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Abstract

This thesis consists of three essays. In the first essay, we test empirically the pricing
performance of several advanced financial models. We calibrate six advanced stock price
models to a time series of real market data of European options on the DAX, a German
blue chip index. Via a Monte Carlo simulation, we price barrier down-and-out call
options for all models and compare the modelled prices to given real market data of
the barrier options. The Bates model reproduces barrier option prices well. The BNS
model overvalues and Lévy models with stochastic time-change and leverage undervalue
the exotic options. A heuristic analysis suggests that the different degree of fluctuation
of the random paths of the models are responsible of producing different prices for the
barrier options.

The second essay of this thesis discusses the relationship between coherent risk mea-
sures and concave distortion functions. A family of concave distortion functions is a set
of concave and increasing functions, mapping the unity interval onto itself. Distortion
functions play an important role defining coherent risk measures. We prove that any
family of distortion functions which fulfils a certain translation equation, can be rep-
resented by a distribution function. An application can be found in actuarial science:
moment based premium principles are easy to understand but in general are not mono-
tone and cannot be used to compare the riskiness of different insurance contracts with
each other. Our representation theorem makes it possible to compare two insurance
risks with each other consistent with a moment based premium principle by defining an
appropriate coherent risk measure.

In the last essay of this thesis, we investigate financial markets with frictions, where
bid and ask prices of financial intruments are described by sublinear pricing functionals.
Such functionals can be defined recursively using coherent risk measures. We prove the
convergence of bid and ask prices for various European and American possible path-
dependent options, in particular plain vanilla, Asian, lookback and barrier options in
a binomial model in the presence of transaction costs. We perform several numerical
experiments to confirm the theoretical findings. We apply the results to real market
data of European and American plain vanilla options and compute an implied liquidity
to describe the bid-ask spread. This method describes liquidity over time very well,
compared to the classical approach of describing the bid-ask spread by quoting bid and
ask implied volatilities.



Resumen

Esta tesis consta de tres ensayos. En el primer ensayo, probamos empiricamente el
desempertio de los precios de varios modelos financieros avanzados para opciones exoticas.
Calibramos seis modelos avanzados para precios de acciones a una serie de datos de
mercado reales de opciones europeas en el DAX, el indice de referencia de la Bolsa
alemana. A través de una simulaciéon de Monte Carlo, calculamos precios de opciones
de barrera para todos los modelos y comparamos los precios modelados con los precios
del mercado de las opciones de barrera. El modelo Bates reproduce bien los precios de
las opciones de barrera. El modelo BNS sobrevalora y los modelos Lévy con cambio
temporal estocastico y con efecto de palanca subestiman los precios de las opciones
exéticas. Un andlisis heuristico sugiere que el diferente grado de fluctuacién de las
trayectorias aleatorias de los modelos es el responsable de producir diferentes precios
para las opciones de barrera.

En el segundo ensayo de esta tesis se examinan medidas de riesgo coherentes y fun-
ciones de distorsién céncavas. Una familia de funciones céncavas de distorsion es un
conjunto de funciones céncavas y crecientes, con dominio e imagen igual al intervalo
unitario. Se usan las funciones de distorsién para definir medidas de riesgo coherentes.
Demostramos que cualquier familia de funciones de distorsién que cumpla una ecuacion
de traslacién, puede ser representada por una funciéon de distribucién. Una aplicacién se
puede encontrar en la ciencia actuarial: los principios de primas basados en los momen-
tos son faciles de entender, pero en general no son monétonos y no se pueden utilizar
para comparar los riesgos de diferentes contratos de seguros entre si. Nuestro teorema
de representacion permite comparar dos riesgos de seguros entre si de acuerdo con un
principio de primas basado en un momento, definiendo adecuadamente una medida de
riesgo coherente.

En el dltimo ensayo de esta tesis, investigamos los mercados financieros con fricciones,
donde los precios de compra y venta de instrumentos financieros se describen mediante
funciones de precios sublineares. Estas funciones pueden definirse recursivamente uti-
lizando medidas de riesgo coherentes. En un modelo binomial y en la presencia de costes
de transaccién, demostramos la convergencia de los precios de compra y venta para
varias opciones europeas y americanas, en particular opciones plain vanillas, asidticas,
lookback y de barrera. Realizamos varios experimentos numéricos para confirmar los hal-
lazgos tedricos. Aplicamos los resultados a los datos de mercado reales de las opciones
plain vanilla europeas y americanas y calculamos una liquidez implicita para describir la
diferencia de precios de compra y venta. Este método describe muy bien la liquidez en
comparacién con el enfoque clésico de describir la diferencia entre los precios de compra,
y venta con las volatilidades implicitas de dichos precios.
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1 Introduction

Derivative pricing is an important branch of finance requiring advanced quantitative
techniques. Derivatives derive their value from a market-based reference like a stock, an
index or a foreign exchange rate. It is often criticized that derivatives are too complex
to understand!. The present thesis attempts to bring some light into the discussion.
In this thesis, several existing advanced stock price models are presented and analysed
empirically. A good model might help to find a “fair” price for a derivative, which
satisfies all contracting parties.

An investor holding an asset with an uncertain future cash flow like a derivative takes
several risks. The market risk can be describe by coherent risk measures. Many coherent
risk measures like the expected shortfall are represented by concave distortion functions,
which are functions mapping the unity interval onto itself.

The financial crisis in 2008 led to fundamental questions about liguidity risk. During
a crisis the market is less willing to trade, it is less liquid, the bid-ask spread of many
products widens. Using coherent risk measures, we extend classical frictionless financial
market models to markets with frictions (for example caused by transaction costs), where
prices of assets depend on the direction of the trade. There is an ask price to buy the
asset from the market and a usually lower bid price to sell the asset to the market. Such
models allow to model (il)liquidity of financial markets very well as we show by several
empirical studies.

The structure of this thesis is as follows: Chapter 2 introduce simple frictionless mar-
kets. We define many technical and financial terms which are used throughout the thesis.
Chapter 3 analyses empirically advanced frictionless stock price market models. Chapter
4 introduces coherent risk measures and discusses representation of concave distortion
functions and applications to insurance science. In Chapter 5 we define markets with
frictions based on results from Chapter 4. The structure of the thesis is visualized in
Figure 1.1.

In Chapter 3 we analyse advanced stock price models empirically. There is an endless
list of advanced stock price models generalizing the Black-Scholes model and being able
to capture many stylized facts typically observed in financial time series like fat-tail
behaviour of log-returns, volatility clustering and negative correlation between volatility
and stock price movements known as the leverage effect. There are several studies in the
literature showing that many advanced stock price models can be calibrated very well
to plain vanilla option data, in the sense that different models lead to almost identical

!See Somanathan and Nageswaran (2015) for an introduction to derivatives containing a critical view
on the subject, in particular a discussion of the role of derivatives in the global financial crisis in
2008.



1 Introduction

Chapter 2
Simple frictionless markets

Examples:

Static models,
Binomial model,
Black-Scholes model

Contribution:
We recall main results from literature.

Chapter 3
Advanced frictionless markets

Examples:

Heston model,

BNS model,

Lévy processes with stochastic time-
change and leverage

Contribution:

We compare real market data to
simulated prices of barrier options for
six models to decide which model
best explains exotic option data. We
provide indications why different
models return different prices.

Chapter 4
measures

Examples:

Contribution:

insurance science.

Concave distortion functions and coherent risk

WANG transform, Laplace distortion, Expected Shortfall

We prove a representation theorem for concave
distortion functions and provide an application in

P

Chapter 5
Simple markets with frictions

Examples:

Static models,

Binomial-type model with frictions,
Extended Black-Scholes formula

Contribution:

We obtain closed-form solutions of
European options in a Laplace
model. We prove convergence of
European and American possible
path-dependent options. A market
implied liquidity describes liquidity
over time significantly better than

traditional methods.

l \
Chapter 6
Advanced markets with frictions

Examples:

Quantify residual risks,
Stochastic volatility,
Stochastic liquidity

Contribution:
This is future research.

Figure 1.1: Key themes




1 Introduction

plain vanilla prices. However, the calibrated advanced stock price models may lead to
very different prices for exotic options. This is known as model risk. In Chapter 3 we
investigate the question which model best explains exotic option data. We calibrate six
advanced stock price models to a time series of real market data of European options
on the DAX, a German blue chip index. Via a Monte Carlo simulation, we price barrier
down-and-out call options for all models and compare the modelled prices to given real
market data of the barrier options. There are three contributions in this work: a) this
is the first study which focus only on models describing the volatility by a stochastic
process and incorporating a leverage effect. To the best of our knowledge, this is the
first time exotic option prices are simulated under Lévy processes with stochastic time-
change and leverage. b) in contrast to former studies, we also compare the simulated
prices to real market data of equity barrier options. Hence for our particular data set,
we are able to decide which model reproduces barrier option data best. c¢) we provide
some analysis why some models overvalue and other models undervalue barrier options.

We devote Chapter 4 to introduce coherent risk measures induced by concave distor-
tion functions. Fundamental research motivates us to study the connection between con-
cave distortion functions and distribution functions. We prove a representation theorem
and show that a family of concave distortion functions satisfying a certain translation
equation can be represented by a distribution function. The representation theorem
helps to interpret concave distortion functions. An application of this theorem can also
be found in insurance science. Premium principles in actuarial science are used to deter-
mine the initial payment, known as the premium, an insured has to pay to the insurance
company in return for an insurance contract. For example the premium can be defined
by the expected loss of the insured object plus a multiple of the standard deviation of
the loss. Moment based premium principles are easy to understand but in general are
not monotone and cannot be used to compare the riskiness of different insurance con-
tracts with each other. Our representation theorem makes it possible to compare two
insurance risks with each other consistent with a moment based premium principle by
defining an appropriate coherent risk measure. Coherent risk measures are also a useful
tool to define markets with frictions, as we will see in Chapter 5.

In Chapter 5 we turn our attention to markets with frictions. Stocks are usually traded
on stock exchanges which demand some fee from the investor to trade the stock. It is
therefore reasonable to assume that the prices for buying and selling the stock differ.
The investor has to pay more money for purchasing the stock than she receives when
selling it. We introduce markets with frictions in discrete time, i.e. there are only a
finite number N of timepoints when the risky asset can be traded. Bid and ask prices
are defined using concave distortions as discussed in Chapter 4. We look at two special
cases: in the static case, N = 1, we obtain closed-form solutions for bid and ask prices
of European options, if the log-returns are normal or Laplace distributed. We also look
at the asymptotic case N — oo and prove convergence of bid and ask prices for many
American and Exotic options in a binomial-type model. We obtain closed-form solutions
for bid and ask prices of European plain vanilla and barrier options. We are motivated to
study the asymptotic behaviour of the model to obtain closed-form solutions for efficient

11



1 Introduction

numerical applications. The static case is interesting because the Laplace distribution
might be better suited to model log-returns than the normal distribution, which appears
asymptomatically in the binomial model. Working with real market data, we show that a
market implied liquidity can be computed from a Furopean or an American plain vanilla
option surface. This implied liquidity measure describes liquidity over time significantly
better than traditional methods.

Each Chapter 3, 4 and 5 is surrounded by a suitable introduction and conclusion.
Chapter 6 of the thesis suggests ideas for future research. This thesis is based on journal
articles which are either published or are submitted during the doctoral studies.

12



2 Introduction to Classical Financial

Markets

This Chapter introduces some basic concepts of mathematical finance. The main nota-
tion and financial terms used in the thesis are defined and presented. Readers familiar
with financial terms and concepts may just glance over this Chapter. We will mention
and explain the following terms, which frequently appear in the whole thesis:

Economic terms: underlying, stocks, equity market, stock market index, exchange
traded fund, bank account, riskless and risky asset, dividend yield, interest rates,
portfolio, diversification, discounting, future random cash flow, log-returns.

Financial market classifications: frictionless markets, markets with frictions, com-
plete and incomplete markets, static, discrete and continuous time trading.

Arbitrage: arbitrage opportunity, arbitrage-free price, bid, ask and risk-neutral
price, equivalent martingale measure, martingale, self-financing trading strategy,
zero initial investment.

Derivatives: contingent claim, call or put plain vanilla option, strike, maturity,
put-call parity, moneyness, barrier, down-and-out, down-and-in, knock-out, option
premium, holder, owner or buyer and writer or seller of an option, Black—Scholes
formula, implied volatility, implied volatility index.

Mathematical terms: random path, filtration, usual conditions, stochastic process,
adapted and predictable process, objective function, calibration.

In Section 2.2 we formally introduce discrete time frictionless financial markets, which
are technical much easier to handle than continuous time financial markets. In Section
2.3 we comment on continuous time financial markets as well. We try to answer the
following questions:

i How can a financial (stock) market be modelled over time?

ii How can we (mathematically) guarantee that the market model makes economically

sense? The market should work efficiently, in particular it should not be possible to
make money out of nothing. The analogue of a perpetual motion machine in physics
is called arbitrage in economics. We will provide some conditions to guarantee that
the market model is arbitrage-free.

13



2 Introduction to Classical Financial Markets

iii From a mathematical point of view not only the stock itself but, contracts on the stock,
which change their value depending where the stock is moving, are very interesting.
How do we price such contracts without introducing arbitrage opportunities in the
market? If there are more than one arbitrage-free price for the contract, which one
do we choose?

2.1 Assets

Financial markets usually consist of at least one risky asset and a bank-account. The
risky assets might be stocks, commodities like oil or sugar or foreign exchange rates.
The risky assets are also often called underlyings. The future prices of the risky assets
are unpredictable and modelled by a stochastic process. The bank-account on the other
hand has a totally deterministic behaviour, and is therefore also called riskless asset.
The bank account is characterized by some fixed continuously compounded interest rate
r > —1: an investor can deposit any amount of money and one currency unit will grow
to €' after ¢ years. t is measured in fractions of a year, if the investor deposits money
for one month we have t = % She can also borrow money from the bank and for each
currency united borrowed, she has to return e’” to the bank. Any model has to abstract
from reality and assuming that the interest rates and borrowing rates are equal and
independent of the time-horizon is such a simplifying abstraction.

In this thesis, there is usually only one risky asset, which models a stock (Stocks
represent a partial ownership of a company like Apple Inc., CaixaBank S.A. or Siemens
AG) or an index on stocks. Markets where stock can be traded are called equity markets.
A stock market index represents a basket of stocks, also called portfolio, and is computed
as an weighted average from the prices of selected stocks. For example the S&P 500 Index
is based on the market capitalizations of 500 large American companies. The DAX 30
on the other hand consists of 30 mayor German companies. For many indices there
are funds, called exchange traded funds (ETF), replicating the index. For example the
SPDR S&P 500 ETF Trust replicates the S&P 500 index. It contains the same stocks
in the same ratio as the S&P 500 index and can be traded as a usual stock. Funds
replicating the S&P 500 are examples of diversified portfolios because they do not focus
on a single asset or single line of business but rather invest in a variety of different stocks
and reduce thereby the exposure to any particular stock.

Companies may pay dividends to its shareholders. This may happen if the company
earns a profit and does not re-invest the profit. Simplifying, we assume that the stock
pays a continuous annualized dividend yield at rate q, i.e. a stock paying dividends is
modelled by

St = e_qtgt,

where (5}) describes the stock price process, if the dividend would be reinvested in the
company, see Schoutens (2003, Section 2.6) for details.

14



2 Introduction to Classical Financial Markets

2.2 Discrete Time Market Model

In this Section we introduce financial markets in discrete time. We follow closely Follmer
and Schied (2011, Section 5) and Schoutens (2003, Section 1 and 2).

Let T' > 0 be some time-horizon. Let N € N be the number of possible trading periods
in the interval [0, 7]. Trading can take place at the timepoints

T T(N-1)
0,—,..,— 2T
{7N7 ) N ) }7

i.e. the interval [0,7] is divided into N equidistant time steps. There are no trading
restrictions: stocks can be bought and sold for the same price in any quantities. The
time-horizon T is usually measured in fractions of a year and one trading period might
for example correspond to a day, an hour or just a second. The special case N = 1
is called a static market model, if N > 1 we speak of a multiperiod or discrete market
model. In a static model, trading can take place only twice: today and at the end of the
time-horizon.

We assume there are d + 1 assets (one bank account and d risky assets). We model
the k' asset by a discrete time stochastic process, which is a collection of random
variables on a given probability space (€2, F,P) over the index set {0, .., N} and denoted

by S* = (sF)

evolution and Sf (w) is the price of the k'™ asset after i trading periods if scenario w
occurs.

For a fixed trading period i, the map S¥ : 2 — [0,00) is a random variable and for a
fixed w € €, the map

Every w € Q) corresponds to a particular scenario of market

=Y,

{0,.,N} — [0,00)
T = Sf(w)

is called a realization of a random path of asset S*. Assets S, ..., S% represent risky
assets, for example different stocks. We assume the asset S° is a riskless bank account
and can be modelled by the deterministic process

T

SO=e'V, i=0,..., N,

7

where r are some interest rates. Today the prices of all assets are known and deter-
ministic, we denote them by the tuple <58, ...,S(])“) € Riﬂ. The prices of the risky

assets at trading period i € {1,.., N} are modelled by nonnegative random variables
Sf, k =1,..,d. The random variable Sf is assumed to be measurable with respect to
a o—Algebra F; C F. One should think of F; as information available after i trading
periods. It is therefore assumed that

Fi CFjC Ffori<yj, i,j€{0,..,N}and Fy={0,Q} and Fy = F.

15



2 Introduction to Classical Financial Markets

The family (Fi)izo,..., n is called filtration and models the knowledge of an investor over
time. At period ¢ the investors only knows F;. Let I C R be some interval. After ¢
trading periods, the investor knows sets like

A={weQ:SFw)er}

because the fact that Sf is F;—measurable means A € F;, i.e. the investor is able to
decide if the price of the k' asset lays within the interval I. Sets like

{we: Sk (w)erl}

on the other hand are elements of F;; and are not yet known to the investor. This
means after ¢ trading periods, the history of the stock prices and the present stock prices,
i.e. the stock prices at period 0, ..,7 are known to the investors but future stock prices
at periods ¢ + 1, ..., N are unknown.

Definition 2.2.1. A stochastic process (Yi)z':o,..,N is called adapted with respect to the
filtration (]:Z')i:(),..,N if each Y; is F;—measurable.

The risky assets are modelled by adapted processes. We denote the collection of the
riskless and the risky asset by the d + 1 dimensional stochastic process

5= (gi)izo,...,N - (S’Q’ U Sld)z':o,..,N'

S]]i, describes the price of the risky asset S* at time T. If d = 1 and ambiguity can
be excluded we also may write St instead of S} in particular in static time financial
markets.

In order to compare different assets over time, investors often compare their relative
price changes, which leads to the following Definition:

Definition 2.2.2. The return of asset S¥ between the periods i < j is defined by

Sk _ gk
7 1
Sk

Sk
J
log <Sf> .

Often it is more convenient to work with log-returns. Many stock price models are
defined by the exponential of some stochastic process. Using log-returns is then a natural
choice. Furthermore log-returns can be added up over several periods. The log-return
between period ¢ and i 4 2 is the same as the sum of the log-returns between periods i
and ¢+ 1 and ¢+ 1 and 7 + 2.

The log-return is defined by

16



2 Introduction to Classical Financial Markets

2.2.1 Trading Strategies

Next we define a trading strategy, i.e. a way to invest in the different risky assets. At
the beginning of a trading period, an investor has to decide which stock to sell and
which to buy. Hence the investors knows at the beginning of each period which stock
she will hold in which amount at the end of the period. Trading strategies are plannable
or predictable. Before we define a trading strategy, let us define what is meant by a
predictable process.

Definition 2.2.3. A process (Zi)i:L._’N is called predictable with respect to the filtration
(Fi)ico. N—1, if Z; is Fj_1—measurable for i = 1,.., N.

At time ¢t = 0 the investor may choose a portfolio, i.e. numbers

& =(8),....6)) e RH

which correspond to quantity of shares invested in the various assets. If £ is negative,
she borrows ]5?‘ currency units from the bank otherwise she makes a deposit. Similarly
if £F is positive, she buys asset S, otherwise she sells it. If €¥ = 0 she does not trade
asset S*. The amount of money invested in asset S* today is &FS§. After one period,
i.e. at time t = %, her portfolio has the (random) value

d
& -S1=> ¢St
k=0
After the first trading period she may rearrange the portfolio, which leads to the defini-

tion of a trading strategy:

Definition 2.2.4. A trading strategy is a predictable R4 valued process

E=(&, -~-,€§i)z'=1,...,N-

The values
&= (¢

(Eorr)espond to the quantity of shares held during period 7, i.e. between the timepoints
i—1)T iT
N and N

Definition 2.2.5. A trading strategy is called self-financing if
Ei'Si:§i+1'Si, Zzl,,N—l

At period i — 1 we invested some amount of money which is worth &, - S; at period i.
At period 7, we then rearrange the portfolio in such a way that the value of the portfolio
does not change. A self-financing trading strategy is a way to invest in the market
without exogenous infusion or withdrawal of money except for an initial investment; the
purchase of new assets must be financed by the sale of old ones.

17



2 Introduction to Classical Financial Markets

Example 2.2.6. Assume d = 1, i.e. there is just one risky asset. If the investor has no
own capital, she can still trade. For example, she could simply set

& =—8; and & =1,
i.e. finance the purchase of the stock completely by debts. At time T' she owns
—Sgert + Sk
currency units, if she does not change her portfolio any further, i.e
¢ =8} and ¢ =1,i=0,..,N.

Such a strategy is a self-financing strategy with zero initial investment.

2.2.2 Discounting

Definition 2.2.7. Let Z be a F—measurable random variable. A contract which
promises to pay Z(w) at time 7T, if the event w occurs is called a future random cash

flow.

Mathematically, a future random cash flow is just a random variable. But it has some
economic meaning, it describes the movement of money from one counterparty of the
contract to another. The amount of money

7=k + 8k

an investor receives by following the strategy described in Example 2.2.6 is a future
random cash flow. It can be negative, in which case the investor makes a loss.

Remark 2.2.8. One currency unit today grows to e’ currency units at timepoint ¢. An
investor is therefore indifferent to receive > 0 currency units at time ¢ or xe™"* currency
units today. If she received ze™"" currency units today, she could deposit the money at
the bank account and obtain x currency units at time ¢. If Z is a random variable
modelling some future random cash flow promised to be paid at time ¢, the value e~ Z
is called the discounted value of Z. Discounting is necessary in order to be able to
compare today two future random cash flows, which are promised to be paid at different

future timepoints.

The discounted price process of the risky assets are defined by

k. S
X = S—ZQ, wi=0,...N, k=0,...,d.
(2
The discounted price process describing the bank account is equal to
S0
=1
Si

all times. We summarize the discounted price processes in a vector

X = (X% .., x%.
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Definition 2.2.9. The discounted value process V' = (V;),_o  associated with a trad-
ing strategy £ is given by

Vo:=& -Spand V;:=¢,- X;, i=1,...,N.

The discounted gains process associated with £ is defined as
i
Go:=0 and G;:=> §;- (Yj - Yj_l) L i=1,..,N. (2.1)
j=1

The value V; can be interpreted as the portfolio value after ¢ trading periods. The gain
process represents the net gains which have accumulated through the trading strategy
¢ after i trading periods. The sum in Equation (2.1) could be seen as a discrete version
of a stochastic integral, compare with Equation 2.5. It can be shown that a strategy is
self-financing, if and only if

Vi=Vo+Gy, i=0,..,N, (2.2)

see Follmer and Schied (2011, Proposition 5.7).

2.2.3 Arbitrage Opportunities

In classical finance the absence of arbitrage is a standard assumption. Arbitrage op-
portunities are trading strategies with zero initial investment, without the possibility of
losing money but with some chance to make a positive return and are precisely defined
in the next Definition:

Definition 2.2.10. An arbitrage opportunity is a self-financing trading strategy whose
value process satisfies

Vo<0, VN >0 P—a.s., and P(Vy >0) > 0.
The trading strategy mentioned in Example 2.2.6 is not an arbitrage opportunity, if
P (S}V < S&e’"T) >0,

which is usually the case. The very essence of a stock and its risky structure is the
fact that it might perform worse than a bank account. The existence of an arbitrage
opportunity in a financial market can be regarded as a market inefficiency in the sense
that the risky asset is not priced in a reasonable way. We say the market is arbitrage-free
if there do not exist any arbitrage opportunities. From an economic point of view it is
therefore necessary to prove that the market model we are working with is arbitrage
free. We have the following result, which is known in literature as the first fundamental
theorem of asset pricing. Before we state it, we introduce the notation of an equivalent
martingale measure.
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Definition 2.2.11. A probability measure Q on (€2, F) is called an equivalent martingale
measure if Q is equivalent to P, i.e.

P(A)=0<Q(A) =0, AecF,
and the discounted price process X is a Q—martingale, i.e.

Eql| X}

| < oo and Xf = Eg[Xf|F], 0<i<j<N, k=0,.,d (23

The term Eg[X ]k‘ Fi] denotes the conditional expectation of X Jk under the measure Q
conditioned on the o—Algebra F;. In particular it holds

Sk =e T EQ[SY], k=0,...,d,

or vectorized B B -
So = e_rTE@[SN] = E@[XN], (2.4)

i.e. the prices of the risky assets can be seen as the expected values of (discounted) future
stock prices. This sounds like a fair game. Indeed an equivalent martingale measure can
be seen as an artificial measure under which the discounted stock price process behaves
like a fair game. Under the real world measure P the stock might behave quite differently:
P and Q only have the same Null-sets. An equivalent martingale measure is also called
a pricing measure or an equivalent risk-neutral measure, because this measure can be
used for pricing and does not take any risk preferences of investors into consideration.
The usefulness becomes clear in Theorem 2.2.12 and Theorem 2.2.17. Let Q denote the
set of all equivalent martingale measures.

Theorem 2.2.12. The market is arbitrage-free if the set of equivalent martingale mea-
sures Q s not empty.

Due to the fundamental importance of this theorem, we highlight the main idea of the
proof:

Proof. We only show the static case N = 1. Assume Q # ) and let Q € Q be an
equivalent martingale measure. For a trading strategy £ let Viy = &; - X y and assume
VN > 0 P—a.s. and P (Vy > 0) > 0. Both properties remain valid if we replace P by Q
because the measures are equivalent to each other. Then it follows

Vo=¢& -So=¢& - Eg {YN} = Eg [Vn] >0,

see Equation (2.4), i.e. £ is not an arbitrage opportunity. O

The converse also holds true but is much harder to prove, i.e. the absence of arbitrage
guarantees the existence of at least one equivalent martingale measure. The complete
proof can be found in most textbooks about financial mathematics, see e.g. Follmer and
Schied (2011, Theorem 5.16).
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2.2.4 European Contingent Claims

Definition 2.2.13. A nonnegative future random cash flow, i.e. a nonnegative random
variable C' on (2, F,P) is called a Furopean contingent claim.

A contingent claim C'is a contract. The holder, owner or buyer of the contract receives
the nonnegative amount C'(w) from the writer or seller of the claim at timepoint T if
the event w occurs. Today, the holder has to pay a non-stochastic premium = > 0 to
the writer to receive the contract C' in return. Many contingent claims contain some
optionality and are therefore also called options.

Example 2.2.14. The holder of a Furopean plain vanilla call option with maturity T
on asset S* has the right, but not the obligation, to buy asset S* at time T for a fixed
price K, called the strike price. This contract can be described by the random variable

Ccan = max(SK, — K,0) =: (S% — K)*.

A contract called European plain vanilla put option with strike K and maturity T on
asset S* can be described by the random variable

Cput = (K — SK)T.

The ratio between the stock price today and the strike is called moneyness. For call
plain vanilla option is in-, at-, and out-of-the-money if the moneyness is greater than 1,
equal to 1 and smaller than 1, respectively. The holder of an in-the-money option would
receive a positive amount from the writer of the option if the maturity of the option was
today.

A European down-and-out barrier call option with strike K and barrier B is similar
to a plain vanilla call option, but it becomes worthless, if the risky asset drops below a
certain barrier B. This contract can be described by

k
options it is defined as 370 and for put options it is defined as We say an European

Sk —K)t | in S;>B
(Sy —K)™ , _min

0, otherwise.

Cbocan =

While a barrier option depends on the whole path of the asset S, a plain vanilla option
only depends on the value of the risky asset at maturity, i.e. only depends on S;. If the
barrier is not hit, i.e. if the stock remains above B at the timepoints 0, .., N, the holder
of an ordinary plain vanilla option receives the same amount of money as the holder of
a barrier option. When the barrier is hit, it becomes worthless and disappears from the
market. In this case we say the barrier option is knocked-out.

Another example of a barrier option is a Furopean down-and-in barrier call option
with strike K and barrier B, which can be described by
(Sk — K)* ’Z-e{%,l.i.?zv}si <B
0, otherwise.

Cpicall =
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This barrier option only returns a positive cash flow at maturity under the condition
that the barrier is at least once hit by the stock price process.

Remark 2.2.15. How are options used? For example for hedging purposes: an airline
sells flight tickets today for flights taking place in a year. We therefore set T'= 1. The
airline of course does not know the price St of jet fuel, which need to be bought from
some oil company in a year. The airline will probably get into trouble if S7 is much
higher then today’s jet fuel prices Sp. Therefore the airline might be interested to buy
today an insurance protecting against high fuel prices, i.e. for example a simple at-the-
money European plain vanilla call option on a certain amount of jet fuel with maturity
T and strike K := Sy. The airline then has the right at time T to buy jet fuel for the
price K instead of St and will execute this right if ST > K. The airline has to pay some
premium 7 to the option seller. In this Section we answer the question, how to compute
the premium of European contingent claims. Of course the airline is interested in paying
as little as possible for the insurance against high jet fuel prices. This is one reason for
the existence of barrier options: they are cheaper than plain vanilla options (but also
offer less protection).

For an broad introduction to contingent claims and its use in finance and economics,
see Hull (2017). It should be mentioned that contingent claims, which are also called
derivatives, can be used for purely speculative (gambling) purposes, too. Assume an
investor thinks a stock, which costs Sy = 100 currency units today, will rise by 5% after
one year. Assume she is correct, then she could make a return of 5% by investing directly
in the stock.

A plain vanilla European call option on the stock with strike K = 100 could cost
about 10 currency units today. Buying ten options for 100 currency units instead of the
stock, she makes a return of

(105 — 100) x 10
100

if her prediction about the future stock price is correct. But if the stock costs, say 99
currency units in a year, she loses 1% of her initial investment when buying the stock
directly, but 100% when betting on the stock using options. There are certainly many
situations for companies to use options to protect against unpredictable events, but using
options for speculative purposes is very risky.

Usually we know the contract C, see Example 2.2.14, and have to find a price 7 for C.
There is a minimum requirement on 7: the extended market model containing the assets
S9....,8% and C still should be arbitrage-free. This leads to the following definition.

= 50%,

Definition 2.2.16. A real number 7w > 0 is called an arbitrage-free price of discounted
contingent claim
H:=e"TC,

if there is a nonnegative adapted process X%+ such that
X =7 and X$ =H

and the extended market model (X©, ..., X4 X%+1) is arbitrage-free.

22



2 Introduction to Classical Financial Markets

The following theorem shows how to find an arbitrage-free price of C.

Theorem 2.2.17. Let Q be an equivalent martingale measure for the original market
consisting of the assets (X°,...,X%). Let C be a contingent claim. Assume

m:=e T Eg[0] < 0.
The price w is an arbitrage-free price for C.

Proof. Define
X = e TEg[C| Fi], i=0,.,N.

Then it follows
= X[‘)i+1 and e77TC = Xj‘f,“

As Q an equivalent martingale measure for the original market and X*! is by definition
a Q—martingale, Q is also an equivalent martingale measure for the extended market
model, which is hence by Theorem 2.2.12 arbitrage-free. The proof is taken from Follmer
and Schied (2011, Theorem 5.29). O

2.2.5 Market Incompleteness

Most financial markets are incomplete, i.e. Q contains more then one element, otherwise
the market is called complete. The binomial model, see Cox, Ross and Rubinstein
(1979) in discrete time and the Black-Scholes model in continuous time, see Black and
Scholes (1973), are prominent exceptions of complete markets. In the incomplete case
two different equivalent martingale measures Q1, Q2 € Q might lead to different prices
for a contingent claim C, i.e

71 = e T Eqg,[C] # T = e " Eq,[C].

By Follmer and Schied (Theorem, 5.29), lower and upper bounds of possible arbitrage-
free prices for C' are given by

it := inf efTTE@[C] and mgyp 1= SupefTTEQ[C’].
QeQ QeQ

The interval (minf, Toup) might be very large and it is unclear which price
T E (ﬂ-inf) 7rsup)

is an adequate price for C.

We cannot simultaneously price contingent claim C'4 using equivalent martingale mea-
sure Q4 and price another contingent claim Cp using a different equivalent martingale
measure Qp without running into the danger of introducing arbitrage into the market,
i.e. we need to price all contingent claims consistently by the same equivalent martingale
measure.
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Example 2.2.18. For any real numbers x,y, it holds

+ +

(z-y)" —(y—z)" =r—y.

Hence European put and call options with the same strike K and maturity T are related

with each other by
Ccanl — Cput = SN — K.

Discounting and taking expectations under any Q € Q it follows
TCall — Tput = S5 — ¢ T K,

which is known as the put-call-parity. The arbitrage-free price of the put option is totally
determined by the price of the call option and vice versa, independently of the chosen
equivalent martingale measure.

To identify this measure, we can use other information available in financial markets:
on many stocks, in particular on stock indices, there exist an option chain, e.g. a set
of plain vanilla put and call options with different strikes and maturities on the stock
index with known prices. Those prices are determined by supply and demand similar to
the prices of ordinary stocks. Generally speaking, both academics and practitioners use
such option chains to choose a particular equivalent martingale measure Q. In Chapter
5 parametric stock prices models are calibrated to given market prices of plain vanilla
options by minimizing the mean-square error between model and market prices. This
procedure is for example described by Bakshi et al. (1997). Let us assume there is a set
of parameters ©® C R"™ and a bijective function

f:0—=09,

i.e. each equivalent martingale measure Q € Q can be identified with a parameter 6 € ©.
Let us further assume there are M > n plain vanilla call and put options C1, ..., Cjy with
known market prices 7o, ..., 1om and maturities 11, ...,Ths. We minimize the mean-
square error between market and model prices, i.e. we minimize the objective function

M (ﬂ'cm — €_TTmEf(9) [Om])2

0| > i

m=1

Let us denote the minimum by f. The existence and uniqueness of a global minimum
is a delicate numerical issue and further discussed in Chapter 3. The thereby uniquely
identified equivalent martingale measure (@ = f (é) can then be chosen to price other
plain vanilla options with unknown prices or complex contracts, such as barrier options.
This means we compute the price of a contract (with unknown price) consistently with
current market prices of a certain set of plain vanilla options. No historic data is used,
only present market data. We do this by taking expectations and expectations are linear,
therefore the operator

bq - Ll(QafaQ)
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assigning a price to a contingent claim C' is also called linear pricing rule or risk-neutral
price operator with respect to the equivalent martingale measure Q. We call the value
e"'TEQ[C] the risk-neutral price of C with respect to the measure Q.

In Chapter 5 we look at markets with frictions and introduce bid and ask prices for
C. The ask price is the price an investor has to pay to purchase C' and the investor
only receives the usually lower bid price when selling C'. The risk-neutral price of C lays
between the bid and the ask price.

2.3 Continuous Time Finance

The notation and many of the results of stochastic finance in discrete time can be
passed to finance in continuous time. See Bjork (2009), Bingham and Kiesel (2013),
Musiela and Rutkowski (1997) and Karatzas and Shreve (1998) for an introduction to
stochastic finance in continuous time. See Protter (2001) for a compact introduction to
mathematical finance using semi-martingales. In this section, we very briefly provide
the main notation as a continuous-time extension of Section 2.2.

In continuous-time finance, we work with a filtered probability

(2 F.F = (F)z0, P)
that satisfies the usual conditions, i.e.
1. ;,c /R Cc Fifs<t.
2. JFy contains all the P—null sets of F.

3. The filtration is right-continuous: F; = Ny~ Fy for all 0 <t < 0.

As in discrete time, there are d + 1 assets with price processes

S = (§t>t€[0,T] - (Sto’ '"’Sf)te[O’T]’

where
SY.=e" tel0,T),

models a riskless bank account in continuous time and S, ..., 8% are semimartingales
with cadlag (right-continuous with left limits) paths. The d + 1 random variable S; is
F;—measurable, i.e. the process S is adapted. For example Lévy-processes are semi-
martingales, see Protter (2004, Section 3, Theorem 9). The process

v _ (¥ _ (s s
X = (X)te[O,T] = (5‘,?5? :

is called the discounted price process.

A trading strategy .
z_ (7 _(¢0
&= (ét)te[O,T} - (‘St""’gt)te[o,T]
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is an adapted caglad (left-continuous with right limits) process. ff represents the quan-
tities of shares in asset S* at time t. The value-process (Vt)te[o,T] associated with a

trading strategy £ is exactly defined as in the discrete case, i.e.
Vii=¢& - Xy, te0,1].

The gain-process associated with a trading strategy € is defined using the notation of
a stochastic integral, see Protter (2004) for a straightforward introduction to stochastic
integration and differentiation: for an adapted, caglad process H and a semimartingale
S, Protter (2001, 2004) defines a stochastic integral by

t
/O H,dS, := lim > HyAS, (2.5)

(e.)
tienn[0,4]

where 7"[0,1] is a sequence of partitions of [0,¢] with mesh tending to 0 as n — oc.
Protter defines A;S := S;, |, — S;, and the convergence is in u.c.p (uniform in time on
compacts and converging in probability). Protter defines semimartingales as the set of
processes, for which the limit of such sums exists. Using this notation, we define the
gain process in continuous time:

t
G = /gudSu = Z/ &,dS,,,
0 k=00

which can be seen as a continuous version of Equation (2.1). A trading strategy is then
called self-financing, if
V’t - ‘/0 +Gt7t S [OaT]a

compare with Equation (2.2).
An arbitrage opportunity is defined as in discrete time. It is a self-financing trading
strategy ¢ such that Vo = 0 and

Vr > 0P —a.s. and P(Vp > 0) > 0.

A measure Q is called an equivalent martingale measure if it is equivalent to P and X
is a local martingale (martingales are also local martingales) under Q. See for example
Protter (2004, Section 6) for a definition of a local martingale.

Theorem 2.2.12 can be passed from discrete to continuous time: the market is arbitrage-
free, if there exists an equivalent martingale measure. In continuous time, the converse
is not true. Only the stronger assumption of no free lunch with vanishing risk, which
can be seen as “approximately” arbitrage opportunities, guarantees the existence of at
least one equivalent martingale measure, see Delbaen and Schachermayer (1994).

As in discrete time, a contingent claim C' described by a F—measurable random
variable can be introduced in the original market. The question arises how to find a
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price 7w for C, which does not introduce arbitrage. Fortunately, also Theorem 2.2.17 can
be passed to continuous time: if

7= T Eg[C] < o0,
then 7 is an arbitrage-free price of C.

Example 2.3.1. The Black-Scholes model. Black and Scholes (1973) modelled the risky
asset in continuous time via a geometric Brownian motion. We define

Sy = Spelr29tHeWe 4 >, (2.6)

where (W;),~, is an adapted standard Brownian motion, r describes interest rate of
the risk-free bank account and ¢ > 0 is equal to the standard deviation of the log-
returns of the stock price at t = 1. ¢ is called annual volatility or just volatility. The
process (S¢),~( is a martingale, we present in Equation (2.6) the Black-Scholes model as
described under the equivalent martingale measure Q. As a nice feature of this model,
there exist closed-form solutions of European plain vanilla put and call options. For
example let Ccan be a call option with maturity 7' and strike K on the risky asset
(St);>0s 1-e. Ccan = (Sp — K)™. An arbitrage-free price mpg of Ccay is

ms(So, K,r,T,0) = e ' / (S — K)TdQ
Q

—rT

2
- em R(SOe“*%UQWm—K)*ef%dy (2.7)
= Sy®(dy) — e "TK® (dy), (2.8)

where ,
log () + (r+%)T
() (%)
ovT
and dy = d; — o/T. The step from Equation (2.7) to (2.8) is simple calculus, see e.g.
Follmer and Schied (2011, Example 5.56). The closed-form solution in Equation (2.8) is

called the Black—Scholes formula for the price of a call option. There is a similar formula
for put options.

The Black-Scholes formula is usually not directly used for pricing but as a trans-
formation between volatilities and option prices: for a European plain vanilla option
with known market price mmarket, One can invert the Black-Scholes formula and compute
numerically a oiyplied such that

Tmarket — TTBS (507 K,rT, Jimplied)-

Oimplied 1S called implied Black-Scholes volatility or just implied volatility of the option.
The values 7 and Sy can be observed in the market and the values K and T are de-
fined by the contract of the option. Given many different call and put options with
different strikes and maturities, one can construct an implied volatility surface as a
three-dimensional plot on the grid spanned by the strikes and maturities.

27



2 Introduction to Classical Financial Markets

Remark 2.3.2. In industry, traders usually prefer quoting the implied volatility instead of
the option prices, because the implied volatility is comparable across strikes, maturities
and underlying assets. Historically at-the-money index options, i.e. options on a stock
market index, have been used to compute an implied volatility index via the Black-
Scholes formula. An implied volatility index is also called fear index because a high
implied volatility expresses the expectation of market participation of possible large up
or down moves of the stock market index. Nowadays model-free methods have been
developed. For example the CBOE Volatility Index (VIX) is implied by S&P 500 index
options by aggregating the weighted prices of puts and calls over a certain range of strike
prices, see CBOE (2018).
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3 Performance of Advanced Stock Price
Models when it becomes Exotic: an
Empirical Study

3.1 Introduction

In this Chapter, we analyse six advanced stock price models generalizing the famous
Black-Scholes (BS) model as introduced by Black and Scholes (1973). The BS model
describes a stock price process by a geometric Brownian motion with constant volatility.

Unfortunately, log-returns of stock prices are modelled very poorly by the normal
distribution. Usually log-returns exhibit some fat tail behaviour and are skewed. Fur-
thermore there are periods with high log-return variance and periods with low log-return
variance. Hence volatility of log returns are not constant over time but there is some
volatility clustering, which motivates to model volatility by a stochastic process. Also
there exist some negative correlation between log-returns and volatility, known as the
leverage effect: if volatility and uncertainty in a financial market increases, stock prices
tend to decrease, see Cont (2001) for a more extended list of stylized facts of financial
times series.

There is an endless list of models generalizing the Black-Scholes model and incorpo-
rating some or all of the stylized facts we just mentioned. The constant elasticity of
variance model has been introduced by Cox (1975). The variance is not modelled by a
stochastic process but the model captures the leverage effect. Local volatility models
replace the constant volatility of the BS model by a deterministic function of both time
and current underlying level, see Dupire (1994). The Heston model, see Heston (1993),
replaces the volatility of the BS model by a mean-reverting stochastic process, the square
root process of Cox, Ingersoll, and Ross (1985), which is allowed to be correlated with
the uncertainty driving the log-returns. The Heston model is hence able to model both
stochastic volatility and the leverage effect. Bates (1996) generalized the Heston model
incorporating the possibility of jumps of the stock price. Barndorff-Nielsen and Shep-
hard (2001) developed the BNS model replacing the constant volatility of the BS model
by an Ornstein-Uhlenbeck process. It is possible to integrate a leverage effect into the
BNS model.

One could as well replace the Brownian motion of the BS model by a more flexible
Lévy process. A prominent example is the variance gamma (VG) model developed by
Madan et al. (1998). Pure Lévy models are quite flexible and are able to describe
skewness and fat tail behaviour of log-returns but are stationary over time. Carr et al.
(2003) integrated stochastic volatility by replacing the time by an independent stochastic
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process. Lévy models with stochastic time-change have been described in detail by
Schoutens (2003) including algorithms to simulate such processes. As in the BNS model,
it is possible to allow the stochastic time change to directly effect the log-returns. We
call such models Lévy models with stochastic time-change and leverage.

Often, a set of prices of European plain vanilla options are known and financial models
are calibrated to market data of plain vanilla options. The calibrated models are then
used to price exotic options or to construct trading strategies to replicate plain vanilla or
exotic options as good as possible. Most of the presented models can be calibrated very
well to plain vanilla option data in the sense that different models lead to almost identical
plain vanilla option prices. The question is whether prices under different models of an
exotic option are also approximately equal. The clear answer is no as the following three
studies show.

i) Hirsa et al. (2003) calibrated the VG model, a local volatility model, the constant
elasticity of variance model and the VG model with stochastic time-change (but
without leverage) to plain vanilla options on the S&P 500 index and priced barrier
options under the different models. They concluded: “regardless of the closeness of
the vanilla fits to different models, prices of up-and-out call options (a simple case
of exotic options) differ noticeably when different stochastic processes are used to
calibrate the vanilla options surface”.

ii) Schoutens et al. (2003) calibrated the Heston model (with and without jumps), the
BNS model and various Lévy processes with stochastic time change (but without
leverage) to plain vanilla option data on the Eurostoxx 50 index and used the
calibrated models to price various exotic options among them different types of
barrier options. They concluded that all those models can be calibrated almost
perfectly to plain vanilla option data but the resulting exotic option price can differ
significantly.

iii) Jessen and Poulsen (2013) calibrated the Black- Scholes model, the constant elas-
ticity of variance model, the Heston model (with and without jumps), the Merton
jump-diffusion model, the VG model and the VG model with stochastic time-
change (but without leverage) to plain vanilla options on the USD/EUR exchange
rate and priced different types of foreign exchange barrier options. They con-
cluded: “Models may produce very similar prices of plain vanilla options yet differ
markedly for exotic options.”

In contrast to the two former studies i) and ii) which only worked with real data of
plain vanilla options, Jessen and Poulsen (2013) compared the modelled prices of barrier
options to given market data of the barrier options. For their particular data, the
constant elasticity of variance model best explained the market data of barrier options,
leading to an average relative error of just 0.13%. The Heston model undervalued the
barrier options by 3.48% on average. The Heston model with jumps priced barrier
options significantly worse than the Heston model with an average absolute error of
24.7%.
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What can we add to the studies i)—iii)? To the best of our knowledge only Jessen and
Poulsen (2013) compared model prices of exotic options to real market foreign-exchange
data. We repeat that study for equity data. In contrast to former studies, we focus on
models incorporating both stochastic volatility and the leverage effect. We think this is
the first study which applies Lévy models with stochastic time-change and leverage to
simulate exotic options and which compares model prices and market prices of barrier
options on a stock market index. The leverage effect extends Lévy models significantly,
see Section 3.2.6.

For a time-series of about 102 timepoints we are given prices of plain vanilla options:
put and call options with maturities ranging from 0 — 3 years and moneyness ranging
from 0.5 — 1.0 issues by some large international banks. At each timepoint, we calibrate
six different models to the plain vanilla prices: the Heston model (HES), the Bates
model (HESJ), the BNS model and three Lévy models with stochastic time-change
and leverage. In this thesis we take the Normal Inverse Gaussian (NIG) process, see
Barndorff-Nielsen (1997a), the VG process and the Merton jump-diffusion model (MJD),
see Merton (1976), and subordinate them by a random time-change modelled by the
integrated square root process of Cox, Ingersoll, and Ross (1985), abbreviated by CIR.
Other choices are possible, see Carr et al. (2003). The three resulting stock price
models are abbreviated by NIG__CIRL, VG__CIRL and MJD_ CIRL, where 'L’ stands
for leverage. We chose these six models, because all those models are able to capture
stochastic volatility and the leverage effect and are flexible enough to model plain vanilla
options reasonably well, see Schoutens et al. (2003). They are further mathematically
tractable, can be calibrated relatively fast to real market data and it is straightforward
to implement the models in order to perform a Monte Carlo simulation.

The practise of recalibrating the models at each timepoint is difficult to justify econom-
ically but it is an industrial standard to ensure that a model prices liquid plain vanilla
options as good as possible, see e.g. Jessen and Poulsen (2013). Over time a financial
market changes, new information arrives etc. which leads to the need of recalibrating
the models.

Additionally we have for each timepoint prices of exotic barrier options issued by
the same banks. After calibrating the six models to the plain vanilla market data,
we simulate the prices of the exotic options via Monte Carlo for each model and each
timepoint and compare the real market prices of the exotic options with the model prices.

Both the plain vanilla and the barrier options are issued by financial institutions which
might default. In this study we do not model the credit risk of the issuers. We argue
that we can neglect the default risk of the issuers because the issuers have a very high
creditworthiness. By this argumentation, we follow Chen and Kensinger (1990), Chen
and Sears (1990), Wasserfallen and Schenk (1996), Burth et al. (2001) and Henderson
and Pearson (2011) among others. Furthermore the price of an option emitted by some
issuer is directly influenced by the issuer’s default risk. Therefore the calibrated models
implicitly contain the credit risk already. For a direct approach to model the credit risk
of the issuer of derivatives, see Hull and White (1995).

Figure 3.1 summarizes the main result of this Chapter quite well. It shows a time-
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series of market and model prices of one single exemplary exotic option. We see that
HESJ reproduces market prices extraordinarily well. The BNS model overvalues quite
a lot and HES undervalues the barrier option slightly. The Lévy models MJD_ CIRL,
NIG__CIRL and VG__CIRL behave similarly though undervaluing the option. The model
MJD_ CIRL seems to be less robust, being sometimes close and sometimes far away from
the real market price.

This Chapter is structured as follows. In Section 3.2 we present the models HES,
HESJ, BNS, NIG__ CIRL, VG__CIRL and MJD__CIRL and recall the characteristic func-
tions of the log stock price of the six models from the literature. In Section 3.3 we describe
in detail the data set used in this empirical study. Sections 3.4 comments on the calibra-
tion and pricing procedure via Monte Carlo. Section 3.5 compares the six models, when
applied to exotic option data and offers some explanation why some models overvalue
and other models undervalue barrier options. Section 3.6 concludes.

Strike = Barrier = 11775, Maturity: 13/12/2017

B HES O BNS W VG_CIRL - -+ Market price
@ HESJ @ MJD_CIRL m NIG_CIRL

Price in EUR

I
40 50 60 70 80 90 100

Time

Figure 3.1: Market and model prices of an exemplary exotic option over time from
24/07/2017 till 21/08/2017. Each day consists of three timepoints. All
options have a ratio of 1:100, i.e. they are entitled to receive ﬁ of the dif-
ference between underlying and strike in cash at maturity if the difference is
positive and the barrier is not hit.
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3.2 The Models

3.2.1 Overview and Calibration

In continuous time finance the risky-asset is modelled by some stochastic process

S = (St)tZO

on a filtered probability space (2, F,F,P) satisfying the usual conditions. The market is
arbitrage-free, if there exists an equivalent martingale measure Q on (2, F). P is called
the real world, the subjective, the historical, the physical or the statistical measure. We
are not interested in estimating PP. The equivalent martingale measure Q on the other
hand is an artificial measure and is used in finance to price financial contract such as
barrier options: the price is equal to the discounted expectation of the contract under
the measure Q. We discuss the parametric models BNS, HES, HESJ, MJD_ CIRL,
NIG__CIRL and VG__CIRL. Model n depends on some parameter set

0, cRP" D, eN,

and for each parameter 0,, € ©,, the price process

S = (S’?n) >0

is a martingale under some equivalent martingale measure Q% . The characteristic func-
tion

‘Plog(sf”)(u) =F [exp (w log (S’f”)” , t>0,

is known analytically for the six models. Here ¢ denotes the imaginary unit. By Carr
and Madan (1999), the prices of European plain vanilla call options under the stock
price dynamics S can be computed very efficiently using Fourier techniques. Prices of
put options can be obtained by the put-call parity.

We are given for a time series of i = 0, ..., N timepoints M; plain vanilla call and put
options

1 M;
Ci,...,C;
at each timepoint with different strikes and maturities and with known market prices
ket ket
Wg’l?r e s eeny ng?avfi e

At each timepoint, we minimize the mean-square error between market and model prices
for all models, i.e. we minimize for model n the objective function

2
M; market model(n) /pp
. (e —men™™ 0, .
07 — U , 0 € O
i

m=1

The price of the plain vanilla option C;" at timepoint % under model n for the parameter
model

set 0} is denoted by mqm (n) (A1) and can be computed very fast by the Carr-Madan
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formula, which is explained in the Appendix. Let us denote the minimum by éf For
most models the existences and uniqueness of a global minimum is simply not known.
Theoretical and numerical problems arising when minimizing the objective function to
plain vanilla market option data are discussed in Gilli and Schumann (2012). Difficulties
of the optimization procedure for particular models like the Heston model are mentioned
in Cui et al. (2017). The calibration risk, i.e. the risk of mispricing exotic options such
as barrier options, is discussed in Guillaume and Schoutens (2012).

Nevertheless stochastic optimisation methods like differential evolution, see Storn and
Price (1997), can be used to minimize the objective function heuristically and return
satisfactory results, see Gilli and Schumann (2012).

3.2.2 Relation of Advanced Stock Price Models to the Black-Scholes Model

In the following Subsections, we introduce the models discussed in this thesis. In Section
3.4 we calibrate the models to real market data of plain vanilla options on the DAX, a
German stock market index. The DAX is a performance index, all dividends are already
included in its calculation. Therefore the models do not include dividends.

All models are somewhat related to the Black-Scholes model. The stock price process
under the Black-Scholes model, see Black and Scholes (1973) and Merton (1973), satisfies
the stochastic differential equation (SDE)

dS; = Sy (Tdt + O'th) , So>0, t>0, (31)

where r > 0, 0 > 0 and (W,) is a standard Brownian motion. The SDE can equivalently
be written for the log stock price process Z; := log (S¢),

1
dZy = d log (Sy) = <1" - 202) dt + odWy, Zy:=log(Sy), t > 0. (3.2)
The solution of Equation (3.1) is well known, see for example Bjork (2009):

Sy = Spelr=2o)tHeWe > g, (3.3)

The HES model generalizes Equation (3.1) replacing the constant volatility parameter
o by a CIR process. A leverage effect is introduced by allowing the Brownian motion
driving the CIR process be correlated with (W;). The HES model can generalised by
adding an independent jump process to the stock price process. We abbreviates the
resulting process by HESJ.

The deviation of the BNS model starts from Equation (3.2) and replaces the con-
stant volatility o by an Ornstein-Uhlenbeck (OU) process. A leverage effect can be
incorporated by adding the randomness driving the OU-process to the log stock price.

One can as well start directly from Equation (3.3) and make the time stochastic by
subordination of the Brownian motion, which also introduce stochastic volatility. This
idea goes back to Clark (1973) and can be generalized further by replacing the Brownian
motion by a more flexible Lévy process X. Like in the BNS model, a leverage effect can
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be integrated. The resulting model is called Lévy model with stochastic time-change and
leverage. A general treatment of this approach can be found in Carr et al. (2003).

Carr and Wu (2004) instead directly paired the Lévy-process with the random time-
change to introduce a leverage effect. They show that the problem of finding the char-
acteristic function of a paired Lévy-process with correlated random time-change reduces
to the problem of finding the Laplace transform of the random time under a complex-
valued measure, evaluated at the characteristic exponent of the Lévy process. In this
thesis, we do not follow this approach.

In order to calibrate a parametric model to real market data of plain vanilla options,
usually the mean-square error between market and model prices is minimized. This
usually means an optimizer calls the objective function very often, it is therefore essential
to price plain vanilla options numerically very fast. By the Carr-Madan formula, see Carr
and Madan (1999), that is possible, if we have an analytic expression of the characteristic
function of the logarithm of the underlying. In the following Subsections, we present the
models HES, HESJ, BNS, NIG_ CIRL, VG_ CIRL and MJD_ CIRL in more detail and
recall their characteristic function from literature.

3.2.3 The Heston (HES) and Bates (HESJ) Models

The HESJ model with parameters x > 0, 7 > 0, A > 0, p € [-1,1], 62 > 0, 6 > 0,
wy > —1and o5 > 0 is described by the following system of differential equations

das.
& = (r=0up)dt + dW, + JidN,, Sp>0
t
do} = k(n—cl)dt + \oydW;, o2 > 0. (3.4)

(Wy) and (Wt) are correlated Brownian motions such that cov {thth] = pdt. If
6 > 0, () is an Poisson process with intensity 6, i.e. E[N;] = 0t, modelling the dates
at which the stock jumps. If 8 = 0, (N;) is set equal to zero for all t > 0. (J;) is the
percentage jump size (conditional on a jump occurring), such that J; + 1 is log-normal
distributed:

1
log(1+J;) ~ N <log(1 + ) — 503, a?,) , t>0.

The Poisson process and the percentage jumps size are assumed to be independent and
are independent of the two Brownian motions.

The CIR process, described by Equation (3.4), stays positive if 2xn > A2, which
is known as the Feller condition, see Andersen et al. (2010). During the calibration
procedure we ensure that the Feller condition is satisfied. The characteristic function of
the log stock price is given by, see Bakshi (1997),
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@log(St)(u) = F [exp(iu log (St)]
= exp (iu (log Sy + rt))

1— —dt
X exp(nrA 2 <(/<a — pAui —d)t — 2log <1ieg)>

(k — pXiu —d) (1 — e~
X exp (00)\2 ( )

; 1
X exp <—9,uﬂ'ut + 0t ((1 + )™ exp (2 odiu (iu — 1)) - 1)> ,

where

NI

d = ((p)\ui — k)2 =\ <—iu — u2)>
K — pAui — d

g = K — pAui + d

The HES model, introduced by Heston (1993), is a special case of the HESJ model,
setting # = 0, i.e. removing possible jumps of the stock price.

3.2.4 The BNS Model

The Barndorff-Nielsen and Shephard model (BNS) was introduced by Barndorff-Nielsen
and Shephard (2001, 2002) and Nicolato and Venardos (2003). In the risk-neutral setting,
the log stock-price follows the dynamics

1
dZ;y = dlog(S;) = <r — Mk(—p) — 20’?) dt + o dWy + pdzyg, Zo = log(So),
do? = —Mofdt+dzy, of >0,

where (z) is called a Background-driving Lévy process and follows in the classical BNS
model a Gamma-Ornstein-Uhlenbeck process, i.e.

N
Zt = Z Ty
n=1

(W) is a standard Brownian motion, (Ny) is a Poisson process, with intensity parameter
a >, ie. E[N] = at and (x,) is a sequence of exponential distributed random variables
with mean § > 0. The function k is defined by k(u) = 7. The three sources of
randomness, (W), (V) and (z,) are mutually independent.

The Poisson process jumps in any compact interval a finite number of times. Each
time it jumps, the variance process (crf) jumps up and the jump-size is exponentially

distributed. Between two jumps, the variance decreases exponentially, where A > 0
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indicates the speed of the down-move of the variance process. At time ¢t = 0, the
variance process starts in o3. The constant p < 0 introduces a leverage effect: each time
the variance jumps up, the log stock price jumps down.

The characteristic function of the log stock price is taken from Schoutens et al. (2003)
and can be expressed as

Splog(St)(u) = b [exp(iu log (St)]
= exp (zu (log So + (7" —alp(b— p)*l) t))

X exp (—)\1 (u2 + w) (1 —exp (—At)) Uj)

oo (e ($5) )

—tup

where

o= iup— AT i) (1~ exp(— ),

1
fo = iup—i)\_l(u2+iu).

3.2.5 Lévy Models with Stochastic Time-Change and Leverage

Exponential Lévy processes with stochastic time-change and leverage have been intro-
duced by Carr et al. (2003). The uncertainty of the stock model is modelled by a
homogeneous Lévy processes X and stochastic volatility is introduced by subordinating
the Lévy process by a mean-reverting positive process, the so-called square root process
of Cox, Ingersoll, and Ross (1985),

dye = £(n — yo)dt + A/yedW, yo > 0, (3.5)

where W; is a standard Brownian motion and « > 0, n > 0 and A > 0. The mean
reversion in this process induces volatility clustering. As for the HES and HESJ models,
we ensure that the CIR process satisfies the Feller condition during the calibration
procedure. We define the integrated stochastic volatility process by

t
Y: :/ ysds, t > 0. (3.6)
0

The expected value of the integrated CIR process is given by, see e.g. Schoutens (2003,
Section 7.2.1):
E[Yy] =t + £ (yo — n)(1 — exp(—kt)), t>0. (3.7)

The stock price is modelled by

St — Soert—i-w(t)—f—Zt’ t Z O,
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where
Zy = Xy, + pyr- (3.8)

X}) is a homogeneous Lévy process with Lévy exponent 1, i.e.
g y y
E |:€iuXt:| — etd)x (u)7

and Y; and y; are defined as in Equations (3.5) and (3.6), see Carr et al. (2003). The
processes (X¢);~o and (y:),~, are stochastically independent. w(t) is a deterministic
mean-correting function, which makes the underlying a martingale and puts us in a risk-
neutral setting. The mean-correting function is defined below. As in the BNS model, a
leverage effect is introduced by the term py;. If p < 0, a rise of volatility leads to a fall
of the stock price. The characteristic function of log (S¢) is given by

Plog(St) (u) = E[exp(iu IOg(St))]

= exp (iu (log (So) + rt + w(t)))
X Py (—ithx (u), pu),

where

Int
q)t(aa b) = <I>t(a> b? R, 1, )\a yO) = A(ta a, b) €xp <H)\127 =+ B(ta a, b)y(J) s

A(t,a,b) = (c—l—:s) g )

ib (yc — ks) + 2ias

B(t,a,b) = —
yc+ KS
v = VK2 —2)\%a,
vt
= h({—
& cos ( > ) ,
(7t
= h —
s sin ( 5 ) ,
R = Kk—ib\%
w(t) = —log(P(—ivpx(—i),~ip)). (3.9)

In the following subsections, we describe briefly three famous homogeneous Lévy pro-
cesses and provide analytic formulas of the corresponding Lévy exponents. A general
introduction to Lévy processes can be found in Sato (1999), Schoutens (2003) and Ap-
plebaum (2009).

Normal-Inverse Gaussian Process (NIG)

The normal inverse Gaussian (NIG) model has been introduced by Barndorff-Nielsen
(1995, 1997a,b). The NIG process with parameters o > 0, —a < f < «a, and § > 0
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can be represented as a subordination of a Brownian motion with drift by the Inverse
Gaussian (IG) process:

NIG; := B6%I; + 6W7p,, t >0,
where (W}),~ is a standard Brownian motion and (1), is a stochastically independent

IG process with parameters a = 1 and b = §y/a? — 2. The density of an inverse
Gaussian distribution 1G(a, b) with parameters a,b > 0 is given by

1
fic(z) = exp(ab)x*% exp(—i(a2afl + v%z)), = > 0.

a
V2T
A IG process with parameters a and b > 0 is a non-decreasing Lévy process defined by

I, ::inf{s>O;Bs+bs:at}, t>0,

it denotes the first time the standard Brownian motion B with drift b hits the barrier
at. The increments
It+S_IS7 t>5207

have an Inverse Gaussian distribution 1G(at, b), see Applebaum, (2009, Example 1.3.21).
The Lévy exponent of a NIG process is given by,

Ynig(u) = Ynie(u, o, 3,6) = —0 <\/oz2 — (B +iu)? — \/aQ - ﬁQ) .

Alternatively, NIG can be parametrized by o > 0, v > 0, # € R such that

2 2 2
Unia() = vic(u,0,,0) = —o ( it (i) - ”) ,
o o o o
where we corrected a typing error in Carr et al. (2003, p. 349) and used the transfor-
mationﬁ:%, a2:g—z+g—iand5za.
The symmetric NIG process is a subclass of the NIG process, setting § = 0. In this
thesis, we only work with the symmetric NIG process, because calibration of the process

NIG__CIRL to real market data is more robust in the symmetric case.

Variance Gamma Process (VG)

The Variance-Gamma (VG) process as been introduced by Madan and Seneta (1987,
1990), Madan and Milne (1991) and Madan et al. (1998). The VG process with pa-
rameters ¢ > 0, v > 0 and 6 € R, can be represented as a subordination of a Brownian
motion with drift by a gamma process:

VGt = 91“,: —f-O'W[‘t, t Z O,

where (W;),( is a standard Brownian motion and (I';),~ is an independent gamma
process with mean rate 1 and variance rate v. The increments

Ft—l—s_rs; t>3207
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of the gamma process have a gamma density with mean ¢ and variance vt. The Lévy
exponent of the VG process is

oV

Yya(u) = vyg(u,o,v,0) = —% log (1 —jufv + (;) u2> )

The symmetric VG process is a subclass of the VG process, setting § = 0. In this
thesis, we only work with the symmetric VG processes, because calibration of the process
VG__CIRL to real market data is more robust in the symmetric case.

Merton jump-diffusion (MJD)

The uncertainty of the Merton jump-diffusion (MJD) model, Merton (1976), is modelled

by
Ny

MID; == oW; + >z, >0,
k=1

where (W;),~ is a standard Brownian motion, o > 0, N; is a Poisson process with

intensity parameter 7 > 0, i.e. E(IN;) = 7t, and independent of (W;),~,. The jump-
sizes are independent and identically distributed and are modelled by

zp ~ Normal(y,03), k=1,2...,7v€R, o5 >0.

The MDJ process has Lévy exponent

2,2 2,2
ag~Uu . ag5Uu
¢MJD(U) = ¢MJD(U; 0-771-7’77O.J> = - 92 +m <6Xp <’L'7’U, - JQ ) - 1) .

The MJD_ CIRL model has the same ingredients as the HESJ model. For the HESJ
model, a change of the CIR process describing the volatility does not change the possibil-
ity of a (big) jump due to the independence assumption of the jump comonent. From an
economic point of view, if uncertainty in financial markets increase, it might be desirable
that the chance of large stock price movements, i.e. the chance of a crises, also increase.
This effect can be modelled by the MJD__CIRL model, because the CIR process directly
influences the rate of big jumps for the MJD__ CIRL model.

Fix some Parameters of the Various Models

For any ¢ > 0 it holds

‘@t(_ZngX (U), pu, Ry 1, )‘7 yO) = (I)t <—1¢X (U), %a K, 5777 \/g)\v 53/0) .

Without loss of generality, we therefore may fix some of the parameters of the various
models. For NIG__CIRL, we set § = 1, because

¢NIG(U7CV;57 5) - 5¢NIG(U70¢;67 1)
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Fixing § = 1 is equivalent of rescaling p, n, A and yy. With the same argument, we set
v =1 in the VG__CIRL model, because

1
wVG(u70-7 v, 9) = ;¢VG(U7UW7 1761/)’
And for MJD__CIRL, we set m = 1, because
g
wMJD(uv g,T,7, UJ) = ﬂwMJD(ua =) 17 Vs GJ)'
Jr

For all three models one could as well set yyp = 1. This has been done by Schoutens et
al. (2003) and Carr et al. (2003). We find our choices numerically more stable.

3.2.6 The Leverage makes the Difference

Lévy models including only stochastic volatility (p = 0) seem to have a lower path
fluctuation compared to models incorporating also a leverage effect (p < 0) and therefore
a lower probability of hitting the barrier.

Indeed Schoutens et al. (2003) reported that Lévy models with stochastic time-change
(but without leverage) tend to overvalue some down-and-out barrier call options relative
to the Heston model by roughly 70% but undervalue down-and-in barrier options by
roughly 35%. A down-and-out (down-and-in) option is less (more) worth, the higher the
probability hitting the barrier. We also calibrate the VG model with stochastic time-
change and leverage to the plain vanilla option data used by Schoutens et al. (2003)
and show that prices of down-and-out and down-and-in barrier call options of the Lévy
model with leverage are quite close to the prices prognosticated by the Heston model,
see Table 3.1. This simply highlights the fact that one cannot ignore the leverage effect
in a model when pricing exotic options.

’ Model ‘ RMSE ‘ Down-and-out call | Down-and-in call

HES 3.0 173.03 336.35
VG_CIR 24 293.28 218.51
VG__CIRL 1.8 191.72 319.22

Table 3.1: This table reports the root mean-square error (RMSE) between model and
market prices of plain vanilla options and simulated prices of two exotic op-
tions for three models: the Heston model, the variance gamma model with
stochastic time-change (VG__CIR) and the VG__CIR model incorporating a
leverage effect (VG__CIRL). The first two rows are taken from Schoutens et
al. (2003). The underlying is equal to Sy = 2461.44. The strikes of the exotic
options are equal to Sy and the barriers are equal to 0.9553. The maturities
are three years and the risk-free interest rate is set to 0.03, the dividends are
assumed to be zero. The VG__CIRL process is described in Section 3.2.5,
its calibrated parameters are: ¢ = 0.205396, v = 0.009892, 6§ = —0.115094,
Kk = 0.582229, n = 0.98048, A = 1.347724, yo = 1.0, p = —0.114496.

41



3 Performance of Advanced Stock Price Models when it becomes Exotic: an Empirical Study

3.3 Market Data

3.3.1 Plain Vanilla Options

We look at a time series from 05/07/2017 till 21/08/2017, which contain 34 trading days.
At each trading day, there are three timepoints, namely “morning” (10am-10:30am),
“midday” (1pm-1:30pm) and “afternoon” (4pm-4:30pm) on which prices of in total about
471.000 European plain vanilla put and call options with maturities ranging from 0 — 3
years and moneyness ranging from 0.5 — 1.0 are available on the DAX, a blue chip stock
market index consisting of the 30 major German companies.

We follow the methodology applied for the volatility index (VIX) by the Chicago board
of exchange, see CBOE (2018), and only use out-of-the-money options for calibration,
see also Carr and Wu (2009).

The DAX is a performance index, all dividends are included in its calculation. In
total there are thus 102 timepoints. The DAX and the VDAX-New, the corresponding
volatility index, are plotted in Figure 3.2 to provide an indication of the market situation.

DAX and VDAX-New between 05/07/2017 and 21/08/2017
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Figure 3.2: End of day values of DAX and and its volatility index, the VDAX-New.
The VDAX-New reached its hightest value of 18.0% at 10/08/2017 which
corresponds to timepoint 81. In mid-Agust, the North Korea crisis escalated
rhetorically, which explains the rise of the volatility index economically. The
VDAX-New was lowest on 17/07/2017 (timepoint 27) at a level of 12.2%.
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Those options are issued by the financial institutions Commerzbank, UBS and Uni-
Credit, which usually also act as a market maker. The options are listed on different
stock exchanges in Germany, mainly on Frankfurt stock exchange and Stuttgart stock
exchange. They can also be traded over the counter, directly with the issuer. Due to
some missing data, not all option prices are available at each timepoint. But each option
with a short maturity (less than three month) and being deep out of the money (mon-
eyness is smaller than 0.85) can be found at least on 65% of all observations. Prices of
all other options are available at least on 85% of all observations'.

Figures 3.7 and 3.8 show a relative stable distribution over time for different maturity
and moneyness buckets for one exemplary issuer, the option data of the other issuers
look similar.

We use the following abbreviations: “dOTM” means “deep out-ouf-the money” and
refers to a moneyness smaller than 0.85. “OTM” stands for “out of the money”, which is
a moneyness between 0.85 and 1.00. The maturity is measured in months. For all issuers,
there are roughly the same number of OTM call and OTM put options for all maturities.
But there are usually much more dOTM put options than dOTM call options.

The absolute average spread (ask — bid) over all products of all banks is 0.03 EUR.

ask—bid
1 (ask+bid)
absolute and the relative spread are shown. For most options, the spread is small.

)

The average relative spread is 5%. In Table 3.4 several quantiles of the

3.3.2 Exotic Options

We obtained in total 303.000 bid and ask quotes of down-and-out barrier (DOB) call-
options for the same time series consisting of 102 timepoints in the period from 05/07/2017
till 21/08/2017 and issued by the same issuers as described in the previous section. The
payoff of such option with strike K and maturity 7T is

DOB(K.T) max (St — K,0) ’0<iItl£TSt > K
T 0 ,o;h_erwise.

The strike and the barrier are equal. The process (S;),~ describes the stock price under
an equivalent martingale measure. A call option with the same maturity 7" and strike K
is called the corresponding plain vanilla option. If the barrier is hit before maturity, the
DOB option become worthless, otherwise it has the same payoff as the corresponding
plain vanilla option. It is clear that the corresponding plain vanilla option is always
in-the-money otherwise the barrier would be knocked-out. For each exotic option, we
compute the price of the corresponding plain vanilla option using an implied volatility
surface which we obtain from the plain vanilla data set, see Section 3.3.1. We focus on
all exotic options, which are “exotic” enough, i.e. whose exotic prices are smaller than
0.75 times the corresponding plain vanilla prices. This essentially means removing all
exotic options whose corresponding plain vanilla options are deep in-the-money. We are

In the case the option expires before the 21/08/2017, the percentages relates to the number of obser-
vations till maturity of the option.
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then left with about twenty thousands exotic options with maturities ranging from a
few days to half a year. The moneyness of the corresponding plain vanilla options lay
between 1.01 and 1.07.

Due to our selection-procedure we focus on exotic options whose barriers lay slightly
below the underlying. We therefore face a different set of exotic options at each time-
point: as the underlying is changing over time, some barrier option might be knock-out,
if the underlying decreases, and hence disappear from the data set. Or, if the underlying
increases, some barrier options might move too far in-the-money, and are also removed
from the data set because they are not exotic enough any more and are filtered by our
selection procedure. There are some exotic options with a timeline with missing data
as well. Therefore the set of identification numbers of the exotic options and the strikes
differ over time. But the maturities and the moneyness of the corresponding plain vanilla
options are more or less stable over time. 99.9% of the absolute bid-ask spreads of all
exotic options are smaller or equal than 0.02 EUR.

3.4 Methodology

3.4.1 Calibration

For each issuer and at each timepoint, we calibrate the models BNS, HES, HESJ,
MJD_ CIRL, NIG_CIRL and VG_CIRL to prices of plain vanilla options by mini-
mizing the mean-square error between market prices and model prices. We obtain for
each model a time series of parameters. Table 3.5 shows the average root mean-square
error (RMSE) for the various models over all timepoints and the average estimated pa-
rameters. We conclude that all models can be fitted very well to real market data. This
is in line with the results of Schoutens et al. (2003).

3.4.2 Pricing via Monte-Carlo

For each issuer, each timepoint and each model, we take the parameters obtained by
calibrating the various models to plain vanilla option market prices, see Section 3.4.1, and
price all available exotic barrier options via Monte-Carlo simulations. For each options
we use M = 200,000 simulations and a timestep of § = 4.0 - 10~° business years, which
corresponds to a grid-size of about five minutes. Such a narrow grid-size is necessary,
to keep the discretion error small. The price of an option whose barrier is very close to
the underlying reacts quite sensitive to the number of time-steps chosen to discretize the
underlying. We use variance reduction techniques by control-variates. The simulation
of jump-diffusion models are standard, see for example Glasserman (2013). Simulation
techniques for Lévy processes with stochastic time-change and the BNS model can be
found e.g. in Schoutens (2003).
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3.5 Pricing Ability of The Models

We present the simulation results in two steps. First we give an aggregated overview of
all simulated exotic options, then we turn to about 38 particular options and analyse
the corresponding time series of the residuals: the relative difference between model and
market prices.

In Figure 3.3 and Figure 3.4, we see the relative differences between market and model
prices of all exotic options for the various models. On average HES undervalues exotic
options with short maturities (less than three months) by about 7% and options with
long maturities (between three and six months) by about 5%. HESJ explains exotic
option market data best, but still undervalues options with short and long maturities by
about 4% and 1% respectively.

Relative Differences for Maturities less than 3 Months

B HES B MJD_CIRL - - Commerzbank
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Figure 3.3: Relative Differences between market and model prices, maturity less than
three months. The point at timepoint 82 corresponds to another parameter
set for the MJD CIRL model.
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Relative Differences for Maturities more than 3 Months
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Figure 3.4: Relative differences between market and model prices, maturity more than
three months. The point at timepoint 82 corresponds to another parameter
set for the MJD CIRL model.

BNS has the greatest bias overvaluing the options by about 19% on average. The
Lévy models MJD_ CIRL, NIG_CIRL and VG__CIRL undervalue the barrier options
by about 13% on average.

The patterns are independent of the issuer of the exotic options and are similar also
under different market environments: while the first half of the analysed timepoints
correspond to a rather calm market environment (the volatility index get as low as
12.2%, see Figure 3.2, in the second half, uncertainty measured by the volatility index
raises at its top to 18%, which is a difference of 50% to its lowest level.

MJD_ CIRL is less stable than the other models. On August, 11th in the morning,
there is a big peak at timepoint 82 in Figures 3.3 and 3.4 demonstrating that MJD__CIRL
is undervaluing the barrier options by up to 60%. The model is calibrated using dif-
ferential evolution, which is a stochastic optimizer independent of any starting point.
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y | DE | NM
RMSE | 0.0526 | 0.0599
o 0.18 | 0.26
m 1.00 [ 1.00
v -0.24 | -0.30

oJ 0.17 0.14
K 10.71 3.41

n 0.32 | 0.21
) 1.98 | 1.00
0 0.12 | 0.13
P 0.26 | -0.45

Table 3.2: Calibration details for the model MJD__CIRL on August, 11th in the morning,
using two different optimizer: the differential evolution (DE) and the Nelder-
Mead (NM) algorithms.

The estimated parameters and the RMSE between model and market prices are shown
in Table 3.2. Note the particular high values of the parameters describing the speed of
mean reversion, x and the “vol of var”, A.

Choosing the optimal parameter set of the previous timepoint 81 as starting point
and the Nelder-Mead algorithm, see Nelder and Mead (1965), instead to search for
an optimum, leads to a slightly less satisfactory parameter set. But pricing the barrier
options using these new parameters, leads to a much better result: the relative difference
between model and market prices shrinks to about -12% and -22% as shown by a point in
Figures 3.3 and 3.4, respectively. Calibrating MJD_ CIRL is less robust than calibrating
the other models.

As described in Section 3.3.2, at each timepoint we are aggregating a different set of
options because over time not all options are available. We therefore choose 38 options,
their security identifier code can be found in Table 3.7, for which exotic option prices
are available at all timepoints in the interval [50,102], except for seven options, which
knock-out at timepoint 81 and 82. For those options, prices at about 30 timepoints are
available.

All exotic options of our sample are numbers from 1,2,...,38, ordered by strike, see
Table 3.7. The maturities lay between 0.3 and 0.4 years throughout the whole time
series. The mean and standard deviation of the time series of the relative residuals
between market and model prices of each option can be found in Figure 3.5. We see
that the standard deviation of the residuals for the models HES, HESJ, NIG__CIR and
VG__CIR are similar for all 38 options and lower than 0.05. The standard deviation of
the residuals of the MJD_ CIRL model vary between the options a lot and are higher
than 0.1 for many options. This once more underlines that MJD_ CIRL is less robust
than the other models.
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Mean and Standard Deviation of Relative Residuals
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Figure 3.5: Mean and standard deviation of the time series of the relative residuals be-
tween market and model prices for various models for the options of Table
3.7.

3.5.1 Path Characteristics

In this section, we attempt to provide some characteristics of the path-behaviour of the
various models under the risk-neutral measure. That helps to understand the models
and might (partially) answer the question why some models overvalue and other models
undervalue the barrier option data set from Section 3.3.2.

For a stochastic process Syco 1] describing a stock price we define some characteristics
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as follows. All characteristics refer to the interval [0, 1], i.e. to the period of one year.

h = Probability the process hits 0.955; at least once,
o = 4/Var(S),
Jiog = Expected number of times the absolute value

of the log-returns jump by more than 5%,
ARV = Average realized variance (defined below),
U = Expected number of times the process crosses [0.98S5, 1.02.5].

We estimate the values by a Monte Carlo simulation for the six models based on the
average parameters of Table 3.5. Those parameters do not belong to any particular set
of plain vanilla options, nevertheless the computed characteristics shown in Table 3.3
are similar when choosing the parameter sets of a particular timepoint and issuer.

[ Model [ h | 0 [ Jg | ARV | U |
BNS 0.66 | 0.26 | 1.32 [ 0.063 | 1.22
HESJ | 0.72 [ 0.27 [ 0.03 [ 0.073 | 1.47
HES 0.74 [ 0.19 [ 0.00 | 0.032 | 1.59

MJD CIRL | 0.83 | 0.22 | 0.15 | 0.068 | 2.35
NIG_CIRL | 0.84 | 0.24 | 0.91 | 0.079 | 2.47
VG_CIRL | 0.86 | 0.26 | 0.69 | 0.096 | 2.82

Table 3.3: Some characteristics of the path-behaviour of the various models. The table
is ordered by column h. Each model is simulated M = 200,000 times on
the time interval [0,1] using a step-size of 6 = 4.0 - 1075 business years or
equivalently using N = 25,000 time-steps. We assume Sy = 100 and r = 0
for all models.

Some of the values can be estimated analytically as well. Define by

40.05
Plu,o)

the probability of a normal random variable with mean p and standard deviation o to
be outside the interval (—0.05,0.05).

The expected number of times the absolute value of the log-returns jump by more
than 5% in the interval [0, 1] can be estimated for the BNS model by

alexp <—bo|'0|5> ,
p

for the HESJ model by
+0.05

OP (og(1410,) 303,03
and for the MJD_ CIRL model by

(’r] + ﬁ_l(yo _ 7])(1 — eXp(_K/))) pa?;)f),
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where we use Equation (3.7). Those estimates only capture the jump-part of the models
ignoring the diffusion part.

Sample Path for BNS and VG_CIRL
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Figure 3.6: Sample path for the BNS and the VG_ CIRL model.

Clearly, the probability of hitting the barrier directly influences the price of a barrier
option. The value h is comparatively low for the BNS model and high for the Lévy
models. Indeed in Section 3.5, we show that the BNS model overvalues and the Lévy
models undervalue the barrier options. But the probability of hitting the barrier can
neither be explained very well by the standard deviation nor by the expected number
of (big) jumps of the processes: the standard deviations are approximately in the same
range for all models. For instance the BNS model and the VG__CIRL model have the
same standard deviation at time t = 1 but significantly different probabilities of hitting
the barrier. The number of expected jumps are particularly high for the BNS and the
Lévy models.

We also compute for the six models the average realized variance ARV: we discretize
the interval [0,1] by N = 25,000 time-steps and for a simulated path we add up the
squared log-returns between two successive time-points. We repeat this M = 200,000
times and take the average. See for example Barndorff-Nielsen and Shephard (2002) for a
precise definition of ARV and its relation to quadratic variation of semimartingales. (We
also computed the ARV based on daily returns, but the result does no differ much). It
turns out that the ARV of the Lévy models NIG__ CIRL and VG__CIRL are significantly
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higher than the ARV of the BNS model, which indicates that the Lévy models have a
higher path-fluctuation compared to the BNS model. But the ARV of the BNS model is
about twice as large than the ARV of the HES model. The low ARV of the HES model
might be explained by the fact that HES is a continuous model without any jumps.
However, the probability of hitting the barrier is considerable higher for the HES than
for the BNS model and we conclude that the ARV does not really help to understand
the different pricing behaviour of the various models.

The characteristic U seems to provide some explanation: U measures the expected
number of up-crossings of some interval around the starting point of the stock price
process. U indicates how often a stock price process changes its direction. The higher
U, the higher the fluctuation of the sample random paths under the risk-neutral measure.

Even though the BNS model jumps quite often (and each jump is directed downwards
increasing the probability of hitting the barrier), we think between the jumps the BNS
behaves too calmly to explain real market data of barrier options very well. This is
probably due to the structure of the Ornstein-Uhlenbeck process process modelling the
stochastic volatility of the BNS model.

As indicated by U, the random paths generated by the Lévy models have quite a
high fluctuations leading to a (too) high probability of hitting the barrier and therefore
underestimating the prices of the barrier options. Lévy models with stochastic volatility
(but without leverage) tend to overvalue down-and-out barrier options compared to the
HES model, see Schoutens et al. (2003).

We think the high fluctuations of the models VG__CIRL, NIG_ CIRL and MJD__ CIRL
are due to the direct linkage of the CIR process and the log stock price, i.e. the way
a leverage is incorporated into the Lévy models is responsible of the high fluctuations
of the random sample path and the relative low prices of barrier down-and-out options.
Figure 3.6 show a sample path for both the BNS and the VG__CIRL model, illustrating
typical high fluctuations of the VG__CIRL model.

The HES model is a continuous model, it does not contain any jumps but the random
sample paths generated by the HES model have moderately higher fluctuations compared
to the HESJ model and measured by U, and the HES model undervalues the barrier
options relative to the HESJ model slightly.

3.6 Conclusion

We test the performance of six advanced stock price models on a given set of time series
of market prices of European plain vanilla put and call options and barrier down-and-
out call options for the period between 05/07/2017 and 21/08/2017 issued by different
banks. At each timepoint and for each issuer we calibrate six models by minimizing
the mean-square error between model and market prices of the plain vanilla options.
The models are: the Heston model, see Heston (1993) and its generalization, see Bates
(1996), the BNS model, see Barndorff-Nielsen and Shephard (2001) and three Lévy
models with stochastic time-change and leverage, see Carr et al. (2003). We apply the
Lévy models MJD_ CIRL, NIG__CIRL and VG_ CIRL, see Section 3.2.5. MJD__CIRL
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for example corresponds to a Merton jump-diffusion process, subordinated by the square
root process of Cox, Ingersoll, and Ross (1985). As in the BNS model, a leverage effect
is incorporated in the Lévy models. We chose those models, because they are able to
capture both stochastic volatility and the leverage effect and are flexible enough to model
plain vanilla options reasonably well. They are further mathematically tractable, can be
calibrated relatively fast to real market data and it is straightforward to implement the
models in order to perform a Monte Carlo simulation.

All six models can be fitted almost equally well to market data of plain vanilla options.
But computing the prices of the barrier options via a Monte Carlo simulation using the
various calibrated models, leads to significantly different prices for the exotic options.
In particular, the BNS model overvalues barrier options by about 19% on average, the
Heston model undervalues those options slightly and the Bates model reproduces barrier
option prices very well.

Jessen and Poulsen (2013) worked with real market data of foreign-exchange barrier
options and similarly concluded that the Heston model slightly undervalues barrier op-
tions, but the Bates model performs significantly worse than the Heston model, which
stands in contrast to our results. Future research need to be done to explain why adding
jumps to the Heston model increase the valuation ability of the model when applied to
equity data and decrease the model performance for foreign-exchange barrier options.

Lévy models with stochastic time-change and leverage undervalue the exotic options
by about 13% on average. There is barely any difference between the models NIG_ CIRL
and VG__CIRL. Compared to the other models, the model MJD__ CIRL is the least robust
one. Calibrating the MJD CIRL model sometimes lead to unreasonably parameter sets.
The results are similar for all issuers.

The findings that advanced stock price models can be fitted very well to plain vanilla
market data and the fact that those calibrated models predict very different prices for
exotic options are in line with other studies in literature. In contrast to other studies,
we are able to compare the simulated prices of exotic options to real market data and
conclude that for the particular data set and period we looked at, the Heston model
with jumps best explains barrier option market prices.

A heuristic analysis suggests that the different degree of fluctuation of the random
paths of the models under the risk-neutral measure are responsible of producing different
prices for the barrier options. The fluctuations are measured by the expected number
of up-crossings of the stock price process of some interval. Further research need to be
done in this direction.
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UBS, Options per Maturity and Moneyness
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Figure 3.7: UBS, distribution of maturity and moneyness buckets and over time
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UBS, Average Number of Options
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Figure 3.8: UBS, average number of options for different maturity and moneyness buck-
ets. The average is taken over all timepoints.

Quantile | 5% [ 50% [ 75% [ 95% | 99% | Max |
Absolute spread in EUR | 0.01 | 0.01 | 0.02 | 0.1 0.2 0.3
Relative spread 0% | 1% | 3% | 12% | 107% | 192%

Table 3.4: Relative and absolute spread for plain vanilla options of all banks.
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BNS | HES | HESJ | MJD_ | NIG_ | VG __
CIRL | CIRL | CIRL

RMSE[ 0.08 | 0.09 | 0.05 | 0.06 | 0.09 | 0.10
(0.01) | (0.02) | (0.01) | (0.01) | (0.02) | (0.02)

K 235 | 485 | 153 | 06 | 0.61
(0.82) | (3.4) | (0.93) | (0.13) | (0.13)
n 0.04 | 0.03 | 026 | 037 | 158
(0.01) | (0.01) | (0.1) | (0.25) | (1.06)
A 045 | 045 | 0.61 | 058 | 1.12

(0.05) | (0.13) | (0.21) | (0.19) | (0.4)
yoor | 0.0 | 0.02 | 001 | 0.07 | 0.04 | 0.19
o2 | (0.002)| (0.004)| (0.005)| (0.03) | (0.03) | (0.13)
p | 404 | -0.78 | -0.76 | -0.8 | -1.24 | -0.35
(2.94) | (0.04) | (0.09) | (0.36) | (0.58) | (0.25)

V1 0.79 0.03 1 (0) 9.32 0.16

(1.00) (0.02) (5.24) | (0.05)

V9 2.95 -0.45 | -0.24 | 0(0) | 1(0)
(6.41) (0.18) | (0.06)

U3 45.7 0.83 0.22 1(0) | 0(0)
(20.5) (0.68) | (0.04)
V4 0.27
(0.07)

Table 3.5: Root mean square error (RMSE) between market and model prices of Eu-
ropean plain vanilla options and average values and standard deviation (in
brackets) of the estimated parameters of the various models. The variables
v1,...,v4 are defined in Table 3.6. Some parameters are fixed, which explains
the standard deviation of zero.

| [ BNS | HESJ | MJD_CIRL | NIG_CIRL | VG_CIRL |

U1 A 0 T o o
v2 | @ 15 Y B v
vz | b o oy 5 [
V4 g

Table 3.6: Definition of parameters vy, ..., vy4.
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’ Id ‘ WKN ‘ Issuer \ Strike \ Maturity \ Knocked-out ‘
1 | CE9Q7M | Commerzbank | 11675 | 13/12/2017 No
2 | UW9JMM UBS 11675 | 22/12/2017 No
3 | HW2FWL UniCredit 11675 | 12/12/2017 No
4 HU9B3X UniCredit 11690 | 12/12/2017 No
) CE9Q7N | Commerzbank | 11700 | 13/12/2017 No
6 | UWOHBE UBS 11700 | 22/12/2017 No
7 | HW2FWM UniCredit 11700 | 12/12/2017 No
8 | CE9Q7P | Commerzbank | 11725 | 13/12/2017 No
9 | UWOHTW UBS 11725 | 22/12/2017 No
10 | HW2FWN UniCredit 11725 | 12/12/2017 No
11 HU9B3Z UniCredit 11740 | 12/12/2017 No
12 | CE9Q7Q | Commerzbank | 11750 | 13/12/2017 No
13 | HW2FWP UniCredit 11750 | 12/12/2017 No
14 | CE9Q7R | Commerzbank | 11775 | 13/12/2017 No
15 | UWOLUO UBS 11775 | 22/12/2017 No
16 | HW2FWQ UniCredit 11775 | 12/12/2017 No
17| HU9B4B UniCredit 11790 | 12/12/2017 No
18 | CVIMU7 | Commerzbank | 11800 | 15/11/2017 No
19 | CE9Q7S | Commerzbank | 11800 | 13/12/2017 No
20 | UWIM60 UBS 11800 | 22/12/2017 No
21 | HW2FWR UniCredit 11800 | 12/12/2017 No
22 | CVIMUS8 | Commerzbank | 11825 | 15/11/2017 No
23 | CE9Q7T | Commerzbank | 11825 | 13/12/2017 No
24 | UWOFSA UBS 11825 | 22/12/2017 No
25 | HW2FWS UniCredit 11825 | 12/12/2017 No
26 | CE9Q7U | Commerzbank | 11850 | 13/12/2017 No
27 | UWOLAT UBS 11850 | 22/12/2017 No
28 | CE9Q7V | Commerzbank | 11875 | 13/12/2017 No
29 | UW9EWA UBS 11875 | 22/12/2017 No
30 | CVIMUB | Commerzbank | 11900 | 15/11/2017 No
31 | CVIMUC | Commerzbank | 11925 | 15/11/2017 No
32 | CVIMUE | Commerzbank | 11975 | 15/11/2017 | 11/08/2017
33| CE9SRT | Commerzbank | 11975 | 13/12/2017 | 11/08/2017
34 | HW2FWY | UniCredit | 11975 | 12/12/2017 | 11/08/2017
35 | CVIMGZ | Commerzbank | 12000 | 15/11/2017 | 10/08/2017
36 | CE9SRU | Commerzbank | 12000 | 13/12/2017 | 10/08/2017
37 | UWIEWG UBS 12000 | 22/12/2017 | 10/08/2017
38 | HW2FWZ | UniCredit | 12000 | 12/12/2017 | 10/08/2017

Table 3.7: Barrier down-and-out options. Barriers and strikes are equal. “WKN” is a

German securities identification code.
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4 Concave Distortion Functions

4.1 Introduction

Concave distortion functions play a very important role in insurance and financial math-
ematics. They are used to define coherent risk measures, as introduced axiomatically by
Artzner et al. (1999). A famous coherent risk measures is the expected shortfall. Risk
measures are for example applied by insurances to compute the premium of an insurance
contract or may describe a potential loss from a capital investment.

In this Chapter, we introduce concave distortion functions. We provide a list of desir-
able properties for families of concave distortion functions and look at many examples.
Some of those example are new to literature.

We also prove a novel representation theorem and show that a family of concave
distortion functions satisfying a certain translation equation can be represented by a
distribution function. A famous example is the Wang transform, which is defined via
the normal distribution and its inverse. It is well known that a coherent risk measure
induced by the Wang transform reduces to the standard deviation premium principle
for normal distributed random variables. Our representation theorem helps to interpret
general concave distortion functions in a similar spirit.

An application of this theorem can be found in insurance science. Premium principles
in actuarial science are used to determine the premium an insured has to pay to the
insurance company in return for an insurance contract. For example the premium can
be calculated by the expected loss of the insured object plus a multiple of the standard
deviation of the loss. Moment based premium principles are easy to understand but
in general are not monotone and cannot be used to compare the riskiness of different
insurance contracts with each other. Our representation theorem makes it possible to
compare two insurance risks with each other consistent with a moment based premium
principle by defining an appropriate coherent risk measure.

In particular, we answer the following question: if an insurance company insures risk
X for a certain premium and the premium is computed using a classical moment based
premium principle, what would be an adequate premium for another risk Z consistent
with the premium of X7 We are able to answer this question even if Z as infinite
second moments. Consistency between the premium for X and for Z is measured using
performance measures as axiomatically introduced by Cherny and Madan (2008).

In Section 4.2 we introduce coherent risk measures. In Section 4.3 acceptability indices
(performance measures) are presented. Section 4.4 defines concave distortion functions
and points out the relation to coherent risk measures. In Section 4.5 we prove our
main result of this Chapter: a representation theorem for a family of concave distortion
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functions. The proof of the theorem is devoted to Section 4.5.1. In Section 4.5.2 we apply
the theorem to insurance science. Section 4.6 provides conclusions of this Chapter.

Concave distortion functions are also applied in Chapter 5 to construct financial mar-
kets with frictions.

4.2 Coherent Risk Measures

Before defining concave distortion functions, we recall the definition of coherent risk
measures and acceptability indices from literature. Throughout this Chapter, we fix a
probability space (2, F,P) and define by

L = L*(Q,F,P)
the set of bounded random variables and by
L'=L'(Q,F,P)

the set of integrable random variables on this probability space. In general for p € [1, 00)
we denote by
LP .= LP(Q,F,P)

the space of all measurable random variables whose absolute value raised to the p—th
power has a finite integral.

Coherent risk measure are widely used in finance. For example portfolio managers
may use a risk measure to get an idea of the potential loss from an investment. Let
a random variable X € L describe the future random cash flow an investor will face
at some future date. For example assume some stock on a certain company costs Sy
currency units today and can be modelled by the nonnegative random variable St at
some future timepoint T'. The time-horizon 0 < T' < oo is usually measured in fractions
of a business year and might be equal to a year, a week, a second or any other positive
time-interval depending on the time-horizon of the investor.

Today, the investor might lend exactly Sy currency units from a bank, promising the
bank to return the money plus interest rates at timepoint 7', and buy the stock. At
timepoint T, she sells the stock and receives S currency units. She has to return Spe’”
to the bank, where r are some interest rates. At time T, she hence faces the future
random cash flow St — Spe™”. We discount that cash flow and define

X = €_TTST — So.

If things go badly for the investor and the stock loses significantly on value, she makes
considerable loses. Hence the need of a good risk management. There is a famous real-
world example, where poor risk management led to a disastrous bankruptcy: the hedge
fond “Long-Term Capital Management” (LTCM) founded by John Meriwether in 1994
financed its investments to a great extent by debts. LTCM went bankruptcy and was
closed in 2000, see Jorion (2000).
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4 Concave Distortion Functions

In the following, we present the formal definition of risk measures. We assume all
future random cash flows are already discounted. The random variables X and Y rep-
resent the value of a financial position, not a loss. We provide several applications to
insurance science in which case Y > 0 describes some claim costs or insurance risk and
—Y models the loss of the insurance company. We find this perspective more convenient,
as we will later analyse the performance of the residual cash flow m — Y of an insurance
company insuring risk Y > 0 in return for gaining premium 7.

Definition 4.2.1. (Coherent risk measure). A map p : L>® — R is called a coherent
risk measure if it satisfies the following properties for all X, Y € L*:

R1: Cash invariance: p(X + c) = p(X) — ¢ for any c € R.
R2: Monotonicity: X <Y = p(X) > p(Y).
R4: Convezity: p(AX + (1 —=N)Y) < Ap(X)+ (1 =N)p(Y) for 0 <A< 1.

R5: Positive homogeneity: p(AX) = Ap(X) where 0 < A.

A coherent risk measure assesses the riskiness of a future random cash flow X. The
higher p(X), the more risky is an investment in X. We say some future random cash
flow X is acceptable if p(X) < 0. By some supervising agency, an investor might only
be allowed to invest in acceptable investments. The value p(X) can be interpreted as
the amount of money which need to be added to the position X to make it acceptable:
by R1 it holds

p(X + p(X)) = 0.

The value p(X) could be seen as the minimal amount of capital an investor must own
and deposit in order to be allowed by the supervising agency to enter into the trade X.

The cash invariance axiom means the risk measures fulfils a translation property. Cash
can be added or subtracted to a position and the risk of the position will change exactly
by that amount. Monotonicity means that a higher cash flow is less risky than a smaller
one. The convexity axiom encourages diversification, i.e. a portfolio is less risky then
the sum of its components. By the positive homogeneity property, the risk of a position
changes linearly with its size.

For a detailed survey and economic interpretation of static coherent risk measures, see
Artzner et al. (1999), Delbaen (2002) and Follmer and Schied (2011, Section 4). The
domain of some coherent risk measures can meaningfully be defined on LP, p > 1, as
well. See Remark 4.4.6 for important examples of coherent risk measures which can be
defined on L! and L?.

Example 4.2.2. Define the worst-case risk measure by

pw(X) =inf{zeR, X4+2>0P—-as}, XeL>
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4 Concave Distortion Functions

This is the most conservative risk measure. If ) is finite, it is minus the minimal value
of X. Under pw a position is only acceptable if it is always nonnegative. On the other
side the map

pp(X) = ~Ep[X], X € L,

also defines a coherent risk measure, which could be seen as the less conservative risk
measure. A position is acceptable, if its expectation is nonnegative.

Let us assume a stock cost Sg = 100 currency units today and can be modelled by a
log-normal random variable after one year, i.e. T'=1 and

2
Sr = Spe" Tt
T — 0 ’

where Z is a standard normal variable and o > 0. Say an investor is only allowed to
invest in acceptable future random cash flows. She would like to know how much money
m she is allowed to borrow from a bank in order to finance the purchase of the stock.
Let

X=c¢"T8r—m

be the discounted future random cash flow of the investor. It holds
PW (X ) =m,

which is less or equal to zero if and only if m < 0. Under the worst-case risk measure, the
investor is not allowed to borrow a cent from the bank and has to finance the purchase
of the stock completely by her own capital. It holds

pE(X) = —S() +m.

Under the risk measure pg the investor can borrow up to Sy currency units from the
bank and could finance the purchase of the stock completely by debts.

The risk measure the investor has to use depends on the conservativeness of the
supervising agency. In this thesis, all risk measures lay somewhere between the worst-
case risk measure and the risk measure based on the expectation operator.

Another application of risk measures appears in insurance science:

Example 4.2.3. By Artzner et al. (1999), a coherent risk measure could be seen as
a premium principle, i.e. can be used to determine the price of an insurance contract.
Let us assume an insurance company sells contracts to people exposed to risk from
some natural disaster, e.g. an earthquake. Let us further assume, the possible financial
loss due to the disaster can be modelled by a nonnegative random variable X and the
insurance receives a total premium of 7 currency units for selling the contracts. Using
a coherent risk measure p, the contracts are acceptable from the perspective of the
insurance, if
p(=X +m) <0,

i.e. if the insurance receives at least a premium greater or equal to p(—X).
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4 Concave Distortion Functions
Coherent risk measures can be represented by the supremum over a set of probability
measures, as the following theorem shows.

Theorem 4.2.4. Let p : L™ — R be a coherent risk measure. Then the following
conditions are equivalent:

i) p is continuous from above: if X, \ X P—a.s. then p(X,) / p(X).

ii) p satisfies the Fatou property: for any bounded sequence (Xp)pen C L
which converges P—a.s. to X € L, the following holds:

p(X) < lim inf p(Xy).

iii) There is a set of probability measures P such that any P € P is absolutely
continuous with respect to P and

p(X) = sup {Ep[—X]}.

For the proof see Delbaen (2002) or Follmer and Schied (2011, Corollary 4.37).

4.3 Acceptability Index

Similar to the axiomatic approach of describing coherent risk measure, see Section 4.2,
Cherny and Madan (2008) introduced an axiomatic approach to characterise maps mea-
suring the performance or the attractiveness of a future random cash flow and defined an
acceptability index as map from the set of bounded random variables L*° to the extended
half line [0, oo] fulfilling the following axioms. We use an acceptability index in Section
4.5.2 in the context of insurance science and in Section 5.3.1 where the conic finance
theory is presented.

Definition 4.3.1. A map « : L>® — [0, 00] is called an acceptability indez if it satisfies
the following properties for X, Y € L*:

Al: Quasi-concavity: If a(X) > v and «(Y) > v, then a(AX + (1 = N)Y) >~ for v > 0
and 0 < \ < 1.

A2: Monotonicity: If X <Y then a(X) < a(Y).

A3: Fatou property: If (X,), oy C L™ is a bounded sequence of random variables such
that a (X,,) > 7 for all n € N and (X,,) converges to X P—a.s., then a(X) > .

A4: Scale invariance: It holds a(AX) = a(X) where A > 0.
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Quasi-concavity states that a diversified portfolio has a performance level at least as
high as its components. Monotonicity is a basic property: generally a greater cash flows
is preferred over a smaller one. The Fatou property is a technical axiom, it is a weak
form of continuity and needed in order to prove a certain representation theorem. The
scale invariance of performance measures states that the performance of a cash flow does
not depend on its size.

We refer to Cherny and Madan (2008) for a more detailed economic interpretation
of the axioms presented here and a discussion of additional properties an acceptability
index can possibly have, e.g. law invariance.

Example 4.3.2. For a given coherent risk measure p satisfying the Fatou property, the
coherent Risk-Adjusted Return on Capital (RAROC) is defined by

B JEIX]>0,p(X) >0
araroc(X) =30  ,p(X)<0

0 ,E[X]<o.

For an investor, an investment is more attractive, the higher the expected return, mea-
sured by E[X] and the lower the risk related to X and measured by p(X). Indeed, the
greater the expected value of the future random cash flow X and the smaller its risk,
the greater the performance of X measured by agraroc.

Cherny and Madan showed that any unbounded acceptability index can be represented
by a family of coherent risk measures and proved the following theorem:

Theorem 4.3.3. Let P be the set of probability measures absolutely continuous with
respect to P. A map « : L — [0, 00] unbounded above is an acceptability index if and
only if there exists a family of subsets (Dv)apo of P such that D, C D,, for 0 < v1 < ¥
and
a(X)=sup{y>0: p’(X) <0}, (4.1)
=0.

where pY(X) := sup Ep[—X], v > 0 and sup ()
PeD,

Axiom A3 plays an important part to prove this theorem. (p7) 4>0 IS a set of coherent
risk measures, see Follmer and Schied (2011, Proposition 2.84 and Chapter 4). The
family of coherent risk measures is increasing, i.e. for 0 < v; < 79 it follows p"(X) <
p2(X). The economic interpretation of the map « defined via Equation (4.1) is the
following: the performance of X is the greatest level v, such that the risk of X under p”
is still acceptable.

The domain of an index of acceptability can be defined as L? if the acceptability index
is induced via Equation (4.1) by a family of coherent risk measures, which have domain
L.
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WANG-transform
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Figure 4.1: The Wang transform.

4.4 Concave Distortions and their Connections to Risk
Measures

In this Section, we define concave distortion functions and provide a connection to co-
herent risk measures.

Definition 4.4.1. A concave distortion function ¥ : [0,1] — [0,1] is monotonically
increasing and concave and it holds ¥(0) = 0 and V(1) = 1.

Example 4.4.2. The Wang transform is defined by
\Il(u) = \II%VANG(U) = (I)(Q)_l(u) + 7)7 UAS [07 1]7 vy Z Oa (42)

which involves the standard cumulative normal distribution ® and its inverse, see Wang
(2000), and is widely used in actuarial science. The WANG transform is drawn for
different values of ~ in Figure 4.1.

Example 4.4.3. The ess sup-expectation convex combinations distortion function jumps
at zero and is defined for A € [0, 1] by

” _J0 ,u=20
W= k- Nu we 0.1,

see Bannor and Scherer (2014). The risk measure induced by ¥ involves a convex com-
bination of the essential supremum and the ordinary expectation. Bannor and Scherer
(2014) applied this distortion function to calibrate a non-linear pricing model to quoted
bid and ask prices.
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4 Concave Distortion Functions

For a concave distortion function ¥ one can define a Choquet integral for a random
variable Y € L by

0 00
HW)=l/@@W>w—D@+/W@W>W@- (4.3)
—00 0

According to Follmer and Schied (2011, Theorem 4.70) the map

pu(Y) = H(-Y) 44
00 0

- [aey<p-na+ [vEer < (4.5)
0 —00

is a coherent risk measure with domain L*°, see also Kusuoka (2001). We say the risk
measure py is induced by the distortion function W. Let

Fy(z) =P <x)

be the distribution function of Y. For continuous ¥ it holds

pu(Y) = —Axwwwww» (4.6)
= —/Rx\lf/ (Fy (7)) fy(x)dx, (4.7)

see Follmer and Schied (2004, Theorem 4.64). The function W(Fy(.)) is called the
distorted distribution function of Fy with respect to the concave distortion W: smaller
values of Y get higher probabilities and the probabilities of greater values of Y are
reduced. We distort the distribution function of Y. The value —pg(Y) can be seen as
the expectation of a random variable with distribution function ¥(Fy (z)). For Equation
(4.7) we assume that the distribution function Fy of Y is differentiable with density fy
and the first derivative of W exists.

Remark 4.4.4. Several authors interpret Y as a loss and defined a coherent risk measure
directly via Equation (4.3), see Wang (2000, eq. (2)) and Tsanakas (2004, eq. (3)). If

U is continuous it holds )

HY) = [ B @i, (1.9
0
where W(u) = 1 — U(1 — ) is the dual distortion of ¥, see Féllmer and Schied (2011,
Theorem 4.70). Acerbi (2002) and Tsukahara (2009, eq. (1.1)) among others work with
the convex dual distortion to define coherent risk measures via Equation (4.8).

Example 4.4.5. The risk-measure based on the expectation operator pg and the worst-
case risk measure pw, see Example 4.2.2, can be represented by concave distortion
functions. It holds
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0 {pE() JAf U(u) =u Yu € [0,1]
pu(.) = .

pW() alf \Ij(u) = 1(0,1] (u) Vu € [07 1]7
see also Follmer and Schied (2011, Remark 4.50).

Remark 4.4.6. If the distortion function W is continuous and differentiable, let
o(u) =¥ (1 —u).

For ¢ € [1,00], let p € [1, 00] such that % + 1% =1. If 0 € L9 it follows that the coherent
risk measure py is finite on the domain LP. This follows using Holder’s inequality, see
Pichler (2013). In particular if the derivative ¥’ is bounded on [0, 1], the functional py
is well defined on L'. A little calculus shows that

/01 (iqf\;\/ANG(u)>2 du = exp(7?).

Hence the coherent risk measure induced by the Wang transform, see Equation (4.2), is
well defined on L2.

4.4.1 Parametric Families of Concave Distortion Functions

Often, one would like work with a parametric family of risk measures (p7)7>0, where
v models the view of the risk manager: the greater v, the more conservative the risk
measure p,. For example Wang (1995) and Wang (2000) proposed the proportional haz-
ard transform and the Wang transform as distortion functions for insurance premium
calculation of an insurance risk X. The premium is computed according to Equation
(4.4). Both distortions depend on a single parameter «: the premium of a risk is thus
a function of v and varies continuously between the smallest and greatest reasonably
premium: the expected value and maximal value of X. The insurance company may
choose v depending on many external circumstances and the risk-attitude of the com-
pany. Wang (2000) proposed that possible changes in court rulings or in the interest rate
yield curve, moral hazards by insurance buyers and competition with other insurance
companies, should be taken into consideration when choosing the parameter ~.

Another use of a family of risk measures is discussed in Cherny and Madan (2008),
who proved that an acceptability index, which measures the performance of a future
random cash flow, can be represented by an increasing family of coherent risk measures,
compare with Section 4.3.

If the parametric family of risk measures is induced by distortion functions, we need
to work with a family of concave distortion functions, which is defined as follows:

Definition 4.4.7. A family of concave distortion functions (FCDF) (¥7)_ -, is a set of
functions
70,1 = [0,1], v >0,
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that are monotonically increasing and concave for all v > 0 and for which
U7(0) =0 and ¥7(1) =1.

Moreover the family is monotonically increasing and continuous at -, i.e. it holds for all
u € [0, 1] that
UM (u) < U2 (u), 71 <72,

and the map v — U7 (u) is continuous for all u € [0, 1].

We note that the map u — W7 (u) is continuous on (0, 1] for all v > 0 but might jump
at zero. Let us additionally assume the following conditions:

[E] It holds ¥°(u) = u, for u € [0, 1].

[W] It holds WILIgO\PV(u) =1, for u € (0,1].

[T] It holds ¥72 (U (u)) = W72 (), for 71,72 > 0 and u € [0, 1].

Define \Il;(u) = %\Iﬂ(u), if the partial derivative exists.

[L] It holds il{‘% V. (u) = oo, v>0.
[G] It holds Qltl/(ml v, (u) =0, v>0.

[A] It hOldS \II’E’Y (% + gp) = % + fp + %E’Y + O(|£p| + |£’Y’)a Ep € (07 1)7 f’y > 0

The interpretation of Definition 4.4.7 is the following: the greater v, the greater the
distortion and the more conservative the risk measure induced by ¥7. Conditions [E]
and [W] are quite natural: it is usually desirable that for v = 0 no distortion occurs, the
risk measure induced by ¥° should be equal to the negative expectation operator.

For v — oo the risk measure induced by ¥” should converge to the worst-case risk
measure, i.e. U7 (u) should converge to 1 for u > 0, which is expressed in condition [W].

Condition [T] means distorting the probability u first at level 71 and then at level 7
is the same as distorting the probability once at level 1 + 2. This condition is called
translation equation in functional equation theory, see Aczél (1966, Section 6.1.1.). Its
use becomes clear in Section 4.5, where we prove a representation theorem for FCDF.

Assumption [L] and [G] have a purely financial background. Assumption [L] ensures
loss aversion. Large losses should be overstated up to infinity. An example best explains
this point.

Example 4.4.8. Let L. < —1 and define a random variable X taking the large loss L
with probability

1
pL = _Z
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and the value LLH with probability 1 —py. The expectation of X is zero. For a distortion
function W, it holds

po(X) = —LU(pn) = T (1= W)
_ V(pr) —¥(0) L
= —Lpy LpL “I11 (1—-¥(pr))
< U(0).

If ¥/(0) was finite, there would exist an upper bound of the risk of X independent of
the maximum loss L.

Similarly assumptions [G] ensures being enticed by large gains, see Wang (1996),
Cherny and Madan (2008) and Balbds et al. (2009) for details. From a purley financial
point of view, there are some other properties a FCDF should satisfy, e.g. the map

u +— WY (u) should be strictly increasing, such distortion functions are called complete
by Balbas et al. (2009).

Assumption [A] describes a linear approximation of the FCDF around (u,v) = (%, O)
by the total differential and holds if the function (u,~y) — U7 (u) is partial differentiable
and all partial derivatives at (%, 0) are continuous with

2\1}’7 (u)

0
= — g ——
5 1 and U7 (u) . (4.9)

(um)=(3,0) Oy (=10 2

This approximation is used in Section 5.4 in a discrete time model to prove convergence
of various plain vanilla and exotic options if the number of trading periods approaches
infinity.

Let us provide some FCDF often used in literature.

Example 4.4.9. The FCDF corresponding to the expected shortfall at level e=7 € (0, 1]
can be defined by

\IjglxpShortfall(u) - min(ue’y, 1)7 u € (07 1)7 Y > 07

see e.g. Follmer and Schied (2011, Example 4.71) and is drawn for v = 1 as ¥ in Figure
4.3. For u close enough to % and v close enough to zero, it holds

Y — 07
q’ExpShortfau(U) =ue’.

This distortion function obviously satisfies assumptions [E, W, T, G, A] but does not
satisfy assumption [L].

Let & be the cumulative standard normal distribution function and ¢ the normal
density. The Wang transform

Ve () = @ (970 + 5o ) . we 0,170,
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was introduced by Wang (2000) and fulfils [E-A]. The Wang transform is widely used in

actuarial science and was originally defined without the scaling factor 2;(0). We need to

rescale 7 of the original Wang transform, to satisfy assumption [A].

Cherny and Madan (2008) introduced four FCDF: the MAXVAR and MINVAR distor-
tions, which are reparametrizations of the power distortion and its dual, the proportional
hazards distortion, see Wang (1995, 1996), and the MINMAXVAR and MAXMINVAR,
which are compositions of the former two.

Example 4.4.10. The first two FCDF are defined by
\I,K/IINVAR(U) =1- (1 - U)H_’Yv u € (07 1)77 > 0,

and

1
Wliaxvar (@) =u™, we (0,1),7 >0,

and satisfy assumption [A] after rescaling, i.e. replacing v by —ﬁ.

Example 4.4.11. The FCDF MINMAXVAR and MAXMINVAR are defined respec-
tively by

1

., 1 \ly
Ulmvaxvar(w) =1 — (1 - u””) , we (0,1),7>0,
and

_1
Uraxminvar (@) = (1 —(1- U)HV) Y we(0,1),y > 0.

Both FCDF satisfy assumption [A], replacing 7 by —@ which again corresponds to
2

a simple rescaling of the FCDF.

Table 4.1 summarizes the properties of the presented FCDF, compare with a similar
table in Madan and Schoutens (2016a, Table 4.1). For most FCDF it is not so obvious
to see whether Assumption [T] is satisfied or not. That point is discussed in more detail
in Section 4.5. In particular Examples 4.5.2 - 4.5.5 provide some more FCDF with a
special focus on Assumption [T].
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Expected Shortfall
Wang transform
MINVAR
MAXVAR
MINMAXVAR
MAXMINVAR
Laplace

Bl < |<|B|<|R

<IN 9|9 |9 |w =

Table 4.1: Properties of several FCDF.
*) Examples 4.5.7 and 4.5.8 show that there exist a reparametrization of the
FCDF satisfying assumption [T].

FCDF induced by Distribution Functions

In this thesis, generalizations of the Wang transform play a special role in Section 4.5.
The Wang transform, see Equation (4.2) has been modified by Wang (2002) to a two fac-
tor model replacing the normal distribution in Equation (4.2) by Student’s t-distribution
but leaving the inverse normal distribution inside the brackets untouched. Kijima and
Muromachi (2006) introduced a new transform involving a non-central t-distribution
and the inverse of a standard t-distribution. The classical Wang transform has been
extended to the multidimensional case by Kijima (2006). Kijima and Muromachi (2008)
generalized the Wang transform and constructed a transformation using the normal dis-
tribution and the inverse of the cumulative distribution function of the quotient of a
normal distributed random variable and some independent positive random variable Y.
For Y =1 the classical Wang transform is obtained. Tsukahara (2009) generalized the
Wang transform by replacing the normal distribution function ® in Equation (4.2) by a
general distribution function F and its inverse by F~!. Tsukahara called such a distri-
bution function a one-parameter distortion group. We say a FCDF (U7) is induced by
the distribution function F if

W) = F (F'(u) +7), ue0,1], y>0, (4.10)

where F~! is understood to be the generalized inverse of F' and we define F(—oo) = 0
and F'(o0) = 1.

Remark 4.4.12. The function U7 defined by Equation (4.10) is continuous in the variable
u if ' and F~! are continuous. It is easy to see that the map u — W7 (u) is concave
for all v > 0, if the corresponding density f = F’ has support on a possibly unbounded
interval U, i.e. f(z) > 0 for x € U, and is log-concave, compare with Tsukahara (2009, p.
697). The function f is called log-concave if log( f) is concave, see Bagnoli and Bergstrom
(2005).

A FCDF induced by the Laplace distribution has been introduced by Guillaume,
Junike, Leoni and Schoutens (2018):
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Example 4.4.13. A random variable with mean zero and variance one which is Laplace
distributed, has the following distribution function

1,2z
Pz) = 5€ ,x <0
1*%6_\/§$ ,x > 0.

It induces via Equation (4.10) the Laplace distortion

ueV? ,U € {0, %e_\/%)
e~ V2v )

al - 1,—V2
‘IjLaplace(u) =491- 1u U € |5€ v,

ue_\/%—}—l—e_‘/% ,U € %71},

N[

which is linear for u < %e_‘/ﬁ“f and for u > % In between it behaves like a reciprocal
function and it is clearly concave. Applying the Laplace distortion to a uniform dis-
tribution function, which appears e.g. via a Monte Carlo simulation, leads to a new
interesting interpretation of the parameter . In Figure 4.2 the density of a Laplace
distorted uniform distribution is drawn. It is high and constant at the beginning, then
it drops sharply and is quite low and constant at the right hand side of the median.
So if we only wish to distort the g—quantile of a uniform distribution strongly, we can

simply choose v = —% log(2q). On the other hand, if real data is given and we calculate

implicitly the parameter v, the value %e‘ﬁV can be interpreted as the quantile that is
the most strongly distorted.
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Density of Laplace Distorted Uniform Distribution

N —— uniform density
- - - distorted uniform density
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Figure 4.2: Density of Laplace distorted uniform distribution on [—1,1] at distortion
level v = 1.

4.5 A Representation Theorem

We are able to prove that for any FCDF (¥7), which satisfies conditions [E], [W] and
[T] of Definition 4.4.7, there exists a distribution function G such that

U (u) = G(GHu) +7), ue(0,1), v>0. (4.11)

Conversely, if a FCDF is represented as in Equation (4.11), it satisfies conditions [E],
[W] and [T].

Based on results from functional equation theory, see Aczél (1966, Section 6.1.), Tsuka-
hara (2009) obtained a similar result, under the additional assumptions that the FCDF
is continuous in the variable u and strictly increasing in the variable v and that G is
strictly increasing. While we interpret a random variable X as a net worth, Tsukahara
interprets X as a loss, see also Remark 4.4.4. Therefore Tsukahara works with the convex
dual

u—1—Y(1—u)
of the concave distortion function V.

Examples 4.5.2 - 4.5.5 provides various FCDF, which are not continuous at v = 0
or are not strictly increasing in v but can be represented by a distribution function.
Some of those FCDF are applied in Section 4.5.2 to actuarial science and we develop a
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new FCDF using the gamma distribution, which includes the expected shortfall and the
Wang transform as special cases. In the following theorem, we present our main result
of this Section: a relationship between distribution functions and FCDF. The proof is
devoted to Section 4.5.1. An application to insurance science can be found in Section
4.5.2.

Theorem 4.5.1. Let (U7) be a FCDF. Let ug € (0,1). The following two statements
are equivalent.

i) The FCDF (¥7) satisfies conditions [E], [W] and [T].
ii) There exists a unique distribution function G, such that G (0) = ug and

U (u) = GG Hu) +7v), v>0, ue(01). (4.12)

Necessary conditions for a function v — W7(u), defined via Equation (4.12), to be
concave are given in Remark 4.4.12. The constant up mentioned in the theorem can be
chosen arbitrarily: if G induces ¥” then also the shifted distribution G(z) := G(z + u)
for any 1 € R induces U7. Hence we could reformulate Theorem 4.5.1 and say that G is
unique up to location translation. The distribution function G can be identified by

G(z) = {\Iﬂ (o) w20 (4.13)

U " (ug) Lz <0,
where U7 is the generalized inverse of the function u — U7 (u), in particular for v > 0

v':[0,1] — [0,1]
p +— inf{ue[0,1] : ¥V (u) > p}.

We provide four examples of FCDF satisfying conditions [E], [W] and [T]. The four
distortions are also shown in Figure 4.3.
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Distortion Functions

1.0

0.8

0.4

0.2

0.0

Figure 4.3: Distortion Functions from Examples 4.5.2 - 4.5.5. We set v = 1. W5 denotes
the generalized inverse of Wo. The jump-size of Wy at zero is defined by p,
and the point, where W5 first reaches one, is defined by 1.

Example 4.5.2. The following FCDF is not continuous at u = 0. Let

0 ,u=20
1-(1—we™ ,u>0,

Ul (u) = {

The FCDF (¥7]) is called “ess sup-ezpectation convexr combination” by Bannér and
Scherer (2014) because the Choquet integral induced by (¥7) involves a convex com-
bination of the essential supremum and the ordinary expectation. Bannor and Scherer
(2014) applied this FCDF to calibrate a non-linear pricing model to quoted bid-ask
prices. (U7) >0 is induced by the exponential distribution function

1—e™ x>0

Gl(x) = {

0 , otherwise.

Example 4.5.3. Let
0 ,u=20
min (u+ 3,1) ,u > 0.

Ul(u) = {

This FCDF is induced by the uniform distribution function on {—%, %} for any A > 0.
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Example 4.5.4. The FCDF corresponding to the expected shortfall at level e~ € (0, 1],
see e.g. Follmer and Schied (2011, Example 4.71), can be defined by

Ul (u) := min(ue?, 1).

This FCDF is induced by the distribution G3(z) = min(e*,1), x € R and is increasing
in the variable ~ but not strictly increasing.
Let X be exponential distributed. It holds

puy (=X) = E[X)e",

i.e. the expected shortfall reduces to the expected value premium principle when applied
to exponential risks.

The next example is applied in Section 4.5.2 to insurance science.

Example 4.5.5. Let o
V() == GG (u) + ),

The FCDF (¥7) is similar to the Wang transform but replacing the normal distribution
function by the function

G(z)=1-Tap <—\/ax> , <0,

where I'y g is the gamma distribution with shape o and rate §. (U]) generalizes the
expected shortfall: for « =1 and 8 =1, (¥]) and (¥}) are identical. Setting 3 := /a,
(U]) converges to the Wang transform for large a. We will see in Example 4.5.13, that
the coherent risk measure induced by (¥}), reduces to the standard deviation premium
principle when applied to gamma distributed random variables.

Cherny and Madan (2008) proposed some FCDF, called MINVAR, MAXVAR, MIN-
MAXVAR and MAXMINVAR, see Example 4.4.9, which do not satisfy condition [T].
But as we shall see, sometimes it is possible find a reparametrization, by rescaling the
parameter 7y, such that the reparameterized FCDF does satisfy condition [T] and hence
can be represented by a distribution function. In the following definition we state more
precisely what we mean by a reparametrization.

Definition 4.5.6. We say that the FCDF (‘iﬂ> - is a reparametrization of the FCDF
7>
(V7)o if there exist bijective function

t:[0,00) = [0,00)
such that ¢(0) = 0 and

T (u) = WV (u), uwel0,1], v>0.
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Example 4.5.7. The MAXVAR FCDF is defined by W], xyap () = u™7 and there is
a slight modification which indeed satisfies condition [T], in particular let

Uiaxvar(¥) = w1,

which is a reparametrization of WY, ,yyag. By Theorem 4.5.1, the FCDF (@K/I AXVAR)
is induced by the distribution function

FMAXVAR(J)) = e—exp(—x)7 JJER,

which is the Gumbel distribution with location zero and scale one. Let X be a Gumbel
distributed random variable with location p € R and scale o > 0. X has distribution

function
T—p

Fx(z) = efeXp(fT), z eR.
It holds
PiY, oo X) = —EX] + 07
i.e. the coherent risk measures induced by the MAXVAR FCDF and applied to a Gumbel

distributed random variable X can be expressed by a linear mapping of the expectation
of X.

Example 4.5.8. The MINVAR FCDF is defined by ¥ yyag(u) =1 — (1 —u)’*! and
can be represented after a reparametrization by 1 — G(—=x), where G is the Gumbel
distribution function with location zero and scale one.

We have seen in Example 4.5.7 that the MAXVAR and MINVAR FCDF defined by
Cherny and Madan (2008) do not satisfy the condition [T] but there exist a reparametriza-
tion satisfying condition [T]. The following proposition is useful to check whether a FCDF
can be reparameterized into a FCDF satisfying condition [T].

Proposition 4.5.9. Let (U7) be a FCDF. If there exist a reparametrization (\iﬂ) which
satisfies condition [T], then it holds

V(W () = U (U7 (), 7,72 2 0, ue [0,1], (4.14)
i.e. the original FCDF is permutable.
Proof. Let 71,72 > 0 and ug € [0, 1]. Then it follows

U (072 ) = POV (W02 (ug) ) = FOVHOD ) = 02 (W7 ()
for a suitable function t. O

Simple numerical examples and Proposition 4.5.9 show that the following FCDF
1N\ Iy
Uimnmaxvar(w) = 1- (1 - Ul*”) ;

1
Uiaxanvar(v) = (1 - (1= U)VH) R

cannot be reparameterized into a FCDF satisfying condition [T], i.e. cannot be repre-
sented by a distribution function.

75



4 Concave Distortion Functions

4.5.1 Proof of Theorem 4.5.1.

The following lemma shows that a FCDF can only be represented by a distribution
function G with a certain structure, e.g. G is continuous on the whole real line and
strictly increasing on its support until it hits its upper limit 1.

Lemma 4.5.10. Let ug € (0,1). Let G : R — [0,1] be a distribution function such that
G(0) = ug. Define G(—o00) = 0. Let G~1 be the generalized inverse of G, for instance

G u):=inf{z € R : G(z) > u}.
Define
xo:=inf {z € R, G(x) > 0}
and
T = G_l(l).
It then holds xo < x1. Let (U7) be a FCDF. If
U (u) = GG (u) +7), ue (0,1), v20,

then it holds G(xp) = 0 and G is continuous on R and strictly increasing on (xo,x1).
We further have
G N G@) ==, € (z0,71) (4.15)

and
G(G M) =u, ue(0,1). (4.16)

Proof. We trivially have o < 0 < x7. Assume 0 < pg := G(zp). Then py < ug < 1 and
G~ Y(p) = zo for p € (0,po]. Hence the map u +— G(G~!(u)) is constant and equal to pg
on (0,pp), which is a contraction as the map u + W¥°(u) is concave and increasing and
W0(1) = 1. Thus it holds G(zg) = 0.
As G is a distribution function, G is right-continuous and increasing, i.e. for all z € R
it holds
G(z+) = lslﬁ)l Gz +¢)=G(x).

Assume there is a T € (xg, z1] such that

1= Ga-) = lmG(E + ) < G(@)

i.e. G jumps at z. Then G(G~1(u—)) < G(z) < G(G~(u+)), which is a contradiction
because the map u + ¥Y(u) is continuous on (0, 1]. We conclude that G is continuous
on R.

Now we show, that G is strictly increasing on (g, z1). Assume there are ¢ < &1, T2 <
x1 such that 71 < Z and G(Z1) = G(&2) =: @. Then it follows 0 < @ < 1 and there
exists v > 0 such that

GG H(a—) +7) < G(F1 +7) < G(F2 +7) < GG (a+) +7),

which is again a contraction. The seqond assertion, expressed by Equations (4.15) and
(4.16), follows immediately, because G : (zg,z1) — (0,1), z — G(x), is bijective. O
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Prove of Theorem 4.5.1. We show the direction i)= ii). Let ug € (0,1) and define
G :R — [0, 1] by Equation (4.13).

First step: Show that p — @(p) s continuous.

By Definition 4.4.7, for a fixed v > 0, the function v — ¥7(u) is monotonically
increasing and concave and it holds ¥7(0) = 0 and ¥7(1) = 1. This implies a strong
structure on ¥7: There exists a constant @, € [0, 1], namely

Gy = inf {u : ¥V (u) =1}, (4.17)

such that u — W7 (u) is strictly increasing and continuous on (0,%,] and constant on
(T, 1]. At zero, v — U7 (u) might jump. Let p, := liﬂ)ﬂ”(s) be the jump-size at u = 0.
E.

For a particular distortion function, ., and p, are visualized in Figure 4.3. By definition
of p = ' (p), it holds for 0 < p < p,

U'(p) = inf {u € [0,1] : ¥V(u) > p} = inf {u € (0,1]} = 0. (4.18)

Continuity of p — ¥’ (p) follows immediately: define

O (u) := by u=0
UY(u) ,u>0.

Then u — ©7(u) is continuous and bijective as a function from [0, @,] to [p,,1] and
hence its inverse ©7 is also continuous. We further have ¥’ (p) = @ (p) for p € [ps, 1],
which shows continuity of p — ¥ (p).

Second step: show that v +— U (ug) is decreasing and continuous, hence G is a distri-
bution function.

While «y +— ¥7(up) is increasing and continuous in the variable v by definition, it is
easy to see that its generalized inverse is decreasing in the variable . The function
v @(uo) is continuous, which can be seen by the following auxiliary result:

If v9 > v >0 and U277 (ug) < 1 and ug > po,, it follows

2N () = P2 (\Iﬂl (@1 (uo))) — e (@’Yl (uo)) _
Applying U on both sides, yields
T (ug) = T (97277 (ug)) (4.19)

Let v :=inf {y > 0: py > up}, where inf () = co. g is the smallest number, such that
the jump-size of ¥ at zero is greater or equal to ug. The map v — @v(uo) is identical
to zero on [yg,00), compare with Equation (4.18). It remains to show continuity from
below at v € (0,7] and continuity from above at v € (0,79). Let 0 < v < 5y and
(Yn)nen be a positive sequence converging from below to . Without loss of generality,
we assume 7y, < v for all n. For n large enough, it holds U7~ (uy) < 1 because ¥7
is continuous at v and ¥9(ug) = ug < 1. We have ug > p,, because v, < v and by
Equation (4.19), it holds

T (ug) =07 (W77 (ug)) — ¥ (ug), n — o0,
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where we used that p — ¥ (p) is continuous on [0,1]. If v < 7o and (7,) is a sequence
converging from above to 7, let € > 0 such that U*7(ug) < 1 and choose n large enough
so that (14€)y —7, > 0 and ~,, < 7o. It follows W47~ (44) < 1 and using Equation
(4.19) twice and continuity of p — ¥ (p), shows continuity from above.

Thus G is monotonically increasing and continuous. Continuity at zero can be shown
using condition [E]: it holds G(0) = ¥° (ug) = ug. By condition [W] it follows xl;rgo G(z) =
1 and IEIPOOG(:L‘) = 0. G is thereby a distribution function.

Third step: show that Equation (4.12) holds.

We distinguish three cases and use that (¥7) >0 satisfies condition [T]. Let v > 0 and
u € (0,1). As G is continuous, it is a surjective function from R to (0, 1) and there exists
r € R such that G(z) = v and G~ (u) = 2. If z > 0, it follows

Glz+vy) = ¥ (u)
= U7 (¥ (uo))
= U(G(2)).

If z < 0, it holds o
T “(ug) = G(zx) >0

and therefore ug > p_,. If x <0 and x + v > 0, it follows
Gla+7) = ¥ (u)
= v (07 (T (wp)) )
= V(G(2)).

If z <0 and z 4+ v <0 we have

1>upg=0"" (@’x(uo)) — e (\Iﬂ (\I/ g (uo)))
and thereby
V(T () < iy
compare with Equation (4.17). We further have
v (T (u)) > 0

as

T (ug) = G(x) =u >0,

Because the function
U7 (0, Uy = (Py, 1]

is bijective, it follows

Glx+~v) =

= V(G(x)).
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Fourth step: Show the uniqueness of G.
Let assume there is another distribution function F' such that F(0) = uy and

F(F~Yu)+7)=97(u), ue (0,1), v>0.
For z > 0 it follows by Lemma 4.5.10,
Fw) = F(F (ug) + ) = ¥%(ug) = G(a),
Let zp := inf {z, F(z) > 0}. For o < x < 0, it follows 0 < F'(z) < 1 and it holds
VT (F(x)) = F(F~(F(z)) — @) = F(0) = u

and hence

If —o0 < x9, we further have

Py = 1%1 F(F~Y(e) —20) = F(0) = ug

and therefore G(x) = ¥ "°(ug) = 0 = F(x0). Hence it holds G(z) = F(z) for all 2 € R.

Now let us show the other direction ii)= i). We use lemma 4.5.10. Let ug € (0,1).
If there is a distribution function G such that G(0) = up and Equation (4.12) holds, it
follows for any u € (0, 1]

lim U7 (u) = lim G(G™(u) +7) =1,

~y—00 ~y—00
i.e. (U7) satisfies condition [W]. We further have
V() = GG (w) =u, ue(0,1),

which shows that the FCDF satisfies condition [E]. Now let 71,72 > 0 and u € (0,1).
Assume U7 (u) < 1, then it holds

TR W) = G676 @) )] +72)

= GG Hu)+ v +7)
Ptz (u) )

The case ¥ (u) = 1 is trivial. Thus (U7) satisfies condition [T]. O
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4.5.2 Application to Moment Based Premium Principles

In Section 4.2 we introduced a coherent risk measure p as a map from set of bounded
random variables to the real numbers describing the riskiness of future random cash flows.
In insurance science we are usually dealing with nonnegative random variables describing
for example the possible financial loss due to a natural disaster. In an insurance context,
we call a nonnegative random variable X insurance risk or just risk and the value p(—X)
a premium, see also Example 4.2.3.

It is possible to apply our representation result Theorem 4.5.1 to compare different
insurance risks with each other. Let us assume an insurance company is insuring a risk,
which can be described by a nonnegative random variable X. The amount of money
charged by the insurer to the insured for the coverage of the loss due to the risk X, is
called the risk-adjusted premium, excluding acquisition or internal expenses. There are
several method for assigning a risk-adjusted premium 7 to the risk X. The premium 7
could be defined via a coherent risk measure p by 7(X) = p(—X). But many premium
principles used in practice are equal to the expected value of the risk plus some security
loading, so called moment based premium principles:

the Expected Value Premium is defind by E[X]+~vyE[X],
the Standard Deviation Premium is defind by  E[X] + v/ Var(X),
and the Variance Premium is defind by  E[X] 4 ~Var(X),

where v > 0, see Straub (1988), Daykin et al. (1994) and Rolski et al. (2009). The
moment based premium principles are not coherent, the standard deviation premium
principle for example is not monotone, i.e. two different risks cannot really be compared
with each other'. But for a particular random variable X, it is possible to construct a
FCDF (07%), such that for a fixed £ > 0 it holds

pur (—X) = EIX] +7€, > 0.

The value pyy (—X) is equal to a particular moment based premium of X for all v > 0

if
§ € {BIX], /Var(X), Var(X)}.

What are the benefits? An insurance which mainly insures a risk X and uses a moment
based premium principle to assign a premium to X, might wish to compare risk X to
another risk Z, which can be archived by comparing the values pyy (—X) and P, (—2)
with each other.

On the one hand, the moment based premium principles are not coherent, they are
arguably not very well suited to compare different risks with each other. They may even
be infinite, e.g. if the second moments of Z do not exist.

'For example let X take the values 10 or 90, each with probability % Clearly, X is less risky than the
constant Z = 100. But the mean plus standard deviation of X is about 106. The standard deviation
premium of Z is just 100.
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On the other hand, moment based premium principles are easy to understand and
explain to policyholders. That is why the insurance may use a moment based premium
principle in the first place, to compute the premium of the risk X.

Note that already Wang (2000) observed, that the Wang transform leads to the stan-
dard deviation premium principle, if X is normal distributed. Our representation result
for FCDF makes a straightforward computation of U} possible, in particular for non-
negative and skewed random variables X.

Construction of a Coherent Risk Measure Reproducing a Moment-Based Premium
Principle

In this section we construct a coherent risk measure, based on a concave distortion
function and depending on a risk X, such that the premium principle of this risk measure
reduces to the expected value, the standard deviation or the variance premium principle
for risk X. Let an integrable, nonnegative random variable X on some probability space
(Q, F,P) be given. We make the following assumptions on the risk X:

Assumption 1. The density fx of X is continuous with support on (0,00).

Assumption 2. The density fx = F)'( 1s log-concave

Assumption 3. For the density it holds: JE&%&;) < oo for all v > 0.

Those assumptions are made to keep the notation simple and could be relaxed. See
Remark 4.4.12 for a definition of log-concavity. For example the densities of the normal
distribution and the gamma, the beta and the Weibull distribution, respectively with
shape parameter o > 1, are log-concave, see Bagnoli and Bergstrom (2005). Assumption
3 is used to show that a coherent risk measure induced by the distribution function of
X is well defined on the whole space of integrable random variables L!. In particular
the gamma and the Weibull distributions satisfy assumptions 1 — 3, both distributions
are frequently used in insurance science to model insurance risks.

Proposition 4.5.11. Let X satisfy Assumptions 1 — 3. Let & > 0. Let
G(z):=1—-Fx(—xf), = €R.
The set of functions
U (u) == GG (u) +7), v>0, ue(0,1), (4.20)
define a FCDF and it holds
par, (—X) = BIX] +9€, 720, (1.21)

where P, is a coherent risk measure with domain L' induced by the concave distortion
U, see Equation (4.4).
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Remark 4.5.12. The value Py (—X) is then equal to the expected value premium, the
standard deviation premium or the variance premium of X if

¢ e {E[X], ,/Var(X),Var(X)} ,

The inverse of G can easily be computed:
-1 |
G (p) = —efx (1—=p).

Proof. For v > 0, we define ¥} pointwise: ¥} (0) := 0, ¥ (1) := 1. Let u € (0,1) and
let z > 0 such that
u=H(x):=1- Fx(z).

H is the decumulative distribution function of X. By Assumption 1, Fx is a bijective
function from (0, 00) to (0,1). It holds x = H~!(u) and we define

Vi (u) = H(H (u) =€)
It follows
U (H(z)) = H(x —~¢), >0, v>0. (4.22)

It is straightforward to see that v — ¥ (u) is continuous and increasing and that
u — ¥ (u) is increasing and concave, because the density corresponding to Fy is log-
concave. Hence the family (\If}()7>0 is a FCDF. It additionally satisfies conditions [E],

[W] and [T], hence by Theorem 4.5.1, there exist a unique distribution function G such
that G(0) = 3 and
W (u) = GG () +7).

By Equation (4.13), G can be identified by

A 1

G(x)=1-Fx (FX1 (2) — x§> , T eR, £>0.
We shift G and define

G(z) =1—- Fx(—xf)

and we have

Vi (u) = GG (u) +7). (4.23)
Let g(z) := & fx(—x€). It follows for v > 0 by Assumption 3:

.9 o g9(GTNw) +)
e VX () = )
_ i fx(z—&v) < oo
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Hence because U} is concave for all v > 0 its partial derivative is bounded on the unit
uniterval and the coherent risk measures induced by the family (U} ) are well defined
on L!. Tt follows by Equation (4.22) for all v > 0

e}

EX]++¢ = /1—Fx(x—7£)dx

0
00

_ /\Il}((l—FX(x))dx
0
= P\IJ}((—X)-
O

Example 4.5.13. Let X ~ I'(a, 8) be a gamma distributed random variable with mean
% and variance % modelling a risk or an aggregated risk insured by the insurance
company. The gamma distribution satisfies Assumption 1 — 3, if o > 1. We apply the

standard deviation premium principle and choose

& =/Var(X) = @.

p
Additionally, assume that the insurance faces another risk Z and wishes to compare both
risks using a coherent risk measure, which reproduces the standard deviation premium
for X and is induced by the FCDF (pq,} ), defined via Equation (4.20). Table 4.2
compares the standard deviation premium of X, to the premium of various other risks
computed using Py, The premium of a nonnegative risk Z € L' under Pu, is equal to

oo

pu(-2) = (W1 = Fa(o)is. (4.24)
0

The integral appearing in Equation (4.24) can be computed using standard numeric
methods.

We compare risk X to an exponential, a Gaussian, a Bernoulli and a Pareto risk.
If Z ~ Pareto(x,,a) is Pareto distributed with scale z,, > 0 and shape a > 0 and if
a € (1,2], then Z has finite first and infinite second moments. In particular, the standard
deviation premium principle cannot be applied to Z. The expected value of Z is {72 for
a > 1. We further compare risk X to a risk W defined by the loss occurring in a layer
with deductible D > 0 and cover C' > D of a Pareto distributed loss Z, i.e.

W:=(Z-D)"—-(Z-C-D)".
Let the distribution of W be denoted by

T a +
Fﬁ;xm,ac(x) . {1 . (z+D> (2m —D,0)" <2< C
1 ,x>C.
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It turns out that for v = 1, the Standard Deviation Premia of the exponential and the
Gaussian risk are very similar to the corresponding premia computed using Pyl - The
differences between both premia for Bernoulli or Pareto risks are very large.

’ ‘ X ‘ Zexp ‘ ZGauss ‘ ZB ‘ Zoo ‘ Z250 ‘ ZlO ‘
Expected Value 1 1 1 1 1 1 1

SD premium 1.47 2 1.20 | 10.95 | o0 8.1 | 2.92

Premium under Pyl 1471199 | 1.19 4.25 | 4.31 | 3.46 | 2.64

Table 4.2: Compare the standard deviation (SD) premium principle to the premium
principle using the coherent risk measure Py applied to various risks: X ~

T (9 9)7 Zexp ~ exp(1), Zgauss ~ N (1 l), Zp is Bernoulli distributed taking

272 » 10
. . 10 6.2,0.2,250
the value 100 with probability ﬁ. Zso ~ Pareto( %), Zoso ~ Fiy

10 10
10 9 36.0.36,1
and Zyg ~ Fy) /0.36,0.36,10

Figure 4.3 as ¥y.

. The concave distortion function \If}( is drawn in

Interpretation of the Coherent Risk Measure Pu,

As above let X describe some insurance risk and let wx be the premium of X obtained
by a moment based premium principle. Let the FCDF (¥%) be defined such that

TX :P\II}((_X)'

The following proposition offers an interpretation of the premium principle based on the
coherent risk measure Py, There is an acceptability index « such that the performance
of the future random cash flow

P\y}((*Z) —Z

for any risk Z € L' is at least as high as the performance of the cash flow 7x — X. Using
only the acceptability index « as a criterion, the insurance is indifferent insuring risk X
and obtaining premium 7x or insuring another risk Z in return for premium P, (—2).

Proposition 4.5.14. Let X satisfy Assumptions 1 — 3. For some & > 0, let the FCDF
(U%),>q be defined as in Equation (4.20). Let 7o > 0 and

mx = E[X] 4+ v¢.
There exist an acceptability index o : L' — [0, 00] such that
a(mx = X) =10 < a(pyn(-2) - 2), (4.25)
for all Z € L' with Z > 0.

By the Fatou property, the performance of the null-position is infinite. Therefore the
right-hand side of Equation (4.25) can be equal to infinity, for example if Z = 0.
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Proof. The family of coherent risk measures (pq,}( ) . has domain L' and defines an
>

acceptability index a by

a: L' = [0,00]
Y = SUP{’YZOfP\I/}((Y>§O}7

see Section 4.3. Let Z € L' such that Z > 0. It holds using the translation property for
coherent risk measures

o (p\p;’?(_z) - Z) = sup {7 >0: pyy (P\I/}(O(_Z) = Z) < 0}

= sup{y>0: pyy (~2) < pypp(-2)}
> 70

and similarly

a(mx = X) =sup{y>0: pyy (~X) < E[X]+0&} = 0.

4.6 Conclusion

In this Chapter we point out the relation between a family of concave distortion function
(FCDF) and coherent risk measures. A concave distortion function is a concave function
mapping the unity interval onto itself. A coherent risk measures can be defined by
distorting the original distribution function of a random variable: losses are given more
weight and gains are given less weight. We have shown that a FCDF satisfying a certain
translation equation, can be represented by a distribution function. Our representation
theorem is novel, it generalizes a comparable result obtained by Tsukahara (2009).

In contrast to Tsukahara (2009), our representation results also covers FCDF which
are not strictly increasing in the distortion level like the FCDF related to the expected
shortfall and FCDF which jump like the “ess sup-expectation convex combination” dis-
tortion function defined and applied to finance by Bannér and Scherer (2014).

On the other hand, Tsukahara’s result does not require the family of distortion func-
tions to be concave. But concavity is a natural requirement when dealing with coherent
risk measures. A risk measure should encourage diversification, i.e. the risk of a portfo-
lio must not exceed the sum of the risk of its components. A risk measures induced by
a distortion function which is not concave, is in general not sub-additive and does not
encourage diversification.

An application of the representation result can be found in actuarial science: assume
there is an insurance company selling mainly contracts to insure a risk X. The risk X
may describe a loss due to some natural disaster like fire. The insurance company com-
putes the premium of the insurance contract using a moment based premium principle,
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e.g. the premium is calculated as the expected value of X plus a multiple of the stan-
dard deviation of X. Such a premium principle is easy to understand and to explain to
policyholders but it is not monotone, i.e. different insurance risks cannot be compared
with each other and cannot be priced in a consistent way.

Our representation theorem makes it possible to construct a coherent risk measure px,
induced by a concave distortion function and depending on the distribution function of
X, such that the premium principle of that risk measure reduces to a moment based
premium principle when applied to risk X. The price of another insurance risk Z may
then be compared to the standard deviation premium of X, even if the variance of Z
does not exist, by applying px both to X and to Z.

The premium principle based on px is consistent with a moment based premium
principle like the standard deviation premium principle. The residual cash flow of the
insurance company insuring risk X in return for the (standard deviation premium) is
the difference of the premium and the insurance risk X. We show that there exists an
acceptability index (performance measure) such that the performance of the residual
cash flow insuring risk X is equal to the performance of the residual cash flow insuring
any other risk Z, if the premium of Z is computed based on px.

Using only this acceptability index as a criterion, the insurance company is indifferent
insuring risk X and obtaining a standard deviation premium or insuring another risk Z
in return for the premium px(—2).

86



5 Financial Markets with Frictions

5.1 Introduction

In this Chapter, we obtain closed-form solutions of bid and ask prices of European
plain vanilla and barrier options in markets with frictions. The construction of bid and
ask prices is heavily based on concave distortion functions as introduced in Chapter 4.
Markets with frictions are markets with transaction costs. While in frictionless markets
the risky underling, e.g. a stock, can be bought and sold for the same price S; at time ¢,
in market with frictions, there are two prices: an investor can purchase the stock for the
ask price S¢ and sell the stock for the usually lower bid price S?. Simple proportional
transaction costs models assume the underlying “fair” price of the stock can be modelled
by a stochastic process (S¢) and define for numbers p € (0,1) and A > 1 the bid and ask
prices of the stock by
SY = uS; and S := AS;.

The spread S¢ — S? measures the fee an investor has to pay to the exchange for trading
the stock.

In contrast to complete financial markets without any imperfections where prices are
obtained by a linear pricing rule, prices in markets with frictions can be described by
sublinear pricing functionals, see Jouini (2000). Such pricing functionals may also de-
scribe prices in markets with additional or different kind of frictions than (proportional)
transaction costs, like short sales costs or constrains, borrowing costs, taxes and other
market imperfections, see Jouini and Kallal (2001), Koehl and Pham (2000), Bion-Nadal
(2009) and references therein.

Jouini and Kallal (1995, 2001) and Jouini (2000) introduced an axiomatic approach
to describe financial markets with frictions. They considered a finite time-horizon 7' > 0
and a multiperiod economy, where investors can trade a riskless and a risky asset. Let
N be the number of trading periods in [0,7]. Jouini (2000) modelled the bid and ask
price processes of the risky asset by adapted processes

0<S’<8% i=0,.,N.

They postulate the existence of a pricing functional p and define the ask price of a
contingent claim C' by p(C'), and the bid price by —p(—C'), hence buying the contingent
claim C' is the same as selling —C.

Furthermore, p is assumed to satisfy the following axioms: (i) p is monotone, i.e. no
agent is willing to pay more for less, (ii) p is sub-additive, i.e. it is less expensive buying
the portfolio C + C’ than buying C and C’ separately. Indeed an agent might save
transaction costs hedging a portfolio instead of hedging the components of the portfolio
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separately: due to possible diversification effects, some orders in the risky asset may
cancel out. (iii) p is positively homogeneous, i.e. the ask price of a position scales
linearly with its size:

p(AC) = Ap(C), XA >0.

There is some criticism about this axiom. For instance Follmer and Schied (2002)
argued that ’[...] an additional liquidity risk may arise if a position is multiplied by a
large factor. This suggests to relax the conditions of positive homogeneity [...]] But
positive homogeneity is a standard assumption in classical financial markets and holds
approximately for reasonable values of A. Cetin et al. (2004) and Bion-Nadal (2009)
extended Jouini (2000), allowing prices to depend on the size of the position. (iv) p does
not introduce arbitrage. This is a natural requirement of any financial market. (v) p
is lower-semi-continuous, which is a rather technical axiom. (vi) For a future random
cash flow C, p(C) is less than or equal to the price of the smallest self-financing trading
strategy dominating! C, i.e. it is not possible to obtain a better payoff than C for lower
cost by directly investing in the underlying. See Jouini and Kallal (1995, 2001) and
Jouini (2000) for a more detailed discussion and economic interpretation of the axioms
(i)-(vi).

Jouini and Kallal (1995) showed that the market is arbitrage-free, if and only if there
exist a measure Q, equivalent to the physical measure P, and a process Z9, which is
a martingale under Q, such that S® < ZQ < S% This leads to an easy construction
of arbitrage-free financial markets with frictions: we take a frictionless market, where
the risky underlying is described by some martingale (Si)i:O,.., n under the risk-neutral
measure. Introducing a sequence of dynamic coherent risk measures (Pi)z‘:o,.., N and
defining a pricing functional by p;(.) := p;(—.), we introduce frictions into the market by
defining the ask price process of the underlying by (p;(Sy)) and the bid price process by
(—=pi(—SnN)). The sequence (p;) induced by a sequence of coherent risk measures fulfils
axioms (i)-(vi).

Contribution

Bid and ask prices are recursively defined in a discrete time model with N trading
periods. We look at two special cases: the static case N = 1 and the asymptotic case
N — oo. In both cases we obtain closed-form solutions of bid and ask prices of European
options by introducing a new parameter v, which enters into the dividend yield.

In the static case we obtain closed-form solutions for bid and ask prices of European
options, if the log-returns are normal or Laplace distributed. Existing closed-form solu-
tions of the risk-neutral price of European options are extended with a new parameter
Ystatic = 0, which adjusts the dividend yield. The greater ~static, the greater the bid-ask

LA self-financing trading strategy is a way to invest in the market, i.e. going long and short in the
risky asset without exogenous infusion or withdrawal of money except for an initial investment; the
purchase of new assets must be financed by the sale of old ones. For a given contingent claim C,
the price of the smallest self-financing trading strategy dominating C, is the smallest investment in a
self-financing trading strategy, which is always greater or equal to C.

88



5 Financial Markets with Frictions

spread. The static case is certainly of interest because the Laplace distribution has fatter
tails than the normal distribution, which appears in the Black-Scholes model, and might
therefore be better suited to model stock price log-returns.

We also look at the asymptotic case N — oo and prove convergence of bid and
ask prices for many American and Exotic options in a binomial-type model. We are
interested in the asymptotic behaviour of the model to obtain closed-form solutions for
efficient numerical applications.

In a binomial-type model with frictions, we develop closed-form solutions for European
plain vanilla and some barrier options and obtain in the limit an extended Black-Scholes
formula with a new parameter vcontinuous = 0. The limit bid or ask price of a possible
path-dependent option is given by the Black-Scholes price of the option but on a stock
with an adjusted dividend yield. Hence existing numerical methods, developed to price
options in a Black-Scholes setting in classical finance, can also be used to compute bid
and ask prices of such options. No new software need to be written to apply our formulas
in financial institutions.

Practical Relevance

We think the main application area is the possibility of computing implicitly a parameter
v, such that given bid and ask market prices of a European or an American plain vanilla
option are exactly matched by our two-price formula.

This idea is comparable to the concept of implied volatility. In principle volatilities
could be constant across strikes, maturities, and underlying assets, hence the preference
by practitioners for quoting implied volatilities instead of (mid-)prices. Similarly the
parameter v could be constant across all three dimensions, even though there are many
non-linearities between the bid-ask spread and strikes, maturities, and underlying assets.
It should therefore be beneficial to quote an implicitly computed 7 instead of the absolute
bid-ask spread of a plain vanilla option. Indeed Corcuera et al. (2012) used a setting
similar to our model, but in static time, and showed empirically that the liquidity dry
up during the period 2007-2009 is described very well by the parameter v. Our discrete
time model makes it possible to analyse also path-dependent and American options.

Up to now, traders quote the difference between implied bid and ask volatilities to
describe the current market liquidity of plain vanilla options. Both this heuristic method
and our proposal of computing implicitly the parameter v have the advantage of using
only present market data and of being extremely fast in terms of computational time,
in both cases one has to invert the Black-Scholes formula. However, we show in two em-
pirical studies that both the static and the continuous time-model describe (il)liquidity
of European and American plain vanilla options very well over time compared to the
heuristic method of quoting implied bid and ask volatilities.

Limitations

In the static model, we obtain closed-form for European plain vanilla options if the
pricing functional is defined in terms of the distribution of the log-returns of the under-
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lying. In particular, the choice of the pricing functional depends on the model of the
log-returns.

In the discrete binomial-type model, convergence is only proven for monotone pay-
offs, for example European or American plain vanilla, lookback, Asian and some barrier
options (up-and-out put, down-and-out call, down-and-in put and up-and-in call). The
underlying is essentially modelled by a binomial model in discrete time and by geometric
Brownian motion in continuous time. Hence the volatility is assumed to be constant over
time and log-returns are assumed to be (approximately) normal distributed. Future re-
search need to be done to treat contingent claims which are not monotone with respect to
the underlying, e.g. a barrier up-and-out call option and to generalize the market model
replacing for example the constant volatility by a mean-reverting stochastic process.

Literature Review

In general, liquidity is effected by many factors like the ability of trading large quantities,
by the speed, the cost and the price impact of the trade. Several measures have been
developed in literature to capture some or all of these factors. Amihud (2002) defines
the liquidity of a stock by the average of the ratio of absolute daily returns to volume,
where the average is taken over a month. Acharya and Pedersen (2005) developed a
liquidity adjusted capital asset pricing model and measured liquidity using a normalized
version of Amihud’s liquidity measure. Liu (2006) analyse the relation between liquidity
risk and asset pricing using a liquidity measure based on historic data. Goyenko et al.
(2009) compared several well known liquidity measures using stock data from 1993 to
2005.

In contrast to the above studies, which define (il)liquidity mainly using a historic time
series of the stock, both our static model and the extended Black-Scholes formula are
well suited to be applied to an option surface and needs only present market data to
compute the market implied liquidity parameter .

Recently, Madan and Cherny (2010) developed the conic finance theory. Out discrete
time market model with frictions is connected to conic finance by the common approach
of using recursively defined sublinear functionals to describe bid and ask prices. In-
deed our discrete market model is closely related to discrete time conic finance models,
where bid and ask prices are defined recursively using nonlinear expectations, see Leip-
pold and Schérer (2017), Madan (2010), Madan et al. (2013, 2017a) and Madan and
Schoutens (2012b). Time-consistent nonlinear expectations are connected with solutions
to backward stochastic difference equations, see Cohen and Elliott (2010). See Bielecki
et al. (2013, 2015) for a framework incorporating transaction costs in discrete time conic
finance models.

Our work is related to Madan et al. (2017b) who showed in a general context that, un-
der some technical conditions, an iterated spectral risk measure, which is a risk measure
in a multiperiod setting based on distortion functions, converges to some g-expectation.
A g-expectation is a non-linear expectation proposed by Peng (2004).

Relative to these papers our contribution is to proof convergence of bid and ask prices
in a binomial-type model with frictions when the number of trading periods approaches
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infinity and to obtain closed-form solutions for bid and ask prices for plain vanilla and
barrier options in the limit.

Contents

The remainder of this Chapter is organized as follows. In Section 5.2, we introduce a
discrete time-model for a market with frictions. A special case of the discrete model,
the static case, is analysed in Section 5.3. In the static case we are able to derive closed-
form solutions for bid and ask prices of FEuropean options if the log-returns are normal
or Laplace distributed. Those formulas are applied to real market data of European
options in Section 5.3.5.

In Section 5.4.2, we present the classical binomial model. In Section 5.4.3 we prove
convergence of bid and ask prices for European and American possibly path-dependent
options. In Section 5.4.7, we apply the results to real market data of American options.
Section 5.5 concludes.

5.2 The Formal Setup

We make the following economic assumptions: we assume all investors have a finite
time-horizon and trading can take place only finitely many times. There is a very liquid
bank account and a risky-asset whose bid and ask prices can be described by binomial
trees. There exists a pricing functional and bid and ask prices of a contingent claim
can be computed via the pricing functional. At the end of the time-horizon, the bid-ask
spread of all products is assumed to be zero.

Formally, we assume the following framework: Let T > 0 be some time-horizon and
N € N be the number of trading periods, each trading period has length % We introduce
a frictionless market and extend it to a market with frictions using a pricing functional.
Let the risky-asset

(Si)i:0,1,..,N
be described by a nonnegative adapted stochastic process on a given filtered probability
space

(2 (F)izo,.n+ Fo )

satisfying the usual conditions. By
Bi=(1+7)!, i=0,.,N,

we denote a risk-free bank account. We assume the market is arbitrage-free and denote
by Q a risk-neutral measure, such that the discounted price process of the risky-asset is
a Q—martingale. The process (5;) describes the risky asset of the underlying frictionless
market. In this section we assume that the interest rates are equal to zero, i.e. we
work with discounted cash flows, and that the stock is not paying any dividends. Those
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assumptions are only made to keep the notation simple and are relaxed in Section 5.4.2
and 5.4.3. Let
L>®:=L*(Q,Q,F)

be the set of F—measurable bounded random variables with respect to the probability
measure Q and (pi)i:O,..., N be a set of dynamic, time-consistent coherent risk measures
being continuous from above

pi: L — L :=L>(Q,Q,F).

The following definition of dynamic coherent risk measures are a direct extension of
Definition 4.2.1 and is taken from Follmer and Schied (2011, Definition 11.1)

Definition 5.2.1. (Coherent conditional risk measure). A map p; : L™ — L$° is
called a coherent conditional risk measure if it satisfies the following properties for all
X, Y e L™

R1: Conditional cash invariance: p;(X + X;) = pi(X) — X; for any X; € L$°.

R2: Monotonicity: X <Y = p;(X) > pi(Y).

R3: Conditional convezity: pi(AX + (1 —=N)Y) < Api(X)+ (1 —X)p;i(Y) for A € L$° and
0<A<1.

R4: Conditional positive homogeneity: pi(AX) = Ap;j(X) where A € L and 0 < .

If X is some future random cash flow, the random value p;(X) can be interpreted as the
risk of X as if measured at the (future) trading period 7. The interpretation of axioms
R1-R4 can directly be adopted from the static case. For example the conditional cash
invariance axiom means we can add certain amount with respect to the information
available at time ¢ to the position X and the risk will thereby reduce exactly about that

amount.
The dynamic risk measure is called continuous from above, if it holds

Xn (X = pi(Xy) 7 pi(X) for any sequence (X,) C L™ and X € L™,
The dynamic risk measure is called time-consistent, if
pi+1(X) < pit1(Y) = pi(X) < pi(Y), X,V € L7,i=0,.,N -1

or equivalently
pZ(X) = pZ(pl+1(X))7 X € LOO,,L = 07 7N - 17

see Follmer and Schied (2011, Definition 11.10 and Lemma 11.11).
Note that by R4, axiom R3 is equivalent to the axiom

R3’ Conditional sub-additivity: p;(X +Y) < pi(X) + pi(Y).
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We call the operator
pi(.) == pi(=.), i=0,...,N,
a price functional. Then (p;) fulfils the following properties, see Follmer and Schied

(2011, Definition 11.1, Theorem 11.2. and Lemma 11.11). Let X, Y € L*. It holds for
i=0,...N,

P1: Cash invariance: p;(X + X;) = pi(X) + X; for any X; € L°.

P2: Monotonicity: X <Y = p;(X) < pi(Y).

P3: Sub-additivity: p;(X +Y) < pi(X) + pi(Y).

P4: Positive homogeneity: p;(AX) = Ap;(X), where A € L and 0 < \.

P5: Continuity from below: It holds X,, X = p;(X,)  pi(X) for any sequence
(X,) C L.

P6: Time-consistency: pi(X) = pi(pi+1(X)), i =0,...,N — 1.
We additionally assume
P7: No-arbitrage: Eg[X|F;] < pi(X).

Jouini (2000) modelled the risk-free bank account as perfectly liquid. Property P1 states
the same: investors may insert or withdraw any amount of cash to or from the risk-free
bank account without transaction costs. Properties P2-P5 have been proposed in similar
form and are discussed by Jouini and Kallal (1995, 2001) and Jouini (2000). Time-
consistency has been introduced by Peng (2004) for nonlinear expectations. It means
that prices behave consistently over time: prices can be computed either directly or using
an intermediate instant of time, see Bion-Nadal (2009). Property P7 guarantees that the
bid-ask spread is always greater or equal to zero and that the market is arbitrage-free,
see Proposition 5.2.2. Our model of bid and ask prices can be seen as a discrete version of
the continuous time model via dynamic convex risk-measures developed by Bion-Nadal
(2009).
Bid and ask prices of a contingent claim C € L at trading period ¢ are defined by

bid;(C) := —p;(—C) and ask;(C) := p;(C), i =0,...,N,

i.e. as in Jouini and Kallal (1995), Staum (2004) and Bion-Nadal (2009), we consider
that selling C' is the same as buying —C'. By property R1, we assume that at the end of
the time-horizon the bid-ask spread of C is zero. We therefore do not have to distinguish
between contingent claims with asset delivery and cash settlement. Bid and ask prices
of the risky asset are then defined by the processes

SY = —p;(—Sy) and S :=pi(Sn), i =0,..., N.

American contingent claims can be described by adapted stochastic processes, bid and
ask prices of such claims are defined in Section 5.4.1.
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We call the tuple ((Bl) , (Sf-’) , (89, (pl)) a security price model. We show that our
security price model does not admit arbitrage. Furthermore, it is not possible to con-
struct a self-financing portfolio, which super-replicates C' but can be bought for less than

po(C).

Proposition 5.2.2. The security price model ((Bz) , (Sf?) , (89, (pz)) admits no arbi-
trage and the ask price po(C') of a contingent claim C' € L is less or equal to the price
of the smallest self-financing trading strategy dominating C.

Proof. We trivially have
OSSZI)SEQ[SNIFJ :Sz SSZQ7 i:(]a"'7N7

hence by Jouini and Kallal (1995, Theorem 3.2), the security price model admits no
multiperiod free lunch and is hence arbitrage-free. Let

Ay = {X € L=, py(X) < 0}
For a probability measure ) equivalent to Q, define

g™ (Q) = sup Eo[X].
0

It holds o'"(Q) < 0, hence by Féllmer and Penner (2006, Corollary 4.12.), there exist
a set of probability measures (Q°), such that each element of Q¢ is equivalent to Q and

pi(X) = sup Eq[X|F), i=0,.,N.
QeQ°

Let P be a set of probability measures containing all probability measures P which are
equivalent to Q and for which exist a P—martingale (Zip ) with
Sb<zP <8¢ i=0,.,N.

It follows Q¢ C P: for each Q¢ € QF there is a Q°—martingale (ZiQe), namely

78 .= Ege[Sn| Fi], i=0,..,N,

2

such that
St<z@ <S¢ i=0,.,N.

Let C € L*. By Jouini (2000, Theorem 1.), the value p*(C) := supEp[C] is less
pPcP

or equal to the price of the smallest self-financing trading strategy dominating C. As
po(C) < p*(C), we conclude. O
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5.2.1 Parametrization of the Pricing Functional

In this Section, we introduce a parametric model for the pricing functional (p;). We allow
the pricing functional to depend on a parameter v > 0 with the following interpretation:
the greater ~y, the greater the bid-ask spread; for v = 0, the spread is equal to zero.
To obtain such parametrization, we let the coherent risk measures, defining the pricing
functional, be induced by a family of concave distortion functions (FCDF), as defined
by Definition 4.4.7. We assume that the FCDF satisfies assumption [E] and [A].
Assumption [A] is used to prove convergence of bid and ask prices. By Assumption
[E] the FCDF (¥7) fulfils
mO(l)._l.
2 2

All FCDF satisfying Assumption [A] are also (approximately) equal in a small neigh-
bourhood around the point (u,7y) = (%, 0). Therefore we will see that the particular
choice of the FCDF to model the pricing functional in the discrete time model does not
matter when the number of trading periods tends to infinity.

As in Madan et al. (2013, 2017a) and Leippold and Schérer (2017), we generalize the
static coherent risk measure defined in Equation (4.4) to the dynamic case. For X € L
and ¢ =0,..., N let

') 0
7(X) :=/<w (@ X < y)) — 1) dy + / W QX < y))dy, 7 >0,
0 —00

where

Qi[A4] := Eg[la|Fi], i=0,..,N, Ae F,
is a conditional probability. Define

PN = PN

and recursively
Pl = (=pley). i=0,.,N—1, v>0.

The pricing functional used in this article is then defined by

p; ()= pl(=), i=0,..,N, v>0. (5.1)

(2

The recursive definition makes the pricing functional time-consistent. By assumption
[E] it holds
Eq[X|Fi] = p{(X).

The parameter v > 0 describes the liquidity of the market: the greater -, the greater
the bid-ask spread. For v = 0, bid and ask prices coincide and are identical to the risk
neutral price operator.
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Due to the time-consistency, for a fixed vy > 0, bid and ask prices of a future random
cash flow CF € L™ can be obtained by recursions:

bidy (CE) = asky (CE) = CF,
bid, (CE) = —pV (—bidiH (CE)) L i=0,..,N—1, (5.2)
and ask; (C’E) =p~ <aski+1 (CE» , 1=0,..,N—1.

We explicitly allow the parameter 7y, which describes the bid-ask spread in the Nth
model, to depend on IV, in order to obtain convergence results for N — oc.

5.3 Static Time: Implied Liquidity in Option Markets

The economic model presented in Section 5.2 contains a static model as a special case
by setting the number of trading periods IV equal to one. Let us look at a nonnegative
future random cash flow X, e.g. a plain vanilla European put or call option, which only
depends on the value Sy of the stock. By Section 5.2.1, the bid price of X in static time
with respect to some continuous FCDF (¥7) is defined as follows:

bidJ(X) = —po(—e "1 X)
— —po(eTX)
= e_rT/ xd¥7 (Fx(x)) (5.3)
T /_ T2, (Fy(2)) fx(@)de, 7> 0, (5.4)

compare also with Equation (4.6). Flx is the distribution function of X with respect
to the equivalent martingale measure Q. The factor e™"7 discounts the future random
cash flow X. For Equation (5.4), we assume that the distribution function Fx of X is
differentiable with density fx and that the partial derivative

/ 0
. (u) = %\Iﬂ(u)
exists. Similarly, the ask price is defined by
ask (X) = —e—'T / 2d W, (F_x(2)). (5.5)

Note that the functionals bid](.) and ask](.) are well defined on L! if the FCDF is
induced by the Laplace distribution, see Example 5.3.3 and Remark 4.4.6. They are
well defined on L? if the FCDF corresponds to the Wang transform, see Equation (4.2).
Both the Laplace and the normal distribution play an important part in this Section.

Interestingly, the recently developed conic finance theory, see Madan and Cherny
(2010), provides identically formulas for bid and ask prices as stated in Equations (5.3)
and (5.5). We therefore discuss conic finance in Section 5.3.1 briefly.
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Let us assume that Fx is log-concave. If we use the family of distortion functions
that is induced by Fx, see Equation (4.10), we are able to derive explicit formulas for
the bid and ask prices of the future random cash flow X. In particular the bid and ask
prices of European vanilla options are equal to the risk-neutral price of an option on
the underlying with an adjusted dividend yield. It is then possible to derive closed-form
solutions provided that the log-returns are normal or Laplace distributed.

Section 5.3 is structured as follows: In Section 5.3.1 we introduce conic finance. In
Section 5.3.3 we derive closed-form solutions for bid and ask prices of European options.
Two important examples, the Black-Scholes and the Laplace-model are discussed. In
Section 5.3.4 the concept of implied liquidity is defined and applied to real data in
Section 5.3.5.

5.3.1 Introduction to Conic Finance

Madan and Cherny (2010) developed the conic finance theory extending classical finan-
cial models. For applications of the conic finance theory, see Corcuera et al. (2012),
Dhaene et al. (2012), Guillaume (2015), Guillaume and Schoutens (2015), Guillaume et
al. (2018), Madan (2012a,b, 2014, 2016b, 2018), Madan et al. (2016) and Madan and
Schoutens (2011, 2012a, 2016a,b).

Madan and Cherny (2010) modelled the market as a passive counterparty that de-
mands a minimal performance v > 0 to be willing to enter into a contract with an
investor. The performance is measured by an acceptability index «, see Section 4.3.
Conic finance replaces the classical one-price market model by a two-price market model,
where an investor has to pay an ask price to buy an asset from the market and receives
a usually smaller bid price for selling the same asset to the market. Prices are defined
from the perspective of the market. Motivated by competition, the ask price of a future
random cash flow X is determined as the minimal price a such that the residual future
random cash flow a — X has at least the performance v, i.e.

ask(X) = inf{aeR: ala—X)>~}
= inf{aeR: p’(a—X) <0}
= inf{aeR: p'(-X) <a}
= p'(—=X)
By this argumentation, they derived the following formulas for bid and ask prices at
level v > 0 in a static world.

bid(X) = —p7(X) and ask(X) = p7(—X), v>0. (5.6)

The parameter v describes the liquidity of the market. The greater -, the greater
the bid-ask spread. Madan and Cherny (2010) also discussed the existence of a set of
hedging cash flows H with zero initial cost, which are assumed to be perfectly liquid.
The ask price is then defined by

askPd&n8(X) — inf {a : there exisits H € H such that a(a + H — X) >~} .
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The bid price using hedging opportunities is defined similarly. We work in a market with
frictions, which means even the stock cannot be bought and sold for the same price and
hence we can reasonably assume that there are no perfectly liquid hedging cash flows,
ie. H=0.

We see that the “conic bid and ask prices” coincide with the static version of the bid
and ask prices defined in Section 5.2. Both approaches model bid and ask prices using
coherent risk measures. While the axiomatic approach by Jouini (2000) and Bion-Nadal
(2009) postulate the definitions for bid and ask prices, conic finance is able to explain
this definition economically using the theory of performance measures.

5.3.2 An Exponential Stock Price Model

In this Section, we provide a concrete static model of the stock price. Inspired by
Corcuera et al. (2009), let us model the stock at the date T" by a random variable S,
which is defined in the following way: let Z be a random variable with mean zero and
variance equal to 1. Its distribution function is denoted by F, its density by fz. The
random variable /T Z has then variance T' and the underlying St at time T is defined
by

ST — Soe(rqurw)TﬁJ\/TZ (57)

where o > 0, r is the risk-free rate, ¢ the dividend yield and w € R is a mean correcting
term, i.e. w is chosen such that

e~ ITE (Sr) = Sy, (5.8)

where the expectation is taken under an equivalent martingale measure Q. In the fol-
lowing, we assume that Fz is symmetric about zero, i.e.

Fz(—x) =1- Fz(l'), z € R.

Remark 5.3.1. Note that Equation (5.7) describes the stock price at maturity, where we
assume a bid-ask spread of zero. At time zero, the stock may have a positive bid-ask
spread. The “process” {Sy, St} describes the risky asset of the underlying frictionless
market.

5.3.3 Bid and Ask prices of European Options

We now introduce a call option with strike K and maturity 7" on the underlying Sr. It
is easy to see that the distribution of the call option C' = (Sp — K )Jr is
Fo(z) = Fs,(z+K), >0
F, <log($+K) —log (So) — (r — q+w)T> R
oVT

see for example Madan and Schoutens (2016a, p. 110). Let us assume that Fz induces
a family of distortion functions by

Vy(w) = Fz (F7'(w) +7), 720, (5.9)
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compare with Remark 4.4.12. In particular, we assume that fz belongs to the family
of log-concave densities. This leads to particularly simple formulas for the bid and ask
prices because the distorted distribution function can then explicitly be calculated via
Equations (5.3) and (5.5). For a call option it holds

log (x + K) —log (Sp) — (r — g+ w)T
U, (Fo(x :F< —l—),xZO.
Z( C( » Z inf Y
We calculate the bid price of a call option by
bid” (C) = 7 / zd¥}, (Fo(x))
o log(x+K)—log(So)—(r—g+w)T
— eer/l xjk'< oV T +Mf>dx
0 oVT(z + K)

_ T / (SoeTurrarlT=oVTr _ [0 £ (y)dy,  (5.10)
—d+y

where
log (%) +(r—qg+w)T

oVT

From Equation (5.10) we see that the bid price of an option C on a stock with dividend
yield q at level v > 0 equals the risk neutral price of an option on a stock with a different
dividend yield

d=

(5.11)

=9+ =
Similarly, the ask price can be obtained by evaluating F_¢, it holds
ask’(C) = eTT/ (Soe"ﬁW(T’qu“)T*"ﬁ” — K) fz (y)dy (5.12)
—d—~
= bid77(C).

Hence, if we have an analytic formula for the bid price, we just need to substitute v by
—~ to get an analytic formula for the ask price.
Analogically, it holds for the bid price of an European Put option P = (K — Sp)"

o0

bid"(P) = ¢'T / (K — SpeoVTrrr=awa eV 1 (yay - (5.13)
dty

and the ask price of a put option can be expressed by

ask’(P) = eTT/ (K— Soe*"ﬁy*(T*qu“’)T*"ﬁ”) fz (y)dy (5.14)
d—

,
= bid(P).
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Summarizing, the bid price of a call option and the ask price of a put option are equal
to the risk-neutral prices of a call and a put option respectively, replacing the dividend
yield ¢ of the stock by ¢ + % The ask price of a call option and the bid price of a put
option are equal to risk-neutral price of a call and a put option respectively, replacing

the dividend yield by g — % .

We provide two examples where Equation (5.10) can be calculated explicitly.

Example 5.3.2. As already mentioned by Madan and Schoutens (2016a, Example 5.5),
assuming a Black-Scholes setting, i.e. Z is standard normal distributed with distribution
function ® and w = —%02 and using the Wang transform, leads to the following formulas

for the bid price of a call option and a put option

bidwanc(C) = Soe’(“ﬁ)Tcp (di —v) — e "TK® (do — 7) (5.15)

bidWANg(P) = e_TTK‘I) (—dg — ’)/) — 506_ (q ﬁ)T(I) (—dl — ’7) s (5.16)

where ,
log(%) + (r—q—i—%)T
oVT
and dy = di — o/ are defined as in the classical Black-Scholes model. The ask prices

are equal to the bid prices, replacing v by —v. For v = 0, we obtain the classical
Black-Scholes formula.

dy =

The Laplace distribution is particularly interesting because mathematically it is even
easier to handle than the normal distribution and it has fatter tails. While the logarithm
of the density of the normal distribution decays quadratically, the logarithm of the
Laplace density decreases linearly. Thus using the Laplace distribution instead of the
normal distribution can overcome some of the criticism of the Black-Scholes model.

Example 5.3.3. Let T" > 0 and let Z be Laplace distributed with mean zero and
variance 1. In particular, Z has density

fz(x) = \}Eeﬁwl,

Let us use the Laplace distortion as defined in Example 4.4.13 and assume
2T < 2
and let ) )
w= Tlog (1 — 202T> ,
which makes the discounted underlying in Equation (5.7) a martingale. See also Madan

(2016a) for the use of the Laplace distribution in pricing European options. Note that
the integral in Equation (5.10) is infinite if 02T > 2, independently of the choice of w.
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We should not worry too much about this: from a practical point of view, the maturity
T and volatility ¢ usually do not exceed the limit, i.e. 0?7 < 2. E.g. if we look at a
time-horizon of less then eight years and a yearly volatility of 50% or less, we are well
below the limit. From a mathematical point of view, we know by Equation (5.8) that the
expectation of S under the equivalent martingale measure must be finite, in particular
it holds

E (ST) < 00.

This is equivalent to F (e"ﬁz ) < 00. On the other hand it holds

3
> (eaﬁz) _ / o 1 e_ﬁ‘wlda? _ OO2 ,O’\ﬁz V2
R V 2T 52T ,O'\/T< \/5

Therefore 02T < 2 must hold but as

2

mﬁoofor 0'21—'/‘27

the integral may be arbitrary large. Closed-form solutions for bid and ask prices of
European options can be obtained by taking the corresponding closed-form solutions in
Madan (2016a, Section 2.1) and replacing ¢ by g + L\/%, respectively by g — L\/‘%

5.3.4 Implied Liquidity (IL)

The concept of implied liquidity has been introduced by Corcuera et al. (2012), Dhaene
et al. (2012) and Albrecher et al. (2013) and Guillaume et al. (2018). It is similar to
the idea of implied volatility and computes implicitly two parameters v, and -, such
that modelled bid and ask prices match real market prices.

Given some real market data of bid and ask prices of a cash-flow X, we assume that
the equivalent martingale measure Q is chosen, such that the mid price is equal to the
discounted expectation of X under Q. For example if X is an European option, and
the underlying is described by the Black-Scholes model, one would compute an implied
volatility such that the Black-Scholes price matches the given mid price of the option.
Thus we assume the distribution Fx is known and call a non-negative number -y, such
that bid" (X)), defined in Equation (5.3), exactly matches the given market bid-price as
the implied liquidity at the bid-side. We similarly define v, > 0 such that ask”*(X) is
equal to the given ask price as the implied liquidity at the ask-side. The pair (yp,7q) is
simply called the implied liquidity (IL).

5.3.5 Application to real Market Data

We apply both the Black-Scholes model and the Laplace-model from Example 5.3.2 and
5.3.3 to bid and ask prices of real option data and compute the IL. For a time-series
of 21 days, between August, 5th and September, 2nd 2015, we look at 1820 end-of-day
bid and ask prices of European plain vanilla call and put options on the S&P 500 with
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maturities ranging from about 0.42 to 2.36 years and moneyness between 0.83 and 1.09.
The options are obtained from the Chicago Board Options Exchange.

As shown in Figure 5.1, the uncertainty of Standard & Poor’s 500 stock market index
rose sharply during that period. On August, 24th, which was termed “Black Monday”
by China’s media due to the China’s stock market crash, the CBOE Volatility Index
(VIX) reached 53.29 points during the day and closed at 40.74 points. Only a week
before, on August, 17th, the VIX closed at 13.02 points. It is well known that liquidity
of stock markets usually drops, when uncertainty rises. Indeed, while at the beginning of
the time-series, the relative bid-ask spread is less than 1% for at-the-money call options
with maturity of about half a year, it rises to more than 5.6% on August, 24th for the
same type of options.

S&P 500 and VIX between 05/08 and 02/09/2015
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Figure 5.1: S&P 500 and VIX between August, 5th and September, 2nd 2015.

In the following, we are going to compare the relative bid-ask spread, the IL and
the difference between implied bid and ask volatilities. We compute for each option at
each timepoint the Black-Scholes implied volatility Uﬁ?d and Laplacian implied volatility
a{jﬁd matching exactly the mid-price using the classical Black-Scholes formula and the
formulas derived by Madan (2016a, Section 2.1) for the Laplace-model, i.e. the formulas
in Equations (5.12) and (5.14) setting v = 0. We get a typical volatility smile for both
models, even though the Laplacian implied volatility surface is slightly flatter than the
Black-Scholes implied volatility surface.

For each option, at each timepoint and for both models, we use the mid-price implied
volatility as estimate of the volatility in Equation (5.7) and compute the IL, (vp,74) €
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R, such that the model bid and ask prices match exactly the quoted market bid and ask
prices, see Section 5.3.4. For example, the Black-Scholes bid-price in Equation (5.15),
is equal to the quoted market bid price of a call option, when using the implied 7, and
01]\34% as input parameters. Note that for most options 7, and 7, are almost identical,
only for very deep out-of-the money options the difference between both values is more
pronounced.

In industry, traders usually prefer quoting the implied volatility instead of the mid-
price, because the implied volatility is comparable across strikes, maturities and under-
lying assets. With the same argument, it seems more appropriate to quote the bid-ask
spread in terms of the IL because spreads behave in a non-linear way across strikes, ma-
turities and underlyings while the IL improves comparability across all three dimensions.

So far traders quote implied bid and ask volatilities and describe the bid-ask spread
implicitly by the difference of the implied bid and ask volatilities. This procedure needs
to be compared to the approach to describe the bid-ask spread by the IL. Note that
while for some options it is not possible to compute the implied bid volatility, because
the bid-price is below the arbitrage-free price, for all options there exists an implied -,
matching the bid-price exactly. We removed all options from the data set where it is not
possible to compute an implied bid volatility.

In Figure 5.2, the time-series of mean values %TW for the Black-Scholes model and
the Laplace-model are shown for at-the-money call options with maturity of about half a
year and are compared to the relative bid-ask spread and the implied bid-ask volatilities
over time. While the relative bid-ask spread rose from timepoint 12 (August, 20th) to
timepoint 14 (August 24th) from 1.2% to 5.6%, hence by the factor 4.87, the IL make
a similar move and rose by the factor 4.81. But the difference between bid and ask
implied volatilities changed by the factor 6.85. Hence describing the bid-ask spread by
quoting implied bid and ask volatilities, overestimates the change in liquidity by about
35%. Looking at put options instead or analysing options with different maturities or
moneyness levels, gives a similar picture.

Figure 5.3 illustrates the relative difference of four liquidity measures, respectively be-
tween two successive timepoints. The relative bid-ask spread, the Black-Scholes and the
Laplacian IL and the difference between bid and ask Black-Scholes implied volatilities
are compared for at-the-money and out-of-the-money call and put options with maturi-
ties of about half a year. It is not unusual that quoting the bid-ask spread using implied
volatilities overestimates an up or down move in liquidity by 40% and more compared to
the relative bid-ask spread. Only for in-the-money options, all four liquidity measures
behave similarly. The correlation between the relative bid-ask spread and ~;, or =y, for
the different maturities and option types (call and put), lay between 0.91 and 0.99 for
the Black-Scholes and the Laplace-model. That makes the IL a more intuitive measure
for liquidity than quoting the spread implicitly by stating implied volatilities for both
bid and ask prices.
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Implied Volatility and Liquidity over Time
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Figure 5.2: Average implied volatility and liquidity over time of ATM-Call options with
maturity varying between 0.42 and 0.55 years and moneyness ranging be-
tween 0.98 and 1.02 between August, 5th and September, 2nd 2015
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Figure 5.3: The Figure shows for call and put options with maturities between 0.42 and
0.55 years and moneyness within the two ranges 0.9-0.95 (OTM) and 0.98-
1.02 (ATM), the relative difference of four liquidity measures, respectively
between two successive timepoints. The liquidity measures are: the relative
bid-ask spread (Rel-Spread), the Black-Scholes and the Laplacian IL (BS and
Laplace IL) and the difference between bid and ask Black-Scholes implied
volatilities (Diff-Vol).
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5.4 American and Exotic Options in a Market with Frictions

The main goal of this Section is to prove convergence of bid and ask prices of differ-
ent European and American contingent claims in a binomial-type model with frictions,
when the number of trading periods approaches infinity. We focus on contingent claims
which are monotonically increasing or decreasing with respect to the underlying, this
has a technical reason, see Remark 5.4.1. In Section 5.4.1 we precisely define increasing
and decreasing European and American contingent claims and provide a selection of
examples.

Remark 5.4.1. In a binomial-type model, the bid and ask prices are recursively defined
and can be computed going backwards through a tree. Figure 5.4 shows a binomial tree
with N = 2 time-steps. The ask prices at the final nodes are equal to the value of the
option at expiration. The ask price at the first node (today) can be computed going
iteratively through the tree using the recursions (5.2). For example the ask price a1 can
be computed using the two successive nodes as; and ags.

i — {‘Iﬂ(l —plagz + (1 =¥V (1 —p)ag a2 < ax
1=
(1 —=97(p))age + V7 (p)a , Q21 > (22,

where p denotes the up-move probability in a classical binomial model and (¥7) is a
FCDF. The formula is deduced from the definition of pricing functional, see Equation
(5.1). In contrast to the iterative computation of the risk-neutral price in the classical
binomial model, the bid and ask prices depend on the sorting of the successive nodes.
Therefore in this thesis we only prove convergence for monotone payoffs, which are pre-
cisely defined in Definition 5.4.2. Bid and ask prices of general payoffs can be computed
in the discrete time model going backwards through the tree and checking at each node
the sorting of the two successive nodes.

1 _LIJV(1 _p) do1
or W(p)

a1

o doo

azs

Figure 5.4: Binomial tree to compute the ask price. The up-move probability depends
on the sorting of the successive nodes.
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5.4.1 Payoffs

In this Section, we define increasing and decreasing European and American contingent
claims.

Definition 5.4.2. A European contingent claim CF is a bounded random variable on
(Q, F), such that there is a measurable function h, with

CE = h(S, ..., Sn).
The claim is called increasing if
h(zo,...,xN) = h(yo, ..., yN), i > yi, i =0,..,N
and decreasing if
h(zg,....,zn) < h(yo, .. yN), Ti >y, 1 =0,..,N.
An American contingent claim C# is a bounded adapted process

c4 = (C{q>i:0 LN

such that for each ¢ there is a measurable function h;, with
CA = hi(So, ..., Si).
The claim is called increasing if
hi(zo, ..., xi) > hi(Yo, .-y Yi), Tk > Yk, ©=0,..,N, ;k=0,..,i
and decreasing if
hi(xoy ooy i) < hi(Yo, -y ¥i)y Tk =Yk, 1 =0,...,N, k=0,...,1.

A European claim CF can be interpreted as a random payoff at maturity 7. For
each 7, the random variable C’;“ is interpreted as the payoff of the American contingent
claim if the claim is exercised after ¢ trading periods. We assume the American option
is cash-settled, and the reference price is the process (.5;). If the holder of an American
option exercises the option early after i trading periods, she will receive the amount
hi(So, ..., Si), which is independent of the current bid-ask spread or the processes (S’f)
and (S¢). This may in particular hold for cash-settled index options and it holds ap-
proximately for options with physically delivery if the transaction costs of trading the
stock are small. Similar to European contingent claims, see Equation (5.2), bid and ask
prices of an American contingent claim C* can be defined recursively, incorporating the
possibility of an early exercise:

bidy (C4) = asky(C4) = C4&,
bid;(C4) = CAV —pI™ (—=bidi11(CY)), i =0,..,N -1, (5.17)
and ask;(C4) = CAVpIN(ask1(C?)), i=0,.,N —1.
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Let = be the set all American contingent claims. To simplify notation, the operators
assigning bid and ask prices to American contingent claims

bid; : 2 — L{° and ask; : & — L{°,

have the same names as the operators describing prices of European contingent claims,
which can be seen as functionals from L> to Lg°.

We provide some examples of European and American contingent claims. Let K >0
be a strike price and B > 0 be a barrier. By N we denote the time, the option is
exercised. If N € {0, ..., N} can be chosen by the holder of the option, we speak of an
American contingent claim, exercised at time A. If only N' = N is allowed, i.e. the
option can only be exercised at maturity, we speak of a European contingent claim.

Example 5.4.3. The following derivatives are increasing contingent claims.

e Call option: Ccan = (Sy — K)*

+
Lookback call option: Crycan = < max S; — K >
i€{0,...,.N'}

_l’_
Asian call option: Cagancan = (ﬁ Eﬁo S; — K)

Barrier up-and-in call option:

Sy — K)* S; > B
(S ) ’ie{r&%i(N} -

0, otherwise

Cuican =

Barrier down-and-out call option:

Sy — K)t s i S; > B
(S = K)T -, in )

0, otherwise

Cpocal =

Example 5.4.4. Decreasing payoffs are for example:

e Put option: Coan = (K — Sy)*

+
e Lookback put option: Cppput = <K —  max SZ)
i€{0,...,.N'}

+
e Asian put option: Cagianput = (K — ﬁ Zé\io 5’1)
e Barrier up-and-out put option:

K—-Sy)™ , max S;,<B
Cuoput = ( ) i€{0,...,.N'}

otherwise.
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Example 5.4.5. The following two derivatives are neither increasing nor decreasing
payoffs.

e Barrier up-and-out call option

Sy —K)T |, max S;<B
Cuocan = ( ) ie{0, N}
0, otherwise

e Barrier down-and-in call option

(Sy —K)* , min S, <B
Cbican = { i€{0,..N'}

0, otherwise.
5.4.2 Classical Binomial Model

In this Section, we recall the classical binomial model. Let T" > 0 be some time-horizon
and assume there are N € N trading periods between [0,T], each trading period is of
length % There is a riskless bond

(N)

B =(1+ry), i=0,1,..,N,
paying interest
T
rN = W > -1
in each trading period and just one risky asset, paying dividends
_ 49T
aqN = N

in each period, and whose price process takes the form

SN = 5o [[(1+ R, i=1,2,..,N,
k=1

where Sy > 0, and the returns

S5
N , 1=1,2,...,N
Si1

RN —

are random variables with values in {ay,by} C R, such that
dy =1+ay = efa\/% and uy :=1+by = ea\/%. (5.18)
The market is arbitrage-free and complete if

—1<aN<7"N—qN<bN,
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which holds for N large enough. In this case, the returns REN)

their distributions are characterized by
PX,(RZ(N) =by) :=py :=ph +e(N), i=1,2,..,N,

where Py, is the unique risk neutral measure, ¢(N) € o (\/Lﬁ) and

g 1 1—¢q Z

PN =5 20 \| N’

s s RE\][V) are independent,

(5.19)

(5.20)

We say the classical binomial model is characterized by the tuple (So,r,q,0,T,N).

Let C’](EN) be a possibly path-dependent European contingent claim. The discounted

claim )
g =

N

BV

can be written as

) =1 (s, ., 58")

for a suitable function k. The value process in the N*! model,

(N)

VY = Ep [HEV|F], i=1,2,., N,

of a replicating strategy for H(EN) at time t = % is of the form

V(N) (w) = Ul(N) (S(Ja Sl(W), ) SZ(OJ)),

)

where the function ’UZ(N) is given by recursion
v\ (@0, san) = (0, s TN)
N N
vl-( )(afo, wnxi) = (1=py) vZ(_H) (20, -y iy idN)

(N)

* .
+PNVitt (T0, - Tis Tiun), 1=0,1,...,

see e.g. Follmer and Schied (2011, Proposition 5.41).
On the other hand, dealing with an American contingent claim

Cz(élN) - <C£1]7\2))i=0,..,N’

and the corresponding discounted claim

(N) ilN)
Aji :nglf)7 i1=0,.,N,

for each i = 0,1, .., N there is a suitable function h; such that

HY = hi(So, ..., Si).
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By no-arbitrage-arguments, the value process (Vi)z‘:o,..., n of a replicating strategy for

H1(4N) can be found by recursion, compare with Follmer and Schied (2011, Chapter 6):

Vi = H(Y, Vii= HYY) V Epy [Viga| B, i=0,.,N 1.

Hence, there are functions UZ(N) such that

V =o™(So, ..., 85), i=0,...,N,

namely
UEVN)('IOM'W':UN) = hN(.I(],...,,IN)
oM (o, .y m) = hi(azo,...,a:i)\/{(l—pfv)vgivl) (20, ey T4, i)

el (@0, o i) | 1= 0,1, N~ 1.

It is well known that in a classical binomial-tree model, which is characterized by the
tuple (Sg,7,q,0,T, N), the risk-neutral price

MM Sy r,q,0,T) = v (So) (5.22)

of a European or American contingent claim CV) = C}(EN) or CIN) = CJ%N), converge for
many products as N — oo. If the limit exists, we define

m(C,So,7,q,0,T) := lim W(N)(C(N),So,r,q,a, T).
N—o0

Convergence of plain vanilla European options to the Black-Scholes price are discussed
in Cox et al. (1979). For plain vanilla American options we refer to Amin and Khanna
(1994), for European and American Asian options and lookback options and some other
path-dependent options, see Jiang and Dai (2004). For a proof of convergence for Eu-
ropean barrier option, see Carbone (2004) and Lin and Palmer (2013) and references
therein. Those convergence results can directly be applied to prove convergence of bid
and ask prices as Theorem 5.4.6 shows.

5.4.3 Convergence of Bid and Ask Prices

In this Section we prove our main result and show that bid and ask prices of European
or American contingent claims converge, if the risk-neutral price of the claim converges
in the classical binomial model. The theorem has an important practical implication: is
states that bid and ask prices of monotone payoffs, in particular plain vanilla European
and American options, can be computed using the classical Black-Scholes model with an
adjusted drift. Bid and ask prices of such options can therefore be computed very fast.
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Theorem 5.4.6. Let (V7). be a FODF fulfilling Assumptions [E] and [A] of Definition
4.4.7. Let a classical binomial-tree model be given, which is characterized by the tuple

(SOa r,q,0, T7 N)

Let C\N) be an increasing (decreasing) European or American contingent claim. Let

v >0 and
T
YN =YY N (5.23)

Define bid and ask prices of a European claim by recursions (5.2) and of an American
claim by recursions (5.17). If risk-neutral price, defined via Equation (5.22),

W(N) (C(N)v SO: T, 67 g, T)
converges in the classical binomial model for all dividends

d€lg—ov,q+07]

to some non-negative number w(C, Sy, r,q,0), then the ask (bid) of the contingent claim

converges to
lim W(N)(C(N), So,7,q — 07, 0)

N—oo

and the bid (ask) price converges to

lim Tr(N)(C(N), So,7,q + 07, 0).

N—oo

Proof. We first assume C'"Y) models a European contingent claim and can be described
by a function h as in Equation (5.21). Let uy, dy and p% be defined as in Section 5.4.2.
Then it holds for the processes describing the ask price (4;);_,; y and the bid price

(Bi)i:O,l,..7N of O,
Ai(w) = ai((So, S1(w), -, Si(w)),

and
Bi(w) = bi((So, S1(w), .., Si(w)),

where the functions a; and b; are recursively defined:
by (zo,...,zN) = an(xo,...,xN) = h(z0, ..., TN)
and for ¢ =0,1,.., N — 1, if the European contingent claim is increasing

a;i(z, ., zi) = (L=Y"™ (p} + ©(N))) ait1 (2o, . 75, 2idN)
+UN (pYy + ©(N)) aiv1 (2o, ..., i, Tiun)

and

bi(0, .y i) = WIN (1= (Y +@(N))) bit1 (0, s Tis TidN)
+ (1 =9 (1= (p§y + 9(N)))) bita (20, ..., Ti, Tiun) -
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If A defines a decreasing European contingent claim, it follows for ¢ =0,.., N — 1,

ai(zg,...,z;) = WIN(1-— (p?\, + @(N))) ait1 (zo, ..., i, xidN)
= (1 (g + o)) @i (20 oo s, i)

and

bi(z0, .y zi) = (1 =YW (p}y + ©(N))) bit1 (20, ., i, 2idN)
_’_\II’YN (p(]JV + SO(N)) bi+1 (1.07 "'7$iaxiuN) .

The ask (bid) price of an increasing European payoff and the bid (ask) price of a de-
creasing European payoff at level vy > 0 are exactly defined as the risk-neutral price
in the classical binomial model, when replacing the up-move probability in Equation
(5.19), i.e,
Py + @(V),
by
U (ply + o(N)),
respectively by
(1 =97 (1= (p}y +»(N))))-
This observation can directly be carried forward to American contingent claims and is
explained by the structure of the binomial model and the recursive definition of bid and
ask prices.
By Assumption [A], there is a sequence ¢(N) € o (ﬁ) such that

1 r—q |T ~ |T _
PYIN (pl - = - LA
Wy +e) = 5+ 0T e
1 r—(q—oy) [T .
2t 2 N teW)

= 7+ G(N).

Similarly it holds for a suitable 3(N) € o (1),

1-0™ (1- (4 +e(N) = p§7 +@(N).

Hence the up-move probability of the distorted binomial model describing bid and ask
prices can be expressed as in the classical binomial model with an adjusted dividend

yield:

1 r—(qxoy) |T ( 1 )

-4 = — . 5.24

2 + 20 N to VN ( )
As the up and down moves uy and dy remain unchanged compared to the classical
binomial model, we conclude. ]
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Remark 5.4.7. A look at the proof of Theorem 5.4.6 shows that one could define vy in
Equation (5.23) arbitrarily, as long as it converges to zero as fast as LN Under our
particular choice, v can be interpreted as a drift-adjustment via the dividend yield in

the continuous time limit scaled by the volatility. The drift adjustment is
qT = (q+ov)T.

In a static setting we obtained similar formulas for bid and ask prices if the log-returns
are normal distributed, see Example 5.3.2. In a static setting the term ¢ + % appears.
The different scaling is mainly convention. We could match the formulas in continuous
and in static time by either rescaling vy, see Equation (5.23) or by replacing in the

static setting Equation (5.9) by the FCDF
W}, (u) = Fy (Fy'(u) +4VT).

Remark 5.4.8. In the binomial model, the underlying is modelled by a bounded stochastic
process. Therefore there is no restriction of the definition of bid and ask prices via
recursions (5.2) and (5.17) requiring the contingent claims to be bounded. In particular
call options are bounded in discrete time. Bid and ask prices of a contingent claim form
a two-dimensional sequence with the natural numbers 1, 2, 3, .. as index set. The index N
corresponds to the N*® binomial model. In Theorem 5.4.6, we prove convergence of such
a sequence. Hence Theorem 5.4.6 says that bid and ask prices of a possibly unbounded
contingent claim like a European call option in continuous time can be approximated
arbitrary closely by the bid and ask prices of a bounded contingent claim in discrete
time.

5.4.4 European Plain Vanilla Options

In the classical Black-Scholes world, there exist closed-form solutions for the risk-neutral
price of European plain vanilla and barrier options. By Theorem 5.4.6, we obtain closed-
form solutions for bid and ask prices of European plain vanilla and barrier options, which
are stated in the next corollaries, by taking the corresponding closed-form solutions for
the risk-neutral price and adjusting the dividend yield.

The Black-Scholes prices of plain vanilla Furopean call and put options with strike K
and maturity 7" are given in closed-form and denoted by

BSCall(SO7 Ta K7 rdq, U) = SOe_qT(I) (dl) - e_TTK(I) (d2)
and
BSPut(SOa T7 K7 rdq, U) = e_rTKq) (_dZ) - Soe_qTq) (_dl) )
where
log% + (r —q+ %02) T
L ovT
and do = di — ov/T and ® denotes the distribution function of the standard normal
distribution, see Black and Scholes (1973).
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Corollary 5.4.9. Under the notation of Theorem 5.4.6, let C®™) be a European plain
vanilla option with strike K > 0 and maturity T. Bid and ask prices of a put option

converge to
bidgut = BSPut(507 Ta K? rsq — 07, U)

and
aSk%ut = BSPU'E(SOa T7 K; r,q + a7, 0').

Bid and ask prices of a call option converge to
bid%all = BSCaH(S(), T K,r,q+ o7, J)

and
askl, = BScan(So, T, K,r,q — 07,0).

Figure 5.5 shows the relative bid-ask spread surface of European call options over
strikes and maturities. Long term options and options being deep out-of-the money are
less liquid, the relative bid-ask spread is greater.

Remark 5.4.10. Similarly to the existence of an implied volatility smile, there exist an
implied liquidity smile. Computing v implicitly from given bid and ask prices of options,
Corcuera et al. (2012) show that there is a non-linear dependence of v, with respect to
the term structure and the moneyness of the option surface. In particular, we cannot
expect to predict the bid-ask spread of one option from given bid and ask prices of
another option, if the corresponding strikes and maturities are too distant from each
other.

5.4.5 Path-dependent and American Options

In a classical Black-Scholes framework, there exist closed-form solution for many barrier
options, see Rubinstein and Reiner (1991) and Cheng (2003). For example the arbitrage-
free price of an up-and-in barrier call option with maturity T, strike K and barrier B > K
is

BSuican(So, T, K, B,7,q,0) = Soe” @ ®(x1) — Ke " ®(x1 — oVT)

2m
—Spe™ ( 5; ) (B(—y) — B(—11))

2m—2
T () @yt ovD)
(-1 + oVT)),

where

r—q-+ 102 log
m = I 2 27 ) Yy = <SOK) +m0\ﬁ
g o'\/>

S B
:m:log( 0) —l—mG\/» ylzlof_\(/%) +moVT.
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Figure 5.5: Relative bid-ask spread surface for European plain vanilla call options. We
use the following parameters: the underlying is equal to 100, the strikes vary
between 50 and 150, annual interest rates are set to 0.01, the dividend yield
is assumed to be 0.03, the time left to maturity lays in the interval [0, 2], the
annual volatility is 0.2 and the annual + is set to 0.05.
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Corollary 5.4.11. Under the notation of Theorem 5.4.6, let C®) be an up-and-in
barrier call option with maturity T, strike K > 0, and barrier B > K. The bid price

converges to
bid{jcan = BSuican(So, T, K, B, 7, q + 0,0)

and the ask converges to
aSk’[YHCaH = BSUICaH(S()a T7 K7 B7 r,q — 07, U)‘

In the following, we treat bid prices of American put options but the findings can be
transferred directly to ask prices of American put options and American call options as
well. Let the risk-neutral Black-Scholes prices of a plain vanilla American put option
with strike K and maturity T be denoted by

Bséut(s()? T, K,r,q, U)-

There are no closed-form solutions for American plain vanilla options in a classical Black-
Scholes framework, but there exist efficient numerical methods to approximate BSéut,
see for example Barone-Adesi and Whaley (1987) and Bjerksund and Stensland (1993).

We denote the numerical approximation by
~ A
BSPut(S(]7 Ta K? rq, O-)

and the error by
A
sqput = BSéut(So,T, K,r,q,0) — BSp, (S0, T, K,r,q,0)|.

The next corollary follows immediately:

Corollary 5.4.12. Under the notation of Theorem 5.4.6, let CN) be an American plain
vanilla put option with strike K > 0 and maturity T'. The bid price converge to

bid}, , = BS{i‘ut(S’o, T,K,r,q—07v,0).

The error approximating the bid price using BVSﬁm as an estimate for BSS,, is less or
q—o7

equal to €p,; .

The corollary states the following: the bid price of an American put option on a stock
with dividend yield ¢ is equal to the risk-neutral price of an American put option but
on a stock with dividend yield ¢ — o7y. The bid price directly inherits the numerical
error from the approximation of the the risk-neutral price of the American option by
some numeric algorithm. A similar corollary could easily be stated for other options,
like Asian options, which do not have closed-form solutions in the classical Black-Scholes
model and can only be approximated for example with Monte Carlo methods. Bid and
ask prices can then also be computed using Monte Carlo methods and the absolute error
does not increase compared to classical risk-neutral pricing.
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5.4.6 Numeric Simulations

In this Section, we try to investigate how fast the recursively defined bid and ask prices
converge. We make two approximations: we approximate the concave distortion function
by a linear function, see Assumption [A] of Definition 4.4.7 and we approximate the
Black-Scholes model by a binomial tree. The error of the first approximation approaches
zero faster than ﬁ, see Equation (5.24).

The convergence rate of the classical binomial model is well studied in literature for
many products: Heston and Zhou (2000) show that the risk-neutral price of a plain
vanilla European call option converges at least as fast as ﬁ Lamberton (1998) prove
that the risk-neutral price of an American put option converges from below and from
above at least as fast as N73 and N~ 4 respectively. Leisen and Reimer (1996) and
Leisen (1998) analysed three different approaches to build a binomial tree, in particular
the definitions for the returns of one trading period differ. They show that European
plain vanilla options converge at least as fast as % but American put options may only

converges from below as fast as —— depending on the exact tree definition. Lin and

VN
Palmer (2013) treat barrier options.

In our setting the up-move probability to obtain bid and ask prices has only asymp-
totically the martingale property, which makes it difficult to directly apply convergence
results for classical binomial trees to our framework.

We therefore rely on simulations and compute bid and ask prices of a European call
option, an American put option and a European up-and-in call option using recursions
(5.2) and (5.17) for time-steps ranging from N € {5,..,2000}. We compare the tree-
prices to their continuous counterpart, which can be obtained via the Corollaries 5.4.9,
5.4.11 and 5.4.12. Slightly abusing notation, we denote by ey the absolute difference
(error) between the bid or ask price of a contingent claim C™) in the N*! binomial
model and the limit of the bid and ask price. We say the sequence of errors converges
with order p > 0, if there is a constant x > 0 such that

K

The order of convergence can be indicated straightforwardly by a simulation, see Leisen
and Reimer (1996). As

log (5 ) = los(x) ~ plog(V)

the negative slope of a straight line obtained from a log-log plot of the errors ey against
the refinement N can be used as an indicator for p. Figure 5.6 indicates an order of
convergence between 1 and 3 of the recursions (5.2) and (5.17) for different European
and American options.
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Convergence Rate for Several Options
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Figure 5.6: Log-log plot of the binomial tree approximation error for a European call
option, an American put option and an up-and-in barrier option with barrier
B =110. All option have the strike K = 100 and the maturity is set to one
year. The stock starts in Sp = 100, annual interest rates are set to 0.01,
the dividend yield is assumed to be 0.03, the annual volatility is 0.2 and the
annual « is set to 0.05. N goes in non-equidistant steps from 5 to 2000. The
up-and-in barrier option is only simulated up to N = 1000.
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5.4.7 Application to real Market Data

In Section 5.3.4 the concept of implied liquidity (IL) is defined. It is similar to the idea
of implied volatility and returns two implicitly computed parameters v, and v, such that
modelled bid and ask prices match real market prices. The benefits of quoting the IL
instead of bid-ask spreads are comparable to the benefits of quoting implied volatilities
instead of mid-prices: in principle the IL can be constant across strikes, maturities and
underlyings and hence makes it possible to compare bid-ask spreads across all three
dimensions.

For a time-series of two days, February, 2nd and February, 5th, 2018, we obtained
end of day bid and ask prices of 80 plain vanilla, at-the-money American put and call
options on the S&P500, or rather the SPDR S&P 500 ETF Trust, an exchange traded
fund replicating the S&P500, with maturities ranging from about 3 to 8 month. The
option prices were obtained from the Chicago Board Options Exchange and can be found
in Table 7.1 in the appendix.

The CBOE Volatility Index (VIX), tracking short-term market volatility, jumped from
17.31 points on February, 2nd to 37.32 points on February, 5th, thus by 116%, which is
the highest daily relative change recorded so far. The S&P500 lost about 4% between the
two dates. It is well-known that liquidity dries up, when uncertainty in financial market
rises. Therefore the chosen dates are well suited to analyse how different measures for
the bid-ask spread behave, when liquidity changes.

For each American option, on both dates, we first compute an implied Black-Scholes
volatility oniq matching exactly the mid-price. Then we use the mid-price implied
volatility and compute the IL, (7p,7,) € ]R%_, such that the modelled bid and ask prices
match exactly the quoted market bid and ask prices. In particular for an American call
option C', we solve numerically

bidquoted market price(C) = BSgan (S0, T, K, 7, ¢ + 0Mia Vs, OMia)

for 4. The function BSéaH(S’O, T,K,r, q,0) describes the risk-neutral price of an Amer-
ican call option in a Black-Scholes setting with strike K and maturity T on a stock with
initial value Sy, volatility ¢ and paying a continuously dividend yield g. The risk-free
interest rate is denoted by r. The parameter v, for the call option and the IL (33, 7,) of
put options can be found analogously, see Theorem 5.4.6. For most options 7, and 7,
are almost identical.

The average relative bid-ask spread of the American option data set is 1.6% on Febru-
ary, 2nd and 6.6% on February, 5th. The relative bid-ask spread changed by the factor
4.1. The average 1L %TJ“%, changed from an average value of 0.011 for all options on
February, 2nd to 0.043 on February, 5th, which corresponds to a change by the factor
3.9. The average difference of implied bid and ask volatilities on the other hand, rose by
the factor 6.1, hence about 49% more than the relative bid-ask spread. In Figure 5.7, we
show the multiplicative factor describing the change of the relative bid-ask spread, the
IL and the difference of implied bid and ask volatilities from February, 2nd to February
5th separately for put and call options and different maturities.
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The overall picture is the following: a change in liquidity of American options, due to
a rise in uncertainty in the market and measured by the change of the relative bid-ask
spread, is described by the IL very well. On the other hand, an overestimation of the
change of liquidity by 50% and more are no exceptions, when describing the bid-ask
spread by the classical way of quoting implied bid and ask volatilities. Our findings for
American options are in line with a similar empirical study for European options done
by Guillaume et al. (2018), see Section 5.3.5.

Change in Liquidity, ATM American Options
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Figure 5.7: This Figure describes the change of the relative bid-ask spread, the IL and the
difference of implied bid and ask volatilities from February, 2nd to February,
5th of various American at-the-money put and call options by a multiplicative
factor. Maturities are measured in months.

5.5 Conclusion

We model a financial market with frictions in discrete time using a pricing functional,
which is defined recursively via coherent risk measures. The risk measures are defined
via a family of concave distortion functions (FCDF). Economically, the discrete time
market model with frictions is justified in Jouini and Kallal (1995, 2001) and Jouini
(2000).

The discrete time model contains two special cases: a) the static case where we
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model the log-returns by a normal or a Laplace distribution, and b) a binomial-type
model where it is possible to prove convergence for many European and American path-
dependent options when the number of trading periods tend to infinity. We call the limit
of the binomial-type model extended Black-Scholes model.

In all three settings (normal, Laplace or extended Black-Scholes), we obtain closed-
form solutions for bid and ask prices of European plain vanilla options. Bid and ask
prices of European options can be calculated as the risk neutral price of the same option
but on an underlying with an adjusted dividend yield. The bid-ask spread depends on
an additional parameter v > 0. The greater v, the greater the bid-ask spread. For v =0,
the spread is equal to zero and bid and ask prices coincide with the risk-neutral price of
the option.

The static case is interesting because it allows a more flexible distribution for the
log-returns. In particular, the Laplace distribution has fatter tails than the normal dis-
tribution, which appears in the asymptotic case of the binomial-type model, and might
therefore be better suited to model log-returns. But the flexibility of the static model is
reduced because the FCDF, modelling the pricing functional, cannot be chosen arbitrary,
we assumed that the FCDF is induced by the distribution function of the log-returns.
In Section 4.4.1 we mentioned some desirable properties that distortion functions should
have, in particular the first derivative of the distortion function should approach infinity
at zero and should be equal to zero at one. If log-returns are assumed to be normal dis-
tributed, we would use the Wang transform which has all desirable properties. However,
those properties are not satisfied by the family of distortion functions induced by the
Laplace distribution.

On the other hand, we are motivated to study convergence of bid and ask price in the
binomial-type model for American or European options to find fast numerical methods
to compute those prices. We have shown that bid and ask prices of monotone payoffs, for
example European or American plain vanilla, Asian, lookback and some barrier options,
can be computed as fast as the risk-neutral price of such an option in a classical Black-
Scholes framework. In contrast to the static model, the particular choice of the FCDF
to model bid and ask prices in discrete time, does not matter in the limit.

The three new models (normal, Laplace or extended Black-Scholes) may find a similar
application in practise as the classical Black-Scholes model. Trader usually prefer to
quote implied volatilities instead of prices, because there are many nonlinearities in
prices making comparisons across strikes, maturities and underlying assets difficult and
understand. In principle volatilities could be constant across all three dimensions, hence
the preference for quoting implied volatilities.

With the same argument it might be more convenient to quote an implied liquidity
instead of the bid-ask spread. It is then possible to compare bid-ask spreads across
different strikes, maturities and underlyings. To demonstrate this idea we conducted
two empirical studies: we computed implicitly two parameters 7, and 7, such that
modelled bid and ask prices match real market prices. We did this for a set of European
options using the static normal and Laplace-model and for a set of American options
using the extended Black-Scholes model. In principle the tuple (73, 7,) could be constant
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across strikes, maturities and underlyings and hence makes it possible to compare bid-ask
spreads across all three dimensions.

Up to now, traders usually describe bid-ask spreads by quoting both bid and ask
implied volatilities. There are several advantages using the IL instead: it is not always
possible to compute an implied bid volatility, because bid prices of options sometimes
lay below the theoretical arbitrage-free price, i.e. are lower than the risk-neutral price of
an option on a stock with volatility zero. The concept of IL overcomes this inconsistency.
When uncertainty in financial market rises and liquidity dries up, looking only at the
difference of Black-Scholes implied bid and ask volatilities often overestimates a change
in liquidity by 40% and more, because the difference of the implied volatilities changes
by a higher factor than the relative bid-ask spread. However, the correlation between
the relative bid-ask spread and the IL is strong, which makes the IL an intuitive measure
for liquidity.

There are almost no differences between the normal and Laplace static models with
respect to the concept of IL. We therefore recommend to us the extended Black-Scholes
model to compute the IL in practise, mainly because it is a continuous time model and
the Black-Scholes model is well known and understood in industry.
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6 Outlook and Future Research

In Chapter 3 we calibrate six advanced stock price model to a time series of European
plain vanilla options, simulate barrier option prices via a Monte Carlo simulation and
compare the simulated prices to real market data of barrier options. For our particular
data set, the three Lévy models we looked at, do not reproduce barrier option data very
well. It would therefore be interesting to look at other Lévy models. So far we model
the time-change of Lévy processes by a CIR process. The time-change may as well be
modelled by a linear combination of Ornstein—Uhlenbeck processes or by an integrated
Inverse Gaussian process.

Future research need to be done to include different and longer time series and to
analyse other exotic options than barrier options.

In Chapter 3 we investigate empirical which advanced stock price model returns the
smallest pricing error. An interesting research question is which advanced stock price
model has the smallest hedging error for exotic options.

In Chapter 4 we analyse concave distortion functions, which play an important role in
Chapter 5 to define bid and ask prices in a market with frictions. A concave distortion
function is a concave function mapping the unity interval onto itself and is used to distort
distribution functions. We prove that a family of concave distortions (FCDF) satisfying
a certain translation equation can be represented by a distribution function.

There are FCDF which only satisfy the translation equation after a certain reparametriza-
tion. In Proposition 4.5.9 we prove that if there exist a reparametrization of a FCDF
satisfying the translation equation, then the original FCDF is permutable. From a math-
ematical point of view, it would be interesting to see whether the reverse also holds true,
i.e. if a permutable FCDF can be reparameterized into a FCDF satisfying a translation
equation and hence can be represented by a distribution function.

A natural question for a future work is: which properties of a family of coherent risk
measures, induced by a FCDF, are implied by the translation equation? Beside the
application in Section 4.5.2, what is the precise economic and actuarial meaning of the
translation equation?

In Chapter 5 we construct a binomial-type with frictions, which may model a market
with transaction costs. Bid and ask prices are recursively defined by a pricing functional,
which is induced by a sequence of time-consistent coherent risk measures. We are able
to prove that bid and ask prices converge for many European or American possible
path-dependent options. The limit of the bid and ask prices of European plain vanilla
options can be expressed by the Black-Scholes formula with an adjusted dividend yield.
Both the volatility and the liquidity parameter are assumed to be constant over time. It
would be interesting to model both parameters by mean-reverting stochastic processes.
We leave these extensions for future research.
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6 Outlook and Future Research

By Soner et al. (1995), the least expensive superreplication strategy dominating a
European call in a Black-Scholes model with proportional transaction costs is the trivial
strategy of buying one share and holding it till maturity. The ask price of a call option in
our market model with frictions presented in Chapter 5 lays significantly below the price
of this trivial superreplication strategy. However, our market model with frictions is not
a simple proportional transaction costs model because at maturity the bid-ask spread of
the underlying is zero. Nevertheless, the results by Soner et al. (1995) indicate that an
investor who agrees to buy the option for the ask price is ready to take some residual
risks. In a future research we would like quantify that risk using a coherent risk-measure
p for instance. Results from Xu (2006) and Follmer and Schied (2011, Section 8) might
help to answer this question. But both authors considered a frictionless market, while
our market model contains frictions.
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American Option Data

’ Today ‘ Maturity ‘ Strike ‘ Bid-call ‘ Ask-call ‘ Bid-put ‘ Ask-put
02/02/2018 | 18/05/2018 273 10.1 10.25 6.99 7.14
02/02/2018 | 15/06/2018 273 11.23 11.39 8.15 8.27
02/02/2018 | 20/07/2018 273 12.32 12.51 9.29 9.48
02/02/2018 | 21/09/2018 273 14.85 15.08 11.32 11.51
02/02/2018 | 18/05/2018 | 274 9.42 9.57 7.32 7.46
02/02/2018 | 15/06/2018 274 10.55 10.7 8.48 8.61
02/02/2018 | 20/07/2018 274 11.66 11.84 9.64 9.83
02/02/2018 | 21/09/2018 274 14.21 14.41 11.66 11.86
02/02/2018 | 18/05/2018 275 8.77 8.9 7.67 7.82
02/02/2018 | 15/06/2018 275 9.9 10.03 8.84 8.97
02/02/2018 | 20/07/2018 275 11.01 11.2 9.99 10.18
02/02/2018 | 21/09/2018 | 275 13.56 13.76 12.02 12.2
02/02/2018 | 18/05/2018 276 8.13 8.26 8.03 8.2
02/02/2018 | 15/06/2018 276 9.25 9.37 9.2 9.33
02/02/2018 | 20/07/2018 276 10.38 10.55 10.35 10.55
02/02/2018 | 21/09/2018 | 276 12.93 13.11 12.38 12.57
02/02/2018 | 18/05/2018 277 7.51 7.64 8.42 8.58
02/02/2018 | 15/06/2018 277 8.62 8.74 9.59 9.72
02/02/2018 | 20/07/2018 277 9.75 9.92 10.74 10.94
02/02/2018 | 21/09/2018 277 12.29 12.48 12.75 12.95
05/02/2018 | 18/05/2018 262 13.07 13.44 12.69 13.15
05/02/2018 | 15/06/2018 262 13.83 15.2 13.76 14.11
05/02/2018 | 20/07/2018 262 14.79 16.48 14.8 15.2
05/02/2018 | 21/09/2018 262 17.07 18.98 16.62 18.4
05/02/2018 | 18/05/2018 263 12.42 12.77 13.04 13.49
05/02/2018 | 15/06/2018 | 263 13.16 14.52 14.1 14.46
05/02/2018 | 20/07/2018 263 14.15 15.81 15.14 15.55
05/02/2018 | 21/09/2018 263 16.44 18.32 16.98 18.79
05/02/2018 | 18/05/2018 | 264 11.76 12.11 13.4 13.84
05/02/2018 | 15/06/2018 264 12.54 13.84 14.46 14.81
05/02/2018 | 20/07/2018 264 13.52 15.15 15.51 15.91
05/02/2018 | 21/09/2018 264 15.81 17.65 17.35 19.2
05/02/2018 | 18/05/2018 265 11.12 11.47 13.76 14.2
05/02/2018 | 15/06/2018 265 11.92 13.19 14.83 15.18
05/02/2018 | 20/07/2018 265 12.91 14.5 15.88 16.29
05/02/2018 | 21/09/2018 265 15.2 17.01 17.73 19.63
05/02/2018 | 18/05/2018 266 10.52 10.83 14.13 14.59
05/02/2018 | 15/06/2018 266 11.3 12.15 15.2 15.55
05/02/2018 | 20/07/2018 266 12.32 13.85 16.26 16.67
05/02/2018 | 21/09/2018 266 14.6 16.37 18.11 20.04

Table 7.1: End-of day prices. 130



7 Appendix

Pricing through the Characteristic Function

In Example 2.3.1, we expressed the price of a European plain vanilla call option in simple
terms. This is possible, because the density of the log-returns in the Black-Scholes model
are known at all times. For most advanced stock price models, see Chapter 3, the density
of the log-returns are unknown but the characteristic function of the log-returns are
usually given in analytic form. The Fourier transform can then by used to compute the
call price of an option with strike K and maturity 7. Let k := log(K), by Carr and
Madan (1999), the call price is given by

Ck,T) = e*akl% (/000 ei”ka(v)dv> , (7.1)

T
where o > 0 and 7 is the characteristic function of the logarithm of the risky asset at
time 7' > 0, i.e.

or(u) = Eg [exp (iulog (St))]
and pp(.) is defined by

(v) = e " Tor(v— (a+1)i)
rr a?+a—v2+i2a+1)v’

Carr and Madan introduced the scaling term « to make the call pricing function square
integrable, which is necessary to apply the Fourier transform. The integral appearing in
Equation (7.1) can be computed using the fast Fourier transform.

The fast Fourier transform (FFT) is used to compute the discrete Fourier transform
very fast. Let x1,..,zx be a sequence of complex numbers. The discrete Fourier trans-
form of the sequence x1, ..,z is defined by the sequence

N

2mi(j —1)(n—1
in:Zexp (— mi(j N)(n )>xj, n=1,...,N.

j=1

Evaluating the discrete Fourier transform directly requires O(NN?) operations. The FFT
calculates the discrete Fourier transform using only O(N log(N)) operations. N should
be of power of two, because most FFT algorithms split the problem at each recursion
into two parts, see e.g Van Loan (1992) for numerical aspects of the FFT.

Simpson’s rule is applied to approximate the integral appearing in Equation (7.1), Let

vij=n(j—1), j=1,..,N.

ok L S 34+ (1) -6
Ck,T)=e k;ﬂ? (Ze Jka(vj)n< ( :))) ! 1)),
j=1

where 1 > 0 is the step-size and N € N being power of two and

1 ) =0
5=14 "
0 ,57>0.

It holds
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The integral is approximated by zero in the interval (9N, 00). Let A := ]2\[—7;] and define

1
kn = —§N)\+)\(n—1), n=1,..,N.

We will see that A is exactly chosen such that the FFT can be applied. We will obtain
simultaneously prices for the strikes

exp(kn), n=1,.,N.

The positive constant 7 has to be chosen small enough such that k € [k, ky|. Let

— 34+ (=1 —6,_
x] ::ew]"PT(Uj)W< +( ) : 1)7 ]ZlvaN

3

As it holds
v = —in( = D)= 4 2 = 1)) = ;" — 2T 1) — 1)
T n Nn I N ’

it follows
1 N 2mi [
C(kp,T) ~ e*ak”;% 2677(771)(”*1)% ,.n=1..N.
j=1

the sum corresponds to a discrete Fourier transform of the sequence z1, ...,y and can
be evaluated very efficiently using FFT. Carr and Madan suggest to use

a = 1.5
N = 4096
n = 0.25.

We obtain simultaneously prices for the strikes exp(k,), n = 1,.., N. Because the interval
[k1, kn] is large, in most practical cases, log(K) is inside. By (linear) interpolation, we
get the price for strike K.
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