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Nathália Moraes de Oliveira



Inductive valuations and defectless polynomials over
henselian fields
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ABSTRACT

Let (K, v) be a discrete rank-one valued field. In a pioneering work, S.
MacLane studied and characterized the extensions of the valuation v to the
rational function field K(x). M. Vaquié generalized his work for an arbitrary
valued field (K, v), not necessarily rank-one nor discrete. A more construc-
tive contribution for the theory was given in the case where v is discrete of
rank-one, where J. Fernández, J. Guàrdia, J. Montes and E. Nart provided a
computation of generators of the graded algebras and introduced some residual
polynomial operators. In this memoir we extend these results to a valued field
(K, v), not necessarily rank-one nor discrete. We also establish a connection
between inductive valuations and irreducible polynomials with coefficients in
Kh, precisely, we construct a bijective mapping M −→ P0/≈ between the
MacLane space of (K, v) (considered as the set of strong types) and a certain
quotient of the subset P0 ⊂ P of defectless polynomials with coefficients in the
henselian field K. Finally, as an application of the techniques presented in
this work we reobtain some results on the computation of invariants of tame
algebraic elements over henselian fields.
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Introduction

Let (K, v) be a discrete rank-one valued field. In a pioneering work, S. MacLane studied
and characterized the extensions of the valuation v to the rational function field K(x)
[17, 18].

For simplicity, let us focus our attention on those extensions µ of v for which µ(x) ≥ 0.
Then, starting from Gauss’ valuation µ0 (which is the minimal extension of v to K(x)
satisfying µ(x) = 0), and choosing certain key polynomials φi ∈ K[x] and positive rational
numbers γi, MacLane constructed certain inductive valuations on K(x),

µ0
φ1,γ1−→ µ1

φ2,γ2−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ, (1)

where, for 1 ≤ i ≤ r, each valuation µi is an augmentation of the valuation µi−1, deter-
mined by the condition γi = µi(φi).

MacLane proved that all extensions of v to K(x) can be obtained as a certain limit of
inductive valuations [17]. Also, he showed that these ideas lead to a concrete algorithm
to find all extensions of v to a finite extension of the base field K [18].

In [30, 31, 32], M. Vaquié generalized MacLane’s theory to the case of an arbitrary
valued field (K, v), not necessarily rank-one nor discrete. The graded algebra Gµ attached
to a valuation µ, and certain residual ideals in the degree-zero subring ∆µ of Gµ are crucial
in the development of the theory.

The residual ideal of a non-zero polynomial g ∈ K[x] is defined as

Rµ(g) = Hµ(g)Gµ ∩∆µ,

where Hµ(g) is the image of g in the piece of degree µ(g) of the algebra.

J. Fernández, J. Guàrdia, J. Montes and E. Nart gave a constructive touch to Vaquié’s
approach [6]. Restricted to the case v discrete of rank-one, they provided a computation
of generators of the graded algebras. Also, for an inductive valuation as in (1), they
introduced some residual polynomial operators,

Ri : K[x] −→ ki[y], 1 ≤ i ≤ r, (2)

where y is an indeterminate, and ki ⊂ ∆µi is a field which is a finite extension of the
residue class field k of the initial valuation v. The structure of ∆µi as a k-algebra is
completely determined by the subfield ki, since there are elements yi ∈ ∆µi which are
transcendental over ki and satisfy ∆µi = ki[yi].

The operator Rr is a kind of algorithmic representation of the residual ideal operator
Rµ. More precisely, for any polynomial g ∈ K[x], the element

Rr(g)(yr) ∈ ∆µ
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is, up to a power of yr, a generator of the residual ideal Rµ(g).

Let Kv be the completion of K with respect to the v-adic topology. This constructive
approach leads to a fast algorithm for polynomial factorization in Kv[x], inspired in a
similar algorithm developed by J. Montes for p-adic fields [20]. This algorithm is a kind
of efficient version of the original algorithm by MacLane in [18].

These polynomial factorization algorithms based on inductive valuations have many
applications to the resolution of arithmetic tasks in number fields and function fields
[8, 9, 10].

On the other hand, in [6] the authors found a tight link between the set of inductive
valuations and the set P of monic and irreducible polynomials with coefficients in Kv.
More precisely, they established a canonical bijection

M −→ P/≈ (3)

between the MacLane space M and the quotient set of P under a certain equivalence
relation ≈. The MacLane space is defined as the set of pairs (µ,L), where µ is an
inductive valuation on K(x) extending v, and L is a strong maximal ideal of ∆µ.

In this memoir, we extend the results of [6] to an arbitrary valued field (K, v), not
necessarily rank-one nor discrete.

In this general situation, the completion Kv looses the nice properties it had in the
classical rank-one, discrete case. Its role is undertaken by any henselization (Kh, vh) of
the original valued field.

Also, the experts will not be surprised by the fact that inductive valuations may
provide a bijection like (3) only for the subset P0 ⊂ P of defectless polynomials with
coefficients in Kh.

A monic irreducible polynomial in Kh[x] is defectless if by adjoining a root of it to Kh

we get a valued field (K ′, v′) such that

[K ′ : K] = e(v′/vh)f(v′/vh).

The memoir is distributed into three parts.

Part I: Background on valuations

This part, of a preliminary nature, contains two chapters.

In Chapter 1, we include basic facts about valued fields and semivaluations on the
polynomial ring K[x] in one indeterminate.

The graded algebra of a valuation on K[x] is described, and the basic properties of
key polynomials are reviewed, mainly taken from [23].

In Chapter 2, we review MacLane’s construction of augmented valuations [17, 30].
If a given valuation µ on K[x] admits key polynomials, it is possible to augment µ to a
larger valuation with a prefixed value on a given key polynomial.

Most of the content of this chapter is extracted from Vaquié’s paper [30]. Some results
not contained in [30] are an easy transcription to the general case of results that were
obtained in [6] for rank-one discrete valuations.



Finally, some basic results which we could not find in the literature are probably well
known.

In any case, we provide proofs of all results in order to help the reader to get some
familiarity with the main features of this construction.

Part II: Inductive valuations on polynomial rings

This part contains five chapters.

In Chapter 3, we review some basic facts about the Newton polygon operator at-
tached to a pair µ, φ, where µ is a commensurable extension of v to K[x] and φ is an
arbitrary key polynomial for µ.

Tipically, when µ is a rank-one valuation, the Newton polygon of a polynomial in K[x]
lies in the euclidean plane. For higher rank valuations, Newton polygons of polynomials
lie in the rational vector space Q×QΓ, where Γ is the value group of v.

Apart from this change of ambient space, all results of this chapter are an easy tran-
scription of the results of [6, Sec.2], up to a different normalization of the Newton polygons.

Chapter 4 is devoted to valuations of depth zero, which are in a certain sense “very
small” commensurable extensions of v to K[x].

These valuations are constructed as an augmentation of an incommensurable valuation
µ−∞, which is a kind of absolute minimal extension of v to K[x].

We analyze the structure of the graded algebra of the valuation µ−∞ and describe its
set of key polynomials.

Also, we determine the structure of the graded algebra of the depth-zero valuations.
Their set of key polynomials is described in Chapter 6, where this is done for all valuations
µ of finite depth.

In Chapter 5, we discuss inductive (finite depth) valuations and their MacLane chains
as in (1). Optimal MacLane chains are analyzed and a certain unicity property is proved
for them.

A MacLane chain of an inductive valuation µ supports many discrete data and oper-
ators which are described in this chapter.

As mentioned above, inductive valuations are useful to detect information about the
irreducible factors over Kh[x] of any given polynomial f ∈ K[x].

Since we are interested in the design of algorithms which capture this information, we
need algorithms able to compute all data and operators supported by a MacLane chain.
To this end, we are led to fix an auxiliary finitely generated group Γfg of the value group
Γ.

Finally, certain rational functions in K(x) are construced, leading to special elements
with prescribed degree in the graded algebra Gµ, which play an important role in the
description of the structure of Gµ as a Gv-algebra, where Gv is the graded algebra of the
initial valuation v.

Chapter 6 is devoted to the construction of residual polynomial operators as in (2),
which play a key role in the whole theory.

There is a general residual polynomial operator Rµ introduced in [23] (cf. section 1.7
of this memoir). Its construction depends on the choice of rational functions in K(x) with
a prescribed µ-value.



From an algorithmic perspective, we need to choose these rational functions in a
coherent way for the different levels of the MacLane chains, thus allowing a recursive
(hence constructive) computation of the residual polynomial operators.

To this end, the results of Chapter 5 depending on the choice of an auxiliary finitely
generated group Γfg of the value group Γ are crucial.

The chapter concludes with an analysis of the dependence of the residual polynomial
operators on the choice of the finitely generated subgroup Γfg and the choice of an optimal
MacLane chain for µ.

Chapter 7 contains a description of Gµ as a Gv-algebra. A complete description of Gµ
as a k-algebra is obtained only when the value group Γ of the initial valuation v is finitely
generated.

Part III: Defectles polynomials over henselian fields

This part contains four chapters.

In Chapter 8, we review the basic properties of the henselization of a valued field.
We show that an inductive valuation µ on K[x] admits a unique extension to Kh[x]. This
extension is still inductive, because every optimal MacLane chain of µ lifts in a natural
way to a MacLane chain of the extension.

As a consequence of this result, all key polynomials of inductive valuations are defect-
less polynomials in Kh[x].

The chapter ends with an example of a non-inductive valuation, admitting key poly-
nomials which are not irreducible in Kh[x].

Probably, all results of this chapter are well-known to the experts in the field.

In Chapter 9, inspired in [6] and [22], we formulate the concept of proper key poly-
nomials and we introduce types.

A type is a pair t = (µ,L) where µ is an inductive valuation on K[x] and L is a
proper maximal ideal of the subring ∆µ of Gµ. In this context, L proper ideal means that
L = Rµ(φ) for some proper key polynomial φ for µ.

A proper key polynomial φ satisfying L = Rµ(φ) is called a representative of the type
t. The main result of the chaper shows that two types coincide if and only if they have
the same sets of representatives.

In Chapter 10, we assume that (K, v) is a henselian field, and we still denote by v
the unique extension of v to a fixed algebraic closure K.

As a general aim, we would like to study how far can we approximate a given prime
polynomial F ∈ K[x], by key polynomials of valuations on K[x].

This problem distinguishes two phases. In section 10.1, we show that for any key
polynomial φ of an inductive valuation µ on K[x], the condition

φ |µ F, (4)

(meaning that Hµ(φ) divides Hµ(F ) in the graded algebra), implies that Rµ(F ) is a power
of the maximal ideal Rµ(φ) in ∆µ.

This fact leads to a vast generalization of Hensel’s lemma (Theorem 10.7).



In this way, by constructing (via the augmentation process) larger valuations admitting
key polynomials for which (4) holds, we discover several invariants of F , related to the
discrete data supported by any optimal MacLane chain of µ.

Simultaneously, the key polynomials satisfying (4) are better approximations to F , in
the sense that the resultant Res(F, φ) has a larger v-value.

In a second phase, developed in section 10.4, we must determine under what conditions
this approximation process is able to reach a valuation µ admitting F as a key polynomial.

Both phases are inspired in a pioneer work by Okutsu [24], who showed how to con-
trol the quality of the approximations when K is the completion of a rank-one discrete
valuation v. In this classical case, this process converges for any prime polynomial, and
all involved valuations are inductive.

The connection of Okutsu’s approach with inductive valuations was found in [7]. Fi-
nally, still restricted to rank-one discrete valuations, the main result of Okutsu was rein-
terpreted in [6] as the existence of the canonical bijection (3).

For both phases, we follow closely the approach of [6]. The generalization of these
ideas to the case of a general valuation v is easy, but it has a crucial limitation. The
second phase is only possible for defectless polynomials.

The main result of the memoir is the construction of a bijective mapping

M −→ P0/≈

between the MacLane space of (K, v) (considered as the set of strong types) and a certain
quotient of the subset P0 ⊂ P of defectles polynomials with coefficients in the henselian
field K.

The extension of these ideas to arbitrary prime polynomials would require the use of
continuous MacLane chains and their limit augmentations considered by Vaquié in [30].
We hope to be able to deal with the general case in a future work.

Finally, in Chapter 11, we apply the techniques of Chapter 10 to reobtain some
results on the computation of invariants of tame algebraic elements over henselian fields.

These results may be found in the literature as the combined contribution of several
papers of different authors [1, 2, 3, 4, 15, 16, 29].

Our aim is to give a unified presentation of these computations, with simplified proofs,
derived in a natural way from the results of Chapter 10.





PART I

Background on valuations





Chapter 1

Valuations on polynomial rings

Throughout this memoir we fix a valuation on a field K,

v : K −→ Γ ∪ {∞}.

We suppose that Γ = Γv is its value group, and we denote by

O = Ov, m = mv, k = kv

its valuation ring, maximal ideal and residue class field, respectively.

For any a ∈ O, we denote by a ∈ k its class modulo m. Given a polynomial g ∈ O[x],
we denote by g ∈ k[x] the polynomial which is obtained by taking classes modulo m of all
coefficients of g.

The aim of this memoir is to study inductive valuations over (K, v), and use them to
parameterize defectless polynomials over henselian fields.

These valuations are certain commensurable extensions of the valuation v to the field
K(x) of rational functions in one indeterminate.

In this preliminary chapter, we recall some background on valued fields and rings.

1.1 Ordered abelian groups

An ordered abelian group is an abelian group (Γ,+) equipped with a total order ≤, which
is compatible with the group structure:

α ≤ β =⇒ α + γ ≤ β + γ, ∀α, β, γ ∈ Γ.

A subgroup Λ ⊂ Γ is convex if

α, β ∈ Λ =⇒ [α, β] ⊂ Λ.

The following properties of convex subgroups of ordered abelian groups are well known.

• The quotient Γ/Λ inherits a natural structure of ordered abelian group.

3



4 CHAPTER 1. VALUATIONS ON POLYNOMIAL RINGS

• The kernel of an order-preserving group homomorphism between two ordered abelian
groups is a convex subgroup.

• The convex subgroups of Γ are totally ordered by inclusion.

Definition 1.1. The rank of Γ is the cardinality of the set of proper convex subgroups of
Γ. It is denoted as rk(Γ).

For instance, let Rn
lex be the additive group (Rn,+) equipped with the lexicographical

order. This ordered abelian group has rank n, and any ordered abelian group of finite
rank n can be embedded into Rn

lex via an order-preserving homomorphism.

Definition 1.2. We say that QΓ := Γ⊗Q is the divisible hull of Γ.
The dimension of QΓ as a Q-vector space is called the rational rank of Γ.
It is denoted as rr(Γ) = dimQ QΓ.

Thus, the rational rank of Γ is the cardinality of a maximal linearly independent subset
of Γ, as a Z-module.

For any subgroup Λ ⊂ Γ, we have

rk(Γ) ≤ rk(Λ) + rr(Γ/Λ). (1.1)

In particular, rk(Γ) ≤ rr(Γ), but equality does not necessarily hold. For instance,

rk(Q) = 1 = rr(Q), rk(R) = 1 < rr(R) =∞.

Ordered abelian groups are torsion free. In fact, suppose that 0 6= α ∈ Γ has finite
order n > 0. By eventually replacing α with −α, we may assume that α > 0, and this
leads to a contradiction:

0 < α =⇒ α < 2α < · · · < nα = 0.

Since Γ is torsion free, the natural group homomorphism

Γ −→ QΓ, α 7→ α⊗ 1 (1.2)

is an embedding. Every element in QΓ can be written as α ⊗ 1
e

for α ∈ Γ and some
positive integer e. This expression is unique up to the following identification:

α⊗ 1

e
= β ⊗ 1

d
⇐⇒ dα = eβ.

Notation. In the sequel we shall write α/e instead of α⊗ 1
e
.

We can consider a total order in QΓ:

α/e ≤ β/d ⇐⇒ dα ≤ eβ.

It is easy to check that QΓ is an ordered abelian group and the embedding (1.2) preserves
the order. Clearly,

rk(Γ) = rk(QΓ), rr(Γ) = rr(QΓ).
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1.2 Valued fields

In this section, we collect several basic results on valuations on fields. Most of them have
been extracted from [5].

Let K be a field and Γ an ordered abelian group. A mapping

v : K −→ Γ ∪ {∞}

is said to be a valuation on K if it satisfies the following properties for all a, b ∈ K:

(0) v(a) =∞ if and only if a = 0,

(1) v(ab) = v(a) + v(b),

(2) v(a+ b) ≥ Min {v(a), v(b)}.

The group of values of v is the image of the group homomorphism K∗
v−→ Γ induced

by v. We denote it by
Γv = v(K∗).

The subring Ov = {a ∈ K | v(a) ≥ 0} is called the valuation ring of v.
The following properties of valuation rings are well-know:

• Ov is a local ring with maximal ideal mv = {a ∈ K | v(a) > 0}.
The quotient kv = Ov/mv is called the residue class field of v.

• For any a ∈ K∗, we have either a ∈ O, or 1/a ∈ m.

• Ov is integrally closed, and its ideals are totally ordered by inclusion.

Definition 1.3. Two valuations vi : K → Γi ∪ {∞} (i = 1, 2) are equivalent if they have
the same valuation ring: Ov1 = Ov2.

This happens if and only if there exists an order-preserving group isomorphism

ι : Γv1 −→ Γv2

such that ι ◦ v1 = v2.

Definition 1.4. Let v : K → Γ ∪ {∞} be a valuation.
Let L/K be an extension of fields. A valuation on L,

w : L −→ Γ′ ∪ {∞},

is said to be an extension of v if Ow ∩K = Ov.

Equivalently, there exists an order-preserving embedding Γv ↪→ Γw such that the
following diagram commutes.

L∗
w
−� Γw

↑ ↑
K∗

v
−� Γv
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We define the index of ramification of an extension w/v of valuations as:

e(w/v) = (Γw : Γv) ,

having in mind that it can be infinite.
Also, an extension w/v of valuations determines an embedding kv ↪→ kw between the

residue class fields.
We denote the residual degree of the extension w/v as

f(w/v) = [kw : kv] .

This number may be infinite as well.

Definition 1.5. An extension w/v is said to be immediate if e(w/v) = f(w/v) = 1.

Commensurable extensions

Definition 1.6. An extension w/v of valuations is said to be commensurable if Γw/Γv is
a torsion group. This is equivalent to rr(Γw/Γv) = 0.

In particular, (1.1) shows that

rk(Γv) = rk(Γw), rr(Γv) = rr(Γw).

Suppose v is the trivial valuation on K; that is, Γv = {0}. Then, for any field extension
L/K, the trivial valuation on L is the only commensurable extension of v.

If the extension w/v is commensurable, there is a natural order-preserving embedding
of Γw into the divisible hull of Γv:

i : Γw ↪−→ QΓv, γ 7−→ (eγ)/e,

where e ∈ Z, which depends on γ, satisfies eγ ∈ Γv.
The valuation on L given by

w̃ : L∗
w
−� Γw

i
↪−→ QΓv

is another extension of v, and it is equivalent to w. In fact, w̃ = i ◦ w by construction;
and i is an order-preserving group isomorphism between Γw and Γw̃ = i (Γw).

Lemma 1.7. Let w1, w2 be two commensurable extensions of v to L.
Let w̃1, w̃2 be their QΓv-valued versions.
Then, w1, w2 are equivalent if and only if w̃1 = w̃2.

Proof. If w̃1 = w̃2, then w1 and w2 are equivalent, because each wi is equivalent to
w̃i for i = 1, 2.

Conversely, suppose that w1 and w2 are equivalent. Let ι : Γw1 → Γw2 be an order-
preserving group isomorphism such that ι ◦ w1 = w2. This isomorphism extends in a
unique way to an order-preserving automorphism ι̃ of QΓv such that

ι̃ ◦ w̃1 = w̃2.
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This leads to the following commutative diagram:

Γv ↪−→ Γw2

i2
↪−→ QΓv

‖ ι ↑ ↑ ι̃
Γv ↪−→ Γw1

i1
↪−→ QΓv

Since ι̃ restricted to Γv is the identity, it must be the identity on QΓv as well, so that
i2 ◦ ι = i1. Hence, w̃1 = w̃2.

Finally, let us mention another fundamental inequality.

Theorem 1.8. For an arbitrary extension w/v of valuations, it follows that

tr. deg(kw/kv) + rr(Γw/Γv) ≤ tr. deg(L/K).

In particular, if L/K is algebraic, then kw/kv is algebraic and w/v is commensurable.

1.3 Graded algebra of a valuation

To any valuation v on K we may associate a graded algebra as follows.
For any α ∈ Γv, consider the Ov-submodules:

Pα = {a ∈ K | v(a) ≥ α} ⊃ P+
α = {a ∈ K | v(a) > α},

leading to the graded algebra

Gv := grv(K) =
⊕

α∈Γv
Pα/P+

α .

The product of homogeneous elements is defined in an obvious way:(
a+ P+

α

) (
b+ P+

β

)
= ab+ P+

α+β.

If the class of a + P+
α and b + P+

β are different from zero, then v(a) = α, v(b) = β.

Hence, v(ab) = α + β, so that ab+ P+
α+β is different from zero too.

This means that Gv is an integral domain.

The subring of homogeneous elements of degree zero is kv, so that Gv has a natural
structure of kv-algebra.

Definition 1.9. There is a natural mapping Hv : K → Gv, given by

Hv(0) = 0, Hv(a) = a+ P+
v(a), for a 6= 0.

Two elements a, b ∈ K are said to be v-equivalent if Hv(a) = Hv(b). In this case, we
write a ∼v b.

This is equivalent to v(a− b) > v(b), and it implies v(a) = v(b).

An extension w/v of valuations determines an embedding of graded algebras

Gv ↪→ Gw := grw(L), a+ P+
α (v) 7→ a+ P+

α (w), ∀α ∈ Γv, ∀a ∈ Pα(v).
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Lemma 1.10. Let w/v be an extension of valuations. The following conditions are equiv-
alent.

(1) w/v is immediate.

(2) The natural embedding Gv ↪→ Gw is an isomorphism.

(3) For every ξ ∈ L, there exists a ∈ K such that ξ ∼w a.

Proof. Let us see that (1) implies (2). Since f(w/v) = 1, the canonical mapping
kv → kw is an isomorphism. Thus, the embedding Gv ↪→ Gw restricts to an isomorphism
between the homogeneous parts of degree zero.

On the other hand, since e(w/v) = 1, for every α ∈ Γw there exists a ∈ K with
w(a) = α. Hence, the mapping Gv → Gw is an isomorphism on the homogeneous parts of
degree α too:

Pα(v)/P+
α (v) = Hv(a)kv −→∼ Hw(a)kw = Pα(w)/P+

α (w).

Conditions (2) and (3) are both equivalent to the fact that the mapping Gv → Gw is
onto. Finally, (2) clearly implies (1).

1.4 Semivaluations on K[x]

An extension of v to the field K(x) is completely determined by its action on the poly-
nomial ring K[x]. Thus, we may restrict our attention to mappings

µ : K[x] −→ Γ′ ∪ {∞},

satisfying conditions (0), (1), (2) of a valuation (cf. section 1.2), and such that

µ|K = ι ◦ v,

for some order-preserving embedding ι : Γ ↪→ Γ′.

It is convenient to enlarge a little bit the notion of valuation on a polynomial ring,
and deal with semivaluations.

The definitions that follow can be extended to arbitrary commutative rings, but we
keep dealing with our ring K[x] for the reader’s convenience.

Definition 1.11. Let K be a field and Γ′ an ordered abelian group.
A semivaluation on K[x] is a mapping

µ : K[x] −→ Γ′ ∪ {∞}

satisfying the following properties for all f, g ∈ K[x]:

(1) µ(fg) = µ(f) + µ(g),

(2) µ(f + g) ≥ Min {µ(f), µ(g)}.
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As usual, such a mapping satisfies

µ(f) < µ(g) =⇒ µ(f + g) = µ(f).

In fact, µ(f + g) > µ(f) would lead to a contradiction:

µ(f) ≥ Min {µ(−g), µ(f + g)} > µ(f).

The support of µ is the ideal

p := pµ = µ−1(∞).

Condition (1) shows that p is a prime ideal of K[x].

Definition 1.12. We say that µ is a valuation on K[x] if p = 0.
Only in this case µ extends to a valuation on the field of fractions K(x).

In any case, µ induces a valuation

µ : κ(p)∗ −→ Γ′,

on the residue field κ(p), which is isomorphic to the field of fractions of K[x]/p.
Let us denote the corresponding maximal ideal and valuation ring by

mµ := mµ ⊂ Oµ := Oµ ⊂ κ(p).

The residue class field of µ is defined to be

kµ = Oµ/mµ = kµ.

Also, we denote the group of values by

Γµ := Γµ = µ (κ(p)∗) ,

which coincides with the subgroup of Γ′ generated by µ(K[x] \ p).

Conversely, for any p ∈ Spec(K[x]) and any valuation

κ(p) −→ Γ′ ∪ {∞},
we obtain a semivaluation on K[x] with support p, just by taking the composition

K[x] −→ K[x]/p ↪−→ κ(p) −→ Γ′ ∪ {∞}.
Definition 1.13. Two semivaluations ν, µ on K[x] are said to be equivalent if the fol-
lowing equivalent conditions are satisfied.

(1) There exists a (necessarily unique) order-preserving isomorphism ι : Γν
∼→ Γµ such

that µ = ι ◦ ν.

(2) For all f, g ∈ K[x], the condition µ(f) ≥ µ(g) is equivalent to ν(f) ≥ ν(g).

(3) pν = pµ and Oν = Oµ.

Let us show that these conditions are equivalent. It is clear that (1) implies (2).

Condition (2) obviously implies pν = pµ. Also, Oν = Oµ because f ∈ Oν is equivalent
to µ(f) ≥ µ(1).

Finally, (3) implies that ν and µ are equivalent valuations on the same field. Hence,
there exists an order-preserving isomorphism ι : Γν

∼→ Γµ such that µ = ι ◦ ν. By com-
posing with the mapping K[x]→ K[x]/pν ↪→ κ(p), we get µ = ι ◦ ν.
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Semivaluations on K[x] extending a given valuation on K

We are interested in equivalence classes of semivaluations µ on K[x] extending our given
valuation v on K, with group of values Γ.

Equivalently, we are interested in pairs (p, µ), where p ∈ Spec(K[x]) and µ is a valua-
tion on κ(p) extending v.

We say that the extension µ/v is commensurable if µ/v is commensurable; that is,
rr(Γµ/Γ) = 0. As mentioned in Chapter 0, to any such commensurable extension we may
attach a QΓ-valued extension

K[x] −→ QΓ ∪ {∞}.

By Lemma 1.7, equivalence of commensurable extensions of v is translated into equality
of QΓ-valued extensions of v.

Since we are only interested in commensurable extensions of v, we may focus our
attention on the set of semivaluations with values in QΓ,

V := V(K, v) = {µ : K[x] −→ QΓ ∪ {∞} | µ|K = v}.

If v is the trivial valuation on K, then V consists of the one-element set containing
the trivial valuation on K(x). Hence, we may exclude this case from our analysis.

Hypothesis. From now on, we assume that v is not the trivial valuation.

Since all our semivaluations take values in the same ordered group, there is a natural
partial ordering in the set V:

µ ≤ µ′ if µ(g) ≤ µ′(g), ∀ g ∈ K[x].

There is a special element in this set, which is called Gauss’ valuation:

µGauss

(∑
0≤s

asx
s
)

= Min
0≤s
{v(as)} .

Clearly, µGauss has trivial support, so that it is a valuation indeed.
Gauss’ valuation is the least element in the subset of semivaluations satisfying µ(x) ≥

0:
µ ∈ V, µ(x) ≥ 0 =⇒ µGauss ≤ µ.

We may classify the elements in V according to its support:

V =
⋃

p∈Spec(K[x])

Vp, Vp = {µ ∈ V | pµ = p}.

For p = 0, note that V0 ⊂ V is precisely the subset of all valuations in V.

For p 6= 0, we have p = φK[x] for some monic irreducible φ ∈ K[x]. The field

L = κ(p) = K[x]/p

is a finite extension of K. Thus, Vp may be identified to the set of all equivalence classes
of valuations µ on L extending v.
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1.5 Graded algebra of a valuation on K[x]

Let µ be any valuation on K[x] extending v. Recall that µ extends to a valuation µ̄ on
the field K(x).

For any α ∈ Γµ, consider the following O-submodules in K[x]:

Pα = {g ∈ K[x] | µ(g) ≥ α} ⊃ P+
α = {g ∈ K[x] | µ(g) > α}.

The graded algebra of µ is the integral domain:

Gµ := grµ(K[x]) =
⊕

α∈Γµ
Pα/P+

α .

Clearly,
O ⊂ P0 = K[x] ∩ Oµ, m = P+

0 ∩ O ⊂ P+
0 = K[x] ∩mµ.

Let ∆ := ∆µ = P0/P+
0 be the subring determined by the piece of degree zero of this

algebra. There are canonical injective ring homomorphisms:

k ↪−→ ∆ ↪−→ kµ.

In particular, ∆ and Gµ are equipped with a canonical structure of k-algebra.
We have natural embeddings of graded k-algebras

Gv = grv(K) ↪−→ Gµ = grµ(K[x]) ↪−→ grµ(K(x)).

none of which is necessarily onto.
The graded algebras grv(K), grµ(K(x)) are the ordinary graded algebras introduced

in section 1.3, attached to the valued fields (K, v), (K(x), µ), respectively.
There is a natural map Hµ : K[x]→ Gµ, given by

Hµ(g) =

{
g + P+

µ(g) ∈ Pµ(g)/P+
µ(g), if g 6= 0,

0, if g = 0.

Note that Hµ(g) 6= 0 if g 6= 0. For all g, h ∈ K[x] we have:

Hµ(gh) = Hµ(g)Hµ(h),

Hµ(g + h) = Hµ(g) +Hµ(h), if µ(g) = µ(h) = µ(g + h).
(1.3)

For a valuation µ′ ∈ V with µ ≤ µ′, there is a canonical homomorphism of graded
algebras:

Gµ −→ Gµ′ , g + P+
µ(g)(µ) 7−→ g + P+

µ(g)(µ
′).

Clearly,

Hµ(g) 7→

{
Hµ′(g), if µ(g) = µ′(g),

0, if µ(g) < µ′(g).

Definition 1.14. Let I(∆) be the set of ideals in ∆, and consider the residual ideal
operator:

R := Rµ : K[x] −→ I(∆), g 7→ (Hµ(g)Gµ) ∩∆.
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This operator R translates questions about the action of µ on K[x] into ideal-theoretic
considerations in the ring ∆.

To this end, the next definitions are crucial to translate properties of the action of µ
on K[x] into algebraic relationships in the graded algebra Gµ.

Definition 1.15. Let g, h ∈ K[x].
We say that g, h are µ-equivalent, and we write g ∼µ h, if Hµ(g) = Hµ(h).
We say that g is µ-divisible by h, and we write h |µ g, if Hµ(g) is divisible by Hµ(h)

in Gµ.
We say that g is µ-irreducible if Hµ(g)Gµ is a non-zero prime ideal.
We say that g is µ-minimal if g -µ f for any non-zero f ∈ K[x] with deg f < deg g.

In other words, for f, g, h ∈ K[x] \ p:

• g ∼µ h ⇐⇒ µ(g − h) > µ(g).

• h |µ g ⇐⇒ g ∼µ hf , for some f ∈ K[x].

• g is µ-irreducible ⇐⇒ [ g |µ fh =⇒ g |µ f or g |µ h ].

The property of g being µ-minimal admits a relevant characterization.

Lemma 1.16. Let φ ∈ K[x] be a non-constant polynomial. Let

f =
∑

0≤s
asφ

s, as ∈ K[x], deg(as) < deg(φ)

be the canonical φ-expansion of f ∈ K[x]. The following conditions are equivalent:

(1) φ is µ-minimal

(2) For any f ∈ K[x], µ(f) = Min{µ(a0), µ(f − a0)}.

(3) For any f ∈ K[x], µ(f) = Min
0≤s
{µ(asφ

s)}.

(4) For any non-zero f ∈ K[x], φ -µ f if and only if µ(f) = µ(a0).

Proof. Write f − a0 = φq with q ∈ K[x]. Then, µ(f) ≥ Min{µ(a0), µ(φq)}.
An strict inequality implies a0 ∼µ −φq. In particular, φ is not µ-minimal, because

φ |µ a0 with deg(a0) < deg(φ). Hence, (1) implies (2).

An inductive argument shows that (2) implies (3).

Let us now deduce (4) from (3). For any non-zero f ∈ K[x] we have µ(f) ≤ µ(a0), by
item (3). If µ(f) < µ(a0), then f ∼µ φq, so φ |µ f .

Conversely, if f ∼µ φg for some g ∈ K[x], then µ(f − φg) > µ(f). Since the φ-
expansion of f − φg has the same coefficient a0, we have µ(f − φg) ≤ µ(a0), by condition
(3). Hence, µ(f) < µ(a0).

Finally, (4) implies (1). If deg(f) < deg(φ), the φ-expansion of f is f = a0. By item
(4), φ -µ f .

The property of µ-minimality is not stable under µ-equivalence. For instance, if φ is
µ-minimal and µ(φ) > 0, then φ + φ2 ∼µ φ and φ + φ2 is not µ-minimal. However, for
µ-equivalent polynomials of the same degree, µ-minimality is clearly preserved.
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1.6 Key polynomials

We keep dealing with an arbitrary valuation µ on K[x], extending v.

Definition 1.17. A key polynomial for µ is a monic polynomial in K[x] which is simul-
taneously µ-minimal and µ-irreducible.

The set of key polynomials for µ will be denoted by KP(µ).

Key polynomials for valuations on K[x] were introduced in the seminal paper of S.
MacLane [17]. Since then, these objects have been extensively studied, mainly for its
connection with the study of the defect of a valuation in a finite extension, and the local
uniformization problem [6, 13, 19, 23, 28, 31].

In this section, we collect several basic facts about key polynomials, most of them
extracted from [23].

Lemma 1.18. Let χ ∈ KP(µ), and let f ∈ K[x] a monic polynomial such that χ |µ f
and deg(f) = deg(χ). Then, χ ∼µ f and f is a key polynomial for µ too.

Let us introduce some notation, to be used throughout the memoir.

Notation. For any positive integer m we denote:

K[x]m = {a ∈ K[x] | deg(a) < m} ,
Γm = Γµ,m = {µ(a) ∈ Γµ | a ∈ K[x]m, a 6= 0} .

Lemma 1.19. Let χ ∈ KP(µ). Then,

1. The polynomial χ is irreducible in K[x].

2. For a, b ∈ K[x]deg(χ), let ab = c+ dχ be its χ-expansion. Then,

µ(ab) = µ(c) ≤ µ(dχ).

Proof. Take a, b ∈ K[x]deg(χ). Since χ is µ-minimal, we have χ -µ a and χ -µ b. Hence,
χ -µ ab, because χ is µ-irreducible too. In particular, we can’t have χ = ab.

Also, µ(ab) = µ(c) ≤ µ(dχ) follows from Lemma 1.16. This proves (1) and (2).

Semivaluation attached to a key polynomial

Let χ ∈ KP(µ). Consider the prime ideal p = χK[x] and the field Kχ = K[x]/p.

Lemma 1.20. The set Γdeg(χ) is a subgroup of Γµ, and
〈

Γdeg(χ), µ(χ)
〉

= Γµ.

By the definition of Γdeg(χ), we get a well-defined onto mapping:

vχ : K∗χ −� Γdeg(χ), vχ(f + p) = µ(f0), ∀f ∈ K[x] \ p,

where f0 ∈ K[x] is the common 0-th coefficient of the χ-expansion of all polynomials in
the class f + p.
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Proposition 1.21. The mapping vχ is a valuation on Kχ extending v, with group of
values Γdeg(χ).

Moreover, µ(f) ≤ vχ(f) for all f ∈ K[x], and equality holds if and only if χ -µ f .

Denote the maximal ideal, the valuation ring and the residue class field of vχ by:

mχ ⊂ Oχ ⊂ Kχ, kχ = Oχ/mχ.

Let θ ∈ Kχ = K[x]/(χ) be the root of χ determined by the class of x.

With this notation, we have Kχ = K(θ), and

vχ(f(θ)) = µ(f0) = vχ(f0(θ)), ∀f ∈ K[x].

We abuse of language and denote still by vχ the corresponding semivaluation

K[x] −� Kχ
vχ−→ Γdeg(χ) ∪ {∞}

with support p = χK[x] = v−1
χ (∞).

Proposition 1.22. The residual ideal R(χ) is the kernel of the onto homomorphism

∆ −� kχ, g + P+
0 7→ g(θ) + mχ.

In particular, R(χ) is a maximal ideal in ∆.

Minimal expression of Hµ(f) in terms of χ-expansions

Let χ ∈ KP(µ). For any non-zero f ∈ K[x] with canonical χ-expansion

f =
∑
0≤s

fsχ
s, fs ∈ K[x]deg(χ),

we denote Iχ(f) = {s ∈ Z≥0 | µ(fsχ
s) = µ(f)} , and

sµ,χ(f) = Min(Iχ(f)), s′µ,χ(f) = Max(Iχ(f)). (1.4)

Lemma 1.23. Let f, g ∈ K[x] be non-zero polynomials. Then,

(1) f ∼µ
∑

s∈Iχ(f) fsχ
s.

(2) If f ∼µ g, then Iχ(f) = Iχ(g), and fs ∼µ gs for all s ∈ Iχ(f).

(3) The integer s = sµ,χ(f) is maximal with the property χs |µ f . Namely, sµ,χ(f) is the
order with which the prime Hµ(χ) divides Hµ(f) in Gµ. In particular,

sµ,χ(fg) = sµ,χ(f) + sµ,χ(g). (1.5)
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Key polynomials of minimal degree

Suppose that φ ∈ KP(µ) has minimal degree among all key polynomials for µ.

Proposition 1.24. For any non-zero g ∈ K[x], with φ-expansion g =
∑

0≤s gsφ
s, the

following conditions are equivalent.

(1) g ∼µ a, for some a ∈ K[x]deg(φ).

(2) Hµ(g) is algebraic over Gv.

(3) Hµ(g) is a unit in Gµ.

(4) sµ,φ(g) = s′µ,φ(g) = 0.

(5) g ∼µ g0.

Proposition 1.25. Let κ ⊂ ∆ be the algebraic closure of k in ∆. Then, κ is the maximal
subfield of ∆ and the mapping κ ↪→ ∆ � kφ is an isomorphism.

Let us characterize µ-minimality of any f ∈ K[x] in terms of its φ-expansion.

Proposition 1.26. For any f ∈ K[x] with φ-expansion f =
∑`

s=0 fsφ
s, f` 6= 0, the

following conditions are equivalent:

(1) f is µ-minimal.

(2) deg(f) = s′µ,φ(f) deg(φ).

(3) deg(f`) = 0 and µ(f) = µ
(
f`φ

`
)
.

Let us introduce an important numerical invariant of a valuation on K[x] admitting
key polynomials.

Theorem 1.27. For any monic non-constant f ∈ K[x] we have

µ(f)/ deg(f) ≤ C(µ) := µ(φ)/ deg(φ),

and equality holds if and only if f is µ-minimal.

Structure of ∆ as a k-algebra

Theorem 1.28.

• If µ/v is incommensurable, then κ = ∆ = kµ is a finite extension of k.

• If KP(µ) = ∅, then κ = ∆ = kµ is an algebraic extension of k.

• If µ/v is commensurable and KP(µ) 6= ∅, then there exists ξ ∈ ∆ transcendental
over κ such that

∆ = κ[ξ], Frac(∆) = κ(ξ) ' kµ,

the last isomorphism being induced by the canonical embedding ∆ ↪→ kµ.

We may take ξ = Hµ(φe)Hµ(u)−1, where φ ∈ KP(µ) is a key polynomial of minimal
degree n, e is a minimal positive integer such that eµ(φ) ∈ Γdeg(φ), and u ∈ K[x]deg(φ)

satisfies µ(u) = eµ(φ).
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1.7 Residual polynomial operator

Let µ ∈ V be a valuation with KP(µ) 6= ∅.
The choice of the pair φ, u as above, determines a transcendental generator ξ of ∆ as

a κ-algebra, and a residual polynomial operator :

R := Rµ : K[x] −→ κ[y]

which is a kind of computational representation of the residual ideal operator R.
We agree that R(0) = 0. For the definition of R(f) for a non-zero f ∈ K[x], let us

consider its canonical φ-expansion f =
∑

0≤s asφ
s.

Let us simplify the notation of some data we attached to this expansion in the last
section:

I(f) := Iφ(f) = {s ∈ Z≥0 | µ(asφ
s) = µ(f)} ,

s(f) := sµ,φ(f) = Min(I(f)), s′(f) := s′µ,φ(f) = Max(I(f)).

For s ∈ I(f), the condition µ(asφ
s) = µ(f) implies that s belongs to a fixed class

modulo e. In fact, for any pair s, t ∈ I(f),

µ(asφ
s) = µ(atφ

t) =⇒ (t− s)µ(φ) = µ(as)− µ(at) ∈ Γdeg(φ) =⇒ t ≡ s (mod e).

Hence, I(f) ⊂ {s0, s1, . . . , sd}, where d = (s′(f)− s(f))/e, and

s0 = s(f), sj = s0 + je, 0 ≤ j ≤ d, sd = s′(f).

By Lemma 1.23, we may write

f ∼µ
∑
s∈I(f)

asφ
s ∼µ φs0

(
as0 + · · ·+ asjφ

je + · · ·+ asdφ
de
)
, (1.6)

having into account only the monomials for which sj ∈ I(f). We define

R(f) = c0 + c1y + · · ·+ cd−1y
d−1 + yd ∈ κ[y],

where the coefficients cj ∈ κ are defined by:

ζj =

{
Hµ(asd)

−1Hµ(u)j−dHµ(asj), if sj ∈ I(f),

0, if sj 6∈ I(f).
(1.7)

We define the normalized leading coefficient of f as:

nlc(f) = Hµ(asd)Hµ(u)d.

It is a homogeneous unit in Gµ of degree µ(f)− s(f)µ(φ).
Let us mention some of the basic properties of the operator R.

Lemma 1.29. Let f, g ∈ K[x] be non-zero polynomials. Then,

• deg(R(f)) = d = (s′(f)− s(f))/e.
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• R(f)(0) 6= 0.

• f ∼µ g =⇒ R(f) = R(g).

• Hµ(f) = nlc(f)Hµ(φ)s(f)R(f)(ξ).

• R(fg) = R(f)R(g).

• R(f) = ξds(f)/eeR(f)(ξ)∆.

Another application of the residual polynomial operator is the characterization of all
key polynomials for µ.

Proposition 1.30. Let φ be a key polynomial for µ, of minimal degree.
A monic χ ∈ K[x] is a key polynomial for µ if and only if one of the two following

conditions is satisfied:

(a) deg(χ) = deg(φ) and χ ∼µ φ.

(b) s(χ) = 0, deg(χ) = e deg(φ) deg(R(χ)) and R(χ) is irreducible in κ[y].

In the first case, R(χ) = ξ∆. In the second case, R(χ) = R(χ)(ξ)∆.

Finally, a last relevant application of the operator R is its contribution to the study
of the fibers of the mapping

R : KP(µ)→ Max(∆),

leading to a unique factorization theorem in Gµ.

Proposition 1.31. Let φ, φ′ ∈ KP(µ). The following conditions are equivalent:

1. φ ∼µ φ′.

2. Hµ(φ) and Hµ(φ′) are associate in Gµ.

3. φ |µ φ′.

4. R(φ) = R(φ′).

5. R(φ) = R(φ′).

Moreover, these conditions imply deg(φ) = deg(φ′).

Theorem 1.32. Let µ be a valuation with KP(µ) 6= ∅. The residual ideal mapping

R : KP(µ) −→ Max(∆)

induces a bijection between KP(µ)/∼µ and Max(∆).

Theorem 1.33. Let P ⊂ KP(µ) be a set of representatives of key polynomials under
µ-equivalence. Then, the set HP = {Hµ(φ) | φ ∈ P} is a system of representatives of
homogeneous prime elements of Gµ up to associates.

Also, up to units in Gµ, for any non-zero f ∈ K[x], there is a unique factorization:

f ∼µ
∏

φ∈P
φaφ , aφ = sµ,φ(f), (1.8)

where sµ,φ(f) is the order with which the prime element Hµ(φ) divides Hµ(f) in Gµ.
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1.8 Valuations admitting key polynomials

Theorem 1.34. Let µ be a valuation on K[x] extending v.
The following conditions are equivalent.

1. KP(µ) = ∅.

2. Gµ is algebraic over Gv.

3. Every non-zero homogeneous element in Gµ is a unit.

4. µ/v is commensurable and kµ/k is algebraic.

5. The set of weighted values

W = {µ(f)/ deg(f) | f ∈ K[x] \K monic}

does not contain a maximal element.



Chapter 2

Augmentation of valuations

In this chapter, we review a relevant construction due to MacLane [17]. If a given valuation
µ on K[x] admits key polynomials, it is possible to augment µ to a larger valuation with
a prefixed value on a given key polynomial.

MacLane dealt only with discrete rank one valuations. In 2007, Vaquié generalised
MacLane’s theory to arbitrary valuations [30].

Most of the content of this chapter is extracted from that paper by Vaquié. There
are some results not contained in [30], which are an easy transcription to the general case
of results that were obtained in [6] for discrete rank one valuations. Finally, some basic
results which we could not find in the literature are probably well known.

In any case, we provide proofs of all results in order to help the reader to get some
familiarity with the main features of this construction.

2.1 Basic properties of augmentation

Let us fix an arbitrary valuation µ on K[x], extending v.

Definition 2.1. Let ι : Γµ ↪→ Γ′ be an order-preserving embedding of Γµ into another
abelian ordered group. Take φ ∈ KP(µ) and γ ∈ Γ′ any element such that µ(φ) < γ.

The augmented valuation of µ with respect to these data is the mapping

µ′ : K[x]→ Γ′ ∪ {∞}

determined by:

• µ′(a) = µ(a), if deg(a) < deg(φ).

• µ′(φ) = γ.

• If f =
∑

0≤s asφ
s is the φ-expansion of f , then

µ′(f) = Min {µ′(asφs) | 0 ≤ s} = Min {µ(as) + sγ | 0 ≤ s} .

We use the notation µ′ = [µ;φ, γ].

19
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We emphasize that φ is an arbitrary key polynomial for µ, not necessarily of mini-
mal degree. However, it becomes a key polynomial of minimal degree for the augmented
valuation µ′.

Proposition 2.2. Let µ′ = [µ;φ, γ].

(a) This mapping µ′ is a valuation extending v, and satisfies

µ(f) ≤ µ′(f), ∀ f ∈ K[x].

Moreover, equality holds if and only if φ -µ f .

(b) For all a ∈ K[x]deg(φ), a 6= 0, the element Hµ′(a) ∈ Gµ′ is a unit.

(c) The kernel of the homomorphism Gµ → Gµ′ is the prime ideal Hµ(φ)Gµ.

(d) The polynomial φ is a key polynomial for µ′ of minimal degree.

(e) The value group Γµ′ is the subgroup Γµ′ =
〈

Γµ,deg(φ), γ
〉
⊂ Γ′.

Proof. Let us prove (a). For any non-zero f =
∑

0≤s asφ
s it is clear that

µ(f) = Min{µ(asφ
s) | 0 ≤ s} ≤ Min{µ(as) + sγ | 0 ≤ s} = µ′(f).

Equality holds if and only if µ(f) = µ(a0), which is equivalent to φ -µ f by Lemma 1.16.

Clearly, (µ′)−1(∞) = {0} and µ′|K = µ|K = v. Thus, in order to end the proof of (a)

we need only to check that µ′ satisfies conditions (1) and (2) of a valuation.
Let g =

∑
0≤r brφ

r be the φ-expansion of another non-zero g ∈ K[x]. Clearly, f + g =∑
0≤s(as + bs)φ

s is the canonical φ-expansion of f + g. Hence,

µ′(f + g) = Min{µ(as + bs) + sγ | 0 ≤ s}
≥ Min{Min{µ(as) + sγ, µ(bs) + sγ} | 0 ≤ s} = Min{µ′(f), µ′(g)}.

Finally, let us check that µ′(fg) = µ′(f) + µ′(g). We claim that

µ′
(
asbrφ

r+s
)

= µ′ (asφ
s) + µ′ (brφ

r) , ∀ r, s ≥ 0. (2.1)

In fact, let asbr = c+ dφ, be the φ-expansion of asbr. By Lemma 1.19,

µ(asbr) = µ(c) ≤ µ(dφ) = µ(d) + µ(φ) < µ(d) + γ.

The proof of (2.1) follows from this inequality, because

µ′
(
asbrφ

r+s
)

= Min{µ (c) + (r + s)γ, µ (d) + (r + s+ 1)γ}
= µ (c) + (r + s)γ = µ (asbr) + (r + s)γ = µ′ (asφ

s) + µ′ (brφ
r) .

Consider the sets

I = {0 ≤ s | µ′(asφs) = µ′(f)}, J = {0 ≤ r | µ′(brφr) = µ′(g)},



2.1. BASIC PROPERTIES OF AUGMENTATION 21

and denote i0 = Min(I), j0 = Min(J). Write f = F + F ′, g = G+G′, where

F =
∑
s≥i0

asφ
s, F ′ =

∑
s<i0

asφ
s, G =

∑
s≥j0

brφ
r, G′ =

∑
s<j0

brφ
r.

If s 6∈ I or r 6∈ J , then µ′(asbrφ
r+s) > µ′(f) + µ′(g). Hence,

µ′(F ′G′ + F ′G+G′F ) > µ′(f) + µ′(g).

We need only to show that µ′(FG) = µ′(f) + µ′(g). Indeed, by (2.1),

µ′(FG) ≥ µ′(f) + µ′(g).

On the other hand, let ai0bj0 = c + dφ be the φ-expansion of ai0bj0 . Then, c is the
canonical coefficient of degree i0 + j0 of the φ-expansion of FG, and Lemma 1.19 shows
that µ(ai0bj0) = µ(c). Therefore, by (2.1),

µ′(FG) ≤ µ′(cφi0+j0) = µ′(ai0bj0φ
i0+j0) = µ′(ai0φ

i0) + µ′(bj0φ
j0) = µ′(f) + µ′(g).

This ends the proof of (a).

By Lemma 1.19, φ is irreducible in K[x]. Hence, any non-zero a ∈ K[x]deg(φ) is coprime
to φ, and we have a Bézout identity in K[x],

ab = 1 + φ q, deg(b), deg(q) < deg(φ).

On the other hand, (a) shows that µ(ab) = µ′(ab), because φ -µ ab. Thus,

µ′(ab− 1) = µ′(φ q) > µ(φ q) ≥ µ(ab) = µ′(ab),

so that ab ∼µ′ 1 and Hµ′(a) is a unit in Gµ′ . This proves (b).

The canonical mapping Gµ → Gµ′ sends

Hµ(g) 7→

{
Hµ′(g), if µ(g) = µ′(g),

0, if µ(g) < µ′(g).

By (a), Hµ(g) ∈ Ker (Gµ → Gµ′) if and only if φ |µ g. This proves (c)

Lemma 1.16, shows that φ is µ′-minimal. Let us prove that φ is µ′-irreducible.
Suppose φ -µ′ f , φ -µ′ g for some f, g ∈ K[x]. Let a0, b0 be the coefficients of 0-th

degree of the φ-expansions of f and g, respectively. Let a0b0 = c+ dφ be the φ-expansion
of a0b0, so that c is the coefficient of 0-th degree of the φ-expansion of fg. By Lemma
1.19, µ(a0b0) = µ(c).

By Lemma 1.16, µ′(f) = µ′(a0) = µ(a0), µ′(g) = µ′(b0) = µ(b0). Hence,

µ′(fg) = µ(a0b0) = µ(c) = µ′(c).

Hence, φ -µ′ fg, by Lemma 1.16. This shows that φ is a key polynomial for µ′.
By (b), φ has minimal degree among all key polynomials for µ′. In fact, any a ∈

K[x]deg(φ) is not µ′-irreducible, because Hµ′(a) is a unit in Gµ′ . This ends the proof of (d).

Finally, statement (e) follows immediately from the definition of µ′.

Let us analyze when different building data φ, γ may determine the same augmented
valuation of a given µ.
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Lemma 2.3. Let φ, φ∗ ∈ KP(µ), γ, γ∗ ∈ Γ′ such that γ > µ(φ), γ∗ > µ(φ∗). Then,

[µ;φ, γ] = [µ;φ∗, γ∗] ⇐⇒ deg(φ) = deg(φ∗), µ(φ− φ∗) ≥ γ = γ∗.

In this case, φ ∼µ φ∗.

Proof. Denote η = [µ;φ, γ], η∗ = [µ;φ∗, γ∗]. The right-hand condition yields µ(φ −
φ∗) ≥ γ > µ(φ), so that φ ∼µ φ∗.

Suppose η∗ = η. By the definition of an augmented valuation,

deg(φ) = Min{deg(g) | g ∈ K[x], µ(g) < η(g)} = deg(φ∗).

Write φ = φ∗+a, with deg(a) < deg(φ) = deg(φ∗). By the definition of the augmented
valuations,

γ = η(φ) = η∗(φ) = Min{µ(a), γ∗}, γ∗ = η∗(φ∗) = η(φ∗) = Min{µ(a), γ}.

This implies γ∗ = γ ≤ µ(a).

Conversely, suppose γ = γ∗, deg(φ) = deg(φ∗) and µ(φ− φ∗) ≥ γ.

Consider the φ∗-expansion φ = φ∗+ a, with a = φ−φ∗ ∈ K[x]deg(φ). By the definition
of η∗,

η∗(φ) = Min{µ(a), γ∗} = γ∗ = γ.

Hence, for any non-zero f ∈ K[x] with φ-expansion f =
∑

0≤s asφ
s, we have

η∗(f) ≥ Min {η∗(asφs) | 0 ≤ s} = Min {µ(as) + sγ | 0 ≤ s} = η(f).

The symmetry of the argument shows that η∗ = η.

Let us quote an auxiliary result about µ′-minimal polynomials.

Lemma 2.4. Let µ′ = [µ;φ, γ] and f ∈ K[x] a monic µ′-minimal polynomial with
deg(f) = deg(φ). Then, f ∼µ φ.

Proof. Since deg(f) = deg(φ) and both polynomials are monic, the canonical φ-
expansion of f is

f = a+ φ, a ∈ K[x]deg(φ).

By Proposition 2.2, φ is a key polynomial for µ′ of minimal degree. Therefore, the
criterion of µ′-minimality given in Proposition 1.26 shows that µ′(f) = µ′(φ). Hence,

µ(f − φ) = µ(a) = µ′(a) ≥ µ′(f) = µ′(φ) > µ(φ),

so that f ∼µ φ.
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2.2 Image of the homomorphism Gµ → Gµ′
The next result will be used very often along the rest of the memoir.

Lemma 2.5. Let µ′ = [µ;φ, γ] and f ∈ K[x] a non-zero polynomial.
If φ -µ f , then Hµ(f) is a unit in Gµ′.

Proof. Write f = a+ qφ with a, q ∈ K[x] and deg(a) < deg(φ).
By Lemma 1.16, µ(f) = µ(a) ≤ µ(qφ), and Proposition 2.2 shows that µ(f) = µ′(f).

Putting both results together, we get

µ′(f) = µ(f) = µ(a) ≤ µ(qφ) < µ′(qφ) = µ′(f − a),

so that f ∼µ′ a. By item (b) of Proposition 2.2, Hµ′(f) = Hµ′(a) is a unit in Gµ′ .

By Proposition 2.2, all homogeneous elements in the image of the canonical homomor-
phism Gµ → Gµ′ are those of the form Hµ′(f) with φ -µ f .

By Lemma 2.5, all these homogeneous elements in Im(Gµ → Gµ′) are units.
Let us give a more precise description of the image of the homogeneous elements of

degree zero.

Lemma 2.6. Let µ′ = [µ;φ, γ]. Then,

Ker(∆µ → ∆µ′) = Rµ(φ), Im(∆µ → ∆µ′) = κµ′ ↪→ kµ′ ,

where κµ′ is the algebraic closure of k simultaneously in ∆µ′ and in kµ′.
Also, κ∗µ′ = ∆∗µ′, and κµ′ is k-isomorphic to the residue class feld kφ of the semivalua-

tion vφ.

Proof. The statement about the kernel follows from the definition of Rµ(φ), and the
description of Ker(Gµ → Gµ′) in Proposition 2.2.

The statement about the image follows from Propositions 1.22 and 1.25.

2.3 Generically, Γµ′ contains Γµ

The group Γµ′ does not necessarily contain Γµ.
For instance, for the valuations

µ = [µGauss;x, 1/2], µ′ = [µ;x, 1] = [µGauss;x, 1],

we have Γµ = (1/2)Z, which is larger than Γµ′ = Z.

This anomalous behaviour may occur only when all key polynomials for µ of minimal
degree are µ-equivalent.

Lemma 2.7. Let φ0 be a key polynomial for µ of minimal degree, and let φ be a key
polynomial for µ such that φ -µ φ0. Then,

(1) Γµ,deg(φ) = Γµ.
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(2) The semivaluation vφ on Kφ defined in section 1.6 has group of values Γvφ = Γµ.

(3) All augmentations µ′ = [µ;φ, γ] have Γµ′ =
〈

Γµ, γ
〉
⊃ Γµ.

Proof. For any augmentation µ′ = [µ;φ, γ], Propositions 1.21 and 2.2 show that

Γvφ = Γµ,deg(φ), Γµ′ =
〈

Γµ,deg(φ), γ
〉
.

Hence, the two last statements of the lemma follow from (1), which is proved in [23, Cor.
6.4].

2.4 Maximal semivaluations in V
Let us go back to our space V of semivaluations on K[x] extending v, with values in QΓ,
introduced in section 1.4.

All semivaluations in V which are not valuations are maximal.

Lemma 2.8. Let ν ∈ V be a semivaluation with support p 6= 0.
Then, ν is maximal in V with respect to the partial ordering ≤.

Proof. Suppose ν ≤ µ for some µ ∈ V. Then, p ⊂ pµ, and this implies p = pµ,
because p and pµ are maximal ideals.

Hence, ν, µ are two valuations on the same finite extension L = κ(p) of K, and they
satisfy ν(ξ) ≤ µ(ξ) for all ξ ∈ L. In particular, Oν ⊂ Oµ, and this implies ν = µ [5, Lem.
3.2.8]. Hence, ν = µ.

Let µ ∈ V be a valuation. If KP(µ) 6= ∅, then Proposition 2.2 shows that µ is not
maximal with respect to the partial ordering in V.

The converse implication holds too: if µ is not maximal in V, then KP(µ) 6= ∅.

Proposition 2.9. [30, Thm. 1.15] Let µ, µ∗ ∈ V such that µ < µ∗. Let φ ∈ K[x] be a
monic polynomial with minimal degree satisfying µ(φ) < µ∗(φ). Then, µ is a valuation
satisfying

(1) µ(g) = µ∗(g) if and only if φ -µ g.

(2) φ is a key polynomial for µ.

(3) µ < [µ;φ, γ] ≤ µ∗, for γ = µ∗(φ).

Proof. By Lemma 2.8, µ is a valuation.

Let us prove (1). If φ |µ g, we have g ∼µ φ q for some q ∈ K[x]. Hence,

µ∗(g − φq) ≥ µ(g − φq) > µ(g) = µ(φq).

Since µ∗(φq) > µ(φq) = µ(g), we deduce

µ∗(g) ≥ Min{µ∗(φq), µ∗(g − φq)} > µ(g).
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Conversely, suppose that µ(g) < µ∗(g). Let g = qφ+ a, with deg(a) < deg(φ). By the
minimality of deg(φ), we have q 6= 0 and µ∗(a) = µ(a).

Therefore, g ∼µ qφ, because

µ(g − φq) = µ∗(g − φq) ≥ Min{µ∗(g), µ∗(qφ)} > Min{µ(g), µ(qφ)} = µ(g),

the last equality by Lemma 1.16.

Let us prove (2). If g ∈ K[x] has deg(g) < deg(φ), we have µ(g) = µ∗(g). Hence,
φ -µ g by item (1). This shows that φ is µ-minimal.

Now, suppose φ -µ f , φ -µ g. By item (1), µ∗(f) = µ(f) and µ∗(g) = µ(g). Hence,
µ∗(fg) = µ(fg), leading to φ -µ fg by item (1). This implies that φ is µ-irreducible.

Finally, (3) is obvious. For any g =
∑

0≤s asφ
s ∈ K[x], we have

µ∗(g) ≥ Min{µ∗(asφs) | 0 ≤ s} = Min{µ′(asφs) | 0 ≤ s} = µ′(g),

where we denoted µ′ = [µ;φ, γ].

Corollary 2.10. Let µ be a valuation in V. Then, µ is maximal in V with respect to the
partial ordering ≤ if and only if KP(µ) is empty.

Notation. Let us denote by [φ]µ, or simply [φ] if µ is clear fom the context, the µ-
equivalence class of a key polynomial φ.

Corollary 2.11. Let µ, µ∗ ∈ V such that µ < µ∗. Let Φµ,µ∗ be the set of all monic
polynomials φ ∈ K[x] of minimal degree satisfying µ(φ) < µ∗(φ). Then, µ is a valuation
and Φµ,µ∗ is one of the equivalence classes in the quotient set KP(µ)/∼µ.

Proof. By Lemma 2.8, µ is a valuation. Take any φ ∈ Φµ,µ∗ . By Proposition 2.9, φ
is a key polynomial for µ, and for all non-zero g ∈ K[x]:

φ |µ g ⇐⇒ µ(g) < µ∗(g).

In particular, all χ ∈ Φµ,µ∗ are key polynomials for µ satisfying φ |µ χ. Since deg(χ) =
deg(φ), Lemma 1.18 shows that all χ ∈ Φµ,µ∗ belong to the equivalence class [φ].

Conversely, any χ ∈ [φ] has degree deg(φ) by Proposition 1.31. Since φ |µ χ, we have
µ(χ) < µ∗(χ), so that χ ∈ Φµ,µ∗ . This proves that Φµ,µ∗ = [φ].

We end the chapter with another important application of Proposition 2.9.

Theorem 2.12. For any µ, µ∗ ∈ V such that µ < µ∗, the interval [µ, µ∗] ⊂ V is totally
ordered.

Actually, we may formulate this result in an apparently stronger form.

Theorem 2.13. Let η, η′, µ∗ ∈ V such that η, η′ < µ∗. Then either η ≤ η′ or η′ ≤ η.
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Proof. Take monic polynomials φ, φ′ ∈ K[x] of minimal degree satisfying

η(φ) < µ∗(φ), η′(φ′) < µ∗(φ′),

respectively. By Proposition 2.9, η, η′ are valuations and φ ∈ KP(η), φ′ ∈ KP(η′).

Suppose deg(φ) < deg(φ′). By the minimality of deg(φ) and deg(φ′),

η′(φ) = µ∗(φ) > η(φ), η′(a) = µ∗(a) = η(a), ∀ a ∈ K[x]deg(φ).

Hence, for any non-zero g ∈ K[x] with φ-expansion g =
∑

0≤s asφ
s, we have:

η′(g) ≥ Min0≤s{η′(asφs)} ≥ Min0≤s{η(asφ
s)} = η(g),

so that η′ ≥ η.

Now, suppose deg(φ) = deg(φ′). Then, φ = φ′ + a for some a ∈ K[x]deg(φ). By the
η′-minimality of φ′ we have η′(φ) ≤ η′(φ′).

After eventually exchanging η and η′, we may assume that η′(φ′) ≤ η(φ). Then,

η′(φ) ≤ η′(φ′) ≤ η(φ) < µ∗(φ).

By Proposition 2.9, this implies φ′ |η′ φ. By Lemma 1.18, φ′ ∼η′ φ, and φ is a key
polynomial for η′. In particular, η′(φ) = η′(φ′) ≤ η(φ). Therefore,

η(g) = Min0≤s{η(asφ
s)} ≥ Min0≤s{η′(asφs)} = η′(g),

so that η′ ≤ η.



PART II

Inductive valuations

on polynomial rings





Chapter 3

Newton polygons

In this chapter, we review some basic facts about the Newton polygon operator attached
to a pair µ, φ, where µ is a valuation on K[x] and φ is an arbitrary key polynomial for µ.

Tipically, when µ is a rank one valuation, the Newton polygon of a polynomial in K[x]
lies in the euclidean plane. For higher rank valuations, Newton polygons of polynomials
lie in the rational vector space Q×QΓ.

Apart from this change of ambient space, all results of this chapter are an easy tran-
scription of the results of [6, Sec.2], up to a different normalization of the Newton polygons.

3.1 The rational space Q×QΓ

Given any two points in the Q-vector space Q×QΓ

P = (s, α), Q = (t, β) ∈ Q×QΓ,

we may define the segment joining them, as the subset

S = {(s, α) + ε (t− s, β − α) | ε ∈ Q, 0 ≤ ε ≤ 1} ⊂ Q×QΓ.

If P = Q, this segment contains a single point S = {P}.

If s 6= t, this segment has a natural slope

sl(S) := sl(P,Q) := (β − α)/(t− s) ∈ QΓ,

uniquely determined by the pair P,Q, regardless of the order in which these points are
considered.

If s = t, but α 6= β, we may agree that sl(S) =∞.

A subset of Q×QΓ is convex if it contains the segment joining any two points in the
subset. The convex hull of a finite subset C ⊂ Q × QΓ is the smallest convex subset of
Q×QΓ containing C.

The border of this hull is a sequence of chained segments. If the points in C have
different abscissas, the leftmost and rightmost points are joined by two different chains of
segments along the border, called the upper and lower convex hull of C, respectively.

29
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Figure 3.1: Convex hull of a finite set of points with different abscissas
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3.2 Newton polygon operator attached to µ, φ

Let µ : K[x]→ QΓ ∪ {∞} be a valuation in V.
The choice of a key polynomial φ for µ determines a Newton polygon operator

Nµ,φ : K[x] −→ P (Q×QΓ) ,

where P (Q×QΓ) is the set of subsets of the rational space Q×QΓ.
The Newton polygon of the zero polynomial is the empty set. If

g =
∑

0≤s
asφ

s, deg(as) < deg(φ)

is the canonical φ-expansion of a non-zero g ∈ K[x], then N := Nµ,φ(g) is defined to be
the lower convex hull of the finite cloud of points

C = {(s, µ(as)) | s ∈ Z≥0} ⊂ Q×QΓ.

Figure 3.2 displays the typical shape of such a polygon.

Figure 3.2: Newton polygon of g ∈ K[x]

•

•

•

•

•

•

•
•

•

•

Q
Q
QQ
A
A
A
A
A

Q
Q
QQ
A
A
A
A
A

`````̀
`````̀ �

��

�
��
�
�
��

�
�
��

ordφ(g) `(N) Q

QΓ

N = Nµ,φ(g)

0

The abscissa of the left endpoint of N is the smallest integer s such that as 6= 0. In
other words, s = ordφ(g).

The abscissa of the right endpoint of N is called the length of N , and is denoted `(N).
Clearly,

`(N) = bdeg(g)/ deg(φ)c .
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If N is not a single point, we formally write

N = S1 ` · · · ` Sk, sl(S1) < · · · < sl(Sk),

where the segments Si are the sides of N ordered by their increasing slopes.

The left and right endpoints of N , together with the points joining two different sides
are called vertices of N .

The points P = (s, α) lying on a side S are characterized by the following property:

sl(S) ≥ sl(P,Q), ∀Q = (t, β) ∈ C, with t < s,

sl(S) ≤ sl(P,Q), ∀Q = (t, β) ∈ C, with t > s.

λ-component of a Newton polygon

The next (trivial) observation is emphasized because we are often going to use it in what
follows.

Remark 3.1. For any λ ∈ QΓ, the line of slope −λ passing through the point (s, µ(as)) ∈
C meets the vertical axis at a point with ordinate µ(as) + sλ.

Figure 3.3 illustrates Remark 3.1 for positive and negative values of λ.

Figure 3.3: Lines passing through a point of the cloud C. Note that α > 0 and β < 0.
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Definition 3.2. Let N = Nµ,φ(g) be the Newton polygon of some non-zero polynomial
g ∈ K[x], and let λ ∈ QΓ.

The λ-component Sλ(N) ⊂ N is the intersection of N with the line of slope −λ which
first touches N from below.

The left and right endpoints of Sλ(N) are denoted

(sµ,φ,λ(g), uµ,φ,λ(g)), (s′µ,φ,λ(g), u′µ,φ,λ(g)) ∈ Z≥0 × Γµ.

Definition 3.3. We say that N = Nµ,φ(g) is one-sided of slope −λ if

N = Sλ(N), sµ,φ,λ(g) = 0, s′µ,φ,λ(g) > 0.

If N has a side S of slope −λ, then Sλ(N) = S. Otherwise, Sλ(N) is a vertex of N .
Figure 3.4 illustrates both possibilities.
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Figure 3.4: λ-component of Nµ,φ(g). In both pictures the line L has slope −λ.
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Principal Newton polygons

By Remark 3.1,
Sλ(N) = {(s, u) ∈ N | u+ sλ is minimal },

and the line of slope −λ containing Sλ(N) meets the vertical axis at the point with
ordinate

Min{µ(as) + sλ | 0 ≤ s}. (3.1)

Since φ is µ-minimal, Lemma 1.16 shows that this value (3.1) coincides with µ(g) if
we take λ = µ(φ). The next remark follows.

Remark 3.4. For any non-zero g ∈ K[x], the value µ(g) ∈ QΓ is the ordinate of the
point where the vertical axis meets the line of slope −µ(φ) containing the µ(φ)-component
of the Newton polygon Nµ,φ(g).

As a consequence, the µ(φ)-component of Nµ,φ(g) plays a special role. In Lemma 3.6
below some particular data attached to this component are described.

On the other hand, the sides of Nµ,φ(g) with slope strictly lower than −µ(φ) con-
tain as well rich arithmetic information about the polynomial g, with respect to the key
polynomial φ.

More precisely, if −γ is a slope of Nµ,φ(g) with γ > µ(φ), then the augmented valuation
µ′ = [µ;φ, γ] will contain relevant information about g, with respect to φ.

This motivates the next definition.

Definition 3.5. The principal Newton polygon N pp

µ,φ(g) is the polygon formed by the sides
of Nµ,φ(g) of slope less than −µ(φ).

If Nµ,φ(g) has no sides of slope less than −µ(φ), then N pp

µ,φ(g) is defined to be the left
endpoint of Nµ,φ(g).

Figure 3.5 displays a principal Newton polygon, and illustrates the computation of
µ(g) according to Remark 3.4.

The length of a principal Newton polygon has an interesting algebraic interpretation
in terms of the graded algebra Gµ, as shown in item (2) of the next lemma.
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Figure 3.5: Principal Newton polygon of g ∈ K[x]
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Lemma 3.6. Let N = Nµ,φ(g) be the Newton polygon of a non-zero g ∈ K[x].

(1) The abscissas of the endpoints of the µ(φ)-component of N are

sµ,φ,µ(φ)(g) = sµ,φ(g), s′µ,φ,µ(φ)(g) = s′µ,φ(g),

where sµ,φ(g), s′µ,φ(g) are the invariants introduced in (1.4).

(2) The length of the principal polygon N pp

µ,φ(g) is equal to the order with which the prime
element Hµ(φ) divides Hµ(g) in the graded algebra Gµ:

`
(
N pp

µ,φ(g)
)

= sµ,φ(g).

(3) If h ∈ K[x] satisfies g ∼µ h, then Sµ(φ)(g) = Sµ(φ)(h).

Proof. Recall the notation from (1.4),

Iφ(g) = {s ∈ Z≥0 | µ(asφ
s) = µ(g)} ,

sµ,φ(g) = Min(Iφ(g)), s′µ,φ(g) = Max(Iφ(g)).

By Lemma 1.16, µ(g) = Min{µ(asφ
s) | 0 ≤ s}. By Remark 3.1, the points (s, µ(as))

lying on Sµ(φ)(g) are precisely those with s ∈ Iφ(g). This proves (1).

It is obvious that `
(
N pp

µ,φ(g)
)

is equal to the abscissa sµ,φ,µ(φ)(g) of the left endpoint
of Sµ(φ)(g). We have just seen that this abscissa is equal to sµ,φ(g), and it was proved in
Lemma 1.23 that this integer is the order with which the prime element Hµ(φ) divides
Hµ(g) in the graded algebra Gµ. This proves (2).

Finally, if g ∼µ h, then Lemma 1.23 shows that Iφ(g) = Iφ(h). By item (1), the two
segments Sµ(φ)(g), Sµ(φ)(h) have endpoints with the same abscissas.

Hence, these segments coincide. In fact, the ordinates u, u′ of their endpoints are
determined by the abscissas s, s′, and the common value

µ(g) = µ(h) = u+ sµ(φ) = u′ + s′µ(φ).
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3.3 Newton polygons with respect to augmented val-

uations

For the rest of the chapter we fix a valuation ν ∈ V and an augmentation

µ = [ν;φ, γ]

with respect to some key polynomial φ ∈ KP(ν) and some value γ ∈ QΓ. Recall that

γ = µ(φ) > ν(φ).

Consider a non-zero g ∈ K[x], with φ-expansion g =
∑

0≤s asφ
s.

Throughout this section we denote

Sγ(g) := Sγ (Nν,φ(g)) ,

s(g) := sν,φ,γ(g), s′(g) := s′ν,φ,γ(g), u(g) := uν,φ,γ(g).
(3.2)

By Proposition 2.2, φ is a key polynomial for µ of minimal degree among all polyno-
mials in the set KP(µ).

So, it makes sense to consider the Newton polygon Nµ,φ(g), which is related to Nν,φ(g)
in an obvious way:

Nµ,φ(g) = Nν,φ(g). (3.3)

In fact, they have the same finite cloud of points:

deg(as) < deg(φ) =⇒ φ -ν as =⇒ µ(as) = ν(as),

the last implication by Proposition 2.2.

This trivial observation has a relevant consequence. We saw in the last section that
certain information about g, µ, φ can be read in the Newton polygon Nµ,φ(g). When we
deal with an augmented valuation, this information can be read already in the Newton
polygon Nν,φ(g) with respect to the “small” valuation ν from which we constructed µ by
augmentation.

For instance, Figure 3.6 shows how to read the value µ(g), as indicated in Remark
3.4. In order to be able to quote this computation of µ(g), we state it as an independent
result.

Lemma 3.7. Consider the augmented valuation µ = [ν;φ, γ]. For any non-zero g ∈ K[x],
the line of slope −γ which first touches the polygon Nν,φ(g) from below meets the vertical
axis at the point (0, µ(g)).

In the same vein, Lemma 3.6 shows that certain algebraic information concerning the
graded algebra Gµ can be read directly in the γ-component of Nν,φ(g).

Again, we state in an independent lemma the result of applying Lemma 3.6 to the
augmented valuation µ.
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Figure 3.6: Nν,φ(g) contains information about the augmented valuation µ = [ν;φ, γ]
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Lemma 3.8. Let g, h ∈ K[x] be non-zero polynomials.

(1) The integer s(g) is the order with which the prime element Hµ(φ) divides Hµ(g) in
the graded algebra Gµ.

(2) s′(gh) = s′(g) + s′(h).

(3) If g ∼µ h, then Sγ(g) = Sγ(h).

Proof. By Lemma 3.6,

s(g) = sν,φ,γ(g) = sµ,φ,γ(g) = sµ,φ(g),

is the order with which the prime element Hµ(φ) divides Hµ(g) in the graded algebra Gµ.
This proves (1).

The right endpoint of Sγ(g) equals the left endpoint of Sεγ(g), for 0 < ε < 1 sufficiently
close to 1. Hence, s′(g) = s′ν,φ,γ(g) = sν,φ,εγ(g).

By item (1) applied to the augmented valuation µ′ = [ν;φ, εγ], we deduce that s′(g) is
the order with which the prime element Hµ′(φ) divides Hµ′(g) in the graded algebra Gµ′ .
This proves (2) (see equation (1.5)).

Item (3) follows directly from item (3) of Lemma 3.6.

Remark. In item (2) of Lemma 3.8, it is essential that µ is an augmented valuation.
The analogous statement for an arbitrary valuation holds only if φ is a key polynomial

of minimal degree [23].

An example

Newton polygons constitute a malleable tool, wich enables us to “visualize” sophisticated
relationships in the graded algebra Gµ, whose checking by purely algebraic techniques may
require some onerous work.
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As an example, let us show that the converse implication of Lemma 2.5 is false.

For instance, consider a polynomial f with Newton polygon Nν,φ(f) as indicated in
Figure 3.7. That is, Nν,φ(f) is one-sided of slope greater than −γ (Definition 3.3).

Figure 3.7: An example where φ |ν f but Hµ(f) is a unit in Gµ
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Then, the line of slope −γ first touching the polygon from below meets the polygon
only at the point (0, µ(f)). Thus, Sγ(f) = {(0, µ(f))}, so that s(f) = s′(f) = 0.

By Lemma 3.8, sµ,φ(f) = s′µ,φ(f) = 0, and Proposition 1.24 shows that Hµ(f) is a unit
in Gµ.

On the other hand, since ν(φ) < γ and Nν,φ(f) has a positive length, the line of slope
−ν(φ) first touching the polygon from below will meet the vertical axis at a point whose
ordinate will be smaller than µ(f). Therefore, ν(f) < µ(f), and Proposition 2.2 shows
that φ |ν f .

3.4 Addition of Newton polygons

There is a natural addition of segments in the space Q×QΓ. We admit that a point is a
segment whose right and left endpoints coincide.

The sum S1 + S2 of two segments is the ordinary vector sum if at least one of the
segments is a single point. Otherwise, S1 + S2 is the polygon whose left endpoint is the
vector sum of the two left endpoints of S1, S2 and whose sides are the join of S1 and S2

considered with increasing slopes from left to right (see Fig. 3.8).

Figure 3.8: Addition of two segments
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We keep dealing with an arbitrary valuation ν ∈ V, and a key polynomial φ ∈ KP(ν).
Also, for any γ ∈ QΓ, γ > ν(φ), we keep using the notation of (3.2).

Lemma 3.9. For non-zero g, h ∈ K[x], and any γ ∈ QΓ, γ > ν(φ), we have

Sγ(gh) = Sγ(g) + Sγ(h).

Proof. Since the involved segments either have the same slope or consist of a single
point, the statement is equivalent to the equalities

s(gh) = s(g) + s(h), s′(gh) = s′(g) + s′(h) and u(gh) = u(g) + u(h).

The first two equalities follow from equation (1.5) and Lemma 3.8.
In order to prove the third, consider the augmented valuation µ = [ν;φ, γ]. By Lemma

3.7,

u(g) + s(g)γ = µ(g), u(h) + s(h)γ = µ(h), u(gh) + s(gh)γ = µ(gh).

Since s(gh) = s(g) + s(h), the claimed identity u(gh) = u(g) + u(h) follows from µ(gh) =
µ(g) + µ(h).

The addition of segments may be extended to an addition law for Newton polygons
in a natural way [9, Sec. 1]. Given two polygons

N = S1 ` · · · ` Sk, N ′ = S ′1 ` · · · ` S ′k′ ,

the left endpoint of the sum N + N ′ is the vector sum of the left endpoints of N
and N ′, whereas the sides of N + N ′ are obtained by joining all sides in the multiset
{S1, . . . , Sk, S

′
1, . . . , S

′
k′}, ordered by increasing slopes.

As an immediate consequence of Lemma 3.9, we get the Theorem of the product for
principal Newton polygons.

Theorem 3.10. Let φ be a key polynomial for the valuation ν ∈ V. Then, for any
non-zero g, h ∈ K[x] we have N pp

ν,φ(gh) = N pp

ν,φ(g) +N pp

ν,φ(h). �

The analogous statement for entire Newton polygons is false.
For instance, consider g, h ∈ K[x]deg(φ) such that deg(gh) ≥ deg(φ). Both polygons

Nν,φ(g) and Nν,φ(h) are a single point, while Nν,φ(gh) has a side of length one.
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Chapter 4

Valuations of depth zero

In this chapter, we construct valuations of depth zero, which are in a certain sense “very
small” commensurable extensions of v to K[x].

These valuations will be constructed as an augmentation of an incommensurable val-
uation µ−∞, which is a kind of minimal extension of v to K[x].

We analyze the structure of the graded algebra of the valuation µ−∞ and describe its
set of key polynomials.

Also, we determine the structure of the graded algebra of the depth-zero valuations.
The set of key polynomials for the depth-zero valuations is determined in chapter 6, where
we describe KP(µ), in general, for all valuations µ of finite depth.

4.1 The minimal extension of v to K[x]

Let us fix a certain order-preserving embedding of abelian ordered groups:

Γ ↪−→ (Z× Γ)lex , γ 7−→ (0, γ).

Consider the following mapping:

µ−∞ : K[x] −→ (Z× Γ)lex ∪ {∞}, f 7−→ (− deg(f), v (lc(f)))

where lc(f) ∈ K∗ is the leading coefficient of a non-zero polynomial f , and we agree that
µ−∞(0) =∞.

Clearly, if f =
∑

0≤s asx
s, then

µ−∞(f) = Min{µ−∞(asx
s) | 0 ≤ s} = Min{(−s, v(as)) | 0 ≤ s}. (4.1)

Lemma 4.1. This mapping µ−∞ is a valuation on K[x] extending v.

Proof. Clearly, µ−∞|K = v and µ−1
−∞(∞) = {0}.

On the other hand, if f =
∑

0≤s asx
s and g =

∑
0≤s bsx

s, (4.1) shows that

µ−∞(f + g) = Min{(−s, vs(as + bs)) | 0 ≤ s}
≥ Min{Min{(−s, vs(as)), (−s, v(bs))} | 0 ≤ s}

39
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= Min{µ−∞(f), µ−∞(g)}.

Finally,
µ−∞(fg) = (− deg(fg), v (lc(fg))) = µ−∞(f) + µ−∞(g),

because deg(fg) = deg(f) + deg(g) and lc(fg) = lc(f) lc(g).

The value group of this valuation µ−∞ is

Γµ−∞ = (Z× Γ)lex .

Hence, µ−∞ is an incommensurable extension of v.

The valuation ring and maximal ideal of the extension of µ−∞ to K(x) are

Oµ−∞ = {f/g | deg(f) ≤ deg(g), v(lc(f)) ≥ v(lc(g))} ,
mµ−∞ = {f/g | deg(f) < deg(g) or deg(f) = deg(g), v(lc(f)) > v(lc(g))} .

The next (trivial) observation is useful to analyze the structure of the residue class
field kµ−∞ , the graded algebra Gµ−∞ , and the set KP(µ−∞).

Lemma 4.2. Let f, g ∈ K[x] be non-zero polynomials.

(1) f ∼µ−∞ lc(f)xdeg(f).

(2) f ∼µ−∞ g ⇐⇒ deg(f) = deg(g), lc(f) ∼v lc(g).

Corollary 4.3. Let y be an indeterminate, to which we assign degree (−1, 0).
There is an isomorphism of graded Gv-algebras

Gv[y] −→∼ Gµ−∞ , y 7−→ Hµ−∞(x).

In particular, it induces an isomorphism k ' ∆µ−∞ ' kµ−∞ of k-algebras.

Proof. Clearly, this Gv-homomorphism is onto and preserves degree. Also, it has a
trivial kernel by Lemma 4.2.

In particular, it induces an isomorphism k ' ∆µ−∞ between the subrings of degree zero.
Finally, it is easy to deduce from item (1) of Lemma 4.2 that the canonical embedding
∆µ−∞ ↪→ kµ−∞ is an isomorphism. In any case, this holds in general for incommensurable
extensions (see Theorem 1.28).

Corollary 4.4. The set of key polynomials for µ−∞ is

KP(µ−∞) = {x+ a | a ∈ K} .

All these polynomials are µ−∞-equivalent.

Proof. By item (1) of Lemma 4.2, x |µ−∞ f for any non-constant polynomial f . Thus,
any polynomial f with deg(f) > 1 is not µ−∞-irreducible.

On the other hand, x is a key polynomial for µ−∞. In fact, x is µ−∞-minimal by (4.1),
as a consequence of Lemma 1.16. Also, x is µ−∞-irreducible by Lemma 4.2.

Finally, x+ a ∼µ−∞ x for all a ∈ K, by Lemma 4.2. Thus, Lemma 1.18 shows that all
these polynomials are key polynomials for µ−∞ too.
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Minimality of µ−∞ among all extensions of v to K[x]

Our fixed embedding Γ ↪→ (Z× Γ)lex induces an embedding

QΓ ↪→ (Q×QΓ)lex .

Hence, we may think that the valuation µ−∞ and all semivaluations in V take values in
the common group (Q×QΓ)lex.

In particular, we may compare their values. We clearly have

µ−∞(f) ≤ µ(f), ∀ f ∈ K[x], ∀µ ∈ V. (4.2)

In a certain sense, this property characterizes µ−∞.

Theorem 4.5. Consider an arbitrary valuation η on K[x]

η : K[x] −→ Γ′ ∪∞,

which extends v with respect to a certain fixed embedding ι : Γ ↪→ Γ′.
Then, the following conditions are equivalent.

(1) With respect to the embedding QΓ ↪→ QΓ′ induced by ι,

η(f) ≤ µ(f), ∀ f ∈ K[x], ∀µ ∈ V.

(2) With respect to the embedding QΓ ↪→ QΓ′ induced by ι,

η(x) < γ, ∀ γ ∈ QΓ.

(3) The valuation η is equivalent to µ−∞.

Proof. Suppose condition (1) is satisfied.
By Corollary 4.4, x is a key polynomial for µ−∞. Since

µ−∞(x) = (−1, 0) < (0, γ), ∀ γ ∈ QΓ,

we may consider augmented valuations

µγ = [µ−∞;x, (0, γ)], ∀ γ ∈ QΓ.

By Proposition 2.2, the value group of these valuations is:

Γµγ =
〈
{0} × Γ, (0, γ)

〉
⊂ {0} ×QΓ.

By dropping the first (null) coordinate of these values, we may think that Γµγ =
〈

Γ, γ
〉
⊂

QΓ. After this reinterpretation of the value group, we get

µγ ∈ V, µγ(x) = γ, ∀ γ ∈ QΓ.

By assumption, our valuation η satisfies:

η(x) ≤ µγ(x) = γ, ∀ γ ∈ QΓ,
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after identifying γ with its image ι(γ) ∈ QΓ′.
Since we exclude from our considerations the case v trivial (see section 1.4), our group

QΓ has no minimal element, and the last inequality must be strict:

η(x) < γ, ∀ γ ∈ QΓ.

This proves (2).

Assume now that condition (2) is satisfied. We deduce immediately

η(xm) < γ < η(x−m), ∀ γ ∈ QΓ, ∀m ∈ Z>0. (4.3)

This property implies:

f ∼η lc(f)xdeg(f), ∀ f ∈ K[x], f 6= 0. (4.4)

In fact, any two non-zero monomials axm, bxn of different degree, have different η-value,
and the smallest value is that of the monomial of maximal degree:

n < m =⇒ η(xm−n) < v(b/a) =⇒ η(axm) < η(bxn). (4.5)

Now, we claim that the group homomorphism

j : (Z× Γ)lex −→ Γη, (m,α) 7−→ α− η(xm),

is an order-preserving isomorphism.
In fact, (4.4) shows that j is onto. Also, (m,α) ∈ Ker(j) implies

η(xm) = α =⇒ m = 0 =⇒ α = 0,

in order not to contradict (4.3). Thus j is a group isomorphism.
Finally, j preserves the ordering:

(n, v(a)) ≤ (m, v(b)) =⇒ j(n, v(a)) = η(ax−n) ≤ η(bx−m) = j(m, v(a)).

If n < m, this inequality follows from (4.5). And for n = m it is obvious, because
η(a) = v(a) and η(b) = v(b).

This ends the proof of the claim.

Finally, η and µ−∞ are equivalent valuations because the following diagram commutes:

(Z× Γ)lex

j−→∼ Γη

µ−∞↖ ↗ η

K(x)∗

(4.6)

In fact, for any non-zero polynomial f ∈ K[x], we have

µ−∞(f) = (− deg(f), v (lc(f))) , η(f) = η
(
lc(f)xdeg(f)

)
,

the last equality by (4.4). Thus, j ◦ µ−∞ = η. This proves (3).

Finally, suppose that η and µ−∞ are equivalent. That is, there exists an order-
preserving isomorphism j such that diagram (4.6) commutes.

Since η|K = v = µ−∞|K , the isomorphism j ⊗ Q maps the subgroup {0} × QΓ into
ι(QΓ). Hence, by applying j to the inequalities in (4.2), we obtain the inequalities in item
(1).
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Unicity of µ−∞ under field extension

Let L/K be a field extension and let w be a valuation on L extending v.
We may consider an analogous minimal valuation on L[x]:

µ−∞,L : L[x] −→ (Z× Γ)lex ∪ {∞}, f 7−→ (− deg(f), w (lc(f)))

Clearly, the restriction of µ−∞,L to K[x] is µ−∞.

Corollary 4.6. Any valuation ρ on L[x] extending µ−∞ is equivalent to µ−∞,L.

Proof. If ρ|K[x] = µ−∞, then clearly ρ(x) < γ for all γ ∈ QΓ.
The result follows from Theorem 4.5.

4.2 Valuations of depth 0

Definition 4.7. A valuation µ on K[x] is said to have depth zero if it satisfies

• It is commensurable over v.

• It is equivalent to a valuation which can be obtained as an augmentation of µ−∞.

By Corollary 4.4, a key polynomial for µ−∞ is of the form x+a for an arbitrary a ∈ K.
In order to build an augmentation of µ−∞ which is commensurable over v, we must take
any γ ∈ QΓ and consider (0, γ) as the augmented value of x + a. Let us denote the
corresponding augmentation by

µ0(x+ a, γ) := [µ−∞; x+ a, (0, γ)].

Lemma 2.3 shows under what conditions two of these augmentations coincide:

µ0(x+ a, γ) = µ0(x+ b, γ∗) ⇐⇒ v(a− b) ≥ γ = γ∗.

By Propositon 2.2, the value group of these valuations is:

Γµ0(x+a,γ) =
〈
{0} × Γ, (0, γ)

〉
.

By dropping the first (null) coordinate, we obtain equivalent valuations with values in
QΓ. We denote these valuations in V with the same symbol:

µ0(x+ a, γ) : K[x] −→ QΓ ∪ {0}.

By definition, they act as follows on non-zero polynomials:

µ0(x+ a, γ) :
∑
0≤s

as(x+ a)s 7−→ Min {v(as) + sγ | 0 ≤ s} ,

and the value group is Γµ0(x+a,γ) =
〈

Γ, γ
〉
.

Remark. In particular, Gauss’ valuation has depth zero: µGauss = µ0(x, 0).



44 CHAPTER 4. VALUATIONS OF DEPTH ZERO

Our aim is to determine the structure of the residue class field and the graded algebra
of these valuations of depth zero.

From now on, we fix one of these valuations and we denote it simply by:

µ0 := µ0(x+ a, γ).

Notation.

• φ0 = x+ a

• e ∈ Z>0 minimal positive integer such that eγ ∈ Γ

• h = eγ ∈ Γ

• πh ∈ K∗ choice of an element such that v
(
πh
)

= h

• Y0 = φe0/π
h ∈ K[x] has µ0(Y0) = 0

• ph = Hµ0(π
h) ∈ G∗µ0 has degree h.

• x0 = Hµ0(φ0) ∈ Gµ0 has degree γ.

• y0 = Hµ0(Y0) = xe0 p
−h
0 ∈ ∆ ⊂ Gµ0

Remarks.
(1) Note that for any m ∈ Z, we have mγ ∈ Γ if and only if e | m.

(2) The elements πh ∈ K∗, ph ∈ G∗µ0 are not h-th powers. Since h may not be an
integer, this would make no sense.

In section 5.2 we shall give a better motivation for the use of this notation.

Since φ0 is a key polynomial for µ0 of minimal degree (one), Proposition 1.25 shows
that κ ' kφ0 has dimension one as a k-vector space. Thus, k = κ is algebraically closed
inside ∆.

Since x0 is a prime element in Gµ0 , the element y0 = p−h xe0 is associate to a power
of x0, because ph is a unit. In particular, y0 6∈ k, because in k all non-zero elements are
units. Thus, y0 ∈ ∆ \ k is transcendental over k.

By Theorem 1.28 and the remarks following it, we have

∆ = k[y0].

Also, the residue class field kµ0 is isomorphic to the field of fractions of ∆, and the class
of Y0 ∈ Oµ0 modulo the maximal ideal is a Hauptmodul of the extension kµ0/k.

Theorem 4.8. The graded algebra Gµ0 may be described as follows as a Gv-algebra:

Gµ0 = Gv[x0] = Gv[y0, x0],

where y0 ∈ ∆ is transcendental over Gv, and x0 (of degree γ) is algebraic over Gv[y0] with
minimal equation xe0 = ph y0.
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Proof. All non-zero polynomials f ∈ K[x] admit a φ0-expansion with coefficients in
K. Therefore, Gµ0 = Gv[x0], because all homogeneous elements Hµ0(f) belong to Gv[x0].
In particular, Gµ0 = Gv[x0] = Gv[y0, x0].

Imagine a minimal homogeneous algebraic equation of y0 over Gv. Since y0 has degree
zero, all coefficients of the equation have degree zero. Thus, they all belong to k (identified
to ∆v). Hence, there is no such algebraic equation because y0 is transcendental over k.

Let us check the minimality of the algebraic equation of x0 over Gv[y0]. Suppose we
have a homogeneous relation∑

m∈N

ζm x
m
0 = 0, ζm ∈ Gv[y0].

By applying the identity xe0 = ph y0, we may assume that 0 ≤ m < e.
Then, this sum cannot have two different monomials:

deg(ζm x
m
0 ) = deg(ζn x

n
0 ) =⇒ (m− n)γ = deg(ζn)− deg(ζm) ∈ Γ,

and this implies m ≡ n (mod e), leading to m = n by our assumption on the exponents.
Therefore, our relation takes the form ζxm0 = 0. Since Gµ0 is an integral domain, we have
necessarily ζ = 0.
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Chapter 5

Inductive valuations

A valuation µ on K[x] is said to be inductive if it is attained after a finite number of
augmentation steps starting with the minimal valuation µ−∞:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr = µ, (5.1)

with values γ0, . . . , γr ∈ QΓ, and intermediate valuations

µ0 = µ0(φ0, γ0), µi = [µi−1;φi, γi], 1 ≤ i ≤ r.

The non-negative integer r ≥ 0 is the length of the chain (5.1).

Note that µ0 is an inductive valuation because it is the last valuation of a chain of
augmentations of length r = 0.

However, we do not want to consider µ−∞ as an inductive valuation, because it is
incommensurable over v.

Since the value group of an inductive valuation is a subgroup of QΓ, all inductive
valuations belong to our space V. Let us denote by

Vind := Vind(K, v) ⊂ V

the subset of all inductive valuations.

By Proposition 2.2, the family of all intermediate inductive valuations in a chain like
(5.1) is totally ordered in V:

µ0 < µ1 < · · · < µr = µ,

and every polynomial φi is a key polynomial for µi of minimal degree.
Since every φi+1 is µi-minimal, item (2) of Proposition 1.26 shows that

1 = deg(φ0) | deg(φ1) | · · · | deg(φr−1) | deg(φr).

Also, Theorem 1.27 shows that,

C(µi) =
µi(φi+1)

deg(φi+1)
=

µi(φi)

deg(φi)
>
µi−1(φi)

deg(φi)
= C(µi−1). (5.2)

47
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Therefore, the constants C(µi) ∈ QΓ grow strictly:

γ0 = C(µ0) < C(µ1) < · · · < C(µr) = C(µ).

Since C(µi) = γi/ deg(φi), the sequence γ0 < · · · < γr grows strictly too.
Nevertheless, as mentioned in section 2, the value groups Γµ0 , . . . ,Γµr of a sequence of

augmentations do not always form a chain.
In the next section, we shall impose a technical condition on chains like (5.1), to ensure

that these value groups form a chain.
Before of that, let us mention a property which is valid for arbitrary chains of aug-

mentations.

Lemma 5.1. For a chain of augmented valuations as in (5.1), consider f ∈ K[x] such
that φi -µi−1

f for some 1 ≤ i ≤ r. Then, µi−1(f) = µi(f) = · · · = µr(f).

Proof. By Proposition 2.2, µi−1(f) = µi(f). By Lemma 2.5, Hµi(f) is a unit, so that
it is not divisible by the prime element Hµi(φi+1) ∈ Gµi .

Thus, φi+1 -µi f and the argument may be iterated.

5.1 MacLane chains of valuations

Lemma 5.2. For a chain of augmented valuations as in (5.1), the following conditions
are equivalent:

(1) φi+1 -µi φi for all 0 ≤ i < r.

(2) φi+1 6∼µi φi for all 0 ≤ i < r.

Moreover, these conditions are satisfied if

(3) 1 = deg(φ0) < deg(φ1) < · · · < deg(φr).

Proof. By the µi-minimality of φi+1, the condition φi+1 |µi φi implies deg(φi) =
deg(φi+1). And this leads to φi+1 ∼µi φi by Lemma 1.18.

Hence, any of the conditions (2) or (3) implies (1). Obviously, (1) implies (2).

Definition 5.3. A chain of augmented valuations as in (5.1) is called a MacLane chain
if it satisfies condition (1) of Lemma 5.2.

If it satisfies (3), we say that it is an optimal MacLane chain.

As an immediate application of Lemma 5.1, in a MacLane chain like (5.1) one has:

µ(φi) = µi(φi) = γi, 0 ≤ i ≤ r. (5.3)

Also, for any 0 ≤ i ≤ r, the truncation of a MacLane at the i-th node

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φi−1,γi−1−→ µi−1
φi,γi−→ µi,

is a MacLane chain of the intermediate valuation µi.

The purpose of using MacLane chains is clarified by the next two results, which are
an immediate consequence of Lemma 2.7.
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Lemma 5.4. In a MacLane chain as in (5.1), the value groups of the valuations are

Γµ0 =
〈

Γ, γ0

〉
, Γµi =

〈
Γµi−1

, γi
〉
, 1 ≤ i ≤ r,

In particular, Γ ⊂ Γµ0 ⊂ · · · ⊂ Γµr = Γµ.

Lemma 5.5. In a MacLane chain as in (5.1), the value groups of the semivaluations vφi
are Γvφ0 = Γ, and Γvφi = Γµi−1

for 1 ≤ i ≤ r.

On the other hand, the imposition of the technical conditions of Lemma 5.2 does not
restrict the set of valuations admitting chains like (5.1).

More precisely, as the next result shows, every inductive valuation admits an optimal
MacLane chain.

Lemma 5.6. Consider a chain of two augmented valuations

µ
φ,γ−→ µ′

φ∗,γ∗−→ µ∗

with deg(φ∗) = deg(φ). Then, φ∗ is a key polynomial for µ, and µ∗ = [µ;φ∗, γ∗].

Proof. By Lemma 2.4, φ∗ ∼µ φ. Thus, Lemma 1.18 shows that φ∗ is a key polynomial
for µ.

By the very definition of augmentations, µ∗ = [µ′;φ∗, γ∗] and µ′′ := [µ;φ∗, γ∗] coincide,
since both coincide with µ on polynomials of degree less than deg(φ).

In particular, the length of a MacLane chain joining an inductive valuation µ with
µ−∞ is not an intrinsic invariant of µ.

However, there is a strong unicity statement if we consider only optimal MacLane
chains.

Proposition 5.7. Consider an optimal MacLane chain as in (5.1) and any other optimal
MacLane chain

µ−∞ = µ∗−∞
φ∗0,γ

∗
0−→ µ∗0

φ∗1,γ
∗
1−→ · · · −→ µ∗t−1

φ∗t ,γ
∗
t−→ µ∗t = µ∗.

Then, µ = µ∗ if and only if r = t and

deg(φi) = deg(φ∗i ), µi−1(φi − φ∗i ) ≥ γi = γ∗i for all 0 ≤ i ≤ r.

In this case, we also have µi = µ∗i and φi ∼µi−1
φ∗i for all 0 ≤ i ≤ r.

Proof. The sufficiency of the conditions is a consequence of Lemma 2.3.

Conversely, suppose µ = µ∗ and, for instance, r ≤ t.
Let us prove the following implication for all 0 ≤ i ≤ r :

µi−1 = µ∗i−1 =⇒ deg(φi) = deg(φ∗i ), µi−1(φi − φ∗i ) ≥ γi = γ∗i .

In fact, suppose µ = µ∗ and µi−1 = µ∗i−1. Since µi−1 < µi < µ, Proposition 2.2 and
Lemma 5.1 show that

µi−1(f) = µi(f) ⇐⇒ φi -µi−1
f ⇐⇒ µi−1(f) = µ(f),
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for any non-zero polynomial f ∈ K[x]. This implies

deg(φi) = Min{deg(f) | f ∈ K[x], µi−1(f) < µ(f)} = deg(φ∗i ).

The optimality of both chains and the minimality of the key polynomials imply φi+1 -µi
φ∗i and φ∗i+1 -µ∗i φi. By Lemma 5.1 and equation (5.3),

µi(φ
∗
i ) = µ(φ∗i ) = γ∗i and µ∗i (φi) = µ(φi) = γi.

Write φ∗i = φi + ai, with ai ∈ K[x]deg(φi). By the very definition of the augmented
valuations µi, µ

∗
i acting on φi-expansions and φ∗i -expansions, respectively, we get

γi = µ∗i (φi) ≤ γ∗i = µi(φ
∗
i ) ≤ γi.

This proves γi = γ∗i . Also, since φi -µi−1
ai, Lemma 5.1 shows that

µi−1(ai) = µ(ai) ≥ Min{µ(φi), µ(φ∗i } = γi.

Lemma 2.3 asserts then µi = µ∗i and φi ∼µi−1
φ∗i . This leads by a recursive argument

to µ = µr = µ∗r. Finally, the inequality r < t would imply µ < µ∗, against our assumption.
Thus, r = t.

Therefore, in any optimal MacLane chain of an inductive valuation µ as in (5.1), the
intermediate valuations µ0, . . . , µr−1, the values γ0, . . . , γr ∈ QΓ and the positive integers
deg(φ0), . . . , deg(φr), are intrinsic data of µ, whereas the key polynomials φ0, . . . , φr admit
different choices.

Definition 5.8. The depth of an inductive valuation µ is the length r of any optimal
MacLane chain of µ.

Accordingly, inductive valuations are called finite-depth valuations too.

5.2 Discrete data associated with a MacLane chain

Let us fix an inductive valuation µ equipped with a MacLane chain of length r as in (5.1).
We associate with this chain several data and operators.

Througouht this section, the index i takes any integer value 0 ≤ i ≤ r, and we agree
that:

µ−1 := v, Γµ−1 = Γv = Γ, µ−1(φ0) := 0Γ =: C(µ−1).

Newton polygon operators

We consider Newton polygon operators

Ni := Nµi−1,φi : K[x] −→ P (Q×QΓ) .

See chapter 2 for the definition of Nµi−1,φi .
Note that the operator N0 = Nv,φ0 coincides with the operator Nµ−∞,φ0 . In fact, the

coefficients of the φ0-expansion of any non-zero f ∈ K[x] are elements in K, and the
valuations v and µ−∞ coincide over K.
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Chain of value groups

Recall the results of Lemma 2.7:

Γµi =
〈

Γµi−1
, γi
〉
, v

(
K∗φi
)

= Γµi−1
.

All indices in the chain of groups, Γ ⊂ Γµ0 ⊂ · · · ⊂ Γµr = Γµ are finite.

Actually, every quotient Γµi/Γµi−1
is a finite cyclic group. Let us denote

ei =
(
Γµi : Γµi−1

)
, eiZ =

{
e ∈ Z | eγi ∈ Γµi−1

}
. (5.4)

The identification Γµi−1
= v

(
K∗φi
)

allows a computation of the ramification index of
the extension Kφi/K in terms of these data:

e(φi) =
(
Γµi−1

: Γ
)

= e0 · · · ei−1. (5.5)

Numerical data

We define

mi = deg(φi) ∈ Z>0,

λi = γi − µi−1(φi) ∈ QΓ,

C(µi) = µi(φi)/ deg(φi) = γi/mi ∈ QΓ,

hi = eiγi ∈ Γµi−1
.

According to our initial assumptions, λ0 = γ0 is an arbitrary element in QΓ, while λi
is a positive element in QΓ for i > 0.

By (5.2), we have recursive formulas

C(µi) = C(µi−1) +
λi
mi

, γi =
mi

mi−1

γi−1 + λi.

The following explicit formulas follow:

µi−1(φi) =
mi

mi−1

γi−1, C(µi) =
λ0

m0

+ · · ·+ λi
mi

. (5.6)

If the MacLane chain is optimal, Proposition 5.7 shows that these data are intrinsic
invariants of µ. In this case, we refer to them as

γi(µ), mi(µ), ei(µ), λi(µ), hi(µ),

respectively.
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Chain of finitely-generated value subgroups

If the ordered group Γµi is not finitely-generated, the group homomorphism

K(x)∗
µi−� Γµi

does not admit a section.
Any finitely-generated subgroup Γi ⊂ Γµi is free as a Z-module. Hence, it admits a

group homomorphism
πi : Γi −→ K(x)∗, α 7−→ παi

such that µi◦πi = idΓi . In other words, the choice of Γi would allow the choice of elements
παi ∈ K(x)∗ satisfying

µi(π
α
i ) = α, πα+β

i = παi π
β
i , ∀α, β ∈ Γi. (5.7)

We proceed to choose finitely-generated subgroups Γi ⊂ Γµi satisfying some natural
conditions.

Since Γµi = Γ +
〈
γ0, . . . , γi

〉
, there exist αi ∈ Γ such that

hi ∈ αi +
〈
γ0, . . . , γi−1

〉
.

Definition 5.9. We fix a finitely-generated subgroup Γ−1 := Γfg ⊂ Γ containing α0, . . . , αr.
This choice determines finitely-generated subgroups

Γi := Γfg
µi

:=
〈

Γi−1, γi
〉

=
〈

Γ−1, γ0, . . . , γi
〉
⊂ Γµi .

By construction, hi = eiγi ∈ Γi−1 for all i. Since,

Γµi =
〈

Γµi−1
, γi
〉
, Γi =

〈
Γi−1, γi

〉
,

the next result follows immediately.

Lemma 5.10. These finitely-generated subgroups satisfy

Γi ∩ Γµi−1
= Γi−1, ∀ 0 ≤ i ≤ r.

In particular, they form a chain

Γfg = Γ−1 ⊂ Γ0 ⊂ · · · ⊂ Γr−1 ⊂ Γr = Γfg
µ ,

with cyclic quotients of consecutive terms. More precisely, (Γi : Γi−1) = ei.

Residual polynomial operators

Definition 5.11. We say that g ∈ K[x] has attainable µ-value if µ(g) ∈ Γfg
µ .

Denote by K[x]µ -at ⊂ K[x] the subset of polynomials having attainable µ-values.

Lemma 5.12. Let g ∈ K[x] be a non-zero polynomial.

(1) There is a constant a ∈ K∗ such that ag has attainable µ-value.
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(2) If g is monic and µ-minimal, then it has attainable µ-value.

In particular, all key polynomials for µ have attainable µ-values.

Proof. The first item follows from Γµ = Γ +
〈
γ0, . . . , γr

〉
= Γ + Γfg

µ .

If g is monic and µ-minimal, then Proposition 1.26 shows that deg(g) = `mr and
µ(g) = `µ(φr) = `γr ∈ Γfg

µ .

The choice of the subgroup Γfg is relevant for the definition of residual polynomial
operators

Ri := Rµi,φi : K[x]µi -at −→ ki[y],

where ki is a certain finite extension of k.

We postpone to the next chapter the definition of these operators.

The subgroup Γfg is not universally fixed. It will be assumed that Γfg is sufficiently
large to include the values of any finite family of polynomials involved in any particular
argument or statement where we apply the operators Ri.

Bases of the finitely-generated value subgroups

Let us choose a basis of Γfg as a Z-module:

Γfg = Γ−1 = ι0,1 Z⊕ · · · ⊕ ι0,k Z.

From this basis, we shall derive specific bases for the other groups:

Γi = ιi+1,1 Z⊕ · · · ⊕ ιi+1,k Z.

These bases are constructed by a recurrent procedure. To this end, let us write:

γi =
hi,1
ei,1

ιi,1 + · · ·+ hi,k
ei,k

ιi,k ∈ QΓµi−1
,

with hi,j, ei,j coprime integers with ei,j > 0, for all 1 ≤ j ≤ k. Clearly,

ei = lcm (ei,1, . . . , ei,k) . (5.8)

Let us introduce some more numerical data associated with these numerators hi,j and
denominators ei,j.

Notation. Denote e′i,1 = di,1 = 1, and:

e′i,j = ei,1 · · · ei,j−1/di,1 · · · di,j−1, di,j = gcd
(
ei,j, e

′
i,j

)
, 1 < j ≤ k,

e′i,k+1 = ei,1 · · · ei,k/di,1 · · · di,k.

Lemma 5.13. e′i,k+1 = lcm (ei,1, . . . , ei,k) = ei.
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Proof. For k = 1 the statement is trivial, and for k = 2 it is well known.
Take k > 1 and assume that the statement holds for families of less than k integers.

Then, e′i,k = lcm (ei,1, . . . , ei,k−1). Hence,

lcm (ei,1, . . . , ei,k) = lcm(e′i,k, ei,k) = e′i,kei,k/di,k = e′i,k+1.

The identity lcm (ei,1, . . . , ei,k) = ei was mentioned in (5.8).

Since gcd
(
hi,je

′
i,j, ei,j

)
= di,j, we have Bézout identities:

`i,jhi,je
′
i,j + `′i,jei,j = di,j, 0 ≤ `i,j <

ei,j
di,j

, 1 ≤ j ≤ k, (5.9)

for uniquely determined integers `i,j, `
′
i,j.

Definition 5.14. Consider the following lower triangular matrix Q = (qm,j) ∈ Qk×k:

Q =


di,1/ei,1

di,2/ei,2 0
qm,j

. . .

di,k/ei,k

 ,

with qm,j = `i,je
′
i,jhi,m/ei,m, for m > j. Then, we define

(ιi+1,1 · · · ιi+1,k) := (ιi,1 · · · ιi,k)Q. (5.10)

Lemma 5.15. The family ιi+1,1, . . . , ιi+1,k is a basis of Γi.

Proof. Let Λ be the Z-module generated by ιi,1/ei,1, . . . , ιi,k/ei,k. Consider the chain
of Z-modules:

Γi−1 ⊂ Γi ⊂ Λ.

By Lemma 5.13, we have

(Λ: Γi) = (Λ: Γi−1) / (Γi : Γi−1) = ei,1 · · · ei,k/ei = di,1 · · · di,k.

On the other hand, let Γ′ be the Z-module generated by ιi+1,1, . . . , ιi+1,k, as defined in
(5.10). Let us show that Γ′ ⊂ Γi.

In fact, for every 1 ≤ j ≤ k,

ιi+1,j =
di,j
ei,j

ιi,j + `i,je
′
i,j

(
hi,j+1

ei,j+1

ιi,j+1 + · · ·+ hi,k
ei,k

ιi,k

)
= `′i,jιi,j + `i,je

′
i,j

(
hi,j
ei,j

ιi,j +
hi,j+1

ei,j+1

ιi,j+1 + · · ·+ hi,k
ei,k

ιi,k

)
= `′i,jιi,j + `i,je

′
i,j

(
γi −

hi,1
ei,1

ιi,1 − · · · −
hi,j−1

ei,j−1

ιi,j−1

)
,

(5.11)

by using the Bézout identities (5.9).
Now, for any index 1 ≤ t < j, the quotient e′i,j/ei,t is an integer:

e′i,j
ei,t

=
e′i,t
di,t

ei,t+1

di,t+1

· · · ei,j−1

di,j−1

∈ Z. (5.12)
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Hence, ιi+1,j belongs to Γi, because we expressed it as a linear combination of the
elements ιi,1, . . . , ιi,j, γi ∈ Γi, with integer coefficients.

Thus, we may consider the chain of Z-modules:

Γ′ ⊂ Γi ⊂ Λ.

The lower triangular matrix P = diag(ei,1, . . . , ei,k)Q has integer coefficients and
det(P ) = di,1 · · · di,k. We may rewrite (5.10) as:

(ιi+1,1 · · · ιi+1,k) =

(
1

ei,1
ιi,1 · · ·

1

ei,k
ιi,k

)
P.

Hence, (Λ: Γ′) = det(P ) = di,1 · · · di,k = (Λ: Γi). This proves Γ′ = Γi.

Chain of homomorphisms between the graded algebras

Some more data are derived from the chain of homomorphisms:

Gµ0 −→ Gµ1 −→ · · · −→ Gµr−1 −→ Gµ.

Denote ∆i = ∆µi for 0 ≤ i ≤ r. By Lemma 2.6, we may consider a sequence of fields

k0 = Im(k → ∆0), ki = Im(∆i−1 → ∆i), 1 ≤ i ≤ r,

where ki is isomorphic to the residue class field kφi of the extension Kφi/K determined
by φi. In particular, ki is a finite extension of k.

Moreover, k∗i = ∆∗i , so that these fields capture all units of the rings ∆i.

We abuse of language and identify k with k0 and each field ki ⊂ ∆i with its image
under the canonical map ∆i → ∆j for j ≥ i. In other words, we consider as inclusions
the canonical embeddings:

k = k0 ⊂ k1 ⊂ · · · ⊂ kr. (5.13)

Let us denote
fi−1 = [ki : ki−1], 1 ≤ i ≤ r.

Thus, the residual degree of the extension Kφi/K can be computed as:

f(φi) = [ki : k0] = f0 · · · fi−1. (5.14)

Let us anticipate some properties of these numerical data, which will be proved in due
time.

Remarks.
(1) For i > 0, the field ki is obtained by adjoining to the field ki−1 a root of the

polynomial Ri−1(φi). In particular, fi−1 = deg (Ri−1(φi)).

(2) A key polynomial of an inductive valuation satisfies deg(φ) = e(φ)f(φ). In par-
ticular,

mi = ei−1fi−1mi−1 = (e0 · · · ei−1)(f0 · · · fi−1), 0 ≤ i ≤ r.



56 CHAPTER 5. INDUCTIVE VALUATIONS

5.3 Rational functions of a MacLane chain

Our main aim in this section is to construct an element yi ∈ ∆i which is transcendental
over ki and satisfies ∆i = ki[yi].

As indicated in Theorem 1.28, this amounts to the construction of a rational function
Yi = φeii /ui where ui is a polynomial satisfying

deg(ui) < mi, µi(ui) = µi(φ
ei
i ) = eiγi = hi.

By Lemma 2.5, Hµi(ui) is a unit in Gµi and we may take

yi = Hµi(φ
ei
i )Hµi(ui)

−1.

Caution. Actually, we shall construct this unit Hµi(ui) as the image in Gµi of a certain
rational function ui ∈ K(x) with value µi(ui) = hi.

By Lemma 1.24, the element Hµi(ui) will coincide with the homogeneous element in
Gµi determined by a polynomial of degree less than mi.

This problem raises the question of the construction of rational functions in K(x)
with prescribed µi-values in the group Γµi . Thanks to our choice of a finitely-generated
subgroup Γi ⊂ Γµi , and a Z-basis of this subgroup, this question amounts to the choice
of rational functions whose µi-values attain the chosen basis ιi+1,1, . . . , ιi+1,k.

We proceed to construct these rational functions in a recursive way.
Initially, we choose arbitrary elements π0,j ∈ K such that

v(π0,j) = ι0,j, 1 ≤ j ≤ k.

Starting with these elements, we shall construct in a recursive way rational functions
πi+1,j ∈ K(x) such that

µi(πi+1,j) = ιi+1,j, −1 ≤ i ≤ r, 1 ≤ j ≤ k.

An element α ∈ Γi can be written in a unique way as

α = α1 ιi+1,1 + · · ·+ αk ιi+1,k, α1, . . . , αk ∈ Z.

Then, we shall denote by παi+1, the following element:

παi+1 := πα1
i+1,1 . . . π

αk
i+1,k ∈ K(x), µi

(
παi+1

)
= α.

We recall that these choices determine a group homomorphism

πi+1 : Γi −→ K(x)∗, α 7−→ παi+1.

We are ready to give a recursive definition of our rational functions Yi ∈ K(x) and
πi+1,j ∈ K(x).

Definition 5.16. For 0 ≤ i ≤ r, define

Yi = φeii π
−hi
i ,

πi+1,j =
(
φi π

−hi,1/ei,1
i,1 · · · π−hi,j−1/ei,j−1

i,j−1

)`i,je′i,j
π
`′i,j
i,j , 1 ≤ j ≤ k.
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In the definition of πi+1,j, the rational functions πi,1, . . . , πi,j−1 appear with integer
exponents, because e′i,j/ei,t is an integer for t < j, as shown in (5.12).

For i ≥ 0, it is easy to deduce from the definition that:

πi+1,j = πβ0φ
n0
0 · · ·φ

ni−1

i−1 φ
`i,je

′
i,j

i , (5.15)

for a certain β ∈ Γ−1 and certain (eventually negative) integer exponents n0, . . . , ni−1.
Since φi+1 -µi φ` for ` ≤ i, Lemma 5.1 shows that

µi(πi+1,j) = µi+1(πi+1,j) = · · · = µ(πi+1,j),

µi(Yi) = µi+1(Yi) = · · · = µ(Yi),
(5.16)

Let us compute these stable values.

Lemma 5.17. For every pair of indices 0 ≤ i ≤ r, 1 ≤ j ≤ k, we have

µi(Yi) = 0, µi(πi+1,j) = ιi+1,j.

Proof. The first identity follows immediately from the definition of the rational
function Yi.

Let us prove the second identity. For i = −1, µ−1(π0,j) = ι0,j for all j by definition.

Suppose i ≥ 0 and the identity holds for lower indices. Then,

µi(πi,j) = µi−1(πi,j) = ιi,j,

for all j, by (5.16). Thus,

µi(πi+1,j) = li,je
′
i,j

(
γi −

hi,1
ei,1

ιi,1 − · · · −
hi,j−1

ei,j−1

ιi,j−1

)
+ l′i,j ιi,j = ιi+1,j,

as shown in (5.11).

Our next aim is to establish certain relationships between the rational functions of
Definition 5.16. To this end we introduce some more notation.

Definition 5.18. Take an index 0 ≤ i ≤ r. Denote:

L′i = `′i,1 · · · `′i,k, Li,j = `i,j `
′
i,j+1 · · · `′i,k, 1 ≤ j ≤ k.

Consider the function

Li : QΓi−1 −→ Q, α 7→ Li,1 α1 + · · ·+ Li,k αk,

if α = α1 ιi,1 + · · ·+ αk ιi,k, with α1, . . . , αk ∈ Q.

Lemma 5.19. For all 0 ≤ i ≤ r, we have L′i + Li(γi) = 1/ei.
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Proof. Consider the following identity:

`′i,j
e′i,j

+
`i,jhi,j
ei,j

=
di,j
e′i,jei,j

=
di,1 . . . di,j
ei,1 . . . ei,j

=
1

e′i,j+1

, 1 ≤ j ≤ k. (5.17)

Now, we claim that:

L′i + Li,1
hi,1
ei,1

+ · · ·+ Li,j
hi,j
ei,j

= `′i,j+1 . . . `
′
i,k

1

e′i,j+1

, 1 ≤ j ≤ k. (5.18)

For j = k, this identity proves the lemma, since e′i,k+1 = ei by Lemma 5.13.
Let us prove (5.18) by induction on j. For j = 1, it follows directly from (5.17), having

in mind that e′i,1 = 1:

L′i + Li,1
hi,1
ei,1

= `′i,2 . . . `
′
i,k

(
`′i,1
e′i,1

+
`i,1hi,1
ei,1

)
= `′i,2 . . . `

′
i,k

1

e′i,2
.

Now, if we assume that (5.18) holds for j − 1:

L′i + Li,1
hi,1
ei,1

+ · · ·+ Li,j−1
hi,j−1

ei,j−1

= `′i,j . . . `
′
i,k

1

e′i,j
,

we deduce the identity (5.18) for j, just by adding Li,jhi,j/e
′
i,j to both sides of the equality,

and applying (5.17) to the right-hand side.

Lemma 5.20. For 0 ≤ i ≤ r, let Q ∈ Qk×k be the matrix introduced in Definition 5.14.
Then,

(Li,1 . . . Li,k)Q =
1

ei
(`i,1e

′
i,1 . . . `i,ke

′
i,k).

Proof. The statement is equivalent to the following identity:

Li,j
di,j
ei,j

+ Li,j+1 qj+1,j + · · ·+ Li,k qk,j =
1

ei
`i,je

′
i,j, 1 ≤ j ≤ k,

where qm,j = `i,je
′
i,jhi,m/ei,m are the entries of Q for m > j. Equivalently,

Li,j
di,j

`i,jei,je′i,j
+ Li,j+1

hi,j+1

ei,j+1

+ · · ·+ Li,k
hi,k
ei,k

=
1

ei
.

By Lemma 5.19, this is equivalent to

L′i + Li,1
hi,1
ei,1

+ · · ·+ Li,j
hi,j
ei,j

= Li,j
di,j

li,jei,je′i,j
= `′i,j+1 · · · `′i,k

1

e′i,j+1

,

which was proven in (5.18).

Recall the definition of the rational functions

πi+1,j =
(
φi π

−hi,1/ei,1
i,1 · · · π−hi,j−1/ei,j−1

i,j−1

)`i,je′i,j
π
`′i,j
i,j , 1 ≤ j ≤ k.
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Let us rewrite these identities using formal logarithms:

log πi+1,j = `i,je
′
i,j

(
log φi −

hi,1
ei,1

log πi,1 − · · · −
hi,j−1

ei,j−1

log πi,j−1

)
+ `′i,j log πi,j.

We may unify all these identities for 1 ≤ j ≤ k in a single identity:

(log πi+1,1 · · · log πi+1,k) = log φi
(
`i,1e

′
i,1 · · · `i,ke′i,k

)
+ (log πi,1 · · · log πi,k)A, (5.19)

where A = (am,j) ∈ Qk×k is the matrix with entries:

am,j =


0, if m > j

`′i,j, if m = j

−`i,je′i,j
hi,m
ei,m

, if m < j

.

Lemma 5.21. Let 0 ≤ i ≤ r. Consider the column-vector

u = (hi,1/ei,1 . . . hi,k/ei,k)
t ∈ Qk×1,

and the matrix B = u (Li,1 . . . Li,k) ∈ Qk×k.

(1) For any k-dimensional column-vector v we have

Bv = Li(α)u, where α = (ιi,1 · · · ιi,k) v.

(2) A = (I − eiB)Q.

(3) The vector u is an eigenvector of the matrix I − eiB, with eigenvalue eiL
′
i.

Proof. The first item follows immediately from the definition of the operator Li.

By Lemma 5.20,

(I − eiB)Q = Q− eiu (Li,1 . . . Li,k)Q = Q− u
(
`i,1e

′
i,1 . . . `i,ke

′
i,k

)
.

Hence, item (2) is equivalent to Q− A = u
(
`i,1e

′
i,1 . . . `i,1e

′
i,1

)
, or equivalently,

qm,j − am,j =
hi,m
ei,m

`i,je
′
i,j, ∀,m, j.

If m > j (am,j = 0), or m < j (qm,j = 0), the identity is obvious.
If m = j, the desired equality follows from `i,mhi,me

′
i,m = di,m − `′i,mei,m.

Finally, by the first item,

(I − eiB)u = u− eiLi(γi)u = eiL
′
i u,

by Lemma 5.19.
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Proposition 5.22. For all 0 ≤ i ≤ r, and β ∈ Γi−1, we have

πβi+1/π
β
i = Y

Li(β)
i .

Proof. Write β = β1ιi,1 + · · ·+ βkιi,k, with β1, . . . , βk ∈ Z. By definition,

log πβi+1 = (log πi+1,1 · · · log πi+1,k)Q
−1

β1
...
βk

 .

By (5.19) and Lemmas 5.20 and 5.21,

log πβi+1 = log φi
(
`i,1e

′
i,1 · · · `i,ke′i,k

)
Q−1

β1
...
βk

+ (log πi,1 · · · log πi,k) AQ
−1

β1
...
βk


= eiLi(β) log φi + (log πi,1 · · · log πi,k) (I − eiB)

β1
...
βk


= log φ

eiLi(β)
i + log πβi − (log πi,1 · · · log πi,k) eiLi(β)u

Hence,

log
(
πβi+1/π

β
i

)
= log φ

eiLi(β)
i − log π

hiLi(β)
i = log Y

Li(β)
i ,

because (log πi,1 · · · log πi,k) eiu = log πeiγii = log πhii .

Proposition 5.23. For all 0 ≤ i ≤ r, we have φi/π
γi
i+1 = Y

L′i
i .

Proof. By (5.19) and Lemmas 5.19, 5.20 and 5.21,

log
(
φi/π

γi
i+1

)
= log φi − (log πi+1,1 · · · log πi+1,k) Q

−1u

=
(
1−

(
`i,1e

′
i,1 · · · `i,ke′i,k

)
Q−1u

)
log φi − (log πi,1 · · · log πi,k) AQ

−1u

= (1− eiLi(γi)) log φi − (log πi,1 · · · log πi,k) (I − eiB)u

= log φ
eiL
′
i

i − (log πi,1 · · · log πi,k) eiL
′
iu

= log φ
eiL
′
i

i − log π
hiL
′
i

i = log Y
L′i
i .

because (log πi,1 · · · log πi,k) eiu = log πeiγii = log πhii .

Proposition 5.24. Let (s, u) ∈ Z≥0 × Γr−1. Then,

φsrπ
u
r /π

u+sγr
r+1 = (Yr)

L′r s−Lr(u) .

Proof. By Proposition 5.22, πur /π
u
r+1 = Y

−Lr(u)
r . Hence, the claimed identity is

equivalent to φsr / π
sγr
r+1 = Y

L′r s
r , which follows from Proposition 5.23.
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Elements in Gµ determined by the rational functions

According to (5.15), the rational functions Yi, πi,j introduced in Definition 5.16 are a
product of an element in K∗ by powers of φ0, . . . , φi with integer exponents. The exponent
of φi is non-negative in the two cases: ei, and 0, respectively.

For 0 ≤ j < i, the exponent of φj may be negative, but the element Hµi(φj) is a unit
in Gµi , by Lemma 2.5.

Therefore, it makes sense to consider the image in the graded algebra of these rational
functions, and the image of πi,j will be a unit.

Definition 5.25. For 0 ≤ i ≤ r we define:

xi = Hµi(φi),

yi = Hµi(Yi) ∈ ∆µi ,

pi,j = Hµi(πi,j) ∈ G∗µi , 1 ≤ j ≤ k.

Also, for any α = α1ιi,1 + · · ·+ αkιi,k ∈ Γi−1, we define

pαi = Hµi(π
α
i ) = pα1

i,1 · · · p
αk
i,k ∈ G

∗
µi
.

Note that xi = Hµi(φi) is a prime element in Gµi , of degree γi. Hence, yi = xeii p
−hi
i is

associate to the ei-th power of this prime element.

Also, we can think of the symbol pi as a group homomorphism:

pi : Γi−1 −→ G∗µi , α 7−→ pαi .

Lemma 5.26. Let (s, u), (s′, u′) ∈ Z≥0 × Γµr−1 such that sγr + u = s′γr + u′.
Then, there exists j ∈ Z such that

s′ = s+ jer, u′ = u− jhr, xs
′

r p
u′

r = xsr p
u
r y

j
r .

Proof. By (5.4), from (s′ − s)γr = u − u′ ∈ Γµr−1 , we deduce s′ − s = jer for some
j ∈ Z. Then, u′ = u− jerγr = u− jhr.

The lemma follows then easily from yr = xerr p
−hr
r .

Definition 5.27. Suppose 0 ≤ i < r and let α ∈ Γi−1. By (5.15), (5.16) and Lemma 2.5,
the elements xi, p

α
i ∈ Gµi are mapped to units in Gµi+1

under the canonical homomorphism.
We denote these images by the same symbol xi, p

α
i ∈ G∗µ, respectively.

On the other hand, we denote by zi ∈ ki+1 ⊂ kµ the image of yi under the canonical
homomorphism

∆µi � ki+1 ⊂ ∆µi+1
, yi 7→ zi.

By the same argument as above, zi is a unit; that is, zi 6= 0.

Remark 5.28. We shall see in Corollary 6.6 that ki+1 = ki[zi] = k0[z0, . . . , zi].
Also, we shall prove in Corollary 6.18 that Ri(φi+1) is the minimal polynomial of zi

over ki. In particular, deg(Ri(φi+1)) = fi.

In optimal MacLane chains, the elements xi, p
α
i , yr, zi ∈ Gµ are “almost” independent

of the chain. Their precise variation is analyzed in section 6.6.
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Chapter 6

Residual polynomial operators of
inductive valuations

Consider a MacLane chain of an inductive valuation µ ∈ Vind:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ.

Throughout this chapter we denote

G = Gµ, ∆ = ∆µ, R = Rµ,

and we shall freely use all data and operators associated with our fixed MacLane chain
in Chapter 5.

We fixed a finitely-generated subgroup Γfg ⊂ Γ, leading to a chain of finitely-generated
subgroups

Γfg = Γ−1 ⊂ Γ0 ⊂ · · · ⊂ Γr = Γfg
µ ,

such that
hi = eiγi ∈ Γi = Γ−1 +

〈
γ1, . . . , γi

〉
⊂ Γµi , 0 ≤ i ≤ r.

Also, we constructed group homomorphisms

pi : Γi−1 −→ G∗µi , α 7−→ pαi , 0 ≤ i ≤ r,

such that pαi is a homogeneous unit of degree α in the graded algebra Gµi .
Recall the existence of a tower of finite field extensions:

k = k0 ⊂ k1 ⊂ · · · ⊂ kr ⊂ ∆.

After Lemma 2.6, these fields are defined as

ki = Im (∆i−1 → ∆i) , 1 ≤ i ≤ r.

Each ki is the algebraic closure of k in ∆i, and it satisfies ∆∗i = k∗i .

Recall the definition of the subset of polynomials having attainable µ-values:

K[x]µ -at =
{
g ∈ K[x] | µ(g) ∈ Γfg

µ

}
⊂ K[x].

63
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In this chapter, we introduce residual polynomial operators:

Ri := Rµi,φi : K[x]µi -at −→ ki[y], 0 ≤ i ≤ r,

playing an essential role in the whole theory.
Each operator Ri is determined by the MacLane chain of µi obtained by truncation

of the given MacLane chain of µ. Thus, it suffices to describe Rr.

Why don’t we use the general operator Rµ introduced in section 1.7?

Because we are interested in a constructive way to deal with inductive valuations. As
we shall see in Theorem 10.7, inductive valuations are useful to detect information about
the irreducible factors of any given polynomial f ∈ K[x], over a henselization Kh of the
valued field (K, v).

We want to be able to design algorithms which capture this information.
To this end, we need residual polynomial operators of each of the intermediate valua-

tions µi, and they require choices of pairs φi, ui at each level.
The choice of the parameter ui ∈ K(x)∗ is delicate. We must choose it in a coher-

ent way for the different levels of the MacLane chains, thus allowing a recursive (hence
constructive) computation of the residual polynomial operators.

This aim will be fulfilled in section 6.4.

6.1 Definition of the operator Rr

We define Rr(0) = 0.
For a non-zero f ∈ K[x] consider the canonical φr-expansion:

f =
∑

0≤s
asφ

s
r, deg(as) < deg(φr).

By the definition of an augmented valuation,

µ(f) = Min{µ (asφ
s
r) | s ≥ 0} = Min{µr−1 (as) + sγr | s ≥ 0}.

The Newton polygon Nr(f) is the lower convex hull of the set of points:

C = {Qs := (s, µr−1 (as)) | s ≥ 0} ⊂ Z≥0 × Γµr−1 .

Let Sγr(f) ⊂ Q×QΓ be the γr-component of Nr(f) (cf. Definition 3.2). Let

(s0, u0) := (sr(f), ur(f)), (s′r(f), u′r(f)) ∈ Z≥0 × Γµr−1

be the left and right endpoints of Sγr(f), respectively.
By Remark 3.1, for any point (s, u) ∈ Nr(f), we have

(s, u) ∈ Sγr(f) ⇐⇒ u+ sγr = µ(f) = u0 + s0γr. (6.1)

If we impose that (s, u) ∈ Z≥0 × Γµr−1 , Lemma 5.26 shows that

(s, u) ∈ Sγr(f) ∩
(
Z≥0 × Γµr−1

)
=⇒ s = s0 + jer, u = u0 − jhr, j ∈ Z.
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Since both endpoints of Sγr belong to Z≥0 × Γµr−1 , the integer j runs on:

0 ≤ j ≤ d := (s′r(f)− sr(f))/er.

This non-negative integer d is called the degree of the segment Sγr(f). We have d = 0 if
and only if Nr(f) has no sides of slope −γr.

In other words, if we denote sj = s0 + jer, uj = u0 − jer, we have seen that

Sγr(f) ∩
(
Z≥0 × Γµr−1

)
= {P0, P1, . . . , Pd} ,

where Pj = (sj, uj) for 0 ≤ j ≤ d.

Figure 6.1: Newton polygon Nr(f) for g ∈ K[x]. The line L has slope −γr
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Definition 6.1. For a non-zero f ∈ K[x] with attainable µ-value, we define

Rr(f) = c0 + c1 y + · · ·+ cd y
d ∈ kr[y],

where the coefficients cj ∈ kr are defined as

cj :=

{
p
−µr−1(asj )
r Hµ(asj) ∈ k∗r , if Qsj lies on Nr(f),

0, otherwise.

By Lemma 2.5, Hµ(asj) is a unit in G. By Proposition 2.2, µ(asj) = µr−1(asj).
Therefore, if Qsj lies on Nr(f), the coefficient cj is a homogeneous unit of degree zero;

that is, cj ∈ ∆∗ = k∗r .

Note that p
−µr−1(asj )
r is well defined only if µr−1(asj) ∈ Γr−1. The next lemma guaran-

tees this.

Lemma 6.2. If f =
∑

0≤s asφ
s
r has attainable µ-value, then for all s such that Qs lies on

Sγr(f), the coefficient as has attainable µr−1-value.
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Proof. By (6.1), the condition Qs ∈ Sγr(f) leads to µ(f) = µr−1(as) + sγr.
Thus, the condition µ(f) ∈ Γr implies µr−1(as) ∈ Γµr−1 ∩Γr = Γr−1. The last equality

by Lemma 5.10.

If Γ is finitely generated, we may take Γfg = Γ as a universal choice for this subgroup.
This implies Γi = Γµi for all i. Then, K[x]µ -at = K[x] and the residual polynomial Rr(f)
is defined for all f ∈ K[x].

Otherwise, the finitely-generated subgroup Γfg ⊂ Γ, and the finitely-generated sub-
groups Γi ⊂ Γµi derived from this choice, play only an instrumental role.

In any particular instance where we use the operator Rr, we may think that Γfg is
chosen to be sufficiently large to ensure that all involved polynomials have attainable
µ-values.

Therefore, for simplicity in the exposition of the results, we adopt the following con-
vention.

Convention. In any statement or argument involving a finite number of polynomials, we
shall implictly assume that the subgroup Γfg is sufficiently large to allow the application of
the operator Rr to all the involved polynomials.

6.2 Basic properties of the operator Rr

We keep with the notation from the preceding section.

Let us first summarize two basic properties of Rr, which follow immediately from the
fact that c0, cd 6= 0, because Qs0 = Ps0 and Qsd = Psd both lie on Sγr(f).

Lemma 6.3. Let f ∈ K[x] be a non-zero polynomial.

(1) deg(Rr(f)) = (s′r(f)− sr(f))/er.

(2) Rr(f)(0) ∈ k∗r .

The essential property of the operator Rr is displayed in the next result.

Theorem 6.4. For any f ∈ K[x], we have

Hµ(f) = xsr(f)
r pur(f)

r Rr(f)(yr).

Proof. Since s 6∈ {s0, . . . , sd} implies µ (asφ
s
r) > µ(f), we have

f ∼µ fSγr , where fSγr := φs0r
(
as0 + as1φ

er
r + · · ·+ asdφ

der
r

)
.

Assuming that f ∈ K[x]µ -at has attainable µ-value, Lemma 6.2 shows that u0 =
µr−1(as0) ∈ Γr−1. Thus, we may write

fSγr = φs0r π
u0
r

(
b0 + b1Yr + · · ·+ bdY

d
r

)
, (6.2)

where (s0, u0) = (sr(f), ur(f)), Yr = φerr π
−hr
r ∈ K(x), and

bj = πjhr−u0r asj ∈ K(x), 0 ≤ j ≤ d.
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Since hr = erγr, we have µ (φjerr ) = jhr. Thus, from µ(f) = u0 + s0γr we get

µr−1(bj) = jhr − u0 + µr−1(asj) = µ
(
asjφ

sj
r

)
− µ (f) ≥ 0,

and equality may be characterized as follows

µr−1(bj) = 0 ⇐⇒ Qsj lies on Sγr(f) ⇐⇒ µr−1(asj) = u0 − jhr.

Therefore, when equality holds, we have

Hµ(bj) = pjhr−u0r Hµ(asj) = p
−µr−1(asj )
r Hµ(asj) = cj.

Since f ∼µ fSγr , the result follows from the application of Hµ to both sides of equation
(6.2), having in mind equation (1.3).

Thus, any non-zero homogeneous element Hµ(f) splits into a product of a power of
the prime xr, times a unit, times a degree-zero element Rr(f)(yr) ∈ ∆.

Remark. Lemma 6.3 and Theorem 6.4 are the first instances where we applied the above
Convention. Rigorous statements would assume that f ∈ K[x]µ -at.

We shall not warn the reader anymore about this Convention.

We now derive from Theorem 6.4 some more basic properties of the operator Rr. We
start with a result giving a more complete form to Theorem 1.28.

Theorem 6.5. The mapping kr[y] → ∆ induced by y 7→ yr is an isomorphism of kr-
algebras. The inverse isomorphism assigns

Hµ(g) 7−→ ysr(g)/erRr(g),

for each g ∈ K[x] having µ(g) = 0.

Proof. Let g ∈ K[x] with µ(g) = 0. By Lemma 5.26, applied to the pairs (sr(g), ur(g))
and (0, 0Γ), there exists an integer j ≥ 0 such that

sr(g) = jer, and xsr(g)r pur(g)r = yjr .

By Theorem 6.4, Hµ(g) = yjr Rr(g)(yr) is a polynomial in yr with coefficients in kr.
This proves that the mapping kr[y]→ ∆ is onto.

On the other hand, ∆ is a domain which is not a field, because yr ∈ ∆ is not a unit
in G. In fact, yr is associate to the er-th power of the prime element xr.

Thus, the mapping is 1-1 because the kernel vanishes, being a prime ideal of kr[y]
which is not maximal.

Corollary 6.6. If r > 0, then kr = kr−1[zr−1] = k[z0, . . . , zr−1].

Proof. Theorem 6.5 applied to the valuation µr−1 shows that ∆r−1 = kr−1[yr−1].
Therefore, kr = Im (∆r−1 → ∆) = kr−1[zr−1].
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Corollary 6.7. Let f, g ∈ K[x]. Then, Rr(fg) = Rr(f)Rr(g).

Proof. Since Hµ(fg) = Hµ(f)Hµ(g), the statement follows from equation (5.7) and
Theorems 6.4 and 6.5, as long as:

sr(fg) = sr(f) + sr(g) and ur(fg) = ur(f) + ur(g).

These identities follow from Lemma 3.9.

Corollary 6.8. Let f, g ∈ K[x]. Then,

f ∼µ g ⇐⇒ sr(f) = sr(g), ur(f) = ur(g) and Rr(f) = Rr(g).

f |µ g ⇐⇒ sr(f) ≤ sr(g) and Rr(f) | Rr(g) in kr[y].

Proof. If f ∼µ g, then Sγr(f) = Sγr(g) by Lemma 3.8. In particular, these segments
have the same left endpoint: (sr(f), ur(f)) = (sr(g), ur(g)). Thus, Rr(f)(yr) = Rr(g)(yr)
by Theorem 6.4, and we deduce Rr(f) = Rr(g) from Theorem 6.5.

Conversely, the equalities (sr(f), ur(f)) = (sr(g), ur(g)) and Rr(f) = Rr(g) imply
Hµ(f) = Hµ(g) by Theorem 6.4.

If f |µ g, then fh ∼µ g for some h ∈ K[x]. By the first item and Corollary 6.7, we get
Rr(g) = Rr(fh) = Rr(f)Rr(h). Thus Rr(f) | Rr(g). By Lemma 3.9, sr(g) = sr(f)+sr(h),
so that sr(f) ≤ sr(g).

Conversely, sr(f) ≤ sr(g) and Rr(f) | Rr(g) imply Hµ(f) | Hµ(g) by Theorem 6.4,
having in mind that pαr is a unit for all α ∈ Gµr−1 .

Corollary 6.9. Let f, g ∈ K[x] such that µ(f) = µ(g). Then,

ybsr(f)/ercRr(f) + ybsr(g)/ercRr(g) =

{
ybsr(f+g)/ercRr(f + g), if µ(f + g) = µ(f),

0, if µ(f + g) > µ(f).

Proof. If µ(f + g) > µ(f), we have f ∼µ −g. By Corollary 6.8,

Rr(f) = Rr(−g) = −Rr(g) and sr(f) = sr(−g) = sr(g).

Hence,
ybsr(f)/ercRr(f) + ybsr(g)/ercRr(g) = ybsr(f)/erc (Rr(f) +Rr(g)) = 0.

Denote h = f + g. If µ(h) = µ(f) = µ(g), we have

µ(f) = ur(f) + sr(f)γr = ur(g) + sr(g)γr = ur(h) + sr(h)γr.

By Lemma 5.26, sr(f) ≡ sr(g) ≡ sr(h) (mod er).
Thus, we can consider the divisions with remainder

sr(f) = jfer + `, sr(g) = jger + `, sr(h) = jher + `,

for some common non-negative integer 0 ≤ ` < er. Note that jf = bsr(f)/erc.
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Take u = µ(f)− `γr = ur(f) + jfhr ∈ Γr−1. By Lemma 5.26,

xsr(f)
r pur(f)

r = x`r p
u
r y

jf
r , xsr(g)r pur(g)r = x`r p

u
r y

jg
r , xsr(h)

r pur(h)
r = x`r p

u
r y

jh
r . (6.3)

On the other hand, the identity from (1.3) and Theorem 6.4 show that

xsr(f)
r pur(f)

r Rr(f)(yr) + xsr(g)r pur(g)r Rr(g)(yr) = xsr(h)
r pur(h)

r Rr(h)(yr).

By (6.3), this identity is equivalent to

y
jf
r Rr(f)(yr) + yjgr Rr(g)(yr) = yjhr Rr(h)(yr).

By Theorem 6.5, this identity still holds if we replace yr with the indeterminate y. In this
way we get precisely the identity predicted by the corollary.

Computation of the residual ideal operator

We now establish a tight connection between the canonical operator Rµ and the (non-
canonical) operator Rr.

Theorem 6.10. For any non-zero f ∈ K[x],

Rµ(f) = ydsr(f)/ere
r Rr(f)(yr)∆.

Proof. By definition, an element in Rµ(f) is of the form Hµ(g) for some g ∈ K[x]
such that f |µ g and µ(g) = 0. By Theorem 6.5,

Hµ(g) = ysr(g)/err Rr(g)(yr).

On the other hand, Corollary 6.8 shows that sr(f) ≤ sr(g) and Rr(f) | Rr(g).

Therefore, Hµ(g) belongs to y
dsr(f)/ere
r Rr(f)(yr)∆.

Conversely, if q = dsr(f)/ere, then Theorem 6.4 shows that

yqrRr(f)(yr) = Hµ(f)xqer−sr(f)
r p−qhr−ur(f)

r ∈ Rµ(f),

because qer ≥ sr(f) and pαr is a unit for all α ∈ Γr−1.

Residual polynomial of a constant

By Corollary 6.7, Rr(1) = 1. However, it is not so easy to compute the residual polynomial
of a general constant.

For any a ∈ K∗, the polynomial Rr(a) ∈ kr[y] is constant, because

Sγr(a) = Nr(a) = {(0, v(a))},

so that sr(a) = s′r(a) = 0. By Lemma 6.3, deg(Rr(a)) = 0.
Denote α = v(a) ∈ Γ−1. By definition,

Rr(a) = p−αr Hµ(a).
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If r = 0, this amounts to R0(a) = a/πα0 ∈ k∗.
If r > 0, then Proposition 5.22 shows that

παr = παr−1 Y
Lr−1(α)
r−1 .

Hence, pαr = pαr−1z
Lr−1(α)
r−1 , because pαr is the image under the canonical homomorphism

Gµr−1 → G of the element

Hµr−1

(
παr−1 Y

Lr−1(α)
r−1

)
= pαr−1 y

Lr−1(α)
r−1 .

By Proposition 2.2, Hµ(a) is also the image of Hµr−1(a) under the homomorphism Gµr−1 →
G. This leads to the following recurrence:

Rr(a) = z
−Lr−1(α)
r−1 Rr−1(a) = · · · = z

−Lr−1(α)
r−1 · · · z−L0(α)

0 R0(a).

In particular, if v(a) = 0, we have Rr(a) = R0(a) = a ∈ k∗.
In spite of this difficulty, for certain “nice” polynomials we may guarantee that the

residual polynomial is monic.

Lemma 6.11.

(1) If f ∈ K[x] is monic and µ-minimal, then Rr(f) is a monic polynomial.

(12) Rr(φ
s
r) = 1 for any integer s ≥ 0.

Proof. If f ∈ K[x] is monic and µ-minimal, then Lemma 1.26 shows that the leading
monomial of the φr-expansion of f is φ`r, with ` = s′r(f).

Hence, for d = (`− sr(f)) /er = deg(Rr(f)), we have

sd = `, asd = 1,

with the notation of section 6.1. Hence, cd = p
−µr−1(1)
r Hµ(1) = 1.

Finally, for any integer s ≥ 0, Sγr(φ
s
r) = Nr(φ

s
r) = {(s, 0)}, so that Rr(φ

s
r) is a constant

polynomial.
On the other hand, φsr is monic and µ-minimal because it satisfies the conditions of

Lemma 1.26. By the previous item Rr(φ
s
r) = 1.

Existence of polynomials with a prescribed residual polynomial

We end this section with a pair of useful results. The first one states that the decompo-
sition of Theorem 6.4 is unique, in a certain sense.

The second one establishes the existence of polynomials f with prescribed values of
sr(f), ur(f) and Rr(f).

Lemma 6.12. Consider two polynomials ϕ, ψ ∈ kr[y] such that ϕ(0) 6= 0, ψ(0) 6= 0.
Suppose that for two pairs (s, u), (s′, u′) ∈ Z≥0 × Γr−1 we have

xsr p
u
r ϕ(yr) = xs

′

r p
u′

r ψ(yr). (6.4)

Then, s = s′, u = u′ and ϕ = ψ.
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Proof. Since ϕ(yr) and ψ(yr) have degree zero in G, the equality (6.4) implies

sγr + u = deg(xsr p
u
r ) = deg(xs

′

r p
u′

r ) = s′γr + u′.

Suppose s ≤ s′. By Lemma 5.26, there exists an integer j ≥ 0 satisfying

s′ = s+ jer, u′ = u− jhr, xs
′

r p
u′

r = xsr p
u
r y

j
r .

Hence, (6.4) implies
ϕ(yr) = yjr ψ(yr).

By Theorem 6.5, we have ϕ = yj ψ. Since neither ϕ nor ψ are divisible by y, we must
have necessarily j = 0. This implies s = s′, u = u′ and ϕ = ψ.

Proposition 6.13. Let (s, u) ∈ Z≥0 × Γr−1, and ψ ∈ kr[y] a polynomial with ψ(0) 6= 0.
Then, there exists a polynomial f ∈ K[x]µ -at such that

sr(f) = s, ur(f) = u, Rr(f) = ψ.

Proof. There is certainly f ∈ K[x] such that Hµ(f) is the non-zero homogeneous
element xsr p

u
r ψ(yr). Since µ(f) = u+ sγr ∈ Γr, this polynomial has attainable µ-value.

By Theorem 6.4, we have

xsr p
u
r ψ(yr) = Hµ(f) = xsr(f)

r pur(f)
r Rr(f)(yr).

The result follows from Lemma 6.12.

6.3 Characterization of key polynomials for µ

In this section, we use the properties of the residual operators to characterize the key
polynomials for µ.

Our main result, Proposition 6.16, reproduces Proposition 1.30 which was proven in
[23] for an arbitrary valuation admitting key polynomials.

However, we shall give a complete proof of the result. On one hand, we add a significant
property about the Newton polygon of a key polynomial; on the other hand, the result is
crucial for the proof of Corollary 6.19, which contains an exclusive property of inductive
valuations: their key polynomials are defectless polynomials over the henselization of
(K, v) (see Theorem 8.6 too).

Let us first characterize the homogeneous prime elements in G. By Theorem 6.5, the
prime elements in ∆ are those of the form ψ(yr) for ψ ∈ kr[y] an irreducible polynomial.

An element in ∆ which is a prime in G, is a prime in ∆, but the converse is not true.
Let us discuss what primes in ∆ remain prime in G.

Lemma 6.14. Let ψ ∈ kr[y] be a monic irreducible polynomial.

(1) If ψ 6= y, then ψ(yr) is a prime element in G.

(2) If ψ = y, then yr is a prime element in G if and only if er = 1.
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Proof. Suppose ψ 6= y. Since ψ is irreducible, we have ψ(0) 6= 0.
Suppose ψ(yr) divides the product of two homogeneous elements in G. Say

ψ(yr)Hµ(f) = Hµ(g)Hµ(h).

Since ψ(yr) has degree zero, we have µ(f) = µ(gh). By Theorem 6.4,

xsr(f)
r pur(f)

r ψ(yr)Rr(f)(yr) = xsr(gh)
r pur(gh)

r Rr(g)(yr)Rr(h)(yr).

By Lemma 6.12, we have ψRr(f) = Rr(g)Rr(h). Since ψ is irreducible, it divides either
Rr(g) or Rr(h), and this leads to ψ(yr) dividing either Hµ(g) or Hµ(h) in G.

The element yr is associate to xerr in G. Since xr is a prime element, its er-th power is
prime if and only if er = 1.

Besides these prime elements belonging to ∆, we know that xr is another prime element
in G, of degree γr.

The next result shows that there are no other homogeneous prime elements in G, up
to multiplication by units.

Proposition 6.15. A polynomial f ∈ K[x] is µ-irreducible if and only if one of the two
following conditions is satisfied:

(1) sr(f) = s′r(f) = 1.

(2) sr(f) = 0 and Rr(f) is irreducible in kr[y].

In the first case, Hµ(f) is associate to xr. In the second case, to Rr(f)(yr).

Proof. Let us assume that Γfg is large enough to contain µ(f). By Theorem 6.25, the
property of Rr(f) being irreducible does not depend on the choice neither of Γfg nor its
basis.

By Theorem 6.4,
Hµ(f) = xsr(f)

r pur(f)
r Rr(f)(yr).

Since p
ur(f)
r is a unit and xr is a prime, Hµ(f) is a prime if and only if one of the two

following conditions is satisfied:

(i) sr(f) = 1 and Rr(f)(yr) is a unit.

(ii) sr(f) = 0 and Rr(f)(yr) is a prime in G.

The homogeneous element of degree zero Rr(f)(yr) is a unit in G if and only if it is a
unit in ∆. By Theorem 6.5, this is equivalent to deg(Rr(f)) = 0, which is equivalent to
s′r(f) = sr(f), by Lemma 6.3. Thus, (i) is equivalent to (1), and Hµ(f) is associate to xr
in this case.

Since Rr(f) 6= y, (ii) is equivalent to (2) by Lemma 6.14. Clearly, Hµ(f) is associate
to Rr(f)(yr) in this case.

Putting together this characterization of µ-irreducibility with the characterization of
µ-minimality from Proposition 1.26, we get the following characterization of key polyno-
mials.
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Proposition 6.16. A monic φ ∈ K[x] is a key polynomial for µ if and only if one of the
two following conditions is satisfied:

(1) deg(φ) = deg(φr) and φ ∼µ φr.

(2) sr(φ) = 0, deg(φ) = ermr deg(Rr(φ)) and Rr(φ) is irreducible in kr[y].

In the first case, R(φ) = yr∆. In the second case,

Rr(φ) is monic, R(φ) = Rr(φ)(yr)∆, and Nr(φ) is one-sided of slope −γr.

Proof. If φ satisfies (1), then φ is a key polynomial by Lemma 1.18.
Also, R(φ) = R(φr) = yr∆ by Theorem 6.10, since sr(φr) = 1 and Rr(φr) = 1.

If φ satisfies (2), then φ is µ-irreducible by Proposition 6.15. On the other hand,
deg(Rr(φ)) = s′r(φ)/er by Lemma 6.3; thus, deg(φ) = s′r(φ)mr and φ is µ-minimal too,
by Proposition 1.26. Thus, φ is a key polynomial for µ.

Then, Rr(φ) is monic by Lemma 6.11, and R(φ) = Rr(φ)(yr)∆ by Theorem 6.10.
Also, Nr(φ) = Sγr(φ) because the endpoints of both polygons coincide. In fact, since

Sγr(φ) ⊂ Nr(φ), it suffices to check that their endpoints have the same abscissas. Both
left endpoints have abscissa 0, and the right endpoint of Nr(φ) has abscissa `(Nr(φ)) =
deg(φ)/mr = s′r(φ).

Since sr(φ) = 0 and s′r(φ) > 0, Nr(φ) is one-sided of slope −γr, according to Definition
3.3.

Conversely, suppose φ is a key polynomial for µ. Since φ is µ-minimal, it has

deg(φ) = s′r(φ)mr, µ(φ) = µ
(
φs
′
r(φ)
r

)
,

by Proposition 1.26.
Since φ is µ-irreducible, it satisfies one of the conditions of Proposition 6.15.

If sr(φ) = s′r(φ) = 1, we get deg(φ) = mr. Also, if we write φ = φr + a, we must have
µ(a) > µ(φ), because otherwise the point (0, µ(a)) would belong to Sγr(φ), contradicting
the property sr(φ) = 1. Thus, φr ∼µ φ, and φ satisfies (1).

If sr(φ) = 0 and Rr(φ) is irreducible in kr[y], then deg(Rr(φ)) = s′r(φ)/er by Lemma
6.3. Thus, deg(φ) = s′r(φ)mr = ermr deg(Rr(φ)), and φ satisfies (2).

Consider φ0, . . . , φr as key polynomials of µ0, . . . , µr, respectively. Obviously, these
key polynomials fall in the first case of Proposition 6.16.

Consider φ1, . . . , φr as key polynomials of µ0, . . . , µr−1, respectively. By the definition
of a MacLane chain, all these key polynomials fall in the second case of Proposition 6.16.
This justifies the next observation.

Corollary 6.17. The Newton polygon Ni(φi+1) is one-sided of slope −γi, for all 0 ≤ i ≤ r.

Also, we may derive from Proposition 6.16 a crucial property of residual polynomials
of key polynomials.

Corollary 6.18. The residual polynomial Ri(φi+1) is the minimal polynomial of zi over
ki, for all 0 ≤ i < r. In particular,

deg(Ri(φi+1)) = [ki+1 : ki] = fi.
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Proof. By Proposition 6.16, si(φi+1) = 0 and Ri(φi+1) is monic and irreducible.
By Theorem 6.4, Hµi(φi+1) is associate to Ri(φi+1)(yi). By Proposition 2.2, the ho-

momorphism Gµi → Gµi+1
vanishes on these elements.

Therefore, Ri(φi+1)(zi) = 0, because Ri(φi+1)(zi) is the image of Ri(φi+1)(yi) under
this homomorphism.

Finally, we deduce from these results a crucial property of key polynomials for induc-
tive valuations.

Corollary 6.19. Any key polynomial φ for an inductive valuation µ satisfies

deg(φ) = e(φ)f(φ).

In particular, the valuation vφ is the unique extension of v to the field Kφ.

Proof. Consider a MacLane chain of µ as in (5.1). By Proposition 6.16 we have two
possibilities for a key polynomial φ for µ. Let us discuss separatedly each case.

Suppose deg(φ) = deg(φr) and φ ∼µ φr. Then, Proposition 1.21 shows that

Γvφ = Γµ,deg(φ) = Γµ,deg(φr) = Γvφr ,

so that e(φ) = e(φr).
Also, sinceR(φ) = R(φr), Proposition 1.22 shows that kφ ' kφr , so that f(φ) = f(φr).

Hence, it suffices to prove the statement for φr. By (5.5) and (5.14) we have

e(φr) = e0 · · · er−1, f(φr) = f0 · · · fr−1.

On the other hand, Proposition 6.16 and Corollary 6.18 show that

deg(φr) = er−1fr−1mr−1 = · · · = er−1fr−1 · · · e0f0 = e(φr)f(φr).

Finally, suppose φ 6∼µ φr. For an arbitrary γ ∈ QΓ, γ > γr, we may consider the
augmented valuation µ′ = [µ;φ, γ]. Since φ 6∼µ φr, we may extend our MacLane chain of
µ to a MacLane chain of µ′:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr

φ,γ−→ µ′.

Hence, deg(φ) = e(φ)f(φ) by the same argument we used for φr.

This property is exclusive of inductive valuations. In section 8.4, we shall see an
example of a valuation admitting a key polynomial φ such that v admits more than one
extension to Kφ.

As an application of Corollary 6.19 let us see a kind of characterization of augmented
valuations.

Lemma 6.20. Suppose that the valuations µ, µ∗ ∈ Vind admit a common key polynomial,
φ ∈ KP(µ) ∩KP(µ∗). Then,

(1) µ(φ) = µ∗(φ) =⇒ µ = µ∗.
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(2) µ(φ) < µ∗(φ) =⇒ µ∗ = [µ; φ, γ], with γ = µ∗(φ).

Proof. Since both semivaluations vµ,φ, vµ∗,φ, determined by µ, µ∗, respectively extend
v to the field Kφ, Corollary 6.19 shows that vµ,φ = vµ∗,φ. In other words,

µ(a) = µ∗(a), ∀ a ∈ K[x]deg φ.

Item (1) follows immediately, since µ and µ∗ coincide on φ-expansions.

If µ(φ) < µ∗(φ), denote µ′ = [µ; φ, γ], with γ = µ∗(φ). Then, φ is a common key
polynomial for µ′ and µ∗ and both valuations have the same value on φ. Thus, item (1)
applied to these valuations shows that µ′ = µ∗.

This has an interesting consequence: any valuation in V which is “under” an inductive
valuation, is inductive too.

Proposition 6.21. Suppose that two valuations µ∗, µ ∈ V satisfy µ∗ < µ. Suppose that
µ is inductive, and consider a MacLane chain:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ.

Then, there exists an index −1 ≤ i < r such that

either µ∗ = µi, or µ∗ = [µi; φi+1, µ
∗(φi+1)],

where we agree that µ−1 = µ−∞. In particular, µ∗ is inductive.

Proof. Suppose that µ∗ 6= µi for all −1 ≤ i < r. Then, by Theorem 2.13, there exists
an index i such that

µi < µ∗ < µi+1.

For any a ∈ K[x]deg(φi+1), from φi+1 -µ a we deduce that µi(a) = µi+1(a); hence,
µi(a) = µ∗(a) = µi+1(a).

On the other hand, µ∗(φi+1) < µi+1(φi+1). In fact, otherwise, for any f ∈ K[x] with
φi+1-expansion f =

∑
0≤s asφ

s
i+1 we would have

µ∗ (f) ≥ Min
{
µ∗
(
asφ

s
i+1

)
| 0 ≤ s

}
≥ Min

{
µi+1

(
asφ

s
i+1

)
| 0 ≤ s

}
= µi+1(f),

against our assumption.
Therefore, φi+1 is a monic polynomial of minimal degree such that µ∗(φi+1) < µi+1(φi+1).

By Proposition 2.9, φi+1 is a key polynomial for µ∗. Hence, Lemma 6.20 shows that
µ∗ = [µi; φi+1, µ

∗(φi+1)].

6.4 Recursive computation of the residual coefficients

From an algorithmic perspective, Corollaries 6.6 and 6.18 show how to construct the tower
of residue fields

k = k0 ⊂ k1 ⊂ · · · ⊂ kr (6.5)
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solely from the knowledge of the irreducible polynomials

ψi := Ri(φi+1) ∈ ki[x].

Each field ki+1 may be constructed as ki+1 = ki[x]/(ψi), and we may identify the generator
zi ∈ ki+1 with the class of x in this quotient.

In order to perform this construction, we need to compute the residual polynomials
Rr(f) = Rµ,φr(f) ∈ kr[x] in a direct way, using only the tower (6.5) and the valuations
µ0, . . . , µr−1, but with no appeal to the valuation µ.

This requires the computation of the coefficients cj introduced in Definition 6.1 by
some direct formula in terms of all previous data. To this aim is devoted this section.

Definition 6.22. For some 0 ≤ i < r, let a ∈ K[x] be a non-zero polynomial with
attainable µi-value. We define

εi(a) = (zi)
L′i si(a)−Li(ui(a)) ∈ k∗i+1,

where (si(a), ui(a)) is the left endpoint of Sγi(a), the γi-component of Ni(a).

Theorem 6.23. Let f ∈ K[x] with φr-expansion f =
∑

0≤s asφ
s
r.

Suppose that f has attainable µ-value and let

Rr(f) = c0 + c1y + · · ·+ cdy
d ∈ kr[y]

be the residual polynomial of f . Then, for each j such that cj 6= 0 we have

cj =

{
asjπ

−v(asj )

0 , if r = 0,

εr−1(asj)Rr−1(asj)(zr−1), if r > 0,

where sj = sr(f) + jer.

Proof. Suppose r = 0. It suffices to prove the equality

p
−v(a)
0 Hµ0(a) = aπ

−v(a)
0 , ∀ a ∈ K∗.

This is an immediate consequence of the identification

k∗ −→∼ k∗0, b 7−→ Hµ0(b),

for all b ∈ K∗ with µ0(b) = 0.

Suppose r > 0. It suffices to prove the equality

p−µr−1(a)
r Hµ(a) = εr−1(a)Rr−1(a)(zr−1), ∀ a ∈ K[x]mr . (6.6)

Take a non-zero a ∈ K[x]mr . By Theorem 6.4,

Hµr−1(a) = xsr−1p
u
r−1Rr−1(a)(yr−1), s = sr−1(asj), u = ur−1(asj). (6.7)
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Since deg(a) < mr = deg(φr), we have φr -µ a, and Proposition 2.2 shows that
µr−1(a) = µ(a). Hence, Hµ(a) is the image of Hµr−1(a) under the canonical homomor-
phism Gµr−1 → G.

By applying this homomorphism to the identity (6.7),we get

Hµ(a) = xsr−1p
u
r−1Rr−1(a)(zr−1).

Hence, the claimed identity (6.6) is equivalent to:

p−µr−1(a)
r xsr−1p

u
r−1 = εr−1(a) = (zr−1)L

′
r−1 s−Lr−1(u).

Since µr−1(a) = u+ sγr−1, this identity follows from Proposition 5.24, by applying Hµr−1

to a similar identity between the corresponding rational functions.

Another crucial application of this recursive construction of the residual coefficients
is the design of a concrete algorithm to compute polynomials in K[x] with a prescribed
residual polynomial. More precisely, to make effective the result of Proposition 6.13.

In particular, this algorithm may be used to construct key polynomials φ such that
R(φ) is a prescribed maximal ideal of ∆. In other words, to make effective the bijection
of Theorem 1.32.

6.5 Dependence of Rr on the choice of Γfg and its basis

Let Γ′−1 ⊂ Γ be another finitely-generated subgroup satisfying the conditions of Definition
5.9, and let ι′0,1, . . . ι

′
0,k′ be a Z-basis of Γ′−1.

With respect to these choices, let

x′i, y
′
i, (p′i)

α ∈ Gµi , 0 ≤ i ≤ r,

z′i ∈ G∗µi+1
, 0 ≤ i < r,

be the corresponding elements described in Definitions 5.25 and 5.27.
The choice of two subgroups Γ−1, Γ′−1, and respective bases in them, determines a

family of group homomorphisms:

τi : Γi−1 ∩ Γ′i−1 −→ k∗i , α 7→ (p′i)
α/pαi , 0 ≤ i ≤ r.

In fact, this quotient (p′i)
α/pαi of two units belongs to

G∗µi ∩∆i = ∆∗i = k∗i .

Caution! The following natural diagrams do not commute!

Γi−1 ⊂ Γi

pi ↓ ↓ pi+1

G∗µi −→ G∗µi+1

Γi−1 ∩ Γ′i−1 ⊂ Γi ∩ Γ′i

τi ↓ ↓ τi+1

k∗i ⊂ k∗i+1
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In fact, by applying Hµi+1
to the identity of Proposition 5.22 we get

pαi+1 = pαi z
Li(α)
i .

From this, we deduce
τi+1(α)

τi(α)
=

(p′i+1)α pαi
(p′i)

α pαi+1

=
(z′i)

L′i(α)

z
Li(α)
i

.

Lemma 6.24. For all 0 ≤ i ≤ r, we have

x′i = xi, y′i = τi(−hi)yi.

In particular, z′i = τi(−hi)zi for 0 ≤ i < r.

Proof. The first statement is obvious: x′i = Hµi(φi) = xi.

By the construction of the finitely-generated subgroups, hi belongs to Γi−1 ∩ Γ′i−1.

Then, from y′i = (x′i)
ei(p′i)

−hi , yi = xeii p
−hi
i , we deduce yi = τi(hi)y

′
i.

Theorem 6.25. Let R′r be the residual polynomial operator associated with the choice of
Γ′−1 and its basis.

Let f =
∑

0≤s asφ
s
r be the φr-expansion of a non-zero polynomial having attainable

µ-value for Γfg and (Γ′)fg. Then,

Rr(f)(y) = ξ R′r(f)(ζy),

for ξ = τr (ur(f)), ζ = τr (−hr) ∈ k∗r .

Proof. Let us denote for simplicity s = sr(f), u = ur(f). By Theorem 6.4,

xsr p
u
r Rr(f)(yr) = Hµ(f) = (x′r)

s (p′r)
uR′r(f)(y′r).

By Lemma 6.24, this is equivalent to

Rr(f)(yr) = τr(u)R′r(f) (τr(−hr)yr) .

By Theorem 6.5, the same identity holds in kr[y] if we replace yr with the indeterminate
y. This proves the lemma.

6.6 Dependence of Rr on the choice of an optimal

MacLane chain

In this section, we discuss the variation of the elements xr, yr, zr, p
α
r+1 ∈ G, and the

operators Sγr , Rr, when we consider different optimal MacLane chains.
We saw in Proposition 5.7 that two optimal MacLane chains of the valuation µ have

the same length r, the same intermediate valuations µ0, . . . , µr, and the same values
γ0, . . . , γr ∈ QΓ. They may differ only in the choice of the key polynomials:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ.
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µ−∞
φ∗0,γ0−→ µ0

φ∗1,γ1−→ · · ·
φ∗r−1,γr−1−→ µr−1

φ∗r ,γr−→ µr = µ,

which must be related as follows:

φ∗i = φi + ai, deg(ai) < mi, µi(ai) ≥ γi, 0 ≤ i ≤ r.

In particular, both chains support the same invariants

mi, ei, fi−1 ∈ Z≥0, hi ∈ Γi−1, 0 ≤ i ≤ r,

where we agree formally that f−1 = 1.

Lemma 6.26. If φ∗r 6∼µ φr, then er = 1 and ar has attainable µ-value.

Proof. Since φr -µ ar, we have µ(ar) = µr−1(ar) ∈ Γµr−1 by Proposition 2.2.
Thus, the condition φ∗r 6∼µ φr, which is equivalent to µ(ar) = µ(φr) = γr, leads to

γr ∈ Γµr−1 . This implies er = 1, and µ(ar) = γr ∈ Γr = Γr−1.

We use the standard notation for all data and operators attached to the upper MacLane
chain and we mark with a superscript ( )∗ all data and operators attached to the lower
one.

Theorem 6.27. With the above notation.

(1) p∗i,j = pi,j for all 0 ≤ i ≤ r + 1, 1 ≤ j ≤ k.

(2) If φ∗r ∼µ φr, then x∗r = xr, y∗r = yr, S∗γr = Sγr , R∗r = Rr.

(3) If φ∗r 6∼µ φr, then x∗r = xr + phrr η, y∗r = yr + η, where η = Rr(ar) ∈ k∗r .

Moreover, for a non-zero g ∈ K[x] with attainable µ-value we have

ysr(g)Rr(g)(y) = (y + η)s
∗
r(g)R∗r(g)(y + η). (6.8)

In particular, s∗r(g) = ordy+η (Rr(g)).

Proof. Since the choice of π0,1, . . . π0,k ∈ K∗ had nothing to do with the MacLane
chains, we have p∗0,j = Hµ(π0,j) = p0,j for all j.

Suppose we have p∗i,j = Hµ(πi,j) = pi,j for all j, and all 0 ≤ i ≤ r. In particular,

(p∗r)
α = pαr , ∀α ∈ Γr−1.

Case φ∗r ∼µ φr. By definition,

x∗r = Hµ(φ∗r) = Hµ(φr) = xr.

This leads to y∗r = yr and p∗r+1,j = pr+1,j for all j, by the recurrent definition of these
rational functions (Definition 5.16).

Case φ∗r 6∼µ φr. Lemma 6.26 shows that er = 1 and ar has atainable µ-value.
Since deg(ar) < mr, we get

sr(ar) = 0, ur(ar) = µr−1(ar) = µ(ar) = γr = hr.
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By Theorem 6.4,
Hµ(ar) = phrr Rr(ar) = phrr η.

Hence, by using (1.3), we have in this case

x∗r = Hµ(φ∗r) = (Hµ(φr) +Hµ(ar)) = xr + phrr η,

which leads to y∗r = x∗r(p
∗
r)
−hr = xrp

−hr
r + η = yr + η.

Also, er = 1 implies `r,j = 0, `′r,j = 1 for all j, by (5.9). Thus,

π∗r+1,j = π∗r,j, πr+1,j = πr,j, 1 ≤ j ≤ k,

by the definition of these rational functions (Definition 5.16).
Hence, p∗r+1,j = p∗r,j = pr,j = pr+1,j for all j.

Finally, let us prove the statements concerning Sγr and Rr in items (2) and (3).
Let g ∈ K[x] be a non-zero polynomial with attainable µ-value.

Case φ∗r ∼µ φr. We have already seen that x∗r = xr, y
∗
r = yr, and (p∗r)

α = pαr for all
α ∈ Γr−1. By Theorem 6.4,

xsr(g)r pur(g)r Rr(g)(yr) = Hµ(g) = xs
∗
r(g)
r pu

∗
r(g)
r R∗r(g)(yr).

By Lemma 6.12, s∗r(g) = sr(g), u∗r(g) = ur(g), and R∗r(g) = Rr(g).
This proves R∗r = Rr already. Also, S∗γr(g) and Sγr(g) have the same left endpoint

(sr(g), ur(g)) and the same slope−γr; thus, these segments coincide if their right endpoints
have the same abscissa. This follows from Lemma 6.3:

s′r(g) = er deg(Rr(g)) + sr(g) = er deg(R∗r(g)) + s∗r(g) = (s∗r)
′(g).

Hence S∗γr(g) = Sγr(g).
This argument works for an arbitrary non-zero f ∈ K[x], by enlarging Γfg to ensure

that µ(f) ∈ Γfg
µ . Therefore, S∗γr = Sγr , and this ends the proof of item (2).

Case φ∗r 6∼µ φr. Recall that er = 1 and (p∗r)
α = pαr for all α ∈ Γr−1. By Theorem 6.4,

xsr(g)r pur(g)r Rr(g)(yr) = Hµ(g) = (x∗r)
s∗r(g) pu

∗
r(g)
r R∗r(g)(y∗r).

Since xr = phrr yr and x∗r = phrr y
∗
r = phrr (yr + η), we deduce

ysr(g)r pur(g)+sr(g)hrr Rr(g)(yr) = (yr + η)s
∗
r(g)pu

∗
r(g)+s∗r(g)hr
r R∗r(g)(yr + η).

Since ur(g) + sr(g)hr = µ(g) = u∗r(g) + s∗r(g)hr, we may drop the powers of pr:

ysr(g)r Rr(g)(yr) = (yr + η)s
∗
r(g)R∗r(g)(yr + η).

This proves (6.8), as a consequence of Theorem 6.5.
Since R∗r(g) is not divisible by y, the polynomial R∗r(g)(y+ η) is not divisible by y+ η.

Hence, s∗r(g) = ordy+η (Rr(g)).



Chapter 7

Structure of the graded algebra

We keep dealing with an inductive valuation µ ∈ Vind equipped with a MacLane chain of
length r as in (5.1), and the corresponding data described in sections 5.2 and 5.3.

Throughtout this chapter we use the notation:

G = Gµ, ∆ = ∆µ, κ = kr, R = Rµ.

We recall that κ ⊂ ∆ is the algebraic closure of k, and the maximal subfield of ∆.

In this chapter, we study the structure of G as a Gv-algebra.

7.1 Generators and relations for G
From the fact that µ restricted to K coincides with v, we deduce a natural embedding of
graded k-algebras:

Gv ↪−→ G, Hv(a) 7−→ Hµ(a), ∀ a ∈ K.

This embedding extends in an obvious way to an embedding of graded κ-algebras:

Gv ⊗k κ ↪−→ G, Hv(a)⊗ c 7−→ cHµ(a).

By Theorem 6.5, we deduce an embedding of ∆-algebras:

Gv ⊗k ∆ ↪−→ G, Hv(a)⊗ ψ(yr) 7−→ ψ(yr)Hµ(a),

for all ψ ∈ κ[y].
By identifying these algebras Gv⊗k κ, Gv⊗k ∆ with their images in G, we clearly have:

Gv ⊗k ∆ = (Gv ⊗k κ) [yr].

Recall the elements x0, . . . , xr ∈ G, introduced in Definitions 5.25 and 5.27.
They are homogeneous elements of degree γ0, . . . , γr, respectively.
Also, x0, . . . , xr−1 are units, while xr is a prime element.

Lemma 7.1. For any α ∈ Γr−1, we have pαr ∈ (Gv ⊗k κ) [x0, . . . , xr−1].

81
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Proof. By definition, pβ0 ∈ Gv for all β ∈ Γ−1. For r > 0, we may assume that
pβr−1 ∈ (Gv ⊗k κ) [x0, . . . , xr−2] for all β ∈ Γr−2, by a recurrent argument.

By Lemma 1.24, there exists a ∈ K[x] with deg(a) < mr such that Hµ(a) = pαr .
Since µ(a) = µr−1(a), this element Hµ(a) is the image of Hµr−1(a) under the canonical
homomorphism Gµr−1 → G.

By Theorem 6.4, Hµr−1(a) = xsr−1p
u
r−1Rr−1(a)(yr−1), for certain s ∈ Z≥0, u ∈ Γr−2.

Hence, the image of this element under the homomorphism Gµr−1 → G is

Hµr−1(a) 7→ xsr−1p
u
r−1Rr−1(a)(zr−1) ∈ (Gv ⊗k κ) [x0, . . . , xr−1],

because Rr−1(a)(zr−1) ∈ κ.

Theorem 7.2. The graded algebra of µ admits the following description:

G = (Gv ⊗k κ) [yr, x0, . . . , xr] = (Gv ⊗k ∆) [x0, . . . , xr],

where yr, x0, . . . , xr have degree 0, γ0, . . . , γr, respectively.
Moreover. these elements satisfy the relations

xe00 = ph00 z0, . . . , x
er−1

r−1 = p
hr−1

r−1 zr−1, xerr = phrr yr. (7.1)

Proof. Let Hµ(g) be a homogeneous element in G, for some non-zero g ∈ K[x].
Lemma 5.12 shows the existence of a ∈ K∗ such that ag has attainable µ-value. By
Theorem 6.4,

Hµ(g) = Hµ(a−1)Hµ(ag) = Hµ(a)−1 xsr p
u
r Rr(ag)(yr),

for certain s ∈ Z≥0, u ∈ Γr−1.
Since Rr(ag)(yr) belongs to ∆, Lemma 7.1 shows that Hµ(g) is a polynomial in

x0, . . . , xr with coefficients in Gv ⊗k ∆.

Let us check that (7.1) are the only relations satisfied by x0, . . . , xr as generators of G
as a (Gv ⊗k ∆)-algebra. Suppose we have a homogeneous relation∑

(m0,...,mr)∈Nr
am0,...,mr x

m0
0 · · ·xmrr = 0, am0,...,mr ∈ Gv ⊗k ∆.

By applying (7.1), we may assume that 0 ≤ mi < ei, for 1 ≤ i ≤ r.
Then, this sum cannot have two different monomials, In fact,

deg(a xm0
0 · · ·xmrr ) = deg(b xn0

0 · · ·xnrr )

=⇒ (m0 − n0)γ0 + · · ·+ (mr − nr)γr = deg(b)− deg(a) ∈ Γ.

From (mr − nr)γr ∈ Γµr−1 , we deduce mr ≡ nr (mod er), and this implies mr = nr by
our assumption on the exponents. By iterating this argument, we conclude that mi = ni
for all i.

Thus, our relation takes the form a xm0
0 · · · xmrr = 0. Since G is an integral domain, we

necessarily have a = 0.

By Lemma 6.24, the generators x0, . . . , xr do not depend on the choice of the finitely-
generated subgroup Γfg.
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If the group Γ = Γv is finitely generated, then Γµ is finitely generated too, and we
could decribe G as a polynomial ring over ∆, on indeterminates representing a Z-basis of
the group.

Actually, since K[x] is not a field, we have to distinguish those values of Γµ which are
not represented by units in G = grµ(K[x]).

These values are determined in Lemma 9.1, for an arbitrary valuation admitting key
polynomials. For our inductive valuation µ equipped with a MacLane chain of length r,
that result can be stated as follows:

Lemma 7.3. For any α ∈ Γµ, we have(
P(α)/P+(α)

)
∩ G∗ 6= ∅ ⇐⇒ α ∈ Γµr−1 .

Hence, we may use a basis of Γµr−1 to parameterize the homogeneous parts of the
graded algebra corresponding to values which admit units, and add an specific description
of the rest of homogenous parts.

Theorem 7.4. Suppose that Γ = Γfg is finitely generated. The graded algebra of µ admits
the following description:

G = κ
[
yr, p

±1
r,1 , . . . , p

±1
r,k

]
[xr] = ∆

[
p±1
r,1 , . . . , p

±1
r,k

]
[xr].

The elements yr, pr,1, . . . , pr,k are algebraically independent over κ.
The element xr is algebraic over ∆

[
p±1
r,1 , . . . , p

±1
r,k

]
, and it has minimal equation xerr =

phrr yr.

Proof. Theorem 6.4 shows that xr, yr, and
{
p±1
r,j | 1 ≤ j ≤ k

}
generate G as an κ-

algebra.
Let us prove that yr, pr,1, . . . , pr,k are algebraically independent over κ. Suppose∑

n,m1,...,mk∈Z≥0

cn,m1,...,mk y
n
r p

m1
r,1 . . . p

mk
r,k = 0, cn,m1,...,mk ∈ κ. (7.2)

and let us show that all coefficients cn,m1,...,mk vanish.
We may suppose that (7.2) is a homogeneous equation. Since deg(yr) = 0 and

deg
(
pm1
r,1 . . . p

mk
r,k

)
= m0 ιr,1 + · · ·+mk ιr,k ∈ Γr−1 = Γµr−1 ,

the vector (m1, . . . ,mk) is uniquely determined by the degree of the equation, because
ιr,1, . . . , ιr,k is a basis of Γr−1. Hence, (7.2) takes the form:

pm1
r,1 . . . p

mk
r,k

∑
n∈Z≥0

cn,m1,...,mk y
n
r = 0,

and this implies cn,m1,...,mk = 0 for all n, by Theorem 6.5.

Finally, let us show that the equation xerr = phrr yr is minimal. Suppose

ε0 + ε1 xr + · · ·+ εm x
m
r = 0, m < er, εi ∈ ∆

[
{p±1

r,j | 1 ≤ j ≤ k}
]
.
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All terms in this equation have different degree. In fact,

deg(εi x
i
r) = deg(εj x

j
r) =⇒ (i− j)γr = deg(εj)− deg(εi) ∈ Γr−1,

and this implies er | (i− j), leading to i = j.
Hence, εi x

i
r = 0, for all i, which implies εi = 0 for all i.



PART III

Defectless polynomials

over henselian fields





Chapter 8

Lifting inductive valuations to the
henselization

8.1 Henselization of a valued field

A valued field (K, v) is said to be henselian if v admits a unique extension to any algebraic
extension of K.

This condition is equivalent to the fact that (K, v) satisfies Hensel’s lemma.

Hensel’s lemma. Let f, g, h ∈ O[x] satisfy f = g h, with g, h relatively prime in k[x].
Then, there exist g1, h1 ∈ O[x] with

f = g1h1, g1 = g, h1 = h, deg(g1) = deg(g).

The completion of a valued field of rank 1 is henselian, but this is not true for valued
fields of higher rank.

However, there is a henselization of (K, v), which is a kind of minimal henselian
extension (Kh, vh), satisfying a certain universal property.

This henselization plays a crucial role in the study of valuations of rank greater than
one, analogous to the role played by the completion for valuations of rank one.

We may realize a henselization of (K, v) as a subfield of any given separable closure Ks

of K. By fixing any extension ṽ of v to Ks, we may consider the decomposition subgroup

Dṽ = {σ ∈ Gal(Ks/K) | ṽ ◦ σ = ṽ},

which is a closed subgroup of Gal(Ks/K). Then, we may define Kh ⊂ Ks to be the fixed
field of Dṽ. We consider on Kh the valuation vh obtained by restriction of ṽ.

This valued field (Kh, vh) has the following properties:

• (Kh, vh) is henselian.

• A different choice of ṽ leads to a conjugate decomposition group; hence to a K-
conjugate subfield of Ks.

• (K, v) is henselian if and only if K = Kh.
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• If (L, v′) is a henselian extension of (K, v), then there exists a unique K-embedding
ι : Kh ↪→ L such that vh is the restriction of v′ to Kh.

• vh/v is an immediate extension.

Suppose that v has rank one. The completion Kv of K with respect to the v-adic
topology is henselian. Hence, there is an embedding of valued fields Kh ⊂ Kv. Since K
is dense in Kv, we deduce that K is dense in Kh.

For valuations of higher rank this property does not hold. We shall see a concrete
example in section 8.4.

Finite extensions of K and Kh

Let F ∈ Kh[x] be a monic irreducible polynomial, and let KF = Kh[x]/(F ) be the finite
extension of Kh obtained by adjoining a root of F . Since Kh is henselian, the valuation
vh admits a unique extension w to KF . Let us denote

e(F ) = e(w/vh), f(F ) = f(w/vh).

We have the following numerical relationship:

deg(F ) = e(F )f(F )d(F ),

where d(F ) is a natural number called the defect of F .

If the characteristic of kv is zero, the defect is trivial: d(F ) = 1.

If the characteristic of kv is p > 0, the defect is a power of p.

If d(F ) = 1 we say that F is defectless.

Now, let f ∈ K[x] be a monic irreducible polynomial, and let L be the extension of
K obtained by adjoining a root of f .

Suppose f separable. Let

f = F1 · · ·Fm

be the factorization of f into a product of monic irreducible polynomials in Kh[x]. Then,
there are m extensions w1, . . . , wm of v to L, and they satisfy:

e(wi/v) = e(Fi), f(wi/v) = f(Fi), 1 ≤ i ≤ m.

In particular,
m∑
i=1

e(wi/v)f(wi/v) ≤ [L : K]. (8.1)

On the other hand, if f is purely inseparable, then v admits a unique extension to L.
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8.2 Restricting valuations on polynomial rings

Denote the set of equivalence classes of valuations on K[x] extending v by

Val(K, v).

Let L/K be a field extension and let w be a valuation on L extending v.
By Chevalley’s extension theorem [5, Thm. 3.1.1], the restriction mapping

res : Val (L,w) −→ Val(K, v), ρ 7−→ res(ρ) = ρ|K[x]

is onto.

Definition 8.1. Let ρ ∈ Val(L,w) and µ = res(ρ) ∈ Val(K, v). We say that the canonical
embedding Gµ ↪→ Gρ is a strong isomorphism if

∀F ∈ L[x], ∃ f ∈ K[x] such that deg(f) = deg(F ) and f ∼ρ F.

This property may occur only when w/v is immediate. In fact, the condition of strong
isomorphism restricted to polynomials of degree zero is equivalent to w/v immediate, by
Lemma 1.10.

In section 8.4 we shall see an example of extension ρ/µ such that w/v is immediate
and Gµ ↪→ Gρ is an isomorphism which is not strong.

Suppose that Gµ ↪→ Gρ is an isomorphism, and take φ ∈ K[x].
Then, φ is µ-irreducible if and only if it is ρ-irreducible. In fact, Hµ(φ) is prime if and

only if its image Hρ(φ) under the above isomorphism is prime.
If φ is ρ-minimal, then it is µ-minimal, but the converse implication is false.
However, if the isomorphism is strong and φ is µ-minimal, then it is ρ-minimal too.

These arguments prove the following result.

Lemma 8.2. Let ρ ∈ Val(L,w) and µ = res(ρ) ∈ Val(K, v). Suppose that the canonical
embedding Gµ ↪→ Gρ is a strong isomorphism. Then, a polynomial φ ∈ K[x] is a key
polynomial for µ if and only if it is a key polynomial for ρ.

Let us see a concrete example of strong isomorphism.

Lemma 8.3. Suppose w/v is an immediate extension. Then, the canonical embedding

Gµ−∞ ↪−→ Gµ−∞,L
is a strong isomorphism.

Proof. Any polynomial F ∈ L[x] is µ−∞,L-equivalent to a monomial ξxm, for some
ξ ∈ L. By Lemma 1.10, there exists c ∈ K such that c ∼µ−∞,L ξ. Hence, the polynomial
f = cxm ∈ K[x] satisfies f ∼µ−∞,L F .

We recall that for valuations on the polynomial ring L[x] whose values are embedded
into a common ordered group, there is partial ordering ≤ defined as:

ρ ≤ ρ′ ⇐⇒ ρ(f) ≤ ρ′(f), ∀ f ∈ L[x].

If L/K is algebraic, there are no “comparable” valuations in the fibers of the restriction
mapping.
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Lemma 8.4. Suppose L/K is an algebraic extension, and ρ, ρ′ ∈ Val(L,w) have values
embedded in a common ordered group. Then,

res(ρ) = res(ρ′), ρ ≤ ρ′ =⇒ ρ = ρ′.

Proof. Suppose that ρ < ρ′. Let F ∈ L[x] be a polynomial of minimal degree such
that ρ(F ) < ρ′(F ). Since

ρ|L = w = ρ′|L ,

the degree of F is positive, and we can suppose that F is monic.
Then, F is irreducible because ρ and ρ′ coincide on any possible factor of F of smaller

degree.
The prime ideal FL[x]∩K[x] cannot be zero, because this would lead to an embedding

of K[x] into the field L[x]/(F ), which is algebraic over K.
Hence, there is a monic irreducible polynomial f ∈ K[x] such that

FL[x] ∩K[x] = fK[x].

Let us write f = F G for some monic polynomial G ∈ L[x].
Since f has coefficients in K, we have ρ(f) = ρ′(f) by our assumptions. Hence,

ρ(f) = ρ′(f) = ρ′(F G) = ρ′(F ) + ρ′(G) > ρ(F ) + ρ(G) = ρ(f).

This contradiction shows that ρ = ρ′.

It is well known that in a fiber of the restriction mapping of an algebraic field extension
we cannot find valuations ρ, ρ′ satisfying Oρ ⊂ Oρ′ [5, Lem. 3.2.8].

Lemma 8.4 has a certain analogy with this fact. However, we are in a different context,
because the field extension L(x)/K(x) is not algebraic.

Moreover, it is easy to find examples showing that the conditions ρ ≤ ρ′ and Oρ ⊂ Oρ′
do not imply each other.

8.3 Lifting to the henselization

We are interested in the case L = Kh, w = vh. As mentioned in section 8.1, w/v is
immediate.

For simplicity, we omit the reference to the valuations v, vh, and denote the spaces of
inductive valuations and valuations on K[x] and Kh[x] extending v and vh by

Vind(K) ⊂ Val(K), Vind(Kh) ⊂ Val(Kh),

respectively.

The restriction of an inductive valuation on Kh[x] is not necessarily an inductive
valuation on K[x]. We shall see an example in section 8.4.

Nevertheless, we may extend inductive valuations on K[x] to inductive valuations on
Kh[x].
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Proposition 8.5. There is a lifting mapping

lft : Vind(K) −→ Vind
(
Kh
)
⊂ Val

(
Kh
)
, µ 7−→ µ∗ = lft(µ)

such that res ◦ lft = idVind(K). Also, any MacLane chain of an inductive valution

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ, (8.2)

determines a MacLane chain of its lift to Kh[x], with the same key polynomials φi and
values γi ∈ QΓ

µ−∞,Kh
φ0,γ0−→ µ∗0

φ0,γ0−→ · · · φr−1,γr−1−→ µ∗r−1

φr,γr−→ µ∗r = µ∗.

Moreover, the embedding Gµ ↪→ Gµ∗ is a strong isomorphism.

Proof. Let µ ∈ Vind(K), and consider a MacLane chain of µ as in (8.2).
Let us prove both statements by a recursive argument.
Suppose µ∗i−1 has been constructed, as the last valuation of a MacLane chain of length

i− 1, and satisfies:

• The restriction of µ∗i−1 to K[x] is µi−1.

• The canonical mapping Gµi−1
→ Gµ∗i−1

is a strong isomorphism.

If i = 0, we take µ∗i−1 = µ−∞,Kh . In this case, the first assumption is obvious and the
second one holds by Lemma 8.3.

By Lemma 8.2, φi is a key polynomial for µ∗i−1. Moreover, if i > 0,

φi -µi−1
φi−1 =⇒ φi -µ∗i−1

φi−1.

In fact, the element Hµi−1
(φi) does not divide Hµi−1

(φi−1) in Gµi−1
. Since Gµi−1

' Gµ∗i−1
,

the images of these elements in Gµ∗i−1
preserve this property.

Therefore, if we define
µ∗i = lft(µi) = [µ∗i−1;φi, γi],

we extend the previous MacLane chain to a MacLane chain of length i.
By the very definition of the augmented valuations, res(µ∗i ) = µi.

Finally, let us check that Gµi ↪→ Gµ∗i is a strong isomorphism. Let

F =
∑

0≤s
ξsφ

s
i ∈ Kh[x]

be the φr-expansion of some F ∈ Kh[x]. For each ξs, there exists as ∈ K[x] such that

deg(as) = deg(ξs), as ∼µ∗i−1
ξs.

Hence, f =
∑

0≤s asφ
s
i is the canonical φi-expansion of a certain polynomial f ∈ K[x],

satisfying deg(f) = deg(F ). Also,

µ∗i (f − F ) = Min0≤s{µ∗i−1(as − ξs) + sγi} > Min0≤s{µ∗i−1(as) + sγi} = µ∗i (f).

Hence, f ∼µ∗i F . An iteration of this argument proves the proposition.

The existence of this lifting has a relevant consequence.
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Theorem 8.6. All key polynomials for inductive valuations are defectless polynomials in
Kh[x].

Proof. Let µ ∈ Vind(K) be an inductive valuation, and take φ ∈ KP(µ).
By Lemma 8.2 and Proposition 8.5, φ is a key polynomial for the lift of µ to Vind(Kh).

Hence, it is irreducible in Kh[x] by Lemma 1.19.
Finally, Corollary 6.19 shows that φ is defectless.

Proposition 8.7. For every µ ∈ Vind(K) the valuation µ∗ = lft(µ) is the unique element
in Val

(
Kh
)

whose restriction to K[x] is µ.

Proof. Suppose that ρ ∈ Val
(
Kh
)

satisfies res(ρ) = µ. Let us show that µ∗ ≤ ρ.
Consider a MacLane chain of µ as in (8.2). For a non-zero F ∈ Kh[x], let

F =
∑

s0,...,sr∈N

as0,...,srφ
s0
0 · · ·φsrr , as0,...,sr ∈ Kh

be its (φ0, . . . , φr)-expansion.
In general, for b ∈ Kh, we have µ∗(b) = vh(b) = ρ(b).
Since φ0, . . . , φr have coefficients in K, we have ρ(φi) = µ∗(φi) for all i. Therefore,

ρ(F ) ≥ Min{ρ (as0,...,srφ
s0
0 · · ·φsrr )} = Min{µ∗ (as0,...,srφ

s0
0 · · ·φsrr )} = µ∗(F ).

Thus, µ∗ ≤ ρ. By Lemma 8.4, we deduce that µ∗ = ρ.

Finally, Proposition 8.5 yields a criterion to decide when the restriction of an inductive
valuation on Kh[x] is an inductive valuation on K[x].

Corollary 8.8. Let ρ be an inductive valuation on Kh[x], admitting an optimal MacLane
chain

µ−∞,Kh
F0,γ0−→ ρ0

F1,γ1−→ · · · Fr−1,γr−1−→ ρr−1
Fr,γr−→ ρr = ρ.

Then, the restriction of ρ to K[x] is an inductive valuation if and only if there exist monic
polynomials φ0, . . . , φr ∈ K[x] such that

deg(φi) = deg(Fi), ρi−1 (Fi − φi) ≥ γi, 0 ≤ i ≤ r, (8.3)

where we agree that ρ−1 = vh.

Proof. Suppose that µ = res(ρ) is inductive. Consider an optimal MacLane chain

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ · · · φs−1,γs−1−→ µs−1
φs,γs−→ µs = µ. (8.4)

By Proposition 8.5, this chain lifts to an optimal MacLane chain

µ−∞,Kh
φ0,γ0−→ µ∗0

φ1,γ1−→ · · · φs−1,γs−1−→ µ∗s−1

φs,γs−→ µ∗s = µ∗.

By Proposition 8.7, µ∗ = ρ. Now, by the unicity of optimal MacLane chains (Proposition
5.7), necessarily s = r and (8.3) holds.

Conversely, the conditions in (8.3) imply that ρ admits a MacLane chain

µ−∞,Kh
φ0,γ0−→ ρ0

φ1,γ1−→ · · · φr−1,γr−1−→ ρr−1
φr,γr−→ ρr = ρ,

by Proposition 5.7. Obviously, µ = res(ρ) coincides with the inductive valuation (8.4)
determined by all these data φi, γi.
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8.4 Example of a non-inductive valuation

Let p be a prime number and denote by ordp the p-adic valuation on Q.
Suppose that p ≡ 1 (mod 4), and let i0 ∈ Z such that ordp(i

2
0 + 1) = 1.

Consider the polynomial
φ = x2 + 1 ∈ Z[x].

Since φ splits modulo p, the valuation ordp has two extensions ν, ν ′ to the field Q(i)
obtained by adjoining to Q a root i of φ.

Both extensions ν, ν ′ are immediate over ordp. Clearly,

1 = ordp(i
2
0 + 1) = ν(i20 + 1) = ν((i0 + i)(i0 − i)) = ν(i0 + i) + ν(i0 − i),

and similarly for ν ′. We may distinguish these two extensions by

ν(i− i0) = 1, ν(i+ i0) = 0; ν ′(i− i0) = 0, ν ′(i+ i0) = 1.

Let K = Q(t), where t is an indeterminate. Let ordt be the t-adic valuation, and for
any a ∈ K∗, let the initial coefficient of a be

in(a) =
(
t− ordt(a)a

)
(0) ∈ Q∗.

Consider the following valuation of rank two on K:

v : K∗ −→ Z2
lex, a 7−→ v(a) = (ordt(a), ordp(in(a))) .

This valuation admits two extensions to the quadratic extension L = K(i):

w(ξ) = (ordt(ξ), ν(in(ξ))) , w′(ξ) = (ordt(ξ), ν
′(in(ξ))) , ∀ ξ ∈ L,

where ordt(ξ) and in(ξ) have the obvious meaning.

Fact 1. We may choose a henselization (Kh, vh) of (K, v) such that

(K, v) ⊂ (L,w) ⊂ (Kh, vh).

Let Gal(L/K) = {1, τ}, where the automorphism τ is determined by τ(i) = −i.
Clearly,

w′ = w ◦ τ, w = w′ ◦ τ.

Hence, for any extension ṽ of w to Ks, the elements in the decomposition group Dṽ restrict
to the identity on L. In other words, L ⊂ Kh.

Fact 2. K is not dense in Kh.

In fact, (Q, ordp) is dense in (Q(i), ν). Hence, by taking q ∈ Q, the values

w(i− q) = (0, ν(i− q)),

cover all elements in the subgroup {0} × Z.
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On the other hand, for arbitrary polynomials f, g ∈ Q[t] we have

ordt(i− (f/g)) ≤ 0.

This is obvious if ordt(f/g) 6= 0. In the case ordt(f/g) = 0, we have

ordt(i− (f/g)) = ordt(i− in(f/g)) = ordt(i− (f(0)/g(0))) = 0,

because i 6= f(0)/g(0) ∈ Q.
As a consequence,

{w(i− a) | a ∈ K} = Z≤0 × Z, (8.5)

so that there are no elements in K which are arbitrarily close to i.
This ends the proof of Fact 2.

Fact 3. Consider the following depth-zero valuation on Kh[x]:

ρ = µ0(x− i, γ) ∈ Vind(Kh), γ = (1, 0),

and let µ = res(ρ) ∈ V(K).
For any f ∈ K[x], with canonical φ-expansion f =

∑
0≤s asφ

s, the valuation µ acts as
follows:

µ(f) = Min {w(as(i)) + sγ | 0 ≤ s} .

We claim that
cx+ d ∼ρ ci+ d, ∀ c, d ∈ K. (8.6)

In fact, if c = 0 the statement is obvious. If c 6= 0, we may assume c = 1, Then, by (8.5),
we have

ρ((x+ d)− (i+ d)) = ρ(x− i) = γ > ρ(i+ d).

This ends the proof of the claim.

Thus, x+ i ∼ρ 2i, and this leads to

φ = (x+ i)(x− i) ∼ρ 2i(x− i). (8.7)

In particular, ρ(φ) = ρ(x− i) = γ.
Hence, the statement of Fact 3 is true for monomials. Since deg(as) ≤ 1, (8.6) shows

that
ρ(asφ

s) = ρ(as(i)) + sγ = w(as(i)) + sγ.

Therefore, we need only to show that ρ(f) = Min {ρ (asφ
s) | 0 ≤ s}.

We may drop the monomials with larger ρ-value. Thus, we may suppose that all
monomials have the same value; say ρ(asφ

s) = δ for all s.
By (8.6) and (8.7), we have

asφ
s ∼ρ as(i)(2i)s(x− i)s.

Consider the polynomial F =
∑

0≤s as(i)(2i)
s(x − i)s. All monomials have ρ-value equal

to δ. Thus, by the definition of the augmented valuation ρ, we have ρ(F ) = δ. We may
apply equation (1.3) to deduce that F ∼ρ f . Hence, ρ(f) = δ.
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This ends the proof of Fact 3.

Fact 4. res−1(µ) = {ρ}.

Suppose that ρ′ ∈ Val(Kh) satisfies res(ρ′) = µ = res(ρ). Then,

ρ′(i− i0) = w(i− i0) = (0, 1) > 0, ρ′(x+ i0) = µ(x+ i0) = w(i+ i0) = 0.

Hence, ρ′(x+ i) = ρ′(x+ i0 + (i− i0)) = 0. Since ρ′(φ) = γ, we deduce that ρ′(x− i) = γ.
This leads to ρ′ ≥ ρ, and this implies ρ′ = ρ by Lemma 8.4.

Fact 5. The embedding Gµ ↪→ Gρ is an isomorphism, but not a strong isomorphism.

Consider the following elements of degre zero in the respective graded algebras:

yρ = Hρ((x− i)/t) ∈ ∆ρ, yµ = Hµ(φ/t) ∈ ∆µ.

By Theorem 1.28, yµ and yρ are transcendental over k = Z/pZ, and

∆µ = k[yµ], ∆ρ = k[yρ].

By (8.7), the embedding Gµ ↪−→ Gρ sends

yµ 7−→ Hρ(2i) yρ = Hρ(2i0) yρ.

Since Hρ(2i0) ∈ k∗, we deduce that the canonical embedding restricts to an isomorphism
between ∆µ and ∆ρ.

Since Γv = Γµ = Γρ, the embedding is an isomorphism restricted to any homogeneous
part:

Pα(µ)/P+
α (µ) = Hµ(a)∆µ −→∼ Hρ(a)∆ρ = Pα(ρ)/P+

α (ρ),

where a is any element in K∗ with v(a) = α.

However, this is not a strong isomorphism, because there is no polynomial g ∈ K[x]
of degree one such that g ∼ρ x− i. In fact, by (8.6), g ∼ρ ξ for some ξ ∈ L. Since x− i
is ρ-minimal, it cannot be ρ-equivalent to a constant.

Fact 6. The valuation µ is not inductive, and it admits the polynomial φ = x2 + 1 as a
key polynomial of minimal degree.

The valuation µ is not inductive by the criterion of Corollary 8.8. In fact, (8.5) shows
that there is no a ∈ K such that vh((x+ a)− (x− i)) = vh(a+ i) ≥ γ.

We claim that all polynomials in K[x] of degree one are µ-units, so that µ admits no
key polynomial of degree one.

In fact, for any c, d ∈ K (8.6) shows that Hρ(cx + d) = Hρ(ci + d) is a unit in Gρ,
because ci+d ∈ L∗. Since this element is the image of Hµ(cx+d) under the isomorphism
Gµ → Gρ, we deduce that Hµ(cx+ d) is a unit in Gµ.

Also, the image of Hµ(φ) under this isomorphism is Hρ(φ), which is a prime element
in Gρ by (8.7). Hence, Hµ(φ) is a prime element in Gµ.
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On the other hand, φ is µ-minimal, because it cannot divide a non-zero homogeneous
element Hµ(a) with deg(a) < 2. In fact, such an Hµ(a) is a unit in Gµ, but Hµ(φ) is not
a unit.

This ends the proof of Fact 6.

Now, consider a kind of conjugate valuation over K, and its restriction:

ρ′ = µ0(x+ i, γ) ∈ Val(L,w), µ′ = res(ρ′) ∈ Val(K, v).

All previous facts for the pair ρ, µ, have its analogous counterpart for the pair ρ′, µ′.

• µ′(f) = Min {w(as(−i)) + sγ | 0 ≤ s}.

• res−1(µ′) = {ρ′}

• The embedding Gµ′ ↪→ Gρ′ is an isomorphism, but not a strong isomorphism.

• µ′ is not an inductive valuation, and it admits φ = x2 + 1 as a key polynomial of
minimal degree.

Therefore, this example shows that Lemma 6.20 does not hold for non-inductive val-
uations.

Fact 7. Although µ and µ′ have φ = x2 +1 as a common key polynomial, these valuations
are not comparable. Neither µ ≤ µ′ nor µ ≥ µ′.

In fact,
µ(x− i0) = w(i− i0) = 1 > 0 = w(i+ i0) = µ′(x− i0),

µ(x+ i0) = w(i+ i0) = 0 < 1 = w(i− i0) = µ′(x+ i0).



Chapter 9

Proper key polynomials and types

9.1 Proper key polynomials

Let µ ∈ V be a valuation admitting key polynomials. Let us emphasize two relevant
numerical data of µ.

The minimal degree m := m(µ) of µ is the minimal degree of a key polynomial for µ.

By Theorem 1.27, all key polynomials for µ of degree m have a constant µ-value.

The relative ramification index e := e(µ) of µ is the minimal positive integer such that
eµ(φ) belongs to Γµ,m, where φ is any key polynomial of degree m.

Example. For instance, if µ is an inductive valuation and it admits a MacLane chain of
length r as in (5.1), then m = mr and e = er.

The subgroup Γµ,m ⊂ Γµ admits an intrinsic description, as the subgroup of Γµ formed
by all values α such that there is a unit in G of degree α.

Lemma 9.1. Let µ ∈ V be a valuation with KP(µ) 6= ∅. For any α ∈ Γµ, we have(
P(α)/P+(α)

)
∩ G∗ 6= ∅ ⇐⇒ α ∈ Γµ,m,

where m is the minimal degree of a key polynomial for µ.

Proof. Let α ∈ Γµ,m, and take a ∈ K[x]m such that µ(a) = α. By Proposition 1.24,
Hµ(a) is a unit in P(α)/P+(α).

Let φ be a key polynomial of degree m, and let γ = µ(φ), so that Γµ =
〈

Γµ,m, γ
〉
.

Any α 6∈ Γµ,m can be written as

α = `γ + β, 0 < ` < e, β ∈ Γµ,m.

By the previous argument, there exists a unit z ∈ G∗ of degree β. Then, z Hµ(φ)` has
degree α, and there is no unit in P(α)/P+(α) =

(
z Hµ(φ)`

)
∆, because Hµ(φ) is a prime

element.

Notation. For any φ ∈ KP(µ) we denote by [φ]µ, or simply [φ] if the valuation µ is clear
from the context, the µ-equivalence class of φ in the set KP(µ).

97
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Let us fix a key polynomial φ0 of degree m. Proposition 1.30 shows that all key
polynomials for µ have degree multiple of m:

deg(φ) = m if φ ∈ [φ0], deg(φ) ∈ emZ if φ 6∈ [φ0]. (9.1)

Let us introduce an intrinsic distinction between key polynomials, according to their
degree.

Definition 9.2. Let µ ∈ V be a valuation, and let φ ∈ KP(µ).

We say that φ is proper if deg(φ) is a multiple of em.

Denote by KP(µ)pr ⊂ KP(µ) the set of proper key polynomials for µ.

By Proposition 1.31, all key polynomials in the class [φ] share this property. Thus, it
makes sense to talk about proper µ-equivalence classes of key polynomials.

Also, by Theorem 1.33, any prime element in G is associate to the prime element Hµ(φ)
determined by a key polynomial. Hence, it makes sense to talk about proper classes of
prime elements in G, up to units.

We may reformulate this remark in the context of maximal ideals of ∆ as well. By
Theorem 1.32, we may define a degree function:

deg : Max(∆) −→ mZ≥0, L 7−→ deg(L) = deg(φ),

where φ is any key polynomial such that R(φ) = L.
The corresponding concept of proper maximal ideal has the obvious meaning.

The following remarks are an immediate consequence of (9.1).

Corollary 9.3.

1. If e = 1 there are no improper classes in KP(µ)/∼µ.

2. If e > 1, then [φ0] is the only improper class. This class coincides with the set of all
key polynomials of degree m.

Corollary 9.4. Suppose that µ is inductive and it admits a MacLane chain of length r
as in (5.1). Then

1. If er > 1, the improper class is [φr].

2. φi ∈ KP(µi−1)pr, 1 ≤ i ≤ r.

Remark. If µ is incommensurable, then KP(µ) contains a single µ-equivalence class of
key polynomials, all of them of the same degree [23, Thm. 4.2].

Hence, if we agree that the relative ramification index of µ is e =∞, we may mimic all
definitions given so far. In coherence with Corollary 9.3, the single class of KP(µ) would
be improper.

Theorems 1.32 and 1.28 yield bijections

KP(µ)/∼µ −→ Max(∆) −→ P(κ),
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where P(κ) is the set of monic irreducible polynomials with coefficients in κ.

The first bijection is canonical but the second one may depend on the choice of the pair
φ0, u, leading to a different Hauptmodul ξ, generating ∆ as a κ-algebra, and a different
operator R = Rφ0,u.

By Proposition 1.30, the composition of the above bijections maps:

[φ] 7−→

{
y, if [φ] = [φ0],

R(φ)(y), if [φ] 6= [φ0].
(9.2)

Let us give still another characterization of properness, which follows immediately
from Corollary 9.3.

Corollary 9.5. For any φ ∈ KP(µ), the following conditions are equivalent.

(1) φ is improper.

(2) e > 1 and y is the polynomial associated with [φ] by the bijection (9.2).

(3) e > 1 and R(φ) = 1.

Corollary 9.6. Suppose that µ is inductive. Then, a key polynomial φ ∈ KP(µ) is proper
if and only if there exists a MacLane chain of µ such that φ 6∼µ φr, where r is the length
of the chain.

Proof. Suppose that µ admits a MacLane chain of length r such that φ 6∼µ φr. If
er = 1 then all key polynomials are proper. If er > 1, then φ is proper too, because the
improper class is [φr], as shown in Corollary 9.4.

Conversely, suppose that φ is proper. Consider any MacLane chain of µ, and let r be
its length. We know that m = mr.

If e > 1, then Corollary 9.4 shows that the improper class is [φr]. Hence, φ 6∈ [φr].

Suppose that e = 1, so that Γµ = Γµ,m. If φ ∼µ φr, we may take a ∈ K[x]m with
µ(a) = µ(φr). By Proposition 5.7, we may replace φr by φ∗r = φr + a as a key polynomial
for µr−1, and we get another MacLane chain of µ for which φ∗r 6∼µ φ.

Definition 9.7. We say that f ∈ K[x] is µ-proper if Hµ(f) is not divided by the improper
class of prime elements in G.

The next result is an immediate consequence of Corollary 9.3.

Corollary 9.8. If e = 1 there are no improper polynomials.

If e > 1, then f ∈ K[x] is improper if and only if sµ,φ0(f) > 0, where [φ0] is the
improper class.

Lemma 9.9. If at least one of the polynomials g, h ∈ K[x] is µ-proper, then

R(gh) = R(g)R(h).



100 CHAPTER 9. PROPER KEY POLYNOMIALS AND TYPES

Proof. Let us denote s = sµ,φ0 for simplicity. By Lemma 1.29, R(gh) = R(g)R(h) is
equivalent to the following equality, up to factors in κ∗:

yds(gh)/eeR(gh) = yds(g)/eeR(g)yds(h)/eeR(h).

By Lemmas 3.8 and 1.29, s(gh) = s(g) + s(h) and R(gh) = R(g)R(h). Thus, we want to
show that

d(s(g) + s(h))/ee = ds(g)/ee+ ds(h)/ee.

If e = 1 this equality is obvious. If e > 1 it holds too, because one of the two polynomials
is µ-proper, so that either s(g) = 0, or s(h) = 0, by Corollary 9.8.

Proposition 9.10. Let φ ∈ KP(µ) and L = R(φ) ∈ Max(∆). For any non-zero f ∈
K[x]:

ordL(R(f)) =

{
sµ,φ(f), if L is proper,

dsµ,φ(f)/ee, if L is improper.

where ordL(R(f)) is the largest non-negative integer n such that Ln | R(f) in ∆.

Proof. Let P ⊂ KP(µ) be a set of representatives of key polynomials under µ-
equivalence. If we apply R to both terms of the factorization (1.8), Lemma 9.9 shows
that:

R(f) = R
(∏

φ∈P
φaφ
)

=
∏

φ∈P
R(φaφ), aφ = sµ,φ(f).

For all proper φ ∈ P we have R(φaφ) = R(φ)aφ by Lemma 9.9.

Thus, R(φ) divides R(f) with exponent aφ.

For the unique improper φ0 ∈ P (if e > 1), we have R(φ0) = 1, and Lemma 1.29 shows
that

R(φ) = ξ∆, R(φaφ) = ξdaφ/ee∆ = R(φ)daφ/ee.

Thus, R(φ) divides R(f) with exponent daφ/ee.

Corollary 9.11. Let φ be a proper key polynomial for µ such that φ 6∼µ φ0. Then,
R(φ) ∈ κ[y] is a monic irreducible polynomial, and

ordR(φ) (R(f)) = sµ,φ(f), ∀ f ∈ K[x].

Proof. Let us denote ψ = R(φ) ∈ κ[y] and L = R(φ) ∈ Max (∆).

By Proposition 1.30, ψ is a monic irreducible polynomial, ψ 6= y, and L = ψ(ξ)∆.

On the other hand, R(f) = ξds(f)/eeR(f)(ξ)∆, by Lemma 1.29. Since ψ 6= y, Theorem
1.28 shows that ordψ(R(f)) = ordL(R(f)). Since L is proper, ordL(R(f)) = sµ,φ(f) by
Proposition 9.10.
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9.2 Types

A type t is a pair (µ,L) belonging to the set

T =
{

(µ,L) | µ ∈ Vind,L ∈ Max(∆µ), L proper
}
. (9.3)

By Theorem 1.32, a proper maximal ideal L of ∆µ corresponds to a proper equivalence
class of key polynomials for µ. These key polynomials are called representatives of the
type t = (µ,L).

We denote the set of all representatives of a type t by

Rep(t) = {φ ∈ KP(µ) | Rµ(φ) = L} ⊂ K[x].

Any type t ∈ T determines a mapping

ordt : K[x] −→ N, f 7−→ ordL(Rµ(f)).

By Proposition 9.10,

ordt(f) = sµ,φ(f), ∀φ ∈ Rep(t).

Our aim in this section is to show that any of these two objects, Rep(t) or ordt,
determine the type t.

Theorem 9.12. For t = (µ,L), t∗ = (µ∗,L∗) ∈ T, the following conditions are equiva-
lent.

(1) t = t∗.

(2) ordt = ordt∗.

(3) Rep(t) = Rep(t∗).

Proof. It is clear that (1) implies (2). Let us show that (2) implies (3).
Take φ ∈ Rep(t); that is, φ ∈ KP(µ) and Rµ(φ) = L. Since ordt = ordt∗ , Proposition

9.10 shows that
1 = ordL(Rµ(φ)) = ordL∗(Rµ∗(φ)) = sµ∗,φ∗(φ), (9.4)

where φ∗ is any representative of t∗. Thus, φ∗ |µ∗ φ. Since φ∗ is µ∗-minimal, this implies
deg(φ) ≥ deg(φ∗). By the symmetry of the argument, we deduce that deg(φ∗) = deg(φ).
Now, Lemma 1.18 shows that φ is a key polynomial for µ∗.

Therefore, Rµ∗(φ) is a maximal ideal of ∆µ∗ . By (9.4), L∗ | Rµ∗(φ), so that Rµ∗(φ) ⊂
L∗, leading to Rµ∗(φ) = L∗. Thus, φ is a representative of t∗.

This shows that Rep(t) ⊂ Rep(t∗). By the symmetry of the argument, equality holds.

Finally, let us prove that (3) implies (1). We need only to show that µ = µ∗, because
then L = Rµ(φ) = Rµ∗(φ) = L∗ for any φ ∈ Rep(t) = Rep(t∗).

Suppose µ 6= µ∗, and let us show that this leads to Rep(t) 6= Rep(t∗).
Take any φ ∈ Rep(t). Since φ ∈ KP(µ) ∩KP(µ∗), Lemma 6.20 shows that

µ∗ = [µ; φ, γ], γ = µ∗(φ) > µ(φ),
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after eventually exchanging µ and µ∗.
If e(µ∗) > 1, Corollary 9.3 would imply that [φ]µ∗ is the improper class, against our

assumption that L∗ is proper. Therefore e(µ∗) = 1, and this implies that γ = µ∗(φ)
belongs to Γµ. By Lemma 2.7, Γµ = Γµ,deg(φ); thus, there exists a ∈ K[x]deg(φ) such that
µ(a) = γ > µ(φ). Hence,

φ+ a ∼µ φ =⇒ φ+ a ∈ Rep(t), φ+ a 6∼µ∗ φ =⇒ φ+ a 6∈ Rep(t∗).

Thus, Rep(t) 6= Rep(t∗).

Let us emphasize that properness of the maximal ideal L is an essential condition in
the definition of types. If this condition were dropped, there would be different types with
the same sets of representatives.

Let us see an example. Suppose that Γ = Z and consider the following valuations of
depth zero:

µ = µ0(x, 0), µ∗ = µ0(x, 1/2).

Clearly,

[x]µ = {x+ a | a ∈ K, v(a) > 0} , [x]µ∗ = {x+ a | a ∈ K, v(a) > 1/2} .

Therefore, [x]µ = [x]µ∗ , while µ 6= µ∗.

Computational representation of types

From a computational perspective, a type t = (µ,L) is represented as follows.

• µ is represented by a MacLane chain.

• L is represented by a monic irreducible polynomial ψ ∈ kr[y], ψ 6= y.

Here r is the length of the MacLane chain. The data of the chain provide an explicit
isomorphism kr[y] ' ∆. Thus, a monic irreducible polynomial ψ ∈ kr[y] determines a
maximal ideal L ∈ Max(∆).

The properness of L is guaranteed by the condition ψ 6= y.



Chapter 10

Approaching defectless polynomials
by key polynomials

In this chapter, we assume that (K, v) is a henselian field.

We still denote by v the canonical extension

v : K −→ QΓ ∪ {∞}

of v to a valuation on K.

Let P = P(K) be the set of all monic irreducible polynomials in K[x]. We say that an
element in P is a prime polynomial.

In this chapter, we study how far can we approximate a given prime polynomial
F ∈ K[x], by key polynomials of valuations on K[x].

This problem distinguishes two phases. In section 10.1, we show that for any key
polynomial φ of a valuation µ ∈ V, the condition

φ |µ F (10.1)

implies that Rµ(F ) is a power of the maximal ideal Rµ(φ) in ∆µ.
This fact leads to a vast generalization of Hensel’s lemma (Theorem 10.7).

In this way, by constructing (via the augmentation process) larger valuations admitting
key polynomials for which (10.1) holds, we discover several invariants of F . Simultane-
ously, the key polynomials satisfying (10.1) are better approximations to F , in the sense
that the resultant Res(F, φ) has a larger v-value.

It has to be said that the degree of φ may be lower than the degree of F .

In a second phase, developed in section 10.4, we must determine under what conditions
this approximation process is able to reach a valuation µ admitting F as a key polynomial.

Both phases are inspired in a pioneer work by Okutsu [24], who showed how to con-
trol the quality of the approximations when K is the completion of a discrete rank one
valuation v. In this classical case, this process converges for any prime polynomial, and
all involved valuations are inductive.

103
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The connection of Okutsu’s approach with inductive valuations was found in [7]. Fi-
nally, still restricted to discrete rank one valuations, in the paper [6] the main result of
Okutsu was reinterpreted as the existence of a canonical bijection

M −→ P/ ≈

between a certain MacLane space and the quotient of the set P of prime polynomials
under certain Okutsu equivalence ≈.

For both phases, we follow closely the approach of [6]. The generalisation of these
ideas to the case of a general valuation v is easy, but it has a crucial limitation. The
second phase is only possible for defectless polynomials.

The extension of these ideas to arbitrary prime polynomials would require the use of
continuous MacLane chains and their limit augmentations considered by Vaquié in [30].
We hope to be able to deal with the general case in a future work.

10.1 Prime polynomials vs key polynomials

Let F ∈ P be a prime polynomial and fix θ ∈ K a root of F . Denote

• KF = K(θ) the finite extension of K generated by θ.

• OF the valuation ring of the unique extension of v to KF .

• mF the maximal ideal of OF .

• kF = OF/mF the residue class field.

Lemma 10.1. Let F,G ∈ P be two prime polynomials, and let θF , θG ∈ K be roots of
F,G, respectively. Then,

v(F (θG))/ deg(F ) = v(G(θF ))/ deg(G).

Proof. By the henselian property, the value v(F (θG)) does not depend on the choice
of the root θG; hence,

deg(G)v(F (θG)) = v(Res(F,G)) = deg(F )v(G(θF )),

because Res(F,G) =
∏

θF∈Z(F ) G(θF ) = ±
∏

θG∈Z(G) F (θG), where Z(F ) is the multiset of

roots of F in K, with due count of multiplicities if F is inseparable.

In this section, we look for properties of the prime polynomial F derived from the
existence of a valuation µ ∈ V admitting a key polynomial φ such that φ |µ F .

Theorem 10.2. Let F ∈ P be a prime polynomial, and let θ ∈ K be a root of F . Let
φ ∈ K[x] be a key polynomial for a valuation µ ∈ V. Then,

φ |µ F ⇐⇒ v(φ(θ)) > µ(φ).

Moreover, if this condition holds, then:
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(1) Either F = φ, or the Newton polygon Nµ,φ(F ) is one-sided of slope −v(φ(θ)).

(2) The leading monomial of the φ-expansion of F is φ`, where ` = `(Nµ,φ(F )).

(3) F ∼µ φ`. In particular, Rµ(F ) is a power of the maximal ideal Rµ(φ) in ∆µ.

Proof. If F = φ all statements of the theorem are trivial. Assume F 6= φ, and let
α ∈ K be a root of φ.

If φ -µ F , then µ(F ) = v(F (α)) by Proposition 1.21. Thus, Theorem 1.27 and Lemma
10.1 show that

µ(φ) ≥ µ(F ) deg φ/ degF = v(F (α)) deg φ/ degF = v(φ(θ)).

If φ |µ F , let g(x) =
∑k

j=0 bjx
j ∈ K[x] be the minimal polynomial of φ(θ) over K. All

roots of g(x) in K have v-value equal to γ := v(φ(θ)); hence,

v(b0) = kγ, v(bj) ≥ (k − j)γ, 1 ≤ j < k, v(bk) = 0. (10.2)

Consider the polynomial G =
∑k

j=0 bjφ
j ∈ K[x]. The conditions in (10.2) imply that

Nµ,φ(G) is one-sided of slope −γ. Since G(θ) = 0, the polynomial F divides G and
Theorem 3.10 shows that

N pp

µ,φ(G) = N pp

µ,φ(F ) +N pp

µ,φ(G/F ). (10.3)

By Lemma 3.6, `(N pp

µ,φ(F )) = sµ,φ(F ) > 0. Hence, N pp

µ,φ(G) has positive length too. By
the definition of the principal polygon this means that γ > µ(φ) (see section 3.2).

On the other hand, since N pp

µ,φ(G) is one-sided of slope −γ, (10.3) shows that Nµ,φ(F )
is one-sided of slope −γ too.

This proves that φ |µ F if and only if γ > µ(φ), and that (1) holds in this case.

Figure 10.1: Newton polygon Nµ,φ(F ) of a prime polynomial F such that φ |µ F . The
parameter γ is equal to v(φ(θ)), where θ is a root of F

•

•HHH
HHH

HHH
HHH

µ(a0) = `γ

0 `

slope −γ

Consider the φ-expansion F =
∑`

s=0 asφ
s. By Lemma 10.1,

v(a0(α)) = v(F (α)) = v(φ(θ)) deg(F )/ deg(φ) = γ deg(F )/ deg(φ).

Also, since deg(a0) < deg(φ), Proposition 1.21 shows that µ(a0) = v(a0(α)). Therefore,
from the fact that Nµ,φ(F ) is one-sided of slope −γ we deduce:

µ(a`) + `γ = µ(a0) = v(a0(α)) = γ
deg(F )

deg(φ)



106 CHAPTER 10. APPROACHING DEFECTLESS POLYNOMIALS

= γ
deg(a`) + ` deg(φ)

deg(φ)
= γ

(
deg(a`)

deg(φ)
+ `

)
.

If deg(a`) > 0, then a` would be a monic polynomial contradicting Theorem 1.27:

µ(a`)/ deg(a`) = γ/ deg(φ) > µ(φ)/ deg(φ).

Hence, a` = 1, so that the leading monomial of the φ-expansion of F is φ`.

Since γ > µ(φ), Remarks 3.1 and 3.4 show that µ(φ`) < µ(asφ
s) for all s < `. Thus,

F ∼µ φ`. The statement about Rµ(F ) follows from Proposition 9.10.

We may think of φ as a kind of approximation to F . From any such approximation,
it is possible to construct a sequence of approximations with a strictly increasing value of
v(φ(θ)), which is a kind of measure of the quality of the approximation.

Corollary 10.3. With the above notation, suppose that φ |µ F and φ 6= F . Let µ′ =
[µ; φ, v(φ(θ))] and let κ′ be the algebraic closure of k in ∆µ′. Then,

(1) There is a unique µ′-equivalence class of key polynomials φ′ ∈ KP(µ′) such that
φ′ |µ′ F . This class [φ′]µ′ is proper, and v(φ′(θ)) > v(φ(θ)).

(2) Rµ′(F ) ∈ κ′[y] is the power of a monic irreducible polynomial ψ ∈ κ′[y].

(3) Let e′ be the relative ramification index of µ′. That is, e′ is the least positive integer
such that e′µ′(φ) = e′v(φ(θ)) belongs to Γµ′,deg(φ) = Γµ,deg(φ). Then,

e(φ′) = e(φ) e′, f(φ′) = f(φ) deg(ψ).

Proof. We fix φ as a key polynomial for µ′ of minimal degree, and we take any
u ∈ K[x]deg(φ) such that µ′(u) = µ′(φe

′
). Consider the residual polynomial operator Rµ′ ,

which depends on the choice of the pair φ, u (see section 1.7).

By Theorem 10.2, sµ′,φ(F ) = 0 and s′µ′,φ(F ) = `. Hence, Lemma 1.29 shows that

deg(Rµ′(F )) = `/e′ > 0.

Let ψ be a monic irreducible factor ofRµ′(F ) in κ′[y]. By Theorems 1.32 and 1.28, there
exists a unique µ′-equivalence class of key polynomials φ′ ∈ KP(µ′) such that Rµ′(φ

′) = ψ.
Since Rµ′(φ) = 1 and Rµ′(φ

′) = ψ 6= 1, Proposition 1.31 shows that φ′ 6∼µ′ φ. By
Corollary 9.3 the class [φ′]µ′ is proper.

By Corollary 9.11, sµ′,φ′(F ) = ordψ(Rµ′(F )) > 0. Thus, φ′ |µ′ F .
By using Theorems 10.2 and 1.27, we deduce

v(φ′(θ)) > µ′(φ′) =
deg(φ′)

deg(φ)
µ′(φ) ≥ µ′(φ) = v(φ(θ)).

Also, F ∼µ′ (φ′)`
′

by Theorem 10.2, where `′ is uniquely determined by

` deg(φ) = deg(F ) = `′ deg(φ′).
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By the unique factorization in Gµ′ (Theorem 1.33), the class [φ′]µ′ is unique.
By Lemma 1.29, Rµ′(F ) = Rµ′(φ

′)`
′
= ψ`

′
. This proves (1) and (2).

Let us prove (3). By Proposition 1.21,

Γvφ = Γµ,deg(φ), Γvφ′ = Γµ′,deg(φ′).

On the other hand, Γµ′,deg(φ′) = Γµ′ by Lemma 2.7. Therefore

e′ =
(
Γµ′ : Γµ′,deg(φ)

)
=
(
Γµ′,deg(φ′) : Γµ,deg(φ)

)
=
(

Γv′φ : Γvφ

)
.

This proves e(φ′) = e(φ) e′.
Finally, the valuation µ′′ = [µ′; φ′, v(φ′(θ))] admits φ′ as a key polynomial of minimal

degree. Let κ′′ be the algebraic closure of k inside ∆µ′′ . Proposition 1.25 shows that

κ′ ' kφ, κ′′ ' kφ′ .

Also, κ′′ is the image of the canonical homomorphism ∆µ′ → ∆µ′′ , and this determines
an embedding κ′ ↪→ κ′′.

Now, the proof of Corollary 6.18 can be mimicked in our situation, and shows that

[κ′′ : κ] = deg(Rµ′(φ
′)) = deg(ψ).

This ends the proof of (3).

The iteration of this procedure yields a MacLane chain based on the initial valuation
µ, with strictly better approximations:

µ
φ,γ−→ µ′

φ′,γ′−→ µ′′
φ′′,γ′′−→ · · · , v(φ(θ)) < v(φ′(θ)) < v(φ′′(θ)) < · · ·

We emphasize that the initial key polynomial φ is not necessarily proper.
We say that this process converges to F if after a finite number of steps we reach a

valuation µ such that F is a key polynomial for µ. Since key polynomials are minimal,
they all have deg(φ) ≤ deg(F ). By Lemma 1.18, the process converges if and only if we
reach a key polynomial with deg(φ) = deg(F ).

Going in the opposite direction, if µ is an inductive valuation, then the condition
φ |µ F implies analogous properties of F with respect to the intermediate valuations of
any MacLane chain of µ.

Corollary 10.4. With the above notation, suppose that φ |µ F and µ admits a MacLane
chain

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr = µ.

Then, if we agree that µ−1 = µ−∞, we have

φi |µi−1
F, 0 ≤ i ≤ r; v(φi(θ)) = γi, 0 ≤ i < r. (10.4)

Moreover, if φ 6∼µ φr, then v(φr(θ)) = γr as well.
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Proof. Suppose φ 6∼µ φr. Then, Proposition 6.16 shows that deg(Rr(φ)) > 0.
Since F ∼µ φ`, we have Rr(F ) = Rr(φ)` by Corollaries 6.7 and 6.8. Then, by Lemma

6.3,
`(N pp

r (F )) ≥ `(Sγr(F )) = er deg(Rr(F )) > 0.

This implies that φr |µr−1 F by Lemma 3.6.
Since F 6= φr (because Rr(φr) = 1), Theorem 10.2 shows that Nr(F ) is one-sided of

slope −v(φr(θ)). On the other hand, the slope of this one-sided polygon must be −γr,
because otherwise Rr(F ) would be a constant. Therefore, v(φr(θ)) = γr.

Suppose φ ∼µ φr. Then, φr |µ F and Theorem 10.2 shows that

µr−1(φr) < γr = µ(φr) < v(φr(θ)).

Hence, φr |µr−1 F , again by Theorem 10.2.

Finally, since in a MacLane chain φi 6∼µi−1
φi−1 for all i, the iteration of these argu-

ments ends the proof of (10.4).

Let us remark that, although µ−∞ is incommensurable, it satisfies Theorem 10.2 too.
Actually, we have

φ0 |µ−∞ F, ∀φ0 ∈ KP(µ−∞), ∀F ∈ P,

because φ0 ∼µ−∞ x and F ∼µ−∞ xdeg(F ). Also,

µ−∞(φ0) = (−1, 0) < (0, v(φ0(θ))), ∀φ0 ∈ KP(µ−∞), ∀F ∈ P,

where θ is a root of F in K.

10.2 Semivaluation of a prime polynomial

For a given prime polynomial F ∈ P, what valuations µ admit key polynomials φ such
that φ |µ F?

In order to address this question, let us consider the semivaluation vF ∈ V determined
as follows:

vF : K[x] −� KF
v−→ QΓ ∪ {∞}.

The support of vF is the prime ideal FK[x]. Clearly,

vF (f) = v(f(θ)), ∀ f ∈ K[x].

Now, we are able to answer the posed question for inductive valuations.

Theorem 10.5. Let F ∈ P be a prime polynomial. For any inductive valuation µ ∈ Vind

we have
∃φ ∈ KP(µ) such that φ |µ F ⇐⇒ µ < vF .

In this case, for all non-zero f ∈ K[x],

µ(f) = vF (f) ⇐⇒ φ -µ f. (10.5)
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Proof. If µ < vF , we may consider φ ∈ K[x] monic with minimal degree among all
polynomials satisfying µ(φ) < vF (φ). By Lemma 2.9, φ is a key polynomial for µ, and
condition (10.5) is satisfied. In particular, φ |µ F .

Conversely, suppose that φ |µ F for some φ ∈ KP(µ). Take a MacLane chain of µ of
length r, as in (5.1).

Let us prove simultaneously the inequality µ < vF and the equivalence (10.5), by
induction on the length r of the MacLane chain of µ.

Suppose that, either r = 0, or r > 0 and both statements hold for all valuations
admitting MacLane chains of lower length.

If φ ∼µ φr, then φr |µ F and µ(φr) < v(φr(θ)) by Theorem 10.2.
If φ 6∼µ φr, then µ(φr) = v(φr(θ)) by Corollary 10.4. In any case,

µ(φr) ≤ vF (φr).

On the other hand, take a ∈ K[x]deg(φr). If r = 0, then a ∈ K and µ(a) = v(a) = vF (a).
If r > 0, the condition φr -µr−1 a implies by the induction hypothesis:

µ(a) = µr−1(a) = vF (a).

Therefore, µ < vF , because for any non-zero f ∈ K[x] with φr-expansion f =∑
0≤s asφ

s
r, we have

vF (f) ≥ Min {vF (asφ
s
r) | 0 ≤ s} ≥ Min {µ (asφ

s
r) | 0 ≤ s} = µ(f).

Finally, let φ′ be a monic polynomial of minimal degree satisfying µ(φ′) < vF (φ′). By
Proposition 2.9, φ′ is a key polynomial for µ satisfying (10.5). In particular, φ′ |µ φ, and
this implies φ′ ∼µ φ by Proposition 1.31. Hence, φ satisfies (10.5) too.

Remark. Theorem 10.5 provides a practical device for the computation of vF .
Given f ∈ K[x], we need only to find a pair (µ, φ) such that φ |µ F and φ -µ f , leading

to v(f(θ)) = µ(f).
This yields a very efficient routine for the computation of the valuations attached to

prime ideals in number fields or places of function fields [10, 11].

Corollary 10.6. Let µ be an inductive valuation, and φ a key polynomial for µ. Let
F ∈ K[x] be a prime polynomial such that φ |µ F . Then,

(1) For any g ∈ K[x] with deg(g) < deg(φ), we have vφ(g) = µ(g) = vF (g).

In particular, e(φ) | e(F ).

(2) The residual field kφ is contained in the residual field kF , so that f(φ) | f(F ).

Proof. If g ∈ K[x]deg(φ), then φ -µ g and

v(g(α)) = µ(g) = v(g(θ)),

by Proposition 1.21 and Theorem 10.5, respectively. This proves (1).
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Let us prove (2). By Theorem 10.5, µ < vF . Hence, we have a canonical ring homo-
morphism

∆µ −→ kF , g + P+
0 (µ) 7−→ g(θ) + mF .

The kernel LF of this homomorphism is a non-zero prime ideal of ∆µ. Since this ring is
a PID, LF is a maximal ideal.

Clearly, Rµ(F ) ⊂ LF . Hence, Theorem 10.2 shows that, Rµ(F ) = Rµ(φ)a ⊂ LF for a
certain positive integer a. Thus, Rµ(φ) = LF , because both are maximal ideals.

Therefore, kφ ' ∆µ/Rµ(φ) = ∆µ/LF , which is isomorphic to a subfield of kF .

10.3 A generalization of Hensel’s lemma

We now deduce from Theorem 10.2 the fundamental result concerning factorization of
polynomials over K. It has to be considered as a vast generalization of Hensel’s lemma.

Leu us introduce some useful notation.

Notation. Let φ be a key polynomial for the valuation µ ∈ V.
For each γ ∈ QΓ such that γ > µ(φ), we denote

• µγ := [µ;φ, γ].

• eγ the relative ramification index of µγ.

That is, the least positive integer such that eγγ ∈ Γµγ ,deg(φ) = Γµ,deg(φ).

• κγ the algebraic closure of k in ∆µγ .

• Rµγ : K[x] −→ κγ[y] the residual polynomial operator determined by the pair φ, u,
where u ∈ K[x]deg(φ) is any small polynomial with µ(u) = eγµγ(φ) = eγγ.

Theorem 10.7. Let φ be a key polynomial for the valuation µ ∈ V. Let f ∈ K[x] be a
monic polynomial.

For each slope −γ of the principal Newton polygon N pp

µ,φ(f), let

Rµγ (f) =
∏

ψ
ψaψ ∈ κγ[y],

be the factorization of Rµγ (f) into a product of pairwise different monic irreducible poly-
nomials ψ ∈ κγ[y].

Then, f factorizes in K[x] into a product of monic polynomials:

f = f0 φ
ordφ(f)

∏
(γ,ψ)

fγ,ψ,

where −γ runs on the slopes of N pp

µ,φ(f) and, for each γ, ψ runs on the monic irreducible
factors of Rµγ (f) in κγ[y].

If we denote ` = `
(
N pp

µ,φ(f)
)
, the degrees of the factors are given by

deg(f0) = deg(f)− ` deg(φ), deg(fγ,ψ) = eγaψ deg(ψ) deg(φ).

Moreover, for any pair (γ, ψ), it holds:
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(1) Nµ,φ(fγ,ψ) is one-sided of length eγaψ deg(ψ) and slope −γ.

(2) For all roots θ ∈ K of fγ,ψ, we have v(φ(θ)) = γ.

(3) If aψ = 1, then fγ,ψ is irreducible.

Proof. Let f = F1 · · ·Ft be the factorization of f into a product of prime polynomials
in K[x]. We are not assuming that f is separabe, so that these irreducible factors are not
necessarily pairwise different.

The idea is that we may group the factors F1, . . . , Ft according to some of their prop-
erties with respect to the pair µ, φ. The crucial point is that we are able to identify the
degrees of the resulting factors of f in terms of computable discrete data.

• The factor f0 is the product of all Fj satisfying φ -µ Fj.

• The factor φordφ(f) is the product of all Fj equal to φ.

• The factor fγ,ψ is the product of all Fj such that φ |µ Fj, Nµ,φ(Fj) is one-sided of
slope −γ and Rµγ (Fj) is a power of ψ.

By Lemma 3.6 we have

`j := `
(
N pp

µ,φ(Fj)
)

= sµ,φ(Fj), 1 ≤ j ≤ t,

so that `j = 0 if φ -µ Fj, and `j = 1 if Fj = φ. By Theorem 10.2,

φ |µ Fj =⇒ deg(Fj) = `j deg(φ).

By Theorem 3.10, N pp

µ,φ(f) =
∑t

j=1N
pp

µ,φ(Fj), so that ` =
∑t

j=1 `j. Hence,

deg(f)− deg(f0) =
∑
φ|µFj

deg(Fj) =
∑
φ|µFj

`j deg(φ) =
t∑

j=1

`j deg(φ) = ` deg(φ).

By Theorem 10.2 and Corollary 10.3, for the factors Fj 6= φ such that φ |µ Fj, the
Newton polygon Nµ,φ(Fj) is one-sided of a certain slope −γ, and Rµγ (Fj) is a power of
some irreducible ψ ∈ κγ[y]. By Theorem 3.10, −γ is one of the slopes of N pp

µ,φ(f), and by
Lemma 1.29, ψ is one of the irreducible factors of Rµγ (f).

Therefore, every irreducible factor Fj such that Fj 6= φ and φ |µ Fj falls into one (and
only one) of the factors fγ,ψ.

Also, for any fγ,ψ, items (1), (2) follow from Theorems 3.10 and 10.2, respectively.
Finally, for any pair γ, ψ, Lemma 1.29 shows that

Rµγ (fγ,ψ) =
∏

j
Rµγ (Fj),

for Fj running on all irreducible factor of fγ,ψ. In particular,

aψ =
∑

j
ordψ Rµγ (Fj).

Hence, if aψ = 1, there can be only one such irreducible factor.

If the valuation µ is inductive, we obtain more information about the irreducible
factors of f .



112 CHAPTER 10. APPROACHING DEFECTLESS POLYNOMIALS

Corollary 10.8. With the above notation, suppose that µ is an inductive valuation. Then,
for any pair γ, ψ we have:

(1) All irreducible factors Fj of fγ,ψ satisfy

e(φ) eγ | e(Fj), f(φ) deg(ψ) | f(Fj).

(2) If aψ = 1, then F = fγ,ψ is a defectless polynomial with

e(F ) = e(φ) eγ, f(F ) = f(φ) deg(ψ).

Proof. By Corollary 10.3, there exists φγ key polynomial for µγ such that

Rµγ (φγ) = ψ, φγ |µγ Fj,

for all prime factors Fj of fγ,ψ. Now, by Corollaries 10.3 and 10.6, we have

e(φ) eγ = e(φγ) | e(Fj), f(φ) deg(ψ) = f(φγ) | f(Fj).

This proves (1).

Suppose aψ = 1. By Theorem 10.7, F = fγ,ψ is irreducible and satisfies:

Nµγ ,φ(F ) = Nµ,φ(F ) is one-sided of slope − γ,
Rµγ (F ) = ψ, deg(F ) = eγ deg(ψ) deg(φ).

By Proposition 1.30, F is a key polynomial for µγ. By Theorem 8.6, F is a defectless
polynomial. In particular,

e(F )f(F ) = deg(F ) = eγ deg(ψ) deg(φ) = eγ deg(ψ)e(φ)f(φ).

Therefore, the equalities e(F ) = e(φ) eγ, f(F ) = f(φ) deg(ψ) follow from item (1).

Remark. These results, with a slightly different formulation, have been recently found
by Jakhr-Khanduja [14]. The authors use the technique of lifting of residual polynomials
instead of the residual polynomial operator.

Theorem 10.7 and Corollary 10.8 are valid for an arbitrary valued field (K, v), as long
as the valuation µ is inductive. In this case, µ may be lifted to the henselization Kh, and
φ is still a key polynomial of the lifted valuation (see section 8.3).

In this way, these results may be used to detect information about the prime factors
in Kh[x] of some given f ∈ K[x]. Actually, they constitute the key stone to design an
OM algorithm of polynomial factorization over Kh[x] of polynomials in K[x], following
the lines of the classical OM algorithm for discrete rank one valuations [9, 8, 10, 11].

However, as we shall see in the next section, this algorithm only works for polynomials
f ∈ K[x] all whose prime factors in Kh[x] are defectless.
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10.4 Okutsu frames of defectless polynomials

We keep dealing with a prime polynomial F ∈ P and a fixed root θ ∈ K of F .
For any integer 1 < m ≤ deg(F ), consider the set of values

Λm(F ) =

{
v(g(θ))

deg(g)

∣∣∣ g ∈ K[x] monic , 0 < deg(g) < m

}
⊂ QΓ.

Definition 10.9. Suppose that n = deg(F ) > 1 and Λn(F ) contains a maximal value.
Denote

C(F ) := Max (Λn(F )) .

We say that φ, F is a distinguished pair of polynomials if φ ∈ K[x] is a monic poly-
nomial of minimal degree among the monic polynomials satisfying

0 < deg(φ) < deg(F ), v(φ(θ))/ deg(φ) = C(F ).

Definition 10.10. We say that F is an Okutsu polynomial if either deg(F ) = 1, or all
sets Λm(F ), for 1 < m ≤ deg(F ), contain a maximal element.

Suppose that F is an Okutsu polynomial, and φ, F is a distinguished pair.
If deg(φ) > 1, then we may consider a monic polynomial φ′ ∈ K[x] of minimal degree

such that

0 < deg(φ′) < deg(φ),
v(φ′(θ))

deg(φ′)
= C ′(F ) := Max

(
Λdeg(φ)(F )

)
.

Note that, by the minimality of deg(φ), we necessarily have C ′(F ) < C(F ).
An iteration of this argument leads to a finite family

φ0, φ1, . . . , φr, φr+1 = F

of monic polynomials in K[x] such that

1 = deg(φ0) < deg(φ1) < · · · < deg(φr) < deg(F ), (10.6)

whose weighted values Ci(F ) := v(φi(θ))/ deg(φi) satisfy:

deg(g) < deg(φi+1) =⇒ v(g(θ))

deg(g)
≤ Ci(F ) < Ci+1(F ), 0 ≤ i ≤ r, (10.7)

for any monic polynomial g ∈ K[x] of positive degree.
Note that Cr(F ) = C(F ) and Cr+1(F ) =∞.

Definition 10.11. An Okutsu frame of an Okutsu polynomial F , is a list

[φ0, φ1, . . . , φr]

of monic polynomials in K[x] satisfying (10.6) and (10.7).
The length r of the frame is called the Okutsu depth of F . Clearly, the depth r, the

degrees deg(φ0), . . . , deg(φr), and the values C0(F ), . . . , Cr(F ) = C(F ) ∈ QΓ are intrinsic
data of F .

If deg(F ) = 1, then we agree that the empty list [ ] is an Okutsu frame of F , and we
say that F has Okutsu depth equal to −∞.
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Lemma 10.12. Let [φ0, φ1, . . . , φr] be an Okutsu frame of an Okutsu polynomial F . Then,
φ0, . . . , φr are prime polynomials too.

Proof. For 0 ≤ i ≤ r, suppose φi = ab with deg(a), deg(b) < deg(φi). By (10.7),

v(a(θ))/ deg(a), v(b(θ))/ deg(b) < Ci(F ).

This leads to a contradiction:

Ci(F ) =
v(φi(θ))

deg(φi)
=
v(a(θ)) + v(b(θ))

deg(φi)
<

deg(a)Ci(F ) + deg(b)Ci(F )

deg(φi)
= Ci(F ).

For instance, any key polynomial φ for an inductive valuation µ is an Okutsu polyno-
mial, and any optimal MacLane chain of µ determines an Okutsu frame of φ.

Theorem 10.13. Consider an optimal MacLane chain of an inductive valuation:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr = µ.

Let φ be a key polynomial for µ. Then, φ is an Okutsu polynomial, and

(1) If deg(φ) > deg(φr), then [φ0, . . . , φr] is an Okutsu frame of φ.

(2) If deg(φ) = deg(φr), then [φ0, . . . , φr−1] is an Okutsu frame of φ.

Moreover, C(φ) = C(µ) in the first case, and C(φ) = C(µr−1) in the second case.

Proof. Let α ∈ K be a root of φ.

Suppose deg(φ) > deg(φr), so that φ -µ φr. For any monic g ∈ K[x]deg(φ) we have
φ -µ g too, so that

v(φr(α)) = µ(φr), v(g(α)) = µ(g),

by Proposition 1.21. By Theorem 1.27,

v(g(α))

deg(g)
=

µ(g)

deg(g)
≤ C(µ) =

µ(φr)

deg(φr)
=
v(φr(α))

deg(φr)
,

and equality holds if and only if g is µ-minimal.
By Propositions 2.2 and 1.26, φr is a key polynomial for µ of minimal degree, and

there are no µ-minimal polynomials of degree less than deg(φr).
Therefore, φr, φ is a distinguished pair, and C(φ) = C(µ).
Since the MacLane chain is optimal, we have deg(φi+1) > deg(φi) for all 0 ≤ i < r,

and this argument shows that φi, φi+1 is a distinguished pair and C(φi+1) = C(µi).
On the other hand, if αi+1 ∈ K is a root of φi+1, Corollary 10.6 shows that

g ∈ K[x], deg(g) < deg(φi+1) =⇒ v(g(αi+1)) = v(g(α)).

Thus, Λdeg(φi+1)(φ) contains a maximal value and C(φi+1) = Ci+1(φ) = C(µi).
This ends the proof of (1).
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Suppose deg(φ) = deg(φr). The tautology φ |µ φ implies φr |µr−1 φ by (10.4). Hence,
φ is a key polynomial for µr−1 by Lemma 1.18.

Now, deg(φ) > deg(φr−1), and item (2) follows from the previous argument applied to
the optimal MacLane chain of µr−1 deduced by truncation.

Conversely, any Okutsu frame of an Okutsu polynomial arises in this way.

Theorem 10.14. Let F be an Okutsu polynomial, and let [φ0, . . . , φr] be an Okutsu frame
of φr+1 = F . For all 0 ≤ i ≤ r, denote γi = vF (φi) and consider the mapping

µi : K[x] −→ QΓ ∪ {∞},
∑
0≤s

asφ
s
i 7−→ Min{vF (as) + sγi | 0 ≤ s}.

Then, µi is a valuation, φi+1 is a key polynomial for µi, and µr admits an optimal
MacLane chain

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr.

Proof. The coefficients as ∈ K of any φ0-expansion satisfy vF (as) = v(as). Hence,
µ0(φ0, γ0) = µ0 by the very definition of the depth-zero valuations.

In section 4.2 we saw that µ0(φ0, γ0) may be identified with the augmentation [µ−∞; φ0, (0, γ0)];
thus, φ0 is a key polynomial for µ0, by Proposition 2.2.

Now, suppose that for some 0 ≤ i ≤ r, we know that µi is a valuation and φi is a key
polynomial for µi. Let us show that φi+1 is a key polynomial for µi too.

First, note that µi < vF . In fact, for any polynomial f =
∑

0≤s asφ
s
i ,

vF (f) ≥ Min{vF (asφ
s
i ) | 0 ≤ s} = µi(f).

Let φ ∈ K[x] be a monic polynomial of minimal degree such that µi(φ) < vF (φ). By
Proposition 2.9, φ is a key polynomial for µi and for any polynomial f ∈ K[x],

µi(f) < vF (f) ⇐⇒ φ |µi f. (10.8)

In particular, φ |µi F , and Theorem 10.2 shows that µi(φ) < v(φ(θ)). On the other
hand, Theorem 1.27 shows that

v(φ(θ))

deg(φ)
>

µi(φ)

deg(φ)
= C(µi) =

µi(φi)

deg(φi)
=
v(φi(θ))

deg(φi)
= Ci(F ), (10.9)

v(φi+1(θ))

deg(φi+1)
= Ci+1(F ) > Ci(F ) = C(µi) ≥

µi(φi+1)

deg(φi+1)
. (10.10)

By (10.7) and (10.9), we have deg(φ) ≥ deg(φi+1). Also, (10.8) and (10.10) imply
φ |µi φi+1, leading to deg(φ) ≤ deg(φi+1), by the µi-minimality of φ.

Hence, deg(φ) = deg(φi+1) and Lemma 1.18 shows that φ ∼µi φi+1 and φi+1 is a key
polynomial for µi.

Finally, the theorem will follow from a recursive argument, if we show that

µi+1 = [µi; φi+1, γi+1], 0 ≤ i < r.
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In fact, let f =
∑

0≤s as(φi+1)s be the φi+1-expansion of a non-zero f ∈ K[x].
Since φi+1 |µi F , Corollary 10.6 shows that,

deg(as) < deg(φi+1) =⇒ µi+1(as) = µi(as) = vF (as).

Hence, µi+1 = [µi; φi+1, γi+1] by the very definition of the augmented valuation.

Theorem 10.15. Let F ∈ P be a prime polynomial. The following conditions are equiv-
alent:

(1) F is the key polynomial of an inductive valuation.

(2) F is an Okutsu polynomial.

(3) F is defectless.

Proof. By Theorems 10.13 and 10.14, items (1) and (2) are equivalent. Also, Theorem
8.6 shows that (1) implies (3).

Hence, we need only to show that (3) implies (1). This follows immediately from the
results of Vaquié in [30] and [31].

Suppose that F is a defectless polynomial with deg(F ) > 1. In section 10.1, we showed
how to construct a MacLane chain of inductive valuations in the interval (µ−∞, vF ) ⊂ V:

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φn−1,γn−1−→ µn−1

φn,γn−→ µn
φn+1,γn+1−→ · · ·

of arbitrarily large length, with key polynomials satisfying φi+1 |µi F for all i.
If at some stage we get deg(φn+1) = deg(F ), then Lemma 1.18 shows that F is a key

polynomial for the inductive valuation µn, and we are done.
Not getting F ∈ KP(µn) for all finite n, implies that the degree of the key polynomials

becomes stationary: there is an index n0 such that deg(φn) = deg(φm) for all n,m ≥ n0.
Then, we get a continuous MacLane chain which may be augmented to a certain limit
augmented valuation by using a certain limit key polynomial [30].

This limit augmented valuation lies still in the interval (µ−∞, vF ) ⊂ V, but it is no
more inductive. The main result of [31] shows that in this case F has some defect.

Remark. The implication (3) =⇒ (1) may also be deduced from some work by Aghigh
and Khanduja [2], who use the technique of complete distinguished chains linking the root
θ of F with some element in K by a sequence of distinguished pairs of algebraic elements
over K.

The last three theorems show that “MacLane chains of inductive valuations” and
“Okutsu frames” are equivalent objects, only attachable to defectless polynomials.

This double perspective of the same objects has many consequences. The most im-
portant one is that any defectless polynomial determines a canonical inductive valuation.

Definition 10.16. Let F be a defectless polynomial with deg(F ) > 1. The Okutsu bound
of F is defined as

δ0(F ) = deg(F )C(F ) ∈ QΓ.
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We may associate with F an inductive valuation

µF : K[x]→ QΓ ∪ {∞},

determined by the following action on F -expansions f =
∑

0≤s asF
s:

µF (f) = Min {vF (as) + s δ0(F ) | 0 ≤ s} .

This valuation µF is a kind of limit of the process of “approaching F with key poly-
nomials”, described in section 10.1. Let us justify that µF is a valuation, and mention
some of its basic properties.

Lemma 10.17. Let F be a defectless polynomial with deg(F ) > 1.

(1) The mapping µF is an inductive valuation, and F is a key polynomial for µF .

(2) If φ, F is a distinguished pair, then φ is a key polynomial of minimal degree for µF .

(3) The interval (µF , vF ) ⊂ V consists of all augmentations

µ = [µF ; F, γ], γ ∈ (δ0(F ),∞) ⊂ QΓ.

(4) If µ ∈ (µ−∞, µF ) admits a key polynomial φ such that φ |µ F , then deg(φ) < deg(F ).

Proof. Let [φ0, . . . , φr] be an Okutsu frame of F . By Theorem 10.14, the inductive
valuation µ := µr admits F as a key polynomial. By Corollary 10.6,

a ∈ K[x], deg(a) < deg(F ) =⇒ µ(a) = vF (a).

Since F is µ-minimal, for any f ∈ K[x] with F -expansion f =
∑

0≤s asF
s, Lemma

1.16 shows that

µ(f) = Min {µ(asF
s) | 0 ≤ s} = Min {vF (as) + s µ(F ) | 0 ≤ s} . (10.11)

Since φr |µ F , Theorem 1.27 shows that

µ(F ) =
deg(F )

deg(φr)
µ(φr) =

deg(F )

deg(φr)
vF (φr) = deg(F )C(F ) = δ0(F ).

Hence, the equality in (10.11) shows that µF = µ is a valuation admitting F as a key
polynomial.

Let r be the Okutsu depth of F . If φ, F is a distinguished pair, we can consider an
Okutsu frame of F with φ = φr.

By Theorem 10.14, µF = µ = [µr−1; φ, γr], where we agree that µ−1 = µ−∞. By
Proposition 2.2, φ is a key polynomial for µF of minimal degree.

Let µ ∈ V be any valuation such that µF < µ < vF . For any a ∈ K[x] with
deg(a) < deg(F ) we have µF (a) = µ(a) = vF (a).

Hence, F is a monic polynomial of minimal degree satisfying µ(F ) < vF (F ) =∞. By
Proposition 2.9, F is a key polynomial for µ. In particular, F is µ-minimal, and satisfies
(10.11).
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If µ(F ) = µF (F ), this implies µ = µF . If µ(F ) > µF (F ), this implies µ = [µF ; F, µ(F )],
with µ(F ) ∈ (δ0(F ),∞).

Suppose that a valuation µ < µF admits a key polynomial φ such that φ |µ F . Since
φ is µ-minimal, we have deg(φ) ≤ deg(F ).

By Lemma 1.18, the equality deg(φ) = deg(F ) implies φ ∼µ F and F is a key
polynomial for µ. Since F is a key polynomial for µF as well, Lemma 6.20 shows that
µF = [µ; F, µ(F )]. But this implies that F is a key polynomial for µF of minimal degree,
contradicting item (2). Hence, necessarily deg(φ) < deg(F ).

Let us deduce some more properties of defectless polynomials from the fundamental
Theorems 10.13, 10.14 and 10.15.

Corollary 10.18. Let F be a defectless polynomial with deg(F ) > 1.
The sequence [φ0, φ1, . . . , φr] is an Okutsu frame of φr+1 = F if and only if φi, φi+1 is

a distinguished pair for all 0 ≤ i ≤ r.
In this case, each φi is a defectless polynomial and [φ0, . . . , φi−1] is an Okutsu frame

of φi. Moreover, Ci(F ) = C(φi+1) for all 1 ≤ i ≤ r.

Proof. For 1 ≤ i ≤ r + 1, let αi ∈ K be a root of φi.
The pair φi, φi+1 is distinguished if and only if v(φi(αi+1))/ deg(φi) is maximal among

all monic polynomials g of degree less than deg(φi+1).
By Theorem 10.14 and Corollary 10.6, all these polynomials g satisfy

v(g(αi+1)) = v(g(θ)).

This proves the first statement and Ci(F ) = C(φi+1) for all 1 ≤ i ≤ r.
The second statements follows directly from Theorems 10.13 and 10.14.

Maximal values of vF on polynomials of a prescribed degree

Let us fix a degree m < deg(F ), and consider the set of values

Γm(F ) = {v(g(θ)) | g ∈ K[x] monic, deg(g) = m} ⊂ QΓ.

Definition 10.19. A monic polynomial g ∈ K[x] of degree less than deg(F ) is said to be
F -maximal if v(g(θ)) = Max

(
Γdeg(g)(F )

)
.

Clearly, 1 is the only F -maximal polynomial of degree zero.
Let F be an defectless polynomial, with Okutsu frame [φ0, . . . , φr]. Let us denote

mi = deg(φi) for 0 ≤ i ≤ r.
By the definition of an Okutsu frame, the polynomials φ0, . . . , φr are F -maximal of

degree m0, . . . ,mr, respectively.
Also, since for any monic polynomial g ∈ K[x] with deg(g) < deg(F ), we have

vF (g)/ deg(g) ≤ vF (φr)/mr,

it is clear that all sets Γm(F ) admit upper bounds.
However, it is not clear from the definition of an Okutsu polynomial, if all these sets

Γm(F ) contain a maximal value.
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This was proved by Okutsu for the completion of a discrete rank one valuation [24,
paper II, Thm. 1]. Actually, Okutsu found, for each degree m < deg(F ), a concrete
F -maximal polynomial of degree m.

His result works in our more general context.

Theorem 10.20. Let F be an defectless polynomial, with Okutsu frame [φ1, . . . , φr]. Let
us denote mi = deg(φi) for 0 ≤ i ≤ r.

Any integer 0 < m < n may be written in a unique form as:

m =
r∑
i=0

`imi, 0 ≤ `i < mi+1/mi,

if we agree that mr+1 = deg(F ).
Then, the polynomial g =

∏r
i=0 φ

`i
i is an F -maximal polynomial of degree m.

Proof. As mentioned above, the result is obvious for m ∈ {0,m0,m1, . . . ,mr}, being
1, φ0, . . . , φr F -maximal polynomials for these degrees, respectively.

Suppose that mi < m < mi+1, for some 0 ≤ i ≤ r, where mr+1 = deg(F ).
Consider the valuation µi = µφi+1

. By Theorem 10.14 and Corollary 10.4, φi and φi+1

are key polynomials for µi, and φi+1 |µi F .

Take any monic g ∈ K[x] of degree m, with φi-expansion g =
∑`

s=0 asφ
s
i , where

` = bm/mic. Corollary 10.6 shows that

vF (g) = µi(g) = Min{µi (asφsi ) | 0 ≤ s ≤ `} ≤ µi
(
a`φ

`
i

)
= vF

(
a`φ

`
i

)
,

where a` is a monic polynomial of degree m− `mi < mi.
Hence, if there exists an F -maximal polynomial a of degree m − `mi, then aφ` is an

F -maximal polynomial of degree m.
A recursive argument shows that g =

∏r
i=0 φ

`i
i is F -maximal of degree m.

10.5 Types parameterize defectless polynomials

Definition 10.21. Let µ be an inductive valuation in V. A key polynomial φ ∈ KP(µ)
is said to be strong if deg(φ) > m(µ). That is, deg(φ) is strictly larger than the minimal
degree of key polynomials for µ.

A strong key polynomial is necessarily proper, but the converse is not true.
The next result is an immediate consequence of Theorems 10.13, 10.14, and Lemma

10.17.

Corollary 10.22. The MacLane depth of an inductive valuation µ is equal to the Okutsu
depth of any strong key polynomial for µ.

The Okutsu depth of a defectless polynomial F with deg(F ) > 1 is equal to the MacLane
depth of the canonical valuation µF . �

Lemma 10.23. Let µ be an inductive valuation and F a defectless polynomial with
deg(F ) > 1. Then, µ = µF if and only if F is a strong key polynomial for µ.



120 CHAPTER 10. APPROACHING DEFECTLESS POLYNOMIALS

Proof. If µ = µF , then F is strong by Theorem 10.14 and Lemma 10.17.
Conversely, suppose that F ∈ KP(µ) is strong. By Proposition 1.21, µ < vF . By

Lemma 6.20, if µ 6= µF , then one of the valuations is an augmentation of the other:

µ = [µF ; F, µ(F )] or µF = [µ; F, δ0(F )].

This implies that F is a key polynomial of minimal degree for the larger valuation. This
contradicts our hypotheses, because F is a strong key polynomial for both valuations.

Notation. Let us denote by P0 the set of all defectless polynomials in K[x] of degree
greater than 1.

Lemma 10.24. Let F,G ∈ P0 be two defectless polynomials of the same degree. The
following conditions are equivalent:

(1) v(G(θ)) > δ0(F ), where θ ∈ K is a root of F .

(2) F ∼µF G.

(3) µF = µG and R(F ) = R(G), where R = RµF = RµG.

If they hold we say that F and G are Okutsu equivalent and we write F ≈ G.

Proof. Since deg(F −G) < deg(F ), we have

µF (F −G) = v((F −G)(θ)) = v(G(θ)),

by the definition of µF . Since δ0(F ) = µF (F ), (1) and (2) are equivalent.

Suppose F ∼µF G. Lemma 1.18 shows that G is a strong key polynomial for µF .
By Lemma 10.23, µF = µG and Proposition 1.31 shows that R(F ) = R(G). Hence, (2)
implies (3).

The implication (3) =⇒ (2) follows directly from Proposition 1.31.

The symmetry of condition (3) shows that ≈ is an equivalence relation on the set P0.
Two Okutsu equivalent defectless polynomials F,G ∈ P0 have the same numerical

invariants attached to any optimal MacLane chain of the common canonical valuation
µF = µG. In particular, equation (5.5) shows that they have the same ramification index

e(F ) = e0 · · · er = e(G),

where r is their Okutsu depth. Hence, they have the same residual degree too:

f(F ) = deg(F )/e(F ) = deg(G)/e(G) = f(G).

Also, they have the same Okutsu frames, by Theorems 10.13 and 10.14.

Let us obtain a parameterization of the quotient set P0/≈ by an adequate space. The
MacLane space of the valued field (K, v) is defined to be the set of strong types :

M := T str :=
{

(µ,L) | µ ∈ Vind, L ∈ Max(∆µ), L strong
}
,

where L strong means that L = Rµ(φ) for a strong key polynomial φ.
The next result is a consequence of Lemmas 10.23 and 10.24.
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Theorem 10.25. The following mapping is bijective:

M −→ P0/≈, (µ,L) 7→ {φ ∈ KP(µ) | Rµ(φ) = L} .

The inverse map is determined by F 7→ (µF ,RµF (F )). �
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Chapter 11

Invariants of algebraic elements over
henselian fields

In this chapter, we use the techniques and results of Chapter 10 to reobtain some results
on the computation of invariants of algebraic elements over henselian fields.

These results may be found in the literature as the combined contribution of several
papers [1, 2, 3, 4, 15, 16, 29].

Our aim is to give a unified presentation of these results, with simplified proofs derived
in a natural way from the techniques of Chapter 10.

Let (K, v) be a henselian field. We denote still by v the canonical extension of v to a
fixed algebraic closure K of K.

Let K ⊂ Ks ⊂ K be the separable closure of K in K.
Let Γ be the value group of the valuation v, and k its the residue class field.

Notation. For any g ∈ K[x], we let Z(g) ⊂ K be the set of its roots in K.

Throughout the chapter, we fix an algebraic element θ ∈ K, and denote by

L = K(θ)

the finite extension of K obtained by adjoining θ to K.
Let f ∈ K[x] be the minimal (prime) polynomial of θ over K. Denote

n = degK(θ) = [L : K] = deg(f).

Consider the following invariant of θ:

ωK(θ) = Max{v(θ − θ′) | θ′ ∈ Z(f), θ′ 6= θ} ∈ QΓ.

This value is called Krasner’s constant. By Krasner’s lemma [5, Thm. 4.1.7], if θ is
separable over K, then:

α ∈ K, v(θ − α) > ωK(θ) =⇒ L ⊂ K(α). (11.1)

Let us consider another invariant, which is not always well defined:

δK(θ) = Max{v(θ − α) | α ∈ K, degK(α) < n} ∈ QΓ.

123
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Even in the case when θ is separable, this value may not be defined. By Krasner’s lemma
(11.1), ωK(θ) is an upper bound for the set {v(θ − α) | α ∈ K, degK(α) < n}, but this
does not guarantee that this set contains a maximal value.

We shall see in section 11.2 that δK(θ) is well defined for defectless algebraic elements;
that is, those for which L/K is a defectless extension.

This invariant δK(θ) is called the main invariant of θ.
As we have just mentioned, if θ is separable, then δK(θ) ≤ ωK(θ).

In section 11.3, we prove that equality holds in the tame case, and we give an explicit
formula for δK(θ) = ωK(θ) in terms of the discrete invariants attached to an Okutsu frame
of f .

11.1 Distinguished pairs of algebraic elements

Lemma 11.1. For any given β ∈ K and ρ ∈ QΓ, there exists a separable βsep ∈ Ks such
that:

degK(βsep) = degK(β), v(β − βsep) > ρ.

Proof. If β is separable over K, we may take βsep = β.
Assume that β is inseparable over K. Then, its minimal polynomial g ∈ K[x] over K

satisfies g′ = 0. Take any element π ∈ K∗ with

v(π) > degK(β) ρ− v(β),

and consider the polynomial gsep = g + πx ∈ K[x]. Since g′sep = π 6= 0, this polynomial is
separable. On the other hand,∑

α∈Z(gsep)

v(β − α) = v (gsep(β)) = v(πβ) = v(π) + v(β) > degK(β) ρ.

Hence, there exists α ∈ Z(gsep) such that v(β − α) > ρ. We may take βsep = α.

Definition 11.2. Let α ∈ K with degK(α) < n.
We say that α, θ is a distinguished pair if the two following conditions are satisfied:

(1) v(θ − α) = Max{v(θ − β) | β ∈ K, degK(β) < n}.

(2) β ∈ K, degK(β) < degK(α) =⇒ v(θ − β) < v(θ − α).

Equivalently, α, θ is a distinguished pair if v(θ−α) = δK(θ), and α has minimal degree
among all algebraic elements with this property.

The aim of this section is to prove the following result.

Theorem 11.3. For θ ∈ K with n = degK(θ) > 1, let f ∈ K[x] be its minimal polynomial
over K.

(1) Suppose that φ, f is a distinguished pair of prime polynomials (Definition 10.9).
Take α ∈ Z(φ) such that v(θ − α) = Max{v(θ − α′) | α′ ∈ Z(φ)}.
Then, α, θ is a distinguished pair.
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(2) Suppose that α, θ is a distinguished pair. Let φ ∈ K[x] be the minimal polynomial
of α over K.

Then, φ, f is a distinguished pair of prime polynomials.

Proof. Let us first see that (1) implies (2). We assume that φ, f is a distinguished
pair of prime polynomials.

Let δ = v(θ − α). Consider any β ∈ K with degK(β) < n. We want to show:

(i) v(θ − β) ≤ δ.

(ii) v(θ − β) = δ =⇒ degK(β) ≥ degK(α).

Let g ∈ K[x] be the minimal polynomial of β over K. We may assume that

v(θ − β) = Max{v(θ − β′) | β′ ∈ Z(g)}.

By Lemma 11.1, we may assume too, that θ, α and β are separable.
Consider a finite Galois extension M/K containing θ, α and β, and denote G =

Gal(M/K). We claim that

v(θ − β) ≥ δ =⇒ v(g(θ))

deg(g)
≥ v(φ(θ))

deg(φ)
. (11.2)

In fact, assume that v(θ − β) ≥ δ. Then, for any σ ∈ G we get:

v(θ − σ(β)) = v(θ − σ(α) + σ(α)− σ(θ) + σ(θ)− σ(β))

≥ Min{v(θ − σ(α)), v(σ(α)− σ(θ)), v(σ(θ)− σ(β))}
= Min{v(θ − σ(α)), v(α− θ), v(θ − β)} = v(θ − σ(α)),

(11.3)

because v(θ − σ(α)) ≤ δ, while v(α− θ), v(θ − β) ≥ δ. Therefore,

#G

deg(g)
v(g(θ)) =

∑
σ∈G

v(θ − σ(β)) ≥
∑
σ∈G

v(θ − σ(α)) =
#G

deg(φ)
v(φ(θ)). (11.4)

This proves the claimed implication (11.2).

Now, if we had v(θ − β) > δ, then at least for the automorphism σ = 1 we would
have v(θ − σ(β)) > δ = v(θ − σ(α)), leading to a strict inequality in (11.4). This would
contradict the fact that φ, f is a distinguished pair. This argument proves (i).

On the other hand, the equality v(θ − β) = δ is incompatible with a strict inequality
in (11.4). In fact, suppose that for some σ ∈ G we had

δ = v(θ − β) ≥ v(θ − σ(β)) > v(θ − σ(α)).

Then, the inequality in (11.3) becomes an equality, and this contradicts our assumptions:

v(θ − σ(β)) = v(θ − σ(α)).



126 CHAPTER 11. INVARIANTS OF ALGEBRAIC ELEMENTS

Thus, if v(θ − β) = δ, we must have an equality in (11.4). Since φ, f is a distinguished
pair, this implies deg(g) ≥ deg(φ). This proves (ii).

Let us now see that (1) implies (2). We assume that α, θ is a distinguished pair of
algebraic elements. We keep the notation

δ := v(θ − α) = Max{v(θ − α′) | α′ ∈ Z(φ)}.

Let g ∈ K[x] be a monic polynomial with deg(g) < n. We want to show:

(i)
v(g(θ))

deg(g)
≤ v(φ(θ))

deg(φ)
.

(ii)
v(g(θ))

deg(g)
=
v(φ(θ))

deg(φ)
=⇒ deg(g) ≥ deg(φ).

By Lemma 11.4 below, we may assume that g is irreducible and separable.
Also, by Lemma 11.1, we may assume that α and θ are separable too.
Take β ∈ Z(g) such that

v(θ − β) = Max{v(θ − β′) | β′ ∈ Z(g)}. (11.5)

Let M/K be a finite Galois extension containing θ, α and β, and denote G =
Gal(M/K). For all σ ∈ G, condition (11.5) implies

v(θ − σ(θ)) = v (θ − σ(β) + σ(β)− σ(θ))

≥ Min{v(θ − σ(β)), v(σ(β)− σ(θ))}
= Min{v(θ − σ(β)), v(β − θ)} = v(θ − σ(β)).

(11.6)

Now, we claim that

v (θ − σ(β)) ≤ v (θ − σ(α)) , ∀σ ∈ G. (11.7)

In fact, if v (θ − σ(α))) = δ, then (11.7) is a consequence of the fact that α, θ is a
distinguished pair.

If v (θ − σ(α))) < δ, then (11.7) follows from (11.6):

v (θ − σ(β))) ≤ v (θ − σ(θ))) = v (θ − σ(α) + σ(α)− σ(θ))) = v (θ − σ(α))),

because v (θ − σ(α)) < δ = v (σ(α)− σ(θ)). This ends the proof of (11.7).

Condition (i) follows immediately:

#G

deg(g)
v(g(θ)) =

∑
σ∈G

v(θ − σ(β)) ≤
∑
σ∈G

v(θ − σ(α)) =
#G

deg(φ)
v(φ(θ)). (11.8)

Also, if equality holds in (11.8), then

v(θ − σ(β)) = v(θ − σ(α)), ∀σ ∈ G.

In particular, for σ = 1 we deduce v(θ − β) = v(θ − α), which implies

deg(g) = degK(β) ≥ degK(α) = deg(φ),

because α, θ is a distinguished pair. This proves (ii).
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Lemma 11.4. Let φ, f ∈ K[x] be two prime polynomials with deg(φ) < deg(f). Then,
for φ, f to be a distinguished pair it suffices to check that the two conditions:

(i) deg(g) < deg(f) =⇒ v(g(θ))

deg(g)
≤ v(φ(θ))

deg(φ)
,

(ii)
v(g(θ))

deg(g)
=

v(φ(θ))

deg(φ)
=⇒ deg(g) ≥ deg(f),

hold for all monic, irreducible and separable polynomials g ∈ K[x].

Proof. Let us first show that if conditions (i), (ii) hold for all monic irreducible
polynomials in K[x], then both conditions hold for all monic polynomials.

Let g = h1 · · ·ht be a product of monic (not necessarily different) irreducible polyno-
mials. Clearly, the average of the values v(θ − β) on β ∈ Z(g) is less than, or equal to,
the maximum of the averages of the values v(θ − β), taken on the subsets

Z(g) = Z(h1) ∪ · · · ∪ Z(ht).

In other words,
v(g(θ))

deg(g)
≤ Max

{
v(hi(θ))

deg(hi)

∣∣∣ 1 ≤ i ≤ t

}
.

Therefore, (i) and (ii) hold for g if they hold for h1, . . . , ht.

Finally, let us show that if conditions (i), (ii) hold for all monic irreducible separable
polynomials, then both conditions hold for all monic irreducible polynomials.

Let g ∈ K[x] be monic and irreducible, but inseparable. Let gsep = g+ πx, for π ∈ K∗
with v(π) sufficiently large. As mentioned in the proof of Lemma 11.1, gsep is a separable
polynomial of the same degree.

Since (i) and (ii) hold for all irreducible factors of Γsep, they hold for gsep too. Hence,
if v(π) is sufficiently large, both conditions hold for g.

11.2 Complete distinguished chains of defectless al-

gebraic elements

We keep with the notation of the previous section.

Definition 11.5. Let α0, α1, . . . , αr, θ = αr+1 ∈ K be algebraic elements with

1 = degK(α0) < · · · < degK(αr) < degK(θ).

We say that [α0, α1, . . . , αr] is a complete distinguished chain for θ if αi, αi+1 is a
distinguished pair, for all 0 ≤ i ≤ r.

Theorem 11.6. For θ ∈ K with n = degK(θ) > 1, let f ∈ K[x] be its minimal polynomial
over K.

(1) Let [φ0, . . . , φr] be an Okutsu frame of f . For all 0 ≤ i ≤ r, take αi ∈ Z(φi) such
that v(θ − αi) = Max{v(θ − α′i) | α′i ∈ Z(φi)}.
Then, [α0, . . . , αr] is a complete distinguished chain for θ.
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(2) Let [α0, . . . , αr] be a complete distinguished chain for θ. Let φ0, . . . , φr ∈ K[x] be the
minimal polynomials over K of α0, . . . , αr, respectively.

Then, [φ0, . . . , φr] is an Okutsu frame of f .

Proof. In Corollary 10.18 we saw that [φ0, . . . , φr] is an Okutsu frame of f = φr+1 if
and only if each pair φi, φi+1 is a distinguished pair of prime polynomials for all 0 ≤ i ≤ r.
Thus, the theorem follows from Theorem 11.3.

Theorem 11.7 (Aghigh-Khanduja [1, 2]). An algebraic element θ ∈ K admits a complete
distinguished chain over K if and only if it is defectless over K.

Proof. This follows immediately from Theorems 10.15 and 11.6.

Distinguished pairs and distinguished chains were introduced by N. Popescu-A. Za-
harescu in 1995 [26], for K a complete discrete rank-one valued field.

However, this concept is equivalent to some sequences of algebraic elements studied
by Okutsu in 1982 [24], also in the complete and discrete rank-one case.

Let us show the equivalence between the two concepts.

Definition 11.8. Let α0, α1, . . . , αr, θ = αr+1 ∈ K be algebraic elements with

1 = degK(α0) < · · · < degK(αr) < degK(θ).

We say that [α0, α1, . . . , αr] is a complete Okutsu sequence for θ if the following
conditions hold for all β ∈ K and all 0 ≤ i ≤ r:

(1) degK(β) < degK(αi+1) =⇒ v(θ − β) ≤ v(θ − αi).

(2) degK(β) < degK(αi) =⇒ v(θ − β) < v(θ − αi).

For the comparison of Okutsu sequences with distinguished chains we need an obvious
remark.

Lemma 11.9. Suppose α, θ is a distinguished pair of algebraic elements. Then, for all
β ∈ K with degK(β) < degK(α), we have v(θ − β) = v(α− β).

Proof. By the definition of distinguished pair, v(θ − β) < v(θ − α). This implies
immediately that v(α− β) = Min{v(α− θ), v(θ − β)} = v(θ − β).

Lemma 11.10. A sequence [α0, α1, . . . , αr] of elements in K is a complete distinguished
chain for θ = αr+1 if and only if it is a complete Okutsu sequence for θ.

Proof. Let β ∈ K with degK(β) < degK(θ).

Suppose that [α0, α1, . . . , αr] is a complete distinguished chain for θ. By definition, for
all 0 ≤ i ≤ r, the following conditions hold:

(i) degK(β) < degK(αi+1) =⇒ v(αi+1 − β) ≤ v(αi+1 − αi).

(ii) degK(β) < degK(αi) =⇒ v(αi+1 − β) < v(αi+1 − αi).
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If i = r, then αi+1 = θ. If i < r, then Lemma 11.9 shows that v(θ− β) = v(αi+1− β).
In both cases, the conditions of Definition 11.8 coincide with (i) and (ii). Hence,

[α0, α1, . . . , αr] is an Okutsu sequence for θ.

Conversely, suppose that [α0, α1, . . . , αr] is an Okutsu sequence for θ.
The conditions of Definition 11.8 for i = r show that αr, θ = αr+1 is a distinguished

pair.
Hence, we may apply Lemma 11.9 to conclude that

v(θ − β) = v(αr − β), v(θ − αj) = v(αr − αj),

for all 0 ≤ j < r and all β ∈ K with degK(β) < degK(αj+1).
Therefore, the sequence [α0, . . . , αr−1] is a complete Okutsu sequence for αr. The

previous argument shows that αr−1, αr is a distinguished pair.
We may iterate this argument to conclude that [α0, α1, . . . , αr] is a complete distin-

guished chain for θ.

Corollary 11.11. Let [α0, . . . , αr] be a complete Okutsu sequence for θ ∈ K. Then,
[α0, . . . , αi] is a complete Okutsu sequence for αi+1, for all 1 ≤ i < r.

Proof. This property is obviously true for complete distinguished chains.

In the next section, we compute several invariants attached to tame algebraic elements.
To this purpose, Okutsu sequences are a more feasible tool than complete distinguished
chains.

11.3 Main invariant of tame algebraic elements

Definition 11.12. Let θ ∈ K, with minimal polynomial f ∈ K[x]. Denote L = K(θ) and
let kL be the residue class field of (L, v).

We say that θ ∈ K is tame if it satisfies the following conditions.

• f is defectless.

• The finite extension kL/k is separable.

• The ramification index e(L/K) is not divisible by char(K).

It is easy to check that a tame θ is necessarily separable over K.

Recall the definition of the ramification subgroup:

Gram(K) = {σ ∈ Gal(Ks/K) | v(σ(c)− c) > v(c), ∀ c ∈ (Ks)∗} .

Its fixed field Kram = (Ks)G
ram

is called the ramification field for the extension Ks/K.
This field is the unique maximal tame extension of K in K.

More precisely, for any algebraic extension L/K, the subfield L ∩Kram is the unique
maximal tame extension of K in L/K.

Notation. Let [α0, . . . , αr] be a complete Okutsu sequence for θ = αr+1 ∈ K.
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We shall usually denote

δ0 = v(θ − α0) < · · · < δr = v(θ − αr) < δr+1 = v(θ − αr+1) =∞.

By Lemmas 11.10 and 11.9, we have

δi = v(αi+1 − αi) = δK(αi+1), 0 ≤ i ≤ r.

The next result is inspired in the revision of the original ideas of Okutsu [24] that J.
Guàrdia, J. Montes and E. Nart carried out in [7].

Proposition 11.13. Let [α0, . . . , αr] be a complete Okutsu sequence for a separable θ =
αr+1 ∈ Ks. Consider a separable β ∈ Ks such that

deg(β) = mi, v(θ − β) > δi−1,

for some 1 ≤ i ≤ r + 1. Let M/K be any finite Galois extension containing K(θ, β). Let
G = Gal(M/K) and consider the subgroups

Hi = {σ ∈ G | v(θ − σ(θ)) > δi−1)} ⊃ H i = {σ ∈ G | v(θ − σ(θ)) ≥ δi}.

Let MHi ⊂ MHi ⊂ M be the respective fixed fields. Finally, let V be the maximal tame
subextension of K(β)/K. Then,

V ⊂MHi ⊂ K(θ) ∩K(β).

Moreover, if v(θ − β) = δi then

V ⊂MHi ⊂MHi ⊂ K(θ) ∩K(β).

Proof. First, let us show that MHi ⊂ K(θ) ∩K(β). For this, it suffices to show that
all σ ∈ G fixing θ or β belong to Hi.

If σ(θ) = θ, then σ ∈ Hi because v(θ − σ(θ)) =∞ > δi−1.
If σ(β) = β, then v(σ(θ)− β) = v(σ(θ)− σ(β)) = v(θ − β) > δi−1. Thus,

v(θ − σ(θ)) ≥ Min{v(θ − β), v(β − σ(θ))} > δi−1.

In the case v(θ − β) = δi, the same argument shows that MHi ⊂ K(θ) ∩K(β).
Finally let us prove that V ⊂ MHi . Since V is the maximal tame extension of K(β),

we have that V = Kram ∩K(β), so we must prove that

Hi ⊂ {σ ∈ G | v(σ(c)− c) > v(c), ∀c ∈ K(β)∗}.

Take σ ∈ Hi. Any c ∈ K(β)∗ can be written as c = g(β) for some g ∈ K[x] with
deg(g) < mi. By the minimality of mi, for any root ξ of g we have v(θ−ξ) ≤ δi−1. Hence,

v(β − ξ) = Min {v(β − θ), v(θ − ξ)} = v(θ − ξ) ≤ δi−1. (11.9)

Write g(x) = a
∏

ξ∈Z(g)(x− ξ). Then,

g(σ(β))

g(β)
=
∏
ξ

σ(β)− ξ
β − ξ

=
∏
ξ

(
1 +

σ(β)− β
β − ξ

)
.
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Since σ ∈ Hi, we have

v (σ(β)− β) ≥ Min {v (σ(β)− σ(θ)) , v (σ(θ)− θ) , v (θ − β)} > δi−1.

By (11.9), this implies v

(
σ(β)− β
β − ξ

)
> 0, so that

v

(
σ(c)

c
− 1

)
= v

(
g(σ(β))

g(β)
− 1

)
> 0.

This proves that V ⊂MHi .

Lemma 11.14. Let [α0, . . . , αr] be a complete Okutsu sequence for θ ∈ K.

(1) If f ∈ K[x] be the minimal polynomial of f , then

v(θ − θ′) ≥ v(θ − α0), ∀ θ′ ∈ Z(f).

(2) If θ is tame over K, then α0, . . . , αr are tame over K.

Proof. By Theorem 11.7 and Lemma 11.10, θ is defectless.
By Theorem 10.15, f admits an Okutsu frame [φ0, . . . , φr] with φ0 = x − α0. By

Theorem 10.14, the inductive valuation vf admits an optimal MacLane chain

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr = vf

Since φ0 |µ0 f , Theorem 10.2 shows that Nµ0,φ0(f) is one sided of a certain slope −γ0,
and v(θ − α0) = γ0, for every root θ of f . Thus,

v(θ − θ′) ≥ Min{v(θ − α0), v(θ′ − α0) = γ0 = v(θ − α0).

This proves (1).

By Lemma 11.10, [α0, . . . , αi−1] is a complete Okutsu sequence for αi. Hence, all αi
are defectless by Theorem 11.7.

As indicated in (5.13), the maximal subfields ki of the algebras ∆µi form a chain of
finite extensions of k:

k = k0 ⊂ k1 ⊂ · · · ⊂ kr ⊂ kL.

By Proposition 1.25, each field ki is isomorphic to the residue class fields kφi of the
extension K(αi)/K. Thus, the assumption that kL/k is separable implies that all kφi/k
are separable too.

Finally, equation (5.5) shows that the ramification indices e(φi) divide each other:

1 = e(φ0) | · · · e(φi) | e(φi+1) | · · · | e(f).

Thus, if e(f) is not divisible by the characteristic of K, all ramification indices e(φi) have
the same property. This proves that K(αi)/K is tame for all i.
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Theorem 11.15. Let θ ∈ K be an algebraic element of degree n = degK(θ) > 1. Let
[α0, . . . , αr] be a complete Okutsu sequence for θ = αr+1, and denote

mi = degK(αi), δi = v (θ − αi) , 0 ≤ i ≤ r + 1.

If αr is tame over K, then it holds:

(1) K = K(α0) ⊂ K(α1) ⊂ · · · ⊂ K(αr) ⊂ K(θ).

(2) The following multisets of cardinality n− 1 coincide:

{v (θ − θ′) | θ′ ∈ Z(f), θ′ 6= θ} =
{
δt00 , . . . , δ

tr
r

}
,

where ti =
n

mi

− n

mi+1

for all 0 ≤ i ≤ r.

In particular, δr = δK(θ) = ωK(θ).

Proof. Let M/K be a finite Galois extension of K containing K(θ, α1, . . . , αr), and
denote G = Gal(M/K).

Fix an index 0 ≤ i ≤ r. Since degK(αi) = mi and v(θ − αi) = δi, Proposition 11.13
applied to β = αi shows that

Vi ⊂MHi ⊂MHi ⊂ K(αi) ∩K(θ),

where Vi is the maximal tame subextension of K(αi).
By Lemma 11.14, K(αi)/K is tame, so that Vi = K(αi). Therefore,

Vi = MHi = MHi = K(αi) ⊂ K(θ). (11.10)

Now, denote H0 := G and consider the chain of subgroups

G = H0 ⊃ H1 ⊃ · · · ⊃ Hr ⊃ Hr+1 = Gal(M/K(θ)). (11.11)

The corresponding chain of fixed fields is that given in item (1).

Moreover, (11.10) implies

(Hi : Hi+1) = [K(αi+1) : K(αi)] = mi+1/mi > 1, 0 ≤ i ≤ r,

so that all inclusions in the chain (11.11) are strict. Hence, for any σ ∈ G \ Hr+1 there
exists a unique 0 ≤ i ≤ r such that

σ ∈ H i = Hi, σ 6∈ Hi+1.

If i > 0, then v (θ − σ(θ)) = δi, by the definition of the subgroups H i and Hi+1.
If i = 0, then σ 6∈ H1 implies v (θ − σ(θ)) ≤ δ0. By Lemma 11.14, we deduce that

v (θ − σ(θ)) = δ0 in this case too.
Therefore, the underlying set of the multiset {v (θ − σ(θ)) | σ ∈ G, σ(θ) 6= θ} is the

set {δ0, . . . , δr}.
Now, it remains to find a concrete formula for the multiplicity ti of each value δi.
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Let f ∈ K[x] be the minimal polynomial of θ over K. The natural action of G on
Z(f) induces a bijection:

G/Gal(M/K(θ)) −→ Z(f), σ 7−→ σ(θ).

For any 0 ≤ i ≤ r, the restriction of this bijection to the subgroup Hi/Gal(M/K(θ))
determines a bijection:

Hi/Gal(M/K(θ)) −→ Zi(f) := {θ′ ∈ Z(f) | v (θ − θ′) ≥ δi} .

Hence, the multiplicity ti is equal to:

ti = #Zi(f)−#Zi+1(f) = #Hi/Gal(M/K(θ))−#Hi+1/Gal(M/K(θ))

= [K(θ) : K(αi)]− [K(θ) : K(αi+1)] =
n

mi

− n

mi+1

.

This ends the proof of item (2).

We end this section with an explicit formula for the main invariant δK(θ) = ωK(θ) in
terms of the discrete invariants attached to an Okutsu frame of the minimal polynomial
f ∈ K[x] of θ over K.

For 0 ≤ i ≤ r, let φi be the minimal polynomial of αi over K. By Theorem 10.15,
[φ0, . . . , φr] is an Okutsu frame of f . By Theorem 10.14, the inductive valuation vf admits
an optimal MacLane chain

µ−∞
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · φr−1,γr−1−→ µr−1

φr,γr−→ µr = vf

where γi = µi(φi) = v(φi(θ)) for all i. Let us denote

λ0 := γ0, λi := γi − µi−1(φi), 0 < i ≤ r.

At the beginning of section 5.2, we saw that

γi = mi

(
λ0

m0

+ · · ·+ λi
mi

)
, 0 ≤ i ≤ r. (11.12)

Proposition 11.16. With the above notation, if αr is tame over K, then

δi = λ0 + · · ·+ λi, 0 ≤ i ≤ r. (11.13)

Proof. Let us prove the formula by a recurrent argument on i. For i = 0, we have
φ0 = (x− α0) and

λ0 = γ0 = v(φ0(θ)) = v(θ − α0) = δ0.

Now, suppose that i > 0 and δj = λ0 + · · ·+λj for all j < i. Let us prove that (11.13)
holds for i.

We claim that

v(φi(θ)) = δi + t0δ0 + · · ·+ ti−1δi−1, tj =
mi

mj

− mi

mj+1

, 0 ≤ j < i. (11.14)
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In fact, since [α0, . . . , αi−1] is a complete Okutsu sequence for αi, Theorem 11.15 yields
an equality of multisets:

{v(αi − ξ) | ξ ∈ Z(φi), ξ 6= αi} =
{
δt00 , . . . , δ

ti−1

i−1

}
, (11.15)

for the multiplicities t0, . . . , ti−1 indicated in (11.14).
Now, for each ξ ∈ Z(φi), ξ 6= αi, we have

v(θ − ξ) = Min{v(θ − αi), v(αi − ξ)} = v(αi − ξ), (11.16)

because v(θ − αi) = δi, while

v(αi − ξ) ≤ ωK(αi) = δK(αi) = δi−1 < δi.

The equalities (11.15) and (11.16) prove the claimed identity (11.14), because

v(φi(θ)) = v(θ − αi) +
∑

ξ∈Z(φi), ξ 6=αi

v(θ − ξ) = δi + t0δ0 + · · ·+ ti−1δi−1.

Finally, from (11.14) and (11.12) we deduce

δi + t0δ0 + · · ·+ ti−1δi−1 = γi =
mi

m0

λ0 + · · ·+ mi

mi

λi,

from which we may express δi as

δi =
mi

m0

λ0 + · · ·+ mi

mi

λi − t0δ0 − · · · − ti−1δi−1.

By applying the induction hypothesis, we may express δi as a linear combination

δi = a0λ0 + · · ·+ ai−1λi−1 + λi,

where, for j < i, each coefficient aj takes the value:

aj =
mi

mj

− tj − tj+1 − · · · − ti−1 =
mi

mi

= 1.

This ends the proof of the proposition.
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