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Abstract 
 

Refractive index (RI) provides information about the propagation of light through a 
specimen and it is related with some optical and electrical properties of materials. In many 
cases, certain changes in matter can produce a modification of the refractive index, such 
as, for example, temperature variations, mechanical stress or changes in the chemical 
composition of the material. Other materials may present different RI values depending on 
light propagation direction, as is the case of anisotropic materials. Hence, there are multiple 
applications in different fields such as biology, pharmacology, mineralogy or material 
characterization, where the RI value can give interesting information. In this thesis, we 
have developed an optical method to characterize the RIs of dielectric isotropic samples 
and uniaxial anisotropic crystals. The particularity of our method is to measure, in a 
reflection configuration, solid or liquid phases and planar or non-planar surfaces, allowing 
to characterize optical elements already integrated in optical systems. In-situ 
characterization of the refractive index is nowadays an unsolved problem of interest for 
industry and research. Particularly, lenses integrated in optical systems are the major 
motivation of this work, because they may modify their RI value when inserted into 
devices. 

Our proposal was to design, implement and use, for the first time, a conoscopic Mueller 
microscope working in reflection to measure the RIs of several samples with arbitrary 
surfaces. The working principle of our microscope is based on measuring the angle-resolved 
Mueller matrix of any dielectric specimen by using a complete Mueller matrix polarimeter 
and a high numerical aperture objective (HNAO). Under this scenario, a polarized incident 
light beam is highly focused over the studied sample, being the spot size smaller than the 
curvature of the sample surface, this allowing us to measure non-planar surfaces. The 
reflected cone of light passes through the same HNAO, being collimated and then, it is 
polarimetrically analyzed. Note that the incident and reflected light cones are formed by 
light rays with different angles of incidence and polarizations. As a consequence, the 
proposed conoscopic microscope is able to measure the angle-resolved Mueller matrix in 
reflection at numerous incident angles simultaneously, obtaining data redundancy without 
any mechanical motion of the set-up. A camera with high-resolution records the different 
intensity patterns that ultimately are used to calculate the Mueller matrix image. Data 
redundancy is function of the maximum angle of incidence of the HNAO and the number 
of pixels of the camera. 

A mathematical model was developed to theoretically determine the Mueller matrix 
image. It is based on the Fresnel coefficients that describe the ratio of the reflected and 
transmitted electric fields to that of the incident beam on an interface between different 
optical media. These coefficients depend, on the one hand, on the angle of incidence, the 
polarization and the frequency (or wavelength) of the incident beam and, on the other 
hand, on the RIs of the media. The model was tested by performing a collection of 
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simulations and we analyzed the validity of the method by measuring the characteristics 
of different artificial samples. 

 The model parameters, such as the refractive indices can be calculated by fitting them 
with the experimental data measured with the conoscopic Mueller microscope. An iterative 
optimization routine was developed in order to find the best-fit parameters that minimize 
a merit function based on the Mean Squared Error (MSE) between both experimental and 
simulated Mueller matrix images. The conoscopic Mueller microscope was finally tested by 
measuring well-known polarimetric samples with different surface forms. 
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Resumen 
 

El índice de refracción (RI) es un parámetro físico que proporciona información sobre la 
propagación de la luz a través de una muestra y está relacionado con algunas propiedades 
ópticas y eléctricas del medio. El RI es una propiedad intrínseca de los materiales, pero en 
muchos casos, cambios en la materia producidos por interacciones físicas o químicas, 
pueden producir una modificación de su valor, como, por ejemplo, debido a variaciones de 
temperatura, estrés mecánico o cambios en su composición química. Otros materiales 
pueden presentar diferentes valores de RI dependiendo de la dirección de propagación de 
la luz, como es el caso de los materiales anisótropos.  

Existen múltiples aplicaciones en diferentes campos, como biología, farmacología, 
mineralogía o caracterización de materiales, donde el valor de RI puede proporcionar 
información de gran utilidad. En esta tesis, hemos desarrollado un método óptico para 
caracterizar los índices de refracción de muestras dieléctricas isótropas y cristales 
anisótropos uniáxicos. Una ventaja de nuestro método es que es capaz de medir el RI en 
materiales en fase sólida o líquida y superficies planas o no-planas, iluminando la muestra 
en reflexión. Esto nos permitiría caracterizar elementos ópticos ya integrados en sistemas 
ópticos. La caracterización del índice de refracción in situ es hoy en día un problema por 
resolver, de gran interés para la industria y la investigación. La principal motivación de 
este trabajo es caracterizar las lentes integradas en sistemas ópticos, para las que no existe 
un método estándar.  

Hemos diseñado e implementado por primera vez, un microscopio conoscópico de 
Mueller que trabaja en reflexión para medir los RIs de varias muestras, independientemente 
de su superficie. En particular, medimos la matriz de Mueller de cualquier muestra 
dieléctrica mediante un polarímetro de Mueller completo y un objetivo de gran apertura 
numérica (HNAO). Como consecuencia, se obtiene un haz de luz polarizado y altamente 
focalizado que incide sobre la muestra, siendo el tamaño del punto focal más pequeño que 
la curvatura de la superficie de la muestra, lo que nos permite medir superficies no planas. 
Gracias al HNAO, el microscopio conoscópico propuesto mide simultáneamente la matriz 
de Mueller para un gran número de ángulos de incidencia (aquellos dentro del cono 
iluminando la muestra), sin ningún movimiento mecánico del sistema y obteniendo una 
gran redundancia de datos. Con una cámara de alta resolución se pueden registrar los 
diferentes patrones de intensidad correspondientes a distintas configuraciones 
polarimétricas, y utilizarlos para calcular la imagen de la matriz de Mueller. Hemos 
desarrollado el modelo matemático que nos permite determinar la matriz de Mueller teórica 
de la muestra. Éste se basa en los coeficientes de Fresnel, que describen la relación entre 
los campos eléctricos reflejado y transmitido con el haz incidente, en una interfaz entre 
diferentes medios. Estos coeficientes dependen, por un lado, del ángulo de incidencia, la 
polarización y la frecuencia del haz incidente y, por otro lado, de los índices de refracción 
de ambos medios. El modelo desarrollado se probó realizando una serie de simulaciones y 
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se validó midiendo las características ópticas de matrices de Mueller simulando materiales 
reales e incluyendo efectos experimentales (ruido, desalineamiento, etc.). 

 Finalmente, se ha utilizado el instrumento para medir la matriz de Mueller de 
materiales reales. Los diferentes parámetros ópticos del modelo pueden ser ajustados para 
que la matriz de Mueller teórica coincida con la experimental. Para tal fin, se ha 
desarrollado un programa de optimización para hallar el mejor ajuste entre simulación y 
datos experimentales, mediante la minimización de una función de mérito basada en el 
error cuadrático medio (MSE). El microscopio conoscópico de Mueller ha mostrado su 
potencial para caracterizar muestras dieléctricas independientemente de su superficie. 
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Chapter 1   Introduction 

 This thesis proposes an optical method to characterize optical properties of anisotropic 
crystals (refraction index (RI), crystal orientation, etc.), being isotropic materials a 
particular case. The developed instrumentation, a conoscopic Mueller microscope working 
in reflection configuration, is mainly devised to measure the refraction index of non-planar 
isotropic materials. In particular, lenses already integrated into optical devices are the 
major motivation. These integrated lenses may modify their value of the refraction index 
when inserted into the devices, due to mechanical stress. Therefore, the precise calibration 
of the RI for such optical elements, once they are already inserted into the optical 
instrumentation, becomes an unsolved problem of interest for industry and research. In 
this sense, well known transmissive methods for refraction index determination are 
somewhat invalid in numerous cases due to the in-shell configuration of the lenses. What 
is more, a standard method does not exist nowadays to calibrate the RI of such kind of 
optical samples. We want to emphasize that although the optical instrumentation 
presented in this thesis was mainly devised to find a solution for the above-stated scenario, 
the achieved conoscopic Mueller microscope, and the associated mathematical model we 
developed to describe its performance, are more general, and can also be applied to non-
planar anisotropic dielectric materials with an arbitrary orientation of its anisotropic axis. 

In this first chapter we perform an overview of the state of the art in refractive index 
characterization. In this sense, this introduction contextualizes this thesis and the research 
developed these last four years with the intent of describing the purpose of developing our 
conoscopic Mueller microscope. 

First, to motivate this current thesis, a general description of some applications where 
the measurement of the refractive index is important, are introduced in section 1.1. Diverse 
examples in multidisciplinary fields, such as biology, mineralogy or material 
characterization, are described in this first section. Then, an overview of the most common 
methods for the measurement of the refractive index is given in section 1.2. Following, in 
section 1.3, the main research studies on which our proposed design is based are 
summarized. Finally, the main goals of this thesis (section 1.4) and the structure of this 
thesis (section 1.5) are detailed. 
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1.1 Motivation 

The refractive index (RI), also called index of refraction (n), provides information about 
the propagation of light through a medium and about the propagation modification it 
suffers when changing from one medium to another. It is also directly related with some 
optical and electrical properties of materials. Thus, it is an important optical parameter 
that must be calibrated in multiple scenarios since it exhibits the optical properties of the 
material. Its value depends on the one hand, on the frequency (or the wavelength) of light, 
and, on the other hand, on the characteristics of the material, i.e. its density, chemical 
composition, electrical susceptibility, … [1, 2].  

The thorough knowledge of a material RI value and dispersive characteristics are useful 
for the characterization of minerals, synthetic materials and specimens with linear or 
nonlinear refractive indices. In many cases, certain changes in matter can produce a 
modification of the RI, such as, for example, mechanical stress or a variation in the chemical 
composition of the material (e.g. by doping with impurities), or an increase (or decrease) 
in the temperature. Accordingly, there are many applications in many different fields where 
there is interesting to measure and study the RI to characterize a specimen. To motivate 
this thesis, and to show that the refractive index is an important optical property (not only 
significant in optics-related fields), some examples are introduced in the following. 

 

 Biological applications and pharmaceutical industry 

In numerous biophysical, medicinal, chemical and pharmaceutical applications, the 
value of the refractive index can provide useful information. In this sense, since light is 
deflected as it enters a material, the characterization of RI and its distribution may be 
interesting to study biological and chemical complex media such as biological tissue. Note 
that the refractive index is a key parameter for image reconstruction and interpretation as 
well as for understanding sample properties, offering a non-invasive way to probe the 
structural information of living cells or tissues without using exogenous agents. To highlight 
the relevance of the study of refractive index in this area some examples are shown.  

The refractive index plays an important role in bioimaging techniques, mainly due to 
the huge number of existing methods to characterize it and their versatility. As most tissue 
samples are optically turbid, highly scattering, and non-homogeneous, the measure of the 
RI can be used to improve bioimages, providing high-fidelity images [3–5] or generating 2D 
and 3D refractive index maps to visualize cells and tissues [6–8]. The non-invasive measure 
of the RI can also report a real time visualization of cellular and bacteria dynamics under 
study [9, 10]. 

In addition, most normal cells have a refractive index different than diseased cells. For 
this reason, various research studies have characterized the refractive index of healthy and 
diseased cells, aiming to better distinguish them to remove diseased tissues or to study 
their cell cycles. In particular, tumor tissue can be an example because exhibits higher 
refractive index variance than normal tissue [9, 11]. 
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The refractive index is also used to determinate the concentration of a solute in an 
aqueous solution and to analyze chemical properties of dissolutions [12–16]. There exist a 
wide variety of implementations in very different areas relating the concentration of a 
solute in a solution with the local RI, as in atmospheric air pollution where the 
concentration and the chemical composition of particle pollution in air has to be measured 
[17–19]. Moreover, dissolution of sucrose and other sugars in an aqueous solution changes 
the optical properties, in particular its RI. Thus, the determination of pure sucrose content 
in soft drinks, fruit juices, tomato concentrates, etc. can be calculated from the RI 
measurement. BRIX refractometers [20, 21] are widely used in food and beverage industry. 
In medicine, the concentration measurement of different kind of cells or glucose in blood 
can be also of interest, for example for diabetes diseases [22, 23]. 

 

 Mineralogy and crystallography 

Another application where the characterization of the refractive index can also be 
important is crystallography. Note that the internal structure and the RI of minerals are 
related. In this respect, by using simple set-ups (as polariscopes, interference color charts, 
Becke line method, etc. [24–28]) the RIs of materials can be studied and related with the 
structure of the mineral (symmetries, axes, etc.). For this reason, in optical crystallography 
a specimen can be classified depending on how a light beam is propagated inside the 
material. We say that a crystal is isotropic when the refractive index is the same in all 
crystallographic directions and, anisotropic when the refractive index varies along different 
crystallographic directions. Furthermore, the RI of a particular mineral does not vary 
significantly from one mineral grain to another [26, 28]. As a result, the refractive index is 
particularly useful for rapid identification of most common minerals using tables and charts 
[29, 30], for distinction between natural and synthetic gemstones, for helping reveal the 
origin and evolution of a mineral [24, 25, 31, 32], among others.  

When geologists try to identify minerals, at least two characteristics are taken into 
account, the chemical composition and the structure of the material. The main reason is 
that structural differences of a mineral can occur for the same chemical substance, as a 
function of external conditions, such as temperature or pressure. These minerals are called 
polymorphs and two clear well-known examples are diamond-graphite (C) and calcite-
aragonite (CaCO3) [26]. By analyzing the RI and the birefringence (the difference between 
the major and minor refractive indices of the specimen), structural information can be 
obtained and polymorphs can be differentiate [33]. 

Moreover, stress can temporary change the refractive index and introduce birefringence 
into the material or, in extreme cases, damage it. This case is called photoelasticity and it 
can be caused by variations in temperature, vibrations and shocks [34, 35]. Under this 
scenario, anisotropy is governed by the stress field and could not be necessarily constant 
throughout the sample (an example is given in Figure 1-1, where we show an image of a 
plastic CD case where the non-homogeneous stress-induced birefringence is observed by 
using a polarization based technique). 



4  Chapter 1  -  Introduction 
 

 
 (a) Plastic CD case. (b) Stress-induced birefringence in the plastic CD 

case placed between two crossed polarizers and illuminated with white light. It 

can be observed that anisotropy is not constant over the entire sample.  

Over the years, a number of photoelasticity based measurement techniques and 
commercial equipment have been developed for residual stress measurements in so many 
applications such as mineralogy [36–38]. However, the birefringence changes due to stress, 
temperature, or pressure can appear in other types of samples. Because of this, the study 
of photoelasticity has been extended to other research fields, such as in mechanical 
engineering [32, 39, 40], medical science [41, 42], among others. 

 

 Characterization of optical elements 

Companies that manufacture optical materials are interested in characterizing the 
refractive index of the optical components in their designs in order to accurately define 
how light behaves when it passes through, or is reflected by, the different optical elements. 
To properly characterize the optical properties of any element, an accurate knowledge of 
the element profile as well as its RI value (which may be unique or related to a stack of 
different material layers with different RIs) must be ensured. Note that the knowledge of 
the refractive index profile of each element may help to design different complicated optical 
devices. 

A lens is an example of an optical element that is used in a wide variety of applications 
such as, for example, the correction of visual impairments, in imaging systems as telescopes, 
microscopes or cameras, for light concentrators, etc. [1, 2]. When designing a lens to have 
a specific optical power, any change in the RI of the material has to be controlled, because 
it can affect the focal length of the optical system. 

Another example are optical waveguides that are mostly used in communications [43, 
44], sensors [45, 46], etc., and may become part of complex optical integrated circuits. The 
refractive index of an optical fiber enables to determine some properties as guiding mode 
propagation, cutoff wavelength, chromatic dispersion characteristics, and so on [47]. 

Some applications use high precision optical elements that must be studied after they 
are manufactured and placed at their final position. This is because during its 
manufacturing process or once they are placed on its holder, a change in temperature or 
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pressure can produce a slight defect in the element, making it completely ineffective for its 
intended purpose.  

Nowadays, the two most common techniques used to manufacture optical elements, as 
lenses, are injection molding process [48, 49] and compression molding process [50, 51]. The 
benefits of both techniques are the low unit cost and the very high-volume production, but 
both imply strong temperature or pressure changes that may incur various defects on the 
used material, such as deformation, sink mark, birefringence, and aberrations. Despite 
rigorous control of the specimens during production processes, the quality of an optical 
product can be further reduced by introducing these defects in the refraction index of the 
specimen [52–54]. Such uncontrollable effects can be critical, requiring their precise 
characterization prior to use the optical elements in any device.  

 

1.2 Methods for the refractive index measurement 

In literature, one can find many books and scientific manuscripts studying different 
techniques to measure the refractive index of solids, liquids and gases. To evaluate the 
optical properties of a material, destructive or non-destructive approaches can be used. 
The first one analyzes the specimens by destroying a small number of them, while the 
second one allows samples to be characterized by several means without destroying them. 
Thus, non-destructive testing is a highly valuable technique because the analyzed sample 
is still available for other uses, tests, or simply can continue performing its current function. 
Note that when optical elements are already integrated in optical systems, non-destructive 
methods for RI determination are unique possible approaches. 

Several types of non-destructive techniques have been developed for measuring the 
refractive index. In the next sub-sections some optical methods are briefly described, and 
their main advantages and disadvantages are commented. 

 

 Minimum deviation method 

One of the most common techniques used to study transparent isotropic materials is 
based on the study of the angle of minimum deviation (min) observed when a light beam 
passes through a prism [1, 2]. To determine the RI of any material with this method, the 
sample has to be cut with the geometry of a prism similar to the shown in Figure 1-2.  

When a monochromatic beam passes through a prism, according to the Snell law, it is 
deviated from its original direction by an angle . In general, the deviation angle  depends 
on the incident angle in to the prism, except for very small prism refringence angles . In 
addition, the (in) function presents a minimum, min for a given incident angle in. 
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 Scheme, showing the deviation angle , used to determine the 

refractive index nsample. 

The method of minimum deviation consists in finding the angle of minimum deviation 
min for a particular wavelength (this value depends on the incident wavelength, due to the 
materials dispersion). The refractive index can be calculated from a measurement of the 
angle of minimum deviation min [55, 56] 

 

min

sample
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2

sin
2

n

 



          

  (1.1) 

where  is the refringence angle of the prism (see Figure 1-2). Note that as the minimum 
deviation angle min () depends on the wavelength, the measured n sample () also presents 
this dependence. Consequently, by calibrating the refringence of the fabricated prism  
and measuring the min for a given wavelength, the n sample is computed from Eq. (1.1) for 
such wavelength. 

The prism minimum deviation technique is commonly used for extremely accurate 
measurements of bulk transparent glasses [2, 55–58] and also, liquid and gases can be 
optically characterized by using a hollow prism to contain the sample [55, 59]. 

Nevertheless, minimum deviation method presents a great disadvantage: users have to 
fabricate high-quality prism-shaped samples. Hence, this technique cannot be used with 
routinely produced samples, as lenses or waveguides, or specimens of different shapes, as 
biological tissues. 

 

 The Abbe refractometer 

The Abbe refractometer can work in reflection and in transmission configurations (see 
Figure 1-3 (a) and (b), respectively). In both cases the material under study is placed 
between two prisms made of dense glass (also known as Flint glass) with high refractive 
indices (nprism) that are well-known. 

This refractometer is used to determine the refractive index of a sample by measuring 
the critical angle cr occurring at total internal reflection [60] 
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 Scheme of two Abbe refractometers working (a) in reflection, and (b) 

in transmission configurations. 

 

 prism crsinn n    (1.2) 

where n is the RI of the sample to be studied.  

The incident collimated beam is diffused by the first frosted face of the Abbe prism. 
The diffused light is propagated in all directions, passes through the prism and hits the 
interface of the specimen under different angles of incidence (see Figure 1-3). If the incident 
angle is above the value arcsin

 
(n / nprism), then total reflection occurs at this interface, and 

no light is transmitted into the sample. On the other side, if the incident angle is below 
arcsin

 
(n / nprism), light is transmitted through the sample. At the angle cr, at which the 

transition from transmission to total reflection occurs, the image displays a sharp 
separation between bright and dark ranges, similar to the scheme shown in Figure 1-4. By 
varying the observation angle, the angle of total reflection can be found when the boundary 
line is adjusted to the point of intersection of a reticle. The Abbe refractometer is calibrated 
to give the refractive index n, instead of the angle of total reflection (cr). 

Abbe refractometers can work with monochromatic or white light. In non-
monochromatic cases, each wavelength is dispersed in different directions, each one with a 
particular critical angle, and thus, the boundary line (see Figure 1-4) of white light light is 
not well defined. To correct this dispersive effect, two compensating Amici prisms are 
introduced into the refractometer. 

 
 By simply aligning the boundary line of refraction at the cross 

intersections, the Abbe refractometer directly indicates the refractive index. 
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The Abbe refractometer can be used to measure RI of liquid or solid samples [60–67]. 
However, it is limited by the condition that n      nprism, i.e., it cannot measure refractive 
indices larger than that of their constitutive prisms. In this sense, depending on the sample 
under studio, Abbe refractometers based on prisms with different nprism are built. The 
catalogue of [68] shows Abbe refractometers with different measurement ranges.  

Note that the surfaces of the solids measured by Abbe refractometers have to be flat 
because an incomplete contact between the prisms and the sample increases the measured 
RI uncertainty. Thus, this kind of refractometer does not allow to characterize non-planar 
optical products, as lenses. In addition, samples must be optically isotropic, non-absorbing, 
and homogeneous to avoid refractive index errors [69]. 

 

 Interferometric methods 

Interferometry has been extensively used for RI characterization. By using this 
approach, interferences are created between two coherent beams, the reference beam and 
a second beam testing the sample. Spatial shifts of the interference pattern, caused by the 
introduction of the studied sample (which modifies the optical path of one of the beams), 
can be related with the RI of the studied specimen. There are several interferometric 
methods with completely different basic principles that provide a versatile way of obtaining 
the refractive indices of different materials, or other parameters, as the thicknesses of the 
sample. 

Some examples of interferometers that make simultaneous measurements of RIs of 
optically transparent plates or multiple layers are: Michelson interferometers [70–72], Fabry 
Perot interferometers [73–75], Mach-Zehnder interferometers [76–78] and combinations of 
confocal microscopes and optical low-coherence interferometers [79–82], among others.  

The interferometric methods present some advantages as they are sensitive to the phase 
or optical path differences and consequently, small relative shifts of the RIs can be 
measured interferometrically. Nonetheless, they usually require complex instrumentation 
and very accurate alignment processes. In addition, they are very sensitive to vibrations 
and air fluctuations (or they have to be built under void conditions), and the interferometer 
measurement is restricted by the available wavelength range of the existing laser. 

A wide variety of interferometers is only able to characterize sample surfaces that are 
flat, parallel, and homogeneous. Nevertheless, when non-planar surfaces need to be optically 
characterized, other techniques have to be implemented.  

  

 Ellipsometry 

Ellipsometry is an optical technique that enables to measure the change of polarization 
that occurs when a polarized beam is reflected by (or transmitted through) a material. By 
doing so, ellipsometers can simultaneously measure the modulus and phase of the 
polarization components of light [83–85].  
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By assuming an incident light beam that illuminates the sample to be analyzed, both 
reflection and refraction may occur at the interface sample-air. The Fresnel equations 
mathematically describe the ratio of the reflected (or transmitted) electric field to the 
incident beam. The ellipsometric values tan  (corresponding to the amplitude ratio) and 
 (corresponding to the difference in phase shift) are defined from the ratio () of the 
complex Fresnel coefficients as [84] 

  tan exp i      (1.3) 

Since these ratios are complex, the Fresnel coefficients and the ellipsometric angles 
(and ) describe not only the relative amplitudes, but also phase shifts between waves. 
Moreover, all these parameters are function of the optical characteristics of the sample, the 
illumination wavelength and the angle of incidence of the incident light beam. Therefore, 
by building proper physical models, the optical parameters of samples can be determined 
by fitting the model parameters to ellipsometric measurements.  

The ellipsometer working principle is based on a controlled polarized beam that 
illuminates the sample. The polarization of this input beam, after reflection or transmission 
on the sample, is modified due to light-matter interaction, according to the specific 
ellipsometric angles and . The corresponding exiting beam, function of and , is 
analyzed with a controlled polarization analyzer. Finally, a radiometer is used to measure 
the irradiance corresponding to the projection of the unknown exiting polarization on a 
selected particular polarization analyzer. Figure 1-5 shows a schematic view of a simple 
ellipsometer working in reflection. By measuring the polarization changes after reflection 
or transmission, the parameters and  of the sample can be determined, from which 
optical characteristics may be deduced. Ellipsometers are very sensitive to any change in 
the optical response of incident beam, thus, they are useful to characterize composition, 
thickness, crystalline nature, doping concentration or optical parameters as RI. For that 
purpose, as stated before, a theoretical physical model is developed in order to simulate 
the experimental conditions. By comparing the model solutions with the experimental 
results, the optical parameters of the sample are obtained.  

 
 Scheme of a general ellipsometer working in reflection formed by two 

optical arms. The first arm comprises a polarization state generator coupled to a 

source of light. The second arm is used to determine the polarization of the 

reflected beam. It comprises a polarization state analyzer and a detector. 
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Apart from reflection and transmission configurations, ellipsometers can work in total 
internal reflection mode to determine the optical response of specimens [86]. By taking into 
account these three configurations, they are used to measure the RI and the thickness 
(ranging from few nanometers to hundreds of micrometers) of transparent or low-absorbing 
thin films [87–90]. The use of coherent light sources as lasers can considerably increase up 
to centimeters the maximum sample thickness measurable [90]. Consequently, ellipsometry 
is widely used to investigate different kinds of surfaces and thin-film materials, such as 
biological materials [91–93], microelectronic fabrication processes [94], or films at the 
nanoscale [95, 96]. 

Unfortunately, as ellipsometric measures cannot distinguish depolarization contributions 
and are insufficient to completely characterize polarization changes in time or space, 
“classical ellipsometry” applied to the measure of the RI on rough substrates, or other type 
of depolarizers, has generally proven to be very difficult [97]. That is to say, ellipsometric 
measurements require that the light beam remains completely polarized during the 
measurement process. Nevertheless, when the sample surface has significant roughness, 
“classical ellipsometry” is not adequate to describe reflected beams because it cannot take 
into account depolarization and cross polarization effects. For this reason, when light 
becomes partially polarized, by interacting with some element, it is necessary to use more 
“generalized ellipsometric” techniques, as the Mueller Ellipsometry (known as Polarimetry) 
[90, 98]. 

  

 Conoscopy 

Conoscopy is an optical technique, widely used in mineralogy, to obtain the orientation 
and the refractive indices of anisotropic crystals, i.e. materials where the RIs change with 
direction of propagation.  

When light enters an arbitrary oriented uniaxial anisotropic crystal, if the propagation 
direction is not perpendicular or parallel to the crystal optical axis, it is split into two rays 
(ordinary and extraordinary rays) that vibrate perpendicular to each other and that have 
different velocities [2, 99]. Based on this phenomenon, a collimated light beam that passes 
in sequence through a polarizer, a microscope objective, the anisotropic crystal, an objective 
lens system (that re-collimates the transmitted beam) and an analyzer (that is crossed with 
respect to the first polarizer), generates a highly informative pattern of interference (see 
Figure 1-6). This interference pattern is not a magnification of the object itself, but instead, 
it is a propagation directions image mapping the directions that light takes through the 
sample. By using this scheme, the symmetries of the anisotropic crystal, the directions of 
its optical axes, its principal RIs, among other parameters, can be determined by analyzing 
the interference pattern obtained for a particular crystal. Note that the obtained 
interference figure depends on the thickness and the birefringence of the mineral under 
study. That is to say, different thicknesses of the same mineral may display different 
interference patterns.  
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The main feature of conoscopy is its feasible set-up. Because the figure is a wave-
directions image, vertical displacements of the sample will not alter the observed 
interference figure. To increase the information about the sample under study, higher angles 
of incidence should be used, i.e. larger numerical aperture cones of light provided by higher 
numerical aperture objectives. 

 
 Scheme of a conoscopic set-up. A linearly polarized convergent light 

beam passes through the anisotropic sample and it is projected, at the exit, on a 

linear analyzer, generating an interference figure. 

Several optical configurations of a conoscope can be found in literature, consisting in 
illuminating the anisotropic sample with a convergent or divergent cone of light, measuring 
the transmitted or the reflected beam, using a monochromatic or polychromatic 
illumination, etc. [25, 33]. 

Conoscopes are also used to characterize plane-parallel uniaxial plates such as wave 
retarders or polymers [100–102], and more complex anisotropic devices as liquid crystal 
displays [103–105]. 

Nevertheless, conoscopy presents the same disadvantage than other methods used for 
the characterization of RI, the sample under study must be reasonably homogeneous and 
planar across the region illuminated by the cone of light. 

 

1.3 Proposed optical conoscopic microscope 

As we can see, the great majority of methods shown in references present a configuration 
able to measure the refractive index of samples in transmission. Nevertheless, there are 
some situations where the only possibility to measure the RI is by using a reflective 
configuration. In particular, for the characterization of a sample that is not transparent, 
or an optical component already integrated into a device (for example, CCD camera lenses 
of a mobile phone). In such cases, the specimen cannot be characterized to guarantee the 
accuracy of the optical system. 

In the same way, the previous described techniques are able to accurately characterize 
the RI when the sample surface is homogeneous and planar, either prisms or parallel-side 
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thin films. But, what happens when the specimen presents a significant curvature or certain 
roughness? Or what about if it presents local anisotropies?  

Let us take as an example the possible anisotropies that appear in a curved lens during 
its manufacture, after the injection molding and compression molding processes. A possible 
solution is to analyze one portion of the material used to create the lens. A thin film or a 
prism can be made from the specimen before or after the molding processes and, it can be 
optically characterized. Then, the optical element can be considered invariant, i.e. it 
remains unchanged even if there is a variation in the density of the material due to 
temperature or stress changes or because of contact with another material. However, this 
assumption cannot be guaranteed, and degradation of optical systems associated to the 
above-stated external conditions, cannot be detected with the previously described 
techniques.  

As stated above, it looks like there is not a technique that allows characterizing samples 
that are fixed in optical devices or whose surfaces are non-planar. In this thesis we propose 
a new method that could provide a solution to these situations of interest for industry and 
research applications. To this end, the following items have been taken into account. 

 

 Fresnel coefficients 

The main goal of this thesis is to propose a general optical approach able to measure 
the RI of samples, including isotropic or anisotropic materials, and valid for planar and 
non-planar surfaces. In addition, the method must be devised in reflection configuration, 
in order to be able to measure optical components already integrated in optical systems. 
With all this in mind, from those methods presented in section 1.2, ellipsometric based 
systems seems to be a feasible approach to measure the RI in a reflective configuration. 
Consequently, we have proposed to design a polarimetric set-up that characterizes the 
Fresnel coefficients in reflection. As our idea is to analyze optical components, which may 
include birefringence effects, the calculus of the Fresnel coefficients has to consider not only 
isotropic materials, but also anisotropic samples. 

Based on the theoretical models described in [106–108], the Fresnel coefficients in 
reflection can be calculated by measuring the polarization changes produced by a light 
beam interacting with the specimen under study. By assuming an optically controlled 
incident light beam that illuminates the sample and, by analyzing the reflected light beam, 
the material parameters can be obtained. It is important to note that to characterize the 
sample using the Fresnel coefficients, the angle of incidence and the illumination 
wavelength must be known. 

To increase the number of measurements (redundancy data) and to reduce possible 
measurement errors, [109] and [110] propose to introduce a mechanical arm in the “classical 
ellipsometer” to variate the angle of incidence of light on the material. In this manner, a 
single polarized light beam interacts with the specimen under study at different angles of 
incidence. For each different angle of incidence, reflected and/or transmitted beams are 
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polarimetrically analyzed. A combination of the measurements at multiple angles of 
incidence and at several wavelengths gives additional information that can be used to 
measure multilayer thin films or to reduce correlations between parameters. 

However, as has been previously commented, “classical ellipsometry” cannot analyze 
rough substrates because ellipsometric angles are insufficient to completely characterize 
depolarization contributions. The “generalized ellipsometry” uses the Mueller matrix based 
formalism [111] to determine the optical properties of more complex structures, and is valid 
to deal with depolarizing materials. 

 

 Mueller polarimetry 

Let us focus in Mueller polarimetry. When an optical beam interacts with matter its 
polarization state can be changed by varying its amplitudes, its phase, its direction of the 
orthogonal field components, or reducing its degree of polarization. For these reasons, a 
mathematical formalism that describes not only polarized light, but also partially and 
unpolarized light is needed. The Mueller-Stokes formalism [85, 111, 112] is a valid approach 
to describe the above-stated situations. In such formalism, Stokes vectors, S, describe the 
polarization state of light beams, this information being contained in 4 real magnitudes 
called Stokes parameters [111, 112]. From Stokes parameters, the degree of polarization of 
light beams can also be calculated. What is more, the Stokes parameters can be described 
from combinations of different radiometric measurements, and therefore, they can be 
experimentally determined from simple intensity measurements. By turn, Mueller matrices, 
M, are 4×4 real matrices that represent the polarimetric transfer function of the system, 
and contain information related to all the polarization properties of samples (diattenuation, 
retardance and depolarization) [83, 84, 111, 112]. In this context, Mueller matrices relate 
the input and output polarization states (Sin and Sout, respectively) by following the well-
known linear relation 

 out in S M S   (1.4) 

Thus, Mueller-Stokes formalism (and thereby Mueller polarimetry) is able to describe 
the polarization-altering characteristics of a sample, or a cascade of samples, being a 
powerful technique for an accurate determination of the polarization states of light beams, 
as well as the optical properties and geometric characteristics of materials, including its 
depolarizing capability.   

Numerous papers and discussions have appeared in literature that use Mueller 
polarimeters to measure the refractive index of samples for a particular angle of incidence 
[90, 111, 113, 114]. For our particular goal, let us study the research developed by authors 
in Refs. [115] and [116].  

Based on the idea of increasing the number of angles of incidence, Refs. [115] and [116] 
proposed to include two microscope objectives to construct a Mueller matrix imaging 
polarimeter that measures angle-resolved Mueller matrices of isotropic and anisotropic 
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substrates, single-layer thin films, or multi-layer structures. The special feature of their set-
up is the use of two long working distance microscope objectives to measure the Mueller 
matrix image of samples and then, calculate their dielectric tensors. One microscope 
objective focuses the beam onto the sample and the other one collects the reflected beam 
exiting the sample (see Figure 1-7). Therefore, instead of measuring a single Mueller matrix 
per angle of incidence, the microscope objectives simultaneously generate and collect a 
large number of incident and reflected angles to finally obtain an angle-resolved Mueller 
matrix image.  

 
 Diagram of the microscope objectives illuminating the anisotropic 

sample in reflection mode and collecting the reflected beam. 

Moreover, the illumination arm and the sample stage can be rotated to change the angle 
of the illumination microscope objective axis to the sample surface and hence, select the 
proper set of angles of incidence and the azimuthal angles during the measure. In this way, 
by modulating the polarization of the focused illuminating beam and measuring the 
spatially varying reflected beam, the sixteen Mueller matrix elements are acquired at 
numerous angles of incidence. Thus, the polarization properties of the sample are obtained 
as a function of the set of incident and azimuthal angles point-by-point, represented in the 
Mueller matrix image. Selecting the illumination microscope optical axis by mechanically 
rotating the illumination arm, their designed Mueller polarimeter can operate either in 
transmission mode or in reflection mode.  

Then, the dielectric tensor and the thickness of the measured sample are determined by 
an optimization routine that compares the measured Mueller matrix image to a Mueller 
matrix image obtained by a forward calculation using an initial estimation of the sample 
optical properties. 

Their set-up and their developed model allow to determine the dielectric tensor of either 
isotropic or anisotropic samples, but the characterized samples must also be substrates or 
thin film layers. Even then, based on the methodology described in Refs. [115] and [116], 
we have proposed to use a Mueller polarimeter to characterize isotropic and uniaxial 
anisotropic crystals, but in our case avoiding any mechanical movement (and the 
consequent positioning errors).  
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For that purpose, we propose to build a polarimetric microscope based on a single high 
numerical aperture objective (HNAO) with its optical axis perpendicular to the sample 
surface. In this configuration, the microscope allows us to illuminate a very small specimen 
area (and therefore, non-planar surfaces can be locally approximated to planar surfaces). 
The same microscope is also used to collect the reflected beam. The small focus spot created 
by the HNAO allows as well minimizing the effects of any spatial non-uniformities in the 
sample. 

 

 High Numerical Aperture Objective (HNAO) 

According to the Debye approximation [117, 118], high numerical aperture objectives 
decompose an incident light beam into a set of superposed plane waves whose propagation 
direction is within the geometrical focal cone. In addition, the reflected light cone is also 
formed by a combination of plane waves at different reflected angles.  

Assuming the HNAO to be free from aberrations, its focusing properties can be modeled 
with a well-established angular distribution of plane waves and polarizations. Moreover, 
the size of the focal spot becomes very small (around microns). When the set of plane 
waves illuminates a non-planar surface placed at the focal plane of the HNAO, the 
boundary can be approximated to a planar interface when it is compared with the size of 
the focal spot, and in this approximation, the Fresnel equations still work. By taking into 
account the Fresnel coefficients, the reflectivity is different for light polarized in the plane 
of incidence and light polarized perpendicular to it. Furthermore, to focus a polarized beam, 
by a high numerical aperture objective, causes bending of the polarization vectors [119]. 
Accordingly, different polarization vectors illuminate the sample surface at different angles 
of incidence, which results in a set of reflected polarizations, clearly described by the Fresnel 
equations. Hence, a polarimetric image of the back focal plane of the HNAO lead to a 
certain intensity distribution image, from which significant information of the sample can 
be retrieved, when the reflected beam is projected on a linear analyzer [101]. 

 

 Conoscopic Mueller microscope 

In the literature, there are several works that used conoscopic microscopy to measure 
the Mueller matrix, most of them operating in transmission [120–123]. Nevertheless, the 
designed set-up constructed in our laboratory is based on the Mueller microscope working 
in reflection proposed in Refs. [124, 125]. Their designed microscope is made of two optical 
arms that share a unique HNAO. The first arm, at the entry, comprises a source of light 
coupled to a polarization state generator that generates any desired state of polarization. 
On the other side, the reflected arm comprises a polarization state analyzer and a pixelated 
detector that determine the polarization of the reflected beams. Their proposal uses a non-
polarizing beam-splitter to steer the polarized incident beam to the HNAO as well as the 
reflected beam, collected by the HNAO, to the analyzer (see Figure 1-8). That is to say, 
the incident polarized beam, transmitted through the beam-splitter, passes through the 
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HNAO and is focused onto the sample. Then, the reflected beam is collected by the same 
HNAO and is steered, by the non-polarizing beam-splitter, to the polarization state 
analyzer. In addition, they use a system of lenses to eliminate the inhomogeneities of the 
source and to select the measurement modes, between conoscopic images and conventional 
microscopic images. 

 
 Diagram of the non-polarizing beam-splitter and the microscope 

objective. Polarized incident light is steered to the microscope objective and, the 

reflected beam is steered to the polarization state analyzer. 

In the conoscopic mode, the Mueller microscope is able to measure angle-resolved 
Mueller matrices as a function of incident and azimuthal angles, represented point-by-point 
in the recorded image. They have used this Mueller microscope to characterize diffraction 
gratings and entomological structures in reflection.  

Returning to the subject of optically characterizing non-planar surfaces, we have decided 
to modify and readapt the set-up proposed in Refs. [124] and [125] to measure the Mueller 
matrix image of isotropic and uniaxial anisotropic samples. As mentioned above, Mueller 
ellipsometry can be used to look at changes in reflected polarization states but, instead of 
measuring the specimen at several angles selected manually by changing the position of an 
optical arm, the HNAO is used to generate a larger set of angles of incidence that allows 
performing fast and accurate measurements without any mechanical movement. In 
addition, the use of a high numerical aperture microscope significantly reduces the size of 
the focal spot, which allows us to consider non-planar and inhomogeneous samples as planar 
and homogeneous at the illuminated region. 

Although high numerical apertures are of interest for our goal, care must be taken in 
the alignment of the conoscopic Mueller microscope shown in Figure 1-8. Aberrations might 
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be caused by imperfections in the HNAO or by misalignments of any component of the 
system. For this reason, a free-aberration microscope objective ideal for polarizing 
applications has to be used. In addition, during the construction of the set-up, the 
misalignments introduced by the optical elements have to be corrected to avoid changes in 
the direction of propagation of light. The most sensitive part of the whole set-up is to 
achieve an overlap between the incident and reflected cones, so the optical axis of the 
HNAO and the illumination beam propagation direction have to be parallel between them 
and, at the same time, perpendicular to the sample surface.   

Based on other research works [126, 127], we can see that the use of mechanically 
rotating elements may cause vibration and beam wander. In the proposed polarimetric 
microscope, they can affect the illumination of the back focal plane of the HNAO and 
therefore, light passing through the microscope objective. To avoid misalignments during 
measuring time, electrically addressable polarization elements (e.g. liquid crystal displays) 
are a suitable option to overcome this limitation. The used polarization state generator 
and analyzer can consist of a fixed linear polarizer and two electrically controlled variable 
retarders [128–131]. By electrically addressing pairs of voltages to the polarization state 
generator and analyzer and recording the intensity patterns with a pixelated camera, the 
angle-resolved Mueller matrix of the non-planar sample can be calculated from the Mueller-
Stokes formalism [111, 112].  

Since each pixel of the detector corresponds to a different pair of incidence-azimuthal 
angles and thus, to a different polarization transformation, the experimental Mueller matrix 
image consist of several single Mueller matrices. Notice that the HNAO provides large 
sample redundancy data because it is able to generate multiple polarized waves that 
simultaneously illuminate the dielectric sample. Hence, the number of measured data will 
depend, on the one hand on the numerical aperture of the HNAO and, on the other hand, 
on the number of pixels of the used sensor. 

After measuring the characteristic Mueller matrix image of the sample, the optical 
parameters (RI and crystal orientation) can be determined by comparing experimental 
angle-resolved Mueller matrices with theoretical angle-resolved Mueller matrices obtained 
from an appropriate physical model (by using a developed anisotropic model based on the 
Fresnel coefficients for reflection). The calculus of these optical parameters requires an 
optimization program that minimizes the difference between simulated and experimental 
data. To find the optical parameters of the sample, Ref. [115] proposes to use as merit 
function  the mean squared difference between each point of the calculated and measured 
Mueller matrices. From an approximate knowledge of the dielectric sample and by 
iteratively varying the model parameters, different Mueller matrix images are calculated. 
When the merit function is minimized, the desired RI and the orientation of the specimen 
are found. 
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1.4 Main goals of this thesis 

Several optical techniques have been developed to measure the refractive indices of thin 
films and dielectric materials by analyzing the light transmitted or reflected by the sample 
(see section 1.2). Nevertheless, the surfaces of the analyzed samples are always planar, 
either as prisms or thin films. In this thesis, we provide the theoretical basis and the 
procedure followed in the laboratory to describe and implement a Mueller microscope that 
is able to measure in reflection the RI and the orientation of non-planar and non-
transparent dielectric samples, such as curved lenses, minerals or liquid crystal displays.  

In this context, we propose to use a high numerical aperture objective to generate a 
wide number of incident waves, each one with its characteristic angle of incidence, and, at 
the same time, to steer the reflected beam to a polarization analyzer system where the 
polarization changes can be studied, avoiding mechanical movements. The analysis is 
performed in the basis of the Mueller matrix formalism, to extract the complete 
polarimetric information of the sample. The technique discussed in this thesis extends the 
conoscopy process resumed in section 1.2.5 to the measure of isotropic and uniaxial 
anisotropic materials in reflection mode. The main goals of this thesis are: 

i. Mathematical formalism: To develop a mathematical formalism describing the 
interaction of an incident electromagnetic plane wave propagating in air with an 
interface of an arbitrarily oriented uniaxial anisotropic media (or isotropic media as 
particular case), and fully determining the resulting reflected and transmitted plane 
waves (both ordinary and extraordinary waves in the last case). Starting in the 
Maxwell equations, the Fresnel reflection coefficients of a dielectric sample and its 
respective Mueller matrix have to be described.  

ii. Conoscopic formalism: To extend the previous mathematical formalism in order to 
consider the polarization changes introduced by the HNAO working in reflection. 
The conoscopic formalism has to mathematically describe the angle-resolved Mueller 
matrix of the sample as a function of the angle of incidence, the refractive indices 
and the orientation of any isotropic or uniaxial anisotropic crystal. 

iii. Mueller matrices simulations: To develop a MatLab program with the conoscopic 
isotropic-uniaxial anisotropic model of the goal ii, to simulate angle-resolved Mueller 
matrix images of anisotropic media. With this program, the viability of the 
conoscopic Mueller microscope can be studied analyzing some angle-resolved Mueller 
matrices of diverse samples with various RIs and orientations, as well as different 
numerical apertures microscope objectives. Therefore, the parameters of interest and 
the sensitivity of the method from simulated data can be studied.  

iv. Iterative optimization program: To develop an iterative optimization routine that 
fits the calculated Mueller matrix image to the measured data. At the same time, to 
analyze the accuracy of the optimization routine by testing some calculated angle-
resolved Mueller matrices. 
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v. Implementation: To carry out the experimental implementation of the conoscopic 
Mueller microscope. A proper alignment of the system is a very crucial issue, so to 
develop and describe a suitable experimental approach to perform this alignment 
with high accuracy. To calibrate the implemented system and to validate the 
suitability of the instrument by measuring the Mueller matrix of some known 
polarimetric materials.   

vi. Samples measurements: To analyze the experimental measurements of different 
specimens (isotropic and uniaxial anisotropic crystals, planar and non-planar 
surfaces, etc.) and to discuss the suitability of the system in the framework of samples 
characterization. 

 

1.5 Structure of this thesis 

The outline of this thesis is as follows: 

In Chapter 2, we explain in detail the mathematical formalism we developed to describe 
the performance of our conoscopic Mueller microscope. From well-known Maxwell 
equations we develop the mathematical model to finally obtain the relation between the 
incident and reflected-transmitted polarized waves, at different angles of incidence. 
Therefore, the Fresnel coefficients required to calculate the reflected-transmitted waves are 
determined. The developed mathematical formalism is valid for isotropic-isotropic and 
isotropic-uniaxial anisotropic interfaces and, it is valid for arbitrary orientations of the 
uniaxial optical axis. To conclude this chapter, Jones and Mueller formalism are 
introduced. 

In Chapter 3 we describe the adaptation of the mathematical formalism of Chapter 2 
to the conoscopic approximation, i.e., to describe the beam propagations related to the 
cone of light obtained after the light beam passes through the HNAO. The respective 
variations of the electromagnetic field components, due to the high focalization of the 
incident polarized beam, are also introduced in the model. After that, we show some 
simulated angle-resolved Mueller matrix images of uniaxial anisotropic and isotropic 
samples. From data obtained with these simulations, the dependence of the angle-resolved 
Mueller matrices with the maximum angle of incidence and the RIs of samples are analyzed. 
The last sections of the chapter are intended to explain the developed constrained 
optimization program used to obtain the parameters of interest of crystals: refractive 
indices (ordinary and extraordinary) and the optical axis orientation. In addition, the 
accuracy of this optimization routine is discussed. 

Afterwards, Chapter 4 focuses on the design and experimental implementation of the 
conoscopic Mueller microscope. This chapter describes in detail the devised optical design 
for the instrument, the optical elements used in the final set-up and the proposed alignment 
process. It also shows the calibration methods we have applied in the laboratory for the 
tune-up of the instrument. 



20  Chapter 1  -  Introduction 
 

The last chapter, Chapter 5, is divided in four different subsections. In the first one we 
analyze the validity of the reflective Mueller polarimeter and we explain some filtering 
techniques that were used to improve the experimental results. Next, we introduce the 
calibration methods used in the laboratory to accurately characterize the HNAO. 
Afterward, some experimentally measured Mueller matrix images of isotropic and uniaxial 
anisotropic samples, with different shapes as prisms or non-planar surfaces, are shown. A 
discussion of the experimental characterization of samples is also provided. The sample 
parameters are fitted using the developed iterative optimization program to fit the 
simulated Mueller matrix image to the experimental measured data. To conclude the last 
chapter, a description of the instrument limitations is provided, and a discussion of some 
possible modifications that may enhance the instrument performance is also included.  

Finally, the conclusions of the present work are summarized and a proposal for future 
research is presented in Chapter 6.  

 

 

 

 

 

 

 

 

 

 



 

21 
 

 

Chapter 2  Mathematical formalism 

This chapter presents the mathematical formalism used in this thesis to describe the 
performance of the developed conoscopic Mueller microscope. Starting from well-known 
Maxwell equations, the light-matter interaction is studied for an isotropic-uniaxial 
anisotropic interface.  

First of all, the concepts and notations needed to describe the behavior of planar 
electromagnetic waves at plane boundaries are introduced in section 2.1. Next, the 
description for wave vectors and polarization states of the incident, reflected and 
transmitted beams at isotropic-uniaxial anisotropic interfaces are introduced in section 2.2. 
In particular, the Fresnel coefficients required to characterize the reflected-transmitted 
waves are mathematically described for light beams with an arbitrary angle of incidence. 
Then, the model is simplified in section 2.3 to isotropic-isotropic interfaces when 
birefringence is very small. In section 2.4, the calculation of the amplitudes of the waves 
transmitted through the sample is briefly described. To conclude this chapter, in section 
2.5, the proposed mathematical model is adapted to the Jones and Mueller matrix 
formalisms, they being well-known descriptions for polarimetric systems.   

 

2.1 Waves at planar boundaries 

 Maxwell Equations 

The well-known Maxwell equations are the fundamental equations of electrodynamics 
[132]. They can be represented as 

 0
t

  

BE   (2.1) 

 
t

  

DH J   (2.2) 

   D   (2.3) 
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 0  B   (2.4) 

where E and H are the electric field vector and magnetic field vector, respectively, while 
D is the electric displacement and B the magnetic induction, and where  and J are the 
electric field charge density and the current density of free charges.  

As the Maxwell equations present a hybrid notation (E and D, H and B), 
supplementary equations are needed to relate both pairs of parameters. The material 
equations (or constitutive relations) depend on the nature of the material [132] 

 0   D E E P   (2.5) 

 0   B H H M   (2.6) 

where  is the permeability tensor of the optical medium,  is the vacuum permeability 
( = 4 · 10-7 H/m),  is the electric permittivity tensor of the optical medium,  is the 
vacuum permittivity ( = 8.854 · 10-12 F/m), M  is the magnetization and P is the  induced 
electric polarization. The relation between the material polarization and the electric field 
for a linear material is given by [132, 133] 

 0 P E   (2.7) 

where  is the electric susceptibility tensor. As can be seen in Eq. (2.7), the material 
polarization P depends on the susceptibility of the studied material. Note that the 
polarization of light, direction of oscillation of E, should not be confused with material 
polarization (P). 

The Poynting vector (S) represents the directional energy flux, the energy transfer per 
unit area and time, of an electromagnetic field and it is normal to E and H [132, 134] 

 
0

1
 

   S E H E B   (2.8) 

The Poynting vector magnitude changes with time due to the oscillation of the electric 
and magnetic fields. Its average over a time longer than the period of the wave is called 
the intensity I  S . 

The energy density of the electromagnetic fields is [99, 133] 

  1
2

U    E D B H   (2.9) 

 

 Plane waves approximation 

A monochromatic plane wave propagating along a general direction is going to be 
considered. Its electric field vector can be expressed as [99, 132] 

  0 1̂exp  E i t u    E k r   (2.10) 
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where E0 is the amplitude of the electric field that is constant in space and time, 1̂u  is the 
unit vector that indicates the direction of the electric field, which is also called the 
polarization of the wave, r is the coordinate vector of any point in the space,  is the 
angular frequency and k is the wave vector, given by [134] 

 ˆ  k k   (2.11) 

where k̂  is the direction of propagation for uniform plane waves and can be expressed as 
  k̂  k k .  

One characteristic of uniform planar waves is that a surface with a constant phase         
( t  k·r  constant phase) is a plane that moves along the direction of k with a velocity 
known as the phase velocity [99]. This velocity of the wave is given by 

 1v 


 
k

  (2.12) 

As v is function of the permittivity and permeability, it is easily seen that the phase 
velocity is characteristic for each medium. The phase velocity of an electromagnetic wave 
propagating in the vacuum is [132, 133] 

  8

0 0

1 2.998 10  mc s 
     (2.13) 

The refractive index (RI) is defined as the ratio between the speed of light in vacuum 
and in a material media [132, 133] 
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    (2.14) 

The magnetic field vector for a planar wave is [99, 132] 

  0 2̂exp  H i t u    H k r   (2.15) 

Where H0 is the amplitude of the magnetic field and the unit vector 2̂u  gives its specific 
vibration direction. 

Optical media commonly used in classical optics, also refereed as optical medias [99, 
133, 134], are uniform dielectric nonmagnetic materials with no free charges and no currents 
due to free charges, and neither amplifying nor absorbing materials. Thus, in those 
materials the following approximations can be conducted: M ,     and J .  

In view of the above, and operating with the constitutive equations D E and              
B H, the Maxwell equations (2.1) - (2.4)  in the case of plane waves of the form (2.10) 
and (2.15) result in [99, 134] 

 0   k E H B   (2.16) 

      k H E D   (2.17) 

 0 k D   (2.18) 
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 0 k H   (2.19) 

From Eqs. (2.16) - (2.19), it is extracted that k, D and H are a right handed orthogonal 
system and B and H are parallel. However, if  is not a scalar magnitude but a tensor 
matrix, as in the case of anisotropic materials, E  is neither perpendicular to k nor parallel 
to D (see Eq. (2.17)). In such a way, H is normal to both D, E      and k, and the latter three 
are coplanar. The Poynting vector S = E ×H    is, in general, not transported in the direction 
of wave vector k. Figure 2-1 shows the propagation of an electromagnetic wave inside this 
kind of optical media. 

  
 Fields of an electromagnetic wave propagating in (a) an isotropic 

medium, and (b) a uniaxial anisotropic medium. 

By eliminating H from Eqs. (2.16) and (2.17), one obtains [99, 133, 134] 

   2
0 0     k k E E   (2.20) 

From the vector triple product identity [132], Eq. (2.20) can be rewritten as 

   2 2
0 0k       k k E E E   (2.21) 

which is the wave equation for determining the permittivity tensor  and the electric field 
E of a plane wave propagating in the wave vector direction k̂ . 

 

 Crystal Optics 

The electric permittivity tensor can be written in matrix form referred to three arbitrary 
orthogonal axes (x’, y’, z’) as 
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  (2.22) 

The value of the nine permittivity tensor components depends on the choice of the 
orthogonal axes relative to the material structure. Note that for a lossless and non-optically 
active medium, the electric permittivity tensor is symmetric [133, 134], i,j =j,i. This 
means that, in general, it has only six independent elements.  
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By choosing a convenient coordinate system (x, y, z) aligned to the crystal axes, the 
dielectric tensor can be written in its diagonal form [99, 133, 134] 
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  (2.23) 

where the directions x, y, z are called principal axes of the crystal, x, y, z are the principal 
dielectric constants and nx, ny, nz are the principal refractive indices.  

In terms of values of the principal refractive indices, a crystal can be classified as follows 
[2, 133]: 

- Isotropic: if nx = ny = nz. This means that the principal dielectric constants 
are equal or, in other words, the speed of light is the same in all directions. In 
an isotropic medium the applied electric field E is parallel to its corresponding 
electric displacement vector D (as can be observed in Figure 2-1) because the 
dielectric tensor is reduced to a scalar magnitude (see Eq. (2.17)). 

- Anisotropic: if the RI is different for at least one of the principal axes. The 
speed of light depends on the propagation direction into the material and D 
and E are no longer necessarily parallel (see Figure 2-1). Anisotropic materials 
can be divided into two groups: if two of the principal refractive indices are 
equal, the crystal is called uniaxial anisotropic crystal  x y zn n n   and if 
all of them are unequal, the material is called biaxial anisotropic crystal 
 x y zn n n  . The existence of more than one RI makes that radiation 
propagating into an anisotropic crystal, with an arbitrary orientation with 
respect to the principal crystal axes x, y, z, is decomposed into two plane 
polarized waves that propagate with different velocities inside the crystal, 
except when propagating parallel to an optical axis direction. 

The mathematical model described throughout this chapter allows the characterization 
of uniaxial and isotropic samples. In fact, a general model is following developed for uniaxial 
crystals, from which isotropic media are a particular case, when principal refractive indices 
are equal. 

Introducing the diagonal dielectric tensor of a uniaxial crystal, i.e. x = y = o and        
z = e in Eq. (2.23), into the wave equation for planar waves (Eq. (2.21)), three 
homogenous linear equations, which dependent on Ex, Ey and Ez, are obtained 
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  (2.24) 

where o and e are the electric permittivity of the ordinary and extraordinary axis, 
respectively. For solutions to exist different than |k| =  = 0,  the determinant of the 
square matrix in Eq. (2.24) must be zero 
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This equation represents a three-dimensional surface in the k-space, known as normal 
surface, and consists of two shells. These two shells in uniaxial anisotropic crystals touch 
at two points forming a straight line that passes through the origin of both figures. The 
direction of this line is called optical axis  Ĉ  and, as can be seen in Refs. [99, 133, 135], 
it coincides with the extraordinary principal axis, z-axis. Under this scenario, the principal 
refractive index in the optical axis direction is ne and the RI of the plane perpendicular to 
the optical axis is no. If ne > no the crystal is said to be positive uniaxial anisotropic, and 
if ne < no negative uniaxial anisotropic. 

Eq. (2.25) can be reduced by solving the determinant and by expressing the dielectric 
constants as a function of the refractive indices (o = 0·no

2, e = 0·ne
2) [99, 133] 
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In Eq. (2.26) the two shells are easily identified as a sphere (right term in left side) and 
an ellipsoid of revolution (left term in left side). Both surfaces give the relation between  
and k. Moreover, there are two intersections between the direction of propagation and the 
normal surfaces, or, in other words, there exist two possible values of k that solve Eq. 
(2.26). These two points correspond to two different wave vectors k called the ordinary (o) 
and extraordinary (e) waves. The ordinary wave vector is related to the sphere surface. 
This means that it propagates with a constant velocity irrespective of its direction of 
propagation. On the other hand, the extraordinary wave vector is related to the ellipsoid 
of revolution surface, and thus, its velocity of propagation varies with the angle between 
the propagation direction and the optical axis. Thus, the extraordinary wave velocity 
depends on the direction of propagation [99]. The velocity of the extraordinary wave equals 
the velocity of the ordinary wave when propagating along the uniaxial anisotropic crystal 
optical axis direction [135]. 

Furthermore, Eq. (2.21) gives the components of the electric field vector as a function 
of the principal dielectric constants and the wave vector components (kx, ky, kz) [2, 135] 
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  (2.27) 

with i = x, y, z. Multiplying both sides of Eq. (2.27) by ki, adding the resulting three 
equations, dividing the obtained expression by the common factor k·E, and using the 
relation in Eq. (2.11), the so-called Fresnel Equation is obtained [2, 133] 
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where n is the RI to be determined associated with the propagation unitary vector k̂  [135]. 
The Fresnel Equation is quadratic in n, which means that two values of refractive indices 
are given by a wave propagating in an anisotropic medium. The two values of ± n 
corresponding to any value of n2 are counted as one, since the negative value belongs to 
the opposite direction of propagation k̂ .  

In brief, in any given direction inside a uniaxial anisotropic crystal, there are generally 
two independent wave vector solutions, o and e, propagating with different velocities (see 
Eq. (2.26)). Both, the ordinary and extraordinary waves, present mutually orthogonal 
polarization states and also present different directions of energy that depend on the 
particular propagation direction [135]. It is important to note that the refractive index of 
the ordinary wave is no, while the RI of the extraordinary wave is the effective index n 
rather than ne. However, in some particular situations it is limited to the extraordinary 
index of refraction ne [2, 99, 134].  

 

 Polarization 

The main idea of this chapter is to study the changes of the electric field in the interface 
formed between an isotropic medium and a uniaxial anisotropic medium. For the present 
discussion, the plane that contains the wave vector k and the unit vector pointing normal 
to the boundary is called the plane of incidence [2]. This plane presents some important 
properties that are explained throughout this section and in the next one. In the following, 
the mathematical description of the polarization for the isotropic and anisotropic cases is 
reviewed. 

 

2.1.4.1 Polarization in isotropic media 
In homogeneous isotropic media, the polarization of electromagnetic waves can be 

expressed as a combination of two orthonormal vectors, one of them is a unit vector  ŝ  
perpendicular to the plane of incidence and the other is a unit vector  p̂  parallel to the 
plane of incidence [103, 106]. From Eq. (2.10), the polarization of an electromagnetic wave 
inside an isotropic medium can be expressed considering the  ˆ ˆ,  s p  orthonormal basis as 

    ˆ ˆ exps pA s A p i t     E k r   (2.29) 

where As is the amplitude of the electric field perpendicular to the plane of incidence and 
Ap is the amplitude that lies in the plane of incidence. Note that 1̂u  in Eq. (2.10) can be 
written as    1̂ ˆ ˆcos sinu p s   , where  is the angle between the plane of incidence 
and the unitary vector 1̂u . 

Bearing in mind the orthogonality of the wave vector k and E, in isotropic media, the 
parallel polarization vector is [103, 136] 

 ˆˆ  sp  k
k

  (2.30) 
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2.1.4.2 Polarization in uniaxial anisotropic media 
To ease the mathematical treatment of polarization in the case of uniaxial anisotropic 

crystals, it is described by a basis formed by two different orthonormal vectors. As distinct 
from section 2.1.4.1, where the chosen basis is parallel and orthogonal to the plane of 
incidence, the new unitary vectors are function of the ordinary and extraordinary wave 
propagations. One parallel to the ordinary wave polarization vector, ô , and another 
parallel to the extraordinary wave polarization vector, ê . Both depend on the position of 
the optical axis Ĉ  and their corresponding wave vectors. 

 
 Fields of an ordinary electromagnetic wave propagating inside a 

uniaxial anisotropic crystal. 

Let us begin for the ordinary wave description. As has been explained in section 2.1.3, 
the ordinary wave vector is related to a sphere shell (Eq. (2.26)), always presenting a 
constant phase velocity regardless of the direction of propagation [107, 133]. In this case, 
the unit vector in the direction of the displacement vector, ˆoD , and the electric field vector 
direction, ô , share the same direction, and are always perpendicular to both Ĉ  and the 
ordinary propagation vector ôk  (see Figure 2-2). Mathematically ˆoD  can be expressed as 
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  (2.31) 

As ô  is parallel to ˆoD  and as the optical axis is the extraordinary principal axis for 
uniaxial anisotropic crystals, z-axis according to the basis chosen in Eq. (2.25), i.e.,

 ˆ 0,  0,  1C  , the ordinary electric field vector direction is [99, 103] 
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  (2.32) 

where the superscript T means the transpose of the row vector. The ordinary wave is 
linearly polarized, and it is perpendicular to the plane formed by the ordinary wave vector 
and the optical axis direction Ĉ . From the Pointing vector equation (Eq. (2.8)), it can be 
seen that S  for the ordinary wave is parallel to ôk  (see Figure 2-2). 

For the extraordinary wave, the unit vector in the direction of the displacement vector, 
êD , is perpendicular to the extraordinary wave vector ke and to ˆoD  [99, 103] 
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However, the electric field vector direction ê  is in general not parallel to êD , it lies in 
the plane formed by êD  and the propagation vector êk , with the condition ˆ ˆ 0ek e  . In 
addition, the electric field vector of the ordinary and the extraordinary waves are not 
mutually orthogonal, because they correspond to the modes of two different directions of 
propagation. Particularly, ˆ ˆo e  tends to zero as the anisotropy is reduced [106]. Expressing 
Eq. (2.27) as a function of the effective refractive index n and normalizing it, finally the 
extraordinary electric field unitary vector direction is found as [99, 103] 
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
    (2.34) 

The angle between êk  and the Pointing vector S  for the extraordinary wave is equal to 
the angle between êD  and ê  (see Figure 2-3). 

 
 Fields of an extraordinary electromagnetic wave propagating inside a 

uniaxial anisotropic crystal. 

Therefore, the structure of a uniaxial anisotropic crystal permits two monochromatic 
plane waves with two different linear polarizations and two different velocities to propagate 
in any given direction [2]. 

 The representation of the ordinary and extraordinary displacement vectors as a 
function of the optical axis Ĉ  and the propagation directions ôk  and êk  is shown in Figure 
2-4. 

 

 Boundary conditions 

The electromagnetic field has to obey the Maxwell equations at the interface between 
any two different materials. As a consequence, some components of the field vectors (E, 
D, H  and B) at the materials interface have to accomplish some boundary conditions,  
even if  and  change abruptly [2].  
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Considering the interface between medium 1 and medium 2 (, ), both of them being 
dielectric and in absence of surface currents and charges, the boundary conditions for D 
and B are obtained from the Gauss divergence theorem [2, 99, 132] 

 1 2 1 2,      DB B D       (2.35) 

which means that the normal components of the electric displacement and the magnetic 
induction vectors to the interface are continuous.  

 
 Index ellipsoid for a uniaxial anisotropic crystal. The directions of the 

ordinary and extraordinary displacement vectors are function of their respective 

wave vectors. The yellow plane is normal to the extraordinary wave vector and 

contains the ordinary and extraordinary wave vectors. 

From Stokes theorem, the boundary conditions for the fields vectors E and H are 
obtained [2, 99, 132] 

 1 2 1 2,      HE E H       (2.36) 

The tangential components of the electric and magnetic fields are continuous across the 
interface when the surface charge density and surface current density are zero. 

In the case of travelling waves at the boundary, the above-stated boundary conditions 
must also be accomplished. Let us consider the electric and magnetic waves approach to 
planar waves, where they share the generic structure (Eqs. (2.10) and (2.15)). By using 
this wave form, taking into account that a wave is partially reflected and partially 
transmitted at the interface, and by imposing that the fields in medium 1 and those in 
medium 2 must satisfy Eqs. (2.35) and (2.36), the following relation is obtained for all 
points lying on the interface [132] 
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where the subscripts 1a and 1b are those corresponding to the incident and reflected waves 
propagating in medium 1, and where 2c and 2d correspond to the ordinary and 
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extraordinary waves propagating in medium 2. The parenthesis ( ) in Eq. (2.37) state for 
the particular vector amplitudes, related to the normal () or tangential (  ) components, 
according to the case.  

In addition, the condition in Eq. (2.37) must be fulfilled independently of the spatial 
position at the boundary and for all times. This can only be satisfied if all the phase factors 
in Eq. (2.37) are equal, and thus, all the involved electromagnetic waves must have the 
same frequency (1a = 1b = 2c =2d) [135]. Under this scenario, the following relation 
is verified [132, 134, 135] 

 1 1 2 2interface interface interface interfacea b c d      k r k r k r k r   (2.38) 

Moreover, as at the position vector r is always contained into the interface, the 
perpendicular component always satisfies r 

 = 0, and thus,  

 1 21 2a cb dk k k k        (2.39) 

According to Eq. (2.39), the tangential components along the boundary of the different 
wave vectors are identical regardless of the mediums materials at the interface, and the 
wave vectors on both sides of the interface form a plane, known as plane of incidence, 
which also contains the unitary vector normal to the interface [132, 135]. 

 

2.2 Reflection and refraction of electromagnetic radiation at 
a crystal surface 

 Wave vectors of the incident, reflected and transmitted beams 

Let us consider a plane electromagnetic wave propagating through the interface formed 
by an isotropic medium and a uniaxial anisotropic crystal with an optical axis Ĉ  arbitrary 
oriented. The refractive index of the isotropic medium is ni, while the refractive indices of 
the ordinary and extraordinary axis of the uniaxial anisotropic crystal are no and ne, 
respectively. The direction of the optic axis is given by two angles in spherical coordinates 
[107, 136]: the angle from the optical axis to the (x, y)  plane, labeled as c, and the angle 
between the x-direction and the projection of Ĉ  axis on the (x, y) plane, called c (see 
Figure 2-5). 

The optical axis can be mathematically described by 

 ˆ ˆ ˆ ˆcos cos sin cos sinc c c c cC x y z         (2.40) 

The anisotropic medium is placed in such a way that the (x, y) plane coincides with the 
interface, where the uniaxial anisotropic crystal is on the upper half-space (z > 0). Let us 
suppose an incident wave propagating in the positive direction of the z axis at the (y, z) 
plane (blue arrows in Figure 2-6 and Figure 2-7). At the boundary, one part of the incident 
wave is reflected (reflected wave; violet arrows in Figure 2-6 and Figure 2-7) and the other 
part is transmitted (refracted waves; red and green arrows in Figure 2-6 and Figure 2-7) 
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as a combination of an ordinary wave and an extraordinary wave [103, 106]. As was 
discussed in section 2.1.5, reflected and refracted waves are contained on the same plane 
than the incident wave, the so-called plane of incidence. The above-stated scheme of 
propagation is sketched in Figure 2-6. Note that ki and kr are the wave vectors of the 
incident and the reflected waves, respectively, in the isotropic medium while the wave 
vectors of the ordinary and extraordinary transmitted waves in the anisotropic medium 
are kt,o and kt,e. 

 
 Optical axis orientation Ĉ  (red arrow) described by the angle 

between the optical axis and (x, y) plane, c, (green arrow) and the angle 

between the projection of the optical axis on the (x, y) plane and the x-direction, 

c, (blue arrow). 

From Eqs. (2.12) and (2.14), the modulus of the incident wave vector is written as 

 i i ik n
c
 k   (2.41) 

As has been seen in Eq. (2.39), the tangential components of the four wave vectors 
(incident, reflected, ordinary and extraordinary waves) along the boundary are equal. Let 
us call  the constant tangential component of all the wave vectors, according to Eq. (2.39) 
and Figure 2-6, we obtain [99, 103, 106] 

 , , , ,sin sin sin sini i r r t o t o t e t e       k k k k   (2.42) 

where i   is the angle of incidence, r is the angle of reflection and t,o and t,e are the 
ordinary and extraordinary refracted angles, respectively, all of them measured with respect 
to the normal, ẑ  axis.  

The boundary conditions (see section 2.1.5) require that all the wave vectors lie in the 
same plane, called the plane of incidence [134]. Being consistent with the coordinates 
system chosen in Figure 2-6 and Figure 2-7, the wave vectors can be written as [99, 103, 
106] 

 ,ˆ ˆi i zy k z k   (2.43) 

 ,ˆ ˆr r zy k z k   (2.44) 

 , ,ˆ ˆt o o zy k z k   (2.45) 

 , ,ˆ ˆt e e zy k z k   (2.46) 
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 Reflection (violet arrow) and refraction (red and green arrows) of an 

incident wave vector (blue arrow) at a boundary between an isotropic (ni) and 

an anisotropic medium (no and ne). i, r, t,o and t,e are the angles of the 

different wave vectors, all of them measured with respect to the normal, and  is 

the constant tangential component of all the wave vectors. 

 
  The wave vectors of the incident (blue arrow), reflected (violet arrow) 

and refracted (green and red arrows) waves at the interface between an isotropic 

and a uniaxial anisotropic media, all of them lie in the (y, z) plane or plane of 

incidence (grey plane). The optical axis Ĉ  (orange arrow) is arbitrary oriented.  
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where ki,z, kr,z, ko,z and ke,z are normal to interface and their explicit forms are given by 

 , , , , , , , ,cos ;    cos ;    cos ;    cosi z i i r z r r o z t o t o e z t e t ek k k k      k k k k    (2.47) 

According to Eqs. (2.41) and (2.42), the tangential and normal amplitudes of the 
incident wave vector (Eq. (2.43)), as a function of the incident angle and the refractive 
index of the isotropic medium, are [103, 106] 

 sin sini i i ik n
c
      (2.48) 

 , cos cosi z i i i ik k n
c
     (2.49) 

In the case of the reflected wave, when the incident medium is isotropic, the law of 
reflection [132, 134] has to be followed. This law imposes that the incident and reflected 
wave vectors present the same angles (i  = r). Hence, their normal components are equal 
in magnitude but opposite in sign, i.e. ki,z = kr,z, and Eq. (2.44) can be rewritten as 

 ,ˆ ˆr i zy k z k   (2.50) 

On the other hand, the components of the ordinary and extraordinary refracted waves 
in z-direction (ko,z and ke,z, respectively) depend on the directions of the vectors kt,o and kt,e 
with respect to the optical axis Ĉ . To obtain them, the following method is applied. As 
was explained in section 2.1.3, the optical axis direction Ĉ  is parallel to the extraordinary 
principal axis for uniaxial anisotropic crystals. Thus, let us consider a new coordinate 
system (X, Y, Z) aligned to the crystal axes, where the directions X, Y and Z are the 
principal axes of the crystal (see Figure 2-8). In such a new basis, the optical axis direction 
can be expressed as 

  ˆ ˆ
ellip

C Z   (2.51) 

where the subscript ellip indicates that Ĉ  is expressed in the coordinate system(X, Y, Z). 
This new coordinate system is going to be called the dielectric ellipsoid frame of reference 
[103]. 

The components of a vector in the (x, y, z) coordinate system (or incidence reference 
frame), Vx,y,z, can be related to those (X, Y, Z) in the dielectric ellipsoid frame, Vellip, by a 
rotation matrix Mrot 

 , ,ellip rot x y zV V M   (2.52) 

with 

 
cos sin sin sin cos

sin cos 0
cos cos sin cos sin

c c c c c

rot c c

c c c c c

    
 

    

            

M   (2.53) 



2.2 Reflection and refraction of electromagnetic radiation at a crystal surface 35 
 

 
 Representation of the direction of the optical axis Ĉ  (red arrow) in 

the incidence reference frame, (x, y, z) basis, (black arrows) and in the dielectric 

ellipsoid frame, (X, Y, Z) basis, (orange arrows).  

where the angles c and c specify the orientation of the optics axis in the (x, y, z) 
coordinate system (see Figure 2-8). M can be calculated by using the Euler Angles [137], 
or by properly multiplying by two consecutive rotation matrices for the angles c and c. 

To simplify the calculus of ko,z and ke,z in the incidence reference frame, first they are 
calculated in the (X, Y, Z) coordinate system. By using Eqs. (2.45) and (2.46), in Eq. 
(2.52), the ordinary and extraordinary wave vectors in the dielectric ellipsoid system are 
found [103] 
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and 
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The norms of both vectors are 

    2 2 2 2
, , , ,,        t o o z t e e zellip ellip

k k    k k   (2.56) 

From Eq. (2.26), the normal surfaces (a sphere and an ellipsoid of revolution, 
respectively) for the ordinary and extraordinary wave vectors in the coordinate system 
aligned to the crystal axes, i.e., in the dielectric ellipsoid system, Vellip can be written as 
[107] 
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and 
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where ke,X, ke,Y and ke,Z are the components of the extraordinary wave vector in the ellipsoid 
coordinate system. Substituting the norm of the ordinary wave in (X, Y, Z) basis (Eq. 
(2.56)) in Eq. (2.57), the z component of the ordinary wave in the incident coordinate 
system is obtained [99, 103, 138]  
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The positive and negative signs of ko,z represent the two possible ordinary waves 
propagating inside the uniaxial anisotropic crystal, the forward and the backward waves.  

By replacing the expression for the extraordinary wave vector components, provided in 
Eq. (2.55), into the ellipsoid of revolution equation (Eq. (2.58)), we obtain 
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Developing the squared terms in Eq. (2.60) and after some rearrangements, a quadratic 
equation as a function of ke,z is obtained. From that quadratic expression, the solutions for 
the z component of the extraordinary wave vector are readily obtained as [103, 107] 
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Again, the positive and negative signs for ke,z correspond to the z component of the 
forward and the backward extraordinary waves propagating inside the uniaxial anisotropic 
crystal. 

Finally, the ordinary and extraordinary refracted angles, t,o and t,e respectively, can 
be obtained from geometrical relations (see Figure 2-6) [99] 
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and  
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  (2.64) 

where  is given by Eq. (2.48) and ko,z and ke,z by Eqs. (2.59) and (2.61), respectively. 

The ordinary wave vector is constant for all directions of propagation. This means that 
the RI in which the ordinary wave propagates always corresponds to the ordinary index of 
refraction of the uniaxial anisotropic crystal. It can be described by considering the Snell’s 
law [99, 132] 
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By contrast, the value of RI experienced by the extraordinary wave depends on the 
direction of propagation, and it is called effective refractive index, n. By introducing the 
expression for the propagation unitary vector in spherical coordinates into Eq. (2.28) and 
rearranging, the following relation for the effective refractive index is obtained [139] 
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where  is the angle between the direction of propagation and the optical axis. Note that 
n varies between no for  and ne for . 

Finally, the Snell’s law from an isotropic material to an anisotropic material, for the 
extraordinary refracted wave is written as 

   ,sin sini i t en n     (2.67) 

 

 Polarizations states 

In the following, we define the vector-basis chosen to describe the polarization of each 
one of the travelling waves in Figure 2-6 (incident, reflected and refracted waves). These 
three polarization-bases are selected to ease the polarization description of the waves. 
However, they must also be described form a common basis. Therefore, the transformations 
between these selected bases and the (x, y, z) coordinate system are also described hereafter. 

For the incident beam, we use the orthonormal basis  ˆ ˆ,  s p , where ŝ  and p̂  are two 
unitary vectors perpendicular and parallel to the plane of incidence, respectively (see 
section 2.1.4). We set the (y, z) plane as the incidence plane (see Figure 2-9), therefore, 
the unitary vector perpendicular to the plane of incidence is parallel to the x̂  direction 
[103, 106] 

 ˆ ˆs x   (2.68) 

In turn, unit vector p̂  is parallel to the plane of incidence and it can be obtained by 
substituting both ŝ  and the incident wave vector ki relations (Eq. (2.68) and Eq. (2.43), 
respectively) into the Eq. (2.30) 
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 , ˆ ˆˆˆ  = i zi

i i

k y zsp
k

 k
k

  (2.69) 

The polarization of the reflected electric field is described in its corresponding 
orthonormal basis  ˆ ˆ,  r rs p . As the reflected wave vector lies in the plane of incidence, 
ˆ ˆrs s  [103, 106]. On the other hand, the unit vector r̂p  is perpendicular to the reflected 
wave vector kr (see Figure 2-9). Thus, by replacing ˆ ˆ ˆrs s x   and Eq. (2.44) into Eq. 
(2.30), one obtains 

 
 , ˆ ˆˆˆ  = i zr r

r
r i

k y zsp
k

  k
k

  (2.70) 

where we used |kr| = kr = ki. 

 
 Perpendicular and parallel to the plane of incidence  polarizations for 

the incident ki (blue arrow) and reflected, kr (violet arrow) waves. p̂  and r̂p  are 

contained in the plane of incidence while ŝ  is normal to it. 

Finally, the polarizations for the refracted electric waves are represented using the unit 
basis  ˆ ˆ,  o e , where ô  represents a unit vector parallel to the electric field vector of the 
ordinary wave and ê  is a unit vector parallel to the electric field of the extraordinary wave, 
both defined in section 2.1.4. The unit vectors ô  and ê  should be calculated inside the 
uniaxial anisotropic crystal. This means that a procedure similar to the calculation of ko,z 
and ke,z has to be followed. Both unitary vectors are function of the direction of propagation 
of the ordinary wave ,t̂ ok  and extraordinary wave ,t̂ ek . Thus, according to Eq. (2.54) and 
its norm in Eq. (2.56), the propagation direction unitary vector in the ellipsoid coordinate 
system for the ordinary wave can be written as [103] 

  
 
 

,
,

,
2 2

, , ,

sin sin cos
1ˆ cos

sin cos sin

c c c o z
t o ellip

t o cellip
t o o zellip c c c o z

k
k

k k

   
 

    

               

k

k
  (2.71) 
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Analogously, considering Eq. (2.55) and Eq. (2.56), the propagation unitary vector for 
the extraordinary wave in the ellipsoid coordinate system is 

  
 
 

,
,

,
2 2

, , ,

sin sin cos
1ˆ cos

sin cos sin

c c c e z
t e ellip

t e cellip
t e e zellip c c c e z

k
k

k k

   
 

    

               

k

k
  (2.72) 

Taking into account the electric field vector direction of the ordinary wave in the 
principle axis basis given in Eq. (2.32) [103] 

    ,ˆ cos , sin sin cos , 0
T

o c c c c o zellip
o N k          (2.73) 

being No a normalizing constant that make ˆ ˆ 1o o  . Therefore, using the Euler rotation 
matrix, Eq. (2.53), ô  in the (x, y, z) frame of reference can be calculated 

    1
cos sin sin cos cos

ˆ ˆ ˆsin sin cos sin cos
cos 0 sin

c c c c c

c c c c cellip ellip
c c

o M o o
    
    
 



              

  (2.74) 

In turn, by replacing Eq. (2.72) in Eq. (2.34), the extraordinary electric field vector 
direction in the principle axis basis can be written as [103] 

       , ,
2 2 2 2 2 2

sin sin cos sin cos sincosˆ , ,
T

c c c e z c c c e zc
eellip

o o e

k k
e N

n n n n n n
                   

  (2.75) 

where Ne is a normalizing constant of the extraordinary electric field direction and n is the 
effective refractive index. In the (x, y, z) coordinate system, ê  is given by 

    1
cos sin sin cos cos

ˆ ˆ ˆsin sin cos sin cos
cos 0 sin

c c c c c

c c c c cellip ellip
c c

e M e e
    
    
 



              

  (2.76) 

Remember that, as has been explained in section 2.1.4, ô  and ê  are, in general, not 
perpendicular because they correspond to normal modes of two different directions of 
propagation ,t̂ ok  and ,t̂ ek  [99]. 

 

 Fresnel coefficients 

The electric field expressions for the incident, reflected and refracted waves  can be re-
expressed with respect to the polarization unitary bases defined in section 2.2.2 [103, 106] 

Incident:    ˆ ˆ exp ·i s p iA s A p i t    E k r    (2.77) 

Reflected:    ˆ ˆ exp ·r s p r rB s B p i t    E k r   (2.78) 

Transmitted:    , ,ˆ ˆexp · exp · expt o t o e t eG o i G e i i t         E k r k r   (2.79) 
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where As, Ap, Bs, Bp, Go and Ge are complex amplitudes.  

From the relation shown in Eq. (2.16), the magnetic fields of the incident, reflected and 
refracted waves can be written in terms of the wave vectors and the electric fields [103, 
106] 

Incident:     
0 0

1 ˆ ˆ exp ·i i
i i s p iA s A p i t

 
       

k EH k k r    (2.80) 

Reflected:     
0 0

1 ˆ ˆ exp ·r r
r r s r p r rB s B p i t

 
       

k EH k k r   (2.81) 

Transmitted:    , ,
0 0

1 expt t
t t o t e i t

 
  k EH H H   (2.82) 

with 

  , , ,ˆ exp  ·t o o t o t oG o i    H k k r   (2.83) 

  , , ,ˆ exp  ·t e e t e t eG e i    H k k r   (2.84) 

Considering the boundary conditions of the electric and magnetic fields at the interface 
of dielectric surfaces (Eq. (2.36)), the tangential components of E and H must be 
continuous along the boundary (z = 0) [99, 140]. According to the electric waves form 
given in Eqs. (2.77), (2.78) and (2.79), the x̂  and ŷ  tangential directions fulfil, 
respectively,  

 ˆ ˆ ˆ ˆs s o eA B G s o G s e       (2.85) 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p r o eA y p B y p G y o G y e         (2.86) 

Analogously, by considering the relations given in (2.80), (2.81) and (2.82), the 
tangential components of H  fulfil  

     , ,ˆ ˆ ˆ ˆ ˆ ˆp i p r r t o t eA x p B x p x x        k k H H   (2.87) 

 , , , ,ˆ ˆs i z s i z t o t eA k B k y y    H H   (2.88) 

Calculating the scalar and cross products and using Eqs. (2.45), (2.46) and (2.49), the 
four equations obtained from the boundary conditions result finally in 

 , ,s s o t x e t xA B G o G e     (2.89) 

   ,
, ,

i z
p p o t y e t y

i

k
A B G o G e

k
     (2.90) 

      , , , , , ,p i p i t z o z t y o t z e z t y eA k B k o k o G e k e G         (2.91) 

    , , , , , ,s i z s i z o z t x o e z t x eA k B k k o G k e G     (2.92) 

where the projection of the ordinary vector ô  onto x, y, z axes are called , ˆ ˆt xo x o  , 
, ˆ ˆt yo y o   and , ˆ ˆt zo z o  , and the projection of the unit extraordinary axis ê  onto x, y, 

z axes are called , ˆ ˆt xe x e  , , ˆ ˆt ye y e   and , ˆ ˆt ze z e  .  
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From the above-stated equations, Eqs. (2.89) - (2.92), we can calculate the Fresnel 
coefficients for the reflected and the transmitted waves, i.e., the relation between the 
amplitudes Bs, Bp, Go and Ge and the incident field amplitudes, As and Ap. Let us begin 
with the transmitive case. By isolating Bs and Bp amplitudes from Eqs. (2.89) and (2.90), 
respectively, one obtains  

 , ,s o t x e t x sB G o G e A     (2.93) 

  , ,
,

i
p p o t y e t y

i z

kB A G o G e
k

     (2.94) 

Substituting Eqs. (2.94) and (2.93) into Eqs. (2.91) and (2.92) respectively, Bs and Bp 
terms are eliminated, this leading to [99] 

 ,2 s i z o eA k AG BG    (2.95) 

 ,2 p i z o eA k CG DG    (2.96) 

where A, B, C and D are constants given by 

  , , ,o z i z t xA k k o    (2.97) 

  , , ,e z i z t xB k k e    (2.98) 

 , , ,
, ,

o z t y t z
i z i t y

i

k o o
C k k o

k
       

  (2.99) 

 , , ,
, ,

e z t y t z
i z i t y

i

k e e
D k k e

k
       

  (2.100) 

Equations (2.95) and (2.96) can be represented in matrix form as follows  

 ,

,

2
2

s i z o

p i z e

A k A B G
A k C D G

                          
  (2.101) 

The amplitudes of the transmitted electric field, Go and Ge, can be obtained by isolating 
them from Eq. (2.101) [84, 107] 

 , ,

, ,

o s o p o s

e s e p e p

G t t A
G t t A
                          

  (2.102) 

where the parameters ts,o, tp,o, ts,e and tp,e, are the Fresnel transmission coefficients for 
uniaxial anisotropic crystals and are given by [99] 

 ,
,

2 i z
s o

k D
t

AD BC



  (2.103) 

 ,
,

2 i z
p o

k B
t

AD BC



  (2.104) 
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 ,
,

2 i z
s e

k C
t

AD BC



  (2.105) 

 ,
,

2 i z
p e

k A
t

AD BC



  (2.106) 

The subscripts for the incident amplitudes in Eq. (2.102), As and Ap, refer to the case 
of an incident wave ŝ -polarized or p̂ -polarized, while the subscripts for the transmitted 
waves, Go and Ge, refer to the ordinary (o) and extraordinary (e) waves, respectively. 

Next, we also consider the reflective case. By conducting an analogous mathematical 
procedure than that described for the transmissive case, the Fresnel reflection coefficients 
of a uniaxial anisotropic crystal arbitrarily oriented can be also obtained. By removing Go 
and Ge amplitudes from Eqs. (2.89) - (2.92), the amplitudes of the reflected electric field, 
perpendicular and parallel to the incident plane (Bs and Bp, respectively), can be written 
as [99] 

 , , , ,
, ,2 1 2t x t x t x t x

s i z s i z p
o D e C e A o B

B k A k A
AD BC AD BC

                  
  (2.107) 

 , , , ,2 2 1t y t y t y t y
p i s i p

o D e C e A o B
B k A k A

AD BC AD BC
                  

  (2.108) 

Rewriting Eqs. (2.107) and (2.108) in 2×2 matrix form, the amplitudes for the reflected 
wave are given by [84] 

 , ,

, ,

s s s p s s

p s p p p p

B r r A
B r r A
                          

  (2.109) 

where rs,s, rp,s, rs,p and rp,p are the Fresnel reflection coefficients, whose explicit forms are 
given by 

    , , , ,
,

2 2i z t x i z t x
s s

k o A D k e B C
r

AD BC
  




  (2.110) 

 , , , ,
,

2 2i z t x i z t x
p s

k e A k o B
r

AD BC



  (2.111) 

 , ,
,

2 2i t y i t y
s p

k o D k e C
r

AD BC



  (2.112) 

    , ,
,

2 2i t y i t y
p p

k e D A k o C B
r

AD BC
  




  (2.113) 

Note that in the double-subscript notation used in Eqs. (2.110) - (2.113), the first 
subscript is related to the polarization of the incident wave, whereas the second subscript 
refers to the reflected wave polarization. For example, the Fresnel coefficient rp,s gives the 
reflected electric field amplitude perpendicular to the plane of incidence ( ŝ ), when the 
incident electric field is parallel to the plane of incidence ( p̂ ). In this sense, rs,s and rp,p are 
direct reflection coefficients, whereas rp,s and rs,p are cross-reflection coefficients [99]. 
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2.3 Approximations and considerations 

The model presented in section 2.2 can be simplified in some cases. When the 
birefringence is small, i.e., 1e on n  , 2 2 0on n   and 2 2 0en n  , an approximated 
expression for the electric field direction ê , different than that in Eq. (2.34), can be used 
to ease the calculations. In particular, the ellipsoid of revolution normal surface for the 
extraordinary wave vector, Eq. (2.58), can be approximated as [106] 

 
 

2
2 2 22 ,, , ,

2 2 2 2

t ee X eY e Z ellip

e o o

k k k

c n n n
 

  
k

   (2.114) 

and, from Eq. (2.57), 

 
   

2 2
2, ,

2 2 2

t e t oellip ellip

o on c n
 

k k
  (2.115) 

Accordingly, the wave vectors kt,e and kt,o are approximately equal, as are the refraction 
angles t,o and t,e. Under this scenario, ê  can be considered parallel to the displacement 
vector, êD , and perpendicular to the ordinary electric field vector ô  and to the wave 
vectors kt,o and kt,e. Thus, under this approximation, the unitary vector ê  can be written 
as [107] 

 ,

,

ˆ
ˆ

ˆ
t o

t o

o
e

o



k
k

  (2.116) 

 

2.4 Wave propagation inside the uniaxial anisotropic 
crystals and the emerging waves 

As stated in the introduction, the main goal of this thesis is to apply a polarimetric 
microscope working in reflection to measure the refractive index of non-planar dielectric 
materials. Therefore, the calculation of the amplitudes of the electromagnetic waves 
transmitted through the sample is not necessary for our purposes. However, the 
mathematical formulation provided in section 2.2 is general, and the amplitudes for the 
waves refracted into the sample for a given incident wave are already calculated (Go and 
Ge, ordinary and extraordinary amplitudes, respectively). Note that these Go and Ge 
amplitudes constitute the first step to study the wave propagation along the material. 
Although transmissive calculations are not going to be used in forthcoming sections, they 
can be of interest for the study of certain samples, as they can be used as complementary 
measurements to solve the problem of measuring the RI. For this reason, the propagation 
of light inside uniaxial anisotropic crystals is presented in this sub-section, but the 
corresponding calculations are not provided with the detail given in section 2.2. 
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Let us suppose that the uniaxial anisotropic medium studied is finite with a thickness 
d, and that light strikes from and exits to the same isotropic medium, i.e. the indices of 
refraction for the input and output mediums are equal, ni (see Figure 2-10). 

At the second surface of the sample (z = d), the ordinary and extraordinary waves, that 
are propagating inside the uniaxial anisotropic crystal, are reflected and transmitted (see 
Figure 2-10) [103, 107]. Before studying the reflected and emerged waves from the second 
boundary of the uniaxial anisotropic crystal, we have to consider that the ordinary and 
extraordinary waves propagating inside a birefringent medium introduce a certain 
retardation to their electric field vectors, which depends on the path traversed into the 
medium. At the second interface, after the propagation inside the uniaxial anisotropic 
crystal, the amplitudes of the transmitted electric fields, G 


o and G 


e, are given by [136, 

141] 

  
 

 
 

'
, , ,

' , , ,

exp 0
0 exp

o o o z o s o p o s

e e z e s e p e pe

G G z d ik d t t A
G z d ik d t t AG

                                                   
  (2.117) 

 
 Reflection and refraction of light incident upon a uniaxial anisotropic 

crystal with arbitrary oriented optical axis Ĉ  (orange arrow) within an isotropic 

medium. The propagation directions of the incident (dark blue arrow), reflected 

(violet arrow), forward-propagating ordinary and extraordinary (red and light 

green arrows), and backward-propagating ordinary and extraordinary (brown and 

dark green arrows) waves are shown. The plane of incidence coincides with the 

(y, z) plane. ( ŝ , p̂ ) and ( ŝ , r̂p ) are the polarizations for the incident and 

reflected waves respectively, and i, r, t,o and t,e (grey arrows) are the angles 

of the different wave vectors with respect to the normal. 
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being exp(i ko,z do) and exp(i ke,z de) the retardance of the ordinary and extraordinary 
waves, respectively [134]. Both retardances depend on the path lengths of the ordinary ray, 
do = d/cos(t,o), and the extraordinary ray, de = d/cos(t,e). 

Finally, the electric wave amplitudes at the output of the anisotropic medium can be 
described with respect to the  ˆ ˆ,  s p  basis as a function of the ordinary and the 
extraordinary amplitudes of the transmitted electric fields. In particular, according to Eq. 
(2.102), one obtains [106, 107] 

 
' '

, ,
' ', ,

s o s e s o

o p e pp e

A t t G
t tA G

                  
  (2.118) 

or, in other words, 
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where A
s and A

p are the ŝ -polarized and p̂ -polarized amplitudes of the emerging electric 
field and to,s, to,p, te,s and te,p are the Fresnel transmission coefficients at the second interface. 
Equation (2.119) relates the emerging electric field in terms of the amplitudes of the 
incident wave. 

The explicit form for the coefficients to,s, to,p, te,s and te,p can be found in the specialized 
literature, as for example Refs. [103, 106, 107, 134, 136, 142]. 

 

2.5 Jones and Mueller Matrix formalisms  

The electric field of any polarized wave can be expressed as a two-element vector using 
the Jones formalism. The two elements of a Jones vector are two orthogonal polarizations 
of the wave. Considering the  ˆ ˆ,  s p  basis chosen in section 2.1.4, the Jones vector of the 
incident wave, Ji, can be expressed as [111] 
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where Ep and Es are the components of the incident electric field parallel and perpendicular 
to the plane of incidence, respectively. Both are function of their corresponding real 
amplitudes, (As, Ap) and phases, (p, s). The interaction between the incident wave and 
the uniaxial anisotropic medium transforms Eq. (2.120) into another Jones vector, Jout. 
This can be calculated by using the Jones matrix formulism [85, 111]  
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where out
pE  and out

sE  are the electric fields of the output waves, parallel and perpendicular 
to the plane of incidence, respectively, and the complex elements Jpp, Jsp, Jps and Jss are 
the four elements of the Jones Matrix, which describe the polarimetric properties of the 
sample. Note that, as has been commented in section 2.2.3, the first subscript of the Jones 
Matrix elements is referred to the polarization of the incident wave, whereas the second 
subscript is related to the reflected wave polarization. As the aim of this thesis is to develop 
a microscope working in reflection, the complex components of the output Jones vector, 

out
pE  and out

sE , can be calculated from the reflected polarization wave equations obtained 
in section 2.2 [106, 136, 143], through the Jones matrix for the reflective interaction 
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with [108, 143, 144] 
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The diagonal elements of the matrix R describe the Fresnel reflection coefficients for p̂  
and ŝ  polarizations with respect to the incidence plane. The off-diagonal elements of the 
matrix describe the polarization conversion between p̂  and ŝ  polarizations that occurs 
when the sample is anisotropic.  

One of the main goals of this thesis is to construct a physical model, based on 
experimental measurements, allowing us to characterize the optical properties of the 
studied samples. To this aim, we need to experimentally measure the polarimetric 
properties of the sample. This is done, according to the Mueller-Stokes formalism, by using 
an imaging Mueller matrix polarimeter integrated into a conoscopic microscope, which will 
be explained in detail in a further chapter. From the theoretical Jones matrix of the sample, 
the equivalent Mueller matrix can be calculated and compared with the experimental 
Mueller matrix of the sample. Therefore, the optical characteristics of the sample, as the 
refractive index, can be obtained by properly fitting the basic parameters of the model with 
the experimental data. Moreover, although the light employed for illumination and the 
samples studied during this work can be considered as fully polarized, experimental factors 
can introduce certain depolarization content, that is also taken into account by using the 
Mueller-Stokes formalism, and that can be studied and/or filtered from data. Consequently, 
we need to use the relation between Jones matrix and the fully polarized content of Mueller 
matrix. In particular, corresponding theoretical Mueller matrix, M, is obtained from Jones 
matrix as [85, 111] 

 * 1
 

 M A R R A   (2.124) 

where  represents the Kronecker product, the asterisk represents the complex conjugate 
of the reflection Jones matrix R and the matrix A is given by [85, 111] 
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Chapter 3  Mueller conoscopy  

This chapter aims to describe the changes in electromagnetic fields produced when a 
highly convergent light beam is reflected by a sample. This kind of beams, obtained when 
light passes through a high numerical aperture objective (HNAO), consists of a set of angles 
of incidence (azimuthal and polar angles) that are interesting to characterize samples in 
reflection due to the large data redundancy they provide. By using the Mueller-Stokes 
formalism, the optical parameters of isotropic and uniaxial anisotropic samples can be 
obtained from the angle-resolved Mueller matrix image. Each pixel of the measured Mueller 
matrix image is associated to a particular pair of angles (azimuthal and polar angles), and 
thus, to a polarization change. 

The chapter has the following structure. First, we introduce the theoretical background 
of reflective conoscopy in section 3.1. Then, section 3.2 generalizes the Jones and Mueller 
matrices obtained in Chapter 2 in order to express them as a function of azimuthal and 
polar angles of incidence. The polarimetric measurement matrix principle used to acquire 
the Mueller matrix image, and the errors introduced by the polarimetric system, are also 
explained in this section. Next, we simulate Mueller matrix images of several samples to 
discuss the viability of the proposed conoscopic Mueller microscope (section 3.3) and its 
polarimetric sensitivity (section 3.4). The last part of this chapter is divided in two sections. 
First of all, section 3.5 describes the method developed to obtain the refractive indices of 
materials comparing experimental and theoretical Mueller matrix images and then, section 
3.6 studies the validity of this method by using synthetic Mueller matrix images, previously 
simulated. 

 

3.1 Theoretical background of reflection conoscopy 

 General considerations on reflective Mueller matrices 

As has been mentioned throughout the previous chapters, the main objective of this 
thesis is to measure the refractive index of non-planar dielectric materials by using a 
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polarimetric microscope working in reflection. The mathematical formalism has been 
explained in Chapter 2, where the Mueller matrix of uniaxial anisotropic materials, with 
an arbitrary orientation of the optical axis Ĉ , has been obtained in reflection.  

From the mathematical formalism presented in the previous chapter, we realized that 
the Fresnel reflection coefficients and the Mueller matrix of a uniaxial anisotropic medium 
are function of:  

- The wavelength of the incident light (i ), since the modulus of the incident wave 
vector is ki = 2i . 

- The angle of incidence (i ). 

- The refractive index of the isotropic incident medium (ni) and the studied media (n 
for isotropic materials or no and ne for uniaxial anisotropic crystals). 

- If the sample is uniaxial anisotropic, the orientation of the optical axis,  ˆ ,c cC   . 

Therefore, considering that the incident medium is air (ni = 1), for a particular 
wavelength and a certain angle of incidence, we can synthetize Mueller matrices for 
different RIs. Accordingly, by comparing the experimental Mueller matrix measured in the 
laboratory with the predicted one, calculated from the mathematical formalism given in 
Chapter 2, the refractive indices of the sample as well as the orientation of its optical axis 
can be obtained. 

To evaluate how well the predicted Mueller matrix matches the experimental matrix, 
the statistical function MSE (Mean Squared Error) is used. In particular, to quantify how 
close the predicted refractive indices and the optical axis orientation  ˆ ,c cC    are from 
the actual experimental parameters, the following equation is used [115, 145] 
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where exp
,j kM is the element (j, k) of the experimental Mueller matrix and pred

,j kM  is the same 
element but for the predicted Mueller matrix. The proper orientation of  ˆ ,c cC    and the 
corresponding RIs of the sample are those that minimize the statistical function MSE. In 
order to do so, it is necessary to use an iterative optimization algorithm that look for the 
unknown parameters that minimize the MSE between both simulated and experimental 
Mueller matrices. Thereby, the refractive indices of the studied samples as well as the 
orientation of their optical axes can be obtained by using this minimization procedure. 

We want to emphasize that for a uniaxial anisotropic crystal, just a single 4×4 Mueller 
matrix, this being function of i, may not provide enough information to obtain the four 
desired parameters (ne, no, c, c), due to mathematical correlations. However, we know 
that RI is an intrinsic parameter of all samples and it is independent of the angle of 
incidence related to the input ki. In other words, the value of the obtained theoretical and 
experimental Mueller matrices varies with i, while the refractive indices of the studied 
material remain constant. Thus, an optical set-up allowing us to measure the Mueller 
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matrix for different angles of incidence, leads to the same value for the refractive indices 
for all the tested i. As a consequence, system data redundancy can be easily increased just 
by measuring the same sample with different angles of incidence.  

In the literature, one can find different set-ups that are used to measure the Mueller 
matrix in reflection as a function of a range of input incident angles i. Some representative 
examples are several types of microscopes integrated in mechanical arms [146, 147], 
objective lenses [148, 149], among others [115].  

In our case, to avoid mechanical errors associated to the positioning of mechanical arms, 
which set the different incident angles, we propose an alternative reflective 
instrumentation. The idea is to design a conoscopic polarimetric microscope working in 
reflection.  

 

 Conoscopic illumination 

Orthoscopy and conoscopy are the two most important techniques in light polarization 
microscopy. The resulting parameters obtained after the optical analysis depend on the 
light propagation inside the microscope and how the light beam is reflected or transmitted 
by the crystallographic sample.  

In an orthoscopic configuration, the sample is illuminated by collimated (or slightly 
convergent) rays due to a low aperture objective lens (Figure 3-1 (a)). The light transmitted 
or reflected by the surface of the sample travels in the same direction or nearly so, in such 
a way that the crystal is imaged on a camera sensor, usually giving a magnified image. All 
the directions that light takes after the transmission or reflection on the sample are 
essentially integrated at each spatial point. The surface sample image, observed by an 
orthoscope, allows one to view the striations, variations of optical activity, etc. [25, 119, 
123]. 

 
 Comparison of the ray paths for (a) orthoscopic illumination, and (b) 

conoscopic illumination in transmission. 

On the other hand, in a conoscopic configuration, the sample is illuminated by a highly 
convergent cone of light (Figure 3-1 (b)) where all the incident rays of the cone travel 
along different directions (different ki). A conoscope analyzes a single point in the sample, 



52  Chapter 3 - Mueller conoscopy 
 

and each spatial position on the detector is related to a different incident wave vector 
illuminating the sample. To highly focus the incident beam and to obtain a wide range of 
incident angles on the sample, a short focal length positive lens is commonly used [25, 123]. 

In this thesis, the optical element chosen to focus the input light beam onto the sample 
is a high numerical aperture objective (HNAO). The two main reasons are: 

- Any collimated light beam is highly focused after passing through this kind of 
microscope objectives (conoscopic illumination). 

- According to the Debye approximation [117, 118], the wavefront in the focal region 
of any high numerical aperture objective may be considered as a superposition of 
plane waves whose propagation vector must fall inside the cone of light formed by 
drawing straight lines from the focal point to the edge of the aperture (see Figure 
3-1 (b)).  

Therefore, a geometrical optics approximation can be used to describe the angular 
spectrum of the incident, reflected and transmitted fields. The cone of light generated by 
the high numerical aperture objective can be treated as an infinite number of incident wave 
vectors, each one of them having a different angle of incidence i. The mathematical 
formalism explained in the previous chapter, which supposes incident, reflected and 
refracted plane waves, only remains valid to describe the set of incident rays with different 
orientations generated by any HNAO. 

The incident focused beam makes possible to cover a wide range of ki    
-vectors at the 

same time, without any mechanical movement. Each incident wave vector is defined by 
two angles: 

- i is the polar angle, called angle of incidence in Chapter 2. It varies from the 
normal to a maximum angle that is defined by the numerical aperture (NA) of the 
lens used to generate the highly convergent cone of light (see Figure 3-2 (a)).  

-  is the azimuthal angle, this being the angle between the incident plane (set by 
the incident ray direction and the normal to the surface) and the x-axis. It varies 
from 0° to 360° (see Figure 3-2 (a)). 

A two-dimensional representation of the two angles can be seen in Figure 3-2 (b) where 
we plotted a violet spot highlighting the spatial position corresponding to a particular pair 
of angular values for the incident angle (i  0.6·i,max) and the azimuthal angle (70°). 
Marked by two red circles, two different polar angles are represented (i and the maximum 
angle of incidence, i,max). By contrast, the blue lines point out ten azimuthal angles, , (0°, 
45°, 70°, 90°, 135°, 180°, 225°, 250°, 270°, 315°). Any point at the back focal plane of the 
microscope objective as well as any incident beam (ki ), can be expressed by a combination 
of these two angles.

Once the light cone is reflected by the sample surface, there are two possibilities to 
collect the reflected wave vectors. One possible configuration is to use a second microscope 
objective (see Refs. [115, 116]), while another conoscopic configuration is to use the same 
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microscope objective to collect the various reflected rays (see Refs. [118, 148]). In both 
situations, the incident wave vectors are reflected back and go to a different position (i , 
) in the back focal plane of the collection microscope objective. For instance, see 
transmitted-reflected green spot in Figure 3-2 (b) corresponding to the incident violet spot. 
As a result, the obtained image on a detector placed after the collection objective, maps 
the wave vector distribution of light reflected by the sample, i.e., the two-dimensional 
conoscopic pattern obtained on the detector gives an angle-resolved image of light reflected 
by the sample surface. Hence, each pixel of the camera is related to a different reflected 
wave vector (kr (i , )). Note that the pixel size of camera introduces a certain limit in the 
resolution of the method, as a certain range of k are averaged at each pixel. 

 
 (a) Three-dimensional representation of the polar and azimuthal 

angles of an incident wave vector ki. (b) Polar and azimuthal angles 

corresponding to each point over the back focal plane of the microscope objective. 

The maximum angle of incident is i,max. The violet spot highlights the point 

representing the angle of incidence i  0.6·i,max and the azimuthal angle 

°. In turn, the green spot (r 0.6·i,max, 250°) represents the position 

of the reflected wave corresponding to the incident beam marked by the violet 

spot.  

As in more detail in a further section, by properly modulating the polarization of the 
input focused beam and measuring the spatially varying polarization properties of the light 
reflected/transmitted by a sample, at the back focal plane of the high NA objective, the 
Mueller matrix image of the sample can be measured. This experimental Mueller matrix 
image has the characteristic that each pixel represents the Mueller matrix of a particular 
incident wave vector (i  and ), which in general will be different (i.e., the Mueller matrix 
image consists of an array of single Mueller matrices, each one due to a different orientation 
of the incident beam). 

Conoscopy can be a valuable tool for characterization of isotropic and anisotropic 
samples. In our case, in order to eliminate any mechanical arm, light is focused and 
collected by the same microscope objective, in a reflective configuration. The proposed 
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optical configuration of a conoscopic microscope is able to measure the angle-resolved 
Mueller matrix in reflection at numerous incident angles simultaneously, obtaining data 
redundancy without any mechanical motion of the set-up. 

 

 Focusing light with a High Numerical Aperture Objective 

Let us assume an aberration-free objective designed for infinite conjugate ratio with 
rotational symmetry about its axis. The orientation of this microscope objective is such 
that its optical axis is perpendicular to the sample surface. Considering that the high 
numerical aperture objective has to obey the Abbe’s sine condition [150], a spherical 
wavefront is produced after the incident light beam passes through it. A diagram of the 
focalization of a high NA objective can be seen in Figure 3-3. Consequently, the positions 
of the different incident plane waves on the entrance pupil of the HNAO and the polar, i, 
and the azimuthal, , angles are related by [118, 151, 152]  

  sin cos ,  sinif    r   (3.2) 

where r is the distance of an incident ray upon the objective aperture to the aperture center 
and f is the focal length of the objective.  

 
 Diagram showing a ray focused by a high numerical aperture objective 

(HNAO) into a sample. The incident wave vector ki (blue arrow) passes through 

the microscope objective and is reflected by the sample placed at the focal plane. 

kr is the reflected wave vector (green arrow). Both wave vectors are contained on 

the same plane of incidence. i and r are the incident and reflected polar angles, 

respectively. 

Under this scenario, i can be redefined as the angle between any converging ray in the 
image space and the optical axis of the microscope objective at the focal point. As the 
microscope objective is circularly symmetric about its axis, its pupil radius is defined by 

 max ,maxsin ir f    (3.3) 

where i,max is the maximum angle of incidence on the sample surface we can reach. This 
angle is obtained from the value of the numerical aperture (NA) of the objective lens [1, 
119, 153] 
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where ni is the refractive index of the medium between the objective front lens and the 
sample and  determines the resolving power of the objective.  

On the other hand, Abbe's sine condition requires that all the reflected rays within the 
reflected cone pass through the microscope objective at the same height |r| at which they 
entered to the system [150], i.e., the microscope objective is designed in such a way that if 
the microscope is illuminated with a collimated beam, and the sample surface is placed 
normal to the HNAO optical axis and at its focal plane, the reflected beam will be 
collimated once again after passing back through the same objective. Taking into account 
this affirmation, any incident ray and its corresponding reflection will present the same 
polar angle (r = i) but opposite azimuthal angles (r = i + 180°). The reflected ray 
passes again through the objective at a new distance r that can be calculated using again 
Eq. (3.2). As the reflected beam comes from the focal point of the system, it exits the 
microscope aperture parallel to the optical axis of the system with a constant height |r|, 
and the existing beam is collimated. The combination of the reflected plane waves forms a 
two-dimensional conoscopic pattern at the back focal plane of the HNAO. This angularly 
resolved pattern represents the image of the sample surface in the Fourier domain and it 
can be recorded if the back focal plane is imaged on a detector [121, 124, 125, 148]. On the 
other hand, the image of the sample surface being conoscopically illuminated will be formed 
at the infinity, where in each point of the image, all the wave vectors defined by the 
aperture are averaged. 

A particular point in Cartesian coordinates (x, y) on the entrance pupil of the high 
numerical aperture objective is related to a wave vector illuminating the sample at an 
incident angle i 

 and an azimuthal angle . As a conoscope maps the wave vector 
distribution that appears in the back focal plane of the HNAO (in the i and  polar system) 
and images it on a CCD camera (expressed in Cartesian coordinates), the correspondence 
between both coordinate systems is required to relate each pixel on the detector with the 
orientation of the reflected wave vector at that position. The relation between both systems 
is given by [105, 154] 
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  (3.5) 

where 2 2r x y   is the modulus of the height in the back focal plane, r = |r|. 
Consequently, considering that the image on the CCD camera is the rescaled image of the 
back focal plane, any pixel of the camera can be related to the orientation of the reflected 
wave vectors (i , ). 

Moreover, one notes that having a sufficiently high numerical aperture objective implies 
a large number of different incident angles and a small focal length. Therefore, the input 
beam will be focused sharply on a tiny spot. If the focused beam is adjusted to illuminate 
a very small area, the effects of spatial nonuniformities in the sample will be minimized. In 
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fact, non-planar surfaces can be approximated to planar surfaces when the focal spot size 
is tiny compared to the sample surface curvature or nonuniformities. Finally, we want to 
note that if a light beam is tightly focused, the HNAO introduces changes in the local 
polarization of the incident and reflected beams. In fact, there exists a correspondence 
between the beam polarization at the laboratory system (Cartesian coordinate) with those 
of the multiple wave planes with ki directions at the back focal plane, (i , ) polar system. 
As the refractive indices will be obtained from the Mueller matrix images of the sample, 
these polarization correspondences have to be considered and studied in more detail. 

 

3.2 Conoscopic Mueller microscope  

By keeping in mind that the aim of this thesis is to measure the Mueller matrix of any 
uniaxial anisotropic or isotropic sample, we propose to transform the standard conoscopic 
microscope into a polarimeter. Figure 3-4 shows a first scheme of a conoscopic microscope 
able to measure an angle-resolved Mueller matrix. Based on the set-up proposed by [125, 
148], a Polarization State Generator (PSG) and a Polarization State Analyzer (PSA) are 
introduced. The PSG and the PSA systems will be explained in detail in further sections, 
but they are able to set the polarization of the input beam and to analyze the polarization 
of the reflected beam, respectively. Through them, the Mueller matrix corresponding to a 
wide range of different incident plane waves can be measured, where the high numerical 
aperture objective plays the dual role of focusing the incident beam over the sample surface 
and collimating the reflected one. 

As stated before, the HNAO set an array of incident beams, each one characterized by 
their (i , ) angles and related to a particular pixel at the detector plane. Once the cone 
of light illuminates the sample, it modifies the polarization of different input beams in 
different ways due to the Fresnel coefficients. Therefore, each particular incident beam 
leads to a particular Mueller matrix of the sample, associated to a particular pixel position. 
The polarization resolved pattern on the detector can be analyzed to infer the array of 
Mueller matrices that characterize the sample for different angles of incidence. From now 
on, the whole set of Mueller matrices is referred to as a Mueller matrix image or angle-
resolved Mueller matrix to differentiate it from a single Mueller matrix. 

The values of the refractive indices and the orientation of the optical axis can be 
obtained from the Mueller matrix images by using the mathematical formalism studied in 
Chapter 2. In this sense, data redundancy is spatially obtained from intensity images on a 
pixelated detector. As a consequence, the quantity of redundancy data is only limited by 
the detector pixel size and the number of pixels, without requiring an increase of the 
measuring time (i.e., redundancy data is instantaneously obtained). 

The conoscopic Mueller microscope architecture can be divided in three different blocks, 
according to their specific role (see Figure 3-4):  
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- Illumination block (red arrows in Figure 3-4): is the responsible to collimate the 
input light and set the input polarization through the polarization state generator 
(PSG) system. It sets the light that illuminates the entrance pupil of the high 
numerical aperture objective. 

- High numerical aperture regime (green arrows in Figure 3-4): is the responsible to 
focus the input beam onto the sample and to collect the reflected light. The angular 
spectrum of plane waves illuminating the sample interacts with the sample and 
produces a new angular spectrum of reflected plane waves in the back focal plane 
of the HNAO. 

- Detection block (blue arrows in Figure 3-4): is responsible to image the back focal 
plane of the microscope objective on the pixelated detector. The state of 
polarization (SoP) of the reflected beam is spatially analyzed (pixel-to-pixel) with 
the polarization state analyzer (PSA) system. 

 
 Scheme of the conoscopic Mueller matrix microscope. Input light 

traverses a non-polarizing beam-splitter and is focused onto the sample through 

the objective, which also redirects the reflected waves to the detector. The 

Polarization State Generator (PSG) and the Polarization State Analyzer (PSA) 

control the polarization of input and reflected lights, respectively, to measure the 

angle-resolved Mueller matrix image of the sample. The scheme can be divided in 

three blocks: illumination block (red arrows), high numerical aperture regime 

(green arrows) and detection block (blue arrows). 
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 Polarization transformations at high numerical aperture systems 

Let us assume that the polarization of the light beam after the PSG is fully polarized 
and spatially homogeneous, such as linear, elliptical, or circular polarizations. This 
polarization can be decomposed into its two orthogonally polarized components and can 
be described by its polarization ellipse. When any polarized beam is focalized by a high 
numerical aperture objective, variations of the electromagnetic field components may be 
spatially introduced with respect to a reference system, this significantly modifying the 
local incident polarizations [119, 153]. Under this scenario, polarization effects cannot be 
neglected and must be considered. 

In order to understand these polarization transformations through focalization, Figure 
3-5 (a) shows an example of a linear polarized light beam focused by a HNAO. After the 
high numerical aperture objective, the input beam is bent in different directions (all those 
set by the cone of light). Four different polarization transformations (related to four 
different incident directions on the sample) are highlighted in Figure 3-5 (a), they being 
pointed out by the four (red, green, violet and orange) arrows. We have set an incident 
polarization, before the high numerical aperture objective, as lineal, homogeneous and 
parallel to the ŷ -axis (see blue arrow in Figure 3-5 (a)). 

Four particular polarization changes are shown in Figure 3-5 (a). After the high 
numerical aperture objective, the input beam is bent in different directions (all those setting 
the cone of light) with different polarizations. The plane waves at the top and the bottom 
of the microscope  objective (red and orange arrows, respectively) are tilted in such a way 
that both can be decomposed as a combination of ŷ - and ẑ -axis. On the other hand, the 
plane waves that pass through the objective lens at its intersection with the (x, z) plane, 
remain parallel to the ŷ -axis (violet and green arrows). Any other incident wave in the 
cone surface present a polarization with some contribution to all three axes  ˆ ˆ ˆ,  ,  x y z . 
From this scheme, we clearly observe how the different plane waves impinging the sample 
do not share the same polarization. For instance, by noticing that the incident plane at 
the light cone regime rotates with the azimuthal angle , we see how whereas red and 
orange arrows are linearly polarized parallel to the plane of incidence, the violet and green 
arrows are linearly polarized perpendicular to the plane of incidence, this fact having an 
impact in the local Fresnel coefficients. 

Figure 3-5 (b) shows another example where a right-handed circularly polarized light 
beam generated by the PSG is bent by the high NA objective. In this case, the polarization 
of the illumination beam before the microscope objective can be expressed as a combination 
of two equal amplitudes, parallel to the x̂ - and ŷ - axes (blue arrows). The x̂ -components 
of the electric field in the intersection between the objective lens and the (x, z) plane are 
tilted in such a way that they can be decomposed as a combination of x̂ - and ẑ -axes (see 
violet and green arrows), while the ŷ -components remain parallel to the ŷ -axis. By 
contrast, x̂ -component of the homogeneous circular polarized beam at the top and the 
bottom of the collimated beam before the HNAO are not tilted when the planar waves pass 
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through the microscope objective (red and orange arrows, respectively). These different 
scenarios introduce significant differences in local polarizations. 

 
 Schematic diagram illustrating focusing effect and polarization 

dependence of: (a) linearly polarized light beam parallel to ŷ -axis; and (b) 

circular polarized beam focused by high numerical aperture objective microscope 

(HNAO). The electric fields are bent after passing through the microscope 

objective. The polarization of each planar incident wave after focalization is a 

function of its polar and azimuthal angles. Different positions in the back focal 

plane of the HNAO present different polarization transformations (see red, green, 

orange and violet arrows). 

From these two examples, it is easy to conclude that the polarization transformation 
introduced by the high numerical aperture objective depends on the polarization of the 
homogeneous input illumination beam as well as on the spatial coordinates of the 
illumination plane waves on the entrance pupil of the HNAO. 

On the other hand, the polarization of the reflected plane waves is once again 
transformed when the light beam passes back through the high numerical aperture 
objective, in an equivalent but inverse transformation. For this reason, the theoretical 
Mueller matrix obtained in Chapter 2 has to be recalculated by considering the local 
polarization transformations suffered by the incident and reflected beams. 
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 Calculation of Mueller matrices after the high NA objective 

Let us start by generalizing the mathematical formalism described along the Chapter 2 
for different azimuthal angles of incidence, . In Chapter 2, the theoretical Mueller matrix 
of a uniaxial anisotropic sample in reflection as well as the corresponding Fresnel 
coefficients were expressed as a function of the incident angle i   but for a particular position 
of the plane of incidence. In particular, the incident, reflected and refracted waves were 
considered to be lying in the (y, z) plane (see Figure 2-6 and Figure 2-7), while their 
respective polarizations were expressed by the orthonormal basis  ˆ ˆ,  s p , where the unitary 
vectors ŝ  and p̂  were perpendicular and parallel to the plane of incidence, respectively 
(see Figure 2-9). Therefore, ŝ  was parallel to x̂ -axis while p̂  was expressed as a 
combination of ŷ - and ẑ -axes. Such mathematical model considers any polar angle of 
incidence i (between 0° to the maximum incident angle, i,max) to calculate the Fresnel 
reflection coefficients. Different i implied a reorientation of the incident, reflected and 
refracted wave vectors as well as the direction of p̂ , while ŝ  direction always remained 
constant. Nevertheless, the azimuthal () rotation of the wave vectors might initially seem 
that was not considered.  

As has been above-discussed, the set-up proposed in this chapter includes a high 
numerical aperture objective that introduces an infinity number of incident wave vectors, 
depending not only on the polar angle i , but also on the azimuthal angle . While it may 
appear that the formalism of the previous chapter is incomplete, in fact, the azimuthal 
rotation is considered. That is because a rotation of the plane of incidence with respect to 
the sample is equivalent to a rotation of the sample to the contrary sense, with respect to 
the plane of incidence.  

If the sample being analyzed is a uniaxial anisotropic crystal, this is equivalent to a 
rotation of the optical axis. Thus, the mathematical model proposed in Chapter 2 can be 
readapted by substituting the angle of the optical axis c (see Figure 2-5 or Eq. (2.40)), 
for an azimuthal angle () that describes the different positions of the optical axis as 
function of the azimuthal angle of incidence . In this sense,  and c are related by 

 c      (3.6) 

where the azimuthal angle  varies from 0° to 360°. 

On the other hand, in the case of isotropic samples, the Fresnel coefficient values remain 
constant whichever is the azimuthal rotation. The form for the reflected and refracted 
waves is independent of the azimuthal orientation of the medium. Consequently, for the 
same angle of incidence i , the Mueller matrix of an isotropic specimen is constant 
regardless of the angle . Some examples may be observed in the next sections, where 
several simulations of Mueller matrix images are represented in the high numerical aperture 
regime.  

 



3.2 Conoscopic Mueller microscope 61 
 

 Mueller matrices in the laboratory system  

Let us call (Xill, Yill, Zill) and (Xdet, Ydet, Zdet) the coordinate systems of the illumination 
(ill) and detection (det) systems, respectively. The former refers to the collimated beam 
incident to the microscope objective, and the latter to the collimated beam propagating 
backwards (see incident red line and reflected blue line, respectively, in Figure 3-4). In 
both areas the coordinate systems are fixed, and they are defined by the direction of 
propagation of the illumination and detection wave vectors, îllk  and detk̂ , respectively. The 
measured experimental Mueller matrix on the CCD camera is expressed in the detection 
coordinate system, where the detection wave vectors are parallel to the detẐ -axis, while 
their polarizations can be described as a combination of the orthonormal vectors detX̂  and 

detŶ . In turn, the illumination wave vector îllk  propagates in the direction of the Ẑill -axis 
and in the positive sense. Therefore, îllk  shares the same direction than detẐ -axis, but 
propagates in the opposite sense (i.e., detˆ ˆillk k   and detˆ ˆZ Zill   ). Accordingly, the 
polarization of the illumination beam, generated by the PSG, is described by a combination 
of X̂ill  and Ŷill  vectors. Figure 3-6 shows both coordinate systems as well as the directions 
of the illumination and detection wave vectors (orange and violet arrows, respectively). 

On the other hand, the polarizations of the incident and reflected waves in the high 
numerical aperture objective regime (into the light cone) are expressed in the orthonormal 
 ˆ ˆ,  s p  basis. The particularity of this basis is that it depends on the orientation of the 
incident wave vector (i.e., of the plane of incidence). Therefore, the angular coordinates 
describing a wave direction into the cone (i.e., the particular values for the incident wave 
azimuthal rotation, , and the tilt due to the angle of incidence, i) define a specific spatial 
orientation of the  ˆ ˆ,  s p  basis with regard to the laboratory basis. Three different incident 
wave vector îk  and their respective  ˆ ˆ,  s p  basis are shown in Figure 3-6 (red, blue and 
green arrows). One can see the variation of ŝ  and p̂ directions when the plane of incidence 
is rotated 90°.  

The ultimate purpose of this thesis is to measure the refractive indices and the optical 
axis orientation of dielectric samples, which is achieved by comparing their experimental 
and the theoretical Mueller matrix images. To that end, both angle-resolved Mueller 
matrices have to be obtained in the same coordinate system. 

In the following, the theoretical Mueller matrix image obtained from the mathematical 
formulism described in Chapter 2  is recalculated according to the HNAO scenario, in 
which the polarizations of the incident and reflected plane waves are described in the  ˆ ˆ,  s p  
basis. However, by using our polarimetric microscope scheme, the experimental Mueller 
matrix image of any uniaxial anisotropic or isotropic sample is measured in the detection 
basis. Consequently, the theoretical and experimental Mueller matrix images are expressed 
in different coordinate systems, and the corresponding transformation must also be 
considered. 

Going back to the previous chapter, the Jones matrix R (see Eq. (2.123)) was calculated 
for a set of plane waves incident at the sample from the high numerical aperture objective 
in the  ˆ ˆ,  s p  basis. As the vector normal to the sample surface is parallel to the optical 
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axis of the microscope objective, the rotation angle that transforms the  ˆ ˆ,  s p  basis into 
the Cartesian coordinate system of the illumination region, is the azimuthal angle . 
According to [115, 155], a rotation of an angle  in the Jones matrix formalism is expressed 
by the following matrix 

   cos sin
sin cos

 
  

      
Rot   (3.7) 

 
 Diagram to define the coordinate systems used at the illumination 

(Xill, Yill, Zill), detection (Xdet, Ydet, Zdet) and focalization  ˆ ˆ,  s p  regions. In the 

illumination (ill) and detection (det) regions, the direction of propagation of wave 

vectors, îllk  (orange arrow) and detk̂  (violet arrow), coincides with Ẑill  and detẐ  

directions, respectively. Their respective (ill) and (det) coordinate systems are 

fixed in the space with respect the laboratory system. By contrast, the  ˆ ˆ,  s p  

basis, used to describe the polarization of focalized waves, is variable and depends 

on the incident wave vector direction îk  (red, blue and green arrows).   

This rotation must be applied to each point at the back focal plane of the microscope 
objective to pass from the  ˆ ˆ,  s p  basis to the (Xill, Yill, Zill) coordinate system. 
Mathematically this is expressed as 

    , ,

, ,

p p s p
ill

p s s s

r r
Rot Rot

r r
 

       
R   (3.8) 

Before calculating the Mueller matrix image of the sample, another change in the 
coordinate system has to be considered. As shown in Figure 3-6, the directions of 
propagation of the illumination and the detection wave vectors are opposite. This implies 
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that Zill = Zdet and Yill = Ydet. As the experimental Mueller matrix image is measured 
in the detection region, the reflection Jones matrices must be rotated from the illumination 
coordinate system to the (Xdet, Ydet, Zdet) system. The reflection Jones matrix in the 
detection region, Rdet, is given by   

 det
1 0
0 1 ill
      

R R   (3.9) 

Once the reflection Jones matrix is calculated in the proper coordinate system, 
substituting Rdet into Eq. (2.124), the theoretical angle-resolved Mueller matrix in the fixed 
(Xdet, Ydet, Zdet) coordinate systems is obtained. 

 

 Polarimetric measurement matrix principle 

As previously stated, the goal of the proposed conoscopic Mueller microscope is to 
measure Mueller matrix images in reflection with a high number of different polar and 
azimuthal angles. To measure the Mueller matrix of samples, the proposed conoscopic 
microscope includes a Mueller polarimeter composed of a PSG, which controls the 
polarization of the illumination beam, a PSA, which analyzes the light reflected by the 
sample after the high numerical aperture objective, and a pixelated detector which acquires 
the intensity pattern exiting from the polarization analyzer (see Figure 3-4). Under this 
scenario, each input polarization selected with the PSG and polarization analyzer set with 
the PSA yield to a particular intensity image at the detector. As is known, 4×4 Mueller 
matrices relate the input and output polarizations (defined by its corresponding Stokes 
vectors, S), describing the linear polarization-matter interactions through the relation     
(Sout = Msample · Sin). Therefore, to solve this linear system and completely obtain the 
Mueller matrix image of the sample, we need to record at least 16 independent intensity 
patterns. The procedure followed to obtain the Mueller matrix image and the errors 
introduced by the system are explained in this section. 

Let us start describing the measurement matrix method. A Mueller matrix can be 
understood as the transfer function of a polarimetric system, giving the relationship 
between the states of polarization (SoPs) of the illumination and exiting beams. For our 
particular case, the existing beam is the reflected beam in the detection region. Considering 
that the number of pixels of the detector is Ni × Nj, each pixel of the camera can be 
expressed as (i, j) where 1 ii N   and 1 jj N  . As explained above, the intensity 
pattern acquired by the detector varies according to the angles (i, ). Therefore, the 
intensity of each pixel, Ii,j, for a fixed PSG and PSA configurations can be written as [111, 
112]  

  
00 01 02 03 0

10 11 12 13 1
, , 0 1 2 3

20 21 22 23 2

30 31 32 33 3,

i j i j in

i j

m m m m S
m m m m S

I A A A A
m m m m S
m m m m S

                                    

a M S   (3.10) 
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where Sin is the Stokes vector that characterizes the SoP generated by the PSG, Mi,j is the 
single Mueller matrix at the pixel (i, j) of the image, i.e., the Mueller matrix corresponding 
to an specific combination of the incident and azimuthal angles (i, ), and the analyzer 
vector a, commonly called polarization analyzer (PA), is the first row of the PSA matrix 
[111, 112]. When the input polarization equals the polarization set by the analyzer vector 
a, the maximal intensity is recorded at the detector.  

As stated above, to fully characterize each 4×4 Mueller matrix, we should measure at 
least 16 values of Ii,j, combining different configurations of the PSG and PSA that should 
be linearly independent. However, the Mueller matrices can be extracted for more than 16 
measurements of Ii,j, in order to reduce noise from redundancy data. 

Let us suppose that we are making a set of measurements, combining different 
configurations of the PSG and PSA, with m and q being the number of polarization 
generators and polarization analyzers, respectively. The matrix of the measured intensities 
for the (i, j) pixel can be written in matrix form as, 

     

1,1 1,2 1, 1,0 1,1 1,2 1,3 0,1 0,2 0,

2,1 2,2 2, 2,0 2,1 2,2 2,3 1,1 1,2 1,
,

2,1 2,2 2

,1 ,2 , ,0 ,1 ,2 ,3,

m m

m m
i j

q q q m q q q qi j

I I I A A A A S S S
I I I A A A A S S S

S S S
I I I A A A A

                                 
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

M
,

3,1 3,2 3,

m

mS S S

             

  (3.11) 

Eq. (3.11) can be rewritten as 

 , ,i j i j  B A M S .  (3.12) 

where Bi,j is the q × m matrix of the measured intensities. The columns in the S matrix 
correspond to the Stokes vectors generated by the PSG, and reciprocally, A is a matrix 
whose rows contain the different polarization analyzers used by the PSA. The ranks for 
matrices S and A have to be 4 and their values are known after a complete calibration of 
the PSG and the PSA systems. Once A and S matrices are known, single Mueller matrices 
at every pixel (i, j) can be obtained, i.e., the angle-resolved Mueller image is retrieved. 

To achieve the value of the Mueller matrix, the polarimetric measurement matrix W is 
used. This matrix is obtained by computing the Kronecker product of S and A [112] 

   W A S   (3.13) 

and it is independent on the sample Mueller matrix. As W is defined by the optical elements 
comprising the Mueller polarimeter, it is determined during the polarimetric calibration of 
the set-up.  

Let us compact a single Mueller matrix of a particular pixel Mi,j into a 16 × 1 Mueller 
column vector,  , 00 01 02 03 10 33

T
i j m m m m m m


M , and the respective matrix 
of experimental intensities (Bi,j) into a (m

 
·

 
q) × 1 intensity column vector,  

 , 1,1 1,2 1, 2,1 ,
T

i j m q mI I I I I


 B , both in lexicographic order, where the 
superscript T denotes the transpose of a vector. The measured intensity vector ,i j


B  is 
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related to the sample Mueller vector ,i j


M  through the (m
 
·

 
q) × 16 polarimetric 

measurement matrix W [112] 

 , ,i j i j 
 
B W M   (3.14) 

At this point, we would like to stress that the calculus of ,i j


M  depends both on: (1)  
the number of polarization generators (m) and analyzers (q) used to measure ,i j


B ; and (2) 

the matrix W inversion. 

For m 
 
= 

 
q = 4, the matrices S and A are square matrices and therefore, W is also a 

square matrix. If W is a non-singular matrix, its inverse W -1 will exist and can be calculated 
[111]. The complete Mueller vector is then obtained as 

 1
, ,i j i j

 
 

M W B   (3.15) 

If m, 
 
q > 4, the matrices for S and A are rectangular, so it is also the case for the 

matrix W (see Eq. (3.13)). In addition, the system presents more equations than unknowns, 
so it is overdetermined. References [112, 156] show how the optimal (least-squares) 
polarimetric data reduction equation for calculating the Mueller vector of the sample at 
each pixel uses the pseudoinverse 1

P
W  of the polarimetric measurement matrix  

   11
, , ,

T T
i j i j i jP

   
  

M W B W W W B   (3.16) 

It can be seen from Eqs. (3.15) and (3.16) that the Mueller matrix at each pixel can be 
obtained just by selecting one of the infinite PSG-PSA configuration combinations able to 
build-up a non-singular matrix W and measuring its respective intensity vector ,i j


B .  

In terms of error amplification, not all the possible solutions for W are equally suitable 
for measuring the Mueller matrix images. If we consider experimental non-correlated noise 
in the intensity measures, the inverse or pseudoinverse matrix of W may amplify errors at 
the ,i j


B matrix (noise) to the calculus of the Mueller matrix. In order to minimize error 

amplification from ,i j

B  to ,i j


M , the matrix W should be as far as possible from singular 

matrices. The most common mathematical criterion used for the optimization of any 
Mueller polarimeter is the so-called condition number of W, CN(W), which is defined as 
the ratio of the smallest over the largest singular values (different from zero) of W [157, 
158]. The range of the condition number is from 1, corresponding to a unitary matrix, 
which does not amplify the error, to infinity, corresponding to a singular matrix. In the 
case of polarimetric systems, the minimum condition number is equal to 3  [158]. As W 
is calculated by the Kronecker product of S and A matrices, its condition number is 
calculated as [156] 

      CN CN CN W S A   (3.17) 

Thereby, the criterion for the optimization of any Mueller polarimeter is to optimize the 
condition numbers of S and A. In experimental implementations, these polarimetric 
matrices are limited according to the specific PSG and PSA configurations. Consequently, 
the optimum condition number of the polarimeter strongly depends on the type of optical 



66  Chapter 3 - Mueller conoscopy 
 

elements used to build the PSG and the PSA systems [129]. References [128, 156, 158] 
analyzed the matrices S and A and determined optimum PSG-PSA configurations. These 
are obtained when the SoPs of the polarization generator and analyzer matrices are equally 
spaced throughout the Poincaré sphere. In addition, to mitigate the calibration errors 
and/or imperfectness of the used optical components, authors in Ref. [159] suggested that 
the numbers of illumination (m) and analysis (q) states should be larger than 4. The 
increment of the number of generators and analyzers does not affect the value of the CN 
but reduces the variances associated to the Mueller coefficients measurement. 

To optimize our PSG and PSA systems, in terms of noise amplification, we focus on 
optimizing the S and A matrices. In this sense, we have used an optimization function 
that calculates the minimum CN and its corresponding polarization generator and analyzer 
matrices. Furthermore, in order to reduce measuring time, the number of chosen 
polarization generators and analyzers is m = q = 6. In Figure 3-7, we show a set of obtained 
theoretical polarization states for generation (blue points) that result in a minimization of 
the condition number. The calculated best-fit CN of the polarimetric measurement matrices 
describing this PSG system is 3 , which corresponds to the minimum possible value for 
polarimetric systems. The same polarization basis is also valid for analyzers, to set the PSA 
configuration. We can observe that the blue points are drawing a regular octahedron, in 
agreement with results described in Ref. [128], where it is shown how polarization states 
at the Poincaré Sphere surface that are placed at the vertex of Solid Platonics lead to 
optimum configurations. 

 
 Theoretical set of polarization states (blue points) for the optimized 

polarization state generator and analyzer. 

Nevertheless, errors due to non-ideal optical elements used in the real experimental set-
up and the possibility that the SoPs of the PSG and PSA systems change with time 
(variations with temperature, pressure, etc.), result in deviations from the theoretical states 
of polarization given in Figure 3-7. In order to minimize this source of errors, the conoscopic 
Mueller microscope is calibrated frequently and the real measured polarization generators 
and analyzers are used to calculate the polarimetric measurement matrix W. 
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3.3 Simulated conoscopic Mueller matrix images 

According to the theoretical methodology above-described for the calculus of angle-
resolved Mueller matrices, throughout this section some simulations are shown to study 
isotropic and uniaxial anisotropic samples. The different examples selected in this section 
attempt to verify that our mathematical formalism gives expected results.  

The images shown throughout this chapter are achieved from simulations run on 
MATLAB software and they are two-dimensional representations of the back focal plane 
of the microscope objective. We selected to represent these two-dimensional images in a 
Polar representation (i.e., the Ni × Nj pixels of a Mueller coefficient are represented into 
the area of a circle of radius f · sini,max, according to their corresponding coordinates i 
and ). We chose this format to the sake of comparison with experimental measurements. 
In fact, as will be seen in further sections, the experimental Mueller matrix images of the 
sample are constructed from a set of intensity patterns registered by the camera. Due to 
the circular aperture of the microscope and the Gaussian profile of the used light source, 
the sixteen components of the experimental Mueller matrix images present circular 
symmetry. In this way, by setting the Polar representation for the simulated Mueller matrix 
images, they present the same form than the experimental ones.  

Certain initial parameters were introduced to obtain the resulting images: the number 
of pixels (1000 × 1000), the maximum incident angle i,max = 90º and the chosen wavelength 
 = 635 nm. The theoretical angle-resolved Mueller matrices were normalized and 
calculated in the high numerical aperture objective regime and the detection coordinate 
system, to see the visual differences between them.  

First, a graphical representation of the incident angles is shown in Figure 3-8. From 
Figure 3-8 (a), one can see that the center of the image coincides with the angle i = 0º  
and, going radially out from the center pixel, the incident angle increases to the maximum 
angle, in this case 90º, at the edge of the pupil. Figure 3-8 (b) shows the azimuthal angle 
, that starts at 0º and varies around the pupil to 360º. 

 
 Representation of (a) the polar angle i  with maximum incidence 

angle of 90° and, (b) the azimuthal angle . 
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 Simulated Mueller matrix images of isotropic samples 

The Mueller matrix image of an isotropic sample obtained by using the reflection 
Mueller microscope presented throughout this chapter can be calculated by using the polar 
and azimuthal angles showed in Figure 3-8. Let us assume a refractive index of n = 1.5  
and a maximum angle of incidence of 90°. Considering all these parameters, a simulation 
program allows us to obtain the angle-resolved Mueller matrix of this hypothetical material. 
Figure 3-9 shows the resulting image in the fixed detection coordinate system                  
(Xdet, Ydet, Zdet), while Figure 3-10 shows the analogous image obtained in the  ˆ ˆ,  s p  basis.  

 
 Simulation of a Mueller matrix of an isotropic sample with refractive 

index n = 1.5. The normalized angle-resolved Mueller matrix is expressed in the 

detection coordinate system and the maximum angle of incidence is 90°. 

 
 Normalized angle-resolved Mueller matrix of an isotropic sample in 

the orthonormal basis  ˆ ˆ,s p . The refractive index of the sample is n = 1.5.  
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It is important to note that the angle-resolved Mueller matrices of Figure 3-9 does not 
only show one Mueller matrix, but 1000×1000 Mueller matrices (i.e., the number of pixels 
selected, they being related to the number of simulated input rays ―angles― illuminating 
the sample). An individual 4×4  Mueller matrix (related to a particular input ray direction 
described by its specific angles i and ) is represented by a single pixel that shares the 
same location (i, ) in each one of the sixteen Mueller matrix coefficient images. For the 
sake of example, the M11 coefficient in Figure 3-9 is isolated in Figure 3-11, where one can 
see highlighted a set of azimuthal (Figure 3-11 (a)) and polar (Figure 3-11 (b)) angles 
overlapped upon the M11 image. 

 
 Description of the variation on the M11 element of the Mueller matrix 

image of (a) the azimuthal angle  and, (b) the polar angle i. A combination of 

both angles indicates the position of a single Mueller matrix. 

As was described in Figure 3-6, the orthonormal  ˆ ˆ,  s p  basis spatially varies with 
respect to the laboratory coordinate system, for each particular incident angle. These 
spatial transformations make that the different elements of the Mueller matrix present 
cylindrical symmetry in this basis, and the dependence with the azimuthal angle  is lost 
(see Figure 3-10). Notice that to obtain the refractive index comparing the elements of a 
theoretical and an experimental angle-resolved Mueller matrix by using data redundancy, 
the wide range of changes in each element of the Mueller matrix image showed in Figure 
3-9 will be more interesting and will provide more information in this respect than the 
changes observed in Figure 3-10. 

Figure 3-12 shows the variation of  ˆ ˆ,  s p  basis for different azimuthal angles, while the 
Cartesian  ˆ ˆ,  x y  coordinate system is fixed. The rotation of the polarization basis is 
responsible for rotational symmetry shown in Figure 3-10. 

Considering the polarimetric measurement method explained in section 3.2.4, the 
experimental Mueller matrix image can be calculated from the thirty-six intensity images 
produced by the combination of SoPs of the PSG and the PAs of the PSA shown in Figure 
3-7, when the sample is placed at the focal plane of the HNAO. In Figure 3-13, we show 
the simulated intensity images, corresponding to the different combinations of PSG-PSA 
configurations, recorded by a camera placed after the PSA, for the proposed isotropic 
material (n = 1.5). Columns are corresponding to different SoPs of the homogeneous input 
beam generated by the PSG. Furthermore, rows are corresponding to the projections of 
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the reflected beams onto the polarization analyzers of the PSA. The resulting intensity 
images show the dependence on the input polarizations and the angles (i, ), as well as 
the particular properties of the chosen isotropic sample. By using the Eq. (3.16), the thirty-
six projection images shown in Figure 3-13 (that can be recorded by a camera placed after 
the PSA) are then reduced to sixteen Mueller matrix elements shown in Figure 3-9. 

 
  ˆ ˆ,  s p  coordinate system rotation for different azimuthal axis  

(green, blue and pink arrows) on the M11 element of the Mueller matrix image. 

Orange arrows show the fixed Cartesian coordinate system  ˆ ˆ,  x y . 

 
 Intensity images corresponding to the thirty-six polarization 

projections of an isotropic sample with refractive index n = 1.5,  = 635 nm and 

a maximum angle of incidence of 90º. Columns are corresponding to different 

SoPs generated by the polarization state generator (PSG) and rows are 

corresponding to the projections of the reflected beams onto the polarization state 

analyzer (PSA). 
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 Simulated Mueller matrix images of anisotropic samples 

Some simulated Mueller matrix images of a uniaxial anisotropic sample are shown in 
Figure 3-14 for four different orientations of the material optical axis (c, c) (see Figure 
2-5). The chosen uniaxial anisotropic crystal is calcite, whose ordinary and extraordinary 
refractive indices for the chosen wavelength ( 635 nm) are no = 1.6556 and ne = 1.4849, 
respectively [160]. There are significant differences between the four Mueller images in 
Figure 3-14 (a) – (d), where the strong influence of the optical axis orientation in the angle-
resolved Mueller matrix image is observed, specially in coefficients M01 and M10. 

In addition, Figure 3-14 (d) shows that when the optical axis angle c is 90°, the Mueller 
matrix image is similar to that shown in Figure 3-9. In fact, the two image patterns are 
exactly the same (anisotropic and isotropic cases) when the RI of the isotropic sample is 
equal to the ordinary index no of the anisotropic sample. In other words, the uniaxial 
anisotropic crystal acts as an isotropic material for c = 90°. 

 
 Simulated angle-resolved Mueller images of the calcite (ne = 1.4849 

and no = 1.6556) for four different orientations of the optical axis (c, c) (a) (0°, 

0°), (b) (0°, 90°), (c) (45°, 25°); and (d) (90°, 0°). 

Finally, the Mueller matrix images for the calcite, this time in the  ˆ ˆ,  s p  basis, are 
shown in Figure 3-15. Again, the simulations are repeated for different orientations of the 
uniaxial anisotropic crystal (Figure 3-15 (a)-(d)). As expected, a clear difference between 
Mueller matrix images represented at the detector basis (Figure 3-14) and at the  ˆ ˆ,  s p  
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basis (Figure 3-15) is observable. Regarding to the  ˆ ˆ,  s p  basis, a break of revolution 
symmetry is seen at some coefficients, at Figure 3-15 (a)-(c), being related to the optical 
axis orientation. By contrast, for c = 90° (Figure 3-15 (d)), there is no variation with the 
azimuthal angle . This last result is in agreement with the fact that a uniaxial anisotropic 
material acts as an isotropic material for c = 90°. 

 
 Angle-resolved Mueller matrices for the calcite in the orthonormal 

 ˆ ˆ,  s p  axis for the angles of the optical axis (c, c) equal to (a) (0°, 0°),              

(b) (0°, 90°), (c) (45°, 25°); and (d) (90°, 0°). The birefringence breaks the 

rotational symmetries for angles c different than 90°. 

 

3.4 Polarimetric sensitivity 

To estimate the influence of some physical parameters in the polarimetric sensitivity of 
the designed conoscopic Mueller microscope, some parameters of interest are studied in this 
sub-section. For example, we analyzed the dependence of the angle-resolved Mueller 
matrices on the selected range of angles of incidence (i.e., on the selected maximum incident 
angle) or on the refractive indices.   
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 Maximum angle of incidence 

By analyzing the simulations shown in Figure 3-9 and Figure 3-14, we see how the 
Mueller matrix coefficients maintain quite constant values for small angles of incidence, i, 
whereas larger polarimetric variations are observed as we increase the incident angle (i.e., 
larger polarimetric variations are observed at the edges of the images). In order to study 
the importance of the maximum angle of incidence, four simulations of Mueller matrix 
images for the isotropic material presented in section 3.3.1, i.e., n = 1.5, are shown in 
Figure 3-16. We have simulated an isotropic material to only analyze the effect of the 
incident angle, and to avoid other physical parameters also introducing spatial variations 
of the Mueller coefficients, such as the position of the optical axis or the birefringence. The 
chosen maximum angles of incidence are i,max = 30º, 50º, 70º, 90º. 

 
 Four simulated Mueller matrix images for an isotropic sample with 

a refractive index of n = 1.5, when the maximum angle of incidence is:                  

(a) i,max = 30º, (b) i,max = 50º, (c) i,max = 70º; and (d) i,max = 90º. The 

normalized Mueller matrix images are expressed in the detection coordinate 

system. 

From Figure 3-16 (a), where i,max = 30º, i.e., the used microscope objective would be a 
low numerical aperture system, one can observe that the diagonal components of the 
Mueller matrix image are practically constant. The only coefficients showing spatial 
polarimetric variations are the coefficients M0,1, M0,2, M1,0 and M2,0, showing small 
polarimetric variations which are especially located at the edges of the images. All the 
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other elements are approximately zero. As shown in Figure 3-16 (b)-(d), to obtain larger 
polarimetric sensitivity in the system, i.e., to obtain larger variations of the Mueller 
matrices coefficients, it is interesting to work with microscope objectives that have larger 
numerical apertures. Indeed, higher NA values allow larger i,max. The wider the incidence 
and reflected angles, the larger the polarization changes between pixels are observed, as 
polarimetric differences between ŝ  and p̂  Fresnel coefficients are maximized for larger 
incident angles (the maximum polarimetric sensitivity is usually obtained close to the 
Brewster angle). This fact is qualitatively seen in Figure 3-16. As a result, higher numerical 
apertures are recommended to increase the polarimetric sensitivity of the polarimeter, fact 
that will be crucial to obtain the parameters of interest from theoretical-experimental 
fitting procedures. 

The dependence of the polarimetric response across the pupil of the Mueller matrix 
images with the angle of incidence was also quantitatively studied from cross-sections set 
along those Mueller coefficients images showing larger variations. To this end, cross-
sections along three directions were taken to compare the variations between some Mueller 
matrix elements observed in Figure 3-16. The three cross-sections pass through the center 
of the images. One of them is taken parallel to the x̂ -axis, another to the ŷ -axis (see 
Figure 3-12), and the last one is parallel to the diagonal (from the top-left to the bottom-
right corners) of each element of Mueller matrix images. The obtained results for the ŷ , 
x̂ , and diagonal cross-sections are provided in Figure 3-17 (a)-(c), respectively. In each 
case, the coefficients cross-sections were obtained for different i,max, being represented as 
different colors in Figure 3-17.  

By analyzing the resulting plots, one can observe that the greater the maximum angle 
of incidence, the larger variations observed for the Mueller matrices values in the cross-
sections. The cross-section values for an incident angle ofi,max = 30º (blue lines) are 
practically constant, while for greater maximum angles of incidence (i,max = 50º (red lines), 
i,max = 70º (yellow lines) and i,max = 90º (violet lines)), the variations of the cross-sections 
significantly increase. In addition, for i,max > 50º, one can clearly see that the Mueller 
matrix coefficients sharply variate as we are getting close to the Brewster angle of the 
material.  

The conclusions reached here for the isotropic samples case, are general and can be 
extended to uniaxial anisotropic crystals. Consequently, characterization of uniaxial 
anisotropic or isotropic samples by using a conoscopic Mueller microscope requires high 
numerical aperture objectives that increase the polarimetric sensitivity of the system. 

 

 Refractive indices 

The second parameter to be analyzed is the refractive index. In this subsection, we 
study the dependence of the Mueller matrix images coefficients with variations on the RI. 
To this end, Mueller matrix images of some samples are simulated.  
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 Intensity pixels-cross-sections obtained from some of the Mueller 

matrix coefficient images shown in Figure 3-16. The cross-sections are: (a) parallel 

to the ŷ -axis, (b) parallel to the x̂ -axis; and (c) in the diagonal direction 

(decreasing sense). All the three cross-sections pass through the center (pixel 

(0,0)) in the Mueller matrix images. The maximum angles of incidence are        

i,max = 30º (blue line), i,max = 50º (red line), i,max = 70º (yellow line); and 

i,max = 90º (violet line). 
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3.4.2.2 Isotropic samples 

Let us start by analyzing four isotropic samples with different refractive indices. In order 
to make the simulations more realistic, we chose four materials that exist in nature. Figure 
3-18  shows the Mueller matrix images of distilled water (n = 1.331), halite (n = 1.5415), 
cubic zirconia (n = 2.1514) and diamond (n = 2.4104) for a wavelength  = 635 nm and 
a maximum incident angle i,max = 90º [160, 161]. The four materials were chosen because 
their refractive indices allow us to test a wide range of RI values, and thus, it is fairly easy 
to qualitatively exemplify significant differences between their Mueller matrix images. 
Visual differences are observed in Figure 3-18 (a)-(d), as for instance in coefficients M11 
and M22. 

 
 Mueller matrix images for different isotropic materials: (a) distilled 

water (n = 1.331), (b) halite (n = 1.5415), (c) cubic zirconia (n = 2.1514); and 

(d) diamond (n = 2.4104) for a maximum angle of incidence i,max = 90º. 

Once again, to obtain the same information form a quantitative point of view, three 
intensity cross-sections, parallel to the x̂ -axis, to the ŷ -axis (both directions are 
represented in Figure 3-12) and to the diagonal direction, all of them passing through the 
center of the images, were obtained for the same four Mueller matrix elements previously 
selected in the isotropic case (see Figure 3-18). The resulting cross-sections for the different 
materials (different colors) are overlapped and shown in Figure 3-19, for the ŷ , x̂  and 
diagonal cases (Figure 3-19 (a) - (c), respectively). In all the cases, the incident angle was  
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 Cross-sections of four elements of the Mueller matrix images shown 

in Figure 3-18. The cross-sections are: (a) parallel to the ŷ -axis, (b) parallel to 

the x̂ -axis; and (c) in the diagonal (from the top-left to the bottom-right 

corners). All the selected cross-sections pass through the center of the Mueller 

matrix images. The simulated samples are distilled water (n = 1.331), halite                    

(n = 1.5415), cubic zirconia (n = 2.1514) ; and diamond (n = 2.4104).  
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fixed to a value of i,max = 90º. The dependence of the Mueller matrix images polarimetric 
response with the refractive indices is verified and clearly observed. 

From the cross-sections shown in Figure 3-19, we see significant variations between the 
different color curves, describing the performance of different materials. These variations 
indicate that the system provides enough polarimetric sensitivity to differentiate between 
different  RIs.  In  the  same way,  in  section 3.4.1,  we  observed  that  the  larger  

polarimetricsensitivity occurred for higher incident angles. This fact states that  the  regions  

of  greater interest  for  measuring  the  sample  optical characteristics  are those where the 
angles of incidence are higher. For the purpose of measuring the refractive indices of 
isotropic samples, microscope objectives with high NA are needed. In a further section 3.6, 
the accuracy of the method to measure the characteristic parameters of samples is 
described. 

 

3.4.2.3 Uniaxial anisotropic crystals 

Let us study the influence of the ordinary and extraordinary refractive indices in the 
response of the Mueller matrix coefficient images. In this case, four uniaxial anisotropic 
crystals oriented at (c, c) = (0º, 0º) have been simulated. The chosen samples are quartz             
(no = 1.544, ne = 1.553), tourmaline (no = 1.669, ne = 1.638), calcite or “Iceland Spar” 
(no = 1.658, ne = 1.486) and rutile (no = 2.616, ne = 2.903) for a wavelength  = 590 nm 
and a maximum angle of incidence i,max = 90º [160–162]. Their respective Mueller matrix 
images are shown in Figure 3-20, revealing qualitative differences between them. The 
polarimetric differences between the chosen birefringent materials (different colors) in four 
different Mueller coefficients are quantitatively compared in the cross-sections shown in 
Figure 3-21 (a) - (c) ( ŷ , x̂  and diagonal directions respectively). 

We observe how different coefficients provide different polarimetric sensitivity at 
different incident angle regions. In the x̂ - and ŷ -axes cross-sections at the  and  
coefficients, one can see that for small angles of incidence, the Mueller matrices values of 
these two coefficients are not nulls and show differences between different materials (this 
giving certain polarimetric sensitivity to the refractive index). This polarimetric response 
for small angles of incidence is contrary to the observations realized in the isotropic case 
(see Figure 3-19). Therefore, unlike isotropic materials, birefringent materials have some 
impact in the linear diattenuation and polarizance of the system (see M01 and M10 
coefficients in Figure 3-21) for small incident angles, and this information can be valuable 
to retrieve  the orientation and the RIs of anisotropic samples.  

In addition, one can see that a conoscopic Mueller microscope can be used, not only to 
measure a uniaxial anisotropic crystal having high birefringence, but also small differences 
between ne and ne. An example can be seen in Figure 3-21 (b) where the cross-sections of 
quartz and tourmaline, both uniaxial anisotropic crystals, are totally different and clearly 
appreciated, even when the difference between their birefringence is around 0.02,  

quartz 0.01e on n   and  tourmaline 0.03e on n  .  
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Although the birefringence of a crystal, unlike the isotropic case, is sensitive to small 
angles of incidence, certain polarimetric sensitivity is also present at high angles of 
incidence. Therefore, a wide angular spectrum is recommended to characterize anisotropic 
materials. 

 
 Mueller matrix images for different anisotropic materials: (a) quartz             

(no = 1.544, ne = 1.553), (b) tourmaline (no = 1.669, ne = 1.638), (c) calcite       

(no = 1.658, ne = 1.486) ; and (d) rutile (no = 2.616, ne = 2.903) for a wavelength 

 = 590 nm and a maximum angle of incidence i,max = 90º. The optical axis 

orientations are (c, c) = (0º, 0º) in all cases. 

 

3.5 Constrained variational analysis method to obtain the 
optical parameters 

So far, we clearly demonstrated that a conoscopic Mueller microscope, equipped with a 
high numerical aperture objective, can be used to measure the characteristic angle-resolved 
Mueller matrix of any isotropic and uniaxial anisotropic samples. We corroborated through 
some MATLAB simulations that various refractive indices and orientations of different 
samples generate different Mueller matrix images, this allowing us to discriminate between 
different materials. At this stage, an analysis method has to be developed in order to obtain 
the desired parameters comparing experimental and theoretical Mueller matrix images. In 
this case, we have used a constrained nonlinear optimization algorithm implemented in 
MATLAB.  
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 Horizontal, vertical and diagonal cross-sections of four different 

elements in the Mueller matrix images shown in Figure 3-20, for different 

anisotropic materials: quartz (blue lines), tourmaline (red lines), calcite (yellow 

lines) and rutile (violet lines). In all the cases, the optical axis orientation is set 

to (c, c) = (0º, 0º)  and the maximum incident angle is fixed to i,max = 90º. 

The cross-sections are passing through the center of each element of the Mueller 

matrix images and they are: (a) parallel to the ŷ -axis, (b) parallel to the x̂ - axis; 

and (c) in the diagonal direction. 
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The following steps describe the process for determining the refractive indices of 
samples, and the orientation of their optical axis: 

1) To measure the experimental angular-resolved Mueller matrix of the sample by using 
the conoscopic Mueller microscope with a HNAO. 

2) To estimate the model physical parameters (refractive index/indices and optical axis 
orientation) from previous knowledge of the sample, to simulate an initial theoretical 
Mueller matrix image in reflection, and to set of lower and upper bounds on the 
unknown variables. 

3) To calculate the Mean Squared Error (MSE) between predicted and experimental 
Mueller matrix images. In Eq. (3.1) the Mean Squared Error is given for an angle of 
incidence. The MSE for the whole image is given by 
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where N is the number of pixels and i is the evaluated pixel of the experimental and 
predicted single Mueller matrices. The actual refractive indices and the orientation of 
the optical axis values are those providing the MSE value as small as possible. Note 
that the large redundancy data given by N, helps the MSE based calculations to fall 
at the correct sample parameters.  

4) To use a constrained nonlinear optimization algorithm that attempts to find a local 
minimum of the MSE function by comparing the experimental angle-resolved Mueller 
matrix with different predicted images. The value of the characteristic parameters of 
the simulated sample is subjected to the upper and lower constraints described in the 
step 2).  

5) To set an iterate process to determinate the desired parameters of the sample using the 
new simulated Mueller matrix as the next input to the optimization routine to be 
compared to the experimental Mueller matrix image. When the step size factor of the 
iteration is smaller than a value we decided, the optical parameters of the sample are 
found. 

While the refractive indices and the orientations of Ĉ  are  the desired parameters, and 
therefore, the goal of this thesis, other experimental constraints need to be considered in 
this optimization process. If the camera is not centered and/or the sample is slightly out 
of focus, the resulting Mueller matrix image obtained in the laboratory will suffer some 
variations from the theoretical expected ones (i.e., the image would no longer be centered, 
and thus, the angles of incidence and the azimuthal angles will be modified). In addition, 
the maximum angle of incidence varies as a function of the entrance pupil size illuminated 
by the incident beam. For these reasons, the value of the maximum angle of incidence 
i,max, a certain shift in the center of the image (x0, y0) and an initial azimuthal rotation 
offset (0) have to be introduced as variables in the optimization process. 
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Figure 3-22 (a) shows and example of the Mueller matrix image of an isotropic sample 
that is shifted and rotated. The simulated sample parameters are the same shown in Figure 
3-9 (n = 1.5, i,max  90º,  = 635 nm), but now we introduce an initial center shift           
(x0, y0) = (20, -20) pixels and azimuthal rotation (0  15º). The resulting Mueller 
coefficients images in Figure 3-22 (a) are thus, shifted and rotated with respect to images 
in Figure 3-9. For instance, it is easily seen that the incident angle i,max  0º is no longer 
at the center of the images but shifted, and the axis  = 0º is not parallel to the x̂ -axis 
but rotated (see the new angular representations given in (Figure 3-22 (b) and (c)), to be 
compared with Figure 3-8). 

The optimization algorithm was implemented in MATLAB considering all the 
parameters that can affect the resulting Mueller matrix images, (x0, y0), 0, i,max, c, c, ne 
and no.  

 
 (a) Simulation of the Mueller matrix image of an isotropic sample  

(n = 1.5) when the observation plane is shifted (x0, y0) = (20, -20) pixels and 

rotated 0 = 15º. Representation of (b) the off-centered angle of incidence or polar 

angle and, (c) the off-centered azimuthal angle rotated 15º. 
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3.6 Accuracy of the optimization program 

Before calculating the refractive indices and the orientation of the optical axis from an 
experimental Mueller matrix image, the iterative algorithm has been validated by 
calculating the optical parameters of some artificial angle-resolved Mueller matrices we 
generated with our developed software. These images are the best approach to test our 
optimization program, as they simulate experimental images measured in the laboratory. 

In order to study a realistic situation, we have simulated Mueller matrix images of real 
materials. In this subsection, just two examples are shown, BK7 optical glass as isotropic 
material (n = 1.5150) for  = 635 nm [160] and calcite as uniaxial anisotropic crystal        
(no = 1.658, ne = 1.486) for  = 590 nm. In addition, other parameters have been 
considered such as: air (ni = 1) was selected as the medium between the sample under 
study and the objective front lens, the chosen NA of the microscope objective was 0.90 
(giving a maximum angle of incidence of i,max 64º), the number of pixels of the images 
were N = (500×500) pixels and the simulated images were shifted (x0, y0) = (5, 3) pixels 
and rotated 0 = 5°. 

Constrains (upper and lower value limits) and initial parameters used to generate an 
initial Mueller matrix, from which starting the searching routine (see step 2 in section 3.5), 
are given in the Table 3-1. The set of lower and upper bounds on the unknown variables 
was selected to be large to demonstrate that a completely unknown experimental sample 
could still be measured by using this method. The large amount of data of a Mueller matrix 
image reduces the correlation between the variables.   

Parameters 
Initial 

parameters 
Constrained 
parameters 

x 0 0 100→ 100 

y 0 0 100 → 100 

0 0° 15°→ 15° 

i,max 50° 30°→ 70° 

no 1.6 1.3 → 3 

ne 1.6 1.3→ 3 

c 10° 0°→ 90° 

c 10° 0°→ 90° 

Table 3-1. Initial parameters and set of lower and upper constrains used in the iterative routine 

for the calculus of the best-fit optical parameters. 

The difference between the theoretical values and the best-fit results for BK7 optical 
glass (isotropic sample) and for calcite (anisotropic sample) are very small. In the same 
way, the resulting MSE obtained with the iterative routine for both simulated materials is 
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also small (MSE  7.5 · 107). Therefore, the optimization program is able to find good 
best fit parameters.  

In addition, the Squared Absolute Error (SAE), i.e., the square of the difference between 
the simulated (from best-fit values) and synthetized parameters can be used to analyze the 
accuracy of the iterative program. The refractive indices SAE ((nfit  ntheo)2) of the BK7 
optical glass is very small (1· 1016), where ntheois the RI used to simulate the Mueller 
matrix image and nfit is the obtained best-fit refractive index. Thus, we have obtained an 
excellent agreement between the synthetized BK7 optical glass and the physical parameters 
provided by the searching algorithm. In Figure 3-23 (a) and (b), we can observe the 
simulated Mueller matrix image and the squared absolute error image between the 
synthetized and the best-fit Mueller matrix images, respectively. In this sense, the SAE 
between pixels of the simulated and best-fit images (Figure 3-23 (b)) is smaller than 
1·1015, showing that the optimization program can find the desired values with high 
accuracy. We can remark that the optimization output gives equal ordinary and 
extraordinary refractive indices for BK7 glass, which means that the iterative program can 
differentiate between isotropic and uniaxial anisotropic samples even if we do not consider 
this constrain. The optimization routine also provides the position of the non-existent 
optical axis for isotropic materials which have not physical sense and can be neglected. 

 
 (a) Simulated Mueller matrix image of BK7 glass (isotropic material, 

with n = 1.5150 and  = 635 nm) and, (b) Squared absolute error image between 

the synthetized and the best-fit Mueller matrix images. 

On the other hand, we also tested the uniaxial anisotropic case. To this aim, we chose 
calcite as example of a common birefringent material, and the method also provided 
excellent results. In fact, the errors between the synthetized calcite parameters and the 
obtained best-fit ones are very small. In particular, the SAE error for the ordinary and 
extraordinary axes is smaller than 2.5·1011 and 1.6·1011, respectively. In the case of the 
optical axis orientation, the SAE error is smaller than 3.5 ·1010 for both angles, c and 
c. Figure 3-24 (a) shows the synthetized Mueller matrix, while in Figure 3-24 (b), we can 
observe the SAE between simulated and best-fit Mueller matrices. As in the isotropic 
example, the SAE value between respective pixels is smaller than 1·1014, showing that the 
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optimization program can find the RIs and the position of the optical axis with high 
accuracy.  

Although the eight unknown model parameters ((x0, y0), 0, i,max, c, c, ne and no) in 
the optimization process give the values with a very small error for the synthetized 
materials, any reduction in the number of parameters to be considered in the model and/or 
upper and lower constraints closer to the real ones (from previous knowledge of the sample), 
lead to major computational savings and should result in more accurate values for the 
refractive indices and optical axis orientations. 

Once it has been corroborated that the optimization program can measure an isotropic 
and a uniaxial anisotropic sample, the accuracy of the method is studied.  

 
 (a) Simulated Mueller matrix image of calcite (uniaxial anisotropic 

crystal, with no = 1.658, ne = 1.486) and  = 590 nm). (b) Squared absolute 

error image between the synthetized and the best-fit Mueller matrix images. 

 

 Accuracy as a function of the maximum angle of incidence 

First, we have studied the influence of the maximum angle of incidence on the 
determination of refractive indices and crystal orientation. In particular, we have tested 
the accuracy of the method by synthetizing different materials sharing the same parameters 
with the exception of the maximum angle of incidence. Note that this accuracy is studied 
under the presence of artificial rotations and shifts, to simulate experimental 
misalignments. 

Following the previous subsection, we have decided to use the same isotropic and 
uniaxial anisotropic samples (under the same (x0, y0, 0) conditions). In this sense, to 
analyze the accuracy of the optimization routine as a function of i,max, a sampling of eleven 
Mueller matrix images with a maximum angle of incidence between 40° and 90°, were 
synthetized. Then, their parameters were found by using the iterative optimization 
program described in section 3.5. For each incident angle selected, the iterative routine 
calculates 10 times the optical parameters of the corresponding synthetized angle-resolved 
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Mueller matrix by slightly changing the starting parameters. This allows us to study the 
influence of the starting parameters in the best-fit results by calculating the corresponding 
standard deviations. A flow chart showing the followed steps can be seen in Figure 3-25. 

 

Isotropic samples 

Let us consider BK7 glass (n = 1.5150 for  = 635 nm [160]) as isotropic material under 
study. We have decided to use this isotropic glass because its refractive index is close to 
the RI of a typical optical material used in laboratories.  

By using the optimization program and following the process explained in the flow chart 
in Figure 3-25, the minimum MSE is calculated between the artificial-experimental 
(Martificial-exp) and the best-estimated (Mbest-estimated) Mueller matrix images, for the eleven 
maximum angles of incidence evaluated.  

 
 Flow chart showing the steps followed by the searching routine. For 

each one of the eleven synthetized Mueller matrix images (related to different 

incident angles), the initial parameters (pink box) are modified 10 times, 

calculating, each time, the best-fit parameters (blue box) and the associated error 

bars (standard deviations). 

The obtained values are shown in Figure 3-26 (a). On the other hand, the absolute 
errors between the RIs set for the artificial sample and the calculated best-fit refractive 
indices, ntheo and nfit , are represented in Figure 3-26 (b) as a function of i,max. As we can 
clearly appreciate, MSE and the RI absolute errors |ntheo nfit| decrease by increasing the 
maximum angle of incidence. In addition, by variating the initial estimated parameters and 
constrains, the obtained best-fit parameters change, as observed from the associated error 
bars. However, the error introduced by the chosen initial parameters and constrains is 
clearly minimized for higher i,max (error bars significantly decrease with incident angle), 
so the method is more robust when we consider larger incident angles. To better visualize 
that the decreasing tendency of the error bars values still occurs for high incident angles, 
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an inset image in Figure 3-26 (b) provides a zoomed image of the 60º - 95º incident angle 
range. Therefore, from Figure 3-26 we can conclude that when we are trying to characterize 
the RI of isotropic samples, the iterative program is more accurate for higher angles of 
incidence, this being in agreement with the analysis provided in section 3.4.1. Therefore, 
the interest of working with high numerical apertures is confirmed. 

 
 Obtained best-fit parameters for BK7 glass (ntheo = 1.5150 for          

 = 635 nm). As a function of the maximum angle of incidence (i,max 
): (a) Mean 

Squared Error (MSE) (black plus signs); and (b) Refractive index absolute error 

(|ntheo nfit|) for nfit = no (blue plus signs) and nfit = ne (red crosses). The inset 

shows |ntheo nfit| for high i,max. 

 

Uniaxial anisotropic crystals 

We repeat the study conducted for isotropic samples but now we consider a uniaxial 
anisotropic sample (calcite) oriented at a particular position. First, the Mueller matrix 
images of calcite (no = 1.6556 and ne = 1.4849 for  = 590 nm [160] with its optical axis 
oriented at (c 

, c) = (21°, 5°)) are simulated for the same eleven maximum angles of 
incidence used in the isotropic sample case (from 40° to 90°). Then, the optimization 
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program is used to calculate the optical parameters of the sample. Once again, the 
robustness of the method to variations of the initial parameters and constrains is studied 
by analyzing 10 times the same Mueller matrix image (for a particular maximum angle of 
incidence), each time by starting from different initial parameters, and calculating the 
standard deviations of the corresponding best-fit data. 

The obtained results are presented in Figure 3-27. Figure 3-27 (a) shows the Mean 
Squared Error (MSE) as a function of the maximum angle of incidence, i,max, while Figure 
3-27 (b) provides the absolute error between theoretical (artificial-experimental sample) 
and best-fit refractive indices, ntheo and nfit respectively, for the ordinary (no) and 
extraordinary (ne) RIs as a function of i,max. As it can be observed, both MSE and     
|ntheo nfit| values decrease by increasing the maximum angle of incidence, in agreement 
with the tendency observed for the isotropic case. Furthermore, it seems that the 
optimization program is slightly more accurate finding the ordinary RI than the 
extraordinary RI. It is important to remark that the error introduced by the initial 
estimated parameters and constrains also decreases with the incident angle, as shown by 
associated error bars. The error bars decreasing tendency is still observable for high incident 
angles (see inset image in Figure 3-27 (b)). Thus, when dealing with anisotropic samples, 
the iterative program is also more accurate by setting higher angles of incidence. 

 

 Accuracy as a function of the refractive indices 

We analyze the influence of the refractive indices over the calculated best-fit parameters 
for isotropic and uniaxial anisotropic materials. In this sense, we have synthetized a set of 
Mueller matrix images with different refractive indices, fixing the maximum angle of 
incidence. As was conducted in the previous section, each generated Mueller matrix image 
(related to a different RI) was calculated several times by changing the initial estimated 
parameters and the associated error bars were also calculated. Under this scenario, the 
influence of the chosen initial values in the accuracy of the method is studied. 

To study the performance of the optimization program reproducing a scenario as close 
as possible to the real experimental conditions, we fixed the maximum angle of incidence 
of the synthetized images to i,max = 63º (this value coincides to that generated by a real 
HNAO with NA = 0.9 (i,max  63°)). Note that from data in Figure 3-26 and Figure 3-
27, we observed that the absolute error between the theoretical and the best-fit RI   
(|ntheo nfit|) is negligible for i,max > 60°. 

 

Isotropic crystals 
To study the accuracy of the optimization program for different refractive indices, 

twelve different angle-resolved Mueller matrices (with RI from 1.4 to 2.5) were synthetized 
and the corresponding best-fit values were obtained by using the optimization routine. The 
iterative routine is repeated 10 times for each one of the twelve simulated Mueller matrix 
images (related to different RIs), by changing the initial constrains and values. The 
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corresponding standard deviations (error bars) are also calculated. Note that the process is 
similar to the followed in the previous subsection, section 3.6.1. The obtained MSE and 
refractive index absolute error results are shown in Figure 3-28. 

 
 Obtained best-fit parameters for calcite (no = 1.6556 and                   

ne = 1.4849 for  = 590 nm) as a function of the maximum angle of incidence 

(i,max 
):  (a) Mean Squared Error (MSE) (black plus signs) ; and (b) refractive 

index absolute error (|ntheo nfit|) for no (blue plus signs) and ne (red crosses). 

The inset image shows |ntheo nfit| for high i,max. 

From Figure 3-28 (a) it is clear that the optimization program is more accurate for high 
RIs, where the obtained Mean Squared Error is smaller. In addition, the associated error 
bars are also significantly smaller for larger incident angles. On the other hand, Figure 3-
28 (b) shows the same tendency, where the error bars associated to the absolute ordinary 
and extraordinary refractive indices errors tend to decrease for high RIs. Note that absolute 
errors, |ntheo nfit|, for the ordinary and extraordinary refractive indices, provide the same 
values, as we are simulating isotropic materials. What is more, they are always smaller 
than 2·10-7, highlighting the accuracy of the method. 
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Uniaxial anisotropic crystals 

The same study is repeated for the anisotropic case. Again, we fixed the maximum angle 
of incidence to i,max = 63°. To study the influence of the anisotropy in the optimization 
routine, twelve different Mueller matrix images are synthetized for a constant value of the 
ordinary refractive index no = 1.658 but different extraordinary RIs, ne, from 1.4 to 2.5. 
As  a  particular  case,  the  isotropic  case  is  also  studied  (ne = no = 1.658)  to   compare  the  

 
 Best-fit parameters for different isotropic samples and for a fixed 

maximum angle of incidence i,max = 63º. Data is shown as a function of the 

theoretical refractive index (n): (a) Mean Squared Error (MSE) (black crosses) ; 

and (b) refractive index absolute error (|ntheo nfit|) for no (blue plus signs) and 

ne (red crosses). Note that no and ne provide the same mean values, as we are 

simulating isotropic materials 

accuracy of the optimization program without birefringence. Once again, the quantitative 
study is based on the MSE and |ntheo nfit| figures of merit, which are respectively 
represented in Figure 3-29 (a) and (b) versus the theoretical birefringence n = (no ne). 
Obtained data show how the optimization program is more accurate for isotropic samples, 
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in which the |ntheo nfit| value presents a minimum, or for anisotropic samples with small 
birefringences, |n| < 0.2. This situation can be related with the fact that the mathematical 
model is simplified for isotropic samples, and a lower number of parameters is involved in 
the searching process. However, we want to emphasize that in all the cases, absolute errors 
in Figure 3-29 (b) are always smaller than 5·10-6, providing the accuracy of the method 
to determine the optical parameters of anisotropic materials. 

Finally, the optimization routine is also analyzed for a constant global birefringence 
(n = 0.173) but different ordinary and extraordinary refractive indices. This allows us to  

 

 Best-fit parameters obtained with the optimization program for 

different theoretical birefringences (n) and a fixed maximum angle of incidence 

i,max = 63º. Data is given as a function of the theoretical n: (a) Mean Squared 

Error (MSE) (black crosses); (b) refractive index absolute error (|ntheo nfit|) for 

no (blue plus signs) and ne (red crosses). 

study the accuracy of the method for constant birefringences but into different RIs ranges. 
The same procedure explained in previous studies is here applied, i.e., the best-fit 
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parameters are found for twelve different synthetized Mueller matrix images, and the 
obtained MSE and |ntheo nfit| values are represented in Figure 3-30 (a) and (b) versus the 
chosen theoretical ne, which samples into a range (from 1.4 to 2.3). We appreciate how the 
MSE and the extraordinary RI absolute error decrease when the extraordinary refractive 
index increases, so the extraordinary index measure is more accurate for high RI ranges, 
where small RI variations are more significant in terms of polarimetric response. By turn, 
the ordinary RI absolute error for the ordinary index slightly increases, because it suffers 
from some correlation with other model parameters. Importantly, absolute errors in Figure 
3-30 (b) are always smaller than 2·10-6, confirming the accuracy of the method to 
determine the optical parameters of anisotropic materials. 

 
 Best-fit parameters obtained with the optimization program for a 

constant birefringence n = 0.173 and a maximum incident angle of 63º. Data is 

given as a function of the theoretical ne: (a) Mean Squared Error (MSE) (black 

crosses); and (b) refractive index absolute error (|ntheo nfit|) for no (blue plus 

signs) and ne (red crosses). 

From the obtained results we can conclude that the optimization routine is more 
accurate for isotropic materials than for anisotropic materials. The main reason is that 
anisotropic samples introduce extra optical parameters in the searching process, as the 
angular position of the optical axis  ˆ ,  c cC    or the extraordinary refractive index value. 
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However, for a maximum angle of incidence of i,max = 63º, the refractive index absolute 
error (|ntheo nfit|) is smaller than 5·10-6, both on isotropic and uniaxial anisotropic 
materials, providing the suitability of the method to be tested in both cases. 

 

 Influence of noise 

Experimental Mueller images are always affected, to a certain extent, by non-desired 
noise added to their constituent intensity images, recorded by the Mueller polarimeter. 
Therefore, in this section the influence of noise is also studied to verify the accuracy of the 
optimization program in a more realistic situation. Note that the Mueller matrix images 
may not be ideal due to slightly variations of the generated states of polarizations and of 
the polarization analyzers, intensity changes with time of the beam produced by the light 
source, electronic noise introduced by the camera, etc. To analyze the optimization routine, 
several Mueller matrix images were generated by adding different levels of random noise 
to the intensities used to calculate the synthetized Mueller matrix image of BK7 glass 
shown in Figure 3-23 (a). In particular, the noise effect is simulated in the following way. 
The pixels of the ideal thirty-six intensity images are corrupted by adding computer-
generated random numbers to each point of the image (from 1.5% to 25%). After that, the 
noise synthetized Mueller matrix image of BK7 glass is calculated (section 3.2.4). To study 
the effect introduced by the magnitude of the random noise, different random noises levels 
were selected to be added to the intensity images of BK7 glass. Two examples, where the 
effects of varying the level of random noise are quite evident, can be seen in Figure 3-31. 
For the sake of clarity, the applied procedure is sketched in the flow chart shown in Figure 
3-32. By applying this procedure, a set of synthetized angle-resolved Mueller matrices were 
obtained for each chosen level of random noise. 

 
 Two different levels of random noise added to the synthetized 

Mueller matrix images for BK7 (n = 1.515 and i,max = 63º). (a) 13% of random 

noise and, (b) 25% of random noise. The original angle-resolved Mueller matrix 

can be observed in Figure 3-23 (a).  

The optimization program was applied for the noisy angle-resolved Mueller matrices, 
and for each noise level selected, the best-fit parameters were calculated 10 times; these 
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different calculations were related to different initial estimations and constrains). From 
these calculations, a set of best-fit parameters  were obtained for each level of random 
noise, and the corresponding standard deviations (error bars) were also calculated. Figure 
3-33 shows the obtained MSE values (Figure 3-33 (a)) and the RI absolute errors (Figure 
3-33 (b)) for different noise levels. In both cases, when the noise level increases, the 
accuracy of the routine decreases, as stated by the magnitude of the associated error bars. 
Consequently, and as logical, it is confirmed that noise added to the Mueller matrix images 
has an important effect on the accuracy of the obtained best-fit parameters. Nonetheless, 
even for significant levels of noise added to the Mueller images, the associated absolute 
errors remain lower than 2·10-3, which still constitutes a remarkable result. Despite this, 
to accurately characterize the refractive index of samples, it is highly recommended to 
minimize noise added to the angle-resolved Mueller matrices as much as possible. 

 
 Flow chart explaining the random noise added to the synthetized 

Mueller matrix image of BK7 glass. For a selected level of random noise (pink 

box), several noisy angle-resolved Mueller matrices are generated to be compared 

with the theoretical BK7 glass Mueller matrix image. Then, best-fit parameters 

are found (blue box). 
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 Best-fit results obtained with the optimization program for different 

Mueller matrix images. (a) Mean Squared Error (MSE) as a function of the level 

of random noise and, (b) |ntheo – nfit| as a function of the random noise. 
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Chapter 4  Experimental implementation 

and calibration of the set-up 

In order to measure the angle-resolved Mueller matrix of isotropic samples and uniaxial 
anisotropic crystals in reflection, a conoscopic Mueller microscope working in reflection was 
built. This chapter aims at describing the implementation and calibration of the set-up 
developed in the laboratory during this thesis. 

Different Mueller microscopes configurations were built during this period. From this 
knowledge, we learnt how to improve the set-up as well as the alignment protocol. From 
this collection of optical arrangements, the most optimal optical architecture is presented 
in this chapter. Such selected instrumentation was used to measure the experimental 
Mueller matrix images presented in Chapter 5. 

 

4.1 Experimental configuration of the microscope 

The architecture of the conoscopic Mueller microscope working in reflection is presented 
in this section. The designed microscope is able to measure the change of the polarization 
upon interacting with an isotropic or uniaxial anisotropic sample.  

Let us explain the light path through the conoscopic Mueller microscope, built in our 
laboratory, before we discuss the alignment of the microscope. From the light source to the 
detector, its optical components are described and analyzed. Our set-up comprises four 
different parts. Figure 4-1 shows the scheme of the set-up and the direction of the 
propagation of the light beam in each part (see the different colored arrows). Three of these 
parts have already been introduced in the previous chapter (section 3.2) 

- Illumination Arm generates a collimated input light beam that is polarized (see 
red curly-bracket in Figure 4-1 (b)). It consists of an optical fiber fed by a laser 
diode, a collimator and a polarization state generator. The PSG consists of a linear 
polarizer (LP) followed by two thermally stabilized Liquid Crystal Displays 
(LCDs). 
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- High Numerical Aperture Objective Focusing System focuses polarized 
input beam on the sample, collects the reflected beam and collimates and steers it 
to the backwards direction (see green curly-bracket in Figure 4-1 (b)). It consists 
of an achromatic non-polarizing beam-splitter cube (NP-BS) and a high numerical 
aperture objective (HNAO). 

 
 Scheme of the conoscopic Mueller microscope: (a) a label for each of 

the principal optical elements forming the microscope is presented; and (b) the 

same sketch is shown but now, the four main parts of the microscope are 

indicated. Red, green and blue arrows indicate the direction of propagation of the 

light beam. 
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- Sample Positioning System allows us both to place the sample at the high NA 
objective focal plane and to accurately align the sample surface perpendicularly to 
the optical axis of the HNAO (see black curly-bracket in Figure 4-1 (b)). The 
system consists of a sample holder presenting different translation and rotation 
platforms of high precision. 

- Detection Arm images the back focal plane of the HNAO on a CMOS camera. 
The polarization pattern exiting from the high NA objective focusing system is 
analyzed by using a polarization state analyzer (see blue curly-bracket in Figure 4-
1 (b)). Note that the intensity image after the PSA contains spatial information of 
the polarization changes on the input beam produced by the sample, and thus of 
the sample optical constants. This system consists of two temperature-controlled 
LCDs, a linear polarizer and a CMOS camera. 

A good alignment is essential to obtain an appropriate image quality. To facilitate the 
alignment process of the conoscopic Mueller microscope, all the optical elements (with 
exception of the CMOS camera and the sample holder) are placed on a common optical 
breadboard. This optical breadboard is vertically placed in the laboratory and thus, the 
sample holder is set in the horizontal plane, this allows us to avoid gravity effects on 
samples. The solid optical breadboard enables to align the set-up in an easier way and fix 
it in the proper position when the set-up is well aligned. In Figure 4-1, the optical 
components on the breadboard can be seen. In addition, the conoscopic Mueller microscope 
is mounted on an optical isolation table to prevent from mechanical vibrations caused from 
external environment. 

Every component of these four parts is explained with more detail in the next sub-
sections. 

 

 PSG and PSA design 

To measure the Mueller matrix of an isotropic or uniaxial anisotropic sample, a 
polarization state generator (PSG) as well as a polarization state analyzer (PSA) are 
needed. The PSG generates the polarization state of the illumination beam, while the PSA 
analyzes the polarization state after its interaction with the sample. In literature, one can 
find a large number of configurations able to measure Mueller matrices as rotating 
retardation plates [163–166], liquid crystal variable retarders [130, 159, 167], photoelastic 
modulators [168, 169], rotating compensators [170, 171], etc. 

In our case, to eliminate the influence of alignment and positioning errors related to 
mechanical movements of the measuring arms, we are interested in using static 
configurations for the PSG and PSA systems. Optical elements as liquid crystal displays 
(LCDs) are interesting because they can be modeled as variable linear retarders. What is 
more, they introduce variable retardance depending on the voltage addressed and the 
orientation of their fast axes, without requiring any mechanical movement. The LCDs 
proposed to design the PSG and the PSA are composed of transparent liquid crystal 
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molecules that have an ordered orientation. With no voltage applied, the molecules lie 
parallel to the windows and the introduced retardation is maximal. When a voltage is 
applied, they tend to reorient parallel to the electric field propagation direction. In addition, 
the effective retardance depends on the particular spatial tilt of the liquid crystal molecules, 
which in turn depends on the addressed voltage (i.e., we can change the effective 
birefringence of the material with the applied voltage). The more the molecules tilt, the 
smaller the retardation. In the limit case, when the molecules are parallel to the electric 
field propagation direction, the LC material acts as an isotropic sample. In this way, the 
retardance of LCD can be controlled by changing the applied voltage. 

The four-selected liquid crystal displays used as full-wave variable retarders are mono-
pixel parallel aligned nematic liquid crystal cells (Thorlabs, LCC1223T-A). The retardation 
of the LCDs, produced by the molecules orientation, strongly depends on the operating 
wavelength, drive voltage and temperature. In our case, a diode laser is used as a 
monochromatic light source with a wavelength of 635 nm, and thus, the retardance 
calibration is only required for this particular wavelength. 

The specifications of the used LCDs (Thorlabs, LCC1223T-A) show the dependence on 
the temperature of the devices. As temperature increases, the retardation decreases with it 
(see Figure 4-2). Considering that the ambient laboratory temperature may variate more 
than 20 °C between summer and winter and few degrees within a day, a temperature 
sensing and control option is added to our LCDs for accurate controlling of the operating 
temperature. The temperature of our retarders can be controlled to ± 0.1 °C using the 
recommended temperature controller (Thorlabs, TC200). Temperature stabilization 
provides constant retardance even if ambient temperature changes and also allows for faster 
switching times [172]. 

 
 Retardance versus driver RMS voltage for a single (Thorlabs, 

LCC1223T-A) LCD, for a wavelength of 635 nm (Thorlabs, Inc.) [172]. 

The configuration proposed to generate any fully polarized state of polarization (PSG 
system) is a linear polarizer (LP) followed by the two nematic liquid crystals. Similarly, 
the polarization state analyzer consists of the two nematic LCDs followed by a linear 
polarizer [130, 159]. The schemes of the PSG and PSA systems are presented in Figure 4-
3. 
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When the temperature of the LCDs is stabilized, the PSG and the PSA can be fully 
characterized by eight parameters: the angles between the linear polarizer axis (fixed at 0° 
of the laboratory vertical) and the fast axes of the LCDs (1, 2,3,4) and their 
retardances (1, 2,3,4). 

 

 Scheme of the (a) PSG; and (b) PSA. Both are a combination of a 

linear polarizer (LP) and two liquid crystal displays (LCD1 and LCD2). Black 

arrows show the direction of the linear polarizer axes and blue arrows the fast 

axis direction of the LCDs. The retardance is given by 1, 2,3 and 4, and the 

angle between the linear polarizer axes and the fast axes of the LCDs are 1, 

2,3 and 4. 

For the PSG scheme above-described, it has been demonstrated that angles between 
the linear polarizer axis and the fast axes of the LCDs with values of 1 = 45º and                
2 = 0º are optimal in terms of polarization generation, as this configuration allows 
generating any fully polarized state of polarization [159]. Analogously, angles of 3 = 0º 
and 4 = 45º set for the PSA system, allows measuring any state of polarization. 

Under the above-stated configuration, the incident Stokes vector generated by using the 
PSG, Sin, has the following expression 

      2 1,  0º ,  45º 0ºin LR LR LP   S M M S   (4.1) 

where SLP (0°) is the Stokes vector of a linear polarizer oriented at 0° [111] and MLR () 
is the Mueller matrix of a linear retarder with a fast axis orientated at an angle  and a 
retardance of  [111, 112] 
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By replacing the expression for the Mueller matrix of a linear retarder, provided in Eq. 
(4.2), into Eq. (4.1), the parameters of the Stokes vector generated by using the PSG are 
obtained 
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Note that the generated Stokes vectors are function of the PSG liquid crystal 
retardances 1 and 2. Eq. (4.3) is analogous to spherical coordinates with radius 1, where 
1 and 2 are the polar and azimuthal angles, respectively. By taking into account the SoPs 
representation upon the Poincaré sphere [111], Eq. (4.3) shows how any fully polarized 
state of polarization (points upon the Poincaré sphere surface) can be generated by properly 
choosing the pair of retardances 1 and 2. 

On the other hand, the intensity measured on the detector (CMOS camera in Figure 4-
1) corresponds to the projection of the Stokes vector, after the light beam interacts with 
the sample, onto the polarization analyzer (PA) set by the PSA. The mathematical relation 
for the polarization analyzer corresponds to the first row of the Mueller matrix that 
characterizes the whole PSA 

      4 30º ,  45º ,  0ºPSA LP LR LR   M M M M   (4.4) 

where MLP (0°) is the Mueller matrix of a linear polarizer placed at 0° [111]. 

Therefore, from Eq. (4.4) we find that the polarization analyzers provided by our system 
can be written as 

  4 4 3 4 3
1 1 cos sin sin sin cos
2

     A   (4.5) 

It can be observed that the measured intensities are function of the PSA liquid crystal 
retardances 3 and 4, and so, on the applied voltages. Therefore, according to Eqs. (4.3) 
and (4.5) the PSG and PSA polarizations are fully characterized by the corresponding LC 
panels retardances. 

The retardances  of each LC panel in the PSG and PSA are controlled by the voltage 
applied to them. In our case, these voltages are computer controlled in order to automatize 
the data acquisition process. Before measuring the Mueller matrix image, the PSG and 
PSA are experimentally calibrated to accurately relate the applied voltages with the 
retardances of each LC panel (and thus, with the generated polarizations). In addition, the 
LC panels are mounted on rotating holders, allowing us to control the orientation of their 
fast axes during the calibration process. The characterization process is explained in detail 
in the forthcoming calibration section 4.3.2. 

 

 Illuminating arm 

Figure 4-4 shows the illumination arm scheme. As a light source we use a diode-laser 
working at 635 nm and connected to a single-mode fiber (Thorlabs, P1-630A-FC-1). The 
edge of the fiber is coupled to a zoom fiber collimator (Thorlabs, ZC618FC-A) that provides 
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a variable focal length between 6 mm and 18 mm, while maintaining the collimation of the 
beam. As a result, the size of the beam can be changed without altering the collimation. 
In addition, the existing beam has a nearly Gaussian intensity profile.  This system is 
mounted on a 6-freedom degrees holder (Thorlabs, K6XS), including shifts and rotations. 
In particular, it allows us to shift, tip and tilt the zoom fiber collimator in the x̂ - and ŷ -
axis directions.  

Afterwards, a prism-based linear polarizer (Thorlabs, GTH10M-A) and two LCDs 
(Thorlabs, LCC1223T-A) are placed to form the PSG that permits to generate any fully 
polarized SoP.  

In this situation, a collimated beam with customized polarization, labelled as 
illumination beam, is achieved. Note that thanks to the holders and mounts, the input 
beam can be steered to the proper propagation direction with high precision. 

 
 Layout of the illumination arm. The red arrow indicates the direction 

of propagation of the illumination beam. Light is steered to a collimator via an 

optical fiber. The K6XS mount allows for the adjustment of the collimated beam 

direction of propagation. The linear polarizer (LP) and the two liquid crystal 

displays (LCD1 and LCD2) form the PSG that generate any desired fully 

polarized state of polarization. 

 

 High NA Objective Focusing Systems (HNAOFS) 

The illumination beam, after passing through the non-polarizing beam-splitter cube (see 
Figure 4-1), is focused onto the sample by the high numerical aperture objective. Table 4-
1 gives the specifications of the chosen HNAO (Nikon, CFI LU Plan Fluor EPI P 100x) (see 
Figure 4-5). It is a planar objective, i.e., it corrects field curvature aberrations bringing to 
focus the off-axis image in a flat image plane. In addition, it is infinity corrected and ideal 
for polarizing applications. Moreover, it has a long working distance (1 mm), i.e., long 
distance between the front lens element of the microscope objective and the closest surface 
of the sample. The chosen HNAO is aberration corrected and the medium that should be 
present between the front lens of the microscope objective and the object being examined 
is air (ni = 1). The angular range provided by the used HNAO, calculated from Eq. (3.4), 
is of i,max = 64.16º. 
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Under this scenario, a widespread range of incident plane waves, each one with its 
characteristic angle of incidence, is focused and afterwards back propagated after being 
reflected on the sample surface. As was analyzed in the previous chapters, the HNAO 
makes possible to measure Mueller matrices over polar angles, i  

, varying from 0° to i,max 
and over all azimuthal angles (0, 360º) without the requirement of mechanical movements 
(see Figure 3-2), as it is the case of other existing reflective conoscopic microscopes based 
on mechanical arms [115, 116]. The use of a high numerical aperture provides large sample 
redundancy data (all the pairs (i, ) inspected) and allows performing fast and accurate 
measurements. Figure 4-6 shows a detailed scheme of the HNAO focusing system. 

HNAO Specifications: 
CFI LU Plan Fluor EPI P 100x 

Nikon 

Magnification 100x 

Numerical Aperture 0.9 

Working Distance 1 mm 

Polarizing Ideal 

Immersion Air 

Table 4-1. Technical specifications of the high numerical aperture objective chosen to focus the 

incident beam and to collect the reflected beam. 

   
 Photo of the HNAO: CFI LU Plan Fluor EPI P 100x Nikon. 

As we are dealing with a microscope with a very high NA, any small misalignment 
results in a distortion of the Mueller matrix image. To minimize the misalignments, the 
microscope objective is placed in a holder with the same 6-freedom degrees than the used 
for the laser (Thorlabs, K6XS), but now, including an extra x-y translation platform with 
longer shifting distances. This new holder is included to ensure the proper alignment of the 
objective. 

The HNAO also collects the light reflected by the sample. As the microscope objective 
is infinity corrected and the sample is placed at focal plane of the microscope, the resulting 
reflected beam is collimated and propagates backwards (see blue arrow in Figure 4-6). Note 
that this reflected beam must be steered to the CMOS camera. This is made by using a 
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non-polarizing beam-splitter cube (Thorlabs, CM1-BS013) with operating wavelength 
range from 400 nm to 700 nm.  

The dielectric beam-splitter consists of two prisms and a coating that is applied to the 
hypotenuse of one of the prisms that make up the cube (see Figure 4-7 (a)). This cube 
provides a 50:50 splitting ratio that is nearly independent of the polarization of the incident 
light. As we are going to measure the polarization changes produced by the sample, a non-
polarizing beam-splitter is needed. The low polarization dependence of the metallic-
dielectric coating allows the transmission and reflection for ŝ  and p̂  polarizations to be 
within 10% or 15% of each other (see Figure 4-7 (b)). The used NP-BS is specifically 
designed for applications in which polarization effects must be minimized. In addition, the 
beam-splitter cube has an antireflection coating deposited on each face to minimize 
unwanted reflections.  

 
 Scheme of the high numerical aperture objective focusing system. 

Green arrows indicate the direction of propagation of the incident waves, while 

blue arrows indicate the direction of propagation of the reflected waves. 

To accurately align the NP-BS, it is placed on a pitch and yaw tilt platform with 
micrometric precision (Thorlabs, PY003/M). 

In order to locate the focusing spot just on the sample surface, a high accuracy 
translation stage is needed to drive the sample in the ẑ -direction. To this aim, the 
motorized linear movement stage (Thorlabs, MTS25/M-Z8) is used. Its minimum step of 
0.05 μm allows focusing the light beam on the sample surface with precision. In addition, 
two motorized goniometers (Attocube, ECGt5050 and ECGp5050) are placed on the tip-
tilt stage to accurately rotate the sample, within a small angular range, about a fixed point 
in the space. The rotation of the sample permits to place a region of the curved sample 
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surface normal to the optical axis of the HNAO, in order to reflect back the incident beam 
without deviations. 

  
 (a) Scheme of a non-polarizing beam-splitter cube (NP-BS cube), (b) 

Transmission curves versus wavelength for the used 50:50 non-polarizing beam-

splitter. Red and blue lines indicate ŝ  and p̂  polarization transmission curves 

(Thorlabs, Inc.) [172]. 

The sample positioning system is placed on the main horizontal optical table and not 
connected with the vertical breadboard to avoid possible vibrations of the conoscopic 
Mueller microscope due to positioning movements. A scheme of the sample positioning 
system is shown in Figure 4-8. 

 
 Scheme of the sample positioning system. The sample has to be placed 

at the focal plane of the high numerical aperture objective (HNAO) and the 

reflected beam has to be parallel to the incident beam. Thus, a x-y-z linear stage 

and a tip-tilt stage allow us to pre-align the sample. Then, motorized goniometers 

and a z-motorized translation platform are used to move the sample with high 

accuracy. 
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 Detection Arm 

Finally, the detection arm is described. Its schematic representation can be seen in 
Figure 4-9. The light reflected by the NP-BS passes through the PSA that analyzes the 
polarization of the reflected beam. The technical specifications of the linear polarizer and 
both LCDs in the PSA are equivalent to the previously described PSG elements in the 
illumination arm, (Thorlabs, GTH10M-A) and (Thorlabs, LCC1223T-A). 

The camera used to measure the different intensity patterns is a sCMOS camera (PCO, 
pco.edge 4.2 USB) that has 16-bits of dynamic range, a high-resolution of 2048 × 2048 pixels 
and a pixel size of 6.5 m × 6.5 m. The sensor format diagonal is 18.8 mm. Note that a 
high-resolution camera is important to acquire the intensity patterns. The larger the 
number of pixels in the camera and the smaller the size they have, the larger the number 
of reflected angles that can be studied, i.e., higher resolution lead to larger measuring 
precision (see Eq. (3.5)). In this sense, a high dynamic range is also important to have a 
greater range of measured intensities.  

The camera was also selected considering the possibility to measure low reflectivity 
samples. In fact, this sCMOS sensor produces low-noise images in low light conditions and 
it has a homogeneous pixel response to light and high quantum efficiency. 

 
 Schematic representation of the detection arm. The light beam 

reflected by the non-polarizing beam-splitter (NP-BS) is analyzed by the PSA, 

formed by two liquid crystal displays (LCDs) and a linear polarizer (LP). The 

CMOS camera acquires the different intensity patterns, from which the Mueller 

matrix image of the sample is calculated. The blue arrow represents the direction 

of propagation of the collimated reflected light beam.  

The CMOS camera is placed in an x-y-z translation platform (see Figure 4-9), used to 
center the recorded intensity images. 
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Some references, as [173], analyze some imaging configurations for Fourier microscopy. 
Initially, we consider that the reflected beam is well-collimated. Thus, to avoid more 
complications during the alignment process, the intensity image of the back focal plane is 
not magnified at the CMOS camera plane. However, for some studies of the angle-resolved 
Mueller matrix, a lens system is placed between the PSA and the CMOS camera to magnify 
the back focal plane of the microscope objective onto the camera.  

The opto-electronical components of the detection arm, as well as all the other electronic 
elements in the conoscopic Mueller microscope, are controlled by a customized Labview 
program developed by our group, which is able to: 

- Acquire intensity images from the PCO camera. 

- Change the voltages of the four LCDs, allowing us to generate and measure different 
SoPs and PAs. 

- Move the goniometers and the motorized linear stage along the ẑ -axis to align the 
sample and to focus the incident beam on the sample surface.  

- Calculate the characteristic Mueller matrix image of isotropic and uniaxial 
anisotropic samples. 

 

4.2 Alignment method 

When dealing with experimental set-ups involving HNAO, all the misalignments present 
in the set-up are critically magnified. Under this scenario, to achieve a system alignment 
with high accuracy may result problematic and a proper alignment procedure is required. 
In this case, we need that the laser beam follows the path without deviating when it passes 
through the multiple optical elements. This situation may be critical if the final system is 
composed by many optical components in the set-up.  

The most critical alignment in our system results in correcting angular displacements 
between the laser source and the high numerical aperture objective. To solve this issue, 
most of the optical components in the set-up can be shifted in different directions and/or 
rotated in different angles. Therefore, we can control and correct the position and the angle 
of the incident and reflected beams, eliminating any possible misalignment. 

Throughout this section, the alignment method followed in the laboratory is explained.  

 

 Laser collimation and width measurement 

For a proper illumination of the microscope objective, the input light beam has to 
exhibit a Gaussian profile, as well as a beam radius slightly smaller than the objective 
aperture one. If these two conditions are not accomplished, some non-desired effects may 
degrade the proper operationally of the set-up. For instance, if the beam profile is larger 
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than the objective aperture, diffraction patterns may appear at the reflected beam after 
the back focal plane of the HNAO, modifying the pure sample polarimetric information. 
On the other hand, if the input beam is smaller than the objective aperture, the entire 
aperture of the objective cannot be illuminated, and the maximum angle of incidence will 
be reduced regardless of the NA of the microscope objective (in such scenario, the data 
redundancy provided by the system is not fully exploited). In addition, if the incident beam 
is shifted or exhibits a non-Gaussian profile, some of the angular trajectories provided by 
the HNAO will be limited when focusing the input beam over the sample under study. The 
collimation and the width measurement of the light beam are explained in this section. 

As stated before, our light source is a laser diode coupled to a short piece of a single 
mode fiber optic in order to steer the input light to the set-up. The output of the optical 
fiber is highly divergent, and as a consequence, a fiber collimator is necessary to transform 
it into a collimated beam. This is achieved by using a zoom fiber collimator that provides 
a variable focal length between 6 mm and 18 mm. This kind of collimator is chosen because 
it does not introduce spherical aberration and the beam diameter can be customized. Figure 
4-10 shows a graphical representation of the beam diameter at  = 633 nm (close to the 
635 nm wavelength we use in experiments) for some collimator focal lengths given by 
Thorlabs, Inc [172]. A position f = 18 mm shows a beam diameter more or less constant 
and smaller than 4 mm. 

 

 Theoretical beam diameter as a function of the collimator housing 

distance for a 633 nm illumination. The parameter f is the focal length of the 

collimator (Thorlabs, Inc.) [172]. 

The estimated laser beam diameter is smaller than the microscope aperture (5 mm). 
We can adjust the longitudinal distance between the collimator lens and the tip of the fiber 
optic by rotating the outer barrel of the collimator.  

To analyze if the laser beam is collimated, we have studied the transversal beam size in 
different axial planes, by measuring the spot diffused on a screen in two different ways. 
This was performed out of the set-up in order to measure the size of the spot in a large 
range of measuring distances. 

First, we have adjusted the beam diameter by rotating the outer barrel of the collimator 
in order to obtain a collimated beam of 4 mm. As our laboratory is approximatively 10 m 
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long, the beam size was compared in different axial planes within this full distance. When 
the beam diameter remained constant in a distance larger than 8 m, we considered that 
the laser beam was collimated in a first approximation.  

To obtain larger collimation accuracy for the illumination beam, a second approach was 
conducted. In particular, the “knife-edge” method [174–176] is considered to quantitatively 
characterize the intensity distribution of our input light beam. The main idea of this 
metrology technique consists on measuring, with a photodetector, the gradual intensity 
variation of diverse uneclipsed beam portions. To obtain the different intensities, we have 
used a sharp knife-edge that partially covers the input beam in a given axial plane. Under 
this configuration, we block different areas of the input beam, by conducting different 
transversal displacements of the knife, and the corresponding intensity is recorded at the 
photodetector for each applied displacement of the knife. From this collection of intensities 
related to different displacements of the knife-edge, we are able to reconstruct the intensity 
profile of the collimated input beam. The design of the experimental knife-edge 
configuration is shown in Figure 4-11. Analyzing the obtained data, the diameter of the 
collimated beam can be obtained. 

 

 Design of the knife-edge set-up used for the measurement of laser 

beam radius. The collimated light beam is initially blocked by the knife-edge. 

Then, the translation platform can be adjusted in appropriate transversal 

increments and the transmitted power is obtained by the photodetector. 

To implement the above-described optical scheme, we placed the knife-edge onto a 
micrometer-driven translation platform (see Figure 4-11), and we shifted the platform, in 
equal steps, from an initial position (completely blocked beam) until a final position (the 
whole laser beam was illuminating the photodetector). By doing so, the input beam profile 
was spatially scanned for different transversal positions of the knife-edge, and from the 
corresponding intensity measurements recorded at the photodetector, the transmitted 
power as a function of the knife-edge shift was obtained. The method was repeated to 
measure the beam diameter in two positions, near the fiber collimator (4 cm) and far away 
from it (2 m). From this data, the Gaussian profiles as well as the beam radius of the beam 
were studied. 
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According to Reference [174–176], when scanning a Gaussian beam as that of the laser, 
the transmitted power data as a function of the knife-edge displacement leads to a 
characteristic S-shaped curve, going from a null power (when the beam is completely 
blocked) to a maximum power Pmax (when all light is collected by the photometer). In our 
case, we have obtained the corresponding experimental data, at two different axial positions 
of the beam (the knife-edge plane was placed at 4 cm and at 200 cm far away from the 
source). Corresponding results are shown in Figure 4-12 (a) and (b), respectively. A total 
of 82 different transmitted powers (P(x)) were measured in each case, for the 82 different 
x-displacements of the knife-edge. Each position step was of 100 μm long. As above-stated, 
the first x position corresponds to a knife-edge position where the laser beam was 
completely blocked, whereas the final x position was chosen when the power was constant 
and equal to Pmax. 

 
 Plots of normalized optical power (P(x)/Pmax) versus knife-edge       

x-displacement, measured at (a) 4 cm; and (b) 2 m distances from the source. 

In Ref. [175], the third degree approximation for the beam radius is obtained from power 
versus position curves. By using this approach and data in Figure 4-12, we calculated the 
experimental radius of the used laser beam, r0. Note that the laser profile can be represented 
by a Gaussian function when representing the beam irradiance as a function of the beam 
spatial position in the direction of the radius. Therefore, different irradiance values are 
related to different Gaussian widths, and thus, to different radius values. In our case, we 
set as a beam radius that corresponding to an irradiance with a value of Imax/e (Imax is the 
maximum irradiance of the beam, found at its center of symmetry and e is the Euler's 
number). Under this scenario, the obtained radius values for the two evaluated axial 
positions are given in Table 4-2.  

Position r0 

(4 ± 1) cm (1.75 ± 0.12) mm 

(200 ± 1) cm (1.69 ± 0.10) mm 

Table 4-2. Calculated radius for two positions of the knife-edge. 

From the results shown in Table 4-2, we see how the illumination beam is slightly 
convergent. The corresponding error in the laser beam radius is smaller than 7%. The 
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decrease of the beam radius is very small, so we consider the input beam as a good 
approximation of a collimated beam. Moreover, the diameter of the illumination beam is 
slightly smaller than the HNAO aperture (HNAO aperture = 5 mm). 

In addition, from the obtained results, we simulated the corresponding irradiance 
pattern (I) of the Gaussian beam at these two positions (4 cm and 200 cm), following the 
expression given in Ref. [175] 

    20
max

0
exp 2

x x
I x I

r

    
   

  (4.6) 

where Imax is the maximum intensity of the beam at its center and x0 is the coordinate of 
the center. Obtained results for the 4 cm and 200 cm distances are plotted in Figure 4-13 
as blue and red lines, respectively. The green dashed line represents the value where the 
maximum intensity (Imax) decreases to 1/e times its maximum value. Therefore, half of the 
distance between the points where the Imax/e dashed line cuts the Gaussian profile 
corresponds to the radius r0. Last but not least, we can see how for irradiances smaller 
than Imax/e, the illumination beam radii are larger than r0. Although the intensities at 
these irradiance ranges are very small, these Gaussian profiles can still produce diffraction 
effects in the experimental Mueller matrix image due to the interaction with the optical 
apertures in the set-up. 

 
 Gaussian profile for our input laser beam obtained at (a) 4 cm (blue 

line); and (b) 200 cm (red line). The dashed line (green colour) represents the 

value where the maximum intensity (Imax) decreases to 1/e times its maximum 

value. The horizontal distance between the two values where the green dashed 

line cuts the Gaussian profiles is 2·r0. 
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 Proper Alignment of the Microscope 

Once the input beam was collimated to certain extent, we have built the conoscopic 
Mueller microscope considering the alignments concerns. The two main types of 
misalignments that can occur in our set-up are the parallel and the angular misalignments 
of the optical elements. The former occurs when there is an offset between the optical axis 
of the different optical elements and the direction of propagation of the laser beam. In turn, 
the latter occurs when there is an angular deviation between the optical axis elements and 
the laser beam direction. For the sake of clarity, these two situations are sketched in Figure 
4-14. These two types of misalignments can exist in either the vertical or horizontal 
directions as well as in any combination of them. The effects of the misalignments between 
elements on the angle-resolved Mueller matrix are important because they reduce the image 
quality by introducing aberrations into the system. 

 
 (a) Parallel; and (b) angular misalignments of an optical element 

with respect to collimated laser beam. 

To correct the deviation of the laser beam produced by each optical element that defines 
our set-up, we have introduced high-precision holders that provide different degrees of 
freedom, i.e., displacements along the Cartesian axis and rotations. These should allow us 
to accurately align the set-up, leading to a minimization of the misalignment errors. 

In addition, to define the optical axis of our set-up, we used two irises, which can be 
considered as two punctual points placed at two different axial positions.  
For a proper alignment, any incident, transmitted or reflected beam must pass through 
these two small apertures, and thus, they become our references during the alignment 
process.  

The most critical part in this procedure is the alignment of the HNAO that requires 
highly sensitive alignment. Let us start by explaining the steps followed to build the 
illumination and detection arms, as well as the sample positioning system of our conoscopic 
Mueller microscope. 
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The optical breadboard is fixed parallel to the optical isolation table and the zoom fiber 
collimator is placed on it. The optic fiber collimator is placed in a 6-axis kinematic optic 
mount (Thorlabs, K6XS) so that the illumination beam can be adjusted with high precision 
along 6 axes. As the propagation of the collimated laser beam marks the optical axis of the 
system, its direction of propagation is chosen parallel to the lines defined by the holes grid 
in the breadboard and to the optical table surface, facilitating the alignment process. 

Next, the PSG, that controls and manipulates the polarization of the illumination beam, 
is placed near the light source. The misalignments introduced by the PSG may be corrected 
by displacing the linear polarizer. We assume that the LCDs forming the PSG and PSA 
are thin enough, so we can neglect the defocus and the shift of the beam when adding them 
in the light path.  

Following, the non-polarizing beam-splitter is placed in a platform, which allows 
correcting the pitch and yaw tilt misalignments. After passing through the beam-splitter, 
the illumination beam is divided into one transmitted beam and one reflected beam. 
Then, two mirrors are located as far away as possible from the NP-BS (see M1 and M2 in 
Figure 4-15). As a consequence, the reflected and transmitted beams are reflected back, 
returning to the non-polarizing beam-splitter. In this sense, a Michelson interferometer is 
created. Taking into account the interference patterns produced according to the NP-BS 
positioning, its orientation is accurately corrected. The designed Michelson interferometer 
is shown in Figure 4-15. 

 
 Michelson interferometer built to align the non-polarizing beam-

splitter (NP-BS). The reflected and transmitted beams are reflected on the 

mirrors M1 and M2, respectively. Afterwards, they propagate back to the NP-BS 

and coherently recombine. The recombination of the two beams produces a 

pattern of interference, which can be observed by using a screen. The particular 

orientation and period of the interference fringes is related to misalignments on 

the NP-BS and is used to correct its positioning in the set-up. 
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Next, the optical breadboard is mounted vertically on a horizontal optical table using 
90° breadboard angle brackets. This allows us to set the direction of the illumination and 
the NP-BS transmitted beams parallel to the laboratory vertical axis. The transport and 
re-collocation of the optical breadboard over the horizontal optical table can 
produce misalignments of the optical elements, mainly of the NP-BS, which is the 
element most sensitive to misalignments. By using the Michelson interferometer, all the 
possible misalignments produced during the relocation can be controlled and solved quickly.  

Then, the PSA and the CMOS camera are placed in the set-up. This is done by specially 
controlling the beam deviation produced by the linear analyzer. Finally, the position of the 
camera has to be adjusted ensuring that detection beam is centered (see Figure 4-16). Note 
that for the alignment of the PSA and the CMOS camera, the laser light reflected from 
the M1 mirror is used as reference as it was previously accurately aligned. In other words, 
M1 sets the optical axis of the detection arm and thus, the position of M1 is never changed 
to keep this reference.   

 
 Set-up for the alignment of the Polarization State Analyzer and the 

CMOS camera. 

At this point, the mirror reflecting light transmitted at the beam-splitter (M2) is 
removed from the system to make room to the holder where the samples are placed.  
Finally, when a sample is inserted in the sample holder, and the transmitted beam is 
reflected back on the sample surface, the orientation of the sample has to be accurately 



116  Chapter 4 - Experimental implementation and calibration of the set-up 
 

adjusted until the beam coming from the sample is as parallel as possible to the optical 
axis of the detection arm (light reflected on M1). 

We want to emphasize that the sample positioning system present in the sample holder 
is set in the laboratory horizontal optical table, separated from the vertical breadboard, so 
that any vibration caused by moving the sample do not affect the alignment of the 
microscope system, specially of the high numerical aperture objective.  

 

 High NA Microscope Objective aligning method 

The alignment of a 100× microscope objective is very critical, and results in a very 
challenging process.  

The method used to align the 100× microscope is following described. A high reflective 
plane mirror is placed at the sample plane on the sample positioning system (let us call it 
M0). The NP-BS splits the collimated laser beam into two beams, as shown in Figure 4-
16. The partially transmitted beam travels to the mirror M0, placed at the sample plane, 
and the partially reflected one travels to mirror M1. When the mirror M0 is properly aligned, 
the reflected beams travel parallel to the detection arm axis. 

As a first approximation, the HNAO-holder, where the 100× microscope will be placed, 
is afterwards set in the vertical breadboard and adjusted until the light beam passes just 
through its center. Then, the high numerical aperture objective is inserted in the HNAO-
holder, which consists of a combination of two different holders. By properly adjusting 
these two holders, the alignment of the microscope can be corrected. In particular, one 
holder allows us to align the HNAO in XY position (x-y translation platform) and the other 
allow us to align the angle (tip and tilt optic mount). The mirror set in the sample 
positioner (M0) is shifted in z-direction by using the motorized platform to focus the 
incident light beam on the mirror surface. The camera is used to analyze the conoscopic 
pattern produced by sample mirror. By properly selecting the polarization of the PSG and 
PSA systems, the intensity distribution obtained at the CMOS camera, corresponding to 
the sample M0, shows a symmetric pattern, that can be used to facilitate the alignment 
process. In fact, HNAO misalignments result in visible asymmetric images in the CMOS 
camera. When the observed pattern in the camera is as symmetric as possible, and the 
reflected beam is collimated, we consider that the conoscopic Mueller microscope is built 
and well-aligned.  

The actual implementation of the conoscopic Mueller microscope we have built in the 
laboratory is shown in Figure 4-17. The main components are labeled to show the optical 
elements. 
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 Actual implementation of the conoscopic Mueller microscope in our 

laboratory. 

 

4.3 Calibration 

Experimental implementations always introduce small differences with expected 
theoretical parameters. For instance, the polarization elements used to build our conoscopic 
Mueller microscope (LCD, polarizers, non-polarizing beam-splitter, etc.) always present 
certain limit in the angular positioning, and their polarimetric values (retardances, 
transmittances, etc.) are not ideal, or may slightly variate with time. For this reason, an 
accurate polarimetric calibration of the system is always required in experimental 
implementations. The calibration process is done in two parts. First, the different 
polarization elements are calibrated and then whole set-up is tested. 
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 Beam-splitter calibration 

Although the used NP-BS is specifically designed for applications in which polarization 
effects must be minimized, we have observed that the beam-splitter cube introduces a small 
retardance that has to be taken into account. Any small polarization effect can be critical 
because light passes twice in the NP-BS, once the input beam and once the reflected beam. 
As a consequence, the non-polarizing beam-splitter was characterized by measuring the 
Mueller matrix both in transmission and in reflection before being placed in the final set-
up. 

By using a Mueller matrix dual-rotating retarder polarimeter given in Refs. [163–166], 
the experimental Mueller matrices of the NP-BS for reflection and transmission were 
obtained. Figure 4-18 shows the schemes of two set-ups used to calibrate the NP-BS in 
transmission and in reflection. Ideally, the Mueller matrices of the NP-BS should be close 
to the identity matrix, but the measured matrices, given in Table 4-3 and Table 4-4, show 
some important differences. From the measured Mmeasured matrices, and by using the Lu-
Chipman decomposition [111, 177], the Mueller matrices of the equivalent retarders and 
diattenuators were calculated (see Mdiattenuator and Mretarder in  Table 4-3 and Table 4-4). 

 
 Schemes of the set-ups used for measuring the Mueller matrix of the 

non-polarizing beam-splitter (NP-BS): (a) in transmission; and (b) in reflection. 
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Normalized Mueller matrices of the NP-BS  
measured in reflection 

Measured 
Mueller  
Matrix 

measured

1.0000 0.0137 0.0018 0.0057
0.0122 0.9707 0.1488 0.0544
0.0093 0.1468 0.7254 0.6437

0.0116 0.0414 0.6609 0.7345

                     

M  

Diattenuator 
Matrix 

 diattenuator

1.000 0.014 0.002 0.006
0.014 1.000 0.000 0.000
0.002 0.000 1.000 0.000
0.006 0.000 0.000 1.000

               

M  

Retarder 
Matrix 

retarder

1 0 0 0
0 0.987 0.145 0.062
0 0.150 0.735 0.661
0 0.050 0.662 0.748

                   

M  

Table 4-3. Normalized Mueller matrices of the non-polarizing beam-splitter measured in 

reflection. Mdiattenuator and Mretarder are obtained from Lu-Chipman decomposition of the 

measured Mueller matrix (Mmeasured). 

The diattenuation D(M) of a Mueller matrix is a measure of the variation of intensity 
transmittance with the incident SoPs and can be obtained from [111, 112] 
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The total retardance R can be found from [111] 
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     

  (4.8) 

where Tr denotes the trace of the matrix Mretarder. 

The values of retardance and diattenuation introduced by the NP-BS to the light beam 
in transmission and reflection are obtained from Eqs. (4.7) and (4.8). In transmission, we 
obtain RT = 10.53° and DT = 0.018, while in reflection RR = 138.39° and DR = 0.015. 
From these results, we observe how the diattenuation values introduced by the NP-BS can 
be neglected, but non-negligible retardance transformations into the reflected and 
transmitted light beams are introduced by such device. Therefore, they have to be taken 
into account for the beam propagation modeling. 

In addition, we have notice that the antireflective coating deposited on each face of the 
beam-splitter cube to minimize unwanted reflections is not perfect and dual images appear 
on the camera. The unwanted reflections are blocked using a diaphragm during the 
measuring process. 
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Normalized Mueller matrices of the NP-BS  
measured in transmission 

Measured measured

1 0,0030 0,0163 0,0064
0,0030 0,9716 0,0072 0,0148
0,0240 0,0033 0,9501 0,1758
0,0102 0,0125 0,1776 0,9530

                 

M  

Diattenuator  diattenuator

1.000 0.003 0.002 0.006
0.003 1.000 0.000 0.000
0.002 0.000 1.000 0.000

0.006 0.000 0.000 1.000

               

M  

Retarder retarder

1 0 0 0
0 1.000 0.001 0.013
0 0.003 0.983 0.182
0 0.013 0.182 0.983

                 

M  

Table 4-4. Normalized Mueller matrices of the non-polarizing beam-splitter measured in 

transmission. Mdiattenuator and Mretarder are obtained from Lu-Chipman decomposition of the 

Mmeasured Mueller matrix. 

 

 PSG and PSA calibration 

In section 4.1.1, it was introduced that the PSG and the PSA consist of a linear polarizer 
and two thermally stabilized liquid crystal variable retarders. The proposed PSG and PSA 
are able to implement any polarization generator and analyzer by properly selecting the 
orientation of the fast axis of the LCDs, 1 = 4 = 45º and 2 = 3 = 0º, and their pair 
of retardances, (1, 2) and (3, 4).  

The LCDs supplier company provides the function that relates the retardance of the 
liquid crystal panel and the applied voltage for a set of wavelengths. Since the LCDs 
performance depends on the operating temperature and the particular used wavelength, in 
order to get better accuracy, the PSG and the PSA should be calibrated. In addition, the 
NP-BS introduce an extra retardance, both in reflection and in transmission (see Table 4-
3 and Table 4-4), that has to be considered during the calibration process, because 
generated input polarizations and output analyzers are affected by this extra retardance. 
Therefore, to include the NP-BS effect and accurately calibrate the incident SoPs and the 
analyzers of the system, we have calibrated the PSG including the NP-BS in transmission, 
and the PSA with the beam-splitter in reflection. 

The procedure followed to calibrate the PSG and PSA systems, including the effects 
introduced by the NP-BS element, are followed discussed. 
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a) PSG and NP-BS in transmission calibration 

To accurately calibrate the generated SoPs, we have measured the polarization of the 
incident beam after the beam-splitter, this being the actual polarization incident to the 
HNAO. As the retardance introduced by the non-polarizing beam-splitter in transmission 
is constant, the states of polarization generated by the PSG+NP-BS system are only 
function of the pair of retardances (1 and 2).  

Therefore, different pair of voltages were applied to the LCDs and the generated SoPs 
were measured, after the light beam passes through the NP-BS, using a commercial 
polarimeter (Thorlabs, PAX5710VIS-T). The measurement process of the commercial 
polarimeter consists of a rotating quarter waveplate, a fixed polarizer and a photodiode, 
and it is able to analyze the state of polarization and the degree of polarization of an optical 
signal. The accuracy of the used polarimeter is of 0.2° for the azimuth angle, of 0.2° for the 
ellipticity angle, and of 0.005 for the normalized Stokes components (S1, S2, S3). 

Figure 4-19 shows the scheme of the PSG calibration. A look-up-table was created to 
contain the voltages applied to LCD1 and LCD2 and their respective generated SoPs. A 
total of 10,000 states of polarization were generated by using voltages steps of 0.02V and 
0.05V for the LCD1 and LCD2, respectively. In that way, the created SoPs were uniformly 
distributed on the Poincaré sphere surface. The liquid crystals were thermally stabilized 
during the calibration process to 33°C. 

 
 Calibration of the polarization state generator (PSG) and the non-

polarizing beam-splitter (NP-BS) in transmission using a commercial polarimeter. 

The light beam reflected by the NP-BS is blocked by using a Beam Blocker. 
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In order to fully characterize the Mueller matrix of polarimetric samples, only a small 
set of polarizations, from the whole 10,000 generated SoPs, are needed. In fact, the 
minimum number of polarization states required to form a polarization generator basis is 
of 4 SoPs. To make the conoscopic Mueller microscope less sensitive to errors and noise 
but, at the same time, to have a small measuring and processing time, we use the basis of 
6 generators explained in section 3.2.4.  

By using the look-up-table relating the 10,000 experimental SoPs, we used a 
programming code able to find those SoPs closer to the six theoretical values we are 
interested in (see Figure 3-7), and the corresponding voltages required to generate them. 
The six obtained polarizations states are given in Table 4-5. Note that as the Stokes vector 
S is normalized, S0 is equal to 1. 

Polarizations S1 S2 S3 V1 V2 

Horizontal linear 0.999795 -0.01993 -0.00371 1.234 1.440 

Vertical linear -0.99998 0.005658 -0.00248 1.665 3.250 

45° linear -0.002470 0.999974 -0.00679 4.321 1.465 

135° linear 0.001629 -0.99996 0.00873 2.382 3.650 

Right circular -0.01644 -0.01145 0.999799 2.822 2.030 

Left circular 0.001387 0.018235 -0.99983 3.090 1.010 

Table 4-5. Normalized states of polarization obtained after the calibration of the PSG and the 

beam-splitter in transmission. V1 is the voltage applied to LCD1 and V2 is the voltage applied 

to LCD2. 

Although the LCDs are thermally stabilized and their axes as well as the polarizer axis 
are fixed, the PSG needs regular calibration to ensure that it is properly working and 
measuring accurately. In this sense, the calibration process is reduced to measure the SoPs 
generated by the six pairs of voltages given in Table 4-5. The polarization states obtained 
after every recalibration are always very close to the theoretical ones shown in Figure 3-7. 
This method allows us to frequently recalibrate the PSG system, having an accurate input 
SoPs basis and minimizing the calibration time. In addition, during each calibration, the 
six generated states of polarizations were measured ten times and their averages were used 
to compute the generator matrix S (see Eq. (3.12)). 

 

b) PSA and NP-BS in reflection calibration 

To calibrate the polarization state analyzer system, including the effect of the non-
polarizing beam-splitter in reflection (i.e., the NP-BS+PSA system), we have used as 
polarized incident beams those calibrated in the previous section. As the Mueller 
polarimeter works in reflection, we have placed a mirror in the sample holder to reflect the 
polarized incident beam and steer it back to the NP-BS. The beams reflected by the mirror 
(backwards propagation) are those considered as the input beams to the NP-BS+PSA 
system. Note that the polarization of the beams illuminating the NP-BS+PSA system is 
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the one set by the PSG+NP-BS system (already calibrated), affected by the mirror 
reflection. Once the reflected beam passes through the PSA, a photodetector is used to 
analyze the intensity of the beam at the exit of the system. Figure 4-20 shows a scheme of 
the set-up used to calibrate the detection arm. 

 
 Calibration of the non-polarizing beam-splitter (NP-BS) + PSA 

system by using the PSG to generate the incident SoPs. The effect of a mirror 

used to reflect the incident beam must be considered. A photodetector is used to 

measure the beam intensities after the PSA. Red, green and blue arrows show the 

direction of propagation of light at different system sectors. A beam blocker 

removes the effect of light coming from the M1 mirror. 

The intensity of the beam measured by the detector is the projection of the polarization 
state reflected by the mirror over the unknown polarization analyzers (see Eq. (3.10)). To 
calibrate the analyzers, the six different SoPs obtained during the PSG calibration are used 
to illuminate the system. For a particular pair of voltages set to the LCDs of the PSA, six 
intensity measures are obtained corresponding to the six used input SoPs, leading to a 
system of independent linear equations similar to Eq. (3.12). In particular, the polarization 
analyzer a, corresponding to a selected pair of voltages, is given by [178] 

 1
P
 a B S   (4.9) 

where B = (I1 … I6) is the 1×6 intensity vector and 1
P
S  is the pseudoinverse matrix of 

the 4×6 incident Stokes matrix S = Mmirror·(Sin,1 … Sin,6), where the six different Sin,i are 
arranged in column. As the direction of propagation of the incident beam is perpendicular 
to the plane mirror surface, the Mueller matrix of the mirror can be written as [111] 
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 mirror

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

                

M   (4.10) 

Equation (4.9) describes the basic prescription for the experimental measurement of a 
polarization analyzer a. The same procedure is repeated for different pair of retardances, 
3 and 4, of the liquid crystal panels of the PSA, this constituting the different analyzers 
ai. This sequential method allowed us to calibrate 10,000 different analyzers. From this set 
of analyzers, 6 polarization analyzers were selected (the ones described in section 3.2.4) to 
form the analyzer matrix A. Table 4-6 gives the normalized (A0 = 1) experimentally 
measured analyzer vectors closer to the theoretical analyzers shown in Figure 3-7, and their 
corresponding pair of voltages. 

Polarizations A1 A2 A3 V3 V4 

Horizontal linear 1.009 -0.077 0.055 5.30 1.61 

Vertical linear -0.991 -0.056 0.019 1.93 0.75 

45° linear 0.007 0.989 0.083 1.54 1.50 

135° linear 0.088 -1.014 0.117 2.74 1.52 

Right circular 0.001 -0.005 1.022 2.63 2.15 

Left circular -0.012 0.007 -0.971 1.52 2.15 

Table 4-6. Normalized polarization analyzers obtained after the calibration of the PSA, including 

the effects of the beam-splitter in reflection. V3 is the voltage applied to LCD3 and V4 is the 

voltage applied to LCD4. 

As in the PSG calibration case, the PSA is regularly recalibrated. Nevertheless, only 
the pair of voltages shown in Table 4-6 are applied to the LCDs during the recalibration. 
The analyzers are measured 10 times during each calibration and then are averaged to 
calculate the matrix A, that is always close to the theoretical one.  

 

c) PSG and PSA validation 

The SoPs obtained after the calibration (PSG in Table 4-5 and PSA Table 4-6) are 
represented over the Poincaré sphere in Figure 4-21 (a) and (b), respectively. Although the 
matrices S and A are close to the optimized polarizations described in section 3.2.4, the 
calibrated SoPs (red spots over the Poincaré sphere) present small deviations from the 
theoretical values (blue spots over the Poincaré sphere), especially for the PSA case. 
However, the experimental Mueller polarimeter defined by the calibrated S  and A matrices 
is still very well-conditioned, minimizing the noise amplification (the CN

 
(PSG) = 1.76 and 

the CN(PSA) = 1.78; note that the theoretical minimum is 3 1.73  (section 3.2.4)). 
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 Representation of the six states of polarization chosen to form: (a) 

the matrix S; and (b) the matrix A. Red spots show the experimentally calibrated 

SoPs and blue spots show the theoretical expected SoPs.  

 

 CMOS camera calibration 

Each pixel of the CMOS camera may have different dark noise properties at a particular 
temperature and exposure time. Taking into account that the goal of the conoscopic 
Mueller microscope is to measure isotropic samples and uniaxial anisotropic crystals in a 
reflective configuration, intensity values acquired by the CMOS camera may be very small 
(i.e., in some cases, the camera may work in low intensity conditions due to the reflective 
measure of dielectrics). For this reason, the camera was tested to determine the background 
noise effect on the error of the measure, trying to minimize it. Some references as [179] 
propose to calibrate the camera by acquiring a number of dark frames in total darkness 
and averaging them. In this sense, some measurements were taken to analyze the dark 
noise, varying the exposure time of the camera as well as the Frame Average (FA). 

Let us start by analyzing dark images obtained for different number of averaged frames. 
Figure 4-22 shows four images for 1, 10, 30 and 100 averaged snapshots. We observe how 
the background image is more uniform when averaging larger number of images (100 
averaged images). Similarly, intensity images can present errors in some pixels for low 
intensities. For this reason, each intensity image used for the SoPs calculations is obtained 
from the average of a number of snapshots. In particular, to minimize the measuring time, 
we decided to average 30 snapshots per measure. 

Dark images were also obtained by varying the exposure time. Figure 4-23 shows four 
dark images for 30 averaged snapshots. Based on these results, a small exposure time          
(1 ms or lower) is desired to reduce dark noise produced by the camera. Note that some 
PSG-PSA configurations imply low intensity measures, thus, small exposure times are 
interesting for accurate Mueller matrix images, independently of the sample reflectivity. 
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 Background images obtained by averaging a different number of 

frames (FA): (a) 1, (b) 10, (c) 30; and (d) 100. The color bar shows the grey level 

value (maximum grey level of 65536 (16-bit)). 

 

 Dark images obtained with different exposure time for 30 averaged 

snapshots. The color bar shows the grey level value (maximum grey level of 65536 

(16-bit)).  

As dark noise is temperature dependent, the used camera is warmed up before being 
applied and dark images are taken each time the Mueller matrix image is measured. The 
obtained dark image is subtracted from the intensity images acquired by the camera, 
minimizing the background random noise.    
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Chapter 5 Results: Validation, applications 

and perspectives 

In the previous chapters, the design and experimental implementation of a conoscopic 
Mueller microscope working in reflection that is able to measure the angular-resolved 
Mueller matrix image of dielectric isotropic and uniaxial anisotropic samples, as well as the 
mathematical model proposed to obtain the optical parameters of interest (refractive 
indices and, when it exists, the orientation of the optical axis) have been presented. The 
first part of this chapter analyzes the validity of the reflective Mueller polarimeter (section 
5.1) and describes some filtering techniques posteriorly used to improve the measured 
Mueller matrix images (section 5.2). Then, in section 5.3, the high numerical aperture 
objective is calibrated and introduced in the set-up to convert the reflective polarimeter in 
a conoscopic Mueller microscope able to measure angle-resolved Mueller matrices. The aim 
of the current chapter is to show the measured data and the best-fit parameters for some 
materials. In this regard, different samples with diverse physical characteristics (isotropic, 
anisotropic, planar and curved surfaces) were measured to provide the potential of the 
method. Finally, some perspectives are discussed in section 5.4, which may enhance the 
performance of the method. 

 

5.1 Experimental validation of the reflective Mueller 
polarimeter 

Before measuring any isotropic or uniaxial anisotropic sample with our conoscopic 
Mueller microscope, the Mueller polarimeter built in the laboratory is tested to assess its 
accuracy and repeatability. 

To validate the Mueller polarimeter some Mueller matrix images of well-known 
polarimetric samples are measured. The experimental Mueller matrix images are calculated 
by using Eq. (3.16), where the intensity vector ,i j


B  for each sample is measured with the 

CMOS camera. The obtained images were analyzed and compared with the expected 
theoretical results. As the used test-samples are transmissive samples (as polarizers or 
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waveplates), but we measure in a reflective configuration, we have placed a plane mirror 
at the back of samples, to reflect light back and to steer it to the PSA arm. The 
instrumental configuration set to validate the samples is similar to that shown in Figure 
4-20 (PSA calibration configuration). The test samples are placed between the NP-BS and 
the mirror in a double-pass configuration of the polarimeter. Note that light passes twice 
across the measured sample, propagating in opposite directions (forward and backward 
propagations). The equation that represents a general double-pass Mueller matrix image is 

 DP sample mirror sample
   M M M M   (5.1) 

where the “DP” subscript stands for double-pass configuration, Mmirror (see Eq. (4.10)) 
represents the Mueller matrix of the used plane dielectric mirror placed normal to the 
incident beam and the plus and minus signs indicate the direction of light when passing 
through the sample. The plus sign corresponds to the forward direction, when light 
propagated towards the mirror, and the minus sign to the backward direction, when light 
had already been reflected and travels away from the mirror, towards the NP-BS. 

Figure 5-1 shows the measured Mueller matrix image of the plane mirror used during 
the calibration process and a simulation of the expected Mueller matrix image, where an 
excellent agreement is observed. 

 
 Mueller matrix image of a mirror obtained after the PSG and PSA 

calibration. (a) Real measure; and (b) simulation. 

The polarimetric response across the pupil of the Mueller matrices can be quantitatively 
seen from cross-sections set along the Mueller coefficients images. To this end, cross-
sections along two directions were taken to compare the variations between some Mueller 
matrix elements observed in Figure 5-1. The two cross-sections pass through the center of 
the images, one of them is parallel to the horizontal and another is parallel to the vertical. 
The obtained results are provided in Figure 5-2 (a) and (b), respectively. In each case, the 
coefficients cross-sections were obtained for the theoretical and the experimental Mueller 
matrix images, being represented as red and blue colors, respectively, in Figure 5-2. The 
error of the experimental image can be observed in some components, as M01, M02, M10 and 
M20. The averaged Mean Absolute Error (MAE) of each pixel on the experimental 
normalized Mueller matrix image is 0.003 (this is a 0.15% error taking into account the 
full M coefficient range [1, 1]), that is calculated by using 
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  (5.2) 

where exp
,j kM  and pred

,j kM  are the (j, k) elements of the experimental (exp) and predicted 
(pred) Mueller matrix, respectively, N is the number of pixels and i is the evaluated pixel 
of the experimental and predicted single Mueller matrices.   

 
 Intensity pixels-cross-sections obtained from the mirror Mueller 

matrix images shown in Figure 5-1. The taken cross-sections are: (a) horizontal; 

and (b) vertical, both passing through the center ((0,0) pixels) in the Mueller 

matrix images. 

Furthermore, a polarizer and a quarter wave plate were used as polarimetric validation 
samples. As was explained, each validation sample was placed between the non-polarizing 
beam-splitter and the plane mirror used during the calibration process, in a double-pass 
configuration. The measured results have been compared with their respective simulations 
calculated by using Eq. (5.1). Figure 5-3 and Figure 5-4 show the experimental and 
simulated Mueller matrix images of the used polarizer and quarter wave plate, respectively, 
at different orientations angles of their axis, . The Mueller matrix images were normalized, 
i.e. all the pixels of the different Mueller coefficients are divided by the M00 value for the 
corresponding pixel (note we were dealing with a Gaussian beam).  

We calculated the remaining Mean Absolute Error on each normalized single matrix, 
i.e., the Mueller matrix of each pixel, and we found it smaller than 0.78% for the polarizer, 
and 0.39% for the quarter wave plate . Although the above-obtained errors show an optimal 
performance of the polarimeter implemented, the small errors observed in the experimental 
images can be related to small changes in polarimetric S 

 and A matrices. However, we 
think that these errors are not only related to the polarimeter sensitivity, but mostly (in a 
higher error order) to the fact that the measured polarimetric elements are not ideal and 
they present an offset with respect to the theoretical characteristic parameters, for instance, 
in  the  orientation  or  the  transmission-extinction  coefficients  for  the  measured  polarizer, 
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 Mueller matrix images of a double-pass linear polarizer and a mirror 

for different orientation angles of the polarizer. The measured Mueller matrix 

images are shown in the first column while their respective simulations are in the 

second column. The orientation angles of the polarizer are (a) – (b)  = 0°; (c) – 

(d)  = 90°; (e) – (f)  = 45°; and (g) – (h)  = 135°. 
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 Mueller matrix images of a double-pass quarter wave plate (QWP) 

and a mirror for different orientations of the QWP fast axis. The measured 

Mueller matrices are in the first column while their respective simulations are in 

the second column. The orientation angles of the quarter wave plate fast axis are 

(a) – (b)  = 0°; (c) – (d)  = 45°; (e) – (f)  = -60°; and (g) – (h)  = 80°. 
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and in the orientation or the retardance for the quarter wave plate. As an example, in 
Figure 5-4 (a) and (c), the experimental offset of the quarter wave plate can be appreciated 
by taking into account certain coefficients that show non-zero values, contrary to the 
simulated data (Figure 5-4 (b) and (d)). 

In addition, some distortions in the images can also be observed in the experimental 
images. They are due to condensate droplets related to air that slips into the CMOS camera 
protector glass and condensate above certain CMOS camera temperature. What is more, 
they cannot be eliminated because it is an inaccessible part of the camera. The condensation 
appears when the camera is overheated, and the cooling fan is working. The temperature 
changes and the vibration produced during the cooling process changes the droplets 
positions and sizes. These changes imply that when single Mueller matrices are normalized 
some depolarization effects appear in the resulting images. We can appreciate the droplets-
based depolarization effect in Figure 5-3; while in Figure 5-4, the camera was cooled and 
the condensation not yet occurred. 

The depolarization produced by the undesired small droplets observed in Figure 5-3 and 
Figure 5-4 can be quantitatively seen from cross-sections set along the Mueller coefficients. 
To this end, cross-sections are taken parallel to the horizontal and passing through the 
center of the images. The obtained results are provided in Figure 5-5 and Figure 5-6. In 
each case, the coefficients cross-sections where obtained for the measured (or experimental) 
and the expected (or theoretical) results, being represented as different colors, blue and 
red, respectively. Small discrepancies are observed between theoretical and experimental 
data for some pixels as blue picks. 

 

5.2 Improving experimental Mueller matrix images 

The refractive indices and the orientation of the optical axis of the measured sample are 
determined by an optimization program, described in section 3.5, which compares a 
measured Mueller matrix image with multiple simulated Mueller matrix images. The 
optical parameters of the simulated Mueller matrix leading to the minimum Mean Squared 
Error (MSE) are those selected by the software as the correct solution.  

During the measuring time some undesired effects can affect the measured angle-
resolved Mueller matrices, making more difficult to obtain the actual parameters that 
characterize the samples. As stated before, in Figure 5-1 and Figure 5-3, we can observe  
undesired changes in the experimental Mueller matrix images produced by condensate 
droplets on the CMOS camera protector glass. In addition, other effects may come from 
scattered light due to defects and inhomogeneities of the analyzed samples, from undesired 
reflected light coming from planes different than the HNAO focal plane, from diffraction 
patterns due to the size of the relative HNAO aperture and beam sizes and from camera 
electronic noise, among others. All these error sources can introduce variations in the 
acquired intensity patterns used to calculate the experimental angle-resolved Mueller 
matrix image (see Eq. (3.16)).  
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Since the theoretical model used to simulate Mueller matrix images of isotropic or 
uniaxial anisotropic samples does not take into account the above-stated undesired effects, 
it is important to remove them as much as possible from the experimental Mueller images.  

 
 Cross-sections of the Mueller matrix images shown in Figure 5-3. The 

polarizer axis is at (a)  = 0°; (b)  = 45°; (c)  = 90°; and (d)  = 135°.  

In the literature, there are several contributions of various authors who have dealt with 
these undesired effects and they provide several ways to improve the resulting elements of 
Mueller matrices. The following sections offer an overview of the Mueller matrix image 
processing that were carried out to improve the experimental results before the 
optimization program was used. 
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 Cross-sections of the Mueller matrix images shown in Figure 5-4. The 

quarter wave plate fast axis is placed at (a)  = 0°; (b)  = 45°; (c)  = -60°; 

and (d)  = 80°.  

 

 Covariance filtering 

The coherency matrix or Hermitian matrix H can be calculated as a unitary 
transformation of Mueller matrices. The coherency matrix associated to a physically 
realizable Mueller matrix has to be necessarily positive semidefinite or, in other words, its 
four eigenvalues (i) have to be non-negative [180–183]. Given an experimental Mueller 
matrix, it is possible to build its respective 4×4 Hermitian matrix by using the following 
relation [182] 
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where mi,j (i, j = 0, 1, 2, 3) are the sixteen elements of the Mueller matrix images. Note 
that the coherency matrix can be represented as H = V · D · V * where V and V * are 
orthogonal matrices and D is a diagonal matrix. The matrix V contains the eigenvectors 
of matrix H arranged by columns, and V *  is its conjugate transpose. In turn, D represents 
the diagonal matrix composed of the four non-negative eigenvalues of H ordered so that

3 2 1 00        .  

The undesired effects produced during the measure time introduce variations in the 
recorded intensity patterns used to calculate the Mueller matrix images, and consequently 
in corresponding i. In other words, certain non-physically realizable content is present in 
the measured Mueller matrices, which translates as negative values for some of the 
eigenvaluesi. References [183–185] propose to filter the coherency matrix setting all 
negative eigenvalues to zero. The main reason is that as negative eigenvalues are 
unphysical, by removing i < 0 we are filtering experimental noise. The filtered coherency 
matrix H ’ is built from the resultant covariance-filtered eigenvalues. Once the filtered 
coherency matrix H ’ is calculated, its nearest physically realizable Mueller matrix image 
M ’ is calculated by [182] 
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  (5.4) 

where hi,j (i, j = 0, 1, 2, 3) are the sixteen elements of the filtered coherency matrix H ’. 
This new filtered Mueller matrix satisfies the conditions for realizability and it is a good 
estimation for the experimental Mueller matrix.  

In this way, we propose to filter each pixel of the Mueller matrix image, measured with 
our conoscopic Mueller microscope, by using the covariance method to obtain a physically 
realizable M ’ image. 

 

 Depolarization filtering 

On the other hand, experimental Mueller matrix image may present depolarization 
contributions. Although depolarizers represent physical realizable situations, depolarization 
contributions do not describe our actual situation as we are measuring non-depolarizing 
samples. The depolarization content present in experimental Mueller matrices can be 
originated from multiple reflections, scattering processes or due to spatial or temporal 
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integration over each pixel with varying polarimetric response. As the theoretical formalism 
presented in Chapter 2 and Chapter 3 considers fully polarized Mueller matrix images, the 
developed optimization program that compares simulated and experimental patterns will 
only be efficiently used to characterize samples if the depolarization of experimental data 
is removed.  

As was shown in section 4.3.1, Lu-Chipman presented an algorithm to decompose a 
Mueller matrix into three component pure Mueller matrices representing depolarization, 
pure retardance, and pure diattenuation [177] 

 '
Depolarizer Retarder Diattenuator  M M M M   (5.5) 

Thus, by calculating Lu-Chipman decomposition, the Mueller matrix images obtained 
from Eq. (5.4) can be filtered again, eliminating undesired depolarization effects. A 
remultiplication of the retardance and diattenuation matrices, by removing the 
depolarization content (i.e., MDepolarizer is considered as the identity matrix in the 
remultiplication), results in a non-depolarizing Mueller matrix, ready for the calculus of 
the refractive index. 

The obtained filtered Mueller matrix image (after covariance and depolarization filtered) 
is used to calculate the characteristic optical parameters of the sample. 

 

5.3 Measured Mueller matrix images of samples 

After the calibration and validation processes of the Mueller polarimeter, the HNAO is 
placed and aligned to convert the set-up into the conoscopic Mueller microscope. As was 
explained in section 3.2, the polarization transformation introduced by the high numerical 
aperture objective depends on the polarization of the homogeneous input beam as well as 
on the spatial coordinates of the illumination plane waves on the back focal plane of the 
HNAO. To measure the angle-resolved Mueller matrices, the six selected SoPs (see Table 
4-5) are generated by the PSG and, after the interaction of the polarized light beam with 
the sample, the output beam is projected onto the six PAs (given in Table 4-6) by using 
the PSA. The resulting thirty-six intensity images are recorded using the CMOS camera 
and processed to obtain the characteristic Mueller matrix images of the sample. In Figure 
3-13, we can observe an example of the thirty-six intensity distributions, for n = 1.5,            
 = 635 nm and a maximum angle of incidence of 90º, used to calculate the simulated 
Mueller matrix image shown in Figure 3-9. 

 

 High NA Objective calibration 

Although the chosen high numerical aperture objective is specific for polarization 
applications, we have to polarimetrically calibrate it before measuring any angle-resolved 
Mueller matrix, to analyze any polarimetric effect it can introduce that can affect our 
measure; as diattenuation, retardance or depolarization. 
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Reference [121] presents a method to calibrate the HNAO by using a high quality 
spherical mirror. According to the Debye approximation, we consider the wavefront in the 
focal region of the high numerical aperture objective as a superposition of plane waves. 
When the center of the spherical mirror is superimposed with the focal point of the HNAO, 
each light ray k i is reflected back on itself, or in other words, each incident ray is normal 
to the mirror surface, avoiding the polarization effects due to high angles of incidence. A 
schematic diagram is shown in Figure 5-7. 

 
 Schematic diagram of the spherical mirror and the high numerical 

aperture objective (HNAO). Each incident ray is reflected back in the same 

direction when the focal point of the HNAO coincides with the center of the 

spherical mirror. 

By using the optimized Mueller polarimeter, the polarization changes introduced by the 
double-pass through the HNAO and by the spherical mirror reflection can be measured. 
Taking into account the normal reflection at the spherical mirror (see Eq. (4.10)) that gives 
the Mueller matrix for a mirror at normal incidence, Mmirror, is valid for all the k i, and the 
Mueller matrix of the system can be expressed as 

 mirrorob of  M M M M   (5.6) 

where Mob and Mof are the Mueller matrices of the HNAO in single-pass in the backward 
and forward directions, respectively. We have considered that the Mueller matrices in the 
forward and the backward directions are equal  o ob of M M M  [125] and the Mueller 
matrix of the HNAO in single-pass is the one of an isotropic linear dichroic retarder [124, 
125]. Therefore, Eq. (5.6) is rewritten as 

  2
mirror o M M M   (5.7) 

and  

 2 1
mirroro
 M M M   (5.8) 

The square root of the Mueller matrix image Mo can be calculated by using numerical 
methods implemented into MATLAB (see Ref. [186]). Figure 5-8 (a) shows the measured 
Mueller matrix image of the whole system (M in Eq. (5.6)), while Figure 5-8 (b) shows the 
calculated Mueller matrix image of the HNAO (Mo).  
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  (a) Measured Mueller matrix of the HNAO-spherical mirror system 

(Matrix M in Eq. (5.6)). Light has passed twice through the high numerical 

aperture objective (in the backward and forward directions). (b) Mueller matrix 

image of the high numerical aperture objective (Mo). 

By using the Lu-Chipman decomposition [111, 177], explained in section 5.2.2, the 
Mueller matrices of the equivalent retarder, diattenuator and depolarizer can be calculated 
from the matrix Mo of the HNAO. Figure 5-9 (a), Figure 5-10 (a) and Figure 5-11 (a) 
shows the obtained results for the equivalent diattenuation, retardance and depolarization 
matrices, respectively. They result in three quasi-diagonal matrices close to the identity. 
The results obtained from this decomposition conclude that the chosen high numerical 
aperture objective does not introduce important changes in the polarization of the incident 
and reflected beams. To quantitatively show that the three matrix images represented in 
Figure 5-9 (a), Figure 5-10 (a) and Figure 5-11 (a) are close to the identity matrix, we 
have calculated the horizontal cross-sections of all of them (see Figure 5-9 (b), Figure 5-10 
(b) and Figure 5-11 (b)).  

 
  (a) Diattenuation matrix image after Lu-Chipman decomposition of 

the Mueller matrix image of the high numerical aperture objective shown in 

Figure 5-8; and (b) cross-section of the diattenuation matrix image. 
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From Figure 5-9 (b), Figure 5-10 (b) and Figure 5-11 (b), we can conclude that the high 
numerical aperture objective does not introduce notable polarization effects that can affect 
the experimental Mueller matrix images. In fact, the Mean Absolute Error between the 
identity matrix and any single diattenuation, retardance and depolarization matrices are 
Ediattenation = 0.0032, Eretardance = 0.0031, and Edepolarization = 0.0023, respectively. 

 
 (a) Retardance matrix image after Lu-Chipman decomposition of the 

Mueller matrix image of the high numerical aperture objective shown in Figure 

5-8. (b) cross-section of the retardance matrix image. 

 
 (a) Depolarization matrix image after Lu-Chipman decomposition of 

the Mueller matrix image of the high numerical aperture objective shown in 

Figure 5-8. (b) cross-section of the depolarization matrix image. 

 

 High NA Objective alignment concerns  

Once the HNAO is calibrated, the specimens are placed on the sample positioning 
system. The goniometers and the translation platforms are used to align the sample surface 
in such a way that the light beam is reflected back parallel to the incident beam (see Figure 
4-8), while the K6XS holder is used to align the HNAO (see Figure 4-6). Note that by 
using an objective with a high numerical aperture implies that any small angular 
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misalignment is magnified. To show the importance of this effect, Figure 5-12 demonstrates 
how the Mueller matrix image of a glass sample appears when the high NA objective is 
misaligned (Figure 5-12 (a)) and carefully aligned (Figure 5-12 (b)). 

 
 (a) Misaligned; and (b) aligned Mueller matrix images of a glass 

sample after covariance and depolarization filtering process. 

In addition, the sample must be positioned at the focal plane of the high numerical 
aperture objective (2 mm). It is important to remark that if the sample is not at the right 
axial distance, the measured Mueller matrix image will present modifications from the 
expected simulation, with modulations due to diffraction effects, and the measured kr do 
not coincide with the expected ones. To show this critical dependence of the Mueller matrix 
images with the axial position of the sample, we performed the following experiment. By 
moving the motorized translation stage of the sample positioning system (see Figure 4-8), 
the distance from the focal plane to the sample surface can be accurately changed (as 
sketched in the scheme given in Figure 5-13 (j)). Under this scenario, we measured a set 
of experimental Mueller matrix images corresponding to different sample-HNAO axial 
distances. The obtained results are given in Figure 5-13 (a) - (i). In particular, between 
each consecutive Mueller matrix image in Figure 5-13 there is a tiny space increment of 
the sample position of 5 µm. As was expected, different reflected beam spot dimensions, 
due to axial displacement of the sample, imply a significant variation of the Mueller matrix 
pattern size. In addition, different diffractive effects can also be observed in some Mueller 
coefficients, depending on the axial position of the sample. 

We obtain the right size Mueller matrix image when the sample is placed at the focal 
plane of the HNAO and the incident and the reflected beams are overlapped, as can be 
seen in Figure 5-14 (a). Otherwise the size of the reflected beam over the front lens of the 
HNAO is going to be smaller (or bigger) than the desired (see Figure 5-14 (b)), producing 
different Mueller matrix pattern sizes shown in Figure 5-13 (a) - (i), and modifying the 
value for the maximum azimuthal angle of incidence, i,max. 
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 (a) – (i) Mueller matrix images of a glass sample at different sample-

HNAO distances; and (j) scheme of the displacement of the sample to find the 

focal distance of the HNAO. 

As a consequence of this critical dependence of Mueller images with the axial position 
of the sample, an experimental method must be applied to place the sample at the proper 
distance from the HNAO. In this sense, a lens system was included in the instrumentation 
to find the position where the sample is at the focal plane of the high NA objective. The 
used optical system makes a real image of the focal spot of the HNAO over the CMOS 
camera. When the sample is exactly placed at the focal plane of the microscope, the image 
of the spot recorded by the camera is well-defined. Out of this position, certain defocusing 
is observed, and the spot is blurred and its size increases. Therefore, the spot focalization 
can be used as criteria to discriminate, to certain extent, the proper z-plane of the sample. 
Once the sample is set to the proper position, the lens system can be removed to perform 
the angle-resolved Mueller matrix measures in Fourier space. Taking into account that we 
are working with high numerical aperture objectives and the spot size at its focal plane is 
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very small, the additional optical system has to magnify the size of the image over the 
CMOS camera. In other words, if the image of the spot is small, it is complicated to 
appreciate when the sample surface is placed at the focal point of the HNAO. 

 
 Sample placed at: (a) the focal plane of the high numerical aperture 

(NA) objective (z = z (focal distance)), the incident and reflected beams are 

overlapped. (b) z < z (focal distance), the incident beam does not focus over the 

sample, thus the reflected beam does not overlap the incident beam. 

When the system is considered to be aligned and the sample is placed at the focal plane 
of the HNAO, the characteristic Mueller matrix of the sample can be measured. As an 
example, we follow with the study of the glass sample. The obtained experimental Mueller 
image of this glass specimen at the proper axial position is filtered and processed to improve 
the experimental results (section 5.2). Figure 5-15 shows the significant difference between 
the Mueller matrix image before and after the filtering process produced by depolarization 
and noise. 

 
 Experimental Mueller matrix images of a planar glass sample (a) 

before the filtering process; and (b) after the covariance and depolarization 

filtering processes. 
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It should be mentioned that although the sample and the HNAO look well-aligned, some 
parts of the designed prototype are placed manually, and they are very difficult to properly 
align. Consequently, any experimental Mueller matrix image (for example Figure 5-12 (b) 
and Figure 5-13 (a)) may be slightly different than the simulated matrices (see Figure 3-
18). In both experimental figures, Figure 5-12 (b) and Figure 5-13 (a), some distorted 
Mueller matrix elements can be observed. They are mainly due to: 

- Very small set-up misalignments. 

- The size of the incident Gaussian beam (bigger/smaller than the HNAO aperture), and 
the corresponding diffractive effects. 

- The sample is not perfectly placed at the focal plane of the high numerical aperture 
objective. 

- The reflected beam is formed by a combination of multiple unwanted reflections coming 
from different parts of the sample. 

- The sample axially moves during the measuring time as a consequence of the vibration 
produced by the CMOS camera cooling fan. It can also move due to an uncontrollable 
very smooth movement of the sample positioning system due to an adjustment of the 
screws position. These two kinds of displacements, that are negligible in low aperture 
situations, have to be controlled in measures with high numerical aperture objectives. 

Because of the combination of all these effects, the measured patterns of the angle-
resolved Mueller matrix images are not identical to the simulated data, presenting small 
distortions in the experimental result. However, we can consider that the measured images, 
after the filtering process, are close to the expected values, so the optical parameters can 
be approximately calculated using the optimization program. 

 

 Correlation between model parameters  

The optimization program calculates the desired optical parameters of samples by using 
some estimation from previous knowledge of the sample (see section 3.5). A set of lower 
and upper bounds on the unknown variables as well as an initial estimation of the 
parameters used to simulate an initial theoretical Mueller matrix image are introduced into 
the optimization program to obtain the best-fit results. In addition, some termination 
tolerances are fixed on the function value (Eq. (3.18)) and on the studied parameters, so 
that fitting program finalizes in a local minimum that satisfies the constrains and the 
tolerances.  

Those parameters which produce the best fit of the model are assumed to be the solution 
for the optical constants of samples. However, from a previous set of measures done at our 
laboratory, we have concluded that the parameters obtained with the optimization program 
were not, in all cases, the actual ones. We found that there are correlations between some 
model parameters, i.e., certain variables are highly dependent, in such a way that multiple 
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combination of parameters lead to different local minimum and different solutions being 
distant from the actual parameters are obtained. In this respect, the mathematical model 
presented in Chapter 2 and Chapter 3 constitutes a proper approximation to the physical 
reality of samples, as provided by the simulations of artificial samples and the proper 
identification of the physical parameters. However, when dealing with experimental Mueller 
matrices, experimental errors added to the Mueller matrices, whose origin was discussed in 
previous sub-sections, move away the experimental Mueller matrix image from the real 
Mueller matrix of the sample, and the correlation issue becomes critical. The solution lies 
in eliminating these observed correlations to properly calculate the refractive indices. 

Note that when two or more model parameters are correlated, a high degree of 
correlation adds difficulty in finding these parameters [110]. In addition, depending on the 
starting points and constrains of these parameters, an acceptable figure of merit can be 
obtained for a wide range of values of the correlated parameters. 

To get the best and real solution when the set of parameters are dependent, it is 
appropriate to optimize one parameter at a time and to run the optimization program 
using different initial guess values and constrains. Comparing the function value MSE (Eq. 
(3.18)), the desired parameters are those that have a lower local minimum objective 
function value. In our case, when the sample is uniaxial anisotropic, there are eight fit 
parameters ((x0, y0), 0 

, i,max 
, c 

, c 
, ne and no) to be calculated. On the other hand, when 

the sample is isotropic, there are just five unknown parameters ((x0, y0), 0 
, i,max 

 and n). 
However, not all of them are highly correlated. Along the next sections, we have studied 
the correlation relations between parameters, and which ones are the most critical to 
accurately calculate the refractive indices of samples.  

Next sub-sections show some materials that have been measured in our laboratory. The 
following 4 × 4 Mueller matrix elements were normalized with respect to the first element 
M00 that represents the total intensity of light reflected by the sample. Then, they were 
filtered, and their depolarization contribution was removed. In this way, the Mueller matrix 
images shown in following sub-sections are filtered angle-resolved Mueller matrices, which 
were used to obtain the optical parameters of samples. Furthermore, the absolute error of 
the measured Mueller matrices and the best-fit parameters Mueller matrix images are given 
as well.  

 

 Mueller matrix images of unknown samples 

To evaluate if the conoscopic Mueller microscope is able to characterize different 
samples (isotropic, anisotropic, planar, non-planar, liquid, solid, etc.), we measure the 
angle-resolved Mueller matrices of different materials. The refractive indices of studied 
samples were previously measured by using a commercial Abbe refractometer (Carl Zeiss 
Abbe Refractometer, Number 323245), see section 1.2.2, as a reference value, and both 
values were compared. 
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a) Olive oil 

Olive oil is an isotropic dense liquid. Its normalized angle-resolved Mueller matrix 
measured with our conoscopic Mueller microscope is shown in Figure 5-16. The obtained 
Mueller matrix image is off-centered and it presents some anomalies due to small vibrations 
of olive oil produced by the CMOS camera cooling fan during measuring time. We have 
chosen to measure this dense liquid because it is less sensitive to vibrations than other 
liquid samples, as water. 

 
 Experimental Mueller matrix image of olive oil. 

As was explained in previous sections, there are strong correlations between n and i,max 
parameters. This existing correlation makes optical parameters calculation more difficult. 
To quantitatively probe the correlation between n and i,max, we have change the 
optimization program in such a way that it calculates the refractive index related to the 
Mueller matrix image in Figure 5-16, but in this case, by fixing the value of i,max. Then, 
this has been repeated for different values of i,max into a range (from 48.0º to 48.9º in steps 
of 0.1º). Figure 5-17 shows the best-fit refractive indices (Figure 5-17 (a)) and the obtained 
MSE function (Figure 5-17 (b)) for the stated maximum angles of incidence range. From 
both graphics we can conclude that if n or i,max are not fixed, the optimization routine will 
give a RI smaller than its real value, satisfying the condition of minimizing MSE. But, 
when the maximum angle of incidence is fixed, the program can calculate the actual optical 
parameters. In this sense, it is interesting to accurately measure i,max before using the 
optimization program. In this way, we can break the mathematical correlation between n 
and i,max , and thus, to accurately find the characteristic optical parameters of samples, in 
this particular case, of olive oil. 

Furthermore, we have analyzed the dependence of the best-fit refractive index on the 
optimization routine initial parameters and constrains. By repeating the iterative routine 
several times, each time changing the initial parameters values, the best-fit refractive index 
is always the same, even if the fixed initial values are very different than the expected. 
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 (a) Refraction index (n); and (b) Mean Squared Error (MSE) as a 

function of i,max (º) for olive oil.  

In addition, we have observed that the center of the image (x0, y0) and the azimuthal 
rotation 0  are not correlated, and their values are not altered even if n and i,max change. 
As an example of this situation, Figure 5-18 shows the values for x0 (red crosses), y0 (black 
plus signs) and 0 (blue asterisks) as a function of i,max. A very small fluctuation can be 
appreciated (a center position deviation lower than one pixel, while the total number of 
pixels is 980×980 pixels, and around one degree for the azimuthal angle), but their best-fit 
values do not show an increasing or decreasing trend. A similar fluctuation, always smaller 
than 1 pixel for the centered of the image and 1° for the rotation, is obtained for the rest 
of analyzed isotropic and uniaxial anisotropic samples. Thus, we can consider that the 
center of the image position and the rotation angle are well found without any correlation.  

By using the Abbe refractometer, the RI of our olive oil sample was measured, obtaining 
noil =1.469. From graph Figure 5-17 (a), we can extract the best-fit refractive index and 
the corresponding maximum angle of incidence, being closer to the refractive index of olive 
oil measured with our Abbe refractometer (see Table 5-1). 

Parameters n i,max (º) 

Best-fit values 1.470 48. 4° 

Table 5-1. Best-fit values corresponding to olive oil. 
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 Bets-fit center of the image (x0, y0) and best-fit rotation angle (0) 

as a function of the maximum angle of incidence (i,max (º)) for olive oil. Red 

crosses indicate x0 values, black plus signs are y0 and blue asterisks are 0. 

The simulated Mueller matrix image for the best-fit parameters is shown in Figure 5-19 
(a). Furthermore, Figure 5-19 (b) shows the square of the difference between the simulated 
(from best-fit values) and experimental Mueller matrix images ((MsimMexp)2). Let us call 
it squared absolute error (SAE). We can observe that the SAE per pixel increases for higher 
angles of incidence i.e., close to the edge of the high numerical aperture objective. Thus, 
edge angles of incidence seem to provide more critical information. 

The averaged SAE per pixel of the Mueller matrix images is equal to 0.0019. 

 
 (a) Simulation of the Mueller matrix image of olive oil by using the 

best-fit parameters found from the optimization program. (b) Squared absolute 

error per pixel between experimental and simulated Mueller matrix images. 

 

b) Distilled water 

The normalized measured Mueller matrix image of distilled water is shown in Figure 5-
20. As can be seen, the experimental image of distilled water presents more anomalies than 
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the olive oil image (see Figure 5-16) that are due to the lower density of water, which 
implies that the vibrations of water during measuring time are greater than for olive oil. 

 
 Mueller matrix image of distilled water measured with our 

conoscopic Mueller microscope. 

The strong correlation existing between n and i,max is confirmed. We have set different 
maximum angles of incidence and the corresponding best-fit refractive indices have been 
obtained from the optimization program. The obtained refractive indices and MSE values 
were plotted and can be seen in Figure 5-21 (a) and (b), respectively. As in the olive oil 
case, we can conclude that if n or i,max are not fixed, the optimization routine will give a 
refraction index smaller than the real one, minimizing the MSE value. 

The RI of distilled water, measured by using the Abbe refractometer, was found to be 
n = 1.333. From data in Figure 5-21 (a), we obtain the best-fit n (that closer to the 
refractive index of distilled water measured by the Abbe refractometer) and its respective 
maximum angle of incidence. Obtained results are shown in Table 5-2. The best-fit 
maximum angle of incidence for water is close to that obtained for the oil case, so we obtain 
a consistent result. The small difference obtained for the i,max value (>1º), for the oil and 
water cases, may be related with the experimental quality of the Mueller images, degraded 
to certain extend due to liquid vibrations, but it is mainly related with the position of both 
samples with respect to the HNAO. Both samples are not exactly at the focal plane, and 
thus, the corresponding maximum angle of incidence is slightly different. 

Parameters n i,max (º) 

Best-fit values 1.3333 49.34° 

Table 5-2. Best-fit values corresponding to distilled water. 

The simulated Mueller matrix image for the obtained best-fit parameters is shown in 
Figure 5-22 (a). In addition, Figure 5-22 (b) shows a pixelated image of SAE between 
corresponding pixels of the experimental Mueller and the simulated Mueller matrix images. 
We can observe that the values of SAE image for distilled water are greater than those for 
olive oil (Figure 5-19 (b)) due to experimental errors, related to unavoidable small waves 
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on its surface originated by mechanical vibrations introduced by the CMOS camera and 
sample holder.  

 
 (a) Refraction index (n) and (b) Mean Squared Error (MSE) as a 

function of  i,max (º) for distilled water.  

The averaged SAE per pixel of Figure 5-22 (b) is 0.00455, which is bigger than the 
obtained for olive oil.  

 
 (a) Simulation of the Mueller matrix image of distilled water using 

the best-fit parameters found from the optimization program. (b) Squared 

absolute error per pixel between experimental and simulated Mueller matrix 

images of distilled water shown in Figure 5-20. 
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c) Plastic material 

We have also measured the Mueller matrix image of a planar plastic material previously 
characterized by our Abbe refractometer (n = 1.582). The obtained experimental Mueller 
matrix image is shown in Figure 5-23. This angle-resolved Mueller matrix is clearer than 
the two previous ones. The main reason is that the oscillation waves are avoided when we 
are working with solid samples.  

 
 Experimental Mueller matrix image of a planar plastic material with 

n = 1.582. 

Repeating the process followed for olive oil and water, the characteristic parameters of 
the Mueller matrix image are obtained into a range of angles of incidence we selected (the 
choice was made based on previous knowledge acquired with oil and sample liquids). Under 
this scenario, the optimization routine developed in MATLAB provided the best-fit data. 
The corresponding refractive index and the Mean Squared Error values are shown in Figure 
5-24 as a function of the maximum angle of incidence. 

Table 5-3 gives the best-fit refractive index closer to the value measured with the Abbe 
refractometer (nAbbe = 1.582) and its respective maximum angle of incidence. The obtained 
i,max is similar to the olive oil and water, but not exactly the same. Taking into account 
that the maximum angle of incidence is independent of the material under study, its value 
has to be the same for all characterized samples. As in the previous characterized 
specimens, we are not able to accurately determine the focal plane position required to 
overlap the incident and reflected cones. For this reason, the i,max obtained for the plastic 
does not exactly coincide with the other sample values. An alternative method has to be 
used to set the axial position of the sample with high precision, in order to improve the 
accuracy of the method. 

Parameters n i,max (º) 

Best-fit values 1.583 50.30° 

Table 5-3. Best-fit values corresponding to a plastic material found from the optimization 

routine. 
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 (a) Refractive index and (b) Mean Squared Error (MSE) as a 

function of the maximum angle of incidence i,max (º) for a planar plastic sample.  

From the best-fit values of Figure 5-23, calculated by the optimization routine, we have 
simulated the best-fit Mueller matrix image that is shown in Figure 5-25 (a). The pixel-
by-pixel SAE, given in Figure 5-25 (b), is calculated to observe the largest errors between 
angle-resolved Mueller matrices. The larger errors are once again at the highest incident 
angles. The averaged SAE per pixel of Figure 5-25 (b) is 0.00169. As expected, the error 
for this plastic material is smaller than for water or olive oil. 

 
 (a) Simulated Mueller matrix image from best-fit values calculated 

with the optimization routine. (b) Squared absolute error per pixel between the 

measured Mueller matrix image (shown in Figure 5-23) and the simulated Mueller 

matrix for a planar plastic material.  
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 Mueller matrix images of well-known glass prisms 

The theoretical optical parameters used to know the accuracy of our conoscopic Mueller 
microscope in section 5.3.4 are estimated from literature and from our Abbe refractometer 
(that works with white light). In this sense, the refractive indices of the used samples can 
vary a little from the expected values due to the used wavelength. For this reason, two 
well-known isotropic samples, calibrated for the used , were used to study the conoscopic 
Mueller microscope developed during this thesis. The two glass prisms labeled as 4705 and 
4903 (see Figure 5-26) were calibrated for different wavelengths by the Physikalisch-
Technische Bundesanstalt (PTB) in Germany, in order to have both samples accurately 
characterized. The RIs for our used wavelength ( = 635 nm) are given in Table 5-4. 

Our goal is to use both calibrated prisms to accurately calculate the maximum angle of 
incidence of the system, in order to fix it when launching the optimization routine with 
unknown samples (i.e., to break the correlation between i,max and n parameters). Note 
that i,max is independent of the material under study, as long as the sample is placed at 
the focal plane. Once the maximum angle of incidence is well-known, the refractive index 
can be obtained. In this sense, we have measured the Mueller matrix images of both prims, 
and then, the best-fit parameters were calculated by fixing their particular RIs values 
calculated by the PTB. The obtained results are presented in the following sub-sections. 

 
 (a) Well-known isotropic prisms calibrated by PTB (Physikalisch-

Technische Bundesanstalt) and (b) one of the prisms placed on the sample 

positioning system at the focal plane of the high NA objective. 

   

 Wavelength  = 635 nm 

Samples Prism 4705 Prism 4903 

n 1.514913 1.456871 

Table 5-4. Data for the two isotropic prisms calibrated by the PTB in Germany for the same 

wavelength than the used in the set-up. 
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a) Prism 4903 

The normalized measured Mueller matrix image of prism 4903 is shown in Figure 5-27. 
As in the previous analyzed samples, one can observe noise introduced by the CMOS 
camera originated by vibrations produced by the cooling fan during the Mueller matrix 
image measuring time.  

 
 Measured Mueller matrix image of the glass prism 4903. The 

experimental image was filtered, and the depolarization was removed. 

In section 5.3.3, we proved how the refractive index of samples and the maximum angle 
of incidence are mathematically correlated. As the two parameters are completely 
dependent, the optimization program may obtain a combination of these parameters that 
result into a local minimum different than the desired. Fitting the five unknown 
parameters; (x0, y0), 0, i,max and n, the best-fit refractive index found from the optimization 
routine is smaller than n = 1.35, i.e., the obtained result is quite different from the 
calibration value given by PTB (see Table 5-4). In this respect, we have decided to use the 
experimental Mueller matrix shown in Figure 5-27 and the refractive index of the well-
calibrated glass prism (given in Table 5-4) to calculate the maximum angle of incidence of 
the HNAO. As has been demonstrated in Figure 5-18, the center of the image (x0, y0) and 
its rotation angle, 0, are not strongly correlated. Thus, by fixing n to the PTB value, the 
maximum angle of incidence can be obtained from the optimization program. Table 5-5 
gives the obtained result, which corresponds to a SAE per pixel of 0.0026. 

  

Parameters n i,max (º) 
PTB values 1.456871 − 

Best-fit values 1.456871 49.351446° 

Table 5-5. Best-fit maximum angle of incidence for the Mueller matrix image of prism 4903 

shown in Figure 5-27.  

Simulated Mueller matrix image of the 4903 prism obtained from the best-fit data 
provide by the optimization program, when the RI is fixed to the PTB value, is shown in 
Figure 5-28 (a) and the SAE per pixel is graphically represented in Figure 5-28 (b). 
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To validate the measured i,max, we have set a range of incident angles around the 
maximum angle of incidence retrieved by using the calibration 4903 prism, i.e., data given 
in Table 5-5 and the corresponding refraction indices have been calculated with the 
optimization routine. and the corresponding refraction indices have been calculated with 
the optimization routine. Figure 5-29 shows the refractive index n and its respective merit 
function value (MSE) as a function of the maximum angle of incidence. 

 
  (a) Simulated Mueller matrix image obtained for a refractive index 

of n = 1.456871. (b) Representation of the squared absolute error per pixel 

between the experimental and the simulated Mueller matrix images of the 4903 

glass prism. 

Note that although the measured Mueller matrix image (see Figure 5-28) presented 
some experimental distortions (e.g., diffraction patterns are observed, the  and  
coefficients are not zero), if the maximum angle of incidence is well-known, the refractive 
index can be accurately found, as correlation constrains are eliminated.   

Therefore, this well-calibrated sample can be a reference to obtain the maximum angle 
of incidence, allowing us to fix it to break correlations. Nevertheless, although this method 
arises as a nice approximation to estimate the maximum angle of incidence, its value may 
slightly vary when a new sample has to be measured, especially because of concerns with 
regard to the sample axial position. This may reduce the final accuracy of the method for 
the RI measurement. In particular, if the sample is not perfectly well-placed at the focal 
plane of the HNAO, the size of different experimental Mueller matrix images slightly varies 
(see Figure 5-13), so it does the maximum incident angle. For this reason, we select a 
Region of Interest (ROI) at the experimental Mueller images by setting a circular mask 
(values are set to zero out of the circle) that fixes an incident angle between 48.5° and 
50.3°, this allowing us to avoid, local minimums far away for the actual solution.  

By taking into account the discussion above-provided, we want to emphasize that the 
precision of the method can be highly increased by devising some instrumental method 
able to place the samples surfaces with larger precision at the focal plane of the HNAO. In 
section 5.4, some possible methods to achieve this situation are proposed. Note that once 
the samples are perfectly placed at the microscope objective focal plane, corresponding 
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maximum angle of incidence is already known thanks to the calibration procedure 
conducted with the 4903 prism. 

 
 (a) Refraction index (n); and (b) Mean Squared Error (MSE) as a 

function of the maximum angle of incidence i,max (º) for the glass prism 4903.  

It is important to note that when i,max value is fixed to that one given by the prims 
calibration (Table 5-5), the corresponding best-fit refractive index is very close to the value 
provided by the PTB (see Table 5-6), the method providing a RI measure with an accuracy 
at the forth decimal. 

 

Parameters n i,max (º) 
PTB values 1.456871 − 

Best-fit values 1.456739 49.35° 
Difference 0.000132 − 

Table 5-6. Best-fit parameters for prism 4903 measured in reflection. 

 

b) Prism 4705 

The Mueller matrix image of the prism 4705 is measured by using our conoscopic 
Mueller microscope (see Figure 5-30) 
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 Measured Mueller matrix image of the Prism 4705. 

The optimization program was used to find the best-fit values for prism 4705 for 
different maximum angles of incidence. Figure 5-31 shows the obtained n and MSE.  

 
 (a) Refraction index (n); and (b) Mean Squared Error (MSE) as a 

function of the maximum angle of incidence, i,max (º), for the well-known glass 

prism 4705.  

By fixing the refractive index value of the 4705 prism, calibrated by the PTB (see Table 
5-4), the maximum angle of incidence for the measured Mueller matrix image is obtained 
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from the optimization program. Results are given in Table 5-7. By comparing the maximum 
angles of incidence obtained for the 4903 (Table 5-6) and 4705 (Table 5-7) prisms, a small 
difference of 0.024º is obtained, mainly related with the system uncertainty in the axial 
positioning of samples.  

 

Parameters n i,max (º) 

PTB values 1.514913 − 

Best-fit values 1.514913 49.374° 

Table 5-7. Best-fit maximum angle of incidence for the Mueller matrix image of prism 4705 

shown in Figure 5-30.  

The simulated Mueller matrix image for the 4705 prism obtained from the best-fit 
parameters in Table 5-7 can be observed in Figure 5-32 (a) and a graphical representation 
of the pixel-by-pixel SAE is shown in Figure 5-32 (b). 

 
 (a) Simulated Mueller Matrix image from best-fit values. (b) Squared 

absolute error between the experimental Mueller matrix (shown in Figure 5-30) 

and the simulated Mueller matrix, both for the prism 4705. 

 

 Non-planar surfaces 

Once the performance of the conoscopic Mueller microscope and the method accuracy 
have been thoroughly analyzed to the characterization of planar samples, we tested the 
capability of the method to measure samples with arbitrary shape surfaces. In particular, 
to show the ability of the proposed conoscopic Mueller microscope to measure non-planar 
surfaces, two new samples were measured in our laboratory. An isotropic curved sample 
(glass bottle) and a uniaxial anisotropic mineral (quartz).  

 

a) Glass bottle sample 

We have used a glass bottle as an isotropic sample with non-planar surface because its 
surface is smooth but curved. The resulting Mueller matrix image can be seen in Figure 5-
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33. We have demonstrated that, as the focused spot of the HNAO is smaller than the 
curvature surface of the sample, the surface at this scale can be considered planar and the 
Mueller matrix image of a glass bottle is similar to the angle-resolved Mueller matrix of a 
planar surface of glass. 

 
 Measured Mueller matrix image of a curved glass bottle (isotropic 

sample). 

To prevent of being redundant, in this subsection only qualitative analysis is provided 
(experimental Mueller matrix images). However, we have also conducted the calculation of 
the optical parameters in the same way than in previous sections. We reached the same 
conclusions, i.e., optical parameters in the optical model are strongly correlated, so accurate 
measurements of the refractive index are only achieved with a previous knowledge of the 
actual i,max for the particular sample axial position. By knowing the maximum incident 
angle value, the actual RI value is achieved, independently of the sample surface shape. 

 

b) Quartz sample 

To show the applicability of our conoscopic Mueller microscope, we have also measured 
a rough material. In this case, the sample is quartz (no = 1.5425 and ne = 1.5516); i.e., a 
uniaxial anisotropic material. Its rough surface is clearly appreciated in Figure 5-34.  

After placing the sample surface at the HNAO focal plane, we have measured the 
Mueller matrix image of the rough quartz. The resulting image is shown in Figure 5-35.  

The same conclusions are reached for quartz, i.e., correlations constrain the method 
accuracy. In this particular case, more correlations between parameters are observed 
because of the larger number of parameters in the model (ne, no, c and c) if comparing 
with the isotropic case. Therefore, further studies are needed to break correlations and 
expand the method accuracy. 
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 (a) Rough quartz crystal; and (b) Quartz placed in the sample 

positioning system. 

 
 Measured Mueller matrix image of a rough quartz crystal. 

 

5.4 Discussion and perspectives 

In this chapter we have seen that the Mueller matrix image of any sample regardless of 
its curvature can be measured by using our developed conoscopic Mueller microscope. In 
this sense, we have measured angle-resolved Mueller matrices for different kinds of samples 
such as flat and non-planar surfaces, liquids and solids, isotropic and uniaxial anisotropic 
materials, among others. The obtained patterns for this numerical aperture are similar to 
the simulated ones described in Chapter 3. However, the proposed set-up is a first prototype 
that needs certain improvements. In this section, we suggest some changes that can be 
implemented to improve the final result. We think that the designed microscope clearly 
demonstrates the potential of angle-resolved Mueller matrices as a refractive index 
characterization tool. Nevertheless, some further improvements have to be done on the 
design of the instrument itself to make it even reliable and more accurate. 

First, we have seen the importance of placing the sample surface at the focal plane of 
the high numerical aperture objective. The actual prototype does not exactly focus the 
incident beam on the sample surface, which results in different sizes of the Mueller matrix 
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image. The used method presents the problem that the image of the spot on the CMOS 
camera is small and it is complicated to appreciate when the sample surface is perfectly 
placed at the focal point of the HNAO. In this sense, a better way to ensure the optimal 
placement of samples at the focal plane is needed to obtain higher accuracy measures.  

Our proposal is to readapt our conoscopic Mueller microscope into a confocal microscope 
[187–189] similar to the shown in Figure 5-36. Confocal optical microscopy is a spatial 
filtering technique used for increasing the contrast of microscope images eliminating out-
of-focus light. It works on a simple principle, light from the focal point of the HNAO is 
imaged on a small pinhole, making these two points confocal, i.e., by using an additional 
microscope objective and a pinhole (PH) (see Figure 5-36) the volume observed with the 
CMOS camera is restricted. Under this scenario, a sample surface that is not placed at the 
focal plane of the HNAO will not completely illuminate all the pinhole. Hence, the PH 
prevents reflected light from planes different than the plane of focus from reaching the 
CMOS camera. By moving the sample parallel to the optical axis of the HNAO, only when 
reflected light passes through the pinhole, the sample surface is placed at the right position. 
Furthermore, a confocal configuration avoids undesired reflections produced by different 
sample layers, thus the Mueller matrix image will be clearer.  

 
 Scheme of the confocal Mueller microscope. The set-up is similar to 

the conoscopic Mueller microscope shown in Figure 4-1. A microscope objective, 

a pinhole (PH) and a lens are introduced in the set-up to convert our proposed 

Mueller microscope into a confocal microscope. 
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On the other hand, to reduce the correlation between parameters when the optimization 
program calculates the best-fit refractive index, we need to know the maximum angle of 
incidence that is imaged on the CMOS camera. The proposed confocal configuration also 
allows to find i,max. When the surface of the well-calibrated prisms is placed at the right 
focal plane, the Mueller patterns will have the exact size and hence, the same maximum 
angle of incidence. Consequently, by fixing the refractive indices of the prism samples in 
the iterative optimization program, the maximum angle of incidence can be calculated from 
their experimental Mueller matrix images. In both cases the best-fit i,max has to be equal, 
although their refractive indices are different. Then, the best-fit RI of any other sample 
can be calculated by measuring its characteristic Mueller matrix image and by fixing the 
previously calculated best-fit i,max in the optimization program. 

In literature, we can find other techniques that allows us to characterize and understand 
the physical properties of materials avoiding the correlation between parameters. Refs. 
[190] and [110] propose a procedure to increase, not only the angles of incidence usually 
performed by moving arms, but also the number of used wavelengths in ellipsometric 
measures, providing more information on the optical parameters. In our case, each point 
of our measured Mueller matrix image corresponds to an angle of incidence that illuminates 
a pixel of our CMOS camera, and this angular distribution is independent of the used 
wavelength. So, the use of diverse wavelengths results in different Mueller patterns, because 
of the dependence of the refractive index with , but the distribution of the angles of 
incidence will be always the same. Thus, using several wavelengths and a sample with its 
refractive indices well-calibrated for each , we will obtain larger redundancy data for the 
of maximum angle of incidence determination. 

A different method is proposed in Ref. [125] to measure i,max. They place well-known 
gratings, whose refractive indices and pitches are well-characterized, in the focal plane of 
the HNAO and then, they analyze the position of different diffraction orders, with respect 
to the zero order. The maximum angle of incidence is obtained from 

 ,max arcsini
Rn
d


       

  (5.9) 

where R is the radius of the image corresponding to the maximum aperture, d the shift (in 
pixels) between the orders (see Figure 5-37), and  the pitch of the grating. 

 
 Scheme of four diffraction orders of a grating. d is the shift between 

orders and R is the radius of the image corresponding to the maximum aperture. 
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Finally, we propose to expand the theoretical model to anisotropic biaxial crystals. In 
such a way, any dielectric material can be optically characterized by using the conoscopic 
Mueller microscope. We also propose to readapt the set-up, similar to the microscopes 
shown in Refs. [120, 191], to measure Mueller matrix images also in transmission mode.  
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Chapter 6  Conclusions 

A conoscopic Mueller microscope working in reflection was designed, implemented and 
applied for the first time to measure the refractive indices of dielectric isotropic samples 
and uniaxial anisotropic crystals, with planar or non-planar surfaces. First, a mathematical 
model was developed to determine the angle-resolved Mueller matrix image of the 
microscope back focal plane. The model parameters of interest were studied by performing 
a collection of simulations, and we analyzed the viability of the method by measuring the 
characteristics of different artificial samples. Then, a conoscopic microscope within a 
complete Mueller matrix polarimeter was designed and experimentally implemented. After 
being calibrated and tested by measuring different well-known polarimetric samples, the 
experimental angle-resolved Mueller matrices of different isotropic and anisotropic 
materials were measured. By fitting the optical parameters of the theoretical model with 
the experimental data, the optical characteristics of different samples were determined by 
minimizing a merit function based on the Mean Squared Error (MSE) minimization. The 
method shown the potential of being used for the characterization of isotropic and 
anisotropic samples, both presenting planar or non-planar surfaces, and in solid and liquid 
phases.  

As the proposed instrument performs the measurements into a reflective configuration, 
it could be used to characterize optical elements already integrated in optical systems, this 
kind of samples being impossible to be studied with other existing metrological techniques. 
In this last chapter we summarize the main results presented in this thesis (section 6.1) 
and we outline possible future perspectives of the instrumentation (section 6.2), to enhance 
its efficiency in samples characterization. 

 

6.1 Summary and conclusions 

We emphasize the following main conclusions from each chapter: 
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 Mathematical formalism 

Our study in Chapter 2 was meant to review some preliminary concepts required to 
physically describe the conoscopic Mueller microscope developed in our laboratory. Starting 
with Maxwell's equations, we have developed a mathematical formalism able to describe 
an electromagnetic plane wave at the interface of an isotropic sample (air) in contact with 
a uniaxial anisotropic crystal. Both media were considered dielectric and non-absorbing.  

The mathematical model was proposed to describe the wave vectors and the polarization 
states of the incident, reflected and refracted waves as a function of the wavelength, the 
angle of incidence, the amplitude and phase of the incident beam, and the refractive indices 
(ordinary and extraordinary) and the orientation of the optical axis of the uniaxial 
anisotropic sample. Then, the Fresnel coefficients in reflection and in transmission were 
obtained, allowing us to easily relate the reflected (or transmitted) electromagnetic fields 
with the incident one. 

The Jones matrix formalism was also introduced as a form of express the polarization 
changes produced by an isotropic-uniaxial anisotropic interface. Finally, from the obtained 
Jones matrix, the equivalent Mueller matrix of the uniaxial anisotropic sample was also 
calculated. 

 

 Mueller conoscopy 

In the first part of Chapter 3 we have generalized the Jones matrix obtained in Chapter 
2 to describe the changes of the electromagnetic fields produced when light passes through 
a high numerical aperture objective (HNAO). When a set of planar electromagnetic waves 
passes through a HNAO, the incident light is bent with multiple angles of incidence forming 
a cone of light. In this manner, we are able to instantaneously generate a large number of 
wave vectors. At the same time, the polarization of each generated wave-vector changes as 
a function of the polar and azimuthal angles of incidence. Considering both effects, we have 
recalculated the Jones and the Mueller matrices in order to express them as a function of 
azimuthal and polar angles of incidence. In addition, both matrices were represented, in 
the incident plane coordinate system, that changes with the azimuth, and also in the 
laboratory coordinate system, that is fixed, to take into account the polarization changes 
produced by the HNAO. The differences between both coordinate systems were presented 
for isotropic and uniaxial anisotropic crystals. 

From this extension of the mathematical model, we have proposed to build a conoscopic 
microscope working in reflection by using a high numerical aperture objective that 
illuminates the sample surface and, at the same time, collects the reflected beam. In this 
sense, by using the mathematical formalism described in Chapter 2 and Chapter 3, the 
optical parameters of the sample could be obtained from the angle-resolved Mueller matrix 
image, where each point of the measured Mueller matrix image is associated to a particular 
pair of angles of incidence (azimuthal and polar angles), and thus, to a polarization change. 
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The polarimetric measurement matrix principle used to acquire the Mueller matrix 
image, and the errors introduced by the polarimetric system, were also explained. We 
proposed to use six polarizing generators and six analyzers to measure the Mueller matrix 
image. The optimized configuration for generating and analyzing an arbitrary polarization 
state was a regular polyhedron with six vertices inscribed in the Poincaré sphere, to achieve 
the minimum possible condition number of 3CN  .   

Once the Mueller matrix was described in the laboratory coordinate system, we 
simulated several scenarios to analyze the viability of the proposed conoscopic Mueller 
microscope. In this sense, objectives with different NA and multiple samples with various 
refractive indices were studied. In particular, we have demonstrated that higher numerical 
apertures provide more significant sample information. For small variations of the incident 
angle when being above of i,max > 50º, one could clearly see how Mueller matrix coefficients 
sharply vary, as the system is close to the Brewster angle of the material. In addition, 
significant differences were observed in the Mueller matrix images of uniaxial anisotropic 
and isotropic specimens meaning that we could perfectly design a conoscopic Mueller 
microscope for refractive index characterization. 

The last part of this chapter describes the method developed in order to obtain the 
refractive indices of materials comparing experimental and theoretical Mueller matrix 
images. An iterative optimization routine was created based on the minimization of the 
Mean Squared Error (MSE) function. The idea was to compare each point of the predicted 
and experimental Mueller matrix images, varying a set of unknown parameters (the 
refractive indices, the orientation of the sample, i,max, and the center and any rotation of 
the image). When the MSE was minimized, we considered that the desired values were 
found. For that purpose, a previous knowledge of the material under study might allow to 
constrain the unknown parameters. The validity of this method was studied by using 
artificial Mueller matrix images, simulating experimental Mueller matrix images (e.g. 
rotated, displaced, with noise, etc.). 

 

  Experimental implementation of our conoscopic Mueller 
microscope 

The conoscopic Mueller microscope built in this work uses a high numerical aperture 
objective (HNAO) to highly focus the incident light beam on the sample surface and to 
collect the reflected beam, allowing us to simultaneously illuminate the specimen with a 
large number of angles of incidence without involving any moving arms in the system (this 
avoiding the consequent positioning errors). In Chapter 4, we have described the 
experimental implementation of our conoscopic Mueller microscope and the calibration 
process followed. 

The first subsections provided the description of the set-up as well as each used optical 
element. We have divided the whole system in four different parts that were described in 
detail in section 4.1:  
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- Illumination arm: formed by a diode laser ( = 635 nm), a collimator and 
polarization state generator (PSG) able to generate collimated input light beams 
with controlled polarization. 

- Detector arm: consists of a polarization state analyzer (PSA) and a CMOS 
camera. It analyzes the polarization changes of the reflected beam caused by the 
sample. From the intensity images obtained with this instrumental block, we 
were able to calculate the experimental Mueller matrix image. Compared with 
other systems, the fact of including a PSG and a PSA in our system which are 
based on liquid crystal displays, allows us the generation and detection of 
polarization states without the requirement of mechanical movements.  

- High numerical aperture focusing system: focuses the incident beam and, at the 
same time, collects the reflected cone of light by using a high numerical aperture 
objective (HNAO). Once the reflected beam was collimated, an achromatic non-
polarizing beam-splitter cube (NP-BS) steered it to the detector arm. The fact 
of using a HNAO in our system, allows us instantaneously performing angle-
resolved measures of the Mueller matrix, avoiding moving parts and thus, 
positioning errors.   

- Sample Positioning System: formed by a sample holder, a pair of goniometers 
and translation platforms. The designed holder allows both to place the sample 
at the high NA objective focal plane and to accurately align the sample surface 
perpendicularly to the optical axis of the HNAO. 

The used microscope objective has a NA of 0.90 and a long working distance of 1 mm. 
Consequently, the resulting focalization spot was small enough to approximate the studied 
surfaces as locally planar. Note that as we are using a high NA, this implies that any small 
deviation of the light path, when it passed through any slightly misaligned optical element, 
becomes critical due to the high magnification of the system. For this reason, the whole 
conoscopic Mueller microscope was designed to be able to correct any possible small 
misalignment. This was achieved by allowing us to shift in different directions and/or 
rotate in different angles each one of the optical elements in our set-up. Furthermore, we 
have taken into account that our microscope would measure the angle-resolved Mueller 
matrix of different specimens. Therefore, the HNAO was chosen to not introduce 
polarization modifications to the involved beams. 

As stated above, the developed microscope worked as a Mueller image polarimeter. To 
include the polarimetric information to the angle-resolved system, the microscope includes 
a PSG and PSA systems to generate and analyze different polarization states. Both optical 
devices consisted of a linear polarizer and two liquid crystal displays (as linear variable 
retarders) oriented at 45° one to each other. 

The designed set-up theoretically enabled us to measure the angle-resolved Mueller 
matrix of samples for all azimuth angles (from 0° to 360°) and for angles of incidence from 
0° to 64° (approx.). Nevertheless, the incident collimated beam was measured by using the 
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knife-edge technique, obtaining a beam diameter smaller than the aperture of the HNAO. 
Thus, the maximum angle of incidence was smaller than the predicted value (around 50°). 
Apart from the NA of the microscope objective, to measure a large number of angles of 
incidence, we have used a CMOS camera with high-resolution (2048 × 2048 pixels). It was 
also important to use a camera with high dynamic range to have greater range of measured 
intensities.  

The alignment procedure followed to build the whole system was detailed in this 
chapter. Moreover, the calibration method applied to characterize the beam-splitter, the 
CMOS camera and the PSG and PSA systems were discussed at the end of this chapter. 
From the obtained results, we observed polarimetric effects introduced by the NP-BS. 
Consequently, both PSG and PSA were calibrated together with the NP-BS to consider 
these effects when the Mueller matrix images were measured (i.e., the polarimetric effects 
of the beam-splitter are included in the polarimetric matrices describing the input 
polarizations set for the PSG and the polarization analyzers set for the PSA). To verify 
the optimized performance of the system, in terms of noise amplification from intensity 
images to the obtained experimental angle-resolved Mueller matrices, the condition number 
for the PSG and PSA systems (including the BS effects) were measured, obtaining 
respectively CN(PSG) = 1.76 and the CN(PSA) = 1.78, these values being close to the 
optimum theoretical minimum CN 3 . 

 

 Results 

First, the Mueller polarimeter was experimentally tested by measuring in reflection 
different well-known polarizing samples (e.g. mirror, polarizer, quarter waveplate, etc.), 
and an excellent agreement between experimental and theoretical values were obtained. 
The maximum error in the Mueller matrices was smaller than 0.78%, and could be due not 
only to the calibration of the PSG and PSA, but also to effects of small misalignments 
present in polarizing elements (mostly in their orientation), no ideal optical samples, etc. 
In addition, we have observed condensate droplets inside the CMOS camera protector glass. 
These droplets are due to the condensation of air that enters inside the protector glass and 
cannot be removed. Although we observed that the image degradation related to the 
droplets do not affect too much the recorded intensity images, their effects had to be 
considered. 

For this reason, to reduce the impact of these undesirable effects in the experimental 
Mueller image, some filtering techniques were described and implemented. The covariance 
filtering method was used to eliminate noise in the measured image and to obtain a 
physically realizable Mueller matrix, and the Lu-Chipman decomposition was used to 
remove depolarization effects. 

Next, we have experimentally characterized the high numerical aperture objective. This 
was done by using a spherical mirror specially designed to avoid the polarization effects of 
high angles of incidence. When placing the mirror at the proper distance from the HNAO, 
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each ray in the incident cone is reflected normal to the mirror surface. Under this scheme, 
the characteristic Mueller matrix of the HNAO was obtained. We have observed that the 
retardance, diattenuation and depolarization introduced by the used HNAO were 
negligible. 

Once the whole microscope was completely calibrated, different isotropic and uniaxial 
anisotropic samples were measured, observing that the experimental angle-resolved Mueller 
matrix images were in agreement to those simulated in Chapter 3. However, the measured 
experimental images presented certain deviation from the simulated images, whose origin 
was mainly due to instrumental errors, and that were not fully corrected by the applied 
filtering process. In particular, these deviations from the theoretical images are introduced 
by small misalignments of the HNAO, sample oscillations produced by the cooler fan of 
the CMOS camera during the measuring time, diffractive effects related to aperture sizes, 
small displacements of the sample holder related to screws spatial relaxations, etc.  

 The developed optimization program was used to calculate refractive indices of different 
samples by fitting the theoretical optical parameters of the developed model with 
experimental angle-resolved Mueller matrices. First, liquids and planar samples were 
characterized (olive oil, water, and plastics). From these first results, we have concluded 
that there exists a high correlation between i,max and RI parameters, whereas the center 
and the rotation of the image were independent parameters. Furthermore, we have 
observed that by setting the correct value for the maximum angle of incidence, the 
calculated values for the refractive indices agree with the expected values. Therefore, an 
external measure of the i,max value is required to properly measure the RI of samples.  

Afterwards, we measured two reference samples to further test our developed method. 
We used planar glass samples which were previously accurately calibrated by the 
Physikalisch-Technische Bundesanstalt (PTB) in Germany by using the minimum 
deviation method and were accurately characterized for our used wavelength ( = 635 nm) 
Comparing the results obtained from both glass prisms, we confirmed the necessity of an 
external and accurate determination of the experimental maximum angle of incidence 
parameter, as the axial position of the sample affected the value of i,max, and therefore, 
the value of the obtained RI. As a consequence, only by accurately setting the proper value 
of the experimental i,max, a good agreement was obtained between the RI values provided 
by the PTB and by our proposed method. As logical, the correct experimental value for 
maximum angle of incidence was that set when the measured samples were exactly placed 
at the focal plane of the HNAO (i.e., i,max º). However, note that by changing from 
sample to sample in a chain procedure, an associated error to the axial position of the 
samples may be added, this being crucial for the RI determination of the samples, due to 
the above-stated correlations.  

Under this scenario, we have proposed some changes in the experimental 
instrumentation that can be implemented to place the sample at the right position as well 
as to improve the quality of the recorded image. These modifications were discussed in 
section 5.4.  
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Finally, to prove the practical applicability of this conoscopic Mueller microscope, the 
Mueller matrix images of curved glass and rough quartz samples were measured and shown. 
Considering the capacity of our instrument to determine angular-resolved Mueller matrix 
images of those samples, we demonstrate that our developed microscope can be suitable to 
optically characterize non-planar surfaces in reflection. 

 

6.2 Proposal for future research 

 The mathematical formalism explained in Chapter 2 can be expanded to anisotropic 
biaxial crystals. Thus, any dielectric material could be optically characterized by using 
the conoscopic Mueller microscope.  

 To convert the conoscopic Mueller microscope in a reflection confocal microscope. In 
this sense, light that returns to the system from layers different than the sample surface 
will be blocked (or almost blocked) by the confocal aperture. When information coming 
from different sample depths is incoherently added at the detector, non-desired 
depolarization contributions may be added at the final Mueller matrix images. 
Therefore, the confocal configuration will reduce depolarization content in Mueller 
matrix images. More importantly, the confocal configuration also allows that only those 
samples exactly placed at the back focal plane of the HNAO can be measured, this 
guaranteeing a fixed (i,max) for all the samples.  

 To implement an experimental method able to accurately measure the maximum angle 
of incidence (i,max), in order to fix this value in the mathematical model, and thus, to 
reduce correlations between parameters. As was explained in Chapter 5, the 
characteristic optical parameters of the sample can be obtained when the maximum 
angle of incidence is accurately known a priori. 

 The optimization program can also be reviewed to include different optimization 
routines and to improve its calculation speed.  

 The conoscopic Mueller microscope can be readapted to work in transmission by 
properly adding a second high numerical aperture objective. Accordingly, thin layers 
can be measured in both, reflection and transmission configurations. The transmission 
configuration could also be used to determine other properties of samples, as their 
thickness. Moreover, the model has to be expanded to describe the characteristic Mueller 
matrix of isotropic or anisotropic samples at the back focal plane of the second HNAO. 

 The system could also be adapted to work for different wavelengths. Although the 
refraction index may change for different wavelengths due to dispersion of light, the 
(i,max) remains constant for all wavelengths, as (i,max) is not an intrinsic property of 
samples but of the optical system. Therefore, by imposing this condition, in addition to 
the angle-resolved redundancy data, a more efficient data fitting could be achieved.    
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List of acronyms 

 

Acronym Meaning 

CN Condition Number 

HNAO High Numerical Aperture Objective 

LP Linear Polarizer 

MAE Mean Absolute Error 

MSE Mean Squared Error 

NA Numerical Aperture 

PSA Polarization State Generator 

PSG Polarization State Analyzer 

RI Refractive index 

SAE Squared Absolute Error 

SoP State of Polarization 
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