
s

Figure 3.12: For each time interval, we report the number of applications for which our approach
finishes within that interval.

3.5.3 RQ3: What is the prediction accuracy of the proposed static

code analysis?

To answer this question, we tested the different strategies proposed in Section 3.3 to deal

with branch-dependent navigations and overridden methods. We ran this experiment

with the four applications that we added to the SF110 corpus; OO7, JPAB, K-Means

and PGA, described in Section 3.5. We also compared our approach with the ROP

with fetch depths of 1 and 3 in order to test its effect on the results. We used Hibernate

4.1.0 with PostgreSQL 9.3 as the persistent storage in all the experiments.

Figure 3.13 shows the True Positive Ratio (correctly predicted objects / accessed

objects) and False Positive Ratio (incorrectly predicted objects / total predicted ob-

jects) of these strategies compared with the Referenced-Objects Predictor (ROP). We

can see from Figure 3.13 that increasing the ROP’s depth from 1 to 3 only affected the

results of OO7, where it resulted in an increase in true as well as false positives. Figure

3.13 also shows that regardless of the used strategy, our approach results in fewer false

positives than the ROP in all of the studied applications.

The only exception is taking the union of overridden methods’ access hints with

JPAB, represented by the solid-colored set of columns in Figure 3.13 (b), which results

in a dramatic increase in false positives. This is due to the implementation of JPAB

3.5. Approach Validation 73

0.01 0.01

0.40

0.66

0.98 0.98 1.00 1.00 0.98 0.99

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(a) OO7

0.86

0.01

0.89

0.03 0.03

0.97 0.99 0.98 1.00 1.00 1.00

0.01 0.01

0.98 0.98 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 1011121314151617

T
P
R

F
P
R

�BDNs �BDNs BDNs BDNs depth depth

�OMs ∪OMs �OMs ∪OMs 1 3

(b) JPAB

0.10 0.10

1.00 1.00 1.00 1.00 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(c) K-Means

0.07 0.07 0.12 0.12

0.97 0.97 1.00 1.00 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(d) Princeton Graph Algorithms

Figure 3.13: True Positive Ratio (TPR) and False Positive Ratio (FPR) of our approach (left
of the dashed line) compared with the ROP with a depth of 1 and 3 (right of the dashed line).
Columns represent the following:
- ¬BDNs ∩OMs : excl. branch-dependent navigations / inter. of overridden methods
- ¬BDNs ∪OMs : excl. branch-dependent navigations / union of overridden methods
- BDNs ∩OMs : incl. branch-dependent navigations / inter. of overridden methods
- BDNs ∪OMs : incl. branch-dependent navigations / union of overridden methods

which includes five different tests each with its independent set of model classes, all

of which are subclasses of a common abstract class called TestEntity. Hence, taking

the union of overridden methods’ access hints results in predicting access to many

objects unrelated to the test being executed. We did not face this problem with other

applications that include inheritance, such as OO7, since this case is different from the

usual use of inheritance where subclasses represent subtypes of the parent class and

have more resemblance among each other.

To test the effect this specific case has on the results of JPAB, we reran the analysis

excluding the methods of the abstract class TestEntity and their overridden versions.

The results are shown by the dotted set of columns in Figure 3.13 (b) and indicate that

excluding this case, JPAB exhibits the same behavior as the other studied applications.

74 Chapter 3. Static Code Analysis of Object-Oriented Applications

Based on the results of this experiment, we draw the following conclusions:

• Excluding branch-dependent navigations does not result in any false positives but

causes a slight decrease in the true positive ratio when compared with ROP. This

strategy should be used when memory resources are scarce since its predictions

are accurate and will not occupy any memory with unnecessary objects.

• Including branch-dependent navigations might result in more false positives in

some cases, such as with OO7 and Princeton Graph Algorithms. However, it

still generates fewer false positives than the ROP and the same true positive

ratio, except with JPAB where achieving the same true positive ratio requires

us to include the union of overridden methods’ access hints as well. Hence, this

strategy should be used when we are willing to sacrifice some memory, which will

be occupied with false positives, in return of a higher true positive ratio.

• The strategy used to deal with overridden methods only affected the results of

JPAB, where taking the union resulted in a sharp increase in false positives. As

explained earlier, this is a specific case which can be easily identified and iso-

lated but in general, we recommend to always take the intersection of overridden

methods’ access hints in order to avoid similar problems.

3.5.4 RQ4: How much in advance can the proposed static code anal-

ysis predict access to persistent objects?

In order to test how much in advance we can predict an access to a persistent object,

we calculated the distance, measured by number of persistent accesses, between the

time that an object o is predicted to be accessed and the actual access to o. Figure

3.14 shows the results of this experiment mapping each distance on the x-axis with the

percentage of accesses that are predicted for that distance. For example, Figure 3.14

shows that with OO7, 95% of predictions made by our approach are done at least 1

persistent access in advance and 70% at least 10 persistent accesses in advance. We

only compared our approach with the ROP with a depth of 1 since using depth 3 did

not change the results of the previous experiment for most applications.

3.5. Approach Validation 75

ROP (depth = 1) Our approachLegend:

0%

20%

40%

60%

80%

100%

0 1 10 100 1,000 10,000

(a) OO7

0%

20%

40%

60%

80%

100%

0 1 10 100 1,000 10,000

(b) JPAB

0%

20%

40%

60%

80%

100%

0 1 10 100 1,000 10,000

(c) K-Means

0%

20%

40%

60%

80%

100%

0 1 10 100 1,000 10,000

(d) Princeton Graph Algorithms

Figure 3.14: The x-axis represents the distance, in number of persistent accesses, between the
prediction of an access to a persistent object o and the actual access to o. The y-axis represents
the percentage of accesses that are predicted for each distance.

Figure 3.14 shows that in the case of JPAB, the improvement we obtain over the

ROP is very small because the application’s data model and code structure do not allow

for predictions to be made far in advance. However, in the case of OO7 our approach

can predict over 30% more accesses than the ROP with a distance of 1. Moreover, the

significant improvement in the case of K-Means is due to the fact that it only has two

persistent classes and relying on the relations between these classes does not allow the

ROP to predict any accesses beyond a distance of 10.

This experiment indicates that another advantage of our approach is that it can

predict accesses to persistent objects with more time in advance than the ROP. This

indicates that the predictions are known with enough time in advance for the predicted

objects to be prefetched before they are accessed by the application.

76 Chapter 3. Static Code Analysis of Object-Oriented Applications

3.6 Summary

In this chapter, we presented our first contribution (C1); an approach to predict ac-

cess to data in Persistent Object Stores based on static code analysis of object-oriented

applications. The symmetry between application objects and persistent objects pro-

vides the ideal setting for our approach as information about the persistent objects can

be gathered by studying the application code. We formalized the approach using the

concept of type graphs and explained how we use these graphs to generate access hints

that predict which persistent objects are accessed by an application.

In our approach validation, we ran a series of experiments that demonstrate the

viability of our approach. The experimental results show that the proposed static

code analysis can generate exact access hints for the majority of studied applications

and that problems stemming from the lack of runtime information only have minor

effects. When compared with the Referenced-Objects Predictor, we have shown that

our approach offers higher-accuracy prediction and makes the predictions with more

time in advance.

We conclude from this chapter that statically analyzing the program code of object-

oriented applications can indeed be used to generate accurate, compile-time predictions

on which persistent objects are accessed by the application. These predictions can then

be used for a variety of techniques that aim to improve access times to data, such as

prefetching, cache replacement policies and dynamic data placement. For the purposes

of this thesis, we take advantage of the predictions to develop an approach to prefetching

for Persistent Object Stores, as explained in Chapter 4.

77

Chapter 4

Prefetching in Persistent Object

Stores

This chapter presents the second contribution of this thesis (C2), which consists of a

prefetching technique for Persistent Object Stores based on the analysis of application

code written in object-oriented languages. In this contribution we integrated the static

code analysis approach discussed in Chapter 3 into dataClay, a POS currently being

developed at the Barcelona Supercomputing Center.

dataClay is a distributed POS designed to share data with external players in a

secure and flexible way based on the concepts of identity and encapsulation [60]. In

contrast with other database systems, data stored in dataClay never moves outside the

POS. Instead, every single piece of data can be uniquely identified and individually

manipulated by the set of operations that encapsulate it, which are executed inside

the data store. That is, data is manipulated in the form of objects, exposing only the

operations that can be executed on the data, instead of exposing the data itself [60].

We used dataClay as an example POS into which we integrated our prefetching

approach due to various reasons. Firstly, dataClay does not only store the data but

also the operations and code that is used to access this data. Given that our approach

is based on static code analysis, we believed that this feature would be helpful in

facilitating the integration process. Moreover, dataClay is an open source project which

allows us to easily modify the code and add any features needed for our integration.

While dataClay itself is not a contribution of this thesis, we modified its source code

to accommodate the integration of our prefetching approach. In this chapter, we first

78 Chapter 4. Prefetching in Persistent Object Stores

offer an overview of the main features of dataClay that were used in the integration

of our prefetching approach in Section 4.1. Afterwards, we discuss the implementation

details of the static code analysis module in Section 4.2 and describe how the generated

access hints are used at runtime to prefetch objects within dataClay in Section 4.3. We

then move on to discuss our evaluation and experimental results in Section 4.4 by

answering the following research questions:

RQ5: Does our prefetching approach improve application execution times?

RQ6: What is the object hit rate of the prefetching approach?

Finally, we summarize our findings and conclude the chapter in Section 4.5.

4.1 dataClay Overview

Figure 4.1 shows the system architecture of dataClay and communications between the

user and dataClay. The figure depicts three main parts of the dataClay system:

• dataClayTool: a user-level application that facilitates management operations

related with data access control (e.g. granting third-party users access to data)

and the definition and sharing of application schema.

• Logic Module: a centralized service that receives all requests resulting from the

dataClayTool. It also contains a central repository of object metadata, which is

distributed by aggressive caching in all of the Data Services (see next point) and

updated periodically.

• Data Services: one or more nodes where the objects are actually stored by

dataClay. They handle all object operations including persistence requests (e.g.

store, load, update) and execution requests. These Data Services communicate

both with the Logic Module, in order to send or retrieve missing metadata, as

well as with each other, in order to propagate requests received from the client.

This figure is not meant to be a comprehensive depiction of all the functionality

that dataClay offers but rather show the main features of dataClay that are relevant

to this thesis. In the remainder of this section, we explain each of these features.

4.1. dataClay Overview 79

Logic Module

metadata

& session info

dataClayTools

registerNewClasses

Static Code
Analysis
Module

sendStubs

Stubs
execution requests

Client

CLASS

Application
persistence requests Data Services

intercommunication

prefetch data

Figure 4.1: Overview of the system architecture of dataClay. In this example, a deployment of
a Logic Module and three Data Services on different nodes is depicted. Communications between
the client and dataClay and intercommunication between the Logic Module and Data Services are
depicted as well [60].

4.1.1 Schema Registration

The first step in using dataClay involves the client registering the schema of his or her

application in the system, i.e. the set of classes that will by used by the application,

which is done through dataClayTool. When the client sends the classes to dataClay for

registration, dataClayTool analyzes the source code to verify that all class dependencies

are found in the given paths and automatically registers all the required classes trans-

parently to the client. Once the classes are received by the Logic Module, it deploys

them to the Data Services and the classes become ready to use.

After the classes are registered and deployed, the Logic Module sends a set of stub

classes, one stub for each registered class, to the client. These stubs implement the

functionality of the original registered classes and also extend from a global class called

DataClayObject, which adds functionality related to object persistence and manage-

ment. The client application that uses dataClay should then be compiled using these

stubs instead of the original classes.

Our contribution to dataClay comes during this registrationg process. Once the

classes are registered by the Logic Module and before the stubs are sent to the client, we

implemented a Static Code Analysis Module that performs our analysis approach,

as described in Section 3.3, and generates all the access hints necessary for the registered

classes. Furthermore, the module injects code into the stubs generated by the Logic

Module to add support for prefetching. Section 4.2 describes the implementation and

integration details of this Static Code Analysis Module.

80 Chapter 4. Prefetching in Persistent Object Stores

4.1.2 Data Generation and Persistence

After the application schema is registered, the client can proceed with creating data

and storing it into dataClay. Data is stored in dataClay by creating a local object with

the type of a registered class and then launching a persistence request on the created

object. At this point, the client can specify an alias for the object which is then used

to retrieve it. Furthermore, the client can also specify which Data Service they want

the object to be stored in. If no particular Data Service is specified, a Data Service is

chosen randomly using a hash function [60].

When dataClay is deployed with one Data Service, all objects are evidently stored

in that Data Service. However, when several Data Services are deployed, the used

hash function guarantees that the objects are distributed among the different Data

Services. This automatic distribution of objects in dataClay is manged by the stub

classes generated by the Logic Module and completely transparent to the client.

4.1.3 Remote Execution

After the objects are stored in dataClay, the client retrieves them either by using the

alias assigned to them with the persistence request or by traversing the references

between the objects. After retrieving an object, the client can execute any method

from the object’s stub class. At this point, the class stubs sent to the client after the

registration process behave as Remote Procedure Calls (RPCs) for the object. Instead

of executing the method locally, they launch an execution request that is submitted

to the Data Service where the object is located [60].

When the execution request is received by the Data Service, the Data Service loads

the object into its local memory and executes the method sent with the execution

request. Thus as we can see, objects in dataClay are automatically loaded when needed,

i.e. when an execution request on the object is received or an object is accessed through

its alias or through a reference, and the client does not need to load them manually.

If during the method execution another object located in a different Data Service

is needed, the Data Service does not load the object locally but rather generates a new

execution request and sends it to the Data Service where the object is located, much

4.2. Static Code Analysis Module 81

like the application did in the first place. The motivation behind this behavior is to

ensure that the methods are executed in the same Data Service where their objects are

located, thus minimizing the movement of objects between different Data Services.

Given the changes made by the Static Analysis Module during the registration

process (see Section 4.2), the access hints of the requested method are triggered once an

execution request is received by a Data Service of dataClay in order to start prefetching

the necessary data. Section 4.3 provides a detailed description of the steps followed in

order to perform this data prefetching at runtime.

4.1.4 Lazy Tasks

dataClay also has a feature that allows methods to be scheduled for later execution

by the Data Services. These methods are called lazy tasks and can be any method

from any registered class in dataClay. The lazy tasks are handled by lazy task runners

and each Data Service has its own lazy task runner, which is a timer thread with an

associated queue of tasks.

A Data Service schedules a lazy task for execution by inserting it into its lazy task

runner’s queue. The lazy task runner then periodically checks the queue and when it

finds a queued task, it fetches it for execution in its own thread separate from the main

execution thread. External clients of dataClay cannot schedule lazy tasks since this

feature is only used internally by dataClay for management operations. In our case,

we take advantage of this feature in order to perform prefetching without interrupting

the application execution, as will be discussed in detail in Section 4.3.

4.2 Static Code Analysis Module

The Static Code Analysis Module is our first contribution to dataClay. It implements

our static code analysis approach, as described in Section 3.4, and prepares the stubs

sent to the client for prefetching by injecting various pieces of code into them.

Figure 4.2 shows the workflow of the static code analysis module. When a client

registers a new set of classes in dataClay, the module intercepts the call and performs

the analysis. The first step is to use Wala to generate an Abstract Syntax Tree (AST)

82 Chapter 4. Prefetching in Persistent Object Stores

Registered Classes
Source Code

AST

IR

Construct Type
Graphs

Generate
Prefetching

Hints

Generate
Prefetching

Methods

Logic Module

Stubs

sendStubs

JAVA

CLASS

Client

dataClayTools

registerNewClasses

Stubs

CLASS

code injection

Figure 4.2: A detailed view of the Static Code Analysis Module of dataClay.

and Intermediate Representation (IR) of the source code of each method in the classes.

Afterwards, we use these two structures to construct the type graphs and generate the

access hints for each method, as defined in Section 3.3. Finally, we generate helper

methods that prefetch the objects identified by the access hints and inject them into

the corresponding class stubs before they are sent to the client.

4.2.1 Generating Type Graphs and Access Hints

We integrated our implemented approach into dataClay in order to construct the type

graphs and generate the access hints of the registered applications. The details of this

implementation are found in Section 3.4, the only change that we made in the approach

is to filter access hints already found in previous method calls.

In Section 3.3, we explained how we perform inter-procedural analysis in order to

generate access hints that predict access to objects found in several methods at once.

By doing so, a method m that invokes another method m′ will have the access hints

resulting from the analysis of both m and m′. This allows to bring the prefetching

forward ensuring that the predicted objects are prefetched before they are accessed.

However, it also means that m and m′ might have an access hint predicting access to

the same object. On a theoretical level this does not pose a problem since the second

access hint in m′ simply predicts access to an object that is already prefetched in m.

However, when integrating our approach into dataClay, launching several requests

to prefetch the same object might cause additional unnecessary overhead. We solved

this problem with the following solution: for each method m, after generating its set

4.2. Static Code Analysis Module 83

1 public void setAllTransCustomers_prefetch() {
2 for (Transaction trans : this.transactions) {
3 trans.type.load();
4 trans.emp.load();
5 trans.account.cust.company.load();
6 }
7 this.manager.company.load();
8 }

Figure 4.3: Generated prefetching method for the method setAllTransCustomers() from Figure
3.2.

of access hints AHm, we removed from AHm those access hints that are found in all of

the methods that invokem. This solution has no effect on the accuracy of our approach

since the access hints removed from m are found in its invoking methods. Moreover, it

is guaranteed that the objects predicted by the removed access hints will be loaded by

other access hints in a previously executed method.

4.2.2 Generating Prefetching Methods

Once the access hints are generated, we generate, for each method, a helper prefetch-

ing method that contains instructions that load the objects corresponding to its access

hints. We then use AspectJ to inject the generated prefetching method into the stub

of the original method’s class. Note that since these access hints result from the aug-

mented type graph of the method, as defined in Section 3.3.4, the methods’ instructions

also load objects accessed by methods further down the callstack.

Example. For instance, the method setAllTransCustomers() from Figure 3.2 has

the following set of access hints, as defined in Section 3.3.5:

AHm = {transactions.transType, transactions.emp,

transactions.account.cust.company, manager.company}

Thus, the corresponding prefetching method setAllTransCustomers_prefetch() that

loads the objects defined by these access hints has the implementation shown in Figure

4.3. Note that we iterate through the elements of the collection transactions in order

to load all of them.

84 Chapter 4. Prefetching in Persistent Object Stores

Since dataClay loads objects automatically whenever an execution request on the

object is received by the Data Service, the objects in the access hints are loaded when

the next object is accessed. For example in the last access hint on line 7, the object

manager is automatically loaded by dataClay when the access to its related object

company is requested.

However, in order to load the last object in an access hint, we also injected an empty

method called load into the class stubs of the registered classes in order to guarantee

that the last object of each access hint is also loaded. The use of this method can be

seen in the example prefetching method shown in Figure 4.3.

4.2.3 Invoking Generated Prefetching Methods

After the prefetching methods are generated, we need to modify the original application

code to invoke these methods. However, instead of using a direct invocation we take a

different approach that’s less intrusive to the application. Since prefetching is meant to

be a performance improvement, and since the prefetched objects are not all immediately

needed, the overhead caused by prefetching should be minimized. To this end, we opted

to use a multi-threaded approach where the prefetching methods are executed by a

background thread in parallel to the main thread executing the original application

code. By doing so, we allow the execution of the application to continue uninterrupted

while at the same time prefetch objects whenever possible.

Hence, instead of injecting a direct invocation of the prefetching method, we use

the lazy tasks feature of dataClay to inject an instruction that adds the prefetching

method to the lazy task runner’s queue. The lazy task runner will then only execute

the prefetching method when the main thread of the application is not accessing the

disk and hence minimize the prefetching overhead.

Example. Continuing with the same example, we modify the code of the method

setAllTransCustomers() in the stub generated by the Logic Module to include the

scheduled invocation of the prefetching method setAllTransCustomers_prefetch() as

shown in Figure 4.4.

4.2. Static Code Analysis Module 85

1 public void setAllTransCustomers() {
2 // Injected scheduling of prefetching lazy task
3 dataService.addLazyTask(setAllTransCustomers_prefetch());
4

5 for (Transaction trans : this.transactions) {
6 trans.getAccount().setCustomer(this.manager);
7 }
8 }

Figure 4.4: Modified code of the method setAllTransCustomers() in the stubs generated by data-
Clay. Notice the injected call to add a lazy task with the prefetching method on line 3.

4.2.4 Parallelization of Prefetching Methods

The prefetching methods described in the previous section help in improving the access

times of an application by loading objects before they are needed. When the application

uses a single Data Service where all the objects are stored, nothing more can be done

to minimize the execution time of the prefetching methods. However, in the case of

applications running on several Data Services, the methods do not take full advantage

of the data distribution of objects.

For instance, in the prefetching method shown in Figure 4.3, the elements of the

transactions collection and their related objects are loaded sequentially even though

they might be located in different Data Services. A more efficient approach would

be to load the elements in parallel in order to take advantage of the automatic data

distribution of dataClay. On the other hand, distributing single-association hints, such

asmanager.company, is not possible since we need to guarantee that the objectmanager

is loaded before we load its associated company object.

Hence, our implementation also includes automatic parallelization of all pos-

sible prefetching instructions in order to take full advantage of the automatic data

distribution in dataClay. We implemented this feature by using the Parallel Streams

of Java 8, which convert a collection into a stream and divide the stream into several

substreams. The Java Virtual Machine (JVM) then uses a predefined pool of threads,

namely the ForkJoinPool, to execute a specified task for each substream in parallel.

This is a very efficient way to do multithreading since the tasks are distributed

among already-existing threads, hence avoiding the costs of creating and destroying

86 Chapter 4. Prefetching in Persistent Object Stores

1 public void setAllTransCustomers_prefetch() {
2 this.transactions.parallelStream().forEach(trans -> {
3 trans.type.load();
4 trans.emp.load();
5 trans.account.cust.company.load();
6 });
7

8 // Cannot be parallelized
9 manager.company.load();

10 }

Figure 4.5: Automatic parallelization of prefetching method setAllTransCustomers_prefetch().

threads for each task. Moreover, the number of threads in the ForkJoinPool is set by

JVM to the number of processor cores of the current machine and the managemenet

of the threads is done automatically by the JVM.

In our case, since we use the different threads to load different objects from disk, we

only see a benefit when multiple Data Services are used. In the case of using one Data

Service, the threads execute in parallel but the bottleneck remains the access to disk and

hence parallelization does not produce any benefit. An example of this parallelization

approach is depicted in Figure 4.5, which shows the parallel implementation of the

prefetching method setAllTransCustomers_prefetch().

Complete Example

Figure 4.6 shows all the injections we made into the class stub of the class BankManage-

ment. We can see the injected load() method, the injected parallel prefetching method

setAllTransCustomers_prefetch() as well as the injected scheduling of the prefetching

method inside the method setAllTransCustomers(). This class stub is the one that the

Logic Module sends to the client for further use by the client application.

4.3 Prefetching Data at Runtime

When dataClay receives an execution request, data prefetching is started automatically

due to analyzing the source code of the application, generating the prefetching hints

and injecting prefetching instructions and methods done during the class registration

4.3. Prefetching Data at Runtime 87

1 public class BankManagement extends DataClayObject {
2

3 public void setAllTransCustomers() {
4 // Injected scheduling of prefetching lazy task
5 dataService.addLazyTask(setAllTransCustomers_prefetch());
6

7 for (Transaction trans : this.transactions) {
8 trans.getAccount().setCustomer(this.manager);
9 }

10 }
11

12 // Injected prefeteching method
13 public void setAllTransCustomers_prefetch() {
14 // Parallel prefetching of collection elements with Java 8

Parallel Streams
15 this.transactions.parallelStream().forEach(trans -> {
16 trans.type.load();
17 trans.emp.load();
18 trans.account.cust.company.load();
19 });
20

21 // Cannot be parallelized
22 manager.company.load();
23 }
24

25 // Injected method used to load final objects of access hints
26 public void load() {
27

28 }

Figure 4.6: A complete example of the code of the class stub BankManagement.

process. Figure 4.7 shows an overview of the different resources and communications

that perform the data prefetching during the application execution.

When a client application uses dataClay, it executes methods from the stub classes

sent by the Logic Module. The stubs in turn send execution requests to the Data

Service where the object is stored in order to load the objects and execute the requested

methods. When the execution request is received by the corresponding Data Service,

the first step that is done is to schedule the prefetching method for execution in the

queue of the Data Service’s lazy task runner.

The lazy task runner checks the queue periodically to see if there are any methods

pending execution. Once it finds the prefetching method in the queue, it starts execut-

ing it. At this point, the object owning the prefetching method is already loaded and

88 Chapter 4. Prefetching in Persistent Object Stores

execute prefetching
methodClient

Stubs

CLASS

Application
execution request

Data Services

queue prefetching method

Lazy Task Runner
ThreadLazy Tasks Queue

pull

load
load

load

Prefetching
Threads

intercommunication

Figure 4.7: A detailed view of the resources and communications that occur to perform data
prefetching when an application is executed with dataClay.

the prefetching method starts loading referenced objects as defined by its instructions.

Given the structure of dataClay, when the prefetching method encounters an object in

another Data Service, it communicates with that Data Service to load the object where

it is stored. It is important to stress here that objects are never moved from one Data

Service to another, even if the call to load an object comes from another Data Service.

For instance, if we have a dataClay deployment with three Data Services, DS1, DS2

andDS3, as shown in Figure 4.1, and the client application wants to execute the method

setAllTransCustomers(), shown in Figure 4.4, on an object of type BankManagement

stored in Data Service DS1, the steps followed by dataClay to perform the prefetching

would be the following:

• First, the client application sends the execution request to dataClay through the

stubs. The stubs automatically redirect the request to DS1, where the object

BankManagement is stored.

• When DS1 receives the execution request of the method setAllTransCustomers(),

it schedules the prefetching method setAllTransCustomers_prefetch() for execu-

tion by the lazy task runner.

• The lazy task runner periodically checks its queue for lazy tasks and starts exe-

cuting setAllTransCustomers_prefetch() once it finds it in the queue.

• In this case, the first objects to load are the elements of the transactions collection.

Since we are using parallel prefetching, the lazy task thread creates several sub-

threads and starts loading the elements of transactions in parallel, as explained

4.4. Evaluation 89

in section 4.2.4. Given that the collection transactions is distributed among the

three Data Services, each thread loads the elements and their related objects

stored in a different Data Service. Thus, our approach further increases the

improvement obtained from prefetching by loading the objects in parallel.

• When one of these threads, currently being executed on DS1, tries to load an

element stored in a different Data Service, say DS2, dataClay redirects the load

request to DS2 and loads the object where it is stored.

4.4 Evaluation

We evaluated our approach by running experiments using the modified version of data-

Clay that includes our prefetching approach. All of the experiments were performed

on the ITAN cluster at the Barcelona Supercomputing Center (BSC), which consists of

5 nodes that are interconnected by a 10GbE link. Each node is composed of a 4-core

Intel Xeon E5-2609v2 processor (2.50GHz), with 32GB DRAM (DDR3), a 400GB SSD

(Intel SSD P3500), and a 1TB HDD (WD10JPVX 5400rpm). We deployed dataClay

on the cluster using one node as both the client and Logic Module, and 4 nodes to

serve as 4 distinct Data Services.

To test the effectiveness of our prefetching approach, we used four well-known

benchmarks from the object-oriented and Big Data fields: (1) OO7, (2) Wordcount,

(3) K-Means, and (4) Princeton Graph Algorithms. We executed each benchmark

10 times and measured the average execution time. We also paid special attention to

empty the cache after each execution, in order to guarantee that all executions are run

on a cold cache without any objects.

We tested both the sequential as well as the automatically parallelized versions of

our approach. We also compared the approach with the Referenced-Objects Predictor

(ROP), as defined in Section 2.3, using different fetch depths in all of the experiments.

Before we explain our experimental results, we first go into an in-depth explanation of

both the data models and computations of each benchmark.

90 Chapter 4. Prefetching in Persistent Object Stores

4.4.1 Benchmarks

OO7

The data model of OO7 is an abstraction of different CAD/CAM/CASE applications

and contains a recursive data structure involving complex inheritance and composition

relationships, as depicted in Figure 4.8. The benchmark’s has two main classes Manual,

which contains text fields and is used to benchmark string operations, and Module,

which is where all the data traversals of the benchmark start.

The benchmark contains a random data generator that takes as parameter the

database size: small (1̃,000 objects), medium (3̃0,000 objects) and large (6̃00,000 ob-

jects). Moreover, OO7 has an implemented set of 6 “traversal operations”:

• t1: tests the raw traversal speed by traversing the benchmark’s complex data

model, starting from the object Module.

• t2a, t2b and t2c: test the update speed by traversing the data model and updating

different numbers of Composite Parts and Atomic Parts during the traversal.

• t8 and t9: test the text processing speed by scanning the Manual object and

performing string operations on its contents.

We tested our prefetching approach in dataClay with the three different database

sizes of OO7. As for the traversals, we executed t1, t2a, t2b and t2c. We did not run t8

1..*

manuals

1..*modules
OO7Benchmark

- createOO7Database(int dbSize)

- runTraversals()

Manual

+ title : String

+ text : String

Assembly

subAssemblies

1..*

ComplexAssembly

 parts

BaseAssembly

document

1

atomicParts

1..*

CompositePart

connections
1..*

AtomicPart

+ Integer x

+ Integer y

designRoot

1

Module

1..*

Document

+ title : String

+ text : String

+ text : String1to

Connection

+ length : Integer

+ type : String

from 1

Figure 4.8: Class diagram of the OO7 benchmark.

4.4. Evaluation 91

or t9 given that they are meant to test text processing speed and only load one object,

Manual, with its string contents. Thus, these traversals are not designed to test data

access speed, which is what can be improved using our prefetching approach.

Wordcount

Wordcount is a parallel algorithm that counts the appearances of all the different words

within a set of files. The application parses the input files splitting their text lines into

words and maintains a data structure to keep one counter per word. The application

ends up producing a final output to present the counters for each unique word. Due to

the resemblance of this algorithm to the problem of creating histograms, Wordcount is

commonly used as a Big Data benchmark.

The data model of the Wordcount benchmark is depicted in Figure 4.9. Unlike

OO7, the benchmark has a simple model consisting of several Text Collections, each

containing one or more Texts representing the input files. Each of the Text objects in

turn contains one or more Chunks, which represent fragments of the text that contain

the final words to be counted.

We used Wordcount as a benchmark in order to test our prefetching approach on an

application that does not contain many classes and relations between them. We ran the

experiments using a data set of 8 files, containing a total of 107 words. We divided the

texts into four collections and distributed the collections among the four Data Services

of the dataClay deployment. Furthermore, in order to test our approach with different

numbers of objects, we ran the benchmark with varying numbers of chunks per text,

ranging from one chunk containing all the of the words in each text (i.e. few large

objects) to 106 chunks containing very few words (i.e. many small objects).

collections

1..*

WordcountBenchmark

- createTextCollections(String filePath)

- computeWordCount(int itrs)

chunks

1..*
Text

Chunk

+ words : ArrayList<String>

texts

1..*

TextCollection

Figure 4.9: Class diagram of the Wordcount benchmark.

92 Chapter 4. Prefetching in Persistent Object Stores

collections

1..*

KMeansBenchmark

- generateRandomVecs(int n)

- computeKMeans(int k)

vectors

1..*

Vector

+ dims: integer[]
VectorCollection

Figure 4.10: Class diagram of the K-Means benchmark.

K-Means

K-Means is a clustering algorithm commonly used as a Big Data benchmark that

aims to partition n input vectors into k clusters in which each vector belongs to the

cluster with the nearest mean. It is a complex recursive algorithm that requires several

iterations to reach a converging solution. The data model of K-Means that we used,

depicted in Figure 4.10, consists of a set of VectorCollections each containing a subset

of the n input Vectors. Each vector contains a collection of integers, representing the

vector’s dimensions.

In our experiments, we ran the K-Means benchmark using various numbers of ran-

domly generated vectors, n, each consisting of 10 dimensions, and different values of k.

We did so to test the effect that the number of vectors, and hence persistent objects,

has on the benefits obtained from our approach. We also divided the input vectors into

4 collections and distributed the collections among the dataClay Data Services.

Princeton Graph Algorithms

The Princeton Graph Algorithms (PGA) [74] is a collection of classes that is used to

execute various complex graph traversal algorithms on different types of graphs (e.g.

undirected, directed, weighted). Figure 4.11 depicts the subset of the benchmark’s

classes that we used in our experiments.

PGABenchmark

- generateRandomGraph(int v, int e)

- executeAlgorithms()

WeightedEdge

+ source : int

+ target : int

+ weight : int

WeightedDirectedGraph
graph

1
vertices

1..*

outgoingEdges

1..*

Vertex

+ id : int

Figure 4.11: Class diagram of the Princeton Graph Algorithms benchmark.

4.4. Evaluation 93

We executed the Depth-First Search (DFS) and Bellman-Ford Shortest Path algo-

rithms using a WeightedDirectedGraph. The graph consists of a set of Vertex objects,

each containing the outgoing WeightedEdges of the vertex. We ran our experiments

using different numbers of randomly generated vertices v and edges e, which we chose

to construct graphs with different levels of edge density. As with the rest of the bench-

marks, we distributed the data among the four Data Services of dataClay.

4.4.2 RQ5: Does our prefetching approach improve application exe-

cution times?

To answer this question, we measured the execution times of the studied benchmarks

using dataClay without any prefetching, with our prefetching approach as well as with

the ROP using varying fetch depths. The rest of this section details the experimental

results for each of the benchmarks individually.

OO7

Figure 4.12 shows the execution times of the traversal t1 of OO7. In this case, we

used the ROP with fetch depths of between 1 and 10. The figure clearly offers more

improvement to the original execution time of the benchmark than the ROP, even with

a very high fetch depth of 10. Moreover, Figure 4.12 also indicates that parallelizing our

approach adds additional reduction of OO7’s execution time, offering an improvement

ranging from 30% with the small database to 24% with the large one.

Figure 4.12 also shows that increasing the fetch depth of the ROP from 1 to 5

improves the application execution time, before it stagnates with only minor improve-

ment observed when increasing the fetch depth to 10. This behavior is explained by

the fact that ROP can only prefetch objects up to a certain depth before running out

of referenced objects to prefetch. The exact depth at which ROP stagnates depends

on the data model of the used application, as will become clearer when explaining the

experimental results of the Wordcount benchmark in Section 4.4.2.

Another disadvantage of the ROP can also be seen in the results of our experiments.

Figure 4.12 shows that prefetching data in parallel further increases the improvement

94 Chapter 4. Prefetching in Persistent Object Stores

No prefetching ROP (depth = 1) ROP (depth = 3) ROP (depth = 5)

ROP (depth = 10) Our approach Our approach parallelized

Legend:

0
.6

0

0
.5

5

0
.5

4

0
.5

1

0
.5

0

0
.4

5

0
.3

8

0.00

0.20

0.40

0.60

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

small DB

1
1
.3
2

1
0
.8
4

1
0
.5
8

1
0
.2
4

1
0
.0
5

9
.4
6

7
.6
7

0

4

8

12

medium DB

1
7
0
.4
7

1
5
8
.4
9

1
5
7
.3
5

1
5
3
.7
2

1
5
3
.0
3

1
3
4
.7
9

1
1
9
.6
7

0

50

100

150

200

large DB

Figure 4.12: Execution times of the traversal t1 of the OO7 benchmark without any prefetching,
with ROP with different depths and with our prefetching approach in both sequential and parallel
implementations.

obtained from our approach. While we can automatically parallelize our approach,

using the ROP to prefetch data in parallel is more difficult. This is due to the fact

that the ROP only prefetches objects directly referenced from an accessed object and

does not perform any collection prefetching, which is where our parallelized approach

achieves the most gains in execution time.

When considering previous works on prefetching that have used OO7 as a bench-

mark, Ibrahim et al. report an improvement of 7% in execution time with the small OO7

database while Bernstein et al. report an improvement of 11% on the medium-sized

database [6]. While these numbers are not directly comparable to the ones obtained

in our experiments given that the approaches use a different POS, with different levels

of optimization and run their experiments on different hardware, it is worth mention-

ing that our approach achieves an improvement of 30% and 26% with the small and

medium OO7 databases respectively.

We also found an interesting behavior of our approach with the traversals t2a,

t2b and t2c of OO7. Unlike the traversal t1, these traversals do not traverse the entire

object graph of the benchmark but rather stop when reaching certain objects, and then

proceed to perform an update operation on these objects. In this thesis, we report the

execution times of the traversal t2b but both t2a and t2c exhibit similar behaviors.

Figure 4.13 shows the execution time of the traversal t2b, which performs an update

4.4. Evaluation 95

No prefetching ROP (depth = 1) ROP (depth = 3) ROP (depth = 5)

ROP (depth = 10) Our approach Our approach parallelized

Legend:

2

4

5

4

5

1

2

0

2

4

6

Ex
ec

u
ti

o
n

 T
im

e
(m

ill
is

ec
o

n
d

s)

small DB
1
5

5
1

4
8 5
2

4
7

1
6

1
6

0

20

40

60

medium DB

1
9
7

5
4
7

4
1
3 5
1
5

4
5
8

2
1
2

2
1
6

0

200

400

600

large DB

Figure 4.13: Execution times of the traversal t2b of the OO7 benchmark without any prefetching,
with ROP with different depths and with our prefetching approach in both sequential and parallel
implementations.

operation on 10% of the benchmark’s objects. The execution times in the figure are

shown in milliseconds, because this traversal is executed much faster than t1. This is

due to the fact that that some of the objects it accesses remain in memory from the

earlier execution of t1. We can see from Figure 4.13 that our prefetching approach does

not offer any improvement in the execution time of this traversal, which is due to the

fact that the latency of the traversal is not caused by data access times but rather by

the time taken to update the objects.

In the case of the small OO7 database, it appears that the sequential version of

our approach performs better than the parallelized version. However, the difference is

only 1 millisecond and can be attributed to any impurities at the time of calculation.

In reality, using the sequential or parallelized versions of our approach should result in

the same execution time of t2b, as with the medium and large databases in Figure 4.13.

On the other hand, Figure 4.13 also shows that using the ROP adds extreme over-

head, equivalent to doubling the execution time of t2b in some cases. This overhead is

caused by the fact that the ROP in this cases prefetches the objects referenced from

the object being updated, oblivious of the fact that these objects are in fact never

accessed later on in the application. This is in contrast to our approach that takes into

consideration the application’s code and is aware that these objects are never accessed,

and hence it never predicts them to be prefetched.

96 Chapter 4. Prefetching in Persistent Object Stores

No prefetching ROP (depth = 1) ROP (depth = 3)

ROP (depth = 5) Our approach Our approach parallelized

Legend:

8
.4

1

7
.2

2

6
.8

9

6
.7

6

6
.7

5

4
.7

1

0

3

6

9

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

1 Chunk per Text

8
.2
5

6
.6
7

6
.6
3

6
.6
9

6
.5
3

3
.8
2

0

3

6

9

10 Chunks per Text

6
.2
7

5
.8
3

5
.7
3

5
.6
5

5
.4
9

3
.2
5

0

3

6

102 Chunks per Text

6
.7

5

6
.2

6

6
.1

4

6
.0

7

5
.9

7

3
.6

8

0

2

4

6

8

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

103 Chunks per Text

1
1
.2
2

1
0
.8
3

1
0
.3
9

1
0
.0
6

9
.9
6

5
.1
5

0

4

8

12

104 Chunks per Text

3
7
.0
2

3
2
.2
2

3
2
.1
3

3
1
.7
3

3
0
.1
5

1
9
.5
8

0

10

20

30

40

105 Chunks per Text

2
5

6
.2

2

2
4

7
.9

5

2
3

8
.8

8

2
3

8
.5

4

2
3

4
.5

4

1
3

9
.0

9

0

100

200

300

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

106 Chunks per Text

Figure 4.14: Execution times of the Wordcount benchmark without any prefetching, with ROP with
different depths and with our prefetching approach in both sequential and parallel implementations.

Wordcount

Figure 4.14 shows the execution times of the Wordcount benchmark. We can see that

the ROP in this case stagnates with a fetch depth of 5, not offering any improvement

with larger depths. We can also see that the benchmark’s execution time using our

4.4. Evaluation 97

prefetching approach in its sequential implementation is almost identical to that ob-

tained with the ROP with a fetch depth of 5. This is due to the fact that, unlike OO7,

Wordcount has a fairly simple data model where applying the ROP with an adequate

depth can indeed prefetch all the necessary objects.

However, the big advantage of using our approach comes with the parallel prefetch-

ing that it offers. Figure 4.14 indicates that our parallelized approach offers big im-

provement in the application execution time, cutting it by more than 50% in some

cases. This improvement is considerably higher than what we obtained with OO7,

again due to the differences between the data model of the two benchmarks. In the

case of Wordcount, the data model contains many collection associations, which can

be easily prefetched in parallel, and few single associations between objects, which are

more common in OO7 and cannot be prefetched in parallel.

Finally, Figure 4.14 also shows that increasing the number of chunks per text up to

106 does not affect the improvement obtained by our approach. This indicates that our

approach offers stable improvement in application execution times, whether used with

applications that handle a small number of large objects or many small-sized objects.

K-Means

Figure 4.15 shows the execution times of the K-Means benchmark. In this case, the

ROP does not offer any significant improvement regardless of the fetch depth given

that the benchmark’s data model does not contain any single associations that can be

prefetched. Similarly, our approach in its sequential implementation does not offer any

improvement given that the benchmark’s algorithm retrieves all of the manipulated

data (i.e. the vector collections and vectors) at the beginning of the execution.

However, our approach achieves better improvement, reducing between 9% and

15% of the benchmark’s execution time, when prefetching data in parallel. This is

due to the same reason as with the Wordcount benchmark, since the model of the

K-Means contains a collection association that is easily prefetched in parallel, which is

what causes the higher improvement in this case. Finally, Figure 4.15 indicates that

98 Chapter 4. Prefetching in Persistent Object Stores

No prefetching ROP (depth = 1) ROP (depth = 3)

ROP (depth = 5) Our approach Our approach parallelized

Legend:

7
.0

1

7
.0

9

6
.8

9

6
.7

4

6
.6

2

6
.0

9

0

2

4

6

8

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

n = 103, k = 4
7
.0
1

7
.1
8

7
.1
1

7
.0
8

6
.9
2

6
.4
3

0

3

6

9

n = 104, k = 4

1
5
.7
1

1
5
.0
3

1
4
.7
3

1
4
.7
8

1
5
.4
0

1
3
.1
7

0

4

8

12

16

n = 105, k = 40
7
3
.6
4

7
0
.9
7

7
0
.2
7

7
0
.0
2

7
1
.4
4

6
3
.5
2

0

20

40

60

80

n = 106, k = 400

Figure 4.15: Execution times of the K-Means benchmark without any prefetching, with ROP with
different depths and with our prefetching approach in both sequential and parallel implementations.

the improvement that our approach offers is not affected by the size of the dataset

manipulated by the benchmark.

Princeton Graph Algorithms

Figure 4.16 (a) shows the execution times of the Princeton Graph Algorithms bench-

mark. In particular, Figure 4.16 (a) shows the execution times of the DFS algorithm

and indicates that neither our approach in its sequential implementation nor the ROP

offer significant improvement. This is because of the same reasons as the K-Means

benchmark, the DFS algorithm loads the entire data set at the beginning of execution

and does not allow enough time for the prefetching to occur. However, when considering

the parallel version, our approach results in an improvement of around 30%.

On the other hand, Figure 4.16 (b) indicates that even when using our approach in

4.4. Evaluation 99

No prefetching ROP (depth = 1) ROP (depth = 3)

ROP (depth = 5) Our approach Our approach parallelized

Legend:

0
.1

6

0
.1

4

0
.1

4

0
.1

3

0
.1

1

0
.0

9

0.00

0.05

0.10

0.15

0.20

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

v = 102, e = 103
2
.8
7

2
.2
7

2
.2
4

2
.2
3

2
.2
8

2
.0
5

0

1

2

3

v = 103, e = 104

3
.0
4

2
.6
2

2
.5
9

2
.5
8

2
.4
3

2
.1
7

0

1

2

3

v = 103, e = 105

1
2
.7
6

1
2
.3
1

1
2
.2
9

1
2
.2
4

1
2
.1
0

9
.2
8

0

4

8

12

v = 104, e = 105

(a) Depth-First Search (DFS)

0
.3

7

0
.3

1

0
.2

9

0
.3

0

0
.3

4

0
.3

0

0.00

0.10

0.20

0.30

0.40

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

v = 102, e = 103

1
.4
0

1
.5
3

1
.5
5

1
.5
7

1
.3
9

1
.3
5

0

1

2

v = 103, e = 104

0
.5
8

0
.6
1

0
.5
3

0
.5
6

0
.5
9

0
.5
3

0.0

0.2

0.4

0.6

v = 103, e = 105

3
.6
0

3
.6
5

3
.4
4

3
.3
8

3
.5
5

3
.4
9

0

1

2

3

4

v = 104, e = 105

(b) Bellman-Ford Shortest Path

Figure 4.16: Execution times of the Princeton Graph Algorithms benchmark without any prefetch-
ing, with ROP with different depths and with our prefetching approach in both sequential and
parallel implementations.

parallel, we do not see significant improvement in the execution time of the Bellman-

Ford algorithm. This is due to the fact that this algorithm does not access the graph’s

vertices in a predetermined order, but rather starts from a source vertex and applies a

trial-and-error approach to reach the shortest path solution using various intermediate

data structures, and thus predicting access to the objects it uses is more difficult.

Evidently, the ROP does not offer any improvement in this case either.

4.4.3 RQ6: What is the object hit rate of the prefetching approach?

We answered this question by calculating the percentage of objects that are already

found in memory when they are accessed by the studied benchmarks. Figure 4.17 shows

this object hit rate of our approach compared with the original hit rate without any

prefetching and the hit rate of ROP with various fetch depths.

Figure 4.17 indicates that using our approach, we can obtain a higher object hit

100 Chapter 4. Prefetching in Persistent Object Stores

No prefetching ROP (depth = 1) ROP (depth = 3)

ROP (depth = 5) ROP (depth = 10) Our approach

Legend:

90%

92%

94%

96%

98%

100%

small medium large

O
b
je
ct
H
it
R
at
e

OO7 Database Size

(a) OO7

80%

85%

90%

95%

100%

1 10 102 103 104 105 106

%
Im

p
ro
ve
m
en

t

Number of Chunks per Text

1 10 102 103 104 105 106

(b) Wordcount

85%

90%

95%

100%

103 104 105 106

%
Im

p
ro
ve
m
en

t

Number of Vectors

103 104 105 106

(c) K-Means

80%

85%

90%

95%

100%

103 104 105 106

%
Im

p
ro
ve
m
en

t

Number of Vertices, Edges

10, 102 102, 104 103, 104 103, 105

(d) Princeton Graph Algorithms

Figure 4.17: The object hit rate obtained in the benchmarks without any prefetching, with ROP
with different depths and with our prefetching approach.

rate than the ROP. In the case of OO7, the object hit rate obtained with our approach

ranges between 97% and 98% whereas with Wordcount it decreases from 99% when

using 1 chunk per text to 92% with 106 chunks per text. This decrease is expected

due to the large number of objects when increasing the number of chunks per text. A

similar behavior can be observed in the K-Means and Princeton Graph Algorithms as

well, where the object hit rate achieved by our approach decreases when increasing the

number of objects manipulated by the benchmarks.

In the case of K-Means and PGA, we also notice a slightly lower improvement

in the hit rate of our approach. This is due to the data model and the nature of

the benchmarks, which also cause a lower improvement in the execution time of both

benchmarks, as explained in Section 4.4.2. However, in all of the benchmarks, we

consistently achieve a higher hit rate than the ROP, regardless of the used fetch depth.

4.5. Summary 101

Looked at from a different point of view, Figure 4.17 indicates that, for instance,

in the case of the small OO7 database, our prefetching approach increases the object

hit rate from 93.6% without any prefetching to 97.5%. This in turn means that our

approach reduces the object miss rate from 6.4% to 2.5%, a decrease of 60.94%. This

decrease in the rate of objects not found in memory when accessed by the bench-

marks is what results in the improvement of the benchmark execution time when using

prefetching, as explained in Section 4.4.2.

4.5 Summary

In this chapter, we demonstrated the benefits of prefetching based on static code anal-

ysis of object-oriented applications by integrating our prefetching approach into data-

Clay, a POS developed for the purpose of data distribution and sharing. We integrated

our approach into dataClay by implementing various changes to its source code to allow

automatic prefetching of data with the execution requests received by the system. We

also further optimized the prefetching approach by parallelizing the prefetching meth-

ods, allowing data to be prefetched from various dataClay Data Services in parallel.

This parallelization process is fully automatic and does not change the application’s

original functionality nor requires any input from the clients.

We tested the improvement that can be obtained by using our prefetching approach

on a set of four well-known benchmarks. The experimental results indicate that our

approach offers the highest improvement in execution time when used with applications

with a complex data model, such as OO7. Moreover, prefetching data in parallel

proved extremely beneficial, especially with simple data models that contain many

collection associations, such as the case with the Wordcount and K-Means benchmarks.

We also encountered one limitation of our approach, with the Bellman-Ford shortest

path algorithm, where it could not offer significant improvement because the algorithm

accesses persistent objects in a random order that is difficult to predict.

To handle this type of cases, we can augment our approach with more information

obtained during application execution to make better predictions on which data should

be prefetched (e.g. the most connected nodes in a graph are more likely to be visited

102 Chapter 4. Prefetching in Persistent Object Stores

and hence should be prefetched). However, such a hybrid approach might introduce

overhead to application execution times and thus should be studied in more details to

determine if the gains we obtain compensate the introduced overhead.

In terms of data size, our approach provides the same level of improvement regard-

less of the number or size of persistent objects manipulated by each benchmark. When

compared with the ROP, our approach achieves at least the same improvement and,

in cases where prefetching is not needed, has less of a negative effect on application

performance. When considering the parallel version, our proposed always reduces the

execution times of the benchmarks by a higher percentage than the ROP.

The results discussed in this chapter indicate that using static code analysis of

object-oriented applications to predict data for prefetching in POSs does not only offer

theoretically high-accuracy prediction, but also improves the execution times of appli-

cations. We thus demonstrate the viability of our first proposed approach to analyze

statements and instructions of computer languages to predict data for prefetching.

103

Chapter 5

Prefetching in RDF Triplestores

This chapter discusses the last contribution of this thesis (C3) and presents an ap-

proach to analyze queries of the declarative query language SPARQL in order to predict

data for prefetching from RDF Triplestores. Ideally, we planned to perform a static

analysis approach similar to the one we used to analyze OO applications to prefetch

data from POSs. However, unlike the case with POSs, where the entire application

code is known beforehand, queries are received consecutively by the SPARQL endpoints

of RDF Triplestores and are not known in advance.

Thus, we could not perform the predictions statically and needed to adopt another

approach that can predict the upcoming queries that will be executed. We achieved

this by analyzing historic logs of SPARQL queries to detect recurring query patterns and

using the detected patterns to predict upcoming queries. We then prefetch the data

that the queries will access from the RDF Triplestore by applying query augmentation, a

technique that aims at rewriting queries by relaxing their conditions in order to retrieve

data that is potentially relevant to several subsequent requests at once.

We start the chapter by defining some RDF and SPARQL preliminaries in Section 5.1.

We then introduce a motivating example that shows the advantages of our approach in

Section 5.2. Afterwards, we formalize our approach in Section 5.3 and explain how we

use machine learning algorithms to predict the structure and content of the augmented

query used to prefetch data. Thereafter, we evaluate our approach and demonstrate

its viability in Section 5.4 by answering the following research questions:

RQ7: What is the prediction accuracy of the proposed query-log analysis approach??

104 Chapter 5. Prefetching in RDF Triplestores

RQ8: Can the predictions be made within a reasonable amount of time?

RQ9: What is the cache hit rate of the proposed prefetching approach?

Finally, we summarize the chapter and conclude our findings in Section 5.5.

5.1 RDF and SPARQL Preliminaries

The Resource Description Framework (RDF) is a simple, extensible graph data

model for representing semantically-rich information on the web [81]. Its main structure

is triples that link two resources, the subject and object, through a property, the predi-

cate of the triple. For instance, an example of such a triple is dbr:Iker_Casillas

dbo:team dbr:Real_Madrid which indicates that the resource Iker Casillas is linked

to the resource Real Madrid through the property team.

The set of all RDF triples in a RDF Triplestore form the store’s data graph. The

resources constitute the nodes of the graph while the properties constitute its edges.

The data graphs stored in RDF Triplestores can be accessed by a variety of means, the

most common of which is the SPARQL query language.

SPARQL is a high-level, declarative, semantic query language. SPARQL queries

have four different forms, namely SELECT, DESCRIBE, ASK and CONSTRUCT. Previous

studies show that the most common query starts with one or more PREFIX items

followed by a SELECT structure [59, 62]. Therefore, in our approach we only consider

SPARQL queries of the SELECT form and we do not study the less common forms.

The central construct of a SPARQL SELECT query is a triple pattern. A Triple

Pattern is defined as T = 〈s, p, o〉 ∈ (V ∪U)× (V ∪U)× (V ∪U ∪L) where V is a set

of variables, U a set of URLs and L a set of literals [71]. The three parts of a triple

pattern in a SELECT query correspond to a subject, a predicate and an object.

A set of one or more triple patterns constitute a Basic Graph Pattern (BGP).

A SELECT query can contain one or more BGPs, joined with the SPARQL keywords

AND, UNION or OPTIONAL. These BGPs form the query’s graph pattern. When a

SPARQL query is evaluated against an RDF triplestore, the query’s graph is compared

to the data graph of the store and the data subgraph that matches the query’s graph

5.2. Motivating Example 105

is returned as the query results. For instance, Figure 5.1, to be explained in Section

5.2, shows a sequence of SPARQL SELECT queries.

In order to launch SPARQL queries to an RDF Triplestore, clients use a SPARQL

Endpoint, which is a service that executes SPARQL queries against a defined triplestore

and returns the corresponding results [75]. We call a consecutive sequence of queries

received by a SPARQL endpoint from the same client a Query Session. As previous

studies have demonstrated, queries in the same query session tend to be similar to

each other with only minor changes occurring between them [26, 72]. While there is

no standard definition for the length of a query session, we follow the most common

approach of defining the sessions to be one-hour long [54, 55, 84].

5.2 Motivating Example

Figure 5.1 shows two query sessions received by a SPARQL endpoint that consist of

three and two SELECT queries, respectively. The queries in the first session look up

former teams of different football players and ask for some properties of these teams

whereas the queries in the second session look up actors and the movies they have

starred in. We use the line numbers in the figure to refer to the triple patterns of the

queries. For instance, on line 4 we can see the triple pattern dbr:Iker_Casillas

dbo:formerTeam ?team, so we will refer to this triple pattern as T4.

In this example, the query graph of Q1 consists of a single BGP with one triple

pattern, whereas the query Q3 also has a single BGP but consisting of two triple

patterns. On the other hand, the query graph pattern of Q2 is more complex, consisting

of two BGPs, each with one triple pattern, connected using the keyword OPTIONAL.

We can see that the triple patterns of the queries of the first session in Figure 5.1 (a)

are quite similar to each other. For instance, T20 is identical to T12 whereas T10 only

differs from T4 in the subject, but has the same predicate and object. Similarly, the

queries in the second session in Figure 5.1 (b) are also similar to each other with only

minor changes occurring between their triple patterns.

Previous approaches to prefetching, such as [54] and [84], take advantage of these

similarities in order to prefetch data for subsequent queries. However, there is another

106 Chapter 5. Prefetching in RDF Triplestores

1 Q1 : PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT * WHERE {
4 dbr:Iker_Casillas dbo:formerTeam ?team .
5 }
6
7 Q2 : PREFIX dbr: <http://dbpedia.org/resource/>
8 PREFIX dbo: <http://dbpedia.org/ontology/>
9 SELECT * WHERE {

10 dbr:Cristiano_Ronaldo dbo:formerTeam ?team .
11 OPTIONAL {
12 ?team dbo:manager ?manager .
13 }
14 }
15
16 Q3 : PREFIX dbr: <http://dbpedia.org/resource/>
17 PREFIX dbo: <http://dbpedia.org/ontology/>
18 SELECT * WHERE {
19 dbr:Gerard_Pique dbo:formerTeam ?team .
20 ?team dbo:manager ?manager .
21 }

(a) Session 1

22 Q4 : PREFIX dbr: <http://dbpedia.org/resource/>
23 PREFIX dbo: <http://dbpedia.org/ontology/>
24 SELECT * WHERE {
25 dbr:Richard_Gere dbo:starring ?movie .
26 }
27
28 Q5 : PREFIX dbr: <http://dbpedia.org/resource/>
29 PREFIX dbo: <http://dbpedia.org/ontology/>
30 SELECT * WHERE {
31 dbr:Jack_Nicholson dbo:starring ?movie .
32 OPTIONAL {
33 ?movie dbo:director ?director .
34 }
35 }

(b) Session 2

Figure 5.1: Example query session of SPARQL SELECT queries

type of similarity that can be useful in this case. Looking across the two sessions, we

can see that the structures of the first two queries are the same: both sessions start

with a query with a single triple pattern then a second query with two triple patterns

and the keyword OPTIONAL. Moreover, although the two sessions treat semantically

different topics, the same changes occur between the triple patterns of the consecutive

5.3. Proposed Approach 107

queries. For instance, both T10 from Session 1 and T31 from Session 2 result from

changing the subjects of the triple patterns T4 and T25, respectively, and maintaining

the same predicate and object.

Hence, by analyzing previous query sessions of the SPARQL endpoint we can detect

recurring patterns of query structures as well as triple patterns that can be then used to

prefetch data for subsequent queries in the current session. For instance, if we analyze

the queries in Session 1, we can detect the patterns present between the structures of

the consecutive queries as well as the changes that led to their triple patterns. We can

then use these detected patterns to predict the structure of the next query in Session 2

as well as what triple patterns already present in the session will be used in it. Using

this prediction, we can then launch the query before it is received, hence prefetching

its results before the client asks for them.

Due to the large number of resources in repositories, it is very difficult to predict

exactly which resource will be used in a query. For example predicting that the resource

dbo:Jack_Nicholson in Q5 will be used after receiving the query Q4 with the resource

dbo:Richard_Gere. However, we can predict which part of the triple pattern is changed

among the queries. Thus, instead of predicting the exact next query in a session,

we relax the conditions resulting from the query’s triple patterns and construct an

augmented query that prefetches data relevant to subsequent queries in the session.

5.3 Proposed Approach

The main goal of our approach is to predict data relevant to subsequent queries received

by a SPARQL endpoint. We do so by training a machine learning model on historic query

logs to detect recurring patterns in previous query sessions. However, instead of using

the queries received by the endpoint directly, we use two more abstract structures that

capture the similarities between SPARQL queries at a higher level: Query Types that

capture the structural similarity between queries and Triple-Pattern Mappings that

capture the similarities between the triple patterns of the queries. Based on these

similarities, we construct augmented queries to prefetch relevant data.

108 Chapter 5. Prefetching in RDF Triplestores

RDF
Triplestores

Results in
Cache?

Yes

NoQuery

Prediction Process

Cache

Client

Construct
Q-Type

Construct
Triple-Pattern

Mappings Trained Classifiers

Construct
Augmented

Query

Augmented
Query

Fetch Query
Results

Cache Query
Results

Query Results Query Results

Figure 5.2: Design of a prefetching and caching system for SPARQL endpoints using our approach.

Figure 5.2 shows a proposed design of a prefetching and caching system using our

approach. When a new query arrives to the SPARQL endpoint, the system first checks

the cache to see if the query results have already been prefetched by a previously

predicted augmented query. If this is the case, the query results are retrieved from the

cache and returned to the client directly without executing the query.

The system then computes the query’s Query Type and Triple-Pattern Mappings

and runs these structures through the trained machine learning models. It then uses the

prediction results to construct a new augmented query. Before executing the augmented

query, the system checks if the query is a duplicate of a previous augmented query. If

it is the case, then the query results are already cached and there’s no need to execute

the query again. Otherwise, the augmented query is executed to prefetch data relevant

to subsequent queries in the session and its results are stored in the cache.

In the rest of this section, we first describe how we construct Query Types that

capture the structural similarity between SPARQL queries in Section 5.3.1. Second,

we detail how we construct Triple-Pattern Mappings to capture the content similarity

between the triple patterns of SPARQL queries in Section 5.3.2. Afterwards, we describe

how we train a machine learning model using these structures in order to capture the

repetitive patterns in previous query sessions received by the endpoint in Section 5.3.3.

5.3. Proposed Approach 109

We then move on to discuss how the trained models are used to predict which

Query Type and Triple-Pattern Mappings should be used to construct the augmented

query in Section 5.3.4. Finally, we describe how the results of the augmented queries

can be cached for use with subsequent queries in the session in Section 5.3.5. It should

be noted that we do not implement the physical cache in this thesis, but rather we

focus on the prediction and construction process of the augmented queries. We do

however provide an estimation of the ‘cache hit rate’ that can be obtained by utilizing

our approach in Section 5.4.3.

5.3.1 Query Types

The aim of a ‘query type’, also denoted Q-Type, is to capture the syntactic structure

of SELECT queries. We compute the Q-Type of a given query by generating the query’s

parse tree (following the SPARQL 1.1 grammar), removing the leaves of the tree and

serializing the resulting tree. We denote ‘surface form’ to the leaves of the tree, and

‘inner tree’ to the rest of the tree. Therefore, we say that two queries have the same

Q-Type, and hence are structurally similar, if they differ only in their surface form.

That is, they have the same inner tree but different variable names, resources and

literals in their surface form.

Example. Performing the parsing process described above on the SPARQL query

Q1 in Figure 5.1 (a) results in the parse tree shown in Figure 5.3. This parse tree

consists of two types of nodes: leaf nodes and inner nodes. On the one hand, leaf nodes

(in orange) represent the surface form of the query, that is the actual text appearing

in the query. On the other hand, inner nodes (in blue) represent the inner tree of the

query, that is the Q-Type that abstracts the structure of the query from its content

and captures its structure. For instance, the query Q4 from Figure 5.1 (b) would have

the same Q-Type as Q1, since both queries have the same inner tree and only differ in

the variables, resources and properties that appear in their surface form.

On the other hand, a more complex example is shown in Figure 5.4, which depicts

the parse tree of the query Q2 from Figure 5.1 (a). This query consists of two BGPs,

each of one triple pattern, connected together with the keyword OPTIONAL. As we can

110 Chapter 5. Prefetching in RDF Triplestores

Query

prologue

prefixDeclprefixDecl

PREFIX dbr <http...> PREFIX dbo <http...>

selectQuery

SELECT * whereClause

WHERE groupGraph

{ }basicGraph

triplePattern .

dbr:Iker_Casillas dbo:formerTeams ?team

Figure 5.3: Parse tree of the query Q1 from Figure 5.1. Nodes in orange represent the surface
form of the query while nodes in blue represents its inner tree.

Query

prologue

prefixDeclprefixDecl

PREFIX dbr <http...> PREFIX dbo <http...>

selectQuery

SELECT * whereClause

WHERE groupGraph

{ }basicGraph

triplePattern .

dbr:Cristiano_Ronaldo dbo:formerTeams ?team

optionalClause

{ basicGraph }

triplePattern .

?team dbo:manager ?manager

OPTIONAL groupGraph

Figure 5.4: Parse tree of the SELECT query Q2 from Figure 5.1. Nodes in orange represent the
surface form of the query while nodes in blue represents its inner tree.

see, the Q-Types capture the structure of a SPARQL query, including how its triple

patterns form BGPs and, when necessary, how the BGPs connect with each other using

the keywords AND, UNION and OPTIONAL.

5.3. Proposed Approach 111

5.3.2 Triple-Pattern Mappings

In order to capture the changes that occur between the triple patterns of consecutive

queries in a query session, we map each triple pattern to the most similar triple pattern

that already appeared in a previous query. We do so by counting the number of triple

pattern parts (i.e. subjects, predicates and objects) that are different between two

triple patterns. In this measure, we say that two triple pattern parts are identical, and

hence their distance is 0, if they are both variables or have the same URL or literal.

Otherwise, we say that their distance is 1. More formally, assuming that x1, x2 are

either the subjects, predicates or objects of two triple patterns T1 = 〈s1, p1, o1〉 and

T2 = (s1, p1, o1), we define the distance between the two parts ∆(x1, x2) as:

∆(x1, x2) =


0, if (x1 ∈ V ∧ x2 ∈ V) ∨ (x1 = x2)

1, otherwise

(5.1)

We then determine the overall distance between the two triple patterns ∆(T1, T2) by

aggregating the individual triple pattern part distances as follows:

∆(T1, T2) = ∆(s1, s2) + ∆(p1, p2) + ∆(o1, o2) (5.2)

This function is based on the distance function defined by Lorey et al. [54]. In the

original definition, the authors use a Levenshtein distance to compare two URLs or

literals when measuring the distance between two triple pattern parts ∆(x1, x2) and

then use a more complex aggregation to compute ∆(T1, T2). We modified it in our

approach since we are only interested in counting the number of different triple pattern

parts between T1 and T2, regardless of whether they are variables, URLs or literals.

By contrast, we introduce a restriction not found in the original definition to guar-

antee that the matched triple patterns are not too different from each other. We do so

by limiting the distance between the mapped triple patterns to ∆(T1, T2) ≤ 1, i.e. the

two triple patterns are different in at most one part. If no such match can be found,

we say that the triple pattern is “unmapped”.

112 Chapter 5. Prefetching in RDF Triplestores

Afterwards, we create a Triple-Pattern Mapping from T2 to T1 by indicating

that T2 can be constructed from T1 with a change in the specified triple pattern part

x (or φ if the mapped triple patterns are identical). This can be formalized as follows:

T2 = (T1, x) where x ∈ {s, p, o, φ} (5.3)

For completeness, we define the mapping of an unmapped triple pattern Tunmapped to

be the same triple pattern without any part change Tunmapped = 〈Tunmapped, φ〉.

Example. Looking at the queries Q1 and Q2 from Figure 5.1 (a), we say that the

triple pattern T10 = dbr:Cristiano_Ronaldo dbo:formerTeam ?team is mapped

to T4 = dbr:Iker_Casillas dbo:formerTeam ?team with a distance of 1; they

only differ in the subject but have the same predicate and object and thus T10 = (T4, s).

On the other hand, T12 = ?team dbo:manager ?manager is unmapped to either

triple pattern, since it has a distance greater than one to both of them.

Similarly, the triple pattern T19 = dbr:Gerard_Pique dbo:formerTeam ?team

of the query Q3 is mapped to both T4 and T10 with the same distance and can be rewrit-

ten as: T10 = (T4, s). Finally, The triple pattern T20 is identical to T12 and hence they

are mapped together with a distance of 0 and is rewritten as: T20 = (T12, φ)

5.3.3 Machine Learning Models

After constructing the Q-Types and Triple-Pattern Mappings, as described in Section

5.3.1 and Section 5.3.2 respectively, we construct our machine learning models using

these two structures in order to predict which Q-Types and Triple-Pattern Mappings

should be used in the augmented query. The prediction can be seen as a time series

forecasting problem, where the input is a sequence of ordered data points used to predict

the value of a future instance [12]. In this case, the data points represent the Q-Types

and Triple-Pattern Mappins of previous queries and the future instance to predict is the

next query. Time series analysis is often reduced to a multi-class classification problem,

which is the problem of classifying instances into one of three or more classes [3].

As such, we formulate the prediction as a multi-class classification problem. In

this case, the classes are the different Q-Types and Triple-Pattern Mappings that are

5.3. Proposed Approach 113

found in a query session. We used one classifier for the Q-Type and one classifier for

each Triple-Pattern Mapping in the query. For the Q-Type classifier, the feature vector

includes the Q-Types of the previous queries in the session. As for the triple pattern

classifiers, we use as features the Triple-Pattern Mappings of the previous queries in

the session, regardless of the position of the triple pattern in the original query.

We then train these models on the historic query logs of the SPARQL endpoint to

capture the repetitive patterns of Q-Types and triple patterns. These models can also

be retrained periodically, e.g. once a day or a week, to take into account new patterns

that might have occurred. Moreover, since the training of the models only depends on

query logs, it can be done offline in order to avoid affecting the endpoint’s response

time to clients while the models are being updated.

Example. Using the mappings explained in Section 5.3.2, we can rewrite the

queries from Figure 5.1 (a) as follows:

Q1 = (qtype1, {(T1, φ)})

Q2 = (qtype2, {(T1, s), (T2, φ)})

Q3 = (qtype3, {(T1, s), (T2, φ)})

where : T1 = dbr:Iker_Casillas dbo:formerTeam ?team

T2 = ?team dbo:manager ?manager

As we can see, by rewriting the queries in a session using their Q-Types and Triple-

Pattern Mappings we reduce the number of unique triple patterns, renumbered T1 and

T2 here. We use this form of the queries to train the classifiers described earlier in this

section to capture the changes that occur between consecutive queries in the session.

5.3.4 Constructing Augmented Queries

After training the classifiers, as described in Section 5.3.3, when a new query arrives

to the endpoint, we calculate its Q-Type and Triple-Pattern Mappings and run this

information through the trained classifiers. We then use the predicted Q-Type and

Triple-Pattern Mappings to construct the augmented query used to prefetch data.

114 Chapter 5. Prefetching in RDF Triplestores

Example. Performing the same process to generate the Q-Types and Triple-

Pattern Mappings on the queries Q4 and Q5 in Figure 5.1 (b) results in the following:

Q4 = (qtype1, {(T1, φ)})

Q5 = (qtype2, {(T1, s), (T2, φ)})

where : T1 = dbr:Richard_Gere dbo:starring ?movie

T2 = ?movie dbo:director ?director

Hence, if we train our classifiers on the queries of Session 1, and run the queries in

Session 2 through the trained models, the next query in the session predicted by the

classifiers would be Q′
6 = (qtype3, {(T1, s), (T2, φ)}). This prediction indicates that the

next query in Session 2 will be of Query-Type qtype3 and have two triple patterns:

(1) the first resulting from the triple pattern T1 with a change in subject, and (2) the

second identical to the triple pattern T2.

Given that the first triple pattern results from a change in the subject of T1, we

replace the subject dbo : Richard_Gere with a variable ?var1 to construct the aug-

mented query. This is done so that the new triple pattern allows the query to prefetch

additional data relevant to several subsequent queries of the session. On the other

hand, the models predict that the second triple pattern of the query is identical to

T2 and no substitutions are needed here. Combining this prediction with the Q-Type

prediction, we obtain the predicted augmented query shown in Figure 5.5.

1 PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT * WHERE {
4 ?var1 dbo:starring ?movie .
5 ?movie dbo:director ?director .
6 }

Figure 5.5: Surface form of the predicted augmented query based on the queries in Session 2
(Figure 5.1 (b)), using classifiers that were trained on the queries of Session 1 (Figure 5.1 (a)).

5.3. Proposed Approach 115

1 PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT * WHERE {
4 dbo:Meryl_Streep dbo:starring ?movie .
5 ?movie dbo:director ?director .
6 }

Figure 5.6: Example query that will be prefetched by the augmented query in Figure 5.5.

5.3.5 Augmented Queries Cache

Once the augmented query has been constructed, it is launched and evaluated on the

RDF Triplestore. We store the results of the augmented queries in a cache of the form

< Q,Map < T, Set < RDF >>>, which indicates the set of RDF triples that are

results of each triple pattern T inside the query Q. When the client executes a new

query, it is first checked against this cache in order to see if the query results have

already been prefetched by a previous augmented query.

We do so by calculating the new query’s Q-Type and checking each of its triple

patterns against the cache. If all of the triple patterns are found in the cache, the cached

results are then filtered in order to bind the variables introduced in the construction

process of the augmented query to the resources used in the incoming query. The queries

stored in the cache can be replaced using a number of cache-replacement policies,

such as Least-Frequently Used (LFU) or Least-Recently Used (LRU). Given that the

implementation of this cache is not part of this thesis, we do not go into further details

of which cache replacement policies are most suitable for this scenario.

Example. For instance, assume that we have cached the results of the augmented

query shown in Figure 5.5 and that the new query received by the SPARQL endpoint

is shown in Figure 5.6. Both queries have the same Q-Type and, by comparing the

triple patterns of the two queries, we can see that by binding the variable ?var1 to

the resource dbo : Meryl_Streep, we can obtain the results of the new query. Thus,

we filter the cached results of the augmented query to those only containing the value

dbo : Meryl_Streep and return them to the client. By doing so, we eliminate the

need to execute multiple queries on the triplestore, given that the cached results of the

augmented query might be relevant to several queries in the session.

116 Chapter 5. Prefetching in RDF Triplestores

Table 5.1: Characteristics of the datasets used in our experiments. The numbers of queries and
distinct queries refer to SELECT queries only. The query frequency is calculated as the number of
SELECT queries received by the SPARQL endpoint per minute.

esDBpedia enDBpedia
Total SELECT Queries 167,810 203,874
Distinct SELECT Queries 46,397 105,284
Distinct IPs 2,197 8,918
Sessions 963 619
Query Frequency per Minute 2.89 5.48
Months Covered 12 3

5.4 Approach Validation

We evaluated our approach by studying the Spanish DBpedia (esDBpedia) query logs

extracted directly from the esDBpedia SPARQL endpoint and the English DBpedia

(enDBpedia) logs published for the 2013 USEWOD workshops1. The log files contain

a sequence of requests received by the respective public SPARQL endpoints and cover

different periods between 2012 and 2013. We extracted the SPARQL SELECT queries

from other SPARQL queries and HTTP requests for use in our experiments. Table

5.1 shows the most relevant facts about the extracted datasets. As we can see, the

esDBpedia dataset covers more months but the enDBpedia has a more diverse dataset,

both in terms of distinct SELECT queries and IPs from which the queries were made.

We divided the log into one-hour query sessions according to the requesting IP

and considered the n previous queries from the same session in our classifiers. We

experimented with different values of n to see the influence of the number of considered

queries on the results of the classifiers. For the esDBpedia dataset, we also included the

time intervals between consecutive queries as additional classifier features. We could

not do the same with the enDBpedia dataset because the published logs do not include

the original timestamps of the queries, but rather round them up to the nearest hour

in order to protect the users’ privacy.

We implemented our classification problem using Weka 3.8.12 with the J48 Decission

Tree, Bayesian Network, Bagging with REP Tree and Random Forest classifiers. In

this section, we report the results using the J48 Decision Tree classifier as it performed

slightly better than the other classifier in certain cases. In all of our experiments,
12013 USEWOD Workshop: https://eprints.soton.ac.uk/379399/
2Weka: https://www.cs.waikato.ac.nz/ml/index.html

https://eprints.soton.ac.uk/379399/
https://www.cs.waikato.ac.nz/ml/index.html

5.4. Approach Validation 117

1

10

100

1000

10000

100000

1000000

0 1002003004005006007008009001000

Q
u
er
ie
s
(l
o
g
sc
al
e)

Q-Types

most common least common

(a) esDBpedia

1

10

100

1000

10000

100000

1000000

0 10020030040050060070080090010001100

Q
u
er
ie
s
(l
o
g
sc
al
e)

Q-Types

most common least common

(b) enDBpedia

Figure 5.7: Number of queries (in log scale) corresponding to each of the computed Q-Types.
The x-axis ranks the Q-Types from most common (left) to least common (right).

we used the ZeroR classifier, which predicts all instances to be of the most common

class, as a baseline. We ran the training of all classifiers and the predictions on a local

machine composed of an Intel Core i7-4600U processor (2.10GHz) with 8GB DRAM

(DDR3) and a 256GB SSD (Samsung PM851).

The rest of this section details the results of our experiments and is divided in three

parts, each answering one of the research questions we address.

5.4.1 RQ7: What is the prediction accuracy of the proposed query-

log analysis approach?

Before measuring the prediction accuracy of the used classifiers, we calculated the

number of generated Q-Types in both datasets. We found that the queries of the

esDBpedia dataset correspond to 943 Q-Types whereas in the enDBpedia logs we found

3,139 Q-Types. Figure 5.7 shows the distribution of queries among the computed Q-

Types plotted in logarithmic scale. We can see from Figure 5.7 that the distribution of

Q-Types is very skewed, with a large number of Q-Types corresponding to few queries

and only a handful of Q-Types corresponding to the majority of queries. Given this

distribution, in the rest of the experiments we only consider the most common Q-Types

that cover the vast majority of the queries. More precisely, we consider 56 Q-Types

that cover 98.5% of all queries in the esDBpedia dataset, whereas in the enDBpedia

dataset we consider 60 Q-Types that cover 98.1% of all queries.

118 Chapter 5. Prefetching in RDF Triplestores

esDBPedia enDBpediaLegend:

75%

80%

85%

90%

95%

100%

2 5 10 15 20 25 30

J4
8
P
re
ci
si
o
n

Number of Previous Queries

Figure 5.8: Precision of the Q-Type classifier.

Q-Type Prediction

Using the most common Q-Types, we evaluated the classifier’s precision in predicting

the Q-Type of the next query when considering different numbers of previous queries, n.

Figure 5.8 shows the classifier precision on both datasets. For esDBpedia, the classifier

achieves high accuracy even when n = 2 and reaches a peak of 96.34% when n = 15. As

for the enDBpedia dataset, the classifier’s peak precision of 89.95% is achieved when

n = 10. In general, the classifier achieves worse precision with the enDBpedia dataset,

which indicates that the queries received by the enDBpedia SPARQL endpoint are more

diverse and do not follow a predictable pattern such as with esDBpedia. Note that the

baseline for this experiment, obtained with the ZeroR classifier is 22.09% for esDBpedia

and 15.35% for enDBpedia.

We also evaluated the accuracy of the classifier with less-common Q-Types. Figure

5.9 shows the classifier’s precision (number of correctly-classified instances divided by

total number of classified instances) and recall (number of correctly-classified instances

divided by the total number of instances of the class) for each of the included Q-Types

in both datasets. We chose the values of n that provide the highest overall precision

to perform this experiment, namely n = 15 for esDBpedia and n = 10 for enDBpedia.

For the esDBpedia dataset, we can see that the classifier has a precision and recall

of over 80% in the majority of cases and its recall only drops below 50% for 3 of the

5.4. Approach Validation 119

0 5 10 15 20 25 30 35 40 45 50Precision RecallLegend:

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50

P
re
ci
si
o
n
an
d
R
ec
al
l

Q-Types

most common least common

(a) esDBpedia (n = 15)

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50

P
re
ci
si
o
n
an
d
R
ec
al
l

Q-Types

most common least common

(b) enDBpedia (n = 10)

Figure 5.9: Q-Type classifier precision and recall for each of the included Q-Types. The x-axis
ranks the Q-Types from most common (left) to least common (right). Each marker represents the
precision (black) or recall (orange) for a Q-Type.

included Q-Types. On the other hand, the classifier registers a similar drop with 8

Q-Types in the case of enDBpedia. The classifier performs badly with these types

because it cannot distinguish them from other types with the used features. We argue

that the solution could be to include other features in the classifier models, such as the

time interval between queries in enDBpedia.

Triple-Pattern Mappings Prediction

After evaluating the Q-Type prediction algorithm, we studied the accuracy of the

classifiers in predicting the triple-pattern mappings (as discussed in section 5.3.2) that

are used with the predicted Q-Type to construct the augmented query. Figure 5.10

shows the classifier’s precision on both datasets, the x-axis indicates the number of

mappings in the predicted Q-Type and the two series show the results when considering

5 and 10 previous queries. A common behavior that can be observed in figure 5.10 in

both datasets is that, unlike the Q-Type classifier, increasing n does not always increase

the precision of the triple-pattern classifiers. This indicates that the predicted triple

patterns appear in previous queries even when n = 5 or n = 10 and any further increase

only adds more unnecessary features to the classifiers model.

It is also worth noting that the classifier results are completely different among the

two datasets when considering queries that have more than 6 triple patterns, with the

120 Chapter 5. Prefetching in RDF Triplestores

5 previous queries 10 previous queriesLegend:

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10

J4
8
P
re
ci
si
o
n

ith Predicted Triple Pattern

(a) esDBpedia

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

J4
8
P
re
ci
si
o
n

ith Predicted Triple Pattern

(b) enDBpedia

Figure 5.10: Precision of the triple patterns classifiers. For improved clarity, not all data labels
are displayed on the chart.

precision increasing to around 98% with esDBpedia and dropping to below 50% with

enDBpedia. This can be explained as follows: in the esDBpedia dataset. 21.3% of

queries have more than 6 triple patterns, of which 98.2% are duplicates. By contrast,

the percentage of queries with more than 6 triple patterns drops to only 10.8% in the

enDBpedia set, out of which only 33.7% are duplicates. The extremely high duplicates

rate explains the high precision of the classifier with esDBpedia. On the other hand,

the small number of queries with more than 6 triple patterns in the enDBpedia dataset,

coupled with the low duplication rate, is not sufficient to train a classifier model with

high precision.

5.4.2 RQ8: Can the predictions be made within a reasonable amount

of time?

In order to answer this question, we measured two different execution times with the

used machine learning models: (1) the time taken to train the machine learning models,

a process that is done offline, and (2) the time taken to make a prediction using the

trained models, which is done while the triplestore is receiving queries. We calculated

these times for both the models used to predict the Q-Type as well as the ones used to

predict the Triple-Pattern Mappings.

5.4. Approach Validation 121

esDBPedia enDBpediaLegend:

0

20

40

60

80

100

120

2 5 10 15 20 25 30

Ti
m
e
(s
ec
o
n
d
s)

Number of Previous Queries

(a) Training Time

0

2

4

6

8

10

2 5 10 15 20 25 30

Ti
m
e
(m

ill
is
ec
o
n
d
s)

Number of Previous Queries

(b) Prediction Time

Figure 5.11: Training and prediction times of the Q-Type classifier. The Training Time is the time
taken to train the entire model (in seconds). The Prediction Time is the time taken to run 1,000
predictions through the trained model (in milliseconds).

Q-Types

Figure 5.11 shows the training and prediction times of the Q-Type classifiers. Figure

5.11 (a) shows the time taken to train the Q-Type classifier in seconds, while Figure

5.11 (b) shows the time taken to run 1,000 Q-Type predictions through the trained

model. It should be noted again here that the training process is done offline and does

not affect the response times of the SPARQL endpoint.

Figure 5.11 (a) indicates that training the Q-Type classifier on the enDBpedia

dataset takes considerably more than on the esDBpedia dataset, which is due to the

fact that the enDBpedia dataset is more diverse and has more Q-Types. However, the

longest reported training time is around 120 seconds, when using 30 previous queries,

is still reasonable, given that the training is done offline.

On the other hand, Figure 5.11 (b) shows the time taken to perform 1,000 predic-

tions using the trained Q-Type classifier. We can see from this figure that both datasets

can make the predictions extremely quickly, with an average of 6 milliseconds to run

1,000 predictions. Given that the average query frequency reported in Table 5.1 is

2.89 queries per minute for esDBpedia and 5.48 queries per minute for enDBpedia, we

can see that the classifier can easily predict the Q-Types of incoming queries without

causing any overhead to the response times of the SPARQL endpoint.

122 Chapter 5. Prefetching in RDF Triplestores

esDBPedia enDBpediaLegend:

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

Ti
m
e
(s
ec
o
n
d
s)

ith Predicted Triple Pattern

(a) Training Time

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Ti
m
e
(m

ill
is
ec
o
n
d
s)

ith Predicted Triple Pattern

(b) Prediction Time

Figure 5.12: Training and prediction times of the Triple-Pattern Mappings classifiers. The Training
Time is the time taken to train the entire model (in seconds). The Prediction Time is the time
taken to run 1,000 predictions through the trained model (in milliseconds).

Triple-Pattern Mappings

Similarly, Figure 5.12 shows the training and prediction times of the Triple-Pattern

Mappings classifier. In terms of training time, Figure 5.12 (a) shows that the time

taken to train the classifiers is inversely related to the number of triple patterns in

the query. This is due to the fact that most queries in both datasets have few triple

patterns, which in turn results in a smaller training set of queries with a big number

of triple patterns.

Figure 5.12 (a) also shows that, in general, training the Triple-Pattern Mappings

classifier takes less time than the Q-Types classifier, which indicates that the complexity

found in Q-Types classifier of enDBpedia is not replicated in the triple patterns. Again,

this training is done offline and does not affect the query response times.

On the other hand, Figure 5.12 (b) shows the times taken to run 1,000 predictions

through the trained classifier. On average, running 1,000 predictions through the Triple-

Pattern Mapping classifier takes around 10 milliseconds for the enDBpedia and only 3

milliseconds for esDBpedia. This is 104 faster than the frequency of the queries received

by the SPARQL endpoint, which indicates that predicting the Triple-Pattern Mappings

using the incoming queries does not cause any delay in the query response times of the

endpoint.

5.4. Approach Validation 123

esDBPedia enDBpediaLegend:

60%

70%

80%

90%

100%

10 20 50 100 200 500 1,000

C
ac
h
e
H
it
R
at
e

Number of Cached Augmented Queries

Figure 5.13: Cache Hit Rate based on the constructed augmented queries.

5.4.3 RQ9: What is the cache hit rate of the proposed prefetching

approach?

We performed a final experiment to estimate the ‘cache hit rate’ that our approach

can achieve by caching the results of the augmented queries predicted by our approach.

While the physical cache depicted in Figure 5.2 is not fully-implemented, we estimated

the ‘cache hit rate’ by comparing the triple patterns of the augmented queries with the

triple patterns of the subsequent queries in the query session. We say that we achieve

a cache hit when all of the triple patterns of a query have previously appeared in an

augmented query executed in the same session.

Figure 5.13 shows the cache hit rates that can be achieved by caching different

numbers of predicted augmented queries. It indicates that, for esDBpedia, we can

have cached results for between 92.63% and 96.80% of future queries, depending on

the number of cached queries. On the other hand, the hit rate for enDBpedia ranges

between 67.70% when only caching 10 augmented queries and 88.10% when caching

1,000 augmented queries.

Compared to previous approaches, Zhang et al. reported an average cache hit rate

of 76.65% using a dataset of enDBpedia queries of a similar size [84]. On the other hand,

Lorey et al. report a cache hit rate that ranges between 54.21% when considering one-

hour session to 100% for some user when caching the results of all augmented queries

124 Chapter 5. Prefetching in RDF Triplestores

launched by a user within a day [55]. However, this figure is also an estimation offered

by the authors without implementing this caching system and the feasibility of caching

query results over such a long period is not discussed any further.

5.5 Summary

In this chapter, we presented an approach to predict data for prefetching in RDF Triple-

stores based on analyzing historic SPARQL query logs. More specifically, we applied a

query augmentation strategy using machine learning techniques in order to prefetch

data in RDF Triplestores. The approach can be applied by analyzing the query logs

of the store’s SPARQL endpoint and does not require any specific information to be

available in the store’s data graph.

Throughout the chapter we explained how we capture the similarity between SPARQL

queries by constructing Query Types and Triple-Pattern Mappings. We also detailed

the design of our machine learning models and how they are used to construct an

augmented query that prefetches data relevant to subsequent queries in the session.

Moreover, we provided the design of a full caching and prefetching system that takes

advantage of our proposed approach, leaving the implementation details of system’s

caching component for future work.

We evaluated our approach by analyzing the SPARQL endpoint query logs of the

Spanish and English DBpedia. The results indicate that the prediction of both Q-

Types and Triple-Pattern Mappings does not require a large number of queries, only

between 10 to 15, to achieve high precision, which indicates that our approach can be

used in long as well as short sessions.

In general, the prediction accuracy is higher with the esDBpedia dataset, given

the fact that the enDBpedia logs are more diverse and contain more unique queries.

For a minority of cases, namely for queries containing more than 6 triple patterns, the

classifier accuracy drops for the enDBpedia due to the insufficient size of this subset

of queries. However, our approach can still achieve a cache hit rate of around 85% for

the enDBpedia dataset, which is considerably higher than previous approaches.

5.5. Summary 125

Our conclusions from this chapter are that the proposed analysis of SPARQL query

logs can indeed be used to generate accurate predictions that are later used to prefetch

data from RDF Triplestores. By doing so, we have demonstrated the viability of our sec-

ond proposed approach to analyze statements and instructions of computer languages

to predict data for prefetching.

127

Chapter 6

Conclusions and Future Work

In this chapter, we provide a conclusion of the work done in this thesis and highlight

directions for work to be carried out in the future.

6.1 Conclusions

Throughout this thesis, we have developed two approaches to data prefetching: (1) an

approach to prefetching in Persistent Object Stores based on static code analysis of

object-oriented applications, and (2) and approach to prefetching in RDF Triplestores

based on analysis of statements of the declarative query language SPARQL. Both of the

developed approaches are based on predictions made from analysis of instructions and

statements of computer languages, and do not need any data from the underlying stor-

age system. We have developed a formalization of both approaches, implemented them

and demonstrated their viability and benefits with a series of extensive experiments.

First, Chapter 3 presented the first contribution of the thesis (C1). The chapter

detailed the static code analysis approach we developed to predict data for prefetching

from POSs. The approach is based on the concept of Type Graphs, which analyze

the code of an application’s methods and predicts which data they access. It also

includes inter-procedural analysis to move the prefetching as early as possible and

hence guarantee that the prefetched objects are loaded before they are accessed. We

implemented the approach using Java as an example OO language and demonstrated

its viability by answering the research questions RQ1, RQ2, RQ3 and RQ4, which

show that the approach yields high-accuracy prediction for the majority of the studied

128 Chapter 6. Conclusions and Future Work

applications, makes the predictions with enough time in advance for the predicted

objects to be prefetched and can be performed within a reasonable amount of time.

Afterwards, we presented the second contribution (C2) in Chapter 4 by using

dataClay as an example POS to integrate the developed static code analysis approach

and prefetch data from persistent storage. The implementation includes automatic

modification of application source code to enable prefetching as well as automatic

loading of data to maximize the benefits obtained from prefetching the data. We

evaluated the developed approach by answering the research questions RQ5 and RQ6

using the OO7 and Wordcount benchmarks. The obtained experimental results show

that our prefetching approach results in greater reductions of application execution

times, as well as higher object hit rates, than previous prefetching approaches.

Finally, we developed the last contribution (C3) in Chapter 5. The chapter explains

an approach that analyzes the statements of SPARQL query logs and detects recurring

query patterns and uses the detected patterns to construct augmented queries that

prefetch data relevant to subsequent requests. We implemented our prediction approach

and tested it with the real-world query logs of esDBPedia and enDBpedia to answer

the research questions RQ7, RQ8 and RQ9. The experimental results show that the

approach yields high-accuracy prediction, is performed in minimal time, and thus does

not add any overhead, and achieves higher cache hit rate than previous approaches.

By doing so, we have fulfilled the main aim of this thesis, which was to prove the

following hypothesis:

In a technological setting where applications need access to persistent

data, it is possible to perform data prefetching based on predictions made

by analyzing the instructions and statements of the used computer language,

without involving the underlying data storage system.

6.2 Future Work

This section presents possible lines of future work related to the contributions of this

thesis. Some are issues that remained out of the scope of this thesis while others are

new works that can be built on top of the contributions of the thesis.

6.2. Future Work 129

6.2.1 Smart Cache Replacement Policies

The predictions made by the static code analysis approach presented in this thesis

(Contribution C1), in terms of which persistent objects will be accessed, can be used

for performance improvement techniques other than data prefetching.

One such technique is smart cache replacement policies [44, 46, 48]. Our static

analysis approach allows us to know that an object o is accessed by a method m

and another method m′ after the execution of n different methods. Knowing this

information, we can decide whether to keep the object o in memory after the first time

it is prefetched. This also needs an estimation of the number of objects that will be

accessed by the n methods executed between the two methods that access o, which we

can also be obtained from our analysis. The exact number of objects that a memory

cache can hold depends on the size of the cache, but using these predictions we can

estimate which objects should be removed from the cache, instead of applying a simple

Least-Frequently Used (LFU) or Least-Recently Used (LRU) policy.

6.2.2 Dynamic Data Placement

Another technique that can be applied using the predictions made by our static code

analysis approach is dynamic data placement [53, 58]. For instance, the analysis allows

us to know the set of objects that each method of the application will access when

executed. Given a system similar to dataClay, we can use this information to distribute

the objects when the application starts executing in a way that allows the sets of objects

needed by different methods are located in different nodes. This in turn allows us to

prefetch the objects needed for the execution of two consecutive methods in parallel,

which maximizes the benefits obtained from this prefetching.

6.2.3 Additional Predictions of SPARQL Queries

The third contribution of this thesis (C3) currently uses the structure and triple pat-

terns of SPARQL SELECT queries in the classifier models used to predict the augmented

queries that prefetch data. These models can be extended to take into account other

features of SELECT queries, such as FILTER clauses. The FILTER keyword is used in a

130 Chapter 6. Conclusions and Future Work

SELECT query to limit the values of an introduced variable to a defined set of values.

Taking these FILTER clauses of previous queries into consideration when building the

classifier models allows us to predict which variables of the constructed augmented

queries would have a related FILTER clause. This in turn allows us to limit the val-

ues of the introduced variable to a specified set, hence reducing the number of triples

prefetched by the augmented query.

Another possible extension of this contribution is to take into consideration other

forms of SPARQL queries, such as ASK or DESCRIBE. For instance, ASK queries are

used to test whether or not a query graph pattern has a solution. No information

is returned about the possible query solutions, only true if a solution exists or not

otherwise. Hence, predicting the solution of an ASK query based on previous queries

allows us to prefetch the answer, true or false, without the need to evaluate the query

graph pattern.

6.2.4 Human Query Sessions vs. Machine Query Sessions

Finally, another possible line of future work related to the contribution C3 is distin-

guishing human query sessions from session made by machine agents. Previous studies

show that human sessions and machine sessions exhibit different behaviour when it

comes to the queries they launch [59, 62]. On the one hand, human session tend to

follow a trial-and-error pattern in which consecutive queries add or remove triple pat-

terns to previous queries with the aim of finding the needed information. On the other

hand, machine sessions tend to use the same query template with a change in one or

more triple patterns coming from a predefined set of values. Understanding these dif-

ferences between human sessions and machine session allows to test the effectiveness of

our approach on both types and optimize it accordingly.

6.2.5 Index-Only Query Answering for SPARQL Endpoints

Index-Only Query Answering (IOQA) refers to the technique of answering queries by

only using indexes created on the data. Given that data in RDF Triplestores is repre-

sented through triples, we only need to create eight indexes to index all of the available

6.3. Results Dissemination and Collaborations 131

data. These indexes are: subject, object, predicate, subject-object, subject-predicate,

predicate-object and subject-object-predicate. For this reason, IOQA is a popular

query optimization method for RDF Triplestores [37, 57].

In this thesis, we predict which Q-Types and Triple-Pattern Mappings should be

used to construct an augmented query that prefetches data. However, the predictions

of Triple-Pattern Mappings can also be used to decide which indexes are sufficient to

answer the queries in a query session through IOQA, and create these indexes. For

instance, if the Triple-Pattern Mappings indicate that the subject of the triple is the

part that changes most frequently, we can use this information to create an index on the

subject alone, which would allow us to answer the queries in the session using IOQA.

One limitation of IOQA is the fact that all of the created indexes should fit entirely

in memory, otherwise we would have to load the index from persistent storage to answer

the queries which defeats the purpose of this optimization. Thus, we can also combine

our prefetching approach with IOQA by estimating the size of the indexes needed to

perform IOQA and comparing it with the size of the available memory. We can then

use our predictions to either perform prefetching or IOQA based on whether the needed

indexes can fit entirely in memory.

6.3 Results Dissemination and Collaborations

During the course of this thesis, several collaboration were undertaken with different

institutions. The collaborations, as well as the contributions presented in this thesis,

produced the following publications:

• R. Touma, A. Queralt, M. S. Pérez and T. Cortes. “Predicting access to persis-

tent objects through static code analysis”. New Trends in Databases and Infor-

mation Systems (ADBIS’17). pp 54–62. Springer (2017).

This publication corresponds to the first contribution of the thesis (C1) and

was developed at the Storage Systems Group at the Barcelona Supercomputing

Center (BSC).

132 Chapter 6. Conclusions and Future Work

• R. Touma, A. Queralt and T. Cortes. “CAPre: Code-Analysis based Prefetching

for Persistent Object Stores”. Under review in the 22nd International Conference

on Extending Database Technology (EDBT’19). Notification date: November

23rd, 2018.

This publication corresponds to the second contribution of the thesis (C2) and

was developed at the Storage Systems Group at the Barcelona Supercomputing

Center (BSC).

• M. Rico,R. Touma, A. Queralt and M. S. Pérez. “Machine-Learning based query

augmentation for SPARQL endpoints”. In Proceedings of the 14th International

Conference on Web Information Systems and Technologies (WEBIST’18). pp

57–67. SciTePress (2018). Best Student Paper Award.

This publication corresponds to the this contribution of the thesis (C3) and was

developed during a six-month secondment at the Ontology Engineering Group

(OEG) in the Universidad Politécnica de Madrid (UPM).

• A. Kiatipis, A. Brandon, R. Touma, P. Matri, M. Zasadzinski, T. L. Nguyen,

A. Lebre and A. Costan. “A Survey of Benchmarks to Evaluate Data Analytics

for Smart-* Applications”. Under review in IEEE Transactions on Big Data -

Special Issue on Edge Analytics in the Internet of Things.

This publication is the result of a collaboration with other PhD candidates in

the BigStorage European Training Network (ETN)1, funded by the European

Commission’s Horizon 2020 Marie Sklodowska-Curie Actions.

1BigStorage ETN: http://bigstorage-project.eu/

http://bigstorage-project.eu/

133

Bibliography

[1] Ahn, Jung-Ho and Kim, Hyoung-Joo. “Dynamic SEOF: An Adaptable Object Prefetch

Policy for Object-oriented Database Systems”. In: The Computer Journal 43.6 (2000),

pp. 524–537. eprint: http://comjnl.oxfordjournals.org/content/43/6/

524.full.pdf+html.

[2] Ahn, Jung Ho and Kim, Hyoung Joo. “SEOF: an adaptable object prefetch policy

for object-oriented database systems”. In: Proceedings of 13th ICDE. 1997, pp. 4–13.

[3] Aly, Mohamed. “Survey on multiclass classification methods”. In: Neural networks

(2005), pp. 1–9.

[4] Atkinson, M. P. et al. “An Approach to Persistent Programming”. In: The Computer

Journal 26.4 (1983), p. 360.

[5] Baer, Jean Loup and Chen, Tien Fu. “An Effective On-chip Preloading Scheme to

Reduce Data Access Penalty”. In: Proceedings of the 1991 SC. ACM, 1991, pp. 176–

186.

[6] Bernstein, Philip A, Pal, Shankar, and Shutt, David. “Context-based prefetch for

implementing objects on relations”. In: VLDB. Vol. 99. 1999, pp. 7–10.

[7] Bizer, C., Heath, T., and Berners-Lee, T. “Linked data - the story so far”. In: Int. J.

Semantic Web Inf. Syst. 5.3 (2009), 1–22.

[8] Blair, Stuart Andrew. “On the classification and evaluation of prefetching schemes”.

PhD thesis. University of Glasgow, 2003.

[9] Booch, Grady. Object-Oriented Analysis and Design with Applications (3rd Edition).

Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[10] Bowman, I.T. and Salem, K. “Semantic Prefetching of Correlated Query Sequences”.

In: Proceedings of 23rd ICDE. 2007, pp. 1284–1288.

[11] Bowman, Ivan T. and Salem, Kenneth. “Optimization of Query Streams Using Se-

mantic Prefetching”. In: ACM Trans. Database Syst. 30.4 (Dec. 2005), pp. 1056–1101.

http://comjnl.oxfordjournals.org/content/43/6/524.full.pdf+html
http://comjnl.oxfordjournals.org/content/43/6/524.full.pdf+html

134 BIBLIOGRAPHY

[12] Box, George and Jenkins, Gwilym. Time Series Analysis: forecasting and control.

Oakland, CA, USA: Holden-Day, 1976.

[13] Brown, A. L. and Morrison, R. “A Generic Persistent Object Store”. In: Software

Engineering Journal 7.2 (Mar. 1992), pp. 161–168.

[14] Byna, Surendra, Chen, Yong, and Sun, Xian-He. “Taxonomy of Data Prefetching for

Multicore Processors”. English. In: Journal of Computer Science and Technology 24.3

(2009), pp. 405–417.

[15] Cahoon, Brendon and McKinley, Kathryn S. “Data Flow Analysis for Software Prefetch-

ing Linked Data Structures in Java”. In: Proceedings of the 2001 International Con-

ference on Parallel Architectures and Compilation Techniques. 2001, pp. 280–291.

[16] Cao, Pei et al. “A study of integrated prefetching and caching strategies”. In: Pro-

ceedings of 1995 SIGMETRICS. Vol. 23. 1. ACM, 1995, pp. 188–197.

[17] Carey, Michael J., DeWitt, David J., and Naughton, Jeffrey F. “The 007 Benchmark”.

In: Proceedings of the 1993 ACM SIGMOD International Conference on Management

of Data. SIGMOD ’93. New York, NY, USA: ACM, 1993, pp. 12–21.

[18] Chen, Shimin, Gibbons, Phillip B., and Mowry, Todd C. “Improving Index Perfor-

mance Through Prefetching”. In: Proceedings of 2001 SIGMOD PODS. Santa Bar-

bara, California, USA: ACM, 2001, pp. 235–246.

[19] Chen, Shimin et al. “Improving Hash Join Performance Through Prefetching”. In:

ACM Trans. Database Syst. 32.3 (Aug. 2007).

[20] Chen, Tse-Hsun et al. “Detecting Performance Anti-patterns for Applications Devel-

oped Using Object-relational Mapping”. In: Proceedings of the 36th International

Conference on Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014,

pp. 1001–1012.

[21] Community, Hibernate. Hibernate Documentation - Chapter 19 - Improving Perfor-

mance. url: https://docs.jboss.org/hibernate/orm/3.3/reference/

en/html/performance.html.

[22] Curewitz, Kenneth M., Krishnan, P., and Vitter, Jeffrey Scott. “Practical Prefetching

via Data Compression”. In: SIGMOD Rec. 22.2 (1993), pp. 257–266.

[23] DataNucleus.DataNucleus - JDO Fetch-Groups. url: http://www.datanucleus.

org/products/accessplatform_4_1/jdo/fetchgroup.html.

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
http://www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html
http://www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html

BIBLIOGRAPHY 135

[24] Dimitrov, Martin and Zhou, Huiyang. “Combining Local and Global History for High

Performance Data Prefetching”. In: In The Journal of InstructionLevel Parallelism

Data Prefetching Championship. 2009.

[25] Ding, Luping et al. “Application-Specific Schema Design for Storing Large RDF

Datasets”. In: Proceedings of the 1st International Workshop on Practical and Scalable

Semantic Systems. Vol. 89. CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[26] Dividino, Renata and Gröner, Gerd. “Which of the following SPARQL Queries are

Similar? Why?” In: Proceedings of the First International Workshop on Linked Data

for Information Extraction (LD4IE 2013). 2013, pp. 1–12.

[27] Django. QuerySet API Reference - Django Documentation. url: https://docs.

djangoproject.com/en/1.9/ref/models/querysets/#django.db.

models.query.QuerySet.prefetch_related.

[28] Elbassuoni, Shady, Ramanath, Maya, and Weikum, Gerhard. “Query Relaxation for

Entity-relationship Search”. In: Proceedings of the 8th Extended Semantic Web Con-

ference on The Semanic Web: Research and Applications - Volume Part II. ESWC’11.

Berlin, Heidelberg: Springer-Verlag, 2011, pp. 62–76.

[29] Fraser, Gordon and Arcuri, Andrea. “A Large-Scale Evaluation of Automated Unit

Test Generation Using EvoSuite”. In: ACM Trans. Softw. Eng. Methodol. 24.2 (Dec.

2014), 8:1–8:42.

[30] Gao, Sidan and Anyanwu, Kemafor. “PrefixSolve: Efficiently Solving Multi-source

Multi-destination Path Queries on RDF Graphs by Sharing Suffix Computations”.

In: Proceedings of the 22Nd International Conference on World Wide Web. WWW

’13. New York, NY, USA: ACM, 2013, pp. 423–434.

[31] Garbatov, Stoyan and Cachopo, João. “Data access pattern analysis and prediction

for object-oriented applications”. In: INFOCOMP Journal of Computer Science 10.4

(2011), pp. 1–14.

[32] Gerlhof, CarstenA. and Kemper, Alfons. “A multi-threaded architecture for prefetch-

ing in object bases”. English. In: Proceedings of the 4th EDBT. Vol. 779. Springer

Berlin Heidelberg, 1994, pp. 351–364.

[33] Gierke, Oliver et al. Spring Data JPA - Reference Documentation. url: http://

docs.spring.io/spring-data/jpa/docs/current/reference/html/

#jpa.entity-graph.

https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph

136 BIBLIOGRAPHY

[34] Han, Wook-Shin, Loh, Woong-Kee, and Whang, Kyu-Young. “Type-Level Access

Pattern View: A Technique for Enhancing Prefetching Performance”. In: Proceedings

of the 1th DASFAA. Springer, 2006, pp. 389–403.

[35] Han, Wook-Shin, Moon, Yang-Sae, and Whang, Kyu-Young. “PrefetchGuide: captur-

ing navigational access patterns for prefetching in client/server object-oriented/object-

relational DBMSs”. In: Information Sciencies 152 (2003), pp. 47–61.

[36] Han, Wook-Shin, Whang, Kyu-Young, and Moon, Yang-Sae. “A Formal Framework

for Prefetching Based on the Type-Level Access Pattern in Object-Relational DBMSs”.

In: IEEE Trans. Knowl. Data Eng. 17.10 (2005), pp. 1436–1448.

[37] Harth, A. and Decker, S. “Optimized index structures for querying RDF from the

Web”. In: Third Latin American Web Congress (LA-WEB’2005). Oct. 2005, 10 pp.–.

[38] Hartig, Olaf, Bizer, Christian, and Freytag, Johann-Christoph. “Executing SPARQL

Queries over the Web of Linked Data”. In: Proceedings of the 8th International Seman-

tic Web Conference. ISWC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 293–

309.

[39] He, Zhen and Marquez, Alonso. “Path and cache conscious prefetching (PCCP)”. In:

The VLDB journal 16.2 (2007), pp. 235–249.

[40] Hogan, Aidan et al. “Towards Fuzzy Query-Relaxation for RDF”. In: Proceedings of

the 9th Extended Semantic Web Conference, ESWC 2012. Springer Berlin Heidelberg,

2012, pp. 687–702.

[41] Hollmann, Jochen, Ardö, Anders, and Stenström, Per. “An Evaluation of Document

Prefetching in a Distributed Digital Library”. In: Proceedings of Research and Ad-

vanced Technology for Digital Libraries. Ed. by Koch, Traugott and Sølvberg, Inge-

borg Torvik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 276–287.

[42] Hurtado, Carlos A., Poulovassilis, Alexandra, and Wood, Peter T. “Query Relaxation

in RDF”. In: Journal on Data Semantics X. Springer-Verlag, 2008, pp. 31–61.

[43] Ibrahim, Ali and Cook, WilliamR. “Automatic Prefetching by Traversal Profiling in

Object Persistence Architectures”. English. In: Proceedings of 2006 ECOOP. Springer

Berlin Heidelberg, 2006, pp. 50–73.

[44] Jaleel, Aamer et al. “CRUISE: Cache Replacement and Utility-aware Scheduling”.

In: SIGARCH Comput. Archit. News 40.1 (Mar. 2012), pp. 249–260.

BIBLIOGRAPHY 137

[45] Jeon, H. Seok and Noh, Sam H. “A Database Disk Buffer Management Algorithm

Based on Prefetching”. In: Proceedings of the 7th CIKM. Bethesda, Maryland, USA:

ACM, 1998, pp. 167–174.

[46] Jeong, J. and Dubois, M. “Cost-sensitive cache replacement algorithms”. In: The

Ninth International Symposium on High-Performance Computer Architecture, 2003.

HPCA-9 2003. Proceedings. 2003, pp. 327–337.

[47] Karlsson, Magnus, Dahlgren, Fredrik, and Stenström, Per. “A Prefetching Technique

for Irregular Accesses to Linked Data Structures”. In: Proceedings of the 6th HPCA.

IEEE, 2000, pp. 206–217.

[48] Keramidas, G., Petoumenos, P., and Kaxiras, S. “Cache replacement based on reuse-

distance prediction”. In: 2007 25th International Conference on Computer Design.

2007, pp. 245–250.

[49] Kindler, Eugene and Krivy, Ivan. “Object-Oriented Simulation of systems with so-

phisticated control”. In: International Journal of General Systems 40.3 (2011), pp. 313–

343.

[50] Knafla, Nils. “A prefetching technique for object-oriented databases”. English. In:

Advances in Databases. Vol. 1271. Springer Berlin Heidelberg, 1997, pp. 154–168.

[51] Knafla, Nils. “Analysing object relationships to predict page access for prefetching”.

In: Proceedings of the 8th POS and the 3rd PJW. Morgan Kaufmann Publishers Inc.

1999, pp. 160–170.

[52] Knafla, Nils. “Prefetching Techniques for Client/Server, Object-Oriented Database

Systems”. PhD thesis. Citeseer, 1999.

[53] Lee, Chia-Wei et al. “A Dynamic Data Placement Strategy for Hadoop in Hetero-

geneous Environments”. In: Big Data Research 1 (2014). Special Issue on Scalable

Computing for Big Data, pp. 14 –22.

[54] Lorey, Johannes and Naumann, Felix. “Caching and Prefetching Strategies for SPARQL

Queries”. In: The Semantic Web: ESWC 2013 Satellite Events: ESWC 2013 Satel-

lite Events, Montpellier, France, May 26-30, 2013, Revised Selected Papers. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 46–65.

[55] Lorey, Johannes and Naumann, Felix. “Detecting SPARQL Query Templates for Data

Prefetching”. In: The Semantic Web: Semantics and Big Data: 10th International

138 BIBLIOGRAPHY

Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 124–139.

[56] Luk, Chi-Keung and Mowry, Todd C. “Compiler-based Prefetching for Recursive

Data Structures”. In: Proceedings of the 7th International Conference on Architec-

tural Support for Programming Languages and Operating Systems. ASPLOS VII. New

York, NY, USA: ACM, 1996, pp. 222–233.

[57] Luo, Yongming et al. “Storing and Indexing Massive RDF Datasets”. In: Semantic

Search over the Web. Ed. by De Virgilio, Roberto, Guerra, Francesco, and Velegrakis,

Yannis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 31–60.

[58] Maheshwari, Nitesh, Nanduri, Radheshyam, and Varma, Vasudeva. “Dynamic en-

ergy efficient data placement and cluster reconfiguration algorithm for MapReduce

framework”. In: Future Generation Computer Systems 28.1 (2012), pp. 119 –127.

[59] Mario, Arias et al. “An empirical study of real-world SPARQL queries”. In: 1st Inter-

national Workshop on Usage Analysis and the Web of Data USEWOD 2011. 2011.

[60] Martí, Jonathan et al. “Dataclay: A distributed data store for effective inter-player

data sharing”. In: Journal of Systems and Software 131 (2017), pp. 129 –145.

[61] Meng, Xiandong and Chaudhary, Vipin. “An Adaptive Data Prefetching Scheme for

Biosequence Database Search on Reconfigurable Platforms”. In: Proceedings of the

2007 ACM Symposium on Applied Computing. SAC ’07. New York, NY, USA: ACM,

2007, pp. 140–141.

[62] Möller, Knud et al. “Learning from linked open data usage: patterns & metrics”. In:

Proceedings of the WebSci10: Extending the Frontiers of Society On-Line, 2010.

[63] Mowry, Todd C., Lam, Monica S., and Gupta, Anoop. “Design and Evaluation of a

Compiler Algorithm for Prefetching”. In: Proceedings of the 5th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems.

ASPLOS V. New York, NY, USA: ACM, 1992, pp. 62–73.

[64] Neo4J. Neo4J OGM - An Object Graph Mapping Library for Neo4j. url: https:

//neo4j.com/docs/ogm-manual/current/.

[65] Nesbit, Kyle J. and Smith, James E. “Data Cache Prefetching Using a Global History

Buffer”. In: Proceedings of the 10th HPCA. IEEE, 2004, pp. 96–.

[66] Nilakant, Karthik et al. “PrefEdge: SSD Prefetcher for Large-Scale Graph Traversal”.

In: Proceedings of 7th SYSTOR. Haifa, Israel: ACM, 2014, 4:1–4:12.

https://neo4j.com/docs/ogm-manual/current/
https://neo4j.com/docs/ogm-manual/current/

BIBLIOGRAPHY 139

[67] Oren, Nir. A Survey of Prefetching Techniques. Technical Report CS-2000-10. Johan-

nesburg, South Africa: University of the Witwatersand, 2000.

[68] Pan, Yue et al. “Prefetching RDF Triple Data”. Pat. US 2012/013.6875 A1. IBM.

2012.

[69] Patterson, David et al. “A Case for Intelligent RAM”. In: IEEE Micro 17.2 (Mar.

1997), pp. 34–44.

[70] Patterson, R. H. et al. “Informed Prefetching and Caching”. In: SIGOPS Oper. Syst.

Rev. 29.5 (Dec. 1995), pp. 79–95.

[71] Pérez, Jorge, Arenas, Marcelo, and Gutierrez, Claudio. “Semantics and Complexity

of SPARQL”. In: ACM Trans. Database Syst. 34.3 (Sept. 2009), 16:1–16:45.

[72] Picalausa, Francois and Vansummeren, Stijn. “What are real SPARQL queries like?”

In: Proceedings of the International Workshop on Semantic Web Information Man-

agement. ACM. 2011, p. 7.

[73] Ramachandra, Karthik and Sudarshan, S. “Holistic Optimization by Prefetching

Query Results”. In: Proceedings of the 2012 SIGMOD PODS. Scottsdale, Arizona,

USA: ACM, 2012, pp. 133–144.

[74] Sedgewick, Robert and Wayne, Kevin. Algorithms, 4th Edition - Graphs. [Accessed

09/10/2018]. 2016.

[75] SemanticWeb Wiki. SPARQL Endpoint. url: http://semanticweb.org/wiki/

SPARQL_endpoint.html.

[76] Soundararajan, Gokul, Mihailescu, Madalin, and Amza, Cristiana. “Context-aware

Prefetching at the Storage Server”. In: Proceedings of the 2008 USENIX. ATC’08.

Boston, Massachusetts: USENIX Association, 2008, pp. 377–390.

[77] SourceForge. JMCA - Java Method Cohesion Analyzer. url: https://sourceforge.

net/projects/jmca/.

[78] Stoutchinin, Artour et al. “Speculative Prefetching of Induction Pointers”. In: Proceed-

ings of the 10th International Conference on Compiler Construction. Ed. by Wilhelm,

Reinhard. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 289–303.

[79] VanDeBogart, Steve, Frost, Christopher, and Kohler, Eddie. “Reducing Seek Over-

head with Application-directed Prefetching”. In: Proceedings of the 2009 USENIX.

San Diego, California: USENIX Association, 2009, pp. 24–24.

http://semanticweb.org/wiki/SPARQL_endpoint.html
http://semanticweb.org/wiki/SPARQL_endpoint.html
https://sourceforge.net/projects/jmca/
https://sourceforge.net/projects/jmca/

140 BIBLIOGRAPHY

[80] Voelker, Geoffrey M. et al. “Implementing Cooperative Prefetching and Caching in

a Globally-managed Memory System”. In: SIGMETRICS Perform. Eval. Rev. 26.1

(June 1998), pp. 33–43.

[81] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax. url:

https://www.w3.org/TR/rdf-concepts/.

[82] Wala, IBM. Wala Wiki. url: http://wala.sourceforge.net/wiki/index.

php/Main_Page.

[83] Wu, Zining. Managing Multi-Tiered Non-Volatile Memory Systems for Cost and Per-

formance. 2016.

[84] Zhang, Wei Emma et al. “SECF: Improving SPARQL Querying Performance with

Proactive Fetching and Caching”. In: Proceedings of the 31st Annual ACM Symposium

on Applied Computing. SAC ’16. New York, NY, USA: ACM, 2016, pp. 362–367.

[85] Zhu, PengFei et al. “Improving Memory Access Performance of In-Memory Key-

Value Store Using Data Prefetching Techniques”. In: Advanced Parallel Processing

Technologies. Springer, 2015, pp. 1–17.

https://www.w3.org/TR/rdf-concepts/
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Object-Oriented Programming Languages
	Declarative Query Languages
	Persistent Object Stores
	RDF Triplestores

	Problem Statement
	Hypothesis and Proposed Solution
	Research Questions
	Contributions
	Thesis Structure

	State of the Art
	Hardware-Based Prefetching
	Software-Based Prefetching
	Prefetching in Persistent Object Stores
	Schema-Based Prefetching
	Data-Based Prefetching
	Computer Language-Based Prefetching
	Other Types of Approaches
	Taxonomy
	Discussion

	Prefetching in RDF Triplestores
	Schema-Based Prefetching
	Data-Based Prefetching
	Computer Language-Based Prefetching
	Discussion

	Static Code Analysis of Object-Oriented Applications
	Motivating Example
	Solution: Static Code Analysis
	Proposed Approach
	Application Type Graph
	Method Type Graph
	Branch-Dependent Navigations
	Augmented Method Type Graph
	Access Hints
	Overridden Methods

	Approach Implementation
	Wala Abstract Syntax Tree
	Wala Intermediate Representation
	Analysis Scopes
	Method and Augmented Method Type Graphs
	Access Hints

	Approach Validation
	RQ1: What is the percentage of applications for which static code analysis can predict access to persistent objects?
	RQ2: Can the proposed static code analysis be performed within a reasonable amount of time?
	RQ3: What is the prediction accuracy of the proposed static code analysis?
	RQ4: How much in advance can the proposed static code analysis predict access to persistent objects?

	Summary

	Prefetching in Persistent Object Stores
	dataClay Overview
	Schema Registration
	Data Generation and Persistence
	Remote Execution
	Lazy Tasks

	Static Code Analysis Module
	Generating Type Graphs and Access Hints
	Generating Prefetching Methods
	Invoking Generated Prefetching Methods
	Parallelization of Prefetching Methods

	Prefetching Data at Runtime
	Evaluation
	Benchmarks
	RQ5: Does our prefetching approach improve application execution times?
	RQ6: What is the object hit rate of the prefetching approach?

	Summary

	Prefetching in RDF Triplestores
	RDF and SPARQL Preliminaries
	Motivating Example
	Proposed Approach
	Query Types
	Triple-Pattern Mappings
	Machine Learning Models
	Constructing Augmented Queries
	Augmented Queries Cache

	Approach Validation
	RQ7: What is the prediction accuracy of the proposed query-log analysis approach?
	RQ8: Can the predictions be made within a reasonable amount of time?
	RQ9: What is the cache hit rate of the proposed prefetching approach?

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Smart Cache Replacement Policies
	Dynamic Data Placement
	Additional Predictions of SPARQL Queries
	Human Query Sessions vs. Machine Query Sessions
	Index-Only Query Answering for SPARQL Endpoints

	Results Dissemination and Collaborations

	Bibliography

