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Abstract 

 

Since the 1960s, many formal languages have been developed in order to allow software 

engineers to specify conceptual models and to design software artifacts. A few of these 

languages, such as the Unified Modeling Language (UML), have become widely used 

standards. They employ notations and concepts that are not readily understood by 

"domain experts," who understand the actual problem domain and are responsible for 

finding solutions to problems. 

The Object Management Group (OMG) developed the Semantics of Business Vocabulary 

and Rules (SBVR) specification as a first step towards providing a language to support the 

specification of "business vocabularies and rules." The function of SBVR is to capture 

business concepts and business rules in languages that are close enough to ordinary 

language, so that business experts can read and write them, and formal enough to capture 

the intended semantics and present them in a form that is suitable for engineering the 

automation of the rules. 

The ultimate goal of business rules approaches is to build software systems directly from 

vocabularies and rules. One way of reaching this goal, within the context of model-driven 

architecture (MDA), is to transform SBVR models into UML models. OMG also notes the 

need for a reverse engineering transformation between UML schemas and SBVR 

vocabularies and rules in order to validate UML schemas.  

This thesis proposes an automatic approach to translation between UML schemas and 

SBVR vocabularies and rules, and vice versa. It consists of the application of a new generic 

schema translation approach to the particular case of UML and SBVR. 

The main contribution of the generic approach is the extensive use of object-oriented 

concepts in the definition of translation mappings, particularly the use of operations (and 

their refinements) and invariants, both formalized in the Object Constraint Language 

(OCL). Translation mappings can be used to check that two schemas are translations of 

each other, and to translate one into the other, in either direction. Translation mappings 

are declaratively defined by means of preconditions, postconditions and invariants, and 

they can be implemented in any suitable language. The approach leverages the object-

oriented constructs embedded in Meta Object Facility (MOF) metaschemas to achieve the 

goals of object-oriented software development in the schema translation problem. 

The generic schema translation approach and its application to UML schemas and SBVR 

vocabularies and rules is fully implemented in the UML-based Specification Environment 

(USE) tool and validated by a case study based on the conceptual schema of the Digital 

Bibliography & Library Project (DBLP) system. 





XI 
 

Table of contents 
Acknowledgements .......................................................................................................................... VII 

Abstract ................................................................................................................................................ IX 

Table of contents ............................................................................................................................... XI 

List of Figures .......................................................................................................................................XV 

Acronyms .......................................................................................................................................... XIX 

1 Introduction ..................................................................................................................................... 1 

1.1 Motivation ........................................................................................................................................... 1 
1.2 Problem description ............................................................................................................................. 3 
1.3 Research contributions ........................................................................................................................ 6 
1.4 Implementation and case study........................................................................................................... 7 
1.5 Structure of the thesis ......................................................................................................................... 7 

2 Schema translations: state of the art .............................................................................................. 11 

2.1 Application domain of schema management .................................................................................... 13 
2.1.1 Families of applications that require the support of schema management ................................... 13 
2.1.2 Common problems to solve in the application domain ................................................................... 15 
2.2 Features of ad hoc solutions .............................................................................................................. 16 
2.2.1 Noy classification............................................................................................................................. 16 
2.2.2 Kalfoglou and Schorlemmer classification ...................................................................................... 17 
2.2.3 Rahm and Bernstein classification .................................................................................................. 18 
2.2.4 Shvaiko and Euzenat classification .................................................................................................. 19 
2.2.5 Czarnecki and Helsen classification ................................................................................................. 21 
2.2.6 Mens and Van Gorp classification ................................................................................................... 22 
2.3 Translation mappings specifications .................................................................................................. 23 
2.3.1 Schema morphism expressions ....................................................................................................... 24 
2.3.2 Schema query assertions ................................................................................................................. 24 
2.3.3 Logic-based formulas ...................................................................................................................... 25 
2.3.4 Graph transformation rules ............................................................................................................. 26 
2.3.5 Query/view/transformation (QVT) expressions .............................................................................. 27 
2.3.6 Translation schemas ........................................................................................................................ 30 
2.4 Schema management ........................................................................................................................ 32 
2.4.1 Families of problems ....................................................................................................................... 32 
2.4.2 Model management operators ....................................................................................................... 34 
2.4.3 Solutions in terms of the application of model management operators ......................................... 37 
2.4.4 Implementations of the model management framework ............................................................... 38 
2.5 Conclusions ........................................................................................................................................ 43 

3 A generic object-oriented operation-based approach to the translation between MOF 
metaschemas ................................................................................................................................. 45 

3.1 Basic concepts .................................................................................................................................... 46 
3.1.1 Schema and mapping ...................................................................................................................... 46 
3.1.2 Schema units ................................................................................................................................... 47 
3.1.3 Translation mapping ....................................................................................................................... 50 
3.2 Defining the schema units of MOF schemas ...................................................................................... 52 
3.2.1 isSchemaUnit() operation ................................................................................................................ 52 
3.2.2 Predecessors .................................................................................................................................... 53 
3.2.3 Characterization objects .................................................................................................................. 55 
3.3 Translation mapping expressions ...................................................................................................... 58 



XII 
 

3.3.1 𝐬𝐢MappingKind ................................................................................................................................ 59 
3.3.2 𝒔𝒋Equivalents................................................................................................................................... 61 
3.3.3 includedIn𝑺𝒋 .................................................................................................................................... 62 
3.3.4 mappedTo𝑺𝒋.................................................................................................................................... 64 
3.3.5 Translation mapping constraints .................................................................................................... 65 
3.3.6 Translating schemas ........................................................................................................................ 66 

4 UML metaschema........................................................................................................................... 69 

4.1 DBLP schema: an example of an instance of the UML metaschema ................................................. 70 
4.2 Schema units of the UML metaschema ............................................................................................. 71 
4.2.1 Class schema unit ............................................................................................................................ 73 
4.2.2 Data type schema unit .................................................................................................................... 75 
4.2.3 Enumeration schema unit ............................................................................................................... 76 
4.2.4 Attribute schema unit ...................................................................................................................... 78 
4.2.5 Association schema unit .................................................................................................................. 80 
4.2.6 Association class schema unit ......................................................................................................... 83 
4.2.7 Generalization schema unit ............................................................................................................. 85 
4.2.8 Generalization set schema unit ....................................................................................................... 87 
4.2.9 Constraint schema unit ................................................................................................................... 89 

5 SBVR meanings metaschema .......................................................................................................... 93 

5.1 Overview of SBVR meanings .............................................................................................................. 94 
5.2 Schema units of the SBVR metaschema ............................................................................................ 98 
5.2.1 Object type schema unit .................................................................................................................. 99 
5.2.2 Value type schema unit ................................................................................................................. 101 
5.2.3 Individual concept schema unit ..................................................................................................... 102 
5.2.4 Characteristic schema unit ............................................................................................................ 103 
5.2.5 Associative and categorization fact type schema units ................................................................ 105 
5.2.6 Categorization scheme and segmentation schema units .............................................................. 109 
5.2.7 Reference scheme schema unit ..................................................................................................... 111 
5.2.8 Structural rule schema unit ........................................................................................................... 113 
5.2.9 Object Type or Value Type schema unit with a definition ............................................................. 131 

6 Translation mapping expressions between UML and SBVR meanings .......................................... 137 

6.1 umlMappingKind() and sbvrMappingKind() operations .................................................................. 139 
6.1.1 UML side ........................................................................................................................................ 139 
6.1.2 SBVR meanings side ...................................................................................................................... 140 
6.2 sbvrEquivalents() and umlEquivalents() operations ......................................................................... 148 
6.2.1 UML side ........................................................................................................................................ 148 
6.2.2 SBVR meanings side ...................................................................................................................... 170 
6.3 includedInUml() operations ............................................................................................................. 171 
6.3.1 UML side ........................................................................................................................................ 171 
6.3.2 SBVR side ....................................................................................................................................... 171 
6.4 Translation mapping constraints ..................................................................................................... 183 
6.5 Translating UML and SBVR meanings schemas ............................................................................... 184 

7 SBVR Structured English representations ..................................................................................... 187 

7.1.1 Expressions in SBVR Structured English ......................................................................................... 188 
7.1.2 Describing a Vocabulary ................................................................................................................ 190 
7.2 SBVR Representations ...................................................................................................................... 191 
7.3 newRepresentation() operation ....................................................................................................... 192 
7.3.1 newRepresentation() of value type and object type ..................................................................... 193 
7.3.2 newRepresentation() of individual concept ................................................................................... 194 
7.3.3 newRepresentation() of characteristic schema unit ...................................................................... 195 
7.3.4 newRepresentation() of associative, is-property-of or partitive fact type schema unit ................ 195 



XIII 
 

7.3.5 newRepresentation() of categorization fact type schema unit ..................................................... 197 
7.3.6 newRepresentation() of categorization schema schema unit ....................................................... 197 
7.3.7 newRepresentation() of reference scheme.................................................................................... 198 
7.3.8 newRepresentation() of structural rule schema unit ..................................................................... 199 
7.4 vocabularyEntry() operation ............................................................................................................ 203 
7.5 DBLP vocabulary in SBVR Structured English notation .................................................................... 205 

8 Contributions and future research ................................................................................................ 213 

8.1 Contributions ................................................................................................................................... 213 
8.1.1 A generic object-oriented approach to the translation between MOF metaschemas .................. 213 
8.1.2 The application to the translation between UML and SBVR ......................................................... 214 
8.1.3 The transformation of SBVR to Structured English ........................................................................ 214 
8.2 Future research ................................................................................................................................ 215 
8.2.1 Facilitating the definition of translation mappings ....................................................................... 215 
8.2.2 Defining a generic/super schema .................................................................................................. 215 
8.2.3 Translation of instances ................................................................................................................ 216 
8.2.4 Defining other schema management operators ........................................................................... 216 
8.2.5 Translation of OCL to SBVR ........................................................................................................... 216 
8.2.6 Translation of behavioral schemas................................................................................................ 217 
8.2.7 Representing UML and SBVR in other languages and notations................................................... 217 

References ......................................................................................................................................... 219 

Appendix A (Chapter 4): UML metaschema in USE............................................................................. 227 

Appendix B (Chapter 4): DBLP as an instance of UML metaschema ................................................... 235 

Appendix C (Chapter 4): methods for creating UML schema units ..................................................... 239 

Appendix D (Chapter 5): SBVR meanings metaschema in USE............................................................ 247 

Appendix E (Chapter 5): DBLP as an instance of SBVR meanings metaschema ................................... 255 

Appendix F (Chapter 5): methods for creating SBVR meanings schema units ..................................... 259 

Appendix G (Chapter 6): methods to materialize sbvrEquivalents() operations ................................. 263 

Appendix H (Chapter 6): methods to materialize includedInUml() operations ................................... 271 

Appendix I (Chapter 7): SBVR Structured English metaschema in USE ............................................... 277 

Appendix J (Chapter 7): methods to materialize newRepresentation() operations ............................ 279 

Appendix K (Chapter 7): DBLP as an instance of SBVR Structured English metaschema ..................... 285 

 

 





XV 
 

List of Figures 
 

Figure 1.1 Thesis organization roadmap ...................................................................................................... 8 
Figure 2.1 A morphism between a relational table and an XML schema (from Melnik (2004)) ................ 24 
Figure 2.2 Example of two mappings specified as GLAVs assertions (from Fuxman et al. (2006)) ............ 25 
Figure 2.3 Example of a mapping represented in RGG (from Song, Zhang and Kong (2004)) ................... 27 
Figure 2.4 Example of ModelGen by graph transformation rules (from Song, Zhang and Kong (2004)) ... 27 
Figure 2.5 Model transformation metamodel MM MMt (from Bézivin et al. (2006)) ............................... 30 
Figure 2.6 ER2Rel metamodel transformation (from Gogolla et al. (2002)) .............................................. 31 
Figure 2.7 The schema transformation problem ....................................................................................... 33 
Figure 2.8 The schema integration problem .............................................................................................. 33 
Figure 2.9 The schema translation problem .............................................................................................. 33 
Figure 2.10 The propagation of changes due to evolution problem .......................................................... 34 
Figure 2.11 Illustration of Compose ........................................................................................................... 35 
Figure 2.12 Illustration of Merge ............................................................................................................... 36 
Figure 2.13 Illustration of Diff .................................................................................................................... 36 
Figure 2.14 Illustration of ModelGen ......................................................................................................... 36 
Figure 2.15 Illustration of the propagation of changes due to evolution scenario after the 4

th
 step ........ 38 

Figure 2.16 Illustration of the propagation of changes due to evolution scenario from the 5
th

 step ........ 38 
Figure 2.17 The structure of the metadictionary (from Atzeni, Capellari and Bernstein (2005)) .............. 40 
Figure 2.18 Conceptual modelling languages represented in HDM (from Boyd and McBrien (2005)) ...... 43 
Figure 3.1 Fragment of the ER metaschema (a), and an example of one of its instances (b) (Gogolla 2005)

 ............................................................................................................................................................ 48 
Figure 3.2 Fragment of the Relational metaschema (a), and an example of one of its instances (b) 

(Gogolla 2005) .................................................................................................................................... 49 
Figure 3.3 Abstract example of equivalences and inclusions (a), and their application to the schema 

examples (b) ....................................................................................................................................... 50 
Figure 3.4 Definition of ErElement ............................................................................................................. 53 
Figure 3.5 Definition of RelationalElement ................................................................................................ 54 
Figure 3.6 Characterization object types for the ER metaschema in Figure 3.3 ........................................ 57 
Figure 3.7. Characterization object types for the relational metaschema in Figure 3.5 ............................ 58 
Figure 4.1 Structural schema of DBLP ........................................................................................................ 71 
Figure 4.2 Definition of Element and Element characterization object ..................................................... 72 
Figure 4.3 Class schema unit ...................................................................................................................... 74 
Figure 4.4 Class schema unit characterization object ClassCh ................................................................... 74 
Figure 4.5 Data type and primitive type schema units............................................................................... 75 
Figure 4.6 Data type schema unit characterization object DataTypeCh .................................................... 76 
Figure 4.7 Enumeration schema unit ......................................................................................................... 77 
Figure 4.8 Enumeration schema unit characterization object EnumerationCh ......................................... 77 
Figure 4.9 Attribute schema unit ............................................................................................................... 79 
Figure 4.10 Attribute schema unit characterization object PropertyCh .................................................... 80 
Figure 4.11 Association schema unit .......................................................................................................... 82 
Figure 4.12 Association schema unit characterization object AssociationCh ............................................ 82 
Figure 4.13 Association class schema unit ................................................................................................. 84 
Figure 4.14 Association class schema unit characterization object AssociationClassCh ............................ 85 
Figure 4.15 Generalization schema unit ..................................................................................................... 86 
Figure 4.16 Generalization schema unit characterization object GeneralizationCh .................................. 87 
Figure 4.17 Generalization set schema unit ............................................................................................... 88 
Figure 4.18 Generalization set schema unit characterization object GeneralizationSetCh ....................... 89 
Figure 4.19 Constraint schema unit ........................................................................................................... 90 
Figure 4.20 Constraint schema unit characterization object ConstraintCh ................................................ 90 
Figure 5.1 Fragment of the abstract syntax of the SBVR metamodel ........................................................ 95 



XVI 
 

Figure 5.2 Example of structural rule as an instance of the SBVR metamodel .......................................... 97 
Figure 5.3 Simplified version of the structure of a structural rule ............................................................. 97 
Figure 5.4 Definition of Meaning and its characterization object MeaningCh .......................................... 98 
Figure 5.5 Object type schema unit ......................................................................................................... 100 
Figure 5.6 Object type and value type schema unit characterization object NounConceptCh ................ 101 
Figure 5.7 Value type schema unit. .......................................................................................................... 102 
Figure 5.8 Individual concept schema unit............................................................................................... 103 
Figure 5.9 Individual concept schema unit characterization object IndividualConceptCh ....................... 103 
Figure 5.10 Characteristic schema unit .................................................................................................... 104 
Figure 5.11 Characteristic schema unit characterization object CharacteristicCh ................................... 105 
Figure 5.12 Associative and categorization fact type schema units ......................................................... 108 
Figure 5.13 Fact type schema unit characterization object FactTypeCh .................................................. 109 
Figure 5.14 Categorization scheme and segmentation schema unit ....................................................... 110 
Figure 5.15 Categorization scheme and segmentation schema unit characterization object 

CategorizationSchemeCh .................................................................................................................. 111 
Figure 5.16 Reference scheme schema unit ............................................................................................ 112 
Figure 5.17 Reference scheme schema unit characterization object ReferenceSchemeCh ..................... 113 
Figure 5.18 Simplified version of the structure of the "each authorship has exactly one order" structural 

rule ................................................................................................................................................... 116 
Figure 5.19 Simplified version of the structure of the "each book is an edited book or is an authored 

book but not both" structural rule ................................................................................................... 118 
Figure 5.20 Simplified version of the structure of  the "each book is an authored book or a book chapter 

or a journal paper" structural rule.................................................................................................... 119 
Figure 5.21 Simplified version of the structure of "each authored publication that is an authored book 

neither is a book chapter nor a journal paper" structural rule ........................................................ 120 
Figure 5.22 Simplified version of the structure of the "each conference edition that is published in a 

book series issue neither is published in an edited book nor in a journal issue" structural rule ..... 120 
Figure 5.23 StructuralRule schema unit ................................................................................................... 122 
Figure 5.24 Atomic formulation ............................................................................................................... 122 
Figure 5.25 Instantiation formulation ...................................................................................................... 122 
Figure 5.26 Logical operation ................................................................................................................... 123 
Figure 5.27 Quantification ........................................................................................................................ 123 
Figure 5.28 Objectification ....................................................................................................................... 124 
Figure 5.29 Structural rule schema unit characterization object StructuralRuleCh ................................. 127 
Figure 5.30 Simplified version of the object type 'authored publication' ................................................ 133 
Figure 5.31 ObjectType and ValueType with closed projection schema units ......................................... 134 
Figure 5.32 Object type and value type schema units characterization object NounConceptCh ............ 135 
Figure 6.1 Definition of UML schema units including SBVR mapping-dependent operations ................. 138 
Figure 6.2 Definition of SBVR schema units including UML mapping dependent operations. ................ 138 
Figure 6.3 General form of structural rule representing a multiplicity constraint ................................... 141 
Figure 6.4 General form of structural rule representing covering and disjointness of a generalization set 

with two generalizations .................................................................................................................. 142 
Figure 6.5 General form of the structural rule representing the covering constraint of a generalization 

set ..................................................................................................................................................... 143 
Figure 6.6 General form of the structural rule partially representing the disjointness constraint of a 

generalization set ............................................................................................................................. 144 
Figure 6.7 General form of the structural rule partially representing the XOR constraint ...................... 145 
Figure 6.8 General form of an object type whose extension is defined as the union of the instances of 

other object types ............................................................................................................................ 146 
Figure 6.9 General form of a value type whose extension is defined as the union of the instances of 

individual concepts ........................................................................................................................... 147 
Figure 6.10 Example of mapping the abstract class "AuthoredPublication" to SBVR .............................. 149 
Figure 6.11 Example of mapping the enumeration "Gender" to SBVR .................................................... 152 
Figure 6.12 Example of mapping the attribute "conferencePaper" to SBVR ........................................... 153 
Figure 6.13 Example of mapping the attribute "acronym" to SBVR ........................................................ 154 



XVII 
 

Figure 6.14 Example of mapping the association 'publishes'  to SBVR .................................................... 157 
Figure 6.15. Example of mapping the association class "Editorship" ....................................................... 160 
Figure 6.16. Example of mapping the generalization relationship between "Book" and "EditedBook" .. 161 
Figure 6.17. Example of mapping the "typeOfBook" generalization set .................................................. 162 
Figure 6.18. Example of mapping the "typeOfAuthoredPublication" generalization set ........................ 163 
Figure 6.19. Example of mapping a "XOR" constraint .............................................................................. 167 
Figure 6.20. Example of mapping the "nameIsKey" constraint ................................................................ 167 
Figure 7.1 SBVR Representations ............................................................................................................. 192 





XIX 
 

Acronyms 

 
 

DBLP  Digital Bibliography & Library Project 

CIM  Computation Independent Model 

ER  Entity-Relationship  

MDA  Model Driven Architecture 

MOF  Meta Object Facility 

OCL  Object Constraint Language 

OMG  Object Management Group 

PIM  Platform Independent Model 

PSM  Platform Specific Model 

QVT  Query/View/Transformation 

SBVR  Semantics and Business Vocabulary & Rules 

UML  Unified Modeling Language 

USE  UML-based Specification Environment tool 

XML  Extensible Markup Language 

 

 

 

 

 

 

 





 
 

1 Introduction 

This chapter introduces the research presented in this thesis and its background, explains 

the motivation for pursuing this work, provides an overview of the approach taken and 

details the structure of the thesis. 

 

1.1 Motivation 

Requirements engineering is the branch of software engineering concerned with the real-

world goals for, functions of, and constraints on software systems. It is also concerned 

with the relationship of these factors to precise specification of software behavior, and to 

their evolution over time and across software families. (Zave 1997) 

Requirements engineering is a complex process that usually consists of three phases: 

requirements elicitation, requirements specification and requirements validation.  

During the requirements elicitation phase, the various parties (e.g., users, designers, and 

managers) analyze their particular problems and needs and decide on the configuration of 

the system to be built. Needs and goals, defined at the business level, are translated into 

business requirements. Those business requirements which are to be solved by the 

software system are elicited.  

To ensure that the business requirements document is complete and accurate, all 

knowledge for operating the organization and dealing with its environment should be 

captured in languages (such as ordinary English) that the "domain experts"—e.g., 

healthcare experts, finance experts, transportation experts, business managers, etc.—can 

read and write. Moreover, businesses change constantly and new decisions must be made 

accordingly in the business environment. Business experts should have mechanisms to 

easily incorporate these changes in the business requirements document.  

In the requirements specification phase, the system’s functional requirements (i.e., what it 

must do) and non-functional requirements (i.e., its global properties) are defined. The 

functional requirements are the capabilities and behaviors that must be performed, and 
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the business rules are what the functional requirement knows—the decisions, guidelines 

and controls that are behind the functionality. That is, when defining a functionality, 

businesspeople identify the business rules that constrain it. The result of the requirements 

specification phase is a set of documents, called specifications, that precisely describe the 

system that the users require and that the designers have to design and build (Olivé 2007). 

The specification of the functional requirements is formally represented in what is called 

the conceptual schema. Conceptual schemas are described in a particular conceptual 

modeling language. Nowadays, UML (Rumbaugh, Jacobson and Booch 2004) is the 

modeling language that is most commonly used to specify conceptual schemas in the field 

of software engineering.  

UML and other software languages have been designed for use by software engineers, 

whose ultimate goal is to design software artifacts. Consequently, they employ notations 

and concepts that are not readily understood by business experts. For example, when 

defining the functionalities of a rental car company, the user may identify the business rule 

that "each rental authorizes at most three additional drivers" (from the EU-Rent Example 

(Object Management Group 2008a)). In UML, a business rule may be specified by a 

graphical symbol in a modeling diagram (e.g., the multiplicity symbol) or as a constraint 

specified in OCL. For example, the aforementioned business rule of the rental car company 

could be described as the multiplicity symbol "0..3" of a member end of the association 

between rental and additional driver.  

During the requirements validation phase, the quality of the conceptual schema is mainly 

determined by its correctness and completeness. A conceptual schema is complete if it 

satisfies the following condition:  

All relevant general static and dynamic aspects, i.e., all rules, laws, etc., of the universe of 

discourse should be described in the conceptual schema. The information system cannot 

be held responsible for not meeting those described elsewhere, including in particular 

those in application programs. (Griethuysen 1982) 

A conceptual schema is correct if the knowledge that it defines is true for the domain and 

relevant to the functions that the system must perform (Olivé 2007). 

Good communication and understanding between domain experts and software engineers 

may be the best way to guarantee a high-quality conceptual schema. For this reason, over 

the last two decades, many efforts have been made to create tools that can express 

business concepts and business rules in languages that are close enough to ordinary 

language, so that business experts can read and write them, and formal enough to capture 

the intended semantics and present it in a form that is suitable for engineering the 

automation of the rules.  

Some approaches to business rules tools represent business rules as sentence templates 

(Halle 2001, Morgan 2002, Wan Kadir and Loucopoulos 2003, Ross 2005 and Loucopoulos 

and Wan Kadir 2008) that can easily be mapped to ordinary language. Other approaches 

represent rules by using mathematical logic, which can easily be mapped to software tools. 

Examples include External Rule Language (ERL) (McBrien et al. 1991) and Courteous 
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Logic Program (CLP) (Grosof, Labrou and Chan 1999), which is encoded using XML to 

produce Business Rule Markup Language (BRML). BRML is the predecessor of Rule 

Markup Language (RuleML) (Boley, Tabet and Wagner 2001), an XML-based markup 

language that permits web-based rule storage, interchange, retrieval and 

firing/application.  

Recently, the Object Management Group (OMG) published Semantics of Business 

Vocabulary and Business Rules (SBVR) v.1.0 (Object Management Group 2008a) as an 

Available Specification. It defines the metamodel for documenting the semantics of 

business vocabulary, business facts and business rules. SBVR claims to be optimally 

conceptualized for businesspeople and already includes predefined alternative, non-

normative notations for expressing concepts and rules by means of English statements 

(either in SBVR Structured English or in BRS RuleSpeak (Object Management Group 

2008a)). Business rules in SBVR are structured by logical semantic formulations, which 

facilitates their automation in software systems. 

The ultimate goal of SBVR and other business rules approaches is to build software 

systems directly from the vocabulary and business rules specifications (Date 2000).  

Before the publication of the SBVR specification, OMG adopted model-driven architecture 

(MDA) (Object Management Group 2003), an approach to defining and using models at 

different levels of abstraction in software development. MDA specifies three system 

viewpoints: a computation-independent viewpoint, a platform-independent viewpoint and 

a platform-specific viewpoint. MDA also specifies three default system models 

corresponding to the three MDA viewpoints. The computation-independent model (CIM) is 

a description of a system based on the computation-independent model. It is assumed that 

the primary user of the CIM is the domain practitioner. In fact, SBVR specifies a metamodel 

to describe CIMs. A platform-independent model (PIM) is a description of a system from the 

platform-independent viewpoint. A PIM describes the conceptual model of the system to 

be built. UML is the standard language proposed by OMG to build PIMs. Finally, a platform-

specific model is a description of a system from the platform-specific viewpoint. PSM is a 

version of PIM that includes the technical information required to develop the model in a 

tool. 

Therefore, within the MDA, reaching the ultimate goal of the aforementioned business 

rules approaches implies transforming SBVR models into UML models. The need for this 

transformation was introduced by the OMG in Annex K of the SBVR specification (OMG 

2008a). The same Annex K also explains the need to transform UML models into SBVR 

models. The OMG calls this reverse engineering transformation. 

The main purpose of this thesis is to provide a translation specification between UML 

models and SBVR models and vice versa. 

1.2 Problem description 

The problem of automatic translation between UML and SBVR can be formulated as a 

particular application of a more generic problem called schema translation.  
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Schema translation has been considered an important practical problem in the fields of 

databases and information systems engineering since the mid 1970s (Chen 1976, 

Griethuysen (ed.) 1982). The problem is now even more important due to the need for 

translation among ontology languages (Concho, Fernandez López and Gómez-Pérez 

2003) and for translation among "models" of the OMG's MDA software development 

approach (Object Management Group 2003).  

Many ad hoc solutions to the schema translation problem have been proposed. A 

comprehensive analysis of these solutions is beyond the scope and purpose of this thesis, 

but Chapter 2 provides a summary of surveys in (among others) Rahm and Bernstein 

(2001), Shvaiko and Euzenat (2005), Czarnecki and Helsen (2006) and Mens and Van Gorp 

(2006). Most work on schema translation is currently described within the context of the 

model management framework (Bernstein 2003). This framework provides several 

generic operators that manage schemas and schema mappings. One of the operators is 

ModelGen, whose purpose is to automatically translate a source schema expressed in one 

metaschema into an equivalent target schema expressed in a different metaschema, along 

with the mapping constraints between the two schemas (Bernstein and Melnik 2007). 

Within this framework, a specification of the ModelGen operator would be the solution to 

our research goal. 

MDM (Atzeni and Torlone 1996) was one of the first generic implementations 

of ModelGen, which was followed by MIDST (Model-Independent Schema and Data 

Translation) (Atzeni, Capellari and Bernstein 2006). MIDST represents schemas and 

metaschemas as instances of the relational metaschema; schema translations are built by 

combining elementary translations specified by Datalog rules defined at the metaschema 

level. Moreover, MIDST has a superschema and a supermetaschema, which have all the 

constructs known to the system. The super metaschema acts as a pivot, so it is sufficient to 

have translation rules for each metaschema to and from the supermetaschema. Three 

similar approaches have been proposed by Boyd and McBrien (2005), Hainaut (2005) and 

Bowers and Delcambre (2006) using the HDM, GER and ULD languages, respectively. None 

of these solutions is contextualized in the object-oriented paradigm.  

In the context of model-driven architecture (MDA), the OMG has proposed QVT as a family 

of languages for representing model-to-model transformations (including translations). 

QVT-Relations is used to declaratively specify relationships between MOF metaschemas, 

using an approach similar to that of Gogolla (2005) and Bézivin et al. (2006). QVT-

Operational Mappings is used to provide an imperative implementation of those 

relationships. Operational Mappings is a new language, although it includes OCL, which is 

extended with procedural constructs. The MOMENT-QVT tool is a model-transformation 

engine that provides partial support for QVT-Relations (Boronat, Carsí and Ramos 2005b). 

As yet there is no tool that provides total support for the QVT-Relations language. 

Therefore, in order to build an automatic translation between UML and SBVR, we have 

considered several alternatives. One alternative is to build an ad hoc solution. We 

discarded this alternative for the same reason given by Atzeni (Atzeni 2007): 



1 Introduction 

5 

 

A major feature of any significant attempt to the schema translation problem would be 

generality: we need approaches that are maintainable and scale.  

A second alternative is to adapt an existing generic approach to the particular case of UML 

and SBVR. As stated above, in the context of model management, some generic 

applications have been developed on relational databases instead of object-oriented 

schemas; others focus on translating object-oriented schemas, but use a third language for 

the schema-mapping specification between the two schemas. The use of a third language 

to represent mappings between two metaschemas adds complexity to the schema 

translation problem. Moreover, an in-depth study of such language would be necessary in 

order to demonstrate the consistency and correctness of the translations. 

A third alternative—the one which is explored in this thesis—is to create a new generic 

approach to the schema translation problem. The advantages of this generic approach are 

explained in detail in Chapter 3. 

Automatic translation between UML and SBVR metamodels is more complex than the 

generic schema translation problem for the following reasons: 

 UML and SBVR metamodels are very complex structures. The Structure package of 

UML includes 55 metaclasses, which are instances of MOF. SBVR includes 109 

metaclasses, which are instances of MOF. The specifications of the two metamodels 

are described very differently. The UML document first shows the abstract syntax of 

the metamodel in UML diagrams and then describes all of the concepts shown in the 

diagrams. Each concept is described separately according to a structured format 

that includes the following clauses: Heading, Description, Generalizations, Attributes, 

Associations, Constraints, Additional operations, Semantics, Semantics variation 

points, Notation, Presentation options, Style guidelines, Examples and Changes from 

previous UML. The SBVR specification is structured in several vocabularies and 

business rules. Within each vocabulary, the concepts are described in accordance 

with the non-normative SBVR Structured English notation. In other words, each 

vocabulary entry may include the following clauses: Primary Representation, 

Definition, Source, Dictionary Basis, General Concept, Concept Type, Necessity, 

Possibility, Reference Scheme, Note, Example, Synonym, Synonymous Form, See, 

Subject Field and Namespace URI. The complexity of the metamodels and the 

documents that describe them makes it more difficult to understand the semantics 

of the defined concepts and the establishment of translation mappings between 

them. 

 The SBVR specification includes, on the one hand, the description of concepts and, 

on the other, the description of the representations of concepts. However, the 

correspondence between meanings and representations is not always clear. SBVR 

proposes SBVR Structured English as a possible notation for the representation, but 

this language is not normative and there is no straightforward correspondence 

between instances of these representation concepts and the SBVR Structured 

English notation. Therefore, in SBVR, in order to represent concepts and business 
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rules in ordinary English, some constructs and additional operations or conversions 

may be needed.  

1.3 Research contributions 

As stated above, ad hoc solutions and adaptations of generic schema translation 

approaches fall short when building an automatic translation between UML and SBVR 

models. 

This thesis proposes a new generic schema translation approach whose main 

characteristics are as follows: 

 Metaschemas are represented as instances of the OMG's MOF (Meta Object Facility) 

(Object Management Group 2006a);  

 Translations are defined in terms of schema units and characterization objects of 

such schema units. Schema units are units of knowledge consisting on a set of 

schema elements. Characterization objects of schema units roughly correspond to 

the "domain value object" in the object-oriented design patterns field. Operations, 

hosted in object types, formalized in the OCL language are provided to define the 

schema units, the precedence relationship among them and the characterization 

objects; 

 Elementary translations between schema units are represented by means of 

operation postconditions hosted in object types, and formalized in the OCL language 

(Object Management Group 2006b); 

 The translation relationship between two sets of schema elements that represent 

two schema units is split into two simpler parts: one between the schema elements 

of one side and the characterization objects of the other side, and one between the 

characterization object of the second side and its schema elements; and 

 The operation postconditions are also used to check the consistency of the 

translations. 

The application of the generic schema translation approach to the translation of UML 

models to SBVR models and vice versa involves the following contributions: 

 Schema units (i.e., the semantic units of knowledge and the precedence relationships 

among them) are defined in both UML and SBVR; and  

 Schema mapping translation between UML and SBVR is defined in terms of two 

operations, equivalents and includedIn, for each schema unit of each metamodel.  

Finally, two additional contributions, derived from the problem that there is no 

straightforward way to express the instances of the SBVR metamodel in SBVR Structured 

English, have also been made: 

 A very simple metamodel to support SBVR Structured English notation is defined; 

and 
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 Operations are defined to obtain the instances of this metamodel from the defined 

SBVR schema units. 

1.4 Implementation and case study 

All of the specifications presented in this thesis were validated and implemented in the 

UML-based Specification Environment (USE) tool (Gogolla, Büttner and Richters 2007). 

USE is a system for the specification of information systems developed by the Database 

Systems Group of the Department of Mathematics and Computer Science of the University 

of Bremen. It is based on a subset of UML. A USE specification contains a textual 

description of a model using features found in UML class diagrams. Expressions written in 

OCL are used to specify additional integrity constraints on the model. A model can be 

animated to validate the specification against non-formal requirements. System states 

(snapshots of a running system) can be created and manipulated during an animation. For 

each snapshot, the OCL constraints are automatically checked. 

One example has been used throughout this thesis to validate the various proposals. The 

example is based on the DBLP Case Study developed by Planes and Olivé (2006). The 

DBLP Case Study contains parts of the conceptual schema of the DBLP systems, written in 

UML. DBLP, a computer science bibliography website hosted at the University of Trier in 

Germany (http://www.informatik.uni-trier.de/~ley/db/) was originally a database and 

logic programming bibliography site. The DBLP server provides bibliographic information 

on major computer science journals and proceedings. The server initially focused on 

Database Systems and Logic Programming (DBLP). Now it is gradually being expanded 

towards other fields of computer science. It has recently been suggested that DBLP should 

stand for "Digital Bibliography and Library Project." The server, mirrored at five other 

websites, indexes more than one million articles and contains several thousand links to 

home pages of computer scientists (April 2008). 

1.5 Structure of the thesis 

Figure 1.1 shows the structure of this thesis. Chapters 2 to 8 are organized as follows: 

Chapter 2 examines the state of the art of translation mappings. It illustrates usage 

scenarios involving translation between schemas and reviews current surveys that study 

existing ad hoc solutions for schema translations. It also reviews the various specifications 

of declarative mappings found in existing approaches. Finally, it describes the schema 

management approach that has recently emerged as a generic approach to the 

manipulation of schemas and mappings.  

Chapter 3 presents a new object-oriented operation-based approach to translation 

between MOF metaschemas. It defines the schema unit concept. Translation mappings are 

defined in terms of schema units. Two small fragments of the ER and Relational 

metaschemas are used as running examples in order to illustrate the complete application 

of the method.   

http://www.informatik.uni-trier.de/~ley/db/
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Figure 1.1 Thesis organization roadmap 

 Chapter 4 presents the UML metamodel. It begins by showing the DBLP example as an 

instance of the metamodel. It then describes its schema units, the precedence 

relationships among them and the characterization objects that define them. 

Chapter 5 presents the SBVR meanings metamodels. First, it gives a general overview of 

the metamodel. Then, as in the previous chapter, it describes its schema units, the 

precedence relationships among them and the characterization objects that define them.  

Chapter 6 describes the application of the translation approach proposed in Chapter 3 to 

the UML and SBVR meanings metaschemas, described in Chapters 4 and 5, respectively. 
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This chapter defines the necessary set of operations for translating schema units from 

UML to SBVR and vice versa.  

Chapter 7 overviews the SBVR Structured English notation and describes the part of SBVR 

that refers to representations rather than meanings. This chapter also provides the set of 

operations for deriving the instances of SBVR representation from SBVR meanings. 

Chapter 8 concludes this thesis by discussing the overall contribution of this research in 

the context of related work in this area. In addition, it discusses the limitations of the 

approach and points out areas for future research. 

Finally, the Appendices (see Figure 1.1) describe the implementation, in USE, of the 

specifications of the schemas, metaschemas and operation methods referred to in 

Chapters 3 to 7. 





 

 
 

2 Schema translations: state of the art 

In an effort to investigate the appropriate approach for specifying translation mappings 

between SBVR vocabularies and UML models, this chapter reviews the literature on 

translation mappings. The need to translate, to transform, to integrate and to exchange 

information or knowledge is common to many application contexts. These needs, which 

require the manipulation of models and mappings between models, have been studied for 

more than three decades. In the database field, the problem of metadata manipulation (i.e., 

manipulation of metaschemas of databases) includes data integration (Batini, Lenzerini 

and Navathe 1986), data translation (Shu et al. 1977) and database design (Wiederhold 

1977). In website and portal management, metadata is used to generate entire websites 

from databases (Fernandez et al. 1998, Mecca et al. 1998). In software engineering, 

metaschemas are used to describe the structure, interfaces and behavior of software 

components (Object Management Group 2006c). All types of metaschema-related 

applications involve the manipulation of schemas and mappings between such schemas. 

In current practice, schema translation problems have often been tackled by means of ad 

hoc solutions, for example, by writing code for each specific application. Therefore, 

solutions may be very different from one another. Nevertheless, they usually divide the 

translation problem into two subproblems: (i) the match: how to obtain the translation 

mappings between two given schemas, that is, the relationship between the elements of 

the two, and (ii) the translation: how to apply the mapping functions in order to actually 

translate one schema to another. Several surveys have reviewed existing matching 

approaches aimed at solving the match problem, not only for translation purposes but also 

for data integration or data exchange. Other surveys have reviewed existing approaches 

that perform translations or, more generally, transformations between schemas. The 

classification dimensions proposed in all of these surveys give a good overview of the 

main features of current ad-hoc solutions related to translation mappings. 

Ad hoc solutions are very heavy and hard to maintain, and there is still a compelling need 

for a general solution able to handle, in a uniform way, the great diversity of formats and 
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types of information available (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000, 

Bernstein and Melnik 2007).  

In this direction, a quite recent approach to the generic manipulation of schemas and 

mappings, called schema management1 (Atzeni 2007, Bernstein 2003, Bernstein et al. 

2000, Bernstein and Melnik 2007), has been proposed. Its goal is to factor out the 

similarities of the metadata problems studied in the literature and to develop a set of high-

level operators that can be utilized in various scenarios. According to Atzeni, Bernstein 

and Melnik, among others (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000, Bernstein 

and Melnik 2007), five basic operators, known as Match, Compose, Merge, Diff and 

SchemaGen, can address the above problems when appropriately combined. In particular, 

translation between schemas may be described in terms of two of these generic operators, 

Match and SchemaGen. Therefore, in the schema management framework, the translation 

from one schema to another consists in the implementation of these two generic 

operators: Match, to obtain the mapping between the two metaschemas, and SchemaGen, 

to generate the target schema from the source schema.  

Still, in ad hoc solutions and schema management, the core problem is the representation 

of schema mappings. There is a distinction between engineered mappings between 

schemas, which are needed in integration or translation, and approximate mappings, 

which are used in web searches and in mining heterogeneous sets of data sources 

(Bernstein and Melnik 2007). The former describes the exact equivalence or 

correspondence between elements of two different schemas and the latter usually 

includes additional attributes that characterize different types of correspondence among 

the elements.  

The rest of this chapter surveys the literature that inspired the work presented in this 

thesis: 

 Section 2.1 illustrates usage scenarios that involve translations between schemas 

and the common difficulties that arise when trying to solve the problems in said 

scenarios.  

 Section 2.2 reviews current surveys that describe the features of ad hoc solutions 

that specify and/or implement translation mappings. Four surveys focus on 

matching between schemas and two surveys focus on translations and 

transformations between schemas.  

 Section 2.3 describes various specifications of declarative translation mappings (i.e., 

engineered mappings) found in existing approaches.  

 Section 2.4 describes the schema management approach: the high-level description 

of families of problems, the set of basic high-level operators proposed to solve these 

                                                                    
 
 
1 This thesis follows the terminology used in Olivé (2007). This terminology is different from that 

used by Bernstein & Melnik (2007) and Bézivin et al. (2006), who use the terms model and 
model management, respectively, to denote the concepts schema and schema management.  
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problems, solutions in terms of operators, and examples of existing 

implementations.  

2.1 Application domain of schema management 

This section stresses the importance of, and need for, generic schema translation and, by 

extension, schema management. First, it reviews the many usage scenarios that require 

the support of schema management by listing the families of applications that support it. 

Second, it summarizes the common problems found in such scenarios. 

2.1.1 Families of applications that require the support of schema 

management 

One way to characterize the application domain of schema management is to list the 

current categories of products that require the support of schema management. Of the 

numerous products in each category, only some examples are cited.  

2.1.1.1 CASE and reverse engineering tools 

Computer-aided software engineered (CASE) tools are used to assist in the development 

and maintenance of software. All aspects of the software-development lifecycle can be 

supported by CASE tools, from project management software to tools for business and 

requirement analysis, system design, code storage, compilers, test software and others. 

They usually include generators of lower-level models, and eventually code, from higher-

level models. The generation of lower-level models from higher-level models involves the 

specification of translations between the models. This may also include using reverse 

engineering processors to generate higher-level models from code or lower-level models. 

Again, this usually involves designing translations between the models, which in turn 

requires an explicit representation of mappings. A list of vendors with more than 600 

CASE tools is found in Lamb, Scott and Heavey (2005). 

2.1.1.2 Extract-transform-load (ETL) tools 

Extract-transform-load (ETL) tools (ETL 2007, Kimball, Caserta 2004) extract data from 

outside sources, transform it to fit business needs and load it into a database, usually a 

data warehouse. ETL tools are also used for integration with legacy systems. The first part 

of an ETL process extracts the data from the source schemas. Each separate schema may 

be an instance of a different metaschema. The extraction converts the data into a uniform 

format, i.e., as an instance of a given schema. The transformation stage applies a series of 

rules or functions to the data extracted from the source to derive the data to be loaded to 

the end target. The load phase loads the data into the end target, usually the data 

warehouse. The functions applied during the transformation stage are the applications of 

translation mappings defined between the source metaschema and the data warehouse 

metaschema. 
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2.1.1.3 Message-mapping tools 

Message-mapping tools simplify the programming of message translation between 

different formats. These are often embedded in message-oriented transactional 

middleware, such as enterprise application integration (EAI) environments (Altova 2008, 

BEA 2007, Microsoft 2006, Stylus Studio 2008). EAI is the process of linking applications, 

such as supply chain management (SCM), customer relationship management (CRM) and 

business intelligence (BI) systems, in order to obtain financial and operational competitive 

advantages in business. To avoid every application having to convert data to or from every 

other application's formats, EAI systems usually stipulate an application-independent (or 

common) data format, i.e., a unique schema. The EAI system usually provides a data 

transformation service as well, in order to assist in the conversion between application-

specific and common formats.  

2.1.1.4 Query mediators to access heterogeneous databases 

Query mediators are systems that combine the data residing at different sources and 

provide the user with a unified view of these data. This unified view is represented by the 

"global schema" and provides a reconciled view of all data, which can then be queried by 

the user. In database research, this is called data integration (Lenzerini 2002). In 

commercial IT, it is called enterprise information integration (EII) (Halevy et al. 2005) and 

exists in many variations, e.g., supporting web services and updates (Carey 2006). There 

are also custom implementations for bio-informatics and medical informatics (Davidson et 

al. 1999, Louie et al. 2007).   

2.1.1.5 Wrapper generation tools 

Wrapper generation tools are tools for accessing data sources from different sources and 

generating interfaces in a specific format for accessing and supporting the incremental 

updating of such sources, for example to produce an object-oriented wrapper for a 

relational database (Adya et al. 2007, Hibernate 2007, Oracle 2007) or to produce web 

wrappers for web-accessible data sources (Gruser et al. 1998). Unlike query mediators, 

wrappers often need to support incremental updates.  

2.1.1.6 Graphical query design tools 

Graphical query design tools can define a mapping between source schemas (e.g., 

relational databases) and target schemas (e.g., graphical user interfaces) (Bitpipe 2007). 

Usually, the source and target have different formats. These tools provide visual design 

environments for selecting tables and columns. They automatically build joins and 

Transact-SQL statements when the user selects which columns to use. 

2.1.1.7 Data translation tools 

Data translation tools can move data between different applications (Microsoft 2007). For 

commercial applications, their role has been partly subsumed by ETL tools. For design 

tools, however, they form a separate product category. For example, mechanical CAD tools 

http://en.wikipedia.org/wiki/Supply_Chain_Management
http://en.wikipedia.org/wiki/Customer_Relationship_Management
http://en.wikipedia.org/wiki/Business_Intelligence
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need to translate between different geometric coordinate systems, assembly structures, 

and data formats (Bloor, Owen 1994). 

2.1.2 Common problems to solve in the application domain 

All of the aforementioned systems need to transform, integrate and exchange knowledge. 

In fact, because systems use different models to handle such knowledge, information 

needs to be translated from one to another. The developments in the Internet world have 

increased these needs, as it has become possible, at least in principle, to implement 

communication between systems at any level, without significant limitations in the 

amount of data exchanged or in the length of the interaction.  

The major reasons for the complexity of these applications are as follows (Bernstein and 

Melnik 2007, Melnik 2004):  

 Heterogeneity of representation of a particular domain, which arises because data 

sources are independently developed by different people and for different purposes. 

The data sources may use different data models, different schemas and different 

value encodings. 

 Impedance mismatches that arise because the logical schemas required by 

applications are different from the physical ones exposed by data sources.  

 Potpourri of tools: the solutions are language-specific, i.e., they are developed for 

SQL, UML, XML, or RDF and are not easily portable to other domains. For example, 

solutions developed for mapping database schemas are difficult to adopt for 

mapping websites. 

 Insufficient abstraction of mapping metaschemas: mapping between metaschemas 

is developed using operations for the manipulation of schemas, not metaschemas. 

Such operations typically provide access to the individual elements of metaschemas, 

such as the individual attribute definitions of schemas. The programming of 

mapping applications with these operations requires a large amount of navigational 

code and incurs high development and maintenance costs. 

 Unavailability of a general-purpose platform to simplify the development of 

mapping tools and applications. The existing general-purpose solutions typically 

focus on persistent storage or graphical design environments for metadata artifacts 

and do not go far enough to support the developers of metadata applications. In fact, 

many of today’s mapping-related tasks are still solved manually. An automated 

approach requires too much implementation effort due to the lack of a common 

programming platform. 

The situation has become even more complicated as the number of data models has 

increased: ODMG (Berler et al. 2000), XSD (Peterson et al. (eds.) 2008, Sperberg-McQuen, 

Gao and Thompson (eds.) 2008), .NET (Microsoft 2008), .RDF (Becket 2004) and OWL 

(McGuiness andHarmelen 2004). Additionally, more programming languages and types of 

tools are appearing in the market. 



An object-oriented approach to the translation between MOF metaschemas 

 

16 

 

2.2 Features of ad hoc solutions 

In recent years, there have been so many different ad hoc approaches to solving the 

schema mapping problem and the schema translation problem that several surveys 

related thereto have been published. The dimensions proposed to classify the various 

approaches give a good overview of the different issues considered in the proposed 

solutions.  

The surveys of Kalfoglou and Schorlemmer (2003) and Noy (2004) focus on the state 

of the art in ontology matching and approaches to integrating ontology-based 

information. The survey of Rahm and Bernstein (2001) classifies the schema mapping 

applied to database application domains. Shvaiko and Euzenat (2005) add new 

dimensions to the classification proposed by Rahm and Bernstein in order to apply it 

to information systems and ontologies, but their classification concentrates only on 

schema-level matching techniques. Note that all previous surveys focus on solutions to 

schema mapping, regardless of whether the mapping is used for integration, 

translation or transformation. 

The surveys of Czarnecki and Helsen (2006) and Mens and Van Gorp (2006) describe and 

classify the existing approaches that specify and implement schema transformation and 

schema translation.  

2.2.1 Noy classification 

In the context of ontology research, Noy (2004) proposes three aspects for the 

classification of semantic-integration approaches: 

(1) Mapping discovery: How the approach determines which concepts and properties 

represent similar notions. Mapping discovery is the major architecture used to find 

similarities between ontologies. The following are the two major sets of architectures: 

 Using a shared ontology: When the goal of the approach is to facilitate knowledge 

sharing, a general upper ontology is used as a reference ontology in the integration 

process. This ontology formalizes notions such as processes and events, time and 

space, physical objects, and so on. Examples include the Suggested Upper Merged 

Ontology (SUMO) (Niles, Pease 2001) and DOLCE (Gangemi et al. 2003).  

 Using heuristics and machine-learning: This comprises heuristic-based 

approaches or machine learning techniques that use various characteristics of 

ontologies (such as their structure, definitions of concepts or instances of classes) to 

find mappings. 

(2) Representation of mappings: How mappings between ontologies are represented to 

enable reasoning. There is a broad spectrum of representations of mappings. The 

author discusses the following groups: 

 As instances of an ontology of mappings: A mapping between two ontologies 

constitutes a set of instances of classes in the mapping ontology and can be used by 
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applications to translated data from the source ontology to the target. It allows 

mechanisms such as the specification of recursive mappings and composed 

mappings. 

 As a set of bridging axioms in first-order logic: The mappings, expressed as a set 

of bridging axioms relating classes and properties of the ontologies, are essentially 

translation rules. The rules refer to concepts from source ontologies and specify 

how to relate the same concepts in the other ontology. The ontologies mapped with 

the bridging axioms can then be treated as a single theory by a theorem prover 

optimized for ontology-translation tasks. 

 As views over either global or local ontologies: A global ontology is defined to 

provide access to local ontologies and the mappings are defined as views over either 

the global or the local ontologies. In other words, a predicate from one ontology is 

defined as a query (and DL expression) over predicates in another ontology. 

(3) Reasoning with mappings: What types of reasoning are involved, once the mappings 

are defined. For example, the mappings may be used to perform data translation, 

query answering or web-service composition tasks among others. 

2.2.2 Kalfoglou and Schorlemmer classification 

Kalfoglou and Schorlemmer (2003) classify ontology mapping approaches based on the 

type of work the approaches report. They distinguish the following categories: 

(1) Frameworks: approaches that are mostly a combination of tools, providing a 

methodological approach to mapping; some of them are also based on theoretical 

work. 

(2) Methods and tools: tools, either stand-alone or embedded in ontology development 

environments, and methods used in ontology mapping. 

(3) Translators: approaches that translate vocabularies between ontologies that share 

the same domain. 

(4) Mediators: tools to access, in a uniform view, vocabularies of different ontologies. 

(5) Techniques: similar to methods and tools, but not so elaborate or as directly 

connected to mapping. 

(6) Experience reports: reports on doing large-scale ontology mapping. 

(7) Theoretical frameworks: theoretical work that has not yet been exploited by 

ontology mapping practitioners. 

(8) Surveys: similar to experience reports but more comparative in style. 

(9) Examples: a selection of original works that have been reported in the 

aforementioned categories. 

After describing and showing examples of 35 works, the authors elaborate on important 

topics that emerged when examining these works.  In particular, they critically review 
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issues concerned with the relationship between ontology mapping and schema 

integration, the normalization of ontologies and the creation of formal instances, the role 

of formal theory in support of ontology mapping, the use of heuristics, the use of 

articulation and mapping rules, the definition of semantic bridges and the thorny issue of 

automated ontology mapping.  

2.2.3 Rahm and Bernstein classification 

The survey of Rahm and Bernstein (2001) provides a classification, in the context of the 

database field, of schema-matching approaches and a comparative review of matching 

systems. 

Since the implementation of Match may use multiple match algorithms, or matchers, two 

subproblems are distinguished: (1) the implementation of individual matchers, each of 

which computes a mapping based on a single matching criterion, and (2) the combination 

of individual matchers within an integrated hybrid matcher (by using multiple matching 

criteria) or a composite matcher (by combining multiple match results produced by 

different match algorithms).   

For the implementation of individual matchers, in which a mapping is computed based on 

a single matching criterion, the following largely-orthogonal classification criteria are 

considered: 

(1) Kind of information used. Depending on the data that the mapping algorithms 

exploit, a matcher may be: 

 Schema-level: Only schema information is considered. 

 Instance-level matcher: Instances values are considered for the matching. 

(2) Granularity of match. Depending on the schema elements or structures considered 

for the match, a matcher may be: 

 Element-level: Individual schema elements, such as attributes, are analyzed in 

isolation, and their relations with other elements are ignored. 

 Structure-level: Complex schema structures are considered together for the 

mapping. 

(3) Approach used on the mapping. Depending on the type of comparisons made 

between elements, a matcher may be: 

 Linguistic: Names and text are used to find similar schema elements. 

 Constraint-based: Constraint information (e.g., data types, value ranges, uniqueness, 

optionality, relationship types, keys, cardinalities, etc.) is used to determine the 

similarities between elements. 

(4) Matching cardinality. Depending on the number of elements of a source related to a 

certain number of elements of the target, a matcher may be: 

 1:1: One element of a schema matches to one element of the other schema. 
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 Set-oriented: 1:n, n:1.  

 n:m: This cardinality usually requires considering the structural embedding of the 

schema elements and thus requires structure-level matching.  

(5) Auxiliary information used. The matcher may rely only on the input schemas S1 and 

S2 or also on additional information. This additional information may be, among other 

things: 

 Dictionaries. 

 Global schemas. 

 Previous matching decisions. 

 User input. 

A matcher that uses just one approach is unlikely to achieve as many good match 

candidates as one that combines several approaches. Hybrid matchers directly combine 

several matching approaches to determine match candidates based on multiple criteria or 

information sources. A hybrid matcher can offer better performance than the execution of 

multiple matchers by reducing the number of passes over the schema. Composite matchers, 

on the other hand, combine the results of several independently executed matchers, 

including hybrid matchers. This ability to combine matchers makes composite matchers 

more flexible than hybrid matchers. 

2.2.4 Shvaiko and Euzenat classification 

Shvaiko and Euzenat (2005) present a classification of schema/ontology matching 

techniques that builds on the work of Rahm and Bernstein (2001). The new criteria 

included are based on (i) general properties of matching techniques, (ii) interpretation of 

input information, and (iii) the kind of input information. 

Their classification of matchers considers three major aspects: (1) granularity, (2) input 

interpretation, and (3) the kind of input. Further features considered are the following: 

(1) Granularity of matching. As in Rahm and Bernstein (2001), there are two main groups 

of matchers:  

a. Element-level matching techniques, which compute mapping elements by 

analyzing entities in isolation, ignoring their relationships with other entities. 

These techniques may be the following:  

i. String-based techniques, which are used to match names and descriptions of 

schema/ontology entities. This includes name similarity, description similarity 

and global namespaces. 

ii. Language-based techniques, which can interpret a label as a word or phrase in 

some natural language. This includes: 

1. Tokenization: Names of entities are parsed in sequences of tokens by a 

tokenizer, which recognizes punctuation, cases, blank characters, digits, etc. 
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2. Lemmatization: The strings underlying tokens are morphologically analyzed 

in order to find all their possible basic forms (e.g., KitsKit). 

3. Morphological analysis. 

4. Elimination: The tokens that are articles, prepositions, conjunctions, etc. are 

marked to be discarded. 

iii. Constraint-based techniques, which deal with the internal constraints applied 

to the definitions of entities, such as types, multiplicity of attributes and keys. 

1. Datatype comparison: The various attributes of a class are compared with 

regard to the datatypes of their value. 

2. Multiplicity comparison: Attribute values are collected by a particular 

construction (e.g., set, list, multiset), on which multiplicity constraints are 

applied. 

iv. Linguistic resources such as common knowledge or domain-specific thesauri, 

which are used in order to match words (the names of schema/ontology 

entities are considered words of a natural language) based on the linguistic 

relations between them (e.g., synonyms, hyponyms). 

v. Alignment-reuse techniques, which are an alternative way of exploiting 

external resources containing alignments of previously matched 

schemas/ontologies. 

vi. Upper-level formal ontologies, which are external sources of common 

knowledge that are logic-based systems and can be exploited to analyze 

interpretations (e.g., SUMO or DOLCE). 

b. Structure-level matching techniques, which compute mapping elements by 

analyzing entities with their relations. 

i. Graph based techniques, which are graph algorithms that consider the input as 

labeled graphs. Database schemas, taxonomies and ontologies are viewed as 

graph-like structures containing terms and their inter-relationships. 

ii. Taxonomy-based techniques, which are also graph algorithms, and which 

consider only the specialization relation. 

iii. Repositories of structures, which store schemas/ontologies and their 

fragments together with the pair wise similarities between them. 

iv. Model-based algorithms, which handle input based on its semantic 

interpretation. These are well-grounded deductive methods.  

(2) Input interpretation. Techniques may generally interpret the input information in 

various ways. Matchers may consider: 

a. Internal techniques, which use information that comes only with the input 

schemas/ontologies. This includes syntactic techniques, which interpret input 
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based on its sole structure following some clearly stated algorithm, and semantic 

techniques, which use some formal semantics (e.g., model-theoretic semantics) to 

interpret the input and justify the results. 

b. External techniques, which use auxiliary (external) resources or domains and 

common knowledge to interpret the input. These techniques do not distinguish 

between syntactic or semantic, since a user's input cannot be characterized as 

either syntactic or semantic.  

(3) Kind of input. Algorithms may use different kinds of data. Three types are considered: 

a. Terminological: Strings. Found in the ontology descriptions.  

b. Structural: Structures. Found in the ontology descriptions. This requires some 

semantic interpretation and usually uses some semantically compliant reason to 

deduce the correspondences. 

c. Semantics: Models. This includes upper-level formal ontologies, as defined above, 

and model-based ones (SAT and DL). 

2.2.5 Czarnecki and Helsen classification  

Czarnecki and Helsen (2006) propose a model to describe and classify the existing 

approaches to schema transformation. In their work, they consider a translation of one 

schema to another as a particular type of transformation in which the two schemas are 

equivalent and their metaschemas are different. Therefore, the features considered in 

transformation approaches may be applied in translation approaches.  

The model considers the following features: 

(1) Specification representation, which refers to the type of language or mechanism 

used to represent the specification of the transformation or matching. Some 

approaches express the translation expressions as preconditions and 

postconditions in OCL, while others express them in a relational language such as 

QVT-Relations, and still others express them as functions in an executable 

language. 

(2) Transformation rules, which describe the smallest unit of transformation. The 

description of the rules includes the definition of the following:  

a. Domains: how the domains (i.e.,  source and target models) are involved in the 

transformation, the metamodel, the directionality of rules, the body of the rules, 

and the typing of variables, logic and patterns. 

b. Syntactic separation of the rules operating on the source and target models. 

c. Multidirectionality: the ability to execute a rule in different directions. 

d. Application conditions: how a rule is applied. 

e. Intermediate structures, such as traceability links, which are necessary for 

transformation. 
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f. Parameterizations, which are used to make transformation rules more reusable. 

g. Reflection and aspects, which are supported in the transformations. 

(3) Rule application control, which refers to the strategy used to determine the 

specific location where a rule is applied within its source scope. Two aspects are 

considered: 

a. Location determination: The strategy may be deterministic, non-deterministic 

or interactive.  

b. Rule scheduling: The order is determined for the application of individual rules 

are applied. This may vary in four main areas: (i) form (i.e., whether scheduling 

can be expressed explicitly or implicitly), (ii) rule selection (i.e., explicit or 

nondeterministic), (iii) rule iteration (i.e., whether it includes mechanisms such 

as recursion, looping and fixed-point iteration), and (iv) phasing (i.e., whether 

the process is organized in phases).  

(4) Rule organization: This concerns general structuring issues, such as 

modularization and reuse mechanisms.  

(5) Source-target relationship: The source and target may be the same model or two 

different models. 

(6) Incrementality: This refers to the ability to update existing target models based 

on changes in the source models. Three cases are considered: (i) target 

incrementality or change propagation (i.e., the ability to update the existing target 

models based on changes in the source models), (ii) source incrementality (i.e., the 

ability to minimize the amount of source that needs to be reexamined by a 

transformation when a source is changed), and (iii) preservation of user edits in 

the target (i.e., the ability to rerun a transformation on an existing user-modified 

target). 

(7) Directionality: This describes whether a transformation can be executed in only 

one direction or in multiple directions. 

(8) Tracing: This describes the mechanisms used to record different aspects of 

transformation execution.  

2.2.6 Mens and Van Gorp classification  

Mens and Van Gorp (2006) propose a taxonomy of model transformation that groups 

tools, techniques and formalisms for model transformation based on their common 

qualities.  

The following features are considered in their classification: 

(1) Characteristics of the source and target models, which include: (i) the number of 

source and target models, (ii) the technical space determined by the meta-model that 

is used, (iii) whether the transformation is endogenous or exogenous, (iv) whether the 
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transformation is horizontal (at the same level of abstraction) or vertical (at different 

levels of abstraction), and (v) whether the transformation is syntactic or semantic.  

(2) Characteristics of the model transformation process: (i) the level of automation of 

the process, (ii) the complexity of the process, and (iii) the preservation of the source 

model in the target model. 

(3) Characteristics of the language or transformation tool: (i) whether it accepts 

creating/reading/updating/deleting (CRUD) transformations, (ii) whether it allows 

suggestions when applying transformations, and (iii) whether it allows the 

customization or reuse of transformations. 

(4) Characteristics of the language or transformation tool to verify and guarantee 

correctness of transformations: (i) whether it includes testing and validation 

techniques, (ii) whether it deals with incomplete or inconsistent models, (iii) whether 

it allows grouping, composing and decomposing transformations, (iv) whether it 

allows genericity of transformations, (v) whether it includes bidirectionality of 

transformations, and (vi) whether it supports traceability and change propagation. 

(5) Quality requirements for a transformation language or tool: (i) usability and 

usefulness, (ii) verbosity versus conciseness, (iii) performance and scalability, (iv) 

extensibility, (v) interoperability, (vi) acceptability by user community, and (vii) 

standardization. 

(6) Characteristics of the mechanisms used for model transformation: whether it 

relies on a declarative or operational (or imperative) approach. 

2.3 Translation mappings specifications 

The core problem in schema translation is the representation of translation mappings.  

There is a broad spectrum of representations of translation mappings. A multitude of 

mapping languages have been utilized in the literature to address various schema 

management scenarios (Benedikt et al. 2003, Bergamaschi, Castano and Vincini 1999, 

Bernstein 2003, Buneman, Davidson and Kosky 1998, Claypool 2002, Halevy 2001, 

Hainaut 1996, Kementsietsidis, Arenas and Miller 2003, Li, Bohannon and Narayan 2003, 

Madhavan, Halevy 2003, Melnik, Rahm and Bernstein 2003, Mitra, Wiederhold and 

Kersten 2000, Popa et al. 2002, Pottinger and Bernstein 2003, Papotti and Torlone 2005).  

The number of languages is probably matched by the number of data models or schema 

languages developed for the same purpose. 

In general, a schema mapping is a triple 𝑀 =  𝑆1, 𝑆2, Σ  where 𝑆1 is the source schema, 𝑆2 

is the target schema and Σ, known as mapping expression, is a set of constraints over 𝑆1 

and 𝑆2. An instance of the mapping 𝑀 is a pair <𝑠1 , 𝑠2, > such that 𝑠1 is an instance of 𝑆1, 𝑠2 

is an instance of 𝑆2, and 𝑠1, 𝑠2 satisfy all constraints Σ.  

The classification of the various schema mapping approaches, summarized in Section 2.2, 

shows that mapping representations vary based on various aspects: the purpose of the 

mapping, the representation of the source and target schema, the type of language used in 
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the representation, the kind of information used for the mapping, the granularity of the 

match, the cardinality of the match, etc.  

The rest of this section describes, in a generic way, some of the most common approaches 

to the declarative specification of mappings.  

2.3.1 Schema morphism expressions 

A schema morphism is the simplest specification of mapping (Melnik 2004, Melnik, Rahm 

and Bernstein 2003, Melnik, Rahm and Bernstein 2003). Conceptually, a morphism is a set 

of arcs connecting the elements (e.g., relational tables or XML types) of two schemas. A 

morphism is clearly a weak representation of a transformation between two models, since 

it carries no semantics about the transformation of instances (i.e., there are no 

constraints). Still, morphisms are useful in metadata applications that do not require 

instance transformations, such as dependency tracking, schema translation (e.g., UML to 

IDL or ER to SQL) and impact analysis. Furthermore, morphisms can represent mappings 

between different kinds of schemas (e.g., relational and XML), can always be inverted and 

composed, and can be easily implemented and manipulated. 

Figure 2.1 shows an example of a representation of morphisms between a relational table 

and an XML schema. Note that various kinds of schema elements, such as relations or 

attributes can participate in a morphism.  

 

Figure 2.1 A morphism between a relational table and an XML schema (from Melnik (2004))  

2.3.2 Schema query assertions 

An alternative for defining mappings is to consider a mapping a query (e.g., an SQL query) 

on the source schema that produces a subset of a target relation. Thus, a mapping defines 

one out of possibly many ways of forming target elements. This is the most common type 

of mapping used for schema integration (Bergamaschi, Castano and Vincini 1999, 

Lenzerini 2002, Miller, Ioannidis and Ramakrishnan 1994), where a global schema is 

constructed from many source schemas. 

In this context, a data integration system is a triple 𝐺, 𝑆, 𝑀 where 𝐺 is the global schema, 

𝑆 is one of the sources schemas, and 𝑀 is the mapping between 𝐺 and 𝑆. Several 

approaches are considered to specify the mapping 𝑀 between 𝐺 and 𝑆: 

 If the sources are defined in terms of queries formulated over the global schema, the 

approach is called source-centric or local-as-view (LAV). 
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 If the global schema is defined in terms of queries formulated over the sources, the 

approach is called global-schema-centric or global-as-view (GAV). 

 An approach that combines the above two approaches is called GLAV. 

 If the mapping is between sources, without a global schema, the approach is called 

peer-to-peer (P2P). 

 

Figure 2.2 Example of two mappings specified as GLAVs assertions (from Fuxman et al. (2006))  

Figure 2.2 shows two nested relational schemas. The source schema, proj, is a set of 

records with two atomic components, dname (department name) and pname (project 

name), and a set-valued component, emps, that represents a (nested) set of employee 

records. The target schema is a reorganization of the source: there is, at the top level, the 

set of department records, with two nested sets of employee and project records. The 

Figure 2.2 also shows two basic mappings to describe the relationship between the source 

and target schemas. The first one, m1, is a query that maps the department and project 

names in the source to the corresponding elements in the target. The second one, m2, is a 

query that maps department and project names and their employees. Correspondences 

between schema elements (e.g., dname to dname) are captured by equalities between 

such components (e.g., do.dname=p.dname) grouped in the where clause that follows 

the exists clause of a mapping.  

2.3.3 Logic-based formulas 

Logic-based notation is another declarative alternative for specifying mappings (Buneman, 

Davidson and Kosky 1998, Calvanese, Giacomo and Lenzerini 2001, Madhavan et al. 2002). 

Most ontology mappings are represented by a logic-based language. 
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In the above example (see Figure 2.2), each mapping may be represented as an implication 

between a set of atomic formulas over the source schema and a set of atomic formulas 

over the target schema. Each atomic formula is of the form 𝑒(𝑥1 , … , 𝑥𝑛), where 𝑒 denotes a 

set and 𝑥1 , … , 𝑥𝑛  are variables. The two mappings, m1 and m2, shown in the example have 

the following corresponding formulas (Fuxman et al. 2006): 

m1: proj(𝑑, 𝑝, 𝐸𝑠) → dept 𝑑, ! 𝑏, ! 𝐸, ! 𝑃 ∧ 𝑃 ! 𝑥, 𝑝  

m2: proj(𝑑, 𝑝, 𝐸𝑠) ∧  𝐸𝑠 𝑒, 𝑠 → dept 𝑑, ! 𝑏, ! 𝐸, ! 𝑃 ∧ 𝐸𝑠 𝑒, 𝑠, ! 𝑃′ ∧ 𝑃′(! 𝑥) ∧ 𝑃′(𝑥, 𝑝) 

For each formula, the variables on the left of the implication are assumed to be universally 

quantified. The variables on the right that do not appear on the left are assumed to be 

existentially quantified. For clarity, the quantifiers are omitted and there is a question 

mark in front of the first occurrence of an existentially quantified variable. To illustrate, in 

m2, the variable 𝐸𝑠  denotes the nested set of employee records (inside a tuple in the top-

level set proj). The variables 𝐸, 𝑃 and 𝑃' are also set variables, but existentially 

quantified. The variables 𝑏 (for budget) and 𝑥 (project id) are existentially 

quantified as well (but atomic). The meaning of m2 is as follows: for every source tuple 

(𝑑, 𝑝, 𝐸𝑠) in proj, and for every tuple  𝑒, 𝑠  in the set 𝐸𝑠 , there must exist four tuples in the 

target as follows. First, there must be a tuple  𝑑, 𝑏, 𝐸, 𝑃  in dept, where 𝑏 is some 

“unknown” budget, 𝐸 identifies a set of employee records, and 𝑃 identifies a set of project 

records. Then, there must exist a tuple  𝑒, 𝑠, 𝑃′  in 𝐸, where 𝑃′ identifies a set of project 

IDs. Furthermore, there must exist a tuple (𝑥) in 𝑃′, where 𝑥 is an “unknown” project ID. 

Finally, there must exist a tuple (𝑥, 𝑝) in the aforementioned set 𝑃, where 𝑥 is the same 

project ID used in 𝑃′.  

2.3.4 Graph transformation rules 

Graph transformation rules are a visual representation alternative for schema mappings 

(Boyd and McBrien 2005, Grunske, Geiger and Lawley 2005, Song, Zhang and Kong 2004, 

Vara et al. 2007). Schemas may be represented as graphs. A graph transformation rule 

𝑝 =  𝐺𝐿𝐻𝑆 , 𝐺𝑅𝐻𝑆  consists of two directed typed graphs 𝐺𝐿𝐻𝑆  and 𝐺𝑅𝐻𝑆 , which are called the 

left-hand side and right-hand side of 𝑝.  

Song, Zhang and Kong (2004) represent management operators based on graph 

transformation. Their approach is based on the reserved graph grammar (RGG) formalism 

(Zhang and Zhang 1997). The RGG formalism is expressed in terms of node-edge diagrams. 

A node is organized into a two-level hierarchy. A large rectangle is the first level, called a 

super-vertex, with small embedded rectangles as the second level, called vertices. Edges are 

used to denote relationships between nodes. An RGG consists of a set of graph grammar 

rules, also called productions, each having two graphs (the left graph and the right graph). 

The RGG offers a translation mechanism, i.e., graph transformation rules can specify an 

input graph of a different graph. 

Figure 2.3 shows an example of a mapping represented in RGG and Figure 2.4 shows an 

example of ModelGen by graph transformation rules.  
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Figure 2.3 Example of a mapping represented in RGG (from Song, Zhang and Kong (2004))  

 

Figure 2.4 Example of ModelGen by graph transformation rules (from Song, Zhang and Kong 
(2004)) 

2.3.5 Query/view/transformation (QVT) expressions 

QVT is a family of languages for describing model transformations (Object Management 

Group 2007a), including schema translation mappings. QVT defines a standard way to 

transform source schemas into target schemas, which are instances of metaschemas that 

should conform to an arbitrary MOF 2.0 metametaschema. 

The QVT language integrates the OCL 2.0 standard and extends it to imperative OCL. 

Additionally, QVT defines three domain specific languages named Relations, Core and 

Operational Mappings. These languages are organized in a layered architecture. Relations 
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and Core are declarative languages at two different levels of abstraction, with a normative 

mapping between them. The Relations language has a graphical concrete syntax, it 

supports complex object pattern matching, and implicitly creates trace classes and their 

instances to record what occurred during a transformation execution. Relations can assert 

that other relations also hold between particular model elements matched by their 

patterns. The Core language is a small model/language, which only supports pattern 

matching over a flat set of variables by evaluating conditions over those variables against a 

set of models. It treats all of the model elements of the source, target and trace models 

symmetrically. The QVT/OperationalMapping language is an imperative language that 

extends both QVT/Relations and QVT/Core. The syntax of the QVT/OperationalMappings 

language provides constructs commonly found in imperative languages (e.g., loops, 

conditions, etc.).  

A translation declaration specifies two parameters for holding the metaschemas involved 

in the translation. The parameters are types over the appropriate metaschemas. The 

execution direction is not fixed at translation definition, which means that both 

metaschemas involved could be source and target metaschemas and vice versa.  

Each translation mapping is represented as a relation. A relation is defined by the 

declaration of two or more domains and a pair of when and where predicates. For example: 
 

relation ClassToTable 

{ 

  checkonly domain uml c:Class  

  {namespace=p:Package{}, kind='Persistent', name=cn} 

  checkonly domain rdbms: t:Table {schema=s:Schema{}, name=cn} 

  when { 

  PackageToSchema(p,s); 

  }  

  where { 

  AttributeToColumn(c,t); 

  } 

} 

A domain is a distinguished typed variable that can be matched in a model of a given 

model type. A domain declares a pattern, which is bound with elements from the model to 

which the domain is bound. Such patterns consist of a variable and a type declaration, 

which itself may specify some of the properties of that type. A relation can be viewed as a 

graph of object nodes, their properties and association links originating from an instance 

of the domain's type.  

A domain may be invoked for enforcement or for checkonly. Enforcement of a domain is 

equivalent to selecting such a domain as the target. The target model may be empty or 

may contain existing model elements. The execution of the translation of a relation should 

proceed by first checking whether the relation holds and, if the check fails, by attempting 

to make the relation hold by creating, deleting or modifying only the target model. A 

domain is invoked checkonly to check the consistency of both models, i.e., to check that 

each model is the translation of the other. 
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A when clause specifies the conditions under which the relationship needs to hold. A where 

clause specifies the condition that must be satisfied by all elements participating in the 

relation, and it may constrain any of the variables in the relation and its domains. The 

when and where clauses can contain arbitrary OCL, but are typically expected to contain (if 

anything) statements about relations satisfied by variables of the domain patterns. Thus, 

the relation R holds if, for every match of the first domain, there exists a valid match of the 

second domain such that the where clause holds. The when clause "specifies the conditions 

under which the relationship needs to hold." At first sight, both the when clause and the 

where clause appear to impose extra conditions on valid matches of bindings, thus forming 

an intersection of relations. Operationally, the difference between the two is that the 

variables in the when clause "are already bound" "at the time the relation is invoked," and 

that the conditions in the where clause will be satisfied at the end of the invoked relation. 

Since this difference between the two clauses is not relational, in order to guarantee such 

executability the expressions occurring in a relation are required to satisfy the following 

conditions: 

 It should be possible to organize the expressions that occur in the when clause, the 

source domains and the where clause into a sequential order that contains only the 

following kinds of expressions: 

a. An expression of the form: <object>.<property> = <variable>  

Where <variable> is a free variable and <object> is either a variable bound to an 

object template expression of an opposite domain pattern or a variable that gets a 

binding from a preceding expression in the expression order. This expression 

provides a binding for the variable <variable>.  

b. An expression of the form: <object>.<property> = <expression>  

Where <object> is either a variable bound to an object template expression of a 

domain pattern or a variable that gets a binding from a preceding expression in the 

expression order. There are no free variable occurrences in <expression> (variable 

occurrences, if any, should all have been bound in the preceding expressions).  

c. No other expression has free variable occurrences (all of their variable 

occurrences should have been bound in the preceding expressions).  

 It should be possible to organize the expressions that occur in the target domain, 

into a sequential order that contains only the following kinds of expressions:  

a. An expression of the form: <object>.<property> = <expression>  

Where <object> is either a variable bound to an object template expression of the 

domain pattern or a variable that gets a binding from a preceding expression in the 

expression order. There are no free variable occurrences in <expression> (variable 

occurrences, if any, should all have been bound in the preceding expressions).  

b. No other expression has free variable occurrences (all of their variable 

occurrences should have been bound in the preceding expressions). 
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2.3.6 Translation schemas2  

An alternative for specifiying schema translation problems is defined in Bézivin et al. 

(2006). In this approach, translation mappings can be abstracted as being translation 

schemas. A translation schema is nothing more than an ordinary, simple metaschema that 

includes the source schema, the target schema and the translation mapping expressions 

between the two (the set of constraints that must be satisfied when two schemas are 

translations of each other). The basic idea of translation is presented in Figure 2.5  

(bottom), where a translation operation Mt takes a schema Ma as the source schema and 

produces a schema Mb as the target schema. This operation Mt is probably the most 

important operation in model engineering. Being models, Ma and Mb conform to 

metamodels MMa and MMb. Usually, the translation Mt has complete knowledge of the 

source metaschema MMa and the target metaschema MMb. Furthermore, the 

metaschemas MMa and MMb conform to a metametaschema in this figure, OMG’s MOF 

which in turn conforms to itself. 

Figure 2.5 Model transformation metamodel MM MMt (from Bézivin et al. (2006))  

One of the advantages of this representation is that translation schemas may be seen as 

translations in multiple directions. This is based on the use of direction-free minimal MOF 

language features: classes, associations, attributes and invariants. Another advantage is 

that translation schemas provide uniformity between the schema description language 

and the language for the translations. Additionally, the uniformity of the schema and 

translation language also allows for higher-order translations, i.e., translations that work 

on translations. It also provides the possibility of rewriting translation schemas exactly as 

if they were ordinary schemas, so refactorings and improvements for general schemas and 

UML schemas would be applicable. Moreover, standard translation schemas can be 

validated and checked with standard UML and OCL validation tools.  

                                                                    
 
 
2 Called transformation models in Bézivin et al. (2006)  
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2.3.6.1 Example: ER2Rel 

Gogolla (2005) and Gogolla et al. (2002) specify the translation between the ER 

metaschema and the Relational metaschema. The method describes in UML and OCL the 

ER and Rel metaschemas, i.e., as instances of the MOF metametaschema. The two 

metaschemas separate the syntax from the semantics part of the two schemas. The 

description of the syntax of the ER metaschemas includes classes for ER schemas, entities 

and relationships and the description of the semantics introduces classes for ER states, 

instances and links. The connection between syntax and semantics is established by 

associations explaining that syntactical objects are interpreted by corresponding semantic 

objects. The RE metaschema is described similarly.  

Translations between the two languages, as shown in Figure 2.6, are reflected by two 

associations, namely ErSchema2RelDBSchema and ErState2RelDBState. An ER schema is 

linked to the Relational database schema that represents the translated schema. Each ER 

state is associated with the Relational database state representing the same information. 

 

Figure 2.6 ER2Rel metamodel transformation (from Gogolla et al. (2002)) 

The translation class may directly access the source and target translation schemas. 

Therefore, semantic properties of the translation are formulated in OCL constraints. For 

example, the constraint that states that for every entity in the ErSchema there is a 

RelSchema having the same name and attributes with the same properties (i.e., name, 

DataType and key property) is represented in OCL as follows: 

 

context self:Er2Rel_Trans inv forEntityExistsOneRelSchema: 

self.relDBSchema.relSchema -> one(rl| 

  e.name = rl.name and 

  e.attribute -> forAll(ea| rl.attribute->one(ra| 

     ea.name = ra.name and ea.dataType = ra.dataType and  

     ea.isKey = ra.isKey)))) 

The ER2Rel transformation model was validated in the OCL tool USE (Gogolla, Büttner and 

Richters 2007). 



An object-oriented approach to the translation between MOF metaschemas 

 

32 

 

2.4 Schema management 

When used to solve all the common problems introduced in Section 2.1, ad hoc approaches 

are not very flexible, clearly very heavy, and hard to maintain. Therefore, a major feature 

of any significant approach to the problem would be generality: approaches that are 

maintainable and scalable. Generality requires high-level descriptions of families of 

problems (not just individual problems) and solutions.  

Schema management (Atzeni 2007, Bernstein 2003, Bernstein et al. 2000, Bernstein, Halevy 

and Pottinger 2000, Bernstein and Melnik 2007, Boronat, Carsí and Ramos 2006, Melnik 2004) 

is an emerging approach to common problems that arise when managing schemas and 

mappings. It is based on the representation and management of schemas and mappings 

between them. The basic idea is to provide a set of operators that are specified in a generic 

way — that is, independently of any specific schema — to manage schemas and mappings.  

Obviously, solutions specified in terms of such operators are not easy to implement. 

Indeed, a lot of recent research has been devoted to both the precise definition and 

implementation of the various operators and to the actual clarification of the features of 

the mapping definition languages.  

The rest of this section is organized as follows. First, it describes the families of problems 

that arise in schema management. Secondly, it reviews a basic set of schema management 

operators described in the literature. Thirdly, it describes how solutions to two of the 

families of problems are expressed in terms of such operators. Finally, it briefly presents 

several examples of approaches or prototypes by implementing, fully or partially, the 

schema management framework.  

2.4.1 Families of problems 

Schema management groups most of the common problems found in the tools defined in 

Section 2.1 into four high-level families of problems: (1) schema transformation, (2) 

schema integration, (3) schema translation, and (4) propagation of changes between 

schemas due to evolution.  

2.4.1.1 Schema transformation 

The problem of schema transformation may be defined as follows:  

Given a schema 𝑆1, instance of a metaschema 𝑀𝑆1, the goal of schema transformation, also 

known as schema refactoring, is to obtain a schema 𝑆1′ that represents the same 

knowledge as 𝑆1 and is of "better quality" (see Figure 2.7). A variant of the schema 

transformation problem occurs when the schema 𝑆1 includes instances. In that case, the 

goal is also to "update" the instances of the target schema. 
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Figure 2.7 The schema transformation problem  

2.4.1.2 Schema integration 

The main objective of schema integration is the construction of a unified schema from a 

set of independently developed schemas. That is, given two schemas 𝑆1 and 𝑆2 both 

instances of a metaschema 𝑀𝑆, the objective of schema integration is to obtain a third 

schema 𝑆3, usually called the global schema, which expresses all the knowledge of 𝑆1 and 

𝑆2 (see Figure 2.8). 

 

Figure 2.8 The schema integration problem  

Many authors consider that schema integration is intended to merge schemas that are 

instances of the same metaschema. Others consider the alternative of merging schemas 

that are instances of different metaschemas.  

2.4.1.3 Schema translation 

Schema translation is defined as follows: given a schema 𝑆1, instance of a metaschema 

𝑀𝑆1, and a metaschema 𝑀𝑆2, different from 𝑀𝑆1, the goal of schema translation is to 

obtain a schema 𝑆2, such that it is an instance of 𝑀𝑆2, with both schemas representing the 

same knowledge. A variant of this problem occurs when the schema 𝑆1 includes instances 

(data). In that case, the goal is to generate the instance of 𝑆2 that map to the instances of 𝑆1 

(see Figure 2.9). 

Figure 2.9 The schema translation problem 
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2.4.1.4 Propagation of changes due to evolution 

In software engineering, CASE tools are used to generate (translate) lower-level models, 

and eventually code, from higher-level models. Analogously, reverse engineering tools are 

used to generate (translate) higher-level models from code or lower-level models. In this 

context, any evolution or change in a schema must be propagated to the translated 

schema.  

The problem of propagation of changes due to evolution is defined as follows: given two 

schemas 𝑆1 and 𝑆2, both instances of the metaschemas 𝑀𝑆1 and 𝑀𝑆2, respectively, such 

that 𝑆2 is a translation of 𝑆1, and 𝑆1 evolves to 𝑆1′, the goal is to obtain, incrementally, from 

𝑆2 , the target schema 𝑆2′, which is an instance of 𝑀𝑆2 and a translation of 𝑆1
′  (see Figure 

2.10). A variant of this problem occurs when the schemas 𝑆1 and 𝑆2 include instances 

(data). In that case, the goal is to "update" the instances of 𝑆2 accordingly. 

Figure 2.10 The propagation of changes due to evolution problem 

2.4.2 Model management operators 

In order to solve the aforementioned families of problems, schema management proposes 

to define schema management operators (named model management operators by Melnik 

(2004)) that take schemas and mappings as input and produce schemas and mappings as 

outputs.  

The rest of this section provides formal definitions of model (schema), mapping and five 

basic operators, based on the work of Melnik et al. (Melnik 2004, Melnik et al. 2005). Note 

that the rest of this section uses the terms model and model management operator to 

denote the concepts of schema and schema management operator.  

According to Melnik, a model 𝑀 is a valid set of instances and a mapping is a relation on 

instances. A binary mapping is a mapping that holds between two models. In general, a 

mapping is an arbitrary binary relation on instances, which may be total, partial, 

functional, surjective, etc. 

Formally, a model management operator is an n-ary predicate on schemas and mappings. 

The schema management operators follow the following property: 

Operator closure: Let ℒ be a language for specifying schemas and mappings, and let 𝜃 be a 

model management operator. ℒ is closed under 𝜃 if, given any inputs to 𝜃 in ℒ, the outputs 

can also be expressed in ℒ. 
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Given two models, 𝑚1 and 𝑚2, and the mapping between them, 𝑚𝑎𝑝, the standard 

algebraic definitions necessary to define the operators are as follows: 

 𝑚1 × 𝑚2 =df    𝑥, 𝑦  𝑥 ∈ 𝑚1 ∧ 𝑦 ∈ 𝑚2}   

 Invert(𝑚𝑎𝑝) =df    𝑦, 𝑥    𝑥, 𝑦 ∈ 𝑚𝑎𝑝}   

 Domain(𝑚𝑎𝑝) =df   𝑥  ∃𝑦 ∶  𝑥, 𝑦 ∈ 𝑚𝑎𝑝}   

 Range(𝑚𝑎𝑝) =df  Domain(Invert(𝑚𝑎𝑝))   

 Id(𝑚) =df   𝑥, 𝑥   𝑥 ∈ 𝑚}   

The following well-known properties hold: 

 Domain(Id(m)) = m  

 Invert(Invert(𝑚𝑎𝑝)) = 𝑚𝑎𝑝  

A basic set of model management operators proposed in the literature is described below: 

2.4.2.1 Match 

Given two models 𝑚1 and 𝑚2, the operator returns a mapping, 𝑚𝑎𝑝, that holds between 

the two models, denoted map = Match(𝑚1, 𝑚2). The operator Match inherently does not 

have formal semantics. It gives the relationship between two models in a particular 

application context. This relationship can sometimes be discovered semi-automatically 

(Bernstein et al. 2000), but Match ultimately depends on human feedback and hence may 

be partial or even inaccurate. 

2.4.2.2 Compose 

Given three models 𝑚1, 𝑚2 and 𝑚3 and two mappings, 𝑚𝑎𝑝1−2, between 𝑚1 and 𝑚2, and 

𝑚𝑎𝑝2−3 between 𝑚2 and 𝑚3, the composed mapping between 𝑚𝑎𝑝1−2 and 𝑚𝑎𝑝2−3 is 

defined as follows (see Figure 2.11): 

𝑚𝑎𝑝1−2 ∘  𝑚𝑎𝑝2−3 =df   𝑥, 𝑧   ∃𝑦 ∶ (𝑥, 𝑦) ∈ 𝑚𝑎𝑝1−2 ∧  𝑦, 𝑧 ∈ 𝑚𝑎𝑝2−3}   

The associative property holds: 

 𝑚𝑎𝑝1−2 ∘  (𝑚𝑎𝑝2−3 ∘  𝑚𝑎𝑝3−4) =  (𝑚𝑎𝑝1−2 ∘  𝑚𝑎𝑝2−3) ∘  𝑚𝑎𝑝3−4 

 

 Figure 2.11 Illustration of Compose 
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2.4.2.3 Merge 

Given two models 𝑚1 and 𝑚2 and the mapping between them, 𝑚𝑎𝑝1−2 the operator Merge 

gives the triple formed by a third model, 𝑚3, and the mappings between 𝑚1and 𝑚2  and 

between 𝑚2 and 𝑚3 (see Figure 2.12):  

 𝑚3 , 𝑚𝑎𝑝3−1 , 𝑚𝑎𝑝3−2 =  Merge(𝑚1 , 𝑚2 , 𝑚𝑎𝑝1−2)  holds only if: 

 𝑚𝑎𝑝3−1 and 𝑚𝑎𝑝3−2 are (possibly partial) surjective functions onto 𝑚1 and 𝑚2, 

respectively.    

 𝑚𝑎𝑝1−2 = Invert(𝑚𝑎𝑝3−1) ∘  𝑚𝑎𝑝3−2.  

 𝑚3 =  Domain(𝑚𝑎𝑝3−1) ⋃Domain(𝑚𝑎𝑝3−2). 

The first condition states that 𝑚𝑎𝑝3−1 and 𝑚𝑎𝑝3−2 are views on 𝑚3 . 

 

Figure 2.12 Illustration of Merge 

2.4.2.4 Diff 

Given two models 𝑚1 and 𝑚2 , and the mapping between them,  𝑚𝑎𝑝1−2: 

𝑚3 =  Diff(𝑚1 , 𝑚𝑎𝑝1−2) is the submodel of 𝑚1 that does not participate in the mapping 

(see Figure 2.13). 

 

Figure 2.13 Illustration of Diff 

2.4.2.5 ModelGen 

Given the model 𝑚1 of a metamodel 𝑀𝑀1 and a different metamodel, 𝑀𝑀2: 

𝑚2 =  ModelGen(𝑚1 , 𝑀𝑀2), where 𝑚2 is an instance of 𝑀𝑀2 and corresponds to (is a 

translation of)  𝑚1 (see Figure 2.14).  

 

Figure 2.14 Illustration of ModelGen 
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Atzeni (2007) extends ModelGen to the data level, such that given also a database 𝐷1 over 

the mode 𝑚1, a corresponding database 𝐷2, instance of the model 𝑚2, is generated. 

2.4.3 Solutions in terms of the application of model management operators 

In this section, solutions to schema translation and change propagation due to evolution 

problems are defined in terms of the generic operators defined above. These solutions are 

mainly based on the work of Bernstein, Atzeni and Melnik, among others (Atzeni 2007, 

Bernstein 2003, Bernstein et al. 2000, Bernstein, Halevy and Pottinger 2000, Bernstein and 

Melnik 2007, Boronat, Carsí and Ramos 2006, Melnik 2004, Melnik et al. 2005). Note that 

this section uses the terms model and model management operator to denote the concepts 

schema and schema management operator.  

The generic problem of model translation, defined below, can be solved by directly 

applying the ModelGen operator: 

Given a model 𝑚1 of a metamodel 𝑀𝑀1, and a different metamodel, 𝑀𝑀2, find the model 

𝑚2 of the metamodel 𝑀𝑀2 that is equivalent to 𝑚1, with the following extension: if 𝑚1 has 

a set of instances, 𝐷1, find also the set of instances of 𝑚2, 𝐷2, that contains the same 

information as 𝐷1. 

1. 𝑚2  =  ModelGen(𝑚1 , 𝑀𝑀2)  — where  𝑚2 is an instance of 𝑀𝑀2, equivalent to 𝑚1  

2.4.3.1 Propagation of change due to evolution: solution in terms of model 

management operators 

The generic problem of propagation of changes due to the evolution of a model is defined 

as follows: 

Given a model 𝑚1, instance of a metamodel 𝑀𝑀1, and a model 𝑚2, instance of a metamodel 

𝑀𝑀2, such that 𝑚2 is a translation of 𝑚1, and 𝑚1 evolves to 𝑚1′, the goal is to obtain, 

incrementally from 𝑚2 the model 𝑚2′ that is a translation of 𝑚1′. 

One solution in terms of the generic operators may be the following (see Figure 2.15): 

1. 𝑚𝑎𝑝1−1′ =  Match(𝑚1 , 𝑚1′), where 𝑚𝑎𝑝1−1′  is the mapping between 𝑚1 and 𝑚1′  

(note that only the elements of 𝑚1′  that are not changed are mapped) 

2. 𝑚𝑎𝑝1′−1 =  Match(𝑚1′ , 𝑚1), where  𝑚𝑎𝑝1′−1 is the mapping between 𝑚1′  and 𝑚1 

(note that only the elements of 𝑚1′  that are not changed are mapped) 

3. 𝑚𝑎𝑝1′−2 =   𝑚𝑎𝑝1′−1 ∘  𝑚𝑎𝑝1−2, where 𝑚𝑎𝑝1′−2 is the mapping between 𝑚1′  and 

𝑚2  (some of the elements of 𝑚1′  may not have a mapping in 𝑚𝑎𝑝1′−2) 

4. 𝑚𝑎𝑝2−1′ =   𝑚𝑎𝑝2−1 ∘  𝑚𝑎𝑝1−1′ , where 𝑚𝑎𝑝2−1′  is the mapping between 𝑚2 and 

𝑚1′  (some of the elements of 𝑚2 may not have a mapping in 𝑚𝑎𝑝2−1′) 

Some elements of 𝑚2 may be "orphans," i.e., they are not incident in 𝑚𝑎𝑝1′ −2.  
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Figure 2.15 Illustration of the propagation of changes due to evolution scenario after the 4th step 

Now, to proceed to eliminate the "orphans," first, the difference between 𝑚2 and 𝑚1′  is 

calculated, and then these orphans are eliminated from 𝑚2 (see Figure 2.16): 

5. 𝐷𝑖𝑚1′ 𝑚2 , =  Diff(𝑚1′  𝑚𝑎𝑝1′ −2), where 𝐷𝑖𝑚1′ 𝑚2, are the set of elements of 𝑚1′  that 

are not mapped in 𝑚2 

6. 𝑁𝑒𝑤𝑚2 =  ModelGen(𝐷𝑖𝑚1′ 𝑚2, 𝑀𝑀2) 

7. 𝐷𝑖𝑚2𝑚1′ , =  Diff(𝑚2 𝑚𝑎𝑝2−1′ ), where 𝐷𝑖𝑚2𝑚1′ , are the set of elements of 𝑚2 that 

are not mapped in 𝑚1′   

8. 𝑚2′ = 𝑚2 +  𝑁𝑒𝑤𝑚2 −  𝐷𝑖𝑚2𝑚1′  

 

Figure 2.16 Illustration of the propagation of changes due to evolution scenario from the 5th step 

2.4.4 Implementations of the model management framework 

The following subsections review some prototypes that implement, partially or totally, a 

model management framework:  

2.4.4.1 Rondo3 

Melnik, Rahm and Bernstein, in (Melnik, Rahm and Bernstein 2003), describe an 

implementation of a model management prototype called Rondo. This prototype supports 

                                                                    
 
 
3 Rondo: a musical work that returns to its main theme a number of times (Melnik, Rahm and 

Bernstein 2003). 
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the execution of model management scripts that are written using high-level operators, 

which manipulate models and mappings as first-class objects. A script is a set of steps that 

may require the intervention of a human engineer; an example of script is the solution 

described in Section 2.4.3.1 for the propagation of changes due to the evolution problem in 

terms of the generic operators. Rondo implements all the operators described above 

except ModelGen and offers a graphical user interface for displaying and editing 

morphisms. A morphism is the simplest specification of mapping, shown as a set of lines 

connecting two elements of two models (Section 2.3.1 describes morphism in more detail). 

In the implementation, every intermediate result of a script can be examined and adjusted 

by a human engineer using a graphical tool. Rondo supports several schema languages, 

including relational and XML schemas; morphisms; and selectors, a set of schema elements 

that make it possible to directly apply operations, with the certainty that they will produce 

well-formed schemas (e.g., a table with its keys).  

The central component of its architecture is an interpreter that executes scripts. It 

includes an interpreter that is run from the command line or invoked programmatically by 

external applications and tools. Its main task is to orchestrate the data flow between the 

operators. The operators can be defined either by providing a native implementation, or 

by means of schema management scripts. Schemas, morphisms and selectors are 

represented as structured objects in a common meta-meta-schema and can be stored in a 

DBMS or file system. The operators are defined in terms of transformations of these 

structured objects: schema, selector and morphism.  

2.4.4.2 Model-independent schema and data translation (MIDST)  

Atzeni et al., in Atzeni, Cappellari and Bernstein (2006), Atzeni, Cappellari and Gianforme 

(2007) and Atzeni, Cappellari, Torlone, Bernstein and Gianforme (2008) describe model-

independent schema and data translation (MIDST), an implementation of the schema 

management operators, including SchemaGen4, which translates schemas and their 

instances from one schema to another.   

Schemas and mappings are represented in accordance with the MDM proposal (Atzeni and 

Torlone 1996). The basic idea is that "constructs" (e.g., class, association, etc) in 

metaschemas are rather similar. Therefore, in MDM, a metaschema is defined by a set of 

generic (i.e., model-independent) metaconstructs: lexical, abstract, aggregation, 

generalization and function. Each metaschema is defined by its constructs and the 

metaconstructs they refer to. For example, an abstract corresponds to a class in UML and 

to a table with its keys in a relational schema; likewise, a function from lexical to abstract 

corresponds to an attribute of a class in UML and to a column in a relational schema. MDM 

also introduces the concept of supermetaschema, a metaschema that has constructs 

corresponding to all the metaconstructs known to the system. Thus, each metaschema is a 

                                                                    
 
 
4 Called ModelGen in Atzeni, Cappellari & Bernstein (2006) and Atzeni, Cappellari and Gianforme 

(2007). 
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specialization of the supermetaschema and a schema in any metaschema is a schema in 

the supermetaschema. The translation of a schema from one metaschema to another is 

defined in terms of translations over the metaconstructs. The supermetaschema acts as a 

"pivot" metaschema, with each metaschema translated to and from the supermetaschema. 

Moreover, since every schema in any metaschema is an instance of the supermetaschema, 

a translation is performed by eliminating constructs not allowed in the target 

metaschema, and possibly introducing new constructs that are allowed.  

MIDST includes the following features: 

 A dictionary that includes three parts: (i) the meta level, which contains the 

description of metaschemas and the structure of the metalevel (shown in Figure 

2.17) and includes three metaelements: construct, reference and property; (ii) the 

schema level, which contains the description of schemas; and (iii) the data level, 

which contains data for the various schemas. 

 The elementary translations are also visible and independent of the engine that 

executes them. They are implemented by rules in a Datalog variant with Skolem 

functions. 

 The translations at the data level are also written in Datalog and are generated 

almost automatically from the rules for schema translation. 

 Mappings between source and target schemas and data are generated, as a by-

product, by the materialization of Skolem functions in the dictionary. 

 

Figure 2.17 The structure of the metadictionary (from Atzeni, Capellari and Bernstein (2005)) 

2.4.4.3 Bernstein, Melnik and Mork prototype for interactive schema and data 

translation  

Bernstein, Melnik and Mork (2005) demonstrate a prototype that translates schemas from 

a source metaschema to a target metaschema. The prototype is integrated with Microsoft 

Visual Studio 2005 to generate relational schemas from an object-oriented design.  
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The system translates schemas by first transforming the source metaschema 𝑆 into a 

representation of 𝑆0 in a universal metaschema, like the MDM introduced above (Atzeni, 

Torlone 1996). A sequence of rule-based transformations then eliminates from 𝑆0 all 

modeling constructs that are absent from the target metaschema, producing in 𝑛 steps a 

schema 𝑆𝑛 . Each transformation takes, as input, the current snapshot 𝑆𝑖  of the schema and 

produces, as output, schema 𝑆𝑖+1 and the mapping 𝑚𝑖+1 between 𝑆𝑖  and 𝑆𝑖+1. The final 

mapping 𝑚 between 𝑆0  and 𝑆𝑛  is obtained by composing the intermediate mappings as 

𝑚 =  𝑚1 ∘ 𝑚2 ∘ …  ∘ 𝑚𝑛 . Finally, 𝑆𝑛  is cast into the target metaschema, thereby producing 

the output schema 𝑆′.  

The prototype generates instance-level mappings, interactive editing, a general 

mechanism for dealing with inheritance, and integration with a commercial product 

featuring a high-quality user interface. Instance-level mappings are computed by 

composing (Melnik 2004) the elementary data transformations produced upon 

eliminating each successive modeling construct. 

This prototype focuses on flexible mapping of inheritance hierarchies and the incremental 

regeneration of mappings after the source schema is modified. In constrast, MIDST, 

introduced in the previous subsection, is driven by a relational dictionary of schemas, 

models and translation rules. 

2.4.4.4 Papotti and Torlone prototype for translations through XML conversions 

Papotti and Torlone (2005) and Papotti and Torlone (2007), present an approach to the 

translation of web data between heterogeneous formats. The approach refers to an 

extension of the SchemaGen (ModelGen) operation in that it also translates schema 

instances. Translations operate over XML representations of schemas and instances and 

consist of a number of steps: (i) the source schema and its instances are converted to plain 

XML; (ii) the XML schema is translated into an instance of a supermetaschema expressed 

in an XML-based syntax, similar to the MDM introduced above (Atzeni and Torlone 1996); 

(iii) the supermetaschema is restructured by translating primitives used in the source 

metaschema that are not allowed in the target metaschemas; the output of this operation 

is a schema of the supermetaschema that only uses constructs allowed in the target 

metaschemas; accordingly, the set of instances are translated into the format coherent 

with the schema; and (iv) the schema is renamed using the syntax of the target 

metaschema and finally both the schema and the set of instances are deserialized and 

delivered to the target system. 

Step (iii) is the crucial point of the translation procedure: it takes as input a set of 

instances and its schema and transforms them into a format suitable for the target 

metaschema. Since this operation occurs within the supermetaschema, where each 

primitive represents a class of constructs from different metaschemas, "generic" 

transformations that are independent of the particular pair of metaschemas can be 

applied. It follows that it is sufficient to predefine a number of basic transformation that 

can be composed to build complex translations.  



An object-oriented approach to the translation between MOF metaschemas 

 

42 

 

Additionally, Papotti and Torlone (2007) define several properties that characterize the 

correctness, the consistency, the effectiveness and the efficiency of model translations. 

2.4.4.5 MOdel manageMENT (MOMENT) 

Boronat, Carsí and Ramos (2005a) and Boronat, Carsí and Ramos (2006), describe a 

framework, called MOMENT (MOdel manageMENT), that is embedded in the Eclipse 

platform and provides a set of generic operators for dealing with schemas through the 

Eclipse Modeling Framework (EMF) (Eclipse 2008). Algebra of schema management 

operators has been specified generically by using the Maude algebraic specification 

formalism. In MOMENT, a schema transformation can be applied to several source 

schemas, which may or may not conform the same metaschema. It generates one target 

schema and a set of traceability schemas. A traceability schema contains a set of traces 

that relate the elements of the source schema to the elements of the target schema, 

indicating which transformation rule has been applied to each source element. To apply a 

transformation to one or more schemas in MOMENT, two criteria must be met: 

 The mappings between metaschemas must be defined as schemas of the QVT 

Relations metaschemas. 

 The translation must be invoked by indicating the actual schemas to be transformed 

in the SchemaGen operator. 

The same authors, in Boronat, Carsí and Ramos (2006), focus on the design, 

implementation and execution of the SchemaGen operator, which has two formal 

parameters: the symbol that represents the name of the translation and a polymorphic list 

of parameters for the translation. The result of the operator is a tuple consisting of the 

resulting target schema and traceability schemas. There is one traceability schema for 

each pair (source schema, target schema).  

2.4.4.6 The transformational approach to database engineering 

The transformational approach developed by Hainaut (2006) is also based on the ground 

that all transformations, included inter-model transformations, in the fragment of a single 

model may be studied.  The approach defines the Generic Entity-Relationship Model (GER) 

which is an extended Entity-relationship model that includes, among others, the concepts 

of schema, entity type, domain attribute, relationship type, keys, as well as various 

constraints. In GER, a schema is a description of data structures.  

Similar to previous approaches, a translation between two schemas involves, basically, the 

following: (i) the source schema is transformed into GER (the pivot model); (ii) the 

resulting schema is transformed through a set of rules; and (iii) the transformed schema 

obtained is expressed into the target model. 

The approach defines the set of expressions to express the ER and Relational Models in 

GER. Additionally, it defines several families of GER transformations: mutation 

transformations, other elementary transformations, compound transformations, 

predicate-driven transformations and model driven transformations. About thirty 
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operators have been implemented in DB-MAIN, a programmable CASE environment, 

which has proved sufficient to process schemas in a dozen operational models.  

2.4.4.7 An intermediate hypergraph data model 

Poulovassilis and McBrien (1998), McBrien and Poulovassilis (1999) and Boyd and 

McBrien (2005) describe a transformation approach using an special type of graphs, styled 

intermediate hypergraph data model (IHDM).  The data aspects of a conceptual modeling 

language, such as ER, relational, UML or ORM are modeled as nodes, edges and some 

predefined constraints (inclusion, exclusion, union, mandatory, unique and reflexive) in 

HDMs. An example is shown in Figure 2.18.  

The approach defines a set of mapping rules to exactly define how the higher level 

modeling languages are converted into these HDM. It also defines both-as-view (BAV) data 

integration rules to demonstrate, on the one hand, the equivalence between higher level 

schemas and, on the other hand, when there is any lost of information in the mapping 

process. 

The work assumes that the schemas must have set-based semantics. The consideration of 

data types in the schemas has been left for future work, i.e., it is assumed that the data 

types match in the schemas being compared. 

 

Figure 2.18 Conceptual modelling languages represented in HDM (from Boyd and McBrien (2005)) 

2.5 Conclusions 

The problem of schema translation has been considered for decades in many different 

contexts. The growing number of languages and tools available to represent domains 

makes the problem much more complicated and makes it the difficult to find definitive 

solutions.  

Moving away from specific translation tools towards more generic approaches has caused 

model management to become the alternative framework for solving the schema 
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translation problem. It focuses on the generic description of problems and solutions in 

terms of generic model management operators. However, there are still some open issues 

to be solved in the model management framework, most of which are related to the 

schema mapping definition. These issues include the following: 

 Object-oriented context. Most of the approaches, which define generic schema 

mappings, are described in the context of relational data bases. In the object-

oriented context, some proposals  define schema mappings as constraints. Other 

approaches use a specific mapping transformation language (such as QVT or ATL) to 

define schema mappings. In the former case, the definition of additional executable 

operations is needed to perform translations between schemas. In the latter case, 

most of the tools are still under development. Object-oriented alternatives that do 

not need an additional language for the definition of translation schema mappings 

should be explored. 

 Complex structures. Schema mappings must be defined among complex structures 

of elements instead of just among simple elements. In the relational database 

context, some approaches propose the definition of a limited set of metaconstructs 

to handle more complex structures and define schema mappings in terms of these 

metaconstructs. However, the set of metaconstructs proposed is too limited for 

object-oriented metamodels that have very complex structures. Additional work is 

needed in the object-oriented context to propose an alternative capable of defining 

any type of complex structure and defining the mappings in terms of such 

structures. 

 Quality factors. There is no uniform definition of the quality factors of translation 

schema mappings. Not all schemas contain the same knowledge and not all 

metaschemas cover the same semantic aspects, which makes it difficult to have a 

unique vision. Substantial work shall be required to explore how to define and prove 

the correctness, consistency and completeness, among other factors, of schema 

mappings.  

The current literature does not propose an approach in the context of the object-oriented 

paradigm that solves all the aforementioned issues. The main goal of this research is to 

provide a generic object-oriented schema translation approach by solving these issues. 



 

 
 

3 A generic object-oriented operation-based 

approach to the translation between MOF 

metaschemas 

This chapter proposes a new approach to the schema translation problem. It deals with 

schemas whose metaschemas are instances of the OMG's Meta Object Facility (MOF). Most 

metaschemas can be defined as an instance of the MOF; therefore the approach is widely 

applicable. The well-known object-oriented concepts embedded in the MOF and its 

instances (object type, attribute, relationship type, operation, IsA hierarchies, refinements, 

invariants, pre-, postconditions, etc.) are leveraged to define metaschemas, schemas and 

their translations.  

The main contribution of the approach is the extensive use of object-oriented concepts in 

the definition of translation mappings, particularly the use of operations (and their 

refinements) and invariants, both of which are formalized in OCL. The translation 

mappings can be used to check that two schemas are translation of each other, and to 

translate one into the other, in both directions. The translation mappings are declaratively 

defined by means of pre-, postconditions, and invariants, and they can be implemented in 

any suitable language. From an implementation point of view, by taking a MOF-based 

approach there are available a wide set of tools, including tools that execute OCL. As an 

example, the approach has been specified in the UML-based Specification Environment 

(USE) tool (Gogolla, Büttner and Richters 2007), already described in the first chapter. 

The main aspects of this approach are as follows: 

 Metaschemas are represented as instances of the OMG's MOF (Object Management 

Group 2006a). UML is, of course, an instance of the MOF, and almost all 

metaschemas can be defined as instances of it.  

 Elementary translations are represented by means of operations hosted in object 

types, formalized in the OCL language (Object Management Group 2006b).  
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 The well known object-oriented concepts embedded in the MOF and its 

instances (object type, attribute, relationship type, operation, IsA hierarchies, 

refinements, invariants, pre-, postconditions, etc.) are leveraged to define 

metaschemas, schemas and their translations.  

The rest of this chapter is structured as follows: 

 Section 3.1 explains the main concept of the approach, the schema unit, and defines 

translation mappings as mappings between schema units.  

 Section 3.2 explains how to define schema units in a MOF metaschema. This 

definition must be done only once per metaschema, since it is independent of the 

mapping translations.  

 Section 3.3 explains how to define translation mapping expressions between any 

two MOF metaschemas and their use. These expressions can be defined by two 

invariants involving the relationships between the schema units of the two 

metaschemas. The two invariants are defined in OCL, and the relationships between 

schema units are defined by means of operations whose pre- and postconditions are 

formalized also in OCL. The sections ends describing how to use the operations 

defined in the previous sections in order to automatically translate between  

instances of the two metaschemas.  

Throughout this chapter two small fragments of the ER and the Relational metaschemas 

are used as running example, similar to those used in (Gogolla 2005). The interested 

reader may find, in (Raventós 2008a), three simple examples of the complete application 

of the method: the one described in this chapter, the larger example of the UML and 

Relational metaschemas described in the QVT specification (Object Management Group 

2007a) and the translation to ER of the large osCommerce5 relational database.  

3.1 Basic concepts 

This section describes the concepts of schema, mapping and translation and explain the 

notation system used in this chapter. The example that is used throughout this chapter is 

also introduced. 

3.1.1 Schema and mapping 

A schema 𝑆 is a valid instance of a metaschema 𝑀𝑆. An instance of a (meta)schema 𝑀𝑆 is 

valid if it satisfies all the integrity constraints defined in 𝑀𝑆. In turn, a metaschema 𝑀𝑆 is a 

valid instance of a meta metaschema 𝑀𝑀𝑆 (Olivé 2007). In this paper, metaschemas are 

instances of the MOF, which is a meta-metaschema standardized by the OMG (Object 

Management Group 2006a). Therefore, an MOF schema is an instance of an MOF 

metaschema. Most metaschemas can be defined as an instances of the MOF. This chapter 

deals with UML, ER and the relational model, all of which can be defined as  instances of 

                                                                    
 
 
5 www.oscommerce.com 
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the MOF. Figures 3.1(a) and 3.2(a) show, in UML, the fragments of the ER and 

relational metaschemas that will be used as examples.  

Note that all the constraints included in the two metaschemas (e.g., uniqueness of names) 

have been formally specified in (Raventós 2008a). 

In general, a schema mapping is a triple 𝑀 = (𝑆1 , 𝑆2 , Σ) where 𝑆1 is the source schema, 𝑆2 is 

the target schema and Σ, called the mapping expression, is a set of constraints over 𝑆1 and 

𝑆2. An instance of mapping 𝑀 is a pair 𝑠1 , 𝑠2 such that 𝑠1 is an instance of 𝑆1, 𝑠2 is an 

instance of 𝑆2 and the pair 𝑠1, 𝑠2 satisfies all the constraints Σ (Fagin et al. 2005).   

This thesis is concerned with mappings between metaschemas; therefore, the mappings 

take the form 𝑀 =  𝑀𝑆1, 𝑀𝑆2, Σ , where 𝑀𝑆1  is the source metaschema, 𝑀𝑆2  is the target 

metaschema and Σ is a set of constraints on 𝑀𝑆1  and 𝑀𝑆2. An instance of the mapping 𝑀 is 

a pair 𝑆1, 𝑆2  such that 𝑆1 is an schema that is an instance of 𝑀𝑆1, 𝑆2 is a schema that is an 

instance of 𝑀𝑆2 and the pair 𝑆1, 𝑆2 satisfies all the constraints Σ. The mapping expression 

of most metaschema mappings is very long and complex. This thesis presents a new 

approach to the definition of mapping expressions that is based on the concept of a 

schema unit as defined below.   

3.1.2 Schema units 

Syntactically, a schema 𝑆 is a valid set of instances of the entity types, relationship types 

and attributes defined in 𝑀𝑆. This set of instances is called the schema elements of 𝑆. 

However, by focusing more on the semantics of the schemas than on their syntactical 

expression, the concept of a schema unit is defined. The schema units are the knowledge 

components of the schemas. A schema consists of a set 𝑆 = {𝑢1 , … , 𝑢𝑛} of schema units 𝑢𝑖 , 

such that the knowledge expressed by 𝑆 is the set of knowledge components expressed by 

its schema units 𝑢1 , … , 𝑢𝑛 .  

In general, a schema unit is a concept type (entity or relationship type), a constraint or a 

derivation rule. For example, an entity type of an ER schema, a foreign key of a relational 

schema, and an OCL derivation rule of a derived attribute in a UML schema are three 

schema units (concept type, constraint and derivation rule, respectively).  In some cases, a 

schema unit is an aggregation of concept types, constraints and/or derivation rules. For 

example, an association schema unit in a UML includes the cardinality constraints of its 

member ends. 

Syntactically, a schema unit 𝑢 is a set of schema elements such that:  

 it can be added to a schema S when certain conditions are satisfied, and  

 𝑆 ∪ {𝑢} is a valid instance of 𝑀𝑆.  

The rationale behind this definition is that the knowledge expressed by a schema 𝑆 =

{𝑢1, … , 𝑢𝑖} can be extended with a new schema unit 𝑢𝑖+1, for which 𝑆′ = {𝑢1, … , 𝑢𝑖 , 𝑢𝑖+1} is 

obtained. In general, a schema unit can only be added to an existing schema if certain 

conditions are satisfied. For example, in an ER schema 𝑆, a relationship type (schema unit) 

can be added if the participant entity types are already part of 𝑆.   
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The idea of the schema unit is implicit or explicit in many schema translation approaches 

and, in some cases, a distinction is made between different kinds of schema units. For 

example, Boyd and McBrien (2005) distinguishes between nodal, link, link nodal and 

constraint. Languages with a rich set of predefined constraints have many kinds of schema 

units (Jarrar (2007) distinguishes about 30 kinds in the ORM – Description Logics 

mapping). 

In this approach, it is required that each schema unit 𝑢 of 𝑆 be represented by an instance 

of some meta-entity type of 𝑀𝑆. An instance of a meta-entity type of 𝑀 can represent one 

schema unit at most, but not all instances of the meta-entity types of 𝑀𝑆 need represent 

schema units.  

 

 

Figure 3.1 Fragment of the ER metaschema (a), and an example of one of its instances (b) (Gogolla 
2005) 

3.1.2.1 Application to the ER metaschema 

In an ER schema, the schema units are entity types, relationship types, attributes and data 

types. These schema units are represented differently in different metaschemas. In UML, 

they may be represented as shown in Figure 3.1(a):  

 Each ER entity type is represented by an instance of EntityType. The schema 

elements of an entity type named e are as follows: (1) an instance  of 

EntityType; (2) the instance of attribute name of  with value e; (3) the (one or 

more) instances of Attribute related to  whose isKey attribute has the value True; 

and for each of these attributes: (a) the instances of its attributes name and isKey; 

(b) the instance of its relationship with ; and (c) the instance of its relationship 

with the corresponding data type. If, for example, an entity type e has only one key 

attribute, then the schema elements of e makes up a set of seven instances. Note that 

an entity type and all its key attributes are grouped into a single schema unit.  

 Each ER relationship type is represented by an instance of RelationshipType. The 

schema elements of a relationship type named r are as follows: (1) an instance  of 

RelationshipType; (2) the instance of attribute name of  with value r; (3) the (two or 

more) instances of RelationEnd related to ; and (4) for each of these relation ends: 

(a) the instances of its attribute name; (b) the instance of its relationship with ; and 

(c) the instance of its relationship with the corresponding entity type. Note that it is 

assumed that the cardinalities of the participants are unconstrained.  



3 An object-oriented operation-based approach to the translation between MOF 
metaschemas 

49 

 

 Each ER data type is represented by an instance of DataType. The schema elements 

of a data type named d are as follows: (1) an instance  of DataType; and (2) the 

instance of attribute name of  wose value is d.  

 Each ER attribute that is not a key of an entity type is represented by an instance of 

Attribute whose isKey attribute has the value False. The schema elements of an 

attribute named a are as follows: (1) an instance  of Attribute; (2) the instance of 

attribute name of  whose value is a and isKey whose value is False; (3) the instance 

of its relationship with an instance of EntityType or RelationshipType; and (4) the 

instance of its relationship with the corresponding data type. 

In the ER schema example shown in Figure 3.1(b) there are seven schema units: three 

instances of DataType, one instance of EntityType, one instance of RelationshipType, and 

two instances of Attribute. These schema units are shown in the left part of Figure 3.3(b). 

 

Figure 3.2 Fragment of the Relational metaschema (a), and an example of one of its instances (b) 
(Gogolla 2005) 

3.1.2.2 Application to the relational metaschema 

In a relational schema, the schema units are tables, columns, foreign keys and data 

types. These schema units are represented differently in different metaschemas. In UML, 

they may be represented as shown in Figure 3.2(a):  

 Each relational table is represented by an instance of Table. The schema elements 

of a table named t are as follows: (1) an instance  of Table; (2) the instance of 

attribute name of  whose value is t; (3) the (one or more) instances of Column 

related to  whose isKey attribute has the value True; and (4) for each of these 

columns: (a) the instances of its attributes name and isKey; (b) its relationship with 

; (c) and its relationship with the corresponding data type. Note that a table and all 

its key columns have been grouped into a single schema unit.  

 Each relational data type is represented by an instance of RelationalDataType. The 

schema elements of a data type named d are as follows: (1) an instance  of 

RelationalDataType; and (2) the instance of attribute name of  whose value is d.  

 Each relational column that is not a key of a table is represented by an instance of 

Column whose isKey attribute has the value False. The schema elements of a column 

named c are as follows: (1) an instance  of Column; (2) the instance of attribute 

name of  with value c and isKey with value False; (3) its relationship with 

an instance of Table; and (4) its relationship with the corresponding instance of 

RelationalDataType.  
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 Each foreign key is represented by an instance of ForeignKey. The schema elements 

of a foreign key fk are as follows: (1) an instance of ForeignKey; (2) the 

relationships of fk with Column that give the columns that comprise fk; and (3) the 

relationship of fk with the table referenced by the columns of fk.  

In the relational example shown in Figure 3.2(b) there are nine schema units: three 

instances of RelationalDataType, two instances of Table, two instances of Column, and two 

instances of ForeignKey. These schema units are shown in the right part of Figure 3.3(b).  

 

 

 Figure 3.3 Abstract example of equivalences and inclusions (a), and their application to the 
schema examples (b) 

3.1.3 Translation mapping 

Let 𝑆1 = {𝑢1,1 , … , 𝑢1,𝑛} and 𝑆2 = {𝑢2,1 , … , 𝑢2,𝑚 } be two schemas. 𝑆1 and 𝑆2 are translation of 

each other if the knowledge they express is the same. In other words, 𝑆1 and 𝑆2 are 

translations of each other if the knowledge expressed by their schema units {𝑢1,1 , … , 𝑢1,𝑛} 

and {𝑢2,1 , … , 𝑢2,𝑚 } is the same. This means that there is a total and surjective relation 

𝑟 ⊆ 𝑆1 × 𝑆2 that maps each schema unit of 𝑆1 to its equivalent units in 𝑆2, and the other 

way around.   

In most cases the relation 𝑟 satisfies the equivalence/inclusion constraint, which means 

that for each 𝑟 ∈ 𝑆1 at least one of the two following conditions hold (see Figure 3.3):  

 𝑢1,𝑖  is completely equivalent to a set {𝑢2,1, … , 𝑢2,𝑘} of one or more schema units of 𝑆2. 

This is, there is an equivalence mapping between 𝑢1,𝑖  and {𝑢2,1, … , 𝑢2,𝑘}.  

 𝑢1,𝑖  is completely included in a schema unit 𝑢2,𝑘  of 𝑆2. In this case, there is an 

inclusion mapping between 𝑢1,𝑖  and 𝑢2,𝑘 .   

Formally,  

u1,i, u1,j, u2,k , u2,l  ((u1,i, u2,k)  r u1,j  u1,i u2,l u2,k  ((u1,j, u2,k)  r   (u1,i, u2,l)  r))  

Note that if there is an equivalence mapping between 𝑢1,𝑖  and {𝑢2,1, … , 𝑢2,𝑘} then there is 

an inclusion mapping between 𝑢2,𝑖  and 𝑢1,𝑖  for all 𝑖 = 1. . 𝑘. 
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In the abstract example in Figure 3.3(a), 𝑢1,1 is completely equivalent to the set  

{𝑢2,1 , 𝑢2,2, 𝑢2,3}; 𝑢1,2 is completely included in 𝑢2,4; 𝑢1,3 is completely included in 𝑢2,4; and 

𝑢1,4 is both completely equivalent to 𝑢2,5 and completely included in 𝑢2,5.  

As a specific example, Figure 3.3(b) shows that the relationship type Marriage in the ER 

schema shown in Figure 3.1(b) is completely equivalent to the table Marriage and the two 

foreign keys of the relational schema shown in Figure 3.2(b).  

The term “equivalent” has several meanings in the schema management field (Lie 1982, 

Hull 1986, Papotti and Torlone 2007), so the meaning must be specified in each case. In 

this approach, a schema unit 𝑢1,𝑖  is completely equivalent to a set {𝑢2,1, … , 𝑢2,𝑘}  when the 

following conditions hold: 

 If 𝑢1,𝑖  may have instances (i.e., it is an entity or a relationship type) then the 

population of 𝑢1,𝑖  at any time can be obtained from the populations of 𝑢2,1, … , 𝑢2,𝑘  at 

that time, and the other way round.  

 If 𝑢1,𝑖  constrains the instances of 𝑆1 then 𝑢2,1, … , 𝑢2,𝑘  constrain the equivalent 

instances of 𝑆2 in the same way. 

 If 𝑢1,𝑖   derives the instances of 𝑆1 then𝑢2,1, … , 𝑢2,𝑘  derive the equivalent instances of 

𝑆2 in the same way.   

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping. We say that 𝑀 is a translation mapping when for any 

𝑆1 and 𝑆2  such that 𝑆1, 𝑆2  is an instance of 𝑀 then 𝑆1 and 𝑆2  are translation of each other. 

Therefore, in a translation mapping, the set of constraints Σ is satisfied only when the two 

schemas are translation of each other. In the next section we present an approach to 

defining translation mapping expressions that is based on the concept of a schema unit.   

A translation mapping 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ)  may be (Melnik 2004):  

 Total: for all 𝑆1 that are an instance of 𝑀𝑆1 there is at least one instance 𝑆2 of 𝑀𝑆2 

such that 𝑆1, 𝑆2 is an instance of 𝑀.  

 Surjective: for all 𝑆2 that are an instance of 𝑀𝑆2 there is at least one instance 𝑆1 

of 𝑀𝑆1 such that 𝑆1, 𝑆2 is an instance of 𝑀.  

 Functional: for all 𝑆1 that are an instance of 𝑀𝑆1 there is exactly one instance 𝑆2  

of 𝑀𝑆2 such that 𝑆1, 𝑆2 is an instance of 𝑀.  

 Injective: for all 𝑆2 that are an instance of 𝑀𝑆2 there is exactly one instance 𝑆1 of 𝑀𝑆1 

such that 𝑆1, 𝑆2 is an instance of 𝑀.  

 Bijective: if it is total, surjective, functional, and injective.  

 The translation mapping between 𝑀𝑆1 = the ER metaschema in Figure 3.1(a) and 𝑀𝑆2 = 

the relational metaschema in Figure 3.2(a) may be total because for each ER schema there 

is at least one translation into an instance of 𝑀𝑆2. However, that mapping cannot be 

surjective because there are instances of 𝑀𝑆2 that cannot be adequately translated into an 

instance of 𝑀𝑆1. For example, 𝑀𝑆2 allows the representation of foreign keys that are not 

referential integrity constraints and cannot be represented in 𝑀𝑆1. Section 3.3.1 shows 
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how, in this approach, that a schema unit cannot be translated into another metaschema is 

specified.  

3.2 Defining the schema units of MOF schemas 

The basic concept in the approach is the schema unit. This section explains how the 

schema units of MOF schemas should be defined. Let 𝑀𝑆𝑖  be an MOF metaschema. It is 

practical to assume that 𝑀𝑆𝑖  has a root entity type, called 𝑆𝑖Element such that all entity 

types of 𝑀𝑆𝑖  that may represent schema units are a direct or indirect subtype of 𝑆𝑖Element. 

The entity type 𝑆𝑖Element is derived by the union of its subtypes (also called abstract 

entity types in UML). Figures 3.4 and 3.5 show the definition of the root entity types 

(called ErElement and RelationalElement) in the ER and relational metaschemas in Figures 

3.1 and 3.2, respectively.  

𝑆𝑖Element has two operations (isSchemaUnit() and predecessors()) that are used to define 

the schema units and their precedence relationships. Each schema unit is characterized by 

a special object, called a schema unit characterization object, which among other things 

defines the schema elements that make up a schema unit. The operations and the 

characterization objects are mapping-independent; therefore they are defined only once in 

a metaschema. In what follows it is showed how the operations and the characterization 

objects are defined. The explanations are illustrated by applying them to the ER and 

relational metaschemas.  

3.2.1 isSchemaUnit() operation  

In 𝑆𝑖Element is defined the query operation isSchemaUnit():Boolean whose value indicates 

whether or not an instance of 𝑆𝑖Element represents a schema unit. As stated above, the 

value of this operation is mapping-independent. In the context of 𝑆𝑖Element the operation 

can only give a default value (either True or False), and each subtype ST of 𝑆𝑖Element such 

that some or all of its instances represent schema units, redefines it (if necessary) to 

indicate whether or not the corresponding instance of ST represents a schema unit. It is 

not mandatory that all instances of ST have the same value for the operation 

isSchemaUnit(). 

3.2.1.1 Application to the ER metaschema 

In the ER metaschema of Figure 3.4, is defined6:  

context ErElement::isSchemaUnit():Boolean 

  body: True  

  

 

                                                                    
 
 
6 In UML, the body condition for an operation constrains the return result. The body condition 

differs from postconditions in that the body condition may be overridden when an operation is 
redefined, whereas postconditions can only be added during redefinition (Object Management 
Group 2006a, p. 107). 
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Figure 3.4 Definition of ErElement 

This means that by default all (direct or indirect) instances of ErElement are schema units. 

There is an exception: not all instances of Attribute are schema units, but only those that 

are not keys. Therefore, the above operation is redefined as follows:  

context Attribute::isSchemaUnit():Boolean  
  body: not isKey  

This is an example of an entity type in which some instances represent schema units and 

other do not. Note that RelationEnd (Figure 3.1) is not defined as a subtype of ErElement 

(Figure 3.4). This avoids to redefine that instances of RelationEnd are not schema units:  

context RelationEnd::isSchemaUnit():Boolean  
 body: False  

3.2.1.2 Application to the Relational metaschema 

Similarly, for the relational metaschema in Figure 3.5, is defined:    

context RelationalElement::isSchemaUnit():Boolean  
  body: True   

This means that by default all (direct or indirect) instances of RelationalElement are 

schema units. There is an exception similar to the previous one: not all instances of 

Column are schema units, but only those that are not keys. Therefore, the above operation 

is redefined as follows:  

context Column::isSchemaUnit():Boolean  
 body: not isKey 

3.2.2 Predecessors 

A schema consists of a set  𝑆 = {𝑢1 , … , 𝑢𝑛} of schema units 𝑢𝑖 , but in general there are 

precedence relationships between them. Very often one can add a schema unit to a schema 

only when other units have already been defined. Those schema units that are direct 

predecessors of 𝑢𝑖 , are called predecessors units. A schema unit cannot be a direct or 

indirect predecessor to itself. It is not difficult to define the predecessors of a    
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Figure 3.5 Definition of RelationalElement 

schema unit, and they are very important in the specification of the translation process, as 

is shown in Section 3.3.6.  

In the context of 𝑆𝑖Element the query operation predecessors() can only give a default value 

(the empty set):  

context SiElement::predecessors():Set(SiElement)  

  pre: isSchemaUnit()   
  body: Set{}  

However, each subtype ST of 𝑆𝑖Element such that some or all of its instances represent 

schema units redefines it (if necessary) to indicate its predecessor schema units. Note that 

the precondition specifies that predecessors() can be invoked (i.e., make sense) only in 

schema units. 

3.2.2.1 Application to the ER metaschema  

In the ER metaschema in Figure 3.4 is defined the following predecessors() operation:  

context ErElement::predecessors():Set(ErElement)  

  pre: isSchemaUnit()   
  body: Set{}  

This means that, by default, all schema units do not have predecessors. This is the case of 

DataType; therefore, there is no need to redefine the operation for it.  

For EntityType the predecessors() operation is redefined as follows:  

context EntityType::predecessors():Set(DataType)  
  body: attribute -> select(isKey).dataType  

This means that the predecessors of an entity type are the data types of its key attributes. 

For example, in the ER schema in Figure 4.1(b), the set of predecessors of the unit 
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𝑢𝐸,4 = 𝑒𝑡_𝑃𝑒𝑟𝑠𝑜𝑛 is {𝑢𝐸,2 = 𝑑𝑡𝐼𝑛𝑡𝑒𝑔𝑒𝑟 } (see Figure 4.3(b, left)). The predecessors of a 

relationship type are its participant entity types. This is formally defined as follows: 

context RelationshipType::predecessors():Set(EntityType)  
  body: relationEnd.entityType  

Finally, the predecessors of a non-key attribute are its entity or relationship type and its 

data type. This is formally defined as follows:  

context Attribute::predecessors():Set(ErElement)  
  body: let type:ErElement =  

    if entityType -> notEmpty() then entityType  

    else relationshipType 

    endif  

       in Set{type,dataType}  

3.2.2.2 Application to the relational metaschema 

In the relational metaschema in Figure 3.5 is defined as follows:  

context RelationalElement::predecessors():Set(RelationalElement)  
  pre: isSchemaUnit()   
  body: Set{}  

This means that, by default, all schema units do not have predecessors. This is the case of 

RelationalDataType; therefore, there is no need to redefine the operation for it. For Table 

the predecessors() operation is redefined as follows:  

context Table::predecessors():Set(RelationalDataType)  
  body: column -> select(isKey).relationalDataType  

This means that the predecessors of table are the data types of its key columns. The 

predecesssor of a non-key column is its table and its data type is formally defined as 

follows:  

context Column::predecessors():Set(RelationalElement)  
  body: Set{table, relationalDataType}  

Finally, the predecessors of a foreign key are its non-key columns and the source 

and target tables are formally defined as follows:  

context ForeignKey::predecessors():Set(RelationalElement)  
  body: column -> select(not iskey)->asSet() ->  

    union(column.table->asSet()) -> including{targetTable}  

For example, in the relational schema in Figure 3.2(b), the set of predecessors of the unit  

𝑢𝑅,6 = 𝑓𝑘_𝑤𝑖𝑓𝑒 is {𝑢𝑅,5 = 𝑡𝑎_𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒, 𝑢𝑅,4 = 𝑡𝑎_𝑃𝑒𝑟𝑠𝑜𝑛} (see Figure 3.3(b, right)). 

3.2.3 Characterization objects 

Translation mapping constraints are complex because they define relationships between 

two metaschemas that are usually themselves very complex. The relationships must take 

into account the details of how each schema unit is represented in its own metaschema. 

This thesis proposes an alternative that consists in using an indirection mechanism: each 

schema unit is characterized by an object (called a characterization object). The intuitive 

idea is to split a translation relationship between two sets of schema elements (one in 

each metaschema) that represent two schema units 𝑢1,𝑖  and 𝑢2,𝑘  into two simpler parts: 
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one between the schema elements of 𝑢1,𝑖  and the characterization object of 𝑢2,𝑘   and 

another between the characterization object of 𝑢2,𝑘  and its schema elements.  

 Characterization objects roughly correspond to the well-known value or domain value 

objects in the object-oriented design patterns field (Riehle 2006). In each metaschema, is 

defined a characterization object type for each subtype ST of 𝑆𝑖Element such that some or 

all of its instances represent schema units. For the sake of simplicity, the characterization 

object types are named by adding the suffix Ch to the corresponding name of the 

metaschema type. Each characterization object type includes a set of attributes that 

characterize the schema unit and two operations: createUnit() and schemaUnit(). The first 

operation creates a schema unit from its characterization object, and the second creates 

the schema unit corresponding to the characterization object, if it exists. 

It is assumed that the operation createUnit() will only be invoked when the predecessors 

of the schema unit it creates have already been created. For example, the createUnit() of an 

instance of RelationshipTypeCh will only be invoked after the creation of the participant 

entity types. 

The specification of the first operation is the same for all characterization object types; 

therefore, it is defined it in a general 𝑆𝑗 ElementCh:  

context SjElementCh::createUnit()  
  post: schemaUnit()->notEmpty()   

This operation ensures that in the schema there will be a schema unit whose 

characterization is self.  It is assumed that all operations leave the schema in a state that 

satisfies all the integrity constraints defined in the metaschema. Note that only the 

postconditions of these operations can be specified in OCL. The method must be defined in 

an adequate imperative language. The examples in this thesis (and those reported in 

(Raventós 2008a)) use the procedural language included in USE. 

The following illustrates the characterization object types and objects and their 

schemaUnit() operation by means of their application to the ER and relational 

metaschemas.  

3.2.3.1 Application to the ER metaschema 

Figure 3.6 shows the characterization object types of the ER metaschema.  

The formal specification of the schemaUnit() operation in each case is as follows: 

context DataTypeCh::schemaUnit():DataType  
  body: DataType.allInstances() -> any(d:DataType|  

    d.name = self.name) 

   
context EntityTypeCh::schemaUnit():EntityType  
  body: EntityType.allInstances() -> any(e:EntityType|  

    e.name = self.name and  

    self.keyAttribute -> collect(k:KeyAttribute|  
     Tuple{n:k.name, t:k.type}) -> asSet =  

    e.attribute->select(isKey) -> collect(ka:Attribute| 

     Tuple{n:ka.name, t:ka.dataType.name})-> asSet)   
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Figure 3.6 Characterization object types for the ER metaschema in Figure 3.3 

context RelationshipTypeCh::schemaUnit():RelationshipType  
  body: RelationshipType.allInstances()-> any(r:RelationshipType|  

    r.name = self.name and  

    self.participant -> collect(p:Participant|  
     Tuple{n:p.name, t:p.type}) -> asSet =  

    r.relationEnd -> collect(re:RelationEnd|  

     Tuple{n:re.name, t:re.entityType.name}) -> asSet) 
 

context AttributeCh::schemaUnit():Attribute  
  body: Attribute.allInstances() -> any(a:Attribute|  

     a.name = self.name and not a.isKey and  

     a.dataType.name = self.type and    

     (a.entityType.name = self.owner or 

       a.relationshipType.name = owner)) 

 

3.2.3.2 Application to the relational metaschema 

Figure 3.7 shows the characterization object types of the relational metaschema.  

The formal specification of the schemaUnit() operation in each case is as follows: 

context RelationalDataTypeCh::schemaUnit():RelationalDataType  
  body: RelationalDataType.allInstances() -> any( 

     d:RelationalDataType| d.name = self.name)   
 

context TableCh::schemaUnit():Table  
  body: Table.allInstances() -> any(t:Table|  

     t.name = self.name and 

     self.keyColumn -> collect(c:KeyColumn|  

      Tuple{n:c.name, dt:c.type}) ->asSet() =  

     t.column ->select(isKey) -> collect(co:Column|  

     Tuple{n:co.name,co.relationalDataType.name})->asSet()) 



An object-oriented approach to the translation between MOF metaschemas 

 

58 

 

 

 Figure 3.7. Characterization object types for the relational metaschema in Figure 3.5   

context ColumnCh::schemaUnit():Column  
  body: Column.allInstances() -> any(c:Column| 

     c.name = self.name and not c.isKey and  

     c.relationalDataType.name = self.type and  
       c.table.name = self.owner)  
 

context ForeignKeyCh::schemaUnit():ForeignKey  
  body: ForeignKey.allInstances() -> any(f:ForeignKey|  

     f.column -> any(true).table.name = self.source and  

     f.targetTable.name = self.target and 

     f.column -> any(true).table.name = self.source and  

     f.targetTable.name = self.target and  

     f.column -> forAll(co:Column| 

      self.foreignKeyColumn -> exists(fkc|  

       co.name = fkc.sourceName and  

       f.targetTable.column -> select(isKey) ->  

      collect(name) -> includes(fkc.targetName))) 

3.3 Translation mapping expressions 

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a translation mapping where 𝑀𝑆1  and 𝑀𝑆2  are instances of the 

MOF (Object Management Group 2006a). This section proposes an approach to defining 

the translation mapping constraints Σ that is based on using the core concepts of object-

oriented languages, including operation, specialization/generalization and operation 

redefinition. These core concepts are part of the MOF and of its instances.  

In 𝑆𝑖Element, the following four operations are defined: 𝑠𝑖MappingKind(), 𝑠𝑖Equivalents(), 

includedIn𝑆𝑗 () and mappedTo𝑆𝑗 (), which are used to specify the translation mapping 

constraints. In contrast to the operations defined in the previous section, these operations 

are mapping-dependent. In 𝑆𝑖Element these operations give a default result, but they can 

be redefined in the subtypes. In the following, each operation is defined in turn and then, 

Section 3.3.5 explains how they can be uses to define the mapping constraints.  
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3.3.1 𝐬𝐢MappingKind 

𝑆𝑖Element includes the specification of the query operation 𝑠𝑗 MappingKind(): 

MappingKind, whose value indicates how a schema unit of 𝑆𝑖  is translated into 𝑆𝑗 . The 

value of this operation is mapping-dependent. MappingKind is an enumeration data type 

whose values are as follows:  

 HasEquivalents. A schema unit of 𝑆𝑖  has this mapping kind when it is completely 

equivalent to a set {𝑢𝑗 ,1 , … , 𝑢𝑗 ,𝑘} of one or more schema units of 𝑆𝑗 . The mapping kind 

of 𝑢𝑗 ,1 , … , 𝑢𝑗 ,𝑘  must be IsIncluded.  

 IsIncluded. A schema unit of 𝑆𝑖   has this mapping kind when it is included in a 

schema unit 𝑢𝑗 ,𝑘  of 𝑆𝑗 . The mapping kind of 𝑢𝑗 ,𝑘  must be HasEquivalents.  

 Untranslatable. A schema unit of 𝑆𝑖  has this mapping kind when it cannot be 

translated into 𝑆𝑗 . If a schema 𝑆𝑖  contains one or more untranslatable schema units 

then its translation into 𝑆𝑗   can only be partial. Note that in this approach it is easy to 

specify the schema units that cannot be translated in a given mapping. 

When a schema unit of 𝑆𝑖  has both an equivalence and an inclusion mapping with only one 

unit 𝑢2,𝑘   of 𝑆𝑗   then the mapping kind of one of them is defined as HasEquivalents and the 

other as IsIncluded. There is an example in Figure 3.3(a), (𝑢1,4 and 𝑢2,5), and several 

examples in Figure 3.3(b).  

In the context of 𝑆𝑖Element the operation 𝑠𝑗 MappingKind() can only give a default value, 

and each subtype ST of 𝑆𝑖Element such that some or all of its instances represent schema 

units redefines it (if necessary) to give the correct value. The value of the operation for the 

instances of ST that are not a schema unit is undefined. This may be enforced by means 

of a precondition, which in general can stated as follows:  

context SiElement::SjMappingKind()   
  pre: isSchemaUnit() 

3.3.1.1 Application to the Er-relational translation mapping: Er side 

In the ER metaschema example in Figure 3.4 is defined:   

context ErElement::relationalMappingKind():MappingKind  
  body: MappingKind::HasEquivalents  

This means that by default all (direct or indirect) instances of ErElement that are schema 

units have an equivalence mapping, and that those instances that are not schema units 

have an undefined value for the operation. In this particular example, there is no need to 

redefine the operation in any subtype of ErElement. 

3.3.1.2 Application to the Er-Relational translation mapping: Relational side  

Similarly, in the relational metaschema example in Figure 3.5 is defined:   

context RelationalElement::erMappingKind():MappingKind  
  body: MappingKind::IsIncluded  
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This means that by default all (direct or indirect) instances of RelationalElement that are 

schema units have an inclusion mapping, and that those instances that are not schema unit 

have an undefined value for the operation.   

In the relational metaschema example in Figure 3.5, most schema units may be defined 

using an inclusion mapping. There are exceptions due to the simplified ER metaschema 

used in this chapter. The exceptions are the instances of Table that cannot be translated as 

entity or relationship types, the columns of untranslatable tables and the instances of 

ForeignKey that do not correspond to referential integrity constraints. The exceptions can 

be defined as follows: 

The mappingKind of Table is defined as follows:  

context Table::erMappingKind():MappingKind  
  body:  if translatableIntoEntityType or      

          translateableIntoRelationshipType  

    then MappingKind::IsIncluded  

       else MappingKind::Untranslatable  

       endif  

where translatableIntoEntityType or translatableIntoRelationshipType are helper 

attributes defined as follows:  

context Table:  
 def: translatableIntoEntityType:Boolean = column ->   

       select(isKey).foreignKey -> isEmpty()  
  def: translatableIntoRelationshipType:Boolean =  

          column -> select(isKey).foreignKey -> size() > 1 and  
          column -> select(isKey) -> forAll(foreignKey ->size() = 1)  

 All instances of Column that are schema units and whose table are translatable have an 

inclusion mapping formally defined as follows:  

context Column::erMappingKind():MappingKind  
  body: if isSchemaUnit()  

   then  
      if table.erMappingKind() = MappingKind::IsIncluded  

    then MappingKind::IsIncluded  

    else MappingKind::Untranslatable  

    endif  
     else Set{} endif  

Finally, the instances of ForeignKey whose source and reference tables are translatable 

and whose reference tables are translatable are translatable into an entity type. This is 

formally defined as follows: 

context ForeignKey::erMappingKind():MappingKind  
  body: if targetTable.erMappingKind() = MappingKind::IsIncluded and  
       sourceTable.erMappingKind()= MappingKind::IsIncluded and    

    targetTable.translatableIntoEntityType  

   then MappingKind::IsIncluded  
     else MappingKind::Untranslatable endif  

where sourceTable is an auxiliary attribute defined as follows:  

context ForeignKey:  

 def: sourceTable:Table = column.table ->any(True)  
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In the above definition, it has been assumed that the relational metaschema inFigure 3.5 

includes the constraint that all columns of a foreign key must belong to the same table. 

This could be enforced by the invariant formally defined as follows:  

context ForeignKey inv allColumnsOfForeignKeyHaveSameTable:  
  column.table -> size() = 1  

3.3.2 𝒔𝒋Equivalents 

The  𝑠𝑗 Equivalents() operation is defined in the context of 𝑆𝑖Element. The evaluation of this 

operation in a schema unit 𝑢𝑖,𝑘  of 𝑆𝑖  whose mapping kind is HasEquivalents gives the set of 

characterization objects of the schema units of schema 𝑆𝑗  that are equivalent to 𝑢𝑖,𝑘 . The 

operation does not change either of the two schemas, but it creates one or more 

characterization objects. The signature and precondition of the operation in OCL is 

formally defined as follows:  

context SiElement::sjEquivalents():Set(SjElementCh)  
   pre: sjMappingKind() = MappingKind::HasEquivalents  
 post atLeastOneCharacterizationObjectCreated:  

   (SjElementCh.allInstances() - SjElementCh.allInstances@pre())  

    -> notEmpty()    

    post definingtheResult:  
    result = SjElementCh.allInstances() –  

         SjElementCh.allInstances@pre()  

 The effect of the operation must be defined in the subtypes of 𝑆𝑖Element such that some or 

all of their instances represent schema units whose mapping kind is HasEquivalents. The 

effect can be procedurally defined by a method or declaratively by a postcondition. In this 

approach, it is defined a declarative specification from which a method can easily be 

derived. The USE tool used automatically checks that the effect of the method satisfies the 

postconditions and the integrity constraints defined in the metaschema. 

3.3.2.1 Application to the ER-relational translation mapping: ER side 

The adaptation of the above operation to the ER metaschema in Figure 3.4 is formally 

defined as follows:  

context ErElement::relationalEquivalents():Set(RelationalElementCh)  

  pre: relationalMappingKind() = MappingKind::HasEquivalents   

    post definingtheResult:  
   result = RelationalElementCh.allInstances() –  

        RelationalElementCh.allInstances@pre()  

Given that the mapping kind of all ER schema units is HasEquivalent, it is necessary to 

redefine the operation relationalEquivalents() in each case, as shown below:  

context DataType::relationalEquivalents():  

    Set(RelationalDataTypeCh)  

 post:  rdt.oclIsNew() and rdt.oclIsTypeOf(RelationalDataTypeCh) 

   and rdt.name = self.name   
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context EntityType::relationalEquivalents():Set(TableCh)  

  post: t.oclIsNew() and t.oclIsTypeOf(TableCh) and  

    t.name = self.name and self.attribute -> select(isKey) ->  

    forAll(att| kc.oclIsNew() and kc.oclIsTypeOf(KeyColumn)  

    and kc.name = att.name and kc.type = att.dataType.name and  

    kc.tableCh = t)))    

 

context RelationshipType::relationalEquivalents(): 

     Set(RelationalElementCh)  

   post: t.oclIsNew() and t.oclIsTypeOf(TableCh) and  

      t.name = self.name and  

      self.relationEnd -> forAll(re| 

     re.entityType.attribute -> select(isKey) ->  

     forAll(attkey| kc.oclIsNew() and kc.oclIsTypeOf(KeyColumn)  

    and kc.name =  re.name.concat('_').concat(attkey.name)  

      and kc.type = re.entityType.name and kc.tableCh = t)))  

    and self.relationEnd -> forAll(re| fk.oclIsNew() and  

    fk.oclIsTypeOf(ForeignKeyCh) and  

    fk.sourceTable = t.name and  

    fk.targetTable = re.entityType.name and  

    re.entityType.attribute -> select(isKey) ->  

    forAll(attkey| fkc.oclIsNew() and  

    fkc.oclIsTypeOf(ForeignKeyColumn) and  

    fkc.sourceName = re.name.concat('_').concat(attkey.name)

   and fkc.targetName = attKey.name and  

    fkc.foreignKeyCh = fk))  

 

context Attribute::relationalEquivalents():Set(ColumnCh)  

 post: c.oclIsNew() and c.oclIsTypeOf(ColumnCh) and  

    c.name = self.name and c.type = self.dataType.name) and  

    c.owner = if self.entityType -> notEmpty()  

        then  

        self.entityType.name  

           else  

        self.relationshipType.name  

       endif 

3.3.2.2 Application to the Er-relational translation mapping: relational side 

The adaptation of the above operation to the relational metaschema in Figure 3.5 is 

formally defined as follows:  

context RelationalElement::erEquivalents():Set(ErElementCh)  
   pre: relationalMappingKind() = MappingKind::HasEquivalents   
   post definingtheResult:  

   result = ErElementCh.allInstances() – 

        ErElementCh.allInstances@pre()  

Note that on the relational side there is no need to redefine the erEquivalents() operation 

because no schema units have a HasEquivalents mapping. 

3.3.3 includedIn𝑺𝒋 

It has been shown that the translation of a schema unit 𝑢𝑖 ,𝑘  of 𝑆𝑖  whose mapping kind is 

HasEquivalents is given by the result of the operation 𝑠𝑗 Equivalents() invoked on 𝑢𝑖 ,𝑘 . The 

result is a non-empty set of instances of 𝑆𝑗 ElementCh that are characterization objects of 𝑆𝑗  
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schema units. Similarly, each schema unit 𝑢𝑖,𝑘  of 𝑆𝑖  whose mapping kind is IsIncluded is 

translated into one and only one characterization object of a schema unit of 𝑆𝑗 , which is 

given by the operation includedIn𝑆𝑗 () invoked on 𝑢𝑖,𝑘 .  

 The operation is hosted in 𝑆𝑖Element and its formal definition in OCL is as follows:  

 context SiElement::includedInSj():SjElementCh  
   pre: sjMappingKind() = MappingKind::IsIncluded  
  post onlyOneCharacterizationObjectCreated:  

    (SjElementCh.allInstances() –  

     SjElementCh.allInstances@pre()) -> size()=1    
   post definingtheResult:  

   result = (SjElementCh.allInstances() –  

       SjElementCh.allInstances@pre()) ->any(True)  

The effect of the operation must be defined in the subtypes of 𝑆𝑖Element such that some or 

all of their instances represent schema units whose mapping kind is IsIncluded. The effect 

can be procedurally defined by a method or declaratively by a postcondition. In this 

approach, a declarative specification is defined from which a method can easily be derived. 

The USE tool automatically checks that the effect of the method satisfies the 

postconditions and the integrity constraints defined in the metaschema. 

3.3.3.1 Application to the ER-relational translation mapping: ER side 

On the ER side there is no need to redefine the includedInRelational() operation because 

no schema units have an IsIncluded mapping. 

3.3.3.2 Application to the ER-relational translation mapping: relational side 

The specification of the above operation applied for the relational metaschema in 

Figure 3.5 is the following: 

context RelationalDataType::includedInEr():ErElementCh   

  post:  d.oclIsNew() and d.oclIsTypeOf(DataTypeCh) and  

    d.name = self.name 

 

 context Table::includedInEr():ErElementCh 

  post: if self.column -> select(isKey) -> forAll( 

     foreignKey->isEmpty())   

    then 

     e.oclIsNew() and e.oclIsTypeOf(EntityTypeCh) and  

     e.name = self.name and  

     self.column -> select(isKey) -> forAll(co:Column|  

      ka.oclIsNew() and ka.oclIsTypeOf(KeyAttribute) and  

      ka.name = co.name and  

      ka.type = co.relationalDataType.name and  

      ka.entityTypeCh = e)) 

    else 

     r.oclIsNew() and r.oclIsType(RelationshipTypeCh) and  

     r.name = self.name and  

     self.column -> select(isKey)-> forAll(co:Column|  

      p.oclIsNew() and p.oclIsTypeOf(Participant) and  

      p.name = co.name.substring(1,Set{1..co.name.size}-> 

      any(pos:Integer| co.name.substring(1,pos+1) =  

      co.name.substring(1,pos).concat('_')) and  
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      p.type = co.relationalDataType.name)) 

    endif 

 

context Column::includedInEr():ErElementCh 

 post: a.oclIsNew() and a.oclIsTypeOf(AttributeCh) and  

   a.name = self.name and  

   a.type = self.relationalDataType.name and  

   a.owner = self.table.name  

 

context ForeignKey::includedInEr():ErElementCh  

 post: r.oclIsNew() and r.oclIsTypeOf(RelationshipTypeCh) and  

   r.name = self.column.table.name -> asSet() -> any(true)  

   and self.column.table -> asSet() -> any(true).column ->  

    select(isKey) -> forAll(co:Column| p.oclIsNew() and  

     p.oclIsTypeOf(Participant) and  

     p.name = co.name.substring(1,Set{1..co.name.size} 

     -> any(pos:Integer| co.name.substring(1,pos+1) =  

      co.name.substring(1,pos).concat('_')) and  

     p.type = co.relationalDataType.name)) 

3.3.4 mappedTo𝑺𝒋 

The two previous sections have shown that the translation of a schema unit 𝑢𝑖 ,𝑘  of 𝑆𝑖  is 

given by the result of the operations 𝑠𝑗 Equivalents() and includedIn𝑆𝑗 () invoked on 𝑢𝑖,𝑘 . A 

schema unit is translated correctly if the results of these operations are consistent. The 

consistency condition is embodied in a single operation, called mappedTo𝑆𝑗 (), which 

returns a True value if it is satisfied and a False value otherwise. 

The formal specification in OCL is as follows:  

context SiElement::mappedToSj():Boolean   
  pre: isSchemaUnit()  
  body:  
   if sjMappingKind() = MappingKind::HasEquivalents then  
   self.sjEquivalents()->forAll(sj:SjElementCh|sj.schemaUnit()->  

   notEmpty() and sj.schemaUnit().siMappingKind() =  

   MappingKind::IsIncluded and  
      sj.schemaUnit().includedInSj().schemaUnit() = self)   
  else if sjMappingKind() = MappingKind::IsIncluded then  
    self.includedInSj().schemaUnit()->notEmpty() and  

    self.includedInSj().schemaUnit().siMappingKind() =  

    MappingKind::HasEquivalents and  

    self.includedInSj().schemaUnit().sjEquivalents(). 

     schemaUnit() -> includes(self)  
     else           
         False  
      endif  
   endif  

This means that for each schema unit 𝑠𝑖  of 𝑆𝑖 , whose mapping kind is HasEquivalents, all 

schema units of  𝑆𝑗  that are the equivalents of 𝑠𝑖 , must have a mapping kind equals to 

IsIncluded, and the result of applying the includedIn𝑆𝑖() to each of them must be 𝑠𝑖 . 

Moreover, for each schema unit 𝑠𝑖  of 𝑆𝑖 ,  whose mapping kind is IsIncluded, the result of 
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applying includedIn𝑆𝑖() to 𝑠𝑖 , gives a 𝑠𝑗   of 𝑆𝑗 , whose equivalents are schema units including 

𝑠𝑖 .  

The adaptation  to the ER-relational mapping is straightforward. Here, the corresponding 

to the ER-side is shown below:  

context ErElement::mappedToRelational():Boolean 

 body: if relationalMappingKind() = MappingKind::HasEquivalents  

    then 

      self.relationalEquivalents() -> forAll( 

     re:RelationalElementCh| re.schemaUnit()->notEmpty() and  

     re.schemaUnit().erMappingKind()=  

      MappingKind::IsIncluded and 

     re.schemaUnit().includedInEr().schemaUnit() = self) 

     else 

      if relationalMappingKind() = MappingKind::IsIncluded  

     then 

      self.includedInRelational().schemaUnit()->notEmpty()  

      and self.includedInRelational().schemaUnit(). 

       erMappingKind() = MappingKind::HasEquivalents and  

      self.includedInRelational().schemaUnit(). 

       erEquivalents().schemaUnit()->includes(self) 

      else 

        False 

       endif 

    endif 

3.3.5 Translation mapping constraints 

Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a translation mapping where 𝑀𝑆1  and 𝑀𝑆2  are instances of the 

MOF  (Object Management Group 2006a).  The translation mapping constraints Σ consist 

of exactly two constraints, called complete and consistent mapping to S2 and complete and 

consistent mapping to S1.  

In UML, these constraints can be formally defined by the following OCL invariants:  

context S1Element inv completeAndConsistentMappingToS2:   

   isSchemaUnit() and  

 (s2mappingKind() = MappingKind::HasEquivalents or  

  s2mappingKind() = MappingKind::IsIncluded) 

 implies mappedToS2()   

 

context S2Element inv completeAndConsistentMappingToS1:   

   isSchemaUnit() and  

 (s1mappingKind() = MappingKind::HasEquivalents or  

  s1mappingKind() = MappingKind::IsIncluded)  

 implies mappedToS1()   

The intuitive meaning is that 𝑆1 , 𝑆2 is an instance of translation mapping 𝑀 if each 

translatable schema unit of 𝑆1 is consistently mapped to 𝑆2 and if each translatable schema 

unit of 𝑆2 is consistently mapped to 𝑆1. When both invariants hold, 𝑆1 and 𝑆2 are 

translations of each other. Note that the invariants exclude the schema units that are not 

translatable in the specified mapping. 
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The adaptation of the two constraints to the Er-relational mapping (see Figures 3.4 and 

3.5) is straightforward, formally defined as follows:  

context ErElement inv completeMappingToRelational:   
   isSchemaUnit() and  

 (relationalMappingKind() = MappingKind::HasEquivalents or  

   relationalMappingKind()= MappingKind::IsIncluded)  

 implies mappedToRelational()   
 

context RelationalElement inv completeMappingToEr:   

   isSchemaUnit() and  

 (erMappingKind() = MappingKind::HasEquivalents or  

   erMappingKind() = MappingKind::IsIncluded)  

 implies mappedToEr()  

3.3.6 Translating schemas 

This section describes the use of the operations defined in the previous sections in the 

translation of schemas. Let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping, and 𝑆1 = {𝑢1,1, … , 𝑢1,𝑛} an 

instance of 𝑀𝑆1. The translation of 𝑆1 into 𝑀𝑆2 is a schema 𝑆2 = {𝑢2,1, … , 𝑢2,𝑚 } such that 

𝑆1, 𝑆2 is an instance of 𝑀. The translation of 𝑆2 into 𝑀𝑆1 is similarly defined. The 

approach to the translation of a schema 𝑆1 = {𝑢1,1 , … , 𝑢1,𝑛} consists in translating each of 

its schema units 𝑢𝑖,𝑗  following the order given by the operation predecessors(), 

starting with the units that have no predecessors. As it has been seen in Section 3.2.2 the 

computation of the predecessors is mapping-independent and straightforward.  

The translation is done by applying an operation that we call translateTo𝑆𝑗 () to the schema 

units. In what follows, the specification of the pre- and postconditions of the operation in 

OCL is given.  

An instance 𝑢𝑖,𝑘  of 𝑆𝑖Element can be translated into 𝑆𝑗  if it represents a schema unit whose 

mapping kind is HasEquivalents or IsIncluded. The effect of the operation translateTo𝑆𝑗 () 

must be that 𝑢𝑖,𝑘   is mapped to 𝑆𝑗 . This is captured by the simple following formal 

specification as follows:  
context SiElement::translateToSj()  
  pre:  isSchemaUnit() and  

     (sjmappingKind() = MappingKind::HasEquivalents or  

     sjmappingKind() = MappingKind::IsIncluded)  
  post:  mappedToSj()  

There is no need to refine the specification of this operation in the subtypes of 𝑆𝑖Element. 

Concerning its implementation, the specification of mappedTo𝑆𝑗  (explained in Section 

3.3.4) suggests a straightforward implementation using the methods of the operations 

createUnit() (Section 3.2.3), 𝑠𝑗 Equivalents() (Section 3.3.2) and isIncludedIn𝑆𝑗 () (Section 

3.3.3).  

In (Raventós 2008a) it is described the implementation of the methods of translateToEr() 

and translateToRelational() in the procedural language described in USE (Gogolla, Büttner 

and Richters 2007) and the output obtained by their application to the example used in 

this paper. The same implementation is used in the translation of the osCommerce 
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relational database to ER. In all cases, the time needed to translate and check its 

completeness and consistency (Section 3.3.5) can be considered satisfactory in a research 

environment in which research-oriented tools are used.  





 

 
 

4 UML metaschema   

In the field of software engineering, the Unified Modeling Language (UML) is a 

standardized specification language for object modeling. UML is officially defined in the 

Object Management Group (OMG) by the UML metamodel (Rumbaugh, Jacobson and 

Booch 2004). Like other MOF-based specifications, the UML metamodel and UML models 

may be serialized in XMI. UML was designed to specify, visualize, construct and document 

the artifacts of a software system (Rumbaugh, Jacobson and Booch 2004). For 

convenience, depending on the aspects of the systems being represented, UML divides 

concepts and constructs into views. The static view includes the elements that represent 

the concepts that are meaningful in a domain, their object structure and the relationships 

among them. Unified Modeling Language: Superstructure, version 2.1 (Object Management 

Group 2007b) specifies the superstructure of the UML metamodel.  

This chapter describes the subset of the static view of the UML metamodel considered to 

translate UML schemas to SBVR and vice versa. This subset is the part of the UML 

metamodel that is necessary to describe the structural schema of domains. To better 

illustrate the metaschema, an example of the schema, which is an instance of the 

metaschema, is included.  

The UML metaschema, the definition of schema units (including the predecessors and 

characterization objects) and an example of instantiation have been specified in the UML-

based Specification Environment (USE) tool. The detailed specifications are provided in 

the appendices.   

The rest of this chapter is structured as follows: 

 Section 4.1 describes an example of a schema that is an instance of the UML 

metaschema and which is used as a running example throughout this thesis. 

 Section 4.2 defines, following the translation approach described in Chapter 3, the 

schema units of the UML metaschema, the precedence relationships between them, 

and the characterization objects of such schema units.  
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4.1 DBLP schema: an example of an instance of the UML 

metaschema 

This section describes an example of a schema that will be used throughout this thesis to 

illustrate the translation between UML and SBVR. The example is based on the case study 

developed by Planas and Olivé (2006), with two additional association classes (Editorship 

and Authorship) and an additional attribute (Gender), which is an enumeration.  

The structural schema presented in the case study deals with people (authors and editors) 

and their publications, which may be edited books or authored publications such as 

authored books, book chapters and journal papers. Book chapters and journal papers may 

or may not be conference papers. 

Figure 4.1 shows the structural schema of DBLP. 

The following constraints have been included in the case study for the translation to SBVR: 

[1]  Person: name 
context Person inv nameIsKey: 

Person.allInstances() -> isUnique(name) 

[2] Book: isbn 
context Book inv isbnIsKey: 

Book.allInstances() -> isUnique(isbn) 

[3] BookSeries: id 
context BookSeries inv idIsKey: 

BookSeries.allInstances() -> isUnique(id) 

[4] Journal: issn 
context Journal inv issnIsKey: 

Journal.allInstances() -> isUnique(issn) 

[5] Journal: title 
context Journal inv titleIsKey: 

Journal.allInstances() -> isUnique(title) 

[6] ConferenceSeries: name 
context ConferenceSeries inv nameIsKey: 

ConferenceSeries.allInstances() -> isUnique(name) 

[7] ConferenceEdition: title 
context ConferenceEdition inv titleIsKey: 

ConferenceEdition.allInstances() -> isUnique(title)  
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Figure 4.1 Structural schema of DBLP  

4.2 Schema units of the UML metaschema 

This section describes the fragment of the UML metamodel (Object Management Group 

2007b) considered for the mapping to SBVR. The metaclasses included are those 
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necessary to represent vocabularies and business rules. The following are the elements of 

the UML metamodel that have been excluded: Package, PackageMerge, 

PackageableElement, Slot, behavioral features including operations of the Kernel package, 

the Dependencies package, the Interfaces package, some derived information (i.e., some 

derived associations and attributes), the visibility attribute of NamedElement, the 

isReadOnly attribute of Property, the defaultValue association of Property, generalizations 

of associations, and associations with the value of isAbstract equal to true.  

The fragment is described in terms of its schema units that is, its knowledge components, 

as defined in Chapter 3. 

 

Figure 4.2 Definition of Element and Element characterization object 

Since all UML metaclasses are subtypes of the abstract metaclass Element, in order to 

define the schema units, Element includes two operations (isSchemaUnit() and 

predecessors()). The specification of the isSchemaUnit() operation in the context of Element 

of Figure 4.2 is defined as follows: 
context Element::isSchemaUnit():Boolean 

 body:  true 

This means that, by default, all (direct or indirect) instances of Element are schema units. 

However, each subtype of Element such that some or all of its instances do not represent 

schema units redefines the isSchemaUnit() operation, as described below. 

In the context of Element, the query operation predecessors give the empty set as default 

value: 
context Element::predecessors():Set(Element) 

 pre:   isSchemaUnit() 

 body: Set{} 

Each subtype of Element such that some or all of its instances represent schema units 

redefines the predecessors() operation (if needed). 

Additionally, as described in Chapter 3, each schema unit is characterized by a schema unit 

characterization object type, which defines the schema elements comprised by the schema 

unit. The schema unit characterization object is defined for each subtype of Element such 

that some or all of its instances represent schema units. Each characterization object type 

includes a set of attributes that characterize the schema unit and two operations: 

createUnit() and schemaUnit(). The former creates a schema unit from its characterization 

object, and the latter gives the schema unit corresponding to the characterization object, if 

it exists. The operation createUnit() will only be invoked when the predecessors of the 

schema unit it creates have already been created. It is the same for all of the 

characterization object types and is defined in the general ElementCh (see Figure 4.2): 
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context ElementCh::createUnit() 

 pre:   schemaUnit() -> notEmpty() 

The schemaUnit() operation is redefined in each subtype of ElementCh. 

In a UML schema, the schema units are classes, data types, enumerations, attributes, 

associations, association classes, generalizations, generalization sets and constraints.  

The following subsections define the schema units in terms of their schema elements. 

They provide, for each schema unit, a generic description of it, its abstract syntax, the 

specifications of the isSchemaUnit() and predecessors() operations used to define it, and its 

schema unit characterization object. 

4.2.1 Class schema unit  

Generic description 

A class schema unit describes a set of objects that share the same specifications of 

features, constraints and semantics. A class schema unit may be defined as abstract that is, 

the instances of the class may be derived by union of the subtypes of a partition of the 

class. 

The DBLP example shown in Figure 4.1 has 17 class schema units represented by 

instances of Class named Person, Publication, Book, AuthoredPublication, EditedBook, 

AuthoredBook, BookChapter, JournalPaper, BookSection, BookSeriesIssue, BookSeries, 

JournalSection, JournalIssue, ConferenceEdition, ConferenceSeries, JournalVolume and 

Journal. Publication, Book and AuthoredPublication have classes defined as abstract. The 

instances of Publication may be derived by union of the instances of EditedBook and 

AuthoredPublication. The instances of Book may be derived by union of the instances of 

EditedBook and AuthoredBook. And finally, the instances of AuthoredPublication may be 

derived by union of AuthoredBook, BookChapter and JournalPaper. 

Abstract syntax 

Each class schema unit is represented by an instance of Class. The schema elements of a 

class, named c, are as follows: (1) the instance  of Class; (2) the instance of attribute name 

of  with value c; and (3) the instance of attribute isAbstract of  with value True or False.  

Figure 4.3 shows the abstract syntax of the class schema unit. Note that the isSchemaUnit() 

and predecessors() operations are not redefined in Class, meaning that all instances of Class 

are schema units and do not have predecessors.  
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Figure 4.3 Class schema unit 

Characterization object 

 

Figure 4.4 Class schema unit characterization object ClassCh 

Figure 4.4 shows the characterization object type for the class schema unit, ClassCh. The 

schemaUnit() operation is defined, formally, as follows: 
context ClassCh::schemaUnit():Class 

 body: Class.allInstances() -> any(c:Class| c.name = self.name and  

     c.isAbstract = self.isAbstract) 

This means that the schemaUnit() operation of ClassCh is a query that gives the instance of 

Class whose attributes name and isAbstract have the same values as the ones given in the 

attributes name and isAbstract of ClassCh, respectively.  
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4.2.2 Data type schema unit 

Generic description 

A data type schema unit is a type whose instances are identified only by their value. 

Additionaly, UML includes some predefined data types, called primitive types, which are 

as follows: Boolean, Integer, UnlimitedNatural and String. 

The DBLP example shown in Figure 4.1 has two data type schema units represented by 

two instances of DataType named Natural and Year, respectively. It also includes two data 

types represented by two instances of PrimitiveType named Boolean and String, 

respectively.  

Abstract syntax 

Each data type schema unit that is not an enumeration is represented by an instance of 

DataType that is not an instance of Enumeration. The schema elements of a data type 

named d are as follows: (1) an instance  of DataType (or PrimitiveType); (2) the instance 

of attribute name of  with value d; and (3) the instance of attribute isAbstract of  with 

value False.  

 

Figure 4.5 Data type and primitive type schema units 

Figure 4.5 shows the abstract syntax of a data type schema unit. The isSchemaUnit() and 

predecessors() operations are not redefined in DataType. 

Characterization object 

For the data type characterization object DataTypeCh (see Figure 4.6), the schemaUnit() 

operation is defined, formally, as follows: 
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Figure 4.6 Data type schema unit characterization object DataTypeCh 

context DataTypeCh::schemaUnit():DataType 

 body: DataType.allInstances() -> any(d:DataType|  

     d.name = self.name and d.isAbstract = false and  

     self.isPrimitiveType implies d.oclIsTypeOf(PrimitiveType)) 

This means that the schemaUnit() operation of DataTypeCh is a query that gives the 

instance of DataType whose attribute name has the same value as the one given in the 

attribute name of DataTypeCh and whose isAbstract attribute has a value equal to False. 

Moreover, if the attribute isPrimitiveType is true then the instance of DataType is also an 

instance of PrimitiveType. 

4.2.3 Enumeration schema unit 

Generic description 

An enumeration schema unit is a special type of data type whose values are enumerated in 

the model as enumeration literals. 

The DBLP example shown in Figure 4.1 has one enumeration schema unit represented by 

an instance of Enumeration named Gender. The two instances of EnumerationLiteral 

related to said instance of Enumeration are named Male and Female, respectively.  

Abstract syntax 

Each enumeration is represented by an instance of Enumeration. The schema elements of 

an enumeration e are as follows: (1) the instance  of Enumeration; (2) the instance of 

attribute name of  with value e; (3) the instance of attribute isAbstract of  with value 

False; (4) the instances of EnumerationLiteral related to ; and (5) for each of these 

enumeration literals, the instance of its attribute name and its relationship with e in a 

given order.  

Figure 4.7 shows the abstract syntax of an enumeration schema unit. Note that the 

isSchemaUnit() and predecessors() operations are not redefined in Enumeration, meaning 

that all instances of Enumeration are schema units and they do not have predecessors. The 

isSchemaUnit() operation is redefined in InstanceSpecification: 
 context InstanceSpecification::isSchemaUnit():Boolean 

 body: false 

This means that the instances of InstanceSpecification are not schema units. 
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Figure 4.7 Enumeration schema unit 

Characterization object 

 

Figure 4.8 Enumeration schema unit characterization object EnumerationCh 

For the enumeration characterization object EnumerationCh (see Figure 4.8), the 

schemaUnit() operation is defined, formally, as follows: 
context EnumerationCh::schemaUnit():Enumeration 

 body: Enumeration.allInstances() -> any(e:Enumeration|  

     e.name = self.name and  

     e.ownedLiteral -> collect(name) = 

     self.literal -> collect(name))  

This means that the schemaUnit() operation of EnumerationCh is a query that gives the 

instance of Enumeration whose attribute name has the same value as the one given in the 
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attribute name of EnumerationCh and for which the ordered sequence of names of its 

ownedLiterals is equal to the ordered sequence of names of the literals of EnumerationCh. 

4.2.4 Attribute schema unit 

Generic description 

An attribute schema unit is a structural feature that relates the instance of the class that 

owns the attribute to a value or collection of values of the type of the attribute. 

The DBLP example shown in Figure 4.1 has 41 attribute schema units represented by 

instances of Property: name, gender, homePage and numPublications of Person; title, year 

and edition of Publication; order of Editorship; order of Authorship; numPages, homePage, 

publisher, publication and isbn of Book; iniPage, endPage and conferencePaper of 

BookChapter; iniPage, endPage and conferencePaper of JournalPaper; title and order of 

JournalSection; title and order of BookSection; number of BookSeriesIssue; id and publisher 

of BookSeries; title, year, city, country and homepage of ConferenceEdition; acronym and 

name of ConferenceSeries; number, year, month and numPages of JournalIssue; volume of 

JournalVolume; and title and issn of Journal. 

Abstract syntax 

Each attribute is represented by an instance of Property that is owned by a Class or a 

DataType. The schema elements of an attribute named at are as follows: (1) the instance  

of Property; (2) the instance of attribute name of  with value at; (3) the instances of its 

Boolean attributes isDerived and isDerivedUnion and the instance of its aggregation 

attribute; (4) the instance of its relationship with an instance of Class or DataType; (5) an 

instance of a subtype of LiteralSpecification (usually LiteralInteger) with the instance of its 

attribute value and the relationship to  (for the lowerValue); (6) an instance of a subtype 

of LiteralSpecification (usually LiteralInteger or LiteralUnlimitedNatural) with the instance 

of its attribute value and the relationship to  (for the upperValue); and (7) the instance of 

its relationship with the corresponding type.  

Figure 4.9 shows the abstract syntax of an attribute schema unit. The isSchemaUnit() 

query operation is redefined in the Property metaclass. Not all instances of Property are 

schema units. Only those that represent an attribute that is, the properties that are not 

related to any instance of Association by memberEnd or its specializations are schema 

units. Therefore, the query operation is formally redefined in Property as follows: 
context Property::isSchemaUnit():Boolean 

body:  self.association -> isEmpty() 

The isSchemaUnit() query operation is also redefined in the LiteralSpecification abstract 

metaclass. No instances of either metaclass are schema unit. 
context LiteralSpecification::isSchemaUnit():Boolean 

body:  false  
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Figure 4.9 Attribute schema unit 

The predecessors() operation of Property is specified as follos: 
context Property::predecessors():Set(Element)  
 body: Element.allInstances() -> select(el:Element |  

     (el.oclIsTypeOf(Class) and  

     (el.oclAsType(Class) = self.class or   

     el.oclAsType(Class) = self.type)) or 

     (el.oclIsKindOf(DataType) and   

     (el.oclAsType(DataType) = self.dataType or  

     el.oclAsType(DataType = self.type))) 

This means that the predecessors of a property that represents an attribute are its owning 

class or owning data type and its type. 



An object-oriented approach to the translation between MOF metaschemas 

 

80 

 

Characterization object 

For the attribute schema unit characterization object PropertyCh (see Figure 4.10), the 

schemaUnit() operation is defined, formally, as follows: 
context PropertyCh::schemaUnit():Property 

 body: Property.allInstances() -> any(p:Property|  

     p.association -> isEmpty() 

     p.name = self.name and p.type.name = self.type and 

     self.ownerClassName -> notEmpty() implies  

      p.class.name = self.ownerClassName and  

     self.ownerDataTypeName -> notEmpty() implies  

      p.dataType.name = self.ownerDataTypeName and  

     p.isDerived = self.isDerived and  

     p.isDerivedUnion = self.isDerivedUnion and  

     p.aggregation = self.aggregation_ and  

     p.lowerValue.oclAsType(LiteralInteger).value =  

     self.lowerValue and  

     if self.upperValue -> notEmpty() then  

      p.upperValue.oclAsType(LiteralInteger).value = 

      self.upperValue  

     else  

      p.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)  

     endif) 

This means that the schemaUnit() operation of PropertyCh is a query that gives the 

instance of Property whose owner is a class or data type with the attribute name with the 

same value as the one given in the attribute name; the isDerived, isDerivedUnion and 

aggregation attributes have the same value as the ones with the same names given in 

PropertyCh; the multiplicity constraints of the property are given in the lowerValue and 

upperValue attributes. Note that the upperValue attribute of PropertyCh has a value when 

the type of the upperValue specification is of type LiteralInteger. 

 

Figure 4.10 Attribute schema unit characterization object PropertyCh  

4.2.5 Association schema unit 

Generic description 

An association schema unit specifies a semantic relationship that can occur between class 

schema units. The instances of association schema units are the identifiable individual 
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relationships between instances of the classes that have the relationship. The association 

schema unit includes the following: the association with its name, if any; the member ends 

with their respective aggregation kinds; and the cardinality constraints between the 

participants, i.e., the multiplicities of the member ends of the association.  

The DBLP example shown in Figure 4.1 has 15 association schema units represented by 

instances of Association: R1(bookChapter, bookSection), R2(bookChapter, bookSeriesIssue), 

R3(bookChapter, editedBook), R4(bookSection, editedBook), R5(journalPaper, journalIssue), 

R6(journalPaper, journalSection),  R7(bookSeries, bookSeriesIssue), R8(conferenceSeries, 

conferenceEdition), R9(journal, journalVolume), R10(journalIssue, journalSection), 

R11(journalVolume, journalIssue), IsPublishedIn(conferenceEdition, bookSeriesIssue), 

IsPublishedIn(conferenceEdition, EditedBook), Publishes(person, publication) and 

IsPublishedIn(conferenceEdition, journalIssue). 

Note that association classes are considered different schema units than the association 

schema unit. 

Abstract syntax 

Each association schema unit is represented by an instance of Association. The schema 

elements of an association that may be named as are as follows: (1) the instance  of 

Association; (2) if it has a name, the instance of attribute name of  with value as; (3) the 

instances of its attribute isAbstract; (4) the instances of Property that are member ends of 

; and (5) for each of these properties: (a) the instance of its relationship to its Type; (b) 

the instances of its attributes isDerived, isDerivedUnion and aggregation; (c) the instance of 

its relationship with , in a given order; (d) an instance of a subtype of LiteralSpecification 

(usually LiteralInteger) with the instance of its attribute value and the relationship to the 

property (for the lowerValue); and (e) an instance of a subtype of LiteralSpecification 

(usually LiteralInteger or LiteralUnlimitedNatural) with the instance of its attribute value 

and the relationship to the property (for the upperValue). 

Figure 4.11 shows the abstract syntax of an association schema unit. All instances of 

Association are schema units. Therefore, the isSchemaUnit() query is not redefined in 

Association. The predecessors() operation of Association is specified as follows: 
context Association::predecessors():Set(Element)  
 body: Property.allInstances() -> select(p:Property |  

     p.association = self).type -> asSet() 

This means that the predecessors of an association are the types of the member ends of 

the association. 
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Figure 4.11 Association schema unit 

Characterization object 

 

Figure 4.12 Association schema unit characterization object AssociationCh 
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For the association schema unit characterization object AssociationCh (see Figure 4.12), 

the schemaUnit() operation is defined, formally, as follows: 
context AssociationCh::schemaUnit():Association 

 body: Association.allInstances() -> any(a:Association|  

     self.name ->notEmpty() implies a.name = self.name and  

     a.isAbstract = self.isAbstract and  

     a.isDerived = self.isDerived and  

     a.memberEnd -> collect(m:Property| 

      Tuple{n:m.name, id:m.isDerived,  

       idu:m.isDerivedUnion, ag:m.aggregation,  

       l:m.lowerValue.oclAsType(LiteralInteger).value,  

       u:m.upperValue.oclAsType(LiteralInteger).value,  

       un:m.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)})  

     =  

     self.associationMemberEnd ->collect(m:AssociationMemberEnd| 

      Tuple{n:m.name, id:m.isDerived,  

       idu:m.isDerivedUnion, ag:m.aggregation,  

       l:m.lowerValue, u:m.upperValue,  

       un:m.upperValue->isEmpty()})) 

This means that the schemaUnit() operation of AssociationCh is a query that gives the 

instance of Association whose name attribute is empty or whose value is equal to the value 

of the name attribute of AssociationCh; the isAbstract and isDerived attributes have the 

same value as the isAbstract and isDerived attributes of AssociationCh, respectively; and 

the ordered sequence of values of the name attributes of memberEnds is equal to the 

ordered sequence of values of the name attributes of the associationMemberEnds of 

AssociationCh. 

4.2.6 Association class schema unit 

Generic description 

An association class schema unit is a schema unit that is both an association schema unit 

and a class schema unit. The association class schema unit includes the structural 

elements of a class schema unit and of an association class schema unit. 

The DBLP example shown in Figure 4.1 has two association class schema units 

represented by instances of AssociationClass and named Editorship and Authorship, 

respectively. 

Abstract syntax 

Each association class is represented by an instance of AssociationClass. The schema 

elements of an association class, named ac, are as follows: (1) the instance  of 

AssociationClass; (2) the instance of attribute name of  with value ac; (3) the instances of 

its attributes isDerived and isAbstract; (4) the instances of Property that are member ends 

 (such as owningAssociation); and (5) for each of these properties: (a) the instance of its 

relationship to its Type; (b) the instances of its attributes isDerived, isDerivedUnion and 

aggregation; (c) the instance of its relationship with ; (d) an instance of a subtype of 

LiteralSpecification (usually LiteralInteger) with the instance of its attribute value and the 

relationship to the property (for the lowerValue); and (e) an instance of a subtype of 
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LiteralSpecification (usually LiteralInteger or LiteralUnlimitedNatural) with the instance of 

its attribute value and the relationship to the property (for the upperValue).  

Figure 4.13 shows the abstract syntax of an association class schema unit. As with the 

association and class schema units, all instances of AssociationClass are schema units. 

Therefore, the isSchemaUnit() query is not redefined in AssociationClass.  

The predecessors() operation of AssociationClass is specified as follows: 
context AssociationClass::predecessors():Set(Element) 
 body: Property.allInstances() -> select(p:Property |  

     p.association = self).type -> asSet()  

This means that the predecessors of an association class are the types of the member ends 

of the association class. 

 

Figure 4.13 Association class schema unit 
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Characterization object 

 

Figure 4.14 Association class schema unit characterization object AssociationClassCh 

For the association class schema unit characterization object AssociationClassCh (see 

Figure 4.14), the schemaUnit() operation is defined, formally, as follows: 
context AssociationClassCh::schemaUnit():AssociationClass 

 body: AssociationClass.allInstances() -> 

     any(a:AssociationClass| a.name = self.name and   

     a.isAbstract = self.isAbstract and  

     a.isDerived = self.isDerived and  

     a.memberEnd -> collect(m:Property| 

      Tuple{n:m.name, id:m.isDerived,  

       idu:m.isDerivedUnion, ag:m.aggregation,  

       l:m.lowerValue.oclAsType(LiteralInteger).value,  

       u:m.upperValue. oclAsType(LiteralInteger).value, 

       un:m.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)})  

     =  

     self.associationClassMemberEnd ->  

      collect(m:AssociationClassMemberEnd| 

      Tuple{n:m.name, id:m.isDerived,  

       idu:m.isDerivedUnion, ag:m.aggregation,  

       l:m.lowerValue, u:m.upperValue,  

       un:m.upperValue -> isEmpty()})) 

This means that the schemaUnit() operation of AssociationClassCh is a query that gives the 

instance of AssociationClass whose value of the name attribute is equal to the value of the 

name attribute of AssociationClassCh; the isAbstract and isDerived attributes have the same 

value as the isAbstract and isDerived attributes of AssociationClassCh, respectively; and the 

ordered sequence of values of the name attributes of memberEnds is equal to the ordered 

sequence of the values of the name attributes of the AssociationClassMemberEnd(s) of 

AssociationClassCh. 

4.2.7 Generalization schema unit 

Generic description 

A generalization schema unit is a taxonomic relationship (IsA relationship) between two 

classes' schema units.  

The DBLP example shown in Figure 4.1 has nine generalization schema units represented 

by instances of Generalization: EditedBook IsA Publication, Book IsA Publication, 
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AuthoredPublication IsA Publication, EditedBook IsA Book, AuthoredBook IsA Book, 

AuthoredBook IsA AuthoredPublication, BookChapter IsA AuthoredPublication, JournalPaper 

IsA AuthoredPublication and BookSeriesIssue IsA Book.  

Abstract syntax 

Each generalization is represented by an instance of Generalization, which is associated, 

through the general association, to a Class. The schema elements of a generalization are as 

follows: (1) an instance of Generalization ; (2) the instance of the relationship between an 

instance of Class (general) and ; and (3) the instance of the relationship between an 

instance of Class (specific) and . 

 

Figure 4.15 Generalization schema unit 

Figure 4.15 shows the abstract syntax of a generalization schema unit. All instances of 

Generalization are schema units. Therefore, the isSchemaUnit() query operation is not 

redefined in Generalization. The predecessors() operation of Generalization is specified as 

follows: 
context Generalization::predecessors():Set(Element) 
 body: Element.allInstances() -> select (el:Element| 

     el.oclIsTypeOf(Classifier) and  

     (el.oclAsType(Classifier) = self.specific or  

     el.oclAsType(Classifier) = self.general)) 

This means that the predecessors of a generalization are the classifiers that correspond to 

the general or specific element of the generalization. 

Characterization object 

For the generalization schema unit characterization object GeneralizationCh (see Figure 

4.16), the schemaUnit() operation is defined, formally, as follows: 
context GeneralizationCh::schemaUnit():Generalization 

 body: Generalization.allInstances() -> any(g:Generalization|  

     g.general.name = self.generalClassName and  

     g.specific.name = self.specificClassName) 
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This means that the schemaUnit() operation of GeneralizationCh is a query that gives the 

instance of Generalization whose name attribute of its general class and its specific class 

has the same values as the generalClassName and specificClassName attributes of 

GeneralizationCh, respectively. 

 

Figure 4.16 Generalization schema unit characterization object GeneralizationCh 

4.2.8 Generalization set schema unit 

Generic description 

A generalization set schema unit defines a particular set of generalization schema units 

that describe the way in which a general class schema unit may be divided using specific 

class schema units. The generalization set schema unit includes the disjunction and 

covering constraints. 

The DBLP example shown in Figure 4.1 has three generalization set schema units 

represented by instances of GeneralizationSet and named typeOfPublication, typeOfBook 

and typeOfAuthoredPublication. TypeOfPublication partitions Publication into EditedBook 

and AuthoredPublication; TypeOfBook partitions Book into EditedBook and AuthoredBook; 

and TypeOfAuthoredPublication partitions AuthoredPublication into AuthoredBook, 

BookChapter and JournalPaper. The three generalization sets are covering and disjoint. 

Abstract syntax  

Each generalization set is represented by an instance of GeneralizationSet. The schema 

elements of a generalization set that may be named gs are as follows: (1) the instance of 

GeneralizationSet ; (2) if it has a name, the instance of attribute name of  with value gs; 

(3) if the generalization set corresponds to a powertype extent, the instance of its 

relationship to an instance of Classifier (the powertype); (4) the instances of the two or 

more relationships between an instance of Generalization and ; and (5) the instances of 

attributes isCovering and isDisjoint of .  

Figure 4.17 shows the abstract syntax of a generalization set schema unit. All instances of 

GeneralizationSet are schema units. Therefore, the isSchemaUnit() query operation is not 

redefined in GeneralizationSet.  
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Figure 4.17 Generalization set schema unit 

The predecessors() operation of GeneralizationSet is specified as follows: 
context Generalization::predecessors():Set(Element) 
 body: Element.allInstances() -> select (el:Element| 

     el.oclIsTypeOf(Generalization) and  

     el.oclAsType(Generalization).generalizationSet -> 

      includes(self))) 

This means that the predecessors of a generalization set are the generalizations associated 

with such a generalization set. 

Characterization object 

For the generalization set schema unit characterization object GeneralizationSetCh (see 

Figure 4.18), the schemaUnit() operation is defined, formally, as follows: 
context GeneralizationSetCh::schemaUnit():GeneralizationSet 

 body: GeneralizationSet.allInstances() -> 

     any(gs:GeneralizationSet|  

     gs.name -> notEmpty() implies gs.name = self.name and  

     gs.powertype ->notEmpty() implies  

      gs.powertype.name = self.powertype and  

     gs.isCovering = self.isCovering and  

     gs.isDisjoint = self.isDisjoint and  

     gs.generalization -> collect(g:Generalization|  

     Tuple{gc:g.general.name, sp:g.specific.name}) ->asSet() =  

      self.participant -> collect(p:Participant|  

     Tuple{gc:p.generalClassName, sp:p.specificClassName}) -> 

       asSet())  

This means that the schemaUnit() operation of GeneralizationSetCh is a query that gives 

the instance of GeneralizationSet whose name attribute of its powertype is equal to the one 

given in the powertype attribute of GeneralizationSetCh; the isCovering and isDisjoint 

attributes have values equal to the isDisjoint and isCovering values of GeneralizationSetCh; 

and each of its generalizations has the values of the names of its general class and its 

specific class as the values of generalClassName and specificClassName of the participants 

of the GeneralizationSetCh, respectively.  
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Figure 4.18 Generalization set schema unit characterization object GeneralizationSetCh 

4.2.9 Constraint schema unit 

Generic description 

A constraint schema unit is a condition or restriction for the purpose of declaring some of 

the semantics of one or more schema units. UML has a few predefined static constraints 

with an associated graphic symbol. Cardinality, aggregation, composition, disjointness and 

covering constraints have already been included in other schema units. Therefore, a 

constraint schema unit is an XOR constraint or a constraint specified as invariant. An 

invariant is a constraint that is linked to a class schema unit. An invariant constraint 

consists of an OCL expression of type Boolean, which must be true for each instance of the 

class schema unit at any time.  

The DBLP example shown in Figure 4.1 has eight constraint schema units represented by 

instances of Constraint. One is the XOR constraint shown in the figure and the other seven 

are the ones specified as invariants in OCL. 

Abstract syntax 

Each constraint is represented by an instance of Constraint. The schema elements of a 

constraint that may be named co are as follows: (1) the instance  of Constraint; (2) if it 

has a name, the instance of attribute name of  with value co; (3) the instances of its 

relationship with the instances of Element (constrainedElement); (4) the instance of its 

relationship with an instance of Namespace (context); and either (a) an instance of 

Expression with the instance of its attribute symbol and the instance of its relationship with 

 (the specification); or (b) an instance of OpaqueExpression with the instances of its 

attributes body and language and the instance of its relationship with  (the specification). 

Figure 4.19 shows the abstract syntax of a constraint schema unit. All of the instances of 

Constraint are schema units. Therefore, the isSchemaUnit() query operation is not 

redefined in Constraint. However, the instances of Expression and OpaqueExpression are 

not schema units and the isSchemaUnit() query operation is specified as follows: 
context Expression::isSchemaUnit():Boolean 

body:  false  
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Figure 4.19 Constraint schema unit 

 

context OpaqueExpression::isSchemaUnit():Boolean 

body:  false 

The predecessors() operation of Constraint is specified as follows: 
context Constraint::predecessors():Set(Element) 
 body: Element.allInstances() -> select (el:Element| 

     (el.oclIsTypeOf(Namespace) and  

     el.oclAsType(Namespace).ownedRule ->includes(self))  

     or el.constraint -> includes(self)) 

This means that the predecessors of a constraint are the context of the constraint and the 

elements constrained by it. 

Characterization object 

 

Figure 4.20 Constraint schema unit characterization object ConstraintCh 

Figure 4.20 shows the constraint schema unit characterization object ConstraintCh, limited 

to the type of constraints found in the DBLP example. For the constraint schema unit 

characterization object ConstraintCh, the schemaUnit() operation is defined, formally, as 

follows: 
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context ConstraintCh::schemaUnit():Constraint 

 body: Constraint.allInstances() -> any(c:Constraint|  

     self.name ->notEmpty() implies  

      c.name = self.name and  

     self.namespace ->notEmpty() implies 

      c.context.name = self.namespace and  

     self.constrainedElement -> forAll( co| 

     if co.typeCon = TypeElement::Class then  

      c.constrainedElement.oclAsType(Class).name->includes( 

       co.name)  

     else  

      if co.type = TypeElement::property then 

       c.constrainedElement.oclAsType(Property). 

       name->includes(co.name)  

      else 

       c.constrainedElement->  

       collect(oclAsType(Association).name)->  

       includes(co.name) and  

       c.constrainedElement ->  

        collect(oclAsType(Association).memberEnd) ->  

        asSet() -> exists(me | co.membersName ->  

         includesAll(me.name)) and 

       c.constrainedElement ->  

        collect(oclAsType(Association).memberEnd.type) ->  

        asSet() -> exists(me | co.membersType ->  

         includesAll(me.name)) 

      endif 

     endif) and 

      self.symbolExpression -> notEmpty() implies 

       c.specification.oclAsType(Expression).symbol =  

      self.symbolExpression and 

      self.bodyOpaqueExpression -> notEmpty() implies 

       c.specification.oclAsType(OpaqueExpression).body =  

      self.bodyOpaqueExpression ) 

This means that the schemaUnit() operation of ConstraintCh is a query that gives the 

instance of Constraint whose name attribute is equal to the one given in the name attribute 

of ConstraintCh; the name attribute of the context has a value equal to the namespace 

attribute of ConstraintCh; each of its constrained elements has the name attribute that is 

the one given in the name of ConstrainedElement associated with ConstraintCh; and the 

symbol or body attributes of the specification of the constraint has the same value as the 

one given in the symbolExpression or bodyOpaqueExpression, respectively, of ConstraintCh.  

The complete specification in the USE tool of the UML metaschema can be found in 

Appendix A.  Appendix B shows a representative fragment of the instances defined in USE 

to specify the DBLP structural schema. The methods for creating schema units of the 

characterization objects are also provided in Appendix C. 





 

 
 

5 SBVR meanings metaschema  

Since the 1960s, many formal languages have been developed to allow software engineers 

to specify conceptual models. A few of these, such as UML (Rumbaugh, Jacobson and 

Booch 2004) and XML schema (Harold 2001), have become widely used standards. 

These languages have been designed for use by software engineers, whose ultimate goal is 

to design software artifacts. Consequently, they employ notations and concepts that are 

not readily understood by "domain experts" (e.g., healthcare experts, finance experts, 

transportation experts, business managers, etc.) who understand the actual problem 

domain and are responsible for finding the solutions to problems. 

Because of this, domain experts initiate discussions with software engineers to express 

their concerns and transcribe them into languages that only software engineers can read 

and write. Consequently, much of the business knowledge needed to operate an 

organization and deal with its environment is captured only in languages that business 

experts can neither read nor write. 

Moreover, businesses change constantly and new decisions must be made accordingly in 

the business environment. The process of incorporating new decisions into the operating 

software that supports the affected business functions is error-prone, partly because 

business experts cannot actually read what the software engineer has written and verify 

that is consistent with the intentions, and partly because although other business elements 

involved in the decision are captured in software engineering languages, the software 

engineer who encounters them may not be aware of their relevance to the decision at 

hand. 

For these reasons, OMG developed the Semantics of Business Vocabulary and Rules 

(SBVR) specification, which was published as an OMG Available Specification in February 

2008. This specification was the first step in providing standard support for the "business 

vocabulary management" and "business rules management" tools that have recently 

appeared in the marketplace. These tools capture the business concepts and business 

rules in languages that are close enough to ordinary language so that business experts can 

read and write them, and at the same time formal enough to capture the intended 
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semantics and present it in a form that is suitable for engineering the automation of rules. 

The specification provides a metamodel for the concepts used in capturing vocabulary and 

business rules. 

For various reasons, the SBVR specification did not include normative specification of a 

language to be used by business-people to express their vocabulary and rules, partly 

because some of the tool builders involved used proprietary "business languages" in their 

tooling. There was also disagreement about using English-like text versus texts similar to 

other natural languages or graphical representations.  

SBVR itself was written in "Structured English," a language that is defined in the 

specification, but is not normative and may not actually be supported by any tooling. 

Moreover, in June 2008, OMG submitted a request for a proposal to define at least one 

standard language in which business experts can express their vocabulary and rules 

(Object Management Group 2008b). For this reason, Chapter 7 of this thesis proposes a 

metamodel of this, non-normative SBVR Structured English language and provides a set of 

operations to derive the "Structured English representations" from SBVR meanings.  

The rest of this chapter is structured as follows: 

 Section 5.1 gives an overview of the meanings and the structure of some of the 

meanings described in the SBVR specification. 

 Section 5.2 defines, following the translation approach described in Chapter 3, the 

schema units of the SBVR metaschema, the precedence relationships between them 

and the characterization objects of such schema units.  

5.1 Overview of SBVR meanings 

The Object Management Group (OMG) published Semantics of Business Vocabulary and 

Business Rules (SBVR), v.1.0 (Object Management Group 2008a) as an Available 

Specification in February 2008. This document defines the vocabulary and rules for 

documenting the semantics of business vocabulary, business facts and business rules. The 

specification is applicable to the domain of business vocabularies and business rules for all 

kinds of business activities in all kinds of organizations. It is conceptualized optimally for 

business-people rather than for automated rules processing, and is designed to be used for 

business purposes, regardless of information system designs. 

SBVR was initially developed by the Business Rules Group (Object Management Group 

2004), which has been working exclusively in this area since the late 1980s. Key notions of 

the SBVR approach are presented succinctly in the BRG’s Business Rule Manifesto 

(Business Rule Group 2003).  

SBVR is based on the idea that the purpose of systems for the management of business 

vocabulary and rules is to capture and maintain the expression of business meanings. 

Meanings exist only in business decision makers, and SBVR divides such meanings into 

two categories (see Figure 5.1):  
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Figure 5.1 Fragment of the abstract syntax of the SBVR metamodel 

 Concepts: classifiers of things (noun concepts) and classifiers of states and actions 

(verb concepts or fact types).  

 Propositions: meanings of statements ("complete thoughts").  

For example, an instance of a noun concept may be represented by a designation or name 

as "edited book" or "person." Instances of fact types may be represented by fact type 

forms. For example, "editor has edited book" may represent an instance of an associative 

fact type between the "editor" and "edited book" fact type roles. SBVR also defines a 

number of more specialized categories of concept. Additional details about each category 

are given in the next section.  

A rule (also called element of guidance) is a proposition that guides the conduct of 

business. SBVR further divides the meaning of "rule" into the following subcategories:  

 Structural rules, which are statements of necessity, stating properties that are 

fundamental to the concepts involved. 

 Operational rules (not shown in Figure 5.1), which state intents and requirements 

for the business operation. 

 Pieces of advice (not shown in Figure 5.1), which state facts that clarify the scope of 

rules. 

SBVR includes constructs called semantic formulations that structure the meaning of rules 

or the definition of concepts. There are two kinds of semantic formulations: logical 

formulations and projections. Logical formulations are further specialized into logical 

operations, quantifications, atomic formulations based on fact types, and other 

formulations for special purposes, such as objectification. Logical formulations are 
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recursive. Several kinds of logical formulations embed other logical formulations, and 

some of them introduce logical variables (not shown in Figure 5.1).  

In SBVR, any rule is constructed by applying a modal operator (necessity, obligation, 

possibility and permissibility) to a logical formulation. Since obligation, possibility and 

permissibility formulations may not be represented in UML structural schemas, they have 

been left out of the scope of this thesis. 

For example, “It is necessary that each edited book has at least one editor” is a proposition 

based on a necessity formulation (structural rule), which is structured as follows: 

The structural rule embeds a universal quantification. 
 . The universal quantification introduces a first variable. 
 . . The first variable ranges over the concept "edited book." 
 . The universal quantification scopes over an existential quantification. 
 . . The existential quantification has a minimum cardinality of 1. 
 . . The existential quantification introduces a second variable. 
 . . . The second variable ranges over the concept "editor." 
 . . The existential quantification scopes over an atomic formulation. 
 . . . The atomic formulation is based on the fact type "edited book has editor." 
 . . . . The atomic formulation has a role binding. 
 . . . . . The role binding is of the role "edited book" of the fact type. 
 . . . . . The role binding binds to the first variable. 
 . . . .The atomic formulation has a second role binding. 
 . . . . . The second role binding is of the role "editor" of the fact type. 
 . . . . . The second role binding binds to the second variable. 

The indentation in the example shows a hierarchical structure in which a logical 

formulation at one level operates on, or quantifies over, one or more logical formulations 

at the next highest level. Each kind of logical formulation, including quantification and 

logical operations, can be embedded in another logical formulation at any depth and in 

almost any combination. Note also that each line in the example corresponds to an 

instance of an element of the SBVR metamodel.  

Figure 5.2 shows the same structural rule as an instance of the SBVR metamodel. Complete 

representations of structural rules as instances of the SBVR metamodel are quite 

cumbersome, as shown in Figure 5.2. Therefore, simplified versions of representations of 

rules, as shown in Figure 5.3, are used in the rest of the thesis.  

Figure 5.3, combines in a single tree node, the kind of SBVR instance and schema element 

referenced by the node. That is, a node representing an instance of Variable or 

FactTypeRole includes the name of the concept that it ranges over; a node representing an 

instance of a subtype of QuantificationFormulation includes the cardinality values; and a 

node representing an instance of AtomicFormulation includes the expression of the fact 

type that it is based on. Additional details of other elements are introduced when they 

arise.  
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Figure 5.2 Example of structural rule as an instance of the SBVR metamodel 

Figure 5.3 Simplified version of the structure of a structural rule 

In addition to logical formulation, SBVR specifies another type of structure of meanings 

(semantic formulation) called projection. Projections are used to formulate definitions of 

meanings. For example, a noun concept may be defined by the set of things (instances) 

that exist in the domain at any time. In the DBLP example, the object type "authored 

publication" can be defined as the disjunction of the object types named "authored book," 

"book chapter" and "journal paper."  

More details about the various types of concepts, structural rules and other types of 

semantic formulation are given in the next section. 

scopes over introduces 

UniversalQuantification 

Variable 
(edited book) 

ExistentialQuantification 
(minimumCardinality = 1) 

AtomicFormulation Variable 
(editor) 

Necessity: each edited book has at least 1 editor 

introduces scopes over 

AssociativeFactType 
(edited book has editor) 

based on 
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5.2 Schema units of the SBVR metaschema 

This section describes the subset of the SBVR metamodel that is necessary to describe 

conceptual schemas as a combination of concepts and facts as defined in SBVR. In order to 

translate the subset of UML described in Chapter 4 to SBVR, only the subset of SBVR that 

describes meanings (concepts and propositions) and semantics formulations is necessary. 

Based on the approach to translating MOF metaschemas described in Chapter 3, this 

chapter provides the definition of (i) schema units, (ii) the relation of precedence between 

them, and (iii) the objects that characterize such schema units (characterization objects).  

All elements concerning representations and business statements, rather than meanings, 

have been excluded from the SBVR meanings metamodel. Moreover, elements concerning 

meanings that have no equivalents in a UML conceptual schema have also been excluded: 

 Questions: meanings that are interrogatories. 

 Uniform Resource Identifiers (URI) vocabulary.  

 Modal logics different than modal formulations of necessity (i.e., operational rules 

and pieces of advice). 

As in the previous chapter, the fragment is described in terms of its schema units that is, 

its knowledge components.  

 

Figure 5.4 Definition of Meaning and its characterization object MeaningCh 

In this case, all SBVR metaclasses for which some instances are schema units are subtypes 

of the abstract metaclass Meaning. In order to define the schema units, Meaning includes 

two operations (isSchemaUnit() and predecessors()), as shown in Figure 5.4. 

The query operation isSchemaUnit() is defined formally as follows: 
context Meaning::isSchemaUnit():Boolean 

body:  false 

The query operation is redefined in all subtypes that are schema units and are not 

abstract. 

In the Meaning metaclass of Figure 5.4, the predecessors() operation is specified as follows: 
context Meaning::predecessors:Set(Meaning) 

 pre: isSchemaUnit() 

 body: Set{} 

This means that, by default, no schema units have predecessors. 

As explained in Chapter 3, characterization objects are used to characterize schema units. 

In the SBVR metaschema, there is a characterization object type for each subtype of 

Meaning such that some or all of its instances represent schema units. Each 
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characterization object type includes the set of attributes that characterize the schema 

unit and two operations: createUnit and schemaUnit. The former creates a schema unit 

from its characterization object, and the latter gives the schema unit corresponding to the 

characterization object. 

The specification of the createUnit operation is the same for all characterization object 

types, and therefore is specified in MeaningCh as follows: 
context MeaningCh::createUnit() 

 post: schemaUnit() -> notEmpty() 

The schemaUnit() operation is redefined in each subtype of MeaningCh. 

In an SBVR schema, the schema units are object types, individual concepts, value types, 

characteristics, associative fact types, is-property-of fact types, partitive fact types, 

categorization fact types, reference schemes and structural rules.  

The following subsections define each schema unit in terms of its schema elements. They 

provide, for each schema unit, a generic description of it, its abstract syntax, the 

specifications of the isSchemaUnit() and predecessors() operations used to define it, and its 

schema unit characterization object. 

5.2.1 Object type schema unit 

Generic description 

As stated in the previous section, SBVR describes two types of meanings: concepts and 

propositions. Concepts are further subdivided into noun concepts and fact types. Noun 

concepts are defined as classifiers of things. A subtype of a noun concept is an object type.  

In SBVR, an object type schema unit is defined as a noun concept that classifies things 

based on their common properties. The meaning of an object type is equivalent to the 

meaning of "entity type" in conceptual modeling. Olivé captures the essence of the 

meaning of entity type by providing the following definition: "An entity type is a concept 

whose instances at a given time are identifiable individual objects that are considered to 

exist in the domain at that time" (Olivé 2007).  

An object type schema unit may also include a definition that describes its meaning 

through constraints that satisfy a set of things. For example, the instances of Book may be 

defined as the union of the instances of EditedBook and AuthoredBook. In this case, the 

object type schema unit includes the elements needed to structure such a definition. 

However, in order to make this chapter easier to understand, definitions will not be 

included in object type schema units from this section to Section 5.2.8. Such definitions 

will be described in Section 5.2.9. 

The DBLP example, as an instance of the SBVR metaschema, includes 19 object type 

schema units: Person, Publication, Book, AuthoredPublication, EditedBook, AuthoredBook, 

BookChapter, JournalPaper, BookSection, BookSeriesIssue, BookSeries, JournalSection, 

JournalIssue, ConferenceEdition, ConferenceSeries, JournalVolume and Journal (those whose 

equivalent meaning in UML is represented by a class), as well as Authorship and Editorship 

(those whose equivalent meaning in UML is represented by an association class). 
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Abstract syntax 

Each object type is represented by an instance of ObjectType. The schema elements of an 

object type named o are as follows: (1) the instance  of ObjectType; and (2) the instance of 

attribute name of  with value o.  

Figure 5.5 shows the abstract syntax of the object type schema unit and the value type 

schema unit (described in the next section). The isSchemaUnit() query operation is 

redefined as follows:  
context ObjectType::isSchemaUnit():Boolean 

body:  true 

This means that all instances of ObjectType are schema units. In constrast, here, object 

type has no predecessors. The operation predecessors is specified in Section 5.2.9, when 

projections are introduced. 

 

Figure 5.5 Object type schema unit 

Characterization object 

Figure 5.6 shows the characterization object for the object type and value type schema 

unit NounConceptCh. 

The schemaUnit() operation is formally defined, as follows: 
context NounConceptCh::schemaUnit():NounConcept 

 body:  NounConcept.allInstances() -> any(c:NounConcept|  

     c.name = self.name and  

     if isValueType then c.oclIsTypeOf(ValueType)  

     else c.oclIsTypeOf(ObjectType) endif) 

This means that the schemaUnit() operation of NounConceptCh is a query that gives the 

instance of ObjectType or ValueType (depending on the isValueType attribute of 

NounConceptCh) whose attribute name has the same value as the one given in the attribute 

name of NounConceptCh.  
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Figure 5.6 Object type and value type schema unit characterization object NounConceptCh 

5.2.2 Value type schema unit 

Generic description 

SBVR does not distinguish between entity types and lexical entity types (entity types 

whose instances are words). However, this distinction is necessary in order to consistently 

translate UML data types to SBVR and vice versa. Therefore, ValueType, a special subtype 

of NounConcept not included in the SBVR specification has been created. Note that the 

name "value type"  has been taken from Object-Role Modeling (ORM) (Halpin, 2008), a 

fact-oriented language defined by one of the authors of SBVR.  

A value type schema unit is defined as a noun concept whose instances are words in the 

language used in the domain.  

As an instance of the SBVR metaschema, the DBLP example includes four value type 

schema units: one named "string" and whose meaning is equivalent to the meaning of the 

String PrimitiveType of UML; one named "natural" and whose meaning is equivalent to the 

meaning of the Natural data type of UML; one named "date" and whose meaning is 

equivalent to the data type named Date of UML; and one named "gender" whose meaning 

is equivalent to the Gender enumeration of UML.   

Abstract syntax 

Each value type is represented by an instance of ValueType. The schema elements of a 

value type named v are as follows: (1) the instance  of ValueType; and (2) the instance of 

attribute name of  with value v.  

Figure 5.7 shows the abstract syntax of the value type schema unit. The isSchemaUnit() 

query operation was defined in the previous section. 

Characterization object 

Figure 5.6 showed the characterization object of each value type schema unit. The 

schemaUnit() operation was defined in the previous section and the predecessors() 

operation will be defined in Section 5.2.9. 
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Figure 5.7 Value type schema unit. 

5.2.3 Individual concept schema unit 

Generic description 

"Individual concept" is a special type of noun concept. In SBVR, it is a noun concept that 

corresponds to only one object. For example, in DBLP, the individual concept Female 

corresponds to a noun concept whose one instance is the individual gender of women.  

The SBVR document defines an individual concept as a noun concept, but its use is 

confused with "instance" throughout the document. For example, the definition of 

instantiation formulation, which is used to bind an instance of a concept with the concept, 

includes as an example the binding of an individual concept (rather than its instance) with 

a concept.   

To avoid further confusion, this thesis considers that an individual concept is a noun 

concept and that the instantiation formulation binds instances of concepts to concepts.  

Abstract syntax 

Each individual concept is represented by an instance of IndividualConcept. The schema 

elements of an individual concept named in are as follows: (1) the instance  of 

IndividualConcept; and (2) the instance of attribute name of  with value in.  

Figure 5.8 shows the abstract syntax of the individual concept schema unit. The 

isSchemaUnit() query operation is redefined as follows: 
context IndividualConcept::isSchemaUnit():Boolean 

body:  true 

This means that all instances of IndividualConcept are schema units. Additionally, the 

individual concept schema unit has no predecessors. 
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Figure 5.8 Individual concept schema unit 

Characterization object 

Figure 5.9 shows the individual concept characterization object IndividualConceptCh. 

 

Figure 5.9 Individual concept schema unit characterization object IndividualConceptCh 

The schemaUnit() operation is formally defined as follows: 
context IndividualConceptCh::schemaUnit():IndividualConcept 

 body:  IndividualConcept.allInstances() ->  

      any(c:IndividualConcept| c.name = self.name) 

This means that the schemaUnit() operation of IndividualConceptCh is a query that gives 

the instance of IndividualConcept whose attribute name has the same value as the one 

given in the attribute name of IndividualConceptCh. 

5.2.4 Characteristic schema unit 

Generic description 

As stated above, concepts are subdivided into noun concepts and fact types. A fact type 

(also called verb concept) is a concept that is the meaning of a verb involving one or more 

noun concepts (fact type roles). An instance of a fact type is an event, activity, situation or 

circumstance that occurs in the actual domain, and for each role of the fact type there is an 

instance of said role involved in the instance of the fact type. Each fact type has at least one 

role. Depending on the number of roles participating in a fact type (arity of the fact type), a 
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fact type is further divided into characteristic, binary fact type or n-ary fact type where n > 

2.  

A characteristic or unary fact type schema unit is a fact type that has exactly one role. The 

DBLP example, as an instance of the SBVR metaschema, includes two characteristic 

schema units. The first one has a fact type role that ranges over the object type named 

BookChapter and is named "being ConferencePaper." The second characteristic is a fact 

type role that ranges over the object type named JournalPaper and is also named "being 

ConferencePaper." "Book chapter being conference paper" and "journal paper being 

conference paper" represent the facts that a book chapter is a conference paper or a 

journal paper is a conference paper, respectively. 

Abstract syntax 

  

Figure 5.10 Characteristic schema unit 

Each characteristic is represented by an instance of Characteristic. The schema elements of 

a characteristic named ch are as follows: (1) the instance of  of Characteristic; (2) the 

instance of attribute name of  with value as; (3) the instance of FactTypeRole that is a role 

of ; (4) if the FactTypeRole has a name, the instance of the attribute name with its value; 

(5) the instance of the relationship of the FactTypeRole to the NounConcept concept that 

the role ranges over; and (6) the instance of the relationship of the FactTypeRole with . 

Figure 5.10 shows the abstract syntax of the characteristic schema unit. The 

isSchemaUnit() query operation is redefined in Characteristic as follows: 
context Characteristic::isSchemaUnit():Boolean 

body:  true 

The predecessors() operation of Characteristic is specified as follows: 
context Characteristic::predecessors():Set(NounConcept)  
 body: self.factTypeRole -> collect(nounConcept) -> asSet() 
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This means that the predecessor of a characteristic is the noun concept that the fact type 

role of the characteristic ranges over. 

Characterization object 

 

Figure 5.11 Characteristic schema unit characterization object CharacteristicCh 

For the characteristic characterization object CharacteristicCh (see Figure 5.11), the 

schema unit operation is formally defined as follows:  
context CharacteristicCh::schemaUnit():Characteristic 

 body: Characteristic.allInstances() -> any(ch:Characteristic |  

     ch.name = self.verb and ch.factTypeRole -> collect(ft| 

      Tuple{n:ft.name,c:ft.nounConcept.name}) =  

      Tuple{n:self.roleName, c:self.rangesOverConcept} ) 

This means that the schemaUnit() operation of CharacteristicCh is a query that gives the 

instance of a Characteristic whose attribute name has the same value as the one given in 

the attribute verb of CharacteristicCh; the name attribute of its factTypeRole and the name 

of the concept which its factTypeRole ranges over have the same values as the ones given 

in the attribute roleName and rangesOver of Characteristic. 

5.2.5 Associative and categorization fact type schema units 

Generic description 

Fact types with more than one role are classified, based on the semantic nature of the fact 

type, into associative fact type or specialization fact type.  

An associative fact type is a fact type that has more than one role, for which there is a non-

hierarchical relationship among the participants involved in the fact type. Additionally, 

there are two particular kinds of binary associative fact types: partitive fact types and is-

property-of fact types. A partitive fact type is a binary associative fact type that means that 

a given part (i.e., the instance of the concept that plays one of the roles in the fact type) is 

in the composition of a whole (i.e., the instance of the concept that plays the other role in 

the fact type). An is-property-of fact type means that the instance of the concept that plays 

the first role in the fact type constitutes an essential quality of the instance of the concept 

that plays the second role in the fact type.  

A specialization fact type indicates hierarchical relationships among concepts and is futher 

divided, in SBVR, as a categorization fact type and a contextualization fact type. A 
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categorization fact type indicates that the instance of the concept that plays the first role in 

the fact type is also an instance of the concept that plays the second role in the fact type 

(i.e., the category). A contextualized fact type means a hierarchical relationship from a 

particular perspective or viewpoint or in a certain situation. The semantics of 

contextualized fact types is not covered explicitly in UML. Therefore, for the purpose of 

this thesis, only categorization fact types have been considered. 

The DBLP example, as an instance of the SBVR metaschema, includes 12 associative fact 

type schema units that may be expressed in ordinary language as follows:  

"author has authored publication,"  
"book chapter is part of book section,"  
"book chapter is part of book series issue,"  
"book chapter is part of edited book,"  
"conference edition is published in book series issue,"  
"conference edition is published in edited book,"  
"conference edition is published in journal issue,"  
"book section is part of edited book,"  
"editor has edited book,"  
"journal paper is part of journal issue,"  
"journal paper is part of journal section,"  
"person publishes publication."  

 DBLP includes five partitive fact type schema units expressed in natural language as follows: 

"book series includes book series issue," 
"conference series includes conference edition,"  
"journal includes journal volume," 
"journal issue includes journal section,"  
"journal volume includes journal issue." 

It also includes nine categorization fact type schema units that may be expressed in 

ordinary language as follows: 

"book is a category of publication," 
"edited bok is a category of publication," 
"authored publication is a category of publication," 
"edited book is a category of book," 
"authored book is a category of book," 
"authored book is a category of authored publication," 
"book chapter is a category of authored publication," 
"jounral paper is a category of authored publication," 
"book series issue is a category of book." 

Finally, DBLP includes 29 is-property-of fact type schema units that may represented in 

ordinary language as follows: 

"authorship has order," 
"book has home page," 
"book has isbn," 
"book has num pages," 
"book has publication year," 
"book has publisher," 
"book chapter has end page," 
"book chapter has ini page," 
"book section has order,"  
"book section has title,"  
"book series has id,"  
"book series has publisher,"  
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"book series issue has number,"  
"conference edition has city,"  
"conference edition has country,"  
"conference edition has home page,"  
"conference edition has title,"  
"conference edition has year,"  
"conference series has acronym,"  
"conference series has name,"  
"editorship has order,"  
"journal has issn,"  
"journal has title,"  
"journal issue has month,"  
"journal issue has num pages,"  
"journal issue has number,"  
"journal issue has year,"  
"journal paper has end page,"  
"journal paper has ini page,"  
"journal section has order,"  
"journal section has title,"  
"journal volume has volume,"  
"person has gender,"  
"person has home page,"  
"person has name,"  
"person has num publications,"  
"publication has edition,"  
"publication has title,"  
"publication has year."  

Abstract syntax 

Each associative fact type that is neither an is-property-of fact type nor a partitive fact 

type is represented by an instance of AssociativeFactType. The schema elements of an 

associative fact type named as are as follows: (1) the instance  of AssociativeFactType; (2) 

the instance of attribute name of  with value as; (3) the ordered instances of FactTypeRole 

that are roles of ; and (4) for each of these fact type roles: (a) the instance of its attribute 

name with its value (if it has a name); (b) the instance of its relationship to the 

NounConcept concept that the role ranges over; and (c) the instance of its relationship 

with  in a given order. 

Each is-property-of fact type is represented by an instance of IsPropertyOfFactType. The 

schema elements of an is-property-of fact type named is are as follows: (1) the instance  

of IsPropertyOfFactType; (2) the instance of attribute name of  with value is; (3) the 

ordered  instances of FactTypeRole that are roles of ; and (4) for each of these fact type 

roles: (a) the instance of its attribute name with its value (if it has a name); (b) the 

instance of its relationship to the NounConcept concept that the role ranges over; and (c) 

the instance of its relationship with  in a given order. 

Each partitive fact type is represented by an  instance of PartitiveFactType. The schema 

elements of a partitive fact type named pa are as follows: (1) the instance  of 

PartitiveFactType; (2) the instance of attribute name of  with value pa; (3) the ordered 

instances of FactTypeRole that are roles of ; and (4) for each of these fact type roles: (a) 

the instance of its attribute name with its value (if it has a name); (b) the instance of its 
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relationship to the NounConcept concept that the role scopes over; and (c) the instance of 

its relationship with  in a given order. 

Each categorization fact type is represented by an  instance of CategorizationFactType. The 

schema elements of a categorization fact type named ca are as follows: (1) the instance  of 

CategorizationFactType; (2) the instance of attribute name of  with value ca; (3) the 

ordered instances of FactTypeRole that are roles of ; and (4) for each of these fact type 

roles: (a) the instance of its attribute name with its value (if it has a name); (b) the 

instance of it relationship to the NounConcept concept that the role scopes over; and (c) 

the instance of its relationship with  in a given order. 

 

Figure 5.12 Associative and categorization fact type schema units 

Figure 5.12 shows the abstract syntax of associative and categorization fact type schema 

units. The isSchemaUnit() query operation of AssociativeFactType and 

CategorizationFactType are redefined as follows: 
context AssociativeFactType::isSchemaUnit():Boolean 

body:  true 

 

context CategorizationFactType::isSchemaUnit():Boolean 

body:  true 

The predecessors() operations of AssociativeFactType and CategorizationFactType are 

specified as follows: 
context AssociativeFactType::predecessors():Set(NounConcept)  
 body: self.factTypeRole -> collect(nounConcept) -> asSet() 

 

context CategorizationFactType::predecessors():Set(NounConcept)  
 body: self.factTypeRole -> collect(nounConcept) -> asSet() 

This means that the predecessors of an associative or categorization fact type are the noun 

concepts that the fact type roles of the fact type range over. 
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Characterization object 

 

Figure 5.13 Fact type schema unit characterization object FactTypeCh 

Figure 5.13 shows FactTypeCh, the characterization object of the associative fact type, is-

property-of fact type, partitive fact type and categorization fact type schema units. The 

schemaUnit() operation is formally defined as follows: 
context FactTypeCh::schemaUnit():FactType 

 body: FactType.allInstances() -> any(ft:FactType |  

      ft.name = self.name and 

      self.type = FactTypeType::Associative implies  

       ft.oclIsTypeOf(AssociativeFactType) and 

      self.type = FactTypeType::IsPropertyOf implies  

       ft.oclIsTypeOf(IsPropertyOfFactType) and 

      self.type = FactTypeType::Partitive implies  

       ft.oclIsTypeOf(PartitiveFactType) and 

      self.type = FactTypeType::Categorization implies  

       ft.oclIsTypeOf(CategorizationFactType) and 

      ft.factTypeRole -> collect(ft|  

       Tuple{n:ft.name,c:ft.nounConcept.name}) =  

      self.roleOfFactType -> collect(rf|  

       Tuple{n:rf.name, c:rf.rangesOverConcept}))  

This means that the schemaUnit() operation of FactTypeCh is a query that gives the 

instance of a FactType that is of the subtype indicated in the type attribute of FactTypeCh, 

whose attribute name has the same value as the one given in the attribute name of 

FactTypeCh; it has the factTypeRoles whose name and the name of the concept which it 

ranges over are the same as the ones given in the attribute name and rangesOver of 

RoleOfFactType. 

5.2.6 Categorization scheme and segmentation schema units 

Generic description 

SBVR defines a particular kind of object type, called categorization scheme, for partitioning 

things in the categorization fact type dimension. The extension (set of instances) of a given 

general concept is partitioned into the extensions of the categories of said general concept. 

Moreover, a segmentation is a particular kind of categorization scheme whose contained 

category or categories are complete (total) and disjoint with respect to the general 

concept that has the categorization scheme. 
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The DBLP example, as an instance of the SBVR metaschema, includes three segmentations, 

named "type of publication," "type of book" and "type of authored publication," which 

partition the concepts named "publication," "book" and "authored publication," 

respectively.  

The segmentation "type of publication" for "publication" contains the categories named 

"edited book" and "authored publication."  

The segmentation "type of book" for "book" contains the categories named "edited book" 

and "authored book."  

The segmentation "type of authored publication" for "authored publication" contains the 

categories named "authored book," "book chapter" and "journal paper."  

Abstract syntax  

 

Figure 5.14 Categorization scheme and segmentation schema unit 

Each categorization scheme or segmentation is represented by an instance of 

CategorizationScheme or Segmentation, respectively. The schema elements of a 

categorization scheme named cs are as follows: (1) the instance  of CategorizationScheme 

or Segmentation; (2) the instance of attribute name of  with value cs; (3) the instance of 

the relationship to ObjectType (the general concept); and (4) the instances of the 

relationships to Concept (the categories).  

Figure 5.14 shows the abstract syntax of the categorization scheme and segmentation 

schema units. The isSchemaUnit() query operation is specified in CategorizationScheme as 

follows: 
context CategorizationScheme::isSchemaUnit():Boolean 

body:  true 
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The predecessors() operation of CategorizationScheme is specified as follows: 
context CategorizationScheme::predecessors():Set(Concept) 
 body: Concept.allInstances() -> select(c: Concept|  

     self.category -> includes(c) or  

     self.generalConcept ->  

      includes(c.oclAsType(ObjectType))) 

This means that the predecessors of a categorization scheme (and a segmentation) are the 

general concepts and the categories that define the categorization scheme. 

Characterization object 

 

Figure 5.15 Categorization scheme and segmentation schema unit characterization object 
CategorizationSchemeCh 

For the categorization scheme and segmentation schema units characterization object 

CategorizationSchemeCh (see Figure 5.15), the schemaUnit() operation is formally defined 

as follows: 
context CategorizationSchemeCh::schemaUnit(): 

     CategorizationScheme 

 body: CategorizationScheme.allInstances() -> 

     any(ct:CategorizationScheme| ct.name = self.name and  

     self.isSegmentation implies  

      ct.oclIsTypeOf(Segmentation) and 

     ct.generalConcept -> any(name) = self.generalConcept  

     and ct.category -> collect(name) = self.category) 

This means that the schemaUnit() operation of CategorizationSchemeCh is a query that 

gives the instance of CategorizationScheme or Segmentation whose attribute name has the 

same value as the one given in the attribute name of CategorizationSchemeCh or 

Segmentation, respectively; it is associated with the general concepts (ObjectType(s)) and 

categories (Concept(s)) whose name attributes have the same values as the ones given in 

the attributes generalConcept and category of CategorizationSchemeCh. 

5.2.7 Reference scheme schema unit 

Generic description 

A reference scheme schema unit is a particular form of business rule (constraint). For a 

given concept, a reference scheme identifies one or more properties (fact type roles or 

characteristics) of the corresponding objects (instances of the given concept) used to 

distinguish one instance from another. A reference scheme applies to all instances of the 
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concept. More than one reference scheme can be used simultaneously for instances of the 

same concept. Some concepts have no agreed-upon reference scheme. 

The DBLP example, as an instance of the SBVR metaschema, includes seven reference 

schemes to indicate the following constraints: name identifies person, isbn identifies book, 

id identifies book series, issn identifies journal, title identifies journal, name identifies 

conference series and title identifies conference edition.  

Abstract syntax 

 

Figure 5.16 Reference scheme schema unit 

Each reference scheme is represented by an instance of ReferenceScheme. The schema 

elements of a reference scheme that may be named re are as follows: (1) the instance  of 

ReferenceScheme; (2) if it has a name, the instance of attribute name with value re; (3) the 

instances of its relationships with the Concept(s) that can be identified using this reference 

scheme; (4) the instances of its relationships to the FactTypeRole(s) that the reference 

scheme simply uses; and (5) the instances of its relationship to the Characteristic(s) that 

are identifying characteristic(s).  

Figure 5.16 shows the abstract syntax of the reference scheme schema unit. The 

isSchemaUnit() query operation is redefined as follows: 
context ReferenceScheme::isSchemaUnit():Boolean 

body:  true 

The predecessors() operation of ReferenceScheme is specified as follows: 
context ReferenceScheme::predecessors():Set(FactType) 
 body: self.factTypeRole.factType->union( 

     self.identifyingCharacteristic.factType 

This means that the predecessors of a reference scheme are the fact types in which the fact 

type roles and the identifying characteristics are the properties used by the reference 

scheme. 
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Characterization object 

Figure 5.17 shows the reference scheme schema unit characterization object 

ReferenceSchemeCh. 

 

Figure 5.17 Reference scheme schema unit characterization object ReferenceSchemeCh 

For the reference scheme schema unit characterization object ReferenceSchemeCh, the 

schemaUnit() operation is formally defined as follows: 
context ReferenceSchemeCh::schemaUnit():ReferenceScheme 

 body: ReferenceScheme.allInstances() -> 

     any(r:ReferenceScheme|  

     r.referencedConcept -> collect(name) =  

     self.referencedConcept and  

     r.identifyingCharacteristic -> collect(name) =  

     self.identifyingCharacteristic and 

     self.usedRoleOfFactType -> notEmpty() implies 

     (r.factTypeRole -> collect(nounConcept.name) =  

     self.usedRoleOfFactType-> 

      collect(s|s.rangesOverConcept) and 

     self.usedRoleOfFactType -> forAll(ro|  

      ro.name -> notEmpty() implies  

      r.factTypeRole.name -> includes(ro.name)))) 

This means that the schemaUnit() operation of ReferenceSchemeCh is a query that gives the 

instance of ReferenceScheme which identifies the Concept(s) whose name attribute has the 

value of the identifiedConcepts attribute of ReferenceSchemeCh; which uses the 

Characteristic(s) whose name attribute has the value of the usedCharacteristic attribute of 

ReferenceSchemeCh; which uses the FacTypeRoles whose name and the name of the 

concept that it ranges over have the same values as the ones given in the name and 

rangedOverConcept of the UsedFactType(s). 

5.2.8 Structural rule schema unit 

Generic description 

As stated in Section 5.1, structural rules are statements of necessity that state the 

conditions that must be satisfied by the concepts involved. Structural rules are structured 

by necessity logical formulations. In SBVR, a necessity logical formulation is a logical 

formulation that formulates the meaning that another formulation (embedded 

formulation) is always true. The various kinds of modal formulation are not covered in 

UML structural schemas. In a UML structural schema, all constraints describe conditions 
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that must be satisfied in the domain. Therefore, the distinction between the various types 

of modal formulations has been omitted. All logical formulations have been considered 

necessity formulations. 

The particular kinds of logical formulation considered are the following:  

 Atomic formulation (Figure 5.24 shows its abstract syntax). This is a logical 

formulation that is based on a fact type and has a role binding for each role of the 

fact type. Each role binding of the atomic formulation is a connection between one of 

the fact type roles of the fact type and a bindable target (a variable, expression or 

individual concept). The atomic formulation formulates the following meaning: 

there is an event, activity, situation or circumstance that occurs in the actual world 

that puts each referent of each role binding in its respective fact type role. Section 

5.1 showed an example of atomic formulation. 

 Instantiation formulation (Figure 5.25 shows its abstract syntax). This is a logical 

formulation that considers a concept and binds to a bindable target, and that 

formulates the following meaning: the thing to which the bindable target refers is an 

instance of the concept. 

 Logical operation (Figure 5.26 shows its abstract syntax). This is a logical 

formulation that operates on logical operands, which in turn are also logical 

formulations. Logical operations are further classified into logical negation and 

binary logical operation. 

o A logical negation has exactly one operand and formulates that the 

meaning of the logical operand is false. 

o A binary logical operation has exactly two operands and is further 

classified into: 

 Conjunction. This formulates that the meanings of both logical 

operands are true. 

 Disjunction. This formulates that the meaning of at least one of the 

operands is true. 

 Equivalence. This formulates that the meanings of its logical 

operands are either all true or all false. 

 Exclusive disjunction. This formulates that the meaning of one 

logical operand is true and the meaning of the other logical 

operand is false. 

 Implication. This operates on an antecedent (first logical operand) 

and a consequent (second logical operand) and formulates that the 

meaning of the consequent is true if the meaning of the antecedent 

is true. 
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 Nand formulation. This formulates that the meaning of at least one 

of its logical operands is false. 

 Nor formulation. This formulates that the meaning of each of its 

logical operands is false. 

 Whether-or-not formulation. This operates on a consequent (first 

logical operand) and an inconsequent (second logical operand) and 

formulates that the meaning of the consequent is true regardless of 

the meaning of the inconsequent. 

 Quantification (Figure 5.27 shows its abstract syntax). This is a logical formulation 

that introduces a variable (a reference to an element of a set, whose referent may 

vary). A variable may range over a concept, which means that the set of referents of 

the variable (the possible values that it may take) is limited to the instances of said 

concept. Additionally, a logical formulation may restrict a variable, which means that 

the set of referents of the variable is further limited to those things for which the 

meaning formulated by that logical formulation is true when the thing is substituted 

for each occurrence of the variable in the formulation. A quantification may scope 

over another logical formulation. Quantifications are further classified into different 

kinds of quantification, and the following are the meanings of each particular kind: 

o Universal quantification. This is a quantification that scopes over another 

logical formulation and has the following meaning: for each referent of the 

variable introduced by the quantification, the meaning formulated by the 

logical formulation for the referent is true. 

o At-least-n quantification. This is a quantification that has a minimum 

cardinality and has the following meaning: the number of distinct referents 

of the variable introduced by the quantification that exist and that satisfy a 

scope formulation, if there is one, is no less than the minimum cardinality. 

For example "each tennis match has a least two sets." Existential 

quantification, a particular kind of at-least-n quantification, has a minimum 

cardinality of 1. 

o At-most-n quantification. This is a quantification that has a maximum 

cardinality and has the following meaning: the number of distinct referents 

of the variable introduced by the quantification that exist and that satisfy a 

scope formulation, if there is one, is no greater than the maximum 

cardinality. At-most-one quantification, a particular kind of at-most-n 

quantification, has a maximum cardinality of 1. 

o Exactly-n quantification. This is a quantification that has a cardinality and 

has the following meaning: the number of distinct referents of the variable 

introduced by the quantification that exist and that satisfy a scope 

formulation, if there is one, equals the cardinality. Exactly-one 
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quantification, a particular kind of exactly-n quantification, has the 

cardinality of 1. 

o Numeric range quantification. This is a quantification that has a minimum 

cardinality and a maximum cardinality greater than the minimum 

cardinality and has the following meaning: the number of referents of the 

variable introduced by the quantification that exist and that satisfy a scope 

formulation, if there is one, is not less that the minimum cardinality and is 

not greater than the maximum cardinality.  

 Objectification (Figure 5.28 shows its abstract syntax). This is a logical formulation 

that involves a bindable target (i.e., a variable, expression or individual concept) and 

a considered logical formulation, and that formulates the following meaning: the 

thing to which the bindable target refers is an event, activity, situation or 

circumstance that occurs in the actual world that corresponds to the meaning of the 

considered logical formulation. This thesis only uses the objectification formulation 

to nominalize fact types.  

The DBLP example, as an instance of the SBVR metaschema, includes 73 structural rule 

schema units.  

Of these 73 structural rules, 45 are structured by a closed universal quantification that 

scopes over an exactly-one quantification. The exactly-one quantification scopes over an 

atomic formulation based on one of the is-property-of, associative or partitive fact types 

described above (Section 5.2.5). An example is shown in Figure 5.18. 

Figure 5.18 Simplified version of the structure of the "each authorship has exactly one order" 
structural rule 

In UML, the meanings of these rules are represented by cardinality constraints of 

attributes (i.e., no graphical symbol is shown in the diagram) or member ends of 

association (i.e., a multiplicity symbol, 1, is shown in the diagram). They can be 

represented in ordinary language as follows: 

"each authorship has exactly one order," 
"each book has exactly one isbn," 
"each book has exactly one num pages,"  
"each book has exactly one publication year," 

ClosedUniversalQuantification 

Variable 
(authorship) 

ExactlyOneQuantification 
(cardinality = 1) 

AtomicFormulation Variable 
(order) 

scopes over 

scopes over 

introduces 

introduces 

IsPropertyOfFactType 
(authorship has order) 

based on 
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"each book has exactly one publisher,"  
"each book chapter has exactly one end page,"  
"each book chapter has exactly one ini page,"  
"each book section has exactly one order," 
"each book section has exactly one title," 
"each book series has exactly one id," 
"each book series has exactly one publisher," 
"each book series issue has exactly one book series," 
"each book series issue has exactly one number," 
"each conference edition has exactly one city," 
"each conference edition has exactly one country,"  
"each conference edition has exactly one title," 
"each conference edition has exactly one year," 
"each book section has at least one book chapter,"  
"each authored publication has at least one author,"  
"each book series issue has at least one book chapter,"  
"each edited book has at least one book chapter," 
"each conference series has exactly one acronym,"  
"each conference series has exactly one name," 
"each conference edition has exactly one conference series," 
"each journal issue has exactly one num pages," 
"each journal issue has exactly one number," 
"each journal issue has exactly one year," 
"each journal section has exactly one journal issue," 
"each journal paper has exactly one end page," 
"each journal paper has exactly one ini page," 
"each editorship has exactly one order," 
"each journal has exactly one issn," 
"each journal has exactly one title," 
"each journal volume has exactly one journal," 
"each journal section has exactly one order," 
"each journal section has exactly one title," 
"each journal volume has exactly one volume," 
"each journal issue has exactly one journal volume," 
"each person has exactly one gender," 
"each person has exactly one name," 
"each publication has exactly one edition," 
"each publication has exactly one title," 
"each publication has exactly one year," 
"each person has exactly one num publications," 
"each journal paper is part of exactly one journal issue," 

Of the 73 structural rules, 14 are structured by a closed universal quantification that 

scopes over an at-most-one quantification. The at-most-one quantification scopes over an 

atomic formulation based on one of the is-property-of, associative or partitive fact types 

described above (Section 5.2.5). The difference between these rules and those described 

above is that the closed universal quantification scopes over an at-most-one quantification 

instead of an exactly-one quantification. The rest of the structure is the same. In UML, the 

meanings of these rules are represented by a multiplicity symbol at one member end of 

the association (1..*). They can be represented in ordinary language as follows: 

"each book has at most one home page,"  
"each book chapter is part of at most one book section," 
"each book chapter is part of at most one book series issue,"  
"each book chapter is part of at most one edited book,"  
"each book section is part of at most one edited book,"  
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"each conference edition has at most one home page," 
"each book series issue has at most one conference edition," 
"each conference edition is published in at most one book series issue," 
"each conference edition is published in at most one edited book," 
"each edited book has at most one conference edition," 
"each conference edition is published in at most one journal issue," 
"each journal issue has at most one conference edition," 
"each journal issue has at most one month," 
"each person has at most one home page." 

Of the 73 structural rules, six are structured by a closed universal quantification that 

scopes over an existential quantification. The existential quantification scopes over an 

atomic formulation based on one of the associative fact types described above (Section 

5.2.5). Now, the closed universal quantification scopes over an existential quantification. 

In UML, the meanings of these rules are represented by a multiplicity symbol of an 

attribute ([0..1]) or a multiplicity symbol of a member end of an association (0..1). They 

can be represented in ordinary language as follows: 

"each edited book has at least one editor," 
"each journal issue has at least one journal paper," 
"each journal paper is part of at most one journal section," 
"each journal section has at least one journal paper," 
"each person publishes at least one publication," 
"each publication has at least one person." 

The 65 structural rules mentioned above correspond to cardinality constraints. They all 

have a similar structure; the only difference among them is the kind of quantification that 

the closed universal quantification scopes over.  

Figure 5.19 Simplified version of the structure of the "each book is an edited book or is an 
authored book but not both" structural rule 

Of the 73 structural rules, two are structured by a closed universal quantification that 

scopes over an exclusive-disjunction binary logical operation. Each operand of the 

exclusive-disjunction is an atomic formulation that scopes over a categorization fact type. 

Figure 5.19 shows the simplified version of the "each book is an edited book or is an 

authored book but not both" structural rule. 
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In UML, the meaning of both rules is represented by the {disjoint,complete} symbol of a 

generalization set with two generalizations. They can be represented in ordinary language 

as follows: 

"each book is a edited book or is a authored book but not both,"  
"each publication is a edited book or is a authored publication but not both."  

Of the 73 structural rules, one is structured by a closed universal quantification that 

scopes over a disjunction binary logical operation. Its first operand is an atomic 

formulation based on a categorization fact type; its second operand is a disjunction binary 

logical operations whose operands are atomic formulations, each based on a different 

categorization fact type. In UML, the meaning of this constraint is represented by the 

{complete} symbol of a generalization set with three generalizations. It can be represented 

in ordinary language as follows: 

"each book is an authored book or a book chapter or a journal paper." 

Figure 5.20 shows the simplified version of the structure of such a rule. 

Figure 5.20 Simplified version of the structure of  the "each book is an authored book or a book 
chapter or a journal paper" structural rule 

Of the 73 structural rules, two are structured by a closed universal quantification that 

introduces a variable restricted by an atomic formulation. This atomic formulation is 

based on a categorization fact type. The closed universal quantification scopes over a nor 

logical operation. Both operands of the nor logical operation are atomic formulations 

based on categorization fact types. In UML, the meaning of these two rules, together, is 

represented by the {disjoint} symbol of a generalization set with three generalizations. It 

can be represented in natural language as follows: 

"each authored publication that is an authored book is neither a book chapter nor a journal paper," 
"each authored publication that is a book chapter is neither an authored book nor a journal paper."  
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Figure 5.21 shows the simplified version of the structure of the first rule. 

Figure 5.21 Simplified version of the structure of "each authored publication that is an authored 
book neither is a book chapter nor a journal paper" structural rule 

Of the 73 structural rules, three are structured by a closed universal quantification that 

introduces a variable restricted by an atomic formulation. This atomic formulation is 

based on an associative fact type. The closed universal quantification scopes over a nor 

formulation logical operation. Both operands of the exclusive-disjunction binary logical 

operation are atomic formulations based on associative fact types. In UML, the meaning of 

these three rules, together, is represented by the {XOR} symbol between three 

associations. This can be represented in natural language as follows: 

"each conference edition that is published in a book series issue is published neither in an edited 
book nor in a journal issue,"  

"each conference edition that is published in an edited book is published neither in a book series 
issue nor in a journal issue,"  

"each conference edition that is published in a journal issue is published neither in an edited book 
nor in a book series issue."  

Figure 5.22 Simplified version of the structure of the "each conference edition that is published in a 
book series issue neither is published in an edited book nor in a journal issue" structural rule 
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Figure 5.22 shows the simplified version of the structure of the first rule presented above. 

The figure represents the following structure: 

The structural rule embeds a closed universal quantification. 
. The closed universal quantification introduces a first variable. 
. . The first variable ranges over the concept "conference edition." 
. . . The first variable is restricted by an atomic formulation. 
. . . . The atomic formulation is based on the fact type "conference edition is published in book 

series issue." 
. . . . The atomic formulation introduces a free variable 
. . . . . The free variable ranges over the concept "book series issue." 
. . . . . The atomic formulation has a role binding. 
. . . . . . The role binding is of the role "conference edition" of the fact type. 
. . . . . . The role binding binds to the first variable. 
. . . . . The atomic formulation has a second role binding. 
. . . . . . The second role binding is of the role "book series issue" of the fact type. 
. . . . . . The second role binding binds to the free variable. 
. . The universal quantification scopes over a nor formulation. 
. . . The nor formulation has an atomic formulation as its first operand. 
. . . The atomic formulation introduces a second free variable. 
. . . . The second free variable ranges over the concept "edited book." 
. . . The atomic formulation is based on the fact type "conference edition is published in edited 

book." 
. . . . The atomic formulation has a role binding. 
. . . . . The role binding is of the role "conference edition" of the fact type. 
. . . . . The role binding binds to the first variable. 
. . . . The atomic formulation has a second role binding. 
. . . . . The second role binding is of the role "edited book" of the fact type. 
. . . . . The second role binding binds to the second free variable. 
 . . . The nor formulation has an atomic formulation as its second operand. 
. . . The atomic formulation introduces a third free variable. 
. . . . The third free variable ranges over the concept "journal issue." 
. . . The atomic formulation is based on the fact type "conference edition is published in journal 

issue." 
. . . . The atomic formulation has a role binding. 
. . . . . The role binding is of the role "conference edition" of the fact type. 
. . . . . The role binding binds to the first variable. 
. . . . The atomic formulation has a second role binding. 
. . . . . The second role binding is of the role "journal issue" of the fact type. 
. . . . . The second role binding binds to the third free variable. 

Abstract syntax 

Figure 5.23 to 5.28 show the abstract syntax of the complex structural rule schema unit.  
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Figure 5.23 StructuralRule schema unit 

 

Figure 5.24 Atomic formulation 

 

 Figure 5.25 Instantiation formulation 
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Figure 5.26 Logical operation 

 

Figure 5.27 Quantification 
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Figure 5.28 Objectification 

Each structural rule schema unit is represented by an instance of StructuralRule. The 

schema elements of a structural rule that may have a name st are as follows: (1) the 

instance of  of StructuralRule; (2) if it has a name, the instance of the attribute name with 

value st; (3) the instance of the attribute isTrue with value True; (4) the instance of 

ClosedUniversalQuantification that structures ; (5) the instance of relationship between 

the ClosedUniversalQuantification and ; (6) the instance of Variable introduced by the 

closed universal quantification; (7) the instance of relationship between the Variable and 

the ClosedUniversalQuantification; (8) the instance of relationship between the Variable 

and the instance of Concept that the variable ranges over; (9) the instance of a subtype of 

LogicalFormulation that the quantification scopes over; (10) the instance of relationship 

between the LogicalFormulation and the ClosedUniversalQuantification; (11) the instances 

of Variable that are defined as free variables of the LogicalFormulation and the instance of 

relationship between them; (12) the instance of relationship between an instance of 

Variable and the LogicalFormulation (restrictingFormulation); and (13) depending on the 

type of formulation, the following instances: 

 Instantiation formulation: (i) the instance of LogicalFormulation that is an instance 

of InstantiationFormulation; (ii) the instance of relationship to a BindableTarget; and 

(iii) the instance of relationship to a Concept. 

 Atomic formulation: (i) the instance of LogicalFormulation that is an instance of 

AtomicFormulation; (ii) the instance of relationship between the AtomicFormulation 

and the FactType that is based on the AtomicFormulation; and (iii) the instances of 

RoleBinding that occur in the AtomicFormulation. For each RoleBinding: (i) the 

instance the relationship between the BindableTarget and the RoleBinding; and (ii) 

the instance of relationship between the FactTypeRole and the RoleBinding. 

 Logical negation: (i) the instance of LogicalFormulation that is an instance of 

LogicalNegation; (ii) the instance of LogicalFormulation that is the operand of the 

logical negation; and (iii) the instance of the relationship between the 

LogicalNegation and the LogicalFormulation. The set of instances defined in point 11 

to describe the LogicalFormulation that is the operand. 

 Binary logical formulation: (i) the instance of LogicalFormulation that is an instance 

of a subtype of BinaryLogicalOperation (Conjunction, Disjunction, Equivalence, 

ExclusiveDisjunction, Implication, NandFormulation, NorFormulation or 

WhetherOrNotFormulation); (ii) the instance of LogicalFormulation that is the first 
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operand of the BinaryLogicalOperation and the instance of the relationship between 

the two; and (iii) the instance of LogicalFormulation that is the second operand of 

the BinaryLogicalOperation and the instance of the relationship between the two. 

The set of instances defined in point 11 to describe the LogicalFormulation of both 

operands. 

 Quantification: (i) the instance of LogicalFormulation that is an instance of a subtype 

of Quantification; (ii) the instance of Variable that introduces the instance of 

relationship between the Variable and the subtype of Quantification; (iii) the 

instance of LogicalFormulation that the subtype of Quantification scopes over and 

the relationship between the two; (iv) the set of instances defined in point 11 to 

describe the LogicalFormulation that the quantification scopes over; and (v) if the 

subtype of Quantification is: 

o At-least-n quantification or existential quantification: the instance of 

NonNegativeInteger and the instance of relationship (minimum 

cardinality) between the quantification and the NonNegativeInteger. 

o Numeric range quantification: the two instances of NonNegativeInteger and 

the two instances of relationship (minimum cardinality and maximum 

cardinality) between the quantification and the NonNegativeInteger. 

o At-most-n quantification or at-most-one quantification: the instance of 

NonNegativeInteger and the instance of relationship (maximum 

cardinality) between the quantification and the NonNegativeInteger. 

o Exactly-n quantification and exactly-one quantification: the instance of 

NonNegativeInteger and the instance of relationship (cardinality) between 

the quantification and the NonNegativeInteger. 

 Objectification: (i) the instance of Objectification; (ii) the instance of the relationship 

between a BindableTarget and the Objectification; (iii) the instance of 

LogicalFormulation that the Objectification considers; and (iv) the instance of 

relationship between the Objectification and the LogicalFormulation considered. The 

set of instances defined in point 11 to describe the LogicalFormulation that is 

considered by the Objectification. 

The isSchemaUnit() query operation of StructuralRule is specified as follows: 
context StructuralRule::isSchemaUnit():Boolean 

body:  true 

The predecessors() operation of StructuralRule is specified as follows: 
context StructuralRule::predecessors():Set(Concept) 
 body:  self.closedLogicalFormulation.conceptsUsed() 

This means that the predecessors of a structural rule are the concepts used by the logical 

formulation that structures the structural rule. ConceptsUsed is a query operation, defined 

in LogicalFormulation and redefined in its subtypes, that gives the concepts that are used 

in the logical formulations. Formally, this is defined as follows: 
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context LogicalFormulation::conceptsUsed():Set(Concept) 
 body:  Set{} 

 

context AtomicFormulation::conceptsUsed():Set(Concept) 
 body:  Concept.allInstances() -> select(c:Concept|  

     self.freeVariable -> collect(rangedOverConcept)->  

      includes(c) or 

     self.factType = c.oclAsType(FactType) or  

     self.roleBinding -> collect(bindableTarget) -> 

      includes(c.oclAsType(BindableTarget)) or  

     self.roleBinding -> collect(factTypeRole)-> 

      includes(c.oclAsType(FactTypeRole))) 

 

context InstantiationFormulation::conceptsUsed():Set(Concept) 
 body:  Concept.allInstances() -> select(c:Concept|  

     self.freeVariable -> collect(rangedOverConcept)->  

      includes(c) or 

     self.conceptConsidered = c or  

     self.bindableTarget-> 

      includes(c.oclAsType(BindableTarget))) 

 

context LogicalNegation::conceptsUsed():Set(Concept) 
 body:  self.freeVariable -> collect(rangedOverConcept) -> 

      asSet() -> union(self.logicalOperand.conceptsUsed())  

 

context BinaryLogicalOperation::conceptsUsed():Set(Concept) 
 body:  self.freeVariable -> collect(rangedOverConcept) -> 

      asSet() -> union(self.logicalOperand1.conceptsUsed()-> 

      union(self.logicalOperand2.conceptsUsed())) 

 

context Quantification::conceptsUsed():Set(Concept) 
 body:  self.freeVariable -> collect(rangedOverConcept) -> 

      asSet() -> union(self.scopeFormulation.conceptsUsed())  

  

context Objectification::conceptsUsed():Set(Concept) 
 body:  Concept.allInstances() -> select(c:Concept|  

     self.freeVariable -> collect(rangedOverConcept)->  

      includes(c) or  

     self.bindableTarget.oclAsType(Variable).rangedOverConcept = c  

     or self.bindableTarget.oclAsType(IndividualConcept) =  

     c.oclAsType(IndividualConcept)) -> union( 

     self.consideredLogicalFormulation.conceptsUsed()) 

 

Characterization object  

Figure 5.29 shows the structural rule schema unit characterization object, 

StructuralRuleCh. The schemaUnit() operation is formally defined as follows: 
context StructuralRuleCh::schemaUnit():StructuralRule 

 body:  StructuralRule.allInstances() ->  

     any(st:StructuralRule|  

      st.closedLogicalFormulation -> notEmpty() and  

      self.formulation.existsFormulation( 

       st.closedLogicalFormulation))  
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Figure 5.29 Structural rule schema unit characterization object StructuralRuleCh 

This means that the schemaUnit() operation of StructuralRuleCh is a query that gives the 

instance of StructuralRule associated with a ClosedLogicalFormulation.  

The existsFormulation() operation is formally defined as follows: 
context Formulation:: 

    existsFormulation(sf:LogicalFormulation):Boolean 

 body: self.freeVariable -> notEmpty()  

     implies 

     (self.freeVariable -> forAll(fv|  

      sf.freeVariable -> exists(va|  

       va.rangedOverConcept.name =  

       fv.rangedOverConcept and  

       fv.restricting -> notEmpty()  

       implies fv.restricting.existsFormulation( 

          va.restrictingFormulation)))) and 

     self.logicalFormulationExists(sf) 

This means that the existsFormulation() operation returns True if, for each free variable of 

Formulation, the logical formulation given by the parameter is associated with a free 

variable whose ranged over concept has the attribute name with the same value as the 

rangedOverConcept attribute. Additionally, if the variable is restricted by another 

Formulation, there is an instance of LogicalFormulation that is characterized by such 

Formulation.  
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The operation logicalFormulationExists is defined in Formulation as follows: 
context Formulation:: 

  logicalFormulationExists(f:LogicalFormulation):Boolean 

 body: (abstract)  

This means that the operation is defined as abstract in Formulation and redefined in its 

subtypes. In each subtype, the operation logicalFormulationExists() checks whether there 

is an instance of a subtype of LogicalFormulation that corresponds to that defined in each 

subtype. 
context Instantiation::logicalFormulationExists 

     (ins:InstantiationFormulation):Boolean 

 body: ins.bindableTarget.oclAsType(IndividualConcept).name  

     = self.bindableTarget.rangedOverConcept and 

     ins.conceptConsidered.oclAsType(Variable). 

     rangedOverConcept.oclAsType(NounConcept)name = self.concept 

The logicalFormulationExists operation, in the context of Instantiation, returns True if the 

InstantiationFormulation is binded to an IndividualConcept whose name has the same 

value as the name of the bindableTarget associated to Instantiation, and the name of the 

concept considered in the InstantiationFormulation has the same value as the concept 

attribute of Instantiation. 

context Atomic::logicalFormulationExists     

   (at:AtomicFormulation):Boolean 

   body: at.factType.name = self.factTypeName and 

      self.type = FactTypeType::Categorization implies 

     at.factType.oclIsTypeOf(CategorizationFactType) and 

      self.type = FactTypeType::IsPropertyOf implies  

       at.factType.oclIsTypeOf(IsPropertyOfFactType) and 

      self.type = FactTypeType::Associative implies  

       at.factType.oclIsTypeOf(AssociativeFactType) and 

      self.type = FactTypeType::Partitive implies  

       at.factType.oclIsTypeOf(PartitiveFactType) and 

      self.binding -> collect(ro|  

       Tuple{n:ro.name, c:ro.rangesOverConcept}) = 

      at.factType.factTypeRole -> collect(fr | 

       Tuple{n:fr.name, c:fr.nounConcept.name}) and 

      self.binding -> forAll(bi:Binding|  

       at.roleBinding -> exists(rb|  

        if bi.name -> notEmpty()  

        then rb.factTypeRole.name = bi.name 

        else rb.factTypeRole.nounConcept.name =  

         bi.rangesOverConcept  

        endif and  

       rb.bindableTarget.oclAsType(Variable). 

        rangedOverConcept.name =  

       bi.concept.rangedOverConcept)) 

The logicalFormulationExists operation, in the context of Atomic, returns True if the 

AtomicFormulation is based on a FactType whose type is the same as the type attribute of 

Atomic and it has the same bindings as the ones given in the Binding(s) associated to 

Atomic. 
context Negation::logicalFormulationExists  

     (ne:LogicalNegation):Boolean 

 body: self.formulation.existsFormulation(ne.logicalOperand) 
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The logicalFormulationExists operation, in the context of Negation, returns True if the 

logicalOperand of the LogicalNegation also exists. 
 

context QuantificationForm::logicalFormulationExists  

     (qu:Quantification):Boolean 

 body: self.introducedVar->notEmpty() implies 

      qu.introducedVariable.rangedOverConcept.name =  

     self.introducedVar.rangedOverConcept and 

      

     self.introducedVar.restricting->notEmpty() implies 

      self.introducedVar.restricting. 

     existsFormulation(qu.introducedVariable. 

     restrictingFormulation) and 

     

     self.type = QuantificationType::Universal implies 

       (qu.oclIsTypeOf(UniversalQuantification) and 

      self.formulation.existsFormulation(qu.oclAsType( 

      UniversalQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::AtLeastN implies 

      (qu.oclIsTypeOf(AtLeastNQuantification) and 

       qu.oclAsType(AtLeastNQuantification). 

      minimumCardinality.value = self.minimCard and 

       self.formulation.existsFormulation(qu.oclAsType( 

       AtLeastNQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::Existential implies 

     (qu.oclIsTypeOf(ExistentialQuantification) and 

       qu.oclAsType(ExistentialQuantification). 

       minimumCardinality.value = self.minimCard and 

       self.formulation.existsFormulation(qu.oclAsType( 

      ExistentialQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::AtMostN implies 

      (qu.oclIsTypeOf(AtMostNQuantification) and 

      qu.oclAsType(AtMostNQuantification). 

       maximumCardinality.value = self.maxCard and 

       self.formulation.existsFormulation(qu.oclAsType( 

       AtMostNQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::AtMostOne implies 

      (qu.oclIsTypeOf(AtMostOneQuantification) and 

       qu.oclAsType(AtMostOneQuantification). 

       maximumCardinality.value = self.maxCard and 

       self.formulation.existsFormulation(qu.oclAsType( 

       AtMostOneQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::ExactlyN implies 

     (qu.oclIsTypeOf(ExactlyNQuantification) and 

       qu.oclAsType(ExactlyNQuantification). 

       cardinality.value = self.card and 

       self.formulation.existsFormulation(qu.oclAsType( 

       ExactlyNQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::ExactlyOne implies 

      (qu.oclIsTypeOf(ExactlyOneQuantification) and 

       qu.oclAsType(ExactlyOneQuantification). 

       cardinality.value = self.card and 
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      self.formulation.existsFormulation(qu.oclAsType( 

       ExactlyOneQuantification).scopeFormulation)) and 

     

     self.type = QuantificationType::NumericRange implies 

      (qu.oclIsTypeOf(NumericRangeQuantification) and 

       qu.oclAsType(NumericRangeQuantification). 

       minimumCardinality.value = self.minimCard and 

      qu.oclAsType(NumericRangeQuantification). 

       maximumCardinality.value = self.maxCard and 

      self.formulation.existsFormulation(qu.oclAsType( 

       NumericRangeQuantification).scopeFormulation)) 

The logicalFormulationExists() operation, in the context of Quantification, returns True if 

the subtype of QuantificationFormulation corresponds to the one indicated in the type 

attribute of Quantification and the cardinalities are the ones indicated in the minimCard, 

card and maxCard attributes.  
 

context BinaryOperation::logicalFormulationExists 

    (bi:BinaryLogicalOperation):Boolean 

 body: if self.type = BinaryOperationType::Implication  

     then 

       bi.oclIsTypeOf(Implication) and 

       self.first.existsFormulation(bi.oclAsType( 

       Implication).antecedent) and 

       self.second.existsFormulation(bi.oclAsType( 

       Implication).consequent) and 

      else 

      if self.type =     

       BinaryOperationType::WhetherOrNotFormulation  

      then 

        bi.oclIsTypeOf(WhetherOrNotFormulation) and 

        self.first.existsFormulation(bi.oclAsType( 

        WhetherOrNotFormulation).consequent) and 

        self.second.existsFormulation(bi.oclAsType( 

        WhetherOrNotFormulation).inconsequent) and 

      else 

        self.first.existsFormulation(bi.logicalOperand1) and 

       self.second.existsFormulation(bi.logicalOperand2) and 

 

       self.type = BinaryOperationType::Conjunction  

       implies bi.oclIsTypeOf(Conjunction) and 

     

       self.type = BinaryOperationType::Disjunction  

       implies bi.oclIsTypeOf(Disjunction) and 

     

       self.type = BinaryOperationType::Equivalence  

       implies bi.oclIsTypeOf(Equivalence) and 

      

       self.type = BinaryOperationType::ExclusiveDisjunction  

       implies bi.oclIsTypeOf(ExclusiveDisjunction) and 

     

       self.type = BinaryOperationType::NandFormulation  

       implies bi.oclIsTypeOf(NandFormulation) and 

     

       self.type = BinaryOperationType::NorFormulation  

       implies bi.oclIsTypeOf(NorFormulation)  

      endif  

     endif 
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The logicalFormulationExists() operation, in the context of Binary, returns True if the 

subtype of BinaryFormulation corresponds to the one indicated in the type attribute of 

Binary and their respective logical operands exist.  
context ObjectificationForm::logicalFormulationExists( 

     ob:Objectification):Boolean 

 body: ob.bindableTarget.oclAsType(Variable). 

      rangedOverConcept.name =  

     self.target.rangedOverConcept and 

     self.formulation.existsFormulation( 

      ob.consideredLogicalFormulation) 

The logicalFormulationExists() operation, in the context of ObjectificationForm, returns 

True if the Objectification binds to a concept whose name attribute has the same value as 

the rangedOverConcept attribute of the target of the ObjectificationForm and the 

consideredFormulation of the Objectification also exists.  

5.2.9 Object Type or Value Type schema unit with a definition 

Generic description 

As stated in Section 5.1, a projection is a semantic formulation that may be used to 

structure a definition of a meaning. A closed projection thas is, a projection that includes 

no variable without binding may define a noun concept, a fact type or a question. This 

thesis only considers closed projections that define noun concepts. A closed projection 

that defines a noun concept introduces exactly one variable, called a projection variable, 

which may have a constraining formulation variables. It formulates a set of properties, 

called incorporated characteristics, that are sufficient to determine the noun concept. The 

set of properties (incorporated characteristics) that may be included to define a noun 

concept are as follows: (i) characteristics of the ranged-over concept of the projection 

variable; (ii) if a logical formulation restricts the projection variable, the meaning of that 

formulation with respect to such variable; and (iii) the meaning of the constraining 

formulation with respect to the projection variable, if there is one. More details about 

incorporated characteristics may be found in the specification document (Object 

Management Group 2008a). 

The DBLP example, as an instance of the SBVR metaschema, includes five object types that 

include a closed projection to structure the definition of each object type: "publication," 

"book," "authored publication," "editorship" and "authorship." Moreover, the value type 

named "gender" also includes a definition structured by a closed projection. 

The object type named "publication" is defined as the union of "edited book" and 

"authored publication." The definition is structured by a closed projection that has a 

projection variable that ranges over the concept named "publication." The projection 

constrains a disjunction whose operands are atomic formulations. The first atomic 

formulation is based on the categorization fact type  "edited book is a category of 

publication" and the second atomic formulation is based on the categorization fact type  

"authored publication is a category of publication." 

The object type named "book" is defined as the union of "edited book" and "authored 
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book." The definition is structured by a closed projection that has a projection variable 

that ranges over the concept named "book." The projection constrains a disjunction whose 

operands are atomic formulations. The first atomic formulation is based on the 

categorization fact type "edited book is a category of book" and the second atomic 

formulation is based on the categorization fact type  "authored book is a category of book." 

The object type named "authored publication" is defined as the union of "authored book," 

"book chapter" and "journal paper."  

The definition is structured by a closed projection that has a projection variable that 

ranges over the concept named "authored publication." The projection constrains a 

disjunction. The first operand of the disjunction is an atomic formulation based on the 

categorization fact type "authored book is a category of authored publication." The second 

operand is a second disjunction whose operands are atomic formulations. The first atomic 

formulation is based on the categorization fact type of "book chapter is a category of 

authored publication" and the second atomic formulation is based on the categorization 

fact type  "journal paper is a category of authored publication." Figure 5.30 shows a 

simplified version of the instantiation of the "authored publication" schema unit.  

The object type named "editorship" is defined as an objectification (reification) of the fact 

type "edited book has editor." The definition is structured by a closed projection that has a 

projection variable which ranges over the concept named "actuality." Actuality is a concept 

that means an event, activity, situation or circumstance that occurs in the actual world. 

The closed projection constrains an objectification formulation. The objectification also 

has two free variables, one ranging over the concept "edited book" and the other ranging 

over the concept "person." The objectification considers an atomic formulation based on 

the associative fact type "edited book has editor." The atomic formulation has two role 

bindings that bind each role of the fact type to the corresponding free variables. The 

meaning is "editorship is an actuality that an edited book has an editor." 

Similarly to "editorship," "authorship" is defined as an objectification of the fact type 

"authored publication has author."  

The value type named "gender" is defined as the union of the individual concepts "male" 

and "female." The definition is structured by a closed projection that has a projection 

variable that ranges over the concept named "gender." The projection constrains a 

disjunction whose both operands are instantiation formulations. The instantiation 

formulations bind the projection variable to the individual concepts "female" and "male" 

respectively meaning that the union of instances of the individual concepts define the 

"gender" concept. 
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Figure 5.30 Simplified version of the object type 'authored publication' 

Abstract syntax 

Each object type or value type named e is represented by an instance of ObjectType or 

ValueType, respectively. The schema elements are as follows: (1) the instance  of 

ObjectType or ValueType, respectively; (2) the instance of attribute name of  with value e; 

(3) the instance of  of ClosedProjection; (4) the instance of  relationship between 

ClosedProjection and the NounConcept that it defines; (5) the instance(s) of Variable that 

the projection introduces, and for each Variable, the instance of its relationship to the 

Projection; (6) the instance of LogicalFormulation; (7) the instance of relationship between 

the LogicalFormulation and the ClosedProjection; and (8) the set of instances defined in 

point 11 of Section 5.2.8 to describe the LogicalFormulation.  

Figure 5.31 shows the abstract syntax of object type and value type with a closed 

projection schema units.  

Now, the predecessors() operation of NounConcept is specified as follows: 
context NounConcept::predecessors():Set(Concept) 
 body: if self.closedProjection -> notEmpty()  

     then 

       self.closedProjection.projectionVariable ->  

       collect(factTypeRole) -> 

       includes(c.oclAsType(FactTypeRole))) -> union( 

         self.logicalFormulation.conceptsUsed()))  

     else Set{}  

     endif 

This means that the predecessors of an object type or value type associated with a closed 

projection are the concepts used by the logical formulation that constrains the closed 

projection. 

ClosedProjection 

Variable 
(authored publication) Disjunction 

Disjunction 

authored publication 
Definition:  authored book or book chapter or journal paper 

AtomicFormulation 

ObjectType 
(authored publication) 

AtomicFormulation AtomicFormulation 
CategorizationFactType 
(authored book is a category  
of authored publication) 

based on 

defines 

is on has 

operates  on operates  on 

CategorizationFactType 
(book chapter is a category  
of authored publication) 

based on 

CategorizationFactType 
(journal paper is a category  
of authored publication) 

based on 
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Figure 5.31 ObjectType and ValueType with closed projection schema units 

Abstract syntax 

Figure 5.32 shows the object type and value type schema units characterization object 

NounConceptCh.  

For the object type and value type characterization object NounConceptCh, the 

schemaUnit() operation is formally defined as follows: 
context NounConceptCh::schemaUnit():NounConcept 

 body:  NounConcept.allInstances() -> any(c:NounConcept|  

      c.name = self.name and  

      if self.isValueType  

      then c.oclIsTypeOf(ValueType)  

      else c.oclIsTypeOf(ObjectType)  

      endif and 

      self.formulation -> notEmpty()implies 

       ClosedProjection.allInstances() ->  

       exists(cp:ClosedProjection| cp.nounConcept = c and 

        self.projectionVariable.rangedOverConcept =  

        cp.projectionVariable.rangedOverConcept.name and 

        self.formulation.existsFormulation( 

         cp.logicalFormulation))) 

This means that the schemaUnit() operation of NounConceptCh is a query that gives the 

instance of ObjectType or ValueType, as explained in Section 5.2.2. Additionally, if 

NounConceptCh is associated with a Formulation, the instance of ObjectType or ValueType 

is associated with a ClosedProjection. The closed projection may be associated with the 

same class Formulation defined above (see Section 5.2.8). 
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Figure 5.32 Object type and value type schema units characterization object NounConceptCh 

The complete specification in the USE tool of the SBVR metaschema can be found in 

Appendix D. Appendix E shows a representative fragment of the instances defined in USE 

to specify the DBLP schema as an instance of the SBVR metaschema. The methods for 

creating schema units of the characterization objects are provided in Appendix F. 





 

 
 

6 Translation mapping expressions between 

UML and SBVR meanings  

The schema translation problem was  described, in Chapter 3 as follows: given a (source) 

metaschema MS1, a (source) schema S1 (instance of MS1) and a (target) metaschema MS2, 

obtain a schema S2, an instance of MS2, that suitably corresponds to S1.  

Chapter 3 also described how to define and use translation mapping expressions between 

any two MOF metaschemas. Such expressions are defined by two invariants involving the 

relationships between the schema units of the two metaschemas. The two invariants are 

defined in OCL and the relationships between schema units are defined by means of 

operations whose pre- and postconditions are also formalized in OCL. The end of Chapter 

3 described how to automatically translate between instances of the two metaschemas. 

This chapter applies the translation approach proposed in Chapter 3 to the UML and SBVR 

meanings metaschemas described in Chapter 4 and Chapter 5, respectively. In particular, 

it describes the set of all operations that are mapping-dependent between the two 

languages.  

This chapter is structured as follows: 

 Section 6.1 defines the query operations that indicate how schema units of UML are 

translated to SBVR and vice versa. This is the mapping kind (HasEquivalents, 

IsIncluded or Untraslatable) relationship among schema units of the two 

metaschemas. 

 Section 6.2 defines the sbvrEquivalents() operations on the UML schema units whose 

mapping kinds are HasEquivalents.  

 Section 6.3 defines the includedInUml() operations on the SBVR schema units whose 

mapping kinds are IsIncluded. 

 Section 6.4 specifies the translation mapping constraints, defined formally in OCL, as 

two invariants called completeAndConsistentMappingToUML and 

completeAndConsistentMappingToSBVR.  

 Section 6.5 describes the translateToUml and translateToSbvr operations for 

automatically translating from UML to SBVR and vice versa.  



An object-oriented approach to the translation between MOF metaschemas 

 

138 

 

 

Figure 6.1 Definition of UML schema units including SBVR mapping-dependent operations 

Figure 6.1 shows the definition of UML schema units, which now includes the set of SBVR 

mapping-dependent operations. The dashed lines in the figure show that the subtypes of 

Element are indirect subtypes rather than direct subtypes.   

 

Figure 6.2 Definition of SBVR schema units including UML mapping dependent operations. 

Figure 6.2 shows the definition of SBVR meanings schema units, which now includes the 

set of UML mapping dependent operations. The dashed lines in the figure show that the 

subtypes of Meaning are indirect subtypes rather than direct subtypes.   
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6.1 umlMappingKind() and sbvrMappingKind() operations 

This section describes two query operations: (i) the sbvrMappingKind() query operation, 

in the context of Element, whose value indicates how a UML schema unit is translated into 

SBVR; and (ii) the umlMappingKind() query operation, in the context of Meaning, whose 

value indicates how an SBVR schema unit is translated into UML. As explained in Chapter 

3, the value of both operations is an enumeration data type whose values are 

HasEquivalents, IsIncluded and Untranslatable. 

To ensure that both operations are only defined in instances of schema units of both 

schemas, the following preconditions are defined: 

context Element::sbvrMappingKind():MappingKind 

 pre: isSchemaUnit()  

 

context Meaning::umlMappingKind():MappingKind 

 pre: isSchemaUnit()  

6.1.1 UML side 

On the UML side, the operation sbvrMappingKind() is defined, in Element, as follows: 

context Element::sbvrMappingKind():MappingKind 

 body: MappingKind::HasEquivalents 

This means that, by default, all (direct or indirect) instances of Element that are schema 

units have an equivalence mapping, and that those instances that are not schema units 

have an undefined value for the operation. There are some exceptions, and therefore the 

operation is redefined in certain subtypes of Element, as shown in Figure 6.1. 

In UML, generalization sets may or may not have a name. In SBVR, there is no concept 

without a name, so generalization sets must always have a name in order to have an 

equivalent in SBVR. This is formally defined as follows: 

context GeneralizationSet::sbvrMappingKind():MappingKind 

 body:  if self.name -> isEmpty()  

    then MappingKind::Untranslatable  

    else MappingKind::HasEquivalents 

     endif 

As stated in Chapter 4, this thesis limits the types of constraints considered for translation 

to the predefined static constraint XOR and certain uniqueness constraints: those that 

indicate that one attribute is a key of the class that contains said attribute (i.e., those 

specified as invariants in the DBLP example). The whole OCL metaschema would need to 

be included in order to translate other types of constraints, so this has been left for further 

work. Therefore, the sbvrMappingKind operation of Constraint is defined as follows: 

context Constraint::sbvrMappingKind():MappingKind 

 body: if self.specification.oclAsType(Expression).symbol = 'XOR'  

    or self.constrainedElement->exists(e1,e2|  

     e1.oclIsTypeOf(Class) and e2.oclIsTypeOf(Property) and  

     e2.oclAsType(Property).class = e1.oclAsType(Class) and  

     self.specification.oclAsType(OpaqueExpression).body =  

     e1.oclAsType(Class).name.concat('.allInstances-> 

      isUnique('.concat(e2.oclAsType(Property).name.  
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      concat(')')))) 

    then MappingKind:: HasEquivalents 

    else MappingKind:: Untranslatable     

    endif 

This means that the constraint has equivalents in SBVR if it corresponds to the predefined 

XOR constraint or if it constrains a class and an attribute of the class and the specification 

of the express constraint that the attribute is a key of the class. 

6.1.2 SBVR meanings side 

On the SBVR meanings side, the operation umlMappingKind() is defined, in Meaning, as 

follows: 

context Meaning::umlMappingKind():MappingKind 

 body: MappingKind::IsIncluded 

This means that, by default, all (direct or indirect) instances of Meaning that are schema 

units have an inclusion mapping, and that those instances that are not schema units have 

an undefined value for the operation. There are some exceptions, and therefore the 

operation is redefined in certain subtypes of Meaning, as shown in Figure 6.2. 

SBVR allows IndividualConcept to be defined as part of the schema. Here, only those which 

are included in the definition of another concept have UML equivalents (in UML, each 

IndividualConcept corresponds to an EnumerationLiteral). This is formalized as follows: 

context IndividualConcept::umlMappingKind():MappingKind 

 body: if self.variable.projection->notEmpty()  

    then MappingKind::IsIncluded 

    else MappingKind:: Untranslatable     

    endif 

An SBVR ReferenceScheme indicates which roles and characteristics identify concepts. For 

translation into UML, this thesis only considers the reference schemes that are equivalent 

to the identifier constraint—that is, the ReferenceScheme that references object types (not 

fact types). This is formally specified as follows: 

context ReferenceScheme::umlMappingKind():MappingKind 

 body: if self.referencedConcept -> forAll(oclIsType(ObjectType)) 

    then MappingKind::IsIncluded 

    else MappingKind::Untranslatable 

    endif 

In order to translate any type of structural rule, it would be necessary to include the entire 

OCL metaschema in the UML metaschema. Since this inclusion has been left for further 

work, only a limited set of SBVR is translatable into UML. In particular, the structural rules 

considered translatable to UML are those that represent graphical UML constraints 

(multiplicities, XOR, and disjointness and completeness of generalization sets) and the 

identifier constraint mentioned above.  

Figure 6.3 shows the general form of a structural rule representing the multiplicity 

constraint between two or more concepts, Card(concept1, … conceptn-

1;conceptn;associativeFactType) = (min,max). The rule is structured by a universal 

quantification that introduces a variable for each concept (concept1, … conceptn-1,) and 
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scopes over a quantification (e.g., existential, exactly, at-least-n, etc.). The quantification 

introduces a variable that ranges over the concept conceptn and scopes over an atomic 

formulation based on the associativeFactType that relates all of the previous concepts. An 

example was shown in Figure 5.18 of Chapter 5.   

Figure 6.3 General form of structural rule representing a multiplicity constraint 

In order to check whether a structural rule corresponds to a multiplicity constraint, the 

following operation is defined in the StructuralRule context.  

The isMultiplicity() operation returns a Boolean whose value is true if the meaning of the 

structural rule (self) corresponds to the meaning of a UML cardinality constraint.  

context StructuralRule : isMultiplicity() : Boolean 

 body: self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Quantification). 

    scopeFormulation.isAtomicOfAssociativeFactType() 

The isAtomicOfAssociativeFactType() operation is defined in the context of a 

LogicalFormulation and returns true if the logical formulation corresponds to an atomic 

formulation based on an associative fact type (or an is-property-of fact type). 

context LogicalFormulation::isAtomicOfAssociativeFactType() :  

    Boolean 

 body: self.oclIsTypeOf(AtomicFormulation) and  

    (self.oclAsType(AtomicFormulation).factType. 

     oclIsTypeOf(AssociativeFactType) or  

     self.oclAsType(AtomicFormulation).factType. 

     oclIsTypeOf(IsPropertyOfFactType)) 

The disjointness and covering constraint of a generalization set may be specified with a 

unique rule if the generalization set has exactly two generalizations. Figure 6.4 shows the 

general form of such a structural rule. The figure shows the structure of a rule 

representing “each generalConcept is a category1 or is a category2 but not both.” The rule 

is structured by a closed universal quantification (each) that introduces a variable that 

ranges over the general concept. The quantification scopes over an exclusive disjunction 

scopes over introduces 

UniversalQuantification 

Variable 
(concept1) 

Quantification 
(cardinality) 

AtomicFormulation Variable 
(conceptn) 

introduces scopes over 

AssociativeFactType 
(concept1, concept2, … conceptn-1  
verb conceptn) 

based on 

Variable 
(concept2) 

. . . 

Variable 
(conceptn-1) 
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(or… but not both). Each operand of the exclusive disjunction is an atomic formulation 

based on the categorization fact type (i.e., category1 is a category of generalConcept and 

category2 is a category of generalConcept). An example was shown in Figure 5.19 of 

Chapter 5. 

 Figure 6.4 General form of structural rule representing covering and disjointness of a 
generalization set with two generalizations 

The isDisjointAndCovering() operation returns a Boolean whose value is true if the 

meaning of the structural rule (self) corresponds to the meaning of a UML 

{disjoint,complete} constraint of a generalization set with two generalizations.  

context StructuralRule::isDisjointAndCovering() : Boolean 

 body: self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(ExclusiveDisjunction). 

    logicalOperand1.oclAsType(AtomicFormulation) ->  

     notEmpty() and self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(ExclusiveDisjunction). 

    logicalOperand2.oclAsType(AtomicFormulation) ->  

     notEmpty()  

In the case of a generalization set with three or more generalizations, the covering 

constraint is represented by a unique rule, and the disjointness constraint is represented 

by a different set of rules. 

The covering rule is structured by a closed universal quantification that introduces a 

variable that ranges over the general concept of the generalization set. The quantification 

scopes over a tree of n-1 disjunctions, where n is the number of generalizations that 

compound the generalization set, as shown in Figure 6.5. The structure of the covering 

rule also serves in the case of a generalization set with two generalizations. 

The isCovering() operation returns a Boolean whose value is true if the meaning of the 

structural rule (self) corresponds to the meaning of a UML {complete} constraint of a 

generalization set. The rule is structured as shown in Figure 6.5. 

 

ClosedUniversalQuantification 

Variable 
(generalConcept) 

ExclusiveDisjunction 

AtomicFormulation AtomicFormulation 

operates on 

scopes over introduces 

operates on 

CategorizationFactType 
(category1 is a category of generalConcept) 

based on 

CategorizationFactType 
(category2 is a category of generalConcept) 

based  on 



6 Translation mapping expressions between UML and SBVR meanings 

143 

 

Figure 6.5 General form of the structural rule representing the covering constraint of a 
generalization set 

context StructuralRule::isCovering() : Boolean 

 body:  self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.isDisjunctionOfCoveringRule() 

The isDisjunctionOfCoveringRule() operation is defined in the context of a 

LogicalFormulation and returns true if the logical formulation corresponds to a disjunction 

where the first operand is an atomic formulation based on a categorization fact type and 

the second operand also corresponds to an atomic formulation based on a categorization 

fact type or to a second disjunction structured like the previous one. 

context LogicalFormulation::isDisjunctionOfCoveringRule() : Boolean 

 body: self.oclIsTypeOf(Disjunction) and  

    self.oclAsType(Disjunction).logicalOperand1. 

     isAtomicOfCategorization() and  

    (self.oclAsType(Disjunction).logicalOperand2. 

     isAtomicOfCategorization() or  

    self.oclAsType(Disjunction).logicalOperand2. 

     isDisjunctionOfCoveringRule()) 

The isAtomicOfCategorization() operation is defined in the context of a LogicalFormulation 

and returns true if the logical formulation corresponds to an atomic formulation based on 

a categorization fact type. 

context LogicalFormulation::isAtomicOfCategorization() : Boolean 

 body: self.oclIsTypeOf(AtomicFormulation) and  

    self.oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType) 
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Figure 6.6 General form of the structural rule partially representing the disjointness constraint of a 
generalization set 

In order to define the disjointness constraint of a generalization set with n > 3 

generalizations, it is necessary to define n-1 structural rules. Each rule means that if an 

instance of the general concept is an instance of one of the categories, then this instance 

cannot be an instance of any of the other categories. Figure 6.6 shows the general form of 

the structural rule. 

The isDisjoint() operation is a Boolean whose value is true if the meaning of the structural 

rule (self) corresponds to the meaning of a UML {disjoint} constraint of a generalization 

set. 

context StructuralRule::isDisjoint() : Boolean =  

 body: self.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.restrictingFormulation. 

     isAtomicOfCategorization() and 

    self.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     scopeFormulation.isNorFormulationOfDisjointRule()  

The isNorFormulationOfDisjointRule() operation is defined in the context of a 

LogicalFormulation and returns true if the logical formulation corresponds to a nor 

formulation where the first operand is an atomic formulation based on a categorization 

fact type and the second operand is also an atomic formulation based on a categorization 

fact type or a second nor formulation structured like the previous one.   

context LogicalFormulation::isNorFormulationOfDisjointRule() :  

    Boolean 

 body: self.oclIsTypeOf(NorFormulation) and  

    self.oclAsType(NorFormulation).logicalOperand1. 

     isAtomicOfCategorization() and  

    (self.oclAsType(NorFormulation).logicalOperand2. 

     isAtomicOfCategorization() or  

     self.oclAsType(NorFormulation).logicalOperand2. 

     isNorFormulationOfDisjointRule()) 
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Figure 6.7 General form of the structural rule partially representing the XOR constraint 

In order to define the XOR constraint among n  2 associations, it is necessary to define n-1 

structural rules. Each rule means that if an instance of the concept is associated with an 

instance of a second concept, then the first instance cannot be associated with an instance 

of any of the other concepts participating in the XOR relationship. Figure 6.7 shows the 

general form of the structural rule. 

The isXOR() operation is a Boolean whose value is true if the meaning of the structural rule 

(self) corresponds to the meaning of a UML {XOR} constraint. 

context StructuralRule::isXOR() : Boolean  

 body: self.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.restrictingFormulation. 

     isAtomicOfAssociativeFactType() and 

    self.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     scopeFormulation.isNorFormulationOfXORRule()  

The isNorFormulationOfXORRule() operation is defined in the context of a 

LogicalFormulation and returns true if the logical formulation corresponds to a nor 

formulation where the first operand is an atomic formulation based on an associative fact 

type and the second operand is also an atomic formulation based on an associative fact 

type or a second nor formulation structured like the previous one.  

context LogicalFormulation::isNorFormulationOfXORRule() : 

    Boolean 

 body: self.oclIsTypeOf(NorFormulation) and  

    self.oclAsType(NorFormulation).logicalOperand1. 

     isAtomicOfAssociativeFactType() and  

    (self.oclAsType(NorFormulation).logicalOperand2. 

     isAtomicOfAssociativeFactType() or  

    self.oclAsType(NorFormulation).logicalOperand2. 

     isNorFormulationOfXORRule()) 
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Figure 6.8 General form of an object type whose extension is defined as the union of the instances 
of other object types 

Using the operations defined above, the umlMappingKind() operation of StructuralRule is 

defined as follows: 

context StructuralRule::umlMappingKind():MappingKind 

 body: if isMultiplicity() or isDisjointAndCovering() or  

     isCovering() or isXOR() or isDisjoint()  

    then MappingKind::IsIncluded 

    else MappingKind::Untranslatable     

    endif 

Closed projections are used to formalize the definition of a concept. As in the case of 

structural rules, the whole OCL metamodel would be necessary in order to automate the 

translation of all possible definitions. Here, the concepts considered translatable are those 

whose closed projections represent graphical UML definitions, such as definitions of 

enumerations, definitions of abstract classes and definitions of association classes.  

The meaning of an abstract class with n > 1 subclasses, in SBVR, is defined as an object 

type defined by a closed projection that has n-1 disjunctions structured as a tree, as shown 

in Figure 6.8. Figure 5.30 in Chapter 5 was an example of this. 

The isAbstract() operation returns a Boolean whose value is true if the meaning of the 

closed projection (self) corresponds to the meaning of a UML class abstract that has a 

partition of two subclasses. The structure of the disjunction is the same as that of the 

covering rule described above. 

context ClosedProjection::isAbstract() : Boolean 

 body: self.logicalFormulation.isDisjunctionOfCoveringRule() 
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The isObjectification() operation returns a Boolean whose value is true if the meaning of 

the closed projection (self) corresponds to the meaning of the reification of an associative 

fact type. 

context ClosedProjection::isObjectification() : Boolean 

  body: self.logicalFormulation.oclIsTypeOf(Objectification) 

Therefore, the umlMappingKind() operation of ObjectType is redefined as follows: 

context ObjectType::umlMappingKind() : MappingKind 

  body: if self.closedProjection -> isEmpty()  

    then MappingKind::IsIncluded 

    else if self.closedProjection.isAbstract() or  

       self.closedProjection.isObjectification() 

      then MappingKind::IsIncluded 

       else MappingKind::Untranslatable  

       endif  

     endif 

An enumeration with n > 1 literals, in SBVR, is defined as a value type defined by a closed 

projection that has n-1 disjunctions structured as a tree, as shown in Figure 6.9.  

Figure 6.9 General form of a value type whose extension is defined as the union of the instances of 
individual concepts 

The isEnumeration() operation returns a Boolean whose value is true if the meaning of the 

closed projection (self) corresponds to the meaning of a UML enumeration.  

context ClosedProjection::isEnumeration() : Boolean  

 body: self.logicalFormulation.isDisjunctionOfIndividuals  

The isDisjunctionOfIndividuals() operation, defined in the context of a logical formulation, 

returns a Boolean whose value is true if the logical formulation is structured as shown in 

Figure 6.9. 

context LogicalFormulation::isDisjunctionOfIndividuals() : Boolean  

 body: self.oclIsTypeOf(Disjunction) and 

    self.oclAsType(Disjunction).logicalOperand1. 

    oclIsTypeOf(InstantiationFormulation) and  

    (self.oclAsType(Disjunction).logicalOperand2. 

    oclIsTypeOf(InstantiationFormulation) or  

    self.oclAsType(Disjunction).logicalOperand2. 

    isDisjunctionOfIndividuals())  
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Therefore, the umlMappingKind operation of ValueType is redefined as follows: 

context ValueType::umlMappingKind() : MappingKind 

 body: if self.closedProjection -> isEmpty()  

    then MappingKind::IsIncluded 

    else if self.closedProjection.isEnumeration() 

       then MappingKind::IsIncluded 

       else MappingKind::Untranslatable  

       endif  

    endif  

6.2 sbvrEquivalents() and umlEquivalents() operations 

This section describes the sbvrEquivalents() and umlEquivalents operations in the context 

of Element and Meaning, respectively.  

In this section the hasSent ('^') operator is used to invoke operations within a 

postcondition (Object Management Group 2006b, pàg. 29). The use of this operator allows 

to better structure the postconditions. However, note that the USE tool does not allow the 

use of such operator. Therefore, the implementation, in USE, of a postcondition with an 

invocation to an operation includes, within the postcondition, the fragment corresponding 

to the invoked operation. 

6.2.1 UML side 

The evaluation of the sbvrEquivalents() operation on a UML schema unit whose mapping 

kind is HasEquivalents gives the set of SBVR characterization objects that are equivalent to 

the UML schema unit. The signature and precondition of the operation in OCL is as follows: 

context Element::sbvrEquivalents():Set(MeaningCh) 

 pre: sbvrMappingKind() = MappingKind::HasEquivalents 

 post definingTheResult: 

   result = MeaningCh.allInstances() –  

       MeaningCh.allInstances@pre() 

The effect of the operation is redefined in the subtypes of Element such that some or all of 

their instances represent schema units whose mapping kind is HasEquivalents. 

The following subsections give, for each sbvrEquivalents() operation redefined, examples 

that illustrate the mapping between elements of the two schemas, the general description 

of the operation and the formal specification of the operation in OCL. 

6.2.1.1 sbvrEquivalents() of data type 

Examples 

The data type schema units represented by instances of DataType named “Natural” and 

“Year” are represented, in SBVR, as two instances of ValueType with the same name, 

respectively. 

General description 

A DataType schema unit maps to a characterization object of ValueType. The name 

attribute of ValueTypeCh is the same as the DataType name. 
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Formal specification in OCL 

context DataType::sbvrEquivalents():Set(NounConceptCh) 

 post NounConceptChCreated: 

   nc.oclIsNew() and nc.oclIsTypeOf(NounConceptCh) and  

   nc.name = self.name and nc.isValueType = true 

6.2.1.2 sbvrEquivalents() of class 

Examples 

 One example of a class schema unit included in the DBLP schema (see Figure 6.10) is the 

class schema unit “Person” represented by the instance of Class whose name attribute has 

the value “Person.” The equivalent meaning, in SBVR, is represented by an object type 

schema unit represented by the instance of ObjectType whose name attribute has the value 

“person.” 

Figure 6.10 Example of mapping the abstract class "AuthoredPublication" to SBVR 

The DBLP example also includes a class schema unit “Publication” represented by the 

instance of Class whose name and isAbstract attributes have the values 

“AuthoredPublication” and True, respectively. In this case, the “AuthoredPublication” class 

schema unit is equivalent, in SBVR, to an “authored publication” object type schema unit 

represented by the instance of ObjectType whose name attribute has the value 
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“AuthoredPublication” (see Figure 6.10). Additionally, since the class is abstract, the object 

type is defined by a closed projection whose meaning defines the extension of the 

“AuthoredPublication” object type as the union of the extension of the “AuthoredBook,” 

“BookChapter” and “JournalPaper” object types. 

General description 

The sbvrEquivalents() operation of a class named c gives an instance of a characterization 

object of an ObjectType. The instance of NounConceptCh has the attributes name and 

isValueType with the values c (the same name as the Class) and false, respectively.  

Additionally, if the value of the isAbstract attribute of the Class is True, the characterization 

object of ObjectType is associated with an instance of Formulation. FormulationCh is 

associated with a projectionVariable whose rangedOverConcept attribute has the value c. 

The formulation is structured such that the concept is the union of the other concepts, as 

shown in Figure 6.8. 

Formal specification in OCL 

The sbvrEquivalents() operation of Class is formally defined in OCL as follows: 

context Class::sbvrEquivalents():Set(NounConceptCh)  

 post NounConceptChCreated: 

   let categories = self.generalization -> asSequence ->  

      collect(specific).name  

   in 

   ob.oclIsNew() and ob.oclIsTypeOf(NounConceptCh) and  

   ob.name = self.name and ob.isValueType = false and 

    

    -- if the class is abstract the object type includes a 

    -- definition structured by a closed projection 

   if self.isAbstract then  

    v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and  

    v1.nounConceptCh = ob and  

    v1.rangedOverConcept = self.name and  

 

   -- the projection is structured as a tree of disjunctions 

    self^binaryOfAtomicCategorizations( 

     BinaryOperationType::Disjunction, ob,v1, categories,  

     self.name)  

   else  

    true  

   endif  

The postcondition includes the invocation of the binaryOfAtomicOfCategorizations 

operation through the '^' OCL operator (Object Management Group 2006b, pàg. 29)7. Such 

operation constrains the structure of a formulation that corresponds to a tree of binary 

operations where the leaves are atomic formulations of categorizations as showed in 

Figure 6.10. 

                                                                    
 
 
7 The USE tool does not allow the use of the '^' operator. Therefore, the 

binaryOfAtomicCategorizations() is included in postconditions that invoke it. 
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context Element::binaryOfAtomicOfCategorizations(  

    typ:BinaryOperationType, mch:MeaningCh, v1:Variable2,  

    cates:Sequence(String), gen:String):Set(MeaningCh) 

  

 post BinaryChCreated: 

   -- for each category there is an atomic formulation based  

   -- on the categorization fact type of the category 

   categs -> forAll(cat:String |  

    at1.oclIsNew() and at1.oclIsTypeOf(Atomic) and 

    at1.factTypeName = 'is a category of'  and 

     at1.type = FactTypeType::Categorization and  

      bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

    at1.binding->indexOf(bi1) = 1 and bi1.atomic = at1 and  

    bi1.variable = v1 and 

    bi1.rangesOverConcept = cat and 

      bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and  

    at1.binding->indexOf(bi2) = 2 and bi2.atomic = at1 and  

    bi2.variable = v1 and 

    bi2.rangesOverConcept = gen and   

   

    -- if the category is not the last one then the atomic  

    -- formulation is a left leaf of a binary formulation 

    if cat <> categs->last() then 

     bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and  

     bi.type = typ and bi.first = at1 and 

     if cat = categs->first() then mch.formulation = bi  

     else BinaryOperation.allInstances() ->  

        exists(bio : BinaryOperation|  

        categs->at(categs -> indexOf(cat))-1) =  

        bio.first.oclAsType(Atomic).binding ->  

         first.name and bio.second = bi) 

     endif 

     -- if the category is the last one, the atomic  

     -- formulation is a right leaf of a binary formulation 

    else  

     BinaryOperation.allInstances() -> exists(bio|   

      categs->at(categs->indexOf(cat)-1) =  

      bio.first.oclAsType(Atomic).binding -> first().name  

      and bio.second = at1) 

      endif )   

6.2.1.3 sbvrEquivalents() of enumeration 

Example 

The DBLP example includes an enumeration schema unit represented by the instance of 

Enumeration whose name attribute has the value “Gender.” 

The equivalent knowledge is represented in SBVR by the following schema units (see 

Figure 6.11): 

 The value type schema unit represented by the instance of ValueType whose name 

attribute has the value “Gender”; the object type defined by a ClosedProjection 

whose meaning defines that the “Gender” object type is the exclusive disjunction of 

the “Male” and “Female” individual concepts; and 
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 Two individual schema units represented by two instances of IndividualConcept 

whose name attributes have the valuee "Male" and "Female," respectively. 

Figure 6.11 Example of mapping the enumeration "Gender" to SBVR 

General description 

An Enumeration named e maps to several characterization objects of Meaning: 

 One characterization object of a ValueType, NounConceptCh, with the attribute name, 

the value of which is the same as that of the attribute name of the Enumeration; and 

the valueType attribute is True;  

 For each instance of EnumerationLiteral of the enumeration, one characterization 

object of IndividualConcept with the attribute name, the value of which is the same 

value as the attribute name of the EnumerationLiteral; and  

 The characterization object of ValueType that is associated with an instance of 

Formulation. The Formulation is associated with a projectionVariable whose 

rangedOverConcept attribute has a value of e. The formulation is structured such 

that the concept is the union of instantiation formulations that binds to the 

individual concepts mentioned above. 

Formal specification in OCL 

context Enumeration::sbvrEquivalents():Set(MeaningCh) 

 post NounConceptChAndIndividualChsCreated: 

   let liters = ownedLiteral.name in  

   ob.oclIsNew() and ob.oclIsTypeOf(NounConceptCh) and  

   ob.name = self.name and ob.isValueType = true and 

    

   v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and  

   v1.NounConceptCh = ob and  

   v1.rangedOverConcept = self.name and  

 

   -- for each literal there is an individual concept 

   liters -> forAll(lit:String |  

    ind.oclIsNew() and ind.oclIsTypeOf(IndividualConceptCh) 

    and ind.name = lit  and 
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    -- for each literal there is an instantiation 

      int1.oclIsNew() and int1.oclIsTypeOf(Instantiation) and  

    int1.concept = v1 and int1.target = lit and  

 

    -- if the literal is not the last one then the 

     -- instantiation formulation is a left leaf of a 

    -- disjunction 

    if lit <> liters->last() then 

     bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and  

     bi.type = BinaryOperationType::Disjunction and  

     bi.first = int1 and 

     if lit = liters->first then ob.formulation = bi  

     else BinaryOperation.allInstances() ->  

        exists(bio : BinaryOperation|  

         liters->at(liters -> indexOf(lit))-1) =  

         bio.first.oclAsType(Instantiation).target  

       and bio.second = bi) 

     endif 

 

     -- if the literal is the last one, the instantiation  

     -- formulation is a right leaf of a disjunction 

       else  

     BinaryOperation.allInstances() -> exists(bio|   

      liters->at(liters->indexOf(cat)-1) =  

      bio.first.oclAsType(Instantiation).target and 

      bio.second = int1) 

      endif  )  

6.2.1.4 sbvrEquivalents() of attribute 

Example 

In DBLP, the conferencePaper attribute schema unit of the JournalPaper class is 

represented by the instance of Property whose attribute name has the value 

“conferencePaper,” is of Boolean type and has a cardinality of 1.  

The equivalent meaning, in SBVR (see Figure 6.12), is represented by: 

 A characteristic schema unit that describes "journal paper being conference paper." 

 

Figure 6.12 Example of mapping the attribute "conferencePaper" to SBVR 

Moreover, in DBLP, the acronym attribute schema unit of the ConferenceSeries class is 

represented by the instance of Property whose attribute name has the value “acronym” 

and has a cardinality of 1.  

The equivalent meaning, in SBVR (see Figure 6.13), is represented by: 

 An is-property-of fact type schema unit that describes that the “conference series has 

acronym”; and 
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 A structural rule schema unit represented by an instance of StructuralRule whose 

meaning states that “each conference series has exactly one acronym."  

  

 

Figure 6.13 Example of mapping the attribute "acronym" to SBVR 

General description 

A Boolean attribute, represented in UML as a Property of Boolean type, maps to a 

characterization object of Characteristic (unary fact type). The verb attribute of 

CharacteristicCh is the concatenation of the string “being” with the same value as the 

attribute name of Property. The rangesOverConcept attribute has the same value as the 

name of the Class that owns the Property. 

A non-Boolean attribute represented by a Property related to a class by ownedAttribute 

maps to the following characterization objects of Meaning:  

 One characterization object of an IsPropertyOfFactType, FactTypeCh, whose type 

attribute is equal to FactTypeType::IsPropertyOf, whose attribute name has the 

value “has,” and which has two fact type roles. The first role ranges over an object 

type whose attribute name has the same value as the attribute name of the Class that 

owns the Property. The second role has the name of the Property and its 

rangesOverConcept attribute has the same value as the attribute name of the same 

type as the Property; and 

 A characterization object of StructuralRule that corresponds to the meaning of the 

cardinality constraint (if the multiplicity value of the Property is different from 

“0..*”). 

Formal specification in OCL 

An additional operation that creates a cardinality structural rule characterization object is 

defined. 

The CardinalityCh(names, verb, factType, type, minCar, card, maxCar) operation constrains 

the structural rule characterization object that corresponds to a cardinality constraint, as 
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shown in Figure 6.13. StructuralRuleCh is associated with a QuantificationForm of type 

ClosedUniversal that introduces a Variable2 whose attribute rangesOverConcept has the 

value name1. The QuantificationForm is associated with a second QuantificationForm 

whose type (e.g., at least, at most, exactly, etc.) has the value type. The QuantificationForm 

also introduces a Variable2 whose attribute rangesOverConcept has a value equivalent to 

the last string of names. The meaning of the structural rule is a cardinality constraint 

between a certain number of names, each one of its type type, which are related through a 

fact type named verb. The meaning is that, given n concepts (strings) in names, the first n-1 

names are related between minCar and maxCar to the last concept (string) of names. 

context Element::CardinalityCh( 

    names:Sequence(String), verb:String,  

    factType:FactTypeType, type:QuantificationType,  

    minCar:Integer, maxCar:Integer[0..1]):Set(MeaningCh) 

 post:  st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and 

    fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and 

     fo.structuralRuleCh = st and  

    fo.type = QuantificationType::ClosedUniversal and  

    qu.oclIsNew() and qu.oclIsTypeOf(QuantificationForm) and 

     qu.quantificationForm = fo and  

    qu.type = typeOfQuantification(minCar, maxCar) and  

    qu.card = minCar and qu.minimCard = minCar and 

    qu.maxCard = maxCar and  

    at.oclIsNew() and at.oclIsTypeOf(Atomic) and   

    at.quantificationForm = qu and at.factTypeName = verb and  

    at.type = factType and  

    names -> forAll(na| v1.oclIsNew() and  

     v1.oclIsTypeOf(Variable2) and  

     if names->last <> na then  

      v1.quantification = fo  

     else v1.quantification = qu  

     endif and v1.rangedOverConcept = na and 

     bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

     at.binding -> indexOf(bi1) = names -> indexOf(na) and  

     bi1.atomic = at and bi1.variable = v1 and 

     bi1.rangesOverConcept = na) 

where TypeOfQuantification(min, max), defined in the context of Element, gives the type of 

the equivalent SBVR quantification depending on the min and max values: 

context Element::typeOfQuantification(min:Integer, 

    max:Integer[0..1]):QuantificationType 

 body: if max -> notEmpty() and min = max and min = 1  

   then QuantificationType::ExactlyOne 

      else  

    if max -> notEmpty() and min = max and min <> 1  

    then QuantificationType::ExactlyN  

    else  

     if min = 1 and max -> isEmpty() 

     then QuantificationType::Existential  

     else 

      if min > 1 and max -> isEmpty()  

      then QuantificationType::AtLeastN  

      else  

       if min = 0 and max -> notEmpty() 
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        then QuantificationType::AtMostN  

       else  

        if min = 0 and max -> notEmpty() and max = 1  

        then QuantificationType::AtMostOne  

        else QuantificationType::NumericRange 

         endif  

       endif  

      endif  

     endif  

    endif  

   endif   

The specification of the sbvrEquivalents() operation is as follows: 

context Property::sbvrEquivalents():Set(MeaningCh) 

 post CharacteristicChOrIsPropertyFactTypeChAndRuleChCreated: 

   let name1:String = self.class.name in 

   let name2:String = self.name in 

   let names:Sequence(String) = Sequence{name1, name2} in 

   let verb:String = 'has' in 

   let factType:FactTypeType = FactTypeType::IsPropertyOf in 

 

    -- equivalent of a boolean attribute 

   if self.type.name = 'Boolean' then  

    ch.oclIsNew() and ch.oclIsTypeOf(CharacteristicCh) and 

    ch.verb = 'being '.concat(self.name) and  

    ch.rangesOverConcept = self.class.name  

   else 

    -- equivalent of a non-boolean attribute 

   -- there is an instance of fact type characterization object 

     fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and  

    fa.name = verb and fa.type= FactTypeType::IsPropertyOf  

    and ro1.oclIsNew() and ro1.oclIsTypeOf(RoleOfFactType)  

    and ro1.factTypeCh = fa and ro1.rangesOverConcept = name1  

    and fa.roleOfFactType -> indexOf(ro1) = 1 and 

    ro2.oclIsNew() and ro2.oclIsTypeOf(RoleOfFactType) and  

    ro2.factTypeCh = fa and ro2.name = name2 and  

    ro2.rangesOverConcept = self.type.name and  

    fa.roleOfFactType -> indexOf(ro2)and 

 

     -- there is an instance of structural rule characterization  

     -- object 

    (self.lower() <> 0 or  

     self.upperValue.oclIsTypeOf(LiteralInteger)) implies 

      self^cardinalityCh(names, verb, factType,  

     self.lowerValue.oclAsType(LiteralInteger).value,  

     self.upperValue.oclAsType(LiteralInteger).value)  

   endif 

6.2.1.5 sbvrEquivalents() of association 

Example 

DBLP includes an association schema unit named “Publishes” that relates the classes 

named “Person” and “Publication.” The association schema unit is represented by the 

Association whose name attribute has the value “Publishes” and whose member ends are 

the instances of Class named “Person” and “Publication,” respectively. Additionally, as a 
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multiplicity element, the association includes the cardinality constraints between “Person” 

and “Publication.” 

The equivalent meaning is represented in SBVR with the following schema units (see 

Figure 6.14):  

 An associative fact type schema unit describing that “person publishes publication”;  

 A structural rule schema unit meaning that “each person publishes at least one 

publication”; and 

 A structural rule schema unit meaning that “each publication has at least one 

person.” 

 

Figure 6.14 Example of mapping the association 'publishes'  to SBVR 

General description 

In UML, an association represented by an instance of Association related, by memberEnd, 

to n > 1 instances of Class maps to the following characterization objects of Meaning:  

 A characterization object of an AssociativeFactType, FactTypeCh, whose type 

attribute is equal to Associative (or Partitive if the association corresponds to a 

composition). The attribute name may have different values: if the association has a 

name, the value is the name of the association; if the association corresponds to a 
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composition, the value is “includes”; if the association corresponds to an 

aggregation, the value is “is part of”; and if none of the other cases apply, the value is 

“has.” The instance of FactTypeCh has n fact type roles, and the value of the 

rangesOverConcept attribute of each role is the name of the type of a member end of 

the Association;  

 A characterization object of StructuralRule (for each member end whose multiplicity 

is different than “0..*”). StructuralRuleCh is associated with a QuantificationForm of 

type ClosedUniversal that introduces n-1 instances of Variable2 whose attribute 

rangesOverConcept has the same value as the name of the type of one of the 

opposite members. The QuantificationForm is associated with a second 

QuantificationForm whose type depends on the multiplicity values and which also 

introduces a Variable2 whose attribute rangesOverConcept has the same value as 

the name of the type of the member end that has the multiplicity constraint. 

Formal specification in OCL   

The associationType() operation, defined in the context of Association, returns whether the 

association is a composition, an aggregation or neither:   
 

context Association::associationType():AggregationKind  

 body: if self.memberEnd -> exists(pr| 

      pr.aggregation = AggregationKind::composite)  

    then  

     AggregationKind::composite  

    else  

      if self.memberEnd -> exists(pr|  

      pr.aggregation = AggregationKind::shared)  

     then AggregationKind::shared  

     else AggregationKind::none  

     endif  

    endif 

The associationName() operation, defined in the context of Association, returns the name 

that is given to the relationship. The name may have different values: if the association has 

a name, the value is the name of the association; if the association corresponds to a 

composition, the value is “includes”; if the association corresponds to an aggregation, the 

value is “is part of”; and if none of the other cases apply, the value is “has.”  

context Association::associationName():String  

 body: if self.memberEnd -> exists(pr| 

       pr.aggregation = AggregationKind::composite)  

    then if self.name -> notEmpty() then 'includes'  

      else self.name  

      endif and  

    else if self.memberEnd -> exists(pr|  

       pr.aggregation = AggregationKind::shared)  

      then 'is part of'  

     else if self.name -> notEmpty() then self.name  

       else 'has'  

       endif 

     endif 

    endif  
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The sbvrEquivalents() operation of Association is formally defined as follows: 

context Association::sbvrEquivalents():Set(MeaningCh) 

 post AssociativeFactTypeChAndStructuralRulesChCreated:  

  

   -- there is a fact type characterization object 

   fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and 

   fa.name = associationName() and fa.type = typeOfFactType()  

   and self.memberEnd -> forAll(me | ro.oclIsNew() and  

   ro.oclIsTypeOf(RoleOfFactType) and ro.factTypeCh = fa and  

   ro.name = me.name and ro.rangesOverConcept = me.type.name  

   and self.memberEnd->indexOf(me) = fa.roleOfFactType->  

    indexOf(ro)) and 

 

   -- for each cardinality constraint there is a structural 

    -- rule characterization object 

   self.memberEnd -> forAll(me| 

    (me.lower() <> 0 or  

    not me.upperValue.oclIsTypeOf(LiteralUnlimitedValue)) 

    implies 

    self^cardinalityCh(  

     self.memberEnd -> excludes(me)->union(me)-> 

      collect(name),self.factTypeName(),  

     if associationType() = AggregationKind::composite  

     then FactTypeType::Partitive  

     else FactTypeType::Associative  

     endif, 

     me.lower(),me.upperValue.oclAsType(LiteralInteger)) 

Note that the postcondition includes the invocation to the cardinalityCh() operation. 

6.2.1.6 sbvrEquivalents() of association class 

Example 

The DBLP example includes an association class schema unit represented by an instance of 

AssociationClass whose name attribute has the value “Editorship” and relates “EditedBook” 

with “editor.” 

The equivalent meaning is represented, in SBVR, by the following schema units (see Figure 

6.15): 

 An object type schema unit represented by an instance of ObjectType whose name 

attribute has the value “editorship”; the object type is defined by an instance of 

ClosedProjection whose meaning defines that “editorship” is an “actuality that an 

editor has an edited book”; 

 An associative fact type schema unit represented by an instance of 

AssociativeFactType describing that “editor has edited book.” The associative fact 

type includes the fact type role named “editor” that ranges over the object type 

“person”; and 
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 A structural rule schema unit represented by an instance of StructuralRule 

expressing the meaning that “each edited book has at least one editor.”  

 

Figure 6.15. Example of mapping the association class "Editorship" 

General description 

An association class represented by an instance of AssociationClass maps to the 

equivalents of class defined in Section 6.2.1.2 and to the equivalents of association defined 

in Section 6.2.1.5. Additionally, the object type characterization object is associated with a 

formulation. The formulation is related to a variable whose rangedOverConcept attribute 

has the value “actuality.” It is also related to two additional variables whose 

rangedOverConcept has the value of the name of the member ends of the association class. 

The formulation is associated with an ObjectificationForm whose target is the first variable 

defined, and with an instance of Atomic for the associative fact type resulting from the 

association class. 

Formal specification in OCL 

context AssociationClass::sbvrEquivalents():Set(MeaningCh) 

 post AdditionalDefinitionFormulationCreated:   

   -- the definition introduces a variable that ranges over  

   -- 'actuality' 

   v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and  

   v1.nounConceptCh.name = self.name and  

   v1.rangedOverConcept = 'actuality' and  

   -- it is structured by an objectificationForm  
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   ob.oclIsNew() and ob.oclIsTypeOf(ObjectificationForm) and  

   ob.nounConceptCh.name = self.name and ob.target = v1 and 

 

   -- there is an atomic formulation based on the fact type of  

   -- the association 

   at.oclIsNew() and at.oclIsTypeOf(Atomic) and  

   ob.formulation = at and  

   at.factTypeName = self.associationName() and 

   at.type = typeOfFactType() and  

   self.memberEnd -> forAll(me|  

    -- for each member end there is an free variable 

    v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and 

    if me.name->notEmpty() then  

      v2.rangedOverConcept = me.name 

    else v2.rangedOverConcept = me.type.name  

    endif and  

    v2.formulation = ob and 

    -- and there is a binding on the atomic formulation 

    bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

    at.binding -> indexOf(bi1) = self.memberEnd ->  

    indexOf(me) and bi1.atomic = at and bi1.variable = v2) 

6.2.1.7 sbvrEquivalents() of generalization 

Example 

The DBLP example includes a generalization schema unit represented by the instance of 

Generalization that relates the general class named “Book” and the specific class named 

“EditedBook.” 

The same meaning is represented, in SBVR, as a categorization fact type schema unit 

describing that “edited book is a category of book,” as shown in Figure 6.16. 

 

Figure 6.16. Example of mapping the generalization relationship between "Book" and 
"EditedBook" 

General description 

A generalization, represented by an instance of Generalization related to two instances of 

Class by specific and general associations, maps to a characterization object of FactType: 

the FactTypeCh whose type attribute is equal to FactTypeType::Categorization and whose 

name attribute has a value equal to “is a category of.” The FactTypeCh is associated with 

two instances of RoleOfFactType. The first one has no name and the rangesOverConcept 

attribute has the same value as the name of the specific Class of the Generalization. The 

second one has no name and the rangesOverConcept attribute has the same value as the 

name of the general Class of the Generalization. 
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Formal specification in OCL 

context Generalization::sbvrEquivalents():Set(FactTypeCh) 

 post FactTypeCh:  

   fa.oclIsNew() and fa.oclIsTypeOf(FactTypeCh) and  

   fa.name = 'is a category of' and  

   fa.type= FactTypeType::Categorization and 

   ro1.oclIsNew() and ro1.oclIsTypeOf(RoleOfFactType) and  

   ro1.factTypeCh = fa and  

   ro1.rangesOverConcept = self.specific.name and  

   fa.roleOfFactType -> indexOf(ro1) = 1 and ro2.oclIsNew() and  

   ro2.oclIsTypeOf(RoleOfFactType) and  

   ro2.factTypeCh = fa and ro2.name = self.name and  

   ro2.rangesOverConcept = self.general.name and  

   ro2.roleOfFactType -> indexOf(ro2) = 2 

6.2.1.8 sbvrEquivalents() of generalization set 

Example 

DBLP includes a generalization set schema unit represented by the instance of 

GeneralizationSet named “typeOfBook.” 

In SBVR, the equivalent meaning is represented by the following schema units (see Figure 

6.17): 

 A segmentation schema unit represented by an instance of Segmentation whose 

name attribute has the value “type of book.” The segmentation is related to the 

“book” object type as a general concept and to the “edited book” and “authored 

book” as categories. 

 A structural rule schema unit meaning that “each book is an edited book or is an 

authored book but not both.” 

 

Figure 6.17. Example of mapping the "typeOfBook" generalization set 
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also includes a generalization set schema unit represented by the instance of 

GeneralizationSet named “typeOfAuthoredPublication.”  

 

Figure 6.18. Example of mapping the "typeOfAuthoredPublication" generalization set 

In SBVR, the equivalent meaning is represented by the following schema units (see Figure 

6.18): 

 A segmentation schema unit represented by an instance of Segmentation whose 

name attribute has the value “type of publication.” The segmentation is related to 

the “authored publication” object type as a general concept and to “authored book,” 

“book chapter” and “journal paper” as categories. 

 A structural rule schema unit whose meaning is the covering constraint of the 

generalization set—that is, “each authored publication is an authored book or a 

book chapter or a journal paper.”  

 Two structural rule schema units whose meanings are the disjointness constraints 

of the generalization set—that is, “each authored book that is an authored 

publication is neither a book chapter nor a journal paper” and “each book chapter 
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paper.”Note that if the number of generalizations that form a generalization set is 

greater than two, it is not possible to represent, in SBVR, the disjointness and 

covering constraints with only one structural rule. 

If the number of generalizations that form a generalization set is greater than two, it is not 

possible to represent, in SBVR, the disjointness and covering constraints with only one 

structural rule. 

General description 

A generalization set, represented by an instance of GeneralizationSet having a partition of 

n instances of Generalization, maps to the following characterization object of Meaning:  

 A characterization object of CategorizationScheme. The CategorizationSchemeCh 

has the attribute name with the same value as the attribute name of the 

GeneralizationSet. Its generalConcept attribute has the same value as the name of 

the general class of any of the generalizations of the generalization set. Its category 

attribute has the same value as the set of names of the different specific classes of 

the generalizations of the generalization set. Its isSegmentation attribute is true if 

the generalization set is covering and disjoint.  

 If the generalization set is covering and disjoint and has only two generalizations, a 

characterization object of StructuralRule that represents both properties. The 

StructuralRuleCh is associated with a QuantificationForm whose attribute is 

ClosedUniversal and which introduces a variable whose rangedOverConcept has the 

same value as the name of the general concept of any generalization of the 

generalization set. The quantificationForm is associated with a BinaryOperation 

whose type attribute is ExclusiveDisjunction. The BinaryOperation is associated 

with two instances of Atomic, one for each generalization. 

 If the generalization set is covering and disjoint and has more than two 

generalizations, there are n-1 different characterization objects of StructuralRule. 

One StructuralRuleCh represents the isCovering property of the generalization set, 

and the others represent the disjointness property of the generalization set. 

Formal specification in OCL 

For a better structuring of the sbvrEquivalents() operation, some additional operations are 

created in the context of Class. 

The coveringAndDisjointCh(gen, subs) operation constrains the structure of a structural 

rule characterization object whose meaning is a disjointness and covering constraint of 

the partition of the concept named gen and which has the concepts named in the sequence 

subs. 

context Class::CoveringAndDisjointCh( 

    gen:String, subs:Sequence(String)):Set(MeaningCh) 

 post: st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and 

    fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and  

    fo.structuralRuleCh = st and  

    fo.type = QuantificationType::ClosedUniversal and  

      v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and  
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    v1.quantification = fo and  

    v1.rangedOverConcept = gen and 

     bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and  

    bi.type = BinaryOperationType::ExclusiveDisjunction and  

    bi.quantificationForm = fo and 

    subs -> forAll(su|  

     at.oclIsNew() and at.oclIsTypeOf(Atomic) and  

     if su = subs -> first() then bi.first = at  

     else bi.second = at  

     endif and  

     at.factTypeName = 'is a category of' and  

     at.type = FactTypeType::Categorization and  

     bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

     at.binding -> first() = bi1 and bi1.variable = v1 and 

     bi1.rangesOverConcept = su and 

     bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and  

     at.binding -> last() = bi1 and bi2.variable = v1  

     and bi2.rangesOverConcept = gen) 

The CoveringCh(gen, subs) operation constrains the structure of a structural rule 

characterization object. The meaning of the structural rule is a covering constraint of the 

partition of gen that has the concepts named in the sequence subs. Note that the structural 

rule has the same structure as a projection that defines an abstract class, as described in 

Section 6.2.1.2. 

context Element::coveringCh(gen:String, subs:Sequence(String): 

     Set(MeaningCh) 

 post:  st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and 

    fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and  

    fo.structuralRuleCh = st and  

    fo.type = QuantificationType::ClosedUniversal and  

     v1.oclIsNew() and v1.oclIsTypeOf(Variable2) and  

    v1.quantification = fo and  

     v1.rangedOverConcept = gen and 

 

    -- the structural rule is structured as a tree of  

    -- disjunctions as described in Section 6.2.1.2 

    self.binaryOfAtomicCategorizations( 

     BinaryOperationType::Disjunction, st, v1, subs, gen)  

Given a class with n subclasses, the disjointnessCh(gen, subs) operation constrains n-1 

structural rule characterization objects. The meaning of the structural rules, taken 

together, is a covering constraint of the partition of gen that has subs subclasses. 

context Element::disjointessCh(gen:String, subs:Sequence(String)):  

     Set(MeaningCh) 

 post: subs -> forAll(su | su <> subs->last and 

    st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and 

     fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm) and 

    fo.structuralRuleCh = st and  

 

    -- the structural rule is structured by a closed  

    -- universal quantification and introduces a variable  

    -- that ranges over the generic concept 

    fo.type = QuantificationType::ClosedUniversal and  

     v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and  
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    v2.quantification = fo and v2.rangedOverConcept = gen  

    and 

 

    -- the variable is restricted by an atomic formulation  

    at.oclIsNew() and at.oclIsTypeOf(Atomic) and  

    v2.restricting = at and  

    at.factTypeName = 'is a category of' and 

     at.type = FactTypeType::Categorization and  

     bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

    bi1.atomic = at and bi1.variable = v2 and 

    bi1.rangesOverConcept = su and 

    bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and  

    bi2.atomic = at and bi2.variable = v2 and 

    bi2.rangesOverConcept = gen and 

 

     -- the quantification is structured as a tree of  

    -- norFormulations 

    self.binaryOfAtomicCategorizations( 

     BinaryOperationType::NorFormulation, st,v2, subs,  

     gen))  

The sbvrEquivalents() operation of GeneralizationSet is specified as follows: 

context GeneralizationSet::sbvrEquivalents():Set(MeaningCh) 

 post CategorizationSchemeAndStructuralRulesChCreated:  

   let generalizations = self.generalization->asSequence in 

   let gen = self.generalization-> collect(general.name)-> 

      any(true) in 

   let subs = generalizations -> collect(specific.name) in 

 

   cs.oclIsNew() and cs.oclIsTypeOf(CategorizationScheme) and  

   cs.name = self.name and cs.generalConcept = gen and 

   cs.category = subs and 

   if self.isDisjoint and self.isCovering then  

    cs.isSegmentation  and 

     self.generalization->size()= 2 implies 

     self^coveringAndDisjointCh(gen, subs) 

   else 

    self.isDijoint implies self^disjointessCh(gen, subs) and 

    self.isCovering implies self^coveringCh(gen, subs)  

   endif 

6.2.1.9 sbvrEquivalents() of constraint 

Examples 

The DBLP example includes a constraint represented by an instance of Constraint named 

“XOR.” 

The knowledge meant by this constraint is represented, in SBVR, by three structural rule 

schema units, as shown in Figure 6.19: 

 One represented by an instance of StructuralRule whose meaning is that “each 

conference edition that is published in a book series issue is published neither in an 

edited book nor in a journal issue”; 
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 A second one represented by an instance of StructuralRule whose meaning is that 

“each conference edition that is published in an edited book is published neither in a 

book series issue nor in a journal issue”; and 

 A third one represented by an instance of StructuralRule whose meaning is that 

“each conference edition that is published in a journal issue is published neither in 

an edited book nor in a book series issue.” 

 

Figure 6.19. Example of mapping a "XOR" constraint 

The DBLP example also includes a constraint schema unit represented by an instance of 

Constraint whose invariant body states that the name attribute is unique for instances of 

Person. 

The equivalent knowledge is represented, in SBVR, as a reference scheme schema unit 

represented by an instance of ReferenceScheme (see Figure 6.20). The ReferenceScheme 

has, as a referenced concept, the object type named “Person” and, as the used role of fact 

type, the fact type role of the is-property-of fact type meaning “person has name.” 

 

Figure 6.20. Example of mapping the "nameIsKey" constraint 

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in edited book)

AssociativeFactType
(conference edition is
published in journal issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in book series issue)

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in book series issue)

AssociativeFactType
(conference edition is
published in journal issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in edited book )

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

ClosedUniversalQuantification

Variable
(conference edition)

:NorFormulation

AtomicFormulation

AssociativeFactType
(conference edition is
published in edited book)

AssociativeFactType
(conference edition is
published in book series issue)

operates on operates on

introduces

restricted by

based on

AssociativeFactType
(conference edition is
published in journal issue)

AtomicFormulation
based on

AtomicFormulation
based on

StructuralRule

scopes over

nameIsKey constraint mapping

context Person inv nameIsKey:
Person.allInstances()->isUnique(name)

ReferenceScheme

referencedConcept
(person)

usedRoleOfFactType
(name)



An object-oriented approach to the translation between MOF metaschemas 

 

168 

 

General description 

A constraint, represented by an instance of Constraint, depending on the type of 

constraint, maps to different characterization objects of Meaning. As stated above, this 

thesis considers, for the purposes of mapping to SBVR, two types of constraints: 

constraints expressing that the values of an attribute of a Class are unique, and predefined 

XOR constraints.  

In the first case, the constraint is mapped to a reference scheme characterization object, 

ReferenceSchemeCh. The referencedConcept attribute of ReferenceSchemeCh has the same 

value as the name attribute of the context of the constraint. The ReferenceSchemeCh is 

associated with a UsedRoleOfFactType whose rangesOverConcept has the same value as the 

name of the constrained element (i.e., the property that is unique within the instances of 

Class). 

An XOR constraint between n associations, where n>1, is mapped to n structural rule 

characterization objects, StructuralRuleCh. Each StructuralRuleCh is associated with a 

QuantificationForm of type ClosedUniversal that introduces a variable whose 

rangedOverConcept attribute has the same value as the name of the context of the 

constraint. The QuantificationForm has a second Variable2 (freeVariable) that restricts an 

Atomic for one of the associative fact types. The QuantificationForm scopes over a 

BinaryOperation whose type is NorFormulation. The NorFormulation has two operands, 

each of which is an Atomic for one of the other two associative fact types. 

Formal specification in OCL 

Given an XOR constraining n associations, the XORStructuralRuleCh(base:String, 

roles:Sequence(TupleType{verb,end})) operation constrains n structural rule 

characterization objects. The meaning of each structural rule is equivalent to “each base 

that verb1 end1 neither verb2 end2 nor verb3 end3…nor verbn endn,” where each tuple of verbj 

and endj is one of the tuples included in the roles sequence. Note that there are n rules, 

each of which is restricted by an atomic formulation based on one different associative fact 

type, as shown in Figure 6.19. The meaning of the structural rules, taken together, is the 

XOR constraint. 

context Element::xorStructuralRuleCh(base:String,  

    roles:Sequence(Tuple{verb,end})):  

    Set(MeaningCh) 

 post:  roles -> forAll(ro |  

     st.oclIsNew() and st.oclIsTypeOf(StructuralRuleCh) and 

      fo.oclIsNew() and fo.oclIsTypeOf(QuantificationForm)  

     and fo.structuralRuleCh = st and  

 

     -- the structural rule is structured by a closed  

     -- universal quantification and introduces a variable  

     -- that ranges over the base concept 

     fo.type = QuantificationType::ClosedUniversal and  

      v2.oclIsNew() and v2.oclIsTypeOf(Variable2) and  

     v2.quantification = fo and v2.rangedOverConcept = base  

     and 
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     -- the variable is restricted by an atomic formulation  

     at.oclIsNew() and at.oclIsTypeOf(Atomic) and  

     v2.restricting = at and at.factTypeName = ro.verb and 

      at.type = FactTypeType::AssociativeFactType and  

      bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

     bi1.atomic = at and bi1.variable = v2 and 

     bi1.rangesOverConcept = base and 

     bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and  

     bi2.atomic = at and bi2.variable = v2 and 

     bi2.rangesOverConcept = ro.end and 

 

      -- the quantification is structured as a tree of  

     -- norFormulations 

     self^binaryOfAtomicOfAssociativeFactTypes( 

      BinaryOperationType::NorFormulation, st,v1,  

       roles->excluding(ro), base))  

The binaryOfAtomicOfAssociativeFactTypes() operation constrains the structure of a 

formulation that corresponds to the tree of binary operations where the leaves are atomic 

formulations of associative fact types, as shown in Figure 6.19.  

context Element::binaryOfAtomicOfAssociativeFactTypes(  

    typ:BinaryOperationType, mch:MeaningCh, v1:Variable2,  

    roles:Sequence(TupleType(verb:String,end:String)),  

    base:String):Set(MeaningCh) 

  

 post BinaryChCreated: 

   -- for each tuple there is an atomic formulation based  

   -- on an associative fact type where the base is a role,  

   -- and the verb and the other role are one of the roles 

   roles -> forAll(rol:String |  

    at1.oclIsNew() and at1.oclIsTypeOf(Atomic) and 

    at1.factTypeName = rol.verb  and 

       at1.type = FactTypeType::AssociativeFacType and  

      bi1.oclIsNew() and bi1.oclIsTypeOf(Binding) and  

    bi1.order = 1 and bi1.atomic = at1 and  

    bi1.variable = v1 and 

    bi1.rangesOverConcept = base and 

    bi2.oclIsNew() and bi2.oclIsTypeOf(Binding) and  

    bi2.order = 2 and bi2.atomic = at1 and  

    bi2.variable = v1 and 

    bi2.rangesOverConcept = rol.end and   

   

    -- if the role is not the last one then the atomic  

    -- formulation is a left leaf of a binary formulation 

    if rol <> roles->last then 

     bi.oclIsNew() and bi.oclIsTypeOf(BinaryOperation) and  

     bi.type = typ and bi.first = at1 and 

     if rol = roles->first then mch.formulation = bi  

     else  

      BinaryOperation.allInstances() ->  

       exists(bio : BinaryOperation|  

        roles->at(roles -> indexOf(rol))-1) =  

         bio.first.oclAsType(Atomic).binding ->  

        last.name and bio.second = bi) 

     endif 
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    -- if the rol is the last one, the atomic  

    -- formulation is a right leaf of a binary formulation

       else  

     BinaryOperation.allInstances() -> exists(bio|   

      roles->at(roles->indexOf(rol)-1) =  

      bio.first.oclAsType(Atomic).binding -> last.name  

      and bio.second = at1) 

    endif 

The formal specification of the sbvrEquivalents() operation of Constraint is as follows:  

context Constraint::sbvrEquivalents():Set(MeaningCh) 

 post MeaningsChCreated:  

   let IsUniqueConstraint = self.constrainedElement -> size()=1  

     and self.specification.oclAsType(Expression).symbol = 

     self.context_.name.concat(' .allInstances() ->  

      isUnique(').concat(self.constrainedElement->first(). 

      oclAsType(Property).name).concat(')') in 

   let XORConstraint = self.valueSpecification. 

     oclAsType(Expression).symbol = 'XOR' in 

   let XORAssociations =  

     self.constrainedElement.oclAsType(Association) in 

    let base = self.context.name in 

    let roles = XORAssociations -> collect( ass |  

     Tuple{ass.name,ass.memberEnd-> any(me| me.type.name <> 

      base).type.name) 

   in 

 

   IsUniqueConstraint implies 

    (re.oclIsNew() and re.oclIsTypeOf(ReferenceSchemeCh) and  

    re.referencedConcept -> includes(self.context.name) and  

    self.constrainedElement -> forAll(cel|  

     us.oclIsNew() and us.oclIsTypeOf(UsedRoleOfFactType)  

     and us.referenceSchemeCh = re and  

     us.rangesOverConcept = cel.oclAsType(Property).name)  

     and 

   XORConstraint implies  

    self^xorStructuralRuleCh(base, roles) 

6.2.2 SBVR meanings side 

The evaluation of the umlEquivalents() operation on an SBVR schema unit whose mapping 

kind is HasEquivalents gives the set of UML characterization objects that are equivalent to 

the SBVR schema unit. The signature and precondition of the operation in OCL is as 

follows: 

context Meaning::umlEquivalents():Set(ElementCh) 

 pre: umlMappingKind() = MappingKind::HasEquivalents 

 post definingTheResult: 

   result = ElementCh.allInstances() –  

       ElementCh.allInstances@pre() 

The effect of the operation is not redefined in the subtypes of Meaning because all of the 

instances of the subtypes that represent schema units have the mapping kind isIncluded. 
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6.3 includedInUml() operations 

This section describes the includedInUml() and includedInSBVR operations in the context 

of Meaning and Element, respectively.  

6.3.1 UML side 

The evaluation of the includedInSbvr() operation, in the context of Element, on a UML 

schema unit whose mapping kind is IsIncluded gives an SBVR characterization object. The 

signature and precondition of the operation in OCL are as follows: 

context Element::includedInSbvr():MeaningCh 

 pre: sbvrMappingKind() = MappingKind::IsIncluded 

 post definingTheResult: 

    result = (MeaningCh.allInstances() –  

      MeaningCh.allInstances@pre()) -> any(True) 

The effect of the operation is defined in the subtypes of Element such that some or all of 

their instances represent schema units whose mapping kind is IsIncluded.  

The effect of the operation is not redefined in the subtypes of Element because all of the 

instances of the subtypes that represent schema units have the mapping kind 

hasEquivalents. 

6.3.2 SBVR side 

The evaluation of the includedInUml() operation, in the context of the Meaning operation 

on an SBVR schema unit whose mapping kind is IsIncluded, gives a UML characterization 

object. The signature and precondition of the operation in OCL are as follows: 

context Meaning::includedInUml():ElementCh 

 pre: umlMappingKind() = MappingKind::IsIncluded 

 post definingTheResult: 

    result = (ElementCh.allInstances() –  

      ElementCh.allInstances@pre()) -> any(True) 

The effect of the operation is defined in the subtypes of Meaning such that some or all of 

their instances represent schema units whose mapping kind is IsIncluded. 

In order to facilitate working with the cardinalities of the different subtypes of 

Quantification, two additional operators are defined in Quantification: lowerValue() and 

upperValue(). They return the minimum cardinality and maximum cardinality of each type 

of quantification, respectively. Their specifications are defined as abstract and they are 

redefined in the subtypes of Quantification as follows: 

context UniversalQuantification::lowerValue():Integer 

 body: 0 

 

context UniversalQuantification::upperValue():UnlimitedNatural 

 body: UnlimitedNatural 

 

context AtLeastNQuantification::lowerValue():Integer 

 body: self.minimumCardinality.value 

 

context AtLeastNQuantification::upperValue():UnlimitedNatural 
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 body: UnlimitedNatural 

 

context NumericRangeQuantification::lowerValue():Integer 

 body: self.minimumCardinality.value 

 

context NumericRangeQuantification::upperValue():Integer 

 body: self.maximumQuantification.value 

 

context AtMostNQuantification::lowerValue():Integer 

 body: 0 

 

context AtMostNQuantification::upperValue():Integer 

 body: self.maximumCardinality.value 

 

context ExactlyNQuantification::lowerValue():Integer 

 body: self.cardinality.value 

 

context ExactlyNQuantification::upperValue():Integer 

 body: self.cardinality.value 

Moreover, given a structural rule whose meaning is a multiplicity constraint, the operation 

quantificationType() returns the subtype of Quantification that the universal quantification 

of the structural rule scopes over. 

context StructuralRule::quantificationType():Quantification 

 body: self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Quantification) 

6.3.2.1 includedInUml() of value type 

General description 

A ValueType maps to a characterization object of a DataType whose attribute name has the 

same value as the attribute name of the ValueType. It maps to an Enumeration if the value 

type is defined as the union of individual concepts. 

Formal specification in OCL 

context ValueType::includedInUml():MeaningCh 

 post DataTypeOrEnumerationChCreated: 

   dt.oclIsNew() and 

   if not ClosedProjection.allInstances() -> exists(cp|  

     cp.nounConcept = self and cp.isEnumeration()) 

   then 

    dt.oclIsTypeOf(DataTypeCh) and dt.name = self.name and  

    if self.name = 'String' or self.name = 'Integer' then 

      dt.isPrimitiveType = true  

    else dt.isPrimitiveType = false  

    endif 

   else  

    dt.oclIsTypeOf(EnumerationCh) and dt.name = self.name and 

    ClosedProjection.allInstances() -> any(cp |  

     cp.nounConcept = self and cp.isEnumeration()).  

     logicalFormulation.sequenceOfLiterals() -> forAll(lit|  

     li.oclIsNew() and li.oclIsTypeOf(Literal) and  

     li.enumerationCh = dt and li.name = lit)  

   endif 
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Given a logical formulation that structures a closed projection as a tree of disjunctions of 

instantiation formulations, as shown in Figure 6.9, the sequenceOfLiterals() operation 

returns the sequence of individual concepts bound in the instantiation formulations of the 

leaves of the tree (i.e., the names of the literals). 

context LogicalFormulation::sequenceOfLiterals:Sequence(String) 

 body: self.oclAsType(Disjunction).logicalOperand1. 

    oclAsType(InstantiationFormulation).bindableTarget.name->  

    union( 

    if self.oclAsType(Disjunction).logicalOperand2. 

     oclIsTypeOf(InstantiationFormulation)  

    then 

     self.oclAsType(Disjunction).logicalOperand2. 

     oclAsType(InstantiationFormulation).bindableTarget.name  

    else  

       self.oclAsType(Disjunction).logicalOperand2. 

      sequenceOfLiterals() 

    endif 

6.3.2.2 includedInUml() of object type 

General description 

An ObjectType maps to a characterization object of a Class or of an AssociativeClass with 

the attribute name that has the same value as the attribute name of the ObjectType. It maps 

to an AssociativeClass if the object type is defined as the objectification of an associative 

fact type. In this case, the elements of the AssociativeClassCh created are the union of the 

elements in the Class and the elements created in the includedInUml() of an associative fact 

type (see Section 6.3.2.5, below). 

Formal specification in OCL 

context ObjectType::includedInUml():MeaningCh 

 post ClassOrAssociationClassChCreated: 

   let str1:StructuralRule = StructuralRule.allInstances() ->  

     any(st| st.isMultiplicity() and 

     st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.rangedOverConcept =  

     self.closedProjection.logicalFormulation. 

     oclAsType(Objectification). 

     consideredLogicalFormulation. 

     oclAsType(AtomicFormulation).factType.factTypeRole -> 

      last().nounConcept) in 

 

   let str2:StructuralRule = StructuralRule.allInstances() -> 

     any(st| st.isMultiplicity() and 

     st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.rangedOverConcept =  

     self.closedProjection.logicalFormulation. 

     oclAsType(Objectification). 

     consideredLogicalFormulation. 

     oclAsType(AtomicFormulation).factType.factTypeRole -> 

     first().nounConcept) in 
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   let asft:AssociativeFactType = self.closedProjection. 

     logicalFormulation.oclAsType(Objectification). 

     consideredLogicalFormulation. 

     oclAsType(AtomicFormulation).factType. 

     oclAsType(AssociativeFactType) in 

    

   if ClosedProjection.allInstances() -> exists(cp|  

    cp.nounConcept = self and cp.isObjectification() 

   then 

   as.oclIsNew() and as.oclIsTypeOf(AssociationClassCh) and  

   as.name = self.name and asft.factTypeRole -> forAll(ro|  

     me.oclIsNew() and  

     me.oclIsTypeOf(AssociationClassMemberEnd) and  

     me.associationClassCh = as and me.name = ro.name and  

     me.typeName = ro.nounConcept.name and 

     me.isDerived = false and me.isDerivedUnion = false and  

     me.aggregation_ = AggregationKind::none and 

     (if ro.order = 1  

      then str2 -> isEmpty() implies 

       (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

         str2 -> notEmpty() implies 

        (me.lowerValue =  

        str2.quantificationType().lowerValue() and 

          me.upperValue =  

        str2.quantificationType().upperValue()) 

       else 

       str1 -> is Empty() implies  

       (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

      str2 -> notEmpty() implies 

       (me.lowerValue =  

        str1.quantificationType().lowerValue() and 

          me.upperValue =  

        str1.quantificationType().upperValue()) 

       endif     

   else 

    cl.oclIsNew() and cl.oclIsTypeOf(ClassCh) and 

    cl.name = self.name and 

    if ClosedProjection.allInstances() -> exists(cp|  

     cp.nounConcept = self and cp.isAbstract 

    then cl.isAbstract 

    else cl.isAbstract = false 

      endif 

   endif          

6.3.2.3 includedInUml() of individual concept 

General description 

An IndividualConcept that is a schema unit maps to a characterization object of an 

Enumeration. The attribute name of the Enumeration has the same value as the attribute 

name of the ObjectType that uses this IndividualConcept in its definition. 

Formal specification in OCL 

context IndividualConcept::includedInUml():EnumerationCh 
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 post EnumerationChCreated:  

   let cp:ClosedProjection =  

    self.variable.isInProjection.oclAsType(ClosedProjection)  

   in 

   en.oclIsNew() and en.oclIsTypeOf(EnumerationCh) and  

   en.name = cp.nounConcept.name and  

   cp.logicalFormulation.sequenceOfLiterals()-> forAll (lit | 

    li.oclIsNew() and li.oclIsTypeOf(Literal) and  

    li.enumerationCh = en and li.name = lit) 

6.3.2.4 includedInUml() of characteristic 

General description 

A Characteristic maps to a characterization object of a Property. The PropertyCh has the 

concatenation of 'being ' and name attribute as the name of the Characteristic and the 

attribute type has the same value 'Boolean'. The ownerClassName attribute has the same 

value as the name of the concept that the role ranges over. The lowerValue and upperValue 

attributes have 1 as values. 

Formal specification in OCL 

context Characteristic::includedInUml():PropertyCh 

 post PropertyChCreated:  

   pr.oclIsNew() and pr.oclIsTypeOf(PropertyCh) and  

   'being '.concat(pr.name) = self.name and  

   pr.ownerClassName = self.factTypeRole ->  

    first().nounConcept.name and 

   pr.type = 'Boolean' and 

   pr.isDerived = false and pr.isDerivedUnion = false and  

   pr.aggregation_ = AggregationKind::none and  

   pr.lowerValue = 1 and pr.upperValue = 1 

6.3.2.5 includedInUml() of is-property-of fact type 

General description 

An IsPropertyOfFactType maps to a characterization object of a Property. The name 

attribute of the PropertyCh is the name of the second role of the IsPropertyOfFactType, 

while its type attribute has the same value as the name of the concept that the second role 

ranges over. The ownerClassName attribute has the same value as the name of the concept 

that the first role ranges over. The lowerValue and upperValue attributes are determined 

by the type of quantification formulation that defines the multiplicity constraint. 

Formal specification in OCL 

context IsPropertyOfFactType::includedInUml():PropertyCh 

 post PropertyChCreated:  

   let str:StructuralRule = StructuralRule.allInstances() ->  

    any(st| st.isMultiplicity() and  

     st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.rangedOverConcept.name =  

     self.factTypeRole-> first().nounConcept.name and 

      st.closedLogicalFormulation.    

     oclAsType(ClosedUniversalQuantification). 

     scopeFormulation.oclAsType(Quantification). 
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     introducedVariable.rangedOverConcept.name =  

     self.factTypeRole -> last().name)  

   in 

   pr.oclIsNew() and pr.oclIsTypeOf(PropertyCh) and  

   pr.name = self.factTypeRole -> last().nounConcept.name and  

   pr.ownerClassName = self.factTypeRole ->  

    first().nounConcept.name and 

   pr.type = self.factTypeRole-> last().name and 

   pr.isDerived = false and pr.isDerivedUnion = false and  

   pr.aggregation_ = AggregationKind::none and  

      

   str -> notEmpty() implies 

    (pr.lowerValue = str.quantificationType().lowerValue() and  

     pr.upperValue = str.quantificationType().upperValue()) 

6.3.2.6 includedInUml() of associative or partitive fact type  

General description 

In general, an AssociativeFactType and a PartitiveFactType map to a characterization object 

of an Association. However, if there is an object type defined as the objectification of the 

AssociativeFactType or the PartitiveFactType, the FactType maps to a characterization 

object of an AssociationClass.  

In the first case, the name attribute of the AssociationCh is the name of the 

AssociativeFactType. The AssociationCh has two instances of AssociationMemberEnd. The 

first one, if the first fact type role has a name, has that name as its name attribute. The 

typeName attribute has the same value as the name of the object type that the role scopes 

over. The aggregation attribute has the value AggregationKind::composite if the name of 

the AssociativeFactType is “is included in.” The aggregation attribute has the value 

AggregationKind::shared if the name of the AssociativeFactType is “is part of.” Otherwise, 

the aggregation attribute has the value AggregationKind::none. The values of the 

lowerValue and upperValue attributes are determined by the existence of a structural rule 

that restricts the multiplicity of the second role with respect to this first role. Similarly, the 

values of the second AssociationMemberEnd are defined from the values of the second fact 

type role. 

In the second case, the name attribute of the AssociationClassCh is the name of the 

ObjectType of the objectification. The AssociationClassCh has two instances of 

AssociationClassMemberEnd. Both have the same values as those defined for the 

AssociationMemberEnd of the AssociationCh. 

Formal specification in OCL 

context AssociativeFactType::includedInUml():MeaningCh 

 post AssociationChorAssociationClassCreated:  

   -- multiplicity structural rule 1 

   let str1:StructuralRule = StructuralRule.allInstances-> 

     any(st| st.isMultiplicity and 

      st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      introducedVariable.rangedOverConcept =  

      self.factTypeRole -> last().nounConcept) in 
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   -- multiplicity structural rule 2 

   let str2:StructuralRule = StructuralRule.allInstances-> 

     any(st| st.isMultiplicity and 

      st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      introducedVariable.rangedOverConcept =  

      self.factTypeRole -> first().nounConcept) in 

          

   if not ClosedProjection.allInstances() -> exists(cp|  

     cp.isObjectification and  

     cp.logicalFormulation.oclAsType(Objectification). 

     consideredLogicalFormulation. 

     oclAsType(AtomicFormulation).factType. 

     oclAsType(AssociativeFactType) = self)  

   then 

   -- the associative fact type maps to an association 

   as.oclIsNew() and as.oclIsTypeOf(AssociationCh) and 

   (if self.name <> 'has' or self.name <> 'is part of' or  

     self.name <> 'includes'  

    then 

     as.name = self.name  

    else self.name ->isEmpty()     

      endif) and 

    as.isAbstract = false and self.factTypeRole  

    -> forAll(ro| me.oclIsNew() and 

     me.oclIsTypeOf(AssociationMemberEnd)  

     and me.associationCh = as and me.name = ro.name and  

     me.typeName = ro.nounConcept.name and 

     me.isDerived = false and me.isDerivedUnion = false and  

     (if self.name = 'is part of' and  

      self.factTypeRole->last = ro    

        then  

      me.aggregation = AggregationKind::shared  

      else me.aggregation = AggregationKind::none  

      endif) and 

     (if self.factTypeRole->first = ro  

     then 

      str2 -> isEmpty() implies 

      (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

      str2 -> notEmpty() implies 

        (me.lowerValue =  

        str2.quantificationType().lowerValue() and 

          me.upperValue =  

        str2.quantificationType().upperValue()) 

       else 

       str1 ->isEmpty() implies  

       (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

      str2 -> notEmpty() implies 

        (me.lowerValue =  

        str1.quantificationType().lowerValue() and 

          me.upperValue =  

        str1.quantificationType().upperValue())  

       endif) 



An object-oriented approach to the translation between MOF metaschemas 

 

178 

 

   else 

    -- the associative fact type maps to an association class 

    asc.oclIsNew() and asc.oclIsTypeOf(AssociationClassCh)  

    and asc.name = Objectif.nounConcept.name and 

    self.factTypeRole forAll(ro|  

     me.oclIsNew() and 

     me.oclIsTypeOf(AssociationClassMemberEnd) and  

     me.associationClassCh = asc and me.name = ro.name and  

     me.typeName = ro.nounConcept.name and 

     me.isDerived = false and me.isDerivedUnion = false and  

     (if self.name = 'is part of' and  

      self.factTypeRole->last = ro  

      then  

      me.aggregation = AggregationKind::shared  

      else me.aggregation = AggregationKind::none  

      endif) and 

     (if self.factTypeRole.first = ro  

     then 

      str2 -> isEmpty() implies 

       (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

      str2 -> notEmpty() implies 

        (me.lowerValue =  

        str2.quantificationType().lowerValue() and 

          me.upperValue =  

        str2.quantificationType().upperValue())  

      else 

       str1 ->isEmpty() implies  

       (me.lowerValue = 0 and  

       me.upperValue.oclIsTypeOf(UnlimitedNatural)) and 

      str2 -> notEmpty() implies 

       (me.lowerValue =  

        str1.quantificationType().lowerValue() and 

          me.upperValue =  

        str1.quantificationType().upperValue()) 

       endif) 

   endif 

6.3.2.7 includedInUml() of categorization fact type 

General description 

A CategorizationFactType maps to a characterization object of Generalization. The 

specificClassName attribute of the GeneralizationCh has the same value as the name of the 

concept that the first role of the CategorizationFactType ranges over. The 

generalClassName attribute of the GeneralizationCh has the same value as the name of the 

concept that the second role of the CategorizationFactType ranges over. 

Formal specification in OCL 

 context CategorizationFactType::includedInUml():GeneralizationCh 

 post GeneralizationChCreated:  

   ge.oclIsNew() and ge.oclIsTypeOf(Generalization) and 

   ge.generalClassName = self.factTypeRole -> 

     last.nounConcept.name and  

   ge.specificClassName = self.factTypeRole -> 



6 Translation mapping expressions between UML and SBVR meanings 

179 

 

     ->first().nounConcept.name) 

6.3.2.8 includedInUml() of categorization schema 

General description 

A CategorizationSchema and a Segmentation map to a characterization object of 

GeneralizationSet. The attribute name of the GeneralizationSetCh has the same value as the 

name attribute of the CategorizationSchema. For each category of the 

CategorizationSchema, the GeneralizationSetCh has a Participant whose generalClassName 

attribute has the value of the name attribute of the general concept of the 

CategorizationSchema and whose specificClassName attribute has the same value as the 

name attribute of the category. The isCovering and isDisjoint attributes have the value true 

if there are structural rules whose meanings are the covering and disjointness constraints, 

as described in Section 6.1.2. 

Formal specification in OCL 

context CategorizationSchema::includedInUml():GeneralizationSetCh 

 post GeneralizationSetChCreated:  

   let strCoveringAndDisjoint:StructuralRule =  

    StructuralRule.allInstances() -> any(st|  

    st.isDisjointAndCovering and st.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    introducedVariable.rangedOverConcept.name =  

    self.generalConcept.name and 

    self.category.name -> includesAll(  

    st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.sequenceOfCategories())   

   in           

   let strCovering:Set(StructuralRule) =  

    StructuralRule.allInstances() -> select(st|  

    st.isCovering and st.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    introducedVariable.rangedOverConcept.name =  

    self.generalConcept.name and 

    self.category.name -> includesAll(  

    st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.sequenceOfCategories())  

   in           

   let strDisjoint:StructuralRule =  

    StructuralRule.allInstances()-> select(st|  

    st.isDisjoint and st.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    introducedVariable.rangedOverConcept.name =  

    self.generalConcept.name and 

    self.category.name -> includesAll(  

    st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.sequenceOfCategories()) 

   in           

   ge.oclIsNew() and ge.oclIsTypeOf(GeneralizationSetCh) and  

   ge.name = self.name and self.category->forAll(ca|  
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    pa.oclIsNew() and pa.oclIsTypeOf(Participant) and  

    pa.generalClassName = self.generalConcept.name and  

    pa.specificClassName = ca.name and  

    pa.generalizationSetCh = ge) and 

   

   self.oclIsTypeOf(Segmentation) implies  

    (ge.isCovering = true and ge.isDisjoint = true) and 

   

   (strCoveringAndDisjoint->notEmpty() implies  

    (ge.isCovering = true and ge.isDisjoint = true) and  

 

   (strCovering-> size() = self.category ->size() – 1) implies  

    (ge.isCovering = true) and  

   

   (strDisjoint->size() = self.category ->size() – 1) implies  

    (ge.isDisjoint = true) 

Given a logical formulation that structures a rule that means the covering and/or 

disjointness of a categorization scheme, the sequenceOfCategories() operation returns the 

sequence of names of the categories of the categorization scheme included in the rule. 

context LogicalFormulation::sequenceOfCategories():  

    Sequence(String) 

 body:  if self.oclIsTypeOf(ExclusiveDisjunction)  

    then  

     self.oclAsType(ExclusiveDisjunction).logicalOperand1. 

     oclAsType(AtomicFormulation).factType.factTypeRole ->  

     first().nounConcept.name -> union(  

     self.oclAsType(ExclusiveDisjunction).logicalOperand2. 

      oclAsType(AtomicFormulation).factType.factTypeRole ->  

      first().nounConcept.name)  

    else 

     if self.oclIsTypeOf(Disjunction) then   

      self.oclAsType(Disjunction).logicalOperand1. 

      oclAsType(AtomicFormulation).factType.factTypeRole  

      ->first().nounConcept.name -> union( 

      if self.oclAsType(Disjunction).logicalOperand2. 

      oclIsTypeOf(AtomicFormulation)  

      then 

       self.oclAsType(Disjunction).logicalOperand2. 

      oclAsType(AtomicFormulation).factType.factTypeRole  

      -> first().nounConcept.name  

      else  

        self.oclAsType(Disjunction).logicalOperand2. 

       sequenceOfCategories() 

      endif  

     else  

      self.oclAsType(NorFormulation).logicalOperand1. 

      oclAsType(AtomicFormulation).factType.factTypeRole  

      -> first().nounConcept.name -> union( 

      if self.oclAsType(NorFormulation).logicalOperand2. 

       oclIsTypeOf(AtomicFormulation)  

      then 

       self.oclAsType(NorFormulation).logicalOperand2. 

       oclAsType(AtomicFormulation).factType.factTypeRole  

       -> first().nounConcept.name  
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      else  

         self.oclAsType(NorFormulation).logicalOperand2. 

       sequenceOfCategories() 

      endif  

     endif  

     endif  

6.3.2.9 includedInUml() of reference scheme 

General description 

A ReferenceScheme that is a schema unit maps to a characterization object of a constraint, 

ConstraintCh, as follows: (i) the value of the namespace attribute of the ConstraintCh is the 

same as the name attribute of the referenced concept of the reference scheme; (ii) the 

symbolExpression attribute is the concatenation of the referenced concept with 

“allInstances->isUnique(” and with the name of the simply used roles of the reference 

scheme; and (iii) for each simply used role of the reference scheme, there is an instance of 

ConstrainedElement whose name attribute has the same name as the role and whose type 

is “property.”   

Formal specification in OCL 

context ReferenceScheme::includedInUml():ConstraintCh 

 post ConstraintCh:  

   ch.oclIsNew() and ch.oclIsTypeOf(ConstraintCh) and 

   ch.namespace = self.referencedConcept.name -> any(true) and 

   ch.bodyOpaqueExpression = self.referencedConcept.name ->  

   any(true).concat('.allInstances-> isUnique('.concat( 

   self.simplyUsedRole -> any(true).name.concat(')'))) and 

   self.simplyUsedRole -> forAll(ro |  

    co.oclIsNew() and co.oclIsTypeOf(ConstrainedElement) and  

    co.constraintCh = ch and co.name = ro.name and  

    co.type = TypeCons::property) 

6.3.2.10 includedInUml() of structural rule 

General description 

Depending on how its closed universal quantification is structured, a StructuralRule that is 

a schema unit may map to different characterization objects of ElementCh: 

 A structural rule whose meaning corresponds to a multiplicity constraint is mapped 

to a characterization object (AttributeCh, AssociationCh or AssociationClassCh) 

resulting from the mapping of the fact type that the atomic formulation is based on.  

 A structural rule whose meaning corresponds to a covering and/or disjointness 

constraint is mapped to a characterization object of a generalization set, 

GeneralizationSetCh.  

 A structural rule whose meaning corresponds to an XOR constraint is mapped to a 

characterization object of a constraint, ConstraintCh. 
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Formal specification in OCL 

context StructuralRule::includedInUml():ElementCh 

 post ElementChCreated:  

   self.isMultiplicity() implies  

    self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Quantification). 

    scopeFormulation.oclAsType(AtomicFormulation). 

    factType^includedInUml() and 

   

   self.isDisjointAndCovering() implies 

    self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(ExclusiveDisjunction). 

    logicalOperand1.oclAsType(AtomicFormulation). 

    factType.oclAsType(CategorizationFactType).factTypeRole->  

    first().categorizationScheme -> any(true)^includedInUml() 

   and 

   self.isCovering() implies 

    self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation).factType. 

    oclAsType(CategorizationFactType).factTypeRole ->  

    first().categorizationScheme -> any(true)^includedInUml()  

   and 

   self.isDisjoint() implies 

    self.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(NorFormulation). 

    logicalOperand1.oclAsType(AtomicFormulation).factType. 

    oclAsType(CategorizationFactType).factTypeRole ->  

    first().categorizationScheme -> any(true)^includedInUml()  

   and 

   self.isXOR() implies 

    (co.oclIsNew() and co.oclIsTypeOf(ConstraintCh) and  

   vs.symbolExpression = 'XOR' and 

   co.namespace  = self.closedLogicalFormulation. 

   oclAsType(ClosedUniversalQuantification). 

   scopeFormulation.oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation).factType. 

   oclAsType(AssociativeFactType).factTypeRole ->  

   first().nounConcept.name and  

   st.closedLogicalFormulation. 

   oclAsType(ClosedUniversalQuantification). 

   scopeFormulation.restrictedFactTypes() ->  

   forAll( rc| ce.oclIsNew() and  

    ce.oclIsTypeOf(ConstrainedElement) and  

    ce.constraintCh = co and ce.type = ConsType::Association  

    and ce.name = rc.name and  

    ce.membersName = rc.factTypeRole->collect(name) and  

    ce.membersType = rc.factTypeRole ->  

      collect(nounConcept.name)) 
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Given a logical formulation that structures a rule that means, partially, an XOR constraint, 

the restrictedFactTypes() operation returns the sequence of fact types included in the rule. 

context LogicalFormulation::restrictedFactTypes():  

    Sequence(FactType) 

 body: self.oclAsType(NorFormulation).logicalOperand1. 

    oclAsType(AtomicFormulation).factType  -> union( 

    if self.oclAsType(NorFormulation).logicalOperand2. 

     oclIsTypeOf(AtomicFormulation)  

    then 

    self.oclAsType(NorFormulation).logicalOperand2. 

     oclAsType(AtomicFormulation).factType 

    else  

      self.oclAsType(NorFormulation).logicalOperand2. 

     restrictedFactTypes() 

    endif  

6.4 Translation mapping constraints 

As described in Chapter 3, let 𝑀 = (𝑀𝑆1 , 𝑀𝑆1 , Σ) be a mapping. 𝑀 is a translation mapping 

when, for any 𝑆1 and 𝑆2 such that 𝑆1 , 𝑆2 is an instance of 𝑀, then 𝑆1 and 𝑆2 are 

translations of each other. Therefore, in a translation mapping, the set of constraints Σ is 

satisfied when the two schemas are translations of each other. As stated in Section 3.3.5, 

the translation mapping constraints, Σ, consist of exactly two constraints, called complete 

and consistent mapping to 𝑆2 and complete and consistent mapping to 𝑆1. The intuitive 

meaning of the constraints, as described in Section 3.3.5, is that 𝑆1 , 𝑆2 is an instance of 

the translation mapping 𝑀 if each translatable schema unit of 𝑆1 is consistently mapped to 

𝑆2 and each translatable schema unit of 𝑆2 is consistently mapped to 𝑆1 . 

Therefore, let 𝑀 = (𝑀𝑈𝑚𝑙, 𝑀𝑆𝑏𝑣𝑟, Σ)  be a translation mapping where 𝑀𝑈𝑚𝑙 and 𝑀𝑆𝑏𝑣𝑟 

are instances of the UML metaschema and the SBVR metaschema, respectively. The 

translation mapping constraints Σ consist of exactly two constraints, called complete and 

consistent mapping to Sbvr and complete and consistent mapping to Uml.   

context Element inv completeAndConsistentMappingToSbvr: 

 isSchemaUnit() and  

 (sbvrMappingKind() = MappingKind::HasEquivalents or  

 sbvrMappingKind() = MappingKind::IsIncluded) implies  

  mappedToSbvr()  

 

context Meaning inv completeAndConsistentMappingToUml: 

 isSchemaUnit() and  

 (umlMappingKind() = MappingKind::HasEquivalents or  

 umlMappingKind() = MappingKind::IsIncluded) implies 

   mappedToUml() 

The consistency condition is checked by two operations: mappedToSBVR() and 

mappedToUml(), which return a True value if the condition is satisfied and a False value 

otherwise. The following is the formal specification of the two operations, in OCL: 
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context Element::mappedToSbvr():Boolean 

 body: if sbvrMappingKind() = MappingKind::HasEquivalents  

   then 

     self.sbvrEquivalents() -> forAll(th:MeaningCh| 

    th.schemaUnit()->notEmpty() and  

    th.schemaUnit().umlMappingKind() =  

     MappingKind::IsIncluded and 

    th.schemaUnit().includedInUml().schemaUnit() = self) 

    else 

     if sbvrMappingKind() = MappingKind::IsIncluded  

    then 

     self.includedInSbvr().schemaUnit()->notEmpty() and  

     self.includedInSbvr().schemaUnit().umlMappingKind()  

      = MappingKind::HasEquivalents and  

     self.includedInSbvr().schemaUnit().umlEquivalents(). 

      schemaUnit()->includes(self) 

     else 

       False 

      endif 

   endif 

 

context Meaning::mappedToUml():Boolean 

 body: if umlMappingKind() = MappingKind::HasEquivalents  

   then 

     self.umlEquivalents() -> forAll(el:ElementCh| 

    el.schemaUnit()->notEmpty() and  

    el.schemaUnit().sbvrMappingKind() =  

     MappingKind::IsIncluded  

    and el.schemaUnit().includedInSbvr().schemaUnit() = self) 

    else 

     if umlMappingKind() = MappingKind::IsIncluded  

    then 

     self.includedInUml().schemaUnit()->notEmpty() and  

     self.includedInUml().schemaUnit().sbvrMappingKind()  

      = MappingKind::HasEquivalents and  

     self.includedInUml().schemaUnit().sbvrEquivalents(). 

      schemaUnit()->includes(self) 

     else 

       False 

      endif 

   endif 

6.5 Translating UML and SBVR meanings schemas 

Chapter 3 described how to use the operations defined in the previous sections in the 

translation of schemas. In general, let 𝑀 = (𝑀𝑆1 , 𝑀𝑆2 , Σ) be a mapping and 𝑆1 =

{𝑢1,1 , … , 𝑢1,𝑛} an instance of 𝑀𝑆1. The translation of 𝑆1 into 𝑀𝑆2 is a schema 𝑆2 =

{𝑢2,1 , … , 𝑢2,𝑚 } such that 𝑆1 , 𝑆2 is an instance of 𝑀. The translation of 𝑆2 into 𝑀𝑆1 is 

defined similarly. The approach to the translation of a schema 𝑆1 = {𝑢1,1, … , 𝑢1,𝑛} consists 

in translating each of its schema units 𝑢𝑖 ,𝑗  following the order given by the operation 

predecessors, starting with the units that have no predecessors. The translation is done by 

applying an operation called translateTo𝑆𝑗 () to the schema units. An instance 𝑢𝑖,𝑘  of 

𝑆𝑖Element can be translated into 𝑆𝑗  if it represents a schema unit whose mapping kind is 
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HasEquivalents or IsIncluded. The effect of the operation translateTo𝑆𝑗 () must be that 𝑢𝑖,𝑘   

is mapped to 𝑆𝑗 . 

The translation of a UML schema to an SBVR meanings schema is done by applying the 

operation called translateToSbvr() to the UML schema units. The specification of the pre- 

and postconditions of the operation, in OCL, is as follows: 

context Element:translateToSbvr() 

 pre: isSchemaUnit() and  

   (sbvrMappingKind() = MappingKind::HasEquivalents or  

    sbvrMappingKind() = MappingKind::IsIncluded)   

 post: mappedToSbvr() 

Similarly, the translation of an SBVR meanings schema to a UML schema is done by 

applying the operation called translateToUml() to the SBVR schema units. The 

specification of the pre- and postconditions of the operation, in OCL, is as follows: 

context Meaning:translateToUml() 

 pre: isSchemaUnit() and  

   (sbvrMappingKind() = MappingKind::HasEquivalents or  

    sbvrMappingKind() = MappingKind::IsIncluded)   

 post: mappedToUml() 

There is no need to refine the specification of the two operations in the subtypes of 

Element or Thing. The specifications mappedToSbvr and mappedToUml are implemented in 

a fairly straightforward manner, as explained in Section 6.4, using the methods of the 

operations createUnit (Section 4.4.3 in UML and Section 5.4.3 in SBVR), sbvrEquivalents() 

(Section 6.2.1), umlEquivalents (Section 6.2.2), includedInSbvr (Section 6.3.1) and 

includedInUml() (Section 6.3.2).  

The implementation of the methods of translateToSbvr and translateToUml are described 

in the appendices using the USE procedural language (Gogolla, Büttner & Richters 2007). 

Specifically, Appendix G describes the methods of the sbvrEquivalents() operations, 

Appendix H describes the methods of the umlEquivalents operations, Appendix I describes 

the methods of the includedInSbvr operations and Appendix J describes the methods of the 

includedInUml() operations.  

The implementation is applied to translate the instances of the DBLP example from UML 

to SBVR and vice versa. In both cases, the time required to carry out the translation and 

check its completeness and consistency is less than four minutes, which seems quite 

acceptable when one is using research-oriented tools in a research environment. 





 

 
 

7 SBVR Structured English representations  

The Semantics of Business Vocabulary and Business Rules (SBVR), v.1.0 document (Object 

Management Group 2008a), as described in Chapter 5, defines the metamodel for 

documenting the semantics of business vocabulary, business facts and business rules. 

SBVR is targeted to capture business concepts and business rules in a language close 

enough to ordinary language to facilitate business experts to read them. The SBVR 

specification proposes different notations to represent the instances of SBVR Meanings.  

Moreover, the specification in its metamodel includes different types of Representation to 

obtain, more easily, vocabularies and rules in any of these notations.   

In particular, the specification defines an English vocabulary, called SBVR Structured 

English, as one of the possibly many notations that may be obtained from the SBVR 

representations. SBVR Structured English uses a small number of English structures and 

common words to elaborate vocabularies and rules. The SBVR specification also provides 

some predefined language patterns to map these SBVR Structured English notations to 

SBVR instances.  Unfortunately, the SBVR specification does not provide a straightforward 

nor complete mapping from SBVR instances to such notations.  

This chapter overviews the SBVR Structured English notation and describes the subset of 

the SBVR metamodel concerning representations of meanings. Note that some additional 

elements have been added to the SBVR Representations metaschema to have a 

straightforward SBVR Structured English notation.  

The instances of the SBVR Structured English may derive from SBVR Meanings and this 

chapter provides the operations to derive the instances of SBVR Structured English from 

SBVR Meanings. These operations and the ones defined in the previous chapters may be 

used to automatically represent an SBVR schema in SBVR Structured English Notation. The 

representation is done by applying an operation called vocabularyEntry(), which is also 

described.  

This chapter finishes by showing the result of applying said operation to the DBLP 

example introduced in Chapter 4 as an SBVR Structured English vocabulary.  

As in the previous chapters, the SBVR Structured English metaschema, an example of 

instantiation and the specification and implementation of the operations have been 

specified in the USE tool. The detailed specifications are provided in the Appendices. 
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The rest of this chapter is structured as follows: 

 Section 7.1 overviews SBVR Structured English as one of the possible notations of 

the SBVR representations. 

 Section 7.2 shows the figures that form the abstract syntax of the subset of SBVR 

used to represent meanings in SBVR Structured English and briefly describes the 

concepts included in the abstract syntax. 

 Section 7.3 defines the newRepresentation() operation on the schema units of SBVR 

to generate the instances of subtypes of SBVR Representation. 

 Section 7.4 defines the vocabularyEntry() query operation that gives the 

representation of a schema unit in in SBVR Structured English notation. 

 Section 7.5 shows the DBLP example as a SBVR Structured English Vocabulary 

resulting from the application of the operations described in the previous sections. 

7.1 Overview of SBVR Structured English 

SBVR Structured English is a proposed notation to express meanings. This section, reviews 

the main characteristics of the notation, to describe a vocabulary, which includes 

necessities of SBVR. 

7.1.1 Expressions in SBVR Structured English 

Any expression, in SBVR may be written in one of the four font styles: 

 

term  The ‘term’ font is used for a designation of a type, one that 
is part of a vocabulary being used or defined (e.g., person, 

paper).  

Name  The ‘name’ font is used for a designation of an individual 
concept (instances) — a name. Names tend to be proper 
nouns (e.g., Antoni). 

verb  The ‘verb’ font is used for designations of fact types — 
usually a verb, preposition or combination thereof. Such a 
designation is defined in the context of a form of 
expression. 

keyword The ‘keyword’ font is used for linguistic symbols used to 
construct statements – the words that can be combined 
with other designations to form statements and 
definitions (e.g., "each" and "it is obligatory that") 

The SBVR Structured English uses designations and forms of expressions exactly as they 

are defined in a vocabulary. Plural forms are not used to avoid linguistic difficulties. For 

example, a formal statement would say "each concept" rather than "all concepts." Both the 

active form and the passive form of a verb need to be defined in a vocabulary if both are 

used.  
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7.1.1.1 Key words and phrases for logical formulations 

Key words and phrases are shown below for expressing each kind of logical formulation. 

The letters ‘n’ and ‘m’ represent use of a literal whole number. The letters ‘p’ and ‘q’ 

represent expressions of propositions. 

Quantification 

each   universal quantification  

some   existential quantification  

at least one   existential quantification  

at least n   at-least-n quantification  

at most one   at-most-one quantification  

at most n   at-most-n quantification  

exactly one   exactly-one quantification  

exactly n   exactly-n quantification  

at least n and at most m     numeric range quantification  

more than one   at-least-n quantification with n = 2  

Logical Operations 

it is not the case that p   logical negation 

p and q   conjunction 

p or q   disjunction 

p or q but not both   exclusive disjunction 

if p then q   implication 

q if p  implication 

p if and only if q   equivalence 

not both p and q   nand formulation 

neither p nor q   nor formulation 

p whether or not q   whether-or-not formulation 

Where a subject is repeated when using "and" or "or," the repeated subject can be elided. 

7.1.1.2 Modal Operations 

A possible style of SBVR Structured English for modal operations is the Prefix Style that 

introduces rules by prefixing a statement with keywords that convey a modality. An 

structural rule uses the keyword: It is necessary that 

7.1.1.3 Other Keywords 

the  Used with a designation to make a pronominal reference to a previous 
use of the same designation. This is formally a binding to a variable of 
a quantification. 

 

a, an  Universal or existential quantification, depending on context based on 
English rules. 
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another  (Used with a term that has been previously used in the same 

statement) existential quantification plus a condition that the referent 
thing is not the same thing as the referent of the previous use of the 
term. 

 

a given  Universal quantification pushed outside of a demonstrative 
expression where "a given" is used such that it represents one thing at 
a time – this is used to avoid ambiguity where the "a" by itself could 

otherwise be interpreted as an existential quantification. 

7.1.2 Describing a Vocabulary  

In SBVR Structured English, a vocabulary is described in a document section having 

glossary-like entries for concepts having representations in the vocabulary.  

7.1.2.1 Vocabulary Entries 

Each entry is for a single concept, which is called the entry concept. It starts with a 

representation of the concept, either a designation or a form of expression. 

Any of several kinds of captioned details can be listed under the representation. A skeleton 

of a vocabulary entry is shown below followed by an explanation of the use of each 

caption. Only those entries considered for the mapping between UML and SBVR are 

showed. 

 

<primary representation> 

Definition: 
General Concept: 
Concept type: 
Necessity: 
Reference Scheme: 

 

Primary Representation: Designation or Form of Expression 

The designation or form of expression, called the "primary representation" with respect to 

each entry, can be for any concept type. The primary representation for a fact type is a 

form of expression. Three examples are given below: 

 

person 

 
person has name 
 
Catalunya 

 

Definition 

A definition is shown as an expression that can be logically substituted for the primary 

representation. A definition is fully formal if all of it is styled as described above. 
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General concept 

The "General Concept" caption can be used to indicate a concept that generalizes the entry 

concept.  

Concept Type 

The "Concept Type" caption is used to specify a type of the entry concept. This is typically 

not used if the concept has no particular type other than what is obvious from the primary 

representation. A name is implicitly for an individual concept. Any term is implicitly for a 

noun concept. A form of expression is implicitly for a fact type. 

Necessity 

A "Necessity" caption is used to state something that is necessarily true. A necessity is an 

element of guidance expressed as a structural business rule statement. A guidance 

statement can be expressed formally or informally. A statement that is formal uses only 

formally styled text — all necessary vocabulary is available (by definition or adoption) so 

that no external concepts are required. Such a statement can be represented as a logical 

formulation. For example: 

 

It is necessary that each authored publication has at least one author. 

The above example includes three key words or phrases ("it is necessary that," "each" and 

"at least one"), two designations for types and one for a fact type (from a form of 

expression). 

The key phrase “it is necessary that” can be omitted from a statement of a structural rule 

captioned “Necessity” because it is implied in the caption.  

Reference Scheme 

The "Reference Scheme" caption is used to state how things denoted by a term can be 

distinguished from each other based on one or more facts about the things. A reference 

scheme is expressed by referring to at least one role of a binary fact type. 

7.2 SBVR Representations 

Figure 7.1 shows the fragment of the SBVR metamodel (Object Management Group 2008a) 

that describes the representations in SBVR. Note that, in order to have a straightforward 

notation in SBVR Structured English, the StructuredEnglishText metaclass has been added. 

It has two attributes: value that constrain the expression of the representation; and the 

attribute font which represents any of the four font styles used in SBVR Structured English. 

In SBVR Structured English, a representation is composed by a set of ordered instances of 

StructuredEnglishText. Additionally, two additional abstract classes, 

PrimaryRepresentation and Caption have been added to distinguish the primary 

representation caption from the other captions and also the relationship among them. 

Moreover, there are three additional metaclasses: GeneralConceptCaption, 

ConceptTypeCaption and ReferenceSchemeCaption. The first one represents the designation 

of a general concept; the second one represents the type of concept; and the third one 

represents the reference scheme of a concept.   
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Figure 7.1 SBVR Representations 

Appendix I describes the complete specification of the SBVR Structured English 

metamodel in the USE tool. 

7.3 newRepresentation() operation 

This section describes the newRepresentation() operation, in the context of Meaning. The 

evaluation of the newRepresentation() operation on a SBVR schema unit gives the set of 

Representations that are derived from said schema unit: 

context Meaning::newRepresentation():Set(Representation) 

 pre: isSchemaUnit() 

 post definingTheRepresentation:  

    result = Representation.allInstances() –  

         Representation.allInstances@pre() 

The effect of the operation is defined in the subtypes of Meaning such that some or all of 

their instances represent schema units. 

The newText(name:String, font:FontStyle, order:Integer) is an operation that gives the 

characteristics of a new instance of StructuredEnglishText associated, ordered, to an 

instance of a subtype of Representation: 

context Representation::newText(name:String,  

    font:FontStyle, order:Integer):StructuredEnglishText 

 post StructuredEnglishTextCreated: 

   se.oclIsNew() and se.oclIsTypeOf(StructuredEnglishText) and  

   se.font = font and se.value = name and 

    self.structuredEnglishText -> at(order) = se 

Note that in the following sections the hasSent ('^') operator is used to invoke the newText 

operation within a postcondition (Object Management Group 2006b, p. 29). The use of this 

operator, as already used in the previous chapter, allows to better structure the 

postconditions. However, note that the USE tool does not allow the use of such operator. 

Therefore, the implementation, in USE, of a postcondition with an invocation to an 

operation includes, within the postcondition, the fragment corresponding to the invoked 

operation. 
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7.3.1 newRepresentation() of value type and object type 

Each value type or object type schema unit is represented by an instance of Designation 

associated to it. The instance is also associated to an instance of StructuredEnglishText 

having the font and value attributes with values FontStyle::term and the name of the 

ValueType or ObjectType, respectively. For example, the value type named "gender" has an 

instance of Designation whose straightforward representation in Structured English 

notation is "gender". 

Additionally, if the value type is associated to a closed projection which means that the 

value type is the enumeration of individual concepts, then the value type also includes a 

Definition. The definition is associated to a sequence of instances of StructuredEnglishText 

whose value and font attributes are the names of the individual concepts that define the 

value type, and FontStyle::name, respectively. For example, the previous value type is also 

represented by a Definition whose straithforward representation in Structured English 

notation is "male or female". 

If the object type is associated to a closed projection which means that the instances of the 

object type are the union of instances of other concepts (like an abstsract UML class), then 

the objection type includes a Definition. The definition is associated to the sequence of 

instances of StructuredEnglishText that defines the object type as an a sequence of noun 

concepts joined by an "or" clause. For example, the object type named "authored 

publication" is represented by the Designation: "authored publication" and the Definition: 

"authored book or book chapter or journal paper". 

Finally, if the object type is associated to a closed projection which means that the object 

type is an objectification of an associative fact type, then the object type also includes a 

Definition. The definition is associated to the sequence of instances of 

StructuredEnglishText that defines the object type as an "actuality" of an associative fact 

type. For example, the object type named "authorship" is represented by the Designation: 

"authorship" and the Definition: "actuality that an author has an authored publication". 
  

context NounConcept::newRepresentation():Set(Representation) 

 post RepresentationCreated: 

   let asft:AssociativeFactType = self.closedProjection. 

     logicalFormulation.oclAsType(Objectification). 

     consideredLogicalFormulation. 

     oclAsType(AtomicFormulation). 

     factType.oclAsType(AssociativeFactType)in 

 

   -- new designation 

   d.oclIsNew() and d.oclIsTypeOf(Designation) and  

   d.meaning = self and d^newText(self.name, FontSyle::term,1)  

   and  if self.closedProjection -> notEmpty()  

     then 

 

     -- new definition 

     def.oclIsNew() and def.oclIsTypeOf(Definition) and  

     def.meaning.oclAsType(Concept) = self and 

     def.primaryRepresentation = d and  
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     self.closedProjection.isEnumeration() implies  

      self.closedProjection.logicalFormulation. 

      sequenceOfLiterals() -> forAll(lit | 

       def^newText(lit, FontStyle::term,  

       self.closedProjection.logicalFormulation. 

       sequenceOfLiterals() ->indexOf(lit)*2 -1) and 

       if lit <> self.closedProjection. 

        logicalFormulation.sequenceOfLiterals()->last()  

       then def^newText('or', FontStyle::keyword,  

         self.closedProjection.logicalFormulation. 

         sequenceOfLiterals() ->indexOf(lit)*2)  

       else true  

       endif) and  

 

     self.closedProjection.isAbstract() implies 

      self.closedProjection.logicalFormulation. 

      sequenceOfCategories() -> forAll(cat | 

       def^newText(cat, FontStyle::term,   

       self.closedProjection.logicalFormulation. 

       sequenceOfCategories() ->indexOf(lit)*2 -1)  and 

       if cat <> self.closedProjection. 

        logicalFormulation.sequenceOfCategories()-> 

        last()  

       then def^newText('or', FontStyle::keyword,  

         self.closedProjection.logicalFormulation. 

         sequenceOfCategories() ->indexOf(lit)*2)  

       else true  

       endif) and  

 

     self.closedProjection.isObjectification() implies  

      (def^newText('actuality', FontStyle::term, 1) and 

      def^newText('that a', FontStyle::keyword, 2) and  

      asft.factTypeRole -> forAll(rol |  

       def^newText(rol, FontStyle::term,  

       asft.factTypeRole -> indexOf(rol)*2 +1) and  

       if asft.factTypeRole -> size()> 2 and  

        def^newText(',', FontStyle::keyword, 

        asft.factTypeRole -> indexOf(rol)*2 +2)  

       else  

        def^newText(asft.name, FontStyle::verb, 

         asft.factTypeRole -> indexOf(rol)*2 +2)  

       endif)) 

    else  

     true  

    endif 

7.3.2 newRepresentation() of individual concept 

Each individual concept schema unit is represented by an instance of Designation 

associated to it. The instance is also associated to an instance of StructuredEnglishText 

with the font and value attributes with values FontStyle::name and the name of the 

individual concept. For example, the individual concept named "male" has an instance of 

Designation: "male."  
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context IndividualConcept::newRepresentation():Set(Representation) 

 post RepresentationCreated: 

   -- new designation 

   d.oclIsNew() and d.oclIsTypeOf(Designation) and  

   d.meaning = self and d^newText(self.name, FontSyle::name,1)  

7.3.3 newRepresentation() of characteristic schema unit 

Each Characteristic schema unit is represented by a FactTypeForm associated to a 

sequence of instances of StructuredEnglishText. The sequence has the following structure: 

(i) an instance the value attribute of which has the name of the fact type role (if the role 

does not have a name, then the name of the concept that the role scopes over) and the font 

style is "term;' and (ii) an instance the value attribute of which has the name of the fact 

type and the font sytle is "verb.' The Characteristic is represented also with 

ConceptTypeCaption which the associated StructuredEnglishText indicates that is a 

characteristic. For example the characteristic schema unit named "being conference 

paper" that has the role that ranges over "book chapter" is represented by a 

FactTypeForm: "book chapter being conference paper" and a ConceptTypeCaption: 

"characteristic." 
 

context Characteristic::newRepresentation(): 

     Set(Representation)  
 post RepresentationCreated : 

   -- new fact type form 

   f.oclIsNew() and f.oclIsTypeOf(FactTypeForm) and 

   f.meaning.oclAsType(Characteristic) = self and    

    f^newText(if self.factTypeRole -> first().name ->notEmpty()  

        then self.factTypeRole -> first.name  

        else self.factTypeRole -> first.nounConcept.name  

        endif, FontStyle::term, 1) and 

   f^newText(self.name, FontStyle::verb, 2) 

 

   -- new concept type form 

   r.oclIsNew() and r.oclIsTypeOf(ConceptTypeCaption) and 

   r.meaning.oclAsType(Characteristic) = self and  

   r.primaryRepresentation = f and  

   r^newText('characteristic', FontStyle::term, 1) 

7.3.4 newRepresentation() of associative, is-property-of or partitive fact 

type schema unit 

Each AssociativeFactType including (PartitiveFactType and IsPropertyOfFactType) is 

represented by a FactTypeForm associated to a sequence of instances of 

StructuredEnglishText. The sequence has the following structure: (i) an instance the value 

attribute of which has the name of the first fact type role (if the role does not have a name, 

then the name of the concept that the role scopes over) and the font style is 'term'; (ii) an 

instance the value attribute of which has the name of the fact type and the font sytle is 

'verb'; and (iii) an instance the value attribute of which has the name of the last fact type 

role (if the role does not have a name, then the name of the concept that the role scopes 

over) and the font style is 'term'. The AssociativeFactType includes also a 
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ConceptTypeCaption the associated StructuredEnglishText of which indicates the type of 

associative fact type. For example, the associative fact type, named "is published in" 

between the concepts named "conference edition" and "edited book" is represented by the 

FactTypeForm: "conference edition is published in edited book." 

Additionally, each fact type role of the AssociativeFactType that has a name is represented 

by an Designation and two ConceptTypeCaption. The Designation has a 

StructuredEnglishText with the value attribute as the name of the Role and the font style is 

'term'. One of the ConceptTypeCaption has a StructuredEnglishText having the value and 

font attributes with values "role" and "term", respectively. The other ConceptTypeCaption 

has a StructuredEnglishText with the value the name of the concept that ranges over and 

the font style 'term'. For example, the associative fact type of above has also the 

ConceptTypeCaption: "associative fact type." And for example, the associative fact type 

between "editor" and "edited book" has the following representations: FactTypeForm: 

"editor has edited book", the ConceptType: "associative fact type," the Designation: 

"editor" and ConceptType: "role" 

context AssociativeFactType::newRepresentation(): 

     Set(Representation)  
 post RepresentationCreated : 

   -- new fact type form 

   f.oclIsNew() and f.oclIsTypeOf(FactTypeForm) and 

   f.meaning.oclAsType(AssociativeFactType) = self and  

   self.factTypeRole -> forAll( ro|  

    f^newText(if ro.name ->notEmpty() then ro.name  

          else ro.nounConcept.name  endif,  

     FontStyle::term, self.factTypeRole ->indexOf(ro)*2-1) 

     and 

     if ro <> self.factTypeRole -> last()  

     then if self.factTypeRole ->size() > 2  

       then f^newText(',', FontStyle::keyword,  

          self.factTypeRole ->indexOf(ro)*2)  

       else f^newText(self.name, FontStyle::verb,  

          self.factTypeRole ->indexOf(ro)*2) 

       endif 

     else true endif) and 

     

    -- new concept type caption 

    r.oclIsNew() and r.oclIsTypeOf(ConceptTypeCaption) and 

    r.meaning.oclAsType(AssociativeFactType) = self and  

    r.primaryRepresentation = f and  

    r^newText(if self.oclIsTypeOf(AssociativeFactType)  

        then 'associative fact type'  

         else if self.oclIsTypeOf(PartitiveFactType)  

          then 'partitive fact type'  

          else 'is-property-of fact type'  

          endif  

        endif, FontStyle::term,1) and 

    self.factTypeRole->select(ft| ft.name -> notEmpty()) ->  

     forAll(ro:FactTypeRole |    

    -- new designation 

    d.oclIsNew() and d.oclIsTypeOf(Designation) and  

    d.meaning.oclAsType(AssociativeFactType) = self and  
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    d^newText(ro.name, FontStyle::term,1) and 

    -- new concept type caption 

    c1.oclIsNew() and c1.oclIsTypeOf(ConceptTypeCaption) and  

    c1.meaning.oclAsType(AssociativeFactType) = self and  

    c1.primaryRepresentation = d and  

    c1^newText('role', FontStyle::term,1) and 

     

    -- new concept type caption 

    c2.oclIsNew()and c2.oclIsTypeOf(ConceptTypeCaption) and  

    c2.meaning.oclAsType(AssociativeFactType) = self and  

    c2.primaryRepresentation = d and  

    c2^newText(ro.nounConcept.name, FontStyle::term,1) 

7.3.5 newRepresentation() of categorization fact type schema unit 

Each categorization fact type schema unit is represented by a GeneralConceptCaption. The 

GeneralConceptCaption is associated to a StructuredEnglishText whose value attribute has 

the name of the general concept of the categorization fact type and its font style is 'term'.  

For example, the categorization fact type between "book chapter" and "authored 

publication" is represented by a General concept: "authored publication" of the primary 

representation "book chapter." 
 

context CategorizationFactType::newRepresentation(): 

     Set(Representation) 

 post RepresentationsCreated : 

    f.oclIsNew() and f.oclIsTypeOf(GeneralConceptCaption) and  

    f.meaning.oclAsType(CategorizationFactType) = self and  

    f.primaryRepresentation = self.factTypeRole ->  

     first().nounConcept.representation.oclAsType(Designation)  

    and f^newText(self.factTypeRole -> last().nounConcept.name,  

     FontStyle::term,1) 

Note that, in SBVR Structured English, categorization fact types are represented by general 

concept captions of the general concepts.  

7.3.6 newRepresentation() of categorization schema schema unit 

Each categorization schema or segmentation schema unit is represented by several 

instances of Representation: (1) a Designation that has an StructuredEnglishText with the 

value attribute as the name of the CategorizationScheme and the font style is 'term'; (2) a 

Definition associated to a sequence of instances of StructuredEnglishTex which could be 

readed in Structured English as "categorization scheme that is for the generalConcept", 

where generalConcept refers to the name of the general concept of the categorization 

scheme; and (3) a NecessityStatement associated to a sequence of instances of 

StructuredEnglishText which could be readed in Structured English as "generalConcept 

contains the categories category1, …and categoryn" where categoryi refers to the name of 

one of the categories of the categorization scheme and it follows the list of the names of 

categories separated by coma and "and." In the case of Segmentation, the definition 

changes the term of categorization scheme by segmentation. For example the 

categorization scheme of "type of authored publication" is represented as follows:  
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type of authored publication  
Definition:  categorization scheme that is for authored publication 

Necessity:  type of authored publication contains the categories  
    journal paper, authored book and book chapter 
 

context CategorizationScheme::newRepresentation(): 

     Set(Representation) 

 post RepresentationsCreated: 

    -- new designation 

    d.oclIsNew() and d.oclIsTypeOf(Designation) and  

    d.meaning.oclAsType(CategorizationScheme) = self and  

    d^newText(self.name, FontStyle::term,1) and  

    

    -- new definition 

    def.oclIsNew() and def.oclIsTypeOf(Definition) and  

    def.meaning.oclAsType(CategorizationScheme) = self and  

    def.primaryRepresentation = d and 

    def^newText('categorization scheme', FontStyle::term, 1) and 

    def^newText('that', FontStyle::keyword, 2) and 

    def^newText('is for', FontStyle::verb, 3) and 

    def^newText('the', FontStyle::keyword, 4) and 

    def^newText('concept', FontStyle::term, 5) and 

    def^newText(self.generalConcept.name, FontStyle::term, 6) and 

    

    -- new necessity statement 

    nes.oclIsNew() and nes.oclIsTypeOf(NecessityStatement) and  

    nes.meaning.oclAsType(CategorizationScheme) = self and  

    nes.primaryRepresentation = d and 

    nes^newText(self.name, FontStyle::term, 1) and 

    nes^newText('contains', FontStyle::verb, 2) and 

    nes^newText('the', FontStyle::keyword, 3) and 

    nes^newText('categories', FontStyle::term, 4) and 

    nes^newText(self.category -> asSequence() -> forAll(ca|  

   nes^newText(ca.name, FontStyle::term,  

     self.category -> asSequence() -> indexOf(ca) *2 + 3 ))  

     if self.category ->asSequence ->indexOf(ca) <  

      self.category -> size()- 1  

     then 

      nes^newText(',', FontStyle::keyword,  

      self.category -> asSequence() -> indexOf(ca) *2 + 4) and  

     else if self.category ->asSequence ->indexOf(ca) =  

         self.category -> size()- 1  

       then 

        nes^newText('and', FontStyle::keyword,  

         self.category -> asSequence() -> indexOf(ca)*2 + 4)  

       else true  

       endif  

     endif)  

7.3.7 newRepresentation() of reference scheme 

Each instance of ReferenceScheme that is a schema unit is represented by a 

ReferenceSchemeCaption. The ReferenceSchemeCaption is associated to a sequence of 

instances of StructuredEnglishText. The sequence has the following structure: (i) for each 

fact type role that identifies the concept, there is an instance the value attribute of which 

has the name of said fact type role and the font style is 'term', and (ii) there is also an 
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instance with the value attribute "and" and the font style 'keyword' between the previous 

instances. For example, the reference scheme schema unit meaning that "title" is the 

reference scheme of "conference edition," is represented by a ReferenceSchemeCaption: 

"title." The caption is associated to the primary representation of the object type named 

"conference edition." 
 

context ReferenceScheme::newRepresentation(): 

     ReferenceSchemeCaption  
 post RepresentationCreated: 

    let roleNames:Sequence(String) = 

     self.simplyUsedRole -> collect(ro|  

      if ro.name -> notEmpty()  

      then ro.name 

      else ro.nounConcept.name  

      endif)->asSequence  

    in 

    ref.oclIsNew() and ref.oclIsTypeOf(ReferenceSchemeCaption)  

    and ref.meaning.oclAsType(ReferenceSchemeCaption) = self and  

    ref.primaryRepresentation = self.referencedConcept. 

     representation.oclAsType(Designation) and  

    roleNames -> forAll(ron| 

     ref^newText(ron,FontStyle::term,  

      roleNames -> indexOf(ron)*2 -1) and  

     if roleNames -> last() <> ron  

     then ref^newText('and',FontStyle::keyword,  

        roleNames -> indexOf(ron)*2)  

     else true  

     endif)  

Note that, in SBVR Structured English, reference scheme captions are incorporated as 

captions of the designation of the concept that incorporates this reference scheme. 

7.3.8 newRepresentation() of structural rule schema unit 

Each StructuralRule is represented by an instance of NecessityStatement.  

Depending on the type of structural rule, the necessity may be attached to the designation 

of a concept or to a fact type form of a fact type. Three general cases have been considered:  

 If the structural rule is structuring a multiplicity constraint, the necessity statement 

is attached to the fact type form representing the fact type that constrains; 

 If the structural rule is structuring a covering or disjointness constraint, then the 

necessity statement is attached to the designation of the general concept;  

 If the structural rule is structuring an xor-constraint, then necessity statement is 

attached to the designation of the concept that is constrained. 

Two different examples are given below: 

 

editor has edited book 

Necessity:  each edited book has at least one editor 
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book 

Necessity:  each book is a edited book or is a authored book but not both 

 

context StructuralRule::newRepresentation(): 

    Set(Representation) 

 post RepresentationsCreated: 

    let form:ClosedLogicalFormulation =  

     self.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification)  

    in 

    let pos:Integer = form.introducedVariable ->size()*2+1  

    in 

 

    nes.oclIsNew() and nes.oclIsTypeOf(NecessityStatement) and  

    nes.meaning.oclAsType(NecessityStatement) = self and  

     nes^newText('each', FontStyle::keyword, 1) and  

     form.introducedVariable ->forAll(va:Variable| 

    nes^newText(va.rangedOverConcept.name, FontStyle::term,  

    form.introducedVariable->indexOf(va)*2-1) and  

    if va <> form.introducedVariable -> last()  

      then nes^newText('of a', FontStyle::keyword, 

       form.introducedVariable->indexOf(va)*2 )  

      else true endif) and 

 

    self.isMultiplicity() 

    implies 

   (nes.primaryRepresentation = form.scopeFormulation. 

    oclAsType(Quantification).scopeFormulation. 

     oclAsType(AtomicFormulation).factType.representation. 

    oclAsType(FactTypeForm) and  

     nes^newText('has', FontStyle::verb, pos) and  

    form.scopeFormulation^pharaphraseQuantification(nes,pos+1))  

   and 

       

   self.isDisjointAndCovering() or self.isCovering() 

   implies 

   (nes.primaryRepresentation = form.scopeFormulation. 

    oclAsType(ExclusiveDisjunction).logicalOperand1. 

    oclAsType(AtomicFormulation).factType. 

    oclAsType(CategorizationFactType).factTypeRole  

     -> last().nounConcept.representation. 

     oclAsType(Designation) and  

    form.scopeFormulation.sequenceOfCategories ->  

     forAll(cat:String| 

     nes^newText('is', FontStyle::verb,  

      form.scopeFormulation.sequenceOfCategories -> 

       indexOf(cat)* 4 + pos -3) and  

     nes^newText('a', FontStyle::keyword,  

       form.scopeFormulation.sequenceOfCategories -> 

       indexOf(cat)* 4 + pos -2) and  

     nes^newText(cat, FontStyle::term,  

       form.scopeFormulation.sequenceOfCategories -> 

       indexOf(cat)* 4 + pos -1 ) and  

 

      if cat <> form.scopeFormulation.sequenceOfCategories ->  
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      last()  

     then  

      nes^newText('or', FontStyle::keyword,  

        form.scopeFormulation.sequenceOfCategories -> 

       indexOf(cat)* 4 + pos )  

     else true  

     endif) and  

   if self.isDisjointAndCovering() then 

     nes^newText('but not both', FontStyle::keyword,  

     form.scopeFormulation.sequenceOfCategories -> size()* 4  

     + pos + 1 )  

   else  

    true  

   endif) and  

 

   self.isDisjoint() 

   implies 

   (nes^newText('that', FontStyle::keyword, pos + 1) and  

   nes^newText('is', FontStyle::verb, pos + 2) and  

   nes^newText('a', FontStyle::keyword, pos + 3) and  

   nes^newText(form.scopeFormulation.sequenceOfCategories() ->  

   first(), FontStyle::term, pos + 5) and  

   nes^newText('neither', FontStyle::keyword, pos + 6) and  

    nes^newText('is', FontStyle::verb, pos + 7) and  

   nes^newText('a', FontStyle::keyword, pos + 8) and  

   form.scopeFormulation.sequenceOfCategories ->  

    excludes(form.scopeFormulation.sequenceOfCategories() ->  

    first()) -> forAll(cat:String |  

     nes^newText(cat, FontStyle::term,  

     form.scope.sequenceOfCategories() ->indexOf(cat)*2-7)  

     and  

      if cat <> form.scopeFormulation.sequenceOfCategories()  

      -> last()  

     then  

      nes^newText('nor a', FontStyle::keyword, 

      form.scope.sequenceOfCategories() ->indexOf(cat)*2-7)  

     else true  

     endif)) and  

 

   self.isXOR() 

   implies 

   (nes^newText('that', FontStyle::keyword, pos + 1) and  

   nes^newText(form.introducedVariable.restrictingFormulation. 

   oclAsType(AtomicFormulation).factType.name, FontStyle::verb,  

   pos + 2)  

   and nes^newText('a', FontStyle::keyword, pos + 3) and  

   nes^newText(form.introducedVariable.restrictingFormulation. 

   oclAsType(AtomicFormulation).factType.factTypeRole ->  

   last().nounConcept.name, FontStyle::term, pos + 4) and  

   nes^newText('does not', FontStyle::keyword, pos + 5) and  

   nes^newText('have', FontStyle::verb, pos + 6) and  

   nes^newText('either', FontStyle::keyword, pos + 7) and  

   form.scopeFormulation.restrictedFactTypes -> 

    forAll(ft:FactType |  

     nes^newText(ft.factTypeRole->last().nounConcept.name,  
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      FontStyle::term,  

      form.scopeFormulation.restrictedFactTypes ->  

      indexOf(ft) * 2 + 7) and 

       if ft <> form.scopeFormulation.restrictedFactTypes ->  

      last()  

     then  

      nes^newText('or', FontStyle::keyword,  

      form.scopeFormulation.restrictedFactTypes ->  

      indexOf(ft) * 2 + 8)  

     else true  

     endif)) 

This means that a closed universal quantification starts with the each keyword followed 

by the name of the concept that the variable, introduced by the quantification, ranges over. 

The rest of the statement is structured depending on the logical formulation associated to 

the universal quantification.  

Note that the sequenceOfCategories() and restrictedFactTypes() operations were defined in 

Sections 6.3.2.8 and 6.3.2.9 of Chapter 6, respectively. 

Additionally, to facilitate the pharaphrasing of the different subtypes of Quantification, the 

pharaphraseQuantification(nes:Necessity, iniPos:Integer) operation has been defined in 

Quantification. It constrains, depending on the subtype of Quantification, the instances of 

StructuredEnglishText included in the statement that represents a multiplicity rule. The 

specification of the operation is defined abstract and redefined in the subtypes of 

Quantification as follows: 

context AtLeastNQuantification::pharaphraseQuantification( 

    ne:NecessityStatement, iniPos:Integer): 

    Set(StructuredEnglishText) 

 post: nes^newText('at least', FontStyle::keyword, iniPos) and  

    nes^newText(self.minimumCardinality, FontStyle::term,  

     iniPos + 1) and nes^newText( 

     self.introducedVariable.rangedOverConcept.name,  

      FontStyle::term, iniPos + 2) 

 

context AtMostNQuantification::pharaphraseQuantification( 

    ne:NecessityStatement, iniPos:Integer): 

    Set(StructuredEnglishText) 

 post: nes^newText('at most', FontStyle::keyword, iniPos) and  

    nes^newText(self.maximumCardinality, FontStyle::term,  

     iniPos + 1) and nes^newText( 

     self.introducedVariable.rangedOverConcept.name,  

     FontStyle::term, iniPos + 2) 

 

context ExactlyNQuantification::pharaphraseQuantification( 

    ne:NecessityStatement, iniPos:Integer): 

    Set(StructuredEnglishText) 

 post: nes^newText('exactly', FontStyle::keyword, iniPos) and  

    nes^newText(self.cardinality, FontStyle::term, iniPos+1)  

    and nes^newText( 

      self.introducedVariable.rangedOverConcept.name,  

      FontStyle::term, iniPos + 2) 
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context NumericRangeQuantification::pharaphraseQuantification( 

    ne:NecessityStatement, iniPos:Integer): 

    Set(StructuredEnglishText) 

 post: nes^newText('at least', FontStyle::keyword, iniPos) and  

    nes^newText(self.minimumCardinality, FontStyle::term,  

     iniPos + 1) and nes^newText( 

      self.introducedVariable.rangedOverConcept.name,  

      FontStyle::term, iniPos + 2) and  

    nes^newText('and at most', FontStyle::keyword, iniPos+3)  

    and nes^newText(self.maximumCardinality, FontStyle::term,  

      iniPos + 4) and nes^newText( 

      self.introducedVariable.rangedOverConcept.name,  

      FontStyle::term, iniPos + 5) 

7.4 vocabularyEntry() operation 

The vocabularyEntry() query operation applied to an instance of a subtype of Meaning 

gives the vocabulary entry of said meaning in the Structured English notation. The 

specification, in OCL, of the operation is the following: 

context Meaning::vocabularyEntry():Set(Tuple( 

    primaryRepresentation: Sequence(Tuple( 

     text:String, font:FontStyle)),  

     captions:Set(Tuple( 

     captionType:CaptionType,  

     captionValue:Sequence(Tuple(text:String,  

       font:FontStyle)))))) 

      

 body: let primary:PrimaryRepresentation =  

     if self.representation.oclAsType(PrimaryRrepesentation) 

       -> notEmpty()  

     then  

      self.representation->any(pr|  

       pr.oclIsKindOf(PrimaryRepresentation)) 

       oclAsType(PrimaryRepresentation)  

     else  

      self.representation->any(pr|  

       pr.oclIsKindOf(Caption)). 

       oclAsType(Caption).primaryRepresentation)  

     endif in 

      

    Tuple{ 

     primaryRepresentation: primary.representation() 

       captions: 

         primary.caption->any(c|c.oclIsTypeOf(Definition)) 

        .oclAsType(Definition)->collect( 

        captionRepresentation())-> union(  

         primary.caption->any(c|  

        c.oclIsTypeOf(GeneralConceptCaption)) 

        .oclAsType(GeneralConceptCaption)  

        ->collect(captionRepresentation())->union ( 

          primary.caption->any(c|  

        c.oclIsTypeOf(ConceptTypeCaption)) 

        .oclAsType(ConceptTypeCaption)->  

        collect(captionRepresentation())-> union(  

         primary.caption->any(c|  
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        c.oclIsTypeOf(NecessityStatement)) 

         .oclAsType(NecessityStatement)) ->  

        collect(captionRepresentation())))) 

 

This means that an SBVR Structured English vocabulary entry is composed by its primary 

entry followed by its set of captions as described in Section 7.2.2.1 Vocabulary Entries. 

The operation representation() defined in the context of PrimaryRepresentation gives the 

sequence of Structured English text that represents such primary representation. 
 

context PrimaryRepresentation::representation():Sequence( 

    Tuple(text:String,font:FontStyle)) 

 body: self.structuredEnglishText -> collect(st|   

      Tuple{text:st.value,font:st.font}) 

The operation captionRepresentation() defined in the context of Caption gives the caption 

type and sequence of Structured English text that represents such primary representation. 
 

context Caption::captionRepresentation():TupleType( 

    captionType:CaptionType,  

    captionValue:Sequence(TupleType(text:String,  

           font:FontStyle))) 

 body:  Tuple{captionType:captionType(),  

        captionValue: self.structuredEnglishText -> collect(st| 

      Tuple{text:st.value,font:st.font})} 

The captionType() operation is defined abstract in Caption and redefined in its subtypes as 

follows: 
 

context Definition::captionType():CaptionType 

 body: CaptionType::Definition 

 

context GeneralConceptCaption::captionType():CaptionType 

 body: CaptionType::General_concept 

 

context ConceptTypeCaption::captionType():CaptionType 

 body: CaptionType::Concept_type 

        

context NecessityStatement::captionType():CaptionType 

 body: CaptionType::Necessity 

 

context ReferenceSchemeCaption::captionType():CaptionType 

 body: CaptionType::Reference_scheme 

 

CaptionType is defined as an enumeration of: Definition, General_concept, Concept_type, 

Necessity and Reference_scheme. 

Concerning its implementation, the specification seVocabulary has a quite straightforward 

implementation using the methods of the operations newRepresentation (Section 7.3).  

The implementation of the methods of newRepresentation are described in Appendix J in 

the procedural language described in USE (Gogolla, Büttner and Richters 2007).  
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7.5 DBLP vocabulary in SBVR Structured English notation 

The instances of the SBVR Representations created by the application of the 

newRepresentation method to the SBVR Meanings instances of the DBLP example are 

shown in Appendix K. The result of the query Meaning.allInstances()->collect(me| 

me.vocabularyEntry()) after reformatting the font style:  

 
Female 
 
Male 
 
Gender  
Definition:   Female or Male 
 
Natural  

 
String  

 
Year  

 
acronym  

Concept type:   String  
Concept type:   role  

 
authored book 

General concept:  authored publication 
General concept:  book  

 
authored publication  

Definition:  authored book or book chapter or journal paper  
General concept:  publication  

Necessity:   each book is a authored book or is a book chapter or is a  
 
journal paper 
Necessity:   each authored publication that is a authored book is not either a  
    book chapter or a journal paper 

Necessity:   each authored publication that is a book chapter is not either a  
    authored book or a journal paper  
 
authorship  

Definition:  actuality that an author has an authored publication 
 
book  
Definition:  edited book or authored book 

General concept:  publication  

Necessity:   each book is a edited book or is a authored book but not both 

Reference scheme: isbn  
 

book chapter 

General concept: authored publication 
 
book section 
 
book series 

Reference scheme: id  
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book series issue 

General concept:  book  
 

city  

Concept type:   String  

Concept type:   role  
 

conference edition 

Reference scheme:  title  
 
conference series 

Reference scheme:  name  
 

country  

Concept type:   String  
Concept type:   role  

 
edited book 

General concept:  book  
General concept:  publication  

 
edition  

Concept type:   String  
Concept type:   role  

 
editorship  

Definition:  actuality that an editor has an edited book 
 
end page 

Concept type:   Natural  

Concept type:   role  
 

gender  

Concept type:   Gender  

Concept type:   role  
 

home page 

Concept type:   String  

Concept type:   role  
 

id  

Concept type:   String  

Concept type:   role  
 

ini page 

Concept type:   Natural  

Concept type:   role  
 

isbn  
Concept type:   String  

Concept type:   role  
 

issn  
Concept type:   String  

Concept type:   role  
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journal  

Reference scheme:  issn  
Reference scheme:  title  

 
journal issue 
 
journal paper 

General concept:  authored publication 
  
journal section 
  
journal volume 
 
month  

Concept type:   String  

Concept type:   role  
 

name  

Concept type:   String  

Concept type:   role  
 

num pages 

Concept type:   Natural  

Concept type:   role  
 

num publications 

Concept type:   Natural  

Concept type:   role  
 

number  

Concept type:   Natural  

Concept type:   role  
 

order  

Concept type:   Natural  

Concept type:   role  
 

person  

Reference scheme:  name  
 

publication  

Definition:  edited book or authored publication 
Necessity:   each publication is a edited book or is a authored publication  
   but not both  
 
publication year 
Concept type:   Year  

Concept type:   role  
 

publisher  
Concept type:   String  

Concept type:   role  
 

title  
Concept type:   String  

Concept type:   role  
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type of authored publication  

Definition:  categorization scheme that is for authored publication 
Necessity:  type of authored publication contains the categories  
    journal paper, authored book and book chapter 
volume  

Concept type:   Natural  
Concept type:   role  

 
year  

Concept type:   Year  
Concept type:   role  

 
author has authored publication 

Concept type:   associative fact type 
Necessity:   each authored publication has at least one author 
 
authorship has order 

Concept type:   is-property-of fact type 
Necessity:   each authorship has exactly one order 
 
book has home page 

Concept type:   is-property-of fact type 
Necessity:   each book has at most one home page  
 
book has isbn 

Concept type:   is-property-of fact type 

Necessity:   each book has exactly one isbn 
 
book has num pages 

Concept type:   is-property-of fact type 

Necessity:   each book has exactly one num pages 
 
book has publication year 

Concept type:   is-property-of fact type  

Necessity:   each book has exactly one publication year 
  
book has publisher  

Concept type:  is-property-of fact type  

Necessity:   each book has exactly one publisher  
 
book chapter being conference paper  

Concept type:  characteristic  
 

book chapter has end page  
Concept type:  is-property-of fact type  

Necessity:   each book chapter has exactly one end page  
 
book chapter has ini page  
Concept type:  is-property-of fact type  

Necessity:   each book chapter has exactly one ini page  
 
book chapter is part of book section  
Concept type:   associative fact type  

Necessity:   each book chapter is part of at most one book section  

Necessity:   each book section has at least one book chapter  
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book chapter is part of book series issue  

Concept type:   associative fact type  
Necessity:   each book chapter is part of at most one book series issue  

Necessity:  each book series issue has at least one book chapter  
 
book chapter is part of edited book  

Concept type:   associative fact type  

Necessity:   each book chapter is part of at most one edited book  

Necessity:  each edited book has at least one book chapter  
 
book section has order  

Concept type:   is-property-of fact type  

Necessity:   each book section has exactly one order  
 
book section has title  

Concept type:   is-property-of fact type  

Necessity:   each book section has exactly one title  
 
book section is part of edited book  

Concept type:   associative fact type  

Necessity:   each book section is part of at most one edited book  
 
book series has id  

Concept type:   is-property-of fact type  

Necessity:   each book series has exactly one id  
 
book series has publisher  

Concept type:   is-property-of fact type  

Necessity:   each book series has exactly one publisher  
 
book series includes book series issue  

Concept type:   partitive fact type  

Necessity:   each book series issue has exactly one book series  
 
book series issue has number  

Concept type:   is-property-of fact type  

Necessity:   each book series issue has exactly one number  
 
conference edition has city  
Concept type:   is-property-of fact type  

Necessity:   each conference edition has exactly one city  
 
conference edition has country  
Concept type:   is-property-of fact type  

Necessity:   each conference edition has exactly one country  
 
conference edition has home page  
Concept type:   is-property-of fact type  

Necessity:   each conference edition has at most one home page  
 
conference edition has title  

Concept type:   is-property-of fact type  
Necessity:   each conference edition has exactly one title  
 
conference edition has year  

Concept type:   is-property-of fact type  
Necessity:   each conference edition has exactly one year  
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conference edition is published in book series issue  
Concept type:   associative fact type  

Necessity:   each book series issue has at most one conference edition  

Necessity:   each conference edition is published in at most one  
    book series issue  

Necessity:   each conference edition that is published in a book series  
    issue is not published in a edited book nor is published in a  
    journal issue  
 
conference edition is published in edited book  

Concept type:   associative fact type  

Necessity:   each conference edition is published in at most one edited book  

Necessity:  each edited book has at most one conference edition  
Necessity:   each conference edition that is published in a edited book  
    is not published in a book series issue nor is published in a  
    journal issue  
 
conference edition is published in journal issue  
Concept type:   associative fact type  

Necessity:   each conference edition is published in at most one journal issue  

Necessity:   each journal issue has at most one conference edition  
Necessity:   each conference edition that is published in a journal issue  
    is not published in a edited book nor is published in a  
    book series issue  
 
conference series has acronym  
Concept type:   is-property-of fact type  

Necessity:   each conference series has exactly one acronym  
 
conference series has name  

Concept type:   is-property-of fact type  
Necessity:   each conference series has exactly one name  
 
conference series includes conference edition  

Concept type:   partitive fact type  
Necessity:   each conference edition has exactly one conference series  
 
editor has edited book  

Concept type:   associative fact type  
Necessity:   each edited book has at least one editor  
 
editorship has order  

Concept type:   is-property-of fact type  
Necessity:   each editorship has exactly one order  
 
journal has issn  

Concept type:   is-property-of fact type  
Necessity:   each journal has exactly one issn  
 
journal has title  

Concept type:  is-property-of fact type  
Necessity:   each journal has exactly one title  
 
journal includes journal volume  

Concept type:   partitive fact type  
Necessity:   each journal volume has exactly one journal  
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journal issue has month  
Concept type:   is-property-of fact type  

Necessity:   each journal issue has at most one month  
 
journal issue has num pages  
Concept type:   is-property-of fact type  

Necessity:   each journal issue has exactly one num pages  
 
journal issue has number  
Concept type:   is-property-of fact type  

Necessity:   each journal issue has exactly one number  
 
journal issue has year  

Concept type:   is-property-of fact type  
Necessity:   each journal issue has exactly one year  
 
journal issue includes journal section  

Concept type:   partitive fact type  
Necessity:   each journal section has exactly one journal issue  
 
journal paper being conference paper  

Concept type:  characteristic  
 
journal paper has end page  

Concept type:   is-property-of fact type  

Necessity:   each journal paper has exactly one end page  
 
journal paper has ini page  

Concept type:   is-property-of fact type  

Necessity:   each journal paper has exactly one ini page  
 
journal paper is part of journal issue  

Concept type:   associative fact type  

Necessity:   each journal issue has at least one journal paper  
Necessity:   each journal paper is part of exactly one journal issue  
 
journal paper is part of journal section  

Concept type:   associative fact type  
Necessity:   each journal paper is part of at most one journal section  

Necessity:   each journal section has at least one journal paper  
 
journal section has order  

Concept type:   is-property-of fact type  
Necessity:   each journal section has exactly one order  
 
journal section has title  

Concept type:   is-property-of fact type  
Necessity:   each journal section has exactly one title  
 
journal volume has volume  

Concept type:   is-property-of fact type  
Necessity:   each journal volume has exactly one volume  
 
journal volume includes journal issue  

Concept type:   partitive fact type  
Necessity:   each journal issue has exactly one journal volume  
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person has gender  
Concept type: is-property-of fact type  

Necessity:   each person has exactly one gender  
 
person has home page  
Concept type:  is-property-of fact type  

Necessity:   each person has at most one home page  
 
person has name  
Concept type:  is-property-of fact type  

Necessity:   each person has exactly one name  
 
person has num publications  

Concept type:   is-property-of fact type  
Necessity:   each person has exactly one num publications  
 
person publishes publication  

Concept type:   associative fact type  
Necessity:   each person publishes at least one publication  

Necessity:   each publication has at least one person  
 
publication has edition  

Concept type:   is-property-of fact type  

Necessity:   each publication has exactly one edition  
 
publication has title  
Concept type:   is-property-of fact type  

Necessity:   each publication has exactly one title  
 
publication has year  
Concept type:   is-property-of fact type  

Necessity:   each publication has exactly one year 
 

 



 

 
 

8 Contributions and future research  

This chapter summarizes the main contributions of the research and approach presented 

and points out the areas of future research. 

8.1 Contributions 

8.1.1 A generic object-oriented approach to the translation between MOF 

metaschemas 

This thesis presents a new generic approach to the translation between MOF 

metaschemas. Various proposals describe generic schema translation, as summarized in 

Chapter 2. The approach proposed in this thesis enriches the previous research in several 

aspects.  

First of all, the generic translations between MOF schemas are defined, at conceptual level, 

by exclusively using object-oriented concepts, particularly the use of operations (and their 

refinements) and invariants, both formalized in OCL. The translations mappings can be 

used to check that one schema is a translation of another, and also to translate one into 

another one, in both directions. The translation mappings are defined declaratively by 

means of preconditions and postconditions and invariants and they can be implemented in 

any suitable language. The approach leverages the object-oriented constructs embedded 

in MOF metaschemas to achieve the goals of the object-oriented software development in 

the schema translation problem. This is one of the main advantages of the approach 

presented in this thesis. 

The research is framed in the context of MOF, UML and OCL. The benefit is that there is a 

wide set of available tools to implement the approach. For demonstration purposes, this 

work uses one of these tools, USE (Gogolla, Büttner and Richters 2007), in both the 

declarative and the procedural parts of the mappings. Other tools might be appropriate for 

other projects. 
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The approach to translate schemas consists in two steps: the structuring of metaschemas 

in schema units and the establishment of relationship among schema units of different 

metaschemas. 

Even though various authors proposed similar ideas, the approach to structuring 

metaschemas with schema units has not been previously explicitly formulated as in this 

thesis. Schema units correspond to semantic units of knowledge within a schema and each 

one consists of a set of structural schema elements.  Their definition, precedence 

relationship among them and the characterization objects to create them, in each schema, 

is independent from their use in any schema management operation. This means that they 

are defined only once for each metaschema.  

The difficulty of finding the relationship among different metaschemas is clearly reduced 

by using the defined schema units. On the one hand, the number of translation mappings 

to define between two metaschemas is at most the number of schema units created; which 

is much less than the number of structural elements of each metaschema. On the other 

hand, the translation mapping definition is split into two simpler parts: one between the 

schema units of one side and the characterization objects of the other side, and one 

between the characterization object of the second side and its schema units. Additionally, 

the precedence relationship among the schema units ensures the executability of the 

translation and the translation mapping postconditions defined ensure the consistency of 

the mappings. 

8.1.2 The application to the translation between UML and SBVR 

The generic approach has been applied to the particular case of translating UML schemas 

to SBVR and vice versa.  

An important issue to take into account when defining translation mappings is the size and 

complexity of the metaschemas. In the particular case of the application of the approach 

presented to the translation between UML and SBVR, the most challenging work has been 

the definition of the schema units and the precedence relationship among them. Moreover, 

the equivalences among schema units of different metaschemas were easily defined once 

schema units were defined.   

8.1.3 The transformation of SBVR to Structured English 

There are two additional contributions, derived from the non-existence of a 

straightforward writing in SBVR Structured English notation from the instances of SBVR 

metamodel: (i) the definition of a very simple metamodel to support the SBVR Structured 

English notation, and (ii) the definition of operations to obtain the instances of such 

metamodel from the defined SBVR schema units. 

The splitting of SBVR between meanings and representations proposed in this work has 

two benefits: (i) the exclusion of SBVR representations facilitates the translation mapping 

definition and (ii) it is easier to accommodate new natural language notations, as 
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Attempto Controled English (Wagner, Lukichev, Fuchs and Spreeuwenberg 2005) and 

RuleSpeak English (Object Management Group 2008) in the translation approach. 

8.2 Future research 

The work reported in this thesis may be further researched in various directions: (1) 

facilitating the definition of translation mappings; (2) defining a generic/super schema; 

(3) including the translation of instances; (4) defining other schema management 

operators; (5) translating OCL to SBVR; (6) translating behavioral schemas; and (7) 

representing UML and SBVR in other languages and notations. Each research line is briefly 

sketched in the following. 

8.2.1 Facilitating the definition of translation mappings 

Two operations, target-equivalents and includedIn-target, have been used to define 

translation mappings. This is, given two schemas 𝑆1 and 𝑆2, the 𝑆2equivalents of a schema 

unit 𝑠1 represented by an instance of 𝑆1 are the set of schema units of 𝑆2 whose 

isIncludedIn𝑆1 results in 𝑠1. Moreover, given a schema unit 𝑠1 represented by an instance 

of 𝑆1 the isIncludedIn𝑆2 gives an 𝑠2 schema unit, represented by an instance of 𝑆2, whose 

𝑆1equivalents includes s1. 

Both operations are complementaries. Therefore, an interesting research is automatically 

deriving the includedIn-target operations from the target-equivalents ones. If this is 

possible, only half of the postconditions definitions will have to be provided by designers. 

8.2.2 Defining a generic/super schema 

Approaches that provide a specification of the schemaGen (modelGen) operator as Papotti 

and Torlone (2005), Bernstein, Melnik and Mork (2005), Hainaut (2006), Boyd and 

McBrien (2005) and Atzeni, Cappellari, Torlone, Bernstein and Gianforme (2008), among 

others, rely on some kind of pivot model. The concept was introduced in the early 

approach (prior to the definition of the model management concept), MDM, by Atzeni and 

Torlone (1996). It is an elegant way to solve the combinatorial explosion in situations in 

which mappings must be developed from any M schemas to N schemas. Theoretically, 

instead of formalizing NxM distinct mappings, only M+N mappings are required.  

Atzeni, Capellari and Bernstein (2005), Atzeni, Cappellari, Torlone, Bernstein and 

Gianforme (2008) and Hainaut (2006), among others, define the concept of supermodel or 

generic model as a model that has constructs corresponding to all the metaconstructs 

known to the system. They define a limited set of generic (i.e., model independent) 

metaconstructs: lexical, abstract, aggregation, generalization and function, in the case of 

Atzeni, Capellari and Bernstein (2005) and Atzeni, Cappellari, Torlone, Bernstein and 

Gianforme (2008) and schema, entity type, simple domain, atomic attribute, primary 

identifier, secondary identifier, reference group and GER names, in the case of Hainaut 

(2006). Therefore, any two models are translations of each other if there is any set of 

transformations in the supermodel that translate one model to another, where both 

models are described in terms of the supermodel constructs. 
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A possible research is to study the alternative of defining "generic" schema units and to 

establish the correspondence between the schema units defined in each metamodel and 

the "generic" ones. In this context, the translations are defined only among the "generic" 

schema units.  

The main concern of this research, as suggested in the previous section, is the complexity 

for the "generic" metaschema to cover all type of metaconstructs.  

8.2.3 Translation of instances 

Atzeni, Capellari and Bernstein (2005) and Atzeni, Cappellari, Torlone, Bernstein and 

Gianforme (2008) include in their approaches the possibility of translating not only 

metaschemas but also instances of them. Their approaches include dictionaries that 

contain the description of each generic construct and the description of each element of a 

model in terms of the generic construct. Additionally, the dictionaries include the 

instances of the model, also as instances of the generic constructs. Each transformation in 

the supermodel is implemented in such a way that also generates the changes in the 

instances of the supermodel.  

From the conceptual point of view, the generation of instances of a model is close to works 

on the area of validation of models that generate instances of models to prove their 

correctness (Gogolla, Bohling and Richters 2005 and Rull, Farré, Teniente and Urpí 2008).  

8.2.4 Defining other schema management operators 

Chapter 2 contains four descriptions of families of problems found in schema 

management: (i) schema transformation, (ii) schema integration, (iii) schema translation, 

and (iii) propagation of changes between schemas due to evolution. In order to solve such 

problems, schema management proposes the definition of basic schema management 

operators: match, compose, merge, diff and modelGen (schemaGen).  

This thesis proposes a specification of the schemaGen operator at a conceptual level. The 

operator is defined in terms of schema units which have been defined independently from 

the translation mapping definitions.  

Schema units and the translation mappings defined as postconditions may be used for the 

specification of other schema management operators. For example, given two schemas 𝑚1 

and 𝑚2 and the mapping between both, the diff operator gives a third schema 𝑚3 that is a 

subset of 𝑚1 that do not participate in the mapping. Possibly, 𝑚3 may be defined, in terms 

of the schema units defined, as the union of the instances of untranslatable schema units of 

𝑚1 to 𝑚2 and all those instances of schema units of 𝑚1 that may not consistenly be 

translated to 𝑚2.  

8.2.5 Translation of OCL to SBVR 

This thesis considers a limited set of UML constraints to be translated to SBVR. However, 

an extension of the work presented in this thesis would be the study of translating UML 

including all the possible OCL expressions to SBVR. A first attempt in this direction has 
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already been done by Pau and Cabot (2008), where the authors present the pharaprasing  

of OCL to SBVR. 

By including the whole OCL metamodel in the translation approach, the constraint schema 

unit becomes very complex. A mechanism to structure in a different way the constraint 

schema unit should be provided. Then, translations from a part of an OCL expression to 

SBVR and vice versa should be defined.  

8.2.6 Translation of behavioral schemas 

This thesis has only included the structural part of conceptual schemas for the translation 

between UML and SBVR. It would be of interest to study translations between behavioral 

schemas. An alternative of representing, in UML, the behavioral schema is to represent 

domain and action request events as a special type of entities (Olivé 2007). On the other 

hand, SBVR also distinguishes between structural business rules and operative business 

rules. The study of the relationship between UML events and SBVR deserves further 

research. 

8.2.7 Representing UML and SBVR in other languages and notations 

This thesis is a first step towards a tighter integration of the business communities and 

software UML communities. As a future research, it would be interesting to implement the 

approach in a tool framework in order to evaluate the quality of the resulting SBVR 

Structured English expressions in industrial cases. As part of this goal SBVR Structured 

Catalan or Spanish (among others) notations should be developed.  

Moreover, the operations to represent SBVR instances should be provided not only in 

SBVR Structured English notation but also to other notations such as the Business Rule 

Speak notation (Ross 2003). 

Finally, the translation from UML to other business rules languages such as Controlled 

English Rule Language (Wagner, Lukichev, Fuchs and Spreeuwenberg 2005) should also 

be studied. 
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Appendix A (Chapter 4): UML metaschema in 
USE 

The following is a complete specification, suitable for validation with the USE tool, of the 

UML metaschema presented in Chapter 4. The operations related to the translation to 

SBVR are not included. Note that all the associations that are ordered have been specified 

as an order attribute because the ordered keyword in the USE tool does not seem to 

matter when inserting association links. The keyword is only used to distinguish between 

Set and Sequence types when using navigational syntax in OCL expressions8. Note also that 

the type of the value attribute of the LiteralUnlimitedNatural,  UnlimitedNatural, has been 

defined as an enumeration since the USE tool does not support UnlimitedNatural data 

types. Finally, note also that some notation is slightly different from the standard OCL.  

 
---------------------------------------- 

-- Fragment of UML Metaschema v.2.1.2  

---------------------------------------- 

 

model UMLMetaschema 

 

---------------------------------------- 

--- Enumeration      

---------------------------------------- 

 

enum AggregationKind { none, shared, composite } 

enum UnlimitedNatural { asterisk } 

 

---------------------------------------- 

--- Classes 

---------------------------------------- 

 

class Association < Relationship, Classifier 

attributes 

  isDerived : Boolean 

operations 

-- derived association 

  endType():Set(Type) = 

 self.memberEnd->collect(e|e.type)->asSet 

end  

 

class AssociationClass < Class, Association 

 

class Class < Classifier 

operations 

-- derived association 

  superClass():Set(Class)= 

 self.general().oclAsType(Class)->asSet 

end 

 

                                                                    
 
 
8 Information provided directly by Mark Richters, developer of USE tool. 
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abstract class  Classifier < RedefinableElement, Namespace, Type 

attributes 

  isAbstract : Boolean 

operations 

-- derived associations 

  attribute():Set(Property)= 

   self.oclAsType(Class).ownedAttribute->union( 

  self.oclAsType(DataType).ownedAttribute)->asSet 

       

  general():Set(Classifier)= 

   self.parents()  

-- additional operations 

  

  parents():Set(Classifier)= 

   generalization.general->asSet() 

    

  allParents():Set(Classifier)=  

   self.parents()->union( self.parents()->collect(p|  

  p.allParents())->flatten()->asSet() ) 

end 

 

class Constraint < NamedElement 

end 

 

class DataType < Classifier 

end 

 

abstract class DirectedRelationship < Relationship 

end 

 

abstract class Element 

end 

 

class Enumeration < DataType 

end 

 

class EnumerationLiteral < InstanceSpecification 

attributes 

 order : Integer 

end 

 

class Expression < ValueSpecification 

attributes 

  symbol : String 

end 

 

abstract class Feature < RedefinableElement 

end 

 

class Generalization < DirectedRelationship 

end 

 

class GeneralizationSet < NamedElement 

attributes 

  isCovering : Boolean 

  isDisjoint : Boolean 

end 

 

class InstanceSpecification < NamedElement 
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end 

 

class LiteralBoolean < LiteralSpecification 

attributes 

  value : Boolean 

end 

 

class LiteralInteger < LiteralSpecification 

attributes 

  value : Integer 

end 

 

class LiteralNull < LiteralSpecification 

end 

 

abstract class LiteralSpecification < ValueSpecification 

end 

 

class LiteralString < LiteralSpecification 

attributes 

  value : String 

end 

 

class LiteralUnlimitedNatural < LiteralSpecification 

attributes 

  value : UnlimitedNatural 

end 

 

abstract class MultiplicityElement < Element 

operations 

-- derivated attributes 

  lower():Integer= 

 lowerBound() 

  

  upper():UnlimitedNatural= 

 upperBound() 

 

-- additional operations 

  lowerBound():Integer = 

 if self.lowerValue->isEmpty then 1 else  

  self.lowerValue.oclAsType(LiteralInteger).value  

 endif 

  

  upperBound():UnlimitedNatural = 

 self.upperValue.oclAsType(LiteralUnlimitedNatural).value 

end 

 

abstract class NamedElement < Element 

attributes 

  name : String 

end 

 

abstract class Namespace < NamedElement 

end 

 

class OpaqueExpression < ValueSpecification 

attributes 

 body : String 

 language : String 
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end 

 

class PrimitiveType < DataType 

end 

 

class Property < StructuralFeature 

attributes 

  isDerived : Boolean 

  isDerivedUnion : Boolean 

  aggregation_ : AggregationKind 

 order : Integer 

operations 

-- derived attributes 

  isComposite():Boolean= 

 self.aggregation_=#composite 

end 

 

abstract class RedefinableElement < NamedElement 

end 

 

abstract class Relationship < NamedElement 

end 

 

abstract class StructuralFeature < MultiplicityElement, 

 TypedElement, Feature 

end 

 

abstract class Type < NamedElement 

end 

 

abstract class TypedElement < NamedElement 

end 

 

abstract class ValueSpecification 

end 

 

---------------------------------------- 

--- Associations    

---------------------------------------- 

 

composition OwningUpper_UpperValue between 

  MultiplicityElement[0..1] role owningUpper 

  ValueSpecification[0..1] role upperValue 

end 

 

composition OwningLower_LowerValue between 

  MultiplicityElement[0..1] role owningLower 

  ValueSpecification[0..1] role lowerValue 

end 

 

association TypedElement_Type between 

  TypedElement[*] 

  Type[0..1]  

end 

 

composition Context_OwnedRule between 

  Namespace[0..1] role context_ 

  Constraint[*] role ownedRule 

end 
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association Constraint_ConstrainedElement between 

  Constraint[*] 

  Element[*] role constrainedElement ordered 

end 

 

composition OwningConstraint_Specification between 

  Constraint[0..1] role owningConstraint 

  ValueSpecification[1] role specification 

end 

 

composition OwningInstanceSpec_Specification between 

 InstanceSpecification[0..1] role owningInstanceSpec 

 ValueSpecification[0..1] role specification 

end 

  

association InstanceSpecification_Classifier between 

 InstanceSpecification[*] 

 Classifier[*] role classifier 

end 

 

association Classifier_RedefinedClassifier between 

 Classifier[*] 

 Classifier[*] role redefinedClassifier 

end 

 

association General_Generalization between 

  Classifier[1] role general 

  Generalization[*] role generalization_ 

end 

 

composition Specific_Generalization between 

  Classifier[1] role specific 

  Generalization[*] role generalization 

end 

 

association Class_OwnedAttribute between 

  Class[0..1] role class_ 

  Property[*] role ownedAttribute ordered 

end 

 

composition Class_NestedClassifier between 

 Class[0..1] role class_ 

 Classifier[*] role nestedClassifier 

end 

 

association Association_MemberEnd between 

  Association[0..1] role association_ 

  Property[2..*] role memberEnd ordered 

attributes 

 order : Integer 

end 

 

association OwningAssociation_OwnedEnd between 

  Association[0..1] role owningAssociation 

  Property[*] role ownedEnd ordered 

end 

 

association Property_SubsettedProperty between 
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  Property[*] 

  Property[*] role subsettedProperty 

end 

 

association Property_RedefinedProperty between 

  Property[*] role property_ 

  Property[*] role redefinedProperty 

end 

 

association DataType_OwnedAttribute between 

  DataType[0..1] role dataType 

  Property[*] role ownedAttribute ordered 

end 

 

association Enumeration_EnumerationLiteral between 

  Enumeration[0..1] role enumeration 

  EnumerationLiteral[1..*] role ownedLiteral ordered 

end 

 

composition AssociationEnd_Qualifier between 

  Property[0..1] role associationEnd 

  Property[*] role qualifier 

end 

 

association Powertype_PowertypeExtent between 

  Classifier[0..1] role powertype 

  GeneralizationSet[*] role powertypeExtent 

end 

 

association GeneralizationSet_Generalization between 

  GeneralizationSet[*] role generalizationSet 

  Generalization[1..*] role generalization 

end 

---------------------------------------- 

---  Constraints               

---------------------------------------- 

 

constraints 

 

context Association inv OnlyBinaryAssociationCanBeAggregations: 

  self.memberEnd->exists(aggregation_<>#none) implies  

   self.memberEnd->size=2 

  

context Association inv 

 AssociationsEndsWithMoreThan2MustBeOwnedByAssociation: 

  if self.memberEnd->size>2 then ownedEnd-> 

 includesAll(memberEnd) else true endif 

 

context Classifier inv GeneralizationsAreAcyclical: 

  not self.allParents()->includes(self) 

  

context Constraint inv AConstraintCannotBeAppliedToItself: 

  not constrainedElement -> includes(self) 

   

context GeneralizationSet inv 

 EveryGeneralizationMustHaveTheSameGeneralClassifier: 

  self.generalization->collect(g|g.general)->asSet->size<=1 

   

context MultiplicityElement inv TheLowerBoundMustBeNonNegative: 
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  lowerBound()<>oclUndefined(Integer) implies lowerBound()>=0 

 

context MultiplicityElement inv UpperBoundGreaterThanLowerBound: 

 upperValue.oclAsType(LiteralInteger) <> 

oclUndefined(LiteralInteger) implies  

upperValue.oclAsType(LiteralInteger).value>=lowerBound() 

 

context Property inv IsDeriveUnionImpliesIsDerived: 

 self.isDerivedUnion implies self.isDerived 

  

context Expression_Operand inv CorrectOrder: 

 Expression_Operand.allInstances->sortedBy(order)-> 

 last.order=Expression_Operand.allInstances->size() 

 

context Constraint_ConstrainedElement inv CorrectOrder: 

 Constraint_ConstrainedElement.allInstances-> 

 sortedBy(order)->last.order= 

 Constraint_ConstrainedElement.allInstances->size() 

 

context Class_OwnedAttribute inv CorrectOrder: 

 Class_OwnedAttribute.allInstances->sortedBy(order)-> 

 last.order=Class_OwnedAttribute.allInstances->size() 

 

context Association_MemberEnd inv CorrectOrder: 

 Association_MemberEnd.allInstances->sortedBy(order)-> 

 last.order=Association_MemberEnd.allInstances->size() 

 

context OwningAssociation_OwnedEnd inv CorrectOrder: 

 OwningAssociation_OwnedEnd.allInstances->sortedBy(order)-> 

 last.order=OwningAssociation_OwnedEnd.allInstances->size() 

 

context DataType_OwnedAttribute inv CorrectOrder: 

 DataType_OwnedAttribute.allInstances->sortedBy(order)-> 

 last.order=DataType_OwnedAttribute.allInstances->size() 

 

 





 

 
 

Appendix B (Chapter 4): DBLP as an instance 
of UML metaschema 

 

This Appendix shows a representative list (there is an example for each type of schema 

unit) of commands that have been used to create the structural schema of the DBLP 

example, introduced in Chapter 4, in the USE tool. The schema is created as instances of 

the UML Metaschema. The complete instantiation is available at (Raventós 2008b). 

 

-- Primitive Types 

 

!create PrimitiveType1 : PrimitiveType 

!set PrimitiveType1.name := 'String' 

!set PrimitiveType1.isAbstract := false 

 

-- Enumeration 

 

!create Enumeration1 : Enumeration 

!set Enumeration1.isAbstract := false 

!set Enumeration1.name := 'Gender' 

!create EnumerationLiteral1 : EnumerationLiteral 

!set EnumerationLiteral1.name := 'Male' 

!insert (Enumeration1,EnumerationLiteral1) into  

Enumeration_OwnedLiteral 

!set EnumerationLiteral1.order := 1 

!create EnumerationLiteral2 : EnumerationLiteral 

!set EnumerationLiteral2.name := 'Female' 

!insert (Enumeration1,EnumerationLiteral2) into  

Enumeration_OwnedLiteral 

!set EnumerationLiteral2.order := 2 

 

-- Data Type  

 

!create DataType1 : DataType 

!set DataType1.name := 'Natural' 

!set DataType1.isAbstract := false 

 

-- Class 

 

!create Class_1 : Class 

!set Class_1.name := 'person' 

!set Class_1.isAbstract := false 

 

-- Generalization 

 

!create Generalization1 : Generalization 

!insert (Class_2,Generalization1) into General_Generalization 

!insert (Class_4,Generalization1) into Specific_Generalization 

 

-- Generalization Set 
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!create GeneralizationSet1 : GeneralizationSet 

!insert (GeneralizationSet1,Generalization2) into  

GeneralizationSet_Generalization 

!insert (GeneralizationSet1,Generalization3) into  

GeneralizationSet_Generalization 

!set GeneralizationSet1.isCovering := true 

!set GeneralizationSet1.isDisjoint := true 

 

-- Attribute 

 

!create Attribute1 : Property 

!set Attribute1.name := 'gender' 

!insert (Class_1,Attribute1) into Class_OwnedAttribute 

!insert (Attribute1,Enumeration1) into TypedElement_Type 

!set Attribute1.isDerived := false 

!set Attribute1.isDerivedUnion := false 

!set Attribute1.aggregation_ := #none 

!create LiteralInteger1l : LiteralInteger 

!set LiteralInteger1l.value := 1 

!create LiteralInteger1u : LiteralInteger 

!set LiteralInteger1u.value := 1 

!insert (Attribute1,LiteralInteger1l) into OwningLower_LowerValue 

!insert (Attribute1,LiteralInteger1u) into OwningUpper_UpperValue 

 

-- Association 

 

!create Association4 : Association 

!set Association4.isDerived := false 

!set Association4.isAbstract := false 

!create Property4a : Property 

!insert (Property4a,Class_7) into TypedElement_Type 

!set Property4a.isDerived := false 

!set Property4a.isDerivedUnion := false 

!set Property4a.aggregation_ := #none 

!create Property4b : Property 

!insert (Property4b,Class_5) into TypedElement_Type 

!set Property4b.isDerived := false 

!set Property4b.isDerivedUnion := false 

!set Property4b.aggregation_ := #shared 

!set Property4a.order := 1 

!set Property4b.order :=2 

!insert (Association4,Property4a) into Association_MemberEnd 

!insert (Association4,Property4a) into OwningAssociation_OwnedEnd 

!insert (Association4,Property4b) into Association_MemberEnd 

!insert (Association4,Property4b) into OwningAssociation_OwnedEnd 

!create LiteralInteger4al : LiteralInteger 

!set LiteralInteger4al.value := 1 

!create LiteralUnlimitedNatural4au : LiteralUnlimitedNatural 

!set LiteralInteger4au.value := #asterisk 

!insert (Property4a,LiteralInteger4al) into OwningLower_LowerValue 

!insert (Property4a,LiteralUnlimitedNatural4au) into 

 OwningUpper_UpperValue 

!create LiteralInteger4bl : LiteralInteger 

!set LiteralInteger4bl.value := 0 
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!create LiteralInteger4bu : LiteralInteger 

!set LiteralInteger4bu.value := 1 

!insert (Property4b,LiteralInteger4bl) into OwningLower_LowerValue 

!insert (Property4b,LiteralInteger4bu) into 

 OwningUpper_UpperValue 

!create LiteralUnlimitedNatural3bu:LiteralUnlimitedNatural 

!set LiteralUnlimitedNatural3bu.value := 1 

!insert (Property3b,LiteralInteger3bl) into OwningLower_LowerValue 

!insert (Property3b,LiteralUnlimitedNatural3bu) into  

OwningUpper_UpperValue 

 

-- AssociationClasses 

 

!create AssociationClass1 : AssociationClass 

!set AssociationClass1.name := 'editorship' 

!set AssociationClass1.isDerived := false 

!set AssociationClass1.isAbstract := false 

!create Property1a : Property 

!insert (Property1a,Class_1) into TypedElement_Type 

!set Property1a.name := 'editor' 

!set Property1a.isDerived := false 

!set Property1a.isDerivedUnion := false 

!set Property1a.aggregation_ := #none 

!create Property1b : Property 

!insert (Property1b,Class_5) into TypedElement_Type 

!set Property1b.isDerived := false 

!set Property1b.isDerivedUnion := false 

!set Property1b.aggregation_ := #none 

!set Property1a.order := 1 

!set Property1b.order := 2 

!insert (AssociationClass1,Property1a) into Association_MemberEnd 

!insert (AssociationClass1,Property1a) into 

 OwningAssociation_OwnedEnd 

!insert (AssociationClass1,Property1b) into Association_MemberEnd 

!insert (AssociationClass1,Property1b) into 

 OwningAssociation_OwnedEnd 

!create LiteralInteger1al : LiteralInteger 

!set LiteralInteger1al.value := 1 

!create LiteralUnlimitedNatural1au : LiteralUnlimitedNatural 

!set LiteralInteger1au.value := #asterisk 

!insert (Property1a,LiteralInteger1al) into OwningLower_LowerValue 

!insert (Property1a,LiteralUnlimitedNatural1au) into 

 OwningUpper_UpperValue 

!create LiteralInteger1bl : LiteralInteger 

!set LiteralInteger1bl.value := 0 

!create LiteralUnlimitedNatural1bu : LiteralUnlimitedNatural 

!set LiteralInteger1bu.value := #asterisk 

!insert (Property1b,LiteralInteger1bl) into OwningLower_LowerValue 

!insert (Property1b,LiteralUnlimitedNatural1bu) into 

 OwningUpper_UpperValue 

 

-- Constraint 

 

!create Constraint2 : Constraint 

!set Constraint2.name := 'nameIsKeyOfPerson' 
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!create Constraint_ConstrainedElement2:  

Constraint_ConstrainedElement between 

(Constraint2,Attribute2) 

!set Constraint_ConstrainedElement2.order := 1 

!insert (Class_1, Constraint2) into Context_OwnedRule 

!create Expression2 : Expression 

!set Expression2.symbol := 'person.allInstances()->isUnique(name)' 

!insert (Constraint2, Expression2) into  

OwningConstraint_Specification 



 

 
 

Appendix C (Chapter 4): methods for 
creating UML schema units 

 

This Appendix describes the methods for creating instances of UML schema units from 

their characterization objects, as described in Chapter 4.  For each chacterization objects 

there is a procedure in an .assl file. The description of all methods is available at (Raventós 

2008b). 

The method for creating the schema units of all instances of ClassCh is defined as follows: 

procedure CreateUnitOfClassCh() 

 var c:Class, el:ClassCh; 

begin 

 for nameCh:String in [ClassCh.allInstances -> collect(ch:ClassCh| 

   ch.name)->asSet->asSequence] 

 begin 

  el := Any([ClassCh.allInstances -> select(ch| 

   ch.name = nameCh)-> asSequence]); 

  c:=Create(Class); 

  [c].name := [el.name]; 

  [c].isAbstract := [el.isAbstract]; 

 end; 

end;  

The method for creating the schema units of all the instances of DataTypeCh is defined as 

follows: 
procedure CreateUnitOfDataTypeCh() 

 var d:DataType; 

 begin 

 for el:DataTypeCh in [DataTypeCh.allInstances->asSequence] 

  begin 

   if [el.isPrimitiveType] then 

   begin 

    p:=Create(PrimitiveType); 

    [p].name := [el.name]; 

    [p].isAbstract := [false]; 

   end 

   else 

   begin 

    d:=Create(DataType); 

    [d].name := [el.name]; 

    [d].isAbstract := [false]; 

    end; 

  end;  

 end; 

The method for creating the schema unit of all the instances of EnumerationCh is defined 

as follows: 

procedure CreateUnitOfEnumerationCh() 

 var e:Enumeration, eli:EnumerationLiteral, el:EnumerationCh; 

 begin 
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  for nameCh:String in [EnumerationCh.allInstances ->  

   collect(ch:EnumerationCh| ch.name)->asSet->asSequence] 

  begin 

   el := Any([EnumerationCh.allInstances->select(ch| 

    ch.name = nameCh)->asSequence]); 

   e := Create(Enumeration); 

   [e].name := [el.name]; 

   [e].isAbstract := [false]; 

   for li:Literal in [el.literal] 

    begin 

     eli := Create (EnumerationLiteral); 

     [eli].name := [li.name];  

     [eli].order := [li.order]; 

     Insert(Enumeration_OwnedLiteral, [e],[eli]); 

    end; 

   end; 

  end;  

The method for creating the schema units of all instances of PropertyCh is defined as 

follows: 
procedure CreateUnitOfPropertyCh() 

var p:Property, cl:Class, dt:DataType, li:LiteralInteger,  

lu1:LiteralUnlimitedNatural, lu2:LiteralInteger, d:DataType, 

el:PropertyCh, pr:PrimitiveType; 

begin 

 for pro:Tuple(cl:String, na:String) in  

  [PropertyCh.allInstances->collect(ch:PropertyCh|  

  Tuple{cl:ch.ownerClassName, na:ch.name})->asSet->asSequence] 

 begin 

  el := Any([PropertyCh.allInstances->select(p|  

   p.ownerClassName=pro.cl and p.name=pro.na)->asSequence]); 

  p := Create(Property); 

  [p].name := [el.name]; 

   

  if [el.type<>'Boolean'] then 

  begin 

   d := Any([DataType.allInstances->select(e:DataType|  

    (e.oclIsTypeOf(DataType) or e.oclIsTypeOf(Enumeration) or  

    e.oclIsTypeOf(PrimitiveType)) and e.name=el.type)-> 

    asSequence]); 

   Insert(TypedElement_Type, [p],[d]); 

   end 

   else 

   begin 

    pr:= Create(PrimitiveType); 

    [pr].name := ['Boolean']; 

    Insert(TypedElement_Type, [p],[pr]); 

   end; 

   

  if [el.ownerClassName<>oclUndefined(String)] then 

  begin 

   cl := Any([Class.allInstances->select(c:Class| 

    c.name=el.ownerClassName)->asSequence]); 

   Insert(Class_OwnedAttribute, [cl], [p]); 

  end; 

  if [el.ownerDataTypeName<>oclUndefined(String)] then 

  begin 

   dt := Any([DataType.allInstances->select(d:DataType| 
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    d.name=el.ownerDataTypeName)->asSequence]); 

   Insert(DataType_OwnedAttribute, [dt], [p]); 

  end; 

  [p].isDerived := [el.isDerived]; 

  [p].isDerivedUnion := [el.isDerivedUnion]; 

   [p].aggregation_ := [el.aggregation_]; 

   li := Create(LiteralInteger); 

   [li].value := [el.lowerValue]; 

   Insert(OwningLower_LowerValue, [p], [li]); 

   if [el.upperValue=oclUndefined(Integer)] then 

   begin 

    lu1 := Create(LiteralUnlimitedNatural); 

    [lu1].value := [#asterisk]; 

    Insert(OwningUpper_UpperValue, [p], [lu1]); 

   end 

   else 

   begin 

    lu2 := Create(LiteralInteger); 

    [lu2].value := [el.upperValue]; 

    Insert(OwningUpper_UpperValue, [p], [lu2]); 

    end; 

 end; 

end;     

The method for creating the schema units of all instances of AssociationCh is defined as 

follows: 
procedure CreateUnitOfAssociationCh() 

 var  a:Association, p:Property, cl:Class, li:LiteralInteger, 

    lu2:LiteralInteger, lu1:LiteralUnlimitedNatural, 

    el:AssociationCh; 

 begin 

  for pro:Tuple(cl1:String, cl2:String) in 

    [AssociationCh.allInstances->collect(ch:AssociationCh|  

    Tuple{cl1:ch.associationMemberEnd->sortedBy(order)-> 

    first.typeName, cl2:ch.associationMemberEnd->  

    sortedBy(order) ->last.typeName})->asSet->asSequence] 

  begin 

   for el:AssociationCh in [AssociationCh.allInstances 

     ->asSequence] 

  begin 

   a := Create(Association); 

    if [el.name<>oclUndefined(String)] then  

   begin 

     [a].name := [el.name]; 

   end; 

    [a].isAbstract := [el.isAbstract]; 

    for ame:AssociationMemberEnd in 

      [el.associationMemberEnd] 

   begin 

    p := Create (Property); 

    Insert(Association_MemberEnd, [a], [p]); 

    Insert(OwningAssociation_OwnedEnd, [a], [p]); 

    if [ame.name<>oclUndefined(String)] then 

    begin 

      [p].name := [p.name]; 

    end; 

    cl := Any([Class.allInstances -> select(c:Class|  

        c.name = ame.typeName)->asSequence]); 

    Insert(TypedElement_Type, [p], [cl]); 
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    [p].isDerived := [ame.isDerived]; 

    [p].isDerivedUnion := [ame.isDerivedUnion]; 

    [p].aggregation_ := [ame.aggregation_]; 

    li := Create(LiteralInteger); 

     [li].value := [ame.lowerValue]; 

     Insert(OwningLower_LowerValue, [p], [li]); 

     if [ame.upperValue=oclUndefined(Integer)] then 

     begin 

      lu1 := Create(LiteralUnlimitedNatural); 

      [lu1].value := [#asterisk]; 

      Insert(OwningUpper_UpperValue, [p], [lu1]); 

     end 

     else 

     begin 

      lu2 := Create(LiteralInteger); 

      [lu2].value := [ame.upperValue]; 

      Insert(OwningUpper_UpperValue, [p], [lu2]); 

      end; 

     [p].order := [ame.order]; 

    end; 

   end;   

end; 

The method for creating the schema units of all instances of AssociationClassCh is defined 

as follows: 
procedure CreateUnitOfAssociationClassCh() 

 var ac:AssociationClass, p:Property, cl:Class,  

   li:LiteralInteger, lu2:LiteralInteger, 

    lu1:LiteralUnlimitedNatural, el:AssociationClassCh; 

 begin 

  begin 

  for nameCh:String in [AssociationClassCh.allInstances->  

   collect(ch:AssociationClassCh| ch.name)->asSet->asSequence] 

  begin 

   for el:AssociationClassCh in  

      [AssociationClassCh.allInstances -> asSequence] 

  begin 

    ac := Create(AssociationClass); 

    [ac].name := [el.name]; 

    for ame:AssociationClassMemberEnd in  

      [el.associationClassMemberEnd] 

   begin 

    p := Create (Property); 

    Insert(Association_MemberEnd, [ac], [p]); 

    Insert(OwningAssociation_OwnedEnd, [ac], [p]);   

  if [ame.name <> oclUndefined(String)] then 

     begin 

      [p].name := [p.name]; 

     end; 

    cl := Any([Class.allInstances -> select(c:Class|  

        c.name = ame.typeName) -> asSequence]); 

    Insert(TypedElement_Type, [p], [cl]); 

    [p].isDerived := [ame.isDerived]; 

    [p].isDerivedUnion := [ame.isDerivedUnion]; 

    [p].aggregation_ := [ame.aggregation_]; 

    li := Create(LiteralInteger); 

     [li].value := [ame.lowerValue]; 

     Insert(OwningLower_LowerValue, [p], [li]); 

     lu := Create(LiteralUnlimitedNatural); 
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     if [ame.upperValue=oclUndefined(Integer)] then 

     begin 

      lu1 := Create(LiteralUnlimitedNatural); 

      [lu1].value := [#asterisk]; 

      Insert(OwningUpper_UpperValue, [p], [lu1]); 

     end 

     else 

     begin 

      lu2 := Create(LiteralInteger); 

      [lu2].value := [ame.upperValue]; 

      Insert(OwningUpper_UpperValue, [p], [lu2]); 

      end; 

      [p].order := [ame.order]; 

    end; 

   end;   

end;  

The method for creating the schema units of all instances of GeneralizationCh is defined as 

follows: 

procedure CreateUnitOfGeneralizationCh() 

 var g:Generalization, gc:Class, sc:Class, el:GeneralizationCh; 

begin 

 for pro:Tuple(cl1:String, cl2:String) in  

  [GeneralizationCh.allInstances->collect(ch:GeneralizationCh|  

   Tuple{cl1:ch.generalClassName, cl2:ch.specificClassName})-> 

    asSet->asSequence] 

 begin 

  el := Any([GeneralizationCh.allInstances->select(p|  

   p.generalClassName = pro.cl1 and p.specificClassName =  

   pro.cl2)->asSequence]); 

  g := Create(Generalization); 

  gc := Any([Class.allInstances->select(c:Class| c.name =  

   el.generalClassName)->asSequence]);   

  Insert(General_Generalization, [gc], [g]); 

  sc := Any([Class.allInstances->select(c:Class|  

   c.name = el.specificClassName)->asSequence]);   

  Insert(Specific_Generalization, [sc], [g]); 

 end; 

end; 

The method for creating the schema units of all instances of GeneralizationSetCh is defined 

as follows: 
procedure CreateUnitOfGeneralizationSetCh() 

 var gs:GeneralizationSet, g:Generalization, pw:Classifier,  

 el:GeneralizationSetCh; 

begin 

 

 for pro:String in [GeneralizationSetCh.allInstances-> 

  collect(ch:GeneralizationSetCh| ch.name)->asSet->asSequence] 

 begin 

  el := Any([GeneralizationSetCh.allInstances->select(p| 

    p.name=pro)->asSequence]); 

  gs := Create(GeneralizationSet); 

  [gs].name := [el.name]; 

  [gs].isCovering := [el.isCovering]; 

  [gs].isDisjoint := [el.isDisjoint]; 

  for p:Participant in [el.participant->asSequence] 



An object-oriented approach to the translation between MOF metaschemas 

 

244 

 

  begin 

   g := Any([Generalization.allInstances-> 

    select(ge:Generalization| ge.general.name =  

    p.generalClassName and ge.specific.name =  

    p.specificClassName)->asSequence]); 

   Insert(GeneralizationSet_Generalization, [gs], [g]); 

  end;   

 end; 

end;   

The method for creating the schema units of all instances of ConstraintCh is defined as 

follows: 
procedure CreateUnitOfConstraintCh() 

 var c:Constraint, na:Namespace, ex:Expression, ele:Element,  

 el:ConstraintCh; 

begin 

 for pro:Tuple(na:String,sp:String, ce:Set(ConstrainedElement_)) in  

  [ConstraintCh.allInstances->select(ch| ch.name<>'XOR')-> 

  collect(ch:ConstraintCh| Tuple{na:ch.name, sp:ch.namespace,  

   ce:ch.constrainedElement})->asSet->asSequence] 

 begin 

  el := Any([ConstraintCh.allInstances->select(p| p.name = pro.na  

   and p.namespace=pro.sp and p.constrainedElement=pro.ce)-> 

   asSequence]); 

  c := Create(Constraint); 

  if [el.name<>oclUndefined(String)] then 

  begin 

   [c].name := [el.name]; 

  end; 

  na := Any([Class.allInstances->select(n| n.name = el.namespace) 

   ->asSequence]);   

  Insert(Context_OwnedRule, [na], [c]); 

  ex := Create(Expression); 

  [ex].symbol := [el.symbolExpression]; 

  Insert(OwningConstraint_Specification,[c],[ex]); 

  for coe:ConstrainedElement_ in [el.constrainedElement-> 

   asSequence] 

  begin 

   ele := Any([Element.allInstances->select(e:Element|  

    if coe.type=#property then  

     e.oclAsType(Property).class_.name=el.namespace and  

     e.oclAsType(Property).name=coe.name  

    else e.oclAsType(Association).memberEnd->collect(name)-> 

      asSet = coe.membersName->asSet and 

      e.oclAsType(Association).memberEnd->collect(type.name)  

      ->asSet = coe.membersType->asSet  

    endif)->asSequence]); 

   Insert(Constraint_ConstrainedElement, [c], [ele]); 

  end;    

 end; 

 el := Any([ConstraintCh.allInstances->select(p| p.name = 'XOR')-> 

  asSequence]); 

 c := Create(Constraint); 

 if [el.name<>oclUndefined(String)] then 

 begin 

  [c].name := [el.name]; 

 end; 

 na := Any([Class.allInstances->select(n| n.name = el.namespace)-> 

  asSequence]);   
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 Insert(Context_OwnedRule, [na], [c]); 

 ex := Create(Expression); 

 [ex].symbol := [el.symbolExpression]; 

 Insert(OwningConstraint_Specification,[c],[ex]); 

 for coe:ConstrainedElement_ in [el.constrainedElement->asSequence] 

 begin 

  ele := Any([Element.allInstances->select(e:Element|  

   if coe.type=#property then  

    e.oclAsType(Property).class_.name=el.namespace and  

    e.oclAsType(Property).name=coe.name  

   else e.oclAsType(Association).memberEnd->collect(name)->asSet  

    = coe.membersName->asSet and  

    e.oclAsType(Association).memberEnd ->collect(type.name)-> 

    asSet = coe.membersType->asSet  

   endif)->asSequence]); 

  Insert(Constraint_ConstrainedElement, [c], [ele]); 

 end;    

end;   





 

 
 

Appendix D (Chapter 5): SBVR meanings 
metaschema in USE 

The following is a complete specification, suitable for validation with the USE tool, of the 

SBVR Meanings metaschema presented in Chapter 5. Note, as in the case of UML, that all 

the associations that are ordered have been specified as an order attribute because the 

ordered keyword in the USE tool does not seem to matter when inserting association links. 

The keyword is only used to distinguish between Set and Sequence types when using 

navigational syntax in OCL expressions9.  

 
--------------------------------------------- 

-- Fragment of SBVR Meanings Metaschema v.1.0  

--------------------------------------------- 

 

model SBVR Meanings 

 

---------------------------------------- 

--- Enumerations      

---------------------------------------- 

 

enum FactTypeType { Associative, IsPropertyOf, Partitive,  

    Categorization, Characteristic } 

enum BinaryOperationType { Conjunction, Disjunction, Equivalence,  

    ExclusiveDisjunction, NandFormulation, NorFormulation,  

    Implication, WhetherOrNotFormulation} 

enum QuantificationType { Universal, AtLeastN, Existential,  

    AtMostN, AtMostOne, ExactlyN, ExactlyOne, NumericRange } 

 

---------------------------------------- 

--- Classes 

---------------------------------------- 

 

class AssociativeFactType < FactType 

end 

 

class AtLeastNQuantification < Quantification 

end 

 

class AtMostNQuantification < Quantification 

end 

 

class AtMostOneQuantification < AtMostNQuantification 

end 

 

class AtomicFormulation < LogicalFormulation 

end 

 

                                                                    
 
 
9 Information provided by Mark Richters, developer of USE tool. 
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abstract class BinaryLogicalOperation < LogicalOperation 

end 

 

abstract class BindableTarget < Concept 

end 

 

class CategorizationScheme < ObjectType 

end 

 

class CategorizationFactType < FactType 

end 

 

class Characteristic < FactType 

end 

 

abstract class ClosedLogicalFormulation <  

ClosedSemanticFormulation, LogicalFormulation 

end 

 

class ClosedProjection < Projection, ClosedSemanticFormulation 

end 

 

abstract class ClosedSemanticFormulation < SemanticFormulation 

end 

 

abstract class Concept < Meaning 

attributes 

 name: String 

end 

 

class Conjunction < BinaryLogicalOperation 

end 

 

class Disjunction < BinaryLogicalOperation 

end 

 

class Equivalence < BinaryLogicalOperation 

end 

 

class ExactlyNQuantification < Quantification 

end 

 

class ExactlyOneQuantification < ExactlyNQuantification 

end 

 

class ExclusiveDisjunction < BinaryLogicalOperation 

end 

 

class ExistentialQuantification < AtLeastNQuantification 

end 

 

abstract class FactType < Concept 

end 

 

class FactTypeRole < Role 
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attributes 

 order : Integer 

end 

 

class Implication < BinaryLogicalOperation 

end 

 

class IndividualConcept < NounConcept, BindableTarget 

end 

 

class InstantiationFormulation < LogicalFormulation 

end 

 

class IsPropertyOfFactType < AssociativeFactType 

end 

 

abstract class LogicalFormulation < SemanticFormulation 

end 

 

class LogicalNegation < LogicalOperation 

end 

 

abstract class LogicalOperation < LogicalFormulation 

end 

 

abstract class Meaning < Thing 

end 

 

class NandFormulation < BinaryLogicalOperation 

end 

 

class NorFormulation < BinaryLogicalOperation 

end 

 

class NounConcept < Concept 

end 

 

class NonNegativeInteger < NounConcept 

end 

 

class NumericRangeQuantification < Quantification 

end 

 

class Objectification < LogicalFormulation 

end 

 

class ObjectType < NounConcept 

end 

 

class PartitiveFactType < AssociativeFactType 

end 

 

class Projection < SemanticFormulation 

end 
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class Proposition < Meaning 

attributes 

 isTrue:Boolean 

end 

 

abstract class Quantification < LogicalFormulation 

end 

 

class ReferenceScheme < Concept 

end 

 

class Role < NounConcept 

end 

 

class RoleBinding < Concept 

end 

 

class Rule < Proposition 

end 

 

class Segmentation < CategorizationScheme 

end 

 

abstract class SemanticFormulation < Thing 

end 

 

class StructuralRule < Rule 

end 

 

class Text < NounConcept 

attributes 

 value:String 

end 

 

abstract class Thing 

end 

 

class UniversalQuantification < Quantification 

end 

 

class Variable < BindableTarget 

end 

 

class WhetherOrNotFormulation < BinaryLogicalOperation 

end 

 

class ClosedQuantification < ClosedLogicalFormulation,  

  Quantification 

end 

 

class ClosedUniversalQuantification < ClosedQuantification 

end 

 

---------------------------------------- 

--- Associations 

---------------------------------------- 
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association NounConcept_Role between 

 NounConcept[1] role nounConcept 

 Role[*] role role_ 

end 

 

association FactTypeRole_FactType between 

 FactTypeRole[*] role factTypeRole ordered 

 FactType[1] role factType 

end 

 

association ReferenceScheme_SimplyUsedRole between 

 ReferenceScheme[*] role referenceScheme 

 FactTypeRole[*] role simplyUsedRole 

end 

 

association ReferenceScheme_IdentifyingCharacteristic between 

 ReferenceScheme[*] role referenceScheme 

 Characteristic[*] role identifyingCharacteristic 

end 

 

association Concept_ReferenceScheme between 

 Concept[1..*] role referencedConcept 

 ReferenceScheme[*] role referenceSchemeOfConcept 

end 

 

association CategorizationScheme_Category between 

 CategorizationScheme[*] role scheme 

 Concept[1..*] role category 

end 

 

association CategorizationScheme_GeneralConcept between 

  CategorizationScheme[*] role categorizationScheme 

  NounConcept[1] role generalConcept 

end 

 

association LogicalFormulation_Projection between 

 LogicalFormulation[0..1] role logicalFormulation 

 Projection[*] role projection 

end 

 

association SemanticFormulation_FreeVariable between 

 SemanticFormulation[*] role semanticFormulation 

 Variable[*] role freeVariable 

end 

 

association RestrictingFormulation_Variable between 

 LogicalFormulation[0..1] role restrictingFormulation 

 Variable[*] role variable 

end 

 

association Variable_RangedOverConcept between 

 Variable[*] role variable 

 Concept[0..1] role rangedOverConcept 

end 
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association Proposition_ClosedLogicalFormulation between 

 Proposition[1] role proposition 

 ClosedLogicalFormulation[0..1] role closedLogicalFormulation 

end 

 

association AtomicFormulation_FactType between 

 AtomicFormulation[*] role atomicFormulation 

 FactType[1] role factType 

end 

 

association AtomicFormulation_RoleBinding between 

 AtomicFormulation[1] role atomicFormulation 

 RoleBinding[*] role roleBinding 

end 

 

association FactTypeRole_RoleBinding between 

 FactTypeRole[1] role factTypeRole 

 RoleBinding[*] role roleBinding 

end 

 

association RoleBinding_BindableTarget between 

 RoleBinding[*] role roleBinding 

 BindableTarget[1] role bindableTarget 

end 

 

association InstantiationFormulation_BindableTarget between 

 InstantiationFormulation[*] role  

   boundedToInstantiationFormulation 

 BindableTarget[1] role bindableTarget 

end 

 

association InstantiationFormulation_ConceptConsidered between 

 InstantiationFormulation[*] role instantiationFormulation 

 Concept[1] role conceptConsidered 

end 

 

association LogicalNegation_LogicalOperand between 

 LogicalNegation[*] role LogicalNegation 

 LogicalFormulation[1] role logicalOperand 

end 

 

association BinaryLogicalOperation_LogicalOperand1 between 

 BinaryLogicalOperation[*] role binaryLogicalOperation1 

 LogicalFormulation[1] role logicalOperand1 

end 

 

association BinaryLogicalOperation_LogicalOperand2 between 

 BinaryLogicalOperation[*] role binaryLogicalOperation2 

 LogicalFormulation[1] role logicalOperand2 

end 

 

association Implication_Antecedent between 

 Implication[*] role implication1 

 LogicalFormulation[1] role antecedent 
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end 

 

association Implication_Consequent between 

 Implication[*] role implication2 

 LogicalFormulation[1] role consequent 

end 

 

association WhetherOrNotFormulation_Consequent between 

 WhetherOrNotFormulation[*] role whetherOrNotFormulation1 

 LogicalFormulation[1] role consequent 

end 

 

association WhetherOrNotFormulation_Inconsequent between 

 WhetherOrNotFormulation[*] role whetherOrNotFormulation2 

 LogicalFormulation[1] role inconsequent 

end 

 

association Quantification_ScopeFormulation between 

 Quantification[*] role quantification 

 LogicalFormulation[0..1] role scopeFormulation 

end 

 

association Quantification_IntroducedVariable between 

 Quantification[0..1] role quantification 

 Variable[1] role introducedVariable 

end 

 

association AtLeastNQuantification_MinimumCardinality between 

 AtLeastNQuantification[*] role atLeastNQuantification 

 NonNegativeInteger[1] role minimumCardinality 

end 

 

association AtMostNQuantification_MaximumCardinality between 

 AtMostNQuantification[*] role atMostNQuantification 

 NonNegativeInteger[1] role maximumCardinality 

end 

 

association NumericRangeQuantification_MinimumCardinality between 

 NumericRangeQuantification[*] role numericRangeQuantification1 

 NonNegativeInteger[1] role minimumCardinality 

end 

 

association NumericRangeQuantification_MaximumCardinality between 

 NumericRangeQuantification[*] role numericRangeQuantification2 

 NonNegativeInteger[1] role maximumCardinality 

end 

 

association ExactlyNQuantification_Cardinality between 

 ExactlyNQuantification[*] role exactlyNQuantification 

 NonNegativeInteger[1] role cardinality 

end 

 

association BindableTarget_Objectification between 

 BindableTarget[1] role bindableTarget 

 Objectification[*] role objectification 
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end 

 

association Objectification_ConsideredLogicalFormulation between 

 Objectification[*] role objectification 

 LogicalFormulation[1] role consideredLogicalFormulation 

end 

 

association ProjectionVariable_IsInProjection between 

 Variable[1..*] role projectionVariable 

 Projection[*] role isInProjection 

end 

 

association Variable_FactTypeRole between 

 Variable[*] role roleVariable 

 FactTypeRole[0..1] role factTypeRole 

end 

 

association ClosedProjection_NounConcept between 

 ClosedProjection[0..1] role closedProjection 

 NounConcept[0..1] role nounConcept 

end 

 

association ClosedProjection_FactType between 

 ClosedProjection[0..1] role closedProjection 

 FactType[0..1] role factType 

end 



 

 
 

Appendix E (Chapter 5): DBLP as an instance 
of SBVR meanings metaschema 

This Appendix lists the commands that have been used to create part of the structural 

schema of the DBLP example in the USE tool. The schema is created as instances of the 

SBVR Meanings Metaschema. The whole instantiation is available at (Raventós 2008b). 

 

-- ObjectType 

 

!create ObjectType1 : ObjectType 

!set ObjectType1.name := 'person' 

 

-- IndividualConcept 

 

!create IndividualConcept1 : IndividualConcept 

!set IndividualConcept1.name := 'Male' 

!create IndividualConcept2 : IndividualConcept 

!set IndividualConcept2.name := 'Female' 

 

-- ValueType 

 

!create Gender1 : ObjectType 

!set Gender1.name := 'gender' 

 

!create ClosedProjection4 : ClosedProjection 

!insert (ClosedProjection4,Gender1) into 

  ClosedProjection_NounConcept 

!create VariableP4 : Variable 

!insert (VariableP4,ClosedProjection4) into 

   ProjectionVariable_IsInProjection 

!insert (VariableP4,Gender1) into Variable_RangedOverConcept 

!create DisjunctionP4 : Disjunction 

!insert (DisjunctionP4,ClosedProjection4) into 

   LogicalFormulation_Projection 

!create InstantiationFormulationP41: InstantiationFormulation 

!insert (DisjunctionP4, InstantiationFormulationP41) into 

   BinaryLogicalOperation_LogicalOperand1 

!insert (InstantiationFormulationP41,IndividualConcept1) into 

   InstantiationFormulation_BindableTarget 

!insert (InstantiationFormulationP41,VariableP4) into 

   InstantiationFormulation_ConceptConsidered 

!create InstantiationFormulationP42: InstantiationFormulation 

!insert (DisjunctionP4, InstantiationFormulationP42) into 

   BinaryLogicalOperation_LogicalOperand2 

!insert (InstantiationFormulationP42,IndividualConcept2) into 

   InstantiationFormulation_BindableTarget 

!insert (InstantiationFormulationP42,VariableP4) into 

   InstantiationFormulation_ConceptConsidered 

 

-- CategorizationFactType 
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!create CategorizationFactType1 : CategorizationFactType 

!create Role_1g2 : FactTypeRole 

!insert (ObjectType2,Role_1g2) into NounConcept_Role 

!create Role_1s4 : FactTypeRole 

!insert (ObjectType4,Role_1s4) into NounConcept_Role 

!set CategorizationFactType1.name := 'is a category of' 

!insert (Role_1g2,CategorizationFactType1) into  

FactTypeRole_FactType 

!insert (Role_1s4,CategorizationFactType1) into  

FactTypeRole_FactType 

!set Role_1s4.order := 1 

!set Role_1g2.order := 2 

 

-- IsPropertyOfFactType 

 

!create IsPropertyOfFactType1 : IsPropertyOfFactType 

!set IsPropertyOfFactType1.name := 'has' 

!create Role_155 : FactTypeRole 

!insert (ObjectType1,Role_155) into NounConcept_Role 

!create Role_26 : FactTypeRole 

!set Role_26.name := 'name' 

!insert (Text1,Role_26) into NounConcept_Role 

!insert (Role_26,IsPropertyOfFactType1) into FactTypeRole_FactType 

!insert (Role_155,IsPropertyOfFactType1) into FactTypeRole_FactType 

!set Role_155.order := 1 

!set Role_26.order := 2 

 

-- AssociativeFactType 

 

!create AssociativeFactType3 : AssociativeFactType 

!set AssociativeFactType3.name := 'has' 

!create Role_90 : FactTypeRole 

!insert (ObjectType8,Role_90) into NounConcept_Role 

!insert (Role_90,AssociativeFactType3) into FactTypeRole_FactType 

!set AssociativeFactType3.name := 'is part of' 

!create Role_91 : FactTypeRole 

!insert (ObjectType5,Role_91) into NounConcept_Role 

!insert (Role_91,AssociativeFactType3) into FactTypeRole_FactType 

!set Role_90.order := 1 

!set Role_91.order := 2 

 

-- PartitiveFactType 

 

!create PartitiveFactType1 : PartitiveFactType 

!create Role_106 : FactTypeRole 

!insert (ObjectType10,Role_106) into NounConcept_Role 

!insert (Role_106,PartitiveFactType1) into FactTypeRole_FactType 

!set PartitiveFactType1.name := 'includes' 

!create Role_107 : FactTypeRole 

!insert (ObjectType9,Role_107) into NounConcept_Role 

!insert (Role_107,PartitiveFactType1) into FactTypeRole_FactType 

!set Role_106.order := 1 

!set Role_107.order := 2 

 

-- Characteristic 
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!create Characteristic1: Characteristic 

!create Role_51 : FactTypeRole 

!insert (ObjectType7,Role_51) into NounConcept_Role 

!insert (Role_51,Characteristic1) into FactTypeRole_FactType 

!set Characteristic1.name := 'being conferencePaper' 

!set Role_51.order := 1 

 

-- ReferenceScheme 

 

!create ReferenceScheme1 : ReferenceScheme 

!insert (ObjectType1, ReferenceScheme1) into  

Concept_ReferenceScheme 

!insert (ReferenceScheme1, Role_26) into  

ReferenceScheme_SimplyUsedRole 

 

-- StructuralRule 

 

!create StructuralRule1 : StructuralRule 

!create UniversalQuantification1 : ClosedUniversalQuantification 

!insert (StructuralRule1,UniversalQuantification1) into  

Proposition_ClosedLogicalFormulation 

!create Variable1X : Variable 

!insert (Variable1X,ObjectType1) into Variable_RangedOverConcept 

!insert (UniversalQuantification1,Variable1X) into  

Quantification_IntroducedVariable 

!create ExactlyOneQuantification1 : ExactlyOneQuantification 

!create NumberOne1 : NonNegativeInteger 

!set NumberOne1.value := 1 

!insert (ExactlyOneQuantification1, NumberOne1) into  

ExactlyNQuantification_Cardinality 

!insert (UniversalQuantification1,ExactlyOneQuantification1) into  

Quantification_ScopeFormulation 

!create Variable1Y : Variable 

!insert (Variable1Y,Role_26) into Variable_RangedOverConcept 

!insert (ExactlyOneQuantification1,Variable1Y) into  

Quantification_IntroducedVariable 

!create AtomicFormulation1: AtomicFormulation 

!insert (ExactlyOneQuantification1,AtomicFormulation1) into  

Quantification_ScopeFormulation 

!insert (AtomicFormulation1,IsPropertyOfFactType1) into  

AtomicFormulation_FactType 

!create RoleBinding1X : RoleBinding 

!insert (AtomicFormulation1,RoleBinding1X) into  

AtomicFormulation_RoleBinding 

!insert (Role_155, RoleBinding1X) into FactTypeRole_RoleBinding 

!insert (RoleBinding1X, Variable1X) into RoleBinding_BindableTarget  

!create RoleBinding1Y : RoleBinding 

!insert (AtomicFormulation1,RoleBinding1Y) into  

AtomicFormulation_RoleBinding 

!insert (Role_26, RoleBinding1Y) into FactTypeRole_RoleBinding 

!insert (RoleBinding1Y, Variable1Y) into RoleBinding_BindableTarget 

 

 

 





 

 
 

Appendix F (Chapter 5): methods for 
creating SBVR meanings schema units 

This Appendix describes some of the methods for creating instances of SBVR Meanings 

schema units from their characterization objects, as described in Chapter 5.  For each 

chacterization objects there is a procedure in an .assl file.  

Note that the USE tool does neither allow that a method class a second method nor to 

define recursive processes within a method. Additionally, the only type of loop allowed is 

the "for .. in." With these limitations on the executable language it is not possible to fully 

automatize the generation of schema units of all characterization objects as defined, 

declaratively, in Chapter 6. In particular, the methods that create structural rules or closed 

projections only covers the cases found in the DBLP example. The description of all 

methods is available at (Raventós 2008b). 

The method for creating the schema units of all instances of IndividualConceptCh is defined 

as follows: 
procedure CreateUnitOfIndividualConceptCh() 

 var i:IndividualConcept; 

 begin 

 for el:IndividualConceptCh in  

    [IndividualConceptCh.allInstances->asSequence] 

  begin 

   i := Create(IndividualConcept); 

   [i].name := [el.name]; 

  end;  

 end;  

The method for creating the schema units of all instances of FactTypeCh is defined as 

follows: 
procedure CreateUnitOfFactTypeCh() 

 var  a:AssociativeFactType, i:IsPropertyOfFactType,  

   c:CategorizationFactType, p:PartitiveFactType,  

   ch:Characteristic, fr:FactTypeRole, n:NounConcept; 

 begin 

 for el:FactTypeCh in [FactTypeCh.allInstances->asSequence] 

  begin 

   if [el.type = #Associative] then 

   begin 

    a := Create(AssociativeFactType); 

    [a].name := [el.name]; 

    for ro:RoleOfFactType in [el.roleOfFactType -> 

        asSequence] 

    begin 

     fr := Create(FactTypeRole); 

     Insert(FactTypeRole_FactType, [fr], [a]); 

     [fr].order := [ro.order]; 

     if [ro.name<>oclUndefined(String)] then 

      begin  

       [fr].name := [ro.name]; 

      end; 
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     n := Any([NounConcept.allInstances ->  

        select(n:NounConcept| n.name =  

           ro.rangesOverConcept)->Sequence]); 

     Insert(NounConcept_Role, [n], [fr]); 

    end; 

   end; 

 

   if [el.type = #IsPropertyOf] then 

   begin 

    i := Create(IsPropertyOfFactType); 

    [i].name := [el.name]; 

    for ro:RoleOfFactType in [el.roleOfFactType -> 

        asSequence] 

    begin 

     fr := Create(FactTypeRole); 

     Insert(FactTypeRole_FactType, [fr], [i]); 

     [fr].order := [ro.order]; 

     if [ro.name<>oclUndefined(String)] then 

      begin  

       [fr].name := [ro.name]; 

      end; 

     n := Any([NounConcept.allInstances ->  

        select(n:NounConcept| n.name =  

          ro.rangesOverConcept)->asSequence]); 

     Insert(NounConcept_Role, [n], [fr]); 

    end; 

   end; 

 

   if [el.type = #Partitive] then 

   begin 

    p := Create(PartitiveFactType); 

    [p].name := [el.name]; 

    for ro:RoleOfFactType in [el.roleOfFactType -> 

        asSequence] 

    begin 

     fr := Create(FactTypeRole); 

     Insert(FactTypeRole_FactType, [fr], [p]); 

     [fr].order := [ro.order]; 

     if [ro.name<>oclUndefined(String)] then 

      begin  

       [fr].name := [ro.name]; 

      end; 

     n := Any([NounConcept.allInstances ->  

        select(n:NounConcept| n.name =  

          ro.rangesOverConcept)->asSequence]); 

     Insert(NounConcept_Role, [n], [fr]); 

    end; 

   end; 

 

   if [el.type = #Categorization] then 

   begin 

    c := Create(CategorizationFactType); 

    [c].name := [el.name]; 

    for ro:RoleOfFactType in [el.roleOfFactType -> 

        asSequence] 

    begin 

     fr := Create(FactTypeRole); 

     Insert(FactTypeRole_FactType, [fr], [c]); 

     [fr].order := [ro.order]; 
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     if [ro.name<>oclUndefined(String)] then 

      begin  

       [fr].name := [ro.name]; 

      end; 

     n := Any([NounConcept.allInstances ->  

        select(n:NounConcept| n.name =  

          ro.rangesOverConcept)->asSequence]); 

     Insert(NounConcept_Role, [n], [fr]); 

    end; 

   end; 

 

   if [el.type = #Characteristic] then 

   begin 

    ch := Create(Characteristic); 

    [ch].name := [el.name]; 

    for ro:RoleOfFactType in [el.roleOfFactType -> 

        asSequence] 

    begin 

     fr := Create(FactTypeRole); 

     Insert(FactTypeRole_FactType, [fr], [ch]); 

     [fr].order := [ro.order]; 

     if [ro.name<>oclUndefined(String)] then 

      begin  

       [fr].name := [ro.name]; 

      end; 

     n := Any([NounConcept.allInstances ->  

        select(n:NounConcept| n.name =  

          ro.rangesOverConcept)->asSequence]); 

     Insert(NounConcept_Role, [n], [fr]); 

    end; 

   end; 

  end; 

 end; 

The method for creating the schema units of all instances of CategorizationSchemeCh is 

defined as follows: 

 procedure CreateUnitOfCategorizationSchemeCh() 

var  c:CategorizationScheme, se:Segmentation, co:Concept, 

   ob:ObjectType; 

begin 

for el:CategorizationSchemeCh in  

 [CategorizationSchemeCh.allInstances->asSequence] 

 begin 

  if [el.isSegmentation] then 

  begin 

   se := Create(Segmentation); 

   [se].name := [el.name]; 

   ob := Any([ObjectType.allInstances ->  

      select(o:Concept|o.name = el.generalConcept)-> 

      asSequence]); 

   Insert(CategorizationScheme_GeneralConcept, [se],[ob]); 

   for st:String in [el.category -> asSequence] 

   begin 

    co := Any([Concept.allInstances ->select(c:Concept|  

         c.name = st) -> asSequence]); 

    Insert(CategorizationScheme_Category,[se], [co]); 

   end; 
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  end 

  else 

  begin 

   c := Create(CategorizationScheme); 

   [c].name := [el.name]; 

   ob := Any([ObjectType.allInstances ->  

       select(o:Concept|o.name = el.generalConcept)-> 

       asSequence]); 

   Insert(CategorizationScheme_GeneralConcept,[c], [ob]); 

   for st:String in [el.category -> asSequence] 

   begin 

     co := Any([Concept.allInstances ->select(c:Concept|  

         c.name = st) ->asSequence]); 

     Insert(CategorizationScheme_Category,[c], [co]); 

   end; 

  end; 

 end; 

end; 

  



 

 
 

Appendix G (Chapter 6): methods to 
materialize sbvrEquivalents() operations 

This Appendix describes some of the methods to materialize the sbvrEquivalents() 

operations described in Chapter 6. In particular it describes the methods to materialize the 

Class::sbvrEquivalents() and Association::sbvrEquivalents().  The description of all methods 

is available at (Raventós 2008b). 

 

procedure sbvrEquivalentsOfClass() 

var ob:NounConceptCh,genSet:GeneralizationSet,bio1:BinaryOperation, 

 bio2:BinaryOperation, bio3:BinaryOperation, v1:Variable2, 

 v2:Variable2, at1:Atomic, at2:Atomic, at3:Atomic, at4:Atomic, 

 at5:Atomic, bin1:Binding, bin2:Binding, bin3:Binding, 

 bin4:Binding,bin5:Binding, bin6:Binding, bin7:Binding, 

bin8:Binding, 

 bin9:Binding, bin10:Binding; 

 

begin 

for e:Class in [Class.allInstances->select(c| c.isSchemaUnit() and  

     not c.oclIsTypeOf(AssociationClass))-> asSequence]  

 begin 

  ob := Create( NounConceptCh ); 

 [ob].name := [e.name];  

   Insert( SbvrEquivalents, [e], [ob] ); 

   if [e.generalization_->exists(ge| ge.generalizationSet-> 

 notEmpty)] then 

   begin 

    genSet := Any([e.generalization_->select(ge|  

   ge.generalizationSet->notEmpty)->any(true). 

   generalizationSet->asSequence]); 

   end;   

      

 if [e.isAbstract and genSet<>oclUndefined(GeneralizationSet) and  

   genSet.generalization->size()=2] then 

 begin 

   

   bio1 := Create(BinaryOperation); 

   Insert(NounConceptCh_Formulation, [ob],[bio1]); 

       

   v1 := Create(Variable2); 

    Insert(NounConceptCh_ProjectionVariable, [ob],[v1]); 

    [v1].rangedOverConcept := [e.name]; 

 

   [bio1].type := [#Disjunction]; 

       

  at1 := Create(Atomic); 

   Insert (First_BinaryOperation, [at1],[bio1]); 

   [at1].factTypeName := ['is a category of']; 

   [at1].type := [#Categorization]; 

              

   bin1 := Create(Binding); 
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   [bin1].order := [2]; 

   Insert(Atomic_Binding, [at1], [bin1]); 

   Insert(Binding_Variable, [bin1], [v1]); 

  [bin1].rangesOverConcept := [e.name]; 

         

  bin2 := Create(Binding); 

  [bin2].order := [1]; 

    Insert(Atomic_Binding, [at1], [bin2]); 

    Insert(Binding_Variable, [bin2], [v1]); 

    [bin2].rangesOverConcept := [genSet.generalization-> 

   asSequence->first.specific.name]; 

         

     at2 := Create(Atomic); 

    Insert (Second_BinaryOperation, [at2],[bio1]); 

    [at2].factTypeName := ['is a category of']; 

    [at2].type := [#Categorization]; 

        

    bin3 := Create(Binding); 

    [bin3].order := [2]; 

    Insert(Atomic_Binding, [at2], [bin3]); 

    Insert(Binding_Variable, [bin3], [v1]); 

    [bin3].rangesOverConcept := [e.name]; 

         

  bin4 := Create(Binding); 

    [bin4].order := [1]; 

    Insert(Atomic_Binding, [at2], [bin4]); 

    Insert(Binding_Variable, [bin4], [v1]); 

    [bin4].rangesOverConcept := [genSet.generalization-> 

   asSequence->last.specific.name]; 

 

 end; 

 

 if [e.isAbstract and genSet<>oclUndefined(GeneralizationSet) and  

  genSet.generalization->size()=3] then 

 begin 

  bio2 := Create(BinaryOperation); 

        

     v2 := Create(Variable2); 

    Insert(NounConceptCh_ProjectionVariable, [ob],[v2]); 

    [v2].rangedOverConcept := [e.name]; 

 

   [bio2].type := [#Disjunction]; 

   Insert(NounConceptCh_Formulation, [ob],[bio2]); 

        

  at3 := Create(Atomic); 

   Insert (First_BinaryOperation, [at3],[bio2]); 

   [at3].factTypeName := ['is a category of']; 

   [at3].type := [#Categorization];        

    

  bin5 := Create(Binding); 

   [bin5].order := [2]; 

   Insert(Atomic_Binding, [at3], [bin5]); 

   Insert(Binding_Variable, [bin5], [v2]); 

  [bin5].rangesOverConcept := [e.name]; 

         



Appendix G: methods to materialize sbvrEquivalents() operations 

265 

 

   bin6 := Create(Binding); 

   [bin6].order := [1]; 

    Insert(Atomic_Binding, [at3], [bin6]); 

    Insert(Binding_Variable, [bin6], [v2]); 

    [bin6].rangesOverConcept := [genSet.generalization-> 

   asSequence->first.specific.name]; 

 

   bio3 := Create(BinaryOperation); 

   [bio3].type := [#Disjunction]; 

   Insert (Second_BinaryOperation, [bio3],[bio2]); 

        

  at4 := Create(Atomic); 

   Insert (First_BinaryOperation, [at4],[bio3]); 

   [at4].factTypeName := ['is a category of']; 

   [at4].type := [#Categorization]; 

        

   bin7 := Create(Binding); 

   [bin7].order := [2]; 

   Insert(Atomic_Binding, [at4], [bin7]); 

   Insert(Binding_Variable, [bin7], [v2]); 

  [bin7].rangesOverConcept := [e.name]; 

        

  bin8 := Create(Binding); 

  [bin8].order := [1]; 

    Insert(Atomic_Binding, [at4], [bin8]); 

    Insert(Binding_Variable, [bin8], [v2]); 

    [bin8].rangesOverConcept := [genSet.generalization-> 

   asSequence->at(2).specific.name]; 

         

    at5 := Create(Atomic); 

    Insert (Second_BinaryOperation, [at5],[bio3]); 

    [at5].factTypeName := ['is a category of']; 

    [at5].type := [#Categorization]; 

        

    bin9 := Create(Binding); 

    [bin9].order := [2]; 

    Insert(Atomic_Binding, [at5], [bin9]); 

    Insert(Binding_Variable, [bin9], [v2]); 

    [bin9].rangesOverConcept := [e.name]; 

        

  bin10 := Create(Binding); 

    [bin10].order := [1]; 

    Insert(Atomic_Binding, [at5], [bin10]); 

    Insert(Binding_Variable, [bin10], [v2]); 

    [bin10].rangesOverConcept := [genSet.generalization-> 

   asSequence->last.specific.name]; 

 end; 

    

 end; 

end; 

 

procedure sbvrEquivalentsOfAssociation() 

var ro:RoleCh, fa:FactTypeCh, r1:RoleOfFactType, r2:RoleOfFactType, 

 asstype:AggregationKind, st:StructuralRuleCh, 

 qf1:QuantificationForm, v1:Variable2, v2:Variable2, 
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 qf2:QuantificationForm, at:Atomic, bi1:Binding, bi2:Binding; 

 

  begin 

 for e:Association in [Association.allInstances->select(a|  

  a.isSchemaUnit())->asSequence]  

  begin 

 asstype := [if e.memberEnd->exists(pr|  

   pr.aggregation_=#composite) then #composite  

   else if e.memberEnd->exists(pr|pr.aggregation_=#shared)  

     then #shared else #none endif endif]; 

          

   fa := Create(FactTypeCh); 

    if [asstype = #composite] then 

    begin 

     [fa].name := [if e.name=oclUndefined(String) then 'includes'  

     else e.name endif]; 

      [fa].type := [#Partitive]; 

    end    

    else 

      begin 

        [fa].type := [#Associative]; 

        [fa].name := [if asstype = #shared then 'is part of' else  

        if (e.name<>oclUndefined(String) and not  

         e.oclIsTypeOf(AssociationClass))  

           then e.name else 'has' endif endif]; 

      end; 

       

    Insert( SbvrEquivalents, [e], [fa] ); 

    

    r1 := Create(RoleOfFactType); 

     Insert( FactTypeCh_RoleOfFactType, [fa], [r1] ); 

     [r1].name := [e.memberEnd->sortedBy(order)->first.name]; 

     [r1].rangesOverConcept := [e.memberEnd->sortedBy(order)-> 

    first.type.name]; 

     [r1].order := [1]; 

       

  r2 := Create(RoleOfFactType); 

     Insert( FactTypeCh_RoleOfFactType, [fa], [r2] ); 

     [r2].name := [e.memberEnd->sortedBy(order)->last.name]; 

     [r2].rangesOverConcept := [e.memberEnd->sortedBy(order)-> 

    last.type.name]; 

     [r2].order := [2]; 

       

     for me:Property in [e.memberEnd] 

      begin 

        if [me.lower()>0 or 

      me.upperValue.oclIsTypeOf(LiteralInteger)] then 

    begin 

     st := Create(StructuralRuleCh); 

     Insert( SbvrEquivalents, [e], [st] ); 

             

     qf1 := Create(QuantificationForm); 

       Insert( StructuralRuleCh_Formulation, [st],[qf1]); 

       [qf1].type := [#ClosedUniversal]; 
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       v1 := Create(Variable2); 

       Insert(QuantificationForm_IntroducedVar, [qf1],[v1]); 

       [v1].rangedOverConcept := [if e.memberEnd->  

      select(other| other<>me)->  

      any(true).name<>oclUndefined(String) then 

      e.memberEnd->select(other|other<>me)->any(true).name  

      else  

        e.memberEnd->select(other|other<>me)->  

      any(true).type.name endif ]; 

      

     qf2 := Create(QuantificationForm); 

       Insert( Formulation_QuantificationForm, [qf2],[qf1]); 

      

       if [me.lower() = 

       me.upperValue.oclAsType(LiteralInteger).value and 

       me.lower() = 1] then 

       begin  

       [qf2].type := [#ExactlyOne]; 

       [qf2].card := [1]; 

     end; 

     if [me.lower() =  

      me.upperValue.oclAsType(LiteralInteger).value and 

       me.lower() <> 1] then 

       begin  

       [qf2].type := [#ExactlyN]; 

       [qf2].card := [me.lower()]; 

     end; 

     if [me.lower() = 1 and 

       me.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)]  

     then 

       begin  

       [qf2].type := [#Existential]; 

       [qf2].minimCard := [1]; 

     end; 

     if [me.lower()>1 and  

      me.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)]  

     then 

       begin  

       [qf2].type := [#AtLeastN]; 

       [qf2].minimCard := [me.lower()]; 

     end; 

     if [me.lower()=0 and  

     me.upperValue.oclIsTypeOf(LiteralInteger)] then 

       begin  

       [qf2].type := [#AtMostN]; 

       [qf2].maxCard :=  

      [me.upperValue.oclAsType(LiteralInteger).value]; 

     end; 

     if [me.lower()=0 and  

      me.upperValue.oclAsType(LiteralInteger).value=1] then 

       begin  

       [qf2].type := [#AtMostOne]; 

       [qf2].maxCard := [1]; 

     end; 

     if [me.lower()>1 and 
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      me.upperValue.oclIsTypeOf(LiteralInteger)] then 

       begin  

       [qf2].type := [#NumericRange]; 

       [qf2].minimCard := [me.lower()]; 

       [qf2].maxCard :=  

      [me.upperValue.oclAsType(LiteralInteger).value]; 

     end;    

       v2 := Create(Variable2); 

       Insert(QuantificationForm_IntroducedVar, [qf2],[v2]); 

       [v2].rangedOverConcept := [if me.name <> 

         oclUndefined(String) then me.name  

        else me.type.name endif]; 

      

     at := Create(Atomic); 

     Insert( Formulation_QuantificationForm, [at],[qf2]); 

     [at].type := [fa.type]; 

      

     if [me.order = 1] then 

     begin 

      [at].factTypeName := [fa.name]; 

     end 

     else 

     begin 

      [at].factTypeName :=  

        [if asstype = #composite then 

         if e.name<>oclUndefined(String)  

         then 'is included in' else e.name endif 

        else  

         if asstype = #shared then 'is part of'  

         else      

         if (e.name<>oclUndefined(String) and not  

          e.oclIsTypeOf(AssociationClass))  

         then e.name else 'has' endif  

         endif 

        endif]; 

     end;   

    

     bi1 := Create(Binding); 

     Insert (Atomic_Binding, [at],[bi1]); 

     [bi1].rangesOverConcept :=  

        [if e.memberEnd->select(other| other<>me)->  

         any(true).name<>oclUndefined(String)  

        then e.memberEnd->select(other|other<>me)-> 

         any(true).name  

          else e.memberEnd->select(other|other<>me)-> 

         any(true).type.name  

          endif]; 

     Insert (Binding_Variable,[bi1],[v1]); 

     [bi1].order := [if me.order=1 then 2 else 1 endif]; 

    

     bi2 := Create(Binding); 

     Insert (Atomic_Binding, [at],[bi2]); 

     [bi2].rangesOverConcept :=  

        [if me.name<>oclUndefined(String) then me.name  

        else me.type.name endif]; 
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     Insert (Binding_Variable,[bi2],[v2]); 

     [bi2].order := [me.order]; 

      

    end;  

   end; 

 end; 

end;





 

 
 

Appendix H (Chapter 6): methods to 
materialize includedInUml() operations 

This Appendix describes the method to materialize the ObjectType::includedInUml() 

operation described in Chapter 6. The description of all methods is available at (Raventós 

2008b). 

 

procedure includedInUmlOfObjectType() 

  var cl:ClassCh, acl:AssociationClassCh, as:AssociativeFactType, 

str:Sequence(StructuralRule),str1:StructuralRule,  

str2:StructuralRule, quan1:Quantification, quan2:Quantification,  

me:AssociationClassMemberEnd; 

 

begin 

for e:ObjectType in [ObjectType.allInstances->reject(ob|  

 ob.oclIsTypeOf(CategorizationScheme) or  

 ob.oclIsTypeOf(Segmentation))->asSequence]  

  begin 

   if [e.closedProjection->isEmpty() or  

   (e.closedProjection->notEmpty() and  

   ((e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation) <>  

   oclUndefined(AtomicFormulation)  and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation).factType. 

   oclIsTypeOf(CategorizationFactType) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(AtomicFormulation) <>  

   oclUndefined(AtomicFormulation) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(AtomicFormulation).factType. 

   oclIsTypeOf(CategorizationFactType)) or 

   (e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation) <>  

   oclUndefined(AtomicFormulation) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation).factType. 

   oclIsTypeOf(CategorizationFactType) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation) <>  

   oclUndefined(AtomicFormulation) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 
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   oclAsType(Disjunction).logicalOperand1. 

   oclAsType(AtomicFormulation).factType. 

   oclIsTypeOf(CategorizationFactType) and  

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(AtomicFormulation) <>  

   oclUndefined(AtomicFormulation) and 

   e.closedProjection.logicalFormulation. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(Disjunction).logicalOperand2. 

   oclAsType(AtomicFormulation).factType. 

   oclIsTypeOf(CategorizationFactType))))] 

  then   

    begin 

     cl := Create( ClassCh ); 

     [cl].name := [e.name];  

     Insert( IncludedInUml, [e], [cl] ); 

       

     if [e.closedProjection->notEmpty() and  

    ((e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation) <>  

    oclUndefined(AtomicFormulation)  and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(AtomicFormulation) <>  

    oclUndefined(AtomicFormulation) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType)) or 

    (e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation) <>  

    oclUndefined(AtomicFormulation) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation) <>  

    oclUndefined(AtomicFormulation) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(Disjunction).logicalOperand1. 

    oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType) and  

    e.closedProjection.logicalFormulation. 
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    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(AtomicFormulation) <>  

    oclUndefined(AtomicFormulation) and 

    e.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

     oclAsType(Disjunction).logicalOperand2. 

    oclAsType(AtomicFormulation).factType. 

    oclIsTypeOf(CategorizationFactType)))] 

   then 

   begin 

    [cl].isAbstract := [true]; 

   end 

   else 

   begin  

      [cl].isAbstract := [false]; 

     end;  

    end; 

  if [e.closedProjection->notEmpty() and  

  e.closedProjection.logicalFormulation. 

    oclIsTypeOf(Objectification)]  

  then 

   begin 

      acl := Create( AssociationClassCh ); 

     [acl].name := [e.name];  

     Insert( IncludedInUml, [e], [acl] ); 

       

     as := [e.closedProjection.logicalFormulation. 

    oclAsType(Objectification). 

    consideredLogicalFormulation. 

    oclAsType(AtomicFormulation).factType. 

    oclAsType(AssociativeFactType)];  

     str1 := [oclUndefined(StructuralRule)]; 

     str2 := [oclUndefined(StructuralRule)]; 

     quan1 := [oclUndefined(Quantification)]; 

     quan2 := [oclUndefined(Quantification)]; 

             

     if [StructuralRule.allInstances->select(st|  

    st.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Quantification). 

    scopeFormulation.oclAsType(AtomicFormulation). 

     factType = as and 

    st.closedLogicalFormulation. 

    oclAsType(ClosedUniversalQuantification). 

    scopeFormulation.oclAsType(Quantification). 

    scopeFormulation.oclAsType(AtomicFormulation). 

    factType.factTypeRole->sortedBy(order) = as.factTypeRole 

     ->sortedBy(order))->notEmpty] 

   then 

   begin 

      str := [StructuralRule.allInstances->select(st|  

     st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.oclAsType(Quantification). 
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      scopeFormulation.oclAsType(AtomicFormulation). 

      factType = as and 

     st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     scopeFormulation.oclAsType(Quantification). 

     scopeFormulation.oclAsType(AtomicFormulation).factType. 

     factTypeRole->sortedBy(order) = as.factTypeRole-> 

      sortedBy(order))->asSequence]; 

     

    if [str->select(st| st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

     introducedVariable.rangedOverConcept =  

     as.factTypeRole->sortedBy(order)->last.nounConcept)-> 

     notEmpty]  

    then 

    begin      

     str2 := Any([str->select(st| 

      st.closedLogicalFormulation. 

       oclAsType(ClosedUniversalQuantification). 

       introducedVariable.rangedOverConcept =  

      as.factTypeRole->sortedBy(order)->last.nounConcept  

       and st.closedLogicalFormulation. 

       oclAsType(ClosedUniversalQuantification). 

       scopeFormulation.oclAsType(Quantification). 

       scopeFormulation.oclAsType(AtomicFormulation). 

       factType = as) ]); 

         

     quan2 := [str2.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

       scopeFormulation.oclAsType(Quantification)]; 

    end;  

    

    if [str->select(st| st.closedLogicalFormulation. 

     oclAsType(ClosedUniversalQuantification). 

      introducedVariable.rangedOverConcept =  

     as.factTypeRole->sortedBy(order)->first.nounConcept)-> 

     notEmpty()]  

    then 

    begin 

     str1 := Any([str->select(st|  

      st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      introducedVariable.rangedOverConcept =  

      as.factTypeRole->sortedBy(order)->first.nounConcept  

      and st.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.oclAsType(Quantification). 

      scopeFormulation.oclAsType(AtomicFormulation). 

      factType = as )]); 

        

       quan1 := [str1.closedLogicalFormulation. 

      oclAsType(ClosedUniversalQuantification). 

      scopeFormulation.oclAsType(Quantification)]; 

    end;     

    end;    
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     for ro:FactTypeRole in [as.factTypeRole->sortedBy(order)] 

     begin 

      me := Create(AssociationClassMemberEnd); 

      Insert(AssociationClassCh_AssociationClassMemberEnd,  

     [acl], [me]);  

      [me].name := [ro.name]; 

      [me].typeName := [ro.nounConcept.name]; 

      [me].isDerived := [false]; 

      [me].isDerivedUnion := [false]; 

      [me].aggregation_ := [if e.name = 'includes' and  

     ro.order = 1 then #composite else 

        if e.name = 'is part of' and ro.order = 2 then #shared  

     else #none endif endif]; 

      [me].order := [ro.order]; 

       

      if [ro.order = 1] then 

      begin 

       if [str2 = oclUndefined(StructuralRule)] then 

       begin 

         [me].lowerValue := [0]; 

       end; 

       if [str2 <> oclUndefined(StructuralRule)] then 

       begin 

         

        if [quan2.oclIsTypeOf(AtLeastNQuantification) or  

       quan2.oclIsTypeOf(ExistentialQuantification)]  

      then 

        begin 

      [me].lowerValue :=  

      [quan2.oclAsType(AtLeastNQuantification). 

        minimumCardinality.value]; 

        end; 

        if [quan2.oclIsTypeOf(AtMostNQuantification) or  

       quan2.oclIsTypeOf(AtMostOneQuantification)] then 

        begin 

         [me].lowerValue := [0]; 

       [me].upperValue :=  

        [quan2.oclAsType(AtMostNQuantification). 

         maximumCardinality.value]; 

        end; 

        if [quan2.oclIsTypeOf(ExactlyNQuantification) or  

       quan2.oclIsTypeOf(ExactlyOneQuantification)] then 

       begin 

        [me].lowerValue :=  

        [quan2.oclAsType(ExactlyNQuantification). 

        cardinality.value];  

        [me].upperValue :=  

        [quan2.oclAsType(ExactlyNQuantification). 

        cardinality.value]; 

       end; 

       if [quan2.oclIsTypeOf(NumericRangeQuantification)]  

      then 

       begin 

        [me].lowerValue :=  
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        [quan2.oclAsType(NumericRangeQuantification). 

        minimumCardinality.value]; 

        [me].upperValue :=  

        [quan2.oclAsType(NumericRangeQuantification). 

         maximumCardinality.value]; 

      end; 

     end; 

    end  

    else 

    begin 

     if [str1 = oclUndefined(StructuralRule)] then 

       begin 

         [me].lowerValue := [0]; 

       end; 

       if [str1 <> oclUndefined(StructuralRule)] then 

       begin 

         

        if [quan1.oclIsTypeOf(AtLeastNQuantification) or  

       quan1.oclIsTypeOf(ExistentialQuantification)] then 

        begin 

         [me].lowerValue :=  

        [quan1.oclAsType(AtLeastNQuantification). 

        minimumCardinality.value]; 

        end; 

        if [quan1.oclIsTypeOf(AtMostNQuantification) or  

       quan1.oclIsTypeOf(AtMostOneQuantification)] then 

        begin 

         [me].lowerValue := [0]; 

       [me].upperValue :=  

        [quan1.oclAsType(AtMostNQuantification). 

        maximumCardinality.value]; 

        end; 

        if [quan1.oclIsTypeOf(ExactlyNQuantification) or  

       quan1.oclIsTypeOf(ExactlyOneQuantification)] then 

       begin 

        [me].lowerValue :=  

        [quan1.oclAsType(ExactlyNQuantification). 

        cardinality.value];  

        [me].upperValue :=  

        [quan1.oclAsType(ExactlyNQuantification). 

        cardinality.value]; 

       end; 

       if [quan1.oclIsTypeOf(NumericRangeQuantification)]  

      then 

       begin 

        [me].lowerValue :=  

        [quan1.oclAsType(NumericRangeQuantification). 

        minimumCardinality.value]; 

        [me].upperValue :=  

        [quan1.oclAsType(NumericRangeQuantification). 

        maximumCardinality.value]; 

      end; end; 

     end; end;    

    end; end; 

  end; 
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Appendix I (Chapter 7): SBVR Structured 
English metaschema in USE 

The following is a complete specification, suitable for validation with the USE tool, of the 

SBVR Structured English metaschema presented in Chapter 7. Note that all the 

associations that are ordered have been specified as an order attribute because the 

ordered keyword in the USE tool does not seem to matter when inserting association links. 

The keyword is only used to distinguish between Set and Sequence types when using 

navigational syntax in OCL expressions10.  
 

-- SBVR Representations 

 

enum FontStyle { term, name, verb, keyword } 

enum CaptionType {General_concept, Concept_type, Definition, 

         Necessity, Reference_scheme}  

 

abstract class Representation  

end 

 

abstract class PrimaryRepresentation < Representation 

end 

 

abstract class Caption < Representation 

end 

 

class Definition < Caption 

end 

 

class Designation < PrimaryRepresentation 

end 

 

class FactTypeForm < PrimaryRepresentation 

end 

 

class GeneralConceptCaption < Caption 

end 

 

class ConceptTypeCaption < Caption 

end 

 

class ReferenceSchemeCaption < Caption 

end 

 

class Statement < Caption 

end 

 

class NecessityStatement < Statement 

end 

 

class StructuredEnglishText  

                                                                    
 
 
10 Information provided by Mark Richters, developer of USE tool. 
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attributes 

 value : String 

 font : FontStyle 

 order : Integer 

end 

 

association StructuredEnglishText_Representation between 

 StructuredEnglishText[1..*] role structuredEnglishText ordered 

 Representation[1] role representation 

end 

 

association Meaning_Representation between 

 Meaning[1] role meaning 

 Representation[*] role representation 

end  

 

association PrimaryRepresentation_Caption between 

 PrimaryRepresentation[1] role primaryRepresentation 

 Caption[*] role caption 

end



 

 
 

Appendix J (Chapter 7): methods to 
materialize newRepresentation() operations  

This Appendix describes some of the methods to materialize the newRepresentation() 

operations described in Chapter 7. The description of all the methods is available at 

(Raventós 2008b). 

 

procedure CreateNewRepresentationOfNounConcept() 

var d:Designation, st:StructuredEnglishText,def:Definition, 

  dis1:Disjunction, dis2:Disjunction, atom1:AtomicFormulation, 

  atom2:AtomicFormulation, atom3:AtomicFormulation, 

   cp:ClosedProjection,st1:StructuredEnglishText,  

  st2:StructuredEnglishText, st3:StructuredEnglishText, 

  st4:StructuredEnglishText, st5:StructuredEnglishText, 

  st6:StructuredEnglishText, st7:StructuredEnglishText, 

  st8:StructuredEnglishText, st9:StructuredEnglishText, 

  st10:StructuredEnglishText, st11:StructuredEnglishText, 

st12:StructuredEnglishText, st13:StructuredEnglishText, 

  cat1:CategorizationFactType, cat2:CategorizationFactType, 

  cat3:CategorizationFactType, con:Concept,  

  ins1:InstantiationFormulation, ins2:InstantiationFormulation; 

  

begin 

for el:NounConcept in [NounConcept.allInstances->asSequence] 

 begin 

  d := Create(Designation); 

  Insert(Meaning_Representation, [el], [d]); 

  st := Create(StructuredEnglishText); 

  Insert(StructuredEnglishText_Representation,[st],[d]); 

  [st].value := [el.name]; 

  [st].order := [1]; 

  [st].font := [#term]; 

 

  if [el.closedProjection->notEmpty] then 

  begin 

  if [el.closedProjection.logicalFormulation->notEmpty and 

    el.closedProjection.logicalFormulation. 

    oclIsTypeOf(Disjunction) and el.closedProjection. 

    logicalFormulation.oclAsType(Disjunction). 

    logicalOperand1.oclIsTypeOf(AtomicFormulation) and 

    el.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclIsTypeOf(AtomicFormulation)] then 

   begin 

   cp := [el.closedProjection]; 

   dis1 := [cp.logicalFormulation.oclAsType(Disjunction)]; 

   atom1 := 

       [dis1.logicalOperand1.oclAsType(AtomicFormulation)];

        

   atom2 :=  
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      [dis1.logicalOperand2.oclAsType(AtomicFormulation)];

        

   cat1 := [atom1.factType.oclAsType(CategorizationFactType)]; 

   cat2 := [atom2.factType.oclAsType(CategorizationFactType)]; 

   con := [cat1.factTypeRole->sortedBy(order)->  

       last.nounConcept]; 

         

   def := Create(Definition); 

   Insert(Meaning_Representation, [con], [def]); 

   Insert(PrimaryRepresentation_Caption, [d],[def]); 

    

   st1 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st1],[def]); 

   [st1].value := [cat1.factTypeRole->sortedBy(order)-> 

    first.nounConcept.name]; 

   [st1].order := [1]; 

   [st1].font := [#term]; 

    

   st2 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st2],[def]); 

   [st2].value := ['or']; 

   [st2].order := [2]; 

   [st2].font := [#keyword]; 

    

   st3 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st3],[def]); 

   [st3].value := [cat2.factTypeRole->sortedBy(order)->  

    first.nounConcept.name]; 

   [st3].order := [3]; 

   [st3].font := [#term]; 

  end 

  else 

  begin 

  

  if [el.closedProjection.logicalFormulation->notEmpty and 

    el.closedProjection.logicalFormulation. 

    oclIsTypeOf(Disjunction) and el.closedProjection. 

    logicalFormulation.oclAsType(Disjunction). 

    logicalOperand1.oclIsTypeOf(AtomicFormulation) and 

    el.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclIsTypeOf(Disjunction) and 

    el.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(Disjunction).logicalOperand1. 

    oclIsTypeOf(AtomicFormulation) and 

    el.closedProjection.logicalFormulation. 

    oclAsType(Disjunction).logicalOperand2. 

    oclAsType(Disjunction).logicalOperand2. 

    oclIsTypeOf(AtomicFormulation)] then 

  begin 

   cp := [el.closedProjection];  

    

   dis1 := [cp.logicalFormulation.oclAsType(Disjunction)]; 

   atom1 :=  
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     [dis1.logicalOperand1.oclAsType(AtomicFormulation)];

        

   dis2 := [dis1.logicalOperand2.oclAsType(Disjunction)]; 

       

   atom2 := 

      [dis2.logicalOperand1.oclAsType(AtomicFormulation)];

        

   atom3 := 

      [dis2.logicalOperand2.oclAsType(AtomicFormulation)];

        

   cat1 := [atom1.factType.oclAsType(CategorizationFactType)]; 

   cat2 := [atom2.factType.oclAsType(CategorizationFactType)]; 

   cat3 := [atom3.factType.oclAsType(CategorizationFactType)]; 

       

   def := Create(Definition); 

   Insert(Meaning_Representation, [el], [def]); 

   Insert(PrimaryRepresentation_Caption, [d],[def]); 

    

   st1 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st1],[def]); 

   [st1].value := [cat1.factTypeRole->sortedBy(order)->  

         first.nounConcept.name]; 

   [st1].order := [1]; 

   [st1].font := [#term]; 

    

   st2 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st2],[def]); 

   [st2].value := ['or']; 

   [st2].order := [2]; 

   [st2].font := [#keyword]; 

    

   st3 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st3],[def]); 

   [st3].value := [cat2.factTypeRole->sortedBy(order)-> 

         first.nounConcept.name]; 

   [st3].order := [3]; 

   [st3].font := [#term]; 

    

   st4 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st4],[def]); 

   [st4].value := ['or']; 

   [st4].order := [4]; 

   [st4].font := [#keyword]; 

    

   st5 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st5],[def]); 

   [st5].value := [cat3.factTypeRole->sortedBy(order)-> 

         first.nounConcept.name]; 

   [st5].order := [5]; 

   [st5].font := [#term]; 

    

   end 

   else 

   begin 

   if [el.closedProjection.logicalFormulation->notEmpty and 
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     el.closedProjection.logicalFormulation. 

     oclIsTypeOf(Disjunction) and el.closedProjection. 

     logicalFormulation.oclAsType(Disjunction). 

     logicalOperand1.oclIsTypeOf(InstantiationFormulation)  

     and el.closedProjection.logicalFormulation. 

     oclAsType(Disjunction).logicalOperand2. 

     oclIsTypeOf(InstantiationFormulation)] 

   then 

   begin 

    

    cp := [el.closedProjection]; 

    dis1 := [cp.logicalFormulation.oclAsType(Disjunction)]; 

    ins1 :=  [dis1.logicalOperand1. 

        oclAsType(InstantiationFormulation)]; 

       

    ins2 := [dis1.logicalOperand2. 

        oclAsType(InstantiationFormulation)];  

           

   def := Create(Definition); 

   Insert(Meaning_Representation, [el], [def]); 

   Insert(PrimaryRepresentation_Caption, [d], [def]); 

    

   st1 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st1],[def]); 

   [st1].value := [ins1.bindableTarget. 

         oclAsType(IndividualConcept).name]; 

   [st1].order := [1]; 

   [st1].font := [#name]; 

    

   st2 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st2],[def]); 

   [st2].value := ['or']; 

   [st2].order := [2]; 

   [st2].font := [#keyword]; 

    

   st3 := Create(StructuredEnglishText); 

   Insert(StructuredEnglishText_Representation,[st3],[def]); 

   [st3].value := [ins2.bindableTarget. 

         oclAsType(IndividualConcept).name]; 

   [st3].order := [3]; 

   [st3].font := [#name]; 

   end; 

  end; 

 end;     

end; 

  end;  

end; 

 

procedure CreateNewRepresentationOfIndividualConcept() 

var d:Designation, st:StructuredEnglishText; 

begin 

for el:IndividualConcept in [IndividualConcept.allInstances-> 

        asSequence] 

begin 

  d := Create(Designation); 
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  Insert(Meaning_Representation, [el], [d]); 

  st := Create(StructuredEnglishText); 

  Insert(StructuredEnglishText_Representation,[st],[d]); 

  [st].value := [el.name]; 

  [st].order := [1]; 

  [st].font := [#name]; 

    

  end;  

 end;  

 





 

 
 

 

Appendix K (Chapter 7): DBLP as an instance 
of SBVR Structured English metaschema 

This Appendix lists the commands that have been used to create a fragment of the 

structural schema of the DBLP example in the USE tool. The schema is created as instances 

of the SBVR Structured English Metaschema. The whole instantiation is available at 

(Raventós 2008b). 
 

-- Designation 

 

!create Designation2 : Designation 

!insert (ObjectType1,Designation2) into Meaning_Representation 

!create StructuredEnglishText2 : StructuredEnglishText 

!insert (StructuredEnglishText2,Designation2) into 

   StructuredEnglishText_Representation 

!set StructuredEnglishText2.value := 'person' 

!set StructuredEnglishText2.order := 1 

!set StructuredEnglishText2.font := #term 

 

-- FactTypeForm 

 

!create FactTypeForm1 : FactTypeForm 

!insert (AssociativeFactType1,FactTypeForm1) into 

    Meaning_Representation 

!create StructuredEnglishText100 : StructuredEnglishText 

!insert (StructuredEnglishText100,FactTypeForm1) into 

   StructuredEnglishText_Representation 

!set @StructuredEnglishText100.value := 'editor' 

!set @StructuredEnglishText100.order := 1 

!set @StructuredEnglishText100.font := #term 

!create StructuredEnglishText101 : StructuredEnglishText 

!insert (StructuredEnglishText101,FactTypeForm1) into 

   StructuredEnglishText_Representation 

!set @StructuredEnglishText101.value := 'is editor of' 

!set @StructuredEnglishText101.order := 2 

!set @StructuredEnglishText101.font := #verb 

!create StructuredEnglishText102 : StructuredEnglishText 

!insert (StructuredEnglishText102,FactTypeForm1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText102.value := 'editedBook' 

!set @StructuredEnglishText102.order := 3 

!set @StructuredEnglishText102.font := #term 

 

-- Concept Type caption 

 

!create ConceptTypeCaption45 : ConceptTypeCaption 

!insert (AssociativeFactType1,ConceptTypeCaption45) into 

   Meaning_Representation 

!insert (FactTypeForm1,ConceptTypeCaption45) into 

   PrimaryRepresentation_Caption 

!create StructuredEnglishText103 : StructuredEnglishText 

!insert (StructuredEnglishText103,ConceptTypeCaption45) into 

   StructuredEnglishText_Representation 
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!set @StructuredEnglishText103.value := 'associative fact type' 

!set @StructuredEnglishText103.order := 1 

!set @StructuredEnglishText103.font := #term 

 

-- Definition 

 

!create Definition1 : Definition 

!insert (ObjectType2,Definition1) into Meaning_Representation 

!insert (Designation2,Definition1) into 

  PrimaryRepresentation_Caption 

!create StructuredEnglishText856 : StructuredEnglishText 

!insert (StructuredEnglishText856,Definition1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText856.value := 'editedBook' 

!set @StructuredEnglishText856.order := 1 

!set @StructuredEnglishText856.font := #term 

!create StructuredEnglishText857 : StructuredEnglishText 

!insert (StructuredEnglishText857,Definition1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText857.value := 'or' 

!set @StructuredEnglishText857.order := 2 

!set @StructuredEnglishText857.font := #keyword 

!create StructuredEnglishText858 : StructuredEnglishText 

!insert (StructuredEnglishText858,Definition1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText858.value := 'authoredPublication' 

!set @StructuredEnglishText858.order := 3 

!set @StructuredEnglishText858.font := #term 

 

-- GeneralConceptCaption 

 

!create GeneralConceptCaption1 : GeneralConceptCaption 

!insert (Designation4,GeneralConceptCaption1) into 

 Meaning_Representation 

!insert (Designation1,GeneralConceptCaption1) into 

  PrimaryRepresentation_Caption 

!create StructuredEnglishText324 : StructuredEnglishText 

!insert (StructuredEnglishText324,GeneralConceptCaption1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText324.value := 'publication' 

!set @StructuredEnglishText324.order := 1 

!set @StructuredEnglishText324.font := #term 

 

-- ConceptTypeCaption 

 

!create ConceptTypeCaption1 : ConceptTypeCaption 

!insert (Role_10,ConceptTypeCaption1) into Meaning_Representation 

!insert (Designation1,ConceptTypeCaption1) into 

 Meaning_Representation 

!create StructuredEnglishText24 : StructuredEnglishText 

!insert (StructuredEnglishText24,ConceptTypeCaption1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText24.value := 'role' 

!set @StructuredEnglishText24.order := 1 

!set @StructuredEnglishText24.font := #term 

 

-- NecessityStatement 

!create NecessityStatement1 : NecessityStatement 

!insert (StructuralRule1,NecessityStatement1) into 
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 Meaning_Representation 

!insert (FactTypeForm3,NecessityStatement1) into 

 PrimaryRepresentation_Caption 

!create StructuredEnglishText333 : StructuredEnglishText 

!insert (StructuredEnglishText333,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText333.value := 'each' 

!set @StructuredEnglishText333.order := 1 

!set @StructuredEnglishText333.font := #keyword 

!create StructuredEnglishText334 : StructuredEnglishText 

!insert (StructuredEnglishText334,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText334.value := 'person' 

!set @StructuredEnglishText334.order := 2 

!set @StructuredEnglishText334.font := #term 

!create StructuredEnglishText335 : StructuredEnglishText 

!insert (StructuredEnglishText335,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText335.value := 'has' 

!set @StructuredEnglishText335.order := 3 

!set @StructuredEnglishText335.font := #verb 

!create StructuredEnglishText336 : StructuredEnglishText 

!insert (StructuredEnglishText336,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText336.value := 'exactly' 

!set @StructuredEnglishText336.order := 4 

!set @StructuredEnglishText336.font := #keyword 

!create StructuredEnglishText337 : StructuredEnglishText 

!insert (StructuredEnglishText337,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText337.value := 'one' 

!set @StructuredEnglishText337.order := 5 

!set @StructuredEnglishText337.font := #term 

!create StructuredEnglishText338 : StructuredEnglishText 

!insert (StructuredEnglishText338,NecessityStatement1) into 

  StructuredEnglishText_Representation 

!set @StructuredEnglishText338.value := 'name' 

 

-- ReferenceSchemeCaption 

 

!create ReferenceSchemeCaption1 : ReferenceSchemeCaption 

!insert (ObjectType1,ReferenceSchemeCaption1) into 

  Meaning_Representation 

!create StructuredEnglishText93 : StructuredEnglishText 

!insert (StructuredEnglishText93,ReferenceSchemeCaption1) into 

StructuredEnglishText_Representation 

!set @StructuredEnglishText93.value := 'name' 

!set @StructuredEnglishText93.order := 1 

!set @StructuredEnglishText93.font := #term 

 


