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Abstract  

 
Our closest living relatives, chimpanzees and bonobos, have a 
complex demographic history. We analyzed the high-coverage whole 
genomes of 75 wild-born chimpanzees and bonobos from 10 
countries in Africa. We found that chimpanzee population 
substructure makes genetic information a good predictor of 
geographic origin at country and regional scales. Multiple lines of 
evidence suggest that gene flow occurred from bonobos into the 
ancestors of central and eastern chimpanzees between 200,000 and 
550,000 years ago, probably with subsequent spread into Nigeria-
Cameroon chimpanzees. Together with another, possibly more recent 
contact (after 200,000 years ago), bonobos contributed less than 1% 
to the central chimpanzee genomes. Admixture thus appears to have 
been widespread during hominid evolution.  
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Resum  

Els nostres parents més propers, els ximpanzés i els bonobos, tenen 
una història demogràfica complexa. En aquest estudi, hem analitzat 
els genomes sencers de 75 ximpanzés i bonobos nascuts en 10 països 
diferents d'Àfrica. Hem descobert que l'estructura poblacional dels 
ximpanzés fa possible predir l'origen geogràfic a escala nacional i 
regional mitjançant dades genètiques. Múltiples linies d’evidencia 
suggereixen que que l’ancestre dels ximpanzés est- i centre-africans 
va rebre gens de poblacions de bonobo. Juntament amb un altre 
contacte possiblement més recent (fa més de 200.000 anys), els 
bonobos han contribuït amb menys del 1% als genomes dels 
ximpanzé centre-africans. Així doncs, la hibridació entre espècies 
sembla haver estat generalitzada durant l'evolució dels homínids. 



 x 

 
 



Preface  

The origin of the human lineage along with their evolutionary 
relatives has been a longstanding question in biology. Recently, the 
advent of molecular data has provided an unprecedented resource to 
answer this question. In this thesis, I present results that deepen the 
understanding of the population history of chimpanzees and bonobos, 
our closest living relatives.  
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1.  INTRODUCTION 
 
In my thesis, I have used the genetic variation of populations to learn 
about their past. In order to link genetic variation to population history, 
one must know how genetics behaves under different demographic 
scenarios, an enterprise that as we shall see is far from obvious. 
Population genetics is the field in biology concerned to ask such 
questions, and it has been under thorough development for nearly a 
century. Here I will review some population genetics principles essential 
to understand my research. 
 

1.1.  A  broad  overview:  evolution,  DNA  and  
genetic  variation  

Evolution by natural selection is the process by which organisms change 
over time as a result of changes in heritable physical or behavioral traits 
(Darwin 1869). Notice that this definition carefully states “Evolution by 
natural selection is the process...”, a remark that will be relevant later in 
this section. Indeed, in the mind of Charles Darwin, evolution was 
driven by natural selection on those individuals with the highest 
capability to generate offspring (fitness). If we analyse the previous 
sentence, we can easily see that there must exist some kind of variation 
in a population for evolution to happen, otherwise the population 
would be composed by clones with identical fitness and it would remain 
stall. Another important feature of evolutionary change is that the 
selected traits must be heritable, so that they are transmissible from 
parent to offspring. By the time of Darwin and Wallace, the ultimate 
recipient of this variation and heritability was yet to be discovered. 
Phenotypic variation was thought to be inherited by blending the 
attributes of each parent into a new individual. However, around the 
same time Darwin was travelling the world aboard the Beagle, Gregor 
Mendel observed that inheritance works in discrete units (genes). 
Although Mendel and Darwin never had the chance to discuss their 
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ideas, scientists in the early 20th century combined Mendelian genetics 
and Darwinian evolution into what later became the Modern synthesis of 
evolution. Furthermore, between the 1940s and 1950s, DNA was shown 
to be the molecular repository of genetic information (Avery, MacLeod, 
and McCarty 1944). The discovery of the double helix (Watson and 
Crick 1953) cemented DNA as the ultimate recipient of the 
aforementioned variation and heritability. DNA has certainly been the 
main protagonist of my thesis, as I have spent most of my research 
comparing stretches of DNA between different individuals of a 
population. For that reason I shall describe its nature and how it is 
studied in modern times. 
 
DNA is a molecule made by two chains of nucleotides (A, G, T and C) 
which coil around each other to form a double helix. In eukaryotes, 
genomes are composed by multiple long stretches of DNA 
(chromosomes) carrying the genetic instructions used in the growth, 
development, functioning and reproduction of an organism. Because 
DNA is formed by 4 discrete “letters” or construction units, it can be 
read as a simple sequence of characters, very much like a text in a human 
book. Many times during my thesis I have found myself wondering if 
alternative systems of storing information would support life. Our 
computers work on an electronic storage medium based on only two 
states (1 or 0), and although DNA has more power to store data due to 
its four-moduled nature, maybe living forms based on a binary chemical 
version of our electronic bits could exist somewhere. In any case, all 
known organisms in our planet except some viruses use DNA to store 
genetic information.  
 
Our ability to sequence and interpret DNA has improved dramatically 
over the last decades. In the 1960s, the first biochemical methods for 
detecting differences in DNA sequence were developed. Protein 
electrophoresis was used to characterize alleles according to the speed 
a stained protein moved on a gel under standard conditions. In the 
1980s, the polymerase chain reaction (PCR), together with Sanger 
sequencing, provided access to direct DNA sequencing. In humans, the 
technology was often used to sequence mitochondrial DNA, which was 
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easily retrieved and sequenced due to its high abundance in the cell and 
short length. However, the greatest revolution in DNA sequencing 
methods occurred from the 2000s onwards, and one could say we are 
still living in it. The Human Genome Project took 10 years to finish and 
cost $3 billion US dollars (Davies 2010). Nowadays, resequencing a 
whole human genome takes a few hours and routinely costs less than 
$1.000.  
 
The advent of high-throughput methods has enabled the sequencing of 
hundreds of thousands of human genomes, and currently ongoing 
projects aim for 1-2 million sequenced genomes (Ledford 2016). Non-
human studies have also greatly benefited from accessible sequencing. 
Currently there are thousands of sequenced genomes across the whole 
tree of life, which arguably has transformed every field of biological 
research. Notably, DNA sequencing has not only strived for cheap and 
efficient resequencing technologies, but has also invested in a next 
generation of long-read technologies. However, what advantage would 
long-read sequencing technologies have over the short-read ones? As 
we discussed earlier, genomes are extremely long sequences of 
nucleotides. In primates, the number of nucleotide base-pairs in a 
genome add up to 3 · 109. This unimaginable large number varies across 
species, with contrasts as striking as the 106 in E. coli and the 1011 in the 
marbled lungfish. Organisms with large genome sizes tend to have 
higher fractions of their genome composed by short sequences repeated 
thousands of times in a row (terminal repeats, tandem repeats, 
transposable elements, etc.). In the case of humans, around two thirds 
of the genome are estimated to be repetitive or repeat-derived (de 
Koning et al. 2011). Now imagine you are given the task of identifying 
which part of a zebra is pictured in a photograph. A picture of the head 
or the tail would be a rather easy task, but we would surely have trouble 
with a picture showing the 16th and 17th stripe. DNA mappers are 
software facing similar challenges when mapping short reads to 
complex reference genomes. If the read sequences are not long enough 
to span the whole repetitive region, finding a best match turns out to be 
impossible. In that regard, long-read sequencing technologies have 
provided great advantages when mapping or assembling repetitive 
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regions, enabling the production of high quality reference genomes for 
non-human species (Kronenberg et al. 2018).  
 
As you can imagine, processing billions of letters is an unfeasible task 
without the power offered by modern computers. The exponential 
growth in DNA sequencing technologies required a similar growth of 
algorithms capable of dealing with large amounts of data. 
Bioinformatics is the interdisciplinary field that develops methods and 
software tools to understand biological data, and has become an 
essential skill in genomics. In my experience, genomic projects in 2018 
are more often hampered by CPU availability and storage than lack of 
DNA sequences, which suggests that efforts should be invested in 
improving bioinformatic pipelines to match up with DNA sequencing 
technologies.  
 
One of the most important functions of bioinformatics is to extract 
genetic variation out of a collection of DNA sequences. When studying 
a population of genomes, we should be interested in those positions 
where individuals carry different genetic information. Technically, this 
procedure is called single-nucleotide polymorphism (SNP) calling, and 
it consists of an intricate number of pre- and post-steps that I will not 
go into. Briefly, the identification of SNPs with short-read data goes as 
follows. Consider a set of 100 sparkling violetear short-read genomes 
we have sequenced for our study. Since the violetear genome is roughly 
1 billion nucleotides long, our life would be much easier if we focus in 
those positions where individuals carry different genetic information. In 
order to spot such positions, we must align our short-pieced genomes 
to a global coordinate system. We are lucky enough to have an assembly 
for the violetear, so we proceed to find the best matching place for each 
of our short reads in the 100 genomes (mapping). Once we have all the 
genomes mapped to the same reference, we are ready to identify all the 
positions where at least one individual carries a different nucleotide than 
the rest (SNP calling). Notice that we have gone from a gibberish of 
unordered DNA sequences to a well-structured list of positions that 
contain genetic variation. As we will see, this information can then be 
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exploited to learn about the history, population structure and 
demography of populations. 
 
The discovery of DNA, the development of technologies to sequence 
it and the use of computers has allowed us to uncover the genomic 
variation of populations. This gives us the chance to study the ultimate 
repository of variation and heritability that fuels evolution. In the 
following section, we will see how genetic variation appears and changes 
through time. 
 

1.2.  Allele  and  genotype   frequencies,   the  Hardy-­
Weinberg  equilibrium  

By sequencing the whole-genome of 100 sparkling violetear we detected 
3 million variable positions or polymorphisms. Each of these positions 
generally contains two alleles segregating in the population (ie. 
nucleotides A and T). We can readily compute allele frequencies by 
counting allele copies and dividing by the total number of chromosomes 
(200 in our case since violetears are diploid). Although multiallelic loci 
can exist, these are often discarded because are characteristic of regions 
in the genome hard to align or copy-number variable sites. Additionally, 
we can also study how the alleles are distributed among the individuals 
in the population. We can compute genotype frequencies by counting 
homozygous (AA or TT) and heterozygous (AT) individuals and 
dividing by the total number of individuals (100 in our case). Estimating 
allele frequencies from genotype frequencies is then an obvious process 
(ie. in our violetear population; 4 AA, 32 AT and 64 TT would yield 
allele frequencies of A = 0.2 and T = 0.8). However, can we reverse the 
process and estimate genotypes frequencies from allele frequencies? For 
example, knowing that the frequency of G in the 100th polymorphism 
in violetears is 0.35, what proportion of individuals would we expect to 
have the genotype GG?  
 
We can answer this question, but only if we make some assumptions. 
One particularly useful simplifying assumption is that mating is random, 
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ie. that violetears have no preference or taste when choosing mates 
(panmixis). We will also assume that the population is infinite or very 
large. Given these assumptions, the chance that an individual of the 
offspring is of genotype GG is given by the probability of receiving a G 
allele from both the mother and the father. If the G frequency is equal 
in females and males (another assumption), the frequency of GG in the 
next generation is simply the product of the G frequency (0.352 = 
~0.12). This property can be extended to the rest of genotypes by the 
commonly used formulae (if p and q are respectively the G and C allele 
frequencies; GG = p2, GC = 2pq, CC = q2). This observation was the 
first milestone in theoretical population genetics, the celebrated Hardy-
Weinberg law. The Hardy-Weinberg law describes the equilibrium state 
of a single locus in a randomly mating diploid population that is free of 
other evolutionary forces, such as mutation, migration and genetic drift.  
 
One might think that such assumptions are never met in reality. It 
would be reasonable to think that violetears do not choose mates at 
random. If the population is composed by several groups isolated by 
patches of terrain without forest (population structure), panmixis would 
be difficult to achieve simply due to logistic reasons, as flying time 
between regions would be too large. Natural selection would also violate 
the conditions under Hardy-Weinberg equilibrium, as well as 
populations with reduced census sizes. Because of all these reasons, we 
would perhaps be surprised to see that the Hardy-Weinberg principle 
reflects quite well real populations. In figure 1, I plot the allele frequency 
against the frequency of the 3 genotypes for 20.000 SNPs in 504 
humans from Europe (data extracted from the 1000 Genomes Project). 
The black solid lines show the mean genotype distribution calculated 
using a loess smoothing, while the dashed gray lines draw the 
expectation under Hardy-Weinberg equilibrium. The theoretical and 
empirical trajectories are almost identical. This particular example 
illustrates one of the most important features of population genetics. 
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It is impossible to fully understand the genetic structure of a population, 
such knowledge would require a complete description of the genome, 
spatial location of every individual and environmental conditions at one 
instant in time. In the next instant, the description would change as 
most individuals move, some are born and some die, while their genes 
mutate and recombine. Population genetics have achieved remarkable 
success by choosing to ignore all these complexities and focus on simple 
models that seem to reflect reality well. The following quote by the 
statistician George Box evokes quite well the population genetics 
mindset: ‘All models are wrong, but some are useful’.      

  

 
Figure 1. Demonstration of the Hardy–Weinberg proportions using 20.000 
SNPs from the CEU European population in the 1000 Genomes Project. The 
allele frequency of each SNP is plotted against the frequency of the three 
possible genotypes in a diallelic locus. The solid lines show the mean genotype 
frequency calculated using a loess smoothing. The dashed line shows the 
expected genotype frequency under Hardy–Weinberg equilibrium. 
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1.3.  Genetic  drift    

As we saw in the previous section, the Hardy-Weinberg law is premised 
on the population size being infinite. If we check the census size of the 
sparkling violetear, we can see that the species is under the Least 
Concern status in the IUCN scale. While this suggests their census size 
is quite large, it is certainly not infinite, thus the Hardy-Weinberg law 
may seem hard to accept. Indeed, in populations with finite population 
size, the allele frequencies in the next generation can be heavily 
influenced by stochastic events. If a subpopulation of 50 violetears lives 
isolated in a plateau in a Tepui, the allele frequencies in the next 
generation will be influenced by variation of offspring in each 
individual. Perhaps some individuals leave more descendants than 
others, not because of natural selection, but because of extrinsic factors 
not related with genetics. Some individuals might leave no offspring 
because the heavy rains destroyed their nests. On the other hand, 
randomness can also come from the process of Mendelian segregation. 
In our imaginary Tepui population, consider a locus with two alleles 
represented by A and a. The average number of As and as transmitted 
to the offspring may not be exactly equal to the expected number (ie. if 
a is only present in 6 heterozygous individuals, the number of a alleles 
in the next generation could very well be 0 due to random chance). 
Genetic drift is the process behind all these scenarios, and it describes the 
random change of allele frequencies in populations of finite size.  
 
As we have discussed earlier, population genetics concentrates on 
understanding how allele frequencies change through time. Since real 
populations are finite, if we manage to incorporate genetic drift in our 
models, we have learned a great deal about evolution. The founders of 
population genetics theory, Sewall Wright and Ronald Fisher, provided 
a model which represents well the inherent stochasticity of genetic drift. 
The Wright-Fisher model assumes a haploid population with discrete 
generations, where offspring is generated by randomly sampling alleles. 
This process can easily be simulated by a computer program following 
an algorithm that iterates over N haploid individuals in the population 
and; (I) chooses an allele at random from the parent generation, (II) 
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makes a copy of the selected allele and (III) places the copy in the new 
generation.  
 
The results of such simulations can be found in figure 2. The first 
obvious observation is that allele frequencies do not remain constant 
through time, albeit some simulations show more diversity than others. 
Particularly, genetic drift seems to work much faster in small 
populations than in large populations. This should not surprise us, since 
intuitively we can understand that the power hold by randomness is 
much higher in processes involving a small number of tests. The 
probability of not getting any head in 4 fair coin tosses is relatively high 
(~6%), but getting zero heads out of 500 tosses sounds like a miracle 
(<0.0001%). In the Wright-Fisher model, genetic drift operates at a rate 
inversely proportional to N (1/2N in diploids). This rate can be easily 
understood if we think of it as a decay of heterozygosity. What is the 
probability that two alleles are the copy of the same allele in the previous 
generation, thus generating a homozygous individual? The probability 
is 1/2N, as all alleles are equally likely to be chosen and we have to 
choose the same allele twice. The probability 1/2N is the backbone of 
many mathematical expressions in population genetics, so I recommend 
the reader to keep pondering about this. 
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Figure 2. Computer simulations of the Wright-Fisher model of random 
genetic drift. Each line represents a population of the size N simulated for 100 
generations. 

 
A second feature of genetic drift is that alleles are lost from the 
population, and as we have seen, much more so in populations with 
small N. From this we might reasonably conclude that genetic drift 
removes genetic variation from populations. The third feature is more 
subtle; the direction of the random changes is neutral, there is no 
systematic tendency for the frequency of alleles to go up or down. I like 
to think of genetic drift as a drunk person walking in a bridge without 
rails. They cannot help but to randomly take steps left and right, 
ultimately falling off the bridge, being swallowed by the river (do not 
worry, the bridge is very close to the water and they can safely swim 
back to the shore afterwards). Funnily enough, genetic drift is often 
modelled as a “drunk” particle. The diffusion approximation approach 
(Motoo Kimura 1957) assumes that drift disperses allele frequencies in 
a manner analogous to heat diffusing through a metal rod or particles 
moving in a Brownian fashion (Motoo Kimura 1957; Kolmogoroff 
1931).  
 
Here I must do a little digression from genetic drift to comment on two 
common features in population genetic analyses. First, the simple 
computer program described above to perform Wright-Fisher 
simulations has an interesting characteristic: the probability of each 
event depends only on the state attained in the previous event. In other 
words, the frequency in generation t only depends on the frequency in 
the generation t-1. This is very good news for any programmer, as the 
algorithm only needs to keep track of the previous step rather than the 
whole trajectory. Markov chains are stochastic models describing a 
sequence of events like the Wright-Fisher model, and are widely used in 
bioinformatics. Additionally, the algorithm works forward in time, unlike 
other population genetics methods that propagate backward in time (see 
coalescent theory in section 1.5). This difference in the orientation of 
the flow of time is often source of misunderstandings in discussions 
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among population geneticists, as words like later or after take an opposite 
meaning. 

The Wright-Fisher model, as all models in population genetics, is a 
simplification of how populations evolve. For example, most 
populations do not show a constant size, many do not have discrete 
generations, and almost all have some degree of population structure. 
However, due to its mathematical simplicity, we tend to want to 
interpret genetic data in the context of the Wright-Fisher model, or 
similar models. For this purpose, population geneticists came up with 
the sometimes enigmatic concept of effective population size (Ne). The Ne 
of a population is equal to the number of individuals in a Wright-Fisher 
model that would generate an equivalent amount of genetic drift as in 
the real population. There are many estimators of genetic drift in real 
populations (ie. the expected number of average pairwise differences 
between individuals per site, or 𝜋), but one must remember that the 
census size and the effective size can be vastly different. If we go back to 
our hypothetical violetear population, we may see that the Ne is 
implausibly small given our knowledge of the species. This may be in 
part because the census size can suddenly drop in some generations 
(population bottleneck), and in part because typically only a fraction of 
the total population leaves offspring (remember the heavy rains in 
Tepui and the destroyed nests).  

So far, genetic drift seems to contradict the stability promised by the 
Hardy-Weinberg law. Are these two fundamental observations 
incompatible? The answer is that not necessarily. Hardy-Weinberg 
equilibrium can be attained in only one or two generations. Genetic drift 
operates in the order of 2N generations, a number vastly larger than two 
in natural populations. A model population will appear to be close to 
Hardy-Weinberg equilibrium at any particular generation in time, since 
the deviation from the expectation due to drift will be in the order of 
1/2N. One could say that genetic drift works across millennia, while the 
Hardy-Weinberg law operates on a yearly basis. However, we have left 
an important question unanswered. If genetic drift gradually removes 
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genetic diversity from populations, why are not all the populations 
devoid of variation? 
 

1.4.  Mutation,  the  ultimate  source  of  change  

 
The answer to the last question, of course, is that mutation introduces 
new diversity to populations. Mutations are heritable changes in the 
genetic material that occur in DNA replication, but also sporadically in 
non-replicative DNA (ie. spontaneous cytosine deamination results in a 
nucleotide change to thymine). Organisms have evolved accurate 
molecular machineries of DNA replication and proofreading to reduce 
the rate of errors to very low numbers. The rhythm at which mutations 
appear, the mutation rate, can be estimated by comparing the genomes of 
individuals in a pedigree (ie. how many differences are found between 
the genomes of parents and their offspring?) (Kong et al. 2012). 
Scientists have also come up with alternative methods to estimate the 
mutation rate, such as spotting heterozygous positions in long stretches 
of homozygous genetic material (Narasimhan et al. 2017), or subtracting 
the number of derived mutations carried by modern and ancient 
individuals (Fu et al. 2014) (ie. an individual that died 45.000 years ago 
lacks 45 millennia of evolution, therefore it has accumulated fewer 
mutations since the ancestor). All these approaches have consistently 
obtained a mutation rate in humans of ~0.5·10-9 per base-pair per year. 
Assuming that the average age of parents at conception is 25 years old, 
and knowing that a human genome has ~3·109 base-pairs, we can easily 
compute that the expected number of novel mutations per child is 
around 75 (= 0.5·10-9  * 3·109 * 25 * 2). Indeed, in figure 3, we can see 
that the number of mutations in newborns tends to be around 67 in 
1.548 trios from Iceland (Jónsson et al. 2017). Since generations are the 
time unit of evolution, the mutation rate is often expressed per generation 
instead of per year. The rates are simply converted by assuming an 
average age of parents at reproduction, also called the generation time 
(0.5·10-9 becomes 1.25·10-8 if the generation time is 25 years).  
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Figure 3. Number of novel mutations in one generation of humans. Data 
downloaded from Jónsson et al. 2017. 

If we look carefully at the previous paragraph, we will see that the yearly 
mutation rate is expressed in a weird way. Why would anyone write 
0.5·10-9 instead of 5·10-10? In fact, I do not know why the scientific 
community has taken this convention to express the human mutation 
rate, but it consistently does so. By taking a look at earlier estimates of 
the human mutation rate, we may be able to do an educated guess on 
the reasons behind this. Mutation rates can also be estimated by 
counting genetic differences between the genomes of two different 
species and dividing by their split time. For example, we know that the 
genomes of chimpanzees and humans carry different genetic 
information in 1.27% of the genome (Kronenberg et al. 2018). The 
mismatch rate between DNA sequences is commonly referred to as 
divergence. We also know that according to the fossil record, chimpanzees 
and humans shared a common ancestor around 6 million years ago 
(Benton and Donoghue 2007). From these data we can conclude that 
the mutation rate in the human and chimpanzee lineages must be 
around 1·10-9 per base-pair per year (0.0127 / 6·106 = ~2·10-9, since the 
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two branches accumulate mutations, we have to divide by two to get to 
the final 1·10-9). Scientists have been puzzled for years by the 
incoungrence between the slow pedigree-based mutation rate estimates 
(0.5·10-9) and the fast estimates based on the fossil record and sequence 
divergence (1·10-9). Since the fast mutation rate was estimated decades 
earlier, my hypothesis is that 0.5·10-9 is used to stress the fact that it is 
half the original estimate (5·10-10 does arguably a worse job conveying 
this message). Later in this section we will discuss the biological reasons 
behind the difference in the slow and fast human mutation rates. 
 
But, how good are human cells at keeping their DNA intact? How low 
are all these values? Well, they are very low. The probability of me being 
struck by a lightning in my lifetime is around 1 out of 300.000 (3.3·10-

6). As we have seen, the probability of a base-pair mutating in a 
generation of modern humans is around 1.25·10-8. From that we can 
conclude that a single nucleotide in the genome has as many chances to 
mutate in one generation as me being struck by lightning 266 times in 
my lifetime (3.3·10-6/1.25·10-8 = 266.6). However, we must remember 
that populations can exist for thousands of generations and that the 
genome is very long. Even if the probability of me being struck by a 
lightning is almost negligible, people across history have died from it. 
Similarly, the cellular machinery may have extreme fidelity replicating 
DNA, but a cumulative number of errors still occur and have led to the 
origin of new species across millennia. In fact, in a population of N 
diploid organisms, each chromosome in each individual can mutate, 
thus mutations enter the population at 2N times the mutation rate (2Nu 
if u is the mutation rate). That means that the 7·109 humans in the planet 
carry around 252·109 new mutations from the previous generation 
(7·109 * 3·109 * 1.25·10-8). This number is far larger than the length of 
the genome, so every mutation that can exist, exists as of today. I always 
have found this a staggering thought. I wonder if this fact will soon be 
exploitable as the number of sequenced human genomes keeps 
increasing. With a cohort large enough, we should be able to spot the 
positions in the genome where mutations are never tolerated. Such 
knowledge should allow us to identify which regions in the genome play 
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important functions, as well as boost our general understanding on how 
genomes operate and are regulated. 
 
Some may have finished reading the last paragraph with confusion. 
Personally, the fact that the number of mutations entering a population 
scales with its size troubled me for a long time. Does this mean that 
populations with more individuals evolve faster? Do they accumulate 
more mutations per unit of time? We may find some answers to these 
questions in the previous section (see section 1.3). As we have seen, in 
the absence of mutation and selection, any allele will eventually be lost 
or fixed (figure 2). From this observation, it follows that one allele must 
be the ancestor of all the other alleles in the population if we wait long 
enough. As there are 2N alleles in a diploid population, the chance of 
any particular one becoming the ancestor is simply 1/2N. If the number 
of copies of an allele is higher than one (i copies), the chance of it being 
the ancestor is multiplied by the number of copies (1/2N * i = i/2N). 
An analogy illustrating this principle might be; if each number in a 
lottery has the same chance to win the prize, the more tickets I buy, the 
higher my chance to get the pot. Similarly, under a model without 
selection and mutation, the probability of fixation of an allele is its current 
frequency (i/2N). Since all novel mutations start with a single copy in a 
population, the probability of them surviving random drift and going to 
fixation is 1/2N. 
 
You may have noticed that the number of mutations entering a 
population (2Nu, u being the mutation rate) and the fixation probability 
of a new mutation (1/2N) both depend on the population size (N). In 
our hypothetical dataset of violeatears, we sampled an isolated 
population in Tepui (small N) and some other common population of 
the Venezuelan rainforest in Imataca (large N). We know that these 
populations have remained isolated for over 50.000 years, which has 
lead to the accumulation of genetic differences between them. While 
fewer mutations have entered the Tepui population per generation 
(2Nu), their probability of going to fixation and contributing to genetic 
differentiation is much higher (1/2N). Indeed, when we analyse the 
violetear genomes, we see that both populations have become equally 
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differentiated from the ancestor over the 50.000 years. This is explained 
by the fact that mutations not only have to appear in a lineage, but they 
have to become fixed to contribute to genetic differentiation. Therefore, 
the rate of substitution in diverging populations is independent of the 
effective population size (2Nu * 1/2N = u), and is simply equal to the 
mutation rate. According to the previous chain of reasoning, all 
populations should diverge from each other at exactly the same pace. 
This means that the number of mutations separating two lineages 
accumulate in a clockwise manner, and that this information can be used 
to infer the time since their separation. Such observation was coined as 
the molecular clock (Zuckerkandl and Pauling 1962), and has been widely 
used since its inception to estimate divergence times between species. 
 

 

 

Figure 4. Linear regression of mutation rates on the estimated effective 
population size. Data extracted downloaded from Lynch et al. 2016. 
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Is our conclusion true? Do mutations appear at a similar rate in 
violetears and humans? Figure 4 shows the mutation rate per base-pair 
per generation against the effective population size in a diverse array of 
species. Mutations appear at vastly different rates in some lineages 
(minimum and maximum rates are 1.9·10-11 in Paramecium tetraurelia and 
1.25·10-8 in humans respectively). Even more surprisingly, there seems 
to be a strong inverse correlation between effective population size and 
the mutation rate. These observations contradict our previous argument 
on how population size and the rate of substitution should be 
independent. As it often happens in science, we are probably 
approaching the problem obviating an important variable. Which could 
be the factor casting diversity in this theoretically constant space? So 
far, we have assumed simple models with random mating, constant 
effective population size, etc., always disregarding the role of natural 
selection. The neutral theory of molecular evolution claims that most allelic 
variation and substitutions accumulate due to genetic drift rather than 
natural selection (Motoo Kimura and Ohta 1971). It is important to 
stress the most in the definition. The neutral theory has been called non-
Darwinian evolution, perhaps an unfortunate description given the fact 
that the theory does not reject natural selection per se, but rather 
undermines its importance in the divergence of species. Indeed, the 
neutral theory was controversial when first proposed and remains 
controversial today (Kern and Hahn 2018). To resolve such 
controversies, one should know how much of the genome is influenced 
by natural selection. This is a hard problem, as demographic events can 
often mimic events of natural selection (ie. population bottlenecks and 
hard selective sweeps). In my opinion, the neutral theory has had an 
undeniable impact in the development of population genetics, especially 
when inferring population structure and demographic history. 
However, as we shall see next, many observations in biology are 
incompatible with neutrality, and we must invoke natural selection to 
explain them. 
 
As we have discussed earlier, figure 4 shows that the mutation rate is 
not constant across species. Moreover, it shows that mutation rate 
covariates with the effective population size, something that violates the 
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expectation under neutrality. One explanation for such observation 
might be related to the tight relationship between genetic drift and the 
effective population size. The drift-barrier hypothesis postulates that 
owing to the stochastic nature of genetic drift, there is an upper bound 
to the level of refinement achievable by natural selection (Lynch et al. 
2016). This hypothesis builds upon that idea that most novel mutations 
are detrimental to the fitness (deleterious); if we randomly modify a well 
designed machine, we are probably worsening its performance rather 
than improving it. Under this premise, most populations would be 
happy to have a lower mutation rate. However, natural selection can 
only work on traits that provide an increment in fitness (s) higher than 
the strength of genetic drift (1/2N). Therefore, DNA replication fidelity 
can only improve until its selective advantage is overwhelmed by the 
power of random genetic drift (ie. sculpists can only shape a figure to 
the point their hand steadiness allows it). Since unicellular organisms 
have higher effective population sizes, their mutation rate tends to be 
lower than multicellular organisms. The drift-barrier hypothesis 
illustrates that natural selection is much more efficient in populations 
of large size, an important principle of evolutionary biology.   
 

 

Figure 5. Differences in mutational spectrum across species. Mutations in each 
species are classified into 96 classes defined by the substitution type and 
sequence context immediately 3′ and 5′ to the mutated base (ie. first column 
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represents transitions from AAA to ACA). The six types of substitutions are 
displayed in different colours. The mutation types are on the horizontal axes, 
whereas vertical axes depict the percentage of mutations attributed to a specific 
mutation type. 

The last paragraph has put into question the validity of the molecular 
clock. To make things even more complicated, there are other known 
variables influencing the mutation rate. The generation-time effect states 
that organisms with shorter generation time evolve faster, as they copy 
their genomes more frequently and therefore have more DNA 
replication errors per unit of time (ie. the human and fruit fly generation 
times are 25 years and 50 days respectively, so a human generation is 
equivalent to 180 fruit fly generations). The theory has often been 
invoked to reconcile the fast human mutation rate based on calibration 
with the fossil-record (1·10-9 mutations per year) with the slow pedigree-
based estimates (0.5·10-9 mutations per year). An increase of the 
generation time toward the present, could have led to a recent slow 
down in the yearly mutation rate (Scally and Durbin 2012). 
Furthermore, mutations are known to appear at different rate in males 
and females due to the difference in germ cell divisions (Kong et al. 
2012), which makes the average age of each parent and the onset of 
puberty important variables (Gao et al. 2016). Additionally, mutations 
occur with different probabilities depending on the DNA sequence 
context (Moorjani et al. 2016). We can go even further and look at the 
rate of each mutation type and classify them by the flanking nucleotides 
(ie. the DNA sequence AGC mutating to ATC is classified as AGC-
>T). Even at this level we see that different mutation types appear at
different rates, and that these values change between species (figure 5).
It must now be clear to us that mutations are not random. As we have
seen, they are determined by a vast amount of variables (some of them
overlooked here; methylation, replication time, compaction status in the
nucleus, etc.). They might appear to be effectively random, in the sense
that they do not have intention or purpose to appear in a given gene, but
they ultimately occur in a deterministic manner. 
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My intention was not to make the reader fall into despair. If the 
mutation process is so complex, how are we supposed to ever fully 
understand it? We are far from a comprehensive understanding of how 
mutations occur, but our knowledge is steadily increasing, often by 
revising previous studies with overlooked results (Gao et al. 2018). 
Scientists have also come up with new creative ways to exploit DNA 
resources to learn about mutation. Some of these fruitful efforts involve 
studying mutational shifts in cancer cells (Alexandrov et al. 2013) or 
contrasting the level of mosaicism in somatic mutations (Ju et al. 2017). 
Additionally, we can be pragmatic and use mutations without fully 
understanding the underlying process generating them (ie. I take the 
metro every day, but I have no clue how trains work). In figure 6 we 
can see how the effective population size of orang-utans has changed 
through time (Prado-Martinez et al. 2013). In order to obtain the time 
estimates, the authors used the molecular clock and converted 
divergence units to years using the human mutation rate. By the time of 
the publication, there were two recognised orang-utan species, one 
living in Sumatra and the other in Borneo (maybe there are three 
species? (Nater et al. 2017)). The Toba supervolcanic eruption, one of 
the largest known eruptions on Earth, occurred 75.000 years ago at the 
present-day site Lake Toba in Sumatra. It affected the climate of the 
whole globe, albeit the effects were particularly strong in Sumatra. 
Figure 6 clearly depicts a sudden population decline in Sumatran orang-
utans around 70.000 years ago, coinciding with the time of the Toba 
eruption. It could all be coincidence. Nonetheless, the stepiness of the 
population decay and the almost perfect time overlap suggests 
otherwise. Thus, despite the fact that the molecular clock can deviate 
due to multiple reasons (mainly because of natural selection and/or 
changes in life history traits such as the generation time), it seems to be 
very useful, and can provide a good reflection of reality. As we have 
seen in multiple occasions, a simple model can sometimes capture well 
the complexities underlying reality. However, the robustness of the 
molecular clock should not prompt us to give up on the exploration of 
mutation. Because mutation is the ultimate source of all variation, our 
understanding of evolution will always be incomplete without a deep 
understanding on how mutations occur and prevail.  
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Figure 6. Inferred historical population sizes in orang-utans using a pairwise 
sequential Markovian coalescent analysis. Figure 3 of Prado-Martinez et al. 2013. 

  

1.5.  The  coalescent  theory  

In section 1.3 we developed a theory of genetic drift based on the 
Wright-Fisher model. Ultimately, we would like to relate theory to 
genetic data, so that we can learn about populations from their DNA 
sequences. For instance, we know that the violetears in Tepui differ, on 
average, in 0.05% sites of the genome. We also know that this value is 
higher in the population in the Imataca rainforest (0.09% sites of the 
genome). What do these numbers tell us about the two populations? 
We can use the Wright-Fisher model to answer this question, although 
it is often difficult and mathematically awkward to do so. However, in 
the early 1980s a new theory of population genetics was developed by 
mathematicians such as Kingman (Kingman 1982), and biologists such 
as Hudson (Hudson 1983). This theory, called the coalescent theory, thinks 
of genealogies proceeding backward in time, in contrast to the forward in 
time mindset of the Wright-Fisher model. This manner of thinking was 
shown to be very powerful, and established the basis for many modern 
population genetics methods.  
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Figure 7. Diagram showing paths of ancestry of a set of alleles sampled in the 
present (generation 0). Circles in black represent alleles with no descendants in 
the present.  

 
To understand how the coalescence process works, first consider what 
happens in figure 7 as time moves forward in time. As we saw in section 
1.3, new generations in a Wright-Fisher model are formed by randomly 
sampling alleles from the current generation (generation 4 if we go 
forward in time). After choosing the alleles, we place allele copies in the 
next generation and connect each allele with its parent. This stochastic 
process inevitably leads to some alleles not leaving descendants in the 
next generation, thus becoming extinct in the population (colored in 
black in figure 7). Indeed, if we wait enough generations, all the alleles 
in the population must be copies of a single ancestral parent. In the case 
of figure 7, the Wright-Fisher model reaches this point in 4 generations. 
 
Consider now the reverse process. In generation zero, each allele must 
choose a parent from the previous generation. Sometimes two alleles 
will choose the same parent (see the two alleles in rightmost side of the 
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figure). In such situations we will say that the two alleles have coalesced 
into a single ancestral allele. As we go further back in time, the number 
of ancestral alleles has to either remain the same or decrease, and each 
reduction in the number of alleles is called a coalescent event. Similarly to 
the Wright-Fisher model, if this process is repeated enough times, all 
the alleles coalesce into a single most-recent common ancestor (MRCA). 
Figure 7 illustrates one reason why coalescent thinking is so powerful. 
If we want to study the process in figure 7 forward in time by means of 
a computer simulation, our program must generate the ancestry of all 
the individuals. Because we do not have a priori information on which 
alleles will leave descendants, we must remember them all. The 10 alleles 
colored in black in figure 7 appear to be irrelevant for the population in 
the present, but that remains unknown until the point they leave no 
descendants. On the other hand, if we were to study the same process 
backward in time, none of the alleles tracked by our computer would be 
wasted. Any allele in any generation must ultimately trace back to an 
allele in the present. Such alleles are colored in white in figure 7, and 
they add up to 15 alleles. In other words, the forward simulation wastes 
nearly half its time generating alleles (10 out of 25) that are of no interest 
because they do not contribute to the ancestry of the contemporary 
population. This might not seem a great price to pay in this example, 
but in samples of thousands of alleles, the vast majority of lineages 
simulated in a forward direction end up not being used. 

The time needed to reach the most recent common ancestor (tMRCA) 
is of central interest in population genetics, as it allows to link DNA 
sequences and time. In order to introduce time into the picture, we will 
first consider a sample of two alleles in a population of size N. How 
long should we wait until the two alleles coalesce, or in other words, 
share a parent? Since parent alleles are chosen randomly, the probability 
of both alleles selecting the same parent in a generation is simply 1/2N. 
Imagine rolling a die two times. The chance that the second throw 
results in the same outcome as the first is 1/6, and is independent of 
the outcome of the first throw (ie. given that we roll a 5 in the first 
throw, the chance of we getting a 5 a second time is 1/6). Similarly, 
because in a population there are 2N potential parents equally likely to 
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be chosen, the probability of two individuals having the same parent in 
the previous generation is 1/2N. From this we can reasonably conclude 
that the average time we have to wait for the two alleles to meet and 
coalesce is 2N generations. 

You may have noticed that I did not clearly answer the last question. 
What kind of time measure is 2N generations? As we briefly discussed 
in section 1.4, generations are the time-unit of evolution, something that 
should make good intuitive sense. Consider the following analogy. You 
have a coffee machine that makes mediocre coffee, but you keep it 
because from time to time it produces the best coffee. After years of 
experience, you realise that the perfect coffee only comes out once every 
100 preparations in a completely random fashion. How many times on 
average would you have to use the machine to get the perfect coffee? 
Since the perfect preparation only happens with a probability 1/100, 
you would have to wait 100 preparations on average. Now, how long 
would that be in days? Well, that very much depends on how often you 
prepare coffee. If you do it every two days, you would wait 200 days on 
average. Equivalently, generations can be converted to conventional 
time-units by estimating how often organisms reproduce (ie. 25 years in 
humans). Therefore, two alleles in a population of 500 individuals with 
a generation time of 2 years will coalesce, on average, in 2.000 years (= 
1.000 generations * 2 years per generation). 
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Figure 8. Coalescence in a sample of two alleles. (A). The ancestry of two alleles 
in a population of 500 diploid individuals. The MRCA is found in roughly 400 
generations. The coalescent event is highlighted in red. (B) Distribution of the 
number of generations until two alleles find the MRCA in 10.000 simulations of 
a population size of 500 diploid individuals. (C) Continuous approximation of 
the expected probability of coalescence in a population of 500 diploid individuals.  

 
In figure 8, we can see the distribution of the number of generations 
until two lineages find a MRCA in a population of 500 diploid 
individuals. The shape of the distribution might be surprising, as it does 
not show the typical bell shape of a normal distribution. The 
coalescence process follows a decreasing exponential distribution, 
where recent coalescence times are more common than ancient ones. 
This means that coalescent events in the first generation are the ones 
most likely to happen, even when the size of the population is very large. 
How is this possible? Consider two alleles in a model diploid population 
of size 500. As we have seen, the probability of coalescence in the first 
generation is 1/2N (0.001 = 1/[2*500]). The probability of coalescence 
in the second generation is the same as before (1/2N), but now we must 
also consider the probability that the alleles have not coalesced in the first 
generation (1 - [1/2N]). Therefore, the probability of coalescence in the 
second generation is [1/2N] * [1 - 1/2N], which is slightly lower than 
the probability in the first generation. The probability of every 
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successive generation is lowered by the fact that coalescence must not 
have happened in any previous generation (if r is the current generation, 
then this probability equals [1 - 1/2N]r-1). Thus, the probability of 
coalescence in any given generation can be easily computed with 
Pr(MRCA in r generations) = [1 - 1/2N]r-1 * [1/2N]. If we come back 
to the computer simulations shown in figure 8, we can see that indeed 
the probability of coalescence gradually decreases and asymptotically 
approaches zero. Nonetheless, the mean number of generations until the 
MRCA is in good accordance with the expectation, and is equal to 2N 
generations. 
 
As we saw in section 1.3, the Ne of a population equals to the number 
of individuals in a Wright-Fisher model with an equivalent amount of 
genetic drift. It must now be clear that genetic drift and coalescence are 
very similar processes, only differentiated by a switch in the lense in 
which we see time (forward and backward respectively). Keeping this in 
mind, the Ne of a population should also reflect the average tMRCA 
between two genes in the population (2Ne generations). In large 
populations, coalescence and genetic drift work slowly, and we must 
wait many generations until two individuals share a parent. In contrast, 
coalescent events and drift act more rapidly in small populations, so we 
tend to find an ancestor much faster. The fact that the size of a 
population directly gives information about time is abstract and difficult 
to grasp at first. However, one of the most important ideas in 
population genetics particularly exploits this idea. In section 1.4, we saw 
that the expected number of genetic differences between two diverging 
lineages is equal to 2tu (t being the split time in generations and u the 
mutation rate per generation). Since under a neutral model the expected 
coalescent time is equal to 2N generations, we can substitute t with 2N. 
From this we can conclude that the number of mutations separating 
two gene copies is simply 4Nu (= 2 * 2N * u). Population geneticists are 
so excited about this result that they have devoted a greek letter entirely 
to this, and commonly write 𝛳 = 4Nu. Sooner in this section we saw 
that the average number of genetic differences within the Tepui and 
Imataca violetears are 0.02% and 0.09% respectively. Armed with this 
new result, we can estimate the effective population size of each 
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population. Assuming a mutation rate of 4 · 10-9 per base pair per 
generation in violetears, the Tepui population must have an effective 
population size of 12.500 (4N * 4 · 10-9 = 0.0002; N = [0.0002 / 4 · 10-

9 ] / 4; N = 12.500). Applying the same calculation to the Imataca 
population we obtain an effective population size of 56.000. These 
numbers might have little to do with actual population sizes, so we must 
be cautious and should not jump into concluding that there are more 
individuals in Imataca than in Tepui. It could also be true that the 
Imataca population has maintained more genetic variability for other 
reasons (ie. it has existed for longer without population bottlenecks).  
 
Is the expected tMRCA influenced by the number of alleles? Would we 
have to wait more generations if we consider 5 alleles? So far we have 
only focused in two gene copies in a model population with N diploid 
individuals. As we can see in figure 9, adding more alleles will always 
increase the number of generations needed to reach the MRCA. 
Imagine 5 alleles in a population of 500 diploid individuals. Since now 
there are more than 2 alleles under consideration, the time to reach a 
coalescent event is much shorter. More specifically, there are 10 
possible different combinations between the 5 alleles (the number of 
pairwise comparisons in a set of k elements is given by k*[k-1]/2), so 
on average we have to wait 10 times less time (2N/10, in our toy 
example 2*500/10, thus 100 generations). This first coalescent event 
has reduced the number of alleles to 4, so the time needed for a second 
coalescence event is simply 2N/(4*(4-1)/2), which equals to 266 
generations. This process is recursively repeated until there are 2 alleles 
in the pool, situation in which we go back to square one and the 
expected time to the MRCA is 2N generations. Once there is a single 
lineage left, we have found the MRCA of all the alleles. Following this 
chain of thought, we can derive the expected time to the MRCA for a 
sample of n alleles as: 
 
 
 
Although we have already discussed the coalescent in a sample of 
multiple alleles, I will briefly describe a famous analogy by Joseph 
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Felsenstein that wonderfully illustrates the coalescent process 
(Felsenstein 2004), paraphrasing: “imagine a box containing 
hyperactive, indiscriminate and voracious bugs. We put k bugs into the 
box. They run in the box without paying any attention to where they 
are going. Occasionally two bugs collide. When they do, one instantly 
eats the other. Being insatiable, the winning bug then resumes running 
as quickly as before. It is obvious that the number of bugs falls from k 
to k-1, to k-2, as the bugs coalesce, until finally only one bug is left. The 
number of pairs that can collide is k(k-1)/2, so collisions get rarer when 
the number of bugs is reduced. If there are 2N places in the box that can 
be occupied, the probability of collision will be proportional to the size 
of the box. A box with twice as many places will slow the coalescence 
process down by a factor of two. So a simpleminded physical analyses 
of the bugs-in-a-box process will have the coalescent as the probability 
distribution of its outcomes”.  

 
Figure 9. Coalescence in a sample of multiple alleles. (A) Gene tree representing 
the coalescent process in a sample of 5 alleles. In any each generation, if there are 
k alleles present, the expected time back to the next coalescence is given by 
4N/[k(k-1)]. (B) Bars show the mean number of generations until each coalescence 
is produced in 10.000 simulations of a sample of 5 alleles in a population of 500 
diploid individuals. Dots represent the expected number of generations for each 
coalescent event.  
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Behind the process described in the last paragraph there are several 
interesting features of population genetics. First of all, the characteristic 
tree-like shape of phylogenies can be explained by the coalescence of 
multiple alleles. We have seen that the time required for a collision or a 
coalescent event to happen is proportional to the number of alleles 
under consideration (ie. the more bugs in the box, the faster a first 
encounter will happen). For this reason, gene trees tend to show 
branches that are short near the leaves and get longer when approaching 
the root. This is explained by the fact that most time to the MRCA is 
spend waiting for the very last alleles to coalesce (figure 9). This 
observation is true when the population size remains constant, but can 
be distorted when the size fluctuates heavily. A population with an 
expanding population size will display really long branches near the 
leaves which will get increasingly shorter near the root (star-like shape). 
The distribution of coalescence times along the genome is a great 
resource to learn about the genetic history of a population, and we shall 
discuss it more in-depth in section 1.7. Another important characteristic 
is how the time to the MRCA changes if we increase the sample size. 
By performing 10.000 simulations of 5 alleles in a population of 500 
diploid individuals (figure 9), we can empirically demonstrate that the 
time to the MRCA averages at 1600 generations. What would be the 
expected time to the MRCA in a sample of 10 alleles? We can answer 
this question without the computer simulations using the equation 
discussed previously. The number of generations to the MRCA would 
be around 1770. You may think this is a discrete increase of waiting time 
given that we have doubled the number of alleles. If we increase it even 
more to 1000 alleles, the number of generations would be 1995. The 
number of generations would asymptotically approach 2*2N (2000) as 
we increase the number of alleles. So a large sample will, on average, 
have just a slightly older MRCA than a small sample. This illustrates an 
important principle about the coalescent process; there is less and less 
additional information as more and more sequences are sampled. Much 
of the genetic variation can be captured by studying a handful of 
individuals. These are very good news for any researcher, as sequencing 
large cohorts of individuals can be unfeasible in most organisms.    
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1.6.  Population  subdivision  

We have so far considered models for a single population with random 
mating. In reality, random mating rarely happens, as individuals often 
choose their mates in a deterministic manner. Generally speaking, 
pollinisation between plants living 100 meters away from each other is 
more likely to happen than between plants living 100 kilometers away 
from each other. There can be other factors than geography deviating a 
population from random mating. Assortative mating is a mating pattern in 
which individuals choose their mates according to their phenotype. In 
humans, assortative mating has been reported for traits such as height 
and educational attainment (Stulp et al. 2017; Yengo et al. 2018). Other 
assortative traits, such as religious affiliation and ethnicity, have no 
genetic component but are reflections of cultural preference. 
Interestingly, cultural assortative mating is not particular to humans, but 
has also been found in orcas (Foote et al. 2016) and dolphins (Kopps et 
al. 2014). When any of these factors occur in a population and there is 
not random mating, we say there is population subdivision or population 
structure. Population subdivision is important for understanding 
evolution and the effects of genetic drift and natural selection, and it is 
also of direct importance in conservation biology. Researchers often use 
genetic markers to determine which groups of individuals should be 
considered separate genetic units, considerations that are later taken 
into account when deciding policies on the management and 
conservation of species. This section will focus on the genetic effects of 
population structure and on methods for detecting and quantifying it.   
 
An important genetic consequence of population structure is a 
reduction in the fraction of heterozygous individuals relative to the 
expectation under random mating (the so called Wahlund effect). Consider 
all the individuals in a population as a giant family tree. Under random 
mating, most individuals in the pedigree are very distant cousins, while 
a few individuals are more closely related (ie first cousins, siblings). The 
degree of relatedness between pairs of individuals is called kinship. When 
related individuals share alleles that descend from a common ancestor, 
we say that the alleles are identical by descent. This definition does not 
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speak for itself, as all existent DNA sequences must coalesce into a 
common ancestor at some point, even if we have to go back to LUCA 
(Last Universal Common Ancestor). In order to avoid this vacuous meaning, 
it is often chosen an arbitrary time in the past at which every allele is 
assumed to be distinct to every other allele. Therefore, for two 
individuals to share an identical by descent allele, the alleles must have 
survived the process of Mendelian segregation (meiosis). From this it 
follows that individuals fewer meiosis away from each other will share 
more alleles. When two individuals mate and are more closely related to 
each other than two random individuals drawn from the population, we 
say that there is inbreeding. Note that we are describing all over again the 
process through which population structure arises (deviation of random 
mating). How do we get a decay of heterozygosity from inbreeding? 
Inbred offspring will more often carry two alleles identical by descent 
than offspring from two random individuals in the population. An 
illustrating way to see it is to think of it as a loop. Inbreeding is 
promoting the reunion of two copies of the same allele through 
different paths in the pedigree. Organisms in the same subpopulation will 
often share recent common ancestors, thus their mating will increase 
the number of inbreeding loops. This inevitably leads to an increased 
likelihood of being homozygous, thus to a reduction of heterozygous 
individuals.  
 
The most commonly used statistic for quantifying population 
subdivision, Wright’s FST, measures the extent of inbreeding in a 
population. Consider a biallelic locus with alleles A and a in two 
populations of the same size. If the frequency of A is fA1 and fA2 in each 
population respectively, the frequency of A when pooling both 
populations is simply the average frequency (fA = [fA1 + fA2] / 2, same 
applies for fa). Note that in populations with unequal size we must get 
fA by weighting the size of each population. As we have seen in section 
1.2, the Hardy-Weinberg law allows to link allele frequencies to 
genotype frequencies under random mating. Therefore, the expected 
number of heterozygotes if there is no structure between the two 
populations would be HT = 2fAfa. HT represents the heterozygosity we 
would expect if the pooled population is in Hardy-Weinberg 



 

 32 

equilibrium. However, we could also estimate this parameter by 
averaging the heterozygosity between the two populations: HS = 
((2fA1fa1) + (2fA2fa2)) / 2. Armed with this new result, we could quantify 
how different HT and HS are. FST is defined as the difference between 
HT and HS standardized by HT; FST = (HT - HS) / HT.  
 
To understand what FST measures, I find enlightening to think of a 
highly differentiated locus in two populations (ie. fA1 = 0.8 and fA2 = 0). 
The average pooled frequency (fA = 0.4) would suggest that almost half 
of the individuals should be heterozygous (2*0.4*0.6 = 0.48). However, 
by averaging the fraction of heterozygous individuals in each population 
we get a much lower value ([2*0.8*0.2 + 2*0*1]/2 = 0.16). The reason 
behind this difference is that all the A alleles are trapped in population 1. 
Similarly, most of the a alleles are found in population 2, so both alleles 
hardly ever coexist to form heterozygotes. Indeed, by computing FST we 
get a value of 0.66 ([0.48 - 0.16]/0.48). This means that the average 
heterozygosity is a 66% of the total heterozygosity, a very substantial 
reduction. Wright provided rule of thumb guidelines to interpret FST, with 
values ranging from 0 - 0.05, 0.05 - 0.15, 0.15 - 0.25 and >0.25 indicating 
little, moderate, great and very great genetic differentiation respectively.  
 
Beyond Wright’s original description of FST, the measure has been 
conceptually redefined in many ways (Nei 1973; Weir and Cockerham 
1984; R. R. Hudson, Slatkin, and Maddison 1992). The coexistence of 
multiple expressions to compute FST has often lead to confusion and 
mixed results (ie. see differences between FST values in 1000 Genomes 
Project Consortium 2012 and HapMap3 discussed in Bhatia et al. 2013). 
Another important aspect to remember about FST is that it is a relative 
measure of divergence. As discussed earlier, FST highly depends on the 
heterozygosity in each subpopulation (HS in our nomenclature). From 
this it follows that FST will tend to be inflated when diversity within 
populations is low. One can easily appreciate this effect when 
computing FST between populations with different effective population 
size (which is a reflection of the population diversity as seen in section 
1.3). Consider two populations A and B which share a common 
ancestor with population C at exactly the same time, meaning that A 
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and B are genetically equidistant to C. We also know that diversity 
within population A is much higher than within population B. After 
computing FST between A - C and B - C, we would see that FST is higher 
in the later, even though both A and B have equally evolved from the 
ancestor. This effect can also lead to misinterpretations of genetic data 
(Cruickshank and Hahn 2014), and must be remembered when 
interpreting FST values. In order to circumvent this limitation of FST, one 
can use measures of divergence that are independent of the levels of 
diversity within populations. DXY (Nei and Li 1979), often simply 
referred as divergence, is a measure of absolute divergence. It is easily 
computed and very much related to 𝜋 (see section 1.3). DXY equals to 
the average number of pairwise differences between sequences from 
two populations, excluding all comparisons between sequences within 
populations. I have used this measure of genetic differentiation on a 
daily basis during my thesis, and for that reason I will further comment 
on it in section 1.7.  
 
What other tools are there to explore population structure? Principal 
component analysis (PCA) is one of the most widely used methods. 
Technical descriptions of PCA can be found elsewhere, however, its key 
feature is that it can be used to project samples onto a series of 
components. Each component is an orthogonal axis constructed by a 
linear combination of several genotyped loci. How can one make linear 
combinations out of categorical values such as genotypes? Diallelic 
genotypes can be converted to numerical variables simply by choosing 
one allele and counting it in the genotype (if we choose A in a diallelic 
Aa locus; AA, Aa and aa are converted to 2, 1 and 0, respectively). The 
axes are then build such that the projection of samples along the first 
component explains the greatest possible variance in the data among all 
possible components. Likewise, projection of samples onto the second 
axis maximizes the variance for all possible axes perpendicular to the 
first and so on for the subsequent components. Intuitively, PCA is 
extracting the underlying structure of a high dimensional dataset, 
compressing it and stripping away any unnecessary parts (at least for our 
current purposes). The output components are the directions in the data 
where there is most variance, the directions where the data is most 
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spread out. Thus, the distance between samples in the PCA is a 
reflection of their genetic distance. Typically, the samples are plotted 
along the first two components, which often mirror their geographic 
distribution (Novembre et al. 2008; Lao et al. 2008). This information 
is commonly used in large scale association studies to correct by genetic 
stratification (ie. south Europeans are on average shorter than northern 
Europeans. If we sequence a bunch of Europeans and we see that an 
allele is clearly associated with height, is the association real or just a 
product of population structure within Europe?). 

Figure 10. Stepping stone model of migration. (A) and (C) PCAs of a two-
dimensional stepping-stone model of migration where 100 subpopulations are 
distributed in a 10x10 habitat. Adjacent populations are connected by a unique 
constant migration rate. Migration edges between populations colored in gray in 
C are set to zero. 100.000 independent polymorphisms were simulated using scrm 

A B

C D
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(Staab et al. 2015) and a single haploid individual was sampled from each 
population. (B) and (D) Distributions of Wright’s FST for populations separated 
by differents amount of migration jumps. B and C correspond to the models 
depicted in A and D respectively.  

 
PCA is very appealing due to multiple reasons. First, it is an easily 
implemented method, fast and not computationally intensive. Its ability 
to group or separate samples in a striking visual manner is especially 
useful to get a first impression of genetic data. Additionally, it is a model-
free method, it does not rely in any underlying demographic model. In 
order to put PCA into test, consider a population of insects living in a 
vast archipelago. This hypothetic archipelago is composed by a grid of 
islands (10x10 as shown in figure 10). As you can imagine, insects most 
commonly mate with other insects within their island. Since each island 
has its own endemic subpopulation, this scenario pictures a structured 
population without random mating. However, from time to time an 
insect migrates to a neighboring population. This event strictly happens 
between neighboring islands. The model described above is known as a 
stepping stone model (M. Kimura and Weiss 1964). If we apply PCA to the 
stepping stone model we observe a good correlation between genetic 
and geographic distance (figure 10A). Actually, geography is not 
explicitly incorporated in the model, although a good proxy for it is the 
necessary migration jumps to connect two islands. Since mating between 
individuals from different islands is rare, allele frequencies in the 
subpopulations gradually diverge from each other due to random 
genetic drift. However, mating between neighboring islands still 
happens from time to time, thus allele frequencies in islands close in 
space are more similar to each other than distant ones. This explains 
why the 10x10 archipelago is clearly recognisable when plotting the first 
two components. Note that distortion near the extremes of the habitat 
is expected. Islands at the extremes of the archipelago have fewer 
migration edges than islands in the center, so they appear to be more 
similar to each other. This effect is especially obvious in islands close to 
the vertices. Similarly to PCA, FST measures also reflect well genetic 
distance between populations. FST is lowest in comparisons between 
neighbor islands, and values gradually increase with geographic distance 
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(figure 10B). This tight intercorrelation between geography and genetics 
is called isolation by distance (Wright 1943; Malécot 1948). Patterns of 
isolation by distance are not only found in theoretical models. In 
humans, there is a clear pattern of isolation by distance, most likely 
explained by the sequential colonization of the world after the Out-of-
Africa (Handley et al. 2007).  
 
However, real populations often encounter barriers that impede their 
reproduction. These barriers can be physical, but can also be constituted 
by differences in behavior, morphology, culture etc. For instance, in a 
mountainous area of a terrestrial species’ range, a pair of individuals may 
be more divergent from each other than a pair of individuals separated 
by the same distance in a flat and open area of the habitat. In such 
situations, genetic distance does not bear such a clear resemblance with 
geography. In figure 10C, I plot the first two components in a PCA of 
a stepping stone model with a barrier between the islands colored in 
gray. As expected, distances separating islands along the barrier are 
much greater than in the rest of the habitat. FST shows a larger variance 
than before (figure 10D), with more values at the high-end of the 
distribution, most likely the result of comparisons between islands at 
each side of the barrier. The populations in the model no longer show 
a simple pattern of isolation by distance. Isolation by distance can be 
statistically tested by means of a Mantel test, which evaluates the 
association between two matrices (ie. spatial coordinates and genetic 
distances). Other methods have been developed to explore how genetic 
divergence covaries with a spatial continuum (Bradburd, Ralph, and 
Coop 2016; Petkova, Novembre, and Stephens 2014; Al-Asadi et al. 
2018).  
 
Another family of tools try to describe population structure by 
clustering individuals into different groups. The representation of such 
clustering has become a distinctive feature in many projects in genomics 
(see barplot in figure 11 for an example). In order to understand how 
individuals in a population can be sorted into groups, we will expand on 
our hypothetical study in violetears. Imagine we managed to sequence 
90 violetear genomes from regions within the Imataca forest and the 
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neighboring Tepui (see map in figure 11B). Now let us consider we have 
a priori information about allele frequencies in each of these populations. 
In other words, we know that the A allele in locus l has a frequency of 
0.9 in Imataca (fIma,l) and a frequency of 0.1 in the Tepui (fTep,l). With this 
knowledge, we can compute the probability of an individual belonging 
to each population under Hardy-Weinberg equilibrium. For example, if 
one of the genomes in our dataset carries two A at locus l, the matching 
probability for Imacata and Tepui would be 0.81 and 0.01, respectively 
(fIma,l

2
 and fTep,l

2). This simply follows from Hardy-Weinberg equilibrium, 
and can be extended to other genotypes using the formulae explained 
in section 1.2. Notice that we are computing the probability of drawing 
a genotype given the allele frequencies in each population (ie. 
P(g=AA|pop=Imataca) =  fIma,l

2). Ideally we would like to know what 
is the probability of belonging to a population given the genotype 
P(pop=Imataca|g=AA). Here Bayes’ rule comes in handy. We can 
compute P(pop=Imataca|g=AA) by assuming that the prior 
probability that an individual comes from Imataca or Tepui is the same 
(P(pop=Imataca) = P(pop=Tepui) = 1/2). We then have 
 

 
 
Probabilities for multiple loci can then be combined by multiplying the 
match probabilities for each locus. This type of multiplication is only 
valid if the alleles under consideration are not linked together. That is 
the reason why a pruning of linkage disequilibrium must be performed 
before applying this kind of clustering methods (ie. only keeping a single 
variant in a block of polymorphisms segregating together). 
 
While it is great to be able to assign individuals to particular populations, 
our current method is dependent on a priori information of the allele 
frequencies. Most probably, allele frequencies in violetears are unknown 
at the time of our study. Thus, we could greatly benefit from a method 
that does not rely on a priori information and is able to generate clusters 
only using the genotype data. Particularly, we wish to assign our 
individuals into K unknown populations. This process can be achieved 
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by randomly distributing the individuals into K populations and then; 
(I) allele frequencies in each population k are estimated given the 
current assignments and (II) each individual is reassigned to a 
population k with a probability given by the bayesian scheme described 
above. Steps I and II are iterated many times (Gibbs sampling), which will 
lead to gradual sorting of individuals according to their genetic make-
ups. The output of this process gives us the most likely distribution of 
individuals into K population clusters. Further improvements to the 
method can be implemented, for instance allowing the assignment of 
individuals to multiple populations with different mixture proportions. 
The clustering algorithm is typically run for multiple values of K which 
allows to get a better picture of hierarchical structure in a population. 
STRUCTURE (Pritchard, Stephens, and Donnelly 2000) was the 
pioneer method implementing this idea, and since then multiple 
extensions and improvements have been developed (Alexander, 
Novembre, and Lange 2009; Tang et al. 2006).  
 
In figure 11, I show the results of ADMIXTURE and a PCA in 90 
simulated violetear genomes. Figure 11A depicts the true phylogeny, 
only known because the genes are product of a computer simulation. 
The ADMIXTURE results hint at the genetic distinctiveness between 
Imataca and Tepui, since it correctly assigns all the individuals to 
different clusters at K=2 (figure 11C). Similarly, the first component in 
the PCA clearly separates the Tepui from the rest of populations in 
Imataca (figure 11D). By gradually increasing the value of K, we start to 
detect substructure within Imataca; first the separation between north 
and south becomes apparent, and differences between east and west 
start to appear at higher values of K. Similar observations can be 
appreciated in the PCA. As expected, the methods work well at 
detecting the underlying structure in the population. Furthermore, given 
that we have geographic coordinates for the populations (figure 11B), 
we can also hypothesize about how populations interact with each 
other. Individuals in the Tepui seem to be isolated from the violetears 
in Imataca, even though they live fairly close to the SE Imataca. That 
means that they rarely, if ever, mate with each other. Maybe differences 
in altitude are playing a role, although one cannot tell without 
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knowledge of the terrain topology, etiology of populations, etc. In any 
case, while the Imataca subpopulations might be in isolation by 
distance, there seems to be a clear barrier of reproduction between 
Tepui and the rest.  

 
Figure 11. Population structure in violetears. Note that genomes are not real, 
they have been simulated using scrm (Staab et al. 2015). All populations have a 
constant effective population size of 20.000 diploid individuals. Split times 
between Tepui and the Imataca ancestor, South and North Imataca and 
populations within either Imataca’s populations happened 80.000, 40.000 and 
20.000 generations ago respectively. Constant migration rate within North and 
South Imataca and between NW and SW Imataca happens at rates 1.000 
individuals and 250 individuals per generation respectively. A single pulse of 
migration from Tepui into the South Imataca ancestor happens 30.000 
generations ago (800 individuals are instantly replaced, which represents a 4% of 
the population). These parameters are fixed and will also be used in section 1.7. 
(A) Schematic tree showing the true phylogeny. (B) Hypothetical geographic 
distribution of the violetear populations. (C) ADMIXTURE analysis of 90 
simulated violetear genomes. Each individual is represented with a vertical line 

A B

C D
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and colors represent the proportion of genetic ancestry that is due to any of K 
populations. (D) PCA of the 90 simulated violetears.  

 
Here we must be careful. As I said a few lines ago, it is tricky to draw 
conclusions from the current results. For instance, consider that our 
hypothesis is that the genetic relationship between populations is 
explained by a migration model (ie. Tepui and SW Imataca are more 
genetically different than SE Imataca and SW Imataca because there are 
less migrants in the former). We might be in the wrong, as there are 
other models that can explain the data. Imagine a series of divergence 
events, each one generating two daughter populations from the original 
population. Also assume that each new population occupies a different 
location in space. Following this chain of thought, the ancestral 
population of all violetears may have originally split into the ancestors 
of Tepui and all Imataca. Subsequent divergence events derived into the 
northern and southern Imataca lineages, from which all the present-day 
population finally appeared. In this divergence model, populations close 
to each other are more genetically similar, albeit the reason behind it is 
not migration. The underlying phylogeny we have described makes 
some populations share more genetic drift than others, but ongoing 
migration is not needed to explain the data. There are probably endless 
combinations of parameters that would yield our results, thus we ought 
to be careful when interpreting them in genomics, especially in analyses 
such as STRUCTURE and ADMIXTURE (Lawson, van Dorp, and 
Falush 2018).    
 
Altogether, we have seen that the so called first law of geography 
‘Everything is related to everything else, but near things are more related than distant 
things’ (Tobler 1970), has long been obvious to population geneticists. 
This principle offers far reaching possibilities not described here. For 
instance, one could try to guess the geographical origin of an individual 
solely using genetic information. The spatial assignment of individuals can 
be made with models that assign allele frequencies as continuum in a 
geographical space (Samuel K. Wasser et al. 2004; Yang et al. 2012; 
Rañola, Novembre, and Lange 2014). This approach has been used to 
identify local hotspots of ivory trade in Africa (S. K. Wasser et al. 2015), 
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and could be used in other fronts to empower the conservation of 
endangered species. Alternatively, one can disregard non-sampled 
locations (thus not assuming allele frequency clines in space) and focus 
on well characterised populations. Recently, an ever-increasing number 
of companies offer ancestry tests, which exploit the population structure 
in humans to infer where you are from genetically. Note that this statement 
has very little meaning. Rather, the tests identify to which present-day 
population/s your genetic make-up has more affinity to. Even more so, 
the increasing number of human DNA sequences makes possible to 
discover the identities of people who participate in genetic research 
studies by cross-referencing their data with other publicly available 
information (Gymrek et al. 2013). While such ability might be useful in 
some cases (see the Golden State Killer case), it represents routes for 
breaching genetic privacy, a serious challenge that genetic projects will 
need to address in the near future.  
 
 

1.7.  Gene  flow  

In the previous section we have seen that population structure can lead 
to the genetic differentiation of populations. In a short time scale, the 
differentiation is mediated by the independent random fluctuations of 
the allele frequencies within each subpopulation. However, if the 
isolation lasts long enough, genetic differentiation can be dominated by 
the appearance of new mutations in each subpopulation. If the 
reproductive isolation and genetic divergence between the two lineages 
is large, their genomes may even become incompatible. What does this 
mean? How does genetic incompatibility between lineages evolve 
without simultaneously causing defects in the recipient lineages? 
Consider two loci in an ancestral population with genotypes AA and 
BB respectively. When the population is split into two, A evolves into a 
in one population and B evolves into b in the other. Imagine that a and 
b cause non-synonymous changes in two interacting proteins, impeding 
the correct association between the molecules. Even though a and b are 
mutually incompatible, the a–b interaction is not present in the 



 

 42 

subpopulations, thus the evolution of incompatibility is possible. This 
model of hybrid incompatibility is often referred to as the Bateson-
Dobzhansky-Muller model. Altogether, this means that population 
structure can be a precursor of speciation. If reproductive isolation allows 
for many genetic incompatibilities to arise, the offspring of 
subpopulations might become sterile, at which point we would call 
them species rather than subpopulations. We are walking a thin line 
now, as the concept of species is controversial. Ernst Mayr provided 
the classical definition of species (Mayr 1963), which has shown to be 
impractical in some cases (ie. most would say tigers and lions are 
different species, although there are multiple reported cases of fertile 
tigons). The so called Species problem has been subject of heated debate 
among biologists. In my opinion, the classical concept of species is not 
very meaningful. Divergence between two lineages accumulates 
gradually, so picturing their relationship as a dichotomy seems 
unrealistic (as it often is said, a continuous scale of gray is more suitable 
than black or white). Haldane stated this idea very well, describing 
species as human construct and "a concession to our linguistic habits and 
neurological mechanisms" (Haldane 1941).        
   
Conversely to population structure, migration is an evolutionary force 
acting against the genetic differentiation due to reproductive isolation. 
The exchange of genes between diverging lineages or gene flow has an 
homogenising effect, it holds the gene pools of subpopulations together 
and limits how much genetic divergence can take place. Introgression is a 
special case of gene flow where one donor population contributes alleles 
to the genome of a second recipient population. Delineating introgression 
from other types of gene flow can be complicated. As with the Species 
problem, it can all end up becoming a semantic discussion rather than a 
biological one. I find enlightening to think of introgression as a relative 
term; alleles at one locus introgress with respect to alleles at other loci. 
That is, for the above definition to be applicable, some portion of the 
gene pool of each of the hybridizing lineages must remain constant such 
that we can recognize that two distinct gene pools exist. Notice that 
there is another concept attached to this definition. For us to be able to 
recognise the two genetic make-ups, introgression must occur rarely, 



 

 43 

otherwise the genetic differentiation between lineages would be too 
diluted and indiscernible under constant gene flow.  
 
The most obvious genomic footprint of introgression is very intuitive; 
two interbreeding lineages should share more alleles than two lineages 
under reproductive isolation. Going back to the hypothetical population 
of violetears, in section 1.6 we saw that Tepui is an outgroup to all the 
populations in Imataca (figure 11). Our intuition may tell us that if 
neither of the Imataca populations have had any gene flow with the 
Tepui after their split, then each of the Imataca populations should 
share approximately the same number of derived alleles with it. In order 
to test this hypothesis, one can count in how many positions of the 
genome North Imataca and Tepui share an allele, and then compare it 
to the number of positions where South Imataca and Tepui share an 
allele. To increase the sensitivity of this test, we can use the genome 
sequence of an outgroup (ie. Green hermit is a hummingbird outgroup 
to all violetears). For instance, we may see that (I) the South Imataca 
and Tepui populations share an allele A and (II) North Imataca and 
Green hermits share a second different allele B. Such pattern of allele 
sharing can be simplified as BABA (imagine each letter as a leaf in the 
tree under test; ((North Imataca, South Imataca), Tepui), Green hermit). 
As discussed earlier, we are interested in checking whether either 
Imataca population shares more alleles with Tepui, so we also want to 
pay special attention to the ABBA allele configuration. The D-statistic 
is a widely used measure in population genetics that estimates 
asymmetries between ABBA and BABA counts (Patterson et al. 2012). 
In figure 12 I show the results of the D-statistic in violetears. Negative 
and positive values are expected when there is an excess of ABBA or 
BABA respectively, while values close to zero denote an equal amount 
of each allele configuration. Thus, the data shows that South Imataca 
shares more alleles with Tepui than North Imataca, hinting at gene flow 
between South Imataca and Tepui after their split.     
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Figure 12. All possible tests of the D-statistic in the tree (((North Imataca, 
South Imataca), Tepui), Green hermit). Comparisons were generated by 
iterating over 5 individuals in each Imataca population, 10 individuals from 
Tepui and a single Green hermit. Lines represent three times the standard error. 

But, is our interpretation well-grounded? A first step towards answering 
this question would be to check the validity of the null-hypothesis. In 
other words, are the ABBA and BABA counts expected to be equal 
without admixture? Let us first consider under which evolutionary 
scenarios without gene flow we expect to find an ABBA or BABA pattern. 
Assuming the tree under test captures the underlying phylogeny well, an 
ABBA/BABA can be found when there is (I) a back mutation or (II) 
incomplete lineage sorting (ILS). Back mutations are mutations occurring 
independently in multiple lineages. In section 1.4 we saw that mutation 
rates in the genome are generally low, thus the probability of back 
mutations in short time scales is also low. Moreover, assuming that 
mutation rates are very similar in all the populations in the tree, 
recurrent mutations should happen at the same rate in all pairs of 
lineages. Thus ABBA and BABA should appear at the same rate and no 
asymmetries in their counts are expected. This brings us to the other 
possible explanation, incomplete lineage sorting (ILS). ILS is the 
process through which single gene trees differ to whole-genome trees. 
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Notice that if we were to build a phylogenetic tree out of a BABA 
pattern we would get the false impression that the North Imataca 
population is more closely related to Green hermits than to other 
violetears. This pattern can result when A and B have existed in the 
population since the MRCA of all violetears. Because the polymorphism 
was present in the MRCA, either allele can be retained by the daughter 
populations when a branching process occurs (figure 13A). Most 
importantly, the rate of ILS between lineages should be equal in all the 
daughter populations irrespectively of their population history. That is, 
North Imataca and Tepui should share the same number of alleles than 
South Imataca and Tepui (ABBA = BABA). These features of back 
mutations and ILS are great for our current purpose. They suggest that 
the null hypothesis is valid; models without gene flow should yield the 
same number of ABBA and BABA counts. 
 

 
Figure 13. Alleles A and B are colored in red and blue respectively throughout 
the figure. Yellow stars represent a mutation event from A to B. GH stands for 

A B

C D



 

 46 

 
Does this mean that values different from zero undoubtedly point to 
gene flow? Not necessarily. Patterson’s D statistic is not an explicit test 
for admixture, but rather a test of treeness. The statistic is equal to zero 
when the configuration of populations we provide fits well the 
underlying phylogeny. By placing the populations in configurations that 
violate the true phylogeny, we obtain large deviations from zero. If we 
test the tree (((North Imataca, Tepui), South Imataca), Green hermit) 
by means of the D-statistic, we will get a vastly larger number of BABA 
than ABBA counts. This simply comes from the fact that the tree under 
consideration is wrong. However, let us now consider we have a good 
knowledge of the underlying phylogeny. Similarly to the case above, if 
we feed the statistic with a seemingly correct tree ((North Imataca,South 
Imataca), Tepui), Green hermit), then values different from zero will 
also arise when the data does not fit well with the provided tree. 
However, this time around we are aiming to detect more subtle effects, 
slight modifications in the ABBA/BABA pattern such as those 
expected under discrete genetic introgression events. In figure 12, we 
have seen that the South Imataca population shares more alleles with 
Tepui than the North Imataca population. As discussed earlier, gene 
flow between South Imataca and Tepui would disproportionately 
increase ABBA counts by providing alternative paths through which 
alleles can move across both populations (figure 13B). However, we 
must be cautious in invoking gene flow between South Imataca and 
Tepui, as it is not the only evolutionary scenario by which treeness can 
be distorted in a similar way. It could also be explained by an influx of 
genes from an outgroup lineage into the North Imataca population 
(figure 13C). Such event of admixture would convert fixed mutations in 
all violetears from BBBA to ABBA, thus generating an unbalance in the 
ABBA/BABA counts that mimics gene flow between South Imataca 
and Tepui. The input of alleles could come from any outgroup, for 
instance Green hermits or other unsampled populations. Additionally, 

Green hermit. (A) Model of incomplete lineage sorting. (B) Model of gene flow 
between South Imataca and Tepui. (C) Model of gene flow between North 
Imataca and an unsampled outgroup. (D) Model of ancient substructure in the 
ancestor of violetears.  
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an increased sharing of alleles between South Imataca and Tepui could 
also be the result of ancient substructure in the ancestor of violetears. 
This process is best understood when looking at figure 13D. Two 
diverging lineages could have existed in the ancestor of violetears, one 
of which evolved into North Imataca and the other into South Imataca 
and Tepui. Such scenario would generate an excess of ABBA counts 
with respect to BABA. Notice that gene flow within Imataca should be 
strong to explain the outgroup position of Tepui in the tree.  
 
So far we have learned that the D-statistic is useful to detect 
asymmetries in allele sharing between populations, albeit these can be 
generated by multiple scenarios. If we want to narrow down the cause 
of our observations, we must dig deeper into the data. Some interesting 
follow-up questions given the pattern in allele sharing in violetears could 
be; did South Imataca and Tepui populations truly hybridize after their 
split? If so, was the gene flow directional? Can we find chunks of DNA 
in South Imataca coming from Tepui, or the other way around? In order 
to explore these questions, let us further discuss what are the genetic 
consequences of gene flow between populations.  
 
If there ever was admixture between South Imataca and Tepui, we 
should be able to detect segments of their genome with an exceptionally 
short tMRCA. Here, the use of exceptionally is justified. Under a model 
without gene flow and a clean split between the two populations, DNA 
sequences in South Imataca and Tepui should only start coalescing after 
their split (after backwards in time). The reason behind this is that alleles 
segregating in separated lineages cannot coalesce or meet until the two 
lineages fuse. When the two populations merge into one, coalescent 
events will start to occur at a rate determined by the Ne of the ancestral 
population (section 1.5). From this it follows that the coalescence time 
between two populations must be older than their split time. However, 
there are scenarios in which this may not be true. Discrete events of 
gene flow before the split of populations provide extra routes for alleles 
to move across populations and meet. Precisely, the subset of genes 
taking the paths generated by gene flow should show an exceptionally 
short tMRCA compared to the rest of the genome. One could say that 



 

 48 

most alleles are forced to travel through the species highway and must 
wait until the two lineages fuse, while some lucky ones take the shortcut 
generated by gene flow. In order to test these ideas with genomic data, 
we must transition from single-site methods (ie. the D-statistic) to haplotype 
based methods. Such methods are typically applied by screening the 
genome with sliding windows and computing sequence divergence 
between populations in each window. In section 1.6, we saw that DXY 
is an absolute measure of sequence divergence that should reflect well 
the tMRCA between a set of sequences. Altogether, we can conclude 
that in a model with gene flow we should expect to find a fraction of 
windows in the genome with unusually low divergence between the 
admixing populations. 
 

 
Figure 14. Divergence patterns in simulated sequences of violetears. (A) DXY 
between South Imataca and Tepui (blue) and North Imataca and Tepui (orange) 
in windows of 100 kilobase-pairs with a slide of 20 kilobase-pairs. The color 
scheme remains constant throughout the other panels in the figure. (B) DXY 

genome-wide distribution between South Imataca and Tepui, and North 
Imataca and Tepui. (C) DXY between South Imataca and Tepui (x axis) against 
DXY between South Imataca and North Imataca (y axis). (D) DXY between 
North Imataca and Tepui (x axis) against DXY between North Imataca and 
South Imataca (y axis).  
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In figure 14A, I plot DXY between Tepui and a South and North Imataca 
individuals in windows of 100 kilobase-pairs with a 20 kilobase-pairs 
slide. The first things that might catch your eye are the sporadic valleys 
of low divergence between Tepui and South Imataca, which grouped 
together generate the little bump in the low end of the divergence 
distribution in figure 14B. These observations fit very well with our 
expectations under gene flow between South Imataca and Tepui. The 
results also agree well with the D-statistics shown in figure 12. Actually, 
most of the alleles generating the ABBA/BABA asymmetry are 
probably found within these low divergent segments of the genome. 
However, the haplotype based approach provides stronger support for 
gene flow than the single-site test because now we can start to discard 
the alternative models previously discussed and summarized in figure 
13. It is also worth noting that the pattern in figure 14A seems to gather 
all the properties of genetic introgression; we can easily spot which 
regions in the genome are Tepui- or South Imataca-like. Nevertheless, 
we are one step away from inferring the directionality of the genetic 
introgression. Who are the donor and recipient populations? We might 
be tempted to say it was DNA from Tepui entering into South Imataca, 
but at the moment we do not have arguments to refute the opposite. 
Since DXY is a reciprocal measure (ie. the divergence in the 27th 100 
kilobase-pairs genomic window between South Imataca and Tepui has 
only one value, it does not depend on the order of the populations), the 
valleys of low divergence could be the reflection of DNA from Tepui 
into South Imataca, or the other way around.  
 
In order to infer the directionality of the genetic introgression we have 
to use an extra variable. Let us first consider what are our expectations 
under a model of genetic introgression from Tepui into South Imataca. 
When screening the genome of a South Imataca violetear, any 
introgressed segments from Tepui should show (I) an unusually low 
divergence to Tepui (we already know this, figure 14B) and (II) an 
unusually high divergence to North Imataca. The second point comes 
from the fact that the tMRCA between the Tepui and North Imataca is 
far larger than that between South and North Imataca. Imagine we have 
3 bowls filled with pieces shaped as cubes, spheres and ovoids. The 
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shape of each bowl represents the genetic profiles in Tepui, South 
Imataca and North Imataca respectively. At some point we decide to 
move some pieces from the Tepui bowl into the South Imataca bowl. 
If we now compare the content of each bowl, we will see that a subset 
of South Imataca pieces are both (I) very similar to the cubes in the 
Tepui bowl and (II) very different to the rounded shapes peculiar from 
the North and South Imataca bowls. Of course, this subset of pieces 
will be the ones we transferred earlier from Tepui into South Imataca. 
In figure 14C-D, I plot the relationship between the divergence to Tepui 
and to either Imataca populations. As expected, Figure 14C shows that 
some sequence windows in South Imataca have really low divergence 
to the Tepui. However, this time around we can get a hint at the 
directionality of the introgression by looking at the divergence to North 
Imataca. The cloud of sequence windows with low divergence to Tepui 
also displays an unusually high divergence to North Imataca, which 
strongly supports genetic introgression from Tepui into South Imataca. 
If we check the divergence patterns in North Imataca in figure 14D, we 
can appreciate that there is not a subset of windows bearing Tepui-like 
DNA, or at least not to the extend found in South Imataca. Because 
DXY is a reciprocal measure, we are also able to appreciate the South 
Imataca introgressed segments in this panel (look at the subset of data 
points with unusually large divergence to South Imataca which mirror 
the introgressed DNA in figure 14C). Altogether, we now have multiple 
lines of evidence suggesting that South Imataca received genes from 
Tepui at some point in the past.   
 
Any readers that know about biology may have felt an ever-increasing 
discomfort reading this thesis. How is it possible that recombination has 
yet to be mentioned?! The truth is that ignoring recombination have 
made section 1.5 much easier for me. Treating each nucleotide in the 
genome as an independent unit provides a solid basis for studying 
population genetics, but it does not take into account that loci are 
arranged on chromosomes and hence are not inherited independently. 
I will take this opportunity to digress from the current topic and talk 
about recombination, although as we shall see, recombination plays an 
important role in genetic introgression. In fact, it is the reason why 
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introgressed alleles in South Imataca are found in contiguous segments 
rather than randomly spread in the genome. 

In eukaryotes, genetic recombination is the process by which parental 
chromosomes are combined in gametes to generate unique sets of 
genetic material. Consider each of your parental genomes as a book with 
the same amount of pages, one coming from your mother and the other 
from your father. Haploid gametes are then generated through meiosis 
by cutting and pasting your parental books into a new book with exactly 
the same size. That is, assuming that books are 500 pages long, we might 
take from page 1 to 150 from your father’s book and from 150 to 500 
from your mother’s book. This unique new book can then be combined 
with other books (your partner’s) to generate diploid offspring. 
Following this chain of reasoning, the gametes of your offspring would 
undergo a similar process when they are formed. Each of your 
offspring's unique gamete book will be created by combining the 
information that your partner and you passed to them. For instance, 
one of their gametes can be formed by concatenating pages 1 to 214 
from your partner’s book, pages 215 to 470 from your book, and 471 
to 500 from your partner’s book again. In this particular example there 
have been three cut-and-paste or crossovers. If we add up the amount of 
information a gamete from your offspring is carrying from your partner 
and you, we would see that it approximates 50% from each (in the 
example above 245 pages are from your partner and 255 are from you). 
This value would get lower as generations go on. The probability that 
one of your pages has survived dozens of cut-and-paste events becomes 
increasingly small with every generation. If we were to trace the amount 
pages that lives in your grand-grand-grand-grand-grand daughter, we 
would see that the amount is possibly zero. This implies that you would 
be her genealogical ancestor, but not necessarily her genetic ancestor. 
This may sound a bit depressing at first, but one must take into account 
that is not unusual to have dozens of grand-grand-grand-grand-grand 
daughters and sons, so your genetic legacy would probably live in some 
of them. 
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The human genome is composed by 23 books or chromosomes, and 
recombination occurs independently in each of them (we will ignore for 
the moment parts in the genome which are inherited in a different 
manner, X and Y chromosomes, mitochondria). The probability at 
which chromosomal crossovers occur is called the recombination rate. 
Similarly to mutation rate (section 1.4), the recombination rate is not 
evenly distributed across the genome. It often shows peaks of activity 
which generate hotspots of recombination. Despite this uneven 
distribution, approximately two to four crossovers occur in every 
chromosome. There are important consequences of genetic 
recombination. In any recombining genome, there will be thousands or 
even millions of different coalescent trees, each one showing a 
particular genealogical history. Notice that in the sliding window 
approach shown in figure 14, we are aiming to identify segments in the 
genome with a specific genealogy. That is, chunks of DNA that have 
been unbroken by recombination and share an ancestor with the Tepui 
population earlier than with the North Imataca population.      
 
In the last two paragraphs, we developed the idea that segments from a 
genome are destined to become increasingly shorter in its descendants. 
From this it is reasonable to conclude that time of introgression should 
be directly related to the length of introgressed tracts. Indeed, we should 
be able to infer the time of admixture by analyzing the length of Tepui-
like haplotypes in the South Imataca genomes. Nonetheless, we are 
currently assuming to know which are the introgressed segments. By 
using a sliding window approach we detected regions in the South 
Imataca genomes that harbour low divergence to Tepui. That is not 
enough for our purpose; a given 100 kilobase-pairs window may 
encompass a 63 kilobase-pairs of introgressed haplotype, but our 
current method is not able to pinpoint the start and end of such stretch 
of DNA. What could we do to refine the method and enable a fine 
detection of introgressed haplotypes? Introgressed haplotypes from 
Tepui should carry a large amount of genetic drift particular to the Tepui 
population. This signal can be detected by screening for alleles 
segregating together, in linkage disequilibrium, that are in high frequency 
within Tepui. One possibility could be to compute the average 
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frequency across groups of contiguous polymorphisms in the genomes 
of South Imataca. In other words, we can screen the genome with 
windows of 20 SNPs, assigning to each window a value equal to the 
average frequency of the derived alleles in Tepui. The results of such 
analysis can be found in figure 15A. Notice that most of the windows 
have a value of zero. This is expected because many derived mutations 
in South Imataca have appeared in its own lineage, and thus have a 
frequency of zero in the Tepui branch. That does not mean there are 
no shared polymorphisms between all violetears; mutations that 
occurred in the ancestor can be shared between South Imataca and 
Tepui (ILS). Nevertheless, such mutations are not expected to segregate 
in long contiguous tracts of DNA due to the effect of recombination 
over many generations. In fact, the length of shared haplotypes due to 
ILS is expected to be orders of magnitude shorter than haplotypes 
shared due to recent gene flow. A caveat of our method is that it loses 
power with older gene flow events. The loss of power comes from the 
fact that genes coming from Tepui into South Imataca will keep 
accumulating mutations after the introgression. The appearance of 
novel mutations in the introgressed haplotypes will reduce the average 
frequency of the derived alleles in Tepui, as those are no longer shared 
unless back mutations occur. Additionally, the real length of an 
introgressed haplotype is not necessarily delimited by a SNP, it could 
extend for many base-pairs up- and down-stream in regions where there 
is no variation. Altogether, these limitations will underestimate the 
length of introgressed tracts, a far more desirable feature in science than 
overestimation.           
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Figure 15. Recombination progressively breaks down introgressed tracts. (A) 
Randomly selected sequence of 2·107 base-pairs showing the method to detect 
introgressed segments from Tepui into a single South Imataca individual. The 
derived allele frequency in Tepui is plotted in the y axis. (B) Introgressed segments 
are detected using the method depicted in A. Sequences inferred to be 
introgressed are colored according to the time of gene flow (generations ago). (C) 
Mean length of introgressed segments (log10) against the number of introgressed 
segments colored by time of gene flow. Ten replicates under the same simulation 
conditions are shown. (D) Distribution of ancestry from Tepui in South Imataca 
individuals. (E) Extent of linkage disequilibrium between sites separated by bins 
of genetic distance (increment of 0.001 cM).        

Now that we have a fairly good method to detect introgressed DNA, 
we can explore how tract length shrinks with time after a single pulse of 
gene flow. In figure 15B, I plot a simulated chromosome from an 
admixed individual in South Imataca after n generations since the gene 
flow episode. The work of recombination is easily appreciated as the 
Tepui-like haplotypes get shorter as generations pass by. Nevertheless, 
while the mean length of introgressed haplotypes decays with time, their 
numbers increase (figure 15C). One could say that introgressed 
segments 10 generations after the gene flow event look like large bands 
of DNA expanding through megabases of sequence. In contrast, 
introgressed segments 6.000 generations after gene flow look like 
confetti thrown on top of the genome. Do the length and number of 

A

B
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introgressed tracts cancel each other out? Is the percentage of DNA 
coming from genetic introgression constant through time? In figure 
15D we can see the proportion of the South Imataca genomes can be 
assigned to the Tepui population per generation. The percentage of 
introgressed DNA can be inferred through f4 ratios, a method based 
on Patterson’s D statistic. The variance of Tepui-like DNA is larger in 
recent events of gene flow. This should make good intuitive sense. 
Consider a genetic introgression event that happened 2 generations 
back in time and replaced 4% of the population (that is, if South Imataca 
has 100 individuals, 4 of them were substituted by migrants from 
Tepui). Some individuals in the population will carry a large amount of 
Tepui DNA. In fact, some violetears may have a grandparent from 
Tepui, which means that roughly 25% of their genome is introgressed. 
Conversely, most of the individuals will have 0% of DNA from Tepui, 
as none of their ancestors was one of the migrants; there has not been 
enough time for the migrant DNA to spread in the population. If we 
wait for more generations, all the individuals in the population will 
ultimately have an ancestor with Tepui DNA, and the genetic 
contribution will converge to the initial percentage of migrants (4%).  
 
However, if we look closely at figure 15D, we can appreciate that the 
percentage of Tepui ancestry seems to decay with time to values lower 
than 4%. This could be explained by natural selection acting against the 
introgressed segments. Earlier in this section we discussed how genetic 
incompatibilities can arise between diverging lineages. Following this 
chain of thought, introgressed tracts may be under negative selection 
due to harmful epistatic interactions between South Imataca and Tepui 
alleles. Another non-exclusive possibility is that the historical Ne in 
Tepui has been very low. Under this scenario, genetic drift in Tepui has 
been strong, therefore weakly deleterious alleles have had a tendency to 
persist in the population as if they were neutral (see section 1.4 for more 
details on the relationship between Ne and efficiency of selection). The 
amount of deleterious alleles in a genome is often referred to as the 
mutational load. If the mutational load in Tepui is higher than in South 
Imataca, introgressed tracts will be preferentially purged by natural 
selection in the South Imataca genomic background. Both of the 
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aforementioned effects could be causing the progressive decay of 
introgressed ancestry. Nevertheless, that is not possible in our case. The 
genetic data has been simulated under a strictly neutral model, so natural 
selection is out of the picture. This brings us to the question; what 
neutral models can explain the data? Tepui-like ancestry may be slowly 
decaying due to gene flow from an unadmixed population. This dilution 
model is perfectly possible in the simulated data, since the North 
imataca is modelled and has low levels of constant gene flow with its 
counterpart in South Imataca. 

Earlier in this section we posited a yet unanswered question: can we 
provide a specific time of gene flow from the length of introgressed 
tracts? We can, although methods not directly relying on sequence 
length can be more useful (see limitations of inferring start and end 
coordinates of introgressed segments above). To do this, one can 
exploit the rate of linkage disequilibrium between shared alleles between 
Tepui and South Imataca. As we have seen, ancient gene flow 
introduces blocks of Tepui ancestry into the South Imataca background 
that break down at an approximately constant rate per generation as 
crossovers occur. Therefore, recent events of gene flow should result in 
higher levels of linkage disequilibrium between introgressed alleles. 

In order to quantify the extent of linkage disequilibrium consider two 
loci with alleles A/a and B/b respectively. The four alleles can be 
combined into four different haplotypes (AB, Ab, aB and ab). In any 
sample of chromosomes, we can count the number of each haplotype 
and compute its frequency in the population (fAB, fAb, faB and fab). If alleles 
A and B are segregating in complete independence, then the haplotype 
frequency should be equal to the product of the allele frequencies (fAB = 
fAfB). However, alleles can be segregating in a block (ie. A may be more 
often paired with B than with b). We can calculate the deviation from 
linkage equilibrium by subtracting the expected frequency to the 
observed frequency (DAB = fAB - fAfB). D, the coefficient of linkage 
disequilibrium, can then be computed across loci separated by n base-
pairs. DNA physical distance can be converted to genetic distance 
(centimorgans) by calculating the expected number of crossovers between 
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both positions. Notice that to perform this calculation we must have 
knowledge of the underlying recombination rate across the sequence (in 
real populations we need a recombination map, but in our toy example this 
is not a problem because the sequences are simulated under a constant 
recombination rate). In figure 15E we can see how D in shared 
polymorphisms between South Imataca and Tepui decays with genetic 
distance. The steepness of the decay is directly related to the time of 
admixture. How can we get the number of generations out of these 
trajectories? The time of admixture (λ) is typically inferred by means of 
a least squares fit to an exponential distribution (D(d) = Ae-dλ with 
ranging genetic distance values) (Sankararaman et al. 2012). 

1.8.  Chimpanzees  and  bonobos  

Kuhlwilm M, de Manuel M, Nater A, Greminger 
MP, Krützen M, Marques-Bonet T. Evolution and 
demography of the great apes. Curr Opin Genet 
Dev. 2016 Dec;41:124–9. DOI: 10.1016/
j.gde.2016.09.005

https://www.sciencedirect.com/science/article/pii/S0959437X16301162
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2. OBJECTIVES

• Characterise the spatial distribution of genetic diversity within
chimpanzee subspecies.

• Explore the use of statistical methods to infer geographic
coordinates from genetic data.

• Refine our understanding of chimpanzee population history;
split times, historical effective population sizes and gene flow.

• Explore ancient genetic introgression between chimpanzees
and bonobos.
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3. RESULTS

de Manuel M, Kuhlwilm M, Frandsen P, Sousa 
VC, Desai T, Prado-Martinez J, et al. 
Chimpanzee genomic diversity reveals ancient 
admixture with bonobos. Science (80- ). 2016 
Oct 28;354(6311):477–81. DOI: 10.1126/
science.aag2602

http://science.sciencemag.org/content/354/6311/477
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4.  DISCUSSION 
 
In the following section, I will discuss the relevance of the results 
presented herein for the understanding of the population history of 
chimpanzees and bonobos. As discussed in section 3, my research has 
focused on (I) unravelling fine-scale population structure within 
chimpanzee subspecies and (II) exploring ancient admixture between 
chimpanzees and bonobos.  
 
We analyzed 75 complete genomes from the Pan genus, of which 40 
were sequenced for this project to a mean sequence coverage of 25-fold. 
Our samples span 10 African countries, which constitutes the most 
exhaustive sampling scheme in non-human great ape genomics to date. 
This dataset brought up the possibility to interrogate the extent to which 
genetic information can predict geographic origin. Indeed, we found a 
tight correspondence between genetic diversity and geography in central 
and eastern chimpanzees. In order to further confirm our results, we 
analysed a set of georeferenced individuals sequenced from non-
invasive samples. By analysing these GPS-labeled individuals, we found 
that genotyping a few thousand polymorphisms is enough to assign 
chimpanzees to their country of origin. Although we could not include 
enough geolocalized samples to assess fine-scale population structure in 
Nigeria-Cameroon and western chimpanzees, we expect that similar 
stratification would be found with broader sampling.  
 
The data is largely consistent with patterns of isolation by distance 
within central and eastern chimpanzees. Nonetheless, some populations 
show hallmarks of long standing reproductive isolation (ie. eastern 
chimpanzees from Gombe, Tanzania). Patterns of isolation by distance 
would imply that inferring the origin of chimpanzees from yet 
unsampled locations should be possible through the use of allele 
frequency maps. However, cases like the eastern chimpanzees in 
Gombe highlight the importance of a denser sampling scheme. The 
ability to predict geographic origin from genetic data can have a valuable 
impact on the conservation of declining populations. It can help to 
localize hotspots of illegal trafficking, which in turn can help 
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governments to increase law enforcement in these areas and empower 
the conservation of endangered species (S. K. Wasser et al. 2015). In 
the future, the origins of confiscated chimpanzees will probably be 
discernible with sufficient data from reference populations, with 
implications for the in situ and ex situ management of this species.        
 
Genetic introgression is common in nature. It occurs frequently in 
plants, insects, fish, birds and mammals (Rieseberg 2009; Nadeau et al. 
2012). Thus, perhaps not surprisingly, multiple gene flow events 
between archaic and modern humans have been suggested in the last 
decade. To illustrate how convoluted the tree of humans may be, I list 
all the putative gene flow episodes described as of today: (I) from 
Neanderthals into non-African modern humans (Green et al. 2010), (II) 
from Denisovans into Oceanian modern humans (Reich et al. 2010), 
(III) from early modern humans into Neanderthals (Kuhlwilm et al. 
2016), (IV) from Eastern Neanderthals into Denisovans (Prüfer et al. 
2014), (V) from an unknown hominin lineage into Southeast Asian 
modern humans (Mondal et al. 2016) and (VI) from an unknown 
hominin archaic lineage into Denisovans (Prüfer et al. 2014). Given this 
intricate graph of connections between modern and archaic humans, 
more of such events are likely to be detected as more ancient genomes 
become available. This scenario also puts forward the following 
question; is genetic introgression also common in chimpanzees and 
bonobos, our closest living relatives? In section 3 we suggest that the 
answer is yes, ancient admixture did happen in the Pan branch. This 
finding draws a parallelism with humans and highlights the 
pervasiveness of gene flow in nature.   
 
However, it is worth noting that gene flow between chimpanzees and 
bonobos was explicitly explored in the past using whole-genome 
sequences, yet admixture was found to not be supported by the data 
(Prüfer et al. 2012). Conversely, several studies have reported allele 
frequencies in bonobos to be more similar to central chimpanzees than 
to western chimpanzees (Becquet et al. 2007; Won and -J. Won 2004; 
Becquet and Przeworski 2007), and gene flow between the chimpanzee 
ancestor and bonobos has also been suggested (Cahill et al. 2016; Hey 
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et al. 2018). In order to elucidate the conflict between studies, we 
reanalysed the dataset in Prüfer et al. The main difference between 
sequence data in Prüfer et al. and our study is the depth of coverage. 
While our genomes average to 25-fold, genomes in Prüfer et al range 
between 1-2-fold. Given this difference, we first explored the influence 
of coverage in the power of D-statistics to detect gene flow. We found 
that low coverages in Prüfer et al. greatly undermines the power to 
detect reliable polymorphisms, which in turn has an effect in the 
resolution of D-statistics. By detecting polymorphisms with our high-
coverage genomes, we found that genomes in Prüfer et al. also harbour 
the signal of admixture between bonobos and central chimpanzees.    
 
Single-site statistics such as D-statistics are known to be especially 
susceptible to bias. Thus, even though the data in Prüfer et al. seems to 
agree well with our conclusions, the most suggestive observation in our 
research is the existence of introgressed haplotypes. Since haplotype-
based analyses require high coverage and the calling of diploid 
genotypes, we could not include data from Prüfer et al. into such 
analyses. The identification of an excess of long stretches of DNA with 
unusually low divergence to Neanderthal in non-African modern 
humans has been interpreted as one of the strongest evidence for 
genetic introgression between archaic and modern humans (Green et al. 
2010). Similarly, finding clusters of bonobo alleles in strong linkage 
disequilibrium in the genomes of central and eastern chimpanzees is the 
most convincing line of evidence in favor of gene flow. Such 
observation is only expected under a model with gene flow from 
bonobo into chimpanzees, and should be robust to confounding factors 
known to affect single-site D-statistics, such as contamination or 
technical difficulties in the calling of polymorphisms.  
 
Another evidence for gene flow is the presence of introgression deserts, 
regions in the chimpanzee genome devoid of introgressed DNA from 
bonobo. As discussed in section 1.7, this is expected because 
introgressed bonobo alleles might be disadvantageous in the 
chimpanzee genetic background. This effect is especially accentuated in 
the X chromosome, where introgression segments are almost non-
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existent. Similar observations have been done in humans with respect 
to Neanderthal introgression (Sankararaman et al. 2014). It has also 
been found that levels of recombination in the genome can determine 
the amount of genetic introgression (Schumer et al. 2018). More 
particularly introgression seems to be more common in regions of high 
recombination, where there is linkage to fewer putative targets of 
selection. These results support models in which ancestry from the 
donor species is more likely to persist when it is rapidly uncoupled from 
alleles that are deleterious in hybrids. Given that the recombination 
landscape has a rapid turnover among chimpanzee subspecies (Stevison 
et al. 2016), it would be interesting to see if the introgression landscape 
has been shaped differently in central and eastern chimpanzees. Quite 
interestingly, the opposite situation is also found in nature; evidence is 
increasing in support of the existence of introgressed variants that may 
have been selected by natural selection.  Recently, it has been suggested 
that introgressed tracts in chimpanzees have been targeted by selection 
(Nye et al. 2018).  
 
Nonetheless, genetic introgression is best confirmed when finding 
admixed individuals few generations after the gene flow event. As 
discussed in section 1.7, the length of introgressed tracts progressively 
decays with time due to recombination. Indeed, the sequencing of an 
ancient individual 4-6 generations after gene flow from Neanderthals 
into modern humans (Fu et al. 2015), and recently a first generation 
hybrid of a Neanderthal and Denisovan (Slon et al. 2018), has provided 
irrefutable evidence of the encounter between human lineages. 
However, such result would be hard to attain in chimpanzees and 
bonobos given the age of the putative gene flow event (200-550 
thousand years ago), as well as due to a paucity of fossil records 
(McBrearty and Jablonski 2005). The lack of fossil remains is not only 
particular to chimpanzees and bonobos, but also found in gorillas and 
orang-utans, although perhaps less so in the later (Chaimanee et al. 
2003). The sequencing of ancient individuals from the Pan lineage 
would enable the exploration of many interesting questions. For 
instance, it is known that human population history has been 
characterised by the movement of cultures and common population 
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replacement, at least in Europe (Haak et al. 2015). It would be 
enlightening to check if the population history of our closest living 
relatives have experienced a similar amount of migration waves and 
population replacement across time. The sequencing of ancient remains 
also opens the possibility to study the genomes of now extinct lineages. 
Unfortunately, this is a line of research hard to pursue given the almost 
non-existent fossil record. However, there is room for optimism, as the 
field of ancient DNA is under constant rapid development. Last year, 
DNA from multiple ancient organisms was sequenced from Pleistocene 
sediments (Slon et al. 2017), so it is difficult to imagine what 
technological advancements the future might bring.       
 
There are other possibilities to explore the past that do not rely on 
bones or sediments; the excavation of DNA segments from extinct 
lineages in the genomes of contemporary populations. In our study, we 
did not explicitly test for gene flow events from unsampled unknown 
Pan lineages into modern chimpanzees and bonobos. However, finding 
traces of such events would open a window to the past, as it would 
enable the study of stretches of DNA that directly descend from 
populations from which there might be little to no fossil remains. In 
order to detect introgression from unsampled populations, one must 
use measures that do not rely on the sequence of the donor population 
(Plagnol and Wall 2006). This strategy has been applied with success in 
modern humans to recover fragments of the Neanderthal and 
Denisovan genomes (Vernot et al. 2016). There is tentative evidence 
that bonobos carry chunks of DNA from an extinct Pan population 
(Brahic 2018), so inferring extinct Pan genomic sequences from 
contemporanean populations may be feasible in the near future.   
 
Finally, I would like to advocate for the study of bonobos. Chimpanzees 
have historically had a privileged position in comparison to their sister 
species. This may be due to their larger population size, or quite simply 
because they live in regions more accessible to researchers. In any case, 
bonobos are the most understudied great ape population by means of 
genetic data (Prado-Martinez et al. 2013). Population structure within 
bonobos has been assessed by fragments of mitochondrial DNA, and 
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found to be determined by the numerous tributaries of the Congo River 
(Eriksson et al. 2004; Kawamoto et al. 2013). It would be interesting to 
expand these studies to whole-genome data, with denser sampling 
schemes that would allow a fine-scale assessment of the geographic 
distribution of genetic diversity. Increasing the number of bonobo 
genomic data could also enable an alternative way to contrast our 
findings of genetic introgression from bonobos into chimpanzees. 
Maybe there are highly differentiated lineages within bonobos, some of 
them more closely related to the original source of the genetic 
introgression. However, for this scenario to be plausible, there should 
be populations in bonobos sharing an ancestor earlier than the gene 
flow event (200-550 thousand years ago). That seems unlikely given our 
current knowledge of bonobos. Nevertheless, the presence of such 
lineages would suggest that there are multiple bonobo subspecies. In 
any case, such hypothesis will remain unknown until more sequences of 
bonobo become available.      
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