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13. The Main Theorem.

In this section we state the central Theorem of Part 111 and we reduce the proof to three
cases (cf. (13.14)).

(13.1).- Theorem. Let (C,C) be a generic element of R, and let (D, D) € R, such
that P(C,C) = P(D, D). Then one (and only one) of the following two facts occurs:

i) (€,C) and (D, D) are tetragonally related.

ii) (C,C) € Ry 4.4 and (D, D) is obtained from (C,C) as in the construction of §8.

The aim of this section is to prove Proposition (13.14) which is a ficst step in the proof
of the theorem.

Let (C,C) be a generic element of Rp,. Let (D,D) € R, be such that P(D,D)
P(C,C). In particular the theta divisor of P(D, D) is singular in codimension 3 and
P(D, D) is not the Jacobian of a curve (cf. [Sh1] and (3.2), (3.3)). Then, [Bel], Th. 5.4
implies thsi c.(D, D) = 0. On the other hand in Th. (4.10) of loc. cit. there is a list of
the coverings with ¢, = 0 and dimension of the singular locus of the theta divisor equal to
g-5. Since P(C,C) is not a Jacobian and ¢ > 10 this list becomes shorter: one has that
the pair (D, D) verifies at least one of the following poesibilities:

(13.2)

a) D is a double cover of a stable curve of genus 1,

b) (D, D) € M,,,

¢)(D,D)e X,

d) (D, D) € M, , where 2< t < [431]

(cf. (2.10) for definitions).

(13.3).- Remark. We shall use the notations

Rlg,.={([.T) € Rp,. | T verifies (132.0)), ¢ =0,...,45)
By = (Rlg,) = {([.,T) € Rl |T verifies (13.2.0)}.

The spaces M,,, Ry, for t=0,...,[4;]| and R} are not closed in R,. In fact all
the inclusions

Mgt C Hy CHyofort=0.... (o5
gﬂ,g,t C R’y”‘g C ﬁB,}*l fort = 0, e ,(‘?‘}
By CRp, C R,
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are strict (cf. (2.10) for the definitions of 7, ; and % ,). In all three cases the first space
is open dense in the third space. Recall that the respective dimensions have been given in
(2.2) and (2.10).

We first treat the possibility (13.2.b).

(13.4).- Proposition. Let (C,C) be a generic clement of Rp,,. Let (D,D) € ), be

such that P(D, D) & P(C,C). Then (€,C) € Ry 0 URYy,, and (C,C) and (D, D) are
tetragonally related.
PRooF: Let H be a hyperelliptic curve such that D is constructed from H by identifying
two pairs of points. If any of the pairs is hyperelliptic, then D is obtained from a hyper-
elliptic curve by identifying a pair of points. By (4.10) in [Bel] P(D, D) is s Jacobian
and we get a contradiction. Assume first that H is irreducible. By (12.3), the tetragonal
construction gives a cover (C*,C’) € Ry, tetragonally related with (D, D). Then by
(7.23) and (7.6) either (C',C’) = (C.C) o (C,C) is tetragonally related with (C*,C")
(and hence with (D, D)). Now we want to show that the genericity of (C, C) is enough to
obviate other possivle cases. To see this, we prove previously a Lemma.

(13.5).- Lemma. The subspace

{(Do.Dy) € M;, 4 | Do is reducible}
has codimension > 3 in M, ,.
PROOF: Let (Do, Do) be a generic element of an irreducible component of the set of the
statement. Let Hy be a hyperelliptic curve such that I’y is constructed from H, by
identifying two pairs of points. By hypothesis H, is reducible, hence it is obtained by
identifying two copies of P' along g-1 points. The points in the second copy are not
arbitrary. Therefore the component has big codimension and we are done. §

(13.6).- Now we end the proof of Proposition (13.4). Assume that the curve H is re-
ducible. According to (13.5)

dimP({(D, D) € %), o | D is reducible}) < 2g - 4.

Since dimP(Rp ) = 29 — 3 when ¢ > 1, and (C,C) is general we get (C,C) ¢ Rp,,
for t > 1. Analogously one has dimP(R p ,¢)=dimP(Rg,) = 2¢ — 2. Hence (C.C) ¢
Rpy0URYp, and we get a contradiction. §

The following two facts will be very useful in the rest of the paper.

(13.7).- Lemma. Let (C,C) be a general element of R, with t > 1. Then P(C,C) is
isogenous to a product of tw-) simple abelian varieties of dimensions t and g-t-1. If (C,C)
is & generic element of R0 U Ry, then P(C,C) is simple.
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Proor: By (28) and (2.11) all we hawe to prove is simplicity. This is a consequence
of Propasition (4.7) in [C-G-T] where the following result is proved: let I’ be a generic
bi-elliptic curve, then JT' is isogenous to a product of a elliptic curve by a simple abelian
variety A verifying End(A)x Z. §

(13.8).- Corollary. Let (C,C) be a generic element of R s, and let (D, D) € ¥, , with
t > 1 such that P(C,C) & P(D, D). We write D = D, Uy D; where g(D)) =t — 1 and
9(D3) =g —t —2. Then:

a) the curves D, and D; are irreducible,

b) (C.C) € R4t

PROOF: Recall that partial normalization at D, N D, gives an isogeny
P(b,D) — P(bhat) x P(b‘lvbli'

Suppose, for instance, that D, is reducible. Then, normalization at the intersection of
its components, gives an isogeny between P(D,,D;) and a product of at least two non-
trivial abelian varieties. This contradicts (11.8) and hence a) is proved. Moreover the
dimensions of the abelian varieties that appear in the product sbove is an invariant of
P(D, D)= P(C,C). Thus the dimensions of P(D,, D,) and P(D3, D;) coincide with the
dimensions of P(C), E) and P(Cj, E). This implies b). §

Next we consider the case (13.2.c).

(13.9).- Proposition. Let (C,C) be a generic element of Ry, and let (D,D) € ¥,
be such that P(D,D) = P(C,C). Then (C,C) € Rp,,. Moreover either (D,D) is
tetragonally related with (C,C) or is tetragonally related with an element of Ry, , (ie.:
verifying (13.2.a)).

PROOF: The first statement has been proved in (13.8.b). To see the second claim we write
D = P! U, D; where D, is a hyperelliptic curve (cf. (2.10)). By (13.8.a) D, is irreducible.
Then, (12.2) says that there exists an element (C',C’) € Ry, , tetragoually related with
(D,D). | this element belongs to Rp,, then Theorem (6.24) shows that (C,C) and
(D, D) are tetragonally related. §

(13.10).- Summarizing: given (C,C) and (D, D) as in the statement of the Theorem
(13.1), the second pair verifies at least one of the four conditions in (13.2). When condition
b) holds then the theorem is true. On the other hand, if c) holds either the theorem is
verified or we are lead to the case (13.2.a). We will consider the case a) in §14. Now we
want to start the study of case d). This study will be completed in §§15 and 16.
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(13.11).- Remark. Let (C,C) be a general element of Rp,, and

154
(13.12) (D.D) €My, - (M qUH, , U( | R, )URG,) with t>2,
=@

(ef. (13.3) for definitions) such that P(C,C) & P(D, D). By (13.8.b) (C,C) € Ry,
We shall write D = D, U D;. By (13.8.a) D, and D, are both irreducible. Recall that
P(C,C) is not a Jacobian and that g > 10. All these properties make it possible to use
the next Proposition, which is a particular case of (5.12) in [Sh2):

(13.13).- Proposition. Let ¢ : ' — T be an element of R, such that dim Sing= =
g-5, 9210, P(I',T) is not a Jacobian and T is either irreducible or has two irreducible
components intersecting in ,at least, four points. Let X be an irreducible component
of Sing= such tha’ dmX = ¢ — 5. Then we are in one of the cases a), b), c), d), e)
below and X, thought in the natural model =°, is contained in the respective varieties
2., 2y, 2. 24,0t Z.(cf8§) for definitions):

a) I is obtained by identifying two pairs of points on a curve H. There exists a morphism
v : H — P! of degree 2 over the generic point of P'. Let

H—T
ﬁl i!
H—T
be the partial desingularizations. Then
Z, = closure of {L € P(I'T)* | A%L) = ¢}(+*(Op: (1))} 4)
where A is an effective divisor with non singular support}

b) P =T, Ul ad T =T, U(T;. If f is the partial desingularization of I at ', N [,
then

Zy= ("= x 3.
In this case the codimensions of =7 in P(I',.T,)*. i = 1,2 are exactly 2, that is to say
dmZ, =g - 5.
¢) T =y UTy, T =T, UsT; and, say, T, is hyperelliptic with v the attached (2:1)
map. Ifii.theputiddﬁnguhdz&imdf‘ﬂf‘;ﬂfg,thcn

Z. = (f*)"(ex} x P([3,T3)"),
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where

ez} = closwe of {¢*(7*(Om(1)))*(A) € P(F,,T')) |
where A is au effective divisor with non singular support}.

d)f = f,u.f'g. I'=T,UT; and T is a plane quartic. WritingI')NI'; = {31 +'“+14},
itisOr,(zy+ - +24) =wr,. One has

Zi = closure of {L =¢*(M)A) € P(I',T")* | A is an effective divisor with non singular
support and M € Pic(T') with A°(M) > 2 and My, =wr, }.

e) There exists a morphism ¢ : I' — Ey onto a curve Eg counsisting of at most two
irreducible components; the genus of Ey is equal to 1 and the morphism ¢ has degree 2
over the generic points of Eq. We will not need the description of Z,.

We shall call in each case Z2°, 2, 2. Z’, (Z°)™ and (ez®)™ the union of the
components of maximal dimension.

(13.14).- Proposition. Let (C,C) be a generic element of Rp,, and let (D, D) € R,
such that P(C,C) 2 P(D, D). Then (C.C) and ( D. D) are tetragonally related or at least
one of the following facis occurs:

a)

(4]
(D.D)€ |J (R, )URG,
t=0

(i.e. (D, D) verifies (13.2.a); f. (13.3)).

b) D = D, U D;. D = D, Uy D; and D, is an irreducible plane quartic. Writing
DinDy = {I] +"-+$.}, it isOm(.r. + 4 y) = wp,. The curve D; is irreducible
and hyperelliptic of genus ¢ — 5. In this case (C,C) € Rp,4 and the isomorphism
P(D,D) > P(C,C) identifies Z{* with Wy, Z™ with W; and 2T = 2, with W_; (see
(13.13) above for notations).

¢) D = DU D; and D = D,U D, with D,, D, irreducible Lyperelliptic curves of genus
t—1and g—t -2 respectively, with t > 2. In particular (D, D) € ;. In this case (C,C) €
R 5.4 and with the notations of (13.13), the isomorphism P(D, D) 2 P(C,C) identifies
Z with Wy and the two varieties of type Z™ corresponding to the two hyperelliptic
components with W, and W_; (one of them is empty exactly when W_; = 0).
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Proor: We already mentioned that, with this hypothesis, (D, D) verifies at least onc of
the four cases in (13.2). On the other hand two of these cases have been treated in (13.4)
and (13.9). Since (13.2.3) coincides with a) above it ouly remains to prove:

(13.15).- i in addition (D, D) belongs to

(853
M, - (M, UM, U( | R, URG,) witht 22,
mmd

then either (13.14.b) or (13.14.c) holds. We keep this hypothesis on (D, D) in the rest
of the proof. In particular we can write D = D, Uy D; with D, and D, irreducible (cf.
(13.8.b)). Moreover (C,C) belongs to R, (cf- (13.8.2)). By applying (13.13) we find
the possible descriptions of the components of maximal dimension of Sing=°. Recall that
dimZ =g - 5.

(13.16).- Lemma. Let (C,C) and (D, D) be as above. Then Z® is irreducible and via

the isomorphism P(D, D) = P(C,C) it corresponds to the component Wy of Sing=" (cf.
(2.7) and {13.13) for definitious aad notations).
PROOF: Indeed, let X, and X; be components of (=)™ and (Z3)™ respectively. Then
(f®)""(X, x X;) is irreducible: suppose not, then different components of Sing=* of di-
mension ¢ — 5 are exchanged bv translations. From the definitions of W,, i=-2,0,2 (cf.
(2.6), (3.7)} it is easy to check this is not possible in P(C,C) and we get a contradiction.

On the other hand

FUAF) X x X)) = IXy) x I(X,).

By (13.7) P(D,,Dy) and P(D;, D;) are simple. Thus, for i=1,2 either I(X,) is finite or
I(X.) = P(D,,D,). Let L, be a generic element of X,, i=1.2. Then A% L,) = 1 (recall that
codimpy py, 1) Xi =2). Now (cf. e.g. (3.14) of [Sh2}) h*(L,(z, — +'(#,))) = O, where , is
8 generic point in D, and ' is the natural involution. Therefore 7, — i'(,) ¢ I(X,). We
conclude that I(X,), I(X;) and I((f®)~*(£; x X3)) are finite. Hence (f°)~}(X; x X3) is
an irreducible component of Sing=* invariaut vuly by a finite group. Only the component
Wo verifies this property (cf. (5.12)), therefore X, = (Z!)™. for i=1,2 and Z® is an
irreducible component of Sing=" corresponding to Ws. §

In the situation of (13.16), deg(f*) = 4 (cf. [Bel), (3.6)), thus from the proof of (13.16)
one also obtains that I((Z])™) = 0, i=1,2 and I(Z) =kerf*.

(13.17).- Lemma. Assume that one of the components of D, say D), is hyperelliptic
and that dimZ,. = g — 5 (cf. (13.13)). Then the corresponding variety Z™ is irreducible.
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PROOF: Arguing as in Lemma (13.16), if X is s component of (ez7)™, then (f*)~}(X x
P(Dy, D;)°) is irveducible. Suppose that Y is another companent of (ez})™. Since 2
is non empty and corresponds to W, then the isomorphism P(D, D) % P(C,C) sends
(f9)=4(X x P(Da, Da)*) U (f*)~(Y x P(D2, D1)) to W_3 UWj. On the other hand

U)X x P(D3,D2)* W) N I((f°)"(Y x P(Dy, D;)*))) D {0} x P(Da, Dy).
Heuce we get a contradiction because
I(W3)n I(W_;) is finite.

Therefore (ez})™ and 2 are irreducibles. §

(13.18).- Lemma. With our hypothesis (cf. (13.15)), if (D, D) verifies also the assump-
tions of (13.13.a), then &mZ* < ¢ - 5.
PROOF: The unique configuration of the type of (13.13.a) compatible with D = D, u,D,,
D, and D, irreducible, and (D, D) ¢ M, , is the following one:

Normalizing D at two points of D, N D; we obtain a curve H admiting a (2:1) map
5 : H — P! which is constant on one of the curves, say D,.

Assume that imZ™ = g~ 5. We call H the curve obtained by normalizing D at the two
points corresponding to the above ones, and we write g; for the double cover § — H.
Let dy,d; € H be the preimages of the remaining points in D, N D;. Let § the partial
desingularization of H in d,,d;. One has the isogenies (cf. §1)

(]

v i° N i - .
P(D,D)* — P(H,H)* =~ P(D\.D\)* x P(D,D;)"

where & is the desingularization of D at D, N D,. Let L be a general element of Z,, then
h%(L) = 41(7*(Op, (1)) A). with A an effective divisor with non singular support. Thus

§°(R°(L)) = §°(g}(1*(Op (1))} A)) =
= (g} (1 (Op (1)) A) p,(~dy = d3), 4}(2"(Op,(1)NA),p,(~dy — d2)) =
= (0p,(2dy + 2d3)( A1 )(~d, - d3).Op, (—d, — d3)(4;)) =
= (Op,(dr + d;)(A1).Op, (-d\ - d1)(42)),

where Op(A) 5, = Op, (4;), i=12. Hence:
§°h%(2.) € (L € Z} | h%(Ly(=dy - d3)) > 0} x {L3 € P(Dy, D3)* | K(L4(d) + dp)) > 0).
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It is easy to check that the dimensions of the sets on the right hand side are less than or
equal to (a posteriori equal to) dimP(D), D)-3 and dimP(D, D3)-1 respectively. There-
fore, if X is a component of Z7°, there exist irreducible compouents X, and X of the sets
on the right band side such that #*(A% X)) = X, x X;. Arguing as in Lemma (13.16),
we find that the elements of the form # — «'(Z) do not belong to I(X;) if i is general in
D and ¢ is the involution. Therefore the simplicity of P(D,, D,) (f. (11.8)) implies that
I(X;) are finite for i=1,2. In particular /(X) is finite. Hence X corresponds to Wy by
the isomorphism P(D, D) = P(C,C). Since the components Z2* and Z* are different
(take f = g o h and compare f%/2,) computed above with f%(2,) = =} x =3) cne gets a
contradiction with (13.16). @

(13.19).- Leanma. Keeping our assumptions (cf.(13.15)), suppose that (D, D) verifies
(13.13.d) and that dimZ, = g - 5. Then Z, is irreducible (in particular 2, = Z5).

PROOF: Writingffmthepuﬁdwmnﬁnﬁmdf)uﬁ;nbgmuﬂychechthn
£°(Z4)  {i} x P(Da, Dy)"

where [ is the ramification divisor of D, — D,. Since (f0)~}({i} x P(D,;, D;)*) is
irreducible and has dimension g - 5 the result follows.

Now we end the proof of Proposition (13.14). Since the element (D, D) verifies the
hypothesis given in (13.15) we can apply (13.13) in order to recognize the components of
maximal dimension in Sing=*. By (13.16) the component Wy corresponds to Z*. Since
t > 2 other components of maximal dimension exist (cf.(2.7)). According to (16.18) case
(13.13.a) does not provide any component. Let us consider case e). One obtains that the
only configuration of type (13.13.¢) compatible with (13.13) is the following one:

D,;, D; are two hyperelliptic curves and D, N D; consists of two pairs of hyperelliptic
points ior both curves.

This kind of elements parametrize a subspace of R, of dimension 2g-4. Therefore
P(D,D) = P(C,C) contradicts the genericity of (C.C) (see (13.6) for a similar argu-
ment ).

We conclude that the components W_; {if non empty) and W, come from the cases
(13.13.c) and (13.13.d). By (13.17) and (13.19), the components of type Z™ appear twice
when t # 4 and (13.14.c) is verified. Moreover when t = 4 we are lead to the possibilities
b) and c) of the statement. §

(13.20).- In the rest of Part III we shall prove the following results:
o If (D, D) verifies (13.14.a), then (D, D) is tetragonally related with (C,C) (§14).
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o If (D, D) verifies (13.14.b), then (D, D) is constructed from (C,C) as in Part II {§15).
o If (D, D) verifies (13.14.c), then (D, D) is tetragonally related with (C, C) (516).
Clearly (13.14) plus these three facts imply Theorem (13.1).
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14. The case (13.14.a).

The aim of this section is to prove the following result:

(14.1).- Proposition. Let (C,C) be a general element of R, and let (D, D) € R, be
such that D is a double cover of a stable curve Eg of genus 1 and P(D, D) = P(C,C).
Then (C,C) and (D, D) are tetragonally related.

(14.2).- Remark. Notice that (14.1) finishes the proof of Theorem (13.1) in case
(13.14.a) (or alternatively (13.2.a)).

PRroOF: If D is smooth, then the statement is a consequence of the results of Part 1.
Assume that D is singular. Observe that a stable curve of genus 1 is irreducible with, at
most, one double point.

We first prove that D is irreducible: suppose not, then D consists in the union of two
curves of genus < 1 intersecting in, at most, g+1 points. This kind of elements parametrizes
a subspace of high codimension (greater than 2) in Rg ,. On the other hand the dimension
of the generic fibre of Pig, ,, is1if t> 1 and 0 if t=0 (cf. the summary in §17). Hence

2g-2 fort2>1

PR )=
bmP(R.p.0) {29-3 fort =0

and the genericity of (C,C) allows to avoid this possibility (cf. (13.6) for a similar argu-
went). In fact by the same reason D is supposed to have either one singularity or two
singularities with image a singularity of E¢. In the second case the element (D, D) belongs
to M, , and by (13.4) the statement follows. In the rest of the proof we assume that D
has one singularity.

If E, is singular then D is obtained by identifying a pair of points in a hyperelliptice
curve. By [Bel], (4.10) this implies that P(D, D) is the Jacobian of a curve and we get a
contradiction with {Shl]. Hence E, is smooth.

We treat first the case Galg,(D) 2 Z/2Z x Z/2Z. There exist two involutions | and ¢}
on D lifting the involution on D. By construction, | and ¢} exchange the branches of the
singularity of D. Then one obtains the following commutative diagram:

/N
D D, D,

N/
Ey

where D; := D//!, i=1.2 are smooth curves and the discriminant divisors of D, — E
and D; — E, intersect in a point (in particular ¢t > 1). By (2.10) this eleznent is obtained
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by applying the tetragonal construction to an element of Rz, ¢ for some t. By the results
of Part 1 (D, D) and (C,C) are tetragonally related.

Finally assume that Galg(D) & Z/22. Then (D, D) € R}, (cf. (13.3)). The statement
is a consequence of the following Lemma and the results of Part 1.

(14.3).- Lemma. With these assumptions, there exists an element (C*,C') € Rp 0
tetragonally related with (D, D).

PROOF: We extend the injection j : Ry, — Rp, ¢ (commuting with the Prym map)
given in §7 to elements (D, D) as above. To do this we replace in the definitiou of j the
symmetric products D', D(® by the varieties of effective Cartier divisors of degree 2
Div3(D), Div3(D). In other words, take the curve C} given by the pull-back diagram

C; —— Div¥(D)

L e

Ey —— Dw*D)

Then, local computations show that C} is smooth. The involution on Div?(D) restricts
to an involution on C;. Taking quotient we get an elliptic curve E’. The fibre product of
C; — E' with the transposed morphism of E' — E, gives a curve C'. The curve C" kas
two involutions attached to the projections; call ' the composition of these involutions.
Then (C',C'/t') € Rp,0. Since for all (D, D), the elements (D, D) and j(D, D) are
tetragonally related (cf. §7) we are done. §



15. The case (13.14.b).

This section is devoted to prove the following

(15.1).- Proposition. Let (€, C) be a generic element of Rp, and let (D.D) € M, 4 be
such that P(D, D) 2 P(C,C), D = Dyu,D;. D = D,U D and D, is an irreducible plane
quartic. Suppose also that writing DyND; = {2+ +24},itis Op,(2,+- - - +2,) = wp,,
and that the curve Dy is irreducible and hyperelliptic of geuus g - 3.

Then (D, D) is constructed from (C,C) &s in §8.
PROOF: Recall that in this case (C.C) € R ,.« and the isomorphism P(D, D) = P(C,C)
identifies Z[ with Wy, Z™ with W, and ZJ" = Z, with W_, (see (13.13) and (13.14.b)).

We shall use again the variety

A2={a€e P(C.C}|a+WeNW; C W)

defined in (5.5).

One has

(15.2).- Lemma. With the hypothesis of (15.1) the following facts hold:

a) There exists a birational isomorphism between the curve A; N 2A; and the curve B,
obtained by the following pull-back diagram

(15.3)

5 (2}
Bz o ;\3

l i

p! ___ﬁ__* 3\'; 2}
where N, and N; are the normalizations of D, and D, respectively, and g3 is the linear
series induced by the hyperelliptic structure of D;.

b) The curve C; (see (2.1)) is the normalization of B,.

¢) The involution 7; in C; corresponds to the involution of B, given by the restriction
of the natural involution of N, .

d) There exists a linear series g} on E such that one gets a pull-back diagram

l l

i
L4

P! —— E9
Moreover the involution (*rgn)E b, coincides with the exchange of sheets on D,.

100



Proor: We first see a). By using the identifications Wy = Z® and W3 = Z*, and the
definitions of Z*, Z (cf. (13.13)) it is easy to see that

Wo N W, = (f*)" ()™ x ((e23)™ N (Z)™),
where f is the normalization of D at D) N D;. On the other hand, by (3.3) the dimension
of this set is g-7. This forces to have (ex3)™ C (£3)™. Hence
Az = (f*)"*({(a1,d3) € P(Dy,Dy) x P Dy. Dy) | ) +(Z})™ C (D™,
ag + (ex23)™ C (7)™}
In the proof of (13.16) we saw that 1((Z})™) = (0). Therefore
Az = (f*)"2({0) x {a; € P(D3.Dy) | a3 + (ex)™ C ()™}

Since (Z3)™ is irreducible (cf. (13.16)) and Sing=" has not componeats of dimension g-6. it
is not hard to see that (Z3)™ is the -losure of the set of effective divisors with non-singular
support A such that Nm(A) = «D,- By using this one checks the inclusion

{49 -7-3€P(D3,Dy)|2,§.7.8 7 (D1)rey Nudi +§)€ g3} +e23 C(EH™
Thus one has

(f*)7*({0} x closure {# + § — 7 — 5 € P(D3.D3) | £.§.7.3 € (D2)rey.
Nm(z +y) € 3}) C Aa.

From this inclusion a straightforward computation gives

{0} x closure {i + § — () - {'(y) € P(D;. D) | g € (b‘a}n,~
Nm(i +y) € ¢}} C f* (AN 2A,),

where (' is the natural involution on D;. Since the curve on the right hand side is irreducible
(cf. (5.7)) one has an equality. By using the description of A;N2A; in P(C,C) one obtains
that Az N2A; is birationally isomorphic with A\;N2A;/x*(¢*(;3JE)) = f*(A2N2A;) (recall
that Ker(f*) = #°(¢*(3JE))). On the other hand there exists a natural map from the
normalization of B; to the set of the left hand side in the inclusion above. Since C; 1s the
normalization of A; N 2A; we get a morphism from the normalization of B; to C3. An
elementary count says that ¢(C;) equals the genus of the normalizaticn of B; (use (11.3)).
Therefore C; and B, are isomorphic and a) is proved.
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Part b) is a corollary of a). To see ¢) it suffices to recall that the multiplication by (-1)
induces on C; the involution r;. Note that in this coutext this multiplication coincides on
B, with the restriction of the involution on N§».

Finally, we prove d). We first observe that ¢) implies that E is the normalization of
B;,/(involution). Since this last curve has an obvious hyperelliptic structure given by
diagram (15.2) we obtain on E a linesr series g}. The rest is left to the reader. §

As a consequence (D;, D;) is obtained from ((C3,E),¢}) as in the Step 2 of §8.
Next we concentrate in the reiation between (C,, E) and (D,. D, ). We shall consider as
above the surface
Ay ={a€ P(C.C)la+WonNW_; C Wy)

defined in (5.5). From the descriptions of Z;" and Z4 (cf. (13.13 )) one gets
Az = () NUED™ = (I} x {0})

where [ is the ramification divisor of Dy — D,. We call S the surface ((Z3)™ - {i} x {0}.)
That is to say the group
Kerf* = I(Wy) = x°(e*(:JE))

acts on A_; and the quotient is S. We study first this surface in the more transparent
context of P(C.C).

(15.4).- Proposition. The surface $ is exactly singular at the origin and the minimal
resolution of the singularity is
c¥ s
PROOF: We borr.w from (5.6) the equality
Ag={rj(c](z)-r-s)|xr€ E. rs€Ci 2 =¢g(r)+e1(s)}
Let X C C{¥ x E be the preimage of A_; by the morphism
G\ xE — JC
(r+s.2)— x)(r+s-cj(r))
Then X is an unramified covering of degree 4 of C}?). One obtains the commutative

diagram

X — AL,

| i

C —— A_y/x*(e*(LJE)) = S.
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The morphism C\» — S is an isomorphism away from the origin 0 and the preimage of
0 is the irreducible curve ¢}( E), of positive genus. Thus S is exactly singular in the onigin
and C? is the minimal resolution of the singularity. §

We shall consider the plane quintic given by the union of D, and the line r containing
the discriminant points of D, — D,. We call E' the elliptic curve which obtained as the
double cover of r with discriminant divisor r N D). By ideutifying in the natural way the
rmﬁﬁcstimpoimscfﬁ, — D, and E' — r one constructs an allowable double cover of
the plane quintic mentioned above. By [Bel] (Proposition (6.23)), there exists a smooth
non hyperelliptic curve I' of genus 5 such that

-] .
WiT) —  DyUE

l 1

W (T)/involution —— D, Ur.

Now to prove that (D,, D,) is coustructed from C,; as in Step 1 of §8 it suffices to show
that I' = C,.

(15.5)- Proposition. The surfaces S and I''?) are birationally equivalent.

PROOF: The description of S as a subset of P(D,. D,) x P(D;. D3) (cf. (13.13)) gives the
isomorphism § = (Z7}™. The general eletnent of (7)™ is an effective divisor of degree 4
with non-singular support. Its norm is a divisor on D, cousisting of 4 points on a line. By
construction the general point of D) corresponds to a linear series g} on I' that does not
come from linear series on E'.

Let z,y be general poiuts of I'. To contain the Luc T3 is a linear condition for a quadric
containing the canonical image of I’ in P*. The intersection of the pencil of quadrics so
obtained with D, provides four singular quadrics containing ¥y. Consequently there exist
exactly four linear series g} on I’ passing through the divisor r +y. These four linear series
define an effective divisor of degree 4 on D, and the image in D, are four collinear points.
We obtain a generically injective rational map from "% to (Z})™ and we are done. §

(15.6).- Corollary. The curves C; and I' are isomorphic.

PROOF: By (15.4) and (15.5) it follows tliat C ig’ and I'?! are birationally equivalent. Now
the result is a consequence of a Theorem of Martens ([M]). §

Having established that (D,.D,) are obtained from (C,.E), i=1,2 as in Part II we eud
the proof of (15.1) showing that (D, D) comes from (D,, D,) and (D, D;) as in the Step
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3 of §8. Note first that the results just obtained make possible to usc all the parts of (9.1)
except the part iv). In fact the isogenies g;, h; and the fact P(D, D) 2 P(C,C" uovisie the
tools to prove the property (9.1.iv). (By (9.14) this property is equivaleni 1o the property
required in Step 3 of the construction of (D, D)). In conclusion all == have to do to end the
proof of (15.1) is to show that (9.1.iv) holds. Keeping this s*-ategy in mind one construct
a commutative diagram

0 0

| l
0 — JE —  JE)xe}JE) — x*(e*(3JE)) =Kerf* — 0

ﬂ | i

0 — JE — PCLE)xP(C:.E) = PEC=PD.D) — 0

by x by rl
N N s . .
P(Dy,Dy) x P(D;.D,) - P(D,,Dy) x P(D;,D,)
! i
0 0

where f is the normalization of D at D, N D, (cf. (2.8) for the definition of » and of.
(13.16) and (5.12) for the upperrightcorner). Since EndP(D,.D,) = Z (cf[C-G-T). (4.7)
or proof of (13.8) above), § = (£Id) + (2Id). Hence

(15.7) F*aP(D, D)) = (hy x hy)l " (2 PiC.C))).
In (10.14) we saw that

F*aP(D, D)) = {(61,82) €2 P(D\.Dy) x; P(D3, Dy | v4(G1) = va(a2)}
(cf. §8 4 and 9 for definitions). On the other hand it is easy to check that

¢~} 2P(C,C)) = {(G1.63) €2P(C,,E) x3 P(C3.E) |
3p €; JE such that 24, = ¢}(p).2a,; = £3(p)}.

Thus by applying g; » g2 to (15.7) one has
91 % 92({(61,82) €2 P(Dy, Dy) x P(Dy, Dy) | viléy) = va(az)}) =
(15.8) = {(1(p).€2(p)) | p €2 JE}.
Finally we show that (15.8) implies
vi(d) = vy(ayz) iff 3p €, JE such that g,(a,) = £](p)
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for all &; €; P(Dy) and &3 €3 P(D-. D3). The part = is clear. Suppose that gy(&;) =
€3(p) and g3(G3) = €3(p) for j €2 JE. Then by (15.8) there exist {G},a}) such that
vi(6)) = vy(a3) and g1(&)) = g1(&)), 92(G3) = 92(G3). Since Kerg; = p3(3J D)), i=1,2
(cf. (9.1.i)) and these elements do not change the value of v; the part < follows. This
finishes the proof of (15.1). §
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16. The case (13.14.c).

In this section we end the proof of Theorem (13.1). Recall that (13.14) reduced the proof
to three cases. In (14.1) and (13.1) we have treated the first and the second respectively.
So, to finish the proof of Theorem it suffices to prove the following

(16.1).- Preposition. Let (C,C) be a general element of Rp , and let (D, D) € ¥,
t > 2 such that P(C,C) & P(D, D). We write D = D, U, D;. Assume that D,, D, are
irreducible hyperelliptic curves of genas t — 1 and g — t — 2 respectively. Then (C,C) and
(D, D) are tetragorally related.

(16.2).- Remark. Recall that in this case (C,C) € Ry, and with the notations of

(13.13), the isomorphism P(D, D) = P(C,C) identifies Z® with W, and the two varieties
of type Z™ corresponding to the two hyperelliptic components with W, and W_; (one of
them is empty exactly when W_; = §).
PROOF: If we are able to prove that (D. D) verifies he hypothesis of the construction
given in (12.2), then there will exist elements of Ry, , tetragonally related with (D, D).
Then, by (14.1), these elements will be tetragonally related with elements of R , ;. and
(€,C) and (D, D) will be tetragonally related. Essentially we only have to prove that D
is tetragonal. Therefore the Proposition is a consequence of the following fact.

(16.3).- Proposition. There exists a finite morphism of degree four, v : D — P!,
whose restrictions to D, and D, coincide with the respective hyperelliptic morphism and
such that 4(D; N D3) consists of four different points.

PROOF: What we have to do is to glue the hyperelliptic morphisms ~; : D; — P?. Let
D,ND; = {d,,...,d}. It suffices to prove the equality of cross ratios

(16.4) | 71(d1) : m(da) : n(ds) : yilde) |=| v2(dy) : 72(d3) : ya(ds) : ya(de) | .

Recall that we obtained in (15.2) that the irreducible curve A;N2A; (cf. (5.5) and (5.7))
is birationally equivalent to the curve B; given by the pull-back diagram
(16.5)
Bz —— X’%ﬂ

| |
P! —— NP

where N; and N, are the normalizations of D; and D; respectively. Moreover the involu-
tion on AzN2A; attached to the multiplication by —1 equals the involution on B, inhereted
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from the involution of Ni». According to (5.7) we kave that C; is the normalisation of
B, and therefore E is the normalization of By /(involution). Then from the analysis of the
diagram (16.5) we get that the cross ratio | y1(d;) : 11(d2) : 71(ds) : 71(dy) | coincides with
the cross ratio of the four discriminant points of the obvious two-to-one covering E — P?.
In particular the points (d;),i = 1,...,4 are all different.

On the other side when t > 4 the same argument works when replacing A; N 2A; by
A_3N2A_; and B, by the curve B, given by the pull-back diagram analogous to (16.5).
So the cross ratio at the right hand side in (16.4) also equals the cross ratio of the four
discriminant points of certain two-to-one morphism from E to a projective line. This
clearly implies the equality (16.4).

To conclude the proof we only need to consider the cases t = 3,2. In the first case we
imitate the procedure of Part I (cf. proof of (5.16)) in order to recover the set of data
(Cy,E).

Assume first t=3. We denote by f the desingularization of D at D,nD;. We call x, and
72 to the ramified double covers D, — D,, i=1.2 induced by the partial desingul-irization.
One has (compare with (5.12.i) and (5.13)):

(16.6).- Lemma. The following equalities hold (cf. (13.3) for definitions):

a) I(Z™) = (f*)""(P(Dy, D)) x {0}) (this is true for ¢ > 1).

b}

U «z&) g0z =)7L - M € P(Dy.Dyj | LM € (E)™} x {0)).
Lezy
PROOF: We first see a). According to (5.12.i) and (16.2) one has that I(Z™) is an abelian
variety of dimension t containing #(Wy) = I(Z}") = Ker(f*) (see (13.16)). On the other
hand the very definitions imply that f*(1(Z™)) > P(D,. D) x {0}. Hence
I(Z™) > (f°) " (P(Dy,Dy) x {O}).
The equality of dimensions concludes the proof of a).

In part b) we only show the inclusion of the left hand side member in the right hand
side member. The opposite inclusion is left to the reader. Fix L € Z[*. By definition
fUL) =(Ly,Ly) € (23)™ x (23)™. Then

(Z8)LNI2Z")={a€ P(D,D)| f*(a)=(a),0)anda+ L€ 2"} =
= {a € P(D,D)| f*(d) = (4,.0) and &, + L, € ()™}
and we are done. J

Let us denote by A_; the 2-dimensional variety obtained in (16.6.b) (observe that
dim(Z})™ = dimP(D,,D,)-2=t-2=1).
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(16.7).- Lemma. One bas the equality:
fo(A-an2A_3) = {L - (L) € P(Dy, D))" | L = (Z})™ . Nmg, (L) = 73(Op:s(1))) x {0).

PROOF: One has f*(A_3N2A_3} = f*(A_3) N2f*(A_2). According to (5.16) this set is
an irreducible curve. Since both sets in the equality of the statement have dimension 1,
we only have to prove the inclusion of the right hand side member in the left hand side
member and this is straightforward. §

Obeerve tha: the normalization of the curve B- given by the pull-back diagram

B —— A

1 1

1 {2}
P . Nl

has a natural morphism onto {L —¢§(L) | L € ()™, Nma, (L) = 7(Op:(1))}. Since C; is
the normalization of A_N2A _; and A_;N2A _; is birationally equivalent to f*(A_3N2A_;)
(use the explicit description of A_; N2A_; in P(C,C) and that Kerf* = x°(¢°(:JE)))
we obtain a morphism from the normalization of B, to C;. By comparing genera one gets
that C, is also the desingularizatiot of B;. The proof of (16.3) follows as in the case t > 4.

Finally we observe that in case t = 2 the curve D is always tetragonal. Indeed, in this
case the genus of Dy is 1. To simplify assume it is smooth. Then the cross ratio of the
images of the four points D, N D, by the two-to-one morphisms Dy — P! induced by the
linear series g} on D) is not constant. Hence with a suitable such morphism we construct
a four-to-one worphism D — P!. This concludes the proof of (16.3) and therefore of
Theorem (13.1). §
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17. Description of the fibre.

As a consequence of the description (2.10), the construction of §8 and Theorems (5.11),
(5.16), (6.11), (6.24), (7.23) and (13.1) we obtain the following facts (we keep the notations
of §2):

a) Let (€, C) be a generic element uf R g, , with t % 0,1,4. Then P~(P(C, C)) consists
of:

e two elliptic curves isomorphic to E contained in Ry, , (note that Aut(E) =
Z/2Z x E acts on this part of the fibre),

e an irreducible surface contained in H, ,. If t # 2 it is isomorphic to E x E.

b) Let (C,C) be a generic element of Rp, (. Then P~'(P(C,C)) consists of:

o two elliptic curves isomorphic to E contained iz. Ry , ,

e a surface isomorphic to E x E contained in M, ,.

¢ a subvariety of dimension one contained in H , (these are the unique elements of
the fibre not obtained in a tetragonal way).

c) Let (C,C) be a generic element of Ry,,.,. Then P~}(P(C,C)) consists of:

e two elliptic curves isomorphic to E contained in Ry , |,
¢ an irreducible curve contained in M ,.
d) Let (C,C) be a generic element of Ry, 0 U R'5,. Then P~} (P(C,C)) cousists of:
® a single point in each component Ry, and R .
e an elliptic curve isomorphic to E coutained in M, ;.
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