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A B S T R A C T

Insulin therapy for Type 1 Diabetes (T1D) has several ramifications
with different degrees of automation. The advances in sensors and
monitoring devices have led to an increasing availability of data.
Additionally, machine learning algorithms usage has sprung, allow-
ing the development of models for Blood Glucose (BG) forecasting
with relative ease. Nevertheless, BG forecasting is still a challenging
task for prediction horizons beyond 30 min and, even more so, with
missing or erroneous data, which is a common burden in the field.
This thesis is devoted to generate machine learning models that fore-
cast either BG levels using regression algorithms or postprandial hy-
poglycemia using classification algorithms. The application of these
models range from Multiple Daily Injections (MDI) therapy up to
Sensor Augmented Pump (SAP) therapy.
On one hand, this work focuses on the prediction of BG values by
proposing a hybrid model that uses Grammatical Evolution (GE), an
insulin on board model, and a glucose rate of absorption model to
predict BG values with a prediction horizon of 120 min. The algo-
rithm relies on the construction of a set of rules that determine the
search space for an optimization algorithm based on a Genetic Al-
gorithm (GA). A glucose-specific fitness function leads the evolution
of the solution while penalizing deviations based on their clinical
harmfulness and a tailored evolutionary grammar.
On the other hand, this study delves into the methods to forecast
hypoglycemic events aiming to contribute to decision-making tools
in T1D therapy. For this reason, a method for training classification
models that predict postprandial hypoglycemia is also proposed
and validated for MDI and SAP applications, using real patients’ data
in free-living conditions. The method relies on well-known machine
learning algorithms and, in some cases, a combination of them to an-
ticipate hypoglycemia using an entirely data-driven approach with
carbohydrate content estimation, insulin bolus and BG level as com-
mon inputs. The aforementioned approaches are evaluated using
clinically meaningful metrics that provide insights regarding the
practical use of the proposed methods. The obtained results are
promising and contribute to the advances in the development of
technologies for the management of type 1 diabetes.
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R E S U M E N

La terapia con insulina para pacientes con T1D tiene varias ramifica-
ciones con diferentes grados de automatización. Los avances en sen-
sores y dispositivos de monitorización conllevan un incremento en
la disponibilidad de datos. Adicionalmente, el uso de algoritmos de
aprendizaje automático se ha popularizado, facilitando el desarrollo
de modelos para pronosticar Glucosa en Sangre (GS) con mayor fa-
cilidad. Sin embargo, predecir los niveles de GS es una tarea com-
pleja para ventanas de predicción más allá de 30 min, y más aún,
con datos erróneos o faltantes, una limitación muy frecuente en este
campo. Esta tesis está dedicada a la generación de modelos basados
en aprendizaje automático para predecir ya sean niveles de GS us-
ando algoritmos de regresión o, hipoglicemia postprandial usando
algoritmos de clasificación. La aplicación de estos modelos va desde
terapia de múltiples inyecciones diarias (MID) hasta la terapia SAP.
Por una parte, este trabajo se enfoca en la predicción de valores
de GS proponiendo un modelo híbrido que emplea gramáticas evo-
lutivas (GE), un modelo de insulina a bordo, y un modelo de ab-
sorsión de glucosa para predecir los niveles de GS con un hori-
zonte de predicción de 120 min. El algoritmo se fundamenta en
la construcción de un conjunto de reglas que determinan el espa-
cio de búsqueda de un algoritmo de optimización basado en algo-
ritmos genéticos. Una función de costo especial para medidas de
glucosa conduce la evolución de la solución mientras penaliza las
desviaciones basándose en el impacto clínico de las mismas y una
gramática evolutiva a medida.
Por otra parte, este trabajo profundiza en métodos para la predic-
ción de eventos de hipoglicemia apuntando a contribuir con el de-
sarrollo de herramientas de apoyo a decisiones terapéuticas. Por
esta razón, en este trabajo también se propuso y validó un método
para el entrenamiento de algoritmos de clasificación para la predic-
ción de hipoglicemia postprandial, aplicada a las terapias MID y
SAP usando datos de pacientes reales. El método consiste en algo-
ritmos comunes de aprendizaje automático y, en algunos casos, la
combinación de algunos de ellos para anticipar hipoglicemias us-
ando un enfoque de modelo basado en datos, con entradas rela-
cionadas con la estimación de carbohidratos, dosis de insulina y
nivel de glucosa en sangre como entradas comunes a los modelos.
La metodologías mencionadas fueron evaluadas usando métricas
con significancia clínica que permiten evaluar el uso práctico de los
métodos propuestos. Los resultados obtenidos son prometedores y
contribuyen a los avances en el desarrollo de tecnologías para el
manejo de la diabetes tipo 1.
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R E S U M

La teràpia amb insulina per a pacients amb T1D tenen vàries rami-
ficacions amb diferents graus d’automatització. Els avenços en sen-
sors i dispositius de monitorització comporten un increment en la
disponibilitat de dades. A més a més, l’ús d’algoritmes d’aprenentat-
ge automàtic s’han popularitzat, facilitant així el desenvolupament
de models per pronosticar Glucosa en Sang (GS) amb major facilitat.
No obstant això, preveure els nivells de GS és una tasca complexa
per a finestres de predicció més enllà de 30 minuts, i més encara,
amb dades errònies o absents, la qual cosa és una limitació molt
freqüent en aquest camp.
Aquesta tesis està dedicada a la generació de models basats en apre-
nentatge automàtic per predir ja siguin nivells de GS utilitzant al-
goritmes de regressió o hipoglucèmia postprandial utilitzant algo-
ritmes de classificació. L’aplicació d’aquests models van des de la
teràpia de múltiples injeccions diàries (MID), fins a la teràpia SAP.
Per una banda, aquest treball es focalitza en la predicció de valors de
GS proposant un model híbrid que utilitza gramàtiques evolutives
(GE), un model d’insulina a bord, i un model d’absorció de glucosa
per predir els nivells de GS en un horitzó de predicció de 120 min-
uts. L’algoritme es basa en la construcció d’un conjunt de regles que
determinaran l’espai de cerca d’un algoritme d’optimització basat
en algoritmes genètics. Una funció de cost especial per mesures
de glucosa que condueix l’evolució de la solució mentre penalitza
les desviacions basant-se en l’impacte clínic de les mateixes i una
gramàtica evolutiva a mida.
Per altra banda, aquest treball profunditza en mètodes per la predic-
ció d’esdeveniments de la hipoglucèmia apuntant a contribuir en el
desenvolupament d’eines de suport a decisions terapèutiques. Per
aquesta raó, en aquest treball també s’ha proposat i validat un mè-
tode per l’entrenament d’algoritmes de classificació per la predic-
ció de la hipoglucèmia postprandial, aplicada a les teràpies MID i
SAP utilitzant dades de pacients reals. El mètode consisteix en al-
goritmes comuns d’aprenentatge automàtic i, en alguns casos, la
combinació d’alguns d’ells per anticipar hipoglucèmies utilitzant
una visió de model basat en dades, amb entrades relacionades amb
l’estimació de carbohidrats, dosis d’insulina i nivell de glucosa a la
sang com entrades més comuns en els models.
Les metodologies esmentades han sigut evaluades utilitzant mètri-
ques amb significança clínica que permeten evaluar l’ús pràctic dels
mètodes proposats. Els resultats obtinguts són prometedors i contri-
bueixen en els avenços en el desenvolupament de tecnologies pel
tractament de la diabetis tipus 1.
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1
I N T R O D U C T I O N

1.1 motivation

Diabetes is a chronic disease characterized by the body’s inability to
produce the necessary amount of insulin to regulate Blood Glucose
(BG) levels. According to the International Diabetes Federation (IDF),
in 2017 there were 425 million people with diabetes in the world,
making diabetes one of the largest global health emergencies of the
21st century [1]. Figure 1 shows the worldwide distribution of the
prevalence (%) of diabetes for men and woman in 2017. According
to the same report, diabetes prevalence for both men and women
will rise to nearly 10% in 2045.

Diabetes can be classified in three main groups: Type 1 Diabetes
(T1D), Type 2 Diabetes (T2D), and gestational diabetes. Specifically,
T1D is caused by an autoimmune response that destroys β-cells.
People with T1D highly rely on external insulin in order to regu-
late their BG levels. As stated in [2] the reason for the increasing
number of people who develop T1D is still unclear; hypothetical rea-
sons include changes in environmental risk factors and/or viral in-
fections. The aforementioned motivated several efforts in biological
solutions, such as encapsulated islet transplantation, where encap-
sulated islets are transplanted using a minimally invasive interven-
tion. The encapsulation protects the pancreatic islets within a im-
munoisolation device to avoid the immune response and posterior
destruction of the graft without the need for toxic immunosuppres-
sion. The major limitation of this method is the fibrotic overgrowth
surrounding the graft, which leads to oxygen and nutrients deple-
tion in the transplanted islets[3]. Another alternative aims at the
restoration of the β-cells function via gene therapy [4]. So far, in a
mouse model, blood glucose was reestablished for 4 months, prior
to further destruction of the β-cells.
Insulin therapy solutions include Multiple Daily Injections (MDI)
therapy, Sensor Augmented Pump (SAP) therapy and the most am-
bitious so far: The Artificial Pancreas (AP). The AP is an automated
system designed to control BG and reduce T1D associated events
such as hypo/hyperglycemia, which are life-threatening situations
for the T1D patients. As shown in Figure 2, the AP is a closed-loop
control system relying on a Continuous Glucose Monitoring (CGM)
sensor that continuously approximates BG values as BGm, a control
algorithm, an insulin pump that administers the bolus and basal
insulin I as control action and the patient, who receives the control

20
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1.1 motivation 21

Figure 1: Worldwide prevalence (%) of diabetes by age and sex, 2017. Im-
age from [1]

actions as insulin therapy. The control actions depend on the devi-
ation e of the measured BG from the set point, r. The CGM has a
trans-dermal glucose sensor that measures glucose concentration in
the tissue fluid. To date, there are two licensed AP devices, with their
components depicted in Figure 3. The fist one is the MiniMed 670G
closed-loop system. It has been licensed by the Food and Drug Ad-
ministration (FDA) for commercial use. It is designed to reduce/stop
or increase insulin delivery when it detects low or high BG levels
in the patient, respectively. The insulin pump delivers an insulin
dosage through an infusion cannula. The pump is able to update
the amount of insulin to be delivered according to the CGM infor-
mation and the controller output. This system has been assessed in
some clinical studies [5], demonstrating its capacity to reduce the
risk of hiper/hypoglycemia, nocturnal hypoglycemia and increase
the time in normal BG range. In addition, the Guardian™ Connect
CGM sensor users can use a separate app for iPhone to assist them
finding blood glucose trends in the patients’ data[6]. The Sugar.IQ
performs a continuous analysis of the BG sensor data to provide
insights about the relationship between BG and food, insulin and
lifestyle factors.
The second licenced system is the DBLG1 Diabeloop system. It has
been granted the CE marking for medical devices. This system uses
a CGM, a patch insulin pump and a controlling algorithm in a hand-
set device to monitor blood glucose every five minutes and de-
termine the correct dose of insulin based on a algorithm using
past data and patient’s physiology. In a two-centre, randomised,
crossover clinical trial [7], Diabeloop significantly improved glycaemic
control while reducing the risk of hypoglycaemia in 29 adults with
T1D.
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controller Insulin Pump T1D Patient

Exercise,
Stress,
Meals

I

CGM

r e BG
−

BGm

Figure 2: Block diagram of the closed-loop control for AP. The main com-
ponents of the system are the CGM sensor, the controller and the
Insulin Pump on the patient.

A fully automated AP system must accurately calculate and ad-
minister the right amount of insulin I, minimize hypoglycemic events,
generate alerts [8], detect and cope with several types of faults, be
able to adapt to changing conditions, such as fasting, food intake
and exercise, and should be simple and adjustable for the clinical
practice [9]. However, one of the main obstacles for achieving a fully
automated AP is the lack of BG prediction models that are reliable
enough to model the dynamics of a diabetic patient’s physiology. A
fully reliable model should not only be able to mimic the patient’s
physiology, but also cope with external disturbances, such as sensor
noise, exercise and unannounced meals [10], among other factors.

Many T1D patients rely on open-loop therapies. Sensor Augmen-
ted Pump Therapy (SAP) is a widely known scheme in which the
patient and physician are highly involved in the pump dosage man-
agement, including the management of pump suspensions and Bo-
lus and Basal insulin, according to the CGM sensor readings. On the
other hand MDI therapy is the most common method for insulin
treatment [11]. It is an open-loop control strategy where T1D pa-
tients regulate their BG levels using several injections of fast-acting
insulin (bolus insulin) to act at mealtime and injections of long-
acting insulin to cover the fasting conditions. Bolus insulin doses
are usually calculated based on an estimation of the carbohydrate
intake in grams, Insulin Sensitivity Factor (ISF), Insulin to Carbohy-
drate Ratio (ICR), the current BG value and the amount of insulin
still present in the body from previous injections know as Insulin
On Board (IOB). Both ICR and ISF are dependent on ever-changing
factors such as physical activity, circadian variations and hormone
cycles[12], and therefore, estimating the optimal amount of insulin
bolus is still a challenging part of the glycemic control for every T1D
patient. It is worth mentioning that MDI therapy, despite being the
less automated insulin therapy for T1D, can be complemented with
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Figure 3: Comparative representation of the two licensed AP systems: Di-
abeloop and Minimed 670G.

the use of CGM sensors, which benefits sub-optimal BG control in
these patients.

In the described context, there are a lot of research opportunities
depending on the type of therapy that best suits a given patient.
Particularly, this thesis aims to contribute towards the development
of new methods for BG forecasting both as a regression and classi-
fication problem. A regression solution learns a model that deliv-
ers a continuous value prediction, such a BG value. On the other
hand, a classification model delivers a class label or discrete value
that can be interpreted as a condition such as hypoglycemia or hy-
perglycemia, for instance. The regression model was developed for
SAP therapy and the classification for both SAP and MDI therapy.

1.2 objectives

The research work presented in this thesis is devoted to explore
methods for forecasting BG values and postprandial hypoglycemic
events using ML. More specifically, the objectives pursued in this
work are the following:

• To develop a personalized scheme for mid-term BG prediction
with a glucose-specific loss function and assess the clinical
harmfulness of the deviations from the target values.

• To design a novel method for hypoglycemia prediction as a
classification scheme to be used in decision support systems
for patients treated using SAP or MDI therapy.

• To validate the methods for the mid-term BG prediction and
postprandial hypoglycemia forecasting with retrospective clin-
ical data.
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• To design a Bolus advising application and a validation scheme
for the postprandial hypoglycemia forecasting models.

1.3 research context

Blood glucose concentration is sensitive to several variables includ-
ing the quantity of ingested carbohydrates, insulin administration,
physical activity, stress, and the presence of other diseases besides
diabetes [13]. Including these variables in models for prediction
is challenging because of the inherent complexity of physiological
models. In addition, lifestyle and emotion-related variables are dif-
ficult to measure and quantify, such as stress or exercise [14]. Vari-
ability between patients is another important source of complexity,
and it has been addressed by individualizing the forecasting meth-
ods for each patient. This is relevant because patients exhibit large
variations in their BG signals during the day, especially after a meal
or physical activity. Others, for instance, experience a blood sugar
increase before, during or after anxious moments [15]. In addition
to the daytime food and exercise-related variability, at night is when
most of the cases of severe hypoglycemia occur [16]. Therefore, per-
sonalized glycemic prediction strategies have become necessary for
BG control because it is neither safe nor accurate to use models with
generalized parameters that do not reflect the dynamic behavior of
the patient during the day.

BG predictive models can be classified into three categories: physi-
ological models, machine learning based models and hybrid models.
Physiological models require a previous understanding of insulin
and glucose metabolism [17]. They are useful for simulating BG
metabolism in the form of compartmental models and for study-
ing the physiological processes that are involved in glucose regu-
lation. These models can also be divided into two types accord-
ing to their complexity. The first type of models are the minimal
models, which are capable of capturing crucial processes of glucose
metabolism and insulin action with few equations and identifiable
parameters[17]. The second type is maximal or comprehensive mod-
els, which comprise all the available knowledge of the physiological
system and are capable of simulating a diabetic patient’s metabolic
response, which allows in silico experiments to assess controllers
and treatments [18]. In recent decades, several authors have pro-
posed models of insulin action and glucose kinetics using experi-
mental data to measure glucose production, glucose utilization, and
insulin and meal absorption. Many of those models are compart-
mental models[19], which describe the processes that occur in the
inaccessible portions of the system because these processes are not
directly measurable. Therefore, the inaccessible portion of a system
is represented by a number of interconnected compartments. The
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most popular proposals regarding physiological models of insulin
action and the glucose kinetics system are the Dalla Man Model [20],
Hovorka model [21] and Bergman minimal model[22]. The different
models allow for the estimation of variables, such as subcutaneous
insulin absorption, gastric emptying, carbohydrate digestion and
absorption, insulin kinetics, and glucose metabolism. More specif-
ically, the Dalla Man model is composed of one glucose and one
insulin subsystem linked by the control of insulin in glucose utiliza-
tion and endogenous production. In contrast, the Bergman minimal
model uses a three-compartment model to represent the concentra-
tions of plasma insulin I (mU mL-1), remote insulin X (min-1), and
plasma glucose G (mg dL-1). Finally, the Hovorka model uses two
compartments representing the kinetics of glucose and regards each
insulin action with its final effect on BG separately. For these mod-
els, the input variables include factors from external insulin therapy
over time. Physiological models for BG prediction [23],[24],[25] are
less popular nowadays because of the advent of ML approaches.

In contrast to physiological models, ML models fully rely on CGM
data and, sometimes, additional signals to model a patient’s physio-
logical response without involving physiological variables. ML mod-
els include time series models [26][27][28][29], GA models, GE mod-
els [30], Multi-model approaches [31][32] , Gaussian Mixture Mod-
els (GMM) [33] and Artificial Neural Network (ANN) models [34] [35]
[36] , among others. For instance, Zarkogianni et al. [37] compared
several data-based techniques using as inputs the most recent glu-
cose measurement G(t), the change in glucose level ∆ G(t), and the
sum of energy expenditures during the last 30 min.

An alternative scheme is to use physiological models for glucose
digestion and absorption, insulin absorption and exercise. These
models are used in a pre-processing stage and the outputs from
this stage are incorporated into a ML model. Models of this type
[38] [39] [40] [41] are commonly known as hybrid models because
they partially rely on physiological models and require the identifi-
cation and setting of some physiological parameters.

The scheme for a mixed physiological and ML model is usually a
module based on a physiological model followed by a data-driven
model that learns the relationship between inputs and future out-
comes, which could be expressed either by means of classes (qual-
itative approach) or by means of the actual BG continuous values
(quantitative approach). For instance, Georga et al. [42][43] assessed
support vector regression and random forests methods using us-
ing CGM(mg/dl), plasma insulin concentration (µU/ml), instanta-
neous energy expenditure, and meal-derived glucose rate of appear-
ance Ra(mg/min) as inputs. Another example of this approach is
the model [44] using GE and physiological models of IOB and glu-
cose rate of appearance Ra(mg/min) for the blood glucose predic-
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tion challenge held in 2018 using the Ohio T1D data-set for BG pre-
diction [45].

However, because physiological models are somewhat time-con-
suming to develop and require previous knowledge to set the phys-
iological constants, scientific efforts are currently concentrated in
exploring innovative and less time-consuming models by taking ad-
vantage of the always growing machine learning modeling options.
Hybrid models make use of the simplest physiological models to
process meal information and insulin therapy information and then
fit data-driven models to future BG outcomes. Finally, data-driven
models completely rely on some non-physiological formulations to
characterize the relationship between current and past CGM, insulin
and meal carbohydrate content with future BG outcomes.

Future BG concentration is the most popular outcome in predic-
tive models for T1D [46]. Nevertheless, there are other possibil-
ities such as adapting classifiers to detect life-threatening condi-
tions,such as hyper/hypoglycemia, and facilitate decision making
for both patients and physicians. For example, if there is a future
outcome that lies beyond the established normal ranges, a prede-
fined recommendation could be followed. This approach means that
an effective therapy could be established without an explicit estima-
tion of BG concentration, but rather using a class as an outcome,
such a BG event. The previous raises the question: Should a model
learn to predict future continuous values (regression problem) of
BG or should it learn to map inputs to pre-established classes (clas-
sification problem)? Those classes could include normal glycemic
levels, hypoglycemia and hyperglycemia, for instance. This work
deals with both perspectives for prediction and states the practical
applications benefited by each one.

As far as prediction horizon is concerned, due to the inherent de-
lays with subcutaneous insulin infusion action and glucose sensing,
it is desirable to find a reasonable compromise between the accu-
racy of the prediction model and its prediction capability. Generally
speaking, an increase in the prediction horizon leads to a deterio-
ration in the accuracy of the prediction for a given model. Never-
theless, the inclusion of meal information, physical activity, other
input signals and changing the model structure also affect the accu-
racy of a particular prediction horizon. Therefore, performance met-
rics should be understood as a function of the selected prediction
horizon and the individual, clinician or decision system must select
the prediction horizon-accuracy relationship that best meets the pa-
tient’s needs. In the literature review of the modeling strategies in
T1D for BG forecasting [46], presented in Part I of this compendium,
a range of 15–120 min is usually explored, and a 30 min predic-
tion horizon is the most common value. On one hand, prediction
models for MPC (Model Predictive Control) require shorter predic-
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tion windows < 45min whereas alarm systems for low-glucose can
range from 15 to 30 min. Applications such as postprandial and noc-
turnal hypoglycemia prediction demand larger prediction windows
> 45min.

1.4 thesis outline

The body of this thesis consists of a compendium of four peer-
reviewed journal articles specified in the Full list of publications sec-
tion. Chapter 1 includes the introduction and the objectives of the
research, along with a research context describing the most recent
trends for predicting BG levels or BG events. Chapter 2 presents the
papers that were produced in the course of this research, including a
review paper that expands the research context described in Chap-
ter 1. Each paper is presented as a Part. Figure 4 shows how the
papers from parts II to IV are related in the context of T1D therapy
applications using machine learning. Each one of the four largest
nodes is one of the topics that this research connects. In this man-
ner, Part II presents a CGM forecasting approach using GE for mid-
term BG prediction as a regression problem, using an in-silico pa-
tient cohort as a data source. The machine learning algorithm used
for this approach was GE, which is an evolutionary computation al-
gorithm that uses Backus – Naur form to find symbolic expressions
that model a specific problem. In addition, minimal physiological
models were used to pre-process the carbohydrate and insulin in-
puts to complement the machine learning model. In Part III, a dif-
ferent point of view on the forecasting problem was adopted by
targeting the prediction of postprandial hypoglycemia as a classifi-
cation problem for SAP therapy. This work added a new challenge
to the forecasting task using data from real patients in free-living
conditions. This approach was data-driven, using Support Vector
Classifier (SVC), a well-known supervised learning algorithm to ex-
plore different alternatives of classifiers to predict mild and severe
postprandial hypoglycemia. Finally, Part IV kept the classification
scheme of Part III as well as the real patient data but this time tar-
geting MDI therapy, given that this type of therapy is still widely
used by many T1D patients. This work also used additional machine
learning algorithms such as Naive Bayes (NB), AdaBoost and ANN
to diversify the underlying prediction principles. Next, Chapter 3

presents a brief discussion on the main results of the articles that
form this thesis. Finally, Chapter 4 conveys the main contributions
of the research, the conclusions and future works.
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Machine
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Figure 4: Relation diagram for the outline of the thesis in the context of
T1D therapy using ML tools. Some of the connections between
the smaller circles represent research topics in which this thesis
is developed.

[ February 5, 2019 at 15:44 – classicthesis version 4.2 ]



2
F O R E C A S T I N G F O R T Y P E - 1 D I A B E T E S I N S U L I N
T H E R A P Y U S I N G M A C H I N E L E A R N I N G

This Chapter consists of four Parts. The first part presents a review
article that explains the recent trends in forecasting for T1D. Part II-
IV correspond to the submitted or published version of the journal
articles in which this thesis is grounded:

• Part I: A review of personalized blood glucose prediction
strategies for T1DM patients

• Part II: Personalized Blood Glucose Prediction: A Hybrid
Approach Using Grammatical Evolution and Physiological
Models

• Part III: Risk-based Postprandial Hypoglycemia Forecasting
Using Supervised Learning

• Part IV: Bolus Advisor Application for Machine Learning
Based Postprandial Hypoglycemia Forecasting

29
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Part I

A R E V I E W O F P E R S O N A L I Z E D B L O O D
G L U C O S E P R E D I C T I O N S T R AT E G I E S F O R

T 1 D M PAT I E N T S

Published in International Journal for Numerical Meth-
ods in Biomedical Engineering. Sept, 2016 (JCR quartile:
Q2; JIF: 2.192 in 2016; Ranked 34/77 in Biomedical Engi-
neering).
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Silvia Oviedo, Josep Vehi, Remei Calm, and Joaquim Armengol, "A Review of Personalized Blood 
Glucose Prediction Strategies for T1DM Patients” in International Journal for Numerical Methods in 
Biomedical Engineering, vol. 33, issue 6 (2017) : p. 1-21 

http://dx.doi.org/10.1002/cnm.2833 

Received: 15 July 2016 / Revised: 15 September 2016 / Accepted: 16 September 2016 

Copyright © 2016 John Wiley & Sons, Ltd. 

Abstract 

This paper presents a methodological review of models for predicting blood glucose (BG) 
concentration, risks and BG events. The surveyed models are classified into three categories, and 
they are presented in summary tables containing the most relevant data regarding the experimental 
setup for fitting and testing each model as well as the input signals and the performance metrics. 
Each category exhibits trends that are presented and discussed. This document aims to be a compact 
guide to determine the modeling options that are currently being exploited for personalized BG 
prediction. 
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Part II

P E R S O N A L I Z E D B L O O D G L U C O S E
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RESEARCH ARTICLEPersonalized blood glucose prediction: Ahybrid approach using grammatical evolutionand physiological models
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Abstract
The large patient variability in human physiology and the effects of variables such as exer-

cise or meals challenge current prediction modeling techniques. Physiological models are

very precise but they are typically complex and specific physiological knowledge is required.

In contrast, data-based models allow the incorporation of additional inputs and accurately

capture the relationship between these inputs and the outcome, but at the cost of losing the

physiological meaning of the model. In this work, we designed a hybrid approach comprising

physiological models for insulin and grammatical evolution, taking into account the clinical

harm caused by deviations from the target blood glucose by using a penalizing fitness func-

tion based on the Clarke error grid. The prediction models were built using data obtained

over 14 days for 100 virtual patients generated by the UVA/Padova T1D simulator. Midterm

blood glucose was predicted for the 100 virtual patients using personalized models and dif-

ferent scenarios. The results obtained were promising; an average of 98.31% of the predic-

tions fell in zones A and B of the Clarke error grid. Midterm predictions using personalized

models are feasible when the configuration of grammatical evolution explored in this study

is used. The study of new alternative models is important to move forward in the develop-

ment of alarm-and-control applications for the management of type 1 diabetes and the cus-

tomization of the patient’s treatments. The hybrid approach can be adapted to predict short-

term blood glucose values to detect continuous glucose-monitoring sensor errors and to

estimate blood glucose values when the continuous glucose-monitoring system fails to pro-

vide them.

Introduction

The human body requires the maintenance of blood glucose (BG) levels in a very narrow

range (70–110 mg/dl). Many exogenous factors affect these levels. The pancreas releases insu-

lin and glucagon hormones secreted by β-cells and α-cells, respectively, to regulate the BG lev-

els. Type 1 diabetes mellitus (T1D) is the consequence of an autoimmune attack on β-cells that
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significantly impairs insulin production. Thus, individuals with T1D fully rely on external

insulin to manage their BG levels.

Therapies based on continuous glucose monitoring (CGM) devices associated to insulin

pump technology (combined systems CGM-CSII) are rapidly becoming more common. A key

part of these therapies in order to be truly effective is a decision support system, or an artificial

pancreas that is able to predict what is going to happen in a relatively long period of time.

As widely known in clinical practice, achieving tight glycemic control is a complex process

for certain patients who exhibit large variations in their BG signals due to several factors that

influence the glycemic response and thereby influence glycemic control. Factors such as physi-

cal activity, weather conditions, dietary disturbances, age, and the psychological state of the

patient [1][2][3] in conjunction with endogenous processes such as circadian rhythms [2],

other diseases, and the menstrual period and pregnancy in women [4][5] strongly affect glu-

cose metabolism. Because these factors are varied and often not easily identifiable, the predic-

tion of BG values using personalized models is particularly important. Personalized models

can capture specific lifestyle factors that influence the physiological response of each patient to

carbohydrate intake and insulin dosage. The great variation in the glycemic response of T1D

patients makes predictive modeling a challenging and crucial task.

The treatment of diabetes is conditioned by high intra- and inter-patient variability. Inter-

patient variability greatly limits the use of general models because they cannot capture the spe-

cific physiological behavior of an individual. Intra-patient variability makes it difficult to apply

one model for the glucose dynamics of an individual. Inter- and intra-patient variability is

tackled by personalizing and customizing prediction models. This study avoids the limitations

of classical modeling by implementing a set of customized models for each patient using an

evolutionary approach. This paper targets the midterm (120 min) anticipated BG level while

considering the clinical safety of the predictions. The models are based on a machine-learning

algorithm that is flexible enough to include innovative features.

Most recent studies on BG prediction used only data-driven models [4][5] or a complemen-

tary approach that combined data-driven models and compartmental models [6][7]. Other

works focused on control applications for predictions, such as the prevention of nighttime

hypoglycemia [8].

BG prediction models are classified into three types: physiological, data-driven, and hybrid.

Physiological models require a good understanding of insulin and glucose metabolism and

contain parameters that should be set only by those with expert knowledge. These models are

commonly used in simulators via compartmental models, as discussed in [9]. Minimal ver-

sions of some physiological models exist [10][11]; however, the main challenge of this type of

approach is achieving a good model with high generalization capability. Data-driven models

completely rely on BG data and possibly other inputs. Data-driven models are typically based

on machine learning techniques and use techniques such as genetic algorithms, robust filters,

fuzzy logic, rule-based models [12], multi-model approaches [13][14], autoregressive models

[15][16], regularized learning, reinforcement learning, random forests, support vector regres-

sion, and artificial neural networks models [17]. Finally, an alternative architecture for BG pre-

diction models involves properly setting a physiological model to describe glucose digestion

and absorption, a second model for insulin absorption, and possibly other models to account

for exercise or other events. These models constitute a preprocessing stage, the output of

which enters a data-driven model. This type of model is commonly known as a hybrid model

and some recent approaches to them were examined in previous studies [18][19][20]. Oviedo

et al. [21] provided a comprehensive review of models for predicting BG.

Recently, BG estimation using grammatical evolution (GE) was included in a study [22] in

which a novel customization of BG models for five virtual patients using GE was proposed. GE

Personalized blood glucose prediction
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is a search algorithm with a modular design that can be used to generate predictive time series

models. It uses an evolutionary-like process to achieve expressions or computer programs

optimized according to a predefined objective function. GE uses a grammar to implement a

linking process between the search algorithm and the actual solution. This is a key component

of GE and one of the reasons why GE is attractive. The grammar consists of a set of rules that

defines the structure of the expressions generated and thus the final solution by the algorithm.

This structure can be modified fairly easily according to the applications needs, meaning that

it can be as simple or as complex as the user determines, without altering the search algorithm

performance. Authors in [22] incorporated medical knowledge into a grammar aimed to build

expression for glucose that considered previous BG values, carbohydrate intake, and insulin

administration. This incorporation involved exploring four different grammars and five fitness

functions, all of which were evaluated with respect to average error as a performance metric

for all patients. The results indicated that it is feasible to evolve useful models for modeling BG

values that consider BG readings, meals, and insulin dose information. Another study [23]

extended the findings of [22] by including three additional virtual patients and using the root-

mean-square error (RMSE) as the fitness function. The authors tested the clinical significance

of the results using error grid analysis (EGA) via the Clarke error grid (CEG) and the Parkes

error grid.

The present study extends the aforementioned research to investigate a novel and comple-

mentary approach that uses symbolic regression through GE to determine an approximation

of the underlying glucose dynamics evolving personalized BG predictive models that incorpo-

rate physiological models as part of the input. The aim of this approach is to capture the partic-

ular lifestyle factors that influence the physiologic response of T1D patients to their insulin

doses and carbohydrate intakes. Thus, the study presents a tool meant to assist in T1D man-

agement issuing early warnings related to ineffective or poor treatments that could improve

overall health, safety, and the quality of life of T1D patients.

The paper is organized as follows: Section 2 describes the type of data sets that are collected

and the specific algorithms used to achieve the proposed tasks. Section 3 presents a summary

of the experiments and results obtained. Section 4 discusses the results and compares and con-

trasts this approach with that of other works. Section 5 concludes the paper with a brief sum-

mary of the study and a discussion of future challenges.

Materials and methods

Fig 1 shows a schematic representation of the methodology proposed in this study. Initially,

insulin, carbohydrate, and CGM data for 100 virtual subjects are generated by simulation over

14 d using the T1D patient decision-making model [24]. The information is preprocessed and

divided into files, one file per patient. The information on this files regarding the carbohy-

drates consumption in each meal is transformed into a continuous signal according to a physi-

ological model that describes the absorption of the carbohydrates. Additionally, the bolus and

basal insulin are added and a single continuous insulin signal is generated using an insulin-on-

board model. The use of these two physiological models in this stage is beneficial not only

because it smooths the original data but also because it provides values proportional to the

actual behavior of the diabetic patient. Therefore, the input of the proposed GE-based tool is

the output of the aforementioned physiological models in conjunction with a glucose specific

fitness function and a customized grammar that represents a flexible structure, so the final

solution is able to capture the patient’s dynamics. The evolutionary process commences using

10 d of historical time series data for training. The algorithm builds and adjusts prediction

models until it reaches a predefined number of generations. Once the final prediction models

Personalized blood glucose prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0187754 November 7, 2017 3 / 16

forecasting for type-1 diabetes using machine learning 59

[ February 5, 2019 at 15:44 – classicthesis version 4.2 ]



are generated, they are evaluated using data from the remaining historical time series data.

The following subsections describe the data, the physiological models and the complete GE

setup in detail.

Experimental data set

The personalized BG prediction models were built for a cohort of 100 virtual patients, the data

for which were generated using the UVA/Padova T1D simulator [9] that implemented the

T1D patient decision-making model [24]. That model consists of four submodels that describe

the physiology of the T1D patient, the device used for glucose monitoring, the therapeutic

decisions of the patient, and the insulin pump. Specifically, T1D patient physiology is defined

by the UVA/Padova T1D simulator, which is a software program approved by U.S. Food and

Drug Administration (FDA) as a substitute for preclinical trials for certain insulin treatments.

The simulator program is based on a mathematical model of glucose, insulin, and glucagon

dynamics in T1D and is equipped with a virtual population that was proven to represent inter-

subject glucose variability observed in a clinical trial [25]. Recently, the simulator was updated

by incorporating a model of circadian insulin sensitivity variability [26] to extend its domain

of validity from single-meal to single-day multiple-meal scenarios, thus enabling more realistic

in silico trials [27]. For this study, the T1D patient decision-making model was used to simu-

late the data sets of 100 subjects. Treatment decisions were based on the self-monitoring of

blood glucose (SMBG) measurements, simulated by a model of the One Touch Ultra 2 mea-

surement error [28], and a blinded CGM sensor, the readings of which were simulated by a

model of the Dexcom G4 Platinum sensor [29]. Each virtual patient data set comprised the

data of a 14-d time series of BG readings collected by the CGM sensor using a 5-min sampling

period, and carbohydrate (CHO) intake and insulin delivery via an insulin pump with a 1-min

sampling period.

The CHO intake (g) included the carbohydrates from three meals per day with average

intakes of 50, 60, and 63.5 g for breakfast, lunch and dinner, respectively, and a coefficient of

variation (CV) of 20%, sampled using a Gaussian distribution. The CHO intake time series

also included 20-g hypotreatments that were generated every 20 min when the glucose concen-

tration fell below 60 mg/dl, as indicated by the SMBG measurements.

The insulin time series was the sum of the administered basal insulin Ib dose and the bolus

insulin Ibolus dose (U), expressed at each time step as I(k) = Ib(k) + Ibolus(k), where k indexes

the current sample. This step differed from the simulations performed in a previous study [24]

Fig 1. Schematic representation of the method used to generate prediction models for BG values.

https://doi.org/10.1371/journal.pone.0187754.g001
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because time-varying basal insulin was used to follow the variability pattern of insulin sensitiv-

ity. Bolus doses administered at mealtime are calculated as follows:

Ibolus ¼
CHOIN

CR
þ
ðGT � GBÞ

CF
ð1Þ

where CHOIN is the estimated amount of CHO in the ingested meal, CR is the CHO-to-insulin

ratio, CF is a correction factor, GT is the glucose target, and GB is the current preprandial

SMBG measurement. CHOIN is calculated by adding a percentage error in the count of CHO

(sampled from a Gaussian distribution with zero mean and 20% CV) to the actual CHO con-

tent of the meal.

The virtual data used in this study were subject to great variability with respect to the T1D

patients. First, the time-varying factors and perturbations implemented in the simulator

allowed the use of a set of virtual patients with significant intrapatient variability. Second, the

100 virtual patients used in the simulation had distinct physical characteristics, allowing for

the inclusion of interpatient variability in the data set. The modeling algorithm read the data

for each patient, taken over 14 consecutive days. The CGM readings (mg/dl) were used in two

ways: first, as a source of information to predict future glucose values (i.e., historical data), and

second, as a reference value to train or validate the models. We used a piecewise approach in

which three models predicted the postprandial BG values and one model predicted the BG

value for the overnight period for each patient. As shown in the timeline in Fig 2, each day was

divided into four periods of 6 h. Each period contained the same amount of data and were

labeled Nocturnal from 01:00 to 06:59 h, Breakfast from 07:00 to 12:59 h, Lunch from 13:00 to

18:59 h, and Dinner from 19:00 h to 00:59 h.

The midterm prediction model was developed using simple physiological models to exploit

the information contained in the insulin and CHO data series to transform the inputs into

continuous signals, and a data-driven model to map past values of the model inputs to future

BG values. Each part is discussed in the following two subsections.

Physiological modeling

According to a study by Hovorka et al. [30], glucose excursions are influenced by the glucose

absorption process and can be represented by a two-compartment model that delivers the glu-

cose at an absorption rate (mg/min)

Ra tð Þ ¼
CHOIN�CHOBIO � t � e

�
� t=tmax;G

�

tmax;G
2

ð2Þ

Fig 2. Division of the daily data for piecewise modeling.

https://doi.org/10.1371/journal.pone.0187754.g002
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where tmax,G (min) is the time of the maximum appearance rate of glucose in the accessible

glucose compartment, CHOIN is the amount of carbohydrates ingested, and CHOBIO (dimen-

sionless) is carbohydrate bioavailability. The glucose absorption rate greatly affects the levels

of BG, so the Ra signal is generated using the carbohydrate intake and population values at

tmax,G = 50 min and CHOBIO = 0.8.

For the insulin dose, we used the estimation of insulin on board (IOB) obtained with a two-

compartment model based on [31]. Smart insulin pumps can calculate the insulin that remains

active within the body by using an estimation of IOB defined as follows:

dC1ðtÞ
dt
¼ uðtÞ � KDIAC1 tð Þ

dC2ðtÞ
dt
¼ KDIA C1ðtÞ � C2ðtÞð Þ

IOBðtÞ ¼ C1ðtÞ þ C2ðtÞ

ð3Þ

where DIA is the duration of insulin action (h), which parameterizes the model of IOB(t) and

characterizes the dynamics of insulin activity; C1(t) and C2(t) denote the compartments, u(t) is

the insulin dose, and the constant K replicates its corresponding DIA. For our study, we used a

discrete time approximation of the model in Eq (3) with KDIA = 0.039, which corresponds to a

DIA of 2 h.

Predictive modeling by GE

Grammatical evolution (GE) [32] is a population-based heuristic search algorithm that per-

forms an evolutionary process through selection, recombination, and mutation of a rule-based

rewriting sequence on variable-length binary strings. The goal of this evolutionary computa-

tional technique is to construct syntactically correct programs that can be assessed in terms of

a fitness function. The key to this construction is the grammar that allows the GE to perform a

genotype-phenotype mapping process, which decodes bit strings to generate programs in an

arbitrary language.

At the genotype level, the underlying genetic algorithm generates and operates the popula-

tion as binary strings. The genotypes are divided into a variable number of codons, with eight

binary alleles representing each codon. The mapping process involves the decoding of the

genotype to its phenotype, i.e., the translation of the individual codified information into a

problem-specific domain. The GE approach is an attractive method because of its flexibility

and because the knowledge related to the problem can be incorporated into the algorithm

using a well-structured grammar. In addition, because separate approaches are used for the

search and solution spaces, the phenotype can be as complex as necessary, as all the genetic

operators are applied to the genotype.

The core of context-free evolutionary grammar, usually defined in Backus normal form

(BNF), is a set of derivation rules expressed in the following form:

½symbol� ! fproduction1j . . . jproductionNg ð4Þ

Each rule has two parts, namely, a non-terminal {symbol} on the left-hand side and a defini-

tion of the non-terminal {productions} on the right-hand side. Each definition comprises one

or more alternatives separated by the symbol “|”. Each alternative is commonly called a pro-

duction and is composed of a sequence of terminals (bracketless) and non-terminals. Thus,

the grammar indicates that a non-terminal can be substituted for any of the defined alterna-

tives. The grammar defines the search space of solutions; thus, the quality of the obtained solu-

tions directly depends on this structure. The framework proposed here combines insulin,
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carbohydrates, and BG levels. In addition, other complex and decisive factors such as intrada-

ily insulin sensitivity of T1D patients and the reliance of the generated models on time are con-

sidered. An excerpt summarizing the main characteristics of the defined grammar is given in

Eq 5:

½Body� ! ExprĜ ¼ ð½G�½op�½Ra�½op�½IOB�Þ½op�½Circadian�;

½G� ! GetGð½PrevIni�; ½PrevFin�; ½op�; ½preop�Þ½G�jl

½Ra� ! GetRað½PrevIni�; ½PrevFin�; ½op�; ½preop�Þ½Ra�jlÞ

½IOB� ! GetIOBð½PrevIni�; ½PrevFin�; ½op�; ½preop�Þ½IOB�jlÞ

½preop� ! sqrtjsinjlogjpowjexpjcosj½preop�½preop�jl

½Circadian� ! GetCircadianð½OpB�; ½Cte�; ½Cte�; ½Cte�Þjl

½Cte� ! ð½Dgt�½Dgt�:½Dgt�Þ

½op� ! ½OpA�j½OpB�

½PrevIni� ! 0j1j2j4j6j8j10j12j14j16j18j20j22

½PrevFin� ! 1j2j4j6j8j10j12j14j16j18j20j22j24

½Dgt� ! 0j1j2j3j4j5j6j7j8j9

½OpA� ! þj�

½OpB� ! =j�

ð5Þ

where λ denotes the empty set that does not contain any terminals. The solutions combine

four expressions, namely, ([G], [Ra], [IOB], and [Circadian]), with four operators selected

from [Op]. A more formal definition of these four rules in the continuous time domain can be

expressed as follows:

GðtÞ ¼
Xi¼n

i¼0

½preopðGa
t� b
Þopd�

RaðtÞ ¼
Xi¼n

i¼0

½preopðRaa
t� b
Þopd�

IOBðtÞ ¼
Xi¼n

i¼0

½preopðIOBa
t� b
Þopd�

CircadianðtÞ ¼ A cosðot þ φÞ

ð6Þ

where op{+, -, �, /} and preop{
ffiffiffi
x
p

, x-1, log(x), xy, and sin(x) cos(x)} denote the operators

selected by the GE methodology, and α, β, δ, A (maximum elongation), ω (angular frequency),

φ (initial phase), and n are constants that are adjusted by the GE methodology in each mathe-

matical expression.

Despite knowing the impact of the inputs on the BG levels (i.e., insulin and carbohydrates

have a negative effect on them), this knowledge is not directly incorporated into the initial

rule. Instead, four basic operations are allowed to relate the expressions. The grammar is

designed to constrain the search space by using functions that operate the previous values of

the input signals. In addition to the operation of the three input variables (insulin, CHO, and

BG), the sinusoidal function is added to account for the circadian variations in the physiology

of patients in the final model (with maximum day-to-day variations having a 20% amplitude).
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Fitness function and GE setup

In the identification and predictive approaches of the BG model, the mean squared error

(MSE) is the most popular loss function and metric for assessing the performance of the

model:

MSE gðtÞ; ĝðt; yÞð Þ ¼
1

N

XN

t¼1

ðgðtÞ � ĝðt; yÞÞ2 ð7Þ

where the parameter θ is selected to minimize the MSE value. MSE weights all the errors the

same, even if they have different impacts in diabetes therapy. In the present study, to obtain

the final model, we incorporated a fitness function based on glucose-specific MSE (gMSE), as

proposed in [33]. The fitness function weights the clinical impact of errors for hypoglycemia,

normoglycemia, and hyperglycemia differently. This is very beneficial to the final model since

the fitness function is more sensitive to extremely harmful situations like hypoglycemia, which

thereby leads to a safer model.

The fitness function used in the present study is similar to the usual quadratic MSE func-

tion. However, it includes a few additional penalties in the zones in which the error represents

additional danger from a clinical perspective. For example, it is more dangerous to predict a

BG concentration of 75 mg/dl when the target BG concentration actually is 50 mg/dl than it is

to predict a BG concentration of 150 mg/dl when the target BG concentration actually is 175

mg/dl because missing hypoglycemic events is considerably more dangerous for the patient.

The model of a glucose-specific function is

gMSEðg; ĝÞ ¼ MSEðg; ĝÞ � Penðg; ĝÞ ð8Þ

where Penðg; ĝÞ is a function that penalizes deviation based on its clinical harmfulness and is

expressed as

Penðg; ĝÞ ¼ 1þ aL�ag�TL ;bL
ðgÞaĝ�g;gL

ðĝ ; gÞ þ aHag�TH ;bH
ðgÞ�a ĝ�g; gH

ðĝ ; gÞ ð9Þ

where

aL ¼ 1:5; aH ¼ 1; bL ¼ 30;bH ¼ 100; gL ¼ 10; gH ¼ 20; TL ¼ 85;TH ¼ 155

As demonstrated in a previous study [33], the standard performance metrics are adapted

using the Pen function. Therefore, we modified the fitness function using the penalization fac-

tor. This metric was also included in the report on the fitting and test deviation from the target

values, as explained in the Results section.

Next, we examined the implementation of the evolutionary algorithm based on a open GE

Java implementation [34]. In our approach, we used the following classic operators: elitism,

variable crossover by a single point, integer flip mutation, and selection by tournament. The

operator parameters are listed in Table 1. Customized genetic operators are not required in

GE because it uses the standard operators of genetic algorithms [35]. The individuals are ini-

tialized randomly to generate variable-length binary strings.

Results

Performance metrics

The aim of this study was the production and assessment of personalized models for 100 vir-

tual patients using the information contained in CGM readings, insulin dosage, and carbohy-

drate intake. This section presents the prediction results in terms of the usual performance

metrics used to evaluate predictive accuracy and glucose-specific metrics based on the RMSE,
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the mean absolute deviation (MAD), and the mean absolute relative difference (MARD), as

proposed in [33]. We present below the equations used to calculate the performance metrics.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1

jgðtÞ � ĝðtÞj2
s

gRMSE
mg
dl

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1

PenðgðtÞ; ĝðtÞÞjgðtÞ � ĝðtÞj2
s

MAD %ð Þ ¼
1

N

XN

t¼1

jgðtÞ � ĝðtÞj

gMAD %ð Þ ¼
1

N

XN

t¼1

PenðgðtÞ; ĝðtÞÞjgðtÞ � ĝðtÞj

MARD %ð Þ ¼
1

N

XN

t¼1

jgðtÞ � ĝðtÞj
gðtÞ

gMARD %ð Þ ¼
1

N

XN

t¼1

PenðgðtÞ; ĝðtÞÞjgðtÞ � ĝðtÞj
gðtÞ

ð10Þ

The CEG [36] was included in the performance metrics to evaluate the clinical significance

of the deviation of the estimated BG value from the target value. The CEG uses a Cartesian dia-

gram on which the target and predicted BG values are paired. Each pair is located in one of

five regions of the diagram. Region A contains those values within 20% of the reference sensor

or pairs in which the predicted values and the reference values are<70 mg/dl. The pairs

located in region A represent clinically correct predictions and, therefore, it is highly desirable

to have all the results in this zone. Region B contains pairs by which therapy decisions made

with an inaccurate estimate of the target value presents little danger. Region C contains pairs

that lead to potentially dangerous overtreatment. Region D contains pairs that lead to missed

severe episodes of hypoglycemia or hyperglycemia. Finally, region E contains the pairs of val-

ues that are the most different and yield the most erroneous predictions. Summarizing, pairs

of points within regions A and B are clinically acceptable, while pairs in regions C, D and E are

potentially dangerous and are considered significant clinical errors. Most of the CEG results

are presented as a percentage of data that falls in each region relative to the total data for each

case. The next subsections present and discuss the results of the evolving personalized models

obtained using different approaches.

Midterm BG prediction models

A personalized piecewise model was generated for each patient by dividing the days into four

6-h segments, with three segments involving a meal and a segment corresponding to the noc-

turnal period when no food is ingested. For this purpose, the algorithm incorporates the input

Table 1. General parameters of the implementation of GE and its operators.

Parameters Value Parameters Value

Population 50 Tournament Size 2

Generations 2000 Max. Wraps 2

Crossover prob. 0.90 Mutation prob. 0.005

Elitism 2

https://doi.org/10.1371/journal.pone.0187754.t001
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and target values corresponding to a 6-h period and the outcome of the algorithm is set to a

constant value for the timestamps that do not correspond to the segment of interest. Eq (11)

presents an example of the 6-h breakfast model for Patient 2:

PredGðnÞ ¼ ½GðnÞ � RaðnÞ � IOBðnÞ� � CircadianðnÞ ð11Þ

where n represents the time step when the prediction is made and glucose, CHO, insulin, and

circadian values are obtained via G, IOB, Ra, and Circadian, which are defined in Eq (11) for

the same example:

G nð Þ ¼
3:7 logðG½n � 24�Þ

57:9
þ

57:7

G½n � 24�
2:0
þ

909:1

G½n � 24�
2:7

RaðnÞ ¼ � sinðG½n � 24�
2:7
Þ � 90:0

IOB nð Þ ¼ 2:0 sin G½n�4:1
� �

�
4:9 log ðG½n � 6�

4:9
Þ

0:2

CircadianðnÞ ¼ 19:9 sinðð909:7pþ 5:5n=288ÞpÞ

ð12Þ

Because the four periods of the day are each 6 h, the overall accuracy is the mean of the per-

formance metrics for each portion of the day. Table 2 presents the averaged individual metrics

for 100 patients for the four periods and the percentage distribution among the five CEG

regions for the training and the test data. Because the four segments have the same amount of

information, the overall performance metrics and the percentage distribution for the CEG for

a 24-h model can be reported as average values in the last row of Table 2. In addition, to show

the accuracy of the results, Fig 3 presents the CEG, i.e., the distribution of the prediction error

based on its clinical harmfulness, for the test data of 20 patients in the breakfast scenario.

Our study also considered another perspective with respect to the use of the evolved person-

alized models. Table 3 presents the metrics results for models trained to perform 4-h postpran-

dial predictions and thereby the deviation from the target values 2 h after the intake of the

meal. Therefore, 100 individualized models were evolved to predict BG values using the same

virtual cohort, albeit by optimizing the predictions for 4-h periods as specified in Table 3.

Discussion

As observed in Table 2, the models produced adequate predictions for the nocturnal period in

terms of RMSE, MAD, MARD, and their corresponding glucose-specific metrics gRMSE,

gMAD, and gMARD, which was expected because of the lack of food intake. However, the

Table 2. Mean values of the performance metrics for 100 patients to fit 6-h prediction models.

Segment RMSE

(mg/dl)

gRMSE

(mg/dl)

MAD

(mg/dl)

gMAD

(mg/dl)

MARD

(%)

gMARD

(%)

ZONE A

+B (%)

ZONE A

(%)

ZONE B

(%)

ZONE C

(%)

ZONE D

(%)

ZONE E

(%)

Nocturnal Training 10.89 11.36 8.24 8.83 7.01 7.62 99.47 91.93 7.54 0.00 0.53 0.00

Testing 11.80 12.19 9.10 9.68 7.62 8.25 99.37 90.53 8.84 0.00 0.63 0.00

Breakfast Training 19.90 21.99 15.62 18.71 10.25 12.13 98.8 87.30 11.50 0.00 1.16 0.00

Testing 22.09 24.60 17.39 21.11 11.50 13.78 98.68 83.38 15.30 0.00 1.26 0.00

Lunch Training 18.33 19.90 14.45 16.58 11.12 12.97 98.32 84.50 13.82 0.01 1.66 0.00

Testing 20.93 23.20 16.51 19.64 12.38 14.81 98.02 81.35 16.67 0.01 1.97 0.00

Dinner Training 25.14 28.16 19.38 23.40 14.24 17.18 97.41 75.53 21.88 0.04 2.52 0.00

Testing 29.00 33.00 22.80 27.90 16.00 19.80 97.16 70.66 26.50 0.22 2.65 0.01

24 hour Training 18.57 20.35 14.42 16.88 10.66 12.48 98.51 84.82 13.69 0.01 1.47 0.00

Testing 20.96 23.25 16.45 19.58 11.88 14.16 98.31 81.48 16.83 0.06 1.63 0.00

https://doi.org/10.1371/journal.pone.0187754.t002
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results obtained for postprandial periods were not adequate. The dinner period models had

the highest mean scores for the standard and glucose-specific metrics. Therefore, these models,

on average, deviated the most from the reference values. However, even for this period, more

than 97% of the prediction results fell inside regions A and B for the test data, which implies

that the prediction was safe from a therapeutic point of view. Regarding the general distribu-

tion of the clinical harmfulness of the deviations, it is to be noted that most of the errors out of

the zones A+B are concentrated in zone D. As previously stated in the performance metrics

section, having pairs located in region D is highly undesirable because it means that the predic-

tion missed a severe hypoglycemia or hyperglycemia state. Despite always being under 4% for

all the scenarios, the use of the CEG led to the identification of a specific flaw in the personal-

ized models, especially in the model including the last meal of the day, which is the possible

underestimation of the BG concentrations during hyperglycemic events and overestimation of

Fig 3. Clarke error grid for test data of 20 patients in the breakfast period.

https://doi.org/10.1371/journal.pone.0187754.g003

Table 3. Mean values of the performance metrics for 100 patients fitting 4-h prediction models.

Segment RMSE

(mg/dl)

gRMSE

(mg/dl)

MAD

(mg/dl)

gMAD

(mg/dl)

MARD

(%)

gMARD

(%)

ZONE A

+B (%)

ZONE A

(%)

ZONE B

(%)

ZONE C

(%)

ZONE D

(%)

ZONE E

(%)

09:00–

13:00

Training 16.14 17.56 12.67 14.8 8.99 10.59 98.5 89.33 9.17 0.00 1.50 0.00

Testing 18.46 20.37 14.67 17.55 10.5 12.57 98.34 85.42 12.92 0.01 1.63 0.03

15:00–

19:00

Training 14.99 16.02 11.86 13.34 9.93 11.63 97.89 86.54 11.35 0.00 2.11 0.02

Testing 18.41 20.13 14.75 17.26 11.96 14.45 97.41 81.58 15.83 0.00 2.58 0.00

19:00–

01:00

Training 19.53 21.45 15.26 17.96 12.33 14.98 96.87 81.09 15.78 0.04 3.09 0.00

Testing 26.62 29.76 20.85 24.81 16.22 19.71 96.39 70.44 25.95 0.09 3.50 0.01

https://doi.org/10.1371/journal.pone.0187754.t003
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the BG levels during hypoglycemic events. This finding highlights the importance of the use of

clinical harmfulness evaluation systems like CEG to identify poor performance in terms of rel-

evant predictions like hypo/hyperglycemic events.

Since the dinner segment is, on average, the most challenging with respect to predictions, it

likely would benefit from strategies designed specifically to improve the accuracy of the fit-

ting process. For instance, Table 3 shows the results obtained after removing the first 2 h

after meals from the fitting process because that period is unpredictable (at least a 120-min

prediction horizon). The averaged performance metrics and the CEG percentages in Table 3

improved for the three meals compared with the results in Table 2. The relevance of this per-

spective concerns the applications in risk-based advisory systems or alarm systems that

allow model training in dynamic response once blood glucose is expected to decay. Con-

versely, the full-segments perspective is justified by the empirical evidence, which shows that

predicting the dynamics of the 2-h period immediately after meal intake is considerably

more complex than predicting the BG level when the meal effect vanishes. To make deci-

sions with respect to insulin therapy or the rescue of carbohydrate ingestion, the accuracy of

the algorithm is favored by the evolution of specific prediction models for the postprandial

period.

Antecedents of the approach presented in this paper are a study that assessed the feasibility

of GE prediction systems based on a time series of historical prices [37], and the first study

that adopted an approach toward personalized BG predictions using GE [38]. In contrast with

previous GE approaches [22][23] that were limited to short-term predictions (>60 min) and

were tested with five and eight virtual patients, respectively, obtained from the AIDA simula-

tor, the present study was built and tested for midterm predictions (120 min) and in a more

robust manner by using the UVA/Padova T1D Simulator [9], which described both intra- and

interpatient glucose variability [26] implemented in the T1D patient decision-making model

[39].

In general, recent studies usually predicted T1D glucose for the next 30 min [21]. However,

some studies have reported on the evaluation of a 120-min prediction horizon. For instance,

Georga et al. [40][41] assessed support vector regression and random forests methods using

data from 15 patients. In both cases, the best performance metrics were obtained when using

CGM (mg/dl), plasma insulin concentration (μU/ml), instantaneous energy expenditure,

meal-derived glucose rate of appearance, and Ra (mg/min) as inputs. This resulted in an RMSE

of 7.62 mg/dl using the SMV approach and 10.83 mg/dl using random forests. Likewise, Zar-

kogianni et al. [5] compared several data-based techniques using as inputs the most recent glu-

cose measurement G(t), the change in glucose level ΔG(t), and the sum of energy expenditures

during the last 30 min. This resulted in a technique based on the self-organizing map that

yielded the most favorable results in terms of RMSE (31.00 ± 6.07) and MARD (14.56 ± 3.46)

for a cohort of ten patients. Aside from using physical activity as an additional input signal,

these approaches generated models that were trained and evaluated using the same data set

and an independent data set was not used for validation.

Leal et al. [42] used support vector regression to predict nocturnal glucose, using CGM and

insulin delivery information to produce individual models for the same 100 in silico T1D

adults used in this study [9]. The results for four simulated night periods between 1 and 7 am

were measured in terms of glucose-specific metrics. According to the means of those test met-

rics (RMSE = 15.0, gRMSE = 15.7, MAD = 10.9, gMAD = 11.7, MARD = 9.0, gMARD = 9.6),

the predictions achieved by the proposed approach presented in this paper were more accu-

rate. Moreover, in this paper, the clinical reliability of the predictions was evaluated in both the

modeling process and the outcomes.
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Conclusion and future work

The results of this simulated study of both experimental approaches described in the previous

section are promising. They confirm the assumption that the use of a glucose-specific cost

function that takes into account the clinical harmfulness of deviations makes the prediction

models more reliable in terms of clinical usefulness. In addition, these results suggest that

dividing the day into different segments that can be studied separately and generating piece-

wise models improve the accuracy and clinical reliability of the overall model. These results

also show that the performance and safety of the predictions can be improved further by gen-

erating a set of interchangeable models that predict useful BG values for control and therapy

purposes based on the determination of individual specific dynamics, lifestyle, and other

factors.

The ability to provide an early warning of ineffective or poor insulin treatment, which usu-

ally leads to hyperglycemic or hypoglycemic episodes, is of great interest. Useful real-time pre-

dictions of future CGM measurements are possible but challenging owing to various factors,

including variability and the associated delays of food and insulin absorption. In addition,

there is a 10–15-min lag between the actual blood plasma values and the sensor measurements,

resulting in an approximate mean absolute relative difference (MARD) of 9% [3] for the best

sensors.

Despite being limited by these delays, accurate forecasts can provide enough time to act in

anticipation of the CGM measurements to prevent hyperglycemia or hypoglycemia. In this

study, we developed a hybrid model that uses GE, insulin on board, and glucose rate of absorp-

tion models to predict BG values with a prediction horizon of 120 min. The algorithm relies on

the construction of a set of rules that determine the search space for an optimization algorithm

based on GE. A glucose-specific fitness function leads the evolution of the solution while penal-

izing deviations based on their clinical harmfulness and a tailored evolutionary grammar.

Our study proposed a hybrid GE and physiological model-based methodology for deter-

mining personalized midterm predictions of CGM readings. To the best of our knowledge,

this is the first methodology to include physiological models in the overall GE model.

Future work will address the following points:

• The FDA-approved simulator used in this work is a valid substitute for the preclinical testing

of novel technologies in diabetes care (see, e.g., [43][44][45]). However, the use of in silico

data is not meant as substitute to human trial; rather, it can be considered a good starting

point for evaluating our GE method: in fact simulated data are complete, i.e. there is no miss-

ing information related to meals, boluses, hypotreatments, or any other unexpected event.

The natural extension of this work will be testing personalization of BG prediction models in

a more challenging situation involving real subjects.

• Estimation of BG values can be automatically processed ahead of time to generate risk-based

predictions. In addition, the risk of life-threatening events can be incorporated directly into

the fitness function.

• There are few conclusive reports on exercise management with respect to the prediction

model. We will examine the manner in which input signals related to physical exercise can

improve or deteriorate the accuracy of personalized models.

• The grammar shapes the solution. For our approach, other grammar architectures can

be explored to improve the accuracy and flexibility of the patient model. Future studies

will include a comparative analysis that explores the decrease and increase in grammar

complexity.

Personalized blood glucose prediction
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Abstract

Background Predicting insulin-induced postprandial hypoglycemic events is critical for the safety of type 1 dia-
betes patients because an early warning of hypoglycemia facilitates correction of the insulin bolus before its admin-
istration. The postprandial hypoglycemic event counts can be lowered by reducing the size of the bolus based on a
reliable prediction but at the cost of increasing the average blood glucose.

Methods We developed a method for predicting postprandial hypoglycemia using machine learning techniques
personalized to each patient. The proposed system enables on-line therapeutic decision making for patients using
a sensor augmented pump therapy. Two risk-based approaches were developed for a window of 240 min after the
meal/bolus, and they were tested based on real retrospective data from 10 patients using 70 mg/dL and 54 mg/dL as
thresholds according to the consensus for Level 1 and Level 2 hypoglycemia, respectively. Due to the small size of
the patient cohort, we trained personalized models for each patient.

Results The median specificity and sensitivity were 79% and 71% for Level 1 hypoglycemia, respectively, and
81% and 77% for Level 2.

Conclusions The results demonstrated that it is feasible to anticipate hypoglycemic events with a reasonable
false-positive rate. The accuracy of the results and the trade-off between performance metrics allow its use in decision
support systems for patients who wear insulin pumps.

Keywords: blood glucose, bolus calculation, hypoglycemia prediction, machine learning, postprandial
hypoglycemia, Type 1 diabetes

1. Introduction

Type 1 diabetes (T1D) is a chronic condition that af-
fects the pancreas, which is characterized by an autoim-
mune response where the insulin-producing cells are de-
stroyed, thereby resulting in insufficient or a total ab-
sence of insulin production. Iatrogenic hypoglycemia
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causes recurrent acute and chronic morbidity in most
people with T1D and it is a huge burden for people with
this disease. Frequent and repeated episodes of hypo-
glycemia generally result in a reduced ability or failure
to recognize the symptoms and signs of hypoglycemia.
In addition, hypoglycemia is a major barrier to achiev-
ing normoglycemia over a lifetime of using intensive in-
sulin therapy, thereby precluding the long-term benefits
of euglycemia [1]. Recently, a consensus was reached
regarding clinically meaningful outcomes in the devel-
opment and evaluation of T1D therapies, where the fol-
lowing three levels of hypoglycemia were defined ac-
cording to the plasma glucose levels[2].
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• Level 1: Glucose < 70 mg/dL (3.9 mmol/L) and
Glucose ≥ 54 (3.0 mmol/L).

• Level 2: Glucose < 54 mg/dL (3.0 mmol/L).

• Level 3: A severe event characterized by altered
mental and/or physical status requiring assistance.

Tightening the glycemic normal range for T1D pa-
tients can lead to an increased risk of hypoglycemia[3],
and thus it is essential to anticipate this risk. Therefore,
anticipating the risk of hypoglycemia at every meal is
a helpful feature of a CGM prediction system based on
data obtained by continuous glucose monitoring (CGM)
for patients who wear insulin pumps or those receiving
therapy with multiple doses of insulin (MDI). Conse-
quently, CGM prediction is a major focus of the T1D re-
search community where there are two main application
areas. The first application area is closed-loop control,
where a model predicts the CGM values and a controller
generates a control action based on the predictions. The
second application area is in decision-support systems
or open-loop applications, where a given model is set
to predict the future CGM levels or associated events,
and the predicted outcome is then transformed into an
alarm, a dosage correction, or some other interpretable
outcome for decision making, such as insulin suspen-
sion or bolus re-estimation. Newer models of insulin
pumps can predict hypoglycemia 30 min in advance
and suspend the delivery of insulin in order to reduce
the frequency of hypoglycemic episodes and the hypo-
glycemic intensity[4].

A previous comprehensive review of models for pre-
dicting CGM using CGM data[5] showed that less than
15% of previous studies aimed to predict glycemic
events or risks, despite their critical roles in thera-
peutic decisions. Interestingly, more than 50% of the
risk/event prediction models were developed as direct
classification problems, and thus their predictions of
events such as hypoglycemia and hyperglycemia did
not employ a prior estimation of the CGM level. Mod-
els that focus strictly on predicting particular outcomes
such as hypoglycemic events are meaningful because
they can be employed in decision-support applications.
However, these approaches are mostly limited to noc-
turnal hypoglycemia [6] [7] [8] [9], where the effects of
disturbances such as meals or exercise are minimal, and
thus prediction is less challenging.

In the present study, we focused on the patient-
specific prediction of hypoglycemic events when a meal
is announced, which allows the evaluation of the impact
of a given insulin bolus on the postprandial response and
optimization to achieve safer dosages.

This study makes two main contributions. First, we
approach the problem of predicting hypoglycemia from
a classification perspective, which has previously been
restricted mainly to nocturnal hypoglycemia and shorter
prediction windows. Second, the prediction scheme is
specialized for postprandial hypoglycemia, which al-
lows predictions of the effect of the insulin dosage for a
given meal, thereby facilitating on-line therapy decision
making, such as bolus re-estimation for insulin pump
users.

2. Methods

Next, we present the process employed to generate a
risk-based prediction model of hypoglycemia. The core
of the model is a bi-class support vector classifier (SVC)
trained and tested using scikit-learn[10][11]. The SVC
can deal with unbalanced classes using a class weight
(CW) parameter that places more emphasis on a class
by penalizing the mislabeled classes. This is done by
setting the regularization parameter C of each class to
C*CW. Therefore, no synthetic data are used and over-
sampling is not performed in the training set. Thus, the
training and testing sets belong to the same distribution,
and the cost function penalizes the misclassification of
the minority class in proportion to the class imbalance.

2.1. Patient Cohort and Data Preprocessing

We collected retrospective data from T1D patients
at Hospital Clı́nic i Universitari in Barcelona who had
used insulin pumps and CGM for several months. In
total, 10 patients comprising eight males and two fe-
males were included in the analysis. The study was con-
ducted under free living conditions. The patients were
not asked to deliver physical activity, diet or other spe-
cific information. The study was restricted to the adult
population with a mean (±SD) age of 41 ± 10 years.
The average duration of diabetes in the population was
27 ± 10 years and they had been insulin pump ther-
apy users for 10 ± 5 years. The average body weight
and HbA1c were 65 ± 13 kg and 7.3 ± 0.5%, respec-
tively. The mean (±SD) monitoring period was 786 ±
263 days. Patients wore Paradigm Veo or 640G insulin
pumps (Medtronic MiniMed, Northridge, CA, USA).
Some of them upgraded from one to the other during the
study. We adapted a particular routine for each pump
model to extract the critical data into a csv file contain-
ing the dates, time-stamps, delivered insulin, carbohy-
drate consumption, and CGM signal for each patient.
CGM was conducted with Enlite-2 sensors (Medtronic
MiniMed, Northridge, CA, USA). After extracting the
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data into a csv file, the next step aimed to assure the data
integrity by cleaning and organizing the data in a data-
frame with the relevant features as columns. A script
Java was used to extract the data from the pump output
files, and we employed Python to generate the predic-
tion models and performance metrics, specifically the
Scikit-learn[10], Pandas[12], and Matplotlib[13] pack-
ages.

2.2. Support Vector Machines for Bi-class Classifica-
tion

Support vector machines are widely used supervised
machine learning algorithms that model a separating hy-
perplane in a multidimensional space to solve a given
classification task. Given a training set of N instances of
features x and their corresponding labels y ∈ −1, 1, the
parameters ω, b are used to model the classifier as[14]:

hω,b(x) = g(ωT x + b), (1)

where g(z) = 1 if z ≥ 0 and g(z) = −1 otherwise.
The geometric margin can be understood as the distance
from a certain training example (x(i), y(i)) to the decision
boundary, and it can be defined by equation 2, as fol-
lows.

γ(i) =

(
ω

‖ω‖
T

x(i) +
b
‖ω‖

)
(2)

The optimal margin classifier is determined by solv-
ing equation 3:

minω,b
1
2

(ω • ω), (3)

Where • represents the scalar product of two vectors.
Equation 3 is subject to the restriction that yi(ω.xi +b) ≥
1, i = 1, . . . ,m. When the classes are not separable, the
loss function becomes 4 [15]:

J(ω, b, ξ) =
1
2
‖ω‖2 + C

N∑

i=1

ξi (4)

subject to

yi[(ω.xi + b) ≥ 1 − ξi, i = 1, 2 . . . ,N (5)

and
ξi ≥ 0, i = 1, 2 . . . ,N (6)

Where ξi are called slack variables and C > 0 is the
regularization parameter that controls the trade-off be-
tween the generalization capability and the training er-
ror.

If the training data are not linearly separable, then it is
possible to transform the data set into a new dimensional
space, where the data can be linearly separable [17]. For
this purpose, a mapping function φ(•) is defined in terms
of the scalar product in the original space. Instead of
defining the transformation function, a kernel function
K(u • v) is specified. A kernel function performs the
space transformation and the scalar product in one step.
This application uses one of the most common kernels,
i.e., the radial basis function, which defines the scalar
product between two feature vectors xi and x j according
to equation 7.

K(xi, x j) = e−γ‖xi−x j‖2 , γ > 0 (7)

The parameter γ must be selected in an appropriate
manner according to the application. Tuning of this pa-
rameter and the other hyper-parameters is conducted by
grid-search with cross-validation.

2.3. Model for Prediction of Hypoglycemia

We built a personalized model for each patient by ran-
domly dividing the total instances into training (80%)
and test (20%). The number of instances available for
training and testing are listed in Table 1.

Table 1: Training and testing instances for 10 patients.

Train (80%) Test (20%) Total instances

P1 359 90 449
P2 1832 458 2290
P3 556 140 696
P4 712 179 891
P5 565 142 707
P6 198 50 248
P7 448 113 561
P8 416 105 521
P9 207 52 259
P10 472 118 590

An instance was defined by a meal intake provided
that no other meal was consumed during the subsequent
4 h. This was set as a requirement because the predic-
tion window of interest in this study was 4 h after every
meal. In addition, the instances with missing sensor data
were excluded.

The labeling of the outcome for each instance was set
differently using two thresholds according to the def-
initions of Level 1 and Level 2 hypoglycemia[2]. In
the first case, C1, a hypoglycemia event was predicted
whenever three consecutive CGM measurements (15
min) were below 70 mg/dL. In the second case, C2, a
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hypoglycemia event was predicted whenever three con-
secutive CGM measurements (15 min) were below 54
mg/dL. Postprandial hypoglycemia under 70 mg/dL and
54 mg/dL occurred with a mean of 29% and 17% of the
meals, respectively.

Alternatively, we proposed another labeling scheme
based on the hypoglycemia risk as the area below 70
mg/dL and the CGM curve. After the risk was calcu-
lated for every instance, six additional cases were de-
fined. As summarized in Table 2, a hypoglycemic event
was predicted if the risk was above a specific value.
Finally, if the duration of pump suspension (PS) was
longer than 70 min, the label was also set as hypo-
glycemic event in all cases. For model evaluation pur-
poses, we will use Level 1 and Level 2 as labels through-
out the paper, bearing in mind that in this approach, they
are not mutually exclusive, as they correspond to C1 and
C2, respectively.

Table 2: Labeling scheme for postprandial hypoglycemic event pre-
diction.

Postprandial hypoglycemia

C1 Three consecutive CGM < 70 mg/dL or PS > 70 min
C2 Three consecutive CGM < 54 mg/dL or PS > 70 min
C3 Risk > 200 or PS > 70 min
C4 Risk > 500 or PS > 70 min
C5 Risk > 700 or PS > 70 min
C6 Risk > 1000 or PS > 70 min
C7 Risk > 1200 or PS > 70 min
C8 Risk> 1500 or PS > 70 min

Using the CGM data, several time-domain features
were extracted and analyzed by training various SVC
configurations. The following nine features were
selected for the prediction architecture, where k repre-
sents the sample when the meal was recorded.

1. Glucose difference (GR): Absolute value of the
difference between the last and first CGM values
in the last hour, i.e., GR = abs(CGM[k − 12] −
CGM[k]) .

2. CGM[k]: CGM glucose value at k.
3. AUC1h: Area under the curve for a CGM threshold

of 70 mg/dL and the CGM signal over the last hour.
4. Glucose Rate of Change: Glucose rate of change

over the last 30 min.
5. Mean Glucose: Mean value of glucose signal in the

last hour.
6. Cumulated Basal (CB): Cumulative sum of the

basal insulin over the last 2 h i.e., CB =

B(k)+...+B(k-24).

7. Forecast Basal (FB): Cumulative sum of the pro-
gramed basal insulin for the next 4 h CB =

B(k)+...+B(k+48).
8. Bolus: Cumulative sum of the bolus insulin up to

1 h after its administration (to consider square and
dual wave boluses).

9. Carbohydrate: Carbohydrate intake.

The general flow of the method is presented in Figure
1. After data preprocessing, each SVC prediction model
required the optimization of the hyperparameter C and
the kernel parameter γ by via grid search using strati-
fied fivefold cross-validation and MCC as a scorer. Af-
ter fixing the optimized hyperparameters for each of the
eight approaches (C1–C8) in Table 2, the models were
tested for every patient. Stratification based on cross-
validation ensured that each fold represented the overall
distribution of the data. Therefore, both classes were
considered to be similarly represented in every fold. In
addition, the following two tasks were performed in or-
der to test the robustness of the models. First, we ran-
domly shuffled the data five times. Second, we trained
and tested five different models with 80% and 20%. The
calculated average performance metrics are reported in
the Results section. It should be noted that the cross-
validation and testing data subsets were identical across
cases (C1–C8).

2.4. Performance Metrics
The domain considered in this study is highly imbal-

anced because hypoglycemia must be avoided by pa-
tients by ingesting carbohydrates, suspending the in-
sulin dose, or lowering the basal dose. Therefore, ac-
curacy is a poor metric choice in this case. In con-
trast, the sensitivity (SE) and specificity (SP) are not
sensitive to the class distribution and they have been
used extensively in previous hypoglycemia prediction
studies[16][17][18]. The Matthews correlation coeffi-
cient (MCC) is used to merge the confusion matrix into
a single metric that correlates the target and the pre-
dicted binary outcomes, which is desirable because it
allows a unique metric to be optimized when training
each model. The MCC index returns a value in the range
of [−1, 1], where 1 is a perfect prediction and –1 is an
erroneous classification. These metrics are defined in
Table 3. The MCC was used in the hyper-parameter
tuning grid search and the selection of the best model
from C1-C8.

3. Results

The average results including SP (%), SE (%), and
their corresponding standard deviations as well as the
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Figure 1: General diagram of the proposed method.

Table 3: Metrics used for candidate model evaluation.

Metric Definition

TP Positive example classified as positive

TN Negative example classified as negative

FP Negative example classified as positive

FN Positive example classified as negative

SE Ratio of positives that are correctly
classified: T P/(T P + FN)

SP Ratio of negatives that are correctly
classified: T N/(T N + FP)

MCC
T P × T N − FP × FN√

(T P + FP) (T P + FN) (T N + FP) (T N + FN)

CMM for the 10 subjects are presented in Table 4 to
Table 7. The distribution of the averaged test results in
the Receiver Operating Characteristic (ROC) for Level
1 and Level 2 is presented in Fig2 and Fig3, respec-
tively. Table 4 and Table 5 show the average testing
results obtained with the labels generated according to
the Level 1 condition (Test A), while Table 6 and Table 7
present the average results for the individual models in
cases C1–C8 tested with the labels generated according
to the Level 2 condition (Test B). For the best models,
the median SP and SE were 79% and 71% for Level 1
hypoglycemia, respectively, and the median SP and SE
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Receiver operating characteristic for 70 mg/dL hypoglycemia

Mean ROC Pat 1 (AUC = 0.90 ± 0.06)
Mean ROC Pat 2 (AUC = 0.77 ± 0.01)
Mean ROC Pat 3 (AUC = 0.87 ± 0.03)
Mean ROC Pat 4 (AUC = 0.82 ± 0.03)
Mean ROC Pat 5 (AUC = 0.76 ± 0.03)
Mean ROC Pat 6 (AUC = 0.73 ± 0.08)
Mean ROC Pat 7 (AUC = 0.83 ± 0.03)
Mean ROC Pat 8 (AUC = 0.78 ± 0.02)
Mean ROC Pat 9 (AUC = 0.75 ± 0.10)
Mean ROC Pat 10 (AUC = 0.87 ± 0.03)

Figure 2: ROC curve for prediction results for Level 1 hypoglycemia

were 81% and 77% for Level 2, as listed in Table 8.

According to the results summarized in Table 4, as
expected, the models trained specifically for predict-
ing hypoglycemic events according to the Level 1 hy-
poglycemia condition (C1) obtained satisfactory perfor-
mance in terms of the SE and SP metrics for the majority
of the cohort. Moreover, the results in Table 5 allowed
us to determine the feasibility of using other criteria to
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Table 4: Average sensitivity (SE) and specificity (SP) with the standard deviation in parentheses obtained by the hypoglycemia prediction models
for 10 patients using Level 1 labeling (Test A).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1
SE 60(0.1) 63(0.05) 82(0.04) 74(0.04) 84(0.05) 75(0.1) 76(0.06) 63(0.1) 71(0.1) 82(0.05)
SP 89(0.02) 77(0.04) 79(0.04) 71(0.04) 43(0.08) 61(0.1) 78(0.06) 78(0.09) 74(0.1) 78(0.02)

C2
SE 63(0.04) 53(0.03) 58(0.08) 61(0.04) 70(0.05) 59(0.2) 34(0.05) 50(0.1) 45(0.09) 70(0.07)
SP 85(0.07) 81(0.01) 83(0.04) 81(0.01) 73(0.05) 74(0.09) 91(0.02) 87(0.06) 92(0.06) 82(0.04)

C3
SE 73(0.01) 60(0.04) 64(0.1) 76(0.06) 74(0.06) 71(0.2) 66(0.08) 62(0.08) 51(0.1) 82(0.04)
SP 83(0.06) 81(0.02) 82(0.03) 73(0.03) 62(0.08) 66(0.1) 83(0.05) 84(0.07) 86(0.05) 79(0.03)

C4
SE 72(0.1) 56(0.04) 61(0.09) 62(0.04) 69(0.1) 63(0.1) 47(0.1) 55(0.1) 42(0.2) 84(0.03)
SP 85(0.07) 77(0.02) 83(0.03) 79(0.02) 71(0.06) 70(0.1) 82(0.04) 86(0.09) 97(0.03) 76(0.04)

C5
SE 44(0.1) 54(0.06) 56(0.08) 57(0.03) 69(0.06) 64(0.2) 44(0.1) 49(0.09) 38(0.03) 77(0.06)
SP 94(0.02) 77(0.01) 87(0.01) 81(0.02) 71(0.06) 75(0.01) 83(0.03) 86(0.07) 96(0.03) 75(0.02)

C6
SE 43(0.1) 52(0.04) 50(0.04) 63(0.04) 66(0.06) 50(0.2) 23(0.05) 44(0.09) 33(0.1) 76(0.07)
SP 94(0.02) 77(0.02) 87(0.02) 78(0.02) 74(0.04) 81(0.1) 92(0.2) 90(0.06) 94(0.07) 75(0.03)

C7
SE 43(0.1) 50(0.03) 50(0.04) 62(0.04) 62(0.05) 46(0.1) 22(0.05) 41(0.06) 33(0.2) 53(0.07)
SP 94(0.02) 77(0.03) 87(0.02) 78(0.02) 76(0.03) 80(0.09) 93(0.02) 90(0.06) 96(0.05) 85(0.05)

C8
SE 43(0.1) 49(0.04) 49(0.05) 68(0.09) 64(0.04) 40(0.08) 20(0.06) 41(0.08) 34(0.1) 52(0.05)
SP 94(0.02) 76(0.02) 87(0.02) 74(0.04) 75(0.04) 85(0.01) 93(0.03) 88(0.06) 98(0.03) 84(0.04)

Table 5: Average Matthew’s coefficient with the standard deviation in parentheses obtained by the hypoglycemia prediction models for 10 patients
using Level 1 labeling.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1 0.44(0.08) 0.40(0.02) 0.47(0.07) 0.36(0.06) 0.3(0.07) 0.34(0.1) 0.49(0.08) 0.4(0.07) 0.42(0.2) 0.58(0.7)
C2 0.41(0.1) 0.35(0.04) 0.35(0.07) 0.37(0.03) 0.42(0.05) 0.33(0.1) 0.3(0.05) 0.4(0.06) 0.44(0.1) 0.52(0.08)
C3 0.44(0.2) 0.42(0.03) 0.37(0.8) 0.39(0.06) 0.37(0.05) 0.36(0.1) 0.47(0.08) 0.46(0.07) 0.4(0.1) 0.59(0.06)
C4 0.47(0.2) 0.32(0.03) 0.37(0.08) 0.36(0.03) 0.4(0.05) 0.32(0.1) 0.28(0.1) 0.43(0.05) 0.49(0.2) 0.57(0.04)
C5 0.42(0.1) 0.32(0.04) 0.37(0.05) 0.33(0.02) 0.4(0.07) 0.38(0.1) 0.28(0.1) 0.38(0.07) 0.44(0.2) 0.5(0.06)
C6 0.4(0.11) 0.30(0.05) 0.33(0.01) 0.34(0.04) 0.4(0.04) 0.32(0.2) 0.21(0.04) 0.4(0.05) 0.37(0.2) 0.49(0.07)
C7 0.4(0.11) 0.28(0.04) 0.33(0.02) 0.34(0.05) 0.39(0.03) 0.28(0.01) 0.2(0.05) 0.36(0.05) 0.38(0.2) 0.41(0.05)
C8 0.4(0.11) 0.25(0.04) 0.33(0.01) 0.34(0.08) 0.39(0.02) 0.28(0.1) 0.18(0.08) 0.33(0.04) 0.44(0.2) 0.38(0.07)

train the personalized models in terms of CMM, which
was optimized for every case. For instance, C4 repre-
sented a better model according to MCC for P1. As
listed in Table 4, C4 was slightly less specific than C1,
but much more sensitive than C1. In addition, C5 was
the best modeling option for P6. Similarly, the C3 mod-
els for P2, P4, P8, and P10 had less FPs with slightly
lower true detection of hypoglycemic events compared
with C1, and thus they are suitable models.

According to the results obtained from Test B (Ta-
ble 6 and Table 7), as expected, most of the C2 models
produced satisfactory results. In particular, the C2 mod-
els were the best options for P3, P4, P5, P7, and P10
in terms of CMM. However, the results obtained for P1
showed that C5–C8 had the best CMM. Models C3 and
C5 were more suitable for P6 compared with C2 and the
remaining cases. Based on the results for C5, the per-

formance of this model was satisfactory for P3 and P6,
with the same CMM values as C2. The SE results for C3
based on P6 showed that this model would outperform
C2 in insulin bolus dosage applications. Therefore, it
would be less likely to miss hypoglycemic events but at
the cost of a higher FP rate. For P9, C8 performed better
than C2 and the other models. According to the results,
C5 performed better than C2 for P1 and P6, and their
performance was comparable for P3. Model C6 was a
better choice than C2 for P8. Finally, models C4 and C7
did not perform better than C1 or C2 for any patient.

Table 8 presents the median SP and SE obtained for
the patient cohort according to both the Level 1 and
Level 2 definitions using the most favorable results for
each patient based on the CMM criterion. Table 8
presents the overall results but it is important to note that
the selection of the best model for each patient should
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Table 6: Average sensitivity (SE) and specificity (SP) with the standard deviation in parentheses obtained by the hypoglycemia prediction models
for 10 patients using Level 2 labeling (Test A).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1 SE 90(0.01) 75(0.03) 93(0.01) 82(0.06) 88(0.05) 81(0.13) 84(0.1) 77(0.1) 82(0.2) 90(0.04)
SP 87(0.02) 68(0.03) 74(0.03) 68(0.04) 38(0.06) 55(0.06) 70(0.06) 73(0.08) 69(0.09) 72(0.03)

C2 SE 93(0.08) 69(0.05) 85(0.2) 77(0.06) 76(0.08) 66(0.1) 60(0.1) 72(0.1) 78(0.1) 85(0.08)
SP 83(0.07) 74(0.01) 82(0.04) 79(0.02) 66(0.04) 68(0.1) 90(0.03) 85(0.06) 92(0.06) 79(0.04)

C3 SE 97(0.07) 74(0.03) 85(0.2) 81(0.05) 79(0.07) 80(0.1) 83(0.1) 80(0.06) 75(0.2) 90(0.03)
SP 80(0.05) 72(0.02) 73(0.03) 69(0.03) 55(0.05) 60(0.1) 77(0.05) 79(0.06) 84(0.04) 73(0.04)

C4 SE 97(0.07) 73(0.05) 85(0.2) 78(0.05) 75(0.1) 65(0.1) 76(0.2) 76(0.1) 69(0.2) 92(0.01)
SP 82(0.05) 70(0.02) 80(0.03) 78(0.03) 64(0.05) 63(0.1) 80(0.04) 82(0.08) 95(0.03) 69(0.05)

C5 SE 80(0.2) 72(0.06) 78(0.02) 72(0.04) 76(0.08) 72(0.09) 68(0.2) 72(0.1) 67(0.2) 87(0.04)
SP 93(0.02) 71(0.01 84(0.02) 80(0.02) 64(0.04) 68(0.1) 81(0.04) 84(0.07) 95(0.02) 70(0.03)

C6 SE 80(0.2) 67(0.07) 68(0.2) 79(0.08) 72(0.08) 58(0.2) 52(0.2) 66(0.1) 61(0.2) 84(0.05)
SP 93(0.01) 71(0.01) 85(0.02) 76(0.02) 67(0.03) 76(0.1) 93(0.02) 88(0.06) 95(0.05) 70(0.04)

C7 SE 80(0.02) 65(0.04 68(0.2) 77(0.08) 70(0.08) 49(0.1) 50(0.2) 61(0.1) 61(0.2) 63(0.1)
SP 93(0.02) 72(0.02) 85(0.02) 76(0.02) 70(0.03) 76(0.1) 93(0.02) 88(0.06) 96(0.04) 83(0.05)

C8 SE 80(0.1) 61(0.04) 66(0.05) 80(0.09) 71(0.04) 48(0.08) 43(0.06) 62(0.08) 65(0.1) 63(0.05)
SP 93(0.2) 71(0.01) 85(0.02) 72(0.04) 69(0.03) 81(0.08) 93(0.02) 86(0.06) 98(0.02) 82(0.04)

Table 7: Average Matthew’s coefficient with the standard deviation in parentheses obtained by the hypoglycemia prediction models for 10 patients
using Level 2 labeling.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1 0.45(0.1) 0.3(0.08) 0.31(0.08) 0.33(0.07) 0.26(0.03) 0.24(0.08) 0.35(0.08) 0.38(0.07) 0.39(0.2) 0.53(0.09)
C2 0.43(0.1) 0.32(0.05) 0.35(0.2) 0.4(0.05) 0.38(0.06) 0.24(0.03) 0.42(0.07) 0.47(0.08) 0.66(0.2) 0.57(0.1)
C3 0.4(0.09) 0.33(0.03) 0.32(0.1) 0.33(0.04) 0.32(0.05) 0.28(0.08) 0.4(0.08) 0.46(0.05) 0.5(0.1) 0.55(0.1)
C4 0.42(0.1) 0.3(0.05) 0.34(0.1) 0.39(0.04) 0.36(0.07) 0.2(0.1) 0.37(0.07) 0.47(0.07) 0.64(0.1) 0.53(0.08)
C5 0.51(0.08) 0.30(0.05) 0.35(0.1) 0.38(0.05) 0.37(0.06) 0.28(0.06) 0.34(0.08) 0.47(0.07) 0.63(0.2) 0.49(0.08)
C6 0.51(0.08) 0.28(0.05) 0.3(0.2) 0.38(0.07) 0.37(0.06) 0.26(0.1) 0.4(0.04) 0.49(0.07) 0.59(0.2) 0.47(0.07)
C7 0.51(0.08) 0.26(0.03) 0.3(0.2) 0.37(0.07) 0.37(0.06) 0.2(0.09) 0.39(0.07) 0.44(0.1) 0.6(0.3) 0.43(0.05)
C8 0.51(0.08) 0.23(0.03) 0.3(0.1) 0.35(0.07) 0.37(0.03) 0.23(0.06) 0.34(0.09) 0.42(0.09) 0.68(0.2) 0.43(0.05)

be determined by the treating physician.

4. Discussion

In the present study, we determined the feasibility
of developing a predictive model for postprandial hy-
poglycemia using a classification approach, given that
most of the previous studies obtained predictive mod-
els based on regression. Moreover, we introduced a
new feature to consider the risk of hypoglycemia de-
fined as the area between a given hypoglycemia thresh-
old and the CGM curve. Furthermore, we used the
same risk concept to determine different degrees of hy-
poglycemia and applied it to assign the labels in several
cases, which were evaluated under the consensus defini-
tion of hypoglycemia[2]. The generalization capability
of the proposed method was demonstrated according to

SE, SP, and MCC metrics.

The effect of using the area under the curve as a risk
definition for training models C3–C8 was also tested
under the objective definitions of Level 1 and Level 2
hypoglycemia according to the consensus standards[2],
which might seem counterintuitive because models C3–
C8 were trained using the targets generated by the risk
criterion, i.e., positive class when the area under the
threshold was above a certain limit but negative class
otherwise. However, the practical capacity of this ap-
proach was demonstrated given that in some cases, the
performance metrics obtained were similar to those ob-
tained for C2 and C1, but suitable results were also pro-
duced for P1, P2, P4, P6, P8, P9, and P10 in Level 1,
and for P1, P2, P6, P8, and P9 in Level 2. The main
limitation of this risk approach is that there are several
possible ways of defining a given risk threshold. For in-
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Table 8: Median specificity (SP) and sensitivity (SE) results obtained for the most favorable model of each patient according to hypoglycemia
Level 1 and Level 2.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Median

Level 1
SE 72 60 82 76 70 64 76 62 42 82 71
SP 85 81 79 73 73 75 78 84 97 79 79

Level 2
SE 80 74 85 77 76 80 60 66 65 85 77
SP 93 72 82 79 66 60 90 88 98 79 81
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Figure 3: ROC curve for prediction results for Level 2 hypoglycemia

stance, in this particular study, we defined the thresholds
based on the amount of hypoglycemic events that each
represented and how these numbers compared with the
targets in C2 and C1, as well as the overall distribution
of risk for each patient. Clearly, this definition is quite
flexible but it requires many experiments to achieve ad-
equate results, although we demonstrated that it might
be the fairest choice for some individuals.

Regarding the scope of the predictions, the models
were designed to employ meals to activate the predic-
tions. We used a window of 240 min after a meal/bolus
to consider a general scenario assuming a fairly regular
meal intake and a correct estimation of the carbohydrate
content. An important disadvantage of this approach is
that during the day, some patients have shorter times
between meals and the nocturnal prediction is limited
to only 4 h after dinner. Thus, a crucial improvement
would involve personalizing the prediction window ac-
cording to the behavioral patterns of each individual and
demonstrating the feasibility of adapting a model for
nocturnal hypoglycemia using a 6 h prediction window.

The results in Table 4 and Table 6 demonstrate the

acceptable performance obtained for all patients in both
scenarios, with alternative options in every case. The re-
sults obtained in this study are significant for at least two
major reasons. First, we demonstrated the feasibility
of predicting postprandial hypoglycemic events from a
classification perspective using the data from SAP com-
prising the insulin dosage, CGM measurements, and
carbohydrate intake information. This model has the
potential to become a support tool for decision mak-
ing in free-living conditions. Second, the proposed
method uses the risk as both a feature for training pre-
dictive models and as a labeling scheme, where a given
area threshold represents the severity of a hypoglycemic
event. As listed in Table 1, the number of training
examples varied significantly across patients. Despite
the expected advantage of employing more training in-
stances due to greater generalization capability, the per-
formance metrics for the patients with more instances
and those with less did not agree with the previous ex-
pectations. Moreover, we suggest that this is a reassur-
ing indication of the need for personalized models and
that fair comparisons cannot be made across individuals
in this application.
The ROC curves for each patient displayed in Figure 2
and Figure 3 represent the mean test for the most fa-
vorable model according to MCC. These curves show
an interesting contribution. Beyond the personalization
of models by the data-driven techniques, these curves
provide series of pairs [sensitivity, specificity] that can
lead to a better customization of the models, depend-
ing on the physiological response of patients to the in-
sulin therapy. Thus, for example, it would be possi-
ble to choose more sensitive models (at the cost of los-
ing specificity), for those patients who experience non-
significant post-pandrial glucose increase due to un-
necesary actions from false positives.

In addition, patient-specific bolus insulin dosage opti-
mization demands assessment of the pre-prandial calcu-
lation of the postprandial glucose levels based on an ac-
curate prediction. An on-line dosage optimization tool
is a target application that could be developed based on
the results of this study. For instance, an on-line per-
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sonalized hypoglycemia predictive model can compute
the outcome from the insulin bolus at mealtime. If the
prediction is positive, then this will be interpreted as an
excessive amount of insulin and the bolus should be re-
duced by a fraction. This new bolus amount will be part
of a new computation in the predictive model together
with the other unaffected inputs. This process should be
repeated until the prediction is a negative class, i.e., a
glucose level not below 70 mg/dL (Level 1) or 54 mg/dL
(Level 2). Other approaches could use the risk assess-
ment to simultaneously adjust the bolus and basal in-
sulin for the next few hours. Using this method, many
hypoglycemic events could be avoided but without in-
creasing the postprandial peak.

The effects of this approach are measurable. For in-
stance, the average metrics for P2 using the C2 model
evaluated for Level 2 hypoglycemia were TP = 46, TN
= 289, FP = 102, and FN = 21. The number of hypo-
glycemic events (HE) was 67, and thus 69% (T P/HE)
of these events could be avoided by using a bolus re-
duction/suspension strategy. Reducing the bolus in 148
(T P + FP) of the total meals would also lead to an in-
crease in the area under the postprandial CGM curve in
22% of the cases (FP/458) on average due to unneces-
sary treatment.

5. Conclusions

In this study, we developed a method for predicting
hypoglycemic events in the 4 h after a meal and a bo-
lus. Our feasibility study using retrospective data from
10 patients determined a median SE higher than 70%
for both hypoglycemic Level 1 and Level 2, with a low
percentage of FPs.

Our model for predicting hypoglycemia obtained sat-
isfactory performance (in terms of SE and SP) and it
allows the identification or rejection of forthcoming hy-
poglycemia in the postprandial period. The accuracy
of the results and the trade-off in terms of the perfor-
mances of the metrics allow this method to be used in
decision support systems for patients treated using an
insulin pump.

6. Summary Points

What was already known on the topic?

• Hypoglycemia is a major burden within daily life
of patients with Type 1 Diabetes. In addition, it is
a barrier to achieving normoglycemia over a life-
time of using intensive insulin therapy, thereby pre-
cluding the long-term benefits of euglycemia. Re-

peated episodes of hypoglycemia reduce the ability
of the patient to recognize its symptoms and signs.

• Previous studies employing diverse machine learn-
ing techniques showed that the field of blood glu-
cose prediction is actively growing. Nevertheless,
most of the works to date have been mainly re-
stricted to nocturnal hypoglycemia and shorter pre-
diction windows.

• Models that focus strictly on predicting particular
outcomes such as hypoglycemic events are mean-
ingful because they can be employed in decision-
support applications.

What this study added to our knowledge?

• We introduce a novel method for model training
using the hypoglycemia risk as a feature and as
class-labeling factor.

• A method for predicting postprandial hypo-
glycemia using machine learning techniques has
been developed.

• The proposed methodology provides a satisfactory
performance, which would allow it to be used in
decision support systems for patients treated using
an insulin pump or MDI therapy.

• The prediction system allows predictions of the ef-
fect of the insulin dosage for a given meal, thereby
facilitating on-line therapy decision making, such
as bolus re-estimation for insulin-dependent pa-
tients.
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Abstract 

Diabetic patients treated with intensive insulin therapies require a tight glycemic control and may 
benefit from advanced tools to predict blood glucose (BG) concentration levels and  
ypo/hyperglycemia events. Prediction systems using Machine learning techniques have mainly 
focused on applications for sensor augmented pump (SAP) therapy. In contrast, insulin bolus 
calculators that rely on BG prediction for multiple daily insulin (MDI) injections for patients are 
scarce because of insuficient data sources and limited prediction capability of forecasting models. In 
this work, we trained individualized models that can predict postprandial hypoglycemia via machine 
learning algorithms using retrospective data from 10 real patients. The median [IQR] sensitivity and 
specificity for hypoglycemia cases where the BG level was below 70 mg/dL were 0.49 [0.2–0.5] and 
0.74 [0.7–0.9], respectively. For hypoglycemia cases where the BG level was below 54 mg/dL, the 
median [IQR] sensitivity and specificity were 0.51 [0.4–0.6] and 0.74 [0.7–0.8], respectively. In 
addition, we designed and tested a bolus advising strategy for a similar in silico population. The 
advisor generates a bolus reduction suggestion as the scaled weighted sum of the predictions. We 
evaluated the general and postprandial glycemic outcomes of the in silico population to assess the 
systems capability of avoiding hypoglycemias. The results indicated a decrease of 37% in the median 
number of postprandial hypoglycemias median decrease of 44% for hypoglycemias of 70 mg/dL and 
54 mg/dL, respectively. This dramatic reduction makes this method a good candidate to be 
integrated into any Decision Support System for diabetes management. 
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3
D I S C U S S I O N

The results obtained in this dissertation showed that training per-
sonalized models is an efficient approach to cope with intra-patient
variability. In addition, Machine Learning (ML) models alone or in
combination with minimal physiological models make the mod-
els more flexible and simpler to adjust. The works presented in
the previous chapter were developed aiming to extend the predic-
tion horizon from the typical 30 min to 1 h [46], in order to deter-
mine the technical viability of forecasting glucose values/events be-
yond these prediction windows. Furthermore, the predictions were
demonstrated to be valuable both, as regression and classification
outcomes for different therapeutic options. Below, a brief discussion
for each forecasting application is presented:

3.1 personalized blood glucose prediction : a hybrid

approach using grammatical evolution and physi-
ological models

Personalized models were evolved using GE for a virtual cohort of
100 patients using the glucose-specific loss function Glucose-specific
Root Mean Square Error (gRMSE) and tested using an independent
set of data for a 120 min prediction window. The approach of this
work was hybrid, using an IOB model and a glucose rate of appear-
ance model as a pre-processing stage before the GE model. Addi-
tionally, the training and test data were split into 6h segments every
day. This allowed building specific models for every meal and the
overnight period. Another approach used in this work proposed
the training and testing of personalized models for the time period
from 2h to 6h after a meal, targeting specifically this period of time
where the chances of hypoglycemia are higher. The overall aver-
aged gRMSE for 24 h was 23.25 (mg/dL). In general, models for the
dinner segment showed the highest deviation from the true values,
with an averaged gRMSE of 33 (mg/dL) for the first approach and
29.8 (mg/dL) for the second, making this period the most challeng-
ing under both approaches. However, the evaluation of the devia-
tions under Clarke Error Grid (CEG) allowed quantifying the clinical
harmfulness of the deviations. Despite having the largest deviation
of the segments, CEG for A + B zones retained more than 98% of
the data pairs, thus, making the predictions under both approaches
clinically reliable.
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96 discussion

Removing the first 2h after the meals from the models allowed
improving the performance metrics after meals as well as increas-
ing the number of pairs in zone A of CEG. Applications for both
approaches include the optimization of the insulin Bolus and the
prevention of overnight hypoglycemia.

3.2 risk-based postprandial hypoglycemia forecasting

using supervised learning

This work demonstrated the feasibility of predicting postprandial
hypoglycemia for a prediction window of 240 min. Most of the pre-
vious works in prediction of hypoglycemic events have been de-
signed as short-term regression problems, where a ML algorithm is
trained to predict CGM values and then, those values are evaluated
according to defined thresholds for hypoglycemia. This approach
proposed the forecasting of two severity levels of postprandial hypo-
glycemia, 70mg/dL and 54mg/dL, directly as a classification prob-
lem. The use of Matthews Correlation Coefficient (MCC) as a tar-
get metric allowed merging the Sensitivity (SE) and Specificity (SP)
into a single metric that is sensible to both performance metrics.
This means that, in order to have a high MCC, both SE and SP must
be high. The target applications for this prediction scheme are SAP
and MDI decision support systems. Patients estimate the insulin bo-
lus dose based on the estimated carbohydrate content of the food
at mealtime. Carbohydrates are often overestimated and thus the
consequent overestimation of the bolus dose that can lead to post-
prandial hypoglycemia. A classifier that is able to reliably predict
hypoglycemia after a meal is a useful feature for therapy purposes.

This work proposes a classifier training scheme based on a set
of 8 labeling criteria. The labeling criteria included the formal def-
initions of hypoglycemic events using the 70mg/dL and 54mg/dL
thresholds and additionally, included a risk-based definition of hy-
poglycemia. The median specicity and sensitivity were 79% and 71%
for Level 1 hypoglycemia, respectively, and 81% and 77% for Level
2 hypoglycemia.

The risk concept was proved to be useful as some of the mod-
els demonstrated better test MCC under the risk-based training ap-
proach. Nevertheless, this approach used a specific threshold for
each case that was defined empirically after many experiments and
it adds another parameter that must be optimized along with the
hyper-parameters of the ML forecasting algorithms.

This work validated a method for training personalized classifiers
that forecast hypoglycemic episodes after meals, using the informa-
tion from the insulin pump and CGM of real patients in free-living
conditions. The results motivated the adaptation of the method for
a application in the context of MDI therapy.
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3.3 bolus advisor for machine learning based hypoglycemia forecasting 97

3.3 bolus advisor application for machine learning

based postprandial hypoglycemia forecasting

In this work, individualized models were produced to predict post-
prandial hypoglycemia using retrospective data from 10 real pa-
tients in free-living conditions. The median[IQR] SE and SP for
70mg/dL hypoglycemia were 0.49[0.2 − 0.5] and 0.74[0.7 − 0.9] re-
spectively. For 54mg/dL hypoglycemia, the median [IQR] SE and
SP were 0.51[0.4− 0.6] and 0.74[0.7− 0.8], respectively. Additionally,
a bolus advising strategy was designed. It generates a bolus reduc-
tion as the scaled weighted sum of the predictions for an in-silico
population that mimics the real population. The general and post-
prandial glycemic outcomes were assessed to determine the system
capability to avoid hypoglycemia. The median value of postpran-
dial episodes of hypoglycemia decreased 37% and 44% for 70mg/dL
and 54mg/dL hypoglycemia, respectively. From a glycemic control
perspective, the bolus intervention lead to a 9% increase in the post-
prandial peak, a 10% increase in the mean CGM and a 35% increase
in the percentage of time spent in hyperglycemia. Although these
results are far from ideal, the bolus reduction strategy was specifi-
cally designed to reduce the number of postprandial hypoglycemia
events, which is a major concern for the patient cohort of the study
and therefore justifies its use. A much more sophisticated strategy
would be required to reduce the number of hypoglycemic events
without worsening the time above 180mg/dL in MDI applications.
This study provided a methodology for bolus correction based on
the prediction of postprandial hypoglycemia, according to the risk-
based method described in the previous section. Nevertheless, this
approach targets patients under MDI therapy and therefore, the in-
puts for this method are scarce compared to those for SAP. This is
because MDI therapy is the simplest form of control in T1D and hav-
ing additional inputs in the model would make it less practical.
This work consisted in the design and test of a set of forecasting
models based on ML for a real patient cohort of 10 patients un-
der SAP therapy. The data from the CGM were used for the labeling
scheme. As expected, the test with a hold-out set gives weak results
in terms of the MCC metric. This could be attributed to the limited
information contained in the inputs of the models. Nevertheless, the
target application for this methodology is the bolus dose adjustment
for MDI patients. In this scenario, the SE and SP values achieved a
low false positive rate and a moderate to low true positive rate. The
median SE values, although are far from ideal, do not represent a
naive classifier, given the SP median values that reflect a satisfactory
false positive rate. This allows using a forecast from this method
as a bolus advising strategy, targeting the true positive cases. The
test of the robustness of this strategy was performed in a virtual co-
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98 discussion

hort that reproduced the real cohort and showed satisfactory results
in terms of the glycemic outcomes and specially, the prevention of
postprandial hypoglycemia.
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4
C O N C L U S I O N S

4.1 summary of completed work

This thesis addressed the problem of developing personalized mod-
els for mid-term BG and postprandial hypoglycemia predictions us-
ing machine learning algorithms.

The use of a glucose-specific cost function that takes into account
the clinical harmfulness of deviations makes the predictions more
reliable in terms of clinical usefulness for the GE model. In addi-
tion, results suggest that generating piece-wise models improve the
accuracy and clinical reliability of the overall model.

A method for predicting hypoglycemic events in the time win-
dow from 2h to 6h after a meal was proposed and validated using
retrospective data from 10 patients. The classification model for pre-
dicting hypoglycemia showed satisfactory performance as it allows
identifying forthcoming hypoglycemia in the postprandial period.
The accuracy of the results and the trade-off in terms of the per-
formances of the metrics allow this method to be used in decision
support systems for patients treated using SAP or MDI therapy.

Finally, a prediction-based bolus advisor was developed using a
minimal input set. Initial in silico results for a cohort of 10 patients
mimicking the retrospective data from 10 real patients demonstrate
the feasibility of a potential therapeutic use in patients under MDI
therapy. The performance of the prediction is a strong limitation for
a forecast system relying on MDI data. Nevertheless, the results ob-
tained in the proof of concept using in silico data allow this method
to be considered for decision support systems for real patients.

4.2 contributions

As a result of this thesis the following contributions have been
made:

• Literature review and analysis of the current trends in physio-
logical, data-driven and hybrid models for blood glucose fore-
casting and control.

• Adaptation of a hybrid model using grammatical evolution
and physiological models for mid-term prediction of BG. The
use of a glucose-specific loss function in the evolution of the
models is the first reported in the literature and allowed clini-
cally safe predictions.

99
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100 conclusions

• Development and validation of a personalized model train-
ing scheme for postprandial hypoglycemia prediction for SAP
and MDI users. The scheme relies on the estimation of a de-
fined risk parameter, along with the predefined 70mg/dL and
54mg/dL hypoglycemia thresholds.

• Proposal of a bolus reduction strategy based on postprandial
hypoglycemia prediction models for MDI users. The benefits
of the proposed method were assessed using a virtual cohort
mimicking a real patient cohort.

4.3 future work

The results of the research conducted in this thesis are promising
for a wide range of applications in T1D therapy. Nevertheless, the
performance and safety of the predictions can be improved further
by generating a set of interchangeable models that predict useful BG
values for control and therapy purposes based on the determination
of individual specific dynamics, lifestyle, and other factors. An ex-
tension of this work will include testing personalized BG prediction
models in a more challenging situation involving real subjects.
In the case of GE models, other grammar architectures can be ex-
plored to improve the accuracy and flexibility of the patient model.
Future studies shall include a comparative analysis that explores
the effect of grammar complexity in practical applications. In addi-
tion, there is a lack of conclusive reports on exercise models. Further
research might explore how to incorporate input signals related to
physical exercise can improve or deteriorate the accuracy of fore-
casting models.
A natural progression of the work in prediction using classifiers is
to adapt the risk-based training method to data from real patients
under MDI therapy that also wear CGM sensors. CGM data allows
the models to have much more predictive capability and therefore,
a more reliable output.
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