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Resum

L’entrellaçament és una de les principals característiques de la mecànica quàntica. És
probablement un dels fenòmens quàntics més debatuts i estudiants degut, en part, a la
seva naturalesa antiintuïtiva i, més recentment, a les seves aplicacions en el camp de la
informació quàntica. És precisament una propietat que va més enllà del que la física clàssica
pot explicar. La motivació d’aquesta tesi és estudiar l’entrellaçament en general i sota
quines circumstàncies és màxim en particular.

Primerament, analitzem el paper de l’entrellaçament en la construcció de la frontera
entre la física clàssica i la física quàntica. Els experiments de Bell ens permeten calcular una
sèrie de correladors que ens ajudaran a distingir si les partícules implicades en l’experiment
obeeixen el que es coneix com a realisme local. La violació de les desigualtats de Bell
demostra que no hi ha una teoria clàssica de variables ocultes que expliqui els resultats
de l’experiment, és a dir, la física quàntica subjacent no pot ser explicada des de la física
clàssica.

La caracterització de desigualtats de Bell per a qualsevol nombre de partícules i
dimensions locals és un problema obert en informació quàntica. En aquesta tesi, estudiem
i deduïm noves desigualtats de Bell en termes d’operadors, focalitzant-nos especialment
en aquelles que involucren qutrits. Les desigualtats per qubits són violades màximament
pels estats altament entrellaçats coneguts com a GHZ. Les desigualtats de qutrits, o altres
dimensions més grans, són violades màximament per estats que són una deformació dels
GHZ. Aquest resultat mostra l’estreta relació, però no equivalència, entre no-localitat i
màxim entrellaçament.

Seguidament, estudiem l’entrellaçament multipartit i la seva aplicació en la detecció
de transicions de fase quàntiques. En particular, estudiem l’entrellaçament entre quatre
partícules de dimensió dos, és a dir, entre quatre qubits. Com a figura de mèrit, utilitzem
l’hiperdeterminant i els dos invariants polinòmics que el formen, anomenats S i T . Analitzem
uns quants estats quàntics rellevants per acabar concloent que aquesta figura de mèrit
capta un tipus concret d’entrellaçament multipartit. Quan calculem l’hiperdeterminant en
cadenes d’espins 1/2, obtenim un pic pronunciat al voltant de la transició de fase en el
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cas del model d’Ising. En el cas del model XXZ, l’hiperdeterminant és sempre zero. En
aquest cas, utilitzem els invariants S i T . El resultat és que el valor dels invariants canvia
bruscament en els punts on hi ha transició de fase. Finalment, estudiem la funció d’ona de
Haldane-Shastry i obtenim resultats similars als del model XXZ.

En una segona part de la tesi, ens centrem en el camp de la computació quàntica.
Gràcies als avenços que s’han dut a terme en els darrers anys en relació al control dels
àtoms, fotons i processos quàntics en general, la computació quàntica ha esdevingut una
realitat. Actualment, diverses empreses estan en procès de construcció dels seus propis
ordinadors quàntics. Per aquest motiu, es fa necessària la recerca de mètodes per testejar i
comparar aquests primers prototips d’ordinadors.

Per una banda, proposem i testegem un mètode que consisteix en la simulació exacta del
model d’Ising. Aquest model es pot resoldre analíticament, per tant, els resultats obtinguts
d’un ordinador quàntic els podrem comparar amb el seu valor teòric. Proposem un circuit
quàntic que diagonalitza l’Hamiltonià d’Ising i que, per tant, fa possible la simulació en
el temps i la preparació d’estats tèrmics. Testegem aquest circuit pel cas d’una cadena
formada per quatre espins en els ordinadors que ofereix la multinacional IBM i l’empresa
Rigetti Computing. Els resultats difereixen notablement del valor teòric esperat tot i que
els valors dels temps de decoherència i la fidelitat de les portes haurien de fer possible uns
resultats millors. Això fa pensar que hi ha altres fonts d’errors que no es tenen en compte
en general i que clarament cobren rellevància fins i tot en circuits tan petits.

Per altra banda, proposem un test tant dur com necessari per a un ordinador quàntic:
la simulació d’estats altament entrellaçats. S’ha demostrat que l’avantatge dels algorismes
quàntics respecte als clàssics recau principalment en la generació alta d’entrellaçament en
algun moment de l’algorisme. A més, estats de baix entrellaçament poden ser simulats de
forma eficient amb tècniques clàssiques. Si volem construir ordinadors quàntics i que ens
siguin útils per realitzar aquelles tasques que els clàssics no poden dur a terme, necessitarem
que aquests dispositius puguin generar i suportar estats altament entrellaçats. La nostra
proposta és simular estats absolutament màximament entrellaçats, és a dir, estats on totes
les seves biparticions estan màximament entrellaçades. Presentem els circuits explícits
per realitzar aquestes simulacions tant per qubits com per qudits de dimensió més gran
que dos. A més, també analitzem com l’entropia de cada bipartició sempre augmenta o es
manté, mai disminueix, i utilitzem aquesta propietat per trobar els circuits més òptims, és
a dir, amb un menor nombre de portes quàntiques.

Finalment, ens centrem en l’origen més fonamental de l’entrellaçament: els processos
de partícules elementals. Estudiem quina ha de ser l’estructura de la interacció de QED
per tal de poder generar estats màximament entrellaçats en termes de les helicitats de les
partícules sortints. El resultat demostra que, a primer ordre en teoria de pertorbacions, la
interacció de QED es recupera imposant màxim entrellaçament. També estudiem quines
implicacions té aquesta imposició en processos que involucrin corrents dèbils neutres. El
resultat a primer ordre és que el valor de l’angle de Weinberg ha de ser de π/6, molt proper
al valor experimental. Per últim, estudiem un exemple d’interacció forta: la interacció
gluó-gluó. El resultat és que els gluons es poden entrellaçar màximament independentment
dels valors de les constants d’estructura, per tant, no podem obtenir més informació sobre
la interacció mitjançant aquesta conjectura de màxim entrellaçament.
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1. Introduction

When two systems [...] enter into temporary physical
interaction due to known forces between them, and when
after times of mutual influence the systems separate
again, then they can no longer be described in the same
way as before [...]. I would not call that one but rather
the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of
thought. By the interaction the two representatives (or
ψ-functions) have become entangled.

–Erwin Schrödinger,
“Discussion of probability relations between separated

systems”, 1935.

Entanglement is a quantum phenomenon that occurs when two or more quantum
systems cannot be described independently from the others. In a sense, entanglement is
an example of a quantum correlation, where once we have collapsed the wave function of
one part of the system, the state of the other is determined by the result on the first one.
Indeed, even if the two or more systems are separated by a spacelike distance, the result
after the collapse of one of them determines the result of the other. This is probably one of
the most striking traits of quantum mechanics that has generated a huge amount of both
interest and discussion.

One can be tempted to believe that it is possible to use this apparent instant action – or,
in Einstein’s words, “spooky action at a distance” – to communicate information faster than
light. However, there is no way for an observer that performs one of the measurements to
elucidate if her result has been obtained randomly, according to wave function probability
amplitudes, or is a consequence of the collapse of the other observer. They have to
communicate with each other and ask which one has performed the measurement first,
that is, using a classical communication channel which, of course, obeys causality. Then, it
is not possible to use entanglement to communicate faster than light and the explanation
of what has really happened before and after the measurements are performed remains in
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the field of interpretation of quantum mechanics. In the end, the quantum wave function,
entangled or not, is a mathematical object that we use to describe the information of a
system.

Several experiments have highlighted the fact that entanglement is a genuine quantum
property that goes beyond any classical description. The violation of Bell inequalities
shows that there is no hidden variable theory that allows explaining the correlations
that entanglement predicts [1]. It is not possible to describe quantum mechanics using
classical laws. Entanglement is also phenomena that involve the whole system itself; local
operations on each subsystem does not change the amount of entanglement. This fact
cannot be remedied by using classical protocols; it has been proved that Local Operations
and Classical Communication (LOCC) methods cannot change the entanglement of a
system [2].

One may expect that such a distinctive trait of quantum mechanics have several
physical applications. Indeed, entanglement can also be understood as the resource that
enables genuine quantum protocols such as cryptography based on Bell inequalities [3] and
teleportation [4]. In addition, large entanglement is expected to be present in quantum
registers when a quantum algorithm produces a relevant advantage in performance over a
classical computer such as Shor’s algorithm [5].

The quantification of entanglement for any number of parties is an open problem
in quantum physics. The natural growth of complexity in the study of multipartite
entanglement is illustrated in the example of four-party entanglement by the existence
of 9 Stochastic LOCC classes of pure 4-qubit states [6]. Then, it is not surprising the
existence of multiple non-equivalent figures of merit to quantify multipartite entanglement
[7–9]. Among all of them, the most well-known is probably the Von Neumann entropy. For
a bipartite system, maximal entropy and maximal entanglement are equivalent and are
usually used indistinctly. This is the ideal case, where the maximum value of the figure of
merit corresponds with the maximal entanglement. However, this fact is not reproduced in
the multipartite case, where different figures of merit have different values for the same
state. For that reason, there is a seek for a formal definition of a “maximal entangled”
state. A proposal is the Absolutely Maximally Entangled states, those states that are
maximally entangled in all their bipartitions.

Entanglement is a key property of quantum mechanics and, consequently, it plays an
important role in Nature. In order to observe quantum phenomena of this kind, Nature
should be able to generate entangled states. It is then natural to ask ourselves how
entanglement is generated at its most fundamental level, i.e. at the level of fundamental
interactions. Violation of Bell inequalities has been proved with entangled photons that
have been generated, at its most fundamental level, by a matter-light interaction.

The aim of the present thesis is to address several studies where entanglement is
present and plays a central role. This thesis deals with examples of applications and open
problems described in the above paragraphs. In Chapter 2, we present Bell inequalities
for multipartite systems of local dimension 2 (qubits) and also dimension 3 (qutrits). In
Chapter 3, we analyse four-partite entanglement in spin chains using as a figure of merit the
hyperdeterminant. In Chapter 4, we perform an experiment in a real quantum computer
consisting of the exact simulation of the XY model. In Chapter 5, we propose quantum
circuits that generate Absolutely Maximally Entangled states of any dimension. Finally,
in Chapter 6, we analyse the generation of maximal entanglement in particle physics and
its implications in the determination of the interaction structure. The conclusions of this
thesis are exposed in Chapter 7. Moreover, supplementary material can be found in the
appendices. Appendix A provides a summary of quantum gates and quantum circuits.
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Appendix B summarizes the conventions used in Chapter 6 and the set of Feynman rules
used to do the amplitudes computation. In appendix C it can be found an exhaustive
analysis of entanglement generation in all tree-level QED processes. Some extra material
resulting from the other chapters is written in the appendix D.





2.Novel Bell Inequalities

...what is proved by impossibility proofs is lack of
imagination.

–John S. Bell,
“On the impossible pilot wave”, 1982.

On 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published an article
that directly defied the young theory of quantum mechanics [10]. On their paper, “Can
quantum-mechanical description of physical reality be considered complete?”, they proposed
a gedankenexperiment which demonstrated that quantum physical theory is not complete
by identifying elements of reality that were not included in the main theory. According to
their definition

If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity.

Many physicists discussed this statement and its implications [11–13]. In order to
explain the results obtained from quantum mechanical experiments, it was necessary to
assume a local hidden variables theory, that is, to introduce unknown variables that assure
the local realism behavior that should underlie these results. It was almost thirty years
later when a new article appeared and became the milestone of this discussion. John S.
Bell’s paper “On the Einstein Podolsky Rosen paradox” proposed a real experiment to test
whether or not Nature behaves as expected from the EPR point of view.

Bell’s original experiment predicts an upper bound for a linear combination of correlators
between some measurements performed by three observers. This upper bound is computed
according to the laws of classical physics; to be precise, according to a local realistic theory.
If we perform this experiment and we find a violation of this inequality, then Nature, in
particular quantum mechanics, can not be described by the laws of classical physics.

After Bell, many other scientists proposed Bell-type inequalities. In particular, Clauser
and Horne – and, afterward, together with Shimony and Holt – proposed a more experimentally
realizable Bell experiment [14, 15]. Almost fifty years after EPR’s paper, experimentalists
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obtained strong evidence that local hidden variables theories were ruled out [1]. However,
there are still open issues related with how these experiments are performed and that could
invalidate partially the results obtained. These list of open issues are called loopholes, but
as the technology is improving, more of them are being closed. In fact, there are already
experiments that claim that have closed all “closeable” loopholes [16].

Both Bell original and CHSH inequalities involve two observers that can perform a
measurement with two different settings obtaining two possible outputs. However, it is
necessary to test other more sophisticated systems, namely those involving more parties or
with more possible outcomes. There have been numerous attempts to go beyond the CHSH
inequalities. Mermin introduced a set of inequalities for an arbitrary number of qubits that
were maximally violated by the GHZ state [17, 18]. A systematic mathematical treatment
of these inequalities was carried out a decade later [19, 20]. It was also at that time that
inequality for two d-dimensional particles was discovered [21] and with it came the first
realization that maximally entangled particles did not always maximally violate a Bell
inequality [22]. This fact showed that entanglement was not in a one-to-one correspondence
with non-locality. Progress in generalization to a larger number of d-dimensional particles
has been more modest [23, 24]. For a general review of Bell nonlocality see Ref. [25].

In this chapter, we construct Bell inequalities for systems composed of several subsystems
with more than two levels each. In particular, we focus our attention on quantum systems
consisting of qutrits. Inequalities for three outcomes have been written in terms of
probabilities, although they can also be treated with expectation values [26, 27]. We
have extended this formalism in order to build new inequalities for three outcomes and
a different number of parties and find its classical and quantum bounds for qutrits in
a semi-systematic way. We have found some regular patterns for the coefficients of the
inequalities and for the settings and states that maximally violate these inequalities. This
mechanism is potentially generalizable to other dimensions.

After this introduction, we start with a short summary of what is understood as a
Bell experiment. In Sec. 2.2, 2.3 and 2.4 we review some well-known Bell inequalities
and deduce them with a different approach. We use this new formalism to extend these
inequalities to a larger number of parties and to find which are the optimal settings that
violate maximally these inequalities. In Sec. 2.5 we propose a novel method to obtain
Bell inequalities from maximally entangled states and show three examples. Finally, the
conclusions and some open questions are written in Sec. 2.6.

2.1 Bell experiment
A typical Bell experiment involves two or more systems (A, B, C, ...) that have interacted
in the past – for instance, they have a common origin – have been separated a large distance
and are measured by independent observers. These observers can perform a measurement
of some physical quantity, for example, particles spin or photon polarization, in different
ways. For instance, they can choose between two or more settings that project in two
different directions. As a result of each measurement, the observers obtain an output
labelled with a macroscopic value. Observer of system A, let’s call her Alice, obtains a
outcome if she measures with one of the settings and a′ output if she measures with another
setting. Similarly, observer B, called Bob, obtains b or b′ outputs, observer C, Charlie,
obtains c and c′ outputs, etc. After repeating the experiment many times, Alice, Bob and
their possible colleagues compare their results and compute the expected value of all pair
of measurements, i.e. 〈ab〉, 〈ab′〉, etc. Here we label the setting using the same letter as
the corresponding output in an abuse of language. A Bell inequality is a linear relation
between these expected values that predicts an upper bound if the system follows the laws
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of local realism.
In the above experiment, the notion of locality refers to the fact that the outcomes

obtained do not depend on the measurement settings performed by the other observers.
For instance, the result if Alice obtains +1 when she measures with the first setting is
independent of the setting Bob has chosen to measure his subsystem. On the other hand,
realism is included in the assumption that measurement outcomes depend only on the
setting used and on hidden variables λ. These hidden variables could be a list of values or
stochastic variables.

A violation of a Bell inequality implies that one or both assumptions, locality or realism,
are false, and this is actually what happens when Bell experiments are performed on
quantum mechanical systems.

Let’s formalize the description of a Bell experiment. When Alice and Bob measure
with the first setting, the outputs obtained could depend on some probability distribution.
Moreover, we can expect that the results of two measurements are in general dependent,
i.e.

p(a, b) 6= p(a)p(b), (2.1)

since both systems have interacted in the past. However, if we assume local realism, we
should be able to find a description of these events in terms of some variables λ that give
an explanation of the results obtained. These hidden variables represent the elements of
reality that EPR mentioned in their article. Then, under this assumption,

p(a, b;λ) = p(a;λ)p(b;λ). (2.2)

These hidden variables can follow a probabilistic distribution q(λ) which should be
independent on the settings used if we assume locality, i.e. q(λ; a, a′, b, b′...) = q(λ).
Thus we can compute the result of each experiment as

p(a, b) =
∫
dλq(λ)p(a;λ)p(b;λ). (2.3)

Notice that the very entanglement definition contradicts Eq. (2.3) since it is not
possible to factorize an entangled state into its subsystems. So, although non-locality and
entanglement are not equivalent definitions [25, 28, 29], entanglement will be closely related
to the violation of a Bell inequality.

In the following sections, we will study Bell inequalities involving multiple parties,
settings and dimensions. In particular, we are interested in the operational formulation of
these inequalities and the maximal values that they can achieve from a local realism point
of view (LR) or a quantum mechanical point of view (QM). For the last one, each setting
will be represented by a quantum mechanical operator such that

â =
d−1∑
i=0

ai|ai〉〈ai|, (2.4)

where d is the local dimension (d = 2 for qubits, d = 3 for qutrits, ...) and ai are the
possible outcomes. Similarly, we can write the operators for the other settings: â′, b̂, b̂′,
etc. To simplify the notation, we will consider indistinctly a, a′, b, etc., labels as operators
and as outcomes as well so, for now on, we will avoid the use of hats to write the quantum
operators. In this formulation, the Bell inequality becomes an operator and its upper
bound corresponds with its maximum expected value.
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Definition 2.1.1 — Bell operator. A Bell operator of n parties, s settings and d possible
outputs per setting will be denoted as Bnsd. The maximum expected value of this
operator according to a local realism theory is 〈B〉LR and according to quantum mechanics
〈B〉QM.

The maximum value of the Bell inequality corresponds with the larger eigenvalue of this
operator which, for a fixed n and d, depends on the settings choice. Thus, we will look for
the optimal settings that lead to this maximum value.

2.2 Bell inequalities for two outcomes
Let’s start with Bell inequalities with two possible outcomes, that is those inequalities
applied to qubit states (see App. A). We will also consider two settings for each party, i.e.
we will study Bell inequalities of the form Bn22.

2.2.1 Two parties
The most relevant Bell inequality for two outcomes is the one proposed by Clauser, Horne,
Shimony and Holt [15]:

E(BCHSH) = E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′), (2.5)

where the two possible outcomes measured with the two settings are a, a′ = ±1 for
subsystem A and and b, b′ = ±1 for subsystem B. The function E(a, b) represents the
correlation, classical or quantum, between a and b measurements and it will be estimated
after A and B observers have repeated many times the experiment.

The local realism bounds of this inequality are

−2 ≤ E(BCHSH) ≤ 2 . (2.6)

We can write the above inequality in the following way:

BCHSH = a
(
b+ b′

)
+ a′

(
b− b′

)
, (2.7)

where we have removed the correlation function for simplicity. One can easily notice that
when b+ b′ are maximum, i.e. have a value of 2, then b− b′ vanish, obtaining the expected
LR bound for the inequality.

In quantum mechanics, the variables a, a′, b and b′ are represented by Hermitian
operators acting on the Hilbert spaces HA and HB. The expected value of these operators
is E(a, b) = 〈ψ|a⊗ b|ψ〉 = 〈a⊗ b〉, where |ψ〉 is the quantum state of the whole system. For
the properties of the expected values of quantum systems, 〈a⊗ b〉 = 〈a〉⊗ 〈b〉 allowing us to
write the CHSH inequality in the same form as in Eq. (2.7). In addition, for simplicity, we
will not write the Kronecker product between quantum operators nor the bracket notation
for expected values.

It was proven by Cirel’son that the maximum quantum value for 〈BCHSH〉 is 2
√

2, so
CHSH inequality is violated by quantum mechanics.

An enlightening computation of classical an quantum bounds of this inequality was
given in Ref. [30]. The squared of the Bell operator BCHSH can be written as

B2
CHSH = 4I− [a, a′][b, b′] , (2.8)

where I = IA ⊗ IB and a2 = a′2 = b2 = b′2 = I due to these operators represent dichotomic
observables. For LR, i.e. classical physics, observables commute, so the classical bound
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obtained is 〈BCHSH〉LR =
√

4 = 2. On the contrary, the largest absolute value of all
possible eigenvalues for commutators of Hermitian operators of dimension 22 is 2 and it is
achieved by considering the Pauli matrices, the generators of SU(2). Pauli matrices have
the property [σi, σj ] = 2εijkσk, so taking

[a, a′][b, b′] = [σi, σj ][σjσi] = (2εijkσk)(2εjikσk) = 2σk(−2σk) = −4 , (2.9)

the expected value of Bell operator become 〈BCHSH〉QM =
√

8 = 2
√

2, as expected from
Cirel’son result.

To compare the LR and the QM bound we will define the following ratio:

Definition 2.2.1 — Bell ratio. Given the maximum expected values 〈B〉QM and 〈B〉LR,
the Bell ratio is defined as

R(B) ≡ 〈B〉QM
〈B〉LR

. (2.10)

This ratio quantifies the strength of the inequality generated by the Bell operator B.
Note that a Bell inequality is characterized by the ratio R(B) > 1. For example, for the
CHSH inequality we have R(B) >

√
2. Although we will focus on the study of this ratio,

there exist other measures to compare classical and quantum values of a Bell inequality.
Other works analyze the p value [16] or the Kullback-Leibler relative entropy [31].

2.2.2 Three parties
For three parties, we first construct the most general symmetric Bell operator

B322 = z0(abc) + z1(abc′ + ab′c+ a′bc) + z2(ab′c′ + a′bc′ + a′b′c) + z3(a′b′c′), (2.11)

where ~z = (z0, z1, z2, z3) ∈ R. For ~z = (0, 1, 0,−1), the above inequality becomes the
three-qubit Mermin operator [32]

M3 = abc′ + ab′c+ a′bc− a′b′c′. (2.12)

Taking the square of M3,

M2
3 = 4− ([a, a′][b, b′] + [a, a′][c, c′] + [b, b′][c, c′]), (2.13)

allows us to obtain the classical value 〈M3〉LR = 2 and the quantum value 〈M3〉QM = 4
since each commutator can achieve a maximum absolute value of 2. Remember that we
avoid to write identities and Kronecker products; the above expression involve three parties,
so when one or more parties do not appear in the expression, an identity operator should
be assumed, meaning the corresponding observer do not perform any measurement.

A different set of coefficients was proposed by Svetlichny [33]. The choice ~z = (1, 1,−1, 1)
leads to the operator

S3 = abc+ abc′ + ab′c+ a′bc− (ab′c′ + a′bc′ + a′b′c) + a′b′c′, (2.14)

which square form becomes

S2
3 = 8− 2([a, a′][b, b′] + [a, a′][c, c′] + [b, b′][c, c′])− {a, a′}{b, b′}{c, c′}. (2.15)

Note that this squared operator includes both commutators and anticommutators. For
Pauli matrices {σi, σj} = 2δij , so a maximal value for the commutator implies a minimum
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value for the anticommutator, and vice versa. The commutators vanish while estimating
the classical value and 〈S3〉LR = 4. For the quantum value the optimal case occurs when
the commutators take the maximum amplitude ±2 and the anticommutators vanish, i.e.
〈S3〉QM = 4

√
2. The ratios for the Bell operators of Eqs. (2.12) and (2.14) are given by

R(M3) = 2 and R(S3) =
√

2 . (2.16)

It is known that Mermin inequality generated by the Bell operator (2.12) can be violated
by biseparable states, whereas Svetlichny inequality defined by the operator (2.14) can not.
Bell inequalities generated by operators like S3 are called multipartite Bell inequalities.
This topic is analysed in detail by Collins et. al. [34].

These inequalities are already well tested experimentally. Violation of M3 inequality
has been reported in Ref. [35, 36]. Violation of S3 inequality has been reported in Ref.
[37].

2.2.3 Multipartite inequalities: Mermin polynomials
There exists an entire family of n-qubit inequalities first discovered by Mermin [17, 19]. Let
us change the notation of observables {a, b, c...} ≡ {a1, a2, a3...}, which is more convenient
to treat the multipartite case.

Definition 2.2.2 — Mermin Polynomials. Defining M1 ≡ a1, the Mermin polynomials are
obtained recursively as

Mn = 1
2Mn−1(an + a′n) + 1

2M
′
n−1(an − a′n), (2.17)

where M ′k is obtained from Mk by interchanging an and a′n observables.

In particular, we have

M2 = 1
2
(
a1a2 + a′1a2 + a1a

′
2 − a′1a′2

)
, (2.18)

M3 = 1
2
(
a1a2a

′
3 + a1a

′
2a3 + a′1a2a3 − a′1a′2a′3

)
, (2.19)

which are actually the Bell polynomial of CHSH inequality (Eq. (2.7)) and the three-Mermin
polynomial introduced in Eq. (2.12) up to a constant factor.

It was proven in Ref. [38] that all Mermin operators have a square form composed by
the identity and commutators. Let us now proceed with our version of the proof. The
square of Mermin operators can be written in terms of commutators and anticommutators
as

M2
n = 1

4
(
M2
n−1(2 + {an, a′n}) +M ′2n−1(2− {an, a′n})− [Mn−1,M

′
n−1][an, a′n]

)
,

(2.20)

M ′2n = 1
4
(
M ′2n−1(2 + {an, a′n}) +M2

n−1(2− {an, a′n})− [Mn−1,M
′
n−1][an, a′n]

)
.

(2.21)

Furthermore, as M2
1 = M

′2
1 = 1 and assuming it is true for M2

n = M
′2
n , for n+ 1:

M2
n+1 = 1

4
(
4M2

n − [Mn,M
′
n][an+1, a

′
n+1]

)
,

M ′2n+1 = 1
4
(
4M ′2n − [Mn,M

′
n][an+1, a

′
n+1]

)
,

⇒M2
n+1 = M ′2n+1 . (2.22)
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So we have proved by induction that M2
n = M

′2
n for every n. Therefore, Eq. (2.20) can be

simplified to

M2
n = M2

n−1 −
1
4[Mn−1,M

′
n−1][an, a′n], (2.23)

and from the definition 2.2.2,

[Mn−1,M
′
n−1] = [Mn−2,M

′
n−2] +M2

n−2[an−1, a
′
n−1] . (2.24)

Given that [M1,M
′
1] = [a1, a

′
1] every operatorM2

n can be expressed as a sum of products
of an even number of commutators. Thus the operator M2

n reads

M2
n = 1 +

[n2 ]∑
s=1

(−1)s

22s

∑
ij∈D

2s∏
j=1

[aij , a′ij ], (2.25)

where D is the set of n operators taken in groups of 2s elements. This result is implicitly
presented in Ref. [19]. The classical and quantum values arise immediately. On one
hand, 〈Mn〉LR = 1, as the second term in Eq. (2.25) is always zero due to the presence
of commutators. On the other hand, for the quantum value every commutator takes ±2,
conveniently chosen to maximize the quantum value. Thus,

〈M2
n〉QM = 1 +

(
n

2

)
+
(
n

4

)
+ · · · = 2n−1. (2.26)

The quantum value for Mn is, therefore, 〈Mn〉QM =
√
〈M2

n〉QM = 2
n−1

2 , which matches the
rate computed by Werner and Wolf [19]. Let us note that when computing this last step it
is assumed that the maximum eigenvalue of a sum of matrices is equal to the sum of the
maximum eigenvalues, a fact that is not true in general but is true in this case.

The optimal states for the Mermin inequalities are the GHZ states [17, 19]. For n = 2, 3
these states can be considered as maximally entangled. However, for n ≥ 4 it is not the
case [39, 40] if one considers the mean entropy of a reduced density matrix, averaged
over all possible choices of [n/2] subsystems, which define the reduced state ([·] denotes
the integer part of a number). Therefore, Mermin inequalities provide an example for
which the maximal violation does not correspond to maximally entangled states. Let us
mention that the experimental violation of Mermin inequalities has been verified up to 14
qubits with ion traps [41] and the M3,M4 and M5 cases have been implemented on a 5
superconducting qubits quantum computer designed by IBM [42].

2.3 Bell inequalities for three outcomes
In this section we present Bell inequalities for three outcomes and two settings, i.e. Bn23.
These inequalities are applied to qutrit states, i.e. quantum states of local dimension 3. We
can study the quantum mechanical violation of Bell inequalities by Hermitian operators,
as we did for two outcomes, or by simply unitary operators. By considering the last, we
assume complex outcomes associated to the third root of unity. In this way, settings turn
from Hermitian to unitary operators with eigenvalues {1, ω, ω2}, where ω = exp(2πi/3).
Note that for qubits the Pauli matrices are both Hermitian and unitary, while for qutrits a
choice between one of these properties has to be made. This particular choice could seem
odd since it implies that we are measuring complex values. However, any operator that
can be expressed as a linear combination (with real or complex coefficients) of rank one
projectors forming a POVM allows for a physical interpretation.
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2.3.1 Two parties with Hermitian operators
Let’s start with a Bell inequality written in terms of Hermitian operators as a natural
generalization of the two outcomes Bell inequality.

Collins et al. proposed a Bell inequality for two parties, two settings and d outcomes,
i.e. B22d, known as CGLMP inequality [21]. The violation of these inequalities have been
verified experimentally [43]. In the case of three outcomes, the inequality is given by

p(a = b) + p(b = a′ + 1) + p(a′ = b′) + p(b′ = a)
−
(
p(a = b− 1) + p(b = a′) + p(a′ = b′ − 1) + p(b′ = a− 1)

)
≤ 2 , (2.27)

where a, a′, b, b′ = 0, 1, 2 and the sum inside probabilities is modulo d = 3. Unlike the Bell
inequalities introduced in the previous section, CGLMP is given in terms of probabilities
instead of expected values of operators. However, it is straightforward to write the above
inequality with operators. First, it is convenient to write it again but for different outputs
choice, in particular a, a′, b, b′ = −1, 0, 1:

p(a+ b = −1) + p(a+ b′ = 0) + p(a′ + b = 0) + p(a′ + b′ = −1)
−
(
p(a+ b = 1) + p(a+ b′ = 1) + p(a′ + b = 1) + p(a′ + b′ = 1)

)
≤ 2 . (2.28)

Then, we apply the definition of an expected value and take into account that probabilities
should be normalized,

a ≡ 〈a〉 = (+1)p(a = 1)+(0)p(a = 0)+(−1)p(a = −1) = p(a = 1)−p(a = −1),
a2 ≡ 〈a2〉 = (+1)2p(a = 1)+(0)2p(a = 0)+(−1)2p(a = −1) = p(a = 1)+p(a = −1),
1 ≡ 〈I〉 = p(a = 1)+p(a = 0)+p(a = −1). (2.29)

Finally, as stated by Bell’s hypothesis, the measurements by two observers are independent,
e.g. p(a = b−1) = p(a = 0)p(b = 1) +p(a = 1)p(b = −1) +p(a = −1)p(b = 0). So CGLMP
inequality for three outcomes can be represented by the Bell operator

B223 = 2− 3(a2 + b′2) + 9
4
(
a2b2 − a′2b2 + a2b′2 + a′2b′2

)
+ 3

4
(
ab+ a2b− a′b− a′2b− ab2 + a′b2 + ab′ − a2b′ + a′b′ + a′2b′ + ab′2 − a′b′2

)
.

(2.30)

Notice that this Bell operator includes the square of settings operators. As the local
dimension is 3, any operator O fulfills O2 6= 1 and O3 = I, so the complete basis needed is
{I,O,O2}.

The optimal settings are computed using the method described in Ref. [21, 22] which
consist on applying a phase matrix which components are U(θ)ii = eiθi and U(θ)ij = 0
followed by a Fourier transform and maximize numerically 〈B〉QM to obtain the optimal
θi. This method is summarized in App. D and the values found for this inequality
are ~θa = ~0, ~θa′ = (0, π/3, 2π/3), ~θb = (0,−π/6,−π/3) and ~θ = (0, π/6, π/3)b′ . The
corresponding maximal violation found is 〈B〉QM = 2(5 − γ2)/3 ' 2.92 for the optimal
state |ψ〉 = (|00〉+ γ|11〉+ |22〉)/

√
2 + γ2 where γ = (

√
11−

√
3)/2 ' 0.79. The violation

rate for this quasi-Bell state reads R223 = (5 − γ2)/3 ' 1.46. In Ref. [22] the ratios for
CGLMP inequalities are found up to d = 8 levels.

The optimal settings can be conveniently expressed in terms of the eight Gell-Mann
matrices λi, the traceless generators of SU(3) [44] that are defined in App. B. The optimal
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settings for the Bell inequality B223 are

A = B = λ3 ,

A′ = B′ = 2
3 (λ1 + λ6) + 1

6
(
λ3 +

√
3λ8

)
, (2.31)

where we have used capital letters to remark that these are the settings that lead to the
maximal violation of the inequality.

2.3.2 Two parties with unitary operators
The Bell operator of Eq. (2.30) has a rather long and unenlightening form. In this
section, we consider a different form of this inequality by using unitary non-Hermitian
operators. Any operator O can be decomposed into its Hermitian and anti-Hermitian
part, i.e. O = OH + iOA where OH = 1

2

(
O +O†

)
and OA = 1

2i

(
O −O†

)
are Hermitian

operators and, therefore, have real eigenvalues. Similarly, we can apply the same definition
to Bell operators.

Definition 2.3.1 — Hermitian and anti-Hermitian Bell operators. Given a Bell operator B,
we can decompose it into its Hermitian and anti-Hermitian parts,

BH ≡
1
2
(
B + B†

)
, BA ≡

1
2i
(
B − B†

)
, (2.32)

each one having real eigenvalues.

It turns out that B223 operator of Eq. (2.30) can be written in a more elegant form by
using the anti-Hermitian part of a non-Hermitian operator,

B′223 =
[
a(ωb− b′) + a′(ωb′ − b)

]
A . (2.33)

This form appears to be a direct generalization of the CHSH operator (2.7) with different
signs and relative phases added. One can check that if one of the terms reaches the
maximum value

√
3, the other one is forced to be zero. The classical and quantum values

ar 〈B′223〉LR =
√

3 ' 1.73 and 〈B′223〉QM = (
√

3 +
√

11)/2 ' 1.45, and the ratio is given
by R(B′223) = (5− γ2)/3 ' 1.46. The violation rate is therefore the same as for CGLMP
inequality as expected, because it is the same inequality albeit written in a different
language.

Let us now find the optimal settings for the operator of Eq. (2.33). The convenient
representation for unitary operators are the generalized Pauli matrices which form the
Weyl-Heisenberg group. For d = 3 these matrices are

X =

0 0 1
1 0 0
0 1 0

 , Z =

1 0 0
0 ω 0
0 ω ω2

 . (2.34)

An orthonormal basis is given by the nine elements

XjZk =
2∑
i=0
|i+ j〉ωik〈k| . (2.35)

By numerical optimization we found that the optimal settings are

A = B = X ,

A′ = B′ = 1
3
(
−X + 2ωXZ + 2ω2XZ2

)
. (2.36)
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In matrix notation, A′ has a simple structure

A′ =

 0 0 1
−1 0 0
0 −1 0

 . (2.37)

The optimal settings for all the complex CGLMP inequalities, when take the form {A =
B = X,A′ = B′}, are called multiplets of optimal settings (MOS) and are briefly described
in App. D. The d dimensional CGLMP inequalities are discussed in more detail in Sec.
2.4.

Let us investigate the square of the operator B223 introduced in (2.30). Making use of
the identity for the Hermitian and anti-Hermitian parts of an operator O,

(OA)2 = 1
4(OO† +O†O)− 1

2(O2)H , (2.38)

it is easy to show that B223B†223 has an interesting structure:

B223B†223 = 3 + (1 + {{a, a′}})(1 + {{b, b′}}). (2.39)

Here we call {{a, a′}} complex anticommutator :

{{a, a′}} = aa′† + a′a†, (2.40)

and attains its maximum value 2 both for MOS and Mutually Unbiased Bases (for details,
see App. D). However, its classical value can also be equal to 2 by using a = a′ = 1. Thus
the form (2.39) does not allow us to distinguish between classical and quantum values.

2.3.3 Three parties
A three-party Bell inequality was proposed by Acín et al. in Ref. [23]. In the probability
formalism it reads

p(a+ b+ c = 0) + p(a+ b′ + c′ = 1) + p(a′ + b+ c′ = 1) + p(a′ + b′ + c = 1)
− 2p(a′+ b′+ c′ = 0)− p(a′+ b+ c = 2)− p(a+ b′+ c = 2)− p(a+ b+ c′ = 2) ≤ 3 .

(2.41)

The analysis here is very similar to the CGLMP case: the maximal violation is given
by a quasi maximally entangled state |ψ〉 = (|000〉 + δ|111〉 + |222〉)/

√
2 + δ2, where

now δ ' 1.186. The quantum value is approximately 4.37 and the violation rate is
R = (5 − γ2)/3 ' 1.46, the same as for 2 qutrits. The corresponding Hermitian Bell
operator has a rather long form, so we will not reproduce it here.

The optimal settings can be expressed in terms of the Gell-Mann matrices as

A = B = C = λ3,

A′ = B′ = C ′ = 1√
3

(λ2 + λ4 + λ6). (2.42)

Let us now consider the case of unitary settings having complex eigenvalues. The
Bell operator associated to inequality (2.41) can be expressed as the Hermitian part of an
operator,

B333 = 1 + 2
3
[
abc+ 2a′b′c′ + ω(a′b′c+ a′bc′ + ab′c′)− ω2(a′bc+ ab′c+ abc′)

]
H
.

(2.43)
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One can also drop the additive and multiplicative terms and study the simplified operator

B′333 =
[
abc+ 2a′b′c′ + ω(a′b′c+ a′bc′ + ab′c′)− ω2(a′bc+ ab′c+ abc′)

]
H
. (2.44)

Here, the classical value is 〈B′333〉LR = 3 and the quantum value is 〈B′333〉QM = (3/4)(1 +√
33) ' 5.058, which yields to the ratio R(B′333) = (1/4)(1 +

√
33) ' 1.686. The optimal

settings are given by

A = B = C = X,

A′ = B′ = C ′ = Z. (2.45)

Note that the settings are mutually unbiased (see App. D). Now the violation rate is
greater because the additive constant term has been eliminated. This appears somewhat
arbitrary but it is more convenient to compare inequalities for two and three qutrits without
additive terms. In this way, it is expected that the rate of violation increases with the
number of particles, as it happens for qubits.

Intriguingly, the 3-qutrit operator (2.44) can be derived from the 2-qutrit CGLMP
operator (2.33) and adding a third party such that the resulting 3-qutrit operator is
symmetric. Starting from Eq. (2.33),[

ω(ab)− (a′b+ ab′) + ω(a′b′)
]
A ≤
√

3,[
−i(ω(ab)− (a′b+ ab′) + ω(a′b′))

]
H ≤

√
3,[

ω2 − ω√
3

(ω(ab)− (a′b+ ab′) + ω(a′b′))
]
H

≤
√

3,[
(1− ω2)(ab) + (ω − ω2)(a′b+ ab′) + (1− ω2)(a′b′))

]
H
≤ 3,[

(ab)− ω2(ab+ a′b+ ab′) + ω(a′b+ ab′) + (ω + 2)(a′b′)
]
H
≤ 3,[

(ab)− ω2(ab+ a′b+ ab′) + ω(a′b+ ab′ + a′b′) + 2(a′b′)
]
H
≤ 3. (2.46)

This form of the 2-qutrit CGLMP inequality suggests an 8-term symmetric inequality
for three qutrits, where all terms with the same number of primes should have the same
coefficients. By inserting c and c′ according to this last requirement we have[

(abc)− ω2(abc′ + a′bc+ ab′c) + ω(a′bc′ + ab′c′ + a′b′c) + 2(a′b′c′)
]
H
≤ 3, (2.47)

which is actually the symmetric 3-qutrit inequality of Eq. (2.44).

2.3.4 Larger number of parties
In the case of four parties, two settings and three outcomes we have found the following
symmetric Bell operator

B423 =
[
2(abcd) + (a′bcd+ ab′cd+ abc′d+ abcd′)

+ ω(a′b′cd+ a′bc′d+ a′bcd′ + ab′c′d+ ab′cd′ + abc′d′)

+ (a′b′c′d+ a′bc′d′ + a′b′cd′ + ab′c′d′) + 2(a′b′c′d′)
]
A
, (2.48)

which produces 〈B423〉LR = 3
√

3 ' 5.19, 〈B423〉QM ' 9.77 and R(B423) ' 1.879 for the
optimal settings

A = B = C = D = X,

A′ = B′ = C ′ = D′ = Z, (2.49)
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Terms
Parties 2 3 4 5 6

(0’) ω 1 2 ω2 −ω
(1’) 1 −ω2 1 −ω2 1
(2’) ω ω ω −ω2 −1
(3’) 2 1 −ω2 ω
(4’) 2 ω2 −1
(5’) ω2 1
(6’) −ω

Tab. 2.1: Coefficients for symmetric Bell inequalities of the form Bn23 with
n = 2, · · · , 6, where ω = e2πi/3. The primed notation (k′) identifies all terms
having k primed settings, as the example given in Eq. (2.50).

which are again mutually unbiased settings. The optimal state is the GHZ of four parties
and dimension 3 |Ψ+

4 〉 = (|0000〉+ |1111〉+ |2222〉)
√

3. The possibility to construct Bell
inequalities maximally violated by maximally entangled states is discussed in Sec. 2.5.

For 6 parties we have also found a symmetric Bell operator. To simplify the notation,
the polynomials having terms with the same number of primes are denoted by its number
of primes in parenthesis, for example

(1′) ≡ a′bcdef + ab′cdef + abc′def + abcd′ef + abcde′f + abcdef ′, (2.50)

(2′) will be composed by all combinations containing to primed setting, etc. In this notation,
the 6 parties operator reads

B623 = −ω(0′) + (1′)− (2′) + ω(3′)− (4′) + (5′)− ω(6′). (2.51)

For this inequality, 〈B623〉LR = 9
√

3 ' 15.59, 〈B623〉QM ' 32.82 and R(B623) ' 2.11, with
MOS optimal settings. The maximal violation is given by a quasi GHZ state, as for the
case of 2 and 3 qutrits.

Let us summarize the results for the symmetric Bell operators for n-qutrit systems
studied in this section. Unfortunately, we could not find a 5-qutrit inequality that follows
similar patterns. The inequalities considered are those determined by the coefficients of
Tab. 2.1, and the results are summarized in Tab. 2.2.

The main patterns that can be seen from Tab. 2.2 are
(i) For an even number of qutrits the classical values 〈B〉LR arise from the anti-Hermitian

part of an operator while for odd number of qutrits one takes its Hermitian part.
The following relation between the minimal and the maximal classical values holds

〈B〉minLR = −2〈B〉LR, (2.52)

where 〈B〉minLR corresponds with the minimum value found and 〈B〉LR is the maximum
value.

(ii) There is a factor of
√

3 between the maximal value of the Hermitian and anti-
Hermitian parts. There is also a factor of

√
3 between the maximal value of two

consecutive numbers of qutrits. The maximal value of the Hermitian parts are
the same for n and n + 1 qutrits if n is even, result that is reproduced by the
anti-Hermitian parts if n is odd.
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Qutrits 2 3 4 5 6

〈BA〉LR
√

3 3
√

3 3
√

3 9
√

3 9
√

3
〈BA〉minLR −2

√
3 −3

√
3 −6

√
3 −9

√
3 −18

√
3

〈BH〉LR 3 3 9 9 27
〈BH〉minLR −3 −6 −9 −18 −27
〈B〉QM 2.524 5.058 9.766 15.575 32.817

R 1.457 1.686 1.879 1.731 2.105
Settings MOS MUB MUB Num. MOS

P 0.347 0.342 1/3 0.351 0.334

Tab. 2.2: Main results for inequalities from 2 to 6 qutrits. Here, 〈B〉LR and
〈B〉minLR denote, respectively, the maximum and minimum classical values for
optimizations of anti-Hermitian and Hermitian parts of an operator. The quantity
that we take as the extremal classical bound is marked in bold. 〈B〉QM stands
for the quantum value, R(B) is the rate between LR and QM maximum values
and Settings denotes the optimal settings. Moreover, we compute the purity P
of the single party reductions of the optimal state. The 5-qutrit inequality do
not follow the same patters of the others, which is remarked with the fact that
the optimal settings found are a numerical approximate solution (Num).

(iii) The quantum value 〈B〉QM of a non-Hermitian operator B is computed as the
maximum over quantum values of the Hermitian and anti-Hermitian parts, i.e.

〈B〉QM = max{〈[B]H〉QM, 〈[B]A〉QM}. (2.53)

The rate of violation increases with the number of qutrits except for the 5-qutrit case,
which do not follow the same patterns as the other inequalities studied.

(iv) The optimal settings are either MUB or MOS, with the exception of the 5-qutrit
inequality.

(v) The optimal states have entanglement properties close to a GHZ state or exactly
those of a GHZ state. In Tab. 2.2, the closeness to the GHZ state is measured by
the purity of the reduced matrix ρ over bn/2c particles. The GHZ state of n qutrits
has reductions to two parties with purity ∗ P = Trρ2 = 1/3, whereas an absolutely
maximally entangled state, i.e. an state with all its bipartitions maximally entangled,
has P = 1/3[n/2].

2.4 Bell inequalities for two parties and arbitrary dimension

In this section, we extend the results found in Sec. 2.3 for two parties and d outcomes.
These are actually the set of CGLMP inequalities proposed in Ref. [21]. In probability
language can be written as

∗The purity of subsystems from a composite state is an entanglement measure, being maximal, P = 1,
if the state is separable and minimal, P = 1/d if all possible bipartitions are maximally entangled. It is
defined in next Chapter 3 in definition 3.1.2. Here, its label γ has been changed to P to not get confused
with γ factor found in inequality (2.30)
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B22d =
[d/2]−1∑
k=0

(
1− 2k

d− 1

)(
p(a = b+ k) + p(b = a′ + k + 1) + p(a′ = b′ + k)

+ p(b′ = a+ k)−
(
p(a = b− k − 1) + p(b = a′ − k)

+ p(a′ = b′ − k − 1) + p(b′ = a− k − 1)
))
≤ 2 . (2.54)

Let us write these inequalities in term of operators. In order to do this let us start from
a different form for CGLMP inequality for d = 3 (2.33) presented for example in Ref. [26],

B′′223 =
[
ab+ ab′ + a′b− a′b′

]
H + 1√

3
[
−ab+ ab′ + a′b− a′b′

]
A ≤ 2 . (2.55)

In order to transform from probabilities to operators we have to establish a match between
the number of variables and the number of equations. The variables here are the joint
probabilities p(a = b+ k), with k running from 0 to d− 1, so there are d unknowns. We
need therefore d equations. One equation is given by the normalization condition, i.e.,
the sum of probabilities is 1. For d = 2, a second equation is enough, and that is the
definition of expectation value of the product. For d = 3 there are 3 equations. Apart from
the normalization of probabilities, two extra equations are needed, and those can be the
Hermitian and anti-Hermitian parts of the expected value of the product, as in Eq. (2.55).
It appears to be an accident that the CGLMP for d = 3 can be expressed solely with the
anti-Hermitian part by inserting powers of ω as in Eq. (2.33).

For d = 4 we add the Hermitian part of the expected values of the squares of products,

B′224 = 1
3
(
2
[
ab+ ab′ + a′b− a′b′

]
H + 2

[
−ab+ ab′ + a′b− a′b′

]
A

+
[
(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2

]
H

)
, (2.56)

and for d = 5 we add their anti-Hermitian part,

B′225 = 1
2
( [
ab+ ab′ + a′b− a′b′

]
H +

[
(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2

]
H

)
+ (−s1 + 3s2)

[
−(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2

]
A

+ 2
5
(
(3s1 + s2)

[
−ab+ ab′ + a′b− a′b′

]
A

)
, (2.57)

where s1 and s2 are the imaginary parts of e2πi/5 and e4πi/5 respectively. The classical
values for these operators are 〈B224〉LR = 2 and 〈B225〉LR = 2.

In general, for any number of outcomes d, the Bell operator can be written as

B′22d = N

[d/2]∑
k=1

rk,dH(ab)k +
[(d−1)/2]∑
k=1

ik,dA(ab)k

 ≤ 2, (2.58)

where rk,d and ik,d are constants related to real and imaginary parts of ω (in general related
to both of them), N is a normalization constant such that the maximal classical value of
B′22d is 2, and

H(ab)k ≡
[
(ab)k + (ab′)k + (a′b)k − (a′b′)k

]
H
, (2.59)

A(ab)k ≡
[
−(ab)k + (ab′)k + (a′b)k − (a′b′)k

]
A
. (2.60)
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All these inequalities are maximally violated by d-dimensional MOS as defined in App.
D. The numerical violation ratios increase with d, and can be found for example in Ref.
[22].

2.5 Bell inequalities from maximally entangled states
So far, we have seen how Bell inequalities are maximally violated by maximally entangled
states or almost maximally entangled states. For instance, BCHSH upper quantum bound
is obtained with a singlet state, B423 with a GHZ state an all other exposed inequalities by
a small deformation of a GHZ state. The connection between maximal entanglement and
non-locality is manifested although they are not equivalent phenomena [28, 29]. However,
let us now present an idea to generate Bell inequalities based on a mapping from maximally
entangled states to Bell operators.

Let us start with a simple example. The two-qubit state

|ψ〉 = 1
2 (|0A0B〉+ |0A1B〉+ |1A0B〉 − |1A1B〉) (2.61)

belongs to the set of maximally entangled Bell states. The CHSH Bell operator can be
obtained from this state by identifying first and second particle with observables for Alice
and Bob, respectively. We identify symbol 0 with non-primed settings and symbol 1 with
primed settings, i.e.

|0A〉 → a , |0B〉 → b ,
|1A〉 → a′ , |1B〉 → b′ .

(2.62)

By removing the normalization term, the CHSH operator arises

BCHSH = ab+ ab′ + a′b− a′b′. (2.63)

Furthermore, the maximally entangled state of Eq. (2.61) is the optimal state for a suitable
choice of the measurement settings. This fact motivates us to study new multipartite Bell
inequalities generated from multipartite quantum states.

The general strategy is to construct Bell inequalities associated to some distinguished
maximally entangled states. Starting from the Bell state for two qutrits,

|Ψ+
3 〉 = 1√

3
(|00〉+ |11〉+ |22〉), (2.64)

and applying the Fourier transform (D.2) to the second party we obtain

|Φ3〉 = (I⊗ F3) |Ψ+
3 〉

= 1√
3

(
|00〉+ |01〉+ |02〉+ |10〉+ ω|11〉+ ω2|12〉+ |20〉+ ω2|21〉+ ω4|22〉

)
,

(2.65)

where ω = e2πi/3 and, therefore, ω4 = ω. From this state, a new Bell operator for 2 qutrits
and 3 settings arises,

B233 =
[
ab+ ab′ + ab′′ + a′b+ a′′b+ ω

(
a′b′ + a′′b′′

)
+ ω2 (a′b′′ + a′′b′

)]
H

=
[
~a · (F3~b)

]
H
, (2.66)
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Qutrits 2 4(|Ψ+
4 〉) 4(|Ω4 ,3 〉)

〈BA〉LR 3
√

3 9
√

3 9
√

3
〈BA〉minLR −3

√
3 −9

√
3 −9

√
3

〈BH〉LR 4.5 13.5 13.5
〈BH〉minLR −4.5 −27 −27
〈B〉QM 5.117 26.025 25.372

R 1.137 1.928 1.879
Settings MUB Num. MUB and Num.

P 1/3 1/3 1/3

Tab. 2.3: Characterization of Bell inequalities for 2 and 4 parties, 3 settings and
3 outcomes. For all the cases the optimal states are generalized Bell states (two
parties) and GHZ states (four parties). Abbreviations and symbols are considered
as in Tab. 2.2.

where ~a = (a, a′, a′′) and ~b = (b, b′, b′′). This operator has a classical value 〈B233〉LR =
9/2 and it is maximally violated by a GHZ state with the violation ratio R(B233) =
2/
√

3 cos(π/18) ' 1.14 for the MUB optimal settings

A = B = X ,

A′ = B′ = Z ,

A′′ = B′′ = X2Z2 . (2.67)

We can apply the same strategy for four qutrits starting with the GHZ state |Ψ+
4 〉 =

(|0000〉+ |1111〉+ |2222〉)/
√

3. Acting with Fourier transform F3 on three parties we obtain
a locally equivalent state

|Φ4〉 = (I⊗ F3 ⊗ F3 ⊗ F3) |Ψ+
4 〉, (2.68)

which leads to the Bell operator of four parties,three settings and three outputs

B433 =
[
~a · (F3~b) · (F3~c) · (F3~d)

]
H
, (2.69)

where ~a = (a, a′, a′′), ~b = (b, b′, b′′), etc., and the generalized inner product of four vectors
is defined as x1 · x2 · x3 · x4 =

∑2
j=0 x

j
1x
j
2x
j
3x
j
4. The optimal state is precisely |Ψ+

4 〉 with a
larger violation ratio than for the operator (2.48).

2.5.1 Bell inequalities from AME states
An absolutely maximally entangled state (AME) of n particles is a state with every
reduction, up to bn/2c particles, maximally mixed [45–48]. For more details about AME
states and their properties, see Chapter 5. Let us now try the strategy described above for
the AME of 4 qutrits

|Ω4,3〉 = 1
9

2∑
i,j,k,l=0

ωj(i−k)+l(i+k)|ijkl〉, (2.70)

The recipe to construct the Bell operator consists in taking representation (2.70) which
contains 34 = 81 terms with coefficients of the form {1, ω, ω2}. In the next step one uses
the same legend as the one introduced in Eq. (2.62) with the terms |2〉M → m′′, as it
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was done above for GHZ inequalities. This procedure leads us to a Bell operator for four
parties, three settings and three outcomes, which can be written in a compact way as

B′433 =
2∑

i,j,k,l=0
ωj(i−k)+l(i+k)aibjckdl . (2.71)

where a0 = a, a1 = a′, a2 = a′′, and the same for the rest of the observables.
After transformations d′ → ωd′ and d′ ↔ d′′, numerical optimization produces the

following optimal settings

A = B = C = D = X ,

A′ = C ′ = D′ = X2Z2 , B′ = X ,

A′′ = C ′′ = D′′ = Z , B′′ = N , (2.72)

where N is certain matrix obtained numerically. The optimal settings are not symmetric
because the AME state is not symmetric under interchange of particles.

Numerical optimization suggests that the optimal state is not AME. Surprisingly, it has
almost the same entanglement properties as the GHZ state, namely its purity is P = 1/3
for the density matrices of reductions to 2 parties, and P = 1/3 for three of the possible
reductions to one party, while the fourth one (party B) has P = 1, indicating that party
B is in a product state with the other three. The same violation ratio as for four qutrits
inequality of Eq. (2.48) is obtained. This result, and the fact that the optimal settings
include B = B′ suggests that the third setting is not adding anything new and that this
inequality is essentially the same as in the case of two settings.

Finally, Tab. 2.3 summarizes the results for the 3-settings qutrit inequalities arising
from entangled states.

2.6 Conclusions
We have used the formalism of unitary matrices with complex roots of unity as eigenvalues
to express known Bell inequalities in a different way. We have also used this formalism to
construct novel Bell inequalities of multipartite systems, three settings and three outcomes.
We have shown that the two-party and three-party inequality from Ref. [21] and Ref. [23]
are closely related. Furthermore, we have extended these cases to 4 and 6 parties and,
less convincingly, to 5 parties. We obtained regular patterns for this set of inequalities, as
shown in Tab. 2.2. Two of the most striking patterns are a) the structure of the classical
bounds and a simple arithmetic progression of the number of particles, and b) the fact
that the inequalities tend to have a maximal quantum bound for settings that are either
MUBs or multiplets of optimal settings (MOS).

We have also introduced a mapping from entangled states to Bell operators that enable
us to build some new Bell inequalities for qutrits. In particular, we have constructed
inequalities for two and four parties with three settings which are maximally violated by
states with the same entanglement properties as the GHZ state. We have also shown that
a Bell inequality generated by a given quantum state is not necessarily maximally violated
by the same state. We gave as an example of this fact the inequality (2.71) generated by
an absolutely maximally entangled state that is actually maximally violated by a GHZ-like
state. This method has the potential to generate a wide range of Bell inequalities for an
arbitrarily large number of parties, settings and outcomes.

Let us also mention here some important questions that remain open. Concerning
the approach to Bell inequalities from squares of operators represented by commutators
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and anticommutators, it would be interesting to find a procedure to determine whether a
given Bell operator allows such a form. By analyzing the mapping between states and Bell
operators, one can raise the question of whether a maximally entangled state is necessary to
produce a tight Bell inequality in the case of two outcomes. In addition, the mathematical
characterization of the entire set of MOS is a pending task. Finally, it would be interesting
to have a generating polynomial for Bell inequalities with three outcomes in the same way
that we have the Mermin polynomials for two outcomes.
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The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics
is a wonderful gift which we neither understand nor
deserve.

–Eugene P. Wigner,
“The unreasonable effectiveness of mathematics in the

natural sciences”, 1960.

Entanglement has been extensively studied in the context of condensed matter quantum
systems [49]. It has proven useful to provide a deeper understanding of quantum phase
transitions, as well as to validate the faithfulness of numerical approximations such as
tensor networks [50].

Most of the studies of entanglement are related to correlations among bipartitions of a
system. As a relevant example, we may consider the quantum correlations between two
separate parts of a quantum system on a lattice using entanglement entropy as a figure of
merit. It has been found that most systems of interest obey the so-called area law for the
scaling of the entanglement entropy as the size of the part increases [51–55]. In contrast,
other studies analyse the multipartite entanglement in spin chains using as a figure of
merit, the tangle, finding what they called an avalanche of entanglement at the phase
transition point.

In this chapter, we focus on the study of entanglement in spin-1
2 chains. These one-

dimensional systems present quantum phase transitions. The characterization of such
critical behaviour is determined by conformal symmetry. Indeed, at quantum phase
transitions the system displays conformal invariance, and its analytic structure provides
very powerful instruments to characterize correlations.

In contrast to the bipartite entanglement studies, we are interested in multipartite
figures of merit. Since we restrict our study to spin chains of four sites, we choose the
hyperdeterminant and two polynomial invariants, S and T , to quantify the multipartite
entanglement. The hyperdeterminant is a mathematical construction introduced by Cayley
in the XIX century that serves the purpose of describing multipartite entanglement [57].
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The complexity to compute hyperdeterminants is remarkable and makes it difficult to
apply it systematically to the study of quantum systems. Here, we shall introduce the
basic properties of hyperdeterminants, its analysis for some special states and its behaviour
at a phase transition [58–62].

Hyperdeterminant is also used in other fields. There is a connection between the
hyperdeterminant, the S invariant and the theory of elliptic curves [63]. There is also a
known connection between hyperdeterminants and string theory: see for instance [64, 65].

The content of the chapter is organized as follows. In Sec. 3.1 we define some figures of
merit to quantify bipartite and multipartite entanglement, including the hyperdeterminant
and its generalization for mixed states. In Sec. 3.2 we present some examples of four-partite
entanglement, in particular, pure states that have interesting properties, random states
and ground states of random Hamiltonians. In sections 3.3, 3.4 and 3.5 we analyze the
multipartite entanglement in some spin chains (some details of the computation are shown
in App. D). Finally, the conclusions are exposed in Sec. 3.6. All results can be found in
Ref. [66].

3.1 Figures of merit for multipartite entanglement
To define figures of merit to quantify the entanglement of a system, we should first
find a proper description of a quantum state. Appendix A introduce the Bloch sphere
representation but it is limited to one qubit. In general, one should use a mathematical
formulation that can describe any state, pure or mixed, of n particles of any dimension d.
This is accomplished with the density matrix formulation:

Definition 3.1.1 — Density Matrix. Given a mixed quantum state composed of M states
|ψi〉 with probability pi, its density matrix is defined as

ρ ≡
M∑
i=1

pi|ψi〉〈ψi|, (3.1)

where
∑M
i=1 pi = 1. If the state is pure, i.e. M = 1, ρ = |ψ〉〈ψ|.

The density matrix operator is Hermitian and normalized, i.e. ρ† = ρ and Trρ = 1.
It can be proven that ρ2 ≤ ρ, saturating the inequality for pure states. We can use this
property to define a figure of merit to quantify how much pure is a state:

Definition 3.1.2 — Purity. Given a density matrix ρ,

γ ≡ Trρ2. (3.2)

Its bounds are 1
d ≤ γ ≤ 1 for a totally mixed state and a pure state respectively.

Once the concept of density matrix has been introduced, we proceed to discuss some
figures of merit to quantify quantum entanglement.

3.1.1 Bipartite entropies
Entropy is used in classical information theory to quantify the average information content
of a system, e.g. a message. It was introduced by Claude Shannon in 1948 [67] and, for
that reason, classical entropy is often known as Shannon entropy.

The quantum mechanical extension of Shannon entropy is the Von Neumann entropy,
named in honor to John Von Neumann who developed the the quantum theory of
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measurement and, together with Lev Landau, introduced the density matrix formalism
[68–70].

Definition 3.1.3 — Von Neumann entropy.

S(ρ) ≡ −Trρ log ρ, (3.3)

By taking the logarithm in d basis the entropy is normalized, i.e. 0 ≤ S ≤ 1, and its
bounds correspond to product state and maximally entangled state respectively.

Given a bipartite system in a Hilbert space HAB = HA ⊗HB, Von Neumann entropy
counts the amount of entanglement between A and B or, in other words, the amount
of quantum correlations between these two subsystems. This entropy is computed using
the reduce density matrix of one of these subsystems. For a pure state involving the two
subsystems ρAB = |ψ〉AB〈ψ|,

ρA = TrBρAB =
d∑
i=0

B〈ei|ψ〉AB〈ψ|ei〉B, (3.4)

where |ei〉 = |0〉, |1〉, · · · |d〉 are the computational basis states. This operation is called
partial trace, as system B is traced out from the composite system AB. In addition, we
can diagonalize ρA and compute the entropy as

SA = −Tr(ρA log ρA) = −
dm∑
i=1

λi log λi, (3.5)

where m is the number of qudits in A subsystem and λi are the eigenvalues of ρA, i.e.
ρA =

∑dm

i=1 λi|λi〉〈λi|.
This entanglement measure has deep connections with the conformal symmetry recovered

in some quantum phase transitions. Let’s consider the entropy in a spin chain corresponding
to the reduced density matrix of a block of size L out of N , S(ρL) = −Tr(ρL log ρL), where
ρL = TrN−L|Ψg〉〈Ψg| with |Ψg〉 being the ground state of the system. It turns out that
entropy scales at a quantum phase transition as [71–74]

S(ρL) ∼ c

3 logL, (3.6)

where c is the central charge that defines the universality class of the model. Away from
criticality, the entropy saturates to a constant that depends on the correlation length
present in the system.

Theorem 3.1.1 — Schmidt decomposition. Given a composite system HAB = HA ⊗HB

with HA = C⊗dA and HB = C⊗dB , a pure state of this system, |ψ〉AB, can be written
in terms of orthonormal states |ui〉A and |vi〉B such that

|ψ〉AB =
χ∑
i=1

αi|ui〉A|vi〉B, (3.7)

where αi are positive real numbers satisfying
∑χ
i=1 α

2
i = 1 known as Schmidt coefficients

and χ is the Schmidt rank.

The proof of this theorem is based on the singular value decomposition of a matrix.
Let’s write |ψ〉AB state in terms of two orthonormal basis {|i〉A} and {|j〉B} in their
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respective subspaces:

|ψ〉AB =
dA−1∑
i=0

dB−1∑
j=0

aij |i〉A|j〉B. (3.8)

Let’s define a matrix A which entries, Aij , are the coefficients aij . After computing the
singular value decomposition of A, that is A = UDV †, we obtain the matrices U , of
dimension dim(U) = dA × dA, the matrix V , of dimension dim(V ) = dB × dB and the
diagonal matrix D, of dimension d = dA × dB with non-negative real elements entries αk.
Then,

|ψ〉AB =
dA−1∑
i=0

dB−1∑
j=0

(
d∑

k=1
uikαkvkj

)
|i〉A|j〉B =

=
d∑

k=1
αk

dA−1∑
i=0

uik|i〉A

⊗
dB−1∑

j=0
vkj |j〉B

 ≡ d∑
i=1

αi|ui〉A|vi〉B, (3.9)

where uij and vij are the coefficients of U and V matrices respectively. �
As stated above, entropy is used to elucidate if a composite system is separable and, in

case it is not, how much entangled it is. Thus, we can apply Schmidt theorem to quantify
how much separable is a quantum state. The Schmidt rank is just the number of non-zero
elements of D, i.e. χ ≤ min{dA, dB}.

The Schmidt decomposition is very useful to compute the reduce density matrices of a
bipartite system:

ρAB = |ψ〉AB〈ψ| =
d∑
i=1
|αi|2|ui〉A〈ui| ⊗ |vi〉B〈vi|, (3.10)

from which we can obtain the reduced density matrices, ρA =
∑dA
i=1 |αi|2|ui〉A〈ui| and

ρB =
∑dB
i=1 |αi|2|vi〉B〈vi|. We can then exact a corollary of this theorem that relates

Schmidt decomposition with Von Neumann entropy:

Corollary 3.1.2 Schmidt decomposition shows that the reduced density matrix ρ on
either subsystem A and B have the same spectrum. The Von Neumann entropy
computed in the diagonal basis can be obtained directly from the Schmidt coefficients,
i.e. S = −

∑d
i=1 |αi|2 log |αi|2.

This corollary establishes that the Von Neumann entropy is a well-defined measure of
entanglement. For a separable state χ = 1, so αi = 1 and S = 0; for an entangled state
χ > 1, so S > 0; and for a maximally entangled state χ = min{dA, dB}, with equal αi and,
consequently, S = 1.

In addition, we can make a connection between Schmidt rank χ and purity γ. If the
state |ψ〉AB is separable, then χ = 1 which means that only one eigenvalue is different from
zero, so α1 = 1. Then, if we compute the purity of ρA and ρB we will obtain γ = 1; both
subsystems are pure. On the contrary, if |ψ〉AB is entangled, then χ > 1 and more than
one eigenvalue αi is different from zero, so γ < 1 and ρA and ρB are mixed states.

A generalization of Von Neumann entropy are Rényi and Tsallis entropies [75–77]:
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Definition 3.1.4 — Rényi entropy.

SRα (ρA) ≡ 1
1− α log Tr (ραA) , α 6= 1, α > 0 . (3.11)

Definition 3.1.5 — Tsallis entropy.

STα (ρA) ≡ 1
1− α (Tr (ραA)− 1) , α 6= 1, α > 0 . (3.12)

Both are entanglement monotones for α < 1, i.e. nonincreasing on average under
LOCC transformations. They also obey scaling properties and have been used to study
entanglement in spin chains [78].

There are many other figures of merit to quantify bipartite entanglement. Nevertheless,
some of them do not show scaling properties or fail to grab the subtleties of phase transitions.

It is reasonable to look for a complete characterization of quantum correlations beyond
the one provided by entanglement entropies. It is often argued that there is a need for
new measures of genuine multipartite entanglement. There is some ambiguity in the
literature about this term. It is often referred as multipartite entanglement the study of
correlations between two parties of a large system of particles [79–82]. On the other hand,
genuine multipartite entanglement can be referred as anything which analyses correlations
beyond two parties. There is a second more stringent definition that states that measures
of genuine multipartite entanglement should not involve any partial trace of the system.
This definition makes it very hard if not impossible to conduct studies in large systems.
An example of a measure of strict multipartite entanglement could be the study of Bell
inequalities involving every party in a system, for instance those discussed in the previous
Chapter 2. In the following subsections it is discussed two examples of figures of merit to
quantify entanglement beyond two parties.

3.1.2 3-tangle

The tangle is a measure of multipartite entanglement for systems with an even number of
qubits.

Definition 3.1.6 — Tangle.

τN ≡ |〈ψ̃|ψ〉|2, |ψ̃〉 ≡ σ⊗ny |ψ〉, (3.13)

where |ψ〉 is a multiqubit state written in terms of the computational basis.

For n = 2, the tangle is the square of the concurrence, another figure of merit for bipartite
entanglement that will be discussed in detail in Chapter 6. For n = 3, it was proposed an
extension using the definition of residual tangle [83, 84]

Definition 3.1.7 — 3-tangle. The generalization of the tangle for three parties A, B and
C can be expressed as the residual tangle

τABC ≡ 4 det ρA − τAB − τAC , (3.14)

where τAB and τAC are the tangles of subsystems AB and AC.
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Providing that a three-qubit quantum state can be written as

|ψ〉 =
∑

i,j,k=0,1
bijk|i〉|j〉|k〉, (3.15)

where bijk ∈ C, the above 3-tangle can be written as

τ ≡ τABC = 2|bi1j1k1bi2j2k2bi3j3k3bi4j4k4ε
i1i2εj1j2εi3i4εj3j4εk1k3εk2k4 |, (3.16)

where a ε00 = ε11 = 0 and ε01 = ε10 = 1. Note that this contraction introduces minus
signs, as opposed to pure contractions of subsystems which only involve the always positive
Kronecker delta. The tangle is invariant under local unitary transformations on any
party. It is a figure of genuine multipartite entanglement that involves no partition of the
system. There are other works that study the multipartite entanglement in spin chains for
an arbitrary, but finite, number of particles using the Meyer-Wallach measure of global
entanglement [85].

The introduction of 3-tangle in this discussion is motivated, apart from its applications
in the study of entanglement in spin chains [82], for its connections with the next figure of
merit, the hyperdeterminant.

3.1.3 Hyperdeterminant
The hyperdeterminant is the generalization of a determinant for matrices of higher
dimensions. It was first introduced by Cayley [57] in 1845 to characterize the conditions for
a system of linear equations to have a non-trivial solution. In particular, Cayley provided
an analytic expression to compute the hyperdeterminant of a 2 × 2 × 2 matrix. Later
on, Schläfli made the extension to the 2 × 2 × 2 × 2 matrices [86]. Since then, many
mathematicians have studied this function and its connections with different mathematical
branches. In fact, hyperdeterminants can be defined in different ways [87].

For the purpose of this chapter, we are interested in obtaining an analytical expression
for the hyperdeterminant of 2 × 2 × 2 × 2 matrix. The n-hyperdeterminant, i.e. the
hyperdeterminant of a 2×n matrix, will be denoted as HDetn. Then, it is possible to define
HDet4 recursively from HDet3 and HDet2, using the connection with the discriminants of
a polynomial.

Definition 3.1.8 — Polynomial discriminant. Given a polynomial of degree n

Pn(x) ≡ a0 + a1x+ · · · an−1x
n−1 + anx

n, (3.17)

its discriminant can be defined as

∆(Pn(x)) ≡ a2n−2
n

n∏
i<j

(ri − rj)2 , (3.18)

where a2n−2
n is a normalization factor.

A discriminant could be complex or real, depending on the coefficients of the polynomial.
If the coefficients are real numbers, then the discriminant is always real. In that case, it is
zero if at least two roots are equal; it is positive if there exist 2k pairs of conjugate roots
for 0 ≤ k ≤ n/2 where n is the degree of the polynomial; and it is negative if there exist
2k + 1 pairs of conjugate roots for 0 ≤ k ≤ (n− 2)/4 [87]. For that reason, it is introduced
the absolute value in the below definitions of HDetn, as it is done in previous works with
the tangle [83].
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Let’s start with a generic 2× 2 matrix C which entries are cij . Then the HDet2 is

HDet2 = | det(C)| = |c00c11 − c01c10|. (3.19)

If we identify the cij coefficients with a two qubits wave function, i.e. |ψ〉 =
∑
ij cij |ij〉, then

HDet2 corresponds to the concurrence for two qubits. Next, let’s replace each cij coefficient
in HDet2 expression with bij0 + bij1x. The discriminant of the resulting polynomial P3(x)
is actually HDet3:

P3(x) = HDet2/.cij → bij0 + bij1x, (3.20)
HDet3 = |∆ (P3(x)) |, (3.21)

where /. stands for “replace” and B is a matrix which entries are bijk. It turns out that if we
identify these bijk as the coefficients of a three qubits wave function, i.e. |ψ〉 =

∑
ijk bijk|ijk〉,

then HDet3 = τ . The next iteration gives the expression for HDet4.

Definition 3.1.9 — Hyperdeterminant of n = 4. Let’s construct a polynomial of degree 4
by replacing each bijk coefficient in HDet3 of Eq. (3.20) by tijk0 +tijk1x. Its discriminant
gives an expression for HDet4:

P4(x) ≡ HDet3/.bijk → tijk0 + tijk1x, (3.22)

HDet4 ≡
1

256 |∆ (P4(x)) |, (3.23)

where we can identify tijkl elements with the coefficients of a four qubits state |ψ〉 =∑
ijkl tijkl|ijkl〉.

The hyperdeterminant is a mathematical figure that can be used to quantify multipartite
entanglement if we construct it with wave function coefficients. For that reason, from now
on, we will label each HDet4 with the corresponding quantum state that has been used to
construct it, that is HDet4(|ψ〉) is the 4-hyperdeterminant of the state |ψ〉.

For n = 4, hyperdeterminant can be also defined in terms of fundamental invariants
[88]. These polynomials are invariant under the SLOCC group SL(C, 2)4 and can be used
to classify multipartite entanglement as well. Most of the 18 invariants are related to
bi-partitions of the system but, in particular, two of them can measure global correlations
involving every spin in the system. These two polynomial invariants, called S and T , are
also related with HDet4 and can be obtained from the coefficients of the polynomial P4(x)
defined above.

Definition 3.1.10 — S and T invariants. From the polynomial P4(x) = a0x
4 + 4a1x

3 +
6a2x

2 +4a3x+a4, which coefficients ai are obtained from the three qubits wave function
coefficients bijk, the invariants S and T take the form

S ≡ 3a2
2 − 4a1a3 + a0a4, (3.24)

T ≡ −a3
2 + 2a1a2a3 − a0a

2
3 − a2

1a4 + a0a2a4. (3.25)

Then, the HDet4 can be obtained from

HDet4(|ψ〉) ≡ S3 − 27T 2. (3.26)

Notice that the relation (3.26) reveals a possible cancellation between these two
invariants that leads to an HDet4 = 0. We can observe multipartite entanglement of
the form that S and T invariants can capture it but, however, HDet4 could be blind to it.
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The hyperdeterminant is invariant under local changes of basis. That is, given a state
|ϕ〉 and a state |ϕ̃〉 = U1 ⊗ · · · ⊗ Un|ϕ〉, where Ui are independent unitary changes of each
local basis,

HDetn(|ϕ〉) = HDetn(|ϕ̃〉). (3.27)

This immediately shows that the hyperdeterminant provides a possible figure or merit to
quantify multipartite entanglement.

It is worth remarking that the HDet4 vanishes for quantum states that can be written
as the product states on any bipartition. That is, for a state made out of four parties,

|ψ〉 = |ϕ〉1|φ〉234 ⇒ HDet4(|ψ〉) = 0,
|ψ〉 = |ϕ〉12|φ〉34 ⇒ HDet4(|ψ〉) = 0, (3.28)

with the same result for any permutation of indices. In the first case, when the state is a
product state of 1-qubit and a generic state of the rest, the invariants S and T are zero, so
is the hyperdeterminant. This brings the idea that the hyperdeterminant is only sensitive
to genuine 4-party entanglement. In the second case, where the state can be separable in
two halves, some more basic polynomial invariants are proportional to the concurrence,
but it remains true that S and T are zero, as well as the hyperdeterminant.

Definition of hyperdeterminant for mixed states
The above definition of hyperdeterminant is only valid for pure states. We propose to
extend it for mixed states following a similar definition as the one used for Entanglement
of Formation [89].

Definition 3.1.11 — Hyperdeterminant for mixed states. For all ξ possible decompositions
of a density matrix ρ =

∑
i p
ξ
i |ψ

ξ
i 〉〈ψ

ξ
i |,

HDetn(ρ) ≡ min
{ξ}

∑
i

pξiHDetn(|ψξi 〉), (3.29)

Similarly, we can extend the above definition to the invariants S and T .
The construction of hyperdeterminants for density matrices brings the possibility of

defining the hyperdeterminant for thermal states. Let us consider the density matrix of a
system of n spins in equilibrium with a thermal reservoir

ρβ = e−βH

Z
= 1
Z

2n−1∑
i=0

e−βEi |Ei〉〈Ei|, (3.30)

where Z = Tr
(
e−βH

)
is the partition function and |Ei〉 is the state with energy Ei. We

shall define the hyperdeterminant of the above thermal state as

HDetn(ρβ) ≡ 1
Z

2n−1∑
i=0

e−βEiHDetn(|Ei〉) (3.31)

where HDetn(|Ei〉) is the hyperdeterminant of the state |Ei〉.
In case of degeneracy, a linear superposition of states with same energy is also an

eigenstate of the system. Then, the most general state can be written as

|ψ〉th = 1
Tr (e−βH)

∑
i

e−βEi

∑
j

aij |Eij〉

 , (3.32)
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where the first summation is over all different values of Ei and the second corresponds
to the linear superposition of eigenstates with the same eigenvalue Ei, with

∑
j |aij |2 = 1.

Then, taking the definition for HDetn for mixed states from Eq. (3.29),

HDetn(ρβ) = min
{aij}

HDetn(|ψ〉th). (3.33)

A similar definitions hold for thermal values of S and T invariants.

3.2 Examples of four-partite entanglement
3.2.1 Special states

There are states for which HDet4 vanishes as a consequence of a cancellation between S
and T invariants following the relation (3.26). The most relevant example is the GHZ state
[90],

|GHZ〉 = 1√
2

(|0000〉+ |1111〉) , (3.34)

which has S = 1/(263), T = −1/(2933) and zero HDet4. This result shows that HDet4
captures a different type of entanglement that the one associated to superposition of fully
orthogonal states.

There are other special states that have the same values as above for S and T invariants.
One example are the cluster states |C1〉, |C2〉 and |C3〉 [77, 91],

|C1〉 = 1
2 (|0000〉+ |0011〉+ |1100〉 − |1111〉) , (3.35)

|C2〉 = 1
2 (|0000〉+ |0110〉+ |1001〉 − |1111〉) , (3.36)

|C3〉 = 1
2 (|0000〉+ |0101〉+ |1010〉 − |1111〉) , (3.37)

which maximizes the Von Neumann entropy of two of their three bipartition. Other example
is the |Y C〉 state [92],

|Y C〉 = 1√
8

(|0000〉 − |0011〉 − |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉) ,

(3.38)

which can perform a faithful teleportation of an arbitrary two-qubit entangled state. These
states bring the idea that invariants S and T measure some kind of entanglement, but the
hyperdeterminant makes a further selection.

The 4-qubit W state [93],

|W 〉 = 1
2 (|0001〉+ |0010〉+ |0100〉+ |1000〉) , (3.39)

has S = T = 0. Again, W-ness is a different kind of entanglement as the one capture by
HDet4 = 0.

States that maximize HDet4 have been studied previously. Numerical analysis shows
that a state with maximum HDet4 is [46, 94]

|HD〉 = 1√
6

(
|1000〉+ |0100〉+ |0010〉+ |0001〉+

√
2|1111〉

)
, (3.40)
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with HDet4 = 1/(2839) ' 1.98 10−7, S = 0 and T = −1/(2436). Another state with the
same values for HDet4, S and T corresponds to the state |L〉 [77]

|L〉 = 1√
12

(
(1 + w) (|0000〉+ |1111〉) + (1− w) (|0011〉+ |1100〉)

+ w2 (|0101〉+ |0110〉+ |1001〉+ |1010〉)
)
, (3.41)

where w = e
2πi
3 . This state also maximizes the average Tsallis entropy for 0 < α < 2 and

α > 2.
Other relevant states are the nine families of quadripartite entangled states defined by

Verstraete et al. in [6]. There is only one family of states with HDet4 different from zero:

Gabcd = a+ d

2 (|0000〉+ |1111〉) + a− d
2 (|0011〉+ |1100〉)

+ b+ c

2 (|0101〉+ |1010〉) + b− c
2 (|0110〉+ |1001〉) , (3.42)

whose values for S, T and HDet4 are given by

S = 1
12
(
(b2 − c2)2(a2 − d2)2 + (a2 − b2)(b2 − c2)(a2 − d2)(c2 − d2)

+ (a2 − b2)2(c2 − d2)2
)
,

(3.43)

T = 1
1728

(
(ac+ bd)2 + (ab+ cd)2 − 2(bc+ ad)2

)
( (

(ac+ bd)2 + (ab+ cd)2 − 2(bc+ ad)2
)2
− 9(b− c)2(b+ c)2(a− d)2(a+ d)2

)
,

(3.44)

HDet4 = 1
256(a2 − b2)2(a2 − c2)2(b2 − c2)2(a2 − d2)2(b2 − d2)2(c2 − d2)2. (3.45)

Notice that if two parameters are equal, HDet4 become zero. We will see that the
ground state of XXZ model is of this type.

There are three families of states with S and T non zero in general. These are the state

Labc2 = a+ b

2 (|0000〉+ |1111〉) + a− b
2 (|0011〉+ |1100〉) + c (|0101〉+ |1010〉) + |0110〉,

(3.46)

with

S = 1
12(a2 − c2)2(c2 − b2)2, T = 1

216(a2 − c2)3(c2 − b2)3, (3.47)

the state

La2b2 = a (|0000〉+ |1111〉) + b (|0101〉+ |1010〉) + |0110〉+ |0011〉, (3.48)

with

S = 1
12(a− b)4b4, T = − 1

216(a− b)6b6 , (3.49)

and the state

La203⊕1̄ = a (|0000〉+ |1111〉) + |0011〉+ |0101〉+ |0110〉, (3.50)
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with

S = 1
12a

8 , T = − 1
216a

12 . (3.51)

For all of them, HDet4 is zero due to an exact cancellation between S and T invariants
that arise from Eq. (3.26).

Finally, the families

Lab3 = a (|0000〉+ |1111〉) + a+ b

2 (|0101〉+ |1010〉) + a− b
2 (|0110〉+ |1001〉) ,

+ i√
2

(|0001〉+ |0010〉+ |0111〉+ |1011〉) ,

(3.52)
La4 = a (|0000〉+ |0101〉+ |1010〉+ |1111〉) + i (|0001〉 − |1011〉) + |0110〉 , (3.53)
L05⊕3̄ = |0000〉+ |0101〉+ |1000〉+ |1110〉 , (3.54)
L07⊕1̄ = |0000〉+ |1011〉+ |1101〉+ |1110〉 , (3.55)
L03⊕1̄03⊕1̄ = |0000〉+ |0111〉 , (3.56)

have S and T equal to zero.

3.2.2 Random states
In order to obtain a better picture of what are the typical values for HDet4, S and T
invariants, we compute them for random pure states. The very definition of a random
state depends on the prior which is accepted. Here, we take as a prior two distributions of
coefficients in the computational basis: a flat distribution and a Haar distribution.

Definition 3.2.1 — Flat and Haar distributed states. Given an n qubits state written in
terms of the computational basis states |ϕi〉 and the coefficients zi ∈ C, the state

|ψ〉 ≡
2n−1∑
i=0

zi|ϕi〉, (3.57)

is flat distributed if Re(zi) and Im(zi) are independent and identically distributed (i.i.d.)
values following a uniformly distribution on [0, 1] and Haar distributed if zi are i.i.d.
complex Gaussian variables with zero median and unit variance, i.e. N(0, 1).

We have generated 105 random 4-qubit states with a flat and Haar prior on the
coefficients and plotted HDet4 in Fig. 3.1 in comparison with ground state of random
matrix Hamiltonians that satisfy the GOE, GUE and GSE distributions (see next subsection
3.2.3). The mean value of HDet4 is around ∼ 1.2 10−9, two orders of magnitude lower than
the maximum possible value (1.98 10−7 for |HD〉 state). Moreover, only 2% of the states
have HDet4 greater than 10−8. Similar results were obtained in [61]. This result is to be
compared with the entanglement entropy of such states for a random bipartition, where
maximal volume entropy is found [61].

The HDet4 distribution obtained is not the same for flat and Haar distributed random
states: the second have lower values of HDet4. Therefore, the hyperdeterminant is a more
subtle figure of merit that is not maximal for most states, except for a small subset of
random states, and can distinguish between two random priors.

A way to understand the scarce abundance of high hyperdeterminant states is based
on the comparison between the multipartite and the bipartite entanglements. The latter is
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Fig. 3.1: HDet4 for 105 random Hamiltonians distributed following random
distributions corresponding to GOE, GUE and GSE introduced in Def. 3.2.2,
Def. 3.2.3 and Def. 3.2.4. These distributions are compared with HDet4 of flat
and Haar distributed random states.

measured mainly by the Von Neumann entropy, where one does not encounter cancellations
coming from the different terms of the reduced density matrix. On the contrary, to obtain
high hyperdeterminant values, requires a fine tuning, as illustrates the HDet4 expression
for Gabcd state of Eq. (3.45). Random states do not propitiate this fine tuning which leads
to low values for the hyperdeterminant.

3.2.3 Ground state of random Gaussian Hamiltonians
Random matrices are closely related with several physical fields [95]. For that reason, we
also analyse the ground state of random Hamiltonians constructed artificially with random
matrices. In particular, we construct random matrices of dimension 24 × 24 whose entries
are random numbers distributed following three types of Gaussian ensembles.

Definition 3.2.2 — Gaussian Orthogonal Ensamble (GOE) . Symmetric N × N matrix
which diagonal entries are i.i.d. with distribution N(0, 1) and the off-diagonal entries
are i.i.d. (subject to the symmetry) with distribution N(0, 1

2)

Definition 3.2.3 — Gaussian Unitary Ensamble (GUE) . Hermitian N ×N matrix which
diagonal entries are i.i.d. with distribution N(0, 1) and the off-diagonal entries are i.i.d.
(subject to being Hermitian) with distribution N2(0, 1

2), i.e. its corresponding real and
imaginary parts are distributed following a N(0, 1

2) distribution.

Definition 3.2.4 — Gaussian Symplectic Ensamble (GSE) . Self-dual N ×N matrix which
diagonal entries are i.i.d. with distribution N(0, 1) and the off-diagonal entries are i.i.d.
(subject to being self-dual) with distribution N4(0, 1

2), i.e. its corresponding quaternion
units are distributed following a N(0, 1

2) distribution.

Figure 3.1 shows the values of HDet4 for the ground state of 105 random Hamiltonians
for the three Gaussian distributions. For GUE and GSE, the mean value for HDet4 is
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slightly lower than for a random state and have the same value as Haar distributed random
states, whereas for GOE is much smaller. This result is independent of the number of
distributions considered, which suggests the existence of a probability density related to
HDet4.

We have introduce HDet4 basic properties and typical values for random distributions.
The next part of this chapter is to study four-partite entanglement in some well-known
spin models, using as a figure of merit HDet4, S and T invariants.

3.3 The transverse Ising model
One of the most studied one-dimensional quantum spin models is the transverse Ising
model [96]. This model is described by the Hamiltonian

Definition 3.3.1 — Transverse Ising Model.

HIsing ≡ −J
n∑
i=1

σxi σ
x
i+1 − λ

n∑
i=1

σzi . (3.58)

where J is the coupling constant and λ is the transverse field strength.

In this chapter, we study the ferromagnetic interaction, i.e. J > 0, and without lost of
generality it can be set J = 1 and λ ≥ 0. We also consider periodic boundary conditions,
i.e. σxnσx1 .

The non-commuting transverse field term introduces quantum fluctuations in the model
causing a quantum phase transition from an ordered phase (magnetization different from
zero) to a disordered paramagnetic phase (magnetization is zero), at critical value of λ = λc.
For infinite chains, λc = 1 is the critical point where conformal invariance is restored. At
λ = 0 there are two degenerate ground states with ferromagnetic ordering, | →→ · · · →〉
and | ←← · · · ←〉 – where | →〉 and | ←〉 are the spin states in the σx basis – and at λ > λc
the external field strength wins over the neighbouring interaction J and the system lies
in the paramagnetic phase. For finite chains in the ferromagnetic phase, a non vanishing
value of λ breaks the degeneracy of the ground state and produces an exponentially small
energy gap between the two lowest energy states. On the other hand, the critical value λc
moves away from its value in the following sense. The entropy of the Ising spin chain peaks
around the quantum phase transition. As long as the length of the chain increases, the
critical point approaches to 1. The entanglement entropy near λ = 1 scales logarithmically
following the conformal scaling law with central charge c = 1

2 till the correlation length
bounds the entropy.

3.3.1 Eigenstates
The analytic expressions of HDet4, S and T invariants for all the eigenstates are summarized
in Tab. 3.1 (see App. D for details). One can distinguish three types of behaviours: i)
HDet4 is different from zero, ii) HDet4 zero, due to a cancellation of non-vanishing S and
T invariants, and iii) HDet4, S and T are all zero.

To illustrate this result, let us write explicitly an eigenstate for each type of behaviour.
Let’s start with eigenstates with zero HDet4, S and T . An example is given by eigenstate
|Ψ3〉:

|Ψ3〉 = |Ψ−〉13|00〉24, (3.59)

where |Ψ−〉 = (|01〉 − |10〉)/
√

2. The subscripts 13 and 24 stand for the spins represented
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State HDet4 S T

|Ψ0〉, |Ψ15〉 H(α+, β+, γ+) S(α+, β+, γ+) T (α+, β+, γ+)
|Ψ1〉, |Ψ5〉, |Ψ10〉, |Ψ14〉, 0 1

(1+λ2)2
1

263
1

(1+λ2)3
1

2933

|Ψ2〉, |Ψ13〉 H(α−, β−, γ−) S(α−, β−, γ−) T (α−, β−, γ−)
|Ψ3〉, |Ψ4〉, |Ψ7〉, |Ψ8〉, |Ψ11〉, |Ψ12〉 0 0 0
|Ψ6〉, |Ψ9〉 0 1

263 − 1
2933

Tab. 3.1: Summary of the values of HDet4, S and T invariants for the 15
transverse Ising model eigenstates |Ψk〉 with 0 ≤ k ≤ 15 as a function of λ for
0 ≤ λ ≤ 2/

√
3. Functions H(α±, β±, γ±), S(α±, β±, γ±) and T (α±, β±, γ±) are

written in Eq. (3.63) and Eq. (3.64) and the explicit eigenstates |Ψk〉 in App. D.

by the corresponding state. Both invariants and HDet4 are zero when the state can be
factorized in two bipartitions, which is this case.

For the first excited state, S and T are non zero but HDet4 = 0:

|Ψ1〉 = 1

2
√

(λ+
√
λ′)2 + 1

(
λ+
√
λ′
) (
|00〉|Ψ+〉+ |Ψ+〉|00〉

)
+|11〉|Ψ+〉+|Ψ+〉|11〉, (3.60)

where |Ψ+〉 = (|01〉+ |10〉)/
√

2 and λ′ = 1 + λ2. Notice that this state is a combination of
two |W 〉-type states. For that reason, it keeps the same properties as W states explained
in the previous section.

There are other kind of states where S 6= 0 and T 6= 0, but HDet4 = 0, in particular

|Ψ6〉 = 1√
2

(|0011〉 − |1100〉) , (3.61)

|Ψ9〉 = 1√
2

(|0101〉 − |1010〉) . (3.62)

These states have the same values of S and T as the GHZ state and are not separable in
two bipartitions but they entangle half of the system with the other half. In fact, they
represent the two ways of maximally entangle two spins in one direction with the other
two in the opposite direction. If we define the states | ⇒〉 ≡ |00〉 and | ⇔〉 ≡ |11〉, then
|Ψ6〉 = 1√

2 (|⇒〉|⇔〉 − |⇔〉|⇒〉) and |Ψ9〉 = 1√
2 (|⇒〉13|⇔〉24 − |⇔〉13|⇒〉24), which are

|Ψ−〉 states.
There are four states with non-zero HDet4: ground state and second, thirteenth and

fifteenth excited states. The corresponding functions of S(α, β, γ), T (α, β, γ) and H(α, β, γ)
shown in Tab. 3.1 are

S(α, β, γ) = Γ(α, β, γ)
12N (α, β, γ)2 ,

T (α, β, γ) =
(
4β2(α+ γ2)− (α− γ2)2) (Γ(α, β, γ)− 768αβ4γ2)

216N (α, β, γ)3 ,

H(α, β, γ) = S(α, β, γ)3 − 27T (α, β, γ)2, (3.63)

where Γ(α, β, γ) = α2(α−4β2)2−4α(α2−2αβ2−56β4)γ2 + 2(3α2 + 4αβ2 + 8β4)γ4−4(α+
2β2)γ6 + γ8 and N (α, β, γ) = (1 + α2 + 4β2 + 2γ2)2, which is actually the fourth power of
the norm of these states as a function of α, β and γ parameters. These parameters are
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also functions of λ and for those states with non-zero HDet4 are

α± = 1
λ

(
2λ3 +

√
2λ2

√
λ′ ±

√
λ′′ −

√
2
√
λ′ ±

√
λ′′
(
1∓
√
λ′′
)
− λ

(
1∓ 2

√
λ′′
))

,

β± = λ+ 1√
2

√
λ′ ±

√
λ′′,

γ± = 1 +
√

2λ√
λ′ ±

√
λ′′
, (3.64)

where λ′′ = 1 + λ4.
The ground state |Ψ0〉 and the second excited state |Ψ2〉 can be written in terms of the

above parameters:

|ϕ±〉 ∝ α±|0000〉+ 2β±|Ψ+〉13|Ψ+〉24 + γ±(|0101〉+ |1010〉) + |1111〉, (3.65)

where + and − stand for |Ψ0〉 and |Ψ2〉 respectively. This equation shows how rich is
the quadripartite entanglement in these states. They contain all entanglement forms seen
previously: part of the state is separable into two subsystems, other part of the state
entangles maximally two spins in |0〉 state with two spins in |1〉 state and also contain the
states with all spins aligned.

Figure 3.2 shows HDet4 for the ground state and the second excited state. Both curves
have peaks at different values of λ: the ground state HDet4 peaks at λ ∼ 0.8, close to
the critical point, which for a chain of n = 4 sites is λ ' 0.7, while the HDet4 of the
second excited state peaks at λ ∼ 1.2, where it is not the second excited state anymore,
as |Ψ2〉 intersects with |Ψ3〉 at λ = 2/

√
3 ∼ 1.15. The order of magnitude of the peaks

are also different: when the ground state has HDet4 ∝ 10−16, the second excited state
has HDet4 ∝ 10−9, similar to the mean value of HDet4 for a random state. Moreover, the
excited state peak is broader than the ground state peak. Then, even both states have the
same analytic structure, the differences in the coefficients of the wave function lead to a
difference of seven orders of magnitude between their corresponding HDet4.

3.4 The Heisenberg XXZ model
Together with transverse Ising model, Heisenberg model is another well known spin chain
model. The XXZ chain is a generalization of this model which Hamiltonian can be written
as

Definition 3.4.1 — XXZ model.

HXXZ ≡ J
n∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σzi+1

)
, (3.66)

where ∆ is the anisotropy parameter and J is the coupling constant.

We set J = 1, which entails a ferromagnetic ground state for ∆ < −1 and an anti-
ferromagnetic ground state for ∆ > 1, also called Néel phase.

This model is critical in the region ∆ ∈ (−1, 1], known as the XY phase [97]. Its
entropy scales following a conformal scaling law with a central charge c = 1, so it belongs to
a different universality class than the Ising model. Then, this model present two quantum
phase transitions, at ∆ = 1 and at ∆ = −1. The first one is a Kosterlitz-Thouless where
the gap scales as e−π2/2

√
2(∆−1) for ∆ slightly larger than one [98]. The second transition

at ∆ = −1 belongs to the Dzhaparidze-Nersesyan-Pokrovsky-Talapov universality class
[99, 100], where the entropy scales as S ' 1

2 logL at ∆→ −1+ [101].
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Fig. 3.2: HDet4 for the ground state |Ψ0〉 (left axis, blue solid curve) and second
excited state |Ψ2〉 (right axis, dotted red curve) of the Ising model of n = 4 spins
as a function of the λ field parameter. The HDet4 of the second excited state is
seven orders of magnitude greater than the ground state’s.

3.4.1 Eigenstates
We diagonalize the XXZ Hamiltonian with n = 4 spins and periodic boundary conditions.
All energy spectrum is shown in Tab. D.2 in App. D. Analogously with Ising spectrum,
the level order will depend on the value of ∆. For ∆ < −1, the ground state is degenerate
and corresponds to the states with all spins aligned (ferromagnetic phase). For ∆ > −1
the ground state is unique and has energy −2(∆ +

√
8 + ∆2). At the isotropic point ∆ = 1,

it describes a resonating valence bound state, which will be explained at the end of this
subsection.

The expressions of S, T and HDet4 for the states obtained after the diagonalization
are summarized in Tab. 3.2. All states exhibit HDet4 = 0 either because S and T vanish,
or because they cancel each other.

There are three types of states that lead to null S and T invariants. Similarly with
Ising model, some states are separable into two subsystems. For example, one of the states
with zero energy can be written as

|Ψ(E = 0)〉 = 1√
2

(|0111〉 − |1101〉) = |Ψ−〉13|11〉24, (3.67)

where |0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉 are the eigenstates of σz.
There are two eigenstates that are product states in the XXZ spectrum: |0000〉 and

|1111〉, all spins are aligned, both with energy 4∆. They correspond to the ground states
for ∆ < −1 and the most excited states for ∆ > 1 respectively.

Finally, the third type of states with S = T = 0 are W -like. For instance, one of the
states with energy 4 is

|Ψ(E = 4)〉 = 1
2 (|0111〉+ |1011〉+ |1101〉+ |1110〉) . (3.68)

Only four energies have S and T different from zero. Two of them, with energies
0 and −4∆, correspond with the two ways of maximally entangle two sets of spins in
opposite directions. These are the same states as the Ising model but in σz basis, i.e.
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Energy S T HDet4

−4(2), 4(2), 0(6), 4∆(2) 0 0 0
0, −4∆ 1

263 − 1
2933 0

−2
(
∆−

√
8 + ∆2

)
S+ T+ 0

−2
(
∆ +

√
8 + ∆2

)
S− T− 0

Tab. 3.2: S, T and HDet4 of XXZ model for states obtained after the
Hamiltonian diagonalization. All states lead to zero HDet4 and only four states
have S and T invariants different from zero. The values in parenthesis represent
the degeneracy and S± and T± expressions correspond with Eq. 3.72.

| �〉 ≡ |00〉 and | �〉 ≡ |11〉. Then, these states become 1√
2 (−| �〉12| �〉34 + | �〉12| �〉34)

and 1√
2 (−| �〉13| �〉24 + | �〉13| �〉24). Both states have S and T constant and with the

same value as in the Ising model case, i.e. S = 1/(263) and T = −1/(2933).
There are two states with S and T that depend on ∆. The one that has an energy

−2
(
∆ +

√
8 + ∆2

)
, corresponds to the ground state for ∆ > −1:

|φ1〉 = 1
N

(
|0011〉+ |0110〉+ |1100〉+ |1001〉 − 1

2
(
∆ +

√
8 + ∆2

)
(|0101〉+ |1010〉)

)
,

(3.69)

where N = 8 + ∆(∆ +
√

8 + ∆2). Invariants S and T are non zero as long as ∆ 6= 1.
When ∆ = 1 it becomes a resonating valence bound state, as it is shown at the end of this
subsection. The other state has energy −2

(
∆−

√
8 + ∆2

)
and corresponds to the state

with higher energy for ∆ < 1:

|φ2〉 = 1
N ′

(
|0011〉+ |0110〉+ |1100〉+ |1001〉 − 1

2
(
∆−

√
8 + ∆2

)
(|0101〉+ |1010〉)

)
.

(3.70)

where N ′ = 8 + ∆(∆−
√

8 + ∆2). This state has S and T different from zero as long as
∆ 6= −1.

The expressions for the invariants of these two states are

S± = 1
28 · 3

(
∆±

√
8 + ∆2

)4 (
4−∆

(
∆∓

√
8 + ∆2

))2

(
8 + ∆

(
∆±

√
8 + ∆2

))4 , (3.71)

T± = 1
212 · 33

(
∆±

√
8 + ∆2

)6 (
4−∆

(
∆∓

√
8 + ∆2

))3

(
8 + ∆

(
∆±

√
8 + ∆2

))6 , (3.72)

and are shown in Fig. 3.3. Invariants for these two states seem to be sensible to the
transition points ∆ = 1 and ∆ = −1.

As a final remark, notice that the above states correspond to the Gabcd state of Eq.
(3.42) with a = −d, which makes S and T proportional to (a2 − b2)(a2 − c2).

The XXZ model for ∆ = 1 corresponds with the isotropic Heisenberg model, also
known as the XXX or simply Heisenberg model. Its Hamiltonian is invariant under the
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Fig. 3.3: S and T invariants of the ground state of n = 4 XXZ spin chain.
HDet4 is always zero but the S and T invariants are able to detect the transition
points at ∆ = −1 and ∆ = 1.

rotation group, which allows for an easy derivation of energy spectrum. For n = 4 spins,
the Hamiltonian can be written in terms of spin operators ~S = 1

2(σx, σy, σz) as

HXXX = 4
(
~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S4 · ~S1

)
= 2

((
~S1 + ~S2 + ~S3 + ~S4

)2
−
(
~S1 + ~S3

)2
−
(
~S2 + ~S4

)2
)

= 2 (s(s+ 1)− s13(s13 + 1)− s24(s24 + 1)) , (3.73)

where s is the total spin and s13 and s24 are the total spin for particles 1 and 3, and 2 and
4 respectively.

Tab. 3.3 shows the different values of s13, s24 and s and the corresponding energy of
HXXX . When the total spin is zero, the state is called a Resonating Valence Bound [102].
There are two of them in Heisenberg spin chain:

|φ1〉 = 1
2
√

2
(|0011〉+ |0110〉+ |1100〉+ |1001〉 − 2 (|0101〉+ |1010〉)) , (3.74)

|φ2〉 = 1
2 (|0011〉 − |0110〉 − |1001〉+ |1100〉) . (3.75)

The first one corresponds to the ground state whereas the second is a lineal combination of
states with zero energy. Both have the property S = T = 0. To check if this is a general
property of resonating valence bound states, we have checked that the state

|φ〉 = cos θ|φ1〉+ eiϕ sin θ|φ2〉 (3.76)

also have S and T zero ∀ θ, ϕ.

3.4.2 Degeneracy
We can also check what is the effect of degeneracy on HDet4. Although all states of XXZ
Hamiltonian have HDet4 = 0, linear combinations of states with the same energy, which is
also an eigenstate, could have HDet4 6= 0 or modify the values of S and T invariants.
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Energy s13 s24 s

−8 1 1 0
−4 1 1 1
0 0 1 1
0 1 0 1
0 0 0 0
4 1 1 2

Tab. 3.3: Energies for the n = 4 Heisenberg model (XXZ model with ∆ = 1)
according to the total spin of their particles. When the total spin is zero, it is
called a Resonating Valence Bound state.

As example, let us analyse the case of Heisenberg model. As it is shown in Tab. 3.3,
there are four different energies in this particular case. The ground state is not degenerate,
so the values of HDet4, S and T invariants remain the same as computed above; HDet4 = 0,
S = S− and T = T−.

The state with energy E = −4 has degeneracy 3. Any state with the form

|Ψ(E = −4)〉 = 1
N

(a(|0111〉 − |1011〉+ |1101〉 − |1110〉) + b(|0101〉 − |1010〉)

+c(|0001〉 − |0010〉+ |0100〉 − |1000〉)) (3.77)

is also an eigenstate. This state has HDet4 = 0 due to an exact cancellation between the
two invariants:

S(E = −4) = (b2 − 4ac)4

192(2a2 + b2 + 2c2)4 ,

T (E = −4) = − (b2 − 4ac)6

13824(2a2 + b2 + 2c2)6 . (3.78)

The state with energy E = 4 has degeneracy 5. Then, any state with the form

|Ψ(E = 4)〉 = 1
N

(a(|0111〉+ |1011〉+ |1101〉+ |1110〉) + b|0000〉+

c(|0001〉+ |0010〉+ |0100〉+ |1000〉) + d|1111〉+
e(|0011〉+ |0110〉+ |1100〉+ |1001〉+ |0101〉+ |1010〉)) (3.79)

is also an eigenstate. In this case, HDet4 could be different from zero. We do not include
the expressions of the invariants as they are cumbersome and not very illustrative.

Finally, the state with energy E = 0 has degeneracy 7. In this case, HDet4 = 0 again
for the cancellation between S and T invariants.

3.4.3 Thermal state
The S invariant for a thermal states of the XXZ spin chain with n = 4 sites is computed
using definition of Eq. (3.33) and plotted in Fig. 3.4. As β decreases, the amount of
entanglement quantified by this invariant decreases until zero. As expected, multipartite
entanglement is lost at high temperatures.

Furthermore, discontinuity at ∆ = −1 softens and moves to higher ∆ as temperature
increases. On the contrary, the vanishing S at ∆ = 1 remains independently of the β
values.
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Fig. 3.4: S invariant for the XXZ spin chain model as a function of ∆ for
different values of β = 1/T . The amount of entanglement quantified by the S
invariant tends to zero as the temperature increases, as expected.

3.5 The generalized Haldane-Shastry wave functions
The Haldane-Shastry model (HS) [103, 104] describes a chain of equally spaced spin-1

2
particles in a circle with pairwise interactions inversely proportional to the square of the
distance between the spins.

Definition 3.5.1 — Haldane-Shastry model. The Haldane-Shastry Hamiltonian represents
a n spin-1/2 chain with interaction

HHS ≡
π2

n2

n∑
i>j

~Si · ~Sj
sin2

(
π(i−j)
n

) , (3.80)

where ~Si = 1
2~σi.

The ground state of HS Hamiltonian can be written as [105]

ψ(s1, · · · , sn) ∝ δsei
π
2
∑

i:odd si
n∏
i>j

∣∣∣∣sin(π(i− j)
n

)∣∣∣∣sisj/2 . (3.81)

where the spin at the site i = 1, . . . , n is given by si/2 with si = ±1, δs = 1 if
∑n
i=1 si = 0

and δs = 0 otherwise. The latter condition implies that the total third component of the
spin vanishes, that is 〈

∑
i S

z
i 〉 = 0, but the HS state is also a singlet of the rotation group,

〈(
∑
i
~Si)2〉 = 0.

The HS wave function has a huge overlap with the ground state of the isotropic
Heisenberg model. In fact, for n = 4 sites these two wave functions are the same. The
HS Hamiltonian belongs to the same universality class as the isotropic Heisenberg model,
which is described by the Wess-Zumino-Witten model SU(2)1 that has a central charge
c = 1.

The wave function (3.81) was generalized in Ref. [105] to the following one

ψ(s1, · · · , sn) ∝ δsei
π
2
∑

i:odd si
n∏
i>j

∣∣∣∣sin π(i− j)
n

∣∣∣∣αsisj , (3.82)

and was used as a variational ansatz for the ground state of the XXZ model in the critical
regime. The relation between the anisotropy parameter ∆ and the parameter α was found
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Fig. 3.5: Comparison of the S invariant of the ground state of the XXZ model
and the wave function (3.82) for n = 4 spins. Both wave functions coincide for
∆ = −1, 0, 1 which correspond to α = 0, 1

4 ,
1
2 .

to be ∆ = − cos(2πα), with 0 < α ≤ 1
2 , corresponding to the critical region −1 < ∆ ≤ 1.

The cases α = 0, 1
4 provide the exact solution of the XXZ model for ∆ = −1 and ∆ = 0,

while α = 1
2 , is the HS wave function (3.81).

3.5.1 Ground state and S and Tnvariants
In the ground state of the HS model is

|Ψ〉HS = 1
N
(
4−α(|0011〉+ |0110〉+ |1001〉+ |1100〉)− (|0101〉+ |1010〉)

)
, (3.83)

where N =
√

1 + 3(4−2α) + 4−α and we have used the computational basis states |0〉 and
|1〉) to describe the spins si = ±1. This type of wave function have HDet4 = 0 as a
consequence of the cancellation between S and T invariants

SHS = 44α−3 (16α − 4)2

3(2 + 16α)4 ,

THS = −84α−3 (16α − 4)3

27(2 + 16α)6 . (3.84)

Thus, as in the XXZ model, we shall study the S and T behaviours instead of HDet4
which vanishes identically.

Figure 3.5 shows the S invariant as a function of α parameter. As expected, it matches
with the XXZ S invariant at α = 0, 1

4 ,
1
2 . Also, α = 1

4 is the inflexion point: for α < 1
4 we

get SXXZ > SHS whereas for α > 1
4 the results is SXXZ < SHS . Similar results are found

for T invariant.

3.5.2 Dimerized wave function
We can modify the interaction strength between the spins introducing a new parameter δ,
in the wave function:
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Fig. 3.6: Left: S invariant as a function of δ parameter for different values of
α. Right: Diagrammatic representation of the n = 4 Haldane-Shastry spin chain
with the dimerization parameter δ. For δ > 0 spins 1 and 4 and 2 and 3 are
attracted each other, while for δ < 0 the attraction is between spins 1 and 2 and
3 and 4. For |δ| = 1

2 , two consecutive spins are at the same position and the
ground state is divided into two singlet states (dimer). As a consequence, S and
T invariants become zero.

Definition 3.5.2 — Dimerized HS wave function.

ψδ(s1, · · · , sn) ∝ δsei
π
2
∑

i:odd si
n∏
i>j

|2 sin (θi − θj)|αsisj , (3.85)

with θj = π/n
(
j + δ(−1)j

)
for j = 1, · · · , n.

In terms of the computational basis states, the wave function become

|Ψδ〉 ∝ a1 (|0011〉+ |1100〉) + a2 (|0101〉+ |1010〉) + a3 (|0110〉+ |1001〉) , (3.86)

where

a1 = −2−α
∣∣∣∣ cos (π(3 + 2δ)/4)
cos(πδ/2)− sin(πδ/2)

∣∣∣∣2α ,
a2 = | cos(πδ)|−2α,

a3 = −4−α
∣∣∣∣1− 2

1 + tan(πδ/2)

∣∣∣∣2α . (3.87)

The invariants S and T become

S =

(
a4

1 +
(
a2

2 − a2
3
)2 − 2a2

1
(
a2

2 + a2
3
))2

192 (|a1|2 + |a2|2 + |a3|2)4 , (3.88)

T = −

(
a4

1 +
(
a2

2 − a2
3
)2 − 2a2

1
(
a2

2 + a2
3
))3

13824 (|a1|2 + |a2|2 + |a3|2)6 . (3.89)

Figure 3.6 left shows the S invariant as a function of δ parameter for different α values.
It matches with XXZ model at α = 0, 1

2 and shows a periodicity S(α, δ) = S(α, δ± 1). Its
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Fig. 3.7: Entanglement landscape. This plot shows the amount of entanglement
of several wave functions analysed in this chapter and quantified using S and T
invariants. For the Ising model we plot ground state, 1st and 2nd excited states –
denoted respectively with ∗ and ∗∗. For the XXZ model, we plot ∆ = 0, that
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mean value of a random state and GOE, GUE and GSE for the mean values of
the ground state of random matrix Hamiltonians. Due to relation (3.26), some
states have zero HDet4. Then we indicate with red diamond points the states
with HDet4 6= 0.

maximum are located at δ = ±m and its minimum at δ = ±m
2 for integer m. Moreover,

maximum for α = 1
4 matches with S invariant for the XXZ model at ∆ = 0, as expected.

In fact, it is enough to consider δ ∈ [−1
2 ,

1
2 ].

We can write the wave function of Eq. (3.85) using the complex numbers zj = e2iθj .
Then, zj correspond with the position of local spins, so at δ = 1

2(−1
2), spins 1 and 4 (1

and 2) and 2 and 3 (3 and 4) are at the same position and the state is a product of two
singlets, i.e. a dimer, as it is shown diagrammatically in Fig. 3.6 right. Then, the state of
four spins is separable into two subsystems and S and T become zero.

3.6 Conclusions
In this chapter we have studied the quadripartite entanglement of several quantum states
of four spin-1

2 models, in particular transverse Ising model, XXZ model and generalized
Haldane-Shastry model. We have also studied random pure states and ground states of
Gaussian Hamiltonians.

As a figure of merit to quantify multipartite entanglement, we have used the Schläfli
hyperdeterminant HDet4 [86], which is an extension of the 2× 2× 2 dimensional Cayley’s
hyperdeterminant [57]. The hyperdeterminant can also be constructed from the two
polynomial invariants S and T as HDet4 = S3 − 27T 2. The latter quantities provide a
more refined characterization of the quadripartite entanglement, particularly in those cases
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where HDet4 vanishes.
An overview of the results is shown in the S−T diagram plotted in Fig. 3.7. We found

that HDet4 is sensible to different priors on such random states. Flat and Haar distributed
coefficients in these states exhibit different mean values of HDet4. It can also be observed
a difference between GOE and the other two Gaussian distributions, GUE and GSE, in
terms of their mean values of HDet4.

For the Ising model, we found that ground state HDet4 shows a pronounced peak at
λ ' 0.84, which lies near the critical point of the model for n = 4 spins, located at λ ' 0.7.
The XXZ model exhibit vanishing values of HDet4 for all non-degenerate states. This
fact is due to an exact cancellation between the S and T invariants as a consequence
of the relation HDet4 = S3 − 27T 2. In the whole critical regime −1 < ∆ ≤ 1, one has
S ≥ 0, with a discontinuity at the point ∆ = −1 and achieving S = 0 for ∆ = 1. In the
anti-ferromagnetic regime ∆ > 1, one has that S < 0. All together suggests that HDet4
and S invariant are able to catch a quantum phase transition.

The results obtained for the generalized Haldane-Shastry type model are similar to
those of the XXZ model in the critical regime. We also introduce a dimerization factor δ
and study the multipartite entanglement as a function of this coefficient. The result shows
that S and T invariants are maximum when δ = 0 and zero when δ = 1

2 , which corresponds
to two consecutive spins at the same physical position: the state becomes a product state
of two singlets (dimer). Again, S and T invariants seem to be sensible to phase changes.

In summary, we have shown that HDet4 is a useful tool to characterize multipartite
entanglement in several wave functions. For random distributed states, it is sensible to
the prior used. This analysis can be extended to other priors than the ones used in this
work. In the analysis of ground state of 4 spin chains, it is able to detect phase transitions
even for such a small number of particles. A direct extension to higher values of the spin
or more sites seems at the moment out of reach, but it suggests new tool to characterize
multipartite entanglement along this direction.



4.QuantumPhaseTransition in aQuantum
Computer

I therefore believe it’s true that with a suitable class
of quantum machines you could imitate any quantum
system, including the physical world.

–Richard P. Feynman,
“Simulating physics with computers”, 1982.

In recent years quantum computing has dived fully into the experimental realm. Since
Richard Feynman made the observation that opens this chapter, there have been many
improvements in the control of quantum devices. Now, quantum computers have become a
reality, although we are still far from a universal quantum processor. Many prototypes are
already available, but they are too noisy to be used beyond proofs of concept.

The explosion of the quantum computing field in this first decade of the XXI century
is entailing the creation of dozens of new companies, in general start-ups with an academic
origin in the universities where this field was born. Well-known technological companies
have also joined to this race for the universal quantum processor: some from the beginning,
others as the progress in the experimental part have become more relevant. It turns out to
be interesting that two representatives of these company models were the first ones to offer
cloud-based quantum computation platforms: the multinational company IBM and the
start-up Rigetti Computing. Both are betting for superconducting qubits, although their
devices characterization is different. As more quantum computer prototypes are coming
out, it will be important, from research and economic point of view, to find methods to
compare them and test their quality.

Furthermore, the scientific community is still working on Feynman’s original aim for
the quest of a quantum computer [106]: the simulation of quantum systems. Many classical
techniques have been developed in that direction. For instance, quantum Monte Carlo
methods [107–109] or tensor networks algorithms [110]. However, the firsts are concerned
from the well-known sign problem, the seconds are only efficient for slightly entangled
systems [111] whereas strongly correlated quantum systems, such as those displaying
frustration, will need a quantum computer to be efficiently simulated [112]. There are
some works that propose quantum algorithms to construct arbitrary Slater determinants,
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both in one and two dimensions, to simulate the dynamics of the ground state of fermionic
Hamiltonians, in particular, the Hubbard model [113, 114]. Other proposals introduce the
concept of compressed quantum computation, i.e. simulation of n-spin chain using logn
qubits [115, 116].

In this chapter, we describe the implementation of a four-qubit experiment that could
be interesting both as a proposal for testing and comparing device quality and for its
implications in condensed matter physics. The main result is the performance of an exact
simulation of a one-dimensional spin chain with an XY -type interaction. The design of
a quantum circuit that diagonalizes the Hamiltonian follows the method of Ref. [117]
which implements the same steps as the analytical solution of the model. Therefore, the
same idea can be extended to other integrable models like the Kitaev-honeycomb model,
which a circuit has already been proposed [118]. Because this circuit solves the model, it
provides access to the whole spectrum and not only to the ground state: time evolution
and thermal states can be simulated exactly as well. This introduces a new approach in
quantum simulation if an exact circuit is found for those nontrivial models, such as the
Heisenberg model, which has an ansatz to be solved. In particular, for one-dimensional
spin chains, the Bethe ansatz [119] is the most successful method and several proposals
exist to simulate and extend it to two-dimensions using tensor network techniques [120].
As the one-dimensional XY model has analytic solutions for an arbitrary number of spins
and the circuit proposed can be efficiently generalized to a larger number of qubits, the
methods outlined in this chapter can be used to benchmark a quantum computer by seeing
how this compares against known solutions.

This chapter is structured as follows. The first section describes briefly the characteristics
of the XY model and solves it analytically. Next, in Sec. 4.2, we introduce the method
proposed in Ref. [117] to construct an efficient circuit that diagonalizes this Hamiltonian:
the number of gates scales as n2 and the circuit depth as n logn. Section 4.3 gives a
specific example of how to simulate time evolution using the circuit derived in the previous
section and in Sec. 4.4, two methods to simulate the expected value of an operator for
finite temperature. The description of the experimental setups and their results, published
in Ref. [121], are explained in sections 4.5 and 4.6 respectively. Finally, the conclusions are
exposed in Sec. 4.7.

4.1 The XY model
This model is one of the most used toy models in condensed matter physics because
it contains quantum phase transitions. It is the generalization of other famous models
such as transverse Ising model of Eq. (3.58), introduced in the previous chapter, or XX
model. The XY Hamiltonian describes a spin chain with nearest-neighbour interaction
plus a transverse field. For one-dimensional systems, this Hamiltonian can be written
as

Definition 4.1.1 — XY model Hamiltonian.

HXY ≡ J
n∑
i=1

(1 + γ

2 σxi σ
x
i+1 + 1− γ

2 σyi σ
y
i+1

)
+ λ

n∑
i=1

σzi , (4.1)

where J will determine the behaviour of the ordered phase, ferromagnetic for J < 0 or
anti-ferromagnetic for J > 0, γ is the anisotropic parameter and λ the transverse field
strength.

The spin chain described by this Hamiltonian can be open or can have periodic boundary
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conditions, i.e. last spin interacts with first spin by adding the term σnσ1. With respect
to this chapter, it is considered periodic boundary conditions. The Ising Hamiltonian
corresponds with γ = 1 and the XX Hamiltonian with γ = 0.

At J = λ there is a quantum phase transition between ferromagnetic (or anti-
ferromagnetic) and paramagnetic phases. This transition belongs to the same universality
class as the Ising model quantum phase transition. At γ = 0 there is an anisotropic
transition, between ordered phases in x and y directions. More details about the phases of
this model can be found in Ref. [96, 122].

The analytical solution of this model without transverse field was first introduced
by Lieb, Schultz and Mattis in 1961 [123] and later, in 1962, Katsura solved it with the
external field [124].

4.1.1 Analytical solution
It is convenient to write the Hamiltonian of Eq. (4.1) in terms of σ± = σx ± iσy operators.
Then, the Hamiltonian reads

HXY = J

2

n∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1 + γ

(
σ+
i σ

+
i+1 + σ−i σ

−
i+1

))
+ λ

n∑
i=1

σzi . (4.2)

The first step to solve this model consists on applying the Jordan-Wigner transformation
[125], which maps the spin operators σ into fermionic modes c:

Definition 4.1.2 — Jordan-Wigner transformation.

cj ≡

j−1∏
l=1

(−2σzl )

σ−j , c†j ≡ σ
+
j

j−1∏
l=1

(−2σzl )

 . (4.3)

These new operators cj and c†j are the fermionic annihilation and creation operators
respectively acting on the vacuum |Ωc〉, ci|Ωc〉 = 0, and following the anticommutation
rules {ci, cj} = {c†i , c

†
j} = 0 and {ci, c†j} = δij . After this transformation, the Hamiltonian

becomes

HXY = J

2

n∑
i=1

(
c†ici+1 + c†i+1ci + γ

(
c†ic
†
i+1 + ci+1ci

))
+ λ

n∑
i=1

(
c†ici+1 − 1/2

)
−

− J

2
(
c†1cn + c†nc1 + γ

(
c†nc
†
1 + c1cn

))
+ J

2Qn
(
cnc
†
1 + c†nc1 + γ

(
c†nc
†
1 + c1cn

))
,

(4.4)

where Qn =
∏n−1
l=1

(
1− 2c†jcj

)
. Notice that the second line terms do not contain the sum

over all sites, so they will be negligible in the thermodynamic limit, i.e. for n→∞.

Fourier Transform
The next step to diagonalize the Hamiltonian is to apply the translational invariance using
the well known Fourier transform. To simplify the discussion, we will solve this Hamiltonian
in the thermodynamic limit, i.e. neglecting the second line terms of Eq. (4.4):

HXY = J

2

n∑
i=1

(
c†ici+1 + c†i+1ci + γ

(
c†ic
†
i+1 + ci+1ci

))
+ λ

n∑
i=1

(
c†ici+1 − 1/2

)
. (4.5)

The exact solution with periodic and anti-periodic boundary conditions can be found in
Ref. [124, 126, 127].
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Definition 4.1.3 — Fourier transform.

bk ≡
1√
n

n∑
j=1

exp
(
i
2πj
n
k

)
cj , b

†
k ≡

1√
n

n∑
j=1

exp
(
i
2πj
n
k

)
c†j , k = −n2 + 1, · · · , n2 .

(4.6)

After the Fourier transform, the Hamiltonian becomes

HXY =
n/2∑

k=−n/2+1

((
J cos

(2πk
n

)
+ λ

)
b†kbk + Jγ

ei
2πk
n

2
(
b†kb
†
−k + bkb−k

))
−λn2 . (4.7)

This Hamiltonian is already diagonal for γ = 0, which corresponds to the XX model. For
other cases, that include Ising model (γ = 1), it is necessary a last transformation.

Bogoliubov transformation
Hamiltonian of Eq. (4.7) mixes k and −k modes, so it is necessary to find a transformation
such that

ak = Akbk +Bkb
†
−k,

a−k = Ckb
†
k +Dkb−k, (4.8)

where ak and a−k are new operators that also obey fermionic anticommutation relations.
This implies that |Ak|2 + |Bk|2 = 1, |Ck|2 + |Dk|2 = 1 and AkCk +BkDk = 0.

Before applying such a transformation, it is useful to write the above Hamiltonian in
terms of only positive k modes, i.e. sum up half of the modes:

HXY =
n/2∑
k=0

((
J cos

(2πk
n

)
+ λ

)(
b†kbk + b†−kb−k

)

+ iJγ sin
(2πk

n

)(
b†kb
†
−k + bkb−k

))
− λn2 . (4.9)

Thus, we can write the Hamiltonian in a matrix form

HXY =
n/2∑
k=0

(
b†k b−k

)J cos
(

2πk
n

)
+ λ iJγ sin

(
2πk
n

)
−iJγ sin

(
2πk
n

)
−J cos

(
2πk
n

)
− λ

( bk
b†−k

)

≡
n/2∑
k=0

Ψ†kHkΨk , (4.10)

where we have used the fermionic anticommutation relations and
∑n/2
k=0 cos(2πk/n) = 0

to include the constant term. We have also introduced a two-component fermion field
Ψk =

(
bk b†−k

)T
.

To diagonalize this Hamiltonian we have to find the eigenvalues of the Hk matrix and
the transformation that leads to this diagonalization, i.e.

HXY =
n/2∑
k=0

Ψ†kHkΨk =
n/2∑
k=0

ΨkU†k

(
ωk 0
0 −ωk

)
UkΨk, (4.11)
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where

ωk =

√(
J cos

(2πk
n

)
+ λ

)2
+ J2γ2 sin2

(2πk
n

)
(4.12)

are the eigenvalues of Hk. We can now define the transformed two-component fermion
field

Φk ≡
(
ak
a†−k

)
= UkΨk (4.13)

with

Uk =
(
Ak Bk
C∗k D∗k

)
. (4.14)

Using the constraints for the coefficients of Uk and matching Eq. (4.13) with (4.10) we
can find the coefficients of the Bogoliubov transformation [128, 129]:

Definition 4.1.4 — Bogoliubov transformation.

ak ≡ cos(θk/2)bk + i sin(θk/2)b†−k
a−k ≡ −i sin(θk/2)b†k + cos(θk/2)b−k

with θk = 2 arctan

 Jγ sin
(

2πk
n

)
J cos

(
2πk
n

)
+ λ

 . (4.15)
After this transformation we have finally diagonalized the XY Hamiltonian,

HXY =
n∑

k=−n/2+1
ωk

(
a†kak −

1
2

)
. (4.16)

The fact that it is possible to arrive to this diagonal Hamiltonian means that the XY
model is integrable.

4.2 Quantum circuit to diagonalize the XY Hamiltonian
Once we know how to diagonalize the XY Hamiltonian, we can proceed to design and
construct a quantum circuit that implements this diagonalization process. Although the
circuit presented is designed to solve this Hamiltonian, the key idea is general and the
process can be generalized to other models, specially those that are exactly solvable.

Let’s first consider the existence of a quantum circuit that disentangles a given
Hamiltonian and transforms its entangled eigenstates into product states. This circuit will
be represented by an unitary operation Udis that transforms the Hamiltonian H into a
non-interacting one, i.e. H̃ =

∑
i εiσ

z
i .

Definition 4.2.1 — Disentangling operation.

H̃ ≡ U †disHUdis . (4.17)

This diagonal Hamiltonian contains the energy spectrum εi of the original one and its
eigenstates correspond to the computational basis states. Then, we will have access to the
whole spectrum of the model by just preparing a product state and applying Udis.

In general, to find these disentangling unitaries will be a hard task, probably as hard
as finding a method to diagonalize analytically the Hamiltonian. However, for models that
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can be solved analytically we can try to map the corresponding steps of the diagonalization
process into quantum gates that perform the same operations on qubits. For the case of
XY Hamiltonian, we have already reviewed these steps: i) Implement the Jordan-Wigner
transformation to map the spins into fermionic modes. ii) Perform the Fourier transform
to get fermions to momentum space. iii) Perform a Bogoliubov transformation to decouple
the modes with opposite momentum. Thus, the construction of the disentangling gate can
be done by pieces:

Udis = UJWUFTUBog. (4.18)

In the following subsections, the quantum gates needed to implement the above
transformation are derived.

4.2.1 Jordan-Wigner transformation
The steps followed to diagonalize the XY Hamiltonian have been applied to an infinite spin
chain. Current quantum devices are finite and, in particular, the explicit circuit that will be
used as example is composed of up to 4 qubits, small number to consider thermodynamic
limit. For that reason, we can add some modifications to the original Hamiltonian of Eq.
(4.1) in order to cancel the periodic boundary terms and solve the system as it was infinite.
This will introduce some finite-size effects that will become negligible for higher qubit
circuits. Then, technically we will diagonalize a modified XY Hamiltonian that becomes
indeed the XY Hamiltonian for large n.

Definition 4.2.2 — Modified XY Hamiltonian.

HXY ≡ J
n∑
i=1

(1 + γ

2 σxi σ
x
i+1 + 1− γ

2 σyi σ
y
i+1

)
+ λ

n∑
i=1

σzi

+ J

(1 + γ

2 σy1σ
z
2 · · ·σzn−1σ

y
n + 1− γ

2 σx1σ
z
2 · · ·σzn−1σ

x
n

)
. (4.19)

Now, we proceed with the Jordan-Wigner transformation of Eq. (4.3). Notice that the
second line added in the above Hamiltonian cancels the periodic boundary conditions, σxnσx1
and σynσ

y
1 , after this transformation, leading directly the Hamiltonian in the thermodynamic

limit of Eq. (4.5). Thus we can continue applying the explained steps to diagonalize the
Hamiltonian without worrying about the boundary terms.

Let’s analyse what is the effect of this transformation in the wave function:

|ψ〉 =
∑

i1,··· ,in=0,1
ψi1···in |i1 · · · in〉 =

∑
i1,··· ,in=0,1

ψi1···in(c†1)i1 · · · (c†n)in |Ωc〉 . (4.20)

Notice that the coefficients ψi1···in do not change. Then it will not be necessary to implement
any gates on the quantum register to perform this transformation. However, for now on
we should take into account we are dealing with fermionic modes, so any swap between
two occupied modes will carry a minus sign. In terms of quantum gates, this is translated
into the use of fermionic SWAP gate (fSWAP) each time we exchange two modes:



4.2 Quantum circuit to diagonalize the XY Hamiltonian 57

Definition 4.2.3 — Fermionic-SWAP gate.

fSWAP ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (4.21)

This gate corresponds with the usual SWAP gate followed or preceded by a CZ gate.

4.2.2 Fourier transform
Once we have the fermionic modes, we get them to momentum space using the Fourier
transform of Eq. (4.6). For n = 2m for some integer m, this transformation can be
implemented with a log-depth circuit and using at most two-body quantum gates. This
method is called fast Fourier transform and consists in two parallel Fourier transformations
over n/2 sites, the even and the odd sites [130]:

n−1∑
j=0

e
2πik
n
jc†j =

n
2−1∑
j′=0

e
2πik
n/2 j

′
c†2j′ + e

2πik
n e

2πik
n/2 j

′
c†2j′+1 . (4.22)

To implement such a transformation we need a combination of a two-qubit gate, a ‘beam-
splitter’ F2, and one-qubit gate, the ‘phase-delay’ ωkn, which applies the so-called twiddle-
factor e2πik/n:

F2 =


1 0 0 0
0 1√

2
1√
2 0

0 1√
2 −

1√
2 0

0 0 0 −1

 , ωkn =
(

1 0
0 e

2πik
n

)
, (4.23)

where the fermionic anticommutation relation has been taken into account in the −1
element of the F2 matrix.

All together, the Fourier transform gate becomes

Definition 4.2.4 — Fourier transform gate.

Fnk ≡


1 0 0 0

0 1√
2

e
2πik
n√
2 0

0 1√
2 −

e
2πik
n√
2 0

0 0 0 −e
2πik
n

 . (4.24)

The explicit decomposition of this gate in terms of common quantum gates is shown in
Fig.4.1 left.

4.2.3 Bogoliubov transformation
Bogoliubov transformation described in Eq. (4.15) is actually a rotation that involve
Fourier operators b with opposite momenta. In particular, is a rotation round x axis that
can be carried with the two-qubit rotational gate
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Fnk

Ph (φk) • H • •

≡ • •
Bn
k

•

≡ X • Rx(θk) • X

Fig. 4.1: Decomposition of the building block of Fourier transform gate (left),
where φk = 2πk/n, and Bogoliubov gate (right). Details about the decomposition
of controlled-Hadamard and controlled-Rx gates can be found in App. A.

Definition 4.2.5 — Bogoliubov gate.

Bn
k ≡


cos

(
θk
2

)
0 0 i sin

(
θk
2

)
0 1 0 0
0 0 1 0

i sin
(
θk
2

)
0 0 cos

(
θk
2

)

 . (4.25)

Its decomposition in basic gates is shown in Fig.4.1 right.
Thus, the initial qubits are in a computational basis state that represents one eigenstate

of the diagonal Hamiltonian of Eq. (4.16). Then, the Udis circuit applies the inverse
Bogoliubov transformation so each qubit represents one Fourier mode. Finally, the inverse
Fourier transform maps the Fourier modes to the fermionic modes c. Undo the Jordan-
Wigner transformation is just a conceptual operation because the wave function is not
affected by this operation as has been explained before.

4.2.4 n = 4 spin chain
The explicit circuit for an n = 4 chain is shown in Fig. 4.2. As an example, let’s compute
the ground state of the model. First, we prepare the initial state as the ground state for
the diagonal Hamiltonian H̃:

|gs〉 =


|0000〉 for λ > 1, ∀J, γ ,
|0001〉 for λ < 1, J > 0, ∀γ and J < 0, γ = 0 ,
|0010〉 for λ < 1, J < 0, γ 6= 0 .

(4.26)

The circuit strategy consists in undoing the steps that diagonalize the XY Hamiltonian.
Thus, we first undo Bogoliubov transformation by applying (Bn

k )† gates, followed by
undoing the Fourier transform using the (Fnk )† gates and finally undo the Jordan-Wigner
transformation which, fortunately, does not need from any gate as has been explained in
the previous section.

For n = 4, the Bogoliubov modes are ±3π/2 and ±π/2, so we need two Bogoliubov
gates. We have removed the B†0 gate from the circuit of Fig. 4.2 because it corresponds
with the identity gate. The circuit also contains fSWAP gates represented with crosses.
These will be necessary if even and odd qubits are not physically connected and, as much,
they will increase the total number of gates in n2.

4.3 Time evolution
Once we have the Udis circuit, we have access to the whole XY spectrum by only
implementing this gate over the computational basis states. This allows us to perform
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B†1 F †1 F †0

F †0 F †0

Fig. 4.2: Quantum circuit that transforms computational basis states into XY
Hamiltonian eigenstates. The two-qubit gates F †1 and F †0 apply the inverse Fourier
transform and the B†1 the inverse Bogoliubov transformation. Gates represented
with crosses correspond with the fSWAP gates that take care of the fermion
anticommutation relations and can be removed depending on the connectivity of
the quantum chip.

exactly time evolution, where the characterization of all states is needed.
The time evolution of a given state driven by a time-independent Hamiltonian is

described using the time evolution operator:

Definition 4.3.1 — Time evolution quantum state.

U(t) ≡ e−itH, (4.27)
|ψ(t)〉 = U(t)|ψ0〉 =

∑
i

e−itεi |Ei〉〈Ei|ψ0〉, (4.28)

where |ψ0〉 is the initial state and εi are the energies of the Hamiltonian states |Ei〉.

Then, if |ψ0〉 is an eigenstate of H there is no change in time (steady state) and, therefore,
the expected value of an observable O will be constant in time. On the contrary, and if
[H,O] 6= 0, the expected value will show an oscillation in time given by

〈O(t)〉 =
∑
i,j

e−it(εi−εj)〈ψ0|Ej〉〈Ej |O|Ei〉〈Ei|ψ0〉. (4.29)

We can take advantage from the fact that the eigenstates of the non-interacting
Hamiltonian H̃ are the computational basis states and, as we have solved the model,
we also know all energies εi. Then, it is straightforward to construct the time evolution
of a given state |ψ0〉 by only expressing it in the computational basis and adding the
corresponding factors e−itεi . After that, we only need to implement Udis gate over this
state to obtain the time evolution driven by the XY Hamiltonian.

As example, let’s compute the time evolution of the expected value of transverse
magnetization for the n = 4 anti-ferromagnetic Ising Hamiltonian, that is J = γ = 1. In
particular, let’s take all spins aligned in the positive z direction as initial state, i.e. | ↑↑↑↑〉,
which in the computational basis is the |0000〉 state. First, we have to express this state in
the H̃ basis, which using U †dis becomes

|ψ0〉 = U †dis|0000〉 = cos(φ/2)|0000〉+ i sin(φ/2)|1100〉, (4.30)

with φ = arctan(1/λ). Then, we apply the time evolution operator to obtain |ψ(t)〉:

|ψ(t)〉 =
(
cosφ|00〉+ ie4it

√
1+λ2 sinφ|11〉

)
⊗ |00〉. (4.31)
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To prepare this state, we just need to apply a RY (φ) gate on the first qubit to introduce
the φ angle, followed by a phase gate to introduce the evolution phase e4it

√
1+λ2 and a

CNOT gate between first and second qubits.
Analytically,

〈σz〉 =
1 + 2λ2 + cos

(
4t
√

1 + λ2
)

2 + 2λ2 , (4.32)

from which we can obtain the expected value of transverse magnetization, Mz = 1
2〈σz〉.

4.4 Thermal simulation
When a quantum system is exposed to a heat bath its density matrix at thermal equilibrium
is characterized by thermally distributed populations of its quantum states following a
Boltzmann distribution:

Definition 4.4.1 — Density matrix thermal state.

ρ(β) ≡ e−βH

Z
= 1
Z
∑
i

e−βεi |Ei〉〈Ei| , (4.33)

where β = 1/(kBT ), Z =
∑
i e
−βεi is the partition function and εi and |Ei〉 are the

energies and eigenstates of the Hamiltonian H.

The expected value of some operator O for finite temperature is computed as

〈O(β)〉 = Tr[Oρ(β)] = 1
Z
∑
i

e−βεi〈Ei|O|Ei〉 . (4.34)

Simulate thermal evolution according to Ising Hamiltonian is, again, straightforward
once we have Udis gate because it consists on preparing the corresponding state in the H̃
basis and apply Udis circuit. In the case of thermal evolution, |Ei〉 states are the states of
the computational basis, so no further gates are needed to initialize qubits apart from the
corresponding combination of X gates to prepare the initial product state.

At that point, we can perform an exact simulation or sampling. In the first case, we
run the circuit to obtain the expected value of the observable taking as initial state all
states in the computational basis and average them with their corresponding energies. This
is done classically once we have the expected values of each state. On the other hand, we
can perform a more realistic simulation by sampling all states according to Boltzmann
distribution. First, we need to prepare classically a random generator that returns one of
the computational states following the distribution e−βεi . Then, we run the circuit many
times and compute the expected value of the operator by preparing as initial state the one
returned by the generator each time.

The first method demands more runs of the experiment, to be precise N × 2n, needed
for the computation of each expected value. As the averaging part is done classically, no
statistical errors arise from it. For the second method, with only N runs we will obtain a
value for the observable with a statistical error of 1/

√
N .

4.5 Experimental implementation
4.5.1 IBM Quantum Experience

Since 2016, IBM company is providing universal quantum computer prototypes based on
superconducting transmon qubits which are accessible on the cloud, both interactively
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(a) Tenerife (b) Yorktown

(c) Rueschlikon

(d) Melbourne

Fig. 4.3: IBM quantum chips. Arrows between qubits indicate the directionality
of CNOT gates: control → target. (Image source: QISKit Github https:
//github.com/Qiskit/ with modifications in Melbourne caption).

in their web page, the Quantum Composer, and using a software development kit called
QISKit.

Currently, there are four quantum devices available: two 5-qubit chips, Tenerife [131]
and Yorktown [132], a 16-qubit chip, Rueschlikon [133] and a 14-qubit chip, Melbourne
[134]. These devices are in their first version now, in 2019, but, except Melbourne, they are
actually a second generation of the first prototypes: ibmqx2, ibmqx4 and ibmqx3/ibmqx5
respectively.

All backends work with a universal gate set composed by one-qubit unitary gate U3
and a two-qubit gate, the CNOT gate. More information about quantum gates can be
found in the App. A. Other basic gates are also configured in their low level quantum
language, QISKit Terra, such as SWAP, S or H gates. However, it is important to keep in
mind which is the basic gate set, as all other quantum gates will be decomposed in terms of
the basic set automatically when the circuit is run, increasing the expected circuit depth.

The differences between devices, apart from the number of qubits, come from the qubits
connectivity and the role that each qubit plays when a CNOT gate is applied: control
or target. Figure 4.3 shows the connectivity of the available devices. Each qubit in the
5-qubit devices is connected with another two except the central one which is connected
with the other four. Qubits in the 16-qubit and 14-qubit devices are connected with
three neighbours in a ladder-type geometry. The one-directionality of the CNOT gate
and the qubits connectivity are crucial for the quantum circuit implementation. If the
circuit demands interaction between qubits that are not physically connected, we should
implement SWAP gates which will increase our circuit depth and the probability of errors
in our final result. Moreover, each time we need to implement a CNOT gate using as a
control qubit a physical qubit which is actually a target, we have to invert the CNOT
direction using Hadamard gates which, again, will increase the circuit depth and the error

https://github.com/Qiskit/
https://github.com/Qiskit/
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(a) Acorn

(b) Agave (c) Aspen-1

Fig. 4.4: Rigetti quantum chips architecture (Image source: Rigetti Computing
web page https://www.rigetti.com/).

probability.
For our propose, Rueschnikon andMelbourne are the best choices for the implementation

of the n = 4 circuit. We can use any of the squares and identify upper qubits as 0 and 2
and lower qubits as 1 and 3, according to the circuit of Fig. 4.2.

4.5.2 Rigetti Computing: Forest
At the end of 2017, Rigetti Computing launched a 19-qubit processor, Acorn [135], that
can be used in the cloud through a development environment called Forest [136]. Forest
includes a python toolkit, pyQuil, that allows the users to program, simulate and run
quantum algorithms similar to IBM’s QISKit. The chip is made of 20 superconducting
transmon qubits but, for some technical reasons, qubit 3 is off-line and cannot interact
with its neighbors, so it is actually a 19-qubit device. In June 2018, they launched a new
chip, Agave [137], made up of 8 qubits and recently, in November 2018, another chip of 16
qubits, Aspen-1.

Rigetti’s basic gate set is formed by three one-qubit rotational gates, Rz(−φ) and
Rx(±π/2) and a two-qubit gate, CZ. The minus sign added in the angle of Rz gate is
because Rigetti defines rotational gates as e−i

θ
2σi in contrast with the definition used in this

thesis, ei
θ
2σi . The use of the CZ gate instead of CNOT has the advantage of bi-directionality,

as the result is the same independently of which is the control qubit. For that reason, the
connectivity of the devices shown in Fig. 4.4 does not specify the direction of the two-qubit
gate.

The qubit topology is very different from IBM’s devices. In Acorn chip, qubits are
connected following a zigzag-type geometry, in Agave, qubits form a rectangle and in
Aspen-1 they are located in two rings of 8 qubits each that are joined with two connections.
Then, for the circuit of n = 4 spins, we can not do without the fSWAP gates, which means
that the circuit depth will be greater than the 16-qubits and 14-qubits IBM devices. On
the other hand, it will be comparable with the 5-qubits devices, which also needs from
these gates.

https://www.rigetti.com/
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4.6 Results
The experimental results presented below were taken in a period between March and May
2018 in ibmqx4 (now Yorktown), ibmqx5 (now Rueschlikon) and Acorn devices. They were
published in Ref. [121] and the program used for IBM devices was awarded and now is
used as a tutorial [138]. Some properties and, specially, post-processing tasks offered by
these two companies have changed recently, so the results if the circuits are run at the
present moment could be different from the ones obtained.

Let’s set a particular case of the XY model, the anti-ferromagnetic Ising spin chain, to
do the experiments and to compare the performance of the three devices. Figure 4.5 shows
the results of the exact simulation of ground state transverse magnetization. All points
contain a statistical error of 1/

√
N with N = 1024 which comes from the average over all

runs to compute the expected value. The other error sources are discussed qualitatively in
the following paragraphs.

The best performance comes from the ibmqx5 device. This is an expected result as
we do not need from fSWAP gates because the qubits connectivity. On the other hand,
Rigetti’s device, Acorn, perform better than the ibmqx4, even though the number of gates
is very similar. Again, it is important to point out that these results could change if we run
the experiment at present. In fact, the results obtained after running a quantum circuit
could differ depending on the time of the day that they were taken. Each quantum device
is calibrated every few hour so the results are expected to be better immediately after this
calibration rather than hours later.

The simulation approaches better to the prediction for low λ. The explanation could
come from how affect the experimental error sources to the magnetization. Assuming that
two-qubit gates implementation take several hundreds of ns and single qubit gates around
one hundred of ns, errors coming from decoherence are expected to be low, as these times
are around 50 µs. On the other hand, errors coming from the gate implementation are
cumulative and probably the most important error source. It is not negligible neither errors
coming from qubits readout, which can induce a bit flip.

The analysis of the results become more clear if we look at the exact ground state wave
function:

|gs〉 = 1
N

{√
2α (|00〉|Ψ−〉+ |Ψ−〉|00〉) + |11〉|Ψ−〉+ |Ψ−〉|11〉 for λ < 1,

α (|0011〉 − |0110〉+ |1001〉+ |1100〉) + 2|1111〉 for λ > 1,
(4.35)

where α = λ−
√

1 + λ2, N = 2
√

2
√

1 + λα and |Ψ−〉 = (|01〉 − |10〉)/
√

2. As λ increases,
the amplitude for the states proportional to α goes to zero. That means that any error
occurring for λ > 1 is dramatic as it will affect the state with higher probability amplitude,
the |1111〉. Then, any error in that regime will inevitably cause a decrease in magnetization.
On the other hand, errors in some states for λ < 1 can be compensated in average for the
other elements with the same probability amplitude.

Similar results are obtained for the time evolution simulation. Figure 4.6 shows the
results for the simulation of the | ↑↑↑↑〉 state transverse magnetization as it was explained
in Sec. 4.3. As for the preparation of the initial state it is necessary to implement more
gates, only the results for the ibmqx5 device are shown, which is the one that could afford
this extra circuit depth.

As expected from the previous result, points that represent higher magnetization carry
more errors respect to the predicted theoretical values. However, it is remarkable that
the relations among the different points along the values of transverse magnetic field are
proportionally correct. The oscillations take place for lower values of 〈σz〉, have lower
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Fig. 4.5: Expected value of 〈σz〉 of the ground state of an n = 4 Ising spin chain
as a function of transverse field strength λ. Solid line represents the exact result
in comparison with the experimental simulations represented by scatter points.
The best simulation comes from ibmqx5 device, which is an expected result since
the number of gates used is lesser than with the other devices because of qubits
connectivity.

amplitudes and are a little bit shifted to the left. Even though, they cross each other at the
corresponding points and increase and decrease proportionally to the exact result. That is
a clear indicator that the error sources in the quantum device are systematic, as the result
does not depend on the state preparation.

As a final remark, notice that we compute the transverse magnetization instead of
the staggered magnetization, i.e. Mx =

∑
i(−1)iσxi , which is the order parameter for the

anti-ferromagnetic Ising model. For the purpose of these experiments, it is more natural to
compute 〈σz〉, since the states obtained with these quantum devices are expressed in the
σz basis. However, it will be straightforward to compute Mx as the only change needed
appears in the classical post-processing part.

4.7 Conclusions
In this chapter, it has been implemented the exact simulation of a one-dimensional Ising
spin chain with a transverse field in some quantum computer prototypes: two from IBM
and one from Rigetti computing. The method to construct a quantum operation that
diagonalize exactly the XY Hamiltonian has been reviewed, providing the explicit circuit
for the simulation of an n = 4 spin chain. It has been also introduced novel approaches to
simulate time and thermal evolution using the circuit obtained, in particular, to compute
the ground state transverse magnetization and the time evolution of the state of all spins
aligned.

The circuit presented allows computing all eigenstates of the XY Hamiltonian by
just initializing the qubits in one of the states of the computational basis. It is then
an implementation of a Slater determinant with a quantum computer. Because of the
one-dimensional XY model is an exactly solvable model, which means that we can compute
analytically all the states and energies for any number of spins, and the circuit is efficient,
the number of gates scales as n2 and the circuit depth as n logn, it can represent a method
to test quantum computing devices of any size. As has been shown, it is also a hard test
because the simulation of the phase transition surrounding and time evolution require a
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Fig. 4.6: Time evolution simulation of transverse magnetization, 〈σz〉, for the
state | ↑↑↑↑〉 of an n = 4 Ising spin chain. Left plot compares the exact result
with the experimental run in the ibmqx5 chip for different values of λ. Right
plots detailed the results for each λ to compare them with the theoretical values.
Although the magnetization is lesser than expected, the oscillations follow the
same theoretical pattern.

high qubits control.
The best performance has been obtained with the ibmqx5 chip, although the error

respect to the theoretical prediction is large in the paramagnetic phase of the model. A
possible reason why this chip shows better results than the others comes from the number
of gates used in the quantum circuit, as the qubits connectivity in that device allows us
to save all the fSWAP gates. On the other hand, Rigetti’s chip performs better than the
ibmqx4 chip, even though both implemented circuits have the same gate depth. However,
the results of these few qubits experiments could change totally if we run the circuits again.
The results shown were obtained a few months before this thesis was written and, from
then on, the quantum devices have changed their properties. In conclusion, this work
represents just a proof of concept of how quantum computers can be tested and compared.

The paramagnetic phase is difficult to simulate due to the fact that any error that can
induce a qubit bit flip will produce a decrease in magnetization, as can be traced out from
the ground state wave function of Eq. (4.35). However, and taking into account this fact,
the time evolution simulation is reasonably good, as the expected oscillations for different
transverse magnetic field strengths are shifted to the left and have lower amplitude and
magnetization, but are also proportional to each other as are the theoretical values.

As a final remark, this circuit is also interesting from a point of view of condensed
matter physics as specific methods to simulate exactly time and thermal evolution are
provided. This can open the possibility of simulating other interesting models: integrable,
like Kitaev Honeycomb model [118], or with an ansatz, like the Heisenberg model [119].





5. AbsoluteMaximal Entanglement in
QuantumComputation

La mode est architecture: c’est une question de propor-
tions.

–Coco Chanel

The proliferation of quantum computing devices has caused the necessity of benchmark
methods to test them. Current quantum computers are typically characterized by its
number of qubits and its connectivity and its performance is measured with gate fidelities,
coherence and relaxation times. However, the results obtained are far below the expected
accuracy if errors of gates were to be taken at face value and considered independent, as
has been already shown in the results of the previous chapter.

Several proposals exist to benchmark quantum computers. As an example, corporations
like IBM have defined a figure of merit called quantum volume to quantify the quality
of their devices [139]. This method follows the ideas of randomize benchmarking [140],
another method used to extract qubit gate fidelities. In the previous chapter, we have
introduced the simulation of exactly solvable models in a quantum computer, which can be
also used as a benchmark method since we can compare the result obtained with the correct
solution computed analytically. However, all these methods do not take into account the
probably principal resource of quantum computation: entanglement. Although one expects
to develop some amount of entanglement in the protocols presented above, are quantum
computers able to generate as much entanglement as we will require? The only way to test
it is by forcing quantum devices to generate highly entangled states and observe if they
are capable to support them.

We know that entanglement is at the core of quantum advantage. Or, in other words,
quantum advantage is a consequence of high entanglement generation. This is not surprising
since Bell inequalities are violated by high entangled states: quantum physics cannot be
described classically because of the existence of entanglement.

In this chapter, we present some quantum circuits that generate Absolutely Maximally
Entangled (AME) states, i.e. states that maximally entangle all their bipartitions. The
circuits introduced are composed by few CZ gates and one-qubit gates that can be performed
in parallel. This proposal is distinctly different from bosonic sampling [141], where large
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entanglement is developed along the circuit to make it impossible to be faithfully reproduced
by classical simulation. In a sense, maximally entangled states are a test for a useful
quantum computer, not for quantum advantage.

The existence of this kind of states is limited: for qubits, they only exist for n = 2, 3, 5
and 6 parties. For that reason, we also propose to simulate AME states of higher dimensions
using qubits. The results will maximally entangle some parties although not of them.
We derive some interesting properties of these circuits, for example, that the entropy is
majorized after each entangling gate is applied. This characteristic could be a consequence
of circuit optimality.

Beside benchmarking interest, AME states define an interesting mathematical problem
itself and attractive practical applications. These include quantum secret sharing [45, 142],
open destination quantum teleportation [142] and quantum error correcting codes [40].
The last one is a fundamental ingredient for building a quantum computer. In addition,
there is a natural link between AME states and holography through error correcting codes
[143, 144].

The structure of this chapter is organized as follows. First, we introduce a short review
of AME states that includes its definition and the most fundamental properties. Second, in
Sec. 5.2, we present the graph state formulation that we will use to construct the quantum
circuits for AME states. These circuits are shown in Sec. 5.3 and the simulation of AME
states of d > 2 with qubits in Sec. 5.4. For its interest in error correcting codes, we present
an example of an AME state of minimal support in Sec. 5.5. Finally, we introduce the
entropy majorization analysis in Sec. 5.6 and close with the conclusions in Sec. 5.7.

5.1 Absolutely Maximally Entangled states
The formal definition of an Absolutely Maximally Entangled (AME) state is the follow-
ing:

Definition 5.1.1 — Absolutely Maximally Entangled states. An AME(n, d) state is a n
qudit state with local dimension d whose all possible bipartitions to bn/2c parties are
maximally entangled, i.e. all reduced density matrices are proportional to the identity.

Such states are maximally entangled when considering the entropy of reductions as a
measure of multipartite entanglement. Thus, all bipartitions of an AME state have entropy

S =
⌊
n

2

⌋
, (5.1)

taking the log in d basis.
Bell states and GHZ state are AME states for the bipartite and tripartite cases

respectively and for any dimension d. However, the GHZ states for n ≥ 4 are not AME
states. The existence of AME(n, d) states ∀ n and d is a hard open problem. Only for
qubits, d = 2, the problem is fully solved: an AME(n,2) exist only for n = 2, 3, 5, 6 [48,
145].

AME states connect to different mathematical ideas. One example is the family of
AME states of minimal support which are one-to-one related to a special class of maximum
distance separable codes [146, 147], index unity orthogonal arrays [148, 149], permutation
multi-unitary matrices when n is even [46] and to a set of m = n − bn/2c mutually
orthogonal Latin hypercubes of size d defined in dimension bn/2c [150].
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Definition 5.1.2 — AME states of minimal support. An AME(n, d) state has minimal
support if it can be written as a linear combination of dbn/2c fully separable orthogonal
pure states, e.g. computational basis states.

All coefficients of every AME state having minimal support can be chosen to be positive
and identically equal to d−bn/2c/2. By contrast, AME states of non minimal support will
need non-trivial phases to have all reduced density matrices proportional to the identity.
In other words, non minimal support AME require destructive interference.

On the other hand, AME states inequivalent to minimal support states, e.g. AME(5,2)
or AME(6,2), are equivalent to quantum error correction codes [40], quantum orthogonal
arrays, non-permutation multiunitary matrices [46] andm = N−bn/2cmutually orthogonal
quantum Latin hypercubes of size d defined in dimension bn/2c [150].

The study of AME states was initially motivated by the identification of k-uniform
states [39, 80, 81, 151–153]. These states are maximally entangled in k arbitrary subsystems.
Then, an AME state is an extremal case of a k-uniform state with k = bn/2c. For that
reason, AME states were previously known as Maximally Multipartite Entangled states
[80] or perfect maximally multipartite entangled states [154]. The reason why, for a fixed
dimension, AME states are more difficult to obtain as n increases come to the fact that
more states need to be included in the Maximally Entangled set [155]. Any state outside
this set can be obtained via LOCC from one of the states within the set. This is not an
equivalent definition of an AME state, as states in a Maximally Entangled set are not
necessarily AME states, but all AME states are part of one of these sets.

5.2 Graph states
Graph states are a type of pure quantum states that can be constructed from a graph
following the below recipe.

Definition 5.2.1 — Graph state. Given a graph of V = {vi} vertices connected by
E = {eij = {vi, vj}} edges, its corresponding graph state is constructed as

|G〉 ≡
n∏
i<j

CZAijij (Fd|0̄〉)⊗n, (5.2)

where Fd is the Fourier gate, CZ is the generalized Control-Z gate and |0̄〉 is the zeroth
qudit state. The components of the adjancency matrix A, Aij , provide the weights of
each edge eij , where weight zero means no edge and Aii = 0.

The definition of the generalized CZ gate and Fourier gate Fd for qudits are

CZij =
d−1∑
k=0

ωkl|k̄〉〈k̄|i ⊗ |l̄〉〈l̄|j , (5.3)

with ω = e2πi/d, and

Fd = 1√
d

d−1∑
k=0

ωkl|k̄〉〈l̄| (5.4)

respectively. The state |ψ̄〉 is a |ψ〉 state for qudits. For now on, to distinguish between
qubits and qudits states, we will write a bar on qudit states and keep the usual notation,
with no bar, for qubits.
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|0〉 H • •

|0〉 H • •

|0〉 H • •

|0〉 H • •

|0〉 H • •

Fig. 5.1: Quantum circuit to generate AME(5,2) and its corresponding graph.

Following the above definition, the explicit construction of a graph state from its
corresponding graph is straightforward. First, each vertex corresponds with the qudit
state |ψ̄0〉 = Fd|0̄〉, and second, each edge corresponds with a CZ gate applied between two
vertices.

Notice that after applying the Fourier gates Fd we obtain a state with all basis elements
and, since CZ gates only introduce relative phases between these elements, the final state
of a graph contains a superposition of dn computational states.

Graph states can also be described using stabilizer states [156]. They have many
applications, especially in quantum error correcting codes [157] and one-way quantum
computing [158]. A graphical interpretation of entanglement in graph states is provided
in Ref. [48] and multipartite entanglement properties in qubit graph states as well as its
optimal preparation have been studied in Ref. [159–161].

5.3 AME states from graphs
We can obtain an AME state from its corresponding graph. It will be a particular form of
an AME state of maximal support since, by construction, we have the superposition of all
qudit basis elements.

As an example, consider the graph of Fig. 5.1 right. It is a graph of five vertices and
five edges so we need five one-qudit gates and five CZ gates to construct the corresponding
graph state. If we are dealing with qubits, each F2 gate is actually a Hadamard gate so to
obtain the quantum circuit we have just to apply Hadamard gates on all qubits and CZ
gates according to the edges of the graph, as shows Fig. 5.1 left. This circuit generates an
AME(5,2) state and its graph can be used to construct any AME(5,d) by using Fd and
generalized CZ instead of Hadamards and qubit CZ gates.

We will be interested on finding the optimal AME graph states, i.e. those graphs with
minimum number of edges and coloring index [160]. Less number of edges is translated
into less operations to generate these AME states and colouring index is related with the
number of operations that can be performed in parallel, so it is proportional to the circuit
depth.

Finding AME graph states is in general a hard task as we increase the local dimension
d and the number of parties n. Fortunately there are some methods and properties to find
these graphs for specific values of d and n [161].

The first interesting property is that there are some graph states that work for any
dimension d. In particular, the graph states shown in Fig. 5.5 and Fig. 5.6 work for any
prime dimension d. The graph state of Fig. 5.7 also fulfils this property but for prime
dimension d ≥ 3.
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For a non-prime local dimension there exist some methods to find AME graph states.
One of those consists on taking the prime factorization d = d1d2 · · · dm and look for the
AME(n, di) states independently. If they exist, the AME(n, d) is just the tensor product of
the AME(n, di) states. In case prime factorization of d includes a power of some factor,
we can construct an AME state by defining artificially each party using qudits of lower
dimension and by performing CZ gates between these qudits. These method has been used
to find an the AME(4,4) state using qubits instead of ququarts (qudits of d = 4) as it is
illustrated in Fig. 5.8. The local dimension of each party, d = 4, is achieved with the state
of two qubits.

5.4 Simulation of AME states with qubits
The construction of a quantum circuit that generates a qubit AME state starting from its
graph is straightforward. As explained in the previous section, we just have to perform
Hadamard gates on all qubits and CZ gates according to graph edges. Both gate operations
are common in current quantum devices. However, if we are interested in generating an
AME state of d > 2 we may need a qudit quantum computer that can perform quantum
operations beyond binary quantum computation. Currently, available quantum computers
only work with two-level systems and, for that reason, we propose to simulate these AME
states of greater dimension using qubits instead of qudits. To do so, we will translate the
local dimensions d into multiqubit states, namely

|0̄〉 ≡ |00〉,
|1̄〉 ≡ |01〉,
|2̄〉 ≡ |10〉,
|3̄〉 ≡ |11〉. (5.5)

For d > 4, we will need to increase the number of qubits accordingly, i.e. we will need
m = dlog2 de qubits to describe each qudit.

Since we have the graphs for these states, the challenge will be to simulate the effect of
the generalized CZ gate of Eq. (5.3) and the Fourier gate of Eq. (5.4) with qubit gates.
To be precise, we are not interested in the exact Fourier gate but on generating the state
|ψ̄0〉 = Fd|0̄〉. For that propose, we will look for an initialization gate U ind that acts on
qubits in the state |0〉 and obtains the |ψ0〉 state, i.e. the |ψ̄0〉 state written in terms of
qubits according to the mapping of Eq. (5.5).

If d is a power of 2, the |ψ̄0〉 state can be generated easily using only Hadamard gates.
In particular, for d = 4,

|ψ̄0〉 = F4|0̄〉 = 1
2
(
|0̄〉+ |1̄〉+ |2̄〉+ |3̄〉

)
→

→ |ψ0〉 = U in4 |00〉 = (H ⊗H)|00〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉) . (5.6)

Notice that F4 6= U in4 = (H ⊗H) but for our propose it does not matter, since we just
want to obtain the |ψ̄0〉 state with qubits.

For d = 3 the |ψ̄0〉 can be obtained from the U in3 gate defined in Fig. 5.2,

|ψ̄0〉 = F3|0̄〉 = 1√
3
(
|0̄〉+ |1̄〉+ |2̄〉

)
→ |ψ0〉 = U in3 |00〉 = 1√

3
(|00〉+ |01〉+ |10〉) . (5.7)

In general, to obtain the circuit to produce the |ψ0〉 states will be hard except if d is
a power of 2, as explained above. On the contrary, finding a circuit that implements a
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|0〉
U in3

|0〉 Ry(θ) •∣∣0̄〉 F3 ≡ |0〉 = |0〉 H •

Fig. 5.2: Quantum circuit to obtain |ψ̄0〉 qutrit state using two qubits, i.e. to
generate |ψ0〉 = (|00〉+ |01〉+ |10〉) /

√
3 state. The angle of the rotational gate

is θ = −2 arccos(1/
√

3).

•
3

• •
• •

3
≡ =

3
2π/3 −2π/3

• 2π/3 −2π/3

Fig. 5.3: Generalized CZ gate for qutrits, d = 3, performed with four qubits.
First two CPh gates and last two CPh gates can be implemented in parallel, so
the circuit depth is just 2 CPh gates.

•
4

•
• •

4 ≡ =

4
•

• S •

Fig. 5.4: Generalized CZ gate for ququarts, d = 4, performed with four qubits.
First gate is a controlled-S gate, which is actually a CPh gate with θ = π/2. Last
two CZ gates can be implemented in parallel, so the circuit depth is just 2 gates.

generalized CZ gate is more intuitive since this gate only introduces a phase in some qudit
states. We can reproduce this effect by using controlled-Phase gates CPh(θ).

Figure 5.3 shows the circuit to implement generalized CZ gate for qutrits with qubits.
We will need four qubits and four CPh gates to achieve the expected result of this gate.
The quantum circuit to implement the generalized CZ gate for ququarts is shown in Fig.
5.4. Only three gates are needed: two-qubit CZ gates and a controlled-S gate, which is a
CPh with θ = π/2.

At this point, all ingredients to construct the AME states for qubits and to simulate
AME states of d > 2 has been introduced. Circuits of Fig. 5.5 and Fig. 5.6 can be used
to simulate any AME(5,d) and AME(6,d) state with qubits providing U ind and CZ gates.
Similarly, circuit of Fig. 5.7 can be used to simulate any AME(4,d) state for prime d ≥ 3.
Finally, Fig. 5.8 shows explicitly the circuit and the graph to obtain the AME(4,4) state.
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|0〉⊗m U ind d d

|0〉⊗m U ind d d

|0〉⊗m U ind d d

|0〉⊗m U ind d d

|0〉⊗m U ind d d

Fig. 5.5: Graph state (right) that generates an AME(5,d) state and its cor-
responding circuit (left) using qubits instead of qudits. The number of qubits
needed to represent each qudit is m = dlog2 de. First, qubits are prepared in the
basis superposition state using U ind , which corresponds to H for qubits, U in3 of
Fig. 5.2 for qutrits and U in4 = H⊗H for ququarts. Then, CZ gates are performed
between qudits, which for d = 3 and d = 4 can be implemented with the circuit
of Fig. 5.3 and 5.4 respectively.

|0〉⊗m U ind d d d

|0〉⊗m U ind d d d

|0〉⊗m U ind d d d

|0〉⊗m U ind d d d

|0〉⊗m U ind d d d

|0〉⊗m U ind d d d

Fig. 5.6: Graph state (right) that generates an AME(6,d) state and its cor-
responding circuit (left) using qubits instead of qudits. The number of qubits
needed for represent each qudit is m = dlog2 de. Qubits are prepared using U ind
gates and CZ gates of dimension d are simulated using the circuits of Fig. 5.3
and Fig. 5.4.

|0〉⊗m U ind d d

|0〉⊗m U ind d d d

|0〉⊗m U ind d d

|0〉⊗m U ind d d d

Fig. 5.7: Graph state (right) that generates an AME(4,d) state for any prime
dimension d ≥ 3 and its corresponding circuit (left) using qubits instead of qudits.
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|0〉 H • •
|0〉 H • •

A

|0〉 H • •
|0〉 H • •

B

|0〉 H • •
|0〉 H • •

C

|0〉 H • •
|0〉 H • •

D

Fig. 5.8: Quantum circuit to produce the AME(4,4) state with qubits (left) and
its corresponding graph (right). Parties A, B, C and D are maximally entangled
between them. Notice that this circuit do not correspond with an AME(8,2)
state, since this AME state do not exist.

∣∣0̄〉 3 3 3

∣∣0̄〉 3 3

∣∣0̄〉 F3 • • •∣∣0̄〉 F3 • •

Fig. 5.9: Quantum circuit required to generate the state |Ω4,3〉 (4 qutrits) based
on the Fourier gate F3 and C3–adder gate for qutrits.

5.5 AME states circuits of minimal support
For qutrits, it is known an AME state of minimal support that can be written as [46]

|Ω4,3〉 = 1
3

∑
i,j=0,1,2

|i〉|j〉|i+ j〉+ |i+ 2j〉, (5.8)

where all operations are computed mod(3). The quantum circuit that generates this state
is shown in Fig. 5.9. The quantum gates required to construct this circuit are the Fourier
transform gate for qutrits F3 and the C3–adder gate

C3|i〉|j〉 = |i〉|i+ j〉, (5.9)

which is the generalization of CNOT gate for qutrits and it is represented with the CNOT
symbol with the superscript 3.

The simulation of the F3|0̄〉 state using qubits has been already explained in the previous
section. The construction of the C3–adder gate is more cumbersome and we leave the
details to the App. D. The strategy that we use consists on using controlled gates that
allow us to perform the sums separately for each control state. If the control qutrit is in
the state |0̄〉, we should apply the identity, so no gates are needed in that case. If the
control qutrit is in the state |1̄〉, i.e. |01〉, then we should implement CNOT and Toffoli
gates (CCNOT) that take as a control qubit the second qubit, i.e. they will not affect the
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• • • • • • • •
• • • • • • •

= • a •a • = • b •b
3 •a • a • •b • b

Fig. 5.10: C3–adder implemented with approximate Toffoli gates of Fig. A.5.
The C3–adder that uses the CCNOTa gates needs extra controlled-Z gates to
cancel out the minus signs introduced by the approximation.

|0〉 • • • • • •
|0〉 • • • • • •
|0〉 • • •
|0〉 • • •
|0〉

U in3
• • • • • • • • • • • •

|0〉 • • • • • • • • • • • •
|0〉

U in3
• •

|0〉 • •

Fig. 5.11: Circuit for the construction of the AME(4,3) state using two qubits
to represent one qutrit. The controlled-Z gates (framed with dots), are only
necessary if we are using the approximation of Toffoli gate CCNOTa.

state of the second pair of qubits in case the first two are in a different state. Similarly, if
the qutrit state is |2̄〉, i.e. |10〉, we should search for a sequence of CNOT and CCNOT
gates that implement the corresponding sums using as a control qubit the first qubit.

The resulting circuit is shown in Fig. 5.10, where we have used approximate CCNOT
gates CCNOTa and CCNOTb described in Fig. A.5 of App. A, instead of usual CCNOT
gates in order to reduce significantly the circuit depth [162]. This circuit is divided in two
sectors, each one performs the C3–adder gate if the controlled qubit is |1̄〉, the first 3 gates,
or |2̄〉, the last 3 gates. Any of those gates affect the qubit state if the control qutrit is in
the |0̄〉 state.

Clearly, the C3 gate is the responsible for the growth of circuit depth. However, we can
implement the first two adders using two CNOT gates each one taking advantage that the
target qutrit is in the state |0̄〉, i.e. qubits are in the state |00〉.

All together, the final circuit for the construction of the |Ω4,3〉 state using two qubits
to represent each qutrit is shown in Fig. 5.11, where CZ gates are framed because they are
only necessary if we are implementing the CCNOTa.

5.6 Entanglement majorization in AME states circuits
In this section, we analyse how entanglement is created along the circuits that generate
AME states. Following the majorization arrow idea [163], we check if after each entangling
gate applied the entanglement grows or remains equal in all system bipartitions, that is,
if at each step of the circuit the eigenstates of the reduced density matrices majorize the
eigenstates of the previous step.
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Definition 5.6.1 — Majorization. Given two vectors a,b ∈ Rd with their components
ordered in decreasing order, namely a↓ and b↓ with a↓i+1 ≥ a

↓
i and similarly for b↓, it is

said that a majorizes b, i.e. a � b, iff

k∑
i=1

a↓i ≥
k∑
i=1

b↓i for k = 1, · · · , d , (5.10)

and
∑d
i=1 ai =

∑d
i=1 bi.

At some step s during the computation, the circuit has generated a quantum state with
density matrix ρs. We then compute the reduce density matrix of every of its bipartitions
in two subsystems, A and B, i.e. ρsA = TrBρs, and diagonalize this matrix to obtain its
eigenvalues λs = {λsi}. We will establish that this circuit obeys majorization iff λs � λs+1,
i.e.

k∑
i=1

(
λ↓i

)s
≥

k∑
i=1

(
λ↓i

)s+1
for k = 1, · · · , dm − 1 ∀A, s , (5.11)

where m = n− bn/2c is the number of qudits in A bipartition. We do not consider last
summation k = dm because the eigenvalues of a density matrix are normalized to the

unity. Since there are
(

n

bn/2c

)
bipartitions, this analysis leads to a total number of(

n

bn/2c

)
(dm − 1) inequalities that must be fulfilled.

We can apply less strict tests if we just look at the majorization of other figures of
merit to quantify bipartite entanglement, for instance Von Neumann entropy or purity,
which in terms of λi are defined as S = −

∑
i λi logd λi and γ =

∑
i λ

2
i respectively. Both

functions in terms of λi are convex, so we can apply the Karamata’s inequality [164] to
prove that

λs � λs+1 ⇒ Ss ≤ Ss+1 , (5.12)
⇒ γs ≥ γs+1 . (5.13)

For details, see App. D. Thus, we can first do one of these less restrictively tests and if
the above inequalities are not fulfilled in all steps, then we can conclude that there is no
majorization in terms of eigenvalues.

As an example, Fig. 5.12 shows the majorization of AME(4,4) state of Fig. 5.8 in
terms of entropy and eigenvalues of the reduce density matrix for each bipartition. The
circuit majorizes since entropy never decrease and eigenvalues never increase at each
step. At the end of the computation, all bipartition have reached the maximum value of
S = 2 log2 4 = 4 and all eigenvalues are the same, which means that the reduce density
matrices are proportional to the identity, as expected for an AME state.

After analysing the circuit to construct the state |Ω4,3〉 written in Fig. 5.9, we found
that it do not majorize, i.e. when the four C3–adder is applied, the entropy of one of the
bipartitions decrease before reach the maximum value after the application of the last
C3–adder gate. For that reason, we conclude that this circuit is not optimal and it is
possible to obtain an AME(4,3) state of minimal support with less gates. In particular, we
found many equivalent circuits that can generate this kind of state with only four C3–adder
gates. An example is shown in Fig. 5.13.
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Fig. 5.12: Majorization in AME(4,4) state circuit of Fig. 5.8. Left: entropy
increases at each step s in all bipartitions until it reach the maximum value
S = 2 log2 4 = 4. Right: majortization in terms of eigenvalues of the reduce
density matrix. At the end of the computation, all eigenvalues are the same,
which leads to a density matrix proportional to the identity.

∣∣0〉 F3 •∣∣0〉 F3 • •3

∣∣0〉 •3 3∣∣0〉 3

Fig. 5.13: Quantum circuit to obtain an AME(4,3) of minimal support.

Table 5.1 summarizes the results on majorization test for all AME circuits written
in this work up to n = 6 and d = 4. All AME circuits majorize except AME(6,2) and
AME(6,4). To check if this is a property of AME states of even dimension, one should
compute greater AME states of greater d.

5.7 Conclusions
In this chapter, we have presented the explicit circuits to generate AME states with a
quantum computer. These circuits has been obtained from graphs since there is a one-to-one
correspondence between graph edges and vertices and quantum gates.

AME states do not exist for any number of parties and any local dimension. For that
reason, we have also proposed to simulate AME states of d > 2 using qubits. To do so, we
have mapped each qudit with a multiqubit state, e.g. |0̄〉 → |00〉, |1̄〉 → |01〉, |2̄〉 → |10〉, ...
Then, we have deduce the qubit gates that simulate the effect of Fd and generalized CZ
gates.

The generation of highly entangled states is probably one of the hardest test that can
perform a quantum computer. The circuits proposed in this chapter are composed by few
one and two-qubit gates, which allows to discard as much as possible errors coming from
decoherence times and gate fidelities. In addition, we have shown that almost all circuits
majorize the entropy in all their bipartitions, that is, after each entangling gate is applied,
the entropy of all bipartitions increases or remains equal. This fact can be understood as
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n
d

2 3 4

2 X X X

3 X X X

4 �∃ X X

5 X X X

6 × X ×

Tab. 5.1: Majorization of AME states of n parties and dimension d. Checkmarks
Xindicate that the corresponding circuits majorize and crosses × that they do
not.

the circuit is entangling in the most possible optimal way, using the minimal number of
gates to achieve the maximal entropy.

As a final remark, we should mention that we have tested the circuit of Fig. 5.1
in current quantum computers∗ (IBM’s and Rigetti’s quantum devices described in the
previous chapter). Actually, we implemented an optimal version of that circuit that adapts
to the devices architecture and gate set and reduces the number of Hadamard gates in a
way that no extra gates are needed for the experimental implementation. The results were
not distinguishable from noise. This fact emphasizes the conclusion that these circuits are
indeed a hard test, as even one of the most simple version – consisting only in five basic
entangling gates and three one-qubit gates – cannot be implemented successfully.

∗The implementation was done in May 2018 in IBM devices and in December 2018 in Rigetti devices.
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All things physical are information-theoretic in origin.

–John A. Wheeler,
“Information, Physics, Quantum: the search for links”,

1989.

In the previous chapters, we have seen different properties and applications that are
related to entanglement. Besides the examples given in the introduction chapter, in chapter
2, we have shown that entanglement is necessary to discriminate classical from quantum
physics using Bell inequalities. Entanglement also plays a crucial role in condensed matter
field, as has been pointed out in chapters 3 and 4.

It is clear that entanglement is at the core of understanding and exploiting quantum
physics. It is therefore natural to analyse the generation of entanglement at its most
fundamental origin, namely the theories of fundamental interactions in particle physics. If
the quantum theory of electromagnetism, QED, would never generate entanglement among
electrons, Nature would never display a violation of a Bell inequality. This implies that
entanglement must be generated by quantum unitary evolution at the fundamental level.

A deeper question emerges in the context of high energy physics. Is maximal en-
tanglement (MaxEnt) possible at all? In other words, are the laws of Nature such that
MaxEnt can always be realized? One can imagine a QED-like theory where entanglement
could be generated, but in a way that would be insufficient to violate Bell inequalities.
Then, it would be formally possible to think of the existence of an underlying theory of
hidden variables. On the other hand, if MaxEnt is realized in QED, it is then possible to
design experiments that will discard classical physics right at the level of the scattering
of elementary particles. Taking a step further, one can ask what are the consequences of
imposing that the laws of Nature are able to realize maximally entangled states. Can this
requirement be promoted to a principle, and to which extent is this principle consistent
with fundamental symmetries such as gauge invariance?

The quest for simple postulates to describe the fundamental interactions observed in
Nature resulted in the common acceptance of the gauge principle, that is, the invariance of
the physical laws over internal local rotations for specific symmetry groups. Leaving aside
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quantum gravity, the Standard Model describes electroweak and strong interactions by
means of a Lagrangian which is largely dictated by gauge symmetry requirements. It is
natural to pursue further the search for yet an even simpler principle. A possible candidate
to formulate a basic underlying axiom for local symmetries is provided by Information
Theory. We may recall the words of J. A. Wheeler, “all things physical are information-
theoretic in origin” that substantiate his philosophy of “it from bit” [165]. Indeed, it is
conceivable that our equations are just a set of operations to implement basic information
ideas and protocols.

The exploration of a concrete example of the “it from bit” philosophy based on a
maximal entanglement principle is the content of this chapter. We shall show first than in
QED only two mechanisms can generate MaxEnt in the high energy scattering of fermions
prepared in an initial helicity product state. These are i) s-channel processes where the
virtual photon carries equal overlaps of the helicities of the final state particles, and ii)
processes that display interference between t and u channels. We will then illustrate the
deep connection between maximal entanglement and the structure of the electron-photon
interaction vertex in QED. Indeed, maximal entanglement in most channels is related to
the exact form of the QED vertex. As a consequence, imposing that the laws of nature are
able to deliver maximal entanglement is tantamount to imposing the QED vertex. We shall
finally analyse the consequences of imposing MaxEnt on the weak interaction and discover
some surprising constraints on the parameters of the Standard Model. The formalism used
is only valid for asymptotically free particles, i.e. leptons and bosons. However, we also
explore if color elements factorize from helicity states in QCD processes.

In this chapter, we just focus only on processes with two particles, for which maximal
entanglement and maximal entropy are equivalent things. So we shall use MaxEnt to refer
indistinctly to both concepts. For systems with more than two particles, the classification
of entanglement becomes richer and does not necessarily correspond to the entropy of the
subsystem, as has been shown before. The results of this chapters have been published in
Ref. [166].

Some previous works have studied the role of entanglement in particle physics. In
Ref. [167] it was shown that orthopositronium can decay into 3-photon states that can
be used to perform Bell-like experiments that discard classical physics faster than the
standard 2-particle Bell inequality. Bell inequalities have also been discussed in kaon
physics [168–172] and its relation with the characterization of T -symmetry violation [173]
as well as in neutrino oscillations [174]. How entanglement varies in an elastic scattering
process has been studied using the S-matrix formalism in [175] and in Deep Inelastic
Scattering in [176]. Also, a discussion of quantum correlations in the CMB radiation
has been brought to the domain of Bell inequalities [177] and the role of entanglement
suppression in strong interactions has been recently analyzed in [178].

The outline of this chapter is as follows. We first introduce the figure of merit that we
will use to quantify entanglement in scattering processes. Then, in Sec. 6.2, we study how
entanglement is generated in QED scattering processes. In Sec. 6.3 we conjecture that
MaxEnt could be at the core of fundamental interactions and, in particular, in Sec. 6.4 we
investigate to which extent MaxEnt can be used as a constraining principle on the structure
of the QED interactions. In Sec. 6.5 we assess some of the implications of MaxEnt for
the weak interactions and in Sec. 6.6 we study gluon-gluon scattering process. Finally,
the conclusions are exposed in Sec. 6.7. In addition, App. B provides the formalism and
conventions used and a summary of Feynman rules necessary to compute the scattering
process amplitudes. In App. C we show a detailed analysis of entanglement generation in
all tree-level QED processes.
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6.1 Quantifying two-particle entanglement
In Chapter 3, we have introduced several figures of merit to quantify multipartite entangle-
ment. In particular, for two-party entanglement, we defined bipartite entropies, such Von
Neumann or Rényi entropies, purity and Schmidt rank. We also mentioned some relations
between other multipartite figures of merit and concurrence. For instance, the n = 2 tangle
corresponds with the square of the concurrence and HDet2 is equivalent to the concurrence
for two qubits.

To study the generation of MaxEnt we should choose a figure of merit to quantify
bipartite entanglement and in this chapter we decided to use the concurrence [179]. It is
equivalent to use Von Neumann entropy but it is easier to compute analytical expressions
using this other entanglement monotone.

Starting with a general two qubit state

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (6.1)

with α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1, we compute the reduce density matrix
ρA = TrBρAB,

ρA =
(
|α|2 + |β|2 αγ∗ + βδ∗

α∗γ + β∗δ |γ|2 + |δ|2

)
. (6.2)

A MaxEnt state is the one whose reduced density matrix is proportional to the identity.
Thus, computing the eigenvalues of ρA,

λ± = 1
2 ±

1
2

√
1− 4|αδ − βγ|2, (6.3)

we can arise which are the constraints on α, β, γ and δ coefficients to obtain a MaxEnt
state. If the eigenvalues are equal, i.e. |αδ − βγ| = 1/2, then the state |ψ〉 is maximally
entangled. If one of the eigenvalues is zero, i.e. |αδ − βγ| = 0, then the state produced |ψ〉
is a product state. As one can notice, all information about the entanglement is stored in
|αδ − βγ| coefficient, which is called concurrence.

Definition 6.1.1 — Concurrence. Given a two-party pure state |ψ〉 = α|00〉 + β|01〉 +
γ|10〉 + δ|11〉 with α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1, the concurrence is
defined as

∆ ≡ 2|αδ − βγ|. (6.4)

Its upper bound ∆ = 1 corresponds with a MaxEnt state whereas its lower bound ∆ = 0
with a product state.

Here we shall study scattering process where the incoming particles are in a product
state of their helicities, that is, the incoming particles are not entangled (∆ = 0). In
general, the outgoing state will be a superposition of all possible helicity combinations, and
thus the scattering amplitude will include each possible combination of outgoing helicities.
Using the S matrix, for an initial particles with helicities right (R) and left (L) respectively,
the final state become

|ψ〉RL ≡ S|ψ〉i = S|RL〉
∼ M|RL〉→|RR〉|RR〉+M|RL〉→|RL〉|RL〉+M|RL〉→|LR〉|LR〉+M|RL〉→|LL〉|LL〉
≡ αRL|RR〉+βRL|RL〉+γRL|LR〉+δRL|LL〉 , (6.5)
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e−

e+

µ+

µ−

Fig. 6.1: Feynman diagram for electron-positron scattering into a muon-
antimuon pair at tree-level.

sinceM|i〉→|f〉 ∼ 〈f |S|i〉 where |f〉 are all possible final states. In App. B we detail how to
compute these helicity amplitudes both for fermions and bosons.

The above formalism is only valid if the final states are asymptotically free. Otherwise,
we can not apply the S matrix formulation described in App. B. This fact limits our
analysis to leptons, photons and weak bosons and excludes quarks and gluons.

We note that in high energy scattering a generic outgoing state will involve all possible
outcomes of the process being analysed. The reduction to a two-level system therefore
corresponds to a post-selection of results. This is the correct description that delivers the
probabilities which we could insert into a Bell inequality, once the final state has been
identified.

6.2 MaxEnt generation in QED
Let us start our discussion with the analysis of how entanglement is generated in electron-
positron annihilation into a muon-antimuon pair, e−e+ → µ−µ+, described at tree-level in
QED by a single s-channel diagram as shows Fig. 6.1). As in the rest of this chapter, we
will work on the center-of-mass frame. In App. B, we introduce some basic Feynman rules
to compute the scattering amplitudes of all processes studied in this chapter.

It is convenient to first focus on the current generated at the interaction vertices. If
the incoming particles propagate along the z-direction, the incoming current associated to
two incoming particles in a RL helicity product state will be

v̄↑γ
µu↑ = 2p0(0, 1, i, 0), (6.6)

where p0 is the electron’s energy. The outgoing particles will then be described by a current
as a function of θ, the scattering angle. As shown in App. C, we find that at high energies
the leading contribution only appears for incoming RL (and LR) helicities,

|ψ〉RL ∼ (1 + cos θ)|RL〉+ (−1 + cos θ)|LR〉, (6.7)

up to a prefactor which is not relevant here. Therefore, for a scattering angle θ = π/2 the
final state becomes maximally entangled and proportional to |RL〉 − |LR〉, with ∆RL = 1.
This result illustrates how MaxEnt can be generated in a high energy scattering process.
While scattering amplitudes in general carry a non-trivial angular dependence, it is always
possible to perform the measurement in the specific direction where MaxEnt is obtained, not
unlike the way maximally entangled states are obtained in quantum optics by parametric
down conversion. Let us also note that the dominant terms in the e−e+ → µ−µ+ scattering
at high energies are easily described by chirality conservation. This is not the case at lower
energies, where the emergence of entanglement is more complex.



6.2 MaxEnt generation in QED 83

For incoming particles in the RR helicity product state, all terms in the amplitude are
suppressed by a power of p0 as compared to the RL case. Nevertheless, MaxEnt is found
for every angle θ and incoming momenta p0. An experiment that prepares RR incoming
states will therefore always result in MaxEnt.

It is instructive to revisit the computation of the RL case focusing on the currents
associated to the virtual photon. The incoming current (in the z-direction) corresponds to

j
µ (RL)
in = 2p0(0, 1, i, 0), (6.8)

and at high energies the non-vanishing outgoing currents at θ = π/2 read

j
µ (RL)
out = 2p0(0, 0,−i,−1), (6.9)

j
µ (LR)
out = 2p0(0, 0, i,−1). (6.10)

Thus the third component of jin carries equal overlap (with different sign) of the two possible
helicity combinations for the outgoing state. In a sense, the photon cannot distinguish
between those two options. This is the basic element that leads to MaxEnt generation in
s-channel processes.

Entanglement can also be generated in QED through a completely different mechanism.
Let us consider Møller scattering, i.e. e−e− → e−e−, which receives contributions only
from t- and u-channel diagrams (see Fig.6.2). For this process, the computation of the
amplitude shows that no entanglement is generated at high energies within each t or u
channel separately, and that the only entangled state is produced by their superposition,
resulting in the amplitude

|ψ〉RL ∼
t

u
|LR〉 − u

t
|RL〉, (6.11)

leading to a concurrence

∆RL
p0→∞−−−−→ 2 u2t2

u4 + t4
t=u−−→ 1 . (6.12)

Therefore, MaxEnt (∆RL = 1) is realized when t = u, which corresponds again to the
scattering angle θ = π/2. The indistinguishability of u and t histories is now at the heart of
entanglement. This also implies that entanglement will not be generated in processes such
as e−µ− → e−µ− where the same u/t interference cannot take place. Including electron
mass me effects, the concurrence ∆RL reads

∆RL =
∣∣∣∣∣ 2tu

(
tu+m2

e
(t−u)2

t+u

)
2m2

e(t− u)2(2m2
e − 2(t+ u) + tu

t+u) + (t4 + u4)

∣∣∣∣∣ , (6.13)

which shows the more powerful result that, for all energies, the scattering angle θ = π/2
(when t = u) leads to MaxEnt, ∆RL|θ=π/2 = 1 for all p0.

In the case of incoming particles in an RR product state, no entanglement is generated
in the high energy limit, since the amplitude is dominated by the final state which also
lives in the RR sector, as required by helicity conservation. On the other hand, at very
low energies the calculation of the concurrence gives

∆RR
|~p|�me,θ=π/2−−−−−−−−−→ 1 +O

(
|~p|2/m2

e

)
. (6.14)

The combination of Eqns.(6.12) and (6.14) illustrates the remarkable fact that two electrons
can always get entangled at low energies, irrespectively of their initial helicities. It also
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e−

e− e−

e− e−

e− e−

e−

Fig. 6.2: Feynman diagrams for Møller scattering, e−e− → e−e−, in the t (left)
and u (right) channels.

justifies that at low energies we easily find entangled fermions and we can describe
their interactions with effective models such as the Heisenberg model. Electron-electron
interaction is different from all other processes due to the indistinguishability of the
particles.

The way in which MaxEnt is generated in QED scattering processes can be studied
more thoroughly. It is indeed possible to show that MaxEnt also arises in Bhabha scattering
and in pair annihilation of electron-positron to two photons. Table 6.1 shows the MaxEnt
states that can be obtained in all tree-level QED processes, both at high and low energies.
All processes, with the exception of electron-muon scattering and Compton scattering
(photon-electron scattering) can generate maximally entangled states in some energy limit
and at a given scattering angle. In two cases, MaxEnt is generated independently of the
scattering angle: pair annihilation into photons, and electron-positron annihilation into
muons, in both cases at low energy and for an initial state |RR〉. It is highly non-trivial
that a single coupling, the QED vertex, can take care of generating entanglement in all
these processes, and at the same time guarantee that if entanglement is present in the
initial state, it will be preserved by the interaction.

6.3 MaxEnt as a constraining principle
It is tantalizing to turn the discussion upside down and attempt to promote MaxEnt
to a fundamental principle that constraints particle interactions. Following Wheeler’s
idea of looking for an Information Theory principle underlying the laws of Nature, we
propose to investigate to what extent a MaxEnt principle makes sense in particle physics.
Such principle would guarantee the intrinsically quantum character of the laws of Nature,
allowing Bell-type experiments to be carried out violating the bounds set by classical
physics. In this formulation, MaxEnt emerges as a purely information-theoretical principle
that can be applied to a variety of problems.

� Conjecture 6.1 — MaxEnt principle. The laws of Nature can generate maximal entan-
glement in scattering processes of incoming particles which are not entangled. This
should happen in as many processes as possible. �

We shall, thus, construct a global figure of merit that takes into account many processes
at a time. In that direction, we have chosen the concurrence, an entanglement monotone for
two particle systems which are the systems that will be analysed in the following sections.

We have already shown the consistency of this principle with tree-level QED interaction.
To verify the power of such a principle, we start by leaving unconstrained the coupling in
QED and analyse the constraint that the MaxEnt principle dictates on it. Later on, we
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Process Initial state |RR〉 Initial state |RL〉
HE LE HE LE

e−µ− → e−µ− – – – –
e−e+ → µ−µ+ – (cos θ|Φ−〉 − sin θ|Ψ+〉)∀θ |Ψ−〉θ=π/2
e−e− → e−e− – |Φ−〉θ=π/2 |Ψ−〉θ=π/2 |Ψ−〉θ=π/2
e−e+ → e−e+ – – |Ψ+〉θ=π/2 –
e−e+ → γγ – |Φ−〉∀θ |Ψ−〉θ=π/2 –

Initial state |R+〉 Initial state |R−〉
HE LE HE LE

e−γ → e−γ – – – –

Tab. 6.1: Maximally entangled states (∆ = 1) for tree-level QED processes, both
in the high and low energy limits (HE and LE respectively). The states are written
in terms of the Bell basis, i.e. |Φ±〉 ∼ |RR〉 ± |LL〉 and |Ψ±〉 ∼ |RL〉 ± |LR〉.
For the processes in the upper part of the table, the initial state is expressed
in terms of the helicities of the fermions, R and L. For Compton scattering,
e−γ → e−γ, the initial state is expressed in terms of the helicity of the electron
and the polarization of the photon, |+〉 or |−〉. The scattering angle where the
entangled state is produced is indicated in the subscript. A dash indicates that
MaxEnt cannot be reached for any value of the scattering angle θ.

will perform a similar analysis focusing on the parameters of the weak interaction. We will
also start to explore to extend this principle to more sophisticated processes such gluon
scattering, as an example of QCD computation.

It may be argued that most interactions generate entanglement. However, it is certainly
true that only a limited class of couplings can produce MaxEnt, as it will be shown. It is a
natural extremization principle which is at play, as it is the case in other principles applied
to describe Nature. Furthermore, MaxEnt carries the added value that physics is forced to
be non-classical as Bell inequalities are violated.

6.4 Unconstrained QED
6.4.1 Formalism

Let’s start with the tree-level QED Lagrangian. It describes a free fermion and anti-fermion
by using Dirac equation, a free photon, by including Maxwell equations, and a minimal
interaction term between photon and fermion. Without imposing gauge invariance, the
QED Lagrangian can be written as

L = ψ̄ (iγµ∂µ −m)ψ − 1
4FµνF

µν − eAµψ̄Gµψ, (6.15)

where Gµ are four 4× 4 matrices that are included to contract them with the photon field
Aµ. By imposing gauge invariance, one finds that Gµ = γµ, as it should be. However, we
keep the above general formalism that in principle allows violations of rotation and gauge
invariance. While of course this theory is not realized in Nature, our goals are to determine
to which extent imposing MaxEnt constrains this interaction vertex and to verify that
QED can be reproduced.

The matrices γµ form the Clifford algebra of the 4× 4 matrices; {γµ, γν} = 2gµν if the
metric is (+,−,−,−). The complexification of the Clifford algebra C`1,3(R), C`1,3(R)C,
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ψ̄Iψ ψ̄γµψ ψ̄γ5ψ ψ̄γ5γµψ ψ̄σµνψ Aµ

P +1 (−1)µ -1 −(−1)µ (−1)µ(−1)ν (−1)µ
T +1 (−1)µ -1 (−1)µ −(−1)µ(−1)ν (−1)µ
C +1 -1 +1 +1 -1 -1
CPT +1 -1 +1 -1 +1 -1

Tab. 6.2: Transformation properties of fermion bilinears and photon field under
parity, charge conjugation and time reversal symmetries. Here, (−1)µ = +1 if
µ = 0 and (−1)µ = −1 if µ = 1, 2, 3.

is isomorphic to the algebra of 4 × 4 complex matrices. Then, we can use a real linear
combination of the γµ matrices to express any 4× 4 complex matrix,

Gµ = cµ1 I + cµν2 γν + icµ3γ
5 + cµν4 γ5γν + cµνρ5 σνρ, (6.16)

where ci ∈ R, γ5 = iγ0γ1γ2γ3 and σνρ = − i
2 [γν , γρ]. Each of the above combination of γµ

matrices are called Dirac bilinears.
Since we have 4 · 16 free real values to parametrize these four matrices, we opt to first

apply the conservation of discrete symmetries to simplify the analysis. In particular, we
impose parity, charge conjugation and time reversal symmetries on the Lagrangian (6.15)
(see Tab. 6.2). After that, the only term that survives in Eq. (6.16) is the one proportional
to γµ plus some constraints on cµν2 parameters. As we only have one combination, we
relabelled cµν2 ≡ aµν . The final form of Gµ matrices become

G0 = a00γ
0,

Gi = aijγ
j . (6.17)

So, in the end, we will have 9 + 1 degrees of freedom in tree-level processes (a parameters
and the COM angle).

This change in the interaction term is translated into a change in the Feynman rule
for fermion-photon vertex: instead of −ieQfγµ we have −ieQfGµ. Propagators and free
lines are not affected since they are deduced from Dirac and Maxwell equations. The QED
vertex is recovered for a00 = a11 = a22 = a33 = 1 and aij = 0 for i 6= j. This change
leads to new expressions for all processes amplitudes. Our aim is to compute again all
concurrences for these processes and maximize them respect aµν and θ parameters, i.e.

max
aµν ,θ

(
∆e−µ−→e−µ− ,∆e+e−→µ+µ− ,∆Bhabha,∆Møller,∆Pair annihilation,∆Compton

)
, (6.18)

where Bhabha scattering is e+e− scattering, Pair annihilation corresponds with e+e− → γγ
process and Compton scattering to e−γ scattering.

6.4.2 An example: e−e+ → µ−µ+

Let’s compute explicitly the amplitudes of e−e+ → µ−µ+ process using this unconstrained
QED interaction. We compute these amplitudes in the high energy limit, i.e. considering
me = mµ = 0.

Let us first restrict the particles to be in the XZ plane. For incoming |RL〉 particles

M|RL〉→|RL〉 = −a2
j2 − a2

j1 cos θ + aj1aj3 sin θ + i (aj1aj2(1− cos θ) + aj2aj3 sin θ) ,
M|RL〉→|LR〉 = a2

j2 − a2
j1 cos θ + aj1aj3 sin θ − i (aj1aj2(1 + cos θ)− aj2aj3 sin θ) ,

(6.19)
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while all other scattering amplitudes vanish.
The two possible final states that maximize the concurrence, that is, that realize

MaxEnt are given by |RL〉 ± |LR〉, and thereforeM|RL〉→|RL〉 = ±M|RL〉→|LR〉. Requiring
a final state that satisfies the maximal entanglement principle we find that for a scattering
angle of θ = π/2 the following conditions must be satisfied

a2
j2 − iaj1aj2 = 0 −→ A22 = A12 = 0 if M|RL〉 =M|LR〉 or

aj1aj3 + iaj2aj3 = 0 −→ A13 = A23 = 0 if M|RL〉 = −M|LR〉,
(6.20)

where Akl ≡ ajkajl is a positive definite matrix. It is also possible to redo the same analysis
but now requiring the scattered particles to lie in the Y Z and XY planes respectively.
In the case of QED, this leads to the same amplitudes because QED vertex preserves
rotational symmetry, but this is not necessarily the case with a general vertex of the form
−ieGµ. If the motion of the initial particles takes place in the Y axis and the outgoing
scattered particles lie in the Y Z plane, the corresponding scattering amplitudes become

M|RL〉→|RL〉 = −a2
j1 − a2

j2 cos θ + aj2aj3 sin θ − i (aj1ai2(1− cos θ) + aj1aj3 sin θ) ,
M|RL〉→|LR〉 = a2

j1 − a2
j2 cos θ + aj2aj3 sin θ + i (aj1aj2(1 + cos θ)− aj1aj3 sin θ) .

(6.21)

If now we request MaxEnt to be realized at an scattering angle of θ = π/2, one finds that

a2
j1 + iaj1aj2 = 0 −→ A11 = A12 = 0 if M|RL〉 =M|LR〉 or

aj2aj3 − iaj1aj3 = 0 −→ A23 = A13 = 0 if M|RL〉 = −M|LR〉.
(6.22)

Similarly, for incoming particles in X axis and outgoing in the XY plane, the results
read instead

M|RL〉→|RL〉 = −a2
j3 − a2

j2 cosφ+ aj1aj2 sinφ+ i (aj2ai3(1− cosφ) + aj1aj3 sinφ) ,
M|RL〉→|LR〉 = −a2

j3 + a2
j2 cosφ− aj1aj2 sinφ+ i (aj2aj3(1 + cosφ)− aj1aj3 sinφ) .

(6.23)

where φ is the azimuthal angle that goes from 0 to 2π. Fixing φ = π/2 we get another set
of conditions

aj1aj2 + iaj1aj3 = 0 −→ A12 = A13 = 0 if M|RL〉 =M|LR〉 or
a2
j3 − iaj2aj3 = 0 −→ A23 = A33 = 0 if M|RL〉 = −M|LR〉 .

(6.24)

A crucial property of entanglement is that it should be invariant under local unitary
transformations like rotations. For this reason, it is possible to obtain the |RL〉+ |LR〉
state in one plane and |RL〉− |LR〉 state in another, but both for the same scattering angle
because of isometry. Therefore, there are a finite number of possible solutions that satisfy
the above constraints: the one which corresponds to QED is the |RL〉 − |LR〉 state for
XZ and Y Z plane and |RL〉+ |LR〉 state for XY plane. While in this example we have
imposed that MaxEnt is realized for specific choices of the scattering angles θ, φ = π/2, it
is conceivable that additional constraints could be obtained by exploiting the information
contained in other scattering angles.

From this specific example among the list of processes that we have analysed in
unconstrained QED, one can also observe that it is not possible to distinguish the overall
sign of the aij coefficients, as they always appear squared or multiplied in pairs. Other
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processes, involving for example a final state with three particles, might be necessary in
order to resolve this degeneracy.

Notice also that unconstrained QED allows angular momentum violation. Let us take
as example the amplitude for an initial state |LR〉,

M|LR〉→|RL〉 = −a2
j2 + a2

j1 cos θ − aj1aj3 sin θ + i (−aj1aj2(1 + cos θ) + aj2aj3 sin θ) ,
M|LR〉→|LR〉 = a2

j2 + a2
j1 cos θ − aj1aj3 sin θ + i (aj1aj2(−1 + cos θ)− aj2aj3 sin θ) .

(6.25)

Therefore, if the initial state is |Ψ−〉 = 1√
2 (|RL〉 − |LR〉), i.e. the singlet state, then the

final state |ψ〉final becomes

|ψ〉Ψ−∼M|RL〉→|RL〉|RL〉+M|RL〉→|LR〉|LR〉−
(
M|LR〉→|RL〉|RL〉+M|LR〉→|LR〉|LR〉

)
∼
(
−
∑
j

a2
j1 cos θ+

∑
j

aj1aj3 sin θ
)

(|RL〉−|LR〉) +i
∑
j

aj1aj2 (|RL〉+|LR〉) ,

(6.26)

which, in general, is not a singlet state: as long as
∑
j aj1aj2 6= 0, angular momentum is

violated in this process ∀θ.

6.4.3 Final solution
The complete application of the MaxEnt principle to uQED requires the computation of all
the scattering amplitudes in the new theory and then the determination of the constraints
on the aµν coefficients from the maximization of the concurrences. Here we have maximized
the sum of the concurrences of four different processes: Bhabha and Møller scattering,
ee → γγ and e−e+ → µ−µ+, accounting for all initial helicity combinations for product
states. The maximization has been performed both over the aµν coefficients and over the
scattering angle θ. Full consistency is found between the constraints provided by each of
the four processes. The solution to the maximization of the concurrence is found to be(

G0, G1, G2, G3
)

=
(
±γ0,±γ1,±γ2,±γ3

)
, (6.27)

where all combination of ± signs between gamma matrices is a solution. This result shows
that QED is indeed a solution, though not the only one, of requiring MaxEnt for the above
subset of scattering processes in uQED. Some of these solutions are equivalent to QED
since a global sign can be absorbed in the electric charge.

The solutions of Eq. (6.27)) are divided into two groups, those related to QED and
those that are inconsistent with QED, for instance because they violate rotation symmetry
or do not conserve the current. The latter solutions cannot be ruled out since the scattering
processes considered here cannot determine the overall sign of the γµ matrices, as they
always appear in pairs. Including further scattering or decay processes which involve three
outgoing particles might remove this ambiguity and eliminate the inconsistent solutions.

Thus, with this analysis we have found 24 possible solutions that can generate MaxEnt
with a QED-type interaction. We have also checked that these solutions are isolated points
in the phase space of the aµν . As an example, let’s show that QED is an isolated maximum.
For that propose, we will deform the coefficients aµν as

aij → aQEDij + ε δij ,

a00 → aQED00 + ε δ00,

θMaxEnt → θQEDMaxEnt + ε δθ. (6.28)
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Then, we compute the concurrence and expand them around its maximum, i.e.

∆ = 1 + f(δij , δθ)ε+ g(δij , δθ)ε2 + · · · . (6.29)

If ∆ is an isolated maximum in the phase space of the δij , then their derivatives must be
zero. After imposing this, we find that the only possible solution is δij = 0 for i 6= j and
δ00 = δ11 = δ22 = δ33 = δ, which is indeed QED.

6.5 Entanglement in tree-level weak interactions
The mechanism underlying MaxEnt generation in weak interactions is more subtle, due
to the interplay between vector and axial currents and between Z and γ channels. The
coupling of the Z boson to fermions reads

i
g

cos θW
γµ
(
gfV − g

f
Aγ

5
)
, (6.30)

where the axial and vector couplings are gfA = T f3 /2 and gfV = T f3 /2−Qf sin2 θW , and θW
is the Weinberg mixing angle or weak mixing angle. For electrons and muons, T3 = −1/2
and Qf = −1. Beyond tree-level, the weak mixing angle runs with the energy and is scheme
dependent. The PDG average [180] in the on-shell scheme is sin2 θW = 0.22343± 0.00007.
Therefore, the vector coupling |gV | for electrons is smaller than the axial one |gA| by about
one order of magnitude.

In the following subsections, we analyse some tree-level processes involving neutral
currents. In particular, we start with the most simple one, the Z boson decay into leptons,
followed by weak e−e+ → µ−µ+, which involves only one channel. We complicate this
last process introducing the photon channel to evaluate the possible changes in term of
entanglement constraints.

6.5.1 Z decay
We now analyse the helicity structure of Z boson decay to e−e+. As Z is a massive
particle, it has three possible polarizations: right- and left-handed circular polarizations,
and longitudinal polarization, which we will denote as |0〉 (see App. B). As me � mZ we
can neglect the electron mass. The non-vanishing helicity amplitudes for this decay process
are

M|0〉→|RL〉 = gRmZ sin θ ,
M|0〉→|LR〉 = gLmZ sin θ ,
M|R〉→|RL〉 = gRmZ

√
2 sin2(θ/2) ,

M|R〉→|LR〉 = −gLmZ

√
2 cos2(θ/2) , (6.31)

M|L〉→|RL〉 = gRmZ

√
2 cos2(θ/2) ,

M|L〉→|LR〉 = −gLmZ

√
2 sin2(θ/2) ,

where we have defined gR = (gV − gA)/2 and gL = (gV + gA)/2.
If the Z boson is longitudinally polarized, the concurrence of the final leptons becomes

∆0 = 2|gLgR|
g2
L + g2

R

, (6.32)
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Then one can see that the leptons pair is maximally entangled provided that |gL| = |gR|,
i.e. if gA = 0 or gV = 0. As g`A = T `3/2 6= 0 the only possible solution is g`V = 0 which leads
to

sin2 θW = T `3
2Q`

= 0.25→ θW = π

6 . (6.33)

This value is remarkably close to the experimental value.
For a Z boson initially polarized with either a right- or left-handed polarization, the

concurrence becomes instead

∆R = 2|gLgR| sin2 θ

|2
(
g2
L − g2

R

)
cos θ +

(
g2
L + g2

R

)
(1 + cos2 θ)|

, (6.34)

∆L = 2|gLgR| sin2 θ

|2
(
g2
L − g2

R

)
cos θ −

(
g2
L + g2

R

)
(1 + cos2 θ)|

. (6.35)

As long as gR/gL = ± cot2(θ/2), for an initial right-handed polarization, or gR/gL =
± tan2(θ/2), for an initial left-handed polarization, MaxEnt is achieved. However, if we
assume the same relation between gR/gL independently of the initial polarization, then only
one solution is possible: gR/gL = ±1, i.e. the same solution as for longitudinal polarization,
gV = 0 or equivalently θW = π/6 for leptons.

We have obtained the same value θW = π/6 for the three possible initial helicities of
the Z boson. In the following subsections, we will analyse the consistency of this result
with other more complex processes.

6.5.2 Weak e−e+ → µ−µ+

Let us consider e−e+ → µ−µ+ scattering mediated by a Z boson in the high energy limit,
where mZ is neglected. The resulting scattering amplitudes are

|ψ〉LR ∼ (1 + cos θ)g2
L|LR〉+ (−1 + cos θ)gLgR|RL〉 , (6.36)

|ψ〉RL ∼ (−1 + cos θ)gRgL|LR〉+ (1 + cos θ)g2
R|RL〉 , (6.37)

Notice that the using of right and left handed couplings gR and gL simplifies the structure
of the currents since jRLin ∼ gR(0, 1, i, 0) and jLRin ∼ gL(0, 1,−i, 0).

The corresponding concurrences for |~p| � mZ read

∆RL
|~p|�mZ−−−−−→ sin2 θ|gLgR|

2(sin4(θ/2)g2
L + cos4(θ/2)g2

R)
, (6.38)

∆LR
|~p|�mZ−−−−−→ sin2 θ|gLgR|

2(cos4(θ/2)g2
L + sin4(θ/2)g2

R)
. (6.39)

Again, by applying the MaxEnt requirement to these concurrences, we can then derive a
constraint between the couplings gR and gL, and the scattering angle θ. In particular, we
find cos2(θ/2)gL ± sin2(θ/2)gR = 0 for RL concurrence and sin2(θ/2)gL ± cos2(θ/2)gR = 0
for the LR concurrence. Note that in general concurrence maximization occurs for different
values of θ for each initial state.

Both concurrences are simultaneously maximized for θ = π/2, where gR = ±gL. In
fact, these are the same constraints as the ones found in Z decay. To be more illustrative,
we plot these two constraints, coming from initial RL and LR helicities, in Fig. 6.3 left.
Therefore, either the axial coupling is zero, recovering the known QED result, or the vector
coupling is zero, leading to a weak mixing angle of sin2 θW = 1/4.
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Fig. 6.3: Left: Maximal concurrence line as a function of the scattering angle θ
and the coupling ratio gR/gL for Z-mediated e−e+ → µ−µ+ scattering. Blue line:
electron and positron with right- and left-handed initial helicities respectively; red
line: electron and positron with left- and right-handed initial helicities. Maximal
entanglement is achieved at the same scattering angle θ for the two initial helicity
configurations when the coupling ratio is equal to one, which leads to a weak
mixing angle of π/6. Right: Maximum concurrence line for the weak mixing
angle θW as a function of scattering angle θ for the process e−e+ → µ−µ+, now
including also the effects of Z/γ interference. Imposing that MaxEnt is achieved
for the same value of the scattering angle θ fixes θW = π/6.

6.5.3 Interference e−e+ → µ−µ+

Finally, we have studied how the concurrences are modified if we include both the con-
tribution from γ-exchange and Z-exchange in e−e+ → µ−µ+ scattering. Given that
me,mµ � mZ , we can neglect the masses of both leptons. In this process, the amplitudes
with equal initial helicities vanish, while the scattering amplitudes for opposite initial
helicity configurations are given by

M|RL〉→|RL〉 = −
(

4µ2g2
R

(4µ2 − 1) sec2 θW +Q2 sin2 θW

)
(1 + cos θ) ,

M|RL〉→|LR〉 =
(

4µ2gRgL
(4µ2 − 1) sec2 θW +Q2 sin2 θW

)
(1− cos θ) , (6.40)

M|LR〉→|RL〉 =M|RL〉→|LR〉 (gR ↔ gL) ,
M|LR〉→|LR〉 =M|RL〉→|RL〉 (gR ↔ gL) ,

where we have defined µ ≡ |~p|/mZ .

The purely weak scattering process e−e+ → µ−µ+, i.e. where the two currents exchange
a Z boson instead of a photon like in QED, can be obtained if we set Q = 0 in the amplitudes
of Eq. (6.40). This is a non-trivial check since the γ contribution adds terms to both RL
and LR, which are independent of sin2 θW . In a way, having MaxEnt in each channel
separately does not imply that we will obtain the same constraints for MaxEnt when taking
into account both channels.

The introduction of the photon channel complicates the expressions for the concurrences.
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They simplify if we express them in terms of Q and T3, in which case we find

∆RL
|~p|�mZ−−−−−→ 2Q (Q− T3) sin2 θ

2 (2Q− T3)T3 cos θ +
(
(Q− T3)2 +Q2

)
(1 + cos2 θ)

, (6.41)

∆LR
|~p|�mZ−−−−−→ Q (Q− T3) sin2 θ s2

W

(
T 2

3 +Q2s2
W − 2QT3s

2
W

)
2Q2 (Q− T3)2 s4(s2

W )2 + 2
(
T 2

3 +Q2s2
W − 2QT3s2

W

)2
c4
, (6.42)

where s2
W ≡ sin2 θW , c ≡ cos(θ/2) and s ≡ sin(θ/2). Note that ∆RL does not depend

on the weak mixing angle, but ∆LR does. Taking the leptonic electric and weak isospin
charges Q = −1 and T3 = −1/2, respectively, we find that

∆`
RL

|~p|�mZ−−−−−→ 4 sin2 θ

6 cos θ + 5(1 + cos2 θ) , (6.43)

∆`
LR

|~p|�mZ−−−−−→ sin2 θ sin2 θW
cos4(θ/2) + 4 sin4(θ/2) sin4 θW

. (6.44)

Imposing that MaxEnt should be reached for some scattering angles implies that

θ
(
∆`
RL = 1

)
= arccos

(
−1

3

)
∀ θW , (6.45)

θW
(
∆`
LR = 1

)
= arcsin

( 1√
2

cot(θ/2)
)
. (6.46)

The two curves are shown in the right panel of Fig.6.3. If MaxEnt is realized for the same
scattering angle independently of the specific scattering initial state, then the prediction
θW = π/6 readily follows, consistently with the result that we find by requesting MaxEnt
in the decays of the Z boson into leptons and e+e− → µ+µ− scattering mediated by a Z
boson.

6.5.4 MaxEnt generation in weak interactions
While the application of MaxEnt to Z-boson mediated scattering does not fix completely
the coupling structure of the weak interactions, as we mentioned its application to Z decay
fixes gV = 0 and thus sin2 θW = 1/4. The lack of full predictability of MaxEnt in the full
scattering case is due to the freedom to choose different angles for MaxEnt depending on
the chirality of the initial particles. It is remarkable that we have obtained the same result
for θW in different processes even in one that involves diagrams with no dependence in θW .
This fact emphasizes the consistency of this result.

The value of sin2 θW = 1/4 is in agreement with the experimental value [180] within
∼ 10%. There are two possible explanations for the ∼ 10% difference with respect to
the experimental value of the weak mixing angle. On the one hand, this analysis has
been performed at first order in perturbation theory; the full MaxEnt analysis should be
performed taking into account also higher orders, which modify the amplitudes. On the
other hand, it is possible that MaxEnt does not fix this parameter, but only gives us a close
value, a first intuition. It is however remarkable that requesting MaxEnt simultaneously for
the two initial state helicities leads either to QED or to a theory which looks surprisingly
close to the weak interaction.

6.6 MaxEnt in tree-level QCD: gluon scattering
Let’s figure out if MaxEnt is present in QCD interaction and if we can extract any
information from it. As an example, we compute the amplitudes for tree-level gg → gg
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process. This process involve four Feynman diagrams corresponding to s, t, u and 4-vertex
channels. There exist an approach to compute effortlessly the polarization amplitudes for
any gluon scattering process [181]. This approach takes into account that all gluons are
incoming in order to simplify the computations, thus outgoing gluon polarization amplitudes
are flipped. However, in the following lines, we present the scattering amplitudes using the
same conventions as in the other processes analysed in this chapter, so we do not use the
common approach to compute these amplitudes although it is equivalent.

Gluons are not asymptotically free at finite energies. This means that we can only
apply the S formalism if we consider infinite energy. This fact entails that it is not possible
to prepare neither to observe gluon polarization states. The aim of the following analysis
is to check if there is a factorization between color elements in front of polarization states
and analyse if the imposition of MaxEnt leads to some constraint on these elements.

According to Feynman rules for QCD (see App. B), the non-zero amplitudes of gg → gg
process are

(|RR〉 → |RR〉)s = −ig2
sf

abcfa
′b′c cos θ, (6.47)

for the s channel,

(|RR〉 → |RR〉)t = ig2
sf

aa′cf bb
′c 1

8 (39− 24 cos θ + cos(2θ)) cot2(θ/2), (6.48)

(|RL〉 → |RL〉)t = ig2
sf

aa′cf bb
′c 1

2(3 + cos θ) cos2(θ/2) cot2(θ/2), (6.49)

(|RL〉 → |LR〉)t = ig2
sf

aa′cf bb
′c 1

2(3 + cos θ) sin2(θ/2) (6.50)

for the t channel,

(|RR〉 → |RR〉)u = ig2
sf

ab′cf ba
′c 1

8 (39 + 24 cos θ + cos(2θ)) tan2(θ/2), (6.51)

(|RL〉 → |RL〉)u = ig2
sf

ab′cf ba
′c 1

2(3− cos θ) cos2(θ/2), (6.52)

(|RL〉 → |LR〉)u = −ig2
sf

ab′cf ba
′c 1

2(3− cos θ) sin2(θ/2) tan2(θ/2) (6.53)

for the u channel and

(|RR〉 → |RR〉)4 = −ig2
s

(
fabcfa

′b′c cos θ+

+ faa
′cf bb

′c(3− cos θ) cos2(θ/2) + fab
′cf ba

′c(3 + cos θ) sin2(θ/2)
)
,

(6.54)

(|RL〉 → |RL〉)4 = ig2
s cos4(θ/2)

(
fab

′cf ba
′c + faa

′cf bb
′c
)
, (6.55)

(|RL〉 → |LR〉)4 = ig2
s sin4(θ/2)

(
fab

′cf ba
′c + faa

′cf bb
′c
)

(6.56)

for the 4-vertex channel. Similar results are found for |LL〉 and |LR〉 initial states.
Thus, the total amplitudes become

|RR〉 → |RR〉 = 2ig2
s

[
fabcfa

′b′c−t+ u

s
+ faa

′cf bb
′c
(−t+ u

s
+ 2

)
u

t

− fab′cf ba′c
(−t+ u

s
− 2

)
t

u

]
, (6.57)
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|RL〉 → |RL〉 = −2ig2
s

(
fab

′cf ba
′c t

s
+ faa

′cf bb
′cu

2

st

)
, (6.58)

|RL〉 → |LR〉 = −2ig2
s

(
fab

′cf ba
′c t

2

su
+ faa

′cf bb
′c t

s

)
. (6.59)

Then, clearly only an initial polarization state |RL〉 (or |LR〉) can generate entanglement,

|ψ〉RL = 1
N

[(
fab

′cf ba
′c t

s
+ faa

′cf bb
′cu

2

st

)
|RL〉+

(
fab

′cf ba
′c t

2

su
+ faa

′cf bb
′c t

s

)
|LR〉

]
.

(6.60)

For t = u, i.e. θ = π/2, both |RL〉 → |RL〉 and |RL〉 → |LR〉 amplitudes are equal
independently of structure constants. Then, MaxEnt assumption is consistent in this
process although no further knowledge about structure constants can be extracted from it.

6.7 Conclusions
In this chapter, we have explored the relationship between the generation of maximally
entangled states and the tree-level scattering amplitudes in QED, weak and QCD interac-
tions. In particular, we have analysed all tree-level QED processes, Z decay into leptons,
weak e+e− → µ+µ− (including the photon interference) and gg → gg tree-level scattering.

We found that MaxEnt is generated through two mechanisms: indistinguishability of
the particles involved in the process and s-channel processes, where the virtual photon
carries equal overlaps of the helicities of the final state particles. In addition, we found
that promoting MaxEnt to a fundamental principle in the spirit of Wheeler’s “it from
bit” philosophy allows one to constrain the coupling structure describing the interactions
between fermions and gauge bosons. As a matter of fact, QED couplings are found to be
the solution to a MaxEnt principle once some global symmetries (C, P and T) are imposed.

Following this path, we also found that MaxEnt in weak interactions prefers a weak
angle θW = π/6, surprisingly close to the Standard Model value. We computed different
processes to test the consistency of this result. Moreover, we checked if we can extract any
information from structure constants in gluon scattering by imposing MaxEnt: the results
were consistent with MaxEnt conjecture but at the same time where independent from
structure constants.

In this framework, MaxEnt arises as a possible powerful information principle that can
be applied to different processes, bringing in unexpected constraints on the structure of
high energy interactions. To mention a few possibilities, MaxEnt may provide new insights
into the all-order structure of the QED vertex, and may hint at further relations between
the parameters of the Standard Model or in new physics beyond it.
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Science makes people reach selflessly for truth and ob-
jectivity; it teaches people to accept reality, with wonder
and admiration, not to mention the deep joy and awe
that the natural order of things brings to the true sci-
entist.

– Lise Meitner,
Lecture, Austrian UNESCO Commission, 1953.

In this thesis, we have covered several topics related to maximal entanglement: its
quantification, generation and applications to quantum information and particle physics.

In Chapter 2, we have first reviewed multiparty qubit Bell inequalities from an op-
erational perspective. We have used this approach to obtain new Bell inequalities for
three outcomes. In contrast to qubit Bell inequalities, qutrit inequalities are maximally
violated by a deformation of the GHZ state, which shows that maximal entanglement and
non-locality are not equivalent concepts. We have extended this analysis to Bell inequalities
of higher dimension and we have obtained similar results in terms of maximal violation
as for the qutrit case. Moreover, we have presented a new method to obtain novel Bell
inequalities from maximally entangled states.

Chapter 3 analyses a particular figure of merit to quantify four-partite entanglement:
the hyperdeterminant. For completeness, we have defined other figures of merit, among
them, two polynomial invariants that are related to the hyperdeterminant. To be precise, we
have used the Schläfli hyperdeterminant computed from the S and T polynomial invariants.
We have studied the value of this figure in some well-known quantum states such as GHZ
and W states, to conclude that hyperdeterminant only captures some types of multipartite
entanglement. We have also analysed the multipartite entanglement in random states
and ground states of random Hamiltonians and we have observed that hyperdeterminant
is sensible to different random priors. The ground state of Ising model, XXZ model
and Haldane-Shastry wave function have been also analysed. Hyperdeterminant peaks
pronouncedly around the phase transition point in the Ising model but, in contrast, is
always zero in the XXZ and Haldane-Shastry models. For that reason, we have used the
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other invariants, S and T , to study these other models. We found that at transition points,
S and T invariants become zero whereas in the critical region they have a non-vanishing
value.

In Chapters 4 and 5 we have moved the discussion to the field of quantum computation.
First, in Chapter 4, we have performed an exact simulation of the Ising model by proposing
an explicit circuit that is able to diagonalize the XY Hamiltonian. The implementation of
this kind of circuit allows us to have access to all eigenstates of the model by just preparing
product states. This fact makes possible to implement time simulation or thermal states.
We have tested the circuit for the particular case of a n = 4 Ising spin chain in some current
quantum computers: two from IBM company and one from Rigetti Computing company.
The results have shown that, for low external magnetization, the simulation is close to the
exact result whereas for higher magnetizations the error respect to the theoretical value
is larger. The explanation lies in the structure of the ground state, where bit-flip errors
provoke a large decrease of the magnetization when the external field is high. Despite the
fact that decoherence and relaxation times are technically large enough to perform the
circuit, we have concluded that the big error source came probably from gate fidelities and
other error sources such as qubit crosstalk. However, with the simulation of time evolution,
we have observed that these error sources should be systematic.

We continued the study of maximal entanglement in quantum computation in Chapter
5. There, we proposed a hard test to be accomplished by a quantum computer: the
generation of Absolutely Maximally Entangled (AME) states. Since entanglement plays
a key role in quantum computing and the simulation of slightly entangled states can be
done with classical methods, a quantum device must be able to generate and hold highly
entangled states in order to show some advantage. We have introduced explicit circuits
to generate these states that only require Hadamard and CZ gates. These circuits have
been obtained from graph states. In addition, we have proposed to simulate AME states
of higher dimension using qubits. We have observed that AME states circuits obey in
general a majorization arrow, i.e. after each entangling gate is applied, the entropy of all
bipartitions increase or remains equal respect to the previous step. We have used this
property to obtain equivalent circuits that contained a smaller number of entangling gates.

Finally, in Chapter 6, we have analysed how maximal entanglement is generated at the
most fundamental level, in particular in QED, weak neutral interactions and a tree-level
process in QCD (gluon scattering). In the case of QED, we have shown that maximally
entangled states can be generated at tree-level and that the imposition of a maximal
entanglement conjecture leads to the correct structure of the tree-level vertex without
imposing gauge invariance. Next, we have also imposed maximal entanglement in the final
state helicities of particles after a weak neutral process, e.g. Z boson decay to leptons.
The result entails that the weak mixing angle should have a value of π/6, very close to the
experimental value. Finally, we have tried to extend this analysis to a QCD process, in
particular, gluon scattering. However, we found that gluons can be maximally entangled
in terms of helicities independently of the values of the structure constants, so no further
knowledge can be obtained from maximal entanglement imposition.

Many research lines can be extracted from the work done in this thesis. Let us mention
some examples. Bell inequalities are a necessary experiment to elucidate if we are in the
quantum mechanics realm or not: the search for these inequalities for any number of
parties and dimensions is still an open problem and it is possible to use one of the methods
presented in this work to obtain new Bell inequalities. As has been already mentioned, the
complete quantification of multipartite entanglement is also an open problem in quantum
information. Different figures of merit quantify different kinds of entanglement, so it is
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necessary to study all of them and in which fields are useful, for example, to capture
quantum phase transitions. In this thesis we have analyzed one figure and three models,
many others can be tested. From the quantum computing side, it is mandatory to propose
methods to benchmark the quantum devices that are being constructed nowadays. We have
proposed two methods that can be used to understand better what are the error sources.
In closing, we have proposed a maximal entanglement conjecture. To raise it to have the
status of a principle, many other tests are necessary, starting with the computation of
higher order corrections and the extension to other particle processes.

With all these conclusions exposed, it is even clearer that entanglement is at the central
core of Nature interactions and have important implications in quantum information. Some
works presented here will continue their development after this thesis project.
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A.QuantumGates

A classical computation is like a solo voice – one line
of pure tones succeeding each other. A quantum com-
putation is like a symphony – many lines of tones
interfering with one another.

–Seth Lloyd,
“Programming the Universe: A Quantum Computer

Scientist Takes on the Cosmos”, 2006.

Quantum operations, quantum logic gates or simply quantum gates are actions applied
on specific quantum states that modify the total quantum system. They are physically
implemented by Hamiltonians that depend on the quantum device, e.g. superconduct-
ing circuits, trapped ions, photons, etc. For pure quantum states, they are commonly
represented by unitary matrices that act on a small number of qudits, the minimal units
of quantum information, i.e. d-level quantum states. Then, quantum gates are dn × dn
unitary matrices acting on n qudits of local dimension d.

To simplify the notation, each quantum gate is represented by a specific symbol, usually
a box, that gird the qudits over which it acts. At the same time, each qudit is represented
by a straight line. All together, they constitute a quantum circuit which representatives
are the qudits and its building blocks the quantum gates.

It is important to point out that in this work quantum circuit diagrams are read from
left to right, i.e. unitary operations are applied on qudits as long as they appear in the
diagram. This contrasts with the matrix notation, which is read from right to left following
the matrix multiplication rules.

A.1 Basis convention
Present quantum computation is leading by two-level quantum systems. The d = 2 quantum
information units are called qubits and quantum gates are 2n × 2n unitary matrices. A
(pure) qubit state is usually represented by

|ψ〉 = α|0〉+ β|1〉, (A.1)
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where α, β ∈ C, |α|2 + |β|2 = 1 and |0〉 and |1〉 are the labels of the two quantum levels. In
total, a qubit has 2 degrees of freedom (in general, n qubits have 2 · 2n parameters and
two constraints, |〈ψ|ψ〉|2 = 1 and a global phase). For that reason, it can be represented
as a point on a sphere of unit radius called Bloch sphere, i.e.

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (A.2)

Orthogonal points in the Bloch sphere correspond to eigenstates of σx, σy and σz matrices.
In particular, the convention establishes that

Definition A.1.1

|0〉 ≡ (0, 0, 1)Bloch ≡ |ψ+
z 〉 =

(
1
0

)
, |1〉 ≡ (0, 0,−1)Bloch ≡ |ψ−z 〉 =

(
0
1

)
. (A.3)

Then, the other orthogonal points in terms of σz basis states are

(±1, 0, 0)Bloch = |ψ±x 〉 = 1√
2

(|0〉 ± |1〉) = 1√
2

(
1
±1

)
, (A.4)

(0,±1, 0)Bloch = |ψ±y 〉 = 1√
2

(|0〉 ± i|1〉) = 1√
2

(
1
±i

)
. (A.5)

Experimentally, it is usually chosen the |0〉 and |1〉 states as the natural two quantum
levels of the physical systems, e.g. electron spin up and down, left and right photon
polarization, etc. If, for some reason, we are interested in measuring in other directions,
we should implement the corresponding rotation on the final state, which is nothing more
than a rotation on the Bloch sphere of each qubit. In fact, any one-qubit unitary gate is
actually a rotation in the Bloch sphere.

For other local dimensions, it is used a similar convention: quantum levels are labelled
and written with the vectors |0〉 = (1, 0, · · · , 0), |1〉 = (0, 1, · · · , 0), . . ., |d〉 = (0, 0, · · · , 1).

A.2 One-qubit gates
The most used one-qubit gates are shown in Tab. A.1. This is not an independent gate
set, since these gates can be obtained from the others. For instance, the following relations
hold

I = X2 = Y 2 = Z2, (A.6)

H = 1√
2

(X + Z) , (A.7)

X = HZH, (A.8)
S = T 2, (A.9)
Y = Rz(π/2)Ry(2π)Rz(π/2)X, (A.10)
Z = Ry(π)X, (A.11)

Ri(θ1 + θ2) = Ri(θ1)Ri(θ2) for i = x, y, z, (A.12)
Ri(−θ) = XRi(θ)X, for i = y, z, (A.13)
Rx(−θ) = Y Rx(θ)Y. (A.14)
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Any unitary 2× 2 matrix U with det(U) = eiδ can be parametrized as

U =

 ei(δ+
α+β

2 ) cos(θ/2) ei(δ+
α−β

2 ) sin(θ/2)
−ei(δ−

α−β
2 ) sin(θ/2) ei(δ−

α+β
2 ) cos(θ/2)

 = eiδRz(α)Ry(θ)Rz(β). (A.15)

We can then construct any unitary gate using only rotational gates and a phase, for example

X = ei
π
2Ry(π)Rz(π), (A.16)

Y = ei
π
2Ry(−π), (A.17)

Z = ei
π
2Ry(−π), (A.18)

H = ei
π
2Ry(−π)Rz(−π/2), (A.19)

S = ei
π
4Ry(−π/2), (A.20)

Rx(θ) = Rz(π/2)Ry(θ)Rz(−π/2). (A.21)

Another common way to parametrize one-qubit unitary gates is

U3(θ, φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
= Ph(φ+λ)Rz(λ+ π)Ry(θ)Rz(−λ− π),

(A.22)

and similarly as the other parametrization, it can generate any unitary operation, e.g.
H = U3(π/2, 0, π) or S = U3(0, 0, π/2).

Before moving to two-qubit unitary gates, the following lemma is also useful [162]:

Lemma A.2.1 Any unitary matrix U can be written as

U = eiδAXBXC, (A.23)

where X is the Pauli matrix σx and ABC = I.

Since U = eiδRz(α)Ry(θ)Rz(β) and using the relations (A.12) and (A.13):

Rz(α)Ry(θ)Rz(β) = Rz(α)Ry
(
θ

2

)
XXRy

(
θ

2

)
XXRz

(
α+ β

2

)
XXRz

(
β − α

2

)
= Rz(α)Ry

(
θ

2

)
XRy

(
−θ2

)
Rz

(
−α+ β

2

)
XRz

(
β − α

2

)
= AXBXC, (A.24)

where A = Rz(α)Ry
(
θ
2

)
, B = Ry

(
− θ

2

)
Rz
(
−α+β

2

)
and C = Rz

(
β−α

2

)
.

A.3 Two-qubit gates
Any 22×22 unitary matrix is a two-qubit gate. However, the common gates used implement
particular operations, in particular, controlled and swap operations.

Swap gates exchange the state of two-qubits following some rule. The most basic one is
the SWAP gate, which exchanges the qubits amplitude if they are in a different state:

SWAP(a|00〉+ b|01〉+ c|10〉+ d|11〉) = a|00〉+ c|01〉+ b|10〉+ d|11〉. (A.25)
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Name Symbol Matrix

X

(
0 1
1 0

)

Pauli Y

(
0 −i
i 0

)

Z

(
1 0
0 −1

)

Hadamard H
1√
2

(
1 1
1 −1

)

Rx(θ) ei
θ
2X =

(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)

Rotational Ry(θ) ei
θ
2Y =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)

Rz(θ) ei
θ
2Z =

(
eiθ/2 0

0 e−iθ/2

)

Ph(φ)

(
1 0
0 eiφ

)

Phase S Ph(π/2) =
(

1 0
0 i

)

T Ph(π/4) =

1 0
0 1+i√

2



Tab. A.1: One-qubit basic gates.

Controlled gates implement an operation on target qubit if the control qubit is in the
state |1〉. One of the most representative of this kind of gates is the controlled-X gate,
usually called CNOT,

CNOT(a|00〉+ b|01〉+ c|10〉+ d|11〉) = a|00〉+ b|01〉+ c|11〉+ d|10〉, (A.26)

which flips, i.e. applies X gate, the target qubit (in the example, the second qubit) if the
control qubit is in the |1〉 state.

Table A.2 shows a summary of the most used two-qubit gates, including their symbol,
matrix and common decomposition in terms of other gates. This last thing is particularly
useful for the experimental implementation as, depending on the physical platform used to
run quantum circuits, some gates are more easy to implement than others.
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Name Abbreviation Circuit Common Matrix
decomposition

Controlled-NOT CNOT
• •

H • H


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Controlled-Z CZ
•

•

•

H H


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Controlled-phase CPh(φ)
•

Ph(φ)

•

• Ph(φ+ π)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ



Controlled-unitary CU
•

U

See lemma A.3.1


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

and Fig.A.1

Swap SWAP
×

×

• •

•


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Tab. A.2: Two-qubit basic gates.

A.3.1 Controlled-unitary gates decomposition

Let’s start with a lemma that follows the previous one and it is related with qubit gate
decomposition [162]:
Lemma A.3.1 Any controlled-unitary gate can be performed with CNOT and rotational
gates with the circuit:

• • • Ph(δ)

U = C B A

where A, B and C gates are the ones obtained in Lemma A.23.

If the first qubit is in the |0〉 state, the second qubit remains in the same state and, as
ABC = I, no operation is implemented in this qubit. But if the first qubit is in the |1〉
state, a X gate is applied in the second leading to the operation AXBXC on this qubit.
Finally, if a Ph(δ) is applied on the first qubit, it adds a phase on states |10〉 and |11〉
which, together with the previous action, leads to the implementation of U = eiδAXBXC.



106 Appendix A. Quantum Gates

• • •

U1 = Rz (−α) Ry
(
− θ

2

)
Ry
(
θ
2

)
Rz(α)

• •

U2 = Rz (−α) Ry
(
− θ

2

)
Ry
(
θ
2

)
Rz(α)

Fig. A.1: Basic gates decomposition of a controlled-unitary operations of the
form of Eq. (A.27) and Eq. (A.28).

• • •

H ≡ Ry
(
−π

2
)

Ry
(
π
2
)
≡ S† H T † T H S

Fig. A.2: Controlled-Hadamard gate.

Special cases
Some unitary operations can be decomposed using less gates that the general decomposition
introduced above. For instance, a unitary operation U with β = α and δ = 0

U1 =
(
eiα cos(θ/2) sin(θ/2)
− sin(θ/2) e−iα cos(θ/2)

)
, (A.27)

can be implemented with the upper circuit of Fig. A.1. Notice that adding a CNOT gate
at the beginning of this circuit modifies the unitary gate implemented as

U2 =
(

sin(θ/2) eiα cos(θ/2)
e−iα cos(θ/2) − sin(θ/2)

)
, (A.28)

which circuit is shown in the bottom of Fig. A.1.
We can use these gates decomposition to obtain common controlled-unitary gates.

A simple example is the controlled-Z gate, CZ, which corresponds with the unitary
U2(α = 0, θ = π). Applying the decomposition shown in Fig. A.1, we obtain the relation
CZ = (I ⊗H)CNOT(I ⊗H). Moreover, applying Hadamard gates in the second qubit, we
obtain the reverse relation, CNOT = (I ⊗H)CZ(I ⊗H).

Another example is the decomposition of controlled-Hadamard gate, CH. Again,
Hadamard gate is of the type U2 with θ = π/2 and α = 0, so it is only necessary
two Ry gates and a CNOT gate to obtain this operation. It can be also implemented with
S, T and H gates, as shows Fig. A.2.

Finally, a last example that appears in Chapter 4, is the Controlled-Rx gate, which
decomposition is shown in Fig.A.3.
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• • •

RX(θk) ≡ Rz
(
−π

2
)

Ry
(
− θ

2

)
Ry
(
θ
2

)
Rz
(
π
2
)

Fig. A.3: Controlled-RX gate decomposition in terms of the rotational gates.

• • • • T •
• = • • T T †

H T † T T † T H

Fig. A.4: Toffoli gate implementation with one-qubit gates and CNOTs.

A.4 Three qubit gates
Three qubit gates are not as extensively used as one and two-qubit gates. The reason
behind is basically experimentally, since the control of the interaction between three qubits
is more difficult and challenging. However, there are some widely used three-qubit gates
that are necessary to implement many quantum algorithms. In particular, in this section
we introduce the Toffoli gate or CCNOT gate.

The CCNOT gate applies an X gate on target qubit if the two controlled qubits are in
the |1〉 state. Its matrix representation is

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (A.29)

Due to its uses in many quantum algorithms but its difficult implementation, what is
actually used is its decomposition in terms of one and two-qubit gates. One of the most
used decompositions is shown in Fig. A.4.

The exact decomposition of CCNOT gate involves six CNOT gates plus some one-qubit
gates, so any circuit that needs from CCNOT gates will increase significantly its depth.
We can try to reduce this problem by using an approximate CCNOT gates, as the ones
shown in Fig. A.5 [162]. Their matrix representations are
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• • •

• ' • = • •
a

R
−3π/2
Y

• R
3π/2
Y

• R
−3π/2
Y

• R
3π/2
Y

• • •

• ' • = • •
b

R
π/4
Y R

π/4
Y R

−π/4
Y R

−π/4
Y

Fig. A.5: Approximations of CCNOT gate. They introduce a change of sign in
some states, in particular CCNOTa|101〉 = −|101〉 and CCNOTb|100〉 = −|100〉.

CCNOTa =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


, CCNOTb =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (A.30)

These gates are equivalent to CCNOT gate except for one or phase. In particular, the state
|101〉 carries a −1 in the case of CCNOTa and similarly with the state |100〉 for CCNOTb.
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Nature uses only the longest threads to weave her pat-
terns, so each small piece of her fabric reveals the
organization of the entire tapestry.

–Richard P. Feynman,
“The character of physical law”, 1965.

In this appendix, we introduce some basic definitions and define the conventions used to
compute the particle processes presented in Chapter 6. We provide a finite set of Feynman
rules, in particular we only show the necessary ones to do the computations of Chapter
6. For detailed definitions, derivations and a more complete set of Feynman rules see for
instance Ref. [181, 182].

B.1 Conventions and definitions
B.1.1 Dirac equation

The Dirac equation describes all spin-1
2 massive particles. It is a relativistic wave equation

which solutions are called Dirac spinors.

Definition B.1.1 — Dirac equation. A free spin-1
2 particle of mass m is described by the

Dirac equation as

ψ̄ (i∂µγµ −m)ψ = 0, (B.1)

where ψ̄ = ψ†γ0, ~σ = (σx, σy, σz) and γµ matrices generate the Clifford algebra, i.e.
{γµ, γν} = 2gµν , where gµν is the Minkowsky metric with signature +−−−.

Dirac equation can be written in terms of Weyl spinors ψR and ψL, which are two
component spinors that form the four component spinor ψ = (ψL ψR)T . In matrix form,
the Dirac equation becomes(

−m iσ · ∂
iσ̄ · ∂ −m

)(
ψL

ψR

)
= 0, (B.2)
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where σ = (I, ~σ), σ̄ = (I,−~σ) and ∂ = ∂µ. For massless fermions, the Dirac equation
decouples into left and right spinors equations

iσ̄ · ∂ψL = 0, (B.3)
iσ · ∂ψR = 0. (B.4)

There are different conventions for γµ matrices. In this work, we use the Weyl or chiral
representation:

Definition B.1.2 — Weyl representation of gamma matrices.

γ0 ≡
(

0 I
I 0

)
, γi ≡

(
0 σi

−σi 0

)
, γ5 ≡

(
−I 0
0 I

)
. (B.5)

The fifth gamma matrix is defined as γ5 = iγ0γ1γ2γ3 and, although it is not part of the
rest of gamma matrices as a generator of Clifford group, it is useful to define the chirality
operators

PR = 1 + γ5

2 , PL = 1− γ5

2 . (B.6)

These operators project right and left handed Weyl spinors, i.e. PRψ = (0 ψR)T and
PLψ = (ψL 0)T .

Thus, the solutions of Dirac equations are plane-wave equations of the form

ψ(x) = u(p, s)e−ipx, ψ(x) = v(p, s)e+ipx, (B.7)

where u(p, s) and v(p, s) are called Dirac spinors and correspond to the particle and
anti-particle solutions respectively. They should obey the Dirac equation for particles and
anti-particles, i.e.

(γµpµ −m)u(p, s) = 0, (B.8)
(γµpµ +m) v(p, s) = 0. (B.9)

Then, they can be written as

u(p, s) =
(√

p · σξs
√
p · σ̄ξs

)
, v(p, s) =

( √
p · σξs

−
√
p · σ̄ξs

)
, (B.10)

where ξs are the two component spinors, eigenstates of helicity operator ĥ that are defined
in the next subsection.

B.1.2 Spin, helicity and chirality
Definition B.1.3 — Spin. Spin is a vector quantity. For fermions, it is represented with
the operator ~S = ~σ/2. However, we sometimes refer to it as a scalar, being one of the
eigenvalues of ~S or the quantity s of the eigenvalue s(s+ 1) of the operator ~S2.

If we want to use spin as a quantum number to describe spinors, we should choose
one spin direction, for instance Sz. However, in general, spinors u(p, s) and v(p, s) are not
eigenstates of Sz (only if ~p = pz ẑ), so spin is not a particularly useful basis. In addition,[
H, ~S

]
6= 0 in general, so what is actually a good quantum number is angular momentum,

i.e. ~J = ~L+ ~S where ~L is the orbital angular momentum, due to
[
H, ~L+ ~S

]
= 0.

Let us define another quantity that is more convenient to use with Dirac spinors.
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Definition B.1.4 — Helicity. Helicity is the projection of spin on the direction of momenta:

ĥ ξ =
~S · ~p
|~p|

ξ = λ ξ , (B.11)

where λ are the eigenvalues of ĥ and ξ are the helicity eigenstates.

For fermions, we have λ = ±1. If the projection of the fermion spin points towards the
direction of momentum, its value is s = +1/2 and therefore λ = +1 (right-handed helicity).
On the contrary, if it points in the opposite direction, s = −1/2 and λ = −1 (left-handed
helicity). The opposite convention holds for anti-fermions, since the spin for antiparticles
is measured with the operator −~S. Thus, what dictates if a particle is right or left handed
is the eigenstate of the helicity operator.

The two-component spinors ξ are helicity eigenstates. For an arbitrary direction of
momentum p̂ = (sin θ cosφ, sin θ sinφ, cos θ),

p̂ · ~σ =
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
,

p̂ · ~σ
(
ξs1
ξs2

)
= ±

(
ξs1
ξs2

)
−→ ξs2

ξs1
= ±1− cos θ

sin θ eiφ, (B.12)

where s =↑, ↓ and ξs = (ξs1 ξs2). Thus, the helicity eigenstates can be written as

ξ↑ =
(

cos(θ/2)
eiφ sin(θ/2)

)
, ξ↓ =

(
− sin(θ/2)
eiφ cos(θ/2)

)
. (B.13)

Therefore,

ĥ ξ↑ = +ξ↑ , ĥ ξ↓ = −ξ↓ , (B.14)

when applied to a u(s, p) spinor and

ĥ ξ↑ = −ξ↑ , ĥ ξ↓ = +ξ↓ (B.15)

when applied to a v(s, p) spinor. For example, a right handed electron and a left handed
positron are described respectively by u(↑, p) and v(↑, p) spinors.

For photons, a similar convention is used. A photon with momentum ~k have the circular
polarization vectors

~ε(λ,~k) = − λ√
2

(cos θ cosφ− iλ sinφ, cos θ sinφ+ iλ cosφ,− sin θ) , (B.16)

where λ = ±1 and correspond with right and left handed polarization vectors.
To distinguish between fermion and photon helicities, we denote with |R〉 and |L〉 a right

and left handed states for fermions and |+〉 and |−〉 the two circular photon polarizations.
As a final remark, for high energies or massless particles, helicity and chirality are

equivalent. For that reason, many references, including the work presented in this thesis,
use the term right and left handed particles to refer to helicity eigenstates.
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B.1.3 The S matrix
A Hamiltonian that describes free particles and the interaction between them can be
decomposed as

H = H0 +HI , (B.17)

where H0 are the Hamiltonians of free particles and HI the interaction Hamiltonian.
Working in the interaction picture, the time evolution is dictated by the Schrödinger
equation

i
d

dt
|χ(t)〉 = HI |χ(t)〉. (B.18)

We define as initial state the state occurring at t→ −∞ and we are interested in the state
long after the interaction, i.e. at t → +∞. The transformation that drive us from the
initial state to the final state is called S matrix,

|χ(+∞)〉 ≡ S|i〉 = S|χ(−∞)〉. (B.19)

We will be interested in the projection on the possible final states, i.e.

〈f |χ(+∞)〉 = 〈f |S|i〉 ≡ Sfi . (B.20)

Thus,

|χ(t)〉 = |i〉+ (−i)
∫ t

−∞
dτHI(τ)|χ(τ)〉. (B.21)

We can solve the above integral perturbatively. If we stop at first order, we can define
S ≡ I + iT and therefore obtain

Sfi = iTfi ≡ (2π)4δ4(pi − pf )(iM). (B.22)

Here, iM is called Feynman amplitude and the rules to construct this amplitude are called
Feynman rules. By using the Feynman diagrams, we can extract the correct form of
iM. Since we have computed S until first order, the corresponding amplitudes are called
tree-level amplitudes. If we expand the S matrix until the second order, they are called
one-loop amplitudes, etc.

B.2 Feynman rules
Feynman rules are extracted from the Lagrangian of the theory. For instance, the description
of free fermions are obtained from Dirac equation, of free photons from Maxwell equations,
etc. The interaction terms are dictated from the interaction part of the Lagrangian that
will depend on the order that we are considering in perturbation theory. For the tree-level
processes that are computed in Chapter 6, we only have simple vertices, which simplifies
the amount of diagrams for a given process and its computation.

Table B.1 introduces the tree-level Feynman rules for QED. We should add an extra
rule that has not been included in the table: for a given process, diagrams that differ in
the exchange of identical fermions or anti-fermions carry a relative − sign.

Tables B.2 and B.3 show some basic tree-level Feynman rules for weak and QCD
interactions. The constants f that appear in QCD rules are the structure constants of
SU(3), which are obtained from the corresponding generators called Gell-Man matri-
ces.
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Process Diagram Rule

Fermion-photon vertex −ieQfγµ

Incoming fermion u(p, s)

Outgoing fermion ū(p, s)

Incoming anti-fermion v̄(p, s)

Outgoing anti-fermion v(p, s)

Incoming photon εµ(k, λ)

Outgoing photon ε∗µ(k, λ)

Fermion propagator i(�q+m)
q2−m2+iε

Photon propagator − igµν

q2+iε

Tab. B.1: Feynman rules for QED.

Definition B.2.1 — Gell-Mann matrices.

λ1 ≡


0 1 0
1 0 0
0 0 0

 , λ2 ≡


0 −i 0
i 0 0
0 0 0

 , λ3 ≡


1 0 0
0 −1 0
0 0 0

 ,

λ4 ≡


0 0 1
0 0 0
1 0 0

 , λ5 ≡


0 0 −i
0 0 0
i 0 0

 , λ6 ≡


0 0 0
0 0 1
0 1 0

 ,

λ7 ≡


0 0 0
0 0 −i
0 i 0

 , λ8 ≡ 1√
3


1 0 0
0 1 0
0 0 −2

 .

(B.23)

These matrices satisfy the commutation relations [λi, λj ] = 2i
∑
k f

ijkλk with

f123 = 1,
f147 = f165 = f246 = f257 = f345 = f376 = 1/2,
f458 = f678 =

√
3/2. (B.24)

The structure constants f ijk are completely antisymmetric in the three indices.
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Process Diagram Rule

Charged vertex i g√2γ
µ 1−γ5

2

Neutral vertex
i g

cos θW γ
µ
(
gfV − γ5gfA

)
gfV = T

f
3
2

gfA = T
f
3
2 −Qf sin2 θW

Incoming boson εµ(k, λ)

Outgoing boson ε∗µ(k, λ)

Z propagator − igµν

q2−M2
Z+iε

Tab. B.2: Some Feynman rules for weak interaction.

Process Diagram Rule

Triple gluon vertex
gfabc

[
gµν (p1 − p2)ρ

+gνρ (p2 − p3)µ

+gρµ (p3 − p1)ν
]

Quartic gluon vertex
−ig2

[
feabfecd (gµρgνσ − gµσgνρ)

+feacfedb (gµσgρν − gµρgρσ)
+feadfebc (gµνgρσ − gµρgνσ)

]
Incoming gluon εµ(k, λ)

Outgoing gluon ε∗µ(k, λ)

Tab. B.3: Some Feynman rules for QCD.
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If and when all the laws governing physical phenomena
are finally discovered (...) we will be able to say that
physical science has reached its end, that no excite-
ment is left in further explorations, and that all that
remains to a physicist is either tedious work on minor
details or the self-educational study and adoration of
the magnificence of the completed system.

– George Gamow,
“Any Physics Tomorrow”, 1949.

In this appendix, we provide all amplitudes of tree-level QED processes in terms of the
helicities of the incoming and outgoing particles. We analyze explicitly the entanglement
generation in each process as described in Chapter 6.

C.1 e−µ− → e−µ−

The matrix element for this process is

iMt = ū(s′2, q2)(−ieγµ)u(s2, p2) −igµν
(p1 − q1)2 ū(s′1, q1)(−ieγν)u(s1, p1), (C.1)

and the unpolarized amplitude

|M|2 = 8e4

t2

(s− (m2 +M2)
2

)2

+
(
u− (m2 +M2)

2

)2

+ t(m2 +M2)
2

 , (C.2)

where m is the electron mass, M is the muon mass and

|M|2 ≡
∑
i

∑
f

|M|2 . (C.3)

In the following sections, we will keep this definition for the unpolarized amplitude |M|2.
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The amplitudes for this process are:

M|RR〉→|RR〉 =M|LL〉→|LL〉 = e2µ
2 (3− cos θ) +

√
(1 + µ2) (µ2 + λ2) (1 + cos θ)

µ2 (−1 + cos θ) ,

M|RR〉→|RL〉 = −M|LL〉→|LR〉 = e2
√
µ2 + λ2

µ2 cot(θ/2) ,

M|RR〉→|LR〉 = −M|LL〉→|RL〉 = e2λ
√

1 + µ2

µ2 cot(θ/2) ,

M|RR〉→|LL〉 =M|LL〉→|RR〉 = −e2 λ

µ2 ,

M|RL〉→|RR〉 = −M|LR〉→|LL〉 = −e2
√
µ2 + λ2

µ2 cot(θ/2) ,

M|RL〉→|RL〉 =M|LR〉→|LR〉 = −e2µ
2 +

√
(1 + µ2) (µ2 + λ2)

µ2 cot2(θ/2) ,

M|RL〉→|LR〉 =M|LR〉→|RL〉 = e2 λ

µ2 ,

M|RL〉→|LL〉 =M|LR〉→|RR〉 = e2λ
√

1 + µ2

µ2 cot(θ/2) , (C.4)

where µ = |~p|/M and λ = m/M .

Concurrence analysis
The concurrence from the initial state |RR〉 or |LL〉 is the same,

∆RR〉 = ∆LL〉 = 2µ2λ (3− cos θ) sin2(θ/2)
f(µ, λ, θ) , (C.5)

where

f(µ, λ, θ) = 4λ2 + 4µ2
(

1 + λ2 +
√

(1 + µ2) (µ2 + λ2) (3− cos θ)
)

cos2(θ/2)

+ µ4 (11− 4 cos θ + cos 2θ) . (C.6)

Taking |~p| → ∞, i.e. µ→∞, we obtain the high energy limit

∆HE
RR = 0 +O

( 1
µ2

)
. (C.7)

The low energy limit corresponds to µ→ 0, that leads to

∆LE
RR = 0 +O

(
µ2
)
. (C.8)

Then, it is not possible to achieve MaxEnt at those limits. However, a maximization of
∆RR give us MaxEnt at θ = π,

∆θ→π
RR = 1

2
µ2λ

2µ4 + λ2 −O
(
(θ − π)2

)
. (C.9)

For µ =
√
λ/2 the zeroth order is 1/2 and the next order negative, which means that it is

a maximum. Although µ is not zero, as λ = m/M � 1 we can consider this limit as a low
energy limit.



C.1 e−µ− → e−µ− 117

For an initial state |RL〉 or |LR〉 the concurrence is also the same, i.e. ∆RL = ∆LR

with

∆RL = µ2λ sin2 θ

4
(
λ2µ2

(
1 + λ2 +

√
(1 + µ2) (µ2 + λ2) (1 + cos θ)

)
+ 2µ4 cos4(θ/2)

) , (C.10)

and the corresponding high and low energy limits are

∆HE
RL = 0 +O

( 1
µ2

)
, (C.11)

∆LE
RL = 0 +O

(
µ2
)
, (C.12)

so it is not possible to generate MaxEnt at high neither at low energy limits. We also
performed a maximization of the above concurrences and did not find any angle or values
of µ and λ for those concurrence is 1/2.

Generated states

If the initial electron and muon are in the product state |RR〉, the final state become

|ψ〉RR = − 1√
N

∑
{+,−}

(
+ |Ψ±〉

(
λ
√

1 + µ2 ±
√
µ2 + λ2

)
sin θ

+ |Φ±〉
(

2µ2 +
√

(1 + µ2) (µ2 + λ2) (1 + cos θ) +
(
µ2 ± λ

)
(1− cos θ)

))
, (C.13)

where N is the corresponding norm. This state have the following high and low energy
limits:

lim
µ→∞

|ψ〉RR = − 1√
2

(
|Φ+〉+ |Φ−〉

)
= −|RR〉, (C.14)

lim
µ→0
|ψ〉RR = − 1√

2
(
1 + sin2 θ

) (|Φ+〉+ |Φ−〉 cos θ − |Ψ+〉 sin θ
)

= −
√

2
1 + sin2 θ

(c|R〉 − s|L〉) (c|R〉 − s|L〉) , (C.15)

lim
θ→π

µ→
√
λ/2

|ψ〉RR = −|Φ+〉, (C.16)

where c ≡ cos(θ/2) and s ≡ sin(θ/2). As expected from concurrence analysis, only one
MaxEnt state is generated, the |Φ+〉, at θ = π and µ =

√
λ/2.

If the initial electron and muon are in the product state |RL〉, the final state become

|ψ〉RL = − 1√
N

∑
{+,−}

(
|Φ±〉

(√
µ2 + λ2 ∓ λ

√
1 + µ2

)
sin θ

+ |Ψ±〉
(
∓λ (1− cos θ) +

(
µ2 +

√
(1 + µ2) (µ2 + λ2)

)
(1 + cos θ)

))
, (C.17)
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and the high and low energy limits are

lim
µ→∞

|ψ〉RL = − 1√
2

(
|Ψ+〉+ |Ψ−〉

)
= −|RL〉, (C.18)

lim
µ→0
|ψ〉RL = − 1√

2
(
1 + sin2 θ

) (|Ψ+〉 cos θ + |Ψ−〉+ |Φ−〉 sin θ
)

= −
√

2
1 + sin2 θ

(c|R〉 − s|L〉) (s|R〉+ c|L〉) . (C.19)

(C.20)

Both limits lead to a product state.

C.2 e−e+ → µ−µ+

The matrix element of this process is

iMs = v̄(s2, p2)(−ieγµ)u(s1, p1) −igµν
(p1 + p2)2 ū(s′1, q1)(−ieγν)v(s′2, q2), (C.21)

and the unpolarized amplitude

|M|2 = 8e4

s2

( t− (m2 +M2)
2

)2

+
(
u− (m2 +M2)

2

)2

+ s(m2 +M2)
2

 ,
where m is the electron mass and M is the muon mass as in the previous process.

The helicity amplitudes of this process are:

M|RR〉→|RR
LL
〉 =M|LL〉→|RR

LL
〉 = −e2 λ

µ2 + λ2 cos θ ,

M|RR〉→|RL
LR
〉 =M|LL〉→|RL

LR
〉 = ∓e2 λ√

µ2 + λ2 sin θ ,

M|RL〉→|RR
LL
〉 = −M|LR〉→|RR

LL
〉 = e2 1√

µ2 + λ2 sin θ ,

M|RL〉→|RL
LR
〉 = −e2 (1± cos θ) ,

M|LR〉→|LR
RL
〉 = −e2 (1∓ cos θ) , (C.22)

where, again, µ = |~p|/M and λ = m/M .

Concurrence analysis
The concurrences of the final states are

∆RR = ∆LL = 1
2 , (C.23)

∆RL = ∆LR = (µ2 + λ2 − 1) sin2 θ

2
(
(µ2 + λ2)(1 + cos2 θ) + sin2 θ

) . (C.24)

Then, from an initial |RR〉 or |LL〉 state it is always possible to generate a MaxEnt state
at any energy except for very high energies, i.e. µ→∞, since |RR〉 → · · · and |LL〉 → · · ·
amplitudes of Eq. (C.22) vanish at that limit. From an initial |RL〉 or |LR〉 state, the
entanglement generation depends on the energy and COM angle.
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Let’s analyze the ∆RL with more detail. The limit for high energies corresponds to
µ→∞,

∆HE
RL = sin2 θ

3 + cos 2θ −
4 sin2 θ

(3 + cos 2θ)2
1
µ2 +O

( 1
µ

)4
. (C.25)

The first non-zero order give us MaxEnt for θ = π/2. Let’s perform again an expansion
around this angle:

∆HE
RL = 1

2 −
(
θ − π

2

)2
− 1
µ2 + 3 1

µ2

(
θ − π

2

)2
. (C.26)

As energy decreases, MaxEnt is lost, although it is a fourth order effect.
For Low energies, the limit corresponds to the muon production threshold, i.e. µ→√

1− λ2. Defining ε = µ−
√

1− λ2 as the expansion parameter,

∆LE
RL ' ε

(1
2
√

1− λ2 + 1
4ε
(
−2 + 3λ2 − (1− λ2) cos 2θ

))
sin2 θ . (C.27)

Only for λ→ 0 MaxEnt could be achieved if θ = π/2, although it is suppressed by an ε
factor.

Generated States
From an initial state |RR〉, the final state become

|ψ〉RR = 1
N

(
|Φ+〉 cos θ + |Ψ−〉

√
µ2 + λ2 sin θ

)
. (C.28)

This state is always maximally entangled as any state with the form a|Φ+〉 + b|Ψ−〉 is.
For high energy, the |Ψ−〉 dominates ∀θ whereas for µ =

√
1 + λ2 the generated state is

|Φ+〉 cos θ + |Ψ−〉 sin θ.
From Eq. (C.24) we only obtain a MaxEnt state at high energies and θ = π/2. Indeed,

the general state obtained is

|ψ〉RL = 1
N

(√
µ2 + λ2(|Ψ+〉+ |Ψ−〉 cos θ)− |Φ+〉 sin θ

)
, (C.29)

where for high energies the first term dominates leading to a state |Ψ+〉 for θ = π/2. On
the other hand, for low energies the above state become

|ψ〉LERL = 1√
2

(
|Ψ+〉+ |Ψ−〉 cos θ − |Φ−〉 sin θ

)
, (C.30)

where each particle can be described separately in a similar way as the state of Eq. (C.19).

C.3 e−e− → e−e−

This process has two channels

iMt = ū(s′1, q1)(−ieγµ)u(s1, p1) −igµν
(p1 − q1)2 ū(s′2, q2)(−ieγν)u(s2, p2) , (C.31)

iMu = (−1)ū(s′1, q1)(−ieγµ)u(s2, p2) −igµν
(p2 − q1)2 ū(s′2, q2)(−ieγν)u(s1, p1) . (C.32)
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Thus the unpolarized amplitude become

|M|2 = 2e4
(
s2+u2+8(t−m2)m2

t2
+s2+t2+8(u−m2)m2

u2 +2(s−2m2)(s−6m2)
ut

)
. (C.33)

The amplitudes for this process are:

M|RR〉→|RR〉 = M|LL〉→|LL〉 = −e2
(3 + cos 2θ

µ2 + 8
)

csc2 θ ,

M|RR〉→|RL
LR
〉 = M|LL〉→|RL

LR
〉 = ∓2e2

√
1 + µ2

µ2 cot θ ,

M|RR〉→|LL〉 = M|LL〉→|RR〉 = e2 2
µ2 ,

M|RL〉→|RR
LL
〉 = −M|LR〉→|RR

LL
〉 = 2e2

√
1 + µ2

µ2 cot θ ,

M|RL〉→|RL〉 = M|LR〉→|LR〉 = −e2
(

2 cot2(θ/2) + 1
µ2 cos θ csc2(θ/2)

)
,

M|RL〉→|LR〉 = M|LR〉→|RL〉 = e2
(

2 tan2(θ/2)− 1
µ2 cos θ sec2(θ/2)

)
, (C.34)

where µ = |~p|/m.

Concurrence analysis
The concurrences of the final states are:

∆RR = 2(2 + µ2(7− cos 2θ)) sin2 θ

64µ4 + µ2 (49 + 16 cos 2θ − cos 4θ) + 4 (3 + cos 2θ) , (C.35)

∆RL =
∣∣∣ 2µ2(1 + cos 2θ − µ2(1− cos 2θ) sin2 θ

µ4 (35 + 28 cos 2θ + cos 4θ) + µ2 (31 + 32 cos 2θ + cos 4θ) + 8 (1 + cos 2θ)

∣∣∣ ,
(C.36)

with ∆LL = ∆RR and ∆LR = ∆RL.
In the high energy limit, i.e. µ→∞,

∆HE
RR = (7− cos 2θ) sin2 θ

32
1
µ2 +O

( 1
µ4

)
, (C.37)

∆HE
RL = 4 sin4 θ

35 + 28 cos 2θ + cos 4θ −O
( 1
µ2

)
. (C.38)

Thus, for an initial state |RR〉 it is not possible to generate MaxEnt whereas it is possible
for an initial state |RL〉 if θ = π/2.

The low energy limit corresponds with µ→ 0 since this process does not need an energy
threshold (no particles are created),

∆LE
RR = sin2 θ

3 + cos 2θ −O(µ2) , (C.39)

∆LE
RL = 0 +O(µ2) . (C.40)

In this limit it is possible to generate MaxEnt for θ = π/2 if the initial state is |RR〉 and,
apparently, it is not for |RL〉.
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To analyse if MaxEnt is lost at next orders, let’s perform an expansion around the
solution θ = π/2:

∆HE
RR '

(
1
4 −

5
16

(
θ − π

2

)2
)

1
µ2 , (C.41)

∆LE
RR '

1
2 −

(
1 + µ2

)(
θ − π

2

)2
, (C.42)

∆HE
RL '

1
2 − 4

(
1 + 1

µ2

)(
θ − π

2

)2
, (C.43)

∆LE
RL '

1
2 − 4

(
θ − π

2

)2
− 1
µ2

(
4 + 1

µ2

(
θ − π

2

)2
)
. (C.44)

Then, MaxEnt at θ = π/2, when it is generated, is a global maximum. Moreover it is
actually generated for an initial state |RL〉: the µ→ 0 expansion covered this result. The
concurrence (C.36) shows the indeterminate form 0/0 when µ → 0 and θ → π/2: the
nominator goes like µ2 while the denominator goes like 1 + cos 2θ when µ→ 0. As µ = 0
could only be a limit while one can fix the angle at θ = π/2, the correct analysis consist on
first taking the limit θ → π/2 and after that studying the µ dependence. As in this case
the limit limθ→π/2 ∆RL = 1/2, there is always MaxEnt ∀µ.

Generated States
Starting from an initial state |RR〉 the final state become:

|ψ〉RR = 1√
N

(
2|Φ+〉

(
1 + 2µ2

)
+ |Φ−〉

(
1 + cos 2θ + µ2

)
− |Ψ+〉

√
1 + µ2 sin 2θ

)
. (C.45)

In the limit µ → ∞ the generated state tends to |ψ〉HERR =
(
|Φ+〉+ |Φ−〉

)
/
√

2 = |RR〉,
which is a product state. However, in the low energy limit µ → 0 the generated state
become

|ψ〉LERR = 1
N

(
2|Φ+〉+ |Φ−〉(1 + cos 2θ)− |Ψ+〉 sin 2θ

)
, (C.46)

which at θ = π/2 becomes maximally entangled, |ψ〉LERR = |Φ+〉.
For an initial state |RL〉 the final generated state is:

|ψ〉RL = 1
N

(
|Φ−〉

√
1 + µ2 sin 2θ + |Ψ+〉

(
1 + cos 2θ + µ2 (3 + cos 2θ)

)
+ 2|Ψ−〉

(
1 + 2µ2

)
cos θ

)
. (C.47)

One can easily check that at θ = π/2 |ψ〉RL(θ = π/2) = |Ψ+〉, so it is maximally entangled
for all µ.

C.4 e−e+ → e−e+

This process has also two channels:

iMs = v̄(s2, p2)(−ieγµ)u(s1, p1) −igµν
(p1 + p2)2 ū(s′1, q1)(−ieγν)v(s′2, q2), (C.48)

iMt = (−1)v̄(s2, p2)(−ieγµ)v(s′2, q2) −igµν
(p2 − q2)2 ū(s′1, q1)(−ieγν)u(s1, p1). (C.49)
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The unpolarized amplitude is

|M|2 = 2e4
(
s2 + u2 + 8(t−m2)m2

t2
+ t2 + u2 + 8(s−m2)m2

s2 + 2(u− 2m2)(u− 6m2)
st

)
.

(C.50)

The helicity amplitudes are

M|RR〉→|RR〉 =M|LL〉→|LL〉 = e2 2 (1 + cos θ) + µ2 (11 + cos 2θ) + 8µ4

4µ2 (1 + µ2) csc2(θ/2) ,

M|RR〉→|RL〉 =M|LL〉→|LR〉 = ±e2 1 + µ2 cos θ
µ2
√

1 + µ2 cot(θ/2) ,

M|RR〉→|LL〉 =M|LL〉→|RR〉 = −e2 1 + µ2 (1 + cos θ)
µ2 (1 + µ2) ,

M|RL〉→|RR
LL
〉 = −M|LR〉→|RR

LL
〉 = −e2 1 + µ2 cos θ

µ2
√

1 + µ2 cot(θ/2) ,

M|RL〉→|RL〉 =M|LR〉→|LR〉 = e2 1 + µ2 (1 + cos θ)
µ2 cot2(θ/2) ,

M|RL〉→|LR〉 =M|LR〉→|RL〉 = −e2
(

1− cos θ − 1
µ2

)
, (C.51)

where µ = |~p|/m.

Concurrence analysis
The concurrence for an initial state |RR〉 or |LL〉 is

∆RR = ∆LL =
∣∣∣∣∣12 + 8(1 + 3µ2 + 2µ4)2

f(µ, θ)

∣∣∣∣∣ , (C.52)

where

f(µ, θ) = 64µ8 + µ6 (177 + 16 cos 2θ − cos 4θ) + µ2 (52 + 48 cos θ − 4 cos 2θ)
+ 4µ4 (39 + 9 cos θ + 5 cos 2θ − cos 3θ) + 16 . (C.53)

The high and low energy limits for an initial state |RR〉 become

∆HE
RR = 0−O

( 1
µ2

)
, (C.54)

∆LE
RR = 0 +O(µ2), (C.55)

so in these limits it is not possible to generate MaxEnt. However, we can solve the equation
∆RR = 1/2 to see if there is any possible solution for other energies. The result is

∆RR

(
θ = π, µ = 1

2

√
−3 +

√
17
)

= 1
2 . (C.56)

MaxEnt is allowed at that point but one can check it is not a global maximum.
The concurrence for an initial state |RL〉 is:

∆RL =
∣∣∣∣∣4µ2 (µ4 sin2 θ + µ2 (1− 2 cos θ)− 1

)
sin2 θ

g(µ, θ)

∣∣∣∣∣ , (C.57)
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where

g(µ, θ) = µ6 (35 + 28 cos 2θ + cos 4θ) + 4µ2 (3 + 16 cos θ + cos 2θ)
+ 4µ4 (9 + 15 cos θ + 7 cos 2θ + cos 3θ) + 16 , (C.58)

and ∆LR = ∆RL. The corresponding expansion at high and low energy limits

∆HE
RL = 4 sin4 θ

35 + 28 cos 2θ + cos 4θ +O
( 1
µ2

)
, (C.59)

∆LE
RL = 0−O(µ2). (C.60)

At high energies, MaxEnt is achieved for θ = π/2. After analyze this point, we obtain:

∆HE
RL '

1
2 − 4

(
θ − π

2

)2
+ 4
µ2

(
θ − π

2

)
, (C.61)

so θ = π/2 is not a global maximum. We can solve the equation ∆RL = 1
2 as we did in the

previous case looking for other possible solutions. The result is

µMaxEnt =
√
− 1

2 cos θ ,
π

2 ≤ θ < π . (C.62)

As energy decreases, the angle where MaxEnt is found increases. The lowest energy
that allows MaxEnt is µ→

(
1/
√

2
)+

(notice that at θ = π, which is the extremal value
µ = 1/

√
2, the amplitudes are zero except |RL〉 → |LR〉).

Generated states
The generated state when the initial particles are in the helicity configuration |RR〉 is

|ψ〉RR = 1
N

(
|Φ+〉

(
2 cos θ + µ2 (5 + cos 2θ) + 4µ4

)
+ 2|Φ−〉

(
1 + 3µ2 + 2µ4

)
+ 2|Ψ−〉

√
1 + µ2

(
1 + µ2 cos θ

)
sin θ

)
. (C.63)

The corresponding energy limits of this state are:

lim
µ→∞

|ψ〉RR = 1√
2

(
|Φ+〉+ |Φ−〉

)
= |RR〉, (C.64)

lim
µ→0
|ψ〉RR = 1√

2
(
1 + sin2 θ

) (|Φ+〉 cos θ + |Φ−〉+ |Ψ−〉 sin θ
)
,

= 1√
2
(
1 + sin2 θ

) (c|R〉 − s|L〉) (c|R〉+ s|L〉) , (C.65)

lim
θ→π
µ→µ0

|ψ〉RR = |Φ−〉, (C.66)

where µ0 = 1
2

(
−3 +

√
7
)1/2

. As expected, we have only MaxEnt in the last case.
If the initial state is |RL〉 the corresponding state generated is

|ψ〉RL = 1
N

(
− 2|Φ+〉

(
1 + µ2 cos θ

)
sin θ + 2|Ψ+〉

√
1 + µ2

(
1 + 2µ2 cos θ

)
+ |Ψ−〉

√
1 + µ2

(
2 + cos θ + µ2 (3 + cos 2θ)

) )
, (C.67)
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from which we can obtain a MaxEnt state for µMaxEnt =
√
− sec θ/2,

lim
µ→µ+

MaxEnt

|ψ〉RL = 1
N

(
2|Φ+〉+ |Ψ−〉

√
4− 2 sec θ tan θ

)
. (C.68)

Written in this form, it is not evident, but if we perform, for instance, a Ry(φ) transformation
with φ = −2 tan−1(cot θ/

√
1− sec θ/2) on the second particle, we obtain the |Ψ−〉 state.

C.5 e−e+ → γγ

The amplitudes for this process are

iMt = −ie2ε∗µ(λ, q)ε∗ν(λ′, q′)v̄(s′, p′)γν i

�t−m
γµu(s, p),

iMt = −ie2ε∗µ(λ, q)ε∗ν(λ′, q′)v̄(s′, p′)γµ i

�u−m
γνu(s, p). (C.69)

These can be written in a more compact way using 1/(�k −m) = (�k +m)/(k2 −m2):

M = ε∗µ(λ, q)ε∗ν(λ′, q′)Mµν , (C.70)

whereMµν =Mµν
t +Mµν

u and

Mµν
t = − e2

t2 −m2 v̄(s′, p′)γν(�t+m)γµu(s, p), (C.71)

Mµν
u = − e2

u2 −m2 v̄(s′, p′)γµ(�u+m)γνu(s, p). (C.72)

The total unpolarized amplitude is

|M|2 = −2e4
(
p · k′

p · k
+ p · k
p · k′

+ 2m2
( 1
p · k

+ 1
p · k′

)
−m4

( 1
p · k

+ 1
p · k′

)2
)
. (C.73)

The amplitudes for all helicity and polarization configurations are

M|RR〉→|±±〉 = M|LL〉→|±±〉 = ±e2
4
(
µ2 ∓

√
1 + µ2

)
µ2 (1− cos 2θ) + 2 ,

M|RR〉→|±∓〉 = M|LL〉→|±∓〉 = −e2 4µ2

µ2 (1− cos 2θ) + 2 sin2 θ ,

M|RL〉→|±±〉 = M|LR〉→|±±〉 = 0 ,

M|RL〉→|±∓〉 = −M|LR〉→|∓±〉 = ±e2 2µ
√

1 + µ2

µ2 sin2 θ + 1
sin θ (1± cos θ) , (C.74)

where µ = |~p|/m, |+〉 and |−〉 are the right and left circular polarizations of the photon.
The signs ± and ∓ correspond to the right and left final photon polarizations respectively.

Concurrence analysis
The concurrences for this process are

∆RR = 1
2 −

8µ2

8 + µ2(19− 4 cos 2θ + cos 4θ) , (C.75)

∆RL〉 = sin2 θ

3 + cos 2θ , (C.76)
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with ∆LL = ∆RR and ∆LR = ∆RL. For ∆RR, the high and low energy limits are

∆HE
RR = 4 sin4 θ

19− 4 cos 2θ + cos 4θ +O
( 1
µ2

)
, (C.77)

∆LE
RR = 1

2 −O(µ2) . (C.78)

The maximum value of the zero order in the high energy limit is 1/6 for θ = π/2, so it is
not possible to generate maximal entanglement. On the contrary, at low energies MaxEnt
is achieved independently of the angle.

For ∆RL there is always MaxEnt for all energies except µ = 0 if we take θ = π/2. As
this is an exact result, this angle is a global maximum.

Generated states
The generated state from an initial |RR〉 is

|ψ〉RR = 1
N

(
|Φ+〉µ− |Φ−〉

√
1 + µ2 − |Ψ+〉µ sin2 θ

)
. (C.79)

For high energies, this state has the form |Ψ+〉 sin2 θ+ 2|−−S〉 which cannot be maximally
entangled for any θ. But for low energies, the second term dominates leading to a maximally
entangled state −|Φ−〉 independently of the COM angle.

If the initial state is |RL〉, the final particles state become

|ψ〉RL = 1√
2 cos 2θ

(
|Ψ−〉 − |Ψ+〉 cos θ

)
. (C.80)

The only possible solution to generate a maximally entangled state is taking θ = π/2,
which leads to the |Ψ−〉 as a final state independently of the energy regime.

C.6 e−γ → e−γ

The two channels of this process are

iMs = −ie2ū(s′, p′)γµε∗µ(λ′, k′)�p+�k +m

s2 −m2 γνεν(λ, k)u(s, p),

iMu = −ie2ū(s′, p′)γνε∗ν(λ, k)�p−��k′ +m

u2 −m2 γµε∗µ(λ′, k′)u(s, p). (C.81)

Using s2 −m2 = (p+ k)2 −m2 = 2p · k, we can simplify the matrix element:

iM = −ie2ε∗µ(λ′, k′)εν(λ, k)ū(s′, p′)
(
γµ�kγν + 2γµpν

2p · k + −γ
ν
��k′γµ + 2γνpµ

−2p · k′

)
u(s, p). (C.82)

The total unpolarized amplitude is [182]:

|M|2 = 2e4
(
p · k′

p · k
+ p · k
p · k′

+ 2m2
( 1
p · k

− 1
p · k′

)
+m4

( 1
p · k

− 1
p · k′

)2
)
. (C.83)
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The exact amplitudes for this process are

M|R+〉→|R+〉 =M|L−〉→|L−〉 = 2e2 µ+
√

1 + µ2

µ cos θ +
√

1 + µ2 cos3(θ/2) ,

M|R+〉→|R−〉 = −M|L−〉→|L+〉 = e2 1 + cos θ
µ cos θ +

√
1 + µ2 sin(θ/2) ,

M|R+〉→|L+〉 =M|L−〉→|R−〉 = e2

(
µ−

√
1 + µ2

)
cos(θ/2)

µ cos θ +
√

1 + µ2 (−1 + cos θ) ,

M|R+〉→|L−〉 = −M|L−〉→|R+〉 = 2e2 1
µ cos θ +

√
1 + µ2 sin3(θ/2) ,

M|R−〉→|R+〉 = −M|L+〉→|R+〉 = −e
2

2
1

µ cos θ +
√

1 + µ2 csc(θ/2) sin2 θ ,

M|R−〉→|R−〉 =M|L+〉→|L+〉 = e2
1 + cos θ + 4µ

(
µ+

√
1 + µ2

)
(
µ+

√
1 + µ2

) (√
1 + µ2 + µ cos θ

) cos(θ/2) ,

M|R−〉→|L+〉 = −M|L+〉→|R−〉 = − 2 sin(θ/2)
µ+

√
1 + µ2 + cos(θ/2) sin θ√

1 + µ2 + µ cos θ
,

M|R−〉→|L−〉 =M|L+〉→|L−〉 = e2 1(
µ+

√
1 + µ2

) (√
1 + µ2 + µ cos θ

) sin(θ/2) sin θ ,

(C.84)

where µ = |~p|/m.

Concurrence analysis
The concurrences for this process are

∆R+ = ∆L− = µ| sin3 θ|
f(µ, θ) , (C.85)

f(µ, θ) = 2µ2 (3 + cos 2θ) cos2(θ/2) + 2µ
√

1 + µ2 (2 cos θ cos 2θ + 1) + 3 + cos 2θ,
(C.86)

and

∆R− = ∆L+
8µ sin4(θ/2)| sin θ|

g(µ, θ) , (C.87)

where

g(µ, θ) = 32µ4 (1 + cos θ) + µ2 (34 + 25 cos θ + 6 cos 2θ − cos 3θ)

+ 4µ
√

1 + µ2
(
8µ2 (1 + cos θ) + 1 + 3 cos θ

)
+ 2 (3 + cos 2θ) . (C.88)

For an initial state |R+〉 or |L−〉 the corresponding high and low energy limits are

∆HE
R+ = tan3(θ/2)

2µ +O
( 1
µ3

)
, (C.89)

∆LE
R+ = sin3 θ

3 + cos 2θµ−
2(1 + 2 cos θ + cos 2θ) sin3 θ

3 + cos 2θ)2 µ2 +O(µ3), (C.90)
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and for an initial state |R−〉 or |L+〉,

∆HE
R− = 0 +O

( 1
µm

)3
, (C.91)

∆LE
R− = 4 sin4(θ/2) sin θ

3 + cos 2θ µm −
(16(5 cos(θ/2 + 3 cos(3θ/2)) sin5(θ/2)

(3 + cos 2θ)2 µ2
m +O(µ3

m),

(C.92)

∆θ→π
R− = µ

1 + 2µ
(
µ−

√
1 + µ2

) (θ − π) +O (θ − π)3 , (C.93)

∆θ→π
R− = −1

4µ (θ − π)3 +O (θ − π)5 . (C.94)

Clearly, it is not possible to achieve the MaxEnt in any case.

Generated states

For an initial |R+〉 particles, the final state become

|ψ〉R+ = 1
N

∑
{+,−}

(
2|Φ±〉

((
µ+

√
1 + µ2

)
cos3(θ/2)∓ sin3(θ/2)

)

− |Ψ±〉
(

1 + cos θ ±
(
µ−

√
1 + µ2

)
sin θ

)
sin(θ/2)

)
, (C.95)

and the corresponding limits are

lim
µ→∞

|ψ〉R+ = 1√
2

(
|Φ+〉+ |Φ−〉

)
, (C.96)

lim
µ→0
|ψ〉R+ = 1

N
∑
{+,−}

(
2|Φ±〉

(
cos3(θ/2)∓ sin3(θ/2)

)
− |Ψ±〉 (1± cos θ − sin θ) sin(θ/2)

)
, (C.97)

lim
θ→π
|ψ〉R+ = − 1√

2

(
|Φ+〉 − |Φ−〉

)
. (C.98)

In all cases the result is a product state.

For an initial state |RL〉, the final one become:

|ψ〉R− = 1
N

∑
{+,−}

(
|Φ±〉

((
µ+

√
1 + µ2

)
cos(θ/2)± sin(θ/2)

)
sin θ+

+ 1
2 |Ψ

±〉
((

3 + 8µ
(
µ+

√
1 + µ2

))
cos(θ/2) + cos(3θ/2)∓

∓ 4
(
µ−

√
1 + µ2

)
sin3(θ/2)

))
, (C.99)
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which have the limits

lim
µ→∞

|ψ〉R− = 1√
2

(
|Ψ+〉+ |Ψ−〉

)
, (C.100)

lim
µ→0
|ψ〉R− = 1

N
∑
{+,−}

(
|Φ±〉 (cos(θ/2)± sin(θ/2)) sin θ

+ |Ψ±〉
(
cos3(θ/2)± sin3(θ/2)

) )
, (C.101)

lim
θ→π
|ψ〉R− = 1√

2

(
|Ψ+〉 − |Ψ−〉

)
. (C.102)

Again, all limits are product states.



D.Odds andEnds

One never notices what has been done; one can only
see what remains to be done.

–Marie Skłodowska Curie
Letter to her brother, 1894.

D.1 Novel Bell Inequalities
In this section, we explain in detail how to obtain the optimal settings that lead to a
maximal violation of a Bell inequality following the method explained in Ref. [22, 23, 34].
We also provide some properties of the settings found in the Bell inequalities discussed in
Chapter 2.

D.1.1 Maximal violation of Bell inequalities
The method explained in detail in Ref. [22] is as follows. First, we take a general state
|Φ〉 =

∑dn−1
i=0 αi|ei〉 where |ei〉 are the dn computational basis states and

∑dn−1
i=0 |αi|2 = 1.

Second, each party, applies a unitary operation on each subsystem consisting on a phase
shift followed by a Fourier transform, i.e.

UFTU(~ϕ)|Φ〉N , (D.1)

where N is each party, e.g A and B if it is a bipartite Bell inequality, and

Fd =
d−1∑
j,k=0

e
2πi
d
jk|j〉〈k|, (D.2)

U(~ϕ) =
d−1∑
j=0

eiϕ(j)|j〉〈j|, (D.3)

where ~ϕ = (ϕ(0), ϕ(1), · · · , ϕ(d− 1)) for each settings. After this transformation, one can
show that

p(a, b, · · · ) = |〈ab · · · |FdU( ~ϕa)⊗ FdU( ~ϕb)⊗ · · · |Φ〉|2. (D.4)
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Finally, we rewrite the Bell inequality and maximize its violation to obtain the free
parameters ~ϕ. Notice that the first phase angle of each setting can be set to 0 without
loss of generality and similarly ~ϕa = 0. Thus, the optimization procedure involves
n× s× (d− 1)− 1 free parameters.

This procedure can be translated into operators instead of probabilities. It can be
shown that the above method is equivalent to compute the operators corresponding to
each setting as

s = (FdU(~ϕ))†ΠFdU(~ϕ), (D.5)

where s = a, a′, b, b′, · · · and Π is the projector on the states |Φ〉. In particular, for qubit
inequalities, Π = σz and for qutrits inequalities, Π = λ3, since eigenstates of σz and λ3 are
the computational basis states.

The optimal settings written in Chapter 2 are not the same as the ones obtained with
the above method. We look for a final unitary operation that leads to a more compact
expression for the optimal settings, i.e. s̃ = U †sU .

D.1.2 Mutually Unbiased Bases
Some of the optimal settings that maximally violate Bell inequalities have special properies.
In particular, we found that several Bell inequalities studied in Chapter 2 are maximally
violated by mutually unbiased bases (MUB).

Definition D.1.1 — Mutually Unbiased Bases. Given two sets of orthonormal bases
{|φ1〉, · · · , |φd〉} and {|ψ1〉, · · · , |ψd〉} in Hilbert space Cd, they are mutually unbiased if

|〈φi|ψk〉|2 = 1
d
, ∀j, k ∈ {1, · · · , d}. (D.6)

Notice that the definition do not depend on which basis elements are being taken.
Information obtained from a projective measurement associated to one basis set is completely
independent to the information obtained from the other set. Measurement outcomes
obtained with respect to one basis occur with equal probability if the state belongs to the
other set.

We can also understand MUB as an attempt to extend uncertainty principle to finite
Hilbert spaces, although the generalization of MUB to infinite Hilbert spaces is still an
open question.

If the local dimension d is a power of a prime number, i.e. d = pn for p prime and
n ∈ N, then there exist a maximal set of d+ 1 MUB [183, 184]. However, the maximum
number of MUB for d no prime remains unanswered. An example of MUB for d = 2 are
the Pauli operators basis defined in App. A:

〈ψ±i |ψ
±
j 〉 = 1

2 , for i 6= j and i, j = x, y, z. (D.7)

For i = j, 〈ψki |ψli〉 = δkl for k, l = ±, as expected from an orthonormal basis.
We say that a set of normal operators is MUB if their eigenvectors bases are MUB. So

Pauli operators are MUB operators. On the contrary, the set of Gell-Mann matrices of Eq.
(B.23), are not MUB, but some specific combinations are. For instance the optimal settings
for the three qutrits Bell inequality of Eq. (2.41), A = λ3 and A′ = 1

3 (λ2 + λ4 + λ6) are
MUB.
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Weyl-Heisenberg construction of MUB
Although there are several methods to find MUB basis or operators (see for instance Ref.
[185]), we explain here the Weyl-Heisenberg construction.

The shift and clock matrices first defined by John Sylvester [186],

X =
d−1∑
j=0
|j + 1〉〈j| =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...
...
... . . . ...

...
0 0 0 · · · 1 0


, (D.8)

Z =
d−1∑
j=0

ωj |j〉〈j| =



1 0 0 · · · 0 0
0 ω 0 · · · 0 0
0 0 ω2 · · · 0 0
...
...

... . . . ...
...

0 0 0 · · · 0 ωd−1


, (D.9)

where ω = e2πi/d, are the generators of the Weyl-Heisenberg group. An orthonormal basis
is given by

XjZk =
d−1∑
i=0

ωki|i+ j〉〈i|. (D.10)

Specific combinations of these basis elements form MUB [187]:

X, Z, XZi for i = 1, · · · d− 1 are MUB , (D.11)
Xi, Zj , (XZ)k for i, j, k = 1, · · · d− 1 are MUB . (D.12)

So now is clear that in three and four qutrits inequalities of Eq. (2.44) and Eq. (2.48)
the optimal settings are mutually unbiased (A = X and A′ = Z) while in the two and
six qutrit cases are not, since A = X and A′ is a combination that includes X. The B223
inequality of Eq. (2.33) is maximally violated with MUB settings that fulfilled the relation
(D.12) for i = j = 1 and k = 2.

D.1.3 Multiplets of Optimal Settings
We have introduced in Chapter 2 the multiplets of optimal settings (MOS) which denotes
any set of matrices that maximize the two-qutrit, six-qutrit and all two-qudit inequalities.

If we set one of the settings of these inequalities to X, then, in order to obtain maximal
violation, the other takes the form

MOS = eiφ



0 0 0 · · · 0 0 1
−1 0 0 · · · 0 0 0
0 −1 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 0 −1 0


, (D.13)

where φ is a global phase that depends on the specific form of the inequality.
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At the moment, the properties that have been found for these kind of operators are
that both commutator and anticommutator of any pair of MOS are nilpotent matrices, i.e.
matrices M such that Mk = 0 for some integer k.

D.2 Hyperdeterminant in Spin Chains
In this section we present the exact diagonalization of n = 4 spin chains and the computation
of hyperdeterminant and S and T invariants.

D.2.1 Ising model eigenstates
The diagonalization of Ising Hamiltonian of Eq. (3.58) for a n = 4 spin chain is written in
Tab. D.1. Energy levels are labeled from the ground state to the 15th excited state for
0 < λ < 2/

√
3.

The coefficients α, β and γ appearing in Tab. D.1 are

α0± = 1
λ

(
2λ3 ±

√
2λ2

√
λ′ +

√
λ′′ ∓

√
2
√
λ′ +

√
λ′′
(
1−
√
λ′′
)
− λ

(
1− 2

√
λ′′
))

,

α2± = 1
λ

(
2λ3 ±

√
2λ2

√
λ′ −

√
λ′′ ∓

√
2
√
λ′ −

√
λ′′
(
1 +
√
λ′′
)
− λ

(
1 + 2

√
λ′′
))

,

β0± = λ± 1√
2

√
λ′ +

√
λ′′,

β2± = λ± 1√
2

√
λ′ −

√
λ′′,

γ0± = 1±
√

2λ√
λ′ +

√
λ′′
,

γ2± = 1±
√

2λ√
λ′ −

√
λ′′
, (D.14)

with λ′ = 1 + λ2 and λ′′ = 1 + λ4.
The analysis of S and T invariants together with HDet4 explained in Chapter 3 is

extended below to all eigenstates of this model. States with S = T = 0 can be factorized
into two subsystems:

|Ψ3〉 = |Ψ−〉13|00〉24 , |Ψ7〉 = |01〉13|Ψ−〉24 , |Ψ11〉 = |11〉13|Ψ−〉24 ,

|Ψ4〉 = |00〉13|Ψ−〉24 , |Ψ8〉 = |Ψ−〉13|01〉24 , |Ψ12〉 = |Ψ−〉13|11〉24 .

States with energies ±2(
√
λ′ ± 1) – that is |Ψ1〉, |Ψ5〉, |Ψ10〉 and |Ψ14〉 – are a superpo-

sition of two W states or a local transformation of a W state. As a consequence, HDet4 is
zero but not S and T .

States |Ψ6〉 and |Ψ9〉 have HDet4 = 0, S 6= 0 and T 6= 0. These states entangle
maximally two spins in one direction with the other spins in the opposite direction.

Finally, there are four states with HDet4 different from zero: |Ψ0〉, |Ψ2〉, |Ψ13〉 and
|Ψ15〉. Their analysis is explained in detail in Chapter 3.

D.2.2 XXZ model eigenstates
The XXZ spin chain with 4 sites can be solved analytically as the Ising model. Table D.2
collects all energies and eigenstates of this model.

For ∆ < −1, the ground state is doubly degenerate with energy 4∆: it describes a fer-
romagnetic phase where all spins are aligned. For ∆ > −1 its energy is −2

(
∆ +

√
8 + ∆2

)
and the ground state is a resonating valence bound, as explained in Chapter 3.
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Level Energy Eigenstate (up to normalization)

|Ψ0〉 −2
√

2
√
λ′+
√
λ′′ α0+|0000〉+ 2β0+|Ψ+〉13|Ψ+〉24 + γ0+(|0101〉+ |1010〉) + |1111〉

|Ψ1〉 −2(
√
λ′+1)

(
λ+
√
λ′
) (
|00〉|Ψ+〉+ |Ψ+〉|00〉

)
+ |11〉|Ψ+〉+ |Ψ+〉|11〉

|Ψ2〉 −2
√

2
√
λ′−
√
λ′′ α2+|0000〉+ 2β2+|Ψ+〉13|Ψ+〉24 + γ2+(|0101〉+ |1010〉) + |1111〉

|Ψ3〉 −2λ |Ψ−〉13|00〉24

|Ψ4〉 −2λ |00〉13|Ψ−〉24

|Ψ5〉 −2(
√
λ′−1) −

(
λ+
√
λ′
)

(|00〉|Ψ−〉+ |Ψ−〉|00〉)− (|11〉|Ψ−〉+ |Ψ−〉|11〉)
|Ψ6〉 0 |0011〉 − |1100〉
|Ψ7〉 0 |01〉13|Ψ−〉24

|Ψ8〉 0 |Ψ−〉13|01〉24

|Ψ9〉 0 |0101〉 − |1010〉
|Ψ10〉 2(

√
λ′−1)

(
λ−
√
λ′
) (
|00〉|Ψ+〉+ |Ψ+〉|00〉

)
+ |11〉|Ψ+〉+ |Ψ+〉|11〉

|Ψ11〉 2λ |11〉13|Ψ−〉24

|Ψ12〉 2λ |Ψ−〉13|11〉24

|Ψ13〉 2
√

2
√
λ′−
√
λ′′ α2−|0000〉+ 2β2−|Ψ+〉13|Ψ+〉24 + γ2−(|0101〉+ |1010〉) + |1111〉

|Ψ14〉 2(
√
λ′+1) −

(
λ+
√
λ′
)

(|00〉|Ψ−〉+ |Ψ−〉|00〉)− (|11〉|Ψ−〉+ |Ψ−〉|11〉)
|Ψ15〉 2

√
2
√
λ′+
√
λ′′ α0−|0000〉+ 2β0−|Ψ+〉13|Ψ+〉24 + γ0−(|0101〉+ |1010〉) + |1111〉

Tab. D.1: Energies and eigenstates of n = 4 Ising Hamiltonian from Eq. (3.58).
Coefficients α0±, α2±, β0±, β2±, γ0± and γ2± are those from Eq. (D.14). Values
for λ′ and λ′′ are 1 + λ2 and 1 + λ4 respectively. To simplify the notation, we
introduced the states |Ψ±〉 = (|01〉 ± |10〉)/

√
2. Subscripts 13 and 24 refer to

spins that are being described by the state, leaving blank when these spins are
12 and 34 respectively.

All eigenstates have zero HDet4, and only four states have S and T invariants non zero.
Two of these states correspond with the two configurations that maximally entangled two
spins up with two spins down:

|Ψ6〉 = 1√
2

(|0011〉 − |1100〉) = 1√
2

(| �〉| �〉 − | �〉| �〉) , (D.15)

|Ψ9〉 = 1√
2

(|0101〉 − |1010〉) = 1√
2

(| �〉13| �〉24 − | �〉13| �〉24) , (D.16)

where | �〉 = |00〉 and | �〉 = |11〉. The other two states are the ones with energies
−2
(
∆ +

√
8 + ∆2

)
and −2

(
∆−

√
8 + ∆2

)
and correspond, respectively, with the ground

state and 15th excited state for −1 < ∆ < 1. States that can be factorized into two
subsystems have S and T zero, as happens with Ising model eigenstates. Finally, states
with energy ±4 are W -type and, consequently, have S and T zero. States with energy
4 have the typical form of a W state and states with energy −4 correspond to the local
operation σz1σz3 |W 〉, where σzi is the Pauli matrix operation over i-th qubit.
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Energy Eigenstate (up to normalization)

-4 |Ψ−〉|11〉+ |11〉|Ψ−〉
-4 |Ψ−〉|00〉+ |00〉|Ψ−〉
4 |Ψ+〉|11〉+ |11〉|Ψ+〉
4 |Ψ+〉|00〉+ |00〉|Ψ+〉
0 |Ψ−〉13|11〉24

0 |11〉13|Ψ−〉24

0 |Ψ−〉13|10〉24

0 |10〉13|Ψ−〉24

0 |Ψ−〉13|00〉24

0 |00〉13|Ψ−〉24

0 |0011〉 − |1100〉
−4∆ |0101〉 − |1010〉
4∆ |0000〉
4∆ |1111〉

−2
(
∆−

√
8 + ∆2

)
|Ψ+〉13|Ψ+〉24 − 1

2

(
∆−

√
8 + ∆2

)
(|0101〉+ |1010〉)

−2
(
∆ +

√
8 + ∆2

)
|Ψ+〉13|Ψ+〉24 − 1

2

(
∆ +

√
8 + ∆2

)
(|0101〉+ |1010〉)

Tab. D.2: Energies and eigenstates of n = 4 spin chain with a XXZ interaction.
To compact the notation, it has been used the states |Ψ±〉 = (|01〉 ± |10〉)/

√
2.

D.3 Absolute Maximal Entanglement in Quantum Computation
D.3.1 C3–adder gate construction

To construct the C3–adder gate with qubits we should find a sequence of gates that perform
the following operations:

C3|00〉|00〉 = |00〉|00〉, C3|01〉|00〉 = |01〉|01〉, C3|10〉|00〉 = |10〉|10〉 ,
C3|00〉|01〉 = |00〉|01〉, C3|01〉|01〉 = |01〉|10〉, C3|10〉|01〉 = |10〉|00〉 ,
C3|00〉|10〉 = |00〉|10〉, C3|01〉|10〉 = |01〉|00〉, C3|10〉|10〉 = |10〉|01〉 .

(D.17)

As a result, besides from CNOT gates, we will need from CCNOT gates. Three-qubit
gates are difficult to implement experimentally, so we should decompose them in terms
of one and two-qubit gates. The exact decomposition of CCNOT gate is shown in App.
A, which is a circuit of 12 gates of depth. However, we can use instead an approximate
decomposition which differ from the previous for some phase shifts of the quantum states
other than zero [162]. In particular, we can use the approximate CCNOT gates shown in
Fig. A.5. The only changes that those gates introduce respect the exact CCNOT gate are

CCNOTa|101〉 = −|101〉, (D.18)
CCNOTb|100〉 = −|100〉. (D.19)

This is translated into the use of controlled-Z gate in the first approximation to obtain
the desired result after applying the gate sequence to construct the C3–adder. The sign
introduced in the CCNOTb gate is canceled after this sequence, so the circuit remains
equal as exact CCNOT gates were used.
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We can keep saving more gates. Notice that the firsts two C3–adders of the AME
circuit of Fig. 5.9 are implemented on qutrits in the state |0̄〉. Let’s write it explicitly.
After the Fourier transform on qutrit 1, the circuit applies the C3–adder on qutrit 3:

(C̄3)13

[ 1√
3
(
|0̄〉+ |1̄〉+ |2̄〉

)
1 ⊗ |0̄〉3

]
= 1√

3
(
|0̄0̄〉+ |1̄1̄〉+ |2̄2̄〉

)
13 , (D.20)

where the subindex 13 stands for the qutrits affected from this operation. In qubits form

(C3)13

[ 1√
3

(|00〉+ |01〉+ |10〉)1 ⊗ |00〉3
]

= 1√
3

(|00〉|00〉+ |01〉|01〉+ |10〉|10〉)13 . (D.21)

Then, the above operation consists uniquely in two CNOT gates between even and odd
qubits. Similarly, the next C3–adder acting on qutrit 4 can be implemented in the same
way:

(C̄3)14 ⊗ I3

[ 1√
3
(
|0̄0̄〉+ |1̄1̄〉+ |2̄2̄〉

)
13 ⊗ |0̄〉4

]
= 1√

3
(
|0̄0̄0̄〉+ |1̄1̄1̄〉+ |2̄2̄2̄〉

)
134 , (D.22)

which in the qubit form becomes

(C3)14 ⊗ I3

[ 1√
3

(|00〉|00〉+ |01〉|01〉+ |10〉|10〉)13 ⊗ |00〉4
]

= 1√
3

(|00〉|00〉|00〉+ |01〉|01〉|01〉+ |10〉|10〉|10〉)134 . (D.23)

Again, the above state can be obtained from the previous using two CNOT gates, between
even and odd qubits. This enormous simplification cannot be extended to the other
C3–adder gates, as all elements of the basis appear once we implement the F3 gate on
qutrit 2.

D.3.2 Karamata’s inequality and its applications to bipartite figures of merit
In this section, we provide a proof of Karamata’s inequality and apply it to deduce the
inequalities of Eq. (5.12) and Eq. (5.13).

Theorem D.3.1 — Karamata’s inequality. Let a and b be two finite sequences of real
numbers from an interval (α, β). If a � b and if f : (α, β) → R is a convex function,
then the inequality

n∑
i=1

f(ai) ≥
n∑
i=1

f(bi) (D.24)

holds.

To prove this theorem, we need to use the definition of a convex function:

Definition D.3.1 — Convex function of one variable. f(x) is a convex function if for
x1 6= x2 in some interval (α, β), the slope

f(x1)− f(x2)
x1 − x2

(D.25)

is monotonically non-decreasing in x1 ∀x2 or vice versa.

Next, we define the following functions applied to the elements of a and b:
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Definition D.3.2 — Slope function.

ci ≡
f(bi)− f(ai)

bi − ai
. (D.26)

Since a � b, this function is decreasing, i.e. ci+1 ≤ ci.

Definition D.3.3 — Partial sums.

Ak ≡
k∑
i=1

ai, Bk ≡
k∑
i=1

bi, (D.27)

with A0 = B0 = 0.

Notice that majorization implies Ak ≥ Bk and An = Bn.
With the above definitions, we are ready to proof Karamata’s inequality. An equivalent

way to formulate this inequality is to prove that
n∑
i=1

f(ai)−
n∑
i=1

f(bi) ≥ 0. (D.28)

n∑
i=1

(f(ai)− f(bi)) =
n∑
i=1

ci(ai − bi) =
n∑
i=1

(Ai −Ai−1 − (Bi −Bi−1))

=
n∑
i=1

ci(Ai −Bi) +
n∑
i=1

ci(Ai−1 −Bi−1)

=
n∑
i=1

ci(Ai −Bi)−
n−1∑
i=0

ci+1(Ai −Bi)

=
n−1∑
i=1

(ci − ci+1)(Ai −Bi) + c1(A0 −B0) + cn(An −Bn)

=
n−1∑
i=1

(ci − ci+1)(Ai −Bi) ≥ 0 . � (D.29)

We can use this inequality to obtain inequality relations in terms of Von Neumann
entropy and purity. These figures of merit can be written in terms of eigenvalues of the
reduced density matrix: S = −

∑
i λi log λi and γ =

∑
i λ

2
i , as has been explained in

Chapter 3. Both functions of λi are convex and if we assume majorization in eigenvalues
each time we apply a CZ gate, i.e.

∑
i λ

s
i ≥

∑
i λ

s+1
i , then

n∑
i=1

λsi log λsi ≥
n∑
i=1

λs+1
i log λs+1

i ⇒ Ss ≤ Ss+1, (D.30)

for the entropy and
n∑
i=1

(λsi )2 ≥
n∑
i=1

(λs+1
i )2 ⇒ γs ≥ γs+1, (D.31)

for the purity.
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