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1 INTRODUCTION

Liguidity - Fundamental Concept

Constant reappearances of crisis periods, unanticipated asset bubbles and market
crashes remind us on how important the financial sector is for the real economy.
Liquidity, herein, is at its heart, if present, with its distinctive relevance for markets
to operate smoothly. Black (1971) defines a market for a stock to be liquid when
the following conditions are satisfied: «(1) there are always bid and ask prices for
the investor who want to buy or sell small amounts of stock immediately, (2) the
difference between the bid and asked prices (the spread) is always small, (3) an in-
vestor who is buying or selling a large amount of stock, in the absence of special
information, can expect to do so over a long period of time at a price not very dif-
ferent, on average, from the current market price and (4) an investor can buy or sell
a large block of stock immediately, but at a premium or discount that depends on
the size of the block. The larger the block, the larger the premium or discount »,
(p-30). While the financial literature and practitioners widely agree on the above
definition of liquidity, the actual concept of liquidity is much more complex and
resembles a variety of dimensions that simply cannot be expressed in one single
measure. For instance, Sarr and Lybekl (2002) refer to five liquidity dimensions:
(1) Tightness - low transaction costs; (2) Immediacy - speed of trade settlement; (3)
Depth - large amount of buy and sell orders at any given price (generally, above and
below current market price); (4) Breadth - large volumes with minimal impact on
price movements and (5) Resiliency - new order-flow corrected trade imbalances.
Together, these two expositions jointly convey a comprehensive view on the con-
ceptof liquidity that paves the way for a better understanding of the research object
of this thesis.

Today’s Relevance of Liquidity

Today, both, liquidity and trading have steadily increased due to a more electronic-
based infrastructure of trade execution, enabling investors and market makers to
buy and sell financial assets in seconds, with algorithms and smaller spreads be-
tween bid and ask prices. Nevertheless, these improvements and the concomitant
increase in market efficiency over the years have not kept liquidity from co-moving

among similar asset classes and across time. Indeed, several studies identified two



1 Introduction

fundamental sources of commonality in liquidity: A demand-driven explanation
which relates commonality to correlated trading behavior, i.e. index trading, and
its pressure on market maker’s inventories, simultaneously across many asset classes,
(see [Chordia et al! (2000), Hasbrouck and Seppi (2001), Huberman and Halka
(2001); A supply-driven explanation which links commonality with funding tight-
ness induced through a shortage in the supply of funding capital to investors, (see
Brunnermeier and Pedersen (2009), Coughenour and Saad (2004), Hameed et al.
(2010)). Confronted with the finding of commonality in liquidity, the academic
literature has then moved towards a more market-wide concept of liquidity. Ac-
cording to this branch of the literature, market-wide liquidity has been found to
be a priced risk factor when explaining asset prices, with theoretical considerations
and empirical findings that indicate not only statistical significance but also eco-
nomic relevance, (see Pastor and Stambaugh/(2003), /Acharya and Pedersen/(2009),
Martnez et al| (2005) among others). However, on an aggregate view, as long as
financial markets are in a period of stability, market participants are not concerned
about the actual level of liquidity in the market. This story changes in times of fi-
nancial distress when liquidity becomes of systemic nature. Historical events such
as the LTCM (Long-Term Capital Management) crisis in 1999 and the global fi-
nancial crisis in 2008 have reminded financial market participants of their own
preference for liquidity. In these periods of extreme turmoil, liquidity alters its
characteristics with respect to tightness, immediacy, depth, breadth and resiliency.
During market liquidity dry-ups, risk averse investors offload investment positions
across many asset classes and rebalance portfolios towards more liquid and less
risky assets, known as flights-to-liquidity and flights-to-quality, Baele et al] (2020)
and Beber et al] (2009). Large trade volumes on short positions, often induced
by institutional investors, i.e. mutual funds, amplify this shift and cause market
liquidity to worsen even further, (demand-driven commonality in liquidity), (see
Kamara et al| (2008) and Koch et al! (2014)). Parallel on the supply side, an initial
liquidity shock causes prices to be more volatile. As a result, financial interme-
diaries expect higher future price volatility, which subsequently increases margin
requirements. In turn, higher margins require investors to sell off existing posi-
tions, hence market liquidity continues to fall. Consequently, losses on existing
positions and higher margin requirements reduce further funding capital, lead-
ing to preventions in entering the market again, (see Brunnermeier and Pedersen
(2009)). Thus, this downward trended liquidity spiral in conjunction with corre-
lated trading among institutional investors can explain a falling level of aggregate



liquidity and sudden liquidity dry-ups.

If markets are illiquid, investors are prone to avoid trading, hence liquidity de-
clines. Affected either directly through the market microstructure channel or in-
directly through external determinants such as general market movements, macro-
financial indicators and ultimately by investor sentiment, liquidity affects the mar-
ket clearing mechanism in financial markets and hereby reinforces its directional

trend !

Measurement of Liquidity and Challenges

The inaccessibility of liquidity data, foremost TAQ (trades and automated quotes)
data, for U.S. financial markets and fewer documentation on non-U.S. financial
markets has urged academics to model liquidity with data that is available to them,
mostly with price and volume data. Thus, today the financial literature acknowl-
edges many of these liquidity measures as proxies. In their article ”The Best in
Town”, Johann and Theissen (2017) conduct estimations and compare the perfor-
mance of recent liquidity measures. Some of these measures have been frequently
used in the recent literature. From a methodological approach, many of these mea-
sures either cover the aspect of (i) transaction costs as a friction when engaged in
trading or (ii) of volume-related price changes in its definition of a liquid market.2
For instance, Amihud (2002) relates daily absolute returns to trade volume in the
denominator. Similarly, Péstor and Stambaugh (2003) construct a portfolio-like
marketliquidity factor based on order-flow induced price-reversals. Both measures
target the relative depth in the market to absorb high volume trades without sub-
stantial price movements. The more recent study by Corwin and Schultz (2012)
relates liquidity to the aspect of transaction costs and constructs a bid-ask spread
estimator from daily high and low prices of stocks. This spread can then be used
as per-stock or per-market version, depending on the desired purpose. In this the-
sis, I mostly make use of a recently proposed bid-ask spread measure by |/Abdi and
Ranaldg (2017)) to proxy for market liquidity (Chapter 2 & 3). This spread utilizes
a wider range of information (i.e. close, high and low prices) compared to other
low-frequency estimates and provides the highest cross-sectional and average time-
series correlation with TAQ effective spread. Belated access to the Wharton Data
Research Service (WRDS) makes it possible to use TAQ data and hence examine

even more liquidity dimensions in Chapter 4.

ISarr and Lybek (2002) show a summary of factors that affect asset and market liquidity.
2See Sarr and Lybek (2002) for a more comprehensive description.



1 Introduction

Contribution of this Thesis

The objective of this thesis is to provide a better understanding of liquidity in
global equity markets. Following this purpose includes the usage of existing tools
and methods to measure and analyze market liquidity from different perspectives
and in the interaction with other variables in the market.

Specifically, my research contributes to a more comprehensive understanding
on: (i) how market-wide liquidity is measured; the dynamic nature of commonal-
ity in liquidity; how commonality in liquidity relates to volatility on a global scale
and dynamically; (ii) how market liquidity becomes a priced systemic risk factor
in asset pricing in extreme scenarios, i.e. down and up-market states and finally
(iii) the properties and determinants of daily sectoral liquidity and trading. My re-
search has implications for risk management, portfolio diversification and policy-

design.

Chapter 2

Chapter 2 of this thesis is entitled «Uncovering the Time-Varying Relationship
between Commonality in Liquidity and Volatility ». In this chapter, I study the
relationship between commonality in liquidity and volatility among nine stock
markets, representing 67.3% of the world’s total market capitalization. My first
contribution is the construction of a dynamic measure for commonality in liquid-
ity. Although recent studies have provided evidence for commonality in liquidity
neither of them have analyzed its dynamic nature nor covered major international
stock market linkages in this regard. I show that inter-market liquidity innova-
tions predominately induce the variation in market liquidity in each country, in-
dicating the relative strength of the propagation of liquidity shocks from foreign
markets. Compared to the previous literature that has used a similar methodol-
ogy, I find that liquidity propagates more strongly than volatility or price shocks.
These linkages provide evidence for both, the demand- and supply-driven expla-
nation for commonality in liquidity. I document that commonality increases af-
ter down-market periods, peaks during crisis episodes and exhibits a high degree
of persistence in the aftermath of the global financial crisis. My second contribu-
tion in this chapter relates the dynamic commonality in liquidity measure to global
market volatility for nine international stock markets, on an aggregate view. I doc-
ument that market volatility always Granger-causes commonality in liquidity. Re-

versely, I find that commonality in liquidity Granger-causes market volatility only



in crisis periods and the subsequent aftermath period. These findings provide im-
portant insights from a regulatory standpoint, in the context that market liquidity
and its commonality across assets is a relevant factor that underlies returns and
volatility dynamics and hence can be regarded as one of the fundamental sources
of malfunctioning financial markets in the case of dry-ups and downward trended

market performance.

Chapter 3

In Chapter 3, which is entitled «Analyzing the Nonlinear Pricing of Liquidity
Risk according to the Market State », I examine the asymmetric pricing of mar-
ket liquidity as a risk factor on asset pricing across different market scenarios and
show thataggregate liquidity becomes a relevant factor for the explanation of stock
market returns when markets are in a particular good or bad state. Recent contri-
bution have provided evidence on the relationship between market-wide liquidity
and asset pricing but solely focused on the linear and cross-sectional setting, Pdstor
and Stambaugh (2003), Martinez et al] (2003), |Acharya and Pedersen (2003). In
this chapter, I show that the relationship is in fact nonlinear. My contribution can
be summarized as follows: I exploit the possibility of quantile regressions to ex-
amine a liquidity-augmented but otherwise traditional factor model on different
parts of the stock return distribution over time, directly associated to the defini-
tion of good and bad market states. Hereby, lower quantiles relate to bad market
states, higher quantiles are linked with good market states and the median repre-
sents regular market states. Hereby, I challenge the linear relationship as suggested
by the previous literature, as I find that systemic liquidity risk is not always a priced
factor in the explanation of asset prices. I document, on the one hand, that when
returns are already negative and large, an increase in investor’s willingness to short
their positions as a response to expected future illiquidity in the market, depresses
contemporary returns even further. On the other hand, if the market exhibits large
gains (right tail of the distribution), I report a positive relation between systemic
liquidity risk and returns. Finally, I show that systemic liquidity and stock returns
do not have a significant relationship during regular times, supporting the initial
claim that during normal times, market participants are not particularly interested
in the level of liquidity in the market.

I show that the nonlinear relationship between market-wide liquidity, as a rele-

vant risk factor, and asset prices holds for a variety of different settings, i.e. value-
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weighted portfolio returns; different sample periods, industry levels and regions,
i.e. U.S. versus European portfolios. In all cases, stability tests show that the corre-
sponding coefficients for systemic liquidity risk in the regression design are insta-
ble, which translates into the above-mentioned nonlinear relationship.

Chapter 4

Chapter 4 is entitled «Liquidity and Trading Activity of Energy Stocks ». In this
chapter, I study daily liquidity and trading characteristics for energy stocks traded
at U.S. stock exchanges, categorized into five energy segments, that is, 0il and gas,
coal mining, renewables, electric- and multi-urilities. Precisely, I examine average
effective spreads, price impact of trades, number of trade executions and share vol-
ume. I chose to analyze daily liquidity and trading characteristics of energy stocks
because of the following reasons: (1) The energy sector is a solid pillar of the U.S.
economy and yet the literature on liquidity for energy stocks is still scarce. (2) The
discussion on the future energy decomposition associated with the debate around
climate change has moved investor’s and policy maker’s attention to the renewable
sector and potential growth opportunities, but lacked knowledge about its corre-
sponding market microstructure characteristics on capital markets in comparison
to those stocks issued by traditional energy firms (i.e. oil and gas, coal or utili-
ties). (3) Sectoral, cross-sectional differences in daily liquidity and trading have
not been within the focus of the existing literature on liquidity. I document that
daily sectoral liquidity and trading is volatile, trended and serial dependent for all
energy stock segments. I report that average spreads for electric- and multi-utility
stocks are nearly half of those of the oil and gas, coal and renewables. In contrast,
I find that average trade volume of utility stocks is higher than the average volume
of oil and gas stocks. These findings shed new light on the magnitude of cross-
sectional differences among energy stocks. I also identify a number of debt- and
stock market based factors that drive liquidity and trading of energy stocks, namely
- concurrent market movements, five-day market momentum, default spreads and
stock market volatility. Although there are differences in the explanatory power,
I herein document a strong commonality effect in the exposure of liquidity and
trading of energy stocks to these factors. These findings support a commonality
in liquidity component, possibly induced by correlated trading behavior across
many stock segments, here visible on a day-to-day perspective and suggest further

exploration of liquidity differences across the industry level. The inclusion of oil



price dynamics as an explanatory factor enriches our understanding of the impor-
tance of the crude oil price, first and foremost as global economicindicator and sec-
ondly with its significance for trading energy stocks. I find that liquidity increases
(that means lower spreads) and trading decreases for renewable and utility stocks
in times of a rising oil price. Reversely, I document that the market for oil and
gas stocks is slightly less liquid (higher spreads) with higher crude oil prices. I also
report that higher oil price variability leads to a reduction in liquidity for most en-
ergy segments, which translates into higher average spreads. In conjunction with
a decrease in trading across most sectors, this result shows that uncertainty about
the oil price is a relevant factor for liquidity and trading patterns of energy stocks,

despite controlling for stock market volatility.

The various chapters in this thesis can be found in:

* Chuli4, H., Koser, C., Uribe, J. M. (2020). Uncovering the time-varying
relationship between commonality in liquidity and volatility. nternational
Review of Financial Analysis, 69, 101466.

* Chuli4, H., Koser, C., Uribe, J. M. (2020). Analyzing the nonlinear pricing
of liquidity risk according to the market state. Finance Research Letters,
Accepted.
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2 UNCOVERING THE
TIME-VARYING RELATIONSHIP
BETWEEN COMMONALITY IN
LIQUIDITY AND VOLATILITY

This study examines the dynamic linkages between commonality in liquidity in
international stock markets and market volatility. Using a recently proposed lig-
uidity measure as input in a variance decomposition exercise, we show that inno-
vations to liquidity in most markets are induced predominately by inter-market
innovations. We also find that commonality in liquidity peaks immediately af-
ter large market downturns, coinciding with periods of crisis. The results from a
dynamic Granger causality test indicate that the relationship between commonal-
ity in liquidity and market volatility is bi-directional and time-varying. We show
that while volatility Granger-causes commonality in liquidity throughout the en-
tire sample period, market volatility is enhanced by commonality in liquidity only

in sub-periods. Our results are helpful for practitioners and policy makers.

L This paper is co-authored with Helena Chulid and Jorge M. Uribe.



2 Uncovering the Time-Varying Relationship between Commonality in Liguidity and Volatility

2.1 Introduction

Liquidity and commonality among financial assets are a first-order consideration
in the decision-making process of investors and market makers, and in the design-
ing of optimal policy frameworks by regulators. Market liquidity is the ability
to trade large quantities of an asset without changing its equilibrium price and,
as such, it constitutes a crucial feature of any financial asset. It is of great im-
portance for an investor’s portfolio choices and policy considerations. In recent
decades, empirical studies have shown that stock returns carry a premium for lig-
uidity, (see Amihud etal] (1986); Eleswarapu and Reinganum| (1993); Brennan and
Subrahmanyam (1996); Datar et al] (1998); Amihud (2002)).2 Studies by Chordia
et al] (2000), Amihud (2002), Hasbrouck and Seppi (2001) and Huberman and
Halka (2001) find that the level of liquidity co-moves among similar stocks and
across time, while studies by |Acharya and Pedersen (2005), Holmstrom and Ti
role (2001) and Pistor and Stambaugh (2003) show that stocks are exposed to a
systemic (market-wide) level of liquidity.

Commonality in liquidity can be defined as the co-movement in liquidity among
individual stocks (Karolyi et al] (2012)). From a theoretical perspective, Acharya
and Pedersen| (2005) develop an asset pricing model in which investors are will-
ing to pay a higher premium for stocks that allow them to curtail positions at a
relatively lower cost during systemic market declines or liquidity dry-ups. As in
any asset pricing model, liquidity becomes a systemic factor of common variation
among stocks and therefore merits research efforts. The literature has pointed out
two fundamental sources of common variation, demand or supply-side driven.
Demand-generated commonality can be attributed to correlated trading behav-
ior (Chordia et all (2000); Hasbrouck and Seppi (2001); Huberman and Halka
(2001)). According to this branch of the literature, large trading orders across a
wide range of markets put significant pressure on the inventory of dealers, induc-
ing variation in inventory levels and leading to co-movements in the level of lig-
uidity. Studies by Kamara et al] (2008) and Koch et al] (2016) stress the increasing

importance of institutional investors and their index-related trading as a source of

Amihud et al] ([986) were the pioneers in bridging market microstructure and asset pricing.
Eleswarapu and Reinganum (1993) examined the seasonality effects of this same measure, while
Brennan and Subrahmanyany (199d) incorporated it into a Fama-French factors framework. Using
the turnover rate, research by Datar et al! (1998) and Brennan and Subrahmanyam (1994) further
examined the role of liquidity for stock returns.
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2.1 Introduction

demand-oriented co-movements in liquidity. The latter authors find that stocks
held by mutual funds, traded in similar time-patterns, experience large trade im-
balances and, hence, give rise to commonality in liquidity. Supply-generated com-
monality in liquidity, on the other hand, can be related to funding constraints in
the provision of liquidity by financial intermediaries. Studies by Coughenour and
Saad (2004) and Hameed et al!(2010) report a rise in liquidity commonality within
industries, when returns in other industries are large and negative. Furthermore,
they argue that this phenomenon of spillovers in the level of illiquidity in indus-
tries is partial proof of commonality as the dry-up in funding liquidity affects all

stocks.

Empirical evidence of commonality in liquidity focuses primarily on U.S. finan-
cial markets. To the best of our knowledge, the only relevant exception are the
studies by Brockman et al! (2009) and Karolyi et al! (2012). Brockman et al] (2009)
investigate the extent to which commonality is a global vs. local phenomenon and
identify the sources of commonality both within and across countries. Karolyi
etal](2012) examine commonality in liquidity in 40 countries and link global com-
monality to a variety of capital market conditions. Their study provides a compre-
hensive view of liquidity commonality and its intra-market determinants across
time and countries. Yet, the literature to date has not provided reliable empirics
that can shed light on the dynamic nature of the relationship between commonal-

ity in liquidity and market volatility.

Here, we offer solid, novel empirical evidence of the causal relationship between
global commonality in liquidity in international stock markets and global market
volatility and we show that this relationship is time-varying and that it displays
feedback effects during episodes of crisis. Unlike the scarce extant literature study-
ing commonality in liquidity around the world (i.e. Brockman et al] (2009) and
Karolyi et al! (2012)), we propose measuring commonality in liquidity dynam-
ically. To do so, we construct systemic liquidity measures, based on individual
stocks for every market in a sample of nine mature markets,? following a recently
proposed market liquidity indicator developed by |/Abdi and Ranaldo (2017). We

3We consider the market capitalization of NASDAQ, NYSE, EURONEXT, Deutsche Boerse
AG, Six Swiss Exchange, LSE, BME, TMX Group and Japan Exchange Group Inc., which rep-
resents 67.3% of total world stock market capitalization, as reported by the World Federation of
Exchanges in December 2018.
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2 Uncovering the Time-Varying Relationship between Commonality in Liguidity and Volatility

then use these country-specific liquidity measures as inputs in a variance decom-
position exercise, which allows us to break down the total variation in liquidity for
each market into its own liquidity shocks and foreign-market liquidity shocks. We
estimate a global commonality index that reflects liquidity spillovers across these
nine major stock markets and which, in line with Diebold and Yilmaz (2012), is
constructed as the sum of cross-variance shares in liquidity for all markets in our
sample. This allows us to clearly decompose intra- and inter-market spillover ef-
fects and their relative strengths. Next, we relate our commonality index to a mea-
sure of aggregate global market volatility using data for the same markets. To carry
out this step, we use a dynamic Granger causality test, as proposed by Shi et al!
(2018), which allows us to detect directional causality in a time-varying fashion

between commonality and market volatility.

Several novel, significant insights can be drawn from our main results. First, we
show that the relationship between commonality in liquidity and market volaility
is complex and time-varying. That is, we document that volatility Granger-causes
commonality in liquidity throughout the entire sample period. This is consistent
with theoretical models, including, for example, that developed by Brunnermeier
and Pedersen|(2009). In this framework, high market volatility leads to an increase
in commonality as a consequence of a reduction in the provision of liquidity avail-
able for all financial intermediaries. Second, for the first time, we are able to doc-
ument that commonality in liquidity also Granger-causes volatility, and that this
occurred in the aftermath of the Global Financial Crisis, coinciding with high lev-
els of uncertainty in European bond markets. This finding might be interpreted
as evidence of the existence of adverse loop effects in which shocks to market lig-
uidity endogenously cause stock market volatility and vice versa. Such a feedback
effect sheds new light on the endogenous nature of financial shocks arising during

crisis episodes, which we show are intensified by liquidity considerations.

In addition to the main finding outlined above, we also show (as expected) that
global commonality in liquidity peaks during episodes of market turmoil and that
it remains at very high levels even after peaks in market liquidity have fallen. In-
deed, we document high levels of commonality in liquidity from the beginning to
the end of the subprime crisis. Global commonality remains high even when mar-
ket specific liquidity measures have returned to their pre-crisis levels. We also find

that three-quarters of the variation in market liquidity depends on foreign mar-
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2.2 Methodology

ket liquidity shocks, which provides a more cross-market oriented explanation of
commonality. Finally, we show that the measure, proposed by Abdi and Ranaldo
(2017), performs well when measuring liquidity in several international stock mar-
kets, in the sense that it provides sensible results which are consistent with our
knowledge of these markets and their dynamics between July 2000 and December
2016.

The rest of this paper is organized as follows: Section .2 lays out the method-
ology used in our analysis. Section .3 describes the data. Section P.4 discusses the

empirical results and, finally, Section .5 concludes.

2.2 Methodology

We divide our empirical investigation into three sections. First, we calculate com-
monality in liquidity for each of the nine stock markets in our sample (Canada,
Germany, France, Italy, Japan, Spain, Switzerland, the U.K., and the U.S.), using
the bid-ask spread proposed by Abdi and Ranaldg (2017)). This sample includes
seven of the world’s advanced economies (G7) and represent 67.3%8 of the total
world stock market capitalization. We then estimate global commonality in lig-
uidity, following Diebold and Yilmaz (2012). Finally, we use the new time-varying
Granger causality test, as developed by Shi et al] (2018), to investigate the dynamic

causality between commonality in liquidity and market volatility.

2.2.1 Systemic Liquidity

To measure systemic liquidity risk, we follow a recently proposed estimator for
marketliquidity, as developed by /Abdi and Ranaldo (2017). Their method is based
on close, high and low prices and bridges the well-established bid-ask spread for-
mulated by Roll (1984) and the more recent High-Low (HL) spread developed
by Corwin and Schultz (2012). This measure has several advantages over compet-
ing alternatives. For example, compared to other low-frequency estimates, this
method uses wider information (i.e. close, high and low prices), it provides the
highest cross-sectional and average time-series correlations with the TAQ effective

spread, and it delivers the most accurate estimates for less liquid stocks.

“World Federation of Exchanges, (n.d.). Retrieved from https://wuw.
world-exchanges.org
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2 Uncovering the Time-Varying Relationship between Commonality in Liguidity and Volatility

Abdi and Ranaldo (2017)’s measure is based on the same theoretical assump-
tions as those made for the spread modelled by Roll (1984). The effective spread s

is estimated as

s = 2VE(e = 9.)(cc = 7011), (2.1)

where ¢; represents the daily observed close log-price, and #, refers to the mid-
range, defined as the mean of daily high and low log-prices. Although this closed-
form solution of the bid-ask spread measure is similar to the autocovariance mea-
sure by Roll (1984)), it builds on the covariance of consecutive close-to-midrange
prices rather than on close-to-close prices.

Owing to errors in the estimation procedure, some estimates of equation 2.1 are
negative. Following Corwin and Schult7 (2012)), /Abdi and Ranaldg (2017) pro-
pose two versions of the spread. In the first - known as the two-day corrected ver-
sion - negative two-day estimates are set to zero and then the average of the two-day
calculated spreads is taken. In the second - known as the monthly corrected version
- negative monthly estimates are set to zero. Equations 2.2 and 2.3 show how the

spreads are calculated.

N
~ 1 ~—~
Stwodaysmrrected = N St 5 = \/mm(4(ft - ;71‘) (Cz‘ - Wt—l—l): 0) (22)
=1
1 N
?mont/olycorrected = max(4ﬁ Z(Ct - 77r) (Ct - ;71‘—!—1)1 0) (23)
=1

where N is the number of trading days in a month. Finally, we calculate a monthly
country-specific systemic liquidity measure as the equally-weighted average of the
monthly spread of individual stocks.

2.2.2 Global Commonality in Liquidity

Our approach to estimate commonality in liquidity is based on the methodology
introduced by Diebold and Yilmaz (2012)), which builds on the seminal work on
VAR models by Simg (1980) and the notion of variance decomposition. The start-
ing point for the analysis is the following VAR (p):

p
X = Z Dixs—i + ¢, (2.4)
i=1
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2.2 Methodology

where x; = (%14, X2¢......, Xz is a vector of K endogenous variables. ®; is a KxK
matrix of parameters to be estimated, and ¢, is a vector of disturbances that has
the property of being independently and identically distributed (i.i.d) over time,
t = 1,....T, with zero mean and X is a covariance matrix. If the VAR model is

covariance stationary, we can derive the moving average representation of model

(R.9), which is given by
X = Z Aigr—i, (2.5)
i=0

where 4; = (P1.4;-1 + PoA;2, .0, A;), Ay is the KxK identity matrix and
A; = 0fori < 0. Variance decomposition allows us to break down the h-step
ahead forecast error variance into own variance shares, the fraction of the forecast
error variance in forecasting y; due to shocks to y;, fori = 1, 2,...N, and cross vari-
ance shares, or spillovers, the fraction of the forecast error variance in forecasting
y; due to shocks to Vi forj = 1,2,..N andj # i. Diebold and Yilmaz (2009)
proposed using Cholesky decomposition to break down the variance. However,
Cholesky decomposition are sensitive to ordering. Diebold and Yilmaz (2012) re-
solve this ordering problem by exploiting the generalized VAR framework of Koop
et al] (1996) and Pesaran and Shin (1998), in which variance decomposition is in-
variant to the ordering of the variables. Variable ;s contribution to #’s h-step ahead

generalized forecast error variance decomposition is given by:

-1vH-1,, ./ )2
9. H) _ 0-]] h=0 (51 A]gfj) (2 6)
Y H-1,, ., - :
Zb:() (6‘1 AbEAb 51)

where ¥ is defined as the covariance matrix of the error vector ¢, gj; is the (esti-
mated) standard deviation of the error term for the variable 7, and ¢; is a selection
vector with a value of one on the ith element and zero otherwise. The sum of con-
tributions to the variance of the forecast error of each market do not necessarily
add up to one; thus, we normalize each entry of the variance decomposition ma-

trix as:

s oo Sy(H)

i(H) = ———
’ j]il 3;i(H)

(2.7)

where Zj]il %(H) = land 25:1 %(H) = N.

This normalization enables us to construct the following spillover measures:
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* The total spillover index which measures the contribution of spillovers of
shocks across all markets to the total forecast error variance:

Zz] lzijs( )
Zl] 1 ( )

TS(H) = - 100 (2.8)

* The directional spillovers received by market 7 from all other markets ;:

ij=1,i Y3 ()
DS j(H) = i~ e 100 (2.9)

Zzll ()

* The directional spillovers transmitted by market 7 from all other markets j:

i,j= 1z¢]“9( )

DS;,_,,(H) =
) SN_1 S(H)

- 100 (2.10)

* The ner spillover, namely the difference between the gross shocks transmit-
ted to and the gross shocks received from all other markets, which identifies
whether a market is a receiver/transmitter of shocks from/to the rest of the

markets being examined. The net spillover index from market 7 to all other

markets ; is obtained by subtracting Eq.(2.9) from Eq.(2.10):

NS{(H) = DS;—;(H) — DSi—;(H) (2.11)
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2.2.3 Global Market Volatility

Our measure of volatility is based on the traditional realized volatility (RV) esti-
mator, as explained, for example, in /Andersen and Todorov (2010). This has been
shown to be an useful methodology for estimating and forecasting conditional
variances for risk management and asset pricing.E The RV estimator can be ex-

pressed as:

2, (2.12)

M=

RV, monthly =

=1
where 7, are the In returns and N is the number of trading days per month. In
order to examine the time-varying relationship between commonality in liquidity
in international stock markets and market volatility, we need to aggregate individ-
ual volatilities and, to do so, we employ a principal component analysis, taking the

first component as our measure of global market volatility.

2.2.4 Dynamic Granger Causality

To analyze the dynamic relationship between commonality in liquidity in inter-
national stock markets and global market volatility, we follow the methodology
proposed by Shi et al! (2018). While emphasizing that the Granger causality test
is highly sensitive to the time horizon of its estimation, they propose consider-
ing time dynamic to detect periods of instability in the causal relationship. The
method proposed is based on an intensive recursive calculation of Wald test statis-
tics for all sub-samples in a backward-looking manner in which the final observa-
tion of all samples is the (current) observation of interest.

The traditional testing for Granger Causality within a VAR system (as for the
instance described in Eq.(2.4))) involves the following null hypotheses:

Ho : yie = Yje (2.13)

¢1; = 0, fori # jand [ = 1,..., p, where the causality runs from variable 7 to

variable 7, and the reverse causality between the two variables is given by
H() : )/ﬂ -+ )’it: (214)

¢15 = 0, fori # jand [ =1, .., p, where the symbol -+ means "does not Granger

>See [Liu et all (2013) and references therein.
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cause”. This hypothesis can be contrasted with the data by constructing a tradi-
tional Wald statistic (W) to test it against the alternative of at least one significant
coefhicient. Shi et al] (2018) and Shi et al] (2020) compare different statistics for the
data-driven discovery of change points in causal relationships and they conclude
in favor of a rolling window estimation of the traditional Wald statistics. Namely
for each observation of interest f* € [fp, 1], where fj is the minimum window size
that is required to estimate the model, the Wald statistics are computed using sub-
samples of the original data set. The starting and end points of the regression are
defined as f1 and f5, respectively, and the Wald statistic for the subsample start-
ing at 1 and ending at f; is denoted 17, . The ending point of the regression
/2 is fixed on the observation of interest (the date on which we want to test for
causality). Therefore, as the observation of interest moves forward from f; to 1,
the starting point of the regression follows and keeps a constant distance from f,
i.e. fi = fa = fu, where f,, is the fraction that represents the window size that is
used for the regression. Shi et al] (2018) show that within a stationary VAR system
under the assumptions of homoscedasticity, conditional heteroscedasticity of an
unknown form, or unconditional heteroscedasticity, 17 5, has a limiting distri-

bution that is given by the following:

Walfa) - Walh),, Walfz) - Wa(f1)
1 1
(fa =f1)2 (fa —f1)2
where I/ is a vector Brownian motion with covariance matrix /; and 4 is the num-

ber of restrictions under the null (as in Eq.(2.4) and Eq.(2.5))). Hence, if causality is

detected, its sign (positive or negative) is identified, as well as its intensity. Finally,

Wrp = | Il ) (2.15)

the testing framework considers the potential heteroscedasticity (conditional and

unconditional) of the data, thereby reducing the potential for incorrect inferences.

Inferences regarding the presence of Granger causality for this observation rely
on the supremum taken over the values of all the test statistics in the entire recur-
sion. As the sample period moves forward, all subsamples more forward and the
calculation rolls ahead in a changing rolling window framework - hence its name,
“recursive rolling algorithm”. The estimation procedure is based on a VAR model
framework in which the selection of the lag order is obtained using the Bayesian
Information Criterion (BIC). Asin Shi et al] (2018), the 5% critical value sequences

over time are obtained through bootstrapping with 500 replications.
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2.3 Data

2.3 Data

We collect daily close, high and low prices, for the period July 2000 through to
December 2016, for the following markets (Canada, Germany, France, Italy, Japan,
Spain, Switzerland, the U.K. and the U.S.). We confine our sample of stocks to
those listed in the country’s specific major stock market index. To obtain a measure
for market-wide liquidity in each stock market, we first calculate the daily spreads
of our restricted set of stocks defined above and aggregate them on a monthly basis.
Then, we sum the monthly stock-specific spreads and weight them equally by the
number of stocks in each market so as to obtain a monthly market-wide aggregate

spread for each market.

The number of stocks in each index is subject to fluctuations over the entire sam-
ple period. This reflects the fact that some firms have gone public after the sample
start date while others have recently delisted for reasons of financial restructuring
or the merging of business activities. We control for these possibilities by adjusting
the weighting over time. In compliance with the screening principles proposed by
Karolyi et al] (2012), we aim to obtain a broad range of stocks within each coun-
try while avoiding any differences in trading behavior or conventions. In keeping
with this objective, we also exclude depositary receipts (DRs), real estate invest-
ment trusts (REITS), investment funds and preferred stocks from our sampling.
Moreover, we exclude stocks with price data for less than 24 months, although this
is rarely applicable. The monthly spread estimates for U.S. stocks are taken from
Angelo Ranaldo’s website.B. All other daily price data for stocks are extracted from
Datastream. Our final sample of stocks outside of the U.S. consists of 505 stocks

from eight different countries.

2.4 Results

In this section we report our empirical results. We first provide the reader with
insights into the dynamics of market liquidity for selected countries. Then, we
present our measure of global commonality in liquidity. Finally, we describe the
time-varying relationship between global commonality in liquidity and aggregate

market volatility.

°Research Material - Angelo Ranaldo. (n.d.). Retrieved from: https://sbf.unisg.ch/
en/lehrstuehle/lehrstuhl_ranaldo/homepage_ranaldo/research-material
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Figure 2.1: Dynamics of Market-wide Liquidity
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Note: Time-series variation in market liquidity for selected countries. Monthly country-specific liquidity measures are
calculated as the equally-weighted average of the monthly spread of individual stocks. The sample runs from July 2000 to
December 2016. For illustrative purposes, the liquidity measures in the plots are standardized.

2.4.1 Liquidity Measure

Figure 2. shows the estimated market liquidity measures for each country in our
sample. An increase in the spread is associated with a higher level of illiquidity
in the respective stock market. We observe that market liquidity is substantially
higher in some periods than in others and tend to decrease during financial crises.
For example, market illiquidity was high in the U.S., Switzerland, Germany and
France during the dot-com bubble. Likewise, for all countries, illiquidity dramat-
ically increased during the financial crisis of 2008-2009. It is also noteworthy that
Italy exhibited higher illiquidity than the rest of the countries between 2011-2017.
Table [AZ] shows the descriptive statistics of market liquidity for each country. Our
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results show that market illiquidity was higher and more volatile during the finan-
cial crisis (2008-2009) than before or after it. The U.S., Canada, Germany and
Japan are the countries with the lowest levels of market liquidity during this sub-
period. Interestingly, the mean and the standard deviation during the post-crisis
period are lower than during the pre-crisis period (except for Japan and the periph-

eral countries, Italy and Spain, due to the European Sovereign debt crisis).

2.4.2 Global Commonality in Liquidity

Table 2.1 shows the estimation results for the full-sample spillover analysis based
on a 6-month-ahead forecast error variance decomposition. Element i of the
matrix represents the contribution to the forecast error variance of market 7 from
shocks to market j. The diagonal elements display the intra-market spillovers,
where (i = j). The off-diagonal elements of the matrix show the cross-market
spillovers. The row sums (labeled "From others”) represent the total spillovers
received by the respective market as denoted in this particular row, whereas the
column sums (labelled ”To others”) represent the sum of spillovers transmitted by
market 7 in the respective column. The difference between the column and the
row sum represents the net spillover. It describes whether the respective market
has transmitted (received) more shocks to (from) all of its counterparts. Finally,
the total spillover statistic, shown in the bottom-right corner, indicates the degree
of interconnection between the system of variables, i.e. our measures of systemic
market liquidity.

As can be observed, the inter-market spillovers are higher than the intra-market
spillovers, since both, the column from others and the row o others display higher
figures than those on the diagonal. This means that variation in market-wide lig-
uidity depends mainly on global sources of liquidity innovations. This result con-
trasts with findings reported by Brockman etal! (2009) who show thatlocal sources
of commonality represent roughly 39% of the firm’s total commonality in liquid-
ity, while global sources contribute around 19%.8 We also observe that the “con-
tribution from others” figures are quite similar across countries, with Switzerland

being the largest receiver of liquidity spillovers. However, the “contribution to

"This contrasting result could be due to the different methodologies followed by each study.
To analyze the relative impact of the local and global components of commonality on the liquidity
of individual firms, Brockman et al] (2009) perform univariate time-series regressions. Here, our
methodology is based on a VAR model, the main advantages of which are that all the variables
in the system are treated as endogenous variable, which provides a systemic way to capture rich
dynamics in multiple time-series by way of the lag structure.

21
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others” figures show interesting differences across countries. The largest transmit-

ters are Germany, the U.K., France and Canada and, in fact, the "net contribution”

row also shows them to be the largest transmitter countries.

Table 2.1: Global Commonality in Liquidity

US CA GER SpP SWI IT P UK FR From others

us 18.82 1553  13.02 8.47 9.40 5.61 4.58 11.73 12.79 81.17
CA 10.40  25.06  11.48 8.27 7.51 7.18 7.38 13.26 9.43 74.92
GER 1032 10.77  18.86 8.95 11.92 7.90 5.45 12.31 13.48 81.13
SP 8.34 992 1130 1696 927 1294 5.60 12.37 13.25 83.03
SWI 9.58 9.99 15.15 9.67 16.14 7.50 4.24 13.53 14.17 83.85
IT 7.19 10.23 1143 14.03 8.16 20.20 5.52 11.98 11.22 79.79
JP 7.19 13.16 12.81 9.46 7.69 7.41 21.42 11.77 9.04 78.57
UK 8.60 12.88  13.06 10.95 10.16 9.03 5.37 17.39 12.51 82.60
FR 10.35 9.99 1457 1139 1171 8.27 4.34 12.90 16.43 83.56

To Others 90.82 117.58 12171 9819 92.00 86.09 6394 11728 11237  Total Spillover
=80.96

Net contrib. 9.65 42.64 4057 1515 8.15 6.30 -14.63  34.67 28.80
(to-from)

Note: Columns show the market producing the shock and rows the market receiving the shock. The diagonal elements
represent intra-market spillovers while the off-diagonal elements represent the pairwise liquidity directional spillovers. The
table shows the 6-month ahead forecast error variance decomposition, based on a VAR model with a lag length of 2, fol-
lowing the Akaike information criterion (AIC).

The above results point to a more cross-market oriented explanation of com-
monality in liquidity. From the demand-side perspective, this favors the hypoth-
esis that large institutional investors, holding large-cap stocks from a variety of
markets in their portfolio, can influence the systemic level of liquidity across mar-
kets by inducing high volume-related buy-sell trade imbalances (see Koch et al!
(2016)). From a supply-side perspective, a liquidity contagion effect from one mar-
ket to another provides evidence that tightness of funding liquidity affects all se-
curities across different markets (see Hameed et al! (2010)). Finally, the total lig-
uidity spillover (displayed in the bottom right-hand corner of Table P.1)) indicates
that on average, across our entire sample, 80.96% of the total variance forecast er-
ror come from cross-market liquidity spillovers, which gives an idea of the degree
of cross-market connectedness. This result contrasts with the results reported by
Diebold and Yilmaz (2009) in terms of volatility and return spillovers across difter-

ent global equity markets. These authors conclude that, on average, around 40%
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2.4 Results

of the forecast error variances comes from cross-spillovers, as regards both returns
and volatilities. Our results suggest that liquidity connectedness across national
markets is much higher than that of returns and volatilities.

The static analysis provides a good characterization of the spillovers over the full
sample period. However, as this study investigates commonality in liquidity over
a period affected by extreme economic events, including the global financial crisis,
it seems fairly unlikely that liquidity spillovers will not change over time. To assess
the time-varying nature of commonality, we estimate the VAR for the underlying
variance decomposition, using a 60-month rolling window and a 6-month fore-
casting predictive horizon. From this, we obtain the total dynamic spillover index,

which serves as our proxy for commonality in liquidity.

Figure 2.2: Global Commonality in Liquidity
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Note: Monthly total cross-spillover index. Window length equals 60 months. The results are robust to the use of a 60-
month rolling window and a 10-month forecasting horizon.

Figure shows the total liquidity spillover index obtained from the rolling
window estimation. It clearly highlights the changing dynamics over the sample

period, with the level of commonality in liquidity mostly oscillating between 70
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and 87%. The low peak at the beginning of 2008 can be associated with the lig-
uidity constraints faced by Bear Stearns while the collapse of Lehman Brothers
in September 2008 is associated with an even steeper increase in commonality in
illiquidity. This increment is consistent with the findings of Hameed et al! (2010),
indicating that peaks in commonality in liquidity often result from large nega-
tive market returns and coincide with liquidity crises. Thus, the dynamics show
that commonality in liquidity increases during episodes of market turmoil. Our
findings are coherent with the theoretical discussion in Brunnermeier and Peder-
sen| (2009), where funding and market liquidity interact with each other, leading
to higher margins and less capital-intensive trading positions in periods of crisis,
which in turn leads to tight funding constraints and to changing levels in market-
wide liquidity as funding liquidity diminishes.

Interestingly, we also observe that commonality is very persistent and that it re-
mains at high levels even after market turmoil and funding tightness has passed.
In fact, it remains at high levels event though the level of market-wide illiquid-
ity in each country declined substantially after the effects of the Lehman Brother
collapse, to moderate levels (see Figure 2.2)). Commonality continues being high
during the European sovereign debt crisis. Investors seem to chase liquidity by
rushing from periods of flight-to-quality to periods of flight-to-liquidity, running
from Eurozone bond markets back to equities which, in turn, keeps commonality
high. Goyenko and Ukhov (2009), who analyze the dynamics between stock and
bond market liquidity in the U.S. market, show that positive shocks to the level
of illiquidity in the stock market reduce illiquidity in the bond market. Following
a period of persistence in commonality in liquidity, a downward shift is observed
at the end of 2013, suggesting the normalization of conditions in both bond and
equity markets. The level of market commonality in the last few months of the
sample is similar to that recorded in the months leading up to the global financial

crisis.

2.4.3 Dynamics between Global Commonality in Liquidity and
Global Market Volatility

Figure 2.3 shows the joint dynamics of global commonality in liquidity and global
market volatility. We observe an increase in both trends during the financial crisis,
although the upward trend starts earlier in the case of commonality in liquidity.

Remarkably, we find that while volatility returns to lower levels, albeit with sudden
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peaks, levels of commonality in liquidity remain persistent. To analyze the time-
varying relationship between the two, we use the dynamic Granger Causality test
proposed by Shi et al] (2018).

Figure 2.3: Global Commonality in Liquidity and Global Market Volatility
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Note: This figure shows the index for global commonality in liquidity (solid line) and the proxy for global market volatility
(dashed line).

Our proxy for global market volatility is the first principal component factor
of realized market volatilities in the nine stock markets.B Figure P.44 and .4B dis-
plays the dynamic Wald test statistics proposed by Shi et al| (2018) for the detection
of instability in the causal relationship between two time-series, namely common-
ality in liquidity and market volatility. The sequence of t-statistics starts in May
2008, as the first 22 months are used as the minimum window size.! We observe

that global market volatility Granger-causes commonality in liquidity throughout

8 As a robustness check, we have also calculated an equally-weighted average volatility index
for the same sampling countries, and the results (available on request) were found to hold.

?Our initial sample starts in July 2000. We use 60 months in our rolling window estimation
to obtain the total dynamic liquidity spillover. Using this index as input into the dynamic Granger
test, we then take an additional 22 months as the minimum window size to perform the dynamic
causality test.
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2 Uncovering the Time-Varying Relationship between Commonality in Liguidity and Volatility

the entire sample period. This is in line with the theoretical model developed by
Brunnermeier and Pedersen (2009), in which higher market volatility leads to an
increase in commonality as a consequence of a reduction in the provision of lig-

uidity available for all financial intermedjiaries.

Figure 2.4: Test Statistic Sequences of the Time-Varying Granger Causality Test -
Commonality in Liquidity and Volatility
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(a) Commonality in Liquidity to Volatility (b) Volatility to Commonality in Liquidity

Note: The lag selection is determined using the BIC. The sequences are calculated using a recursive rolling procedure from
May 2007 to December 2016.

Conversely, and for the first time, we find that commonality in liquidity Granger-
causes volatility only from late 2009 to 2013, that is, in the aftermaths of the global
financial crisis and during the European sovereign debt crisis. These feedback ef-
fects between commonality in liquidity and volatility coincide with periods of high
commonality in liquidity in global markets. This finding might be interpreted as
evidence of the existence of adverse loop effects in which shocks to stock market
liquidity endogenously cause stock market volatility and vice versa. Such feedback
effects sheds new light on the endogenous nature of financial shocks arising during

episodes of crisis, which we show are aggravated by liquidity considerations.

2.5 Conclusion

We document a dynamic relationship between global commonality in liquidity
and global market volatility in a sample of nine stock markets, representing most

of the world’s stock market capitalization. Our results show that global common-
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ality in liquidity and market volatility share a dynamic bi-directional relationship.
Market volatility Granger-causes commonality in liquidity as a general rule (i.e.
throughout the whole sample period), while commonality Granger-causes mar-
ket volatility only during sub-periods of crises and their aftermaths. This latter
relationship raises a warning about the presence of endogenously enhanced ad-
verse loop effects between commonality in liquidity during crises, which are doc-

umented and measured here for the first time.

We also find that variation in market-wide liquidity depends predominately
on inter-market liquidity innovations, which reveals the relative strength of the
propagation of liquidity shocks originating from foreign stock markets. Illiquid-
ity shocks are indeed shown to propagate more strongly than volatility and return
shocks extensively analyzed by the previous literature. These strong liquidity link-
ages provide support for both ademand-side explanation of commonality (i.e. cor-
related trading behavior and the increasing importance of institutional investors
in the market) and a supply-side explanation (i.e. funding constraints and lig-
uidity spirals). The dynamics show that commonality in liquidity increases after
large market downturns and peaks during episodes of market turmoil and fund-
ing tightness. We also observe that commonality is highly persistent and that it

remains at high levels even after market turmoil has passed.

Our results should prove helpful for practitioners, as the relationship identi-
fied herein can usefully be taken into account in portfolio risk management. They
might also be useful for policy makers as they highlight the high level of common-
ality across markets, which stresses the importance of designing an integrated pol-
icy framework to prevent common sources of liquidity shortage in global financial
markets. Indeed, from a regulatory point of view, our results call for a closer mon-
itoring of market-wide liquidity from an integrated and coordinated perspective.
Commonality means that liquidity dry-outs are likely to be correlated and there-
fore the provision of liquidity during crisis episodes, frequently fostered by domes-
tic monetary policy authorities as to preserve the normal functioning of national
financial markets, should be certainly addressed in a coordinated way across dif-
ferent markets and countries. The relatively high transmission of liquidity shocks
(compared to price shocks) invites regulators and market participants to think of
(i) liquidity as a prominent feature of financial markets that impact different assets

and markets simultaneously, and therefore, this makes it harder to diversify risk.
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Our results in this regard also emphasize the possibility of market contagion,
and shock transmission, explained by the market liquidity channel. Thatis, market
liquidity and systemic commonality appear to be crucial factors underlying market
return and volatility co-movements frequently reported by the literature. In other
words, our main findings provide support for liquidity as a theoretical factor ex-
plaining returns co-movements in stock markets.

Here we study commonality in liquidity of stocks, however, analyzing com-
monality across different asset classes can complement our results. In this way,
international investors would be able to reach diversification benefits unexplored
here, by diversifying liquidity risk across asset classes (bonds, commodities, etc.)
instead of across countries (in which case we document relatively low room for

diversification).

2.6 Appendix

Table Al: Unit Root Test - Time-Series Liquidity Measures

ADF-Test(2) PP-Test(2)

Country Levels Levels

uUS 2.71* -2.96**

CA -4.19"* -5.55"*
GER -3.44** -4.46™*
SP -3.74™* -5.49%*
SWI 23,58 -4.717*
IT 317 -5.51%*
JP -4.74% 7327
UK -3.28** -4.21*
FR -3.39** -4.74"*

Note: This table reports the results of the unit root tests, that is the Augmented Dickey Fuller (ADF) and the Phillips-Perron
(PP-Test) for the time-series market liquidity measure proposed by [Abdi and Ranaldd (2017). Lags used in these tests are
indicated in brackets. The sample period spans from July 2000 to December 2016. *** indicates statistical significance at
the 1% critical value, ** at the 5% critical value and * at the 10% critical value. This table is supplementary material to Chuli
et al] (2020).
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Table A2: Summary Statistics of Commonality in Liquidity

2.6 Appendix

Stock Market in Mean Median StD.  Min  Max  Skew  Kurt AC(1) AC(2)
Pre-Financial Crisis (2000 - 2007)

[ON 1.736 1.431 0.666 0906 3.865 0.894 2998

CA 1.144 1.056 0.280 0.794 2326 1520 5.943

GER 1.830 1.793 0.632 0.893 3521 0.674 2.673

Sp 0.793 0.737 0.274 0433 1462 0830 2714

SWI 1.104 1.003 0.491 0535 2683 1311 4351

IT 0.613 0.551 0.215 039 1.800 2.749 13.63

JP 1.256 1.262 0.322  0.668 2463 0.650  4.497

UK 1175 1.130 0366 0714 2.246 1.032 3.551

FR 1.288 1173 0.523 0.682 2.822 0.886 3.016

Financial Crisis (2007 - 2009)

[ON 1.943 1.659 0.876 0925 4.069 1.001 3.041

CA 1.594 1.253 0.902 0.824 5313 2322 9.390

GER 1.978 1.719 0.827 1.057 4.820 1556 5.380

Sp 1.204 1.042 0485 0.656 2870 1448  5.210

SWI 1.291 1.081 0568 0.620 3.034 1210 3914

IT 1.030 0.919 0.443 0.447 2383 1110 3.920

JP 1.633 1.448 0.686 0.878 4.582 2368 10.575

UK 1.647 1.474 0.730 0.704 3956 1.291 4.564

FR 1.537 1.302 0.660 0.708 3.557  1.100 3.892

Post-Financial Crisis (2010 - 2016)

[ON 1.202 1.169 0.239 0883 2192 1628  6.239

CA 1.004 0.965 0.257  0.627 1958 1194  4.629

GER 1.531 1.436 0.341 0970 2394 0.948 3.171

Sp 1.055 0977 0299 0.600 2102 1325 4929

SWI 0.857  0.824 0226 0.447 1692 1120 4.837

IT 1.141 1.080 0361 0578  2.689 1375 6.028

JP 1.255 1167 0.357 0.686 2246 1258  4.269

UK 1.001 0.952 0.244 0.635 2288 2102 10.886

FR 1.093 1.031 0.285 0.660 1951 1257  4.231

Full Sample (2000 - 2016)

[ON 1.547 1.295 0.654 0.883 4.069 1.655 5450  0.9032**  0.8425**
CA 1.166 1.033 0.498 0.627 5313 4.076 2890  0.7093***  0.5454™**
GER 1.730 1.545 0599 0.893 4820 1.604 6.649  0.7843™*  0.6811***
Sp 0.979 0.915 0366 0.433 2870 1442 6.643  0.7138"*  0.5561***
SWI 1.033 0.900 0.448  0.447 3.034 1771 6.444  0.7757**  0.6446***
IT 0.914 0.840 0.410 0396 2.689 1206 4770  0.7142**  0.6480***
JP 1.324 1.256 0.446  0.668 4.582 2585 16713  0.5484™*  0.4209™*
UK 1.187 1.060 0.474 0.635 3.956 2344 10.877  0.8117***  0.6925***
FR 1.251 1.100 0.495 0.660 3.557 1504 5.613 0.7574**  0.6558***

Note: This table reports the summary statistics for the liquidity measure proposed by JAbdi and Ranaldd (2017). Our
dataset spans a time range from July 2000 to December 2016. 4C(1) and 4C(2) show the autocorrelation coefficients
(AC) for the first and second lag, which denotes supplementary material to [Chulid et al] (2020). *** indicate statistical

significance at the 1% level.
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3 ANALYZING THE NONLINEAR
PrICING OF LiQuiDITY R1SK
ACCORDING TO THE MARKET
STATE

This study examines the asymmetric impact of systemic liquidity on asset prices
across market states. We use time-series conditional quantile regressions to esti-
mate an otherwise traditional liquidity-augmented three factor model for asset
prices. We find the exposure of equity returns to aggregate liquidity risk to be
dependent on the market state. On the one hand, we document a positive effect
of systemic liquidity risk on contemporaneous asset returns in a good market state
(i.e. when market returns are large and positive, that is, in the right tail of the
probability distribution) and, on the other hand, a negative effect when the mar-
ket state is bad (that is, in the left tail of the distribution). During regular times,
market-wide liquidity risk is rarely priced. Contrary to general assumptions, our
results show that liquidity is not always a relevant factor for explaining stock mar-
ket returns and that it only becomes relevant when the market state is particularly
good or bad. Search-for-yield and flight-to-liquidity considerations help to explain
our findings.

U'This paper is co-authored with Helena Chulid and Jorge M. Uribe. This chapter represents an extended version of
the paper by Chulia et al] (2020).



3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

3.1 Introduction

Long-Term Capital Management’ related events at the end of the 90’s reminded
us that investors have a marked preference for liquidity (Amihud et al| (2005)). In
episodes of extreme turmoil, when liquidity appears to vanish from financial mar-
kets, investors engage in fire sales and financial intermediaries seem to renounce
their function as purveyors of liquidity for the rest of the economic and financial
system (Hameed et al! (2010))).2 During these periods of market liquidity dry-
ups, risk aversion leads investors to rebalance their portfolios toward less risky
and more liquid assets, episodes referred to, respectively, as flights-to-quality and
flights-to-liquidity (Baele et al] (2020), Beber et al] (2009). In contrast, when the
market scenario and associated economic conditions are stable and optimistic, in-
vestors generally experience excess liquidity, leading them to rebalance their port-
folios towards riskier and less liquid assets, with search-to-yield considerations in
mind (Kiendrebeogd (2016), Fratzscher et al] (2018)).2 Both, flight-to-liquidity
and search-for-yield are naturally associated with extreme market conditions, that

is, bad and good, respectively.

For these reasons, the role played by liquidity as a factor-explaining asset prices
should ideally be examined from a general perspective that allows for a changing
(and non-linear) association between liquidity and prices. Indeed, we might nat-
urally expect the price of liquidity risk to differ, depending on the market state.
Yet, the study of the effect of market-wide liquidity on asset prices has tradition-
ally been confined to the linear, cross-sectional world (Martinez et al! (2005), P4s-
tor and Stambaugh| (2003), /Acharya and Pedersen (2009)). In this paper, we seek
to fill this gap by testing the economically motivated hypothesis of nonlinearity
in the relationship between systemic liquidity risk and asset prices (returns). We
show how stock market returns are exposed to systemic liquidity risk during tail
events and compare these outcomes with median market scenarios. Our main re-
sults show a significant asymmetric liquidity risk-return relationship, depending
on the market state.

To test our hypothesis we build upon Fama and French (1993)’s traditional
three-factor model augmented with the bid-ask spread liquidity factor recently

2The literature refers to these two phenomena as demand and supply effects, respectively.
3These two papers study this phenomenon in relation to the excess liquidity produced by the
quantitative easing policies implemented by the Federal Reserve after the Global Financial Crisis.
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proposed by Abdi and Ranaldo (2017).B We conduct our estimations using quan-
tile regressions, but rather than focusing on the cross-sectional effect (i.e. the cross-
sectional liquidity premia associated with different portfolios at a given time inso-
far as they are illiquid or sensitive to a market-wide liquidity factor), we fit quantile
regression returns to time-series returns.

By adopting this strategy, we are able to isolate the effect of liquidity on differ-
ent parts of the stock return distribution over time, which in turn, are naturally
related to different market states. Notice, however, that the definition of “market
state” can be elusive. Cooper et al|(2004), for instance, define a good (bad) market
state based on the average market return over the preceding three years. Thus, de-
pending on whether this average is positive or not, the market state is considered
good or bad. Pagan and Sossounov| (2003) and Edwards et al] (2003) define market
states by locating turning points and the duration of peaks and troughs. According
to these authors, a bad market state starts with a peak, i.e. alocal maximum within
an 8-month wide window, and ends with a trough, i.e. a local minimum. How-
ever, these definitions are unnecessarily arbitrary given that the window widths are
unjustified and selecting them may involve the cherry picking of results. Worse,
they may also be misleading. What is deemed a bad market state, for example,
might simply be a sequence of bad market results observed over a short number
of days within an otherwise perfectly functioning and regular market presenting
an average performance. Such misinterpretations can arise because markets are ex-
tremely volatile. For this reason, identifying a market state as an ex-post general
trend in the data seems inappropriate in our context. Indeed, such trends might
revert very quickly - within a matter of days, even - as the literature on momentum
pricing and trading has documented extensively (Daniel and Moskowit7 (2016)),
and, therefore, it is necessary to seek alternative definitions of the market state.

In contrast, using the market return quantiles of the probability distribution to
define a market state is much less arbitrary. Quantiles-in-time can be considered
as constituting a collection of market states, ranging from very good in the case
of the highest quantiles (i.e. large positive returns) to very bad states in the case
of the lowest quantiles (large negative returns).? These states can occur either as a
correlated sequence of bad market performance over a number of weeks, months

or years, or as unexpected outliers within a sequence of otherwise positive results.
y 1% q %

4Angelo Ranaldo (n.d.) - Research Material. Retrieved from https://sbf.unisg.ch/en/
lehrstuehle/lehrstuhl_ranaldo/homepage_ranaldo/research-material

>see [Aslanidis et al] (2014), [arefio et al] (2016), Zhu et al] (2017), Balcilar et al] (2018), Galvad
et al] (2018), Shahzad et al! (2018) and Mensi et al] (2019), among others.
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

Being an order statistic that is robust to outliers, the independent estimation of
different quantiles of the return distribution (conditional on relevant explanatory
factors) has the advantage of allowing us to explore the full spectrum of the rela-
tionship between liquidity and stock returns, which is also preferable to simply
focusing on two unrealistic "good” and ”bad” states. In this way, our estimations
allow us to observe the transition of liquidity betas from lower to higher quantiles -
corresponding to very bad and very good market states, respectively - and naturally

evaluate untroubled states around the median of the observed market realizations.

Our results show that systemic liquidity risk is a price factor dependent on the
market state. However, it is a price factor only in certain states (good or bad, but
not regular ones). First and foremost, we show that when the market is in a bad
state, systemic liquidity risk exhibits a negative relation with contemporaneous stock
returns that exceed the risk-free rate. That is, when returns are negative and large,
market-wide liquidity risk depresses prices even further. Lower contemporaneous
prices are naturally associated with higher future expected returns (under constant
market fundamentals), which is consistent with the previous literature that assigns
a positive premia to liquidity risk. Indeed, Amihud (2002) shows that unexpected
market liquidity risk lowers contemporaneous stock prices, because a higher real-
ized liquidity risk raises trader’s expectations about future illiquidity in the market
and motivates them to request a higher return for their positions. Driven by un-
certainty about future variability and the timing of illiquidity events, market par-
ticipants prefer to sell their positions rather than face margin calls, which leads to

lower COI’ItCmpOI‘&I’lCOllS returns.

Second, we show that excess stock returns are positively related to systemic lig-
uidity risk during good market states. This is at odds with the traditional under-
standing of the literature, because it means that conditional on a good market state
a generalized increase in systemic illiquidity is associated with higher contempora-
neous market returns (and hence lower expected returns under constant market
fundamentals). This is a consequence of investors rebalancing their portfolios to-
wards more illiquid assets when market performance is good, as it occurs, for in-
stance, when investors use excess gains to buy riskier and illiquid assets with search-
for-yield considerations in mind.

Finally, we observe that during regular times (i.e. with quantiles close to the
median), there is no significant relationship between systemic liquidity and market
returns. This also challenges the traditional mean-to-mean effects reported in the

literature that measures the importance of liquidity as an asset-pricing factor and
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restricts this importance to episodes of extreme realizations of market returns.

We contribute to the aforementioned literature that assesses the impact of lig-
uidity risk in a linear fashion (Martinez et al{ (2005), Pastor and Stambaugh/ (2003),
Acharya and Pedersen (2009))) by extending the analysis with the consideration of
different market states. We show liquidity to be an important concern for asset
prices and market dynamics, as indeed the extensive literature on the topic has pre-
viously documented (Amihud et al] (1986); Eleswarapu and Reinganum (1993);
Brennan and Subrahmanyam| (1996); Datar et al] (1998); (Chordia et al! (2000);
Hasbrouck and Seppi (2001); Huberman and Halkd (2001); /Amihud (2002); among
many others), but unlike these studies we show that this is not always the case. Ba-
sically, liquidity does not influence contemporaneous returns when they are not
particularly high or low.

Interestingly, unlike in the empirical literature, there are significant precedents
in a series of theoretical studies that point to a nonlinear relationship between mar-
ket liquidity and asset prices. For instance, Vayanog (2004) provides a model in
which liquidity premia are time-varying according to market uncertainty. In this
model, investment managers are more likely to withdraw their positions during
volatile times, becoming less willing to hold illiquid assets and, so, raising their lig-
uidity premia. These actions usually result in flight-to-quality episodes, the sub-
ject of analysis of Morris and Shin (2004). From a different but related perspec-
tive, Brunnermeier and Pedersen (2009) study the interaction between funding
liquidity and aggregate market liquidity, showing how shocks to the former might
lead to lower market liquidity and higher margins on existing positions and, ulti-
mately, to negative illiquidity-volatility-price spirals. These spirals, resulting from
the complex interaction between liquidity, volatility and prices, also motivate the
nonlinear approach that we adopt to the subject of this study.

An important precedent of the present study, and one that merits attention, is
the contribution of Watanabe and Watanabd (2008). These authors analyze the
time-varying role of liquidity as a factor explaining asset prices. They find that
cross-sectional liquidity betas vary over time, resulting in two distinct liquidity
states: one of high liquidity betas, characterized by high volatility and a large lig-
uidity risk premium (which is extremely short-lived), and another of low liquid-
ity betas, which is more stable and houses a lower risk price for liquidity. They
attribute the changing role of liquidity as a factor in the cross-section of the re-
turns to changing levels of traders uncertainty about their trading counterparties

(i.e. preference uncertainty), and proxy this in their estimations with trading value
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(the greater the uncertainty, the higher the trading value). Related studies include
Longstaff (2002) and Gibson and Mougeot (2004), who also highlight a changing
relationship between market-wide liquidity and asset prices conditioning on mar-
ket sentiment and the probability of future recessions, respectively. Unlike this
closely related line in the literature, our emphasis is placed on the market price it-
self. Hence, our definition of a market state is broader and more general: a good
market state is related to a good return realization and a bad market state to a
bad realization (in the same spirit as Cooper et al! (2004))). Because it depends on
the return quantile, instead on a specific variable (which might be correlated with
other variables outside the model and subject, therefore, to criticisms of omitted
confounding variables), we consider our approach more appropriate to tackle the
problem that we seek to analyze here. We also analyze a continuum of states, which
allows us to identify when and how liquidity is priced by the market, which is novel
for the literature.

The rest of the paper is organized as follows. In Section .2, we describe the
methods employed to test our hypothesis. In Section B.3, we describe the data. In
Section 3.4, the empirical results are discussed and robustness checks are provided.
Finally, Section .3 concludes.

3.2 Methodology

We augmented a Fama and French/ (1993) standard three-factor model with the sys-
temic liquidity risk factor proposed by Abdi and Ranaldg (2017), and used con-
ditional quantile regression to identify nonlinearities in the liquidity-risk-return

relationship.

3.2.1 Systemic Liquidity

To measure systemic liquidity risk, we employ the estimator recently proposed by
Abdi and Ranaldo (2017). This measure is based on close, high and low prices and
bridges the well-known bid-ask spread (Roll (1984))) and the more recent high-
low spread (Corwin and Schultz (2012)). In comparison with other possible mea-
sures, this method makes use of wider information (i.e. close, high and low prices).
Moreover, it presents the highest cross-sectional and average time-series correlation
with Trade and Quote’s (TAQ) effective spread and provides the most accurate es-

timate for less liquid stocks.
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The effective spread shares the same theoretical assumptions as Roll (1984) and

can be written as:

S = 2\/E(Ct = )¢t = Yrs1)- (3.1)

where ¢, is the daily observed close log-price and 7, represents the mid-range be-
tween daily high and low log-prices. This closed-form bid-ask spread estimate re-
sembles Roll (1984) autocovariance measure, the only difference being the covari-
ance of consecutive prices is close-to-midrange rather than close-to-close.

In estimating the effective spread, some estimates are found to be negative. Fol-
lowing Corwin and Schultz (2012), Abdi and Ranaldg (2017) estimate the squared
spread 52 in (1) over two-day periods. If a two-day estimate is negative, they set it

to zero. Second, they take the square root and then take the monthly average.

N

. (¢r = 9:) (et = 9141), 0), (3.2)
—1

N

t

}montblymrrefted = max (4

where N displays the number of trading days in a month.

Finally, the monthly systemic liquidity risk indicator can be calculated as the
gross return-weighted average of the monthly spread of individual stocks. We use
the measure that is available on the website of Angelo RanaldoB The measure is
constructed on the basis of NYSE, AMEX and NASDAQ stocks. In the context
of an European version of this analysis, we also construct an European systemic
liquidity risk estimate in the same fashion with an equally-weighted aggregation of

the spreads of the underlying constituents of the EuroStoxx50 stock market index,

(see Appendix [AI2).

3.2.2 Liquidity-Adjusted Three-Factor Model

Following the Fama and French (1993) three-factor model approach, the liquidity-

augmented three factor model can be written as follows:
Tie =7 = (@fLi% + (@2(7’mt - Vﬁ) + @3<SMB)t + @4(HML)t + €ir, (3.3)

where (7;; — 71) gives the monthly excess returns on 25 U.S. portfolios, sorted ac-
cording to size and book-to-market value (BE/ME) quintiles; the excess return on

GAngelo Ranaldo - Research Material. (n.d). Retrieved from https://sbf.unisg.ch/
en/lehrstuehle/lehrstuhl_ranaldo/homepage_ranaldo/research-material
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a broad market portfolio is denoted as (7., — 713), (hereafter RMKT); 74 is the
risk-free rate, proxied by the one-month treasury bill rate; ¢ is the error term, as-
sumed to be independent with zero mean and variance 2. The factors (SMB)
and (HML) are portfolios, mimicking the risk factor in returns related to size and
book-to-market equity, respectively. The (SMB) factor is constructed as the differ-
ence between the average returns on small- and big-stock portfolios (small minus
big) with the same weighted-average book-to-market ratio. The (HML) factor is
referred to as a value premium between the average returns on portfolios with high
book-to-market and low book-to-market stocks (high minus low) with the same
weighted average sizell, Lig, denotes the systemic liquidity risk measure, which is
not an asset nor a portfolio, rather it is the gross return-weighted average of the
monthly spread of individual stocks. The coefficient B captures the sensitivity
of excess returns on systemic liquidity in the market. The inclusion of a systemic
liquidity risk factor would appear to be appealing to the asset-pricing literature,
especially after recent liquidity dry-ups in financial markets. Using factor models,
Péstor and Stambaugh| (2003), Marunez et al| (2005) and /Acharya and Pedersen
(2005) have previously provided evidence that the level of aggregate liquidity is a

priced risk factor, when explaining expected stock returns B

3.2.3 ngntile Regression

Here, we adopt Koenker and Bassett J1 (1978)’s quantile regression technique (see
also Koenker and Hallock (2001)). Quantile regression provide insights into the
impact of explanatory variables on the entire conditional distribution of the re-
sponse variable. In this setting, conditional quantile regressions are linear in pa-
rameters for each selected quantile. We explore how systemic liquidity risk af-
fects the different quantiles of excess returns. Moreover, we interpret these return
quantiles as different market states, i.e. positive vs. negative abnormal returns,
as extreme scenarios, which leads directly to a comprehensive analysis of systemic
liquidity risk scenarios.

Ando and Tsay (2011) and Allen and Powell (2011), among others, undertake
studies of the emerging field of quantile regression and factor models, but do not

’See [Fama and French (1992), Fama and French (1993), Fama and French (1994) for details
about factor construction and description.

$P3stor and Stambaugh (2003) construct an aggregate liquidity measure based on volume-
related price reversals which then is incorporated into a[Fama and French (1993) three-factor model.
Acharya and Pedersen (2003) adjust a CAPM with the illiquidity measure proposed by Amihud
(2002).
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explore the effect of systemic liquidity as a priced and nonlinear risk factor. Ap-
plying a quantile regression method to factor models is similar to using a risk as-
sessment tool, such as VaR (value-at-risk) or the ES (expected shortfall), except
that we are not solely concerned of tail losses of the return distribution but with
how systemic liquidity risk relates to returns in normal times and periods when
the market s in a good (bad) state, coinciding with extreme tail events. Eq.(3.3) re-
lates to the conditional mean scenario of excess returns and exposure to aggregate
liquidity risk. To investigate excess returns across its conditional distribution, the
time-series quantile liquidity-adjusted factor model for quantile 7 can be written

as follows:
(rie = 7) = B(7)x + ¢ie(7), (3.4)

where all quantile parameters are displayed in a vector 8(7) = {81(7)%, B2(7), ..
B3(7), B4(7)} and all factors in a Nx4 matrix, denoted asx = {Lig;, RMKT,, SMB,,
HAML,}. We further assume that the vector of error terms conditional on the pa-
rameter matrix is zero, Qr(¢;x = 0). We can then specify the 7 #h conditional

quantile function as follows:

Qr—r) ((7)|%) = B(7)x. (3.5)

—_

To obtain an estimate B(7) for the unknown coefficient(s) for the 7 b quantile,

the following function is minimized:

P

B(7) = argminz er((rie —7p) — Bx) (3.6)

where g (1) = (7 —1(u < 0)) with 0 < 7 < 1isa check function with asymmet-
ric weights, which depend on the quantile selected. While we collect all quantile
estimates in a set ® = (B1(7)%, B2(7), B3(7), fa(7)), we only report the liquid-
ity betas, B1(7)%, in the result section below for every quantile.! The liquidity-
adjusted three-factor model is estimated as a conditional quantile function at a
range of quantiles, 7 = (0.1 — 0.95), in 0.05 intervals. By doing so, we observe a
transition between market states, from the negative tail of the return distribution,

(7 = 0.1), to the extreme positive market scenarios, (7 = 0.9).

?We do not provide estimates of the factor-portfolios (three factors) as they have been widely
documented in the respective literature, for example, Fama and French (2016).
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3.3 Data

First, we analyze the effect of systemic liquidity risk on the distribution of stock
market returns. Second, we examine systemic liquidity risk on 25 value-weighted
portfolios sorted according to size and book-to-market value. The market and
portfolio returns are constructed each month and include stocks from the NYSE,
AMEX, and NASDAQ. Subtracting the risk-free rate from the returns, excess re-
turns denote the dependent variable. Data on the portfolios and three factors were
retrieved from the webpage of Kenneth French.ll The measure for systemic lig-
uidity risk was retrieved from the author’s webpage.B! We standardized the liquid-
ity measure to obtain comparable estimates with respect to the coefficients of the
three factors commonly used in the literature. The sample period spans from Jan-
uary 2000 to December 2016. We also include robustness exercises: we expand
the sample to a period ranging from January 1960 to December 2016; we examine
30 U.S. industry portfolios, similarly retrieved from Kenneth French’s webpage,
employing the same procedure as for the 25 value-weighted U.S. portfolios. In
Appendix B.G, we also take on an European view on the matter of liquidity risk

and stock market portfolio returns.

3.4 Results

3.4.1 Market Return and Systemic Liquidity Risk

Figure B.] summarizes the effect of liquidity, proxied by the market liquidity in-
dex of |Abdi and Ranaldg (2017), on different quantiles of the excess stock return
distribution from January 2000 to December 2016. As is evident, the effects are

highly nonlinear, ranging from negative to positive as market returns increase.

The linear effect of liquidity on returns is also apparent in the figure (as indi-
cated by the solid red line accompanied by two parallel dotted lines, representing
the 95% confidence intervals of the regression). This effect is both negative and sta-
tistically significant, indicating that illiquidity reduces contemporaneous market

returns. This outcome is consistent with findings in the literature that document

0K enneth French - Data Library. (n.d.) Retrieved from https://mba. tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html

11Angelo Ranaldo - Research Material. (n.d.) Retrieved from https://sbf.unisg.ch/
en/lehrstuehle/lehrstuhl_ranaldo/homepage_ranaldo/research-material
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3.4 Results

a positive premia in the cross-section of returns for assets that are more sensitive
to market-wide liquidity risk (and for less liquid assets). In other words, a gener-
alized increase in market liquidity risk forces investors to rebalance their portfolio
towards more liguid and less risky assets (flight-to-quality and flight-to-liquidity),
which, in turn, depresses the contemporaneous prices of less liquid and riskier as-
sets. Under constant expectations about the future cash flows of such assets, a
reduction in contemporaneous prices is associated with an increase in their future
expected returns. In this way, a positive cross-sectional relationship emerges be-
tween systemic liquidity risk and expected market returns, which is consistent with
a negative time-series relationship between contemporaneous returns and liquidity

risk.

However, in Figure B.1, it is evident that the aforementioned story does not al-
ways hold. Indeed, when we examine the effect of market-wide liquidity risk under
different quantiles of the market return - as captured by the dash-dotted black line
and the associated bootstrapping confidence intervals of the quantile regressions
(grey-shaded area) - a contrasting landscape emerges. On the one hand, the nega-
tive and expected effect of illiquidity on market returns is higher under very bad

market states (quantiles below the 20?

percentile). Not only is this effect higher, it
is also statistically different from the linear effect, as witnessed by the fact that the
shaded bootstrapped confidence intervals do not include the linear effect below
the 30% percentile of the market returns. This means that the liquidity risk ef-
fect on market returns (and, therefore, the liquidity premium) is underestimated
by the cross-sectional and linear models traditionally employed when the market
state is bad.

On the other hand, and more interestingly, this negative effect of market-wide
illiquidity is reversed and even becomes positive and statistically different from
zero for very high quantiles of the excess stock return distribution (above the 90"
percentile). This is at odds with the traditional line taken by the literature, be-
cause conditional on a good market state a generalized increase in systemic illig-
uidity is associated with higher market returns. Although this outcome might, at
first glance, seem unexpected, it should be understood as a consequence of a gen-
eral trend in portfolio rebalancing, observed in markets that experience a boom,
towards more illiquid and risky assets. That s, in situations in which the market is
experiencing considerable gains, investors usually use such newly generated excess

funds to invest in riskier and less liquid assets with search-for-yield considerations
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Figure 3.1: Systemic Liquidity Effects on Excess U.S. Stock Market Returns
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Note: This figure shows the effect of systemic liquidity on monthly U.S. excess stock market returns from January 2000 to
December 2016. The underlying model is: 7., —75 = f1 (7)ELig,+ B2 (7) (SMB), + B3 (7) (HML), +¢,(7). The linear
effect is indicated by the solid red line accompanied by two parallel dotted lines, representing the 95% confidence intervals
of the regression. The effects of liquidity risk under different quantiles of the market return are captured by the dash-dotted
black line accompanied by the associated bootstrapping confidence intervals of the quantile regression (gray-shaded area).

in mind. Investing in riskier and less liquid assets naturally increases contempo-
raneous market returns, because the returns generated by investing in less liquid
assets exceed returns lost by disinvesting in liquid assets, which in turn leads to the
emergence of a positive relationship between contemporaneous market returns
and liquidity risk (conditional on a good market state). Finally, in the mid-range
quantiles (between the 55 and 90 percentiles), the effect of market-wide liquid-
ity risk on market returns is not statistically different from zero. Only between
the 50 and 60" percentiles, it cannot be statistically distinguished from the tra-

ditional linear effect.

All in all, liquidity risk is not always a factor priced by the market, as a linear
relationship usually indicates. Its impact on concurrent market returns is mostly
negative (its impact on the excess market return distribution conditional of liquid-
ity is asymmetric, with the effects of liquidity risk being higher on the negative tail
of the returns), but sometimes these effects are positive, specifically at the end of
the right tail of the distribution, when the market records unusually high gains.
Hence, our main conclusion: liquidity only becomes a relevant factor for explain-
ing asset returns under extreme market states (both good and bad), and the premia
associated with liquidity-sensitive assets change from positive to negative as market
conditions improve or, in other words, the concurrent correlation between returns

and illiquidity is negative for bad market states and positive for very good ones.
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In the following section, we support this nonlinear approach by analyzing dif-
ferent portfolio types, different industries and different sample periods. We in-
clude other more traditional factors that might explain market returns. All in the
conclusions reached in this section are found to hold after controlling for such
factors as size, value and momentum (Results not included here but available on
request). We also seek to verify the nonlinear effect of liquidity risk on returns by

means of various stability tests.

3.4.2 Value-growth Portfolios and Systemic Liquidity (2000-2016)

Our results for the 25 U.S. portfolios are reported in Figure B.2. Panel A presents
the liquidity betas of 25 portfolios, sorted according to size and book-to-market
criteria, for different quantiles of the time-series distribution, 7 = 0.10, ...0.90, 0.95.
The x-axis denotes the portfolio (from small-low to big-high portfolios) and the y-
axis corresponds to the quantiles. Lower quantiles are associated with negative re-
turns and, therefore, with bad market states (darker shades through to red), while
higher quantiles are associated with positive returns and, therefore, with good mar-
ket states (lighter shades through to yellow). Panel B presents a binary visualization
of the associated t-statistics of the quantile regressions, where 1 - depicted in black
- indicates whether the respective liquidity estimate made in the same coordinates
of Panel A is statistically different from zero and 0 - depicted in white, indicates
the contrary. The axes follow the same convention in both panels.

Figure B.2 clearly shows the transition of the liquidity betas associated with
the systemic liquidity factor across states (represented by different quantiles) and
across portfolios and, at the same time, it indicates whether (and when) these ef-
fects are significant. We document a clear pattern across market states, but we are
unable to extract a reliable pattern across portfolios. We find that systemic lig-
uidity risk tends to produce an effect on portfolio returns, with estimates ranging
from -1.3 to 2.6. The sign and significance of these effects clearly depend on the
market state. On the one hand, the coefficients associated with the liquidity fac-
tor tend to be negative for bad market states and positive for good market states.
This means that an increase in illiquidity when the market is experiencing losses
hurts the portfolio performance and that an increase in illiquidity busts portfolio
returns when the market is experiencing gains.

The effect of systemic liquidity risk on portfolio returns lying close to the me-

dian is, by general rule, statistically equal to zero. That is, around the median,
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7 = (0.5), with the exception of two portfolios, we do not find significant liquid-
ity betas, suggesting that the market does not price systemicliquidity risk in regular
time, when neither extreme losses nor gains are experienced. This result is consis-
tent, for instance, with the findings of Watanabe and Watanabe (2008), who show
that during ordinary transaction months, the pricing of illiquidity in the market
is quite flat across portfolios. This contrasts with what these authors document
for high liquidity states, when liquidity risk premia are disproportionately large,

amounting to more than twice the value premium.

In episodes of extreme market turmoil, when the markets are experiencing sig-
nificant and recurring losses, market-wide liquidity falls dramatically. The nega-
tive spirals documented in the literature as emerging between funding liquidity
and market-wide liquidity may lead traders to engage in fire sales or precautionary
transactions, as they seek to avoid expected margin calls. This situation is, in turn,
accompanied by an increase in preference uncertainty, market sentiment and, in
general, a deterioration in future economic outlooks on the part of market par-
ticipants. All these reasons are consistent with the previously literature and show
an increasing appetite for safe and liquid assets (i.e. flights-to-quality and flight-
to-liquidity). Moreover, they point to a contemporaneous reduction in market
prices, following an increase in generalized market illiquidity. Such reductions are
to be found in the left tail of the returns distribution, which correspond to its low-
est quantiles. As can be observed in Figure B.2} the lower the quantile, the higher
is the negative impact of liquidity risk on the contemporaneous stock returns (re-

gardless of the market portfolio analyzed).

The positive effects in the right tail of the return distribution implies that when
the market state is good (in the sense that positive and large returns are recorded),
traders perceived liquidity as a relevant factor to inform their decisions about port-
folio composition. In other words, exposure to the market-wide liquidity of a cer-
tain asset is valuable information priced by the market, in accordance with expecta-
tions in the literature. This situation is expected in a search-for-yield scenario, in
which investors start to rebalance their portfolios in a diametrically opposite way
to the strategy they adopt during a bad market state. Thus, they rebalance towards

riskier and less liquid assets, which can provide greater returns.

2Kiendrebeogd (2016) and Fratzscher et al] (2018) study this phenomenon in relation to excess
liquidity produced by the quantitative easing policies after the Global Financial Crisis.
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Figure 3.2: Systemic Liquidity Betas - 25 U.S. Portfolios (2000-2016)
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(a) Panel A (b) Panel B

Note: Panel A shows the liquidity betas for 7 = 0.1 — 0.95, in 0.05 intervals, for all 25 value-weighted U.S. portfolios.
Panel B presents the corresponding t-statistics of the liquidity betas. The black-shaded area is defined as being statistically
significant at the 5% level whereas the white-shaded area corresponds to insignificant coefficients associated with the lig-
uidity betas.

This is generally the case when market and funding liquidities are both per-
ceived as sufficiently high and, therefore, traditional and safe assets yields unusu-
ally low gains, which traders aim to offset by resorting to less liquid and riskier
assets. If market portfolios consist of these riskier and less liquid assets, returns
naturally increase, as traditional compensation for risk demands, at the same time
as market-wide liquidity falls. This explains the positive time-series pattern that we
observed for the highest quantiles of the return distribution, which depicts a posi-
tive relationship between returns and systemic liquidity risk. (As for the European
version of the 25 value-weighted portfolios, regressed on an European systemic lig-
uidity risk estimate, we report similar results, but with a more pronounced positive

effect, see Figure [A7).

Our results show that for most of the quantiles - essentially between 7 = (0.35)
and 7 = (0.75) - the effects of market-wide liquidity on excess returns are statisti-
cally equal to zero. Thus, we can conclude that market-wide liquidity is not priced
by the market, above all when the market state is regular. This result challenges
the traditional belief that commonality and market-wide liquidity risk are deter-
minants of asset prices. On the contrary, it would seem that liquidity is not always

relevant and it only matters when market realizations are abnormally high or low.
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3.4.3 Value-growth Portfolios and Systemic Liquidity (1960-2016)

In this section, we enlarge the sample - January 1960 to December 2016 - to see
whether the liquidity-augmented three-factor model is also able to explain sys-

temic liquidity exposure of excess portfolio returns in the long run.B

Figure 3.3: Systemic Liquidity Betas - 25 U.S. Portfolios (1960-2016)
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Note: Panel A shows the liquidity betas for 7 = 0.1 — 0.95, in 0.05 intervals, for all 25 value-weighted U.S. portfolios
for an enlarged sample period from January 1960 to December 2016. Panel B presents the corresponding t-statistics of the
liquidity betas. The black-shaded area is defined as being statistically significant at the 5% level whereas the white-shaded
area corresponds to insignificant coefficients associated with the liquidity betas.

Figure 3.3 shows the results of the enlarged analysis for 25 value-weighted U.S.
portfolios for a comprehensive selection of quantiles. We find a similar pattern for
the liquidity factor as in the previous section. Specially, in the lower quantile area,
most portfolios are negatively exposed to systemic liquidity risk and statistically,
however with fewer betas being statistically different from zero. We observe that

5% quantile for some

this negative liquidity beta coefhicient reaches almost the 5
portfolios. Reversely, we also find evidence for a positive systemic liquidity risk
beta but with less statistical power than in the previous section. Thus, in light of
the large time range that we consider in this section, it seems impressive that these

results tend to be robust for a time horizon of 56 years.

13Although we have access to data on portfolio returns back to 1926 on the webpage of Kenneth
French, we believe that major regime changes such as the global depression around 1930 or the
introduction of Bretton Woods in 1944 can bias the pricing of our risk factor.
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3.4.4 Industry Portfolios and Systemic Liquidity (2000-2016)

In this section, we examine the effect of systemic liquidity risk on industry-specific
stock returns. We use the 30 U.S. industry portfolios, as commonly acknowledged
by the literature, see Table B.1. Figure 3.4 shows the liquidity betas and their corre-
sponding t-statistics for each industry. The results show that some industries are
more exposed to aggregate liquidity than others. For instance, with the exception
of (3) Tobacco, (11) Construction, (13) Fabricated Products, (17) Mines and (27)

Retail, all other industries display a negative sensitivity up to their 407

quantile.
Up to the 807 quantile, the Steel Industry (12) shows an even more extreme neg-

ative sensitivity to market-wide liquidity risk.

Table 3.1: Industry Portfolio Classification

Portfolio Nr.  Industry Portfolio Nr.  Industry

1 Food 16 Aircraft, Ships

2 Beer 17 Mines

3 Tobacco 18 Coal

4 Games 19 Qil/Petroleum/Gas

5 Books 20 Utilities

6 Households 21 Telecommunication

7 Clothes 22 Personal/Business Services
8 Healthcare 23 Business Equipment

9 Chemicals 24 Paper/Business Supplies/Shipping Equip.
10 Textiles 25 Transportation

1 Construction 26 Wholesale

12 Steel 27 Retail

13 Fabricated Products 28 Gastronomy

14 Electrical Equipment 29 Finance

15 Automobiles 30 Other

Note: Stocks from NYSE, AMEX and NASDAQ are assigned to industry portfolios based on a four-digit SIC code.
For a more detailed description of the industry definition, refer to Kenneth French - Data Library (n.d.). Link: http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

In contrast, the positive liquidity estimates show a similar magnitude as for the
25 portfolios, sorted by size and book-to-market value. Only (3) Tobacco and
(18) the Coal Industry seem to fall outside of this range. However, for most in-
dustry portfolios, there is statistical significance only for the upper quantiles, i.e.
7 = 0.65 — 0.95, coinciding with a bullish market state. At the other end of the
spectrum, the lower quantiles, corresponding to a bearish market state, excess port-

folio returns of many industries do not seem to be statistically different from zero,
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i.e. (3) Tobacco, (4) Games, (5) Books, (7) Clothes, (11) Construction, (13) Fabri-
cated Products, (17) Mines, (18) Coal and (25) Transportation. Similar to the 25
U.S. portfolios, sorted by size and book-to-market value, we observe that for the
median case the aggregate liquidity risk betas seems to be non-significant across all

industries.

Figure 3.4: Systemic Liquidity Betas - 30 U.S. Industry Portfolios
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(a) Panel A (b) Panel B
Note: Panel A shows the liquidity betas for 7 = 0.1 — 0.95, in 0.05 intervals, for all 30 U.S. industry portfolios from
January 2000 to December 2016. Panel B presents the corresponding t-statistics of the liquidity betas. The black-shaded

area is defined as being statistically significant at the 5% level whereas the white-shaded area corresponds to insignificant
coefficients associated with the liquidity betas.

3.4.5 Testing for Nonlinearity in the Relationship between
Systemic Liquidity and Asset Pricing

In this section, we conduct an explanatory analysis of the stability of the param-

eters in Fama and French (1993)’s three-factor model augmented with a liquidity

factor. The results are reported in Table B.2. We estimate ten stability tests for
each of the 25 U.S. portfolios from 2000 to 2016, its enlarged version with a sam-
ple running from 1960 to 2016 and finally for 30 U.S. industry portfolios, giving
us 800 statistics and their respective critical values.

To facilitate the reporting of these results, Table 3.2 only records the mean, max-
imum, minimum and standard deviation values across all portfolios, for each set of
statistics. More importantly, the table records the number of rejections of the null

hypothesis, which in all cases correspond to the stability of the parameters. The
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Table 3.2: Structural Change Test Statistics

3.4 Results

25 U.S. Portfolios (2000-2016)

Test Rec-Cusum ~ Ols-Cusum  Score-Cusum ~ Chow — Nyblom-Han.
Mean 0.955 0.951 1.977 6.417 2.773
Std.Dev. 0.367 0.293 0.350 6.422 0.701
Min 0.366 0.471 1.188 0.707 1.232
Max 1.775 1.748 2.666 30.811 4,010
Null Rejections 1 2 23 19 23
SupF AveF ExpF RE ME
Mean 60.344 29.114 26.742 2.060 1.624
Std.Dev. 39.361 20.523 19.484 0.636 0.288
Min 14.517 7.205 4.487 0.945 1.189
Max 171.30 92.122 82.24 3.350 2.486
Null Rejections 23 24 24 19 21
25 U.S. Portfolios (1960-2016)
Test Rec-Cusum ~ Ols-Cusum  Score-Cusum ~ Chow — Nyblom-Han.
Mean 0.743 1.578 1.934 6.296 2.669
Std.Dev. 0.185 0.407 0.312 3.110 0.847
Min 0.426 0.822 1.327 1.249 1.455
Max 1.119 2.248 2.708 14.21 4.715
Null Rejections 4 16 20 22 24
SupF AveF ExpF RE ME
Mean 52.87 24.404 22.412 2.696 2.373
Std.Dev. 20.233 8.673 9.970 0.599 0.697
Min 25.658 11.088 9.107 1.892 1.442
Max 10.475 45.806 48.243 4.050 3.684
Null Rejections 25 25 25 24 25
30 U.S. Industry Portfolios (2000-2016)
Test Rec-Cusum ~ Ols-Cusum  Score-Cusum ~ Chow — Nyblom-Han.
Mean 0.667 0.846 1.763 4.033 2.454
Std.Dev. 0.245 0.325 0.369 1.790 0.693
Min 0.284 0.415 1.113 1.037 1.322
Max 1.214 1.819 2.697 7.032 4.122
Null Rejections 7 3 16 25 25
SupF AveF ExpF RE ME
Mean 31.161 17.127 12.724 1.669 1.449
Std.Dev. 11.888 6.173 5.663 0.394 0.188
Min 11.649 5.801 3.497 0.782 1.069
Max 60.204 29.210 26.64 2.600 1.796
Null Rejections 27 28 28 16 22

Note: We use ten tests of structural change in order to identify any possible instabilities in the three-factor models. We use
25 value-weighted U.S. portfolios sorted by size and book-to-market value from (i) January 2000 to December 2016; (ii)
January 1960 to December 2016 and (iii) 30 U.S. industry portfolios from January 2000 to December 2016. Rec-Cusum,
Ols-Cusum and Score-Cusum are based on cumulative residuals of recursive, OLS and score estimates, respectively. RE
and ME are based on recursive OLS estimates of the regression coefficients and moving OLS estimates, respectively, Chow
and Nyblom-Hansen correspond to the statistics proposed by those authors. SupF, AveF and ExpF are tests of structural

change based on F-statistics.
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

ten statistics employed included three based on the cumulative sum of the regres-
sion, the recursive regression residuals, and the scores of each regression parameter
- that is, OLS-Cusum, Rec-Cusum, and Score-Cusum, respectively, and two con-
structed using recursive OLS estimates of the regression coefficients and moving
OLS estimates - that is, RE and ME, respectively. The remaining five included
tests developed by Nyblom (1989) and Hansen| (1992); Hanson| (2002)), the recur-
sive Chow (Chow (1960); Andrews and Ploberger (1994))) and three tests based on
F-statistics: namely, SupF, AveF and ExpF. Procedures of this kind are well docu-
mented, for instance, in Zeileig (2005) or in the accompanying documentation of
the strucchange’ package in the statistical software R used to conduct the estima-
tions (Zeileis (2004)).

As is evident, with the exception of two out of the three cusum-tests, in most
instances the tests indicate the presence of unstable coefficients, with the num-
ber of null rejections, most of the time, above 20 (out of 25 portfolios). We find
very similar results for the enlarged sample period of the 25 value-weighted U.S.
portfolios, the 30 U.S. industry portfolios and the 25 value-weighted European
portfolios (see Appendix [AI3). Summarizing, we conclude from this section that
a non-linear behavior continues to characterize the parameters in the three-factor

model, which justifies the use of quantile regressions.
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3.5 Conclusion

3.5 Conclusion

We have reported the asymmetric effects in the pricing of systemic liquidity risk
after controlling for a number of well-documented risk factors, including market
beta, size and book-to-market value. Using a conditional quantile regression ap-
proach, we match tail events in the return distribution directly to the definition
and the assessment of up and down market states.

For most portfolios, we find that the effects of liquidity risk on excess returns
exhibits a nonlinear pattern. In markets experiencing gains, we show that con-
temporaneous returns are positively associated with systemic liquidity risk. That
is, market participants care about appropriate compensations for any illiquid posi-
tion in the market that they are willing to buy. In contrast, we observe that in bear-
ish markets systemic liquidity risk is negatively associated with returns, which, in
line with the previous literature, translates into higher expected returns for illiquid
assets. This can be explained by investor’s shifting risk preferences and uncertainty
about the variability and timing of illiquidity events, resulting in downward effects
on asset prices.

During regular times, the market rarely prices liquidity risk. This shows that
investors are less concerned about illiquidity in untroubled market states, corre-
sponding to returns around the median. We also find that none of the portfolios,
sorted by size and book-to-market value, exhibit any size effect, neither during up,
down or normal market swings. Our robustness checks provide similar evidence
across an extended sample period (from 1960 to 2016), in a different portfolio for-
mation (30 U.S. industries) and regional setting (European portfolios).

These results have clear implications for portfolio risk management, as extreme
economic events can suddenly alter the sensitivity of asset prices to aggregate lig-
uidity risk. Likewise, our findings should be of interest to policy makers and reg-
ulators that seek to evaluate market scenarios in which a shortage of market-wide

liquidity can be seen as a starting point for financial distress.
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3.6 Appendix

Figure Al: Systemic Liquidity Risk Estimate - U.S. Stock Market
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Note: This plot represents the standardized systemic liquidity risk measure as proposed by Abdi and Ranaldd (2017). The
raw measure can be found on Ranaldo’s webpage - Link: https://sbf.unisg.ch/en/lehrstuehle/lehrstuhl _
ranaldo/homepage_ranaldo/research-material
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3.6 Appendix

A U.S. Portfolios (Supplementary Analysis)

Figure A2: Density Function of 25 U.S. Excess Portfolio Returns
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Note: This figure shows the density function of the 25 U.S. excess portfolio returns, sorted after size and book-to-market
value, from January 2000 to December 2016. The x-axis denotes the number of each portfolio whereas the z-axis shows the
quantile of excess returns (i.e. 1525 quantile refers to tail losses whereas upper quantiles in the range between 80-90 (in %)
match tail gains in the return distribution. Median returns coincide with the 502/ quantile on this scale).
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Table A3: Descriptive Statistics: Excess Returns on 25 U.S. Portfolios

Book-to-Market (BE/ME) Quintiles

Size
Quintile Low 2 3 4 High Low 2 3 4 High
Mean Standard
Deviation
Small 0.07 0.79 0.78 1.09 110 8.60 7.49 6.00 5.89 6.14
2 0.44 0.87 0.96 0.91 0.92 7.24 591 5.50 5.54 6.68
3 0.37 0.87 0.89 0.99 1.14 6.67 5.31 5.18 5.30 6.17
4 0.57 0.83 0.74 0.93 0.70 6.06 4.98 5.31 5.15 6.36
Big 0.24 0.52 0.63 0.29 0.52 4.30 4.19 4.27 5.37 6.56
Variance Skewness
Small 74.09 56.10 36.01 34.74 37.72 0.40 0.48 -0.004 0.07 -0.47
2 52.55 35.01 30.27 30.73 44.63 -0.14 -0.34 -0.29 -0.52 -0.61
3 44.61 28.27 26.88 28.11 38.16 -0.37 -0.22 -0.23 -0.27 -0.44
4 36.80 24.81 28.27 26.57 40.45 -0.18 -0.48 -0.68 -0.65 -0.55
Big 18.52 17.58 18.30 28.89 43.14 -0.45 -0.40 -0.41 -1.09 -0.20
Kurtosis Jarque Bera
Small 5.21 6.88 3.68 4.35 3.80 47.127* 136.63*** 4.03* 15.74"* 13.08**
2 3.83 4.27 3.61 4.10 4.23 6.69** 17.93** 6.16** 19.85** 25.70*
3 4.16 3.98 3.62 4.23 4.16 16.22** 9.99* 5.12* 15.52** 18.29*
4 4.98 4.65 5.87 493 4.47 34.56™* 31.29"* 86.54"* 46.33** 28.99**
Big 3.59 3.99 375 7.28 3.65 10.124** 13.80*** 10.71** 196.91*** 5.03*
Min Max
Small -24.06 -20.37 -18.97 -15.77 -21.78 3851 40.62 21.43 24.97 17.43
2 -22.61 -23.58 -18.69 -19.65 -21.71 27.74 17.08 16.34 16.24 19.00
3 -23.62 -18.35 -17.55 -20.00 -20.57 2417 18.17 17.16 16.23 17.38
4 -20.06 -20.48 -25.23 -22.48 -21.95 25.79 15.85 16.87 14.36 16.95
Big -14.47 -15.58 -13.16 -27.09 -17.22 10.18 10.99 12.63 15.62 23.61

Note: This table reports the summary statistics of excess returns of 25 value-weighted U.S. portfolios, sorted after size and
book-to-market value. The sample period ranges from January 2000 to December 2016. *** indicates statistical significance
at the 1%, ** at the 5% and * at the 10% level.
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Table A4: Results - Excess Returns on 25 U.S. Portfolios - (2000-2016)

Book-to-Market (BE/ME) Quintiles

Size
Quintile Low 2 3 4 High Low 2 3 4 High
101h Quantile

g «(6")
Small -1.28** -0.48"** -0.15 -0.38"** -0.66** -5.46 -3.32 -1.02 -3.22 -4.76
2 -0.45*** -0.85™** -0.05 -0.48** -0.37%* -3.23 -6.67 -0.45 -3.33 -2.70
3 -0.98"** -0.44** -0.22 -0.48"* 0.12 -7.03 219 -1.41 -2.38 0.52
4 -0.40™* -0.32% -0.62** -0.76* -1.33** -2.96 -1.92 -2.79 -4.70 -9.97
Big 0.08 -0.37*** -0.64"** -0.83"** -1.13** 1.07 293 -3.85 -5.65 -3.89
25th Quantile

g «(6")
Small -0.66*** -0.14 0.08 -0.26** -0.27** -3.35 -0.96 0.67 -2.15 -2.29
2 -0.14 -0.50%** -0.003 -0.12 -0.02 -0.93 -3.77 -0.02 -0.89 -0.20
3 -0.77% -0.26* -0.03 -0.10 0.27 -5.75 -1.82 -0.22 -0.55 1.35
4 -0.23* -0.10 -0.39** -0.12 -0.57*** -1.91 -0.72 -2.09 -0.74 -3.38
Big 0.08 -0.04 -0.12 -0.57*** -0.58"** 110 -0.41 -0.93 -3.90 -2.82
50tk Quantile

g «8")
Small -0.22 -0.07 0.25* 0.11 -0.16 -0.97 0.41 1.86 0.86 -1.32
2 -0.13 0.22* 0.25™* 0.07 0.10 -0.80 1.66 1.96 0.66 0.81
3 -0.13 -0.04 0.23 0.05 0.39** -0.92 -0.33 1.50 0.34 2.09
4 -0.14 0.26" 0.17 0.09 0.06 -1.03 1.71 0.99 0.53 0.30
Big 0.10 0.08 0.03 0.18 0.16 1.32 0.75 0.22 116 0.66
75th Quantile

g «(8")
Small 0.46** 0.43** 0.5 0.54™ 0.02 2.02 2.49 4.25 4.06 0.19
2 0.17 0.63*** 0.29*** 0.30** 0.35** 1.02 5.03 259 2.53 2.53
3 0.34** 0.35* 0.47*** 0.69*** 1.29*** 1.98 2.21 3.21 4.49 6.46
4 -0.01 0.84** 0.76*** 0.66*** 0.58*** -0.11 5.01 5.18 3.76 276
Big 0.03 0.58"** 0.54*** 0.42%** 0.90*** 0.47 5.87 439 3.35 3.77
90¢h Quantile

¢ 4"
Small 1.33** 0.82*** 0.86™* 0.89*** 0.70*** 4.60 4.07 791 6.74 4.45
2 0.59*** 0.817 1.037 0.47*+* 0.31* 3.49 6.20 6.37 3.41 218
3 0.41** 0.76*** 0.96*** 1.18*** 1.72%* 2.50 4.25 4.61 6.94 9.22
4 0.76*** 1.09*** 1.39** 0.95*** 0.81** 3.95 7.03 7.45 6.13 3.01
Big 0.30™* 0.82% 0.80*** 0.85** 1317 3.67 7.21 6.59 6.41 5.15

Note: The table shows the liquidity estimates for each of the 25 value-weighted U.S. portfolio returns, sorted according to
size and book-to-market quintiles. The sample runs from January 2000 to December 2016. The first five columns show
the respective liquidity betas for each portfolio in the size and book-to-market value quintile intersections. The last five
columns show the associated t-statistics for each coefficient. Each section reports the estimates for a particular quantile of
the excess portfolio returns in an ascending order. *** indicates statistical significance at the 1%, ** at the 5% and * at the 10%
level.
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Table AS: PseudoR? - Excess Returns on 25 U.S. Portfolios - (2000-2016)

Book-to-Market (BE/ME) Quintiles

f‘il:i/ntile Low 2 3 4 High Low 2 3 4 High
25th Quantile 502k Quantile

PsendoR? PsendoR?
Small 0.70 0.76 0.78 0.77 0.78 0.68 0.73 0.76 0.74 0.76
2 0.75 0.74 0.73 0.76 0.79 0.74 0.73 0.73 0.76 0.78
3 0.78 0.70 0.69 0.66 0.66 0.76 0.69 0.67 0.64 0.64
4 0.77 0.67 0.62 0.63 0.64 0.75 0.64 0.60 0.61 0.60
Big 0.84 0.71 0.65 0.67 0.60 0.81 0.69 0.61 0.63 0.57
752h Quantile 90k Quantile

PsendoR? PsendoR?
Small 0.64 0.70 0.76 0.73 0.74 0.65 0.71 0.78 0.74 0.73
2 0.74 0.73 0.72 0.74 0.76 0.75 0.73 0.72 0.76 0.77
3 0.74 0.67 0.65 0.64 0.65 0.75 0.67 0.65 0.66 0.67
4 0.72 0.63 0.61 0.62 0.61 0.72 0.63 0.63 0.65 0.63
Big 0.81 0.70 0.60 0.64 0.58 0.79 0.71 0.63 0.65 0.62

Note: This table presents the pseudo R? estimates for the liquidity-augmented three-factor model for a selection of quan-
tiles for each of the 25 value-weighted U.S. portfolios, sorted according to size and book-to-market quintiles. The sample
period ranges from January 2000 to December 2016.
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Figure A3: Density Function of 25 U.S. Excess Portfolio Returns (1960 - 2016)
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Note: This figure shows the density function of the 25 U.S. excess portfolio returns, sorted after size and book-to-market
value, from January 1960 to December 2016. The x-axis denotes the number of each portfolio whereas the z-axis shows the
quantile of excess returns (i.e. 152/ quantile refers to tail losses whereas upper quantiles in the range between 80-90 (in %)
match tail gains in the return distribution. Median returns coincide with the 502/ quantile on this scale).
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Table A6: Descriptive Statistics: Excess Returns on 25 U.S. Portfolios (1960-2016)

Book-to-Market (BE/ME) Quintiles

&Zuei/ntile Low 2 3 4 High Low 2 3 4 High
Mean Standard
Deviation
Small 0.25 0.74 0.75 0.99 1.08 791 6.86 5.93 S5.64 5.96
2 0.42 0.73 0.84 0.93 0.98 712 5.95 5.38 S.21 6.00
3 0.47 0.77 0.71 0.87 0.98 6.56 5.38 4.96 4.91 5.60
4 0.57 0.59 0.69 0.84 0.81 5.85 5.05 492 4.78 5.65
Big 0.45 0.51 0.57 0.48 0.67 4.62 4.39 4.25 4.59 5.33
Variance Skewness
Small 62.66 47.15 35.19 3191 35.54 -0.01 0.04 -0.21 -0.11 -0.19
2 50.76 35.47 28.97 27.24 36.00 -0.33 -0.44 -0.46 -0.36 -0.38
3 43.08 2897 24.69 24.11 31.36 -0.36 -0.52 -0.45 -0.28 -0.29
4 34.33 25.59 24.29 22.86 31.92 -0.25 -0.55 -0.50 -0.22 -0.30
Big 21.43 19.35 18.07 21.09 28.42 -0.25 -0.37 -0.28 -0.50 -0.20
Kurtosis Jarque Bera
Small 5.09 6.16 5.29 5.93 6.20 124.66™* 286.53*** 155.43*** 247.08"* 297.34™*
2 4.42 5.32 5.74 5.65 5.74 70.96*** 176.74*** 238.67*** 216.26** 231.08**
3 4.42 5.72 5.05 5.20 5.80 73,51 241.74* 143.50** 147 4% 234.55"*
4 4.78 5.80 6.04 498 5.24 98.26** 258.44*** 293.85** 118.79*** 153.76™**
Big 4.56 4.75 5.06 6.36 4.26 76.86™* 103.47*** 131.35"* 351.13*** 50.09"*
Min Max
Small -34.81 -31.54 -29.36 -29.49 -29.46 38.51 40.62 27.58 27.26 33.29
2 -33.32 -32.25 -29.00 -25.63 -29.43 27.74 2554 2575 27.00 29.13
3 -30.32 -29.65 -24.93 -23.63 -26.71 24.17 24.38 21.35 22.82 28.62
4 -26.54 -29.42 -25.55 -22.48 -24.44 25.79 19.86 23.43 23.78 27.31
Big -22.23 -23.02 -22.30 -27.09 -19.59 21.82 l16.11 18.12 19.18 23.61

Note: This table reports the summary statistics of excess returns of 25 value-weighted U.S. portfolios, sorted after size and
book-to-market value. The sample period ranges from January 1960 to December 2016. *** indicates statistical significance
at the 1%, ** at the 5% and * at the 10% level.
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Table A7: Results - Excess Returns on 25 U.S. Portfolios - (1960-2016)

Book-to-Market (BE/ME) Quintiles

Size
Quintile Low 2 3 4 High Low 2 3 4 High
10#h Quantile

g «(8")
Small -0.40*** -0.18 -0.003 -0.21** -0.30*** -2.79 -1.63 -0.04 -2.79 -3.98
2 -0.01 -0.24** -0.15* -0.10 -0.01 -0.12 -2.93 -1.76 -1.40 -0.19
3 -0.34 -0.32%** -0.09 -0.17** 0.03 -3.80 -3.55 -117 -1.96 0.34
4 -0.03 -0.29"* -0.40*** -0.09 -0.07 -0.48 -3.03 -3.73 -0.94 -0.59
Big -0.10* -0.24*** -0.19** -0.44* -0.45*** -1.69 -2.71 -2.07 -4.51 -3.10
25th Quantile

g «(8")
Small -0.43"** -0.12 0.005 -0.04 -0.19** -3.82 -1.49 0.08 -0.68 -2.94
2 -0.05 -0.13** 0.01 -0.02 0.03 -0.62 -2.03 0.23 -0.43 0.56
3 -0.22*** -0.15** 0.03 0.05 0.02 -2.76 -2.09 0.55 0.70 0.27
4 -0.13** 0.003 -0.13* 0.006 -0.18* -1.98 0.04 -1.69 0.08 -1.81
Big -0.001 -0.06 -0.08 -0.18** -0.09 -0.02 -0.87 -1.02 -2.25 -0.82
50tk Quantile

g «(8")
Small -0.33"* 0.06 -0.01 0.02 -0.11* -3.02 0.73 -0.18 0.35 -1.81
2 -0.02 0.03 0.04 0.01 -0.02 -0.31 0.59 0.75 0.19 -0.40
3 0.04 -0.04 0.03 0.005 0.14* 0.55 -0.59 0.43 0.07 1.78
4 -0.03 -0.02 -0.08 -0.04 0.04 -0.46 -0.28 -11 -0.55 0.45
Big 0.06 0.15** -0.04 -0.07 0.08 114 2.40 -0.56 -1.04 0.76
75th Quantile

g «(8")
Small -0.09 0.16* 0.10 0.23*** 0.08 -0.81 1.94 1.48 3.14 129
2 0.07 0.09 0.18* 0.08 0.04 0.86 1.27 2.76 1.29 0.60
3 0.19* 0.16** 0.04 0.11* 0.34** 2.30 1.99 0.63 175 3.82
4 0.12 0.25** 0.09 0.11 0.15 1.62 312 1.10 1.22 1.48
Big 0.06 0.21** 0.12 0.15** 0.22* 114 3.27 1.60 213 191
907k Quantile

¢ ")
Small 0.45*** 0.47* 0.41** 0.46™ 0.48*** 2.81 4.03 4.75 5.25 5.65
2 0.26** 0.43*** 0.07 0.21"** 0.12 257 415 0.81 2.67 1.40
3 0.36*** 0.36*** 0.26*** 0.31%** 0.65*** 3.90 3.80 2.67 3.08 5.59
4 0.32*** 0.64"** 0.55*** 0.37*** 0.39*** 3.32 5.68 494 3.29 317
Big 0.16** 0.52*** 0.36*** 0.23*** 1.05* 2.30 6.44 3.49 271 7.37

Note: The table shows the liquidity estimates for each of the 25 value-weighted U.S. portfolio returns, sorted according
to size and book-to-market quintiles. The sample runs from January 1960 to December 2016. The first five columns show
the respective liquidity betas for each portfolio in the size and book-to-market value quintile intersections. The last five
columns show the associated t-statistics for each coefficient. Each section reports the estimates for a particular quantile of
the excess portfolio returns in an ascending order. *** indicates statistical significance at the 1%, ** at the 5% and * at the 10%
level.
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Table A8: PseudoR? - Excess Returns on 25 U.S. Portfolios - (1960-2016)

Book-to-Market (BE/ME) Quintiles

%ﬂtile Low 2 3 4 High Low 2 3 4 High
25th Quantile 502k Quantile

PsendoR? PsendoR?
Small 0.70 0.75 0.77 0.77 0.78 0.69 0.74 0.76 0.75 0.76
2 0.77 0.77 0.75 0.77 0.78 0.76 0.76 0.74 0.76 0.77
3 0.77 0.71 0.70 0.70 0.69 0.77 0.71 0.69 0.69 0.67
4 0.76 0.69 0.67 0.66 0.64 0.75 0.67 0.66 0.65 0.62
Big 0.76 0.70 0.62 0.66 0.58 0.75 0.69 0.61 0.65 0.57
75th Quantile 90k Quantile

PsendoR? PseudoR?
Small 0.66 0.72 0.75 0.74 0.75 0.65 0.72 0.75 0.75 0.75
2 0.76 0.74 0.73 0.74 0.75 0.75 0.73 0.72 0.74 0.75
3 0.76 0.69 0.68 0.69 0.66 0.77 0.69 0.66 0.66 0.65
4 0.73 0.65 0.64 0.63 0.61 0.72 0.64 0.62 0.64 0.62
Big 0.75 0.68 0.60 0.65 0.56 0.74 0.68 0.60 0.66 0.56

Note: This table presents the pseudo R? estimates for the liquidity-augmented three-factor model for a selection of quan-
tiles for each of the 25 value-weighted U.S. portfolios, sorted according to size and book-to-market quintiles. The sample
period ranges from January 1960 to December 2016.
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Figure A4: Density Function of 30 U.S. Industry Excess Portfolio Returns
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Note: This figure shows the density function of the 30 U.S. industry excess portfolio returns, sorted after size and book-to-
market value, from January 2000 to December 2016. The x-axis denotes the number of each portfolio whereas the z-axis
shows the quantile of excess returns (i.e. 15¢h quantile refers to tail losses whereas upper quantiles in the range between
80-90 (in %) mactch tail gains in the return distribution. Median returns coincide with the 5025 quantile on this scale).
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Table A9: Descriptive Statistics: Excess Returns on 30 U.S. Industry Portfolios

Nr.
Industry
Mean Standard
Deviation
1-6 0.71 0.62 1.61 0.85 0.12 0.39 3.60 4.04 6.50 753 6.15 3.94
7-12 0.96 0.54 0.74 1.01 0.66 0.34 6.27 3.99 6.12 9.02 6.54 9.30
13-18 0.83 0.47 0.35 0.88 0.77 0.98 7.15 6.60 8.56 6.13 8.22 13.98
19-24 0.73 0.71 0.12 0.23 0.26 0.61 5.86 4.23 S5.41 6.35 8.09 5.10
25-30 0.76 0.63 0.50 0.86 0.47 0.28 5.23 4.81 4.75 4.64 5.74 5.60
Variance Skewness
1-6 13.02 16.35 42.37 56.72 37.88 15.53 -0.28 -0.50 0.12 -0.27 0.41 -0.77
7-12 39.35 15.95 37.54 81.52 4279 86.60 0.08 -0.39 -0.12 1.04 -0.32 -0.34
13-18 51.24 43.67 73.44 37.67 67.70 195.67 -0.43 -0.30 0.54 -0.73 -0.49 -0.01
19-24 34.39 17.91 29.29 40.37 65.56 26.08 -0.10 -0.72 -0.22 -0.33 -0.47 -0.16
25-30 27 .44 2317 22.59 21.54 32.95 31.45 -0.22 -0.50 -0.22 -0.40 -0.49 -0.46
Kurtosis Jarque-Bera
1-6 4.45 4.26 6.87 5.78 7.84 4.85 20.82** 2214 128.05*** 68.53*** 205.50"* 49.85"**
7-12 4.85 3.26 4.43 12.95 5.15 4.01 29.54* 6.03** 18.10™* 878.71** 43.04* 12.82%*
13-18 4.83 413 8.99 4.52 4.21 3.33 35.19** 1411 315.55™** 37.97%* 20.817* 0.98
19-24 3.35 3.95 4.30 3.91 4.83 4.71 1.40 25.83** 16.17** 10.98** 36.55*** 25.82%**
25-30 3.65 4.81 3.88 3.66 4.79 5.24 5.47** 36.65*** 8.33** 941" 35.59*** 50.15**
Min Max
1-6 -11.08 -14.76 -22.18 -29.83 -26.56 -14.73 15.15 11.37 32.38 34.52 3313 10.26
7-12 -21.68 -11.03 -21.03 -28.51 -28.30 -32.99 24.59 1112 19.05 59.03 23.30 26.24
13-18 -30.02 -24.67 -36.49 -24.42 -34.55 -38.09 2291 23.21 49.56 17.14 20.06 43.54
19-24 -16.95 -12.66 -16.44 -19.83 -32.07 -18.53 18.97 11.22 21.22 18.59 24.66 21.00
25-30 -16.09 -21.13 -14.94 -13.52 -20.90 -21.32 15.28 15.21 13.89 15.51 17.05 19.76

Note: This table reports the summary statistics of excess returns of 30 U.S. industry portfolios. The sample period ranges

from January 2000 to December 2016. Industry classifications associated with these numbers can be found in Table B

indicates statistical significance at the 1%, ** at the 5% and * at the 10% level.
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Table A10: Results - Excess Returns on 30 U.S. Industry Portfolios

3.6 Appendix

Nr.
Industry
10#h Quantile

¢ 4"
1-6 -0.83** -1.55% -0.59 -0.17 -0.25 -0.74" -2.79 -4.36 -0.83 -0.39 -0.80 219
7-12 -0.52 -0.85* -0.68** -2.28"* -0.54 0.05 -1.60 -3.01 -2.54 -3.59 -1.42 0.11
13-18 -0.44 -0.96*** L7 -L41 -1.22 -0.42 -l.64 -2.90 -3.24 -3.54 -1.32 -0.30
19-24 0.09 -1.09** -1.52%* -0.27 -1.54** -0.36 0.20 -2.10 -5.69 -1.19 -6.01 -0.71
25-30 -0.24 -0.64"* -0.01 -1.01** -0.34" <1477 -0.84 -2.00 -0.05 -2.87 -2.34 -5.36
25th Quantile

¢ )
1-6 -0.25 -1.18** 0.12 -0.53 -0.15 -0.72** -0.95 -3.65 0.23 -1.47 -0.58 -2.48
7-12 -0.08 -0.46 -0.13 -0.77 -0.12 0.007 -0.22 -1.57 -0.47 -1.59 -0.35 0.01
13-18 0.06 -0.17 -0.84" -1.27%* 0.08 -0.99 0.20 -0.61 2.13 -3.97 0.12 -0.85
19-24 -0.68* -0.71%* -1.01*** -0.27 -0.66™* -0.25 -1.66 -2.01 4.17 -1.32 -2.59 -112
25-30 -0.25 -0.67*** 0.13 -0.23 -0.09 -0.96** -0.79 -3.35 0.49 -0.77 -0.50 -3.64
50tk Quantile

¢ ()
1-6 0.20 0.07 0.59 0.20 0.14 0.22 0.84 0.24 1.30 0.54 0.51 0.83
7-12 0.41 0.16 0.33 -0.27 0.21 -0.40 1.08 0.64 119 -0.54 0.66 -0.82
13-18 0.72** 0.19 -0.28 -0.05 0.08 0.52 2.30 0.67 -0.63 -0.17 0.12 0.45
19-24 0.03 0.23 -0.18 0.11 0.45 0.15 0.08 0.74 -0.73 0.57 153 0.68
25-30 -0.20 -0.03 0.04 0.12 0.41* -0.24 -0.65 -0.16 0.17 0.47 211 -0.85
75th Quantile

e «(8")
1-6 0.39* 1.217 1.07** 0.63 0.10 0.58"** 1.85 4.54 2.69 1.36 0.32 2.97
7-12 0.84** 0.32 0.96** 0.21 0.76** -0.45 2.09 118 3.28 0.39 2.60 -0.85
13-18 0.76** 0.57** 1.84™* 110 0.65 2.62** 2.44 2.10 456 3.77 0.98 236
19-24 0.65 0.58"* 0.31 0.27 0.65™ 0.81* 1.51 2.26 1.20 1.22 232 3.61
25-30 0.75** 0.74"** 0.37 0.48" 0.51** 0.56* 257 3.80 152 2.03 2.33 1.83
90¢h Quantile

g «(8")
1-6 0.67** 1,52+ 4.07** 0.73 1.057* 1.077** 2.45 6.06 11.52 1.56 2.66 5.68
7-12 1.32%* 0.81** 0.90** 1.54* 1.23 -0.25 258 278 219 219 3.58 -0.45
13-18 1.23** 1.53** 2,10 1.45% 112 4.83 3.69 4.24 3.77 5.93 1.48 3.57
19-24 0.55 0.91* 0.817 1.017* 1.02** 0.74*** 117 312 295 3.48 251 297
25-30 0.51* Lo 167 1.227 0.43* 1.86"* 1.83 6.66 6.31 3.46 1.98 6.21

Note: The table shows the liquidity estimates for each of the 30 U.S. industry excess portfolio returns. The sample runs
from January 2000 to December 2016. The first five columns show the respective liquidity betas for each portfolio. The last
five columns show the associated t-statistics for each coefficient. Each section reports the estimates for a particular quantile
of the excess portfolio returns in an ascending order. Industry classifications associated with these numbers can be found

in Table BJ. *** i

ndicates statistical significance at the 1%, ** at the 5% and * at the 10% level.
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

Table All: PseudoR? - Fxcess Returns on 30 U.S. Industry Portfolios

Nr.
Industry
25th Quantile 50¢h Quantile

PseudoR? PseucoR?
1-6 0.27 0.17 0.14 0.47 0.48 0.25 0.23 0.13 0.13 0.41 0.44 0.23
7-12 0.33 0.33 0.48 0.33 0.47 0.47 0.30 0.28 0.46 0.30 0.46 0.44
13-18 0.55 0.54 0.40 0.42 0.14 0.14 0.51 0.51 0.38 0.40 0.14 0.12
19-24 0.27 0.20 0.52 0.68 0.59 0.49 0.24 0.12 0.48 0.64 0.56 0.46
25-30 0.41 0.50 0.39 0.35 0.63 0.43 0.38 0.50 0.39 0.34 0.61 0.38
75th Quantile 901h Quantile

PsendoR? PsendoR?
1-6 0.23 0.15 0.09 0.38 0.43 0.24 0.21 0.18 0.16 0.40 0.43 0.26
7-12 0.31 0.23 0.45 0.30 0.49 0.44 0.39 0.21 0.49 0.37 0.53 0.47
13-18 0.51 0.51 0.38 0.39 0.17 0.12 0.54 0.52 0.43 0.40 0.19 0.16
19-24 0.23 0.12 0.46 0.60 0.55 0.45 0.24 0.13 0.46 0.62 0.57 0.48
25-30 0.40 0.48 0.38 0.34 0.60 0.37 0.47 0.48 0.39 0.32 0.63 0.42

Note: This table presents the pseudo R? estimates for the liquidity-augmented three-factor model for a selection of quan-
tiles for each of the 30 U.S. industry portfolios. The sample period ranges from January 2000 to December 2016. Industry
classifications associated with these numbers can be found in Table B
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3.6 Appendix

B European Portfolios (Supplementary Analysis)

Figure AS: Systemic Liquidity Risk Estimate - European Stock Market

Europe

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
year

Note: This plot represents the European version of the systemic liquidity risk measure as proposed by
(2017). The estimate has been constructed on basis of the spreads of the constituents of the EuroStoxx50 stock market index.
Instead of gross-return weighting, we equally-weight the spreads of all constituents. The estimate has been standardized
for the comparison to the three factors in terms of magnitude.
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

Table Al12: Systemic Liquidity Measure - European Stock Market

Stocks Registeredin ~ Stocks cont. Registered in
Air Liquide SA France Nokia Oyj Finland
Airbus Group SE France Orange SA France
Allianz SE Germany Philips NV Netherlands
Anheuser Busch in Bev SA Belgium Safran SA France
ASML Holding NV Netherlands Saint Gobain SA France
Assicurazioni Generali SpA Traly Sanofi SA France
AXASE France Santander SA Spain
BASF SE Germany SAP SE Germany
Bayer AG Germany Schneider Electrics SE France
BBVA SA Spain Siemens AG Germany
BMW AG Germany Societe” General Group SA Spain
BNP Paribas SA France Telefonica SA Spain
Carrefour SA France Unibail-Rodamco SE France
Daimler AG Germany Unicredit SpA Traly
Danone SA France Unilever NV Netherlands
Deutsche Bank AG Germany Vinci SA France
Deutsche Boerse AG Germany Vivendi SA France
Deutsche Telekom AG Germany VW AG Germany
Enel SpA Traly

Engie SA France

EON SE Germany

Essilor International SA France

Fresenius SE & Co.KGaA France

Iberdrola SA Spain

Inditex SA Spain

ING Groep NV Netherlands

Intesa Sanpaolo SpA Traly

L’Oreal SA France

LVMH SE France

Muenchner Rueck AG Germany

Note: We follow the methodology by Abdiand Ranaldd (2017) to construct a systemic liquidity risk measure for European
stock markets, but with an equally-weighted aggregation of stock-specific spreads. We focus on the EuroStoxx50 stock
market index as our representation of market liquidity in European stock markets. This index is comprised of the 50 largest
and most liquid stocks in the European Monetary Union (EMU). This table represents the constituents of the index at the
time of the creation our liquidity risk measure (2017).
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3.6 Appendix

Figure A6: Density function of 25 European Excess Portfolio Returns
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Note: This figure shows the probability density function of the 25 European excess portfolio returns, sorted by (i) and (ii)
book-to-market value, from July 2000 to December 2016. The x-axis denotes the number of each portfolio (25 in total)
whereas the z-axis shows the quantile of excess returns (i.e. 15% quantile refers to tail losses whereas upper quantiles in the
range between 80-90(%) match tail gains in the return distribution. Median returns coincide with the 50t quantile on this

scale).
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

Table A13: Descriptive Statistics: Excess Returns on 25 European Portfolios

Book-to-Market (BE/ME) Quintiles

zi;mile Low 2 3 4 High Low 2 3 4 High
Mean St.Dev
Small -0.51 0.05 0.28 0.48 0.69 5.97 5.76 5.49 5.43 5.34
2 0.05 0.40 0.53 0.72 0.80 6.24 5.98 5.67 572 5.95
3 0.10 0.44 0.59 0.62 0.74 6.48 5.92 5.74 5.85 6.22
4 0.32 0.47 0.57 0.60 0.51 6.01 5.55 5.60 5.92 6.54
Big -0.05 0.27 0.19 0.33 0.24 5.25 s 5.72 6.09 714
Variance Skewness
Small 35.70 33.23 30.15 29.57 28.58 -0.59 -0.80 -0.84 -0.91 -0.87
2 39.05 35.87 3215 3272 35.49 -0.84 -0.62 -0.72 -0.91 -0.62
3 42.01 35.06 33.00 34.25 38.75 -0.93 -0.82 -0.73 -0.71 -0.64
4 36.12 30.87 31.43 35.14 42.88 -0.67 -0.75 -0.45 -0.71 -0.47
Big 27.59 26.12 32.72 37.09 50.99 -0.55 -0.38 -0.35 -0.35 -0.34
Kurtosis Jarque Bera
Small 4.45 5.27 6.05 5.92 5.99 29.21" 64.38"* 100.46™** 98.03** 98.79*
2 5.23 5.16 5.39 6.64 4.98 64.96"* 51617 64.66"** 137.00*** 4545
3 512 S5.61 5.62 5.46 459 66.23** 79.02*** 74.61** 66.70™* 34.85"**
4 4.67 5.52 4.87 4.86 4.89 38.10"* 71.01** 35.62*** 45.19 37.20"*
Big 5.27 3.69 391 3.64 4.85 52.90*** 8.94* 10.93** 7.64" 32.37*
Min Max
Small -25.00 -26.36 -26.71 -26.12 -26.29 14.18 14.85 15.04 14.73 14.33
2 -26.89 -25.80 -25.48 -27.75 -26.65 16.39 18.17 17.69 16.96 16.98
3 -27.39 -27.41 -26.55 -26.48 -26.64 16.78 14.87 17.78 16.10 17.73
4 -26.11 -25.60 -23.36 -25.41 -27.67 16.28 16.44 17.83 17.64 22.80
Big -20.65 -17.56 -19.44 -19.65 -30.81 17.33 13.64 14.99 16.05 24.44

Note: This table reports the summary statistics of excess returns of 25 value-weighted European portfolios, sorted according
to size and book-to-market value, over a time range from July 2000 to December 2016. *** indicates statistical significance
at the 1%, ** at the 5% and * at the 10% level.
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3.6 Appendix

Figure A7: Systemic Liquidity Betas - 25 European Portfolios (2000-2016)
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Note: Panel A shows the liquidity betas for 7 = 0.1 —0.95 in 0.05 intervals, for all 25 value-weighted European portfolios.
Panel B presents the corresponding t-statistics of the liquidity betas. The black-shaded area is defined as being statistically
significant at the 5% level whereas the white-shaded area corresponds to insignificant coefficients associated of the liquidity
factor.
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3 Analyzing the Nonlinear Pricing of Liguidity Risk according to the Marker State

Table Al4: Results - Excess Returns on 25 European Portfolios

Book-to-Market (BE/ME) Quintiles

Size
Quintile Low 2 3 4 High Low 2 3 4 High
10#h Quantile

[ «(8")
Small -0.66** -0.55** -0.16 -0.09 -0.17 -4.35 -3.77 -1.30 -0.76 -1.29
2 -0.36** 0.02 -0.31* -0.12 -0.23 -2.90 0.20 -2.78 -0.85 -1.59
3 -0.28 -0.005 -0.24 0.05 0.19 -1.58 -0.03 -1.42 0.29 1.24
4 -0.13 -0.04 -0.19 0.34* -0.48 -0.77 -0.25 -1.30 -1.91 -2.60
Big -0.19 -0.38** -0.26** -0.27** -0.91%** -1.36 -2.64 -2.33 -2.08 -5.79
25th Quantile

[ «(8")
Small -0.35** -0.48** -0.30** -0.12 -0.09 -2.38 -3.19 -2.28 -1.22 -0.82
2 -0.32** 0.05 -0.06 -0.06 -0.04 -2.37 0.39 -0.66 -0.50 -0.33
3 0.08 0.23* 0.01 0.02 0.04 0.47 177 0.07 0.15 0.28
4 0.04 -0.09 0.01 0.21 -0.55*** 0.35 -0.72 0.13 1.54 -3.66
Big -0.21* -0.27* -0.06 -0.09 -1.02%** -1.94 -1.94 -0.57 -0.70 -5.94
50¢h Quantile

¢ 8"
Small 0.006 -0.20 -0.12 -0.05 -0.02 0.04 -1.47 111 -0.48 -0.22
2 0.03 0.12 0.08 0.06 0.09 0.22 1.06 0.82 0.61 0.96
3 0.15 0.08 0.14 0.13 0.05 0.86 0.62 1.05 1.08 0.35
4 0.19 0.16 0.23 0.23* -0.03 1.34 1.29 1.64 1.81 -0.19
Big 0.03 -0.08 0.12 0.09 -0.17 0.25 -0.67 1.09 0.70 -0.98
75th Quantile

[ 8")
Small 0.16 -0.15 -0.01 -0.04 -0.03 0.97 -1.08 -0.12 -0.41 -0.31
2 0.20 0.08 0.05 0.17** 0.20" 1.29 0.69 0.55 212 2.10
3 0.17 0.32** 0.29** 0.30"* 0.417* 1.02 2.30 1.97 2.50 2.81
4 0.24 0.39*** 0.43"** 0.11 0.32 159 3.00 2.81 0.83 1.88
Big 0.20* 0.08 0.34"* 0.28* 0.41** 178 0.66 2.65 213 227
90k Quantile

g «(8")
Small 0.30 -0.15 0.29** 0.002 0.48*** 1.39 -1.03 2.06 0.02 378
2 0.55"** 0.29* 0.16 0.24** 0.62*** 312 1.88 111 212 4.31
3 0.64"** 0.60*** 0.20 0.45*** 0.39** 3.38 3.87 1.51 3.28 2.24
4 0.81*** 0.66™* 0.32 0.01 0.73*** 5.31 4.47 1.45 0.11 3.32
Big 0.41"* 0.11 0.67*** 0.52%** 0.80"** 2.92 0.74 4.43 2.82 3.82

Note: This table presents the coefficient estimates for the systemic liquidity factor for each of the 25 value-weighted Eu-
ropean portfolios, sorted according to size and book-to-market quintiles. The sample period ranges from July 2000 to
December 2016. The first five columns show the respective liquidity betas for each portfolio in the size and book-to-market
value quintile intersections. The last five columns show the associated t-statistics for each coefficient. Each section reports
the estimates for a particular quantile of the excess portfolio returns in an ascending order. *** indicates statistical signifi-
cance at the 1%, ** at the 5% and * at the 10% level.
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3.6 Appendix

Table Al15: Structural Change Test Statistics - 25 European Portfolios

25 European Portfolios (2000-2016)

Test Rec-Cusum ~ Ols-Cusum ~ Score-Cusum Chow  Nyblom-Han.
Mean 0.698 0.916 1.709 4.269 2.280
Std.Dev. 0.275 0.308 0.316 2.453 0.807
Min 0.279 0.419 1.105 0.689 1.058
Max 1.496 1.496 2.282 12.217 4.178
Null Rejections 3 2 15 18 20
SupF AveF ExpF RE ME
Mean 34.084 18.718 14.052 1.877 1.393
Std.Dev. 15.671 9.534 7.745 0.4540 0.228
Min 11.705 5.987 3.630 1.072 0.962
Max 76.386 46.708 34,70 2.960 1.814
Null Rejections 22 21 22 19 13

Note: We used ten tests of structural change in order to identify any possible instabilities in the three-factor models. We
used 25 value-weighted European portfolios, sorted by size and book-to-market value. Our sample for these estimations
runs from July 2000 to December 2016. Rec-Cusum, Ols-Cusum and Score-Cusum are based on cumulative residuals
of recursive, OLS and score estimates, respectively. RE and ME are based on recursive OLS estimates of the regression
coeflicients and moving OLS estimates, respectively, Chow and Nyblom-Hansen correspond to the statistics proposed by
those authors. SupF, AveF and ExpF are tests of structural change based on F-statistics.

Table A16: PsendoR? - Excess Returns on 25 European Portfolios

Book-to-Market (BE/ME) Quintiles

g\;mils Low 2 3 4 High Low 2 3 4 High
251h Quantile 501h Quantile

PsendoR? PsendoR?
Small 0.74 0.76 0.79 0.82 0.82 0.72 0.76 0.79 0.80 0.81
2 0.79 0.82 0.83 0.82 0.83 0.76 0.81 0.82 0.81 0.83
3 0.77 0.79 0.79 0.78 0.79 0.74 0.77 0.76 0.78 0.77
4 0.79 0.80 0.77 0.79 0.79 0.76 0.77 0.75 0.78 0.76
Big 0.78 0.77 0.81 0.80 0.75 0.75 0.76 0.80 0.79 0.74
75th Quantile 90tk Quantile

PsendoR? PsendoR?
Small 0.71 0.75 0.77 0.78 0.78 0.70 0.74 0.76 0.77 0.79
2 0.75 0.80 0.81 0.81 0.82 0.75 0.81 0.81 0.80 0.81
3 0.73 0.76 0.74 0.79 0.77 0.73 0.77 0.76 0.80 0.77
4 0.73 0.75 0.74 0.77 0.75 0.72 0.75 0.74 0.78 0.77
Big 0.74 0.76 0.79 0.78 0.75 0.72 0.76 0.80 0.77 0.75

Note: This table presents the pseudo R? estimates for the liquidity-augmented three-factor model for a selection of quan-
tiles for each of the 25 value-weighted European portfolios, sorted according to size and book-to-market quintiles. The
sample period ranges from July 2000 to December 2016.
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72



4 LIQUIDITY AND TRADING
ACTIVITY OF ENERGY STOCKS

This study examines liquidity and trading activity for 154 energy stocks listed
at U.S. stock exchanges, grouped into five energy segments, between January 2006
and December 2018. Using daily TAQ data, we study average effective spreads,
price impact of trades, number of trade executions and share volume. We docu-
ment that liquidity and trading is volatile, trended and serial dependent for each
sectoral measure. Liquidity and trading activity display a strong commonality ef-
fect in the exposure to general market movements, including concurrent returns,
momentum and stock market volatility. A widening term spread increases liquid-
ity and trading across most energy segments, indicating potential clearance sales in
times of financial distress. The oil price has a heterogenous effect on liquidity and
trading, dependent on the energy segment, while oil price volatility predominately
increases illiquidity in energy stocks. This study is useful for portfolio diversifica-

tion strategies and regulatory interventions in energy markets.

L This paper is co-authored with Jorge M. Uribe.



4 Liguidity and Trading Activity of Energy Stocks

4.1 Introduction

We study daily liquidity and trading characteristics of 154 energy stocks traded at
U.S. stock exchanges, grouped into five energy segments. We show that liquidity
and trading activity display trends and common spikes across all energy stock seg-
ments. We document that average spreads for stocks from firms operating in the
primary energy exploration (oil and gas, coal mining and renewables) have higher
average spreads than stocks of utility firms which generate electricity from oil and
gas products. We also identify factors that drive liquidity and trading activity for
energy stocks, that is concurrent market movements, recent market momentum,
default spreads and stock market volatility. We herein document a strong com-
monality effect in the exposure to these factors. We find that negative concur-
rent market movements and negative market momentum trends increase liquidity
(smaller spreads) and decrease trading across most energy stock segments. Simi-
larly, and consistent with the previous literature, we find an increase in illiquidity
across segments in times of higher stock market volatility. Crude oil prices have
a heterogeneous effect on liquidity and trading but tend to decrease spreads and
discourage trading for renewable and utility stocks. On the contrary, and higher
in magnitude, spreads for oil and gas and coal mining stocks increase on average
with higher oil prices. We also documenthigher illiquidity associated with oil price
volatility, indicating that expectations related to the crude oil price matter for daily
liquidity and trading of energy stocks. We find a strong day-of-the-week effect, that
is, a decrease in liquidity and trading on Fridays. Finally, we show that trading of
renewable and multi-utility stocks increases when climate-change related concerns

get media attention.

Liquidity is a market microstructure element, important for all financial mar-
kets. Itis commonly referred to how easy large volume positions on financial assets
can be entered and exited without generating substantial price movements. Mar-
ket liquidity has recently received more attention in the literature due to liquidity
dry-ups, as during the global financial crisis or the recent COVID-19 outbreak.
Yet, very little is known about liquidity and trading of energy stocks - The energy
literature lacks a comprehensive analysis of the sources that drive daily variation
in liquidity and trading for energy stocks. In-depth knowledge about market mi-
crostructure characteristics in energy market is important for several reasons: First,

energy constitutes a core element of economic production and infrastructure and
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4.1 Introduction

acts as significant contributor to the growth of the economy, (Stern (2010), Hamil
ton (2008)). Second, the discussion on the optimal future energy generation mix
around the world, fundamental to current production economies and for finan-
cial markets in the light of the effects of climate change on such markets, NGFS
(2019), is in great need of a more comprehensive analysis of market microstruc-
ture elements that help investors to compare between stocks, issued by firms in
durable energy explorations (i.e. oil and gas and coal mining) or electricity genera-
tion; (electric- and multi-utilities), to finally provide a more accurate assessment of
portfolio risks and potential prospects in those markets. Third, research has not
questioned the importance of oil prices and its variability on the effect of liquidity
and trading of energy stocks, other than on the oil and gas stock segment. Hence,
a sectoral, cross-sectional study on liquidity and trading patterns for energy stocks
beyond the oil and gas industry can benefit regulators and policy makers in energy-
related fields or investors, who seek a better understanding of similarities and po-
tential differences in liquidity and trading of the cross-section of energy stocks and

its drivers in regards of (energy) portfolio diversification.

To explore liquidity and trading activity across stocks from various energy in-
dustries, we use aggregated TAQ (trades and automated quotes) data to construct
daily time-series liquidity and trading activity averages for 154 energy stocks listed
at U.S. stock exchanges, segmented into the following industries: 0il and gas; coal
mining; renewables; electric-utilities and multi-utilities. We examine a number of
liquidity and trading activity characteristics such as Dollar EffectiveSpread, Dol-
lar PriceImpact, Number of Trades and Share Volume on a day-to-day basis. To
provide a profound reasoning on what causes daily movements in liquidity and
trading pattern, we build upon the empirical framework provided by Chordia
et al] (2001). Controlling for debt- and equity-market based factors, we are able to
distinguish the effects of concurrent market swings, volatility, short-run momen-
tum effects from financial stress indicators. Finally, the inclusion of daily dummy
variables allows us to control for day-of-the-week effects, due to weekly cycles of
liquidity and trading which is important to day traders and market makers when

adopting in fast markets.

In comparison to the vast literature on liquidity, its commonality component
across asset classes and its potential dry-ups during times of financial stress, research

on liquidity and trading activity for energy stocks specifically has received very lim-
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4 Liguidity and Trading Activity of Energy Stocks

ited attention. The only recent study that discusses various market liquidity mea-
sures for energy stocks, namely bid-ask spreads, turnover, and price impact, is the
study by Sklavos et al! (2013). Examining 130 oil and gas stocks listed at the NYSE,
the authors find that stocks with higher trading intensity are less sensitive to lig-
uidity changes. Further, they document that price impact of trades affect spreads
with higher magnitude in illiquid than in normal periods, coinciding with the re-
cent global financial crisis. Other studies focus more on the price formation and
volatility of oil and gas stocks,(see Pindyck (2003) and Sadorsky| (2001)), respec-
tively. None of these studies include stocks from firms that operate in the coal min-
ing, renewable energy or utility sectors which jointly account for approximately
one-third of the energy consumption in the U.S.2 Hence, comparisons between
investments in renewable and nonrenewable energy sectors, as crucial as they are
due to increasing climate-change concerns, and the consequent regulatory empha-
sisacross U.S. markets in this aspect, are totally overlooked by the extantliterature.
We aim to fill this gap in the literature.

Suggested by a more general literature on the determinants of liquidity, focus-
ing on the commonality aspect in a cross-sectional as well as time-series setting,
co-movement in liquidity across stocks is induced by correlated trading behavior,
which puts pressure on the market maker’s inventories, see Chordia et al] (2000),
Hasbrouck and Seppi (2001). This effect is then amplified with institutional own-
ership, i.e. mutual fund ownership and index trading, Kamara et al] (2008), Koch
et al] (2016). The supply-side explanation of commonality in liquidity suggests
that funding tightness restricts the supply of capital to traders who leverage their
positions in the market and hence reduce their positions among many asset classes.
This downward trending liquidity spiral between funding liquidity, provided by
financial intermediaries, and the actual level of liquidity in the respective market(s)
has been theoretically modelled by Brunnermeier and Pedersen (2009) and further
empirical supported by Hameed et al! (2010).

The inclusion of the oil price as potential determinant for liquidity and trad-
ing activity of energy stock seems plausible as the oil price is regarded as a global
economic indicator, signalling industrial production activity levels and demand
for energy which subsequently affect energy stocks. Oil price dynamics and stock

market returns have been examined by a number of studies (Sadorsky (1999); Kil:

?ELA - Monthly Energy Review (2019). Retrieved from https://www.eia.gov/
energyexplained/us-energy-facts/
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ian and Park (2009); Oberndorfer; Sadorsky (2009, 2012); Kumar et al] (2012));
Cunado and de Gracid (2014); Diaz et al] (2016); Luo and Qinl (2017)); Ferrer et al!
(2018); Duttd (2018) among many others). Yet, the literature on oil price dynam-
ics and market liquidity is scarce. Sklavos et al| (2013) is the first to find that an
increase in the WTT (West Texas Intermediate) crude oil price causes a reduction
in volume traded and lower spreads for oil and gas stocks listed at the NYSE. They
argue that higher oil prices discourage trading and favor energy firms, so indirectly
reduce spreads. Zheng and Sy (2017)) examine the link between the oil price and
stock market liquidity in China. They show that the relationship again depends
on the source of the oil price shock. Besides these two studies, there is no further
documentation on oil price dynamics and oil price volatility in conjunction with

liquidity and trading activity.

This paper contributes to the existing literature in several ways: First, we con-
duct a systemic examination of liquidity and trading activity for energy stocks,
which has not been done so far in sufficient depth. Second, we extent studies on
oil prices and oil price volatility and the impact on energy stocks, not on returns,
but for market microstructure characteristics such as liquidity and trading activity.
Third, we add energy stocks to the observation space as we break down our sample

into five different energy segments.

Moreover, this study makes a first attempt to model climate-change based in-
vestor sentiment and its impact on daily liquidity and trading activity for energy
stocks. The importance of climate change has been communicated through global
media over decades. However, there is no research that documents how investors
react to the debate about climate change and how (energy) markets might move ac-
cordingly on a daily basis. From a theoretical perspective, the link between investor
sentiment and market liquidity is worth addressing: De Long et al! (1990a,b) refer
to investor sentiment as noise or irrational traders who force asset prices to devi-
ate from its fundamental value, resulting in higher expected returns and redundant
volatility. Baker and Stein (2004)) argue that during short-sales constraints, unusu-
ally high liquidity is induced through the domination of those irrational investors

who overvalue assets and hence supply an extra portion of liquidity to the market.

Finally, on a more general level, the study of daily-quoted liquidity and trading

activity indicators needs re-assessment of its time-series properties (here for energy
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stocks) as the automation and speed of trade execution has dramatically increased
post the 2000s, due to algorithmic and high frequency trading, (see Jovanovic and
Menkveld (2016), Hendershott and Moulton (2011), Hendershott et al! (2011),
Jain| (2005)). The implication of the increase in frequency is particularly visible
when looking at TAQ data which clearly indicates that bid-ask spreads and trading
activity have steadily declined and increased, respectively, since the initial recording
of TAQ data in 1993. For instance, average monthly share turnover for the NYSE
has experienced an increase from 5% in 1993 to about 26% in 2008, while the daily
number of trades increased by the ninety-fold on average, Chordia et al] (2011)).
The remainder of this paper is organized as follows: In Section .2, we describe
the selection of energy stocks and elaborate further on the use of TAQ data. Sec-
tion describes the summary statistics and dynamics of liquidity and trading
activity. In Section .4, we present our time-series regression results for liquidity
and trading activity measures on a set of explanatory variables. Finally, Section

concludes.

4.2 Data

4.2.1 Selection of Stocks

We construct daily sectoral time-series averages of liquidity and trading activity
measures on basis of energy stocks listed at the NYSE, AMEX (now NYSEAmer-
ican) and the NASDAQ stock exchanges.# We use 88 oil and gas stocks; 13 stocks
issued by firms belonging to the coal mining industry; 15 stocks issued by renew-
able energy firms and 16 and 22 stocks from the electric-utility and multdi-udility
industry, respectively, to create sectoral averages of liquidity and trading activity.
The industry segmentation of energy stocks is motivated by the S&P Global Platts
Top 250 Global Energy Ranking which ranks publicly traded energy and utility
firms based on asset worth, revenue, profit and returns on invested capital. Using
this ranking as a first benchmark, we filtered the CRSP (Center for Security Prices)
database after stocks which match the SIC classification codes for the pre-defined

energy industries and categorised them into the five sectors, as mentioned above.

3Although most stock classifications distinguish between energy and utility stocks, we use the
term “energy stock” as an umbrella term for energy and utility stocks.

*S&P Global Platts - Top250 Global Energy Company Ranking (n.d.). Retrieved from
https://top250.platts.com.
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The selection and segmentation of energy stocks is an extremely difficult task
to perform, due to the various interpretations of energy sources. The EIA - U.S.
Energy Information Administration? distinguishes between nonrenewable energy
and renewable energy sources. The first covers energy originating from coal min-
ing, natural gas, nuclear or oil production while the latter defines energy use from
biodiesel, biomass, ethanol, geothermic, hydropower, solar and wind. Now, as
natural gas is often a side-product of the oil exploration process, it is difficult to
disentangle the two, as many publicly listed firms operate in both fields. In addi-
tion, the E1A4 classifies electricity as secondary energy source which uses primary
energy sources (i.e. coal or gas) as input to generate electricity as final energy prod-
uct. Moreover, nuclear energy, categorised as nonrenewable energy source by the
EIA, is used to provide electricity, which in turn is defined as secondary energy
source. Hence, we combine these two sources into one energy segment of electric-
utilities: SIC Code - 4911. This seems plausible as the SIC classification system
does not provide a separate code for nuclear energy. Similarly, there are firms that
use various sources for energy generation, i.e. multi-utilities. Hence, we consider
firms of the following two SIC codes as multi-utilities: 4931 - Electric 5 Other
Services Combined and 4932 - Gas €5 Other Services Combined. The construc-
tion of liquidity and trading averages for the renewable energy segment required
a more comprehensive selection procedure. Following the decomposition of re-
newable energy sources by the EIA8 we scanned the CRSP dataset based on SIC
codes and matched single firms which specialize in the £7.4 pre-defined renewable
energy sub-sectors. A detailed description on which SIC codes are used for which
energy sector is provided in Appendix [AIS,.

To be included in the sample, a firm’s stock has to meet further criteria: (1) it
has to be a common stock - due to different trading and liquidity characteristics,
we exclude Real Estate Investment Trusts (REITs), Depositary Receipts (DRs),
closed-end or mutual funds, preferred stock and over-the-counter (OTC) securi-
ties from our sample; (2) the stock must be listed at the Center for Research in Se-
curity Prices (CRSP) database. Our final sample consists of 154 stocks, categorised
into five energy segments and spans from January 10, 2006 to December 31, 2018,

resulting in 3263 daily observations.

>EIA - Energy and the environment explained (n.d.). Retrieved from https://www.eia.
gov/energyexplained/energy-and-the-environment/

°EIA - Energy Explained. (n.d.). Retrieved from https://www.eia.gov/
energyexplained/
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4.2.2 Liquidity and Trading Activity Measures

Our main data source is the WRDS Intraday Indicator Database (ITD)l which
contains intraday transaction data for securities listed at the NYSE, AMEX and
the NASDAQ), obtained through the NYSE TAQ dataset. The WRDS aggregates
trades and quotes from the TAQ dataset onto a daily average which fits perfectly
to the construction of our daily time-series dataset. We select intraday indicators
that only average trades and quotes during market hours8 Unlike suggested by
Atkins and Dyl (1997)), we include stocks from the NYSE, AMEX and NASDAQ
exchanges, when constructing liquidity and trading averages for each energy seg-
ment. We are aware of a loss in accuracy for the volume measure, due to differences
in trading protocols among U.S. stock exchanges. However, as our sample size
is already negligible with the examination of energy and utility stocks, we follow
this approach through. When aggregating liquidity and trading activity for each
segment over time, we further account for the fact that some energy and utility
firms have gone public later in the sample period while others have been delisted
due to merging business activities. We do so by accounting for the weights dy-
namically throughout the sample. The classification of trades (e.g. into buyer- or
seller-initiated trades) within the TAQ datasetis based on the algorithm by Lee and
Ready (1991). We evaluate stock #s specific measure of liquidity via the following
indicators:

DollarEffectiveSpread )y = 2 - Dy(Py, — M), (4.1)

where P}, is the transaction price of the k" trade and M, the quoted midpoint of
the consolidated national wide NBBO (National Best Bid & Offer) quote at the
time of the £ trade. Dy, indicates the trade direction, i.e. (1) if trade kis a buyer-
and (-1) if trade k is a seller-initiated transaction. Aggregated over time interval 7,
the Dollar EffectiveSpreadr 4¢ is the simple average of the Dollar EffectiveSpread,
of all trades during the interval 7', in our study at a daily basis.

With the second liquidity measure we focus on the permanent component of

"WRDS. (n.d.). Retrieved from https://wrds-web.wharton.upenn.edu/wrds/

$The NYSE generally sells two TAQ databases, (i) the Monthly Trade and Quote (MTAQ)
database where intraday trade and quote data is time-stamped on the second and (ii) the Daily Trade
and Quote (DTAQ) database with data time-stamped onto the millisecond - that is the 1/ 1000
of a second. The first is available on a daily basis from 1993 to 2014 and the latter start from 2003
and is recorded continuously up to today. Following Holden and Jacobsen| (2014) who examine
a comparative analysis between the two databases, we select the WRDS Intraday Indicators based
on the DTAQ database as millisecond time-stamped trade and quote data is more accurate in fast
markets and further allow us to use a longer and more recent time horizon than with the MTAQ.
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the DollarEffectiveSpread - that is the Dollar PriceImpact measure which is com-
monly known as a measure for order-related price changes. Goyenko et al] (2009)
describes the price impact as the increase (decrease) in the quote midpoint after a
signed trade within a certain time interval. Specifically, stock #’s TAQ five-minute

price impact measure on the k" trade is
DollarPricelmpact () = 2 - Dp( My 5 — Mp), (4.2)

where M, 5 is the midpoint of the consolidated NBBO quote, five minutes af-
ter the % trade and M, the midpoint at the moment of the k" trade. Similarly
as for the effective spread, the DollarPriceImpact 40 is the simple average of the
DollarPricelmpact,,, computed over all trades during the interval T', again, here on

a daily basis.?

Turning to trading activity measures, we examine each stock’s trading character-
istics as follows (both based on [Lee and Ready (1991)):

* Volume: the total volume traded during the day (in shares)

* Number of Trades: the total number of transactions made during the trad-

ing day.

We apply filters to eliminate records that seem anomalous in the overall cross-
section of quotes and trades data, e.g. negative quotations in the spread and price
impact measures are deleted. Further, as a general rule, we delete quotations that
satisfy the following condition: DollarEffectiveSpread > 1; DollarPiceImpact > 1.
This seems plausible as with higher market quality, i.e. algorithmic and automated
trading, spreads have generally continued to fall even further. Then, we create
lower (upper) bounds for stock #'s daily liquidity and trading measures by sub-
tracting (adding) twice the interquartile range from (to) the Ist (3rd) quartile. Any
record outside of these boundaries is deleted to prevent possible biases. In a final
step, we calculate an equally-weighted industry-specific average of each liquidity

and trading measure.

?See Goyenko et al] (2009) and Holden and Jacobsen| (2014) for a more detailed description
on these measures. The WRDS Intraday Indicator Formulate Note provides a more detailed expla-
nation on these indicators. Besides the simple average aggregation of the TAQ liquidity measures,
the WRDS provides two other forms of aggregating trades over a specific time interval 7" - (i) dollar
value and (ii) share volume-weighted averages of spread and price impact measures.
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4.3 Results

4.3.1 Summary Statistics

Table (.1 provides the summary statistics on market liquidity and trading activity
for all energy segments. The average effective spread is the highest for the oil and
gas sector, followed by the coal and renewable sector. Reversely, we find that the
average spreads in the utility sectors are the lowest, hence display more liquid mar-
kets. This can also be seen by looking at the relative difference of the trade volume
and price impact measure. Utility stocks are more frequently traded and display
the lowest price impact measures (both 0.013) among all sectors. That means, util-
ity stocks are on average less sensitive to changes in trade volume, as measured by
the price impact, which implies deeper markets. Supportive to this finding is that
the price impact measure for utility stocks is also less volatile than for any other en-
ergy segment. Stocks from nonrenewable sectors, that is, oil and gas, coal mining,
and the renewable sector, display almost similar characteristics for liquidity. In
contrast to the utility segment, stocks from both primary energy sources have rel-
ative higher standard deviations for liquidity. All average spreads with exception

of the renewable segment (2.91) exhibit an excess kurtosis.

Turning to trading activity, we regard that investors tend to execute four times
more trades of oil and gas stocks on average than for renewables, followed by the
electric-utility segment. Although, we average over four times more stocks in the
oil and gas sector, the huge discrepancy of average trade volume between oil and
gas stocks and the other segments still seems puzzling. Trade volume for oil and gas
stocks is on average less than ten times the trade volume of renewables and over 30
times less the share volume of stocks from the electric-utility and coal segment. In
other words, investors trade roughly 60,000 units of oil and gas stocks while there
are almost two million units in trade execution for electric-utilities per day (similar
amount for coal stocks). Another finding is that the maximum trade volume for oil
and gas stocks occurred on the day where the Western Texas Intermediate (WTT)
crude oil price reached its second lowest point in our sample period, January 20,
2016 with 26.68 $ per barrel.l Finally, the statistics of the Jarque-Bera test display

the non-normal properties of liquidity and trading.

10The lowest observation point in our sample period was on February 11, 2016 with 26.19 § per
barrel.
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Table 4.1: Summary Statistics - Liquidity and Trading Activity

Mean St.Dev. Max Min Skewness  Kurtosis  Jarque-Bera
$Eff.Spread
Oil & Gas 0.032 0.007 0.070 0.016 0.67 3.81 340.34*
Coal 0.028 0.010 0.110 0.008 1.33 7.61 3,853.50***
Renewables 0.027 0.006 0.049 0.014 0.53 2.91 158.81***
Electric Utilities 0.016 0.003 0.042 0.010 1.01 6.20 1,950.50***
Multi-Utilities 0.016 0.003 0.044 0.011 1.80 12.38 13,741***
$PriceImpact
Oil & Gas 0.020 0.005 0.043 0.008 0.31 2.80 57.48***
Coal 0.017 0.006 0.069 0.004 1.56 8.90 6,068.60***
Renewables 0.018 0.005 0.042 0.005 0.57 3.20 184.72***
Electric Utilities 0.013 0.003 0.029 0.004 0.06 3.33 17.15**
Multi-Utilities 0.013 0.002 0.028 0.005 0.28 3.41 6731
NumTrades
Oil & Gas 13,161 4,632 27,148 1,611 0.12 2.92 9.23**
Coal 9,401 4,810 34,599 1,822 0.89 3.59 484. 71
Renewables 3,399 1,353 9,363 421 0.61 3.31 222.32***
Electric Utilities 11,323 4,348 27,693 1,036 -0.01 2.98 0.109
Multi-Utilities 9,147 3,624 24,615 801 0.16 3.19 19.50***
Volume

Oil & Gas 59,622 18,266 175,719 14,635 0.98 5.20 1,193.20***
Coal 1,995,899 908,085 6,257,108 369,181 0.55 3.11 167.23***
Renewables 722,238 283,189 2,047,419 103,297 0.88 3.94 542.86***
Electric Utilities 1,899,860 522,141 6,807,620 359,785 0.63 6.22 1,631.50***
Multi-Utilities 1,436,915 399,250 3,618,592 244478 0.65 3.87 338.98***

in a total of 3263 observations.

HHK

Note: Descriptive Statistics for time-series market-wide liquidity and market-wide trading activity measures. The time-
series measures are constructed by equally-weighting effective spreads, price impact of trades, number of trades and share
volume of each stock on each trading day. The sample period runs from January 10, 2006 to December 31, 2018, resulting
indicates statistical significance at the 1%, ** at the 5% and * at the 10* level.
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4.3.2 Dynamics of Liquidity and Trading Activity

Table .2 reports the time-series properties of the selection of liquidity and trading
activity variables. We employ two unit root tests which are standard in time-series
analysis, that is the Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP)
test. The statistics of both tests support the non-existence of any unit root for
all series. The optimal lag length is four, as suggested by the information criteria,
(AIC, HQIC and BIC). We also estimate the autocorrelation coeficients (AC) for
all measures up to 75 trading days but only reporta selection of lags. As can be seen
for both cases, in levels and In changes, there is significant autocorrelation for all
series up to a high number of lags. These findings are not surprising, as spreads are
usually trended and seasonal. In fact, sinceits initial start in 1993, when the WRDS
started recording intraday indicators, spreads have experienced a decline from just
below 4% in 1993 to less than 1% in 2018 but still exhibit trended downward dy-
namics. Similar dynamics are true for the price impact of trades. Reversely, trad-
ing activity has increased, due to a more efficient market infrastructure. For daily
In changes, we find sufficient evidence for first- and second-order negative serial
dependence. Unlike trended level series, daily changes of those variables oscillate

around a constant mean with negative first- and second-order dependence.

Figures [A8{AI] show the plots of the liquidity and trading activity measures,
including a Savitzky-Golay smoothing, Savitzky and Golay (1964), between Jan-
uary 10, 2006 and December 31, 20188 1n general, the dynamics for liquidity and
trading exhibit common characteristics across sectors, i.e. foremost around the fi-
nancial crisis. We find a continuous upward trend for the number of trades for
oil and gas and utility stocks. Trade numbers and volume for the coal segment de-
crease again close to the end of the sample. Liquidity dynamics of utility stocks
are more tranquil and roughly half of the nonrenewable (oil and gas, coal) and re-
newable segment. Spreads for the coal segment drop significantly right after the
global financial crisis and again in the interval of the years 2015-2016, indicating
high liquidity periods (lower spreads).

IDye to the number of energy segments and liquidity and trading activity measures analyzed
in this paper, we report the plots (20 in total) in the Appendix A§-AT].
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Table 4.2: Time-Series Properties - Liquidity and Trading Activity

4.3 Results

ADF PP ADF(4) PD(4) AC(5) AC(15) AC(30)
Levels $Eff.Spread
Oil & Gas -25.42% -27.80** -7.96" -24.28* 0.6363"* 0.5643*** 0.5011***
Coal -21.30* 221727 -7.327* -19.19** 0.7056*** 0.6426™* 0.5705***
Renewables -23.33** -24.75% -8.22%** -21.86*** 0.6460** 0.5866*** 0.5208***
Electric Utilities -18.27*** -17.38 -6.85*** -15.68"* 0.7409™** 0.6686*** 0.5919***
Multi-Utilities -23.17* -24.56** -8.63*** 21.77** 0.6264** 0.5249™* 0.4266***
$Pricelmpact
Oil & Gas S22 417 -23.53*** -7.017 -20.617* 0.6961*** 0.6501*** 0.6041*
Coal -31.32%** -36.32*** -9.59%* -31.94*** 0.5117*** 0.4569** 0.4057***
Renewables -33.20"* -38.59*** -10.95** -34.24** 0.4537*** 0.4252*** 0.3730***
Electric Utilities -23.64™ -25.30% -8.227 -22.29% 0.6389"** 0.5667*** 0.5126™**
Multi-Utilities -26.87** -30.04™* -9.35%* -26.48* 0.5629*** 0.4945™* 0.4392***
NumTrades
Oil & Gas -13.09*** -10.84*** -6.51"** -10.50* 0.8043*** 0.7342™* 0.6949"*
Coal -15.28*** -13.43** -7.517* -12.82% 0.7469*** 0.6853*** 0.6576***
Renewables -25.06*** -27.02%** -10.24** 2424 0.5401** 0.4782*** 0.4476***
Electric Utilities -14.34* -12.34%** -7.28%* -11.86"* 0.7679*** 0.6825*** 0.6383***
Multi-Utilities -13.38"* -11.26%* 27117 -11.04** 0.7765*** 0.6968*** 0.6412"**
Volume
Oil & Gas -19.30*** -18.927** -9.32% -17.46*** 0.6250™** 0.5122** 0.4921*
Coal -19.02%* -18.43** -8.81"* -17.01** 0.6536™* 0.5808*** 0.5545***
Renewables -28.45** -31.29%* -12.18*** -28.38*** 0.4271** 0.3656*** 0.3047***
Electric Utilities -23.06* -23.927 -11.59** -22.02** 0.5030*** 0.3380*** 0.3240***
Multi-Utilities -21.94™* 222374 -11.01*** -20.67*** 0.5359*** 0.3998*** 0.3505***
In changes $EfF.Spread
Oil & Gas -94.80** -152.84*** -40.69** -129.42%** 0.0363*** 0.0046** 0.0109™**
Coal -92.52%* -147.027** -40.71"** -122.88** -0.0044* -0.0234™* -0.0139***
Renewables -90.12%** -140.53*** -41.93** -116.94** 0.0024*** -0.0025"** -0.0315***
Electric Utilities -89.36*** -129.03*** -38.48"** -110.07*** -0.0062*** 0.0039*** 0.0094***
Multi-Utilities -90.47** -131.43** -38.40* -113.48* 0.0283*** -0.0119** -0.0187***
$Pricelmpact
Oil & Gas -94.39** -156.46*** -41.62%** -128.13*** 0.0241*** -0.0080*** -0.0170***
Coal -96.47% -164.84** -41.13*** -134.827* 0.04277** -0.0144** 0.0207***
Renewables -97.03** -163.23*** -41.94** -131.93*** 0.0268*** 0.0004*** -0.0143**
Electric Utilities -92.03*** -140.06™* -39.33*** -118.45*** -0.0078*** 0.0129*** -0.0476***
Multi-Utilities -94.82% -147.49*** -40.06™* -123.65* -0.0119*** -0.0115*** -0.0112***
NumTrades
Oil & Gas -76.64%* -98.17*%* 23511 -87.13*** -0.0013*** 0.0122*** -0.0037***
Coal -79.50"* -105.53*** -36.90"* -91.85*** -0.0397** 0.0047*** -0.0261%**
Renewables -85.25** -126.15"** -39.29** -103.67*** -0.0119*** -0.0002*** -0.0133***
Electric Utilities -79.24** -101.55*** -34.45* -89.83*** -0.0161*** 0.0162*** -0.0111***
Multi-Utilities -76.23% -95.52%** -34.34™* -84.72%* 0.0006*** 0.0329™** -0.0051**
Volume
Oil & Gas -77.81%** -101.09*** -35.84"* -88.90*** 0.0053** -0.0038*** 0.0004***
Coal -82.14* -112.92*** -37.03* -96.36** -0.0276*** -0.0007*** -0.0126™*
Renewables -85.11* -127.80*** -39.41%* -104.62** 0.0040*** 0.0140™* -0.0352**
Electric Utilities -80.67** -106.00™* -35.48"** -92.21M* -0.0055** -0.0135"* -0.0094***
Multi-Utilities -79.56** -104.44™* -35.80"** -89.92% -0.0084*** 0.0033"* -0.0044***

Note: This table reports the time-series properties of daily liquidity and trading activity. The sample period is from January
10, 2006 to December 31, 2018. The criteria for the model selection (AIC, HQIC and BIC) jointly suggest that all time-series
include a lag order of 4 for further estimation purposes. As for unit roots test, we report the statistics of the Augmented
Dickey Fuller (ADF) and Phillips-Perron (PP). *** denotes statistically significant at the 1% critical value. A selection of
autocorrelation coefficients of all time-series measures are also reported. Lags are indicated in brackets.
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4.4 Determinants of Liquidity and Trading Activity

In this section, we present the time-series regression results of liquidity and trading
activity variables on a set of determinants. Beforehand, we report a set of explana-

tory variables and provide some justification on its selection.

4.4.1 Explanatory Variables

We expect market liquidity and trading of energy stocks to response to the direc-
tion of contemporaneous stock market returns, that is, liquidity and trading in-
crease with positive concurrent market swings and decrease with negative concur-
rent market movements. Chordia et al| (2001) refer to a widening spread in falling
markets, due to challenges in the inventory adjustment of market makers.

We include a measure of volatility in our time-series regression model and expect
to confirm the positive relationship between volatile markets and spreads, as well
documented within the existing literature. Dating back to early theoretical mod-
els about inventory risk and asymmetric information cost paradigm, volatility is
seen as an important factor that influences spreads, (see Demset7 (1968), Benston
and Hagerman| (1974), Stoll (1978)). Both paradigms serve as an example for mar-
ket maker’s precautionary motive to protect themselves against volatile asset and

superior information-based trading in volatile times, i.e. adverse selection cost.

Moreover, we consider short-run momentum effects to be another determinant
of spreads and trading activity. [Avramov et al! (2016) find that up-market (down-
market) momentum profits are large (low) when the overall stock market is liquid
(illiquid). The rationale behind this finding could be based on how (new) informa-
tion is processed by market participants. Irrational investors and market makers
might react overconfident to information, inducing a direct effect on trade volume
and liquidity. Ultimately, increased trading activity in a liquid (illiquid) market
then results in a continuation of positive (negative) returns.2

To isolate extreme financial conditions from general market volatility and short-
run momentum, we include measures that proxy financial distress via default spreads.
Usually in these market states, investors rebalance their portfolios towards safer
assets (flights-to-quality), resulting in a shift from stocks and corporate debt in-

struments to safer treasury bonds which depresses stock market activity, Beber

'*Baker and Steir| (2004) and Odear] (1998) developed theoretical ideas on investor’s overcon-
fidence and its impact on trading volume, liquidity and serially correlated returns.
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et al. (2009), Baele et all (2020) and Vayanos (2004). Our first measure defines
the spread between a corporate bond and its risk-free alternative, that s, a treasury
bond. Second, we employ the TermSpread, known as difference in yields between
along- and a short-term treasury bond. When the TermSpread has inverted in re-
cent history, meaning the yield on short-term bonds are higher than its long-term
alternative, the overall economy has experienced a slowdown in output, i.e. early
2000s and shortly before the global financial crisis in 2008.

Similarly to Sklavos et al] (2013), we expect that an increase in the oil price de-
creases spreads and increases trading activity. As in Chordia et al] (2001), we also
add the federal fund rate as benchmark for short rates. With the inclusion of the
rate, we may infer how changes in the interest rate affects liquidity and trading
activity from a standpoint of a reduction in inventory cost and ease of margin
trading. Finally, we account for potential weekly patterns in liquidity and trad-
ing activity by including day dummies, (Monday to Thursday).

With the methodological approach, we closely follow the approach by Chordia
et al] (2001) to capture daily variation in liquidity and trading activity. The time-
series regression model for liquidity and trading activity measures can be written

as follows:

2 4

5
Y, = a+@pShortRare, + Z ¢4 Defanlt, , + Z ymMarket,, ; + Z 9iDays; ++
d=1 m=1 j=1

\!/Oilt + ﬂll‘l + ﬁgl‘g + (8313 + ¢ (43)

where Y is Dollar EffectiveSpread, Dollar PriceImpact, NumTrades and Volume, (k =
4), for energy sector #; ShortRate is the federal funds ratel3; Default represents
two spread indicators: TermSpread is the spread between a 10-year treasury bond
and the 3-month treasury bill rate; QualitySpread is defined as the spread between
a Moody’s BAA Corporate Bond Yield and 10-year constant maturity Treasury
bond; Marker sums the following variables based on the equally-weighted CRSP
daily index3: Concurrent Market Movements as the contemporaneous CRSP daily
index return if it is positive (negative) and zero otherwise; Volatiliry as the five-day
average of daily absolute returns of the equally-weighted CRSP daily index and
Up- and (Down-market) Momentum measured as average of the past five trading

BChordia et al] (2001) also use the one-year treasury bill rate as a proxy for dealer’s costs, how-
ever they find that the federal funds rate serves as a better determinant.
“The CRSP index consists of NYSE, AMEX and NASDAQ stocks.
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days of the CRSP daily index, if it is positive (negative) and zero otherwise. Days
are the dummy variables that take on the value of 1 if the trading day is a Mon-
day, Tuesday, Wednesday or a Thursday and zero if otherwise, respectively. We
employ the WTT crude oil price to proxy for oil price dynamics. Finally, we in-
clude three linear time trend sequences (#; for the full sample, #; until the startand
t3 until the end of the recent global financial crisis.) The dates that are associated
with these time-trends mirror the dates of the recession indicator based on the busi-
ness cycle dates of the National Bureau of Economic Research (NBER).B Allinter-
est rates, bond yields and the WTT oil price have been retrieved from the website
of the Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org.
The CRSP stock market index return has been retrieved from the WRDS service,
https://wrds-web.wharton.upenn.edu/wrds/.

4.4.2 Time-Series Regression Results

In this section, we report the time-series regression results for daily liquidity and
trading activity measures, that is, DollarEffectiveSpread, Pricelmpact, NumTrades
and Volume. Liquidity and trading activity measures are constructed as equally-
weighted, cross-sectional averages of all stocks that are considered in an energy
segment. All measures display higher-order positive autocorrelation in levels and
first- to second-order negative dependence in its logarithmic transformation. The
stationarity tests confirm the non-existence of any unit root for all liquidity and
trading measures, hence the proceeding in levels. We control for serial correlation
with Newey and West (1987) corrected standard errors. The model specifications
are jointly significant for most models. We split the sample into three subsections.
First, we regress the proposed model in its initial setting, that is Eq.(4.3). Second,
and instead of the oil price, we add an oil price volatility measure to the model and,
finally, in the third model specification, we model climate change based investor

sentiment and the effect on liquidity and trading of energy stocks.

Oil Price, Liquidity and Trading

Table and report the time-series results for liquidity and trading activity,
respectively. We find that bearish markets are associated with larger liquidity in all

sectors, (negatively contemporaneous returns associated to lower spreads). This

BRecession Indicator. (n.d.). Retrieved from https://fred.stlouisfed.org
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effect is statistical significant with exception for the average spread of the renew-
ables segment. While bullish markets are associated to heterogeneous effects on
spreads and price impact, we find that there is less liquidity in the segment of coal
and electric- utilities (the former has a significant increase in the spread and the
latter in the price impact). The importance of concurrent market movements in
general is particularly visible for the trading activity variables, see Table &.4. The re-
sults reveal that trading (number of trades and share volume) decrease significantly
with negative concurrent returns (statistically significant at the 1% level across all
energy segments). In contrast, we observe that trading is encouraged with positive
contemporaneous returns (except for trade numbers of renewables). Comparing
relative magnitudes of the coefficients, we observe that changes in share volume
for coal and utility stocks are significantly higher for an one-unit increase/decrease
in contemporaneous returns.

Both, negative and positive market momentum trends are associated with smaller
spreads, hence more liquid markets. This is in line with findings of Avramov et al!
(2016). Although the effect of negative momentum is generally greater, we find a
strong reduction in the spread for oil and gas stocks and the price impact of trades
for utility stocks in the light of positive market trends. We also document that
trading activity, both, in number of trades and share volume, decrease with neg-
ative momentum, statistically significant across all segments. Similarly, positive

momentum tends to reduce trading but lacks statistical support.

High levels of stock market volatility reduces liquidity, (higher spreads and price
impact of trades). This effect is statistically significant across all energy segments,
except for the average spread of renewables. Similarly, trading activity increases
with higher levels of volatility for most sectors. These findings provide reason-
ing for a collective exposure to overall stock market volatility. This is in line with
studies by Stoll (1978), Benston and Hagerman| (1974) and [Vayanos (2004) more
recently, which theoretically formulate the positive relationship of volatility and
illiquidity. Precisely, these findings are attributed to the concerns of inventory
risk on behalf of market makers to hold risky assets.

The federal fund rate as proxy for short-term interest rates is mostly negatively
related to trading activity, (significant for the number of trades and volume of oil
and gas and coal stocks). We attribute these findings to the extra cost of margin

trading, and the fact, that it is more expensive to leverage investment positions,
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Table 4.3: Regression Results - Equally-weighted (3,263 observations)

Energy Sector Oil&Gas Coal Renewables Electric- Multi-
Urtilities Utilities
Coefficients (in bps) ES Ut ES PI ES PI ES PI ES PI
Concurrent Return (-) -9.402** -7.80%* -8.620"* -5.416** -1.582 -2.178* -4.944" -4.877** -5.430™* -4.680™*
(-4.47) (-6.56) (-3.65) (-3.67) (-1.20) (-1.86) (-4.68) (-6.70) (-4.68) (-6.28)
Concurrent Return (+) -1.450 0.36 4.410* 1.003 -2.076 -1.968 0.937 1.720* 1.010 1.039
(:0.62) (0.29) (1.96) (0.65) (147) (-155) (0.73) (235) (0.92) (137)
Momentum (-) -15.788™* -8.85** -17.902* -12.352** -6.822 -3.657 -8.280™ -2.796 -7.795** -3.989
(-2:55) (-2.30) (-1.76) (-2.47) (-1.25) (-0.84) (231) (-0.96) (-2.28) (-1.48)
Momentum (+) -14.466*** -4.873 5.047 -0.652 -2.906 -5.635 -5.930™ -9.492"* -6.678™ -8.284™*
(-2.90) (-136) (0.76) (-0.17) (-0.61) (-151) (-2.03) (3.27) (-2.35) (-338)
Volatility 26.589*** 18.489** 35.233"** 17.868*** 7.536 10.839*** 12.67** 14.13** 14.52%** 14.264**
(5.35) (5.43) (631) (433) (158) (3.39) (3.71) (4.87) (3.33) (5.43)
ShortRate -0.071 -0.150"** 0.096 -0.036 0.140** 0.004 0.107*** -0.076** 0.039 -0.102***
(-0.99) (-2.99) (1.10) (:0.68) (2.04) (0.07) (3.10) (217) (1.05) (-2.96)
TermSpread -0.085 -0.109* -0.492%** -0.2417* 0.044 0.055 0.051** -0.081** -0.039 -0.105***
(-155) (-2.84) (-7.07) (6.29) (0.81) (1.38) (2.06) (317) (-1.39) (-4.00)
Quality Spread -0.191" -0.135™* -0.267** -0.162"* -0.073 -0.282"** -0.068 -0.146*** -0.030 -0.103**
(-1.94) (-2.07) (-2.47) (-2.62) (-0.73) (-3.59) (-151) (337) (-0.64) (-2.39)
Monday -0.046" -0.013 -0.095* -0.002 0.057*** -0.0008 -0.050*** -0.037*** -0.044** -0.051***
(-1.90) (0.92) (-3.10) (-:0.09) (:2.70) (-:0.04) (6.02) (3.69) (-4:50) (-5.20)
Tuesday -0.040 0.006 -0.100"** -0.016 -0.039* 0.015 -0.043*** -0.042*** -0.049* -0.044***
(1.64) (0.43) (331) (:0.63) (-1.86) (0.71) (5.61) (-4.22) (553) (-4.49)
Wednesday -0.021 0.053*** -0.071** 0.00008 -0.022 0.060*** -0.015* -0.011 -0.024*** -0.014
(:0.92) (3.66) (-2.43) (0.00) (-1.16) (2.93) (-1.81) (1.04) (2.62) (-1.45)
Thursday 0.024 0.043"** -0.045 0.034 -0.04™ 0.005 -0.022*** -0.016* -0.019** -0.015
(0.99) (2.90) (1:59) (1.32) (2.23) (0.26) (-2.68) (1.67) (-2.03) (-151)
CrudeOil 0.008*** 0.005*** 0.017*** 0.008*** -0.0001 -0.003*** -0.001** -0.0009* -0.0002 -0.00033
(6.12) (7.09) (10.21) (9.47) (-0.08) (3.25) (-2.39) (-1.65) (:0.39) (:0.58)
1 -0.00032*** -0.00036*** -0.00027*** -0.0003*** 0.00027*** 0.0001*** 0.0002*** 0.00005** 0.00009*** -0.000008
(5.23) (10.07) (-3.40) (733) (4.10) (3.06) (0.13) (2.33) (2.79) (:0.30)
5] 0.0002 -0.009** -0.003*** -0.002*** -0.0004 -0.0004* -0.0003** -0.0010"** -0.00006 0.0006***
(0.78) (-4.04) (-4.80) (46.04) (:0.99) (-1.86) (-2.05) (577) (-:0.41) (-4.12)
t3 0.0002 -0.00007 -0.00008 0.0001 0.0007*** 0.0006™* 0.0004"** 0.0001 0.0001 0.0006
(1.26) (-0.43) (:0.29) (0.61) (2.93) (3.27) (3.54) (1.21) (1.23) (0.53)
Constant 3.694** 2.770%* 3.357** 2,415 2176+ 2.358* 1.147** 1.840** 1.506™* 1.883***
(6.82) (7.90) (5.54) (7.27) (4.23) (6.04) (435) (7.62) (5.43) (7.92)
F-Statistic 121.56 170.12 162.47 92.97 39.28 33.58 177.69 120.67 66.54 72.93
Adjusted R2? 0.37 0.45 0.44 0.31 0.15 0.13 0.46 0.36 0.24 0.26
DW Statistic 105 0.99 0.88 135 0.68 117 0.70 0.94 0.74 0.98

Note: Dependent variables are the liquidity measures as described in the data section. Due to limited space and a comprehensive amount of data to fit in this table, we have to shorten the description -
ES stands for DollarEffectiveSpread and PI for DollarPriceImpact. T-statistics are reported in parentheses. Standard errors are correct for serial dependence and heteroscedasticity with the Newey and
West ([987) method. *** indicate statistical significance at the 1%, ** at the 5% and * at the 10% level.

90



4.4 Determinants of Liguidity and Trading Activity

“[PA3] 9401 OY2 3B , PUE 094G OY1 1B ,, ‘94T Y2 18 2OUEDYIUSIS [LONSIILIS 2121pUL ., “Poypau (VR41)
KomaN] a1 yam Apnsepassoianay pue 2ouspuadap [BLISS 10§ 1991100 d1e SI0110 prepuelg ‘sasayauared ur parzodax oxe sonsnels- 1 “aunjg) 10§ [OA PUE pwd] Jo 42quinN 10§ spuess 17 wnp - uonduosop
(1 U21IOYS 01 2ABY 2M 9[qEd SIY2 UT 1 01 BIEP JO JUNOWE JAISUY2Idwod e pue 2oeds paarwi[ 01 an(] “UONIIS LILP Y2 UL PIGLIDSIP SE sa[qeriea L11ANdE Surpen oy axe sajqerrea Juspuada 210N

€8°0 1£0 160 €8°0 160 980 080 040 0L0 870 onsneg \d
070 120 %0 L0 610 A 10 €90 0 290 2 pawsnlpy
STTH €TEIS [What 0€'SHS 20°6F 19'89 8TEIT 1€°TS¢E PHHOT 6'8eg JBSHEIS-]
(80%) #6T) (0z's) (7 (€9%) (s£72) (95°8) (80°9) (#L:9) (92%)
00 FI0T LOTFHHE +000TCST “E6EF wi00SFIOT  u09FETE ws00L€TTY el F8ST 4585899 +:088°CT JurIsUOY)
(1€77) (00°9) (s£72) (£5°9) (179) (08°9) (¢2) (%0°¢) (817 (s1%)
“89°05T S & 2 4xS6'88E 69 wsFT099 xSTE a€L°969 S 2 00791 wsS0°L €
($92) (871) (80°7) (€17) (€21) (0£07) Ca) (9277) (8%%-) (¥6°0)
TR 40) 06T WYL w8T'E WLYSSE $9°0- 1£°88 WY wxnl 0°9€ ¥ST ]
(z770) (ze9m) (£89) (sz61) (€91) (¥$°%) (cLer) (£6'%) (€1%) (sz:8)
85°0L el 1€ A o4 s I8E 0%'T%- xs6S0 el €TEL wllT w0F'S wILT &
(92°0-) (8T¢) (sTT) (r¥-) (zre) (8%'T) (sze) (6T%) (zrr) (19'9-)
88'991- s99ET HOEETST s SECTLT WP T $6'9- 09°TLSY C60E w0192 w0TTS [HO2pPnID
(09°0) (99°%) (F17) (0%%) (£80) (£80) (92€) (ss%) (10'9) (989)
06'£99°L s €0°0SE 09581 r06'S6E w696°9C WIS €616 PO (54 wi08°L80°C  1uF99E9 Aepsiy,
(zvT) (€€9) (0z2) (1€°6) (267) (2271 (cze) (88°€) (%0°9) (1€°8)
85081 s6E00% WPIT9E €016 o S09°CE 0998 aT16T8 NG 4544 s OT'ETTE o $E98L AKepsoupayy
(€5°0) (82°€) (16'0) (90°¢) (08°2) (s0%) (£871) (1re) (891) (s827)
0STI¥L xx66'65T €LL9T wsSIF6T wa81L°0€ oI 1061 T wl96ET LST'9E8 w0LTLT Aepsany,
(199-) (LTer) (98°¢) Fee) (1€7) (1) (€5°07) (s%°07) (¢s%7) (€£T)
s£60°88" e FTEST :0TIT0T- ) (5 619°€T 96°SL LFTET 094y w0SL0ET wnl90LT Kepuopy
(99°0-) (08T) (11) (#81) (8€¢) (&) (tTe) (6£T) ($8°0) (1)
ISHIE- L£0'8T9" 066701 FTILY s OLTOET WITTHS xs0E8F0E- 00 0TFT- 08I8T°C- 86°€/8- peaxdg LrEnd
(81°€) (8z€) (9272) (%6°€) (ire) (org) (0sT7) (95°07) (#877) (s€1)
sl 988 x09°T6S xS08°T6 €T S6L x986°8L s6ST8E 0T0°EST S9'88T- 0T LEVE 9¢°61¥ prardguuay,
(€6°07) (18°0-) #L71) (90'1) (080-) (#€0) &y L) (zo'L) (871 (1€°T)
SeETE- LT'661- L096CL 69°TLT igata $T'95 xs00S8L%" ws06767T L0¥°SE0°E wl L SY6 areyI0Yg
(9%9) (68°2) (0T9) (€69) (96°0) (15°0-) (997) (96%) (e1€) (81€)
000°6HFTC  wuOFT6ST  a000LSETT  4aa0FITST 006°0S1C- 0£/95TS «xx000°£TH'ST xx009°TET wOFE00F  a0TLSOT ISHELICT
(€0T) (9%'T) (80°T) (L271) (£60) (z50°) (82°0) (#T0) (£9°07) (L27)
00€F¥9°¢- £00°CE- 00S°TTH'y- 99T°8¢- 00L%5€C 0T'L65°S 000°5£0°C OT'LSEG L0%'¢8- L89€°6S- (+) wmuswopy
(1€°¢-) (16°¢7) (09°¢-) (18%-) (9£T) (9¢°¢) (99%) (Lzer) (s9%) (€sT)
wi000FETLT wu09STTL 1as000°S86°9T  au0FESIT a00TFEE'D  wFLF6E wa000°SHITE  1as09E°EST wOIELSL WOT0FTT- (-) wmauawopy
(29%) (or€) (€0°¢) (282) #¥0) (zTor) (9£¢) [(($%2] (¥1°€) (0T2)
s 00TFETS n180°6T +000°026'8 x998°0% 0£650%% 06'868" 0091616 016 s 0THIL W£290T  (+) WMy 3uaLmOu0)
(8£:8°) (e2L) (L6'L) (20'8) (00°¢-) (17°%-) (09°£7) (20°L) (%9£) (899-)
w000 THSTE wLTLL 4000910°ST 10u08S00T-  4us00ET8ST- s 9ITE ST #0008 LLT- e IEE66 e OVLGEY  anlL6S8- () wimay warmOU0)
oA Iy wnN oA 17 wnN oA ILwnN TN IpwnN A I wnN SIUDPLYI0D)
sanImN saninN
- o113 SI[qeMIUTY 0D SeH Q10 10193G AS1ouy

(SuoneAIasqo ¢9z°¢) parysdom-Aenby - snsoy] uorssarday %% o[qeL.

91



4 Liguidity and Trading Activity of Energy Stocks

which results in a depression of the demand side of the trade. Average spreads
exhibit a mixed response in context with the short rate. For instance, spreads for
renewables and electric-utility stocks increase with a rise in the short rate, (statisti-

cal significant at the 5% and 1% level, respectively).

With exception of trading of coal stocks, the TermSpread, mirroring potential
economic stress, increases trading activity across all markets (statistically signifi-
cant at the 1% level for the renewable and utility segments). Liquidity, in general,
tends to increase with a higher TermSpread, as indicated by the negative coefhicient,
most likely, due to increased trading and its effect on price impact of trades (order-
flow related price changes), except for renewables and the spreads of electric-utility
stocks). This indicates that liquidity conditions seem still stable while there might
be sufficient demanders and suppliers for energy stocks. For instance, we find a
significant decrease in the price impact of trades for the oil and gas, coal and util-
ity segment. Surprisingly, trading of coal stocks decreases while spreads and price
impact of renewable stocks increase in the context of a widening TermSpread. We
find similar effects of the QualitySpread on liquidity, however associated with a
decrease in trading. More general, we may relate the link between the TermSpread
and liquidity and trading to scenarios where market participants act precautionary
while seeking safer investment opportunities which is consistent with the literature
on flights-to-quality and flights-to-safety, (Beber et al] (2009), Bacle et al] (2020)).
However, this phenomenon is not attributed solely to energy stocks but provides
an explanation on a broader scale. Investors seek safer options, i.e. government
bonds instead of equities, or more traditional stocks, which benefits the market
clearing process in times of higher trading activity, in this context, as a result of a

widening TermSpread.

For arising crude oil price, we find an increase in illiquidity (higher spreads) for
oil and gas and coal stocks, on average. Less liquidity in these market segments is
accompanied by significantly lower trading for oil and gas and higher trading for
coal stocks (statistically significant at the 1% level). This finding is only partially
consistent with Sklavos etall(2013) who find thata rising oil price decreases spreads
and discourages trading activity. However, their study only examines oil and gas
stocks, listed at the NYSE. On the contrary, renewable and electric-utility stocks
display lower spreads (although small in magnitude). We also find that a rising oil

price discourages trading for renewables and utilities.
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The day-of-the-week dummies are positive and statistically significant from Tues-
day to Thursday for trading activity, but mostly negative for Monday, which in-
dicates that trading activity is the lowest the first day of the week, except for re-
newables that are traded even less on Fridays. Especially, utility stocks are traded
in fewer numbers and volume on Mondays than on average. By examining the
spreads and price impact, we document that all markets tend to be less liquid
(higher spreads and price impact of trades) on average on Fridays, which is con-
sistent with Chordia et al] (2001), and suggest a day-of-the-week effect that goes
beyond the sample of energy stocks.

Despite some heterogeneity, we perceive a strong commonality component in
the exposure to concurrent stock market returns, downward momentum or volatil-
ity on liquidity and trading. These effects, common across sectors, provide evi-
dence for correlated trading across many asset classes, see Chordia et all (2000).
High-volume shifts in trading are often induced through mutual fund ownership
or index trading by institutional investors, Kamara et al] (2008) and Koch et al!
(2016) and often take place parallel to general market swings or in the presence of

higher volatility.

Oil Price Volatility, Liquidity and Trading Activity

In this section, we focus on the link between oil price volatility and liquidity and
trading activity for energy stocks. We model oil price volatility with the CBOE
Crude Oil ETF Volatility Index®. Table B3 and f.§ illustrate the time-series re-
gression results. The regression design is as follows:

2 5 4
Y1, = a+¢ShortRate, + Z 4 Defaulty, + Z ymMarket,, ; + Z diDays; ++
d=1 m=1 j=1

\I/Oi[Volﬂ[ + ‘811‘1 + ﬁQZ’Q + 531‘3 + ¢, (4.4)

where Y is Dollar EffectiveSpread, Dollar PriceImpact, NumTrades and Volume, (k =
4), for energy sector i. The volatility measure is denoted as OilVola. Our results
in Table .5 show that oil price volatility exhibits a positive relationship with illig-

uidity (higher spreads) across most energy segments (exception of the spread of

The series is taken from the Federal Reserve Bank of St. Louis and is available since
May 10, 2007, hence the shortening of the sample period. Retrieved from: https://fred.
stlouisfed.org/series/0VXCLS
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the coal mining segment). Spreads widen and price impact of trades rise in light
of higher levels of oil price volatility. This effect is mostly statistically significant.
It seems not surprising that liquidity for utility stocks is plummeting as oil price
volatility increases. Oil and gas are important intermediary products for utility
firms in the process of electricity generation. Thus, investors may precautionary
trade utilities in times of higher oil price volatility. These findings are supported by
a substantial decrease in share volume (statistically significant), indicating volume-
related price changes related to significantly higher price impact of trades which
subsequently marks less liquidity in the market for utilities than before, see Ta-
ble f.4. Average spreads and price impact of trades for oil and gas stocks response
symmetrically to higher oil price volatility (the latter statistically significant at the
1% level). The results for coal stocks show a significant decline in the spread, an
increase in price impact of trades and a decrease in trading and volume (all statisti-
cally significant at the 1% level). Trading of renewable stocks increases significantly
but so does illiquidity for this segment (positive and significant coefhicients for
spreads and price impact). We could point the increase in spreads towards a mo-
tive of market makers to precautionary raise spreads in case of abnormal volume

trades (higher demand for renewables).

Generally, these findings are not surprising, considering the extensive literature
on the link between stock market volatility and liquidity. Overall, these results
suggest that, despite of investor’s and market maker’s sensitivity to stock market
volatility, fluctuations in the oil price volatility appear to play an important role
when trading energy stocks. Investors tend to act precautionary when expectation
indicators such as for the oil price are not in line with personal market perceptions
which alters trading patterns accordingly. Further, these results are novel and indi-
rectly confirm previous findings which find that oil price volatility depresses stock
returns in general and more specific for energy stocks, (see Diaz et al| (2016), Luo
and Qinl (2017), Duttd (2018), Oberndorter). We refer to indirectly because fun-
damental market microstructure characteristics (number of trade executions, trade
volume, bid and ask prices among others) represent the essential dynamic mecha-

nism which ultimately form the price and return figure of an individual stock.
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Table 4.6: Regression Results - Equally-weighted (2,929 observations)

Energy Sector Oil&Gas Coal Renewables Electric - Multi-
Utilities Utilities
Coefficients NumTr Vol NumTr Vol NumTr Vol NumTr Vol NumTr Vol
Concurrent Return (-) -87,833** -432,270*** -96,898** -17,148,000* -17,478"** -2,722,900*** -101,190*** -14,467,000* -78,340*** -11,426,000***
(-6.26) (-6.56) (-7.36) (-7.49) (-5.06) (-3.13) (-7.88) (7.86) (7.62) (-8.90)
Concurrent Return (+) 28,376 184,910 42,462 8,309,900 3,900.20 1,042,300 44,278 9,019,300*** 27,934 5,217,300
(2.78) (3.15) (3.99) (3.41) (0.96) (0.99) (4.38) (5.08) (3.34) (473)
Momentum (-) 103,930 735,770 45,130 33,801,000 39,632 7,223,600 162,980  -25645000**  -117,270"*  -15,818,000"*
(-2.11) (-4.20) (3.17) (-4.65) (-4.03) (-3.29) (-4.56) (-3.47) (-3.55) (3.07)
Momentum (+) -19,956 52,018 -15,119 2,162,800 13,497 5,425,400 27,318 4,066,100 -22,752 -3,686,100
(-0.57) (0.34) (-0.41) (-0.31) (1.25) (2.16) (-1.16) (:0.96) (-:0.96) (-1.03)
Volatility 111,540 368,490 135,240 14,424,000 753.41 -1,379,900 157,180*** 21,421,000*** 165,100*** 22,182,000***
(3.01) (2.46) (5.19) (2.39) (0.08) (-0.70) (7.15) (6.67) (7.87) (7.11)
ShortRate -4.55 10,032*** -1,306.50*** 448,480 -680.44*™* -117,890™* 516.48* 110,360*** 333.36 103,730
(-0.01) (4.58) (-3.65) (-652) (-4.30) (-3.64) (1.95) (2.66) (1.36) (3.21)
TermSpread 649.80" 6,451.90"* -893.82%** -192,430*** 604.53** 117,260 616.74** 18,368 484.94™ 29,673
(173) (3.97) (279) (-2.89) (5.48) (4.93) (2.64) (0.47) (2.39) (0.96)
Quality Spread 987.81" 10,179.00*** -2,190.70"* -457,470" -231.74 -76,141** -36.83 -48,910 -135.83 -9,877.90
(1.65) (351) (-5.47) (-5.37) (1.42) (-2.43) (-0.10) (-0.86) (-0.43) (-0.24)
Monday -313.04*** -2,469.40** -81.62 14,848 67.79 16,813 -350.45*** -108,950*** -278.27*** 293,971
(-2.75) (-4.33) (-0.70) (-0.57) (1.46) (1.55) (-3.29) (-5.65) (-3.21) (-6.43)
Tuesday 269.38** 663.70 264.85" 57,507** 165.93** 18,889 311.77** 14,413 276.51"** 4,302.80
(2.44) (L17) (2.09) (2.10) (3.30) (1.64) (2.90) (0.71) (.11) (0.28)
Wednesday 784.18** 2,818.40** 441.33* 73,710 53.83 22,631 528.80** 37,231 422.95™* 13,851
(7.24) (4.90) (3.44) 2.73) (Lo1) (1.89) (5.11) (2.05) (5.00) (0.99)
Thursday 627.49™* 2,754.20"* 458.54™ 67,273 103.80** 20,991 43251 22,324 378.61""* 5,862.60
(5.85) (4.80) (3.85) (2.63) (2.11) (1.89) (4.27) (1.24) (4.46) (0.42)
QilVola 7,083.10** -5,492.40 -17,293.00*** -1,958,900** 13,984*** 2,179,100*** -2,322.10 -1,651,900** -578.97 -1,125,800**
(2.07) (-0.32) (-5.62) (-3.006) (12.28) (9.30) (-0.99) (-4.06) (-0.30) (-3.73)
n 4.05** 15.71* -5.260* -952.46*** 153 106.92** 3.66"** 59.60 315" -75.88"*
(9.23) (7.74) (15.61) (12.34) (14.92) (4.83) (13.78) (1.32) (13.77) (2.24)
5] 14.50% -27.01 -44.38"* -4,257.60*** 29.92%* 4,398.10"** -4.98 -3,573.40"** -l.64 -2,653.70***
(1.80) (:0.67) (6.91) (-3.00) (12.28) (8.09) (-1.02) (-4.40) (:0.38) (-432)
t3 -7.20 0.53 27.57** 3,518 -15.26™* -2,266.60""* 5.01 2,131.30" 2.84 1,383.60***
(1.49) (0.02) (6:54) (3.92) (-10.83) (7.16) (1.46) (3.63) (1.04) (3.26)
Constant 460.36 -24,056* 26,534*** 5,418,800"* -310.19 431,050*** 1,753.90 1,663,500*** 1,128.80 1,318,900***
(0.15) (-1.74) (13.41) (12.52) (-0.43) (2.97) (1.02) (5.90) (0.74) (6.38)
F-Statistic 128.28 94.90 322.24 220.06 83.78 67.50 239.00 70.56 236.95 105.90
Adjusted R? 0.41 0.33 0.63 0.54 0.31 0.26 0.56 0.27 0.56 0.36
DW Statistic 0.44 0.56 0.76 0.81 1.00 1.03 0.84 0.95 0.71 0.89

Note: Dependent variables are the trading activity variables as described in the data section. Due to limited space and a comprehensive amount of data to fit in this table, we have to shorten the
description - NumTr stands for Number of Trades and Vol for Volume. T-statistics are reported in parentheses. Standard errors are correct for serial dependence and heteroscedasticity with the Newey
(I987) method. *** indicate statistical significance at the 1%, ** at the 5% and * at the 10% level.
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4.4 Determinants of Liguidity and Trading Activity

Climate-based Sentiment, Liquidity and Trading

In this section, we analyze the effect of climate-change based investor sentiment
on the variation of daily liquidity and trading patterns of energy stocks. Climate
change has been a global concern for many decades and recently appeared to reach
its peak in 2019 in terms of global media attention. News on climate change related
topics and policies can easily be retrieved from the public press. To examine how
investors have received global media attention related to climate change over the
years and developed sentiment, we include a dummy variable that captures the
annually held Unirted Nations Climate Conference as part of the United Nations
Framework Convention on Climate Change (UNF CCO)Y, see Table B

Table 4.7: UNFCC - Conferences

Year Symbol Dates City, Country

2006 COP12/CMP 2 6-17 Nov. Nairobi, Kenya

2007 COP13/CMP 3 3-17 Dec. Bali, Indonesia

2008 COP 14/CMP 4 1-12 Dec. Poznan, Poland

2009 COP15/CMP5 7-18 Dec. Copenhagen, Denmark
2010 COP 16/CMP 6 28 Nov. -10 Dec.  Cancun, Mexico

2011 COP17/CMP7 28 Now. - 9 Dec. Durban, South Africa
2012 COP 18/CMP 8 26 Nov. - 7 Dec. Doha, Qatar

2013 COP 19/CMP 9 11-23 Nov. Warsaw, Poland

2014 COP20/CMP10  1-12 Dec. Lima, Peru

2015 COP 21/CMP 11 30 Nov. -12 Dec.  Paris, France

2016 COP22/CMP12  7-18 Now. Marrakech, Morocco
2017 COP23/CMP13  6-17 Nov. Bonn, Germany

2018 COP24/CMP14  3-14 Dec. Katowic, Poland

Note: The UNFCC - United Nations Framework Convention on Climate Change
is a convention that unifies 197 countries to address the mutual concern of cli-
mate change. The COP, (Conference of the Parties), counts as a supreme decision-
making body in the framework of the convention. The first meeting ever of this
institutional body was in Berlin, 1995. Since then, member states meet once a year,
seehttps://unfccc.int

YUnited Nations Framework Convention on Climate Change (UNFCCC) (n.d.). Link:
https://unfccc.int
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Regression coefficients are reported in Table .8 and f.9. The amended form of

the time-series regression can be written as follows:

a\]'Dﬂ)Uj, t -+

4
=1

2 5
Yy, = a+¢pShortRate, + Z 4 Defaulty,+ Z ymMarket,, ; +
d=1 m=1 j

\LClimaz‘e, + [Qll‘l + (@21'2 + (@3f3 + ¢ (45)

where Y is Dollar EffectiveSpread, Dollar PriceImpact, NumTrades and Volume, (k =
4), for energy sector  and Climate, displays the dummy variable that takes on the
value of 1 on the days on which the conference is held and 0 if otherwise. As we
focus on variation and determinants of daily liquidity and trading patterns, the
inclusion of a daily dummy variable seems the only plausible measure to proxy
for climate change related sentiment in this setting. The remaining variables are

identical to the regression in the previous sections.

We find that averages of effective spreads across all energy segments are not sig-
nificantly higher during days on whose the conference is held. Moreover, we ob-
serve similar findings for the price impact measure across all energy segments, rul-
ing out that price impact of trades, and hence order-flow related price changes, are
higher during the conference days. Turning to the number of trade executions,
(Table B.9), we find that investors execute more trades for the renewable energy
segment on days on whose the conferences take place (statistically significant at
the 5% level). Similarly, we find trade volume of renewables to increase during
the conference days (significant at the 10% level). This may indicate some degree
of sentiment for renewable stocks, however without any significant impact on lig-
uidity (i.e. order-related price impacts), as mentioned above. Similar findings with
statistical significance can be regarded for trading activity (number of trades and

volume) of stocks from the multi-utility sector.

In sum, we make a first attempt to initiate the consideration of climate change as
source for investor sentiment in conjunction with its impact on liquidity and trad-
ing of energy stocks. Considering the difficulties in proxying for climate change
based sentiment, our results may serve a purpose for other researchers to come
up with new ways to model this concern within a financial model. Our findings
can be attributed to higher noise trading during the annual conference for climate

change, especially for stocks from the renewable and multi-utility sector.
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Table 4.9: Regression Results - Equally-weighted (3,263 observations)

Energy Sector Oil&Gas Coal Renewables Electric- Multi-
Utilities Utilities
Coefficients NumTr Vol NumTr Vol NumTr Vol NumTr Vol NumTr Vol
Concurrent Return (-) -85,102*** -433,480™* -99,902*** -17,846,000*** -15,126*** -2,544,000*** -100,280*** -14,984,000"** -76,918"** -11,517,000***
(6.33) (-6.86) (7.21) (775) (-4.32) (2.92) (7.87) (7.86) (758) (-8.73)
Concurrent Return (+) 23,692 193,170+ 43,157 8,941,400 549.77 495,540 41,8647 9,003,800%* 25,791 5,130,600
(2:52) (3.42) (4.08) (3.63) (-0.14) (0.50) (4.23) (5.03) (3.23) (4.62)
Momentum (-) -108,970** -720,780*** -156,110%** -32,987,000*** -39,176™** -6,905,500*** -166,690*** -26,867,000"** -120,800*** -17,212,000***
(-2.37) (-4.38) (3.33) (-4.65) (-3.43) (-2.83) (-4.67) (-355) (-3.80) (332)
Momentum (+) -33,402 75,144 -3,262.20 314,550 -3,285.60 2,701,500 -31,020 -3,830,200 -27,180 -3,727,900
(-1.02) (0.51) (-0.08) (0.04) (-0.30) (110) (-1.41) (-0.93) (1.22) (-1.05)
Volatility 102,930 380,580** 133,550 15,793,000*** -6,088.30 2,312,700 151,680™** 21,240,000*** 157,720 21,325,000***
(2.89) (257) (5.06) @71) (:0.60) (-1.04) (671) (6.05) (752) (6.39)
ShortRate -5.16 9,812.70*** -3,051.10"** -560,460*** 67.39 -3,999.30 39.52 -45,641 44.56 -29,754
(-0.012) (5.02) (-8.67) (-878) (0.46) (-0.14) (0.15) (-1.14) (0.20) (:0.94)
TermSpread 569.96* 4,522*** -278.04 -166,270*** 402.91** 82,341 845.26** 96,220 632,417 89,015***
(1.67) (2.93) (-0.81) (-2.66) (3.23) (3.22) (4.07) (2.89) (3.45) (3.23)
Quality Spread 744.67 9,481.90""* -2,361.70** -443,700""* -336.49" -97,092*** -134.73 -58,619 -220.69 -28,974
(119) (3.21) (-5.03) (-5.05) (173) (-2.88) (-0.38) (-1.00) (-0.69) (:0.70)
Monday -281.27*** -2,383.90"** -40.76 -12,096 73.73* 23,207** -320.53*** -102,500*** -257.16*** -88,293***
(-2.84) (-4.64) (-:0.38) (-0.48) 172) (2.26) (-3.39) (-5.90) (:3.35) (6.67)
Tuesday 281.21%* 897.66* 234.76%* 45,928% 191.04** 30,861*** 297 46" 17,006 261.93*** 7,390.90
(2.94) (178) (2.06) (1.84) (4.08) (2.81) (3.09) (0.92) (331) (053)
Wednesday 797.35** 3,192.30*** 442.80"* 81,888 88.30" 33,895 494.71 36,603** 403.61"* 18,140
(8.40) (613) (3.80) (3.21) (L81) (2.99) (535) (2.23) (5.39) (1.43)
Thursday 629.88"** 3,039.40"* 496.21"* 92,710 113.99* 26,702** 393.61"** 18,320 347.44™ 7,509.30
(677) (5.86) (455) (3.77) (253) (255) (4.36) (112) (4.63) (0.59)
ClimateChange 586.63 4,064.50 -560.26 -139,700 409.40** 85,262* 220.65 43,397 651.72%** 84,938
(0.83) (1.28) (1.33) (1.50) (2.14) (1.81) (0.68) (0.86) (2.02) (2.69)
5% 3.90"** 13.57** -3.39* -829.25"** 0.75*** -17.66 419" 246.07*** 3.46"** 73.01**
(12.67) (8.83) (12.21) (15.77) (676) (-0.85) (22.77) (8.75) (20.23) (2.91)
2 3.07* -25.09* 3.59* 476.36 -0.52 -339.50" 3.78% 76254 218" 599.65*
(1.87) (2.75) (1.93) (1.10) (-0.62) (-1.81) (2.40) @.15) 2.17) (257)
t3 3.59" -8.95 8,53 991.33*** 3.03*** 591.44™* 3.55" 290.50* 3.27% 247.77**
(2.24) (-L18) (6.64) (4.02) (5.91) (6:52) (4.19) (2.03) (451) (2.61)
Constant 1,649.80 -14,066 22,482 5,099,600*** 1,768.40* 774,980*** 666.08 1,195,600*** 549.01 985,640***
(057) (-1.05) (10.20) (12.45) (1.92) (459) (0.41) (4.67) (0.37) (5.05)
F-Statistic 291.73 99.60 335.76 207.95 67.12 48.62 533.32 146.03 506.13 143.2
Adjusted R? 0.58 0.32 0.62 0.50 0.24 0.18 0.72 0.41 0.71 0.41
DW Statistic 0.44 0.57 0.69 0.79 0.85 0.97 0.81 0.90 0.70 0.83

Note: Dependent variables are the Number of trade executions and the trade volume as described in the data section. Due to limited space and a comprehensive amount of data to fitin this table, we have
to shorten the description - NumTr stands for Number of Trades and Vol for Volume T-statistics are reported in parentheses. Standard errors are corrected for serial dependence and heteroscedasticity
with the Newey and Wes{ ([987) method. *** indicate statistical significance at the 1%, ** at the 5% and * at the 10% level.
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We examine daily liquidity and trading activity of 154 energy stocks traded at U.S.
stock exchanges. Grouping stocks into five energy sectors, namely, oil and gas, coal
mining, renewables, electric-utilities and multi-utilities, we find that sectoral liquid-
ity and trading activity is volatile and serial correlated (for levels and daily changes).
Compared to previous studies, the dynamics of liquidity and trading activity, here
for a subset of energy stocks, continue its downward and upward trends, respec-
tively. This is mainly attributed to higher efficiency in faster equity markets. We
find that trading activity for coal and utility stocks is on average higher than for
oil and gas stocks. Spreads for utility stocks are roughly half of those from the

renewable and nonrenewable sectors, indicating higher liquidity in comparison.

Our empirical analysis also shows a series of factors that help explain variation
in the levels of daily liquidity and trading activity. In particular, we find that
concurrent equity market returns significantly affect liquidity and trading pat-
tern across most energy sectors. This effect is more pronounced for down-market
movements, providing evidence for a higher degree of correlated trading behav-
ior, i.e. offloading positions across many asset classes and stock segments. Recent
market trends are associated with more liquid markets, (smaller spreads). Con-
sistent with previous studies, we report a positive relationship between volatility
and illiquidity and trading. Further, our results show that liquidity and trading
increase for most sectors, in light of a higher term spread. We relate these findings
to the historical importance of the term spread as recession indicator in the eyes of

market participants.

Higher oil prices have a heterogenous effect on liquidity and trading, depending
on the sector. Spreads and trading decrease for renewables and utilities in the light
of a rising oil price. Spreads for oil and gas and coal mining stocks display the
opposite, that is, increasing spreads (less liquidity). At the same time, oil price
volatility tends to decrease liquidity for most sectors, despite controlling for stock
market volatility. Moreover, oil price variability increases trade numbers of oil and

gas stocks but decreases trade volume for utilities.

We document weekly regularities in liquidity and trading. Spreads tend to be
higher, (less liquidity) on Fridays and trading is lower on Mondays or Fridays de-
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pending on the energy sector. Finally, we document higher trading (number of
trade executions and trade volume) for renewable and multi-utility stocks on days
on whose the annual United Nation Climate Change conference is held, suggest-
ing a higher number of noise traders.

Our results are important for market participants (investors and market mak-
ers) who engage in daily transactions. The study on daily liquidity and trading
seem crucial when entering and exiting positions on a daily basis. We do not deny
that our findings, especially the influence of the selection of explanatory variables,
i.e. financial stress indicators, volatility or down-market movements, are not ex-
clusive to energy stocks and apply to a broader range of securities, but perhaps
with differences in its explanatory power. As is known in the literature, liquidity
and subsequently trading is to some degree a self-sustainable market microstruc-
ture element. Investors do not trade in illiquid periods and trade in liquid ones
which decreases liquidity for the first and increase liquidity for the latter scenario
even further, Admati and Pfleiderer| (1988). Finally, given the data availability, fu-
ture research is encouraged to explore day-to-day changes in liquidity and trading
patterns for (energy) stocks on a more global scale and with a focus on sectoral

heterogeneity.
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Additional Tables and Figures

Table A17: Summary Statistics - Explanatory Variables

Variables Short Rate  TermSpread  QualitySpread ~ WTI(in$)  CRSP Index
Levels

Mean 1.22 1.83 2.69 74.45 0.03

Std.Dev. 1.74 1.05 0.84 22.55 1.11

Max S5.41 3.83 6.16 145.31 10.73

Min 0.04 -0.64 1.53 26.19 -7.83

Note: The sample period spans from January 10, 2006 to December 31, 2018, resulting in 3,263 daily observations. Levels
are reported in % and for the WTTin §. The explanatory variables are proxied as follows: ShorzRate: Yield on the overnight
Federal Fund Rate; TermSpread: Yield spread between the constant maturity 10-year U.S. treasury bond and the yield of
the federal fund rate; QualitySpread: Yield spread between the Moody’s BAA corporate bond and the yield on a 10-year
constant maturity Treasury bond; W 7T7: Crude Oil Price - West Texas Intermediate; CRSP index: Returns on the equally-
weighted CRSP equity index based on NYSE, AMEX and NASDAQ stocks.
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Table A18: Stock Decomposition - SIC Classification

Nr. SIC-Code  SICIndustry Sample Sector
1 1311 Crude Petroleum & Natural Gas Oil&Gas

2 1381 Drilling Oil & Gas Wells Oil&Gas

3 1382 Oil & Gas Field Exploration Services Qil&Gas

4 1389 Oil & Gas Field Services Oil&Gas

5 2911 Petroleum Refining Oil&Gas

6 3533 Oil & Gas Field Machinery & Equipment Oil&Gas

7 4922 Natural Gas Transmission Oil&Gas

8 4923 Natural Gas Transmission & Distribution Oil&Gas

9 4924 Natural Gas Distribution Qil&Gas

10 1220 Bituminous Coal & Lignite Mining Coal Mining
11 1221 Bituminous Coal & Lignite Surface Mining Coal Mining
12 1090 Miscellaneous Metal Ores Coal Mining
13 2860 Industrial Organic Chemicals Renewables
14 3690 Miscellaneous Electrical Machinery, Equipment & Supplies ~ Renewables
15 3674 Semiconductors & Related Devices Renewables
16 8731 Services-Commercial Physical & Biological Research Renewables
17 4911 Electric Services Electric-Utilities
18 4931 Electric & Other Services Combined Multi-Utilities
19 4932 Gas & Other Services Combined Multi-Utilities

Note: Stocks from the NYSE, AMEX and NASDAQ are assigned to industries based on the four-digit SIC code.
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4.6 Appendix

Figure A8: Daily Effective Spread per Energy Segment.
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Electric-Utilities
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Note: Daily effective Spread between January 10, 2006 and December 31, 2018, n = 3263. The unfiltered time-series per
energy segment is plotted in turquoise, Savitzky-Golay smoothing in red.
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4.6 Appendix

Figure A9: Daily Price Impact of Trades per Energy Segment.
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Electric-Utilities
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Note: Daily price impact of trades between January 10, 2006 and December 31, 2018, n = 3263. The unfiltered time-series
per energy segment is plotted in turquoise, Savitzky-Golay smoothing in red.
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Figure A10:

4.6 Appendix

Daily Number of Trades per Energy Segment.
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Electric-Utilities
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series per energy segment is plotted in turquoise, Savitzky-Golay smoothing in red.
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Figure All: Daily Trade Volume (in Shares) per Energy Segment.
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Share Volume

Share Volume

Note: Daily trade volume between January 10, 2006 and December 31, 2018, n = 3263.
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4.6 Appendix

Figure A12: Number of Stocks in Energy Segment
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Note: This plot represents the average number of stocks in each energy sector. In our analysis, we aggregate stock-specific
liquidity and trading activity characteristics and equally-weight them by the number of stocks in the sample for each seg-
ment. Due to the fact that some firms have gone public later in the sample period or others have merged business activities,
we control for the weighting dynamically. In a second step, we use the interquartile method to delete outlier-like records
for each measure that exceed twice the interquartile ranges. As result, we delete records and lose its counting as number
of stocks on each trading day. As we may delete an outlier record of liquidity data for stock X but its corresponding trade
volume on that particular day was well within the pre-defined interquartile range, we get different numbers in the counting
of stocks for each measure. To finally get a compact average visualization of the number of stocks in each segment, we take
the cross-sectional average of the count of stocks considered for each measure for each segment on each trading day.

113



4 Liguidity and Trading Activity of Energy Stocks

Figure Al13: Histogram - Effective Spread per Energy Segment.
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Figure Al4: Histogram - Price Impact per Energy Segment.
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Figure A15: Histogram - Number of Trades per Energy Segment.
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Figure Al6: Histogram - Trade Volume (in Shares) per Energy Segment.

Coal

Oil and Gas 200

450 -

x10*

Electric Utilities

300~ Renewables

Volume
Volume

%10°

400 - Multi-Utilities

Volume

117



4 Liguidity and Trading Activity of Energy Stocks

118



S CONCLUSION

This dissertation contributes to a better understanding of liquidity in financial
markets. Relying on the latest proxies for liquidity and TAQ (trades and quotes)
benchmark data, this dissertation investigates liquidity in financial markets from
different perspectives and gives answers to crucial challenges when assessing the
importance of liquidity; its time-varying commonality across assets and stock mar-
kets; its impact on asset pricing in abnormal market states and finally its dynamics
and determinants on a daily basis. This study has implications for investors and
market makers as part of risk management and portfolio diversification and for
policy makers in the context of designing optimal regulatory frameworks to pre-

dict and prevent common sources of liquidity tightness in global financial markets.

In the second chapter, I study commonality in liquidity and its association to
market volatility. Taking on a global perspective on this matter and examining
nine major stock markets, I first construct a novel and dynamic measure of com-
monality in liquidity. I show that liquidity commonality is present in global stock
markets and increases parallel to crisis periods. This finding points towards abrupt
changes in liquidity fundamentals and clearly provide evidence for demand- and
supply-driven sources of commonality in liquidity (i.e. correlated trading behav-
ior on institutional level paired with restrictions on funding capital) on a global
scale. Driven by the well acknowledged findings of a positive relationship between
volatility and illiquidity, I investigate a time-varying tie between common varia-
tion in liquidity and volatility. Using a dynamic granger-causality test, I find that
global market volatility always causes commonality in liquidity while commonal-
ity in liquidity causes volatility only in sub-periods, spanning over the global fi-

nancial crisis and its aftermath period.

In the third chapter, I examine the effect of systemic liquidity risk as a priced
risk factor in asset pricing. Hereby, I challenge the previous literature in their find-
ing of a linear relationship between systemic liquidity risk and asset prices. I show
that systemic liquidity risk is not always a priced factor in the explanation of asset
prices. I find that systemic liquidity risk and asset prices are negatively associated in
bad market states. This finding can be explained by downward trended liquidity

spirals, in other words, an interaction between demand- and supply-sided com-
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monality in liquidity, which cause a depression in asset pricing during bad market
states. I also show thatliquidity risk has a positive link to asset pricing in good mar-
ket states, which is mainly associated with search-for-yield considerations. Finally,
I document that there is no significant relationship between systemic liquidity risk
and asset pricing during normal market swings. This finding supports the initial
claim that market participants do not worry too much about the state of market-

wide liquidity during regular times.

In the fourth chapter, I investigate daily liquidity and trading activity of energy
stocks traded at U.S. stock exchanges, categorized into five energy sectors, that is,
0il and gas, coal mining, renewables, electric- and multi-utilities. Using TAQ data,
I examine various dimensions of liquidity and trading - effective spreads, price im-
pact of trades, number of trades and volume - on sectoral level. I document cross-
sectional differences in the level of liquidity and trading across energy stock seg-
ments. Similar across sectors, I find that liquidity and trading exhibit trends and
serial dependency up to several weeks. There is a weekly pattern for trading and
liquidity, both decline on Fridays, on average. I also identify a number of factors
that affect trading and liquidity of energy stocks, similarly across sectors, that is,
general market movements, short-term momentum runs and overall stock market
volatility, which points again towards the direction of correlated trading, amplified
by institutional investors. Moreover, I show that trading and liquidity are sensi-
tive to a widening Term Spread. I find a heterogeneous effect of the oil price on
liquidity and trading activity, dependent on the energy segment. Despite control-
ling for stock market volatility, I observe that illiquidity and trading increase with
higher levels of oil price volatility. Finally, I show that trading activity, both, in
number of trade executions and share volume, increases for renewable and multi-

utility stocks, when climate change receives global media attention.

Fast markets and increased trading make liquidity to be one of the top consid-
erations in the smooth functioning of financial markets, especially in the light of
financial distress and sudden, downward trended liquidity spirals, where liquidity
adjusts to different equilibria levels. For future discussion, there is further need to
address liquidity in its different dimensions and in the context of financial market
quality, information efficiency and sentiment. This dissertation is yet another step

for a more comprehensive knowledge on liquidity.
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