

AN OBJECT-ORIENTED APPROACH TO THE
TRANSLATION BETWEEN MOF

METASCHEMAS

APPLICATION TO THE TRANSLATION
BETWEEN UML AND SBVR

RUTH RAVENTÓS PAGÈS

DOCTORAL THESIS

UNIVERSITAT POLITÈCNICA DE CATALUNYA

ADVISOR: ANTONI OLIVÉ RAMON

BARCELONA, 2009

A thesis presented by Ruth Raventós Pagès in partial fulfillment of the requirements for the

degree of Doctor per la Universitat Politècnica de Catalunya

Al Jordi

A la Laia, la Núria, la Maria,
el Pau i els seus avis

Acknowledgements

I would like to express my sincere gratitude to all who have supported and contributed the

achievement of this goal.

First of all, I would like to thank my advisor Dr. Antoni Olivé for the trust he has placed in

me. He, with no doubt, has been the best advisor I could ever have had, and has become a

good friend in whom I will always trust. Working with him has indeed been a great

pleasure. His rigor, guidance, patience and support during our discussions have taught me

how to enjoy researching.

Thanks to all my colleagues in the Grup de Modelització Conceptual, in the Secció de

Sistemes d'Informació at the UPC and in the Information Systems Department at ESADE for

giving me their utmost support.

I am particularly grateful to Dr. Pericles Locopoulos for giving me the opportunity to join

the Manchester University for a three-month period and for receiving me as part of his

team.

Thanks to all the reviewers that have contributed with their comments in different stages

of this research.

I would also like to thank the examiners of the thesis board: Dr. Pericles Loucopoulos, Dr.

Paolo Atzeni, Dr. Martin Gogolla, Dr. Ernest Teniente and Dr. Maria Ribera Sancho for

accepting to be members of this panel.

Thanks to many friends that have always encouraged me to do the thesis and especially to

Alfred and Assumpta, Eduard and Anna, Miquel, Cristina and Jordi.

Finally, to my large family who has also made possible this project. They have supported

me in the tough and happy moments. I would like to thanks to my parents who have been

always a model of how to enjoy life and to my daughters Laia, Núria and Maria and to my

son Pau. They have never missed a chance to remind me what most important thing in my

life is. And above all, to Jorge, is it necessary to say why?

This research has partly been supported by Spain's Ministerio de Ciencia y Tecnología under

project TIN2005-06053 and Spain's Ministerio de Ciencia e Innovación project TIN2008-00444.

IX

Abstract

Since the 1960s, many formal languages have been developed in order to allow software

engineers to specify conceptual models and to design software artifacts. A few of these

languages, such as the Unified Modeling Language (UML), have become widely used

standards. They employ notations and concepts that are not readily understood by

"domain experts," who understand the actual problem domain and are responsible for

finding solutions to problems.

The Object Management Group (OMG) developed the Semantics of Business Vocabulary

and Rules (SBVR) specification as a first step towards providing a language to support the

specification of "business vocabularies and rules." The function of SBVR is to capture

business concepts and business rules in languages that are close enough to ordinary

language, so that business experts can read and write them, and formal enough to capture

the intended semantics and present them in a form that is suitable for engineering the

automation of the rules.

The ultimate goal of business rules approaches is to build software systems directly from

vocabularies and rules. One way of reaching this goal, within the context of model-driven

architecture (MDA), is to transform SBVR models into UML models. OMG also notes the

need for a reverse engineering transformation between UML schemas and SBVR

vocabularies and rules in order to validate UML schemas.

This thesis proposes an automatic approach to translation between UML schemas and

SBVR vocabularies and rules, and vice versa. It consists of the application of a new generic

schema translation approach to the particular case of UML and SBVR.

The main contribution of the generic approach is the extensive use of object-oriented

concepts in the definition of translation mappings, particularly the use of operations (and

their refinements) and invariants, both formalized in the Object Constraint Language

(OCL). Translation mappings can be used to check that two schemas are translations of

each other, and to translate one into the other, in either direction. Translation mappings

are declaratively defined by means of preconditions, postconditions and invariants, and

they can be implemented in any suitable language. The approach leverages the object-

oriented constructs embedded in Meta Object Facility (MOF) metaschemas to achieve the

goals of object-oriented software development in the schema translation problem.

The generic schema translation approach and its application to UML schemas and SBVR

vocabularies and rules is fully implemented in the UML-based Specification Environment

(USE) tool and validated by a case study based on the conceptual schema of the Digital

Bibliography & Library Project (DBLP) system.

XI

Table of contents
Acknowledgements .. VII

Abstract .. IX

Table of contents ... XI

List of Figures ...XV

Acronyms .. XIX

1 Introduction ... 1

1.1 Motivation ... 1
1.2 Problem description ... 3
1.3 Research contributions .. 6
1.4 Implementation and case study... 7
1.5 Structure of the thesis ... 7

2 Schema translations: state of the art .. 11

2.1 Application domain of schema management .. 13
2.1.1 Families of applications that require the support of schema management 13
2.1.2 Common problems to solve in the application domain ... 15
2.2 Features of ad hoc solutions .. 16
2.2.1 Noy classification... 16
2.2.2 Kalfoglou and Schorlemmer classification .. 17
2.2.3 Rahm and Bernstein classification .. 18
2.2.4 Shvaiko and Euzenat classification .. 19
2.2.5 Czarnecki and Helsen classification ... 21
2.2.6 Mens and Van Gorp classification ... 22
2.3 Translation mappings specifications .. 23
2.3.1 Schema morphism expressions ... 24
2.3.2 Schema query assertions ... 24
2.3.3 Logic-based formulas .. 25
2.3.4 Graph transformation rules ... 26
2.3.5 Query/view/transformation (QVT) expressions .. 27
2.3.6 Translation schemas .. 30
2.4 Schema management .. 32
2.4.1 Families of problems ... 32
2.4.2 Model management operators ... 34
2.4.3 Solutions in terms of the application of model management operators ... 37
2.4.4 Implementations of the model management framework ... 38
2.5 Conclusions .. 43

3 A generic object-oriented operation-based approach to the translation between MOF
metaschemas ... 45

3.1 Basic concepts .. 46
3.1.1 Schema and mapping .. 46
3.1.2 Schema units ... 47
3.1.3 Translation mapping ... 50
3.2 Defining the schema units of MOF schemas .. 52
3.2.1 isSchemaUnit() operation .. 52
3.2.2 Predecessors .. 53
3.2.3 Characterization objects .. 55
3.3 Translation mapping expressions .. 58

XII

3.3.1 𝐬𝐢MappingKind .. 59
3.3.2 𝒔𝒋Equivalents... 61
3.3.3 includedIn𝑺𝒋 .. 62
3.3.4 mappedTo𝑺𝒋.. 64
3.3.5 Translation mapping constraints .. 65
3.3.6 Translating schemas .. 66

4 UML metaschema... 69

4.1 DBLP schema: an example of an instance of the UML metaschema ... 70
4.2 Schema units of the UML metaschema ... 71
4.2.1 Class schema unit .. 73
4.2.2 Data type schema unit .. 75
4.2.3 Enumeration schema unit ... 76
4.2.4 Attribute schema unit .. 78
4.2.5 Association schema unit .. 80
4.2.6 Association class schema unit ... 83
4.2.7 Generalization schema unit ... 85
4.2.8 Generalization set schema unit ... 87
4.2.9 Constraint schema unit ... 89

5 SBVR meanings metaschema .. 93

5.1 Overview of SBVR meanings .. 94
5.2 Schema units of the SBVR metaschema .. 98
5.2.1 Object type schema unit .. 99
5.2.2 Value type schema unit ... 101
5.2.3 Individual concept schema unit ... 102
5.2.4 Characteristic schema unit .. 103
5.2.5 Associative and categorization fact type schema units .. 105
5.2.6 Categorization scheme and segmentation schema units .. 109
5.2.7 Reference scheme schema unit ... 111
5.2.8 Structural rule schema unit ... 113
5.2.9 Object Type or Value Type schema unit with a definition ... 131

6 Translation mapping expressions between UML and SBVR meanings .. 137

6.1 umlMappingKind() and sbvrMappingKind() operations .. 139
6.1.1 UML side .. 139
6.1.2 SBVR meanings side .. 140
6.2 sbvrEquivalents() and umlEquivalents() operations ... 148
6.2.1 UML side .. 148
6.2.2 SBVR meanings side .. 170
6.3 includedInUml() operations ... 171
6.3.1 UML side .. 171
6.3.2 SBVR side ... 171
6.4 Translation mapping constraints ... 183
6.5 Translating UML and SBVR meanings schemas ... 184

7 SBVR Structured English representations ... 187

7.1.1 Expressions in SBVR Structured English ... 188
7.1.2 Describing a Vocabulary .. 190
7.2 SBVR Representations .. 191
7.3 newRepresentation() operation ... 192
7.3.1 newRepresentation() of value type and object type ... 193
7.3.2 newRepresentation() of individual concept ... 194
7.3.3 newRepresentation() of characteristic schema unit .. 195
7.3.4 newRepresentation() of associative, is-property-of or partitive fact type schema unit 195

XIII

7.3.5 newRepresentation() of categorization fact type schema unit ... 197
7.3.6 newRepresentation() of categorization schema schema unit ... 197
7.3.7 newRepresentation() of reference scheme.. 198
7.3.8 newRepresentation() of structural rule schema unit ... 199
7.4 vocabularyEntry() operation .. 203
7.5 DBLP vocabulary in SBVR Structured English notation .. 205

8 Contributions and future research .. 213

8.1 Contributions ... 213
8.1.1 A generic object-oriented approach to the translation between MOF metaschemas 213
8.1.2 The application to the translation between UML and SBVR ... 214
8.1.3 The transformation of SBVR to Structured English .. 214
8.2 Future research .. 215
8.2.1 Facilitating the definition of translation mappings ... 215
8.2.2 Defining a generic/super schema .. 215
8.2.3 Translation of instances .. 216
8.2.4 Defining other schema management operators ... 216
8.2.5 Translation of OCL to SBVR ... 216
8.2.6 Translation of behavioral schemas.. 217
8.2.7 Representing UML and SBVR in other languages and notations... 217

References ... 219

Appendix A (Chapter 4): UML metaschema in USE... 227

Appendix B (Chapter 4): DBLP as an instance of UML metaschema ... 235

Appendix C (Chapter 4): methods for creating UML schema units ... 239

Appendix D (Chapter 5): SBVR meanings metaschema in USE.. 247

Appendix E (Chapter 5): DBLP as an instance of SBVR meanings metaschema 255

Appendix F (Chapter 5): methods for creating SBVR meanings schema units 259

Appendix G (Chapter 6): methods to materialize sbvrEquivalents() operations 263

Appendix H (Chapter 6): methods to materialize includedInUml() operations 271

Appendix I (Chapter 7): SBVR Structured English metaschema in USE ... 277

Appendix J (Chapter 7): methods to materialize newRepresentation() operations 279

Appendix K (Chapter 7): DBLP as an instance of SBVR Structured English metaschema 285

XV

List of Figures

Figure 1.1 Thesis organization roadmap .. 8
Figure 2.1 A morphism between a relational table and an XML schema (from Melnik (2004)) 24
Figure 2.2 Example of two mappings specified as GLAVs assertions (from Fuxman et al. (2006)) 25
Figure 2.3 Example of a mapping represented in RGG (from Song, Zhang and Kong (2004)) 27
Figure 2.4 Example of ModelGen by graph transformation rules (from Song, Zhang and Kong (2004)) ... 27
Figure 2.5 Model transformation metamodel MM MMt (from Bézivin et al. (2006)) 30
Figure 2.6 ER2Rel metamodel transformation (from Gogolla et al. (2002)) .. 31
Figure 2.7 The schema transformation problem ... 33
Figure 2.8 The schema integration problem .. 33
Figure 2.9 The schema translation problem .. 33
Figure 2.10 The propagation of changes due to evolution problem .. 34
Figure 2.11 Illustration of Compose ... 35
Figure 2.12 Illustration of Merge ... 36
Figure 2.13 Illustration of Diff .. 36
Figure 2.14 Illustration of ModelGen ... 36
Figure 2.15 Illustration of the propagation of changes due to evolution scenario after the 4

th
 step 38

Figure 2.16 Illustration of the propagation of changes due to evolution scenario from the 5
th

 step 38
Figure 2.17 The structure of the metadictionary (from Atzeni, Capellari and Bernstein (2005)) 40
Figure 2.18 Conceptual modelling languages represented in HDM (from Boyd and McBrien (2005)) 43
Figure 3.1 Fragment of the ER metaschema (a), and an example of one of its instances (b) (Gogolla 2005)

 .. 48
Figure 3.2 Fragment of the Relational metaschema (a), and an example of one of its instances (b)

(Gogolla 2005) .. 49
Figure 3.3 Abstract example of equivalences and inclusions (a), and their application to the schema

examples (b) ... 50
Figure 3.4 Definition of ErElement ... 53
Figure 3.5 Definition of RelationalElement .. 54
Figure 3.6 Characterization object types for the ER metaschema in Figure 3.3 .. 57
Figure 3.7. Characterization object types for the relational metaschema in Figure 3.5 58
Figure 4.1 Structural schema of DBLP .. 71
Figure 4.2 Definition of Element and Element characterization object ... 72
Figure 4.3 Class schema unit .. 74
Figure 4.4 Class schema unit characterization object ClassCh ... 74
Figure 4.5 Data type and primitive type schema units... 75
Figure 4.6 Data type schema unit characterization object DataTypeCh .. 76
Figure 4.7 Enumeration schema unit ... 77
Figure 4.8 Enumeration schema unit characterization object EnumerationCh ... 77
Figure 4.9 Attribute schema unit ... 79
Figure 4.10 Attribute schema unit characterization object PropertyCh .. 80
Figure 4.11 Association schema unit .. 82
Figure 4.12 Association schema unit characterization object AssociationCh .. 82
Figure 4.13 Association class schema unit ... 84
Figure 4.14 Association class schema unit characterization object AssociationClassCh 85
Figure 4.15 Generalization schema unit ... 86
Figure 4.16 Generalization schema unit characterization object GeneralizationCh 87
Figure 4.17 Generalization set schema unit ... 88
Figure 4.18 Generalization set schema unit characterization object GeneralizationSetCh 89
Figure 4.19 Constraint schema unit ... 90
Figure 4.20 Constraint schema unit characterization object ConstraintCh .. 90
Figure 5.1 Fragment of the abstract syntax of the SBVR metamodel .. 95

XVI

Figure 5.2 Example of structural rule as an instance of the SBVR metamodel .. 97
Figure 5.3 Simplified version of the structure of a structural rule ... 97
Figure 5.4 Definition of Meaning and its characterization object MeaningCh .. 98
Figure 5.5 Object type schema unit ... 100
Figure 5.6 Object type and value type schema unit characterization object NounConceptCh 101
Figure 5.7 Value type schema unit. .. 102
Figure 5.8 Individual concept schema unit... 103
Figure 5.9 Individual concept schema unit characterization object IndividualConceptCh 103
Figure 5.10 Characteristic schema unit .. 104
Figure 5.11 Characteristic schema unit characterization object CharacteristicCh 105
Figure 5.12 Associative and categorization fact type schema units ... 108
Figure 5.13 Fact type schema unit characterization object FactTypeCh .. 109
Figure 5.14 Categorization scheme and segmentation schema unit ... 110
Figure 5.15 Categorization scheme and segmentation schema unit characterization object

CategorizationSchemeCh .. 111
Figure 5.16 Reference scheme schema unit .. 112
Figure 5.17 Reference scheme schema unit characterization object ReferenceSchemeCh 113
Figure 5.18 Simplified version of the structure of the "each authorship has exactly one order" structural

rule ... 116
Figure 5.19 Simplified version of the structure of the "each book is an edited book or is an authored

book but not both" structural rule ... 118
Figure 5.20 Simplified version of the structure of the "each book is an authored book or a book chapter

or a journal paper" structural rule.. 119
Figure 5.21 Simplified version of the structure of "each authored publication that is an authored book

neither is a book chapter nor a journal paper" structural rule .. 120
Figure 5.22 Simplified version of the structure of the "each conference edition that is published in a

book series issue neither is published in an edited book nor in a journal issue" structural rule 120
Figure 5.23 StructuralRule schema unit ... 122
Figure 5.24 Atomic formulation ... 122
Figure 5.25 Instantiation formulation .. 122
Figure 5.26 Logical operation ... 123
Figure 5.27 Quantification .. 123
Figure 5.28 Objectification ... 124
Figure 5.29 Structural rule schema unit characterization object StructuralRuleCh 127
Figure 5.30 Simplified version of the object type 'authored publication' .. 133
Figure 5.31 ObjectType and ValueType with closed projection schema units ... 134
Figure 5.32 Object type and value type schema units characterization object NounConceptCh 135
Figure 6.1 Definition of UML schema units including SBVR mapping-dependent operations 138
Figure 6.2 Definition of SBVR schema units including UML mapping dependent operations. 138
Figure 6.3 General form of structural rule representing a multiplicity constraint 141
Figure 6.4 General form of structural rule representing covering and disjointness of a generalization set

with two generalizations .. 142
Figure 6.5 General form of the structural rule representing the covering constraint of a generalization

set ... 143
Figure 6.6 General form of the structural rule partially representing the disjointness constraint of a

generalization set ... 144
Figure 6.7 General form of the structural rule partially representing the XOR constraint 145
Figure 6.8 General form of an object type whose extension is defined as the union of the instances of

other object types .. 146
Figure 6.9 General form of a value type whose extension is defined as the union of the instances of

individual concepts ... 147
Figure 6.10 Example of mapping the abstract class "AuthoredPublication" to SBVR 149
Figure 6.11 Example of mapping the enumeration "Gender" to SBVR .. 152
Figure 6.12 Example of mapping the attribute "conferencePaper" to SBVR ... 153
Figure 6.13 Example of mapping the attribute "acronym" to SBVR .. 154

XVII

Figure 6.14 Example of mapping the association 'publishes' to SBVR .. 157
Figure 6.15. Example of mapping the association class "Editorship" ... 160
Figure 6.16. Example of mapping the generalization relationship between "Book" and "EditedBook" .. 161
Figure 6.17. Example of mapping the "typeOfBook" generalization set .. 162
Figure 6.18. Example of mapping the "typeOfAuthoredPublication" generalization set 163
Figure 6.19. Example of mapping a "XOR" constraint .. 167
Figure 6.20. Example of mapping the "nameIsKey" constraint .. 167
Figure 7.1 SBVR Representations ... 192

XIX

Acronyms

DBLP Digital Bibliography & Library Project

CIM Computation Independent Model

ER Entity-Relationship

MDA Model Driven Architecture

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query/View/Transformation

SBVR Semantics and Business Vocabulary & Rules

UML Unified Modeling Language

USE UML-based Specification Environment tool

XML Extensible Markup Language

1 Introduction

This chapter introduces the research presented in this thesis and its background, explains

the motivation for pursuing this work, provides an overview of the approach taken and

details the structure of the thesis.

1.1 Motivation

Requirements engineering is the branch of software engineering concerned with the real-

world goals for, functions of, and constraints on software systems. It is also concerned

with the relationship of these factors to precise specification of software behavior, and to

their evolution over time and across software families. (Zave 1997)

Requirements engineering is a complex process that usually consists of three phases:

requirements elicitation, requirements specification and requirements validation.

During the requirements elicitation phase, the various parties (e.g., users, designers, and

managers) analyze their particular problems and needs and decide on the configuration of

the system to be built. Needs and goals, defined at the business level, are translated into

business requirements. Those business requirements which are to be solved by the

software system are elicited.

To ensure that the business requirements document is complete and accurate, all

knowledge for operating the organization and dealing with its environment should be

captured in languages (such as ordinary English) that the "domain experts"—e.g.,

healthcare experts, finance experts, transportation experts, business managers, etc.—can

read and write. Moreover, businesses change constantly and new decisions must be made

accordingly in the business environment. Business experts should have mechanisms to

easily incorporate these changes in the business requirements document.

In the requirements specification phase, the system’s functional requirements (i.e., what it

must do) and non-functional requirements (i.e., its global properties) are defined. The

functional requirements are the capabilities and behaviors that must be performed, and

An object-oriented approach to the translation between MOF metaschemas

2

the business rules are what the functional requirement knows—the decisions, guidelines

and controls that are behind the functionality. That is, when defining a functionality,

businesspeople identify the business rules that constrain it. The result of the requirements

specification phase is a set of documents, called specifications, that precisely describe the

system that the users require and that the designers have to design and build (Olivé 2007).

The specification of the functional requirements is formally represented in what is called

the conceptual schema. Conceptual schemas are described in a particular conceptual

modeling language. Nowadays, UML (Rumbaugh, Jacobson and Booch 2004) is the

modeling language that is most commonly used to specify conceptual schemas in the field

of software engineering.

UML and other software languages have been designed for use by software engineers,

whose ultimate goal is to design software artifacts. Consequently, they employ notations

and concepts that are not readily understood by business experts. For example, when

defining the functionalities of a rental car company, the user may identify the business rule

that "each rental authorizes at most three additional drivers" (from the EU-Rent Example

(Object Management Group 2008a)). In UML, a business rule may be specified by a

graphical symbol in a modeling diagram (e.g., the multiplicity symbol) or as a constraint

specified in OCL. For example, the aforementioned business rule of the rental car company

could be described as the multiplicity symbol "0..3" of a member end of the association

between rental and additional driver.

During the requirements validation phase, the quality of the conceptual schema is mainly

determined by its correctness and completeness. A conceptual schema is complete if it

satisfies the following condition:

All relevant general static and dynamic aspects, i.e., all rules, laws, etc., of the universe of

discourse should be described in the conceptual schema. The information system cannot

be held responsible for not meeting those described elsewhere, including in particular

those in application programs. (Griethuysen 1982)

A conceptual schema is correct if the knowledge that it defines is true for the domain and

relevant to the functions that the system must perform (Olivé 2007).

Good communication and understanding between domain experts and software engineers

may be the best way to guarantee a high-quality conceptual schema. For this reason, over

the last two decades, many efforts have been made to create tools that can express

business concepts and business rules in languages that are close enough to ordinary

language, so that business experts can read and write them, and formal enough to capture

the intended semantics and present it in a form that is suitable for engineering the

automation of the rules.

Some approaches to business rules tools represent business rules as sentence templates

(Halle 2001, Morgan 2002, Wan Kadir and Loucopoulos 2003, Ross 2005 and Loucopoulos

and Wan Kadir 2008) that can easily be mapped to ordinary language. Other approaches

represent rules by using mathematical logic, which can easily be mapped to software tools.

Examples include External Rule Language (ERL) (McBrien et al. 1991) and Courteous

1 Introduction

3

Logic Program (CLP) (Grosof, Labrou and Chan 1999), which is encoded using XML to

produce Business Rule Markup Language (BRML). BRML is the predecessor of Rule

Markup Language (RuleML) (Boley, Tabet and Wagner 2001), an XML-based markup

language that permits web-based rule storage, interchange, retrieval and

firing/application.

Recently, the Object Management Group (OMG) published Semantics of Business

Vocabulary and Business Rules (SBVR) v.1.0 (Object Management Group 2008a) as an

Available Specification. It defines the metamodel for documenting the semantics of

business vocabulary, business facts and business rules. SBVR claims to be optimally

conceptualized for businesspeople and already includes predefined alternative, non-

normative notations for expressing concepts and rules by means of English statements

(either in SBVR Structured English or in BRS RuleSpeak (Object Management Group

2008a)). Business rules in SBVR are structured by logical semantic formulations, which

facilitates their automation in software systems.

The ultimate goal of SBVR and other business rules approaches is to build software

systems directly from the vocabulary and business rules specifications (Date 2000).

Before the publication of the SBVR specification, OMG adopted model-driven architecture

(MDA) (Object Management Group 2003), an approach to defining and using models at

different levels of abstraction in software development. MDA specifies three system

viewpoints: a computation-independent viewpoint, a platform-independent viewpoint and

a platform-specific viewpoint. MDA also specifies three default system models

corresponding to the three MDA viewpoints. The computation-independent model (CIM) is

a description of a system based on the computation-independent model. It is assumed that

the primary user of the CIM is the domain practitioner. In fact, SBVR specifies a metamodel

to describe CIMs. A platform-independent model (PIM) is a description of a system from the

platform-independent viewpoint. A PIM describes the conceptual model of the system to

be built. UML is the standard language proposed by OMG to build PIMs. Finally, a platform-

specific model is a description of a system from the platform-specific viewpoint. PSM is a

version of PIM that includes the technical information required to develop the model in a

tool.

Therefore, within the MDA, reaching the ultimate goal of the aforementioned business

rules approaches implies transforming SBVR models into UML models. The need for this

transformation was introduced by the OMG in Annex K of the SBVR specification (OMG

2008a). The same Annex K also explains the need to transform UML models into SBVR

models. The OMG calls this reverse engineering transformation.

The main purpose of this thesis is to provide a translation specification between UML

models and SBVR models and vice versa.

1.2 Problem description

The problem of automatic translation between UML and SBVR can be formulated as a

particular application of a more generic problem called schema translation.

An object-oriented approach to the translation between MOF metaschemas

4

Schema translation has been considered an important practical problem in the fields of

databases and information systems engineering since the mid 1970s (Chen 1976,

Griethuysen (ed.) 1982). The problem is now even more important due to the need for

translation among ontology languages (Concho, Fernandez López and Gómez-Pérez

2003) and for translation among "models" of the OMG's MDA software development

approach (Object Management Group 2003).

Many ad hoc solutions to the schema translation problem have been proposed. A

comprehensive analysis of these solutions is beyond the scope and purpose of this thesis,

but Chapter 2 provides a summary of surveys in (among others) Rahm and Bernstein

(2001), Shvaiko and Euzenat (2005), Czarnecki and Helsen (2006) and Mens and Van Gorp

(2006). Most work on schema translation is currently described within the context of the

model management framework (Bernstein 2003). This framework provides several

generic operators that manage schemas and schema mappings. One of the operators is

ModelGen, whose purpose is to automatically translate a source schema expressed in one

metaschema into an equivalent target schema expressed in a different metaschema, along

with the mapping constraints between the two schemas (Bernstein and Melnik 2007).

Within this framework, a specification of the ModelGen operator would be the solution to

our research goal.

MDM (Atzeni and Torlone 1996) was one of the first generic implementations

of ModelGen, which was followed by MIDST (Model-Independent Schema and Data

Translation) (Atzeni, Capellari and Bernstein 2006). MIDST represents schemas and

metaschemas as instances of the relational metaschema; schema translations are built by

combining elementary translations specified by Datalog rules defined at the metaschema

level. Moreover, MIDST has a superschema and a supermetaschema, which have all the

constructs known to the system. The super metaschema acts as a pivot, so it is sufficient to

have translation rules for each metaschema to and from the supermetaschema. Three

similar approaches have been proposed by Boyd and McBrien (2005), Hainaut (2005) and

Bowers and Delcambre (2006) using the HDM, GER and ULD languages, respectively. None

of these solutions is contextualized in the object-oriented paradigm.

In the context of model-driven architecture (MDA), the OMG has proposed QVT as a family

of languages for representing model-to-model transformations (including translations).

QVT-Relations is used to declaratively specify relationships between MOF metaschemas,

using an approach similar to that of Gogolla (2005) and Bézivin et al. (2006). QVT-

Operational Mappings is used to provide an imperative implementation of those

relationships. Operational Mappings is a new language, although it includes OCL, which is

extended with procedural constructs. The MOMENT-QVT tool is a model-transformation

engine that provides partial support for QVT-Relations (Boronat, Carsí and Ramos 2005b).

As yet there is no tool that provides total support for the QVT-Relations language.

Therefore, in order to build an automatic translation between UML and SBVR, we have

considered several alternatives. One alternative is to build an ad hoc solution. We

discarded this alternative for the same reason given by Atzeni (Atzeni 2007):

1 Introduction

5

A major feature of any significant attempt to the schema translation problem would be

generality: we need approaches that are maintainable and scale.

A second alternative is to adapt an existing generic approach to the particular case of UML

and SBVR. As stated above, in the context of model management, some generic

applications have been developed on relational databases instead of object-oriented

schemas; others focus on translating object-oriented schemas, but use a third language for

the schema-mapping specification between the two schemas. The use of a third language

to represent mappings between two metaschemas adds complexity to the schema

translation problem. Moreover, an in-depth study of such language would be necessary in

order to demonstrate the consistency and correctness of the translations.

A third alternative—the one which is explored in this thesis—is to create a new generic

approach to the schema translation problem. The advantages of this generic approach are

explained in detail in Chapter 3.

Automatic translation between UML and SBVR metamodels is more complex than the

generic schema translation problem for the following reasons:

 UML and SBVR metamodels are very complex structures. The Structure package of

UML includes 55 metaclasses, which are instances of MOF. SBVR includes 109

metaclasses, which are instances of MOF. The specifications of the two metamodels

are described very differently. The UML document first shows the abstract syntax of

the metamodel in UML diagrams and then describes all of the concepts shown in the

diagrams. Each concept is described separately according to a structured format

that includes the following clauses: Heading, Description, Generalizations, Attributes,

Associations, Constraints, Additional operations, Semantics, Semantics variation

points, Notation, Presentation options, Style guidelines, Examples and Changes from

previous UML. The SBVR specification is structured in several vocabularies and

business rules. Within each vocabulary, the concepts are described in accordance

with the non-normative SBVR Structured English notation. In other words, each

vocabulary entry may include the following clauses: Primary Representation,

Definition, Source, Dictionary Basis, General Concept, Concept Type, Necessity,

Possibility, Reference Scheme, Note, Example, Synonym, Synonymous Form, See,

Subject Field and Namespace URI. The complexity of the metamodels and the

documents that describe them makes it more difficult to understand the semantics

of the defined concepts and the establishment of translation mappings between

them.

 The SBVR specification includes, on the one hand, the description of concepts and,

on the other, the description of the representations of concepts. However, the

correspondence between meanings and representations is not always clear. SBVR

proposes SBVR Structured English as a possible notation for the representation, but

this language is not normative and there is no straightforward correspondence

between instances of these representation concepts and the SBVR Structured

English notation. Therefore, in SBVR, in order to represent concepts and business

An object-oriented approach to the translation between MOF metaschemas

6

rules in ordinary English, some constructs and additional operations or conversions

may be needed.

1.3 Research contributions

As stated above, ad hoc solutions and adaptations of generic schema translation

approaches fall short when building an automatic translation between UML and SBVR

models.

This thesis proposes a new generic schema translation approach whose main

characteristics are as follows:

 Metaschemas are represented as instances of the OMG's MOF (Meta Object Facility)

(Object Management Group 2006a);

 Translations are defined in terms of schema units and characterization objects of

such schema units. Schema units are units of knowledge consisting on a set of

schema elements. Characterization objects of schema units roughly correspond to

the "domain value object" in the object-oriented design patterns field. Operations,

hosted in object types, formalized in the OCL language are provided to define the

schema units, the precedence relationship among them and the characterization

objects;

 Elementary translations between schema units are represented by means of

operation postconditions hosted in object types, and formalized in the OCL language

(Object Management Group 2006b);

 The translation relationship between two sets of schema elements that represent

two schema units is split into two simpler parts: one between the schema elements

of one side and the characterization objects of the other side, and one between the

characterization object of the second side and its schema elements; and

 The operation postconditions are also used to check the consistency of the

translations.

The application of the generic schema translation approach to the translation of UML

models to SBVR models and vice versa involves the following contributions:

 Schema units (i.e., the semantic units of knowledge and the precedence relationships

among them) are defined in both UML and SBVR; and

 Schema mapping translation between UML and SBVR is defined in terms of two

operations, equivalents and includedIn, for each schema unit of each metamodel.

Finally, two additional contributions, derived from the problem that there is no

straightforward way to express the instances of the SBVR metamodel in SBVR Structured

English, have also been made:

 A very simple metamodel to support SBVR Structured English notation is defined;

and

1 Introduction

7

 Operations are defined to obtain the instances of this metamodel from the defined

SBVR schema units.

1.4 Implementation and case study

All of the specifications presented in this thesis were validated and implemented in the

UML-based Specification Environment (USE) tool (Gogolla, Büttner and Richters 2007).

USE is a system for the specification of information systems developed by the Database

Systems Group of the Department of Mathematics and Computer Science of the University

of Bremen. It is based on a subset of UML. A USE specification contains a textual

description of a model using features found in UML class diagrams. Expressions written in

OCL are used to specify additional integrity constraints on the model. A model can be

animated to validate the specification against non-formal requirements. System states

(snapshots of a running system) can be created and manipulated during an animation. For

each snapshot, the OCL constraints are automatically checked.

One example has been used throughout this thesis to validate the various proposals. The

example is based on the DBLP Case Study developed by Planes and Olivé (2006). The

DBLP Case Study contains parts of the conceptual schema of the DBLP systems, written in

UML. DBLP, a computer science bibliography website hosted at the University of Trier in

Germany (http://www.informatik.uni-trier.de/~ley/db/) was originally a database and

logic programming bibliography site. The DBLP server provides bibliographic information

on major computer science journals and proceedings. The server initially focused on

Database Systems and Logic Programming (DBLP). Now it is gradually being expanded

towards other fields of computer science. It has recently been suggested that DBLP should

stand for "Digital Bibliography and Library Project." The server, mirrored at five other

websites, indexes more than one million articles and contains several thousand links to

home pages of computer scientists (April 2008).

1.5 Structure of the thesis

Figure 1.1 shows the structure of this thesis. Chapters 2 to 8 are organized as follows:

Chapter 2 examines the state of the art of translation mappings. It illustrates usage

scenarios involving translation between schemas and reviews current surveys that study

existing ad hoc solutions for schema translations. It also reviews the various specifications

of declarative mappings found in existing approaches. Finally, it describes the schema

management approach that has recently emerged as a generic approach to the

manipulation of schemas and mappings.

Chapter 3 presents a new object-oriented operation-based approach to translation

between MOF metaschemas. It defines the schema unit concept. Translation mappings are

defined in terms of schema units. Two small fragments of the ER and Relational

metaschemas are used as running examples in order to illustrate the complete application

of the method.

http://www.informatik.uni-trier.de/~ley/db/

An object-oriented approach to the translation between MOF metaschemas

8

Figure 1.1 Thesis organization roadmap

 Chapter 4 presents the UML metamodel. It begins by showing the DBLP example as an

instance of the metamodel. It then describes its schema units, the precedence

relationships among them and the characterization objects that define them.

Chapter 5 presents the SBVR meanings metamodels. First, it gives a general overview of

the metamodel. Then, as in the previous chapter, it describes its schema units, the

precedence relationships among them and the characterization objects that define them.

Chapter 6 describes the application of the translation approach proposed in Chapter 3 to

the UML and SBVR meanings metaschemas, described in Chapters 4 and 5, respectively.

Appendix G
sbvrEquivalents()
methods

Chapter 1

Introduction

Chapter 3

An object-oriented operation-based
approach to the translation between
MOF metaschemas

Chapter 2

Schema translations: state of the art

Chapter 4

UML
Metaschema

Chapter 5

SBVR meanings
metaschema

Chapter 6

Translation mapping
expressions between
UML and SBVR meanings

Appendix A
UML metaschema
in USE

Appendix D
SBVR meanings
metaschema in USE

Chapter 7

SBVR Structured
English notation

Appendix B
DBLP as an instance
of UML metaschema

Appendix E
DBLP as an instance of
SBVR meanings
metaschema

Appendix C
Methods for creating
UML schema units

Appendix F
Methods for creating
SBVR meanings
schema units

Appendix H
includedInUml()
methods

Appendix J
newRepresentations()
methods

Chapter 8

Contributions and future
research

Appendix I
SBVR Structured English
metaschema in USE

Appendix K
DBLP as an instance of
SBVR structured English
metaschema

1 Introduction

9

This chapter defines the necessary set of operations for translating schema units from

UML to SBVR and vice versa.

Chapter 7 overviews the SBVR Structured English notation and describes the part of SBVR

that refers to representations rather than meanings. This chapter also provides the set of

operations for deriving the instances of SBVR representation from SBVR meanings.

Chapter 8 concludes this thesis by discussing the overall contribution of this research in

the context of related work in this area. In addition, it discusses the limitations of the

approach and points out areas for future research.

Finally, the Appendices (see Figure 1.1) describe the implementation, in USE, of the

specifications of the schemas, metaschemas and operation methods referred to in

Chapters 3 to 7.

2 Schema translations: state of the art

In an effort to investigate the appropriate approach for specifying translation mappings

between SBVR vocabularies and UML models, this chapter reviews the literature on

translation mappings. The need to translate, to transform, to integrate and to exchange

information or knowledge is common to many application contexts. These needs, which

require the manipulation of models and mappings between models, have been studied for

more than three decades. In the database field, the problem of metadata manipulation (i.e.,

manipulation of metaschemas of databases) includes data integration (Batini, Lenzerini

and Navathe 1986), data translation (Shu et al. 1977) and database design (Wiederhold

1977). In website and portal management, metadata is used to generate entire websites

from databases (Fernandez et al. 1998, Mecca et al. 1998). In software engineering,

metaschemas are used to describe the structure, interfaces and behavior of software

components (Object Management Group 2006c). All types of metaschema-related

applications involve the manipulation of schemas and mappings between such schemas.

In current practice, schema translation problems have often been tackled by means of ad

hoc solutions, for example, by writing code for each specific application. Therefore,

solutions may be very different from one another. Nevertheless, they usually divide the

translation problem into two subproblems: (i) the match: how to obtain the translation

mappings between two given schemas, that is, the relationship between the elements of

the two, and (ii) the translation: how to apply the mapping functions in order to actually

translate one schema to another. Several surveys have reviewed existing matching

approaches aimed at solving the match problem, not only for translation purposes but also

for data integration or data exchange. Other surveys have reviewed existing approaches

that perform translations or, more generally, transformations between schemas. The

classification dimensions proposed in all of these surveys give a good overview of the

main features of current ad-hoc solutions related to translation mappings.

Ad hoc solutions are very heavy and hard to maintain, and there is still a compelling need

for a general solution able to handle, in a uniform way, the great diversity of formats and

An object-oriented approach to the translation between MOF metaschemas

12

types of information available (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000,

Bernstein and Melnik 2007).

In this direction, a quite recent approach to the generic manipulation of schemas and

mappings, called schema management1 (Atzeni 2007, Bernstein 2003, Bernstein et al.

2000, Bernstein and Melnik 2007), has been proposed. Its goal is to factor out the

similarities of the metadata problems studied in the literature and to develop a set of high-

level operators that can be utilized in various scenarios. According to Atzeni, Bernstein

and Melnik, among others (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000, Bernstein

and Melnik 2007), five basic operators, known as Match, Compose, Merge, Diff and

SchemaGen, can address the above problems when appropriately combined. In particular,

translation between schemas may be described in terms of two of these generic operators,

Match and SchemaGen. Therefore, in the schema management framework, the translation

from one schema to another consists in the implementation of these two generic

operators: Match, to obtain the mapping between the two metaschemas, and SchemaGen,

to generate the target schema from the source schema.

Still, in ad hoc solutions and schema management, the core problem is the representation

of schema mappings. There is a distinction between engineered mappings between

schemas, which are needed in integration or translation, and approximate mappings,

which are used in web searches and in mining heterogeneous sets of data sources

(Bernstein and Melnik 2007). The former describes the exact equivalence or

correspondence between elements of two different schemas and the latter usually

includes additional attributes that characterize different types of correspondence among

the elements.

The rest of this chapter surveys the literature that inspired the work presented in this

thesis:

 Section 2.1 illustrates usage scenarios that involve translations between schemas

and the common difficulties that arise when trying to solve the problems in said

scenarios.

 Section 2.2 reviews current surveys that describe the features of ad hoc solutions

that specify and/or implement translation mappings. Four surveys focus on

matching between schemas and two surveys focus on translations and

transformations between schemas.

 Section 2.3 describes various specifications of declarative translation mappings (i.e.,

engineered mappings) found in existing approaches.

 Section 2.4 describes the schema management approach: the high-level description

of families of problems, the set of basic high-level operators proposed to solve these

1 This thesis follows the terminology used in Olivé (2007). This terminology is different from that

used by Bernstein & Melnik (2007) and Bézivin et al. (2006), who use the terms model and
model management, respectively, to denote the concepts schema and schema management.

2 Schema translations: state of the art

13

problems, solutions in terms of operators, and examples of existing

implementations.

2.1 Application domain of schema management

This section stresses the importance of, and need for, generic schema translation and, by

extension, schema management. First, it reviews the many usage scenarios that require

the support of schema management by listing the families of applications that support it.

Second, it summarizes the common problems found in such scenarios.

2.1.1 Families of applications that require the support of schema

management

One way to characterize the application domain of schema management is to list the

current categories of products that require the support of schema management. Of the

numerous products in each category, only some examples are cited.

2.1.1.1 CASE and reverse engineering tools

Computer-aided software engineered (CASE) tools are used to assist in the development

and maintenance of software. All aspects of the software-development lifecycle can be

supported by CASE tools, from project management software to tools for business and

requirement analysis, system design, code storage, compilers, test software and others.

They usually include generators of lower-level models, and eventually code, from higher-

level models. The generation of lower-level models from higher-level models involves the

specification of translations between the models. This may also include using reverse

engineering processors to generate higher-level models from code or lower-level models.

Again, this usually involves designing translations between the models, which in turn

requires an explicit representation of mappings. A list of vendors with more than 600

CASE tools is found in Lamb, Scott and Heavey (2005).

2.1.1.2 Extract-transform-load (ETL) tools

Extract-transform-load (ETL) tools (ETL 2007, Kimball, Caserta 2004) extract data from

outside sources, transform it to fit business needs and load it into a database, usually a

data warehouse. ETL tools are also used for integration with legacy systems. The first part

of an ETL process extracts the data from the source schemas. Each separate schema may

be an instance of a different metaschema. The extraction converts the data into a uniform

format, i.e., as an instance of a given schema. The transformation stage applies a series of

rules or functions to the data extracted from the source to derive the data to be loaded to

the end target. The load phase loads the data into the end target, usually the data

warehouse. The functions applied during the transformation stage are the applications of

translation mappings defined between the source metaschema and the data warehouse

metaschema.

An object-oriented approach to the translation between MOF metaschemas

14

2.1.1.3 Message-mapping tools

Message-mapping tools simplify the programming of message translation between

different formats. These are often embedded in message-oriented transactional

middleware, such as enterprise application integration (EAI) environments (Altova 2008,

BEA 2007, Microsoft 2006, Stylus Studio 2008). EAI is the process of linking applications,

such as supply chain management (SCM), customer relationship management (CRM) and

business intelligence (BI) systems, in order to obtain financial and operational competitive

advantages in business. To avoid every application having to convert data to or from every

other application's formats, EAI systems usually stipulate an application-independent (or

common) data format, i.e., a unique schema. The EAI system usually provides a data

transformation service as well, in order to assist in the conversion between application-

specific and common formats.

2.1.1.4 Query mediators to access heterogeneous databases

Query mediators are systems that combine the data residing at different sources and

provide the user with a unified view of these data. This unified view is represented by the

"global schema" and provides a reconciled view of all data, which can then be queried by

the user. In database research, this is called data integration (Lenzerini 2002). In

commercial IT, it is called enterprise information integration (EII) (Halevy et al. 2005) and

exists in many variations, e.g., supporting web services and updates (Carey 2006). There

are also custom implementations for bio-informatics and medical informatics (Davidson et

al. 1999, Louie et al. 2007).

2.1.1.5 Wrapper generation tools

Wrapper generation tools are tools for accessing data sources from different sources and

generating interfaces in a specific format for accessing and supporting the incremental

updating of such sources, for example to produce an object-oriented wrapper for a

relational database (Adya et al. 2007, Hibernate 2007, Oracle 2007) or to produce web

wrappers for web-accessible data sources (Gruser et al. 1998). Unlike query mediators,

wrappers often need to support incremental updates.

2.1.1.6 Graphical query design tools

Graphical query design tools can define a mapping between source schemas (e.g.,

relational databases) and target schemas (e.g., graphical user interfaces) (Bitpipe 2007).

Usually, the source and target have different formats. These tools provide visual design

environments for selecting tables and columns. They automatically build joins and

Transact-SQL statements when the user selects which columns to use.

2.1.1.7 Data translation tools

Data translation tools can move data between different applications (Microsoft 2007). For

commercial applications, their role has been partly subsumed by ETL tools. For design

tools, however, they form a separate product category. For example, mechanical CAD tools

http://en.wikipedia.org/wiki/Supply_Chain_Management
http://en.wikipedia.org/wiki/Customer_Relationship_Management
http://en.wikipedia.org/wiki/Business_Intelligence

2 Schema translations: state of the art

15

need to translate between different geometric coordinate systems, assembly structures,

and data formats (Bloor, Owen 1994).

2.1.2 Common problems to solve in the application domain

All of the aforementioned systems need to transform, integrate and exchange knowledge.

In fact, because systems use different models to handle such knowledge, information

needs to be translated from one to another. The developments in the Internet world have

increased these needs, as it has become possible, at least in principle, to implement

communication between systems at any level, without significant limitations in the

amount of data exchanged or in the length of the interaction.

The major reasons for the complexity of these applications are as follows (Bernstein and

Melnik 2007, Melnik 2004):

 Heterogeneity of representation of a particular domain, which arises because data

sources are independently developed by different people and for different purposes.

The data sources may use different data models, different schemas and different

value encodings.

 Impedance mismatches that arise because the logical schemas required by

applications are different from the physical ones exposed by data sources.

 Potpourri of tools: the solutions are language-specific, i.e., they are developed for

SQL, UML, XML, or RDF and are not easily portable to other domains. For example,

solutions developed for mapping database schemas are difficult to adopt for

mapping websites.

 Insufficient abstraction of mapping metaschemas: mapping between metaschemas

is developed using operations for the manipulation of schemas, not metaschemas.

Such operations typically provide access to the individual elements of metaschemas,

such as the individual attribute definitions of schemas. The programming of

mapping applications with these operations requires a large amount of navigational

code and incurs high development and maintenance costs.

 Unavailability of a general-purpose platform to simplify the development of

mapping tools and applications. The existing general-purpose solutions typically

focus on persistent storage or graphical design environments for metadata artifacts

and do not go far enough to support the developers of metadata applications. In fact,

many of today’s mapping-related tasks are still solved manually. An automated

approach requires too much implementation effort due to the lack of a common

programming platform.

The situation has become even more complicated as the number of data models has

increased: ODMG (Berler et al. 2000), XSD (Peterson et al. (eds.) 2008, Sperberg-McQuen,

Gao and Thompson (eds.) 2008), .NET (Microsoft 2008), .RDF (Becket 2004) and OWL

(McGuiness andHarmelen 2004). Additionally, more programming languages and types of

tools are appearing in the market.

An object-oriented approach to the translation between MOF metaschemas

16

2.2 Features of ad hoc solutions

In recent years, there have been so many different ad hoc approaches to solving the

schema mapping problem and the schema translation problem that several surveys

related thereto have been published. The dimensions proposed to classify the various

approaches give a good overview of the different issues considered in the proposed

solutions.

The surveys of Kalfoglou and Schorlemmer (2003) and Noy (2004) focus on the state

of the art in ontology matching and approaches to integrating ontology-based

information. The survey of Rahm and Bernstein (2001) classifies the schema mapping

applied to database application domains. Shvaiko and Euzenat (2005) add new

dimensions to the classification proposed by Rahm and Bernstein in order to apply it

to information systems and ontologies, but their classification concentrates only on

schema-level matching techniques. Note that all previous surveys focus on solutions to

schema mapping, regardless of whether the mapping is used for integration,

translation or transformation.

The surveys of Czarnecki and Helsen (2006) and Mens and Van Gorp (2006) describe and

classify the existing approaches that specify and implement schema transformation and

schema translation.

2.2.1 Noy classification

In the context of ontology research, Noy (2004) proposes three aspects for the

classification of semantic-integration approaches:

(1) Mapping discovery: How the approach determines which concepts and properties

represent similar notions. Mapping discovery is the major architecture used to find

similarities between ontologies. The following are the two major sets of architectures:

 Using a shared ontology: When the goal of the approach is to facilitate knowledge

sharing, a general upper ontology is used as a reference ontology in the integration

process. This ontology formalizes notions such as processes and events, time and

space, physical objects, and so on. Examples include the Suggested Upper Merged

Ontology (SUMO) (Niles, Pease 2001) and DOLCE (Gangemi et al. 2003).

 Using heuristics and machine-learning: This comprises heuristic-based

approaches or machine learning techniques that use various characteristics of

ontologies (such as their structure, definitions of concepts or instances of classes) to

find mappings.

(2) Representation of mappings: How mappings between ontologies are represented to

enable reasoning. There is a broad spectrum of representations of mappings. The

author discusses the following groups:

 As instances of an ontology of mappings: A mapping between two ontologies

constitutes a set of instances of classes in the mapping ontology and can be used by

2 Schema translations: state of the art

17

applications to translated data from the source ontology to the target. It allows

mechanisms such as the specification of recursive mappings and composed

mappings.

 As a set of bridging axioms in first-order logic: The mappings, expressed as a set

of bridging axioms relating classes and properties of the ontologies, are essentially

translation rules. The rules refer to concepts from source ontologies and specify

how to relate the same concepts in the other ontology. The ontologies mapped with

the bridging axioms can then be treated as a single theory by a theorem prover

optimized for ontology-translation tasks.

 As views over either global or local ontologies: A global ontology is defined to

provide access to local ontologies and the mappings are defined as views over either

the global or the local ontologies. In other words, a predicate from one ontology is

defined as a query (and DL expression) over predicates in another ontology.

(3) Reasoning with mappings: What types of reasoning are involved, once the mappings

are defined. For example, the mappings may be used to perform data translation,

query answering or web-service composition tasks among others.

2.2.2 Kalfoglou and Schorlemmer classification

Kalfoglou and Schorlemmer (2003) classify ontology mapping approaches based on the

type of work the approaches report. They distinguish the following categories:

(1) Frameworks: approaches that are mostly a combination of tools, providing a

methodological approach to mapping; some of them are also based on theoretical

work.

(2) Methods and tools: tools, either stand-alone or embedded in ontology development

environments, and methods used in ontology mapping.

(3) Translators: approaches that translate vocabularies between ontologies that share

the same domain.

(4) Mediators: tools to access, in a uniform view, vocabularies of different ontologies.

(5) Techniques: similar to methods and tools, but not so elaborate or as directly

connected to mapping.

(6) Experience reports: reports on doing large-scale ontology mapping.

(7) Theoretical frameworks: theoretical work that has not yet been exploited by

ontology mapping practitioners.

(8) Surveys: similar to experience reports but more comparative in style.

(9) Examples: a selection of original works that have been reported in the

aforementioned categories.

After describing and showing examples of 35 works, the authors elaborate on important

topics that emerged when examining these works. In particular, they critically review

An object-oriented approach to the translation between MOF metaschemas

18

issues concerned with the relationship between ontology mapping and schema

integration, the normalization of ontologies and the creation of formal instances, the role

of formal theory in support of ontology mapping, the use of heuristics, the use of

articulation and mapping rules, the definition of semantic bridges and the thorny issue of

automated ontology mapping.

2.2.3 Rahm and Bernstein classification

The survey of Rahm and Bernstein (2001) provides a classification, in the context of the

database field, of schema-matching approaches and a comparative review of matching

systems.

Since the implementation of Match may use multiple match algorithms, or matchers, two

subproblems are distinguished: (1) the implementation of individual matchers, each of

which computes a mapping based on a single matching criterion, and (2) the combination

of individual matchers within an integrated hybrid matcher (by using multiple matching

criteria) or a composite matcher (by combining multiple match results produced by

different match algorithms).

For the implementation of individual matchers, in which a mapping is computed based on

a single matching criterion, the following largely-orthogonal classification criteria are

considered:

(1) Kind of information used. Depending on the data that the mapping algorithms

exploit, a matcher may be:

 Schema-level: Only schema information is considered.

 Instance-level matcher: Instances values are considered for the matching.

(2) Granularity of match. Depending on the schema elements or structures considered

for the match, a matcher may be:

 Element-level: Individual schema elements, such as attributes, are analyzed in

isolation, and their relations with other elements are ignored.

 Structure-level: Complex schema structures are considered together for the

mapping.

(3) Approach used on the mapping. Depending on the type of comparisons made

between elements, a matcher may be:

 Linguistic: Names and text are used to find similar schema elements.

 Constraint-based: Constraint information (e.g., data types, value ranges, uniqueness,

optionality, relationship types, keys, cardinalities, etc.) is used to determine the

similarities between elements.

(4) Matching cardinality. Depending on the number of elements of a source related to a

certain number of elements of the target, a matcher may be:

 1:1: One element of a schema matches to one element of the other schema.

2 Schema translations: state of the art

19

 Set-oriented: 1:n, n:1.

 n:m: This cardinality usually requires considering the structural embedding of the

schema elements and thus requires structure-level matching.

(5) Auxiliary information used. The matcher may rely only on the input schemas S1 and

S2 or also on additional information. This additional information may be, among other

things:

 Dictionaries.

 Global schemas.

 Previous matching decisions.

 User input.

A matcher that uses just one approach is unlikely to achieve as many good match

candidates as one that combines several approaches. Hybrid matchers directly combine

several matching approaches to determine match candidates based on multiple criteria or

information sources. A hybrid matcher can offer better performance than the execution of

multiple matchers by reducing the number of passes over the schema. Composite matchers,

on the other hand, combine the results of several independently executed matchers,

including hybrid matchers. This ability to combine matchers makes composite matchers

more flexible than hybrid matchers.

2.2.4 Shvaiko and Euzenat classification

Shvaiko and Euzenat (2005) present a classification of schema/ontology matching

techniques that builds on the work of Rahm and Bernstein (2001). The new criteria

included are based on (i) general properties of matching techniques, (ii) interpretation of

input information, and (iii) the kind of input information.

Their classification of matchers considers three major aspects: (1) granularity, (2) input

interpretation, and (3) the kind of input. Further features considered are the following:

(1) Granularity of matching. As in Rahm and Bernstein (2001), there are two main groups

of matchers:

a. Element-level matching techniques, which compute mapping elements by

analyzing entities in isolation, ignoring their relationships with other entities.

These techniques may be the following:

i. String-based techniques, which are used to match names and descriptions of

schema/ontology entities. This includes name similarity, description similarity

and global namespaces.

ii. Language-based techniques, which can interpret a label as a word or phrase in

some natural language. This includes:

1. Tokenization: Names of entities are parsed in sequences of tokens by a

tokenizer, which recognizes punctuation, cases, blank characters, digits, etc.

An object-oriented approach to the translation between MOF metaschemas

20

2. Lemmatization: The strings underlying tokens are morphologically analyzed

in order to find all their possible basic forms (e.g., KitsKit).

3. Morphological analysis.

4. Elimination: The tokens that are articles, prepositions, conjunctions, etc. are

marked to be discarded.

iii. Constraint-based techniques, which deal with the internal constraints applied

to the definitions of entities, such as types, multiplicity of attributes and keys.

1. Datatype comparison: The various attributes of a class are compared with

regard to the datatypes of their value.

2. Multiplicity comparison: Attribute values are collected by a particular

construction (e.g., set, list, multiset), on which multiplicity constraints are

applied.

iv. Linguistic resources such as common knowledge or domain-specific thesauri,

which are used in order to match words (the names of schema/ontology

entities are considered words of a natural language) based on the linguistic

relations between them (e.g., synonyms, hyponyms).

v. Alignment-reuse techniques, which are an alternative way of exploiting

external resources containing alignments of previously matched

schemas/ontologies.

vi. Upper-level formal ontologies, which are external sources of common

knowledge that are logic-based systems and can be exploited to analyze

interpretations (e.g., SUMO or DOLCE).

b. Structure-level matching techniques, which compute mapping elements by

analyzing entities with their relations.

i. Graph based techniques, which are graph algorithms that consider the input as

labeled graphs. Database schemas, taxonomies and ontologies are viewed as

graph-like structures containing terms and their inter-relationships.

ii. Taxonomy-based techniques, which are also graph algorithms, and which

consider only the specialization relation.

iii. Repositories of structures, which store schemas/ontologies and their

fragments together with the pair wise similarities between them.

iv. Model-based algorithms, which handle input based on its semantic

interpretation. These are well-grounded deductive methods.

(2) Input interpretation. Techniques may generally interpret the input information in

various ways. Matchers may consider:

a. Internal techniques, which use information that comes only with the input

schemas/ontologies. This includes syntactic techniques, which interpret input

2 Schema translations: state of the art

21

based on its sole structure following some clearly stated algorithm, and semantic

techniques, which use some formal semantics (e.g., model-theoretic semantics) to

interpret the input and justify the results.

b. External techniques, which use auxiliary (external) resources or domains and

common knowledge to interpret the input. These techniques do not distinguish

between syntactic or semantic, since a user's input cannot be characterized as

either syntactic or semantic.

(3) Kind of input. Algorithms may use different kinds of data. Three types are considered:

a. Terminological: Strings. Found in the ontology descriptions.

b. Structural: Structures. Found in the ontology descriptions. This requires some

semantic interpretation and usually uses some semantically compliant reason to

deduce the correspondences.

c. Semantics: Models. This includes upper-level formal ontologies, as defined above,

and model-based ones (SAT and DL).

2.2.5 Czarnecki and Helsen classification

Czarnecki and Helsen (2006) propose a model to describe and classify the existing

approaches to schema transformation. In their work, they consider a translation of one

schema to another as a particular type of transformation in which the two schemas are

equivalent and their metaschemas are different. Therefore, the features considered in

transformation approaches may be applied in translation approaches.

The model considers the following features:

(1) Specification representation, which refers to the type of language or mechanism

used to represent the specification of the transformation or matching. Some

approaches express the translation expressions as preconditions and

postconditions in OCL, while others express them in a relational language such as

QVT-Relations, and still others express them as functions in an executable

language.

(2) Transformation rules, which describe the smallest unit of transformation. The

description of the rules includes the definition of the following:

a. Domains: how the domains (i.e., source and target models) are involved in the

transformation, the metamodel, the directionality of rules, the body of the rules,

and the typing of variables, logic and patterns.

b. Syntactic separation of the rules operating on the source and target models.

c. Multidirectionality: the ability to execute a rule in different directions.

d. Application conditions: how a rule is applied.

e. Intermediate structures, such as traceability links, which are necessary for

transformation.

An object-oriented approach to the translation between MOF metaschemas

22

f. Parameterizations, which are used to make transformation rules more reusable.

g. Reflection and aspects, which are supported in the transformations.

(3) Rule application control, which refers to the strategy used to determine the

specific location where a rule is applied within its source scope. Two aspects are

considered:

a. Location determination: The strategy may be deterministic, non-deterministic

or interactive.

b. Rule scheduling: The order is determined for the application of individual rules

are applied. This may vary in four main areas: (i) form (i.e., whether scheduling

can be expressed explicitly or implicitly), (ii) rule selection (i.e., explicit or

nondeterministic), (iii) rule iteration (i.e., whether it includes mechanisms such

as recursion, looping and fixed-point iteration), and (iv) phasing (i.e., whether

the process is organized in phases).

(4) Rule organization: This concerns general structuring issues, such as

modularization and reuse mechanisms.

(5) Source-target relationship: The source and target may be the same model or two

different models.

(6) Incrementality: This refers to the ability to update existing target models based

on changes in the source models. Three cases are considered: (i) target

incrementality or change propagation (i.e., the ability to update the existing target

models based on changes in the source models), (ii) source incrementality (i.e., the

ability to minimize the amount of source that needs to be reexamined by a

transformation when a source is changed), and (iii) preservation of user edits in

the target (i.e., the ability to rerun a transformation on an existing user-modified

target).

(7) Directionality: This describes whether a transformation can be executed in only

one direction or in multiple directions.

(8) Tracing: This describes the mechanisms used to record different aspects of

transformation execution.

2.2.6 Mens and Van Gorp classification

Mens and Van Gorp (2006) propose a taxonomy of model transformation that groups

tools, techniques and formalisms for model transformation based on their common

qualities.

The following features are considered in their classification:

(1) Characteristics of the source and target models, which include: (i) the number of

source and target models, (ii) the technical space determined by the meta-model that

is used, (iii) whether the transformation is endogenous or exogenous, (iv) whether the

2 Schema translations: state of the art

23

transformation is horizontal (at the same level of abstraction) or vertical (at different

levels of abstraction), and (v) whether the transformation is syntactic or semantic.

(2) Characteristics of the model transformation process: (i) the level of automation of

the process, (ii) the complexity of the process, and (iii) the preservation of the source

model in the target model.

(3) Characteristics of the language or transformation tool: (i) whether it accepts

creating/reading/updating/deleting (CRUD) transformations, (ii) whether it allows

suggestions when applying transformations, and (iii) whether it allows the

customization or reuse of transformations.

(4) Characteristics of the language or transformation tool to verify and guarantee

correctness of transformations: (i) whether it includes testing and validation

techniques, (ii) whether it deals with incomplete or inconsistent models, (iii) whether

it allows grouping, composing and decomposing transformations, (iv) whether it

allows genericity of transformations, (v) whether it includes bidirectionality of

transformations, and (vi) whether it supports traceability and change propagation.

(5) Quality requirements for a transformation language or tool: (i) usability and

usefulness, (ii) verbosity versus conciseness, (iii) performance and scalability, (iv)

extensibility, (v) interoperability, (vi) acceptability by user community, and (vii)

standardization.

(6) Characteristics of the mechanisms used for model transformation: whether it

relies on a declarative or operational (or imperative) approach.

2.3 Translation mappings specifications

The core problem in schema translation is the representation of translation mappings.

There is a broad spectrum of representations of translation mappings. A multitude of

mapping languages have been utilized in the literature to address various schema

management scenarios (Benedikt et al. 2003, Bergamaschi, Castano and Vincini 1999,

Bernstein 2003, Buneman, Davidson and Kosky 1998, Claypool 2002, Halevy 2001,

Hainaut 1996, Kementsietsidis, Arenas and Miller 2003, Li, Bohannon and Narayan 2003,

Madhavan, Halevy 2003, Melnik, Rahm and Bernstein 2003, Mitra, Wiederhold and

Kersten 2000, Popa et al. 2002, Pottinger and Bernstein 2003, Papotti and Torlone 2005).

The number of languages is probably matched by the number of data models or schema

languages developed for the same purpose.

In general, a schema mapping is a triple 𝑀 = 𝑆1, 𝑆2, Σ where 𝑆1 is the source schema, 𝑆2

is the target schema and Σ, known as mapping expression, is a set of constraints over 𝑆1

and 𝑆2. An instance of the mapping 𝑀 is a pair <𝑠1 , 𝑠2, > such that 𝑠1 is an instance of 𝑆1, 𝑠2

is an instance of 𝑆2, and 𝑠1, 𝑠2 satisfy all constraints Σ.

The classification of the various schema mapping approaches, summarized in Section 2.2,

shows that mapping representations vary based on various aspects: the purpose of the

mapping, the representation of the source and target schema, the type of language used in

An object-oriented approach to the translation between MOF metaschemas

24

the representation, the kind of information used for the mapping, the granularity of the

match, the cardinality of the match, etc.

The rest of this section describes, in a generic way, some of the most common approaches

to the declarative specification of mappings.

2.3.1 Schema morphism expressions

A schema morphism is the simplest specification of mapping (Melnik 2004, Melnik, Rahm

and Bernstein 2003, Melnik, Rahm and Bernstein 2003). Conceptually, a morphism is a set

of arcs connecting the elements (e.g., relational tables or XML types) of two schemas. A

morphism is clearly a weak representation of a transformation between two models, since

it carries no semantics about the transformation of instances (i.e., there are no

constraints). Still, morphisms are useful in metadata applications that do not require

instance transformations, such as dependency tracking, schema translation (e.g., UML to

IDL or ER to SQL) and impact analysis. Furthermore, morphisms can represent mappings

between different kinds of schemas (e.g., relational and XML), can always be inverted and

composed, and can be easily implemented and manipulated.

Figure 2.1 shows an example of a representation of morphisms between a relational table

and an XML schema. Note that various kinds of schema elements, such as relations or

attributes can participate in a morphism.

Figure 2.1 A morphism between a relational table and an XML schema (from Melnik (2004))

2.3.2 Schema query assertions

An alternative for defining mappings is to consider a mapping a query (e.g., an SQL query)

on the source schema that produces a subset of a target relation. Thus, a mapping defines

one out of possibly many ways of forming target elements. This is the most common type

of mapping used for schema integration (Bergamaschi, Castano and Vincini 1999,

Lenzerini 2002, Miller, Ioannidis and Ramakrishnan 1994), where a global schema is

constructed from many source schemas.

In this context, a data integration system is a triple 𝐺, 𝑆, 𝑀 where 𝐺 is the global schema,

𝑆 is one of the sources schemas, and 𝑀 is the mapping between 𝐺 and 𝑆. Several

approaches are considered to specify the mapping 𝑀 between 𝐺 and 𝑆:

 If the sources are defined in terms of queries formulated over the global schema, the

approach is called source-centric or local-as-view (LAV).

2 Schema translations: state of the art

25

 If the global schema is defined in terms of queries formulated over the sources, the

approach is called global-schema-centric or global-as-view (GAV).

 An approach that combines the above two approaches is called GLAV.

 If the mapping is between sources, without a global schema, the approach is called

peer-to-peer (P2P).

Figure 2.2 Example of two mappings specified as GLAVs assertions (from Fuxman et al. (2006))

Figure 2.2 shows two nested relational schemas. The source schema, proj, is a set of

records with two atomic components, dname (department name) and pname (project

name), and a set-valued component, emps, that represents a (nested) set of employee

records. The target schema is a reorganization of the source: there is, at the top level, the

set of department records, with two nested sets of employee and project records. The

Figure 2.2 also shows two basic mappings to describe the relationship between the source

and target schemas. The first one, m1, is a query that maps the department and project

names in the source to the corresponding elements in the target. The second one, m2, is a

query that maps department and project names and their employees. Correspondences

between schema elements (e.g., dname to dname) are captured by equalities between

such components (e.g., do.dname=p.dname) grouped in the where clause that follows

the exists clause of a mapping.

2.3.3 Logic-based formulas

Logic-based notation is another declarative alternative for specifying mappings (Buneman,

Davidson and Kosky 1998, Calvanese, Giacomo and Lenzerini 2001, Madhavan et al. 2002).

Most ontology mappings are represented by a logic-based language.

An object-oriented approach to the translation between MOF metaschemas

26

In the above example (see Figure 2.2), each mapping may be represented as an implication

between a set of atomic formulas over the source schema and a set of atomic formulas

over the target schema. Each atomic formula is of the form 𝑒(𝑥1 , … , 𝑥𝑛), where 𝑒 denotes a

set and 𝑥1 , … , 𝑥𝑛 are variables. The two mappings, m1 and m2, shown in the example have

the following corresponding formulas (Fuxman et al. 2006):

m1: proj(𝑑, 𝑝, 𝐸𝑠) → dept 𝑑, ! 𝑏, ! 𝐸, ! 𝑃 ∧ 𝑃 ! 𝑥, 𝑝

m2: proj(𝑑, 𝑝, 𝐸𝑠) ∧ 𝐸𝑠 𝑒, 𝑠 → dept 𝑑, ! 𝑏, ! 𝐸, ! 𝑃 ∧ 𝐸𝑠 𝑒, 𝑠, ! 𝑃′ ∧ 𝑃′(! 𝑥) ∧ 𝑃′(𝑥, 𝑝)

For each formula, the variables on the left of the implication are assumed to be universally

quantified. The variables on the right that do not appear on the left are assumed to be

existentially quantified. For clarity, the quantifiers are omitted and there is a question

mark in front of the first occurrence of an existentially quantified variable. To illustrate, in

m2, the variable 𝐸𝑠 denotes the nested set of employee records (inside a tuple in the top-

level set proj). The variables 𝐸, 𝑃 and 𝑃' are also set variables, but existentially

quantified. The variables 𝑏 (for budget) and 𝑥 (project id) are existentially

quantified as well (but atomic). The meaning of m2 is as follows: for every source tuple

(𝑑, 𝑝, 𝐸𝑠) in proj, and for every tuple 𝑒, 𝑠 in the set 𝐸𝑠 , there must exist four tuples in the

target as follows. First, there must be a tuple 𝑑, 𝑏, 𝐸, 𝑃 in dept, where 𝑏 is some

“unknown” budget, 𝐸 identifies a set of employee records, and 𝑃 identifies a set of project

records. Then, there must exist a tuple 𝑒, 𝑠, 𝑃′ in 𝐸, where 𝑃′ identifies a set of project

IDs. Furthermore, there must exist a tuple (𝑥) in 𝑃′, where 𝑥 is an “unknown” project ID.

Finally, there must exist a tuple (𝑥, 𝑝) in the aforementioned set 𝑃, where 𝑥 is the same

project ID used in 𝑃′.

2.3.4 Graph transformation rules

Graph transformation rules are a visual representation alternative for schema mappings

(Boyd and McBrien 2005, Grunske, Geiger and Lawley 2005, Song, Zhang and Kong 2004,

Vara et al. 2007). Schemas may be represented as graphs. A graph transformation rule

𝑝 = 𝐺𝐿𝐻𝑆 , 𝐺𝑅𝐻𝑆 consists of two directed typed graphs 𝐺𝐿𝐻𝑆 and 𝐺𝑅𝐻𝑆 , which are called the

left-hand side and right-hand side of 𝑝.

Song, Zhang and Kong (2004) represent management operators based on graph

transformation. Their approach is based on the reserved graph grammar (RGG) formalism

(Zhang and Zhang 1997). The RGG formalism is expressed in terms of node-edge diagrams.

A node is organized into a two-level hierarchy. A large rectangle is the first level, called a

super-vertex, with small embedded rectangles as the second level, called vertices. Edges are

used to denote relationships between nodes. An RGG consists of a set of graph grammar

rules, also called productions, each having two graphs (the left graph and the right graph).

The RGG offers a translation mechanism, i.e., graph transformation rules can specify an

input graph of a different graph.

Figure 2.3 shows an example of a mapping represented in RGG and Figure 2.4 shows an

example of ModelGen by graph transformation rules.

2 Schema translations: state of the art

27

Figure 2.3 Example of a mapping represented in RGG (from Song, Zhang and Kong (2004))

Figure 2.4 Example of ModelGen by graph transformation rules (from Song, Zhang and Kong
(2004))

2.3.5 Query/view/transformation (QVT) expressions

QVT is a family of languages for describing model transformations (Object Management

Group 2007a), including schema translation mappings. QVT defines a standard way to

transform source schemas into target schemas, which are instances of metaschemas that

should conform to an arbitrary MOF 2.0 metametaschema.

The QVT language integrates the OCL 2.0 standard and extends it to imperative OCL.

Additionally, QVT defines three domain specific languages named Relations, Core and

Operational Mappings. These languages are organized in a layered architecture. Relations

An object-oriented approach to the translation between MOF metaschemas

28

and Core are declarative languages at two different levels of abstraction, with a normative

mapping between them. The Relations language has a graphical concrete syntax, it

supports complex object pattern matching, and implicitly creates trace classes and their

instances to record what occurred during a transformation execution. Relations can assert

that other relations also hold between particular model elements matched by their

patterns. The Core language is a small model/language, which only supports pattern

matching over a flat set of variables by evaluating conditions over those variables against a

set of models. It treats all of the model elements of the source, target and trace models

symmetrically. The QVT/OperationalMapping language is an imperative language that

extends both QVT/Relations and QVT/Core. The syntax of the QVT/OperationalMappings

language provides constructs commonly found in imperative languages (e.g., loops,

conditions, etc.).

A translation declaration specifies two parameters for holding the metaschemas involved

in the translation. The parameters are types over the appropriate metaschemas. The

execution direction is not fixed at translation definition, which means that both

metaschemas involved could be source and target metaschemas and vice versa.

Each translation mapping is represented as a relation. A relation is defined by the

declaration of two or more domains and a pair of when and where predicates. For example:

relation ClassToTable

{

 checkonly domain uml c:Class

 {namespace=p:Package{}, kind='Persistent', name=cn}

 checkonly domain rdbms: t:Table {schema=s:Schema{}, name=cn}

 when {

 PackageToSchema(p,s);

 }

 where {

 AttributeToColumn(c,t);

 }

}

A domain is a distinguished typed variable that can be matched in a model of a given

model type. A domain declares a pattern, which is bound with elements from the model to

which the domain is bound. Such patterns consist of a variable and a type declaration,

which itself may specify some of the properties of that type. A relation can be viewed as a

graph of object nodes, their properties and association links originating from an instance

of the domain's type.

A domain may be invoked for enforcement or for checkonly. Enforcement of a domain is

equivalent to selecting such a domain as the target. The target model may be empty or

may contain existing model elements. The execution of the translation of a relation should

proceed by first checking whether the relation holds and, if the check fails, by attempting

to make the relation hold by creating, deleting or modifying only the target model. A

domain is invoked checkonly to check the consistency of both models, i.e., to check that

each model is the translation of the other.

2 Schema translations: state of the art

29

A when clause specifies the conditions under which the relationship needs to hold. A where

clause specifies the condition that must be satisfied by all elements participating in the

relation, and it may constrain any of the variables in the relation and its domains. The

when and where clauses can contain arbitrary OCL, but are typically expected to contain (if

anything) statements about relations satisfied by variables of the domain patterns. Thus,

the relation R holds if, for every match of the first domain, there exists a valid match of the

second domain such that the where clause holds. The when clause "specifies the conditions

under which the relationship needs to hold." At first sight, both the when clause and the

where clause appear to impose extra conditions on valid matches of bindings, thus forming

an intersection of relations. Operationally, the difference between the two is that the

variables in the when clause "are already bound" "at the time the relation is invoked," and

that the conditions in the where clause will be satisfied at the end of the invoked relation.

Since this difference between the two clauses is not relational, in order to guarantee such

executability the expressions occurring in a relation are required to satisfy the following

conditions:

 It should be possible to organize the expressions that occur in the when clause, the

source domains and the where clause into a sequential order that contains only the

following kinds of expressions:

a. An expression of the form: <object>.<property> = <variable>

Where <variable> is a free variable and <object> is either a variable bound to an

object template expression of an opposite domain pattern or a variable that gets a

binding from a preceding expression in the expression order. This expression

provides a binding for the variable <variable>.

b. An expression of the form: <object>.<property> = <expression>

Where <object> is either a variable bound to an object template expression of a

domain pattern or a variable that gets a binding from a preceding expression in the

expression order. There are no free variable occurrences in <expression> (variable

occurrences, if any, should all have been bound in the preceding expressions).

c. No other expression has free variable occurrences (all of their variable

occurrences should have been bound in the preceding expressions).

 It should be possible to organize the expressions that occur in the target domain,

into a sequential order that contains only the following kinds of expressions:

a. An expression of the form: <object>.<property> = <expression>

Where <object> is either a variable bound to an object template expression of the

domain pattern or a variable that gets a binding from a preceding expression in the

expression order. There are no free variable occurrences in <expression> (variable

occurrences, if any, should all have been bound in the preceding expressions).

b. No other expression has free variable occurrences (all of their variable

occurrences should have been bound in the preceding expressions).

An object-oriented approach to the translation between MOF metaschemas

30

2.3.6 Translation schemas2

An alternative for specifiying schema translation problems is defined in Bézivin et al.

(2006). In this approach, translation mappings can be abstracted as being translation

schemas. A translation schema is nothing more than an ordinary, simple metaschema that

includes the source schema, the target schema and the translation mapping expressions

between the two (the set of constraints that must be satisfied when two schemas are

translations of each other). The basic idea of translation is presented in Figure 2.5

(bottom), where a translation operation Mt takes a schema Ma as the source schema and

produces a schema Mb as the target schema. This operation Mt is probably the most

important operation in model engineering. Being models, Ma and Mb conform to

metamodels MMa and MMb. Usually, the translation Mt has complete knowledge of the

source metaschema MMa and the target metaschema MMb. Furthermore, the

metaschemas MMa and MMb conform to a metametaschema in this figure, OMG’s MOF

which in turn conforms to itself.

Figure 2.5 Model transformation metamodel MM MMt (from Bézivin et al. (2006))

One of the advantages of this representation is that translation schemas may be seen as

translations in multiple directions. This is based on the use of direction-free minimal MOF

language features: classes, associations, attributes and invariants. Another advantage is

that translation schemas provide uniformity between the schema description language

and the language for the translations. Additionally, the uniformity of the schema and

translation language also allows for higher-order translations, i.e., translations that work

on translations. It also provides the possibility of rewriting translation schemas exactly as

if they were ordinary schemas, so refactorings and improvements for general schemas and

UML schemas would be applicable. Moreover, standard translation schemas can be

validated and checked with standard UML and OCL validation tools.

2 Called transformation models in Bézivin et al. (2006)

2 Schema translations: state of the art

31

2.3.6.1 Example: ER2Rel

Gogolla (2005) and Gogolla et al. (2002) specify the translation between the ER

metaschema and the Relational metaschema. The method describes in UML and OCL the

ER and Rel metaschemas, i.e., as instances of the MOF metametaschema. The two

metaschemas separate the syntax from the semantics part of the two schemas. The

description of the syntax of the ER metaschemas includes classes for ER schemas, entities

and relationships and the description of the semantics introduces classes for ER states,

instances and links. The connection between syntax and semantics is established by

associations explaining that syntactical objects are interpreted by corresponding semantic

objects. The RE metaschema is described similarly.

Translations between the two languages, as shown in Figure 2.6, are reflected by two

associations, namely ErSchema2RelDBSchema and ErState2RelDBState. An ER schema is

linked to the Relational database schema that represents the translated schema. Each ER

state is associated with the Relational database state representing the same information.

Figure 2.6 ER2Rel metamodel transformation (from Gogolla et al. (2002))

The translation class may directly access the source and target translation schemas.

Therefore, semantic properties of the translation are formulated in OCL constraints. For

example, the constraint that states that for every entity in the ErSchema there is a

RelSchema having the same name and attributes with the same properties (i.e., name,

DataType and key property) is represented in OCL as follows:

context self:Er2Rel_Trans inv forEntityExistsOneRelSchema:

self.relDBSchema.relSchema -> one(rl|

 e.name = rl.name and

 e.attribute -> forAll(ea| rl.attribute->one(ra|

 ea.name = ra.name and ea.dataType = ra.dataType and

 ea.isKey = ra.isKey))))

The ER2Rel transformation model was validated in the OCL tool USE (Gogolla, Büttner and

Richters 2007).

An object-oriented approach to the translation between MOF metaschemas

32

2.4 Schema management

When used to solve all the common problems introduced in Section 2.1, ad hoc approaches

are not very flexible, clearly very heavy, and hard to maintain. Therefore, a major feature

of any significant approach to the problem would be generality: approaches that are

maintainable and scalable. Generality requires high-level descriptions of families of

problems (not just individual problems) and solutions.

Schema management (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000, Bernstein, Halevy

and Pottinger 2000, Bernstein and Melnik 2007, Boronat, Carsí and Ramos 2006, Melnik 2004)

is an emerging approach to common problems that arise when managing schemas and

mappings. It is based on the representation and management of schemas and mappings

between them. The basic idea is to provide a set of operators that are specified in a generic

way — that is, independently of any specific schema — to manage schemas and mappings.

Obviously, solutions specified in terms of such operators are not easy to implement.

Indeed, a lot of recent research has been devoted to both the precise definition and

implementation of the various operators and to the actual clarification of the features of

the mapping definition languages.

The rest of this section is organized as follows. First, it describes the families of problems

that arise in schema management. Secondly, it reviews a basic set of schema management

operators described in the literature. Thirdly, it describes how solutions to two of the

families of problems are expressed in terms of such operators. Finally, it briefly presents

several examples of approaches or prototypes by implementing, fully or partially, the

schema management framework.

2.4.1 Families of problems

Schema management groups most of the common problems found in the tools defined in

Section 2.1 into four high-level families of problems: (1) schema transformation, (2)

schema integration, (3) schema translation, and (4) propagation of changes between

schemas due to evolution.

2.4.1.1 Schema transformation

The problem of schema transformation may be defined as follows:

Given a schema 𝑆1, instance of a metaschema 𝑀𝑆1, the goal of schema transformation, also

known as schema refactoring, is to obtain a schema 𝑆1′ that represents the same

knowledge as 𝑆1 and is of "better quality" (see Figure 2.7). A variant of the schema

transformation problem occurs when the schema 𝑆1 includes instances. In that case, the

goal is also to "update" the instances of the target schema.

2 Schema translations: state of the art

33

Figure 2.7 The schema transformation problem

2.4.1.2 Schema integration

The main objective of schema integration is the construction of a unified schema from a

set of independently developed schemas. That is, given two schemas 𝑆1 and 𝑆2 both

instances of a metaschema 𝑀𝑆, the objective of schema integration is to obtain a third

schema 𝑆3, usually called the global schema, which expresses all the knowledge of 𝑆1 and

𝑆2 (see Figure 2.8).

Figure 2.8 The schema integration problem

Many authors consider that schema integration is intended to merge schemas that are

instances of the same metaschema. Others consider the alternative of merging schemas

that are instances of different metaschemas.

2.4.1.3 Schema translation

Schema translation is defined as follows: given a schema 𝑆1, instance of a metaschema

𝑀𝑆1, and a metaschema 𝑀𝑆2, different from 𝑀𝑆1, the goal of schema translation is to

obtain a schema 𝑆2, such that it is an instance of 𝑀𝑆2, with both schemas representing the

same knowledge. A variant of this problem occurs when the schema 𝑆1 includes instances

(data). In that case, the goal is to generate the instance of 𝑆2 that map to the instances of 𝑆1

(see Figure 2.9).

Figure 2.9 The schema translation problem

MS1

S1

MS1

S1 S1'

Schema Transformation

TransformedTo

equivalents

Schema Integration

MS

S1 S2

MS

S1 S2

S3
includedIn includedIn

MS1 MS2

S1

MS1 MS2

S1 S2

Schema Translation

equivalents

An object-oriented approach to the translation between MOF metaschemas

34

2.4.1.4 Propagation of changes due to evolution

In software engineering, CASE tools are used to generate (translate) lower-level models,

and eventually code, from higher-level models. Analogously, reverse engineering tools are

used to generate (translate) higher-level models from code or lower-level models. In this

context, any evolution or change in a schema must be propagated to the translated

schema.

The problem of propagation of changes due to evolution is defined as follows: given two

schemas 𝑆1 and 𝑆2, both instances of the metaschemas 𝑀𝑆1 and 𝑀𝑆2, respectively, such

that 𝑆2 is a translation of 𝑆1, and 𝑆1 evolves to 𝑆1′, the goal is to obtain, incrementally, from

𝑆2 , the target schema 𝑆2′, which is an instance of 𝑀𝑆2 and a translation of 𝑆1
′ (see Figure

2.10). A variant of this problem occurs when the schemas 𝑆1 and 𝑆2 include instances

(data). In that case, the goal is to "update" the instances of 𝑆2 accordingly.

Figure 2.10 The propagation of changes due to evolution problem

2.4.2 Model management operators

In order to solve the aforementioned families of problems, schema management proposes

to define schema management operators (named model management operators by Melnik

(2004)) that take schemas and mappings as input and produce schemas and mappings as

outputs.

The rest of this section provides formal definitions of model (schema), mapping and five

basic operators, based on the work of Melnik et al. (Melnik 2004, Melnik et al. 2005). Note

that the rest of this section uses the terms model and model management operator to

denote the concepts of schema and schema management operator.

According to Melnik, a model 𝑀 is a valid set of instances and a mapping is a relation on

instances. A binary mapping is a mapping that holds between two models. In general, a

mapping is an arbitrary binary relation on instances, which may be total, partial,

functional, surjective, etc.

Formally, a model management operator is an n-ary predicate on schemas and mappings.

The schema management operators follow the following property:

Operator closure: Let ℒ be a language for specifying schemas and mappings, and let 𝜃 be a

model management operator. ℒ is closed under 𝜃 if, given any inputs to 𝜃 in ℒ, the outputs

can also be expressed in ℒ.

MS1 MS2

Change Propagation

due to Evolution

S1 S2

S1'

equivalents

EvolvedTo

MS1 MS2

S1 S2

S1'

equivalents

EvolvedTo

S2'

EvolvedTo

equivalents

2 Schema translations: state of the art

35

Given two models, 𝑚1 and 𝑚2, and the mapping between them, 𝑚𝑎𝑝, the standard

algebraic definitions necessary to define the operators are as follows:

 𝑚1 × 𝑚2 =df 𝑥, 𝑦 𝑥 ∈ 𝑚1 ∧ 𝑦 ∈ 𝑚2}

 Invert(𝑚𝑎𝑝) =df 𝑦, 𝑥 𝑥, 𝑦 ∈ 𝑚𝑎𝑝}

 Domain(𝑚𝑎𝑝) =df 𝑥 ∃𝑦 ∶ 𝑥, 𝑦 ∈ 𝑚𝑎𝑝}

 Range(𝑚𝑎𝑝) =df Domain(Invert(𝑚𝑎𝑝))

 Id(𝑚) =df 𝑥, 𝑥 𝑥 ∈ 𝑚}

The following well-known properties hold:

 Domain(Id(m)) = m

 Invert(Invert(𝑚𝑎𝑝)) = 𝑚𝑎𝑝

A basic set of model management operators proposed in the literature is described below:

2.4.2.1 Match

Given two models 𝑚1 and 𝑚2, the operator returns a mapping, 𝑚𝑎𝑝, that holds between

the two models, denoted map = Match(𝑚1, 𝑚2). The operator Match inherently does not

have formal semantics. It gives the relationship between two models in a particular

application context. This relationship can sometimes be discovered semi-automatically

(Bernstein et al. 2000), but Match ultimately depends on human feedback and hence may

be partial or even inaccurate.

2.4.2.2 Compose

Given three models 𝑚1, 𝑚2 and 𝑚3 and two mappings, 𝑚𝑎𝑝1−2, between 𝑚1 and 𝑚2, and

𝑚𝑎𝑝2−3 between 𝑚2 and 𝑚3, the composed mapping between 𝑚𝑎𝑝1−2 and 𝑚𝑎𝑝2−3 is

defined as follows (see Figure 2.11):

𝑚𝑎𝑝1−2 ∘ 𝑚𝑎𝑝2−3 =df 𝑥, 𝑧 ∃𝑦 ∶ (𝑥, 𝑦) ∈ 𝑚𝑎𝑝1−2 ∧ 𝑦, 𝑧 ∈ 𝑚𝑎𝑝2−3}

The associative property holds:

 𝑚𝑎𝑝1−2 ∘ (𝑚𝑎𝑝2−3 ∘ 𝑚𝑎𝑝3−4) = (𝑚𝑎𝑝1−2 ∘ 𝑚𝑎𝑝2−3) ∘ 𝑚𝑎𝑝3−4

 Figure 2.11 Illustration of Compose

An object-oriented approach to the translation between MOF metaschemas

36

2.4.2.3 Merge

Given two models 𝑚1 and 𝑚2 and the mapping between them, 𝑚𝑎𝑝1−2 the operator Merge

gives the triple formed by a third model, 𝑚3, and the mappings between 𝑚1and 𝑚2 and

between 𝑚2 and 𝑚3 (see Figure 2.12):

 𝑚3 , 𝑚𝑎𝑝3−1 , 𝑚𝑎𝑝3−2 = Merge(𝑚1 , 𝑚2 , 𝑚𝑎𝑝1−2) holds only if:

 𝑚𝑎𝑝3−1 and 𝑚𝑎𝑝3−2 are (possibly partial) surjective functions onto 𝑚1 and 𝑚2,

respectively.

 𝑚𝑎𝑝1−2 = Invert(𝑚𝑎𝑝3−1) ∘ 𝑚𝑎𝑝3−2.

 𝑚3 = Domain(𝑚𝑎𝑝3−1) ⋃Domain(𝑚𝑎𝑝3−2).

The first condition states that 𝑚𝑎𝑝3−1 and 𝑚𝑎𝑝3−2 are views on 𝑚3 .

Figure 2.12 Illustration of Merge

2.4.2.4 Diff

Given two models 𝑚1 and 𝑚2 , and the mapping between them, 𝑚𝑎𝑝1−2:

𝑚3 = Diff(𝑚1 , 𝑚𝑎𝑝1−2) is the submodel of 𝑚1 that does not participate in the mapping

(see Figure 2.13).

Figure 2.13 Illustration of Diff

2.4.2.5 ModelGen

Given the model 𝑚1 of a metamodel 𝑀𝑀1 and a different metamodel, 𝑀𝑀2:

𝑚2 = ModelGen(𝑚1 , 𝑀𝑀2), where 𝑚2 is an instance of 𝑀𝑀2 and corresponds to (is a

translation of) 𝑚1 (see Figure 2.14).

Figure 2.14 Illustration of ModelGen

m3

m1
m2map

1-2

map
3-1

merged schema

map
3-2

Invert(map
3-1

)

m1
m2map

1-2

m3

MM1 MM2

m
1 m

2

map
1-2

2 Schema translations: state of the art

37

Atzeni (2007) extends ModelGen to the data level, such that given also a database 𝐷1 over

the mode 𝑚1, a corresponding database 𝐷2, instance of the model 𝑚2, is generated.

2.4.3 Solutions in terms of the application of model management operators

In this section, solutions to schema translation and change propagation due to evolution

problems are defined in terms of the generic operators defined above. These solutions are

mainly based on the work of Bernstein, Atzeni and Melnik, among others (Atzeni 2007,

Bernstein 2003, Bernstein et al. 2000, Bernstein, Halevy and Pottinger 2000, Bernstein and

Melnik 2007, Boronat, Carsí and Ramos 2006, Melnik 2004, Melnik et al. 2005). Note that

this section uses the terms model and model management operator to denote the concepts

schema and schema management operator.

The generic problem of model translation, defined below, can be solved by directly

applying the ModelGen operator:

Given a model 𝑚1 of a metamodel 𝑀𝑀1, and a different metamodel, 𝑀𝑀2, find the model

𝑚2 of the metamodel 𝑀𝑀2 that is equivalent to 𝑚1, with the following extension: if 𝑚1 has

a set of instances, 𝐷1, find also the set of instances of 𝑚2, 𝐷2, that contains the same

information as 𝐷1.

1. 𝑚2 = ModelGen(𝑚1 , 𝑀𝑀2) — where 𝑚2 is an instance of 𝑀𝑀2, equivalent to 𝑚1

2.4.3.1 Propagation of change due to evolution: solution in terms of model

management operators

The generic problem of propagation of changes due to the evolution of a model is defined

as follows:

Given a model 𝑚1, instance of a metamodel 𝑀𝑀1, and a model 𝑚2, instance of a metamodel

𝑀𝑀2, such that 𝑚2 is a translation of 𝑚1, and 𝑚1 evolves to 𝑚1′, the goal is to obtain,

incrementally from 𝑚2 the model 𝑚2′ that is a translation of 𝑚1′.

One solution in terms of the generic operators may be the following (see Figure 2.15):

1. 𝑚𝑎𝑝1−1′ = Match(𝑚1 , 𝑚1′), where 𝑚𝑎𝑝1−1′ is the mapping between 𝑚1 and 𝑚1′

(note that only the elements of 𝑚1′ that are not changed are mapped)

2. 𝑚𝑎𝑝1′−1 = Match(𝑚1′ , 𝑚1), where 𝑚𝑎𝑝1′−1 is the mapping between 𝑚1′ and 𝑚1

(note that only the elements of 𝑚1′ that are not changed are mapped)

3. 𝑚𝑎𝑝1′−2 = 𝑚𝑎𝑝1′−1 ∘ 𝑚𝑎𝑝1−2, where 𝑚𝑎𝑝1′−2 is the mapping between 𝑚1′ and

𝑚2 (some of the elements of 𝑚1′ may not have a mapping in 𝑚𝑎𝑝1′−2)

4. 𝑚𝑎𝑝2−1′ = 𝑚𝑎𝑝2−1 ∘ 𝑚𝑎𝑝1−1′ , where 𝑚𝑎𝑝2−1′ is the mapping between 𝑚2 and

𝑚1′ (some of the elements of 𝑚2 may not have a mapping in 𝑚𝑎𝑝2−1′)

Some elements of 𝑚2 may be "orphans," i.e., they are not incident in 𝑚𝑎𝑝1′ −2.

An object-oriented approach to the translation between MOF metaschemas

38

Figure 2.15 Illustration of the propagation of changes due to evolution scenario after the 4th step

Now, to proceed to eliminate the "orphans," first, the difference between 𝑚2 and 𝑚1′ is

calculated, and then these orphans are eliminated from 𝑚2 (see Figure 2.16):

5. 𝐷𝑖𝑚1′ 𝑚2 , = Diff(𝑚1′ 𝑚𝑎𝑝1′ −2), where 𝐷𝑖𝑚1′ 𝑚2, are the set of elements of 𝑚1′ that

are not mapped in 𝑚2

6. 𝑁𝑒𝑤𝑚2 = ModelGen(𝐷𝑖𝑚1′ 𝑚2, 𝑀𝑀2)

7. 𝐷𝑖𝑚2𝑚1′ , = Diff(𝑚2 𝑚𝑎𝑝2−1′), where 𝐷𝑖𝑚2𝑚1′ , are the set of elements of 𝑚2 that

are not mapped in 𝑚1′

8. 𝑚2′ = 𝑚2 + 𝑁𝑒𝑤𝑚2 − 𝐷𝑖𝑚2𝑚1′

Figure 2.16 Illustration of the propagation of changes due to evolution scenario from the 5th step

2.4.4 Implementations of the model management framework

The following subsections review some prototypes that implement, partially or totally, a

model management framework:

2.4.4.1 Rondo3

Melnik, Rahm and Bernstein, in (Melnik, Rahm and Bernstein 2003), describe an

implementation of a model management prototype called Rondo. This prototype supports

3 Rondo: a musical work that returns to its main theme a number of times (Melnik, Rahm and

Bernstein 2003).

MM1 MM2

m
1

m
2

m
1'

map
1-2

EvolvedTo

map
1-1'

map
1'-1

map
1'-2

map
2'-1

.

MM1 MM2

m
1

m
2

m
1'

map
1-2

EvolvedTo

map
1-1'

map
1'-1

map
1'-2

map
2'-1

Dim
1'
m

2 Newm
2

Dim
2
m

1

' m
2'

2 Schema translations: state of the art

39

the execution of model management scripts that are written using high-level operators,

which manipulate models and mappings as first-class objects. A script is a set of steps that

may require the intervention of a human engineer; an example of script is the solution

described in Section 2.4.3.1 for the propagation of changes due to the evolution problem in

terms of the generic operators. Rondo implements all the operators described above

except ModelGen and offers a graphical user interface for displaying and editing

morphisms. A morphism is the simplest specification of mapping, shown as a set of lines

connecting two elements of two models (Section 2.3.1 describes morphism in more detail).

In the implementation, every intermediate result of a script can be examined and adjusted

by a human engineer using a graphical tool. Rondo supports several schema languages,

including relational and XML schemas; morphisms; and selectors, a set of schema elements

that make it possible to directly apply operations, with the certainty that they will produce

well-formed schemas (e.g., a table with its keys).

The central component of its architecture is an interpreter that executes scripts. It

includes an interpreter that is run from the command line or invoked programmatically by

external applications and tools. Its main task is to orchestrate the data flow between the

operators. The operators can be defined either by providing a native implementation, or

by means of schema management scripts. Schemas, morphisms and selectors are

represented as structured objects in a common meta-meta-schema and can be stored in a

DBMS or file system. The operators are defined in terms of transformations of these

structured objects: schema, selector and morphism.

2.4.4.2 Model-independent schema and data translation (MIDST)

Atzeni et al., in Atzeni, Cappellari and Bernstein (2006), Atzeni, Cappellari and Gianforme

(2007) and Atzeni, Cappellari, Torlone, Bernstein and Gianforme (2008) describe model-

independent schema and data translation (MIDST), an implementation of the schema

management operators, including SchemaGen4, which translates schemas and their

instances from one schema to another.

Schemas and mappings are represented in accordance with the MDM proposal (Atzeni and

Torlone 1996). The basic idea is that "constructs" (e.g., class, association, etc) in

metaschemas are rather similar. Therefore, in MDM, a metaschema is defined by a set of

generic (i.e., model-independent) metaconstructs: lexical, abstract, aggregation,

generalization and function. Each metaschema is defined by its constructs and the

metaconstructs they refer to. For example, an abstract corresponds to a class in UML and

to a table with its keys in a relational schema; likewise, a function from lexical to abstract

corresponds to an attribute of a class in UML and to a column in a relational schema. MDM

also introduces the concept of supermetaschema, a metaschema that has constructs

corresponding to all the metaconstructs known to the system. Thus, each metaschema is a

4 Called ModelGen in Atzeni, Cappellari & Bernstein (2006) and Atzeni, Cappellari and Gianforme

(2007).

An object-oriented approach to the translation between MOF metaschemas

40

specialization of the supermetaschema and a schema in any metaschema is a schema in

the supermetaschema. The translation of a schema from one metaschema to another is

defined in terms of translations over the metaconstructs. The supermetaschema acts as a

"pivot" metaschema, with each metaschema translated to and from the supermetaschema.

Moreover, since every schema in any metaschema is an instance of the supermetaschema,

a translation is performed by eliminating constructs not allowed in the target

metaschema, and possibly introducing new constructs that are allowed.

MIDST includes the following features:

 A dictionary that includes three parts: (i) the meta level, which contains the

description of metaschemas and the structure of the metalevel (shown in Figure

2.17) and includes three metaelements: construct, reference and property; (ii) the

schema level, which contains the description of schemas; and (iii) the data level,

which contains data for the various schemas.

 The elementary translations are also visible and independent of the engine that

executes them. They are implemented by rules in a Datalog variant with Skolem

functions.

 The translations at the data level are also written in Datalog and are generated

almost automatically from the rules for schema translation.

 Mappings between source and target schemas and data are generated, as a by-

product, by the materialization of Skolem functions in the dictionary.

Figure 2.17 The structure of the metadictionary (from Atzeni, Capellari and Bernstein (2005))

2.4.4.3 Bernstein, Melnik and Mork prototype for interactive schema and data

translation

Bernstein, Melnik and Mork (2005) demonstrate a prototype that translates schemas from

a source metaschema to a target metaschema. The prototype is integrated with Microsoft

Visual Studio 2005 to generate relational schemas from an object-oriented design.

ID
Name

0,N 1,1

Construct

ID
Name

Reference

0,N0,N

1,11,1

ID
Name

Property

IsLexical

2 Schema translations: state of the art

41

The system translates schemas by first transforming the source metaschema 𝑆 into a

representation of 𝑆0 in a universal metaschema, like the MDM introduced above (Atzeni,

Torlone 1996). A sequence of rule-based transformations then eliminates from 𝑆0 all

modeling constructs that are absent from the target metaschema, producing in 𝑛 steps a

schema 𝑆𝑛 . Each transformation takes, as input, the current snapshot 𝑆𝑖 of the schema and

produces, as output, schema 𝑆𝑖+1 and the mapping 𝑚𝑖+1 between 𝑆𝑖 and 𝑆𝑖+1. The final

mapping 𝑚 between 𝑆0 and 𝑆𝑛 is obtained by composing the intermediate mappings as

𝑚 = 𝑚1 ∘ 𝑚2 ∘ … ∘ 𝑚𝑛 . Finally, 𝑆𝑛 is cast into the target metaschema, thereby producing

the output schema 𝑆′.

The prototype generates instance-level mappings, interactive editing, a general

mechanism for dealing with inheritance, and integration with a commercial product

featuring a high-quality user interface. Instance-level mappings are computed by

composing (Melnik 2004) the elementary data transformations produced upon

eliminating each successive modeling construct.

This prototype focuses on flexible mapping of inheritance hierarchies and the incremental

regeneration of mappings after the source schema is modified. In constrast, MIDST,

introduced in the previous subsection, is driven by a relational dictionary of schemas,

models and translation rules.

2.4.4.4 Papotti and Torlone prototype for translations through XML conversions

Papotti and Torlone (2005) and Papotti and Torlone (2007), present an approach to the

translation of web data between heterogeneous formats. The approach refers to an

extension of the SchemaGen (ModelGen) operation in that it also translates schema

instances. Translations operate over XML representations of schemas and instances and

consist of a number of steps: (i) the source schema and its instances are converted to plain

XML; (ii) the XML schema is translated into an instance of a supermetaschema expressed

in an XML-based syntax, similar to the MDM introduced above (Atzeni and Torlone 1996);

(iii) the supermetaschema is restructured by translating primitives used in the source

metaschema that are not allowed in the target metaschemas; the output of this operation

is a schema of the supermetaschema that only uses constructs allowed in the target

metaschemas; accordingly, the set of instances are translated into the format coherent

with the schema; and (iv) the schema is renamed using the syntax of the target

metaschema and finally both the schema and the set of instances are deserialized and

delivered to the target system.

Step (iii) is the crucial point of the translation procedure: it takes as input a set of

instances and its schema and transforms them into a format suitable for the target

metaschema. Since this operation occurs within the supermetaschema, where each

primitive represents a class of constructs from different metaschemas, "generic"

transformations that are independent of the particular pair of metaschemas can be

applied. It follows that it is sufficient to predefine a number of basic transformation that

can be composed to build complex translations.

An object-oriented approach to the translation between MOF metaschemas

42

Additionally, Papotti and Torlone (2007) define several properties that characterize the

correctness, the consistency, the effectiveness and the efficiency of model translations.

2.4.4.5 MOdel manageMENT (MOMENT)

Boronat, Carsí and Ramos (2005a) and Boronat, Carsí and Ramos (2006), describe a

framework, called MOMENT (MOdel manageMENT), that is embedded in the Eclipse

platform and provides a set of generic operators for dealing with schemas through the

Eclipse Modeling Framework (EMF) (Eclipse 2008). Algebra of schema management

operators has been specified generically by using the Maude algebraic specification

formalism. In MOMENT, a schema transformation can be applied to several source

schemas, which may or may not conform the same metaschema. It generates one target

schema and a set of traceability schemas. A traceability schema contains a set of traces

that relate the elements of the source schema to the elements of the target schema,

indicating which transformation rule has been applied to each source element. To apply a

transformation to one or more schemas in MOMENT, two criteria must be met:

 The mappings between metaschemas must be defined as schemas of the QVT

Relations metaschemas.

 The translation must be invoked by indicating the actual schemas to be transformed

in the SchemaGen operator.

The same authors, in Boronat, Carsí and Ramos (2006), focus on the design,

implementation and execution of the SchemaGen operator, which has two formal

parameters: the symbol that represents the name of the translation and a polymorphic list

of parameters for the translation. The result of the operator is a tuple consisting of the

resulting target schema and traceability schemas. There is one traceability schema for

each pair (source schema, target schema).

2.4.4.6 The transformational approach to database engineering

The transformational approach developed by Hainaut (2006) is also based on the ground

that all transformations, included inter-model transformations, in the fragment of a single

model may be studied. The approach defines the Generic Entity-Relationship Model (GER)

which is an extended Entity-relationship model that includes, among others, the concepts

of schema, entity type, domain attribute, relationship type, keys, as well as various

constraints. In GER, a schema is a description of data structures.

Similar to previous approaches, a translation between two schemas involves, basically, the

following: (i) the source schema is transformed into GER (the pivot model); (ii) the

resulting schema is transformed through a set of rules; and (iii) the transformed schema

obtained is expressed into the target model.

The approach defines the set of expressions to express the ER and Relational Models in

GER. Additionally, it defines several families of GER transformations: mutation

transformations, other elementary transformations, compound transformations,

predicate-driven transformations and model driven transformations. About thirty

2 Schema translations: state of the art

43

operators have been implemented in DB-MAIN, a programmable CASE environment,

which has proved sufficient to process schemas in a dozen operational models.

2.4.4.7 An intermediate hypergraph data model

Poulovassilis and McBrien (1998), McBrien and Poulovassilis (1999) and Boyd and

McBrien (2005) describe a transformation approach using an special type of graphs, styled

intermediate hypergraph data model (IHDM). The data aspects of a conceptual modeling

language, such as ER, relational, UML or ORM are modeled as nodes, edges and some

predefined constraints (inclusion, exclusion, union, mandatory, unique and reflexive) in

HDMs. An example is shown in Figure 2.18.

The approach defines a set of mapping rules to exactly define how the higher level

modeling languages are converted into these HDM. It also defines both-as-view (BAV) data

integration rules to demonstrate, on the one hand, the equivalence between higher level

schemas and, on the other hand, when there is any lost of information in the mapping

process.

The work assumes that the schemas must have set-based semantics. The consideration of

data types in the schemas has been left for future work, i.e., it is assumed that the data

types match in the schemas being compared.

Figure 2.18 Conceptual modelling languages represented in HDM (from Boyd and McBrien (2005))

2.5 Conclusions

The problem of schema translation has been considered for decades in many different

contexts. The growing number of languages and tools available to represent domains

makes the problem much more complicated and makes it the difficult to find definitive

solutions.

Moving away from specific translation tools towards more generic approaches has caused

model management to become the alternative framework for solving the schema

An object-oriented approach to the translation between MOF metaschemas

44

translation problem. It focuses on the generic description of problems and solutions in

terms of generic model management operators. However, there are still some open issues

to be solved in the model management framework, most of which are related to the

schema mapping definition. These issues include the following:

 Object-oriented context. Most of the approaches, which define generic schema

mappings, are described in the context of relational data bases. In the object-

oriented context, some proposals define schema mappings as constraints. Other

approaches use a specific mapping transformation language (such as QVT or ATL) to

define schema mappings. In the former case, the definition of additional executable

operations is needed to perform translations between schemas. In the latter case,

most of the tools are still under development. Object-oriented alternatives that do

not need an additional language for the definition of translation schema mappings

should be explored.

 Complex structures. Schema mappings must be defined among complex structures

of elements instead of just among simple elements. In the relational database

context, some approaches propose the definition of a limited set of metaconstructs

to handle more complex structures and define schema mappings in terms of these

metaconstructs. However, the set of metaconstructs proposed is too limited for

object-oriented metamodels that have very complex structures. Additional work is

needed in the object-oriented context to propose an alternative capable of defining

any type of complex structure and defining the mappings in terms of such

structures.

 Quality factors. There is no uniform definition of the quality factors of translation

schema mappings. Not all schemas contain the same knowledge and not all

metaschemas cover the same semantic aspects, which makes it difficult to have a

unique vision. Substantial work shall be required to explore how to define and prove

the correctness, consistency and completeness, among other factors, of schema

mappings.

The current literature does not propose an approach in the context of the object-oriented

paradigm that solves all the aforementioned issues. The main goal of this research is to

provide a generic object-oriented schema translation approach by solving these issues.

3 A generic object-oriented operation-based

approach to the translation between MOF

metaschemas

This chapter proposes a new approach to the schema translation problem. It deals with

schemas whose metaschemas are instances of the OMG's Meta Object Facility (MOF). Most

metaschemas can be defined as an instance of the MOF; therefore the approach is widely

applicable. The well-known object-oriented concepts embedded in the MOF and its

instances (object type, attribute, relationship type, operation, IsA hierarchies, refinements,

invariants, pre-, postconditions, etc.) are leveraged to define metaschemas, schemas and

their translations.

The main contribution of the approach is the extensive use of object-oriented concepts in

the definition of translation mappings, particularly the use of operations (and their

refinements) and invariants, both of which are formalized in OCL. The translation

mappings can be used to check that two schemas are translation of each other, and to

translate one into the other, in both directions. The translation mappings are declaratively

defined by means of pre-, postconditions, and invariants, and they can be implemented in

any suitable language. From an implementation point of view, by taking a MOF-based

approach there are available a wide set of tools, including tools that execute OCL. As an

example, the approach has been specified in the UML-based Specification Environment

(USE) tool (Gogolla, Büttner and Richters 2007), already described in the first chapter.

The main aspects of this approach are as follows:

 Metaschemas are represented as instances of the OMG's MOF (Object Management

Group 2006a). UML is, of course, an instance of the MOF, and almost all

metaschemas can be defined as instances of it.

 Elementary translations are represented by means of operations hosted in object

types, formalized in the OCL language (Object Management Group 2006b).

An object-oriented approach to the translation between MOF metaschemas

46

 The well known object-oriented concepts embedded in the MOF and its

instances (object type, attribute, relationship type, operation, IsA hierarchies,

refinements, invariants, pre-, postconditions, etc.) are leveraged to define

metaschemas, schemas and their translations.

The rest of this chapter is structured as follows:

 Section 3.1 explains the main concept of the approach, the schema unit, and defines

translation mappings as mappings between schema units.

 Section 3.2 explains how to define schema units in a MOF metaschema. This

definition must be done only once per metaschema, since it is independent of the

mapping translations.

 Section 3.3 explains how to define translation mapping expressions between any

two MOF metaschemas and their use. These expressions can be defined by two

invariants involving the relationships between the schema units of the two

metaschemas. The two invariants are defined in OCL, and the relationships between

schema units are defined by means of operations whose pre- and postconditions are

formalized also in OCL. The sections ends describing how to use the operations

defined in the previous sections in order to automatically translate between

instances of the two metaschemas.

Throughout this chapter two small fragments of the ER and the Relational metaschemas

are used as running example, similar to those used in (Gogolla 2005). The interested

reader may find, in (Raventós 2008a), three simple examples of the complete application

of the method: the one described in this chapter, the larger example of the UML and

Relational metaschemas described in the QVT specification (Object Management Group

2007a) and the translation to ER of the large osCommerce5 relational database.

3.1 Basic concepts

This section describes the concepts of schema, mapping and translation and explain the

notation system used in this chapter. The example that is used throughout this chapter is

also introduced.

3.1.1 Schema and mapping

A schema 𝑆 is a valid instance of a metaschema 𝑀𝑆. An instance of a (meta)schema 𝑀𝑆 is

valid if it satisfies all the integrity constraints defined in 𝑀𝑆. In turn, a metaschema 𝑀𝑆 is a

valid instance of a meta metaschema 𝑀𝑀𝑆 (Olivé 2007). In this paper, metaschemas are

instances of the MOF, which is a meta-metaschema standardized by the OMG (Object

Management Group 2006a). Therefore, an MOF schema is an instance of an MOF

metaschema. Most metaschemas can be defined as an instances of the MOF. This chapter

deals with UML, ER and the relational model, all of which can be defined as instances of

5 www.oscommerce.com

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

47

the MOF. Figures 3.1(a) and 3.2(a) show, in UML, the fragments of the ER and

relational metaschemas that will be used as examples.

Note that all the constraints included in the two metaschemas (e.g., uniqueness of names)

have been formally specified in (Raventós 2008a).

In general, a schema mapping is a triple 𝑀 = (𝑆1 , 𝑆2 , Σ) where 𝑆1 is the source schema, 𝑆2 is

the target schema and Σ, called the mapping expression, is a set of constraints over 𝑆1 and

𝑆2. An instance of mapping 𝑀 is a pair 𝑠1 , 𝑠2 such that 𝑠1 is an instance of 𝑆1, 𝑠2 is an

instance of 𝑆2 and the pair 𝑠1, 𝑠2 satisfies all the constraints Σ (Fagin et al. 2005).

This thesis is concerned with mappings between metaschemas; therefore, the mappings

take the form 𝑀 = 𝑀𝑆1, 𝑀𝑆2, Σ , where 𝑀𝑆1 is the source metaschema, 𝑀𝑆2 is the target

metaschema and Σ is a set of constraints on 𝑀𝑆1 and 𝑀𝑆2. An instance of the mapping 𝑀 is

a pair 𝑆1, 𝑆2 such that 𝑆1 is an schema that is an instance of 𝑀𝑆1, 𝑆2 is a schema that is an

instance of 𝑀𝑆2 and the pair 𝑆1, 𝑆2 satisfies all the constraints Σ. The mapping expression

of most metaschema mappings is very long and complex. This thesis presents a new

approach to the definition of mapping expressions that is based on the concept of a

schema unit as defined below.

3.1.2 Schema units

Syntactically, a schema 𝑆 is a valid set of instances of the entity types, relationship types

and attributes defined in 𝑀𝑆. This set of instances is called the schema elements of 𝑆.

However, by focusing more on the semantics of the schemas than on their syntactical

expression, the concept of a schema unit is defined. The schema units are the knowledge

components of the schemas. A schema consists of a set 𝑆 = {𝑢1 , … , 𝑢𝑛} of schema units 𝑢𝑖 ,

such that the knowledge expressed by 𝑆 is the set of knowledge components expressed by

its schema units 𝑢1 , … , 𝑢𝑛 .

In general, a schema unit is a concept type (entity or relationship type), a constraint or a

derivation rule. For example, an entity type of an ER schema, a foreign key of a relational

schema, and an OCL derivation rule of a derived attribute in a UML schema are three

schema units (concept type, constraint and derivation rule, respectively). In some cases, a

schema unit is an aggregation of concept types, constraints and/or derivation rules. For

example, an association schema unit in a UML includes the cardinality constraints of its

member ends.

Syntactically, a schema unit 𝑢 is a set of schema elements such that:

 it can be added to a schema S when certain conditions are satisfied, and

 𝑆 ∪ {𝑢} is a valid instance of 𝑀𝑆.

The rationale behind this definition is that the knowledge expressed by a schema 𝑆 =

{𝑢1, … , 𝑢𝑖} can be extended with a new schema unit 𝑢𝑖+1, for which 𝑆′ = {𝑢1, … , 𝑢𝑖 , 𝑢𝑖+1} is

obtained. In general, a schema unit can only be added to an existing schema if certain

conditions are satisfied. For example, in an ER schema 𝑆, a relationship type (schema unit)

can be added if the participant entity types are already part of 𝑆.

An object-oriented approach to the translation between MOF metaschemas

48

The idea of the schema unit is implicit or explicit in many schema translation approaches

and, in some cases, a distinction is made between different kinds of schema units. For

example, Boyd and McBrien (2005) distinguishes between nodal, link, link nodal and

constraint. Languages with a rich set of predefined constraints have many kinds of schema

units (Jarrar (2007) distinguishes about 30 kinds in the ORM – Description Logics

mapping).

In this approach, it is required that each schema unit 𝑢 of 𝑆 be represented by an instance

of some meta-entity type of 𝑀𝑆. An instance of a meta-entity type of 𝑀 can represent one

schema unit at most, but not all instances of the meta-entity types of 𝑀𝑆 need represent

schema units.

Figure 3.1 Fragment of the ER metaschema (a), and an example of one of its instances (b) (Gogolla
2005)

3.1.2.1 Application to the ER metaschema

In an ER schema, the schema units are entity types, relationship types, attributes and data

types. These schema units are represented differently in different metaschemas. In UML,

they may be represented as shown in Figure 3.1(a):

 Each ER entity type is represented by an instance of EntityType. The schema

elements of an entity type named e are as follows: (1) an instance  of

EntityType; (2) the instance of attribute name of  with value e; (3) the (one or

more) instances of Attribute related to  whose isKey attribute has the value True;

and for each of these attributes: (a) the instances of its attributes name and isKey;

(b) the instance of its relationship with ; and (c) the instance of its relationship

with the corresponding data type. If, for example, an entity type e has only one key

attribute, then the schema elements of e makes up a set of seven instances. Note that

an entity type and all its key attributes are grouped into a single schema unit.

 Each ER relationship type is represented by an instance of RelationshipType. The

schema elements of a relationship type named r are as follows: (1) an instance  of

RelationshipType; (2) the instance of attribute name of  with value r; (3) the (two or

more) instances of RelationEnd related to ; and (4) for each of these relation ends:

(a) the instances of its attribute name; (b) the instance of its relationship with ; and

(c) the instance of its relationship with the corresponding entity type. Note that it is

assumed that the cardinalities of the participants are unconstrained.

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

49

 Each ER data type is represented by an instance of DataType. The schema elements

of a data type named d are as follows: (1) an instance  of DataType; and (2) the

instance of attribute name of  wose value is d.

 Each ER attribute that is not a key of an entity type is represented by an instance of

Attribute whose isKey attribute has the value False. The schema elements of an

attribute named a are as follows: (1) an instance  of Attribute; (2) the instance of

attribute name of  whose value is a and isKey whose value is False; (3) the instance

of its relationship with an instance of EntityType or RelationshipType; and (4) the

instance of its relationship with the corresponding data type.

In the ER schema example shown in Figure 3.1(b) there are seven schema units: three

instances of DataType, one instance of EntityType, one instance of RelationshipType, and

two instances of Attribute. These schema units are shown in the left part of Figure 3.3(b).

Figure 3.2 Fragment of the Relational metaschema (a), and an example of one of its instances (b)
(Gogolla 2005)

3.1.2.2 Application to the relational metaschema

In a relational schema, the schema units are tables, columns, foreign keys and data

types. These schema units are represented differently in different metaschemas. In UML,

they may be represented as shown in Figure 3.2(a):

 Each relational table is represented by an instance of Table. The schema elements

of a table named t are as follows: (1) an instance  of Table; (2) the instance of

attribute name of  whose value is t; (3) the (one or more) instances of Column

related to  whose isKey attribute has the value True; and (4) for each of these

columns: (a) the instances of its attributes name and isKey; (b) its relationship with

; (c) and its relationship with the corresponding data type. Note that a table and all

its key columns have been grouped into a single schema unit.

 Each relational data type is represented by an instance of RelationalDataType. The

schema elements of a data type named d are as follows: (1) an instance  of

RelationalDataType; and (2) the instance of attribute name of  whose value is d.

 Each relational column that is not a key of a table is represented by an instance of

Column whose isKey attribute has the value False. The schema elements of a column

named c are as follows: (1) an instance  of Column; (2) the instance of attribute

name of  with value c and isKey with value False; (3) its relationship with

an instance of Table; and (4) its relationship with the corresponding instance of

RelationalDataType.

An object-oriented approach to the translation between MOF metaschemas

50

 Each foreign key is represented by an instance of ForeignKey. The schema elements

of a foreign key fk are as follows: (1) an instance of ForeignKey; (2) the

relationships of fk with Column that give the columns that comprise fk; and (3) the

relationship of fk with the table referenced by the columns of fk.

In the relational example shown in Figure 3.2(b) there are nine schema units: three

instances of RelationalDataType, two instances of Table, two instances of Column, and two

instances of ForeignKey. These schema units are shown in the right part of Figure 3.3(b).

 Figure 3.3 Abstract example of equivalences and inclusions (a), and their application to the
schema examples (b)

3.1.3 Translation mapping

Let 𝑆1 = {𝑢1,1 , … , 𝑢1,𝑛} and 𝑆2 = {𝑢2,1 , … , 𝑢2,𝑚 } be two schemas. 𝑆1 and 𝑆2 are translation of

each other if the knowledge they express is the same. In other words, 𝑆1 and 𝑆2 are

translations of each other if the knowledge expressed by their schema units {𝑢1,1 , … , 𝑢1,𝑛}

and {𝑢2,1 , … , 𝑢2,𝑚 } is the same. This means that there is a total and surjective relation

𝑟 ⊆ 𝑆1 × 𝑆2 that maps each schema unit of 𝑆1 to its equivalent units in 𝑆2, and the other

way around.

In most cases the relation 𝑟 satisfies the equivalence/inclusion constraint, which means

that for each 𝑟 ∈ 𝑆1 at least one of the two following conditions hold (see Figure 3.3):

 𝑢1,𝑖 is completely equivalent to a set {𝑢2,1, … , 𝑢2,𝑘} of one or more schema units of 𝑆2.

This is, there is an equivalence mapping between 𝑢1,𝑖 and {𝑢2,1, … , 𝑢2,𝑘}.

 𝑢1,𝑖 is completely included in a schema unit 𝑢2,𝑘 of 𝑆2. In this case, there is an

inclusion mapping between 𝑢1,𝑖 and 𝑢2,𝑘 .

Formally,

u1,i, u1,j, u2,k , u2,l ((u1,i, u2,k)  r u1,j  u1,i u2,l u2,k  ((u1,j, u2,k)  r  (u1,i, u2,l)  r))

Note that if there is an equivalence mapping between 𝑢1,𝑖 and {𝑢2,1, … , 𝑢2,𝑘} then there is

an inclusion mapping between 𝑢2,𝑖 and 𝑢1,𝑖 for all 𝑖 = 1. . 𝑘.

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

51

In the abstract example in Figure 3.3(a), 𝑢1,1 is completely equivalent to the set

{𝑢2,1 , 𝑢2,2, 𝑢2,3}; 𝑢1,2 is completely included in 𝑢2,4; 𝑢1,3 is completely included in 𝑢2,4; and

𝑢1,4 is both completely equivalent to 𝑢2,5 and completely included in 𝑢2,5.

As a specific example, Figure 3.3(b) shows that the relationship type Marriage in the ER

schema shown in Figure 3.1(b) is completely equivalent to the table Marriage and the two

foreign keys of the relational schema shown in Figure 3.2(b).

The term “equivalent” has several meanings in the schema management field (Lie 1982,

Hull 1986, Papotti and Torlone 2007), so the meaning must be specified in each case. In

this approach, a schema unit 𝑢1,𝑖 is completely equivalent to a set {𝑢2,1, … , 𝑢2,𝑘} when the

following conditions hold:

 If 𝑢1,𝑖 may have instances (i.e., it is an entity or a relationship type) then the

population of 𝑢1,𝑖 at any time can be obtained from the populations of 𝑢2,1, … , 𝑢2,𝑘 at

that time, and the other way round.

 If 𝑢1,𝑖 constrains the instances of 𝑆1 then 𝑢2,1, … , 𝑢2,𝑘 constrain the equivalent

instances of 𝑆2 in the same way.

 If 𝑢1,𝑖 derives the instances of 𝑆1 then𝑢2,1, … , 𝑢2,𝑘 derive the equivalent instances of

𝑆2 in the same way.

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping. We say that 𝑀 is a translation mapping when for any

𝑆1 and 𝑆2 such that 𝑆1, 𝑆2 is an instance of 𝑀 then 𝑆1 and 𝑆2 are translation of each other.

Therefore, in a translation mapping, the set of constraints Σ is satisfied only when the two

schemas are translation of each other. In the next section we present an approach to

defining translation mapping expressions that is based on the concept of a schema unit.

A translation mapping 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) may be (Melnik 2004):

 Total: for all 𝑆1 that are an instance of 𝑀𝑆1 there is at least one instance 𝑆2 of 𝑀𝑆2

such that 𝑆1, 𝑆2 is an instance of 𝑀.

 Surjective: for all 𝑆2 that are an instance of 𝑀𝑆2 there is at least one instance 𝑆1

of 𝑀𝑆1 such that 𝑆1, 𝑆2 is an instance of 𝑀.

 Functional: for all 𝑆1 that are an instance of 𝑀𝑆1 there is exactly one instance 𝑆2

of 𝑀𝑆2 such that 𝑆1, 𝑆2 is an instance of 𝑀.

 Injective: for all 𝑆2 that are an instance of 𝑀𝑆2 there is exactly one instance 𝑆1 of 𝑀𝑆1

such that 𝑆1, 𝑆2 is an instance of 𝑀.

 Bijective: if it is total, surjective, functional, and injective.

 The translation mapping between 𝑀𝑆1 = the ER metaschema in Figure 3.1(a) and 𝑀𝑆2 =

the relational metaschema in Figure 3.2(a) may be total because for each ER schema there

is at least one translation into an instance of 𝑀𝑆2. However, that mapping cannot be

surjective because there are instances of 𝑀𝑆2 that cannot be adequately translated into an

instance of 𝑀𝑆1. For example, 𝑀𝑆2 allows the representation of foreign keys that are not

referential integrity constraints and cannot be represented in 𝑀𝑆1. Section 3.3.1 shows

An object-oriented approach to the translation between MOF metaschemas

52

how, in this approach, that a schema unit cannot be translated into another metaschema is

specified.

3.2 Defining the schema units of MOF schemas

The basic concept in the approach is the schema unit. This section explains how the

schema units of MOF schemas should be defined. Let 𝑀𝑆𝑖 be an MOF metaschema. It is

practical to assume that 𝑀𝑆𝑖 has a root entity type, called 𝑆𝑖Element such that all entity

types of 𝑀𝑆𝑖 that may represent schema units are a direct or indirect subtype of 𝑆𝑖Element.

The entity type 𝑆𝑖Element is derived by the union of its subtypes (also called abstract

entity types in UML). Figures 3.4 and 3.5 show the definition of the root entity types

(called ErElement and RelationalElement) in the ER and relational metaschemas in Figures

3.1 and 3.2, respectively.

𝑆𝑖Element has two operations (isSchemaUnit() and predecessors()) that are used to define

the schema units and their precedence relationships. Each schema unit is characterized by

a special object, called a schema unit characterization object, which among other things

defines the schema elements that make up a schema unit. The operations and the

characterization objects are mapping-independent; therefore they are defined only once in

a metaschema. In what follows it is showed how the operations and the characterization

objects are defined. The explanations are illustrated by applying them to the ER and

relational metaschemas.

3.2.1 isSchemaUnit() operation

In 𝑆𝑖Element is defined the query operation isSchemaUnit():Boolean whose value indicates

whether or not an instance of 𝑆𝑖Element represents a schema unit. As stated above, the

value of this operation is mapping-independent. In the context of 𝑆𝑖Element the operation

can only give a default value (either True or False), and each subtype ST of 𝑆𝑖Element such

that some or all of its instances represent schema units, redefines it (if necessary) to

indicate whether or not the corresponding instance of ST represents a schema unit. It is

not mandatory that all instances of ST have the same value for the operation

isSchemaUnit().

3.2.1.1 Application to the ER metaschema

In the ER metaschema of Figure 3.4, is defined6:

context ErElement::isSchemaUnit():Boolean

 body: True

6 In UML, the body condition for an operation constrains the return result. The body condition

differs from postconditions in that the body condition may be overridden when an operation is
redefined, whereas postconditions can only be added during redefinition (Object Management
Group 2006a, p. 107).

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

53

Figure 3.4 Definition of ErElement

This means that by default all (direct or indirect) instances of ErElement are schema units.

There is an exception: not all instances of Attribute are schema units, but only those that

are not keys. Therefore, the above operation is redefined as follows:

context Attribute::isSchemaUnit():Boolean
 body: not isKey

This is an example of an entity type in which some instances represent schema units and

other do not. Note that RelationEnd (Figure 3.1) is not defined as a subtype of ErElement

(Figure 3.4). This avoids to redefine that instances of RelationEnd are not schema units:

context RelationEnd::isSchemaUnit():Boolean
 body: False

3.2.1.2 Application to the Relational metaschema

Similarly, for the relational metaschema in Figure 3.5, is defined:

context RelationalElement::isSchemaUnit():Boolean
 body: True

This means that by default all (direct or indirect) instances of RelationalElement are

schema units. There is an exception similar to the previous one: not all instances of

Column are schema units, but only those that are not keys. Therefore, the above operation

is redefined as follows:

context Column::isSchemaUnit():Boolean
 body: not isKey

3.2.2 Predecessors

A schema consists of a set 𝑆 = {𝑢1 , … , 𝑢𝑛} of schema units 𝑢𝑖 , but in general there are

precedence relationships between them. Very often one can add a schema unit to a schema

only when other units have already been defined. Those schema units that are direct

predecessors of 𝑢𝑖 , are called predecessors units. A schema unit cannot be a direct or

indirect predecessor to itself. It is not difficult to define the predecessors of a

An object-oriented approach to the translation between MOF metaschemas

54

Figure 3.5 Definition of RelationalElement

schema unit, and they are very important in the specification of the translation process, as

is shown in Section 3.3.6.

In the context of 𝑆𝑖Element the query operation predecessors() can only give a default value

(the empty set):

context SiElement::predecessors():Set(SiElement)

 pre: isSchemaUnit()
 body: Set{}

However, each subtype ST of 𝑆𝑖Element such that some or all of its instances represent

schema units redefines it (if necessary) to indicate its predecessor schema units. Note that

the precondition specifies that predecessors() can be invoked (i.e., make sense) only in

schema units.

3.2.2.1 Application to the ER metaschema

In the ER metaschema in Figure 3.4 is defined the following predecessors() operation:

context ErElement::predecessors():Set(ErElement)

 pre: isSchemaUnit()
 body: Set{}

This means that, by default, all schema units do not have predecessors. This is the case of

DataType; therefore, there is no need to redefine the operation for it.

For EntityType the predecessors() operation is redefined as follows:

context EntityType::predecessors():Set(DataType)
 body: attribute -> select(isKey).dataType

This means that the predecessors of an entity type are the data types of its key attributes.

For example, in the ER schema in Figure 4.1(b), the set of predecessors of the unit

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

55

𝑢𝐸,4 = 𝑒𝑡_𝑃𝑒𝑟𝑠𝑜𝑛 is {𝑢𝐸,2 = 𝑑𝑡𝐼𝑛𝑡𝑒𝑔𝑒𝑟 } (see Figure 4.3(b, left)). The predecessors of a

relationship type are its participant entity types. This is formally defined as follows:

context RelationshipType::predecessors():Set(EntityType)
 body: relationEnd.entityType

Finally, the predecessors of a non-key attribute are its entity or relationship type and its

data type. This is formally defined as follows:

context Attribute::predecessors():Set(ErElement)
 body: let type:ErElement =

 if entityType -> notEmpty() then entityType

 else relationshipType

 endif

 in Set{type,dataType}

3.2.2.2 Application to the relational metaschema

In the relational metaschema in Figure 3.5 is defined as follows:

context RelationalElement::predecessors():Set(RelationalElement)
 pre: isSchemaUnit()
 body: Set{}

This means that, by default, all schema units do not have predecessors. This is the case of

RelationalDataType; therefore, there is no need to redefine the operation for it. For Table

the predecessors() operation is redefined as follows:

context Table::predecessors():Set(RelationalDataType)
 body: column -> select(isKey).relationalDataType

This means that the predecessors of table are the data types of its key columns. The

predecesssor of a non-key column is its table and its data type is formally defined as

follows:

context Column::predecessors():Set(RelationalElement)
 body: Set{table, relationalDataType}

Finally, the predecessors of a foreign key are its non-key columns and the source

and target tables are formally defined as follows:

context ForeignKey::predecessors():Set(RelationalElement)
 body: column -> select(not iskey)->asSet() ->

 union(column.table->asSet()) -> including{targetTable}

For example, in the relational schema in Figure 3.2(b), the set of predecessors of the unit

𝑢𝑅,6 = 𝑓𝑘_𝑤𝑖𝑓𝑒 is {𝑢𝑅,5 = 𝑡𝑎_𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒, 𝑢𝑅,4 = 𝑡𝑎_𝑃𝑒𝑟𝑠𝑜𝑛} (see Figure 3.3(b, right)).

3.2.3 Characterization objects

Translation mapping constraints are complex because they define relationships between

two metaschemas that are usually themselves very complex. The relationships must take

into account the details of how each schema unit is represented in its own metaschema.

This thesis proposes an alternative that consists in using an indirection mechanism: each

schema unit is characterized by an object (called a characterization object). The intuitive

idea is to split a translation relationship between two sets of schema elements (one in

each metaschema) that represent two schema units 𝑢1,𝑖 and 𝑢2,𝑘 into two simpler parts:

An object-oriented approach to the translation between MOF metaschemas

56

one between the schema elements of 𝑢1,𝑖 and the characterization object of 𝑢2,𝑘 and

another between the characterization object of 𝑢2,𝑘 and its schema elements.

 Characterization objects roughly correspond to the well-known value or domain value

objects in the object-oriented design patterns field (Riehle 2006). In each metaschema, is

defined a characterization object type for each subtype ST of 𝑆𝑖Element such that some or

all of its instances represent schema units. For the sake of simplicity, the characterization

object types are named by adding the suffix Ch to the corresponding name of the

metaschema type. Each characterization object type includes a set of attributes that

characterize the schema unit and two operations: createUnit() and schemaUnit(). The first

operation creates a schema unit from its characterization object, and the second creates

the schema unit corresponding to the characterization object, if it exists.

It is assumed that the operation createUnit() will only be invoked when the predecessors

of the schema unit it creates have already been created. For example, the createUnit() of an

instance of RelationshipTypeCh will only be invoked after the creation of the participant

entity types.

The specification of the first operation is the same for all characterization object types;

therefore, it is defined it in a general 𝑆𝑗 ElementCh:

context SjElementCh::createUnit()
 post: schemaUnit()->notEmpty()

This operation ensures that in the schema there will be a schema unit whose

characterization is self. It is assumed that all operations leave the schema in a state that

satisfies all the integrity constraints defined in the metaschema. Note that only the

postconditions of these operations can be specified in OCL. The method must be defined in

an adequate imperative language. The examples in this thesis (and those reported in

(Raventós 2008a)) use the procedural language included in USE.

The following illustrates the characterization object types and objects and their

schemaUnit() operation by means of their application to the ER and relational

metaschemas.

3.2.3.1 Application to the ER metaschema

Figure 3.6 shows the characterization object types of the ER metaschema.

The formal specification of the schemaUnit() operation in each case is as follows:

context DataTypeCh::schemaUnit():DataType
 body: DataType.allInstances() -> any(d:DataType|

 d.name = self.name)

context EntityTypeCh::schemaUnit():EntityType
 body: EntityType.allInstances() -> any(e:EntityType|

 e.name = self.name and

 self.keyAttribute -> collect(k:KeyAttribute|
 Tuple{n:k.name, t:k.type}) -> asSet =

 e.attribute->select(isKey) -> collect(ka:Attribute|

 Tuple{n:ka.name, t:ka.dataType.name})-> asSet)

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

57

Figure 3.6 Characterization object types for the ER metaschema in Figure 3.3

context RelationshipTypeCh::schemaUnit():RelationshipType
 body: RelationshipType.allInstances()-> any(r:RelationshipType|

 r.name = self.name and

 self.participant -> collect(p:Participant|
 Tuple{n:p.name, t:p.type}) -> asSet =

 r.relationEnd -> collect(re:RelationEnd|

 Tuple{n:re.name, t:re.entityType.name}) -> asSet)

context AttributeCh::schemaUnit():Attribute
 body: Attribute.allInstances() -> any(a:Attribute|

 a.name = self.name and not a.isKey and

 a.dataType.name = self.type and

 (a.entityType.name = self.owner or

 a.relationshipType.name = owner))

3.2.3.2 Application to the relational metaschema

Figure 3.7 shows the characterization object types of the relational metaschema.

The formal specification of the schemaUnit() operation in each case is as follows:

context RelationalDataTypeCh::schemaUnit():RelationalDataType
 body: RelationalDataType.allInstances() -> any(

 d:RelationalDataType| d.name = self.name)

context TableCh::schemaUnit():Table
 body: Table.allInstances() -> any(t:Table|

 t.name = self.name and

 self.keyColumn -> collect(c:KeyColumn|

 Tuple{n:c.name, dt:c.type}) ->asSet() =

 t.column ->select(isKey) -> collect(co:Column|

 Tuple{n:co.name,co.relationalDataType.name})->asSet())

An object-oriented approach to the translation between MOF metaschemas

58

 Figure 3.7. Characterization object types for the relational metaschema in Figure 3.5

context ColumnCh::schemaUnit():Column
 body: Column.allInstances() -> any(c:Column|

 c.name = self.name and not c.isKey and

 c.relationalDataType.name = self.type and
 c.table.name = self.owner)

context ForeignKeyCh::schemaUnit():ForeignKey
 body: ForeignKey.allInstances() -> any(f:ForeignKey|

 f.column -> any(true).table.name = self.source and

 f.targetTable.name = self.target and

 f.column -> any(true).table.name = self.source and

 f.targetTable.name = self.target and

 f.column -> forAll(co:Column|

 self.foreignKeyColumn -> exists(fkc|

 co.name = fkc.sourceName and

 f.targetTable.column -> select(isKey) ->

 collect(name) -> includes(fkc.targetName)))

3.3 Translation mapping expressions

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a translation mapping where 𝑀𝑆1 and 𝑀𝑆2 are instances of the

MOF (Object Management Group 2006a). This section proposes an approach to defining

the translation mapping constraints Σ that is based on using the core concepts of object-

oriented languages, including operation, specialization/generalization and operation

redefinition. These core concepts are part of the MOF and of its instances.

In 𝑆𝑖Element, the following four operations are defined: 𝑠𝑖MappingKind(), 𝑠𝑖Equivalents(),

includedIn𝑆𝑗 () and mappedTo𝑆𝑗 (), which are used to specify the translation mapping

constraints. In contrast to the operations defined in the previous section, these operations

are mapping-dependent. In 𝑆𝑖Element these operations give a default result, but they can

be redefined in the subtypes. In the following, each operation is defined in turn and then,

Section 3.3.5 explains how they can be uses to define the mapping constraints.

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

59

3.3.1 𝐬𝐢MappingKind

𝑆𝑖Element includes the specification of the query operation 𝑠𝑗 MappingKind():

MappingKind, whose value indicates how a schema unit of 𝑆𝑖 is translated into 𝑆𝑗 . The

value of this operation is mapping-dependent. MappingKind is an enumeration data type

whose values are as follows:

 HasEquivalents. A schema unit of 𝑆𝑖 has this mapping kind when it is completely

equivalent to a set {𝑢𝑗 ,1 , … , 𝑢𝑗 ,𝑘} of one or more schema units of 𝑆𝑗 . The mapping kind

of 𝑢𝑗 ,1 , … , 𝑢𝑗 ,𝑘 must be IsIncluded.

 IsIncluded. A schema unit of 𝑆𝑖 has this mapping kind when it is included in a

schema unit 𝑢𝑗 ,𝑘 of 𝑆𝑗 . The mapping kind of 𝑢𝑗 ,𝑘 must be HasEquivalents.

 Untranslatable. A schema unit of 𝑆𝑖 has this mapping kind when it cannot be

translated into 𝑆𝑗 . If a schema 𝑆𝑖 contains one or more untranslatable schema units

then its translation into 𝑆𝑗 can only be partial. Note that in this approach it is easy to

specify the schema units that cannot be translated in a given mapping.

When a schema unit of 𝑆𝑖 has both an equivalence and an inclusion mapping with only one

unit 𝑢2,𝑘 of 𝑆𝑗 then the mapping kind of one of them is defined as HasEquivalents and the

other as IsIncluded. There is an example in Figure 3.3(a), (𝑢1,4 and 𝑢2,5), and several

examples in Figure 3.3(b).

In the context of 𝑆𝑖Element the operation 𝑠𝑗 MappingKind() can only give a default value,

and each subtype ST of 𝑆𝑖Element such that some or all of its instances represent schema

units redefines it (if necessary) to give the correct value. The value of the operation for the

instances of ST that are not a schema unit is undefined. This may be enforced by means

of a precondition, which in general can stated as follows:

context SiElement::SjMappingKind()
 pre: isSchemaUnit()

3.3.1.1 Application to the Er-relational translation mapping: Er side

In the ER metaschema example in Figure 3.4 is defined:

context ErElement::relationalMappingKind():MappingKind
 body: MappingKind::HasEquivalents

This means that by default all (direct or indirect) instances of ErElement that are schema

units have an equivalence mapping, and that those instances that are not schema units

have an undefined value for the operation. In this particular example, there is no need to

redefine the operation in any subtype of ErElement.

3.3.1.2 Application to the Er-Relational translation mapping: Relational side

Similarly, in the relational metaschema example in Figure 3.5 is defined:

context RelationalElement::erMappingKind():MappingKind
 body: MappingKind::IsIncluded

An object-oriented approach to the translation between MOF metaschemas

60

This means that by default all (direct or indirect) instances of RelationalElement that are

schema units have an inclusion mapping, and that those instances that are not schema unit

have an undefined value for the operation.

In the relational metaschema example in Figure 3.5, most schema units may be defined

using an inclusion mapping. There are exceptions due to the simplified ER metaschema

used in this chapter. The exceptions are the instances of Table that cannot be translated as

entity or relationship types, the columns of untranslatable tables and the instances of

ForeignKey that do not correspond to referential integrity constraints. The exceptions can

be defined as follows:

The mappingKind of Table is defined as follows:

context Table::erMappingKind():MappingKind
 body: if translatableIntoEntityType or

 translateableIntoRelationshipType

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif

where translatableIntoEntityType or translatableIntoRelationshipType are helper

attributes defined as follows:

context Table:
 def: translatableIntoEntityType:Boolean = column ->

 select(isKey).foreignKey -> isEmpty()
 def: translatableIntoRelationshipType:Boolean =

 column -> select(isKey).foreignKey -> size() > 1 and
 column -> select(isKey) -> forAll(foreignKey ->size() = 1)

 All instances of Column that are schema units and whose table are translatable have an

inclusion mapping formally defined as follows:

context Column::erMappingKind():MappingKind
 body: if isSchemaUnit()

 then
 if table.erMappingKind() = MappingKind::IsIncluded

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif
 else Set{} endif

Finally, the instances of ForeignKey whose source and reference tables are translatable

and whose reference tables are translatable are translatable into an entity type. This is

formally defined as follows:

context ForeignKey::erMappingKind():MappingKind
 body: if targetTable.erMappingKind() = MappingKind::IsIncluded and
 sourceTable.erMappingKind()= MappingKind::IsIncluded and

 targetTable.translatableIntoEntityType

 then MappingKind::IsIncluded
 else MappingKind::Untranslatable endif

where sourceTable is an auxiliary attribute defined as follows:

context ForeignKey:

 def: sourceTable:Table = column.table ->any(True)

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

61

In the above definition, it has been assumed that the relational metaschema inFigure 3.5

includes the constraint that all columns of a foreign key must belong to the same table.

This could be enforced by the invariant formally defined as follows:

context ForeignKey inv allColumnsOfForeignKeyHaveSameTable:
 column.table -> size() = 1

3.3.2 𝒔𝒋Equivalents

The 𝑠𝑗 Equivalents() operation is defined in the context of 𝑆𝑖Element. The evaluation of this

operation in a schema unit 𝑢𝑖,𝑘 of 𝑆𝑖 whose mapping kind is HasEquivalents gives the set of

characterization objects of the schema units of schema 𝑆𝑗 that are equivalent to 𝑢𝑖,𝑘 . The

operation does not change either of the two schemas, but it creates one or more

characterization objects. The signature and precondition of the operation in OCL is

formally defined as follows:

context SiElement::sjEquivalents():Set(SjElementCh)
 pre: sjMappingKind() = MappingKind::HasEquivalents
 post atLeastOneCharacterizationObjectCreated:

 (SjElementCh.allInstances() - SjElementCh.allInstances@pre())

 -> notEmpty()

 post definingtheResult:
 result = SjElementCh.allInstances() –

 SjElementCh.allInstances@pre()

 The effect of the operation must be defined in the subtypes of 𝑆𝑖Element such that some or

all of their instances represent schema units whose mapping kind is HasEquivalents. The

effect can be procedurally defined by a method or declaratively by a postcondition. In this

approach, it is defined a declarative specification from which a method can easily be

derived. The USE tool used automatically checks that the effect of the method satisfies the

postconditions and the integrity constraints defined in the metaschema.

3.3.2.1 Application to the ER-relational translation mapping: ER side

The adaptation of the above operation to the ER metaschema in Figure 3.4 is formally

defined as follows:

context ErElement::relationalEquivalents():Set(RelationalElementCh)

 pre: relationalMappingKind() = MappingKind::HasEquivalents

 post definingtheResult:
 result = RelationalElementCh.allInstances() –

 RelationalElementCh.allInstances@pre()

Given that the mapping kind of all ER schema units is HasEquivalent, it is necessary to

redefine the operation relationalEquivalents() in each case, as shown below:

context DataType::relationalEquivalents():

 Set(RelationalDataTypeCh)

 post: rdt.oclIsNew() and rdt.oclIsTypeOf(RelationalDataTypeCh)

 and rdt.name = self.name

An object-oriented approach to the translation between MOF metaschemas

62

context EntityType::relationalEquivalents():Set(TableCh)

 post: t.oclIsNew() and t.oclIsTypeOf(TableCh) and

 t.name = self.name and self.attribute -> select(isKey) ->

 forAll(att| kc.oclIsNew() and kc.oclIsTypeOf(KeyColumn)

 and kc.name = att.name and kc.type = att.dataType.name and

 kc.tableCh = t)))

context RelationshipType::relationalEquivalents():

 Set(RelationalElementCh)

 post: t.oclIsNew() and t.oclIsTypeOf(TableCh) and

 t.name = self.name and

 self.relationEnd -> forAll(re|

 re.entityType.attribute -> select(isKey) ->

 forAll(attkey| kc.oclIsNew() and kc.oclIsTypeOf(KeyColumn)

 and kc.name = re.name.concat('_').concat(attkey.name)

 and kc.type = re.entityType.name and kc.tableCh = t)))

 and self.relationEnd -> forAll(re| fk.oclIsNew() and

 fk.oclIsTypeOf(ForeignKeyCh) and

 fk.sourceTable = t.name and

 fk.targetTable = re.entityType.name and

 re.entityType.attribute -> select(isKey) ->

 forAll(attkey| fkc.oclIsNew() and

 fkc.oclIsTypeOf(ForeignKeyColumn) and

 fkc.sourceName = re.name.concat('_').concat(attkey.name)

 and fkc.targetName = attKey.name and

 fkc.foreignKeyCh = fk))

context Attribute::relationalEquivalents():Set(ColumnCh)

 post: c.oclIsNew() and c.oclIsTypeOf(ColumnCh) and

 c.name = self.name and c.type = self.dataType.name) and

 c.owner = if self.entityType -> notEmpty()

 then

 self.entityType.name

 else

 self.relationshipType.name

 endif

3.3.2.2 Application to the Er-relational translation mapping: relational side

The adaptation of the above operation to the relational metaschema in Figure 3.5 is

formally defined as follows:

context RelationalElement::erEquivalents():Set(ErElementCh)
 pre: relationalMappingKind() = MappingKind::HasEquivalents
 post definingtheResult:

 result = ErElementCh.allInstances() –

 ErElementCh.allInstances@pre()

Note that on the relational side there is no need to redefine the erEquivalents() operation

because no schema units have a HasEquivalents mapping.

3.3.3 includedIn𝑺𝒋

It has been shown that the translation of a schema unit 𝑢𝑖 ,𝑘 of 𝑆𝑖 whose mapping kind is

HasEquivalents is given by the result of the operation 𝑠𝑗 Equivalents() invoked on 𝑢𝑖 ,𝑘 . The

result is a non-empty set of instances of 𝑆𝑗 ElementCh that are characterization objects of 𝑆𝑗

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

63

schema units. Similarly, each schema unit 𝑢𝑖,𝑘 of 𝑆𝑖 whose mapping kind is IsIncluded is

translated into one and only one characterization object of a schema unit of 𝑆𝑗 , which is

given by the operation includedIn𝑆𝑗 () invoked on 𝑢𝑖,𝑘 .

 The operation is hosted in 𝑆𝑖Element and its formal definition in OCL is as follows:

 context SiElement::includedInSj():SjElementCh
 pre: sjMappingKind() = MappingKind::IsIncluded
 post onlyOneCharacterizationObjectCreated:

 (SjElementCh.allInstances() –

 SjElementCh.allInstances@pre()) -> size()=1
 post definingtheResult:

 result = (SjElementCh.allInstances() –

 SjElementCh.allInstances@pre()) ->any(True)

The effect of the operation must be defined in the subtypes of 𝑆𝑖Element such that some or

all of their instances represent schema units whose mapping kind is IsIncluded. The effect

can be procedurally defined by a method or declaratively by a postcondition. In this

approach, a declarative specification is defined from which a method can easily be derived.

The USE tool automatically checks that the effect of the method satisfies the

postconditions and the integrity constraints defined in the metaschema.

3.3.3.1 Application to the ER-relational translation mapping: ER side

On the ER side there is no need to redefine the includedInRelational() operation because

no schema units have an IsIncluded mapping.

3.3.3.2 Application to the ER-relational translation mapping: relational side

The specification of the above operation applied for the relational metaschema in

Figure 3.5 is the following:

context RelationalDataType::includedInEr():ErElementCh

 post: d.oclIsNew() and d.oclIsTypeOf(DataTypeCh) and

 d.name = self.name

 context Table::includedInEr():ErElementCh

 post: if self.column -> select(isKey) -> forAll(

 foreignKey->isEmpty())

 then

 e.oclIsNew() and e.oclIsTypeOf(EntityTypeCh) and

 e.name = self.name and

 self.column -> select(isKey) -> forAll(co:Column|

 ka.oclIsNew() and ka.oclIsTypeOf(KeyAttribute) and

 ka.name = co.name and

 ka.type = co.relationalDataType.name and

 ka.entityTypeCh = e))

 else

 r.oclIsNew() and r.oclIsType(RelationshipTypeCh) and

 r.name = self.name and

 self.column -> select(isKey)-> forAll(co:Column|

 p.oclIsNew() and p.oclIsTypeOf(Participant) and

 p.name = co.name.substring(1,Set{1..co.name.size}->

 any(pos:Integer| co.name.substring(1,pos+1) =

 co.name.substring(1,pos).concat('_')) and

An object-oriented approach to the translation between MOF metaschemas

64

 p.type = co.relationalDataType.name))

 endif

context Column::includedInEr():ErElementCh

 post: a.oclIsNew() and a.oclIsTypeOf(AttributeCh) and

 a.name = self.name and

 a.type = self.relationalDataType.name and

 a.owner = self.table.name

context ForeignKey::includedInEr():ErElementCh

 post: r.oclIsNew() and r.oclIsTypeOf(RelationshipTypeCh) and

 r.name = self.column.table.name -> asSet() -> any(true)

 and self.column.table -> asSet() -> any(true).column ->

 select(isKey) -> forAll(co:Column| p.oclIsNew() and

 p.oclIsTypeOf(Participant) and

 p.name = co.name.substring(1,Set{1..co.name.size}

 -> any(pos:Integer| co.name.substring(1,pos+1) =

 co.name.substring(1,pos).concat('_')) and

 p.type = co.relationalDataType.name))

3.3.4 mappedTo𝑺𝒋

The two previous sections have shown that the translation of a schema unit 𝑢𝑖 ,𝑘 of 𝑆𝑖 is

given by the result of the operations 𝑠𝑗 Equivalents() and includedIn𝑆𝑗 () invoked on 𝑢𝑖,𝑘 . A

schema unit is translated correctly if the results of these operations are consistent. The

consistency condition is embodied in a single operation, called mappedTo𝑆𝑗 (), which

returns a True value if it is satisfied and a False value otherwise.

The formal specification in OCL is as follows:

context SiElement::mappedToSj():Boolean
 pre: isSchemaUnit()
 body:
 if sjMappingKind() = MappingKind::HasEquivalents then
 self.sjEquivalents()->forAll(sj:SjElementCh|sj.schemaUnit()->

 notEmpty() and sj.schemaUnit().siMappingKind() =

 MappingKind::IsIncluded and
 sj.schemaUnit().includedInSj().schemaUnit() = self)
 else if sjMappingKind() = MappingKind::IsIncluded then
 self.includedInSj().schemaUnit()->notEmpty() and

 self.includedInSj().schemaUnit().siMappingKind() =

 MappingKind::HasEquivalents and

 self.includedInSj().schemaUnit().sjEquivalents().

 schemaUnit() -> includes(self)
 else
 False
 endif
 endif

This means that for each schema unit 𝑠𝑖 of 𝑆𝑖 , whose mapping kind is HasEquivalents, all

schema units of 𝑆𝑗 that are the equivalents of 𝑠𝑖 , must have a mapping kind equals to

IsIncluded, and the result of applying the includedIn𝑆𝑖() to each of them must be 𝑠𝑖 .

Moreover, for each schema unit 𝑠𝑖 of 𝑆𝑖 , whose mapping kind is IsIncluded, the result of

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

65

applying includedIn𝑆𝑖() to 𝑠𝑖 , gives a 𝑠𝑗 of 𝑆𝑗 , whose equivalents are schema units including

𝑠𝑖 .

The adaptation to the ER-relational mapping is straightforward. Here, the corresponding

to the ER-side is shown below:

context ErElement::mappedToRelational():Boolean

 body: if relationalMappingKind() = MappingKind::HasEquivalents

 then

 self.relationalEquivalents() -> forAll(

 re:RelationalElementCh| re.schemaUnit()->notEmpty() and

 re.schemaUnit().erMappingKind()=

 MappingKind::IsIncluded and

 re.schemaUnit().includedInEr().schemaUnit() = self)

 else

 if relationalMappingKind() = MappingKind::IsIncluded

 then

 self.includedInRelational().schemaUnit()->notEmpty()

 and self.includedInRelational().schemaUnit().

 erMappingKind() = MappingKind::HasEquivalents and

 self.includedInRelational().schemaUnit().

 erEquivalents().schemaUnit()->includes(self)

 else

 False

 endif

 endif

3.3.5 Translation mapping constraints

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a translation mapping where 𝑀𝑆1 and 𝑀𝑆2 are instances of the

MOF (Object Management Group 2006a). The translation mapping constraints Σ consist

of exactly two constraints, called complete and consistent mapping to S2 and complete and

consistent mapping to S1.

In UML, these constraints can be formally defined by the following OCL invariants:

context S1Element inv completeAndConsistentMappingToS2:

 isSchemaUnit() and

 (s2mappingKind() = MappingKind::HasEquivalents or

 s2mappingKind() = MappingKind::IsIncluded)

 implies mappedToS2()

context S2Element inv completeAndConsistentMappingToS1:

 isSchemaUnit() and

 (s1mappingKind() = MappingKind::HasEquivalents or

 s1mappingKind() = MappingKind::IsIncluded)

 implies mappedToS1()

The intuitive meaning is that 𝑆1 , 𝑆2 is an instance of translation mapping 𝑀 if each

translatable schema unit of 𝑆1 is consistently mapped to 𝑆2 and if each translatable schema

unit of 𝑆2 is consistently mapped to 𝑆1. When both invariants hold, 𝑆1 and 𝑆2 are

translations of each other. Note that the invariants exclude the schema units that are not

translatable in the specified mapping.

An object-oriented approach to the translation between MOF metaschemas

66

The adaptation of the two constraints to the Er-relational mapping (see Figures 3.4 and

3.5) is straightforward, formally defined as follows:

context ErElement inv completeMappingToRelational:
 isSchemaUnit() and

 (relationalMappingKind() = MappingKind::HasEquivalents or

 relationalMappingKind()= MappingKind::IsIncluded)

 implies mappedToRelational()

context RelationalElement inv completeMappingToEr:

 isSchemaUnit() and

 (erMappingKind() = MappingKind::HasEquivalents or

 erMappingKind() = MappingKind::IsIncluded)

 implies mappedToEr()

3.3.6 Translating schemas

This section describes the use of the operations defined in the previous sections in the

translation of schemas. Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping, and 𝑆1 = {𝑢1,1, … , 𝑢1,𝑛} an

instance of 𝑀𝑆1. The translation of 𝑆1 into 𝑀𝑆2 is a schema 𝑆2 = {𝑢2,1, … , 𝑢2,𝑚 } such that

𝑆1, 𝑆2 is an instance of 𝑀. The translation of 𝑆2 into 𝑀𝑆1 is similarly defined. The

approach to the translation of a schema 𝑆1 = {𝑢1,1 , … , 𝑢1,𝑛} consists in translating each of

its schema units 𝑢𝑖,𝑗 following the order given by the operation predecessors(),

starting with the units that have no predecessors. As it has been seen in Section 3.2.2 the

computation of the predecessors is mapping-independent and straightforward.

The translation is done by applying an operation that we call translateTo𝑆𝑗 () to the schema

units. In what follows, the specification of the pre- and postconditions of the operation in

OCL is given.

An instance 𝑢𝑖,𝑘 of 𝑆𝑖Element can be translated into 𝑆𝑗 if it represents a schema unit whose

mapping kind is HasEquivalents or IsIncluded. The effect of the operation translateTo𝑆𝑗 ()

must be that 𝑢𝑖,𝑘 is mapped to 𝑆𝑗 . This is captured by the simple following formal

specification as follows:
context SiElement::translateToSj()
 pre: isSchemaUnit() and

 (sjmappingKind() = MappingKind::HasEquivalents or

 sjmappingKind() = MappingKind::IsIncluded)
 post: mappedToSj()

There is no need to refine the specification of this operation in the subtypes of 𝑆𝑖Element.

Concerning its implementation, the specification of mappedTo𝑆𝑗 (explained in Section

3.3.4) suggests a straightforward implementation using the methods of the operations

createUnit() (Section 3.2.3), 𝑠𝑗 Equivalents() (Section 3.3.2) and isIncludedIn𝑆𝑗 () (Section

3.3.3).

In (Raventós 2008a) it is described the implementation of the methods of translateToEr()

and translateToRelational() in the procedural language described in USE (Gogolla, Büttner

and Richters 2007) and the output obtained by their application to the example used in

this paper. The same implementation is used in the translation of the osCommerce

3 An object-oriented operation-based approach to the translation between MOF
metaschemas

67

relational database to ER. In all cases, the time needed to translate and check its

completeness and consistency (Section 3.3.5) can be considered satisfactory in a research

environment in which research-oriented tools are used.

4 UML metaschema

In the field of software engineering, the Unified Modeling Language (UML) is a

standardized specification language for object modeling. UML is officially defined in the

Object Management Group (OMG) by the UML metamodel (Rumbaugh, Jacobson and

Booch 2004). Like other MOF-based specifications, the UML metamodel and UML models

may be serialized in XMI. UML was designed to specify, visualize, construct and document

the artifacts of a software system (Rumbaugh, Jacobson and Booch 2004). For

convenience, depending on the aspects of the systems being represented, UML divides

concepts and constructs into views. The static view includes the elements that represent

the concepts that are meaningful in a domain, their object structure and the relationships

among them. Unified Modeling Language: Superstructure, version 2.1 (Object Management

Group 2007b) specifies the superstructure of the UML metamodel.

This chapter describes the subset of the static view of the UML metamodel considered to

translate UML schemas to SBVR and vice versa. This subset is the part of the UML

metamodel that is necessary to describe the structural schema of domains. To better

illustrate the metaschema, an example of the schema, which is an instance of the

metaschema, is included.

The UML metaschema, the definition of schema units (including the predecessors and

characterization objects) and an example of instantiation have been specified in the UML-

based Specification Environment (USE) tool. The detailed specifications are provided in

the appendices.

The rest of this chapter is structured as follows:

 Section 4.1 describes an example of a schema that is an instance of the UML

metaschema and which is used as a running example throughout this thesis.

 Section 4.2 defines, following the translation approach described in Chapter 3, the

schema units of the UML metaschema, the precedence relationships between them,

and the characterization objects of such schema units.

An object-oriented approach to the translation between MOF metaschemas

70

4.1 DBLP schema: an example of an instance of the UML

metaschema

This section describes an example of a schema that will be used throughout this thesis to

illustrate the translation between UML and SBVR. The example is based on the case study

developed by Planas and Olivé (2006), with two additional association classes (Editorship

and Authorship) and an additional attribute (Gender), which is an enumeration.

The structural schema presented in the case study deals with people (authors and editors)

and their publications, which may be edited books or authored publications such as

authored books, book chapters and journal papers. Book chapters and journal papers may

or may not be conference papers.

Figure 4.1 shows the structural schema of DBLP.

The following constraints have been included in the case study for the translation to SBVR:

[1] Person: name
context Person inv nameIsKey:

Person.allInstances() -> isUnique(name)

[2] Book: isbn
context Book inv isbnIsKey:

Book.allInstances() -> isUnique(isbn)

[3] BookSeries: id
context BookSeries inv idIsKey:

BookSeries.allInstances() -> isUnique(id)

[4] Journal: issn
context Journal inv issnIsKey:

Journal.allInstances() -> isUnique(issn)

[5] Journal: title
context Journal inv titleIsKey:

Journal.allInstances() -> isUnique(title)

[6] ConferenceSeries: name
context ConferenceSeries inv nameIsKey:

ConferenceSeries.allInstances() -> isUnique(name)

[7] ConferenceEdition: title
context ConferenceEdition inv titleIsKey:

ConferenceEdition.allInstances() -> isUnique(title)

4 UML metaschema

71

Figure 4.1 Structural schema of DBLP

4.2 Schema units of the UML metaschema

This section describes the fragment of the UML metamodel (Object Management Group

2007b) considered for the mapping to SBVR. The metaclasses included are those

An object-oriented approach to the translation between MOF metaschemas

72

necessary to represent vocabularies and business rules. The following are the elements of

the UML metamodel that have been excluded: Package, PackageMerge,

PackageableElement, Slot, behavioral features including operations of the Kernel package,

the Dependencies package, the Interfaces package, some derived information (i.e., some

derived associations and attributes), the visibility attribute of NamedElement, the

isReadOnly attribute of Property, the defaultValue association of Property, generalizations

of associations, and associations with the value of isAbstract equal to true.

The fragment is described in terms of its schema units that is, its knowledge components,

as defined in Chapter 3.

Figure 4.2 Definition of Element and Element characterization object

Since all UML metaclasses are subtypes of the abstract metaclass Element, in order to

define the schema units, Element includes two operations (isSchemaUnit() and

predecessors()). The specification of the isSchemaUnit() operation in the context of Element

of Figure 4.2 is defined as follows:
context Element::isSchemaUnit():Boolean

 body: true

This means that, by default, all (direct or indirect) instances of Element are schema units.

However, each subtype of Element such that some or all of its instances do not represent

schema units redefines the isSchemaUnit() operation, as described below.

In the context of Element, the query operation predecessors give the empty set as default

value:
context Element::predecessors():Set(Element)

 pre: isSchemaUnit()

 body: Set{}

Each subtype of Element such that some or all of its instances represent schema units

redefines the predecessors() operation (if needed).

Additionally, as described in Chapter 3, each schema unit is characterized by a schema unit

characterization object type, which defines the schema elements comprised by the schema

unit. The schema unit characterization object is defined for each subtype of Element such

that some or all of its instances represent schema units. Each characterization object type

includes a set of attributes that characterize the schema unit and two operations:

createUnit() and schemaUnit(). The former creates a schema unit from its characterization

object, and the latter gives the schema unit corresponding to the characterization object, if

it exists. The operation createUnit() will only be invoked when the predecessors of the

schema unit it creates have already been created. It is the same for all of the

characterization object types and is defined in the general ElementCh (see Figure 4.2):

4 UML metaschema

73

context ElementCh::createUnit()

 pre: schemaUnit() -> notEmpty()

The schemaUnit() operation is redefined in each subtype of ElementCh.

In a UML schema, the schema units are classes, data types, enumerations, attributes,

associations, association classes, generalizations, generalization sets and constraints.

The following subsections define the schema units in terms of their schema elements.

They provide, for each schema unit, a generic description of it, its abstract syntax, the

specifications of the isSchemaUnit() and predecessors() operations used to define it, and its

schema unit characterization object.

4.2.1 Class schema unit

Generic description

A class schema unit describes a set of objects that share the same specifications of

features, constraints and semantics. A class schema unit may be defined as abstract that is,

the instances of the class may be derived by union of the subtypes of a partition of the

class.

The DBLP example shown in Figure 4.1 has 17 class schema units represented by

instances of Class named Person, Publication, Book, AuthoredPublication, EditedBook,

AuthoredBook, BookChapter, JournalPaper, BookSection, BookSeriesIssue, BookSeries,

JournalSection, JournalIssue, ConferenceEdition, ConferenceSeries, JournalVolume and

Journal. Publication, Book and AuthoredPublication have classes defined as abstract. The

instances of Publication may be derived by union of the instances of EditedBook and

AuthoredPublication. The instances of Book may be derived by union of the instances of

EditedBook and AuthoredBook. And finally, the instances of AuthoredPublication may be

derived by union of AuthoredBook, BookChapter and JournalPaper.

Abstract syntax

Each class schema unit is represented by an instance of Class. The schema elements of a

class, named c, are as follows: (1) the instance  of Class; (2) the instance of attribute name

of  with value c; and (3) the instance of attribute isAbstract of  with value True or False.

Figure 4.3 shows the abstract syntax of the class schema unit. Note that the isSchemaUnit()

and predecessors() operations are not redefined in Class, meaning that all instances of Class

are schema units and do not have predecessors.

An object-oriented approach to the translation between MOF metaschemas

74

Figure 4.3 Class schema unit

Characterization object

Figure 4.4 Class schema unit characterization object ClassCh

Figure 4.4 shows the characterization object type for the class schema unit, ClassCh. The

schemaUnit() operation is defined, formally, as follows:
context ClassCh::schemaUnit():Class

 body: Class.allInstances() -> any(c:Class| c.name = self.name and

 c.isAbstract = self.isAbstract)

This means that the schemaUnit() operation of ClassCh is a query that gives the instance of

Class whose attributes name and isAbstract have the same values as the ones given in the

attributes name and isAbstract of ClassCh, respectively.

4 UML metaschema

75

4.2.2 Data type schema unit

Generic description

A data type schema unit is a type whose instances are identified only by their value.

Additionaly, UML includes some predefined data types, called primitive types, which are

as follows: Boolean, Integer, UnlimitedNatural and String.

The DBLP example shown in Figure 4.1 has two data type schema units represented by

two instances of DataType named Natural and Year, respectively. It also includes two data

types represented by two instances of PrimitiveType named Boolean and String,

respectively.

Abstract syntax

Each data type schema unit that is not an enumeration is represented by an instance of

DataType that is not an instance of Enumeration. The schema elements of a data type

named d are as follows: (1) an instance  of DataType (or PrimitiveType); (2) the instance

of attribute name of  with value d; and (3) the instance of attribute isAbstract of  with

value False.

Figure 4.5 Data type and primitive type schema units

Figure 4.5 shows the abstract syntax of a data type schema unit. The isSchemaUnit() and

predecessors() operations are not redefined in DataType.

Characterization object

For the data type characterization object DataTypeCh (see Figure 4.6), the schemaUnit()

operation is defined, formally, as follows:

An object-oriented approach to the translation between MOF metaschemas

76

Figure 4.6 Data type schema unit characterization object DataTypeCh

context DataTypeCh::schemaUnit():DataType

 body: DataType.allInstances() -> any(d:DataType|

 d.name = self.name and d.isAbstract = false and

 self.isPrimitiveType implies d.oclIsTypeOf(PrimitiveType))

This means that the schemaUnit() operation of DataTypeCh is a query that gives the

instance of DataType whose attribute name has the same value as the one given in the

attribute name of DataTypeCh and whose isAbstract attribute has a value equal to False.

Moreover, if the attribute isPrimitiveType is true then the instance of DataType is also an

instance of PrimitiveType.

4.2.3 Enumeration schema unit

Generic description

An enumeration schema unit is a special type of data type whose values are enumerated in

the model as enumeration literals.

The DBLP example shown in Figure 4.1 has one enumeration schema unit represented by

an instance of Enumeration named Gender. The two instances of EnumerationLiteral

related to said instance of Enumeration are named Male and Female, respectively.

Abstract syntax

Each enumeration is represented by an instance of Enumeration. The schema elements of

an enumeration e are as follows: (1) the instance  of Enumeration; (2) the instance of

attribute name of  with value e; (3) the instance of attribute isAbstract of  with value

False; (4) the instances of EnumerationLiteral related to ; and (5) for each of these

enumeration literals, the instance of its attribute name and its relationship with e in a

given order.

Figure 4.7 shows the abstract syntax of an enumeration schema unit. Note that the

isSchemaUnit() and predecessors() operations are not redefined in Enumeration, meaning

that all instances of Enumeration are schema units and they do not have predecessors. The

isSchemaUnit() operation is redefined in InstanceSpecification:
 context InstanceSpecification::isSchemaUnit():Boolean

 body: false

This means that the instances of InstanceSpecification are not schema units.

4 UML metaschema

77

Figure 4.7 Enumeration schema unit

Characterization object

Figure 4.8 Enumeration schema unit characterization object EnumerationCh

For the enumeration characterization object EnumerationCh (see Figure 4.8), the

schemaUnit() operation is defined, formally, as follows:
context EnumerationCh::schemaUnit():Enumeration

 body: Enumeration.allInstances() -> any(e:Enumeration|

 e.name = self.name and

 e.ownedLiteral -> collect(name) =

 self.literal -> collect(name))

This means that the schemaUnit() operation of EnumerationCh is a query that gives the

instance of Enumeration whose attribute name has the same value as the one given in the

An object-oriented approach to the translation between MOF metaschemas

78

attribute name of EnumerationCh and for which the ordered sequence of names of its

ownedLiterals is equal to the ordered sequence of names of the literals of EnumerationCh.

4.2.4 Attribute schema unit

Generic description

An attribute schema unit is a structural feature that relates the instance of the class that

owns the attribute to a value or collection of values of the type of the attribute.

The DBLP example shown in Figure 4.1 has 41 attribute schema units represented by

instances of Property: name, gender, homePage and numPublications of Person; title, year

and edition of Publication; order of Editorship; order of Authorship; numPages, homePage,

publisher, publication and isbn of Book; iniPage, endPage and conferencePaper of

BookChapter; iniPage, endPage and conferencePaper of JournalPaper; title and order of

JournalSection; title and order of BookSection; number of BookSeriesIssue; id and publisher

of BookSeries; title, year, city, country and homepage of ConferenceEdition; acronym and

name of ConferenceSeries; number, year, month and numPages of JournalIssue; volume of

JournalVolume; and title and issn of Journal.

Abstract syntax

Each attribute is represented by an instance of Property that is owned by a Class or a

DataType. The schema elements of an attribute named at are as follows: (1) the instance 

of Property; (2) the instance of attribute name of  with value at; (3) the instances of its

Boolean attributes isDerived and isDerivedUnion and the instance of its aggregation

attribute; (4) the instance of its relationship with an instance of Class or DataType; (5) an

instance of a subtype of LiteralSpecification (usually LiteralInteger) with the instance of its

attribute value and the relationship to  (for the lowerValue); (6) an instance of a subtype

of LiteralSpecification (usually LiteralInteger or LiteralUnlimitedNatural) with the instance

of its attribute value and the relationship to  (for the upperValue); and (7) the instance of

its relationship with the corresponding type.

Figure 4.9 shows the abstract syntax of an attribute schema unit. The isSchemaUnit()

query operation is redefined in the Property metaclass. Not all instances of Property are

schema units. Only those that represent an attribute that is, the properties that are not

related to any instance of Association by memberEnd or its specializations are schema

units. Therefore, the query operation is formally redefined in Property as follows:
context Property::isSchemaUnit():Boolean

body: self.association -> isEmpty()

The isSchemaUnit() query operation is also redefined in the LiteralSpecification abstract

metaclass. No instances of either metaclass are schema unit.
context LiteralSpecification::isSchemaUnit():Boolean

body: false

4 UML metaschema

79

Figure 4.9 Attribute schema unit

The predecessors() operation of Property is specified as follos:
context Property::predecessors():Set(Element)
 body: Element.allInstances() -> select(el:Element |

 (el.oclIsTypeOf(Class) and

 (el.oclAsType(Class) = self.class or

 el.oclAsType(Class) = self.type)) or

 (el.oclIsKindOf(DataType) and

 (el.oclAsType(DataType) = self.dataType or

 el.oclAsType(DataType = self.type)))

This means that the predecessors of a property that represents an attribute are its owning

class or owning data type and its type.

An object-oriented approach to the translation between MOF metaschemas

80

Characterization object

For the attribute schema unit characterization object PropertyCh (see Figure 4.10), the

schemaUnit() operation is defined, formally, as follows:
context PropertyCh::schemaUnit():Property

 body: Property.allInstances() -> any(p:Property|

 p.association -> isEmpty()

 p.name = self.name and p.type.name = self.type and

 self.ownerClassName -> notEmpty() implies

 p.class.name = self.ownerClassName and

 self.ownerDataTypeName -> notEmpty() implies

 p.dataType.name = self.ownerDataTypeName and

 p.isDerived = self.isDerived and

 p.isDerivedUnion = self.isDerivedUnion and

 p.aggregation = self.aggregation_ and

 p.lowerValue.oclAsType(LiteralInteger).value =

 self.lowerValue and

 if self.upperValue -> notEmpty() then

 p.upperValue.oclAsType(LiteralInteger).value =

 self.upperValue

 else

 p.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)

 endif)

This means that the schemaUnit() operation of PropertyCh is a query that gives the

instance of Property whose owner is a class or data type with the attribute name with the

same value as the one given in the attribute name; the isDerived, isDerivedUnion and

aggregation attributes have the same value as the ones with the same names given in

PropertyCh; the multiplicity constraints of the property are given in the lowerValue and

upperValue attributes. Note that the upperValue attribute of PropertyCh has a value when

the type of the upperValue specification is of type LiteralInteger.

Figure 4.10 Attribute schema unit characterization object PropertyCh

4.2.5 Association schema unit

Generic description

An association schema unit specifies a semantic relationship that can occur between class

schema units. The instances of association schema units are the identifiable individual

4 UML metaschema

81

relationships between instances of the classes that have the relationship. The association

schema unit includes the following: the association with its name, if any; the member ends

with their respective aggregation kinds; and the cardinality constraints between the

participants, i.e., the multiplicities of the member ends of the association.

The DBLP example shown in Figure 4.1 has 15 association schema units represented by

instances of Association: R1(bookChapter, bookSection), R2(bookChapter, bookSeriesIssue),

R3(bookChapter, editedBook), R4(bookSection, editedBook), R5(journalPaper, journalIssue),

R6(journalPaper, journalSection), R7(bookSeries, bookSeriesIssue), R8(conferenceSeries,

conferenceEdition), R9(journal, journalVolume), R10(journalIssue, journalSection),

R11(journalVolume, journalIssue), IsPublishedIn(conferenceEdition, bookSeriesIssue),

IsPublishedIn(conferenceEdition, EditedBook), Publishes(person, publication) and

IsPublishedIn(conferenceEdition, journalIssue).

Note that association classes are considered different schema units than the association

schema unit.

Abstract syntax

Each association schema unit is represented by an instance of Association. The schema

elements of an association that may be named as are as follows: (1) the instance  of

Association; (2) if it has a name, the instance of attribute name of  with value as; (3) the

instances of its attribute isAbstract; (4) the instances of Property that are member ends of

; and (5) for each of these properties: (a) the instance of its relationship to its Type; (b)

the instances of its attributes isDerived, isDerivedUnion and aggregation; (c) the instance of

its relationship with , in a given order; (d) an instance of a subtype of LiteralSpecification

(usually LiteralInteger) with the instance of its attribute value and the relationship to the

property (for the lowerValue); and (e) an instance of a subtype of LiteralSpecification

(usually LiteralInteger or LiteralUnlimitedNatural) with the instance of its attribute value

and the relationship to the property (for the upperValue).

Figure 4.11 shows the abstract syntax of an association schema unit. All instances of

Association are schema units. Therefore, the isSchemaUnit() query is not redefined in

Association. The predecessors() operation of Association is specified as follows:
context Association::predecessors():Set(Element)
 body: Property.allInstances() -> select(p:Property |

 p.association = self).type -> asSet()

This means that the predecessors of an association are the types of the member ends of

the association.

An object-oriented approach to the translation between MOF metaschemas

82

Figure 4.11 Association schema unit

Characterization object

Figure 4.12 Association schema unit characterization object AssociationCh

4 UML metaschema

83

For the association schema unit characterization object AssociationCh (see Figure 4.12),

the schemaUnit() operation is defined, formally, as follows:
context AssociationCh::schemaUnit():Association

 body: Association.allInstances() -> any(a:Association|

 self.name ->notEmpty() implies a.name = self.name and

 a.isAbstract = self.isAbstract and

 a.isDerived = self.isDerived and

 a.memberEnd -> collect(m:Property|

 Tuple{n:m.name, id:m.isDerived,

 idu:m.isDerivedUnion, ag:m.aggregation,

 l:m.lowerValue.oclAsType(LiteralInteger).value,

 u:m.upperValue.oclAsType(LiteralInteger).value,

 un:m.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)})

 =

 self.associationMemberEnd ->collect(m:AssociationMemberEnd|

 Tuple{n:m.name, id:m.isDerived,

 idu:m.isDerivedUnion, ag:m.aggregation,

 l:m.lowerValue, u:m.upperValue,

 un:m.upperValue->isEmpty()}))

This means that the schemaUnit() operation of AssociationCh is a query that gives the

instance of Association whose name attribute is empty or whose value is equal to the value

of the name attribute of AssociationCh; the isAbstract and isDerived attributes have the

same value as the isAbstract and isDerived attributes of AssociationCh, respectively; and

the ordered sequence of values of the name attributes of memberEnds is equal to the

ordered sequence of values of the name attributes of the associationMemberEnds of

AssociationCh.

4.2.6 Association class schema unit

Generic description

An association class schema unit is a schema unit that is both an association schema unit

and a class schema unit. The association class schema unit includes the structural

elements of a class schema unit and of an association class schema unit.

The DBLP example shown in Figure 4.1 has two association class schema units

represented by instances of AssociationClass and named Editorship and Authorship,

respectively.

Abstract syntax

Each association class is represented by an instance of AssociationClass. The schema

elements of an association class, named ac, are as follows: (1) the instance  of

AssociationClass; (2) the instance of attribute name of  with value ac; (3) the instances of

its attributes isDerived and isAbstract; (4) the instances of Property that are member ends

 (such as owningAssociation); and (5) for each of these properties: (a) the instance of its

relationship to its Type; (b) the instances of its attributes isDerived, isDerivedUnion and

aggregation; (c) the instance of its relationship with ; (d) an instance of a subtype of

LiteralSpecification (usually LiteralInteger) with the instance of its attribute value and the

relationship to the property (for the lowerValue); and (e) an instance of a subtype of

An object-oriented approach to the translation between MOF metaschemas

84

LiteralSpecification (usually LiteralInteger or LiteralUnlimitedNatural) with the instance of

its attribute value and the relationship to the property (for the upperValue).

Figure 4.13 shows the abstract syntax of an association class schema unit. As with the

association and class schema units, all instances of AssociationClass are schema units.

Therefore, the isSchemaUnit() query is not redefined in AssociationClass.

The predecessors() operation of AssociationClass is specified as follows:
context AssociationClass::predecessors():Set(Element)
 body: Property.allInstances() -> select(p:Property |

 p.association = self).type -> asSet()

This means that the predecessors of an association class are the types of the member ends

of the association class.

Figure 4.13 Association class schema unit

4 UML metaschema

85

Characterization object

Figure 4.14 Association class schema unit characterization object AssociationClassCh

For the association class schema unit characterization object AssociationClassCh (see

Figure 4.14), the schemaUnit() operation is defined, formally, as follows:
context AssociationClassCh::schemaUnit():AssociationClass

 body: AssociationClass.allInstances() ->

 any(a:AssociationClass| a.name = self.name and

 a.isAbstract = self.isAbstract and

 a.isDerived = self.isDerived and

 a.memberEnd -> collect(m:Property|

 Tuple{n:m.name, id:m.isDerived,

 idu:m.isDerivedUnion, ag:m.aggregation,

 l:m.lowerValue.oclAsType(LiteralInteger).value,

 u:m.upperValue. oclAsType(LiteralInteger).value,

 un:m.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)})

 =

 self.associationClassMemberEnd ->

 collect(m:AssociationClassMemberEnd|

 Tuple{n:m.name, id:m.isDerived,

 idu:m.isDerivedUnion, ag:m.aggregation,

 l:m.lowerValue, u:m.upperValue,

 un:m.upperValue -> isEmpty()}))

This means that the schemaUnit() operation of AssociationClassCh is a query that gives the

instance of AssociationClass whose value of the name attribute is equal to the value of the

name attribute of AssociationClassCh; the isAbstract and isDerived attributes have the same

value as the isAbstract and isDerived attributes of AssociationClassCh, respectively; and the

ordered sequence of values of the name attributes of memberEnds is equal to the ordered

sequence of the values of the name attributes of the AssociationClassMemberEnd(s) of

AssociationClassCh.

4.2.7 Generalization schema unit

Generic description

A generalization schema unit is a taxonomic relationship (IsA relationship) between two

classes' schema units.

The DBLP example shown in Figure 4.1 has nine generalization schema units represented

by instances of Generalization: EditedBook IsA Publication, Book IsA Publication,

An object-oriented approach to the translation between MOF metaschemas

86

AuthoredPublication IsA Publication, EditedBook IsA Book, AuthoredBook IsA Book,

AuthoredBook IsA AuthoredPublication, BookChapter IsA AuthoredPublication, JournalPaper

IsA AuthoredPublication and BookSeriesIssue IsA Book.

Abstract syntax

Each generalization is represented by an instance of Generalization, which is associated,

through the general association, to a Class. The schema elements of a generalization are as

follows: (1) an instance of Generalization ; (2) the instance of the relationship between an

instance of Class (general) and ; and (3) the instance of the relationship between an

instance of Class (specific) and .

Figure 4.15 Generalization schema unit

Figure 4.15 shows the abstract syntax of a generalization schema unit. All instances of

Generalization are schema units. Therefore, the isSchemaUnit() query operation is not

redefined in Generalization. The predecessors() operation of Generalization is specified as

follows:
context Generalization::predecessors():Set(Element)
 body: Element.allInstances() -> select (el:Element|

 el.oclIsTypeOf(Classifier) and

 (el.oclAsType(Classifier) = self.specific or

 el.oclAsType(Classifier) = self.general))

This means that the predecessors of a generalization are the classifiers that correspond to

the general or specific element of the generalization.

Characterization object

For the generalization schema unit characterization object GeneralizationCh (see Figure

4.16), the schemaUnit() operation is defined, formally, as follows:
context GeneralizationCh::schemaUnit():Generalization

 body: Generalization.allInstances() -> any(g:Generalization|

 g.general.name = self.generalClassName and

 g.specific.name = self.specificClassName)

4 UML metaschema

87

This means that the schemaUnit() operation of GeneralizationCh is a query that gives the

instance of Generalization whose name attribute of its general class and its specific class

has the same values as the generalClassName and specificClassName attributes of

GeneralizationCh, respectively.

Figure 4.16 Generalization schema unit characterization object GeneralizationCh

4.2.8 Generalization set schema unit

Generic description

A generalization set schema unit defines a particular set of generalization schema units

that describe the way in which a general class schema unit may be divided using specific

class schema units. The generalization set schema unit includes the disjunction and

covering constraints.

The DBLP example shown in Figure 4.1 has three generalization set schema units

represented by instances of GeneralizationSet and named typeOfPublication, typeOfBook

and typeOfAuthoredPublication. TypeOfPublication partitions Publication into EditedBook

and AuthoredPublication; TypeOfBook partitions Book into EditedBook and AuthoredBook;

and TypeOfAuthoredPublication partitions AuthoredPublication into AuthoredBook,

BookChapter and JournalPaper. The three generalization sets are covering and disjoint.

Abstract syntax

Each generalization set is represented by an instance of GeneralizationSet. The schema

elements of a generalization set that may be named gs are as follows: (1) the instance of

GeneralizationSet ; (2) if it has a name, the instance of attribute name of  with value gs;

(3) if the generalization set corresponds to a powertype extent, the instance of its

relationship to an instance of Classifier (the powertype); (4) the instances of the two or

more relationships between an instance of Generalization and ; and (5) the instances of

attributes isCovering and isDisjoint of .

Figure 4.17 shows the abstract syntax of a generalization set schema unit. All instances of

GeneralizationSet are schema units. Therefore, the isSchemaUnit() query operation is not

redefined in GeneralizationSet.

An object-oriented approach to the translation between MOF metaschemas

88

Figure 4.17 Generalization set schema unit

The predecessors() operation of GeneralizationSet is specified as follows:
context Generalization::predecessors():Set(Element)
 body: Element.allInstances() -> select (el:Element|

 el.oclIsTypeOf(Generalization) and

 el.oclAsType(Generalization).generalizationSet ->

 includes(self)))

This means that the predecessors of a generalization set are the generalizations associated

with such a generalization set.

Characterization object

For the generalization set schema unit characterization object GeneralizationSetCh (see

Figure 4.18), the schemaUnit() operation is defined, formally, as follows:
context GeneralizationSetCh::schemaUnit():GeneralizationSet

 body: GeneralizationSet.allInstances() ->

 any(gs:GeneralizationSet|

 gs.name -> notEmpty() implies gs.name = self.name and

 gs.powertype ->notEmpty() implies

 gs.powertype.name = self.powertype and

 gs.isCovering = self.isCovering and

 gs.isDisjoint = self.isDisjoint and

 gs.generalization -> collect(g:Generalization|

 Tuple{gc:g.general.name, sp:g.specific.name}) ->asSet() =

 self.participant -> collect(p:Participant|

 Tuple{gc:p.generalClassName, sp:p.specificClassName}) ->

 asSet())

This means that the schemaUnit() operation of GeneralizationSetCh is a query that gives

the instance of GeneralizationSet whose name attribute of its powertype is equal to the one

given in the powertype attribute of GeneralizationSetCh; the isCovering and isDisjoint

attributes have values equal to the isDisjoint and isCovering values of GeneralizationSetCh;

and each of its generalizations has the values of the names of its general class and its

specific class as the values of generalClassName and specificClassName of the participants

of the GeneralizationSetCh, respectively.

4 UML metaschema

89

Figure 4.18 Generalization set schema unit characterization object GeneralizationSetCh

4.2.9 Constraint schema unit

Generic description

A constraint schema unit is a condition or restriction for the purpose of declaring some of

the semantics of one or more schema units. UML has a few predefined static constraints

with an associated graphic symbol. Cardinality, aggregation, composition, disjointness and

covering constraints have already been included in other schema units. Therefore, a

constraint schema unit is an XOR constraint or a constraint specified as invariant. An

invariant is a constraint that is linked to a class schema unit. An invariant constraint

consists of an OCL expression of type Boolean, which must be true for each instance of the

class schema unit at any time.

The DBLP example shown in Figure 4.1 has eight constraint schema units represented by

instances of Constraint. One is the XOR constraint shown in the figure and the other seven

are the ones specified as invariants in OCL.

Abstract syntax

Each constraint is represented by an instance of Constraint. The schema elements of a

constraint that may be named co are as follows: (1) the instance  of Constraint; (2) if it

has a name, the instance of attribute name of  with value co; (3) the instances of its

relationship with the instances of Element (constrainedElement); (4) the instance of its

relationship with an instance of Namespace (context); and either (a) an instance of

Expression with the instance of its attribute symbol and the instance of its relationship with

 (the specification); or (b) an instance of OpaqueExpression with the instances of its

attributes body and language and the instance of its relationship with  (the specification).

Figure 4.19 shows the abstract syntax of a constraint schema unit. All of the instances of

Constraint are schema units. Therefore, the isSchemaUnit() query operation is not

redefined in Constraint. However, the instances of Expression and OpaqueExpression are

not schema units and the isSchemaUnit() query operation is specified as follows:
context Expression::isSchemaUnit():Boolean

body: false

An object-oriented approach to the translation between MOF metaschemas

90

Figure 4.19 Constraint schema unit

context OpaqueExpression::isSchemaUnit():Boolean

body: false

The predecessors() operation of Constraint is specified as follows:
context Constraint::predecessors():Set(Element)
 body: Element.allInstances() -> select (el:Element|

 (el.oclIsTypeOf(Namespace) and

 el.oclAsType(Namespace).ownedRule ->includes(self))

 or el.constraint -> includes(self))

This means that the predecessors of a constraint are the context of the constraint and the

elements constrained by it.

Characterization object

Figure 4.20 Constraint schema unit characterization object ConstraintCh

Figure 4.20 shows the constraint schema unit characterization object ConstraintCh, limited

to the type of constraints found in the DBLP example. For the constraint schema unit

characterization object ConstraintCh, the schemaUnit() operation is defined, formally, as

follows:

4 UML metaschema

91

context ConstraintCh::schemaUnit():Constraint

 body: Constraint.allInstances() -> any(c:Constraint|

 self.name ->notEmpty() implies

 c.name = self.name and

 self.namespace ->notEmpty() implies

 c.context.name = self.namespace and

 self.constrainedElement -> forAll(co|

 if co.typeCon = TypeElement::Class then

 c.constrainedElement.oclAsType(Class).name->includes(

 co.name)

 else

 if co.type = TypeElement::property then

 c.constrainedElement.oclAsType(Property).

 name->includes(co.name)

 else

 c.constrainedElement->

 collect(oclAsType(Association).name)->

 includes(co.name) and

 c.constrainedElement ->

 collect(oclAsType(Association).memberEnd) ->

 asSet() -> exists(me | co.membersName ->

 includesAll(me.name)) and

 c.constrainedElement ->

 collect(oclAsType(Association).memberEnd.type) ->

 asSet() -> exists(me | co.membersType ->

 includesAll(me.name))

 endif

 endif) and

 self.symbolExpression -> notEmpty() implies

 c.specification.oclAsType(Expression).symbol =

 self.symbolExpression and

 self.bodyOpaqueExpression -> notEmpty() implies

 c.specification.oclAsType(OpaqueExpression).body =

 self.bodyOpaqueExpression)

This means that the schemaUnit() operation of ConstraintCh is a query that gives the

instance of Constraint whose name attribute is equal to the one given in the name attribute

of ConstraintCh; the name attribute of the context has a value equal to the namespace

attribute of ConstraintCh; each of its constrained elements has the name attribute that is

the one given in the name of ConstrainedElement associated with ConstraintCh; and the

symbol or body attributes of the specification of the constraint has the same value as the

one given in the symbolExpression or bodyOpaqueExpression, respectively, of ConstraintCh.

The complete specification in the USE tool of the UML metaschema can be found in

Appendix A. Appendix B shows a representative fragment of the instances defined in USE

to specify the DBLP structural schema. The methods for creating schema units of the

characterization objects are also provided in Appendix C.

5 SBVR meanings metaschema

Since the 1960s, many formal languages have been developed to allow software engineers

to specify conceptual models. A few of these, such as UML (Rumbaugh, Jacobson and

Booch 2004) and XML schema (Harold 2001), have become widely used standards.

These languages have been designed for use by software engineers, whose ultimate goal is

to design software artifacts. Consequently, they employ notations and concepts that are

not readily understood by "domain experts" (e.g., healthcare experts, finance experts,

transportation experts, business managers, etc.) who understand the actual problem

domain and are responsible for finding the solutions to problems.

Because of this, domain experts initiate discussions with software engineers to express

their concerns and transcribe them into languages that only software engineers can read

and write. Consequently, much of the business knowledge needed to operate an

organization and deal with its environment is captured only in languages that business

experts can neither read nor write.

Moreover, businesses change constantly and new decisions must be made accordingly in

the business environment. The process of incorporating new decisions into the operating

software that supports the affected business functions is error-prone, partly because

business experts cannot actually read what the software engineer has written and verify

that is consistent with the intentions, and partly because although other business elements

involved in the decision are captured in software engineering languages, the software

engineer who encounters them may not be aware of their relevance to the decision at

hand.

For these reasons, OMG developed the Semantics of Business Vocabulary and Rules

(SBVR) specification, which was published as an OMG Available Specification in February

2008. This specification was the first step in providing standard support for the "business

vocabulary management" and "business rules management" tools that have recently

appeared in the marketplace. These tools capture the business concepts and business

rules in languages that are close enough to ordinary language so that business experts can

read and write them, and at the same time formal enough to capture the intended

An object-oriented approach to the translation between MOF metaschemas

94

semantics and present it in a form that is suitable for engineering the automation of rules.

The specification provides a metamodel for the concepts used in capturing vocabulary and

business rules.

For various reasons, the SBVR specification did not include normative specification of a

language to be used by business-people to express their vocabulary and rules, partly

because some of the tool builders involved used proprietary "business languages" in their

tooling. There was also disagreement about using English-like text versus texts similar to

other natural languages or graphical representations.

SBVR itself was written in "Structured English," a language that is defined in the

specification, but is not normative and may not actually be supported by any tooling.

Moreover, in June 2008, OMG submitted a request for a proposal to define at least one

standard language in which business experts can express their vocabulary and rules

(Object Management Group 2008b). For this reason, Chapter 7 of this thesis proposes a

metamodel of this, non-normative SBVR Structured English language and provides a set of

operations to derive the "Structured English representations" from SBVR meanings.

The rest of this chapter is structured as follows:

 Section 5.1 gives an overview of the meanings and the structure of some of the

meanings described in the SBVR specification.

 Section 5.2 defines, following the translation approach described in Chapter 3, the

schema units of the SBVR metaschema, the precedence relationships between them

and the characterization objects of such schema units.

5.1 Overview of SBVR meanings

The Object Management Group (OMG) published Semantics of Business Vocabulary and

Business Rules (SBVR), v.1.0 (Object Management Group 2008a) as an Available

Specification in February 2008. This document defines the vocabulary and rules for

documenting the semantics of business vocabulary, business facts and business rules. The

specification is applicable to the domain of business vocabularies and business rules for all

kinds of business activities in all kinds of organizations. It is conceptualized optimally for

business-people rather than for automated rules processing, and is designed to be used for

business purposes, regardless of information system designs.

SBVR was initially developed by the Business Rules Group (Object Management Group

2004), which has been working exclusively in this area since the late 1980s. Key notions of

the SBVR approach are presented succinctly in the BRG’s Business Rule Manifesto

(Business Rule Group 2003).

SBVR is based on the idea that the purpose of systems for the management of business

vocabulary and rules is to capture and maintain the expression of business meanings.

Meanings exist only in business decision makers, and SBVR divides such meanings into

two categories (see Figure 5.1):

5 SBVR meanings metaschema

95

Figure 5.1 Fragment of the abstract syntax of the SBVR metamodel

 Concepts: classifiers of things (noun concepts) and classifiers of states and actions

(verb concepts or fact types).

 Propositions: meanings of statements ("complete thoughts").

For example, an instance of a noun concept may be represented by a designation or name

as "edited book" or "person." Instances of fact types may be represented by fact type

forms. For example, "editor has edited book" may represent an instance of an associative

fact type between the "editor" and "edited book" fact type roles. SBVR also defines a

number of more specialized categories of concept. Additional details about each category

are given in the next section.

A rule (also called element of guidance) is a proposition that guides the conduct of

business. SBVR further divides the meaning of "rule" into the following subcategories:

 Structural rules, which are statements of necessity, stating properties that are

fundamental to the concepts involved.

 Operational rules (not shown in Figure 5.1), which state intents and requirements

for the business operation.

 Pieces of advice (not shown in Figure 5.1), which state facts that clarify the scope of

rules.

SBVR includes constructs called semantic formulations that structure the meaning of rules

or the definition of concepts. There are two kinds of semantic formulations: logical

formulations and projections. Logical formulations are further specialized into logical

operations, quantifications, atomic formulations based on fact types, and other

formulations for special purposes, such as objectification. Logical formulations are

An object-oriented approach to the translation between MOF metaschemas

96

recursive. Several kinds of logical formulations embed other logical formulations, and

some of them introduce logical variables (not shown in Figure 5.1).

In SBVR, any rule is constructed by applying a modal operator (necessity, obligation,

possibility and permissibility) to a logical formulation. Since obligation, possibility and

permissibility formulations may not be represented in UML structural schemas, they have

been left out of the scope of this thesis.

For example, “It is necessary that each edited book has at least one editor” is a proposition

based on a necessity formulation (structural rule), which is structured as follows:

The structural rule embeds a universal quantification.
 . The universal quantification introduces a first variable.
 . . The first variable ranges over the concept "edited book."
 . The universal quantification scopes over an existential quantification.
 . . The existential quantification has a minimum cardinality of 1.
 . . The existential quantification introduces a second variable.
 . . . The second variable ranges over the concept "editor."
 . . The existential quantification scopes over an atomic formulation.
 . . . The atomic formulation is based on the fact type "edited book has editor."
 The atomic formulation has a role binding.
 The role binding is of the role "edited book" of the fact type.
 The role binding binds to the first variable.
The atomic formulation has a second role binding.
 The second role binding is of the role "editor" of the fact type.
 The second role binding binds to the second variable.

The indentation in the example shows a hierarchical structure in which a logical

formulation at one level operates on, or quantifies over, one or more logical formulations

at the next highest level. Each kind of logical formulation, including quantification and

logical operations, can be embedded in another logical formulation at any depth and in

almost any combination. Note also that each line in the example corresponds to an

instance of an element of the SBVR metamodel.

Figure 5.2 shows the same structural rule as an instance of the SBVR metamodel. Complete

representations of structural rules as instances of the SBVR metamodel are quite

cumbersome, as shown in Figure 5.2. Therefore, simplified versions of representations of

rules, as shown in Figure 5.3, are used in the rest of the thesis.

Figure 5.3, combines in a single tree node, the kind of SBVR instance and schema element

referenced by the node. That is, a node representing an instance of Variable or

FactTypeRole includes the name of the concept that it ranges over; a node representing an

instance of a subtype of QuantificationFormulation includes the cardinality values; and a

node representing an instance of AtomicFormulation includes the expression of the fact

type that it is based on. Additional details of other elements are introduced when they

arise.

5 SBVR meanings metaschema

97

Figure 5.2 Example of structural rule as an instance of the SBVR metamodel

Figure 5.3 Simplified version of the structure of a structural rule

In addition to logical formulation, SBVR specifies another type of structure of meanings

(semantic formulation) called projection. Projections are used to formulate definitions of

meanings. For example, a noun concept may be defined by the set of things (instances)

that exist in the domain at any time. In the DBLP example, the object type "authored

publication" can be defined as the disjunction of the object types named "authored book,"

"book chapter" and "journal paper."

More details about the various types of concepts, structural rules and other types of

semantic formulation are given in the next section.

scopes over introduces

UniversalQuantification

Variable
(edited book)

ExistentialQuantification
(minimumCardinality = 1)

AtomicFormulation Variable
(editor)

Necessity: each edited book has at least 1 editor

introduces scopes over

AssociativeFactType
(edited book has editor)

based on

An object-oriented approach to the translation between MOF metaschemas

98

5.2 Schema units of the SBVR metaschema

This section describes the subset of the SBVR metamodel that is necessary to describe

conceptual schemas as a combination of concepts and facts as defined in SBVR. In order to

translate the subset of UML described in Chapter 4 to SBVR, only the subset of SBVR that

describes meanings (concepts and propositions) and semantics formulations is necessary.

Based on the approach to translating MOF metaschemas described in Chapter 3, this

chapter provides the definition of (i) schema units, (ii) the relation of precedence between

them, and (iii) the objects that characterize such schema units (characterization objects).

All elements concerning representations and business statements, rather than meanings,

have been excluded from the SBVR meanings metamodel. Moreover, elements concerning

meanings that have no equivalents in a UML conceptual schema have also been excluded:

 Questions: meanings that are interrogatories.

 Uniform Resource Identifiers (URI) vocabulary.

 Modal logics different than modal formulations of necessity (i.e., operational rules

and pieces of advice).

As in the previous chapter, the fragment is described in terms of its schema units that is,

its knowledge components.

Figure 5.4 Definition of Meaning and its characterization object MeaningCh

In this case, all SBVR metaclasses for which some instances are schema units are subtypes

of the abstract metaclass Meaning. In order to define the schema units, Meaning includes

two operations (isSchemaUnit() and predecessors()), as shown in Figure 5.4.

The query operation isSchemaUnit() is defined formally as follows:
context Meaning::isSchemaUnit():Boolean

body: false

The query operation is redefined in all subtypes that are schema units and are not

abstract.

In the Meaning metaclass of Figure 5.4, the predecessors() operation is specified as follows:
context Meaning::predecessors:Set(Meaning)

 pre: isSchemaUnit()

 body: Set{}

This means that, by default, no schema units have predecessors.

As explained in Chapter 3, characterization objects are used to characterize schema units.

In the SBVR metaschema, there is a characterization object type for each subtype of

Meaning such that some or all of its instances represent schema units. Each

5 SBVR meanings metaschema

99

characterization object type includes the set of attributes that characterize the schema

unit and two operations: createUnit and schemaUnit. The former creates a schema unit

from its characterization object, and the latter gives the schema unit corresponding to the

characterization object.

The specification of the createUnit operation is the same for all characterization object

types, and therefore is specified in MeaningCh as follows:
context MeaningCh::createUnit()

 post: schemaUnit() -> notEmpty()

The schemaUnit() operation is redefined in each subtype of MeaningCh.

In an SBVR schema, the schema units are object types, individual concepts, value types,

characteristics, associative fact types, is-property-of fact types, partitive fact types,

categorization fact types, reference schemes and structural rules.

The following subsections define each schema unit in terms of its schema elements. They

provide, for each schema unit, a generic description of it, its abstract syntax, the

specifications of the isSchemaUnit() and predecessors() operations used to define it, and its

schema unit characterization object.

5.2.1 Object type schema unit

Generic description

As stated in the previous section, SBVR describes two types of meanings: concepts and

propositions. Concepts are further subdivided into noun concepts and fact types. Noun

concepts are defined as classifiers of things. A subtype of a noun concept is an object type.

In SBVR, an object type schema unit is defined as a noun concept that classifies things

based on their common properties. The meaning of an object type is equivalent to the

meaning of "entity type" in conceptual modeling. Olivé captures the essence of the

meaning of entity type by providing the following definition: "An entity type is a concept

whose instances at a given time are identifiable individual objects that are considered to

exist in the domain at that time" (Olivé 2007).

An object type schema unit may also include a definition that describes its meaning

through constraints that satisfy a set of things. For example, the instances of Book may be

defined as the union of the instances of EditedBook and AuthoredBook. In this case, the

object type schema unit includes the elements needed to structure such a definition.

However, in order to make this chapter easier to understand, definitions will not be

included in object type schema units from this section to Section 5.2.8. Such definitions

will be described in Section 5.2.9.

The DBLP example, as an instance of the SBVR metaschema, includes 19 object type

schema units: Person, Publication, Book, AuthoredPublication, EditedBook, AuthoredBook,

BookChapter, JournalPaper, BookSection, BookSeriesIssue, BookSeries, JournalSection,

JournalIssue, ConferenceEdition, ConferenceSeries, JournalVolume and Journal (those whose

equivalent meaning in UML is represented by a class), as well as Authorship and Editorship

(those whose equivalent meaning in UML is represented by an association class).

An object-oriented approach to the translation between MOF metaschemas

100

Abstract syntax

Each object type is represented by an instance of ObjectType. The schema elements of an

object type named o are as follows: (1) the instance  of ObjectType; and (2) the instance of

attribute name of  with value o.

Figure 5.5 shows the abstract syntax of the object type schema unit and the value type

schema unit (described in the next section). The isSchemaUnit() query operation is

redefined as follows:
context ObjectType::isSchemaUnit():Boolean

body: true

This means that all instances of ObjectType are schema units. In constrast, here, object

type has no predecessors. The operation predecessors is specified in Section 5.2.9, when

projections are introduced.

Figure 5.5 Object type schema unit

Characterization object

Figure 5.6 shows the characterization object for the object type and value type schema

unit NounConceptCh.

The schemaUnit() operation is formally defined, as follows:
context NounConceptCh::schemaUnit():NounConcept

 body: NounConcept.allInstances() -> any(c:NounConcept|

 c.name = self.name and

 if isValueType then c.oclIsTypeOf(ValueType)

 else c.oclIsTypeOf(ObjectType) endif)

This means that the schemaUnit() operation of NounConceptCh is a query that gives the

instance of ObjectType or ValueType (depending on the isValueType attribute of

NounConceptCh) whose attribute name has the same value as the one given in the attribute

name of NounConceptCh.

5 SBVR meanings metaschema

101

Figure 5.6 Object type and value type schema unit characterization object NounConceptCh

5.2.2 Value type schema unit

Generic description

SBVR does not distinguish between entity types and lexical entity types (entity types

whose instances are words). However, this distinction is necessary in order to consistently

translate UML data types to SBVR and vice versa. Therefore, ValueType, a special subtype

of NounConcept not included in the SBVR specification has been created. Note that the

name "value type" has been taken from Object-Role Modeling (ORM) (Halpin, 2008), a

fact-oriented language defined by one of the authors of SBVR.

A value type schema unit is defined as a noun concept whose instances are words in the

language used in the domain.

As an instance of the SBVR metaschema, the DBLP example includes four value type

schema units: one named "string" and whose meaning is equivalent to the meaning of the

String PrimitiveType of UML; one named "natural" and whose meaning is equivalent to the

meaning of the Natural data type of UML; one named "date" and whose meaning is

equivalent to the data type named Date of UML; and one named "gender" whose meaning

is equivalent to the Gender enumeration of UML.

Abstract syntax

Each value type is represented by an instance of ValueType. The schema elements of a

value type named v are as follows: (1) the instance  of ValueType; and (2) the instance of

attribute name of  with value v.

Figure 5.7 shows the abstract syntax of the value type schema unit. The isSchemaUnit()

query operation was defined in the previous section.

Characterization object

Figure 5.6 showed the characterization object of each value type schema unit. The

schemaUnit() operation was defined in the previous section and the predecessors()

operation will be defined in Section 5.2.9.

An object-oriented approach to the translation between MOF metaschemas

102

Figure 5.7 Value type schema unit.

5.2.3 Individual concept schema unit

Generic description

"Individual concept" is a special type of noun concept. In SBVR, it is a noun concept that

corresponds to only one object. For example, in DBLP, the individual concept Female

corresponds to a noun concept whose one instance is the individual gender of women.

The SBVR document defines an individual concept as a noun concept, but its use is

confused with "instance" throughout the document. For example, the definition of

instantiation formulation, which is used to bind an instance of a concept with the concept,

includes as an example the binding of an individual concept (rather than its instance) with

a concept.

To avoid further confusion, this thesis considers that an individual concept is a noun

concept and that the instantiation formulation binds instances of concepts to concepts.

Abstract syntax

Each individual concept is represented by an instance of IndividualConcept. The schema

elements of an individual concept named in are as follows: (1) the instance  of

IndividualConcept; and (2) the instance of attribute name of  with value in.

Figure 5.8 shows the abstract syntax of the individual concept schema unit. The

isSchemaUnit() query operation is redefined as follows:
context IndividualConcept::isSchemaUnit():Boolean

body: true

This means that all instances of IndividualConcept are schema units. Additionally, the

individual concept schema unit has no predecessors.

5 SBVR meanings metaschema

103

Figure 5.8 Individual concept schema unit

Characterization object

Figure 5.9 shows the individual concept characterization object IndividualConceptCh.

Figure 5.9 Individual concept schema unit characterization object IndividualConceptCh

The schemaUnit() operation is formally defined as follows:
context IndividualConceptCh::schemaUnit():IndividualConcept

 body: IndividualConcept.allInstances() ->

 any(c:IndividualConcept| c.name = self.name)

This means that the schemaUnit() operation of IndividualConceptCh is a query that gives

the instance of IndividualConcept whose attribute name has the same value as the one

given in the attribute name of IndividualConceptCh.

5.2.4 Characteristic schema unit

Generic description

As stated above, concepts are subdivided into noun concepts and fact types. A fact type

(also called verb concept) is a concept that is the meaning of a verb involving one or more

noun concepts (fact type roles). An instance of a fact type is an event, activity, situation or

circumstance that occurs in the actual domain, and for each role of the fact type there is an

instance of said role involved in the instance of the fact type. Each fact type has at least one

role. Depending on the number of roles participating in a fact type (arity of the fact type), a

An object-oriented approach to the translation between MOF metaschemas

104

fact type is further divided into characteristic, binary fact type or n-ary fact type where n >

2.

A characteristic or unary fact type schema unit is a fact type that has exactly one role. The

DBLP example, as an instance of the SBVR metaschema, includes two characteristic

schema units. The first one has a fact type role that ranges over the object type named

BookChapter and is named "being ConferencePaper." The second characteristic is a fact

type role that ranges over the object type named JournalPaper and is also named "being

ConferencePaper." "Book chapter being conference paper" and "journal paper being

conference paper" represent the facts that a book chapter is a conference paper or a

journal paper is a conference paper, respectively.

Abstract syntax

Figure 5.10 Characteristic schema unit

Each characteristic is represented by an instance of Characteristic. The schema elements of

a characteristic named ch are as follows: (1) the instance of  of Characteristic; (2) the

instance of attribute name of  with value as; (3) the instance of FactTypeRole that is a role

of ; (4) if the FactTypeRole has a name, the instance of the attribute name with its value;

(5) the instance of the relationship of the FactTypeRole to the NounConcept concept that

the role ranges over; and (6) the instance of the relationship of the FactTypeRole with .

Figure 5.10 shows the abstract syntax of the characteristic schema unit. The

isSchemaUnit() query operation is redefined in Characteristic as follows:
context Characteristic::isSchemaUnit():Boolean

body: true

The predecessors() operation of Characteristic is specified as follows:
context Characteristic::predecessors():Set(NounConcept)
 body: self.factTypeRole -> collect(nounConcept) -> asSet()

5 SBVR meanings metaschema

105

This means that the predecessor of a characteristic is the noun concept that the fact type

role of the characteristic ranges over.

Characterization object

Figure 5.11 Characteristic schema unit characterization object CharacteristicCh

For the characteristic characterization object CharacteristicCh (see Figure 5.11), the

schema unit operation is formally defined as follows:
context CharacteristicCh::schemaUnit():Characteristic

 body: Characteristic.allInstances() -> any(ch:Characteristic |

 ch.name = self.verb and ch.factTypeRole -> collect(ft|

 Tuple{n:ft.name,c:ft.nounConcept.name}) =

 Tuple{n:self.roleName, c:self.rangesOverConcept})

This means that the schemaUnit() operation of CharacteristicCh is a query that gives the

instance of a Characteristic whose attribute name has the same value as the one given in

the attribute verb of CharacteristicCh; the name attribute of its factTypeRole and the name

of the concept which its factTypeRole ranges over have the same values as the ones given

in the attribute roleName and rangesOver of Characteristic.

5.2.5 Associative and categorization fact type schema units

Generic description

Fact types with more than one role are classified, based on the semantic nature of the fact

type, into associative fact type or specialization fact type.

An associative fact type is a fact type that has more than one role, for which there is a non-

hierarchical relationship among the participants involved in the fact type. Additionally,

there are two particular kinds of binary associative fact types: partitive fact types and is-

property-of fact types. A partitive fact type is a binary associative fact type that means that

a given part (i.e., the instance of the concept that plays one of the roles in the fact type) is

in the composition of a whole (i.e., the instance of the concept that plays the other role in

the fact type). An is-property-of fact type means that the instance of the concept that plays

the first role in the fact type constitutes an essential quality of the instance of the concept

that plays the second role in the fact type.

A specialization fact type indicates hierarchical relationships among concepts and is futher

divided, in SBVR, as a categorization fact type and a contextualization fact type. A

An object-oriented approach to the translation between MOF metaschemas

106

categorization fact type indicates that the instance of the concept that plays the first role in

the fact type is also an instance of the concept that plays the second role in the fact type

(i.e., the category). A contextualized fact type means a hierarchical relationship from a

particular perspective or viewpoint or in a certain situation. The semantics of

contextualized fact types is not covered explicitly in UML. Therefore, for the purpose of

this thesis, only categorization fact types have been considered.

The DBLP example, as an instance of the SBVR metaschema, includes 12 associative fact

type schema units that may be expressed in ordinary language as follows:

"author has authored publication,"
"book chapter is part of book section,"
"book chapter is part of book series issue,"
"book chapter is part of edited book,"
"conference edition is published in book series issue,"
"conference edition is published in edited book,"
"conference edition is published in journal issue,"
"book section is part of edited book,"
"editor has edited book,"
"journal paper is part of journal issue,"
"journal paper is part of journal section,"
"person publishes publication."

 DBLP includes five partitive fact type schema units expressed in natural language as follows:

"book series includes book series issue,"
"conference series includes conference edition,"
"journal includes journal volume,"
"journal issue includes journal section,"
"journal volume includes journal issue."

It also includes nine categorization fact type schema units that may be expressed in

ordinary language as follows:

"book is a category of publication,"
"edited bok is a category of publication,"
"authored publication is a category of publication,"
"edited book is a category of book,"
"authored book is a category of book,"
"authored book is a category of authored publication,"
"book chapter is a category of authored publication,"
"jounral paper is a category of authored publication,"
"book series issue is a category of book."

Finally, DBLP includes 29 is-property-of fact type schema units that may represented in

ordinary language as follows:

"authorship has order,"
"book has home page,"
"book has isbn,"
"book has num pages,"
"book has publication year,"
"book has publisher,"
"book chapter has end page,"
"book chapter has ini page,"
"book section has order,"
"book section has title,"
"book series has id,"
"book series has publisher,"

5 SBVR meanings metaschema

107

"book series issue has number,"
"conference edition has city,"
"conference edition has country,"
"conference edition has home page,"
"conference edition has title,"
"conference edition has year,"
"conference series has acronym,"
"conference series has name,"
"editorship has order,"
"journal has issn,"
"journal has title,"
"journal issue has month,"
"journal issue has num pages,"
"journal issue has number,"
"journal issue has year,"
"journal paper has end page,"
"journal paper has ini page,"
"journal section has order,"
"journal section has title,"
"journal volume has volume,"
"person has gender,"
"person has home page,"
"person has name,"
"person has num publications,"
"publication has edition,"
"publication has title,"
"publication has year."

Abstract syntax

Each associative fact type that is neither an is-property-of fact type nor a partitive fact

type is represented by an instance of AssociativeFactType. The schema elements of an

associative fact type named as are as follows: (1) the instance  of AssociativeFactType; (2)

the instance of attribute name of  with value as; (3) the ordered instances of FactTypeRole

that are roles of ; and (4) for each of these fact type roles: (a) the instance of its attribute

name with its value (if it has a name); (b) the instance of its relationship to the

NounConcept concept that the role ranges over; and (c) the instance of its relationship

with  in a given order.

Each is-property-of fact type is represented by an instance of IsPropertyOfFactType. The

schema elements of an is-property-of fact type named is are as follows: (1) the instance 

of IsPropertyOfFactType; (2) the instance of attribute name of  with value is; (3) the

ordered instances of FactTypeRole that are roles of ; and (4) for each of these fact type

roles: (a) the instance of its attribute name with its value (if it has a name); (b) the

instance of its relationship to the NounConcept concept that the role ranges over; and (c)

the instance of its relationship with  in a given order.

Each partitive fact type is represented by an instance of PartitiveFactType. The schema

elements of a partitive fact type named pa are as follows: (1) the instance  of

PartitiveFactType; (2) the instance of attribute name of  with value pa; (3) the ordered

instances of FactTypeRole that are roles of ; and (4) for each of these fact type roles: (a)

the instance of its attribute name with its value (if it has a name); (b) the instance of its

An object-oriented approach to the translation between MOF metaschemas

108

relationship to the NounConcept concept that the role scopes over; and (c) the instance of

its relationship with  in a given order.

Each categorization fact type is represented by an instance of CategorizationFactType. The

schema elements of a categorization fact type named ca are as follows: (1) the instance  of

CategorizationFactType; (2) the instance of attribute name of  with value ca; (3) the

ordered instances of FactTypeRole that are roles of ; and (4) for each of these fact type

roles: (a) the instance of its attribute name with its value (if it has a name); (b) the

instance of it relationship to the NounConcept concept that the role scopes over; and (c)

the instance of its relationship with  in a given order.

Figure 5.12 Associative and categorization fact type schema units

Figure 5.12 shows the abstract syntax of associative and categorization fact type schema

units. The isSchemaUnit() query operation of AssociativeFactType and

CategorizationFactType are redefined as follows:
context AssociativeFactType::isSchemaUnit():Boolean

body: true

context CategorizationFactType::isSchemaUnit():Boolean

body: true

The predecessors() operations of AssociativeFactType and CategorizationFactType are

specified as follows:
context AssociativeFactType::predecessors():Set(NounConcept)
 body: self.factTypeRole -> collect(nounConcept) -> asSet()

context CategorizationFactType::predecessors():Set(NounConcept)
 body: self.factTypeRole -> collect(nounConcept) -> asSet()

This means that the predecessors of an associative or categorization fact type are the noun

concepts that the fact type roles of the fact type range over.

5 SBVR meanings metaschema

109

Characterization object

Figure 5.13 Fact type schema unit characterization object FactTypeCh

Figure 5.13 shows FactTypeCh, the characterization object of the associative fact type, is-

property-of fact type, partitive fact type and categorization fact type schema units. The

schemaUnit() operation is formally defined as follows:
context FactTypeCh::schemaUnit():FactType

 body: FactType.allInstances() -> any(ft:FactType |

 ft.name = self.name and

 self.type = FactTypeType::Associative implies

 ft.oclIsTypeOf(AssociativeFactType) and

 self.type = FactTypeType::IsPropertyOf implies

 ft.oclIsTypeOf(IsPropertyOfFactType) and

 self.type = FactTypeType::Partitive implies

 ft.oclIsTypeOf(PartitiveFactType) and

 self.type = FactTypeType::Categorization implies

 ft.oclIsTypeOf(CategorizationFactType) and

 ft.factTypeRole -> collect(ft|

 Tuple{n:ft.name,c:ft.nounConcept.name}) =

 self.roleOfFactType -> collect(rf|

 Tuple{n:rf.name, c:rf.rangesOverConcept}))

This means that the schemaUnit() operation of FactTypeCh is a query that gives the

instance of a FactType that is of the subtype indicated in the type attribute of FactTypeCh,

whose attribute name has the same value as the one given in the attribute name of

FactTypeCh; it has the factTypeRoles whose name and the name of the concept which it

ranges over are the same as the ones given in the attribute name and rangesOver of

RoleOfFactType.

5.2.6 Categorization scheme and segmentation schema units

Generic description

SBVR defines a particular kind of object type, called categorization scheme, for partitioning

things in the categorization fact type dimension. The extension (set of instances) of a given

general concept is partitioned into the extensions of the categories of said general concept.

Moreover, a segmentation is a particular kind of categorization scheme whose contained

category or categories are complete (total) and disjoint with respect to the general

concept that has the categorization scheme.

An object-oriented approach to the translation between MOF metaschemas

110

The DBLP example, as an instance of the SBVR metaschema, includes three segmentations,

named "type of publication," "type of book" and "type of authored publication," which

partition the concepts named "publication," "book" and "authored publication,"

respectively.

The segmentation "type of publication" for "publication" contains the categories named

"edited book" and "authored publication."

The segmentation "type of book" for "book" contains the categories named "edited book"

and "authored book."

The segmentation "type of authored publication" for "authored publication" contains the

categories named "authored book," "book chapter" and "journal paper."

Abstract syntax

Figure 5.14 Categorization scheme and segmentation schema unit

Each categorization scheme or segmentation is represented by an instance of

CategorizationScheme or Segmentation, respectively. The schema elements of a

categorization scheme named cs are as follows: (1) the instance  of CategorizationScheme

or Segmentation; (2) the instance of attribute name of  with value cs; (3) the instance of

the relationship to ObjectType (the general concept); and (4) the instances of the

relationships to Concept (the categories).

Figure 5.14 shows the abstract syntax of the categorization scheme and segmentation

schema units. The isSchemaUnit() query operation is specified in CategorizationScheme as

follows:
context CategorizationScheme::isSchemaUnit():Boolean

body: true

5 SBVR meanings metaschema

111

The predecessors() operation of CategorizationScheme is specified as follows:
context CategorizationScheme::predecessors():Set(Concept)
 body: Concept.allInstances() -> select(c: Concept|

 self.category -> includes(c) or

 self.generalConcept ->

 includes(c.oclAsType(ObjectType)))

This means that the predecessors of a categorization scheme (and a segmentation) are the

general concepts and the categories that define the categorization scheme.

Characterization object

Figure 5.15 Categorization scheme and segmentation schema unit characterization object
CategorizationSchemeCh

For the categorization scheme and segmentation schema units characterization object

CategorizationSchemeCh (see Figure 5.15), the schemaUnit() operation is formally defined

as follows:
context CategorizationSchemeCh::schemaUnit():

 CategorizationScheme

 body: CategorizationScheme.allInstances() ->

 any(ct:CategorizationScheme| ct.name = self.name and

 self.isSegmentation implies

 ct.oclIsTypeOf(Segmentation) and

 ct.generalConcept -> any(name) = self.generalConcept

 and ct.category -> collect(name) = self.category)

This means that the schemaUnit() operation of CategorizationSchemeCh is a query that

gives the instance of CategorizationScheme or Segmentation whose attribute name has the

same value as the one given in the attribute name of CategorizationSchemeCh or

Segmentation, respectively; it is associated with the general concepts (ObjectType(s)) and

categories (Concept(s)) whose name attributes have the same values as the ones given in

the attributes generalConcept and category of CategorizationSchemeCh.

5.2.7 Reference scheme schema unit

Generic description

A reference scheme schema unit is a particular form of business rule (constraint). For a

given concept, a reference scheme identifies one or more properties (fact type roles or

characteristics) of the corresponding objects (instances of the given concept) used to

distinguish one instance from another. A reference scheme applies to all instances of the

An object-oriented approach to the translation between MOF metaschemas

112

concept. More than one reference scheme can be used simultaneously for instances of the

same concept. Some concepts have no agreed-upon reference scheme.

The DBLP example, as an instance of the SBVR metaschema, includes seven reference

schemes to indicate the following constraints: name identifies person, isbn identifies book,

id identifies book series, issn identifies journal, title identifies journal, name identifies

conference series and title identifies conference edition.

Abstract syntax

Figure 5.16 Reference scheme schema unit

Each reference scheme is represented by an instance of ReferenceScheme. The schema

elements of a reference scheme that may be named re are as follows: (1) the instance  of

ReferenceScheme; (2) if it has a name, the instance of attribute name with value re; (3) the

instances of its relationships with the Concept(s) that can be identified using this reference

scheme; (4) the instances of its relationships to the FactTypeRole(s) that the reference

scheme simply uses; and (5) the instances of its relationship to the Characteristic(s) that

are identifying characteristic(s).

Figure 5.16 shows the abstract syntax of the reference scheme schema unit. The

isSchemaUnit() query operation is redefined as follows:
context ReferenceScheme::isSchemaUnit():Boolean

body: true

The predecessors() operation of ReferenceScheme is specified as follows:
context ReferenceScheme::predecessors():Set(FactType)
 body: self.factTypeRole.factType->union(

 self.identifyingCharacteristic.factType

This means that the predecessors of a reference scheme are the fact types in which the fact

type roles and the identifying characteristics are the properties used by the reference

scheme.

5 SBVR meanings metaschema

113

Characterization object

Figure 5.17 shows the reference scheme schema unit characterization object

ReferenceSchemeCh.

Figure 5.17 Reference scheme schema unit characterization object ReferenceSchemeCh

For the reference scheme schema unit characterization object ReferenceSchemeCh, the

schemaUnit() operation is formally defined as follows:
context ReferenceSchemeCh::schemaUnit():ReferenceScheme

 body: ReferenceScheme.allInstances() ->

 any(r:ReferenceScheme|

 r.referencedConcept -> collect(name) =

 self.referencedConcept and

 r.identifyingCharacteristic -> collect(name) =

 self.identifyingCharacteristic and

 self.usedRoleOfFactType -> notEmpty() implies

 (r.factTypeRole -> collect(nounConcept.name) =

 self.usedRoleOfFactType->

 collect(s|s.rangesOverConcept) and

 self.usedRoleOfFactType -> forAll(ro|

 ro.name -> notEmpty() implies

 r.factTypeRole.name -> includes(ro.name))))

This means that the schemaUnit() operation of ReferenceSchemeCh is a query that gives the

instance of ReferenceScheme which identifies the Concept(s) whose name attribute has the

value of the identifiedConcepts attribute of ReferenceSchemeCh; which uses the

Characteristic(s) whose name attribute has the value of the usedCharacteristic attribute of

ReferenceSchemeCh; which uses the FacTypeRoles whose name and the name of the

concept that it ranges over have the same values as the ones given in the name and

rangedOverConcept of the UsedFactType(s).

5.2.8 Structural rule schema unit

Generic description

As stated in Section 5.1, structural rules are statements of necessity that state the

conditions that must be satisfied by the concepts involved. Structural rules are structured

by necessity logical formulations. In SBVR, a necessity logical formulation is a logical

formulation that formulates the meaning that another formulation (embedded

formulation) is always true. The various kinds of modal formulation are not covered in

UML structural schemas. In a UML structural schema, all constraints describe conditions

An object-oriented approach to the translation between MOF metaschemas

114

that must be satisfied in the domain. Therefore, the distinction between the various types

of modal formulations has been omitted. All logical formulations have been considered

necessity formulations.

The particular kinds of logical formulation considered are the following:

 Atomic formulation (Figure 5.24 shows its abstract syntax). This is a logical

formulation that is based on a fact type and has a role binding for each role of the

fact type. Each role binding of the atomic formulation is a connection between one of

the fact type roles of the fact type and a bindable target (a variable, expression or

individual concept). The atomic formulation formulates the following meaning:

there is an event, activity, situation or circumstance that occurs in the actual world

that puts each referent of each role binding in its respective fact type role. Section

5.1 showed an example of atomic formulation.

 Instantiation formulation (Figure 5.25 shows its abstract syntax). This is a logical

formulation that considers a concept and binds to a bindable target, and that

formulates the following meaning: the thing to which the bindable target refers is an

instance of the concept.

 Logical operation (Figure 5.26 shows its abstract syntax). This is a logical

formulation that operates on logical operands, which in turn are also logical

formulations. Logical operations are further classified into logical negation and

binary logical operation.

o A logical negation has exactly one operand and formulates that the

meaning of the logical operand is false.

o A binary logical operation has exactly two operands and is further

classified into:

 Conjunction. This formulates that the meanings of both logical

operands are true.

 Disjunction. This formulates that the meaning of at least one of the

operands is true.

 Equivalence. This formulates that the meanings of its logical

operands are either all true or all false.

 Exclusive disjunction. This formulates that the meaning of one

logical operand is true and the meaning of the other logical

operand is false.

 Implication. This operates on an antecedent (first logical operand)

and a consequent (second logical operand) and formulates that the

meaning of the consequent is true if the meaning of the antecedent

is true.

5 SBVR meanings metaschema

115

 Nand formulation. This formulates that the meaning of at least one

of its logical operands is false.

 Nor formulation. This formulates that the meaning of each of its

logical operands is false.

 Whether-or-not formulation. This operates on a consequent (first

logical operand) and an inconsequent (second logical operand) and

formulates that the meaning of the consequent is true regardless of

the meaning of the inconsequent.

 Quantification (Figure 5.27 shows its abstract syntax). This is a logical formulation

that introduces a variable (a reference to an element of a set, whose referent may

vary). A variable may range over a concept, which means that the set of referents of

the variable (the possible values that it may take) is limited to the instances of said

concept. Additionally, a logical formulation may restrict a variable, which means that

the set of referents of the variable is further limited to those things for which the

meaning formulated by that logical formulation is true when the thing is substituted

for each occurrence of the variable in the formulation. A quantification may scope

over another logical formulation. Quantifications are further classified into different

kinds of quantification, and the following are the meanings of each particular kind:

o Universal quantification. This is a quantification that scopes over another

logical formulation and has the following meaning: for each referent of the

variable introduced by the quantification, the meaning formulated by the

logical formulation for the referent is true.

o At-least-n quantification. This is a quantification that has a minimum

cardinality and has the following meaning: the number of distinct referents

of the variable introduced by the quantification that exist and that satisfy a

scope formulation, if there is one, is no less than the minimum cardinality.

For example "each tennis match has a least two sets." Existential

quantification, a particular kind of at-least-n quantification, has a minimum

cardinality of 1.

o At-most-n quantification. This is a quantification that has a maximum

cardinality and has the following meaning: the number of distinct referents

of the variable introduced by the quantification that exist and that satisfy a

scope formulation, if there is one, is no greater than the maximum

cardinality. At-most-one quantification, a particular kind of at-most-n

quantification, has a maximum cardinality of 1.

o Exactly-n quantification. This is a quantification that has a cardinality and

has the following meaning: the number of distinct referents of the variable

introduced by the quantification that exist and that satisfy a scope

formulation, if there is one, equals the cardinality. Exactly-one

An object-oriented approach to the translation between MOF metaschemas

116

quantification, a particular kind of exactly-n quantification, has the

cardinality of 1.

o Numeric range quantification. This is a quantification that has a minimum

cardinality and a maximum cardinality greater than the minimum

cardinality and has the following meaning: the number of referents of the

variable introduced by the quantification that exist and that satisfy a scope

formulation, if there is one, is not less that the minimum cardinality and is

not greater than the maximum cardinality.

 Objectification (Figure 5.28 shows its abstract syntax). This is a logical formulation

that involves a bindable target (i.e., a variable, expression or individual concept) and

a considered logical formulation, and that formulates the following meaning: the

thing to which the bindable target refers is an event, activity, situation or

circumstance that occurs in the actual world that corresponds to the meaning of the

considered logical formulation. This thesis only uses the objectification formulation

to nominalize fact types.

The DBLP example, as an instance of the SBVR metaschema, includes 73 structural rule

schema units.

Of these 73 structural rules, 45 are structured by a closed universal quantification that

scopes over an exactly-one quantification. The exactly-one quantification scopes over an

atomic formulation based on one of the is-property-of, associative or partitive fact types

described above (Section 5.2.5). An example is shown in Figure 5.18.

Figure 5.18 Simplified version of the structure of the "each authorship has exactly one order"
structural rule

In UML, the meanings of these rules are represented by cardinality constraints of

attributes (i.e., no graphical symbol is shown in the diagram) or member ends of

association (i.e., a multiplicity symbol, 1, is shown in the diagram). They can be

represented in ordinary language as follows:

"each authorship has exactly one order,"
"each book has exactly one isbn,"
"each book has exactly one num pages,"
"each book has exactly one publication year,"

ClosedUniversalQuantification

Variable
(authorship)

ExactlyOneQuantification
(cardinality = 1)

AtomicFormulation Variable
(order)

scopes over

scopes over

introduces

introduces

IsPropertyOfFactType
(authorship has order)

based on

5 SBVR meanings metaschema

117

"each book has exactly one publisher,"
"each book chapter has exactly one end page,"
"each book chapter has exactly one ini page,"
"each book section has exactly one order,"
"each book section has exactly one title,"
"each book series has exactly one id,"
"each book series has exactly one publisher,"
"each book series issue has exactly one book series,"
"each book series issue has exactly one number,"
"each conference edition has exactly one city,"
"each conference edition has exactly one country,"
"each conference edition has exactly one title,"
"each conference edition has exactly one year,"
"each book section has at least one book chapter,"
"each authored publication has at least one author,"
"each book series issue has at least one book chapter,"
"each edited book has at least one book chapter,"
"each conference series has exactly one acronym,"
"each conference series has exactly one name,"
"each conference edition has exactly one conference series,"
"each journal issue has exactly one num pages,"
"each journal issue has exactly one number,"
"each journal issue has exactly one year,"
"each journal section has exactly one journal issue,"
"each journal paper has exactly one end page,"
"each journal paper has exactly one ini page,"
"each editorship has exactly one order,"
"each journal has exactly one issn,"
"each journal has exactly one title,"
"each journal volume has exactly one journal,"
"each journal section has exactly one order,"
"each journal section has exactly one title,"
"each journal volume has exactly one volume,"
"each journal issue has exactly one journal volume,"
"each person has exactly one gender,"
"each person has exactly one name,"
"each publication has exactly one edition,"
"each publication has exactly one title,"
"each publication has exactly one year,"
"each person has exactly one num publications,"
"each journal paper is part of exactly one journal issue,"

Of the 73 structural rules, 14 are structured by a closed universal quantification that

scopes over an at-most-one quantification. The at-most-one quantification scopes over an

atomic formulation based on one of the is-property-of, associative or partitive fact types

described above (Section 5.2.5). The difference between these rules and those described

above is that the closed universal quantification scopes over an at-most-one quantification

instead of an exactly-one quantification. The rest of the structure is the same. In UML, the

meanings of these rules are represented by a multiplicity symbol at one member end of

the association (1..*). They can be represented in ordinary language as follows:

"each book has at most one home page,"
"each book chapter is part of at most one book section,"
"each book chapter is part of at most one book series issue,"
"each book chapter is part of at most one edited book,"
"each book section is part of at most one edited book,"

An object-oriented approach to the translation between MOF metaschemas

118

"each conference edition has at most one home page,"
"each book series issue has at most one conference edition,"
"each conference edition is published in at most one book series issue,"
"each conference edition is published in at most one edited book,"
"each edited book has at most one conference edition,"
"each conference edition is published in at most one journal issue,"
"each journal issue has at most one conference edition,"
"each journal issue has at most one month,"
"each person has at most one home page."

Of the 73 structural rules, six are structured by a closed universal quantification that

scopes over an existential quantification. The existential quantification scopes over an

atomic formulation based on one of the associative fact types described above (Section

5.2.5). Now, the closed universal quantification scopes over an existential quantification.

In UML, the meanings of these rules are represented by a multiplicity symbol of an

attribute ([0..1]) or a multiplicity symbol of a member end of an association (0..1). They

can be represented in ordinary language as follows:

"each edited book has at least one editor,"
"each journal issue has at least one journal paper,"
"each journal paper is part of at most one journal section,"
"each journal section has at least one journal paper,"
"each person publishes at least one publication,"
"each publication has at least one person."

The 65 structural rules mentioned above correspond to cardinality constraints. They all

have a similar structure; the only difference among them is the kind of quantification that

the closed universal quantification scopes over.

Figure 5.19 Simplified version of the structure of the "each book is an edited book or is an
authored book but not both" structural rule

Of the 73 structural rules, two are structured by a closed universal quantification that

scopes over an exclusive-disjunction binary logical operation. Each operand of the

exclusive-disjunction is an atomic formulation that scopes over a categorization fact type.

Figure 5.19 shows the simplified version of the "each book is an edited book or is an

authored book but not both" structural rule.

ClosedUniversalQuantification

Variable
(book)

ExclusiveDisjunction

AtomicFormulation AtomicFormulation

operates on

scopes over introduces

operates on

CategorizationFactType
(edited book is a category
 of book)

based on

CategorizationFactType
(authored book is a category
 of book)

based on

5 SBVR meanings metaschema

119

In UML, the meaning of both rules is represented by the {disjoint,complete} symbol of a

generalization set with two generalizations. They can be represented in ordinary language

as follows:

"each book is a edited book or is a authored book but not both,"
"each publication is a edited book or is a authored publication but not both."

Of the 73 structural rules, one is structured by a closed universal quantification that

scopes over a disjunction binary logical operation. Its first operand is an atomic

formulation based on a categorization fact type; its second operand is a disjunction binary

logical operations whose operands are atomic formulations, each based on a different

categorization fact type. In UML, the meaning of this constraint is represented by the

{complete} symbol of a generalization set with three generalizations. It can be represented

in ordinary language as follows:

"each book is an authored book or a book chapter or a journal paper."

Figure 5.20 shows the simplified version of the structure of such a rule.

Figure 5.20 Simplified version of the structure of the "each book is an authored book or a book
chapter or a journal paper" structural rule

Of the 73 structural rules, two are structured by a closed universal quantification that

introduces a variable restricted by an atomic formulation. This atomic formulation is

based on a categorization fact type. The closed universal quantification scopes over a nor

logical operation. Both operands of the nor logical operation are atomic formulations

based on categorization fact types. In UML, the meaning of these two rules, together, is

represented by the {disjoint} symbol of a generalization set with three generalizations. It

can be represented in natural language as follows:

"each authored publication that is an authored book is neither a book chapter nor a journal paper,"
"each authored publication that is a book chapter is neither an authored book nor a journal paper."

operates on

scopes over

operates on

introduces

ClosedUniversalQuantification

Variable
(book)

 Disjunction

AtomicFormulation Disjunction

AtomicFormulation AtomicFormulation

operates on

operates on
based on

CategorizationFactType
(authored book is a
category of book) CategorizationFactType

(book chapter is a
category of book)

CategorizationFactType
(journal paper is a
category of book)

based on based on

An object-oriented approach to the translation between MOF metaschemas

120

Figure 5.21 shows the simplified version of the structure of the first rule.

Figure 5.21 Simplified version of the structure of "each authored publication that is an authored
book neither is a book chapter nor a journal paper" structural rule

Of the 73 structural rules, three are structured by a closed universal quantification that

introduces a variable restricted by an atomic formulation. This atomic formulation is

based on an associative fact type. The closed universal quantification scopes over a nor

formulation logical operation. Both operands of the exclusive-disjunction binary logical

operation are atomic formulations based on associative fact types. In UML, the meaning of

these three rules, together, is represented by the {XOR} symbol between three

associations. This can be represented in natural language as follows:

"each conference edition that is published in a book series issue is published neither in an edited
book nor in a journal issue,"

"each conference edition that is published in an edited book is published neither in a book series
issue nor in a journal issue,"

"each conference edition that is published in a journal issue is published neither in an edited book
nor in a book series issue."

Figure 5.22 Simplified version of the structure of the "each conference edition that is published in a
book series issue neither is published in an edited book nor in a journal issue" structural rule

introduces

ClosedUniversalQuantification

Variable
(authored publication) NorFormulation

CategorizationFactType
(authored book is a category
of authored publication)

CategorizationFactType
(book chapter is a category
of authored publication)

CategorizationFactType
(journal paper is a category
of authored publication)

operates on operates on
restricted by

scopes over

AtomicFormulation

based on

AtomicFormulation

based on

AtomicFormulation

based on

ClosedUniversalQuantification

Variable
(conference edition)

NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in edited book)

AssociativeFactType
(conference edition is
published in journal issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in book series issue)

AtomicFormulation

based on

AtomicFormulation

based on

scopes over

5 SBVR meanings metaschema

121

Figure 5.22 shows the simplified version of the structure of the first rule presented above.

The figure represents the following structure:

The structural rule embeds a closed universal quantification.
. The closed universal quantification introduces a first variable.
. . The first variable ranges over the concept "conference edition."
. . . The first variable is restricted by an atomic formulation.
. . . . The atomic formulation is based on the fact type "conference edition is published in book

series issue."
. . . . The atomic formulation introduces a free variable
. The free variable ranges over the concept "book series issue."
. The atomic formulation has a role binding.
. The role binding is of the role "conference edition" of the fact type.
. The role binding binds to the first variable.
. The atomic formulation has a second role binding.
. The second role binding is of the role "book series issue" of the fact type.
. The second role binding binds to the free variable.
. . The universal quantification scopes over a nor formulation.
. . . The nor formulation has an atomic formulation as its first operand.
. . . The atomic formulation introduces a second free variable.
. . . . The second free variable ranges over the concept "edited book."
. . . The atomic formulation is based on the fact type "conference edition is published in edited

book."
. . . . The atomic formulation has a role binding.
. The role binding is of the role "conference edition" of the fact type.
. The role binding binds to the first variable.
. . . . The atomic formulation has a second role binding.
. The second role binding is of the role "edited book" of the fact type.
. The second role binding binds to the second free variable.
 . . . The nor formulation has an atomic formulation as its second operand.
. . . The atomic formulation introduces a third free variable.
. . . . The third free variable ranges over the concept "journal issue."
. . . The atomic formulation is based on the fact type "conference edition is published in journal

issue."
. . . . The atomic formulation has a role binding.
. The role binding is of the role "conference edition" of the fact type.
. The role binding binds to the first variable.
. . . . The atomic formulation has a second role binding.
. The second role binding is of the role "journal issue" of the fact type.
. The second role binding binds to the third free variable.

Abstract syntax

Figure 5.23 to 5.28 show the abstract syntax of the complex structural rule schema unit.

An object-oriented approach to the translation between MOF metaschemas

122

Figure 5.23 StructuralRule schema unit

Figure 5.24 Atomic formulation

 Figure 5.25 Instantiation formulation

5 SBVR meanings metaschema

123

Figure 5.26 Logical operation

Figure 5.27 Quantification

An object-oriented approach to the translation between MOF metaschemas

124

Figure 5.28 Objectification

Each structural rule schema unit is represented by an instance of StructuralRule. The

schema elements of a structural rule that may have a name st are as follows: (1) the

instance of  of StructuralRule; (2) if it has a name, the instance of the attribute name with

value st; (3) the instance of the attribute isTrue with value True; (4) the instance of

ClosedUniversalQuantification that structures ; (5) the instance of relationship between

the ClosedUniversalQuantification and ; (6) the instance of Variable introduced by the

closed universal quantification; (7) the instance of relationship between the Variable and

the ClosedUniversalQuantification; (8) the instance of relationship between the Variable

and the instance of Concept that the variable ranges over; (9) the instance of a subtype of

LogicalFormulation that the quantification scopes over; (10) the instance of relationship

between the LogicalFormulation and the ClosedUniversalQuantification; (11) the instances

of Variable that are defined as free variables of the LogicalFormulation and the instance of

relationship between them; (12) the instance of relationship between an instance of

Variable and the LogicalFormulation (restrictingFormulation); and (13) depending on the

type of formulation, the following instances:

 Instantiation formulation: (i) the instance of LogicalFormulation that is an instance

of InstantiationFormulation; (ii) the instance of relationship to a BindableTarget; and

(iii) the instance of relationship to a Concept.

 Atomic formulation: (i) the instance of LogicalFormulation that is an instance of

AtomicFormulation; (ii) the instance of relationship between the AtomicFormulation

and the FactType that is based on the AtomicFormulation; and (iii) the instances of

RoleBinding that occur in the AtomicFormulation. For each RoleBinding: (i) the

instance the relationship between the BindableTarget and the RoleBinding; and (ii)

the instance of relationship between the FactTypeRole and the RoleBinding.

 Logical negation: (i) the instance of LogicalFormulation that is an instance of

LogicalNegation; (ii) the instance of LogicalFormulation that is the operand of the

logical negation; and (iii) the instance of the relationship between the

LogicalNegation and the LogicalFormulation. The set of instances defined in point 11

to describe the LogicalFormulation that is the operand.

 Binary logical formulation: (i) the instance of LogicalFormulation that is an instance

of a subtype of BinaryLogicalOperation (Conjunction, Disjunction, Equivalence,

ExclusiveDisjunction, Implication, NandFormulation, NorFormulation or

WhetherOrNotFormulation); (ii) the instance of LogicalFormulation that is the first

5 SBVR meanings metaschema

125

operand of the BinaryLogicalOperation and the instance of the relationship between

the two; and (iii) the instance of LogicalFormulation that is the second operand of

the BinaryLogicalOperation and the instance of the relationship between the two.

The set of instances defined in point 11 to describe the LogicalFormulation of both

operands.

 Quantification: (i) the instance of LogicalFormulation that is an instance of a subtype

of Quantification; (ii) the instance of Variable that introduces the instance of

relationship between the Variable and the subtype of Quantification; (iii) the

instance of LogicalFormulation that the subtype of Quantification scopes over and

the relationship between the two; (iv) the set of instances defined in point 11 to

describe the LogicalFormulation that the quantification scopes over; and (v) if the

subtype of Quantification is:

o At-least-n quantification or existential quantification: the instance of

NonNegativeInteger and the instance of relationship (minimum

cardinality) between the quantification and the NonNegativeInteger.

o Numeric range quantification: the two instances of NonNegativeInteger and

the two instances of relationship (minimum cardinality and maximum

cardinality) between the quantification and the NonNegativeInteger.

o At-most-n quantification or at-most-one quantification: the instance of

NonNegativeInteger and the instance of relationship (maximum

cardinality) between the quantification and the NonNegativeInteger.

o Exactly-n quantification and exactly-one quantification: the instance of

NonNegativeInteger and the instance of relationship (cardinality) between

the quantification and the NonNegativeInteger.

 Objectification: (i) the instance of Objectification; (ii) the instance of the relationship

between a BindableTarget and the Objectification; (iii) the instance of

LogicalFormulation that the Objectification considers; and (iv) the instance of

relationship between the Objectification and the LogicalFormulation considered. The

set of instances defined in point 11 to describe the LogicalFormulation that is

considered by the Objectification.

The isSchemaUnit() query operation of StructuralRule is specified as follows:
context StructuralRule::isSchemaUnit():Boolean

body: true

The predecessors() operation of StructuralRule is specified as follows:
context StructuralRule::predecessors():Set(Concept)
 body: self.closedLogicalFormulation.conceptsUsed()

This means that the predecessors of a structural rule are the concepts used by the logical

formulation that structures the structural rule. ConceptsUsed is a query operation, defined

in LogicalFormulation and redefined in its subtypes, that gives the concepts that are used

in the logical formulations. Formally, this is defined as follows:

An object-oriented approach to the translation between MOF metaschemas

126

context LogicalFormulation::conceptsUsed():Set(Concept)
 body: Set{}

context AtomicFormulation::conceptsUsed():Set(Concept)
 body: Concept.allInstances() -> select(c:Concept|

 self.freeVariable -> collect(rangedOverConcept)->

 includes(c) or

 self.factType = c.oclAsType(FactType) or

 self.roleBinding -> collect(bindableTarget) ->

 includes(c.oclAsType(BindableTarget)) or

 self.roleBinding -> collect(factTypeRole)->

 includes(c.oclAsType(FactTypeRole)))

context InstantiationFormulation::conceptsUsed():Set(Concept)
 body: Concept.allInstances() -> select(c:Concept|

 self.freeVariable -> collect(rangedOverConcept)->

 includes(c) or

 self.conceptConsidered = c or

 self.bindableTarget->

 includes(c.oclAsType(BindableTarget)))

context LogicalNegation::conceptsUsed():Set(Concept)
 body: self.freeVariable -> collect(rangedOverConcept) ->

 asSet() -> union(self.logicalOperand.conceptsUsed())

context BinaryLogicalOperation::conceptsUsed():Set(Concept)
 body: self.freeVariable -> collect(rangedOverConcept) ->

 asSet() -> union(self.logicalOperand1.conceptsUsed()->

 union(self.logicalOperand2.conceptsUsed()))

context Quantification::conceptsUsed():Set(Concept)
 body: self.freeVariable -> collect(rangedOverConcept) ->

 asSet() -> union(self.scopeFormulation.conceptsUsed())

context Objectification::conceptsUsed():Set(Concept)
 body: Concept.allInstances() -> select(c:Concept|

 self.freeVariable -> collect(rangedOverConcept)->

 includes(c) or

 self.bindableTarget.oclAsType(Variable).rangedOverConcept = c

 or self.bindableTarget.oclAsType(IndividualConcept) =

 c.oclAsType(IndividualConcept)) -> union(

 self.consideredLogicalFormulation.conceptsUsed())

Characterization object

Figure 5.29 shows the structural rule schema unit characterization object,

StructuralRuleCh. The schemaUnit() operation is formally defined as follows:
context StructuralRuleCh::schemaUnit():StructuralRule

 body: StructuralRule.allInstances() ->

 any(st:StructuralRule|

 st.closedLogicalFormulation -> notEmpty() and

 self.formulation.existsFormulation(

 st.closedLogicalFormulation))

5 SBVR meanings metaschema

127

Figure 5.29 Structural rule schema unit characterization object StructuralRuleCh

This means that the schemaUnit() operation of StructuralRuleCh is a query that gives the

instance of StructuralRule associated with a ClosedLogicalFormulation.

The existsFormulation() operation is formally defined as follows:
context Formulation::

 existsFormulation(sf:LogicalFormulation):Boolean

 body: self.freeVariable -> notEmpty()

 implies

 (self.freeVariable -> forAll(fv|

 sf.freeVariable -> exists(va|

 va.rangedOverConcept.name =

 fv.rangedOverConcept and

 fv.restricting -> notEmpty()

 implies fv.restricting.existsFormulation(

 va.restrictingFormulation)))) and

 self.logicalFormulationExists(sf)

This means that the existsFormulation() operation returns True if, for each free variable of

Formulation, the logical formulation given by the parameter is associated with a free

variable whose ranged over concept has the attribute name with the same value as the

rangedOverConcept attribute. Additionally, if the variable is restricted by another

Formulation, there is an instance of LogicalFormulation that is characterized by such

Formulation.

An object-oriented approach to the translation between MOF metaschemas

128

The operation logicalFormulationExists is defined in Formulation as follows:
context Formulation::

 logicalFormulationExists(f:LogicalFormulation):Boolean

 body: (abstract)

This means that the operation is defined as abstract in Formulation and redefined in its

subtypes. In each subtype, the operation logicalFormulationExists() checks whether there

is an instance of a subtype of LogicalFormulation that corresponds to that defined in each

subtype.
context Instantiation::logicalFormulationExists

 (ins:InstantiationFormulation):Boolean

 body: ins.bindableTarget.oclAsType(IndividualConcept).name

 = self.bindableTarget.rangedOverConcept and

 ins.conceptConsidered.oclAsType(Variable).

 rangedOverConcept.oclAsType(NounConcept)name = self.concept

The logicalFormulationExists operation, in the context of Instantiation, returns True if the

InstantiationFormulation is binded to an IndividualConcept whose name has the same

value as the name of the bindableTarget associated to Instantiation, and the name of the

concept considered in the InstantiationFormulation has the same value as the concept

attribute of Instantiation.

context Atomic::logicalFormulationExists

 (at:AtomicFormulation):Boolean

 body: at.factType.name = self.factTypeName and

 self.type = FactTypeType::Categorization implies

 at.factType.oclIsTypeOf(CategorizationFactType) and

 self.type = FactTypeType::IsPropertyOf implies

 at.factType.oclIsTypeOf(IsPropertyOfFactType) and

 self.type = FactTypeType::Associative implies

 at.factType.oclIsTypeOf(AssociativeFactType) and

 self.type = FactTypeType::Partitive implies

 at.factType.oclIsTypeOf(PartitiveFactType) and

 self.binding -> collect(ro|

 Tuple{n:ro.name, c:ro.rangesOverConcept}) =

 at.factType.factTypeRole -> collect(fr |

 Tuple{n:fr.name, c:fr.nounConcept.name}) and

 self.binding -> forAll(bi:Binding|

 at.roleBinding -> exists(rb|

 if bi.name -> notEmpty()

 then rb.factTypeRole.name = bi.name

 else rb.factTypeRole.nounConcept.name =

 bi.rangesOverConcept

 endif and

 rb.bindableTarget.oclAsType(Variable).

 rangedOverConcept.name =

 bi.concept.rangedOverConcept))

The logicalFormulationExists operation, in the context of Atomic, returns True if the

AtomicFormulation is based on a FactType whose type is the same as the type attribute of

Atomic and it has the same bindings as the ones given in the Binding(s) associated to

Atomic.
context Negation::logicalFormulationExists

 (ne:LogicalNegation):Boolean

 body: self.formulation.existsFormulation(ne.logicalOperand)

5 SBVR meanings metaschema

129

The logicalFormulationExists operation, in the context of Negation, returns True if the

logicalOperand of the LogicalNegation also exists.

context QuantificationForm::logicalFormulationExists

 (qu:Quantification):Boolean

 body: self.introducedVar->notEmpty() implies

 qu.introducedVariable.rangedOverConcept.name =

 self.introducedVar.rangedOverConcept and

 self.introducedVar.restricting->notEmpty() implies

 self.introducedVar.restricting.

 existsFormulation(qu.introducedVariable.

 restrictingFormulation) and

 self.type = QuantificationType::Universal implies

 (qu.oclIsTypeOf(UniversalQuantification) and

 self.formulation.existsFormulation(qu.oclAsType(

 UniversalQuantification).scopeFormulation)) and

 self.type = QuantificationType::AtLeastN implies

 (qu.oclIsTypeOf(AtLeastNQuantification) and

 qu.oclAsType(AtLeastNQuantification).

 minimumCardinality.value = self.minimCard and

 self.formulation.existsFormulation(qu.oclAsType(

 AtLeastNQuantification).scopeFormulation)) and

 self.type = QuantificationType::Existential implies

 (qu.oclIsTypeOf(ExistentialQuantification) and

 qu.oclAsType(ExistentialQuantification).

 minimumCardinality.value = self.minimCard and

 self.formulation.existsFormulation(qu.oclAsType(

 ExistentialQuantification).scopeFormulation)) and

 self.type = QuantificationType::AtMostN implies

 (qu.oclIsTypeOf(AtMostNQuantification) and

 qu.oclAsType(AtMostNQuantification).

 maximumCardinality.value = self.maxCard and

 self.formulation.existsFormulation(qu.oclAsType(

 AtMostNQuantification).scopeFormulation)) and

 self.type = QuantificationType::AtMostOne implies

 (qu.oclIsTypeOf(AtMostOneQuantification) and

 qu.oclAsType(AtMostOneQuantification).

 maximumCardinality.value = self.maxCard and

 self.formulation.existsFormulation(qu.oclAsType(

 AtMostOneQuantification).scopeFormulation)) and

 self.type = QuantificationType::ExactlyN implies

 (qu.oclIsTypeOf(ExactlyNQuantification) and

 qu.oclAsType(ExactlyNQuantification).

 cardinality.value = self.card and

 self.formulation.existsFormulation(qu.oclAsType(

 ExactlyNQuantification).scopeFormulation)) and

 self.type = QuantificationType::ExactlyOne implies

 (qu.oclIsTypeOf(ExactlyOneQuantification) and

 qu.oclAsType(ExactlyOneQuantification).

 cardinality.value = self.card and

An object-oriented approach to the translation between MOF metaschemas

130

 self.formulation.existsFormulation(qu.oclAsType(

 ExactlyOneQuantification).scopeFormulation)) and

 self.type = QuantificationType::NumericRange implies

 (qu.oclIsTypeOf(NumericRangeQuantification) and

 qu.oclAsType(NumericRangeQuantification).

 minimumCardinality.value = self.minimCard and

 qu.oclAsType(NumericRangeQuantification).

 maximumCardinality.value = self.maxCard and

 self.formulation.existsFormulation(qu.oclAsType(

 NumericRangeQuantification).scopeFormulation))

The logicalFormulationExists() operation, in the context of Quantification, returns True if

the subtype of QuantificationFormulation corresponds to the one indicated in the type

attribute of Quantification and the cardinalities are the ones indicated in the minimCard,

card and maxCard attributes.

context BinaryOperation::logicalFormulationExists

 (bi:BinaryLogicalOperation):Boolean

 body: if self.type = BinaryOperationType::Implication

 then

 bi.oclIsTypeOf(Implication) and

 self.first.existsFormulation(bi.oclAsType(

 Implication).antecedent) and

 self.second.existsFormulation(bi.oclAsType(

 Implication).consequent) and

 else

 if self.type =

 BinaryOperationType::WhetherOrNotFormulation

 then

 bi.oclIsTypeOf(WhetherOrNotFormulation) and

 self.first.existsFormulation(bi.oclAsType(

 WhetherOrNotFormulation).consequent) and

 self.second.existsFormulation(bi.oclAsType(

 WhetherOrNotFormulation).inconsequent) and

 else

 self.first.existsFormulation(bi.logicalOperand1) and

 self.second.existsFormulation(bi.logicalOperand2) and

 self.type = BinaryOperationType::Conjunction

 implies bi.oclIsTypeOf(Conjunction) and

 self.type = BinaryOperationType::Disjunction

 implies bi.oclIsTypeOf(Disjunction) and

 self.type = BinaryOperationType::Equivalence

 implies bi.oclIsTypeOf(Equivalence) and

 self.type = BinaryOperationType::ExclusiveDisjunction

 implies bi.oclIsTypeOf(ExclusiveDisjunction) and

 self.type = BinaryOperationType::NandFormulation

 implies bi.oclIsTypeOf(NandFormulation) and

 self.type = BinaryOperationType::NorFormulation

 implies bi.oclIsTypeOf(NorFormulation)

 endif

 endif

5 SBVR meanings metaschema

131

The logicalFormulationExists() operation, in the context of Binary, returns True if the

subtype of BinaryFormulation corresponds to the one indicated in the type attribute of

Binary and their respective logical operands exist.
context ObjectificationForm::logicalFormulationExists(

 ob:Objectification):Boolean

 body: ob.bindableTarget.oclAsType(Variable).

 rangedOverConcept.name =

 self.target.rangedOverConcept and

 self.formulation.existsFormulation(

 ob.consideredLogicalFormulation)

The logicalFormulationExists() operation, in the context of ObjectificationForm, returns

True if the Objectification binds to a concept whose name attribute has the same value as

the rangedOverConcept attribute of the target of the ObjectificationForm and the

consideredFormulation of the Objectification also exists.

5.2.9 Object Type or Value Type schema unit with a definition

Generic description

As stated in Section 5.1, a projection is a semantic formulation that may be used to

structure a definition of a meaning. A closed projection thas is, a projection that includes

no variable without binding may define a noun concept, a fact type or a question. This

thesis only considers closed projections that define noun concepts. A closed projection

that defines a noun concept introduces exactly one variable, called a projection variable,

which may have a constraining formulation variables. It formulates a set of properties,

called incorporated characteristics, that are sufficient to determine the noun concept. The

set of properties (incorporated characteristics) that may be included to define a noun

concept are as follows: (i) characteristics of the ranged-over concept of the projection

variable; (ii) if a logical formulation restricts the projection variable, the meaning of that

formulation with respect to such variable; and (iii) the meaning of the constraining

formulation with respect to the projection variable, if there is one. More details about

incorporated characteristics may be found in the specification document (Object

Management Group 2008a).

The DBLP example, as an instance of the SBVR metaschema, includes five object types that

include a closed projection to structure the definition of each object type: "publication,"

"book," "authored publication," "editorship" and "authorship." Moreover, the value type

named "gender" also includes a definition structured by a closed projection.

The object type named "publication" is defined as the union of "edited book" and

"authored publication." The definition is structured by a closed projection that has a

projection variable that ranges over the concept named "publication." The projection

constrains a disjunction whose operands are atomic formulations. The first atomic

formulation is based on the categorization fact type "edited book is a category of

publication" and the second atomic formulation is based on the categorization fact type

"authored publication is a category of publication."

The object type named "book" is defined as the union of "edited book" and "authored

An object-oriented approach to the translation between MOF metaschemas

132

book." The definition is structured by a closed projection that has a projection variable

that ranges over the concept named "book." The projection constrains a disjunction whose

operands are atomic formulations. The first atomic formulation is based on the

categorization fact type "edited book is a category of book" and the second atomic

formulation is based on the categorization fact type "authored book is a category of book."

The object type named "authored publication" is defined as the union of "authored book,"

"book chapter" and "journal paper."

The definition is structured by a closed projection that has a projection variable that

ranges over the concept named "authored publication." The projection constrains a

disjunction. The first operand of the disjunction is an atomic formulation based on the

categorization fact type "authored book is a category of authored publication." The second

operand is a second disjunction whose operands are atomic formulations. The first atomic

formulation is based on the categorization fact type of "book chapter is a category of

authored publication" and the second atomic formulation is based on the categorization

fact type "journal paper is a category of authored publication." Figure 5.30 shows a

simplified version of the instantiation of the "authored publication" schema unit.

The object type named "editorship" is defined as an objectification (reification) of the fact

type "edited book has editor." The definition is structured by a closed projection that has a

projection variable which ranges over the concept named "actuality." Actuality is a concept

that means an event, activity, situation or circumstance that occurs in the actual world.

The closed projection constrains an objectification formulation. The objectification also

has two free variables, one ranging over the concept "edited book" and the other ranging

over the concept "person." The objectification considers an atomic formulation based on

the associative fact type "edited book has editor." The atomic formulation has two role

bindings that bind each role of the fact type to the corresponding free variables. The

meaning is "editorship is an actuality that an edited book has an editor."

Similarly to "editorship," "authorship" is defined as an objectification of the fact type

"authored publication has author."

The value type named "gender" is defined as the union of the individual concepts "male"

and "female." The definition is structured by a closed projection that has a projection

variable that ranges over the concept named "gender." The projection constrains a

disjunction whose both operands are instantiation formulations. The instantiation

formulations bind the projection variable to the individual concepts "female" and "male"

respectively meaning that the union of instances of the individual concepts define the

"gender" concept.

5 SBVR meanings metaschema

133

Figure 5.30 Simplified version of the object type 'authored publication'

Abstract syntax

Each object type or value type named e is represented by an instance of ObjectType or

ValueType, respectively. The schema elements are as follows: (1) the instance  of

ObjectType or ValueType, respectively; (2) the instance of attribute name of  with value e;

(3) the instance of  of ClosedProjection; (4) the instance of relationship between

ClosedProjection and the NounConcept that it defines; (5) the instance(s) of Variable that

the projection introduces, and for each Variable, the instance of its relationship to the

Projection; (6) the instance of LogicalFormulation; (7) the instance of relationship between

the LogicalFormulation and the ClosedProjection; and (8) the set of instances defined in

point 11 of Section 5.2.8 to describe the LogicalFormulation.

Figure 5.31 shows the abstract syntax of object type and value type with a closed

projection schema units.

Now, the predecessors() operation of NounConcept is specified as follows:
context NounConcept::predecessors():Set(Concept)
 body: if self.closedProjection -> notEmpty()

 then

 self.closedProjection.projectionVariable ->

 collect(factTypeRole) ->

 includes(c.oclAsType(FactTypeRole))) -> union(

 self.logicalFormulation.conceptsUsed()))

 else Set{}

 endif

This means that the predecessors of an object type or value type associated with a closed

projection are the concepts used by the logical formulation that constrains the closed

projection.

ClosedProjection

Variable
(authored publication) Disjunction

Disjunction

authored publication
Definition: authored book or book chapter or journal paper

AtomicFormulation

ObjectType
(authored publication)

AtomicFormulation AtomicFormulation
CategorizationFactType
(authored book is a category
of authored publication)

based on

defines

is on has

operates on operates on

CategorizationFactType
(book chapter is a category
of authored publication)

based on

CategorizationFactType
(journal paper is a category
of authored publication)

based on

An object-oriented approach to the translation between MOF metaschemas

134

Figure 5.31 ObjectType and ValueType with closed projection schema units

Abstract syntax

Figure 5.32 shows the object type and value type schema units characterization object

NounConceptCh.

For the object type and value type characterization object NounConceptCh, the

schemaUnit() operation is formally defined as follows:
context NounConceptCh::schemaUnit():NounConcept

 body: NounConcept.allInstances() -> any(c:NounConcept|

 c.name = self.name and

 if self.isValueType

 then c.oclIsTypeOf(ValueType)

 else c.oclIsTypeOf(ObjectType)

 endif and

 self.formulation -> notEmpty()implies

 ClosedProjection.allInstances() ->

 exists(cp:ClosedProjection| cp.nounConcept = c and

 self.projectionVariable.rangedOverConcept =

 cp.projectionVariable.rangedOverConcept.name and

 self.formulation.existsFormulation(

 cp.logicalFormulation)))

This means that the schemaUnit() operation of NounConceptCh is a query that gives the

instance of ObjectType or ValueType, as explained in Section 5.2.2. Additionally, if

NounConceptCh is associated with a Formulation, the instance of ObjectType or ValueType

is associated with a ClosedProjection. The closed projection may be associated with the

same class Formulation defined above (see Section 5.2.8).

5 SBVR meanings metaschema

135

Figure 5.32 Object type and value type schema units characterization object NounConceptCh

The complete specification in the USE tool of the SBVR metaschema can be found in

Appendix D. Appendix E shows a representative fragment of the instances defined in USE

to specify the DBLP schema as an instance of the SBVR metaschema. The methods for

creating schema units of the characterization objects are provided in Appendix F.

6 Translation mapping expressions between

UML and SBVR meanings

The schema translation problem was described, in Chapter 3 as follows: given a (source)

metaschema MS1, a (source) schema S1 (instance of MS1) and a (target) metaschema MS2,

obtain a schema S2, an instance of MS2, that suitably corresponds to S1.

Chapter 3 also described how to define and use translation mapping expressions between

any two MOF metaschemas. Such expressions are defined by two invariants involving the

relationships between the schema units of the two metaschemas. The two invariants are

defined in OCL and the relationships between schema units are defined by means of

operations whose pre- and postconditions are also formalized in OCL. The end of Chapter

3 described how to automatically translate between instances of the two metaschemas.

This chapter applies the translation approach proposed in Chapter 3 to the UML and SBVR

meanings metaschemas described in Chapter 4 and Chapter 5, respectively. In particular,

it describes the set of all operations that are mapping-dependent between the two

languages.

This chapter is structured as follows:

 Section 6.1 defines the query operations that indicate how schema units of UML are

translated to SBVR and vice versa. This is the mapping kind (HasEquivalents,

IsIncluded or Untraslatable) relationship among schema units of the two

metaschemas.

 Section 6.2 defines the sbvrEquivalents() operations on the UML schema units whose

mapping kinds are HasEquivalents.

 Section 6.3 defines the includedInUml() operations on the SBVR schema units whose

mapping kinds are IsIncluded.

 Section 6.4 specifies the translation mapping constraints, defined formally in OCL, as

two invariants called completeAndConsistentMappingToUML and

completeAndConsistentMappingToSBVR.

 Section 6.5 describes the translateToUml and translateToSbvr operations for

automatically translating from UML to SBVR and vice versa.

An object-oriented approach to the translation between MOF metaschemas

138

Figure 6.1 Definition of UML schema units including SBVR mapping-dependent operations

Figure 6.1 shows the definition of UML schema units, which now includes the set of SBVR

mapping-dependent operations. The dashed lines in the figure show that the subtypes of

Element are indirect subtypes rather than direct subtypes.

Figure 6.2 Definition of SBVR schema units including UML mapping dependent operations.

Figure 6.2 shows the definition of SBVR meanings schema units, which now includes the

set of UML mapping dependent operations. The dashed lines in the figure show that the

subtypes of Meaning are indirect subtypes rather than direct subtypes.

6 Translation mapping expressions between UML and SBVR meanings

139

6.1 umlMappingKind() and sbvrMappingKind() operations

This section describes two query operations: (i) the sbvrMappingKind() query operation,

in the context of Element, whose value indicates how a UML schema unit is translated into

SBVR; and (ii) the umlMappingKind() query operation, in the context of Meaning, whose

value indicates how an SBVR schema unit is translated into UML. As explained in Chapter

3, the value of both operations is an enumeration data type whose values are

HasEquivalents, IsIncluded and Untranslatable.

To ensure that both operations are only defined in instances of schema units of both

schemas, the following preconditions are defined:

context Element::sbvrMappingKind():MappingKind

 pre: isSchemaUnit()

context Meaning::umlMappingKind():MappingKind

 pre: isSchemaUnit()

6.1.1 UML side

On the UML side, the operation sbvrMappingKind() is defined, in Element, as follows:

context Element::sbvrMappingKind():MappingKind

 body: MappingKind::HasEquivalents

This means that, by default, all (direct or indirect) instances of Element that are schema

units have an equivalence mapping, and that those instances that are not schema units

have an undefined value for the operation. There are some exceptions, and therefore the

operation is redefined in certain subtypes of Element, as shown in Figure 6.1.

In UML, generalization sets may or may not have a name. In SBVR, there is no concept

without a name, so generalization sets must always have a name in order to have an

equivalent in SBVR. This is formally defined as follows:

context GeneralizationSet::sbvrMappingKind():MappingKind

 body: if self.name -> isEmpty()

 then MappingKind::Untranslatable

 else MappingKind::HasEquivalents

 endif

As stated in Chapter 4, this thesis limits the types of constraints considered for translation

to the predefined static constraint XOR and certain uniqueness constraints: those that

indicate that one attribute is a key of the class that contains said attribute (i.e., those

specified as invariants in the DBLP example). The whole OCL metaschema would need to

be included in order to translate other types of constraints, so this has been left for further

work. Therefore, the sbvrMappingKind operation of Constraint is defined as follows:

context Constraint::sbvrMappingKind():MappingKind

 body: if self.specification.oclAsType(Expression).symbol = 'XOR'

 or self.constrainedElement->exists(e1,e2|

 e1.oclIsTypeOf(Class) and e2.oclIsTypeOf(Property) and

 e2.oclAsType(Property).class = e1.oclAsType(Class) and

 self.specification.oclAsType(OpaqueExpression).body =

 e1.oclAsType(Class).name.concat('.allInstances->

 isUnique('.concat(e2.oclAsType(Property).name.

An object-oriented approach to the translation between MOF metaschemas

140

 concat(')'))))

 then MappingKind:: HasEquivalents

 else MappingKind:: Untranslatable

 endif

This means that the constraint has equivalents in SBVR if it corresponds to the predefined

XOR constraint or if it constrains a class and an attribute of the class and the specification

of the express constraint that the attribute is a key of the class.

6.1.2 SBVR meanings side

On the SBVR meanings side, the operation umlMappingKind() is defined, in Meaning, as

follows:

context Meaning::umlMappingKind():MappingKind

 body: MappingKind::IsIncluded

This means that, by default, all (direct or indirect) instances of Meaning that are schema

units have an inclusion mapping, and that those instances that are not schema units have

an undefined value for the operation. There are some exceptions, and therefore the

operation is redefined in certain subtypes of Meaning, as shown in Figure 6.2.

SBVR allows IndividualConcept to be defined as part of the schema. Here, only those which

are included in the definition of another concept have UML equivalents (in UML, each

IndividualConcept corresponds to an EnumerationLiteral). This is formalized as follows:

context IndividualConcept::umlMappingKind():MappingKind

 body: if self.variable.projection->notEmpty()

 then MappingKind::IsIncluded

 else MappingKind:: Untranslatable

 endif

An SBVR ReferenceScheme indicates which roles and characteristics identify concepts. For

translation into UML, this thesis only considers the reference schemes that are equivalent

to the identifier constraint—that is, the ReferenceScheme that references object types (not

fact types). This is formally specified as follows:

context ReferenceScheme::umlMappingKind():MappingKind

 body: if self.referencedConcept -> forAll(oclIsType(ObjectType))

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif

In order to translate any type of structural rule, it would be necessary to include the entire

OCL metaschema in the UML metaschema. Since this inclusion has been left for further

work, only a limited set of SBVR is translatable into UML. In particular, the structural rules

considered translatable to UML are those that represent graphical UML constraints

(multiplicities, XOR, and disjointness and completeness of generalization sets) and the

identifier constraint mentioned above.

Figure 6.3 shows the general form of a structural rule representing the multiplicity

constraint between two or more concepts, Card(concept1, … conceptn-

1;conceptn;associativeFactType) = (min,max). The rule is structured by a universal

quantification that introduces a variable for each concept (concept1, … conceptn-1,) and

6 Translation mapping expressions between UML and SBVR meanings

141

scopes over a quantification (e.g., existential, exactly, at-least-n, etc.). The quantification

introduces a variable that ranges over the concept conceptn and scopes over an atomic

formulation based on the associativeFactType that relates all of the previous concepts. An

example was shown in Figure 5.18 of Chapter 5.

Figure 6.3 General form of structural rule representing a multiplicity constraint

In order to check whether a structural rule corresponds to a multiplicity constraint, the

following operation is defined in the StructuralRule context.

The isMultiplicity() operation returns a Boolean whose value is true if the meaning of the

structural rule (self) corresponds to the meaning of a UML cardinality constraint.

context StructuralRule : isMultiplicity() : Boolean

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.isAtomicOfAssociativeFactType()

The isAtomicOfAssociativeFactType() operation is defined in the context of a

LogicalFormulation and returns true if the logical formulation corresponds to an atomic

formulation based on an associative fact type (or an is-property-of fact type).

context LogicalFormulation::isAtomicOfAssociativeFactType() :

 Boolean

 body: self.oclIsTypeOf(AtomicFormulation) and

 (self.oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(AssociativeFactType) or

 self.oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(IsPropertyOfFactType))

The disjointness and covering constraint of a generalization set may be specified with a

unique rule if the generalization set has exactly two generalizations. Figure 6.4 shows the

general form of such a structural rule. The figure shows the structure of a rule

representing “each generalConcept is a category1 or is a category2 but not both.” The rule

is structured by a closed universal quantification (each) that introduces a variable that

ranges over the general concept. The quantification scopes over an exclusive disjunction

scopes over introduces

UniversalQuantification

Variable
(concept1)

Quantification
(cardinality)

AtomicFormulation Variable
(conceptn)

introduces scopes over

AssociativeFactType
(concept1, concept2, … conceptn-1
verb conceptn)

based on

Variable
(concept2)

. . .

Variable
(conceptn-1)

An object-oriented approach to the translation between MOF metaschemas

142

(or… but not both). Each operand of the exclusive disjunction is an atomic formulation

based on the categorization fact type (i.e., category1 is a category of generalConcept and

category2 is a category of generalConcept). An example was shown in Figure 5.19 of

Chapter 5.

 Figure 6.4 General form of structural rule representing covering and disjointness of a
generalization set with two generalizations

The isDisjointAndCovering() operation returns a Boolean whose value is true if the

meaning of the structural rule (self) corresponds to the meaning of a UML

{disjoint,complete} constraint of a generalization set with two generalizations.

context StructuralRule::isDisjointAndCovering() : Boolean

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(ExclusiveDisjunction).

 logicalOperand1.oclAsType(AtomicFormulation) ->

 notEmpty() and self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(ExclusiveDisjunction).

 logicalOperand2.oclAsType(AtomicFormulation) ->

 notEmpty()

In the case of a generalization set with three or more generalizations, the covering

constraint is represented by a unique rule, and the disjointness constraint is represented

by a different set of rules.

The covering rule is structured by a closed universal quantification that introduces a

variable that ranges over the general concept of the generalization set. The quantification

scopes over a tree of n-1 disjunctions, where n is the number of generalizations that

compound the generalization set, as shown in Figure 6.5. The structure of the covering

rule also serves in the case of a generalization set with two generalizations.

The isCovering() operation returns a Boolean whose value is true if the meaning of the

structural rule (self) corresponds to the meaning of a UML {complete} constraint of a

generalization set. The rule is structured as shown in Figure 6.5.

ClosedUniversalQuantification

Variable
(generalConcept)

ExclusiveDisjunction

AtomicFormulation AtomicFormulation

operates on

scopes over introduces

operates on

CategorizationFactType
(category1 is a category of generalConcept)

based on

CategorizationFactType
(category2 is a category of generalConcept)

based on

6 Translation mapping expressions between UML and SBVR meanings

143

Figure 6.5 General form of the structural rule representing the covering constraint of a
generalization set

context StructuralRule::isCovering() : Boolean

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.isDisjunctionOfCoveringRule()

The isDisjunctionOfCoveringRule() operation is defined in the context of a

LogicalFormulation and returns true if the logical formulation corresponds to a disjunction

where the first operand is an atomic formulation based on a categorization fact type and

the second operand also corresponds to an atomic formulation based on a categorization

fact type or to a second disjunction structured like the previous one.

context LogicalFormulation::isDisjunctionOfCoveringRule() : Boolean

 body: self.oclIsTypeOf(Disjunction) and

 self.oclAsType(Disjunction).logicalOperand1.

 isAtomicOfCategorization() and

 (self.oclAsType(Disjunction).logicalOperand2.

 isAtomicOfCategorization() or

 self.oclAsType(Disjunction).logicalOperand2.

 isDisjunctionOfCoveringRule())

The isAtomicOfCategorization() operation is defined in the context of a LogicalFormulation

and returns true if the logical formulation corresponds to an atomic formulation based on

a categorization fact type.

context LogicalFormulation::isAtomicOfCategorization() : Boolean

 body: self.oclIsTypeOf(AtomicFormulation) and

 self.oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType)

operates on

scopes over introduces

ClosedUniversalQuantification

Variable
(generalConcept) Disjunction

AtomicFormulation

. . .

operates on

based on

CategorizationFactType
(category1 is a category
of generalConcept) CategorizationFactType

(categoryn-1 is a
category of generalConcept)

based on

operates on

AtomicFormulation

based on

Disjunction
operates on

CategorizationFactType
(categoryn is a category of
generalConcept)

AtomicFormulation

An object-oriented approach to the translation between MOF metaschemas

144

Figure 6.6 General form of the structural rule partially representing the disjointness constraint of a
generalization set

In order to define the disjointness constraint of a generalization set with n > 3

generalizations, it is necessary to define n-1 structural rules. Each rule means that if an

instance of the general concept is an instance of one of the categories, then this instance

cannot be an instance of any of the other categories. Figure 6.6 shows the general form of

the structural rule.

The isDisjoint() operation is a Boolean whose value is true if the meaning of the structural

rule (self) corresponds to the meaning of a UML {disjoint} constraint of a generalization

set.

context StructuralRule::isDisjoint() : Boolean =

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.restrictingFormulation.

 isAtomicOfCategorization() and

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.isNorFormulationOfDisjointRule()

The isNorFormulationOfDisjointRule() operation is defined in the context of a

LogicalFormulation and returns true if the logical formulation corresponds to a nor

formulation where the first operand is an atomic formulation based on a categorization

fact type and the second operand is also an atomic formulation based on a categorization

fact type or a second nor formulation structured like the previous one.

context LogicalFormulation::isNorFormulationOfDisjointRule() :

 Boolean

 body: self.oclIsTypeOf(NorFormulation) and

 self.oclAsType(NorFormulation).logicalOperand1.

 isAtomicOfCategorization() and

 (self.oclAsType(NorFormulation).logicalOperand2.

 isAtomicOfCategorization() or

 self.oclAsType(NorFormulation).logicalOperand2.

 isNorFormulationOfDisjointRule())

introduces

ClosedUniversalQuantification

Variable
(generalConcept)

NorFormulations

CategorizationFactType
(categoryi is a category
of generalConcept)

scopes over

AtomicFormulation

based on

operates on

AtomicFormulation

CategorizationFactType
(category1 is a category
 of generalConcept)

operates on

based on

NorFormulation

operates on

CategorizationFactType
(categoryn-1 is a category
of generalConcept)

CategorizationFactType
(categoryn is a categoryof
generalConcept)

operates on
based on

restricted by

AtomicFormulation

based on

. . .

AtomicFormulation

6 Translation mapping expressions between UML and SBVR meanings

145

Figure 6.7 General form of the structural rule partially representing the XOR constraint

In order to define the XOR constraint among n  2 associations, it is necessary to define n-1

structural rules. Each rule means that if an instance of the concept is associated with an

instance of a second concept, then the first instance cannot be associated with an instance

of any of the other concepts participating in the XOR relationship. Figure 6.7 shows the

general form of the structural rule.

The isXOR() operation is a Boolean whose value is true if the meaning of the structural rule

(self) corresponds to the meaning of a UML {XOR} constraint.

context StructuralRule::isXOR() : Boolean

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.restrictingFormulation.

 isAtomicOfAssociativeFactType() and

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.isNorFormulationOfXORRule()

The isNorFormulationOfXORRule() operation is defined in the context of a

LogicalFormulation and returns true if the logical formulation corresponds to a nor

formulation where the first operand is an atomic formulation based on an associative fact

type and the second operand is also an atomic formulation based on an associative fact

type or a second nor formulation structured like the previous one.

context LogicalFormulation::isNorFormulationOfXORRule() :

 Boolean

 body: self.oclIsTypeOf(NorFormulation) and

 self.oclAsType(NorFormulation).logicalOperand1.

 isAtomicOfAssociativeFactType() and

 (self.oclAsType(NorFormulation).logicalOperand2.

 isAtomicOfAssociativeFactType() or

 self.oclAsType(NorFormulation).logicalOperand2.

 isNorFormulationOfXORRule())

introduces

ClosedUniversalQuantification

Variable
(concepti)

NorFormulation

AssociativeFactType
(concepti is related to
conceptj)

scopes over

AtomicFormulation

based on

operates on

restricted by AtomicFormulation

AssociativeFactType
(concepti is related to
concept1)

operates on

based on

NorFormulation

operates on

AssociativeFactType
(conceptn-1 is related
to concepti)

AssociativeFactType
(concepti is related to
conceptn)

operates on based on

AtomicFormulation AtomicFormulation

based on

. . .

An object-oriented approach to the translation between MOF metaschemas

146

Figure 6.8 General form of an object type whose extension is defined as the union of the instances
of other object types

Using the operations defined above, the umlMappingKind() operation of StructuralRule is

defined as follows:

context StructuralRule::umlMappingKind():MappingKind

 body: if isMultiplicity() or isDisjointAndCovering() or

 isCovering() or isXOR() or isDisjoint()

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif

Closed projections are used to formalize the definition of a concept. As in the case of

structural rules, the whole OCL metamodel would be necessary in order to automate the

translation of all possible definitions. Here, the concepts considered translatable are those

whose closed projections represent graphical UML definitions, such as definitions of

enumerations, definitions of abstract classes and definitions of association classes.

The meaning of an abstract class with n > 1 subclasses, in SBVR, is defined as an object

type defined by a closed projection that has n-1 disjunctions structured as a tree, as shown

in Figure 6.8. Figure 5.30 in Chapter 5 was an example of this.

The isAbstract() operation returns a Boolean whose value is true if the meaning of the

closed projection (self) corresponds to the meaning of a UML class abstract that has a

partition of two subclasses. The structure of the disjunction is the same as that of the

covering rule described above.

context ClosedProjection::isAbstract() : Boolean

 body: self.logicalFormulation.isDisjunctionOfCoveringRule()

ClosedProjection

Variable
(object type)

Disjunction

Disjunction AtomicFormulation

ObjectType

AtomicFormulation AtomicFormulation

CategorizationFactType
(category1 is a category of
object type)

based on

defines

is on has

operates on
operates on

CategorizationFactType
(categoryn-1 is a category
of object type)

based on

CategorizationFactType
(categoryn is a category
of object type)

based on

. . .

6 Translation mapping expressions between UML and SBVR meanings

147

The isObjectification() operation returns a Boolean whose value is true if the meaning of

the closed projection (self) corresponds to the meaning of the reification of an associative

fact type.

context ClosedProjection::isObjectification() : Boolean

 body: self.logicalFormulation.oclIsTypeOf(Objectification)

Therefore, the umlMappingKind() operation of ObjectType is redefined as follows:

context ObjectType::umlMappingKind() : MappingKind

 body: if self.closedProjection -> isEmpty()

 then MappingKind::IsIncluded

 else if self.closedProjection.isAbstract() or

 self.closedProjection.isObjectification()

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif

 endif

An enumeration with n > 1 literals, in SBVR, is defined as a value type defined by a closed

projection that has n-1 disjunctions structured as a tree, as shown in Figure 6.9.

Figure 6.9 General form of a value type whose extension is defined as the union of the instances of
individual concepts

The isEnumeration() operation returns a Boolean whose value is true if the meaning of the

closed projection (self) corresponds to the meaning of a UML enumeration.

context ClosedProjection::isEnumeration() : Boolean

 body: self.logicalFormulation.isDisjunctionOfIndividuals

The isDisjunctionOfIndividuals() operation, defined in the context of a logical formulation,

returns a Boolean whose value is true if the logical formulation is structured as shown in

Figure 6.9.

context LogicalFormulation::isDisjunctionOfIndividuals() : Boolean

 body: self.oclIsTypeOf(Disjunction) and

 self.oclAsType(Disjunction).logicalOperand1.

 oclIsTypeOf(InstantiationFormulation) and

 (self.oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(InstantiationFormulation) or

 self.oclAsType(Disjunction).logicalOperand2.

 isDisjunctionOfIndividuals())

ClosedProjection

Variable
(value type)

Disjunction

Disjunction
InstantiationFormulation
(individualConcept1 is value type)

ValueType

InstantiationFormulation
(individualConceptn-1 is
value type)

InstantiationFormulation
(individualConceptn is
value type)

defines

is on has

operates on operates on

. . .

An object-oriented approach to the translation between MOF metaschemas

148

Therefore, the umlMappingKind operation of ValueType is redefined as follows:

context ValueType::umlMappingKind() : MappingKind

 body: if self.closedProjection -> isEmpty()

 then MappingKind::IsIncluded

 else if self.closedProjection.isEnumeration()

 then MappingKind::IsIncluded

 else MappingKind::Untranslatable

 endif

 endif

6.2 sbvrEquivalents() and umlEquivalents() operations

This section describes the sbvrEquivalents() and umlEquivalents operations in the context

of Element and Meaning, respectively.

In this section the hasSent ('^') operator is used to invoke operations within a

postcondition (Object Management Group 2006b, pàg. 29). The use of this operator allows

to better structure the postconditions. However, note that the USE tool does not allow the

use of such operator. Therefore, the implementation, in USE, of a postcondition with an

invocation to an operation includes, within the postcondition, the fragment corresponding

to the invoked operation.

6.2.1 UML side

The evaluation of the sbvrEquivalents() operation on a UML schema unit whose mapping

kind is HasEquivalents gives the set of SBVR characterization objects that are equivalent to

the UML schema unit. The signature and precondition of the operation in OCL is as follows:

context Element::sbvrEquivalents():Set(MeaningCh)

 pre: sbvrMappingKind() = MappingKind::HasEquivalents

 post definingTheResult:

 result = MeaningCh.allInstances() –

 MeaningCh.allInstances@pre()

The effect of the operation is redefined in the subtypes of Element such that some or all of

their instances represent schema units whose mapping kind is HasEquivalents.

The following subsections give, for each sbvrEquivalents() operation redefined, examples

that illustrate the mapping between elements of the two schemas, the general description

of the operation and the formal specification of the operation in OCL.

6.2.1.1 sbvrEquivalents() of data type

Examples

The data type schema units represented by instances of DataType named “Natural” and

“Year” are represented, in SBVR, as two instances of ValueType with the same name,

respectively.

General description

A DataType schema unit maps to a characterization object of ValueType. The name

attribute of ValueTypeCh is the same as the DataType name.

6 Translation mapping expressions between UML and SBVR meanings

149

Formal specification in OCL

context DataType::sbvrEquivalents():Set(NounConceptCh)

 post NounConceptChCreated:

 nc.oclIsNew() and nc.oclIsTypeOf(NounConceptCh) and

 nc.name = self.name and nc.isValueType = true

6.2.1.2 sbvrEquivalents() of class

Examples

 One example of a class schema unit included in the DBLP schema (see Figure 6.10) is the

class schema unit “Person” represented by the instance of Class whose name attribute has

the value “Person.” The equivalent meaning, in SBVR, is represented by an object type

schema unit represented by the instance of ObjectType whose name attribute has the value

“person.”

Figure 6.10 Example of mapping the abstract class "AuthoredPublication" to SBVR

The DBLP example also includes a class schema unit “Publication” represented by the

instance of Class whose name and isAbstract attributes have the values

“AuthoredPublication” and True, respectively. In this case, the “AuthoredPublication” class

schema unit is equivalent, in SBVR, to an “authored publication” object type schema unit

represented by the instance of ObjectType whose name attribute has the value

ClosedProjection

Variable
(authored publication)

Disjunction

DisjunctionAtomicFormulation

ObjectType
(authored publication)

AtomicFormulation AtomicFormulationCategorizationFactType
(authored book is a category
of authored publication)

based on

defines

is on has

operates on

operates on

CategorizationFactType
(book chapter is a category
of authored publication)

based on

CategorizationFactType
(journalpaper is a category
of authored publication)

based on

An object-oriented approach to the translation between MOF metaschemas

150

“AuthoredPublication” (see Figure 6.10). Additionally, since the class is abstract, the object

type is defined by a closed projection whose meaning defines the extension of the

“AuthoredPublication” object type as the union of the extension of the “AuthoredBook,”

“BookChapter” and “JournalPaper” object types.

General description

The sbvrEquivalents() operation of a class named c gives an instance of a characterization

object of an ObjectType. The instance of NounConceptCh has the attributes name and

isValueType with the values c (the same name as the Class) and false, respectively.

Additionally, if the value of the isAbstract attribute of the Class is True, the characterization

object of ObjectType is associated with an instance of Formulation. FormulationCh is

associated with a projectionVariable whose rangedOverConcept attribute has the value c.

The formulation is structured such that the concept is the union of the other concepts, as

shown in Figure 6.8.

Formal specification in OCL

The sbvrEquivalents() operation of Class is formally defined in OCL as follows:

context Class::sbvrEquivalents():Set(NounConceptCh)

 post NounConceptChCreated:

 let categories = self.generalization -> asSequence ->

 collect(specific).name

 in

 ob.oclIsNew() and ob.oclIsTypeOf(NounConceptCh) and

 ob.name = self.name and ob.isValueType = false and

 -- if the class is abstract the object type includes a

 -- definition structured by a closed projection

 if self.isAbstract then

 v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and

 v1.nounConceptCh = ob and

 v1.rangedOverConcept = self.name and

 -- the projection is structured as a tree of disjunctions

 self^binaryOfAtomicCategorizations(

 BinaryOperationType::Disjunction, ob,v1, categories,

 self.name)

 else

 true

 endif

The postcondition includes the invocation of the binaryOfAtomicOfCategorizations

operation through the '^' OCL operator (Object Management Group 2006b, pàg. 29)7. Such

operation constrains the structure of a formulation that corresponds to a tree of binary

operations where the leaves are atomic formulations of categorizations as showed in

Figure 6.10.

7 The USE tool does not allow the use of the '^' operator. Therefore, the

binaryOfAtomicCategorizations() is included in postconditions that invoke it.

6 Translation mapping expressions between UML and SBVR meanings

151

context Element::binaryOfAtomicOfCategorizations(

 typ:BinaryOperationType, mch:MeaningCh, v1:Variable2,

 cates:Sequence(String), gen:String):Set(MeaningCh)

 post BinaryChCreated:

 -- for each category there is an atomic formulation based

 -- on the categorization fact type of the category

 categs -> forAll(cat:String |

 at1.oclIsNew() and at1.oclIsTypeOf(Atomic) and

 at1.factTypeName = 'is a category of' and

 at1.type = FactTypeType::Categorization and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 at1.binding->indexOf(bi1) = 1 and bi1.atomic = at1 and

 bi1.variable = v1 and

 bi1.rangesOverConcept = cat and

 bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and

 at1.binding->indexOf(bi2) = 2 and bi2.atomic = at1 and

 bi2.variable = v1 and

 bi2.rangesOverConcept = gen and

 -- if the category is not the last one then the atomic

 -- formulation is a left leaf of a binary formulation

 if cat <> categs->last() then

 bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and

 bi.type = typ and bi.first = at1 and

 if cat = categs->first() then mch.formulation = bi

 else BinaryOperation.allInstances() ->

 exists(bio : BinaryOperation|

 categs->at(categs -> indexOf(cat))-1) =

 bio.first.oclAsType(Atomic).binding ->

 first.name and bio.second = bi)

 endif

 -- if the category is the last one, the atomic

 -- formulation is a right leaf of a binary formulation

 else

 BinaryOperation.allInstances() -> exists(bio|

 categs->at(categs->indexOf(cat)-1) =

 bio.first.oclAsType(Atomic).binding -> first().name

 and bio.second = at1)

 endif)

6.2.1.3 sbvrEquivalents() of enumeration

Example

The DBLP example includes an enumeration schema unit represented by the instance of

Enumeration whose name attribute has the value “Gender.”

The equivalent knowledge is represented in SBVR by the following schema units (see

Figure 6.11):

 The value type schema unit represented by the instance of ValueType whose name

attribute has the value “Gender”; the object type defined by a ClosedProjection

whose meaning defines that the “Gender” object type is the exclusive disjunction of

the “Male” and “Female” individual concepts; and

An object-oriented approach to the translation between MOF metaschemas

152

 Two individual schema units represented by two instances of IndividualConcept

whose name attributes have the valuee "Male" and "Female," respectively.

Figure 6.11 Example of mapping the enumeration "Gender" to SBVR

General description

An Enumeration named e maps to several characterization objects of Meaning:

 One characterization object of a ValueType, NounConceptCh, with the attribute name,

the value of which is the same as that of the attribute name of the Enumeration; and

the valueType attribute is True;

 For each instance of EnumerationLiteral of the enumeration, one characterization

object of IndividualConcept with the attribute name, the value of which is the same

value as the attribute name of the EnumerationLiteral; and

 The characterization object of ValueType that is associated with an instance of

Formulation. The Formulation is associated with a projectionVariable whose

rangedOverConcept attribute has a value of e. The formulation is structured such

that the concept is the union of instantiation formulations that binds to the

individual concepts mentioned above.

Formal specification in OCL

context Enumeration::sbvrEquivalents():Set(MeaningCh)

 post NounConceptChAndIndividualChsCreated:

 let liters = ownedLiteral.name in

 ob.oclIsNew() and ob.oclIsTypeOf(NounConceptCh) and

 ob.name = self.name and ob.isValueType = true and

 v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and

 v1.NounConceptCh = ob and

 v1.rangedOverConcept = self.name and

 -- for each literal there is an individual concept

 liters -> forAll(lit:String |

 ind.oclIsNew() and ind.oclIsTypeOf(IndividualConceptCh)

 and ind.name = lit and

ClosedProjection

Variable
(gender)

Disjunction

InstantiationFormulationInstantiationFormulation

ValueType
(gender)

IndividualConcept
(female)

IndividualConcept
(male)

binds to

defines

is on has

operates on
operates on

binds to

6 Translation mapping expressions between UML and SBVR meanings

153

 -- for each literal there is an instantiation

 int1.oclIsNew() and int1.oclIsTypeOf(Instantiation) and

 int1.concept = v1 and int1.target = lit and

 -- if the literal is not the last one then the

 -- instantiation formulation is a left leaf of a

 -- disjunction

 if lit <> liters->last() then

 bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and

 bi.type = BinaryOperationType::Disjunction and

 bi.first = int1 and

 if lit = liters->first then ob.formulation = bi

 else BinaryOperation.allInstances() ->

 exists(bio : BinaryOperation|

 liters->at(liters -> indexOf(lit))-1) =

 bio.first.oclAsType(Instantiation).target

 and bio.second = bi)

 endif

 -- if the literal is the last one, the instantiation

 -- formulation is a right leaf of a disjunction

 else

 BinaryOperation.allInstances() -> exists(bio|

 liters->at(liters->indexOf(cat)-1) =

 bio.first.oclAsType(Instantiation).target and

 bio.second = int1)

 endif)

6.2.1.4 sbvrEquivalents() of attribute

Example

In DBLP, the conferencePaper attribute schema unit of the JournalPaper class is

represented by the instance of Property whose attribute name has the value

“conferencePaper,” is of Boolean type and has a cardinality of 1.

The equivalent meaning, in SBVR (see Figure 6.12), is represented by:

 A characteristic schema unit that describes "journal paper being conference paper."

Figure 6.12 Example of mapping the attribute "conferencePaper" to SBVR

Moreover, in DBLP, the acronym attribute schema unit of the ConferenceSeries class is

represented by the instance of Property whose attribute name has the value “acronym”

and has a cardinality of 1.

The equivalent meaning, in SBVR (see Figure 6.13), is represented by:

 An is-property-of fact type schema unit that describes that the “conference series has

acronym”; and

Characteristic
(being conference paper)

Concept
(journalpaper)

ranges over

An object-oriented approach to the translation between MOF metaschemas

154

 A structural rule schema unit represented by an instance of StructuralRule whose

meaning states that “each conference series has exactly one acronym."

Figure 6.13 Example of mapping the attribute "acronym" to SBVR

General description

A Boolean attribute, represented in UML as a Property of Boolean type, maps to a

characterization object of Characteristic (unary fact type). The verb attribute of

CharacteristicCh is the concatenation of the string “being” with the same value as the

attribute name of Property. The rangesOverConcept attribute has the same value as the

name of the Class that owns the Property.

A non-Boolean attribute represented by a Property related to a class by ownedAttribute

maps to the following characterization objects of Meaning:

 One characterization object of an IsPropertyOfFactType, FactTypeCh, whose type

attribute is equal to FactTypeType::IsPropertyOf, whose attribute name has the

value “has,” and which has two fact type roles. The first role ranges over an object

type whose attribute name has the same value as the attribute name of the Class that

owns the Property. The second role has the name of the Property and its

rangesOverConcept attribute has the same value as the attribute name of the same

type as the Property; and

 A characterization object of StructuralRule that corresponds to the meaning of the

cardinality constraint (if the multiplicity value of the Property is different from

“0..*”).

Formal specification in OCL

An additional operation that creates a cardinality structural rule characterization object is

defined.

The CardinalityCh(names, verb, factType, type, minCar, card, maxCar) operation constrains

the structural rule characterization object that corresponds to a cardinality constraint, as

ClosedUniversalQuantification

Variable
(conference series)

ExactlyOneQuantification
(cardinality = 1)

AtomicFormulationVariable
(acronym)

scopes over

scopes over

introduces

introduces

IsPropertyOfFactType
(conference series has acronym)

based on

StructuralRule

6 Translation mapping expressions between UML and SBVR meanings

155

shown in Figure 6.13. StructuralRuleCh is associated with a QuantificationForm of type

ClosedUniversal that introduces a Variable2 whose attribute rangesOverConcept has the

value name1. The QuantificationForm is associated with a second QuantificationForm

whose type (e.g., at least, at most, exactly, etc.) has the value type. The QuantificationForm

also introduces a Variable2 whose attribute rangesOverConcept has a value equivalent to

the last string of names. The meaning of the structural rule is a cardinality constraint

between a certain number of names, each one of its type type, which are related through a

fact type named verb. The meaning is that, given n concepts (strings) in names, the first n-1

names are related between minCar and maxCar to the last concept (string) of names.

context Element::CardinalityCh(

 names:Sequence(String), verb:String,

 factType:FactTypeType, type:QuantificationType,

 minCar:Integer, maxCar:Integer[0..1]):Set(MeaningCh)

 post: st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and

 fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and

 fo.structuralRuleCh = st and

 fo.type = QuantificationType::ClosedUniversal and

 qu.oclIsNew() and qu.oclIsTypeOf(QuantificationForm) and

 qu.quantificationForm = fo and

 qu.type = typeOfQuantification(minCar, maxCar) and

 qu.card = minCar and qu.minimCard = minCar and

 qu.maxCard = maxCar and

 at.oclIsNew() and at.oclIsTypeOf(Atomic) and

 at.quantificationForm = qu and at.factTypeName = verb and

 at.type = factType and

 names -> forAll(na| v1.oclIsNew() and

 v1.oclIsTypeOf(Variable2) and

 if names->last <> na then

 v1.quantification = fo

 else v1.quantification = qu

 endif and v1.rangedOverConcept = na and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 at.binding -> indexOf(bi1) = names -> indexOf(na) and

 bi1.atomic = at and bi1.variable = v1 and

 bi1.rangesOverConcept = na)

where TypeOfQuantification(min, max), defined in the context of Element, gives the type of

the equivalent SBVR quantification depending on the min and max values:

context Element::typeOfQuantification(min:Integer,

 max:Integer[0..1]):QuantificationType

 body: if max -> notEmpty() and min = max and min = 1

 then QuantificationType::ExactlyOne

 else

 if max -> notEmpty() and min = max and min <> 1

 then QuantificationType::ExactlyN

 else

 if min = 1 and max -> isEmpty()

 then QuantificationType::Existential

 else

 if min > 1 and max -> isEmpty()

 then QuantificationType::AtLeastN

 else

 if min = 0 and max -> notEmpty()

An object-oriented approach to the translation between MOF metaschemas

156

 then QuantificationType::AtMostN

 else

 if min = 0 and max -> notEmpty() and max = 1

 then QuantificationType::AtMostOne

 else QuantificationType::NumericRange

 endif

 endif

 endif

 endif

 endif

 endif

The specification of the sbvrEquivalents() operation is as follows:

context Property::sbvrEquivalents():Set(MeaningCh)

 post CharacteristicChOrIsPropertyFactTypeChAndRuleChCreated:

 let name1:String = self.class.name in

 let name2:String = self.name in

 let names:Sequence(String) = Sequence{name1, name2} in

 let verb:String = 'has' in

 let factType:FactTypeType = FactTypeType::IsPropertyOf in

 -- equivalent of a boolean attribute

 if self.type.name = 'Boolean' then

 ch.oclIsNew() and ch.oclIsTypeOf(CharacteristicCh) and

 ch.verb = 'being '.concat(self.name) and

 ch.rangesOverConcept = self.class.name

 else

 -- equivalent of a non-boolean attribute

 -- there is an instance of fact type characterization object

 fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and

 fa.name = verb and fa.type= FactTypeType::IsPropertyOf

 and ro1.oclIsNew() and ro1.oclIsTypeOf(RoleOfFactType)

 and ro1.factTypeCh = fa and ro1.rangesOverConcept = name1

 and fa.roleOfFactType -> indexOf(ro1) = 1 and

 ro2.oclIsNew() and ro2.oclIsTypeOf(RoleOfFactType) and

 ro2.factTypeCh = fa and ro2.name = name2 and

 ro2.rangesOverConcept = self.type.name and

 fa.roleOfFactType -> indexOf(ro2)and

 -- there is an instance of structural rule characterization

 -- object

 (self.lower() <> 0 or

 self.upperValue.oclIsTypeOf(LiteralInteger)) implies

 self^cardinalityCh(names, verb, factType,

 self.lowerValue.oclAsType(LiteralInteger).value,

 self.upperValue.oclAsType(LiteralInteger).value)

 endif

6.2.1.5 sbvrEquivalents() of association

Example

DBLP includes an association schema unit named “Publishes” that relates the classes

named “Person” and “Publication.” The association schema unit is represented by the

Association whose name attribute has the value “Publishes” and whose member ends are

the instances of Class named “Person” and “Publication,” respectively. Additionally, as a

6 Translation mapping expressions between UML and SBVR meanings

157

multiplicity element, the association includes the cardinality constraints between “Person”

and “Publication.”

The equivalent meaning is represented in SBVR with the following schema units (see

Figure 6.14):

 An associative fact type schema unit describing that “person publishes publication”;

 A structural rule schema unit meaning that “each person publishes at least one

publication”; and

 A structural rule schema unit meaning that “each publication has at least one

person.”

Figure 6.14 Example of mapping the association 'publishes' to SBVR

General description

In UML, an association represented by an instance of Association related, by memberEnd,

to n > 1 instances of Class maps to the following characterization objects of Meaning:

 A characterization object of an AssociativeFactType, FactTypeCh, whose type

attribute is equal to Associative (or Partitive if the association corresponds to a

composition). The attribute name may have different values: if the association has a

name, the value is the name of the association; if the association corresponds to a

ClosedUniversalQuantification

Variable
(person)

ExistentialQuantification
(minimumCardinality = 1)

AtomicFormulationVariable
(publication)

scopes over

scopes over

introduces

introduces

AssociativeFactType
(person publishes publication)

based on

ClosedUniversalQuantification

Variable
(publication)

ExistentialQuantification
(minimumCardinality = 1)

AtomicFormulationVariable
(person)

scopes over

scopes over

introduces

introduces

AssociativeFactType
(person publishes publication)

based on

StructuralRule

StructuralRule

An object-oriented approach to the translation between MOF metaschemas

158

composition, the value is “includes”; if the association corresponds to an

aggregation, the value is “is part of”; and if none of the other cases apply, the value is

“has.” The instance of FactTypeCh has n fact type roles, and the value of the

rangesOverConcept attribute of each role is the name of the type of a member end of

the Association;

 A characterization object of StructuralRule (for each member end whose multiplicity

is different than “0..*”). StructuralRuleCh is associated with a QuantificationForm of

type ClosedUniversal that introduces n-1 instances of Variable2 whose attribute

rangesOverConcept has the same value as the name of the type of one of the

opposite members. The QuantificationForm is associated with a second

QuantificationForm whose type depends on the multiplicity values and which also

introduces a Variable2 whose attribute rangesOverConcept has the same value as

the name of the type of the member end that has the multiplicity constraint.

Formal specification in OCL

The associationType() operation, defined in the context of Association, returns whether the

association is a composition, an aggregation or neither:

context Association::associationType():AggregationKind

 body: if self.memberEnd -> exists(pr|

 pr.aggregation = AggregationKind::composite)

 then

 AggregationKind::composite

 else

 if self.memberEnd -> exists(pr|

 pr.aggregation = AggregationKind::shared)

 then AggregationKind::shared

 else AggregationKind::none

 endif

 endif

The associationName() operation, defined in the context of Association, returns the name

that is given to the relationship. The name may have different values: if the association has

a name, the value is the name of the association; if the association corresponds to a

composition, the value is “includes”; if the association corresponds to an aggregation, the

value is “is part of”; and if none of the other cases apply, the value is “has.”

context Association::associationName():String

 body: if self.memberEnd -> exists(pr|

 pr.aggregation = AggregationKind::composite)

 then if self.name -> notEmpty() then 'includes'

 else self.name

 endif and

 else if self.memberEnd -> exists(pr|

 pr.aggregation = AggregationKind::shared)

 then 'is part of'

 else if self.name -> notEmpty() then self.name

 else 'has'

 endif

 endif

 endif

6 Translation mapping expressions between UML and SBVR meanings

159

The sbvrEquivalents() operation of Association is formally defined as follows:

context Association::sbvrEquivalents():Set(MeaningCh)

 post AssociativeFactTypeChAndStructuralRulesChCreated:

 -- there is a fact type characterization object

 fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and

 fa.name = associationName() and fa.type = typeOfFactType()

 and self.memberEnd -> forAll(me | ro.oclIsNew() and

 ro.oclIsTypeOf(RoleOfFactType) and ro.factTypeCh = fa and

 ro.name = me.name and ro.rangesOverConcept = me.type.name

 and self.memberEnd->indexOf(me) = fa.roleOfFactType->

 indexOf(ro)) and

 -- for each cardinality constraint there is a structural

 -- rule characterization object

 self.memberEnd -> forAll(me|

 (me.lower() <> 0 or

 not me.upperValue.oclIsTypeOf(LiteralUnlimitedValue))

 implies

 self^cardinalityCh(

 self.memberEnd -> excludes(me)->union(me)->

 collect(name),self.factTypeName(),

 if associationType() = AggregationKind::composite

 then FactTypeType::Partitive

 else FactTypeType::Associative

 endif,

 me.lower(),me.upperValue.oclAsType(LiteralInteger))

Note that the postcondition includes the invocation to the cardinalityCh() operation.

6.2.1.6 sbvrEquivalents() of association class

Example

The DBLP example includes an association class schema unit represented by an instance of

AssociationClass whose name attribute has the value “Editorship” and relates “EditedBook”

with “editor.”

The equivalent meaning is represented, in SBVR, by the following schema units (see Figure

6.15):

 An object type schema unit represented by an instance of ObjectType whose name

attribute has the value “editorship”; the object type is defined by an instance of

ClosedProjection whose meaning defines that “editorship” is an “actuality that an

editor has an edited book”;

 An associative fact type schema unit represented by an instance of

AssociativeFactType describing that “editor has edited book.” The associative fact

type includes the fact type role named “editor” that ranges over the object type

“person”; and

An object-oriented approach to the translation between MOF metaschemas

160

 A structural rule schema unit represented by an instance of StructuralRule

expressing the meaning that “each edited book has at least one editor.”

Figure 6.15. Example of mapping the association class "Editorship"

General description

An association class represented by an instance of AssociationClass maps to the

equivalents of class defined in Section 6.2.1.2 and to the equivalents of association defined

in Section 6.2.1.5. Additionally, the object type characterization object is associated with a

formulation. The formulation is related to a variable whose rangedOverConcept attribute

has the value “actuality.” It is also related to two additional variables whose

rangedOverConcept has the value of the name of the member ends of the association class.

The formulation is associated with an ObjectificationForm whose target is the first variable

defined, and with an instance of Atomic for the associative fact type resulting from the

association class.

Formal specification in OCL

context AssociationClass::sbvrEquivalents():Set(MeaningCh)

 post AdditionalDefinitionFormulationCreated:

 -- the definition introduces a variable that ranges over

 -- 'actuality'

 v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and

 v1.nounConceptCh.name = self.name and

 v1.rangedOverConcept = 'actuality' and

 -- it is structured by an objectificationForm

has

ClosedUniversalQuantification

Variable
(edited book)

ExistentialQuantification
(minimumCardinality = 1)

AtomicFormulationVariable
(person)

scopes over

scopes over

introduces

introduces

AssociativeFactType
(edited book has editor)

based on

StructuralRule

has

ClosedProjection

Variable
(actuality)

Objectification formulation

Free Variable
(person)

ObjectType
(editorship)

defines

is on has

considers

Free Variable
(edited book)

AtomicFormulation

AssociativeFactType
(edited book has editor)

based on

6 Translation mapping expressions between UML and SBVR meanings

161

 ob.oclIsNew() and ob.oclIsTypeOf(ObjectificationForm) and

 ob.nounConceptCh.name = self.name and ob.target = v1 and

 -- there is an atomic formulation based on the fact type of

 -- the association

 at.oclIsNew() and at.oclIsTypeOf(Atomic) and

 ob.formulation = at and

 at.factTypeName = self.associationName() and

 at.type = typeOfFactType() and

 self.memberEnd -> forAll(me|

 -- for each member end there is an free variable

 v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and

 if me.name->notEmpty() then

 v2.rangedOverConcept = me.name

 else v2.rangedOverConcept = me.type.name

 endif and

 v2.formulation = ob and

 -- and there is a binding on the atomic formulation

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 at.binding -> indexOf(bi1) = self.memberEnd ->

 indexOf(me) and bi1.atomic = at and bi1.variable = v2)

6.2.1.7 sbvrEquivalents() of generalization

Example

The DBLP example includes a generalization schema unit represented by the instance of

Generalization that relates the general class named “Book” and the specific class named

“EditedBook.”

The same meaning is represented, in SBVR, as a categorization fact type schema unit

describing that “edited book is a category of book,” as shown in Figure 6.16.

Figure 6.16. Example of mapping the generalization relationship between "Book" and
"EditedBook"

General description

A generalization, represented by an instance of Generalization related to two instances of

Class by specific and general associations, maps to a characterization object of FactType:

the FactTypeCh whose type attribute is equal to FactTypeType::Categorization and whose

name attribute has a value equal to “is a category of.” The FactTypeCh is associated with

two instances of RoleOfFactType. The first one has no name and the rangesOverConcept

attribute has the same value as the name of the specific Class of the Generalization. The

second one has no name and the rangesOverConcept attribute has the same value as the

name of the general Class of the Generalization.

CategorizationFactType
(edited book is a category of book)

generalization mapping

An object-oriented approach to the translation between MOF metaschemas

162

Formal specification in OCL

context Generalization::sbvrEquivalents():Set(FactTypeCh)

 post FactTypeCh:

 fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and

 fa.name = 'is a category of' and

 fa.type= FactTypeType::Categorization and

 ro1.oclIsNew() and ro1.oclIsTypeOf(RoleOfFactType) and

 ro1.factTypeCh = fa and

 ro1.rangesOverConcept = self.specific.name and

 fa.roleOfFactType -> indexOf(ro1) = 1 and ro2.oclIsNew() and

 ro2.oclIsTypeOf(RoleOfFactType) and

 ro2.factTypeCh = fa and ro2.name = self.name and

 ro2.rangesOverConcept = self.general.name and

 ro2.roleOfFactType -> indexOf(ro2) = 2

6.2.1.8 sbvrEquivalents() of generalization set

Example

DBLP includes a generalization set schema unit represented by the instance of

GeneralizationSet named “typeOfBook.”

In SBVR, the equivalent meaning is represented by the following schema units (see Figure

6.17):

 A segmentation schema unit represented by an instance of Segmentation whose

name attribute has the value “type of book.” The segmentation is related to the

“book” object type as a general concept and to the “edited book” and “authored

book” as categories.

 A structural rule schema unit meaning that “each book is an edited book or is an

authored book but not both.”

Figure 6.17. Example of mapping the "typeOfBook" generalization set

Note that the example is a partition of a concept into two other concepts. The closed

universal quantification scopes over an exclusive disjunction. However, the DBLP example

ClosedUniversalQuantification

Variable
(book)

ExclusiveDisjunction

AtomicFormulationAtomicFormulation

operates on

scopes overintroduces

operates on

CategorizationFactType
(edited book is a category of book)

based on

CategorizationFactType
(authored book is a category of book)

based on

StructuralRule

Segmentation

(type of book)

6 Translation mapping expressions between UML and SBVR meanings

163

also includes a generalization set schema unit represented by the instance of

GeneralizationSet named “typeOfAuthoredPublication.”

Figure 6.18. Example of mapping the "typeOfAuthoredPublication" generalization set

In SBVR, the equivalent meaning is represented by the following schema units (see Figure

6.18):

 A segmentation schema unit represented by an instance of Segmentation whose

name attribute has the value “type of publication.” The segmentation is related to

the “authored publication” object type as a general concept and to “authored book,”

“book chapter” and “journal paper” as categories.

 A structural rule schema unit whose meaning is the covering constraint of the

generalization set—that is, “each authored publication is an authored book or a

book chapter or a journal paper.”

 Two structural rule schema units whose meanings are the disjointness constraints

of the generalization set—that is, “each authored book that is an authored

publication is neither a book chapter nor a journal paper” and “each book chapter

that is an authored publication is neither an authored book nor a journal

Segmentation

(type of authored publication)

operates on

scopes overintroduces

ClosedUniversalQuantification

Variable
(authored publication) Disjunction

AtomicFormulation

operates on

based on

CategorizationFactType
(authored book is a category
of authored publication)

CategorizationFactType
(book chapter is a category
of authored publication)

based on

operates on

AtomicFormulation

based on

Disjunction

operates on

CategorizationFactType
(journalpaper is a category
of authored publication)

AtomicFormulation

StructuralRule

introduces

ClosedUniversalQuantification

Variable
(authored publication) NorFormulation

CategorizationFactType
(authored book is a category
of authored publication)

CategorizationFactType
(book chapter is a category
of authored publication)

CategorizationFactType
(journalpaper is a category
of authored publication)

operates onoperates on
restricted by

scopes over

AtomicFormulation

based on

AtomicFormulation

based on

AtomicFormulation

based on

StructuralRule

introduces

ClosedUniversalQuantification

Variable
(authored publication) NorFormulation

CategorizationFactType
(authored book is a category
of authored publication)

CategorizationFactType
(book chapter is a category
of authored publication)

CategorizationFactType
(journalpaper is a category
of authored publication)

operates onoperates on
restricted by

scopes over

AtomicFormulation

based on

AtomicFormulation

based on

AtomicFormulation

based on

StructuralRule

typeOfAuthoredPublication mapping

typeOfAuthoredPublication mapping

An object-oriented approach to the translation between MOF metaschemas

164

paper.”Note that if the number of generalizations that form a generalization set is

greater than two, it is not possible to represent, in SBVR, the disjointness and

covering constraints with only one structural rule.

If the number of generalizations that form a generalization set is greater than two, it is not

possible to represent, in SBVR, the disjointness and covering constraints with only one

structural rule.

General description

A generalization set, represented by an instance of GeneralizationSet having a partition of

n instances of Generalization, maps to the following characterization object of Meaning:

 A characterization object of CategorizationScheme. The CategorizationSchemeCh

has the attribute name with the same value as the attribute name of the

GeneralizationSet. Its generalConcept attribute has the same value as the name of

the general class of any of the generalizations of the generalization set. Its category

attribute has the same value as the set of names of the different specific classes of

the generalizations of the generalization set. Its isSegmentation attribute is true if

the generalization set is covering and disjoint.

 If the generalization set is covering and disjoint and has only two generalizations, a

characterization object of StructuralRule that represents both properties. The

StructuralRuleCh is associated with a QuantificationForm whose attribute is

ClosedUniversal and which introduces a variable whose rangedOverConcept has the

same value as the name of the general concept of any generalization of the

generalization set. The quantificationForm is associated with a BinaryOperation

whose type attribute is ExclusiveDisjunction. The BinaryOperation is associated

with two instances of Atomic, one for each generalization.

 If the generalization set is covering and disjoint and has more than two

generalizations, there are n-1 different characterization objects of StructuralRule.

One StructuralRuleCh represents the isCovering property of the generalization set,

and the others represent the disjointness property of the generalization set.

Formal specification in OCL

For a better structuring of the sbvrEquivalents() operation, some additional operations are

created in the context of Class.

The coveringAndDisjointCh(gen, subs) operation constrains the structure of a structural

rule characterization object whose meaning is a disjointness and covering constraint of

the partition of the concept named gen and which has the concepts named in the sequence

subs.

context Class::CoveringAndDisjointCh(

 gen:String, subs:Sequence(String)):Set(MeaningCh)

 post: st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and

 fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and

 fo.structuralRuleCh = st and

 fo.type = QuantificationType::ClosedUniversal and

 v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and

6 Translation mapping expressions between UML and SBVR meanings

165

 v1.quantification = fo and

 v1.rangedOverConcept = gen and

 bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and

 bi.type = BinaryOperationType::ExclusiveDisjunction and

 bi.quantificationForm = fo and

 subs -> forAll(su|

 at.oclIsNew() and at.oclIsTypeOf(Atomic) and

 if su = subs -> first() then bi.first = at

 else bi.second = at

 endif and

 at.factTypeName = 'is a category of' and

 at.type = FactTypeType::Categorization and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 at.binding -> first() = bi1 and bi1.variable = v1 and

 bi1.rangesOverConcept = su and

 bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and

 at.binding -> last() = bi1 and bi2.variable = v1

 and bi2.rangesOverConcept = gen)

The CoveringCh(gen, subs) operation constrains the structure of a structural rule

characterization object. The meaning of the structural rule is a covering constraint of the

partition of gen that has the concepts named in the sequence subs. Note that the structural

rule has the same structure as a projection that defines an abstract class, as described in

Section 6.2.1.2.

context Element::coveringCh(gen:String, subs:Sequence(String):

 Set(MeaningCh)

 post: st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and

 fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and

 fo.structuralRuleCh = st and

 fo.type = QuantificationType::ClosedUniversal and

 v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and

 v1.quantification = fo and

 v1.rangedOverConcept = gen and

 -- the structural rule is structured as a tree of

 -- disjunctions as described in Section 6.2.1.2

 self.binaryOfAtomicCategorizations(

 BinaryOperationType::Disjunction, st, v1, subs, gen)

Given a class with n subclasses, the disjointnessCh(gen, subs) operation constrains n-1

structural rule characterization objects. The meaning of the structural rules, taken

together, is a covering constraint of the partition of gen that has subs subclasses.

context Element::disjointessCh(gen:String, subs:Sequence(String)):

 Set(MeaningCh)

 post: subs -> forAll(su | su <> subs->last and

 st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and

 fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and

 fo.structuralRuleCh = st and

 -- the structural rule is structured by a closed

 -- universal quantification and introduces a variable

 -- that ranges over the generic concept

 fo.type = QuantificationType::ClosedUniversal and

 v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and

An object-oriented approach to the translation between MOF metaschemas

166

 v2.quantification = fo and v2.rangedOverConcept = gen

 and

 -- the variable is restricted by an atomic formulation

 at.oclIsNew() and at.oclIsTypeOf(Atomic) and

 v2.restricting = at and

 at.factTypeName = 'is a category of' and

 at.type = FactTypeType::Categorization and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 bi1.atomic = at and bi1.variable = v2 and

 bi1.rangesOverConcept = su and

 bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and

 bi2.atomic = at and bi2.variable = v2 and

 bi2.rangesOverConcept = gen and

 -- the quantification is structured as a tree of

 -- norFormulations

 self.binaryOfAtomicCategorizations(

 BinaryOperationType::NorFormulation, st,v2, subs,

 gen))

The sbvrEquivalents() operation of GeneralizationSet is specified as follows:

context GeneralizationSet::sbvrEquivalents():Set(MeaningCh)

 post CategorizationSchemeAndStructuralRulesChCreated:

 let generalizations = self.generalization->asSequence in

 let gen = self.generalization-> collect(general.name)->

 any(true) in

 let subs = generalizations -> collect(specific.name) in

 cs.oclIsNew() and cs.oclIsTypeOf(CategorizationScheme) and

 cs.name = self.name and cs.generalConcept = gen and

 cs.category = subs and

 if self.isDisjoint and self.isCovering then

 cs.isSegmentation and

 self.generalization->size()= 2 implies

 self^coveringAndDisjointCh(gen, subs)

 else

 self.isDijoint implies self^disjointessCh(gen, subs) and

 self.isCovering implies self^coveringCh(gen, subs)

 endif

6.2.1.9 sbvrEquivalents() of constraint

Examples

The DBLP example includes a constraint represented by an instance of Constraint named

“XOR.”

The knowledge meant by this constraint is represented, in SBVR, by three structural rule

schema units, as shown in Figure 6.19:

 One represented by an instance of StructuralRule whose meaning is that “each

conference edition that is published in a book series issue is published neither in an

edited book nor in a journal issue”;

6 Translation mapping expressions between UML and SBVR meanings

167

 A second one represented by an instance of StructuralRule whose meaning is that

“each conference edition that is published in an edited book is published neither in a

book series issue nor in a journal issue”; and

 A third one represented by an instance of StructuralRule whose meaning is that

“each conference edition that is published in a journal issue is published neither in

an edited book nor in a book series issue.”

Figure 6.19. Example of mapping a "XOR" constraint

The DBLP example also includes a constraint schema unit represented by an instance of

Constraint whose invariant body states that the name attribute is unique for instances of

Person.

The equivalent knowledge is represented, in SBVR, as a reference scheme schema unit

represented by an instance of ReferenceScheme (see Figure 6.20). The ReferenceScheme

has, as a referenced concept, the object type named “Person” and, as the used role of fact

type, the fact type role of the is-property-of fact type meaning “person has name.”

Figure 6.20. Example of mapping the "nameIsKey" constraint

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in edited book)

AssociativeFactType
(conference edition is
published in journal issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in book series issue)

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in book series issue)

AssociativeFactType
(conference edition is
published in journal issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in edited book)

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in edited book)

AssociativeFactType
(conference edition is
published in book series issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in journal issue)

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

nameIsKey constraint mapping

context Person inv nameIsKey:
Person.allInstances()->isUnique(name)

ReferenceScheme

referencedConcept
(person)

usedRoleOfFactType
(name)

An object-oriented approach to the translation between MOF metaschemas

168

General description

A constraint, represented by an instance of Constraint, depending on the type of

constraint, maps to different characterization objects of Meaning. As stated above, this

thesis considers, for the purposes of mapping to SBVR, two types of constraints:

constraints expressing that the values of an attribute of a Class are unique, and predefined

XOR constraints.

In the first case, the constraint is mapped to a reference scheme characterization object,

ReferenceSchemeCh. The referencedConcept attribute of ReferenceSchemeCh has the same

value as the name attribute of the context of the constraint. The ReferenceSchemeCh is

associated with a UsedRoleOfFactType whose rangesOverConcept has the same value as the

name of the constrained element (i.e., the property that is unique within the instances of

Class).

An XOR constraint between n associations, where n>1, is mapped to n structural rule

characterization objects, StructuralRuleCh. Each StructuralRuleCh is associated with a

QuantificationForm of type ClosedUniversal that introduces a variable whose

rangedOverConcept attribute has the same value as the name of the context of the

constraint. The QuantificationForm has a second Variable2 (freeVariable) that restricts an

Atomic for one of the associative fact types. The QuantificationForm scopes over a

BinaryOperation whose type is NorFormulation. The NorFormulation has two operands,

each of which is an Atomic for one of the other two associative fact types.

Formal specification in OCL

Given an XOR constraining n associations, the XORStructuralRuleCh(base:String,

roles:Sequence(TupleType{verb,end})) operation constrains n structural rule

characterization objects. The meaning of each structural rule is equivalent to “each base

that verb1 end1 neither verb2 end2 nor verb3 end3…nor verbn endn,” where each tuple of verbj

and endj is one of the tuples included in the roles sequence. Note that there are n rules,

each of which is restricted by an atomic formulation based on one different associative fact

type, as shown in Figure 6.19. The meaning of the structural rules, taken together, is the

XOR constraint.

context Element::xorStructuralRuleCh(base:String,

 roles:Sequence(Tuple{verb,end})):

 Set(MeaningCh)

 post: roles -> forAll(ro |

 st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and

 fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm)

 and fo.structuralRuleCh = st and

 -- the structural rule is structured by a closed

 -- universal quantification and introduces a variable

 -- that ranges over the base concept

 fo.type = QuantificationType::ClosedUniversal and

 v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and

 v2.quantification = fo and v2.rangedOverConcept = base

 and

6 Translation mapping expressions between UML and SBVR meanings

169

 -- the variable is restricted by an atomic formulation

 at.oclIsNew() and at.oclIsTypeOf(Atomic) and

 v2.restricting = at and at.factTypeName = ro.verb and

 at.type = FactTypeType::AssociativeFactType and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 bi1.atomic = at and bi1.variable = v2 and

 bi1.rangesOverConcept = base and

 bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and

 bi2.atomic = at and bi2.variable = v2 and

 bi2.rangesOverConcept = ro.end and

 -- the quantification is structured as a tree of

 -- norFormulations

 self^binaryOfAtomicOfAssociativeFactTypes(

 BinaryOperationType::NorFormulation, st,v1,

 roles->excluding(ro), base))

The binaryOfAtomicOfAssociativeFactTypes() operation constrains the structure of a

formulation that corresponds to the tree of binary operations where the leaves are atomic

formulations of associative fact types, as shown in Figure 6.19.

context Element::binaryOfAtomicOfAssociativeFactTypes(

 typ:BinaryOperationType, mch:MeaningCh, v1:Variable2,

 roles:Sequence(TupleType(verb:String,end:String)),

 base:String):Set(MeaningCh)

 post BinaryChCreated:

 -- for each tuple there is an atomic formulation based

 -- on an associative fact type where the base is a role,

 -- and the verb and the other role are one of the roles

 roles -> forAll(rol:String |

 at1.oclIsNew() and at1.oclIsTypeOf(Atomic) and

 at1.factTypeName = rol.verb and

 at1.type = FactTypeType::AssociativeFacType and

 bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and

 bi1.order = 1 and bi1.atomic = at1 and

 bi1.variable = v1 and

 bi1.rangesOverConcept = base and

 bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and

 bi2.order = 2 and bi2.atomic = at1 and

 bi2.variable = v1 and

 bi2.rangesOverConcept = rol.end and

 -- if the role is not the last one then the atomic

 -- formulation is a left leaf of a binary formulation

 if rol <> roles->last then

 bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and

 bi.type = typ and bi.first = at1 and

 if rol = roles->first then mch.formulation = bi

 else

 BinaryOperation.allInstances() ->

 exists(bio : BinaryOperation|

 roles->at(roles -> indexOf(rol))-1) =

 bio.first.oclAsType(Atomic).binding ->

 last.name and bio.second = bi)

 endif

An object-oriented approach to the translation between MOF metaschemas

170

 -- if the rol is the last one, the atomic

 -- formulation is a right leaf of a binary formulation

 else

 BinaryOperation.allInstances() -> exists(bio|

 roles->at(roles->indexOf(rol)-1) =

 bio.first.oclAsType(Atomic).binding -> last.name

 and bio.second = at1)

 endif

The formal specification of the sbvrEquivalents() operation of Constraint is as follows:

context Constraint::sbvrEquivalents():Set(MeaningCh)

 post MeaningsChCreated:

 let IsUniqueConstraint = self.constrainedElement -> size()=1

 and self.specification.oclAsType(Expression).symbol =

 self.context_.name.concat(' .allInstances() ->

 isUnique(').concat(self.constrainedElement->first().

 oclAsType(Property).name).concat(')') in

 let XORConstraint = self.valueSpecification.

 oclAsType(Expression).symbol = 'XOR' in

 let XORAssociations =

 self.constrainedElement.oclAsType(Association) in

 let base = self.context.name in

 let roles = XORAssociations -> collect(ass |

 Tuple{ass.name,ass.memberEnd-> any(me| me.type.name <>

 base).type.name)

 in

 IsUniqueConstraint implies

 (re.oclIsNew() and re.oclIsTypeOf(ReferenceSchemeCh) and

 re.referencedConcept -> includes(self.context.name) and

 self.constrainedElement -> forAll(cel|

 us.oclIsNew() and us.oclIsTypeOf(UsedRoleOfFactType)

 and us.referenceSchemeCh = re and

 us.rangesOverConcept = cel.oclAsType(Property).name)

 and

 XORConstraint implies

 self^xorStructuralRuleCh(base, roles)

6.2.2 SBVR meanings side

The evaluation of the umlEquivalents() operation on an SBVR schema unit whose mapping

kind is HasEquivalents gives the set of UML characterization objects that are equivalent to

the SBVR schema unit. The signature and precondition of the operation in OCL is as

follows:

context Meaning::umlEquivalents():Set(ElementCh)

 pre: umlMappingKind() = MappingKind::HasEquivalents

 post definingTheResult:

 result = ElementCh.allInstances() –

 ElementCh.allInstances@pre()

The effect of the operation is not redefined in the subtypes of Meaning because all of the

instances of the subtypes that represent schema units have the mapping kind isIncluded.

6 Translation mapping expressions between UML and SBVR meanings

171

6.3 includedInUml() operations

This section describes the includedInUml() and includedInSBVR operations in the context

of Meaning and Element, respectively.

6.3.1 UML side

The evaluation of the includedInSbvr() operation, in the context of Element, on a UML

schema unit whose mapping kind is IsIncluded gives an SBVR characterization object. The

signature and precondition of the operation in OCL are as follows:

context Element::includedInSbvr():MeaningCh

 pre: sbvrMappingKind() = MappingKind::IsIncluded

 post definingTheResult:

 result = (MeaningCh.allInstances() –

 MeaningCh.allInstances@pre()) -> any(True)

The effect of the operation is defined in the subtypes of Element such that some or all of

their instances represent schema units whose mapping kind is IsIncluded.

The effect of the operation is not redefined in the subtypes of Element because all of the

instances of the subtypes that represent schema units have the mapping kind

hasEquivalents.

6.3.2 SBVR side

The evaluation of the includedInUml() operation, in the context of the Meaning operation

on an SBVR schema unit whose mapping kind is IsIncluded, gives a UML characterization

object. The signature and precondition of the operation in OCL are as follows:

context Meaning::includedInUml():ElementCh

 pre: umlMappingKind() = MappingKind::IsIncluded

 post definingTheResult:

 result = (ElementCh.allInstances() –

 ElementCh.allInstances@pre()) -> any(True)

The effect of the operation is defined in the subtypes of Meaning such that some or all of

their instances represent schema units whose mapping kind is IsIncluded.

In order to facilitate working with the cardinalities of the different subtypes of

Quantification, two additional operators are defined in Quantification: lowerValue() and

upperValue(). They return the minimum cardinality and maximum cardinality of each type

of quantification, respectively. Their specifications are defined as abstract and they are

redefined in the subtypes of Quantification as follows:

context UniversalQuantification::lowerValue():Integer

 body: 0

context UniversalQuantification::upperValue():UnlimitedNatural

 body: UnlimitedNatural

context AtLeastNQuantification::lowerValue():Integer

 body: self.minimumCardinality.value

context AtLeastNQuantification::upperValue():UnlimitedNatural

An object-oriented approach to the translation between MOF metaschemas

172

 body: UnlimitedNatural

context NumericRangeQuantification::lowerValue():Integer

 body: self.minimumCardinality.value

context NumericRangeQuantification::upperValue():Integer

 body: self.maximumQuantification.value

context AtMostNQuantification::lowerValue():Integer

 body: 0

context AtMostNQuantification::upperValue():Integer

 body: self.maximumCardinality.value

context ExactlyNQuantification::lowerValue():Integer

 body: self.cardinality.value

context ExactlyNQuantification::upperValue():Integer

 body: self.cardinality.value

Moreover, given a structural rule whose meaning is a multiplicity constraint, the operation

quantificationType() returns the subtype of Quantification that the universal quantification

of the structural rule scopes over.

context StructuralRule::quantificationType():Quantification

 body: self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification)

6.3.2.1 includedInUml() of value type

General description

A ValueType maps to a characterization object of a DataType whose attribute name has the

same value as the attribute name of the ValueType. It maps to an Enumeration if the value

type is defined as the union of individual concepts.

Formal specification in OCL

context ValueType::includedInUml():MeaningCh

 post DataTypeOrEnumerationChCreated:

 dt.oclIsNew() and

 if not ClosedProjection.allInstances() -> exists(cp|

 cp.nounConcept = self and cp.isEnumeration())

 then

 dt.oclIsTypeOf(DataTypeCh) and dt.name = self.name and

 if self.name = 'String' or self.name = 'Integer' then

 dt.isPrimitiveType = true

 else dt.isPrimitiveType = false

 endif

 else

 dt.oclIsTypeOf(EnumerationCh) and dt.name = self.name and

 ClosedProjection.allInstances() -> any(cp |

 cp.nounConcept = self and cp.isEnumeration()).

 logicalFormulation.sequenceOfLiterals() -> forAll(lit|

 li.oclIsNew() and li.oclIsTypeOf(Literal) and

 li.enumerationCh = dt and li.name = lit)

 endif

6 Translation mapping expressions between UML and SBVR meanings

173

Given a logical formulation that structures a closed projection as a tree of disjunctions of

instantiation formulations, as shown in Figure 6.9, the sequenceOfLiterals() operation

returns the sequence of individual concepts bound in the instantiation formulations of the

leaves of the tree (i.e., the names of the literals).

context LogicalFormulation::sequenceOfLiterals:Sequence(String)

 body: self.oclAsType(Disjunction).logicalOperand1.

 oclAsType(InstantiationFormulation).bindableTarget.name->

 union(

 if self.oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(InstantiationFormulation)

 then

 self.oclAsType(Disjunction).logicalOperand2.

 oclAsType(InstantiationFormulation).bindableTarget.name

 else

 self.oclAsType(Disjunction).logicalOperand2.

 sequenceOfLiterals()

 endif

6.3.2.2 includedInUml() of object type

General description

An ObjectType maps to a characterization object of a Class or of an AssociativeClass with

the attribute name that has the same value as the attribute name of the ObjectType. It maps

to an AssociativeClass if the object type is defined as the objectification of an associative

fact type. In this case, the elements of the AssociativeClassCh created are the union of the

elements in the Class and the elements created in the includedInUml() of an associative fact

type (see Section 6.3.2.5, below).

Formal specification in OCL

context ObjectType::includedInUml():MeaningCh

 post ClassOrAssociationClassChCreated:

 let str1:StructuralRule = StructuralRule.allInstances() ->

 any(st| st.isMultiplicity() and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 self.closedProjection.logicalFormulation.

 oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).factType.factTypeRole ->

 last().nounConcept) in

 let str2:StructuralRule = StructuralRule.allInstances() ->

 any(st| st.isMultiplicity() and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 self.closedProjection.logicalFormulation.

 oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).factType.factTypeRole ->

 first().nounConcept) in

An object-oriented approach to the translation between MOF metaschemas

174

 let asft:AssociativeFactType = self.closedProjection.

 logicalFormulation.oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).factType.

 oclAsType(AssociativeFactType) in

 if ClosedProjection.allInstances() -> exists(cp|

 cp.nounConcept = self and cp.isObjectification()

 then

 as.oclIsNew() and as.oclIsTypeOf(AssociationClassCh) and

 as.name = self.name and asft.factTypeRole -> forAll(ro|

 me.oclIsNew() and

 me.oclIsTypeOf(AssociationClassMemberEnd) and

 me.associationClassCh = as and me.name = ro.name and

 me.typeName = ro.nounConcept.name and

 me.isDerived = false and me.isDerivedUnion = false and

 me.aggregation_ = AggregationKind::none and

 (if ro.order = 1

 then str2 -> isEmpty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str2.quantificationType().lowerValue() and

 me.upperValue =

 str2.quantificationType().upperValue())

 else

 str1 -> is Empty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str1.quantificationType().lowerValue() and

 me.upperValue =

 str1.quantificationType().upperValue())

 endif

 else

 cl.oclIsNew() and cl.oclIsTypeOf(ClassCh) and

 cl.name = self.name and

 if ClosedProjection.allInstances() -> exists(cp|

 cp.nounConcept = self and cp.isAbstract

 then cl.isAbstract

 else cl.isAbstract = false

 endif

 endif

6.3.2.3 includedInUml() of individual concept

General description

An IndividualConcept that is a schema unit maps to a characterization object of an

Enumeration. The attribute name of the Enumeration has the same value as the attribute

name of the ObjectType that uses this IndividualConcept in its definition.

Formal specification in OCL

context IndividualConcept::includedInUml():EnumerationCh

6 Translation mapping expressions between UML and SBVR meanings

175

 post EnumerationChCreated:

 let cp:ClosedProjection =

 self.variable.isInProjection.oclAsType(ClosedProjection)

 in

 en.oclIsNew() and en.oclIsTypeOf(EnumerationCh) and

 en.name = cp.nounConcept.name and

 cp.logicalFormulation.sequenceOfLiterals()-> forAll (lit |

 li.oclIsNew() and li.oclIsTypeOf(Literal) and

 li.enumerationCh = en and li.name = lit)

6.3.2.4 includedInUml() of characteristic

General description

A Characteristic maps to a characterization object of a Property. The PropertyCh has the

concatenation of 'being ' and name attribute as the name of the Characteristic and the

attribute type has the same value 'Boolean'. The ownerClassName attribute has the same

value as the name of the concept that the role ranges over. The lowerValue and upperValue

attributes have 1 as values.

Formal specification in OCL

context Characteristic::includedInUml():PropertyCh

 post PropertyChCreated:

 pr.oclIsNew() and pr.oclIsTypeOf(PropertyCh) and

 'being '.concat(pr.name) = self.name and

 pr.ownerClassName = self.factTypeRole ->

 first().nounConcept.name and

 pr.type = 'Boolean' and

 pr.isDerived = false and pr.isDerivedUnion = false and

 pr.aggregation_ = AggregationKind::none and

 pr.lowerValue = 1 and pr.upperValue = 1

6.3.2.5 includedInUml() of is-property-of fact type

General description

An IsPropertyOfFactType maps to a characterization object of a Property. The name

attribute of the PropertyCh is the name of the second role of the IsPropertyOfFactType,

while its type attribute has the same value as the name of the concept that the second role

ranges over. The ownerClassName attribute has the same value as the name of the concept

that the first role ranges over. The lowerValue and upperValue attributes are determined

by the type of quantification formulation that defines the multiplicity constraint.

Formal specification in OCL

context IsPropertyOfFactType::includedInUml():PropertyCh

 post PropertyChCreated:

 let str:StructuralRule = StructuralRule.allInstances() ->

 any(st| st.isMultiplicity() and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept.name =

 self.factTypeRole-> first().nounConcept.name and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

An object-oriented approach to the translation between MOF metaschemas

176

 introducedVariable.rangedOverConcept.name =

 self.factTypeRole -> last().name)

 in

 pr.oclIsNew() and pr.oclIsTypeOf(PropertyCh) and

 pr.name = self.factTypeRole -> last().nounConcept.name and

 pr.ownerClassName = self.factTypeRole ->

 first().nounConcept.name and

 pr.type = self.factTypeRole-> last().name and

 pr.isDerived = false and pr.isDerivedUnion = false and

 pr.aggregation_ = AggregationKind::none and

 str -> notEmpty() implies

 (pr.lowerValue = str.quantificationType().lowerValue() and

 pr.upperValue = str.quantificationType().upperValue())

6.3.2.6 includedInUml() of associative or partitive fact type

General description

In general, an AssociativeFactType and a PartitiveFactType map to a characterization object

of an Association. However, if there is an object type defined as the objectification of the

AssociativeFactType or the PartitiveFactType, the FactType maps to a characterization

object of an AssociationClass.

In the first case, the name attribute of the AssociationCh is the name of the

AssociativeFactType. The AssociationCh has two instances of AssociationMemberEnd. The

first one, if the first fact type role has a name, has that name as its name attribute. The

typeName attribute has the same value as the name of the object type that the role scopes

over. The aggregation attribute has the value AggregationKind::composite if the name of

the AssociativeFactType is “is included in.” The aggregation attribute has the value

AggregationKind::shared if the name of the AssociativeFactType is “is part of.” Otherwise,

the aggregation attribute has the value AggregationKind::none. The values of the

lowerValue and upperValue attributes are determined by the existence of a structural rule

that restricts the multiplicity of the second role with respect to this first role. Similarly, the

values of the second AssociationMemberEnd are defined from the values of the second fact

type role.

In the second case, the name attribute of the AssociationClassCh is the name of the

ObjectType of the objectification. The AssociationClassCh has two instances of

AssociationClassMemberEnd. Both have the same values as those defined for the

AssociationMemberEnd of the AssociationCh.

Formal specification in OCL

context AssociativeFactType::includedInUml():MeaningCh

 post AssociationChorAssociationClassCreated:

 -- multiplicity structural rule 1

 let str1:StructuralRule = StructuralRule.allInstances->

 any(st| st.isMultiplicity and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 self.factTypeRole -> last().nounConcept) in

6 Translation mapping expressions between UML and SBVR meanings

177

 -- multiplicity structural rule 2

 let str2:StructuralRule = StructuralRule.allInstances->

 any(st| st.isMultiplicity and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 self.factTypeRole -> first().nounConcept) in

 if not ClosedProjection.allInstances() -> exists(cp|

 cp.isObjectification and

 cp.logicalFormulation.oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).factType.

 oclAsType(AssociativeFactType) = self)

 then

 -- the associative fact type maps to an association

 as.oclIsNew() and as.oclIsTypeOf(AssociationCh) and

 (if self.name <> 'has' or self.name <> 'is part of' or

 self.name <> 'includes'

 then

 as.name = self.name

 else self.name ->isEmpty()

 endif) and

 as.isAbstract = false and self.factTypeRole

 -> forAll(ro| me.oclIsNew() and

 me.oclIsTypeOf(AssociationMemberEnd)

 and me.associationCh = as and me.name = ro.name and

 me.typeName = ro.nounConcept.name and

 me.isDerived = false and me.isDerivedUnion = false and

 (if self.name = 'is part of' and

 self.factTypeRole->last = ro

 then

 me.aggregation = AggregationKind::shared

 else me.aggregation = AggregationKind::none

 endif) and

 (if self.factTypeRole->first = ro

 then

 str2 -> isEmpty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str2.quantificationType().lowerValue() and

 me.upperValue =

 str2.quantificationType().upperValue())

 else

 str1 ->isEmpty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str1.quantificationType().lowerValue() and

 me.upperValue =

 str1.quantificationType().upperValue())

 endif)

An object-oriented approach to the translation between MOF metaschemas

178

 else

 -- the associative fact type maps to an association class

 asc.oclIsNew() and asc.oclIsTypeOf(AssociationClassCh)

 and asc.name = Objectif.nounConcept.name and

 self.factTypeRole forAll(ro|

 me.oclIsNew() and

 me.oclIsTypeOf(AssociationClassMemberEnd) and

 me.associationClassCh = asc and me.name = ro.name and

 me.typeName = ro.nounConcept.name and

 me.isDerived = false and me.isDerivedUnion = false and

 (if self.name = 'is part of' and

 self.factTypeRole->last = ro

 then

 me.aggregation = AggregationKind::shared

 else me.aggregation = AggregationKind::none

 endif) and

 (if self.factTypeRole.first = ro

 then

 str2 -> isEmpty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str2.quantificationType().lowerValue() and

 me.upperValue =

 str2.quantificationType().upperValue())

 else

 str1 ->isEmpty() implies

 (me.lowerValue = 0 and

 me.upperValue.oclIsTypeOf(UnlimitedNatural)) and

 str2 -> notEmpty() implies

 (me.lowerValue =

 str1.quantificationType().lowerValue() and

 me.upperValue =

 str1.quantificationType().upperValue())

 endif)

 endif

6.3.2.7 includedInUml() of categorization fact type

General description

A CategorizationFactType maps to a characterization object of Generalization. The

specificClassName attribute of the GeneralizationCh has the same value as the name of the

concept that the first role of the CategorizationFactType ranges over. The

generalClassName attribute of the GeneralizationCh has the same value as the name of the

concept that the second role of the CategorizationFactType ranges over.

Formal specification in OCL

 context CategorizationFactType::includedInUml():GeneralizationCh

 post GeneralizationChCreated:

 ge.oclIsNew() and ge.oclIsTypeOf(Generalization) and

 ge.generalClassName = self.factTypeRole ->

 last.nounConcept.name and

 ge.specificClassName = self.factTypeRole ->

6 Translation mapping expressions between UML and SBVR meanings

179

 ->first().nounConcept.name)

6.3.2.8 includedInUml() of categorization schema

General description

A CategorizationSchema and a Segmentation map to a characterization object of

GeneralizationSet. The attribute name of the GeneralizationSetCh has the same value as the

name attribute of the CategorizationSchema. For each category of the

CategorizationSchema, the GeneralizationSetCh has a Participant whose generalClassName

attribute has the value of the name attribute of the general concept of the

CategorizationSchema and whose specificClassName attribute has the same value as the

name attribute of the category. The isCovering and isDisjoint attributes have the value true

if there are structural rules whose meanings are the covering and disjointness constraints,

as described in Section 6.1.2.

Formal specification in OCL

context CategorizationSchema::includedInUml():GeneralizationSetCh

 post GeneralizationSetChCreated:

 let strCoveringAndDisjoint:StructuralRule =

 StructuralRule.allInstances() -> any(st|

 st.isDisjointAndCovering and st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept.name =

 self.generalConcept.name and

 self.category.name -> includesAll(

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.sequenceOfCategories())

 in

 let strCovering:Set(StructuralRule) =

 StructuralRule.allInstances() -> select(st|

 st.isCovering and st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept.name =

 self.generalConcept.name and

 self.category.name -> includesAll(

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.sequenceOfCategories())

 in

 let strDisjoint:StructuralRule =

 StructuralRule.allInstances()-> select(st|

 st.isDisjoint and st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept.name =

 self.generalConcept.name and

 self.category.name -> includesAll(

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.sequenceOfCategories())

 in

 ge.oclIsNew() and ge.oclIsTypeOf(GeneralizationSetCh) and

 ge.name = self.name and self.category->forAll(ca|

An object-oriented approach to the translation between MOF metaschemas

180

 pa.oclIsNew() and pa.oclIsTypeOf(Participant) and

 pa.generalClassName = self.generalConcept.name and

 pa.specificClassName = ca.name and

 pa.generalizationSetCh = ge) and

 self.oclIsTypeOf(Segmentation) implies

 (ge.isCovering = true and ge.isDisjoint = true) and

 (strCoveringAndDisjoint->notEmpty() implies

 (ge.isCovering = true and ge.isDisjoint = true) and

 (strCovering-> size() = self.category ->size() – 1) implies

 (ge.isCovering = true) and

 (strDisjoint->size() = self.category ->size() – 1) implies

 (ge.isDisjoint = true)

Given a logical formulation that structures a rule that means the covering and/or

disjointness of a categorization scheme, the sequenceOfCategories() operation returns the

sequence of names of the categories of the categorization scheme included in the rule.

context LogicalFormulation::sequenceOfCategories():

 Sequence(String)

 body: if self.oclIsTypeOf(ExclusiveDisjunction)

 then

 self.oclAsType(ExclusiveDisjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.factTypeRole ->

 first().nounConcept.name -> union(

 self.oclAsType(ExclusiveDisjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.factTypeRole ->

 first().nounConcept.name)

 else

 if self.oclIsTypeOf(Disjunction) then

 self.oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.factTypeRole

 ->first().nounConcept.name -> union(

 if self.oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(AtomicFormulation)

 then

 self.oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.factTypeRole

 -> first().nounConcept.name

 else

 self.oclAsType(Disjunction).logicalOperand2.

 sequenceOfCategories()

 endif

 else

 self.oclAsType(NorFormulation).logicalOperand1.

 oclAsType(AtomicFormulation).factType.factTypeRole

 -> first().nounConcept.name -> union(

 if self.oclAsType(NorFormulation).logicalOperand2.

 oclIsTypeOf(AtomicFormulation)

 then

 self.oclAsType(NorFormulation).logicalOperand2.

 oclAsType(AtomicFormulation).factType.factTypeRole

 -> first().nounConcept.name

6 Translation mapping expressions between UML and SBVR meanings

181

 else

 self.oclAsType(NorFormulation).logicalOperand2.

 sequenceOfCategories()

 endif

 endif

 endif

6.3.2.9 includedInUml() of reference scheme

General description

A ReferenceScheme that is a schema unit maps to a characterization object of a constraint,

ConstraintCh, as follows: (i) the value of the namespace attribute of the ConstraintCh is the

same as the name attribute of the referenced concept of the reference scheme; (ii) the

symbolExpression attribute is the concatenation of the referenced concept with

“allInstances->isUnique(” and with the name of the simply used roles of the reference

scheme; and (iii) for each simply used role of the reference scheme, there is an instance of

ConstrainedElement whose name attribute has the same name as the role and whose type

is “property.”

Formal specification in OCL

context ReferenceScheme::includedInUml():ConstraintCh

 post ConstraintCh:

 ch.oclIsNew() and ch.oclIsTypeOf(ConstraintCh) and

 ch.namespace = self.referencedConcept.name -> any(true) and

 ch.bodyOpaqueExpression = self.referencedConcept.name ->

 any(true).concat('.allInstances-> isUnique('.concat(

 self.simplyUsedRole -> any(true).name.concat(')'))) and

 self.simplyUsedRole -> forAll(ro |

 co.oclIsNew() and co.oclIsTypeOf(ConstrainedElement) and

 co.constraintCh = ch and co.name = ro.name and

 co.type = TypeCons::property)

6.3.2.10 includedInUml() of structural rule

General description

Depending on how its closed universal quantification is structured, a StructuralRule that is

a schema unit may map to different characterization objects of ElementCh:

 A structural rule whose meaning corresponds to a multiplicity constraint is mapped

to a characterization object (AttributeCh, AssociationCh or AssociationClassCh)

resulting from the mapping of the fact type that the atomic formulation is based on.

 A structural rule whose meaning corresponds to a covering and/or disjointness

constraint is mapped to a characterization object of a generalization set,

GeneralizationSetCh.

 A structural rule whose meaning corresponds to an XOR constraint is mapped to a

characterization object of a constraint, ConstraintCh.

An object-oriented approach to the translation between MOF metaschemas

182

Formal specification in OCL

context StructuralRule::includedInUml():ElementCh

 post ElementChCreated:

 self.isMultiplicity() implies

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).

 factType^includedInUml() and

 self.isDisjointAndCovering() implies

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(ExclusiveDisjunction).

 logicalOperand1.oclAsType(AtomicFormulation).

 factType.oclAsType(CategorizationFactType).factTypeRole->

 first().categorizationScheme -> any(true)^includedInUml()

 and

 self.isCovering() implies

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclAsType(CategorizationFactType).factTypeRole ->

 first().categorizationScheme -> any(true)^includedInUml()

 and

 self.isDisjoint() implies

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(NorFormulation).

 logicalOperand1.oclAsType(AtomicFormulation).factType.

 oclAsType(CategorizationFactType).factTypeRole ->

 first().categorizationScheme -> any(true)^includedInUml()

 and

 self.isXOR() implies

 (co.oclIsNew() and co.oclIsTypeOf(ConstraintCh) and

 vs.symbolExpression = 'XOR' and

 co.namespace = self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclAsType(AssociativeFactType).factTypeRole ->

 first().nounConcept.name and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.restrictedFactTypes() ->

 forAll(rc| ce.oclIsNew() and

 ce.oclIsTypeOf(ConstrainedElement) and

 ce.constraintCh = co and ce.type = ConsType::Association

 and ce.name = rc.name and

 ce.membersName = rc.factTypeRole->collect(name) and

 ce.membersType = rc.factTypeRole ->

 collect(nounConcept.name))

6 Translation mapping expressions between UML and SBVR meanings

183

Given a logical formulation that structures a rule that means, partially, an XOR constraint,

the restrictedFactTypes() operation returns the sequence of fact types included in the rule.

context LogicalFormulation::restrictedFactTypes():

 Sequence(FactType)

 body: self.oclAsType(NorFormulation).logicalOperand1.

 oclAsType(AtomicFormulation).factType -> union(

 if self.oclAsType(NorFormulation).logicalOperand2.

 oclIsTypeOf(AtomicFormulation)

 then

 self.oclAsType(NorFormulation).logicalOperand2.

 oclAsType(AtomicFormulation).factType

 else

 self.oclAsType(NorFormulation).logicalOperand2.

 restrictedFactTypes()

 endif

6.4 Translation mapping constraints

As described in Chapter 3, let 𝑀 = (𝑀𝑆1 , 𝑀𝑆1 , Σ) be a mapping. 𝑀 is a translation mapping

when, for any 𝑆1 and 𝑆2 such that 𝑆1 , 𝑆2 is an instance of 𝑀, then 𝑆1 and 𝑆2 are

translations of each other. Therefore, in a translation mapping, the set of constraints Σ is

satisfied when the two schemas are translations of each other. As stated in Section 3.3.5,

the translation mapping constraints, Σ, consist of exactly two constraints, called complete

and consistent mapping to 𝑆2 and complete and consistent mapping to 𝑆1. The intuitive

meaning of the constraints, as described in Section 3.3.5, is that 𝑆1 , 𝑆2 is an instance of

the translation mapping 𝑀 if each translatable schema unit of 𝑆1 is consistently mapped to

𝑆2 and each translatable schema unit of 𝑆2 is consistently mapped to 𝑆1 .

Therefore, let 𝑀 = (𝑀𝑈𝑚𝑙, 𝑀𝑆𝑏𝑣𝑟, Σ) be a translation mapping where 𝑀𝑈𝑚𝑙 and 𝑀𝑆𝑏𝑣𝑟

are instances of the UML metaschema and the SBVR metaschema, respectively. The

translation mapping constraints Σ consist of exactly two constraints, called complete and

consistent mapping to Sbvr and complete and consistent mapping to Uml.

context Element inv completeAndConsistentMappingToSbvr:

 isSchemaUnit() and

 (sbvrMappingKind() = MappingKind::HasEquivalents or

 sbvrMappingKind() = MappingKind::IsIncluded) implies

 mappedToSbvr()

context Meaning inv completeAndConsistentMappingToUml:

 isSchemaUnit() and

 (umlMappingKind() = MappingKind::HasEquivalents or

 umlMappingKind() = MappingKind::IsIncluded) implies

 mappedToUml()

The consistency condition is checked by two operations: mappedToSBVR() and

mappedToUml(), which return a True value if the condition is satisfied and a False value

otherwise. The following is the formal specification of the two operations, in OCL:

An object-oriented approach to the translation between MOF metaschemas

184

context Element::mappedToSbvr():Boolean

 body: if sbvrMappingKind() = MappingKind::HasEquivalents

 then

 self.sbvrEquivalents() -> forAll(th:MeaningCh|

 th.schemaUnit()->notEmpty() and

 th.schemaUnit().umlMappingKind() =

 MappingKind::IsIncluded and

 th.schemaUnit().includedInUml().schemaUnit() = self)

 else

 if sbvrMappingKind() = MappingKind::IsIncluded

 then

 self.includedInSbvr().schemaUnit()->notEmpty() and

 self.includedInSbvr().schemaUnit().umlMappingKind()

 = MappingKind::HasEquivalents and

 self.includedInSbvr().schemaUnit().umlEquivalents().

 schemaUnit()->includes(self)

 else

 False

 endif

 endif

context Meaning::mappedToUml():Boolean

 body: if umlMappingKind() = MappingKind::HasEquivalents

 then

 self.umlEquivalents() -> forAll(el:ElementCh|

 el.schemaUnit()->notEmpty() and

 el.schemaUnit().sbvrMappingKind() =

 MappingKind::IsIncluded

 and el.schemaUnit().includedInSbvr().schemaUnit() = self)

 else

 if umlMappingKind() = MappingKind::IsIncluded

 then

 self.includedInUml().schemaUnit()->notEmpty() and

 self.includedInUml().schemaUnit().sbvrMappingKind()

 = MappingKind::HasEquivalents and

 self.includedInUml().schemaUnit().sbvrEquivalents().

 schemaUnit()->includes(self)

 else

 False

 endif

 endif

6.5 Translating UML and SBVR meanings schemas

Chapter 3 described how to use the operations defined in the previous sections in the

translation of schemas. In general, let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping and 𝑆1 =

{𝑢1,1 , … , 𝑢1,𝑛} an instance of 𝑀𝑆1. The translation of 𝑆1 into 𝑀𝑆2 is a schema 𝑆2 =

{𝑢2,1 , … , 𝑢2,𝑚 } such that 𝑆1 , 𝑆2 is an instance of 𝑀. The translation of 𝑆2 into 𝑀𝑆1 is

defined similarly. The approach to the translation of a schema 𝑆1 = {𝑢1,1, … , 𝑢1,𝑛} consists

in translating each of its schema units 𝑢𝑖 ,𝑗 following the order given by the operation

predecessors, starting with the units that have no predecessors. The translation is done by

applying an operation called translateTo𝑆𝑗 () to the schema units. An instance 𝑢𝑖,𝑘 of

𝑆𝑖Element can be translated into 𝑆𝑗 if it represents a schema unit whose mapping kind is

6 Translation mapping expressions between UML and SBVR meanings

185

HasEquivalents or IsIncluded. The effect of the operation translateTo𝑆𝑗 () must be that 𝑢𝑖,𝑘

is mapped to 𝑆𝑗 .

The translation of a UML schema to an SBVR meanings schema is done by applying the

operation called translateToSbvr() to the UML schema units. The specification of the pre-

and postconditions of the operation, in OCL, is as follows:

context Element:translateToSbvr()

 pre: isSchemaUnit() and

 (sbvrMappingKind() = MappingKind::HasEquivalents or

 sbvrMappingKind() = MappingKind::IsIncluded)

 post: mappedToSbvr()

Similarly, the translation of an SBVR meanings schema to a UML schema is done by

applying the operation called translateToUml() to the SBVR schema units. The

specification of the pre- and postconditions of the operation, in OCL, is as follows:

context Meaning:translateToUml()

 pre: isSchemaUnit() and

 (sbvrMappingKind() = MappingKind::HasEquivalents or

 sbvrMappingKind() = MappingKind::IsIncluded)

 post: mappedToUml()

There is no need to refine the specification of the two operations in the subtypes of

Element or Thing. The specifications mappedToSbvr and mappedToUml are implemented in

a fairly straightforward manner, as explained in Section 6.4, using the methods of the

operations createUnit (Section 4.4.3 in UML and Section 5.4.3 in SBVR), sbvrEquivalents()

(Section 6.2.1), umlEquivalents (Section 6.2.2), includedInSbvr (Section 6.3.1) and

includedInUml() (Section 6.3.2).

The implementation of the methods of translateToSbvr and translateToUml are described

in the appendices using the USE procedural language (Gogolla, Büttner & Richters 2007).

Specifically, Appendix G describes the methods of the sbvrEquivalents() operations,

Appendix H describes the methods of the umlEquivalents operations, Appendix I describes

the methods of the includedInSbvr operations and Appendix J describes the methods of the

includedInUml() operations.

The implementation is applied to translate the instances of the DBLP example from UML

to SBVR and vice versa. In both cases, the time required to carry out the translation and

check its completeness and consistency is less than four minutes, which seems quite

acceptable when one is using research-oriented tools in a research environment.

7 SBVR Structured English representations

The Semantics of Business Vocabulary and Business Rules (SBVR), v.1.0 document (Object

Management Group 2008a), as described in Chapter 5, defines the metamodel for

documenting the semantics of business vocabulary, business facts and business rules.

SBVR is targeted to capture business concepts and business rules in a language close

enough to ordinary language to facilitate business experts to read them. The SBVR

specification proposes different notations to represent the instances of SBVR Meanings.

Moreover, the specification in its metamodel includes different types of Representation to

obtain, more easily, vocabularies and rules in any of these notations.

In particular, the specification defines an English vocabulary, called SBVR Structured

English, as one of the possibly many notations that may be obtained from the SBVR

representations. SBVR Structured English uses a small number of English structures and

common words to elaborate vocabularies and rules. The SBVR specification also provides

some predefined language patterns to map these SBVR Structured English notations to

SBVR instances. Unfortunately, the SBVR specification does not provide a straightforward

nor complete mapping from SBVR instances to such notations.

This chapter overviews the SBVR Structured English notation and describes the subset of

the SBVR metamodel concerning representations of meanings. Note that some additional

elements have been added to the SBVR Representations metaschema to have a

straightforward SBVR Structured English notation.

The instances of the SBVR Structured English may derive from SBVR Meanings and this

chapter provides the operations to derive the instances of SBVR Structured English from

SBVR Meanings. These operations and the ones defined in the previous chapters may be

used to automatically represent an SBVR schema in SBVR Structured English Notation. The

representation is done by applying an operation called vocabularyEntry(), which is also

described.

This chapter finishes by showing the result of applying said operation to the DBLP

example introduced in Chapter 4 as an SBVR Structured English vocabulary.

As in the previous chapters, the SBVR Structured English metaschema, an example of

instantiation and the specification and implementation of the operations have been

specified in the USE tool. The detailed specifications are provided in the Appendices.

An object-oriented approach to the translation between MOF metaschemas

188

The rest of this chapter is structured as follows:

 Section 7.1 overviews SBVR Structured English as one of the possible notations of

the SBVR representations.

 Section 7.2 shows the figures that form the abstract syntax of the subset of SBVR

used to represent meanings in SBVR Structured English and briefly describes the

concepts included in the abstract syntax.

 Section 7.3 defines the newRepresentation() operation on the schema units of SBVR

to generate the instances of subtypes of SBVR Representation.

 Section 7.4 defines the vocabularyEntry() query operation that gives the

representation of a schema unit in in SBVR Structured English notation.

 Section 7.5 shows the DBLP example as a SBVR Structured English Vocabulary

resulting from the application of the operations described in the previous sections.

7.1 Overview of SBVR Structured English

SBVR Structured English is a proposed notation to express meanings. This section, reviews

the main characteristics of the notation, to describe a vocabulary, which includes

necessities of SBVR.

7.1.1 Expressions in SBVR Structured English

Any expression, in SBVR may be written in one of the four font styles:

term The ‘term’ font is used for a designation of a type, one that
is part of a vocabulary being used or defined (e.g., person,

paper).

Name The ‘name’ font is used for a designation of an individual
concept (instances) — a name. Names tend to be proper
nouns (e.g., Antoni).

verb The ‘verb’ font is used for designations of fact types —
usually a verb, preposition or combination thereof. Such a
designation is defined in the context of a form of
expression.

keyword The ‘keyword’ font is used for linguistic symbols used to
construct statements – the words that can be combined
with other designations to form statements and
definitions (e.g., "each" and "it is obligatory that")

The SBVR Structured English uses designations and forms of expressions exactly as they

are defined in a vocabulary. Plural forms are not used to avoid linguistic difficulties. For

example, a formal statement would say "each concept" rather than "all concepts." Both the

active form and the passive form of a verb need to be defined in a vocabulary if both are

used.

7 SBVR Structured English representations

189

7.1.1.1 Key words and phrases for logical formulations

Key words and phrases are shown below for expressing each kind of logical formulation.

The letters ‘n’ and ‘m’ represent use of a literal whole number. The letters ‘p’ and ‘q’

represent expressions of propositions.

Quantification

each universal quantification

some existential quantification

at least one existential quantification

at least n at-least-n quantification

at most one at-most-one quantification

at most n at-most-n quantification

exactly one exactly-one quantification

exactly n exactly-n quantification

at least n and at most m numeric range quantification

more than one at-least-n quantification with n = 2

Logical Operations

it is not the case that p logical negation

p and q conjunction

p or q disjunction

p or q but not both exclusive disjunction

if p then q implication

q if p implication

p if and only if q equivalence

not both p and q nand formulation

neither p nor q nor formulation

p whether or not q whether-or-not formulation

Where a subject is repeated when using "and" or "or," the repeated subject can be elided.

7.1.1.2 Modal Operations

A possible style of SBVR Structured English for modal operations is the Prefix Style that

introduces rules by prefixing a statement with keywords that convey a modality. An

structural rule uses the keyword: It is necessary that

7.1.1.3 Other Keywords

the Used with a designation to make a pronominal reference to a previous
use of the same designation. This is formally a binding to a variable of
a quantification.

a, an Universal or existential quantification, depending on context based on
English rules.

An object-oriented approach to the translation between MOF metaschemas

190

another (Used with a term that has been previously used in the same

statement) existential quantification plus a condition that the referent
thing is not the same thing as the referent of the previous use of the
term.

a given Universal quantification pushed outside of a demonstrative
expression where "a given" is used such that it represents one thing at
a time – this is used to avoid ambiguity where the "a" by itself could

otherwise be interpreted as an existential quantification.

7.1.2 Describing a Vocabulary

In SBVR Structured English, a vocabulary is described in a document section having

glossary-like entries for concepts having representations in the vocabulary.

7.1.2.1 Vocabulary Entries

Each entry is for a single concept, which is called the entry concept. It starts with a

representation of the concept, either a designation or a form of expression.

Any of several kinds of captioned details can be listed under the representation. A skeleton

of a vocabulary entry is shown below followed by an explanation of the use of each

caption. Only those entries considered for the mapping between UML and SBVR are

showed.

<primary representation>

Definition:
General Concept:
Concept type:
Necessity:
Reference Scheme:

Primary Representation: Designation or Form of Expression

The designation or form of expression, called the "primary representation" with respect to

each entry, can be for any concept type. The primary representation for a fact type is a

form of expression. Three examples are given below:

person

person has name

Catalunya

Definition

A definition is shown as an expression that can be logically substituted for the primary

representation. A definition is fully formal if all of it is styled as described above.

7 SBVR Structured English representations

191

General concept

The "General Concept" caption can be used to indicate a concept that generalizes the entry

concept.

Concept Type

The "Concept Type" caption is used to specify a type of the entry concept. This is typically

not used if the concept has no particular type other than what is obvious from the primary

representation. A name is implicitly for an individual concept. Any term is implicitly for a

noun concept. A form of expression is implicitly for a fact type.

Necessity

A "Necessity" caption is used to state something that is necessarily true. A necessity is an

element of guidance expressed as a structural business rule statement. A guidance

statement can be expressed formally or informally. A statement that is formal uses only

formally styled text — all necessary vocabulary is available (by definition or adoption) so

that no external concepts are required. Such a statement can be represented as a logical

formulation. For example:

It is necessary that each authored publication has at least one author.

The above example includes three key words or phrases ("it is necessary that," "each" and

"at least one"), two designations for types and one for a fact type (from a form of

expression).

The key phrase “it is necessary that” can be omitted from a statement of a structural rule

captioned “Necessity” because it is implied in the caption.

Reference Scheme

The "Reference Scheme" caption is used to state how things denoted by a term can be

distinguished from each other based on one or more facts about the things. A reference

scheme is expressed by referring to at least one role of a binary fact type.

7.2 SBVR Representations

Figure 7.1 shows the fragment of the SBVR metamodel (Object Management Group 2008a)

that describes the representations in SBVR. Note that, in order to have a straightforward

notation in SBVR Structured English, the StructuredEnglishText metaclass has been added.

It has two attributes: value that constrain the expression of the representation; and the

attribute font which represents any of the four font styles used in SBVR Structured English.

In SBVR Structured English, a representation is composed by a set of ordered instances of

StructuredEnglishText. Additionally, two additional abstract classes,

PrimaryRepresentation and Caption have been added to distinguish the primary

representation caption from the other captions and also the relationship among them.

Moreover, there are three additional metaclasses: GeneralConceptCaption,

ConceptTypeCaption and ReferenceSchemeCaption. The first one represents the designation

of a general concept; the second one represents the type of concept; and the third one

represents the reference scheme of a concept.

An object-oriented approach to the translation between MOF metaschemas

192

Figure 7.1 SBVR Representations

Appendix I describes the complete specification of the SBVR Structured English

metamodel in the USE tool.

7.3 newRepresentation() operation

This section describes the newRepresentation() operation, in the context of Meaning. The

evaluation of the newRepresentation() operation on a SBVR schema unit gives the set of

Representations that are derived from said schema unit:

context Meaning::newRepresentation():Set(Representation)

 pre: isSchemaUnit()

 post definingTheRepresentation:

 result = Representation.allInstances() –

 Representation.allInstances@pre()

The effect of the operation is defined in the subtypes of Meaning such that some or all of

their instances represent schema units.

The newText(name:String, font:FontStyle, order:Integer) is an operation that gives the

characteristics of a new instance of StructuredEnglishText associated, ordered, to an

instance of a subtype of Representation:

context Representation::newText(name:String,

 font:FontStyle, order:Integer):StructuredEnglishText

 post StructuredEnglishTextCreated:

 se.oclIsNew() and se.oclIsTypeOf(StructuredEnglishText) and

 se.font = font and se.value = name and

 self.structuredEnglishText -> at(order) = se

Note that in the following sections the hasSent ('^') operator is used to invoke the newText

operation within a postcondition (Object Management Group 2006b, p. 29). The use of this

operator, as already used in the previous chapter, allows to better structure the

postconditions. However, note that the USE tool does not allow the use of such operator.

Therefore, the implementation, in USE, of a postcondition with an invocation to an

operation includes, within the postcondition, the fragment corresponding to the invoked

operation.

7 SBVR Structured English representations

193

7.3.1 newRepresentation() of value type and object type

Each value type or object type schema unit is represented by an instance of Designation

associated to it. The instance is also associated to an instance of StructuredEnglishText

having the font and value attributes with values FontStyle::term and the name of the

ValueType or ObjectType, respectively. For example, the value type named "gender" has an

instance of Designation whose straightforward representation in Structured English

notation is "gender".

Additionally, if the value type is associated to a closed projection which means that the

value type is the enumeration of individual concepts, then the value type also includes a

Definition. The definition is associated to a sequence of instances of StructuredEnglishText

whose value and font attributes are the names of the individual concepts that define the

value type, and FontStyle::name, respectively. For example, the previous value type is also

represented by a Definition whose straithforward representation in Structured English

notation is "male or female".

If the object type is associated to a closed projection which means that the instances of the

object type are the union of instances of other concepts (like an abstsract UML class), then

the objection type includes a Definition. The definition is associated to the sequence of

instances of StructuredEnglishText that defines the object type as an a sequence of noun

concepts joined by an "or" clause. For example, the object type named "authored

publication" is represented by the Designation: "authored publication" and the Definition:

"authored book or book chapter or journal paper".

Finally, if the object type is associated to a closed projection which means that the object

type is an objectification of an associative fact type, then the object type also includes a

Definition. The definition is associated to the sequence of instances of

StructuredEnglishText that defines the object type as an "actuality" of an associative fact

type. For example, the object type named "authorship" is represented by the Designation:

"authorship" and the Definition: "actuality that an author has an authored publication".

context NounConcept::newRepresentation():Set(Representation)

 post RepresentationCreated:

 let asft:AssociativeFactType = self.closedProjection.

 logicalFormulation.oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).

 factType.oclAsType(AssociativeFactType)in

 -- new designation

 d.oclIsNew() and d.oclIsTypeOf(Designation) and

 d.meaning = self and d^newText(self.name, FontSyle::term,1)

 and if self.closedProjection -> notEmpty()

 then

 -- new definition

 def.oclIsNew() and def.oclIsTypeOf(Definition) and

 def.meaning.oclAsType(Concept) = self and

 def.primaryRepresentation = d and

An object-oriented approach to the translation between MOF metaschemas

194

 self.closedProjection.isEnumeration() implies

 self.closedProjection.logicalFormulation.

 sequenceOfLiterals() -> forAll(lit |

 def^newText(lit, FontStyle::term,

 self.closedProjection.logicalFormulation.

 sequenceOfLiterals() ->indexOf(lit)*2 -1) and

 if lit <> self.closedProjection.

 logicalFormulation.sequenceOfLiterals()->last()

 then def^newText('or', FontStyle::keyword,

 self.closedProjection.logicalFormulation.

 sequenceOfLiterals() ->indexOf(lit)*2)

 else true

 endif) and

 self.closedProjection.isAbstract() implies

 self.closedProjection.logicalFormulation.

 sequenceOfCategories() -> forAll(cat |

 def^newText(cat, FontStyle::term,

 self.closedProjection.logicalFormulation.

 sequenceOfCategories() ->indexOf(lit)*2 -1) and

 if cat <> self.closedProjection.

 logicalFormulation.sequenceOfCategories()->

 last()

 then def^newText('or', FontStyle::keyword,

 self.closedProjection.logicalFormulation.

 sequenceOfCategories() ->indexOf(lit)*2)

 else true

 endif) and

 self.closedProjection.isObjectification() implies

 (def^newText('actuality', FontStyle::term, 1) and

 def^newText('that a', FontStyle::keyword, 2) and

 asft.factTypeRole -> forAll(rol |

 def^newText(rol, FontStyle::term,

 asft.factTypeRole -> indexOf(rol)*2 +1) and

 if asft.factTypeRole -> size()> 2 and

 def^newText(',', FontStyle::keyword,

 asft.factTypeRole -> indexOf(rol)*2 +2)

 else

 def^newText(asft.name, FontStyle::verb,

 asft.factTypeRole -> indexOf(rol)*2 +2)

 endif))

 else

 true

 endif

7.3.2 newRepresentation() of individual concept

Each individual concept schema unit is represented by an instance of Designation

associated to it. The instance is also associated to an instance of StructuredEnglishText

with the font and value attributes with values FontStyle::name and the name of the

individual concept. For example, the individual concept named "male" has an instance of

Designation: "male."

7 SBVR Structured English representations

195

context IndividualConcept::newRepresentation():Set(Representation)

 post RepresentationCreated:

 -- new designation

 d.oclIsNew() and d.oclIsTypeOf(Designation) and

 d.meaning = self and d^newText(self.name, FontSyle::name,1)

7.3.3 newRepresentation() of characteristic schema unit

Each Characteristic schema unit is represented by a FactTypeForm associated to a

sequence of instances of StructuredEnglishText. The sequence has the following structure:

(i) an instance the value attribute of which has the name of the fact type role (if the role

does not have a name, then the name of the concept that the role scopes over) and the font

style is "term;' and (ii) an instance the value attribute of which has the name of the fact

type and the font sytle is "verb.' The Characteristic is represented also with

ConceptTypeCaption which the associated StructuredEnglishText indicates that is a

characteristic. For example the characteristic schema unit named "being conference

paper" that has the role that ranges over "book chapter" is represented by a

FactTypeForm: "book chapter being conference paper" and a ConceptTypeCaption:

"characteristic."

context Characteristic::newRepresentation():

 Set(Representation)
 post RepresentationCreated :

 -- new fact type form

 f.oclIsNew() and f.oclIsTypeOf(FactTypeForm) and

 f.meaning.oclAsType(Characteristic) = self and

 f^newText(if self.factTypeRole -> first().name ->notEmpty()

 then self.factTypeRole -> first.name

 else self.factTypeRole -> first.nounConcept.name

 endif, FontStyle::term, 1) and

 f^newText(self.name, FontStyle::verb, 2)

 -- new concept type form

 r.oclIsNew() and r.oclIsTypeOf(ConceptTypeCaption) and

 r.meaning.oclAsType(Characteristic) = self and

 r.primaryRepresentation = f and

 r^newText('characteristic', FontStyle::term, 1)

7.3.4 newRepresentation() of associative, is-property-of or partitive fact

type schema unit

Each AssociativeFactType including (PartitiveFactType and IsPropertyOfFactType) is

represented by a FactTypeForm associated to a sequence of instances of

StructuredEnglishText. The sequence has the following structure: (i) an instance the value

attribute of which has the name of the first fact type role (if the role does not have a name,

then the name of the concept that the role scopes over) and the font style is 'term'; (ii) an

instance the value attribute of which has the name of the fact type and the font sytle is

'verb'; and (iii) an instance the value attribute of which has the name of the last fact type

role (if the role does not have a name, then the name of the concept that the role scopes

over) and the font style is 'term'. The AssociativeFactType includes also a

An object-oriented approach to the translation between MOF metaschemas

196

ConceptTypeCaption the associated StructuredEnglishText of which indicates the type of

associative fact type. For example, the associative fact type, named "is published in"

between the concepts named "conference edition" and "edited book" is represented by the

FactTypeForm: "conference edition is published in edited book."

Additionally, each fact type role of the AssociativeFactType that has a name is represented

by an Designation and two ConceptTypeCaption. The Designation has a

StructuredEnglishText with the value attribute as the name of the Role and the font style is

'term'. One of the ConceptTypeCaption has a StructuredEnglishText having the value and

font attributes with values "role" and "term", respectively. The other ConceptTypeCaption

has a StructuredEnglishText with the value the name of the concept that ranges over and

the font style 'term'. For example, the associative fact type of above has also the

ConceptTypeCaption: "associative fact type." And for example, the associative fact type

between "editor" and "edited book" has the following representations: FactTypeForm:

"editor has edited book", the ConceptType: "associative fact type," the Designation:

"editor" and ConceptType: "role"

context AssociativeFactType::newRepresentation():

 Set(Representation)
 post RepresentationCreated :

 -- new fact type form

 f.oclIsNew() and f.oclIsTypeOf(FactTypeForm) and

 f.meaning.oclAsType(AssociativeFactType) = self and

 self.factTypeRole -> forAll(ro|

 f^newText(if ro.name ->notEmpty() then ro.name

 else ro.nounConcept.name endif,

 FontStyle::term, self.factTypeRole ->indexOf(ro)*2-1)

 and

 if ro <> self.factTypeRole -> last()

 then if self.factTypeRole ->size() > 2

 then f^newText(',', FontStyle::keyword,

 self.factTypeRole ->indexOf(ro)*2)

 else f^newText(self.name, FontStyle::verb,

 self.factTypeRole ->indexOf(ro)*2)

 endif

 else true endif) and

 -- new concept type caption

 r.oclIsNew() and r.oclIsTypeOf(ConceptTypeCaption) and

 r.meaning.oclAsType(AssociativeFactType) = self and

 r.primaryRepresentation = f and

 r^newText(if self.oclIsTypeOf(AssociativeFactType)

 then 'associative fact type'

 else if self.oclIsTypeOf(PartitiveFactType)

 then 'partitive fact type'

 else 'is-property-of fact type'

 endif

 endif, FontStyle::term,1) and

 self.factTypeRole->select(ft| ft.name -> notEmpty()) ->

 forAll(ro:FactTypeRole |

 -- new designation

 d.oclIsNew() and d.oclIsTypeOf(Designation) and

 d.meaning.oclAsType(AssociativeFactType) = self and

7 SBVR Structured English representations

197

 d^newText(ro.name, FontStyle::term,1) and

 -- new concept type caption

 c1.oclIsNew() and c1.oclIsTypeOf(ConceptTypeCaption) and

 c1.meaning.oclAsType(AssociativeFactType) = self and

 c1.primaryRepresentation = d and

 c1^newText('role', FontStyle::term,1) and

 -- new concept type caption

 c2.oclIsNew()and c2.oclIsTypeOf(ConceptTypeCaption) and

 c2.meaning.oclAsType(AssociativeFactType) = self and

 c2.primaryRepresentation = d and

 c2^newText(ro.nounConcept.name, FontStyle::term,1)

7.3.5 newRepresentation() of categorization fact type schema unit

Each categorization fact type schema unit is represented by a GeneralConceptCaption. The

GeneralConceptCaption is associated to a StructuredEnglishText whose value attribute has

the name of the general concept of the categorization fact type and its font style is 'term'.

For example, the categorization fact type between "book chapter" and "authored

publication" is represented by a General concept: "authored publication" of the primary

representation "book chapter."

context CategorizationFactType::newRepresentation():

 Set(Representation)

 post RepresentationsCreated :

 f.oclIsNew() and f.oclIsTypeOf(GeneralConceptCaption) and

 f.meaning.oclAsType(CategorizationFactType) = self and

 f.primaryRepresentation = self.factTypeRole ->

 first().nounConcept.representation.oclAsType(Designation)

 and f^newText(self.factTypeRole -> last().nounConcept.name,

 FontStyle::term,1)

Note that, in SBVR Structured English, categorization fact types are represented by general

concept captions of the general concepts.

7.3.6 newRepresentation() of categorization schema schema unit

Each categorization schema or segmentation schema unit is represented by several

instances of Representation: (1) a Designation that has an StructuredEnglishText with the

value attribute as the name of the CategorizationScheme and the font style is 'term'; (2) a

Definition associated to a sequence of instances of StructuredEnglishTex which could be

readed in Structured English as "categorization scheme that is for the generalConcept",

where generalConcept refers to the name of the general concept of the categorization

scheme; and (3) a NecessityStatement associated to a sequence of instances of

StructuredEnglishText which could be readed in Structured English as "generalConcept

contains the categories category1, …and categoryn" where categoryi refers to the name of

one of the categories of the categorization scheme and it follows the list of the names of

categories separated by coma and "and." In the case of Segmentation, the definition

changes the term of categorization scheme by segmentation. For example the

categorization scheme of "type of authored publication" is represented as follows:

An object-oriented approach to the translation between MOF metaschemas

198

type of authored publication
Definition: categorization scheme that is for authored publication

Necessity: type of authored publication contains the categories
 journal paper, authored book and book chapter

context CategorizationScheme::newRepresentation():

 Set(Representation)

 post RepresentationsCreated:

 -- new designation

 d.oclIsNew() and d.oclIsTypeOf(Designation) and

 d.meaning.oclAsType(CategorizationScheme) = self and

 d^newText(self.name, FontStyle::term,1) and

 -- new definition

 def.oclIsNew() and def.oclIsTypeOf(Definition) and

 def.meaning.oclAsType(CategorizationScheme) = self and

 def.primaryRepresentation = d and

 def^newText('categorization scheme', FontStyle::term, 1) and

 def^newText('that', FontStyle::keyword, 2) and

 def^newText('is for', FontStyle::verb, 3) and

 def^newText('the', FontStyle::keyword, 4) and

 def^newText('concept', FontStyle::term, 5) and

 def^newText(self.generalConcept.name, FontStyle::term, 6) and

 -- new necessity statement

 nes.oclIsNew() and nes.oclIsTypeOf(NecessityStatement) and

 nes.meaning.oclAsType(CategorizationScheme) = self and

 nes.primaryRepresentation = d and

 nes^newText(self.name, FontStyle::term, 1) and

 nes^newText('contains', FontStyle::verb, 2) and

 nes^newText('the', FontStyle::keyword, 3) and

 nes^newText('categories', FontStyle::term, 4) and

 nes^newText(self.category -> asSequence() -> forAll(ca|

 nes^newText(ca.name, FontStyle::term,

 self.category -> asSequence() -> indexOf(ca) *2 + 3))

 if self.category ->asSequence ->indexOf(ca) <

 self.category -> size()- 1

 then

 nes^newText(',', FontStyle::keyword,

 self.category -> asSequence() -> indexOf(ca) *2 + 4) and

 else if self.category ->asSequence ->indexOf(ca) =

 self.category -> size()- 1

 then

 nes^newText('and', FontStyle::keyword,

 self.category -> asSequence() -> indexOf(ca)*2 + 4)

 else true

 endif

 endif)

7.3.7 newRepresentation() of reference scheme

Each instance of ReferenceScheme that is a schema unit is represented by a

ReferenceSchemeCaption. The ReferenceSchemeCaption is associated to a sequence of

instances of StructuredEnglishText. The sequence has the following structure: (i) for each

fact type role that identifies the concept, there is an instance the value attribute of which

has the name of said fact type role and the font style is 'term', and (ii) there is also an

7 SBVR Structured English representations

199

instance with the value attribute "and" and the font style 'keyword' between the previous

instances. For example, the reference scheme schema unit meaning that "title" is the

reference scheme of "conference edition," is represented by a ReferenceSchemeCaption:

"title." The caption is associated to the primary representation of the object type named

"conference edition."

context ReferenceScheme::newRepresentation():

 ReferenceSchemeCaption
 post RepresentationCreated:

 let roleNames:Sequence(String) =

 self.simplyUsedRole -> collect(ro|

 if ro.name -> notEmpty()

 then ro.name

 else ro.nounConcept.name

 endif)->asSequence

 in

 ref.oclIsNew() and ref.oclIsTypeOf(ReferenceSchemeCaption)

 and ref.meaning.oclAsType(ReferenceSchemeCaption) = self and

 ref.primaryRepresentation = self.referencedConcept.

 representation.oclAsType(Designation) and

 roleNames -> forAll(ron|

 ref^newText(ron,FontStyle::term,

 roleNames -> indexOf(ron)*2 -1) and

 if roleNames -> last() <> ron

 then ref^newText('and',FontStyle::keyword,

 roleNames -> indexOf(ron)*2)

 else true

 endif)

Note that, in SBVR Structured English, reference scheme captions are incorporated as

captions of the designation of the concept that incorporates this reference scheme.

7.3.8 newRepresentation() of structural rule schema unit

Each StructuralRule is represented by an instance of NecessityStatement.

Depending on the type of structural rule, the necessity may be attached to the designation

of a concept or to a fact type form of a fact type. Three general cases have been considered:

 If the structural rule is structuring a multiplicity constraint, the necessity statement

is attached to the fact type form representing the fact type that constrains;

 If the structural rule is structuring a covering or disjointness constraint, then the

necessity statement is attached to the designation of the general concept;

 If the structural rule is structuring an xor-constraint, then necessity statement is

attached to the designation of the concept that is constrained.

Two different examples are given below:

editor has edited book

Necessity: each edited book has at least one editor

An object-oriented approach to the translation between MOF metaschemas

200

book

Necessity: each book is a edited book or is a authored book but not both

context StructuralRule::newRepresentation():

 Set(Representation)

 post RepresentationsCreated:

 let form:ClosedLogicalFormulation =

 self.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification)

 in

 let pos:Integer = form.introducedVariable ->size()*2+1

 in

 nes.oclIsNew() and nes.oclIsTypeOf(NecessityStatement) and

 nes.meaning.oclAsType(NecessityStatement) = self and

 nes^newText('each', FontStyle::keyword, 1) and

 form.introducedVariable ->forAll(va:Variable|

 nes^newText(va.rangedOverConcept.name, FontStyle::term,

 form.introducedVariable->indexOf(va)*2-1) and

 if va <> form.introducedVariable -> last()

 then nes^newText('of a', FontStyle::keyword,

 form.introducedVariable->indexOf(va)*2)

 else true endif) and

 self.isMultiplicity()

 implies

 (nes.primaryRepresentation = form.scopeFormulation.

 oclAsType(Quantification).scopeFormulation.

 oclAsType(AtomicFormulation).factType.representation.

 oclAsType(FactTypeForm) and

 nes^newText('has', FontStyle::verb, pos) and

 form.scopeFormulation^pharaphraseQuantification(nes,pos+1))

 and

 self.isDisjointAndCovering() or self.isCovering()

 implies

 (nes.primaryRepresentation = form.scopeFormulation.

 oclAsType(ExclusiveDisjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclAsType(CategorizationFactType).factTypeRole

 -> last().nounConcept.representation.

 oclAsType(Designation) and

 form.scopeFormulation.sequenceOfCategories ->

 forAll(cat:String|

 nes^newText('is', FontStyle::verb,

 form.scopeFormulation.sequenceOfCategories ->

 indexOf(cat)* 4 + pos -3) and

 nes^newText('a', FontStyle::keyword,

 form.scopeFormulation.sequenceOfCategories ->

 indexOf(cat)* 4 + pos -2) and

 nes^newText(cat, FontStyle::term,

 form.scopeFormulation.sequenceOfCategories ->

 indexOf(cat)* 4 + pos -1) and

 if cat <> form.scopeFormulation.sequenceOfCategories ->

7 SBVR Structured English representations

201

 last()

 then

 nes^newText('or', FontStyle::keyword,

 form.scopeFormulation.sequenceOfCategories ->

 indexOf(cat)* 4 + pos)

 else true

 endif) and

 if self.isDisjointAndCovering() then

 nes^newText('but not both', FontStyle::keyword,

 form.scopeFormulation.sequenceOfCategories -> size()* 4

 + pos + 1)

 else

 true

 endif) and

 self.isDisjoint()

 implies

 (nes^newText('that', FontStyle::keyword, pos + 1) and

 nes^newText('is', FontStyle::verb, pos + 2) and

 nes^newText('a', FontStyle::keyword, pos + 3) and

 nes^newText(form.scopeFormulation.sequenceOfCategories() ->

 first(), FontStyle::term, pos + 5) and

 nes^newText('neither', FontStyle::keyword, pos + 6) and

 nes^newText('is', FontStyle::verb, pos + 7) and

 nes^newText('a', FontStyle::keyword, pos + 8) and

 form.scopeFormulation.sequenceOfCategories ->

 excludes(form.scopeFormulation.sequenceOfCategories() ->

 first()) -> forAll(cat:String |

 nes^newText(cat, FontStyle::term,

 form.scope.sequenceOfCategories() ->indexOf(cat)*2-7)

 and

 if cat <> form.scopeFormulation.sequenceOfCategories()

 -> last()

 then

 nes^newText('nor a', FontStyle::keyword,

 form.scope.sequenceOfCategories() ->indexOf(cat)*2-7)

 else true

 endif)) and

 self.isXOR()

 implies

 (nes^newText('that', FontStyle::keyword, pos + 1) and

 nes^newText(form.introducedVariable.restrictingFormulation.

 oclAsType(AtomicFormulation).factType.name, FontStyle::verb,

 pos + 2)

 and nes^newText('a', FontStyle::keyword, pos + 3) and

 nes^newText(form.introducedVariable.restrictingFormulation.

 oclAsType(AtomicFormulation).factType.factTypeRole ->

 last().nounConcept.name, FontStyle::term, pos + 4) and

 nes^newText('does not', FontStyle::keyword, pos + 5) and

 nes^newText('have', FontStyle::verb, pos + 6) and

 nes^newText('either', FontStyle::keyword, pos + 7) and

 form.scopeFormulation.restrictedFactTypes ->

 forAll(ft:FactType |

 nes^newText(ft.factTypeRole->last().nounConcept.name,

An object-oriented approach to the translation between MOF metaschemas

202

 FontStyle::term,

 form.scopeFormulation.restrictedFactTypes ->

 indexOf(ft) * 2 + 7) and

 if ft <> form.scopeFormulation.restrictedFactTypes ->

 last()

 then

 nes^newText('or', FontStyle::keyword,

 form.scopeFormulation.restrictedFactTypes ->

 indexOf(ft) * 2 + 8)

 else true

 endif))

This means that a closed universal quantification starts with the each keyword followed

by the name of the concept that the variable, introduced by the quantification, ranges over.

The rest of the statement is structured depending on the logical formulation associated to

the universal quantification.

Note that the sequenceOfCategories() and restrictedFactTypes() operations were defined in

Sections 6.3.2.8 and 6.3.2.9 of Chapter 6, respectively.

Additionally, to facilitate the pharaphrasing of the different subtypes of Quantification, the

pharaphraseQuantification(nes:Necessity, iniPos:Integer) operation has been defined in

Quantification. It constrains, depending on the subtype of Quantification, the instances of

StructuredEnglishText included in the statement that represents a multiplicity rule. The

specification of the operation is defined abstract and redefined in the subtypes of

Quantification as follows:

context AtLeastNQuantification::pharaphraseQuantification(

 ne:NecessityStatement, iniPos:Integer):

 Set(StructuredEnglishText)

 post: nes^newText('at least', FontStyle::keyword, iniPos) and

 nes^newText(self.minimumCardinality, FontStyle::term,

 iniPos + 1) and nes^newText(

 self.introducedVariable.rangedOverConcept.name,

 FontStyle::term, iniPos + 2)

context AtMostNQuantification::pharaphraseQuantification(

 ne:NecessityStatement, iniPos:Integer):

 Set(StructuredEnglishText)

 post: nes^newText('at most', FontStyle::keyword, iniPos) and

 nes^newText(self.maximumCardinality, FontStyle::term,

 iniPos + 1) and nes^newText(

 self.introducedVariable.rangedOverConcept.name,

 FontStyle::term, iniPos + 2)

context ExactlyNQuantification::pharaphraseQuantification(

 ne:NecessityStatement, iniPos:Integer):

 Set(StructuredEnglishText)

 post: nes^newText('exactly', FontStyle::keyword, iniPos) and

 nes^newText(self.cardinality, FontStyle::term, iniPos+1)

 and nes^newText(

 self.introducedVariable.rangedOverConcept.name,

 FontStyle::term, iniPos + 2)

7 SBVR Structured English representations

203

context NumericRangeQuantification::pharaphraseQuantification(

 ne:NecessityStatement, iniPos:Integer):

 Set(StructuredEnglishText)

 post: nes^newText('at least', FontStyle::keyword, iniPos) and

 nes^newText(self.minimumCardinality, FontStyle::term,

 iniPos + 1) and nes^newText(

 self.introducedVariable.rangedOverConcept.name,

 FontStyle::term, iniPos + 2) and

 nes^newText('and at most', FontStyle::keyword, iniPos+3)

 and nes^newText(self.maximumCardinality, FontStyle::term,

 iniPos + 4) and nes^newText(

 self.introducedVariable.rangedOverConcept.name,

 FontStyle::term, iniPos + 5)

7.4 vocabularyEntry() operation

The vocabularyEntry() query operation applied to an instance of a subtype of Meaning

gives the vocabulary entry of said meaning in the Structured English notation. The

specification, in OCL, of the operation is the following:

context Meaning::vocabularyEntry():Set(Tuple(

 primaryRepresentation: Sequence(Tuple(

 text:String, font:FontStyle)),

 captions:Set(Tuple(

 captionType:CaptionType,

 captionValue:Sequence(Tuple(text:String,

 font:FontStyle))))))

 body: let primary:PrimaryRepresentation =

 if self.representation.oclAsType(PrimaryRrepesentation)

 -> notEmpty()

 then

 self.representation->any(pr|

 pr.oclIsKindOf(PrimaryRepresentation))

 oclAsType(PrimaryRepresentation)

 else

 self.representation->any(pr|

 pr.oclIsKindOf(Caption)).

 oclAsType(Caption).primaryRepresentation)

 endif in

 Tuple{

 primaryRepresentation: primary.representation()

 captions:

 primary.caption->any(c|c.oclIsTypeOf(Definition))

 .oclAsType(Definition)->collect(

 captionRepresentation())-> union(

 primary.caption->any(c|

 c.oclIsTypeOf(GeneralConceptCaption))

 .oclAsType(GeneralConceptCaption)

 ->collect(captionRepresentation())->union (

 primary.caption->any(c|

 c.oclIsTypeOf(ConceptTypeCaption))

 .oclAsType(ConceptTypeCaption)->

 collect(captionRepresentation())-> union(

 primary.caption->any(c|

An object-oriented approach to the translation between MOF metaschemas

204

 c.oclIsTypeOf(NecessityStatement))

 .oclAsType(NecessityStatement)) ->

 collect(captionRepresentation()))))

This means that an SBVR Structured English vocabulary entry is composed by its primary

entry followed by its set of captions as described in Section 7.2.2.1 Vocabulary Entries.

The operation representation() defined in the context of PrimaryRepresentation gives the

sequence of Structured English text that represents such primary representation.

context PrimaryRepresentation::representation():Sequence(

 Tuple(text:String,font:FontStyle))

 body: self.structuredEnglishText -> collect(st|

 Tuple{text:st.value,font:st.font})

The operation captionRepresentation() defined in the context of Caption gives the caption

type and sequence of Structured English text that represents such primary representation.

context Caption::captionRepresentation():TupleType(

 captionType:CaptionType,

 captionValue:Sequence(TupleType(text:String,

 font:FontStyle)))

 body: Tuple{captionType:captionType(),

 captionValue: self.structuredEnglishText -> collect(st|

 Tuple{text:st.value,font:st.font})}

The captionType() operation is defined abstract in Caption and redefined in its subtypes as

follows:

context Definition::captionType():CaptionType

 body: CaptionType::Definition

context GeneralConceptCaption::captionType():CaptionType

 body: CaptionType::General_concept

context ConceptTypeCaption::captionType():CaptionType

 body: CaptionType::Concept_type

context NecessityStatement::captionType():CaptionType

 body: CaptionType::Necessity

context ReferenceSchemeCaption::captionType():CaptionType

 body: CaptionType::Reference_scheme

CaptionType is defined as an enumeration of: Definition, General_concept, Concept_type,

Necessity and Reference_scheme.

Concerning its implementation, the specification seVocabulary has a quite straightforward

implementation using the methods of the operations newRepresentation (Section 7.3).

The implementation of the methods of newRepresentation are described in Appendix J in

the procedural language described in USE (Gogolla, Büttner and Richters 2007).

7 SBVR Structured English representations

205

7.5 DBLP vocabulary in SBVR Structured English notation

The instances of the SBVR Representations created by the application of the

newRepresentation method to the SBVR Meanings instances of the DBLP example are

shown in Appendix K. The result of the query Meaning.allInstances()->collect(me|

me.vocabularyEntry()) after reformatting the font style:

Female

Male

Gender
Definition: Female or Male

Natural

String

Year

acronym

Concept type: String
Concept type: role

authored book

General concept: authored publication
General concept: book

authored publication

Definition: authored book or book chapter or journal paper
General concept: publication

Necessity: each book is a authored book or is a book chapter or is a

journal paper
Necessity: each authored publication that is a authored book is not either a
 book chapter or a journal paper

Necessity: each authored publication that is a book chapter is not either a
 authored book or a journal paper

authorship

Definition: actuality that an author has an authored publication

book
Definition: edited book or authored book

General concept: publication

Necessity: each book is a edited book or is a authored book but not both

Reference scheme: isbn

book chapter

General concept: authored publication

book section

book series

Reference scheme: id

An object-oriented approach to the translation between MOF metaschemas

206

book series issue

General concept: book

city

Concept type: String

Concept type: role

conference edition

Reference scheme: title

conference series

Reference scheme: name

country

Concept type: String
Concept type: role

edited book

General concept: book
General concept: publication

edition

Concept type: String
Concept type: role

editorship

Definition: actuality that an editor has an edited book

end page

Concept type: Natural

Concept type: role

gender

Concept type: Gender

Concept type: role

home page

Concept type: String

Concept type: role

id

Concept type: String

Concept type: role

ini page

Concept type: Natural

Concept type: role

isbn
Concept type: String

Concept type: role

issn
Concept type: String

Concept type: role

7 SBVR Structured English representations

207

journal

Reference scheme: issn
Reference scheme: title

journal issue

journal paper

General concept: authored publication

journal section

journal volume

month

Concept type: String

Concept type: role

name

Concept type: String

Concept type: role

num pages

Concept type: Natural

Concept type: role

num publications

Concept type: Natural

Concept type: role

number

Concept type: Natural

Concept type: role

order

Concept type: Natural

Concept type: role

person

Reference scheme: name

publication

Definition: edited book or authored publication
Necessity: each publication is a edited book or is a authored publication
 but not both

publication year
Concept type: Year

Concept type: role

publisher
Concept type: String

Concept type: role

title
Concept type: String

Concept type: role

An object-oriented approach to the translation between MOF metaschemas

208

type of authored publication

Definition: categorization scheme that is for authored publication
Necessity: type of authored publication contains the categories
 journal paper, authored book and book chapter
volume

Concept type: Natural
Concept type: role

year

Concept type: Year
Concept type: role

author has authored publication

Concept type: associative fact type
Necessity: each authored publication has at least one author

authorship has order

Concept type: is-property-of fact type
Necessity: each authorship has exactly one order

book has home page

Concept type: is-property-of fact type
Necessity: each book has at most one home page

book has isbn

Concept type: is-property-of fact type

Necessity: each book has exactly one isbn

book has num pages

Concept type: is-property-of fact type

Necessity: each book has exactly one num pages

book has publication year

Concept type: is-property-of fact type

Necessity: each book has exactly one publication year

book has publisher

Concept type: is-property-of fact type

Necessity: each book has exactly one publisher

book chapter being conference paper

Concept type: characteristic

book chapter has end page
Concept type: is-property-of fact type

Necessity: each book chapter has exactly one end page

book chapter has ini page
Concept type: is-property-of fact type

Necessity: each book chapter has exactly one ini page

book chapter is part of book section
Concept type: associative fact type

Necessity: each book chapter is part of at most one book section

Necessity: each book section has at least one book chapter

7 SBVR Structured English representations

209

book chapter is part of book series issue

Concept type: associative fact type
Necessity: each book chapter is part of at most one book series issue

Necessity: each book series issue has at least one book chapter

book chapter is part of edited book

Concept type: associative fact type

Necessity: each book chapter is part of at most one edited book

Necessity: each edited book has at least one book chapter

book section has order

Concept type: is-property-of fact type

Necessity: each book section has exactly one order

book section has title

Concept type: is-property-of fact type

Necessity: each book section has exactly one title

book section is part of edited book

Concept type: associative fact type

Necessity: each book section is part of at most one edited book

book series has id

Concept type: is-property-of fact type

Necessity: each book series has exactly one id

book series has publisher

Concept type: is-property-of fact type

Necessity: each book series has exactly one publisher

book series includes book series issue

Concept type: partitive fact type

Necessity: each book series issue has exactly one book series

book series issue has number

Concept type: is-property-of fact type

Necessity: each book series issue has exactly one number

conference edition has city
Concept type: is-property-of fact type

Necessity: each conference edition has exactly one city

conference edition has country
Concept type: is-property-of fact type

Necessity: each conference edition has exactly one country

conference edition has home page
Concept type: is-property-of fact type

Necessity: each conference edition has at most one home page

conference edition has title

Concept type: is-property-of fact type
Necessity: each conference edition has exactly one title

conference edition has year

Concept type: is-property-of fact type
Necessity: each conference edition has exactly one year

An object-oriented approach to the translation between MOF metaschemas

210

conference edition is published in book series issue
Concept type: associative fact type

Necessity: each book series issue has at most one conference edition

Necessity: each conference edition is published in at most one
 book series issue

Necessity: each conference edition that is published in a book series
 issue is not published in a edited book nor is published in a
 journal issue

conference edition is published in edited book

Concept type: associative fact type

Necessity: each conference edition is published in at most one edited book

Necessity: each edited book has at most one conference edition
Necessity: each conference edition that is published in a edited book
 is not published in a book series issue nor is published in a
 journal issue

conference edition is published in journal issue
Concept type: associative fact type

Necessity: each conference edition is published in at most one journal issue

Necessity: each journal issue has at most one conference edition
Necessity: each conference edition that is published in a journal issue
 is not published in a edited book nor is published in a
 book series issue

conference series has acronym
Concept type: is-property-of fact type

Necessity: each conference series has exactly one acronym

conference series has name

Concept type: is-property-of fact type
Necessity: each conference series has exactly one name

conference series includes conference edition

Concept type: partitive fact type
Necessity: each conference edition has exactly one conference series

editor has edited book

Concept type: associative fact type
Necessity: each edited book has at least one editor

editorship has order

Concept type: is-property-of fact type
Necessity: each editorship has exactly one order

journal has issn

Concept type: is-property-of fact type
Necessity: each journal has exactly one issn

journal has title

Concept type: is-property-of fact type
Necessity: each journal has exactly one title

journal includes journal volume

Concept type: partitive fact type
Necessity: each journal volume has exactly one journal

7 SBVR Structured English representations

211

journal issue has month
Concept type: is-property-of fact type

Necessity: each journal issue has at most one month

journal issue has num pages
Concept type: is-property-of fact type

Necessity: each journal issue has exactly one num pages

journal issue has number
Concept type: is-property-of fact type

Necessity: each journal issue has exactly one number

journal issue has year

Concept type: is-property-of fact type
Necessity: each journal issue has exactly one year

journal issue includes journal section

Concept type: partitive fact type
Necessity: each journal section has exactly one journal issue

journal paper being conference paper

Concept type: characteristic

journal paper has end page

Concept type: is-property-of fact type

Necessity: each journal paper has exactly one end page

journal paper has ini page

Concept type: is-property-of fact type

Necessity: each journal paper has exactly one ini page

journal paper is part of journal issue

Concept type: associative fact type

Necessity: each journal issue has at least one journal paper
Necessity: each journal paper is part of exactly one journal issue

journal paper is part of journal section

Concept type: associative fact type
Necessity: each journal paper is part of at most one journal section

Necessity: each journal section has at least one journal paper

journal section has order

Concept type: is-property-of fact type
Necessity: each journal section has exactly one order

journal section has title

Concept type: is-property-of fact type
Necessity: each journal section has exactly one title

journal volume has volume

Concept type: is-property-of fact type
Necessity: each journal volume has exactly one volume

journal volume includes journal issue

Concept type: partitive fact type
Necessity: each journal issue has exactly one journal volume

An object-oriented approach to the translation between MOF metaschemas

212

person has gender
Concept type: is-property-of fact type

Necessity: each person has exactly one gender

person has home page
Concept type: is-property-of fact type

Necessity: each person has at most one home page

person has name
Concept type: is-property-of fact type

Necessity: each person has exactly one name

person has num publications

Concept type: is-property-of fact type
Necessity: each person has exactly one num publications

person publishes publication

Concept type: associative fact type
Necessity: each person publishes at least one publication

Necessity: each publication has at least one person

publication has edition

Concept type: is-property-of fact type

Necessity: each publication has exactly one edition

publication has title
Concept type: is-property-of fact type

Necessity: each publication has exactly one title

publication has year
Concept type: is-property-of fact type

Necessity: each publication has exactly one year

8 Contributions and future research

This chapter summarizes the main contributions of the research and approach presented

and points out the areas of future research.

8.1 Contributions

8.1.1 A generic object-oriented approach to the translation between MOF

metaschemas

This thesis presents a new generic approach to the translation between MOF

metaschemas. Various proposals describe generic schema translation, as summarized in

Chapter 2. The approach proposed in this thesis enriches the previous research in several

aspects.

First of all, the generic translations between MOF schemas are defined, at conceptual level,

by exclusively using object-oriented concepts, particularly the use of operations (and their

refinements) and invariants, both formalized in OCL. The translations mappings can be

used to check that one schema is a translation of another, and also to translate one into

another one, in both directions. The translation mappings are defined declaratively by

means of preconditions and postconditions and invariants and they can be implemented in

any suitable language. The approach leverages the object-oriented constructs embedded

in MOF metaschemas to achieve the goals of the object-oriented software development in

the schema translation problem. This is one of the main advantages of the approach

presented in this thesis.

The research is framed in the context of MOF, UML and OCL. The benefit is that there is a

wide set of available tools to implement the approach. For demonstration purposes, this

work uses one of these tools, USE (Gogolla, Büttner and Richters 2007), in both the

declarative and the procedural parts of the mappings. Other tools might be appropriate for

other projects.

An object-oriented approach to the translation between MOF metaschemas

214

The approach to translate schemas consists in two steps: the structuring of metaschemas

in schema units and the establishment of relationship among schema units of different

metaschemas.

Even though various authors proposed similar ideas, the approach to structuring

metaschemas with schema units has not been previously explicitly formulated as in this

thesis. Schema units correspond to semantic units of knowledge within a schema and each

one consists of a set of structural schema elements. Their definition, precedence

relationship among them and the characterization objects to create them, in each schema,

is independent from their use in any schema management operation. This means that they

are defined only once for each metaschema.

The difficulty of finding the relationship among different metaschemas is clearly reduced

by using the defined schema units. On the one hand, the number of translation mappings

to define between two metaschemas is at most the number of schema units created; which

is much less than the number of structural elements of each metaschema. On the other

hand, the translation mapping definition is split into two simpler parts: one between the

schema units of one side and the characterization objects of the other side, and one

between the characterization object of the second side and its schema units. Additionally,

the precedence relationship among the schema units ensures the executability of the

translation and the translation mapping postconditions defined ensure the consistency of

the mappings.

8.1.2 The application to the translation between UML and SBVR

The generic approach has been applied to the particular case of translating UML schemas

to SBVR and vice versa.

An important issue to take into account when defining translation mappings is the size and

complexity of the metaschemas. In the particular case of the application of the approach

presented to the translation between UML and SBVR, the most challenging work has been

the definition of the schema units and the precedence relationship among them. Moreover,

the equivalences among schema units of different metaschemas were easily defined once

schema units were defined.

8.1.3 The transformation of SBVR to Structured English

There are two additional contributions, derived from the non-existence of a

straightforward writing in SBVR Structured English notation from the instances of SBVR

metamodel: (i) the definition of a very simple metamodel to support the SBVR Structured

English notation, and (ii) the definition of operations to obtain the instances of such

metamodel from the defined SBVR schema units.

The splitting of SBVR between meanings and representations proposed in this work has

two benefits: (i) the exclusion of SBVR representations facilitates the translation mapping

definition and (ii) it is easier to accommodate new natural language notations, as

8 Contributions and future work

215

Attempto Controled English (Wagner, Lukichev, Fuchs and Spreeuwenberg 2005) and

RuleSpeak English (Object Management Group 2008) in the translation approach.

8.2 Future research

The work reported in this thesis may be further researched in various directions: (1)

facilitating the definition of translation mappings; (2) defining a generic/super schema;

(3) including the translation of instances; (4) defining other schema management

operators; (5) translating OCL to SBVR; (6) translating behavioral schemas; and (7)

representing UML and SBVR in other languages and notations. Each research line is briefly

sketched in the following.

8.2.1 Facilitating the definition of translation mappings

Two operations, target-equivalents and includedIn-target, have been used to define

translation mappings. This is, given two schemas 𝑆1 and 𝑆2, the 𝑆2equivalents of a schema

unit 𝑠1 represented by an instance of 𝑆1 are the set of schema units of 𝑆2 whose

isIncludedIn𝑆1 results in 𝑠1. Moreover, given a schema unit 𝑠1 represented by an instance

of 𝑆1 the isIncludedIn𝑆2 gives an 𝑠2 schema unit, represented by an instance of 𝑆2, whose

𝑆1equivalents includes s1.

Both operations are complementaries. Therefore, an interesting research is automatically

deriving the includedIn-target operations from the target-equivalents ones. If this is

possible, only half of the postconditions definitions will have to be provided by designers.

8.2.2 Defining a generic/super schema

Approaches that provide a specification of the schemaGen (modelGen) operator as Papotti

and Torlone (2005), Bernstein, Melnik and Mork (2005), Hainaut (2006), Boyd and

McBrien (2005) and Atzeni, Cappellari, Torlone, Bernstein and Gianforme (2008), among

others, rely on some kind of pivot model. The concept was introduced in the early

approach (prior to the definition of the model management concept), MDM, by Atzeni and

Torlone (1996). It is an elegant way to solve the combinatorial explosion in situations in

which mappings must be developed from any M schemas to N schemas. Theoretically,

instead of formalizing NxM distinct mappings, only M+N mappings are required.

Atzeni, Capellari and Bernstein (2005), Atzeni, Cappellari, Torlone, Bernstein and

Gianforme (2008) and Hainaut (2006), among others, define the concept of supermodel or

generic model as a model that has constructs corresponding to all the metaconstructs

known to the system. They define a limited set of generic (i.e., model independent)

metaconstructs: lexical, abstract, aggregation, generalization and function, in the case of

Atzeni, Capellari and Bernstein (2005) and Atzeni, Cappellari, Torlone, Bernstein and

Gianforme (2008) and schema, entity type, simple domain, atomic attribute, primary

identifier, secondary identifier, reference group and GER names, in the case of Hainaut

(2006). Therefore, any two models are translations of each other if there is any set of

transformations in the supermodel that translate one model to another, where both

models are described in terms of the supermodel constructs.

An object-oriented approach to the translation between MOF metaschemas

216

A possible research is to study the alternative of defining "generic" schema units and to

establish the correspondence between the schema units defined in each metamodel and

the "generic" ones. In this context, the translations are defined only among the "generic"

schema units.

The main concern of this research, as suggested in the previous section, is the complexity

for the "generic" metaschema to cover all type of metaconstructs.

8.2.3 Translation of instances

Atzeni, Capellari and Bernstein (2005) and Atzeni, Cappellari, Torlone, Bernstein and

Gianforme (2008) include in their approaches the possibility of translating not only

metaschemas but also instances of them. Their approaches include dictionaries that

contain the description of each generic construct and the description of each element of a

model in terms of the generic construct. Additionally, the dictionaries include the

instances of the model, also as instances of the generic constructs. Each transformation in

the supermodel is implemented in such a way that also generates the changes in the

instances of the supermodel.

From the conceptual point of view, the generation of instances of a model is close to works

on the area of validation of models that generate instances of models to prove their

correctness (Gogolla, Bohling and Richters 2005 and Rull, Farré, Teniente and Urpí 2008).

8.2.4 Defining other schema management operators

Chapter 2 contains four descriptions of families of problems found in schema

management: (i) schema transformation, (ii) schema integration, (iii) schema translation,

and (iii) propagation of changes between schemas due to evolution. In order to solve such

problems, schema management proposes the definition of basic schema management

operators: match, compose, merge, diff and modelGen (schemaGen).

This thesis proposes a specification of the schemaGen operator at a conceptual level. The

operator is defined in terms of schema units which have been defined independently from

the translation mapping definitions.

Schema units and the translation mappings defined as postconditions may be used for the

specification of other schema management operators. For example, given two schemas 𝑚1

and 𝑚2 and the mapping between both, the diff operator gives a third schema 𝑚3 that is a

subset of 𝑚1 that do not participate in the mapping. Possibly, 𝑚3 may be defined, in terms

of the schema units defined, as the union of the instances of untranslatable schema units of

𝑚1 to 𝑚2 and all those instances of schema units of 𝑚1 that may not consistenly be

translated to 𝑚2.

8.2.5 Translation of OCL to SBVR

This thesis considers a limited set of UML constraints to be translated to SBVR. However,

an extension of the work presented in this thesis would be the study of translating UML

including all the possible OCL expressions to SBVR. A first attempt in this direction has

8 Contributions and future work

217

already been done by Pau and Cabot (2008), where the authors present the pharaprasing

of OCL to SBVR.

By including the whole OCL metamodel in the translation approach, the constraint schema

unit becomes very complex. A mechanism to structure in a different way the constraint

schema unit should be provided. Then, translations from a part of an OCL expression to

SBVR and vice versa should be defined.

8.2.6 Translation of behavioral schemas

This thesis has only included the structural part of conceptual schemas for the translation

between UML and SBVR. It would be of interest to study translations between behavioral

schemas. An alternative of representing, in UML, the behavioral schema is to represent

domain and action request events as a special type of entities (Olivé 2007). On the other

hand, SBVR also distinguishes between structural business rules and operative business

rules. The study of the relationship between UML events and SBVR deserves further

research.

8.2.7 Representing UML and SBVR in other languages and notations

This thesis is a first step towards a tighter integration of the business communities and

software UML communities. As a future research, it would be interesting to implement the

approach in a tool framework in order to evaluate the quality of the resulting SBVR

Structured English expressions in industrial cases. As part of this goal SBVR Structured

Catalan or Spanish (among others) notations should be developed.

Moreover, the operations to represent SBVR instances should be provided not only in

SBVR Structured English notation but also to other notations such as the Business Rule

Speak notation (Ross 2003).

Finally, the translation from UML to other business rules languages such as Controlled

English Rule Language (Wagner, Lukichev, Fuchs and Spreeuwenberg 2005) should also

be studied.

References

Adya, A., Blakeley, J., Melnik, S. & Muralidhar, S. 2007, "Anatomy of the ADO.NET entity

framework," ACM SIGMOD 2007, pp. 877-888.

Altova 2008, Altova. http://www.altova.com.

Atzeni, P. 2007, "Schema and data translation: a personal perspective," Advances in

Databases and Information Systems, LNCS 4690, pp. 14-27.

Atzeni, P., Cappellari, P. & Bernstein, P.A. 2005, "A multilevel dictionary for model

management." ER 2005, LNCS 3716, pp. 160-175.

Atzeni, P., Cappellari, P. & Bernstein, P.A. 2006, "Model-independent schema and data

translation," EDBT 2006, LNCS 3896, pp. 368-385.

Atzeni, P., Cappellari, P. & Gianforme, G. 2007, "MIDST: model independent schema and

data translation," ACM SIGMOD 2007, pp. 1134-1136.

Atzeni, P., Cappellari, P. Torlone, R., Bernstein, P.A. & Gianforme, G. 2008, "Model-

independent schema translation," VLDB 2008, vol. 17, pp. 1347-1370.

Atzeni, P. & Torlone, R. 1996, "Management of multiple models in an extensible database

design tool," EDBT 1996, LNCS 1057, pp. 79-95.

Batini, C., Lenzerini, M. & Navathe, S.B. 1986, "A comparative analysis of methodologies for

database schema integration," ACM Computing Surveys, vol. 18, no. 4, pp. 323-364.

Becket, D. 2004, "W3C RDF/XML Syntax Specification (Revised)."

http://www.w3.org/TR/rdf-syntax-grammar/.Benedikt, M., Chan, C.Y., Fan, W. &

Rastogi, R. 2003, "Capturing both types and constraints in data integration," ACM

SIGMOD International Conference on Management of Data 2003, pp. 277-288.

Berler, M., Eastman, J., Jordan, D., Craig, R., Schadow, O., Stanienda, T. & Velez, F. 2000,

Cattel, R.G.G. & Barry, D.K. (eds.), The Object Data Standard: ODMG 3.0, Morgan

Kaufmann Publishers Inc. San Francisco, CA, USA.

Bergamaschi, S., Castano, S.V. & Vincini, M. 1999, "Semantic integration of semistructured

and structured data sources," ACM SIGMOD Record, vol. 28, no. 1, pp. 54-59.

Bernstein, P.A. 2003, "Applying model management to classical meta data problems," CIDR

2003, pp. 209-220.

Bernstein, P.A., Haas, L.M., Jarke, M., Rahm, E. & Wiederhold, G. 2000, "Panel: Is generic

metadata management feasible?" VLDB 2000, pp. 660-662.

Bernstein, P.A., Halevy, A.Y. & Pottinger, R.A. 2000, "A vision for management of complex

models," ACM SIGMOD Record, vol. 29, no. 4, pp. 55-63.

Bernstein, P.A. & Melnik, S. 2007, "Model management 2.0: manipulating richer mappings,"

ACM SIGMOD 2007, pp. 1-12.

http://www.altova.com/

An object-oriented approach to the translation between MOF metaschemas

220

Bernstein, P.A., Melnik, S. & Mork, P. 2005, "Interactive schema translation with instance-

level mappings," VLDB 2005, pp. 1283-1286.

Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I. & Lindow, A. 2006, "Model

transformations? Transformation models!" MoDELS 2006, LNCS 4199, pp. 440-453.

Bitpipe 2007, Query Tools: Products. http://www.bitpipe.com/plist/term/Query-

Tool.html.

Bloor, M.S. & Owen, J. 1994, Product Data Exchange, UCL Press, Ltd.

Boronat, A., Carsí, J.A. & Ramos, I. 2006, "Algebraic specification of a model transformation

engine," FASE at the ETAPS 2006, LNCS 3922, pp. 262-277.

Boronat, A., Carsí, J.A. & Ramos, I. 2005a, "Automatic reengineering in MDA using rewriting

logic as transformation engine," CSMR 2005, pp. 228-231.

Boronat, A., Carsí, J.A. & Ramos, I. 2005b, "MOMENT: a formal Model management tool,"

Summer School on Generative and Transformational Techniques in Software Engineering.

Braga, Portugal.

Bowers, S. & Delcambre, L. 2006, "Using the uni-level description (ULD) to support data-

model interoperability." Data & Knowledge Engineering, vol. 59, pp. 511-533.

Boyd, M. & McBrien, P. 2005, "Comparing and transforming between data models via an

intermediate hypergraph data model" Journal on Data Semantics IV, LNCS 3730, pp.69-

109.

Buneman, P., Davidson, S.B. & Kosky, A. 1998, "Semantics of database transformations,"

Selected Papers from a Workshop on Semantics in Databases, LNCS 1358, pp. 55-91.

Business Rule Group 2003, The Business Rule Manifesto. v.2.0, Ronald G. Ross,

http://www.businessrulesgroup.org/brmanifesto.htm.

Calvanese, D., De Giacomo, G. & Lenzerini, M. 2001. "Ontology of integration and

integration of ontologies." Description Logic Workshop (DL 2001), pp. 10-19.

Carey, M. 2006, "Data delivery in a service-oriented world: the BEA aquaLogic data

services platform," ACM SIGMOD 2006, pp. 695-705.

Claypool, K.T. 2002, Managing Schema Change in a Heterogeneous Environment. Ph. D.

thesis, Worcester Polytechnic Institute.

Chen, P. 2003, "The entity-relationship model: toward a unified view of data." ACM TODS

2003, vol. 1, no. 1, pp. 9-36.

Corcho, O., Fernández-López, M. & Gómez-Pérez, A. 2003, "Methodologies, tools and

languages for building ontologies. Where is their meeting point?" Data & Knowledge

Engineering, vol. 46, pp. 41-64.

Costal, D., Gómez, C., Queralt, A., Raventós, R. & Teniente, E. 2008 "Improving the definition

of general constraints in UML," Software and Systems Modeling, vol. 7, no. 4, pp. 469-

486.

http://www.bitpipe.com/plist/term/Query-Tool.html
http://www.bitpipe.com/plist/term/Query-Tool.html
http://www.businessrulesgroup.org/brmanifesto.htm

References

221

Czarnecki, K. & Helsen, S. 2006, "Feature-based survey of model transformation

approaches," IBM Systems Journal, vol. 45, no. 3, pp. 621-645.

Date, C.J. 2000, WHAT Not HOW. The Business Rules Approach to Application Development.

Addison-Wesley. USA.

Davidson, S.B., Buneman, P., Harker, S., Overton, C. & Tannen, V. 1999, "Transforming and

integrating biomedical data using Kleisli: a perspective," SIGBIO Newsletter, vol. 19, no.

2, pp. 8-13.

Eclipse 2008, Eclipse Modeling Framework Project, http://www.eclipse.org/emf/.

ETL 2007, ETL Tool Survey 2006-2007, http://www.etltool.com/.

Fagin, R., Kolaitis, P.G., Popa, L. & Tan, W.C. 2005, "Composing schema mappings: Second-

order dependencies to the rescue." ACM Trans. Database Syst. vol. 30, no. 4, pp. 994-

1055.

Rull, G., Farre, C., Teniente, E. & Urpí, T. 2008, "Validation of mappings between schemas."

Data & Knowledge Engineering, vol. 66, no. 3, pp.414-437.

Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y. & Suciu, D. 1998, "Overview of Strudel: a

web-site management system," Networking and Information Systems, vol. 1, no. 1, pp.

115-140.

Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P. & Popa, L. 2006, "Nested

mappings: schema mapping reloaded," VLDB 2006, pp. 67-68.

Gangemi, A., Guarino, N., Masolo, C. & Oltramari, A. 2003, "Sweetening WORDNET with

DOLCE," AI Magazine, vol. 24, no. 3, pp. 13-24.

Goedertier, S., Mues, C. & Vanthienen, J. 2007, "Specifying Process-Aware Access Control

Rules in SBVR," RuleML 2007, LNCS 4824, pp. 39-52.

Gogolla, M. 2005, Tales of ER and RE Syntax and Semantics, Dagstuhl Seminar Proceedings

05161.

Gogolla, M., Bohling, J. & Richters, M. 2005, "Validating UML and OCL models in USE by

automatic snapshot generation," Software and System Modeling, vol. 4, no. 4, pp. 386-

398.

Gogolla, M., Büttner, F. & Richters, M. 2007, "USE: A UML-based specification environment

for validating UML and OCL," Science of Computer Programming, vol. 69, pp. 27-34.

Gogolla, M., Lindow, A., Richters, M. & Ziemann, P. 2002, "Metamodel transformation of

data models. Position paper," WISME at the UML 2002.

Griethuysen, J.J. van, (ed.) 1982, Concepts and terminology for the conceptual schema and

the information base. ISO TC97/SC5/WG3.

Grubb, P. & Takang, A.A. 2003, Software Maintenance: Concepts and Practice. World

Scientific Publishing, Singapore.

http://www.eclipse.org/emf/
http://www.etltool.com/

An object-oriented approach to the translation between MOF metaschemas

222

Grunske, L., Geiger, L. & Lawley, M. 2005, "A graphical specification of model

transformations with triple graph grammars," Model Driven Architecture - Foundations

and Applications, LNCS 3748, pp.284-298.

Gruser, J.R., Raschid, L., Vidal, M.E. & Bright, L. 1998, "Wrapper generation for web

accessible data sources," COOPIS 1998, pp. 14-23.

Hainaut, J-L. 1996, "Specification preservation in schema transformations - application to

semantics and statistics," Data & Knowledge Engineering, vol. 19. pp. 99-134.

Hainaut, J-L. 2006, "The Transformational approach to database engineering." GTTSE 2005,

LNCS 4143, pp. 95-143.

Halevy, A.Y. 2001, "Answering queries using views: A survey," VLDB 2001, LNCS 10, pp.

270-294.

Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal, A. & Sikka, V.

2005, "Enterprise information integration: successes, challenges and controversies,"

ACM SIGMOD 2005, pp. 778-787.

Halpin, T. 2001, Information Modeling and Relational Databases. Morgan Kaufman, San

Francisco, CA, USA.

Halle, B.V. 1994, "Back to business rule basics," Database Programming and Design, pp. 15-

18

Halle, B.V. 2001, "Building a business rule system," Data Management Review.

Harold, E.R. 2001, The XML Bible, Hungry Minds Inc. New York, USA.

Herbst, H. 1997, Business Rule-Oriented Conceptual Modeling, Physica-Verlag, Germany.

Hibernate 2007, Hibernate Tools. www.hibernate.org.

Hull, R. 1986, " Relative information capacity of simple relational database schemata,"

SIAM J. Computing, vol.15, no. 3, pp. 856-886.

Jarrar, M. 2007, "Towards automated reasoning on ORM schemes. Mapping ORM into the

DLRidf Description Logic." ER 2007, LNCS 4801, pp. 181-197.

Kalfoglou, Y. & Schorlemmer, M. 2003, "Ontology mapping: the state of the art," Knowledge

Engineering Review, vol. 18, no. 1, pp. 1-31.

Kementsietsidis, A., Arenas, M. & Miller, R.J. 2003, "Mapping data in peer-to-peer systems:

semantics and algorithmic issues," ACM SIGMOD International conference on

Management of data 2003, pp. 325-336.

Kimball, R. & Caserta, J. 2004, The Data Warehouse ETL Tookit: Practical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data, Wiley and Sons, Indianapolis, IN,

USA.

Krammer, M. I. 1997, "Business rules: automating business policies and practices,"

Distributed Computing Monitor.

http://www.hibernate.org/

References

223

Lamb, D.A., Scott, M. & Heavey, T. 2005, CASE Vendor List.

http://www.cs.queensu.ca/Software-Engineering/vendor.html.

Lenzerini, M. 2002, "Data integration: a theoretical perspective," ACM PODS 2002, pp. 233-

246.

Li, C., Bohannon, P. & Narayan, P.P.S. 2003, "Composing XSL transformations with XML

publishing views," ACM SIGMOD International conference on Management of data 2003,

pp. 515-526.

Lien, Y.E. 1982, "On the equivalence of data models," J. ACM, vol. 29, pp. 333-362.

Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A.Y. & Tarczy-Hornoch, P. 2007,

"Methodological review: data integration and genomic medicine," Journal of Biomedical

Informatics, vol. 40, no. 1, pp. 5-16.

Loucopoulos, P. & Wan Kadir, W.M.N 2008, "BROOD: Business rules-driven object oriented

design," Jornal of Database Management, vol. 10, no. 1, pp. 41-73.

Madhavan, J., Bernstein, P.A., Domingos, P. & Halevy, A.Y. 2002, "Representing and

reasoning about mappings between domain models," AAAI'02, pp. 80-86.

Madhavan, J. & Halevy, A.Y. 2003, "Composing mappings among data sources," VLDB 2003,

vol. 29, pp. 572-583.

Mazón, J-N., Trujillo, J. & Lechtenbörger, J. 2007, "Reconciling requirements-driven data

warehouses with data sources via multidimensional normal forms." Data & Knowledge

Engineering, vol. 63, pp. 725-751.

McGuinness, D. L. & Harmelen, F. van (eds.) 2004, "W3C OWL web ontology language

overview." http://www.w3.org/TR/owl-features/.

Mecca, G., Atzeni, P., Masci, A., Sindoni, G. & Merialdo, P. 1998, "The Araneus web-based

management system," ACM SIGMOD 1998, pp. 544-546.

Melnik, S. 2004, Generic Model management: Concepts and Algorithms, Springer-Verlag

New York, Inc., Secaucus, NJ, USA.

Melnik, S., Bernstein, P.A., Halevy, A.Y. & Rahm, E. 2005, "Supporting executable mappings

in model management," ACM SIGMOD 2005, pp. 167-178.

Melnik, S., Rahm, E. & Bernstein, P.A. 2003, "Rondo: a programming platform for generic

model management," ACM SIGMOD 2003, pp. 193-204.

Mens, T. & Van Gorp, P. 2006, "A taxonomy of model transformation," Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125-142.

Meyer, B. 1997, Object-oriented software construction. Prentice Hall International Series in

Computer Science.

Microsoft 2008, Microsoft .NET Framework 3.5 Administrator Deployment Guide.

http://msdn.microsoft.com/en-us/library/cc160717.aspx

http://www.cs.queensu.ca/Software-Engineering/vendor.html

An object-oriented approach to the translation between MOF metaschemas

224

Microsoft 2007, Microsoft Office InfoPath. http://office.microsoft.com/en-us/infopath.

Microsoft 2006, Microsoft BizTalk Server. http://www.microsoft.com/biztalk.

Microsoft 2005, Microsoft SQL Server Reporting Services.

http://www.microsoft.com/sql/technologies/reporting.

Miller, R.J., Ioannidis, Y.E. & Ramakrishnan, R. 1994, "Schema equivalence in

heterogeneous systems: bridging theory and practice," Information Systems, vol. 19, no.

1, pp. 3-31.

Mitra, P., Wiederhold, G. & Kersten, M.L. 2000, "A graph-oriented model for articulation of

ontology interdependencies," EDBT 2000, LNCS 1777, pp. 86-100.

Morgan, T. 2002, Business Rules and Information Systems: Aligning IT with Business Goals.

Boston, MA, Addison-Wesley.

Moriarty, T. 1993, "The next paradigm," Database Programming and Design.

Niles, I. & Pease, A. 2001, "Towards a standard upper ontology," FOIS 2001, pp. 2-9.

Noy, N.F. 2004, "Semantic integration: a survey of ontology-based approaches," ACM

SIGMOD Record, vol. 33, no. 4, pp. 65-70.

Object Management Group 2008a, Semantics of Business Vocabulary and Business Rules

(SBVR), v1.0. OMG Available specification. (formal/2008-01-02).

Object Management Group 2008b, Business-Friendly Notation for Business Vocabulary and

Rules. Request for Proposal. (bmi/2008-06-01).

Object Management Group 2007a, Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, OMG Final Adopted Specification (ptc/2007-

07-07).

Object Management Group 2007b, OMG Unified Modeling Language (OMG UML),

Superstructure, V2.1.2, OMG Available Specification without Change Bars (formal/2007-

11-02).

Object Management Group 2006a, Meta Object Facility (MOF) Core Specification, Version

2.0, OMG Available Specification (formal/2006-01-01).

Object Management Group 2006b, Object Constraint Language (OCL), Version 2.0, OMG

Available Specification (formal/2006-05-01).

Object Management Group 2006c, Unified Modeling Language: Superstructure, Version 2.1.

Object Management Group 2004, Business Rule Team, Business Semantics of Business

Rules (BSBR).

Object Management Group 2003, MDA Guide Version 1.0.1. (omg/2003-06-01).

Olivé, A. 2007, Conceptual Modeling of Information Systems, Springer-Verlag, Berlin

Heidelberg.

http://office.microsoft.com/en-us/infopath
http://www.microsoft.com/biztalk
http://www.microsoft.com/sql/technologies/reporting

References

225

Oracle 2007, Oracle Toplink.

http://www.oracle.com/technology/products/ias/toplink/index.html

Papotti, P. & Torlone, R. 2005, "Heterogeneous data translation through XML conversion,"

Journal of Web Engineering, vol. 4, no. 3, pp. 189-204.

Papotti, P. & Torlone, R. 2007, "Automatic generation of model translations," CAiSE 2007,

LNCS 4495, pp. 36-50.

Peterson, D., Sperberg-McQueen, C.M., Thompson, H.S., Gao, S. 2008, "W3C XML Schema

Definition Language (XSD) 1.1 Part 2: Datatypes: Working Draft in Last Call 20 June 2008."

Planas, E. & Olivé, A. 2006, The DBLP Case Study. http://guifre.lsi.upc.edu/DBLP.pdf.

Popa, L., Velegrakis, Y., Hernández, M.A., Miller, R.J. & Fagin, R. 2002, "Translating web

data," VLDB 2002, pp. 598-609.

Pottinger, R.A. & Bernstein, P.A. 2003, "Merging models based on given correspondences,"

VLDB 2003, pp. 826-873.

Rahm, E. & Bernstein, P.A. 2001, "A survey of approaches to automatic schema matching,"

VLDB 2001, 10, pp. 334-350.

Raventós, R. 2008a, Application examples of the object-oriented operation-based translation

approach to fragments of the UML, ER and Relational metaschemas. LSI-08-10-R.

http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=1004.

Raventós, R. 2008b, Implementation of the translation between UML and SBVR in USE.

http://www.lsi.upc.edu/~raventos/PhDthesis/IMPLEMENTATION.htm

Riehle, D. 2006, "Value object," PLoP 2006, http://hillside.net/plop/2006/Papers/Library/

ValueObject-%20vo5.pdf.

Rosca, D., Greenspan, S., Feblowitz, M. & Wild, C. 1997, "A decision support methodology in

support of the business rules lifecycle," Proceedings of the Third IEEE International

Symposium on Requirements Engineering, 1997, pp. 236-246.

Ross, R. G. 2003, Principles of the Business Rule Approach. Boston, MA: Addison-Wesley.

Ross, R.G. 2005, Business Rule Concepts: Getting to the Point of Knowledge (2nd ed.),

Business Rule Solutions, LLC.

Rumbaugh, J., Jacobson, I. & Booch, G. 2004, The Unified Modeling Language Reference

Manual, 2nd ed., Addison-Wesley Pub Co.

Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P. & Lum, V.Y. 1977, "EXPRESS: A Data

EXtraction, Processing, and REStructuring System," ACM TODS, vol. 2, no. 2, pp. 134-

174.

Shvaiko, P. & Euzenat, J. 2005, "A survey of schema-based matching approaches." in J. Data

Semantics IV, pp. 146-171.

http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620/
http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620/
http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620/
http://guifre.lsi.upc.edu/DBLP.pdf
http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=1004

An object-oriented approach to the translation between MOF metaschemas

226

Sperberg-McQueen, C.M., Gao, S. & Thompson, H.S. (eds.) 2008, "W3C XML Schema

Definition Language (XSD) 1.1 Part 1: Structures: Working Draft in Last Call 20 June

2008."Stylus Studio 2008, Stylus Studio. http://www.stylusstudio.com/.

Tommasi, M. De & Corallo, A. 2006, "SBVEAVER: A tool for modeling business vocabularies

and business rules," KES 2006, Part III, LNAI vol. 4253, pp. 1083-1091.

Truex, D.P., Baskerville, R. & Klein, H. 1999, "Growing systems in emergent organisations,"

Communications of ACM, vol. 42, no.8, pp. 117-123.

University of Bremen Database Systems Group 2007, A UML-based Specification

Environment (USE). http://www.db.informatik.uni-bremen.de/projects/USE/.

Vara. J.M., Vela, B., Cavero, J.M. & Marcos, E. 2007, "Model transformation for object-

relational database development," SAC'07, pp. 1012-1019.

Wagner, G., Lukichev, S., Fuchs, N. E., Spreeuwenberg, S. 2005, "First-Version Controlled

English Rule Language." REWERSE project, IST506779/Eindhoven/I1-D2/D/PU/b1.

Wan-Kadir, W.M.N. & Loucopoulos, P. 2004, "Relating evolving business rules to software

design," Journal of Systems Architecture, vol. 50, pp. 367-382.

Wiederhold, G. 1977, Database Design, McGraw-Hill Higher Education.

Zave, P. 1997, "Classification of research efforts in requirements engineering," ACM

Computing Surveys, vol. 29, no. 4, pp. 315-321.

http://www.w3.org/TR/2008/WD-xmlschema11-1-20080620/
http://www.w3.org/TR/2008/WD-xmlschema11-1-20080620/
http://www.w3.org/TR/2008/WD-xmlschema11-1-20080620/
http://www.stylusstudio.com/
http://www.db.informatik.uni-bremen.de/projects/USE/

Appendix A (Chapter 4): UML metaschema in
USE

The following is a complete specification, suitable for validation with the USE tool, of the

UML metaschema presented in Chapter 4. The operations related to the translation to

SBVR are not included. Note that all the associations that are ordered have been specified

as an order attribute because the ordered keyword in the USE tool does not seem to

matter when inserting association links. The keyword is only used to distinguish between

Set and Sequence types when using navigational syntax in OCL expressions8. Note also that

the type of the value attribute of the LiteralUnlimitedNatural, UnlimitedNatural, has been

defined as an enumeration since the USE tool does not support UnlimitedNatural data

types. Finally, note also that some notation is slightly different from the standard OCL.

--

-- Fragment of UML Metaschema v.2.1.2

--

model UMLMetaschema

--

--- Enumeration

--

enum AggregationKind { none, shared, composite }

enum UnlimitedNatural { asterisk }

--

--- Classes

--

class Association < Relationship, Classifier

attributes

 isDerived : Boolean

operations

-- derived association

 endType():Set(Type) =

 self.memberEnd->collect(e|e.type)->asSet

end

class AssociationClass < Class, Association

class Class < Classifier

operations

-- derived association

 superClass():Set(Class)=

 self.general().oclAsType(Class)->asSet

end

8 Information provided directly by Mark Richters, developer of USE tool.

An object-oriented approach to the translation between MOF metaschemas

228

abstract class Classifier < RedefinableElement, Namespace, Type

attributes

 isAbstract : Boolean

operations

-- derived associations

 attribute():Set(Property)=

 self.oclAsType(Class).ownedAttribute->union(

 self.oclAsType(DataType).ownedAttribute)->asSet

 general():Set(Classifier)=

 self.parents()

-- additional operations

 parents():Set(Classifier)=

 generalization.general->asSet()

 allParents():Set(Classifier)=

 self.parents()->union(self.parents()->collect(p|

 p.allParents())->flatten()->asSet())

end

class Constraint < NamedElement

end

class DataType < Classifier

end

abstract class DirectedRelationship < Relationship

end

abstract class Element

end

class Enumeration < DataType

end

class EnumerationLiteral < InstanceSpecification

attributes

 order : Integer

end

class Expression < ValueSpecification

attributes

 symbol : String

end

abstract class Feature < RedefinableElement

end

class Generalization < DirectedRelationship

end

class GeneralizationSet < NamedElement

attributes

 isCovering : Boolean

 isDisjoint : Boolean

end

class InstanceSpecification < NamedElement

Appendix A: UML Metaschema in USE

229

end

class LiteralBoolean < LiteralSpecification

attributes

 value : Boolean

end

class LiteralInteger < LiteralSpecification

attributes

 value : Integer

end

class LiteralNull < LiteralSpecification

end

abstract class LiteralSpecification < ValueSpecification

end

class LiteralString < LiteralSpecification

attributes

 value : String

end

class LiteralUnlimitedNatural < LiteralSpecification

attributes

 value : UnlimitedNatural

end

abstract class MultiplicityElement < Element

operations

-- derivated attributes

 lower():Integer=

 lowerBound()

 upper():UnlimitedNatural=

 upperBound()

-- additional operations

 lowerBound():Integer =

 if self.lowerValue->isEmpty then 1 else

 self.lowerValue.oclAsType(LiteralInteger).value

 endif

 upperBound():UnlimitedNatural =

 self.upperValue.oclAsType(LiteralUnlimitedNatural).value

end

abstract class NamedElement < Element

attributes

 name : String

end

abstract class Namespace < NamedElement

end

class OpaqueExpression < ValueSpecification

attributes

 body : String

 language : String

An object-oriented approach to the translation between MOF metaschemas

230

end

class PrimitiveType < DataType

end

class Property < StructuralFeature

attributes

 isDerived : Boolean

 isDerivedUnion : Boolean

 aggregation_ : AggregationKind

 order : Integer

operations

-- derived attributes

 isComposite():Boolean=

 self.aggregation_=#composite

end

abstract class RedefinableElement < NamedElement

end

abstract class Relationship < NamedElement

end

abstract class StructuralFeature < MultiplicityElement,

 TypedElement, Feature

end

abstract class Type < NamedElement

end

abstract class TypedElement < NamedElement

end

abstract class ValueSpecification

end

--

--- Associations

--

composition OwningUpper_UpperValue between

 MultiplicityElement[0..1] role owningUpper

 ValueSpecification[0..1] role upperValue

end

composition OwningLower_LowerValue between

 MultiplicityElement[0..1] role owningLower

 ValueSpecification[0..1] role lowerValue

end

association TypedElement_Type between

 TypedElement[*]

 Type[0..1]

end

composition Context_OwnedRule between

 Namespace[0..1] role context_

 Constraint[*] role ownedRule

end

Appendix A: UML Metaschema in USE

231

association Constraint_ConstrainedElement between

 Constraint[*]

 Element[*] role constrainedElement ordered

end

composition OwningConstraint_Specification between

 Constraint[0..1] role owningConstraint

 ValueSpecification[1] role specification

end

composition OwningInstanceSpec_Specification between

 InstanceSpecification[0..1] role owningInstanceSpec

 ValueSpecification[0..1] role specification

end

association InstanceSpecification_Classifier between

 InstanceSpecification[*]

 Classifier[*] role classifier

end

association Classifier_RedefinedClassifier between

 Classifier[*]

 Classifier[*] role redefinedClassifier

end

association General_Generalization between

 Classifier[1] role general

 Generalization[*] role generalization_

end

composition Specific_Generalization between

 Classifier[1] role specific

 Generalization[*] role generalization

end

association Class_OwnedAttribute between

 Class[0..1] role class_

 Property[*] role ownedAttribute ordered

end

composition Class_NestedClassifier between

 Class[0..1] role class_

 Classifier[*] role nestedClassifier

end

association Association_MemberEnd between

 Association[0..1] role association_

 Property[2..*] role memberEnd ordered

attributes

 order : Integer

end

association OwningAssociation_OwnedEnd between

 Association[0..1] role owningAssociation

 Property[*] role ownedEnd ordered

end

association Property_SubsettedProperty between

An object-oriented approach to the translation between MOF metaschemas

232

 Property[*]

 Property[*] role subsettedProperty

end

association Property_RedefinedProperty between

 Property[*] role property_

 Property[*] role redefinedProperty

end

association DataType_OwnedAttribute between

 DataType[0..1] role dataType

 Property[*] role ownedAttribute ordered

end

association Enumeration_EnumerationLiteral between

 Enumeration[0..1] role enumeration

 EnumerationLiteral[1..*] role ownedLiteral ordered

end

composition AssociationEnd_Qualifier between

 Property[0..1] role associationEnd

 Property[*] role qualifier

end

association Powertype_PowertypeExtent between

 Classifier[0..1] role powertype

 GeneralizationSet[*] role powertypeExtent

end

association GeneralizationSet_Generalization between

 GeneralizationSet[*] role generalizationSet

 Generalization[1..*] role generalization

end

--

--- Constraints

--

constraints

context Association inv OnlyBinaryAssociationCanBeAggregations:

 self.memberEnd->exists(aggregation_<>#none) implies

 self.memberEnd->size=2

context Association inv

 AssociationsEndsWithMoreThan2MustBeOwnedByAssociation:

 if self.memberEnd->size>2 then ownedEnd->

 includesAll(memberEnd) else true endif

context Classifier inv GeneralizationsAreAcyclical:

 not self.allParents()->includes(self)

context Constraint inv AConstraintCannotBeAppliedToItself:

 not constrainedElement -> includes(self)

context GeneralizationSet inv

 EveryGeneralizationMustHaveTheSameGeneralClassifier:

 self.generalization->collect(g|g.general)->asSet->size<=1

context MultiplicityElement inv TheLowerBoundMustBeNonNegative:

Appendix A: UML Metaschema in USE

233

 lowerBound()<>oclUndefined(Integer) implies lowerBound()>=0

context MultiplicityElement inv UpperBoundGreaterThanLowerBound:

 upperValue.oclAsType(LiteralInteger) <>

oclUndefined(LiteralInteger) implies

upperValue.oclAsType(LiteralInteger).value>=lowerBound()

context Property inv IsDeriveUnionImpliesIsDerived:

 self.isDerivedUnion implies self.isDerived

context Expression_Operand inv CorrectOrder:

 Expression_Operand.allInstances->sortedBy(order)->

 last.order=Expression_Operand.allInstances->size()

context Constraint_ConstrainedElement inv CorrectOrder:

 Constraint_ConstrainedElement.allInstances->

 sortedBy(order)->last.order=

 Constraint_ConstrainedElement.allInstances->size()

context Class_OwnedAttribute inv CorrectOrder:

 Class_OwnedAttribute.allInstances->sortedBy(order)->

 last.order=Class_OwnedAttribute.allInstances->size()

context Association_MemberEnd inv CorrectOrder:

 Association_MemberEnd.allInstances->sortedBy(order)->

 last.order=Association_MemberEnd.allInstances->size()

context OwningAssociation_OwnedEnd inv CorrectOrder:

 OwningAssociation_OwnedEnd.allInstances->sortedBy(order)->

 last.order=OwningAssociation_OwnedEnd.allInstances->size()

context DataType_OwnedAttribute inv CorrectOrder:

 DataType_OwnedAttribute.allInstances->sortedBy(order)->

 last.order=DataType_OwnedAttribute.allInstances->size()

Appendix B (Chapter 4): DBLP as an instance
of UML metaschema

This Appendix shows a representative list (there is an example for each type of schema

unit) of commands that have been used to create the structural schema of the DBLP

example, introduced in Chapter 4, in the USE tool. The schema is created as instances of

the UML Metaschema. The complete instantiation is available at (Raventós 2008b).

-- Primitive Types

!create PrimitiveType1 : PrimitiveType

!set PrimitiveType1.name := 'String'

!set PrimitiveType1.isAbstract := false

-- Enumeration

!create Enumeration1 : Enumeration

!set Enumeration1.isAbstract := false

!set Enumeration1.name := 'Gender'

!create EnumerationLiteral1 : EnumerationLiteral

!set EnumerationLiteral1.name := 'Male'

!insert (Enumeration1,EnumerationLiteral1) into

Enumeration_OwnedLiteral

!set EnumerationLiteral1.order := 1

!create EnumerationLiteral2 : EnumerationLiteral

!set EnumerationLiteral2.name := 'Female'

!insert (Enumeration1,EnumerationLiteral2) into

Enumeration_OwnedLiteral

!set EnumerationLiteral2.order := 2

-- Data Type

!create DataType1 : DataType

!set DataType1.name := 'Natural'

!set DataType1.isAbstract := false

-- Class

!create Class_1 : Class

!set Class_1.name := 'person'

!set Class_1.isAbstract := false

-- Generalization

!create Generalization1 : Generalization

!insert (Class_2,Generalization1) into General_Generalization

!insert (Class_4,Generalization1) into Specific_Generalization

-- Generalization Set

An object-oriented approach to the translation between MOF metaschemas

236

!create GeneralizationSet1 : GeneralizationSet

!insert (GeneralizationSet1,Generalization2) into

GeneralizationSet_Generalization

!insert (GeneralizationSet1,Generalization3) into

GeneralizationSet_Generalization

!set GeneralizationSet1.isCovering := true

!set GeneralizationSet1.isDisjoint := true

-- Attribute

!create Attribute1 : Property

!set Attribute1.name := 'gender'

!insert (Class_1,Attribute1) into Class_OwnedAttribute

!insert (Attribute1,Enumeration1) into TypedElement_Type

!set Attribute1.isDerived := false

!set Attribute1.isDerivedUnion := false

!set Attribute1.aggregation_ := #none

!create LiteralInteger1l : LiteralInteger

!set LiteralInteger1l.value := 1

!create LiteralInteger1u : LiteralInteger

!set LiteralInteger1u.value := 1

!insert (Attribute1,LiteralInteger1l) into OwningLower_LowerValue

!insert (Attribute1,LiteralInteger1u) into OwningUpper_UpperValue

-- Association

!create Association4 : Association

!set Association4.isDerived := false

!set Association4.isAbstract := false

!create Property4a : Property

!insert (Property4a,Class_7) into TypedElement_Type

!set Property4a.isDerived := false

!set Property4a.isDerivedUnion := false

!set Property4a.aggregation_ := #none

!create Property4b : Property

!insert (Property4b,Class_5) into TypedElement_Type

!set Property4b.isDerived := false

!set Property4b.isDerivedUnion := false

!set Property4b.aggregation_ := #shared

!set Property4a.order := 1

!set Property4b.order :=2

!insert (Association4,Property4a) into Association_MemberEnd

!insert (Association4,Property4a) into OwningAssociation_OwnedEnd

!insert (Association4,Property4b) into Association_MemberEnd

!insert (Association4,Property4b) into OwningAssociation_OwnedEnd

!create LiteralInteger4al : LiteralInteger

!set LiteralInteger4al.value := 1

!create LiteralUnlimitedNatural4au : LiteralUnlimitedNatural

!set LiteralInteger4au.value := #asterisk

!insert (Property4a,LiteralInteger4al) into OwningLower_LowerValue

!insert (Property4a,LiteralUnlimitedNatural4au) into

 OwningUpper_UpperValue

!create LiteralInteger4bl : LiteralInteger

!set LiteralInteger4bl.value := 0

Appendix B: DBLP as an instance of UML Metaschema

237

!create LiteralInteger4bu : LiteralInteger

!set LiteralInteger4bu.value := 1

!insert (Property4b,LiteralInteger4bl) into OwningLower_LowerValue

!insert (Property4b,LiteralInteger4bu) into

 OwningUpper_UpperValue

!create LiteralUnlimitedNatural3bu:LiteralUnlimitedNatural

!set LiteralUnlimitedNatural3bu.value := 1

!insert (Property3b,LiteralInteger3bl) into OwningLower_LowerValue

!insert (Property3b,LiteralUnlimitedNatural3bu) into

OwningUpper_UpperValue

-- AssociationClasses

!create AssociationClass1 : AssociationClass

!set AssociationClass1.name := 'editorship'

!set AssociationClass1.isDerived := false

!set AssociationClass1.isAbstract := false

!create Property1a : Property

!insert (Property1a,Class_1) into TypedElement_Type

!set Property1a.name := 'editor'

!set Property1a.isDerived := false

!set Property1a.isDerivedUnion := false

!set Property1a.aggregation_ := #none

!create Property1b : Property

!insert (Property1b,Class_5) into TypedElement_Type

!set Property1b.isDerived := false

!set Property1b.isDerivedUnion := false

!set Property1b.aggregation_ := #none

!set Property1a.order := 1

!set Property1b.order := 2

!insert (AssociationClass1,Property1a) into Association_MemberEnd

!insert (AssociationClass1,Property1a) into

 OwningAssociation_OwnedEnd

!insert (AssociationClass1,Property1b) into Association_MemberEnd

!insert (AssociationClass1,Property1b) into

 OwningAssociation_OwnedEnd

!create LiteralInteger1al : LiteralInteger

!set LiteralInteger1al.value := 1

!create LiteralUnlimitedNatural1au : LiteralUnlimitedNatural

!set LiteralInteger1au.value := #asterisk

!insert (Property1a,LiteralInteger1al) into OwningLower_LowerValue

!insert (Property1a,LiteralUnlimitedNatural1au) into

 OwningUpper_UpperValue

!create LiteralInteger1bl : LiteralInteger

!set LiteralInteger1bl.value := 0

!create LiteralUnlimitedNatural1bu : LiteralUnlimitedNatural

!set LiteralInteger1bu.value := #asterisk

!insert (Property1b,LiteralInteger1bl) into OwningLower_LowerValue

!insert (Property1b,LiteralUnlimitedNatural1bu) into

 OwningUpper_UpperValue

-- Constraint

!create Constraint2 : Constraint

!set Constraint2.name := 'nameIsKeyOfPerson'

An object-oriented approach to the translation between MOF metaschemas

238

!create Constraint_ConstrainedElement2:

Constraint_ConstrainedElement between

(Constraint2,Attribute2)

!set Constraint_ConstrainedElement2.order := 1

!insert (Class_1, Constraint2) into Context_OwnedRule

!create Expression2 : Expression

!set Expression2.symbol := 'person.allInstances()->isUnique(name)'

!insert (Constraint2, Expression2) into

OwningConstraint_Specification

Appendix C (Chapter 4): methods for
creating UML schema units

This Appendix describes the methods for creating instances of UML schema units from

their characterization objects, as described in Chapter 4. For each chacterization objects

there is a procedure in an .assl file. The description of all methods is available at (Raventós

2008b).

The method for creating the schema units of all instances of ClassCh is defined as follows:

procedure CreateUnitOfClassCh()

 var c:Class, el:ClassCh;

begin

 for nameCh:String in [ClassCh.allInstances -> collect(ch:ClassCh|

 ch.name)->asSet->asSequence]

 begin

 el := Any([ClassCh.allInstances -> select(ch|

 ch.name = nameCh)-> asSequence]);

 c:=Create(Class);

 [c].name := [el.name];

 [c].isAbstract := [el.isAbstract];

 end;

end;

The method for creating the schema units of all the instances of DataTypeCh is defined as

follows:
procedure CreateUnitOfDataTypeCh()

 var d:DataType;

 begin

 for el:DataTypeCh in [DataTypeCh.allInstances->asSequence]

 begin

 if [el.isPrimitiveType] then

 begin

 p:=Create(PrimitiveType);

 [p].name := [el.name];

 [p].isAbstract := [false];

 end

 else

 begin

 d:=Create(DataType);

 [d].name := [el.name];

 [d].isAbstract := [false];

 end;

 end;

 end;

The method for creating the schema unit of all the instances of EnumerationCh is defined

as follows:

procedure CreateUnitOfEnumerationCh()

 var e:Enumeration, eli:EnumerationLiteral, el:EnumerationCh;

 begin

An object-oriented approach to the translation between MOF metaschemas

240

 for nameCh:String in [EnumerationCh.allInstances ->

 collect(ch:EnumerationCh| ch.name)->asSet->asSequence]

 begin

 el := Any([EnumerationCh.allInstances->select(ch|

 ch.name = nameCh)->asSequence]);

 e := Create(Enumeration);

 [e].name := [el.name];

 [e].isAbstract := [false];

 for li:Literal in [el.literal]

 begin

 eli := Create (EnumerationLiteral);

 [eli].name := [li.name];

 [eli].order := [li.order];

 Insert(Enumeration_OwnedLiteral, [e],[eli]);

 end;

 end;

 end;

The method for creating the schema units of all instances of PropertyCh is defined as

follows:
procedure CreateUnitOfPropertyCh()

var p:Property, cl:Class, dt:DataType, li:LiteralInteger,

lu1:LiteralUnlimitedNatural, lu2:LiteralInteger, d:DataType,

el:PropertyCh, pr:PrimitiveType;

begin

 for pro:Tuple(cl:String, na:String) in

 [PropertyCh.allInstances->collect(ch:PropertyCh|

 Tuple{cl:ch.ownerClassName, na:ch.name})->asSet->asSequence]

 begin

 el := Any([PropertyCh.allInstances->select(p|

 p.ownerClassName=pro.cl and p.name=pro.na)->asSequence]);

 p := Create(Property);

 [p].name := [el.name];

 if [el.type<>'Boolean'] then

 begin

 d := Any([DataType.allInstances->select(e:DataType|

 (e.oclIsTypeOf(DataType) or e.oclIsTypeOf(Enumeration) or

 e.oclIsTypeOf(PrimitiveType)) and e.name=el.type)->

 asSequence]);

 Insert(TypedElement_Type, [p],[d]);

 end

 else

 begin

 pr:= Create(PrimitiveType);

 [pr].name := ['Boolean'];

 Insert(TypedElement_Type, [p],[pr]);

 end;

 if [el.ownerClassName<>oclUndefined(String)] then

 begin

 cl := Any([Class.allInstances->select(c:Class|

 c.name=el.ownerClassName)->asSequence]);

 Insert(Class_OwnedAttribute, [cl], [p]);

 end;

 if [el.ownerDataTypeName<>oclUndefined(String)] then

 begin

 dt := Any([DataType.allInstances->select(d:DataType|

Appendix C: Methods for creating UML schema units

241

 d.name=el.ownerDataTypeName)->asSequence]);

 Insert(DataType_OwnedAttribute, [dt], [p]);

 end;

 [p].isDerived := [el.isDerived];

 [p].isDerivedUnion := [el.isDerivedUnion];

 [p].aggregation_ := [el.aggregation_];

 li := Create(LiteralInteger);

 [li].value := [el.lowerValue];

 Insert(OwningLower_LowerValue, [p], [li]);

 if [el.upperValue=oclUndefined(Integer)] then

 begin

 lu1 := Create(LiteralUnlimitedNatural);

 [lu1].value := [#asterisk];

 Insert(OwningUpper_UpperValue, [p], [lu1]);

 end

 else

 begin

 lu2 := Create(LiteralInteger);

 [lu2].value := [el.upperValue];

 Insert(OwningUpper_UpperValue, [p], [lu2]);

 end;

 end;

end;

The method for creating the schema units of all instances of AssociationCh is defined as

follows:
procedure CreateUnitOfAssociationCh()

 var a:Association, p:Property, cl:Class, li:LiteralInteger,

 lu2:LiteralInteger, lu1:LiteralUnlimitedNatural,

 el:AssociationCh;

 begin

 for pro:Tuple(cl1:String, cl2:String) in

 [AssociationCh.allInstances->collect(ch:AssociationCh|

 Tuple{cl1:ch.associationMemberEnd->sortedBy(order)->

 first.typeName, cl2:ch.associationMemberEnd->

 sortedBy(order) ->last.typeName})->asSet->asSequence]

 begin

 for el:AssociationCh in [AssociationCh.allInstances

 ->asSequence]

 begin

 a := Create(Association);

 if [el.name<>oclUndefined(String)] then

 begin

 [a].name := [el.name];

 end;

 [a].isAbstract := [el.isAbstract];

 for ame:AssociationMemberEnd in

 [el.associationMemberEnd]

 begin

 p := Create (Property);

 Insert(Association_MemberEnd, [a], [p]);

 Insert(OwningAssociation_OwnedEnd, [a], [p]);

 if [ame.name<>oclUndefined(String)] then

 begin

 [p].name := [p.name];

 end;

 cl := Any([Class.allInstances -> select(c:Class|

 c.name = ame.typeName)->asSequence]);

 Insert(TypedElement_Type, [p], [cl]);

An object-oriented approach to the translation between MOF metaschemas

242

 [p].isDerived := [ame.isDerived];

 [p].isDerivedUnion := [ame.isDerivedUnion];

 [p].aggregation_ := [ame.aggregation_];

 li := Create(LiteralInteger);

 [li].value := [ame.lowerValue];

 Insert(OwningLower_LowerValue, [p], [li]);

 if [ame.upperValue=oclUndefined(Integer)] then

 begin

 lu1 := Create(LiteralUnlimitedNatural);

 [lu1].value := [#asterisk];

 Insert(OwningUpper_UpperValue, [p], [lu1]);

 end

 else

 begin

 lu2 := Create(LiteralInteger);

 [lu2].value := [ame.upperValue];

 Insert(OwningUpper_UpperValue, [p], [lu2]);

 end;

 [p].order := [ame.order];

 end;

 end;

end;

The method for creating the schema units of all instances of AssociationClassCh is defined

as follows:
procedure CreateUnitOfAssociationClassCh()

 var ac:AssociationClass, p:Property, cl:Class,

 li:LiteralInteger, lu2:LiteralInteger,

 lu1:LiteralUnlimitedNatural, el:AssociationClassCh;

 begin

 begin

 for nameCh:String in [AssociationClassCh.allInstances->

 collect(ch:AssociationClassCh| ch.name)->asSet->asSequence]

 begin

 for el:AssociationClassCh in

 [AssociationClassCh.allInstances -> asSequence]

 begin

 ac := Create(AssociationClass);

 [ac].name := [el.name];

 for ame:AssociationClassMemberEnd in

 [el.associationClassMemberEnd]

 begin

 p := Create (Property);

 Insert(Association_MemberEnd, [ac], [p]);

 Insert(OwningAssociation_OwnedEnd, [ac], [p]);

 if [ame.name <> oclUndefined(String)] then

 begin

 [p].name := [p.name];

 end;

 cl := Any([Class.allInstances -> select(c:Class|

 c.name = ame.typeName) -> asSequence]);

 Insert(TypedElement_Type, [p], [cl]);

 [p].isDerived := [ame.isDerived];

 [p].isDerivedUnion := [ame.isDerivedUnion];

 [p].aggregation_ := [ame.aggregation_];

 li := Create(LiteralInteger);

 [li].value := [ame.lowerValue];

 Insert(OwningLower_LowerValue, [p], [li]);

 lu := Create(LiteralUnlimitedNatural);

Appendix C: Methods for creating UML schema units

243

 if [ame.upperValue=oclUndefined(Integer)] then

 begin

 lu1 := Create(LiteralUnlimitedNatural);

 [lu1].value := [#asterisk];

 Insert(OwningUpper_UpperValue, [p], [lu1]);

 end

 else

 begin

 lu2 := Create(LiteralInteger);

 [lu2].value := [ame.upperValue];

 Insert(OwningUpper_UpperValue, [p], [lu2]);

 end;

 [p].order := [ame.order];

 end;

 end;

end;

The method for creating the schema units of all instances of GeneralizationCh is defined as

follows:

procedure CreateUnitOfGeneralizationCh()

 var g:Generalization, gc:Class, sc:Class, el:GeneralizationCh;

begin

 for pro:Tuple(cl1:String, cl2:String) in

 [GeneralizationCh.allInstances->collect(ch:GeneralizationCh|

 Tuple{cl1:ch.generalClassName, cl2:ch.specificClassName})->

 asSet->asSequence]

 begin

 el := Any([GeneralizationCh.allInstances->select(p|

 p.generalClassName = pro.cl1 and p.specificClassName =

 pro.cl2)->asSequence]);

 g := Create(Generalization);

 gc := Any([Class.allInstances->select(c:Class| c.name =

 el.generalClassName)->asSequence]);

 Insert(General_Generalization, [gc], [g]);

 sc := Any([Class.allInstances->select(c:Class|

 c.name = el.specificClassName)->asSequence]);

 Insert(Specific_Generalization, [sc], [g]);

 end;

end;

The method for creating the schema units of all instances of GeneralizationSetCh is defined

as follows:
procedure CreateUnitOfGeneralizationSetCh()

 var gs:GeneralizationSet, g:Generalization, pw:Classifier,

 el:GeneralizationSetCh;

begin

 for pro:String in [GeneralizationSetCh.allInstances->

 collect(ch:GeneralizationSetCh| ch.name)->asSet->asSequence]

 begin

 el := Any([GeneralizationSetCh.allInstances->select(p|

 p.name=pro)->asSequence]);

 gs := Create(GeneralizationSet);

 [gs].name := [el.name];

 [gs].isCovering := [el.isCovering];

 [gs].isDisjoint := [el.isDisjoint];

 for p:Participant in [el.participant->asSequence]

An object-oriented approach to the translation between MOF metaschemas

244

 begin

 g := Any([Generalization.allInstances->

 select(ge:Generalization| ge.general.name =

 p.generalClassName and ge.specific.name =

 p.specificClassName)->asSequence]);

 Insert(GeneralizationSet_Generalization, [gs], [g]);

 end;

 end;

end;

The method for creating the schema units of all instances of ConstraintCh is defined as

follows:
procedure CreateUnitOfConstraintCh()

 var c:Constraint, na:Namespace, ex:Expression, ele:Element,

 el:ConstraintCh;

begin

 for pro:Tuple(na:String,sp:String, ce:Set(ConstrainedElement_)) in

 [ConstraintCh.allInstances->select(ch| ch.name<>'XOR')->

 collect(ch:ConstraintCh| Tuple{na:ch.name, sp:ch.namespace,

 ce:ch.constrainedElement})->asSet->asSequence]

 begin

 el := Any([ConstraintCh.allInstances->select(p| p.name = pro.na

 and p.namespace=pro.sp and p.constrainedElement=pro.ce)->

 asSequence]);

 c := Create(Constraint);

 if [el.name<>oclUndefined(String)] then

 begin

 [c].name := [el.name];

 end;

 na := Any([Class.allInstances->select(n| n.name = el.namespace)

 ->asSequence]);

 Insert(Context_OwnedRule, [na], [c]);

 ex := Create(Expression);

 [ex].symbol := [el.symbolExpression];

 Insert(OwningConstraint_Specification,[c],[ex]);

 for coe:ConstrainedElement_ in [el.constrainedElement->

 asSequence]

 begin

 ele := Any([Element.allInstances->select(e:Element|

 if coe.type=#property then

 e.oclAsType(Property).class_.name=el.namespace and

 e.oclAsType(Property).name=coe.name

 else e.oclAsType(Association).memberEnd->collect(name)->

 asSet = coe.membersName->asSet and

 e.oclAsType(Association).memberEnd->collect(type.name)

 ->asSet = coe.membersType->asSet

 endif)->asSequence]);

 Insert(Constraint_ConstrainedElement, [c], [ele]);

 end;

 end;

 el := Any([ConstraintCh.allInstances->select(p| p.name = 'XOR')->

 asSequence]);

 c := Create(Constraint);

 if [el.name<>oclUndefined(String)] then

 begin

 [c].name := [el.name];

 end;

 na := Any([Class.allInstances->select(n| n.name = el.namespace)->

 asSequence]);

Appendix C: Methods for creating UML schema units

245

 Insert(Context_OwnedRule, [na], [c]);

 ex := Create(Expression);

 [ex].symbol := [el.symbolExpression];

 Insert(OwningConstraint_Specification,[c],[ex]);

 for coe:ConstrainedElement_ in [el.constrainedElement->asSequence]

 begin

 ele := Any([Element.allInstances->select(e:Element|

 if coe.type=#property then

 e.oclAsType(Property).class_.name=el.namespace and

 e.oclAsType(Property).name=coe.name

 else e.oclAsType(Association).memberEnd->collect(name)->asSet

 = coe.membersName->asSet and

 e.oclAsType(Association).memberEnd ->collect(type.name)->

 asSet = coe.membersType->asSet

 endif)->asSequence]);

 Insert(Constraint_ConstrainedElement, [c], [ele]);

 end;

end;

Appendix D (Chapter 5): SBVR meanings
metaschema in USE

The following is a complete specification, suitable for validation with the USE tool, of the

SBVR Meanings metaschema presented in Chapter 5. Note, as in the case of UML, that all

the associations that are ordered have been specified as an order attribute because the

ordered keyword in the USE tool does not seem to matter when inserting association links.

The keyword is only used to distinguish between Set and Sequence types when using

navigational syntax in OCL expressions9.

-- Fragment of SBVR Meanings Metaschema v.1.0

model SBVR Meanings

--

--- Enumerations

--

enum FactTypeType { Associative, IsPropertyOf, Partitive,

 Categorization, Characteristic }

enum BinaryOperationType { Conjunction, Disjunction, Equivalence,

 ExclusiveDisjunction, NandFormulation, NorFormulation,

 Implication, WhetherOrNotFormulation}

enum QuantificationType { Universal, AtLeastN, Existential,

 AtMostN, AtMostOne, ExactlyN, ExactlyOne, NumericRange }

--

--- Classes

--

class AssociativeFactType < FactType

end

class AtLeastNQuantification < Quantification

end

class AtMostNQuantification < Quantification

end

class AtMostOneQuantification < AtMostNQuantification

end

class AtomicFormulation < LogicalFormulation

end

9 Information provided by Mark Richters, developer of USE tool.

An object-oriented approach to the translation between MOF metaschemas

248

abstract class BinaryLogicalOperation < LogicalOperation

end

abstract class BindableTarget < Concept

end

class CategorizationScheme < ObjectType

end

class CategorizationFactType < FactType

end

class Characteristic < FactType

end

abstract class ClosedLogicalFormulation <

ClosedSemanticFormulation, LogicalFormulation

end

class ClosedProjection < Projection, ClosedSemanticFormulation

end

abstract class ClosedSemanticFormulation < SemanticFormulation

end

abstract class Concept < Meaning

attributes

 name: String

end

class Conjunction < BinaryLogicalOperation

end

class Disjunction < BinaryLogicalOperation

end

class Equivalence < BinaryLogicalOperation

end

class ExactlyNQuantification < Quantification

end

class ExactlyOneQuantification < ExactlyNQuantification

end

class ExclusiveDisjunction < BinaryLogicalOperation

end

class ExistentialQuantification < AtLeastNQuantification

end

abstract class FactType < Concept

end

class FactTypeRole < Role

Appendix D: SBVR Meanings Metaschema in USE

249

attributes

 order : Integer

end

class Implication < BinaryLogicalOperation

end

class IndividualConcept < NounConcept, BindableTarget

end

class InstantiationFormulation < LogicalFormulation

end

class IsPropertyOfFactType < AssociativeFactType

end

abstract class LogicalFormulation < SemanticFormulation

end

class LogicalNegation < LogicalOperation

end

abstract class LogicalOperation < LogicalFormulation

end

abstract class Meaning < Thing

end

class NandFormulation < BinaryLogicalOperation

end

class NorFormulation < BinaryLogicalOperation

end

class NounConcept < Concept

end

class NonNegativeInteger < NounConcept

end

class NumericRangeQuantification < Quantification

end

class Objectification < LogicalFormulation

end

class ObjectType < NounConcept

end

class PartitiveFactType < AssociativeFactType

end

class Projection < SemanticFormulation

end

An object-oriented approach to the translation between MOF metaschemas

250

class Proposition < Meaning

attributes

 isTrue:Boolean

end

abstract class Quantification < LogicalFormulation

end

class ReferenceScheme < Concept

end

class Role < NounConcept

end

class RoleBinding < Concept

end

class Rule < Proposition

end

class Segmentation < CategorizationScheme

end

abstract class SemanticFormulation < Thing

end

class StructuralRule < Rule

end

class Text < NounConcept

attributes

 value:String

end

abstract class Thing

end

class UniversalQuantification < Quantification

end

class Variable < BindableTarget

end

class WhetherOrNotFormulation < BinaryLogicalOperation

end

class ClosedQuantification < ClosedLogicalFormulation,

 Quantification

end

class ClosedUniversalQuantification < ClosedQuantification

end

--

--- Associations

--

Appendix D: SBVR Meanings Metaschema in USE

251

association NounConcept_Role between

 NounConcept[1] role nounConcept

 Role[*] role role_

end

association FactTypeRole_FactType between

 FactTypeRole[*] role factTypeRole ordered

 FactType[1] role factType

end

association ReferenceScheme_SimplyUsedRole between

 ReferenceScheme[*] role referenceScheme

 FactTypeRole[*] role simplyUsedRole

end

association ReferenceScheme_IdentifyingCharacteristic between

 ReferenceScheme[*] role referenceScheme

 Characteristic[*] role identifyingCharacteristic

end

association Concept_ReferenceScheme between

 Concept[1..*] role referencedConcept

 ReferenceScheme[*] role referenceSchemeOfConcept

end

association CategorizationScheme_Category between

 CategorizationScheme[*] role scheme

 Concept[1..*] role category

end

association CategorizationScheme_GeneralConcept between

 CategorizationScheme[*] role categorizationScheme

 NounConcept[1] role generalConcept

end

association LogicalFormulation_Projection between

 LogicalFormulation[0..1] role logicalFormulation

 Projection[*] role projection

end

association SemanticFormulation_FreeVariable between

 SemanticFormulation[*] role semanticFormulation

 Variable[*] role freeVariable

end

association RestrictingFormulation_Variable between

 LogicalFormulation[0..1] role restrictingFormulation

 Variable[*] role variable

end

association Variable_RangedOverConcept between

 Variable[*] role variable

 Concept[0..1] role rangedOverConcept

end

An object-oriented approach to the translation between MOF metaschemas

252

association Proposition_ClosedLogicalFormulation between

 Proposition[1] role proposition

 ClosedLogicalFormulation[0..1] role closedLogicalFormulation

end

association AtomicFormulation_FactType between

 AtomicFormulation[*] role atomicFormulation

 FactType[1] role factType

end

association AtomicFormulation_RoleBinding between

 AtomicFormulation[1] role atomicFormulation

 RoleBinding[*] role roleBinding

end

association FactTypeRole_RoleBinding between

 FactTypeRole[1] role factTypeRole

 RoleBinding[*] role roleBinding

end

association RoleBinding_BindableTarget between

 RoleBinding[*] role roleBinding

 BindableTarget[1] role bindableTarget

end

association InstantiationFormulation_BindableTarget between

 InstantiationFormulation[*] role

 boundedToInstantiationFormulation

 BindableTarget[1] role bindableTarget

end

association InstantiationFormulation_ConceptConsidered between

 InstantiationFormulation[*] role instantiationFormulation

 Concept[1] role conceptConsidered

end

association LogicalNegation_LogicalOperand between

 LogicalNegation[*] role LogicalNegation

 LogicalFormulation[1] role logicalOperand

end

association BinaryLogicalOperation_LogicalOperand1 between

 BinaryLogicalOperation[*] role binaryLogicalOperation1

 LogicalFormulation[1] role logicalOperand1

end

association BinaryLogicalOperation_LogicalOperand2 between

 BinaryLogicalOperation[*] role binaryLogicalOperation2

 LogicalFormulation[1] role logicalOperand2

end

association Implication_Antecedent between

 Implication[*] role implication1

 LogicalFormulation[1] role antecedent

Appendix D: SBVR Meanings Metaschema in USE

253

end

association Implication_Consequent between

 Implication[*] role implication2

 LogicalFormulation[1] role consequent

end

association WhetherOrNotFormulation_Consequent between

 WhetherOrNotFormulation[*] role whetherOrNotFormulation1

 LogicalFormulation[1] role consequent

end

association WhetherOrNotFormulation_Inconsequent between

 WhetherOrNotFormulation[*] role whetherOrNotFormulation2

 LogicalFormulation[1] role inconsequent

end

association Quantification_ScopeFormulation between

 Quantification[*] role quantification

 LogicalFormulation[0..1] role scopeFormulation

end

association Quantification_IntroducedVariable between

 Quantification[0..1] role quantification

 Variable[1] role introducedVariable

end

association AtLeastNQuantification_MinimumCardinality between

 AtLeastNQuantification[*] role atLeastNQuantification

 NonNegativeInteger[1] role minimumCardinality

end

association AtMostNQuantification_MaximumCardinality between

 AtMostNQuantification[*] role atMostNQuantification

 NonNegativeInteger[1] role maximumCardinality

end

association NumericRangeQuantification_MinimumCardinality between

 NumericRangeQuantification[*] role numericRangeQuantification1

 NonNegativeInteger[1] role minimumCardinality

end

association NumericRangeQuantification_MaximumCardinality between

 NumericRangeQuantification[*] role numericRangeQuantification2

 NonNegativeInteger[1] role maximumCardinality

end

association ExactlyNQuantification_Cardinality between

 ExactlyNQuantification[*] role exactlyNQuantification

 NonNegativeInteger[1] role cardinality

end

association BindableTarget_Objectification between

 BindableTarget[1] role bindableTarget

 Objectification[*] role objectification

An object-oriented approach to the translation between MOF metaschemas

254

end

association Objectification_ConsideredLogicalFormulation between

 Objectification[*] role objectification

 LogicalFormulation[1] role consideredLogicalFormulation

end

association ProjectionVariable_IsInProjection between

 Variable[1..*] role projectionVariable

 Projection[*] role isInProjection

end

association Variable_FactTypeRole between

 Variable[*] role roleVariable

 FactTypeRole[0..1] role factTypeRole

end

association ClosedProjection_NounConcept between

 ClosedProjection[0..1] role closedProjection

 NounConcept[0..1] role nounConcept

end

association ClosedProjection_FactType between

 ClosedProjection[0..1] role closedProjection

 FactType[0..1] role factType

end

Appendix E (Chapter 5): DBLP as an instance
of SBVR meanings metaschema

This Appendix lists the commands that have been used to create part of the structural

schema of the DBLP example in the USE tool. The schema is created as instances of the

SBVR Meanings Metaschema. The whole instantiation is available at (Raventós 2008b).

-- ObjectType

!create ObjectType1 : ObjectType

!set ObjectType1.name := 'person'

-- IndividualConcept

!create IndividualConcept1 : IndividualConcept

!set IndividualConcept1.name := 'Male'

!create IndividualConcept2 : IndividualConcept

!set IndividualConcept2.name := 'Female'

-- ValueType

!create Gender1 : ObjectType

!set Gender1.name := 'gender'

!create ClosedProjection4 : ClosedProjection

!insert (ClosedProjection4,Gender1) into

 ClosedProjection_NounConcept

!create VariableP4 : Variable

!insert (VariableP4,ClosedProjection4) into

 ProjectionVariable_IsInProjection

!insert (VariableP4,Gender1) into Variable_RangedOverConcept

!create DisjunctionP4 : Disjunction

!insert (DisjunctionP4,ClosedProjection4) into

 LogicalFormulation_Projection

!create InstantiationFormulationP41: InstantiationFormulation

!insert (DisjunctionP4, InstantiationFormulationP41) into

 BinaryLogicalOperation_LogicalOperand1

!insert (InstantiationFormulationP41,IndividualConcept1) into

 InstantiationFormulation_BindableTarget

!insert (InstantiationFormulationP41,VariableP4) into

 InstantiationFormulation_ConceptConsidered

!create InstantiationFormulationP42: InstantiationFormulation

!insert (DisjunctionP4, InstantiationFormulationP42) into

 BinaryLogicalOperation_LogicalOperand2

!insert (InstantiationFormulationP42,IndividualConcept2) into

 InstantiationFormulation_BindableTarget

!insert (InstantiationFormulationP42,VariableP4) into

 InstantiationFormulation_ConceptConsidered

-- CategorizationFactType

An object-oriented approach to the translation between MOF metaschemas

256

!create CategorizationFactType1 : CategorizationFactType

!create Role_1g2 : FactTypeRole

!insert (ObjectType2,Role_1g2) into NounConcept_Role

!create Role_1s4 : FactTypeRole

!insert (ObjectType4,Role_1s4) into NounConcept_Role

!set CategorizationFactType1.name := 'is a category of'

!insert (Role_1g2,CategorizationFactType1) into

FactTypeRole_FactType

!insert (Role_1s4,CategorizationFactType1) into

FactTypeRole_FactType

!set Role_1s4.order := 1

!set Role_1g2.order := 2

-- IsPropertyOfFactType

!create IsPropertyOfFactType1 : IsPropertyOfFactType

!set IsPropertyOfFactType1.name := 'has'

!create Role_155 : FactTypeRole

!insert (ObjectType1,Role_155) into NounConcept_Role

!create Role_26 : FactTypeRole

!set Role_26.name := 'name'

!insert (Text1,Role_26) into NounConcept_Role

!insert (Role_26,IsPropertyOfFactType1) into FactTypeRole_FactType

!insert (Role_155,IsPropertyOfFactType1) into FactTypeRole_FactType

!set Role_155.order := 1

!set Role_26.order := 2

-- AssociativeFactType

!create AssociativeFactType3 : AssociativeFactType

!set AssociativeFactType3.name := 'has'

!create Role_90 : FactTypeRole

!insert (ObjectType8,Role_90) into NounConcept_Role

!insert (Role_90,AssociativeFactType3) into FactTypeRole_FactType

!set AssociativeFactType3.name := 'is part of'

!create Role_91 : FactTypeRole

!insert (ObjectType5,Role_91) into NounConcept_Role

!insert (Role_91,AssociativeFactType3) into FactTypeRole_FactType

!set Role_90.order := 1

!set Role_91.order := 2

-- PartitiveFactType

!create PartitiveFactType1 : PartitiveFactType

!create Role_106 : FactTypeRole

!insert (ObjectType10,Role_106) into NounConcept_Role

!insert (Role_106,PartitiveFactType1) into FactTypeRole_FactType

!set PartitiveFactType1.name := 'includes'

!create Role_107 : FactTypeRole

!insert (ObjectType9,Role_107) into NounConcept_Role

!insert (Role_107,PartitiveFactType1) into FactTypeRole_FactType

!set Role_106.order := 1

!set Role_107.order := 2

-- Characteristic

Appendix E: DBLP as an instance of SBVR Meanings Metaschema

257

!create Characteristic1: Characteristic

!create Role_51 : FactTypeRole

!insert (ObjectType7,Role_51) into NounConcept_Role

!insert (Role_51,Characteristic1) into FactTypeRole_FactType

!set Characteristic1.name := 'being conferencePaper'

!set Role_51.order := 1

-- ReferenceScheme

!create ReferenceScheme1 : ReferenceScheme

!insert (ObjectType1, ReferenceScheme1) into

Concept_ReferenceScheme

!insert (ReferenceScheme1, Role_26) into

ReferenceScheme_SimplyUsedRole

-- StructuralRule

!create StructuralRule1 : StructuralRule

!create UniversalQuantification1 : ClosedUniversalQuantification

!insert (StructuralRule1,UniversalQuantification1) into

Proposition_ClosedLogicalFormulation

!create Variable1X : Variable

!insert (Variable1X,ObjectType1) into Variable_RangedOverConcept

!insert (UniversalQuantification1,Variable1X) into

Quantification_IntroducedVariable

!create ExactlyOneQuantification1 : ExactlyOneQuantification

!create NumberOne1 : NonNegativeInteger

!set NumberOne1.value := 1

!insert (ExactlyOneQuantification1, NumberOne1) into

ExactlyNQuantification_Cardinality

!insert (UniversalQuantification1,ExactlyOneQuantification1) into

Quantification_ScopeFormulation

!create Variable1Y : Variable

!insert (Variable1Y,Role_26) into Variable_RangedOverConcept

!insert (ExactlyOneQuantification1,Variable1Y) into

Quantification_IntroducedVariable

!create AtomicFormulation1: AtomicFormulation

!insert (ExactlyOneQuantification1,AtomicFormulation1) into

Quantification_ScopeFormulation

!insert (AtomicFormulation1,IsPropertyOfFactType1) into

AtomicFormulation_FactType

!create RoleBinding1X : RoleBinding

!insert (AtomicFormulation1,RoleBinding1X) into

AtomicFormulation_RoleBinding

!insert (Role_155, RoleBinding1X) into FactTypeRole_RoleBinding

!insert (RoleBinding1X, Variable1X) into RoleBinding_BindableTarget

!create RoleBinding1Y : RoleBinding

!insert (AtomicFormulation1,RoleBinding1Y) into

AtomicFormulation_RoleBinding

!insert (Role_26, RoleBinding1Y) into FactTypeRole_RoleBinding

!insert (RoleBinding1Y, Variable1Y) into RoleBinding_BindableTarget

Appendix F (Chapter 5): methods for
creating SBVR meanings schema units

This Appendix describes some of the methods for creating instances of SBVR Meanings

schema units from their characterization objects, as described in Chapter 5. For each

chacterization objects there is a procedure in an .assl file.

Note that the USE tool does neither allow that a method class a second method nor to

define recursive processes within a method. Additionally, the only type of loop allowed is

the "for .. in." With these limitations on the executable language it is not possible to fully

automatize the generation of schema units of all characterization objects as defined,

declaratively, in Chapter 6. In particular, the methods that create structural rules or closed

projections only covers the cases found in the DBLP example. The description of all

methods is available at (Raventós 2008b).

The method for creating the schema units of all instances of IndividualConceptCh is defined

as follows:
procedure CreateUnitOfIndividualConceptCh()

 var i:IndividualConcept;

 begin

 for el:IndividualConceptCh in

 [IndividualConceptCh.allInstances->asSequence]

 begin

 i := Create(IndividualConcept);

 [i].name := [el.name];

 end;

 end;

The method for creating the schema units of all instances of FactTypeCh is defined as

follows:
procedure CreateUnitOfFactTypeCh()

 var a:AssociativeFactType, i:IsPropertyOfFactType,

 c:CategorizationFactType, p:PartitiveFactType,

 ch:Characteristic, fr:FactTypeRole, n:NounConcept;

 begin

 for el:FactTypeCh in [FactTypeCh.allInstances->asSequence]

 begin

 if [el.type = #Associative] then

 begin

 a := Create(AssociativeFactType);

 [a].name := [el.name];

 for ro:RoleOfFactType in [el.roleOfFactType ->

 asSequence]

 begin

 fr := Create(FactTypeRole);

 Insert(FactTypeRole_FactType, [fr], [a]);

 [fr].order := [ro.order];

 if [ro.name<>oclUndefined(String)] then

 begin

 [fr].name := [ro.name];

 end;

An object-oriented approach to the translation between MOF metaschemas

260

 n := Any([NounConcept.allInstances ->

 select(n:NounConcept| n.name =

 ro.rangesOverConcept)->Sequence]);

 Insert(NounConcept_Role, [n], [fr]);

 end;

 end;

 if [el.type = #IsPropertyOf] then

 begin

 i := Create(IsPropertyOfFactType);

 [i].name := [el.name];

 for ro:RoleOfFactType in [el.roleOfFactType ->

 asSequence]

 begin

 fr := Create(FactTypeRole);

 Insert(FactTypeRole_FactType, [fr], [i]);

 [fr].order := [ro.order];

 if [ro.name<>oclUndefined(String)] then

 begin

 [fr].name := [ro.name];

 end;

 n := Any([NounConcept.allInstances ->

 select(n:NounConcept| n.name =

 ro.rangesOverConcept)->asSequence]);

 Insert(NounConcept_Role, [n], [fr]);

 end;

 end;

 if [el.type = #Partitive] then

 begin

 p := Create(PartitiveFactType);

 [p].name := [el.name];

 for ro:RoleOfFactType in [el.roleOfFactType ->

 asSequence]

 begin

 fr := Create(FactTypeRole);

 Insert(FactTypeRole_FactType, [fr], [p]);

 [fr].order := [ro.order];

 if [ro.name<>oclUndefined(String)] then

 begin

 [fr].name := [ro.name];

 end;

 n := Any([NounConcept.allInstances ->

 select(n:NounConcept| n.name =

 ro.rangesOverConcept)->asSequence]);

 Insert(NounConcept_Role, [n], [fr]);

 end;

 end;

 if [el.type = #Categorization] then

 begin

 c := Create(CategorizationFactType);

 [c].name := [el.name];

 for ro:RoleOfFactType in [el.roleOfFactType ->

 asSequence]

 begin

 fr := Create(FactTypeRole);

 Insert(FactTypeRole_FactType, [fr], [c]);

 [fr].order := [ro.order];

Appendix F: methods for creating SBVR Meanings schema units

261

 if [ro.name<>oclUndefined(String)] then

 begin

 [fr].name := [ro.name];

 end;

 n := Any([NounConcept.allInstances ->

 select(n:NounConcept| n.name =

 ro.rangesOverConcept)->asSequence]);

 Insert(NounConcept_Role, [n], [fr]);

 end;

 end;

 if [el.type = #Characteristic] then

 begin

 ch := Create(Characteristic);

 [ch].name := [el.name];

 for ro:RoleOfFactType in [el.roleOfFactType ->

 asSequence]

 begin

 fr := Create(FactTypeRole);

 Insert(FactTypeRole_FactType, [fr], [ch]);

 [fr].order := [ro.order];

 if [ro.name<>oclUndefined(String)] then

 begin

 [fr].name := [ro.name];

 end;

 n := Any([NounConcept.allInstances ->

 select(n:NounConcept| n.name =

 ro.rangesOverConcept)->asSequence]);

 Insert(NounConcept_Role, [n], [fr]);

 end;

 end;

 end;

 end;

The method for creating the schema units of all instances of CategorizationSchemeCh is

defined as follows:

 procedure CreateUnitOfCategorizationSchemeCh()

var c:CategorizationScheme, se:Segmentation, co:Concept,

 ob:ObjectType;

begin

for el:CategorizationSchemeCh in

 [CategorizationSchemeCh.allInstances->asSequence]

 begin

 if [el.isSegmentation] then

 begin

 se := Create(Segmentation);

 [se].name := [el.name];

 ob := Any([ObjectType.allInstances ->

 select(o:Concept|o.name = el.generalConcept)->

 asSequence]);

 Insert(CategorizationScheme_GeneralConcept, [se],[ob]);

 for st:String in [el.category -> asSequence]

 begin

 co := Any([Concept.allInstances ->select(c:Concept|

 c.name = st) -> asSequence]);

 Insert(CategorizationScheme_Category,[se], [co]);

 end;

An object-oriented approach to the translation between MOF metaschemas

262

 end

 else

 begin

 c := Create(CategorizationScheme);

 [c].name := [el.name];

 ob := Any([ObjectType.allInstances ->

 select(o:Concept|o.name = el.generalConcept)->

 asSequence]);

 Insert(CategorizationScheme_GeneralConcept,[c], [ob]);

 for st:String in [el.category -> asSequence]

 begin

 co := Any([Concept.allInstances ->select(c:Concept|

 c.name = st) ->asSequence]);

 Insert(CategorizationScheme_Category,[c], [co]);

 end;

 end;

 end;

end;

Appendix G (Chapter 6): methods to
materialize sbvrEquivalents() operations

This Appendix describes some of the methods to materialize the sbvrEquivalents()

operations described in Chapter 6. In particular it describes the methods to materialize the

Class::sbvrEquivalents() and Association::sbvrEquivalents(). The description of all methods

is available at (Raventós 2008b).

procedure sbvrEquivalentsOfClass()

var ob:NounConceptCh,genSet:GeneralizationSet,bio1:BinaryOperation,

 bio2:BinaryOperation, bio3:BinaryOperation, v1:Variable2,

 v2:Variable2, at1:Atomic, at2:Atomic, at3:Atomic, at4:Atomic,

 at5:Atomic, bin1:Binding, bin2:Binding, bin3:Binding,

 bin4:Binding,bin5:Binding, bin6:Binding, bin7:Binding,

bin8:Binding,

 bin9:Binding, bin10:Binding;

begin

for e:Class in [Class.allInstances->select(c| c.isSchemaUnit() and

 not c.oclIsTypeOf(AssociationClass))-> asSequence]

 begin

 ob := Create(NounConceptCh);

 [ob].name := [e.name];

 Insert(SbvrEquivalents, [e], [ob]);

 if [e.generalization_->exists(ge| ge.generalizationSet->

 notEmpty)] then

 begin

 genSet := Any([e.generalization_->select(ge|

 ge.generalizationSet->notEmpty)->any(true).

 generalizationSet->asSequence]);

 end;

 if [e.isAbstract and genSet<>oclUndefined(GeneralizationSet) and

 genSet.generalization->size()=2] then

 begin

 bio1 := Create(BinaryOperation);

 Insert(NounConceptCh_Formulation, [ob],[bio1]);

 v1 := Create(Variable2);

 Insert(NounConceptCh_ProjectionVariable, [ob],[v1]);

 [v1].rangedOverConcept := [e.name];

 [bio1].type := [#Disjunction];

 at1 := Create(Atomic);

 Insert (First_BinaryOperation, [at1],[bio1]);

 [at1].factTypeName := ['is a category of'];

 [at1].type := [#Categorization];

 bin1 := Create(Binding);

An object-oriented approach to the translation between MOF metaschemas

264

 [bin1].order := [2];

 Insert(Atomic_Binding, [at1], [bin1]);

 Insert(Binding_Variable, [bin1], [v1]);

 [bin1].rangesOverConcept := [e.name];

 bin2 := Create(Binding);

 [bin2].order := [1];

 Insert(Atomic_Binding, [at1], [bin2]);

 Insert(Binding_Variable, [bin2], [v1]);

 [bin2].rangesOverConcept := [genSet.generalization->

 asSequence->first.specific.name];

 at2 := Create(Atomic);

 Insert (Second_BinaryOperation, [at2],[bio1]);

 [at2].factTypeName := ['is a category of'];

 [at2].type := [#Categorization];

 bin3 := Create(Binding);

 [bin3].order := [2];

 Insert(Atomic_Binding, [at2], [bin3]);

 Insert(Binding_Variable, [bin3], [v1]);

 [bin3].rangesOverConcept := [e.name];

 bin4 := Create(Binding);

 [bin4].order := [1];

 Insert(Atomic_Binding, [at2], [bin4]);

 Insert(Binding_Variable, [bin4], [v1]);

 [bin4].rangesOverConcept := [genSet.generalization->

 asSequence->last.specific.name];

 end;

 if [e.isAbstract and genSet<>oclUndefined(GeneralizationSet) and

 genSet.generalization->size()=3] then

 begin

 bio2 := Create(BinaryOperation);

 v2 := Create(Variable2);

 Insert(NounConceptCh_ProjectionVariable, [ob],[v2]);

 [v2].rangedOverConcept := [e.name];

 [bio2].type := [#Disjunction];

 Insert(NounConceptCh_Formulation, [ob],[bio2]);

 at3 := Create(Atomic);

 Insert (First_BinaryOperation, [at3],[bio2]);

 [at3].factTypeName := ['is a category of'];

 [at3].type := [#Categorization];

 bin5 := Create(Binding);

 [bin5].order := [2];

 Insert(Atomic_Binding, [at3], [bin5]);

 Insert(Binding_Variable, [bin5], [v2]);

 [bin5].rangesOverConcept := [e.name];

Appendix G: methods to materialize sbvrEquivalents() operations

265

 bin6 := Create(Binding);

 [bin6].order := [1];

 Insert(Atomic_Binding, [at3], [bin6]);

 Insert(Binding_Variable, [bin6], [v2]);

 [bin6].rangesOverConcept := [genSet.generalization->

 asSequence->first.specific.name];

 bio3 := Create(BinaryOperation);

 [bio3].type := [#Disjunction];

 Insert (Second_BinaryOperation, [bio3],[bio2]);

 at4 := Create(Atomic);

 Insert (First_BinaryOperation, [at4],[bio3]);

 [at4].factTypeName := ['is a category of'];

 [at4].type := [#Categorization];

 bin7 := Create(Binding);

 [bin7].order := [2];

 Insert(Atomic_Binding, [at4], [bin7]);

 Insert(Binding_Variable, [bin7], [v2]);

 [bin7].rangesOverConcept := [e.name];

 bin8 := Create(Binding);

 [bin8].order := [1];

 Insert(Atomic_Binding, [at4], [bin8]);

 Insert(Binding_Variable, [bin8], [v2]);

 [bin8].rangesOverConcept := [genSet.generalization->

 asSequence->at(2).specific.name];

 at5 := Create(Atomic);

 Insert (Second_BinaryOperation, [at5],[bio3]);

 [at5].factTypeName := ['is a category of'];

 [at5].type := [#Categorization];

 bin9 := Create(Binding);

 [bin9].order := [2];

 Insert(Atomic_Binding, [at5], [bin9]);

 Insert(Binding_Variable, [bin9], [v2]);

 [bin9].rangesOverConcept := [e.name];

 bin10 := Create(Binding);

 [bin10].order := [1];

 Insert(Atomic_Binding, [at5], [bin10]);

 Insert(Binding_Variable, [bin10], [v2]);

 [bin10].rangesOverConcept := [genSet.generalization->

 asSequence->last.specific.name];

 end;

 end;

end;

procedure sbvrEquivalentsOfAssociation()

var ro:RoleCh, fa:FactTypeCh, r1:RoleOfFactType, r2:RoleOfFactType,

 asstype:AggregationKind, st:StructuralRuleCh,

 qf1:QuantificationForm, v1:Variable2, v2:Variable2,

An object-oriented approach to the translation between MOF metaschemas

266

 qf2:QuantificationForm, at:Atomic, bi1:Binding, bi2:Binding;

 begin

 for e:Association in [Association.allInstances->select(a|

 a.isSchemaUnit())->asSequence]

 begin

 asstype := [if e.memberEnd->exists(pr|

 pr.aggregation_=#composite) then #composite

 else if e.memberEnd->exists(pr|pr.aggregation_=#shared)

 then #shared else #none endif endif];

 fa := Create(FactTypeCh);

 if [asstype = #composite] then

 begin

 [fa].name := [if e.name=oclUndefined(String) then 'includes'

 else e.name endif];

 [fa].type := [#Partitive];

 end

 else

 begin

 [fa].type := [#Associative];

 [fa].name := [if asstype = #shared then 'is part of' else

 if (e.name<>oclUndefined(String) and not

 e.oclIsTypeOf(AssociationClass))

 then e.name else 'has' endif endif];

 end;

 Insert(SbvrEquivalents, [e], [fa]);

 r1 := Create(RoleOfFactType);

 Insert(FactTypeCh_RoleOfFactType, [fa], [r1]);

 [r1].name := [e.memberEnd->sortedBy(order)->first.name];

 [r1].rangesOverConcept := [e.memberEnd->sortedBy(order)->

 first.type.name];

 [r1].order := [1];

 r2 := Create(RoleOfFactType);

 Insert(FactTypeCh_RoleOfFactType, [fa], [r2]);

 [r2].name := [e.memberEnd->sortedBy(order)->last.name];

 [r2].rangesOverConcept := [e.memberEnd->sortedBy(order)->

 last.type.name];

 [r2].order := [2];

 for me:Property in [e.memberEnd]

 begin

 if [me.lower()>0 or

 me.upperValue.oclIsTypeOf(LiteralInteger)] then

 begin

 st := Create(StructuralRuleCh);

 Insert(SbvrEquivalents, [e], [st]);

 qf1 := Create(QuantificationForm);

 Insert(StructuralRuleCh_Formulation, [st],[qf1]);

 [qf1].type := [#ClosedUniversal];

Appendix G: methods to materialize sbvrEquivalents() operations

267

 v1 := Create(Variable2);

 Insert(QuantificationForm_IntroducedVar, [qf1],[v1]);

 [v1].rangedOverConcept := [if e.memberEnd->

 select(other| other<>me)->

 any(true).name<>oclUndefined(String) then

 e.memberEnd->select(other|other<>me)->any(true).name

 else

 e.memberEnd->select(other|other<>me)->

 any(true).type.name endif];

 qf2 := Create(QuantificationForm);

 Insert(Formulation_QuantificationForm, [qf2],[qf1]);

 if [me.lower() =

 me.upperValue.oclAsType(LiteralInteger).value and

 me.lower() = 1] then

 begin

 [qf2].type := [#ExactlyOne];

 [qf2].card := [1];

 end;

 if [me.lower() =

 me.upperValue.oclAsType(LiteralInteger).value and

 me.lower() <> 1] then

 begin

 [qf2].type := [#ExactlyN];

 [qf2].card := [me.lower()];

 end;

 if [me.lower() = 1 and

 me.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)]

 then

 begin

 [qf2].type := [#Existential];

 [qf2].minimCard := [1];

 end;

 if [me.lower()>1 and

 me.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)]

 then

 begin

 [qf2].type := [#AtLeastN];

 [qf2].minimCard := [me.lower()];

 end;

 if [me.lower()=0 and

 me.upperValue.oclIsTypeOf(LiteralInteger)] then

 begin

 [qf2].type := [#AtMostN];

 [qf2].maxCard :=

 [me.upperValue.oclAsType(LiteralInteger).value];

 end;

 if [me.lower()=0 and

 me.upperValue.oclAsType(LiteralInteger).value=1] then

 begin

 [qf2].type := [#AtMostOne];

 [qf2].maxCard := [1];

 end;

 if [me.lower()>1 and

An object-oriented approach to the translation between MOF metaschemas

268

 me.upperValue.oclIsTypeOf(LiteralInteger)] then

 begin

 [qf2].type := [#NumericRange];

 [qf2].minimCard := [me.lower()];

 [qf2].maxCard :=

 [me.upperValue.oclAsType(LiteralInteger).value];

 end;

 v2 := Create(Variable2);

 Insert(QuantificationForm_IntroducedVar, [qf2],[v2]);

 [v2].rangedOverConcept := [if me.name <>

 oclUndefined(String) then me.name

 else me.type.name endif];

 at := Create(Atomic);

 Insert(Formulation_QuantificationForm, [at],[qf2]);

 [at].type := [fa.type];

 if [me.order = 1] then

 begin

 [at].factTypeName := [fa.name];

 end

 else

 begin

 [at].factTypeName :=

 [if asstype = #composite then

 if e.name<>oclUndefined(String)

 then 'is included in' else e.name endif

 else

 if asstype = #shared then 'is part of'

 else

 if (e.name<>oclUndefined(String) and not

 e.oclIsTypeOf(AssociationClass))

 then e.name else 'has' endif

 endif

 endif];

 end;

 bi1 := Create(Binding);

 Insert (Atomic_Binding, [at],[bi1]);

 [bi1].rangesOverConcept :=

 [if e.memberEnd->select(other| other<>me)->

 any(true).name<>oclUndefined(String)

 then e.memberEnd->select(other|other<>me)->

 any(true).name

 else e.memberEnd->select(other|other<>me)->

 any(true).type.name

 endif];

 Insert (Binding_Variable,[bi1],[v1]);

 [bi1].order := [if me.order=1 then 2 else 1 endif];

 bi2 := Create(Binding);

 Insert (Atomic_Binding, [at],[bi2]);

 [bi2].rangesOverConcept :=

 [if me.name<>oclUndefined(String) then me.name

 else me.type.name endif];

Appendix G: methods to materialize sbvrEquivalents() operations

269

 Insert (Binding_Variable,[bi2],[v2]);

 [bi2].order := [me.order];

 end;

 end;

 end;

end;

Appendix H (Chapter 6): methods to
materialize includedInUml() operations

This Appendix describes the method to materialize the ObjectType::includedInUml()

operation described in Chapter 6. The description of all methods is available at (Raventós

2008b).

procedure includedInUmlOfObjectType()

 var cl:ClassCh, acl:AssociationClassCh, as:AssociativeFactType,

str:Sequence(StructuralRule),str1:StructuralRule,

str2:StructuralRule, quan1:Quantification, quan2:Quantification,

me:AssociationClassMemberEnd;

begin

for e:ObjectType in [ObjectType.allInstances->reject(ob|

 ob.oclIsTypeOf(CategorizationScheme) or

 ob.oclIsTypeOf(Segmentation))->asSequence]

 begin

 if [e.closedProjection->isEmpty() or

 (e.closedProjection->notEmpty() and

 ((e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType)) or

 (e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

An object-oriented approach to the translation between MOF metaschemas

272

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType))))]

 then

 begin

 cl := Create(ClassCh);

 [cl].name := [e.name];

 Insert(IncludedInUml, [e], [cl]);

 if [e.closedProjection->notEmpty() and

 ((e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType)) or

 (e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand1.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType) and

 e.closedProjection.logicalFormulation.

Appendix H: methods to materialize includedInUml() operations

273

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation) <>

 oclUndefined(AtomicFormulation) and

 e.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(AtomicFormulation).factType.

 oclIsTypeOf(CategorizationFactType)))]

 then

 begin

 [cl].isAbstract := [true];

 end

 else

 begin

 [cl].isAbstract := [false];

 end;

 end;

 if [e.closedProjection->notEmpty() and

 e.closedProjection.logicalFormulation.

 oclIsTypeOf(Objectification)]

 then

 begin

 acl := Create(AssociationClassCh);

 [acl].name := [e.name];

 Insert(IncludedInUml, [e], [acl]);

 as := [e.closedProjection.logicalFormulation.

 oclAsType(Objectification).

 consideredLogicalFormulation.

 oclAsType(AtomicFormulation).factType.

 oclAsType(AssociativeFactType)];

 str1 := [oclUndefined(StructuralRule)];

 str2 := [oclUndefined(StructuralRule)];

 quan1 := [oclUndefined(Quantification)];

 quan2 := [oclUndefined(Quantification)];

 if [StructuralRule.allInstances->select(st|

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).

 factType = as and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).

 factType.factTypeRole->sortedBy(order) = as.factTypeRole

 ->sortedBy(order))->notEmpty]

 then

 begin

 str := [StructuralRule.allInstances->select(st|

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

An object-oriented approach to the translation between MOF metaschemas

274

 scopeFormulation.oclAsType(AtomicFormulation).

 factType = as and

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).factType.

 factTypeRole->sortedBy(order) = as.factTypeRole->

 sortedBy(order))->asSequence];

 if [str->select(st| st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 as.factTypeRole->sortedBy(order)->last.nounConcept)->

 notEmpty]

 then

 begin

 str2 := Any([str->select(st|

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 as.factTypeRole->sortedBy(order)->last.nounConcept

 and st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).

 factType = as)]);

 quan2 := [str2.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification)];

 end;

 if [str->select(st| st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 as.factTypeRole->sortedBy(order)->first.nounConcept)->

 notEmpty()]

 then

 begin

 str1 := Any([str->select(st|

 st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 introducedVariable.rangedOverConcept =

 as.factTypeRole->sortedBy(order)->first.nounConcept

 and st.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification).

 scopeFormulation.oclAsType(AtomicFormulation).

 factType = as)]);

 quan1 := [str1.closedLogicalFormulation.

 oclAsType(ClosedUniversalQuantification).

 scopeFormulation.oclAsType(Quantification)];

 end;

 end;

Appendix H: methods to materialize includedInUml() operations

275

 for ro:FactTypeRole in [as.factTypeRole->sortedBy(order)]

 begin

 me := Create(AssociationClassMemberEnd);

 Insert(AssociationClassCh_AssociationClassMemberEnd,

 [acl], [me]);

 [me].name := [ro.name];

 [me].typeName := [ro.nounConcept.name];

 [me].isDerived := [false];

 [me].isDerivedUnion := [false];

 [me].aggregation_ := [if e.name = 'includes' and

 ro.order = 1 then #composite else

 if e.name = 'is part of' and ro.order = 2 then #shared

 else #none endif endif];

 [me].order := [ro.order];

 if [ro.order = 1] then

 begin

 if [str2 = oclUndefined(StructuralRule)] then

 begin

 [me].lowerValue := [0];

 end;

 if [str2 <> oclUndefined(StructuralRule)] then

 begin

 if [quan2.oclIsTypeOf(AtLeastNQuantification) or

 quan2.oclIsTypeOf(ExistentialQuantification)]

 then

 begin

 [me].lowerValue :=

 [quan2.oclAsType(AtLeastNQuantification).

 minimumCardinality.value];

 end;

 if [quan2.oclIsTypeOf(AtMostNQuantification) or

 quan2.oclIsTypeOf(AtMostOneQuantification)] then

 begin

 [me].lowerValue := [0];

 [me].upperValue :=

 [quan2.oclAsType(AtMostNQuantification).

 maximumCardinality.value];

 end;

 if [quan2.oclIsTypeOf(ExactlyNQuantification) or

 quan2.oclIsTypeOf(ExactlyOneQuantification)] then

 begin

 [me].lowerValue :=

 [quan2.oclAsType(ExactlyNQuantification).

 cardinality.value];

 [me].upperValue :=

 [quan2.oclAsType(ExactlyNQuantification).

 cardinality.value];

 end;

 if [quan2.oclIsTypeOf(NumericRangeQuantification)]

 then

 begin

 [me].lowerValue :=

An object-oriented approach to the translation between MOF metaschemas

276

 [quan2.oclAsType(NumericRangeQuantification).

 minimumCardinality.value];

 [me].upperValue :=

 [quan2.oclAsType(NumericRangeQuantification).

 maximumCardinality.value];

 end;

 end;

 end

 else

 begin

 if [str1 = oclUndefined(StructuralRule)] then

 begin

 [me].lowerValue := [0];

 end;

 if [str1 <> oclUndefined(StructuralRule)] then

 begin

 if [quan1.oclIsTypeOf(AtLeastNQuantification) or

 quan1.oclIsTypeOf(ExistentialQuantification)] then

 begin

 [me].lowerValue :=

 [quan1.oclAsType(AtLeastNQuantification).

 minimumCardinality.value];

 end;

 if [quan1.oclIsTypeOf(AtMostNQuantification) or

 quan1.oclIsTypeOf(AtMostOneQuantification)] then

 begin

 [me].lowerValue := [0];

 [me].upperValue :=

 [quan1.oclAsType(AtMostNQuantification).

 maximumCardinality.value];

 end;

 if [quan1.oclIsTypeOf(ExactlyNQuantification) or

 quan1.oclIsTypeOf(ExactlyOneQuantification)] then

 begin

 [me].lowerValue :=

 [quan1.oclAsType(ExactlyNQuantification).

 cardinality.value];

 [me].upperValue :=

 [quan1.oclAsType(ExactlyNQuantification).

 cardinality.value];

 end;

 if [quan1.oclIsTypeOf(NumericRangeQuantification)]

 then

 begin

 [me].lowerValue :=

 [quan1.oclAsType(NumericRangeQuantification).

 minimumCardinality.value];

 [me].upperValue :=

 [quan1.oclAsType(NumericRangeQuantification).

 maximumCardinality.value];

 end; end;

 end; end;

 end; end;

 end;

Appendix H: methods to materialize includedInUml() operations

277

Appendix I (Chapter 7): SBVR Structured
English metaschema in USE

The following is a complete specification, suitable for validation with the USE tool, of the

SBVR Structured English metaschema presented in Chapter 7. Note that all the

associations that are ordered have been specified as an order attribute because the

ordered keyword in the USE tool does not seem to matter when inserting association links.

The keyword is only used to distinguish between Set and Sequence types when using

navigational syntax in OCL expressions10.

-- SBVR Representations

enum FontStyle { term, name, verb, keyword }

enum CaptionType {General_concept, Concept_type, Definition,

 Necessity, Reference_scheme}

abstract class Representation

end

abstract class PrimaryRepresentation < Representation

end

abstract class Caption < Representation

end

class Definition < Caption

end

class Designation < PrimaryRepresentation

end

class FactTypeForm < PrimaryRepresentation

end

class GeneralConceptCaption < Caption

end

class ConceptTypeCaption < Caption

end

class ReferenceSchemeCaption < Caption

end

class Statement < Caption

end

class NecessityStatement < Statement

end

class StructuredEnglishText

10 Information provided by Mark Richters, developer of USE tool.

An object-oriented approach to the translation between MOF metaschemas

278

attributes

 value : String

 font : FontStyle

 order : Integer

end

association StructuredEnglishText_Representation between

 StructuredEnglishText[1..*] role structuredEnglishText ordered

 Representation[1] role representation

end

association Meaning_Representation between

 Meaning[1] role meaning

 Representation[*] role representation

end

association PrimaryRepresentation_Caption between

 PrimaryRepresentation[1] role primaryRepresentation

 Caption[*] role caption

end

Appendix J (Chapter 7): methods to
materialize newRepresentation() operations

This Appendix describes some of the methods to materialize the newRepresentation()

operations described in Chapter 7. The description of all the methods is available at

(Raventós 2008b).

procedure CreateNewRepresentationOfNounConcept()

var d:Designation, st:StructuredEnglishText,def:Definition,

 dis1:Disjunction, dis2:Disjunction, atom1:AtomicFormulation,

 atom2:AtomicFormulation, atom3:AtomicFormulation,

 cp:ClosedProjection,st1:StructuredEnglishText,

 st2:StructuredEnglishText, st3:StructuredEnglishText,

 st4:StructuredEnglishText, st5:StructuredEnglishText,

 st6:StructuredEnglishText, st7:StructuredEnglishText,

 st8:StructuredEnglishText, st9:StructuredEnglishText,

 st10:StructuredEnglishText, st11:StructuredEnglishText,

st12:StructuredEnglishText, st13:StructuredEnglishText,

 cat1:CategorizationFactType, cat2:CategorizationFactType,

 cat3:CategorizationFactType, con:Concept,

 ins1:InstantiationFormulation, ins2:InstantiationFormulation;

begin

for el:NounConcept in [NounConcept.allInstances->asSequence]

 begin

 d := Create(Designation);

 Insert(Meaning_Representation, [el], [d]);

 st := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st],[d]);

 [st].value := [el.name];

 [st].order := [1];

 [st].font := [#term];

 if [el.closedProjection->notEmpty] then

 begin

 if [el.closedProjection.logicalFormulation->notEmpty and

 el.closedProjection.logicalFormulation.

 oclIsTypeOf(Disjunction) and el.closedProjection.

 logicalFormulation.oclAsType(Disjunction).

 logicalOperand1.oclIsTypeOf(AtomicFormulation) and

 el.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(AtomicFormulation)] then

 begin

 cp := [el.closedProjection];

 dis1 := [cp.logicalFormulation.oclAsType(Disjunction)];

 atom1 :=

 [dis1.logicalOperand1.oclAsType(AtomicFormulation)];

 atom2 :=

An object-oriented approach to the translation between MOF metaschemas

280

 [dis1.logicalOperand2.oclAsType(AtomicFormulation)];

 cat1 := [atom1.factType.oclAsType(CategorizationFactType)];

 cat2 := [atom2.factType.oclAsType(CategorizationFactType)];

 con := [cat1.factTypeRole->sortedBy(order)->

 last.nounConcept];

 def := Create(Definition);

 Insert(Meaning_Representation, [con], [def]);

 Insert(PrimaryRepresentation_Caption, [d],[def]);

 st1 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st1],[def]);

 [st1].value := [cat1.factTypeRole->sortedBy(order)->

 first.nounConcept.name];

 [st1].order := [1];

 [st1].font := [#term];

 st2 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st2],[def]);

 [st2].value := ['or'];

 [st2].order := [2];

 [st2].font := [#keyword];

 st3 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st3],[def]);

 [st3].value := [cat2.factTypeRole->sortedBy(order)->

 first.nounConcept.name];

 [st3].order := [3];

 [st3].font := [#term];

 end

 else

 begin

 if [el.closedProjection.logicalFormulation->notEmpty and

 el.closedProjection.logicalFormulation.

 oclIsTypeOf(Disjunction) and el.closedProjection.

 logicalFormulation.oclAsType(Disjunction).

 logicalOperand1.oclIsTypeOf(AtomicFormulation) and

 el.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(Disjunction) and

 el.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand1.

 oclIsTypeOf(AtomicFormulation) and

 el.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(AtomicFormulation)] then

 begin

 cp := [el.closedProjection];

 dis1 := [cp.logicalFormulation.oclAsType(Disjunction)];

 atom1 :=

Appendix L: Methods to materizalize schemaUnitRepresentation operations

281

 [dis1.logicalOperand1.oclAsType(AtomicFormulation)];

 dis2 := [dis1.logicalOperand2.oclAsType(Disjunction)];

 atom2 :=

 [dis2.logicalOperand1.oclAsType(AtomicFormulation)];

 atom3 :=

 [dis2.logicalOperand2.oclAsType(AtomicFormulation)];

 cat1 := [atom1.factType.oclAsType(CategorizationFactType)];

 cat2 := [atom2.factType.oclAsType(CategorizationFactType)];

 cat3 := [atom3.factType.oclAsType(CategorizationFactType)];

 def := Create(Definition);

 Insert(Meaning_Representation, [el], [def]);

 Insert(PrimaryRepresentation_Caption, [d],[def]);

 st1 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st1],[def]);

 [st1].value := [cat1.factTypeRole->sortedBy(order)->

 first.nounConcept.name];

 [st1].order := [1];

 [st1].font := [#term];

 st2 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st2],[def]);

 [st2].value := ['or'];

 [st2].order := [2];

 [st2].font := [#keyword];

 st3 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st3],[def]);

 [st3].value := [cat2.factTypeRole->sortedBy(order)->

 first.nounConcept.name];

 [st3].order := [3];

 [st3].font := [#term];

 st4 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st4],[def]);

 [st4].value := ['or'];

 [st4].order := [4];

 [st4].font := [#keyword];

 st5 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st5],[def]);

 [st5].value := [cat3.factTypeRole->sortedBy(order)->

 first.nounConcept.name];

 [st5].order := [5];

 [st5].font := [#term];

 end

 else

 begin

 if [el.closedProjection.logicalFormulation->notEmpty and

An object-oriented approach to the translation between MOF metaschemas

282

 el.closedProjection.logicalFormulation.

 oclIsTypeOf(Disjunction) and el.closedProjection.

 logicalFormulation.oclAsType(Disjunction).

 logicalOperand1.oclIsTypeOf(InstantiationFormulation)

 and el.closedProjection.logicalFormulation.

 oclAsType(Disjunction).logicalOperand2.

 oclIsTypeOf(InstantiationFormulation)]

 then

 begin

 cp := [el.closedProjection];

 dis1 := [cp.logicalFormulation.oclAsType(Disjunction)];

 ins1 := [dis1.logicalOperand1.

 oclAsType(InstantiationFormulation)];

 ins2 := [dis1.logicalOperand2.

 oclAsType(InstantiationFormulation)];

 def := Create(Definition);

 Insert(Meaning_Representation, [el], [def]);

 Insert(PrimaryRepresentation_Caption, [d], [def]);

 st1 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st1],[def]);

 [st1].value := [ins1.bindableTarget.

 oclAsType(IndividualConcept).name];

 [st1].order := [1];

 [st1].font := [#name];

 st2 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st2],[def]);

 [st2].value := ['or'];

 [st2].order := [2];

 [st2].font := [#keyword];

 st3 := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st3],[def]);

 [st3].value := [ins2.bindableTarget.

 oclAsType(IndividualConcept).name];

 [st3].order := [3];

 [st3].font := [#name];

 end;

 end;

 end;

end;

 end;

end;

procedure CreateNewRepresentationOfIndividualConcept()

var d:Designation, st:StructuredEnglishText;

begin

for el:IndividualConcept in [IndividualConcept.allInstances->

 asSequence]

begin

 d := Create(Designation);

Appendix L: Methods to materizalize schemaUnitRepresentation operations

283

 Insert(Meaning_Representation, [el], [d]);

 st := Create(StructuredEnglishText);

 Insert(StructuredEnglishText_Representation,[st],[d]);

 [st].value := [el.name];

 [st].order := [1];

 [st].font := [#name];

 end;

 end;

Appendix K (Chapter 7): DBLP as an instance
of SBVR Structured English metaschema

This Appendix lists the commands that have been used to create a fragment of the

structural schema of the DBLP example in the USE tool. The schema is created as instances

of the SBVR Structured English Metaschema. The whole instantiation is available at

(Raventós 2008b).

-- Designation

!create Designation2 : Designation

!insert (ObjectType1,Designation2) into Meaning_Representation

!create StructuredEnglishText2 : StructuredEnglishText

!insert (StructuredEnglishText2,Designation2) into

 StructuredEnglishText_Representation

!set StructuredEnglishText2.value := 'person'

!set StructuredEnglishText2.order := 1

!set StructuredEnglishText2.font := #term

-- FactTypeForm

!create FactTypeForm1 : FactTypeForm

!insert (AssociativeFactType1,FactTypeForm1) into

 Meaning_Representation

!create StructuredEnglishText100 : StructuredEnglishText

!insert (StructuredEnglishText100,FactTypeForm1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText100.value := 'editor'

!set @StructuredEnglishText100.order := 1

!set @StructuredEnglishText100.font := #term

!create StructuredEnglishText101 : StructuredEnglishText

!insert (StructuredEnglishText101,FactTypeForm1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText101.value := 'is editor of'

!set @StructuredEnglishText101.order := 2

!set @StructuredEnglishText101.font := #verb

!create StructuredEnglishText102 : StructuredEnglishText

!insert (StructuredEnglishText102,FactTypeForm1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText102.value := 'editedBook'

!set @StructuredEnglishText102.order := 3

!set @StructuredEnglishText102.font := #term

-- Concept Type caption

!create ConceptTypeCaption45 : ConceptTypeCaption

!insert (AssociativeFactType1,ConceptTypeCaption45) into

 Meaning_Representation

!insert (FactTypeForm1,ConceptTypeCaption45) into

 PrimaryRepresentation_Caption

!create StructuredEnglishText103 : StructuredEnglishText

!insert (StructuredEnglishText103,ConceptTypeCaption45) into

 StructuredEnglishText_Representation

An object-oriented approach to the translation between MOF metaschemas

286

!set @StructuredEnglishText103.value := 'associative fact type'

!set @StructuredEnglishText103.order := 1

!set @StructuredEnglishText103.font := #term

-- Definition

!create Definition1 : Definition

!insert (ObjectType2,Definition1) into Meaning_Representation

!insert (Designation2,Definition1) into

 PrimaryRepresentation_Caption

!create StructuredEnglishText856 : StructuredEnglishText

!insert (StructuredEnglishText856,Definition1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText856.value := 'editedBook'

!set @StructuredEnglishText856.order := 1

!set @StructuredEnglishText856.font := #term

!create StructuredEnglishText857 : StructuredEnglishText

!insert (StructuredEnglishText857,Definition1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText857.value := 'or'

!set @StructuredEnglishText857.order := 2

!set @StructuredEnglishText857.font := #keyword

!create StructuredEnglishText858 : StructuredEnglishText

!insert (StructuredEnglishText858,Definition1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText858.value := 'authoredPublication'

!set @StructuredEnglishText858.order := 3

!set @StructuredEnglishText858.font := #term

-- GeneralConceptCaption

!create GeneralConceptCaption1 : GeneralConceptCaption

!insert (Designation4,GeneralConceptCaption1) into

 Meaning_Representation

!insert (Designation1,GeneralConceptCaption1) into

 PrimaryRepresentation_Caption

!create StructuredEnglishText324 : StructuredEnglishText

!insert (StructuredEnglishText324,GeneralConceptCaption1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText324.value := 'publication'

!set @StructuredEnglishText324.order := 1

!set @StructuredEnglishText324.font := #term

-- ConceptTypeCaption

!create ConceptTypeCaption1 : ConceptTypeCaption

!insert (Role_10,ConceptTypeCaption1) into Meaning_Representation

!insert (Designation1,ConceptTypeCaption1) into

 Meaning_Representation

!create StructuredEnglishText24 : StructuredEnglishText

!insert (StructuredEnglishText24,ConceptTypeCaption1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText24.value := 'role'

!set @StructuredEnglishText24.order := 1

!set @StructuredEnglishText24.font := #term

-- NecessityStatement

!create NecessityStatement1 : NecessityStatement

!insert (StructuralRule1,NecessityStatement1) into

Appendix M: DBLP as instance of SBVR Representations

287

 Meaning_Representation

!insert (FactTypeForm3,NecessityStatement1) into

 PrimaryRepresentation_Caption

!create StructuredEnglishText333 : StructuredEnglishText

!insert (StructuredEnglishText333,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText333.value := 'each'

!set @StructuredEnglishText333.order := 1

!set @StructuredEnglishText333.font := #keyword

!create StructuredEnglishText334 : StructuredEnglishText

!insert (StructuredEnglishText334,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText334.value := 'person'

!set @StructuredEnglishText334.order := 2

!set @StructuredEnglishText334.font := #term

!create StructuredEnglishText335 : StructuredEnglishText

!insert (StructuredEnglishText335,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText335.value := 'has'

!set @StructuredEnglishText335.order := 3

!set @StructuredEnglishText335.font := #verb

!create StructuredEnglishText336 : StructuredEnglishText

!insert (StructuredEnglishText336,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText336.value := 'exactly'

!set @StructuredEnglishText336.order := 4

!set @StructuredEnglishText336.font := #keyword

!create StructuredEnglishText337 : StructuredEnglishText

!insert (StructuredEnglishText337,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText337.value := 'one'

!set @StructuredEnglishText337.order := 5

!set @StructuredEnglishText337.font := #term

!create StructuredEnglishText338 : StructuredEnglishText

!insert (StructuredEnglishText338,NecessityStatement1) into

 StructuredEnglishText_Representation

!set @StructuredEnglishText338.value := 'name'

-- ReferenceSchemeCaption

!create ReferenceSchemeCaption1 : ReferenceSchemeCaption

!insert (ObjectType1,ReferenceSchemeCaption1) into

 Meaning_Representation

!create StructuredEnglishText93 : StructuredEnglishText

!insert (StructuredEnglishText93,ReferenceSchemeCaption1) into

StructuredEnglishText_Representation

!set @StructuredEnglishText93.value := 'name'

!set @StructuredEnglishText93.order := 1

!set @StructuredEnglishText93.font := #term

