
Chapter 3

Overall FEMsum Architecture

As pointed out in Chapter 1, one of the main objectives of this thesis is to provide a general
framework to allow the use of several Automatic Summarization (AS) techniques and approaches
supplying capabilities to solve different summarization tasks. Each task is supposed to face
specific user information needs, including: to process one single document vs. to process several
documents; to take into account the information provided by a user query vs. to produce
generic text-driven summaries; to assume a previous user knowledge giving only just-the-new
information vs. the production of background summaries; and to produce summaries of different
lengths (ranging, in our experiments, from 10 to 250 words). This general framework has to
be able to deal with different kinds of digital documents such as news reports or scientific
presentations. Moreover, this input can be of different media (e.g. text, speech), language (e.g.
English, Spanish, Catalan) or domain (e.g. journalistic, scientific).

This chapter presents the Flexible Eclectic Multitask summarizer (FEMsum), a highly modu-
lar and parameterizable AS system able to face all the previously exposed requirements, choosing
different techniques for each situation. A global view of the system is presented in Section 3.1,
Section 3.2 presents some architecture design considerations. To introduce different instantia-
tions1 of each general architecture component, Section 3.3 presents the set of constituents of
various approaches, and the following Sections detail different implementations of each possible
constituent. To finish, Section 3.9 presents the implementation framework to integrate new
components. In the following chapters, the FEMsum instantiations presented in this chapter
are evaluated in different summarization tasks.

1The term “instantiation” refers to the implemented FEMsum components used to built each summarization

approach.

47

48 Overall FEMsum Architecture

3.1 Global Architecture

Figure 3.1 depicts the basic functionalities and the global architecture of FEMsum. The func-
tional requirements are set by means of a number of parameters split into input, purpose and
output settings (see left and right boxes in the Figure). As detailed in Chapter 1, input settings
refer to the characteristics of the documents to be summarized, while purpose settings deal with
the characteristics of the final utility of the summary and output settings refer to the content
and presentation of the summary.

Input settings include the following items:

Domain. The approach to be instantiated can be domain independent or of restricted
domain. In the latter case, additional knowledge sources such as frequent terms (scientific
domain2) or gazetteers (geographical domain3), can be included.

Document structure. Information derived from the document structure (position, title,
sections or available tags) can be considered. For instance, in the case of summarizing oral
presentations, words appearing in each section can be contrasted with those in the slides
in order to help in the identification of the voice segment to be reproduced as a summary4.

Language. All the implemented approaches are language dependent. Currently, texts in
English or Spanish and in some cases in Catalan can be processed.

Media. Depending on the scenario to be dealt with, different media (video, audio, well
written text or any kind of digital document) are considered. However, FEMsum only
processes the textual representation of documents, which means that, for instance, the
conversion from an audio file to an automatic transcript must be previously carried out
by an ASR.

Unit. Both single documents and collections of related documents are processed for SDS
and MDS respectively. The set of documents to be summarized has to be previously
collected.

Genre. Both documents independent of the style of writing and dependent ones are con-
sidered. An example of genre dependent approach is the one exploiting the fact that a
journalistic document follows a pyramidal organization. Also the approach instantiated
as genre dependent, applied to scientific documents, exploits the fact that in spontaneous
speech documents relevant words have higher frequency than in written text.

2Both domain independent and restricted domain approaches have been instantiated. In the latter case, papers

from the European Conference on Speech Communication and Technology have been used as instances for the

scientific domain. However, moving to other domains is easy if there is a specific corpus available (detailed in

Chapter 5).
3It has not been evaluated.
4It has not been evaluated

3.1 Global Architecture 49

papers

slides

notes

ASR

transcript

INPUT Settings

DOMAIN

Independent

Scientific

News

. . .

STRUCTURE
Not used

Used

LANGUAGE

English

Spanish

Catalan

MEDIA
Text

Multi

UNIT
SDS

MDS

GENRE

Independent

Scientific

Journalism

. . .

PURPOSE Settings

Background
AUDIENCE

Just-the-news

OUTPUT Settings

Complex

CONTENTKeywords

Generic

Num. words
LENGTH

% compress

All text

FORMAT
Well-written

Audio/video

SinthesizedText

Query

Linguistic

Processor

textual

document

Relevant

Information

Detector

Content

Extractor

Summary

Composer

Summary

Figure 3.1: FEMsum Global Architecture

50 Overall FEMsum Architecture

Purpose settings include:

Audience. Summaries can be adapted to the needs of specific users, such as the user’s
prior knowledge on a determined subject. Background summaries assume that the reader’s
prior knowledge is poor, and so extensive information is supplied, while just-the-news are
summaries conveying only the newest information on an already known subject, assuming
the reader is familiar with the topic5.

Output settings include:

Content. The fragments of the documents to be included in the summary can be condi-
tioned or not by the content of the user information need (question, topic description or
list of words).

Size. Summary length can be restricted in terms of document compression rate or number
of summary words.

Document restriction. Used for filtering out some type of documents, such as to allow
parts of the transcript to appear in the final summary or not to allow it.

Output format. The final summary can be presented to the user as text, voice synthesized
text or audio/video stream. Although different techniques can be applied for each one, the
FEMsum output is always textual and the final presentation is generated in a posterior
phase.

In order to face the functional requirements described above, the system is organized in three
language independent components (see the central box of Figure 3.1): Relevant Information
Detector (RID), Content Extractor (CE) and Summary Composer (SC). In addition, there is
a language dependent Linguistic Processor (LP) and a Query Processor (QP) component. As
detailed in Section 3.3, not all the components are needed in all FEMsum instantiations, and
different implementations of each component are proposed.

3.2 Component Architecture Design Considerations

Our work is based on the assumption that an AS system (as well as a manual one) follows a
summarization process model. The aim of the FEMsum architecture is to allow the implemen-
tation of any summarization process. The first difference when analyzing the process models
presented at the begining of the previous chapter is the fact that they differ in the number of
suggested phases (stages or kind of rules):

5The approach developed to participate in the DUC 2007 update task produced several summaries for a same

topic, each new summary was supposed to contain only just-the-news information with respect to the previous

one.

3.2 Component Architecture Design Considerations 51

(Cremmins 1982) proposes 4 stages: identifying relevant information; extracting; orga-
nizing and reducing the relevant information into a coherent unit, usually one paragraph
long; and refining the abstract through editing.

(Brown and Day 1983) suggest to apply 5 different rules: to remove irrelevant information;
to overcome redundancy; to produce concept superarrangement; to select the thematic
sentence representing the text, if possible; and to construct the abstract.

(Endres-Niggemeyer 1989) differentiates 2 kind of rules: analytical and synthetical. The
first one includes reducing and selecting; while the synthesis rules consist in clarifying,
reorganizing, and stylizing.

(Pinto Molina 1995) proposes 3 operative stages: reading-understanding; selection and
interpretation; and synthesis.

(Sparck-Jones 1999; Mani and Maybury 1999; Hahn and Mani 2000; Hovy 2001; Mani
2001) distinguish 3 stages: analyzing the input text; transforming it into a summary
representation; and synthesizing.

(Sparck-Jones 2001) identifies 3 subproblems: locating the relevant fragments; ranking
these fragments by relevance; and producing a summary.

(Hovy 2005) also identifies 3 different stages: topic identification; interpretation and sum-
mary generation.

In order to validate the proposed architecture, in Table 3.1 each model phase has been
associated to a FEMsum component. Each phase can involve several tasks that can be solved
by different components, which is the case of the (Cremmins 1982) phase organizing and reducing
into a coherent unit refining by editing. This phase can be decomposed in several tasks, and, for
instance, the organizing and/or the reducing tasks can be carried out by the Content Extractor
or the Summary Composer FEMsum components (see the last two columns of the first row in
Table 3.1). When a phase can be addressed in different components, the symbol ’*’ is used to
indicate the first and the last components involved. It is also possible that one phase is solved
by several components, that is the case of the (Cremmins 1982) phase identifying relevant
information, indicated by ’x’. This phase can be associated to the Linguistic Processor, Query
Processor and Relevant Information Detector FEMsum components (see the first two columns
of the first row of the Table 3.1).

Moreover, it can be observed that different tasks are placed at different stages by different
models. An example of that is the reducing task, while (Cremmins 1982) places it as one of
the last stages, the reducing (removing irrelevant information) task is one of the first tasks in
(Brown and Day 1983) model.

52 Overall FEMsum Architecture

Summarization Linguistic and Relevant Content Summary
Process Query Processor Information Extractor Composer
Model (LP, QP) Detector (RID) (CE) (SC)
Cremmins x – identifying relevant information - x extracting
(1982) * ———— organizing and reducing ——— *

into a coherent unit
refining by editing

Brown and Day x – removing irrelevant information - x overcoming redundancy
(1983) concept arrangement

selecting abstracting
Endres- x ————————— reducing and selecting ——————— * clarifying
Niggemeyer reorganizing
(1989) synthesizing
Pinto Molina reading-
(1995) understanding * ———– selecting and interpreting —– *

synthesizing
Sparck-Jones x —————– analyzing ————– x
(1999) transforming

synthesizing
Sparck-Jones x —————– locating ————— x
(2001) ranking

producing
Hovy x ———— topic identifying ——— x
(2005) interpreting

generating

Table 3.1: Association of summary production process model stages to the corresponent archi-
tecture component.

To allow the maximum flexibility, the main restriction of the proposed architecture is the
input and the output expected by each component. As shown in Figure 3.2, the LP component
enriches the original text (documents to be summarized or the user information need) with
linguistic information. This component consists of a pipeline of more or less sophisticated
language dependent linguistic tools (see details in Section 3.4). Different LP instantiations
can be used depending on the requirements of the approach, as well as the language, media,
genre or domain of the documents to be summarized. If a purely lexical FEMsum approach
is instantiated, LP can be reduced to a segmentation task: splitting the input document into
sentences or paragraph units, each composed by a sequence of words6. However, other approahes
can require more sophisticated language dependent tools to enrich the text with syntactic or

6It is possible that the segmentation process only requires a simple word stemming or introduces some complex-

ity detecting Multi-Word (MW)s, terms, NEs. However, straightforward methods, usually language independent,

can be applied with a rather small decrease in accuracy.

3.2 Component Architecture Design Considerations 53

textual

Document
User Need

Linguistic Processor (LP)

processed

textual

Document

processed

User Need

Query Processor (QP)

Relevant Informa-

tion Detector (RID) processed

Queries

scored TUs

Content Extractor (CE)

scored TUs

Summary Composer (SC)

Summary

Figure 3.2: FEMsum data flow

semantic information.

The input to the RID module is the document or set of documents to be summarized with
more or less linguistic information. The original user need linguistically processed is the input
of the QP component. The output of this component, expressing the user need, can be taken
into account by RID to score the set of relevant TUs (segments, phrases or sentences). The
output of RID is a set of TU identifiers ranked by relevance. The linguistic information and the
relevance score of the TUs is the input to the CE and the SC components.

The main function of the CE component is to extract and score by relevance summary
candidate TUs. This is not always instantiated, but when it is, this component allows to apply
different heuristics taking into account some input aspect, such as the genre of the document
(journalistic vs. scientific); some purpose aspect, such as the type of audience of the produced

54 Overall FEMsum Architecture

summaries (background vs. just-the-news); or some output aspect, such as the content of the
summary (text-driven vs. query-driven.

The final text summary is the output of the SC. This component carries out the post-
processing of the summary content. This post-processing can be more or less elaborated, taking
into account the size or the format of the summary. In this, component the summary TUs can
be simplified, paraphrased, reordered, or removed.

3.3 Components used by the instantiatiated FEMsum approaches

This section briefly exemplifies the implemented FEMsum components instantiated by several
FEMsum approaches. Each approach has been evaluated when summarizing documents from
different domain, genre, media, and language (see Chapter 4, 5, 6,and 7). A brief description of
each approach is presented bellow:

LCsum is based in shallow text-oriented techniques, mainly lexical chains. This approach
is evaluated for textual Spanish and Catalan documents in Section 4.1 and for spontaneous
speech transcripts in Chapter 5.

MLsum applies a Machine Learning techniques in the detection of the most relevant sen-
tences. A first approach, based on Decision Tree, participated in the DUC 2003 headline
production task, see Section 4.2. A second approach, based on Support Vector Machine,
is evaluated using DUC 2005 data, see Section 6.1.4.

QAsum is a quick adaptation of TALP-QA factual Question & Answering system that
participated in DUC 2005. The evaluation of this approach is reported in Section 6.1.2.

LEXsum is based on the use of lexical features. This approach was evaluated in the DUC
2006 contest (see Section 6.1.3) as well as when dealing with scientific oral presentations
(experiments reported in Chapter 7)

SEMsum this approach uses a graph based algorithm that takes into account semantic
information. This approach was also evaluated in DUC 2006 contest (see Section 6.1.3)
and in the scientific oral presentation domain (see Chapter 7). In addition, participated
in DUC 2007 tasks, see Section 6.1.5 and 6.2.

Table 3.2 summarizes the components used by each evaluated FEMsum approach. When an
approach has several possible instantiations for one component, a parameter is used. LP is not
specified in the table because the component to be instantiated depends on properties of the
input document.

3.3 Components used by the instantiatiated FEMsum approaches 55

FEMsum Query Relevant Content Summary
approach Processor Information Extractor Composer

(QP) Detector (RID) (CE) (SC)
LCsum — LC RID LC CE Basic SC

(heuristic)
LCsum — LC RID LC CE Complex SC
(DiscStr) (heuristic) (sentCompressor)
LCsum — LC RID — Complex SC
(PostSeg) (chkExtractor)
MLsum — FE RID ML CE Basic SC

(DT)
MLsum — FE RID ML CE Complex SC
(HL) (DT) (sentCompressor)
MLsum Splitting QP FE RID ML CE Basic SC
(MDS,Q) (MDS,Q) (SVM, sem)
QAsum Generating QP PR RID QA CE Complex SC
(TALP QA) (TALP QA) (antiredundancy)
LEXsum Splitting QP PR RID — Basic SC

SEMsum Splitting QP PR RID Sem CE Basic SC

SEMsum Splitting QP PR RID Sem CE Basic SC
(reRank) (reRank)
SEMsum Splitting QP PR RID Sem CE Complex SC
(reRank,update) (reRank) (update) (reordering)

Table 3.2: Components of the instantiated FEMsum approaches

Some approaches can use less components than others, if a component can be ommitted it is
indicated by ’–’. Examples of that are text-driven approaches, which do not process any specific
user information need (see the first column of the five first rows of Table 3.2).

All the LCsum approaches instantiate the RID component that uses the LEXICAL CHAINER
described in Section 3.6.1, Lexical Chain (LC) RID. The main difference between them is the SC
component. In the PreSeg (default option, first row in Table 3.2) and in the DiscStr (second row
in Table 3.2), as in classical Text Summarization, segmentation is part of the LP component,
while in the PostSeg approach (third row), summary text segment boundaries are defined in
the SC component, after the detection of relevant elements in the document. That is especially
useful when dealing with ASR output without punctuation marks or capitalization. What a TU
is depends basically on the media of the input and the processing capabilities (e.g. sentences or
clauses in well written text, sequences of words in spontaneous speech). The TU ranking takes
into account the LEXICAL CHAINER output, and, as detailed in Section 3.8.1, the main char-
acteristic of LCsum(DiscStr) is the use of rhetorical information in the SC component. The LC

56 Overall FEMsum Architecture

CE allows the use of different heuristics to extract relevant TUs taking into account document
properties (see Section 3.7.1).

MLsum instantiates the Feature Extractors (described in Section 3.6.2), Feature Extractor
(FE) RID, and the TU Classifiers (described in Section 3.7.2), ML CE. Since MLsum(HL) was
designed to produce headlines for the DUC 2003 task, HL (fifth row) uses the TU Full Parsing
Sentence Compression module described in Section 3.8.1, although by default (fourth row) the
Basic SC component extracts whole TUs as summary.

The rest of the table refers to MDS query-focused approaches. As can be observed looking
at the second column of Table 3.2, with the exception of MLsum(MDS,Q), the query-focused
approaches instantiate a Passage Retrieval (PR) based RID component, PR RID.

QAsum uses part of a Question & Answering (QA) system in the RID and CE components
(PR RID in Section 3.6.3 and QA CE in Section 3.7.3) and redundancy is eliminated in the SC
component (see the Antiredundancy module described in Section 3.8.1). In contrast, SEMsum
and MLsum(MDS,Q) deal with redundant information in the CE component (see Section 3.7.4).

The most important difference between LEXsum and SEMsum approaches is that while in
SEM CE, described in Section 3.7.4, a rich semantic representation is needed, LEXsum only
requires lexical information. In fact, LEXsum uses the same RID and SC components than
SEMsum, but it does not instantiate the CE component.

In SEMsum, an optional reranking can be applied to the TUs detected as relevant. Moreover,
in SEM CE some TUs can be discarded in the update option (see Section 3.7.4) to extract just-
the-news information.

All the instantiated SC components produce extract-based summaries. However, an im-
portant difference is that while QAsum, LEXsum and SEMsum summaries are composed by
complete TUs from the input documents, LCsum and MLsum allow the use of fragments of the
original TU, by exploiting information associated to discourse markers. LCsum only requires
partial chunking in LCsum(PostSeg) and partial parsing in LCsum(DiscStr). In MLsum(HL),
full parsing is required.

Some post-editing is carried out in the SC component (considering referents instead of pro-
nouns or organizing the summary content).

Each FEMsum approach can be mapped with one of the summarization models presented
in Section 3.2. Relations can be established by analyzing the tasks proposed by the authors in
each phase of the model. Table 3.3 synthesizes these relations: QAsum follows (Cremmins 1982);
SEMsum (Brown and Day 1983); LEXsum (Endres-Niggemeyer 1989); MLsum (Sparck-Jones
1999; Mani and Maybury 1999; Hahn and Mani 2000; Hovy 2001; Mani 2001); and LCsum
(Sparck-Jones 2001).

3.3 Components used by the instantiatiated FEMsum approaches 57

FEMsum approach components Summarization model stages

QAsum (Cremmins 1982)
Generating QP
PR RID 1. relevent information detection

QA CE 2. extraction
Complex SC 3. organizing and reducing into a coherent unit
(antiredundancy) 4. refining by editing

SEMsum (Brown and Day 1983)
Splitting QP
PR RID 1. removing irrelevant information
SEM CE 2. overcoming redundancy
(update) 3. concept arrangement, 4. selecting
Complex SC
(ordering) 5. abstracting

LEXsum (Endres-Niggemeyer 1989)
Splitting QP 1. analytical rules:
PR RID reducing and selecting
Basic SC 2. synthesis rules: reorganizing

clarifying and stylizing

MLsum (Sparck-Jones 1999)
Splitting QP
FeatExtr RID 1. analyzing
ML CE
(sem) 2. transforming
Complex SC
(sentCompressor) 3. synthesizing

LCsum (Sparck-Jones 2001)

LexChain RID 1. locating
LexChain CE
(heuritic) 2. ranking
Complex SC
(sentCompressor/chkExtractor) 3. producing

Table 3.3: FEMsum approaches related with a summarization model.

58 Overall FEMsum Architecture

As the instantiated FEMsum approaches try to analyze similarities and differences between
TUs, it can not be considered that a whole interpretation of the documents is carried out. That
is why no correspondence has been established with the models proposed by (Pinto Molina 1995)
or (Hovy 2005).

FEMsum architecture is extensible allowing the addition of new components and the refine-
ment of the existing ones. In fact, the core of the system was designed after our participation
in DUC 2005. The architecture was robust enough to include all the components previously
designed for SDS prototypes as well as those included to participate in DUC 2006-2007 tasks
and to summarizes different types of documents. Details about the implementation framework
used to add new components is discussed in Section 3.9.

Following the notation described in Figure 3.3, a diagram models each general architecture
component (see Figure 3.4 for LP in Section 3.4, Figure 3.6 for QP in Section 3.5, Figure 3.9 for
RID in Section 3.6, Figure 3.13 for CE in Section 3.7, and 3.20 for SC in Section 3.8).

GENERIC

COMPONENT

NAME

attribute name:

{ default value ,

other possible

values}

INSTANTIATED
COMPONENT

NAME
attribute name:

{list of possible

values}

(implemented) Different generic
component instantiations

(use) module used by a component

(contains) It can contain one
or more modules

Figure 3.3: Notation used in the diagrams depicted in Figures 3.4, 3.6, 3.9, 3.13, 3.20

3.4 Linguistic Processor Component 59

3.4 Linguistic Processor Component

This section describes the FEMsum component responsible for the linguistic processing of the
documents to be summarized, the LP. As reflected in Figure 3.4, the LP can process four dif-
ferent generic representations: the LexicoMorpho Representation, the Syntactic Representation,
the Syntactic Phrase and the Semantic Representation. As can be observed in Figure 3.4, each
one is implemented with a language dependent module.

The specific tools to be used to produce the LexicoMorpho Representation can vary depending
not only on the language but on the media (well-written text or spontaneous speech); the domain
(independent, journalistic or scientific); or the type of TU involved (sentences, paragraphs, word
segments). Furthermore, this TU segmentation can be carried out a posteriori, by another
FEMsum component (pos) or the TUs can be previously manually established (man), otherwise
LP will automatically (auto) segment the input in TUs. A specific multi-word repository can
be used to segment lexical units.

Details about the specific NLP tools instantiated in the FEMsum approaches are presented
in Section 3.4.1 and Section 3.4.2,

A generic LP component is illustrated in Figure 3.5. It consists of a pipeline of general
purpose Natural Language (NL) processors performing: tokenization, Part Of Speech (POS)
tagging, lemmatization, fine grained Named Entity Recognition and Classification (NERC),
WordNet (WN) or EuroWordNet (EWN) based semantic tagging, collocation annotation, coref-
erence resolution, discourse marker annotation, syntactic parsing (both full parsing and shallow
parsing), and semantic role labeling. Figure 3.5 does not include TU segmentation, because this
task is not always performed by the LP component.

Different levels of linguistic enrichment are needed depending on the FEMsum approach; if
not necessary, not all constituents are activated. For instance, the semantic analyzer is not used
by LCsum, MLsum or LEXsum. In fact, LP can be reduced to a segmentation task: splitting
the input document into sentences or paragraph units, each composed by a sequence of words
(simple word stemming, multiwords or terms, NEs); or it can consist of a more sophisticated
language dependent process.

Figure 3.5 shows several LP output types consisting of TUs enriched with LexicoMorpho
(sent) and Syntactic (sint) language dependent representations. The Syntactic Representation
includes syntactic constituent structure (including head specification) and the syntactic relations
between constituents (subject, direct and indirect object, modifiers). The Semantic Represen-
tation of the TU, the environment (env), is composed by sent and sint. The three levels of a
text representation produced by LP are:

The LexicoMorpho Representation, sent, provides lexical information for each word: form,
lemma, POS tag, semantic class of NE (and subclasses if available), list of WN or EWN

60 Overall FEMsum Architecture

LINGUISTIC

PROCESSOR

language:

{ en , sp, ca}
media:

{ ww , ss}
domain:

{ ind , jour, scient}
TU:

{ sent , parag, chunk}
TU segmentation:

{ pos ,

pre(man ,auto)}
multiword:

{ no , scient}

LexicoMorpho

Representation

Syntactic

Representation

Syntactic

Phrase

Semantic

Representation

Catalan
sent

Spanish
sent

English
sent

sent sent sent

Spanish
sint

English
sint

English
chk

Spanish
env

English
env

sent

TU

segmen-

ter

Toke-

nizer

POS

tagger
Lemma-

tizer

NER NEC
Semantic

tagger

Colloca-

tion

annotator

Corefe-

rence

solver

DM

annotator

Figure 3.4: Linguistic Processor instantiated FEMsum component.

3.4 Linguistic Processor Component 61

Mr1 Malcom Bruce2,3 the4 party5’s6 new7 Treasury8 spokesman9,10 said11 he12 welcomed13 Mr14 Blair15 because16 ‘17 Britain18
desperately19 needs20 good21 leadership22’23.24

Tokenizer sequence of tokens reduced to word forms

POS

Tagger
POS label disambiguated

Lemmatizer lemma

NER Word form and lemma modified

NEC NE classification and subclassification when possible

Semantic

Tagger
list of synsets if the word appears in euroWordNet

Collocation

Annotator
word and lemma modified if a collocation has been detected

Coreference

Solver
Personal Pronoun::lemma modified with the referent when possible

DM

Annotator
POS modified with the label “DM”

trigger

words

WordNet

Multi-Word

coreference

rules

Discourse

Markers

LexicoMorpho

Representation

sent(695, 16379,[

(word(”Mr”), lemma(”Mr”), pos(”NNP”), nil, nil, [n06212236]),

(word(”Malcom Bruce”), lemma(”Malcom Bruce”), pos(”NNP”), persone, nil, []),

. . .

(word(”said”), lemma(”say”), pos(”VBD”), nil, nil, [v00419793, v00515998, v00518715, ..., v00569629, v00573372, v01548443]),

(word(”he”), lemma(”Malcom Bruce”), pos(”PRP”), nil, nil, []),

(word(”welcomed”), lemma(”welcome”), pos(”VBD”), nil, nil, [v00506895, v00844947, v01273911]),

. . .

(word(”because”), lemma(”because”), pos(”DM”), nil, nil, []),

(word(”’”), lemma(”’”), pos(”POS”), nil, nil, []),

(word(”Britain”), lemma(”Britain”), pos(”NNP”), location, country, []),

. . .

(word(”.”), lema(”.”), pos(”.”), nil, nil, [])]).

Parser

Mr Malcom Bruce . . . said . . . Britain desperately needs good leadership ’

subj subj obj

.

NP VP

S

VPB NPB

NP

VPNP

. . .

Syntactic

Representation

sint(695,[ch(1,23,s,11,[ch(1,10,np,2,...

[ch(19,23,vp,20,[ch(19,20,vpb,20,[tk(19),tk(20)]),ch(21,23,np,22,[ch(21,23,npb,22,[tk(21),tk(22),tk(23)])])]),

. . .)],[subj(11,2),. . . (20,18),obj(20,22)]).

Semantic

Analizer

action

welcomed

i en country

Britain

entity

leadership

quality

good
action

needs

circumstance of event

participant in event

theme of eventmod

Semantic

Representation

Ontology

env(695, [human action(11), circumstance of event(11,13), action(13), circumstance of event(13,20), action(20), i en proper person(2),

mod(2,1), i en proper named entity(1), mod(2,9), entity(9), mod(9,5), entity(5), mod(9,7), quality(7), mod(9,8),

i en proper organization(8), i en country(18), mod(18,14), i en proper named entity(14), mod(18,15), i en proper persone(15),

entity(22), mod(22,21), quality(21), actor of action(11,2), participant in event(13,12), participant in event(20,18),

theme of event(20,22)]).

Figure 3.5: Linguistic Processor constituents and text representated by sent, sint and env.

62 Overall FEMsum Architecture

synsets and, if available, derivational information. Details about each constituent output,
when instantiated, are given in Figure 3.5:

– The Tokenizer component produces sequence of tokens reduced to word forms.

– The POS Tagger adds the information of the disambiguated POS label.

– The lemmatizer adds the lemma of the word.

– The NER modifies the word form and lemma field when a NE has been recognized.

– The Named Entity Classification (NEC) gives a NE classification label when possible.

– The Semantic Tagger produces a list of synsets if the word appears in WN or EWN.

– The Collocation Annotator reagrup words and lemmas in order to create a multiword
if a collocation has been detected.

– The Coreference Solver substitutes the lemma of a Personal Pronoun with the referent
when possible.

– The Discourse Marker (DM) Annotator modifies the POS with the label “DM”.

The Syntactic Representation, sint, is composed by two lists, one recording the syntactic
constituent structure (basically nominal, prepositional and verbal phrases) and the other
collecting the information of dependencies between these constituents.

The Semantic Representation, env, is a semantic-network-like representation of the se-
mantic concepts (nodes) and the semantic relations (edges) holding between the different
tokens in sent. Concepts and relation types belong to an ontology of about 100 semantic
classes (like person, city, action, magnitude, etc.), and 25 relations between them (like time
of event, actor of action, location of event, etc.). Both classes and relations are related
by taxonomic links (see (Ferrés et al. 2005) and (Ferrés 2007) for details), allowing for
inheritance. As can be observed in the example used in Figure 3.5, each term (token) of
a sentence is identified by a number. Some of the tokens are assigned unary predicates:
“Malcom Bruce” is a NE classified as a person, “Britain” is a country, and “needs” de-
notes and action. Binary predicates represent relations between tokens: in the example,
“welcomed” is the action circumstance of the event “needs”, “good” is the quality that
modifies “leadership”, being “good leadership” the theme of the event that reflects what
is needed by the entity “Britain”.

3.4.1 Catalan and Spanish LP

This section presents the specific NLP tools instantiated in the FEMsum approaches that can
be used by the CATALAN and SPANISH LP.

3.4 Linguistic Processor Component 63

FreeLing7 (Atserias et al. 2006), a parameterizable tool which performs tokenization,
NERC (with classes of NEs like date, time, quantities, ratios, percentages, person, location,
organization, others), morphological analysis, POS tagging, lemmatization, and shallow
and dependency parsing.

ABIONET (Carreras et al. 2002), a NERC on basic Message Understanding Conferences
(MUC) categories (person, location, organization, others).

EuroWordNet (Vossen 1998), used to obtain the list of synsets associated to each word,
with no attempt to perform Word Sense Disambiguation (WSD), and, for each synset, a
list of hyperonyms of each synset up to the top of the taxonomy, and the Top Concept
Ontology class.

Discourse Marker Annotator (Alonso 2005). The information stored in the DM lexicon8

((Alonso 2005), Appendix A) is used for identifying inter- and intra-sentential discourse
segments and the discursive relations holding between them. Discourse segments are taken
as TUs in the experiments reported in Section 4.1.2.

3.4.2 English LP

The specific NLP tools that can be used by the ENGLISH LP include:

FreeLing.

TnT (Brants 2000), a statistical POS tagger

SVMTool, a SVM-based tagger 9(Giménez and Màrquez 2004).

WordNet (Fellbaum 1998) lemmatizer 2.0.

ABIONET

(M. Surdeanu and Comelles 2005), a NERC for spontaneous speech.

Alembic (Day et al. 1998), a NERC with MUC classes (used to complement ABIONET
performance).

WordNet, used to obtain the list of synsets and hypernyms.

Discourse Marker Annotator ((Alonso 2005), Appendix A). The information stored in the
DM lexicon is used to establish TU boundaries in the experiments reported in Section 5.3.

7http://garraf.epsevg.upc.es/freeling/
8http://russell.famaf.unc.edu.ar/~laura/shallowdisc4summ/discmar/
9http://www.lsi.upc.edu/~nlp/SVMTool/

http://garraf.epsevg.upc.es/freeling/
http://russell.famaf.unc.edu.ar/~laura/shallowdisc4summ/discmar/
http://www.lsi.upc.edu/~nlp/SVMTool/

64 Overall FEMsum Architecture

A modified version of Collin’s parser which performs full parsing and robust detection of
verbal predicate arguments (Ferrés et al. 2004).

Dekang Lin’s dependency parser, MINIPAR (MINIPAR 1998).

YamCha chunker (Kudo and Matsumoto 2001).

3.5 Query Processor Component

The QP component is necessary for those query-focused FEMsum approaches that instantiate
a RID component unable to process complex questions. As depicted in Figure 3.6, the QP
component can be instantiated as the SPLITTING QP, presented in Section 3.5.1 or as the
GENERATING QP in Section 3.5.2. The first one turns a complex question into a set of
simpler ones by splitting the original text, while the latter requires a more complex linguistic
process.

QUERY

PROCESSOR

query:

{ list , complex}

SPLITTING
QP

GENERATING
QP

Figure 3.6: Query Processor instantiated FEMsum component.

Both QP instantiations where developed to deal with the query-focused MDS task proposed
at DUC, where the user information need was expressed in terms of a title and a narrative.
Figure 3.7 presents an example of a DUC 2007 Natural Language complex question.

The SPLITTING QP was first instantiated by SEMsum in the experiments reported in
Section 6.1.3, and the GENERATING QP was instantiated by QAsum (see Section 6.1.2).

3.5 Query Processor Component 65

<topic>
<num> D0722E </num>
<title> US missile defense system </title>
<narr>
Discuss plans for a national missile defense system. Include information about
system costs, treaty issues, and technical criticisms. Provide information about
test results of the system.
</narr>
</topic>

Figure 3.7: An example of the information provided in one DUC 2007 topic.

Q1. discuss plan for a national missile defense system (US) .
Q2. include information about system cost , treaty issue , and technical criticism

(US missile defense) .
Q3. provide information about test result of the system (US missile defense) .
Q4. include information about system cost (US missile defense) .
Q5. include information about system treaty issue (US missile defense) .
Q6. include information about system technical criticism (US missile defense) .

Figure 3.8: DUC 2007 complex natural language query processor output.

3.5.1 Splitting QP

The title and the narrative is first lemmatized, and then each sentence from the narrative is added
to the output question set. In addition, all those sentences with the pattern ((POSX)+, and POSX)
or (POSX or POSX) are split and also added to the output set. Finally, all those words from the
title not present in the output question are added at the end. Figure 3.8 shows the SPLITTING
QP output when the input is the complex question in Figure 3.7.

3.5.2 Generating QP

To create the output set of simpler questions, the title and the narrative of a topic are pre-
processed to add linguistic information (as in Section 3.4). After that, each sentence from the

66 Overall FEMsum Architecture

LOCATION PERSON
Where is <NE>? Who is <NE>?

When <NE> was born?
ORGANIZATION Where <NE> was born?
Where is <NE>? When <NE> died?
Where is <NE> located? Where <NE> died?
When was <NE> founded? When <NE> lived?
Who is <NE> director? Where <NE> lived?

OTHERS ACTION
Where is <NE>? Where <chunkAction>?
When was <NE>? When <chunkAction>?
Who did <NE>? Who <chunkAction>?

Table 3.4: Question Generation patterns by NE type.

narrative is considered as a question to be included in the set, as well as the ones produced by
the splitting process described in the previous section.

The title of the topic, if available, is used to create a question following the pattern “What is
<title>?”. Moreover, questions are generated from NEs and actions occurring in the narrative.
NE classification is taken into account to generate specific patterns (see Table 3.4). For instance,
when a NE classified as PERSON appears in the narrative, questions as “Who is <NE>?” to
“Where <NE> lived?”, in Table 3.4, are generated.

To generate new questions, sentences in the narrative are previously processed by LP in
order to obtain a sent, sint, and env representation; as described in Section 3.4, corresponding
to the lexical, syntactic, and semantic levels.

Finally, to increase the accuracy and to avoid dispersion, as in SPLITTING QP, the title is
added in round brackets at the end of each question.

3.6 Relevant Information Detector Component

The main function of the RID component is to provide a ranked set of n relevant TUs. The
default value of n does not need to be fixed, but if fixed, the n best scoring TUs are taken into
account. This section describes the RID components instantiated by the FEMsum approaches.
Figure 3.9 shows the modules needed by each RID component.

The LEXICAL CHAINER, described in Section 3.6.1, is used by the LC RID component

3.6 Relevant Information Detector Component 67

RELEVANT

INFORMATION

DETECTOR

unit:

{ SDS , MDS}
query based:

{ Generic , Q}
language:

{ en , sp, ca}
media:

{ ww , ss}
domain:

{ ind ,

jour,scient}

LC RID FE RID PR RID
maxUTs:

{ , N}
rerank UTs:

{ , Rank}

LEXICAL
CHAINER

relations:

{ extrStr+str ,

extrStr}
chains:

{ CN , PN,

CN+PN,

CN+PN+V}
strength:

{ S , SML}

PR

SOFTWARE

TU
RANKING

measure:

{}

SDS FE qMDS FE

FEATURE

EXTRACTOR

DT
FEATURE

EXTR.

SVM
FEATURE

EXTR.

TALP QA
language:

{ en , sp}

JIRS
measure:

{}
language:

{ en , sp}
#UTpassage:

{ 1 , M}

Figure 3.9: Relevant Information Detector instantiated FEMsum component.

68 Overall FEMsum Architecture

instantiated by LCsum FEMsum approach. Moreover, the LEXICAL CHAINER is also used by
the DT FEATURE EXTR, one of the two implementations of the FEATURE EXTRACTOR.
This component is instantiated by both FE RID implementations, SDS FE and qMDS FE,
presented in Section 3.6.2.

The FE RID component is instantiated by the MLsum FEMsum instantiation, but it is
also used in the training process of the Machine Learning (ML) CE components described in
Section 3.7.2. The SDS FE, implemented with the DT FEATURE EXTR, provides a set of
features to represent documents for a generic SDS task, while the qMDS FE, implemented with
the SVM FEATURE EXTR, is oriented to query-focused MDS. The first one is used in the
training process of a Decision Tree (DT) TU classifier and the second one to train a Support
Vector Machine (SVM) TU classifier.

Figure 3.9 also reflects the fact that the third type of RID component, Passage Retrieval (PR)
RID, can be implemented with two different PR SOFTWARE : TALP-QA PR or JIRS PR.
The first one has been instantiated by QAsum and the second one by LEXsum and SEMsum
FEMsum instantiations. It can be observed that, optionally, in the PR RID a maximum number
of relevant TUs can be fixed and a TU RANKING module can be used in addition to the PR
SOFTWARE (see Section 3.6.3 for more details).

3.6.1 Lexical Chain based RID

Lexical Chains try to identify cohesion links between parts of text by identifying relations holding
between their words. Two pieces of text are considered to be lexically related not only if they
use the same words, but also if they use semantically related words. This is a way to obtain
certain structure of a text based on the distribution of its content.

(Hasan 1984) establishes that identity chains contain terms that refer to the same object.
They are created by pronominal cohesion, lexical repetition or instantial equivalence and are
always text-bound, because the relation of coreference can be determined only in the context of
a text. In contrast, similarity chains are not text-bound. Their elements are held together by
semantic bonds obtained through a lexical resource outside the text. These bonds are supra-
textual, with a language-wide validity. The two types of chains are important for cohesion
analysis, however, one of the main advantages of similarity chains over identity ones is that their
implementation is simpler, since they can be computed with no deep text understanding.

Lexical Chains provide a representation of text that has been widely used in a variety of
IR and NLP tasks, from text segmentation (Morris and Hirst 1991; Hearst 1994) to WSD
(Okumura and Honda 1994; Barzilay 1997; Galley and McKeown 2003); term weighting for IR
tasks (Stairmand 1996), topic detection (Lin and Hovy 1997), detection of malapropisms (Hirst
and St-Onge 1997), hypertext generation (Green 1997), detecting topic and sub-topic shifts in
texts (Kozima 1993; Okumura and Honda 1994; Stairmand 1996; Hearst 1997; Ponte and Croft

3.6 Relevant Information Detector Component 69

1997; Reynar 1998; Kan et al. 1998; Beeferman et al. 1999; Choi 2000; Stokes 2004), analysis of
the structure of texts to compute their similarity (Ellman 2000), PR (Mochizuki et al. 2000), QA
(Moldovan and Novischi 2002) and AS (Barzilay 1997; Stokes et al. 2004). For AS, coreference
chains have also been used (Bagga and Baldwin 1998; Baldwin and Morton 1998; Azzam et al.
1999). A detailed overview of approaches to lexical chain identification and use can be found in
(Stokes 2004).

Figure 3.10 shows the different TUs of a Spanish agency news document. Those terms related
with the concept “candidato”10(see Figure 3.11) are emphasized, as well as those related with
the concept “debate”11(see Figure 3.12). These are two sets of lexically related words to be taken
into account as lexical chain candidates when creating similarity chains. On the other hand,
the NE “Vicente Fox” and the noun phrase “candidato del Partido Acción Nacional (PAN) de
México”12 are members of the same identity chain as “Fox”. In case a personal pronoun is used
with “Fox” as a referent, it will be also an identity chain candidate, what implies a previous
step of coreference resolution.

The general procedure for constructing lexical chains usually follows three steps:

1. Select a set of candidate words. To detect chain candidates, the text is preprocessed with
the LP component described in Section 3.4, taking into account the sent representation.

2. For each candidate word, find an appropriate chain relying on a relatedness criterion among
members of the chains. Usually, relatedness of words is determined in terms of the distance
of the path connecting them in WordNet (WN) (or EuroWordNet (EWN) for languages
other than English).

3. If a chain is found, insert the word in the chain and update it accordingly.

Chain candidates are common nouns, proper nouns, named entities, definite noun phrases
and pronouns. No previous WSD is performed. For each chain candidate, three kinds of relations
are considered, as defined by (Barzilay 1997):

Extra-strong between a word and its repetition.
Strong between two words connected by a direct EWN relation.
Medium-strong if the path length between the EWN synsets of the words is longer than
one.

In contrast to (Stokes et al. 2004) and following Barzilay, our algorithm is non-greedy. The
proper sense, or a reduction of the number of possible senses of ambiguous words, is determined

10candidate
11debate
12candidate of the National Action Party (NAP) of Mexico

70 Overall FEMsum Architecture

El conservador Vicente Fox , candidato del Partido Acción Nacional (PAN) de México ,
cedió hoy ante sus rivales , el oficialista Francisco Labastida y el centroizquierdista Cuauhtémoc
Cárdenas, en posponer para el próximo viernes el debate que estaba previsto para esta noche.

En un encuentro público en la casa de campaña de Cárdenas y frente a los representantes
de los medios, los tres candidatos discutieron durante unas dos horas sus propuestas sobre el

debate .
El candidato del PAN insistió reiteradamente en celebrar esta misma noche esta

discusión , mientras que el candidato del Partido Revolucionario Institucional (PRI), Fran-
cisco Labastida, y Cuauhtémoc Cardenas, del Partido de la Revolución Democrática (PRD), pidieron
posponerlo para el viernes a fin de garantizar las condiciones técnicas.

Cárdenas y Labastida calificaron de “superficial”, “fŕıvola”, “caprichosa”, “terquedad” y
“ligereza”, la insistencia de Fox en celebrar esta misma noche el debate , sin garantizar la neu-
tralidad ni la capacidad de difusión a todos los medios.

En este minidebate, los candidatos evitaron ataques personales y se centraron en los
puntos de procedimiento, el formato de la reunión , el tipo de moderadores y su papel, el
sitio y la fecha.

Con la asistencia de más de un centenar de reporteros de diversos medios, los candidatos
presidenciales presentaron sus propuestas y criticaron las de los contrarios .

Al concluir la reunión , en un discurso previamente escrito, Fox acusó a sus
contrincantes de ponerse de acuerdo para boicotear el debate y reiteró su disposición a

discutir abiertamente y negó ser el responsable de no cumplir con el acuerdo previsto desde marzo.
Cárdenas reiteró que no exist́ıan condiciones técnicas para celebrar el debate y ”felicitó” a

Fox por leer un discurso previamente elaborado dirigido a señalar la negativa de los candidatos
del PRD y del PRI.

En esta discusión participó el presidente de la Cámara de la Industria de Radio y Televisión
(CIRT), Joaqúın Vargas, quien argumentó la necesidad de contar con 48 horas para preparar las
condiciones técnicas en la mayoŕıa de los medios de difusión, principalmente la televisión y la radio.

El debate previsto para hoy se canceló el domingo después de que Fox —quien según
la mayoŕıa de los sondeos supera en unos cinco puntos a Labastida— propuso a última hora la

participación de tres personas que hicieran preguntas a los candidatos sobre temas es-
pećıficos, pero la iniciativa la rechazaron sus adversarios.

El 25 de abril pasado, los seis aspirantes a la presidencia participaron en el primer
debate y acordaron que para el segundo sólo acudiŕıan los tres con más posibilidades de ga-

nar las elecciones .
La mayor parte de los especialistas han destacado que las elecciones del 2 de julio serán las

más reñidas y han señalado la posibilidad de un triunfo de la oposición en la historia de México.

candidato , debate Similarity Chains (terms related by EuroWorldNet).
Fox Named Entity Chain. sus Co-Reference Chain.

Figure 3.10: Terms related in an agency news document.

3.6 Relevant Information Detector Component 71

Oposición

Contrario

Contrincante

Adversario

Rival

Members

Partido

Members

Candidato

Member of

Aspirante

Hyponym

Figure 3.11: Terms related with the concept “candidato.”

Common

Hyperonym

Encuentro

Reunión
Asistencia

Debate

Discusión

Hyponym
Moderador

Member of

Ataque

Part of

Participación

Hyponym

Figure 3.12: Terms related with the concept “debate.”

72 Overall FEMsum Architecture

when all words in the document have been processed. So, lexical chain identification performs a
reductive WSD process as well. Once chains are identified, they are scored according to a number
of heuristics: their length, the kind of relation between their words, their starting position within
the text, etc. In our case, the measure of strength can be defined in a way slightly different from
Barzilay’s, chains are classified into Strong, Medium and Light, depending on their score:

τ = µs + 2 · σs

Strong = {c | scorec ≥ τ}
Medium = {c | τ > scorec ≥ τ/2}

Light = {c | τ/2 > scorec}

where µs and σs are the average of the scores of all the chains and the corresponding standard
deviation. In contrast to other approaches where lexical chains are used, if necessary, we con-
sider Medium and Light chains in addition to the typical strong ones. That is specially useful
when dealing with spontaneous speech, due to the fact that Strong chains tend to provide a mis-
representation of the information in a text, because the distribution of the frequency of words
is rather squewed, and only few strong chains are found (see details in Section 5.2.2).

As reflected in Figure 3.9, the LEXICAL CHAINER module can be parameterized to take
into account different WN or EWN relations (Extra-strong and Strong relations or only
Extra-strong). The second parameter indicates the type of chain to be produced: only common
name chains (CN); only proper name chains (PN); CN and PN chains; and CN, PN and V (verb)
chains. And the third one set up the strength measure (only Strong chains (S) or Strong, Medium
and Light (SML)).

The LEXICAL CHAINER adds to each input TU the score of the lexical chains crossing it
as well as the type of lexical chain (Strong, Medium or Light). A new field is added to the lexical
representation of each term to indicate the kind and the score of the corresponding lexical chain.

3.6.2 Feature Extractor RID

The aim of this FE RID instantiation is to represent the text with a set of features. As reflected
in Figure 3.9, two sets of features have been designed, one for generic SDS, SDS FEATURE
EXTR, and the other for query-focused MDS, qMDS FEATURE EXTR. Besides its use in the
RID component, the first set of features, DT FEATURE EXTR, was also used to train a DT
TU classifier and the second one, SVM FEATURE EXTR, to train a SVM TU CLASSIFIER
(see 3.7.2).

The SDS Feature Extr is instantiated as a RID component by MLsum(HL) (see Section 4.2.2),
while qMDS FEATURE EXTR is the RID component of MLsum(MDS,Q) (see Section 6.1.4).
The features extracted by each FE RID are detailed in the following sections.

3.6 Relevant Information Detector Component 73

SDS Feature Extractor

The SDS FEATURE EXTR component has been implemented as a DT FEATURE EXTR to
participate in the DUC 2003 contest with the MLsum(HL) FEMsum approach. The input of
the DT FEATURE EXTR is a set of sentences previously processed by the LP component in
order to obtain the lexical representation described in Section 3.4, sent. The output consists in
the same sentences, now represented as a set of features. As these features have to be used in a
DT algorithm, continuous predictor values were discretized prior to learning.

The discretizing process requires the analysis of the distribution of the TUs of a set of
documents similar to the ones to be processed in the future. As this component was first
implemented to process DUC documents, the 6933 sentences from the 147 DUC 2001 documents
of the corpus created by (Conroy et al. 2001) were used as training data.

To represent a single-document, this RID component computes two types of features. The
first type extracts internal TU properties and the second type extracts similarities between the
TU and the rest of the TUs from the input document. Both of them are described below.

TU internal features include:

Two five-valued features to classify the TU into a qualitative length value: extra-short,
short, mean, long and extra-long. The first feature measures the TU length in number of
words, while the second takes into account the number of characters.

A numeric value indicates the number of strong lexical chains crossing the TU. To compute
this feature, the LEXICAL CHAINER described in the previous section is used.

TU similarity features with the rest of TUs include:

The qualitative length relative to the other TUs of the same document (discretized into 5
intervals, denoting: extra-short, short, mean, long, extra-long TU).

The TU position in document (discretized into 6 intervals).

The number of TUs in the document with null bigram overlap with current TU.

The number of TUs in the document with not null bigram overlap with current TU.

Five numeric features to count the number of TUs in the document that have a degree of
unigram overlap with the current TU within interval Xi–Y i; where i ranges from 1 to 5
(one interval for each feature).

Five numeric features counting the number of TUs in the document with a cosine similarity
with the current TU within interval Xi–Y i; where i ranges from 1 to 5 (one interval for
feature).

74 Overall FEMsum Architecture

Five numeric features counting the number of TUs in the document with a weighted cosine
similarity with the current TU within interval Xi–Y i; where i ranges from 1 to 5 (one
interval for feature).

For the three last features, the training corpus distribution has been studied to establish the
limits of five intervals, containing each interval a similar number of elements.

qMDS Feature Extractor

The qMDS FEATURE EXTR component has been implemented as a SVM FEATURE EXTR
to deal with the query-focused MDS task proposed at DUC 2005.

The objective of the SVM FEATURE EXTR is to represent the TU content from the input
set of documents with respect to the rest of TUs in the set and with respect to a query or a
user information need. Each TU is previously processed using the LP component to be enriched
with lexical, sent, syntactic, sint, and semantic, env, representations.

The features extracted by this FE RID component can be classified into three groups: those
internal to the TUs (sentences in this case), those that capture a similarity metric between the
sentence and the user need, and those that try to relate the cohesion between the sentence and
all the other sentences in the same document or set of documents.

Internal features, those calculated from attributes of the sentences themselves, are the fol-
lowing:

The position of the sentence inside its document.

1
Nd

, where Nd is the number of sentences in the document.

1
Nc

, where Nc is the number of sentences in the set of documents.

Three boolean features indicating whether the sentence contains positive, negative or neu-
tral discourse markers, respectively. For instance, what’s more or above all are positive
discourse markers, indicating relevance, while for example or incidentally indicate lack of
relevance.

Two boolean features indicating whether the sentence contains right-directed discourse
markers (those that affect the relevance of the sentence fragment after the marker, such as
first of all), or discourse markers affecting both the fragment at the right-hand side and
at the left-hand side, such as that’s why (Alonso 2005).

Several boolean features that are evaluated to true if the sentence starts with or contains
a particular word (startsQuote, containsQuote, containsSayVerb) or POS (startsPerson-
alPronoun, startsConjunction, startsDemonstrative, startsDiscourseMarker). This set of
features is intended to detect not relevant sentences.

3.6 Relevant Information Detector Component 75

The total number of NEs included in the sentence, and the number of NEs of each kind
considered (people, organizations, locations and miscellaneous entities).

Two features based on SumBasic score (Nenkova and Vanderwende 2005). This metric is
based on the observation that high-frequency words in document clusters tend to occur
as well in human summaries. Therefore, each sentence receives a weight equal to the
average probability of its words in the cluster. The original SumBasic algorithm provides
an iterative procedure that updates word probabilities as sentences are selected for the
summary. However, as we are evaluating separate sentences but not selecting them for the
summary yet, weights are not updated in our case.

Two different scores are calculated, by estimating word probabilities using only the set of
words in the current document, and using all the words in the cluster.

The following features try to capture the similarity between the sentence and the query:

The percentage of word-stem overlap between each sentence and the query.

Three boolean features indicating whether the sentence contains a subject, object or indi-
rect object dependency in common with the query.

The overlap between the env predicates in the sentence and those in the query.

Two similarity metrics calculated by expanding the query words using the Google search
engine, as described by (Alfonseca et al. 2006) (the two weight functions applied are χ2

and TFIDF). A query is sent to Google search engine as a list of keywords. For each query,
a maximum of one thousand document snippets are downloaded. Then, each snippet is
modeled as a word vector of co-occurrence frequencies. For each one of the themes to be
answered there is a separate vector that contains some relevant words. Next, to obtain
representative co-occurrences, based on a χ2 test performed against the British National
Corpus, only words with χ2 over 0 are considered to be included in the vector-space model
of the main topic of the question. At this point, we have a vector-space model of the main
topic of each one of the questions. Therefore, the cosine similarity is calculated between
each of the sentences in the original documents and the model vectors.

Modified SumFocus score (Vanderwende et al. 2006): this score extends the SumBasic score
(mentioned above) in order to capture the similarity of a sentence to the query. Because
SumBasic is already a feature, only the score obtained by estimating word frequencies
from the topic description is included in this feature.

The third set of features tries to capture the relationships between a sentence and the re-
maining by computing four overlap measures. For each one, the mean, the median, the standard
deviation and the histogram of the overlap distribution are calculated and included as features.

76 Overall FEMsum Architecture

To compute the histogram, first we measure the % of elements shared by the analyzed sentence
and the rest of sentences. The histogram contains four values 13 indicating the percentage of
sentences overlapping with the characterized one.

Word-stem overlap between the sentence and the other sentences in the same document.

Word-stem overlap between the sentence and the other sentences in the same cluster.

Synset overlap between the sentence and the other sentences in the same document.

Synset overlap with other sentences in the same collection.

3.6.3 Passage Retrieval RID

In the Passage Retrieval (PR) RID component, the most relevant TUs are obtained by using a
PR software. As depicted in Figure 3.9, the PR RID can be implemented using two different PR
SOFTWARE, optionally a maximum number of relevant TU can be fixed and a TU RANKING
module can be used in addition to the PR SOFTWARE. The following sections present the PR
SOFTWARE instantiated by QAsum, and the one used by LEXsum and SEMsum, as well as
the TU RANKING module used by SEMsum(reRank).

PR SOFTWARE

Two PR SOFTWARE have been instantiated by several query-focused MDS FEMsum ap-
proaches:

TALP-QA PR is used by QAsum, the first query-focused FEMsum prototype, designed to
participate in DUC 2005 (see the experiments reported in Section 6.1.2). The objective was to
use part of the TALP-QA QA system. This system is in continuous evolution trying to adapt
itself to the specific characteristics of Text REtrieval Conference (TREC) and Cross-Language
Evaluation Forum (CLEF) contests. When QAsum was designed, the last TALP-QA English
prototype had participated in TREC 2005 QA track (Ferrés et al. 2005). This system can
process Spanish and English documents.

The information needed for the TALP-QA PR is basically lexical and syntactic. This implies
that documents and user needs must have been previously processed by a LP component to
obtain the sent and sint representations described in Section 3.4.

The main function of the TALP-QA PR is to extract small text passages that are likely to
contain the correct answer. Document retrieval is performed using the Lucene14 Information

13[0%,25%], [25%, 50%], [50%,75%], [75%, 100%]
14http://jakarta.apache.org/lucene

3.6 Relevant Information Detector Component 77

Retrieval system. Each keyword is assigned a score using a series of heuristics. For example,
a proper noun is assigned a score higher than a common noun, the question focus word (e.g.
”state” in the question ”What state has the most Indians?”) is assigned the lowest score, and
stop words are removed. The passage retrieval algorithm uses a data-driven query relaxation
technique: if too few passages are retrieved, the query is relaxed first by increasing the accepted
keyword proximity and then by discarding the keywords with the lowest score. The contrary
happens when too many passages are extracted.

JIRS PR (Gómez et al. 2005) is used by LEXsum and SEMsum. Both query-focused MDS
FEMsum approaches instantiate Java Information Retrieval System (JIRS)15 as a PR software
to obtain the most relevant TUs with respect to the user need. The JIRS PR only needs
lexical information. The input has to be previously tokenized and lemmatized. Additionally,
the pronominal anaphora has been solved by a LP component to obtain the definitive sent
representation (see Section 3.4).

The JIRS PR software can be instantiated to process Spanish or English documents and
several models can be used to get passages with a high similarity between the largest n-grams
of the question and the ones in the passage: simple n-gram model, term weight n-gram model,
and distance n-gram model.

Apart from the TALP-QA PR or the JIRS PR other IR software can be integrated. IR-n
(Llopis 2003) and an adaptation of (Rojas et al. 2005) has been analyzed. However, those IR
systems has not been instantiated by any of the FEMsum approaches presented in this thesis.

TU RANKING

In addition to the PR SOFTWARE, SEMsum(reRank) and SEMsum(reRank, Update) use a TU
Reranking algorithm to try to give answer to the multiple queries that can be included in a
complex question.

To participate in DUC 2007, we implemented a sentence re-ranking algorithm using the DUC
2006 corpus (Copeck et al. 2006) to empirically tune JIRS options. Precision, Recall, and F-1
measures were used, giving preference to the options with best F-1 measure.

The following options were set:

Retrieval Model. JIRS modes to get passages with a high similarity between the largest
n-grams of the question and the ones in the passage are: simple n-gram model, term weight
n-gram model, and distance n-gram model. The best retrieval model was the JIRS Distance
model with the soft-Inverse Document Frequency (IDF) term weighting (distance of 0.1).
In this model, the weight of a passage is computed using the larger n-gram structure of

15http://jirs.dsic.upv.es/

http://jirs.dsic.upv.es/

78 Overall FEMsum Architecture

the question that can be found in the passage itself and the distances among the different
n-grams of the question found in the passage.

Number of sentences per passage. We experimented with configurations of 1, 3, and 5
sentences per passage, and we obtained the best results with the option of 1 sentence per
passage.

Number of total sentences to retrieve. We tested empirically that the best number of
sentences to retrieve was between 100 and 120 sentences.

Topic fields used to compose the JIRS questions. A retrieval mode that consists in at-
taching the title at the end of each narrative sentence to compose the queries has achieved
better results than the one that uses narrative sentences alone.

To filter “say” sentences. Better results were obtained when applying a filter to remove
all the sentences that had a form of the verb say after a quoted expression. The other
tested filters include: no filtering, filtering sentences with the verb “say”, filtering sentences
with “say” before a quoted expression, and filtering sentences with “say” and a quoted
expression.

The designed sentence ranking algorithm uses as input the retrieved sentences for each query
from JIRS and a threshold N that indicates the maximum number of final sentences to retrieve.
Originally, a sentence pool containing all retrieved sentences is created after removing duplicates.
Each sentence in the pool is scored adding the weight of all the passages in which it appears.
Then, a refinement of the sentence’s score is applied: if two or more sentences are consecutive
in the original document their score is changed by the sum of their original scores.

At this point we want to obtain a balanced set of sentences for each query. For that purpose,
a half of the final N sentences must be selected from the top ranked sentences of each query.
If the number of queries is Q, we will obtain the N/(2*Q) top-ranked sentences for each query,
using as a score the weights computed in the sentence pool.

Finally, the sentences not selected for each query are put in a common pool without adding
repeated sentences. From this pool, the remaining half of N sentences are obtained by selecting
the top-ranked ones, using the weights computed in the previous sentence pool.

3.7 Content Extractor Component

This section presents the different FEMsum CE components. As can be observed in Figure 3.13,
this component has been instantiated as: LC CE, ML CE, QA CE, and SEM CE. Each
instantiation is described in the following sections.

3.7 Content Extractor Component 79

CONTENT

EXTRACTOR

LC CE
genre:

{ ind , jour,

scient}

ML CE QA CE SEM CE
audience:

{ , update}
media restriction:

{ well-written }
content:

{ Generic , Q}DT CE SVM CE
semantic:

{ , SEM}

TALP QA
Answer

Extractor

TU CLASSIFIER Graph-based
algorithm

DT TU
CLASSIF.

SVM TU
CLASSIF.

Figure 3.13: Content Extractor instantiated FEMsum component.

80 Overall FEMsum Architecture

Section 3.7.1 presents the LC CE. The two different Machine Learning (ML) techniques
used to implement the ML CE component are detailed in Section 3.7.2. The first one, DT CE,
uses a DT TU CLASSIF, while the second one, SVM CE, uses a SVM TU CLASSIF.

As reflected in Figure 3.13, the QA CE is implemented with a component of a QA system, the
TALP-QA Answer Extractor (see Section 3.7.3). The SEM CE and the SVM CE use the same
Graph-based algorithm to process TUs semantic information, a component detailed in Section
3.7.4.

The input of the CE component are the set of document TUs previously processed by the LP
and the RID component in order to obtain the text representation required by the instantiated
CE component.

3.7.1 Lexical Chain based CE

The LC CE component extracts the set of summary candidate TUs from the input data. The
input is the sent lexical representation of the TUs enriched with the score of the lexical chains
crossing them as well as the type of lexical chain (Strong, Medium or Light).

Candidate TUs are scored by applying certain heuristic, weighting some aspects of lexical
chains. Following (Barzilay 1997)’s work, two heuristic schemata have been implemented:

Heuristic 1 ranks as most relevant the first TU crossed by a Strong chain.

Heuristic 2 ranks highest the TU crossed by the maximum of Strong chains.

While to exploit the pyramidal organization of newspaper articles, in the journalistic genre
Heuristic 1 is applied by default. In the scientific domain Heuristic 2 is applied by default.

3.7.2 Machine Learning based CE

This CE component envisions the extraction of important TUs as a classification problem, where
a sentence TU is either apt or not suitable for inclusion in a summary. The two implementations
of the ML CE are described below. The first implementation, the DT CE, uses a binary TU
CLASSIFIER, DT TU CLASSIF. The second one, the SVM CE, uses a SVM trained to rank
candidate sentences in order of relevance, SVM TU CLASSIF. As both methods imply supervised
learning a training corpus is required.

Decision Tree CE

The DT CE is implemented by a TU CLASSIFIER, the DT TU CLASSIF. The objective of the
DT TU CLASSIF is to classify TUs as apt to be summary candidates or not, by taking into ac-

3.7 Content Extractor Component 81

count other types of relevant information different from lexical dependency. In the implemented
classifier, this is done by applying Decision Tree (DT).

In the training corpus each of the TUs have been previously classified as belonging to a
summary of the text or not, so that the fact that a TU belongs to a summary can be learned as
a combination of relevant features.

The training corpus consisted of a set of 147 documents with human built extracts, obtained
from the data in DUC 2001. Extractive summaries, covering approximately half of the original
non-extractive summaries distributed as training data, were contributed by (Conroy et al. 2001).
A total of 6,933 sentences were used as examples for training.

Each sentence in this training corpus was represented by using the features presented in
Section 3.6.2 plus the additional feature of belonging or not to the extract (the classification
task is binary). The learning algorithm used was C4.5.

This CE component is instantiated by MLsum(HL). The performance of this FEMsum ap-
proach, when producing 10-word generic SDS, is analyzed in Section 4.2.

Support Vector Machine CE

The SVM CE combines the ranking given by SVM TU CLASSIF with the SEM graph-based
algorithm. As detailed in Section 3.7.4, the SEM graph-based algorithm uses semantic similarities
between TUs to avoid redundancy and to improve cohesion.

The input to the SVM TU CLASSIF are TUs represented by the three groups of features
described in Section 3.6.2. These three types of features are: those extracted from the sentences,
those that capture a similarity metric between the sentence and the topic description, and those
that try to identify cohesive properties between a sentence and all the other sentences in the
same document or set of documents.

To train the Support Vector Machine (SVM), we built a training corpus using the DUC
2006 dataset, including topic descriptions, document clusters, peer and manual summaries, and
the Pyramid evaluations as annotated during the DUC-2006 manual evaluation. From all these
data, the training set is generated in the following way: Sentences in the original documents
are matched with sentences in the summaries as proposed by (Copeck and Szpakowicz 2005).
With this method a certain number of the sentences in a collection of source documents are
characterized according to the Pyramid measure on their suitability to be in a summary of the
collection topic. As detailed in Section 2.3, a set of Summary Content Unit (SCU)s and the
manual summaries on which it is based together constitute a Pyramid. All document sentences
that match a summary sentence containing at least one SCU are extracted and considered as a
positive example. Each sentence is represented with the features detailed in Section 3.6.2. Thus,
the training set contains only positive examples.

82 Overall FEMsum Architecture

In order to train a traditional SVM, both positive and negative examples are necessary. A
possible procedure to train on just positive instances is a One-Class Support Vector Machine
(OCSVM) (Manevitz and Yousef 2001), that calculates a boundary around positive instances.
However, according to (Yu et al. 2002), OCSVMs are prone to underfitting or overfitting
when data is scant (which is the case here), and a simple iterative procedure called Mapping-
Convergence (MC) algorithm can greatly outperform OCSVM (see pseudocode in Figure 3.14).
It starts by identifying a small set of instances that are very dissimilar to positive examples,
called “strong negatives”. Next, at each iteration, a new SVM h′i is trained using the original
positive examples, and negative examples found so far. The set of negative instances is then
extended with the unlabeled instances classified as negative by h′i.

Input: positive examples, POS, unlabeled examples U
Output: hypothesis at each iteration h′1, h

′
2, ..., h

′
k

1. Train h to identify “strong negatives” in U :
N1 := examples from U classified as negative by h
P1 := examples from U classified as positive by h

2. Set NEG := ∅ and i := 1
3. Loop until Ni = ∅,

3.1. NEG := NEG ∪Ni

3.2. Train h′i from POS and NEG

3.3. Classify Pi by h′i:
Ni+1 = examples from Pi classified as negative
Pi+1 = examples from Pi classified as positive

5. Return {h′1, h′2, ..., h′k}

Figure 3.14: Mapping-Convergence algorithm.

3.7.3 Question & Answering System based CE

The QA CE is implemented by some of the modules of the TALP-QA system (Ferrés et al.
2005). This component is instantiated by the QAsum (see Section 6.1.2).

The TALP-QA module used to extract candidate answer TUs is the Answer Extractor. The
input TU information required by the TALP-QA Answer Extractor is: lexical (sent), syntactic
(sint) and semantic (env).

3.7 Content Extractor Component 83

This QA CE implementation consists of two tasks performed in sequence: Candidate Extrac-
tion and Answer Selection. In the first component, all candidate answers, those TUs containing
at least one component of the expected answer type, are extracted from the highest scoring
sentences of the selected passages. The Question Type has been previously extracted from the
question text. Part of the actual TALP-QA categories (see Figure 3.15) were first used in TREC
2003 (Massot et al. 2003). In the second component, the best answer is chosen from the set of
candidates.

abreviation abreviation_expansion

definee definition

event_related_to feature_of_person

howlong_event howlong_object

howmany_objects howmany_people

howmuch_action non_human_actor_of_action

subclass_of synonymous

theme_of_event translation

when_action when_begins

when_person_died where_action

where_location where_organization

where_person_died where_quality

who_action who_person_quality

Figure 3.15: TALP-QA Question Types.

3.7.4 Semantic information based CE

The aim of this component is to use semantic similarities between TUs as input of an iterative
graph-based algorithm to avoid redundancy and obtain a cohesioned text.

The SEM CE instantiation is divided into two modules, the Similarity Matrix Generator
(SMG) and the Candidates Selector (CS). As seen in Figure 3.16, this instantiation requires
document TUs enriched with the env semantic representation. The SMG computes lexico-
semantic similarities between TUs. Then, the CS uses these similarities to prevent redundancy
and to propose the most appropriate TUs to be part of the summary. Next, we describe those
two components.

84 Overall FEMsum Architecture

Selector
Candidates Relevant

Text Units
sim

Generator

Similarity Matrix

SEMANTIC CONTENT EXTRACTOR

sent

env
sint

Figure 3.16: Semantic Content Extractor modules

Similarity Matrix Generator

SEMsum instantiations use similarity or distance between TUs (see Section 6.1.3 and 6.1.5).
The goal of the SMG is to generate a similarity matrix between candidate TUs. The similarity
matrix sim is a real valued n ∗ n matrix where n is the number of TUs and sim(i, j) is the
similarity between TUs i and j. Values range from 0 (absolutely dissimilar) to 1 (identical
TUs). To obtain sim, each TU env is transformed into a labeled directed graph representation
with nodes assigned to positions in the TU, labeled with the corresponding token, and edges
to predicates (a dummy node, 0, is used for representing unary predicates). Only unary and
binary predicates are used. Figure 3.17 is the graph representation of the env in Figure 3.18.

Romano Prodi
1

is
2

prime
4

minister
5 7

Italy

0

which_entity
which_quality

mod mod

entity_has_quality

i_en_proper_person

quality
entity

i_en_country

Figure 3.17: Example of the graph of an env representation

Over this representation, several lexico-semantic similarity measures between TUs have been
built. Each measure combines two components:

The lexical component considers the set of common tokens, i.e. those occurring in both
TUs. The size of this set and the strength of the compatibility links between its members

3.7 Content Extractor Component 85

Romano Prodi1 is2 the3 prime4 minister5 of6 Italy7

i en proper person(1) entity has quality(2) quality(4)
entity(5) i en country(7) mod(5,7)
which entity(2,1) which quality(2,5) mod(5,4)

Figure 3.18: Environment (env) representation of a sentence.

are used for defining the measure. A flexible way of measuring token-level compatibility
has been empirically set, ranging from word-form identity, lemma identity, overlap of EWN
synsets, and approximate string match between NEs.

Maximum compatibility (1) is assigned to identical TUs; lemma identity (e.g. minister
vs. ministers) has a score of 0.8; synonymy has a score computed taking into account
EWN overlap. As no WSD is performed the scores depend on the number of overlapping
synsets and the degree of polysemy of both TUs. For instance, “Romano Prodi” is lexically
compatible with “R. Prodi” with a score of 0.5 and with “Prodi” with a score of 0.4. The
same score is assigned to action-action and location-gentile such as the case of “Italy” and
“Italian”, which are compatible with a score of 0.7. A minimum compatibility threshold
has been defined in order to limit the number of compatible TUs. For our purposes, the
threshold has been empirically set to 0.6.

The semantic component computed over the subgraphs corresponding to the set of lexically
compatible nodes. Four different measures have been defined:

– Strict overlap of unary predicates.

– Strict overlap of binary predicates.

– Loose overlap of unary predicates.

– Loose overlap of binary predicates.

The loose versions allow a relaxed match of predicates by climbing up in the ontology of
predicates described in (Ferrés 2007), e.g. provided that A and B are lexically compatible,
i en city(A) can match i en proper place(B), location(B) or entity(B). Loose overlap produces
a penalty on the score.

Candidate Selector

In order to select summary candidates, three criteria are taken into account: relevance (with
respect to the query or any other previously established criteria), density and antiredundancy.

86 Overall FEMsum Architecture

Input: Sim be the similarity matrix,
Candidates a list of candidate TUs,
Output: Summary an ordered list of TUs to be included in the summary.

1. Set Candidates to the list provided by the RID component.
2. Set Summary to the empty list.
3. Set Sim to the matrix containing the similarity values between

members from Candidates provided by the SMG.
4. Compute for each candidate in Candidates a score that takes into

account the initial relevance score and the values in Sim. The score
used is based on PageRank, as used by (Mihalcea and Tarau 2005),
but without making the distinction between input and output links.

5. Sort Candidates by this score.
6. Append the highest scoring candidate (the head of the list) to the
Summary and remove it from Candidates.

7. In order to prevent content redundancy, the S% most similar TUs to
the selected one (using Sim) are removed as well from Candidates and
the R% least scored are also removed from Candidates to reduce the
search space (1,5% is the default value of both thresholds: S and R).

8. If Candidates is not empty go to 4, otherwise exit.

Figure 3.19: Candidates Selector procedure.

The general CS procedure is described in Figure 3.19. However, to produce update (or just-
the-news) summaries, the SEMsum(Update) approach instantiates this module with a modified
antiredundancy process. A first SEMsum(Update) prototype was designed to participate in the
DUC 2007 update pilot task (see experiments reported in Section 6.2).

The process to produce just-the-news summaries is performed in N iterations, being N

the number of set of documents to be summarized. The set of documents are supposed to be
ordered chronologically. The initial set of sentences are processed in a first iteration following the
general CS procedure. The rest of iterations follow a new procedure assuming that a previous
set of sentences is already know by the user and this set is supposed to be less relevant in the
production of the actual summary.

In addition, after the first iteration an additional antiredundancy step is performed to pre-
vent the duplication of information. In this process sentences having a high overlapping with
the content of previous summaries are removed. To maintain a minimum number of candidate
sentences for performing the CE process two parameters have been defined: the minimum num-
ber of sentences to be selected from each set and a relative threshold defining the percentage
of sentences provided by RID to be selected. These parameters have been empirically set to

3.8 Summary Composer Component 87

10 and 0.5. The minimum number of sentences for CE is set to the maximum of these two
thresholds. The antiredundancy process, thus, removes the redundant sentences, according to
its own threshold, but leaving at least this minimum. The selection process is the same used as
in the general process.

3.8 Summary Composer Component

The input to the SC component is a set of TUs either provided by the RID or the CE compo-
nent. Each TU is scored by relevance, so the input is a list of ranked TUs. As represented in
Figure 3.20, the length in words or the compression degree of the final summary can be set as
parameters.

This section describes the two FEMsum SC components: the BASIC SC and the COMPLEX
SC. The BASIC SC consists in adding the input TUs to the final summary text until reaching
the desired length. So, summary content is selected from a list of TUs ordered by relevance,
until the desired summary size is achieved. The COMPLEX SC is detailed in next section.

3.8.1 Complex SC

As reflected in Figure 3.20, in addition to the BASIC SC, the COMPLEX SC can instantiate
one or more of the modules described in this section: the Sentence Compressor , the Chunk
Extractor , the Antiredundancy or the Reordering.

The main difference among the instantiated COMPLEX SC is the granularity of the units of
the original text to be included in the final summary. For instance, to produce long summaries
from well-written text, QAsum, LEXsum and SEMsum use as TUs complete sentences extracted
from some document of the collection to be summarized. It is possible that TUs suffer some small
changes, that is the case when the anaphora was solved by the LP component (see DUC 2005
participation (Fuentes et al. 2005) as an example in Section 6.1.2). Instead of using complete
sentences, LCsum(DiscStr), LCsum(PostSeg) and MLsum(HL) use chunks of words or clauses.

Sentence Compression

As reflected in Figure 3.20, the Sentence Compression component has been implemented as
the Rhetorical Argumentative Compressor and as the Full Parsing Compressor, both detailed
in this section. The first one requires partial parsing, while full parsing of the TUs is required
by the second one. The Rethorical Argumentative Compressor has been instantiated by LC-
sum(DiscStr), analyzed in Section 4.1.2, and the Full Parsing Compressor by MLsum(HL) (see
Section 4.2).

88 Overall FEMsum Architecture

SUMMARY

COMPOSER

length:

{ words , %comp}

BASIC SC COMPLEX SC

Sentence

Compression

Chunk
Extractor

Antiredundancy TU Reordering

Rethorical
Argumentative

Compressor

Full Parsing
Compressor

Document
Ordering

althaus.etal04
Reordering

Figure 3.20: Summary Composer instantiated FEMsum component.

3.8 Summary Composer Component 89

Rhetorical Argumentative Compressor

Following the approach of Marcu (Marcu 1997c), a partial representation of discourse struc-
ture was obtained by means of the information associated to a DM lexicon for English, Spanish
and Catalan (see (Alonso 2005) Appendix A). In this lexicon, discourse markers are described in
four dimensions: matter, argumentation, structure and syntax. The information stored in this
lexicon was used for identifying inter- and intra-sentential discourse segments and the discursive
relations holding between them.

Two combinations of the descriptive features of discourse markers were exploited:

rhetorical nucleus-satellite relations were identified by the combination of matter and structure
dimensions of discourse markers. This rhetorical information yields a hierarchical structure
of text, so that satellites are subordinated to nuclei and they are accordingly considered
less relevant.

argumentative segments were tagged with their contribution to the progression of the ar-
gumentation via the information in the dimensions of argumentation and structure of
discourse markers.

These features provide information about the structure of discourse that interacts with the
information provided by lexical chains, see Section 4.1.2 for more details.

Full Parsing Compressor

This module applies compression rules to the input TU until achieving the targeted sum-
mary length, trying to preserve informativity. The full parsing of the TU has been previously
performed by the LP component. Compression rules proceed as follows:

1. Find the main verb(s).

2. Take syntactically required arguments of main verb(s): subject and objects, but not lexi-
cally required ones, like collocative or semantic arguments.

3. Take complements of main verb(s) that were necessary from the point of view of truth
value, for example negative particles.

4. Take complements of verbal arguments that may specify their truth value, like lexical
modifiers.

5. Take discursively salient sentence constituents, namely, adjuncts marked by a discursive
particle signaling relevance.

6. Fulfill well-formedness requirements.

7. Discard unused text.

90 Overall FEMsum Architecture

Chunk Extractor

Taking into account the lexical chains found by the LC RID component, this module extracts
windows of n contiguous words (chunks) to form a summary of the targeted size. This SC
instantiation is used in the LCsum(PostSeg) approach.

Chunks are included in the summary using a priority ranking function that tries to capture
both relevance and well-formedness. First, the algorithm selects the chunk with highest priority
that covers the first occurrence of the highest scoring chain. This policy tries to capture the
intuition that the first occurrence of a relevant word introduces the corresponding concept. In
the following steps, the algorithm selects the following candidate chunk with highest priority
whose content does not overlap with that of the already selected chunks, until the number of
selected words is equal or greater than the targeted summary size.

Chunks are ranked by the following criteria (from most to least discriminating):

1. Least internal repetitions (items belonging to the same chain inside a chunk).

2. Highest score summing all covered chains.

3. Highest number of strong lexical chains.

4. Highest number of new chains (not present in already selected chunks).

5. Lowest collocation breakage (sum of the weight, statistically determined with χ2, of all
the collocations the chunk boundaries break).

6. Lowest number of violations on the conditions of well-formedness of chunks: restrictions on
the POS of the starting and final words (it can not start or end with a DM or a conjuction;
it can not end with a determinant or a preposition), breakage of syntactic chunks (as in
item 1a.).

7. Highest rhetorical relevance (sum of the rhetorical relevance of all words in the chunk,
determined by the presence of discourse markers).

8. Highest size suitability (1 for chunks whose addition would give a summary with exactly
the desired size, −1 for those whose addition would leave a gap smaller than the minimum
chunk size).

9. Earliest Starting Document Position.

10. Earliest Ending Document Position.

These criteria are applied in a sequential order trying to determine the priority of the chunks
in a several step strategy: criteria 1 to 4 try to determine regions of relevance within the

3.8 Summary Composer Component 91

document, finding a set of chunks covering relevant text fragments. Criteria 5 and 6 are intended
to refine the selection and to find, among the set of relevant chunks, those which are also
syntactically better-formed. Criteria 7 tries to exploit text coherence. The last three criteria
are aimed to break ties between any remaining candidates, taking into account chunk size and
position.

When one chunk is added to the summary, the score of the lexical chains occurring in the
chunk is reduced to its half. As a result, the scores used in criterion 2 are readjusted for
the following calculation of segments with highest priority, making it more robust against the
redundancy of spontaneous speech.

Antiredundancy

This component is used by the QAsum instantiation to take into account the information already
included in the summary (see details in Section 6.1.2).

The final summary content is selected from the set of candidate TUs, sentences in this case,
by applying the following greedy algorithm:

Firstly, sentences containing answers to the generated questions are considered, sorted by
their score.

Then, the rest of sentences are considered, giving priority at each step to those sentences
that precede or follow a previously selected one.

At each step, the redundancy of the candidate sentence with respect to the previously selected
ones is measured, taking into account the env semantic representation of all sentences. If this
redundancy exceeds a threshold, the sentence is discarded. The redundancy measure currently
used is the fraction of env predicates of the candidate sentence not present in the envs of the
previously selected ones, with respect to the total size of the env of the candidate. The threshold
has been set to 0.5.

This redundancy measure may be modified by another factor, according to the specificity16 of
the desired summary: in the case the summary is asked to be particularly specific, the similarity
between NEs in the sentences is also taken into account. When the summary is required to be
generic, this similarity is not considered in the measure.

Sentences are added until the desired summary size is reached. If all retrieved sentences have
been considered and the size has not been reached, sentences from a back-off summary, generated
using lexical chain information, are incorporated into the summary to complete it. To create
this back-off LC summary, the lexical chains from each document are previously computed using

16DUC 2005 task asked for two different types of summaries: specific and generic

92 Overall FEMsum Architecture

the module described in Section 3.6.1. After that, the first sentence of each document crossed
by a strong lexical chain is taken, until the desired size is reached.

Reordering

The default TU reordering algorithm used by SEMsum consists in selecting the summary TUs
by relevance until reaching the desired summary size. For each selected TU, in our experiments
sentence, it is checked whether the previous sentence in the original document is also a candidate,
in that case, both are added to the summary in the order they appear in the original document.
But any other algorithm could be used, for instance ordering TUs by increasing date of the
original document if available or, as in the case of SEMsum(Update), using the (Althaus et al.
2004) reordering algorithm (see Section 6.2).

The (Althaus et al. 2004) algorithm computes optimal locally coherent discourses, and
approaches the discourse ordering problem as an instance of the Travelling Salesman Problem
and solves this known NP-complete problem efficiently in cases similar to ours using a branch-
and-cut algorithm based on linear programming.

For reordering TUs the algorithm starts with a set of selected TUs, each one owning a score.
The space of the possible solutions is composed by different orderings of this set. So if the size
of the set is n there are permutations (n) = n! different states. Each state consists of a sequence
of TUs: u1, u2, ..., un.

The global coherence of the state can be measured in terms of the coherence of the first TU,
u1, and in terms of the coherence of the transitions from this first TU, u1, to u2, from u2 to u3

and so on. We can define two costs: the initial cost, i.e. the cost of beginning with a specific
TU, u1, and the transition cost, i.e. the cost of following ui by uj . The objective is to get the
sequence u1, u2, ..., un that minimize the following expression:

initial cost(u1) =
n∏

i=2

transition cost(ui−1, ui) (3.1)

So we had to provide the costs of transitions between units (i.e. the cost assigned in terms
of lack of cohesion when a sentence i is followed by a sentence j. We have computed such costs
as the inverse of similarities between the corresponding sentences. The system needs too a cost
of initial position, i.e. the cost of placing sentence i in the first place of the summary. We have
used in this case the inverse of the score assigned to each sentence.

3.9 Implementation FEMsum framework 93

3.9 Implementation FEMsum framework

Once the best configuration for each approach has been studied, the FEMsum instantiation can
be integrated in the general platform for NLP first presented in (Gonzàlez 2004). This platform
uses a client/server architecture. Communication between servers and clients is managed by a
specialized process called MetaServer. The task of the MetaServer is that depicted in Figure 3.21.
This process is responsible for: finding the proper server given a request from a client; activating
the server if there is none of its kind already running; coordinating the sharing of resources (which
becomes sharing of servers); and deactivating servers which are no longer being used.

Figure 3.22 shows a Dialog between a Client that wants to use a LP server and the MetaServer.
The data to process is stored in files in disk, and what is sent in the requests is the location
of this data (file names, see line 6 and 7 in Figure 3.22). The amount of data to process in
NLP applications can be quite big, so working with all data in memory is not always possible.
Intermediate files can be used as traces of the application process.

Figure 3.21: The MetaServer tasks.

This platform includes a set of servers for processing text depending on the language. They
are reusable servers which apply generic NLP procedures to an input text, and which, in turn,
depend on even simpler servers. For instance, as said in previous sections, all FEMsum instanti-
ations need a linguistic processing server suitable for the type of document. The set of attributes
used in the initialization of the LP server (media, domain, TU segmentation, MW level in Fig-
ure 3.23) will be taken into account to request the corresponding servers: Tokenizer, Tagger,

94 Overall FEMsum Architecture

Client Request C: REQ
Type of requested Service C: TASK: LinguisticProcessor

Sevice Initialitation ... C:
MetaServer Request OK M: REQ OK 1

M: PROC 1
Input data file location C: INPUT: /tmp/question.lp

Output data file location C: OUTPUT: /tmp/question.qp
C:
M: PROC WAIT
M: PROC START
M: PROC OK
M:
C: REL 1

Release Service Pipe ... C:
Pipe Released OK M: REL OK

Figure 3.22: Client MetaServer Dialog.

Lemmatizer, Named Entity Recognition and Classification, Semantic Annotator, Segmenter, ...

Every FEMsum instantiation component and component module is converted into a server in
the MetaServer platform, and clients are applications asking servers to process text. Figure 3.23
shows an example of the first level of servers requested to summarize a scientific oral presentation
in English.

The MetaServer has a configuration file where new services have to be included using the
notation in Figure 3.24. Figure 3.25 is an example of the server definitions related with the LP
component designed in Figure 3.4.

The MetaServer architecture allows an easy integration of previously implemented compo-
nents, both if their source code is available or if only a binary is available. Details about this
integration are given in the following section.

3.9.1 Integration from Source Code

If the source code of the application is available, the first step of the adaptation process consists
in identifying those parts of the code that allocate shareable resources, those that process the
input data and generate the output, and those that free the resources.

Then, a new main procedure has to be written, which starts allocating the resources and then
waits for requests from the MetaServer. Every time a request is received, the data processing

3.9 Implementation FEMsum framework 95

my @servers;

push(@servers, $pms->newServer(’LP’,’en’,

PROGR => ’LP’,

MEDIA => ’Voice’,

DOMAIN => ’Scien’,

TUSEGM => ’PostSeg’

MWLEVEL => ’Scien’));

push(@servers, $pms->newServer(’RID’,’en’

PROGR => ’LCRID’));

push(@servers, $pms->newServer(’SC’,’en’

PROGR => ’LCSC’

LENGTH => ’10’));

Figure 3.23: Servers to summarize a scientific oral presentation in English.

[ATTRIBUTE] == [Value] : Required Attribute, and the value has

to be equal (idem for <> != <= >= < >)

[ATTRIBUTE] ?= [Value] : Default Attribute Value.

[ATTRIBUTE] : [Value] : Forced Attribute Value. Accepted only petitions

with this value. Default Value, if this attribute

does not appear in the request.

Figure 3.24: Condition Notation.

part of the program must be run, until the MetaServer requests the server for finalization, in
which case the resources must be freed and the program ended.

The main advantage of this approach is that resource allocation is done only once for all
possible requests, which can improve efficiency. The main difficulty lies in the identification of
relevant parts of the source code and the rewriting of the main program. However, often only
outer levels of the code need to be examined.

96 Overall FEMsum Architecture

<package id="esca-preprocess-1.5" name="esca-preprocess" version="1.5">

<description>

A PreProcessing pipeline for Spanish and Catalan

<person name="Edgar Gonzalez i Pellicer" task="packager"/>

</description>

<dependencies>

<package name="freeling"/>

<package name="abionet"/>

<service>

<feature name="TASK" value="Semantic Annotator"/>

<feature name="LANG" value="es"/>

</service>

<service>

<feature name="TASK" value="Semantic Annotator"/>

<feature name="LANG" value="ca"/>

</service>

</dependencies>

<!-- No properties -->

<services>

<!-- It is a preprocessor for Spanish and Catalan -->

<service>

<conditions>

<feature cond="TASK == LinguisticProcessor"/>

<feature cond="PROGR : esca-preprocess"/>

<or>

<feature cond="LANG == es"/>

<feature cond="LANG == ca"/>

</or>

</conditions>

<exec command="perl preProcess.pl localhost ${System::port} ${LANG}"/>

</service>

</services>

</package>

Figure 3.25: Configuration of a LP server used to process documents in Spanish or Catalan.

3.9 Implementation FEMsum framework 97

3.9.2 Integration from Binaries

If only a binary of the component is available, the only solution is to create a wrapper program.
This program will simply wait for requests from the MetaServer. When it receives one, it will use
the binary to start a new child process of the component, forwarding it the request parameters.
It will then wait for the completion of the child process, to send the response back to the
MetaServer, and lastly start waiting again for the next request.

As these processes will deal mostly with input/output and child process related tasks, script-
ing languages such as Perl are a sensible choice for their writing.

The main drawback of this approach is that, as a new child process has to be spawned for each
request, we cannot fully benefit from the resource reuse and sharing capabilities offered by the
MetaServer. For this reason, even if the same approach can also be used to integrate components
for which the source code is available, adaptation of the source code is more advantageous in
those cases to improve efficiency.

As an example of use, this approach has been used to successfully create servers for the TnT
tagger (Brants 2000) and the Yamcha chunker (Kudo and Matsumoto 2001).

Given that both the new main programs and the wrappers will usually involve a series of com-
mon tasks (such as managing communication with the MetaServer, or obtaining requests from
the input), a library has been created to simplify their development. Ports to several common
programming languages are available, and there are also classes to simplify cross programming
language interfaces (for instance, to encapsulate Prolog code inside a C++ main program, given
that input/output handling is much simpler and more efficient in the latter, while the program
logic may be easier to express in the former).

