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Preface

In this work, we will study some problems emerging from the theory and applications of stochas-
tic equations driven by a fractional Brownian motion (fBm). A fBm {BH

t , t ∈ R}, defined for
any H ∈ (0, 1), is a stochastic process which has been introduced first by Mandelbrot and Van
Ness in 1968 (see [MaVa68]), with the aim of generalizing the standard Brownian motion (sBm)
to a family of processes depending on a parameter H, which still enjoy most of the properties
of the sBm.

The need of introducing such a process came from the world of applications. The hydrologist
Harold Hurst, while studying the distribution of the intensity of the floods of the Nile river,
discovered a rather unexpected fact: the range of the distribution of the floods was not com-
patible with the assumption of independence of increments which is intrinsic in a sBm setting.
It was the first time that such a phenomenon was observed, and for this reason the parameter
H ∈ (0, 1) of a fBm BH is named Hurst parameter (see [Hur51]).

A fBm BH , for all H ∈ (0, 1), is a Gaussian process, meaning that its finite dimensional
distributions are Gaussian random vectors. It is characterized by having zero mean, i.e. E[BH

t ] =
0, for all t ∈ R, and covariance structure given by

E
[
BH
t B

H
s

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, for all s, t ∈ R.

From the expression of the covariance, it is immediate to notice that for H = 1
2 the fBm B

1
2

reduces to a sBm: thus, it is truly a generalization.

Our main focus, and the most original part of this thesis, is the study of stochastic partial
differential equations (SPDEs), driven by a noise WH which is partly a fBm. The theory of
SPDEs has had a very huge interest in the last decades, due to both independent mathematical
interest and possible applications in modelling. There are two main research lines, that ap-
proached this kind of equations in two different ways: the setting of infinite dimensional Hilbert
space-valued SDEs (see [DPZa]) and the random field setting (see [Wal86]). We will focus on
the latter approach, following also more recent works like [Dal99, BJQ15, HHLNT17].

Our main result is the continuity in law of the solutions of such equations with respect to the
Hurst parameter H. We recall that the continuity in law with respect to fractionality indices
has been studied in other related contexts ([JoVi07, JoVi07, JoVi10, JoVi10, WuXi09, AiSg17]).
We point out that showing the continuity property with respect to H of the solution, for both
time (SDE) and time-space (SPDE) stochastic differential equations driven by fractional noises,
is a very interesting problem not only from a theoretical point of view, but also in the modelling
applications. Indeed, if one uses such a model in applications it is very important that the
estimates of H are stable and the above described continuity property may help in this direction.
We will see one of these applications in Chapter 4.

We give a bit more of context of our setting: let WH = {WH(t, x), (t, x) ∈ [0, T ]×R} be a
Gaussian process, defined on a complete probability space (Ω,F ,P), with zero mean and with
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covariance structure given, for t, s ∈ [0, T ] and x, y ∈ R, by:

E
[
WH(t, x)WH(s, y)

]
=

1

2
(t ∧ s)

(
|x|2H + |y|2H − |x− y|2H

)
.

This process is thus a sBm in the time variable t ∈ [0, T ] and a fBm of parameter H ∈ (0, 1) in
the space variable x ∈ R. The SPDEs that we consider are

Liu
H(t, x) = b(uH(t, x)) + σ(uH(t, x))ẆH(t, x), (t, x) ∈ [0, T ]× R, (1)

where Li, for i ∈ {w, h}, is either the wave or the heat differential operator, i.e.

Lhu
H(t, x) =

∂uH

∂t
(t, x)− ∂2uH

∂x2
(t, x); Lwu

H(t, x) =
∂2uH

∂t2
(t, x)− 1

2

∂2uH

∂x2
(t, x).

The noise ẆH is the formal derivative of the process WH we defined above. Due to the lack
of regularity of the noise, to give meaning to (1) one needs to introduce a weaker concept of
solution, denoted in literature as mild solution. It is an integral formulation of (1), that we
describe precisely in Chapter 2.

In this setting, our result consists in showing that uHn
d−→ uH0 , whenever {Hn, n ∈ N} is a

sequence of Hurst indices such that Hn → H0 as n→∞. This convergence, that we denote with
d−→, is the convergence in law (also denoted weak convergence), in the path space C([0, T ]× R).
This problem has been already studied in [Bez16], in the case of the heat equation and for
H0 ∈ [1

2 , 1), with a general σ and with the space variable x ∈ Rd. We will extend this result to
the case of the wave equation and to a general H0 (which varies in dependence of the various
cases we consider), restricting for the sake of simplicity to the one-dimensional case d = 1.

We investigate this problem in two different settings: in [GJQ20] we studied the semilinear
additive case, which is the case when b is a Lipschitz function and σ ≡ 1, and in [GJQ19] we
studied the linear multiplicative case, which is the case when b ≡ 0 and σ(u) = u. Depending
on the setting we are considering, we will also need to impose different initial conditions for the
problem. We also remark that in the semilinear additive case we are able to prove the result
for any limiting value H0 ∈ (0, 1), while in the linear multiplicative case we have to restrict to
H0 ∈ (1

4 , 1), due to well-posedness problems that arise in (1).

We give a brief outline of the work that we need to do in order to show the result, in both
cases. For the semilinear additive case, we first focus on the linear version of the equations
(b = 0), for which the existence and uniqueness of the solution, together with the existence
of a continuous modification, for any H ∈ (0, 1), is well-known, for example, from [Bal12], for
H ≤ 1

2 and [Dal99] for H > 1
2 . In this case, since the solutions uH are still Gaussian processes,

the convergence in law of uHn to uH0 reduces to analyse the convergence of a family of centred
Gaussian processes. In order to prove this, we first check the tightness of the corresponding
family of probability laws induced by {uHn , k ∈ N} on C([0, T ] × R). Tightness is a measure-
theoretic property that implies relative compactness, and thus the existence of a limit measure
Y for a subsequence {uHnk , k ∈ N}. We are only left to identify the limit Y as uH0 . This is
quite straightforward, thanks to the Gaussianity of the solutions. We point out that in this case
the proof is the same for both the wave and the heat equation.

In the case when b is a general Lipschitz function, we first show that both equations in (1)
admit a unique solution for any H ∈ (0, 1). As far as we know, it is a relatively novel result for
the case H < 1

2 (the case H > 1
2 is in [DaQu11]).

The analysis of the weak convergence in the semilinear case does not admit a unified proof
for wave and heat equations. More precisely, for the wave equation, the convergence in law of
uHn to uH0 , whenever Hn → H0, follows from a deterministic pathwise argument: we prove that,
for almost all ω ∈ Ω, the solution can be seen as the image of the solution in the linear additive
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case through a certain continuous functional F : C([0, T ] × R) → C([0, T ] × R). In the case of
the heat equation, the previous argument can only be applied partially, since the associated
deterministic equation which has to be solved in order to define the above-mentioned functional
seems to be ill-posed for an unbounded general coefficient b. We overcome this difficulty by
first assuming that b is a bounded function and then by using a truncation argument. It is
also worthy to point out that, in the analysis of the wave equation and the heat equation with
bounded b, we have established ad hoc versions of Grönwall lemma which have been crucial to
complete the corresponding proofs.

We consider then the linear multiplicative case σ(u) = u, which is also named in the literature
as Hyperbolic Anderson Model (HAM) and Parabolic Anderson Model (PAM), respectively (see
[BJQ15, HHNT15, BJQ17] and references therein). There are several well-posedness results for
these equations. For the case H < 1

2 some results may be found in [BJQ15, HNZ17], while the
case H ≥ 1

2 falls in the general framework of Walsh and Dalang [Wal86, Dal99, DaQu11].
In these cases, the fact that H < 1

2 entails important technical difficulties in order to define
stochastic integrals with respect to the noise WH . Moreover, as proved in [BJQ15], the above
equations admit a unique solution if and only if H > 1

4 .

In this setting, we show again that the weak convergence uHn
d−→ uH0 holds. The proof, as

in the semilinear additive case, consists in establishing that the family of measures induced by
{uHn , n ∈ N} is tight on C([0, T ] × R), followed by the identification of the limit law as uH0 .
The proof of the tightness is quite involved from the computational point of view, since we need
to extend several results appearing in [BJQ15, BJQ16, BJQ17].

Regarding the limit identification, one of the key elements of the proof is to show a rep-
resentation formula for the integrals with respect to WH of a deterministic function f , i.e. to
show that for any H ∈ (0, 1) the following equality holds∫ T

0

∫
R
f(t, x)dWH(t, x) =

∫ T

0

∫
R

(THf)(t, x)dW̃ (t, x),

where {TH , H ∈ (0, 1)} is a family of transformations of f and W̃ is a complex Gaussian
measure which is independent from H. This result turns out to be crucial in the identification
of the limit in the linear multiplicative case (see Section 2.4.5). For this purpose, we also use
some results of Malliavin Calculus, a stochastic calculus of variation theory which is useful to
study many results in the theory of SPDEs.

A possible future extension of the work described above is to study these results within
the framework of regularity structures. A first attempt towards this direction is done here in
Chapter 3 by considering the continuity problem for a stochastic differential equation (SDE)
driven by a fBm BH , in the rough paths theory setting ([Gub04, FrHa, FrVi, FrVi11]). We
consider the SDE

dY H
t = µ(Y H

t )dt+ σ(Y H
t )dBH

t . (2)

We clarify and slightly extend a continuity result appearing in Chapter 15 of [FrVi], giving also
a brief introduction to rough paths theory.

The result is the following: under the assumption H ∈ (1
3 ,

1
2), consider the solution Y H of

(2), which defines a probability distribution on the space C1/3([0, T ]) of 1
3 -Hölder continuous

functions. It is possible to show that, whenever H → H0 ∈ (1
3 ,

1
2), it holds Y H d−→ Y H0 , where

d−→ denotes the convergence in distribution on C1/3([0, T ]).

The proof of this fact relies on a fundamental tool in rough paths theory: given an equation
like (2), it is possible to define a solution operator which maps the noise BH into the solution
Y H . In classical stochastic settings, like for example in Itô’s theory, this map is discontinuous,
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and it can be shown that it is impossible to make it continuous (see [FrHa]). The main idea of
rough paths theory is to enrich the noise BH , by postulating a further component (the integral
BH of BH with respect to itself) and by considering the noise as the couple (BH ,BH). In this
enriched setting, the solution map (BH ,BH)→ Y H can be made continuous (see [FrVi, FrHa]).

This crucial observation has an immediate effect on our continuity problem: it is sufficient

to show that (BH ,BH)
d−→ (BH0 ,BH0) and exploit the continuity of the solution map to notice

that Y H d−→ Y H0 . In the present work, we prove the continuity result (BH ,BH)
d−→ (BH0 ,BH0)

by exploiting the usual scheme, that is to establish the tightness and then to identify the limit.
Our contribution consists in the fact that we proved the tightness in the specific case of the
fBm considering a slightly weaker assumption than the one in [FrVi]

The last part of the work is devoted to the development of a model driven, among other
factors, by a fBm BH . This model is then used to forecast the future prices in the Italian
wholesale electricity market (available at [Prices]). We propose a stochastic differential equation
of the type (2), coupled with a deterministic seasonal term and a jump component which will
be modelled through a Hawkes process.

Hawkes processes are a generalization, studied first by Hawkes in [Haw71(1), Haw71(2)],
of the classical Poisson point processes. In a Hawkes process, the intensity function, which
is the function that models the frequency of the random jump times, is assumed to be self-
exciting, instead of being constant. This means that every time a jump occurs, the instantaneous
probability that a subsequent jump occurs is higher than in ”normal periods”. This is an
interesting effect for our study case, since the italian electricity market shows the presence of
several jumps, some of which appear to be clustered over short time periods.

Regarding the practical implementation of the model, we first study, following [JTWW13,
NTW13, Wer14], the problems of parameter estimation and dataset filtering. These are crucial
steps in the pre-processing phase of the model. After that, we finally evaluate the performance
of the model. To do this, we use the model to produce forecasts of future electricity prices, at
different forecasting horizons (from 1 to 30 days in the future). These forecasts are given in
the form of interval forecasts (studied in [Wer14] and [NoWe18]) instead of the more classical
point forecasts. This choice aims at evaluating more in detail the quality of the forecasts in the
distributional sense, instead of giving a single prediction value. These kind of forecasts are then
evaluated by using adequate metrics, like the Winkler score and the Pinball loss function.
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1 | An introduction to the fractional
Brownian motion

In this Chapter we introduce the central object of this thesis: the fractional Brownian motion
(fBm). We first discuss its definition and basic properties. Then, we introduce a pair of integral
representations for the fBm (Proposition 1.10 and Proposition 1.14), which are known from
the existing literature. Finally, we present the theory of Wiener integration with respect to
the fBm, that is, the theory of integration of deterministic functions with respect to the fBm.
In this framework, we prove an almost sure representation formula (Proposition 1.18) for the
Wiener integral with respect to a fBm, based on one of the integral representations presented
before. This result slightly extends the results in Section 3 of [PiTa00].

1.1 Definition and basic properties

Let (Ω,F ,P) be a complete probability space, i.e. a probability space for which, whenever B ⊂ F
is such that P(B) = 0, then any A ⊂ B satisfies A ∈ F .

Definition 1.1. Let H ∈ (0, 1). We define the fractional Brownian motion (fBm) of Hurst
parameter H as the Gaussian process {BH

t , t ∈ R} characterized by

i) BH
0 = 0

ii) E[BH
t ] = 0 for any t ∈ R.

iii) E[BH
t B

H
s ] = 1

2(|t|2H + |s|2H − |t− s|2H) =: KH(s, t), for all s, t ∈ R.

The fact that the fBm exists is a consequence of the fact that the covariance function KH is
non-negative definite, for all H ∈ (0, 1), meaning that for every (s1, . . . , sn), (x1, . . . , xn) ∈ Rn
it holds

n∑
j=1

n∑
k=1

KH(sj , sk)xjxk ≥ 0.

This has been proven in [SaTa], Lemma 2.10.8.

Remark 1.2. It is immediate to notice that H = 1
2 yields E[BH

t B
H
s ] = min(t, s), which is the

covariance of a standard Brownian motion (sBm). This shows that the fBm is a generalization
of the sBm.

Remark 1.3. One can define the fBm also for H = 1 as B1
t = tB, for all t ∈ R, where B is a

centred Gaussian distributed random variable with variance equal to 1.

Remark 1.4. We clarify why the fBm is characterized by its mean and covariance function.
It is well-known that any Rn-valued Gaussian random vector (X1, . . . , Xn) is characterized by
its mean (µ1, . . . , µn) and covariance matrix (σi,j)i,j=1,...,n. This can be shown easily through
characteristic functions.
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We report now some interesting properties of the fBm. Not all of these facts will be important
for our purposes, but they allow us to get a clearer insight on the nature of such a process.

Definition 1.5. Let X = {Xt, t ∈ R} and Y = {Yt, t ∈ R} be two stochastic processes. We

say that X is equal in distribution to Y , and we denote it with X
d
= Y , if the two processes

have the same finite dimensional distributions. This means that, for every n ∈ N and for
every (t1, . . . , tn) ∈ Rn, the random vectors (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) induce the same
probability distribution on Rn.

Definition 1.6. Let α > 0. Let X = {Xt, t ∈ R} be a stochastic process. Define for any b ∈ R
the process X̃b = {X̃b,t := Xbt, t ∈ R}. We say that X is α-self similar if, for every b ∈ R, it

holds X̃b
d
= |b|αX.

Proposition 1.7 (Basic properties of the fBm). Let H ∈ (0, 1). Then, the following hold:

1) Let α < H. The fBm BH has a continuous modification, which can be chosen such that
the trajectories are α-Hölder continuous.

2) The fBm BH is H-self similar.

3) The fBm has stationary increments, i.e. for any h > 0 it holds BH
t+h −BH

h
d
= BH

t .

4) Let t1 < t2 < t3 < t4. One has that

E
[
(BH

t4 −B
H
t3 )(BH

t2 −B
H
t1 )
]

= 0 if H = 1
2 ,

> 0 if H > 1
2 ,

< 0 if H < 1
2 .

This means that the fBm has negatively correlated increments when H < 1
2 and positively

correlated increments when H > 1
2 .

Proof. To prove 1), we notice that condition iii) in Definition 1.1 implies that E[(BH
t −BH

s )2] =
|t − s|2H . This, by Kolmogorov continuity theorem (Theorem A.2), implies that the fBm of
parameter H ∈ (0, 1) has a continuous modification. Still by Kolmogorov continuity theorem,
this modification can be chosen such that the trajectories are Hölder continuous for any α < H.

For 2), we refer to page 7 of [Mis]. To prove 3), it is sufficient to observe that E[Bt+h−BH
h ] =

E[BH
t ] = 0 and that, for every t, s ∈ R, it holds

E
[
(BH

t+h −BH
h )(BH

s+h −BH
h )
]

=
1

2

(
|t|2H + |s|2H − |t− s|2H

)
= E[BH

t B
H
s ],

which concludes the proof thanks to Gaussianity.
To prove 4), it suffices to notice that for t1 < t2 < t3 < t4, and for H ∈ (0, 1) \ {1

2} it holds

E
[
(BH

t4 −B
H
t3 )(BH

t2 −B
H
t1 )
]

=
1

2

(
|t4 − t1|2H + |t3 − t2|2H − |t4 − t2|2H − |t3 − t1|2H

)
=(2H − 1)H

∫ t2

t1

∫ t4

t3

(s− r)2H−2 ds dr.

The integral appearing is always positive (the integrand is positive), so the sign only depends
on 2H − 1, being positive for 1

2 < H < 1 and negative for 0 < H < 1
2 .
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Remark 1.8. Property 4) in Propostion 1.7 is the key reason for the use of fBm in stochastic
modelling. Indeed, the usual modelling with a sBm assumes that the noise of the input data is
uncorrelated, whenever it is considered on disjoint time intervals. This hypothesis is often proved
to be too restrictive, and sometimes even false. A possible solution to this is to consider fBm as
the driving noise in modelling. We will analyse in Chapter 4 the advantages and disadvantages
of this approach in detail.

There is another nice characterization of a fBm which involves the self-similarity and the
stationarity of the increments:

Proposition 1.9. Let H ∈ (0, 1] and let {Xt, t ∈ R} be a stochastic process with E[X2
1 ] = 1

and X0 = 0. The following two statements are equivalent:

1) X is a Gaussian process which is H-self similar and with stationary increments

2) X is a fBm with Hurst parameter H.

Proof. The case H = 1 is immediate, via the definition given in Remark 1.3. Let H ∈ (0, 1):
we only have to prove that 1) ⇒ 2), since the converse has been proven in points 2) and 3) of
Proposition 1.7.

We have to prove that X has mean 0 and covariance given by

E[XsXt] =
1

2
(|s|2H + |t|2H − |t− s|2H).

We compute, using stationarity of the increments and self-similarity:

E[XsXt] =
1

2
E
[
(Xs)

2 + (Xt)
2 − (Xt −Xs)

2
]

=
1

2
E
[
(Xs)

2 + (Xt)
2 − (Xt−s −X0)2

]
=

1

2

(
|s|2H + |t|2H − |t− s|2H

)
E[X2

1 ]

=
1

2

(
|s|2H + |t|2H − |t− s|2H

)
,

(1.1)

which concludes the proof.

It is also worth pointing out that fBm is not a semimartingale, when H 6= 1
2 . Semimar-

tigales are a large class of processes that are relevant in the theory of stochastic integration.
Indeed, they are the largest class of processes for which it is possible to define Itô integral
and Stratonovich integral (see e.g. [ReYo]) so that the integral satisfies a minimal continuity
property.

1.2 Representations in law of the fBm

A useful property of the fBm is the fact that it has several integral representations, some of
which are relatively simple and quite useful for applications, as we will see in Chapter 2. We
refer to [SaTa], Section 7.2, for a more complete outlook on the topic.

First of all, we consider the so-called moving average representation.:

Proposition 1.10 ([SaTa], page 320). Let H ∈ (0, 1). Let {Wt, t ∈ R} be a sBm. Consider,
for all t ∈ R,

B̃H
t :=

1

C1(H)

∫
R

(
((t− x)+)H−

1
2 − ((−x)+)H−

1
2

)
dWx, (1.2)

11



where the constant C1(H) is given by

C1(H) :=

(∫ ∞
0

(
(1 + x)H−

1
2 − xH−

1
2

)2
dx+

1

2H

) 1
2

.

Then we have that B̃H d
= BH .

Remark 1.11. For a R-valued function f , the notation f+ denotes the function

f+(x) =

{
f(x) if f(x) > 0

0 if f(x) ≤ 0.

Remark 1.12. When H = 1
2 , one has C(1

2) = 1 and we could read (1.2) as
∫ t

0 Wx for t > 0

and −
∫ 0
t Wx for t < 0.

Proof (Proposition 1.10). We denote with fH,t the integrand of (1.2). First, we have to check
that fH,t ∈ L2(R) for every t ∈ R, H ∈ (0, 1). When t = 0, fH,0 ≡ 0 trivially, and there
is nothing to check. Suppose that t 6= 0: it is immediate to notice that for x → 0 we have
fH,t(x) ∼ xH−

1
2 , which is square-integrable, and for x→ t we have that fH,t(x) ∼ (t− x)H−

1
2 ,

which is square-integrable too. Moreover, we have that whenever x > t then fH,t(x) = 0, so

we are only left to show that fH,t is integrable for x → −∞. But we have that (t − x)H−
1
2 −

(−x)H−
1
2 ∼ C(−x)H−

3
2 (one can easily check it with Taylor expansions). Thus fH,t ∈ L2(R).

Now we denote with Xt the right-hand side in (1.2), and we show that Xt has the covariance
structure of Definition 1.1. We compute the covariance E[XsXt] in the same way as (1.1). We
need then to compute only E[X2

t ],E[X2
s ] and E[(Xt − Xs)

2]. Thanks to classical Itô isometry
we have, supposing, without loss of generality, that t > 0:

E[X2
t ] =

1

C1(H)2

∫
R

(
(t− x)

H− 1
2

+ − (−x)
H− 1

2
+

)2
dx

=
t2H

C1(H)2

∫
R

(
(1− u)

H− 1
2

+ − (−u)
H− 1

2
+

)2
dx

=
t2H

C1(H)2

[ ∫ 0

−∞

(
(1− u)H−

1
2 − (−u)H−

1
2

)2
dx+

∫ 1

0
(1− u)2H−1du

]
=

t2H

C1(H)2

[ ∫ ∞
0

(
(1 + u)H−

1
2 − uH−

1
2

)2
dx+

1

2H

]
= t2H ,

where we used the change of variables u = x
t and the definition of C1(H). This can be done

similarly for t < 0. For the term E[(Xt −Xs)
2], it suffices to notice that thanks to Itô isometry

one has

E[(Xs −Xt)
2] =

1

C1(H)2

∫
R

(
((s− x)+)H−

1
2 − ((t− x)+)H−

1
2

)2
dx

=
1

C1(H)2

∫
R

(
((s− t− y)+)H−

1
2 − ((−y)+)H−

1
2

)2
dy = |t− s|2H ,

where we used the change of variables y = x− t. This concludes the proof, since X is Gaussian,
being the integral of a deterministic function with respect to a sBm.

The next integral representation that we introduce is the so-called spectral representation
[PiTa00], or harmonizable representation [SaTa]. This representation will be further generalized
in Chapter 2 and it will be a key tool for our results on stochastic partial differential equations
with multiplicative noise.

In order to state and prove it, first we briefly introduce the notion of complex random
measure. Our aim is to be able to define a complex Gaussian measure M̃ which will play the
role of the integrator in (1.2).

12



Definition 1.13. We define the complex Gaussian measure M̃ with values in (R,B(R), λ),
where λ is the Lebesgue measure on R, as a measure given by M̃ = M̃1 + iM̃2, where M̃1, M̃2

are independent (real) centred Gaussian measures such that for every Borel set A ⊂ R it holds

i) M̃1(A) = M̃1(−A) and M̃2(A) = −M̃2(−A).

ii) E
[
|M̃1(A)|2

]
= E

[
|M̃2(A)|2

]
= |A|/2, where we denote as |A| the Lebesgue measure of

A.

Given Definition 1.13, it is immediate to notice that it holds E
[
|M̃(A)|2

]
= |A|, for every

Borel set A ⊂ R. It is possible to define an integral with respect to this measure, similarly to
Itô integral. We refer to [SaTa], Section 7.2.2 for more details. For our purposes, it is sufficient
to say that, given a complex-valued (deterministic) function f ∈ L2(R), the integral∫

R
f(x)dM̃x,

where we denoted dM̃x := M̃(dx), satisfies the Itô isometry in the sense that for f, g ∈ L2(R)
(possibly complex-valued)

1) E
[( ∫

R
f(x)dM̃x

)(∫
R
g(x)dM̃x

)]
=

∫
R
f(x)g(x)dx,

2) E
[∣∣∣ ∫

R
f(x)dM̃x

∣∣∣2] =

∫
R
|f(x)|2dx.

(1.3)

We are now ready to state the spectral representation result.

Proposition 1.14 ([SaTa], Proposition 7.2.8). Let M̃ be a complex Gaussian measure as defined
in Definition 1.13. Let H ∈ (0, 1). Then, the fBm BH of parameter H has the following integral
representation, for all t ∈ R. Let B̃H be the process defined by

B̃H
t = C2(H)

∫
R

eitx − 1

ix
|x|

1
2
−HdM̃x, (1.4)

where

C2(H) =
(HΓ(2H) sin(πH)

π

) 1
2
.

Then, we have that B̃H d
= BH .

Proof. We report the proof for the sake of completeness: again, we denote in (1.4) the integrand
as fH,t and the whole integral as Xt.

It is easy to check that for every t ∈ R and H ∈ (0, 1) it holds fH,t ∈ L2(R). Indeed,

|fH,t(x)| ∼ |x|−H−
1
2 as |x| → ∞. Moreover, the function

∣∣∣ eitx−1
ix

∣∣∣ is bounded for |x| → 0, and

thus the only possible singularity comes from |x|
1
2
−H , which is square integrable anyway. This

means that fH,t ∈ L2(R).

We show now that X is a Gaussian, H-self similar process with stationary increments:
thanks to the characterization property Proposition 1.9 this is sufficient to show that X is a
fBm of parameter H. First of all, the gaussianity of X comes from the fact that it is defined as
the integral of a deterministic function (also called Wiener integral) with respect to a Gaussian
process.

We are left to check that X is H-self similar and its increments are stationary. We first

check that Xat
d
= aHXt. To do this, it is sufficient to check that they have the same mean and

13



covariance structure. Being a Wiener integral with respect to a Gaussian process, Xat has zero
mean for all t ∈ R, and we are left to show that

E[XatXas] = a2HE[XtXs].

We compute explicitly, thanks to Itô isometry,

E[XatXas] =

∫
R

(eiatx − 1

ix

)(eiasx − 1

ix

)
|x|1−2Hdx

=

∫
R

(eiatx − 1)(e−iasx − 1)|x|−1−2Hdx

=

∫
R

(eity − 1)(e−isy − 1)|y|−1−2Ha1+2H dy

a

=a2H

∫
R

(eity − 1)(e−isy − 1)|y|−1−2Hdy

=a2HE[XtXs].

We check that the increments are stationary. Fix h > 0. We exploit gaussianity again, plus the
fact that for every t we have E[Xt+h − Xh] = 0 = E[Xt]. We are left again to check that the
covariances are the same: notice first that

Xt+h −Xh =

∫
R

eihx(eitx − 1)

ix
|x|

1
2
−HdM̃x.

We have then

E
[
(Xt+h −Xh)(Xs+h −Xh)

]
=

∫
R

(eihx(eitx − 1)

ix

)(eihx(eisx − 1)

ix

)
|x|1−2Hdx

=

∫
R

(eitx − 1

ix

)(eitx − 1

ix

)
|x|1−2Hdx

=E[XtXs].

We are only left to prove now that E
[
|X1|2

]
= 1. This is only a matter of computing the

integral ∫
R
|fH,1(x)|2dx.

We refer to the proof of Proposition 7.2.8 in [SaTa] for the computations.

Remark 1.15. The integrand fH,t in Proposition 1.7 can be seen as fH,t(x) = F1[0,t](x)|x|
1
2
−H ,

where we denote with Fg the Fourier transform of a function g ∈ L1(R), defined as

Fg(ξ) :=

∫
R
e−iξxg(x)dx. (1.5)

This fact will be crucial when using the representation (1.4) to obtain a spectral representation
also for Wiener integrals, as we will see in Proposition 1.18 and, in the multidimensional case,
in Chapter 2.

We observe that the representation result Proposition 1.14 can be used as an alternative
definition of the fBm. Let B̃H be the process defined, for every t ∈ R, by

B̃H
t := C2(H)

∫
R
F1[0,t](x)|x|

1
2
−HdM̃x,

14



where M̃ is the complex Gaussian measure defined in Definition 1.13. Then, we showed in
Proposition 1.14 that B̃H has the same distribution as BH .

This is useful because we can define the fBm of Hurst parameter H ∈ (0, 1) via this relation;
hence, we can define the whole family {BH , H ∈ (0, 1)} on the same probability space (Ω,F ,P).

Definition 1.16 (fBm, alternative definition). Let M̃ be a complex Gaussian measure as defined
in Definition 1.13. For every H ∈ (0, 1), we define the fBm process BH on the space (Ω,F ,P),
defined for every t ∈ R as

BH
t = C2(H)

∫
R
F1[0,t](x)|x|

1
2
−HdM̃x.

From now on, we consider this last one as the standing definition of fBm. Thus, there
exists a single probability space (Ω,F ,P) on which all of the fBm’s BH are defined, for every
H ∈ (0, 1). This fact will have further consequences, as we will see in Proposition 1.18.

1.3 Wiener integral with respect to the fBm

When developing a theory of stochastic calculus with respect to a process X, the first step we
take is to define the integral of a (possibly large) class of deterministic functions with respect
to X. This kind of integrals are also called in the literature Wiener integrals. When X = B1/2,
i.e. in the sBm case, we have that the natural class of such integrands is L2(R). In the case
of the fBm with H 6= 1

2 it is more difficult to identify the space of integrands. Indeed, when
H > 1

2 , the ”natural” space contains not only functions, but also pure distributions. For a
detailed overview of the topic, we refer to [PiTa00] and [Jol06].

Let H ∈ (0, 1), and let f be a deterministic elementary function, i.e. a function given, for
some c ∈ R and for some t1, t2 ∈ R, with t1 ≤ t2 by f(x) = c 1[t1,t2](t). Imagine that we wish to
define the integral

IH(f) :=

∫
R
f(t)dBH

t =

∫
R
c1[t1,t2](t)dB

H
t .

A natural choice would be to define, similarly to the construction of the Riemann-Stieltjes
integral, IH(f) := c(BH

t2 − B
H
t1 ). Let now E be the vector space of simple functions, i.e. finite

linear combinations of elementary functions. The map IH is clearly linear from E to L0(Ω),
which is defined as the space of measurable random variables.

Let us suppose for a moment that H = 1
2 ; the linear map f 7→ I1/2(f) defined on E takes

values in L2(Ω) and defines an isometry between E and L2(Ω), if we endow E with the L2(R)
norm, which we denote by || · ||L2(R). We check it briefly: suppose without loss of generality
that f(t) =

∑
j≤N cj1[tj−1,tj ](t), where −∞ < t0 < t1 < · · · < tN < ∞. We can do this for

two reasons: we can always split a finite number of superimposed intervals in a (larger) finite
number of disjoint intervals, and we can add intervals with cj = 0, if needed. We have that

I1/2(f) =
N∑
j=1

cj(B
1/2
tj
−B1/2

tj−1
),

which implies

E
[
|I1/2(f)|2

]
=

N∑
j=1

c2
j E
[
(B

1/2
tj
−B1/2

tj−1
)2
]

=

N∑
j=1

c2
j |tj − tj−1| = ||f ||2L2(R),

which is the desired isometry. By linearity and isometric extension, we can thus define I1/2 for
every function in L2(R). This is true because the set E of simple functions is dense in L2(R).
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Actually, one can prove more: the isometry between L2(R) and L2(Ω) is an isometry between
Hilbert spaces, since it preserves also the inner products:

E
[
I1/2(f)I1/2(g)

]
=

∫
R
f(x)g(x) dx.

In the pure fBm case H 6= 1
2 , we wish to find a suitable space of integrands that replaces

L2(R). In [PiTa00], various choices of space have been proposed. Here, we will only define and
use a particular choice, called in [PiTa00] the spectral domain of BH , whose construction is
inspired by the spectral representation (1.4).

First, we notice the following fact: let f ∈ E be a simple function of the form f =
∑

j≤N fj =∑
j≤N cj1[sj ,tj ], with sj ≤ tj for every j = 1, . . . , n. By definition of the integral of elementary

functions, we have that ∫
R
fj(t)dB

H
t = cj(B

H
tj −B

H
sj ).

Thanks to Definition 1.16, we have that

cj(B
H
tj −B

H
sj ) =cjC2(H)

∫
R

(F1[0,tj ](x)−F1[0,sj ](x))|x|
1
2
−HdM̃x

=cjC2(H)

∫
R
F1[sj ,tj ](x)|x|

1
2
−HdM̃x

=C2(H)

∫
R
Ffj(x)|x|

1
2
−HdM̃x.

Thanks to the linearity of the integral and of the Fourier transform, we can write that

IH(f) =

∫
R
f(t)dBH

t

=
N∑
j=1

∫
R
fj(t)dB

H
t

=
N∑
j=1

C2(H)

∫
R
Ffj(x)|x|

1
2
−HdM̃x

=C2(H)

∫
R
F
( N∑
j=1

fj

)
(x)|x|

1
2
−HdM̃x

=C2(H)

∫
R
Ff(x)|x|

1
2
−HdM̃x.

These considerations lead us to, thanks to classical Itô isometry,

E
[
|IH(f)|2

]
= C2(H)2

∫
R
|Ff(x)|2|x|1−2Hdx, (1.6)

for any f ∈ E . More generally, for f, g ∈ E , we have

E
[
IH(f)IH(g)

]
= C2(H)2

∫
R
Ff(x)Fg(x)|x|1−2Hdx.

This property leads us to the definition of a natural space of integrands:

ΛH :=
{
f ∈ L2(R) :

∫
R
|Ff(x)|2|x|1−2Hdx <∞

}
.
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We endow the vector space ΛH with an inner product defined in the natural way as

〈f, g〉H := C2(H)2

∫
R
Ff(x)Fg(x)|x|1−2Hdx,

and with the induced norm ||f ||H := 〈f, f〉1/2H . We already showed (when we proved that
fH,t ∈ L2(R)) that E ⊂ ΛH , but we are interested in knowing whether E is dense in ΛH or not.

Proposition 1.17. Let H ∈ (0, 1). The space ΛH is a inner product space endowed with the
inner product 〈·, ·〉H , but it is not complete. Moreover, the space E of simple functions is dense
in ΛH with the norm || · ||H . As a consequence, we can define, for every f ∈ ΛH , the integral

IH(f) =

∫
R
f(t)dBH

t ,

via a standard isometric extension. This integral satisfies the Itô isometry in the sense that for
every f, g ∈ ΛH

E
[
IH(f)IH(g)

]
= 〈f, g〉H =

∫
R
Ff(x)Fg(x)|x|

1
2
−Hdx. (1.7)

Proof. See Section 5.1 of [PiTa00].

With this definition in mind, and since the family {BH , H ∈ (0, 1)} is defined on a single
probability space (Ω,F ,P), we are able to prove the following result, which will be further
generalized in Chapter 2 in a 2-dimensional case, and for the n-th order iterated integral.

Proposition 1.18. Let M̃ be the complex Gaussian measure defined in Definition 1.13. Then,
for every f ∈ ΛH , it holds that, P-almost surely:∫

R
f(t)dBH

t = C2(H)

∫
R
Ff(x)|x|

1
2
−HdM̃x. (1.8)

Proof. Recall that the noises {BH , H ∈ (0, 1)} are now defined on the same probability space
(Definition 1.16). We already proved the relation (1.8) for f ∈ E , and it holds P-almost surely.
Let now f ∈ ΛH . By Proposition 1.17, there exists a sequence of simple functions {fn, n ∈
N} ⊂ E which converges to f in the || · ||H norm. We have that (1.8) holds for f = fn, for every
n ∈ N, and in addition we have that, by the Itô isometry

lim
n→∞

E
[( ∫

R
(f(t)− fn(t))dBH

t

)2]
= lim
n→∞

E
[(
C2(H)

∫
R

(Ff(x)−Ffn(x))|x|
1
2
−HdM̃x

)2]
= lim
n→∞

C2(H)2

∫
R
|F(f − fn)(x)|2|x|

1
2
−Hdx = 0,

since ||f − fn||H → 0 by hypothesis, as n→∞.

In the proof of Proposition 1.18, we could integrate f(t) − fn(t) with respect to BH and

C2(H)(F(f − fn)(x))|x|
1
2
−H with respect to M̃ essentially for the same reason: the fact that

f − fn ∈ ΛH implies that C2(H)(F(f − fn)(x))|x|
1
2
−H ∈ L2(R) by the very definition of ΛH .

Remark 1.19. Proposition 1.18 may seem redundant, but anyway it turns out to be an impor-
tant tool in estimates for the following reason: it allows us to compare Wiener integrals relative
to different noises (in the family {BH , H ∈ (0, 1)}) in the strong Lp(Ω) sense, allowing us to
obtain stronger estimates.
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2 | SPDEs with fractional noise: con-
tinuity in law

In this chapter, we discuss the main result of this thesis, that is the continuity with respect to
the Hurst parameter H of some classes of wave and heat SPDEs driven by a noise WH , which
behaves. in the space variable. like a fractional Brownian motion of Hurst parameter H ∈ (0, 1)
and, in the time variable, like a standard Brownian motion (sBm),

Before introducing the main results, we give an introduction to the theory of stochastic
partial differential equations (SPDEs), in the framework of the random field approach, first
developed by Walsh in [Wal86]. We will put a special focus on the stochastic heat and wave
equations, driven by the noise WH . We consider both the case of additive and multiplicative
noise.

In Section 2.1, we discuss briefly and rather informally the basic concepts and intuitions
behind the study of SPDEs. Then, from Section 2.2 onwards we will give a rigorous treatment
of the topic. We will privilege a particular class of equations, driven by a Gaussian noise WH

which behaves in time like a sBm and in space like a fBm of Hurst parameter H ∈ (0, 1). We
recall and extend the solution theory for equations of this type in Section 2.3. For the solutions
uH of this class of equations, in Section 2.4 we will study the weak continuity problem with
respect to the parameter H.

2.1 SPDEs in the random field approach

Informally speaking, by SPDE one can mean any type of PDE which is influenced by some type
of randomness. We will focus here on SPDEs which are defined for (t, x) ∈ [0, T ] × R and are
of the form

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ẋ(t, x). (2.1)

Here, we denote by L a second-order differential operator, b, σ : R→ R are two functions with
suitable regularity conditions and Ẋ denotes a noise forcing term, defined on some probability
space (Ω,F ,P). In this setting, the term Ẋ will be the only source of randomness for the
equation. The value T > 0 that we fixed represents the time horizon of our problem. We will
consider two choices of the operator L, the wave operator ∂2

∂t2
− 1

2
∂2

∂x2
and the heat operator

∂
∂t −

1
2
∂2

∂x2
. Depending on the operator L, we will consider also different initial conditions: we

will impose u0(x) = u(0, x) and v0(x) = ∂
∂tu(0, x) for the wave operator and only u0(x) = u(0, x)

for the heat operator. We will discuss later the regularity that we have to impose on u0, v0 from
case to case.

Example 2.1. We consider an illustrative example for equations of the form (2.1). Set L =
∂
∂t −

1
2
∂2

∂x2
(the heat operator), b ≡ 0, σ ≡ 1 and Ẋ = Ẇ , where Ẇ = Ẇ (t, x) is a 2-dimensional

Gaussian white noise. Then equation (2.1), that we consider with initial condition u0 regular
enough, reads

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + Ẇ (t, x).
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We see that this is just a version of the usual heat equation, to which we add a stochastic
forcing term Ẇ . The white noise Ẇ is characterized by having zero mean and covariance
E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y), where we denoted by δ the Dirac delta distribution at 0.

Consider now the classical intuition behind the heat equation: for a fixed t0 ∈ [0, T ] the
function x 7→ u(t0, x) describes the distribution of heat in a one-dimensional medium at time
t0. As the time t progresses, the form of the equation causes a ”diffusion” of heat, which tends
to spread out evenly in the x variable, like the physical intuition suggests. What do we change
by adding a white noise term in the equation? The intuitive answer is that, in the stochastic
version of the equation, the diffusion process still takes places, but it is perturbed by the term
Ẇ , which adds a random noisy perturbation in the system.

Another important problem in SPDE theory is the regularity problem. Many natural choices
of noise term Ẋ are highly irregular. Consider Example 2.1; in this case the noise term Ẇ is
space-time white noise: this means that it is a random distribution which is the distributional
derivative of a Brownian sheet (a realization Ẇ (·, ·)(ω) of white noise is a collection, indexed by
(t, x) ∈ [0, T ]× R, of the outcomes of a family of independent Gaussian random variables with
zero mean and unitary variance). We expect this lack of regularity of the noise to propagate
to the solution u, even we expect also some influence from the smoothing effect of the heat
operator.

This heuristic reasoning translates to the need, for most of the noises Ẋ, of a weaker notion
of solution, compared to the classical one suggested by (2.1). This leads to the so-called mild
formulation of an SPDE, which we discuss in full details in Section 2.1. Anyway, we will still
write formally our SPDEs in the form (2.1) from time to time. When we do this, we refer to
(2.1) as the formal version of our SPDEs.

Once we have a proper notion of solution, we can ask ourselves some classical questions,
starting from the basic existence and uniqueness problem for (2.1). We will discuss about
classical and more recent developments in this topic in Section 2.4. Apart from existence and
uniqueness, there are various other questions that one can ask about the solutions of an SPDE.
We give some examples: a first interesting property that is studied is the a.s. path regularity of
the solution. Given a solution u of an SPDE of the type (2.1), the idea is to check whether for
almost every ω ∈ Ω the paths u(·, ·)(ω) have some regularity in [0, T ]×R (i.e. continuity, Hölder
continuity, see [SaSa00], [SaSa02]). We will see some examples of this problems in Section
2.4. Another interesting property is the intermittency property, which has been studied e.g. in
[DaMu09], [HHNT15], [BJQ17]. Informally speaking, the solution u of an SPDE is said to be
intermittent if it presents large and quickly disappearing spikes.

Our main result will concern another type of problem: consider an equation of the form (2.1),
but driven by a noise ẆH which behaves in time like white noise and in space like fractional
noise of Hurst parameter H ∈ (0, 1). Then, if the solution exists for every H ∈ (a, b), with
0 ≤ a ≤ b ≤ 1, we can consider the family of solutions {uH , H ∈ (a, b)}. A natural question
is: is this family continuous with respect to the parameter H? We will answer this question
in the framework of weak convergence (also termed convergence in distribution) on the space
C([0, T ]×R) of continuous functions, endowed with the norm of uniform convergence on compact
sets. We give a first informal statement of our result

Consider equation (2.1) driven by the noise ẆH , defined for (t, x) ∈ [0, T ]× R as

LuH(t, x) = b(uH(t, x)) + σ(uH(t, x))ẆH(t, x).

We will prove that, under each of the three sets of hypotheses A, B1, C, defined in Section 2.4,
it holds the following: let {Hn, n ∈ N} be a sequence of Hurst indexes such that Hn → H0,
where both the {Hn, n ∈ N} and H0 are admissible values for the set of hypotheses that we are
considering.
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Then it holds that uHn
d−→ uH0 , in the sense of weak convergence in the space C([0, T ]×R),

endowed with the metric of uniform convergence in compact sets.

This result, apart from being natural and interesting from the mathematical point of view,
is a first step towards using a model like (2.1) driven by WH in applications. Indeed, if one uses
such a model, usually has to estimate the parameter H of the model from previously available
data. This, even if done through exacts methods, can never give an exact result, due to the
finiteness of observable data. One has then to check that the error made in the estimation of
the parameter H propagates reasonably on the solution uH . The continuity in distribution of
uH with respect to H is a first step in this direction. Even if the result is not quantitative, it
gives a first positive answer to this sensitivity problem.

In Chapter 4 we will see an example of application of such kind of fractional noises to
an electricity market. In that case the driving noise will be a simple fBm BH instead of the
2-dimensional noise WH that we are considering here.

We give meaning now to the main concepts of SPDE theory. We start from the above
mentioned concept of mild solution. Before being able to define it, we need several tools.

The concept of fundamental solution is very important. Given a differential operator L, if
one can find a fundamental solution G for L, then the solution of the non-homogeneous problem
Lu = f can be found by convolving G with f . We do not enter into the details of this, but we
will see the utility of fundamental solutions also in the stochastic setting soon. We report the
two cases of fundamental solutions of our interest:

1) When we are in the wave equation case L = ∂2

∂t2
− ∂2

∂x2
, the fundamental solution G = Gt(x)

is given by

Gt(x) =
1

2
1{|x|≤t}. (2.2)

2) When we are in the heat equation case L = ∂
∂t−

1
2
∂2

∂x2
the fundamental solution G = Gt(x)

is given by

Gt(x) =
1√
2πt

e−
x2

2t . (2.3)

The constant 1
2 appearing in the Heat equation operator is just there by convention. The

equation is completely equivalent to the form ∂
∂t −

∂2

∂x2
.

We also have to define properly the noise Ẋ; in Section 2.2 we will interpret Ẋ as the formal
derivative of a stochastic process X = X(t, x) defined of a probability space (Ω,F ,P), endowed
with a suitable filtration {Ft, t ∈ [0, T ]}.

Remark 2.2. We give some intuition about what we mean as formal derivative. Our general
objective will be to define an integral with respect to the process X. Assume X : [0, T ]×R→ R
is a smooth deterministic function. We already saw in Chapter 2 (in the 1-dimensional case)
that one can define the Riemann-Stieltjes integral with respect to X as a limit of Riemann
sums. If X is, as we are assuming, at least differentiable, the Riemann-Stieltjes integral can be
also defined as ∫ T

0

∫
R
f(t, x)dX(t, x) :=

∫ T

0

∫
R
f(t, x)Ẋ(t, x)dtdx.

This definition is consistent with the limit of Riemann sums. This explains why we denote the
noise as Ẋ, while in the following we will consider its formal integral X. The idea is that we will
”integrate” the expression (2.1) in order to obtain an integral formulation of it. This reasoning
can be made precise in the framework of random distributions, but this goes beyond the scope
of this work and we will skip it.
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Regarding the construction of the filtration {Ft}, we define it as the natural filtration asso-
ciated to the noise, conveniently completed. See later for a precise definition. We are ready to
define:

Definition 2.3. We say that a stochastic process {u(t, x), (t, x) ∈ [0, T ]×R} is a mild solution
for (2.1) if it is adapted with respect to Ft, jointly measurable and it satisfies for every (t, x) ∈
[0, T ]× R

u(t, x) = I0(t, x) +

∫ t

0

∫
R
b(u(s, y))Gt−s(x− y)dy ds+

∫ t

0

∫
R
σ(u(s, y))Gt−s(x− y)X(ds, dy),

(2.4)

where we denoted as I0 the solution of the deterministic equation Lu = 0 associated with (2.1),
with the same initial conditions.

We recall that a process Y = Y (t, x) is said to be jointly measurable if the map (t, x, ω) 7→
Y (t, x)(ω) is measurable with respect to the σ-algebra B([0, T ])⊗B(R)⊗F (the codomain R is
obviously endowed with the σ-algebra B(R)), where we denote by B(A) the Borel sigma-algebra
on A ⊆ R

For the moment, we did not say anything about the initial conditions of the problem. These
will in general depend on the form of the operator L. We give two examples: in the case of the
heat equation, we only have to impose u(0, x) = u0(x). In the case of the wave equation, we
need to impose u(0, x) = u0(x) and ∂u

∂t (0, x) = v0(x). We will discuss more precisely the issue
of initial conditions later.

In the right-hand side of (2.4), the rightmost addend is an integral of a stochastic process
with respect to our noise Ẋ. Being able to define a proper notion of integral with respect to Ẋ
is a key tool in the theory of SPDEs. The possible definitions of integral strongly depend on
the form of the noise Ẋ. For our purposes, we will only work with the assumption that Ẋ is
a Gaussian noise and, more specifically, that Ẋ behaves like a sBm in the time variable t and
behaves like a fBm in the space variable x.

2.2 Spatially homogeneous Gaussian noise

We will define here the concept of spatially homogeneous Gaussian noise. We will see that all
the noises of our interest WH , for all H ∈ (0, 1), will be interpreted as spatially homogeneous
Gaussian noises. The family of spatially homogeneous Gaussian noises is useful because it is the
family that we will use to construct a proper integration theory for both deterministic functions
and stochastic processes. With this integration theory, we are able to give an adequate meaning
to equations of the form (2.1) in the mild sense of Definition 2.3.

2.2.1 Definition and examples

We define now the concepts that we need in order to give meaning to Definition 2.3. As a
general framework, we lie into the theory of martingale measure stochastic integrals, introduced
by Walsh in [Wal86]. The theory developed by Walsh has undergone a series of more recent
developments and generalizations (see e.g. [Dal99], [NuQu07], [DaQu11]), which have allowed
to study a larger class of equations.

Here, we will only consider the fruitful notion of spatially homogeneous Gaussian noise, and
define the integral with respect to it. In particular, we will later on restrict to a special class
of noises WH , which behave in time like a sBm and in space like a fBm of Hurst parameter
H ∈ (0, 1). The theory of stochastic integration with respect to such noises lies partially into
the general theory of spatially homogeneous Gaussian noises exposed in [DaQu11], except from
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the case H ∈ (0, 1
2), which has been handled separately in [BJQ15] and [HHLNT17] (in the

former case using some ideas from [BGP12]), due to the more irregular nature of the noise
WH . We highlight that, even if it is possible to define a stochastic integral with respect to
WH when H ∈ (0, 1

2), it is not possible to show existence and uniqueness of a solution for (2.4)
whenever H < 1

4 . This limitation is somehow consistent with the existing boundaries for this
kind of problems involving a fBm. See [BJQ17] for a significant non-existence result for the
wave equation driven by WH , when H < 1

4 .

Before restricting to the case of the noises WH , we briefly introduce the basic theory of
spatially homogeneous Gaussian noises. For a function ϕ, we denote with Fϕ(t, ·)(ξ) its Fourier
transform with respect to the space variable x ∈ R.

Definition 2.4. Let X = {X(ϕ), ϕ ∈ C∞0 ([0,∞) × R)} be a Gaussian process, defined on a
complete probability space (Ω,F ,P), indexed on the space C∞0 ([0,∞)×R) of smooth functions
with compact support. We say that X is a spatially homogeneous Gaussian noise if it has zero

mean, i.e. E
[
X(ϕ)

]
= 0 for all ϕ ∈ C∞0 ([0,∞)×R), and satisfies, for every ϕ,ψ ∈ C∞0 ([0, T ]×R),

E
[
X(ϕ)X(ψ)

]
=

∫ ∞
0

∫
R
Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)µ(dξ)dt =: 〈ϕ,ψ〉X , (2.5)

for some temperate non-negative measure µ on R, which we will call the spectral measure of X
and has to be symmetric (in the sense that µ(−A) = µ(A), for any A ∈ B(R)).

Remark 2.5. With this definition, the map ϕ 7→ X(ϕ) is linear. Being X Gaussian, it suffices
to check that

E
[(
X(aϕ+ bψ)− aX(ϕ)− bX(ψ)

)2]
= 0,

which is immediate to check by applying (2.5) (see [Nua], Definition 1.1.1).

The integrability conditions on µ that are needed in order to be able to define the stochastic
integral with respect to X allow the space of integrands with respect to X to be rich enough to
define a good integration theory.

The most general approach to the spatially homogeneous Gaussian noise consists in defining
the covariance structure starting from a tempered distribution Φ. Tempered distributions over
R are elements of S ′(R), the dual space of the Schwartz space S(R). The space S(R) is defined
as the space of functions g : R→ R that are C∞ and such that g and its derivatives, multiplied
to a polynomial of any order, decay to 0 for x → ∞. Its dual space is the space of linear
continuous functionals Φ : S(R)→ R. We will not define the metric that is used on S(R), since
it goes beyond the scope of this thesis. We refer to [Sch] for a more detailed study of this topic.

Given a non-negative-definite tempered distribution Φ, which means that, for every g ∈
S(R),

Φ(g ∗ g̃) ≥ 0,

where g̃(x) = g(−x), it is possible to define a spatially homogeneous Gaussian noise {X =
X(ϕ), ϕ ∈ C([0,∞) × R)} again as a process with zero mean and covariance (see [BJQ15] for
example)

E
[
X(ϕ)X(ψ)

]
:=

∫ ∞
0

Φ
(
ϕ(t, ·) ∗ ψ̃(t, ·)

)
dt. (2.6)

This definition can be specialized to the case in which Φ defines a measure Λ on R. See for
example [DaQu11], [NuQu07]. Let Λ be a non-negative, and non-negative definite measure on
R. This means that Λ(A) ≥ 0 for every A ∈ B(R), and that for every g integrable with respect
to Λ, ∫

R
(g ∗ g̃)(x)Λ(dx) ≥ 0.
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We can define a spatially homogeneous Gaussian noise {X = X(ϕ), ϕ ∈ C([0,∞) × R)} as a
stochastic process which has zero mean and covariance given, for every ϕ,ψ ∈ C∞0 ([0,∞)× R),
by

E
[
X(ϕ)X(ψ)

]
:=

∫ ∞
0

dt

∫
R

(ϕ(t, ·) ∗ ψ̃(t, ·))(x)Λ(dx). (2.7)

A more specific case of covariance structure is when Φ defines a function f . This case
was first studied in [DaSa80] (see also [Dal99]): consider a function f : R → [0,∞) which is
continuous on R \ {0} and symmetric, in the sense that f(−x) = f(x). One could define a
spatially homogeneous Gaussian noise {X = X(ϕ), ϕ ∈ C([0,∞) × R)} as a process with zero
mean and covariance structure given, for every ϕ,ψ ∈ C∞0 ([0,∞)× R), by

E
[
X(ϕ)X(ψ)

]
:=

∫ ∞
0

dt

∫
R

∫
R
ϕ(t, x)ψ(t, y)f(x− y)dydx. (2.8)

The interesting fact about these definitions is that all of them coincide, whenever it is
possible to define all of them: indeed, if one chooses f as in (2.8) then f induces a measure
Λ(A) :=

∫
A f(x)dx and a tempered distribution Φ(ϕ) :=

∫
R f(x)ϕ(x)dx. And if one has a

measure Λ, this obviously defines a tempered distribution Φ(ϕ) :=
∫
R ϕ(x)Λ(dx). We have

then, in this case,∫ ∞
0

dt

∫
R

∫
R
ϕ(t, x)ψ(t, y)f(x− y)dydx =

∫ ∞
0

dt

∫
R

(ϕ(t, ·) ∗ ψ̃(t, ·))(x)Λ(dx)

=

∫ ∞
0

Φ(ϕ(t, ·) ∗ ψ̃(t, ·))dt,

where we interpret ψ̃(t, x) = ψ(t,−x).
Another interesting fact about this direct approach to spatially homogeneous Gaussian noises

is the fact, consequence of Bochner’s Theorem, that Φ is a non-negative tempered distribution
if and only if it is the Fourier transform in S ′(R) of a symmetric non-negative tempered measure
µ. We recall that a non-negative measure is tempered if and only if it holds∫

R

1

(1 + |ξ|2)m
µ(dξ) <∞,

for some m ≥ 1 (see [Dal99], [DaQu11] [BJQ15]).

We recall that in our case we will consider a specific type of noise WH , which is a one-
parameter family of noises indexed by H ∈ (0, 1). We give a formal definition.

Definition 2.6. Consider the family of measures {µH , H ∈ (0, 1)} associated with {WH , H ∈
(0, 1)}, defined by

µH = cH |ξ|1−2Hdξ, cH :=
Γ(2H + 1) sin(πH)

2π
. (2.9)

This family satisfies (2.24), for every H ∈ (0, 1). For every H ∈ (0, 1), we define WH as in
Definition 2.4, where µ = µH .

The Fourier transform of µH in S ′(R), defined as the distribution Φ such that for every
ϕ ∈ S(R) it holds ∫

R
Fϕ(ξ)µH(dξ) = Φ(ϕ).

This Fourier transform of µH is equal to the integrable function fH(x) = H(2H − 1)|x|2H−2

when H > 1
2 , and it is equal to the genuine distribution

ΦH(ϕ) = H(2H − 1)

∫
R

(ϕ(x)− ϕ(0))|x|2H−2dx
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when H < 1
2 . Due to the different behaviour, the problem has to be handled with different

techniques in the two cases. The case H > 1
2 belongs to the general theory studied, for example,

in [Dal99], while the case H < 1
2 is more involved and was handled in [BJQ15] and [HHLNT17]

As we already suggested in the right-hand side of (2.5), the covariance structure of a spatially
homogeneous Gaussian noise defines an inner product on the space C∞0 ([0,∞) × R), which is
not complete under this inner product. We define

HX := C∞0 ([0,∞)× R)
〈·,·〉HX ,

the completion of C∞0 ([0,∞) × R) with respect to the inner product 〈·, ·〉X . This makes HX a
Hilbert space. An interesting fact is that the space HX is not necessarily a space of functions,
but it can also contain some proper distributions. This is the case for the space HH induced
by µH whenever H > 1

2 , whereas in the case H < 1
2 the space HH is a space of functions. We

refer to [Jol10] and [PiTa00] for an analysis of these problems.

Clearly, since HX is a Hilbert space, its inner product naturally defines a norm, given for
ϕ ∈ HX by

||ϕ||HX :=
(
〈ϕ,ϕ〉HX

) 1
2
.

2.2.2 Wiener integral

We define now the stochastic integral of a deterministic function with respect to X. As always,
we put a special focus on the case X = WH , which is the one of interest for us. The definition
of Wiener integral is quite straightforward: the construction of a complete space allows us to
extend the definition of spatially homogeneous Gaussian noise to allow elements of the type
X(ϕ), with ϕ ∈ HX . This can be done by isometric extension of a linear operator with values
in L2(Ω).

Definition 2.7. Let X = {X(ϕ), ϕ ∈ HX} be a spatially homogeneous Gaussian noise on
[0, T ] × R. For any ϕ ∈ HX , we say that X(ϕ) is the Wiener integral of ϕ with respect to X,
and we denote it as ∫ ∞

0

∫
R
ϕ(t, x)X(dt, dx) := X(ϕ). (2.10)

Remark 2.8. Thanks to the linearity of X, the definition satisfies the basic requirement of an
integral, i.e. the linearity with respect to the integrand functions. Clearly this is not sufficient
to justify the fact that we call X(ϕ) an integral. We will go into details now.

The definition of Wiener integral may look artificial, but it has a natural interpretation.
Suppose that for s < t and x < y the function ϕ = 1(s,t]×(x,y] ∈ HX ; then, in order to have a
good definition of integral, one hopes to have∫ ∞

0

∫
R

1(s,t]×(x,y](r, z)X(dr, dz) = X(t, y)−X(t, x)−X(s, y) +X(s, x)

for some 2-dimensional random field X = {X(t, x), (t, x) ∈ [0, T ]× R} which is defined consis-
tently with X = X(ϕ). The idea is to check that 1(0,t]×(0,x] ∈ HX , for every (t, x) ∈ [0, T ]×R and
define the random field X(t, x) = X(1(0,t]×(0,x]). We use the same notation X for the spatially
homogeneous Gaussian noise and for the random field, since there is no risk of confusion.

Let H ∈ (0, 1). When X = WH , it holds that 1(s,t]×(x,y] ∈ HX (see [BJQ15], Remark 2.1),

and thus it is always possible to define the random field {WH(t, x), t ∈ [0, T ], x ∈ R} in the
way we just described.
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The definition of the random field WH(t, x) makes clear why we say that WH behaves like
a sBm in the time variable t and like a fBm of Hurst parameter H ∈ (0, 1) in the space variable
x. Indeed, we have that

E[WH(t, x)WH(s, y)] =cH

∫ ∞
0

∫
R

1[0,t](r)1[0,s](r)F1[0,x](ξ)F1[0,y](ξ)|ξ|1−2Hdξdr

=cH

∫ ∞
0

∫
R

1[0,(t∧s)](r)F1[0,x](ξ)F1[0,y](ξ)|ξ|1−2Hdξdr

=
(∫ t∧s

0
dr
)
cH

∫
R
F1[0,x](ξ)F1[0,y](ξ)|ξ|1−2Hdξ

=
1

2
(t ∧ s)

(
|x|2H + |y|2H − |x− y|2H

)
The last step is a consequence of Proposition 1.14.

Remark 2.9. To define a theory of stochastic integration with respect to a noise X, it is also
possible to start directly from a random field X = X(t, x). In [BGP12], the authors construct,
in such a framework, the space of deterministic integrands starting from elementary functions
of the type 1(s,t]×(x,y], and define the space HX starting from them.

The covariance structure of the spatially homogeneous Gaussian noise becomes an Itô’s type
isometry, now that we interpret X(ϕ) as a Wiener integral. Indeed, we have, for any ϕ ∈ HX

E[X(ϕ)2] =

∫ ∞
0

∫
R
|Fϕ(t, ·)(ξ)|2µ(dξ).

When we consider X = WH (and thus µ = µH), this reads, for every ϕ ∈ HH

E[X(ϕ)2] = cH

∫ ∞
0

∫
R
|Fϕ(t, ·)(ξ)|2|ξ|1−2Hdξ.

The definition of Wiener integral can be extended to the n-dimensional case with the iterated
Wiener integral. We refer to [Nua] for a good reference on the topic. The idea is to integrate
functions that belong to the Hilbert space H⊗nX , for any n > 1. Consider an orthonormal basis
of HX with elements {e1, e2, . . . }. Take an elementary element of H⊗nX of the form

ϕ = ci1,...,inei1⊗̂ . . . ⊗̂ein ,

where ⊗̂ denotes the symmetrized tensor product, defined as

a1 ⊗̂ a2 ⊗̂ · · · ⊗̂ an :=
1

n!

∑
π∈P(n)

aπ(1) ⊗ aπ(2) ⊗ · · · ⊗ aπ(n),

where P(n) is the set of permutations of order n. The set of linear combinations of elementary
elements is dense in H⊗nX . An element of this form can be more conveniently (for our purposes)
written as

ϕ = cj1,...,jme
⊗k1
j1
⊗̂ . . . ⊗̂e⊗kmjm

, (2.11)

where all the j1, . . . jm are different and k1 + · · · + km = n. We define for such an element the
n-th order multiple Wiener integral as

IXn (ϕ) = cj1,...,jmPk1(X(ej1)) · · ·Pkm(X(ejm)), (2.12)

where we denote by Pk the normalized k-th Hermite polynomial, defined as

Pk(x) =
(−1)k

k!
e
x2

2
dk

dxk

(
e−

x2

2

)
,
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where k ≥ 0. The multiple integral is then extended by linearity to linear combinations of
elementary functions of the type

ϕ =
∑
finite

ci1,...,inei1⊗̂ . . . ⊗̂ein .

On this class of functions one has the natural norm induced by the norm || · ||HX :

||ϕ||H⊗nX :=
∑
finite

|ci1,...,in |2,

and it holds
E
[
|IXn (ϕ)|2

]
= n! ||ϕ̃||2H⊗nX

,

where

ϕ̃(t1, x1, . . . , tn, xn) =
1

n!

∑
σ∈P(n)

ϕ(tσ(1), xσ(1), . . . , tσ(n), xσ(n))

denoted the symmetrized version of ϕ, as defined in [Nua]. Thus the integral can be extended
isometrically as an L2(Ω)-limit to the completion of the space of elementary functions which is
exactly the whole space H⊗nX . For a general ϕ ∈ H⊗nX , we have IXn (ϕ) := IXn (ϕ̃).

Moreover, we have that, for any ϕ ∈ H⊗nX ,

E
[
|IXn (ϕ)|2

]
= E

[
|IXn (ϕ̃)|2

]
= n! ||ϕ̃||2H⊗nX

.

For a general element ϕ of H⊗nX , the norm ||ϕ||H⊗nX is given by

||ϕ||H⊗nX =

∫
[0,∞)n

∫
Rn
|Fϕ(t1, ·, t2, ·, . . . , tn, ·)(ξ1, . . . , ξn)|2µ(dξ1) · · ·µ(dξn)dt1 · · · dtn. (2.13)

Here, we still denoted with F the Fourier transform on a function defined on Rn. It is given,
for ξ ∈ Rn and f ∈ L1(Rn), by

F(f)(ξ) :=

∫
Rn
e−i〈ξ,x〉f(x)dx

where we denoted by 〈·, ·〉 the standard inner product on Rn.

2.2.3 Spectral representation of WH

For the moment we defined a general spatially homogeneous Gaussian noise X. In this section
we prove a set of results which are relative to the special case X = WH , that we already defined.
In particular, we will give a useful representation of the iterated Wiener integral with respect
to the noise WH . This representation is the 2-dimensional version of the one of Proposition
1.18, which is a consequence of the representation result for the fBm Proposition 1.14. We will
follow the same steps: first, we define an integral representation for WH , and from this we will
derive a representation result for the Wiener integral with respect to WH .

As we introduced in the previous section, WH = {WH(ϕ), ϕ ∈ HH} is a spatially homoge-
neous Gaussian noise defined on some complete probability space (Ω,F ,P), and characterized
by the covariance structure

E
[
WH(ϕ)WH(ψ)

]
:= cH

∫ ∞
0

∫
R
Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)|ξ|1−2Hdξdt,

where cH is the constant defined in (2.9), which we recall to be

cH =
Γ(2H + 1) sin(πH)

2π
.
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Let us denote in this case the space HWH as HH We also denote the inner product 〈·, ·〉HH
as 〈·, ·〉H and the norm || · ||HH as || · ||H . We define, as usual, the random field WH(t, x) :=
WH(1(0,t]×(0,x]). From now on, with an abuse of notation, we will denote with WH both the
spatially homogeneous Gaussian noise and the random field.

As we saw in the one dimensional case, representations like the one of Proposition 1.14 allow
us to define our family of processes on the same probability space. In the 2-dimensional case,
we will define our family of random fields {WH , H ∈ (0, 1)} using a single complex Gaussian
process W̃ defined of a suitable probability space (Ω,F ,P). We define the following:

Definition 2.10. Let W̃ be the C-valued random measure on B([0,∞) × R) defined as W̃ =
W̃1 + iW̃2, where

i) For all A,B ∈ B([0,∞)× R), we have that

E
[
W̃j(A)W̃j(B)

]
=
|A ∩B|

2
,

for any j = 1, 2, where |A ∩B| denotes the Lebesgue measure of A ∩B.

The form of W̃ implies that for all A ∈ B([0,∞)×R) one has E
[
W̃ (A)

]
= |A|. The measure

W̃ is thus essentially a white noise. Moreover, it is closely related to the measure defined in
Definition 1.13. Indeed, if one defines for every t ∈ [0,∞) the process W̃t(A) := W̃ ([0, t] × A),
it is immediate to notice that, for t fixed, the measure A 7→ W̃t(A) is a modification of the
measure defined in Definition 1.13, whose variance is only multiplied by the constant t.

Proposition 2.11. Let W̃ be the random measure introduced in Definition 2.10 and consider:

W̃H(t, x) := C(H)
1
2

∫ t

0

∫
R

1[0,t](s)F(1[0,x])(y)|y|1/2−HW̃ (ds, dy). (2.14)

Then, W̃H is a Gaussian process which has the same distribution as the random field WH .

Proof. Clearly, being W̃H the integral of a deterministic function with respect to a Gaussian
process, it is a Gaussian process. The fact that it has the same covariance structure as WH

comes from a straightforward application of the standard Itô isometry.

We prove now a representation result for the multiple Wiener integral (2.12) with respect
to WH . Before proving it, we need the following corollary of [BGP12], Theorem 4.3:

Proposition 2.12 (of [BGP12], Theorem 4.3). Every element in the Banach space HH can be
approximated by elementary functions of the form

ϕ(t, x) =
∑
finite

c1(r,s]×(y,z](t, x).

Proof. The result is a direct consequence of [BGP12], Theorem 4.3. Indeed, in that case the
authors showed that every element of the space of predictable processes X = X(t, x)(ω) whose
|| · ||H norm is in L2(Ω) can be approximated by simple processes of the form 1G(ω)1(s,t]1(x,y], for
G measurable. To prove our result, it is sufficient to observe that if we choose a deterministic
element ϕ in their proof, also its approximating sequence ϕn is deterministic. Moreover, the
norm they define on the space of processes ΛX , defined as

ΛX :=
{

[0,∞)× Ω→ S(R) : ϕ is predictable, Fϕt(ω) is a function

for all (ω, t), and E
[ ∫ ∞

0

∫
R
|Fϕt(x)|2dtµX(dx)

]
<∞

}
,
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is equal to the norm || · ||H on HH , whenever we compute it for a deterministic element ϕ.
Indeed, for a ϕ ∈ HH , we have

||ϕ||ΛX := E
[
cH

∫ T

0

∫
R
|Ff(t, ·)(ξ)|2|ξ|1−2Hdξdt

]
= cH

∫ T

0

∫
R
|Ff(t, ·)(ξ)|2|ξ|1−2Hdξdt =: ||ϕ||H .

This two facts conclude the proof.

We have then that we can define the whole family {WH , H ∈ (0, 1)} on the same probability
space. This will allow us to compare directly solutions of SPDEs relative to different values of
H. From now onwards, we will denote WH = W̃H , without risk of confusion.

Remark 2.13. If we denote, for every H ∈ (0, 1), with FHt the filtration generated by
{WH(s, x), s ∈ [0, t], x ∈ R}, we clearly have from (2.14) that FHt ⊂ Ft, where Ft is the
filtration generated by {W̃ (s,A), s ∈ [0, t], A ∈ B(R)}. From now on we will denote with Ft
the filtrations defined here.

Theorem 2.14. Let f ∈ H⊗nH . Denote with IHn (f) the n-th multiple integral with respect to the

noise WH . Let f̂ be the function defined by

f̂(t1, x1, t2, x2, . . . , tn, xn)

= (cH)
n
2F(f(t1, ·, t2, ·, . . . , tn, ·))(x1, . . . , xn)|x1|1/2−H · · · |xn|1/2−H .

Then it holds that
IHn (f) = Ĩn(f̂), (2.15)

where the integral Ĩn is the n-th order Wiener integral with respect to a complex Brownian
motion W̃ . The constant cH is the one given in (2.70)

Proof. We first check that the result is true for the first-order Wiener integral IH1 . Given
ϕ ∈ HH , let

ϕ̃(t, x) := (cH)
1
2F(ϕ(t, ·))(x)|x|1/2−H

We prove that, for ϕ ∈ HH , we have

IH1 (ϕ) = Ĩ1(ϕ̃),

which means∫ T

0

∫
R
ϕ(t, x)WH(dt, dx) = (cH)

1
2

∫ T

0

∫
R
Fϕ(t, ·)(x)|x|1/2−HW̃ (dt, dx).

This is true for step functions of the form ϕel = 1(r,s]×(y,z]. Indeed, for these functions it
holds, thanks to Proposition 2.11 and thanks to the linearity of the integral and of the Fourier
transform,∫ T

0

∫
R
ϕel(t, x)WH(dt, dx) =WH(s, z)−WH(r, z)−WH(s, y) +WH(r, y)

=(cH)
1
2

∫ T

0

∫
R

1(r,s](t)F1(y,z](ξ)|ξ|1/2−HW̃ (dt, dξ).

By Corollary 2.12, we have that the linear combinations of step functions are dense in HH ,
which implies that the first-order identification is true for all ϕ ∈ HH . Indeed, if for any ϕ ∈ HH
we see both integrals∫ T

0

∫
R
ϕ(t, x)WH(dt, dx) and (cH)

1
2

∫ T

0

∫
R
Fϕ(t, ·)(x)|x|1/2−HW̃ (dt, dx)
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as a limit of integrals of step functions in L2(Ω), we see that the norm in which we are taking
the limit (after using Itô isometry) is the same in both cases.

We extend now this correspondence also to the n-th order integral. By definition, the n-th
dimensional Wiener integral with respect to WH of an elementary function f ∈ H⊗nH written in
the form (2.11) is given by

IHn (f) =cj1,...,jmPk1(WH(ej1)) · · ·Pkm(WH(ejm))

=cj1,...,jmPk1

[
Ĩ1

(
(cH)

1
2Fej1(tj1 , ·)(ξj1)|ξj1 |1/2−H

)]
· · · × Pkm

[
Ĩ1

(
(cH)

1
2Fejm(tjm , ·)(ξjm)|ξjm |1/2−H

)]
=Ĩn

[
cj1,...,jm

(
(cH)

1
2Fej1(tj1 , ·)(ξj1)|ξj1 |1/2−H

)⊗k1 ⊗ · · ·
· · · ⊗

(
(cH)

1
2Fejm(tjm , ·)(ξjm)|ξjm |1/2−H

)⊗km]
=Ĩn

[
(cH)

n
2Ff(t1, . . . , tm, ·)(ξ1, . . . , ξn)|ξ1|1/2−H · · · |ξn|1/2−H

]
.

This proves (2.15) for elementary functions. The extension to a general function f ∈ H⊗nH
is straightforward. It holds by definition that

||f ||H⊗nH = ||f̂ ||(L2(R+×R))⊗n .

Then, if fk is a sequence of simple functions converging to f in the norm of H⊗nH it holds

immediately that f̂k → f̂ in L2(R+ ×R), and by the uniqueness of the limit in L2(Ω), we have
that

IHn (f) = Ĩn(f̂),

which is our thesis.

2.2.4 Skorohod stochastic integral

Here we introduce briefly the theory of Skorohod integration with respect to the noise WH . This
techniques work for a more general class of noises, but since we are going to use only briefly this
framework in the following, we think that it is better to restrict directly to the noise WH of our
interest. Here, we will introduce the Skorohod integral using techniques inspired by Malliavin
Calculus. For further details about Malliavin Calculus, or any of the topics mentioned in this
subsection, we refer to [Nua]. We are going to define now only the minimal set of objects and
concepts which permit us to work in this setting in the following.

The idea of Malliavin Calculus is to define a theory of calculus for random variables, defining
for example objects like the derivative of a random variable. Malliavin Calculus also allows to
define a notion of stochastic integral with respect to WH . This notion of integral will be related
to the one defined later in Subsection 2.2.5 by the forthcoming Theorem 2.27.

Let G be the σ-algebra generated by {WH(ϕ), ϕ ∈ HH}. By Theorem 1.1.1 of [Nua], we
have that F ∈ L2(Ω,G,P) can be represented as

F = E[F ] +
∑
n≥1

Fn. (2.16)

Here Fn ∈ HH,n, whereHH,n is the n-th Wiener chaos space associated to WH . The n-th Wiener
chaos space is a space of random variables which has the following property: every Fn ∈ HH,n
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can be represented as IHn (fn), where fn ∈ H⊗nH . This means that for every F ∈ L2(Ω,G,P) we
can rewrite (2.16) as

F = E[F ] +
∑
n≥1

IHn (fn), (2.17)

for some sequence {fn, n ≥ 1} of functions such that fn ∈ H⊗nH . These Wiener spaces are
orthogonal between them, in the sense that if ϕ ∈ HH,n and ψ ∈ HH,m, with m 6= n, then

E
[
IHn (ϕ)IHm (ψ)

]
= 0.

Let now S be the class of random variables F that can be written as

F = f(WH(ϕ1), . . . ,WH(ϕn)), (2.18)

where f ∈ C∞b (Rn) and the ϕj ∈ HH , for every j = 1, . . . , n. For any F ∈ S, we define the
Malliavin derivative of F as the HH -valued random variable DF given by

DF =

n∑
j=1

∂f

∂xj
(WH(ϕ1), . . . ,WH(ϕn))ϕj . (2.19)

If we endow S with the norm ||F ||D1,2 := E[|F |2]
1
2 +E

[
||DF ||2HH

] 1
2
, it turns out that the operator

D can be extended to the completion of S with respect to || · ||D1,2 , which we will denote by D1,2.
We define now the Divergence operator δ, which is the adjoint of D. The divergence operator
is defined on its domain Dom(δ), which is the space of HH -valued random variables such that
u ∈ L2(Ω;HH) and ∣∣∣E[〈DF, u〉H]∣∣∣ ≤ cuE[|F |2]

1
2 , for all F ∈ D1,2,

where the constant c = cu depends on u. Being the adjoint of D the divergence operator δ is
defined for any u ∈ Dom(δ) by the duality relation, holding for every F ∈ D1,2:

E
[
〈DF, u〉H

]
= E[Fδ(u)].

From the duality relation and the fact that for any constant F = c it holds DF = 0, one
can deduce that E[δ(u)] = 0, for every u ∈ Dom(δ). The divergence operator δ has a fruitful
interpretation as a stochastic integral. We will denote, for any u ∈ Dom(δ), the Skorohod
integral of u as ∫ ∞

0

∫
R
u(t, x)WH(δt, δx) := δ(u).

This notion of integral, as it is evident, does not rely on any adaptability condition for the inte-
grand process u. Thus, it is suitable also for studying SPDEs in which it is not possible to define
a natural filtration with respect to which we solve the problem. Anyway, it is also compatible
with Itô’s type definition of integral for adapted processes, as we will see in Subsection 2.2.6.

2.2.5 Itô stochastic integral

We introduce now the theory of stochastic integration with respect to the spatially homogeneous
Gaussian noise X = WH . This time we wish to integrate stochastic processes, and not functions
like in the Wiener integral. There are various approaches in the literature (see for example
[Dal99], [Wal86], [BJQ15], [HHLNT17]); the idea that they have in common is to define the
integral

∫∞
0

∫
R g(t, x)X(dt, dx) for a sufficiently large class of processes and to make it satisfy

a Burkholder’s type estimate. With this two things, it is possible to define a proper solution
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theory for equations like (2.4), for example using fixed point arguments in some suitable Banach
space to show that a solution to (2.4) exists. We outline the standard construction in the general
case of a spatially homogeneous Gaussian noise X, to give an idea of the general construction.
We will then specialize to the case of the noise WH .

We defined WH as a spatially homogeneous Gaussian noise on a complete probability space
(Ω,F ,P), and we saw that it is possible to define a random field, which we still denote as WH ,
by defining WH(t, x) := WH(1[0,t]×[0,x]). This can be done because, for any H ∈ (0, 1), for any
0 ≤ s ≤ t ≤ T , and for any x ≤ y, the function 1(s,t]×[x,y] ∈ HH . We define the natural filtration

on F given by Ft := σ({WH(s, x), s ∈ [0, t], x ∈ R}) ∨ N , where N denotes the sets A ∈ F
with P(A) = 0.

Definition 2.15. We say that g is an elementary process if it is a finite linear combination of
processes of the form

g(t, x, ω) := Y (ω)1(r,s]×(y,z](t, x), (2.20)

for some 0 ≤ r ≤ s ≤ T , for some x ≤ y and for some Fr-measurable random variable Y . We
denote the space of such processes as E .

For a process g of the form (2.20), we define its stochastic integral with respect to WH as
the process (g ·WH)t given by

(g ·WH)t =

∫ t

0

∫
R
g(τ, x)WH(dτ, dx)

:=Y
(
WH(t ∧ s, z)−WH(t ∧ s, y)−WH(t ∧ r, z) +WH(t ∧ r, y)

)
.

(2.21)

If we consider (2.21) for t > s, we can get rid of the minimums appearing and we obtain the
rectangular increment of WH over the rectangle (r, s]× (y, z], thus making the integral notion
a natural one. The definition can be extended to elements of E by linearity.

Remark 2.16. We built the definition of elementary process (2.20) on functions of the type
1(r,s]×(y,z]. This is not the only possible choice. In the classical references [Wal86] and [Dal99],
the authors consider elementary functions of the form

g̃(t, x, ω) = Y (ω)1(r,s]×A(t, x),

where A ∈ B(R) has bounded Lebesgue measure. This framework leads naturally to the concept
of Walsh’s martingale measure; consider a spatially homogeneous Gaussian noise X. Then we
can define a martingale measure as M(t, A) := X(1(0,t]×A), and it gives rise to an integral of
the type ∫ t

0

∫
R
g̃(τ, x)M(dτ, dx) := Y

(
M(t ∧ s,A)−M(t ∧ r,A)

)
These two different approaches are equivalent if both of them are well-defined. Note that the
latter approach fails when we consider the driving noise WH for H ∈ (0, 1

2). Indeed, in [BJQ15],
Appendix C, the authors showed that in that case there exists a bounded Borel set A such that
1(r,s]×A /∈ HH , in the sense that∫ ∞

0

∫
R
|F(1(r,s]×A)(t, ·)(ξ)|2|ξ|1−2Hdξdt =∞.

This is the main reason for which we defined an elementary process of the form (2.20).

Given the definition of integral (2.21), the next step is to extend it to a larger class of
integrand processes. The classical idea is to define an isometry between a suitable space of
integrands and a suitable space of integrals, which allows to extend the integral to a general
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class of integrands (the completion of E with respect to the norm we are using on it) by isometric
extension of the integral operator. We refer to [Dal99] for a general, yet not exhaustive, case.

Following [Dal99] and [BJQ15] we endow E with the norm

||g||0 := E
[
cH

∫ T

0

∫
R
|Fg(t, ·)(ξ)|2|ξ|1−2Hdξdt

]
, (2.22)

and we define P0 as the completion of E with respect to the norm || · ||0. It turns out that the
integral (2.21), with X = WH , is an isometry from the space E to the space of continuous real-
valued martingales {M = M(t), t ∈ [0, T ]}, adapted with respect to Ft, and endowed with the
norm ||M || := E[M2

T ]1/2 (see [BJQ15], page 9). Thus, the map can be extended isometrically
to the whole space P0. We have then that the integral of a process g in P0 is defined, given a
sequence gn → g in P0, as

(g ·WH)t := lim
n→∞

∫ t

0

∫
R
gn(s, x)WH(ds, dx),

where the limit is meant in the space of continuous real-valued martingales M , with the norm
defined above.

We have skipped the details of this construction, and specifically the proof that there is this
isometry between the space of elementary integrands and the space of martingales. This has
been proven in [BGP12] in a general case, and involves the construction of a complex-valued
Walsh martingale measure. We omit the details here, since they would complicate the exposition
and they have few relevance in the following.

An interesting question is to determine which kind of processes belong to P0. This is a
crucial question in order to determine which kind of equations driven by WH we will be able
to solve. We will present now two criteria of integrability, one for H ≥ 1

2 and the other one for
H < 1

2 .

Theorem 2.17 ([DaQu11], Proposition 2.9). Suppose H ∈ [1
2 , 1). Let Γ : [0, T ] × R → R be

a function such that, for all t ∈ (0, T ], Γ(t) is a non-negative function with rapid decrease and
such that its Fourier transform FΓ(t, ·) (computed in S ′(R)) satisfies

cH

∫ T

0

∫
R
|FΓ(t, ·)(ξ)|2|ξ|1−2Hdξdt <∞.

Moreover, we assume that Γ(t, dx)dt defines a non-negative measure such that

sup
t∈[0,T ]

Γ(t,R) <∞.

Let Z : Ω× [0, T ]× R→ R be a predictable stochastic process such that it holds

sup
(t,x)∈[0,T ]×R

E
[
|Z(t, x)|2

]
<∞.

Then, the stochastic process {S = S(t, x) := Z(t, x)Γ(t, x), (t, x) ∈ [0, T ] × R} belongs to P0

and, if Z satisfies, for some p ≥ 2,

sup
(t,x)∈[0,T ]×R

E
[
|Z(t, x)|p

]
<∞,

then we have the following Burkholder-Davis-Gundy inequality

E
[
|(S ·WH)t|p

]
≤ zp(νt)

p
2
−1

∫ t

0
ds
(

sup
x∈R

E
[
|Z(s, x)|p

]) ∫
R
cH |FΓ(s, ·)(ξ)|2|ξ|1−2Hdξ, (2.23)
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where the constant zp is the constant appearing in the classical Burkholder-Davis-Gundy in-
equality for continuous martingales, and νt is given by

νt := cH

∫ t

0
ds

∫
R
|FΓ(s, ·)(ξ)|2|ξ|1−2Hdξ.

Remark 2.18. Theorem 2.17 holds also for a general spectral measure µ, provided that the
measure satisfies the so-called Dalang condition∫

R

1

1 + |ξ|2
µ(dξ) <∞. (2.24)

This is implicitly satisfied for our measure µH , for every H ∈ [1
2 , 1). Indeed, the measure µH

satisfies (2.24) for every H ∈ (0, 1).

Theorem 2.19 ([BJQ15], Theorem 2.9). Suppose H ∈ (0, 1
2). Let S : Ω × [0, T ] × R → R be

a predictable function. Assume that for every (ω, t), S(ω, t, ·) is a tempered function, whose
Fourier transform FS(ω, t, ·) (computed in S ′(R)) is a locally integrable function such that

I(T ) := E
[
cH

∫ T

0

∫
R
|FS(t, ·)(ξ)|2|ξ|1−2Hdξdt

]
<∞.

Then, S ∈ P0 and it holds the isometry property E
[
|(S ·WH)T |2

]
= I(T ). Moreover, we have

the Burkholder-Davis-Gundy inequality

E
[
|(S ·WH)T |p

]
≤ zp(cH)

p
2 E
[ ∫ T

0

∫
R
|FS(t, ·)(ξ)|2|ξ|1−2Hdξdt

] p
2
, (2.25)

where the constant zp is the constant appearing in the classical Burkholder-Davis-Gundy in-
equality for continuous martingales.

Remark 2.20. The two Theorems 2.17 and 2.19 have a similar thesis, i.e. the integrability
for a certain class of predictable processes and a Burkholder-Davis-Gundy inequality for these
processes. But there is an important difference: Theorem 2.17, which is valid when H ≥ 1

2 ,
gives a more flexible type of estimate; indeed, the Fourier transform in the Burkholder inequality
is computed only for the deterministic part Γ of the integrand process S. This quantity can
be often computed explicitly. This is not the case in Theorem 2.19, which works under the
hypothesis H < 1

2 . Indeed, in this case the Fourier transform has to be computed for the whole
integrand S. We will see later how this makes our calculations more involved whenever H < 1

2 .

Theorem 2.19 can be rewritten in an equivalent non-spectral form thanks to the following:

Proposition 2.21 ([BJQ15], Proposition 2.8). Let g : R → R be a tempered function whose
Fourier transform in S ′(R) is a locally integrable function. Then, for any H ∈ (0, 1

2)

cH

∫
R
|Fg(ξ)|2|ξ|1−2Hdξ = CH

∫
R2

|g(x)− g(y)|2|x− y|2H−2dydx, (2.26)

whenever one of the two integrals is finite. The constant CH is given by CH = H(1− 2H)/2.

Remark 2.22. We rewrite the quantities appearing in Theorem 2.19 in an equivalent form as

I(T ) := E
[
CH

∫ T

0

∫
R2

|S(t, x)− S(t, y)|2|x− y|2H−2dydxdt
]
<∞

and

E
[
|(S ·WH)T |p

]
≤ zp(CH)

p
2 E
[ ∫ T

0

∫
R
|S(t, x)− S(t, y)|2|x− y|2H−2dydxdt

] p
2
.

This is consistent with the original version of these estimates which appears in Theorem 2.9 of
[BJQ15].
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2.2.6 Relation between Itô integral and Skorohod integral

As we already mentioned, the integral (S · WH)t defined in Subsection 2.2.5 can be related
to the integral δ(u) defined in the previous Subsection 2.2.4 by the following Theorem 2.27,
which is an extension of Theorem 4.2 of [BJQ17] to the case H ≥ 1

2 . To do this, we need some
preliminaries.

First, let A ∈ B([0,∞)). We define for every element f ∈ H⊗nH the element f1⊗nA ∈ H⊗nH in
the following way: if f is a function, we define it naturally as the function f1⊗nA . If f is a general
element of H⊗nH , we take any sequence {fk, k ∈ N} of functions in H⊗nH such that fk → f in
H⊗nH as k →∞. We define then

f1⊗nA := lim
k→∞

fk1
⊗n
A .

This limit exists; indeed, we have that fk is Cauchy in H⊗nH , and then

||fk1⊗nA − f`1
⊗n
A ||H⊗nH ≤ ||fk − f`||H⊗nH

implies that fk1
⊗n
A is also Cauchy in H⊗nH . The limit clearly does not depend on the chosen

approximating sequence. We recall now some results from [BJQ17] that we will use in the proof.

Lemma 2.23 (Lemma A.1, [BJQ17]). Let F ∈ L2(Ω) with Wiener Chaos expansion given by
F =

∑
n I

H
n (fn), where the fn ∈ H⊗nH are symmetric, and let A ∈ B([0,∞)). Then it holds

E[F |FA] =
∑
n≥0

IHn (fn1⊗nA ).

Proof. The proof is exactly like the one in [BJQ17]. We only observe that if h ∈ H⊗nH is
symmetric, it can be written as the limit of a sequence of symmetric functions, which in turn
can be written as the limit of linear combinations of functions of the type f⊗n, where f ∈ HH
and ||f ||HH = 1.

Lemma 2.24 (Proposition 1.3.3, [Nua]). Let F ∈ D1,2 and u ∈ Dom(δ) such that Fu ∈
L2(Ω;HH). Then, Fu ∈ Dom(δ) and it holds

δ(Fu) = Fδ(u)− 〈DF, u〉H .

Lemma 2.25 (Proposition 1.3.6, [Nua]). Let u ∈ L2(Ω;HH) and {un, n ≥ 1} ⊂ Dom(δ) such

that E
[
||un − u||2HH

]
→ 0 as n → ∞. Suppose that there exists a random variable G ∈ L2(Ω)

such that, for all F ∈ S,

E
[
δ(un)F

]
→ E[GF ].

Then u ∈ Dom(δ) and δ(u) = G.

We now define the contraction ⊗1: let h ∈ H⊗nH . We define, for an element of the canonical
basis of H⊗nH ,

(e1 ⊗ · · · ⊗ en)⊗1 h := (e1 ⊗ · · · ⊗ en−1)〈en, h〉H ,

and we extend it to a generic f ∈ H⊗nH by linearity and density. We have the following lemma:

Lemma 2.26 (Theorem 4.3.8, [Stu04]). Let F =
∑

n I
H
n (fn), with fn ∈ H⊗nH symmetric. Then

F ∈ D1,2 if and only if ∑
n≥1

nn!||fn||2H⊗nH <∞,

and in this case, for every h ∈ HH it holds

〈DF, h〉H =
∑
n≥1

nIHn−1(fn ⊗1 h).
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Theorem 2.27. Let H ∈ [1
4 , 1) and let u = {u(t, x), (t, x) ∈ [0,∞)×R} be a stochastic process

such that, restricted to t ∈ [0, T ], belongs to P0. Then for any t ∈ [0,∞), u1[0,t] ∈ Dom(δ) and
its Skorohod integral coincides with the Itô integral, that is∫ ∞

0

∫
R
u(s, x)1[0,t](s)W

H(δs, δx) =

∫ t

0

∫
R
u(s, x)WH(ds, dx)

Proof. The proof is an adaptation of the one of Theorem 4.2 of [BJQ17]. The only difference is
that here the general element of HH is not a function, since the space HH also contains genuine
distributions for H ≥ 1

2 . Referring to the proof given in the appendix of [BJQ17], we only have
to adapt the proof of Case 1, since the general case can be carried out identically.

Let g = g(s, x, ω) = Y (ω)1[a,b](s)1[u,v](x), where we assume Y to be bounded, Fa = F[0,a]-
measurable, and Y ∈ D1,2. We have to check that g1[0,t] ∈ Dom(δ) and that it holds δ(g1[0,t]) =

(g ·WH)t, which is our thesis for the type of functions g we are considering. Notice first that
g1[0,t] = Y 1[a∧t,b∧t]×[u,v]. Since Y ∈ D1,2 and 1[a∧t,b∧t]×[u,v] ∈ Dom(δ), we can apply Lemma 2.24
to conclude that g1[0,t] ∈ Dom(δ) and

δ(g1[0,t]) = Y δ(1[a∧t,b∧t]×[u,v])− 〈DY, 1[a∧t,b∧t]×[u,v]〉H ,

if the right-hand side belongs to L2(Ω). We have that Y δ(1[a∧t,b∧t]×[u,v]) ∈ L2(Ω), and if we
show that 〈DY, 1[a∧t,b∧t]×[u,v]〉H = 0 we have finished.

We prove it: let us denote h := 1[a∧t,b∧t]×[u,v] to simplify the notation. Since Y is Fa-
measurable, we have

Y = E[Y |Fa] =
∑
n≥0

IHn (gn1⊗n[0,a]),

for some symmetric gn ∈ H⊗nH , and then, thanks to Lemma 2.26 we have that

〈DY, h〉H =
∑
n≥0

IHn (gn1⊗n[0,a] ⊗1 h).

But now we notice that g1⊗n[0,a]⊗1 h = 0, for all g ∈ H⊗nH . Indeed, we show it for g = e⊗n, where
e ∈ HH is a function. We have that

e⊗n1⊗n[0,a] ⊗1 h = e⊗(n−1)1
⊗(n−1)
[0,a] 〈e1[0,a], h〉H ,

but we have that

〈e1[0,a], h〉H =

∫ ∞
0

∫
R
Fe(s, ·)(ξ)1[0,a](s)F1[u,v](ξ)1[a∧t,b∧t](s)dξds = 0.

This can be extended to a generic element in H⊗nH by linearity and density.

The proof is then extended to the general element u1[0,t] ∈ P0, following exactly the same
steps of Theorem 4.2 of [BJQ17].

Remark 2.28. We want to remark that the hypothesis that u ∈ P0 implies (almost by defini-
tion) that u is adapted, so that it makes sense to compare the two integrals with this restriction.
We can say that, when we restrict the Skorohod integral to the class of adapted processes, it
coincides with the Itô integral.
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2.3 Existence and uniqueness of solution

Consider the equation (2.1) driven by WH :

LuH(t, x) = b(uH(t, x)) + σ(uH(t, x))ẆH(t, x), (2.27)

where the operator L is either the wave operator L = ∂2

∂t2
− ∂2

∂x2
or the heat operator L = ∂

∂t−
∂2

∂x2
,

giving rise to

∂2uH

∂t2
(t, x) =

∂2uH

∂x2
(t, x) + b(uH(t, x)) + σ(uH(t, x))ẆH(t, x), (SWE)

and
∂uH

∂t
(t, x) =

∂2uH

∂x2
(t, x) + b(uH(t, x)) + σ(uH(t, x))ẆH(t, x), (SHE)

which will be the two equations that we will study. By a solution to (2.27) we mean a mild
solution, as defined in Definition 2.3. This means that we ask a solution uH to (2.27) to be an
adapted process with respect to the filtration {Ft, t ∈ [0, T ]} defined in Remark 2.13, jointly
measurable and such that for every (t, x) ∈ [0, T ]× R it holds

uH(t, x) = I0(t, x)+

∫ t

0

∫
R
b(uH(s, y))Gt−s(x−y)dy ds+

∫ t

0

∫
R
σ(uH(s, y))Gt−s(x−y)WH(ds, dy),

(2.28)
where G is the fundamental solution associated to L and I0 is the deterministic solution of
the PDE given by Lu = 0, with the same initial conditions that we impose on our stochastic
problem. The explicit form of I0 is given by:

I0(t, x) =
1

2

∫ x+t

x−t
v0(y)dy +

1

2
(u0(x+ t)− u0(x− t))

for the wave equation (where have to impose u0(x) := uH(0, x) and v0(x) := ∂
∂tu

H(0, x)), and
by:

I0(t, x) =

∫
R
Gt(x− y)u0(y)dy

for the heat equation, where we only have to impose u0(x) := uH(0, x). From now on, we will
refer to (2.28) as the general form of our equation, but the reader should keep in mind that,
unless explicitly stated, we are considering both cases of (SWE) and (SHE) at the same time,
with the natural changes on I0 and G.

We will work under 3 different sets of hypotheses, which are relative to the form of the
functions b, σ, and to the initial conditions u0 and v0.

Hypothesis A: [Linear additive case]

We assume that b ≡ 0 and σ ≡ 1. Regarding the initial conditions, we assume

(a) Wave equation: u0 is continuous and v0 ∈ L1
loc(R).

(b) Heat equation: u0 is continuous and bounded.

Hypothesis B: [Semilinear additive case]

We assume that b : R → R is a Lipschitz continuous function, and σ ≡ 1. For the initial
conditions, we assume

(a) Wave equation: u0 and v0 are H-Hölder continuous and bounded.

(b) Heat equation: u0 is H-Hölder continuous and bounded.
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Hypothesis C: [Linear multiplicative case]

We assume that b ≡ 0, and σ(u) = u. The initial conditions are

(a) Wave equation: u0 ≡ η and v0 ≡ 0, for some η ∈ R.

(b) Heat equation: u0 ≡ η, for some η ∈ R.

Let us postpone, for the moment, the discussion about the initial conditions. The need
for different type of initial conditions comes, indeed, from technical reasons, and it does not
have a great interest for us, apart from the fact that we will be trying to use the most general
hypotheses that we can. The specific hypotheses will be discussed in Sections 2.4.3, 2.4.4 and
2.4.5. When proving our main result, we will also have to introduce a slightly modified version
of Hypothesis B, which we define later as Hypothesis B1 (see Section 2.4.4).

Remark 2.29. We explain the motivation of the names: the term linear comes from the fact
that b ≡ 0, and thus the SPDE, if we remove the noise term WH , is a PDE of the form Lu = 0.
We termed semilinear the case in which b 6= 0, consistently with the PDE literature. The
term additive in Hypothesis A and B comes from the fact that the noise WH(t, x) enters into
the equation without any dependence on the current values of the solution u(t, x). On the
other hand, we define as multiplicative the case in which the noise term depends linearly on the
solution uH . In Hypothesis C, the term linear is also relative to the fact that σ(u) = u is a
linear function.

Each of these sets of hypotheses gives rise to different difficulties. We will now discuss each
of these cases, stating an explicit result on existence and uniqueness of a solution for (2.28) in
the specific case.

2.3.1 Linear additive case

In the Linear additive case (Hypothesis A), equation (2.27) reads

LuH(t, x) = ẆH(t, x),

and the mild fomulation (2.28) reads

uH(t, x) = I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy). (2.29)

We observe two things: first, the mild formulation in this case is an explicit formulation, since
the solution uH only appears on the left-hand side. Thus, it is sufficient to see that the right-
hand side is well defined to conclude that a solution exists and is unique. Secondly, the integral
appearing in the right-hand side is a Wiener integral, since G is a deterministic function. Thus,
there is no need to define stochastic integrals with respect to WH to give a solution theory for
this equation under Hypothesis A. This will allow us to have existence and uniqueness for every
H ∈ (0, 1). Conditions (a) and (b) in Hypothesis A easily imply that there exists a unique
and continuous solution I0 : [0, T ] × R → R of the deterministic associated problem LuH = 0.
Summarizing, it holds the following basic result

Theorem 2.30. Let H ∈ (0, 1) and suppose we are under Hypothesis A. For every T > 0 there
exists a unique solution uH = {uH(t, x), (t, x) ∈ [0, T ] × R} of equation (2.29) Moreover, the
random field uH admits a modification with continuous sample paths.

Proof. To show the existence and uniqueness of a solution, it is sufficient to observe that the
Wiener integral appearing in (2.29) is well-defined and that the solution of the deterministic
equation I0 exists and is unique under our current hypothesis. The first fact is an immediate
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consequence of Lemma 2.46, which is stated later, while the second relies on the results in
Section 4 of [DaQu11].

We are only left to prove that the solution uH has a modification with continuous paths.
Indeed, since I0 is deterministic and continuous, we check that the stochastic convolution
ũH(t, x) := uH(t, x)− I0(t, x) admits a continuous modification. This is a direct consequence of
Step 1 in the proof of Theorem 2.45 in Section 2.4.3. More precisely, for any p ≥ 2, there exists
a constant C (depending only on p) such that, for all t, t′ ∈ [0, T ] and x, x′ ∈ R, it holds

E
[
|ũH(t, x)− ũH(t′, x′)|p

]
≤ C

{
|t− t′|αp + |x− x′|pH

}
,

where α = H for the wave equation and α = H
2 for the heat equation. An application of

Kolmogorov’s continuity criterion concludes the proof.

Remark 2.31. In the case of the heat equation, the assumptions of Theorem 2.30 indeed imply
that, for all p ≥ 1,

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
<∞.

For the wave equation, this property can be obtained by slightly strengthening the hypotheses
of u0 and v0, e.g. assuming that they are bounded functions (see [DaQu11], Lemma 4.2).

Remark 2.32. The proof of Theorem 2.30 actually implies that the stochastic convolution
in equation (2.29) has a modification which is (locally) β1-Hölder continuous in time for any
β1 ∈ (0, α), with α as before, and (locally) β2-Hölder continuous in space for any β2 ∈ (0, H).

2.3.2 Semilinear additive case

In the semilinear additive case (Hypothesis B), the formal equation (2.27) reads

LuH(t, x) = b(uH(t, x)) + ẆH(t, x),

and the mild formulation (2.28) is given by

uH(t, x) = I0(t, x)+

∫ t

0

∫
R
Gt−s(x−y)b(uH(s, y))dy ds+

∫ t

0

∫
R
Gt−s(x−y)WH(ds, dy). (2.30)

In this case, the integral equation is an implicit equation, but still there is no genuine stochastic
integral appearing. This allows us to prove existence and uniqueness the equation for every
H ∈ (0, 1). Our result about existence and uniqueness for (2.30) is a special case of Theorem
13 of [Dal99]. In that reference, the author considers only the case H ≥ 1

2 , with a null initial
condition, while we use it with the general initial conditions given in Hypothesis B. For the sake
of completeness, we give a complete proof of the result in our setting.

Theorem 2.33. Let H ∈ (0, 1), and assume we are in the setting of Hypothesis B. Let p ≥ 2
and T > 0. Then, equation (2.30) has a unique solution uH in the space of L2(Ω)-continuous
and adapted stochastic processes satisfying

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
<∞.

Proof. We follow similar arguments as those used in [Dal99]. We split the proof in four parts.

Step 1: We define the following Picard iteration scheme. For n = 0, we set

uH0 (t, x) := I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy), (2.31)
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and for n ≥ 1 we define

uHn (t, x) := uH0 (t, x) +

∫ t

0

∫
R
Gt−s(x− y)b(uHn−1(s, y))dy ds. (2.32)

Clearly, the process uH0 is adapted and, by step 1 in Section 2.4.4, it is L2(Ω)-continuous.
Then, uH0 admits a jointly measurable modification (cf. [BQS18], Proposition B.1), which will
be denoted in the same way.

Owing to Lemma 2.35, we obtain that, for every n ≥ 0, the Picard iteration uHn is L2(Ω)-
continuous, and thus has a jointly measurable modification. Moreover, by Lemma 2.36 below,
uHn is uniformly bounded in Lp(Ω), i.e.

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)|p

]
<∞.

The above two facts imply that uHn is well-defined, for all n ≥ 0. On the other hand, it is clear
that any Picard iteration defines an adapted process.

Step 2: We prove that the Picard iteration scheme converges in the space of L2(Ω)-
continuous, adapted and Lp(Ω)-uniformly bounded processes, which is a complete normed space
when endowed with the norm

||uH ||p = sup
(t,x)∈[0,T ]×R

(
E
[
|uH(t, x)|p

])1/p
.

Indeed, it can be seen as the closed subset formed by adapted process of the space

L∞([0, T ]× R;Lp(Ω)),

which is a Banach space for any p ≥ 2.
Then, it is sufficient to show that the sequence of Picard iterations is Cauchy with respect

to || · ||p to infer the existence of a limit.
We use that b is Lipschitz and Minkowski inequality for integrals to obtain(

E
[
|uHn+1(t, x)− uHn (t, x)|p

])1/p

=
(

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)[b(uHn (s, y))− b(uHn−1(s, y))]dy ds

∣∣∣p])1/p

≤ C
(

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)|uHn (s, y)− uHn−1(s, y)|dy ds

∣∣∣p])1/p

≤ C
∫ t

0

∫
R

(
E
[
Gt−s(x− y)p|uHn (s, y)− uHn−1(s, y)|p

])1/p
dy ds

≤ C
∫ t

0

∫
R
Gt−s(x− y) sup

y∈R,
s′∈[0,s]

(
E
[
|uHn (s′, y)− uHn−1(s′, y)|p

])1/p
dy ds

= C

∫ t

0
sup
y∈R,
s′∈[0,s]

(
E
[
|uHn (s′, y)− uHn−1(s′, y)|p

])1/p
ds.

This inequality implies that

sup
x∈R,
s∈[0,t]

(
E
[
|uHn+1(s, x)− uHn (s, x)|p

])1/p
≤ C

∫ t

0
sup
y∈R,
s′∈[0,s]

(
E
[
|uHn (s′, y)− uHn−1(s′, y)|p

])1/p
ds
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If we define

fn(t) := sup
x∈R,
s∈[0,t]

(
E
[
|uHn+1(s, x)− uHn (s, x)|p

])1/p
,

we have that

fn(t) ≤ C
∫ t

0
fn−1(s)ds.

Thanks to Lemma 2.36, we have that f0 is a bounded function on [0, T ], and thus integrable.
Then, by Grönwall lemma, we can conclude that {uHn }n≥0 defines a Cauchy sequence in the
underlying space, and therefore it converges to a limit uH , namely

lim
n→∞

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)− uH(t, x)|p

]
= 0.

Since any uHn is L2(Ω)-continuous and adapted, uH has the same properties. In particular,
L2(Ω)-continuity implies the existence of a joint-measurable version of uH .

Step 3: We check that the process uH is a solution of (2.30). To do this, we take n → ∞
with respect to the uniform Lp(Ω)-norm in the expression

uHn+1(t, x) = uH0 (t, x) +

∫ t

0

∫
R
Gt−s(x− y)b(uHn (s, y))dy ds.

The left-hand side, by its definition, converges to uH , while for the non-constant (with respect
to n) part of the right-hand side, we argue as follows:(

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)(b(uHn (s, y))− b(uH(s, y)))dy ds

∣∣∣p])1/p

≤ C
(

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)|uHn (s, y)− uH(s, y)|dy ds

∣∣∣p])1/p

≤ C
∫ t

0

∫
R
Gt−s(x− y)

(
E
[
|uHn (s, y)− uH(s, y)|p

])1/p
dy ds

≤ C
∫ t

0
sup

(s,y)∈[0,T ]×R

(
E
[
|uHn (s, y)− uH(s, y)|p

])1/p
ds

≤ C sup
(s,y)∈[0,T ]×R

(
E
[
|uHn (s, y)− uH(s, y)|p

])1/p
.

We note that the latter term converges to zero as n → ∞. Thus, we have that uH satisfies
(2.30).

Step 4: Uniqueness can be checked by using analogous arguments as those used in the
previous steps.

We have the following property of the sample paths of the solution uH .

Theorem 2.34. Let p ≥ 2. Assume that Hypothesis B is fulfilled. Let uH be the solution of
(2.30). Then, for any t, t′ ∈ [0, T ] and x, x′ ∈ R such that |t′ − t| ≤ 1 and |x′ − x| ≤ 1, the
following inequalities hold true:

sup
x∈R

E
[
|uH(t′, x)− uH(t, x)|p

]
≤ Cp|t′ − t|γp (2.33)

and
sup
t∈[0,T ]

E
[
|uH(t, x′)− uH(t, x)|p

]
≤ Cp|x′ − x|Hp, (2.34)
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where γ = H for the wave equation and γ = H
2 for the heat equation. Hence, the process uH has

a modification whose trajectories are almost surely γ′-Hölder continuous in time, for all γ′ < γ,
and H ′-Hölder continuous in space for all H ′ < H.

Proof. The bounds (2.33) and (2.34) are an easy corollary of the stronger results obtained in
Step 1 of the proof of Theorem 2.45 under Hypothesis B1, given in Section 2.4.4. Indeed, we
proved the same kind of estimates, but uniformly with respect to the Hurst index H, when
restricted on a compact set H ∈ [a, b] ⊂ (0, 1). Here, we need to obtain (2.33) and (2.34) only
for a fixed H ∈ (0, 1).

We conclude this part by stating and proving the two lemmas that we used in step 1 of the
proof of Theorem 2.33 above.

Lemma 2.35. For each n ≥ 0, the process uHn defined by (2.31) and (2.32) satisfies the follow-
ing. There exists a constant C = C(n,H) such that, for any t ∈ [0, T ] and h ∈ R with t+h ≤ T ,
it holds

sup
x∈R

E
[
|uHn (t+ h, x)− uHn (t, x)|2

]
≤

{
Chmin(2H,1), wave equation,

ChH , heat equation.
(2.35)

and, for any x ∈ R and h ∈ R with |h| < 1,

sup
t∈[0,T ]

E
[
|uHn (t, x+ h)− uHn (t, x)|2

]
≤ Ch2H . (2.36)

In particular, the process uHn is L2(Ω)-continuous.

Proof. We proceed by induction. In the case n = 0, first we study the time increments. We
focus on the right continuity. The computations for the left continuity are analogous. We have

E
[
|uH0 (t+ h, x)− uH0 (t, x)|2

]
≤ 2(A1 +A2),

where

A1 = |I0(t+ h, x)− I0(t, x)|2

A2 = E
[∣∣∣ ∫ t

0

∫
R

[Gt+h−s(x− y)−Gt−s(x− y)]WH(ds, dy)

+

∫ t+h

t

∫
R
Gt+h−s(x− y)WH(ds, dy)

∣∣∣2].
In Theorem 3.7 of [BJQ15], it is shown that

A1 ≤

{
Ch2H for the wave equation,

ChH for the heat equation.

Concerning the term A2, we have

A2 ≤ 2(A2,1 +A2,2),

where

A2,1 = E
[∣∣∣ ∫ t

0

∫
R

[Gt+h−s(x− y)−Gt−s(x− y)]WH(ds, dy)
∣∣∣2],

A2,2 = E
[∣∣∣ ∫ t+h

t

∫
R
Gt+h−s(x− y)WH(ds, dy)

∣∣∣2].
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These terms have been studied in the proof of Theorem 2.45 in the linear additive case (see
Section 2.4.3) concretely A2,1 corresponds to term J1 in that theorem and term A2,2 corresponds
to I1. So,

A2,1 ≤

{
Ch1+2H , for the wave equation,

Ch
1
2

+H , for the heat equation,

and

A2,2 ≤

{
Ch1+2H , for the wave equation,

Ch
1
2

+H , for the heat equation.

Putting together the above estimates, we obtain the validity of (2.35) for n = 0.
Regarding the space increments, we have, for any h ∈ R with |h| < 1,

E
[
|uH0 (t, x+ h)− uH0 (t, x)|2

]
≤ 2(B1 +B2),

where

B1 = |I0(t, x+ h)− I0(t, x)|2,

B2 = E
[∣∣∣ ∫ t

0

∫
R

[Gt−s(x+ h− y)−Gt−s(x− y)]WH(ds, dy)
∣∣∣2].

As before, by [BJQ15], Theorem 3.7, we have

B1 ≤ Ch2H

for both heat and wave equations. The term B2 corresponds to the term J2 in the proof of
Theorem 2.45 in the linear additive case (again, we refer to Section 2.4.3). Hence

B2 ≤ C|h|1+2H .

So, we have proved (2.36) for n = 0.

We suppose now by induction hypothesis that uHn satisfies (2.35) and (2.36). Let us compute
the time increments of uHn+1, for 0 < h << 1:

E
[
|uHn+1(t+ h, x)−uHn+1(t, x)|2

]
≤ 3(D1 +D2 +D3),

where

D1 = E
[
|uH0 (t+ h, x)− uH0 (t, x)|2

]
,

D2 = E
[( ∫ t

0

∫
R
Gs(y)|b(uHn (t+ h− s, x− y))− b(uHn (t− s, y)| dy ds

)2]
,

D3 = E
[( ∫ t+h

t

∫
R
Gs(y)|b(un(t+ h− s, x− y))| dy ds

)2]
.

We already showed that D1 is bounded as the right hand side of (2.35), so we only need to
handle D2 and D3. As in Lemma 19 of [Dal99], first we compute D2. Namely, using that b is
Lipschitz and applying Cauchy-Schwarz inequality and Fubini theorem, we have

D2 ≤ C
(∫ t

0

∫
R
Gs(y)dy ds

)
E
[ ∫ t

0

∫
R
Gs(y)|uHn (t+ h− s, x− y)− uHn (t− s, x− y)|2 dy ds

]
≤ C E

[ ∫ t

0

∫
R
Gs(y)|uHn (t+ h− s, x− y)− uHn (t− s, x− y)|2 dy ds

]
= C

∫ t

0

∫
R
Gs(y)E

[
|uHn (t+ h− s, x− y)− uHn (t− s, x− y)|2

]
dy ds

≤

{
Ch2H , wave equation,

ChH , heat equation.
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Notice that in the last inequality we used the induction hypothesis.
Regarding D3, we have

D3 ≤ C
∫ t+h

t

∫
R

(
1 + E

[
|uHn (t+ h− s, x− y)|2

])
Gs(y)dy ds.

The uniform boundedness in L2(Ω) of uHn (by Lemma 2.36) gives that

D3 ≤ C
∫ t+h

t

∫
R
Gs(y)dy ds ≤ Ch,

for both wave and heat equations. Thus, taking into account the above estimates for J1, J2 and
J3, we obtain that uHn+1 satisfies (2.35).

We are left to deal with the spatial increments of uHn+1. Indeed, we have

E
[
|uHn+1(t, x+ h)− uHn+1(t, x)|2

]
≤ 2(K1 +K2),

where

K1 = E
[
|uH0 (t, x+ h)− uH0 (t, x)|2

]
,

K2 = E
[( ∫ t

0

∫
R
|b(uHn (t− s, x+ h− y))− b(uHn (t− s, x− y))|Gs(y)dy ds

)2]
.

The term K1 has already been studied, and K2 can be treated as the term J2, obtaining that
K2 ≤ C|h|2H . So we can infer that (2.36) is fulfilled for uHn+1.

Lemma 2.36. Let p ≥ 2 and [a, b] ⊂ (0, 1). Let uHn , n ≥ 0, be the Picard iteration scheme
defined in (2.31) and (2.32). Then,

sup
n≥0

sup
H∈[a,b]

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)|p

]
<∞.

Proof. First, we have

E
[
|uH0 (t, x)|p

]
≤ Cp

(
|I0(t, x)|p + E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy)

∣∣∣p]).
By [DaQu11], Lemma 4.2, we have that

sup
(t,x)∈[0,T ]×R

|I0(t, x)| <∞,

and this is uniform in H, since we are considering the same initial conditions for every H.
Regarding the stochastic term, arguing as in (2.45) and applying Lemma 2.46, we get

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy)

∣∣∣p] = zpc
p/2
H

[ ∫ t

0

∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ ds

]p/2
≤

Cp
(
t1+2H

)p/2
, wave equation,

Cp

(
tH
)p/2

, heat equation.

The last inequality comes from an estimate essentially identical to the one already computed
in (2.46). All above constants which are dependent on H can be uniformly bounded, provided
that H is in the compact interval [a, b] ⊂ (0, 1). The above considerations yield

sup
H∈[a,b]

sup
(t,x)∈[0,T ]×R

E
[
|uH0 (t, x)|p

]
<∞.
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Next, owing to (2.32) we can infer that

E
[
|uHn+1(t, x)|p

]
≤ C

(
1 + E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)b(uHn (s, y))dy ds

∣∣∣p]).
If we apply Hölder inequality, we obtain

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)b(uHn (s, y))dy ds

∣∣∣p]
≤ CE

[ ∫ t

0

∫
R
Gt−s(x− y)

(
1 + |uHn (s, y))|p

)
dy ds

]
= C1 + C2

∫ t

0

∫
R
Gt−s(x− y)E

[
|uHn (s, y))|p

]
dy ds

≤ C1 + C2

∫ t

0

∫
R

sup
H∈[a,b]

sup
(s′,y)∈[0,s]×R

E
[
|uHn (s′, y))|p

]
Gt−s(x− y)dy ds

≤ C1 + C2

∫ t

0
sup

H∈[a,b]
sup

(s′,y)∈[0,s]×R
E
[
|uHn (s′, y))|p

]
ds.

(2.37)

The constants appearing in the previous calculations are clearly independent of H. Then, we
have

sup
H∈[a,b]

sup
(t′,y)∈[0,t]×R

E
[
|uHn+1(t′, y)|p

]
≤ C1 + C2

∫ t

0
sup

H∈[a,b]
sup

(s′,y)∈[0,s]×R
E
[
|uHn (s′, y))|p

]
ds.

We conclude the proof by applying Grönwall lemma.

2.3.3 Linear multiplicative case

We move now to the linear multiplicative case (Hypothesis C). In this case, the hypothesis that
we impose implies that I0(t, x) = η, for all (t, x) ∈ [0, T ] × R. The formal equation (2.27) has
the form

LuH(t, x) = uH(t, x)ẆH(t, x),

and the mild formulation (2.28) reads

uH(t, x) = η +

∫ t

0

∫
R
Gt−s(x− y)uH(s, y)WH(ds, dy). (2.38)

In this case, the integral appearing in (2.38) is a genuine stochastic integral, and for the moment
we will consider the Itô’s type integral, i.e. the one defined in Section 2.2.5. The solution theory
for equations of this form has been developed in [Dal99] and [DaQu11] for the case H ∈ (1

2 , 1)
and in [BJQ15] and [HHLNT17] for H ∈ (1

4 ,
1
2). We will see later in Theorem 2.42 how this

notion of solution relates to the Skorohod notion of solution, when the integral in (2.38) is
interpreted in the sense of Skorohod, as defined in Section 2.2.4.

The fact that the integral in (2.38) is really a stochastic integral does not allow us to solve
the equation when H < 1

4 . We report here the relevant existence and uniqueness results:

Theorem 2.37 ([DaQu11], Theorem 4.3). Let H ∈ [1
2 , 1). Consider the setting of Hypothesis

C. Then, there exists a unique mild solution uH to equation (2.38). Moreover, the solution uH

is L2(Ω)-continuous and satisfies, for every p ≥ 1,

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
<∞.
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Remark 2.38. In [DaQu11], the result is stated for a general second-order differential operator
L and for a general noise X. The case of the heat and wave operators fall under their hypotheses,
and so does the noise WH , provided that H ≥ 1

2 . This result, indeed, holds also for the more
general form of equation

LuH(t, x) = b(uH(t, x)) + σ(uH(t, x))ẆH(t, x),

whenever b, σ are Lipschitz continuous functions. We will not consider this more general setting,
as we prefer to study the same equation for all admissible values of H.

Theorem 2.39 ([BJQ15], Theorem 1.1). Let H ∈ (1
4 ,

1
2). Under Hypothesis C, there exists a

unique mild solution uH of (2.38). Moreover, the solution uH is L2(Ω)-continuous and satisfies,
for every p ≥ 2,

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
<∞ (2.39)

and

sup
(t,x)∈[0,T ]×R

∫ T

0

∫
R2

G2
t−s(x− y)

E
[
|uH(s, y)− uH(s, z)|p

] 2
p

|y − z|2−2H
dydzds <∞. (2.40)

We see that in the case H ∈ (1
4 ,

1
2) the solution uH satisfies, in addition to (2.39) the further

constraint (2.40). This comes from the fact that, when H ∈ (1
4 ,

1
2), we have to look for a solution

of (2.38) in the space of L2(Ω)-continuous, adapted and jointly measurable processes endowed
with a Sobolev’s type norm which includes a term of the form (2.40).

For the moment, we have not said anything about the path continuity of the solutions. As
in the linear additive and the semilinear additive cases, we have that the paths of uH are almost
surely H ′-Hölder continuous in space, for every H ′ < H for both wave and heat equation. In
the time variable, we have that the solution uH is almost surely H′

2 -Hölder continuous, for every
H ′ < H in the heat equation case, and H ′-Hölder continuous, for every H ′ < H, in the wave
equation case. This has been proved in [BJQ16] in the case H ∈ (1

4 ,
1
2). For the case H ∈ [1

2 , 1),
we refer to [SaSa00, SaSa02] and to [Wal86]. Moreover, like in the semilinear additive case
this result can be shown as an immediate consequence of the stronger results Proposition 2.61
and Propostion 2.68 proven in Section 2.4.5. We state a general result here for the sake of
completeness.

Theorem 2.40. Let H ∈ (1
4 , 1). Then, the solution uH to (2.38) satisfies the same conditions

of Theorem 2.34, i.e.

sup
x∈R

E
[
|uH(t′, x)− uH(t, x)|p

]
≤ Cp|t′ − t|γp

and
sup
t∈[0,T ]

E
[
|uH(t, x′)− uH(t, x)|p

]
≤ Cp|x′ − x|Hp,

where γ = H for the wave equation and γ = H
2 for the heat equation. Thus, the process uH has

a modification whose trajectories are almost surely γ′-Hölder continuous in time, for all γ′ < γ,
and H ′-Hölder continuous in space for all H ′ < H.

Proof. As in Theorem 2.34, the estimates we need are a consequence of the stronger result
obtained in Proposition 2.61 and Proposition 2.68 in Section 2.4.5. Indeed, in that case we
proved the same estimates, but uniformly with respect to H.

We give now an equivalent result for the mild equation (2.38), where the stochastic integral
is interpreted in the Skorohod sense. We have that the equation in this case reads:

uH(t, x) = η +

∫ ∞
0

∫
R

1[0,t](s)Gt−s(x− y)uH(s, y)WH(δs, δy). (2.41)
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We say in this case that u is a Skorohod mild solution of (2.41) if it is a process adapted with
respect to {Ft, t ∈ [0,∞)} which satisfies for almost every (t, x) ∈ [0, T ] × R equation (2.41).
We have the following

Theorem 2.41 ([BJQ17], [HHLNT17]). Let H ∈ (1
4 , 1) and T > 0. Equation (2.41) has a

unique adapted solution.

Proof. This result has been already proved in [BJQ17], Theorem 4.3 for H ∈ (1
4 ,

1
2) in the case of

wave equation. In page 49 of [HHLNT17], the authors notice that this is true also in the case of
heat equation, always under the constraint H ∈ (1

4 ,
1
2). We can extend it to the case H ∈ [1

2 , 1)
thanks to Theorem 2.27. Indeed, Theorem 2.27 shows that Itô integral and Skorohod Integral
coincide, and this implies immediately that the existence and uniqueness of a mild solution in
the Itô sense implies the existence and uniqueness of a solution in the Skorohod sense.

We are now ready to prove the extension of Theorem 4.3 of [BJQ17] that is of our interest.

Theorem 2.42. Let H ∈ (1
4 , 1) and let uH be the mild solution to (2.38) in the Itô sense.

Let ũH be the mild solution to (2.41) in the Skorohod sense. Then, the two solutions coincide.
Moreover, the Picard iterations defined for m ≥ 0 by

uH0 (t, x) :=I0(t, x)

uHm+1(t, x) :=I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)uHm(s, y)WH(ds, dy)

(2.42)

satisfy (up to a predictable modification)

uHm(t, x) =

m∑
j=0

IHj (gj(·, t, x)),

where IHj is the j-th multiple Wiener integral with respect to WH and gj is given by

gn(t1, x1, t2, x2, . . . , tn, xn) := Gt−tn(x− xn) · · ·Gt2−t1(x2 − x1)× η1{0<t1<···<tn<t}. (2.43)

Proof. The result has been already proven in Theorem 4.3 of [BJQ17] for the wave equation in
the case H < 1

2 . We are extending it to the case of the heat equation, and for H ≥ 1
2 .

We make use of Theorem 2.27, that we extended to hold under our current hypotheses. The
remainder of the proof of this result can be carried out using exactly the same argument used
in Theorem 4.3 of [BJQ17]. The argument translate without modifications to include the heat
equation case, and the case H ≥ 1

2 .

2.4 Weak continuity with respect to H

In this section we will state the main problem of our interest, that is the continuity of the
solution uH of (2.28) with respect to H.

Let H ∈ (0, 1) and let {WH = WH(t, x), (t, x) ∈ [0, T ]× R} be the random field defined in
Proposition 2.11. We recall that

E
[
WH(t, x)WH(s, y)

]
=

1

2
(t ∧ s)

(
|x|2H + |y|2H − |x− y|2H

)
,

so that it makes sense to say that WH is a sBm in the time variable and a fBm of Hurst
parameter H ∈ (0, 1) in the space variable.
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We saw in the previous sections under which hypothesis there exists a unique mild solution
(2.4) of a SPDE (2.1) driven by X = WH .

We state informally the main problem of our interest: let uH be a solution of (2.4) with
X = WH ,

LuH(t, x) = b(uH(t, x)) + σ(uH(t, x))ẆH(t, x).

Is it true that uH → uH0 , whenever H → H0? This is an analogous problem to the one we
considered in Chapter 3, but in a 2-dimensional setting. We will give in Theorem 2.45 a positive
answer to this question, where the convergence will be meant in the distributional sense.

2.4.1 Introduction

In any of the three settings (Hypothesis A, B, and C), consider equation (2.1) driven by WH

in its mild form (2.28), which we recall here

uH(t, x) = I0(t, x)+

∫ t

0

∫
R
b(uH(s, y))Gt−s(x− y)dy ds

+

∫ t

0

∫
R
σ(uH(s, y))Gt−s(x− y)WH(ds, dy).

We saw that for all sets of hypotheses A, B, C we have a result of existence and uniqueness for
uH . In the following, we have to slightly strengthen Hypothesis B. We introduce:

Hypothesis B1: [Semilinear Additive Case – Weak convergence]

We assume that b : R → R is a Lipschitz continuous function, and σ ≡ 1. Let H0 ∈ (0, 1)
and assume {Hn, n ∈ N} is such that Hn → H0 as n → ∞. Fix any α > H0; without loss of
generality, we can assume Hn ≤ α for every n ∈ N. For the initial conditions, we assume:

(a) Wave equation: u0 and v0 are α-Hölder continuous and bounded.

(b) Heat equation: u0 is α-Hölder continuous and bounded.

We observe that, if we fix a single n ∈ N and we consider H = Hn, from the point of
view of the regularity of the initial conditions Hypothesis B1 is strictly more restrictive that
Hypothesis B. So all the results we obtained about existence and uniqueness of a mild solution
under Hypothesis B still hold under Hypothesis B1.

The range of values of H for which such a solution exists depends on the hypotheses that
we are considering. Under Hypothesis A and B1, we have that a solution exists, and has
almost surely continuous paths, for every H ∈ (0, 1). Under Hypothesis C, the solution exists
(and again has a.s. continuous paths) for every H ∈ (1

4 , 1). Indeed, speaking about the path
regularity of the solutions, we know even more, namely that the paths are almost surely Hölder
continuous, but for our purposes it is sufficient to exploit their bare continuity.

The fact that the solution uH has almost surely continuous paths on [0, T ]×R means that,
for every set of hypotheses, the solution uH induce as a probability measure on C([0, T ] × R).
We endow the space C([0, T ] × R) with the metric of uniform convergence on compact sets.
Its topology is defined as follows: we have that {fn, n ∈ N} ⊂ C([0, T ] × R) converges to
f ∈ C([0, T ] × R) as n → ∞ if and only if, given any compact set K ⊂ [0, T ] × R, we have
that fn → f uniformly on K. It is not immediate to show that this topology is metrizable. A
reference for this fact can be found in page 68 of [McNt].

We recall also the concept of weak convergence (often named convergence in distribution, or
convergence in law, in the probabilistic setting).

48



Definition 2.43. Let {Pn, n ∈ N} be a sequence of probability measures on some metric space
(S,S), where S is the σ-algebra generated by Borel sets of S. We say that Pn converges weakly
to P (or, equivalently, converges in distribution) on S if for any bounded, continuous function
f : S → R one has

Pn(f) :=

∫
S
fdPn

n→∞−−−→ P (f) :=

∫
S
fdP,

and we denote it with Pn
d→ P .

Remark 2.44. With an abuse of notation, we will often speak about the weak convergence of
sequences of S-valued random elements Xn, instead of the probability distributions PXn that

they induce on S. In that case, by Xn
d−→ X we will mean PXn

d−→ PX .

We are ready to state the main result of this chapter

Theorem 2.45 ([GJQ20], [GJQ19]). Consider the SPDE (2.1) driven by X = WH , where L
is either the heat operator or the wave operator. Fix any set of hypotheses: its mild formula-
tion is given then by (2.28), which translates to either (2.29), (2.30) or (2.38) respectively for
Hypothesis A, B1 or C. Furthermore:

i) Under Hypothesis A or B1, let H0 ∈ (0, 1) and suppose {Hn, n ∈ N} ⊂ (0, 1) such that
Hn

n→∞−−−→ H0.

i’) Under Hypothesis C, let H0 ∈ (1
4 , 1) and suppose {Hn, n ∈ N} ⊂ (1

4 , 1) such that Hn
n→∞−−−→

H0.

Then, it holds that uHn
d−→ uH0 on C([0, T ]× R), as n→∞.

2.4.2 Auxiliary results

In the proof of the main result of the present chapter (Theorem 2.45) we need some technical
results. We start with 4 lemmas, proved in [BJQ15], which provide explicit estimates, depending
on H, of the norm in the space L2(R;µH) of the Fourier transforms of the fundamental solutions
of the deterministic wave and heat equations. We recall that, respectively for the wave equation
and for the heat equation, we have:

FGt(ξ) =
sin(t|ξ|)
|ξ|

and FGt(ξ) = exp
(−tξ2

2

)
, t > 0, ξ ∈ R. (2.44)

In the following three lemmas, we will denote either one of these two functions by FGt(ξ). We
recall that the spatial spectral measure is given by µH(dξ) = cH |ξ|1−2Hdξ (see (2.9)).

Lemma 2.46 ([BJQ15], Lemma 3.1). Let T > 0. Then, the integral

AT (α) :=

∫ T

0

∫
R
|FGt(ξ)|2|ξ|α dξ dt

converges if and only if α ∈ (−1, 1). In this case, it holds:

AT (α) =


21−αCα

1

2− α
T 2−α for the wave equation,

2

1− α
Γ
(α+ 1

2

)
T (1−α)/2 for the heat equation,

where the constant Cα is given by

Cα =


Γ(α)

1− α
sin(πα/2), α ∈ (−1, 1) \ {0},

π

2
, α = 0.
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Lemma 2.47 ([BJQ15], Lemma 3.4). Let T > 0 and α ∈ (−1, 1). Then, for any h > 0, it
holds: ∫ T

0

∫
R

(1− cos(ξh)) |FGt(ξ)|2|ξ|α dξ dt ≤

{
C|h|1−α for the heat equation,

CT |h|1−α for the wave equation,

where C =
∫
R(1− cos η)|η|α−2dη.

Lemma 2.48 ([BJQ15], Lemma 3.5). Let T > 0 and α ∈ (−1, 1). Then, for any h > 0, it
holds: ∫ T

0

∫
R
|FGt+h(ξ)−FGt(ξ)|2|ξ|α dξ dt ≤

{
Cα|h|(1−α)/2 for the heat equation,

CαT |h|1−α for the wave equation,

where

Cα =

∫
R

(1− e−η2/2)2

|η|2−α
dη for the heat equation, and

Cα = 4

∫
R

min(1, |η|2)

|η|2−α
dη for the wave equation.

Lemma 2.49 ([BJQ15], Lemma D.2). For any H ∈ (0, 1
2) and for any ξ ∈ R, we have:∫

R

|1− e−iξx|2

|x|2−2H
dx = |ξ|1−2H 2Γ(2H + 1) sin(πH)

H(1− 2H)

We recall now briefly some basic probabilistic results about the tightness property of a set
of measures {Pn, n ∈ N}. Tightness is a useful tool when proving weak convergence, since
it implies the relative compactness of the set of measures {Pn, n ∈ N} by the well-known
Prohorov’s Theorem. We make it more precise.

Definition 2.50. Let (S,S) a metric space endowed with the σ-algebra S generated by Borel
sets in S. Consider a sequence of probability measures {Pn, n ∈ N} on S. We say that the
family {Pn, n ∈ N} on S is tight if, for any ε > 0, there exists a compact set K ⊂ S such that

sup
n∈N

Pn(K) < ε.

Definition 2.51. Let (S,S) a metric space endowed with the σ-algebra S generated by Borel
sets in S. Let {Pn, n ∈ N} be a family of probability measures on S. We say that the family
{Pn, n ∈ N} is relatively compact if it contains a subsequence {Pnk , k ∈ N} which converges
weakly to some probability measure P on S, as k →∞.

Tightness is related to relative compactness by the following:

Theorem 2.52 (Prohorov’s Theorem. [Bil], Theorem 5.1). Let (S,S) a metric space endowed
with the σ-algebra S generated by Borel sets in S. Let {Pn, n ∈ N} be a family of probability
measures on S. If {Pn, n ∈ N} is tight, then it is relatively compact.

Remark 2.53. The converse implication in Prohorov’s Theorem also holds, provided that S
is separable and complete. Anyway, we do not need it and we will not take care of this fact in
the following.

We remark that in our case we will have S = C([0, T ] × R). In this setting we have the
following criterion for tightness (see [Yor83], Proposition 2.3):
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Theorem 2.54. Let {Xλ}λ∈Λ be a family of random functions indexed on the set Λ and taking
values in the space C([0, T ]× R), in which we consider the metric of uniform convergence over
compact sets. Then, the family {Xλ}λ∈Λ is tight if, for any compact set J ⊂ R, there exist
p′, p > 0, δ > 2, and a constant C such that the following holds for any t′, t ∈ [0, T ] and
x′, x ∈ J :

(i) supλ∈Λ E
[
|Xλ(0, 0)|p′

]
<∞,

(ii) supλ∈Λ E
[
|Xλ(t′, x′)−Xλ(t, x)|p

]
≤ C

(
|t′ − t|+ |x′ − x|

)δ
.

2.4.3 Linear additive case

In this section we prove Theorem 2.45 under Hypothesis A, i.e. in the linear additive case. We
recall again the mild formulation (2.29) in this case:

uH(t, x) = I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy),

and we recall also that under Hypothesis A we can consider any H ∈ (0, 1). We have from
Theorem 2.30 that a solution to (2.29) exists, it is unique and has continuous paths. We are
ready to start the proof of our main result.

Proof (Theorem 2.45, linear additive case). We split the proof in two steps. In the first one,
we prove that the sequence of stochastic convolutions ũHn := uHn − I0 is tight in C([0, T ]×R).
By Prohorov’s Theorem 2.52, this implies that the sequence of convolutions ũHn possesses a
weakly converging subsequence ũHn to some limit law Y . The second step is devoted to the
identification of the limit law as Y = ũH0 = uH0 − I0. This is the typical strategy when
showing convergence in distribution of a family of processes, and we will use it again in the
linear multiplicative case in Section 2.4.5.

Step 1: Since Hn → H0, the sequence {Hn} is contained in a compact set K ⊂ (0, 1). For
a fixed H ∈ (0, 1), the solution uH is expressed as

uH(t, x) = I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy).

We apply Theorem 2.54 to the family {ũH = uH − I0}H∈K of stochastic convolutions:

ũH(t, x) = uH(t, x)− I0(t, x) =

∫ t

0

∫
R
Gt−s(x− y)WH(dy, ds).

We write then, supposing without loss of generality that t′ ≥ t and x′ ≥ x:

ũH(t′, x′)− ũH(t, x) =

∫ t′

t

∫
R
Gt′−s(x

′ − y)WH(ds, dy)

+

∫ t

0

∫
R

[Gt′−s(x
′ − y)−Gt−s(x− y)]WH(ds, dy).

Thus, we have

E
[
|uH(t, x)− uH(t′, x′)|p

]
≤ Cp(I1 + I2),

where I1, I2 are defined as:

I1 := E

[∣∣∣ ∫ t′

t

∫
R
Gt′−s(x

′ − y)WH(ds, dy)
∣∣∣p] ,
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I2 := E

[∣∣∣ ∫ t

0

∫
R

[Gt−s(x− y)−Gt′−s(x′ − y)]WH(ds, dy)
∣∣∣p] .

Since I1 is the moment of order p of a centered Gaussian random variable, we have

I1 = E

[∣∣∣ ∫ T

0

∫
R

1[t,t′](s)Gt′−s(x
′ − y)WH(ds, dy)

∣∣∣p]
= zp c

p/2
H

[∫ T

0
1[t,t′](s)

∫
R
|FGt′−s(x′ − ·)(ξ)|2|ξ|1−2Hdξ ds

]p/2
= zp c

p/2
H

[∫ t′

t

∫
R
|FGt′−s(x′ − ·)(ξ)|2|ξ|1−2Hdξ ds

]p/2

= zp c
p/2
H

[∫ t′−t

0

∫
R
|FGs′(ξ)|2|ξ|1−2Hdξ ds′

]p/2
.

(2.45)

Notice that we have used the standard properties of Fourier transform in the space variable,
and we performed the change of variable s′ = t′ − s. The constant zp is the p-order moment of
a standard normal distribution and cH is given by (2.9).

Now we apply Lemma 2.46 and obtain

I1 ≤


zp c

p/2
H

[
22HC̃1−2H

1

1 + 2H
(t′ − t)1+2H

]p/2
, wave equation,

zpc
p/2
H

[
1
HΓ(1−H)(t′ − t)H

]p/2
, heat equation.

(2.46)

The above constant C̃1−2H is the one of Lemma 2.46:

C̃1−2H =


Γ(1− 2H)

2H
sin
(
π

1− 2H

2

)
, H ∈ (0, 1), H 6= 1

2
,

π

2
, H =

1

2
.

First, we observe that zp is independent of H and

cH =
Γ(2H + 1) sin(πH)

2π
≤ Γ(3)

2π
=

1

π
.

Next, as far as estimate (2.46) for the wave equation is concerned, we note that 22H ≤ 4 and
1

1+2H ≤ 1, for any H ∈ (0, 1). Thus, we concentrate on the constant C̃1−2H , which we show to

be uniformly bounded in H. Clearly, the function C̃1−2H : (0, 1)→ R has, possibly, a singularity
only in H = 1

2 , but since Γ(x) ∼ 1
x as x→ 0+, by simple calculations we have that the function

C̃1−2H is continuous also at the point H = 1
2 . Therefore, C̃1−2H is bounded on the set K.

On the other hand, regarding estimate (2.46) for the heat equation, we have that
1

H
Γ(1−H)

defines a continuous function of H on the interval (0, 1), and thus it is bounded on K.
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We now turn to the analysis of the term I2. More precisely, we have

I2 = E

[∣∣∣ ∫ T

0

∫
R

1[0,t](s)[Gt−s(x− y)−Gt′−s(x′ − y)]WH(ds, dy)
∣∣∣p]

= zp c
p/2
H

[∫ T

0
1[0,t](s)

∫
R

∣∣∣F(Gt−s(x− ·)−Gt′−s(x′ − ·))(ξ)
∣∣∣2|ξ|1−2Hdξ ds

]p/2
= zp c

p/2
H

[∫ t

0

∫
R

∣∣∣FGt−s(x− ·)(ξ)−FGt′−s(x′ − ·)(ξ)∣∣∣2|ξ|1−2Hdξ ds

]p/2
≤ zp cp/2H Cp

([∫ t

0

∫
R

∣∣∣FGt′−s(x′ − ·)(ξ)−FGt−s(x′ − ·)(ξ)∣∣∣2|ξ|1−2Hdξ ds

]p/2
+

[∫ t

0

∫
R

∣∣∣FGt−s(x′ − ·)(ξ)−FGt−s(x− ·)(ξ)∣∣∣2|ξ|1−2Hdξ ds

]p/2)
= zpc

p/2
H Cp

(
J1 + J2

)
,

where Cp denotes some constant depending on p. We estimate J1 and J2 using similar techniques
as those used for the term I1. Hence, via the change of variable s′ = t− s, we have:

J1 =

[∫ t

0

∫
R

∣∣∣FGs′+(t′−t)(x
′ − ·)(ξ)−FGs′(x′ − ·)(ξ)

∣∣∣2|ξ|1−2Hdξ ds′
]p/2

.

Thus, by Lemma 2.48,

J1 ≤


M

p/2
H tp/2(t′ − t)pH ≤Mp/2

H T p/2(t′ − t)pH , wave equation,

N
p/2
H (t′ − t)pH/2, heat equation.

The above constants are the following:

1

4
MH =

∫
R

min(1, |h|2)

|h|1+2H
dh

=

∫
|h|>1

1

|h|1+2H
dh+

∫
|h|<1

1

|h|2H−1
dh

=
1

H
+

1

1−H
,

and

NH =

∫
R

(1− e−
h2

2 )2

|h|1+2H
dh ≤

∫
R

1− e−
h2

2

|h|1+2H
dh

≤
∫
|h|>1

1

|h|1+2H
dh+

∫
|h|<1

1

|h|2H−1
dh

=
1

H
+

1

1−H
.

The function H 7→ 1

H
+

1

1−H
is again continuous in (0, 1), and thus bounded for H ∈ K.

For the term J2, we have:

J2 =

[∫ t

0

∫
R

∣∣∣FGt−s(x′ − ·)(ξ)−FGt−s(x− ·)(ξ)∣∣∣2|ξ|1−2Hdξ ds

]p/2
=

[∫ t

0

∫
R

[1− cos(ξ(x′ − x))]
∣∣∣FGs′(x− ·)(ξ)∣∣∣2|ξ|1−2Hdξ ds′

]p/2
,
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and applying Lemma 2.47 we end up with

J2 ≤


C
p/2
H tp/2(x′ − x)pH ≤ Cp/2H T p/2(x′ − x)pH , wave equation,

C
p/2
H (x′ − x)pH , heat equation.

Here, the constant CH is

CH =

∫
R

1− cos(h)

|h|1+2H
dh ≤ 1

H
+

1

1−H
,

which again is a bounded function on the set K.
To sum up, we have proved that

E
[
|ũH(t, x)− ũH(t′, x′)|p

]
≤ C

(
(t′ − t)αp + (x′ − x)Hp

)
,

where α = H for the wave equation and α = H
2 for the heat equation, and the constant C

depends only on p and T . Thus, choosing p >
4

minH∈K H
, we have that the hypotheses of

Theorem 2.54 are fulfilled by the family {ũH}H∈K , for both for (SWE) and (SHE), and thus
the family is tight on C([0, T ]× R). This concludes the first step of the proof.

Step 2: In order to identify the limit law of the sequence {uHn}n≥1, we proceed to prove
the convergence of the finite dimensional distributions of ũHn when n→∞.

We recall that, for every H ∈ (0, 1), ũH = uH − I0 is a centered Gaussian process, so it
suffices to analyze the convergence of the corresponding covariance functions.

Let (t, x), (t′, x′) ∈ [0, T ]× R and suppose without loss of generality that t′ ≥ t. Then,

E
[
ũHn(t, x)ũHn(t′, x′)

]
= cHn

∫ t

0

∫
R
FGt−s(x− ·)(ξ)FGt′−s(x′ − ·)(ξ) |ξ|1−2Hndξ ds.

Let us first consider the case of the wave equation. Taking into account the explicit form of
FGt(ξ) (see (2.44)), we have

E
[
ũHn(t, x)ũHn(t′, x′)

]
= cHn

∫ t

0

∫
R

e−iξ(x−x
′) sin((t− s)|ξ|) sin((t′ − s)|ξ|)

|ξ|1+2Hn
dξ ds.

We clearly have that cHn → cH0 . The integrand function in the latter integral converges, as
n→∞, to

e−iξ(x−x
′) sin((t− s)|ξ|) sin((t′ − s)|ξ|)

|ξ|1+2H0
,

for almost every (s, ξ) ∈ [0, t]× R. Moreover, thanks to the fact that | sin(z)| ≤ z for all z ∈ R,
its modulus is dominated by the integrable function

(t− s)(t′ − s)
|ξ|2 supn(Hn)−1

, s ∈ [0, t], |ξ| ≤ 1,

1

|ξ|2 infn(Hn)+1
, s ∈ [0, t], |ξ| > 1.

Then, by the dominated convergence theorem, we obtain that

lim
n→∞

E
[
ũHn(t, x)ũHn(t′, x′)

]
= cH0

∫ t

0

∫
R

e−iξ(x−x
′) sin((t− s)|ξ|) sin((t′ − s)|ξ|)

|ξ|1+2H0
dξ ds

= E
[
ũH0(t, x)ũH0(t′, x′)

]
.
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On the other hand, in the case of the heat equation, we have

E
[
ũHn(t, x)ũHn(t′, x′)

]
= cHn

∫ t

0

∫
R

e−iξ(x−x
′)e−

(t−s)ξ2
2 e−

(t′−s)ξ2
2

|ξ|2Hn−1
dξ ds. (2.47)

The pointwise limit of the above integrand is given by

e−iξ(x−x
′)e−

(t−s)ξ2
2 e−

(t′−s)ξ2
2

|ξ|2H0−1
,

for all s ∈ [0, t] and ξ ∈ R, and its modulus reads

e−
(t+t′−2s)ξ2

2

|ξ|2Hn−1
.

Now, we use the bound

e−ax
2
<

1

ax2
, if a > 0,

with a = (t+ t′ − 2s)/2 (which is always positive provided that s ∈ [0, t]). Thus

e−
(t+t′−2s)ξ2

2

|ξ|2Hn−1
≤


1

|ξ|2 supn(Hn)−1
, |ξ| ≤ 1, s ∈ [0, t],

2

(t′ − t)|ξ|2 infn(Hn)+1
, |ξ| > 1, s ∈ [0, t].

This covers all cases except t = t′. In this latter case, the modulus of the integrand appearing
in (2.47) becomes

e−(t−s)ξ2

|ξ|2Hn−1
≤



1

|ξ|2 supn(Hn)−1
, |ξ| ≤ 1, s ∈ [0, t],

exp
(
− (t− s)ξ2

)
|ξ|2 infn(Hn)−1

, |ξ| > 1, s ∈ [0, t],

and the integrability of this function is an easy consequence of Lemma 2.46. Therefore, by the
dominated convergence theorem, we also obtain that

lim
n→∞

E
[
ũHn(t, x)ũHn(t′, x′)

]
= E

[
ũH0(t, x)ũH0(t′, x′)

]
,

which concludes Step 2 of the proof.
To finish the proof of the theorem, it remains to observe that, since the translation by I0

is clearly a continuous mapping from C([0, T ] × R) into itself, the convergence in distribution

ũHn
d−→ ũH0 implies the convergence in distribution uHn

d−→ uH0 , which was our statement.

2.4.4 Semilinear additive case

We prove now Theorem 2.45 in the semilinear additive case. We are thus under Hypothesis B1,
which allows us to consider any H ∈ (0, 1). The mild formulation in this case is given by (2.30),
which we recall:

uH(t, x) = I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)b(uH(s, y))dy ds+

∫ t

0

∫
R
Gt−s(x− y)WH(ds, dy).
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Fix H0 ∈ (0, 1) and consider any sequence {Hn, n ∈ N} such that Hn → H0 as n → ∞. We
will work under hypothesis B1 in the following.

With this hypotheses, we still have that the existence and uniqueness result for (2.30) holds,
as we proved in Subsection 2.3.2. We prove our main result Theorem 2.45 in this framework
now. We will divide the proof in three different cases. The first one is the wave equation
case. The second is the heat equation case with the additional hypothesis that the function b
is bounded and Lipschiz. The third one is the heat equation case with b only Lipschitz.

In the first two cases we will use the same technique in the proof, while in the third we will
exploit the result for b bounded and a limiting argument to deduce the general result. Before
entering into the proofs, we give two ad-hoc versions of Grönwall lemmas that will be used in
the proof. The first one is relative to the wave equation, and has been already shown in [BeJo15]

Lemma 2.55. Let {fn, n ≥ 0} be a sequence of real-valued non-negative functions defined on
[0, T ] × [a − T, b + T ], for some a, b ∈ R such that a < b, and T > 0. Suppose that there exist
λ, µ > 0 such that, for every (t, x) ∈ [0, T ]× [a, b] and n ≥ 0,

fn+1(t, x) ≤ λ+
µ

2

∫ t

0

∫ x+t−s

x−t+s
fn(s, y) dyds,

and that f0 is bounded. Then, for every n ≥ 0 and (t, x) ∈ [0, T ]× [a, b], it holds that

fn(t, x) ≤ λ
n−1∑
k=0

(µt2)k

k!
+ ||f0||∞

(µt2)n

n!
, (2.48)

which in particular implies that

lim sup
n→∞

fn(t, x) ≤ λ exp(µt2).

Proof. We prove it by induction: the case n = 1 reduces to the inequality

f1(t, x) ≤ λ+ µt2||f0||∞,

that is clearly satisfied. We go on with the inductive step: if (2.48) holds true, then

fn+1(t, x) ≤ λ+
µ

2

∫ t

0

∫ x+t−s

x−t+s

[
λ
n−1∑
k=0

(µs2)k

k!
+ ||f0||∞

(µs2)n

n!

]
dsdy

= λ+
µ

2

∫ t

0
2(t− s)

[
λ
n−1∑
k=0

(µs2)k

k!
+ ||f0||∞

(µs2)n

n!

]
ds

≤ λ+ µ

∫ t

0
t
[
λ

n−1∑
k=0

(µs2)k

k!
+ ||f0||∞

(µs2)n

n!

]
ds

= λ+ µ
[
λ
n−1∑
k=0

µk(t2)k+1

k!(2k + 1)
+ ||f0||∞

µn(t2)n+1

n!(2n+ 1)

]
= λ+ λ

n−1∑
k=0

µk+1(t2)k+1

k!(2k + 1)
+ ||f0||∞

µn+1(t2)n+1

n!(2n+ 1)

≤ λ
n∑
k=0

µk(t2)k

k!
+ ||f0||∞

µn+1(t2)n+1

(n+ 1)!
,

which is our thesis. In the last two inequalities, we shifted by one the index of the sum and we
used the fact that 4k2 + 6k + 2 > k + 1, for every k ∈ N. If we take the lim sup as n → ∞ in
both sides of the inequality we also obtain easily that

lim sup
n→∞

fn(t, x) ≤ λ exp(µt2).
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Remark 2.56. Using Lemma 3.7 of [ChDa15], one could get a sharper version of this result.

We introduce now another Grönwall’s type lemma that will be used in the case of the heat
equation. This result is somehow analogous to Lemma 2.55, but its hypothesis are a bit more
restrictive, since it asks that b is bounded and Lipschitz. This restriction on b will be the reason
for which in the standing semilinear additive case we have to split the proof of Theorem 2.45,
for the heat equation, in the cases with b bounded and b possibly unbounded.

Lemma 2.57. Let {fn}n≥1, fn : [0, T ] × R → R, be a sequence of functions that satisfy, for
every (t, x) ∈ [0, T ]× R, the following inequality: for some µ, λ > 0,

|fn+1(t, x)− fn(t, x)| ≤ µ
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) |b(fn(s, y))− b(fn−1(s, y))|dy ds+ λ,

where b : R→ R is bounded and Lipschitz continuous with Lipschitz constant C. Then, we have
that, for any n ≥ 1 and (t, x) ∈ [0, T ]× R,

|fn+1(t, x)− fn(t, x)| ≤ 2||b||∞
Cn−1(µt)n

n!
+
n−1∑
k=0

λtk

k!
.

As a consequence, we also have that

lim sup
n→∞

(
sup
x∈R
|fn+1(t, x)− fn(t, x)|

)
≤ λet.

Proof. We prove it by induction. First, we compute

|f2(t, x)− f1(t, x)| ≤ µ
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) |b(f1(s, y))− b(f0(s, y))|dy ds+ λ

≤ 2µ||b||∞
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) dy ds+ λ

≤ 2µ||b||∞
∫ t

0
1ds+ λ

= 2µt||b||∞ + λ.

For the inductive step, we have to exploit the Lipschitz continuity of b:

|fn+1(t, x)− fn(t, x)| ≤ µ
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) |b(fn(s, y))− b(fn−1(s, y))|dy ds+ λ

≤ µC
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) |fn(s, y)− fn−1(s, y)|dy ds+ λ

≤ µC
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s)
[
2||b||∞

Cn−2(µs)n−1

(n− 1)!

+
n−2∑
k=0

λsk

k!

]
dy ds+ λ

=

∫ t

0

[
2||b||∞

µnCn−1sn−1

(n− 1)!
+

n−2∑
k=0

λsk

k!

]
dy ds+ λ

= 2||b||∞Cn−1 (µt)n

n!
+
n−1∑
k=1

λtk

k!
+ λ.
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A direct consequence of this fact is that

lim sup
n→∞

|fn+1(t, x)− fn(t, x)| ≤ λet,

which concludes the proof.

Remark 2.58. The hypothesis that b is bounded is used only in the step n = 1 of the induction,
to show that the integral is finite. However, it looks like there is no other way to prove the result
for a general b without imposing some boundedness conditions on f1 and f0. The conditions
on f1, f0 could be weaker than the one on b; for example, continuity and polynomial growth at
x→∞ would be sufficient to prove the result.

Wave equation

Due to the difference between the two Grönwall lemmas we just proved, we provide two separate
proofs for Theorem 2.45 for the wave and heat equation. We start from the wave equation.

Proof (Theorem 2.45, semilinear additive case, wave equation). We introduce the general argu-
ment that use to prove the result both in this case and in the following case. Let η be a
deterministic function in C([0, T ]× R), and consider the (deterministic) integral equation

z(t, x) =

∫ t

0

∫
R
b(z(s, y))Gt−s(x− y)dsdy + η(t, x), (2.49)

which is defined on the space C([0, T ]×R), endowed with the metric of uniform convergence on
compact sets. Recall that here we are considering as G the fundamental solution of the wave
equation, given by Gt(x) = 1|x|≤t(t, x).

We will prove that (2.49) admits a unique solution. This allows us to define the solution
operator

F : C([0, T ]× R) −→ C([0, T ]× R) (2.50)

by (Fη)(t, x) := z(t, x). We will show that this operator is continuous.

Denote now as ūHn the solution of the linear additive mild equation (2.29) and with uHn

the solution of the semilinear additive equation (2.30). Notice that, if we define (for any fixed
n ∈ N) η(·, ·) := ūHn(·, ·)(ω) and z(·, ·) := uHn(·, ·)(ω) we have that uHn = F (ūHn) (almost
surely). Since we have proved already that Theorem 2.45 holds in the linear additive case, we
know that ūHn converges in law, in the space of continuous functions, to ūH0 . Therefore, we
can apply Theorem 2.7 of [Bil] to obtain the desired result.

We prove now that (2.49) is well-posed and defines a continuous operator from C([0, T ]×R))
into itself. We define the Picard iteration scheme

z0(t, x) := η(t, x)

zn(t, x) :=

∫ t

0

∫
R
Gt−s(x− y)b(zn−1(s, y))dyds+ η(t, x)

=
1

2

∫ t

0

∫ x+t−s

x−t+s
b(zn−1(s, y))dyds+ η(t, x), n ≥ 1.

(2.51)

Clearly, the above expressions of the Picard scheme are well-defined. Moreover, since b is
Lipschitz continuous, if zn−1 is continuous then also b ◦ zn−1 is so. This gives by induction that
zn is a continuous function. Moreover, we will show that zn converges uniformly on compact
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sets on [0, T ]× R. More precisely, we prove that the sequence {zn}n≥0 is uniformly Cauchy on
[0, T ]× [−L,L], for every L > 0. Indeed, for all (t, x) ∈ [0, T ]× [−L,L], we have

|zn+1(t, x)− zn(t, x)| =
∣∣∣∣12
∫ t

0

∫ x+t−s

x−t+s
[b(zn(s, y))− b(zn−1(s, y))]dy ds

∣∣∣∣
≤ C

∫ t

0

∫ x+t−s

x−t+s

∣∣∣zn(s, y)− zn−1(s, y)
∣∣∣dy ds.

We can apply Lemma 2.55 to the sequence of functions fn := |zn+1 − zn| and with λ = 0 and
µ = 2C, obtaining that

|zn+1(t, x)− zn(t, x)| ≤
(

sup
(s,y)∈[0,T ]×[−L−T,L+T ]

|z1(s, y)− z0(s, y)|
)(2Ct2)n

n!

≤
(

sup
(s,y)∈[0,T ]×[−L−T,L+T ]

|z1(s, y)− z0(s, y)|
)(2CL2)n

n!
.

Notice that the latter bound does not depend on t and x. This remark, together with the

fact that the function z1 − z0 is bounded on any compact set, and that the sum
∑∞

k=0
(2CL2)n

n!
is convergent, yield that the sequence {zn(t, x)}n≥0 is uniformly Cauchy on [0, T ] × [−L,L].
Let z(t, x) denote its limit. Then, by the uniqueness of the pointwise limit, the fact that
C([0, T ] × R) is a complete metric space (with the underlying metric) and that zn, n ≥ 0, are
continuous functions, we have that z is also a continuous function in C([0, T ]× R).

Letting n → ∞ in (2.51) and observing that b ◦ zn → b ◦ z uniformly on compact sets, one
immediately gets that z solves equation (2.49).

The uniqueness of the solution comes from a simple remark: suppose we have two solutions
z1, z2 relative to the same η. Then, for a fixed L > 0 and for any (t, x) ∈ [0, T ] × [−L,L], we
have

|z1(t, x)− z2(t, x)| ≤ 1

2

∫ t

0

∫ x+t−s

x−t+s
|b(z1(s, y))− b(z2(s, y))|dy ds

≤ C
∫ t

0

∫ x+t−s

x−t+s
|z1(s, y)− z2(s, y)|dy ds.

It remains to apply Lemma 2.55 to obtain the uniqueness for every L > 0, and thus for the
equation on the whole space.

Let us now turn to the analysis of the solution operator F : C([0, T ]×R) −→ C([0, T ]×R),
which is defined by F (η)(t, x) := z(t, x). We need to prove that this operator is continuous with
respect to the metric of uniform convergence on compact sets. That is, we show the continuity
of the restricted mapping

FL : C([0, T ]× R) −→ C([0, T ]× R),

for every L > 0.
We denote by || · ||∞,L the supremum norm on C([0, T ] × [−L,L]). Let z1 := F (η1) and

z2 := F (η2) for some η1, η2 ∈ C([0, T ]× R). Then, for (t, x) ∈ [0, T ]× [−L,L],

|z1(t, x)− z2(t, x)| ≤
∫ t

0

∫ x+t−s

x−t+s
|b(z1(s, y))− b(z2(s, y))|dy ds+ |η1(t, x)− η2(t, x)|

≤ C
∫ t

0

∫ x+t−s

x−t+s
|z1(s, y)− z2(s, y)|dy ds+ ||η1 − η2||∞,L.

Here, we apply again Lemma 2.55 to obtain that

||z1 − z2||∞,L ≤ C||η1 − η2||∞,L.
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Heat equation, b bounded

Proof (Theorem 2.45, semilinear additive case, heat equation with b bounded). As in the previ-
ous case, it is sufficient to construct the operator (2.49), that we recall:

z(t, x) =

∫ t

0

∫
R
b(z(s, y))Gt−s(x− y)dsdy + η(t, x),

where this time the fundamental solution is

Gt(x) =
1√
2πt

e−
|x|2
2t .

If we show that F : C([0, T ] × R) → C([0, T ] × R) such that Fη(t, x) := z(t, x) is well-defined
and continuous also in this case, we can repeat the argument we used for the wave equation to
conclude that uHn → uH0 in distribution on C([0, T ]× R) as n→∞, whenever Hn → H0.

We prove then the well-definiteness and continuity of F . As in the case of the wave equation,
we consider the Picard iteration scheme

z0(t, x) = η(t, x)

zn(t, x) =

∫ t

0

∫
R
Gt−s(x− y)b(zn−1(s, y))dyds+ η(t, x)

=

∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) b(zn−1(s, y))dyds+ η(t, x), n ≥ 1.

We clearly have that z0 is continuous. Assume that zn−1 is well-defined and continuous, and we
check that zn is so. The well-definiteness of zn follows from the fact that b is bounded, which
implies that the integral defining zn(t, x) is convergent for every (t, x) ∈ [0, T ]× R. Regarding
the continuity of zn, let (t, x) ∈ [0, T ] × R and pick a sequence (tm, xm) → (t, x) as m → ∞.
Then,

zn(tm, xm) =

∫ tm

0

∫
R
Gtm−s(xm − y)b(zn(s, y))dy ds+ η(tm, xm)

=

∫ tm

0

∫
R
Gs′(y

′)b(zn−1(tm − s′, xm − y′))dy′ ds′ + η(tm, xm)

=

∫ supm tm

0

∫
R

1[0,tm]×R(s′, y′)Gs′(y
′)b(zn−1(tm − s′, xm − y′))dy′ ds′

+ η(tm, xm).

Thanks to the continuity of b and zn−1, the latter integrand converges point-wise to

1[0,t]×R(s′, y′)Gs′(y
′)b(zn−1(t− s′, x− y′)).

Since b is bounded and G has finite integral over [0, supm tm]×R, we can apply the dominated
convergence theorem to obtain that

lim
m→∞

zn(tm, xm) = zn(t, x),

so zn is continuous.
For every (t, x) ∈ [0, T ]× R, we can infer that

|zn+1(t, x)− zn(t, x)| ≤
∫ t

0

∫
R

1√
2π(t− s)

e
− |x−y|

2

2(t−s) |b(zn(s, y))− b(zn−1(s, y))|dy ds.
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By Lemma 2.57, we get

|zn+1(t, x)− zn(t, x)| ≤ 2||b||∞
Cn−1tn

n!
≤ 2||b||∞

Cn−1Tn

n!
.

Since the rightmost term of this inequality is the general term of a converging series, and the
series does not depend on (t, x), we can infer that the sequence {zn(t, x)}n≥0 is uniformly Cauchy
in C([0, T ]×R). This means that a limit z exists and, since zn → z uniformly, z ∈ C([0, T ]×R).
Moreover, it is straightforward to verify that z is the solution to equation (2.49). Finally,
uniqueness of solution can be easily checked by applying again Lemma 2.57, in the same way
we did in the wave equation case.

As far as the continuity of the solution operator F : C([0, T ]×R)→ C([0, T ]×R) is concerned,
where F (η)(t, x) = z(t, x), this property can be verified in the same way as in the case of the
wave equation, applying Lemma 2.57.

Heat equation, b general

Proof (Theorem 2.45, semilinear additive case, heat equation with b general). Recall that the ini-
tial condition u0 is assumed to satisfy Hypothesis B1. In particular, u0 is α-Hölder continuous
for some α > H0.

We will use a truncation argument on the drift b: for every m ≥ 1, set

bm(x) :=

{
b(x) ∧m, if b(x) ≥ 0,

b(x) ∨ −m, if b(x) < 0.

We have that bm is bounded and Lipschitz continuous, and converge pointwise to b, as m→∞.
Moreover, a unique Lipschitz constant can be fixed for all functions bm, m ≥ 1, and b. We
define uHnm to be the solution of (2.30) where b is replaced by bm, and corresponding to the
Hurst index Hn. An immediate consequence of Theorem 2.45 in the case b bounded is that, for
any m ≥ 1,

uHnm
d−−−→

n→∞
uH0
m (2.52)

on C([0, T ]× R).

The proof of Theorem 2.45 in our standing case is split in three steps.

Step 1: First, we check that the family of laws of {uHn}n≥1 is tight in C([0, T ] × R). For
this, we will apply again Centsov criterion stated in Theorem 2.54. We point out that, indeed,
the computations of this step are valid for both heat and wave equations.

Notice that condition (i) of Theorem 2.54 is clearly satisfied, since uHn(0, 0) is deterministic
and does not depend on n. Regarding condition (ii), let t, t′ ∈ [0, T ] and x, x′ ∈ R with t′ ≥ t
and x′ ≥ x, and we can suppose that |x− x′| < 1 and |t− t′| < 1. We aim to estimate

E
[
|uHn(t′, x′)− uHn(t, x)|p

]
≤ Cp

(
E
[
|uHn(t′, x′)− uHn(t, x′)|p

]
+ E

[
|uHn(t, x′)− uHn(t, x)|p

])
=: Cp

(
I + J

)
.

(2.53)

We will see that
I ≤ C1|t′ − t|βIp, J ≤ C2|x′ − x|βJp, (2.54)

where βI , βJ > 0 are two positive constants.

61



To start with, we have that

I ≤ Cp
(
|I0(t′, x′)− I0(t, x′)|p

+ E
[∣∣∣ ∫ t′

0

∫
R
Gt′−s(x

′ − y)WHn(ds, dy)−
∫ t

0

∫
R
Gt−s(x

′ − y)WHn(ds, dy)
∣∣∣p]

+ E
[∣∣∣ ∫ t′

0

∫
R
Gt′−s(x

′ − y)b(uHn(s, y))dy ds−
∫ t

0

∫
R
Gt−s(x

′ − y)b(uHn(s, y))dy ds
∣∣∣p])

=: Cp(I1 + I2 + I3).

Regarding I1, it is known from [BJQ15], Theorem 3.7, that, for a α-Hölder continuous initial
condition, it holds

I1 ≤ C|t′ − t|
αp
2 ≤ C|t′ − t|

(infn Hn)p
2 . (2.55)

Next, by step 1 in the proof of Theorem 2.45 in the linear additive case (Section 2.4.3), we
clearly obtain that

I2 ≤ C|t′ − t|
Hnp
2 ≤ C|t′ − t|

(infn Hn)p
2 . (2.56)

It remains to estimate I3. First, in the first summand of I3 we perform the change of variables
s′ = s− (t′ − t), so that we obtain I3 ≤ Cp(I3,1 + I3,2), where

I3,1 := E
[∣∣∣ ∫ 0

−(t′−t)

∫
R
Gt−s′(x

′ − y)b(uHn(s′ + (t′ − t), y))ds′dy
∣∣∣p]

and

I3,2 := E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x

′ − y)
(
b(uHn(s+ (t′ − t), y))− b(uHn(s, y))

)
dy ds

∣∣∣p].
Clearly, I3,1 ≤ C|t′ − t|p by Hölder inequality, Lemma 2.36 and the linear growth of b. For I3,2,
we have that

I3,2 = E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x

′ − y)
(
b(uHn(s+ (t′ − t), y))− b(uHn(s, y))

)
dy ds

∣∣∣p]
≤ C E

[ ∫ t

0

∫
R
Gt−s(x

′ − y)
∣∣∣uHn(s+ (t′ − t), y))− uHn(s, y)

∣∣∣pdy ds]
≤ C

∫ t

0

∫
R
Gt−s(x

′ − y)
(

sup
n≥1

sup
y∈R

E
[∣∣∣uHn(s+ (t′ − t), y))− uHn(s, y)

∣∣∣p])dy ds
= C

∫ t

0
sup
n≥1

sup
y∈R

E
[∣∣∣uHn(s+ (t′ − t), y))− uHn(s, y)

∣∣∣p]ds.
This latter estimate, together with (2.55) and (2.56) and the very definition of I, let us infer
that

sup
n≥1

sup
x∈R

E
[
|uHn(t+ (t′ − t), x)− uHn(t, x)|p

]
≤ C1|t′ − t|βIp + C2

∫ t

0
sup
n≥1

sup
y∈R

E
[∣∣∣uHn(s+ (t′ − t), y))− uHn(s, y)

∣∣∣p]ds,
where the constants C1 and C2 do not depend on Hn and βI = 1

2 infnHn. Hence, by Grönwall
lemma, we obtain the desired estimate for I (see (2.54)).
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Let us now deal with the term J in (2.53). Assume that x′ = x + h, for some h > 0. We
have

E
[
|uHn(t, x+ h)− uHn(t, x)|p

]
≤ Cp

(
|I0(t, x+ h)− I0(t, x)|p

+ E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x+ h− y)WHn(ds, dy)−

∫ t

0

∫
R
Gt−s(x− y)WHn(ds, dy)

∣∣∣p]
+ E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x+ h− y)b(uHn(s, y))dy ds

−
∫ t

0

∫
R
Gt−s(x− y)b(uHn(s, y))dy ds

∣∣∣p])
=: J1 + J2 + J3.

(2.57)

By [BJQ15], Theorem 3.7, and step 1 in the proof of Theorem 2.45 in the linear additive case,
we get, respectively,

J1 ≤ C h(infnHn)p and J2 ≤ C h(infnHn)p. (2.58)

In order to tackle the term J3, we perform the change of variable y′ = y−h in its first summand,
yielding

J3 = E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y′)b(uHn(s, y′ + h))dy′ ds−

∫ t

0

∫
R
Gt−s(x− y)b(uHn(s, y))dy ds

∣∣∣p].
Then, renaming the variable y′ as y, we have

J3 = E
[∣∣∣ ∫ t

0

∫
R

(
b(uHn(s, y + h))− b(uHn(s, y))

)
Gt−s(x− y)dy ds

∣∣∣p]
≤ C

∫ t

0
sup
n≥1

sup
y∈R

E
[∣∣∣uHn(s, y + h))− uHn(s, y))

∣∣∣p]ds.
Putting together this bound and those of (2.58), we get

sup
n≥1

sup
x∈R

E
[
|uHn(t, x+ h)− uHn(t, x)|p

]
≤ C1 h

βJp + C2

∫ t

0
sup
n≥1

sup
y∈R

E
[∣∣∣uHn(s, y + h))− uHn(s, y)

∣∣∣p]ds,
where βJ = infnHn. By Grönwall lemma, we conclude that estimates (2.54) hold. Therefore,
by Theorem 2.54, the family of laws of {uHn}n≥1 is tight in C([0, T ]× R).

Step 2: This part of the proof is devoted to show the following uniform L2(Ω)-convergence:

sup
H∈[a,b]

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)− uH(t, x)|2

]
−−−−→
m→∞

0.

We remark that, indeed, the uniformity with respect to (t, x) ∈ [0, T ]×R will not be needed in
step 3, but we obtain it for free thanks to our Grönwall-type argument exhibited below.
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We argue as follows:

E
[
|uHm(t, x)− uH(t, x)|2

]
≤ C

∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uHm(s, y))− b(uH(s, y))|2

]
dy ds

≤ C
(∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uHm(s, y))− bm(uH(s, y))|2

]
dy ds

+

∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uH(s, y))− b(uH(s, y))|2

]
dy ds

)
≤ C

(∫ t

0

∫
R
Gt−s(x− y)E

[
|uHm(s, y)− uH(s, y)|2

]
dy ds

+

∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uH(s, y))− b(uH(s, y))|21{|uH(s,y)|>m}

]
dy ds

)
.

≤ C
(∫ t

0
sup

H∈[a,b]
sup

(s′,y)∈[0,s]×R
E
[
|uHm(s′, y)− uH(s′, y)|2

]
ds

+

∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uH(s, y))− b(uH(s, y))|4

] 1
2 P(|uH(s, y) > m|)

1
2 dy ds

)
,

(2.59)

where in the progress we used the fact that |bm(uH(s, y))−b(uH(s, y))| = 0, whenever |uH(s, y)| ≤
m.

A direct consequence of Lemma 2.36 is that uH is uniformly bounded in Lp(Ω), with respect
to H ∈ [a, b] and (t, x) ∈ [0, T ]×R, for any p ≥ 2, which means that there exists a constant Mp

which depends only on p and T such that

sup
H∈[a,b]

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
≤Mp. (2.60)

Hence, by Markov inequality,

P(|uH(s, y)| > m) ≤
E
[
|uH(s, y)|2

]
m2

≤ M2

m2
.

Note that the latter estimate is again uniform with respect to H ∈ [a, b] and (s, y) ∈ [0, T ]×R.
Thus, going back to (2.59) and using the linear growth of b and (2.60), we get∫ t

0

∫
R
Gt−s(x− y)E

[
|bm(uH(s, y))− b(uH(s, y))|4

] 1
2P(|uH(s, y) > m|)

1
2dy ds

)
≤
∫ t

0

∫
R
C
M

1/2
2

m
Gt−s(x− y)dy ds ≤

∫ t

0
C
M

1/2
2

m
ds =:

C

m
.

(2.61)

We observe now that if on the left-hand side of (2.59) we replace t with any t′ ≤ t, the inequality
would still hold exactly in the same way (indeed, the integrand on the right-hand side is positive,
so it is increasing as a function of t). Therefore, we can infer that

sup
H∈[a,b]

sup
(t′,x)∈[0,t]×R

E
[
|uHm(t′, x)− uH(t′, x)|2

]
≤ C1

m
+ C2

∫ t

0
sup

H∈[a,b]
sup

(s′,y)∈[0,s]×R
E
[
|uHm(s′, y)− uH(s′, y)|2

]
ds.

Then, Grönwall lemma implies that

sup
H∈[a,b]

sup
(t′,x)∈[0,T ]×R

E
[
|uHm(t′, x)− uH(t′, x)|2

]
≤ C

m
−−−−→
m→∞

0,
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which is what we wanted to show.

Step 3: We prove that the finite dimensional distributions of uHn converge to those of uH0 .
Given a finite dimensional vector {(t1, x1), . . . , (tk, xk)} and f ∈ Cb(Rk), we can write∣∣∣E[f(uHn(t1, x1), . . . , uHn(tk, xk)

)
− f

(
uH0(t1, x1), . . . , uH0(tk, xk)

)]∣∣∣
≤
∣∣∣E[f(uHn(t1, x1), . . . , uHn(tk, xk)

)
− f

(
uHnm (t1, x1), . . . , uHnm (tk, xk)

)]∣∣∣
+
∣∣∣E[f(uHnm (t1, x1), . . . , uHnm (tk, xk)

)
− f

(
uH0
m (t1, x1), . . . , uH0

m (tk, xk)
)]∣∣∣

+
∣∣∣E[f(uH0

m (t1, x1), . . . , uH0
m (tk, xk)

)
− f

(
uH0(t1, x1), . . . , uH0(tk, xk)

)]∣∣∣
=: I1(m,n) + I2(m,n) + I3(m).

Assume that f : Rk → R is Lipschitz continuous with Lipschitz constant Lf (we can always
restrict to the class of Lipschitz continuous functions to verify weak convergence). Then, for all
H ∈ [a, b],

sup
H∈[a,b]

∣∣∣E[f(uH(t1, x1), . . . , uH(tk, xk))− f(uHm(t1, x1), . . . , uHm(tk, xk))
]∣∣∣

≤ sup
H∈[a,b]

E
[∣∣∣f(uH(t1, x1), . . . , uH(tk, xk))− f(uHm(t1, x1), . . . , uHm(tk, xk))

∣∣∣]
≤ sup

H∈[a,b]
LfE

[( k∑
j=1

|uHm(tj , xj)− uH(tj , xj)|2
)1/2]

≤ Lf sup
H∈[a,b]

(
E
[ k∑
j=1

|uHm(tj , xj)− uH(tj , xj)|2
])1/2

= Lf sup
H∈[a,b]

( k∑
j=1

E
[
|uHm(tj , xj)− uH(tj , xj)|2

])1/2

≤ Lfk
1
2

(
sup

H∈[a,b]
sup

(t,x)∈[0,T ]×R
E
[
|uHm(t, x)− uH(t, x)|2

])1/2
,

(2.62)

where the last term converges to 0 as m → ∞ thanks to step 2, and taking into account that
we are considering an arbitrary but fixed number of terms k. Hence, for any ε > 0, there exists
m0 ≥ 1 such that, for all m ≥ m0, we have

sup
n≥1

(
I1(m,n) + I3(m)

)
≤ ε

2
.

In particular, we have∣∣∣E[f(uHn(t1, x1), . . . , uHn(tk, xk))− f(uH0(t1, x1), . . . , uH0(tk, xk))
]∣∣∣ ≤ I2(m0, n) +

ε

2
.

Finally, it is sufficient to observe that the convergence (2.52) implies the corresponding conver-
gence of the finite dimensional distributions, and thus for some n0 ≥ 1 we have that, for all
n ≥ n0, it holds I2(m0, n) < ε

2 . Therefore,∣∣∣E[f(uHn(t1, x1), . . . , uHn(tk, xk))− f(uH0(t1, x1), . . . , uH0(tk, xk))
]∣∣∣ < ε,

where ε can be taken arbitrary small. This concludes the proof of Theorem 2.45 in the semilinear
additive case for the stochastic heat equation in the case of a general Lipschitz continuous drift
b.
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2.4.5 Linear multiplicative case

We prove now Theorem 2.45 in the linear multiplicative case. This means that we are under
Hypothesis C, and we can consider only H ∈ (1

4 , 1). The mild formulation in this case is given
by (2.38), that is,

uH(t, x) = η +

∫ t

0

∫
R
Gt−s(x− y)uH(s, y)WH(ds, dy).

We remarked in Theorem 2.39 that a solution exists and it is unique for this problem. Moreover,
we showed that also the Skorohod mild solution (2.41) exists and coincides with the Itô mild
solution defined by (2.38), thanks to Theorem 2.42. From the latter result we also have that
the Picard iteration scheme {uHm, m ∈ N}, used in [BJQ15] and [DaQu11] to obtain a solution
for (2.38) coincides with a sum of multiple Wiener integrals (up to order m) of a deterministic
function gm. We will recall this result precisely later and we will make use of it to prove our
main result.

Let H0 ∈ (1
4 , 1) and suppose that {Hn, n ∈ N} ⊂ (1

4 , 1) is such that Hn → H0 as n → ∞.
We aim to prove that uHn → uH0 in distribution on C([0, T ]×R)) as n→∞. We will split the
proof in 3 parts: in the first two parts, we will show that the sequence of solutions {uHn , n ∈ N}
defines a tight family of probability measures on C([0, T ] × R). We split the computations in
the case H ∈ (1

4 ,
1
2), which has more involved calculations, and the case H ∈ [1

2 , 1), in which
the calculations are more straightforward. We explain briefly why: in the case H ∈ (1

4 ,
1
2),

the Burkholder-Davis-Gundy inequality (2.25) forces us to consider the Fourier transform of
the whole integrand process, while in the case H ∈ [1

2 , 1), when we use the Burkholder-Davis-
Gundy inequality (2.23), we only have to compute the Fourier transform of the deterministic
part of the integrand process, which will be explicit in our case. In the third part of the proof,
we will identify the limit. To do it, we will exploit the representation result for multiple Wiener
integrals Theorem 2.14 to compare the Picard iterations uHm relative to different values of H.
This implies that we can compare also the solutions uH relative to different values of H, and
allows us to show the identification of the limit. With these facts in mind, we give the proof of
Theorem 2.45 in the standing case.

Tightness in the case H ∈ (1
4 ,

1
2)

Let {uHnm , m ∈ N} be the sequence of Picard iterations defined by (2.42) in order to solve (2.38).
Suppose for the moment that the limiting Hurst exponent H0 ∈ (1

4 ,
1
2 ]. If H0 ∈ (1

4 ,
1
2), we can

assume without loss of generality that the whole sequence {Hn, n ∈ N} ⊂ [η1, η2] ⊂ (1
4 ,

1
2). If

H0 = 1
2 , we can assume at most that {Hn, n ∈ N} ⊂ [η1,

1
2) ⊂ (1

4 ,
1
2). From now on we will de-

note both type of sets as K, meaning that K = [η1, η2] if H0 ∈ (1
4 ,

1
2) and K = [η1,

1
2) if H0 = 1

2 .
Clearly, if the limiting exponent H0 = 1

2 we cannot suppose that Hn → H0 always from be-
low. In Section 2.4.5 we will handle also families of Hurst exponents of the type K = (1

2 , η2], so
that we complete our result (the union of a finite number of tight families is a tight family itself).

The solution uH has been found in [BJQ15] as a limit of the Picard iterations (2.42), defined
by

uH0 (t, x) :=I0(t, x)

uHm+1(t, x) :=I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)uHm(s, y)WH(ds, dy), m ≥ 0.

The limit is found in the Banach space (χH , || · ||χH ) of L2(Ω)-continuous, adapted and jointly
measurable processes such that

||Y ||χH := ||Y ||χ1
+ ||Y ||χH2 <∞,
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where, for a process Y = {Y (t, x), (t, x) ∈ [0, T ]× R} the (semi-)norms are defined by

||Y ||χ1
:= sup

(t,x)∈[0,T ]×R
E
[
|Y (t, x)|p

]1/p

and

||Y ||χH2 := sup
(t,x)∈[0,T ]×R

(
H(1− 2H)

2

∫ t

0

∫
R2

G2
t−s(x− y)

×

(
E
[
|Y (s, y)− Y (s, z)|p

])2/p

|y − z|2−2H
dy dz ds

)1/2

.

(2.63)

Notice that the Lp-part || · ||χ1
of the norm || · ||χH does not depend on H, as it is also pointed

out by the notation itself, while the Gagliardo-type part || · ||χH2 depends on H.

Remark 2.59. In [BJQ15], the norm || · ||χH2 is defined without the constant H(1−2H)
2 . Anyway,

since the two definitions give rise to equivalent norms, the results about existence and uniqueness
of a solution for equation (2.38) when H ∈ (1/4, 1/2) are still holding true. On the other hand,
we will see how adding this normalizing constant helps us in proving the uniform (in H) results
that we need in the estimation process.

We prove an embedding lemma for the spaces χH , which could be of independent interest:

Lemma 2.60 (Sobolev-type embedding). Let 1
4 < α ≤ β < 1

2 . Then the following embedding
holds:

χα ↪→ χβ

This means that there exists a constant C such that for every process Y which is adapted, jointly
measurable and L2(Ω)-continuous it holds

||Y ||χβ ≤ C||Y ||χα . (2.64)

Moreover, it holds the following stronger property for the Gagliardo-type seminorms || · ||χβ2 :

sup
β∈[α, 1

2
)

||Y ||χβ2 ≤ C̃||Y ||χ
α (2.65)

where the constant C̃ depends only on p and T .

Proof. We follow the same reasoning of [DPV12]. Since for any γ ∈ (1/4, 1/2) the norm || · ||γ =
|| · ||χ1

+ || · ||χγ2 has a constant (with respect to γ) part, we only need to prove the inequality
(2.64) for the || · ||χγ2 part of the norm. We have

β(1− 2β)

2

∫ t

0

∫
R2

G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, z)|p

]2/p

|y − z|2−2β
dy dz ds


1/2

=

β(1− 2β)

2

∫ t

0

∫
R2

G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2β
dy dz ds


1/2

≤ C(I1 + I2),

(2.66)
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where we label I1 the term where we integrate in the variable z in the region |z| ≥ 1, and I2

the term where we integrate in the region |z| < 1. First we handle I1

I1 =

(
β(1− 2β)

2

∫ t

0

∫
R

∫
|z|≥1

G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2β
dz dy ds

)1/2

≤ Cp sup
(t,x)∈[0,T ]×R

E
[
|Y (t, x)|p

]1/p
(
β(1− 2β)

2

∫ t

0

∫
R

∫
|z|≥1

G2
t−s(x− y)

1

|z|2−2β
dz dy ds

)1/2

The integral
∫
|z|≥1

1
|z|2−2β dz = 2

1−2β , therefore we have that

β(1− 2β)

2

∫ t

0

∫
R

∫
|z|≥1

G2
t−s(x− y)

1

|z|2−2β
dz dy ds

≤ β
∫ t

0

∫
R
G2
t−s(x− y)dy ds ≤ βCT ≤

CT
2

Thus we can conclude that

I1 ≤ Cp,T sup
(t,x)∈[0,T ]×R

E
[
|Y (t, x)|p

]1/p

Regarding I2, we observe that

I2 =

(
β(1− 2β)

2

∫ t

0

∫
R

∫
|z|<1

G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2β
dz dy ds

)1/2

≤

(
α(1− 2α)

2

∫ t

0

∫
R

∫
|z|<1

G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2α
dz dy ds

)1/2

≤

(
α(1− 2α)

2

∫ t

0

∫
R

∫
R
G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2α
dz dy ds

)1/2

≤ sup
(t,x)∈[0,T ]×R

(
α(1− 2α)

2

∫ t

0

∫
R

∫
R
G2
t−s(x− y)

E
[
|Y (s, y)− Y (s, y − z)|p

]2/p

|z|2−2α
dz dy ds

)1/2

=||Y ||χα2 .

Notice that both the estimate for I1 and the estimate for I2 are independent of (t, x) ∈ [0, T ]×R
and of β ∈ [α, 1/2). Therefore, we can take the supremum for (t, x) ∈ [0, T ]×R and β ∈ [α, 1/2)
in the left-hand side of (2.66) to conclude

sup
β∈[α, 1

2
)

||Y ||χβ2 ≤ Cp,T ||Y ||χ1
+ ||Y ||χα2 ≤ C̃||Y ||χα , (2.67)

which obviously implies

||Y ||χβ ≤ (Cp,T + 1)||Y ||χ1
+ ||Y ||χα2 ≤ C||Y ||χα .

for a suitable constant C.

We are ready now to state the main result of this subsection.
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Proposition 2.61. Let UK := {uH , H ∈ K} be the family of solutions of (2.38), where K is
either of the form [η1, η2], with η1, η2 ∈ (1

4 ,
1
2) and η1 ≤ η2, or K = [η1,

1
2), where η1 ∈ (1

4 ,
1
2).

Then, the family UK is tight in C([0, T ]× R), endowed with the metric of uniform convergence
on compact sets.

We postpone the proof of this result, since we need some auxiliary results. The idea is to
use again Centsov criterion (Theorem 2.54) in order to prove the tightness. We need to get an
estimate of the type

(i) supλ∈Λ E[|Xλ(0, 0)|p′ ] <∞,

(ii) supλ∈Λ E
[
|Xλ(t′, x′)−Xλ(t, x)|p

]
≤ C

(
|t′ − t|+ |x′ − x|

)δ
.

We will obtain such an estimate for uH by obtaining first a similar estimate for the Picard
iterations uHm. Since the estimation for the Picard iteration will be uniform with respect to H
and satisfy some further conditions, we will be able to pass to the limit as m→∞ and obtain
the estimate we need for the family uH .

First of all, we show the following well-definiteness theorem for the Picard iterations {uHm}m,
which is an adaptation of Theorem 3.7 of [BJQ15], stated uniformly in H. We remark that also
its proof is an adaptation of the proof presented in [BJQ15]. We only have to take care of the
fact that we need those results uniformly in H.

Proposition 2.62. Let p ≥ 2 and CH = H(1−2H)
2 . For any m ≥ 0, we have that

i) For any H ∈ K, uHm(t, x) is well defined for any (t, x) ∈ [0, T ]× R

ii) sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)|p

]
<∞

iii) sup
H∈K

sup
(t,x)∈[0,T ]×R

CH

∫ t

0

∫
R2

G2
t−s(x− y)

×

(
E
[
|uHm(s, y)− uHm(s, z)|p

])2/p

|y − z|2−2H
dy dz ds <∞


(P)

Proof. As we said, we adapt the proof of Theorem 3.7 of [BJQ15] to our case. The adaptation
consists in taking care that all the estimates can be generalized in order to be uniform for
H ∈ K. We prove the result by induction.

Step 1: we check that for m = 0 condition (P) holds.

First, notice that uH0 (t, x) = I0(t, x) is the solution of the deterministic equation, which is
well defined under our initial condition hypothesis, so that the first condition in (P) is satisfied
for any H ∈ K.

Moreover, the explicit form of I0, together with boundedness of the initial conditions (we
are indeed considering a constant initial condition), easily implies that

sup
(t,x)∈[0,T ]×R

|I0(t, x)| <∞,

which implies the condition ii) of (P) in the case m = 0. Regarding the third condition of (P),
we use Lemma 2.60. Observe that

CH

∫ t

0

∫
R2

G2
t−s(x− y)

(
E
[
|I0(s, y)− I0(s, z)|p

])2/p

|y − z|2−2H
dy dz ds = ||I0||2χH2 .
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Applying (2.67) with β = H, α = η1 we have that

sup
H∈K

||I0||2χH2 ≤ sup
H∈[η1,

1
2

)

||I0||2χH2 ≤ 2C2
p,T ||I0||2χ1

+ ||I0||2χη12

Since we already showed
||I0||χ1

= sup
(t,x)∈[0,T ]×R

|I0(t, x)| <∞,

we are left to prove that
||I0||χη12 <∞,

which is an immediate consequence of the proof on page 17 of [BJQ15], since η1 ∈ (1
4 ,

1
2).

Step 2: we prove the first two conditions in (P) for m+ 1, assuming that they hold true for
m. First, from Section 3.2 of [BJQ15] we have that the Picard iterations uHm+1 are well-defined
for every H ∈ (1

4 ,
1
2). Regarding the condition ii) in (P), we have that

E
[
|uHm+1(t, x)|p

]
=E
[∣∣∣I0(t, x) +

∫ t

0

∫
R
Gt−s(x− y)uHm(s, y)WH(ds, dy)

∣∣∣p]
≤C
(
|I0(t, x)|p + E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)uHm(s, y)WH(ds, dy)

∣∣∣p]). (2.68)

We know from Step 1 that the first term is bounded uniformly in t, x,H. For the second term,
we define SHm(s, y) := Gt−s(x− y)uHm(s, y). We already know that SHm is integrable with respect
to the noise WH (from the proof of well definiteness of the Picard iterations uHm+1), so we are
only left to show that the second term is also bounded. Extending the integration interval and
using Theorem 2.19 we have that

E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)uHm(s, y)WH(ds, dy)

∣∣∣p]
≤ zpE

[∣∣∣CH ∫ T

0

∫
R

∫
R

|SHm(s, y)− SHm(s, z)|2

|y − z|2H−2
dy dz ds

∣∣∣p/2],
where zp is the constant of the Burkholder-Davis-Gundy inequality and CH = H(1− 2H)/2 as
before. If we now add and subtract the mixed term Gt−s(x− y)uHn (s, z) we obtain

zpE
[∣∣∣CH ∫ T

0

∫
R

∫
R

|SHm(s, y)− SHm(s, z)|2

|y − z|2H−2
dy dz ds

∣∣∣p/2]
≤ Czp

(
E
[∣∣∣CH ∫ T

0

∫
R2

G2
t−s(x− y)

|uHm(s, y)− uHm(s, z)|2

|y − z|2−2H
dy dz ds

∣∣∣p/2]
+ E

[∣∣∣CH ∫ T

0

∫
R2

|uHm(s, z)|2 |Gt−s(x− y)−Gt−s(x− z)|2

|y − z|2−2H
dy dz ds

∣∣∣p/2])
=: C(I1 + I2)

We estimate first I1: thanks to the Minkowski inequality for integrals we have that

I1 ≤

(
CH

∫ T

0

∫
R2

G2
t−s(x− y)

E
[
|uHm(s, y)− uHm(s, z)|p

]2/p

|y − z|2−2H
dy dz ds

)p/2
which is uniformly bounded for H ∈ K and (t, x) ∈ [0, T ]×R thanks to the inductive hypothesis
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on the third condition in (P). Using the same inequality for I2 we obtain:

I2 ≤

(
CH

∫ T

0

∫
R2

E
[
|uHm(s, z)|p

]2/p |Gt−s(x− y)−Gt−s(x− z)|2

|y − z|2−2H
dy dz ds

)p/2

≤

(
sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)|p

])

×

(
CH

∫ T

0

∫
R2

|Gt−s(x− y)−Gt−s(x− z)|2

|y − z|2−2H
dy dz ds

)p/2
.

Thanks to the inductive hypothesis for condition ii) in (P) the first factor is bounded, while for
the second factor we use Proposition 2.21 to obtain(

CH

∫ T

0

∫
R2

|Gt−s(x− y)−Gt−s(x− z)|2

|y − z|2−2H
dy dz ds

)p/2

=

(
cH

∫ T

0

∫
R
|FGt−s(ξ)|2|ξ|1−2Hdξ ds

)p/2
,

(2.69)

where we recall that the constant cH is given by

cH =
Γ(1 + 2H) sin(πH)

2π
. (2.70)

Notice that it holds cH ≤ 1
2π for H ∈ (1

4 ,
1
2). Moreover, the last integral appearing in (2.69) is

uniformly bounded for H ∈ K and (t, x) ∈ [0, T ]× R, thanks to Lemma 2.46. Indeed, it holds

∫ T

0

∫
R
|FGt−s(ξ)|2|ξ|1−2Hdξ ds ≤


22HC̃1−2H

1
1+2HT

1+2H wave equation,

1
HΓ(1−H)TH heat equation.

(2.71)

The constants depending on H that appear can all be bounded uniformly when H ∈ K. Indeed,
in Step 1 of the proof given in 2.4.3 we showed that this is true even when K is a compact
interval in (0, 1). In particular, in that proof it is shown that the constant C̃1−2H , which is
defined in Lemma 2.46, defines a continuous function C̃ : (0, 1)→ R, and then it is bounded on
every compact interval. Thus, since also I2 <∞, we can conclude that

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm+1(t, x)|p

]
<∞.

Step 3: we prove that condition iii) in (P) holds for uHm+1. The proof is identical to the
proof on pages 19-21 of [BJQ15], except for the fact that we have to take care that all the
estimates are uniform with respect to H ∈ K. We prove it in detail: we need

sup
H∈K

sup
(t,x)∈[0,T ]×R

CH

∫ t

0

∫
R2

G2
t−s(x− y)

×

(
E
[
|uHm+1(s, y + z)− uHm+1(s, y)|p

])2/p

|z|2−2H
dy dz ds <∞

(2.72)
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We compute:

E
[
|uHm+1(s, y + z)− uHm+1(s, y)|p

]
≤ C|I0(s, y + z)− I0(s, y)p|

+ CE
[∣∣∣ ∫ s

0

∫
R

(Gs−r(y + z − v)−Gs−r(y − v))uHm(r, v)WH(dr, dv)
∣∣∣p]

≤ C|I0(s, y + z)− I0(s, y)p|

+ CC
p/2
H E

(∣∣∣∣∣
∫ s

0

∫
R2

∣∣∣(Gs−r(y + z − v)−Gs−r(y − v)
)
uHm(r, v)

−
(
Gs−r(y + z − v)−Gs−r(y − v)

)
uHm(r, v)

∣∣∣2 1

|v − v|2−2H
dv dv dr

∣∣∣∣∣
p/2)

.

Plugging this computations into (2.72) we obtain two terms. The first term is the left-hand side
of (2.72) itself, in the case m = 0, which we already proved to be bounded in Step 1. The other
term appearing is

C2
HC

∫ t

0

∫
R2

G2
t−s(x− y)

|z|2−2H
E

(∣∣∣∣∣
∫ s

0

∫
R2

∣∣∣(Gs−r(y + z − v)−Gs−r(y − v)
)
uHm(r, v)

−
(
Gs−r(y + z − v)−Gs−r(y − v)

)
uHm(r, v)

∣∣∣2 1

|v − v|2−2H
dv dv dr

∣∣∣∣∣
p/2)2/p

dz dy ds.

We add and subtract the mixed term (Gs−r(y+ z− v)−Gs−r(y− v))uHm(r, v) and we have that
the last integral is bounded by C(C2

HA1 + C2
HA2), where

C2
HA1 =C2

H

∫ t

0

∫
R2

dz dy ds
G2
t−s(x− y)

|z|2−2H
E

(∣∣∣∣∣
∫ s

0

∫
R2

|Gs−r(y + z − v)−Gs−r(y − v)|2

× |uHm(r, v)− uHm(r, v)|2 1

|v − v|2−2H
dv dv dr

∣∣∣∣∣
p/2)2/p

,

C2
HA2 =C2

H

∫ t

0

∫
R2

dz dy ds
G2
t−s(x− y)

|z|2−2H
E

(∣∣∣∣∣
∫ s

0

∫
R2

dv dv dr|uHm(r, v)|2

× |(Gs−r(y + z − v)−Gs−r(y − v))− (Gs−r(y + z − v)−Gs−r(y − v))|2

|v − v|2−2H

∣∣∣∣∣
p/2)2/p

.

We start from A1: by applying Minkowski inequality for integrals, then Fubini’s theorem,
together with some change of variables (see details on page 20-21 of [BJQ15]) one can see that

C2
HA1 ≤C2

H

∫ t

0
dr

∫
R
dz

∫
R
dy
|Gr(y + z)−Gr(y)|2

|z|2−2H

×
∫ t−r

0
ds

∫
R
dv

∫
R
dv G2

t−r−s(x− y − v)
E
[
|uHm(s, v)− uHm(s, v)|p

]2/p

|v − v|2−2H

≤CH
∫ t

0
dr

∫
R
dz

∫
R
dy
|Gr(y + z)−Gr(y)|2

|z|2−2H

× sup
H∈K

sup
(ν,µ)∈[0,T ]×R

[
CH

∫ ν

0
ds

∫
R
dv

∫
R
dv G2

ν−s(µ− v)
E
[
|uHm(s, v)− uHm(s, v)|p

]2/p

|v − v|2−2H

]
.

(2.73)
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The supremum appearing in the last term is bounded thanks to the inductive hypothesis on
condition iii) of (P). The remaining integral

CH

∫ t

0
dr

∫
R
dz

∫
R
dy
|Gr(y + z)−Gr(y)|2

|z|2−2H
= cH

∫ t

0
dr

∫
R
|FGr(ξ)|2|ξ|1−2Hdξ (2.74)

by Proposition 2.21 The last term, after extending the integral in dr over [0, T ], is bounded
thanks to (2.71), taking into account that again cH , which is given by (2.70), satisfies cH ≤ 1

2π .
This bound for the term C2

HA1 is uniform with respect to H ∈ K and to (t, x) ∈ [0, T ]×R;
indeed, the dependence on x ∈ R in the estimates was eliminated using the inductive hypothesis
in the last term of (2.73). The dependence on t ∈ [0, T ] is handled by noticing that the last
integral in (2.74) is monotone increasing in t, and bounded by (2.71) when t = T . Finally, we

keep track of the dependence on H ∈ K thanks to the constant CH = H(1−2H)
2 , which basically

acts as a normalizer of the integral∫
|z|>1

1

|z|2−2H
dz

H→1/2−−−−−→∞,

and gives a bound for the term C2
HA1 which is also uniform for H ∈ K.

We handle now the term A2. Using Minkowski inequality for integrals we have that

C2
HA2 ≤ C2

H

∫ t

0

∫
R2

dz dy ds
G2
t−s(x− y)

|z|2−2H

(∫ s

0

∫
R2

dv dv drE
[
|uHm(r, v)|p

]2/p

×|(Gs−r(y + z − v)−Gs−r(y − v))− (Gs−r(y + z − v)−Gs−r(y − v))|2

|v − v|2−2H

)

≤C2
H

(
sup
(t,x)

E
[
|uHm(t, x)|p

]2/p
)∫ t

0

∫
R2

dz dy ds
G2
t−s(x− y)

|z|2−2H

∫ s

0

∫
R2

dv dv dr

×|(Gs−r(y + z − v)−Gs−r(y − v))− (Gs−r(y + z − v)−Gs−r(y − v))|2

|v − v|2−2H
.

(2.75)

Using again Proposition 2.21 and the induction hypothesis on the second condition in (P), we
have that the last term is bounded by

C2
HA2 ≤ CHcHC

∫ t

0

∫
R2

G2
t−s(x− y)

|z|2−2H
dy ds

∫ s

0

∫
R
|1− e−iξz|2|FGs−r(ξ)|2|ξ|1−2Hdξ dr.

Notice that, while using Proposition 2.21, one of the two constants CH was ”transformed” in
cH , in the same way as (2.74). Since cH is bounded uniformly for H ∈ K we include it in the
constant C. Thanks to Lemma 2.49, we are able to compute explicitly the integral∫

R

|1− e−iξz|2

|z|2−2H
dz =

2Γ(2H + 1) sin(πH)

H(1− 2H)
|ξ|1−2H ,

which yields

C2
HA2 ≤CH

2Γ(2H + 1) sin(πH)

H(1− 2H)
C

∫ t

0

∫
R
G2
t−s(x− y)dy ds

×
∫ s

0

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dr

≤Γ(2H + 1) sin(πH)C
(∫ t

0

∫
R
G2
t−s(x− y)dy ds

)
×
(∫ T

0

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dr.

)
(2.76)
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In the last inequality we used the fact that, since CH = H(1−2H)
2 ,

CH
2Γ(2H + 1) sin(πH)

H(1− 2H)
= Γ(2H + 1) sin(πH).

Now we have to bound uniformly in t, x,H the last term of (2.76). First, we observe that
Γ(2H + 1) sin(πH) ≤ C for H ∈ K, since it is a continuous function of H. Regarding the first
integral, we have that ∫ t

0

∫
R
G2
t−s(x− y) =

{
t2

4 wave equation,

4
√
πt1/2 heat equation,

thus it can be bounded by its value at t = T , which is moreover finite. The last integral is the
usual one appearing in Lemma 2.46, but this time with α = 2(1 − 2H). We rewrite (2.71) in
this case:

∫ T

0

∫
R
|FGt−s(ξ)|2|ξ|2(1−2H)dξ ds =


24H−1C̃2(1−2H)

1
4HT

4H wave equation,

1
4H−1Γ

(
3−4H

2

)
T

4H−1
2 heat equation.

(2.77)

As we said before, the constant C̃1−2H defines a continuous function from (0, 1) to R. Via
rescaling, it is easy to see that consequently C̃2(1−2H) is continuous on (1

4 ,
3
4). Notice that

the interval (1
4 ,

3
4) strictly contains K, either in the form K = [η1, η2] or in the form K =

[η1,
1
2). Thus, C̃2(1−2H) is bounded uniformly in K. The other quantities appearing in (2.77) are

obviously bounded on K. Indeed, 24H−1 ≤ 2, 1
4H ≤ 1, 1

4H−1 ≤
1

4η1−1 , and Γ
(

3−4H
2

)
≤ Γ

(
1
2

)
=

√
π. Thus, we have bounded the three factors on the right-hand side of (2.76) independently of

t, x,H.
Then, we can take the supremum over (t, x) ∈ [0, T ]×R and over H ∈ K in (2.72) to obtain

the third condition in (P) for the (m+ 1)-th Picard iteration uHm+1.

We have now that the Picard iterations are well-definite and that they belong to our space of
functions χH . Moreover, for a fixed m ∈ N, both their semi-norms are uniformly bounded with
respect to H. This will be crucial to prove an estimate in the fashion of Centsov criterion for the
Picard iterations {uHm}m. This kind of estimate will be proved later in Proposition 2.66. Before
that, we have to prove one more auxiliary result about the Lp norms of the Picard iterations:
we need that they are bounded also uniformly with respect to m ∈ N. Explicitly, we need:

sup
m≥0

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)|p

]
<∞. (2.78)

To obtain this result, we choose to adapt the proof of convergence of the Picard iterations given
in [BJQ15] to show that this convergence is also uniform in H, when we consider only the Lp

semi-norm. This will give the uniform boundedness (2.78) that we stated.

Define the auxiliary quantities:

Vm(t) := sup
H∈K

sup
x∈R

(
E
[
|uHm(t, x)− uHm−1(t, x)|p

])2/p

Wm(t) := sup
H∈K

sup
x∈R

CH

∫ t

0

∫
R2

G2
t−s(x− y)|y − z|2H−2

×
(

E
[
|uHm(s, y)− uHm−1(s, y)− uHm(s, z) + uHm−1(s, z)|p

])2/p
dy dz ds,
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where the constant CH appearing is again H(1−2H)
2 . Notice that thanks to Theorem 2.62 both

quantities are bounded for any m ∈ N. The bounds given in Theorem 3.8 of [BJQ15] for these
two quantities have been used in Theorem 3.9 of [BJQ15] to show that the Picard iterations
converge to a solution in the space χH . Here we are going to adapt those two results to the
fact that we wish to show that the Picard iterations converge uniformly also with respect to
H ∈ K. This will give us the fundamental property (2.78).

Proposition 2.63. For any m ≥ 0 and for any t ∈ [0, T ] we have that

Vm+1(t) ≤
∫ t

0
Vm(s)J1(t− s)ds+ CWm(t) (2.79)

and

Wm+1(t) ≤
∫ t

0
Vm(s)J2(t− s)ds+

∫ t

0
Wm(s)J1(t− s)ds, (2.80)

where J1 and J2 are non-negative integrable functions on [0, T ].

Proof. The proof just consists in adapting the proof of Theorem 3.8 of [BJQ15] to the fact that
we are defining the quantities Vm and Wm taking the supremum also with respect to H. We
check first (2.79): we have that

E
[
|uHm+1(t, x)− uHm(t, x)|p

]2/p
≤ C(A1 +A2),

where

A1 =CH

{
E
[∣∣∣ ∫ t

0

∫
R2

G2
t−s(x− y)|y − z|2H−2

× |uHm(s, y)− uHm−1(s, y)− uHm(s, z) + uHm−1(s, z)|2dy dz ds
∣∣∣p/2]}2/p

A2 =CH

{
E
[∣∣∣ ∫ t

0

∫
R2

|Gt−s(x− y)−Gt−s(x− z)|2

× |uHm(s, z)− uHm−1(s, z)|2|y − z|2H−2dy dz ds
∣∣∣p/2]}2/p

,

Thanks to Minkowski’s inequality for integrals, the term A1 satisfies

A1 ≤Wm(t).

The estimation of A2 is a bit more involved: again by Minkowski’s inequality for integral, it
holds

A2 ≤CH
∫ t

0

∫
R2

|Gt−s(x− y)−Gt−s(x− z)|2

× E
[
|uHm(s, z)− uHm−1(s, z)|p

]2/p
|y − z|2H−2dy dz ds

≤CH
∫ t

0
Vm(s)

∫
R2

|Gt−s(x− y)−Gt−s(x− z)|2|y − z|2H−2dy dz ds,

so that our candidate J1(t) is

J1(t) = sup
H∈K

CH

∫
R2

|Gt(x− y)−Gt(x− z)|2|y − z|2H−2dy dz.
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Here the dependence on H ∈ K yields the first additional complication with respect to the
proof given in Theorem 3.8 of [BJQ15], since we have a different form of J1. To show that
J1 ∈ L1([0, T ]), first we note that by the change of variable y′ = x − y and z′ = x − z we can
rewrite J1 as

J1(t) = sup
H∈K

CH

∫
R2

|Gt(y)−Gt(z)|2|y − z|2H−2dy dz (2.81)

Then, we rely again on the normalizing constant CH . We have that by Proposition 2.21

CH

∫
R2

|Gt(y)−Gt(z)|2|y − z|2H−2dy dz = cH

∫
R
|FGt(ξ)|2|ξ|1−2Hdξ.

We already showed that the constant cH is bounded for H ∈ K, and thus we have that, by
Lemma 2.46

J1(t) = sup
H∈K

cH

∫
R
|FGt(ξ)|2|ξ|1−2Hdξ

≤C sup
H∈K

∫
R
|FGt(ξ)|2|ξ|1−2Hdξ

≤C sup
H∈K

{
C ′H(2H + 1)t2H wave equation,

C ′′HHt
H−1 heat equation.

(2.82)

Notice that, compared to Lemma 2.46, here we are only integrating in dξ. We differentiated
with respect to t that estimate in order to obtain the estimate that we needed. In Section 2.4.3
we showed that the constants C ′′H and C ′′H appearing are continuous for H ∈ (0, 1), and thus
bounded for H ∈ K. The same is true obviously for the additional terms 2H + 1 and H and
thus the function J1 can be bounded by

J1(t) ≤ C

{
t2η1 , t < 1,

t, t ≥ 1

in the case of the wave equation and by

J1(t) ≤ C

{
tη1−1, t < 1,

t−1/2, t ≥ 1

in the case of the heat equation, both of which are in L1([0, T ]). This concludes the proof of
(2.79).

We are left to show that (2.80) holds. We follow again the proof of Theorem 3.8 of [BJQ15].
With a change of variable we rewrite the integral appearing in the definition of Wm+1(t) as

B := CH

∫ t

0

∫
R2

Gt−s(x− y)2

|z|2−2H

×
(

E
[
|uHm+1(s, y + z)− uHm(s, y + z)− uHm+1(s, y) + uHm(s, y)|p

])2/p
dy dz ds.

Notice that

E
[
|uHm+1(s, y + z)− uHm(s, y + z)− uHm+1(s, y) + uHm(s, y)|p

]
=E
[∣∣∣ ∫ s

0

∫
R

∫
R2

(Gs−r(y + z − v)−Gs−r(y − v))(uHm(r, v)− uHm−1(r, v))WH(dr, dv)
∣∣∣p].
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If we apply Theorem 2.19 and then we add and subtract a mixed term (see [BJQ15] for the
details) we have that B ≤ C(B1 +B2), where

B1 =C2
H

∫ t

0
ds

∫
R2

dy dz
Gt−s(x− y)2

|z|2−2H

{
E
[∣∣∣ ∫ s

0

∫
R2

|Gs−r(y + z − v)−Gs−r(y − v)|2

× |uHm(r, v)− uHm−1(r, v)− uHm(r, v) + uHm−1(r, v)|2 1

|v − v|2−2H
dv dv dr

∣∣∣p/2]}2/p

,

B2 =C2
H

∫ t

0
ds

∫
R2

dy dz
Gt−s(x− y)2

|z|2−2H

{
E
[∣∣∣ ∫ s

0
dr

∫
R2

dv dv|uHm(r, v)− uHm−1(r, v)|2

× |Gs−r(y + z − v)−Gs−r(y − v)−Gs−r(y + z − v) +Gs−r(y − v)|2

|v − v|2−2H

∣∣∣p/2]}2/p

.

Notice that, similarly to the proof of condition iii) of (P), we have that the constant CH appears
raised to the power 2. This is the key point in making our estimations uniform in H. For B1,
we proceed with the Minkowski inequality for integrals and several changes of variables (in the
same way as the proof of condition iii) in (P)) to obtain that

B1 ≤C2
HC

∫ t

0

∫
R2

dr dz dy
|Gr(y + z)−Gr(y)|2

|z|2−2H

(∫ t−r

0

∫
R2

ds dv dvGt−r−s(x− y − v)2

×
E
[
|uHm(s, v)− uHm−1(s, v)− uHm(s, v) + uHm−1(s, v)|p

]2/p

|v − v|2−2H

)
.

Consider now the integral inside the parenthesis: if we multiply it by one of the two constants
CH , and we take the supremum with respect to x − y and H we obtain Wm(t − r), so we can
write

B1 ≤ CHC
∫ t

0
Wm(t− r)dr

∫
R2

|Gr(y + z)−Gr(y)|2

|z|2−2H
dy dz.

If we now perform the change of variables τ = t− r and we take the supremum over H of the
integral in dy dz (using the other constant CH), we obtain, by the definition of J1,

B1 ≤ C
∫ t

0
Wm(τ)J1(t− τ)dτ

We point out that in (2.80) we do not have any constant C appearing in the rightmost addend.
This is not a problem since we can re-define, in case C > 1, the function J1 to be CJ1, and the
estimate (2.79) would still clearly hold true. Then we have that

B1 ≤
∫ t

0
Wm(τ)J1(t− τ)dτ.
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Regarding B2, using again Minkowski inequality for integrals we obtain that

B2 ≤C2
H

∫ t

0
ds

∫
R2

dy dz
Gt−s(x− y)2

|z|2−2H

(∫ s

0
dr

∫
R2

dv dvE
[
|uHm(r, v)− uHm−1(r, v)|p

]2/p

× |Gs−r(y + z − v)−Gs−r(y − v)−Gs−r(y + z − v) +Gs−r(y − v)|2

|v − v|2−2H

)
≤C2

H

∫ t

0
ds

∫
R2

dy dz
Gt−s(x− y)2

|z|2−2H

∫ s

0
drVm(r)

×
(∫

R2

dv dv
|Gs−r(y + z − v)−Gs−r(y − v)−Gs−r(y + z − v) +Gs−r(y − v)|2

|v − v|2−2H

)
=CH

∫ t

0
ds

∫
R2

dy dz
Gt−s(x− y)2

|z|2−2H

∫ s

0
drVm(r)

×
(
cH

∫
R
|1− e−iξz|2|FGs−r(ξ)|2|ξ|1−2Hdξ

)
.

In the last step we used again Proposition 2.21. Thanks to Lemma 2.49 we can compute
explicitly the integral in dz∫

R

|1− e−iξz|
|z|2−2H

dz = |ξ|1−2H Γ(2H + 1) sin(πH)

CH
.

If we plug this computation inside the last term of the inequality and we use Fubini’s theorem
we obtain, thanks to the fact that Γ(2H + 1) sin(πH) ≤ C, independently from H ∈ K,

B2 ≤C
∫ t

0
Vm(r)dr

(
cH

∫ t

r

∫
R
Gt−s(x− y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dy ds

)
.

=C

∫ t

0
Vm(r)dr

(
cH

∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dy ds

)
.

Thus, our candidate for being J2 is

J2(t− r) := sup
H∈K

cH

∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dy ds. (2.83)

It is not evident that the function J2 is a function only of the difference t− r. Anyway, Lemma
3.3 of [BJQ15] proves it. Indeed, it shows that∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dy ds =

{
C1,H(t− r)4H+1 wave eq.,

C2,H(t− r)2H−1 heat eq.

Thus we are only left to prove that the constants appearing are bounded uniformly in H, which
in our case is crucial to be able to define J2 as a supremum over H ∈ K. We evaluate directly
the integral above, following [BJQ15]. First, we evaluate the integral in dξ using Lemma 2.46
with α = 2(1− 2H)

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ =


24H−1Γ(2−4H) sin(π(1−2H))

4H−1 (s− r)4H−1 wave eq.,

Γ
(

3−4H
2

)
(s− r)2H−3/2 heat eq.

(2.84)

We have also that, for any t ≥ 0:∫
R
Gt(y)2dy =

{
t/2, wave equation,

2π1/2t−1/2 heat equation.
(2.85)
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We plug this two results together separately for the wave and for the heat equation.

For the wave equation, we have:∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dz ds

=
24H−2Γ(2− 4H) sin(π(1− 2H))

4H − 1

∫ t

r
(t− s)(s− r)4H−1ds.

If we perform the change of variables v = s− r and v′ = v/(t− r) we can compute∫ t

r
(t− s)(s− r)4H−1ds =

∫ t−r

0
(t− r − v)v4H−1dv

=(t− r)4H+1

∫ 1

0
(1− v′)(v′)4H−1dv′

=(t− r)4H+1β(2, 4H)

where the β function is also given by β(x, y) = Γ(x)Γ(y)/Γ(x+ y). Then we have:∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dz ds

=
24H−2Γ(2− 4H) sin(π(1− 2H))

4H − 1
β(2, 4H)(t− r)4H+1

= ĈH(t− r)4H+1

We want to assure that the constant ĈH depending on H which appears is bounded for H ∈ K.
Recall that the interval K is either of the form K = [η1, η2] with 1/4 < η1 < η2 < 1/2 or of the
form [η1, 1/2) with η1 ∈ (1/4, 1/2).

Thus the lower bound for H is always a value η1 strictly bigger than 1/4, and we do not
have any problem if the constant ĈH is diverging for H → 1/4. On the other hand, we allow
our interval K to be extended up to H = 1/2, so we have to check that the factors are not
diverging for H → 1/2. This is the case only for Γ(2 − 4H) ∼ 1

2−4H when H → 1/2, which is
balanced by the term sin(π(1 − 2H)) ∼ π(1 − 2H) when H → 1/2, giving to their product a
finite limit equal to π/2 as H → 1/2. Thus we can say that the constant ĈH in the case of the
wave equation is bounded by a constant C which does not depend on H ∈ K. Moreover, we
already shown that also the constant cH appearing in (2.83) is uniformly bounded for H ∈ K.

Then, we have:

J2(t− r) = sup
H∈K

cH

∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dy ds

= sup
H∈K

cHĈH(t− r)4H+1,

≤C sup
H∈K

(t− r)4H+1

which clearly belongs to L1([0, T ]), provided that we bound separately the case t ≤ 1 and t > 1
with different exponents, in the same way as we did for J1.

Regarding the heat equation, the situation is simpler. Indeed, in this case when we plug
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together again (2.77) and (2.85) we obtain:∫ t

r

∫
R
Gt−s(y)2

∫
R
|FGs−r(ξ)|2|ξ|2(1−2H)dξ dz ds

= 2π1/2Γ
(3− 4H

2

)∫ t

r
(t− s)−

1
2 (s− r)2H− 3

2ds

= 2π1/2Γ
(3− 4H

2

)
β
(1

2
, 2H − 1

2

)
(t− r)2H−1

= ĈH(t− r)2H−1

Here the constant ĈH is clearly bounded for H ∈ K, so that we have also in the case of heat
equation that J2 belongs to L1([0, T ]), reasoning as before.

Coming back to our estimation of the term B2, we have then that it holds

B2 ≤
∫ t

0
Vm(r)J2(t− r)dr,

as we wanted to show. Thus, we can conclude that it holds

Wm+1(t) ≤ C(B1 +B2) ≤ C
(∫ t

0
Vm(s)J2(t− s)ds+

∫ t

0
Wm(s)J1(t− s)ds

)
,

which is equivalent to (2.80), provided that we rename the functions J1 and J2 after multiplying
them by a constant.

With Proposition 2.63 we just proved, we are able to show a more powerful version of
Theorem 3.9 of [BJQ15]:

Theorem 2.64. For any H ∈ (1/4, 1/2), the sequence {uHm, m ≥ 0} of Picard iterations con-
verges to a L2(Ω)-continuous process uH in the space χH . This process is the unique mild
solution of (2.38).

Moreover, the uniform Lp convergence is uniform also with respect to H ∈ K, i.e. it holds

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)− uH(t, x)|p

]
m→∞−−−−→ 0

Proof. Most of the things stated in this result have been already proved in Theorem 3.9 of
[BJQ15]. We have to check only one thing: that the modified definitions of Vm and Wm work to
show that the Picard iterations converge uniformly also with respect to H ∈ K to the solution
uH . There is no need to check that the solution is the same found in [BJQ15], since for a fixed
value of H the norm || · ||χH is equivalent to the one defined in Definition 3.6 of [BJQ15], as we
noticed in Remark 2.59.

We define:
Mm(t) := Vm(t) +Wm(t)

and
J(t) := C(J1(t) + J2(t)).

It is immediate to verify that by applying two times recursively Proposition 2.63 we have

Mm+1(t) ≤
∫ t

0
(Mm(s) +Mm−1(s))J(t− s)ds.

We wish to apply a Gronwall lemma (Lemma 3.10 of [BJQ15]). We have to show that

sup
t∈[0,T ]

M1(t) <∞,
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sup
t∈[0,T ]

M2(t) <∞.

Both requirements are met thanks to conditions ii) and iii) of (P). Thus, we have that∑
m≥1

sup
t∈[0,T ]

Mm(t) <∞,

which implies that ∑
m≥1

sup
H∈K

||uHm − uHm−1||χH <∞.

This implies that {uHm}m is Cauchy in χH , uniformly with respect to H ∈ K, and then the
sequence uHm converges uniformly in H to his limit uH , which we already know to be existing
and unique. This clearly implies that the convergence is uniform in H for the Lp semi-norm.

This result yields an immediate useful corollary for our purposes

Corollary 2.65. Since the sequence of Picard iterations {uHm}m converge uniformly in Lp(Ω)
with respect to t ∈ [0, T ], x ∈ R, H ∈ K, i.e.

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)− uH(t, x)|p

]
n→∞−−−→ 0,

the family {uHm, m ≥ 0, H ∈ K} satisfies:

sup
H∈K

sup
m≥0

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)|p

]
<∞.

Thanks to these results we are finally able to prove our main Hölder-type estimate for the
Picard iterations {uHm,m ≥ 0, H ∈ K}, which is an adaptation to our case of Proposition 2.2 of
[BJQ16].

Proposition 2.66. Fix any h0 ∈ (0, 1). Then, for all |h| ≤ h0

sup
H∈K

sup
(t,x)∈[0,T ]×R

(
E
[
|uHm(t, x+ h)− uHm(t, x)|p

])1/p
≤ Cm|h|η1

sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

(
E
[
|uHm(t+ h, x)− uHm(t, x)|p

])1/p
≤ Cm|h|η̃1 ,

 (Q)

where η̃1 = η1 for the wave equation, and η̃1 = η1/2 for the heat equation. The constant Cm
satisfies

Cm ≤ C(c(h0) + c(h0)Cm−1), (2.86)

where the functions c, c : R→ R are non-negative and lim
h0→0

c(h0) = 0. We define C−1 = 0.

Proof. We adapt the proof of Proposition 2.2 of [BJQ16] to our case. Again, we have to take
care that the proof can be adapted to the fact that here we need estimates which are uniform in
H. As usual, when a constant does not depend on any significant quantity we will just denote
it with C, and it may change from line to line.

Step 1: we check that for m = 0 condition (Q) holds.

We remark that the deterministic solution does not depend onH, since we fixed for allH ∈ K
the same initial conditions u0, v0 and we assumed that they are η1-Hölder continuous functions.
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In [BJQ15], the authors prove that for uniformly α-Hölder continuous initial conditions it holds
that for the wave equation

sup
(t,x)∈[0,T ]×R

|I0(t, x+ h)− I0(t, x)| ≤ C|h|α,

sup
(t,x)∈[0,T∧(T−h)]×R

|I0(t+ h, x)− I0(t, x)| ≤ C(1 + h1−H
0 )|h|α,

(2.87)

while for the heat equation it holds

sup
(t,x)∈[0,T ]×R

|I0(t, x+ h)− I0(t, x)| ≤ C|h|α,

sup
(t,x)∈[0,T∧(T−h)]×R

|I0(t+ h, x)− I0(t, x)| ≤ C|h|α/2.
(2.88)

In our case, we have the same estimates but with α = η1. Thus, we can take the supremum for
H ∈ K without changing the result, obtaining condition (Q) in the case m = 0.

Step 2: we are left to show that the two conditions of (Q) hold true for uHm+1.

We follow the proof given in Proposition 2.2 of [BJQ16], adapting the argument to our
necessities, i.e. that the estimation process is independent of H. We start computing the space
increments of uHm+1:

E
[
|uHm+1(t, x+ h)− uHm+1(t, x)|p

]1/p

≤ E

[∣∣∣∣∣I0(t, x+ h)− I0(t, x) +

∫ t

0

∫
R

(
Gt−s(x+ h− y)−Gt−s(x− y)

)
uHm(s, y)WH(ds, dy)

∣∣∣∣∣
p]1/p

.

To simplify a bit the notation we define:

SHm(s, y) :=
(
Gt−s(x+ h− y)−Gt−s(x− y)

)
uHm(s, y).

Thanks to Theorem 2.19, we can write

E
[
|uHm+1(t, x+ h)− uHm+1(t, x)|p

]1/p

≤ C

(
|I0(t, x+ h)− I0(t, x)|+ C

1/2
H E

[∣∣∣ ∫ t

0

∫
R
|SHm(s, y)− SHm(s, z)|2|y − z|2H−2dz dy ds

∣∣∣ p2 ] 1
p

)
= C(I0 + I1).

We already proved that I0 ≤ |h|η1 in Step 1. We compute I1, following the proof of Proposition
2.2 of [BJQ16], together with Theorem 3.7 of [BJQ15]:

I1 ≤ C(I11 + I12),

where

I11 =C
1/2
H

(
E
[∣∣∣ ∫ t

0

∫
R2

|Gt−s(x+ h− y)−Gt−s(x− y)|2 |u
H
m(s, y)− uHm(s, z)|2

|y − z|2−2H
dy dz ds

∣∣∣ p2 ]) 1
p

I12 =C
1/2
H

(
E
[∣∣∣ ∫ t

0

∫
R2

|uHm(s, z)|2

|y − z|2−2H
|Gt−s(x+ h− y)−Gt−s(x− y)

− (Gt−s(x+ h− z)−Gt−s(x− z))|2dy dz ds
∣∣∣ p2 ]) 1

p
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We start from I11: we use Minkowski inequality for integrals and we obtain

I2
11 ≤CH

∫ t

0

∫
R
|Gt−s(x+ h− y)−Gt−s(x− y)|2

×

(∫
R

E
[
|uHm(s, y + z)− uHm(s, y)|p

]2/p

|z|2−2H
dz

)
dy ds

≤I ′11 + I ′′11

where I ′11 is the integral in dz corresponding to the region {|z| > h0} and I ′′11 is the one
corresponding to the region {|z| ≤ h0}.

We consider first I ′11: observe that from Corollary 2.65 we have that

sup
H∈K

sup
m≥0

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)|p

]
<∞.

This implies that

I ′11 ≤ C CH
∫ t

0

∫
R
|Gt−s(x+ h− y)−Gt−s(x− y)|2

(∫
|z|>h0

1

|z|2−2H
dz
)
dy ds.

We compute explicitly the integral in dz:

CH

∫
|z|>h0

1

|z|2−2H
dz = 2

H(1− 2H)

2

−h2H−1
0

2H − 1
= Hh2H−1

0 .

Coming back to I ′11, we have:

I ′11 ≤C H h2H−1
0

∫ t

0

∫
R
|Gt−s(x+ h− y)−Gt−s(x− y)|2dy ds

≤C H h2H−1
0 |h| = C H

( |h|
h0

)1−2H
|h|2H ≤ C H |h|2H ≤ C|h|2η1 ,

which completes the estimate for I ′11. Arguing on I ′′11, we use the induction hypothesis to infer
that ∫

|z|≤h0

E
[
|uHm(s, y)− uHm(s, z)|p

]2/p

|z|2−2H
dz ≤ C2

m

∫
|z|≤h0

|z|2η1
|z|2−2H

dz.

Since h0 < 1, we have that 1
|z|2−2H ≤ 1

|z|2−2η1
, and thus

C2
m

∫
|z|≤h0

|z|2η1
|z|2−2H

dz ≤ C2
m

∫
|z|≤h0

|z|4η1−2dz = 2C2
m

h4η1−1
0

4η1 − 1
= C C2

mh
4η1−1
0 .

Then we have that

I ′′11 ≤CH C C2
mh

4η1−1
0

∫ t

0

∫
R
|Gt−s(x+ h− y)−Gt−s(x− y)|2dy ds

=CH C C
2
mh

4η1−1
0 |h|

≤CC2
mh

2η1
0

( |h|
h0

)1−2η1
|h|2η1

≤CC2
mh

2η1
0 |h|

2η1 .

Then we managed to show that I2
11 ≤ C|h|2η1 + C Cmh

2η1
0 |h|2η1 , which implies

I11 ≤ C
(

1 + Cmh
η1
0

)
|h|η1 .
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We handle now the term I12: we use again Minkowski inequality for integrals and Corollary
2.65 to obtain

I2
12 ≤CH C

∫ t

0

∫
R2

1

|y − z|2−2H
|Gt−s(x+ h− y)−Gt−s(x− y)

−Gt−s(x+ h− z) +Gt−s(x− z)|2dz dy ds.

Thanks to Proposition 2.21, we have that

I2
12 ≤ CH C

∫ t

0

∫
R

(1− cos(h|ξ|))|FGt−s(ξ)|2|ξ|1−2Hdξ ds.

This last expression can be evaluated thanks to Lemma 2.47, with α = 1− 2H:

I2
12 ≤ CH C C̃H |h|2H .

Here the constant C̃H appearing is defined as

C̃H :=

∫
R

(1− cos(x))x−2H−1dx,

which has been computed in Lemma D.1 of [BJQ15]. As usual, we have to take care that this
constant can be bounded by a constant C which is independent from H ∈ K. The explicit
values of C̃H are, in our setting:

C̃H =

{
Γ(1−2H) cos(πH)

2H H ∈ (0, 1/2),

π/2 H=1/2.

This function of H is continuous for H ∈ K, since cos(πH) ∼ π
2 (1−2H) and Γ(1−2H) ∼ 1

1−2H

as H → 1/2. Thus C̃H → π/2 as H → 1/2, which implies that C̃H ≤ C, independently from
H ∈ K. This means that we have:

I12 ≤ C|h|H ≤ C|h|η1 .

Putting together all the estimates for the space increments, we have proved that

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm+1(t, x+ h)− uHm+1(t, x)|p

]1/p
≤ C

(
C0 + Cmh

η1
0

)
|h|η1 ,

which is basically the same estimate obtained in Proposition 2.2 of [BJQ16], with η1 replacing
H.

We show now the result for the time increments. Again, we follow the steps of Proposition
2.2 of [BJQ16]:

E
[
|uHm+1(t+ h, x)− uHm+1(t, x)|p

]1/p
≤ C(J0 + J1 + J2).

We compute the increments only for h ≥ 0, since the case h < 0 is analogous. The term
J0 = |I0(t+h, x)− I0(t, x)| has been estimated in Step 1. J1 and J2 are defined respectively by

J1 =C
1/2
H

(
E
[∣∣∣ ∫ t+h

t

∫
R2

|Gt+h−s(x− y)uHm(s, y)−Gt+h−s(x− z)uHm(s, z)|2

|y − z|2−2H
dz dy ds

∣∣∣p/2])1/p

,

J2 =C
1/2
H

(
E
[∣∣∣ ∫ t

0

∫
R2

|(Gt+h−s(x− y)−Gt−s(x− y)uHm(s, y))

− (Gt+h−s(x− z)−Gt−s(x− z)uHm(s, z))|2 1

|y − z|2−2H
dz dy ds

∣∣∣p/2])1/p

.

84



We start from J1. First we apply Minkowski inequality for integrals to obtain

J2
1 ≤CH

∫ t+h

t

∫
R2

E
[
|Gt+h−s(x− y)uHm(s, y)−Gt+h−s(x− z)uHm(s, z)|p

]2/p

|y − z|2−2H
dz dy ds

≤ C(J11 + J12),

where we obtain the two terms J11 and J12 by adding and subtracting the mixed termGt+h−s(x−
y)uHn (s, z), so that:

J11 =CH

∫ t+h

t

∫
R2

Gt+h−s(x− y)2
E
[
|uHm(s, y)− uHm(s, z)|p

]2/p

|y − z|2−2H
dz dy ds,

J12 =CH

∫ t+h

t

∫
R2

E
[
|uHm(s, z)|p

]2/p |Gt+h−s(x− y)−Gt+h−s(x− z)|2

|y − z|2−2H
dz dy ds.

We start with J11: by a change of variables we have that

J11 = CH

∫ t+h

t

∫
R
Gt+h−s(x− y)2

(∫
R

E
[
|uHm(s, y)− uHm(s, y + z)|p

]2/p

|z|2−2H
dz

)
dy ds.

We split the dz integral again into the regions {|z| ≥ h0} and {|z| < h0}, respectively, so
that J11 = J ′11 + J ′′11. We already computed the integral

CH

∫
|z|≥h0

1

|z|2−2H
dz = H h2H−1

0 ,

so that, thanks also to Corollary 2.65, we have that:

J ′11 ≤C Hh2H−1
0

∫ h

0

∫
R
G2
s(y)dy ds

≤Ch2H−1
0 |h|γ/H ≤ Ch2H−1+( 1

H
−2)γ

0 |h|2γ .

We defined here γ = H in the wave equation case and γ = H/2 in the heat equation case. The
last estimation comes again from the fact that |h|/h0 ≤ 1 and that γ/H − 2γ > 0. Notice that
we made again a key use of the normalizing constant CH in the J ′11 step.

To obtain the uniformity with respect to H, we have first to observe that the quantity
2H − 1− (1/H − 2)γ = 0 when γ = H and it is equal to H − 1/2 when γ = H/2. In this second

case we can bound h
H−1/2
0 ≤ hη1−1/2

0 . We can conclude that

J ′11 ≤

{
Ch

η1−1/2
0 |h|η1 heat equation,

C|h|2η1 wave equation.
(2.89)

To estimate J ′′11, we have to use the induction hypothesis into the dz integral:

J ′′11 ≤CH C2
m

∫ t+h

t

∫
R
Gt+h−s(x− y)2

(∫
|z|≤h0

|z|2η1
|z|2H−2

dz

)
dy ds

≤CH C2
m

∫ t+h

t

∫
R
Gt+h−s(x− y)2

(∫
|z|≤h0

1

|z|4η1−2
dz

)
dy ds

≤C CH C2
mh

4η1−1+γ/H−2γ
0 |h|2γ

≤

{
C C2

mh
4η1−1
0 |h|η1 heat equation,

C C2
mh

4η1−1
0 |h|2η1 wave equation.
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We estimate now J12: we use Corollary 2.65 and Proposition 2.21 to obtain

J12 ≤ C cH
∫ h

0

∫
R
|FGr(ξ)|2|ξ|1−2Hdξdr.

Notice that again we made use of the constant CH , which is now replaced by cH ≤ C. We use
now Lemma 2.46 to obtain

J12 ≤

{
C|h|H ≤ C|h|η1 heat equation,

C|h|2H+1 ≤ C|h|2η1+1 ≤ C|h|2η1 wave equation.

This allows us to conclude that:

J1 ≤

C(1 + h
η1
2
− 1

4
0 + Cmh

2η1− 1
2

0 )|h|
η1
2 heat equation,

C(1 + Cmh
2η1− 1

2
0 )|h|η1 wave equation

(2.90)

which is a good estimate, since 2η1− 1
2 > 0. e compute now J2: we follow again Proposition 2.2

of [BJQ16], using again Minkowski inequality for integrals and obtaining that J2
1 ≤ C(J21+J22),

where

J21 =CH

∫ t

0

∫
R2

|Gt+h−s(x− y)−Gt−s(x− y)|2

×
(

E
[
|uHm(s, y)− uHm(s, y + z)|p

])2/p
|z|2H−2dz dy ds,

J22 =CH

∫ t

0

∫
R2

|Gt+h−s(x− y)−Gt−s(x− y)−Gt+h−s(x− z) +Gt−s(x− z)|2

×
(

E
[
|uHm(s, z)|p

])2/p
|y − z|2H−2dz dy ds.

As for I11 and J11, we split the integral in the two regions {|z| ≥ h0} and {|z| < h0}, giving
respectively the two terms J ′21 and J ′′21. Using Corollary 2.65 we have that

J ′21 ≤C H h2H−1
0

∫ t

0

∫
R
|Gt+h−s(x− y)−Gt−s(x− y)|2dy ds

≤C h2H−1
0 |h|γ/H ≤ C h2H−1+( 1

H
−2)γ

0 |h|2γ

≤

{
Ch

η1−1/2
0 |h|η1 heat equation,

C|h|2η1 wave equation.

The last step we made is identical to (2.89), while previously we used again the normalizing
constant CH as usual and we used the fact that the last deterministic integral∫ t

0

∫
R
|Gt+h−s(x− y)−Gt−s(x− y)|2dy ds

is bounded by Ct|h| for the wave equation and by Ch1/2 for the heat equation, as it is pointed
out in page 24 of [BJQ15]. For J ′′21, as usual we use the induction hypothesis to infer that,
identically to I ′′11 and J ′′11:

J ′′21 ≤C CHh
4η1−1
0 C2

m|h|γ/H

≤

{
C C2

mh
4η1−1
0 |h|η1 heat equation,

C C2
mh

4η1−1
0 |h|2η1 wave equation.
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We are left to show that J22 can be bounded appropriately. We use Corollary 2.65 and Propo-
sition 2.21 to obtain that

J22 ≤C CH
∫ t

0

∫
R2

|Gt+h−s(x− y)−Gt−s(x− y)

−Gt+h−s(x− z) +Gt−s(x− z)|2dz dy ds

=C cH

∫ t

0

∫
R
|FGt+h−s(ξ)−FGt−s(ξ)|2|ξ|1−2Hdξ ds

This can be estimated using Lemma 2.48 with α = 1 − 2H. We have to take care that this
estimate is independent from H. Looking at the proof of Lemma 2.48, given in [BJQ15], we see
that it holds the following:∫ t

0

∫
R
|FGt+h−s(ξ)−FGt−s(ξ)|2|ξ|1−2Hdξ ds ≤

{
CT |h|2H wave equation,

C|h|H heat equation.

Here the constants appearing are

C = C ′
∫
R

min(1, |y|)2

|y|1+2H
dy

(with C ′ independent from H) for the wave equation and

C =

∫
R

(1− e−y2/2)2

|y|1+2H
dy

for the heat equation. We have to show that both are bounded uniformly with respect to
H ∈ K. But this is clear since in both cases the integrand is summable for any H ∈ K and
it can be bounded by replacing |y|1+2H with |y|2 when |y| ≤ 1 and by |y|1+2η1 when |y| > 1,
giving an estimation which is independent of H ∈ K.

This allows us to conclude for J22 that

J22 ≤

{
C|h|H ≤ C|h|η1 heat equation,

C|h|2H ≤ C|h|2η1 wave equation.

We have then, considering the whole J2:

J2 ≤

C(1 + h
η1
2
− 1

4
0 + Cmh

2η1− 1
2

0 )|h|
η1
2 heat equation,

C(1 + Cmh
2η1− 1

2
0 )|h|η1 wave equation.

(2.91)

As we did for the space increments, we put now together all the estimates for the components
J0, J1, J2 of the time increments, obtaining

E
[
|uHm+1(t+ h, x)− uHm+1(t, x)|p

]1/p

≤C(J0 + J1 + J2)

≤

C(1 + h
η1
2
− 1

4
0 + Cmh

2η1− 1
2

0 )|h|η1/2 heat equation,

C(1 + Cmh
2η1− 1

2
0 )|h|η1 wave equation.

≤C
(
c(h0) + Cmc(h0)

)
|h|η̃1 .

Notice that this is true because the estimates of J1 and J2 yield an identical result. We see
clearly that the constant Cm+1 can be defined as

Cm+1 := C
(
c(h0) + Cmc(h0)

)
,

87



and that since 2η − 1
2 > 0 the functions c(h0), c(h0) satisfy the our thesis, i.e. that they are

non-negative and c(h0)→ 0 as h 0→ 0. We see that, as it happened for the space increments,
those estimates are independent from H ∈ K and (t, x) ∈ [0, T ] × R, so that we can take the
supremum with respect to those variables in the last inequality to obtain

sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

E
[
|uHm+1(t+ h, x)− uHm+1(t, x)|p

]1/p

≤C
(
c(h0) + Cmc(h0)

)
|h|η̃1

=Cm+1|h|η̃1 ,

which concludes our proof.

Combining Proposition 2.66 and Corollary 2.65 we finally have the following result:

Proposition 2.67. There exists h0 > 0 such that for every |h| ≤ h0 it holds

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x+ h)− uH(t, x)|p

]
≤ C|h|pη1

and
sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

E
[
|uH(t+ h, x)− uH(t, x)|p

]
≤ C|h|pη̃1 ,

where C is a constant depending only on p. Here η̃1 = η1 for the wave equation and η̃1 = η1/2
for the heat equation.

Proof. Recall that by Proposition 2.66 we have that

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x+ h)− uHm(t, x)|p

]
≤ Cm|h|pη1

and
sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

E
[
|uHm(t+ h, x)− uHm(t, x)|p

]
≤ Cm|h|pη̃1 ,

where the sequence of constants {Cm}m satisfies (2.86). So we wish to take the limit for m→∞
on both sides on the inequalities and check that the same result still holds.

For the left-hand side, it is sufficient to notice that thanks to the uniform convergence in
Lp(Ω) stated in Corollary 2.65 it holds:

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x+ h)− uHm(t, x)|p

]
m→∞−−−−→ sup

H∈K
sup

(t,x)∈[0,T ]×R
E
[
|uH(t, x+ h)− uH(t, x)|p

]
.

Thus we are only left to show that the limit can be taken also on the right-hand side, i.e. that
the sequence of constants Cm is bounded, provided that we choose a suitable value for h0. This
has been already shown in Theorem 1.1 of [BJQ16], under the same hypothesis that we have
here, so that the proof is complete.

Now we have all that it is needed to prove our tightness result Proposition 2.61.

Proof. (Proposition 2.61). First, we notice that condition i) is clearly satisfied, since uH(0, 0)
is deterministic and independent from H, so that

sup
H∈K

E[|uH(0, 0)|p] = sup
H∈K

uH(0, 0) = sup
H∈K

u0(0) = u0(0) <∞
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We have to prove ii). First, we rewrite

E
[
|uH(t′, x′)− uH(t, x)|p

]1/p
= E

[
|uH(t+ h, x+ k)− uH(t, x)|p

]1/p

and we notice that

E
[
|uH(t+ h, x+ k)− uH(t, x)|p

]
≤ C

(
E
[
|uH(t+ h, x+ k)− uH(t, x+ k)|p

]
+ E

[
|uH(t, x+ k)− uH(t, x)|p

])
.

This two terms can be estimated separately using Proposition 2.67, uniformly in t, x,H, ob-
taining

E
[
|uH(t+ h, x+ k)− uH(t, x)|p

]1/p
≤ C(|h|pη̃1 + |k|pη1).

Thanks to the uniformity with respect to t, x,H, we can conclude that for every t′, t and x′, x
such that |t′ − t| < h0 and |x′ − x| < h0 it holds

E
[
|uH(t′, x′)− uH(t, x)|p

]
≤ C(|t′ − t|pη̃1 + |x′ − x|pη1). (2.92)

As we already said, these estimates hold only for |h| ≤ h0, but we need such an estimate to hold
also when the increment |h| > h0. This is not a problem, since whenever |h| > h0 it is sufficient
to update the constant C in order to have that

2p sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
≤ C hpη10 .

Tightness in the case H ∈ (1
2 , 1)

We wish to prove an analogous tightness result as Proposition 2.61 for the case H > 1
2 . We

state it in Proposition 2.68 below.

Suppose now that the limiting exponent H0 ∈ [1
2 , 1), so whenever Hn → H0 we can suppose

without loss of generality that Hn ∈ K, where K is either of the form [η1, η2], with η1, η2 ∈ [1
2 , 1)

and η1 ≤ η2. As we already observed at the beginning of Section 2.4.5, if we prove the tightness
of the set of measures {uH , H ∈ K} also for K of the form considered here, this will include
also the case in which H0 = 1

2 and Hn → H0 neither from above nor from below.

We already pointed out before that, thanks to the fact that Theorem 2.17 has a stronger
thesis than Theorem 2.19, we will be able to give a direct proof of the estimate needed for Centsov
criterion, without having to pass through Picard iterations. We will prove the following:

Proposition 2.68. Let UK := {uH , H ∈ K} be the family of solutions of (2.38), where K is of
the form [η1, η2], with η1, η2 ∈ [1

2 , 1) and η1 ≤ η2. Then, the family UK is tight in C([0, T ]×R),
endowed with the metric of uniform convergence on compact sets.

Proof. We use again Centsov criterion Theorem 2.54. Thus, we have to prove again that, for
every t, t′ ∈ [0, T ] and for every x, x′ ∈ R:

sup
H∈[η1,η2]

E
[
|uH(t′, x′)− uH(t, x)|p

]
≤ C(|t′ − t|+ |x′ − x|)δ. (2.93)

We split the proof in two steps: first, we prove a uniform Lp(Ω) boundedness result. Then,
we prove (2.93).
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Step 1: We show that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x)|p

]
<∞. (2.94)

To do this, we prove that the Picard iterations of our equation {uHn }n,H satisfy the following
boundedness condition

sup
H∈[η1,η2]

sup
n≥0

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)|p

]
<∞. (2.95)

Since for any H ∈ [η1, η2] it holds that the Picard iteration scheme converges uniformly (in t, x)
in Lp(Ω) to the relative solution uH as n → ∞ (Theorem 13 of [Dal99]), we have that for the
set of solutions {uH}H it holds (2.94). To obtain (2.95), we proceed as in page 22 of [Dal99]:

E
[
|uHn+1(t, x)|p

]
≤Cp

(
|I0(t, x)|p + E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)uHn (s, y)WH(dy, ds)

∣∣∣p])
≤C + C E

[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)uHn (s, y)WH(dy, ds)

∣∣∣p]
=:C + C J.

(2.96)

We apply now Theorem 2.17 to obtain

J ≤C cH (νt,H)
p
2
−1

∫ t

0
ds
(

sup
x∈R

E
[
|uHn (s, x)|p

]) ∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ

≤C cH(νt,H)
p
2
−1

∫ t

0
ds
(

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn (s, x)|p

]) ∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ.

(2.97)

Here, νt,H is defined as

νt,H :=cH

∫ t

0

∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξds

=cH

∫ t

0

∫
R
|eiξxFGs′(ξ)|2|ξ|1−2Hdξds′

=cH

∫ t

0

∫
R
|FGs(ξ)|2|ξ|1−2Hdξds.

Observe that for every H ∈ (0, 1) it holds cH := Γ(2H+1) sin(πH)
2π ≤ 1

π ,. We notice moreover that
νt,H is almost equal to the last integral appearing in (2.97), except for the fact that in νt,H
we are also integrating with respect to the time variable. This difference does not allow us to
consider both terms as a unique term. Therefore, we take them into account separately in our
calculations.

We start with νt,H : thanks to Lemma 2.46, this term, both in the case of the heat and the
wave equations, is bounded uniformly in t and H, i.e.

sup
H∈[η1,η2]

sup
t∈[0,T ]

νt,H = C <∞. (2.98)

We compute now the dξ integral in (2.97). Here the estimation is more involved, at least for
the case of the heat equation. In both cases we follow the explicit computations on page 13 of
[BJQ15].
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We start from the wave equation case:∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ =

∫
R
|FGt−s(ξ)|2|ξ|1−2Hdξ

=

∫
R

sin2((t− s)|ξ|)
|ξ|2

|ξ|1−2Hdξ = 2

∫ ∞
0

sin2((t− s)ξ)
ξ1+2H

dξ

= 2(t− s)2H

∫ ∞
0

sin2(x)

x1+2H
dx = 2(t− s)2H22H−1C1−2H

= (t− s)2H22HC1−2H ≤ T 2H22HC1−2H ,

(2.99)

where we used the change of variable x = (t − s)ξ and the last integral is the same appearing
in page 13 of [BJQ15]. The constant C1−2H appearing is the same one appearing in Lemma
2.46. We already showed that C1−2H defines a continuous function for H ∈ (0, 1), so it can be
bounded by a constant C when H ∈ [η1, η2]. Thus we can conclude that in the case of the wave
equation

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ = C <∞.

This implies that

J ≤ C
∫ t

0
ds
(

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn (s, x)|p

])
.

This quantity does not depend on H and x, so that we can infer from (2.96) that it holds

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn+1(t, x)|p

]
≤ C + C

∫ t

0
ds
(

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn (s, x)|p

])
.

We can use now the classical Grönwall lemma with fn(s) := supH,x E
[
|uHn (s, x)|p

]
and g = C

to conclude that
sup
n≥0

sup
t∈[0,T ]

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn (t, x)|p

]
<∞,

which is what we wanted to show.
In the case of the heat equation, the computations are more involved, since in the estimate

(2.99) the term (t − s) appears raised to a negative power, and then it cannot be bounded
uniformly by a constant for any s ≤ t. We have thus to use Lemma 15 of [Dal99] in his full
generality. In detail, we have∫

R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ =

∫
R
|FGt−s(ξ)|2|ξ|1−2Hdξ

=

∫
R
e−t|ξ|

2 |ξ|1−2Hdξ = 2

∫ ∞
0

e−tx
2
x1−2Hdx

= (t− s)H−1

∫ ∞
0

e−yy−Hdy = Γ(1−H)(t− s)H−1 =: gH(t− s).

Observe that for all H ∈ [η1, η2] we have gH(t− s) ≤ g(t− s), where

g̃(t− s) := Γ(1− η2)×

{
(t− s)η1−1, s ∈ (t− 1, t]

1, s ∈ [0, t− 1].

Plugging this result into the estimation of J we have that

J ≤ C
∫ t

0
ds
(

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn (s, x)|p

])
g̃(t− s).
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Again, this estimate is uniform with respect to H and x, so that we can take the supremum
on the left-hand side of (2.96) as we did in the case of the wave equation, and conclude by
Lemma 15 of [Dal99] (with fn defined as before and g(t − s) = Cg̃(t − s)) that (2.95) holds.
Given (2.95), we have that (2.94) clearly follows

Step 2: We want to prove that (2.93) holds. We compute separately the time and the space
increments, and then we deduce the general result. We start from the space increments.

We prove that, given p > 2, there exists C such that for every |h| ≤ 1 it holds

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x+ h)− uH(t, x)|p

]
≤ C|h|η1p (2.100)

We start computing

E
[
|uH(t, x+ h)− uH(t, x)|p

]
≤C

(
|I0(t, x+ h)− I0(t, x)|p

+ E
[∣∣∣ ∫ t

0

∫
R

[Gt−s(x+ h− y)−Gt−s(x− y)]uH(s, y)WH(dy, ds)
∣∣∣p])

=: C(A1 +A2)

Thanks to (2.88) and (2.87) we have that supt,xA1 ≤ C|h|η1 . Regarding A2, we use Theorem
2.17 to obtain

A2 ≤C(νt,H)
p
2
−1

∫ t

0
ds
(

sup
y∈R

E
[
|uH(s, y)|p

])
× cH

∫
R

∣∣∣F(Gt−s(x− ·) +Gt−s(x+ h− ·)
)

(ξ)
∣∣∣2|ξ|1−2Hdξ.

We point out that the quantity νt,H also depends of the integrand function, which in this case
is [Gt−s(x+ h− y)−Gt−s(x− y)]uH(s, y). We see how to handle this soon.

Thanks to Step 1, we can take the supremum of E
[
|uH(s, y)|p

]
also with respect to t and

H, and obtain

A2 ≤C(νt,H)
p
2
−1 sup

(t,x)∈[0,T ]×R
sup

H∈[η1,η2]
E
[
|uH(t, x)|p

]
×
∫ t

0

∫
R

∣∣∣F(Gt−s(x− ·) +Gt−s(x+ h− ·)
)

(ξ)
∣∣∣2|ξ|1−2Hdξds

=C(νt,H)
p
2 sup

(t,x)∈[0,T ]×R
sup

H∈[η1,η2]
E
[
|uH(t, x)|p

]
≤C(νt,H)

p
2 ,

where in the process we recognized that the integral appearing after taking the supremum was
exactly equal to νt,H . So we are only left to give an estimate of

(νt,H)
p
2 :=

(
cH

∫ t

0

∫
R

∣∣∣F(Gt−s(x− ·) +Gt−s(x+ h− ·)
)

(ξ)
∣∣∣2|ξ|1−2Hdξds

) p
2
.
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We will make use of Lemma 2.47:

(νt,H)
p
2 =
(
cH

∫ t

0

∫
R
|eiξx(1− e−iξh)FGs(ξ)|2|ξ|1−2Hdξds

) p
2

=
(
cH

∫ t

0

∫
R
|1− e−iξh|2|FGs(ξ)|2|ξ|1−2Hdξds

) p
2

=
(

2cH

∫ t

0

∫
R

(1− cos(hξ))|FGs(ξ)|2|ξ|1−2Hdξds
) p

2

≤
(

2cH

∫ T

0

∫
R

(1− cos(hξ))|FGs(ξ)|2|ξ|1−2Hdξds
) p

2

≤C
(
C̃H |h|2H

) p
2
.

The constant C̃H is the same appearing in Lemma 3.4 of [BJQ15], and it is given by

C̃H :=

∫
R

(1− cos(η))|η|−1−2Hdη <
1

H
+

1

1−H
≤ C,

provided that H ∈ [η1, η2]. Thus, we have

sup
H∈[η1,η2]

sup
t∈[0,T ]

(νt,H)
p
2 ≤ C|h|Hp ≤ C|h|η1p,

since |h| ≤ 1. As an immediate consequence, we have that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

A2 ≤ C|h|η1p

Since both the estimate for A1 and for A2 are independent from t, x,H we have that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x+ h)− uH(t, x)|p

]
≤ C(A1 +A2) ≤ C|h|η1 ,

which is exactly (2.100).

We need to estimate now the time increments: again, we want to prove that given p ≥ 2
there exists a constant C such that for every |h| ≤ 1 it holds

sup
H∈[η1,η2]

sup
(t,x)∈[0∨(−h),T∧(T−h)]×R

E
[
|uH(t+ h, x)− uH(t, x)|p

]
≤

{
C|h|η1p wave equation,

C|h|
η1
2
p heat equation.

(2.101)

We compute, supposing h > 0 (the case h < 0 is analogous)

E
[
|uH(t+ h, x)− uH(t, x)|p

]
≤C

(
|I0(t+ h, x)− I0(t, x)|p

+ E

[∣∣∣∣∣
∫ t

0

∫
R

[Gt+h−s(x− y)−Gt−s(x− y)]uH(s, y)WH(dy, ds)

∣∣∣∣∣
p]

+ E

[∣∣∣∣∣
∫ t+h

t

∫
R
Gt+h−s(x− y)uH(s, y)WH(dy, ds)

∣∣∣∣∣
p])

=:C(B1 +B2 +B3).
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As for the space increments, from (2.88) and (2.87) we have that (recall that the deterministic
solution I0 is by construction independent from H)

sup
(t,x)∈[0,T∧(T−h)]×R

B1 ≤

{
C|h|

η1
2
p heat equation,

C|h|η1p wave equation.

Regarding B2, we have by Theorem 2.17

B2 ≤C(νt,H)
p
2
−1

∫ t

0
ds sup

x∈R
E
[
|uH(s, x)|p

]
× cH

∫
R

∣∣∣F(Gt+h−s(x− ·)−Gt−s(x− ·))(ξ)
∣∣∣2|ξ|1−2Hdξds.

≤C(νt,H)
p
2
−1 sup

H∈[η1,η2]
sup

(t,x)∈[0,T∧(T−h)]×R
E
[
|uH(t, x)|p

]
× cH

∫ t

0

∫
R

∣∣∣F(Gt+h−s(x− ·)−Gt−s(x− ·))(ξ)
∣∣∣2|ξ|1−2Hdξds

≤C(νt,H)
p
2 .

We are then left to estimate νt,H .

νt,H =cH

∫ t

0

∫
R

∣∣∣F(Gt+h−s(x− ·)−Gt−s(x− ·))(ξ)
∣∣∣2|ξ|1−2Hdξds

=cH

∫ t

0

∫
R

∣∣∣F(Gs′+h(x− ·)−Gs(x− ·)
)

(ξ)
∣∣∣2|ξ|1−2Hdξds

≤C
∫ T

0

∫
R

∣∣∣F(Gs′+h(x− ·)−Gs(x− ·)
)

(ξ)
∣∣∣2|ξ|1−2Hdξds

=C

∫ T

0

∫
R

∣∣∣FGs′+h(ξ)−FGs(ξ)
∣∣∣2|ξ|1−2Hdξds

≤C

{
C1,HT |h|2H wave equation,

C2,H |h|H heat equation.

The last inequality holds thanks to Lemma 2.48.The constants C1,H , C2,H are different, but we
already showed in Section 2.4.3 that both can be bounded by 1

H + 1
1−H , which is a continuous

function on (0, 1), and thus bounded on [η1, η2] by a constant C. This means that

(νt,H)
p
2 ≤

{
C|h|Hp ≤ C|h|η1p wave equation,

C|h|
H
2
p ≤ C|h|

η1
2
p heat equation.

Since these estimates are now uniform with respect to t, x,H, we can infer that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T∧(T−h)]×R

B2 ≤

{
C|h|η1p wave equation,

C|h|
η1
2
p heat equation.
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We are left with estimating the term B3:

B3 =E
[∣∣∣ ∫ T

0

∫
R

1[t,t+h](s)Gt+h−s(x− y)uH(s, y)WH(dy, ds)
∣∣∣p]

≤C(νt,H)
p
2
−1

∫ T

0
ds sup

y∈R
E
[
|uH(s, y)|p

]
× cH

∫
R
|1[t,t+h](s)FGt+h−s(x− ·)(ξ)|2|ξ|1−2Hdξ

≤C(νt,H)
p
2
−1 sup

H∈[η1,η2]
sup

(t,x)∈[0,T ]×R
E
[
|uH(t, x)|p

]
× cH

∫ T

0

∫
R

1[t,t+h](s)|FGt+h−s(x− ·)(ξ)|2|ξ|1−2Hdξds

≤C(νt,H)
p
2 .

We have to estimate again (νt,H): we perform the change of variables s′ = t+ h− s and we use
again Lemma 2.46 to obtain

νt,H =cH

∫ T

0

∫
R

1[0,h](s
′)|FGs′(ξ)|2|ξ|1−2Hdξds′

≤C
∫ h

0

∫
R
|FGs′(ξ)|2|ξ|1−2Hdξds′

≤C

{
C̃1,H |h|1+2H wave equation,

C̃2,H |h|H heat equation.

As we pointed out right after (2.71), the two constants C̃1,H and C̃2,H are continuous functions
with respect to H on (0, 1). This means we can bound both with a constant C independent
from H ∈ [η1, η2]. Thus we have

(νt,H)
p
2 ≤ C

{
|h|p/2+Hp ≤ |h|η1p wave equation,

|h|
p
2
H ≤ |h|

p
2
η1 heat equation.

Since also in this case the estimate is independent from t, x,H, we can conclude that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T∧(T−h)]×R

B3 ≤ C

{
|h|η1p wave equation,

|h|
p
2
η1 heat equation.

Putting all the estimates together, we conclude that (2.101) holds.

Our final aim is to prove (2.93). We suppose that at least one of the two increments |t′ − t|
and |x′ − x| is smaller than 1. Indeed, if both |t′ − t| ≥ 1 and |x′ − x| ≥ 1 we have, thanks to
Step 1, the stronger estimate

sup
H∈[η1,η2]

E
[
|uH(t′, x′)− uH(t, x)|p

]
≤ C.
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Given t′, t, x′, x, we define h = t′ − t and k = x′ − x and we have

E
[
|uH(t′, x′)− uH(t, x)|p

]
=E
[
|uH(t+ h, x+ k)− uH(t, x)|p

]
≤C

(
E
[
|uH(t+ h, x+ k)− uH(t, x+ k)|p

]
+ E

[
|uH(t, x+ k)− uH(t, x)|p

])

≤C

(
sup

H∈[η1,η2]
sup

(t,x)∈[0,T∧(T−h)]×R
E
[
|uH(t+ h, x)− uH(t, x)|p

]
+ sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uH(t, x+ k)− uH(t, x)|p

])

≤

C
(
|h|η1p + |k|η1p

)
= C

(
|t′ − t|η1p + |x′ − x|η1p

)
wave equation,

C
(
|h|

η1
2
p + |k|η1p

)
= C

(
|t′ − t|

η1
2
p + |x′ − x|η1p

)
heat equation,

so it suffices to take p > 4
η1

for the heat equation and p > 2
η1

to obtain (2.93) and conclude the
proof.

We conclude this section by proving an easy consequence of Step 1 of the proof above, which
extends Corollary 2.65 to the case H ≥ 1/2. This result will be a key tool in the next section,
when we identify the limit distribution.

Lemma 2.69. Let H ≥ 1/2 and {uHn }n be the sequence of Picard iterations (2.42) which
converge to the solution of the mild formulation (2.38). Then uHn converges in Lp(Ω) to the
solution uH uniformly also with respect to H ∈ [η1, η2], i.e. it holds

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)− uH(t, x)|p

]
n→∞−−−→ 0.

Proof. It is sufficient to use the Gronwall lemma in the same fashion as Theorem 13 of [Dal99],
with some care to the fact that the result has to be uniform also with respect to H ∈ [η1, η2].
We start by computing

E
[
|uHn+1(t, x)− uHn (t, x)|p

]
=E
[∣∣∣ ∫ t

0

∫
R
Gt−s(x− y)[uHn (s, y)− uHn−1(s, y)]WH(ds, dy)

∣∣∣p]
≤cp(νt,H)

p
2
−1

∫ t

0
ds
(

sup
x∈R

sup
H∈[η1,η2]

E
[
|uHn (s, x)− uHn−1(s, x)|p

])
× cH

∫
R
|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ.

We have already noticed in (2.98) that

sup
H∈[η1,η2]

sup
t∈[0,T ]

νt,H <∞.

Afterwards, we also proved that the dξ integral can be bounded by a constant C uniformly in
H, t, and x, All of these facts imply that

E
[
|uHn+1(t, x)− uHn (t, x)|p

]
≤ C

∫ t

0
sup
x∈R

sup
H∈[η1,η2]

E
[
|uHn (s, x)− uHn−1(s, x)|p

]
ds.

If we define now

Mn(t) = sup
s∈[0,t]

sup
H∈[η1,η2]

sup
x∈R

E
[
|uHn+1(s, x)− uHn (s, x)|p

]
,
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we have that it holds

Mn(t) ≤ C
∫ t

0
Mn−1(s)ds,

which, together with the fact that

sup
t∈[0,T ]

M0(t) = sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|u1(t, x)− u0(t, x)|p

]
<∞,

implies by the classical Gronwall lemma that
∑

n≥0Mn(T ) converges, which implies that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[
|uHn (t, x)− uH(t, x)|p

]
n→∞−−−→ 0.

In fact, we already know that the (t, x)–uniform limit in Lp(Ω) of every uHn exists and it is equal
to uH .

Identification of the limit

Let now H0 ∈ (1
4 , 1) and consider {Hn, n ∈ N} such that Hn → H0 as n → ∞. The tightness,

that we showed in Proposition 2.61 and Proposition 2.68, of the set of probability measures
induced by {uHn}n on C([0, T ]× R) implies that there exists a subsequence Hnk such that

uHnk
d−→ Y, as k →∞

where Y is a stochastic process with a.s. continuous trajectories and the convergence is in the
usual weak sense.

We want to identify this limit with uH0 . To do this, we will check that given an arbitrary
sequence Hn converging to H0, the finite dimensional distributions of uHn will converge to
those of uH0 . This is sufficient to conclude the proof thanks to Theorem 2.6 of [Bil]: given
an arbitrary subsequence uHnk , thanks to our tightness results we would have that it has a

further subsequence u
Hnk` that converges to some process Ỹ , and the identification of the finite

dimensional convergence of u
Hnk` → uH0 would allow us to use Theorem 2.6 of [Bil].

Before stating and proving the main result of this section, we need some preliminaries.
The main idea is to show the convergence of the finite dimensional distributions of uHn to the
ones of uH0 by showing the L2(Ω) convergence uHn(t, x) → uH0(t, x), for any fixed (t, x) ∈
[0, T ] × R. This can be done thanks to the fact that, in Subsection 2.2.3, we defined all our
noises {WH , H ∈ (0, 1)} on the same probability space. The idea to show uHn(t, x)→ uH0(t, x)
is to show that uHnm (t, x) → uH0

m (t, x) in L2(Ω) as n → ∞ for the m-th Picard iteration, and
then to extend this to uHn thanks to a uniform limiting argument in m.

In order to show the convergence result for the Picard iterations, we will make use of Theorem
2.42, that allows us to see the m-th Picard iteration as

uHnm (t, x) =
m∑
j=0

IHnj (gj(·, t, x)),

where the latter is a finite sum of multiple Wiener integrals of order up to m and the gj are
given by (2.43). Then, the multiple Wiener integrals of order j ≤ m relative to different values
of H can be compared explicitly thanks to the representation result for IHn given by Theorem
2.14.

We are now ready to prove our final result which, in turn, completes the proof of Theorem
2.45 in the linear multiplicative case.
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Proposition 2.70. Let H0 ∈ (1
4 , 1), and Hn → H0. Let {uHn}n and uH0 be the solutions of

(2.38) with the correspondent noise. Then the finite dimensional distributions of uHn converge
to those of uH0, as n→∞.

Proof. In order to show the finite dimensional weak convergence we will make use of the uniform
Lp(Ω) convergence of the Picard iterations uHm obtained in Corollary 2.65 for H ≤ 1/2 and in
Lemma 2.69 for H ≥ 1/2. It is sufficient to consider p = 2. We have:

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[
|uHm(t, x)− uH(t, x)|2

]
n→∞−−−→ 0.

As we already suggested, it is sufficient to show the stronger pointwise L2(Ω) convergence.
Thus, we show that, for any fixed (t, x) ∈ [0, T ]× R:

E
[
|uHn(t, x)− uH0(t, x)|2

]
n→∞−−−→ 0. (2.102)

We have that:

E
[
|uHn(t, x)− uH0(t, x)|2

]
≤C
(

E
[
|uHn(t, x)− uHnm (t, x)|2

]
+ E

[
|uHnm (t, x)− uH0

m (t, x)|2
]

+ E
[
|uH0
m (t, x)− uH0(t, x)|2

])
=:I1(m,n) + I2(m,n) + I3(m).

Thanks to Corollary 2.65 for H ≤ 1/2 and Lemma 2.69 for H ≥ 1
2 , we can infer that, for a

given ε > 0, we can choose m0 big enough such that for every m ≥ m0 we have

sup
n∈N

[
I1(n,m) + I3(m)

]
< ε/2.

Thus we are left to show that I2(m0, n)→ 0 as n→∞. This, in particular, means that we
need to show that the m0-th Picard iteration is continuous in L2(Ω) with respect to H.

By Theorem 2.42, we have that for any H ∈ (1
4 , 1) the Picard iterations uHm0

can be repre-
sented as a sum of iterated integrals up to the order m0. Precisely, we have that

uHm(t, x) =

m0∑
j=0

IHj (gj(·, t, x)),

where the functions gj are defined by (2.43). Since m0 is fixed, we are considering a finite sum.
Thus it suffices to show the the convergence in L2(Ω), with respect to H, for a single iterated
integral IHj (gj). We compute, using the representation result Theorem 2.14:

IHnj (gj)(t, x)−IH0
j (gj)(t, x)

=

∫
{[0,T ]×R}j

(
(cHn)j |ξ1|1/2−Hn · · · |ξj |1/2−Hn − (cH0)j |ξ1|1/2−H0 · · · |ξj |1/2−H0

)
×F(gj(t1, ·, . . . , tj , ·, t, x))(ξ1, . . . , ξn)W̃ (dt1, dξ1) · · · W̃ (dtj , dξj)

(2.103)

Now, we use the classical Itô isometry to compute now

E
[
|IHnj (gj)(t, x)−IH0

j (gj)(t, x)|2
]

=

∫
{[0,T ]×R}j

∣∣∣(cHn)j |ξ1|1/2−Hn · · · |ξj |1/2−Hn − (cH0)j |ξ1|1/2−H0 · · · |ξj |1/2−H0

∣∣∣2
× |F(gj(t1, ·, . . . , tj , ·, t, x))(ξ1, . . . , ξn)|2dξ1 · · · dξj dt1 · · · dtj .
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We show that the last integral converges to 0 when n → ∞. To do this, we have to compute
explicitly the Fourier transform appearing in the above expression. Recall that

FGt(ξ) = e−
t|ξ|2
2 , for the heat equation,

and

FGt(ξ) =
sin(t|ξ|)

ξ
, for the wave equation .

Moreover, in page 10 of [BJQ17] the authors computed explicitly the multiple Fourier transform

Fgj(t1, ·, . . . , tj ,·, t, x)(ξ1, . . . , ξj)

=ηe−i(ξ1+···+ξj)xFGt2−t1(ξ1) FGt3−t2(ξ1 + ξ2) · · ·
× FGt−tj (ξ1 + · · ·+ ξj)1{0<t1<···tj<t}

Plugging in this expression in the last integral and performing basic computations (e.g. consider
the integral on the simplex Tj(t) := {(t1, . . . , tj)|0 < t1 < · · · < tj < t}), we obtain

E
[
|IHnj (gj)(t, x)− IH0

j (gj)(t, x)|2
]

≤
∫
Tj(t)

∫
Rj
dξ1 · · · dξj dt1 · · · dtj

∣∣∣ηFGt2−t1(ξ1)FGt3−t2(ξ1 + ξ2) · · ·

× FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2

×
∣∣∣(cHn)j |ξ1|1/2−Hn · · · |ξj |1/2−Hn − C(H0)j |ξ1|1/2−H0 · · · |ξj |1/2−H0

∣∣∣2
=

∫
Tj(t)

∫
Rj
dξ1 · · · dξj dt1 · · · dtjη

( j∏
`=1

|FGt`+1−t`(η`)|
2
)

×
∣∣∣(cHn)j |η1|1/2−Hn |η2 − η1|1/2−Hn · · · |ηj − ηj−1|1/2−Hn

− (cH0)j |η1|1/2−H0 |η2 − η1|1/2−H0 · · · |ηj − ηj−1|1/2−H0

∣∣∣2,
where we used the change of variables η` := ξ1 + · · · + ξ`, for ` = 1, . . . , j. We wish to use
dominated convergence to show that this integral converges to 0. It is clear that we have
almost sure pointwise convergence to 0 of the integrand function on Tj(t) × Rj , for any fixed
t, x ∈ [0, T ] × R (here t, x act as parameters of the integral, and moreover we do not need
uniform estimates in this case). Indeed, for this it is sufficient to notice that the constant cH
is continuous as a function of H on (0, 1). Moreover, to show that an integrable upper bound
exists, we observe first that cH it is also bounded by a constant C independent from H, whenever
H ∈ K, where K is any compact subset of (0, 1) (see its definition in Theorem 2.14).

Now, we show that the integrand can be bounded. We start by bounding it with the two
terms:( j∏

`=1

|FGt`+1−t`(η`)|
2
)∣∣∣(cHn)j |η1|

1
2
−Hn |η2 − η1|

1
2
−Hn · · · |ηj − ηj−1|

1
2
−Hn

− (cH0)j |η1|
1
2
−H0 |η2 − η1|

1
2
−H0 · · · |ηj − ηj−1|

1
2
−H0

∣∣∣2,
≤
( j∏
`=1

|FGt`+1−t`(η`)|
2
)

2

(
(cHn)2j |η1|1−2Hn |η2 − η1|1−2Hn · · · |ηj − ηj−1|1−2Hn

+ (cH0)2j |η1|1−2H0 |η2 − η1|1−2H0 · · · |ηj − ηj−1|1−2H0

)
.
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The two resulting terms are of the same type, except for the fact that the first one also
depends on n, and they are equivalent to the integrands studied in [BJQ17], page 11-13 (in the
case of wave equation only, and only for H ∈ (1

4 ,
1
2)). From now on we will only consider the

part of the integrand function that depends on n; for the other part, its integrability will be an
immediate consequence of the first case.

We study now separately the term

( j∏
`=1

|FGt`+1−t`(η`)|
2
)

(cHn)2j |η1|1−2Hn |η2 − η1|1−2Hn · · · |ηj − ηj−1|1−2Hn (2.104)

in the cases Hn ≥ 1/2 and Hn ≤ 1/2. In the former, the bounding function can be produced
quite simply, while in the latter we need some more effort.

Let us start from the latter case, i.e. Hn ≤ 1/2: we want to produce an integrable function
independent of n which bounds the integrand above. We use the following fact: whenever
H ∈ (0, 1

2),
j∏
`=2

|η` − η`−1|1−2H ≤
∑
α∈Dj

j∏
`=1

|η`|α` , (2.105)

where Dj is a set with cardinality 2j−1. Its elements are multi-indices α = (α1, . . . , αj) whose
sum equals (j − 1)(1− 2H) and satisfy

α1 ∈ {0, 1− 2H}, and α` ∈ {0, 1− 2H, 2(1− 2H)}, for ` = 2, . . . , j.

When H = Hn, we denote the α` as α`,n, replacing H with Hn in their definition. The fact
that (2.105) holds true is based on the inequality, which holds for a, b > 0 and p ∈ (0, 1]:

(a+ b)p ≤ ap + bp.

Using this inequality with p = 1 − 2H > 0 and doing some computations (page 12, [BJQ17]),
we obtain (2.105). We can bound the integrand (2.104) (after removing the constant cHn ≤ C)
with:

j∏
`=1

∣∣∣FGt`−t`−1
(η`)

∣∣∣2|η1|1−2Hn · · · |ηj − ηj−1|1−2Hn

≤
j∏
`=1

∣∣∣FGt`−t`−1
(η`)

∣∣∣2|η1|1−2Hn
∑
α∈Dj

j∏
`=1

|η`|α`,n

Let us remark that, for every H ∈ (1/4, 1/2) and in the case of the wave equation, these
integrands have already been shown, in pages 11-13 of [BJQ17], to be integrable on our domain.
If we extend this result to the heat equation case, we can use the upper bound function defined
in the following way: let β1 = minnHn > 1/4 and β2 = 1/2. We define f0, f1, f2 : R→ R as

f0(|x|) = 1,

f1(|x|) =

{
|x|1−2β1 |x| ≥ 1,

|x|1−2β2 = 1 |x| < 1,

f2(|x|) =

{
|x|2(1−2β1) |x| ≥ 1,

|x|2(1−2β2) = 1 |x| < 1.
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Define, for every α`,n, the quantity

N(α`,n) :=


0 α`,n = 0,

1 α`,n = 1− 2Hn,

2 α`,n = 2(1− 2Hn).

We are now ready to bound the integrand with

j∏
`=1

∣∣∣FGt`−t`−1
(η`)

∣∣∣2|η1|1−2Hn
∑
α∈Dj

j∏
`=1

|η`|α`,n

≤
j∏
`=1

∣∣∣FGt`−t`−1
(η`)

∣∣∣2f1(|η1|)
∑
α∈Dj

j∏
`=1

fN(α`,n)(|η`|).

(2.106)

The last function is integrable; to see this it is sufficient to divide the space Tj(t)×Rj in the 2j

regions generated by all the possible combinations |η`| ≥ 1 or |η`| < 1, for ` = 1, . . . , j. Then,
in order to show that each of these reduced integrals is bounded, it suffices to bound it with
the integral on the whole space, which we will show now to be bounded.

To check this last fact, it is sufficient to show it for a single integrand of the form

j∏
`=1

∣∣∣FGt`−t`−1
(η`)

∣∣∣2|η1|β
∑
α∈Dj

j∏
`=1

|η`|α` (2.107)

where, this time, the β, αj do not take values into a discrete set, but they satisfy the weaker
constraints

β ∈ K0 ⊂ [0, 1/2), α1 ∈ K1 ⊂ [0, 1/2), and α` ∈ K2 ⊂ [0, 1), for ` = 2, . . . , j,

where the sets K1,K2 are fixed compact and given by K1 = [0, 1−2 minHn] and K2 = [0, 2(1−
2 minHn)] (we are assuming implicitly that minHn < 1/2; if this is not the case, then the entire
sequence falls in the case Hn ≥ 1/2, which we will study afterwards). It is important to notice
that these sets K0,K1,K2 are fixed, given the sequence Hn. The fact that 1− 2 minHn < 1/2
and 2(1− 2 minHn) < 1 turns out to be crucial for our estimates.

We write the integral of (2.107) on Tj(t)× Rj explicitly (see [BJQ17], page 12)∫
Tj(t)

(∫
R
|FGt2−t1(η1)|2|η1|β+α1dη1

)
×

j∏
`=2

(∫
R
|FGt`+1−t`(η`)|

2|η`|α`dη`
)
dt1 · · · dtj .

(2.108)

Notice that here we do not have any summation over Dj ; in fact, we are considering only a
single term. From now on, we have to consider separately the wave equation case and the heat
equation case. As we already pointed out in (2.82), for any γ ∈ (−1, 1) it holds∫

R
|FGt(ξ)|2|ξ|γdξ ≤

{
C ′γ(2− γ)t1−γ wave equation,

C ′′γ
1−γ

2 t−
(γ+1)

2 heat equation.

We recall that the constants C ′γ and C ′′γ are continuous with respect to γ ∈ (−1, 1). This time
we will use γ = 1− 2H and γ = 2(1− 2H), and still we can bound them uniformly with respect
to H ∈ K ⊂ (1

4 ,
1
2 ], with K compact.
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Using this result in (2.108) we obtain, for the heat equation,∫
Tj(t)

(t2 − t1)
−β−α1

2

j∏
`=2

(t`+1 − t`)
−α`−1

2 dt1 · · · dtj = C <∞

The last integral is bounded thanks to the fact that the time intervals are finite and all the
exponents are strictly greater than −1.

For the wave equation, we have∫
Tj(t)

(t2 − t1)1−β−α1

j∏
`=2

(t`+1 − t`)1−α`dt1 · · · dtj = C <∞,

In this case, the exponents are even greater than 0. This concludes the proof in the case
H ∈ (1

4 ,
1
2 ].

In the case H ∈ [1
2 , 1), the computations are much less involved. Recall that we essentially

have to bound the integrand in the following integral∫
Tj(t)

∫
Rj

( j∏
`=1

∣∣∣FGt`+1−t`(ξ1 + · · ·+ ξ`)
∣∣∣2)|ξ1|1−2Hn · · · |ξj |1−2Hndξ1 · · · dξjdt1 · · · dtj . (2.109)

Here, the fact that 1− 2Hn < 0 is helping us. Indeed, we can define the bounding function in
a quite straightforward way: let

g(|x|) :=

{
1 |x| > 1,

|x|1−2(maxnHn) |x| < 1.

Clearly, the integrand function in (2.109) is bounded for any n ∈ N by

( j∏
`=1

∣∣∣FGt`+1−t`(ξ1 + · · ·+ ξ`)
∣∣∣2)g(|ξ1|) · · · g(|ξj |).

We check that this upper bound function is integrable. We can compute∫
Tj−1(tj)

∫
Rj−1

dξ1 · · · dξj−1dt1 · · · dtj−1

(( j−1∏
`=1

∣∣∣FGt`+1−t`(ξ1 + · · ·+ ξ`)
∣∣∣2g(|ξ`|)

)
×
∫ t

tj−1

∫
R

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2g(|ξj |)dξjdtj

)
.

(2.110)

We compute:∫ t

tj−1

∫
R

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2g(|ξj |)dξjdtj

=

∫ t

tj−1

∫
|ξj |>1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2g(|ξj |)dξjdtj

+

∫ t

tj−1

∫
|ξj |≤1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2g(|ξj |)dξjdtj

=

∫ t

tj−1

∫
|ξj |>1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2dξjdtj

+

∫ t

tj−1

∫
|ξj |≤1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2|ξj |1−2 minnHndξjdtj .
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We check separately the wave equation case and the heat equation case: for the wave equation,
it holds that

|FGt(ξ)| =
∣∣∣sin(t|ξ|)
|ξ|

∣∣∣ ≤ t, for every ξ ∈ R, for every t ∈ [0, T ]

Thus, we have∫ t

tj−1

∫
|ξj |≤1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2|ξj |1−2 minnHndξjdtj

≤
∫ t

tj−1

∫
|ξj |≤1

|t− tj |2|ξj |1−2 minnHndξjdtj ≤
CT 3

1−minnHn
<∞,

and ∫ t

tj−1

∫
|ξj |>1

sin2
[
(t− tj)|ξ1 + · · ·+ ξj |

]
|ξ1 + · · ·+ ξj |2

dξjdtj

≤
∫ t

tj−1

∫
R

sin2
[
(t− tj)|ξ1 + · · ·+ ξj |

]
|ξ1 + · · ·+ ξj |2

dξjdtj =

∫ t

tj−1

C(t− tj)dtj <∞,

since
∫
R

sin2(t|x|)
|x|2 dx = πt.

We can now repeat exactly the same computations, starting from (2.110) in the case j −
1, j − 2, . . . , 1 to obtain easily the integrability of our upper bound for the wave equation case.

For the heat equation, we have

|FGt(ξ)| = |e−
t|ξ|2
2 | ≤ C, for every ξ ∈ R, for every t ∈ [0, T ].

We have

∫ t

tj

∫
|ξj |≤1

∣∣∣FGt−tj (ξ1 + · · ·+ ξj)
∣∣∣2|ξj |1−2 minnHndξjdtj

≤
∫ t

tj

∫
|ξj |≤1

C|ξj |1−2 minnHndξjdtj ≤
CT

1−minnHn
= C,

and ∫ t

tj

∫
|ξj |>1

exp
(
− (t− tj)|ξ1 + · · ·+ ξj |2

2

)
dξjdtj

≤
∫ t

tj

∫
R

exp
(
− (t− tj)|ξ1 + · · ·+ ξj |2

2

)
dξjdtj =

∫ t

tj

C
√
t− tjdtj <∞,

which, again by iterating this computation, shows that the upper bound function is bounded
also in the heat equation case. This completes the proof.

We put together the pieces of the proof of Theorem 2.45 in our standing case.

Proof (Theorem 2.45, linear multiplicative case). It is sufficient to notice that thanks to Propo-
sition 2.61 and Proposition 2.68 we have that the sequence of probability measures induced by
{uHn , n ∈ N} is tight on C([0, T ]× R).

This fact, together with the finite dimensional L2(Ω) convergence proven in Proposition

2.70, shows that uHn
d−→ uH0 on C([0, T ]× R), when n→∞.
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3 | A rough paths approach to SDEs
with fractional noise

Our main objective in this chapter is to study the continuity properties with respect to H of
the SDE, defined for t ∈ [0, T ]:

dXt = µ(Xt)dt+ σ(Xt)dW
H
t , (3.1)

where the driving noise WH is a fBm of Hurst parameter H ∈ (1
3 ,

1
2), here interpreted in the

framework of rough paths theory.

The interest for such a problem comes from the natural translation of the results of Chapter
2 to the framework, developed very recently in literature, of the regularity structures. The first
step towards this direction is to consider the one-dimensional SDE problem in the setting of
rough paths theory.

Our main problem in this chapter will be the continuity of the SDE solution {Xt, t ∈ [0, T ]}
with respect to the parameter H. This problem has been already investigated by [RiTa16],
[RiTa17] in the case H → (1

2)+ (that is, when the convergence is from above). We give a proof
of the continuity result when the limit value H0 ∈ (1

3 ,
1
2). Such convergence result has been

proved for a general class of noises in [FrVi] (see Theorem 15.51 therein). Due to a change
in the definition of ρ-variation, introduced in the errata corrige of [FrVi], the above result has
been subsequently slightly modified. With the new definition, carefully studied in [FrVi11], it is
not entirely clear whether one can apply Theorem 15.51 of [FrVi] to the noise WH , in order to
prove the weak convergence result for (3.1). The main result of this chapter is a refined version
of this proof, which uses a slightly weaker hypothesis instead of the one assumed in [FrVi], and
which is specialized to the case of the noise WH . This work will appear in the forthcoming
paper [DGMU20].

3.1 Rough paths theory

In this section we will give a brief introduction to rough paths theory, giving the basic notions
necessary to motivate and define the objects that we will use in the following. We follow closely
the rather direct approach of [FrHa].

3.1.1 Motivation

Rough paths theory originates in the 90s from a very natural problem. Let us consider the
classical stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, (3.2)

where µ, σ are regular functions (for example, Lipschitz continuous), and Wt is a sBm defined
of a filtered probability space (Ω,F , {Ft, t ∈ [0,∞)},P). In the context of probability theory,
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this equation has a well-established solution theory, through Itô (or Stratonovich) integration
theory. Anyway, if, for a fixed ω ∈ Ω, we consider this equation as a deterministic problem, the
resulting ODE is ill-posed.

We will briefly explain why. For a complete and very clear insight on this (and much more),
we refer to [FrHa], Chapter 1. In order to give meaning from an analytical point of view to
(3.2) one needs to be able to define, for f, g : [0, T ]→ R at least continuous, the integral∫ T

0
f(t)dg(t),

where f and g play the role of X and W , respectively. This problem is well-known, and the most
classical theory of such integrals is the Riemann-Stieltjes integration theory. In this framework,
supposing that f is continuous and g is of bounded variation, one has that the integral

∫
fdg

is well-defined in the sense that

lim
|P|→0

∑
tj∈P

f(cj)(g(tj+1)− g(tj)) =:

∫ T

0
f(t)dg(t) (3.3)

is a good definition of integral. Here, we are taking the limit over partitions P of [0, T ] such
that the mesh |P| := maxj |tj+1− tj | → 0 and the evaluation points cj ∈ [tj , tj+1] can be chosen
arbitrarily. The limit is remarkably independent from the way in which the partitions tend to
0 and from the choice of the evaluation points cj .

This classical integration result has a natural extension in the framework of Hölder contin-
uous functions, called Young integral. The intuitive idea is to trade some of the regularity of g
to f , while the definition (3.3) remains well-posed.

Definition 3.1. Let (S, d) be a metric space and let α ∈ (0, 1) We say that a function f : R→ S
is α-Hölder continuous if there exists a constant C <∞ such that

sup
s 6=t

d(f(s), f(t))

|s− t|α
= C. (3.4)

We denote the vector space of such functions Cα(R;S). The definition naturally extends to
functions defined on any interval [a, b] ⊂ R.

With this definition in mind, we have that the limit in (3.3) is well-posed also if f ∈
Cα([0, T ];R) and g ∈ Cβ([0, T ];R), provided that α+β > 1. Anyway, in order to give a meaning
to (3.2) one should be able at least to give a meaning to the integral∫

R
WtdWt,

which is impossible even in this framework. Indeed, by Proposition 1.7, the trajectories of sBm
only belong to Cα([0, T ];R), for every α < 1

2 , giving 2α < 1.

We explain more clearly why this limitation is really a problem for SDEs. As we already
pointed out, there exist probabilistic ways to find a solution to (3.2). Suppose that we are
exploiting Itô integration theory to give meaning to (3.2). Denote by S : W 7→ X the solution
map (or Itô map) that associates to the sBm W the solution X of (3.2). This map cannot be
made continuous in the sense of paths, whatever (reasonable) space we use to define it on. We
make this precise:

Proposition 3.2 ([FrHa], Proposition 1.1). Let C([0, T ];R) be the space of real-valued contin-
uous functions endowed with the uniform convergence norm, and let W be a sBm. There exists
no separable Banach space B ⊂ C([0, T ];R) such that
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i) The paths of W lie almost surely in B

ii) The map

(f, g)→
∫ ·

0
f(t)ġ(t)dt,

which is well-defined for smooth functions, can be extended to a continuous map from
B × B → C([0, T ];R).

This result shows that it is impossible to make the solution map S continuous with the
structure that we imposed up to now. The main idea of rough paths theory is to overcome this
problem by enhancing the process W with its iterated integral

Ws,t =

∫ t

s
(Wτ −Ws)dWτ , (3.5)

defined in a convenient way. The main contribution of rough paths theory is the following: if,
instead of the process W , we consider the pair (W,W) on a suitable space, the solution map to
equation (3.2) given by (W,W) 7→ X can be made continuous.

A first interesting fact is that the lift map Φ : W 7→ (W,W) is universal, in the sense that it
does not depend from the form of equation (3.2). In general, there are various possible choices
for the lift map Φ. For example, in the case of sBm one can define (3.5) in the Itô or in the
Stratonovich sense, and this will lead to different notions of solution.

There is a second remarkable fact, that shows how the present construction is quite general.
Denote as Si : W 7→ X the solution map in the Itô sense and Ss : W 7→ X the solution map
in the Stratonovich sense. Given our construction, in both cases the solution map factorizes in
Si = Ŝi ◦Φi and Ss = Ŝs ◦Φs., where we denoted as Φi and Φs the lift map respectively of Itô
and Stratonovich integration. We have that the lifted solution map Ŝi = Ŝs =: Ŝ, giving

Si = Ŝ ◦ Φi, Ss = Ŝ ◦ Φs,

so that the map Ŝ is independent from the choice of the lift.

3.1.2 Hölder spaces and lifted paths spaces

We introduce now the main objects that we need to define rough paths spaces. The natural
construction of rough paths spaces is done for V -valued processes Xt, where V is a Banach
space, but, for simplicity, in the following we restrict for simplicity to the case V = R.

Let now X = {Xt, t ∈ [0, T ]} be a continuous function from [0, T ] to R. We wish to define a
rough path for X. Until now, we only considered analytical properties of a path. If we want to
give a general construction of a rough path over X we have to identify the set of algebraic and
analytical properties that a notion of iterated integral X : [0, T ]2 → R has to satisfy in order to
be a good definition of integral. From now on, given a function X : [0, T ] → R we denote th
increment of X over [s, t] as Xs,t := Xt −Xs, not to be confused with Xs,t which is defined on
[0, T ]2.

Definition 3.3. Let X : [0, T ]→ R and X : [0, T ]2 → R be continuous functions. We say that
X satisfies the Chen’s relation if for any s, u, t ∈ [0, T ] it holds

Xs,t − Xs,u − Xu,t = Xs,uXu,t (3.6)

Relation (3.6) is very natural in the context of integration: it is immediate to verify that if
W is a lift defined by (3.5), where we interpret the right-hand side as a Itô integral, we have that
(3.6) is satisfied. Moreover, since Xt,t = 0, it follows from (3.6) with s = u = t that Xt,t = 0
too (this is another natural property, if we think of X as an integral).
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Another crucial consequence of (3.6), that we do not prove here, is the fact that the knowl-
edge of a path t → (X0,t,X0,t) entirely determines the form of X. Thus, we can say that the
couple (X,X) is really a path, that is, a one-parameter object.

We come now to the analytical properties that it is necessary to impose on X and X, recalling
that our general goal is to extend the theory of Young integrals to functions which are rougher,
i.e. less regular.

Definition 3.4. Let α ∈ (1
3 ,

1
2 ]. We define the space of α-Hölder rough paths C α = C α([0, T ])

as the space of pairs X = (X,X) that satisfy (3.6) and for which it holds

||X||α := sup
s 6=t

|Xs,t|
|s− t|α

, and ||X||2α := sup
s 6=t

|Xs,t|
|s− t|2α

. (3.7)

Remark 3.5. The space C α can be seen as the subset of the vector space Cα⊕C2α
2 of the pairs

X = (X,X) which satisfy (3.7) but not necessarily (3.6). This space, endowed with the natural
norm

||X||Cα⊕C2α2 := X0 + ||X||α + ||X||2α
is a Banach space. Somewhat uncomfortably, C α is only a subset of this space and it is not a
linear subspace, due to the non-linear scaling of (3.6). In detail, we have for X ∈ C α and λ ∈ R
that

λXs,t − λXs,u − λXu,t = λ(Xs,t − Xs,u − Xu,t) 6= (λXt − λXu)(λXu − λXs) = λ2Xs,uXu,t,

except for λ = 0, 1.

By Remark 3.5, we cannot see C α as a linear subspace of Cα⊕C2α
2 . Anyway, the norm which

makes Cα ⊕ C2α
2 a Banach still induces a good notion of distance on Cα:

Definition 3.6. Let α ∈ (1
3 ,

1
2 ]. On the space C α we define the α-Hölder rough path metric as

ρα(X,Y) := ||X − Y ||α + ||X− Y||2α = sup
s 6=t

|Xs,t − Ys,t|
|s− t|α

+ sup
s 6=t

|Xs,t − Ys,t|
|s− t|2α

(3.8)

Remark 3.7. Notice that (3.8) does not correspond exactly to the distance induced by the
norm of Cα ⊕ C2α

2 on C α, since it lacks the initial condition term |X0 − Y0|. Anyway, it is
convenient for our purposes to consider Definition 3.6.

The non-linear scaling property of (3.6) given by (X,X)→ (λX, λ2X) suggests the definition
of the following quantity, which is homogeneous with respect to (3.6)

Definition 3.8. We define on C α the α-Hölder rough path norm as the quantity given by

||X||Cα := ||X||α +
√
||X||2α. (3.9)

Remark 3.9. The quantity ||X||Cα is not a norm in the usual sense, because ||λX||Cα 6=
|λ| · ||X||Cα , but scales correctly with respect to the (3.6)-preserving transformation (X,X) →
(λX, λ2X). Indeed, introducing the notation Xλ := (λX, λ2X) we have that

||Xλ||Cα = |λ| · ||X||Cα .

Having defined the algebraic well-posedness relation (3.6) and the spaces with suitable reg-
ularity, we may ask ourselves if they permit a good definition of rough paths. First, we observe
that neither (3.6) nor the definition of C α imply any type of chain rule or integration by parts
formula.
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This is not surprising. Considering the basic sBm setting X = W , we know that there are
several choices (in fact, infinite) for the definition of the integral with respect to W , and only
the Stratonovich integral preserves the classical rules of integration. Anyway, the Itô integral
is a very popular choice, thanks to its non-anticipativity property, which is considered natural
for many applications.

Keeping these considerations in mind, we introduce now the concept of geometric rough
path. The idea is to encode the chain rule as an algebraic property in the rough path space. If
X is a smooth function, we have that

Xs,t =

∫ t

s
(Xτ −Xs)dXτ =

∫ t

s
XτdXτ −XtXs + (Xs)

2

=
(Xt)

2 − (Xs)
2

2
−XtXs + (Xs)

2

=
1

2
(Xt −Xs)

2.

(3.10)

Definition 3.10. We define the space C α
g of geometric rough paths as the space of rough paths

in C α which moreover satisfy condition (3.10).

Remark 3.11. We note that (3.10) completely determines the form of X. This is true only in
dimension one. If we consider paths with values in Rd, the function X becomes Rd ⊗Rd-valued
(matrix-valued) and condition (3.10) becomes Sym(X) = 1

2(Xs,t ⊗Xs,t). In the latter case we

would still have some freedom on the non-diagonal terms Xijs,t, which translates to some freedom

in the definition of
∫
XidXj , whenever i 6= j (we will not go into details here). We refer to

[FrHa] for a precise description of the Rd case.

Remark 3.12. In both [FrVi] and [FrHa], the authors introduce an useful construction, which
permits to see rough paths as Lie group valued functions, for a suitable group GN (Rd). Due
to the fact that we are in the case d = 1, in our case this construction does not help us and
we will not present it. Anyway, some of the results from [FrVi] that we will use are originally
stated following this notation. We will translate them to be consistent with the notation that
we are using. In particular, the distance denoted with d(Xs,Xt) in [FrVi] and with dC(Xs,Xt)
in [FrHa] is simply |Xs,t|+ |Xs,t|1/2 in our case. From now on, we will denote

d(Xs,Xt) := |Xs,t|+ |Xs,t|
1
2

3.1.3 Gaussian processes as rough paths

We report here some useful results about the theory of Gaussian rough paths. Following [FrVi]
and [FrHa], we wish to construct a canonical rough path structure for a class of continuous
Gaussian processes which satisfy a certain condition on their covariance structure. This will
include as a special case the fBm, which we will then study in detail in Section 3.2.

Let {Xt, t ∈ [0, T ]} be a real-valued centred continuous Gaussian process with covariance
structure given, for s, t ∈ [0, T ], by

E[XtXs] = K(s, t).

We recall that a Gaussian process is completely determined by its mean and covariance. We
define now some notions that we will use throughout the rest of this chapter. First, a bit of
notation; given a function f : [0, T ]2 → R, we denote with

f

(
s, t

u, v

)
= f(t, v)− f(t, u)− f(s, v) + f(s, u)

the rectangular increment of f .
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Definition 3.13. Let ∆ := {0 ≤ s ≤ t ≤ T} and ω : ∆ ×∆ → [0,∞). We say that ω is a 2D
control if it is super-additive in the following way: given a rectangle R ⊂ [0, T ]2 and any finite
partition {Rj , 1 ≤ j ≤ n} of R, we have

ω(R) ≥
∑
j≤N

ω(Rj).

Given a function f defined on rectangles, we say that f is controlled by the control ω if for any
rectangle R ⊂ [0, T ]2 it holds

|f(R)| ≤ ω(R)

Definition 3.14. Let f : [0, T ]2 → R and let p ∈ [1,∞). For an interval [a, b], such that a ≤ b,
let D([a, b]) be the family of finite partitions {ai, i ≤ n} of [s, t]. We define for every rectangle
R = [s, t]× [u, v] ⊂ [0, T ]2, with 0 ≤ s ≤ t ≤ T and 0 ≤ u ≤ v ≤ T the p-variation

Vp(f, [s, t]× [u, v]) := sup
{ti}∈D([s,t])
{t′j}∈D([u,v])

(∑
i,j

∣∣∣∣∣f
(
ti, ti+1

tj , tj+1

)∣∣∣∣∣
p) 1

p

(3.11)

and we say that f has finite p-variation if it holds that Vp(f, [0, T ]2) <∞.

Definition 3.15. Let f : [0, T ]2 → R and let p ∈ [1,∞). For every rectangle R ⊂ [0, T ]2 we
define the controlled p-variation as

|f |p-var,R := sup
π∈P(R)

(∑
A∈π

∣∣∣f(A)
∣∣∣p) 1

p

, (3.12)

where we denoted as P(R) the family of partitions of R made by rectangles.

Remark 3.16. Let us remark that the family of grid-like partitions used to define (3.11) is
actually smaller than the family of general rectangular partitions used to define (3.12). This
implies that trivially, for any f , for any R and for any p ≥ 1 one has

Vp(f,R) ≤ |f |p-var,R.

Less trivially, one has that this inequality is strict, whenever p > 1. We will see an example of
this behaviour in the case of the fBm WH in Proposition 3.24.

We will see how, given a continuous and centred Gaussian process X with covariance K, it
is possible to construct a canonical rough path X, provided that the covariance function K has
some p-variation regularity, and that the p-variation of K is controlled by some 2D control ω.
We make it more precise.

Theorem 3.17 ([FrVi], Theorem 15.33). Let Xt, for t ∈ [0, T ], be a centred continuous Gaus-
sian process with values in R. Suppose that there exists a ρ ∈ [1, 2) such that the covariance K
of X has finite controlled ρ-variation dominated by a 2D control ω such that ω([0, T ]2) <∞.

Then, there exists a unique process X in C α such that X lifts X, in the sense that π1(Xt) =
Xt −X0.

Moreover, there exists a constant C = C(ρ) such that for every s ≤ t and for every q ≥ 1 it
holds

E
[
d(Xs,Xt)

q
] 1
q

:= E
[(
|Xs,t|+ |Xs,t|1/2

)q] 1
q ≤ C(ρ)

√
q ω([s, t]2)

1
2ρ (3.13)

The lift X is unique and natural in the sense that it is the limit in the space of rough paths C α
g of

any sequence Xn of piecewise linear or mollified approximations to X such that ||Xn−X||∞ → 0
almost surely.

Remark 3.18. Regarding the approximations to a rough path X via regular functions, we refer
to Chapter 15 fo [FrVi], in which there is a large discussion about piecewise linear and mollified
approximations of a Gaussian process. A complete discussion about this topic would exceed the
scope of this work.
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3.1.4 Rough differential equations

Given a rough path X = (X,X), one wishes to construct a rough differential equations (RDEs)
theory dealing with equations driven by a rough path X. Since we already pointed out that a
rough path X is really a one-dimensional object, in principle there is no problem in trying to
consider equations of the form

dYt = f(Yt)dXt. (3.14)

We want to understand, as usual, this equation in the integral form

Yt = Y0 +

∫ t

0
f(Ys)dXs. (3.15)

The problem in (3.15) is that we have to make sense of the integral with respect to a rough
path X. This is a very rich problem in rough paths theory. Lyons’ original idea (see [Lyo98])
was to define the integral

∫
F (Xt)dXt for functions F of X which were suitably regular. Then,

Gubinelli in [Gub04] extended this approach to include integrands Y which were controlled (we
will not explore the concept) by X, giving rise to a Banach space of integrands. We refer to
Chapter 4 of [FrHa] for an overview of the topic.

To our purposes, we will not enter into the details of the construction of the integral. We
just explain the main idea that connects the construction of the integral for a large enough class
of integrands with the existence and uniqueness results for equations like (3.15). The idea is the
following: if one is able to define the integral

∫
F (X)dX for a suitable large class of functions F ,

one may be able to reformulate the existence for a solution to (3.15) as a fixed point problem,
and solve it through some iterative method.

In general, there is a huge literature regarding the construction of a solution theory for
equations of the type (3.15) (see the already mentioned [FrVi], [FrHa], [Gub04], [Lyo98]).

Another important feature, that we will use in the following, is the fact that the solution
map is continuous, when seen as a map from rough path spaces to function spaces (actually, to
even richer spaces). Again, we will not enter into details, apart from remarking, as we already
did before, that the lack of continuity of the solution map in the framework of classical SDEs
was one of the motivating reasons for the introduction of rough paths.

We move now to our specific case: we recall that we want to study an equation of the form
(3.1), which we rewrite here

dXt = µ(Xt)dt+ σ(Xt)dW
H
t .

One may notice that (3.1) and (3.14) differ for the presence of a drift term. Anyway, it is
possible to see any d-dimensional RDE with drift as a d+ 1-dimensional RDE without drift, by
seeing the dt integral as a ”regular rough path” and adding it as an additional dimension of the
rough path. The details of this construction are given in [FrVi], Chapter 12.

The solution XH
t , as always, is interpreted in the sense

XH
t = XH

0 +

∫ t

0
µ(XH

t )dt+

∫ t

0
σ(XH

t )dWH
t , (3.16)

where X0 ∈ L2(Ω) is the initial condition of the problem. The integral appearing will be
interpreted as an integral with respect to a rough path WH = (WH ,WH) defined over the
process WH .

We are left to show that a canonical rough path lift WH exists for WH . We follow the
construction of a rough path for Gaussian processes given in Subsection 3.1.3. In particular,
we want to use Theorem 3.17 to obtain a canonical geometric rough path for WH , for every
H ∈ (1

3 ,
1
2 ].
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We need to find a ρ ∈ [1, 2) such that the ρ-variation of KH is finite and bounded by a
control ωH . It turns out that, thanks to Theorem 1 of [FrVi11] and to Proposition 3.24 (which
we state and prove in the next section), the function ωH , defined for some ε > 0 small enough,

ωH(R) := |KH |
1

2H
+ε

1
2H

+ε-var,R

is a good control for the ( 1
2H + ε)-variation of KH (notice that 1

2H < 3
2 for our range of values

of H, thus there exists an ε > 0 such that 1
2H + ε < 2). This construction will be clarified later,

when we will also prove some stronger results.

We summarize all the previous considerations in a minimal existence/uniqueness and conti-
nuity result. The result we report is minimal in the sense that we put the minimal structure that
we are going to use in the following section. We refer to [FrVi], Section 12.1.2 for a complete
study of the problem.

Theorem 3.19. Let H ∈ (1
3 ,

1
2 ], let XH

0 = x0 ∈ R be a constant and let µ, σ ∈ C3
b (R)

(bounded functions which are three times differentiable). Then, there exists a unique solution
XH = (XH

t )t∈[0,T ] of equation (3.1) with initial condition x0. Moreover, the solution XH is a

continuous function of WH = (WH
t ,WH

s,t), in the sense that the solution map S, given by

S : C α −→ Cα([0, T ])

WH 7−→ XH ,
(3.17)

is continuous, for any 0 < α < H.

3.2 Weak continuity with respect to the noise

In this section we study our main problem in this Chapter, that is, the continuity in law of the
solution to (3.1) with respect to H. Let us write again equation (3.1)

dXH
t = µ(XH

t )dt+ σ(XH
t )dWH

t ,

where WH is a fBm of Hurst parameter H ∈ (1
3 ,

1
2 ], and we highlighted the dependence of the

solution Xt from H denoting it with XH
t . We restrict to H ≤ 1

2 in order to use the rough paths
techniques in a non-trivial way. Indeed, when H > 1

2 the regularity of the noise allows for a
classical solution theory in the sense of Young integration. By Theorem 3.19 we have that a
solution to (3.1) exists and it is unique. Moreover, the solution operator is continuous from C α

to Cα([0, T ]), for any 0 < α < H.

Remark 3.20. When H = 1
2 , the solution X

1
2 to (3.1) becomes a Stratonovich solution of an

SDE driven by a sBm. This is a direct consequence of the fact that when we lift a sBm W
1
2 to

a geometric rough path, we obtain the Stratonovich integral.

Since we have existence and uniqueness of a solution XH for every H ∈ (1
3 ,

1
2 ], a natural

question that can be addressed is: does the solution XH change continuously with respect to
H? Looking to the equation through the glasses of modelling, this question can be reformulated
as: can I say that if I get a small error on the estimate of H, I also get a small error in my
model prediction XH?

We prove the following result:

Theorem 3.21. let us consider equation (3.1), for t ∈ [0, 1], with µ, σ ∈ C3
b (R). Let X0 be an

L2(Ω) random variable independent on WHn and let us denote by XHn,X0 the solution of the
equation (3.1) with H = Hn ∈

(
1
3 ,

1
2

]
. If Hn → H0 ∈

(
1
3 ,

1
2

]
, then XHn,X0 converges to XH0,X0

in distribution in the space C
1
3 ([0, 1]).
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Remark 3.22. The fact that we consider only t ∈ [0, 1] is not a true restriction, since one can
always reformulate an equation on [0, T ] as an equation on [0, 1] reparametrizing the noise by
considering WH

tT , for t = [0, 1] (see also [FrVi], Chapter 15). Anyway, this assumption simplifies
a bit the estimates in the proof of Theorem 3.21.

In order to prove the theorem, we reason similarly to the following result of [FrVi], adapting
the first part of their proof to work with a more general assumption and writing carefully the
details for the second part.

Theorem 3.23 ([FrVi], Theorem 15.51). Let Xn, for 1 ≤ n ≤ ∞ be a sequence of centred
R-valued continuous Gaussian processes in [0, 1]. Assume:

i) There exists a ρ ∈ [1, 2) such that the covariances Kn of Xn are of finite ρ-variation, and
they are controlled uniformly by a 2-dimensional control ω, in the sense that

sup
n∈N
|Kn|ρ

ρ-var,[s,t]2
≤ ω([s, t]2).

ii) Xn is the natural lift of Xn with paths in C0,p-var
o ([0, T ], G3(R)), for some p > 2ρ.

iii) The covariances Kn converge pointwise to K∞ on [0, 1]2.

Then, for every p > 2ρ, Xn converges weakly to X∞ in the p-variation topology. Moreover, if
ω is Hölder dominated, the convergence holds also with respect to the 1

p -Hölder topology.

The space G3(R) that appears is the space of geometric paths, introduced in Chapter 7 of
[FrVi]. Another useful tool is the following result, which is a slight generalization of a result in
[FrVi11]

Proposition 3.24 ([FrVi11], Examples 1-2). The covariance KH of a fBm of parameter H ∈
(0, 1

2 ] has bounded 1
2H -variation V 1

2H
(KH , [0, T ]2), which moreover satisfies for every s < t

V 1
2H

(KH , [s, t]2) ≤ cH |t− s|2H . (3.18)

Moreover, if one considers H ∈ [η1,
1
2 ], with η1 > 0 fixed, the constant cH can be chosen

uniformly with respect to H.
Finally, one has that the controlled 1

2H -variation is infinite, that is,

|KH | 1
2H

-var,R =∞.

Remark 3.25. Proposition 3.24 shows that the ρ-variation and the controlled ρ-variation are
really two different concepts.

Proof (Proposition 3.24). The proof is almost the same given in [FrVi11], Example 1. In our
result we take care explicitly in the estimates of the dependence from H. Regarding the second
part of the statement, i.e. that |KH | 1

2H
-var,R =∞, we refer to [FrVi11], Example 2.

We scrutinize the computations in Example 1 of [FrVi11]. Fix 0 ≤ s ≤ t ≤ 1. Consider two
partitions {ti}, {t′j} ∈ D([s, t]). Following [FrVi11], we have

∑
j

∣∣∣E[WH
ti,ti+1

WH
tj ,tj+1

]∣∣∣ 1
2H ≤ 6

1
2H |ti − ti+1|. (3.19)

We remark that this is true because all the non-explicit constants C(H) that appear in the
proof given by [FrVi11] (denoted there as cH) can be chosen to be equal to 1, thus we are only
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left with the explicit constant 6
1

2H . This is true because C(H)’s arises in a term of the type∣∣∣E[WH
s,tW

H
u,v]
∣∣∣, with 0 ≤ s ≤ u ≤ v ≤ t ≤ 1. We write explicitly∣∣∣E[WH
s,tW

H
u,v]
∣∣∣∣∣∣ def

= E
[
(WH

t −WH
s )(WH

v −WH
u )
]∣∣∣

=
∣∣∣E[(WH

t −WH
v +WH

v −WH
u +WH

u −WH
s )(WH

v −WH
u )
]∣∣∣

=
∣∣∣E[(WH

t −WH
v )(WH

v −WH
u )
]

+ E
[
(WH

v −WH
u )2

]
+ E

[
(WH

u −WH
s )(WH

v −WH
u )
]∣∣∣.

=
1

2

∣∣∣|t− u|2H − |t− v|2H + |v − s|2H − |u− s|2H
∣∣∣

≤ |u− v|2H ,

where in the last step we used the fact that |t−u|2H = |t− v+ v−u|2H ≤ |t− v|2H + |v−u|2H ,
which is true since 0 < 2H ≤ 1. This implies obviously that |t− u|2H − |t− v|2H ≤ |v − u|2H ,
which is what we used. This estimate appears several times in the proof of [FrVi11], but does
not add any dependence of the constants from H.

Coming back to (3.19), we are only left to sum over i obtaining

∑
i,j

∣∣∣E[WH
ti,ti+1

WH
tj ,tj+1

]∣∣∣ 1
2H ≤ 6

1
2H |t− s|,

and we can take the sup over all partitions of D([s, t]) to obtain our result. The final constant

cH = 6
1

2H is clearly bounded whenever H > η1 > 0, if η1 is fixed, giving also the second part of
the statement, i.e. the independence from H of the constant.

Proof (Theorem 3.21). The idea of the proof is to exploit the continuity of the solution map
stated in Theorem 3.19. It is sufficient to show that

WHn = (WHn
τ ,WHn

s,t )
n→∞−−−→WH0 = (WH0

τ ,WH0
s,t )

in the space C
1
3 . Indeed, by the continuity of the solution map stated in Theorem 3.19, this

implies that
XHn,X0 n→∞−−−→ XH0,X0

in C
1
3 ([0, T ]). We are then left to show that WHn →WH holds in the space C

1
3 .

To prove this, we follow the same reasoning as in the general convergence result Theorem
3.23. However, in our proof, instead of i), we use the slightly weaker assumption

i’) There exist a ρ ∈ [1, 2) such that the covariances Kn of Xn are of finite ρ-variation,
and each of them is controlled by a 2D control ωn, which satisfy the uniform Hölder bound

sup
n∈N
|Kn|ρ

ρ-var,[s,t]2
= sup

n∈N
ωn([s, t]2) ≤ C|t− s|.

The stronger version i) was used in the proof of Theorem 3.23 to obtain the tightness of
the set of measures. In our case we obtain it directly via the Kolmogorov-Lamperti criterion
(Corollary A.11, [FrVi]).

Our proof is structured in the following way:
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Step 1) We state some useful properties of the p-variation and controlled p-variation for functions
f : [0, T ]2 → R

Step 2) We use these properties together with Proposition 3.24 and Corollary A.11 of [FrVi]
and Theorem 15.33 of [FrVi] to obtain the tightness of the set of measures induced by
(WHn)n∈N

Step 3) We identify the limit in the same fashion as in Theorem 15.51, [FrVi], using linear ap-
proximations of WHn which converge uniformly with respect to n ∈ N.

Step 1

In [FrVi11], Theorem 1, the authors showed that even if the ρ-variation and the controlled
ρ-variation are different concepts, they are ε-close concepts. Precisely, we have that for ε > 0,
p ≥ 1, there exists an explicit constant C(p, ε) ≥ 1 such that for every f : [0, T ]2 → R and for
every R rectangle in [0, T ]2 it holds

|f |p+ε-var,R ≤ C(p, ε)Vp(f,R). (3.20)

This of course implies that
|f |p+ε-var,R ≤ C(p, ε)|f |p-var,R

and that
Vp+ε(f,R) ≤ C(p, ε)Vp(f,R) (3.21)

The constant C(p, ε) is given by (see [FrVi11], Theorem 3 with θ = 1 + 1
p −

1
p+ε = 1 + ε

p(p+ε)

and the arbitrary α ∈ (1, θ) that we fix as α := θ−1
2 + 1 = 1 + ε

2p(p+ε))

C(p, ε) =
{[

1 + ζ
(

1 +
ε

2p2 + 2εp+ ε

)]1+ ε
2p(p+ε)

× ζ
(

1 +
ε

2p(p+ ε)

)
+
[
1 + ζ

(
1 +

ε

p(p+ ε)

)]}
,

(3.22)

where ζ denotes the Riemann zeta function. We notice that this quantity, for any fixed ε > 0,
is continuous with respect to p ∈ [1,∞). Indeed, it only diverges when p→∞, since ζ(x)→∞
when x→ 1+.

Step 2

In order to obtain a uniform Kolmogorov-type estimate for the WHn we want to apply
Theorem 15.33 of [FrVi] (Theorem 3.17). The key point is that the constant C appearing in
the estimate (3.13), provided that the process X has finite controlled ρ-variation, depends only
on ρ,

If we show that there exists a unique ρ ∈ [1, 2), independent from n ∈ N, such that all
processes WHn have bounded ρ-variation, we could then give a uniform estimate of

sup
n∈N

E
[
d(WHn

t ,WHn
s )q

] 1
q

We prove that there exists such a ρ ∈ [1, 2). Since we are considering H0 >
1
3 as our limiting

value, then there exists a δ > 0 such that it holds definitively Hn >
1
3 + δ, and thus

sup
n≥n0(δ)

1

2Hn
= ρ0 <

3

2
.
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Let ε1 :=
3
2
−ρ0
2 be fixed in the following considerations. By Step 1, we can define for every

n ∈ N a 2D control ωHn in the following way:

ωHn(R) :=|KHn |
1

2Hn
+ε1

1
2Hn

+ε1-var,R

≤C
( 1

2Hn
, ε1

) 1
2Hn

+ε1
V

1
2Hn

+ε1
1

2Hn

(KHn , R)

≤C V
1

2Hn
+ε1

1
2Hn

(KHn , R),

(3.23)

where in the last inequality we used the fact that, for our fixed ε1 > 0, the quantity C( 1
2Hn

, ε1)

is continuous (and thus bounded) for Hn ∈ (0, 1
2 ] (that corresponds to the region p ∈ [1,∞) in

(3.22)).

Moreover, by [FrVi11], Example 2 we have that

V
1

2Hn
+ε1

1
2Hn

(KHn , [s, t]2) ≤cH |t− s|
2Hn

(
1

2Hn
+ε1

)
=cH |t− s|1+2Hnε1

≤c|t− s|,

(3.24)

where in the last inequality we used Proposition 3.24 (specifically, the fact that cH can be chosen
independently from H ∈ (1

3 ,
1
2 ]) and the fact that |t− s| ≤ 1, together with 2Hnε1 > 0.

As a consequence, for every n ∈ N the control ωHn satisfies

ωHn([s, t]2) ≤ C|t− s|, (3.25)

which means that it is an Hölder dominated control. Moreover, the bound on the control does
not depend on n and therefore, by Theorem 15.33 of [FrVi11] with ρ = ρ0 there exists a constant
C = C(ρ0) such that for every q ∈ [1,∞) and for every s, t ∈ [0, 1]

sup
n∈N

E
[
d(WHn

t ,WHn
s )q

] 1
q ≤ sup

n∈N
C
√
qωHn([s, t]2)

1
2ρ0

≤C√q|t− s|minnHn .

(3.26)

We use this uniform estimate in the Kolmogorov-Lamperti tightness criterion (see, for example,
Corollary A.11 of [FrVi]), with r := 2ρ0 = 1

minHn
∈ [1, 3) and we can choose q >> 1 such that

1
r −

1
q ≥

1
3 . This is possible because 1

r >
1
3 .

This means that our sequence WHn is tight in C
1
3 , and thus it possesses a subsequence

converging to some limit Y.

Step 3

We identify the limit Y as WH0 .by following the same strategy as in the proof of Theorem
3.23 in [FrVi].

The fundamental idea is to show that, for every n ∈ N, the (lifted) piecewise linear approx-
imations S3(WHn,D) of WHn converge to WHn in Lq(P), uniformly with respect to n ∈ N,
whenever the amplitude of the dissection D of [0, 1] tends to 0. In order to prove this, it suffices
to use the uniform estimates of Theorem 15.42 in [FrVi]. We do not go into the details of the
construction of S3(WHn,D), we only remark that they are a natural approximation of the fBm
WH and of his lift WH .

116



Summarizing: we already shown that the entire sequence (KHn)n has finite controlled ρ0-
variation, for some ρ0 <

3
2 , and the controls ωHn satisfy (by (3.25))

sup
n∈N

ωHn([0, 1]2) = M <∞.

We now fix ρ = ρ0 and p = 3 > 2ρ0 in Theorem 15.42 of [FrVi] to obtain that, for every
η ∈ (0, 1

2ρ0
− 1

p) there exists a constant C1(ρ0, p,M, η) such that for every dissection D of [0, 1]
it holds

sup
n∈N

E
[
||WHn − S3(WHn,D))||q

C 1/3

] 1
q ≤ sup

n∈N
C1
√
qmax
ti∈D

ωHn([ti, ti+1]2)
η
3

≤C1
√
q sup
n∈N

max
ti∈D

cHn |ti − ti+1|
η
3

≤C1C
√
q sup
n∈N

diam(D)
η
3

=C1C
√
q diam(D)

η
3 .

(3.27)

Thus, it holds that the piecewise linear approximations S3(WHn,Dm) converge to WHn , uni-
formly with respect to n, whenever the amplitude of the dissections Dm tends to zero for
m→∞.

Now it suffices to apply Lemma 15.50 of [FrVi] with Zm,n = WHn,Dm , where Dm is a
sequence of dissections of [0, 1] whose amplitudes tend to zero. The lemma is basically a careful
application of triangle inequality in a double convergence, where one of these convergences is
uniform (the one in m, uniform with respect to n). Since for the linear approximations, which
are essentially finite dimensional processes, the weak convergence S3(WHn,Dm)→ S3(WH0,Dm)
as n→∞ holds trivially, for every m ∈ N, this is sufficient to conclude the proof.

Remark 3.26. When H > 1
2 , the result can be proven following the same steps, but without

the need of rough paths theory. Indeed, the solution map WH → XH is continuous, since we are
in the framework of Young integration theory. This means that whenever H > 1

2 it is sufficient
to show that, for some α > 1

2 , it holds WH → WH0 in Cα([0, T ]) when H → H0. This can be
shown again via Kolmogorov-Lamperti criterion (Corollary A.11, [FrVi]).
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4 | A fractional-Hawkes model for
electricity prices

The last part of the thesis is devoted to a modelling and computational application of the noises
we studied. Our aim is to develop a model for the description and the forecast of the gross
prices of electricity in the liberalized Italian energy market. This will be also the subject of our
forthcoming paper [GiMo19].

The common thread with the previous chapters is the use of a fractional noise. In this case,
this is represented by the choice of a SDE driven by a fBm BH as one the components of our
model. Apart from this component, our model will contain a jump process, modelled through
a self-exciting Hawkes process, which aims to model the shock formation in the markets, and a
deterministic component, which aims to reproduce the seasonal trends of the prices.

We will finally validate the model via the analysis of our data time series, and we will
compute and evaluate the forecast produced by our model, computing the prediction intervals
(PI) estimated by our model, and evaluating their quality by using adequate evaluation metrics
like the Winkler score and the Pinball loss function.

4.1 Mathematical modelling of electricity markets

In the last decades the electricity market has been liberalized in a growing number of countries,
especially in the European Union. Liberalized markets have been introduced for example in
Germany, Italy, Spain, UK, as well as in all nordic countries. The introduction of competitive
markets has been reshaping the landscape of the power sectors. Electricity price now undergoes
to market rules, but it is very peculiar. Indeed, electricity is a non-storable commodity, hence
the need of having a particular organization in the market emerged. This has usually resulted
in the creation of a day-ahead market : a market in which every day there are some auctions
regarding the delivery of energy at a fixed time of the following day. The price of the electricity
is determined by crossing the supply curve and the demand curve, for the hour for which the
auction is taking place (see e.g. [RFC]). The steepness of supply and demand curve can be
regarded as the cause of one of the main characteristics of the electricity price market, i.e.
shock formation in the prices, which is one of the more important aspects that distinguish the
electricity market from the other similar financial markets, and also one of the most difficult
to model. A shock, or spike is a sudden large rise in the price followed by a rapid drop to its
regular level. Power prices may soar during short periods of time, and then fall back to more
normal levels shortly after (see e.g. [BBK]).

The distinction between spiky and “standard” behavior turns out to be crucial in the mod-
elling of the electricity price: the need to obtain a good reproduction of the spikes in the models
represents one of the main differences between other financial markets and the electricity mar-
ket. Another important difference with respect to other markets is the seasonality that can be
observed. It is mainly due to a clear weekly periodicity, caused by the fluctuations in consump-
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tions during different days of the week [RFC]. There is also a long-term seasonal effect on the
prices, which appears over time lengths of approximately 3-4 months.

Two of the first models for electricity price are due to Schwartz [Sch97, LuSc02]. In [Sch97]
the authors introduced an Ornstein-Uhlenbeck model for the spot price dynamics which included
a mean-reversion component, and later on, in [LuSc02], a deterministic component describing
the seasonality was added. Since this works, a widespread literature has been proposed in order
to model the basic features of this market, especially about the formation of spikes, which were
not covered by the aforementioned papers [Sch97],[LuSc02]. An interesting review of the state
of the art has been given by Weron in [Wer14]. The interested reader may also refer to the huge
amount of papers therein. Weron proposes a classification of the models in five main classes:
i) the multi-agent models, which simulate the operation of a system of heterogeneous agents
interacting with each other, and build the price process by matching the demand and supply
in the market; ii) the fundamental (structural) methods, which describe the price dynamics by
modelling the impacts of important physical and economic factors on the price of electricity; iii)
the reduced-form (quantitative, stochastic) models, which characterize the statistical properties
of electricity prices over time, with the ultimate objective of derivatives evaluation and risk
management; iv) the statistical approaches, which are either direct applications of the statistical
techniques of load forecasting or power market implementations of econometric models; v)
the computational intelligence techniques, which combine elements of learning, evolution and
fuzziness to create approaches that are capable of adapting to complex dynamic systems,

Here we are interested in the third class and, partially, in the second class. In our stochastic
model the time dynamics of the spot price is described by modelling the drift via a deterministic
function which models the long–term seasonality, while the noises responsible of the standard
fluctuations and the extreme spikes are described by the solutions of two independent SDE’s,
one of them modelling the standard behavior and the other one modelling the spiky behavior.
Our model can be summarized as

S(t) = f(t) +

2∑
i=1

Xi(t), t ≥ t0 ∈ R+

where f is a deterministic function and the Xi, for i = 1, 2 are two stochastic processes subject
to a mean reversion term, responsible for the randomness in the base component and in the
spiky regime, respectively. Different examples of these kind of models may be found for example
in [KMS10, MeTa08, Wer14, JMSS18].

From now on, we denote with Yt, t ∈ {1, . . . , 3287} the time series of the spot prices under
study. Often, among the characteristics of the spot prices, one that is not taken into account is
the presence of self-correlations in the price increments Yt − Yt−1. The presence of this feature
suggests, when trying to model these kind of markets, to modify the structure of the existing
models to include the self-correlations. One of the possible choices that have been used in
literature so far is to consider a fractionally integrated ARFIMA model, a generalisation of the
classical ARIMA model, as it has been done in [GiGr13], and in other cases reported in the
review [Wer14]. In particular, in [GiGr13] this has been done for the Italian electricity market.

From the point of view of reduced-form models, the natural adaptation might be to consider
a fBm as the driving noise of the base component instead of the usual sBm. This is the direction
of this work. In particular, the process X1 will be a fractional Ornstein-Uhlenbeck process.

In literature there have been several attempts of using a fractional Brownian motion in fi-
nancial market modelling. Its relatively simple nature, combined with its flexibility in modelling
data whose increments are self–correlated, gave rise to a growing number of models involving
fBm. Anyway, it was pointed out quite early by Rogers in [Rog97] that a model involving fBm
would result in admitting the presence of some kind of arbitrage in the market.
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More into details, Cheridito [Che02] proved that there are strong arbitrage opportunities
for the fractional models of the form

X(t) =ν(t) + σBH(t)

X(t) = exp(ν(t) + σBH(t)),
(4.1)

where ν(t) is a measurable bounded deterministic function and BH is a fractional Brownian
motion of Hurst parameter H ∈ (0, 1). This arbitrage opportunities can be built provided
that we are allowed to use the typical set of admissible trading strategies (see [Che02] for the
complete definitions). This set of admissible strategies in particular allows to buy and sell the
stock continuously in time, which is a questionable assumption in many frameworks. In [Che02]
the author proved that for the models (4.1) the arbitrage opportunities disappear, provided that
we restrict the set of strategies to the ones that impose an arbitrary (but fixed) waiting time
h > 0 between a transaction and the following one. In the present work we consider a fractional
Ornstein–Uhlenbeck process. We cannot use directly the results in [Che02], but the extension
to this family of processes should be straightforward and may be subject for future work. About
the restriction of a waiting time h > 0, we point out that it is meaningful in the case of day–
ahead markets, like electricity market is. Indeed, the price is established only once per day, and
thus we can observe realisations of the process X1 it only at discrete times. Obviously, in this
case there would be no possibility of considering a strategy which needs arbitrarily quick (in
time) modifications.

A striking empirical feature of electricity spot prices is the presence of spikes, that can be
described by a jump in the price process immediately followed by a fast reversion towards the
mean. It is interesting to notice that in the case of the Italian electricity market the presence
of several jumps is shown, many of which appearing clustered over short time periods. As a
consequence, the second component X2 will be defined as the solution of a mean reverting pro-
cesses driven by a self-exciting Hawkes process, which is a jump process whose jumps frequency
depends upon the previous history of the jump times. In particular, right after a jump has
occurred, the probability of observing a subsequent jump is higher than usual. The interested
reader may refer to [BMM15, Haw18] fo an excellent survey on the introduction, the relevant
mathematical theory and overview of applications of Hawkes processes in finance and for more
recent financial applications.

The second part of the chapter is devoted to a complete computational study. We apply the
model to the study case of the time series of the Italian MGP, the data of the day-ahead market
(see [Prices]) from January 1, 2009 to December 31, 2017. The first two years are the sample
considered for the estimation and validation of the model. We carry out the difficult task of
separating the components of the raw prices into our main components (weekly component,
long-term seasonal component, standard behaviour, spiky behaviour). Then we deal with the
problem of the estimation the parameters of the model and we test the forecasting performance
of our model on forecasting horizons from one to thirty days. The parameters are estimated in
a rolling window fashion. We construct prediction intervals (PI) and quantile forecasts (QF)
and evaluate them via a class of adequate evaluation metrics like the Winkler score and the
Pinball loss function.

We conclude that the analysis shows some quantitative evidence that both the fractional
Brownian motion and the Hawkes process are adequate to model the electricity price markets.

4.2 A model driven by jumps and a fractional Brownian motion

In this section, we introduce the structure of the model, we plot some of his paths for different
values of the parameters, and we discuss in detail the techniques of parameter estimation that
we will use to calibrate the model to the real data that we will consider.
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4.2.1 The equations

The model we propose extends in different ways some relevant models already available in
the literature. In particular, we consider a modification of the model proposed in [BKM07,
MeTa08] and then modified for example in [JMSS18], by including some self–exciting features,
via Hawkes-type processes.

We adopt an arithmetic model as in [BBV13, BKN12, BKM07, JMSS18] in which the power
price dynamics is assumed to be the sum of several factors. We suppose that the spot price
process S = {S(t), t ∈ R+} evolves according to the following dynamics

S(t) = f(t) +X(t). (4.2)

The function f(t) describes the deterministic trend of the evolution, while the process X =
{X(t), t ∈ R+} describes the stochastic part. The latter is a superposition of two factors: X1,
known in literature as the base component, which is continuous a.e. and aims to model the
standard behavior of the electricity price, and X2 which is the jump component, describing the
spiky behavior of the electricity prices, overlapped to the base signal. This means that, for any
t ∈ R+,

X(t) = X1(t) +X2(t). (4.3)

First of all, we consider a mean-reverting model: despite the possible noise, the price tends
to a specific level. In particular, our starting assumption is that both in the basic and spiky
regimes prices tend to revert towards their mean, even if with different strengths. This is
because we expect that whether the price strongly deviates from the mean value, as during a
spike, then it returns to the average level with a stronger force than usual.

Regarding the base component, let us note that in many time series of the electricity markets,
an evidence of correlation among price increments is clear. For example, see Figure 4.11. In
order to capture better such a correlation within different returns, we consider an additive noise
driven by a fractional Brownian motion.

Furthermore, the Italian market is rather peculiar since clearly identifiable spikes are rare; as
a consequence the intensity of the spike process is small and becomes difficult to be estimated.
Moreover, despite the small number of spikes, a clustering effect seems to be present; so one
might better include the effect of a self-exciting stochastic process. Hence, by following recent
literature [BaMu14, BMM15, BCZ13, CHST18, DaZa14, Hai17, JMSS18], we model the jump
component X2 via a Hawkes marked process.

To be more precise, let us consider a filtered probability space (Ω,F , {Ft}t∈R+ , P ). We
suppose that X1 follows a stochastic differential equation driven by a fractional Brownian motion
BH = {BH(t), t ∈ R+} with Hurst parameter H ∈ (0, 1) and diffusion coefficient σ ∈ R+,
subject to mean reversion around a level zero, with strength α1 ∈ R+.

For any t ∈ R+, we define X1(t) as the solution of the following equation

dX1(t) = −α1X1(t)dt+ σdBH(t). (4.4)

Proposition 4.1 ([KMR]). Given α1, σ ∈ R+ and H ∈ (0, 1), Equation (4.4) admits the unique
solution

X1(t) = X1(0) e−α1t − α1 σe
−α1t

∫ t

0
e−α1sdBH(s) + σBH(t) (4.5)

= X1(0) e−α1t + σ

∫ t

0
e−α1(t−s)dBH(s)).

X1 is called a fractional Ornstein-Uhlenbeck process.
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The covariance structure of such a process is rather complex (see Theorem 1.43 in [KMR],
simplified in the case of the variance of the 1-dimensional marginals.

Proposition 4.2 ([KMR], Theorem 1.43). Given α1, σ ∈ R+ and H ∈ (0, 1), the following
properties hold.

i) For any t ∈ R+, the variable X1(t) has a Gaussian distribution, i.e.

X1(t) ∼ N
(
X1(0)e−α1t, Vα1(t)

)
, (4.6)

where the variance Vα1(t) is given by

Vα1(t) = Hσ2

∫ t

0
x2H−1

(
e−α1s + e−α1(2t−s)

)
ds. (4.7)

ii) The variance has the following time asymptotic behavior

lim
t→+∞

Vα1(t) = α−2H
1 Hσ2 Γ(2H),

where Γ : R→ R is the classical Γ function.

We move now to the X2 component: we wish to define it as the solution of a mean-reverting
SDE driven by a Hawkes marked process π, i.e. as

X2(t) = X2(0)−
∫ t

0
α2X2(s)ds+

∫ t

0

∫ λs

0

∫ ∞
0

z π (ds, dη, dz) . (4.8)

We introduce its components in detail. Consider a marked point process

{(Ti, Zi)}i∈N, (4.9)

where, for any i ∈ N, Ti is the random time at which the i-th jump occurs and Zi is the relative
random jump size. So we may express the counting measure J of the jumps via the marked
process (4.9) as

J(dt) =

∞∑
i=1

Zi εTi(dt) =

∫
R
zQ(dt, dz), (4.10)

where εx is the Dirac measure localized in x and Q is the following marked counting measure
on R+ × R

Q(dt, dz) =

∞∑
i=1

ε(Ti,Zi)(dt, dz). (4.11)

The counting process N = {Nt}t∈R+ associated to the marked point process (4.9) is such
that, for any t ∈ R+

Nt =

∞∑
i=1

εTi([0, t]) = Q([0, t]× R). (4.12)

The process N is characterized by its time dependent conditional intensity λt, t ∈ R+, which is
the quantity such that:

λt = lim
dt→0

E [Nt+dt −Nt|Ft]
dt

,

and

prob (Nt+dt −Nt = k|Ft) =


1− λt dt+ o(dt), k = 0;
λt dt+ o(dt), k = 1;
o(dt), k > 1.
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In our case, we suppose that, for any t ∈ R+, λt is a function of past jumps of the process,
i.e.

λt = λ+

∫ t

0
Φ(t− s)dNs, (4.13)

with background intensity λ > 0 and excitation function Φ : R+ → R+. Whenever Φ(·) 6= 0,
the resulting process is different from a homogeneous Poisson process, and if

‖Φ‖1 =

∫ ∞
0

Φ(t)dt < 1, (4.14)

the existence of a unique process is implied. Condition (4.14) also implies the stationarity of
the process, that is that its distributions are invariant under translations [BrMa96, BaMu14,
BMM15]. Equation (4.13) states that the random times of the jumps are governed by a constant
intensity λ and that any time a jump occurs, it excites the process in the sense that it changes
the rate of the arrival of subsequent jumps, by means of a kernel Φ. Usually, the latter decreases
to 0, so that the influence of a jump upon future jumps decreases and tends to 0 for larger time
increments. We say in this case that N is a univariate Hawkes processes [Haw71(1), Haw71(2)].
Note that we may make explicit the dependence of the intensity process upon the random jump
times {Ti}i∈N by the following

λt = λ+

∫ t

0
Φ(t− s)

∑
i∈N

εTi(dx) = λ+
∑

i∈N : Ti≤t
Φ(t− Ti).

As it happens in many examples in modelling (see [BCZ13, BaMu14, BMM15]), we consider
an exponential model for the excitation function, that is

Φ(t) = γe−βt, (4.15)

where γ, β ∈ R+ represent the instantaneous increase after a jump and the speed of the reversion
to λ of the excitation intensity. As a consequence, the intensity (4.13) becomes

λt = λ+

∫ t

0
γe−β(t−s)dNs = λ+ γ

∑
i∈N : Ti≤t

e−β(t−Ti). (4.16)

It may be seen as a solution of the following stochastic differential equation

dλt = β (λ− λt) + γdNs. (4.17)

Notice that (4.16) is the solution of the equation (4.17) when the process starts in λ0 infinitely
in the past and it is at its stationary regime. Otherwise, in order to model a process from some
time after it is started and setting an initial condition λ0 = λ∗ the conditional intensity, solution
of (4.17) would be

λt = e−βt (λ∗ − λ) + λ+

∫ t

0
γe−β(t−s)dNs. (4.18)

As mentioned above, for t large enough the impact of the initial condition vanishes, since
the first term would die out. Note that a new jump of Nt increases the intensity, which in-
creases the probability of new jump, but the process does not necessarily blow up because the
drift is negative if λt > λ. Furthermore, while the process {Nt}t∈R+ is non Markovian, the
bidimensional process {(Nt, λt)}t∈R+ is a Markov process [BMM15], such that

dE [Nt] = E [λt] dt, (4.19)

dE [λt] = (βλ+ (γ − β)E [λt]) dt. (4.20)
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Since the solution of equation (4.20) is

E [λt] = E [λ0] e(γ−β)t + βγ

∫ t

0
e−(γ−β)(t−s)ds,

if γ > β, then the intensity would explode in the average, and so it would happen for the process
Nt. This is not the case in the stationary regime, since in the exponential case, assumption
(4.14) becomes

1 > ν = ‖Φ‖1 =

∫ ∞
0

γe−βtdt =
γ

β
,

i.e.
γ < β. (4.21)

With this definition of N in mind, we introduce the noise term π appearing in the stochastic
differential equation (4.8) that defines the process X2. Let π be a Poisson random measure on
R+×R+×R with intensity measure Λ = ν+× ν+× µ, where ν+ is a Lebesgue measure on R+.
The measure µ is the distribution of the size of the jumps that satisfies condition (4.22). We
suppose that the size distribution is given by a Borel measure µ on R+, satisfying the condition∫ ∞

0
(η ∧ η2)µ(dη) <∞. (4.22)

If we suppose µ(dη) = ε1(dη), the jumps are of size one. In [DFH16], in a more general
setting in which they consider multidimensional non linear Hawkes process, the author prove
that the Hawkes process (4.12) with conditional intensity given by (4.16) may be written as

Nt =

∫ t

0

∫ λt

0

∫ ∞
0

π (ds, dη, dz) . (4.23)

In conclusion, the process X = X1 +X2 is given by the solution of the following system, for
t ∈ R+,

X1(t) = X1(0)−
∫ t

0
α1X1(s)ds+ σ

∫ t

0
dBH(s); (4.24)

X2(t) = X2(0)−
∫ t

0
α2X2(s)ds+

∫ t

0

∫ λs

0

∫ ∞
0

z π (ds, dη, dz) , (4.25)

coupled with equation (4.17), with γ, β, λ ∈ R+.
Finally, (Ft)t∈R+ is the natural filtration generated by the processes. System (4.24)-(4.25)

admits a unique solution thanks to classical results.

4.2.2 Path simulations

In the following we consider the simulation results showing the macroscopic behaviour of the
model, by considering some fixed set of parameters in Tables 4.1–4.3. For the jump size distri-
bution µ we choose to consider the Generalized Extreme value distribution, that is a probability
measure depending from 3 parameters µ̃, ξ ∈ R and σ̃ > 0 with density function given by

f(x) =
1

σ̃
t(x)ξ+1e−t(x), (4.26)

where

t(x) =

{(
1 + ξ(x−µ̃σ̃ )

)−1/ξ
if ξ 6= 0

e−(x−µ̃)/σ̃ if ξ = 0.
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α1 α2 σ λ µ̃ ξ σ̃
0.1 0.5 6 0.01 18 0.7 2

Table 4.1: Fixed parameters used in the simulations: mean-reverting parameters α1 and α2, diffusion
coefficient σ, basic Poisson point process parameter λ and the parameters µ̃, ξ ∈ R and σ̃ > 0 in the
Generalized Extreme Value distribution (4.26).

Some of the parameters we considered for these simulaitons are fixed, namely the set of
parameters appearing in Table 4.1. On the other hand, for some of the parameters of our
model, we consider a changing set of parameters in order to evaluate the impact of some of the
important features that we introduce with our model: the fBm depending from the parameter
H and the parameters γ, β of the self-exciting part of the Hawkes process

Parameter a.1. a.2. a.3.
H 0.2 0.5 0.7

Table 4.2: Set of simulation parameters: values for the Hurst parameter H in the diffusion term in
(4.24).

Parameter (a) (b) (c) (d)
γ 0 0.05 0.15 0.3
β 0 0.08 0.2 0.5

Table 4.3: Set of simulation parameters for the Hawkes excitation function: γ and β in (4.17) satisfying
stationarity condition (4.21).

We consider, only in this section, a fixed deterministic function

f(t) = 130 · 1[0,∞)(t),

and the following deterministic initial condition for the processes X1 and X2

X1(0) = X2(0) = 0.

Stochastic simulation are carried out by generating exact paths of Fractional Gaussian Noise
by using circulant embedding (for 1/2 < H < 1) and Lowen’s method (for 0 < H < 1/2), while
the Hawkes process is generated by a thinning procedure for inhomogeneous Poisson process as
in [Oga781].

We see in Figures 4.1–4.8 some simulations of a path of X = X1 +X2 for the different values
of the parameters chosen in Tables 4.1–4.3. Even in some cases this meant that some parts of
the path are not visible, we chose to keep the same scale in all figures. This makes us see very
clearly the differences caused in the nature of the process X1 by the changes in the values of
H. We see in particular that, keeping α1, σ fixed we get a much more variable process as long
as H increases.

Regarding the jump component X2, which is independent from X1, we see that the cluster
effect is clearly visible for the sets of parameters (b)–(d). It seems that the set of parameters
(b) is producing more clusters than the others. This may seem strange, since in this case the
parameter γ is lower than in (c) and (d), but we remark that in all cases the parameter β, which
models the speed of mean reversion of λt towards λ, varies consistently with γ.

We make a remark about the relation of this simulations with the real data. If we compare
Figures 4.1–4.8 with Figure 4.9, in which we plot the entire dataset that we will analyse, we can
make some qualitative considerations. Our simulations of X1 +X2 do not include any seasonal
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Figure 4.1: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.2 and (a) λ = 0, β = 0; (b) λ = 0.05, β = 0.08
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Figure 4.2: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.2 and (c) λ = 0.15, β = 0.2; (d) λ = 0.3, β = 0.5.

component, and this is clearly visible. Anyway, from the point of view of the appearance of the
paths, we see some similarities between Figure 4.9, the bottom plot of Figure 4.3 and the top
plot of Figure 4.4, which are relative to H = 0.3 and the set of parameters (b) and (c) for the
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Figure 4.3: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.3 and (a) λ = 0, β = 0; (b) λ = 0.05, β = 0.08
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Figure 4.4: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.3 and (c) λ = 0.15, β = 0.2; (d) λ = 0.3, β = 0.5.

Hawkes process, corresponding to γ = 0.05, β = 0.08 and γ = 0.15, β = 0.2. In both of these
figures the standard volatility seems quite similar to the one of the real data, and moreover the
jump behaviour (both amplitude and clusters) is quite similar to the one of Figure 4.9.
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Figure 4.5: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.5 and (a) λ = 0, β = 0; (b) λ = 0.05, β = 0.08
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Figure 4.6: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.5 and (c) λ = 0.15, β = 0.2; (d) λ = 0.3, β = 0.5.

These considerations are coherent with the estimates that we will get in Section 4.3.3.
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Figure 4.7: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.7 and (a) λ = 0, β = 0; (b) λ = 0.05, β = 0.08
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Figure 4.8: Path of the processX = X1+X2 (red) and ofX1 alone (blue), with the corresponding
X2 in black on the right. Case H = 0.7 and (c) λ = 0.15, β = 0.2; (d) λ = 0.3, β = 0.5.

4.2.3 Parameter estimation

This section is devoted to the methods of estimation for the parameters of the two stochastic
components X1 and X2 of our model. We recall that we have the following set of parameters
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to be estimated from the dataset Y

Equation Parameter

X1 α1

X1 σ
X1 H

X2 α2

X2 λ0
X2 γ
X2 β
X2 parameters for jump distribution

Table 4.4: Parameters of the model

Estimations for X1

For the base component X1, we have to estimate three parameters: α1, which is the rate
of mean-reversion of the process to the zero level, σ, which is the variance parameter of the
fractional noise BH , and the parameter of fractionality of the noise H itself, which determines
whether the contributions of the noise term are positively correlated (if H > 1/2), negatively
correlated (if H < 1/2) or non-correlated (if H = 1/2, which is the case in which the noise is a
classical Brownian motion).

We discuss first the estimation of the Hurst exponent H, which is the coefficient of fraction-
ality of our driving noise BH . The estimation of this parameter is very important for practical
purposes, since it determines the magnitude of the self-correlation of the noise of our model.
There are various techniques that can be used to infer the Hurst coefficient from a discrete sig-
nal. In [MiWo07] there is a good review of some of these techniques. Anyway, these techniques
can be used to estimate the Hurst coefficient only supposing that we are observing a path of a
fractional Brownian motion {BH

t (ω)}t alone, without any drift. Since we are using the solution
of an Ornstein-Uhlenbeck SDE to model the base component, in principle we could not use
these techniques. Indeed, we tried to implement some of those techniques to estimate the Hurst
coefficient from realized paths of the process X1, and they performed poorly.

We decide to use, instead, the estimator presented in Theorem 3.4 of [KMR], which is a
consistent estimator of the Hurst coefficient given the observations of a wide class of SDEs
driven by fractional Brownian motion, including the case of an Ornstein-Uhlenbeck model.

Suppose that we can observe our signal on the interval [0, T ] partitioned as { knT}k, for
k ∈ {0, . . . n}. Given a stochastic process {V, t ∈ [0, T ]}, define the quantity

∆
(2)
n,kX1 := X1

(k + 1

n
T
)
− 2X1

(k
n
T
)

+X1

(k − 1

n
T
)
.

By Theorem 3.4 of [KMR], we have that

Ĥn :=
1

2
− 1

2 log 2
log

(∑2n−1
k=1 (∆

(2)
2n,kX1)2∑n−1

k=1(∆
(2)
n,kX1)2

)

is a strongly consistent estimator for the value of H, i.e. it holds

Ĥn
n→∞−−−→ H.

In our case, our dataset will be discretized in time steps with minimum length equal to one, so
we will have to stop at a specific step of the discretization, which is exactly the maximum value
of n such that T

2n > 1.
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In order to estimate σ, we consider the estimator introduced in Proposition 4.2 of [HNZ17].
Suppose we observe the whole path of a solution X1(t) of a fractional Ornstein-Uhlenbeck
equation. We define the estimator, for any k ≥ 2 and for any p ≥ 1, as

σ̂T (n) :=
n−1+pHV n

k,pX1(T )

ck,pT
, (4.27)

where V n
k,pX1(t) is the k-th order p-th variation process defined by

V n
k,pX1(t) :=

[nt]−k+1∑
i=1

∣∣∣∆kX1

( i− 1

n

)∣∣∣p :=

[nt]−k+1∑
i=1

∣∣∣∣∣
k∑
j=0

(−1)k−j
(
k

j

)
X1

( i+ j − 1

n

)∣∣∣∣∣
p

.

and the constant ck,p appearing in (4.27) is given by

ck,p :=
2p/2Γ

(
p+1

2

)
Γ
(

1
2

) ρ
p/2
k,H ,

where ρk,H is

ρk,H :=

k∑
j=−k

(−1)1−j
(

2k

k − j

)
|j|2H .

With a discrete dataset of time lenght N and with minimum discretization length equal to
1, we can only compute the estimator σ̂T (n) for n = 1 and T = N . We choose to use k = 2 and
p = 2.

We estimate then α1 by using an ergodic estimator that is introduced again in [HNZ17].
We first define its continuous version. Given a solution X1(t) defined for t ∈ [0, T ] of an
Ornstein-Uhlenbeck equation, we define it as

α̂1(T ) :=
( 1

σ2HΓ(2H)T

∫ T

0
X1(t)2dt

)− 1
2H
. (4.28)

It holds that α̂1(T )→ α1 a.s. when T →∞. This estimator can be easily discretized. Suppose
that we are observing our process X1 in the time points {kh}, for h = 0, . . . , n. Here h is the
amplitude of the time discretization, and we suppose that h = h(n) is such that hn → ∞ and
h(n)→ 0 when n→∞. In [HNZ17] the authors define the discretized estimator as

α̂1(n) :=
( 1

σ2HΓ(2H)T

n∑
k=1

X1(kh)2
)− 1

2H
. (4.29)

The only difference with the continuous version is the discretization of the integral appearing
in (4.28). The following result holds:

Theorem 4.3 ([HNZ17], Theorem 5.6). Let X1 be the solution of an Ornstein-Uhlenbeck process
observed at times {kh, k = 0, . . . , n}, and such that h = h(n) satisfies hn → ∞ and h(n) → 0
when n→∞. Moreover, if we suppose that

i) if H ∈ (0, 3
4), nhp → 0 as n→∞ for some p ∈

(
1, 3+2H

1+2H ∧ (1 + 2H)
)

ii) if H = 3
4 , hpn

log(hn) → 0 as n→∞ for some p ∈ (1, 9
5)

iii) if H ∈ (3
4 , 1), hpn→ 0 as n→∞ for some p ∈

(
1, 3−H

2−H

)
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Then the estimator α̂1
n→∞−−−→ α1 a.s.

We observe that in our case we are not able to extend the total length of the observation
interval, since only a single time series is given. In addition, our dataset consists in daily
observations, so that the minimum time increment h that we can consider is h = 1. We aim to
define a proper function h = h(n) such that it satisfies the conditions of Theorem 4.3 for every
value of H ∈ (0, 1) (which is in principle unknown).

Let N be the length of our dataset. As a fundamental condition, we want that h(N) = 1,
so that we are able to compute the N -th approximation of our estimator with our data. We
look for our candidate h within the class of functions

h(n) =
(N
n

)δ
,

for some positive δ to be determined. All h in this class satisfy that h(N) = 1. We need also
need to have that nh→∞, as n→∞, which imposes the condition δ < 1. Moreover, we have
to impose on h conditions i), ii), iii) of Theorem 4.3. We compute

nh(n)p =
Npδ

npδ−1
.

In condition i) and iii) we need nhp → 0 as n → ∞, while in ii) we need nhp

log(nh) → 0. Since

log(nh)→∞ by hypothesis, the condition nhp → 0 is more restrictive and we impose it also in
ii). Since we do not need a priori which is the value of H of our fractional Ornstein-Uhlenbeck
process X1, we find a p = p(H) that is a good choice for any value of H ∈ (0, 1). One can easily
verify that p(H) = 1 +H lies in all the admissible intervals for p in i), ii), iii). With this choice
of p, the expression of nhp reads

nh(n)p =
N (1+H)δ

nδ(1+H)−1
.

In order for the right-hand side to converge to zero we must have δ > 1
(1+H) . So we are left

with the pair of conditions
1

1 +H
< δ < 1,

which are both satisfied if we define

δ = δ(H) :=
1

(1 +H)
1
2

,

for any H ∈ (0, 1). With this choice of h, we are able to calculate the N -th step of the
approximation of α1, regardless of the estimation Ĥ of H that we obtained.

Still, in the definition of α̂1(n) there is a clear dependence on σ, which in our case is unknown.
We remark that anyway, since the estimator σ̂ converges a.s. to its respective true value as the
order of the approximation increases, we have that the estimator α̂1 converges a.s. to α1 also if
we substitute σ̂ to σ in its definition.

Case α̂1 q5%(α̂1) q95%(α̂1) σ̂ q5%(σ̂) q95%(σ̂) Ĥ q5%(Ĥ) q95%(Ĥ)

a.1 0.1069 0.0050 0.2523 6.2334 5.7834 6.7926 0.1940 0.0885 0.2969
a.2 0.1030 0.0220 0.2098 6.2313 5.7705 6.8007 0.2927 0.1902 0.3931
a.3 0.1017 0.0445 0.1737 6.2233 5.7024 6.8636 0.4909 0.3982 0.5819
a.4 0.1019 0.0531 0.1641 6.1976 5.4920 7.0783 0.6882 0.6024 0.7715

Table 4.5: Estimated parameters of the component X1, given M = 20000 realizations of the
component X1 itself for each of the parameters set a.1 . . . a.4.
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Estimations for X2

For the jump component X2, there are three separated tasks to carry out in order to estimate
the parameters of the model. First, one has to estimate the parameters of the self-exciting
intensity of the Hawkes process. Second, one has to choose and fit an adequate distribution for
the jump magnitude. Third, one has to estimate the mean-reverting parameter α2 appearing
in (4.25).

We start with the parameters of the jump intensity λt defined in (4.16). In [Oza79] the
author gives an explicit formula for the log-likelihood for the observed jump times Ti, given the
three parameters λ, γ, β of the intensity function λt. The log-likelihood takes the form

L(T1, . . . Tn|λ, γ, β) = −λTn +
n∑
j=1

γ

β

(
e−β(Tn−Tj) − 1

)
+

n∑
j=1

log
(
λ+ γA(j)

)
,

where A(1) = 0, A(j) =
∑j−1

i=1 e
−β(Tj−Ti), j ≥ 2. In order to have a more efficient maximization

process, one can immediately compute the partial derivatives of L. One has

∂ logL

∂γ
=

n∑
j=1

1

β

(
e−β(Tn−Tj) − 1

)
+

n∑
i=j

[
A(i)

λ+ γA(i)

]
;

∂ logL

∂β
= −γ

n∑
j=1

[
1

β
(Tn − Tj)e−β(Tn−Tj) +

1

β2
e−β(Tn−Tj)

]

−
n∑
j=1

[
γB(i)

λ+ γA(i)

]
;

∂ logL

∂λ
= −Tn +

n∑
j=1

[
1

λ+ γA(i)

]
;

with

∂2 logL

∂γ2
= −

n∑
i=j

[
A(i)

λ+ γA(i)

]2

;

∂2 logL

∂β2
= γ

n∑
j=1

[
1

β
(Tn − Tj)2e−β(Tn−Tj) +

2

β2
(Tn − Tj)e−β(Tn−Tj)

+
2

β3

(
e−β(Tn−Tj) − 1

)]
+

n∑
i=j

[
γC(i)

λ+ γA(i)
−
(

γB(i)

λ+ γA(i)

)2
]

;
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∂2 logL

∂λ2
= −

n∑
j=1

[
1

(λ+ γA(i))2

]
;

∂2 logL

∂β∂γ
= −

n∑
j=1

[
1

β
(Tn − Tj)e−β(Tn−Tj) +

1

β2

(
e−β(Tn−Tj) − 1

)]

+

n∑
i=j

[
γA(i)B(i)

(λ+ γA(i))2 −
B(i)

λ+ γA(i)

]
;

∂2 logL

∂γ∂λ
= −

n∑
i=j

[
A(i)

(λ+ γA(i))2

]
;

∂2 logL

∂β∂γ
=

n∑
i=j

[
γB(i)

(λ+ γA(i))2

]
.

In the previous equation the functions B and C are defined as B(1) = 0, B(j) =
∑j−1

i=1 (Tj −
Ti)e

−β(Tj−Ti), j ≥ 2 and C(1) = 0, C(j) =
∑j−1

i=1 (Tj − Ti)
2e−β(Tj−Ti), j ≥ 2. Since the log-

likelihood is non-linear with respect to the parameters, the maximization if performed by using
nonlinear optimazation tecniques [Oza79].

Case λ̂0 q5%(λ̂0) q95%(λ̂0)

b.1 λ0 = 0.1 0.0101 0.0061 0.0141
b.2 λ0 = 0.1 0.0105 0.0059 0.0162
b.3 λ0 = 0.1 0.0095 0.0057 0.0139
b.4 λ0 = 0.1 0.0088 0.0053 0.0126
Case γ̂ q5%(γ̂) q95%(γ̂)

b.1 γ = 0 0.0046 3.84·10−9 0.0267
b.2 γ = 0.05 0.0366 0.0146 0.0606
b.3 γ = 0.15 0.0840 0.0472 0.1217
b.4 γ = 0.3 0.1163 0.0479 0.1850

Case β̂ q5%(β̂) q95%(β̂)

b.1 β = 0 0.6097 0.0407 0.8025
b.2 β = 0.08 0.0814 0.0318 0.1379
b.3 β = 0.2 0.1414 0.0846 0.2113
b.4 β = 0.5 0.2782 0.1393 0.4421

Table 4.6: Estimated parameters of the component X2, given M = 20000 realizations of the
component X2 itself for each of the parameters set b.1 –b.4.

.

We see that the estimated values are below the true values, especially for big values of γ, β.
For the set of parameters (a), the value of β is largely overestimated, but this is not a problem
since the corresponding value of γ are very small, and thus there is no observable self-excitement.

Regarding the jump magnitude distribution, we fit the data via an MLE procedure by con-
sidering a Generalized Extreme Value (GEV) distribution. It is a continuous distribution which
may seen as the approximation of the maxima of sequences of of independent and identically
distributed random variables. It depends upon three parameters which allow to fit properly the
data.

Finally, the estimation of the mean-reverting parameter α2 of the jump component X2 can
be done by using the estimator defined in [KMS10]. Given a dataset Y2 which we aim to model
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with our jump process X2, a consistent estimator for the mean-reversion parameter α2 is

α̂2 = log
(

max
1≤j≤N

Y2(j − 1)

Y2(j)

)
. (4.30)

We will need an approximation of this estimator in our estimation process, which is very closely
related to one made in [KMS10]. The details will be discussed during the data filtering process
in the next section.

4.3 A study case: Italian data

Here we describe the time series that we are sudying, that is, the Italian electricity spot prices,
that inspired the choice of the model that we made in Section 4.2. We first perform some
explorative analysis on the time series, and after that, we discuss the problem of data filtering
that we need to solve in order to obtain from rough data the different components of out model.
In the end, we perform out-of-sample simulations to try to predict future prices of electricity,
discussing the results with some evaluation metric like Winkler score and Pinball loss function.

4.3.1 The dataset

We will consider the time series of the Italian Mercato del giorno prima (MGP, the day-ahead
market), available at [Prices]. Figure 4.9 shows a plot of the daily price time series Y (t) from
January, 1st 2009 (t = 1) to December, 31st 2017 (t = 3287).
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Figure 4.9: The time series Y (t) of the the daily electricity price in the MGP from January, 01
2009 (t = 1) to December, 31 2017 (t = 3287).

The MGP market is a day-ahead market, i.e. a market in which the price is established
via an auction for the blocks of electricity to be delivered the following day. The agents that
operate as buyers in the market have to submit their offers between 8:00 a.m. and 12:00 noon
of the previous day. The offers regard the hourly blocks of electricity which will be delivered
the following day. This means that an agent will submit 24 different offers (with different prices
and quantities) for the electricity of the following day, and he will do it all at the same time.
Also the sellers submit their offers, by telling the quantity of energy that they are willing to sell
and the price at which they want to sell it. The market price is then established before 12:55
p.m., and it is an hourly price, determined by finding the intersection of the demand and the
offer curve relative to the specific hour of the day. After the determination of the market price,
all the electricity bought and sold for that hour is traded at the market price.
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We choose to model the daily average of the hourly price. This is a quite common choice in
the literature, especially for reduced-form models [Wer14]. Indeed, the main aim of reduced–
form models is to be able to capture more the medium term (days/weeks) distribution of prices
than the hourly price, and to use these estimated distributions of prices to pricing electricity
future contracts, which are very useful and used financial instruments in the electricity market.

We are aware that this averaging filters out many extreme behaviours of the market. Indeed,
a single hourly extreme price is unlikely to produce a significant variation in the average daily
price. Anyway, we are also aware that reduced–form models usually perform poorly on the
hourly scale [Wer14]. We remark that all the analysis that follows has been carried out also
using on–peak (08:00–20:00) and off–peak (20:00–08:00) data separately, without obtaining a
significant difference from the entire day averages.

The data available start from April, 2004, which is the moment in which the liberalised
electricity market started in Italy, but we chose to focus on more recent data, from 2009 on-
wards, to make the model more tight to the present nature of the electricity market. This does
not prevent the performance evaluation of the model from being sufficiently robust, since the
dimension of the sample is N = 3287.

We use the data in the following way: the first 730 days have been used for the study of the
dataset and for the validation of the model. Then, we evaluated the performance on forecasting
future prices for time horizons of length h = 1, . . . , 30, using rolling windows: at time t, we use
the data from t− 730 to t for the calibration of the parameters of the model, and we simulate
the future price at time t+h using those parameters. Then, we move ahead from time t to t+h
and we repeat the previous steps, starting from parameter estimation.

The first task that has to be performed on the price time series Y is the separation, or
filtering, of the different signals. It is clear that this is not an easy task and it might not be
done in a unique way. In literature a lot of effort as been done for this purpose (see [JTWW13,
NTW13, Wer14, MeTa08, KMS10, NoWe18]). Moreover, we think that in our case the relatively
small presence of clearly recognisable spikes in our dataset makes the spike identification task
even more difficult than usual.
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Figure 4.10: Calibration window for the time series Y (t) of the the daily electricity price in the
MGP from January, 01 2009 (t = 1) to December, 31 2010 (t = 730).

Note that from now on we consider as the window for the calibration of the model the one
corresponding to the first two years, 2009 and 2010. The reduced time series Y (t), t ∈ [1, 730]
is shown in Figure 4.10.
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4.3.2 Data filtering

Weekly seasonal component. The first component that should be identified and estimated
is the one dealing with trends and seasonality in the data. As stated in [JTWW13] and in the
literature therein, the estimation routines are usually quite sensitive to extreme observations, i.e.
the electricity price spikes. Hence, one should first filter out the spikes, that often are identified
by the outliers. Actually, whether to filter out the spikes before or after the identification of
the deterministic trends is still an open question in general.

Furthermore, the deseasonalizing methods used in literature are very different: some authors
suggest to considered sums of sinusoidal functions with different intensities [CaFi05, GeRo06,
KMS10], others consider piecewise constant functions (or dummies) for the month [FHS11,
LuSc02], or the day [DeJ06] or remove the weekly periodicity by subtracting the average week
[JTWW13]. It turns out than an interesting and more robust technique is the method of wavelet
decomposition and smoothing, applied among others in [JTWW13, NTW13, Wer06, Wer08].

In Figure 4.11 we show the autocorrelation function both for the whole series and within
the calibration window. We see how for any lag multiple of seven the correlation is statistically
significant. In the calibration windows only for the lag=14 there is not a significant correlation
at the level 95%. In any case the presence of weekly periodicity is clear.
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Figure 4.11: Autocorrelation function of the daily electricity price returns: (a) January, 01 2009
(t = 1) to December, 31 2017 (t = 3288)(b) the calibration window January, 01 2009 (t = 1) to
December, 31 2010 (t = 730).

As a consequence, the first step that we chose to perform on the data is to remove the
weekly periodicity. As in [DeJ06, Wer14] we do it via the use of dummy variables, which take
constant value for each different weekday. Hence, we subtract the average week calculated as
the sample mean of the sub-samples of the prices corresponding to each day of the week, as in
[JTWW13]. Public holidays are treated in this study as the eighth day of the week. Hence, the
total number of dummies is eight.

Formally, we define a function D = D(t) which determines which label the t-th day has, i.e.
D(t) = i, i = 1, , . . . , 7, 8, if day t correspond to Monday (and not a festivity), ..., Sunday (and
not a festivity) and a festivity, respectively.

We define the restricted time series YD=j as the time series formed only by the price values
labelled with the day j, and with YD=j its arithmetic mean. Then we define the whole dummy
variables function YD as

YD(t) =

8∑
j=1

1D(t)=j(t)YD=j . (4.31)
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Figure 4.12: (a) Original prices Y (green) and prices after dummies removal Yw (blue); (b)
Autocorrelation of the returns of the prices Yw

As a consequence, the new time series we are going to consider is the one defined as follows

Yw(t) := Y (t)− f̂s(t) =: Y (t)− (YD(t)− Y ), (4.32)

where Y is the arithmetic mean of Y (t), t = 1, ..., 730. The result of (4.31)-(4.32) is that the
arithmetic mean of the prices Yw corresponding to a specific day of the week coincides with
the mean of the all prices within the calibration window. As one can see in Figure 4.12-(a),
the resulting series Yw after removing the dummy variables is barely distinguishable from the
original time series Y ; it is only a bit more regular. On the other hand, Yw does not show
weekly correlation, as we notice from Figure 4.12-(b).

Jump component. Before filtering the long-term seasonal component, we chose to filter
out the jump component. The reason for this order lies in the following consideration: at a
small scale, the presence of a slowly moving seasonal trend does not affect the recognition of a
price spike. On the other hand, if we chose to filter the long-term seasonal component before
filtering out the spikes, the presence of one of more spikes could affect the form of the seasonal
component, which is something that we intuitively regard as incorrect. Indeed, we tend to
consider the spikes as an ”external event” in our setting, and we do not want the seasonal term
to be affected by the presence of a price spike.

As in [KMS10], the idea is to obtain the filtered time series, denoted YJ , as the series that
contains the jumps and their paths of reversion towards their mean. We first estimate the
mean-reversion speed α2 by the estimator α̂2 given by (4.30); by performing the estimate along
the entire time series, not only in the jump times: this is not restrictive, since the strongest
rates of reversion towards the mean happen right after a jump has occurred. Afterwards we
identify the jump times. The idea is to consider as jumps the price increments that exceed k
standard deviations of the price increments time series. This cannot be implemented to the
time series Yw directly, because, in case two spikes appear one after the other, the second one
would not be considered as a spike. In order to avoid this effect, we define the modified time
series Ỹw as

Ỹw(t) := (1− α2)Yw(t) + α̂2Ȳ30(t),

where Ȳ30(t) is the moving average of the time series Yw over periods of 30 days. Then, we
defined the times series {

Yw(t)− Ỹw(t− 1)
}
− t = 2, 3, . . . (4.33)
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of the modified increments, which takes into account a reversion effect towards the moving
average Y30. It performs very well also when the spikes appear in clusters. Then, denoted by σ̃
the standard deviation of the series (4.33), we say that a spike occurs at time τ if∣∣∣Yw(τ)− Ỹw(τ − 1)

∣∣∣ > 2.5σ̃. (4.34)

If N is the number of detected spikes, i.s. if {τj}j=1,...,N are the times satisfying condition
(4.34), the corresponding jumps are defined, for j = 1, . . . , N as

µ̂j = Yw(τj)− Ỹw(τj − 1).

Once we have the estimates {(τj , µ̂j)}j=1,...,N of the times and magnitudes (4.9) of the jumps,
we obtain the estimation YJ(t) of the solution X2 of (4.25) as follows

YJ(t) =

N∑
j=1

µje
−α̂2(t−τj)ετj ([−∞, t]) (4.35)

Given YJ as in (4.35), we denote the filtered time series as

Ys(t) = Yw(t)− YJ(t).

Long-term seasonal component:
We explain now how we identify the long-term seasonality component f̂l, which will be so

that the total deterministic component will be given by f̂ = f̂s + f̂l. There is a lot of literature
on the subject (see, for example, [BKN12, CaFi05, DeJ06, GeRo06, JTWW13, LuSc02, Wer08]).
These references try to explain such a component by means of sinusoidal functions or sums of
sinusoidal functions of different frequencies. In the case of our price series it seems that there is
no statistically significant dependence upon such periodic function, both in the case of month,
half-year or a year periodicity.

As a consequence, we chose to use the method of wavelet decomposition and smoothing,
applied among others in [JTWW13, NTW13, Wer06, Wer08]. The idea is to consider the
time series Ys and convolving it repeatedly with a family of wavelets, which have the effect of
smoothing the series Ys. If we manage to smooth Ys enough to remove the effect of stochastic
oscillation, but not too much to remove the long-term trend, then we can subtract this smoothed
version of Ys from Ys itself, obtaining a centred time series with almost no long-term oscillation.

We go more into details: we refer to [NTW13] and the literature therein. We use wavelets
belonging to the Daubechies family, of order 24, denoted by (F–db24). Wavelets of different
families and orders make different trade-offs between how compactly they are localized in time
and their smoothness. Any function or signal (here, Ys) can be built up as a sequence of
projections onto one father (W ) wavelet and a sequence of mother wavelets (D): YS = Wk +
Dk+Dk−1 + ...+D1, where 2k is the maximum scale sustainable by the number of observations.
At the coarsest scale the signal can be estimated by Wk. At a higher level of refinement the
signal can be approximated by Wk−1 = Wk +Dk. At each step, by adding a mother wavelet Dj

of a lower scale j = k− 1, k− 2, ..., one obtain a better estimate of the original signal. Here we
use k = 8, which corresponds a quasi-annual (28 = 256 days) smoothing. Then, the estimator
f̂l of the long-term deterministic part f − f̂s is given by

f̂l(t) = W8(t), (4.36)

the Daubechies wavelets of order 24 at level 8.
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Figure 4.13: Price series YS (blue) and estimated f̂ (red) via Daubechies of order 24 wavelets
at level 8.

The resulting time series Yf given by

Yf (t) = Ys(t)− f̂l(t), (4.37)

represents finally a realization of the base component X1.

Figure 4.13 show the price series YS and the overlapped estimated f̂l via Daubechies wavelets
of order 24 at level 8, and the final signal Yf , which is we recall to be a sample of the process X1.
The wavelet interpolation is here extended outside the calibration window. This is not automatic
in the case of wavelet decomposition, since the wavelets are compactly supported and we are
convolving only up to the final time of our dataset. To obtain this prolongation, we prolonged
the time series in the forecasting window by using the technique of exponential reversion to the
median, thoroughly studied in [NTW13], before applying the wavelet de-noising. In this way we
have been able to obtain a function f̂l which extends also to times t in the forecasting windows.

4.3.3 Out of sample simulations

We will perform and assess here the forecasts of future electricity prices through our model. We
first outline the simulation scheme and make some considerations about the parameters in the
rolling windows. After this, we define the metrics which we will subsequently use to evaluate
our results.

Parameter estimation in the rolling windows

We recall that for each time t, when forecasting the price distribution at time t + kh (where
kh ∈ {1, . . . , 30} is the forecasting horizon), we carry out a new calibration of all the parameters
of the model, including the Hurst coefficient H. We think that in this way, if there is a change
in the data coming as input, the model is able to change its fine structure coherently with these
changes. For example, if the self–correlations changes, or disappears, at some point, we expect
the parameter H to change consequently, and possibly approach 1

2 .
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We start analysing H: as long as our rolling window for estimation is advancing,the values
of H are on average increasing. The first estimate is Ĥ = 0.2909. The mean value across the
whole dataset is 0.3735. In general, the values are such that

0.2128 ≤ Ĥ ≤ 0.6234.

Notice that the maximum value is above the H = 1/2 threshold and this shows that a positive
correlation between the increments may occur. We show the averaged behaviour of H across
all our time lengths in Figure 4.14. In general, as we already pointed out, we think that this
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Figure 4.14: 10-days average of the estimated value Ĥ of H. We chose the 10-day average in order to
smooth out some irregular behaviour at shorter scale.

moving identification of the parameter H is useful to update the fractional structure of the
model when the input data are suggesting to do so, giving a better modelling flexibility, also in
case of future changes in the market nature.

Regarding the parameters of the fractional Ornstein–Uhlenbeck process X1, α1 and σ, pro-
gressing in our rolling window, we found a change in the estimated values of the parameters;
summarizing, we obtained that the range of values for α̂1 and σ̂

0.0453 ≤ α̂1 ≤ 0.6823

4.2069 ≤ σ̂ ≤ 8.8972.

We see that there is a large variation in the parameters, especially for α̂1, but we remark
that this variation is gradual, since the mean reversion rate decreases while moving through our
forecasting dataset, together with the volatility σ̂. Looking at Figure 4.9, this can be observed,
at least for the volatility, also by a macroscopic observation of the data.

Looking at the estimation of the parameters of the jump process X2, a bit of variability
through the dataset is shown, but there is not an evidence of a particular pattern. Moreover,
the jump observations are relatively rare (20-40), so based on the available data, it would be
even more difficult to draw conclusions on their long term behaviour. The estimated values of
the mean–reversion coefficient α2 are such that α̂2 ∈ [0.3564, 0.6211], with an the mean value

142



0.4358. As the Hawkes process parameter estimation regards, λ̂0 ∈ [0.0101, 0.0284] with mean
value 0.0169, γ̂ ∈ [1.12 · 10−9, 0.1574], with mean their mean 0.0625 and β̂ ∈ [0.0012, 0.9993]
with mean 0.3662. There is a great variation in such estimates. This, in our opinion, is due to
the low dimension of the dataset, because not many spikes are present. Thus, the MLE method
is finding sometimes a good evidence of a self-excitement (when γ is bigger and relatively close
to β) and sometimes no evidence of self-excitement (when γ is very small and/or β is much
bigger than γ). To show this fact, we plot in Figure 4.15 an histogram of the ration γ/β, which
is a very good indicator of the presence of self-excitement. From the histogram, we can see that
roughly half of the time the ratio is below 0.25 (showing little or no self-excitement), and half
of the time above (showing a significant self-excitement). We think this is another evidence of
the flexibility of our model, similarly to the estimations of H. If some self-excitement seems to
be present, then the model is including it. Otherwise, the model will simply produce a classical
point process with constant intensity.

Figure 4.15: Ratio between γ̂ and β̂ throughout the entire dataset.

As the estimation of the parameters (µ̃, ξ, σ̃) of the Generalized Extreme Value distribution
we have that ˆ̃µ ∈ [11.2506, 19.4064] with a mean value 15.6687, ξ̂ ∈ [−0.4809, 4.2591] with mean
0.4125 and ˆ̃σ ∈ [0.3248, 3.8260] with mean 2.2331. We only remark that even if there is a great
variability in the parameters, the median value of the jump size is not varying from one estimate
to the other. We recall that the median (the mean is not always defined) of a GEV distribution
is given by

Median = µ+ σ
log(2)−ξ − 1

ξ
.

In Figure 4.16, we see that this value is oscillating between 11 and 22, which are reasonable
values for the jumps in our dataset.

Forecasting performance

In this section we will evaluate the performance of the model described in Section 4.2 when it
is used to forecast future values of the electricity prices. As pointed out in [Wer14], there is no
universal standard for evaluating the forecasts.

The most widely used technique is to obtain point forecasts, i.e. single forecast values,
and evaluate them using some error function. The most common error function for this type
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Figure 4.16: Median of the GEV distribution throughout the entire dataset.

of forecasts is Mean Absolute Percentage Error (MAPE), together with its refinement Mean
Absolute Scaled Error (MASE). Another frequently used measure is the Root Mean Square
Variation (RMSV), which is simply the estimated standard variation of the forecast error.
In our model, the SDE-type structure is not particularly suitable for giving short-term point
forecasts, as it is also pointed out in [Wer14]. So in the following we will not concentrate our
analysis on point forecasts, as we do not expect our model to be able to outperform more
sophisticated and parameter-rich model in this task. Instead, we focus on the relatively novel
concept of Interval Forecast, that we introduce now

Interval Forecast (prediction interval, PI)

More recently, as was already suggested in [Wer14] and as it has been more thoroughly analized
in the very recent review [NoWe18], the driving interest in forecast evaluation has been put
in interval forecasts and density forecasts. Interval forecast have also been used as the official
evaluating system in 2014’s Global Energy Forecasting Competition (GEFCom2014). For this
and other reasons that we will point out, in this paper we will concentrate mainly on interval
forecast. As it is said in [NoWe18], there is a close relation between interval forecasts and
density forecasts.

Interval forecasts (also called Prediction intervals, shortly PI) are a method for evaluating
forecasts which consists in constructing the intervals in which the actual price is going to lie
with estimated probability α, for α ∈ (0, 1). There are many ways to build the interval,
depending also on the type of model that one is using. After an interval forecast is obtained,
its performance can be evaluated in different ways, see [NoWe18] for a complete review of the
existing techniques. Here we will evaluate interval forecasts for different time lags h, using 3
different techniques: Unconditional Coverage (UC), Pinball loss function (PLF) and Winkler
Score (WS).

Unconditional Coverage (UC). Establishing the UC just means that we evaluate nominal
rate of coverage of the Prediction intervals; as stated in [NoWe18], one can simply evaluate
this quantity, or consider the average deviation from the expected rate α. As pointed out in
[NoWe18], if we call Pt the actual price, [L̂t, Ût] the Prediction interval at level α ∈ (0, 1), we
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are checking the fact that the random variable

It =

{
1, if Pt ∈ [L̂t, Ût],

0, if Pt /∈ [L̂t, Ût],

has a Bernoulli B(1, α) distribution. This works clearly under the assumption that the violations
are independent, which may not always be the case.

Pinball loss function (PLF). The Pinball loss function is the function that has been used
for evaluating the models participating in the GEFCom2014, and it is a scoring function which
can be calculated for every quantile q. If we denote with Pt the actual price, with Qq(P̂t) the
q-th quantile of the estimated prices P̂t obtained with the model, the Pinball loss function is
defined as

Pin(Qq(P̂t), Pt, q) :=

{
(1− q)(Qq(P̂t)− Pt), if Pt < Qq(P̂t),

q(Pt −Qq(P̂t)), if Pt ≥ Qq(P̂t).

Winkler Score (WS). The Winkler score is a scoring rule which is similar to the Pinball
loss function, with the aim of rewarding both reliability (the property of having the right share
of actual data inside the α-th interval) and sharpness (having smaller intervals). For a central
α-th interval [L̂t, Ût], δt := Ût − L̂t, and for a true price Pt, the WS is defined as

WS([L̂t, Ût], Pt) =


δt, if Pt ∈ [L̂t, Ût],

δt + 2
α(Pt − Ût), if Pt > Ût,

δt + 2
α(L̂t − Pt), if Pt < L̂t.

As it can be seen, the WS has a fixed part which depends only on the dimension of the Prediction
intervals.

The models. We checked the performance of 3 different models:

• The 2 SDE models described in Section 4.2, one with fBm, and one with sBm.

• A naive model, built as Naive(t)=D(t)+H, where D is the dummy variables function and
H is randomly sampled historical noise ([NoWe18]) coming from the relative calibration
window.

Forecasting horizons. As already mentioned, used as the calibration window a rolling
window with fixed dimension of 730 prices, corresponding to the 730 days of past observations.
In this framework, we will consider the following forecasting horizons kh:

kh = {1, 2, . . . , 29, 30}

For each forecasting horizon we make a new estimate of the parameters at a distance kh from
the previous one, in order to have the sampled prices coming from disjoint time intervals.

Results

We start analysing the performance of the models by their observed UC. In Figure 4.17 we
report their performance in a plot which spans across all the forecasting horizons kh that we
are considering. The dotted black line represents the relative level of coverage that we should
attain. The closer we are to the dotted line, the more accurate a model is in covering that
specific interval.
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Figure 4.17: Observed Unconditional Coverage of the model with the fractional Brownian motion (blue),
with the standard Brownian motion (red) and the naive one (yellow)) for 50%, 90% and 98% coverage
intervals. On the horizontal axis, we represent the length kh of the forecasting window we are considering,
while on the vertical axis we represent the UC value.

In the 50% interval, the näıve model seems to be more stable, even if it is almost always
under-covering the interval. Among our models, the fBm model, except for the shorter fore-
casting horizons, is performing remarkably well. The sBm model is over-covering the interval,
for almost all forecasting horizons.

Moving to the 90% (mid plot) and 98% (bottom plot) prediction intervals, the fBm model
performs in general better than the other ones, except for a slight excess in coverage for the
90% PI with small forecasting windows. In the 98% PI, also the sBm model has a very good
performance, which will be confirmed by the numerical data for the UC reported in Table 4.7.

Avg. score\Model fBm sBm Näıve

UC50% 54.54% 60.37% 46.02%
UC50% error +4.54% +10.37% −3.98%
UC50% abs. error 5.95% 10.37% 4.83%

UC90% 90.63% 93.65% 86.02%
UC90% error −0.93% −9.10% +3.79%
UC90% abs. error 2.81% 3.67% 4.04%

UC98% 97.02% 97.58% 94.13%
UC98% error −0.98% −0.42% 3.87%
UC98% abs. error 1.19% 0.99% 3.90%

Table 4.7: Coverage rate for the estimated PI, averaged over all forecasting horizons kh = 1, . . . , 30.
The average error, as it can be seen, is just the difference of the average coverage from the nominal value.

We analysed then the WS and the PLF of the different models. In Figure 4.18 and in
Figure 4.19 we reported again the results spanning along all forecasting horizons. We note that
the PLF is a function of the quantile we are evaluating, so that in principle we would have to
evaluate it separately for every quantile q = 1, . . . , 99. As was also did in the GEFCom2014
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competition, we averaged first over all quantiles, in order to obtain a single value and make
comparisons easier.
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Figure 4.18: Winkler scores for 50% and 90% PI.

In terms of WS (Figure 4.18), the fBm and the sBm models outperform the the näıve
benchmark. The difference between the fBm model and the sBm model is very small in general,
but the fBm model performs better than the sBm one in almost every prediction interval. This
is true especially if we consider the 90% interval WS.

There seems to be a sort of contradiction in our results: indeed, when it comes to the UC at
level 50%, the näıve model seemed to be slightly better than the fBm model, while in terms of
WS for the 50% PI the fBm is clearly superior to the näıve benchmark. This is possible because
the WS is a metric which not only evaluates the share of coverage of a prediction interval, but
also gives a penalty for missed values, and this penalty depends on the magnitude of the error
made. Thus, it may seem reasonable to suppose that the näıve model, while performing quite
good in terms of coverage at the 50% PI, makes bigger errors than the fBm model.

The results about the PLF are quite similar to the ones of the WS. Again, the fBm and the
sBm model outperform the näıve model, while being very close one to each other. Again, the
fBm model performs slightly better than the sBm model.

We make anyway a remark: both in terms of WS and PLF, the näıve model is performing
better than the fBm and the sBm model when the forecasting horizon kh = 1. This is somewhat
consistent with a fact mentioned in [Wer14], which we already reported: the reduced-form
models, like ours, usually have a quite poor performance in very short-term forecasts.

Score \Model fBm sBm Näıve

WS50% 20.87 21.30 23.14
WS90% 38.62 40.44 46.25

PLF 2.3484 2.3920 2.6164

Table 4.8: Winkler scores and Pinball loss function values, averaged over all forecasting horizons kh =
1, . . . , 30.
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Figure 4.19: Pinball loss function (average).

In Table 4.7 and Table 4.8 we reported the above discussed values, averaged over all different
forecasting horizons. In terms of the UC, each of the three models is performing better than
the others for a certain PI, while both for the WS and the PLF we see the better performance
of the fBm model also from these numerical data.

4.3.4 Conclusions

Drawing some conclusions from the results analyzed above, there are some evidences that a
fBm-driven model may be more adequate to model the electricity prices than a sBm-driven
model.

Regarding the forecasting performance (QF and PI), the fBm methods have better perfor-
mance than the sBm ones in terms of WS and PLF, while both the sBm and the näıve model
enjoy some success when evaluating the UC.

To understand this apparent contradiction, we remark (as we already did) that WS and
PLF are scoring rules which give a penalty for missed forecasts (while UC does not), and these
penalties depend also on the magnitude of the error. The fact that fBm models outperform
sBm models in this evaluation may mean that the QF and the PI given by the fBm models are
in some sense more robust than the sBm ones (and also than the ones of the naive benchmark).

Concerning the model structure, we remark that we found very satisfactory the fact that the
parameter estimation for the Hawkes process gave roughly half of the times a very significant
value, meaning that the clustering effect is not only visible on a macroscopic scale, but is also
captured by the numerical methods.

This was not assured in principle, since the Italian market is rather peculiar, having only a
small number of real spikes. This gives, as a consequence, that the intensity of the spike process
is small and could become difficult to estimate, even if this was not the case for our data.

Regarding the role of the fractional Brownian motion in the model, we remark that we
found some very interesting informations from the estimation procedure. The fact, shown in
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Figure 4.14, that the parameter H is tending to 0.5 in more recent times may mean that the
market is finding automatically a way towards the ”independence of increments”, which would
be implied by the fact that H = 0.5. This is remarkable also for the fact that the independence
of increments is closely related, for these models, with the absence of arbitrage. Even if we
pointed out that arbitrage is usually not possible, for this kind of models, when trading only
once per day, a good question for future developments in this sense may be: are electricity
markets, which are ”young” financial markets, finding their own stability with the passing of
time, or are our findings specific to the italian market? In any case, are these changes going to
last in the future or we may see a return of a fractional effect in the next years?

149



150



A | Appendix

A.1 Basic probability results

Let (Ω,F ,P) be a probability space. We recall that given a stochastic process {Xt, t ∈ R} with
values in some metric space (S, d), we say that X̃ is a modification of X if it is a stochastic
process such that for every t ∈ R

P(Xt = X̃t) = 1.

Definition A.1. Let f : R→ S, where (S, d) is a metric space. Let α ∈ (0, 1). We say that f
is Hölder continuous of exponent α if it satisfies

sup
s 6=t

|f(s)− f(t)|
|t− s|α

<∞

Theorem A.2 (Kolmogorov continuity theorem). Let (Ω,F ,P) be a probability space and let
(S, d) be a complete metric space. Let X : R × Ω → S be a stochastic process. Assume that
there exist α, β > 0 such that for every s, t ∈ R it holds

E
[
|Xt −Xs|α

]
≤ C|t− s|1+β.

Then, there exists a modification X̃ of X with continuous sample paths X·(ω), for all ω ∈ Ω.
Moerover, for every γ ∈ (0, βα), the modification can be chosen such that the sample paths are
γ-Hölder continuous.
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[HHLNT17] Hu, Y., Huang, J., Lê, K. Nualart, D. and Tindel, S., Stochastic Heat equation
with rough dependence in space, Ann. Probab. 45, 4561–4616, (2017).

[HHNT15] Hu, Y., Huang, J., Nualart, D. and Tindel, S., Stochastic heat equations with general
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