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Abstract 

Mediterranean marine ecosystems are fundamentally driven by their pelagic 

communities and small and medium-size pelagic fish (SMPF) play crucial ecological 

roles. Although fluctuations of the populations of these organisms have been mainly 

attributed to environmental variability and overfishing, there is still a lack of 

understanding on specific mechanisms that drive their population changes. In recent 

decades a decline in landings, biomass and body condition of sardine and anchovy in 

the northwestern Mediterranean Sea has been observed and several hypotheses to 

explain these changes have been formulated. Therefore, accurate scientific data at 

species and community level is needed in order to understand the most likely causes 

of these declines. Within this context, this PhD thesis aims to improve the knowledge 

of the seasonal dynamics and functioning of the pelagic compartment focusing in the 

trophic relationships and energy dynamics of SMPF in the northwestern 

Mediterranean Sea. 

I used different methods to advance on the knowledge about the ecological and 

functional role of several pelagic fish species in the western Mediterranean Sea, 

including clupeoids, horse mackerels and mackerels. Specifically, stable isotope and 

stomach content analyses in combination with direct and indirect body condition 

indeces, were used to study seasonal variation in energy content in relation to their 

breeding strategies, feeding preferences and trophic role in the pelagic food-web. 

Results showed stability in the trophic structure through the year with a trophic 

segregation of small pelagic fish depending on the ontogenetic stage. Seasonal 

differences in energy density were highly related with the spawning period and food 

availability. To integrate the new findings and to test the role of potential pressures on 

main pelagic species, I developed qualitative food-web models. Results showed that 

an increase of sea surface temperature in combination with an increase of explotation 

of sardine and anchovy and changes in zooplankton composition were the most 

plausible pressures to explain the observed changes in small pelagic fish populations. 

Overall, results provide pivotal information to assist the adaptive management of 

pelagic fish species in the region.  

 

  



 

 
 

Resum 

Els ecosistemes marins mediterranis estan fonamentalment dirigits per les seves 

comunitats pelàgiques on els peixos pelàgics petits i mitjans (SMPF) exerceixen 

funcions ecològiques crucials. Si bé les fluctuacions de les seves poblacions s'han 

atribuït principalment a la variabilitat ambiental i la sobrepesca, encara hi ha una 

manca de comprensió sobre els mecanismes específics que impulsen els canvis en la 

població. En les últimes dècades s'ha observat una disminució en la biomassa, en els 

desembarcaments i en la condició de la sardina i el seitó al nord-oest del mar 

Mediterràni, i s'han formulat diverses hipòtesis per explicar aquests canvis. 

Actualment, es necessiten dades científiques precises a nivell d'espècies i comunitats 

per comprendre les causes més probables d'aquestes disminucions. En aquest context, 

aquesta tesi doctoral pretén millorar el coneixement de la dinàmica estacional i el 

funcionament del compartiment pelàgic, centrant-se en les relacions tròfiques i la 

dinàmica energètica dels SMPF al nord-oest del Mar Mediterrani. 

Es varen fer servir diferents tècniques per avançar en el coneixement del paper 

ecològic i funcional de diverses espècies de peixos pelàgics al mar Mediterrani 

occidental, incloent clupeoids, sorells i verats. En concret, es varen utilitzar anàlisi 

d'isòtops estables i de contingut estomacal en combinació amb índexs directes i 

indirectes de condició corporal, per estudiar la variació estacional del contingut 

d'energia en relació amb les seves estratègies de reproducció, preferències tròfiques i 

paper tròfic en la comunitat pelàgica. Els resultats van mostrar estabilitat en 

l'estructura tròfica al llarg de l'any amb una segregació tròfica dels peixos pelàgics 

petits en funció de l'etapa ontogenètica. Les diferències estacionals en la densitat 

energètica van estar altament relacionades amb la temporada de reproducció i la 

disponibilitat d'aliments. Per integrar tota aquesta informació i testar el paper de les 

pressions potencials en les principals espècies pelàgiques, es va desenvolupar un 

model qualitatiu. Els resultats van demostrar que l’augment de la temperatura 

superficial del mar en combinació amb un augment d’explotació de la sardina i el seitó 

i canvis en la composició del zooplancton, eren les pressions més pausibles per explicar 

els canvis observats en les poblacions de peixos pelàgics petits. En general, els resultats 

proporcionen informació fonamental per contribuir al maneig adaptatiu de les 

espècies de peixos pelàgics a la regió.  



 

 
 

Resumen 

Los ecosistemas marinos mediterráneos están fundamentalmente condicionados 

por sus comunidades pelágicas donde los peces pelágicos pequeños y medianos 

(SMPF) desempeñan funciones ecológicas cruciales. Si bien las fluctuaciones de sus 

poblaciones se han atribuido principalmente a la variabilidad ambiental y la 

sobrepesca, todavía hay una falta de comprensión sobre los mecanismos específicos 

que impulsan los cambios en las poblaciones pelágicas. En las últimas décadas se ha 

observado una disminución en la biomasa, en los desembarques y en la condición de 

la sardina y la anchoa del noroeste del mar Mediterráneo, y se han formulado varias 

hipótesis para explicar estos cambios. Actualmente, se necesitan datos científicos 

precisos a nivel de especies y comunidades para comprender las causas más probables 

de estas disminuciones. En este contexto, esta tesis doctoral pretende mejorar el 

conocimiento de la dinámica estacional y el funcionamiento del compartimento 

pelágico, centrándose en las relaciones tróficas y la dinámica energética de los SMPF 

en el noroeste del mar Mediterráneo. 

Se usaron diferentes técnicas para avanzar en el conocimiento del papel ecológico 

y funcional de varias especies de peces pelágicos en el Mar Mediterráneo occidental, 

incluyendo clupeoides, jureles y caballas. En concreto, se utilizó el análisis de isótopos 

estables y de contenido estomacal en combinación con índices directos e indirectos de 

condición corporal, para estudiar la variación estacional del contenido de energía en 

relación con las estrategias de reproducción de los SMPF, las preferencias tróficas y el 

papel trófico en la comunidad pelágica. Los resultados mostraron estabilidad en la 

estructura trófica a lo largo del año con una segregación trófica de peces pelágicos 

pequeños en función del estadío ontogenético. Las diferencias estacionales en la 

densidad energética estuvieron altamente relacionadas con el periodo de 

reproducción y la disponibilidad de alimentos. Para integrar toda esta información y 

testar el rol de las presiones potenciales en las principales especies pelágicas, se 

desarrolló un modelo cualitativo. Los resultados mostraron que un aumento de la 

temperatura de la superficie del mar en combinación con el aumento de la explotación 

de la sardina y la anchoa y cambios en la composición del zooplancton fueron las 

presiones más plausibles para explicar los cambios observados en las poblaciones de 

peces pelágicos pequeños. En general, estos resultados proporcionan información 

fundamental para contribuir al manejo adaptativo de las especies de peces pelágicos 

en la región.  
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General Introduction 
 

Ecological importance of Small and Medium Pelagic Fish  

Small and Medium sized Pelagic Fish (SMPF), also known as forage fish, are 

ecologically and economically important organisms in marine ecosystems worldwide, 

representing more than ͲͶ% of total marine fishery landings (FAO ͲͰͱ͸a). In many 

countries, such as Peru and Namibia, Small-sized Pelagic Fish (SPF) and Medium-

sized Pelagic Fish (MPF) are an essential source of animal protein (Tacon & Metian 

ͲͰͰ͹). Moreover, they are key elements of the marine food web (Cury et al. ͲͰͰͰ, 

ͲͰͱͱ).  

Several marine ecosystems show a configuration with numerous species at lower 

(such as plankton species) and higher (such as fish, seabirds and other predators) 

trophic levels and few species at intermediate levels that are highly abundant and thus 

very important ecologically (Cury et al. ͲͰͰͰ, Bakun ͲͰͰͶ). Such systems have been 

referred as wasp-waist ecosystems and in many of them the variability in the trophic 

dynamics is mediated by SPF. Due to their important biomass, production, and trophic 

relationships, SPF impact the dynamics of other organisms across the entire marine 

food web performing a top-down and bottom-up control simultaneously (Rice ͱ͹͹͵; 

Figure ͱ). Therefore, changes in SPF can have ultimate ecologic and socio-economic 

wide consequences. 

Figure ͱ. Trophic relationships of main functional groups of marine organisms in the northwestern 
Mediterranean Sea (adapted from Coll et al. ͲͰͰͶ). Red box identifies small and medium pelagic 
fish. 
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Fluctuations in SPF populations have been widely described as an effect of 

environmental changes even in the absence of fisheries (Baumgartner et al. ͱ͹͹Ͳ, Cury 

et al. ͲͰͰͰ). These SPF species, including sardine (genera Sardina, Sardinella and 

Sardinops) and anchovy (genera Engraulis), are distributed worldwide. Their relatively 

short life-cycle, high mobility and their plankton-base feeding make these species 

highly sensitive to fluctuations in environmental factors, including those related to 

human-induced climate change (Agostini & Bakun ͲͰͰͲ, Checkley et al. ͲͰͰ͹).  

Collapses of SPF have been observed in different ecosystems, such as the Pacific 

sardine (Sardinops sagax) in the California current and in the Benguela upwelling 

region, the Peruvian anchoveta (Engraulis ringens) in southeast Pacific Ocean or more 

recently the European anchovy (Engraulis encrasicolus) in the Bay of Biscay (Checkley 

et al. ͲͰͰ͹, Roux et al. ͲͰͱͳ, Taboada & Anadón ͲͰͱͶ).  The collapse of these SPF has 

been mainly attributed to a combination of fishing pressure and environmental-

dependent recruitment success processes. Although examples exist of the depletion of 

SPF and the impact on marine ecosystems (Guénette et al. ͲͰͰ͸, Roux et al. ͲͰͱͳ), the 

role that fisheries play in those fluctuations remains difficult to disentangle from the 

environmental variability (Essington et al. ͲͰͱ͵). 

While much progress has been made in understanding the primary aspects of large-

scale changes in small pelagic fish, still one of the grand challenges is to have the ability 

to anticipate fluctuations in their populations in order to manage the resource in a 

sustainable and adaptive way. SPF populations fluctuate at various time scales (i.e. 

seasonal, decadal) and ecological units (i.e. from species to community). Potential 

effects of future climate change create the necessity to understand ecosystem 

functioning as a whole in order to be able to manage it. The prediction of SPF 

responses is challenging and in many cases there are gaps in the understanding on 

how multiple stressors influence SPF and how they interact (Hodgson & Halpern 

ͲͰͱ͹).  

In order to overcome these limitations and fill several gaps of knowledge, a holistic 

understanding of the functioning of the pelagic ecosystem is needed. To integrate 

knowledge of specific physiological, biological and ecological processes from the 

individual to the ecosystem level and taking into account the trophic relationships and 

transfer of energy between species within the food web, considering environmental 
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and anthropological pressures is a must in order to advance in the implementation of 

ecosystem-based fisheries management (Figure Ͳ).  

 

Figure Ͳ. Scheme of hierarchical levels of biological organization and interaction with biotic and 
abiotic factors. Adapted from Metcalfe et al. ͲͰͱͲ and McKenzie et al. ͲͰͱͶ. 

 

Within this context, this PhD thesis aims to improve the knowledge of the seasonal 

dynamics and functioning of the pelagic compartment focusing in the trophic 

relationships and energy dynamics of SMPF in the Mediterranean Sea, and ultimately 

enhance the use of holistic approaches.  

 

Small and Medium Pelagic fish in the Mediterranean Sea 

SMPF are commercial species that are mainly caught by purse-seiners and mid-

water trawlers. In the Mediterranean Sea, fishing catches are dominated by SPF 

representing nearly ʹ͹% of the catch (FAO ͲͰͱ͸). The most abundant SPF are 

European sardine (Sardina pilchardus; Walbaum, ͱͷ͹Ͳ) and European anchovy 

(Engraulis encrasicolus; Linnaeus, ͱͷ͵͸), representing ͱͶ% and ͲͲ%, respectively, of 

the total catches during ͲͰͱʹ-ͲͰͱͶ (FAO ͲͰͱ͸). Additionally, European anchovy 

(hereafter anchovy) contributed to a ͱͲ% of the total landings value and European 

sardine (hereafter sardine) to the ͹% during ͲͰͱʹ-ͲͰͱͶ (FAO ͲͰͱ͸). Another SPF 

present in the Mediterranean Sea is  round sardinella (Sardinella aurita; Valenciennes, 

ͱʹ͸ͷ), more abundant in southern Mediterranean waters (Tsikliras et al. ͲͰͰ͵).  
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SPF landings are important in all areas of the Mediterranean Sea. In the western 

Mediterranean basin, SPF represent ʹ Ͷ% of the catches with sardine contributing ͲͶ%, 

anchovy ͱͳ%, and round sardinella ͷ% during ͲͰͱʹ-ͲͰͱͶ (Figure ͳ). Within this period, 

in terms of economic value, sardine and anchovy represented ͲͲ% of total landing 

value of commertial species in the Mediterranean Sea (FAO ͲͰͱ͸).  

 

Figure ͳ. Percentage of landings by species in the different GFCM sub-regions (western 
Mediterranean, Adriatic Sea, central Mediterranean and eastern Mediterranean), average ͲͰͱʹ-
ͲͰͱͶ period. Main species reported: anchovy (Engraulis enrasicolus), sardine (Sardina pilchardus), 
sardinellas (Sardinella spp., mainly Sardinella aurita), horse mackerels (Trachurus spp.), European 
hake (Merluccius merluccius), common pandora (Pagellus erythrinus) and striped venus (Chamelea 
gallina). Source: Modified from Figure ͲͶ of SoMFi report (FAO ͲͰͱ͸b). 

 

Previous studies using ecosystem models have highlighted the ecological key role 

of SPF in all Mediterranean ecosystems (e.g. Coll et al. ͲͰͰͶ, ͲͰͰ͸, Tsagarakis et al. 

ͲͰͱͰ, Piroddi et al. ͲͰͱͷ). Different biotic factors such as environmental conditions, 

fishing activity and trophic interactions played a significant role in driving small 

pelagic fish historical dynamics in different ecosystem models of the Mediterranean 

Sea (Coll et al. ͲͰͰ͸, ͲͰͰ͹, ͲͰͱͲ). Due to the high biomass of SPF in the 

Mediterranean Sea and their potential wasp-waist role, changes in their abundance 

can highly impact their prey and predators modifying ecosystem structure and 

functioning in the Mediterranean Sea.  

Sardine and anchovy co-occur in Mediterranean waters. Their distribution is mainly 

located in coastal areas and continental shelves of the whole basin (Giannoulaki et al. 
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ͲͰͱͱ, ͲͰͱʹ). The main spawning grounds are located in the western Mediterranean 

coast, Gulf of Lions, areas of the Gulf of Tunis and Gulf of Gabes and in the eastern 

Mediterranean Sea. Within the western Mediterranean Sea, the surroundings of the 

Ebro River Delta, the study area where this thesis is conducted, is considered an 

important spawning and nursery ground for sardine and anchovy (Giannoulaki et al. 

ͲͰͱʹ).  

In the continental shelf associated to 

the Ebro River delta, sardine and 

anchovy have been the most important 

species in terms of biomass and 

commercial landings in historical times 

(Palomera et al. ͲͰͰͷ). Moreover, 

different species of seabirds (i.e. 

Audouin’s gull Larus audouinii), marine 

mammals (i.e. bottlenose dolphin 

Tursiops truncatus), fin-fish (i.e. 

bluefin tuna Thunnus thynnus) and 

sharks (i.e. blue shark Prionace glauca) 

prey on sardine and anchovy in the 

Mediterranean Sea (Figure ʹ; Stergiou & Karpouzi ͲͰͰͲ, Albo-Puigserver et al. ͲͰͱ͹). 

For some predators, sardine and anchovy are the main source of food and population 

variability of forage fish could influence their fitness (Piroddi et al. ͲͰͱͱ). At the same 

time, sardine and anchovy have been shown historically to be able to exert a top-down 

control on their prey (Coll et al. ͲͰͰ͸, ͲͰͰ͹).  

The other small pelagic fish present at lower biomasses in the continental-shelf of 

the Ebro river Delta (Western Mediterranean Sea) and with lower commercial interest 

is round sardinella. This is a more tropical species that prefers warmer waters and has 

been traditionally found in the mid-southern part of the Mediterranean Sea. However, 

in the lasts decades a northward expansion of round sardinella has been observed in 

the Mediterranean Sea and in Atlantic waters off Mauritania (Alheit et al. ͲͰͱʹ). An 

expansion in the distribution of round sardinella has also been observed in the Aegean 

Sea (Eastern Mediterranean) as well as in the western Mediterranean coast (Tsikliras 

Figure ʹ. Importance in % weight of anchovy and 
sardine in the diet of main predators by type of 
predator in the Mediterranean Sea.  
Source: Albo-Puigserver et al. ͲͰͱ͹. 
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ͲͰͰ͸). This northward expansion has been related to the increase of sea surface 

temperature (Sabatés et al. ͲͰͰͶ, Maynou et al. ͲͰͱʹ).  

Apart from small-sized pelagic fish, medium-sized pelagic fish (MPF) also play an 

important role in marine ecosystems (Lleonart & Maynou ͲͰͰͳ, Juan-Jordá et al. ͲͰͱͳ). 

In the Mediterranean Sea, the MPF of higher commercial interest are the Atlantic 

horse-mackerel (Trachurus trachurus, Linnaeus ͱͷ͵͸), Mediterranean horse-mackerel 

(Trachurus mediterraneus, Steindachner ͱ͸Ͷ͸), Atlantic mackerel (Scomber scrombus, 

Linnaeus ͱͷ͵͸) and Atlantic chub mackerel (Scomber colias, Gmelin ͱͷ͸͹) (Bas ͱ͹͹͵). 

MPF represented ͷ% of the total catches in the Mediterranean Sea during ͲͰͱʹ-ͲͰͱͶ 

(Figure ͵; Pauly & Zeller ͲͰͱ͵, FAO ͲͰͱ͸).  
 

 

 

MPF are pelagic migratory species with wide distributions that can form large 

shoals. Their economic value is low but they occupy a key position in the food web 

and are also essential elements of the diet of larger pelagic and demersal fin-fish, 

sharks, and marine mammals (Zardoya et al. ͲͰͰʹ). At the same time, they prey on 

macrozooplankton and can prey on small pelagic fish such as sardine and anchovy, 

being potential competitors and predators of SPF (Karachle & Stergiou ͲͰͱͷ).  

  Interannual variability in catches of MPF has been observed in the western 

Mediterranean (Coll et al. ͲͰͰͶ). In the Adriatic Sea a sharp decline in those species 

was reported in the last three decades due to overfishing (Lotze et al. ͲͰͱͱ). Despite 

the ecological importance of MPF, little attention has been given to the assessment of 

these species and limited biological data is available in the Mediterranean Sea 

(Lleonart ͲͰͰ͸).  

Figure ͵. Catch reconstruction data from the Mediterranean Sea. Source: Pauly & Zeller (ͲͰͱ͵) Sea 
Around Us database.  
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Biological characteristics of SPF: sardine, anchovy and round sardinella  

Sardine, anchovy and round sardinella have a relatively short life span of ʹ to ͸ 

years. This short life cycle makes them more vulnerable to environmental variability 

and hence it is possible to observe rapid changes in the population dynamics of these 

species due to unfavourable environmental conditions.  

SPF show important differences in biological features (Palomera et al. ͲͰͰͷ). The 

three species have indeterminate fecundity (oocytes continue to be recruited during 

the spawning season) and are batch spawners (eggs are released in multiple events 

over a period of months). Sardine reproduces in winter, between October-November 

and March, with a peak of reproduction in 

January-February (Palomera et al. ͲͰͰͷ). It 

spawns in cold waters between ͱͲ-ͱʹ ºC and 

ͱ͹ºC. Instead, anchovy spawns in late spring 

and summer, between April and September 

with a peak in May-June (Figure Ͷ; and 

Palomera ͱ͹͹Ͳ). Round sardinella spawns 

also in summer from June to October with a 

peak of spawning in August (Figure Ͷ; 

Palomera & Sabatés ͱ͹͹Ͱ). At the end of the 

first year of life (life stage Ͱ and ͱ), most of 

SPF have already spawned. 

Size at first maturity was historically estimated at ͱͳ cm for sardine (Abad & 

Giraldez ͱ͹͸ͳ), ͱͱ cm for anchovy (Palomera et al. ͲͰͰͳ) and ͱ͵ cm for round sardinella 

(Tsikliras & Antonopoulou ͲͰͰͶ). However, in the last decade a decrease in size at 

first maturity has been observed for sardine and anchovy in the northwestern 

Mediterranean Sea (Brosset, Lloret, et al. ͲͰͱͶ, Albo-Puigserver et al. ͲͰͱ͹), which is 

now ͹.Ͷͷ cm for sardine and ͹.ͷʹ cm for anchovy. Minimum landing sizes are ͱͱ cm 

for sardine and ͹ cm for anchovy (Regulation (EC) No ͱ͹Ͷͷ/ͲͰͰͶ). Therefore, 

recruitment overfishing for both species has been suggested, because the minimum 

catch size was lower than the size at first maturity (Palomera et al. ͲͰͰͷ).  

The feeding habits of SPF have been mainly studied through stomach content 

analysis. There are many studies on the diet of sardine and anchovy in the 

Figure Ͷ. Reproduction period of European 
sardine (red), European anchovy (green) and 
Round sardinella (violet). Adapted from 
Quattrocchi et al ͲͰͱͷ. 
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Mediterranean Sea and few studies on feeding habits of round sardinella (Box ͱ. 

Stomach content analysis of planktivorous fish). In the case of sardine and anchovy, 

recent studies in the Gulf of Lions (NW Mediterranean Sea) have found differences in 

the diet during the last two decades (Brosset, Le Bourg, et al. ͲͰͱͶ). However, in the 

Catalan Sea (NW Mediterranean Sea) few studies are available (Tudela & Palomera 

ͱ͹͹͵, ͱ͹͹ͷ). The published diet information indicates that both species are 

planktivorous fish that mainly prey on copepods, cladocerans, decapod larvae and 

diatoms (Table ͱ). Seasonal variability in feeding preferences has been observed due to 

changes in the plankton composition and abundance throughout the year (Costalago 

& Palomera ͲͰͱʹ). In the case of sardine, in the Gulf of Lions adults have been reported 

to feed on diatoms, with a more filter feeding behavior than juveniles (Costalago & 

Palomera ͲͰͱʹ, Costalago et al. ͲͰͱʹ, Le Bourg et al. ͲͰͱ͵). Instead, anchovy is mainly 

zooplanktivorous (Tudela & Palomera ͱ͹͹ͷ, Costalago et al. ͲͰͱʹ, Brosset, Le Bourg, 

et al. ͲͰͱͶ). Juvenile and larval stages of both species also prey on zooplankton and 

phytoplankton (Morote et al. ͲͰͱͰ, Costalago et al. ͲͰͱʹ) (Table ͱ).  
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Box ͱ: Stomach content analysis of planktivorous fish 

Visual analysis of stomach contents is the most widely used method for the study 
of feeding habits of fishes (Figure ͱ). Advantages of Stomach Content Analysis 
(SCA) are the high taxonomic level obtained and the possibility to know the size 

There are different indeces to quantify the relative 
contribution of each prey item to the total diet (Hyslop ͱ͹͸Ͱ). 
The most widely used are: 

In the case of small pelagic planktivorous fish a stereomicroscope is used for the 
SCA (Figure Ͳ). The %W can be calculated directly (weighing a group of prey items) 
or indirectly measuring the length of the prey and using published length-weight 
relationship to reconstruct the dry or wet weight of the preys (Borme et al. ͲͰͰ͹; 
Figure ͳ).  

size and life-stages of prey. Limitations include the short 
time-period that reflect the stomach content (i.e. Ͳʹh) and 
the over or under estimation of prey items identified 
depending on prey digestibility (i.e. otoliths versus 
gelatinous plankton; Nielsen et al. ͲͰͱ͸).  

 % N – Numerical: number of a prey type as proportion of the 
total number of items in the whole stomach content. 

 % FO –Frequency of occurrence: percentage of stomachs 
containing a particular prey type. 

 % W or % V – Weight or Volume of a food type in relation to 
the weight or volume of the whole stomach content. 

Figure ͳ. Examples of prey items found in the stomachs of round sardinella (a) Amphipoda 
Hyperiidea, (b) egg of anchovy, (c) Euterpina acutifrons, (d) Microsetella sp., (e) Salpida, (f) 
stomach content of round sardinella containing mainly Calanoid copepods of the genera 
Acartia. 

(a) (b) (c) 

(d) (e) (f) 

Figure Ͳ. Stereomicroscope.  

Figure ͱ. Stomach of a 
small pelagic fish.  
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In the western Mediterranean Sea, there is only information on feeding ecology of 

round sardinella at larval stage (Table ͱ; Morote et al. ͲͰͰ͸). At larval stages, the diet 

of round sardinella was similar to the larvae of anchovy with preference for copepods 

at different stages and cladocera (Morote et al. ͲͰͰ͸). For juvenile and adult stages in 

the central and eastern Mediterranean, round sardinella has been reported to feed 

mainly on zooplankton such as copepods and cladocera, and phytoplankton in 

productive areas (Lomiri et al. ͲͰͰ͸, Madkour ͲͰͱͲ).  

 

In the last decades, other trophic markers such as the stable isotope analysis (SIA) 

have been widely used to study the trophic ecology and overlaps between species of 

pelagic fish (Box Ͳ. Stable isotope analysis of δ15N and δͱͳC). The analysis of the stable 

isotopes of δ15N and δͱͳC in combination with stomach content analysis has been used 

to analyze food web structures and trophic niche relationship (Layman et al. ͲͰͱͲ). 

The use of both techniques is very useful to better understand the trophic ecology of 

organisms at different time-scales and resolutions and has been successfully used in 

the study of small pelagic fish (e.g. Costalago et al. ͲͰͱʹ, Le Bourg et al. ͲͰͱ͵).  

 

Table ͱ. Available published data on stomach content analysis and the main prey groups 
reported for European anchovy (Engraulis encrasicolus), European sardine (Sardina pilchardus) 
and round sardinella (Sardinella aurita) in the NW Mediterranean Sea for Geographical Sub 
Areas ͰͶ (Spanish coast) and GSAͰͷ (French coast; Gulf of Lions). Seasons with available 
information for each life stage are indicated with an ‘x’ (ͱ= winter; Ͳ=spring; ͳ=summer; ʹ= fall). 
In grey cells with missing information for all the seasons. 

SPF 
Life 

stages 
Main prey groups 

Season 
 GSA06 

Season  
GSA07 References 

1 2 3 4 1 2 3 4 

A
nc

ho
vy

 Larvae Cladocera, copepod   x x    x Costalago et al. 2014; Le Bourg et 
al. 2015; Morote et al. 2010; 
Plounevez and Champalbert, 
2000; Intxaustin et al. 2017; 
Tudela and Palomera, 1997; 
Brosset et al. 2016; Tudela et al. 
2002 

Juvenile 
Copepod, cladocera, 
appendicularia 

    x  x x 

Adult 
Copepod, euphausiacea, 
decapod 

 x     x  

   
 S

ar
di

ne
   

 Larvae Tintinnid, copepod    x     
Costalago et al. 2014; Costalago 
and Palomera 2014; Le Bourg et 
al. 2015; Morote et al. 2010; 
Brosset et al. 2016 

Juvenile 
Copepod, cladocera, 
crustacea, mysids, diatom 

    x  x x 

Adult 
Copepod, cladocera, 
diatom, appendicularia  

    x  x  

S
ar

di
ne

ll
a Larvae Copepod, cladocera  x       

Morote et al. 2008 Juvenile          

Adult          
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Box Ͳ: Stable Isotope Analysis of δ
ͱ͵

N and δ
13

C   

     The use of stable isotopes of nitrogen (δ15N) and carbon (δ13C) has been 

increasingly used as an effective tool to study trophic segregation among species, 

complementing stomach content information (Hussey et al. 2011).  

 Ellipses Trophic width  Centroid Isotopic niche position 

      Carbon isotopic ratios, Cͱͳ/CͱͲ, show 

little change with trophic transfers and 

are useful indicators of the dietary 

source of carbon (Kelly ͲͰͰͰ). In 

nitrogen isotopic ratios, Nͱ͵/Nͱʹ, the 

lighter isotope is excreted in greater 

proportion than the heavier isotope, 

with a predictable increase throughout 

the trophic chain, allowing estimates of 

consumer trophic level (Figure ͱ; TL Eq.  

ͱ). The offset between the stable isotope  

 

The bivariate space of δ15N and δͱͳC represents the habitat and resources used, 

comparable to the n-dimensional environmental space that defines the ecological 

niche (Newsome et al. ͲͰͰͷ). To analyze the ecological niche, different community 

metrics are available (Layman et al. ͲͰͱͲ). Two of them are presented below (Figure 

Ͳ and ͳ). 

Figure Ͳ. Standard isotopic ellipse area, a 
measure of trophic width. The overlap 
between two ellipses is the degree of 
isotopic niche overlap between species 
(Jackson et al. ͲͰͱͱ).  

Figure ͳ. Euclidean distance between 
centroids are calculated to evaluate the 
niche position of each species related to the 
rest of the community (Turner et al. ͲͰͱͰ).  

Eq. ͱ 

Figure ͱ. Representation of the pelagic 
trophic chain and stable isotope dynamics.  

TLconsumer = TLbasal + (𝛿15Nconsumer − 𝛿15Nbasal)/∆𝛿15N

6 

8 

10 

12 

14 

-22 -20 -18 -16 

δ15
N

 

δ13C 

ratio of the prey and the predators is the discrimination factor (𝚫 ͱ͵N; Vander 
Zanden & Rasmussen ͲͰͰͱ). 
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Linked to the reproduction period and food availability, small pelagic fish have 

different seasonal patterns in the body condition. Condition and energy storage of 

species fluctuate during the year due to different biological processes (growth, 

maintenance and reproduction) and on external factors (food availability or 

temperature). As a consequence of the seasonal environmental variability, pelagic 

marine species adapt their energy allocation strategy (Figure ͸). The energy obtained 

from feeding is dynamically allocated between growth and reproduction processes 

(Kooijman ͲͰͱͰ). This allocation has a direct effect on the energy transfer through the 

ecosystem, as growth represents biomass available for upper trophic levels through 

predation, while reproduction is an investment in future generations, which provides 

recruitment and also energy at lower or intermediate trophic levels (through predation 

in the plankton communities or cannibalism; Leggett & Deblois ͱ͹͹ʹ). Energy 

partition shows a seasonal pattern, which is species specific and depends on the 

seasonal and inter-annual ecosystem productivity cycles (Pecquerie et al. ͲͰͰ͹). 

Reproductive strategies include a palette of seasonal cycles in energy allocation, from 

species that accumulate energy in specific tissues (“capital spawners”) versus those 

that rely on daily incoming energy (“income spawners”)(Bonnet et al. ͱ͹͹͸). In sardine 

and anchovy, the energy allocation strategy differs. Anchovy has been described 

mainly as an income breeder, while sardine has been described mainly as a capital 

breeder (McBride et al. ͲͰͱ͵, Brosset, Lloret, et al. ͲͰͱͶ).  

 

 

Figure 8. Conceptual diagram of the dynamic energy budget of an individual of European sardine 
(adapted from Pethybridge et al. 2013).  
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Studies have traditionally focused on morphological condition indexes and few 

studies have look at the energy allocation of sardine and anchovy with bioenergetic 

and biochemical indexes (Lloret et al. ͲͰͱͳ, Brosset et al. ͲͰͱ͵; Box ͳ. Methods to 

measure body condition and energy content). In the Gulf of Lions, seasonal variability 

of lipid content of sardine and anchovy adults has been described, with the lowest 

values in winter for sardine and in spring for anchovy and higher values in larger 

individuals (Pethybridge et al. ͲͰͱʹ, Ferrer-maza et al. ͲͰͱͶ). For larval stages of both 

SPF, an increase of energy density with the development of the larvae was described 

in the spawning area of the Ebro river delta (Barroeta et al. ͲͰͱͷ).  

The variability in body condition and energy storage in SPF has important 

implications for fish recruitment and ecosystem structure (Peck et al. ͲͰͱͳ, Saraux et 

al. ͲͰͱ͹). Moreover, changes in body condition or energy density of forage fish, such 

as SPF, have been observed to have important implications for higher trophic levels. 

For example, declines in top-predators such as the common guillemots (Uria aalge) 

have been observed in the North Sea and linked to a reduction in the quality (in terms 

of energy reduction per unit) of the main prey, sprat and lesser sandeels (Sprattus 

sprattus and Ammodytes marinus, respectively; Wanless et al. ͲͰͰ͵). Then, it is 

important to understand the energy allocation at individual level in order to 

understand the ecological energetics of the ecosystem (how energy is acquired, 

retained and transferred from one trophic level to another in the food web; Wiegert 

ͱ͹͸͸).  
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  Box ͳ: Methods to measure body condition & energy content 

Body condition is often used to describe the health and nutritional status of 

fish populations. This association is based on the premise that body condition 

is correlated with the lipids or energy stored (Schloesser and Fabrizio, ͲͰͱͷ). 

The study of fish condition has been related to life-history and energy allocation 

strategies and other measures of fitness (Lloret et al ͲͰͱͳ).  

The principal form of energy storage are the lipids. Instead, proteins, that are 

the main compound of body structure, usually remain constant and are less 

energetic than lipids (Shulman and Love, ͱ͹͹͹). 

Several indirect and direct indices have been developed to assess fish 

condition. Indices used in this thesis are described below: 

Indirect indices 
 

Direct indices 

 Relative Condition Factor – Kn 
Kn is a length independent morphometric indicator (Le 
Cren ͱ͹͵ͱ), where heavier fish (i) than the mean, for a 
given size, are supposed to be in better condition. 
 

 Water content – % DW 
Water content or the inverse, dry weight (%DW), is 
often related with total lipid and energy density. 
 

 Gonadosomatic Index – GSI 
GSI is used as a measure of reproductive investment 
and considers the weight of the gonad of an individual 
(i) in relation to the total weight of (i). 

 Biochemical analysis- Total Lipids 
One method to extract lipid from muscle of fish is 
the Folch method (Folch et al. ͱ͹͵ͷ) that uses Ͳ:ͱ 
chloroform-methanol mixture (Figure ͱ). 
 

 Energy density – Direct Oxigen Bomb Calorimetry 
This method measures the heat of a rapid 
combustion transformed into energy units (kJ or 
kcal per gram). The ED measures all organic 
compounds; lipids, proteins and carbohidrates 
(Lamprecht ͱ͹͹͹) (Figure Ͳ).  

Aqueous phase 
salt + sugars 

Organic phase 
lipids 

Figure ͱ. Folch’s extraction. 

Figure Ͳ. Oxigen bomb. 

GSI =  
GonadW (i)

Weight(i)
 

 % DW =  
DW (i)

WW (i)
· 100 
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Biological characteristics of MPF: mackerels and horse-mackerels  

Medium pelagic fish (MPF) have been described as species that have higher 

plasticity in the food spectrum, higher mobility (vertical and horizontal) and live 

longer than SPF. For these reasons, they are considered to be less influenced by 

environmental variability, and have been observed to increase when SPF decline in 

high productive areas (Bas et al. ͱ͹͹͵). However, in the Mediterranean Sea information 

on the biology, ecology and stock assessment of these species is very limited 

(Giannoulaki et al. ͲͰͱͷ). The need to generate additional information on the status 

of these four species has been recently highlighted (STECF ͲͰͱͶ), while in the Adriatic 

Sea, a decline of Atlantic mackerel has been reported (Meneghesso et al. ͲͰͱͳ).  

Adult MPF prey mainly on macro-zooplankton, icthyoplankton and small fish or 

molluscs (Stergiou & Karpouzi ͲͰͰͲ). Whereas larval and juvenile stages prey mainly 

on zooplankton. Therefore, depending on the ontogenetic stage of MPF, these species 

can compete or directly interact with SPF. Atlantic mackerel (Scomber scombrus) is 

mainly a winter spawner with a peak of spawning in January and a long reproduction 

period from November to April (Zardoya 

et al. ͲͰͰʹ, Meneghesso et al. ͲͰͱͳ). 

Instead, the reproduction period of 

Atlantic chub mackerel (Scomber colias) 

is mainly between May and August 

(Cengiz ͲͰͱͲ). Atlantic horse-mackerel 

(Trachurus trachurus) spawns between 

November and May and Mediterranean 

horse-mackerel (Trachurus 

mediterraneus) spawns in spring and 

summer, between May and August 

(Planas & Vives ͱ͹͵ͳ, Karlou-Riga ͲͰͰͰ, 

Raya & Sabatés ͲͰͱ͵) (Figure ͹).  

 

 

Figure ͹. Reproduction period of Atlantic and 
Mediterranean horse-mackerel, Atlantic 
mackerel and Atlantic chub mackerel. Adapted 
from Quattrocchi et al ͲͰͱͷ. 
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Current situation of SPF population 

The last report on The state of Mediterranean and Black Sea Fisheries, has reported 

that the small pelagic fish stocks in the Mediterranean Sea show on average fishing 

mortality rates close to the target, except for sardine (FAO ͲͰͱ͸b). In the northwestern 

Mediterranean Sea the most recently stock assessment of the geographical sub-area 

GSA ͰͶ (Spanish coast) approved by the General Fisheries Comission of the 

Mediterranean (GFCM, FAO) indicated that the landings of sardine have been 

declining since the ͹Ͱs and the stock of sardine is in overexplotation. In the case of 

anchovy, after a continuous decline in landings between ͱ͹͹ʹ and ͲͰͱͳ, since ͲͰͱʹ the 

landings have been increasing in the GSAͰͶ and the stock assessment approved by the 

GFCM indicated that the stock is sustainably exploited (Report SAC-WGSASP, ͲͰͱ͸). 

However, in both species individuals of the older ages have disappeared from the 

population and body condition and growth have declined (Report SAC-WGSASP, 

ͲͰͱ͸).  

Moreover, a recent study that used different stock assessment methods with 

different input parameter calculation, have suggested that the stocks of both species 

have been historically highly exploited or overexploited, and they are currently 

overfished (Ramirez et al. ͲͰͱ͹, Coll and Bellido ͲͰͱ͹; Figure ͱͰ).  

Recent changes of SPF have been observed in the Mediterranean Sea, in parallel 

with an overall increase of fishing effort, changes in environmental variability and a 

Figure ͱͰ. Kobe plot for stock assessment resuls of sardine (A) and anchovy (B) stock in GSA ͰͶ 
using Blim, Bpa and E of Patterson as reference points (ICES ͲͰͱͷ). With thhis methodology under 
this scenarios, both species are currently overexploited. Source: Ramírez et al. ͲͰͱ͹. 
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decline of primary productivity (Piroddi et al. ͲͰͱͷ). As mentioned above, fluctuations 

of SPF are common in nature in several part of the world. However, the present decline 

has lasted longer and has been extended not only to a decline in landings and biomass, 

but also a decline in body condition and growth with the disappearance of older age 

classes in the northwestern Mediterranean and in other areas of the Mediterranean 

Sea, in combination with a spatial expansion of round sardinella population (Van 

Beveren et al. ͲͰͱʹ, Brosset et al. ͲͰͱͷ, Coll & Bellido ͲͰͱ͹, Saraux et al. ͲͰͱ͹).  

These declines in landings and the decrease in body condition and size have caused 

a social alarm and fishermen have been forced to stop or reduce their activity in Spain 

and France because the low economic viablility. In the Catalan coast several purse-

seiners have stopped their activity and in the Gulf of Lions the fishing activity have 

almost stopped in the period ͲͰͱͶ-ͲͰͱ͸ (Coll & Bellido ͲͰͱ͹, Saraux et al. ͲͰͱ͹; Figure 

ͱͱ).  

Figure ͱͱ. Information published in Spanish newspapers indicating the decline in landings of 
sardine and in body condition and size of anchovy in Catalonia and Valencia regions. Source: La 
Vanguardia, El Punt Avui, El Periodico Newspapers in ͲͰͱͶ.  
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The decline in abundance, biomass and body condition has been linked to (i) 

environmental changes that can directly influence annual recruitment, growth and 

condition of organisms, and (ii) human pressures that can directly influence on 

recruitment overfishing or indirectly favoring or harming other species that compete 

or prey on SPF. Several hypotheses to explain these changes have been formulated (e.g. 

Sabatés et al. ͲͰͰͶ, Maynou et al. ͲͰͱʹ, Saraux et al. ͲͰͱ͹; see Table Ͳ).  

The role of climate change in affecting the composition of plankton has been 

suggested to explain sardine and anchovy declines (Brosset et al. ͲͰͱ͵, Brosset, Lloret, 

et al. ͲͰͱͶ; Table Ͳ). Moreover, competition between pelagic organisms that feed on 

zooplankton and can also prey on early life phases of SPF, such as the potential 

interspecific competition for food between the expanding round sardinella and the 

other SPF or the increase of jellyfish has also been proposed as a potential driver 

(Sabatés et al. ͲͰͰͶ, Purcell et al. ͲͰͱʹ, Tilves et al. ͲͰͱͶ; Table Ͳ). 

Another hypothesis suggests that SPF species could be maturing at smaller body 

sizes, while allocating more energy to reproduction than growth in response to the 

impact of climate and fisheries. This could lead to individuals that spend more energy 

reproducing than growing and thus are smaller and are in a poorer condition (Silva et 

al. ͲͰͰͶ, Pethybridge et al. ͲͰͱͳ; Table Ͳ).  

Other potential causes of declines could be the recent recovery of some pelagic 

predators such as bluefin tuna, Thunnus thynnus (Van Beveren et al. ͲͰͱͷ). Changes 

of anchovy and sardine landings and abundances have also been related with increases 

in fishing impact and the current high rates of exploitation (Palomera et al. ͲͰͰͷ, 

STECF ͲͰͱͶ, FAO ͲͰͱ͸b). Lastly, the occurrence of pathogens, diseases or 

contamination has also been suggested as potential causes, although very limited 

information is available (Ferrer-Maza et al. ͲͰͱͶ, Saraux et al. ͲͰͱ͹; Table Ͳ). 

In order to understand how all environmental and human pressures can affect the 

dynamics of the system is essential to have a good knowledge on the (ͱ) physiological 

ecology of the species to be able to predict changes in the life-history parameters and 

energy dynamics, (Ͳ) trophic interactions or “who eats who?”, (ͳ) behavior ecology, 

and (ʹ) the interconnectivity of the three of them. The need to combine all of this 
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information and represent the complexity of marine ecosystems, requires the use of 

integrated models in order to understand the main patterns and trends (Box ʹ. 

Qualitative models of complex systems) (Fulton et al. ͲͰͰͳ).   

 

 

 

 

  

Table Ͳ. Summary of the main (i) environmental and (ii) human driven hypotheses proposed in 
the literature to explain the observed current declines of sardine and anchovy populations in the 
northwestern Mediterranean Sea. Source: adapted from Saraux et al. ͲͰͱ͹. 
 

 Hypotheses Narratives of the hypotheses 

(i
) 

En
vi

ro
nm

en
ta

l 

 
Bottom-up:  
Changes in zooplankton 
composition with lower 
quality of food  

 
Due to the increase of SST and other environmental changes, 
plankton phenology may have changed in favour of less 
energetic food at crucial times of SPF life history. Lower energy 
prey for SPF could be translated in changes in the energy 
invested in reproduction, maintenance and growth. 
    

Bottom-up/competition:  
Increase of gelatinous 
zooplankton  

The increase of gelatinous zooplankton could create a 
competition for food with SPF, or could be a low-energetic prey 
for SPF, changing the ecological energetics of the food web. 
 

Competition: 
Northward expansion of 
round sardinella 
 
Reduction of the 
reproduction rate of 
sardine 

Due to the increase in SST, round sardinella abundance 
increased northwards and could compete for food with sardine 
and anchovy. 
 
Due to the increase in SST the reproduction rate of sardine may 
have reduced since sardine prefers cold waters for reproduction 
(Palomera et al. ͲͰͰͷ) 
 

(i
i)

 
H

um
an

 

 
Top-down:  
Recovery of predators 

 
The management plans to recover some pelagic predators such 
as Bluefin tuna (Thunnus thynnus) could have increased 
predation of SPF 
 

Top-down:  
Overfishing of SPF 

The stock of sardine and anchovy are being overfished 
removing older ages.   
 

Contamination Pollutants from human activity might have changed sardine 
and anchovy physiology, increasing fish mortality.  
 

(i
ii)

 O
th

er
  

Parasitism and diseases 
 
An increase of parasitism, viruses and bacterias could affect the 
reproduction, condition and mortality of sardine and anchovy. 
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Box ʹ: Qualitative models of complex systems 

   Quantitative predictions of food-web 

responses are not always needed to predict 

the direction of change. Instead, qualitative 

analysis of a system may help in predicting 

its general dynamics (Lassalle et al. ͲͰͱʹ). 

Compared to other types of models, 

qualitative modeling sacrifices precision for 

realism and generality and is especially 

useful when the basic relationships between 

variables are understood, but when precise 

and detailed data are not available 

(Dambacher et al. ͲͰͰ͹, Figure ͱ).  

 Qualitative models are typically drawn as diagrams (signed digraphs) with 

circles representing the ecological variables and lines representing positive 

(pointed arrow), negative (solid circle) or absence (no line) relationship between 

model variables (i.e. Prey-predator interactions; Figure Ͳa). Then, these signed 

digraphs are converted into community matrices (Figure Ͳb). 

   From the signed digraph the feedback properties of the system can be examined. 

The analysis of the matrix using algebra functions are mainly used to (ͱ) test the 

stability of the system and (Ͳ) to predict the behaviour of the system response to a 

disturbance. Predictions of the direction of a perturbation  (+, -, Ͱ) are obtained by 

a summation of all direct and indirect effects. The summation of effects are 

obtained from the qualitative analysis of the inverse community matrix 

(Dambacher et al. ͲͰͰͲ). 

Figure ͱ. Scheme for ecological models. 
Adapted from Dambacher personal 
figure and Levins (ͱ͹ͶͶ).  

Figure Ͳ. (a) Signed digraph model of a prey predator interaction. (b) Community matrix 
representing the prey predator interaction.  

(a) (b) Prey-predator 

N1 N2 

-α1,2 

+α2,1 

Prey 

Predator 

Prey Predator 

-α1,2 

+α2,1 0 

0 
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Study Area 

The area of study where the present thesis was conducted is the continental shelf 

and upper slope associated with the Ebro River Delta (Figure ͱͲ), in the northwestern 

Mediterranean Sea. This is one of the most important spawning grounds of both 

anchovy and sardine (Bellido et al. ͲͰͰ͸, Giannoulaki et al. ͲͰͱͱ, ͲͰͱͳ). Moreover, it 

is a hotspot of biodiversity and an essential area for the conservation of marine 

predators such as seabirds, turtles, cetaceans, tunas and others that prey on sardine 

and anchovy (Arcos et al. ͲͰͰ͹, 

Coll et al. ͲͰͱ͵, Tomas et al. ͲͰͰͱ, 

Piante and Ody ͲͰͱ͵). It is also an 

important area for the fishing 

activity, especially in relation with 

SPF (Palomera et al. ͲͰͰͷ).  

Figure ͱͲ. (A) Map of the study area 
where the individuals were collected. 
The sampling area (dashed line) and the 
fishing harbors, where most of the 
samples were landed, are indicated with 
(●). (B) Position of the study area in the 
Mediterranean Basin. 
 

The Ebro delta continental shelf 

has a high environmental 

variability between seasons, with a period of stratification in summer and a mixing 

period in winter (Palomera et al. ͲͰͰͷ). Although the Mediterranean Sea is considered 

an oligotrophic sea, in the Ebro Delta continental shelf the combination of the river 

runoff with wind mixing processes creates conditions similar to the upwelling zones 

(Lloret et al. ͲͰͰʹ). The main current flow in the region is southwesterly along the 

edge of the continental shelf and is associated with a salinity gradient separating the 

low salinity waters on the continental shelf from the saltier water in the open sea (Font 

et al. ͱ͹͸͸; Palomera, ͱ͹͹Ͳ). This current displays strong mesoescale activity (i.e. 

eddies) that helps to ensure better condition for egg and larval survival of SPF (Sabatés 

et al. ͲͰͱͳ, Quattrocchi et al. ͲͰͱͷ). 
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Sea surface temperature and primary production follow annual cycles characterized 

by strong seasonality. During winter, the sea surface temperature is at its lowest and 

the wind is stronger and more frequent, which induces an intense water mixing on the 

shelf leading to higher nutrient availability in the surface (Salat ͱ͹͹Ͷ, Lloret et al. 

ͲͰͰʹ, Coll et al. ͲͰͱͰ). As a 

consequence, in the late winter 

and spring there is a 

phytoplankton bloom. In late 

spring and summer the increase of 

the sea surface temperature 

produces a water column 

stratification and there is a 

reduction on nutrients in the 

photic zone (Figure ͱͳ). At this 

time, the inputs of nutrients to the 

surface are supplied mainly by the Ebro River outflow (Estrada ͱ͹͹Ͷ, Palomera et al. 

ͲͰͰͷ). Then, in fall the sea surface temperature is higher than the air temperature and 

the surface mixed layer goes deeper by convection until the thermocline is destroyed 

in winter (Sabatés et al. ͲͰͰͷ). In shelf areas where the bottom is shallower, such as 

the Ebro Delta continental shelf, convection is an important process that can sustain 

a high productivity during late winter. These contrasting environmental conditions 

with two types of nutrient supply into the surface, wind mixing in winter and river 

runoff in summer, in combination with the important mesoescale activity of the area, 

create optimal conditions of high productiviy for spawning of sardine and anchovy in 

the Ebro Delta continental shelf (Palomera ͱ͹͹Ͳ, Olivar et al. ͲͰͰͱ).  

Seasonal changes in zooplankton composition and abundance have also been 

described in the NW Mediterranean Sea (Calbet ͲͰͰͱ). Some studies have found 

higher zooplankton biomass after the late winter/ early spring phytoplankton bloom 

(Andreu & CM ͱ͹͹Ͷ, Fernández De Puelles et al. ͲͰͰͳ). In general, copepods dominate 

the zooplankton community throughout the year, with a dominance of calanoid 

copepods during spring and winter (Calbet et al. ͲͰͰͱ, Sabatés et al. ͲͰͰͷ). In contrast, 

other groups present a clear pattern of seasonality. Cladocera and Appendicularia 

show high abundance in summer and Chaetognatha have a summer− autumn peak, 

Figure. ͱͳ. Vertical profiles of temperature (thin line; 
C°) and Chlorophyll a (thick line; Chla, μg/l) during 
the mixed (left) and stratified periods (right). Source: 
Sabatés et al. ͲͰͰͷ. 
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whereas Cnidaria and Thaliacea are abundant in spring (Gili et al. ͱ͹͸͸, Calbet ͲͰͰͱ, 

Pascual ͲͰͱͶ).  

Although seasonal environmental variability is well documented and has been 

shown to affect the population dynamics of small pelagic fish, few studies have looked 

at potential changes in trophic interactions within the pelagic compartment (Lloret et 

al. ͲͰͰͱ, ͲͰͰʹ). To overcome this lack of knowledge, within this thesis a seasonal 

sampling in the study area was performed (Box ͵: General sampling).  

   
Box ͵: General description of the sampling methodology 

Data presented in this thesis were obtained with samples coming from monthly 

fisheries landings and from two oceanographic campaigns.  

  Individuals from fisheries were obtained mainly in the Tarragona harbour 

seasonally from Spring ͲͰͱͲ to Winter ͲͰͱͳ, with exception of sardine and anchovy 

that were sampled monthly from April ͲͰͱͲ to March ͲͰͱͳ.  

  In addition, two oceanographic campaigns of ͱ͵ days each were carried out in 

February ͲͰͱͳ and July ͲͰͱͳ in the research vessel Ángeles Alvariño. In these 

campaigns experimental bottom trawling and plankton nets were used. 

͵Ͱ individual per sampling were dissected in the lab and the following measures and 
tissues were collected: 
 

 Total and gutted weight 
 Total and standard length 

European sardine 
European anchovy 
Round sardinella 

 

Atlantic horse-mackerel 
Mediterranean horse-mackerel 

Atlantic mackerel 
Atlantic chub mackrel 

Broadtail shortfin squid 
European squid 
European hake 
Atlantic bonito 

Small pelagic fish Medium pelagic fish 
Other competitors  

or predators of SMPF 

 Sex, maturity stage and gonad weight 
 Tissues: muscle, gonads, stomachs and individuals 
 

SPECIES SAMPLED 

Purse-seine landing SPF in the harbour 
of Cambrils (Tarragona) 

Crew of the ECOTRANS oceanographic 
campaing in the RV Ángeles Alvariño 
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Objectives and Structure of the thesis 
 

Despite all the scientific progress and knowledge that has been obtained in the last 

decades, there is still a need for an integrated and holistic understanding of the pelagic 

ecosystem in order to disentangle which of all hypotheses proposed or a combination 

of them is the most plausible explanation to the decline in biomass, landings, body 

condition and growth of sardine and anchovy in the northwestern Mediterranean Sea. 

Therefore, in this thesis I addressed different ecological aspects in order to investigate 

the ecological role of the main species 

in the pelagic compartment of the NW 

Mediterranean Sea, focusing on 

European anchovy and sardine, with 

the aim to contribute to the discussion 

of plausible causes of change. While 

the study of the ecological role of 

species comprises a wide array of 

components, in this thesis I focus in the 

study of trophodynamics, which is a 

fundamental aspect to understand the 

transfer of energy in the ecosystem 

(Figure ͱʹ; Bierwagen et al. ͲͰͱ͸).   

The general objective of this thesis is to improve the knowledge of the seasonal 

dynamics and functioning of the pelagic compartment focusing on the study of trophic 

relationships and energy dynamics of SMPF in the northwestern Mediterranean Sea.  

The specific objectives of the thesis are: 

ͱ- To analyze the potential seasonal variability in the trophic relationships of the 

main species of SMPF within the pelagic compartment. 

Ͳ- To evaluate ontogenetic changes in the trophic niche of SPF and potential 

competition between SPF. 

ͳ- To evaluate the energy content of SMPF that is available for higher trophic levels 

taking into account potential seasonal variability. 

Figure ͱʹ. Diagram of areas of study that 
contribute to informing ecological roles of a 
species. Adapted from Bierwagen et al. (ͲͰͱ͸).  
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ʹ- To characterize the energy allocation strategy of SPF related to the life-history 

traits in order to understand how environmental change could affect the 

populations of SPF. 

͵- To model alternative configurations of the pelagic food web and integrate all new 

results and the available knowledge to compare alternative hypotheses about 

how SPF species may have responded to different pressures. 

 To address these objectives, I combined analyses at species and community level. 

In the first part of the thesis (Part I: Chapter ͱ and Chapter Ͳ), I studied the trophic 

ecology of different species of the pelagic compartment using stable isotope and 

stomach content analysis. In a second part (Part II: Chapter ͳ and Chapter ʹ ), I studied 

the ecological energetics of SMPF using direct bomb calorimetry, morphological 

condition indexes and lipid content. These studies contributed to generate new key 

information about the biology and ecology of these marine resources of the 

northwestern Mediterranean Sea, that in combination with previous published study, 

I used to test main hypotheses of change in pelagic fish species of the northwestern 

Mediterranean Sea (Part III: Chapter ͵) (Figure ͱ͵). 

  

 

Figure ͱ͵. Structure of the present thesis. BBNs stand for Bayesian Beliefe Networks 
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Specifically, first I studied the seasonal variability of the ecological role of small and 

medium pelagic fish (Chapter ͱ) in order to investigate (ͱ) which is the niche position 

of each group (SPF, MPF and Predators) with respect to each other, and (Ͳ) if there is 

a variation of the trophic relationships among SPF and MPF between seasons. I used 

stable isotope analysis and different trophic community metrics (Box Ͳ). This chapter 

was published in a peer-reviewed journal: Albo-Puigserver, M., Navarro, J., Coll, M., 

Layman, C., Palomera, I., Ͷʹ͵ͺ. Trophic structure of pelagic species in the northwestern 

Mediterranean Sea. Journal of Sea Research ͵͵ͻ: Ͷͻ-ͷ͹. 

Secondly, I investigated the potential competition between SPF at different 

ontogenetic stages. To do so I used stomach content analysis of round sardinella and 

stable isotope analysis of juveniles and adults of sardine, anchovy and round sardinella 

(Chapter Ͳ) (Box ͱ and Box Ͳ). This chapter was published in a peer-reviewed journal: 

Albo-Puigserver, M., Borme, D., Coll, M., Tirelli, V., Palomera, I., Navarro, J., Ͷʹ͵ͽ. 

Trophic ecology of range-expanding round sardinella and resident sympatric species in 

the northwestern Mediterranean. Marine Ecology Progress Series ͺͶʹ: ͵ͷͽ-͵͹͸. 

From an energetic point of view, I assessed the seasonal energetic variability of 

pelagic species (Chapter ͳ) in order to investigate (ͱ) which are the pelagic species 

with higher energy density and therefore could be considered higher prey quality for 

predators, and (Ͳ) if there is a variation of the seasonal energy density. To study the 

ecological energetics of the pelagic compartment, I used direct bomb calorimetry (Box 

ͳ). This chapter was published in a peer-reviewed journal: Albo-Puigserver, M., 

Muñoz, A., Navarro, J., Coll, M., Pethybridge, H., Sánchez, S., Palomera, I., Ͷʹ͵ͻ. 

Ecological energetics of forage fish from the Mediterranean Sea: seasonal dynamics and 

interspecific differences. Deep Sea Research II - Topical Studies in Oceanography 

͵͸:ʹ ͻ͸-ͼͶ. 

To better understand the energy allocation strategy of sardine and anchovy I used 

different measurements of condition (Chapter ʹ). I investigated seasonal variability 

in the condition of both species and energy allocated to reproduction maintenance 

and growth using morphometric measures (condition factor such as relative condition 

and gonadosomatic index), chemical tracers (lipids) and direct energetic measures 

(oxygen bomb calorimetry) (Box ͳ). Moreover, the suitability of each method to 

evaluate changes in body condition was assessed. This chapter is prepared to be 
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submitted to a peer reviewed journal: Albo-Puigserver, M., Sánchez, S., Coll, M., 

Bernal, M., Navarro, J., Sáez-liante, R., Palomera, I. Year-round energetic dynamics of 

anchovy and sardine in the northwestern Mediterranean Sea. 

Finally, in order to test the different main hypothesis of SPF population changes, I 

used qualitative mathematical ecological models to investigate the most plausible 

explanation(s) to the observed declines in sardine and anchovy and the expansion of 

round sardinella (Chapter ͵ ). This study used the newly generated information on the 

energy dynamics and the trophic relationships between the main species in the pelagic 

compartment obtained during this thesis, in addition to information available from 

the literature. This chapter was published in a peer-reviewed journal: Coll, M., Albo-

Puigserver, M., Navarro, J., Palomera, I., Dambacher, J., Ͷʹ͵ͽ. Who is to blame? 

Plausible pressures on small pelagic fish population changes in the NW Mediterranean 

Sea. Marine Ecology Progress Series ͺ͵ͻ-ͺ͵ͼ: Ͷͻͻ-Ͷͽ͸. 
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Abstract 

 

Ecological knowledge of food web interactions within pelagic marine communities 

is often limited, impairing our capabilities to manage these ecologically and 

economically important marine fish species. Here we used stable isotope analyses to 

investigate trophic interactions in the pelagic ecosystem of the northwestern 

Mediterranean Sea during ͲͰͱͲ and ͲͰͱͳ. Our results suggest that European sardine, 

Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at 

relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, 

Sardinella aurita, appeared to be located at a higher trophic level than the other small 

pelagic fish species, although previous studies found similarity in their diets. Isotope 

data suggested that trophic niches of species within the genera Trachurus spp. and 

Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius 

merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic 

levels than other species. Despite some intraspecific seasonal variability for some 

species, community trophic structure appeared relatively stable through the year. 

These data provide an important step for developing models of food web dynamics in 

the northwestern Mediterranean Sea. 

 

 

 

 

 

 

 

 

Keywords: Stable isotopes; Pelagic fish; Isotopic niche; Food web; Community 

structure; Seasonal; Trophic segregation. 
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ͱ.ͱ Introduction 

Marine pelagic fisheries account for ͲͶ% of the world's total protein consumption 

(Tacon and Metian, ͲͰͰ͹). With exploitation of these stocks increasing, there is a need 

to understand how the trophic structure may be shifting in pelagic systems (Pikitch et 

al., ͲͰͱʹ). Yet, relative to coastal ecosystems, we have less knowledge of pelagic food 

webs and the trophic role of pelagic species (Miller et al., ͲͰͱͰ). This is particularly 

true for small- and medium-sized pelagic fishes, which are ecologically and 

economically important species in marine ecosystems worldwide and represent >͵Ͱ% 

of the total landings in the Mediterranean Sea (Cury et al., ͲͰͰͰ; Lleonart and 

Maynou, ͲͰͰͳ). 

Small pelagic fish species, such as Sardina pilchardus (European sardine) and 

Engraulis encrasicolus (European anchovy), account for significant biomass at 

intermediate trophic levels of Mediterranean Sea food webs and are the main prey 

resource for several marine predators (Coll et al., ͲͰͰͶ; Cury et al., ͲͰͰͰ; Pikitch et 

al., ͲͰͱͲ, ͲͰͱʹ). Medium pelagic fishes, such as mackerels and horse-mackerels, are 

also abundant in many pelagic food webs (Juan-Jordá et al., ͲͰͱͳ; Lleonart and 

Maynou, ͲͰͰͳ). These species can be prey species for higher trophic levels, as well as 

having top-down effects on small pelagic fish populations (Bayhan et al., ͲͰͱͳ; 

Meneghesso et al., ͲͰͱͳ; Trenkel et al., ͲͰͱʹ).  

Previous studies have described food web dynamics of the pelagic ecosystem in the 

Mediterranean Sea (see Bănaru et al., ͲͰͱͳ; Coll et al., ͲͰͰͶ; Corrales et al., ͲͰͱ͵); 

however, little information about specific trophic interactions between small- and 

medium-sized pelagic fishes has been published. Likewise, although seasonal 

environmental variability has been shown to affect the population dynamics of small 

pelagic fishes, few studies have taken into account how this could affect trophic 

interactions (França et al., ͲͰͱͱ; Lloret et al., ͲͰͰͱ, ͲͰͰʹ; Palomera et al., ͲͰͰͷ). In 

this study we used stable isotope analysis to describe the overall community structure 

and examine the potential seasonal shifts in trophic interactions of ͱͱ abundant pelagic 

species in the northwestern Mediterranean Sea. The main objectives were to analyze 

the specific trophic relationships between species and to compare the relative niche 

positions among seasons. 
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ͱ.Ͳ Material and methods 
 

Study area 

The study was conducted in the continental-shelf and upper slope area associated 

with the Ebro River Delta, from Cape Salou to Castelló de la Plana (Fig. ͱ; northwestern 

Mediterranean Sea). As a consequence of particular oceanographic conditions, 

including vertical mixing and river discharges, this area is an important fishing ground 

in the Mediterranean Sea (Coll et al., ͲͰͰͶ; Lloret et al., ͲͰͰʹ; Navarro et al., ͲͰͱͶ). 

Moreover, it is an important area for threatened animals, including Balearic 

shearwater, Puffinus mauretanicus, Audouin's gull, Larus audouinii and loggerhead 

turtle Caretta caretta as well as 

other predators that also prey on 

small pelagic fishes (Arcos et al., 

ͲͰͰ͹; Coll et al., ͲͰͱ͵; Tomas et al., 

ͲͰͰͱ). From May to October the 

ecosystem is characterized by a 

distinct thermocline and 

stratification of the water column, 

resulting in a reduction of nutrients 

in the photic zone (Salat, ͱ͹͹Ͷ). 

During the stratified season, 

riverine inputs are the main source 

of nutrients at the surface 

(Palomera et al., ͲͰͰͷ; Salat et al., 

ͲͰͰͲ). In contrast, from November 

to April, the water temperature is 

lower and the water column mixed, 

leading to higher nutrient 

availability at the surface (Salat et 

al., ͲͰͰͲ). 

 

 

 
Fig. ͱ. (A) Map of the study area where the individuals 
were collected on the Ebro Delta continental shelf, 
northwestern Mediterranean. The sampling area 
(dashed line) and the fishing harbors where most of the 
samples were landed are indicated with (●). (B) Position 
of the study area in the Mediterranean Basin. 
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Sampling 

We sampled eleven species of small and medium pelagic fishes, squids and 

potential predators of small pelagic fishes (see Table ͱ). We only sampled adult 

individuals to avoid potential ontogenetic differences in the isotopic values, since fish 

species often have ontogenetic niche shifts (Bode et al., ͲͰͰʹ; Chouvelon et al., ͲͰͱͲ). 

A total of ʹʹͳ individuals were collected (spring ͲͰͱͲ, summer ͲͰͱͲ, fall ͲͰͱͲ and 

winter ͲͰͱͳ) from commercial vessels of the harbors of Tarragona, Torredembarra and 

Cambrils (Fig. ͱ), as well as from an experimental oceanographic cruise in winter ͲͰͱͳ 

(ECOTRANS Project, Institut de Ciències del Mar, CSIC). All individuals were 

immediately frozen after capture and stored at −ͲͰ °C and then the morphological 

measurements (total body weight and total body length) and tissue collection were 

conducted in the laboratory. During the experimental oceanographic cruise in winter 

ͲͰͱͳ, samples of microplankton were collected with a calVET net (͵ͳ–ͲͰͰ μm) and 

frozen and stored at −ͲͰ °C. 

 

  

Table ͱ. Main prey of focal species as based on previous reports in the Mediterranean Sea. 

Species name Main prey References 

Engraulis encrasicolus Copepods, cladocerans 
Costalago et al., ͲͰͱͲ; Tudela and 
Palomera, ͱ͹͹ͷ 

Sardina pilchardus Copepods, cladocerans, diatoms 
Costalago and Palomera, ͲͰͱʹ; 
Nikolioudakis et al., ͲͰͱͲ 

Sardinella aurita Copepods, decapods larvae, fish larvae 
Karachle and Stergiou, ͲͰͱʹ; Lomiri 
et al., ͲͰͰ͸ 

Trachurus mediterraneus Copepods, euphasiids, fish Bayhan et al., ͲͰͱͳ; Yankova et al., 
ͲͰͰ͸ 

Trachurus trachurus Copepods,  euphasiids, fish 
Jardas et al., ͲͰͰʹ; Šantić et al., 
ͲͰͰ͵ 

Scomber scombrus Euphasiids, decapod larvae, fish Olaso et al., ͲͰͰ͵ 

Scomber colias Copepods, mysids, decapod larvae, fish Castro, ͱ͹͹ͳ; Keč et al., ͲͰͱͲ 

Illex coindetii Fish, crustaceans 
Martínez et al., n.d.; Rosas-Luis et 
al., ͲͰͱʹ 

Loligo vulgaris Fish, crustaceans, cephalopods  Coelho et al., ͱ͹͹ͷ; Valls et al., ͲͰͱ͵ 

Merluccius merluccius 
Benthopelagic and pelagic fish, 
decapods, euphausiids 

Bozzano et al., ͱ͹͹ͷ; Cartes et al., 
ͲͰͰʹ 

Sarda sarda Small pelagic fish Campo et al., ͲͰͰͶ; Navarro et al., 
in press 
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Stable isotope analyses 

Over the last few decades, stable isotope analyses have been broadly used to study 

the structure of food webs and trace energy and mass flows in ecosystems Layman et 

al., ͲͰͱͲ). Particularly, ͱͳC and ͱ͵N are stable isotopes commonly used to study trophic 

pathways. δ13C may vary substantially among primary producers, but shows little 

change from prey to consumers; alternatively, δ15N reflects stepwise enrichment with 

each trophic level. Therefore, δͱͳC is often used as a proxy of the original source of 

dietary carbon and δ15N as a proxy of relative trophic position (Layman et al., 2012).  

A small portion of the dorsal muscle from fish species, and of the mantle from squid 

species, was dissected from each individual. All samples were freeze-dried, powdered 

and Ͱ.Ͳ͸–Ͱ.ͳͳ mg of each sample was packed into tin capsules. Isotopic analyses were 

performed at the Laboratory of Stable Isotopes of the Estación Biológica de Doñana 

(www.ebd.csic.es/lie/index.html). Samples were combusted at ͱͰͲͰ °C using a 

continuous flow isotope-ratio mass spectrometry system (Thermo Electron) by means 

of a Flash HT Plus elemental analyser interfaced with a Delta V Advantage mass 

spectrometer. Stable isotope ratios were expressed in the standard δ-notation (‰) 

where δ13C or δͱ͵N = ([Rsample / Rstandard] − ͱ) · ͱͰͰͰ where R is ͱͳC:ͱͲC or ͱ͵N:ͱʹN relative 

to Vienna Pee Dee Belemnite (δͱͳC) and atmospheric NͲ (δ15N). Based on laboratory 

standards, the measurement error was ±Ͱ.ͱ and ±Ͱ.Ͳ for δ13C and δͱ͵N, respectively. 

Following Post et al. (ͲͰͰͷ), a correction to the δ13C values was made to account for 

the presence of lipids on individuals with a C:N ratio higher than ͳ.͵. Three species of 

the family Scombridae required this correction (͵ individuals of S. scombrus, ΔδͱͳC = 

ͱ.ͱͱ ± Ͱ.ͳʹ; ʹ of S. colias, ΔδͱͳC = ͱ.Ͷʹ ± Ͱ.͸͵; and ͸ of S. sarda, Δδ13C = 1.56 ± 0.19). 

 

Estimated trophic level 

To estimate the trophic level (TL) of each individual based on isotopic values we 

used the equation proposed by Vander Zanden and Rasmussen (ͲͰͰͱ): 

TLconsumers = TLbasal + (δͱ͵Nconsumer –δͱ͵Nbasal) /Δδͱ͵N 

where δͱ͵Nconsumer and δͱ͵Nbasal were, respectively, the δͱ͵N values of each individual 

sampled and the δ͵͵N values of microplankton sampled in the oceanographic cruise in 

winter ͲͰͱͳ (ECOTRANS Project, Institut de Ciències del Mar, CSIC) (δͱ͵Nbasal = ͳ.Ͳ͵ ± 
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Ͱ.ͶͲ). Microplankton samples for other seasons were not available. We applied a basal 

trophic level (TLbasal) of ͱ.͵ assuming that the microplankton is mostly composed by 

phytoplankton (primary producers; TL = ͱ) and micro- and mesozooplankton 

(typically primary consumers; TL = Ͳ) (Costalago et al., ͲͰͱͲ). Due to the lack of 

specific diet tissue discrimination factors associated with trophic transfers (Δδͱ͵N) for 

the species studied in the present study, we used a conventional Δδͱ͵N of ͳ.ʹ (Post, 

ͲͰͰͲ) to keep our results comparable with previous works in the northwestern 

Mediterranean Sea (e.g., Polunin et al., ͲͰͰͱ; Valls et al., ͲͰͱʹ; Costalago et al., ͲͰͱͲ). 

We are aware that using a single isotopic baseline and Δδͱ͵N induces sources of 

potential bias into our data set. Yet, we are not attempting herein to make definitive 

estimates of trophic positions. We instead are interested in relative comparisons 

among species and to identify apparent general patterns in trophic structure (see 

Layman et al., ͲͰͰ͵ for a similar general approach). We hope that these preliminary 

data will help generate new hypotheses that can be more rigorously tested with refined 

baseline values and species-specific tissue turnover data. 

 

Seasonal variability 

Differences in δ15N and δͱͳC values among seasons for each species were tested using 

one-way semi-parametric permutation multivariate analyses of variance tests 

(PERMANOVA test) on the Euclidean distance matrix (Anderson et al., ͲͰͰ͸). 

PERMANOVA allows for the analysis of complex designs (multiple factors and their 

interaction) without the constraints of multivariate normality, homoscedasticity, and 

when there are a greater number of variables than in traditional ANOVA tests. The 

method calculates a pseudo-F statistic directly analogous to the traditional F-statistic 

for multifactorial univariate ANOVA models, using permutation procedures to obtain 

P-values for each term in the model (Anderson et al., ͲͰͰ͸). In the case of a significant 

result, pairwise tests were performed. PERMANOVA tests were carried out with 

PRIMER-E Ͷ software (Clarke and Gorley, ͲͰͰͶ). The significance level for all tests 

was adopted at P<Ͱ.Ͱ͵. 
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Trophic niche width 

To provide insight into species' trophic niche width, and to estimate the degree of 

isotopic niche overlap between species, we calculated Bayesian isotopic ellipse areas 

corrected by sample size (SEAB) (Jackson et al., ͲͰͱͱ). This metric represents a measure 

of the core isotopic niche with higher values indicating broader trophic niche breadth 

(Layman et al., ͲͰͱͲ). Isotopic standard ellipse areas and their overlap were calculated 

using the routine Stable Isotope Bayesian Ellipses in the SIAR library (SIBER; Jackson 

et al., ͲͰͱͱ).  

The isotopic niche position (centroid location) of the species was evaluated to 

determine whether isotopic niche position differed between species. To obtain 

measures of central tendency of each species we used nested linear models and 

residual permutation procedures. Two species can be assumed to occupy a different 

isotopic niche position if the Euclidian distance is significantly greater than zero (for 

additional details and R code for the test see Turner et al., ͲͰͱͰ). 

We also used the isotope data to explore potential predators on the anchovy and 

sardine. All δͱ͵N and δͱͳC values for each sardine and anchovy species were corrected 

by diet tissue discrimination factors of +ͳ.ʹ and +ͱ.ͳ for δͱ͵N and δͱͳC values, 

respectively (Post, ͲͰͰͲ). The convex hull polygon containing all the corrected δͱ͵N 

and δͱͳC isotopic values of sardine and anchovy was then plotted. Predator species that 

had an ellipse overlap with a convex hull polygon were assumed to be potential 

predators of sardine and anchovy. 

 

ͱ.ͳ Results 
 

Trophic structure 

Across sampling periods, the relative position of species appeared fairly 

consistent; there were no major shifts in the relative position of species across 

seasons. S. pilchardus and E. encrasicolus had the lowest estimated trophic levels 

with the lowest δ15N and δͱͳC values and mean estimated trophic levels in both 

species of Ͳ.͹ ± Ͱ.ͱ (Table Ͳ; Fig. Ͳ). S. aurita had higher δͱ͵N and δͱͳC values than 
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the other two small pelagic fishes (a mean estimated trophic level of ͳ.Ͳ ± Ͱ.ͱ; Table 

Ͳ; Fig. Ͳ). Mackerels and horse mackerels, T. trachurus and S. colias both had a 

mean estimated trophic level of ͳ.ͳ ± Ͱ.Ͳ, while T. mediterraneus and S. scombrus 

had an estimated trophic level of ͳ.Ͷ ± Ͱ.Ͳ and ͳ.Ͷ ± Ͱ.ͱ, respectively. The two squid 

species seemed to have different isotopic niches, with I. coindetii having lower 

values of δͱ͵N and δͱͳC than L. vulgaris (estimated TL = ͳ.Ͳ ± Ͱ.ͳ for I. coindetii and 

TL = ͳ.͸ ± Ͱ.Ͳ for L. vulgaris; Fig. Ͳ; Table Ͳ). M. merluccius, S. sarda and L. vulgaris 

had the highest δͱ͵N values of the species studied, with estimated trophic levels 

close to ʹ (Table Ͳ; Fig. Ͳ). 

 

 

 

Table Ͳ. Mean and standard deviation of δͱ͵N and δͱͳC values, total body length values (BL; cm) 
and estimated trophic level (TL) of small pelagic fish, medium pelagic fish, squids and large 
pelagic and demersal fish species during spring, summer, fall, and winter, along with the number 
of specimens sampled (n). Cells corresponding to T. trachurus not sampled in summer are 
indicated with nd (no data). 

Species 
Spring ͲͰͱͲ Summer ͲͰͱͲ 

n δ15N(‰) δ13C(‰) BL (cm) TL n δ15N(‰) δ13C(‰) BL (cm) TL 
E. encrasicolus ͱʹ ͸.Ͱ±Ͱ.ʹ -ͱ͹.ͳ±Ͱ.ͳ ͱͳ.͹±ͱ.͹ Ͳ.͹±Ͱ.ͱ ͱͰ ͸.ͱ±Ͱ.ͳ -ͱ͹.Ͱ±Ͱ.Ͳ ͱʹ.͵±ͱ.Ͳ Ͳ.͹±Ͱ.ͱ 
S. pilchardus ͱͰ ͷ.͸±Ͱ.Ͷ -ͱ͹.Ͷ±Ͱ.Ͷ ͱͷ.͹±Ͱ.Ͷ Ͳ.͸±Ͱ.Ͳ ͱͱ ͸.ͱ±Ͱ.ͳ -ͲͰ.Ͱ±Ͱ.ʹ ͱ͵.ͷ±ͱ.Ͳ Ͳ.͹±Ͱ.ͱ 
S. aurita ͱͰ ͸.ͷ±Ͱ.ʹ -ͱ͸.ͷ±Ͱ.Ͳ Ͳͳ.Ͷ±ͱ.͵ ͳ.ͱ±Ͱ.ͱ ͱʹ ͹.Ͱ±Ͱ.ʹ -ͱ͸.ͷ±Ͱ.ͱ ͲͰ.ͷ±ͳ.͵ ͳ.Ͳ±Ͱ.ͱ 
T. trachurus ͱͰ ͹.Ͱ±Ͱ.ʹ -ͱ͹.Ͱ±Ͱ.ͳ Ͳʹ.͵±ͱ.͹ ͳ.Ͳ±Ͱ.ͱ nd nd nd nd nd 
T. mediterraneus ͱͷ ͱͰ.Ͱ±Ͱ.Ͷ -ͱ͸.ʹ±Ͱ.ͳ ͲͶ.ͳ±ʹ.ʹ ͳ.͵±Ͱ.Ͳ ͱͰ ͱͰ.͵±Ͱ.ͳ -ͱ͸.Ͳ±Ͱ.ͳ ͳͳ.ʹ±Ͳ.Ͱ ͳ.Ͷ±Ͱ.ͱ 
S. scombrus ͷ ͹.͹±Ͱ.ʹ -ͱ͸.Ͷ±Ͱ.ͳ ͳͱ.͵±͵.ͳ ͳ.͵±Ͱ.ͱ ͱ͹ ͱͰ.Ͷ±Ͱ.ʹ -ͱ͹.Ͳ±ͱ.ʹa Ͳ͸.ʹ±ͳ.͵ ͳ.ͷ±Ͱ.ͱ 
S. colias ͱͱ ͹.Ͱ±Ͱ.ͳ -ͱ͹.ͱ±Ͱ.Ͷ ͳͳ.ʹ±ͳ.Ͷ ͳ.Ͳ±Ͱ.ͱ ͱͰ ͱͰ.Ͱ±Ͱ.Ͳ -ͱ͸.ʹ±Ͱ.ͳa ͳ͵.ͱ±ͱ.Ͷ ͳ.͵±Ͱ.Ͱ 
I.  coindetii ͱͱ ͸.Ͱ±Ͱ.͵ -ͱ͹.Ͳ±Ͱ.ͳ ͱͷ.ͱ±ͱ.ͷ Ͳ.͹±Ͱ.ͱ ʹ ͹.Ͷ±Ͱ.ͳ -ͱ͸.ʹ±Ͱ.ͱ ͱͳ.ͳ±Ͱ.ʹ ͳ.ʹ±Ͱ.ͱ 
L. vulgaris ͱͲ ͱͱ.ʹ±Ͱ.Ͷ -ͱ͸.Ͱ±Ͱ.ͳ ͲͰ.ͳ±ͳ.Ͷ ͳ.͹±Ͱ.Ͳ Ͷ ͱͱ.ͳ±Ͱ.ʹ -ͱͷ.͹±Ͱ.ʹ ͱͷ.Ͳ±ͱ.ʹ ͳ.͹±Ͱ.ͱ 
M. merluccius ͷ ͱͰ.ͷ±Ͱ.Ͷ -ͱ͸.͵±Ͱ.ͳ ʹ͹.ͳ±Ͳ.͸ ͳ.ͷ±Ͱ.Ͳ Ͷ ͱͰ.ʹ±Ͱ.͵ -ͱ͸.ͳ±Ͱ.͵ ʹͳ.Ͳ±Ͷ.Ͳ ͳ.Ͷ±Ͱ.Ͳ 
S. sarda ͱͳ ͱͰ.͸±ͱ.Ͱ -ͱͷ.ͷ±Ͱ.ʹ ʹͷ.ͳ±ͳ.͵ ͳ.ͷ±Ͱ.ͳ ͹ ͱͱ.ʹ±Ͱ.͵ -ͱͷ.͹±Ͱ.͸a ʹͷ.ͷ±ͷ.͵ ͳ.͹±Ͱ.ͱ 
   

Species 
Fall ͲͰͱͲ Winter ͲͰͱͳ 

n δ15N(‰) δ13C(‰) BL (cm) TL n δ15N(‰) δ13C(‰) BL (cm) TL 
E. encrasicolus ͱͰ ͸.ͱ±Ͱ.Ͳ -ͱ͸.͸±Ͱ.Ͳ ͱʹ.Ͱ±ͱ.ͳ Ͳ.͹±Ͱ.ͱ ͱͱ ͸.Ͳ±Ͱ.Ͳ -ͱ͹.ͳ±Ͱ.Ͳ ͱʹ.Ͱ±Ͱ.͸ ͳ.Ͱ±Ͱ.ͱ 
S. pilchardus ͸ ͸.Ͳ±Ͱ.ͳ -ͱ͹.ʹ±Ͱ.Ͷ ͱͷ.ͷ±ͱ.Ͱ ͳ.Ͱ±Ͱ.ͱ ͹ ͸.ͱ±Ͱ.ʹ -ͱ͹.Ͳ±Ͱ.ʹ ͱͲ.͹±Ͱ.͵ Ͳ.͹±Ͱ.ͱ 
S. aurita ͱͰ ͹.Ͳ±Ͱ.Ͳ -ͱ͸.Ͳ±Ͱ.Ͳ Ͳʹ.Ͱ±ͱ.͸ ͳ.ͳ±Ͱ.ͱ ͱͰ ͹.Ͳ±Ͱ.͵ -ͱ͸.͵±Ͱ.ͱ Ͳͳ.Ͳ±ͱ.ͱ ͳ.Ͳ±Ͱ.ͱ 
T. trachurus ͱͰ ͹.ͳ±Ͱ.Ͳ -ͱ͸.Ͷ±Ͱ.ͱ Ͳʹ.ʹ±ͱ.͹ ͳ.ͳ±Ͱ.ͱ ͱͰ ͹.ʹ±Ͱ.͸ -ͱ͹.Ͱ±Ͱ.ʹ Ͳ͸.͹±ʹ.ͳ ͳ.ͳ±Ͱ.Ͳ 
T. mediterraneus ͱ͹ ͱͰ.ͳ±Ͱ.Ͷ -ͱ͸.ͱ±Ͱ.͵ Ͳͷ.Ͷ±͵.͹ ͳ.Ͷ±Ͱ.Ͳ ͱͱ ͱͰ.Ͷ±Ͱ.͵ -ͱ͸.ʹ±Ͱ.͵ Ͳ͹.Ͷ±ʹ.͵ ͳ.ͷ±Ͱ.ͱ 
S. scombrus ͱͲ ͱͰ.ͳ±Ͱ.ͳ -ͱ͸.Ͷ±Ͱ.͵ ͳͱ.Ͳ±ͳ.ͱ ͳ.Ͷ±Ͱ.ͱ ͱͲ ͹.͹±Ͱ.͵ -ͱ͸.ʹ±Ͱ.ͳ Ͳͷ.ͷ±ͱ.Ͷ ͳ.͵±Ͱ.Ͳ 
S. colias ͷ ͹.͹±Ͱ.ͳ -ͱ͸.Ͱ±Ͱ.Ͳ ͳ͵.͹±ͳ.Ͳ ͳ.͵±Ͱ.ͱ ͱͰ ͹.Ͳ±Ͱ.ͳ -ͱ͸.ͳ±Ͱ.͵ ͳͳ.͹±ͳ.Ͱ ͳ.Ͳ±Ͱ.ͱ 
I.  coindetii ͹ ͹.ͳ±Ͱ.ʹ -ͱ͸.Ͳ±Ͱ.ͳ ͱ͵.Ͳ±ͱ.ʹ ͳ.ͳ±Ͱ.ͱ ͱͲ ͹.ͷ±Ͱ.ͷ -ͱ͸.Ͷ±Ͱ.Ͷ ͱ͸.Ͳ±Ͳ.ͱ ͳ.ʹ±Ͱ.Ͳ 
L. vulgaris ͹ ͱͰ.͹±ͱ.Ͱ -ͱͷ.ͳ±Ͱ.Ͷ ͲͰ.͵±Ͳ.Ͱ ͳ.͸±Ͱ.ͳ ͱͲ ͱͱ.Ͳ±Ͱ.͸ -ͱͷ.Ͷ±Ͱ.͵ ͲͰ.ͱ±ͳ.Ͳ ͳ.͸±Ͱ.Ͳ 
M. merluccius ͸ ͱͰ.ʹ±ͱ.Ͱ -ͱ͸.ʹ±Ͱ.ʹ ͵Ͳ.Ͱ±ͱ͵.ʹ ͳ.Ͷ±Ͱ.ͳ ͹ ͱͰ.ʹ±Ͱ.͸ -ͱ͸.ʹ±Ͱ.ʹ ͳ͹.ͱ±Ͷ.ͳ ͳ.Ͷ±Ͱ.Ͳ 
S. sarda ͵ ͱͰ.͸±ͱ.ͳ -ͱ͸.ͱ±Ͱ.͹a ʹͶ.Ͳ±͹.Ͳ ͳ.ͷ±Ͱ.ʹ ͹ ͱͱ.ʹ±Ͱ.ͳ -ͱ͸.Ͱ±Ͱ.ͷa ʹʹ.͵±ͱ.Ͱ ͳ.͹±Ͱ.ͱ 

a Indicates species with lipid corrected  δ13C values in the corresponding season. 
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Fig. Ͳ. Mean and standard deviation of δ13C and δͱ͵N values of each species during spring, 
summer, fall, and winter. 
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Species seasonal variability 

Only the predators L. vulgaris, M. 

merluccius and S. sarda did not have 

distinct seasonal differences in δͱ͵N and 

δͱͳC values (Table ͳ). Differences for 

other species were small suggesting no 

major seasonal shifts in trophic 

structure. For each species, the range of 

seasonal variation was Ͱ.Ͳ to Ͱ.ͷ for δͱ͵N 

and of Ͱ.Ͳ to Ͱ.͸ for δͱͳC, with the 

exception of S. colias (Δδ15N = ͱ.Ͱ; ΔδͱͳC 

= ͱ.ͱ) and I. coindetii (Δδ15N = ͱ.ͷ; ΔδͱͳC = 

ͱ.Ͱ) (Fig. ͳ).  

In most species the mean seasonal 

variability in the estimated trophic level 

was not >Ͱ.Ͳ. I. coindetii had the highest 

change, a mean difference of Ͱ.͵ 

between spring and the rest of the 

seasons (Fig. ͳ). Data for δͱ͵N, δͱͳC, body 

length and estimated trophic level are 

reported in Table Ͳ. 

 Table ͳ. PERMANOVA test results (Pseudo-F values) of significant differences for 
δͱ͵N and δͱͳC values between seasons for each species. Pairs of means differing 
significantly (P <Ͱ.Ͱ͵) by pairwise tests are indicated by the letters - seasons with the 
same letter were not significantly different.  Cells corresponding to T. trachurus not 
sampled in summer are indicated with nd (no data). There were no differences among 
seasons for L. vulgaris, M. merluccius and S. sarda. 
Species Pseudo-F (p-value) Spring Summer Fall Winter 
 E .encrasicolus Ͷ.ͳͲ (<Ͱ.Ͱͱ) a b b a 
 S. pilchardus ͳ.ͳͷ (<Ͱ.Ͱͱ) a,b,c a b c 
 S. aurita ͵.Ͱͷ (<Ͱ.Ͱͱ) a a,b c b,c 
 T. trachurus Ͳ.͹Ͱ (Ͱ.ͰͲ) a nd b a,b 
 T. mediterraneus Ͳ.͵͸ (Ͱ.Ͱʹ) a a,b a,b b 
 S. scombrus ͳ.͵Ͷ (<Ͱ.Ͱͱ) a,b a a b 
 S. colias ͱ͵.͸Ͳ (<Ͱ.Ͱͱ) a b c d 
 I. coindetii ͱͷ.ͷͲ (<Ͱ.Ͱͱ) a b b b 
 L. vulgaris ͱ.͹ͷ (Ͱ.Ͱ͹)     
 M. merluccius Ͱ.ͱ͵ (Ͱ.͹Ͷ)     
 S. sarda ͱ.ͱʹ (Ͱ.ͳ͵)     

Fig. ͳ. Seasonal variation of the mean and 
standard deviation of δͱ͵N, estimated trophic 
level and δͱͳC values by season of each focal 
species. 
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Isotopic niche overlap 

Isotopic niche width seemed larger for species positioned higher in the food web 

(Figure ʹ). The epipelagic fish S. sarda had the largest isotopic niche width, while E. 

encrasicolus and S. aurita had relatively small ones (Figure ʹ). The four medium 

pelagic fish species and M. merluccius had similar isotopic niche widths across seasons, 

with the exception of T. trachurus and S. scombrus which had a larger isotopic niche 

width in winter and in summer, respectively (Figure ʹ). For squid, the niche width of 

L. vulgaris was larger than that of I. coindetii (Figure ʹ).  

Most species had some trophic niche overlap with at least one other species (Table 

ʹ; Fig. ͵). However, the isotopic niche position between species overlapping was 

significantly different, suggesting distinct trophic roles within this food web (Table ʹ). 

In general, summer had the least, and winter the most, niche overlap between species 

pairs. In spring and winter, E. encrasicolus and S. pilchardus had a similar isotopic 

niche position, whereas they appeared rather different during summer. S. aurita was 

distinct from the other small pelagic fish species in all seasons (Table ʹ; Fig. ͵).  

Among the four species of medium pelagic fishes, T. trachurus had a high isotopic 

niche overlap with S. colias in spring, while T. mediterraneus overlapped substantially 

Fig. ʹ. Density plot of the standard ellipse areas of each species and for each season. Black points 
correspond to the mean standard ellipse area, while boxes show ͵Ͱ%, ͷ͵% and ͹͵% credible 
intervals for mean estimates. 
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with S. scombrus in all seasons (Table ʹ; Fig. ͵). The two squid species had distinct 

isotopic niches across all seasons. I. coindetii had high isotopic niche overlap with 

several species of small and medium pelagic fishes, depending on the season, whereas 

L. vulgaris had amore similar niche position to S. sarda (Table ʹ; Fig. ͵).  

 

 

Following correction for diet-tissue discrimination factors, the convex hull of 

anchovy and sardine partially overlapped the isotopic niche of S. sarda, L. vulgaris, and 

M. merluccius in almost all seasons, suggesting that these may be the most likely 

predators on sardine and anchovy (Figure ͵).  

 

Table ʹ. Percentage values of overlap of the Bayesian isotopic ellipses between each pair of species 
for each season. Overlaps of Ͱ percent are indicated with a dash. Pairs with isotopic niche positions 
that were not significant differently (see Methods; P>Ͱ.Ͱ͵) are indicated with a (*). Cells 
corresponding to T. trachurus not sampled in summer are indicated with nd (no data). 
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E.encrasicolus 52* - - - - - 63* - - - - - nd - - - - - - - 

S.pilchardus  - - - - - 33* - - -  - nd - - - - - - - 

S.aurita   5 - - 23 - - - -   nd - - - - - - - 

T.trachurus    - - 65* - - - -    nd nd nd nd nd nd nd 

T.mediterraneus     42* - - - - -     14 - - - 46* - 

S.scombrus      - - - 17 -      - - 2 15 - 

S.colias       - - - -       9 - 18 - 

I.coindetii        - - -        - - - 

L.vulgaris         13 33         8 43* 

M.merluccius          -          - 

E.encrasicolus 20 - - - - - - - - - 24* - - - - - - - - - 

S.pilchardus  - - - - - - - - -  - - - - - - - - - 

S.aurita   6 - - - 63* - - -   - - 13 31* 14 - - - 

T.trachurus    - - - 7 - - -    - 7 10 57* - 11 - 

T.mediterraneus     15 - - 10 4 17     14 - 12 15 61* 3 

S.scombrus      - - - 41* 14      5 47* - 32* - 

S.colias       5 1 - 3       26 - - - 

I.coindetii        - - 1        - 31 - 

L.vulgaris         - 30*         2 40* 

M.merluccius          20          6 

Spring Summer 

Fall Winter 
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ͱ.ʹ Discussion 
 

Consistent with the fact that S. pilchardus and E. encrasicolus are plankton feeders 

(Costalago and Palomera, ͲͰͱʹ; Costalago et al., ͲͰͱͲ; Tudela and Palomera, ͱ͹͹ͷ), our 

results indicated that they had the lowest trophic position of all the species studied. 

Similar to previous studies (Cardona et al., ͲͰͱ͵; Costalago et al., ͲͰͱͲ; Le Bourg et al., 

ͲͰͱ͵), S. pilchardus and E. encrasicolus showed a similar trophic niche position with a 

Fig. ͵. Standard ellipses for each species during spring, summer, fall, andwinter. The grey convex-
hull represents the total isotopic area of potential predators of Engraulis encrasicolus (red dashed 
line) and Sardina pilchardus (green dashed line), accounting for prey–predator isotopic 
fractionation of ͳ.Ͳ‰ and ͱ.ͳ‰ for δͱ͵N and δ13C values, respectively. 
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large overlap of their core isotopic niches. However, during summer, the species 

seemed to partition resources, occupying different positions along the δͱͳC axis. This 

is consistent with previous studies in the northwestern Mediterranean that have found 

that in summer S. pilchardus preyed more on cladocerans and appendicularians (with 

depleted values of δͱͳC), while E. encrasicolus prey more on copepods (Costalago et al., 

ͲͰͱͲ, ͲͰͱ͵; Tudela and Palomera, ͱ͹͹ͷ). Moreover, lower dietary overlap between 

sardine and anchovy has been observed in areas and periods of high biological 

productivity (Chouvelon et al., ͲͰͱ͵; Jemaa et al., ͲͰͱ͵). Thus, the higher trophic niche 

segregation observed between sardine and anchovy in summer may be explained by 

greater variety of food resources, largely as a consequence of the Ebro River discharges 

that contribute to the early spring phytoplankton bloom.  

The larger isotopic niche width of S. pilchardus suggests that it may feed on a 

broader range of prey. Previous studies showed that S. pilchardus is an opportunistic 

feeder with a greater filtering capacity than E. encrasicolus due to a higher number of 

gill-rakers that allow S. pilchardus to prey on diatoms, whereas diatoms have not been 

reported in the diet of E. encrasicolus at adult stages (Costalago and Palomera, ͲͰͱʹ; 

Costalago et al., ͲͰͱʹ; Pethybridge et al., ͲͰͱʹ). S. aurita is a species that has been 

described as a plankton feeder similar to S. pilchardus and E. encrasicolus (Karachle 

and Stergiou, ͲͰͱʹ; Lomiri et al., ͲͰͰ͸). However, the clear trophic segregation and 

higher trophic position of S. aurita from S. pilchardus and E. encrasicolus, suggests that 

S. aurita may prey on larger zooplankton or larvae of other small pelagic fishes (Lomiri 

et al., ͲͰͰ͸).  

Contrary to what we expected, there were differences in the isotopic niches between 

species within the genera Trachurus and Scomber. This segregation between 

congeneric species could be explained by either differences in the feeding habits or 

differences in spatial distribution. A dietary difference may be more likely for Scomber 

species, as it has been described that S. scombrus in the Atlantic preyed mainly on 

euphausiids and fishes, whereas for S. colias one of the most important prey in the 

Mediterranean was mysids (Keč et al., ͲͰͱͲ; Olaso et al., ͲͰͰ͵). If in the Mediterranean 

Sea S. scombrus has also a higher predation rate on fish than S. colias, then, this could 

explain the higher trophic level of S. scombrus (Polunin et al., ͲͰͰͱ). Alternatively, for 

the Trachurus species, Lloris and Moreno (ͱ͹͹͵) suggested that T. mediterraneus is 
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located more commonly in shallow coastal areas, while T. trachurus has a wider 

distribution and often a more benthic behavior. Thus, the isotopic segregation 

between Trachurus spp. may be due to higher δͱ͵N of primary producers in coastal 

areas as a consequence of the dissolved nutrients and particulate organic matter 

(POM) in river plumes (Radabaugh et al., ͲͰͱͳ). Further dietary studies for both genera 

are needed to clarify the most plausible explanation(s).  

Our results are consistent with previous studies in showing that squids have a broad 

trophic width in marine food webs (Coll et al., ͲͰͱͳ; Navarro et al., ͲͰͱͳ). I. coindetii 

and L. vulgaris seem to have different trophic roles, with the former occupying lower 

positions in the food web with isotopic values closer to small pelagic fishes, and the 

latter apparently positioned higher in the food web and being a potential predator of 

anchovy and sardine. These differences are in accordance with the dietary habits 

described for both species. I. coindetii has been reported to prey mainly on 

crustaceans, whereas fish have been described as the main prey of L. vulgaris 

(Martínez-Baena et al., ͲͰͱͶ; Rosas-Luis et al., ͲͰͱʹ; Valls et al., ͲͰͱ͵).  

High δͱ͵N values and trophic niche overlap for M. merluccius, L. vulgaris and S. 

sarda suggested that they feed at higher trophic levels than the other species. This is 

consistent with the fact that M.merluccius and S. sarda have been described primarily 

as piscivorous (Cresson et al., ͲͰͱ͵; Harmelin-Vivien et al., ͲͰͱͲ; Navarro et al. ͲͰͱͷ). 

Based on the discrimination corrected values, it is reasonable to infer that L. vulgaris, 

M. merluccius and S. sarda prey on small pelagic fishes. The three species had a large 

isotopic niche width probably due to their opportunistic feeding tendencies.  

Despite intraspecific seasonal variability for some species, overall community 

trophic structure appeared relatively stable through the year. That is, E. encrasicolus 

and S. pilchardus were positioned at lower trophic levels than the other species 

studied, mackerels and horse mackerels occupy intermediate positions, and the large 

pelagic and demersal fish were highest in the web. This study is one of the first steps 

in understanding the seasonal food web dynamics of the pelagic species in the 

northwestern Mediterranean Sea, including novel data sets, e.g., some of the first 

isotope data on pelagic fishes and squids in the Mediterranean Sea that cover all 

seasons. More research is needed in this area, as many questions remained 
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unanswered, especially according to how spatial variability affects the inferred trophic 

structure of this system. In particular, stronger isotopic baselines are needed, 

migratory behavior needs to be more well-documented, and abiotic drivers of dietary 

patterns need to be developed. Such data are of upmost importance to better manage 

stocks of these species. 
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Abstract 

 

The recent northward expansion of the round sardinella Sardinella aurita in the 

Mediterranean Sea has been documented as a consequence of rising sea temperature. 

At the same time, declines in sardine and anchovy biomass have been observed in the 

NW Mediterranean Sea, necessitating an assessment of whether the expansion of 

round sardinella may affect sardine and anchovy populations. Here, we combined 

stomach content and isotopic analyses to describe the trophic habits of round 

sardinella in the NW Mediterranean Sea and its trophic relationships with Ͳ sympatric 

small pelagic fish, European anchovy Engraulis encrasicolus and European pilchard 

Sardina pilchardus. Results revealed changes in the diet of round sardinella during the 

year. In summer, the most important prey were copepods (Acartia spp.) and 

cladocerans (Penilia avirostris). During winter, the diet was composed mainly of 

copepods and tunicates (mainly appendicularians), but microplankton was also 

numerically important in adult diets. In contrast to previous studies, during spring, 

round sardinella principally fed on salps (Thaliacea). To our knowledge, this is the first 

time that salps have been identified as an important prey for round sardinella. When 

compared to coexisting small pelagic fish, we found that round sardinella adults had 

a different trophic niche than anchovy and sardine. In contrast, round sardinella 

juveniles partially overlapped the trophic niche with the juveniles of the other Ͳ 

species. Therefore, the range expansion of round sardinella probably would not affect 

sardine and anchovy populations. Only in a situation of food limitation could juveniles 

of round sardinella compete with and affect both sympatric species. Our results 

provide new insights into the ecological role of this range-expanding species in the 

NW Mediterranean Sea, and highlight the importance of gelatinous zooplankton as 

prey. 

 

 

Keywords: Gelatinous zooplankton; Sardine; Anchovy; Small pelagic fish; Trophic 

segregation; Stable isotopes; Stomach contents; Trophic pathways. 
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Ͳ.ͱ Introduction 

Climate change has biological effects on physiological, phenotypical and 

distributional patterns of marine species that can affect biological interactions 

(Hughes & Grand ͲͰͰͰ). The expansion of certain species outside of their native range 

may have important effects on ecosystems (Sorte et al. ͲͰͱͰ, Last et al. ͲͰͱͱ). Although 

shifts or expansions in the geographic distribution of non-native or range-expanding 

species (i.e. species that enter a habitat in which they do not currently exist) have been 

well documented, the potential ecological and socioeconomic consequences of these 

expansions are not well understood, due to the amount of ecological information 

required at different levels of organization (species, community and ecosystem; Madin 

et al. ͲͰͱͲ). The basic knowledge of how these species use trophic resources is crucial 

information to evaluate their impact on the new community (Sunday et al. ͲͰͱ͵). 

Overall, Ͳ main trophic pathways have been suggested to explain resource acquisition 

by non-native or range-expanding species: (ͱ) they may exploit novel niche 

opportunities that most native species are unable to use (opportunism hypothesis), or 

(Ͳ) they may exploit the resources used by native species, displacing the native species 

from their preferred niches (competition hypothesis) (Tilman ͲͰͰʹ, San Sebastián et 

al. ͲͰͱ͵). 

Traditionally, the round sardinella Sardinella aurita has been widely distributed in 

the southern part of the Mediterranean Sea and subtropical waters of the Atlantic 

Ocean, due to its preference for spawning in warm waters (Ben-Tuvia ͱ͹ͶͰ, Sabatés et 

al. ͲͰͰͶ, ͲͰͰ͹). The northward expansion of round sardinella in the Mediterranean 

Sea has been documented over the last decade as a consequence of the increase in sea 

surface temperatures associated with global warming (Sabatés et al. ͲͰͰͶ, Tsikliras 

ͲͰͰ͸). Similarly, in other areas of the Atlantic Ocean such as the coast of Mauritania, 

Morocco and the Canary Archipelago, higher abundances of this species have been 

recorded in recent years due to high surface temperatures (Zeeberg et al. ͲͰͰ͸, Alheit 

et al. ͲͰͱʹ).  

As a consequence of the high feeding intensity and the wide plasticity and 

adaptability to environmental fluctuations and food availability of round sardinella 

(Cury & Fontana ͱ͹͸͸, Tsikliras et al. ͲͰͰ͵, Morote et al. ͲͰͰ͸, ͲͰͱͰ), this species may 

have an impact via trophic competition or direct predation on closely-related 
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Clupeiformes, such as the European pilchard Sardina pilchardus (hereafter referred to 

as sardine) and the European anchovy Engraulis encrasicolus (hereafter referred to as 

anchovy), Ͳ well-established small pelagic fish species in the northern Mediterranean 

Sea. The ͳ species have been described as planktivorous fish that mainly prey on 

copepods, cladocerans and diatoms (Table ͱ).  

Table ͱ - Summary of the available published data on diet, included the results of the present 
study, based on stomach content analysis and the main prey groups reported for round sardinella 
(Sardinella aurita), anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the NW 
Mediterranean Sea.  Seasons with available information are indicated with an ‘x’ (ͱ= winter; 
Ͳ=spring; ͳ=summer; ʹ= fall). New information from present study is indicated in grey. 

SPF 
Life 

stages 
Main prey groups 

Season 
References 

1 2 3 4 

R
ou

nd
 

sa
rd

in
el

la
 Larvae 

copepods naulplii and postnauplii, 
cladocera 

 x   

Morote et al. 2008; present study Juvenile 
copepods, cladocera, appendicularia, 
salps 

x x x  

Adult 
copepod, cladocera, appendicularia, 
salps, diatoms, tintinnids 

x x x  

A
nc

ho
vy

 Larvae 
copepods eggs, nauplii and postnauplii, 
cladocera 

 x x  Costalago et al. 2014; Le Bourg et 
al. 2015; Morote et al. 2010; 
Plounevez and Champalbert, 2000; 
Intxausti et al. 2017; Tudela and 
Palomera et al. 1997; Brosset et al. 
2016 

Juvenile copepods, cladocera, appendicularia x  x x 

Adult 
copepod, cladocera, decapods, 
appendicularia 

 x x  

S
ar

di
ne

 

Larvae 
tintinnids, copepods nauplii and 
postnauplii 

   x 
Costalago et al. 2014; Costalago 
and Palomera 2014; Le Bourg et al. 
2015; Morote et al. 2010; Brosset 
et al. 2016 

Juvenile 
copepods, cladocera, appendiculari, 
mysids, diatoms 

x x x x 

Adult 
copepods, cladocera, appendicularia, 
diatoms 

x  x  

 

Previous trophic studies conducted in the eastern Mediterranean Sea revealed that 

round sardinella, sardine and anchovy exploit similar food resources throughout the 

year but with differences between seasons (e.g. for round sardinella, copepods were 

described as the main prey in fall, while for sardine, copepods were the main prey in 

winter; Karachle & Stergiou ͲͰͱʹ). On the contrary, an isotopic niche analysis of these 

ͳ clupeids in the NW Mediterranean Sea found different trophic niches for adult stages 

(Albo-Puigserver et al. ͲͰͱͶ). Although the trophic habits of sardine and anchovy in 

the western Mediterranean Sea have been well studied (e.g. Costalago et al. ͲͰͱͲ, Le 

Bourg et al. ͲͰͱ͵, Brosset et al. ͲͰͱͶ, and see references in Table ͱ), to our knowledge, 

only ͱ study conducted in this area found high dietary overlap between round 

sardinella and anchovy at larval stages (Morote et al. ͲͰͰ͸). No information on the 

diet composition of juveniles and adults of round sardinella in the western 
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Mediterranean is available. This impairs our current capability to assess the ecological 

consequences that the northward expansion of this species has on other pelagic 

species. 

In addition to the northward expansion of round sardinella, in recent decades 

important declines in biomass, landings and body condition of sardine and anchovy 

have been observed in the NW Mediterra nean Sea (Van Beveren et al. ͲͰͱʹ, Brosset 

et al. ͲͰͱͷ). The stocks of both species are overfished in this area (Coll & Bellido ͲͰͱ͹). 

In contrast, round sardinella landings have increased, with large fluctuations due to 

its low commercial value (Palo mera et al. ͲͰͰͷ, Coll et al. ͲͰͱ͹). At present, the 

potential factors controlling the population of small pelagic fish in the NW 

Mediterranean are still un clear and there is an urgent need to understand the 

mechanisms that are driving these fluctuations and to assess whether the expansion 

of round sardinella affects sardine and anchovy populations (competition hypothesis) 

and the whole pelagic marine food web (Coll et al. ͲͰͱ͹). The ͳ species mainly occur 

from the coastal area to the edge of the continental shelf. Sardine is found in waters 

up to ͲͰͰ m depth, although it is more common in shallower areas, and anchovy is 

distributed in a larger area from the coast to off-shore waters, to areas where the 

maximal depth is around ʹͰͰ m (Palomera et al. ͲͰͰͷ). Round sardinella has a 

preference for depths of ʹ Ͱ−ͶͰ m (Zgozi et al. ͲͰͱ͸), and spawning of round sardinella 

takes place in shallower waters than anchovy, al though both species spatially overlap 

at the larval stages (Sabatés et al. ͲͰͰ͸, Schismenou et al. ͲͰͰ͸).  

Accordingly, the aim of the present study was to investigate the diet of round 

sardinella on a seasonal basis, and compare it with trophic information on sardine and 

anchovy from the same area, through complementary methodologies: stomach 

content analysis and stable isotope analysis (δͱ͵N and δͱͳC values). Isotopic 

information provides a long-term, integrated measure of the assimilated food to 

explore the trophic niche relationships between the ͳ sympatric species on a wide 

temporal scale, while stomach content analysis provides more detail about the prey 

(Boecklen et al. ͲͰͱͱ). Although outcomes of stomach content and isotopic analysis 

need to be interpreted with caution (Nielsen et al. ͲͰͱ͸), their combination is very 

useful to better understand the trophic ecology of organisms at different time scales 
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and resolutions, and has previously been successfully used in the study of small pelagic 

fishes (e.g. Costalago et al. ͲͰͱʹ, Le Bourg et al. ͲͰͱ͵). 

 

Ͳ.Ͳ Materials and methods 

Study area and sampling procedure 

The study area was located on the continental shelf of the Ebro River Delta (NW 

Mediterranean Sea; Fig. ͱ). This area is an important fishing ground and spawning area 

for small pelagic fishes and has been identified as a priority area of conservation 

(Palomera et al. ͲͰͰͷ, Coll et al. ͲͰͱͲ, 

ͲͰͱ͵, Piante & Ody ͲͰͱ͵). In the NW 

Mediterranean Sea, sea surface 

temperatures and primary production 

follow annual cycles characterized by 

strong seasonality. Although the coastal 

zones of the area are considered oligo 

trophic, inputs from the Ebro outflow 

and episodes of strong winds increase 

the availability of nutrients. During fall 

and winter, the water temperature is at 

its lowest and water column mixing is 

induced by strong winds, leading to 

higher nutrient availability at the 

surface, with a peak of phytoplankton in 

late winter and spring (Salat et al. ͲͰͰͲ). 

On the other hand, in late spring and 

summer, during the period of water column stratification, there is a reduction in 

nutrients in the photic zone. At this time, the inputs of nutrients to the surface are 

supplied by the Ebro River outflow (Estrada ͱ͹͹Ͷ, Palomera et al. ͲͰͰͷ). Zooplankton 

abundance and composition show high spatial and temporal variability in the NW 

Mediterranean Sea (Calbet et al. ͲͰͰͱ). However, some studies have found higher 

zooplankton biomass after the late winter/ early spring phytoplankton bloom (Andreu 

& Duarte ͱ͹͹Ͷ, Fernández de Puelles et al. ͲͰͰͳ). In general, copepods dominate the 

Fig. ͱ. (A) Sampling area (dashed line) in the NW 
Mediterranean Sea where round sardinella 
Sardinella aurita, sardine Sardina pilchardus and 
anchovy Engraulis encrasicolus were collected. 
The harbours where samples were landed 
(Torredembarra, Tarragona and Cambrils) are 
indicated. (B) Location of the study area in the 
Mediterranean Sea. 
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zooplankton community throughout the year, with a dominance of calanoid copepods 

during spring and winter (Calbet et al. ͲͰͰͱ, Sabatés et al. ͲͰͰͷ). In contrast, other 

groups present a clear pattern of seasonality. Cladocera and Appendicularia show high 

abundance in summer and Chaetognatha have a summer− autumn peak, whereas 

Cnidaria and Thaliacea are abundant in spring (Gili et al. ͱ͹͸͸, Calbet et al. ͲͰͰͱ, 

Pascual ͲͰͱͶ).  

For stomach content analysis, samples of adults and juveniles of round sardinella 

were obtained from commercial vessels working in the study area (spring ͲͰͱͲ [April 

and May], winter ͲͰͱͳ [March]) and from an experimental oceanographic cruise 

carried out in the same study area in summer ͲͰͱͳ (July) (ECOTRANS Project, Institut 

de Ciències del Mar–CSIC; Fig. ͱ, Table Ͳ). Samples obtained from commercial vessels, 

corresponding to spring ͲͰͱͲ and winter ͲͰͱͳ, were also used for stable isotope 

analysis (see Section Ͳ.ͳ). Samples from the experimental oceanographic cruise in 

summer ͲͰͱͳ were only used for stomach content analysis. For stable isotope analysis, 

samples of adults and juveniles of round sardinella, sardine and anchovy were 

obtained from commercial vessels working in the study area in spring, summer and 

fall ͲͰͱͲ and winter ͲͰͱͳ. All individuals were immediately frozen after capture and 

stored at −ͲͰ°C until morphological measurements, tissue and stomach collection 

were conducted. Total body length ranges considered to classify the individuals as 

adults or juveniles were based on the size at first maturity (when ͵Ͱ% of individuals 

at that size are mature), which was defined as ͱ͵ cm for round sardinella (Tsikliras & 

Antonopoulou ͲͰͰͶ), ͱͱ cm for anchovy (Palomera et al. ͲͰͰͳ) and ͱͳ cm for sardine 

(Abad & Giraldez ͱ͹͸ͳ).  

Several factors can contribute to variation in isotopic signatures and stomach 

content analysis. It is important to take into account the limitations of both techniques 

(Boecklen et al. ͲͰͱͱ, Nielsen et al. ͲͰͱͷ). Stomach content analysis provides 

information on diet over a short period of time (e.g. ͱ d), but at a high taxonomic 

resolution. On the other hand, stable isotopes of muscle tissue integrate the diet of a 

consumer over a long period (from several weeks to some months in marine fish; 

Vander Zanden et al. ͲͰͱ͵). Values of stable isotope are mostly affected when changes 

in environmental conditions are persistent in time (seasonal differences) or space 

(spatial differences) (Boecklen et al. ͲͰͱͱ). Therefore, in this study, stable isotope 
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values of summer ͲͰͱͲ are as sumed to be representative of summer season for other 

years (e.g. summer ͲͰͱͳ) in the same sampling area.  

 

Stomach content analysis of round sardinella 

In total, ͱͳͷ stomachs of round sardinella caught in spring ͲͰͱͲ, winter ͲͰͱͳ and 

summer ͲͰͱͳ were analysed. The stomach contents were extracted un der a 

stereomicroscope (Leica MͲͰ͵ C) and preserved individually in a buffered ͵% 

formaldehyde− seawater solution. No regurgitation was de tected in the oesophagus, 

and the contents of the intestine were discarded. After disaggregation of stomach 

contents, pools of ͵ to ͱͳ stomachs were diluted to a known volume of filtered 

seawater, and homogenized aliquots of each pool were examined under a 

stereomicroscope at ͱͰͰ× magnification until no new prey items were found. Pooling 

of the stomach contents of fish from the same haul in dietary studies of small pelagic 

fish is a common practice, since individuals from the same haul present similar prey 

items in the stomachs (Van Der Lingen ͲͰͰͲ, Nikolioudakis et al. ͲͰͱͲ). In this study, 

to pool the stomachs, factors such as size, haul and fishing day were taken into 

account. Ali quots of ʹ−ͷ ml of the total volume of the pools (ͱʹͰ ml) were analysed. 

Stomach contents ob tained in spring ͲͰͱͲ were not pooled since it was not possible 

to homogenize the predominant food items; therefore, all stomach contents were 

individually analysed (Table Ͳ). All prey in the aliquots were identified to the lowest 

taxonomical level possible (generally up to species or genus level) and counted. Only 

prey items that could be identified were re corded, and the numbers of identified prey 

Table Ͳ. Sampling information of round sardinella (Sardinella aurita) collected for dietary 
analysis. Vacuity index (V% ) is the percentage of empty stomachs.  Time fished is the usual 
fishing time range per vessel according to fishing gear. 

Season 
Size class 

range 
Pool 

Stomachs 
analysed 

V % 
Sampling 

date 
Time fished 

GMT (h) 
Fishing gear 

Spring  
2012 

9.6-13.6 No 20 40 13/04/12 00:00-06:00 purse seine 
19.8-25.2 No 10 20 23/04/12 10:00-04:00 gillnet 

19-26 No 20 0 04/05/12 00:00-06:00 purse seine 

Winter  
2013 

10.8-11.9 Yes 10 0 26/03/13 10:00-04:00 gillnet 
12.0-13.0 Yes 10 0 26/03/13 10:00-04:00 gillnet 
13.2-14.7 Yes 10 0 26/03/13 10:00-04:00 gillnet 
22.2-24.0 Yes 5 0 20/03/13 00:00-06:00 purse seine 

Summer 
2013 

12-16.2 Yes 13 0 10/07/13 06:00-07:00 bottom trawling 
16.8-23.6 Yes 13 7.7 10/07/13 06:00-07:00 bottom trawling 
21.5-29.5 Yes 7 28.6 07/07/13 06:00-07:00 bottom trawling 
17.5-24.6 Yes 9 0 07/07/13 09:00-10:00 bottom trawling 
16.7-20.1 Yes 10 0 08/07/13 11:00-12:00 bottom trawling 
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in the pool were standardized to numbers of prey per stomach. Whenever possible, 

the length of each prey was measured using an ocular micrometer. Dry weight of prey 

was mathematically reconstructed from the literature using length−weight 

relationships for specific species, genera or groups (Borme et al. ͲͰͰ͹, Costalago et al. 

ͲͰͱͲ, Brosset et al. ͲͰͱͶ; Table Sͱ in the Supplement at www. int-res. com/articles/ 

suppl/ mͶͲͰ pͱͳ͹ supp. pdf). The contribution in terms of weight of dinoflagellates, 

tintinnids and diatoms was not considered because of their low weight compared to 

metazoan prey. Numerical size-frequency histograms of the prey were constructed for 

each season and each ontogenetic group. To describe the contribution of each prey 

group to the diet, the numerical percentage (%Ni = contribution by number of food 

type i in relation to the number of items in the whole contents) and the weight 

percentage (%Wi = dry weight of food type i in re lation to the weight of the whole 

stomach contents) were calculated. All of these trophic metrics were based on the 

number of non-empty stomachs. 

 

Stable isotope analysis 

Stable isotopes of δͱ͵N and δͱͳC have been broadly used to study trophic ecology of 

consumers (Layman et al. ͲͰͱͲ). Particularly, δͱͳC is often used as a proxy of the 

primary source of dietary carbon and δͱ͵N as a proxy of trophic position (Layman et al. 

ͲͰͱͲ). In the present study, we analysed δͱ͵N and δͱͳC values in muscle samples of 

round sardinella, anchovy and sardine caught in spring, summer and fall of ͲͰͱͲ and 

winter ͲͰͱͳ. Specifically, a small portion of the dorsal muscle without skin from each 

fish was sampled, freeze-dried and powdered, and Ͱ.Ͳ͸−Ͱ.ͳͳ mg of powdered muscle 

was packed into tin capsules. Isotopic analyses were performed at the Laboratory of 

Stable Isotopes of the Estación Biológica de Doñana (www.ebd.csic.es/lie/index.html). 

Samples were combusted at ͱͰͲͰ°C using a continuous flow isotope-ratio mass 

spectrometry system (Thermo Electron) by means of a Flash HT Plus elemental 

analyser interfaced with a Delta V Advantage mass spectrometer. Based on laboratory 

standards, the measurement error was ±Ͱ.ͱ and ±Ͱ.Ͳ for δͱͳC and δͱ͵N, respectively. 

The standards used were EBD-Ͳͳ (cow horn, internal standard), LIE-BB (whale baleen, 

internal standard) and LIE-PA (feathers of razorbill, internal standard). These 

laboratory standards were previously calibrated with international standards supplied 

by the International Atomic Energy Agency (Vienna). Correction for lipids was not 
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conducted, since the C:N ratio was < ͳ.͵ for all samples (Post et al. ͲͰͰͷ). To provide 

insight into species’ trophic niche widths, and to estimate the degree of isotopic niche 

overlap between species, we calculated Bayesian isotopic standard ellipse areas 

corrected for sample size (SEAc), firstly for each season and then for all seasons 

together (Jackson et al. ͲͰͱͱ). Higher values of this metric represent a broader trophic 

niche width (Layman et al. ͲͰͱͲ). Isotopic SEAs and their overlap were calculated 

using the routine Stable Isotope Bayesian Ellipses in the SIAR library (SIBER; Jackson 

et al. ͲͰͱͱ). 

 

Statistical analyses 

Differences in stomach contents of round sardinella between seasons and 

ontogenetic stages (juveniles and adults) were statistically compared using Ͳ-way 

semi-parametric permutational multivariate analyses of variance (PERMANOVAs) 

based on a Bray-Curtis distance matrix (Anderson et al. ͲͰͰ͸). Prior to these analyses, 

data were square-root transformed to minimize the impact of outliers. In the case of 

significant results, pairwise tests were performed. To analyse the average dissimilarity 

between seasons and to identify which prey made the greatest contribution to the 

observed differences in diet composition of adults and juveniles of round sardinella, 

the SIMPER analysis was applied (Clarke & Gorley ͲͰͰͶ). Differences in δͱ͵N and δͱͳC 

values between round sardinella, anchovy and sardine were tested using a ͱ-way semi-

parametric PERMANOVA based on a Euclidean distance matrix (Anderson et al. 

ͲͰͰ͸). Analyses were run using PRIMER-E Ͷ software (Clarke & Gorley ͲͰͰͶ). 

Potential ontogenetic changes in each species were explored by analysing the 

relationship between iso isotopic values and body size (total length) using linear 

regressions and adopting a significance level of α = Ͱ.Ͱ͵. Linear regression analyses 

were performed with R version ͳ.ͳ.Ͳ. (R Core Team, ͲͰͱ͸). 
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Ͳ.ͳ Results 

Stomach contents of round sardinella 

Overall, the stomach contents of round sardinella were composed of a wide variety 

of planktonic organisms (͵͸ different prey categories were identified), composed 

mainly of zooplanktonic organisms (Figure Ͳ, Table SͲ). We found significant 

differences in stomach content composition between seasons and between juvenile 

and adult stages (Fig. Ͳ; seasons, pseudo-FͲ,ͱͱ͸ = ͷͰ.ͳͰ, p < Ͱ.ͰͰͰͱ; ontogenetic, 

pseudo-Fͱ,ͱͱ͸ = ͲͲ.ͷʹ, p < Ͱ.ͰͰͰͱ; all pairwise tests, p < Ͱ.ͰͰͱ). In spring ͲͰͱͲ, salps 

dominated the diet of round sardinella (N% = Ͳ͵.ͱͶ and ͸͵.ͱͱ%, for juveniles and 

adults, respectively; W% = ͷͰ.͹Ͷ and ͹͹.ͲͰ% for juveniles and adults, respectively; 

Fig. ͳA,B). In addition, amphipods of the suborder Hyperiidea (Fig. ͳC) were present 

in Ͷ͸% of the stomachs of adults, although they were never abundant (N% = Ͱ.͹Ͳ; Fig. 

Ͳ). In spring, in juveniles of round sardinella, copepods were numerically the most 

important group (N = ͵ͳ.ͷͷ%; Table SͲ), with Centropages spp. and Euterpina 

acutifrons representing ͱͲ% of total prey number.  

 

 
 

Fig. Ͳ. Percentages of prey categories found in the stomach contents of round sardinella Sardinella 
aurita juveniles and adults by season (spring ͲͰͱͲ, winter ͲͰͱͳ and summer ͲͰͱͳ) in terms of 
number of prey items (N) and weight of prey items (W). 
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During winter ͲͰͱͳ, the diet of juveniles and adults was also significantly different 

(pairwise test, p < Ͱ.ͰͰͱ). The diet of juveniles in winter was mainly composed of 

appendicularians and other 

unidentified tunicates that 

numerically represented ͲͶ.Ͷ͵% of 

the total contents and ʹ ͵.͹ͱ% in dry 

weight. Moreover, microplankton 

(diatoms, dinoflagellates and 

tintinnids) and copepods also made 

an important contribution to the 

total diet (N% = ͳͱ.͸͸ and Ͳͱ.ͷ͹%, 

respectively). On the other hand, 

adults of round sardinella preyed 

mainly on copepods, tintinnids and 

diatoms (N% = ͳͱ.Ͱ͸, ʹ.͸ͱ and 

ͳʹ.͵͹%, respectively), but in terms 

of weight, copepods dominated the 

diet by far (W% = ͹ͷ.ͱͳ%). 

Specifically, Acartia spp. and E. 

acutifrons were the most important 

copepods.  

In summer ͲͰͱͳ, the most important prey were copepods (N% = ͵ͳ.͵Ͷ%, W% = 

͵ͳ.ͲͶ%), mainly calanoids, with a higher numerical presence of Acartia spp. in adults 

and Centropages spp. in juveniles. Cladocerans (mainly Penilia avirostris) were 

abundant in both ontogenetic stages (Fig. Ͳ). Decapods and chaetognaths were not 

numerically abundant but were important in terms of dry weight; decapods 

contributed to ͱ͵.͹Ͳ% of the total diet of juveniles and chaetognaths to Ͳ͸.ͱͳ% of the 

total diet of adults (Table SͲ). 

Round sardinella consumed prey within a wide size spectrum throughout the year 

(Fig. ʹ ). In general, juveniles consumed prey of smaller size than adults. In spring ͲͰͱͲ, 

due to the consumption of salps, the range of prey length was very wide, with 

individuals from Ͱ.ͱ mm to ͲͰ mm (Fig. ʹA,B). Prey of size classes Ͱ.ͱ−Ͱ.Ͳ, Ͱ.ͷ−Ͱ.͸ 

Fig. ͳ. Prey found in stomachs of round sardinella 
Sardinella aurita during spring: (A) Petri dish with the 
contents of ͱ stomach, (B) salps isolated from the gut 
content, (C) specimen of salp with an amphipod 
parasite. Scale bars are Ͳ mm. 
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and Ͳ.Ͷ−Ͳ.ͷ mm were the most frequently consumed by juveniles, while adults showed 

preferences for larger prey within the Ͳ.ͷ−Ͳ.͸, ͳ.ͳ− ͳ.ʹ and Ͷ−ͷ mm size class ranges. 

In winter ͲͰͱͳ, due to the high presence of phytoplankton and tintinnids in the 

stomachs, a high proportion of the prey had a size range <Ͱ.ͱ mm (ʹͶ.͵Ͷ% of the total 

prey measured) (Fig. ʹC), while ͲͰ.ͳ% of prey were within Ͱ.ʹ−Ͱ.͵ mm). In summer 

ͲͰͱͳ, there was a clear difference in size range between adults and juveniles (Fig. ʹD). 

Prey items of Ͱ.Ͳ−Ͱ.ʹ mm contributed Ͳͷ.ͱͲ% to the total measured prey in the diet 

of round sardinella juveniles, whereas in adults, prey items within the Ͱ.Ͷ−Ͱ.͹ mm 

size class contributed ʹͳ.ͶͰ% to the total measured prey.  

 

 

Figure ʹ. Proportion of the prey size classes in the stomach contents of round sardinella by season: 
(A,B) spring ͲͰͱͲ, (C) winter ͲͰͱͳ, (D) summer ͲͰͱͳ. The shaded range from <Ͱ.ͱ to ʹ mm in panel 
(A) is amplified to a higher resolution in panel (B). 
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Based on numerical composition, SIMPER analysis revealed that the average 

dissimilarity was high between seasons. The group that contributed more than ͱͰ% to 

the dissimilarity of the diet between spring ͲͰͱͲ and winter ͲͰͱͳ were diatoms, 

followed by tintinnids and dinoflagellates (͹.ʹ͹ and ͸.ͷͳ%, respectively) and copepods 

(ͷ.ʹͱ%; Table Sͳ), which presented high abundances in winter, while salps that were 

the most abundant group in spring ͲͰͱͲ made a small contribution to the dissimilarity 

of diets due to their lower abundance in absolute terms. Comparing spring ͲͰͱͲ and 

summer ͲͰͱͳ diets, copepods and cladocerans (ͱ͵.ͷʹ and ͱͰ.ʹ͹%, res pectively) were 

the prey groups that contributed most to the dissimilarity between seasons. 

Cladocerans also highly contributed to the dissimilarity of diets between winter and 

summer ͲͰͱͳ (ͱͳ.ͱͰ%), followed by diatoms (͹.ͳͷ%) and tintinnids (ͷ.͵͵%; Table Sͳ). 

 

Isotopic comparisons among species and sizes 

 

Figure ͵. Standard ellipses for adults (solid lines) and juveniles (dashed lines) of round sardinella 
Sardinella aurita, anchovy Engraulis encrasicolus and sardine Sardina pilchardus during spring,
summer, fall ͲͰͱͲ and winter ͲͰͱͳ. Individual δͱ͵N and δͱͳC values of adults (filled dots) and 
juveniles (open dots) are also graphed. 
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Stable isotopic values of round sardinella differed significantly from those of 

anchovy and sardine (Fig. ͵; pseudo-FͲ,Ͳͳͱ= Ͳͳ.ͱ͹, p < Ͱ.ͰͰͱ). Pairwise tests indicated 

that, depending on the season, δͱ͵N and δͱͳC values of round sardinella juveniles were 

similar to anchovy and sardine juveniles. Specifically, when comparing only between 

juvenile stages of round sardinella and the other Ͳ species, round sardinella had similar 

δͱ͵N and δͱͳC with sardine in summer ͲͰͱͲ and anchovy in fall ͲͰͱͲ (Table ͳ). In winter 

ͲͰͱͳ, round sardinella juveniles had δͱ͵N and δͱͳC values similar to both sardine and 

anchovy juveniles. In contrast, comparison between adult stages revealed that round 

sardinella adults had significantly higher δͱ͵N and δͱͳC values than anchovy and 

sardine adults during the different seasons (pairwise comparison p < Ͱ.ͰͰͱ; Table ͳ). 

Table ͳ. Number of analysed individuals (n), mean (± standard deviation) of δͱ͵N and δ13C values 
(in ‰), total body length (TL ± sd; in cm) of juveniles and adults of round sardinella (Sardinella 
aurita), anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) during spring, 
summer, fall and winter.  
 Spring 2012 Summer 2012 Fall 2012 Winter 2013 
 Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult 

Round sardinella 
n 10 10 6 14 10 10 9 10 
δ15N 9.1±1.0 8.7±0.3 8.9±0.7 9.0±0.4 7.5±0.5 9.2±0.2 7.9±0.7 9.2±0.5 
δ13C -18.6±0.2 -18.7±0.2 -18.8±0.2 -18.7±0.1 -18.1±0.2 -18.2±0.2 -19.0±0.3 -18.5±0.1 
TL 11.0±0.7 23.6±1.5 13.2±0.6 20.7±3.5 10.3±1.4 24.0±1.8 11.8±0.8 23.2±1.1 

Anchovy 
n 5 14 10 10 10 10 10 11 
δ15N 7.8±0.3 8.0±0.4 7.2±0.7 8.1±0.3 6.6±1.7 8.1±0.2 8.4±0.8 8.2±0.2 
δ13C -19.8±0.5 -19.3±0.3 -18.8±0.3 -19.0±0.2 -17.9±0.4 -18.8±0.2 -18.9±0.4 -19.3±0.2 
TL 10.3±0.2 13.9±1.9 8.2±0.7 14.5±1.2 8.4±0.9 14.0±1.3 9.6±1.1 14.0±0.8 

Sardine 
n 10 10 8 11 11 8 6 9 
δ15N 8.4±0.6 7.8±0.6 8.8±0.4 8.1±0.3 8.8±0.6 8.2±0.3 8.2±0.6 8.1±0.4 
δ13C -19.2±0.4 -19.6±0.6 -19.2±0.2 -20.0±0.4 -18.8±0.6 -19.4±0.6 -19.3±0.3 -19.2±0.4 
TL 11.3±0.2 17.9±0.6 9.5±0.3 15.7±1.2 10.6±0.6 17.7±1.0 11.5±0.2 12.9±0.5 

SEAc values (a proxy of trophic niche) of round sardinella overlapped differently 

with anchovy and sardine depending on the ontogenetic stage and season. In spring 

ͲͰͱͲ, round sardinella juveniles showed little overlap with sardine juveniles (ͳ.ʹͷ%). 

Round sardinella adults also overlapped with sardine juveniles (͹.͸ʹ%; Fig. ͵). In 

summer ͲͰͱͲ, round sardinella juveniles overlapped with anchovy adults (ͱͷ.ͰͲ%), 

while round sardinella adults segregated completely from the other Ͳ species. In fall 

ͲͰͱͲ and winter ͲͰͱͳ, there was greater SEAc overlap between round sardinella and 

the other Ͳ small pelagic fish. In fall ͲͰͱͲ, the overlap of round sardinella juveniles 

with anchovy juveniles was ͱ͸.͸ͷ%, while round sardinella adults overlapped with 

sardine juveniles (ͱʹ.͸͵%; Fig. ͵). In winter ͲͰͱͳ, round sardinella juveniles had an 
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overlap of ͲͶ.ͷʹ and ͳ͹.ͱ͹% with sardine juveniles and adults, respectively, and an 

overlap between round sardinella juveniles and anchovy adults and juveniles of ʹͱ.Ͳ͹ 

and Ͳ.ʹͶ%, respectively. In contrast, round sardinella adults only overlapped the 

isotopic niche with anchovy juveniles in a low proportion (͵.ͷͷ%; Fig. ͵).  

When assessing all seasons together and the SEAc as a measure of trophic niche 

width, we observed that round sardinella juveniles had a wider trophic niche width 

than adults (Fig. Ͷ). Therefore, round sardinella juveniles overlapped in high 

proportion with anchovy juveniles (ʹͰ.͹%), which also present a large trophic niche 

width, and with sardine juveniles (Ͳ͵.͸ͳ%; Fig. Ͷ). In contrast, the SEAc of round 

sardinella juveniles overlapped in low proportion with that of anchovy adults (͹.͹ͱ%). 

The low overlap ob served with sardine adults was not considered as a potential 

trophic overlap between these Ͳ groups (round sardinella juveniles and sardine adults; 

Ͱ.Ͱͳ%). Round sardinella at adult stages only overlapped with sardine juveniles in low 

proportion (͸.Ͳͱ%) and segregated the trophic niche from both ontogenetic stages of 

anchovy (Fig. Ͷ).  

Fig. Ͷ. Isotopic ellipse areas (δͱ͵N and δ13C, in ‰Ͳ) of adults and juveniles of round sardinella 
Sardinella aurita, anchovy Engraulis encrasicolus and sardine Sardina pilchardus combining 
isotopic data from all seasons (spring, summer, fall ͲͰͱͲ and winter ͲͰͱͳ). The right side shows 
density plots of Bayesian ellipse area as a proxy of trophic niche width. Black points correspond to 
the mean standard ellipse area, while boxes show ͵Ͱ (black), ͷ͵ (grey) and ͹͵% (white) credible 
intervals. 
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Regarding the isotopic niche width, round sardinella and anchovy both showed 

larger isotopic niche width at the juvenile than at the adult stage. Conversely, sardine 

had a slightly larger isotopic niche at the adult stage (Fig. Ͷ). These trends were also 

supported by the relationship between body length and δͱ͵N values (Fig. ͷ). Body 

length of anchovy and round sardinella were positively correlated to δͱ͵N values, 

suggesting a higher trophic position of larger sized individuals even when smaller-

sized individuals (juveniles) showed high variability in δͱ͵N values (Fig. ͷA,B). In 

contrast, body length and δͱ͵N values of sardine were negatively correlated (Fig. ͷC), 

indicating lower trophic positions of larger-sized sardines. In anchovy and sardine, 

body length had a significantly negative relationship with δͱͳC (Fig. ͷE,F), whereas 

round sardinella body length and δ13C did not show any relationship (Fig. 7D). 

 

Ͳ.ʹ Discussion 

In this study, we present new information on the trophic ecology of round 

sardinella, a range expanding pelagic fish in the NW Mediterranean Sea, by combining 

stomach content and isotopic analyses. Overall, stomach contents revealed that round 

sardi nella mainly preys on gelatinous zooplankton, copepods, cladocerans, tintinnids 

and diatoms, indicating a generalist diet. Likewise, isotopic results revealed that round 

Fig. ͷ. Relationships between the body length (standard length, in cm), δͱ͵N and δͱͳC values of 
(A,D) round sardinella Sardinella aurita, (B,E) anchovy Engraulis encrasicolus and (C,F) sardine 
Sardina pilchardus. Solid line: linear regression; dashed line: ͹͵% confidence interval. 
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sardinella partially overlaps in its trophic niche with anchovy and sardine, mostly at 

the juvenile stages, whereas it mostly segregates its trophic niche at the adult stage. 

The observed seasonal variation in the diet of round sardinella is in accordance with 

the opportunistic feeding behaviour described for round sardinella in other areas 

(Cury & Fontana ͱ͹͸͸, Tsikliras et al. ͲͰͰ͵). However, to our knowledge, this is the 

first time that gelatinous zooplankton, mainly salps, have been described as the main 

prey for round sardinella and other small pelagic fish in the Mediterranean Sea 

(Karachle & Stergiou ͲͰͱͷ).  

Feeding on salps by small pelagic fish has been reported in the southwestern 

Atlantic Ocean, where the analysis of stomach contents of Argentine anchoveta 

Engraulis anchoita revealed that this species consumed large quantities of salps when 

the availability of other zooplankton groups, such as copepods and cladocerans, was 

lower in the ecosystem (Mianzan et al. ͲͰͰͱ). However, because we did not have data 

on the zooplankton abundance during the fish-sampling period, we cannot establish 

if round sardinella selected salps over other prey or fed on salps because they were 

more abundant at the time than other planktonic groups. Salps generally form large 

swarms (blooms), especially during spring (Pascual ͲͰͱͶ), so it is likely that round 

sardinella prey on salps due to the high availability of this prey in certain periods. 

Although gelatinous zooplankton has generally been considered a prey of low 

nutritional quality without relevance for predators (Doyle et al. ͲͰͰͷ), in recent years 

it has been found that salps are more nutritional than previously thought, with a high 

protein content (Henschke et al. ͲͰͱͶ). The energy demand of marine predators may 

be achieved by a high consumption of salps (Dubischar et al. ͲͰͱͲ, Henschke et al. 

ͲͰͱͶ), as has been observed for top predators in the NW Mediterranean Sea (Cardona 

et al. ͲͰͱͲ) and similar to what we observed for round sardinella in spring. Moreover, 

we also found amphipods of the family Hyperiidae in many stomachs of round 

sardinella, which are common parasites of salps (Laval ͱ͹͸Ͱ). The ingestion of these 

amphipods may increase the energy gain from the consumption of salps. Other 

tunicates (mainly appendicularians) were an important part of the diet of juvenile 

round sardinella during winter. This could be related to the large aggregations of this 

prey that are sometimes found in the western Mediterranean (Champalbert ͱ͹͹Ͷ). 

This result is in agreement with a previous study that observed dietary preference of 
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round sardinella for tunicates during the cold season in the central Mediterranean Sea 

(Lomiri et al. ͲͰͰ͸).  

Recently, qualitative ecosystem food-web models representing the NW 

Mediterranean pelagic ecosystem highlighted the key role of gelatinous zooplankton 

when describing the temporal dynamics of small pelagic fish (Coll et al. ͲͰͱ͹). The 

ability of round sardinella to eat gelatinous zooplankton compared to other small 

pelagic species (see Table ͱ) may represent an advantage in future potential scenarios 

of global warming (opportunism hypothesis), since gelatinous zooplankton is 

expected to positively benefit from future environmental changes (Mo li - nero et al. 

ͲͰͰ͹, Brotz & Pauly ͲͰͱͲ, Brotz et al. ͲͰͱͲ, Grémillet et al. ͲͰͱͷ). Moreover, if round 

sardinella have the capacity to consume salps and other clupeiforms do not (see Table 

ͱ), round sardinella could be in an advantageous fitness position compared to other 

small pelagic species in future scenarios where plankton biomass could decrease 

(Chust et al. ͲͰͱʹ). Future ecological models should consider gelatinous zooplankton 

with a higher resolution to better describe the present and future dynamics of the 

pelagic ecosystems (Jaspers et al. ͲͰͱʹ). 

The diet of round sardinella was composed of other preferred prey in other seasons. 

The high proportion of tintinnids and diatoms observed in winter (higher for adults 

than for juveniles) was probably related to the high abundance of phytoplankton in 

this season (Arin et al. ͲͰͰ͵). In our study area, the increase in phytoplankton biomass 

is a consequence of the water discharges of the Ebro River and strong northern winds, 

which may generate local upwelling processes triggering nutrient-enrichment events, 

which in turn fuel high primary production (Lloret et al. ͲͰͰʹ, Arin et al. ͲͰͰ͵, 

Costalago & Palomera ͲͰͱʹ, Barroeta et al. ͲͰͱͷ). The presence of phytoplankton in 

the stomach contents of round sardinella was previously described in areas with 

upwelling conditions or important inputs of nutrients, such as Senegalese or Egyptian 

waters (Nieland ͱ͹͸Ͳ, Madkour ͲͰͱͲ). In contrast, in oligotrophic areas without 

upwelling events or river discharges, such as the Aegean Sea and the central 

Mediterranean, the presence of phyto plankton was not reported in the diet of this 

species (Tsikliras et al. ͲͰͰ͵, Lomiri et al. ͲͰͰ͸, Karachle & Stergiou ͲͰͱʹ).  
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Copepods have also been described as the main prey of round sardinella in many 

studies from the Mediterranean Sea (Tsikliras et al. ͲͰͰ͵, Lomiri et al. ͲͰͰ͸, Madkour 

ͲͰͱͲ, Karachle & Stergiou ͲͰͱʹ, Bayhan & Sever ͲͰͱ͵). In our study, they were the 

principal prey (both in number and weight) only during summer, whereas in winter 

they were the main prey for adults exclusively in terms of weight since phytoplankton 

was numerically the most abundant prey as mentioned above.  

During summer, coinciding with the reproductive season of round sardinella 

(Palomera et al. ͲͰͰͷ), cladocerans were found in high proportions in the stomach 

contents of both adults and juveniles. Cladocerans are an abundant prey in summer 

(Calbet et al. ͲͰͰͱ) and are probably easily captured by round sardinella. Moreover, 

compared to winter, adults clearly fed on larger prey, which have higher energy 

content than smaller prey (Barroeta et al. ͲͰͱͷ). This coincides with the higher energy 

demands for reproduction that round sardinella have in summer (Albo-Puigserver et 

al. ͲͰͱͷ). In previous studies, while size-related variations in diet were correlated with 

morphological changes in gill structure, observed seasonal changes in diet were 

attributed to prey availability (Lomiri et al. ͲͰͰ͸). Thus, the observed seasonal 

changes in the diet of round sardinella in this study are likely related to food 

availability. However, further studies combining stomach content and plankton 

composition are needed to confirm this hypothesis.  

In winter, although round sardinella preyed on phytoplankton, similarly to that 

described for sardine, we found no overlap with sardine in terms of isotopic values. In 

addition, sardine showed a negative relationship of body length to δͱ͵N, which 

highlights that adults of sardine are feeding at a lower trophic level than juveniles, 

suggesting an active filter-feeding activity as the individuals become larger (Costalago 

et al. ͲͰͱͲ). In contrast, in round sardinella, this relationship was positive, showing 

that the importance of phytoplankton for round sardinella decreases as individuals 

grow in size. The observed feeding differences between juveniles and adults of round 

sardinella in this study were also found in round sardinella in the Aegean Sea, where 

Tsikliras et al. (ͲͰͰ͵) observed an increasing trophic level of consumed prey with the 

increase in fish body size, and explained it as a consequence of the different energy 

needs at different life stages. Juveniles of round sardinella preyed on smaller-sized prey 

categories than adults in the central Mediterranean Sea (Lomiri et al. ͲͰͰ͸), similar 
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to our results, and were related to the changes in the number and separation of gill 

rakers (Rincon et al. ͱ͹͸͸). Although we found that larger individuals fed on larger 

prey, smaller individuals also had the capacity to prey on larger animals such as salps. 

The lower mean values of δͱ͵N of round sardinella adults could be a result of predation 

on lower trophic level species, such as salps (Cardona et al. ͲͰͱͲ).  

Our results show that adult individuals of round sardinella seem to segregate their 

niche from other small pelagic fish. The higher values of δͱ͵N observed in almost all 

seasons may be related to consumption of bigger prey at higher trophic levels than 

other small pelagic fish. Anchovy and sardine in the Gulf of Lions in summer consume 

prey mainly in the Ͱ.Ͳ−Ͱ.Ͷ mm size class (Le Bourg et al. ͲͰͱ͵), while in our study, 

adult round sardinella consumed mainly Ͱ.͵−Ͱ.͹ mm prey. However, during the 

juvenile stages, round sardinella partially overlapped with juvenile sardine and 

anchovy (supporting the ‘competition hypothesis’ at the juvenile stages), and the size 

class of prey consumed in summer was similar to that described for sardine and 

anchovy in the Gulf of Lions (Le Bourg et al. ͲͰͱ͵). We can thus hypothesize that in 

situations of food limitation, juveniles of round sardinella, anchovy and sardine could 

be competitors. However, the wide diversity of prey and the dominant presence of 

salps in the diet of round sardinella could be a mechanism to reduce the interspecific 

trophic competition, thus favouring its coexistence with other sympatric small pelagic 

species. If round sardinella abundance and northward distribution continue to 

increase with time, its high trophic plasticity associated with its capacity to consume 

prey not exploited by similar pelagic species could represent an important advantage 

for this species in the face of changes in zooplankton composition.  

We did not observe changes in δͱͳC values with sardinella body length, indicating 

no changes in the source of carbon between juveniles and adults. This may be related 

to the habitat sharing between adults and juveniles and the preference for shallower 

waters of round sardinella (Schismenou et al. ͲͰͰ͸). In contrast, a decline in δͱͳC 

values with increasing body lengths, found for both sardine and anchovy, indicated an 

increase in carbon sources of pelagic origin with fish size, which is probably due to an 

expansion of adult distribution ranges from coastal productive areas to the continental 

shelf as they grow (Giannoulaki et al. ͲͰͱͱ, ͲͰͱͳ). However, the potential spatial 
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overlap or segregation of juveniles and adults of round sardinella, anchovy and sardine 

remains to be quantitatively investigated.  

In conclusion, this study confirms the capacity of round sardinella to feed on 

different prey groups and potentially adapt its diet to environmental prey availability, 

and highlights the importance of the trophic link between gelatinous plankton and 

this species. Future feeding ecology studies of clupeiforms in the Mediterranean 

should focus on detecting potential shifts in diet towards a more gelatinous 

zooplankton preference, which could lead to important consequences in energy fluxes, 

as it has been observed in small pelagic fish of the Pacific Ocean (Brodeur et al. ͲͰͱ͹). 

Moreover, prey availability and nutritional quality of prey should be included in future 

trophic studies of small pelagic fish in order to better understand the advantages or 

disadvantages of preying on gelatinous zooplankton. Due to the differences found in 

trophic overlap between adult and juvenile round sardinella with sardine and anchovy, 

it is advisable to integrate different ontogenetic stages in future assessments in order 

to capture the different trophic interactions. 
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The following supplement accompanies the article 

Trophic ecology of range-expanding round sardinella and 

resident sympatric species in the NW Mediterranean 

Marta Albo-Puigserver, Diego Borme, Marta Coll, Valentina Tirelli, Isabel Palomera, Joan Navarro 

Marine Ecology Progress Series 620: 139–154 (2019) 

 
Table Sͱ. Dry weight (DW; µg) of prey and morphometric relationships used to calculate 
DW. TL = Total length (µm). 

Prey item  
DW 
(µg) 

Regression (length-DW) Reference 

Euterpina acutiforms  DW = (1.389*10–8)TL2.857 Ara (2001) 

Acartia spp.  LogDW = 2.71*LogPL-7.28 Cataletto & Fonda Umani (1994) 

Temora longicornis  LogDW = 2.815*LogPL-7.181 Hay et al. (1991) 

Temora spp.   LogDW = (2.71*LogPL-3.685)/1000 Razouls (1981) 

Calanoida   LogDW = 2.738*LogPL-6.934 Hay et al. (1991) 

Corycaidae  LnDW = 1.96*LnPL-11.64 Van der Lingen (2002) 

Oncaea spp. 1.34 Mean Borme et al. (2009) 

Microsetella spp.  LnDW= 1.15*LnTL-7.79 Satapoomin (1999) 

Oithona spp. 2.2 Mean Pitois & Fox (2006) 

Clytemnestra scutellata  LnDW = 1.96*LnPL-11.64 Van der Lingen (2002) 

Harpacticoida  LnDW = 1.96*LnPL-11.64 Van der Lingen (2002) 

Sapphirina spp.  DW = 6.333*TL1.142 Lopes et al. (2007) 

Candacia spp. 106.20 Mean Pitois & Fox (2006) 

Copepoda   LogDW = 3.13*LogPL-8.18 Uye (1982) 

Centropages spp.  LogDW = 2.451*LogPL-6.103 Hay et al. (1991) 

Decapoda 27.798 Mean La Mesa et al. (2008) 

Copepod nauplii  LogDW = 2.848*LogL-7.265 Durbin & Durbin (1978) 

Copepod copepodites  LogDW = 3.095*LogPL-8.195 Durbin & Durbin (1978) 

Cirripedia cyprid  LogDW = -5.375+2.191*LogTL Muxagata & Williams (2011) 

Cirripeda nauplii  LogDW = -9.088+3.377*LogTL Muxagata & Williams (2011) 

Bivalvia 3.758 Mean La Mesa et al. (2008) 

Evadne spp.   DW = 3.946*L2.436 James (1987) 

Penilia avirostris  LogDW= 4.99*Log L-13.77 Uye et al. (1982) 
Podonidae (no Evadne 
spp.) 

1.6 Mean Fonda Umani et al. (1979) 

Cladocera 1.4 Mean (Podon and Penilia) Fonda Umani et al. (1979) 

Gastropoda 0.6 Mean Sautor & Castel (1995) 

Ostracoda juveniles 6.035 Mean Borme et al. (2009) 

Tunicata Appendicularian  LogDW = 2.51*LogL-6.54 Gorsky et al. (1987) 

Salpida  DW=11.33*L1.77 Heron et al. (1998) 

Polychaeta 5.67 Mean La Mesa et al. (2008) 

Chaetognatha 1430 Mean Omori (1969) 

Amphipoda  LogDW=-2.348+2.793*Log L*1000 Percy (1993) 

Fish eggs 30 Mean Hunter & Dorr (1982) 
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Table SͲ. Numerical percentage (%N) and weight percentage (%W) obtained in stomach 
contents of round sardinella. 

Category Taxon 
Spring 2012 Winter 2013 Summer 2013 

Juvenile Adult Juveniles Adults Juvenile Adult 
%N %W %N %W %N %W %N %W %N %W %N %W 

Copepoda Copepod naupli 6.68 0.06 0.57 <0.01 3.85 1.13 1.89 0.32 0.88 0.02 1.56 0.17 
 Copepodita     0.16 0.01 0.81 0.18     
 Copepoda eggs   0.07  3.47  7.57    1.18  
 Calanoida             
 Acartia spp. 0.49 0.05 0.21 <0.01 0.41 0.33 4.59 23.14 2.65 4.41 27.99 21.36 
 Centropages spp. 8.57 5.87 0.07 <0.01 0.35 3.46 0.27 7.55 9.12 21.71 0.31 0.69 
 Diaixis pygmaea           0.01 <0.01 
 Temora spp. 1.02 0.09     0.27 5.89     
 Candacia spp.         0.29 7.60   
 Calanoida n.d. 4.59 1.85 0.82 0.01 2.81 11.63 2.43 16.78 4.12 6.76 22.53 31.33 
 Cyclopoida             
 Oncaea spp. 1.35 0.09 0.05 <0.01 0.16 0.09 0.27 0.41 0.59 0.19 0.79 0.19 
 Oithona spp. 0.20 0.02 0.11 <0.01 0.00 0.00 0.27 0.67 0.59 0.31 0.19 0.08 
 Corycaeus spp.     0.30 0.31     0.13 0.02 
 Sapphirina spp.   0.21 0.01         
 Harpacticoida             
 Euterpina acutiforms 3.36 0.05 0.05 <0.01 1.50 0.68 5.14 8.68 4.71 1.01 3.95 0.64 
 Microsetella spp. 0.04 <0.01 0.05 <0.01 2.51 0.53 0.54 0.19 2.06 0.19 0.61 0.04 
 Clytemnestra spp. 0.49 0.07 0.00  0.35 0.66       
 Harpacticoida n.d.         1.18 0.17 0.05 0.01 
 Copepoda nd. 26.97 9.13 1.79 0.03 5.92 10.50 7.03 33.34 5.00 2.71 16.65 6.91 
Cladocera Evadne nordmanni           0.19 0.03 
 Evadne spinifera           0.31 0.03 
 Podonidae         1.76 0.69 2.68 0.78 
 Penilia avirostris         55.59 33.50 11.69 4.90 
 Cladocera n.d..   0.02 <0.01       0.03 0.01 
 Cladocera eggs         0.29 0.02 0.05 <0.01 
Ostracoda Ostracoda   0.07 <0.01 0.23 0.57    0.00 0.12 0.13 
Cirripedia Cirripedia cypris 3.28 1.50 0.07 <0.01 0.43 0.58     0.02 0.01 
 Cirripedia nauplii   0.02 <0.01 0.56 0.08       
Mollusca Bivalves larvae 5.45 0.97   0.73 1.13 0.27 1.14 3.24 2.96 1.13 0.77 
 Gastropod larvae 0.66 0.06   0.16 0.54   0.88 0.41 0.76 0.26 
 Mollusca n.d.     0.68        
Decapoda Zoea Carcinus     0.07 0.85   0.29 1.99   
 Anomura larvae 0.16 0.22           
 Caridea larvae         0.59 3.98   
 Decapoda larvae 0.08 0.11 0.02 <0.01     1.47 9.95 0.05 0.12 
Chaetognatha Chaetognatha n.d. 0.12 8.32 0.02 0.09 0.07 11.79    0.00 0.11 28.13 
Polychaeta Polychaeta n.d.. 0.08  0.07 <0.01 1.18 2.76 0.27 1.73 0.29 0.41 0.13 0.13 
Tunicata Appendicularia 0.70 0.35 0.21 <0.01 10.46 37.13   0.29 0.76   
 Pirosoma 0.08 0.01 0.00      0.29 0.26   
 Salpida 25.16 70.96 85.11 99.20 0.69 1.27     0.18 0.01 
 Tunicata n.d. 0.00  0.14 <0.01 18.65 11.96       
Amphipoda Amphipoda hyperiidea 0.45 0.23 0.92 0.59 0.14 0.31       
 Phoronimia sedentaria   0.02 0.05         
 P. sedentaria eggs   0.92          
Invertebrates Eggs     1.39  0.54    0.10  
Eggs Teleost E. encrasicolus    0.07 0.01         
 Teleostea n.d.   0.07 0.01 0.14 1.71     0.60 3.27 
Ctennophora Ctenophora     0.21      0.02  
Cnidaria Cnidaria ephyra     0.07  0.27      
Foraminifera Foraminifera     0.00  0.27    0.01  
Tintinnina Rhabdonellidae 0.49  0.00    10.54  1.18  1.44  

 
Stenosemella 
ventricosa 

5.61  2.86  5.84  9.19    0.99  

 Codonella spp.     0.40  4.05      
 Propectella spp.     0.88  0.27      
 Tintinnida n.d.     7.16    0.29  0.20  
Dinoflagellata Noctiluca spp. 0.49          0.01  
 Protoperidium spp. 1.02  0.02  6.46  3.51  1.76  0.41  
 Ceratium spp.     3.18      0.09  
 Prorocentrum spp.     0.40      0.05  
 Dynophysis spp.     0.07        
 Dinoflagellata n.d.     0.33        
Diatoms Pleurosigma spp. 0.49  2.63  6.10  5.41  0.29  0.48  
 Coscinodiscus spp.   0.02          
 Bacillariphyceae n.d. 0.04  0.02  1.06  30.00    0.06  
Radiolaria Radiolaria     0.23  0.54      
Pollen grain Pollen grain 1.68  2.68  8.79  3.51  0.29  1.16  
Vascular plant Hair vascular plant 0.16  0.02  0.34  0.27    0.12  
Microalgae Microalgae     0.56        
*n.d. : not determined 
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Abstract 

 

Small and medium pelagic fishes play a central role in marine food webs by 

transferring energy from plankton to top predators. In this study, direct calorimetry 

was used to analyze the energy density of seven pelagic species collected over four 

seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine 

Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus 

trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-

specific differences in energy density were linked to spawning period, energy 

allocation strategies for reproduction and growth, and feeding ecologies. Energy 

density of each species varied over time, with the exception of S. colias, likely due to 

its high energetic requirements related to migration throughout the year. In general, 

higher energy density was observed in spring for all species, regardless of their 

breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. 

These results provide new insights into the temporal availability of energy in the 

pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how 

the population dynamics of small and medium pelagic fishes and their predators may 

respond to environmental changes and fishing impacts. In addition, the differences 

found in energy density between species highlighted the importance of using species 

specific energy values in ecosystem assessment tools such as bioenergetic and food 

web models. 

 

 

 

 

Keywords: Energy density; Bioenergetics; Food webs; Mediterranean Sea; 

Environmental variability. 
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ͳ.ͱ Introduction 

The amount of energy available to an individual during its lifecycle affects its ability 

to grow and reproduce and this in turn, affects ecological energetics, that is, how 

energy is acquired, retained and transferred from one trophic level to another in the 

food web (Rossoll et al., ͲͰͱͲ). Ecosystem energetics underpins many food web models 

that are increasingly being used to assist ecosystem-based fisheries and conservation 

management (Christensen and Maclean, ͲͰͱͱ). Knowing the energetic value of the 

main ecological groups is needed in these models to understand energy transfer from 

lower to higher trophic levels and also to validate model outputs. One of the most 

cost-effective and quantitative ways to assess ecological energetics is through energy 

density analysis which provides a direct measure of the nutritional condition and 

quality of an individual or population. 

Energy density is positively correlated with lipid content (Rand et al., ͱ͹͹ʹ; Van Pelt 

et al., ͱ͹͹ͷ), which is important for energy storage and often the first macro-molecule 

to be catabolized (Lloret et al., ͲͰͱʹ). Instead, proteins and carbohydrates remain 

rather constant in most species and have a much lower energy density than lipids 

(Anthony et al., ͲͰͰͰ; Lloret et al., ͲͰͱʹ). Energy storage and nutritional quality of 

fish may fluctuate during the year due to different biological processes (i.e. growth, 

maintenance or reproduction) and external factors (i.e. temperature). In temperate 

regions, pelagic marine environments show important seasonal fluctuations with 

cyclical changes in temperature and food availability (Coma et al., ͲͰͰͰ; Mazzocchi 

and Ribera d’Alcalà, ͱ͹͹͵). In response to this, marine organisms have developed 

different life-history and energy allocation strategies in order to optimise their 

reproduction and population growth (Houston et al., ͲͰͰͶ). Some marine species 

acquire and store energy in periods of high food abundance, which is then used for 

reproduction (they are named ‘capital breeders’). Others use their current energy 

income for reproduction (named ‘income breeders’), and there are also intermediate 

strategies (Alonso-Fernández and Saborido-Rey, ͲͰͱͲ; McBride et al., ͲͰͱ͵).  

Species of fish with faster life cycles and smaller body size, such as small and 

medium sized pelagic fish, also known as forage fish, are thought to respond rapidly 

to environmental fluctuations that have been shown to have important implications 

for fish recruitment and ecosystem structure (Perry et al., ͲͰͰ͵; Peck et al., ͲͰͱͳ). 
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Changes in the energy density of forage fish have been shown to be responsible for 

declines in top-predator populations through negatively impacting their breeding 

success and fitness (Doney et al., ͲͰͱͲ; Österblom et al., ͲͰͰ͸). For example, the 

decline of the common guillemots (Uria aalge) in the North Sea was linked to a 

reduction in the energetic value of their main prey (sprat Sprattus sprattus and lesser 

sandeels Ammodytes marinus) (Wanless et al., ͲͰͰ͵). Furthermore, the decline of 

Steller sea lions (Eumetopias jubatus) in the Gulf of Alaska was partially related to a 

reduction of fattier fishes such as herring (Clupea harengus) within their feeding 

grounds (Rosen and Trites, ͲͰͰͰ). Moreover, small and medium pelagic fishes are a 

good source of food nutrition for humans and in some areas, such as sub-Saharan 

countries, their consumption represent the main protein supply (Kawarazuka and 

Béné, ͲͰͱͱ; Tacon and Metian, ͲͰͱͳ).  

In the Mediterranean Sea, small pelagic fishes such as Sardina pilchardus (sardine), 

Engraulis encrasicolus (anchovy) and Sardinella aurita (round sardinella), and medium 

pelagic fishes such as Trachurus spp. (horse mackerels) and Scomber spp. (mackerels) 

play key roles in the food-web, due to their high abundances and fast population 

turnover rates (Coll et al., ͲͰͰ͸; Palomera et al., ͲͰͰͷ). Despite this, while the energy 

density of multiple forage fishes has been reported in the Atlantic and the Pacific 

Oceans (Anthony et al., ͲͰͰͰ; Dubreuil and Petitgas, ͲͰͰ͹; Pedersen, ͲͰͰͱ; Spitz and 

Jouma’a, ͲͰͱͳ), such data are very scarce in the Mediterranean Sea (Tirelli et al., ͲͰͰͶ; 

Harmelin-Vivien et al., ͲͰͱͲ). 

In the present study, we investigated the ecological energetics of seven forage 

fishes, E. encrasicolus, S. pilchardus, S. aurita, T. trachurus, T. mediterraneus, S. 

scombrus and S. colias, that are ecologically and economically important in the 

western Mediterranean Sea (see Table ͱ). The study aims were to (ͱ) provide reference 

values of the energy densities of their whole-body, (Ͳ) examine potential seasonal 

changes, and (ͳ) make inter-specific comparisons. These results are needed to better 

understand the different life-history strategies of these fishes and regional ecological 

energetics. Energy density analyses are relevant as input data for bioenergetics and 

food web models, increasingly used to predict the cumulative effects of climate change 

and fishing impacts on population and ecosystem dynamics. 
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ͳ.Ͳ Material and methods 

Study area 

The present study was conducted in the continental shelf and upper slope areas 

associated with the Ebro River Delta, northwestern Mediterranean Sea (Fig. ͱ). As a 

consequence of particular oceanographic conditions, such as wind conditions, vertical 

mixing and river discharges (Salat et al., ͲͰͰͲ), this area is an important fishing 

ground of the Mediterranean Sea (Lleonart and Maynou ͲͰͰͳ) and has been identify 

as a priority area for conservation 

(Coll et al., ͲͰͱ͵; Piante and Ody, 

ͲͰͱ͵). Sea surface temperature and 

primary production follow annual 

cycles characterized by strong 

seasonality. From May to October the 

ecosystem is characterized by 

stratification of the water column, 

resulting in a reduction of nutrients in 

the photic zone. In contrast, from 

November to April, the water 

temperature is at its lowest and the 

water column is mixed, leading to 

higher nutrient availability at the 

surface, with a peak of phytoplankton 

in late-winter and spring (Salat et al., 

ͲͰͰͲ). 

 

Sampling procedures 

Individuals of sardine, anchovy, round sardinella, Atlantic horse mackerel 

(Trachurus trachurus), Mediterranean horse-mackerel (Trachurus mediterraneus), 

Atlantic mackerel (Scomber scombrus) and Atlantic chub mackerel (Scomber colias) 

were collected during spring-ͲͰͱͲ, summer-ͲͰͱͲ, fall-ͲͰͱͲ and winter-ͲͰͱͳ from 

commercial vessels of the harbours of Tarragona, Torredembarra and Cambrils 

Fig. ͱ. (A) Map of the study area where small and 
medium sized pelagic fishes were collected. The 
sampling area is indicated with a dashed line and 
black dots are the harbours where samples were 
landed (Torredembarra, Tarragona and Cambrils). 
(B) Position of the study area in the Mediterranean 
Basin. 
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working in the study area (Table ͱ; Fig. ͱ). Due to the lack of catches of T. trachurus in 

summer ͲͰͱͲ in the area of study, this species was not sampled that summer.  

All individuals were immediately frozen after capture and stored at −ͲͰ °C. Total 

body length and weight was recorded for all individuals. From the samples collected, 

for each species, from ͱͰ to ͲͰ individuals per season with similar body size and both 

sexes were selected to measure the energy density (kJ g−ͱ). To reduce the potential 

variation in energy density due to ontogenetic changes, only individuals larger than 

the size at first maturity of each species (length at which ͵Ͱ% of the fish at that size 

are mature) were selected. 

 

Energy density analyses 

In total, the energy density of ͳ͵ʹ individuals of the seven forage fish species was 

determined. This metric is widely used as a proxy of food quality and is thus perfectly 

suitable for comparative studies (Spitz et al., ͲͰͱͲ). For determination of energy 

density, we used direct calorimetry measuring the heat of combustion of small samples 

(Parr ͶͷͲ͵ Semimicro Oxygen Bomb Calorimeter). The calorimeter system was 

calibrated with the combustion of benzoic acid standard. Prior to the determination 

of energy density, each individual was homogenized with a blender and the entire 

individual in the case of E. encrasicolus, S. pilchardus and S. aurita and two subsamples 

in the case of T. trachurus, T. mediterraneus, S. scombrus and S. colias were oven-dried 

at ͷͰ °C to constant mass for ʹ͸–ͷͲ hours. After determining the dry weight, each 

sample was homogenized in a mixer (Retsch Mixer Mill MM-ͲͰͰ) and two pellets of 

ͱͰͰ–ͲͰͰ mg for each individual were obtained with a press for the determination of 

the energy density. If energy densities of the two pellets from an individual differed by 

more than ͳ%, a third pellet was analysed. The average of the two or three subsamples 

was used to calculate the energy density of each individual. 

The energy density was originally measured on dry samples (kJ g−ͱ of dry weight) 

and was converted to wet mass basis (kJ g−1 of wet weight) by taking into account the 

water content of each fish (% dry weight=ͱͰͰ· dry weight· wet weight−ͱ; Lloret et al., 

ͲͰͱʹ). The prey quality of each species was determined following the classification 

proposed by Spitz et al. (ͲͰͱͰ): Low Quality (ED < ʹ kJ g−ͱ), Moderate Quality (ʹ < ED 

< Ͷ kJ g−ͱ) and High Quality (ED > Ͷ kJ g−ͱ). 
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Statistical analyses 

Inter-specific and seasonal differences in energy 

density were tested using one-way semi-parametric 

permutation multivariate analyses of variance tests 

(PERMANOVA test) on the Euclidean distance 

matrix (Anderson et al., ͲͰͰ͸). In the case of a 

significant difference in the energy density of each 

species between seasons or between species, 

pairwise tests were performed. Potential differences 

between sexes were not tested since the number of 

females or males was not always 

sufficient for all species and seasons. Nonetheless, 

previous studies on small pelagic fishes have 

revealed no relationship of gender with lipid 

dynamics of the entire fish (Garrido et al., ͲͰͰ͸). 

PERMANOVA allows for the analysis of complex 

designs without the constraints of multivariate 

normality and homoscedasticity (Anderson et al., 

ͲͰͰ͸). The method calculates a pseudo-F statistic 

directly analogous to the traditional F-statistic for 

multifactorial univariate ANOVA models, using 

permutation procedures to obtain p-values for each 

term in the model (Anderson et al. ͲͰͰ͸). 

PERMANOVA tests were carried out with PRIMER-

E Ͷ software. 

 

ͳ.ͳ Results 

Inter-specific differences in energy density 

The annual energy density was significantly different between species (Pseudo-

FͶ,ͳʹ͸= ͲͲ.ʹ͵; p-value < Ͱ.Ͱͱ) with the lower values for E. encrasicolus and the higher 

values for S. scombrus (Table Ͳ; Fig. Ͳ). Within small pelagic fish, S. pilchardus showed 
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significantly higher energy density than E. encrasicolus and similar to Trachurus spp. 

S. aurita had similar energy density to both, E. encrasicolus and S. pilchardus. Within 

the medium pelagic fishes, T. trachurus and T. mediterraneus had similar energy 

density, which was lower than the Scomber spp. Both Scomber species had significantly 

higher energy density than the rest of the species analysed (Fig. Ͳ). The body length of 

the individuals analysed was also significantly different between all species (Pseudo-

FͶ,ͳʹ͸= ͳͰ͹.ʹͷ; p-value < Ͱ.Ͱͱ). Body lengths of S. pilchardus and E. encrasicolus were 

smaller than ͲͰ cm, S. aurita and T. trachurus had mean body lengths between ͲͰ and 

Ͳ͵ cm while T. mediterraneus and Scomber spp. had body lengths larger than Ͳ͵ cm 

(Table Ͳ). 

None of the seven species studied here were classified as species with low 

nutritional quality. E. encrasicolus, S. aurita and T. mediterraneus were classified as 

forage species of moderate nutritional quality, while S. pilchardus, T. trachurus, S. 

scombrus and S. colias were classified of high prey quality (Table Ͳ). However, within 

the moderate prey quality category, only E. encrasicolus could be classified as 

Fig. Ͳ. Annual energy density (kJ g−ͱ of wet weight) of seven species of small and medium sized 
pelagic fishes from the western Mediterranean Sea. Box length represents interquartile range, bar 
length represents range and horizontal lines represent median values. Black dots are outliers. Pairs 
of means differing significantly (P < Ͱ.Ͱ͵) by pairwise tests between species are indicated by the 
letters – species with the same letter were not significantly different. 
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moderate during all seasons, while within the high quality group only the two Scomber 

spp. had values greater than Ͷ kJ g−ͱ across seasons. 

 

Seasonal differences in energy density 

Seasonal differences in energy density were found in most of the species; only S. 

colias showed similar energy density through the year (Table ͳ). Among the small 

pelagic fishes, energy density of E. encrasicolus was significantly highest during spring 

and lowest during fall. The energy density of S. pilchardus increased in spring and were 

not significantly different in summer, and declined to a minimum during fall and 

winter. For S. aurita energy density in spring and fall were not significantly different 

and higher than in summer and winter (Figure ͳ). 

 

 

Among the medium pelagic fishes, the energy density of T. trachurus slightly 

increased in winter and had similar low values in spring and fall. For the congeneric 

species, T. mediterraneus, energy density was lowest in summer and fall, and increased 

during winter with a peak in spring. S. scombrus had significantly lower energy density 

in winter than in spring and fall. On the contrary, the energy density of S. colias was 

significantly similar between seasons (Table ͳ, Figure ͳ). 

 

  

Table ͳ. Mean and standard deviation of energy density (kJ · g-ͱ of wet weight) and number of 
individuals analyzed (n) of seven small and medium sized pelagic fishes species sampled in the 
western Mediterranean Sea during spring-ͲͰͱͲ, summer-ͲͰͱͲ, fall-ͲͰͱͲ and winter ͲͰͱͳ. Results 
of the PERMANOVA tests (Pseudo-F values) between seasons for each species separately are 
shown. Pairs of means differing significantly (P <Ͱ.Ͱ͵) by pairwise tests are indicated by the 
letters - seasons with the same letter were not significantly different. 
 
Species Pseudo-F  

(p-value) 
n Spring n Summer n Fall n Winter 

E. encrasicolus ͸.͹Ͷ (<Ͱ.Ͱͱ) ͲͰ ͵.͸Ͱ±Ͱ.͵ͷ a ͲͰ ͵.ͳ͹±Ͱ.͵ͷ b ͲͰ ʹ.͹ͳ±Ͱ.Ͳ͸ c ͲͰ ͵.ͳͰ±Ͱ.ͶͶ b 

S. pilchardus ͲͲ.Ͷ͹ (<Ͱ.Ͱͱ) ͲͰ ͷ.ͱͱ±ͱ.Ͱͳ a ͲͰ Ͷ.͵Ͷ±ͱ.Ͳͳ a ͲͰ ͵.ʹͰ±Ͱ.͵͵ b Ͳͳ ͵.Ͳͱ±Ͱ.ʹ͵ b 

S. aurita ͱͰ.͵͵ (<Ͱ.Ͱͱ) ͱͰ Ͷ.͵Ͷ±Ͱ.ͷ͵ a ͱͰ ͵.ͱͶ±Ͱ.͵͹ b ͱͰ Ͷ.Ͱʹ±ͱ.ͱͰ a ͱͰ ʹ.͸Ͱ±Ͱ.͵ʹ b 

T. trachurus ͵.ͳͳ (Ͱ.Ͱͱ) ͱͰ ͵.͸ͳ±Ͱ.͵͸ a - - ͱͰ ͵.ͷ͹±Ͱ.ʹͷ a ͱͰ Ͷ.ʹ͸±Ͱ.͵ʹ b 

T. mediterraneus Ͷ.͵ʹ (<Ͱ.Ͱͱ) ͱͰ Ͷ.͵͸±Ͱ.͵͵ a ͱͰ ͵.Ͱ͸±Ͱ.͵ͱ b ͱͱ ͵.ʹʹ±Ͱ.ͷͲ b,c ͱͰ Ͷ.Ͳͳ±ͱ.ͳͶ a,c 

S. scombrus ͵.ͳͱ (<Ͱ.Ͱͱ) ͹ ͸.Ͱ͵±Ͱ.͹Ͳ a ͱͱ ͷ.ͰͲ±ͱ.͵ͳ a,b ͱͰ ͷ.͵Ͷ±Ͱ.͸ͱ a ͱͰ Ͷ.ͱʹ±ͱ.Ͱ͹ b 

S. colias Ͳ.͸Ͳ (Ͱ.Ͱ͵) ͱͰ Ͷ.͸͸±Ͱ.ͶͶ   ͱͰ ͷ.͵ͷ±Ͱ.ͷͶ ͱͰ Ͷ.Ͷʹ±Ͱ.͹͸ ͱͰ Ͷ.ͶͶ±Ͱ.͸Ͳ 
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Fig. ͳ. Seasonal variation in the energy density (kJ g-ͱ of wet weight) of seven species of small and 
medium sized pelagic fishes from the western Mediterranean Sea. Box length represents interquartile 
range, bar length represents range and horizontal lines represent median values. Black dots are 
outliers. 
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ͳ.ʹ Discussion 

This study reports new energetic data on ͳ͵ʹ individuals of seven ecologically and 

economically important pelagic fish species in the Mediterranean Sea. Results revealed 

clear differences in energy density between species and between seasons. These 

differences are related to species life-history and energy allocation strategy in addition 

to their feeding ecology. In consequence, predators of these small and medium sized 

pelagic fish could gain more or less energy per unit of food intake depending on the 

preyed species and period of the year. 

 

Inter-specific differences in energy density 

The two fishes that had the lowest energy density, E. encrasicolus and S. aurita, are 

species with fast growth, small body size and a lifespan of ʹ–͵ years (Morales-Nin and 

Pertierra, ͱ͹͹Ͱ; Tsikliras and Antonopoulou, ͲͰͰͶ). Both species have a greater 

reliance on a planktivorous diet (Palomera et al., ͲͰͰͷ). In contrast, the two species 

with higher energy density, Scomber scombrus and S. colias are both highly migratory 

species that feed on wide range of prey sizes, have bigger body sizes than clupeiformes 

and a longer lifespan (ͱͰ–ͱ͵ years; Bachiller and Irigoien, ͲͰͱͳ, ͲͰͱ͵; Velasco et al., 

ͲͰͱͱ; Table ͱ). 

Previous studies in the same study area found that Scomber species occupy a higher 

trophic level in the food web than the small pelagic fish and segregate completely their 

trophic niche (Albo-Puigserver et al., ͲͰͱͶ). Trophic level and body size are often 

collinear and represent important features of species since larger size fishes may have 

larger mouth size and may be able to feed on larger prey with higher energy content 

(Cohen et al., ͱ͹͹ͳ; Jennings et al., ͲͰͰ͸; Bachiller and Irigoien, ͲͰͱͳ). Moreover, prey 

species described in the diet of Trachurus spp. and Scomber spp., such as mysids, 

decapods and fish, have higher energy density than copepods that are the main prey 

of clupeoid species (Mintenbeck et al., ͲͰͱͲ; Table ͱ). 

Apart from differences in the feeding habits, older (and often larger) fishes tend to 

have higher energy reserves since they do not invest energy in rapid growth as 

juveniles (Anthony et al., ͲͰͰͰ; Røjbek et al., ͲͰͱʹ). Moreover, species such as 

mackerels have large fat reserves in their muscle to cope with the energetic 
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requirements of the migration (Ackman and Eaton, ͱ͹ͷͱ; Ben Rebah et al., ͲͰͰ͹; 

Graham et al., ͱ͹͸ͳ). Larger fat reserves, in combination with the diet preferences, 

could explain the higher energy density showed in S. colias and S. scombrus in 

comparison with the other species analysed in this study. 

In the case of S. pilchardus, the mean annual energy density was higher than the 

other clupeoid species and similar to those of T. mediterraneus and T. trachurus. 

However, in terms of dietary habits S. pilchardus is more closely related to E. 

encrasicolus than to Trachurus spp. that has a migratory behaviour, larger body size 

and might prey on larger species (Bachiller and Irigoien ͲͰͱͳ, ͲͰͱ͵). Opposite to E. 

encrasicolus, S. pilchardus has been described as a capital breeder that accumulates 

large amounts of energy before spawning in winter (McBride et al., ͲͰͱ͵). Then, if the 

accumulation of energy before spawning is high enough, the capital breeding 

behaviour could explain the high mean annual energy density of S. pilchardus. 

 

Seasonal differences in relation to spawning 

Temporal variations in energy density, proximate composition and feeding 

preferences have been reported for several fish species worldwide. Over time, different 

species have adapted to environmental changes and ecological processes (i.e. 

competition and density dependency) by developing individual life-history strategies 

and spawning periods, which are reflected in their whole-body energy density measure 

over time (Gonçalves et al., ͲͰͱͲ; Hondolero et al., ͲͰͱͲ).  

Similar to previous studies, in our study S. pilchardus showed more seasonal 

variability in energy density than E. encrasicolus due to their contrasting spawning 

periods and breeding strategies (winter and summer spawner and capital and income 

breeder, respectively; Ganias et al., ͲͰͰͷ; Pethybridge et al., ͲͰͱͳ; Sánchez et al., ͲͰͱͳ). 

As a capital breeder and winter spawner (November-March; Palomera and Olivar, 

ͱ͹͹Ͷ), S. pilchardus accumulates mesenteric fat before reproduction during spring and 

summer when zooplankton biomass is high (Sabatés et al., ͲͰͰͶ). As a consequence, 

we found higher energy density in spring and summer for this species. These results 

are in accordance with the dietary habits described in the Gulf of Lions for S. 

pilchardus, which in winter mainly preys on diatoms using its filter feeding capacity 

and in summer feeds on larger prey that are more energetic (Costalago and Palomera, 
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ͲͰͱʹ). In contrast, E. encrasicolus spawns mainly in warm waters, between ͱͷ° and Ͳͳ 

°C from April to August. The peak of reproduction is in spring and matches the period 

of high food availability (Palomera, ͱ͹͹Ͳ), allowing this species to use the food intake 

for reproduction directly. In the southwestern Mediterranean, Bacha and Amara 

(ͲͰͰ͹) observed that during spring and summer E. encrasicolus preyed on larger 

copepods with higher energy, probably to satisfy its reproductive needs. 

In the case of S. aurita, the spawning period begins in late spring and has a peak 

during July-August because this species prefers warmer waters for spawning (Palomera 

et al., ͲͰͰͷ). The high energy density in S. aurita in spring is probably due to the 

accumulation of energy just before the spawning period, following a more capital 

breeding strategy, while the low energy density in summer might be due to the loss of 

energy for reproduction. This pattern is in accordance with previous studies on lipid 

content of S. aurita in the Gulf of Gabes (South-Central Mediterranean Sea; Ben Rebah 

et al., ͲͰͰ͹) and the Adriatic Sea (Mustać and Sinovčić, ͲͰͱͲ). 

The high energy density observed during the spawning period (winter) for T. 

trachurus indicates that the energy used for reproduction is mainly derived from the 

current feeding intake (van Damme et al., ͲͰͱʹ). This result differs from previous 

studies on feeding intensity in the Adriatic Sea (Jardas et al., ͲͰͰʹ; Šantić et al., ͲͰͰ͵), 

where it was suggested that this species accumulates energy to use it later for 

reproduction in winter. On the contrary, in the NE Atlantic T. trachurus was defined 

as an income breeder, similar to our results (Bonnet et al., ͱ͹͹͸; Ndjaula et al., ͲͰͰ͹). 

In the case of T. mediterraneus, our results show that it accumulates energy prior to 

spawning. Previous studies in the Adriatic and Aegean Sea reported low feeding 

intensity and low lipid content during the spawning period (Šantić et al., ͲͰͰʹ; Tzikas 

et al., ͲͰͰͷ). Therefore, T. mediterraneus follows a breeding strategy more similar to a 

capital breeder. It is interesting to note that the two congeneric species of Trachurus 

spp. studied here utilize different breeding strategies that could play an important role 

in the resource partitioning that has been observed between these species in the 

northwestern Mediterranean Sea (Albo-Puigserver et al., ͲͰͱͶ). However, given the 

single annual period sampled, further studies on the energy and feeding dynamics are 

needed to confirm these results. 
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Regarding the two Scomber species, both had low seasonal variability in energy 

density. The energy density of S. scombrus slightly decreased in winter, probably due 

to the energy investment in reproduction, while S. colias maintained similar energy 

density levels across all seasons, a characteristic of an income breeding species. Both 

species, besides preying on copepods, also have an active predation on larger prey such 

as euphasiids, decapods and fish larvae that are more energetic (Bachiller et al., ͲͰͱ͵; 

Table ͱ). Moreover, opposite to small pelagic fishes, the migratory behavior of the 

larger Scomber spp. influences their energy requirements, resulting in higher 

demands. 

Our results contrast with previous studies that proposed larger and more long-lived 

fish (i.e. mackerels) are more likely to use capital sources, and shorter-lived fish (i.e. 

sardine and anchovy) are more likely to use income sources for breeding (McBride et 

al., ͲͰͱ͵; Somarakis et al., ͲͰͰͰ). Instead, we suggest that the breeding strategy used 

in short and long-lived fish depends mainly if the spawning period is closely coupled 

with seasonal plankton blooms or not, a hypothesis that has been also suggested by 

others (Pethybridge et al., ͲͰͱʹ; Røjbek et al. ͲͰͱʹ). Furthermore, in long-lived fish 

other energetic requirements such as the large migratory movements might influence 

their life-history breeding strategy. 

In general, we observed higher energy density in spring for all species, regardless of 

their breeding strategy. This result is in agreement with the higher energy input in the 

pelagic photic-zone during this period due to the late-winter phytoplankton bloom, 

when in the surface-water layers there is higher plankton food availability (Álvarez et 

al., ͲͰͱͲ; Estrada, ͱ͹͹Ͷ). In other areas, it has been described that the composition of 

the phytoplankton drives the seasonal changes in energy reserves (i.e. lipids) of 

zooplankton (Peters et al., ͲͰͰͷ; Røjbek et al., ͲͰͱʹ). The greater food availability and 

its higher energy content explain the higher energy density of the small and medium 

pelagic fishes in spring. 

We would like to highlight that this study only covers one year of sampling. 

Therefore, the capital -income breeding strategies identified for the studied species 

need to be confirmed with long-term (interannual) studies since food availability or 

zooplankton composition may vary from one year to another depending on 
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environmental variability. Moreover, other aspects such as sex ratio might affect 

energy density during the reproduction period, since it has been observed that in some 

species the hydrated gonads of females are more energetic than the male gonads. In 

future studies, an interannual analysis of energy density on the different sexes is 

recommended. 

 

Quality as prey 

The pelagic fish species analysed in the present study are important components of 

the diet of different marine predators, including seabirds, marine mammals, 

elasmobranchs and large commercially fish such as tuna (see Table ͱ). These predators 

vary their own fitness not only by maximising quantity of prey, but also by prey 

selection (Österblom et al., ͲͰͰ͸). In the case of the three small pelagic fish, only S. 

pilchardus was classified as a high quality prey. Previous studies in the Gulf of Lions 

and Bay of Biscay also measured high energy density in S. pilchardus (Vivien et al., 

ͲͰͱͲ; Spitz and Jouma’a, ͲͰͱͳ; Table ʹ). 

However, as pointed out by Spitz and Jouma’a (ͲͰͱͳ), depending on the season, 

predators feeding on S. pilchardus will obtain more or less energy per unit of food. The 

energy densities observed in our study area for E. encrasicolus were lower than those 

reported in the Gulf of Lions, northwestern Mediterranean Sea (Table ʹ; Vivien et al., 

ͲͰͱͲ) but similar to those reported in the Bay of Biscay (Atlantic Sea) and Adriatic Sea 

(Table ʹ). 

Regarding medium pelagic fish species, T. trachurus, S. scombrus and S. colias were 

classified as high quality prey according to their energy density ranges. Similarly, in 

the Bay of Biscay these species were also classified as high quality prey mainly (Table 

ʹ). From a predator viewpoint, feeding on a species classified as high quality, such as, 

S. pilchardus, T. trachurus, S. scombrus and S. colias, results in more energy per unite 

of food intake than preying on E. encrasicolus or S. aurita. Therefore, for pelagic 

predators that prey mainly on small pelagic fish, such as Atlantic bonito, Sarda sarda 

and Bluefin tuna, Thunnus thynnus, it could be advantageous to prey on S. pilchardus 

during spring and summer when they are energetically better prey than E. encrasicolus 

(Navarro et al., ͲͰͱͷ; Røjbek et al., ͲͰͱʹ). However, other aspects such as the 
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catchability of prey, time of searching, size of prey will also influence prey profitability 

(Bowen et al., ͲͰͰͲ). 

 

Table ʹ. Publish data on Energy Density (ED; kJ · g-ͱ of wet weight) for species of forage fish 
included in this study. Species are classified according to their ED content following Spitz et al. 
(ͲͰͱͳ) as Moderate Quality (ʹ < ED < Ͷ kJ g−ͱ) and High Quality species (ED > Ͷ kJ g−ͱ). 
Species / Area Year Season ED References Quality  
E. encrasicolus      

Gulf of Lions ͲͰͰͲ-ͲͰͰͳ Spring ͱͲ.͸ͱ±Ͱ.ͶͶ Vivien et al., ͲͰͱͲ High  

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Spring ͵.͵±Ͱ.͵ Spitz and Jouma’a, ͲͰͱͳ Moderate 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Fall Ͷ.ʹ±ͱ.Ͳ Spitz and Jouma’a, ͲͰͱͳ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Year mean ͵.͸±Ͱ.͹ Spitz and Jouma’a, ͲͰͱͳ Moderate 

Bay of Biscay ͲͰͰͱ-ͲͰͰͷ Winter Ͷ.ͱͱ±ͱ.ͳ͵ Dubreuil and Petitgas, ͲͰͰ͹ High 

Bay of Biscay ͲͰͰͱ-ͲͰͰͷ Spring Ͷ.ʹ͸±ͱ.ͳͶ Dubreuil and Petitgas, ͲͰͰ͹ High 

Bay of Biscay ͲͰͰͱ-ͲͰͰͷ Fall ͸.ͱͷ±Ͱ.͹ͳ Dubreuil and Petitgas, ͲͰͰ͹ High 

Adriatic Sea ͲͰͰͲ Fall ͵.͵Ͷ* Tirelli et al., ͲͰͰͶ Moderate 

Adriatic Sea ͲͰͰͳ Spring ʹ.͵ͱ* Tirelli et al., ͲͰͰͶ Moderate 

S. pilchardus      

Gulf of Lions ͲͰͰͲ-ͲͰͰͳ Spring ͱʹ.ͱʹ±ͱ.ʹ͹ Vivien et al., ͲͰͱͲ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Spring ͵.͸±Ͱ.͸ Spitz and Jouma’a, ͲͰͱͳ Moderate 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Fall ͸.͸±ͱ.Ͷ Spitz and Jouma’a, ͲͰͱͳ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Year mean ͷ.͵±Ͳ.Ͱ Spitz and Jouma’a, ͲͰͱͳ High 

T. trachurus      

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Spring ͷ.͹±ͱ.͵ Spitz and Jouma’a, ͲͰͱͳ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Fall Ͷ.͵±ͱ.Ͱ Spitz and Jouma’a, ͲͰͱͳ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Year mean ͷ.Ͱ±ͱ.ͳ Spitz and Jouma’a, ͲͰͱͳ High 

S. scombrus      

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Spring ͵.͹±Ͱ.͸ Spitz and Jouma’a, ͲͰͱͳ Moderate 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Fall ͸.ͳ±ͱ.Ͱ Spitz and Jouma’a, ͲͰͱͳ High 

Bay of Biscay ͲͰͰͲ-ͲͰͱͰ Year mean ͷ.͵±ͱ.͵ Spitz and Jouma’a, ͲͰͱͳ High 

* Mean of two size class categories (ͱͱͰ-ͱͱ͹ mm and ͱͲͰ-ͱͲ͹ mm). 

 

Concluding remarks 

This study reports reference values of the energy density of seven key pelagic fish 

species in an important fishing area of the western Mediterranean Sea for the first 

time. Results revealed clear differences in energy density between species and between 

seasons that are related to species life-history and energy allocation strategies in 

addition to their feeding ecology. These results highlight that when evaluating the 

energy intake by forage fish and the consequences of changes in population levels, 

attention should be paid to species and seasonal variability. The information derived 

from this study will enhance the accuracy of input data for bioenergetics-based 



Chapter ͳ. Ecological energetics of forage fish 

108 
 

population and food web models that are increasingly used as resource management 

assessment tools. 

While this study shows that energy storage of small and medium pelagic fishes differs 

over time, the implications of long-term environmental changes (global warming and 

decreased primary productivity) on ecological energetics remains unknown. In the 

Mediterranean Sea an increase of the sea temperature and a decrease in plankton 

productivity have been already observed (Calvo et al., ͲͰͱͱ; Mozetic et al., ͲͰͱͰ; 

Vargas-Yáñez et al., ͲͰͰ͸). These changes could impact the energy fluxes of marine 

food webs. In fact, recent studies have proposed that the main reason of the drastically 

decline in the biomass and in the mean size of S. pilchardus and E. encrasicolus in the 

western Mediterranean is a decrease in zooplankton quality and quantity due to 

environmental factors (Brosset et al., ͲͰͱ͵; Saraux et al., ͲͰͱʹ; Van Beveren et al., ͲͰͱʹ, 

ͲͰͱͶ). Moreover, an increase in the sea surface temperature during winter might cause 

a reduction in the reproduction window of S. pilchardus (winter spawner) (Palomera 

et al., ͲͰͰͷ). Therefore, we could expect a change in the diet of marine predators from 

a diet dominated by S. pilchardus to one dominated by other species with lower 

nutritional quality, such as S. aurita that has been shown to expand its range 

northwards with the increase of temperature (Sabatés et al., ͲͰͰͶ). Food web models 

that incorporate the energy density data provided in this study will assist in testing 

this, and other environmental hypotheses. 
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Abstract 

 

Body condition and energy storge variability has important implications for fish 

recruitment and population structure. It is essential to have a good understanding on 

the energy allocation strategy of fish in order to assess the differnet biological 

processes, reproduction, growth and maintenance, and evaluate the state of the fish 

stocks. In this study, we address the energetics dynamics of the annual cycle of 

anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the northwestern 

Mediterranean Sea using indirect and direct condition indices. We assessed and 

validated the use of morphometric, chemical and energetic indices for both species. 

Annual patterns of the relative condition index (Kn), gonadosomatic index (GSI), 

percentage of dry weight (%DW), lipid content (% lipids) and energy density (ED) 

were linked to the energy allocation strategy. Our results highlight that anchovy 

mainly rely on income energy to reproduce, while sardine accumulate the energy 

during the resting period to be used in the reproduction period. Variability in the % 

lipids and ED between seasons was lower in anchovy than in sardine. In both species, 

we observed an early decline in energy reserves in late summer-early fall, which may 

be related with unfavourable environmental conditions during spring and summer. 

Regarding the use of different condition indices, both direct indices, % lipids and ED, 

were highly correlated with Kn for sardine. Instead, ED was better correlated with Kn 

than lipids for anchovy. ED in gonads was highly correlated with GSI highlighting the 

importance of energy invested in reproduction. We produced the empirical 

relationship between ED and % DW and ED of gonads and GSI, which can be used to 

indirectly estimate ED of individuals and gonads in the study area. This work provides 

new information about energy dynamic of sardine and anchovy in the northwestern 

Mediterranean Sea and highlights the importance of understanding their seasonal 

energetic variation to understand population dynamics. 

 

 

Keywords: anchovy, sardine, capital breeder, income breeder, condition, energy 

allocation, energy density, lipids. 
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ʹ.ͱ Introduction 

Small pelagic fish are a key component of pelagic ecosystems and support 

important fisheries in the world (Cury et al., ͲͰͰͰ; FAO, ͲͰͱ͸). Their significant 

biomass at mid-trophic levels makes these forage fish a main prey for numerous 

marine predators, playing a major role in energy transfer from lower to higher trophic 

levels (Bakun et al., ͱ͹͹Ͷ; Cury et al., ͲͰͱͱ). As a consequence of their fast growth, short 

lifespan and their strong coupling to planktonic production, small pelagic fish 

populations are highly subjected to environmental variability and face strong 

variations in abundance and biomass all over the world (Checkley et al., ͲͰͰ͹). Such 

fluctuations have a considerable impact on the whole ecosystem (Coll et al., ͲͰͰ͸; 

Peck et al., ͲͰͱͳ). 

The two most important small pelagic fish in the Mediterranean Sea, in terms of 

biomass and commercial interest, are European anchovy (Engraulis encrasicolus) and 

European sardine (Sardina pilchardus) (Palomera et al., ͲͰͰͷ). However, important 

changes in abundance, landings and biological features (such as growth and body 

condition) have been reported for both species in the northwestern Mediterranean 

(Brosset et al., ͲͰͱͷ; Quattrocchi & Maynou, ͲͰͱͷ). These changes have been partially 

attributed to particular oceanographic parameters and increase in fishing pressure 

(Van Beveren et al., ͲͰͱʹ; Brosset et al., ͲͰͱͷ; Coll et al., ͲͰͱ͹; Saraux et al., ͲͰͱ͹).  

As a consequence of the annual and seasonal fluctuation that the pelagic marine 

environment presents, marine organisms have developed several strategies for energy 

acquisition and allocation to reproduction. The classical division of these strategies is 

made between capital and income breeders (Drent & Daan, ͱ͹͸Ͱ; Stearns, ͱ͹͸͹). In 

capital breeders, the primary energy source for reproduction comes from reserves 

stored prior to the spawning season, while in income breeders, reproduction is fully 

supplied by concurrent energy intake, i.e. current feeding. In practice, life-history 

strategies are represented along the whole continuum of these two extremes (McBride 

et al., ͲͰͱ͵).  

According to previous studies in the Mediterranean Sea, anchovy, that spawns in 

spring and summer, seems to be mainly an income breeder (Somarakis et al., ͲͰͰʹ; 

Somarakis, ͲͰͰ͵; Pethybridge et al., ͲͰͱʹ; Brosset et al., ͲͰͱ͵a), while sardine, that 
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spawns in fall and winter, seems to be mainly a capital breeder (Ganias et al., ͲͰͰͷ; 

Ganias, ͲͰͰ͹; Mustać & Sinovčić, ͲͰͰ͹; Pethybridge et al., ͲͰͱʹ). Due to their 

different energy use strategies towards growth, reproduction and maintenance, and 

their opposite reproduction periods, it is plausible to to expect that they could have 

different ecological responses to environmental change that are currently undergoing 

in the Mediterranean Sea, such as an increase in sea surface temperature and changes 

in primary productivity (Giorgi, ͲͰͰͶ; Piroddi et al., ͲͰͱͷ; Hoegh-Guldberg et al., 

ͲͰͱ͸; Oliver et al., ͲͰͱ͸). Yet, it is not well known how those changes will affect the 

energy acquisition and allocation of anchovy and sardine populations and will 

ultimately affect their reproduction and growth (Nunes et al., ͲͰͱͱ).  

The evaluation of the nutritional and physiological status of a population is 

increasingly used as an indicator of fish stock state and is directly linked to fitness 

(Rosa et al., ͲͰͱͰ; Lloret et al., ͲͰͱͳ; Brosset et al., ͲͰͱͷ). Individuals with better 

physiological condition, which means higher nutritional reserves, may have higher 

growth and survival rates, and greater reproductive success (Brosset et al., ͲͰͱ͵a). 

Several condition indexes to evaluate the physiological status of fishes are available 

(Lloret et al., ͲͰͱͳ). Condition of fish is mainly a measure of stored energy that can be 

evaluated with direct measures (e.g., lipid content and energy density) or indirect 

measures (e.g., morphometric index) (Lloret et al., ͲͰͱͳ; Schloesser & Fabrizio, ͲͰͱͷ; 

Gatti et al., ͲͰͱ͸). However, not all indices reflect exactly the same type of energy 

stored.  

The main energy store in fish is in the form of lipids and proteins (Lloret et al., 

ͲͰͱͳ). Lipids are the preferred source of metabolic energy for growth, reproduction, 

and swimming in fish and the first macro-molecule to be catabolized (Shulman & 

Love, ͱ͹͹͹; Tocher, ͲͰͰͳ). Instead, proteins and carbohydrates, that are the main 

compounds of body structure, usually remain rather constant and are less energetic 

than lipids (Anthony et al., ͲͰͰͰ). However, in cases of high lipid depletion proteins 

can be mobilized and used as energy source (Black & Love, ͱ͹͸Ͷ). Therefore, when 

evaluating the condition of fishes, it is important to understand what index to use and 

what it is measuring. In addition, it is important to account for the period when 

measurements are taken (reproductive or non-reproductive period), since during the 

non-reproductive period lipids are mainly allocated in the muscle, while during the 
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reproduction period lipids are also allocated in the gonads, as it has been described for 

small pelagic fish in the Mediterranean Sea (Brosset et al., ͲͰͱ͵a).  

Although indirect condition indices and lipid content of muscle tissue have been 

preferably used in the study of small pelagic fish condition (Ganias et al., ͲͰͰͷ; Rosa 

et al., ͲͰͱͰ; Pethybridge et al., ͲͰͱʹ; Brosset et al., ͲͰͱ͵a, ͲͰͱͷ), the amount of energy 

per unit of mass (Energy Density; ED) is the only measure that directly gives 

information on the average proximate composition of fish (weighted average of 

protein, lipid and carbohydrates energy densities; Gatti et al., ͲͰͱ͸). Two previous 

studies in the Mediterranean have used ED to study the condition of sardine and 

anchovy (Tirelli et al., ͲͰͰͶ; Albo-Puigserver et al., ͲͰͱͷ). Although it is recommended 

to validate the body condition indeces before using them to define their suitability 

(McPherson et al., ͲͰͱͰ; Brosset et al., ͲͰͱ͵b; Gatti et al., ͲͰͱ͸), the use of ED in 

sardine and anchovy has not been previously compared with other indirect and direct 

body condition indeces in the Mediterranean Sea.  

Considering all the above, the aims of this study were (ͱ) to assess seasonal 

dynamics on the condition and energy allocation of sardine and anchovy in the 

northwestern Mediterranean Sea, and (Ͳ) to determine the relationship between 

different condition indices in anchovy (income breeder) and sardine (capital breeder). 

These comparisons allowed us to understand which of the condition measurements 

better capture the variability in the physiological state of small pelagic fish 

populations. Specifically, indirect morphological condition indices, total water 

content, and direct chemical (lipid content of muscle tissue) and energetic (direct 

calorimetric analyses of whole specimens and gonads) analyses of condition were 

performed. Moreover, the used of direct calorimetry as a measure of physiological 

condition was assessed and a relationship with total water content was developed. 

Understanding how these species allocate their resources over a year is fundamental 

to predict the responses of small pelagic fish to environmental variability and changes, 

and the ultimate effects on marine food webs, which has a direct informative value for 

the management of marine resources and ecosystems. 
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ʹ.Ͳ Material and Methods 

Sampling and study area 

European anchovy (Engraulis encrasicolus) and European sardine (Sardina 

pilchardus) samples were collected monthly from purse-seine landings off the 

Tarragona harbour (Spain; northwestern Mediterranean) that operate in the Ebro 

Delta continental shelf area from April ͲͰͱͲ to March ͲͰͱʹ. Due to fishing closures, 

no samples were collected for January ͲͰͱͳ and January ͲͰͱʹ.  

The Ebro Delta continental shelf is a major spawning ground for anchovy and 

sardine (Palomera, ͱ͹͹Ͳ; Tugores et al., ͲͰͱͱ; Giannoulaki et al., ͲͰͱʹ). Their primary 

productivity is largely subjected to the environmental features of the region. In the 

northwestern Mediterranean Sea there is typically a late winter – early spring 

phytoplankton bloom, enhanced by strong riverine nutrient input (Salat, ͱ͹͹Ͷ; Lloret 

et al., ͲͰͰͱ, ͲͰͰʹ), followed by a spring increase in zooplankton (Sabatés et al., ͲͰͰͷ; 

Fig. ͲA). Anchovy spawns in warm waters, between ͱͷ and Ͳͳ ºC; which in the 

northwestern Mediterranean begins at the end of spring and extends throughout the 

summer (April – September) (Palomera, ͱ͹͹Ͳ; Palomera et al., ͲͰͰͷ). Sardine prefers 

colder waters to spawn, between ͱͲ and ͱʹºC; therefore, the spawning period of sardine 

in the northwestern Mediterranean is from middle fall until the end of winter 

(November – March) (Palomera & Olivar, ͱ͹͹Ͷ; Palomera et al., ͲͰͰͷ). 

 

Body condition indices 

In total, ͲͰͷ͸ anchovy and ͱ͹͵ͷ sardine were sampled. Total length (TL ± Ͱ.ͱ cm), 

total weight (TW ± Ͱ.Ͱͱ g), gutted weight (GW ± Ͱ.Ͱͱ g), sex (M = male, F = female) 

and gonad weight (WG ± Ͱ.ͱ mg) were recorded for all fish. The macroscopic maturity 

phase was determined for all individuals using the anchovy and sardine maturity stage 

keys of (ICES, ͲͰͰ͸): ͱ = immature; Ͳ = developing; ͳ = spawning capable; ʹ = 

spawning; ͵ = post-spawning/spent, Ͷ = resting.  

Only individuals larger than the minimum landing size (TL ≥ ͹ cm for anchovy and 

TL ≥ ͱͱ cm for sardine; Ganias et al. ͲͰͰͷ) were used in the analysis in order to avoid 

possible size-related bias due to variation in monthly length frequency distributions 

of smaller individuals. After dissection, individuals were conserved at -ͲͰºC. 
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a) Indirect body condition indices 

The somatic condition of both species was evaluated by calculating the relative 

condition factor (Kn, Le Cren ͱ͹͵ͱ). The Kn was obtained as the ratio of the gutted 

weight (GW) to the corresponding predicted gutted weight (Wp) for a fish of the same 

length (Le Cren, ͱ͹͵ͱ): 

(1) Kn =  
ୋ୛

୛౦
 

The Wp was obtained by performing a nonlinear regression of GW as a function of 

a·TLb, where a and b are coefficients estimated from all fish sampled during the years 

of ͲͰͱͲ–ͲͰͱʹ (with values for anchovies: a = Ͱ.ͰͰͲ͹, b = ͳ.Ͳ͵ͳ͸; and for sardines; a = 

Ͱ.ͰͰͳͷ, b = ͳ.ͲͳͰ͹). We used the Kn index as a proxy of somatic condition for fish. 

Gutted weight is preferred to the total weight to avoid the influence of gonad 

development on the true somatic condition of individuals (Millán, ͱ͹͹͹; Nunes et al., 

ͲͰͱͱ). 

The measure of water content of fish has been used as a proxy of lipids, as it is often 

inversely related to total lipid content (Lloret et al., ͲͰͱͳ). The relationship between 

energy density and dry weight has also been well documented for different fish species. 

The percentage of dry weight was calculated for ͸Ͱ specimens of each species (ͲͰ per 

season). Individuals were oven-dried at ͶͰºC to constant mass for ʹ͸ – ͷͲ hours. After 

determining their dry weight (WDry ± Ͱ,ͰͰͱ g), they were stored and used for direct 

calorimetric analysis. 

To relate the reproductive cycle with the relative condition factors, the 

gonadosomatic index (GSI) and the percentage of reproductively active individuals 

were calculated as a measure of reproductive activity (Somarakis et al., ͲͰͰʹ; Basilone 

et al., ͲͰͰͶ; Ferrer-maza et al., ͲͰͱͶ). GSI was obtained as the ratio of gonad weight 

(WG) to gutted weight (GW): 

(2) GSI =  
୛ಸ

ୋ୛
· 100  

The proportion of reproductive individuals during the year was obtained 

considering as actively spawning individuals those with maturity stage ͳ, ʹ and ͵ and 

as not actively spawning individuals those with maturity stage ͱ, Ͳ and Ͷ (ICES, ͲͰͰ͸).  
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In order to qualitatively relate the variability in Kn and GSI with the seasonal 

environmental variability, monthly satellite-derived sea surface temperature (SST; ºC) 

and chlorophyll-a concentration (Chl-a; mg·m-ͳ, at Ͳkm resolution) were obtained for 

the study area during the sampling period (April ͲͰͱͲ to March ͲͰͱʹ) from 

Environmental Marine Information System(EMIS, JRC, https://data.jrc.ec.europa.eu; 

Melin, ͲͰͱͳ).   

 

b) Direct body condition indices  

We used biochemical and direct calorimetry analysis to measure two direct 

condition indices: lipid content (% lipids) and energy density (ED).  

Lipid content was analysed in ͸Ͱ individuals of each species (ͲͰ per season) from 

the first year of sampling (spring ͲͰͱͲ to winter ͲͰͱͳ). The lipid content of each 

individual was extracted from a sample of dorsal muscle (ͲͰͰ to ͵ͰͰ mg) using the 

Folch method (Folch et al., ͱ͹͵ͷ). The total lipids extracted from each sample were 

weighted (± Ͱ.ͰͰͰͱ g) and were expressed as the percentage of wet weight (WWet, ± 

Ͱ.ͰͰͰͱ g), which was calculated as follows: 

(3) % lipids =  
௟௜௣௜ௗ௦ ௪௘௜௚௛௧ (௚)

௦௔௠௣௟௘ ௐ௪ (௚)
· 100 

Analyses of the energy density (ED, kJ·g-ͱWWet) were performed on whole 

individuals and gonads of both anchovy and sardine from the first year of sampling by 

direct calorimetry using a Parr ͶͷͲ͵ Semimicro Oxygen Bomb Calorimeter (Moline, 

Illinois, USA). In the case of the ED of the whole individual, we used the ͸Ͱ specimens 

of each species previously oven-dried (ͲͰ per season). ED was determined individually 

according to the protocol used in previous studies (Tirelli et al., ͲͰͰͶ; Dubreuil & 

Petitgas, ͲͰͰ͹; Albo-Puigserver et al., ͲͰͱͷ). The oven-dried individuals were mixed 

to obtain a homogenised powder of each individual, from which pellets of ͱ͵Ͱ to ͲͰͰ 

mg were obtained with a press. Two of these pellets were used for the determination 

of the ED, and if the values differed by more than ͳ%, a third pellet was combusted. 

The average of the two or three samples was used to estimate the ED of each 

individual. The ED was converted to a wet-weight basis (kJ g-ͱWWet) using the 

percentage of dry weight (%WDry=ͱͰͰ · WDryπ WWet) of each fish. In the case of ED 

analysis of gonads, if the gonads of an individual fish were not large enough to perform 
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the analysis (the calorimeter can only process samples that range from Ͳ͵ to ͲͰͰ mg), 

they were pooled by sex, body length and maturity stage to obtain an adequate weight 

for the analysis (gonad weight: WG). The analysis was determined for ͱͲ͹ anchovy (Ͳ͹ 

from spring, ͳͳ from summer, ͳͷ from autumn, and ͳͰ from winter) and ͱͳͱ sardines 

(ʹ͵ from spring, Ͳͷ from summer, Ͳ͹ from autumn and ͳͰ from winter). The same 

protocol mentioned above for the entire individuals was followed for the ED 

determination of gonads (from an individual or group).  

 

Statistical analyses 

Differences in Kn and GSI of anchovy and sardine between months and sexes were 

statistically compared using a two-way semi-parametric permutation multivariate 

analyses of variance tests (PERMANOVA test) based on Euclidean distance matrices 

with a previous square-root transformation (Anderson et al., ͲͰͰ͸). Spearman’s rank 

non-parametric correlation test was used to examine the relationships between Kn 

and GSI.  

Differences in lipid content and energy density between seasons, sexes or between 

maturity stages, in the case of gonad analysis, for sardine and anchovy and between 

species were also tested using a two-way semi-parametric permutation multivariate 

analyses of variance tests (PERMANOVA test) based on Euclidean distance matrices 

with a previous square-root transformation (Anderson et al., ͲͰͰ͸). In the case of 

significant differences pairwise tests were performed. Analyses were run using 

PRIMER-E vͶ software (Clarke & Gorley, ͲͰͰͶ).  

The relative condition index (Kn) was plotted against the other direct and indirect 

condition indexes (% lipids, ED and % dry weight), and their correlation was 

calculated by means of the Spearman’s rank non-parametric correlation coefficient. 

Relationship between energy density of individuals with the percentage of dry weight 

and the relationship between energy density of gonads and the percentage of 

gonadosomatic index were explored using linear and logarithmic regressions, 

respectively, and adopting a significance level of p< Ͱ.Ͱ͵. Spearman’s rank non-

parametric correlation tests and linear regression analyses were performed with R 

vͳ.Ͷ.Ͱ. (R Core Team, ͲͰͱ͹). 



Chapter ʹ. Energetic dynamics of anchovy and sardine  

128 
 

ʹ.ͳ Results 

Seasonal variation in the indirect body condition indices 

Monthly variation in the GSI during the ͲͰͱͲ-ͲͰͱʹ annual cycle exhibited opposite 

annual patterns for anchovy and sardine of both sexes (Fig. ͱ). GSI of anchovy reached 

the maximum values between April and August while sardine reached maximum 

values between November and March (Fig. ͱB and ͱD). Differences between sexes in 

GSI were observed in both species (anchovy: Pseudo-Fͱ,ͱ͹͸͵=ͳͰͰͲͳ, p=Ͱ.ͰͰͱ; sardine: 

Pseudo-Fͱ,ͱ͸ͶͶ=ͱͰ͵.Ͷͱ, p=Ͱ.ͰͰͱ). 

The percentage of active spawning individuals showed similar patterns to GSI (Fig. 

Ͳ). Active spawning individuals of anchovy were observed from April, one month after 

the peak of Chl-a and when SST started to increase, to October, when SST started to 

decrease (Fig. ͱA and Ͳ). More than ͹Ͱ% of females were actively spawning in June 

and July of ͲͰͱͲ and in July, August and September of ͲͰͱͳ, coinciding with the period 

of higher SST and lower Chl-a concentrations (Fig. ͲA and ͳ). Whereas, sardine 

actively spawned from October to March, coinciding with the decrease of the SST. 

However, in April and May of ͲͰͱͲ the proportion of actively spawning individuals 

reached almost ͵Ͱ% and ʹͰ%, respectively. The peak of active spawning was in 

December and February of ͲͰͱͲ and December ͲͰͱͳ when SST was at the lowest and 

the Chl-a concentration started to increase (Fig. ͱA and Ͳ).  

The Kn of anchovy exhibited high intra-annual and even intra-seasonal variability 

and was synchronous between sexes (Fig. ͲC). There were significant differences in Kn 

between months (Pseudo-FͲͱ,ͱ͹͹͹=Ͳͷ.͵ͶͶ, p=Ͱ.ͰͰͱ), but not between sexes (Pseudo-

Fͱ,ͱ͹͹͹=Ͱ.ͱ͸͵ͷͷ, p=Ͱ.Ͷͷͱ). High values of Kn were observed in spring and low values in 

the fall. Kn and GSI values exhibited a weak but significant positive correlation (rs= 

Ͱ.ͲͶ, p < Ͱ.ͰͰͱ).  

For sardine, significant differences in Kn between months and sexes were observed 

(Pseudo-FͲͱ,ͱ͸ͷͷ=Ͷͷ.ʹ͵͹, p=Ͱ.ͰͰͱ; Pseudo-Fͱ,ͱ͸ͷͷ=͵.ͷͷͲͲ, p=Ͱ.ͰͲͳ, respectively) (Fig. 

ͱE). However, the differences between sexes were only observed in August ͲͰͱͳ 

(pairwise comparison t=Ͳ.ͳͶͰ͸, p=Ͱ.ͰͲͷ). Individuals had higher Kn values during 

spring and summer and lower values of during fall and winter (Fig. ͱD, E). Kn and GSI 

exhibited a significant negative correlation (rs= Ͱ.ʹʹ, p < Ͱ.ͰͰͱ). 



Chapter ʹ. Energetic dynamics of anchovy and sardine 

129 
 

 

Fig. ͱ. (A) Monthly mean sea surface temperature (SST; orange line) and chlorophyll a 
concentration (Chla; green line) of the area of study (source: EMIS JRC, 
https://data.jrc.ec.europa.eu/). Mean and standard deviation of monthly variation of 
gonadosomatic index (GSI) and relative condition index (Kn) for females (red) and males (blue) of 
anchovy (B and C) and sardine (D and E), respectively. 
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Fig. Ͳ. Monthly variation of the percentage of mature active individuals in blue (maturity stage ͳ, 
ʹ and ͵; ICES ͲͰͰ͸) and immature and resting individuals in green (maturity stage ͱ, Ͳ and Ͷ) for 
anchovy (A) and sardine (B). Females (F) and males (M) proportions are represented separately. 

 

Seasonal variation in the direct body condition indices 

In both species significant seasonal variations in lipid content were observed 

(Pseudo-Fͳ,ͷͱ=ͲͰ.ͳͳ, p<Ͱ.ͰͰͱ; Pseudo-Fͳ,ͷͰ=ͱ͹.ͱ͵, p<Ͱ.ͰͰͱ, for anchovy and sardine, 

respectively). In the case of anchovy, only spring had significantly higher lipid content 

(Fig. ͳA). Regarding sardine, lipid content in spring and summer was similar and 

significantly higher than values in fall and winter (Fig. ͳB).  Lipid fraction in the muscle 

of anchovy and sardine was similar between sexes (Pseudo-Fͱ,ͷͳ=ͳ.Ͷ͹, p=Ͱ.Ͱ͵; Pseudo-

Fͱ,ͷͲ=ͱ.ʹʹ, p=Ͱ.Ͳʹ, respectively). 

Similar to lipid content, in both species differences in ED were only found between 

seasons (Pseudo-Fͳ,ͷͱ=͸.͵͵, p<Ͱ.ͰͰͱ for anchovy and Pseudo-Fͱ,ͷͳ=Ͳͱ.Ͳͱ, p<Ͱ.ͰͰͱ for 

sardine) and not between sexes (Pseudo-FͲ,ͷͱ=Ͱ.ͳ͵, p=Ͱ.Ͷ͸ for anchovy and Pseudo-

Fͱ,ͷͳ=ͱ.͹͵, p=Ͱ.ͱ͵ for sardine). In the case of anchovy, the pairwise comparison of ED 

between seasons showed that ED was maximum in spring and declined in summer and 
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fall with significantly different ED values, while in winter the ED of anchovy was 

similar to the ED levels of summer (Fig. ͳC). For sardine, in spring and summer on one 

hand and in fall and winter on the other hand the individuals had similar ED values. 

Between the two periods (spring-summer and fall-winter) significant differences were 

found in ED, similar to what we observed for the lipid content (Fig. ͳD).  

 

 

Fig. ͳ. Boxplots of seasonal lipid content (A-B) (% lipids·g-ͱ wet weight) and energy density (C-D) 
(kJ·g-ͱ wet weight) of European anchovy (Engraulis encrasicolus) at left and European sardine 
(Sardina pilchardus) at right. Females in red and males in blue. Box length represent interquartile 
range, bar length represent range and horizontal lines represent median values, dots are outliers. 
Number in brackets are the sample size of each boxplot. Pairs of means differing significantly (P < 
Ͱ.Ͱ͵) by pairwise test between seasons within each graph and both sexes together are indicated by 
letters- seasons with the same letter were not significantly different.  

 

Comparing both species, the lipid content of sardine in spring, summer and winter 

was significantly higher than in anchovy (Pseudo-Fͱ,ͱʹͱ=Ͷʹ.͹͹, p<Ͱ.ͰͰͱ), and no 

differences in the lipid content were observed in fall between species (Figs. ͳA and ͳB). 
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Similarly, in the case of the ED results, sardine values where significantly higher in 

spring, summer and fall than in anchovy (Pseudo-Fͱ,ͱ͵ʹ=ͳ͵.ͱ͹, p<Ͱ.ͰͰͱ), and no 

differences in ED were observed in winter between species (Figs. ͳC and ͳD).  

 

Comparison of body condition indicators 

The ED on a wet weight basis was linearly correlated to the DW for both species. 

The linear models fitted for each species were statistically significant and explained 

͹ͱ% of the total variation in ED in anchovy and ͹ʹ% of the total variation in ED in 

sardine (Fig.ʹ).  

The relationship between 

relative condition factor (Kn) 

and energy density, lipid 

content and dry weight were 

positively correlated for 

anchovy and sardine (Fig. ͵). 

For anchovy, the correlation 

was stronger between Kn and 

ED (Fig. ͵A) or %DW (Fig. ͵E) 

than in the correlation between 

Kn and % Lipids (Fig ͵C). 

Instead, for sardine the higher 

correlation was between Kn and %Lipids (Fig. ͵D) followed by ED (Fig. ͵B) and %DW 

(Fig. ͵F).  

The calorimetry of gonads revealed that anchovy and sardine had similar energy 

density values in the gonads (Pseudo-Fͱ,ͲͱͰ=ͱ.͹͵, p=Ͱ.ͱͶ). For both species, energy 

density of gonads varied between reproduction stages, with higher values of EDgonads 

in actively spawning individuals (reproduction stage ͳ, ʹ and ͵) than for immature or 

resting individuals (reproduction stage ͱ, Ͳ and Ͷ) (Pseudo-F͵,ͲͱͰ=ʹ͹.ͱ͸, p<Ͱ.ͰͰͱ; Table 

ͱ). No significant differences were detected between sexes in the EDgonads of anchovy 

(Pseudo-Fͱ,ͱͰͱ=ͷ.ͳͰ, p=Ͱ.ͷ͹). Instead, sardine presented differences in EDgonads 

between sexes (Pseudo-Fͱ,ͱͰ͹=ͱ͵.Ͱͷ, p<Ͱ.ͰͰͱ).  

Fig. ʹ. Linear model relationships between energy density 
and per cent dry weight of European anchovy (red) and 
sardine (green).  
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Fig. ͵. Relationships between the relative condition factor (Kn) and energy density (ED; KJ·g-ͱ wet 
weight), lipid content (% Lipids) and dry weight content (ratio of dry and wet weight in %) for 
anchovy (A, C, E) and sardine (B, D, F), respectively. Spearman correlation and the level of 
significance are indicated (r; p). Lines indicate significant correlations.  
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The EDgonads of anchovy and the GSI showed a strong positive correlation for both 

sexes (rs=Ͱ.͸͵, p<Ͱ.ͰͰͱ; rs=Ͱ.͸Ͱ, p<Ͱ.ͰͰͱ, for females and males, respectively). The 

relationship fitted to a logarithmic regression explained Ͷ͹% and ͶͲ% of the variance 

in anchovy females and males, respectively (Fig. ͶA). Sardine also showed a positive 

correlation between EDgonads of female and males and GSI (rs=Ͱ.͸Ͷ, p< Ͱ.ͰͰͱ; rs=Ͱ.Ͷʹ, 

p<Ͱ.ͰͰͱ, for females and 

males, respectively). Instead, 

the logarithmic regression of 

sardine males explained only 

Ͳ͵% of the variance, while the 

logarithmic regression of 

sardine females explained ͷͲ% 

of the variance (Fig. ͶB).  

 

 

ʹ.ʹ Discussion 

Annual body condition and energetic cycle of anchovy and sardine 

Anchovy presented inter and intra-annual variability in the relative body condition 

index (Kn). In both years analysed, Kn was higher in spring, mainly after the peak in 

Chl-a and in synchrony with the increase of GSI. The higher values of Kn at the 

beginning of spring were in accordance with the higher lipid content and ED values 

observed for anchovy in spring. These results seem to indicate that anchovy relied in 

large proportion on current food intake for reproduction. Therefore, as described in 

Fig. Ͷ. Relationship between the 
gonadosomatic index (GSI %) and 
energy density of gonads (ED 
gonads; KJ·g-ͱ wet weight), for 
anchovy (A) and sardine (B). 
Females are represented in red and 
males in blue. Equation and 
logarithmic regression lines 
indicated are represented when the 
spearman correlations are 
significant. 
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previous studies, anchovy mainly exhibited an income breeder strategy (McBride et 

al., ͲͰͱ͵; Brosset et al., ͲͰͱͷ).  

Anchovy ED, % lipids and Kn were the lowest immediately after the spawning 

season, suggesting that the final balance between energy intake and reproductive costs 

was negative and led to a deterioration of anchovy body condition. We observed a 

depletion in lipid content already in summer before the end of the reproduction 

activity, whereas the decline in ED was more progressive with minimum values after 

the reproduction period. This could indicate that lipids in the muscle were the first 

source of energy to be mobilized to the development of gonads in spring. In previous 

studies in the Gulf of Lions and the Strait of Sicily, body condition of small pelagic fish 

was positively related with river run-off, Chl-a, and diatoms and meso-zooplankton 

concentrations (Basilone et al. ͲͰͰͶ, Brosset et al. ͲͰͱ͵).  Basilone et al. (ͲͰͰͶ) 

pointed out that the energy gained and stored before the spawning period might affect 

the reproductive output of anchovy in the Strait of Sicily. Therefore, the low lipid 

content and ED observed in our study at the end of the reproduction period might 

reflect unfavourable environmental conditions during the reproduction period in 

ͲͰͱͲ-ͲͰͱʹ. Although in this study it is not possible to determine if the observed 

pattern is year-specific or is representative of other years, the low lipid and ED values 

observed are in line with the decline in body condition observed in anchovy in the last 

decade in the Mediterranean Sea (Van Beveren et al., ͲͰͱʹ; Brosset et al., ͲͰͱͷ; Albo-

Puigserver et al., ͲͰͱ͹).  

On the contrary, all condition indeces (Kn, ED, Lipid) in sardine had a highly 

marked seasonality, with inverse patterns between Kn and GSI. The sardine spawning 

season covered the colder months of the year, peaking between December and 

February, as already described in previous studies (Palomera, ͱ͹͹Ͳ; Palomera & Olivar, 

ͱ͹͹Ͷ; Palomera et al., ͲͰͰͷ). During the reproduction period, Kn, ED and lipids were 

at their lowest values. Rapidly after the end of the reproduction period, coinciding 

with the spring increase in zooplankton enhanced by strong riverine nutrient input at 

the Ebro Delta continental shelf (Salat et al. ͲͰͰͲ, Lloret et al. ͲͰͰʹ), a high increase 

in Kn, ED and lipids was observed for sardine. Similar to previous studies (Ganias et 

al., ͲͰͰͷ; Nunes et al., ͲͰͱͱ; Brosset et al., ͲͰͱ͵b), sardine accumulated energy during 
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the resting period and seemed to supply reproduction costs with stored resources, 

presenting a clear capital breeding strategy.  

Kn in sardine peaked in June and in August ͲͰͱͳ was below ͱ. This imply that energy 

storage for reproduction was not maintained at high levels until the reproduction 

activity started (October), as it would be expected in a species with a capital breeding 

behaviour (McBride et al., ͲͰͱ͵). In contrast, in previous studies of body condition, it 

has been observed how Kn is maintained high until the increase of GSI due to the 

mobilization of fat reserves for the development of gonads (Ganias et al., ͲͰͰͷ; Nunes 

et al., ͲͰͱͱ; Brosset et al., ͲͰͱ͵a). Then, similar to the hypothesis proposed for anchovy, 

the decrease of Kn in sardine before the reproduction period could also be related with 

unfavourable environmental conditions that did not permit to accumulate enough 

energy reserves during spring and summer. A similar pattern of a decline in condition 

at the end of summer was described for sardine in the Gulf of Lions, and was attributed 

to a change in phenology of primary and secondary production (Brosset et al., ͲͰͱ͵a). 

The low energy reserves observed at the beginning of the reproduction period, could 

also suggest that sardine may also rely on direct food intake towards the end of the in 

reproduction period. Therefore, sardine would be able to deploy both capital and 

income breeder strategies as was previously suggested for sardine of the eastern 

Mediterranean (Ganias, ͲͰͰ͹) and Atlantic (Garrido et al., ͲͰͰͷ).  

The low amount of fat reserves that sardines accumulated prior to the spawning 

season during our study years could have had an important effect on the quality of 

eggs produced during the spawning season, as was demonstrated for the Iberian 

sardine in Portugal (Garrido et al., ͲͰͰͷ). ED analyzed in female gonads of sardine was 

higher than males. Anchovy had similar EDgonads between sexes and were similar to 

values observed in sardine. In both species EDgonads was high during reproductive 

active stages with high GSI values when oocytes are hydrated, highlighting the 

energetic investment required by reproductive activity (Wang & Houde, ͱ͹͹ʹ).  

 

Direct and indirect condition indeces in small pelagic fish 

In sardine, both direct methods (% lipids and ED) were highly correlated with the 

indirect method Kn, and all of them successfully captured the variability in energy 
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reserves between the reproduction and the resting period of sardine (spring-summer 

and fall-winter respectively). Instead, in anchovy ED was better correlated with Kn 

than %lipids, suggesting that ED and Kn better captured changes in body condition 

than lipid content. The %DW, that has also been positively related with lipid content 

in previous studies and used as an indirect condition index (Lloret et al., ͲͰͱͳ), showed 

a significant positive correlation with Kn.  

The better correlation of lipid content with Kn in sardine is explained by the higher 

variability of lipids in sardine than in anchovy due to their opposite breeding strategy 

(Albo-Puigserver et al. ͲͰͱͷ). Sardine accumulates a high quantity of lipids in the 

muscle and mesenteric fat during the resting period that are then used for 

reproduction (Pethybridge et al., ͲͰͱʹ; Brosset et al., ͲͰͱ͵b; Albo-Puigserver et al., 

ͲͰͱͷ). Instead, anchovy accumulates less energy, since the energy gain is used directly 

for reproduction and fewer energy is allocated to reserves (Albo-Puigserver et al., ͲͰͱͷ; 

Gatti et al., ͲͰͱ͸). While lipid content analysis only measures the bulk of lipids of the 

individual, direct calorimetry analysis also measures changes in other compounds 

such as proteins, which are usually mobilized when lipids are low. Then, in species 

that do not accumulate high quantities of lipids, like anchovy, direct calorimetry 

analysis to obtain ED measurements would be preferable than lipid content analysis. 

Instead, in species that store high quantities of energy, such as sardine, both lipid 

content and direct calorimetry are appropriate methods to study body condition 

variability.  

In the case of samples that were used for direct calorimetry, another indirect 

condition method was calculated, the percentage of dry weight. According to our 

results, this index is highly related with ED, and linear regression equations presented 

in this study could be used to indirectly obtain measurements of ED in future studies, 

avoiding the use of direct calorimetry, a method that is time consuming. Strong 

positive linear relationships between ED and % DW have been reported in numerous 

studies targeting other fish species (Hartman & Brandt, ͱ͹͹͵; Pedersen, ͲͰͰͱ), and also 

in small pelagic fish from the Adriatic Sea (Tirelli et al., ͲͰͰͶ) and the Bay of Biscay 

(Dubreuil &Petitgas, ͲͰͰ͹; Gatti et al., ͲͰͱ͸). The linear model obtained in the present 

study for anchovy and sardine differs from those of Tirelli et al (ͲͰͰͶ) and Dubreuil & 
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Petitgas (ͲͰͰ͹) suggesting this type of model is probably ecosystem-specific and 

should be used at a local scale to estimate ED from DW data. 

In the case of the evaluation of ED in gonads, we observed the high variability in 

EDgonad depending on the reproduction stage and sex. This was expected, since when 

the gonad has hydrated oocytes the lipid content increases (Garrido et al., ͲͰͰͷ). For 

this reason, the correlation between the GSI and the EDgonad was high for anchovy and 

sardine females and males. This is the first time that the ED of gonads is assessed in 

relation with the GSI, and the equation provided could be used for further studies and 

for bioenergetics models (Pethybridge et al., ͲͰͱͳ). Yet, it is important to note that 

that the calculation of the energy invested in reproduction is difficult since sardine 

and anchovy are batch spawner species, and the energy measured at a certain point in 

time does not correspond to all the energy that will be invested. Moreover, the energy 

measured in the gonads correspond to energy invested in reproduction, but also, to a 

lesser extent, to gonad structure (Kooijman, ͲͰͱͰ). Thus, gonad ED cannot be directly 

used as a measure of energy allocated to reproduction. However, variation in the 

EDgonad can be used as an indirect measure of the energy invested, giving a starting 

point for the parameterization of bioenergetics models (Pethybridge et al., ͲͰͱͳ; Gatti 

et al., ͲͰͱͷ). 

 

ʹ.͵ Conclusion 

This study highlights the importance of understanding the seasonal energetic 

variation in small pelagic fish in order to understand population dynamics. The annual 

body condition and energetic cycle of both species were related to the temporal lag 

between spawning seasons and the late-winter early-spring phytoplankton bloom as 

has been described in other Mediterranean areas (Basilone et al., ͲͰͰͶ; Pethybridge 

et al., ͲͰͱʹ; Brosset et al., ͲͰͱ͵a). Both studied species had low energy reserves in fall 

that could be related to changes in the phenology of plankton, but further studies 

analysing monthly variability of body condition of several years in relation to changes 

in environmental parameters are needed (Brosset et al., ͲͰͱͷ; Albo-Puigserver et al., 

ͲͰͱ͹).  
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Comparison between direct and indirect condition indeces revealed that ED and 

Kn are the preferable methods to capture the seasonal variability of condition for 

anchovy, while all direct and indirect methods are suitable for sardine. Since the 

analysis of calorimetry is highly time-consuming, the regression provided in this study 

validate the use of dry weight and GSI to obtain estimates of ED in whole individuals 

and in the gonads, respectively.  
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Abstract 

 

Important changes have been observed in recent decades in small pelagic fish (SPF) 

populations of the NW Mediterranean Sea: declines in biomass and landings of 

European anchovy and sardine, and a geographical expansion of round sardinella. 

These changes have been linked to environmental factors directly influencing annual 

recruitment and growth. The role of climate change in affecting the composition of 

plankton has also been suggested to explain declines in SPF, while other causes could 

be the recovery of predators, competition with other pelagic organisms that prey on 

early life phases of SPF (i.e. gelatinous zooplankton), interspecific competition for 

food, or impacts from fisheries harvest. To test the role of these potential pressures, 

we developed qualitative mathematical models of a NW Mediterranean pelagic food 

web. We used analyses of sign directed graphs and Bayesian belief networks to 

compare alternative hypotheses about how SPF species may have responded to 

combinations of different pressures. Data documenting changes in SPF populations 

were used to test predicted directions of change from signed digraph models. An 

increase in sea surface temperature (SST) that had either a positive impact on round 

sardinella or on gelatinous zooplankton abundance was the pressure that alone 

provided the most plausible insights into observed changes. A combination of various 

pressures, including an increase in SST, an increase of exploitation and changes to 

zooplankton also delivered results matching current observations. Predators of SPF 

were identified as the most informative monitoring variable to discern between likely 

causes of perturbations to populations of SPF. 

 

 

 

Keywords: Small pelagic fish; Population change; Food web; Qualitative model; 

Pressures; Cumulative impacts; Mediterranean Sea. 

  



Chapter ͵. Who is to blame?  Plausible pressures on SPF 

149 
 

͵.ͱ Introduction 

Biomass and energy transfer in marine ecosystems from lower (e.g. plankton) to 

higher (e.g. predators) trophic levels is often modulated by organisms that occur at 

intermediate trophic levels, such as species of small pelagic fish (SPF) (Cury et al. 

ͲͰͰͰ, Cury et al. ͲͰͱͱ, Pikitch et al. ͲͰͱͳ). SPF in the Mediterranean Sea are dominant 

in terms of biomass and are significant components of marine food webs (Palomera et 

al. ͲͰͰͷ, Coll et al. ͲͰͰ͸, Van Beveren et al. ͲͰͱͶa). For example, they are a key prey 

of important demersal and pelagic predators, such as European hake Merluccius 

merluccius (Mellon-Duval et al. ͲͰͱͷ), tunas (Navarro et al. ͲͰͱͷ), cetaceans (Gómez- 

Campos et al. ͲͰͱͱ) and pelagic seabirds (Navarro et al. ͲͰͰ͹). They are involved in 

essential processes to enhance primary productivity (Tudela & Palomera ͱ͹͹͹) and are 

important in terms of fishery landings (Palomera et al. ͲͰͰͷ, Van Beveren et al. ͲͰͱͶa).  

SPF have short life spans, are sensitive to environmental fluctuations and are greatly 

impacted by climate variation (Cury & Roy ͱ͹͸͹, Palomera et al. ͲͰͰͷ).  Some stocks 

of SPF are highly exploited or overexploited (Mullon et al. ͲͰͰ͹, Pikitch et al. ͲͰͱͳ, 

STECF ͲͰͱͶa). Due to the key role they play in marine ecosystems, changes in SPF 

populations can impact ecosystem dynamics across entire marine food webs, which 

can have significant consequences for commercial catch and profit (Cury et al. ͲͰͰͰ, 

Pikitch et al. ͲͰͱͳ). Taking into account that marine pelagic fisheries account for ͲͶ% 

of the world’s fish and shellfish protein consumption (Tacon & Metian ͲͰͰ͹), and that 

exploitation of SPF stocks is increasing (FAO ͲͰͱͶb), there is an urgent need to 

understand the ecological and socioeconomic consequences of how SPF will respond 

to the combined impact of human and environmental pressures.  

In general, declines of SPF populations have been observed in the Mediterranean 

Sea, in parallel with an increase in fishing effort and a decline in primary productivity 

(Piroddi et al. ͲͰͱͷ). Specifically, in recent decades, important changes have been 

observed in populations of SPF in the NW Mediterranean Sea: a decline in biomass 

and landings of European anchovy Engraulis encrasicolus and sardine Sardina 

pilchardus, and an observed spatial expansion of round sardinella Sardinella aurita 

(Sabatés et al. ͲͰͰͶ, ͲͰͰ͹, Palomera et al. ͲͰͰͷ, Van Beveren et al. ͲͰͱͶa). 
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Although several hypotheses have been formulated to explain changes in SPF, 

factors that are controlling populations of SPF in the NW Mediterranean Sea are still 

unclear. Population fluctuations have been linked to environmental changes that can 

influence annual recruitment, growth and condition of SPF. Several explanatory 

hypotheses have been formulated (e.g. Palomera et al. ͲͰͰͷ, Martín et al. ͲͰͰ͸, Van 

Beveren et al. ͲͰͱʹ, Brosset et al. ͲͰͱͷ, Saraux et al. ͲͰͱ͸), including the impact of 

higher sea surface temperature (SST) on the distribution of SPF populations that could 

negatively affect some species, such as sardine, and positively affect others, such as 

round sardinella (Sabatés et al. ͲͰͰͶ, Maynou et al. ͲͰͱʹ).  

The role of climate change in affecting the composition of plankton has also been 

suggested to explain observed SPF population changes (Brosset et al. ͲͰͱ͵, ͲͰͱͶ, 

Saraux et al. ͲͰͱ͸). Other potential causes could be the recent recovery of predators 

such as Atlantic bluefin tuna (Van Beveren et al. ͲͰͱͷ), competition between pelagic 

organisms that feed on zooplankton and can also prey on early life phases of SPF (e.g. 

gelatinous zooplankton) (Purcell et al. ͲͰͱʹ, Pascual ͲͰͱͶ, Tilves et al. ͲͰͱͶ, ͲͰͱ͸), 

interspecific competition for food (e.g. between sardine juveniles and the expanding 

population of round sardinella) (Albo-Puigserver et al. ͲͰͱͷa) and the occurrence of 

pathogens and disease (Van Beveren et al. ͲͰͱͶb). Historical changes in anchovy and 

sardine landings have also been attributed to increases in fishing effort and currently 

high rates of exploitation (Palomera et al. ͲͰͰͷ, FAO ͲͰͱͶa, STECF ͲͰͱͶa). 

Understanding interspecific interactions in marine food webs and potential impacts 

of pressures is challenging, and precise quantitative measurements of these effects can 

be difficult to obtain (Stergiou & Karpouzi ͲͰͰͱ). To address this scientific challenge, 

there is a growing need to develop and use novel methodologies of data integration 

and modelling that can account for ecological and environmental processes as well as 

uncertainties in data and knowledge of the system (Christensen et al. ͲͰͱ͵, Parravicini 

et al. ͲͰͱͲ). In order to understand the main patterns and trends, it is not always 

necessary to have precise quantitative measurements, as qualitative analyses of a 

system may help in predicting its general dynamics (Dambacher et al. ͲͰͰ͹, Lassalle 

et al. ͲͰͱʹ). In this context, qualitative mathematical modelling can be used to 

integrate available knowledge from different disciplines, and also account for complex 

dynamics driven by feedbacks in ecological systems, which can create counterintuitive 
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results that often confound predictions and effective management. This approach 

provides a framework to consider alternative hypotheses about the structure and 

function of ecosystems and produce a general and realistic representation of the causal 

relationships that drive the system (Levins ͱ͹ͶͶ, ͱ͹ͷʹ). Qualitative mathematical 

modelling is especially useful when the basic relationships between variables are 

understood but where precise and detailed data is not available (Dambacher et al. 

ͲͰͰ͹). 

In this study, we applied qualitative mathematical modelling to depict a NW 

Mediterranean pelagic food web based on the available knowledge from the area and 

assess the likely role of potential pressures on SPF populations during the last Ͳ 

decades. We used the methodology of sign directed graphs in combination with an 

analysis of Bayesian belief networks (BBNs) (Dambacher et al. ͲͰͰͳa,b, Hosack et al. 

ͲͰͰ͸). We considered alternative model structures and looked at the most plausible 

changes due to different pressures (fisheries, predators, bottom-up causes or 

temperature) that have been suggested as potential explanations for the decline of 

sardine S. pilchardus and anchovy E. encrasicolus, and for the increase of round 

sardinella S. aurita. The role of pressures to yield consistent results with observations 

were first investigated individually, and afterwards we considered combinations of 

multiple pressures (Folt et al. ͱ͹͹͹, Crain et al. ͲͰͰ͸). Finally, we identified which 

variables of the pelagic food web models were most information-rich and thus could 

be monitored in the future to obtain more knowledge about what is happening in the 

NW Mediterranean pelagic food web to reduce uncertainty from model predictions. 
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͵.Ͳ Materials and methods 
 

Study area 

Our study area represents the 

pelagic marine ecosystem of the NW 

Mediterranean Sea, with special 

emphasis on the marine ecosystem of 

the Ebro River Delta continental shelf 

in the NW Mediterranean (Fig. ͱ), from 

where most of the information 

included in this study is available (see 

Table ͱ). As a consequence of particular 

oceanographic conditions, such as 

wind conditions, vertical mixing and 

river discharges (Salat ͱ͹͹Ͷ, Palomera 

et al. ͲͰͰͷ), this area is an important 

spawning habitat and fishing ground of 

sardine and anchovy in the Mediterranean Sea (Tugores et al. ͲͰͱͱ, Giannoulaki et al. 

ͲͰͱͳ) and has been identified as a priority area for conservation (Coll et al. ͲͰͱ͵, Piante 

& Ody ͲͰͱ͵). Important landings of SPF, mainly anchovy and sardine, have been 

observed in the region since the ͱ͹ͷͰs, with maximum catch in the early ͱ͹͹Ͱs (Fig. 

Ͳ). Since then, landings of SPF have declined, and from the mid-ͲͰͰͰs, the catch of 

sardine is lower than that coming from anchovy. While round sardinella is not a 

primary commercial species, levels of catch have increased in the last few decades, 

with large fluctuations due to its low commercial value (Fig. Ͳ), highlighting an 

increase of this species in the NW Mediterranean Sea and a northern expansion of its 

distribution (Sabatés et al. ͲͰͰͶ, ͲͰͰ͹). It is important to note that while Sardina 

pilchardus (from hereon referred to as sardine) reproduces in winter, Sardinella aurita 

(from hereon referred to as round sardinella) and Engraulis encrasicolus (from hereon 

referred to as anchovy) do this during the summer; therefore, these ͳ species are 

Fig. ͱ. Study area in the NW Mediterranean Sea  
(inset: Mediterranean Sea). 
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differently affected by environmental conditions (Palomera et al. ͲͰͰͷ, Maynou et al. 

ͲͰͱʹ). 

 

Sign directed graphs 

Qualitative mathematical modelling is based on a general understanding of the 

relationships that connect ecosystem variables, and can be represented by either 

equations, matrices or graphs (Puccia & Levins ͱ͹͸͵, Dambacher et al. ͲͰͰ͹). In this 

study, we used the modelling methodology of sign directed graphs, or signed digraphs, 

to assess model stability as an indication of the likelihood of the modelled system to 

exist and persist in nature, and to predict how the system could possibly respond to 

an array of possible pressures (Dambacher et al. ͲͰͰͳa,b). Functional groups in signed 

digraph models and their pressures are depicted as nodes and the signs of the direct 

effects among them are represented by directed links between the nodes. The graph 

links contain the signs (+, −, Ͱ) of the direct effects. A signed digraph has an equivalent 

representation in a community matrix, where each aij element represents the direct 

effect of variable j on variable i, and can be used to perform algebraic operations. 
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Fig. Ͳ. Anchovy and sardine landings from ͱ͹ʹͰ to ͲͰͱʹ and round sardinella landings from ͱ͹ʹ͵ 
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Institute and from Regional Autonomic Fisheries statistics. 
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From the structure of signed digraphs and the community matrix, the feedback 

properties of a system can be examined to understand its dynamics and identify 

processes and interactions that play a key role in maintaining a state of equilibrium. 

Model stability is assessed to determine whether or not a model is a feasible 

representation of a real system, such that the model possesses the virtue of persisting 

despite a shock or perturbation and whether it can exhibit familiar dynamics 

(Dambacher et al. ͲͰͱ͵). The system feedback is calculated by the product of links in 

the system; while negative feedback (such as a predator–prey relationship) returns the 

opposite effect to an initial change in a variable and acts to maintain equilibrium, 

positive feedback can magnify changes in a variable and drives the system away from 

its previous state through un checked growth or collapse (Puccia & Levins ͱ͹͸͵). 

Therefore, the qualitative analysis of feedback permits an evaluation of system stability 

and an understanding of the role of pressures. Analysis of model stability entails an 

assessment of a system’s response to a pulse perturbation, which is an instantaneous 

and temporary increase or decrease in the abundance or level of ͱ or more variables, 

where stable systems have the ability to return to their former equilibrium levels and 

unstable systems do not (Dambacher et al. ͲͰͰͳb).  

All signed digraph models in this study were obtained using the digraph editor 

software PowerPlay version Ͳ.Ͱ. Stability and perturbation analyses were developed 

using a Maple software program for qualitative and symbolic analyses of the 

community matrix. PowerPlay and the Maple program are available as downloads in 

Supplement Revisions ͱ and Ͳ from esapubs. org/ archive/ ecol/EͰ͸ͳ/ͰͲͲ. 

 

Model formulation of NW Mediterranean pelagic food web 

To develop the food web models of the NW Mediterranean pelagic system, we 

represented a ‘relevant subsystem’ (Dambacher et al. ͲͰͰ͹, ͲͰͱ͵) that included the 

essential dynamics of SPF in the NW Mediterranean Sea, and which tailored the model 

to the specific problem to be investigated. The goal was to provide a conceptual 

framework that integrated knowledge of various disciplines, but was constrained to 

the context of the management problems at hand and the local environment. 

Therefore, we included those ecological groups that were relevant for sardine, anchovy 

and round sardinella population dynamics (Palomera et al. ͲͰͰͷ, Coll et al. ͲͰͰ͸, 
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Albo-Puigserver et al. ͲͰͱͶ). The functional groups to depict the food web were chosen 

based on existing ecological knowledge and literature of the pelagic food web of the 

NW Mediterranean Sea (see Table ͱ), with special emphasis on the marine ecosystem 

of the Ebro River Delta continental shelf in the NW Mediterranean (Fig. ͱ). We also 

considered relevant information from adjacent ecosystems when available (such as the 

Gulf of Lions located in the most northern part of the Mediterranean Sea basin).  

 

 

Firstly, we developed a core food web model (MͰ) with ͸ variables or nodes (Table 

ͱ, Fig. ͳ). MͰ represented the base configuration of the pelagic food web associated 

with SPF in the Ebro River Delta (NW Mediterranean) and incorporated the main 

established knowledge about ecological interactions (Fig. ͳ). Links between nodes or 

functional groups and their pressures were based on the available scientific knowledge 

of the system (Table ͱ). In Fig. ͳ, links ending in an arrow represent a positive direct 

effect, such as births due to consumption of prey, whereas links ending in a filled circle 

represent negative direct effects, such as mortality due to predation. Self-effects, such 

as intraspecific resource limitation, are depicted as links that start and end at the same 

node. MͰ included direct effects between predators and prey, and fisheries. All 

Table ͱ. Summary of direct effects between variables and factors on the core model. Numbers in 
the ‘From’ and ‘To’ columns and numbers in parentheses in the ‘Mechanism’ column represent 
graph nodes in Fig. ͳ 

Direct effect Mechanism 
Sign From To  
+ ͱ;Ͳ;ͳ ͷ Sardine (ͱ),  anchovy (Ͳ) and round sardinella (ͳ) are the most important 

prey for tuna, little tunny and swordfish (ͷ)(Navarro et al. ͲͰͱͷ, Van Beveren 
et al. ͲͰͱͷ) 

- ͱ;Ͳ;ͳ ͵ Sardine (ͱ), anchovy (Ͳ) and round sardinella (ͳ) prey on zooplankton (͵) 
(Tudela & Palomera ͱ͹͹ͷ, Plounevez & Champalbert ͲͰͰͰ, Lomiri et al. 
ͲͰͰ͸, Costalago et al. ͲͰͱͲ, Costalago & Palomera ͲͰͱʹ) 

- ͱ ʹ Sardine (ͱ) prey also on phytoplankton (ʹ) at adult stages (Lomiri et al. ͲͰͰ͸, 
Costalago & Palomera ͲͰͱʹ)   

- ͳ Ͷ Gelatinous plankton (Ͷ) is an important trophic resource for round 
sardinella (ͳ)(Albo-Puigserver et al. ͲͰͱͷa) 

- ʹ Ͷ Phytoplankton (ʹ) is preyed on by gelatinous zooplankton (Ͷ), but only in 
high quantities during bloom events. Therefore, gelatinous zooplankton 
does not have a negative effect on phytoplankton maintained throughout 
the year (Canepa et al. ͲͰͱʹ) 

- Ͷ Ͳ;͵ Different stages of jellyfish (Ͷ) prey on anchovy larvae (Ͳ) and zooplankton 
(͵) (Tilves et al. ͲͰͱͶ, ͲͰͱ͸) 

- ͸ ͱ;Ͳ Purse-seiners (͸) harvest on sardine (ͱ) and anchovy (Ͳ) with effort that is 
independent of amount of catch; thus, no positive links from (ͱ) and (Ͳ) back 
to (͸) 
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variables included negative self-effects, thus assuming that they are, to some degree, 

self-limiting. In our case, this was used to represent intraspecific density-dependent 

processes. Based on historical evidence from the study area (Coll et al. ͲͰͰ͸), the role 

of SPF in the core model was represented as having the role of wasp-waist control 

(Cury et al. ͲͰͰͰ), impacting both on their prey and their predators (e.g. large 

demersal and pelagic fish, seabirds and marine mammals). 

  

Secondly, to address the uncertainties in some relationships between model 

variables, we compared alternative model structures to MͰ by building ʹ alternative 

food web models (Mͱ, MͲ, Mͳ and Mʹ; Table Ͳa, Fig. ʹ). These alternative models 

included relationships that had scarce information or ambiguity in the response, thus 

alternative links of the core model were proposed: Model Mͱ was modified to represent 

that predators do not limit round sardinella due to its recent expansion (Sabatés et al. 

ͲͰͰͶ, ͲͰͰ͹); Model MͲ incorporated the modification of SPF not limiting their 

trophic resources and therefore not competing for food due to partial difference in 

their diets (Albo-Puigserver et al. ͲͰͱͶ); Model Mͳ incorporated significant predation 

of gelatinous plankton on anchovy larvae and zooplankton, as has been recently 

described to occur in the study area (Tilves et al. ͲͰͱͶ, ͲͰͱ͸); and Mʹ incorporated all 

additional links of Mͱ, MͲ and Mͳ to the core model MͰ.  

 

 

 

Fig. ͳ. Signed digraph of the pelagic food 
web core model MͰ of the NW 
Mediterranean Sea (Table ͱ). Positive 
effects are denoted by links terminating 
in an arrow, and negative effects by links 
terminating in a filled circle. ͱ: sardine, Ͳ: 
anchovy, ͳ: round sardinella, ʹ: 
phytoplankton, ͵: zooplankton, Ͷ: 
gelatinous zooplankton, ͷ: predators 
(tuna), ͸: purse seine fisheries 
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Table Ͳ. (a) Alternative models to the core model MͰ (Table ͱ, Fig. ͳ) showing 
the structural changes to the core model configuration. (b) Hypotheses 
regarding how fisheries interact with small pelagic fish. Numbers in parentheses 
represent graph nodes in Fig. ͳ. Links deleted from the core model (MͰ) are in 
red, those added are in green 

(a) Alternative models to M0 Diagram 

Mͱ. predators (ͷ) do not limit round sardinella 
(ͳ) (remove link ͷ:ͳ) 

 

MͲ. sardine, anchovy and round sardinella do not 
limit their trophic resources and do not compete 
for food:  phytoplankton (ʹ) and zooplankton 
(͵,Ͷ) (remove links ͱ:ʹ, ͱ:͵, Ͳ:͵, ͳ:͵, ͳ:Ͷ) 

 

Mͳ. jellyfish (gelatinous plankton Ͷ) significantly 
prey on anchovy larvae (Ͳ) and zooplankton (͵) 
(add links Ͳ:Ͷ, Ͷ:Ͳ, ͵:Ͷ, Ͷ:͵) 

 

(b) Fisheries hypothesis Diagram 

Hͱ. fisheries (͸) prefer and overexploit anchovy 
(Ͳ) and switch to sardine (ͱ) when anchovy (Ͳ) is 
low (add link Ͳ:ͱ) 

 

HͲ. sardine (ͱ) and anchovy (Ͳ) recruitment 
highly fished (͸) (add link Ͳ:͸, ͱ:͸) 

 

Hͳ. sardine (ͱ) and anchovy (Ͳ) recruitment 
overfished (͸) (add link Ͳ:͸, ͱ:͸, ͱ:ͱ, Ͳ:Ͳ) 
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Thirdly, ͳ hypotheses regarding how fisheries interact with SPF were tested (Hͱ to 

Hͳ, Table Ͳb) (Palomera et al. ͲͰͰͷ, SAC-GFCM ͲͰͱ͵): Hͱ: Overall fishing effort is 

unresponsive to stock abundance; thus, there is no positive link from fish stocks to 

fishery, but fisheries preferably target anchovy and switch to sardine when anchovy is 

low (observed from M. Coll’s personal experience interacting with the fishery’s 

operations); here, anchovy abundance effectively suppresses the intensity of fishing 

effort on sardine, which constitutes a modified interaction (Dambacher & Ramos-

Jiliberto ͲͰͰͷ) and is represented in the signed digraph by a positive link from anchovy 

to sardine; HͲ: Sardine and anchovy are both highly fished, such that the level of 

fishing effort on both stocks increases as a function of combined stock abundance, 

which is represented by a positive link from both the sardine and anchovy populations 

back to fisheries; and Hͳ: Sardine and anchovy recruitment is overfished, which 

destabilizes the stock’s population dynamics and imposes a positive self-effect on 

sardine and anchovy population (Dambacher et al. ͲͰͱ͵). Finally, combinations of Hͱ 

with the Ͳ other fisheries hypotheses was tested (Hͱ & HͲ and Hͱ & Hͳ). 

 

Structural stability of food web models 

Assessing the potential for a signed digraph model to be stable is important because 

it indicates whether the model is a feasible representation of a real system that can 

persist despite everyday disturbances, and also whether such a system could exhibit 

predictable dynamics. Model stability is based on the system’s feedback cycles, both 

in terms of the balance of positive and negative cycles, and the balance of short versus 

long feedback cycles (Dambacher et al. ͲͰͰͳb). System feedback is defined at different 

levels of the system depending on the number of interactions that form a feedback 

cycle (level ͱ, or self-effects; level Ͳ resulting from pairwise interactions such as 

predator–prey interactions; and higher levels involving any number n − ͱ of links with 

n variables). There are Ͳ criteria for stability: (i) feedback at any level of the system is 

not dominated by positive feedback, and (ii) the system is not dominated by higher-

level feedback or cycles with long path lengths. Based on their structural 

characteristics, signed digraph models can be assessed a priori to determine their 

potential to be stable and if they are prone to failing stability Criterion (i) or (ii) 

(Dambacher et al. ͲͰͰͳb).  
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The potential for a signed digraph model to pass or fail Criterion (i) is determined 

by its maximum weighted feedback, wFn, which follows from an accounting of all 

feedback cycles (positive and negative) at the highest level of the system and 

calculating the ratio of the net to absolute sums (or prediction weight) (Dambacher et 

al. ͲͰͰͳb). Values of wFn close to −ͱ.Ͱ imply a limited amount of positive feedback 

and thus a relatively high potential for stability, values of wFn close to +ͱ.Ͱ imply a 

relatively large amount of positive feedback and an unstable system, while a value of 

wFn near zero indicates a roughly equal chance for the system to be stable or unstable 

(Dambacher et al. ͲͰͰͳb). When a system is destabilized due to excessive positive 

feedback, a pulse-type disturbance to the system kicks off exponential growth or decay 

in ͱ or more variables, and thereafter it is unable to return to the former equilibrium 

by its own internal dynamics or processes.  

Models that fail Criterion (ii) are destabilized by systemic overcompensation, which 

is due to feedback at higher levels in the system overwhelming feedback at lower 

levels, leading to undamped oscillations (Dambacher et al. ͲͰͰͳb). The potential for 

a model to pass or fail stability criterion (ii) is assessed by the relative balance of 

feedback at higher versus lower levels of the system through a weighted determinant 

(wD). Positive values of wD imply a high potential for stability, while those close to, or 

less than, zero imply a low potential for stability. The degree to which a weighted 

determinant is ‘close’ to zero is complicated by the fact that values of wD naturally 

decrease as the size, or number of variables, in a system increases. Determination of 

the relative value of a weighted determinant for a given signed digraph model or 

community matrix is made possible by comparison to a standard ‘model c-type system’ 

(i.e. model with the same number of variables constructed as a strain-chain system 

with predator–prey interactions between each successive trophic level, Dambacher et 

al. ͲͰͰͳb). For a given signed digraph model, a value of wD that is less than that for a 

corresponding model c-type system indicates that it has a high potential for failing 

stability Criterion (ii). A useful stability metric can thus be the ratio of a model’s value 

for wD with respect to that of a model c-type system, with a ratio less (greater) than ͱ 

indicating a high (low) potential for failing Criterion (ii).  

Dambacher et al. (ͲͰͰͳb) tested the utility of the above Ͳ stability metrics through 

quantitative simulations in a random and evenly distributed parameter space. These 



Chapter ͵. Who is to blame?  Plausible pressures on SPF 
 

160 
 

metrics proved a robust means to assess potential stability of signed digraph models 

of any size or level of complexity. Here, we apply their results to assess the potential 

stability of the ͵ models (MͰ, Mͱ, MͲ, Mͳ and Mʹ) and their combinations with the ͳ 

hypotheses (Hͱ, HͲ and Hͳ). Accordingly, we apply a threshold value of wFn ≥ Ͱ and a 

wD ratio to model c < ͱ to distinguish model structures with a low potential for stability 

from those with a moderate to high potential. 

 

Perturbation scenarios 

Prior to undertaking an analysis of a system’s expected response to a permanent 

shift in its equilibrium (i.e., a press perturbation), one must first determine if it has 

the potential to be stable during the shift from the old to the new equilibrium state. 

Once this condition is established, then predicting the direction of change for the 

system variables proceeds from an analysis of all the direct and indirect effects formed 

by the pathways of interaction that lead from the input variable to each response 

variable. When there are both positive and negative effects influencing the response 

of a variable, then its prediction is qualitatively ambiguous. To resolve this ambiguity, 

knowledge of the relative strength of interactions involved in the pathways can be used 

to determine whether the positive or negative effects will prevail (Puccia & Levins 

ͱ͹͸͵). Alternatively, the relative balance of positive versus negative effects in a 

response prediction can be used to assign a probability of sign determinacy to response 

predictions (Dambacher et al. ͲͰͱ͵). 

Previous work tested the sign determinacy of qualitative response predictions 

across a wide array of signed digraph models (Dambacher et al. ͲͰͰͳa, Hosack et al. 

ͲͰͰ͸). Numerical simulations were previously used to randomly allocate interaction 

strengths within signed digraph models and examined the frequency with which 

qualitative predictions of perturbation response matched the sign of responses in 

quantitatively specified systems. For example, if there are ʹ pathways of interaction 

leading from an input variable to a response variable, with Ͳ positive and Ͳ negative in 

the sign of their effect, then in numerical simulations that randomly assign 

interactions strengths, the probability of either a positive or negative shift in the 

response variable will be ͵Ͱ% either way, with probability of sign determinacy being 

no better than a coin toss. If, however, there are ͳ pathways with a positive effect and 
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ͱ with a negative effect, then the frequency of a positive response will exceed ͹Ͱ%, 

with the probability that the ͱ single negative effect could overwhelm the other ͳ 

positive effects being less than ͱͰ%.  

 
Fig. ʹ. Signed digraphs of the alternative food web models Mͱ to Mʹ of the NW Mediterranean 
Sea (Table Ͳa). Positive effects are denoted by links terminating in an arrow, and negative effects 
by links terminating in a filled circle. Node numbers are the same as in Fig. ͳ. Links deleted from 
the core model (MͰ; Fig. ͳ) are in red, those added are in green. 

Hosack et al. (ͲͰͰ͸) developed the means to incorporate probabilities of sign 

determinacy for qualitative model predictions within BBNs as conditional 

probabilities, and we used this method in our study (i.e. Eqs. ͵ and Ͷ of Hosack et al. 

ͲͰͰ͸). These conditional probabilities were derived directly from the sign directed 

graphs based on the number of positive and negative effects that make up any given 

response prediction. Representing qualitative models within a BBN has a number of 

advantages, including (ͱ) a probabilistic representation of qualitative model 

predictions, including the means to assess multiple perturbations simultaneously, (Ͳ) 

the ability to validate a qualitative model against observed perturbation responses, (ͳ) 
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diagnosis of most likely source of a perturbation, and (ʹ) a sensitivity analysis that can 

identify the most informative monitoring variables for diagnosis of perturbation 

sources or for model validation. The first ͳ of these functions (i.e. prediction, 

validation, diagnosis) are reported in the BBN as probabilities, while the ʹth (i.e. 

sensitivity analysis) is reported as mutual information, which is a measure of the 

mutual dependence between Ͳ variables. 

In this study, we used only those models with a moderate to high potential for 

stability to develop BBNs to analyse the outputs of perturbation scenarios. Since there 

are various possible explanations for the decline of SPF in the study area, we calculated 

the probability of sign determinacy of each model’s predictions when applying 

different pressures to input variables of the pelagic food web of the NW Mediterranean 

Sea (Figs. ͳ & ʹ), and selected models with predictions that were most consistent with 

field observations.  

Specifically, we applied Ͷ pressures scenarios to each model based on existing 

hypothesis of change. Individual perturbations were developed to reproduce sustained 

changes in main pressures on SPF, mainly related to sustained changes in fisheries, 

predators, zooplankton composition and climate conditions (i.e. SST). Pressures were 

developed by considering inputs to the following variables and pressures (Table ͳ): Pͱ: 

an increase of purse-seine fishery, the main fisheries for SPF (thus increasing fishing 

mortality) (Palomera et al. ͲͰͰͷ); PͲ: a recovery of SPF predators that could have a 

negative impact on the abundance of SPF (thus increasing predation mortality) 

(Navarro et al. ͲͰͰ͹, ͲͰͱͷ, Gómez-Campos et al. ͲͰͱͱ, Mellon-Duval et al. ͲͰͱͷ); Pͳ: a 

change in zooplankton that affects its com position (thus resulting in lower quality of 

food for sardine and anchovy, with the ultimate consequence of a reduction of sardine 

and anchovy abundance) (Brosset et al. ͲͰͱ͵, ͲͰͱͶ, Saraux et al. ͲͰͱ͸); Pʹ: an increase 

of SST that increases the abundance of round sardinella (thus resulting in a spatial 

expansion and higher abundance) (Sabatés et al. ͲͰͰͶ, ͲͰͰ͹); P͵: an increase of SST 

that reduces the reproduction rate of sardine (thus increasing natural mortality) 

(Palomera et al. ͲͰͰͷ); and PͶ: an increase of SST that increases the abundance of 

gelatinous zooplankton (thus resulting in a benefit on its growth and persistence in 

the water column) (Licandro et al. ͲͰͱͰ).  
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A total of Ͳ͸Ͱ perturbation scenarios were developed by applying the individual or 

multiple perturbations (Pͱ to PͶ) with the different alternative models (MͰ to Mʹ) and 

structural hypotheses (Hͱ and HͲ). Results of perturbation scenarios were analysed 

considering available observations that describe a decline in sardine S. pilchardus and 

anchovy E. encrasicolus, and an increase in round sardinella S. aurita in the study area 

(Table ʹ). Predictions for each perturbation scenario were classified as being highly 

sign-determined when the probability of decline or increase for a variables was ≥͹Ͱ%, 

moderately sign-determined with a probability between ͸Ͱ and ͹Ͱ%, or ambiguous 

with a probability <͸Ͱ%. 

Table ͳ. Pressures Pͱ to PͶ applied in perturbation scenarios analysed in Bayesian belief 
networks. Numbers in parentheses represent graph nodes in Fig. ͳ 

Pressure  Input variables 

Fisheries  
P1: increase of purse-seine fishery 
effort (8) 

 
 
Positive input to 
fisheries 

Predator 
P2: recovery and increase of the 
abundance of predators (7) 

 
 
Positive input to 
predators 

Bottom-up 
P3: changes in zooplankton (5) 
composition with lower quality of 
food for sardine (1) and anchovy (2) 

 

Negative input to sardine 
and anchovy 

Temperature 
P4: increase in temperature increases 
the abundance of round sardinella (3) 
 

 
Positive input to round 
sardinella 

P5: increase in temperature reduces 
reproduction rate of sardine (1) 

 
Negative input to sardine 
 

 
P6: increase in temperature increases 
abundance of gelatinous zooplankton 
(6) 
 

 
Positive input to 
gelatinous zooplankton 
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Sensitivity analyses 

Perturbation scenarios that provided predictions that were highly consistent (i.e. 

>͹Ͱ% probability) with observations (Table ʹ) were retained for sensitivity analyses 

(Hosack et al. ͲͰͰ͸). A sensitivity analysis within the BBN shows how the probabilities 

of observing ͱ node are affected by changes in another node, and can be used to 

identify which variables of a model are most informative. Specifically, sensitivity 

analyses use the change in mutual information between Ͳ nodes due to 

the reduction of entropy in node X because of a finding at node Y, where the expected 

reduction in entropy of X due to a finding at Y is zero if X is independent of Y (Hosack 

et al. ͲͰͰ͸). For our purpose, variables identified as being most informative were 

highlighted as interesting to be monitored in order to detect the most likely source of 

input to the food web and most plausible pressure(s) on SPF. BBN analyses were 

performed using the software NETICA v.ʹ.Ͱ͸ following Hosack et al. (ͲͰͰ͸). 

 

 

͵.ͳ Results 

Structure stability  

The stability analyses revealed a moderate to high potential for stability for the core 

model and most of the alternative model structures analysed (Table ͵ ). The exception 

was model structures that included recruitment overfishing of anchovy and sardine 

by purse-seine fisheries (structural hypothesis Hͳ), all of which had a low potential 

for stability. Ten models that were formulated with Hͳ alone or combining Hͳ with 

Hͱ had values of wFn ≥ Ͱ or wD ratio to model c < ͱ. These models were judged to 

have little to no potential for stability, and thus unlikely to represent viable responses 

for press perturbations, and were subsequently excluded from BBN analyses. 
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Table ͵. Stability properties of core and alternative models (Figs. ͳ & ʹ); 
models with low potential for stability in italics (i.e. wFn ≥ Ͱ or wD ratio to 
model c < ͱ). See ‘Materials and methods’ for explanations of model c-type 
system, Models MͰ to Mʹ, Hypotheses Hͱ to Hͳ, and Criteria (i) and (ii). 
BBN: Bayesian belief network, wD: weighted determinant, wFn: maximum 
weighted feedback 

Model and 
hypothesis 

Criterion (i) 
wFn 

Criterion (ii) 
wD 

wD ratio to 
model c 

Included  
in BBN 

M0 –0.32 0.000021 8800 Yes 
M1 –0.32 0.000024 10000 Yes 
M2 –1.0 0.000026 100000 Yes 
M3 –0.27 0.53 × 10–5 2200 Yes 
M4 –0.57 0.000053 22000 Yes 

M0–H1 –0.33 0.000017 7200 Yes 
M0–H2 –0.25 0.000011 4600 Yes 
M0–H3 0.074 0.49 × 10–11 0.002 No 

M0–H1 & H2 –0.28 0.99 × 10–5 41000 Yes 
M0–H1 & H3 0 0.11 × 10–10 0.0046 No 

M1–H1 –0.32 0.00002 8300 Yes 
M1–H2 –0.24 0.000013 5300 Yes 
M1–H3 0.069 0.25 × 10–11 0.001 No 

M1–H1 & H2 –0.26 0.000012 4900 Yes 
M1–H1 & H3 0 –0.45 × 10–11 –0.0018 No 

M2–H1 –1 0.0002 82000 Yes 
M2–H2 –0.67 0.000088 36000 Yes 
M2–H3 0.33 0 0 No 

M2–H1 & H2 –0.73 0.000069 28000 Yes 
M2–H1 & H3 0.67 –0.14 × 10–10 –0.0058 No 

M3–H1 –0.23 0.39 × 10–5 1600 Yes 
M3–H2 –0.22 0.31 × 10–5 1300 Yes 
M3–H3 –0.016 –0.29 × 10–11 –0.0012 No 

M3–H1 & H2 –0.21 0.26 × 10–5 1100 Yes 
M3–H1 & H3 –0.035 0.42 × 10–11 0.0017 No 

M4–H1 –0.56 0.000045 19000 Yes 
M4–H2 –0.34 0.000025 10000 Yes 
M4–H3 0.069 0.23 × 10–12 0.000096 No 

M4–H1 & H2 –0.36 0.000023 9500 Yes 
M4–H1 & H3 0 –0.30 × 10–10 –0.012 No 
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Perturbation scenarios with single pressures 

Perturbation scenarios that combined 

alternative model MͲ with either Pʹ or PͶ as 

single pressures were highly consistent with 

observed changes in populations of sardine, 

anchovy and round sardinella, with all 

predictions having a high (≥͹Ͱ%) 

probability of sign determinacy (Table Ͷ). 

All these models included ʹ perturbation 

scenarios that incorporated the 

modification of SPF not limiting their 

trophic resources, and therefore not 

competing for food due to partial difference 

in SPF diets, in combination with Ͳ 

structural hypotheses: Hͱ (fisheries 

preferably target anchovy and switch to 

sardine when anchovy is low) or the core 

hypothesis (fisheries target anchovy and 

sardine independently of their abundance). 

Pʹ, which is a positive input to round 

sardinella, and PͶ, which is a positive input 

to gelatinous zooplankton, both resulted 

from an increase in SST. Five scenarios with 

predictions that had a moderate (͸Ͱ−͹Ͱ%) 

probability of sign determinacy included 

pressures based on an increase in the purse-

seine fishery (Pͱ) or a decrease in the 

composition of zooplankton (Pͳ). These 

scenarios included alternative model MͲ in 

combination with structural hypotheses Hͱ, 

Hͱ & HͲ, or the core model. 
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Perturbation scenarios with multiple pressures 

Results from the perturbation 

scenarios including multiple 

pressures yielding predictions that 

were highly consistent with 

observations were also based on 

alternative model MͲ in 

combination with structural 

hypothesis Hͱ or the core model 

(Table ͷ). These included scenarios 

that considered ͵  or ͳ simultaneous 

pressures.  

Considering predictions with a 

moderate (͸Ͱ−͹Ͱ%) probability of 

sign determinacy, model 

configuration Mͳ, which 

incorporated significant predation 

of gelatinous zooplankton on 

anchovy larvae and zooplankton, 

was included in ͳ scenarios (Table 

ͷ). In these ͳ scenarios, model Mͳ 

was combined with structural 

hypotheses Hͱ, Hͱ & HͲ, or the core 

model. 

 

 

In perturbation scenarios with multiple pressures, it was always the same 

combination of pressures that gave prediction probabilities with a moderate to high 

level of sign determinacy (>͸Ͱ%) (Table ͷ). The greatest number of combined 

pressures, ͵, included the same ͵ pressures in each perturbation scenario (i.e. Pͱ, PͲ, 

Pͳ, Pʹ and PͶ). Scenarios with ʹ pressures always included PͲ, Pʹ, P͵ and PͶ, those with 
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ͳ pressures always included Pͳ, Pʹ and PͶ, while a combination with Ͳ pressures, Pͱ and 

Pͳ, occurred in only ͱ perturbation scenario.  

 

Most informative indicators 

A sensitivity analysis on model configuration MͲ within the BBNs was used to 

further discriminate between which inputs, and thus which source of a perturbation, 

were most likely to provide high probabilities of predicting field observations (i.e. a 

decline in anchovy and sardine and increase in round sardinella). 

 

Table ͸. Sensitivity analysis results from Bayesian belief networks, for model configuration MͲ 
under the core model hypothesis, structural hypothesis Hͱ, or a combination of both of core 

and Hͱ, given an input to small pelagic fish, with probability of occurrence attributed to each 

model hypothesis. For each input variable (horizontal row), the Ͳ variables with the largest 
mutual information are in bold.  

Model and hypothesis Input to 
-----------------Mutual information------------- 
Sardine 

(%) 
Anchovy 

(%) 
Round 

sardinella (%) 
Predators 

(%) 
M2 50% Core; 50% H1 Sardine 16.1 2.31 1.01 4.5 
M2 50% Core; 50% H1 Anchovy 0.1 21.7 2.0 9.7 
M2 50% Core; 50% H1 Round sardinella 3.4 2.3 12.0 4.5 
M2 Core (100%) Sardine 21.7 2.3 1.3 5.8 
M2 Core (100%) Anchovy 2.3 21.7 1.3 5.8 
M2 Core (100%) Round sardinella 2.3 2.3 12.3 5.8 
M2 H1 (100%) Sardine 11.5 2.3 0.8 3.5 
M2 H1 (100%) Anchovy 1.1 21.7 2.8 14.8 
M2 H1 (100%) Round sardinella 4.9 2.3 11.8 3.5 
 

Sensitivity analysis under the core model hypothesis (fisheries target anchovy and 

sardine independently of their abundance), structural hypothesis Hͱ (fisheries 

preferably target anchovy and switch to sardine when anchovy is low), or a 

combination of both of them (core and Hͱ, where both were given the same weight of 

͵Ͱ% probability of occurrence) yielded similar results (Table ͸). To distinguish 

between likely inputs to sardine, anchovy, and round sardinella, the most informative 

model variable, after excluding their own input variable, was, in all but ͱ instance, the 

variable ‘predators’. Therefore, information about predators in the ecosystem (e.g. if 

they have declined or increased) would allow in the future to further decrease the 

uncertainty in the results of the perturbation scenarios performed in this study. 
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The one exception to these results was observed under the structural hypothesis 

Hͱ. In this case, the most informative variable in the model to distinguish which is the 

likely perturbation source to round sardinella was ‘sardine’ (Table ͸). Therefore, 

further information on sardine dynamics would allow in the future decreasing the 

uncertainty in those perturbation scenarios performed in relation to round sardinella. 

 

͵.ʹ Discussion 

Structure of NW Mediterranean pelagic food web 

This study provides insights about plausible causes of change in the NW 

Mediterranean pelagic food web, highlights some uncertainties and identifies 

guidance for future research. Testing of the alternative model structures found the 

configuration most frequently selected was model MͲ, which represents the 

modification of SPF not limiting their trophic resources and therefore not competing 

for food (for phytoplankton and zooplankton) due to partial difference in their trophic 

niche (Costalago et al. ͲͰͱͲ, Costalago & Palomera ͲͰͱʹ, Albo-Puigserver et al. ͲͰͱͶ). 

This suggests an ecosystem structure where there is no wasp-waist control of SPF (as 

previously suggested in true upwelling systems, Cury et al. ͲͰͰͰ), but only control to 

the predators and not to the prey, which is in agreement with findings in other regions 

(Koehn et al. ͲͰͱͶ). These results would suggest that population changes of SPF could 

have an impact on their predators. On the contrary, in previous studies in the study 

area covering the ͱ͹ͷͰs to the early ͲͰͰͰs, we described sardine as an important 

species exerting wasp-waist control in the system (Coll et al. ͲͰͰ͸), thus also exerting 

control on its prey. These new results may indicate a loss of wasp- waist control of SPF 

due to a decline of their biomass and the current low levels of the stock (Table ʹ). 

They also highlight that a further development of this work should focus on testing 

individually the role of sardine as a wasp-waist organism. The rest of the other model 

structures, models Mͱ, Mͳ and Mʹ, did not produce predictions that were as highly 

consistent with observations as model MͲ for either single or multiple pressures, and 

thus are considered to be less likely to represent observed dynamics of the system. 

This suggests that the hypo thesis that predators do not limit round sardinella due to 

its larger abundance and recent expansion (Sabatés et al. ͲͰͰͶ) (Mͱ), the significant 
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predation of gelatinous plankton on anchovy larvae and zooplankton (Tilves et al. 

ͲͰͱͶ) (Mͳ), and a combination of all the alternative hypotheses are less able to lead to 

model predictions consistent with observed changes in SPF.  

Our results also demonstrate that to understand the structure of the pelagic marine 

food web, it is important to consider how fisheries affect SPF populations. In our 

analyses, the structural hypothesis Hͱ gave predictions that were highly consistent 

with observations several times. Hence, our results support the possibility that 

fisheries preferably target anchovy and switch to sardine when anchovy is low as a 

plausible mechanism governing purse-seine fisheries (as has been already observed 

when interacting with fishermen in the study area). This mechanism, however, is ruled 

by market and price behaviours, which highlights the need to consider fisheries 

dynamics within the ecosystem dynamics. Future development of this work should 

include a socioeconomic model linked with the biological processes modelled in this 

study, as has been done elsewhere (Dambacher et al. ͲͰͰ͹, ͲͰͱ͵). Our results also 

showed that the structural hypothesis considering that sardine and anchovy 

recruitment is highly fished (Palomera et al. ͲͰͰͷ) (HͲ) in combination with Hͱ could 

be potentially viable. An explicit socioeconomic model of the fishery could help 

distinguish between these plausible options. 

Models that included the structural hypothesis that sardine and anchovy 

recruitment was overfished (Hͳ) had a high potential to be unstable, and hence we did 

not incorporate these models into our analyses to predict change in equilibrium. The 

dynamics of these models are dominated by excessive amounts of higher-level 

feedback and thus are prone to exhibit undamped oscillations. Since both stocks of 

sardine and anchovy have been, or are, highly fished and could be overfished 

(Palomera et al. ͲͰͰͷ, STECF ͲͰͱͶa), these ecosystems could be near to or at an 

unstable state, and the system could shift to another equilibrium or become highly 

oscillatory if recruitment overfishing were to persist. Modelling the dynamics of 

unstable systems exceeds the scope of traditional approaches to ecosystem modelling 

(qualitative or quantitative) and requires precise knowledge of system thresh olds and 

extra caution in interpretation and application of modelling results. 
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Plausible pressures on SPF change 

Perturbation scenarios with only a single pressure yielded results that were 

consistent with observations. An increase in SST that produces a positive impact on 

round sardinella or on gelatinous zooplankton was selected as a pressure that could 

alone describe field observations, i.e. a decline in anchovy and sardine, and an increase 

in round sardinella. In fact, there is strong evidence of an overall increase of SST in the 

area, and biological impacts on several organisms spanning different habitats have 

already been documented (Calvo et al. ͲͰͱͱ), which includes impacts on anchovy and 

sardine (Checkley et al. ͲͰͱͷ). These results complement previous knowledge 

highlighting that an increase in SST has probably already impacted the ecosystem 

functioning of the pelagic food web of the NW Mediterranean Sea. Therefore, the 

geographic expansion of round sardinella and the increase in gelatinous zooplankton 

(Sabatés et al. ͲͰͰͶ, ͲͰͰ͹, Maynou et al. ͲͰͱʹ, Tilves et al. ͲͰͱͶ), which are linked to 

changes in SST, may have had important effects on other compartments of the pelagic 

system, such as the abundance of sardine and anchovy through, for example, 

mechanisms of competition for food between SPF. These results are in line with a 

previous study where the analysis of long time series of SPF landings from the Atlantic 

and Pacific Oceans highlighted that the hypothesis with broadest support regarding 

SPF changes was process noise dependence (Hosack et al. ͲͰͱͳ). This hypothesis states 

that environmental parameters may cause one species to predominate over the other 

due to changes in environmental conditions, such as temperature, acting directly on 

SPF, or acting through their food abundance or quality. 

An increase of fisheries impacts alone could also have led to important changes in 

the pelagic food web, but considering our results, the probability that this is the main 

driver of change is lower than an increase of SST. This is in line with previous 

consideration in the Gulf of Lions pelagic ecosystem (Van Beveren ͲͰͱ͵, Saraux et al. 

ͲͰͱ͸). Fisheries statistics and stock assessment models, however, suggest that sardine 

and anchovy have been highly fished in the study area (SAC-GFCM ͲͰͱ͵, STECF 

ͲͰͱͶb,c). Therefore, our results could also reflect the fact that the role of fisheries has 

been important in the past, but once the stock is relatively low, as in the current case, 

then environmental factors such as SST can dominate SPF dynamics (Planque et al. 

ͲͰͱͰ, Essington et al. ͲͰͱ͵). 
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Bottom-up changes of the food web could also be part of the drivers of SPF changes, 

due to changes in zooplankton abundance, composition or quality, and could have 

strong effects on the reproduction, growth and mortality of SPF, as has been proposed 

by Brosset et al. (ͲͰͱ͵, ͲͰͱͶ). These changes could explain the low body condition that 

sardine and anchovy have shown in the Mediterranean Sea in recent years (Albo-

Puigserver et al. ͲͰͱͷb, Brosset et al. ͲͰͱͷ). Changes in plankton composition and 

quality need to be further analysed (Saraux et al. ͲͰͱ͸), and if confirmed, new results 

could be tested in our models. 

The increase of predators as a potential explanation for the decline in SPF did not 

yield predictions that were consistent with observations. This suggests that it is 

unlikely that the recovery of predators of SPF will have an effect on SPF populations 

under current food web structure. Previous studies have already suggested that 

predation mortality of Atlantic bluefin tuna Thunnus thynnus on SPF populations has 

a very low impact on their abundance (Van Beveren et al. ͲͰͱͷ), and that SPF species 

are not the only prey or dominant source of food for pelagic predators (Navarro et al. 

ͲͰͱͷ). 

With respect to cumulative impacts, it is important to highlight that perturbation 

scenarios combining multiple pressures showed several combination sets of pressures 

that had moderate to high probabilities of producing observed results, though in 

general they all had lower probabilities of occurrence than a single pressure alone. 

Interestingly, the same sets of multiple pressures gave predictions with moderate to 

high levels of sign determinacy in combination with various alternative models and 

structural hypotheses, suggesting perhaps that idiosyncratic sets of pressures can 

produce similar results across different model structures. Even though a more 

parsimonious response is preferred, a combination of drivers that yield a decline of 

sardine and anchovy and an increase of round sardinella cannot be disregarded, as 

multiple pressures often spatially overlap in the ocean worldwide (Halpern et al. ͲͰͱ͵), 

and in the Mediterranean Sea in particular (Coll et al. ͲͰͱͲ, Micheli et al. ͲͰͱͳ). The 

most frequent set of multiple pressures considered included an increase of SST 

positively affecting round sardinella and gelatinous zooplankton, a decrease of 

zooplankton quality, an increase of fishing impact and an increase of predators. 

Therefore, we cannot falsify the possibility that cumulative impacts of pressures and 
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their synergistic effects may be important when trying to understand the causes of 

change of SPF populations in the NW Mediterranean Sea. 

Our study provides a first means to compare different hypotheses that have been 

proposed to explain SPF changes in the region but have not been previously tested 

together, and can be the basis for future work. Quantitative dynamic modelling 

approaches could help further evaluate these alternative hypo theses (e.g. Fulton ͲͰͱͰ, 

Fulton et al. ͲͰͱ͵). Another promising approach will be to test some of the key aspects 

of our more plausible model structures using analysis of time series data by state-space 

modelling (Hosack et al. ͲͰͱͳ). Furthermore, as more information is collected, 

additional models based on refined or new hypotheses can be considered and current 

models can be modified to address aspects of the problem not considered so far 

(Dambacher et al. ͲͰͱ͵). 

 

Complementing monitoring strategies 

Even though several combinations of drivers and structural hypotheses were 

considered in this study, further work needs to be done to reduce uncertainty in 

modelling predictions and consider new hypotheses. Sensitivity analyses allowed us to 

identify key monitoring variables to reduce model structural uncertainty. One 

important monitoring variable identified in our models was ‘predators’. The 

importance of this variable can be linked to the large bottom-up control that SPF play 

in the ecosystem and the dependency of predators on their populations (Cury et al. 

ͲͰͱͱ). This suggests that it is important to distinguish which predators base their diet 

on anchovy and sardine and could be monitored in order to indirectly observe any 

effects of change in populations of SPF. The breeding success and fitness of predators 

can be highly affected by the quantity (food availability) and quality (energy intake per 

unit) of their prey (Österblom et al. ͲͰͰ͸). Thus, predators that rely mainly on SPF 

would be highly sensitive to changes in SPF populations, as has been previously 

reported for seabirds such as Audouin’s gull Larus audouinii of the Ebro Delta (Arcos 

& Oro ͲͰͰͲ, Payo-Payo et al. ͲͰͱͶ), Steller sea lions Eumetopias jubatus in the Gulf of 

Alaska (Rosen & Trites ͲͰͰͰ) or African penguin Spheniscus demersus in South Africa 

(Robinson et al. ͲͰͱ͵).  
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To increase the knowledge of which pressures are driving round sardinella, our 

analyses suggest that sardine populations are a good monitoring target and research 

investment. The importance of this variable is probably related to the divergent trends 

that both species have shown in the ecosystem historically, with a decline of sardines 

and an increase of round sardinella (Palomera et al. ͲͰͰͷ). This result is relevant since 

there is a lack of information about sardine biology and ecology in the Mediterranean 

Sea (Palomera et al. ͲͰͰͷ), and further studies could be beneficial. 

 

Complexity when predicting and managing change 

While there were ͱ͹ perturbation scenarios that gave predictions moderately or 

highly consistent with observations, the vast majority of the Ͳ͸͵ scenarios considered 

yielded low levels of sign determinacy. This highlights the challenge of predicting 

complex systems such as marine food webs and the need to use complementary 

modelling techniques that quantify the strength of the interactions (Fulton ͲͰͱͰ, 

Fulton et al. ͲͰͱ͵). Results from this study provide insight into model structure that 

can inform future quantitative modelling endeavours in the study area such as the 

ones developed for SPF in other marine ecosystems (e.g. Shannon et al. ͲͰͰʹ, Koehn 

et al. ͲͰͱͶ, Punt et al. ͲͰͱͶ, Kaplan et al. ͲͰͱͷ). 

Of all the pressures that were tested, managing for pressures such as SST or changes 

in plankton abundance is difficult at local or regional scales. Here, we can only aim to 

manage fisheries in a sustainable and adaptive way, with all the challenges implied in 

the process. Future work should focus on testing which management alternatives can 

ensure the sustainability of the marine ecosystems of the NW Mediterranean and are 

also robust to a changing climate. 
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General Discussion 
 

To advance on our understanding about ecosystem functioning and progress 

towards a sustainable management of marine resources from an ecosystem-based 

approach, it is necessary to gain detailed knowledge on the biology, ecological 

interactions and the transfer of energy of key marine species (Pauly et al. ͲͰͰͲ).  

Current declines of small pelagic fish (SPF) populations in the northwestern 

Mediterranean Sea have generated socio-economic and ecological impacts. As a 

consequence, different hypotheses to potentially explain these changes have been 

proposed and tested (Saraux et al. ͲͰͱ͹; Coll and Belllido, ͲͰͱ͹). In this context, this 

thesis has contributed to fill important gaps in the trophodynamic aspects of the most 

important species of the pelagic compartment. Specifically, I have provided robust 

scientific findings on the trophic ecology and ecological energetics of small and 

medium pelagic fish from the study area by combining different methodological 

approaches. I have also contributed to the understanding of the structure of the 

pelagic compartment, providing insights about plausible causes of change in the 

northwestern Mediterranean pelagic food web.  

 

Main findings on trophodynamic of SPF and their ecological implications 

Trophic interactions between species are dynamic rather than fixed and may vary 

through the year depending on several biotic and abiotic factors (França et al. ͲͰͱͱ). 

Biological processes (i.e. growth, maintenance or reproduction) and external factors 

(i.e. food availability) affect energy storage and nutritional condition of fish that 

ultimately, and in combination with the trophic interactions, affects their ecological 

energetics. In the northwestern Mediterranean, information on trophic interactions 

and energy allocation at seasonal scale is very limited, impairing our capacity to 

evaluate the ecosystem dynamics through the year.  

In Chapter ͱ, the seasonal study of trophic interaction between small, medium 

pelagic fish and potential predators or competitors, revealed that the structure of the 

pelagic compartment does not present a seasonal variability at community level. 
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However, when looking at species level, changes in the trophic overlap between pairs 

of species were observed. Specifically, in summer, there was less trophic overlap than 

in the rest of the year, while in winter, when biological productivity was low, the 

proportion of species with overlapping niches was higher. This is the case of sardine 

and anchovy, whose trophic niches were segregated in summer and partially 

overlapped their niches in the other seasons. Instead, the hypothesis of potential 

competition of round sardinella with sardine and anchovy was not confirmed for 

adults (Tsikliras et al. ͲͰͰ͵, Sabatés et al. ͲͰͰͶ). The higher trophic level observed in 

round sardinella suggested that this species was probably feeding on different and 

higher trophic level zooplankton than sardine and anchovy. However, information on 

the feeding ecology of adults of round sardinella in the western Mediterranean was 

not available previous to this thesis to fully understand the trophic relationships 

between SPF.  

Therefore, in Chapter Ͳ we studied the seasonal dietary habits of round sardinella 

using stomach content and stable isotopes analyses. In this chapter, juveniles were 

also included in the analysis, as well as adult individuals. While round sardinella did 

not overlap at adult stages (Chapter ͱ), juvenile individuals of round sardinella had a 

wider trophic overlap with juvenile of sardine and anchovy and adults of anchovy. 

Ontogenetic shifts in diets have been widely described in many species, in general 

trophic level increases with ontogenetic stage, as observed in anchovy and round 

sardinella. Instead, in sardine there was a decrease in the trophic level of adults due to 

the increase of consumption of diatoms (Costalago & Palomera, ͲͰͱʹ; Chapter Ͳ). 

These results highlight the importance of taking into account not only the temporal 

variability in diet but also the ontogenetic stage of investigated individuals when 

looking at interactions between species.  

Stomach content analysis helped to understand that the higher trophic levels 

observed in adults of round sardinella and the overlap at juvenile stages with sardine 

and anchovy was due to differences in prey size. Moreover, for the first time in the 

Mediterranean Sea, we described gelatinous zooplankton, and more specifically salps, 

as a main food resource for a small pelagic fish (Chapter Ͳ). In other areas, such as the 

Pacific Ocean, evidences of the increase in consumption of gelatinous zooplankton by 

forage pelagic fish has been recently found for periods with high SST and it was related 
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with lower body condition of forage fish (Brodeur et al. ͲͰͱ͹). Gelatinous zooplankton 

is generally classified as a poor nutritional prey (Doyle et al. ͲͰͰͷ), but recent studies 

have seen how certain marine predators might achieve the energy demands through 

high consumption of gelatinous zooplankton (Dubischar et al. ͲͰͱͲ). In a context of 

climate change where gelatinous zooplankton is more abundant (Grémillet et al. 

ͲͰͱͷ), it is highly important to assess how this can affect the trophic web and 

ultimately the ecological energetics of pelagic species. In our case, salps in stomach of 

round sardinella were observed in spring, when the species accumulates energy just 

before the spawning period (Chapter ͳ). Thus, the consumption of gelatinous 

zooplankton in certain seasons might influence the accumulation of energy during 

this period and compromise the different biological processes (i.e. maintenance, 

growth or reproduction) of the following seasons.  

In Chapter ͳ, the energy dynamics of round sardinella and other six forage fish were 

studied. Seasonal variability was observed in most of the species, with a general pattern 

of higher accumulation of energy in spring, regardless of their breeding strategy. As 

we observed for the seasonal variation in trophic relationships, the higher energy 

density (ED) values in spring were probably related to the late-winter early-spring 

phytoplankton bloom that led to higher zooplankton availability with higher lipid 

content, as observed in the area of study by Barroeta et al. (ͲͰͱͷ). Another factor that 

determined the energy storage in SMPF was spawning season since it is a highly 

consuming process energetically.  

When looking at the trophic level and energy density of small and medium sized 

pelagic fish, I observed how medium pelagic fish (MPF) had higher trophic level and 

energy density (ED) values than SPF (Chapter ͱ and ͳ). Trophic level and body size are 

often correlated, especially in pelagic fish, since larger sized fish may be able to feed 

on larger prey with higher energy content (Cohen et al., ͱ͹͹ͳ; Jennings et al., ͲͰͰ͸; 

Bachiller and Irigoien, ͲͰͱͳ). In the case of MPF, other features, such as the 

accumulation of fat reserves for migration may also contribute to the high ED values 

(Chapter ͳ). Within SPF, sardine was an exception and had mean annual ED values 

similar to those of MPF. This is mainly explained by the capital breeding strategy of 

sardine. The accumulation of fat reserves during the resting period (spring and 
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summer), when zooplankton biomass is high (Sabatés et al. ͲͰͰͶ), allowed sardine to 

have ED values similar to those of MPF.  

Energy variability of forage species that are highly consumed by marine predators 

has not been traditionally taken into account in bioenergetic models of predators or 

food-web models (Van Beveren et al. ͲͰͱͷ). For instance, in the case of sardine that is 

a highly consumed forage fish (Stergiou & Karpouzi, ͲͰͰͲ), the difference in energy 

gain per gram consumed between feeding on sardine in spring or winter would be of 

ͱ.͹ kJ per gram. Feeding in spring on round sardinella instead of sardine would imply 

to gain Ͱ.Ͷ kJ less per gram ingested. These differences in ED between seasons and 

species should be incorporated when evaluating the ecosystem consequence of the 

observed declines in sardine and anchovy biomass and body condition in the 

northwestern Mediterranean Sea (Brosset et al. ͲͰͱͷ, Coll and Bellido et al. ͲͰͱ͹). For 

instance, the “Junk food hypothesis” has been proposed in different areas were there 

has been a shift in diet of predators from high energy prey to low energey prey 

(Österblom et al. ͲͰͰ͸). In the Gulf of Alaska or the North Sea the reduction of fattier 

pelagic fish translated in a decline in Steller sea lions and common guillemots, 

respectively (Rosen & Trites ͲͰͰͰ, Wanless et al. ͲͰͰ͵). Thenrefore, with the observed 

decline in biomass and body condition of sardine and anchovy, we could expect to 

observe “junk-food” effects in predators specialized in SPF in the northwestern 

Mediterranean. In fact, in Chapter ͵, predators of SPF were identified as a good 

monitoring variable to track changes in SPF. Few studies on body condition or changes 

in food preference of predators have include information on prey quality in the 

Mediterranean Sea. Arcos & Oro (ͲͰͰͲ) found that nutritional requirements of 

audouin's gull (Ichthyaetus audouinii) were mainly covered by clupeid fish from purse-

seiners in the Ebro Delta. Also, Vivien et al. (ͲͰͱͲ) proposed a potential relation 

between prey quality and body condition of hake (Merluccius merluccius).  However, 

the recent declines in body condition and abundance of sardine and anchovy have not 

been directly associated with declines in predators yet since for many species, 

predators and preys, temporal biological information on body condition and feeding 

habits is limited in the northwestern Mediterranean Sea.  

The evaluation of the nutritional status of populations has proved to be a good 

indicator of ecosystem health and has been recommended to be included in the 
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Integrated Ecosystem Assessment (IEA; ICES ͲͰͱͷ). To evaluate the physiological 

status of fishes and measure the stored energy, different condition indeces are 

available (Lloret et al., ͲͰͱͳ). In Chapter ͳ and ʹ, with the used of indirect and direct 

condition indeces we observed the seasonal variability in body condition of sardine 

and anchovy. The energetic cycle of both species was closely related to the temporal 

lag between the spawning seasons and late-winter early spring phytoplankton bloom 

(Basilone et al. ͲͰͰͶ, Pethybridge et al. ͲͰͱʹ). Although sardine and anchovy had 

different energy allocation strategies, capital and income breeder respectively, in both 

species, an early decline in energy reserves was observed in late summer and early fall, 

that may be related with unfavorable environmental conditions during spring and 

summer. The low energy reserves observed were in line with the decline in body 

condition reported for sardine and anchovy in the last decade in most of the 

Mediterranean (Brosset et al. ͲͰͱͷ). Similar to what we observed from the results in 

Chapter ͱ, Ͳ and ͳ, data analysis at the seasonal scale in Chapter ʹ allowed us to better 

understand intra-annual processes that could ultimately affect inter-annual 

variability.   

Sustained declines in body condition can be a symptom of changes in food quality 

and quantity (Rosen & Trites ͲͰͰͰ). In the northwestern Mediterranean Sea, one of 

the main hypotheses that has been proposed to explain the decline in body condition 

is the change in plankton phenology (Saraux et al. ͲͰͱ͹). However, the lack of time-

series of plankton composition has impeded the evaluation of this hypothesis until 

now. Indirectly, changes in stomach content analysis of SPF have partially 

corroborated this hypothesis (Brosset et al. ͲͰͱͶ) and the observation of salps in 

stomachs of round sardinella could also be an indicator of a change in plankton 

composition (Chapter Ͳ).  

When analyzing different model structures of the pelagic food web (Chapter ͵), it 

was observed how the best model structure selected to explain observed changes in 

SPF did not include a control of SPF on lower trophic level, contrary to the wasp-waist 

control exerted by sardine observed in the past by quantitative food-web models from 

the same area (Coll et al. ͲͰͰ͸). These new results may indicate a loss of wasp- waist 

control of SPF due to a decline of their biomass and the current low levels of the stock 

(Coll and Bellido ͲͰͱ͹).  
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Many other hypotheses have been proposed to explain the decline in abundance, 

biomass, body condition and growth (Van Beveren et al. ͲͰͱʹ, Brosset et al. ͲͰͱͷ), not 

only by the scientific community but also from different stakeholders that are involved 

in the fishing activity. Whether single pressures or cumulative pressures could better 

explain the decline of sardine and anchovy and the increase in biomass of round 

sardinella it is not clear (Chapter ͵). The increase in SST having either a positive 

impact on round sardinella or on gelatinous zooplankton abundance was the pressure 

that alone provided the most plausible insights into observed changes. Instead, when 

looking to the combination of various pressures, an increase in SST, an increase of 

fisheries exploitation and changes in zooplankton also delivered results matching 

current observations. From these results I can conclude that environmental changes 

and bottom up changes including changes in zooplankton are likely to play an 

important role, but that also other factors such as fishing pressure are very likely 

involved in the explanation of the current situation. One of the main challenges in 

other fisheries collapses studied has been to disentangle the impact of fishing vs. 

natural processes on population dynamics (Essington et al. ͲͰͱ͵, Quattrocchi ͲͰͱͷ). 

Since natural processes are difficult to 

control at the local scale, one can only 

aim to manage fisheries in a 

sustainable and adaptive way, 

reducing fishing pressure when 

populations may be at risk to protect 

the food web from collapse and avoid 

long-term consequences on catches 

(Essington et al. ͲͰͱ͵, Ramírez et al. 

ͲͰͱ͸; Figure ͱͶ).  

 

Complementary methodological approach 

In this thesis I have used different methodologies in order to gain a better 

comprehensive understanding of SPF trophodynamics. All methodologies have their 

advantages and disadvantages, and the combination of several complementary 

methodologies can contribute to obtain more accurate information.  

Figure ͱͶ. Three dimensions of the safe operating 
space (SOS) for the Mediterranean Sea. Source: 
Ramírez et al. ͲͰͱ͸. 
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In the case of the study of trophic relationship and the structure of the food web, 

stomach content analysis (SCA) has been traditionally used. However, in the last 

decades, new methodologies such as stable isotope analysis (SIA) has been widely 

implemented and more recently, fatty acids, compound specific stable isotopes and 

DNA metabarcoding are also being used in the study of trophic interactions (Nielsen 

et al. ͲͰͱ͸). Although the use of stable isotopes of δ15N and δͱͳC allowed me to 

characterize the seasonal structure of the pelagic community, the low taxonomic 

resolution provided by SIA means that information on the feeding ecology at species 

or group level is necessary in order to better interpret the SIA results. Therefore, when 

information on the feeding ecology of the species is not available from literature, I 

recommend to use both analysis, SIA and SCA, whenever possible as illustrated in 

Chapter Ͳ.  

The study of ecological energetics and physiological condition in sardine and 

anchovy was conducted using direct calorimeter and relative condition indeces (Le 

Cren, ͱ͹͵ͱ). Both measures were highly correlated and reflected seasonal variability in 

energy content for both species. Instead, lipid content in muscle seemed to be more 

suitable for species like sardine, which accumulate a lot of lipids in certain periods of 

the year, than for those species in which lipid content is lower and with les intra-

annual variability such as anchovy (Chapter ʹ). The advantage of using direct 

calorimetry to measure changes in energy is that it is a direct measure that gives 

comparable values through different studies and integrates changes in proximate 

composition, including lipids but also proteins. However, it is a highly time consuming 

technique and difficult to use for rapid assessments. Instead, the indirect condition 

index (Le Cren ͱ͹͵ͱ) has been widely used and validated for the species as it is a rapid 

and cost-effective method easy to implement in long-term monitoring programs (ICES 

ͲͰͰ͸). Other new techniques and devices such as the fatmeter have not been 

evaluated in this thesis, but previous research has demonstrated the utility of this 

indirect method to rapidly evaluate the body condition and energy content of SPF 

(Brosset, Fromentin, et al. ͲͰͱ͵). In this thesis, the relationship between percentage of 

dry weight and energy density of the entire individual is provided, as well as between 

the gonadosomatic index and energy density of gonads for anchovy and sardine 

(Chapter ʹ). These relationships might be of use in the future for indirect 

measurement of ED of anchovy and sardine in the northwestern Mediterranean Sea.  
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In order to integrate available biological and ecological data with the final objective 

to obtain an overall picture of how ecosystems are structured and how they function, 

food-web models have emerged as a suitable tool (Christensen et al. ͲͰͱ͵). In order to 

understand the main patterns and trends, it is not always necessary to wait until we 

have precise quantitative measurements of all interactions when the direction of the 

interaction is known. Thus, qualitative analyses of a system may help in predicting its 

general dynamics (Dambacher et al. ͲͰͰ͹). In Chapter ͵, the qualitative models 

allowed to analyses the stability of different model configuration and determine the 

most likely structure of the pelagic food web related to small pelagic fish. Moreover, it 

was a useful tool to perform the assessment of different press perturbation scenarios 

and determine the most likely explanation to the decline of sardine and anchovy and 

increase of round sardinella (Chapter ͵). Results obtained from the qualitative 

modelling could be used to inform future quantitative models. Furthermore, as more 

information become available, additional models based on refined or new hypotheses 

can be considered and current models can be modified to address aspects of the 

problem not considered so far (Dambacher et al. ͲͰͱ͵). 

 

Data gaps, limitations and future research 

In this thesis I focused on the study of intra-annual variability in trophic 

relationships and ecological energetics of pelagic fish with monthly and seasonal 

samplings that allowed me to study processes at small temporal scale in depth. This 

information is key to later interpret processes at longer temporal scales. However, in 

order to study inter-annual processes and quantify the relationship of biological 

parameters with environmental variables, the analysis of time-series data of several 

years would be needed (Van Beveren et al. ͲͰͱʹ). All the data presented in this thesis 

can be used as a baseline for comparison with data collected in future projects.  

Findings of each chapter also generated new research questions and highlighted 

gaps of knowledge. In Chapter ͱ the use of stable isotope analysis allowed me to 

characterize the structure of the pelagic food web. However, some of the variability 

found between congeneric species such as mackerels and horse mackerels could not 

be fully interpreted since data on feeding habits, distribution and migration of these 

species are limited in the study area. Moreover, in future research it will be necessary 
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to obtain reference values of stable isotopes for the baseline (i.e. phytoplankton) and 

for prey (i.e. copepods, cladocerans, salps) in each season, in order to go one step 

further and develop isotopic mixing models to estimate diets of SMPF.  

In Chapters Ͳ and ͵ results pointed out that gelatinous zooplankton might be 

playing an important role in SPF dynamics. However, evidence of predation of 

gelatinous zooplankton by sardine and anchovy is still lacking. In future research it 

would be necessary to determine if sardine and anchovy are also able to prey on salps 

and if the predation on gelatinous zooplankton might affect the physiological state of 

SPF (Brodeur et al. ͲͰͱ͹). Gelatinous zooplankton is not always easy to detect due to 

its rapid digestion. Therefore, novel techniques such as DNA metabarcoding could be 

combined with SCA and SIA (Nielsen et al. ͲͰͱ͸). Salps are mainly present in high 

abundance in spring and in certain years when blooms occur (Henschke et al. ͲͰͱͶ). 

Thus, in order to test if round sardinella and the other SPF have a preference for 

feeding on salps or if they feed on salps when other preferred resources (i.e. copepods) 

are low (Mianzan et al. ͲͰͰͱ, Brodeur et al. ͲͰͱ͹), it would be necessary also to have 

data on plankton composition.  

The decline in body condition of SPF in the western Mediterranean Sea in the last 

decade has been reported in previous studies (Brosset et al. ͲͰͱ͵, ͲͰͱͷ). In Chapter ͳ 

and ʹ , I observed that there is a high seasonal variability in energy density that is highly 

related to the environmental variables and primary productivity. The energetic data 

obtained in combination with other life history parameters (i.e. growth, feeding rate) 

could be used in future bioenergetics models with the aim of evaluating the potential 

consequences of environmental changes in the energy allocation of SPF (Pethybridge 

et al. ͲͰͱͳ, Gatti et al. ͲͰͱͷ).  

In the qualitative network model developed (Chapter ͵), the variable “predators” 

was the most informative variable to monitor changes in small pelagic fish. However, 

nowadays there is scarce information on stomach content analysis of predators in 

order to use them as a monitoring variable. Consequences of the decline of SPF have 

not been yet observed in higher trophic levels due to the lack of information on 

predators that will need to be addressed in the future. On the other hand, the other 

type of “predators” included in the model were fisheries. How fisheries behavior affect 

SPF populations was important to determine the structure of the pelagic marine food 
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web. Hence, future research on the functioning of the pelagic food web should 

consider the fisheries dynamics interactions including socioeconomic processes and 

the participation of the local ecological knowledge to better represent the real 

interaction between fisheries and SPF resources (Dambacher et al ͲͰͰ͹, ͲͰͱ͵).  

In addition to the hypotheses tested in Chapter ͵, there are other hypotheses on 

why SPF have substantially changed in the northwestern Mediterranean Sea in recent 

decades that have not been included in this thesis and need to be addressed in the 

future (Figure ͱͷ; Saraux et al. ͲͰͱ͹). For example, the increase of diseases has been 

reported as a potential causes of the decline in sardine and anchovy, but no evidence 

has been found until now (Ferrer-Maza et al. ͲͰͱͶ, Van Beveren et al. ͲͰͱͶ). In 

addition, how contaminants and plastic pollution in the seas could influence the 

physiology of SPF is still unknown and as new techniques become available this issue 

should be properly addressed (Compa et al. ͲͰͱ͸, Sala et al. ͲͰͱ͹).  Future success in 

predicting and evaluating species and ecosystem change will depend on how 

successful we are at integrating the physiological, evolutionary, ecological and 

environmental processes that happen at cellular, individual and supra-individual 

levels of organization without losing perspective (McKenzie et al. ͲͰͱͶ). A 

compromise between generality, realism and precisions is necessary to navigate this 

challenge (Larocque ͲͰͱͲ, Weathers et al. ͲͰͱͶ).

Figure ͱͷ. Summary of the potential drivers of the decline of sardine and anchovy populations. 
Green circles represent potential drivers explored in this thesis, while grey circles represent 
potential drivers not included in this thesis. When evidence of relationship of the driver with the 
decline of sardine and anchovy have been confirmed, it is indicated with the symbol “√”, while 
evidence have not been found the symbol is an “X”. The relationship that have not yet been 
confirmed are indicated with the symbol “?”. Adapted from: Saraux et al. ͲͰͱ͹. 
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Main conclusions derived from this thesis are presented below (see also Figure ͱ͸): 

ͱ. Despite intraspecific seasonal variability for some species and higher trophic 

overlap in winter than in summer, overall community trophic structure 

appeared relatively stable throughout the year.  

 

Ͳ. Stable isotope analysis revealed a clear trophic segregation and higher trophic 

position of adult round sardinella from adult sardine and anchovy, which was 

mainly explained by the preference of round sardinella for larger zooplankton. 

Instead, the trophic niche of juvenile round sardinella partially overlapped with 

that of juvenile sardine and anchovy. Therefore, the range expansion of round 

sardinella would affect sardine and anchovy populations at certain ontogenetic 

stages in a situation of food limitation. 

 
ͳ. Variation in seasonal dietary habits was found in the stomach contents of 

round sardinella, with copepods, tunicates and diatoms dominating the diet in 

winter, cladocerans and copepods in summer and in spring the main prey were 

salps. This is the first time that gelatinous zooplankton has been identified as 

an important prey for a small pelagic fish in the Mediterranean Sea. The trophic 

link between gelatinous zooplankton and SPF should be incorporated in future 

scenarios. 

 
ʹ. The ecological energetics of seven forage fish species revealed that the inter-

specific differences in energy density were linked to spawning period, energy 

allocation strategies for reproduction and growth, and feeding ecology. In 

general, higher energy density was observed in spring for all species, regardless 

of their breeding strategy, probably as a consequence of the late-winter 

phytoplankton bloom.  

 
͵. The high energy density observed in sardine during spring and summer, and 

similar to the medium pelagic fish was due to its capital breeding strategy. The 
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changes in energy between seasons should be included in the understanding of 

predator dynamics, since the energy gain per unit of prey will differ not only 

depending on the prey but also depending on the season. 

 
Ͷ. Sardine and anchovy presented opposite breeding strategies. The use of direct 

and indirect condition indexes revealed how the use of Kn adequately 

represented the changes in body condition, as well as in ED. Instead lipids in 

anchovy were only partially reflecting the changes in anchovy body condition.  

 
ͷ. The decline in body condition at the end of summer and early fall in sardine 

and anchovy are probably related to a decrease of the energy obtained during 

spring and early summer. This could be linked to the previously reported 

decline in body condition of the last decade.  

 
͸. Among all the potential pressures that have been suggested as drivers of the 

observed declines in landings and body condition of sardine and anchovy, the 

increase in sea surface temperature that had a positive impact on both round 

sardinella and on gelatinous zooplankton abundance and the increase of 

fisheries exploitation were the pressures that provided the most plausible 

insights into observed changes.  

 
͹. Predators of SPF were identified as the most informative monitoring variable 

to discern between likely causes of perturbations to populations of SPF and 

further monitoring programs collecting data on high trophic levels are needed 

in order to assess how the observed changes in small pelagic fish are affecting 

higher TL.  

 
ͱͰ. It has been seen how both fisheries and environmental variability play a key 

role in the understanding of the food-web structure and changes. Since the 

species target in this PhD thesis are of high commercial interest, in future 

integrated ecosystem analyses it will be necessary to deeply amplify the socio-

economical component.  
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ͱͱ. The combination of stable isotope analysis, stomach content, direct 

calorimetry and body condition indeces allowed us to understand the 

trophodynamics of small and medium pelagic fish at species and community 

level and use this information to understand the structure of the pelagic 

community in a qualitative model.  

 
ͱͲ. This PhD thesis was mainly focused on one year of sampling that allowed us to 

characterize the seasonal changes in the pelagic community in depth. In future 

research it is necessary to incorporate the seasonality in over multiple years 

longer term assessments covering not only seasonal changes but also the 

spatio-temporal distribution of these changes.  

 
 

Figure ͱ͸. Summary of the main results of the present thesis. “pp” stand for primary production. 
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