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Abstract

The first part of the thesis is devoted to obtain a Sobolev type embedding result
for Besov spaces defined on a doubling metric space. This will be done by ob-
taining pointwise estimates between the special difference f∗∗µ (t) − f∗µ(t) (called
oscillation of f∗µ) and the X−modulus of smoothness defined by

EX(f, r) ∶= ∥−∫
B(x,r)

∣f(x) − f(y)∣dµ(y)∥
X

.

(here f∗µ is the decreasing rearrangement of f, f∗∗µ (t) = 1
t ∫

t
0 f∗µ(s)ds, for all t > 0

and X a rearrangement invariant space on Ω.
In the second part of the thesis, to obtain symmetrization inequalities on proba-
bility metric spaces that admit a convex isoperimetric estimator which incorpo-
rate in their formulation the isoperimetric estimator and that can be applied to
provide a unified treatment of sharp Sobolev-Poincaré and Nash type inequalities.





Chapter 1

Introduction

This monograph is devoted to the study of Sobolev type embedding results in
the setting of:

• Besov spaces defined on doubling metric spaces (Chapter 3),

• Probability metric spaces with convex isoperimetric profile (Chapter 4).

The history of Sobolev embeddings started in the thirties of the last century
with Sobolev’s famous embedding theorem: [91]

W 1
p (Ω) ⊂ Lr(Ω) (1.0.1)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary, Lr, 1 ≤ r ≤
∞ stands for the Lebesgue space, and W 1

p (Ω), 1 < p <∞, are the classical Sobolev
spaces. The latter have been widely accepted as one of the crucial instruments
in functional analysis – in particular in connection with PDES – and have played
a significant role in numerous parts of mathematics for many years. Sobolev’s
famous result (1.0.1) holds for p < n and r such that 1

n −
1
p ≥ −

1
r (strictly speaking

[91] covers the case 1
n −

1
p > −

1
r whereas the extension to 1

n −
1
p = −

1
r was obtained

later). In the limiting case, when p = n, the inclusion (1.0.1) does not hold for
r =∞, whereas for all 1 ≤ r <∞

W 1
n(Ω) ⊂ Lr(Ω). (1.0.2)

Roughly speaking, the theory of Sobolev inequalities originated in classical in-
equalities from which properties of real functions can be deduced from those of its
derivatives. In fact, (1.0.2) can be understood as the impossibility of specifying
integrability conditions of functions in W 1

n(Ω) by means of Lr(Ω) conditions. In-
equalities (1.0.1) and (1.0.2) are not optimal. In order to get further refinements,
it is necessary to deal with a wider class of spaces. In the sixties of the last
century, Peetre [84], Trudinguer [97] and Pohozarev [85] independently found

1



CHAPTER 1. INTRODUCTION

refinements of (1.0.1) expressed in terms of Orlicz spaces. In 1979, Hansson [43]
and Brezis and Wainger [11] showed independently that W 1

n(Ω) is embedded in
a Lorentz–Zygmund type space. Limiting Sobolev embeddings, in more general
settings, have been investigated by several authors (see [70] and the references
quoted therein).

If instead of working on bounded domains with a nice boundary, we work in
the full space, Sobolev’s embedding theorem in Rn states that (see [93]1 and the
references quoted therein):

W 1
p (Rn) ⊂

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L
np
n−p ,p(Rn) p < n (subcritical case),

L∞,p(log L)−1(Rn) p = n (critical case),
L∞(Rn) p > n (supercritical case).

(1.0.3)

The Lorentz spaces Lp,q (Rn) are defined as the collection of functions of finite
function quasi-norm

∥f∥Lp,q = (∫
∞

0
(s1/pf∗(s))

q ds

s
)
1/q

,

when 0 < p, q <∞, and
∥f∥p,∞ = sup

0<t<1
s1/pf∗(s).

when q = ∞ (f∗ denotes the decreasing rearrangement of f). The Lorentz–
Zygmund spaces L∞,q(logL)−1, 1 ≤ q <∞, are defined as the set of functions for
which the quasi-norm

∥f∥L∞,q(logL)−1 =
⎛
⎝∫

∞

0

⎛
⎝

f∗∗(t)
1 + log+ (1t )

⎞
⎠

q
dt

t

⎞
⎠

1/q

,

is finite (where f∗∗µ (t) = 1
t ∫

t
0 f∗µ(s)ds).

Generalizations of (1.0.3) have been considered by replacing W 1
p (Rn) by a

Besov space.
Given 0 < s < 1,1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the Besov space Ḃs

p,q(Rn) is the
linear set of functions f ∈ Lp

loc(R
n) of finite quasi-norm

∥f∥Ḃs
p,q(Rn) ∶= (∫

∞

0
(t−sωp(f, t))q

dt

t
)
1/q

,

where
ωp(f, t) ∶= sup

∣h∣≤t
∥f(x + h) − f(x)∥Lp(Rn)

is the Lp-modulus of continuity. Here the parameters s and q give a finer grada-
tion of smoothness. The scales of Besov spaces Ḃs

p,q, on Rn, or in domains of Rn,
1In the introduction of that paper there is an excellent history of the evolution of

this problem.
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were introduced between 1959 and 1975. A comprehensive treatment of these
function spaces and their history can be found in Triebel’s monographs [94], [95].

The Sobolev embedding in this context2 states that

Ḃs
p,q(Rn) ⊂

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L
np

n−sp ,q(Rn) p < n
s (subcritical case),

L∞,q(logL)−1(Rn) p = n
s (critical case),

L∞(Rn) p > n
s (supercritical case).

(1.0.4)

One proof of the subcritical case is based on real interpolation. We recall
briefly the construction of real interpolation spaces (see [6] for a complete treat-
ment). Let (A0,A1) be a pair of quasi-Banach spaces that are compatible in
the sense that both A0 and A1 are continuously embedded in some common
Hausdorff topological vector space H. The K-functional is defined, for t > 0 and
f ∈ A0 +A1, by

K(t, f ;A0,A1) = inf
f=f0+f1

{∥f0∥A0
+ t ∥f1∥A1

}

For 0 < s < 1 and 0 < q ≤∞, the real interpolation space A⃗s,q = (A0,A1)s,q is the
set of all f ∈ A0 +A1 such that

∥f∥(A0,A1)s,q ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
∞

0
(K(t, f ; A⃗)

ts
)
q
dt

t
)
1/q

, 0 ≤ q <∞,

sup
t>0

t−sK(t, f ; A⃗), q =∞,

is finite.
Since (cf. [6])

K(t, f ;Lp(Rn), Ẇ 1
p (Rn)) = inf

f=f0+f1
{∥f0∥Lp + t ∥f1∥Ẇ 1

p
} ≃ ωp(f, t),

we get
∥f∥(Lp(Rn),Ẇ 1

p (Rn))s,q = ∥f∥Ḃs
p,q(Rn).

Using the fact that Lp(Rn) ⊂ Lp(Rn) and that Ẇ 1
p (Rn) ⊂ L

np
n−p ,p(Rn), we

obtain by interpolation

Ḃs
p,q(Rn) = (Lp, Ẇ 1

p )s,q(Rn) ⊂ (Lp, L
np
n−p ,p)s,q(Rn) = L

np
n−sp ,q(Rn).

Our main objective in Chapter 3 will be to give an extension of (1.0.4) in the
context of doubling metric spaces3. A theory of Besov spaces on metric measure

2(See for example DeVore, Riemenschneider and Sharpley [18], Netrusov [82], Gold-
man and Kerman [29], Caetano and Moura [12],[13], Martín [60], or Haroske and Schnei-
der [44]).

3Metric spaces play a prominent role in many fields of mathematics. In particular,
they constitute natural generalizations of manifolds, admitting all kinds of singularities
and still providing rich geometric structure.
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CHAPTER 1. INTRODUCTION

spaces was developed in [38], which is a generalization of the corresponding theory
of function spaces on Rn (see [94],[95],[96]), respectively, Ahlfors n-regular metric
measure spaces (see [39],[41]).

There are several equivalent ways to define Besov spaces in the setting of
a doubling metric space (see for example [27],[28],[38],[75],[74],[105],[45] and the
references therein). In Chapter 3, we shall use the approach based on a general-
ization of the classical Lp-modulus of smoothness introduced in [27].

Let (Ω, d, µ) be a metric measure space equipped with a metric d and a Borel
regular outer measure µ, for which the measure of every ball is positive and finite.
Given t > 0, 0 < p <∞ and f ∈ Lp

loc(Ω), the Lp-modulus of smoothness is defined
by

Ep(f, t) = (∫
Ω
(−∫

B(x,t)
∣f(x) − f(y)∣p dµ(y))dµ(x))

1/p
,

where −∫B f(x)dµ(x) ∶= 1
µ(B) ∫B f(x)dµ(x) is the integral average of a locally in-

tegrable function f over B.

Definition 1.0.1. For 0 < s <∞, the homogeneous Besov space Ḃsp,q(Ω) consists
of those functions f ∈ Lp

loc(Ω) for which the seminorm

∥f∥Ḃs
p,q(Ω)

∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∫
∞
0 (

Ep(f,t)
ts )

q
dt
t )

1/q
, 0 < q <∞,

sup
t>0

t−sEp(f, t), q =∞,

is finite.

This definition is rather concrete and gives the usual Besov space in the
Euclidean setting since Ep(f, t) is equivalent to the classical Lp(Rn)-modulus
(see (3.1.2) in Section 3.1 below). Moreover, it has been shown by Müller and
Yang [74] that it coincides with the definition based on test functions used earlier
by Han [40], Han and Yang [42], and Yang [103], provided that Ω, besides being
doubling, also satisfies a reverse doubling condition.

The abstract variant of (1.0.4) for metric spaces is only known in the following
particular case (see [27] and [45]):

Theorem 1. Let Ω be a Q-regular metric space, i.e. there exists a Q ≥ 1 and a
constant cQ ≥ 1 such that

c−1Q rQ ≤ µ(B(x, r)) ≤ cQrQ

for each x ∈ X, and for all 0 < r < diam Ω (here diam Ω is the diameter of Ω).
Suppose that 0 < s < 1 and 1 ≤ q ≤∞. Then:

4



1. (See ([27, Thm. 5.1])) Suppose Ω satisfies a (1, p)-Poincaré inequality, i.e.
if there exist constants Cp ≥ 0 and λ ≥ 1 such that

−∫
B
∣f − fB ∣dµ ≤ (−∫

λB
gpdµ)

1/p

for any locally integrable functions f for all upper gradients4 g of f . Then

Ḃsp,q(Ω) ⊂ Lp(Q),q
µ (Ω) (1.0.5)

for 1 < p < Q/s, where p(Q) = Qp/(Q − sp).

2. (See ([45, Thm. 4.4])) If Ω is geodesic, i.e. every pair of points can be
jointed by a curve whose length is equal to the distance between the points,
then (3.1.3) holds for 1 ≤ p < Q/s.

The proof of this theorem is based on the real interpolation method, for exam-
ple in ([27, Thm. 5.1]) under a (1, p)-Poincaré inequality assumption, the Besov
space Ḃsp,q(Ω) is realized as the real interpolation space (Lp(Ω),KS1,p(Ω))α,q
between the corresponding Lp(Ω) and the Sobolev space of Korevaar and Schoen
KS1,p(Ω), consist of measurable functions f of finite norm5

∥f∥KS1,p(Ω) ∶= lim sup
t→0

Ep(f, t)
t

. (1.0.6)

They proved that Ep(f, t) is equivalent to the K-functional between Lp(Ω) and
KS1,p(Ω). Moreover if Ω is Q-regular, then

∥f∥
L

Qp
Q−p
µ (Ω)

⪯ ∥f∥KS1,p(Ω) , (1.0.7)

and, consequently, interpolation allows one to obtain embedding theorems.
The key point in the previous argument is the embedding (1.0.7), which is

only known for Q-regular spaces.
The purpose of Chapter 3 will be to obtain a Sobolev type embedding result

for Besov spaces defined on a doubling metric space. In our investigation we will
avoid the use of interpolation techniques that require the presence of a Sobolev
type space. The main idea will be to extend to the metric side the Euclidean
oscillation inequality

f∗∗(t) − f∗(t) ≤ 21/p
ωp(f, t1/n)

t1/p
, t > 0 (1 ≤ p <∞).

4A non-negative Borel function g is an upper gradient of a function f ∶ Ω → R if
∣f(y) − f(x)∣ ≤ ∫

γ
gd, s for every x and y ∈ Ω and every rectifiable path γ in Ω with

endpoints x and y (see [46],[27]).
5When Ω is a Riemannian manifold this definition yields the usual Sobolev space

and the quantity in (3.1.4) is equivalent to the usual semi-quasinorm (see [56]).
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CHAPTER 1. INTRODUCTION

(Here f∗∗(t) = 1
t ∫

t
0 f∗(s)ds (see [55],[57],[59],[63] and the references quoted therein)).

Chapter 3 is organized as follows: Section 3.2 contains basic definitions and
technical results on doubling metric measure spaces. In Section 3.3 we obtain
pointwise estimates of the oscillation Oµ(f, t) = f∗∗µ (t) − f∗µ(t) in terms of the
X-modulus of smoothness defined by

EX(f, r) ∶= ∥−∫
B(x,r)

∣f(x) − f(y)∣dµ(y)∥
X

.

Here, X is a rearrangement invariant space6 on Ω. In Section 4.3 we define
generalized Besov type spaces and use the oscillation inequalities obtained in the
previous sections to derive embedding Sobolev theorems. In Section 3.5 we deal
with generalized uncertainty Sobolev inequalities in the context of Besov spaces.
In Section 3.6 a criterion for essential continuity and for the embedding into
BMO (Ω) will be obtained. Finally in Section 3.7 we will study in detail the
case Ḃsp,q(Ω) for 0 < s < 1, 0 < p <∞ and 0 < p ≤∞.

The results contained in Chapter 3 has been published in Journal of Mathe-
matical Analysis and Applications (see [67]).

In the second part of this memoir (Chapter 4) we will study Sobolev inequal-
ities in metric spaces with convex isoperimetric profile. In order to explain what
our main objective will be, we now recall some definitions.

Let (Ω, d, µ) be a connected metric space equipped with a separable Borel
probability measure µ. The perimeter or Minkowski content of a Borel set A ⊂ Ω
is defined by

µ+(A) = lim inf
h→0

µ (Ah) − µ (A)
h

,

where Ah = {x ∈ Ω ∶ d(x,A) < h} is the open h-neighbourhood of A. The isoperi-
metric profile Iµ is defined as the pointwise maximal function Iµ ∶ [0,1] →
[0,∞) such that

µ+(A) ≥ Iµ (µ(A))

for all Borel sets A. An isoperimetric inequality measures the relation between
the boundary measure and the measure of a set, by providing a lower bound on
Iµ by some function I ∶ [0,1]→ [0,∞) which is not identically zero.

The modulus of the gradient of a Lipschitz function f on Ω (briefly f ∈
Lip(Ω)) is defined by7

∣∇f(x)∣ = lim sup
d(x,y)→0

∣f(x) − f(y)∣
d(x, y)

.

6I.e. such that if f and g have the same distribution function, then ∥f∥X = ∥g∥X (see
Section 2.2 below).

7In fact one can define ∣∇f ∣ for functions f that are Lipschitz on every ball in (Ω, d)
(cf. [7] for more details).

6



The equivalence between isoperimetric inequalities and Poincaré inequalities
was obtained by Maz’ya. Maz’ya’s method (see [16], [62] and [70]) shows that
given X =X(Ω) a rearrangement invariant space8, the inequality

∥f − ∫
Ω
fdµ∥

X
≤ c ∥∣∇f ∣∥L1 , f ∈ Lip(Ω), (1.0.8)

holds if, and only if, there exists a constant c = c(Ω) > 0 such that for all Borel
sets A ⊂ Ω

min (ϕX(µ(A)), ϕX(1 − µ(A))) ≤ cµ+(A), (1.0.9)
where ϕX(t) is the fundamental function9 of X ∶

ϕX(t) = ∥χA∥X , with µ(A) = t.

Motivated by this fact, we will say (Ω, d, µ) admits a concave isoperimetric
estimator if there exists a function I ∶ [0,1]→ [0,∞) which is continuous, concave,
increasing on (0,1/2), symmetric about the point 1/2, such that I(0) = 0 and
I(t) > 0 on (0,1), and satisfies

Iµ(t) ≥ I(t), 0 ≤ t ≤ 1.

In recent work, Milman and Martín (see [61], [63]) proved that (Ω, d, µ) ad-
mits a concave isoperimetric estimator I if, and only if, the following symmetriza-
tion inequality

f∗∗µ (t) − f∗µ(t) ≤
t

I(t)
∣∇f ∣∗∗µ (t), (f ∈ Lip(Ω)) (1.0.10)

where f∗∗µ (t) = 1
t ∫

t
0 f∗µ(s)ds, and f∗µ is the non-increasing rearrangement of f with

respect to the measure µ. If we apply a rearrangement invariant function norm
X on Ω (see Sections 2.1 and 2.2 below) to (1.0.10), we obtain Sobolev–Poincaré
type estimates of the form10

∥(f∗∗µ (t) − f∗µ(t))
I(t)
t
∥
X̄

≤ ∥∣∇f ∣∗∗µ ∥X̄ . (1.0.11)

To see how the isoperimetric profile helps to determine the correct spaces, con-
sider the basic model cases (see [64], [65]).

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, X = Lp (Ω) , 1 ≤ p ≤ n, and
p∗ be the usual Sobolev exponent defined by 1

p∗ =
1
p −

1
n . Then

∥(f∗∗(t) − f∗(t)) I(t)
t
∥
Lp

≃ ∥(f∗∗(t) − f∗(t))∥Lp∗,p , (1.0.12)

8i.e. such that if f and g have the same distribution function then ∥f∥X = ∥g∥X (see
Section 2.2 below).

9We can assume with no loss of generality that ϕX is concave (see Section 2.2.1
below).

10 X̄ denotes the representation space of X (see Section 2.2 below).
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CHAPTER 1. INTRODUCTION

which follows from the fact that the isoperimetric profile is equivalent to I(t) =
cnmin(t,1 − t)1−1/n, and Hardy’s inequality (here Lp∗,p is a Lorentz space (see
Section 2.2 below)). In the case of Rn with a Gaussian measure γn, and let
X = Lp, 1 ≤ p <∞, then (compare with [23], [34]), since I(Rn,d,γn)(t) ≃ t(log 1/t)1/2
for t near zero, we have

∥(f∗∗γn (t) − f
∗
γn(t))

I(t)
t
∥
Lp

≃ ∥(f∗∗γn (t) − f
∗
γn(t))∥Lp(Log)p/2 , (1.0.13)

where Lp(logL)p/2 is a Lorentz–Zygmund space (see Section 2.2).
In this fashion, in [61], [63], [64] and [65], Milman and Martín were able to

provide a unified framework for studying the classical Sobolev inequalities and
logarithmic Sobolev inequalities. Moreover, the embeddings (1.0.11) turn out to
be the best possible in all the classical cases. However, the method used in the
proof of these results cannot be applied to probability measures with heavy tails,
since the isoperimetric estimators of such measures are convex, which means
there exists a function I ∶ [0,1] → [0,∞) which is continuous, convex, increasing
on (0,1/2), symmetric about the point 1/2, such that I(0) = 0 and I(t) > 0 on
(0,1), and satisfying

Iµ(t) ≥ I(t), 0 ≤ t ≤ 1.

Concave
profile

Convex
profile

Figure 1.1: Isoperimetric profile

Therefore (unless I(t) ≃min (t,1 − t)), the Poincaré inequality

∥f − ∫
Ω
fdµ∥

L1
≤ c ∥∣∇f ∣∥L1 , f ∈ Lip(Ω),

never holds, which means that we cannot deduce from ∣∇f ∣ ∈ L1 that f ∈ L1.
Hence, a symmetrization inequality like (1.0.10) will not be possible, since f∗∗µ is
defined if, and only if, f ∈ L1.

Chapter 4 is organized as follows. In Section 4.2 we obtain symmetrization
inequalities which incorporate in their formulation the isoperimetric convex esti-
mator. In Section 4.3 we use the symmetrization inequalities to derive Sobolev–
Poincaré and Nash type inequalities. Finally in Section 4.4 we study in detail

8



several examples, such as, an α-Cauchy type law (the example 4.1.2), extended
p-sub-exponential laws (the example 4.1.3), and n-dimensional weighted Rieman-
nian manifolds that satisfy the CD(0,N) curvature condition with N < 0 (the
example 4.1.2).
The results contained in that chapter 4 have been submitted for publication (see
[68]).
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Chapter 2

Preliminaries

In this chapter, we present the basic notation we shall use in the following chap-
ters and briefly review some basic facts from the theory of rearrangement invari-
ant spaces. We refer the reader to [6],[29],[53] or [86] for a complete treatment.

Throughout what follows we will work on a measure space (Ω, µ) with a
separable, non-atomic, Borel measure µ. Let M(Ω) be the set of all extended
real-valued measurable functions on Ω. By M0(Ω) we denote the class of func-
tions in M(Ω) that are finite µ-a.e.

As usual, if E ⊂ Ω is µ-measurable, then, for 1 ≤ p <∞, Lp(E) is the space of
µ-measurable functions f such that the norm ∣∣f ∣∣Lp(A) = (∫A ∣f ∣

pdµ)1/p is finite.
We define L∞(E) similarly, but using ∣∣f ∣∣L∞(A) = ess supA ∣f ∣. L

p
loc(Ω) will denote

functions that are p-integrable on balls.

The symbol f ≃ g will indicate the existence of a universal constant c > 0
(independent of all parameters involved), thus c−1f ≤ g ≤ cf, while f ⪯ g means
that f ≤ cg.

2.1 Decreasing rearrangement
The distribution function µf of a function f in M0(Ω) is defined by

µf(t) = µ{x ∈ Ω ∶ f(x) > t} (t ∈ R).

In the literature it is common to denote the distribution function of ∣f ∣ by
µf , while here it is denoted by µ∣f ∣ since we need to distinguish between the
distribution function of f and that of ∣f ∣.

Two functions f and g ∈M0(Ω) are said to be equimeasurable if µ∣g∣(t) =
µ∣f ∣(t) for t ≥ 0.

11
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The signed decreasing rearrangement of a function f ∈M0(Ω)
f☆µ ∶ [0, µ(Ω))→ R is defined by

f☆µ (t) = inf {s ∈ R ∶ µ{x ∈ Ω ∶ µf(x) > s} ≤ t} , t ∈ [0, µ(Ω)).

It follows readily from the definition that f☆µ is decreasing and that

(f + g)☆µ (t) ≤ f☆µ (
t

2
) + g☆µ (

t

2
) , (t > 0).

Moreover,
f☆µ (0+) = ess sup f and f☆µ (∞) = ess inf f. (2.1.1)

The decreasing rearrangement f∗µ of f is given by

f∗µ(t) = ∣f ∣☆µ (t).

In the next proposition we establish some basic properties of the decreasing
rearrangement.

Proposition 2.1.1. Let f, g, fi (i = 1,2, . . . , ) belong toM0(Ω) and α ∈ R. Then
(i.) f☆µ (µf(t)) ≤ t for all t ≥ 0 with µf(t) <∞;

(ii.) µf(f☆µ (t)) ≤ t for all t ≥ 0 with f☆µ (t) <∞;

(iii.) If f ≤ g, then f☆µ ≤ g☆µ ;

(iv.) (αf)☆µ = αf☆µ and (f + α)☆µ = f☆µ (t) + α;

(v.) If ∣fi∣ ↑ ∣f ∣, then (fi)∗µ ↑ f∗µ ;

(vi.) f☆µ is right continuous;

(vii.) f∗µ(s) =mµ∣f ∣(s), t ≥ 0 (where m denotes Lebesgue measure on (0, µ(Ω));

(viii.) f☆µ and f∗µ are equimeasurable with respect to Lebesgue measure on (0, µ(Ω)).

Example 2.1.1. Let f be a positive simple function, i.e.

f(x) =
n

∑
j=1

bjχFj(x),

where the coefficients bj are positive and Fj = {x ∈ Ω ∶ f(x) = bj}.
The distribution function is given by

µf(λ) =
n

∑
j=1

mjχ[bj+1,bj](λ),

where mj = ∑j
i=1 µ(Fi), (j = 1,2, . . . , n) and bn+1 = 0 (see Figure 2.1). The

decreasing rearrangement is given by

f∗µ(t) =
n

∑
j=1

bjχ[0,mj)(t).

12
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A1A2A3 A4

b2

b3

b4

b1

x

f

λ

µf

b4 b3 b2 b1

m4

m3
m2

m1

Figure 2.1: Graphs of f and µf

b1

b2

b3

b4

m1 m2 m3 m4

t

f∗µ

Figure 2.2: Graph of f∗µ

Example 2.1.2. This example shows how signed rearrangement works:

b3

b2b2

b1

A3

A2

A1

f

x

f☆µ

t

b1

b2

b3
m1

m2 m3

Figure 2.3: Graph of f☆µ
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For any measurable set E ⊂ Ω and f ∈M0(Ω),

∫
E
∣f(x)∣dµ ≤ ∫

µ(E)

0
f∗µ(s)ds. (2.1.2)

In fact,

sup
µ(E)=t

∫
E
∣f(x)∣dµ = ∫

t

0
f∗µ(s)ds (2.1.3)

and

∫
t

0
f☆µ (s)ds = sup{∫

E
f(s)dµ ∶ µ(E) = t} , (t > 0). (2.1.4)

The signed maximal function f☆☆µ is defined by

f☆☆µ = 1

t
∫

t

0
f☆µ (s)ds, (t > 0).

Similarly, f∗∗µ will denote the maximal function of f∗µ defined by

f∗∗µ (t) =
1

t
∫

t

0
f∗µ(s)ds, (t > 0).

Some elementary properties of the maximal signed function are listed below.

Proposition 2.1.2. Let f, g and fi (i = 1,2, . . . , ) belong to M0(Ω) and α ∈ R.
Then

(i.) f☆µ ≤ f☆☆µ ;

(ii.) If f ≤ g, then f☆☆µ ≤ g☆☆µ ;

(iii.) (αf)☆☆µ = αf☆☆µ ;

(iv.) (f + g)☆☆µ (t) ≤ f☆☆µ (t) + g☆☆µ (t) , (t > 0).

Example 2.1.3. Let Ω = [0,∞) and µ be Lebesgue measure on Ω. Define f ∶
[0,∞)→ [0,∞) by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 − (x − 1)2 if 0 ≤ x ≤ 2
0 if x > 2.

The distribution function can be easily computed:

µf(λ) =
⎧⎪⎪⎨⎪⎪⎩

2
√
1 − λ if 0 ≤ λ ≤ 1

0 if λ > 1,
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and the decreasing rearrangement becomes

f∗µ(t) =
⎧⎪⎪⎨⎪⎪⎩

1 − t2

4 if 0 ≤ t ≤ 2.
0 if t > 2,

Moreover,

∫
∞

0
f(x)dx = ∫

2

0
1 − (1 − x2)dx = ∫

1

0
2
√
1 − λdλ = ∫

2

0
1 − t2

4
dt = 4

3
.

0 1 2
0

1

2

f

x

0 1 2
0

1

2

µf

λ

0 1 2
0

1

2

f∗µ

t

Figure 2.4: Graph f, µf , f∗µ

The maximal function is given by

f∗∗µ (t) =
⎧⎪⎪⎨⎪⎪⎩

1 − t2

12 if 0 < t ≤ 2
4
3t if t > 2

t

f∗∗µ

1

2

Figure 2.5: Graph f∗∗µ

Definition 2.1.1. Let f belong to M0(Ω). The oscillation of f∗µ is defined by
the special difference

Oµ(f, t) = f∗∗µ (t) − f∗µ(t).

The functional Oµ(f, t) has certain technical disadvantages. It vanishes on
constant functions and the operation f → Oµ(f, t) is not subadditive.

15



CHAPTER 2. PRELIMINARIES

Lemma 2.1.1. Let f belong to M0(Ω). Then

∂

∂t
f∗∗µ (t) = −

Oµ(f, t)
t

, t > 0, (2.1.5)

and the function tOµ(f, t) is increasing in t.

Proof. By the definition of f∗∗µ , and a simple computation, we get

∂

∂t
f∗∗µ (t) =

∂

∂t
(1
t
∫

t

0
f∗µ(s))ds

= − 1
t2
∫

t

0
f∗µ(s)ds +

1

t
f∗µ(t)

= −1
t
(1
t
∫

t

0
f∗µ(s)ds − f∗µ(t))

= −1
t
(f∗∗µ (t) − f∗µ(t)) .

Using the fact that (see [14])

Oµ(f, t) =
1

t
∫
∣∣f ∣∣∞

f∗µ(t)
µ∣f ∣(s)ds, (2.1.6)

it follows that tOµ(f, t) is increasing. Indeed, to see 2.1.6, let [x]+ = max(x,0).
Then, for all y > 0, we have that

∫
∞

0
[f∗µ(x) − y]+dx = ∫

∞

0
µ[f∗µ−y]+(s)ds = ∫

∞

y
µf∗µ(s)ds = ∫

∣∣f ∣∣∞

y
µ∣f ∣(s)ds.

(2.1.7)

Inserting y = f∗µ(t) in 2.1.7 and taking into account that f∗µ is decreasing, we get

tOµ(f, t) = t(f∗∗µ (t) − f∗µ(t))

= ∫
t

0
(f∗µ(x) − f∗µ(t))dx

= ∫
∞

0
[f∗µ(x) − f∗µ(t)]+dx

= ∫
∣∣f ∣∣∞

f∗µ(x)
µ∣f ∣(s)ds.

Conditions like f∗µ(∞) = 0 will appear often. The following proposition clar-
ifies the significance of such conditions.

Proposition 2.1.3 (See [57]). If µ(Ω) =∞, then f∗µ(∞) = 0 if, and only if, µf(t)
is finite for any t > 0
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Proof. Suppose that µf(t0) = ∞ for some t0 > 0. From the definition of rear-
rangement, we have that f∗µ(t) ≥ t0 for all t > 0.
Therefore the condition f∗µ(∞) = 0 implies µf(t) <∞, for all t > 0.
Conversely, assume f∗µ(t) ≥ ε > 0. This means that µf(ε) =∞. Thus the condition
µf(t) <∞, t > 0 implies f∗µ(∞) = 0.

Note that an application of L’Hôpital’s rule to f∗∗µ shows that the condition
f∗µ(∞) = 0 is equivalent to f∗∗µ (∞) = 0.

Remark 2.1.1. By (2.1.5) and the Fundamental Theorem of Calculus, and using
f∗∗µ (∞) = 0, we have

f∗∗µ (t) = ∫
∞

t

Oµ(f, s)
s

ds, t > 0.

2.2 Rearrangement invariant spaces
Rearrangement invariant spaces play an important role in contemporary mathe-
matics. They have many applications in various branches of analysis, including
the theory of function spaces, interpolation theory, mathematical physics, and
probability theory.

Definition 2.2.1. A function space X(Ω) is the linear space of all f ∈M0(Ω)
for which ∥f∥X(Ω) <∞, where ∥⋅∥X(Ω) is a functional norm, i.e.

(i.) ∥⋅∥X(Ω) is a norm;

(ii.) if 0 < g ≤ f a.e., then ∥g∥X(Ω) ≤ ∥f∥X(Ω);

(iii.) if 0 < fj ↑ f a.e., then ∥fj∥X(Ω) ↑ ∥f∥X(Ω);

(iv.) for any measurable set E ⊂ Ω, ∥χE∥X(Ω) <∞; and

(v.) ∫
E
∣f(x)∣dx ≤ ∥f∥X(Ω) .

If, in the definition of a norm, the triangle inequality is weakened to the
requirement that for some constant CX where

∣∣x + y∣∣X ≤ CX(∣∣x∣∣X + ∣∣y∣∣X)

holds for all x and y, then we have a quasi-norm. A complete quasi-normed space
is called a quasi-Banach space.
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Definition 2.2.2. A Banach function space (resp. quasi-Banach function space)
X = X(Ω) is called a rearrangement invariant (r.i.) space (resp. quasi-Banach
rearrangement invariant (q.r.i.) space) if g ∈ X implies that all µ-measurable
functions f with the same rearrangement function with respect to the measure µ,
i.e. such that f∗µ = g∗µ, also belong to X, and moreover ∥f∥X = ∥g∥X .

For any r.i. space X(Ω) we have

L1
µ(Ω) ∩L∞µ (Ω) ⊂X(Ω) ⊂ L1

µ(Ω) +L∞µ (Ω), (2.2.1)

with continuous embedding, where the space L1
µ(Ω)+L∞µ (Ω) consist of all func-

tions f ∈M0(Ω) that are representable as a sum f = g +h of functions g ∈ L1
µ(Ω)

and h ∈ L∞µ (Ω). The norm in L1
µ(Ω) +L∞µ (Ω) is given by

∣∣f ∣∣L1
µ(Ω)+L∞µ (Ω) = inf{∣∣g∣∣L1

µ(Ω) + ∣∣h∣∣L∞µ (Ω)},

where the infimum is taken over all representations f = g+h of the kind described
above.

Consider the following norm on L1
µ(Ω) ∩L∞µ (Ω):

∣∣f ∣∣L1
µ(Ω)∩L∞µ (Ω) =max{∣∣g∣∣L1

µ(Ω), ∣∣h∣∣L∞µ (Ω)}.

If µ(Ω) <∞, we obviously have

L∞µ (Ω) ⊂X(Ω) ⊂ L1
µ(Ω).

The associate space X ′(Ω) of X(Ω) is the r.i. space of all h ∈M0(Ω) for
which the r.i. norm given by

∥h∥X′(Ω) = sup
∣∣g∣∣≤1

∫
Ω
∣g(x)h(x)∣dµ (2.2.2)

is finite.

Therefore the following generalized Hölder inequality holds

∫
Ω
∣g(x)h(x)∣dµ ≤ ∥g∥X(Ω) ∥h∥X′(Ω) .

A useful property states that if

∫
r

0
f∗µ(s)ds ≤ ∫

r

0
g∗µ(s)ds,

for all r > 0, then for any r.i. space X =X(Ω) we have

∥f∥X ≤ ∥g∥X .
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Let X(Ω) be an r.i. space. Then there exists a unique r.i. space (see [6,
Theorem 4.10 and subsequent remarks]) X̄ = X̄(0, µ(Ω)) on ((0, µ(Ω)),m), (m
denotes the Lebesgue measure on the interval (0, µ(Ω))), such that

f ∈X(Ω)⇔ f∗µ ∈ X̄(0, µ(Ω)),

and furthermore,

∥f∥X(Ω) = ∥f
∗
µ∥X̄(0,µ(Ω)) = ∥fµ☆∥X̄(0,µ(Ω)) .

X̄ is called the representation space of X(Ω). The norm of X̄(0, µ(Ω)) is
given explicitly by

∥h∥X̄(0,µ(Ω)) = sup{∫
µ(Ω)

0
h∗(s)g∗µ(s)ds; ∥g∥X′(Ω) ≤ 1} ,

where the first rearrangement is taken with respect to the Lebesgue measure on
[0, µ(Ω)).

2.2.1 Indices
We will present some definitions and properties related to indices (see [10] and
[107]).

The dilation operator is defined by

D 1
s
f(t) =

⎧⎪⎪⎨⎪⎪⎩

f∗µ ( ts) 0 < t < s,
0 s < t < µ(Ω).

For each t > 0, we denote by hX(s) the norm of D 1
s
, i.e.

hX(s) = sup
f∈X

∥D 1
s
f∥

X

∥f∥X
, s > 0.

The upper and lower Boyd indices associated with an r.i. space X are defined
by

αX = inf
s>1

lnhX(s)
ln s

and αX = sup
s<1

lnhX(s)
ln s

. (2.2.3)

The fundamental function of X an r.i. space is defined by

ϕX(s) = ∥χE∥X ,

where E is any measurable subset of Ω with µ(E) = t.
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Note that the particular choice of E is immaterial, due to the rearrangement
invariance of X. We can assume without loss of generality that ϕX is concave
(see [6]). Moreover, by Hölder’s inequality,

ϕX′(t)ϕX(t) = t. (2.2.4)

It is also useful sometimes to consider a slightly different set of indices ob-
tained by means of replacing hX(s) in (2.2.3) by

MX(s) = sup
t>0

ϕX(ts)
ϕX(t)

, s > 0.

The corresponding indices are denoted by βX , β
X

, and will be referred to as the
upper and lower fundamental indices of X. Actually, the relationship between
MX(s) and hX(s) is that the computation of the former is exactly the computa-
tion of the latter but done only over functions of the form f = χ(0,a). Therefore
we have

0 ≤ αX ≤ βX
≤ βX ≤ αX ≤ 1.

Lemma 2.2.1. (See [60] and [107]) Let Y be an r.i. space on (0,1). Let ϕY be
its fundamental function. Assume that ϕY (0) = 0. Then

1. If αY < 1, then for every αY < γ < 1, the function ϕY (s)/sγ is almost
decreasing (i.e. ∃c > 0 s.t. ϕY (s)/sγ ≤ cϕY (t)/tγ whenever t ≤ s).

2. If αY > 0, then for every 0 < γ < αY , the function ϕY (s)/sγ is almost
increasing (i.e. ∃c > 0 s.t. ϕY (s)/sγ ≤ cϕY (t)/tγ whenever t ≥ s).

3. If αY > 0, there exists a concave function ϕ̂Y and constant c > 0 such that

ϕ̂Y (t) ≃ ϕY (t) and c−1ϕY (t)/t ≤
∂

∂t
ϕ̂Y (t) ≤ cϕY (t)/t.

We shall usually formulate conditions on r.i. spaces in terms of the Hardy
operators defined by

(Paf)(t) = t−a∫
t

0
xaf(x)dx

x
; (Qaf)(t) = t−a∫

µ(Ω)

t
xaf(x)dx

x

for t ∈ (0, µ(Ω)) and a ∈ (0,1], f ∈M0((0, µ(Ω)).
It is known that X is an r.i. (resp. q.r.i) space, that Pa is bounded if, and

only if, αX < a, and that Qa is bounded if, and only if, a < αX (see [6]).
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2.2.2 Examples
In this section we present some examples of rearrangement invariant spaces.

• The Lp
µ-spaces consist of all f ∈M0(Ω) for which

∥f∥Lp
µ
∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
µ(Ω)

0
(f∗µ(t))

p
dt)

1/p

, 0 < p <∞,

sup
t>0

f∗µ(t), p =∞,

is finite. Its fundamental function is given by

ϕLp
µ
(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1/p, 1 ≤ p ≤∞, t > 0
0, p =∞, t = 0
1, p =∞, t > 0.

Lp
µ is q.r.i. if 0 < p < 1 and r.i. if 1 ≤ p <∞.

The Boyd indices are given by αLp
µ
= αLp

µ
= 1

p .

• Assume that 0 < p, q ≤ ∞. The Lorentz spaces Lp,q
µ consist of all f ∈

M0(Ω) for which

∥f∥Lp,q
µ
∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
µ(Ω)

0
(t1/pf∗µ(t))

q
dt)

1/q

, 0 < q <∞,

sup
t>0
{t1/pf∗µ(t)} , q =∞,

is finite. Its fundamental function is given by

ϕLp,q
µ
(t) = t1/p, t > 0,

where 1 ≤ p <∞. The Boyd indices are given by αLp,q
µ
= αLp,q

µ
= 1

p .

• Lorentz Λ spaces are defined by the functional

∥f∥Λq(v) = (∫
µ(Ω)

0
f∗µ(s)qv(s)ds)

1/q

,

where 0 < q <∞ and v is a weight decreasing (v ≥ 0 measurable function)
on (0, µ(Ω)).
By choosing v(s) = sq/p−1 one obtains Λq(v) = Lp,q

µ .
If we take v(s) = sq/p−1(1 + log 1

s)
α, then the Λq(v) = Lp,q

µ (logL)α are
the Lorentz–Zygmund spaces; or if we take v(s) = sq/p1(1+ log 1

s)
α(1+

log 1
s)

β, then the Λq(v) = Lp,q
µ (logL)α(log logL)β are the generalized Lorentz–

Zygmund spaces.

21



CHAPTER 2. PRELIMINARIES

Definition 2.2.3. A function A∶ [0,∞)→ [0,∞] is a Young function if

A(s) = ∫
s

0
a(t) dt, (2.2.5)

where a ∶ [0,∞]→ [0,∞] is an increasing, left continuous function which is
neither identically zero nor identically infinite on (0,∞) and which satisfies
a(0) = 0. A Young function is convex on the interval where it is finite.

• For a Young function A, the Orlicz space LA
µ is the collection of all

functions f ∈M0(Ω) for which there exists a λ such that

∫
Ω
A(∣f(x)∣

λ
)dµ <∞.

The Orlicz space LA
µ is endowed with the Luxemburg norm

∥f∥LA
µ
= inf {λ > 0;∫

Ω
A(∣f(x)∣

λ
)dµ ≤ 1} .

The fundamental function for LA
µ is given by

ϕLA
µ
(t) = 1/A−1(1/t), (2.2.6)

where A is a Young function on (0,∞).
On the other hand (see [6]), we have

∫
Ω
A (∣f(x)∣)dµ = ∫

µ(Ω)

0
A(f∗µ)(t)dt.

Given an r.i. space X over (0, µ(Ω)), suppose X has been renormed so as to
have a concave fundamental function ϕX . There are some useful Lorentz and
Marcinkiewicz spaces, defined by the quasi-norms

∥f∥M(X) = sup
t

f∗∗µ (t)ϕX(t), ∥f∥Λ(X) = ∫
µ(Ω)

0
f∗µ(t)dϕX(t). (2.2.7)

It follows readily that

ϕM(X)(t) = ϕΛ(X)(t) = ϕX(t).

Furthermore

Λ(X) ⊂X ⊂M(X), (2.2.8)

and each of the embeddings has norm 1.
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Chapter 3

A Sobolev type embedding
theorem for Besov spaces
defined on doubling metric
spaces

3.1 Introduction
Analysis on metric measure spaces has been studied quite intensively in recent
years; see, for example, Semmesś survey [87] for a more detailed discussion and
references. A field of particular interest is the study of functional inequalities,
like Sobolev and Poincaré inequalities on metric measure spaces; see, for example,
[56],[36],[46], [32],[33],[54]. Since Hajłasz in [35] introduced Sobolev spaces on any
metric measure space, a series of papers has been devoted to the construction and
investigation of Sobolev spaces of various types on metric measure spaces; see,
for example, [36],[46],[37],[24]. Recently, a theory of Besov spaces was developed
in [38] which is a generalization of the corresponding theory of function spaces on
Rn (see [94],[95],[96]) respectively Ahlfors n-regular metric measure spaces (see
[39],[41]).

There are several equivalent ways to define Besov spaces in the setting of a
doubling metric space (see for example [27], [28],[38],[75],[74],[105],[45] and the
references therein), in this chapter, we shall use the approach based on a gener-
alization of the classical Lp-modulus of smoothness introduced in [27].

Recall that the Lp-modulus of smoothness of a function f ∈ Lp
loc(R

n) is defined
by

ωp(f, t) ∶= sup
∣h∣≤t
∥f(x + h) − f(x)∥Lp(Rn) ,

where t > 0 and ∣h∣ is the Euclidean length of the vector h. As a general metric
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space possesses no group structure, a modification to this definition is needed.
Let (Ω, d, µ) be a metric measure space equipped with a metric d and a Borel

regular outer measure µ for which the measure of every ball is positive and finite.
Given t > 0, 0 < p <∞ and f ∈ Lp

loc(Ω), the Lp-modulus of smoothness is defined
by

Ep(f, t) = (∫
Ω
(−∫

B(x,t)
∣f(x) − f(y)∣p dµ(y))dµ(x))

1/p
, (3.1.1)

where −∫B f(x)dµ(x) ∶= 1
µ(B) ∫B f(x)dµ(x) is the integral average of a locally in-

tegrable function f over B.

Ep(f, t) is equivalent to the classical Lp(Rn)-modulus of smoothness of a
function f ∈ Lp

loc(R
n). Indeed (see [27]),

Ep(f, t) = (∫
Rn
(−∫

B(x,t)
∣f(x) − f(y)∣p dy)dx)

1/p
(3.1.2)

= (∫
Rn
(−∫

B(0,t)
∣f(x + h) − f(x)∣p dh)dx)

1/p

≃ sup
∣h∣≤t
∥f(x + h) − f(x)∥Lp(Rn) ∶= ωp(f, t), (see [55]).

Definition 3.1.1. For 0 < s <∞, the homogeneous Besov space Ḃsp,q(Ω) consists
of those functions f ∈ Lp

loc(Ω) for which the seminorm

∥f∥Ḃs
p,q(Ω)

∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∫
∞
0 (

Ep(f,t)
ts )

q
dt
t )

1/q
, 0 < q <∞,

sup
t>0

t−sEp(f, t), q =∞,

is finite.

This definition is rather concrete and by (3.1.2) gives the usual Besov space
in the Euclidean setting. Moreover, it has been shown by Müller and Yang [74]
that it coincides with the definition based on test functions and used earlier by
Han [40], Han and Yang [42] and Yang [103], provided that Ω, besides being
doubling, also satisfies a reverse doubling condition

In the Euclidean setting, the Sobolev embedding theorem states (see, for
example, [74, Theorem. 1.15]) that there is a constant C > 0 such that

∥f∥
Lp∗,q
µ (Rn) ≤ C ∥f∥Ḃs

p,q(Rn),

where p∗ = np/(n − sp), and the Lorentz space Lp,q(Rn), consist of measurable
functions f of finite norm

∥f∥Lp,q
µ (Rn) = ∥t

1
p
− 1

q f∗µ(t)∥
Lq([0,∞))

,
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(f∗µ denotes the decreasing rearrangement of f, see Section 2.1).
The abstract variant for metric spaces is only known in the following partic-

ular case (see [27] and [45]):

Theorem 2. Let Ω be a Q-regular metric space, i.e. there exists a Q ≥ 1 and a
constant cQ ≥ 1 such that

c−1Q rQ ≤ µ(B(x, r)) ≤ cQrQ

for each x ∈ X, and for all 0 < r < diam Ω (here diam Ω is the diameter of Ω).
Suppose that 0 < s < 1 and 1 ≤ q ≤∞. Then:

1. (See ([27, Thm. 5.1])) Suppose Ω satisfies a (1, p)-Poincare inequality, i.e.
there exist constants Cp ≥ 0 and λ ≥ 1 such that

−∫
B
∣f − fB ∣dµ ≤ (−∫

λB
gpdµ)

1/p

for any locally integrable function f for all upper gradients1 g of f . Then,
if 1 < p < Q/s,

Ḃsp,q(Ω) ⊂ Lp(Q),q
µ (Ω), (3.1.3)

where p(Q) = Qp/(Q − sp).

2. (See ([45, Thm. 4.4])) Suppose that Ω is geodesic, i.e. every pair of points
can be joined by a curve whose length is equal to the distance between the
points. Then (3.1.3) holds for 1 ≤ p < Q/s.

The proof of this theorem is based on the real interpolation method; for exam-
ple, in ([27, Thm. 5.1]) under a (1, p)-Poincaré inequality assumption, the Besov
space Ḃsp,q(Ω) is realized as the real interpolation space (Lp(Ω),KS1,p(Ω))α,q
between the corresponding Lp(Ω) and the Sobolev space of Korevaar and Schoen
KS1,p(Ω), consisting of measurable functions f of finite norm2

∥f∥KS1,p(Ω) ∶= lim sup
t→0

Ep(f, t)
t

. (3.1.4)

In [27] it is proved that Ep(f, t) is equivalent to the K-functional between Lp(Ω)
and KS1,p(Ω). Moreover if Ω is Q-regular, then

∥f∥
L

Qp
Q−p
µ (Ω)

⪯ ∥f∥KS1,p(Ω) , (3.1.5)

and, consequently, interpolation allows one to obtain embedding theorems.
1 For the definition of upper gradient, see, for example [46],[27].
2When Ω is a Riemannian manifold, this definition yields the usual Sobolev space

and the quantity in (3.1.4) is equivalent to the usual semi-quasinorm (see [56]).
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The key point in the previous argument is the embedding (3.1.5), which is
only known for Q-regular spaces.

The purpose of this chapter is to obtain a Sobolev type embedding result for
Besov spaces defined on a doubling metric space. In Theorem 2 we will see that
if the embedding

Ḃsp,q(Ω) ⊂ Lp∗,q
µ (Ω)

holds for some p∗ > p, then Ω does not have the collapsing volume property, i.e.

inf
x∈Ω

µ(B(x,1)) > 0. (3.1.6)

In view of this result, we will need to limit the class of doubling spaces in which
we going to work. Our framework will be (k,m)-spaces (see Section 3.2 below),
i.e. there exist positive constants c0, C0, k, and m (k ≤m) such that

c0min(rk, rm)Vµ(x,1) ≤ Vµ(x, r) ≤ C0max(rk, rm)Vµ(x,1), (3.1.7)

for all x ∈ Ω and 0 < r <∞, where Vµ(x, r) = µ(B(x, r)). To incorporate condition
(3.1.6), we define

(i.) A (k,m)-space will be called uniform if there are constants c,C > 0 such
that

cmin(rk, rm) ≤ Vµ(x, r) ≤ Cmax(rk, rm). (3.1.8)

(ii.) A (k,m)-space will be called bounded from below if there are constants
d,D > 0 such that

dmin(rk, rm) ≤ Vµ(x, r) ≤Dmax(rk, rm)Vµ(x,1). (3.1.9)

In order to avoid using an embedding result like (3.1.5), which, recall, is only
known for Q-regular metric spaces, we will obtain, for the above class of spaces,
pointwise estimates between the oscillation of f∗µ and the modulus of smoothness
that will allow us to derive Sobolev type embedding results.

The results that we will obtain can be applied in a wide range of settings, for
instance, to Ahlfors regular metric measure spaces (see [46]), Lie groups of poly-
nomial volume growth (see [99],[100],[81],[76],[2]), Carnot–Carathéodory mani-
folds (see [81],[78],[79]), and to the boundaries of certain unbounded model do-
mains of polynomial type in CN appearing in the work of Nagel and Stein (see
[80],[81],[78],[79]) (see Section 3.2.1 below).

This chapter is organized as follows: Section 3.2 contain basic definitions and
technical results on doubling metric measure spaces. In Section 3.3 we obtain
pointwise estimates of the oscillation Oµ(f, t) = f∗∗µ (t) − f∗µ(t) in terms of the
X-modulus of smoothness defined by

EX(f, r) ∶= ∥−∫
B(x,r)

∣f(x) − f(y)∣dµ(y)∥
X

,
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where X is a rearrangement invariant space on Ω. In Section 4.3 we define gen-
eralized Besov type spaces and use the oscillation inequalities obtained in the
previous sections to derive embedding Sobolev theorems. In Section 3.5 we deal
with generalized uncertainty Sobolev inequalities in the context of Besov spaces.
In Section 3.6 a criterion for essential continuity and for the embedding into
BMO (Ω) will be obtained. Finally, in Section 3.7 we will study in detail the
case Ḃsp,q(Ω) for 0 < s < 1, 0 < p <∞ and 0 < p ≤∞.

The results contained in this chapter have been published in Journal of Math-
ematical Analysis and Applications (see [67]).

3.2 Doubling measures
In this section we briefly review basic facts about doubling metric spaces and
some of their properties. The general framework will be a metric measure space
(Ω, d, µ) with a metric d and a regular Borel measure µ for which the measure
of every ball is positive and finite.

The ball with centre x ∈ Ω and radius r > 0 is defined by B(x, r) = {y ∈ Ω ∶
d(x, y) < r}. We shall denote by Vµ(x, r) the measure of the ball, i.e.

Vµ(x, r) ∶= µ(B(x, r)).

Definition 3.2.1. A metric measure space (Ω, d, µ) is called doubling if there
exists a constant CD > 1 such that for all x ∈ Ω and r > 0,

0 < Vµ(x,2r) ≤ CDVµ(x, r) <∞. (3.2.1)

We will now present some examples.

Example 3.2.1.
• Let Ω = Rn, let d(x, y) = ∣x − y∣ be the Euclidean metric, and let µ = Ln be

Lebesgue measure on Ω. Then (Rn, ∣.∣,Ln) is a doubling metric measure
space with CD = 2n (see [3],[46]).

• Let Ω = [−1,0]×[−1,−1]∪[0,1]×{0}, let d be the Euclidean metric, and let
µ = L2∣Ω +H1∣[0,1]×{0}, where H1 is the 1-dimensional Hausdorff measure.
Then µ is doubling with CD = 4 (see [3],[46]).

• Cantor sets (see [3]): Let H be a finite set having k points, k ≥ 2, and

H∞ = {x = (xi)i∈N ∶ xi ∈H}.

Let a ∈ (0,1). Then, da ∶H∞ ×H∞ → [0,∞]

da(x, y) =
⎧⎪⎪⎨⎪⎪⎩

0, if x = y
aj , if xi = yi for i < j and xj ≠ yi
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is a metric in H∞. Let ν be a uniformly distributed probability measure
on H. Define the measure µ on H∞ as the product measure of ν infinitely
many times. In this case one can show that

µ(B(x, aj)) = k−j

and that (H∞, da, µ) is a doubling metric measure space with dimension s
given by as = k−1. If k = 2 and a = 1

3 , then H∞ is bi-Lipschitz equivalent to
the standard 1

3 -Cantor set.

• It is proved in [89], [90], and [58] that some curvature-dimension condition
on metric measure spaces implies the doubling property of the considered
measure.

Remark 3.2.1. Given x ∈ Ω, the function r → µ(B(x, r)) is (usually) not con-
tinuous, thus given t > 0 there does not necessarily exist a ball B(x) centred at
x such that µ(B(x)) = t. However there is a ball B(x) centred at x such that
t/CD ≤ µ(B(x)) ≤ t. Indeed, consider r0 = sup{r ∶ Vµ(x, r) < t/CD}. Then

Vµ(x, r) ≤ t/CD ≤ Vµ(x,2r) ≤ CDVµ(x, r) ≤ t.

Following the proofs of [102, Theorem 1] and [92, Theorem 1.4], we obtain
the following result:

Lemma 3.2.1. Let (Ω, d, µ) be a doubling measure space. Then, for all bounded
subsets A ⊂ Ω with µ(A) > 0, x ∈ A and 0 < r < diam(A), we have

Vµ(x, r)
µ(A)

≥ 2−m ( r

diam(A)
)
m

(3.2.2)

where m = log2CD and diam(A) = sup
x,y∈A

d(x, y)3.

Proof. (See [102] and [31]). Let B(x, r) ⊂ A, suppose given 0 < r < diam(A), and
put m = log2 (diam(A)r ). Then

µ(A) ≤ Vµ(x, r) = Vµ (x,
2mr

2m
) ≤ Cm

DVµ (x,
r

2m
)

≤ Cm+1
D Vµ(x, r) = CDC

log2( diam(A)r
)

D Vµ(x, r)

≤ CD (
diam(A)

r
)
log2CD

Vµ(x, r),

3Inequality (3.2.2) is actually equivalent to the doubling property of the measure
taking B(x,2r) as the set A.
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Finally, we have

µ(A)C−1D ≤ (
diam(A)

r
)
log2CD

Vµ(x, r).

Therefore
Vµ(x, r)
µ(A)

≥ 2−m ( r

diam(A)
)
m

.

In order to state the opposite inequality in Lemma 3.2.1 we shall need the
following definition.

Definition 3.2.2. A metric space (Ω, d) is called uniformly perfect (with constant
a) if it is not a singleton and if there exists a constant a > 1 such that

ΩÓ B(x; r) ≠ ∅⇒ B(x; r)Ó B(x; r/a) ≠ ∅

for all x ∈ Ω and r > 0.

b

Ω

r
B(x, r)

B(x, ra)

Figure 3.1: Definition 3.2.2

Lemma 3.2.2. Let (Ω, d, µ) be doubling and uniformly perfect. Then there exist
constants D ≥ 1 and k > 0, depending only on the doubling constant CD and the
uniform perfectness constant a, such that

Vµ(x, r)
Vµ(x,R)

≤D ( r
R
)
k

(3.2.3)

for all x ∈ Ω and 0 < r ≤ R < diam(Ω).
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Proof. (See [38]).
By definition 3.2.2 we have that for any constant a > 1, B(x;ar)Ó B(x; r) ≠

∅. We shall show that there exist constants C > 1 and D > 1 such that for all
x ∈X and 0 < ar < diam(X)/2

Vµ(x,Cr) ≥DVµ(x, r). (3.2.4)

To this end, fix any 0 < σ ≤ 1. Then, if 0 < r < diam(X)/2, we have a(1 + σ)r <
diam(X). Thus, by assumption,

B(x, a(1 + σ)r)/B(x, (1 + σ)r) ≠ ∅. (3.2.5)
Let y be a point in the annulus. It is then easy to see that

B(y, σr)/B(x, r) = ∅, B(y, σr) ⊂ B(x, (σ + a0(1 + σ)) r)

and
B(x, (σ + a(1 + σ)) r) ⊂ B(y, (σ + 2a(1 + σ)) r), (3.2.6)

and so

Vµ(x, (σ + a(1 + σ)) r) ≥ Vµ(x, r) + Vµ(y, σr) (by (3.2.5))

≥ Vµ(x, r) +C−12 (
σ

σ + 2a(1 + σ)
)
m

Vµ(y, (σ + 2a(1 + σ)) r)

≥ Vµ(x, r) +C−12 (
σ

σ + 2a(1 + σ)
)
m

Vµ(x, (σ + a(1 + σ)) r) (by (3.2.6)).

This implies (3.2.3) with C = σ + a(1 + σ) and

D = (1 −C−12 (
σ

σ + 2a(1 + σ)
)
m

)
−1

> 1.

Let 0 < ρ ≤ r and 1 ≤ λρ ≤ diam(X)/2. Let n ∶= [logC λ] ≥ logC λ − 1. Then
Cnρ ≤ diam(X)/2 and for any 0 ≤ k ≤ n − 1,

V (x,Ck+1ρ) ≥DV (x,Ckρ).

Iterating this inequality, we obtain

V (x,λρ) ≥DnV (x, ρ) ≥DlogC λ−1V (x, ρ)
=D−1λlogC DV (x, ρ).

Note that if a measure satisfies the above inequality with some constants
D ≥ 1 and k > 0, then by choosing r <D1/kR in (3.2.3) we have that the space is
uniformly perfect with any constant bigger than D1/k.
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Example 3.2.2.
• Q-regular spaces are uniformly perfect (see [51]).

• Connected spaces are uniformly perfect (see [46]). Geodesic metric spaces
and spaces that support a (1, p)-Poincare inequality are connected (see
[52],[45]), and therefore are uniformly perfect.

Combining Lemmas (3.2.1) and (3.2.2), the following is true in doubling uni-
formly perfect measure metric spaces: There exist positive constants c0, C0, k,
and m (k ≤ m) depending only on the doubling constant of measure and the
uniform perfectness constant of the space (Ω, d, µ) such that

c0min(rk, rm)Vµ(x,1) ≤ Vµ(x, r) ≤ C0max(rk, rm)Vµ(x,1), (3.2.7)

for all x ∈ Ω and 0 < r <∞.

Note that if diam(Ω) <∞, from (3.2.2) and (3.2.3) it follows that there exists
constants c1,C1 such that

c1r
m ≤ Vµ(x, r) ≤ C1r

k, (3.2.8)

for all x ∈ Ω and 0 < r < diam(Ω).

Definition 3.2.3. Let 0 < k ≤m. Let (Ω, d, µ) be a metric measure space.

(i.) (Ω, d, µ) will be called a (k,m)-space if (3.2.7) holds4.

(ii.) A (k,m)-space will be called uniform if there are constants c,C > 0, such
that

cmin(rk, rm) ≤ Vµ(x, r) ≤ Cmax(rk, rm). (3.2.9)

(iii.) A (k,m)-space will be called bounded from below if there are constants
d,D > 0 such that

dmin(rk, rm) ≤ Vµ(x, r) ≤Dmax(rk, rm)Vµ(x,1). (3.2.10)

From (3.2.8), we have that doubling uniformly perfect measure metric spaces
with diam(Ω) <∞ are uniform (k,m)-spaces.

Remark 3.2.2. It follows from (3.2.7) that a (k,m)-space is uniform (resp.
bounded from below) if, and only if, 0 < inf

x∈Ω
Vµ(x,1) ≤ sup

x∈Ω
Vµ(x,1) < ∞, (resp.

0 < inf
x∈Ω

Vµ(x,1)).
4In fact (see ([105])) (Ω, d, µ) is a (k,m)-space if, and only if, it is doubling and

uniformly perfect.
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In the rest of this chapter, we shall use the following notation:

Notation 3. Let (Ω, d, µ) be a (k,m)-space.

(i.) For t > 0,

R(t) =max (tm/k, tk/m) , r(t) =max (t1/k, t1/m) .

(ii.) If (Ω, d, µ) is uniform, we write

κ0 = 2CD/c

where c is the same constant as in (3.2.9).

(iii.) If (Ω, d, µ) is bounded from below, we write

κ1 = 2CD/d

where d is the same constant as in (3.2.10).

Given (Ω, d, µ) a (k,m) space, we associate to the measure µ a new measure
µ̃ defined by

µ̃(E) = ∫
E

dµ(x)
V (x,1)

for any Borel set E ⊂ Ω.
In the following lemma we obtain some properties of the measure µ̃.

Lemma 3.2.3. Let (Ω, d, µ) be a (k,m)-space. Let f ∈M0(Ω). Then:

(i.) For all r > 0,

min(rk, rm)−∫
B(x,r)

∣f(y)∣dµ(y) ⪯ ∫
B(x,r)

∣f(y)∣dµ̃(y) (3.2.11)

⪯max(rk, rm)−∫
B(x,r)

∣f(y)∣dµ(y).

Thus f is µ-locally integrable if, and only if, f is µ̃-locally integrable.
Moreover, (Ω, d, µ̃) is a uniform (k,m)-space.

(ii.) If (Ω, d, µ) is uniform, then, for all measurable E ⊂ Ω, we have that

µ̃(E) ≃ µ(E).

(iii.) If (Ω, d, µ) is bounded from below, then for all f ∈ L1
µ̃(Ω) +L∞µ̃ (Ω)

f∗µ̃(t) ≤ f∗µ(dt), (t > 0),

where d is the same constant that appears in (3.2.10).
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Proof. (i.) Using the doubling property and the fact that B(x, r) ⊂ B(y,2r)
whenever y ∈ B(x, r), we get

∫
B(x,r)

∣f(y)∣dµ̃(y) = ∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(y,1)

= ∫
B(x,r)

∣f(y)∣
Vµ(y, r)
Vµ(y,1)

dµ(y)
Vµ(y, r)

≤ C0max(rk, rm)∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(y, r)

(by (3.2.7))

≤ CDC0max(rk, rm)∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(y,2r)

(by (3.2.1))

≤ CDC0max(rk, rm) 1

Vµ(x, r) ∫B(x,r)
∣f(y)∣dµ(y).

Similarly, if y ∈ B(x, r), then B(y, r) ⊂ B(x,2r), thus

∫
B(x,r)

∣f(y)∣dµ̃(y) = ∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(y,1)

= ∫
B(x,r)

∣f(y)∣
Vµ(y, r)
Vµ(y,1)

dµ(y)
Vµ(y, r)

≥ c0min(rk, rm)∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(y, r)

≥ c0min(rk, rm)∫
B(x,r)

∣f(y)∣ dµ(y)
Vµ(x,2r)

≥ c0
CD

min(rk, rm) 1

Vµ(x, r) ∫B(x,r)
∣f(y)∣dµ(y).

Taking f = 1 in (3.2.11), we obtain that (Ω, d, µ̃) is a uniform (k,m)-space.
(ii.) This is obvious.
(iii.) From (3.2.10), we get

µ̃f(y) = ∫
{x∈Ω∶∣f(x)∣>y}

dµ(y)
V (y,1)

≤ 1

d
∫
{x∈Ω∶∣f(x)∣>y}

dµ(y) =
µf(y)
d

.

Therefore,
µf(y) ≤ dt⇒ µ̃f(y) ≤ t;

thus
f∗µ̃(t) = inf {y ∶ µ̃f(y) ≤ t} ≤ inf {y ∶ µf(y) ≤ dt} = f∗µ(dt).

We end this section by giving some examples of spaces that satisfy Definition
3.2.3.

3.2.1 Examples
Closed subsets of Rn (see [50])
We denote by mn the n-dimensional Lebesgue measure on Rn and by dn the
n-Euclidean distance.
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(i.) Consider F ⊂ R2 = {(x1, x2)} defined by F = F1 ∪ F2, where F1 = {(x1 +
1)2 + x22 ≤ 1} and F2 = {0 ≤ x1 ≤ 2, x2 = 0}. Let mn denote the n-
dimensional Lebesgue measure, for n = 1 distributed over the x1-axes, and
put dλ = x1dm1. Put µ = m2∣F1

+ λ∣F2
. Then (F, d2, µ) is a (1,2)-uniform

space.

(ii.) Let F ⊂ R2 be the set F = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ xγ1} where γ > 1, and
dν = x1−γ1 dm2 and µ = ν∣F . Then (F, d2, µ) is a (1,2)-uniform space.

(iii.) (See [50, Proposition 1]) For every closed subset F ⊂ Rn there is a measure
µ with support F satisfying

µ(B(x, r)) ≤ cµrnµ(B(x,1)) and c1 < µ(B(x,1)) < c2, x ∈ F.

Thus F is uniformly perfect, and there is a k > 0, depending only on cµ
and on the uniform perfectness constant of F , such that (F, dn, µ) is a
(k,n)-uniform space.

Muckenhoupt weights

A weight is a positive, locally integrable function on Rn. For a given subset E of
Rn, let w(E) ∶= ∫E w(x)dx and ∣E∣ ∶= ∫E dx. A weight w on Rn is said to belong
to the Muckenhoupt class Ap, 1 ≤ p <∞, (see [75]) if

[w]Ap
∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

supB ( 1
∣B∣ ∫B w(x)dx)( 1

∣B∣ ∫B (
1

w(x))
1

p−1
dx)

p−1

<∞, if 1 < p <∞,

supB

1
∣B∣ ∫B w(x)dx

ess infx∈B w(x) <∞, if p = 1,
(3.2.12)

where the supremum is over all balls B ⊂ Rn. For p =∞, we define A∞ = ∪1≤p<∞
Ap. Given w ∈ A∞, we define

[w]A∞ ∶= sup
B

1

w(B) ∫B
M (wχB) (x)dx

where M denotes the usual uncentred Hardy–Littlewood maxinal operator. It
is known that there is a positive dimensional constant cn such that [w]A∞ ≤
cn [w]Ap

.
Given w ∈ Ap, it follows easily from (3.2.12) that if there exists an M > 0 such

that ess inf ∣x∣≥M w(x) = 0, then infx∈Rn Vµ(x,1) = 0. Similarly, if ess sup∣x∣≥M w(x) =
∞, then supx∈Rn Vµ(x,1) =∞.

Proposition 3.2.1. Given w ∈ Ap and p ≥ 1, then (Rn, dn,w) is a ( n
2n+1[w]A∞

, pn)-
space.
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Proof. Since w ∈ Ap, by [49, Theorem 2.3], we have that

1

∣B∣ ∫B
wr(x)dx ≤ 2( 1

∣B∣ ∫B
w(x)dx)

r

where r = 1+ 1
2n+1[w]A∞−1

. Therefore (see [26]), there exist constants c,C > 0 such
that

c(∣E∣
∣B∣
)
p

≤ w(E)
w(B)

≤ C (∣E∣
∣B∣
)
(r−1)/r

(3.2.13)

for any measurable set E of the ball B. Considering in (3.2.13) E = B(x, r) ⊂
B(x,1) = B if r < 1, or E = B(x,1) ⊂ B(x, r) = B if r > 1, and elementary
computation shows

min(r
n

2n+1[w]A∞ , rpn)w(B(x,1)) ⪯ w(B(x, r)) ⪯max(r
n

2n+1[w]A∞ , rpn)w(B(x,1)).

Example 3.2.3. Suppose 1 ≤ p <∞, −n < α ≤ β < n(p − 1), and

wα,β(x) = {
∣x∣α if ∣x∣ ≤ 1,
∣x∣β if ∣x∣ > 1.

Then wα,β(x) ∈ Ap, and

(i.) If −n < β < 0, then infx∈Rn Vµ(x,1) = 0.

(ii.) If β = 0, then supx∈Rn Vµ(x,1) <∞.

(iii.) If 0 < β < n(p − 1), then supx∈Rn Vµ(x,1) =∞.

Riemannian manifolds with nonnegative Ricci curvature (see
[106])

.
For an n-manifold with nonnegative Ricci curvature, it is known that

c(n)V ol(B(x,1))r ≤ V ol(B(x, r)) ≤ ωnr
n

where c(n) is a constant and ωn is the volume of the unit ball in Rn. Thus, under
the assumption that the manifolds do not have the collapsing volume property5,
i.e. infx V ol(B(x,1)) > 0, they are (1, n)-uniform spaces.

5In this context, this condition is related with the property of having finite topological
type (see [88]).
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Carnot–Carathéodory spaces (see [38])

Let Ω be a connected smooth manifold and suppose given k smooth real vector
fields {X1, ...,Xk} on Ω satisfying Hörmander’s condition of order m, that is,
these vector fields together with their commutators of order at most m span the
tangent space to Ω at each point. The control distances associated to the vector
fields are defined as follows: for x, y ∈ Ω and δ > 0, let AC(x, y, δ) denote the
collection of absolutely continuous mappings φ ∶ [0,1] → Ω with φ(0) = x and
φ(1) = y such that for almost every t ∈ [0,1], φ′(t) = ∑k

j=1 ajXj(φ(t)), with ∣aj ∣
≤ δ. Then the control metric d(x, y) from x to y is the infimum of the set of δ > 0
such that AC(x, y, δ) ≠ ∅. Hörmander’s condition ensures that d(x, y) < ∞ for
every x, y ∈ Ω.

In this context, we have the following examples:

(i.) (Compact case). If X is a compact n-dimensional Carnot–Carathéodory
space with the distance associated to the vector fields and endowed with
any fixed smooth measure µ with strictly positive density, then (X,d,µ)
is a uniform (n,nm)-space.

(ii.) (Noncompact case). Let Ω = {(z,w) ∈ C2 ∶ Im [w] > P (x)}, where P is a
real, subharmonic, nonharmonic polynomial of degree m. Namely, Ω is an
unbounded model domain of polynomial type in C2. Then X = ∂Ω can be
identified with C × R = {(z, t) ∶ z ∈ C, t ∈ R} The basic (0,1) Levi vector
field is then Z = ∂/∂z − i(∂P /∂z)(∂/∂t), and we write Z = X1 + iX2. The
real vector fields {X1,X2} and their commutators of orders ≤ m span the
tangent space at each point. If we endow C × R with Lebesgue measure,
then X = C ×R is a (4,m + 2)-space.

(iii.) (Noncompact case). Let G be a connected Lie group and fix a left invariant
Haar measure µ on G. We assume that G has polynomial volume growth,
that is, if U is a compact neighbourhood of the identity element e of G, then
there is a constant C > 0 such that µ(Un) ⪯ nC for all n ∈ N. Then there is
a nonnegative integer n∞ such that µ(Un) ≃ nn∞ as n→∞. Let X1, ...,Xn

be left invariant vector fields on G that satisfy Hörmander’s condition, that
is, they together with their successive Lie brackets [Xi1 , [Xi2 , [. . . ,Xik] . . .]
span the tangent space of G at every point of G. Let d be the associated
control metric. Then this metric is left invariant and compatible with
the topology on G and there is an n0 ∈ N, independent of x, such that
µ(B(x, r)) ≃ rn0 when 0 < r ≤ 1, and µ(B(x, r)) ≃ rn0 when r ≥ 1. From
this, it follows that (G,d,µ) is a uniform (min{n0, n∞},max{n0, n∞})-
space.

3.3 Symmetrization inequalities for moduli
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of continuity
Our first result in this section is to obtain embedding results for Besov spaces
built on doubling measure spaces. This will be possible only if our space does
not have the collapsing volume property.

Theorem 4. Let (Ω, d, µ) be a doubling metric space. Let X be a rearrangement
invariant space with 1/p > βX . Assume that the following embedding holds

Ḃsp,q(Ω) ⊂X.

Then Ω does not have the collapsing volume property, i.e.

inf
x∈Ω

Vµ(x,1) > 0. (3.3.1)

In particular, Ḃsp,q(Ω) ⊂ L
p∗,q
µ (Ω) for some p∗ > p implies (3.3.1).

Proof. We claim that the conditions on the indices imply that for 1/p > ε > βX

and t sufficiently small
t1/p

φX(t)
⪯ t

1
p
−βX−ε. (3.3.2)

Indeed, suppose s, t > 0. Then

t1/p

φX(t)
= t1/p

φX(st)
φX(st)
φX(t)

≤ t1/p

φX(st)
MX(s)

and hence for s = 1/t we get

t1/p

φX(t)
≤ t1/p

φX(1)
MX(

1

t
).

Let 1/p > ε > βX . Then (see Lemma 2.2.1) for t sufficiently small,

t1/p

φX(t)
≤ t1/p

φX(1)
MX(

1

t
)

≤ t1/p

φX(1)
(1
t
)
βX+ε

= t
1
p
−βX−ε

φX(1)
,

as we wanted to see.
For a fixed x0 ∈ Ω, we define the Lipschitz function

ux0(y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(2 − d(x0, y)) if y ∈ B(x0,2)Ó B(x0,1)
1 if y ∈ B(x0,1)
0 if y ∈ ΩÓ B(x0,2).
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It is easily seen that
gx0(y) = χB(x0,2)(y)

is a generalized gradient, i.e.

∣ux0(x) − ux0(y)∣ ≤ d(x, y) ∣gx0(x) + gx0(y)∣ . (3.3.3)

By Fubini’s theorem,

Ep(ux0 , t)
p ≤ 2p∫

Ω
∣ux0(x)∣

p dµ(x) + 2p∫
Ω
−∫
B(x,t)

∣ux0(y)∣
p dµ(y)dµ(x) (3.3.4)

≤ 2p ∥ux0∥
p
p + 2

p∫
Ω
∣ux0(y)∣

p (∫
B(y,t)

1

µ(B(x, t))
dµ(x))dµ(y)

⪯ ∥ux0∥
p
p ,

the last estimate following from the doubling property of µ and since
B(y, t) ⊂ B(x,2t) whenever x ∈ B(y, t).

By (3.3.3) and using a similar argument as in (3.3.4), we get

Ep(ux0 , t)
p = ∫

Ω
(−∫

B(x,t)
∣ux0(x) − ux0(y)∣

p dµ(y))dµ(x) (3.3.5)

≤ ∫
Ω
(−∫

B(x,t)
d(x, y)p ∣gx0(x) + gx0(y)∣

p dµ(y))dµ(x)

⪯ tp (∫
Ω
∣gx0(x)∣

p dµ(x) + ∫
Ω
−∫
B(x,t)

∣gx0(y)∣
p dµ(y)dµ(x))

⪯ tp ∥gx0∥
p
p .

Thus, combining (3.3.4) and (3.3.5) with the doubling property, we get

Ep(ux0 , t) ⪯min(∥ux0∥p , t ∥gx0∥p)

≤min(Vµ(x0,2)1/p, tVµ(x0,2)1/p)

⪯min(1, t)Vµ(x0,1)1/p.

Therefore
∥ux0∥Ḃs

p,q(Ω)
⪯ Vµ(x0,1)1/p.

Since
∥ux0∥X ≥ φX(Vµ(x0,1))

by hypothesis, we have that

1 ⪯
Vµ(x0,1)1/p

φX(Vµ(x0,1))
. (3.3.6)

If infx∈Ω Vµ(x,1) = 0, we can select a sequence Vµ(xn,1) → 0. Thus, for n big
enough, (3.3.6) and (3.3.2) imply

1 ⪯ Vµ(xn,1)
1
p
−βX−ε,

which is impossible since 1
p − βX − ε > 0.
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Recall that our aim is to obtain embedding results for Besov spaces built on
doubling measure spaces. Therefore, in view of Theorem 2, it is reasonable to
assume that Ω is uniformly perfect (since Q-regular spaces are uniformly perfect).
Moreover, if we make an additional hypothesis (e.g. Ω supports a (1, p)-Poincaré
inequality or Ω is geodesic), then Ω is connected and therefore uniformly per-
fect. Taking into account these considerations and the previous theorem, our
framework in what follows will be a (k,m)-space uniformly or bounded from
below.

In order to simplify the notation, throughout what follows we will assume
that µ(Ω) =∞, since all the results that we obtain can be immediately adapted
to the case of finite measure.

3.3.1 Pointwise estimates for the rearrangement
For f ∈ L1

µ(Ω) +L∞µ (Ω) and X an r.i. space on Ω, we define:

(i) The gradient at scale r

(∇µ
r f) (x) = −∫

B(x,r)
∣f(x) − f(y)∣dµ(y), (r > 0).

(ii.) The X-modulus of continuity EX ∶ (0,∞) ×X → [0,∞),

EX(f, r) ∶= ∥(∇µ
r f)∥X .

Remark 3.3.1. If X = Lp
µ, by Hölder’s inequality,

ELp
µ
(f, r) = (∫

Ω
(−∫

B(x,r)
∣f(x) − f(y)∣dµ(y))

p

dµ(x))
1/p

≤ (∫
Ω
(−∫

B(x,t)
∣f(x) − f(y)∣p dµ(y))dµ(x))

1/p

= Ep(f, r)

where Ep(f, r) is the Lp
µ-modulus of smoothness defined in (3.1.1).

The aim of this section is to obtain pointwise estimates for the oscillation
Oµ(f, t) in terms of the functional EX(f, t) (see [55],[61] for some related results).
The next lemma will be useful in what follows.

Lemma 3.3.1. Let f ∈ L1
µ(Ω)+L∞µ (Ω). Let x ∈ Ω and t > 0 be such that there is

a ball Bt(x) centred at x with µ(Bt(x)) = t. Then

f∗∗µ (t/2) − f∗∗µ (t) ≤ (δ
µ
t f)

∗∗
µ (t/2),

where
(δµt f) (x) =

1

t
∫
Bt(x)

∣f(x) − f(y)∣dµ(y).
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Proof. Since

∣f(x)∣χBt(x)(y) ≤ ∣f(x) − f(y)∣χBt(x)(y) + ∣f(y)∣χBt(x)(y),

integrating with respect to dµ(y) yields that

∣f(x)∣t ≤ ∫
Bt(x)

∣f(x) − f(y)∣dµ(y) + ∫
Bt(x)

∣f(y)∣dµ(y)

≤ ∫
Bt(x)

∣f(x) − f(y)∣dµ(y) + ∫
t

0
f∗µ(s)ds (by (2.1.2)).

Now integrating with respect to dµ(x) over a subset E ⊂ Ω with µ(E) = t/2, we
get

∫
E
∣f(x)∣dµ(x) ≤ ∫

E

1

t
∫
Bt(x)

∣f(x) − f(y)∣dµ(y)dµ(x) + ∫
E

1

t
(∫

t

0
f∗µ(s)ds)dµ(x)

= ∫
E
(δµt f) (x)dµ(x) +

1

2
∫

t

0
f∗µ(s)ds

By (2.1.3), taking the supremum over all such sets E, we obtain

∫
t/2

0
f∗µ(s)ds ≤ ∫

t/2

0
(δµt f)

∗
µ (s)ds +

1

2
∫

t

0
f∗µ(s)ds,

or equivalently
f∗∗µ (t/2) − f∗∗µ (t) ≤ (δ

µ
t f)

∗∗
µ (t/2).

Theorem 5. Let f ∈ L1
µ(Ω) +L∞µ (Ω). Let X be an r.i. space on Ω.

(i.) If (Ω, d, µ) is uniform, then for all t > 0,

Oµ(f, t) ⪯
1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)). (3.3.7)

(ii.) If (Ω, d, µ) is bounded form below, then for all t > 0,

Oµ̃ (f, t) ⪯
1

κ11t

R(κ1t)
ϕX(κ1t)

EX(f, r(κ1t)).

Proof. (i.) Given x ∈ Ω and t > 0, by Remark 9 there is a ball B(x) centred at
x such that t/CD ≤ µ(B(x)) ≤ t. We denote by z the measure of this ball, i.e.
µ(Bz(x)) = z, with t/CD ≤ z ≤ t. From (3.2.9) it follows that

{ µ(Bz(x)) ≤ t ≤ Vµ(x, (t/c)1/m) ≤ C (t/c)k/m if t < c,
µ(Bz(x)) ≤ t ≤ Vµ(x, (t/c)1/k) ≤ C (t/c)m/k if t ≥ c,
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i.e.
µ(Bz(x)) ≤ t ≤ Vµ(x, r (t/c)) ≤ CR (t/c) . (3.3.8)

Obviously, Bz(x) ⊂ B (x, r (t/c)), and thus

(δµz f) (x) =
1

z
∫
Bz(x)

∣f(x) − f(y)∣dµ(y)

≤ CD

t
∫
B(x,r(t/c))

∣f(x) − f(y)∣dµ(y)

≤ CCD
R (t/c)

t
−∫
B(x,r(t/c))

∣f(x) − f(y)∣dµ(y) (by (3.3.8))

= CCD
R (t/c)

t
(▽µ

r(t/c)f) (x).

Taking rearrangements, we get

(δµz f)
∗
µ (s) ≤ CCD

R (t/c)
t
(▽µ

r(t/c)f)
∗

µ
(s), s > 0,

which implies

(δµz f)
∗∗
µ (s) ≤ CCD

R (t/c)
t
(▽µ

r(t/c)f)
∗∗

µ
(s), s > 0.

On the other hand,

(▽µ
r(t/c)f)

∗∗

µ
(s) ≤ 1

ϕX(s)
sup
s
(ϕX(s) (▽µ

r(t/c)f)
∗∗

µ
(s))

= 1

ϕX(s)
∥(▽µ

r(t/c)f)∥M(X) (by (2.2.7))

≤ 1

ϕX(s)
∥(▽µ

r(t/c)f)∥X (by (2.2.8))

= 1

ϕX(s)
EX(f, r(t/c)).

Combining this inequality and Lemma 3.3.1, we obtain

f∗∗µ (z/2) − f∗∗µ (z) ≤ (δµz f)
∗∗
µ (z/2) ≤ CCD

R (t/c)
tϕX(z/2)

EX(f, r(t/c)).

By Remark 2.1.1, we get

f∗∗µ (z/2) − f∗∗µ (z) = ∫
z

z/2
(f∗∗µ (s) − f∗µ(s))

ds

s
≥
f∗∗µ (z/2) − f∗µ(z/2)

2
.

In summary,
Oµ (f, z/2) ≤ 2CCD

R (t/c)
tϕX(z/2)

EX(f, r(t/c)). (3.3.9)
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Finally, using that t/CD ≤ z ≤ t, we get

t

2CD
Oµ (f,

t

2CD
) ≤ z

2
Oµ (f,

z

2
) (by Remark 2.1.1)

≤ 2CCD
z/2

ϕX(z/2)
R (t/c)

t
EX(f, r(t/c)) (by (3.3.9))

≤ 4CCD
R (t/c)
ϕX(t/2)

EX(f, r(t/c)) (since s

ϕX(s)
increases)

≤ 4CCD (sup
t>0

ϕX(2t/c)
ϕX(t/2)

) R (t/c)EX(f, r(t/c))
ϕX(t/c)

= 4CCDMX(2/c)
R (t/c)EX(f, r(t/c))

ϕX(t/c)
,

which implies (3.3.7).
(ii.) By Lemma 3.2.3, we get L1

µ(Ω) + L∞µ (Ω) ⊂ L1
µ̃(Ω) + L∞µ̃ (Ω) since µ̃ is

doubling. By Remark 9, given x ∈ Ω and t > 0, there is a ball Bz(x) centred at x
such that t/CD ≤ µ̃(Bz(x)) = z ≤ t. Then

(δµ̃z f) (x) ≤
CD

t
∫
B(x,r(t/d))

∣f(x) − f(y)∣ dµ(y)
V (y,1)

≤ CDD
R(t/d)

t
−∫
B(x,r(t/d))

∣f(x) − f(y)∣dµ(y) (by (3.2.11))

= CDD
R(t/d)

t
(▽µ

r(t/d)f) (x).

Taking rearrangements with respect to µ̃, we have that for all s > 0

(δµ̃z f)
∗
µ̃
(s) ≤ CDD

R(t/d)
t
(▽µ

r(t/d)f)
∗

µ̃
(s)

≤ CDD
R(t/d)

t
(▽µ

r(t/d)f)
∗

µ
(sd) (by Lemma 3.2.3).

Hence,

(δµ̃z f)
∗∗
µ̃
(s) = 1

s
∫

s

0
(δµ̃z f)

∗
µ̃
(y)dy

≤ CDD
R(t/d)

t

1

s
∫

s

0
(▽µ

r( t
d
)f)

∗

µ
(yd)dy

= CDD
R(t/d)

t

1

sd
∫

sd

0
(▽µ

r( t
d
)f)

∗

µ
(y)dy

= CDD
R(t/d)

t
(▽µ

r(t/d)f)
∗∗

µ
(sd).

and
(∇µ

r(t/d)f)
∗∗

µ
(sd) ≤ 1

ϕX(sd)
EX(f, r(t/d)).
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Thus,

f∗∗µ̃ (z/2) − f∗∗µ̃ (z) ≤DCD
R(t/d)

tϕX(zd/2)
EX(f, r(t/d)).

Now we finish the proof as in part (i).

3.4 A Sobolev type embedding result for
Besov spaces
Definition 3.4.1. Let (Ω, d, µ) be a (k,m)-space. Let X be a r.i. space on Ω
and let Y be an r.i. space on [0,∞) over [0,∞) with respect to Lebesgue measure.
Let 0 < s < 1. The Besov space B̊s

(k,m),X,Y (Ω) is the set of those functions in
L1
µ(Ω) +L∞µ (Ω) for which the semi-norm

∥f∥B̊s
(k,m),X,Y

(Ω) ∶= ∥
r(t)−sEX(f, r(t))

ϕY (t)
∥
Y

is finite.

Remark 3.4.1. We write B̊s
(k,m),p,q(Ω) if X = Lp

µ(Ω) and Y = Lq ([0,∞))
(1 ≤ p <∞, 1 ≤ q ≤∞). In this case ϕY (t) = t1/q, thus if 1 ≤ q <∞,

∥f∥B̊s
(k,m),p,q(Ω)

≤ ∥
Ep(f, r(t))
(r (t))s t1/q

∥
Lq

(by Remark 3.3.1)

=
⎛
⎝∫

∞

0

⎛
⎝
Ep(f,max (t1/k, t1/m))

max (t1/k, t1/m)s
⎞
⎠

q
dt

t

⎞
⎠

1/q

=
⎛
⎝∫

1

0
(
Ep(f, t1/m)

ts/m
)
q
dt

t
+ ∫

∞

1
(
Ep(f, t1/k)

ts/k
)
q
dt

t

⎞
⎠

1/q

≃ (∫
1

0
(
Ep(f, t)

ts
)
q
dt

t
+ ∫

∞

1
(
Ep(f, t)

ts
)
q
dt

t
)
1/q

= (∫
∞

0
(
Eq(f, t)

ts
)
q
dt

t
)
1/q

.

Therefore,
Ḃsp,q(Ω) ⊂ B̊s

(k,m),p,q(Ω).

Similarly,
Ḃsp,∞(Ω) ⊂ B̊s

(k,m),p,∞(Ω).
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3.4.1 Some new function spaces
Following [59], we shall now construct the range spaces for our generalized Besov–
Sobolev embedding theorem.

Definition 3.4.2. Let (Ω, d, µ) be a (k,m)-space. Given s ∈ R, we define

vs(t) ∶=
t

R(t)r(t)s
=min (t1−

m+s
k , t1−

k+s
m )

and
SX,Y
µ (vs) = {f ∶ ∥f∥SX,Y

µ (vs) = ∥vs(t)
ϕX(t)
ϕY (t)

Oµ(f, t)∥
Y

<∞} ,

where ϕX is the fundamental function of X, an r.i. space on Ω, and Y is an r.i.
space on [0,∞) with respect to Lebesgue measure.

Note that these spaces are not necessarily linear and, in particular, ∥.∥
SX,Y
µ̃ (vs)

is not necessarily a norm.
Given an r.i. space X, we shall say that Y satisfies the Q(s, (k,m),X)-

condition if there exists a constant C > 0 such that

∥vs(t)
ϕX(t)
ϕY (t)

Qf(t)∥
Y

≤ C ∥vs(t)
ϕX(t)
ϕY (t)

f(t)∥
Y

.

The following lemmas will be useful in what follows. A consequence of our
first lemma is that if Y satisfies the Q(s, (k,m),X)-condition, then SX,Y

µ (vs) is
a Banach space.

Lemma 3.4.1. Let X,Y be two r.i. spaces. If Y satisfies the Q(s, (k,m),X)-
condition, then for all f∗µ(∞) = 0,

∥f∥
SX,Y
µ (vs) ≃ ∥vs(t)

ϕX(t)
ϕY (t)

f∗∗µ (t)∥
Y

, (3.4.1)

with constants of equivalence independent of f.

Proof. Obviously,

∥vs(t)
ϕX(t)
ϕY (t)

Oµ(f, t)∥
Y

≤ ∥vs(t)
ϕX(t)
ϕY (t)

f∗∗µ (t)∥
Y

.

Conversely, from d
dtf
∗∗
µ (t) = −

f∗∗µ (t)−f∗µ(t)
t and the Fundamental Theorem of Cal-

culus, we have

f∗∗µ (t) = ∫
∞

t
(f∗∗µ (s) − f∗µ(s))

ds

s
= Q (f∗∗µ − f∗µ) (t),

and the result follows by the Q(s, (k,m),X)-condition.
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The next result gives a useful criterion for checking the validity of a
Q(s, (k,m),X)-condition.

Lemma 3.4.2. Let X,Y be two r.i. spaces. Suppose that

∫
∞

1
t
m+s
k
−1hY (1/t)MX(1/t)MY (t)

dt

t
<∞. (3.4.2)

Then Y satisfies the Q(s, (k,m),X)-condition.

Proof. Let us write vs ∶= v. We have

v(t)ϕX(t)
ϕY (t)

Qf(t) = ∫
∞

t
v(t)ϕX(t)

ϕY (t)
f(x)dx

x
= ∫

∞

1
v(t)ϕX(t)

ϕY (t)
f(tx)dx

x

≤ ∫
∞

1
v(tx)f(tx)ϕX(xt)

ϕY (xt)
sup
t>0

v(t)
v(tx)

sup
t>0

ϕX(t)
ϕX(xt)

sup
t>0

ϕY (xt)
ϕY (t)

dx

x

= ∫
∞

1
v(tx)f(tx)ϕX(xt)

ϕY (xt)
sup
t>0

v(t)
v(tx)

MX(1/x)MY (x)
dx

x
.

Applying Minkowski’s inequality, we obtain

∥v(t)ϕX(t)
ϕY (t)

Qf(t)∥
Y

≤ ∫
∞

1
∥v(tx)f(tx)ϕX(xt)

ϕY (xt)
∥
Y

sup
t>0

v(t)
v(tx)

MX(1/x)MY (x)
dx

x

≤ ∫
∞

1
(sup

t>0

v(t)
v(tx)

)hY (1/x)MX(1/x)MY (x)
dx

x
∥v(t)f(t)ϕX(t)

ϕY (t)
∥
Y

.

Finally, an elementary computation shows that if x > 1, then

sup
t>0

v(t)
v(tx)

= x
m+s
k
−1.

Remark 3.4.2. In terms of indices, it is easy to see that (3.4.2) is equivalent to
the inequality

m + s
k
− 1 < αY − βY + βX

.

Moreover, if ϕX(t)/ϕY (t) is equivalent to an increasing function, then start-
ing from φs,(k,m)(t)

ϕX(t)
ϕY (t)Qf(t) ≤ c ∫

∞
t φs,(k,m)(t)

ϕX(x)
ϕY (x)f(x)

dx
x and following the

same steps as in the proof of the previous lemma, we see that

∫
∞

1
t
m+s
k
−1hY (

1

t
) dt

t
<∞

implies that Y satisfies the Q(s, (k,m),X)-condition.

In the particular case that Y = Lq we can obtain a more specific result.
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Lemma 3.4.3. Let X be an r.i. space. Let s ∈ (0,1) and suppose q ≥ 1. Let
v(t) = φs(t)t−1/qϕX(t). Then the following statements are equivalent.

i) m+s
k − 1 < βX

.
ii) Lq satisfies the Q(s, (k,m),X)-condition.
iii) If f∗(∞) = 0,

∥v(t) (f∗∗µ (t) − f∗µ(t))∥Lq
µ
≃ ∥v(t)f∗∗µ (t)∥Lq

µ
.

Proof. (i) → (ii) Since αY = βY = 1
q , Remark 3.4.2 applies. ii) → iii) follows

from Lemma 3.4.1. To conclude the proof, we show iii) → i): By Fubini we
readily see that (we need f∗µ(∞) = 0, otherwise Qf∗µ does not exist)

Qf∗µ = Q ○ Pf∗µ = Qf∗µ + Pf∗µ = P ○Qf∗µ = (Qf∗µ)
∗∗

.

Thus
(Qf∗µ)

∗∗ (t) −Qf∗µ(t) = Pf∗µ(t) = f∗∗µ (t). (3.4.3)
Consider now the r.i. space H defined by the norm

∥h∥H = ∥v(t)f
∗∗
µ (t)∥Lq

µ
.

Then, by condition iii),

ϕH(r) = ∥χ[0,r]∥H ≃ ∥v(t) (χ
∗∗
[0,r](t) − χ

∗
[0,r](t))∥Lq

µ

= r (∫
∞

r
v(t)q dt

tq
)
1/q

.

On the other hand, since ϕX is increasing and φs(t)/t is decreasing,

∫
∞

r
v(t)q dt

tq
= ∫

∞

r
(φs(t)t−1/qϕX(t))

q dt

tq

≥ ∫
2r

r
ϕX(t)q (

φs(t)
t
)
q
dt

t

⪰ ϕX(r)q (
φs(2r)
2r

)
q

.

Similarly, since ϕX(t)/t is decreasing,

∫
∞

r
(φs(t)t−1/qϕX(t))

q dt

tq
≤ (ϕX(r)

r
)
q

∫
∞

r
φs(t)q

dt

t

= (ϕX(r)
r
)
q

∫
∞

r
(min (t1−

m+s
k , t1−

k+s
m ))

q dt

t

≤ (ϕX(r)
r
)
q

∫
∞

r
(t1−

m+s
k )

q dt

t

≃ (ϕX(r)
r
)
q

(r1−
m+s
k )

q
(since k ≤m).
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Thus, if r > 1,
ϕH(r) ≃ ϕX(r)r1−

m+s
k

and
β
H
= (1 − m + s

k
) + β

X
.

Finally, since

∥f∥H = ∥v(t)((Qf∗µ)
∗∗ (t) −Qf∗µ(t))∥

Lq
µ

(by (3.4.3))

≃ ∥v(t) (Qf∗µ)
∗∗ (t)∥

Lq
µ

(by condition iii))

= ∥Qf∗µ∥H ,

it follows that Q ∶H →H is bounded, which implies that β
H
> 0, thus

β
X
> m + s

k
− 1.

From Theorem 5 we get immediately the following generalization of the
Sobolev embedding theorem for Besov spaces.

Theorem 6. Let (Ω, d, µ) be a (k,m)-space, X,Y r.i. spaces, and 0 < s < 1.
Then

(i.) If (Ω, d, µ) is uniform,

B̊s
(k,m),X,Y (Ω) ⊂ S

X,Y
µ (vs).

Moreover if Y satisfies the Q(s, (k,m),X)-condition, then for all f∗µ(∞) =
0,

∥vs(t)
ϕX(t)
ϕY (t)

f∗∗µ (t)∥
Y

⪯ ∥f∥B̊s
(k,m),X,Y

(Ω) .

(ii.) If (Ω, d, µ) is bounded from below,

B̊s
(k,m),X,Y (Ω) ⊂ S

X,Y
µ̃ (vs).

Moreover if Y satisfies the Q(s, (k,m),X)-condition, then for all f∗µ̃(∞) =
0,

∥vs(t)
ϕX(t)
ϕY (t)

f∗∗µ̃ (t)∥
Y

⪯ ∥f∥B̊s
(k,m),X,Y

(Ω) .
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Proof. (i.) Let f ∈ L1
µ(Ω) + L∞µ (Ω). Then from (3.3.7) we know that there is a

constant κ > 0 such that

Oµ (f, t) ⪯
1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)), t > 0.

Thus,

∥f∥
SX,Y
µ (vs) ⪯ ∥

t

R(t)r(t)s
ϕX(t)
ϕY (t)

1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t))∥
Y

= ∥R (κ0t) r(κ0t)
R(t)r(t)s

ϕX(t)ϕY (κ0t)
ϕX(κ0t)ϕY (t)

1

κ0

r(κ0t)−s

ϕY (κ0t)
EX(f, r(κ0t))∥

Y

⪯ sup
t>0
(R (κ0t) r(κ0t)

R(t)r(t)s
ϕX(t)ϕY (κ0t)
ϕX(κ0t)ϕY (t)

1

κ0
)∥r(κ0t)

−s

ϕY (κ0t)
EX(f, r(κ0t))∥

Y

⪯ hY (1/κ0) ∥
r(t)−s

ϕY (t)
EX(f, r(t))∥

Y

⪯ ∥f∥B̊s
(k,m),X,Y

(Ω) .

Part (ii) is analogous.

3.5 Uncertainty type inequalities
The purpose of this section is to extend the generalized uncertainty Sobolev
inequalities obtained in [66] to the context of Besov spaces.

Definition 3.5.1. Let (Ω, d, µ) be a (k,m)-space, X,Y r.i. spaces, and 0 < s < 1.
We will say that a µ-measurable function w ∶ Ω→ (0,∞) is an (s, (k,m) ,X,Y )-
admissible weight if

[w] ∶= sup
t>0

⎛
⎜
⎝
(( 1

w
)
∗

µ
(t))

s
1

vs(t)ϕX(t)
ϕY (t)

⎞
⎟
⎠
<∞.

Theorem 7. Let (Ω, d, µ) be a uniform (k,m)-space, let X,Y be r.i. spaces,
suppose 0 < s < 1, and let w be an (s, (k,m) ,X,Y )-admissible weight. Assume
that Y satisfies the Q(s, (k,m),X)-condition. Let α > 0. Then for all f ∈ L1

µ(Ω)+
L∞µ (Ω) such that f∗µ(∞) = 0, we have that

∥f∥Y ⪯ [w]
α

α+1 ∥f∥
α

α+1
B̊s
(k,m),X,Y

(Ω)
∥wαsf∥

1
α+1
Y . (3.5.1)
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Proof. Since f∗µ(∞) = 0, by the Fundamental Theorem of Calculus and (3.3.7),
we get

f∗∗µ (t) = ∫
∞

t
(f∗∗µ (s) − f∗µ(s))

ds

s
(3.5.2)

⪯ ∫
∞

t

1

κ0s

R (κ0s)
ϕX(κ0s)

EX(f, r(κ0s))
ds

s
.

Then

∥f∥Y = ∥f (
w

w
)
s

∥
Y
≤ ∥f (w

w
)
s

χ{w≤r1/s}∥
Y
+ ∥f (w

w
)
s

χ{w>r1/s}∥
Y

≤ r ∥f ( 1
w
)
s

∥
Y
+ ∥f (w

w
)
sα

χ{w>r1/s}∥
Y

≤ r ∥f ( 1
w
)
s

∥
Y
+ r−α ∥wαsf∥Y .

Now we estimate the first term:

∥f ( 1
w
)
s

∥
Y
≤
XXXXXXXXXXXXX
f∗µ(t)((

1

w
)
∗

µ
(t))

s vs(t)ϕX(t)
ϕY (t)

vs(t)ϕX(t)
ϕY (t)

XXXXXXXXXXXXXY

≤ [w] ∥f∗µ(t)vs(t)
ϕX(t)
ϕY (t)

∥
Y

≤ [w] ∥f∗∗µ (t/2)vs(t)
ϕX(t)
ϕY (t)

∥
Y

≤ [w] ∥vs(t)(t)
ϕX(t)
ϕY (t) ∫

∞

t

1

κ0s

R (κ0s)
ϕX(κ0s)

EX(f, r(κ0s))
ds

s
∥
Y

(by (3.5.2))

⪯ [w] ∥r(t)
−sEX(f, r(t))
ϕY (t)

∥
Y

(by the Q(s, (k,m),X) − condition)

⪯ [w] ∥f∥B̊s
(k,m),X,Y

(Ω) .

In summary, we have proved that there is an absolute constant A > 0 such
that

∥f∥Y ≤ A [w] r ∥f∥B̊s
(k,m),X,Y

(Ω) + r
−α ∥wαsf∥Y . (3.5.3)

Selecting the value r = ( ∥wsαf∥Y
2A[w]∥f∥B̊s

(k,m),X,Y
(Ω)
)

1
1+α

to compute (3.5.3) balances

the two terms and we obtain the multiplicative inequality (3.5.1).

Remark 3.5.1. The connection with the notion of isoperimetric weight intro-
duced in [66] is the following: consider the case (Rn, ∣ ⋅ ∣,Ln). Obviously, it is a
uniform (k,m)-space with k =m = 1

n . Let X = Y = Lq. Then

[w] ∶= sup
t>0
((( 1

w
)
∗

µ
(t))

s

t
s
n) = sup

t>0
((( 1

w
)
∗

µ
(t)) t

1
n)

s

.
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Thus w is admissible if, and only if, 1
w ∈ L

n,∞ (i.e. w is an isoperimetric weight).
Let α > 0, 1 ≤ q <∞, and 0 < s < 1 with s < n/q. By Remark 3.4.2, Lq satisfies

the Q(s, ( 1n ,
1
n), L

q)-condition. Then by Theorem 7, if 1
w ∈ L

n,∞,

∥f∥lq ≤ (2κ [w])
α

α+1 ∥f∥
α

α+1
B̊s

p,q(Rn)
∥wαsf∥

1
α+1
Lq

,

where B̊s
p,q(Rn) is the classical Euclidean Besov space.

3.6 Embedding into BMO and essential
continuity

Definition 3.6.1. Let f ∶ Ω → R be a locally integrable function on Ω. Then f
is said to have bounded mean oscillation (written f ∈ BMO) if the seminorm is
given by

∥f∥BMOµ(Ω) = sup
B
{−∫

B
∣f − fB ∣dµ} <∞.

Here B denotes any ball of Ω.

Theorem 8. Let (Ω, d, µ) be a uniform (k,m)-space. Then

∥f∥BMOµ(Ω) ⪯ sup
t>0

R (t)
tϕX(t)

EX(f, r(t))

Proof. Let B ∶= B(x) be a ball centred at x. Since (Ω, d, µ) is a uniform (k,m)-
space, we have that

µ(B) ≤ µ(B(x, r(µ(B)/c)) ≤ CR(µ(B)/c).

Then

I ∶= ∫
B
∣f(y) − −∫

B(x)
f(s)dµ(s)∣dµ(y)

≤ −∫
B
(∫

B(x)
∣f(y) − f(s)∣dµ(s))dµ(y)

≤ −∫
B
∫
B(x,r(µ(B)/c))

∣f(y) − f(s)∣dµ(s)dµ(y)

≤ CR (µ(B)/c)
µ(B) ∫

B
(−∫

B(x,r(µ(B)/c))
∣f(s) − f(y)∣dµ(s))dµ(y)

≤ CR (µ(B)/c)
µ(B)

EX(f, r(µ(B)/c)) ∥χB(x)∥X′ (by (2.2.4))

= CR (µ(B)/c)
ϕX(µ(B))

EX(f, r(µ(B)/c)).
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Using this estimate and Remark 3.2.1, we get

∥f∥BMOµ(Ω) = sup
B
−∫
B
∣f(y) − −∫

B
f(s)dµ(s)∣dµ(y)

≤ sup
µ(B)

C
R (µ(B)/c)

µ(B)ϕX(µ(B))
EX(f, r(µ(B)/c))

≤ sup
t>0

sup
t/CD≤µ(B)≤t

C
R (µ(B)/c)

µ(B)ϕX(t/CD)
EX(f, r(µ(B)/c))

⪯ sup
t>0

R (t/c)
tϕX(t)

EX(f, r(t/c)) ⪯ sup
t>0

R (t)
tϕX(t)

EX(f, r(t)).

3.6.1 Essential continuity
Theorem 9. Let (Ω, d, µ) be a uniform (k,m)-space. Let X be an r.i. space on
Ω. Now suppose f ∈ L1

µ(Ω) +L∞µ (Ω) satisfies

∫
∞

0

R (t)
tϕX(t)

EX(f, r(t))
dt

t
<∞.

Then f is µ-locally essentially continuous.

Proof. If f ≥ 0, Theorem 5 implies

f☆☆µ (t) − f☆µ (t) = f∗∗µ (t) − f∗µ(t) ⪯
1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)).

If f is bounded from below and c = inf(f), then f − c ≥ 0, and therefore

Oµ (f − c) (t) ⪯
1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f − c, r(κ0t))

≤ 1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)).

By Proposition 2.1.1 (ix),

f☆☆µ (t) − f☆µ (t) = (f − c)
∗∗
µ (t) − (f − c)

∗
µ (t),

and thus
f☆☆µ (t) − f☆µ (t) ⪯

1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)).

Let f ∈ L1
µ(Ω) + L∞µ (Ω), and let B be a ball. Given n ∈ N, we consider fn =

max(fχB,−n). Since fn is bounded from below, we get

(fn)☆☆µ (t) − (fn)☆µ (t) ⪯
1

κ0t

R (κ0t)
ϕX(κ0t)

EX(fn, r(κ0t))

≤ 1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t)).
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Let 0 < a < µ(B). By the Fundamental Theorem of Calculus,

∫
µ(B)

a
((fn)☆☆µ (t) − (fn)☆µ (t))

dt

t
= 1

a
∫

a

0
(fn)☆µ (t)dt−

1

µ(B) ∫
µ(B)

0
(fn)☆µ (t)dt.

Since fn(z)→ fχB(z) µ-a.e. and ∣fn∣ ≤ ∣fχB ∣, we have

1

a
∫

a

0
(fn)☆µ (t)dt −

1

µ(B) ∫
µ(B)

0
(fn)☆µ (t)dt ∶= (F )

(F ) →
n→∞

1

a
∫

a

0
(fχB)☆µ (t)dt −

1

µ(B) ∫
µ(B)

0
(fχB)☆µ (t)dt.

Letting a→ 0, we get

(fχB)☆☆µ (0) − (fχB)☆☆µ (µ(B)) ⪯ ∫
µ(B)

0

1

κ0t

R (κ0t)
ϕX(κ0t)

EX(f, r(κ0t))
dt

t

⪯ ∫
kµ(B)

0

R (t)
tϕX(t)

EX(f, r(t))
dt

t
.

By (2.1.1),

ess sup fχB −
1

µ(B) ∫
µ(B)

0
(fχB)☆µ (t)dt

⪯ ∫
κ0µ(B)

0

R (t)
tϕX(t)

EX(f, r(t))
dt

t
.

Similarly, considering −fχB instead of fχB, we obtain

1

µ(B) ∫
µ(B)

0
(−fχB)☆µ (s)ds − ess inf(fχB)

⪯ ∫
κ0µ(B)

0

R (t)
tϕX(t)

EX(f, r(t))
dt

t
.

Since fχB and −fχB are both supported on B, we have that

∫
µ(B)

0
(fχG)☆µ (s)ds = ∫

B
fdµ and ∫

µ(B)

0
(−fχG)☆µ (s)ds = −∫

B
fdµ.

Adding these results, we have that for µ-almost every x, y ∈ B

∣f(x) − f(y)∣ ≤ ess sup(fχB) − ess inf(fχB)

≤ 2∫
κ0µ(B)

0

R (t)
tϕX(t)

EX(f, r(t))
dt

t
.

and µ-locally essentially continuity follows.
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3.7 Sobolev type embeddings for
homogeneous Besov spaces

In this section we going to consider in detail Sobolev type embeddings for the
homogeneous Besov spaces Ḃsp,q(Ω) where 0 < p <∞, 0 < q ≤∞.

First of all, note that an elementary computation shows (see Remark 3.4.1)
that

∥f∥Ḃs
p,q(Ω)

≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∫
∞
0 (

Ep(f,r(t))
r(t)s )

q
dt
t )

1/q
, 0 < q <∞,

sup
t>0

r(t)−sEp(f, r(t)), q =∞.

In case 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, our results will be a consequence of the
theory developed in the previous sections. However, for 0 < p, q < 1, Lp

µ(Ω) and
Lq([0,∞)) are not Banach spaces, thus the previous theory cannot be applied.

Lemma 3.7.1. Let 0 < p < 1. Let f ∈ Lp
µ(Ω) +L∞µ (Ω). Then:

1. If (Ω, d, µ) is uniform, then for all t > 0 we have that

Oµ(∣f ∣p , t) ⪯
R (κ0t)
(κ0t)2

Ep(f, κ0t)p.

2. If (Ω, d, µ) is bounded from below, then for all t > 0 we have that

Oµ̃(∣f ∣p , t) ⪯
R (κ1t)
(κ1t)2

Ep(f, r(κ1t))p.

Proof. Let B = B(x) be a ball centred at x. Since 0 < p < 1, we have that

∣f(x)∣pχB(x)(y) ≤ ∣f(x) − f(y)∣pχB(x)(y) + ∣f(y)∣pχB(x)(y).

Integrating with respect to dµ(y), we have that

∣f(x)∣pµ(B) ≤ ∫
B(x)
∣f(x) − f(y)∣pdµ(y) + ∫

B(x)
∣f(y)∣pdµ(y)

≤ ∫
B(x)
∣f(x) − f(y)∣pdµ(y) + ∫

µ(B)

0
(∣f ∣p)∗µ (s)ds (by (2.1.3)).

Now integrating with respect to dµ(x) over a subset E ⊂ Ω with µ(E) = µ(B)/2,
we get

∫
E
∣f(x)∣pdµ(x) ≤ ∫

E
−∫
B(x)
∣f(x) − f(y)∣pdµ(y)dµ(x) + ∫

E

1

µ(B)
(∫

µ(B)

0
f∗µ(s)ds)dµ(x)

≤ ∫
Ω
−∫
B(x)
∣f(x) − f(y)∣pdµ(y)dµ(x) + 1

2
∫

µ(B)

0
f∗µ(s)ds
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By (2.2.2), taking the supremum over all such sets E, we obtain

∫
µ(B)/2

0
(∣f ∣p)∗µ (s)ds ≤ ∫

Ω
−∫
B(x)
∣f(x)−f(y)∣pdµ(y)dµ(x)+1

2
∫

µ(B)

0
(∣f ∣p)∗µ (s)ds.

Equivalently,

(∣f ∣p)∗∗µ (µ(B)/2) − (∣f ∣
p)∗∗µ (µ(B)) ≤

1

µ(B) ∫Ω
−∫
B(x)
∣f(x) − f(y)∣pdµ(y)dµ(x)

Now (i) and (ii) follow in the same way as Theorem 5.

Definition 3.7.1. Suppose 0 < p < ∞ and 0 < q ≤ ∞ and let v be a weight on
(0,∞). The space Sp,q

µ (v) is the collection of all µ-measurable functions such that
∥f∥Sp,q

µ (v) <∞, where

∥f∥Sp,q
µ (v) = (∫

∞

0
Oµ(∣f ∣p , t)

q
p v(t)dt)

1/q
.

Remark 3.7.1. For p = 1 the spaces S1,q(v) were introduced in [14]. Note that
if 1 ≤ p <∞ and 1 ≤ q ≤∞, then

SLp,Lq

µ (vs) = S1,q
µ (vs).

Corollary 10. Let (Ω, d, µ) be a (k,m)-space. Let 0 < s < 1 and 0 < p < ∞,
0 < q ≤∞. Let

v(t) =min(t1+
1

max(1,p)−
m+smin(1,p)

k , t
1+ 1

max(1,p)−
k+smin(1,p)

m )
q

min(1,p) 1

t
.

Then:

(i.) If (Ω, d, µ) is uniform, then

Ḃsp,q(Ω) ⊂ Smin(1,p),q
µ (v).

(ii.) If (Ω, d, µ) is bounded from below, then

Ḃsp,q(Ω) ⊂ S
min(1,p),q
µ̃ (v).

Proof. Part (i.) In the case 1 ≤ p < ∞ the proof given in Theorem 6 works. In
case 0 < p < 1, then from Lemma 3.7.1 it follows that

( t2

tp/qR (t) r(t)sp
Oµ(∣f ∣p , t))

1/p

⪯
r(κ0t)−sEp(f, r (κ0t))

(κ0t)1/q
,

and the result is obtained by taking Lq([0,∞))-(quasi) norms on both sides.
Part (ii) can be proved in the same way.
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The following lemma will be useful in what follows.

Lemma 3.7.2. (see [5, Lemma 5.4]). Let 1 ≤ q <∞, and suppose that (w, v) is
a pair of weights satisfying the following condition: there exists C > 0 such that
for all 0 < t < 1,

(∫
t

0
w(s)ds)

1/q ⎛
⎝∫

1

t

v(s)
−1
q−1

s
q

q−1
ds
⎞
⎠

(q−1)/q

≤ C.

Then

(∫
1

0
f∗∗µ (s)qw(s)ds)

1/q
≤ (∫

1

0
(f∗∗µ (s) − f∗µ(s))

q
v(s)ds)

1/q

+ (∫
1

0
w(s)ds)

1/q

∫
1

0
f∗µ(t)ds.

Lemma 3.7.3. Let 0 < q < 1 and b > 0, then

(∫
1

0
tbf∗∗µ (t)q

dt

t
)
1/q
⪯ (∫

1

0
tb (f∗∗µ (t) − f∗µ(t))

q dt

t
)
1/q
+ f∗∗µ (1).

Proof. We integrate by parts and obtain

∫
1

0
tbf∗∗µ (t)q

dt

t
= 1

b
[tbf∗∗µ (t)q]

1

0
+ q

b
∫

1

0
tbf∗∗µ (t)q−1 (f∗∗µ (t) − f∗µ(t))

dt

t

≤ 1

b
[tbf∗∗(t)q]1

0
+ q

b
∫

1

0
tb (f∗∗µ (t) − f∗µ(t))

q dt

t
(since q < 1).

Now
[tbf∗∗µ (t)q]

b

0
= f∗∗µ (1)q − lim

t→0
tbf∗∗µ (t)q.

To finish the proof we need to show that the previous limit is finite. This is
obvious if f∗∗µ (0) <∞. If f∗∗µ (0) =∞, taking into account that t (f∗∗µ (t) − f∗µ(t))
is increasing, we get

t (f∗∗µ (t) − f∗µ(t)) (∫
1

t
sb−1−q)

1/q
≤ (∫

1

t
sq (f∗∗µ (s) − f∗µ(s))

q
sb−1−q)

1/q

= (∫
1

t
sb (f∗∗µ (s) − f∗µ(s))

q ds

s
)
1/q

.

If t < 1/2, then

(∫
1

t
sb−1−q)

1/q
≥ (∫

2t

t
sb−1−q)

1/q
≃ tb/q−1, if b ≠ q,

and
(∫

1

t
sb−1−q)

1/q
≥ (∫

2t

t

1

s
)
1/q
≃ 1, if b = q.
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Thus

tb/q (f∗∗µ (t) − f∗µ(t)) ⪯ (∫
1

t
sb (f∗∗µ (s) − f∗µ(s))

q ds

s
)
1/q

.

Finally, by L’Hopital’s rule,

lim
t→0

tb/qf∗∗µ (t) = lim
t→0

f∗∗µ (t)
t−b/q

= lim
t→0

−(f∗∗µ (t) − f∗µ(t))/t
− b
q t
−b/q−1

= lim
t→0

tb/q(f∗∗µ (t) − f∗µ(t)
b/q

⪯ (∫
1

0
sb (f∗∗µ (s) − f∗µ(s))

q ds

s
)
1/q

.

Lemma 3.7.4. Given a < b <∞, we define

v(t) = min(ta, tb)
t

.

Let 0 < q ≤∞ and f ∈ L1
µ(Ω) +L∞µ (Ω), with f∗µ(∞) = 0. Then

(i.) If 0 < a < b <∞, then

∥f∥
S1,q
µ (v)

≃ (∫
∞

0
f∗∗µ (t)qv(t)dt)

1/q
.

(ii.) If a ≤ 0, then

(∫
1

0
f∗∗µ (t)qv(t)dt)

1/q
⪯ ∥f∥

S1,q
µ (v)

+ f∗∗µ (1).

(iii.) If b = 0 and q > 1, then

(∫
∞

0
(
f∗∗µ (t)q

1 + ln 1
t

)
q
dt

t
)
1/q

⪯ ∥f∥
S1,q
µ (v)

+ f∗∗µ (1).

(iv.) If b = 0 and q ≤ 1 or b < 0 and 0 < q ≤∞, then

∥f∥∞ ⪯ ∥f∥S1,q
µ (v)

+ f∗∗µ (1).

Proof. (i.) By [14, Corollary 4.3.] we only need to check that

∫
r

0
v(t)dt ⪯ rq ∫

∞

r

v(t)
tq

dt, r > 0.
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Pick 0 < ε < a. Then

∫
r

0
v(t)dt = ∫

r

0
min(ta−ε, tb−ε) dt

t1−ε
≤min(ra−ε, rb−ε)∫

r

0

dt

t1−ε

⪯min(ra, rb) ⪯min(ra, rb)r
q

rq

⪯min(ra, rb)rq ∫
2r

r

dt

sq+1
⪯ rq ∫

2r

r
v(t)dt

sq

≤ rq ∫
∞

r

v(t)
tq

dt.

(ii.) By Lemma 3.7.3,

(∫
1

0
tbf∗∗µ (t)q

dt

t
)
1/q
⪯ (∫

1

0
tbOµ(f, t)q

dt

t
)
1/q
+ f∗∗µ (1).

(iii.) By Lemma 3.7.2 with w(t) = ( 1
1+ln( 1

t
))

q
1
s and v(t) = 1

t , we get

⎛
⎝∫

1

0

⎛
⎝

f∗∗µ (t)
1 + ln (1t )

⎞
⎠

q
dt

t

⎞
⎠

1/q

⪯ (∫
1

0
Oµ(f, t)q

dt

t
)
1/q
+ f∗∗µ (1)

≤ ∥f∥
S1,q
µ (v)

+ f∗∗µ (1)

and

⎛
⎝∫

∞

1

⎛
⎝

f∗∗µ (t)
1 + ln (1t )

⎞
⎠

q
dt

t

⎞
⎠

1/q

≤ f∗∗µ (1)
⎛
⎝∫

∞

1

⎛
⎝

1

1 + ln (1t )
⎞
⎠

q
dt

t

⎞
⎠

1/q

⪯ f∗∗µ (1).

(iv.) If b = 0 and q = 1, then

∥f∥∞ = f
∗∗
µ (0) = ∫

1

0
Oµ(f, t)

dt

t
+ f∗∗µ (1) ≤ ∥f∥S1,q

µ (v)
+ f∗∗µ (1).

If 0 < q < 1, let 0 < r < 1. Then

f∗∗µ (r) − f∗∗µ (1) = ∫
1

r
Oµ(f, t)

dt

t
= f∗∗µ (r)1−q ∫

1

r

Oµ(f, t)
f∗∗µ (r)1−q

dt

t
(3.7.1)

≤ ∫
1

r

Oµ(f, t)
f∗∗µ (t)1−q

dt

t
≤ ∫

1

r

Oµ(f, t)
Oµ(f, t)1−q

dt

t

= f∗∗µ (r)1−q ∫
1

r
Oµ(f, t)q

dt

t

≤ (1 − q)f∗∗µ (r) + q (∫
1

0
Oµ(f, t)q

dt

t
)
1/q

(3.7.2)

thus
qf∗∗µ (r) ≤ q (∫

1

0
Oµ(f, t)q

dt

t
)
1/q
+ f∗∗µ (1)
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which implies

∥f∥∞ = f
∗∗
µ (0) ≤ (∫

1

0
Oµ(f, t)q

dt

t
)
1/q
+
f∗∗µ (1)

q
.

If b < 0 and 1 ≤ q ≤∞, then

f∗∗µ (0) − f∗∗µ (1) = ∫
1

0
Oµ(f, t)

dt

t

≤ (∫
1

0
(tbOµ(f, t))

q dt

t
)
1/q
(∫

1

0
(t−b)

q
q−1 dt

t
)

q−1
q

⪯ (∫
1

0
(tbOµ(f, t))

q dt

t
)
1/q

.

If b < 0 and 0 < q < 1, then

f∗∗µ (0) − f∗∗µ (1) = ∫
1

0
Oµ(f, t)

dt

t
≤ ∫

1

0
tbOµ(f, t)

dt

t

and we finish the proof in the same way as in (3.7.1).

Now we are ready to establish our Sobolev embedding theorem for homoge-
neous Besov spaces Ḃsp,q(Ω). Motivated by the classical theory, we will distinguish
three cases: The subcritical case, when there is an embedding into a Lorentz type
space; the critical case, when Ḃsp,q(Ω) is embedded into a logarithmic Lorentz
space; and the supercritical case, when the Besov space is embedded into L∞.

Theorem 11. Let (Ω, d, µ) be a uniform (k,m)-space. Let 0 < s < 1, 0 < p <∞,

0 < q ≤∞ and f ∈ Lmin(1,p)
µ (Ω) +L∞µ (Ω), with (∣f ∣min(1,p))

∗

µ
(∞) = 0. Then:

1. Subcritical case:

a) If smin(1, p) < k(1 + 1
max(1,p)) −m, then

∥f∥
Lα,q
µ (Ω)+Lβ,q

µ (Ω) ⪯ ∥f∥Ḃs
p,q(Ω)

,

where
min(1, p)

α
= 1 + 1

max(1, p)
− k + smin(1, p)

m
,

and
min(1, p)

β
= 1 + 1

max(1, p)
− m + smin(1, p)

k
.

b) If k(1 + 1
max(1,p)) −m < smin(1, p) <m(1 + 1

max(1,p)) − k, then

(∫
1

0
(t

1
α f∗∗µ (t))

q dt

t
)
1/q
⪯ ∥f∥Ḃs

p,q(Ω)
+ ∥f∥

L
min(1,p)
µ (Ω)+L∞µ (Ω)

. (3.7.3)

Here,
min(1, p)

α
= 1 + 1

max(1, p)
− m + smin(1, p)

k
.
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2. Critical case:
If smin(1, p) =m(1 + 1

max(1,p)) − k, then

a) If q > 1, we get

⎛
⎝∫

∞

0

⎛
⎝

f∗∗µ (t)
1 + ln (1t )

⎞
⎠

q
dt

t

⎞
⎠

1/q

⪯ ∥f∥Ḃs
p,q(Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω).

b) If 0 < q ≤ 1, we get

∥f∥∞ ⪯ ∥f∥Ḃs
p,q(Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω)

.

3. Supercritical case:
If smin(1, p) >m(1 + 1

max(1,p)) − k, then

∥f∥∞ ⪯ ∥f∥Ḃs
p,q(Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω)

.

1
p

s

Supercritical

Subcritic
al b)

Subcritical a)

Critica
l

Figure 3.2: Theorem 11.

Proof. The proof follows from Lemma 3.7.4. We will employ (3.7.3) if 0 < p < 1.
Then

v(t) =min (t2−
m+sp

k , t2−
k+sp
m )

q
p 1

t

with 2 − m+sp
k ≤ 0. Now by Lemma 3.7.4, applied to ∣f ∣p and q/p, we have that

(∫
1

0
(1
t
∫

t

0
f∗µ(s)pds)

q/p
t
(2− k+sp

m
) q
p
dt

t
)
p/q

⪯ ∥∣f ∣p∥
S
1,q/p
µ (v) + (∣f ∣

p)∗∗µ (1).
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Obviously

(∫
1

0
(f∗µ(s)t

(2− k+sp
m
) 1
p)

q

dt)
p/q
≤ (∫

1

0
(1
t
∫

t

0
f∗µ(s)pds)

q/p
t
(2− k+sp

m
) q
p
dt

t
)
p/q

.

Since

∥∣f ∣p∥
S
1,q/p
µ (v) = (∫

∞

0
Oµ(∣f ∣p , t)

q
p v(t)dt)

p/q
= ∥f∥p

Sp,q
µ (v)

⪯ ∥f∥p
Ḃs
p,q(Ω)

(by Corollary 10),

we have that

(∫
1

0
(f∗µ(s)t

(2− k+sp
m
) 1
p)

q

dt)
p/q
⪯ ∥f∥p

Ḃs
p,q(Ω)

+ (∣f ∣p)∗∗µ (1)

and thus

(∫
1

0
(f∗µ(s)t

(2− k+sp
m
) 1
p)

q

dt)
1/q
⪯ ∥f∥Ḃs

p,q(Ω)
+ ((∣f ∣p)∗∗µ (1))

1/p

= ∥f∥Ḃs
p,q(Ω)

+ ∥f∥Lp
µ(Ω)+L∞µ (Ω) .

All the other cases can be proved in the same way.

With the same proof as that of Theorem 11, we obtain the following theorem.

Theorem 12. Let (Ω, d, µ) be a (k,m)-space bounded from below. Suppose f ∈
L1
µ(Ω)+L∞µ (Ω). Then Theorem 11 holds, considering f∗∗µ̃ and f∗µ̃ instead of f∗∗µ

and f∗µ .

Proof. The proof is done using the arguments of Lemma 3.2.3, Theorem 5, and
Corollary 6.

By Theorems 8, 9 and 7, we obtain

Corollary 13. Let (Ω, d, µ) be a uniform (k,m)-space. Then

(i.)
∥f∥BMOµ(Ω) ⪯ sup

0<t<1
tk−m(1+1/p)Ep(f, t) + sup

t>1
tm−k(1+1/p)Ep(f, t).

(ii.) If

∫
1

0
tk−m(1+1/p)Ep(f, t)

dt

t
+ ∫

∞

1
tm−k(1+1/p)Ep(f, t)

dt

t
<∞,

then f is µ-locally essentially continuous.
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(iii.) Let s < k(1 + 1
p) −m, and let w > 0 be such that

[w] ∶= sup
t>0

⎛
⎜
⎝
(( 1

w
)
∗

µ
(t))

s
1

min (t1−
m+s
k , t1−

k+s
m ) t

1
p
− 1

q

⎞
⎟
⎠
<∞.

Then, for all α > 0 and q ≥ 1, we have that

∥f∥Lq ≤ (2κ [w])
α

α+1 ∥f∥
α

α+1
Ḃs
p,q(Ω)

∥wαsf∥
1

α+1
Lq .

Now, we collect the results for the case when (Ω, d, µ) is Q-regular.

Theorem 14. Let (Ω, d, µ) be Q-regular. Let 0 < p < ∞, 0 < q ≤ ∞, 0 < s < 1,
and f ∈ Lmin(1,p)

µ (Ω) +L∞µ (Ω) with (∣f ∣min(1,p))
∗

µ
(∞) = 0. Then:

(i.) Subcritical case s < Q
p ∶

∥f∥
L
p(Q),q
µ (Ω) ⪯ ∥f∥Ḃs

p,q(Ω)

where p(Q) = Qp/(Q − sp).
Moreover, let w > 0 be such that

[w] ∶= sup
t>0
((( 1

w
)
∗

µ
(t))

s
1

t
1
p
− 1

q
− s

Q

) <∞.

If 1 ≤ p, q <∞, then for all α > 0, we have that

∥f∥Lq ⪯ [w]
α

α+1 ∥f∥
α

α+1
Ḃs
p,q(Ω)

∥wαsf∥
1

α+1
Lq .

(ii.) Critical case s = Q
p ∶

a) If q > 1, then

⎛
⎝∫

∞

0

⎛
⎝

f∗∗µ (t)
1 + ln (1t )

⎞
⎠

q
dt

t

⎞
⎠

1/q

⪯ ∥f∥ḂQ/p
p,q (Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω)

.

b) If 0 < q ≤ 1, then

∥f∥∞ ⪯ ∥f∥Ḃs
p,q(Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω)

.

c) If p ≥ 1, we get:
i.

∥f∥BMOµ(Ω) ⪯ ∥f∥ḂQ/p
p,∞(Ω)

.
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ii. If f ∈ ∥f∥ḂQ/p
p,1 (Ω)

, then f is µ-locally essentially continuous.

(iii.) Supercritical case s > Q
p

∥f∥∞ ⪯ ∥f∥Ḃs
p,q(Ω)

+ ∥f∥
L
min(1,p)
µ (Ω)+L∞µ (Ω)

.

1
p

s

Supercritical

Subcritical

s = Q
p

Figure 3.3: Theorem 14
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Chapter 4

Symmetrization inequalities for
probability metric spaces with
convex isoperimetric profile

4.1 Introduction
Let (Ω, d, µ) be a connected metric space equipped with a separable Borel prob-
ability measure µ. The perimeter or Minkowski content of a Borel set A ⊂ Ω is
defined by

µ+(A) = lim inf
h→0

µ (Ah) − µ (A)
h

,

where Ah = {x ∈ Ω ∶ d(x,A) < h} is an open h-neighbourhood of A. The isoperi-
metric profile Iµ is defined as the pointwise maximal function Iµ ∶ [0,1] →
[0,∞) such that

µ+(A) ≥ Iµ (µ(A)) ,

holds for all Borel sets A. An isoperimetric inequality measures the relation
between the boundary measure and the measure of a set, by providing a lower
bound on Iµ by some function I ∶ [0,1]→ [0,∞) which is not identically zero.

The modulus of the gradient of a Lipschitz function f on Ω (briefly f ∈
Lip(Ω)) is defined by1

∣∇f(x)∣ = lim sup
d(x,y)→0

∣f(x) − f(y)∣
d(x, y)

.

The equivalence between isoperimetric inequalities and Poincaré inequalities
was obtained by Maz’ya, whose method (see [70], [62] and [16]) shows that given

1In fact one can define ∣∇f ∣ for functions f that are Lipschitz on every ball in (Ω, d)
(cf. [7] for more details).
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X =X(Ω) a rearrangement invariant space2, the inequality

∥f − ∫
Ω
fdµ∥

X
≤ c ∥∣∇f ∣∥L1 , f ∈ Lip(Ω), (4.1.1)

holds if, and only if, there exists a constant c = c(Ω) > 0 such that for all Borel
sets A ⊂ Ω,

min (ϕX(µ(A)), ϕX(1 − µ(A))) ≤ cµ+(A), (4.1.2)

where ϕX(t) is the fundamental function3 of X ∶

ϕX(t) = ∥χA∥X , with µ(A) = t.

Motivated by this fact, we will say (Ω, d, µ) admits a concave isoperimetric es-
timator if there exists a function I ∶ [0,1] → [0,∞) that is continuous, concave,
increasing on (0,1/2), symmetric about the point 1/2, satisfies I(0) = 0, and
I(t) > 0 on (0,1), such that

Iµ(t) ≥ I(t), 0 ≤ t ≤ 1.

In the recent work of Milman and Martín (see [61], [63]) it was proved that
(Ω, d, µ) admits a concave isoperimetric estimator I if, and only if, the following
symmetrization inequality holds,

f∗∗µ (t) − f∗µ(t) ≤
t

I(t)
∣∇f ∣∗∗µ (t), (f ∈ Lip(Ω)) (4.1.3)

where f∗∗µ (t) = 1
t ∫

t
0 f∗µ(s)ds, and f∗µ is the non-increasing rearrangement of f with

respect to the measure µ. If we apply a rearrangement invariant function norm
X on Ω (see Section 2.2) to (4.1.3) we obtain Sobolev–Poincaré type estimates
of the form4

∥(f∗∗µ (t) − f∗µ(t))
I(t)
t
∥
X̄

≤ ∥∣∇f ∣∗∗µ ∥X̄ . (4.1.4)

Example 4.1.1. (See [64], [65].) Let Ω ⊂ Rn be a Lipschitz domain of measure 1,
X = Lp (Ω) , 1 ≤ p ≤ n, and p∗ be the usual Sobolev exponent defined by 1

p∗ =
1
p −

1
n .

Then
∥(f∗∗(t) − f∗(t)) I(t)

t
∥
Lp

≃ ∥(f∗∗(t) − f∗(t))∥Lp∗,p , (4.1.5)

which follows from the fact that the isoperimetric profile is equivalent to I(t) =
cnmin(t,1 − t)1−1/n and from Hardy’s inequality (here Lp∗,p is a Lorentz space
(see Section 2.2.2 )). In the case where we consider Rn with Gaussian measure

2i.e. such that if f and g have the same distribution function then ∥f∥X = ∥g∥X (see
Section 2.2).

3We can assume with no loss of generality that ϕX is concave.
4The spaces X̄ were defined in Section 2.2.
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γn, and let X = Lp, 1 ≤ p <∞, then (compare with [34], [23]) since I(Rn,d,γn)(t) ≃
t(log 1/t)1/2 for t near zero, we have

∥(f∗∗γn (t) − f
∗
γn(t))

I(t)
t
∥
Lp

≃ ∥(f∗∗γn (t) − f
∗
γn(t))∥Lp(Log)p/2 , (4.1.6)

where Lp(logL)p/2 is a Lorentz–Zygmund space (see Section 2.2.2).

In this fashion, in [61], [63], [64] and [65], Martín and Milman were able
to provide a unified framework to study the classical Sobolev inequalities and
logarithmic Sobolev inequalities. Moreover, the embeddings (4.1.4) turn out to
be the best possible in all the classical cases. However the method used in the
proof of the previous results cannot be applied with probability measures with
heavy tails, since isoperimetric estimators of such measures are non concave.

Let us illustrate this phenomenon with some examples (see [15, Propositions
4.3 and 4.4] for examples 4.1.2 and 4.1.3 and [72] for example 4.1.4).

Example 4.1.2. (α-Cauchy type law). Let α > 0. Consider the probability
measure space (Rn, d, µ) where d is the Euclidean distance and µ is defined by
dµ(x) = V −(n+α)dx with V ∶ Rn → (0,∞) convex. Then there exists a C > 0 such
that for any measurable set A ⊂ Rn

µ+(A) ≥ Cmin (µ(A),1 − µ(A))1+1/α .

Example 4.1.3. (Extended p-sub-exponential law). Let p ∈ (0,1). Consider the
probability measure on Rn defined by dµ(x) = (1/Zp) e−V

p(x)dx for some positive
convex function V ∶ Rn → (0,∞). Then there exists a C > 0 such that for any
measurable set A ⊂ Rn

µ+(A) ≥ Cmin (µ(A),1 − µ(A))(log 1

min (µ(A),1 − µ(A))
)
1−1/p

.

Example 4.1.4. Let (Mn, g, µ) be an n-dimensional weighted Riemannian man-
ifold (n ≥ 2) that satisfies the CD(0,N) curvature condition with N < 0. Then
for every Borel set A ⊂ (Mn, g),

µ+(A) ≥ Cmin (µ(A),1 − µ(A))−1/N .

Motivated by these examples, we will say (Ω, d, µ) admits a convex isoperi-
metric estimator if there exists a function I ∶ [0,1] → [0,∞) that is continuous,
convex, increasing on (0,1/2), symmetric about the point 1/2, such that I(0) = 0
and I(t) > 0 on (0,1), and satisfies

Iµ(t) ≥ I(t), 0 ≤ t ≤ 1.
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The purpose of this chapter is to obtain symmetrization inequalities on prob-
ability metric spaces that admit a convex isoperimetric estimator which incorpo-
rate in their formulation the isoperimetric estimator and that can be applied to
provide a unified treatment of sharp Sobolev–Poincaré and Nash type inequali-
ties. Note that if I is a convex isoperimetric estimator, then

I(t) ⪯min (t,1 − t) .

Therefore (unless I(t) ≃min (t,1 − t)), the Poincaré inequality

∥f − ∫
Ω
fdµ∥

L1
≤ c ∥∣∇f ∣∥L1 , f ∈ Lip(Ω),

never holds, which means that we cannot use ∣∇f ∣ ∈ L1 to deduce that f ∈ L1.
Hence a symmetrization inequality like (4.1.3) will not be possible since f∗∗µ is
defined if, and only if, f ∈ L1.

Unknown

Martín
and

Milman

m
in
(1
,1
− t
) ≃

I(
t)

I(t) ⪯min(1,1 − t)

min(1,1 − t) ⪯ I(t)

Figure 4.1: Isoperimetric profile

This chapter is organized as follows. In Section 4.2 we obtain symmetrization
inequalities which incorporate in their formulation the isoperimetric convex esti-
mator. In Section 4.3 we use the symmetrization inequalities to derive Sobolev–
Poincaré and Nash type inequalities. Finally, in Section 4.4, we study in detail
Examples 4.1.2, 4.1.3 and 4.1.4.
The results contained in this chapter have been submitted for publication (see
[68]).

Definition 4.1.1. Let f ∈M0(Ω). We say that m(f) is a median value of f if

µ{f ≥m(f)} ≥ 1

2
and µ{f ≤m(f)} ≥ 1

2
.

Lemma 4.1.1. f☆µ (1/2) is a median value of f.
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Proof. Definition 4.1.1 is equivalent to

µ{f >m(f)} ≤ 1/2; and µ{f <m(f)} ≤ 1/2.

Now,

µ{f < f∗µ (1/2)} = µ{−f > −f∗µ (1/2)} ,

but from

(−f)∗µ(t) = −f∗µ(1 − t)

it follows that

(−f)∗µ (1/2) = −f∗µ (1/2) .

Consequently

µ{f < f∗µ (1/2)} = µ{−f > −f∗µ (1/2)}
= µ{−f > (−f)∗µ (1/2)}
≤ 1/2.

Therefore f☆µ (12) is a median value as was to be shown.

Remark 4.1.1. If f has zero median and f☆µ is continuous, then f☆µ (12) = 0.

4.2 Symmetrization and Isoperimetry
We will assume in what follows that (Ω, d, µ) is a connected measure metric space
equipped with with a separable, non-atomic, Borel probability measure µ which
admits a convex isoperimetric estimator.

In order to balance generality with power and simplicity, we will assume
throughout the paper that our spaces satisfy the following condition.

Condition 4.2.1. We assume that Ω is such that for every f ∈ Lip(Ω) and every
c ∈ R we have that ∣∇f(x)∣ = 0, a.e. on the set {x ∶ f(x) = c}.

Theorem 15. Let I ∶ [0,1] → [0,∞) be a convex isoperimetric estimator. The
following statements are equivalent:

(i.) Isoperimetric inequality: for all Borel sets A ⊂ Ω,

µ+(A) ≥ I(µ(A)). (4.2.1)
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(ii.) Ledoux’s inequality (cf [57]): for all f ∈ Lip(Ω),

∫
∞

−∞
I(µf(s)) ≤ ∫

Ω
∣∇f(x)∣dµ. (4.2.2)

(iii.) For all functions f ∈ Lip(Ω), f☆µ is locally absolutely continuous, and

∫
t

0
((−f☆µ )′I(s))∗ds ≤ ∫

t

0
∣∇f ∣∗µ (s)ds. (4.2.3)

(The second rearrangement on the left hand side is with respect to Lebesgue
measure).

(iv.) Bobkov’s inequality (cf. [7]): For all bounded f ∈ Lip(Ω) with m(f) = 0,
and for all s > 0,

∫
Ω
∣f(x)∣dµ ≤ β1(s)∫

Ω
∣∇f(x)∣dµ + sOscµ(f), (4.2.4)

where Oscµ(f) = ess sup f − ess inf f, and β1(s) = sup
s<t≤1/2

t − s
I(t)

.

Proof. (i.) → (ii.) By the co-area inequality applied to f (cf. [8, Lemma 3.1])
and the isoperimetric inequality (4.2.1), it follows that

∫
Ω
∣∇f(x)∣dµ ≥ ∫

∞

−∞
µ+({f > s};Ω)ds

≥ ∫
∞

0
I(µf(s))ds .

(ii.) → (iii.) Let −∞ < t1 < t2 <∞. The smooth truncations of f are defined
by

f t2
t1
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

t2 − t1 if f(x) ≥ t2,
f(x) − t1 if t1 < f(x) < t2,
0 if f(x) ≤ t1.

t2 − t1

f(x) − t1

Figure 4.2: f t2
t1
(x)

Obviously, f t2
t1
∈ Lip(Ω). Thus (4.2.1) implies

∫
∞

−∞
I(µ

f
t2
t1

(s))ds ≤ ∫
Ω
∣∇f t2

t1
(x)∣dµ.

68



4.2. SYMMETRIZATION AND ISOPERIMETRY

By condition 4.2.1,
∣∇f t2

t1
∣ = ∣∇f ∣χ{t1<f<t2} ,

and, moreover,

∫
∞

−∞
I(µ

f
t2
t1

(s))ds = ∫
t2

t1
I(µ

f
t2
t1

(s))ds.

Observing that t1 < z < t2,

µ{f ≥ t2} ≤ µf
t2
t1

(z) ≤ µ{f > t1}.

Consequently, by the properties of I, we have

∫
t2

t1
I(µ

f
t2
t1

(z))dz ≥ (t2 − t1)min{I(µ{f ≥ t2}), I(µ{f > t1})}. (4.2.5)

We now show that f☆µ is locally absolutely continuous. Indeed, for s > 0 and
h > 0, pick t1 = f☆µ (s + h), t2 = f☆µ (s). Then

s ≤ µ{f(x) ≥ f☆µ (s)} ≤ µf
t2
t1

(s) ≤ µ{f(x) > f☆µ (s + h)} ≤ s + h. (4.2.6)

Combining (4.2.5) and (4.2.6) yields

(f☆µ (s) − f☆µ (s + h))min{I(s + h), I(s)} ≤ ∫
{f☆µ (s)<f<f☆µ (s+h)}

∣∇f(x)∣dµ (4.2.7)

which implies that f☆µ is locally absolutely continuous on [a, b] (0 < a < b < 1).
Indeed, for any finite family of non-overlapping intervals {(ak, bk)}rk=1 , with
(ak, bk) ⊂ [a, b] and ∑r

k=1(bk − ak) ≤ δ, we have

µ{
r

⋃
k=1
{f☆µ (bk) < f < f☆µ (ak)}} =

r

∑
k=1

µ{f☆µ (bk) < f < f☆µ (ak)} ≤
r

∑
k=1
(bk − ak) ≤ δ.

Therefore, combining this fact with (4.2.7), we have
r

∑
k=1
(f☆µ (ak) − f☆µ (bk))min{I(a), I(b)} ≤

r

∑
k=1
(f☆µ (ak) − f☆µ (bk))min{I(ak), I(bk)}

≤
r

∑
k=1
∫
{f☆µ (bk)<f<f☆µ (ak)}

∣∇f(x)∣dµ

= ∫
∪r
k=1{f

☆
µ (bk)<f<f☆µ (ak)}

∣∇f(x)∣dµ

≤ ∫
∑r

k=1(bk−ak)

0
∣∇f ∣∗µ (t)dt

≤ ∫
δ

0
∣∇f ∣∗µ (t)dt,
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and the local absolute continuity follows.
Now, (4.2.7) implies

(f☆µ (s) − f☆µ (s + h))
h

min(I(s + h), I(s)) ≤ ∫
{f☆µ (s+h)<f<f☆µ (s)}

∣∇f(x)∣dµ

≤ 1

h
∫
{f☆µ (s+h)<f≤f☆µ (s)}

∣∇f(x)∣dµ.

Letting h→ 0,

(−f☆µ )′(s)I(s) ≤
∂

∂s
∫
{f>f☆µ (s)}

∣∇f(x)∣dµ.

Let us consider a finite family of intervals (ai, bi) , i = 1, . . . ,m, with
0 < a1 < b1 ≤ a2 < b2 ≤ ⋯ ≤ am < bm < 1. Then

∫
∪1≤i≤m(ai,bi)

(−f☆µ )
′ (s)I(s)ds ≤ ∫

∪1≤i≤m(ai,bi)
( ∂

∂s
∫
{∣f ∣>f☆µ (s)}

∣∇f(x)∣dµ(x))ds

=
m

∑
i=1
∫
{f☆µ (bi)<∣f ∣≤f☆µ (ai)}

∣∇f(x)∣dµ(x)

=
m

∑
i=1
∫
{f☆µ (bi)<∣f ∣<f☆µ (ai)}

∣∇f(x)∣dµ(x) (by condition (4.2.1))

= ∫
∪1≤i≤m{f☆µ (bi)<∣f ∣<f☆µ (ai)}

∣∇f(x)∣dµ(x)

≤ ∫
∑m

i=1(bi−ai)

0
∣∇f ∣∗µ (s)ds.

Now by a routine limiting process we can show that for any measurable set
E ⊂ (0,1) with Lebesgue measure equal to t we have

∫
E
(−f☆µ )′(s)I(s)ds ≤ ∫

∣E∣

0
∣∇f ∣∗µ (s)ds.

Therefore

∫
t

0
((−f☆µ )′(⋅)I(⋅))∗(s)ds ≤ ∫

t

0
(∣∇f ∣∗µ (⋅))

∗ (s)ds, (4.2.8)

where the second rearrangement is with respect to Lebesgue measure. Now, since
∣∇f ∣∗µ (s) is decreasing, we have

(∣∇f ∣∗µ (⋅))
∗ (s) = ∣∇f ∣∗µ (s),

and thus (4.2.8) yields

∫
t

0
((−f☆µ )′(⋅)I(⋅))∗(s)ds ≤ ∫

t

0
∣∇f ∣∗µ (s)ds.
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(iii.) → (iv.) Assume first that f ∈ Lip(Ω) is positive, and bounded, with
m(f) = 0. By (iii) we have that f☆µ = f∗µ (since f ≥ 0) is locally absolutely
continuous and f∗µ(1/2) = 0 (since m(f) = 0). Let 0 < s < z ≤ 1/2. Then

∫
Ω
∣f(x)∣dµ = ∫

1/2

0
f∗µ(z)dz = ∫

1/2

0
∫

1/2

z
(−f∗µ)′(x)dxdz =

= ∫
1/2

0
z(−f∗µ)′(z)dz − s∫

1/2

0
(−f∗µ)′(z)dz + s∫

1/2

0
(−f∗µ)′(z)dz

= ∫
1/2

0

z − s
I(z)

(−f∗µ)′(z)I(z)dz + s∫
1/2

0
(−f∗µ)′(z)dz

≤ sup
s<z≤1/2

z − s
I(z) ∫

1/2

0
(−f∗µ)′(z)I(z)dz + s∫

1/2

0
(−f∗µ)′(z)dz

≤ β1(s)∫
1/2

0
(−f∗µ)′(z)I(z)dz + s∫

1/2

0
(−f∗µ)′(z)dz.

Since
s∫

1/2

0
(−f∗µ)′(z) = s(f∗µ(0+) − f∗µ(1/2)) ≤ sOscµ(f),

we get

∫
Ω
∣f(x)∣dµ ≤ β1(s)∫

t

0
(−f∗µ)′(z)I(z)dz + sOscµ(f)

≤ β1(s)∫
1/2

0
((−f∗µ)′(⋅)I(⋅))

∗ (t)dt + sOscµ(f)

≤ β1(s)∫
1/2

0
∣∇f ∣∗µ (t)dt + sOscµ(f) (by (4.2.3))

= β1(s)∫
Ω
∣∇f(x)∣dµ + sOscµ(f)

In the general case, we follow [7, Lemma 8.3]. Apply the previous argument
to f+ = max(f,0) and f− = max(−f,0), which are positive, Lipschitz and have
median zero, and we obtain

∫
{f>0}

∣f(x)∣dµ ≤ β1(s)∫
{f>0}

∣∇f(x)∣dµ + sOscµ(f+),

∫
{f<0}

∣f(x)∣dµ ≤ β1(s)∫
{f><0}

∣∇f(x)∣dµ + sOscµ(f−).

Adding the two inequalities and since Oscµ(f−) + Oscµ(f+) ≤ Oscµ(f), we get
(4.2.4).
(iv) → (i.) This part was proved in [7, Lemma 8.3], we include its proof for

the sake of completeness. Given a Borel set A ⊂ Ω we may approximate the
indicator function χA by functions with finite Lipschitz seminorm (see [8]) to
derive µ(A) ≤ β1(s)µ+(A) + s. Therefore, if µ(A) = t,

t − s ≤ β1(s)µ+(A)
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thus the optimal choice should be

I(t) = sup
0<s<t

t − s
β1(s)

.

4.3 Sobolev–Poincaré and Nash type
inequalities

The isoperimetric inequality implies weaker Sobolev–Poincaré and Nash type
inequalities. In what follows, we will analyse both.

4.3.1 Sobolev–Poincaré inequalities
The isoperimetric Hardy operator QI is the operator defined on Lebesgue mea-
surable functions on (0,1) by

QIf(t) = ∫
1/2

t
f(s) ds

I(s)
, 0 < t < 1/2,

where I is a convex isoperimetric estimator. In this section we consider the
possibility of characterizing Sobolev embeddings in terms of the boundedness of
QI .

Lemma 4.3.1. Let Y, Z be two q.r.i. spaces on (0,1). Assume that there is a
constant C0 > 0 such that

∥QIf∥Y ≤ C0 ∥f∥Z . (4.3.1)

Then there exists a constant C1 > 0 such that

∥Q̄If∥Y ≤ C1 ∥f∥Z ,

where Q̄I is the operator defined on Lebesgue measurable functions on (0,1) by

Q̄If(t) = ∫
1/2

t
f(s) ds

I(s)
, 0 < t < 1.

Proof. Since

Q̄If(t) = χ(0,1/2)(t)Q̄If(t) + χ(1/2,1)(t)∫
1/2

t
f(s) ds

I(s)

= χ(0,1/2)(t)QIf(t) + χ(1/2,1)(t)∫
1/2

t
f(s) ds

I(s)
,

it is enough to prove the boundedness of χ(1/2,1)(t) ∫
1/2
t f(s) ds

I(s) .
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For t ∈ (1/2,1), we have that

∫
1/2

t
f(s) ds

I(s)
= −∫

t

1/2
f(s) ds

I(s)
= ∫

1−t

1/2
f(1 − s) ds

I(1 − s)

= −∫
1/2

1−t
f(1 − s) ds

I(s)
(since I(s) = I(1 − s)).

Thus

∥χ(1/2,1)(t)∫
1/2

t
f(s) ds

I(s)
∥
Y

= ∥χ(1/2,1)(t)∫
1/2

1−t
f(1 − s) ds

I(s)
∥
Y

= ∥χ(1/2,1)(1 − t)∫
1/2

t
f(1 − s) ds

I(s)
∥
Y

(since ∥⋅∥Y is r.i)

= ∥χ(0,1/2)(t)∫
1/2

t
f(1 − s) ds

I(s)
∥
Y

≤ C ∥χ(0,1/2)(t)f(1 − t)∥Z
≤ C ∥f(t)(χ(0,1/2)(1 − t))∥Z (since ∥⋅∥X̄ is r.i)
≤ C ∥χ(1/2,1)(t)f(t)∥Z
≤ C ∥f∥Z .

Theorem 16. Let Y be a q.r.i. space on (0,1), and let X be an r.i. space on
Ω. Assume that there is a constant C > 0 such that

∥QIf∥Y ≤ C ∥f∥X̄ . (4.3.2)

Then, for all g ∈ Lip(Ω), we have that

inf
c∈R
∥(g − c)∗µ∥Y ⪯ ∥∣∇g∣∥X .

Proof. Given g ∈ Lip(Ω), by part 2 of Theorem 15, g☆µ is locally absolutely
continuous on (0,1). Thus, for t ∈ (0,1), we have that

∣g☆µ (t) − g☆µ (1/2)∣ = ∣∫
1/2

t
(−g☆µ )

′ (s)ds∣ = ∣∫
1/2

t
(−g☆µ )

′ (s)I(s) ds

I(s)
∣

= ∣Q̄I ((−g☆µ )
′ (⋅)I(⋅)) (t)∣ .

Then

∥∣g☆µ (t) − g☆µ (1/2)∣∥Y = ∥Q̄I ((−g☆µ )
′ (⋅)I(⋅)) (t)∥

Y

⪯ ∥(−g☆µ )
′ (⋅)I(⋅)∥

X̄
(by (4.3.2) and Lemma 4.3.1)

⪯ ∥∣∇g∣∥X (by (4.2.3)).
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Therefore

inf
c∈R
∥(g − c)∗µ (t)∥Y = infc∈R

∥(g − c)☆µ (t)∥Y
≤ ∥∣g☆µ (t) − g☆µ (1/2)∣∥Y
⪯ ∥∣∇g∣∥X .

Theorem 17. Let X be an r.i. space on Ω. Assume that either αX > 0 or that
there is a c > 0 such that the convex isoperimetric estimator I satisfies

∫
1/2

t

ds

I(s)
≤ c t

I(t)
, 0 < t < 1/2. (4.3.3)

Then, for all g ∈ Lip(Ω), we have that

inf
c∈R
∥(g − c)∗µ (t)

I(t)
t
∥
X̄

⪯ ∥∣∇g∣∥X . (4.3.4)

Moreover, if Y is a q.r.i. space on (0,1) such that

∥QIf∥Y ⪯ ∥f∥X̄ , (4.3.5)

then for any µ-measurable function g on Ω, we have that

∥g∗µ∥Y ⪯ ∥g
∗
µ(t)

I(t)
t
∥
X̄

.

In particular, for all g ∈ Lip(Ω), we get

inf
c∈R
∥(g − c)∗µ∥Y ⪯ infc∈R

∥(g − c)∗µ (t)
I(t)
t
∥
X̄

⪯ ∥∣∇g∣∥X .

Proof. We associate to the r.i. space X̄ the weighted q.r.i. space Z on (0,1)
whose quasi-norm is defined by

∥f∥Z ∶= ∥f
∗(t)I(t)

t
∥
X̄

.

We claim that there is a C > 0 such that

∥QIf∥Z ≤ C ∥f∥X̄ ,

and therefore (4.3.4) follows by Theorem 16.
Case 1: αX > 0 ∶
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∥QIf∥Z = ∥
I(t)
t
(∫

1/2

t
f(s) ds

I(s)
)
∗

∥
X̄

≤ ∥I(t)
t
(∫

1/2

t
∣f(s)∣ ds

I(s)
)
∗

∥
X̄

= ∥I(t)
t
∫

1/2

t
∣f(s)∣ ds

I(s)
∥
X̄

(since QI ∣f ∣ (t) is decreasing)

= ∥I(t)
t
∫

1/2

t
∣f(s)∣ s

I(s)
ds

s
∥
X̄

≤ ∥∫
1/2

t
∣f(s)∣ ds

s
∥
X̄

(since s

I(s)
decreases)

⪯ ∥f∥X̄ (since αX > 0).

Case 2 ∶ The convex isoperimetric estimator satisfies (4.3.3).
Consider Q̃I defined by

Q̃If(t) =
I(t)
t

QIf(t).

We claim that Q̃I ∶ L1(0,1)→ L1(0,1) is bounded, and
Q̃I ∶ L∞(0,1) → L∞(0,1) is bounded, and so by interpolation (see [53]) Q̃I will
be bounded on X̄. Thus

∥QIf∥Z ≤ ∥QI ∣f ∣∥Z = ∥
I(t)
t
(QI ∣f ∣)∗ (t)∥

X̄

= ∥I(t)
t

QI ∣f ∣ (t)∥
X̄

(since QI ∣f ∣ (t) is decreasing)

= ∥Q̃I ∣f ∣ (t)∥X̄
⪯ ∥f∥X̄

and Theorem 16 applies.
We are now going to prove the claim.
By the convexity of I, I(t)

t is increasing for 0 < t < 1/2, thus

∫
s

0

I(t)
t

dt ≤ I(s),
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and therefore

∥Q̃If∥1 ≤ ∫
1

0
Q̃I (∣f ∣) (t)dt

= ∫
1/2

0

I(t)
t
(∫

1/2

t
∣f(s)∣ ds

I(s)
)dt

= ∫
1/2

0

∣f(s)∣
I(s)

(∫
s

0

I(t)
t

dt)ds

≤ ∫
1/2

0
∣f(s)∣ds

= ∥f∥1 .

Similarly,

∥Q̃If∥∞ ≤ sup
0<t<1

Q̃I (∣f ∣) (t)

≤ sup
0<t<1/2

I(t)
t
∫

1/2

t
∣f(s)∣ ds

I(s)

≤ ∥f∥∞ sup
0<t<1/2

(I(t)
t
∫

1/2

t

ds

I(s)
)

≤ c ∥f∥∞ (by (4.3.3)).

To finish the proof of the theorem it remains to show that

∥f∗µ∥Ȳ ⪯ ∥f
∗
µ(t)

I(t)
t
∥
X̄

. (4.3.6)

Let CȲ be the constant quasi-norm of Ȳ , then

∥f∗µ∥Ȳ = ∥f
∗
µ(t)χ(0,1/4)(t) + f∗µ(t)χ(1/4,1/2)(t) + f∗µ(t)χ(1/2,3/4)(t) + f∗µ(t)χ(3/4,1)(t)∥Ȳ

(4.3.7)
≤ 4C2

Ȳ ∥f
∗
µ(t)χ(0,1/4)(t)∥Ȳ .

Since f∗µ is decreasing,

f∗µ(t)χ(0,1/4)(t) ≤
1

ln 2
∫

t

t/2
f∗µ(s)

ds

s
= 1

ln 2
∫

1/2

t/2
f∗µ(s)χ(0,1/4)(s)

I(s)
s

ds

I(s)
.
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Thus

∥f∗µ(t)χ(0,1/4)(t)∥Ȳ ⪯ ∥QI (f∗µ(⋅)χ(0,1/4)(⋅)
I(⋅)
⋅
)(t/2)∥

Ȳ

(4.3.8)

⪯ ∥f∗µ(t/2)χ(0,1/4)(t/2)
I(t/2)
t/2

∥
X̄

(by (4.3.5))

⪯ ∥f∗µ(t)χ(0,1/2)(t)
I(t)
t
∥
X̄

⪯ ∥f∗µ(t)
I(t)
t
∥
X̄

.

Combining (4.3.7) and (4.3.8) we obtain (4.3.6).

Remark 4.3.1. If g ∈ Lip(Ω) is positive with m(g) = 0, then it follows from the
previous theorem that

∥g∗µ(t)
I(t)
t
∥
X̄

⪯ ∥∣∇g∣∥X .

4.3.2 Nash inequalities
In this section we obtain Nash type inequalities. We will focus on the following
type of probability measures.

Definition 4.3.1. Let µ be a probability measure on Ω which admits a convex
isoperimetric estimator I.

1. Let α > 0. We will say that µ is of α-Cauchy type if

I(t) = cµmin(t,1 − t)1+1/α.

2. Let 0 < p < 1. We will say that µ is of extended p-exponential type if

I(t) = cµmin(t,1 − t)(log 1

min (t,1 − t)
)
1−1/p

.

In both cases cµ denotes a positive constant.

Theorem 18. The following Nash inequalities hold:

1. Let µ be of α-Cauchy type. Let X be an r.i. space on Ω with αX > 0.
Let 1 < q ≤ ∞ satisfy 0 ≤ 1/q < αX . Then for all positivef ∈ Lip(Ω) with
m(f) = 0, we have

∥f∥X ⪯min
r>1
(r ∥∣∇f ∣∥X + ∥f∥q,∞ ϕX(r−α)rα/q) .
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2. Let µ be of extended p-exponential type. Let X be an r.i. space on Ω . Let
β > 0. Then for all positive f ∈ Lip(Ω) with m(f) = 0, we have

∥f∥X ⪯ ∥∣∇f ∣∥
β

β+1
X ∥f∥

1
β+1

X(ln( 1
t
)β(

1
p−1))

.

Proof. Part 1. Let f ∈ Lip(Ω) be positive with m(f) = 0 and let ω(t) = t−1/α

(0 < t < 1/2). Let r > 1 and let β > 0 be chosen later. Then

∥f∥X = ∥f
∗
µ∥X̄ ≤ ∥f

∗
µ(t)

ω(t)
ω(t)

χ{ω<r)}(t)∥
X̄

+
XXXXXXXXXXX
f∗µ(t)(

ω(t)
ω(t)

)
β

χ{ω>r}(t)
XXXXXXXXXXXX̄

(4.3.9)

≤ r ∥f∗µ(t)t1/α∥
X̄
+ r−β ∥f∗µ(t)t−β/αχ(0,r−α)(t)∥

X̄

= r ∥f∗µ(t)t1/α∥
X̄
+ r−β ∥t1/qf∗µ(t)t−β/α−1/qχ(0,r−α)(t)∥

X̄

≤ r ∥f∗µ(t)t1/α∥
X̄
+ r−β sup

t>0
(t1/qf∗µ(t)) ∥t−β/α−1/qχ(0,r−α)(t)∥

X̄

≤ r ∥f∗µ(t)t1/α∥
X̄
+ r−β ∥f∥q,∞ ∥t

−β/α−1/qχ(0,r−α)(t)∥
Λ(X̄)

(by (2.2.8))

⪯ r ∥f∗µ(t)t1/α∥
X̄
+ r−β ∥f∥q,∞∫

r−α

0
t−β/α−1/q

ϕX(t)
t

= r ∥f∗µ(t)t1/α∥
X̄
+ r−β ∥f∥q,∞ J(r).

Let 0 ≤ 1/q < γ < αX . By Lemma 2.2.1,

∫
r−α

0
t−β/α−1/q

ϕX(t)
tγt1−γ

⪯ ϕX(r−α)
r−αγ

∫
r−α

0
t−β/α−1/q+γ−1.

At this stage we select 0 < β < α (γ − 1/q). Then

∫
r−α

0
t−β/α−1/q+γ−1 ⪯ r−α(−β/α−1/q+γ),

and thus
J(r) ⪯ ϕX(r−α)rβ+α/q.

Inserting this information into (4.3.9) and using Remark 4.3.1, we get

∥f∥X ⪯ r ∥f
∗
µ(t)t1/α∥

X̄
+ ∥f∥q,∞ ϕX(r−α)rα/q

⪯ r ∥∣∇f ∣∥X + ∥f∥q,∞ ϕX(r−α)rα/q.
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Part 2. Let f ∈ Lip(Ω) be positive with m(f) = 0 and let ω(t) = (ln 1
t
)

1
p
−1

(0 < t < 1/2) . Let r > 1 and β > 0.

∥f∥X = ∥f
∗
µ∥X̄ ≤ ∥f

∗
µ(t)

ω(t)
ω(t)

χ{ω<r)}(t)∥
X̄

+
XXXXXXXXXXX
f∗µ(t)(

ω(t)
ω(t)

)
β

χ{ω>r}(t)
XXXXXXXXXXXX̄

≤ r
XXXXXXXXXXX
f∗µ(t) (ln

1

t
)
1− 1

p
XXXXXXXXXXXX̄
+ r−β

XXXXXXXXXXXX
f∗µ(t) (ln

1

t
)
β( 1

p
−1)XXXXXXXXXXXXX̄

⪯ r ∥∣∇f ∣∥X(log( 1
t
)β( 1

p
−1)) + r

−β ∥f∥X (by Remark 4.3.1).

We finish by taking the inf for r > 1.

Remark 4.3.2. Let X be an r.i. space on Ω with αX > 0. Let 1 < q ≤∞ be such
that 0 ≤ 1/q < αX . Then

Lq,∞ (Ω) ⊂ Λ(X) ⊂X (Ω) .

In fact, by Lemma 2.2.1,

∥f∥Λ(X) = ∫
1

0
f∗(t)ϕX(t)

t
dt ≤ ∥f∥q,∞∫

1

0

ϕX(t)
t1+1/q

dt.

The last integral is finite since taking 0 ≤ 1/q < γ < αX , we get

∫
1

0

ϕX(t)
t1+1/q

dt = ∫
1

0
t1/q+γ−1

ϕX(t)
tγ

dt ⪯ ∫
1

0
t1/q+γ−1 <∞.

4.4 Examples and applications
In this section we will apply the previous results to the probability measures
introduced in Examples 4.1.2, 4.1.3 and 4.1.4.

4.4.1 Cauchy type laws
Consider the probability measure space (Rn, d, µ) where d is the Euclidean dis-
tance and µ is the probability measure introduced in Example 4.1.2. Such mea-
sures have been introduced by Borell [9] (see also [7]). Prototypes of these prob-
ability measures are the generalized Cauchy distributions5:

dµ(x) = 1

Z
((1 + ∣x∣2)1/2)

−(n+α)
, α > 0.

5These measures are Barenblatt solutions of the porous medium equations and ap-
pear naturally in weighted porous medium equations, giving the decay rate of this non-
linear semigroup towards the equilibrium measure, see [98] and [19].
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A convex isoperimetric estimator for these measures is (see [15, Proposition
4.3])

I(t) =min(t,1 − t)1+1/α.

Obviously for 0 < t < 1/2, we have

∫
1/2

t

ds

s1+1/α
⪯ t

t1+1/α
.

Thus by Theorem 17, given an r.i. space X on Rn we get

inf
c∈R
∥(g − c)∗µ

min(t,1 − t)1+1/α

t
∥
X̄

⪯ ∥∣∇g∣∥X , (g ∈ Lip(Rn)) .

Proposition 4.4.1. Let 1 ≤ p <∞, 1 ≤ q ≤∞. For all f ∈ Lip(Rn) positive with
m(f) = 0, we get

1.
∥f∥ pα

p+α ,q ⪯ ∥∣∇f ∣∥p,q .

2. For all s > p
∥f∥p,q ⪯ ∥∣∇f ∣∥

β
β+1
p,q ∥f∥

1
β+1
s,∞

where β = α(1p −
1
s).

Proof. 1) By Theorem 17 we get

∥f∗µ t
1
α ∥

p,q
⪯ ∥∣∇f ∣∥p,q .

Now by [53, Page 76] we have that

∥f∗µ t
1
α ∥

q

p,q
= ∫

1

0
[(t

1
α f∗µ(t))

∗
t
1
p ]

q dt

t
≃ ∫

1

0
(t

1
α
+ 1

p f∗µ(t))
q dt

t
= ∥f∥qpα

p+α ,q
.

2) is a direct application of Theorem 18.

Remark 4.4.1. If in the previous proposition we take p = q = 1, we obtain

∥f∥ α
α+1 ,1

⪯ ∥∣∇f ∣∥1 . (4.4.1)

If 1
q =

1
p +

1
α , then we get

∥f∥
p,

p(1+α)
α

⪯ ∥∣∇f ∣∥
q,

p(1+α)
α

. (4.4.2)

For p ≥ 1 and s =∞, we have that

∥f∥p ⪯ ∥∣∇f ∣∥
β

β+1
p ∥f∥

1
β+1
∞ . (4.4.3)

Inequalities 4.4.1 and 4.4.2 were proved in [72, Proposition 5.13]. Inequality
4.4.3 was obtained in [72, Proposition 5.15].
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We close this section with the following optimality result:

Theorem 19. Let α > 0. Let X̄ be an r.i. space on (0,1) and let Z be a q.r.i.
space on (0,1). Assume that for any probability measure µ of α-Cauchy type in
Rn, there is a Cµ > 0 such that for all positive f ∈ Lip(Rn) with m(f) = 0, we get

∥f∗µ∥Z ≤ Cµ ∥∣∇f ∣∗µ∥X̄ .

Then for all g ∈ Lip(Rn)

∥g∗µ∥Z ⪯ ∥g
∗
µ(t)

I(t)
t
∥
X̄

Proof. Let µ be the Cauchy probability measure on R defined by

dµ(s) = α

2 (1 + ∣s∣2)
1+α
2

ds = φ(s)dx, s ∈ R.

It is known (see [15, Proposition 5.27]) that its isoperimetric profile is given by

Iµ(t) = φ (H−1(t)) = α21/αmin(t,1 − t)1+1/α, t ∈ [0,1],

where H is the distribution function of µ, i.e. H ∶ R → (0,1) is the increasing
function given by

H(r) = ∫
r

−∞
φ(t)dt.

Consider the product measure µn on Rn. By Proposition 5.27 of [15] the
function

I(t) = cα

n1/α min(t,1 − t)1+1/α

is a convex isoperimetric estimator of µn (cα denotes a positive constant depend-
ing only on α).

Given a positive measurable function f with suppf ⊂ (0,1/2), consider

F (t) = ∫
1

t
f(s) ds

Iµα(s)
, t ∈ (0,1),

and define
u(x) = F (H(x1)), x ∈ Rn.

Then,

∣∇u(x)∣ = ∣ ∂

∂x1
u(x)∣ = ∣−f(H(x1))

H ′(x1)
Iµ(H(x1))

∣ = f(H(x1)).

Let A be a Young’s function and let s =H(x1). Then,

∫
Rn

A(f(H(x1)))dµn(x) = ∫
R
A(f(H(x1)))dµ(x1)

= ∫
1

0
A(f(s))ds.
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Therefore, by [6, exercise 5 p. 88]

∣∇u∣∗µn (t) = f∗(t).

Similarly
u∗µn(t) = ∫

1

t
f(s) ds

Iµ(s)
.

Since m(u) = 0, by hypothesis we get

∥∫
1

t
f(s) ds

Iµ(s)
∥
Z

= ∥u∗µn∥
Z

≤ Cµn ∥∣∇f ∣∗µn∥
X̄

= Cµn ∥f∗(t)∥X̄
= Cµn ∥f∥X̄ .

Finally, from

Iµ(t) =
α21/αn1/α

cα
I(t)

we have that
∥QIf∥Z ≤

cαCµn

α21/αn1/α ∥f∥X̄

and the results follow from Theorem 17.

4.4.2 Extended sub-exponential law
Consider the probability measure on Rn defined by

dµp(x) =
1

Zp
e−V (x)

p

dx = φ(x)dx

for some positive convex function V ∶ Rn → (0,∞) and p ∈ (0,1).
A typical example is V (x) = ∣x∣p, and 0 < p < 1, which yields to sub-

exponential type law.
A convex isoperimetric estimator for this type of measure is (see [15, Propo-

sition 4.5]):

I(t) = cpmin (t,1 − t)(log 1

min (t,1 − t)
)
1−1/p

.

By Theorem 17, given an r.i. space X on Rn with αX > 0, we get

inf
c∈R

XXXXXXXXXXXXXXXX

(g − c)∗µ
cpmin (t,1 − t) (log 1

min(t,1−t))
1−1/p

t

XXXXXXXXXXXXXXXXX̄

⪯ ∥∣∇g∣∥X , (g ∈ Lip(Rn)) .

In the particular case that X = Lr,q we obtain the following proposition.
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Proposition 4.4.2. Let 1 ≤ r <∞, 1 ≤ q <∞. For all positive f ∈ Lip(Rn) with
m(f) = 0,

1.
∥f∥Lr,q(logL)1−1/p ⪯ ∥∣∇f ∣∥r,q .

2. For all β > 0

∥f∥r,q ⪯ ∥∣∇f ∣∥
β

β+1
r,q ∥f∥

1
β+1
Lr,q(logL)β(1−1/p)

Theorem 20. Let p ∈ (0,1). Let X̄ be an r.i. space on (0,1) and let Z be a
q.r.i. space on (0,1). Assume that for any p-extended sub-exponential law µ in
Rn there is a Cµ > 0 such that for all positive f ∈ Lip(Rn) with m(f) = 0,

∥f∗µ∥Z ≤ Cµ ∥∣∇f ∣∗µ∥X̄ .

Then, for all g ∈ Lip(Rn),

∥g∗µ∥Z ⪯ ∥g
∗
µ(t)

I(t)
t
∥
X̄

.

Proof. Let µ be a probability measure on R with density

dµp(s) =
e−∣s∣

p

Zp
ds = φ(s)ds, s ∈ R.

Its isoperimetric profile is (see [15, Proposition 5.25])

Iµp(t) = φ (H−1(t)) = cpmin (t,1 − t)(log 1

min (t,1 − t)
)
1−1/p

, t ∈ [0,1],

where H is the distribution function of µ, i.e. H ∶ R→ (0,1) is defined by

H(r) = ∫
r

−∞
φ(t)dt.

Consider the product measure µn on Rn. By proposition 5.25 of [15], there exists
a positive constant c such that the function

I(t) = cmin (t,1 − t)(log n

min (t,1 − t)
)
1−1/p

is a convex isoperimetric estimator of µn
p .

Let f be a positive measurable function f with supp(f) ⊂ (0,1/2). Consider

F (t) = ∫
1

t
f(s) ds

Iµp(s)
, t ∈ (0,1),
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and define
u(x) = F (H(x1)), x ∈ Rn.

Using the same method as used in Theorem 19, we obtain

∣∇u∣∗µn
p
(t) = f∗(t) and u∗µn

p
(t) = ∫

1

t
f(s) ds

Iµp(s)
.

Since m(u) = 0, by hypothesis we get

∥∫
1

t
f(s) ds

Iµp(s)
∥
Z

= ∥u∗µn
p
∥
Z

≤ Cµn
p
∥∣∇f ∣∗µn

p
∥
X̄

= Cµn
p
∥f∗(t)∥X̄

= Cµn
p
∥f∥X̄ .

Finally, from
Iµp(t) ≃ I(t)

we have that
∥QIf∥Z ⪯ ∥f∥X̄ .

and Theorem 17 applies.

4.4.3 Weighted Riemannian manifolds with negative
dimension

Let (Mn, g, µ) be an n-dimensional weighted Riemannian manifold (n ≥ 2) that
satisfies the CD(0,N) curvature condition with N < 0. (See [72, Secction 5.4].)

A convex isoperimetric estimator is given by

I(t) =min(t,1 − t)−1/N .

Obviously for 0 < t < 1/2 we have

∫
1/2

t

ds

s−1/N
⪯ t

t−1/N
.

Thus by Theorem 17, given an r.i. space X on Rn we get

inf
c∈R
∥(g − c)∗µ

min(t,1 − t)−1/N

t
∥
X̄

⪯ ∥∣∇g∣∥X , (g ∈ Lip(Rn)) .

In particular, if 1 ≤ p < ∞, 1 ≤ q ≤ ∞) and X = Lp,q, then for all positive
f ∈ Lip(Rn) with m(f) = 0, (1 ≤ p <∞, 1 ≤ q ≤∞),
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∥f∥γ,q ⪯ ∥∣∇f ∣∥p,q ,

where γ = Np
N−p(N+1) for any p, q satisfying N

N−1 ≤ p ≤ −N and 1
q =

1
p −

1
N − 1.

Now by Theorem 18, we have that

∥f∥p,q ⪯ ∥∣∇f ∣∥
β

β+1
p,q ∥f∥

1
β+1
s,∞

where s > p and β = α(1p −
1
s).
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