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Abstract
In this thesis, numerical tools to simulate compressible flows in a wide range of

situations are presented. It is intended to represent a step forward in the scientific re-
search of the numerical simulation of compressible flows, with special emphasis on
turbulent flows with shock wave-boundary-layer and vortex interactions. From an
academic point of view, this thesis represents years of study and research by the au-
thor. It is intended to reflect the knowledge and skills acquired throughout the years
that at the end demonstrate the author’s capability of conducting a scientific research,
from the beginning to the end, present valuable genuine results, and potentially ex-
plore the possibility of real world applications with tangible social and economical
benefits. Some of the applications that can take advantage of this thesis are: marine
and offshore engineering, combustion in engines or weather forecast, aerodynam-
ics (automotive and aerospace industry), biomedical applications and many others.
Nevertheless, the present work is framed in the field of compressible aerodynamics
and gas combustion with a clear target: aerial transportation and engine technol-
ogy. The presented tools allow for studies on sonic boom, drag, noise and emissions
reduction by means of geometrical design and flow control techniques on subsonic,
transonic and supersonic aerodynamic elements such as wings, airframes or engines.
Results of such studies can derive in new and ecologically more respectful, quieter
vehicles with less fuel consumption and structural weight reduction.

We start discussing the motivation for this thesis in chapter one, which is placed
into the upcoming second generation of supersonic aircraft that surely will be flying
the skies in no more than 20 years. Then, compressible flows are defined and the
equations of motion and their mathematical properties are presented. Navier Stokes
equations arise from conservation laws, and the hyperbolic properties of the Euler
equations will be used to develop numerical schemes.

Chapter two is focused on the numerical simulation with Finite Volumes tech-
niques of the compressible Navier-Stokes equations. Numerical schemes commonly
found in the literature are presented, and a unique hybrid-scheme is developed
that is able to accurately predict turbulent flows in all the compressible regimens
(subsonic, transonic and supersonic). The scheme is applied on the flow around a
NACA0012 airfoil at several Mach numbers, showing its ability to be used as a de-
sign tool in order to reduce drag or sonic boom, for example. At subsonic regimens,
results show excellent agreement with reference data which allowed the study of the
same case at transonic conditions. We were able to observe the buffet phenomenon
on the airfoil, which consists of shock-waves forming and disappearing, causing a
dramatic loss of aerodynamic performance in a highly unsteady process.

To perform a numerical simulation, however, boundary conditions are also re-
quired in addition to numerical schemes. A new set of boundary conditions is intro-
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vi Abstract

duced in chapter three. They are developed for three-dimensional turbulent flows
with or without shocks. They are tested in order to asses its suitability. Results show
good performance for three-dimensional turbulent flows with additional advantages
with respect traditional boundary conditions formulations.

Unfortunately, compressible flows usually require high amounts of computational
power to its simulation. High speeds and low viscosity result in very thin boundary
layers and small turbulent structures. The grid required in order to capture this flow
structures accurately often results in unfeasible simulations. This fact motivates the
use of turbulent models and wall models in order to overcome this restriction. Tur-
bulent models are discussed in chapter four. The Reynolds-Averaged Navier Stokes
(RANS) approach is compared with Large-Eddy Simulation (LES) with and without
wall modeling (WMLES). A transonic diffuser is simulated in order to evaluate its
performance. Results showed the ability of RANS methods to capture shock-wave
positions accurately, but failing in the detached part of the flow. LES, on the other
hand, was not able to reproduce shock-waves positions accurately due to the lack
of precision on the shock wave-boundary-layer interaction (SBLI). The use of a wall
model, nevertheless, allowed to overcome this issue, resulting in an accurate method
to capture shock-waves and also flow separation. More research on WMLES is en-
couraged for future studies on SBLIs, since they allow three-dimensional unsteady
studies with feasible levels of computational requirements.

With all these tools, we are able to solve at this point any problem concerned with
the aerodynamic design of high-speed vehicles which were identified in previous
paragraphs.

Finally, multi-component flows are discussed in chapter five. Our hybrid scheme
is upgraded to deal with multi-component gases and tested in several cases. We
demonstrate that with a redefinition of the discontinuity sensor multi-components
flows can be solved with low levels of diffusion while being stable in the presence of
high scalar gradients.

As a result of the work of this thesis, a complete numerical approach to the nu-
merical simulation of compressible turbulent multi-component flows with or with-
out discontinuities in a wide range of Reynolds and Mach numbers is proposed and
validated. Direct applications can be found in civil aviation (subsonic and super-
sonic) and engine operation.
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Introduction

The main topic of this research is the numerical simulation of compressible
flows. In this introductory chapter, the motivation of this thesis is discussed. Then,
compressible flows are defined, the equations of motion are presented and their
physical and mathematical properties are explained. As an example of application,
the shock tube problem is analytically solved in order to understand all the con-
cepts related to the phenomenology of compressible fluids and their numerical study
Based on the issues presented, the main objectives and outline of the thesis are de-
rived.

1.1 Motivation

This thesis finds its sense for existence in the numerous and strong investments in
supersonic civil aviation and private space exploration at the present time (2017). Su-
personic civil aviation as a transportation method born in the 80s, with the appear-
ance of the Concorde. Nevertheless, the numerous problems, delays and accidents
even with human casualties, resulted in a premature cancellation of the technology
around the world. A second generation of supersonic aircraft never saw the light of
day, due in part in the interest in other scientific areas such as space exploration and
nuclear energy.

The difficulties that a supersonic vehicle manufacturer must face are numerous.
First, developing a supersonic engine and do it eco-friendly and economically com-
petitive represent a major challenge. The Concorde could consume over 166 ml of
fuel per passenger and kilometer, number that differs drastically from those of big
subsonic jetliners (16-44 ml for models such as the A330, B747 or A380). The figure
does not vary too much if it is compared with private subsonic jets (148 ml for the
G550). It is at this point where the “second coming” of supersonic aviation finds
its sweet spot: long private travels where passengers value most speed and comfort
than cost. Second, the aerodynamic performance of the aircraft represents also a ma-
jor problem. A vehicle drag increases with its drag coefficient, air density and the
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2 CHAPTER 1. INTRODUCTION

square of the velocity. This means that the faster the vehicle moves, more force is
required to move it and more fuel is consumed. Since the objective is to move as
fast as possible, designers can only play with the other two factors. Low air den-
sity is achieved by flying as high as possible. A small drag coefficient is achieved
by shaping the vehicle in a particular way that limit heavily the rest of the design.
Furthermore, supersonic vehicles are subjected to wave drag at transonic speeds,
caused by shock waves. This can result in an increase of 4 times the drag coefficient,
that reduces to 30 to 50 % at full supersonic speed. The fact that a supersonic air-
craft must transition between the different compressible regimens (subsonic at take
off and landing, transonic and supersonic at cruise) require all the aircraft elements
to perform at every stage, which in turns results in a heavy design constrain. The
Concorde had an aerodynamic performance (ratio between lift and drag) of 7.14, in
contrast to 17 of the B747.

Other aerodynamic aspect that limit supersonic vehicles is the sonic boom, caused
by shock waves, that restrict the supersonic operation of these aircraft on isolated
zones such as over the ocean. New advances on sonic boom reduction, using tools
similar to the ones presented in this thesis, promise to overcome this problem allow-
ing the operation of supersonic aircraft on populated areas. Finally, other issues such
as extra R&D costs, materials (the Concorde could achieve over 127 º C at Mach 2),
specific production techniques and other technical issues are also challenging.

At the end of the day, a Concorde ticket for London-New York at the late 90s was
priced at around 10k $, which is the price of the same route nowadays of first class
travels. Considering that today the total travel time is more than twice, this can be
seen as an opportunity and a motivation for the second coming of supersonic (and
hypersonic) transportation. NASA is investing in supersonic projects focused on
sonic boom reduction with the reactivation of its X-planes program and, like Airbus,
is collaborating with private companies such as Reaction Engines, Aerion or Boom in
the development of private supersonic jets. In words of NASA: “We’re on the cusp of
a new era in aviation that is dramatically cleaner, quieter, and even faster”. Another
fact that is promoting supersonic aviation is the threats at which subsonic aviation is
subjected, with the development of faster trains and upcoming technologies (such as
the Hyperloop) that seriously threatens the aviation domination in short to middle
distance flights.

1.2 Compressible flows

A fluid is called compressible when its density varies significantly in response to a
change in other thermodynamic property, in general pressure. For example, a change
in pressure of 500 kPa results in a change in air density of 250 %, meanwhile this
change is only of 0.024 % in the case of water (considering ambient temperature and
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fluids at rest). Although all fluids are compressible this effect is less significant for
liquids than for gases, which leads to the general treatment of liquids (and gases at
low speed) as incompressible fluids. Compressible effects are characterized by the
Mach number (Ma), which is the ratio between the flow velocity and the speed of
sound. In the case of the air, if Ma < 0.2 − 0.3, the incompressibility assumption can
be made. When the incompressibility assumption cannot be made, or more accurate
results are required, the compressible model has to be used along with the required
numerical techniques that will be explained throughout this thesis.

Many industrial applications rely on the use of compressible fluids, such as the
study of resistance of ships or wave impacts on vessels (marine and offshore engi-
neering), combustion in engines, climate control in the passenger compartment, aero-
dynamics (automotive and aerospace industry) and also biomedical applications
such us respiratory flow in lungs.

The equations that describe the motion of compressible fluids are the Navier-
Stokes (NS) equations. This system of non-linear equations cannot be be solved
analytically, except for a few exceptional cases. This is the reason why the numerical
analysis is used in order to get an approximate solution of these equations. Compu-
tational Fluids Dynamics, or CFD, is the field of the fluids mechanics responsible for
the numerical study of the NS equations, and the characterization of fluids behavior
in any possible situation of interest.

1.3 Mathematical formulation

In the following, polytropic ideal gas (in particular air) with constant cp is assumed.
The generalization to multi-component real gases will be discussed in chapter 5.

1.3.1 Conservation laws

Conservation laws arise from physical principles [1]. Consider the simplest fluid
dynamics problem, in which a one-dimensional flow with known velocity which can
be written as a function of distance and time, i.e. u(x, t). Let ρ(x, t) be the density of
the gas, the function to be determined. Consider a section of pipe x1 < x < x2, the
total mass of the gas in the pipe is given by

m(t) =
∫ x2

x1

ρ(x, t)dx (1.1)

If there is no creation or destruction of gas in this section (e.g. nuclear reactions) the
total mass within this section only can change due to the flux or flow of particles
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through the endpoints of the section at x1 and x2.

∂

∂t

∫ x2

x1

ρ(x, t)dx = F1(t)− F2(t) (1.2)

Here, Fi(t) for i = 1, 2 are the fluxes at the endpoints. This is the basic integral
form of a conservation law, and the basis of conservation. Roughly speaking, the
variation of mass within the section is the sum of what is entering the section plus
what is leaving it. Remember that ρ(x, t) has to be computed. It is therefore required
to relate the flux with the variable. In this case, the flux is given by the product of
the density and the velocity

f (x, t) = u(x, t)ρ(x, t) (1.3)

The function f (x, t) is the flux function, and Fi(t) = f (xi, t). Since the velocity is
known, the flux function reads f (ρ(x, t)).

∂

∂t

∫ x2

x1

ρ(x, t)dx = f (ρ(x1, t))− f (ρ(x2, t)) (1.4)

The function ρ(x, t) that satisfies equation 1.4 cannot been directly found. Instead it
is transformed into a partial differential equation that can be handled with standard
techniques.

∂

∂t

∫ x2

x1

ρ(x, t)dx = −
∫ x2

x1

∂

∂x
f (ρ(x, t))dx (1.5)

Or, manipulating ∫ x2

x1

[
∂

∂t
ρ(x, t)dx +

∂

∂x
f (ρ(x, t))

]
dx = 0 (1.6)

Since the integral must be zero for all values of x1 and x2, the final differential equa-
tion is

∂

∂t
ρ(x, t) +

∂

∂x
f (ρ(x, t)) = 0 (1.7)

Notice that the derivation of the differential equation requires that both ρ(x, t) and
f (ρ(x, t)) be smooth functions. This is true in most cases, but discontinuities may
appear in the general treatment of compressible flows. This is an important fact,
because when a discontinuity appear the differential conservation equation cannot
be used and the integral form must be revisited.

Summarizing, the differential equation of a conservation law takes the form

∂

∂t
ϕ(x, t) +

∂

∂x
f (ϕ(x, t)) = 0 (1.8)
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Here, ϕ is called the conserved variable (like the density in the previous develop-
ment), and f (ϕ(x, t)) is the flux function of the conserved variable. The main focus
will be to compute ϕ(x, t), given the initial and boundary conditions. In order to use
a more friendly notation, equation 1.8 is expressed as

ϕt + f (ϕ)x = 0 (1.9)

Where the subscripts t and x denote the partial derivatives with respect to time and
space, respectively.

1.3.2 Gas dynamics

The science in the branch of fluid dynamics concerned with the study of motion of
gases and its effects on physical systems is called gas dynamics. The studies in gas
dynamics are often defined with gases flowing around or within physical objects at
speeds comparable to or exceed the speed of sound and causing a significant change
in temperature, density and pressure. These variables are related via conservation
laws. In this subsection, the conservation laws that describe the motion of polytropic
ideal gases, e.g. air, are presented [2]. They are the NS equations for compressible
flows.

The Continuity Equation

The continuity equation was already derived in section 1.3.1. In the continuity equa-
tion the density is the conserved variable, and can only change due to the flux of
density through the boundaries of the considered domain.

∂

∂t

∫
Ω

ρdΩ +
∫

∂Ω
ρu · ndS = 0 (1.10)

The differential form of the continuity equation is

ρt +∇ · (ρu) = 0 (1.11)

The Momentum Equation

Consider a gas at rest, with u = 0. Since the velocity is a macroscopic quantity
that represents an average over the molecules of a gas, one cannot say that the gas
is strictly at rest because the molecules are indeed moving, with their velocity. If a
pressure difference is applied at the boundaries of the gas domain, an acceleration
of the gas moving towards the zone with lower pressure will be seen. This means
that the pressure has a contribution on the momentum flux. The viscosity of the fluid
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also has a contribution in the momentum flux, which can be written (neglecting body
forces) as

∂

∂t

∫
Ω

ρudΩ +
∫

∂Ω
ρu(u · n)dS +

∫
∂Ω

pndS −
∫

∂Ω
τ · ndS = 0 (1.12)

The differential form of the momentum equation is

(ρu)t +∇ · (ρuu) = ∇ · τ −∇p (1.13)

Viscous stress tensor is related to the strain rate through the Stokes’ law

τij = µ

[(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
∂uk
∂xk

δij

]
(1.14)

In case of air, viscosity can be computed using the Sutherland’s law,

µ = 1.461−6 T3/2

110.3 + T
(1.15)

with T in K and µ in kg/ms.

The Energy Equation

The total energy is defined as

E = ρe +
1
2

ρu · u (1.16)

The term 1
2 ρu · u is the kinetic energy and ρe is the internal energy, with e the specific

internal energy (includes translational, rotational and vibrational energy and possi-
bly other forms of energy in more complicated situation). If one assume that the gas
is in local chemical and thermodynamic equilibrium, then the internal energy is a
function of pressure and density

e = e(p, ρ) (1.17)

This is called the equation of state of the gas. The integral form of the energy equation
is

∂

∂t

∫
Ω

EdΩ+
∫

∂Ω
Eu ·ndS+

∫
∂Ω

pu ·ndS−
∫

∂Ω
(τ · u) ·ndS+

∫
∂Ω

q · ndS = 0 (1.18)
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Where the work carried out by body forces has been neglected. The flux of energy is
given by the advection of energy due to the velocity, the work done by the pressure
and viscosity forces and the heat flux q. The differential form of the energy equation
is

Et +∇ · ((E + p)u) = ∇ · (τ · u)−∇ · q (1.19)

The heat flux is obtained according to the Fourier’s law,

q = −κ∇T (1.20)

where κ =
µcp
Pr , cp = 1004 J/kgK and Pr = 0.71 for air.

The Equation of State

In order to close the problem the equation of state must be specified. For an ideal gas

de = cvdT (1.21)

where cv is the specific heat at constant volume. If this coefficient is constant, the
internal energy is proportional to the temperature T, i.e. e = cvT. From the ideal gas
law,

p = ρRgT (1.22)

where Rg is obtained dividing the universal gas constant by the molecular mass of
the gas. It can be established (assuming constant cv)

e =
cv

Rg

p
ρ

(1.23)

The specific enthalpy of the gas is defined

h = e +
p
ρ

(1.24)

And for an ideal gas
dh = cpdT (1.25)

where cp is the specific heat at constant pressure. By the ideal gas law

cp − cv = Rg (1.26)

and defining the ratio of specific heats

γ =
cp

cv
(1.27)
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equation 1.23 can be written as

e =
p

(γ − 1)ρ
(1.28)

Finally, total energy is obtained

E =
p

γ − 1
+

1
2

ρu · u (1.29)

This is the relation that close the system. For air, under ordinary circumstances,
γ = 1.4 and Rg = 287 J/kgK.

Equations 1.11, 1.13 and 1.19 are the NS equations. They include second-order
derivatives that make the system parabolic. They are more realistic than the Euler
equations, which neglect viscosity and heat transfer terms. However, when the vis-
cosity and heat conductivity are very small, the Euler equations are a good approxi-
mation. The resulting discontinuous shock waves are good approximations to what
is observed in reality (very thin regions over which the solution is rapidly varying).
If discontinuities location is unknown , the grid resolution required for the computa-
tion of NS equations would increase the computational costs. Euler equations can be
used to find an approximate result, and then refine the model with the more realistic
NS equations if the costs are admissible.

Non-dimensional NS Equations

In some cases, it is more useful to work with non-dimensional parameters. In or-
der to derive the non-dimensional NS equations reference magnitudes have to be
defined, resulting in the non-dimensional variables,

x∗ = x
xre f

t∗ = t
tre f

ρ∗ = ρ
ρre f

u∗ = u
ure f

p∗ = p
ρre f u2

re f
T∗ = T

Tre f
E∗ = E

ρre f u2
re f

Introducing the non-dimensional variables in the NS equations one gets,

ρt +∇ · (ρu) = 0 (1.30)

(ρu)t +∇ · (ρuu) = ∇ · τ −∇p (1.31)
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Et +∇ · ((E + p)u) = ∇ · (τ · u)−∇ · q (1.32)

p =
ρT

γMa2
re f

(1.33)

The subscript (·)∗ has been dropped in sake of simplicity. Notice that the equation
of state is the only equation in the system that has changed, and it only involves
the computation of the gas constant as Rg = 1/γMa2

re f . The rest of relations still
unchanged except for the viscosity and heat transfer coefficient,

µ =
T3/2

Rere f

1.3686
0.3686 + T

κ =
µ

(1 − γ)Ma2
re f Prre f

(1.34)

As it can be seen, very few changes are applied on the overall formulation, so its
implementation is straightforward. Alternative non-dimensional equations can be
found in the literature, making use of a as reference velocity or introducing γ in
the definition of reference magnitudes, for example. Nevertheless, these approaches
complicate the overall numerical approach.

The three non-dimensional numbers that appear are the Reynolds number, the
Mach number and the Prandtl number

Re =
ρuL

µ
Ma =

u
a

Pr =
µcp

κ
(1.35)

where a =
√

γp/ρ is the speed of sound. The Reynolds number is the relation be-
tween inertial forces and viscous forces within the flow. Compressible flows are gen-
erally low-viscosity fluids at high-speeds which lead to high-Reynolds numbers in
almost every practical application. This means, in turn, turbulence and thin bound-
ary layers which require fine grids to capture all the important details. The Mach
number expresses the ratio between the fluid velocity and the speed of sound. As
it will be explained, information propagates within the flow at the speed of sound
relative to the fluid velocity. This property is used to classify compressible flows
in different regimens: subsonic incompressible (Ma < 0.3), subsonic compressible
(0.3 < Ma < 1), transonic (Ma ≈ 1), supersonic (1 < Ma < 5) and hypersonic
(Ma > 5). Below transonic conditions, compressible fluids are smooth and behaves
similar to incompressible flows. But once transonic conditions are achieved, discon-
tinuities in form of shock-waves can appear within the flow.
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1.3.3 Hyperbolicity

Under the assumption that ϕ is smooth, equation 1.9 can be rewritten as

ϕt + f ′(ϕ)ϕx = 0 (1.36)

where f ′(ϕ) = ∂ f
∂ϕ is the Jacobian matrix corresponding to the derivative of the flux

function with respect to the conserved variable. In general, system of equations
are faced, ϕ is a vector containing the several conserved variables and f ′(ϕ) is a
m x m matrix with m equal to the number of equations that form the system. For
convenience, equation 1.36 is rewritten as

ϕt + Aϕx = 0 (1.37)

where A = f ′(ϕ). Equation 1.37 is written in the so called quasilinear, or character-
istic, form. This linear system is called hyperbolic if the matrix A is diagonalizable
with real eigenvalues λ1 ≤ λ2 ≤ ... ≤ λm. This eigenvalues are also called character-
istic values. The matrix is diagonalizable if there is a complete set of eigenvectors,
i.e., if there are nonzero vectors r1, r2, ..., rm such that Arp = λprp for p = 1, 2, ...m.

Lets define the following matrices:

Λ =

 λ1

. . .
λm

 = diag(λ1, λ2, ..., λm). (1.38)

which is a diagonal matrix containing the characteristic values, and

R =

 r1 · · · rm

 (1.39)

is the eigenvectors matrix, containing the eigenvectors of the system. Notice that
A = RΛR−1. The definition of these matrix allows to rewrite equation 1.37 as follows

R−1ϕt + R−1 ARR−1ϕx = ωt + Λωx = 0 (1.40)

where ω is a vector containing the characteristic variables. Since Λ is a diagonal
matrix, and each λ is real, equation 1.40 can be seen as a decoupled system of m
wave equations that can be used to solve the original system of equations. Wave and
conserved variables are related via the eigenvectors,

ϕ = Rω =
m

∑
p=1

wprp (1.41)
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The characteristic variables can be interpreted as waves traveling at a finite speed
given by the characteristic value. The conserved variables can be seen, therefore, as
the combination of m waves traveling at the characteristic speeds λ1, λ2, ..., λm. With
only one equation the hyperbolic analysis is quite simple (only one characteristic
value, and the conserved and the characteristic variables are the same). When work-
ing with systems of equations, in order to develop a good numerical scheme, it is
required to determine properly which waves are traveling at which speed and their
relation with the conserved and primitive variables.

The NS equations are not hyperbolic, but parabolic, due to the viscous and heat
transfer terms. Nevertheless, in the vast majority of compressible cases, these terms
are almost negligible in the smooth parts of the flow. This means that far away from
the boundary layers, where viscosity and heat transfer are dominant, the hyperbolic
part of the system of equations play a major role. This fact is of vital importance in
the presence of shock-waves, where information directionality must be addressed by
the numerical scheme. This is the reason why classical schemes take advantage of
upwind-like approaches. However, as it will be seen in the next chapter, they are not
the best choice for turbulent problems.
Consider the one-dimensional Euler equations,

∂

∂t

 ρ
ρu
E

+∇ ·

 ρu
ρu2 + p
(E + p)u

 = 0 (1.42)

In order to obtain the Jacobian matrix of the system the flux vector is derived with
respect to the conserved variables,

A =

 0 1 0
1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 1)u3 − uH H − (γ − 1)u2 γu

 (1.43)

Where H = E−p
ρ is the specific total enthalpy. Now we can compute the eigenvalues,

λ =

 u − a
u

u + a

 (1.44)

and the eigenvectors,

R =

 1 1 1
u − a u u + a

H − au 1
2 u2 H + au

 (1.45)

The Euler equations form, indeed, a hyperbolic system of equations. The conserved
variables will be transported within the flow at the characteristic speeds given by λ
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Figure 1.1: Waves diagram for the Euler equations traveling at the characteristic
speeds at subsonic case (left) and supersonic (right).

in form of waves. Discontinuities within the flow will appear if |u| > a. Since the
information cannot travel faster than the speed of sound, the flow will have to adapt
to new conditions in small regions and short times, giving rise to what is called shock
waves.

1.3.4 An analytical example: The Sod’s Shock Tube

The aim of this subsection is to apply the previous concepts in a real application, as
a first approach to hyperbolic systems of equations. This case is called the shock
tube and, under some hypothesis, is possible to obtain its analytical solution [3].
Shock tubes have been used to measure dissociation energies and molecular relax-
ation rates, investigate shock wave behaviour, and they have been used in aerody-
namic tests. The fluid flow in the driven gas (the gas behind the shock wave) can be
used as a wind tunnel, allowing higher temperatures and pressures replicating the
conditions in the turbine sections of jet engines. However, test times are limited to
a few milliseconds, either by the arrival of the contact surface or the reflected shock
wave. They have been further developed into shock tunnels, with an added noz-
zle and dump tank. The resultant high temperature hypersonic flow can be used to
simulate atmospheric re-entry of spacecraft or hypersonic craft, again with limited
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testing times.
The shock tube problem is also very useful to evaluate the shock-capturing ca-

pabilities of a numerical method. This test will be used in the next chapter, among
other tests intended to give solid arguments involving the validation of the different
numerical techniques developed in the context of this thesis.

rest with different thermodynamic properties (pressure, density and tempera-
ture). The pressure in the region x < 0 (the working gas), denoted by the subscript
l, is higher than the pressure in the region x > 0 (the driven gas), denoted with the
subscript r. At t = 0 the membrane suddenly breaks, generating the air flow in the
tube. In the lower pressure region a shock wave travels at a speed D. Meanwhile, in
the higher pressure region an expansion waves occur. Between the heated gas and
the gas left behind by the expansion a contact discontinuity is placed that travels at
the local air speed. As it can be seen, the problem present several discontinuities in
the fluid properties. Accuracy in the correct capture of these discontinuities will be
required for a numerical code, and the comparison between the numerical and exact
solution will be useful in order to quantify the resolution of the different numerical
schemes. All the details concerning the resolution of the problem can be found in
appendix A.

Summarizing, characteristic lines are used to propagate the constant values of the
Riemann variables through the tube. This procedure allows to compute u and a at
any point, meanwhile p, ρ and T can be computed with equation A.3 and the equa-
tion of state. The change of the thermodynamic variables through the discontinuities
are given by the conservation laws through them. The present solution is analytical,
therefore exact. The exact solution for the Riemann problem is displayed in figure
1.2. Notice that the initial jump discontinuity is placed at x = 0.5. The solution is the
same but delayed in the x−direction. This non-dimensional solution belongs to the
following initial state, for t = 0.2.

ρl = 8 pl = 10/γ ul = 0 ρr = 1 pl = 1/γ ur = 0 (1.46)

It can be seen how the shock wave travels towards x > 0, giving motion to the
fluid and increasing pressure, density and temperature. Between the shock wave
and the contact discontinuity the properties remain constant. A jump in density
and temperature occur in the contact discontinuity, but velocity and pressure do not
change. Thorough the expansion wave, temperature, pressure and density smoothly
decrease from the initial conditions at the left side meanwhile the fluid is accelerated.
As it was already mentioned, notice the short time of the event (0.5 ms if reference
pressure is 0.1 MPa and reference density is 1.25 kgm−3).
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Figure 1.2: Non-dimensional exact solution for the Shock Tube problem at t = 0.2.
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1.4 Numerical methods

Equations of motion have been introduced and their most important continuous
properties have been presented. The discretization procedure is now discussed. Our
objective is the development of accurate numerical methods with minimal compu-
tational effort, flexible to solve different problems, easy to maintain and reliable. To
construct a numerical method for solving PDEs we need to consider how to repre-
sent our solution by an approximate solution, together with the main properties of
the PDE to be solved. We need ways to generate a system of algebraic equations
from the well-posed PDE and incorporate initial and boundary conditions. Basically,
to solve the system while minimizing unavoidable errors that are introduced in the
process. Considering the above mentioned one-dimensional conservation law

ϕt + f (ϕ)x = 0 (1.47)

We are going to discuss basic ideas and the advantages and disadvantages of differ-
ent classical methods.

The finite difference method (FDM) consists of representing the computational
domain by a set of collocated points. The solution is represented locally as a polyno-
mial

ϕ(x, t) =
2

∑
l=0

al(t)(x − xk)l f (x, t) =
2

∑
l=0

bl(t)(x − xk)l (1.48)

The PDE is satisfied in a point-wise manner

∂ϕ(xk, t)
∂t

+
f (xk+1, t)− f (xk−1, t)

hk + hk+1 = 0 (1.49)

Local smoothness requirement pose a problem for solving complex geometries, inter-
nal discontinuities and overall grid structure. Finite difference methods are simple
to understand, straightforward to implement on structured meshes, high-order ac-
curate, they allow explicit integration in time and they have an extensive body of
theoretical and practical work since the 60s. The main disadvantage is their imple-
mentation on complex geometries, non-suitability for discontinuous problems and
require grid smoothness.

On the other hand, finite volume methods (FVM) discretizes the domain with
a set of non-overlapping cells, where the solution is represented locally as a cell
average

ϕ(xk, t) =
1
hk

∫
Ωk

ϕ(x, t)dx (1.50)
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The PDE is satisfied on conservation form

hk ∂ϕ
k

∂t
+ f (xk+1/2, t)− f (xk−1/2, t) = 0 (1.51)

A flux function needs to be reconstructed on cells interfaces

f (xk+1/2) = F(ϕk, ϕk+1) (1.52)

Finite volume methods are robust, support complex geometries, are well suited for
hyperbolic problems, local, explicit in time, locally conservative (due to telescopic
property) and an extensive theoretical background exists since the 70s. Their main
problems are the inability to achieve high-order accuracy on general grids and grid
smoothness is required.

Another formulation, known as finite element method (FEM), consists in dis-
cretizing the domain by non-overlapping elements where the solution is represented
globally with piecewise continuous polynomials.

ϕ(x) =
K

∑
k=1

ϕ(xk, t)Nk(x) (1.53)

The PDE is satisfied in a global manner∫
Ωh

(ϕt + fx)N j(x)dx = 0 (1.54)

The semi-discrete scheme is implicit by construction and reduces overall efficiency
for explicit time-integration. Finite element methods are robust, support unstruc-
tured meshes, are high-order, well-suited for elliptic problems (due to the global
statement) and extensive theoretical framework exists since the 70s. Their main dis-
advantages are that they are not well suited for hyperbolic problems (due to direc-
tionality) and they are implicit in time (reducing overall efficiency).

An old methodology, which is currently being used successfully, is the so called
Discontinuous Galerkin Methods (DGM), and the more advanced PN PM methods [4].
This type of methods represent a combination of FEM and FVM that take advantage
of the local statement and geometrical flexibility of FVM, redefining the cell averaged
nature by the local high-order formulation of FEM. Briefly, the computational do-
main is subdivided into non-overlapping elements as in FVM and FEM. The global
solution is represented using local high-order polynomials similar to FEM. Elements
are then connected with numerical fluxes at elements interfaces as in FVM. DGM are
arbitrary high-order schemes, locally conservative, flexible, explicit in time, locally
adaptive (hp−refinement) and well-suited for hyperbolic problems. The main disad-
vantage is its higher computational cost and relative lack of theoretical background
compared with the other methods.
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Figure 1.3: Numerical methods comparison.

Among the above mentioned methodologies, we restrict ourselves to the FVM.
The reason of this choice is based on the robustness and ability to deal with hyper-
bolic problems in complex geometries and unstructured meshes. Since high-order
reconstructions for FV unstructured meshes are still an open issue, we will focus on
low-order schemes (first and second-order). This choice is strength by the fact that,
despite the use of high-order schemes, in the presence of shocks the order of accuracy
always reduces to one for unsteady cases. On the other hand, low-order schemes suf-
fer from numerical viscosity and dispersion errors. We will evaluate these issues in
the next chapters.

As mentioned before, in the FVM framework the computational domain is di-
vided in a set of non-overlapping elements, or control volumes. The global solution
is represented locally with the cell averages of the different variables. A general face
can be defined by its unitary normal vector and the two adjacent cells. Hence, the
flux through a normal face is defined as

Ff = F(ϕO, ϕP) (1.55)

where ϕO and ϕP are the values of ϕ in the adjacent cells and the unitary normal vec-
tor going form cell O to cell P. High-order reconstructions may use also information
from more cells

Ff = F(ϕO, ϕP, ϕ′
O, ϕ′

P) (1.56)

Finally, the PDE is satisfied in conservation form

Vi
∂ϕ

∂t
+

Ni
f

∑
f=1

F f · nA f (1.57)

where Vi is the volume of the cell, n is the face unitary normal vector, A f is the face
surface and Ni

f is the total number of faces that form the ith cell.
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1.5 Objectives of the thesis

At this point compressible flows have been defined, several fields of applications
have been mentioned, and the equations that describe their motion have been de-
rived from physical principles, i.e. the NS equations. The physical and mathematical
properties of the NS equations applied to compressible flows have been presented
and a simple analytical problem has been solved in order to consolidate the afore-
mentioned aspects of the phenomenology. From now on, the numerical resolution
of the NS equations is tackled with the aim of solving real world problems involving
compressible fluids, which usually consists of discontinuous turbulent flows. They
can be found in several fields such as aerodynamics, turbines, aircraft engines design
and more. In transonic regimes and beyond, this is when the speed velocity achieves
sonic conditions, discontinuities in form of shock waves may appear within the flow,
interacting with structural elements and other flow structures such as boundary lay-
ers and turbulent vortices. These interactions affect in turn the performance of the
studied object. Therefore, the objective of this thesis is to provide the numerical tools
required to investigate such phenomena in order to be able to quantify their effects
on real applications and predict their performance.

1.6 Outline of the thesis

First, the finite volume techniques required to numerically solve the NS equations
in a compressible framework are identified in chapter 2, where the most common
numerical approaches are presented and a unique hybrid numerical flux model is
developed in order to meet the requirements that will allow us to achieve our goals
(turbulent compressible flows from subsonic to supersonic). After that, boundary
conditions for turbulent compressible simulations are presented in chapter 3. In
chapter 4 the turbulence modeling of compressible flows is faced and the different
approaches that can be found in the literature are evaluated and tested. Special em-
phasis is put on shock-boundary layer interactions. With all that, we will have all the
tools required for solving compressible aerodynamics in any compressible regimen.
Finally, in chapter 5 the formulation for multi-component gases is presented. The
hybrid numerical scheme is upgraded in order to solve mixtures of gases and some
tests are performed. By adding the multi-component formulation we end up with a
numerical method capable of solving a wide range of real applications ranging from
subsonic, transonic and supersonic aerodynamics to supersonic mixtures in civil air-
craft, engines and turbomachinery. Final conclusions and further work is presented
in chapter 6.
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2

A hybrid numerical flux for

discontinuous turbulent

compressible flows.

2.1 Introduction

In this chapter, the methodology for the discretization of the NS equations using
FVM on unstructured meshes is presented. First, numerical methods for turbulent
compressible flows in the presence of shock waves are reviewed. As we will see,
traditional methods cannot be used at all compressible regimes. Some of them work
well for subsonic flows, but fail at transonic and supersonic speeds. Some others
work in all regimes when solving the Reynolds-averaged Navier Stokes equations
(RANS), but fail with direct numerical simulations (DNS) and large-eddy simula-
tions (LES). With the objective of building a numerical method that is suitable for
any kind of compressible flow, independently of the turbulent model used, a new
hybrid numerical scheme is developed. The new scheme is carefully tested in a
wide range of cases in order to evaluate its properties and performance.

2.2 State of the Art

The reference physical model consists of the compressible NS equations for a calori-
cally perfect gas, here written in semi-discretized form in a volume Vc whose surfaces
are A f :

21
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∂

∂t
ϕi +

1
Vc

∑
f

f (ϕ f )A f = 0 (2.1)

where ϕ is a vector containing the conserved variables.

ϕ =

 ρ
ρu
E

 (2.2)

and the flux-function is also a vector

f (ϕ) =

 ρu
ρuu + pn

(E + p)u · n

−

 0
τ · n

(u · τ) · n − q · n

 (2.3)

The numerical scheme will determine the form in which ϕ f is computed and, as we
will see, this aspect is crucial in the numerical simulation of compressible flows.

Numerical simulation of high-speed flows has a long history, dating back to the
beginning of the computer era [1–3]. Several textbooks on numerical methods have
appeared over the years [4–7]. Important advancements have been made, but com-
putational gasdynamics has not yet converged to an optimal computational strategy.
The purpose of this section is to check the status of the discipline and select the best
candidates for our numerical scheme among the enormous amount of material pro-
duced over the years, as illustrated by a recent comparative study [8].

For this thesis purposes, we limit ourselves to analyzing the family of FVM schemes
that are frequently used, especially in the academic community, for DNS and LES of
compressible turbulent flows. Resolving the wide range of scales present in these
flows requires numerical schemes that must be accurate, robust, and efficient in
terms of CPU requirements.

Neglecting molecular diffusion effects in 2.3 leads to the Euler equations, which
only incorporate the influence of macroscopic convection and molecular collisional
effects due to pressure forces. Some useful properties for the development of numer-
ical methods are briefly recalled here. First, the system of Euler equations can be cast
in characteristic form. This means that projection of the equations in any spatial di-
rection gives rise to a system of coupled wave-like equations used as a prototype for
the development of numerical methods for hyperbolic equations, as it was already
mentioned in the previous chapter. Second, the Euler equations have the obvious
property (as is clear from their integral form) that the integrals of ρ, ρu, E over an
arbitrary control volume can only vary because of flux through the boundaries. Un-
der the assumption of smooth flow, a balance equation in a finite volume Vc for the
kinetic energy ρu · u/2 can be derived combining the continuity and momentum
equations.
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∂

∂t

∫
Vc

ρu · u/2dV = −
∫

∂V
(ρu · u/2 + p)u · ndS +

∫
Vc

p∇ · udV (2.4)

Equation 2.4 shows that the total kinetic energy only varies because of momen-
tum flux through the boundary and volumetric work of pressure forces (which is
zero for incompressible flow). Additionally, the inviscid terms do not cause any net
variation. This property has inspired numerical schemes based on the attempt to
enforce kinetic energy preservation in the discrete sense. Other approaches based
on entropy functions can be considered, but they are out of our scope.

To summarize, high-speed flows typically feature regions where the flow is smooth,
and the governing equations in their differential form hold, interspersed by extremely
thin regions, where the flow properties vary abruptly. A possible exception is the
case of flows in which shocklets embedded in turbulent flow occur, associated with
velocity fluctuations of the order of the sound speed. Apparently, even when this
happens, their frequency and strength are not such to severely threaten the robust-
ness and accuracy of numerical algorithms. Furthermore, the shocklets thickness is
found to scale with the Kolmogorov length, rather than the mean-free path [9], mak-
ing their resolution possible in DNS. Therefore, it is not surprising that numerical
methods for high-speed flows have specialized into two classes, one capable of deal-
ing with smooth flows and the other with shock waves, each with quite different
properties. Indeed, it is known that standard discretizations used for smooth flows
cause (potentially dangerous) Gibbs oscillations in the presence of shock jumps,
whereas typical methods used to regularize shock calculations exhibit excessive nu-
merical viscosity.

2.2.1 Shock-capturing schemes

These schemes can capture shock waves while being stable. As mentioned before,
they suffer from excessive artificial diffusion. This effect can be alleviated construct-
ing high-order approximations, which is not a suitable solution for unstructured
grids. Furthermore, as numerical dissipation is reduced, Gibbs oscillation phenom-
ena appear. Therefore, the initial problem is not solved and additional viscosity has
to be added.

Upwind schemes

The upwinding approach, commonly followed in the gasdynamics community, is
based on the idea that solutions of the Euler equations propagate along characteris-
tics, and therefore a stable numerical method should also propagate its information
in the same characteristic direction.
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In the FVM framework, upwinding is usually achieved through the flux differ-
ence splitting, or Godunov approach. A suitable reconstruction operator is used to
determine approximate left and right states at the cell interface, and solving the Rie-
mann problem (like in the shock tube example in chapter 1). The interface flux is
replaced with the numerical flux resulting from an exact (or approximate) Riemann
solver [7, 10]. The extension to a higher order of accuracy is achieved by replacing
piece-wise constant reconstructions with piece-wise polynomial reconstructions [11].

Upwinding has the main effect of damping the Fourier modes with the highest
supported wave numbers, with a subsequent stabilizing effect on the numerical so-
lution. High-order upwind schemes have often been used for DNS of shock-free
compressible turbulence with a good degree of success. However, the numerical
dissipation introduced by upwinding can be harmful for LES, for which proper res-
olution of marginally resolved wave numbers is crucial, as it may hamper the effect
of subgrid-scale models. This is not the case of RANS simulations, where this kind
of schemes have been the most successful.

ENO and WENO schemes

Classical upwind schemes were found to suffer from loss of accuracy at both smooth
and nonsmooth extrema, which stimulated researchers to pursue alternatives for
constructing uniformly high-order accurate shock-capturing schemes. The success-
ful family of essentially nonoscillatory (ENO) schemes [12] is based on the idea of
determining the numerical flux from a high-order reconstruction over an adaptive
stencil that is selected to avoid as much interpolation across discontinuities as possi-
ble, thus minimizing Gibbs oscillations.

The type of the weighted essentially nonoscillatory (WENO) schemes, first intro-
duced by Liu et al. [13], and generalized and improved by Jiang & Shu [14], is based
on the idea of constructing a high-order numerical flux from a convex linear com-
bination of lower-order polynomial reconstructions over a set of staggered stencils.
Their weights are selected to achieve maximum formal order of accuracy in smooth
regions. Nearly zero weight is assigned to reconstruction on stencils crossed by dis-
continuities.

2.2.2 Energy-consistent schemes

These schemes do not introduce artificial viscosity, but are unstable in the presence
of shock-waves.

Central derivative approximations have been widely used in the literature, espe-
cially for wave propagation problems in which nonlinearities are weak [15]. How-
ever, it is known that application of standard central discretizations to high-Reynolds
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number turbulent flows typically leads to numerical instability, owing to the accumu-
lation of the aliasing errors resulting from discrete evaluation of the nonlinear con-
vective terms [16]. Such deficiency can also be traced back to the failure to discretely
preserve quadratic invariants associated with the conservation equations [17]. Al-
though finite viscosity may help to stabilize calculations, it is usually safer to revert
to alternative discretization techniques capable of ensuring stability in the inviscid
limit.

Several attempts have been made to design nonlinearly stable numerical schemes
by replicating the energy-preservation properties of the governing equations in the
discrete sense. Most efforts are based on the idea of splitting the convective deriva-
tives, i.e.

∂ρuiϕ

∂xi
=

1
2

∂ρuiϕ

∂xi
+

1
2

ϕ
∂ρui
∂xi

+
1
2

ρui
∂ϕ

∂xi
(2.5)

Discretization of the mass and momentum equations in the split form implies
kinetic energy preservation at the semidiscrete level [18], provided the difference
operators satisfy the summation by parts property [19]. Ducros et al. [20] showed
that the split convective forms give rise to locally conservative schemes, when the
derivative operators are discretized with explicit central formulas.

Stabilization

Filtering the computed solution is a commonly used practice to cure nonlinear insta-
bilities of central schemes, while retaining high-order accuracy [21,22]. Stabilization
of numerical schemes can also be achieved by enforcing, at the discrete level, the con-
servation properties associated with entropy. Tadmor [23] developed a second-order
FV, locally conservative discretization of the Euler equations. An alternative strat-
egy to ensure entropy stability was proposed by Gerritsen & Olsson [24], who split
the flux vector into conservative and nonconservative parts. Honein & Moin [18]
developed entropy-consistent schemes by applying the convective splitting given in
equation 2.5 to the Euler equations, upon replacement of the total energy equation
with the entropy equation. This approach effectively preserves the integrals of ρs
and ρs2. Those authors also showed that the internal and total energy equations can
be rearranged in such a way that the split convective form of the entropy equation
automatically follows. This is particularly advantageous, as the total energy equa-
tion is typically used in compressible flow codes, especially for shock calculations.

2.2.3 Shock-capturing techniques

Energy-consistent schemes presented in the previous section suffer from spurious
Gibbs oscillations near shock jumps, which may lead to nonlinear instabilities. The
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onset of oscillations can be avoided (or at least limited) by following two strategies.
The first one, the shock-fitting approach, treats shock waves separately from the rest
of the flow as genuine discontinuities. their dynamics are governed by their own
algebraic equations. The Rankine-Hugoniot relations are used as a set of nonlinear
boundary conditions to relate the states on the two sides of the discontinuity [25].
The second approach, the shock-capturing, uses the same discretization scheme at
all points and achieves regularization through the addition of numerical dissipation,
which inhibits the onset of Gibbs oscillations. Although the former approach often
guarantees more accurate representations of shocked flows [26], it is only feasible
in cases in which the shock topology is extremely simple and no shock waves are
formed during the calculation. In this review, we discuss only the shock-capturing
approach.

Artificial Viscosity Methods

The basic idea of artificial viscosity methods is to explicitly introduce the amount of
numerical dissipation needed to stabilize shock computations through the addition
of diffusive terms that adaptively adjust to the local regularity of the solution. Some
examples can be found in [3, 27].

Hybrid Schemes

This type of methods are based on the idea of endowing a baseline non-dissipative
scheme with shock-capturing capability through local replacement with a classical
shock-capturing scheme or through the controlled addition of the dissipative part of
a shock-capturing scheme, which is made to act as a nonlinear filter. A key role in
this class of schemes is played by shock sensors that must be defined in such a way
that numerical dissipation is effectively confined in shocked regions, so that it does
not pollute smooth parts of the flow field.

Shock-Capturing Through Subgrid-Scale Models

Methods of this type are based on the attempt to regularize weak solutions of the con-
servation equations through the addition of subgrid-scale models that drain energy
from the unresolved scales of motion, in analogy to what is done in LES of smooth
flows.

About shock-capturing methods

A major flaw of shock-capturing schemes, often disregarded, is the reduction of ac-
curacy near shocks. Indeed, even (nominally) uniformly high-order schemes yield
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first-order accurate solutions downstream of moving shocks, mainly because shocks
have zero thickness, and therefore their location is only known to O(h) on a finite
grid. The loss of accuracy was highlighted in model scalar shock-sound interaction
problems [28], and it is likely to be the cause of the slow convergence of apparently
simple shock/turbulence interaction calculations [29]. Shock-capturing schemes ap-
plied to systems of conservation laws also suffer from spurious post-shock oscilla-
tions, especially in the case of slowly moving shocks [30], which may prevent the
accurate prediction of shock/sound and shock/turbulence interactions, as observed
by Johnsen et al. [26]. These pathologies are apparently unavoidable, unless one
reverts to special techniques, such as subcell resolution [31] or even to shock-fitting.

FVM provide greater flexibility than FDM in dealing with complex geometries.
As locally conservative, FV schemes can be easily designed for both structured and
unstructured meshes. The FV framework also allows the design of one-step meth-
ods in time (as opposed to multistage Runge-Kutta time integration commonly used
for FDM). Furthermore, it appears that a FV formulation, with the use of suitable
positivity-preserving approximate Riemann solvers, is necessary in some instances,
such as the computation of compressible multicomponent flows, to avoid oscilla-
tions in the presence of material interfaces [32]. With regard to FVM for structured
meshes, it is known that straightforward dimensional splitting gives rise to second-
order errors (regardless of the accuracy of the underlying reconstructions), unless
computationally expensive quadratures are used to evaluate the flux integrals trans-
verse to the direction being reconstructed. High-order accurate, quadrature-based
FV schemes have been developed [33,34]. However, as observed by Ducros et al. [20]
the splitting error is usually small, and line-wise application of 1D reconstructions is
quite successful in practice, yielding an accurate representation of smooth flow fea-
tures and good shock-capturing properties. Unstructured meshes mandate the use of
both high-order flux quadratures at cell interfaces and genuinely multidimensional
reconstructions [35], thus making high-order FV schemes highly expensive. An im-
portant step in the direction of improving the computational efficiency of high-order
FV schemes was accomplished by Dumbser et al. [36], who succeeded in designing
one-step nonoscillatory FV schemes for unstructured tetrahedral meshes with arbi-
trary order of accuracy, without the need of quadratures. Their strategy exploits a
characteristic WENO reconstruction yielding the whole polynomial information in
each cell and a Cauchy-Kovalewski procedure to provide a space-time Taylor series
for the conserved quantities and the physical fluxes. This information is used to con-
struct highly accurate upwind numerical fluxes, which are subsequently integrated
analytically in space and time. A comprehensive review of modern FVM is given by
Toro [7].

Jameson [37] and Subbareddy & Candler [38] have developed second-order FVM
suitable for unstructured meshes that discretely preserve kinetic energy. In particu-
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lar, in the latter study, fully discrete energy conservation was obtained through a
density weighted Crank-Nicholson-like time integration, and shock-capturing was
incorporated in the method in the form of a TVD filter controlled by the Ducros sen-
sor. The development of energy and entropy-consistent methods for unstructured
meshes is dealt with in the monographic review by Perot [39].

2.2.4 Open issues

Some open issues remain. First, one must be aware that the global order of accu-
racy of shock-capturing schemes in unsteady problems is always reduced to unity,
and shock-capturing is the cause of spurious oscillations, especially downstream of
slowly moving shocks. These limitations, related to the misrepresentation of discon-
tinuities on a mesh with finite spacing, can only be overcome by some form of shock-
fitting. A detailed study of the effect of shock-capturing oscillations on the predic-
tion of shock/sound and shock/turbulence interactions is still pending and would
be highly desirable. Second, even though hybrid schemes are frequently used, a sys-
tematic quantitative analysis of the coupling between shock-capturing and non dissi-
pative schemes has not been carried out yet. Third, a comparative efficiency analysis
of numerical algorithms (in terms of CPU cost for a given error tolerance) for prob-
lems involving shock waves is not available at present, and cost figures are seldom
reported in computational studies. Fourth, it appears that efficient, low-dissipative
methods suitable for compressible turbulence simulation on unstructured meshes
are missing in the literature, one notable exception being the recent work of Sub-
bareddy & Candler [38] (however, limited to second-order accuracy). Further efforts
are needed before computational gas dynamics can reach a fully mature stage and
cope with the growing demand for DNS and LES of high-speed turbulent flows for
configurations of technological relevance. To summarize:

1. Methods designed for smooth flows and shocked flows have quite different fea-
tures. The former type is driven by the intent of achieving nonlinear stability without
introducing numerical dissipation. The latter type attempts to stabilize shock compu-
tations through the addition of some (possibly not excessive) numerical dissipation.

2. Robust and accurate methods for smooth flows can be developed with the
guidance of physical conservation principles of kinetic energy and entropy.

3. Discretization of the split convective form of the equations leads to methods
that are nonlinearly stable for smooth flows, also in the infinite Reynolds number
limit.

4. Shock-capturing methods are always globally first-order accurate for unsteady
problems, as the shock location is unknown to O(h), where h is the mesh spacing.

5. WENO schemes are the currently dominant type of shock-capturing methods,
as they are at the same time accurate and robust.
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6. WENO schemes are too dissipative for DNS and LES and should be preferably
used in hybrid form, i.e. in conjunction with low-dissipative algorithms for smooth
parts of the flow.

7. A key role for the success of hybrid methods is played by shock sensors that
should be able to localize the necessary amount of numerical dissipation around
shock waves.

8. Nonlinear artificial viscosity methods constitute an attractive alternative to
hybrid- WENO schemes.

The present thesis tackles the aforementioned lack on efficient, low-dissipative
methods suitable for compressible turbulence simulation on unstructured meshes.
The following sections and chapters are intended to develop such a kind of numer-
ical method to advance in the knowledge of computational gas dynamics for com-
pressible turbulent flows.

2.3 Development of a hybrid numerical scheme

Ideal numerical methods for highly compressible flows should be accurate and free
from numerical dissipation in smooth parts of the flow, and at the same time they
must robustly capture shock waves without significant Gibbs ringing, which may
lead to nonlinear instabilities. Adapting to these conflicting goals leads to the design
of strongly nonlinear numerical schemes that depend on the geometrical properties
of the solution. With low-dissipation methods for smooth flows, numerical stability
can be based on physical conservation principles for kinetic energy and/or entropy.
Shock-capturing requires the addition of artificial dissipation, in more or less explicit
form, as a surrogate for physical viscosity, to obtain nonoscillatory transitions.

In the previous section different methods used for the numerical simulation of
turbulent compressible flows in the presence of shocks have been presented. The
virtues and flaws of the different approaches have been stated. At this point all
the required information to chose a method to achieve the proposed objectives is
gathered. We focus only on low-order FVM for unstructured grids in order to solve
turbulent compressible flows, by means of DNS or any turbulent modeling (LES or
RANS). Therefore, upwind-like schemes are discarded because they are too dissi-
pative for DNS and LES. We chose, hence, the class of numerical schemes that are
kinetic energy preserving (central approximations) suitable for DNS and LES. In or-
der to stabilize the method in the presence of shocks, an upwind scheme will be
used only at shock-waves. The abrupt changes in the flow are identified by means
of a discontinuity sensor. The resulting scheme will be able to deal with any kind
of compressible flow (continuous or discontinuous, laminar or turbulent) and will
admit any type of turbulence modeling.
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Figure 2.1: Finite control volume diagram.

As a first step, we distinguish between discretized inviscid and viscous fluxes
(see equation 2.3).

F(ϕ f ) = Finv(ϕ f ) + Fvisc(ϕ f ) (2.6)

Inviscid fluxes are computed in most of the fluid domain using a Kinetic Energy Pre-
serving scheme as a basis. When the discontinuity sensor recognizes a discontinuity
within the flow, artificial diffusion is added in a very selective way by means of an
upwind method. This approach minimizes the amount of numerical viscosity while
having a stable scheme provided a fine tune of the discontinuity sensor, Φ.

Finv(ϕ f ) = (1 − Φ)FKEP(ϕ f ) + ΦFUDS(ϕ f ) (2.7)

Viscous fluxes are treated in section 2.3.4.

2.3.1 Kinetic energy preserving

Following section 2.2, the discretization of the convective terms in divergence form
(DIV) leads to unstable schemes.

F(ϕ f ) =
1
2
(F(ϕP) + F(ϕO)) (2.8)
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Alternative formulations are based on the splitting of the convective term of the
momentum equation in conservative and non-conservative form (see equation 2.5).
Ducros et al. [20] showed that different split convective forms of equation 2.5 give
rise to locally conservative schemes, when the derivative operators are discretized
with explicit central formulas. This splitting form (KEP) can be written as,

ϕ f =
1
2
(ϕP + ϕO) (2.9)

Figure 2.4 shows the comparison between DIV and KEP formulation on the inviscid
Taylor Green vortex problem. When KEP form is used, the total amount of kinetic
energy is preserved throughout the simulation. On the other hand, the use of DIV
form results in an error accumulation that rapidly blows up. This result confirms
what has been observed by other authors. Therefore, the splitting approach is pre-
ferred over the divergence formulation to use as a basis for our hybrid scheme for
the discretization of the convective terms of the Navier Stokes equations.

2.3.2 Numerical diffusion

The artificial diffusion required to make the numerical scheme stable in presence
of flow discontinuities is introduced by means of an upwind-like scheme. These
methods are based on the Godunov’s method, which solves the Riemann problem at
each cell interface. Consider ϕn

i the approximation to the cell average of ϕ(x, tn) over
the cell Vc.

ϕn
i ≈ 1

Vc

∫
Vc

ϕ(x, tn)dV (2.10)

The idea is to use the piecewise constant function defined by these cell values as
initial data ϕ̂n(x, tn) for the conservation laws. Solving over time ∆t with this data
gives a function ϕ̂n(x, tn+1) which is then averaged over each cell to obtain

ϕn+1
i =

1
Vc

∫
Vc

ϕ̂n(x, tn+1)dV (2.11)

If the time step ∆t is sufficiently small, the exact solution ϕ̂n(x, t) can be determined
by piecing together the solutions to the Riemann problem arising from each cell in-
terface.

We use equation 2.1 to update ϕn+1 with F(ϕ f ) = F(ϕ∗(ϕP, ϕO)) where ϕP and
ϕO are the averaged values of ϕ at each side of the face f (see figure 2.1). ϕ∗(ϕP, ϕO)
denotes the solution to the Riemann problem between ϕP and ϕO.

In order to avoid the interaction of waves from neighboring Riemann problems
the time step is required to be
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λmax∆t
∆x

≤ 1 (2.12)

where λmax is the maximum absolute value for the characteristic speeds and
∆x = V1/3

c .

The Riemann Problem

The Riemann problem consists of a hyperbolic equation with an initial piecewise
constant data represented by a single jump discontinuity

ϕ =

{
ϕl i f x < 0
ϕr i f x > 0 (2.13)

Notice that the shock tube problem is a Riemann problem. We expect this disconti-
nuity to propagate along the characteristic curves. The solution to the Riemann prob-
lem consists of the discontinuity ϕr − ϕl propagating at the characteristic speeds.

ϕl =
m

∑
p=1

wp
l rp ϕr =

m

∑
p=1

wp
r rp (2.14)

The solution to the Riemann problem is based on the sum of the waves propagating
to the left from the right region, plus the waves traveling towards the right from the
left region.

ϕ(x, t) = ∑
p:λp<x/t

wp
r rp + ∑

p:λp>x/t
wp

l rp (2.15)

An important fact is that the jump in ϕ is an eigenvector of the matrix A, being a
scalar multiple of rp,

(wp
r − wp

l )r
p = αprp (2.16)

This condition is called the Rankine-Hugoniot jump condition. Therefore, solving
the Riemann problem consists of taking the initial data and decomposing the jump
ϕr − ϕl into eigenvectors of A

ϕr − ϕl =
m

∑
p=1

αprp =
m

∑
p=1

Wp (2.17)

what in turn requires solving the linear system of equations

Rα = ϕr − ϕl (2.18)
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for the vector α. Finally, one can derive the expression for the flux function

F(ϕ f ) = AϕO +
m

∑
p=1

(λp)−αprp (2.19)

or

F(ϕ f ) = AϕP −
m

∑
p=1

(λp)+αprp (2.20)

Approximate Riemann Solvers

The process of solving the Riemann problem is often quite expensive, even though
in the end we use very little information from this solution in defining the flux. It is
often true that is not necessary to compute the exact solution to the Riemann problem
in order to obtain good results.

Approximate Riemann solvers can be applied much more cheaply than the exact
Riemann solver, giving still good results. For given data ϕP and ϕO, an approximate
Riemann solution might define a function that approximates the true similarity so-
lution to the Riemann problem. This function will consist of some set of Mw waves
Wp

f propagating at some speeds λ
p
f with

ϕP − ϕO =
Mw

∑
p=1

Wp
f (2.21)

A natural approach to define an approximate Riemann solution is to replace the non-
linear problem by some linearized problem defined locally at each cell interface

ϕt + A f ϕx = 0 (2.22)

The matrix A f is chosen to be some approximation to F′(ϕ) valid in the neighbor-
hood of the data ϕP and ϕO. The matrix A f should be diagonalizable with real eigen-
values. Since this is a linear problem, the Riemann problem can be solved more easily
than the original nonlinear problem,

ϕP − ϕO =
m

∑
p=1

Wp
f (2.23)

where Wp
f = α

p
f rp

f , being rp
f the eigenvectors of A f and α

p
f some coefficients.
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Roe Solver for the Euler Equations

Consider the Euler equations,

∂

∂t

 ρ
ρu
E

+∇ ·

 ρu
ρuu + pn
(E + p)un

 = 0 (2.24)

The approximated Jacobian matrix for a general face, A f , is


0 nx ny nz 0

(γ − 1)eknx − uun un − (γ − 2)unx uny − (γ − 1)vnx unz − (γ − 1)wnx (γ − 1)nx
(γ − 1)ekny − vun vnx − (γ − 1)uny un − (γ − 2)vny vnz − (γ − 1)wny (γ − 1)ny
(γ − 1)eknz − wun wnx − (γ − 1)unz wny − (γ − 1)vnz un − (γ − 2)wnz (γ − 1)nz
((γ − 1)ek − H)un Hnx − (γ − 1)uun Hny − (γ − 1)vun Hnz − (γ − 1)wun γun


(2.25)

where n = (nx, ny, nz) is the face normal vector, u = (u, v, w) is the velocity vector,
un = u · n is the face normal velocity, ek =

1
2 u · u is the specific kinetic energy.

The eigenvalues of the Jacobian matrix can be found solving the system ,

det(A − λI) = 0 → λ =


un − a

un
un
un

un + a

 (2.26)

and the eigenvectors must satisfy AR = λR,

R =


1 1 0 0 1

u − anx u ny −nz u + anx
v − any u −nx 0 v + any
w − anz u 0 nx w + anz
H − aun ek uny − vnx wnx − uny H + aun

 (2.27)

These eigenvectors are not unique, and any linear combination of them can also be
used [40].

For the Euler equations, Roe [10] proposed the parameter vector z = ρ−1/2ϕ,
leading to the averages,

û =
√

ρPuP+
√

ρOuO√
ρP+

√
ρO

Ĥ =
√

ρP HP+
√

ρO HO√
ρP+

√
ρO

â =

√
(γ − 1)

(
Ĥ − 1

2 û2
) (2.28)
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However, a simple central approximation of the variables at the face has proved to
be also satisfactory. The eigenvalues and eigenvectors of the Roe matrix are then ob-
tained by evaluating equations 2.26 and 2.27 at this averaged state. The coefficients
α

p
f in the wave decomposition,

δ = ϕP − ϕO = α1r1 + α2r2 + α3r3 + α4r4 + α5r5 (2.29)

can be obtained by inverting the matrix of right eigenvectors, which leads to the
following formulas:

α1 =
1
2

(
δρ − α2 −

δρu · n − δρun

a

)
(2.30)

α2 =
1

ek − H

(
δE − H f δρ − α3(uny − vnx)− α4(wnx − unz)− (δρu · n − δρun)un

)
(2.31)

α3 =
1

nx + ϵ

(
δρv − δρv + (δρu · n − δρun)ny

)
(2.32)

α4 =
1

nx + ϵ

(
δρw − δρw − (δρu · n − δρun)nz

)
(2.33)

α5 =
δρu · n − δρun

a
+ α1 (2.34)

where δρu = (δρu, δρv, δρw) and ϵ is a small number to avoid division by 0.
Other approximate Riemann solvers have been used over the past decades, e.g.

HLL and HLLC among others. These approximate solvers, nevertheless, have not
been as satisfactory as the Roe solver. They do not use the full structure of the origi-
nal Riemann problem, considering only two (HLL) or three (HLLC) waves. Details
on this solvers can be found in [41].

Flux limiters

Flux limiters can be used to reduce numerical diffusion of the first-order upwind
method. If we attempt to use a Godunov method solely, flux limiters are required
because the first-order approach is very diffusive. Nevertheless, when using hybrid
methods the upwind scheme is used so selectively that the need of numerical diffu-
sion reduction is not a requirement for the method. It can be useful to increase shock
sharpness in coarse meshes.

Flux limiters are based on the concept of total variation diminishing (TVD).

F(ϕ f ) = F(ϕ f )
1st +

1
2

m

∑
p=1

|λp
f |
(

1 − ∆t
∆x

|λp
f |
)

Θ(α̂
p
f )r

p
f (2.35)
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where α̂
p
f is a limited version of α

p
f obtained comparing the wave coefficients of adja-

cent Riemann problems in the upwind direction.

α̂
p
f =


α

p
fO

α
p
f

i f λ
p
f > 0

α
p
fP

α
p
f

i f λ
p
f < 0

(2.36)

and Θ(θ) is the flux limiter function. Some functions are,

Θ(θ) =


max(0, min(1, 2θ), min(2, θ)) SUPERBEE

max(0, min( 1+θ
2 , 2, 2θ)) MCLIMITER

θ+|θ|
1+|θ| VANLEER

(2.37)

Many more can be found in the literature. This approach increases considerably the
computational effort since now we are solving three Riemann problems at each face.
The information must then be available for each face. Therefore, it also affects mem-
ory performance. Figure 2.2 shows a comparison of the results for the shock tube
problem using the upwind scheme with and without flux limiters. As it can be seen,
solution is sharper with flux limiters and less control volumes inside discontinuities
are found.

2.3.3 Shock capturing

For our hybrid scheme, shock capturing is achieved via a discontinuity sensor. This
sensor is required to force the use of the non-dissipative scheme in the regions of
turbulent smooth flow, while using the dissipative scheme in the vicinity of shocks.
This means that a good sensor must distinguish between turbulent structures and
flow discontinuities. To that end, sensors based on the divergence of the velocity
vector and the magnitude of the vorticity are preferred. In the framework of this
thesis, two different sensors have been used. The first one was proposed by Ducros
[42] and has the form

Φ =
(∇ · u)2

(∇ · u) + |∇ × u|+ ϵ
(2.38)

where ϵ is a small number to prevent division by zero.
An improvement over the Ducros sensor is the Larsson sensor [43], which has

the form

Φ =

{
0 i f Θ ≤ 1
1 i f Θ > 1 (2.39)
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where

Θ =
−∇ · u

max(Lss1|∇ × u|, Lss2
( a

∆x
)
)

(2.40)

Here a is the speed of sound, ∆x = V1/3
c , and Lss1 and Lss2 are problem dependent

constants. The Larsson sensor has the advantage of being binary, i.e. it can only take
the values 1 (shock detected) or 0 (smooth flow). Furthermore, a fine tuning of the
two constants allow more precision in the shock capturing than the Ducros sensor,
especially in the interaction between shocks and boundary layers.

2.3.4 Discretization of viscous fluxes

Viscous terms are computed using a standard central difference approximation.

Fvisc(ϕ f ) = Fvisc(
1
2
(ϕP + ϕO)) (2.41)

This approach has been successfully used in several works and no problems have
been encountered so far.

2.4 Numerical tests

The aim of this section is to test the presented hybrid numerical scheme, evaluating
its performance and validating its application in real world problems. Numerical
tests are focused on the evaluation of key aspects of the hybrid method and all the
parts involved, i.e the KEP scheme, the UDS scheme and the discontinuity sensor.

2.4.1 The Shock Tube Problem

The shock tube problem with air was used to evaluate the shock capturing capability
of the method. A 100 x 5 x 5 structured mesh was used. The flow was initialized at
the conditions ρl = 8, pl = 10/γ, ul = 0 and ρr = 1, pr = 1/γ, ur = 0. The solution
for t = 0.2 is presented in figure 2.2. Results show that all the approaches are able to
capture discontinuities, although the KEP method is unstable near them. The use of
a flux limiter helps to increase shock sharpness. The hybrid approach gives similar
results than Godunov’s approach.
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Figure 2.2: Comparison between upwind-like (UDS), kinetic energy preserving
(KEP), superbee flux limiter (SUP) and hybrid (HYB) schemes on the shock-tube
problem.
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2.4.2 Advection of a two-dimensional isentropic vortex

One way to test the numerical dissipation of a given numerical scheme is the advec-
tion of an inviscid two-dimensional isentropic vortex. The vortex is placed within
a freestream and is advected through a full periodic domain. Some vortex proper-
ties, density for example, can be traced in time in order to see whether the numerical
scheme is dissipating the vortex or simply advecting it. Since the problem is inviscid
any vortex dissipation will be due to the numerical scheme artificial viscosity.

The vortex model used for the simulation is a Lamb-type vortex [44]. This vortex
has a finite core. The principal parameters that characterize the vortex are its strength
Γ and the radius of its core rc. The cylindrical velocity distribution of a point located
at a distance r from the vortex core center is given by

uθ =
Γ

2πR
r2

r2 − r2
c

(2.42)

The pressure and density fields induced by this vortex in a uniform freestream can
be determined from the radial momentum equation and the constant total enthalpy
flow relation, namely:

p = p∞e f (r) (2.43)

ρ =

(
γ

γ − 1
1

h∞ − 1/2u2
θ

)
p (2.44)

where

h∞ =
γ

γ − 1
p∞

ρ∞
(2.45)

f (r) =
2D

E1/2

[
tan−1

(
2r2 + B

E1/2

)
− π

2

]
(2.46)

with

D = 1/2
(

Γ
2π

)2 p∞

ρ∞
(2.47)

B = 2r2
c − D(γ − 1)/γ (2.48)

E = 4rc
2 − B2 > 0 (2.49)
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It is noted here that equations 2.42, 2.43, and 2.44 satisfy the governing equations for
steady, inviscid, and adiabatic two-dimensional flows. The vortex disturbance field
is then given by

∆u = −uθsinθ
∆v = uθcosθ
∆ρ = ρ − ρ∞
∆p = p − p∞

(2.50)

The initial conditions simulating the presence of a vortex in a steady and uniform
flow region of some background flow field can be constructed as follows:

u = ub + ∆u
v = vb + ∆v
p = pb + ∆p
ρ = ρb + ∆ρ

(2.51)

Here, the subindex b denotes some background flow. It is noted here that vortex
must be placed in a region in which ub, vb. ρb and pb are steady and uniform.

Calculations are started from this initial condition, integrating the flow equations
on a fixed grid to follow the convection of this vortex through the computational grid.
In these calculations, the reference length is the vortex core radius and the reference
flow conditions are the free stream conditions. Time, t, is made dimensionless by
freestream velocity and the vortex core radius, e.g. an increment ∆t = 1.0 represents
the time required for a particle at freestream velocity to travel one vortex core radius.

In order to evaluate the numerical diffusion of the methods, a study of the advec-
tion of a two-dimensional isentropic vortex was performed [44] . The KEP and UDS
methods, with and without flux limiter, are compared in a 120 x 120 structured grid.
Periodic boundary conditions are imposed in all directions. A 20 x 20 computational
domain was used, and a vortex with strength Γ = 20 and rc = 5 was superimposed
in a Ma = 0.536 freestream.

As it is an inviscid problem, the initial solution is expected to be moved over
time within the freestream with no dissipation. That means that any diffusion of the
initial vortex is due to the numerical scheme. The initial density profile is compared
against the vortex density profile at the three first vortex turnarounds. The results
are depicted in figure 2.3. The KEP method preserves the initial solution unchanged
over time, while Godunov’s approach dissipate the initial vortex over time. The use
of flux limiters alleviate this problem, although numerical diffusion still affects the
solution quality.

This result is the clear example of why kinetic energy preserving methods must
be used when DNS or LES are used on the analysis of turbulent flows. Upwind-
based schemes diffuse the turbulent structures affecting the solution. Resort to high-



2.4. NUMERICAL TESTS 41

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10  20

x

Density profile (y = 0.0)

 Initial
 KEP1
 KEP2
 KEP3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10  20

x

Density profile (y = 0.0)

 Initial
 UDS1
 UDS2
 UDS3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10  20

x

Density profile (y = 0.0)

 Initial
 SUP1
 SUP2
 SUP3

Figure 2.3: Density profile of the vortex at the first three turns for KEP (top left),
upwind (UDS, top right) and upwind with the Superbee flux limiter (SUP, bottom).
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order schemes (like the use of flux limiters) reduce the amount of numerical viscosity,
but not completely. This fact, combined with the reduction of the order of accu-
racy to one in unsteady shocked-flows, favor the use of low-order energy preserving
schemes instead of (very) high-order upwind-like schemes. The advection of a 2D
inviscid vortex is a simple test, but the same results can be seen on more complex
three-dimensional flows.

2.4.3 Taylor-Green Vortex Problem

The Taylor-Green vortex problem evolves from a resolved initial condition contin-
ually stretching and producing ever smaller structures analogous to the cascade of
structures found in turbulent flow. If used in a inviscid regimen, such as the Euler
equations, there is no lower bound on the length scale of these structures because the
is no dissipation other than the provided by the advection scheme used. Therefore,
the inviscid Taylor-Green vortex problem can be used to test the level of numerical
dissipation of numerical schemes by means of their ability to temporally conserve
the mean kinetic energy (or other thermodynamic property). Furthermore, it can be
used to evaluate the temporal stability of a numerical method. For the initial condi-
tions, the following dimensionless quantities are used,

p = 1
16γMa2 (cos(2z) + 2(cos(2x) + cos(2y)))

u = sin(x)cos(y)cos(z)
v = −cos(x)sin(y)cos(z)
w = 0

(2.52)

with reference density and temperature, ρ = T = 1. Some tests were conducted in
a 323 grid all periodic 2π3 cubic domain in order to test the numerical stability of
the two methods. As it can be seen in figure 2.4 the divergence form is unstable and
diverge before 5 time units. On the other hand, the splitting form conserves kinetic
energy and is stable.

The diffusive properties of upwind schemes can be clearly seen in this problem.
Results shown in figure 2.5 compare the time evolution of the total kinetic energy
for the first order upwind scheme, a superbee flux limiter and the kinetic-energy
preserving scheme presented in section 2.3.1. As it can be seen, the first order up-
wind scheme dissipates energy at a faster rate that the flux limiter scheme. This is
the clear example of the properties we seek for our hybrid scheme, a non-dissipative
base with a diffusive scheme to be used in a selective way only where it is necessary
for stability purposes.
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Figure 2.6: Computational domain and instantaneous density contours.

2.4.4 Supersonic Cylinder

The two-dimensional Mach 3.5 flow of a calorically perfect gas over a circular cylin-
der was simulated to test the ability of the hybrid scheme to resolve a flow rich in
shock-shock and shock-vortex interactions. These type of interactions are of particu-
lar interest when computing turbulent flows with shock-boundary layer interactions
(SBLIs). To that end, a viscous flow over a cylinder at a moderate Reynolds was com-
puted to provide a complex temporally evolving flow. This case will check the ability
of the hybrid scheme to robustly and reliably capture and resolve shock-shock and
shock-vortex interactions.

Geometry and flow properties are defined in figure 2.6. Three grids were used to
study the scheme behavior, one composed by ≈ 100k control volumes, a second one
composed by ≈ 300k control volumes and a final one composed by ≈ 600k control
volumes. All three meshes are unstructured grids, refined over the cylinder surface
to ensure well reproduction of the boundary layer and also refined in the wake zone
to reproduce well turbulent vortex.

The inlet and outlet boundaries, x = −3 and x = 21, are treated as supersonic
inflow and non-reflective outflow respectively. The lower and upper boundaries,
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y = ±3, are treated as inviscid walls. The cylinder wall is treated as a non-slip
adiabatic wall. The flow is initialized with the upwind numerical scheme and run
over several time units. Then, the hybrid scheme is enabled and the flow is simulated
forward in time with the third order Runge-Kutta TVD scheme.

The discontinuity sensor behavior is depicted in figures 2.7 to 2.9. Figure 2.7
shows the Ducros sensor field for three different threshold values, ranging form 0.001
to 0.01. As it can be seen, for the lowest threshold value, the instability sensor over
predicts the shock zone and introduce too much diffusion. As we raise the threshold,
less flow is affected, being the threshold value of 0.005 the optimum value in this case,
since the highest one (0.01) leads to a unstable simulation due to a lack of artificial
diffusion. Nevertheless, when compared with results shown in figure 2.8, we see
that the Ducros sensor is not as well suited for unstructured meshes since grid size
also affect the discontinuity sensor field. This is the reason why the Larsson sensor is
preferred, since it is sharper in discontinuities, not affected by grid configuration and
since it is defined by two constants it is more versatile, being able to control shock-
wave width and also the level of penetration in the boundary layer. Furthermore, for
the lowest constant cases, turbulence is left unaffected by the discontinuity sensor
(which only grows in shocks).

2.5 Application on the flow around a NACA0012 airfoil

The objective of this study is to analyze the turbulent flow around a NACA 0012 air-
foil at Re = 50000, angle of attack AoA = 5◦ in different compressible regimes: from
nearly incompressible (Ma = 0.1) to subsonic compressible (Ma = 0.4 and 0.6). The
hybrid numerical scheme presented in this thesis will be used. Part of these results
were presented at ECOMASS’14, under the title Comparing kinetic energy preserving
and high-order Godunov schemes on simulations of the flow around a NACA 0012. Avail-
able data exists from other authors [45,46] that will be used to validate the numerical
scheme. Jones et al. [46] computed DNS of the flow at Ma = 0.4 and provided refer-
ence data for this regimen. Rodríguez et al. [45] computed the incompressible flow
around the airfoil and characterized the laminar separation bubble (LSB) behavior
for this regimen. Both studies are used to verify the two first cases. Afterwards, a
more challenging case at Ma = 0.6 is studied. At this point, the flow undergoes
transonic resulting in a completely different flow behavior and strongly affecting the
airfoil performance. To the author’s knowledge, this case has not been presented yet.

Under adverse pressure gradient a boundary layer may separate, leading to re-
verse (upstream) fluid flow. Within the separated region disturbances are strongly
amplified, typically leading to transition to turbulence. The resultant turbulent flow
enhances mixing and momentum transfer in the wall-normal direction, and causes
the boundary layer to reattach. This system of laminar separation, transition and
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(a) Threshold at 0.001

(b) Threshold at 0.005

(c) Threshold at 0.01

Figure 2.7: Ducros discontinuity sensor comparison.
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(a) Lss1 = 0.1 and Lss2 = 0.01

(b) Lss1 = 0.5 and Lss2 = 0.05

(c) Lss1 = 1.0 and Lss2 = 0.1

Figure 2.8: Larsson discontinuity sensor comparison.
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(a) Lss1 = 0.1 and Lss2 = 0.01

(b) Lss1 = 0.1 and Lss2 = 0.1

Figure 2.9: Larsson discontinuity sensor comparison.
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turbulent reattachment is referred to the already mentioned laminar separation bub-
ble (LSB), and is typically associated with flows at low to moderate Reynolds num-
bers. In airfoils, forces are typically increased leading to loss in aerodynamics perfor-
mance. The purpose of the present study is to investigate the influence of the Mach
number on the LSB behavior and aerodynamic performance.

Grid geometry, resolution and boundary conditions.

The NACA0012 includes a sharp trailing edge and is rescaled to unit chord. The
coordinate system is defined such that the leading and trailing edges are located at
(x, y) = (0, 0) and (1, 0) respectively. Grids are unstructured, consisting of about
265k control volumes in a two-dimensional plane that is equidistantly spaced in the
z−direction a total number of 96 planes. Therefore, the whole mesh involves more
than 25M control volumes.

All simulations were run at a Reynolds number based on airfoil chord of Re =
5 × 104, AoA = 5◦, at Ma = 0.1, 0.4 and 0.6. The compressible NS equations are
solved, using the hybrid numerical scheme presented in this thesis. The explicit
third-order Adam-Bashford scheme is chosen for the temporal integration. Concern-
ing boundary conditions, a subsonic inflow is used, along with a non-reflecting out-
flow. The surface of the airfoil is treated as a non-slip adiabatic wall. Periodicity is
assumed in the span-wise direction.

Grid resolution is assumed to be enough for a DNS simulation, since the defined
grid is the same that the one used in [45], where a resolution study was conducted
to ensure all scales are resolved. As for the span-wise direction, a length of 0.2 is
chosen based on reference studies.

Figure 2.10: NACA0012 airfoil computational domain.
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Statistical analysis

As it can be seen in table 2.1 and figure 2.11, the presented results are in good agree-
ment with the reference results. The lift coefficient CL rises as Mach increases, as it
is predicted by the Prandtl-Glauert equation (Cp(M) = Cp(0)/(1 − M2)). The same
can be said for the drag coefficient CD. Concerning the LSB, the separation point xsep
moves towards the leading edge due to the higher adverse pressure gradient. The
reattachment point xreatt also moves towards the leading edge, but the overall LSB
length remains nearly constant, xreatt − xsep ≈ 0.4 in all cases. Nevertheless, the LSB
height increases with the Mach number due to the pressure waves build up towards
the leading edge.

Case CL CD xsep xreatt
Rodríguez et al. 0.569 0.0291 0.170 0.566
DNS (M = 0.1) 0.569 0.0278 0.175 0.548

Jones et al. 0.615 0.0294 0.128 0.500
DNS (M = 0.4) 0.624 0.0334 0.119 0.492

Table 2.1: NACA0012 airfoil comparison with reference data.

Once the numerical approach is verified against other studies, a more challenging
and unexplored case is performed. This is the transonic Ma = 0.6 flow aorund the
airfoil. Traditional schemes based on numerical diffusion cannot be used for this
case because the aritifitial dissipation would destroy turbulent scales. On the other
hand, energy-consistent schemes cannot either be used because as soon as the flow
reaches transonic conditions, error accumulation around shock-waves would result
in a simulation blow-up. Hence, this is a sweetspot for our hybrid scheme: DNS
(and LES) of turbulent flows with discontinuities. This is part of the reason why a
relatively small number of transonic DNS and LES are found in the literature, the
lack of accurate and stable numerical schemes that can deal with such flows.

First, the time evolution of the lift coefficient for the compressible cases are pre-
sented in figure 2.13. It can be seen how the CL for the subsonic case, Ma = 0.4, os-
cilates at a high frequency near its mean value. In this case, the flow is attached and
unsteadiness is caused by the vortex shedding downstream. This behavior is typical
of attached flows. On the other hand, the lift time evolution of the transonic case,
Ma = 0.6, shows the loss of performance once the transonic regimen is achieved. A
very low frequency and high amplitude behavior is observed denoting a process of
flow attachment and reattachment. This phenomenon is kown as transonic buffet
and limits aircraft flight envelope. It causes a dramatic loss in performance. For this
reason, it is very important to control it.

Q-criterion is used to visualize turbulent structures on the transonic airfoil in fig-
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Figure 2.11: Pressure (left) and skin friction (right) coefficients distribution.

ure 2.14 . Two states are depicted, matching the higher and lower peaks on the lift
coefficient time evolution. When the lift coefficient is higher, the flow is subsonic.
Hence, the configuration is similar to that observed in the subsonic case. Never-



52 CHAPTER 2. FVM FOR COMPRESSIBLE FLOWS

Figure 2.12: Q iso-contours for Ma = 0.4.

theless, the flow tends to accelerate through the extrados achieves sonic conditions
forming a shock wave. This shock causes a high adverse pressure gradient on the
boundary layer, causing it to fatten and resulting in a boundary layer detachment.
This in turns causes the lift coefficient to drop abruptly causing the stall of the air-
foil. Nevertheless, since the far field flow conditions are still subsonic, the flow can
reattach again causing the lift coefficient to increase again repeating the cycle.

Summary

In the current work the subsonic incompressible, subsonic compressible and tran-
sonic compressible flow over a NACA0012 airfoil has been studied. The simulations
have been performed by means of DNS at a Re = 50000, AoA = 5◦ and Ma = 0.1, 0.4
and 0.6. All computations have been carried out in the same 26MCVs grid. The sub-
sonic cases, corresponding to Ma = 0.1 and 0.4 have been compared with reference
studies [45, 46]. Time-averaged lift coeffcients are computed and compared, giving
excellent agreement. LSB separation and reattachment points have also been com-
puted and compared, with a good level of agreement. It was found that incresing
the Mach number results in a higher value of the lift coefficient. Also, the detach-
ment and reatachment points of the LSB moved towards the leading edge as Mach
increased. Nevertheless, the total length of the LSB was nearly constant while its
high decreased due to higher pressure build-up.

Once the numerical set-up was verified, a transonic case was performed. At this
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Figure 2.13: Lift coefficients time evolution.

regimen, lift coefficient showed a highly transient evolution high abrupt changes.
The transonic buffet phenomena was observed and characterized, causing the flow
over the airfoil to dettach and attach completely at very low frequencies. In super-
sonic aviation we want to fly fast, and since aircraft must take off and land transonic
effects will occur in aircraft operation. First, the numerical tools presented in this
thesis can be used to study the aerodynamic performance of such vehicles. Then,
phenomenon like buffet (among others) can be characterized. Afterwards, the geo-
metrical design can be changed in order to mitigate such loss in performance. Finally,
the process would be repeated until design constrains are met. Flow control devices
can also be added to the geometry and studied using the numerical tools developed
in this thesis. Vortex-generators, for example, are useful devices in order to overcome
performance loss due to transonic buffet.

2.6 Conclusions

At the beginning of this chapter we reviewed the state of the art concerning the nu-
merical simulation of turbulent compressible flows. The main conclusions of this
process revealed that in order to simulate the kind of flows we are interested in we
have to use numerical schemes with low numerical dissipation. Kinetic energy pre-
serving schemes (KEP) are chosen as the basis of our hybrid scheme since they do
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Figure 2.14: NACA0012 airfoil Q iso-contours for Ma = 0.6, subsonic regimen (top)
and transonic (bottom).
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not introduce numerical diffusion at all. However, in the presence of flow discon-
tinuities, this kind of methods suffer from instabilities. It is at this point where we
resort to an upwind scheme in order to introduce a small amount of numerical dif-
fusion, only in shock waves. The use of a good shock sensor is crucial for a hybrid
scheme.

Concerning the implementation details, we saw how the use of a KEP scheme in
its splitting form is required in order to obtain a scheme that is both accurate and
stable in time. On the other hand, the use of a approximate Riemann solver help to
overcome the cost related to the solution of the Riemann problem required by the
upwind scheme.

The developed method has been tested in several cases designed to evaluate the
different key properties that a numerical scheme must present in order to simulate
turbulent discontinuous flows accurately and reliably. They are: the ability to iden-
tify and reproduce shocks without interfering other flow structures (turbulent vortex
and boundary layers), kinetic energy-preservation on the smooth parts of the flow
minimizing the introduction of numerical dissipation. The first test consisted on a
shock tube. Results showed that the KEP scheme was unstable due to the discontinu-
ities, while the hybrid and UDS scheme were stable. The second test consisted on the
advection of a 2D isentropic vortex. Results showed that the KEP scheme was able
to advect the vortex indefinitely conserving its shape, while the UDS scheme was
diffusing the vortex throughout the simulation. Since the problem has no disconti-
nuities, only the KEP part of the hybrid scheme was activated. The next test was
the 3D Taylor-Green vortex problem, which confirmed the ability of the KEP scheme
to preserve the total amount of kinetic energy during the simulation while the UDS
scheme dissipated it. We also confirmed the requirement on using the KEP scheme
in its splitting form, since the diverging form resulted in a fast simulation blow up.
The final test consisted on the supersonic flow around a circular cylinder. We demon-
strated that the use of a Larsson detector is a better choice for unstructured grids. We
also saw the ability of the final hybrid scheme to capture sharp discontinuities leav-
ing turbulent structures unaffected by the numerical diffusion. After all the test were
performed, the hybrid scheme was used to study the flow over a NACA0012 airfoil
at different compressible regimens. Concerning the computational part of the study,
the hybrid scheme performed well in all the cases. For the subsonic cases, results
showed very good agreement with reference data. On the transonic case, the scheme
also performed well, allowing to obtain results thanks to the stabilization introduced
via the upwind scheme whenever shocks appeared. Concerning the physical part of
the case, we saw how increasing the Mach number affects the LSB behavior, moving
it towards the leading edge until the flow undergoes transonic. Once this condition
is achieved, the flow separates and reattaches at a small frequency causing the flow
to be highly unstable with a strong loss in performance. This phenomena is known
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as buffet and it is typical of transonic flows over airfoils.
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3

Boundary conditions for

turbulent compressible

flows.

3.1 Introduction

For the resolution of any system of Partial Differential Equations (PDEs) two ele-
ments are required to close the problem: the initial condition and boundary condi-
tions. The initial condition establish the starting value for all the unknown variables
from which they will be evolved in time and space according to the PDEs. Bound-
ary conditions determine the values for the unknowns in the computational domain
limits.

Any numerical scheme is constrained by the boundary conditions which have
to be included in the final numerical model. Most turbulent studies with DNS are
performed with periodic boundary conditions. In these configurations, the reference
frame moves at the mean flow speed and flow periodicity is assumed. This is the
only geometry for which the problem can be closed exactly at the boundary. Bby
assuming periodicity, the computational domain is folded on itself and no boundary
conditions area is actually required. Nevertheless, the periodicity assumption con-
siderably limits the possible applications of these simulations. When no periodicity
is considered, flow inlets and outlets must be treated. These simulations are de-
pendent on the boundary conditions and on their treatment, and general boundary
conditions for direct simulations of compressible flows are needed.

The intention of this chapter is to present a new methodology for the computa-
tion of boundary conditions for both DNS and LES of turbulent compressible flows.
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The approach is useful for a wide range of applications. First, we review classical
approaches found in the literature. Then, the numerical methodology developed in
this thesis is presented. Finally, some tests are performed to evaluate the behavior of
the different boundary conditions developed.

3.2 State of the art

Among the different methods for DNS and LES computation of boundary conditions
on turbulent compressible flows, the one that has seen more success is the NSCBC
method (Navier-Stokes Characteristic Boundary Conditions) [1,2]. Poinsot et al. [1]
derived boundary conditions for the direct simulation of compressible flows in the
finite difference framework and provide notions of well-posedness along with some
simple tests. This approach consists of solving the finite difference NS equations at
nodes placed at the boundaries transforming normal boundary terms in its wave-
approach equivalent (via the hyperbolic analysis, see section 1.3.3). Then, incoming
waves are related to outgoing waves using the so called LODI relations (Local One-
Dimensional Inviscid). Lodato et al. [2] use the same approach and provide study
of well-posedness and transverse terms influence on outflow boundary conditions.
In summary, the problem of specifying boundary conditions is reduced to determin-
ing wave amplitudes variations for outgoing waves (from inside information) and
incoming waves (using the LODI relations) and then solving balance equations as op-
posed to prescribing directly values of the principal variables. This one-dimensional
assumption works well in flows that are essentially unidirectional (shear layers or
jets) but they are problematic in flow geometries that are strongly multi-directional
[3]. This issue, however, can be alleviated with the use of transverse terms [4].

Consider the NS system of PDEs

ρt +∇ · (ρu) = 0
(ρu)t +∇ · (ρuu) = ∇ · τ −∇p

Et +∇ · ((E + p)u) = ∇ · (
mathboldτ · u)−∇ · q

p = ρRgT

(3.1)

where p is the pressure, ρ is the density of the fluid, u = (u, v, w) is the velocity
vector, E is the total energy, T is the temperature and Rg is the gas constant. Viscous
and heat transfer terms are expressed as

τij = µ
[(

∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
∂uk
∂xk

δij

]
q = −κ∇T

(3.2)
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where µ is the molecular viscosity, computed using the Sutherland’s law, and κ =
µcp
Pr

is the thermal conductivity.
The LODI equations on the boundary in their primitive variables become

∂

∂t


ρ

un
ut1
ut2
p

+


(L1 + L5 + 2L2)/2a2

(L5 −L1)/2ρa
L3
L4

(L5 + L1)/2

+


(T1 + T5 + 2T2)/2a2

(T5 − T1)/2ρa
T3
T4

(T5 + T1)/2

 = 0

(3.3)

where a is the speed of sound, un is the boundary normal velocity and ut1, ut2 are
the boundary transverse velocities and T are the transverse terms. The amplitude
vector of the characteristic waves is given by

L =


L1
L2
L3
L4
L5

 =



λ1

(
∂p
∂xn

− ρa ∂un
∂xn

)
λ2

(
a2 ∂ρ

∂xn
− ∂p

∂xn

)
λ3

∂ut1
∂xn

λ4
∂ut2
∂xn

λ5

(
∂p
∂xn

+ ρa ∂un
∂xn

)


(3.4)

where λi are the characteristic velocities
λ1
λ2
λ3
λ4
λ5

 =


un − a

un
un
un

un + a

 (3.5)

Transverse terms are an open issue and several formulations can be found in [3–5].
Consider a subsonic outflow. All waves go out except the acoustic wave traveling

at speed un − a. Therefore, all the Li can be computed with equation 3.4 except for L1.
DNS and LES of compressible flows require an accurate control of wave reflection
from the boundaries of the computational domain [1]. Often, reflected waves are
damped due to the numerical dissipation of the numerical scheme. This is the case
when using upwind-like numerical schemes or RANS turbulence models [1]. For
DNS and LES, however, numerical viscosity is reduced as much as possible, and
wave reflection at boundaries has to be eliminated with appropriate formulations. If



64 CHAPTER 3. BOCOS

this issue is not addressed carefully, acoustics reflection can interact with turbulent
structures leading to flow instabilities and performance miss-prediction. Poinsot et
al. [1] prescribe

L1 = K(p − p∞) (3.6)

where K = σa(1 − Ma2)/lxn with Ma the maximum Mach number of the boundary,
lxn is the characteristic size of the domain in the boundary normal direction and σ
is a constant usually set to 0.25 [5]. A perfectly non-reflecting boundary condition
is achieved with K = 0. Expression 3.6 works well with flows that are normal to
the outlet, but they produce excessive oscillations when vortices leave the domain.
Alternative approaches can be found in the literature [3–5].

Summarizing, NSCBC and their posterior improvements propose a methodol-
ogy to evaluate boundary conditions solving finite difference Navier Stokes equa-
tions taking advantage of their wave-like structure. Advantages of the method are
its robustness, spread use and strong literature. Disadvantages include the neces-
sity to transform the reference system velocities to the face boundary reference sys-
tem, perform computations on this reference system, and then bring back results to
the original reference system (expensive task on unstructured meshes), difficulty on
transverse terms definition and computation, they are not suitable for edges and cor-
ners where additional formulation must be considered. Finally, they are developed
in the finite difference framework, which can lead to problems in finite volume or
finite elements codes. All these facts motivate the study and development of new
kind of boundary conditions in order to overcome the aforementioned problems.

3.3 Development of new boundary conditions

In this thesis boundary conditions are derived within the FVM (we seek for fluxes at
the boundaries), for arbitrary meshes. The full three-dimensional wave structure is
considered in the hyperbolic analysis. Ghost cells are considered outside of the do-
main, where values for the variables are defined in order to obtain the desired flux
at the boundary. Edges and corners particularly benefit from this approach. Since
boundary conditions are imposed weakly though fluxes the volumes that share dif-
ferent boundary conditions (e.g. walls and outflow for edges and corners) are not
as influenced from boundary conditions restrictions as other approaches that need
to implement specific boundary conditions for corners in order to stabilize them [4].
Furthermore, impose boundary conditions weakly can have advantages on the over-
all numerical stability, specially when low-dissipative schemes are used in DNS and
LES [6].

Following the nomenclature used in [1] a boundary condition is called a physical
boundary condition when its value is known. For example, the velocity in a static
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Figure 3.1: Geometrical configuration for boundary computation. On the left, the
approach proposed by Poinsot et al. (finite difference). On the right, the approach
proposed in this thesis (finite volume).

wall is always null. These conditions are independent of the numerical method used
to solve the relevant equations. On the other hand, numerical boundary conditions
are required when the number of physical boundary conditions are less than the
number of conserved variables (which is almost always the case). In order to de-
termine these conditions, conservation laws are solved at boundaries as opposed to
prescribing directly values of the unknown variables. The details concerning the
numerical procedure in order to evaluate boundary conditions are presented in the
following subsections. First, we will consider fluid-type conditions. This boundary
conditions connect two fluid nodes through the boundaries (e.g. inflows, outflows,
periodic, etc). Solid-type conditions (i.e. walls) are treated separately.

In section 1.4 the methodology for the resolution of the NS equations using finite
volume methods was presented. In order to evaluate the evolution of the conserved
variables, the net rate of accumulation in each control volume has to be computed
via fluxes at faces. The class of numerical methods we consider in this thesis only
involves information at both sides of each face in order to compute the fluxes. Those
volumes with a boundary face will use information from the ghost nodes, where
boundary conditions are imposed, in the same way that interior faces.

3.3.1 Fluid-type boundary conditions

Consider the three-dimensional conservation law

ϕt +∇ · f (ϕ) = 0 (3.7)

where

ϕ =

 ρ
ρu
E

 fn(ϕ) =

 ρun
ρunu + pn
(E + p)un

 (3.8)
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are the conserved variables (density, momentum and total energy, respectively) and
the convective flux through a general face with normal n. Now consider the convec-
tive fluxes through an arbitrary face. Using the characteristic analysis presented in
section 1.3.3 we can recast the system as:

ϕt + RL = 0 (3.9)

where R is the right eigenvectors matrix [7] and L = Λwxn , being Λ the characteristic
speeds matrix and wxn the gradient of the different waves through the boundary nor-
mal direction. Recall that w = R−1ϕ allows us to find the waves form the conserved
variables.

∂

∂t


ρ

ρu
ρv
ρw
E

+ R


λ1

∂ω1
∂xn

λ2
∂ω2
∂xn

λ3
∂ω3
∂xn

λ4
∂ω4
∂xn

λ5
∂ω5
∂xn

 = 0 (3.10)

Hence, an algorithm to evaluate boundary values can be defined as follows:

Step 1. Compute the characteristic speeds Λ (this will indicate which waves enter
the domain and which are leaving it).

Step 2. With ϕn compute the left eigenvectors R−1 and the waves w at the bound-
ary and interior nodes for the waves leaving the domain (non-reflecting approach).

Step 3. Compute L′s for numerical boundary conditions.
Step 4. Compute the residue RL and solve equation 3.9 to obtain ϕn+1.
Step 5. Prescribe new values for physical boundary conditions.

Once the general approach is presented, specific implementations are now explored
for different boundary conditions.

Subsonic inflow

Subsonic inflows can be specified defining the mass flow at the inlet. This can be
achieved by either specifying the flow velocity and density or the flow total pressure
and temperature plus flow direction. In any case, only L5 with characteristic speed
un + a can be computed from interior points, since we consider the boundary face-
unit-normal vector pointing outside the domain. The rest of the waves travel into
the domain (see figure 3.2, left).
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Figure 3.2: Inflow wave diagram.

If we fix the mass flow specifying the inlet density and velocity we only need to
solve an equation for the total energy. Furthermore, since only one wave is leaving
the domain, the equation reduces to:

Et + (H + aun)(a + un)w5
xn = 0 (3.11)

where H and a are the enthalpy and speed of sound at the boundary ghost cell.

Supersonic inflow

Supersonic inlets are the simplest boundary conditions for compressible flows. Since
no information can travel upstream, all the variables are fixed.

Outflow

Outflow conditions can be specified with a static pressure value or without any value
at all. Velocity is unknown and both subsonic and supersonic cases can coexist, thus
requiring local adaptation depending on the Mach number at each boundary face. In
a subsonic outflow, all the waves leave the domain except for L1 with characteristic
speed un − a. In a supersonic outflow, all the waves are leaving. Therefore, as in the
supersonic inflow, no information travels upstream (see figure 3.3).

If we specify a static pressure, only equations for density and momentum have to
be solved. In the other case, also the energy equation must be considered. Supersonic
outlets must solve the entire system of equations 3.9 while the subsonic case is solved
simply with L1 = 0.

3.3.2 Solid-type boundary conditions

Since waves cannot travel through solids, and there is no mass flow through this
type of boundary conditions, the mass flux crossing a solid type surface is zero.
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Figure 3.3: Outflow wave diagram.

f (ϕ) =

 0
pn
0

 (3.12)

In case of non slip walls, boundary conditions are specified at wall nodes assum-
ing a zero-pressure gradient and a fixed velocity equal to the velocity of the wall.
For isothermal walls, temperature (and hence density) is fixed. For adiabatic walls,
zero-temperature gradient in the wall-normal direction is assumed. Therefore, tem-
perature and density are also known. Since all the values are known, no need for
solving equations is required.

3.4 Numerical tests

A series of numerical tests are presented now in order to evaluate the performance
of the boundary conditions presented in this thesis.

3.4.1 Acoustic pulse

One simple test to evaluate the reflecting properties of the boundary conditions is
a simple acoustic pulse. Figure 3.4 shows the time evolution of a pressure pulse in
a steady flow. Left and bottom boundary conditions are treated as non-slip walls,
hence wave reflection is expected. On the other hand, right and top boundary condi-
tions are treated as non-reflecting outlets, hence the acoustic waves should leave the
domain without reflections.

3.4.2 Two-dimensional vortex advection

Both inflows and outflows conditions are tested on the advection of a two-dimensional
vortex. The problem consists of a vortex superimposed on a freestream u0, as de-
picted in figure 3.5. The vortex is then convected downstream until it reaches the



3.4. NUMERICAL TESTS 69

Figure 3.4: Wave front for a pressure pulse in a steady flow reflecting on the left and
bottom walls, and leaving the computational domain without reflecting through top
and right outlets.
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outlet. The vortex must be able to exit the computational domain without reflec-
tions. The velocity field of the vortex is initialized using the stream function for an
incompressible non-viscous vortex in cylindrical coordinates:(

u
v

)
=

(
u0
0

)
+

1
ρ

(
∂Ψ
∂y

− ∂Ψ
∂x

)
(3.13)

Ψ = C exp(− x2 + y2

2R2
c

) (3.14)

where C determines the vortex strength and Rc is the vortex radius. The pressure
field is initialized as:

p − p∞ = ρ
C2

R2
c

exp(− x2 + y2

2R2
c

) (3.15)

for this case the mean flow characteristics are

Ma = 0.5 Re = 10000 (3.16)

A 2x2 squared domain with a total number of 120x120 control volumes was used.
The vortex is initially located in the center of the domain and is defined by

Rc/l = 0.15 C/(cl) = −0.0005 (3.17)

Boundary conditions were treated using the methodology presented before, with an
inlet, an outlet and slip walls for lateral boundaries.

Vorticity fields are represented in figure 3.6 at different time instants. The initial
vortex is convected downstream. At t = 1 half of the vortex has already left the
computational domain, the vorticity profile is preserved for the other half without
instabilities. At t = 2 the original vortex has disappeared and no noticeable pertur-
bations within the flow are observed.

3.4.3 Driven Cavity

In order to test the non-slip boundary condition, the driven cavity problem is solved.
This problem consists of a two-dimensional square cavity where the top wall has non-
zero velocity. Walls are adiabatic for this case. This is an interesting problem because
we have both static and moving walls. The mesh used was a 50× 50 structured mesh
with ∆xw = 0.005 in order to ensure good boundary layer reproduction. Figures 3.7
and 3.8 show the velocity profiles for two different cases. As it can be seen, numerical
solution is in good agreement with reference data, what tell us that the walls are
acting as expected.
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Figure 3.5: Configuration for two-dimensional test: vortex propagating through sub-
sonic outlet.

3.4.4 Flow over a circular cylinder

In this section, boundary conditions are tested in a more complex problem. A three-
dimensional turbulent compressible flows around a circular cylinder on an unstruc-
tured grid is simulated. In this test we can verify that a mass flow specified at an
inlet is kept at the desired value even with disturbances in the flow travel upstream.
The turbulent structures can leave the domain without reflections though outlets.
Additionally, wall behavior is as expected.

The geometry used for this test is depicted in figure 3.9. First, the objective of
this test is not to obtain very accurate results concerning the flow phenomenology,
but to solve the treatment of the boundary conditions. This is the reason why a
coarse mesh is used. A total of 53k triangles are placed in a 15d × 10d computational
domain, where d is the cylinder diameter. The grid is clustered along the cylinder
wall and triangle size grows when approaching boundaries (which is a common
configuration in typical simulations). A fixed mass flow is prescribed at the inlet, an
outlet is set at the right boundary, and slip walls are used for lateral boundaries. A
non-slip wall is used at the cylinder surface. The physical selected magnitudes are
Re = 3900 and Ma = 0.2. Reference data exists for this case, since it has been subject
of numerous studies, like in [8]. The flow is initialized with the inlet conditions and,
after a short transitional state, the flow achieves a statistical stationary behavior due
to the low-Reynolds configuration with a regular vortex shedding at a frequency of
St = 0.2.

Figure 3.10 show a sequence of vorticity contour fields for the test configuration.
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Figure 3.6: Vorticity contours (maximum value of 0.02) for the 2D vortex initial con-
dition (top left, t = 0), leaving the domain (top right, t = 0.5, and bottom left, t = 1)
and after leaving the domain (bottom right, t = 2). No reflections are observed.
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Figure 3.7: Driven cavity velocity profiles at Re = 103 (top) and Re = 104 (bottom)
and Ma = 0.3.

Figure 3.8: Driven cavity velocity fields at Re = 103 (left) and Re = 104 (right) and
Ma = 0.3.
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Figure 3.9: Mesh geometry and boundary conditions for the circular cylinder test.

A value of 2 is shown for the vorticity contour in order to detect any reflection at
the outlet. As it can be seen, the three-dimensional turbulent structures leave the
domain without reflection towards the computational domain, showing the good
performance of the implemented boundary conditions.

As a final note, all the cases presented in chapter 2 and the following chapters of
this thesis were performed with satisfactory results using the boundary conditions
developed here.

3.5 Conclusions

A new methodology for prescribing boundary conditions has been presented. They
differ from the common approach in the sense that they have been developed for the
finite volume framework instead of finite difference. Ghost cells are defined outside
the domain in order to impose boundary conditions weakly through fluxes as oppo-
site of prescribing boundary conditions directly at boundary face nodes. The bound-
ary conditions presented provide non-reflecting inflow and outflow conditions that
maintain the mean imposed velocity and pressure, yet substantially eliminating spu-
rious acoustic wave reflections, even with non-dissipative schemes. The main advan-
tage of the method is that by using the three dimensional wave structure there is no
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Figure 3.10: Time sequence of the vorticity contour fields for the circular cylinder
problem at Re = 3900 and Ma = 0.2 (from top-left to bottom-right) each 2 time units
for a total of 10 time units (around two complete shear stress periods).
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need for transverse terms and several boundary conditions can coexist in the same
control volume without requiring special treatment (such as corners and edges).

Different configurations have been tested in order to evaluate the presented method-
ology. An acoustic pulse is set in a steady flow and its temporal evolution is ex-
plored. Waves reflect on walls, while being able to leave the computational domain
through outlets without significant reflection. A two-dimensional vortex convected
in a freestream is also simulated. The vortex was able to leave through the outlet
without reflections or vortex distortion. The driven cavity problem was solved at
different Reynolds numbers in order to evaluate boundary conditions behavior. Re-
sults compare very well with benchmark data. Finally, a subsonic flow over a circu-
lar cylinder is simulated in order to evaluate boundary conditions performance in
a three-dimensional turbulent case, more similar to the type of applications that lie
within the objectives of this thesis. Results show how inlet mass flow is conserved
at the desired value, turbulence structures are able to leave the domain without re-
flections, and vortex structures created behind the cylinder match with reference
studies. Even when the boundaries are placed really close to the object, they per-
form well without reflections (similar cases usually place the boundaries much far
away to avoid undesired interactions).

The boundary conditions presented in this section have been used in all the sim-
ulations in the framework of this research (and others). In the previous and next
chapters a variety of problems will support the well-behavior of the boundary con-
ditions. They also demonstrate to be effective for subsonic and supersonic turbulent
flows, even with shocks reflections in walls, and allowing shocks to leave the domain
through outlets.
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4

Turbulence modeling for

discontinuous turbulent

compressible flows.

4.1 Introduction

At this point, a numerical scheme valid for the simulation of turbulent compressible
flows, with or without shocks, has been presented and tested in several academic
cases. The next step consists of moving towards turbulent flows with strong interac-
tions between shocks, boundary layers and turbulent structures, e.g. transonic and
supersonic flows over aircraft, engine intakes or blade cascades. These kind of ap-
plications are characterized by high Reynolds and high Mach numbers. Turbulent
structures are very small and boundary layers very thin, which results in unfeasible
grids sizes. Therefore, turbulence modeling is required to allow such simulations.
In this chapter we first review DNS and LES applications that can be found in the
scientific literature. Afterwards, turbulence modeling is introduced for compress-
ible flows, and RANS and LES are applied for the same problem. With all these, we
aim to demonstrate the ability of the proposed hybrid method to resolve turbulent
flows with shock/boundary-layer interactions (SBLIs) by means of DNS and turbu-
lent modeling. As an example of turbulent compressible flow with SBLIs, the Sajben
transonic diffuser is solved. This is a well known problem that presents all the fea-
tures of a turbulent flow with discontinuities and SBLIs. Furthermore, available ex-
perimental and numerical data will be useful in the method validation. Finally, wall
modeling is also discussed as a step forward in the cost reduction of the proposed
methodology.
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4.2 State of the art

Let’s start by reviewing previous works on the subject following the excellent state-
of-the-art by Pirozzoli [1]. There are numerous applications of the methods of com-
putational gasdynamics to the analysis of flow physics. Here we only highlight re-
cent high-fidelity simulations of flows involving the interaction of shock waves with
turbulence. The simplest setting consists of the interaction of a (nominally) normal
shock wave with a field of isotropic turbulence. Canonical shock/turbulence inter-
actions were first investigated through DNS by Lee et al. [2], using a hybrid com-
pact/ENO scheme. LES of the same problem was performed by Ducros et al. [3],
by means of a characteristic-based nonlinear filtering scheme. The problem was re-
visited by Larsson & Lele [4], who carried out high-resolution calculations using a
hybrid central WENO discretization with convective splitting. Substantial efforts in
the past few decades have been devoted to the analysis of SBLIs [5]. The first DNS
study of SBLI was reported by Adams [6], who investigated the flow over a 18◦

ramp at free-stream Mach number Ma = 3, using Adams & Shariff [7] hybrid com-
pact/ENO method. DNS of a 24◦ compression ramp configuration at Ma = 2.9 was
performed by Wu & Martín [8], using Taylor et al. [9] bandwidth-optimized WENO
algorithm. LES of the supersonic ramp flow was carried out by Rizzetta et al. [10], us-
ing Visbal & Gaitondes [11] adaptive filtering technique, and by von Kaenel et al. [12],
using Adams Stolz [13] regularization method. Another frequently used prototype
SBLI consists of the reflection of an oblique shock wave from a flat plate at which
a boundary layer is developing. The first LES of impinging shock interaction was
performed by Garnier et al. [14], who used a baseline central fourth-order discretiza-
tion augmented with a nonlinear WENO filter, with its local activation controlled
by the Ducros sensor. Pirozzoli & Grasso [15] carried out a DNS study with flow
conditions similar to Garnier et al., using a seventh-order WENO scheme. LES of
the impinging shock interaction has also been performed by Touber & Sandham [16].
Their numerical method relied on a baseline SHOEC scheme, and shock-capturing
was achieved through a TVD-based filter controlled by the Ducros sensor. Sample
results of Touber & Sandham calculations compared against reference experimental
data [17]. Overall, the LES results are in very good agreement with experimental
PIV data, with the most apparent difference being the size of the separation bubble.
However, the boundary layer thickening is well captured, as well as the amplifica-
tion of the Reynolds shear stress past the interaction zone, which is associated with
the shedding of vortices. SBLIs also occur under transonic conditions. Sandham et
al. [18] performed the first LES of transonic SBLI over a circular-arc bump using the
SHOEC scheme with nonlinear TVD filtering. Pirozzoli et al. [19] have recently re-
ported DNS results of transonic SBLI at Ma = 1.3 over a flat plate using a hybrid
discretization of the convective fluxes, whereby smooth flow regions are handled by
means of conservative sixth-order central discretization of the split convective form,
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and shock waves are captured through a fifth-order WENO scheme, with the switch
based on the modified Ducros sensor. Results show the 3D nature of the lambda-like
shock pattern, whereby the vortical structures in the incoming boundary layer cause
the spanwise wrinkling of the upstream compression fan. Numerous hairpin-shaped
vortex loops, resembling those found in incompressible boundary layer DNS, are ob-
served both in the upstream boundary layer and past the interacting shock. The
turbulent mixing resulting from the injection of an underexpanded sonic jet in a su-
personic cross-flow was studied by Kawai & Lele [20] by means of LES. The authors
used the artificial viscosity method in Kawai & Leleâs [21] version, employing sixth-
order compact approximations of the spatial derivatives, coupled with eight-order
low-pass filtering. The flow visualizations demonstrate the capability of the numeri-
cal method to capture the front bow shock, the upstream separation shock, the barrel
shock, and the Mach stem, all without spurious wiggles, and at the same time to ac-
curately resolve a broad range of turbulence scales. Low-dissipative shock-capturing
methods have also been used by Hill et al. [22] to analyze Richtmyer-Meshkov insta-
bility with reshock. The authors used a DRP-like central approximation of the equa-
tions in convective split form in smooth regions and switched to the tuned-WENO
scheme of Hill & Pullin [23] near shock waves. The switch is controlled by the local
curvature of the pressure and density field, in a fashion similar to the Jameson sensor.
Many other applications of low-dissipative shock-capturing algorithms are collected
in the review paper by Ekaterinaris [24].

The vast majority of the aforementioned applications use high-order schemes
on structured grids. Here, we are restricted to low-order schemes on unstructured
meshes. We will explore in the next sections how our hybrid scheme performs on
such problems and how turbulent models are introduced in the compressible formu-
lation.

4.2.1 More on SBLIs

Shock/boundary-layer interaction (SBLI) phenomena is present in a wide range of
practical problems, such as transonic airfoils (see figure 4.1(a)) and wings, supersonic
engine intakes (see figure 4.1(b)), diffusers of centrifugal compressors and turbo-
machinery cascades. Such interactions can be produced if the slope of the body sur-
face changes producing a sharp compression of the flow near the surface as occurs,
for example, at the beginning of a ramp or a flare, or at the front of an isolated object
attached to a surface such as a vertical fin. If the flow is supersonic, a compression of
this sort usually produces a shock wave originated in the boundary layer. This has
the same effect on the viscous flow as an impinging wave coming from an external
source. In the transonic regime, shock waves are formed at the downstream edge of
embedded supersonic regions, where these shocks come close to the surface, thus, an
SBLI is produced [25]. In any SBLI, the shock imposes an intense adverse pressure
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gradient on the boundary layer, causing it to thicken and usually leading to bound-
ary layer detachment. In either case, this increases the viscous dissipation within the
flow. Frequently, SBLIs are also the cause of flow unsteadiness. On transonic wings,
they increase the drag and they have the potential to cause flow unsteadiness and
buffet. They increase blade losses in gas-turbine engines, and complicated boundary-
layer control systems must be installed in supersonic intakes to minimize the losses
that they cause either directly by reducing the intake efficiency or indirectly because
of the disruption they cause to the flow entering the compressor. These systems add
weight to aircraft and extract energy to the flow. In hypersonic flight, SBLIs can be
disastrous because at high Mach numbers, they have the potential to cause intense
localized heating that can be severe enough to destroy a vehicle. In the design of
scramjet engines, the SBLIs that occur in the intake and in the internal flows can
limit the range which vehicles using this form of propulsion can be deployed suc-
cessfully.

Studies on SBLI have been performed for over 70 years [26]. First, experiments
in high-speed tunnels were conducted in order to evaluate SBLI importance and its
interaction with solid elements. One example is the work by Sajben’s group. [27, 28].
Measurements of the streamwise velocity component in unsteady separated flow-
fields in a two-dimensional transonic diffuser were obtained via laser doppler ve-
locimeter [27]. Also, pressure profiles along the diffuser walls were mesured in dif-
ferents flow configurations [28] in order to evaluate characteristic frequencies on the
flow oscillations. This data is used in the present study to compare against our re-
sults. Numerical studies first appear in the late 80s [29], but they were restricted to
one- or two-dimensional inviscid models. Confined flows can present several flow
features depending on the strength of the SBLI (usually defined by the Mach number
at the shock wave). The boundary layer growth due to the SBLI can results in shock
trains (see figure 4.1(c) and (d)), a succession of shock waves forming along the fluid
and moving upstream. This phenomenon is useful in supersonic engines intakes, for
example, because the fluid pressure increases after each shock (we want high pres-
sures at the combustion chamber). On the other hand, in nozzles (see figure 4.1(e))
strong SBLIs results in flow detachment and flow asymmetries harming engine per-
formance. This is the most challenging type of problem we can face, in which we
can see a discontinuous turbulent flow with SBLI, flow transition and detachment,
shock-turbulence interaction, etc.

4.3 Turbulence modeling

With advances in computer technology and the development of suitable numerical
algorithms, computation of SBLI has become feasible [30].

Direct numerical simulation (DNS), with the advantages of resolving all scales of
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(a) SBLI on transonic airfoil. (b) SBLI on scramjet inlet.

(c) Confined SBLI.

(d) Shock Train. (e) SBLI and shock-turbulence
interaction on a nozzle.

Figure 4.1: SBLI examples extracted from [25].
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fluid motion, has been adopted for the study of several simplified problems. Nev-
ertheless, the application of DNS to high-speed, high-Reynolds turbulent flows in
complex geometries is still prohibitive in most cases. The Reynolds Averaged Navier
Stokes (RANS) approach has been widely used to overcome DNS restrictions. It
allows less expensive simulations, since turbulence is not directly resolved, intro-
ducing the need of turbulence modeling [31]. However, the averaging procedure
leads to extra correlations that appear throughout the equations of motion, and tur-
bulence modeling must close these new unknowns [32]. However, such approach
may lead to unsatisfactory predictions of flows with significant SBLI. Discrepancies
can be attributed to various deficiencies in the models, such as a failure to resolve
anisotropy of the normal stresses. It is also a concern that steady state solvers will
be in error if the flow is naturally unsteady and the shock location oscillates. On
the other hand, Large Eddy Simulation (LES) solve the largest scales of motion and
model the smallest non-resolved scales, resulting in a less-demanding approach than
DNS that can overcome the inherent problems of the RANS approach (but at higher
computational cost). Hence, LES seems to be a perfect candidate to carry out com-
putations of high-Reynolds, high-speed turbulent flows with SBLI. LES have been
extensively developed for incompressible flows, and the compressible approach usu-
ally consists of an extension of existing models [33]. LES has not been widely applied
to shock/boundary-layer interaction problems [18]. Therefore, its performance is an
issue of increasing interest.

The considered turbulence models are compressible extensions of existing incom-
pressible models, implemented in the in-house software TermoFluids [34]. They
have been tested in several cases, such as the flow over a NACA0012 airfoil [35, 36]
and a circular cylinder [37]. The considered turbulence models are selected tak-
ing into account their simplicity and good computational performance. Concerning
RANS models, the Spallart-Allmaras (SA) model is studied. The compressible solver
implemented in TermoFluids takes into account the transient terms of the fluid equa-
tions, so strictly speaking we refer to the RANS approach as Unsteady RANS, or
URANS. On the LES side, the Smagorinsky (SMG), the Wall Adaptative Large Eddy
(WALE) and the Variational Multiscale (VMS) models are compared. Our objective
is to study how to address the extra terms arising from the equations of motion and
how to deal with transport equations for URANS. The proposed compressiblity cor-
rections in the literature are tested and the performance of the different methods on
the Sajben transonic diffuser in terms of prediction of shock position, pressure distri-
bution along the walls and velocity profiles through the diverging part is quantified.
In addition, other aspects such as shock wave oscillation have also been studied qual-
itatively.
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4.3.1 RANS

Compressible Navier-Stokes Equations

The conservative form of continuity, momentum and energy equations can be writ-
ten as:

ρt +∇ · (ρu) = 0 (4.1)

(ρu)t +∇ · (ρuu) = ∇ · τ −∇p (4.2)

Et +∇ · (Hu) = ∇ · (u · τ)−∇ · q (4.3)

where ρ is the fluid density, u = (u1, u2, u3) is the velocity vector referred to the
coordinate system x = (x1, x2, x3), p is the pressure, and E is the total energy. The
subscript (·)t refers to the time derivative ∂/∂t. The fluid total enthalpy is H = E+ p.
The viscous stress tensor is defined as,

τij = 2µ(Sij −
1
3

Skkδij) (4.4)

where µ is the fluid viscosity and Sij =
1
2 (

∂ui
∂xj

+
∂uj
∂xi

). Finally, q = −κ∇T is the heat

flux, where κ =
µcp
Pr and T is the temperature.

In the present study the working fluid is air with the ideal gas hypothesis, with
γ = 1.4, cp = 1004 Jkg−1K−1, and Pr = 0.72.

E =
p

γ − 1
+

1
2

ρu · u (4.5)

The systems of equations are closed with the equation of state,

p = ρRgT (4.6)

being Rg = 287 [Jkg−1K−1]. The viscosity is computed with the Sutherland’s law,

µ = 1.461−6 T3/2

110.3 + T
(4.7)

URANS Formulation

In order to mass average in time the conservation equations 4.1 to 4.3, flow variables
are decomposed in mean and fluctuating parts. The result of the substitution are the
Favre-averaged equations:

ρt +∇ · (ρũ) = 0 (4.8)

(ρũ)t +∇ · (ρũũ) = ∇ · (τ − ρu′′u′′)−∇p (4.9)
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Et +∇ · (Hũ) = ∇ · (ũ(τ − ρu′′u′′))−∇ · (q + u′′H′′ − τu′′ + ρu′′k) (4.10)

p = ρRgT̃ (4.11)

where ϕ refers to the time-averaged dependent variable ϕ, and ϕ̃ = ρϕ/ρ is its Favre
average. Equations 4.8, 4.9 and 4.11 differ form their laminar counterpart only by
the appearance of the Favre-averaged Reynolds-stress tensor, τT = −ρu′′u′′. Sev-
eral terms appear in equation 4.10, the turbulent transport of heat qT = u′′H′′, the
molecular diffusion τu′′ and the turbulent transport of turbulent kinetic energy ρu′′k.
The definition of the total energy is also modified, E = p

γ−1 + 1
2 ρũũ + ρk.

The closure approximations used in the present study are [31]:

τT = 2µT(Sij −
1
3

Skkδij)−
2
3

ρkδij (4.12)

qT = −
µTcp

PrT
∇T̃ (4.13)

The molecular diffusion and the turbulent transport of turbulent energy are approx-
imated together as follows:

τu′′ − ρu′′k = (µ +
µT
σk

)∇k (4.14)

Although this term is only relevant for hypersonic flows. The problem reduces, there-
fore, to the computation of the eddy viscosity µT .

Spalart-Allmaras Model

In the present work, the Spalart-Allmaras model is chosen to calculate the eddy vis-
cosity. According to [38], the differential equation is derived by using empiricism
and arguments of dimensional analysis, Galilean invariance and selected depen-
dence on the molecular viscosity. This model does not require finer grid resolution
that one required to capture the velocity field gradients with algebraic models. The
transport equation for the working variable ν̂ is given by:

ν̂t +∇ · (ν̂u) = cb1Ŝν̂ +
1
σ
[∇((ν + ν̂) · ∇ν̂ + cb2∇ν̂ · ∇ν̂]− cw1 fw

(
ν̂

d

)2
(4.15)

The eddy viscosity is defined as
µT = ρν̂ fv1 (4.16)
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where, the damping function fv1 is defined as:

fv1 =
χ3

χ3 + c3
v1

(4.17)

with χ = ν̂
ν .

Ŝ =
√

2SijSij +
ν̂

κ2d2 fv2 (4.18)

being fv2 = 1 − χ
1+χ fv1

. In order to obtain a faster decaying behaviour of destruction
in the outer reguion of the boundary layer, a function fw is used:

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

(4.19)

where g = r + cw2(r6 − r) acts as a limiter that prevents large values of fw and
r = ν̂

S̃κ2d2 . Constants models are, cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41,

cw1 = cb1
κ2 + 1+cb2

σ , cw2 = 2 and cv1 = 7.1. Since the Spalart-Allmaras method does
not involve the transport of turbulent kinetic energy, k is not available for the Favre-
averaged equations with this turbulent model.

Extension To Compressible Flow

The first thing to take into account on the extension of the SA model to compressible
flows is to use ρν̃ instead of ν̂ as working variable, in order to solve the transoport
equation in conservative form.

(ρν̂)t +∇ · (ρν̂u) = cb1Ŝρν̂ +
1
σ
[∇((µ + ρν̂) · ∇ν̂ + cb2∇ν̂ · ∇ν̂]− cw1ρ fw

(
ν̂

d

)2

(4.20)
Catris and Aupoix [32] suggest to use

√
ρν̃ as diffused quantity, nevertheless this

strategy complicates the numerical implementation. An alternative form of 4.20 can
be found in [39], and it involves only the computation of ∇ρν̃ which appears in the
source term.

(ρν̂)t +∇ · (ρν̂u) = cb1Ŝρν̂ +
1
σ
[∇((µ + ρν̂) · ∇ν̂ + cb2∇ν̂ · ∇ρν̂]− cw1ρ fw

(
ν̂

d

)2

(4.21)
Both formulations, conservative and conservative corrected respectively, are tested
and compared against the original incompressible version 4.15, referred as non-conservative.
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4.3.2 LES

In LES the contribution of the large, energy-carrying structures to momentum and
energy transfer are computed exactly and only the effect of the smallest scales of
turbulence are modeled. While a substantial amount of research has been carried
out into modeling for the LES of incompressible flows, applications to compress-
ible flows have been significantly fewer, due to the increased complexity introduced
by the need to solve an energy equation, which introduces extra unclosed terms.
Furthermore, the form of the unclosed terms depends on the chosen energy equa-
tion [40]. To obtain the equations governing the motion of the resolved eddies, we
must separate the large scales from the small ones. LES is based on the definition of
a spatial filter operator:

f (x) =
∫

D
f (x′)G(x, x′; ∆)dx′ (4.22)

where D is the entire domain, G is the filter function, and ∆ is the filter-width asso-
ciated with the wavelength of the smallest scale retained by the filtering operation.
Thus, the filter function determines the size and structure of the solved scales. In
compressible flows it is convenient to use Favre-filtering, as in the URANS equa-
tions, to avoid the introduction of SGS terms in the equation of conservation of mass.
Applying the Favre-filtering operation, we obtain a system of equations similar to
4.8 to 4.11.

The Smagorinsky model

The compressible version of the Smagorinsky model was proposed in [41],

µt = fvdCRρ∆2
√

S̃mnS̃mn (4.23)

with CR = 0.01. The SGS isotropic stress tensor term is given by,

k = CI∆2S̃mnS̃mn (4.24)

where CI = 0.0066. The Smagorinsky model is known to fail in the inner portion of
the boundary layer. This is why a van Driest damping factor is used.

fvd = 1 − e(−y+/26) (4.25)

The WALE model

The WALE model by Nicaud and Ducros [42] is based on the square of the velocity
gradient tensor. In its formulation the SGS viscosity accounts for the effects of both,
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the strain and the rotation rate of the smallest resolved turbulent fluctuations. In
addition, the proportionality of the eddy viscosity near walls is recovered without
any dynamic procedure,

µt = ρC2
w∆2 (s̃ij s̃ij)

3/2

(S̃ijS̃ij)5/2 + (s̃ij s̃ij)5/4
(4.26)

where Cw = 0.325 is a true model constant, S̃ij is the strain rate tensor of the resolved
field and s̃ij is the traceless symmetric part of the square of the resolved velocity
gradient tensor.

s̃ij =
1
2

(
∂ũi
∂xl

∂ũl
∂xj

+
∂ũj

∂xl

∂ũl
∂xi

)
− 1

3
∂ũm

∂xl

∂ũl
∂xm

δij (4.27)

The aforementioned expressions are developed for incompressible flow, and it thus
gives only µt. The modification is to use the relation between µt and k for the original
Smagorinsky model in order to close the computation of the isotropic SGS tensor.

τT = 2µT(S̃ij −
1
3

S̃kkδij)−
2
3

C′
I

ρ

(µt

∆

)2
δij (4.28)

where C′
I = 45.8. With that we have updated the model to deal with compressible

flows.

The Variational Multiscale model

In the Variational Multiscale approach three classes of scales are considered: large,
small and unresolved scales. If a second filter with filter length l̂ is introduced (usu-
ally called test filter), a splitting of the scales can be performed,

f ′ = f − f̂ (4.29)

Neglecting the effect of unresolved scales, we only need to model the small scales.
Here, we close these terms using the WALE model.

4.3.3 WMLES

Wall models for LES appear as a solution to overcome the high computational costs
of full-resolved LES at high Reynolds numbers. Low-viscosity high-speed flows
present small but dynamically important eddies in the near-wall region. These ed-
dies are of the special importance in attached boundary layers and require fine grids
in the near-wall regions, proportional to Re2 (nearly the same size as for DNS), that
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result in extremely low time steps. Additional problems are present for separated
flows, where the boundary layer becomes a free shear layer at separation and the
opposite occurs at reattachment.

The solution to this problem consists in taking advantage of the relative indepen-
dence between the boundary layer and the outer simulation region, and use one as
a boundary condition for the other. A coarse grid can be used to the LES of the flow
with y+ ≈ 100 − 500 and supply the model with a correct wall shear stress via a
wall model. This results in dramatic savings compared to fully resolve LES, where
typically y+ ≈ 1.

Simple wall models for LES are analogous to the wall functions commonly used
in RANS. Nevertheless, they are not successful in transition, separated flow. They
work well in equilibrium flows where mean flow have a logarithmic behavior, which
is not valid in complex flows, especially with separation. These models are required
to produce logarithmic profile near lower boundary of domain and handle adverse
and favorable pressure gradients, separation and reattachment (which is very chal-
lenging for existing models). Experience with these simple methods show a reduc-
tion in computation time by factor of 10 or more. They work well in attached flow
but do not predict accurately separated flows. They work better at higher Reynolds.
Among these type of methods, we explore the Werner-Wengle model.

More complex models consist in using a RANS model for the inner part of the
boundary layer and couple to LES for the outer region. These approach is commonly
known as hybrid LES-RANS and should have advantage of both methods: accuracy
of LES and speed of RANS. Here we explore the Detached Eddy Simulation (DES)
in its variant DDES.

Other methods exist but are out of the scope of this thesis.

Werner & Wengel

Simple wall models were developed from channel flow calculations. The Schumann
model (1976) assumes linear relation between instantaneous streamwise velocity at
first grid point off the wall and instantaneous wall shear stress.

τ12(x, z) =
u1(x, y1, z)

U1(y1)
< τw > (4.30)

where the wall normal direction is y, y1 is the first point off the wall and < · > repre-
sents time average. Values for U1(y1), the mean streamwise velocity at first point off
the wall have to be provided or computed. Skin friction < τw > should be provided
(for a plane channel flow it is equal to the driving mean pressure gradient). For com-
plex problems where < τw > is not known a priori, the time average is replaced by
a mean over the plane parallel to the solid wall at y1 (flow is homogeneous in planes
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parallel to the wall). This is known as the Grotzbach method (1987) and allows to
estimate the mean wall shear stress, < τw >= ρuτ

2. We still need the logarithmic
law. A variant of this method is the Werner-Wengle method, a more flexible and
widely used method that allow to analytically evaluate the wall shear stress compo-
nents from the velocity field. It assumes that instantaneous velocity components at
the wall in directions parallel to the wall are in phase with the associated wall shear
stresses. Instantaneous velocity profile given by a 1/7 power law rather than the
logarithmic law.

u+ = y+ i f y+ < 11.8
u+ = 8.3(y+)1/7 i f y+ > 11.8

(4.31)

The values of the tangential velocity components can be related to the corresponding
values of the wall shear stress components by integrating the velocity profile given
above over the distance separating the first cell from the wall.

Hybrid RANS/LES

Detached Eddy Simulation (DES) is based on the idea of using RANS in the bound-
ary layer and LES in detached region. The original version is based on the Spalart-
Almaras RANS model and is fairly easy to implement if the RANS model. New
versions, nevertheless, might use other RANS models such as SST, k − ω, etc. Hy-
brid RANS/LES has the advantage of resolving time-dependent, three-dimensional
turbulent motion as in LES but using RANS in the near-wall region. In this way,
the problem of resolving narrow streaks that are important in the wall shear stress
prediction is alleviated.

The SA based DES model is based on a modification of the length scale in the de-
struction term of the one equation eddy viscosity model. DES reduces to a RANS clo-
sure in the attached boundary layers (using the SA model) and to a Smagorinsky-like
subgrid scale model away from the wall. Recall equation 4.15 that gives the trans-
port equation for the turbulent eddy viscosity νt. The DES formulation is obtained
by replacing the distance to the nearest wall, d, by d in the production/dissipation
terms and model parameters.

d = min(d, CDES∆) (4.32)

where CDES = 0.65 [43]. Thus, DES switches to LES in regions where the grid spacing
(in all directions) is smaller than the wall distance. Because in this latter region the
more energetic turbulent eddies are generally not much smaller than the scale of the
geometry, one may expect that the grid refinement necessary to obtain a much better
flow description will not be exaggerated compared to RANS. Nevertheless, a further
improvement can be done with a few tweaks to the model. The development of
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Delayed DES (DDES), a extension of DES, has the objective of relaxing the transition
between the RANS and LES models (specially troublesome on coarse meshes) [44].

d = d − fdmax(0, d − CDES∆) (4.33)

fd = 1 − tanh((8rd)
3) (4.34)

where

rd =
νt + ν√

(SijSij)κ2d2
(4.35)

Note that if rd << 1 (LES region) then fd is 1 and 0 elsewhere. Setting fd to 0 yields
RANS (d = d) while setting it to 1 yields DES (d = min(d, CDES∆)).

4.4 Numerical tests

4.4.1 Channel Flow

In order to test the LES models, the channel flow case is proposed. The channel flow
test is a good candidate to study wall turbulence because it is homogeneous in two
directions, avoiding uncertainties of the boundary conditions. Isothermal walls at
Tw = 500K are imposed in the remaining boundaries. The flow is initialized with
a Pouseille function that introduces early disturbances to the flow. Once the turbu-
lent state is achieved, average of the flow is computed in order to further evaluate
turbulent statistics.

Six different cases were studied at two different compressibility regimens. First,
a Ma = 0.3 and Re = 2820 (based on the bulk velocity, wall properties and channel
semi-height). The turbulent channel flow was simulated in order to evaluate the
LES models in the near incompressible regimen. Reference results are available for
comparison: Kim et al. [45], Foysi et al. [46] and also experimental data can be found
for the incompressible channel flow [47]. Afterwards, a Ma = 1.5 and Re = 3000
channel flow was studied to asses the LES performance in the supersonic regimen.
Reference results are available for comparison: Coleman et al. [48] and Foysi et al.
[46]. See table 4.1 for all the details.

The performance of the LES models on the compressible channel flow are ex-
plored with reference to mean profiles and second-order statistics of velocity and
thermodynamic properties, compared to reference DNS and experimental data.

We begin with the analysis of mean flow properties. The time evolution of uτ

for the case M03 is depicted in figure 4.2 for the different LES models. WALE and
VMS models converge well to the DNS average value (marked with solid line), while
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Table 4.1: Data for the different cases.

Case M Re Reτ Lx Ly Lz Nx Ny Nz ∆x+ ∆y+w ∆z+

M03 0.3 2820 181 12 2 6 64 64 96 19 0.5 6
KIM 0 2300 180 4π 2 2π 192 129 160 12 0.05 7
FOY 0.3 2820 181 9.6 2 6 192 129 160 9.12 1.02 6.84
M15 1.5 3000 221 12 2 6 64 64 96 19 0.5 6
COL 1.5 3000 220 4π 2 4π/3 114 119 80 19 0.1 12
FOY 1.5 3000 221 4π 2 4π/3 192 151 128 14.46 0.84 7.23
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Figure 4.2: Time evolution of uτ for the case M03.

the SMG model over-predicts this value. Figure 4.3 shows the law of the wall for
both cases. Results show good tendency and match reference data except for the
SMG model. For the subsonic case, results for the WALE and VMS models match
slightly better experimental data by Eckelmann et al. [47], but they also approximate
very well to the wall of the law and DNS data. The failure of the SMG model in
reproducing flow mean properties is more visible. Results for the supersonic case
agree with Coleman et al. [48] DNS when the WALE or VMS model are used. Again,
the SMG fails in the outer boundary layer. We can see how the logarithmic law rises
when the Mach number is increased. Alternative definitions of u+ can be found in
the literature, such as the Van Driest transformation, that accounts for the density
variations that causes this difference.

Following with second-order statistics, the root-mean-square velocity fluctuations
for the case M03 are presented in figure 4.4. All three methods give good approxima-
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Figure 4.3: Law of the wall for the case M03 (left) and M15 (right) compared against
references. For the inner boundary layer the law u+ = 2.5 ln(y+) + 5.5 is used,
meanwhile u+ = y+ is the expression for the outer boundary layer (solid lines).
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Figure 4.4: Root-mean-square velocity fluctuations for the case M03, compared to
Kim et al.

tions to reference data, being VMS results slightly better and SMG the worst among
the three models. Reynolds shear stresses are depicted in figure 4.5, showing that for
the subsonic case the use of the WALE and SMG models mispredict the shear stress,
due to energy accumulation and over-dissipation, respectively, while the use of VMS
match exactly reference DNS. Concerning the supersonic case, both WALE and VMS
give fairly good results, being the VMS model slightly better. The use of the SMG
model results again in the shear stress over-prediction.

Finally, Q iso-contours of instantaneous fields using the VMS model are pre-
sented in figure 4.6 to evaluate near-wall turbulence structures. It can be seen how
near-wall streaks are elongated and more sparsely distributed as Mach number in-
creases.
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Figure 4.6: Iso-contours of Q = 0.1 colored by Mach number for the case M03 (left)
and M15 (right).
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Compressible extension of the incompressible LES models implemented in Ter-
moFluids has been carried out. Overall, the WALE and VMS models show good
performance on the compressible turbulent channel flow. The SMG model, however,
does not perform as good as the other methods. Between the WALE and VMS mod-
els, the VMS gives better solutions but results in a more expensive method in terms
of computational costs.

4.4.2 Sajben’s transonic diffuser

The flow through a transonic diffuser was investigated with the numerical tools pre-
sented in this thesis. The objective is to determine the performance of the differ-
ent turbulent models and the ability of the hybrid scheme to deal with transonic
flows with SBLIs. This validation case examines the transonic air flow through a
converging-diverging diffuser with comparison to experimental data obtained by
Sajben et al. RANS, LES, DDES and WMLES were tested in two- and three-dimensional
configurations of the same diffuser at two different outlet pressures, related to the
strength of the SBLIs, weak and strong, listed in table 4.2. Pressure distributions
along the walls as well as velocity profiles and location of the shocks were compared.

Inflow Outflow
Total Pressure [Pa] 134447.767 Static Pressure [Pa] (weak) 110660.855

Total Temperature [K] 277.78 Static Pressure [Pa] (strong) 97216.077

Table 4.2: Flow conditions for the Sabjen’s diffuser.

The two-dimensional geometry of the Sajben diffuser is shown in figure 4.7. The
throat is located at x = 0 and has a height of h = 44 millimeters. Two different
meshes were used, the first one consisting of a 200 × 80 and the second one of 400 ×
200 control volumes. Both meshes were formed by quadrilaterals clustered along
the wall at a distance ywall = 1 × 10−5 space units to ensure well boundary layer
reconstruction. Three-dimensional studies were conducted with the same meshes
extruded in the span-wise direction with a total number of 32 planes.

We begin by examining results with the different forms of the SA model pre-
sented in section 4.3.1. Figure 4.8(a) shows that the three variants of the SA method
(non-conservative, conservative and conservative corrected) give similar results. Nev-
ertheless, when the original incompressible non-conservative formulation is used,
the shock waves is placed slightly forward to the correct position, which is well re-
produced by the two conservative formulations. Concerning the velocity profiles
in figure 4.8(b), the RANS approach is able to reproduce the bottom wall flow pat-
tern, while the top wall flow is mispredicted. This fact has in turn an effect on the
evolution of the core flow, resulting also in a small difference when compared with
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Figure 4.7: Sajben’s diffuser geometry.

reference profiles. Due to the geometry and the flow conditions, the boundary layer
developed at the bottom wall stays attached even after the shock-wave. On the other
hand, the boundary layer developed on the top wall transitions to turbulence due
to the high adverse pressure gradient and the change of the slope in the diverging
zone, detaching and reattaching forming a separation bubble. It is a known fact
that RANS approach is well suited for attached flows, which is true for the bottom
near wall flow of our case, but fail in detached flows (hence the study and develop-
ment of methods such as DES). We can see this problem in the near top wall flow,
where SA is unable to well capture flow behavior. Figure 4.9 shows the same results
for the strong case. Since the outlet total pressure has been diminished, the shock
wave is formed closer to the outlet and hence its strength raises. Concerning pres-
sure profiles along the walls showed on 4.9(a), again the three models behave similar.
But, as happened for the weak case, the conservative models capture slightly better
the shock position. Velocity profiles for the strong case can be seen in figure 4.9(b),
where the features that were previously mentioned are now magnified. Bottom wall
boundary layer, since it is attached along the diffuser, is well reproduce by the SA
models. On the other hand, once the top wall flow detaches due to the strong ad-
verse pressure gradient induced by the shock wave and the wall slope, the model is
unable to calculate accurate average velocity profiles. In this case, since the SBLI is of
strong type, the detached flow cannot reattach. Overall, the conservative models are
preferred over non-conservative formulations since they give slightly better results
in terms of shock positioning and, moreover, since the rest of equations are solved
in conservative form it is preferred to keep the same formulation across the entire
numerical model.

As it has been observed, RANS models are a good choice for attached turbu-
lent flows. The method is cheap in terms of computational resources as long as the
y+ provided by the mesh is good enough (y+ ≈ 1 − 5). Nevertheless, if we face de-
tached flows or three-dimensional transient effects (shock-wave formation frequency
or shock trains for example), RANS models are not adequate and we have to resort
to LES. We present results for the weak case in a three-dimensional configuration
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Figure 4.8: Sabjen’s diffuser weak case.
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Figure 4.9: Sabjen’s diffuser strong case.
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in figure 4.10. In terms of wall pressure distribution and shock wave position, all
the methods except LES were able to capture the right location. LES, since it is not
modeling boundary layers, is unable to reproduce a viscous boundary layer, giving
results similar to those obtained with Euler solvers. In order to capture a boundary
layer with LES, and predict the shock wave accurately, DNS levels of precision is
required. In order to overcome this issue, DDES and WMLES were tested, result-
ing in a good shock-wave position representation. In the case of DDES, this result
is expected since the difference between LES and DDES is the use of the SA-RANS
model in the boundary layer, which was identified as the main cause of problems for
LES. On the other hand, the accurate prediction of the WW model it is not only sur-
prising but also encouraging due to the simplicity and power of the method, since it
does not require a y+ as small as RANS (or DDES for that matter). Velocity profiles
are depicted in figure 4.10(b) showing very interesting results. First, as previously
mentioned, LES is not able to capture a boundary layer resulting in almost invis-
cid results. DDES results in an excessive boundary layer thickness that completely
disagree with reference data. This can be due to the opened issue concerning the
interaction between the RANS model and LES (which has been proved to be success-
ful for external fluids but seems to fail in internal flows such as the flow through
diffusers). Finally we can see how the introduction of the wall model allows the LES
model to see the boundary layer resulting in much more accurate profiles, specially
in the near wall regions, which in turn results in better core flow representation.

4.5 Conclusions

Throughout this chapter, we have seen how turbulence modeling impacts the study
of turbulent compressible flows, specially with those that present interactions be-
tween shock-waves, boundary layers and vortex structures (common configurations
for transonic and supersonic aircraft or rocket engines, for example). We also have
studied how our hybrid model developed in chapter 2 fits and behaves in the context
of turbulent modeling.

First, as a result of a detailed review of the state-of-the-art, we can conclude that
turbulence modeling is required in order to solve the kind of applications we are in-
terested in (transonic and supersonic aerodynamics and combustion in engines). The
required computational power to solve such applications is unfeasible by means of
DNS due to the extremely small control volumes required to solve boundary layers
and small vortex, which in turn results in very small time-steps for the explicit inte-
gration of the NS equations. RANS and more recently LES studies exist on this field,
primary using high-order hybrid-like schemes on structured meshes. Relatively low
to inexistent studies exist using low-order hybrid schemes on unstructured meshes,
such as the one developed in this thesis.
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Figure 4.10: Three-dimensional Sabjen’s diffuser weak case.
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The turbulence models studied in this work are: the Spalart-Allmaras RANS
model, the Smagorinsky, WALE and VMS LES models, the Werner & Wengel wall
model and the DDES hybrid RANS/LES model. They represent only a small per-
centage of the existing turbulent models. A subsonic and supersonic channel flow
was studied to asses the performance of the different LES models in the compressible
framework. Among the three different proposed methods, WALE and VMS gave the
better results, and similar among them. The WALE model was chosen to continue
the research since it is cheaper in terms of computing time when compared to VMS
and it gave almost the same level of accuracy.

The models were all tested and compared in a transonic diffuser. This problem
was chosen because it presents all the features we are interested in: a subsonic flow
undergoing supersonic, forming a shock wave that in turn interacts with boundary
layers which results in flow separation and turbulence. Concerning the RANS re-
sults, although the pressure profiles showed the ability of the method to capture
shock wave position, velocity profiles presented qualitative discrepancies. This dif-
ference has been reported by other authors and attributed to three-dimensional ef-
fects [30], which is indeed the weakness of the RANS modeling. We decided to use
the SA model in its conservative form since it gave slightly better results that the
original non-conservative formulation. The introduction of compressible corrections
proposed in the literature did not seem to affect the result. Continuing with the
three-dimensional studies, LES results showed that accuracy on boundary layers is
required in order to predict accurately the flow features. Since they do not introduce
turbulent modeling on boundary layers, DNS levels of accuracy is required. This
fact has been observed by other researchers, and alternative have been proposed
which consists of providing boundary layer modeling to the LES model, via a RANS
model (DDES) or an analytical function (WW). DDES approach was able to provide
the right information in order to allow the LES model to predict the shock position,
but it also resulted in extremely large boundary layer thickness. This fact can be
due to the interaction between the RANS and LES models. On the other hand, the
WW model was able to provide the right information in order to predict the shock
position accurately on the LES model, as well as to reproduce velocity profiles, spe-
cially in the near wall regions. The most important ideas resulting of this study are
presented in table 4.3. Overall, results show that the hybrid methodology is suitable
for SBLI numerical studies. It is a good option for LES and DNS of discontinuous
compressible flows where classical artificial diffusion schemes are too dissipative [1].

Finally, the study on wall modeling for LES is encouraged in sight of our results.
They allow the use of LES for internal and external flows with thick boundary lay-
ers avoiding the requirements of DDES or other RANS-based or hybrid RANS/LES
models, which need primary a small y+.
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Model 3D unsteady y+ Flow type SBLIs
RANS NO 1-5 attached YES

LES YES < 1 medium to low Re NO
DDES YES 1-5 external NO

WMLES YES 10-100 high Re and Ma YES

Table 4.3: Summary of turbulent models aspects.
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5

Multi-component

turbulent compressible

flows.

5.1 Introduction

In previous chapters we have restricted our work to the numerical resolution of the
NS equations for perfect gases with constant heat capacities, or ideal gases, such as
air. This formulation allows to solve an enormous number of cases of interest and
applications in the aerodynamics and industrial field where only one (ideal) gas is
present. We used the single component equations to solve, among other, the turbu-
lent flow around an airfoil in section 2.5, and the transonic turbulent flow with SB-
LIs in a diffuser in section 4.4.2. Although this model is useful in many applications,
other problems require more sophisticated mathematical models. This is the case, for
example, of the flow in a H2-O2 liquid-rocket engine where the two gases are injected
together in a combustion chamber, reacting to form H2O and other species, releasing
heat and then evolving in a converging-diverging nozzle (where shock waves may
appear and interact with boundary layers and turbulent structures). Another exam-
ple would be the flow in a turbine, where the air (which is indeed a mixture of gases)
is mixed with some fuel, then reacts, forming a lot of different products, and they are
expelled through the nozzle. We can see the difficulty since the flow and the chemi-
cal species have to be simultaneous solved, and the number of chemical species can
be very large for many applications.

Concerning numerical models, multi-component flows cannot only see disconti-
nuities due to shock waves but also due to components interface. This is the case,

107



108 CHAPTER 5. COMBUSTION

for example, of a jet where some gas is being released into the environment. This
gas can have low velocities, even so slow that the flow is incompressible. Neverthe-
less, in the interface of the gas that is being ejected, the surrounding air can have
very different thermodynamic properties, in density for example, that can be seen
as a discontinuity similar to a shock wave. This fact has the same implications on
the numerical schemes that those presented in chapter 2. This is the reason why we
will update our hybrid numerical scheme in order to identify not only shocks but
also gas interfaces, where a dissipative scheme will be used instead of the kinetic
energy preserving scheme in order to avoid numerical oscillations and simulations
blow-up.

This chapter begins with a review of work by other authors in the field of com-
pressible numerical combustion. Then, the multi-component NS equations are de-
rived. They represent a more general formulation that the one proposed in section
1.3.2. Afterwards, our hybrid numerical scheme will be modified in order to be able
to solve flows with mixtures of gases. Finally, a non-reactive propane jet is solved in
order to show the ability of the new scheme to solve this kind of problems.

5.2 State of the art

The number of applications in which combustion plays a key role are huge, such as
the rocket industry, aircraft engine or military. More than 85% of the energy obtained
today comes from burning something. Despite the growth of renewable energy is
increasing, its growth is slower than the required amount of energy consumed. This
means than combustion will play a role also in the future, since it will continue to be
an important source of energy. Furthermore, energy overproduction by renewable
systems is often stored in some form of chemical process in order to later recover
that energy with a combustion process.

Nevertheless, combustion comes with some known drawbacks such as pollution
emission and noise. Also, probably the most challenging problem that humanity
face at the present moment is climate change and global warming, which is caused
mainly by combustion. These facts lead the field of numerical combustion to pursue
efficiency by reducing emissions while producing the same amount of power. This
require optimizing devices where combustion is used to generate power, such as
gas turbines. This process of optimization can be very expensive. Therefore, it is
preferable to compute something before building it. This requires trust in the code
and a lot of experiments. Here, we face the first issue: the computational code.

Numerical combustion is a multi-physics phenomenon since chemistry, radiation,
flow and acoustics is mixed. These entangled phenomenon have different scales as-
sociated (from nanometers to kilometers) heavily impacting the required computa-
tional power and constraining the numerical methods. The strategy to tackle nu-
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merical combustion of turbulent compressible flows has not converged to an opti-
mal solution, so the numerical methods found in the literature are numerous. Di-
rect Numerical Simulations (DNS) are restricted to very few relatively simple and
small scale cases with less to none practical application. Traditional solvers used
Reynolds-Averaged Navier-Stokes models (RANS) to compute combustion, but due
to the important unsteady effects (maximum temperatures are always a design con-
strain, not the mean temperature) the approach that is most used today is Large Eddy
Simulation (LES). Moreover, RANS solvers cannot predict combustion instabilities,
cycle-to-cycle variations, self-ignition and emissions formation. LES is based on the
idea of computing the large scales of the motion and model the small ones. For non-
reactive flows, we already explored this approach in section 4.3.2. For reacting flows,
nevertheless, closure terms have to be provided also for the reaction rate terms. To
overcome this issues, the most used approaches are:

• Flamelet Progress Variable models (FPV) [1–3]. The reaction rates are assumed
to take place in thin layers, separating the reactant mixture from the product
mixture, wrinkled by turbulence.

• Probability Density Function models (PDF) [4]. The filtered reaction rates are
presumed through probability density functions.

• Finite Rate Chemistry models (FRC) [5–7]. They use different mathematical
and phenomenological models of the filtered reaction rates. Some examples
are the Thickened Flame Model (TFM), PaSR model or the Eddy Dissipation
Concept (EDC).

• Conditional Moment Closure (CMC) [8]. The species equations are condition-
ally averaged on a few variables on which the reaction rates are critically known
to depend.

• Linear Eddy Models (LEM) [9]. They use a grid-within-the-grid approach to
solve one-dimensional species equations with full resolution.

All these methods have certain features that limit their usefulness for engineer
applications. Therefore, the development of more versatile and cost-effective LES
combustion models is encouraged. Some recent works, like [10], propose the idea
of using the mathematical treatment of multiphase flows for the description of fine-
scale structures dissolved in a background turbulence, characterized by lower inten-
sity mixing. Transport equations for the closure terms are proposed and the method
is tested against other LES models in the Volvo validation rig [11], where experimen-
tal data is available showing its better performance when compare to the aforemen-
tioned models.
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Figure 5.1: Non-reactive scramjet extracted from [6].

A particular interesting application which fits into the frame of this thesis is the
study of supersonic ramjet combustors [6,12]. Numerous numerical and experimen-
tal tests study this case because it involves the interaction of the typical combustion
phenomenon (chemistry, radiation, flow and acoustics) with shock-waves. Figure 5.1
shows a Schelerion image for a class of scramjet combustor where no chemical reac-
tions take place. Air enters the combustor at supersonic speed, forming shock-waves
in the interior augmenting the pressure of the flow. Then, hydrogen is introduced
with injectors and mixes with the air. If the mix is ignited we can observe something
like figure 5.2. As we can see, the flow features are completely different. A good nu-
merical scheme must account not only for shock-waves but also for the flame fronts
that take place in the combustion process. The optimization of the injectors position,
the combustor geometry and the conditions at which the hydrogen is introduced,
among others, are the perfect example of application of the numerical methodology
presented in this thesis.

5.3 Multi-component Navier Stokes equations

In this section the conservation equations for reacting flows are presented. The dif-
ferences between this form and the already discussed one for non-reactive flows are
also highlighted.

Conservation of mass and species

The total mass conservation equation is unchanged compared to non-reacting flows
since combustion does not generate mass.
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Figure 5.2: Reactive scramjet extracted from [6].

ρt +∇ · (ρu) = 0 (5.1)

Nevertheless, multi-component flows involve multiple species and the NS equations
are required to account for the transport of each one of them. Species are character-
ized through their mass fraction Yk for k = 1 to N, where N is the number of species
in the mixture.

Yk =
mk
m

(5.2)

Here, mk is the mass of species k, while m is the total mass, m = ∑ mk.
Going to multi-component flows requires solving N + 5 variables instead of 5.

Most chemical reactions involve a large number of species, which results in a signif-
icant effort needed to compute reacting flows. The mass conservation equation for
species k is

(ρYk)t +∇ · (ρ(u + Vk)Yk) = ω̇k (5.3)

where Vk is the diffusion velocity of the species k in the mixture and ω̇k is the reaction
rate of species k. By definition:

N

∑
k=1

YkVk = 0 and
N

∑
k=1

ω̇k = 0 (5.4)

The diffusion velocities can be obtained using the Fick’s law

VkYk = −Dk∇Yk (5.5)
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where Dk is the diffusion coefficient of species k in the mixture. Then, equation 5.3
become

(ρYk)t +∇ · (ρuYk) = ∇(ρDk∇Yk) + ω̇k (5.6)

Conservation of momentum

The equation of momentum has the same form in reacting flows and non-reacting
flows:

(ρu)t +∇ · (ρuu) = ∇ · τ −∇p (5.7)

The flow is modified by combustion because the viscosity µ strongly changes be-
cause of temperature and species concentration. Density also changes, resulting in
local Reynolds number strong variations.

Conservation of energy

Multiple forms of the energy equation exist. The total energy is chosen as conserved
magnitude in the conservation equation in order to be consistent with the formula-
tion presented in chapter 1 where the work carried out by body forces is neglected.

Et +∇ · ((E + p)u) = ∇ · (τ · u)−∇ · q −∇ · (ρ
N

∑
k=1

hs,kYkVk) + ω̇T (5.8)

where E is the total energy, q is the heat flux, ω̇T = −∑N
k=1 ∆h◦f ,kω̇k is the heat release

being ∆h◦f ,k the formation enthalpy of species k.
The definition of the total energy given in equation 1.16 was a simplification de-

rived from the constant cp assumption. Since this hypothesis no longer apply, new
definitions have to be used. We begin defining the specific enthalpy for one species.

hk =
∫ T

T0

cp,kdT + ∆h◦f ,k (5.9)

where T0 is the reference temperature, which can be an arbitrary value. Due to the
difficulty to gather experimental information at T0 = 0K, formation enthalpy is usu-
ally tabulated at standard temperature T0 = 298.15K. Nevertheless, we use T0 = 0K
as our reference value due to numerical issues.

By definition hk = ek + pk/ρk where ek is the specific total energy of the species k.
Summing for all species, we can then conclude that
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E = H − p (5.10)

where E = ρe and H = ρh are the total energy and enthalpy respectively. On the
other hand, we can split the total energy in internal energy and kinetic energy

E = ρes +
1
2

ρu · u (5.11)

Internal energy and total energy are related with the expression

es = e −
N

∑
k=1

∆h◦f ,kYk (5.12)

As we already know, the total energy, momentum and density are the conserved vari-
ables of our system of equations. Hence, they are the magnitudes that we will find
after each resolution step. From these, we can easily obtain the velocity u = ρu/ρ. In
the system of equations presented in chapter 1 we could compute the pressure from
the total energy equation 1.16 and then find the temperature with the equation of
state, or viceversa. This is not the case now, since pressure and temperature are cou-
pled. Some iterative procedure must be used in order to solve the thermodynamic
magnitudes of the problem.

The equation of state

For a mixture of N perfect gases, the total pressure is the sum of partial pressures:

p =
N

∑
k=1

pk (5.13)

where pk = ρk
R

Wk
T, Wk is the molecular weight of species k and R = 8.314J/molK.

Since the density of a multi-component mixture is

ρ =
N

∑
k=1

ρk (5.14)

we can define the equation of state as

p = ρ
R
W

T (5.15)

where W is the mean molecular weight of the mixture

1
W

=
N

∑
k=1

Yk
Wk

(5.16)



114 CHAPTER 5. COMBUSTION

Summary

All the problems presented in the previous chapters can also be solved with the
multi-component formulation, since air is in fact a mixture of gases composed by
approximately 79% of N2, 21% of O2 and small fractions of H2O, CO2 and other
gases (usually in chemical equilibrium, hence with no chemical reactions).

The continuity equation has not been changed compared to the original NS equa-
tions. Nevertheless, N new conservation equations must be solved for the N species
of the problem. In order to solve these new equations, the diffusion of each species
in the mixture (given by the Fick’s law) and the reaction rate of each species have
to be computed. Concerning the momentum equation, no changes are required. On
the other hand, the energy equation introduces some changes. The first one is in its
own definition, since cp is no longer constant. Then, the heat released by any chem-
ical reaction has to be included as well as the enthalpy flux. Finally, the equation of
state has the same form except for the gas constant, that now takes into account the
molecular weight of the mixture.

Some issues remain open, such as the computation of the diffusion coefficient of
the species k in the species equation as well as its reaction rate. These magnitudes
can be computed in different ways. The work presented in this chapter is built on
top of previous work by fellow researchers [13], where more information on the
implementation of these magnitudes can be found. Hence, a simple definition of
the diffusion coefficient based on the Lewis number is used. On the other hand,
Arrhenius law is employed for the evaluation of the reaction rates.

5.4 Upgrading the hybrid flux

As we did in the development of our hybrid scheme, we first distinguish between
inviscid and viscous fluxes.

F(ϕ f ) = Finv(ϕ f ) + Fvisc(ϕ f ) (5.17)

Inviscid fluxes are computed using a Kinetic Energy Preserving scheme as a basis.
When the discontinuity sensor recognizes a discontinuity within the flow, artificial
diffusion is added in a very selective way by means of an upwind method. This
approach minimizes the amount of numerical viscosity while having a stable scheme
provided a fine tune of the discontinuity sensor, Φ.

Finv(ϕ f ) = (1 − Φ)FKEP(ϕ f ) + ΦFUDS(ϕ f ) (5.18)

Viscous fluxes are treated in the same way as described in section 2.3.4.
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In the KEP approach, the value of ϕ f is computed following the skew-symmetric
form of the convective term.

ϕ f =
1
2
(ϕP + ϕO) (5.19)

Remember that using the divergent form leads to unstable solutions.
The artificial diffusion required to make the numerical scheme stable in presence

of flow discontinuities is introduced by means of upwind-like schemes. These meth-
ods are based on the Godunov’s method, which solves the Riemann problem at each
cell interface. Following the same procedure that in section 2.3.2, one can derive the
expression for the flux function as

F(ϕ f ) = AϕO +
m

∑
p=1

(λp)−αprp (5.20)

or

F(ϕ f ) = AϕP −
m

∑
p=1

(λp)+αprp (5.21)

where λ and α are respectively the characteristic velocities and wave coefficients
of the Riemann problem associated at the face f . In section 2.3.2, we found these
quantities for the original 5 equation system, which are the same for mixtures of
perfect gases. Nevertheless, since now we deal with N + 5 equations, extra values
for λ and α are required to solve the conservation equations of species. Luckily, this is
the easiest characteristic problem to solve. Consider the convective part of equation

(ρYk)t +∇ · (ρuYk) = 0 (5.22)

The Jacobian matrix for each component is A = ∂ f
∂ϕ = ∂(ρuYk)

∂(ρYk)
= u. Now, if we

compute the eigenvalues and eigenvectors of this matrix we obtain that R = 1 and
λ = un. Following with the hyperbolic analysis, an approximate Riemann solver
would give as a results that

α = δρYk = (ρYk)P − (ρYk)O (5.23)

Notice that the N extra equations are independent from each other, making the hy-
perbolic analysis quite simple.
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Upgrading the discontinuity sensor

In section 2.3.3, we developed a shock capturing sensor that was able to identify
the presence of shock waves in the flow while discriminating turbulent structures.
In this sense, we could introduce the numerical diffusion in a very selective way,
only where it is required. Nevertheless, for multi-component flows, discontinuities
may also appear even in the subsonic incompressible regimen if the thermodynamic
properties of different components in the mixture are different. Remember that the
Larsson sensor has the form

Φ =

{
0 i f Θ ≤ 1
1 i f Θ > 1 (5.24)

where

Θ =
−∇ · u

max(Lss1|∇ × u|, Lss2
( a

ds
)
)

(5.25)

Here, a is the speed of sound, ds = V1/3
c and Lss1 and Lss2 are problem dependent

constants. If we take a close look at the form of the sensor, we can interpret it as the
ratio between the velocity gradient and the maximum speed at which information is
transmitted through the flow. Based on this same idea, we can identify a scalar front
comparing the gradient of a species with the maximum possible gradient, resulting
in

Θ =
−∇ · u

max(Lss1|∇ × u|, Lss2
( a

ds
)
)
+

∇Yk

Lss3

(
1
ds

) (5.26)

since by definition Yk can only take values between 0 and 1. The constant Lss3 allows
us to tune the sensor to be more selective or less.

5.5 Numerical tests

5.5.1 Non-reactive propane Jet

A non-reacting propane jet [14–17] is used to analyse the behaviour of the upgraded
hybrid scheme. The case featured in the TNF Workshop. It consists of a propane
(C3H8) jet issuing through a central D = 5.2mm pipe at Vb = 53m/s. The pipe
thickness is t f = 3.8mm. The coflow is regular air, flowing at 9.2m/s. Both propane
and air are at 292K and 107500Pa. The central jet Reynolds number is 68000.

Numerical simulations have been carried out on a 9Dx65Dx2π domain in the
radial ’r’, axial ’y’ and azimuthal direction, respectively. A structured mesh was
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created, which consisted of 125x300x64 control volumes. The mesh was concentrated
near the pipe wall, (D/2) < r < (D/2 + t f ), to better resolve the shear layer. For
the numerical simulations, inflow velocity is set through a mean turbulent profile
without fluctuations

V = Vc(1 − r/D)1/9 (5.27)

where Vc is the centerline velocity, whose value is set by evaluating the integral of
equation (5.27) and setting it equal to Vb. The exponent value has been set to better
match the experimental inflow velocity profile.

Results

To study the behavior of our hybrid scheme in the context of multi-component flow,
the different schemes that form it are considered for the analysis:

• The base kinetic energy-preserving scheme, denoted as ’KEP’.

• The 1st order upwind scheme, denoted as ’UDS’.

• A flux limiter scheme, specifically a Minmod, denoted as ’FL’.

• The hybrid scheme using the modified detector, equation 5.26, denoted as
’HYB’ with Lss3 = 0.1.

For the four convective schemes considered, instantaneous mixture fractions snap-
shots are shown in figure 5.3. Comparing the results, it can be seen that the mixture
fraction field computed with KEP evidences a jet break up close to the fuel inlet.
Oppositely, UDS does not break up and the core potential jet extends indefinitely
downstream. Hence, no transition to a turbulent jet occurs. When the current HYB
is applied, the jet break up is found around 6D downstream the fuel inlet. Similarly,
with FL the core jet is seen to extend around 6D and the transition to a turbulent jet
taking place thereafter.

Figure 5.3 shows that FL gives more smoothed transitions between core jet and
coflow compared to the current HYB scheme. Furthermore, the mean time average
mixture fraction field is compared against experimental data [14, 15] in figure 5.4.
Results are presented at three axial distances, specifically at y/D = 4, 15, 30. It can
clearly be seen that results obtained with UDS show that the core jet extends too
far downstream. With the KEP scheme the transition to a turbulent jet occurs too
early. Both FL and HYB schemes show improved results, being the latter closer to
the experimental results.

Mean and rms of the velocity for the different schemes analyzed are shown in
figure 5.5. Focusing on the results obtained with KEP, it can be seen that mean veloc-
ities around the jet are higher than the experimental results. Additionally, velocity
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Figure 5.3: Mixture fraction instantaneous snapshots. Radial-axial cutplane. Axis
have been scaled by the jet diameter D. Black to white coloring denotes mixture
fraction values ranging from 1 to 0.

Figure 5.4: Mean mixture fraction. Experimental results from [14, 15]
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fluctuations are too high compared to the experimental ones. The reason for this be-
havior is the jet breaking-up too early. On the other hand, with UDS the jet is seen
to extend too far downstream. The potential core of the jet remains unperturbed at
all axial locations. This behavior is caused by the diffusive properties of the upwind
scheme. Results obtained using the hybrid scheme with the proposed sensor show
good agreement with the experimental data, showing the suitability of the approach.

Furthermore, to illustrate the ability of the detector to act locally the regions
where the detector is active at one instant of the simulation are depicted in figure
5.6. In the snapshots, the control volumes where the sensor value is larger than the
threshold are shown superimposed to the mixture fraction and velocity fields, re-
spectively. As it can be seen, the low-order scheme is only applied to certain control
volumes, corresponding to regions with sharp changes in composition.

In terms of computational effort, the upwind scheme presents the higher cost
because of the amount of operations required by the approximate Riemann solver.
Nevertheless, the unstable nature of the kinetic-energy preserving scheme requires
smaller time steps. On the other hand, the hybrid scheme presents similar require-
ments than the KEP since the upwind scheme is only applied in a few control vol-
umes. In terms of computational time, the hybrid scheme results in the most expen-
sive one compared with its components solely (UDS and KEP), because the coupling
between the two methods requires slightly better temporal accuracy. However, the
increased accuracy accounts for this drawback.

Conclusions

Results show how the amount of numerical diffusion introduced into the simulation
is limited with the hybrid approach. Furthermore, it is shown that using only a ki-
netic energy-preserving scheme is not appropriate for multi-component flows with
sharp species gradients. Instabilities arising within the flow produce the early break
up of the jet and result in wrong flow predictions. Nevertheless, with the applica-
tion of a dissipative scheme in the control volumes that present large species gra-
dients, where unphysical oscillations can appear, the simulation becomes stabilized
and thus, obtaining more accurate results in terms of mean values and second-order
statistics.

5.6 Conclusions

In this chapter we have presented the NS equation for multi-component reacting
flows. We saw that the mass conservation equations remains unchanged as well as
the momentum equation. On the other hand, two extra terms appear in the energy
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Figure 5.5: Radial velocity profiles. Experimental results from [14, 15]
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Figure 5.6: Instantaneous snapshots with the front detector highlighted. Radial-axial
cutplane. Axis have been scaled by the jet diameter D.

equation accounting for the heat released in combustion processes and energy con-
sumption in species formation. Also, N new conservation laws are required to solve
the transport of the considered N species that form the mixture, giving as a result a
system of N + 5 equations to be solved.

Once the new formulation was presented, our hybrid scheme was upgraded in
order to work properly in the multi-component context. Concerning the KEP part of
the scheme, no changes had to be made. For the computation of the upwind scheme
used to add numerical diffusion, no changes are required as long as we work with
a mixture of perfect gases. Finally, N new Riemann problems have to be solved
for the N species transport equations. Nevertheless, the hyperbolic analysis was
very simple. The upgrade of the discontinuity sensor consisted of the addition of
an extra term accounting for scalar fronts. This can cause flow discontinuities that
have nothing to do with shock waves but have to be addressed in order to avoid
simulation divergence. The detector uses the gradient of the scalar of interest and
compares it to a theoretical maximum scalar gradient.

The upgraded hybrid scheme for scalar fronts has been tested in order to detect
regions with sharp scalar gradients in a propane jet issuing into an air coflow. It has
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been evidenced that the application of shock capturing techniques to identify multi-
component flow fronts is a suitable technique that give accurate results. An advan-
tage of the present method is that no high-order reconstructions are required. This
fact makes the hybrid method specially attractive for unstructured grids. Having
control of the total numerical diffusion introduced is important in LES where sub-
grid methods are relied upon to introduce the required turbulent dissipation. This
cannot be achieved with upwind-like dissipative schemes, even in high-order forms,
since some level of numerical diffusion is always introduced throughout the domain.
Furthermore, computational costs are reduced compared to high-order approaches
such as flux limiters.
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6

Conclusions and Further

Research

6.1 Conclusions

This thesis was introducted in Chapter 1. These are the main conclusions:

• This thesis finds its motivation in the fields of aerodynamics and engine tech-
nology.

• Compressible flows are described by the Navier-Stokes equations, which emerge
from conservation laws.

• Hyperbolicity mathematical properties apply for the Euler equations and the
convective part of Navier-Stokes equations.

• Hyperbolic properties are useful for deriving numerical schemes.

• The work on this thesis has been developed using Finite Volume methods for
unstructured meshes.

• The main objective has been the development of numerical tools to simulate
turbulent compressible single- or multi-component flows with or without shock-
waves.

• Different results of this thesis have been used by other researchers of the CTTC
in their studies of application such as aerodynamics, acoustics, wall models for
compressible flows and combustion.
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In Chapter 2 a new hybrid scheme for the simulation of turbulent compressible flows
was introduced and tested. These are the main conclusions:

• State-of-the-art numerical methods are divided in two main categories: dissi-
pative and non-dissipative.

• Dissipative methods include upwind-like schemes, ENO and WENO. They are
used in two forms: as a selective way to introduce small amounts of dissipation
in order to avoid oscillations, or in very high-order formulations to obtain low-
viscosity methods.

• Non-dissipative, or energy-consistent schemes, do not introduce numerical dis-
sipation. They use the skew-symmetric formulation of the Navier-Stokes con-
vective terms in order to be stable in smooth flows. They are unstable in the
presence of shocks.

• Hybrid approaches combine the previous methods to obtain stable, low-viscosity
schemes, which are required for LES and DNS.

• We have presented a new hybrid scheme. It was tested in several cases in order
to evaluate its ability to simulate smooth flows and discontinuous flows.

• Our method has been used to study the subsonic and transonic flow around
a NACA0012 airfoil, showing good agreement with reference data for the sub-
sonic cases and providing valuable and genuine results for the transonic case.

Boundary conditions for turbulent compressible flows were developed in Chapter 3.
These are the main conclusions:

• Boundary conditions are required to solve real-world applications.

• The common approach is based on the NSCBC method, which assumes a one-
dimensional inviscid approach to compute waves at boundaries in a finite dif-
ference framework.

• We have proposed an alternative formulation based on the same idea but tak-
ing into account the full three-dimensional wave-like structure at boundaries.

• The method is framed in the Finite Volume domain, meaning that ghost cells
are used at boundaries and boundary conditions are introduced softly via fluxes
through boundary faces.

• The new boundary conditions were tested in several cases, showing their good
performance even for three-dimensional turbulent flows in very small domains.
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In Chapter 4 turbulent models for compressible flows were studied and tested. These
are the main conclusions:

• Compressible flows always involve high-speed, high-Reynolds flows in real
applications.

• DNS of such flows are limited to academical tests in simple configurations.

• RANS and LES are the typical approaches to overcome such restrictions.

• SBLIs are a key feature of turbulent transonic and supersonic flows.

• RANS methods are able to predict shock-wave positions and main flow char-
acteristics, but are limited to steady and one-dimensional solutions.

• LES are able to capture three-dimensional unsteady behavior, but they require
wall-models to capture boundary layer effect with a reasonable computational
effort.

• More study into wall-models development is encouraged, specially for com-
pressible flows with SBLIs, in order to build flexible and reliable numerical
tools.

Finally, multi-component flows were introduced in Chapter 5. Our hybrid scheme
was upgraded and tested. These are the main conclusions:

• Multi-component formulation is required for a wide range of applications such
as combustion in engines, energy generation and prediction of pollution emis-
sions.

• Navier-Stokes equations are modified to include N new transport equations for
the N considered species, and heat released by combustion. Energy required
in the formation of new species have also to be taken into account.

• In multi-component flows, a new source of discontinuity may appear which is
the fronts formed by different species.

• We have upgraded our shock detector to detect species and flames fronts in
order to stabilize the numerical method.

• The new approach was tested in a non-reactive propane jet, showing its supe-
rior performance when compared to traditional approaches.

In addition to the conclusions regarding the work presented in this thesis, other re-
lated aspects are worth to be mentioned:
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• The tools developed in this thesis have been presented for the first time in
specialized seminars in master courses at UPC.

• Students have been able to develop their own Bachelor and Master thesis based
on the tools presented in this work.

• As mentioned before, fellow researchers have built their own research on top
of the numerical tools presented here in areas such as acoustics, combustion
and turbulence modeling.

• All the computational tools developed in this thesis have been implemented in
the TermoFluids commercial code.

6.2 Further research

Considering all the information gathered for the development of this thesis as well
as the results obtained, some issues are encouraged to pursue (both in the context of
compressible flows and CFD in general):

• As problems rise in computational cost, numerical methods have to be adapted
in order to allow feasible simulations. In this thesis we have restricted our-
selves to low-order numerical schemes on unstructured meshes. This kind of
methods work well if the space and time resolution are small enough. This,
however, results in extremely big meshes and very small time steps that ulti-
mately can harm their flexibility in certain applications. High-order numerical
methods emerge as an alternative to solve this issue. They do not require as
much computational resources, but also have some limitations. A clear strat-
egy to implement high-order schemes on unstructured meshes has not been
found yet. Furthermore, dispersion errors introduced by low-order schemes
make them unusable for acoustics applications, since wave speeds are miss-
predicted. It is clear than a flexible and accurate numerical scheme to solve ev-
ery feature of compressible flows in the field of thermo-acoustics (aerodynam-
ics, acoustics and combustion) has to be a high-order scheme. It is encouraged,
then, the study of this kind of ”one for all” methods. In this sense Discontin-
uous Galerkin Methods are an appealing alternative and they have grown its
popularity in the CFD community lately.

• As already mentioned, compressible flows for practical applications are always
turbulent and high-speed flows with very thin boundary layers. We have
restricted ourselves to explicit time-marching methods, which requires very
small time steps in order to provide accurate solutions. It is not worth having
the best numerical scheme if time steps of the order of 10−10 s are required, the
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simulation will never end. In this sense, implicit numerical schemes can allevi-
ate this problem since they allow the use of larger time steps. However, some
flow phenomena such as combustion have characteristics times that are indeed
small and implicit schemes with big time steps would not capture them. It is
encouraged, then, the study of flexible and computationally cost-effective wall
models in order to overcome the restrictions of explicit (and implicit) schemes
introduced by the boundary layer.

• Another research topic which require more study is combustion models. A
vast amount of models exist, and they work well for some cases and not so
well for others. Flexible models are required that can be used for the majority
of applications.

• Finally, an interesting topic that not only affects compressible fluids but all the
CFD community is the concept of smart adaptive grids. Considering the to-
tal amount of time spent in one simulation, the majority is required to build
a mesh, test it, and rebuild it until some point. We can even spend a lot of
time trying to figure out a problem in a numerical scheme when the real prob-
lem is in the mesh. Smart meshes could be generates automatically for a given
geometry and adapt themselves to the flow features in order to achieve an opti-
mal balance between computational cost and accuracy (for example clustering
along walls to reproduce boundary layers and growing in the smooth parts of
the flow to reduce the mesh where it is not needed). This feature would dramat-
ically reduce the time invested in running simulations, increasing efficiency in
the work process and reducing costs. The implementation of Artificial Intelli-
gence techniques in the CFD domain could allow this feature and many others
that could ultimately revolutionize how we do CFD today.
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Appendix A

The Shock Tube Problem

Lets consider an infinite one-dimensional tube with a membrane in the section
x = 0 that separates gas at rest with different thermodynamic properties (pressure,
density and temperature). The pressure in the region x < 0 (the working gas), de-
noted by the subscript l, is higher than the pressure in the region x > 0 (the driven
gas), denoted with the subscript r. At t = 0 the membrane suddenly breaks, gen-
erating the gas flow in the tube. In the lower pressure region a shock wave travels
at a speed D, meanwhile in the higher pressure region an expansion waves occur.
Between the heated gas and the gas left behind by the expansion a contact disconti-
nuity is placed that travels at the local gas speed (velocity and pressure are constant
through contact discontinuities).

If initially all the particles of the gas have the same value of entropy, and there
are not shock waves in the evolution of the gas, the entropy is constant and equal
in all the gas, this is what is called a homentropic flow. In this case the problem is
easier to solve because the different thermodynamic variables can be expressed as a
function of the entropy and another variable. The system become

dR+

dt = 0 C+ : dx
dt = u + a

dR0

dt = 0 C0 : dx
dt = u

dR−
dt = 0 C− : dx

dt = u − a

(A.1)

where
R+ =

∫ dp
ρa

+ u R− =
∫ dp

ρa
− u (A.2)

are the Riemann variables, which will remain constant when moving through x at a
speed a with respect to the fluid. In the case of perfect gases (in which this work is
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focused on), the homentropic relations are

(
p
p0

) γ−1
γ

=

(
ρ

ρ0

)γ−1
=

(
a
a0

)2
(A.3)

With p0, a0 and ρ0 constants. In this case, the Riemann variables are,

R+ =
2

γ − 1
a + u R− =

2
γ − 1

a − u (A.4)

These simplifications can be used to find several analytical solutions in some special
cases, such as the Riemann problem. The Riemann problem involves the compu-
tation of the Euler equations where the initial data is a piecewise function for the
different thermodynamic variables with a jump discontinuity. The Sod’s shock tube
is an example of a Riemann problem, and it is also the basis of the development of
upwind-like numerical schemes.

In order to obtain the exact solution, the tube is divided into several regions (see
figure A.1). The characteristics that arrive at point A come from the line t = 0, i.e.,
the initial conditions.

R+ =
2

γ − 1
aA + uA =

2
γ − 1

ar R− =
2

γ − 1
aA − uA =

2
γ − 1

ar (A.5)

It can be concluded that aA = ar and uA = 0. Therefore, the fluid remains at rest
until the shock wave forces the flow. This is a coherent result since the shock wave
travels at a relative speed with respect to the fluid higher than the speed of sound,
so the first perturbation of the fluid in the region r is due to the shock wave. In order
to find the properties behind the shock wave, the Rankine-Hugoniot relations must
be applied,

ρ2

ρ1
=

(γ + 1)M2

2 + (γ − 1)M2
urel

2
u1

=
ρ1

ρ2
(A.6)

p2

p1
=

2γM2 − (γ − 1)
γ + 1

T2

T1
=

(
a2

a1

)2
=

p2

p1

ρ1

ρ2
(A.7)

Where the subscript 1 denotes the conditions in front of the shock wave and the
subscript 2 denotes the conditions behind the shock wave. The Mach number of the
shock wave is M = D/ar. The value of the velocities are relative to the shock wave,
but the absolute values must be used : u1 = D − ua = D and u2 = D − urel

2 . The
discontinuity produced by the shock wave can be reinterpreted as new boundary
conditions for the fluid since the values of the Riemann variables have changed. The
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C+ characteristics behind the shock wave are parallel to it, therefore only C− and C0

arrive at point P.

R− =
2

γ − 1
aP − uP =

2
γ − 1

a2 − u2 C0 :
dx
dt

= up = u2 (A.8)

Hence, aP = a2 and uP = u2. The properties of the fluid between the shock wave
and the contact discontinuity remain constant. As it can be seen from figure A.1 the
contact discontinuity is a C0 characteristic, and because there is no flux through the
discontinuity, the local velocity must be equal at both sides (and then the lines C0

have the same slope in front of the contact discontinuity and behind). The contact
discontinuity equation of motion is, therefore, x = u2t and its speed is u2.

Concerning the expansion region, it can be concluded (following the same pro-
cedure that in A) that aB = al and uB = 0. The region under the line x = alt
corresponds to the fluid that has not been affected by the expansion wave yet. At R
arrives the characteristic C+ from B and the characteristics C− from the origin

R+ =
2

γ − 1
aR + uR =

2
γ − 1

al C− : x = (uR − aR)t (A.9)

Combining the previous expressions one gets,

aR =
2al

γ + 1

(
1 − γ − 1

2
x

alt

)
uR =

2al
γ + 1

(
x

alt
+ 1
)

(A.10)

Finally, the point Q is intersected by C+ arriving from R and C− arriving from the
contact discontinuity.

R+ =
2

γ − 1
aQ + uQ =

2
γ − 1

al R− =
2

γ − 1
aQ − uQ =

2
γ − 1

a−c − uc (A.11)

Notice that the speed of sound behind the contact discontinuity, a−c , is unknown.
The pressure and relative velocity through the contact discontinuity are constant,
but it cannot be said the same for the rest of properties. It is needed, then, the third
characteristic.

C0 :
dx
dt

= uQ = uc = u2 (A.12)

Finally

a−c = aQ aQ = ab −
γ − 1

2
u2 uQ = u2 (A.13)

The upper limit of the expansion is given by the conditions in Q, and corresponds to
the last C− with ad = aQ and ud = uQ.
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Figure A.1: Diagram of the shock tube solution.

At this point, all the relations required to get the exact solution for the shock
tube problem have been developed. The isentropic relations (A.3) give us the rest
of magnitudes. Notice that if D is not data, the solution must be obtained by an
iterative process. Setting the condition that in the contact discontinuity the pressure
must remain constant one obtain,

pl
pr

=
2γD2 − (γ − 1)

(γ + 1)
[
1 + (γ−1)D

2
ar
al

(
2+(γ−1)D2

(γ+1)D2 − 1
)] 2γ

γ−1

(A.14)

Which is an implicit equation for D. An algorithm to solve the problem would look
like this:

• Define initial Riemann problem: pl , ρl , ul and pr, ρr, ur.

• Find D from equation A.14 with an iterative process.

• Use equations A.6 and A.7 to find the jump relations through the shock wave.

• Use the Riemann variables in each zone to find the rest of values.



Appendix B

Computing Resources

The different numerical methods presented in the context of this thesis have been
implemented in C++. The Object Oriented Programming paradigm and the MPI
protocol is used to allow multi-cpu usage. The code is based on the OML library
developed by TermoFluids SL [1]. The work presented in this thesis has allowed
TermoFluids to work with compressible flows, previously it was restricted to incom-
pressible flow studies. It has been also the objective of this thesis to implement all
the advances resulting from this thesis in order to expand TermoFluids’ range of
applications.

The majority of the simple cases presented in this thesis have been tested in
a quad-core Intel Core i5 CPU, with 8 Gb of RAM. Bigger cases, however, have
been run in the CTTC JFF-Cluster (http://www.cttc.upc.edu/node/29) and in BSC-
MareNostrum 3 (<2017) and 4 (2017) (https://www.bsc.es/marenostrum/marenostrum).
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