
Statistical methods and software
for clinical trials with binary and

survival endpoints

Efficiency, sample size and two-sample

comparison

Marta Bofill Roig

PhD Thesis directed by:

Guadalupe Gómez Melis
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manera que jo he vist créixer els seus. Al Pol i al Guille perquè plegats ens hem
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meva feina. Per aquests anys, vivint i compartint tot plegades, que he disfrutat
i que tornaria a repetir. Als meus pares, que sempre m’han animat a perseguir
els meus somnis, que m’han inculcat el valor de l’esforç, recolzat en les decisions
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Abstract

Defining the scientific question is the starting point for any clinical study. However,
even though the main objective is generally clear, how this is addressed is not
usually straightforward. Clinical studies very often encompass several questions,
defined as primary and secondary hypotheses, and measured through different
endpoints.

In clinical trials with multiple endpoints, composite endpoints, defined as the
union of several endpoints, are widely used as primary endpoints. The use of
composite endpoints is mainly motivated because they are expected to increase
the number of observed events and to capture more information than by only
considering one endpoint. Besides, it is generally thought that the power of the
study will increase if using composite endpoints and that the treatment effect on
the composite endpoint will be similar to the average effect of its components.
However, these assertions are not necessarily true and the design of a trial with a
composite endpoint might be difficult.

Different types of endpoints might be chosen for different research stages. This
is the case for cancer trials, where short-term binary endpoints based on the tu-
mor response are common in early-phase trials, whereas overall survival is the
gold standard in late-phase trials. In the recent years, there has been a growing
interest in designing seamless trials with both early response outcome and later
event times. Considering these two endpoints together could provide a wider char-
acterization of the treatment effect and also may reduce the duration of clinical
trials and their costs.

In this thesis, we provide novel methodologies to design clinical trials with
composite binary endpoints and to compare two treatment groups based on binary
and time-to-event endpoints. In addition, we present the implementation of the
methodologies by means of different statistical tools. Specifically, in Chapter 2, we
propose a general strategy for sizing a trial with a composite binary endpoint as
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x Abstract

primary endpoint based on previous information on its components. In Chapter 3,
we present the ARE (Asymptotic Relative Efficiency) method to choose between
a composite binary endpoint or one of its components as the primary endpoint of
a trial. In Chapter 4, we propose a class of two-sample nonparametric statistics
for testing the equality of proportions and the equality of survival functions. In
Chapter 5, we describe the software developed to implement the methods proposed
in this thesis. In particular, we present CompARE, a web-based tool for designing
clinical trials with composite endpoints and its corresponding R package, and the
R package SurvBin in which we have implemented the class of statistics presented
in Chapter 4. We conclude this dissertation with general conclusions and some
directions for future research in Chapter 6.



Resumen

La evaluación de la eficacia de los tratamientos es uno de los mayores retos en
el diseño de ensayos cĺınicos. La variable principal cuantifica la respuesta cĺınica
y define, en gran medida, el ensayo. Los ensayos cĺınicos generalmente abarcan
varias cuestiones de interés. En estos casos, se establecen hipótesis primarias y
secundarias, que son evaluadas a través de diferentes variables.

Los ensayos cĺınicos con múltiples variables de interés utilizan frecuentemente
las llamadas variables compuestas. Una variable compuesta se define como la unión
de diversas variables de interés. La utilización de variables compuestas en lugar de
variables simples estriba en que con éstas aumenta el número de eventos observa-
dos y se obtiene una información más completa sobre la respuesta al tratamiento.
También se plantea a menudo, por un lado, que la potencia estad́ıstica del estudio
es mayor si se usan variables compuestas y, por otro, que el efecto del tratamiento
de la variable compuesta será similar al efecto medio de las variables que la com-
ponen. Sin embargo, estas afirmaciones no son necesariamente ciertas y el diseño
de un estudio con una variable compuesta suele ser complejo.

El tipo de variable escogida como variable principal puede diferir en las difer-
entes etapas de investigación. Por ejemplo, en el caso de estudios oncológicos, las
variables binarias evaluadas a corto plazo son usadas en fases tempranas del de-
sarrollo del tratamiento; mientras que en fases más avanzadas, las variables más
usadas son tiempos de vida. En los últimos años, ha habido un interés creciente
en el diseño de ensayos fase II/III con variables binarias y tiempos de vida. Este
tipo de ensayos podŕıa proporcionar una caracterización más amplia del efecto
del tratamiento y también podŕıa reducir la duración de los ensayos cĺınicos y sus
costes.

En esta tesis, proponemos nuevas metodoloǵıas, junto con el software estad́ıstico
correspondiente, para el diseño de ensayos cĺınicos con variables compuestas y para
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xii Resumen

la comparación de dos grupos de tratamiento en base a variables binarias y tiem-
pos de vida. Espećıficamente, en el caṕıtulo 2, proponemos una estrategia para
calcular el tamaño muestral de un ensayo con una variable compuesta como vari-
able principal del estudio basado en la información previa sobre sus componentes.
En el caṕıtulo 3, presentamos el método ARE (Asymptotic Relative Efficiency)
para elegir entre una variable compuesta o una de sus componentes como variable
principal de un ensayo. En el caṕıtulo 4, proponemos una clase de estad́ısticos
no paramétricos para contrastar la igualdad de proporciones y la igualdad de las
funciones de supervivencia. En el caṕıtulo 5, describimos el software desarrollado
para implementar los métodos propuestos en esta tesis. En particular, presenta-
mos CompARE, una herramienta web para diseñar ensayos cĺınicos con variables
compuestas y su correspondiente paquete R, y el paquete R SurvBin en el que
hemos implementado la clase de estad́ısticos presentadas en el caṕıtulo 4. La tesis
concluye con un resumen de las principales aportaciones, algunas conclusiones de
carácter general aśı como con una discusión sobre diversos problemas abiertos y
futuras ĺıneas de investigación.



Resum

L’avaluació de l’eficàcia dels tractaments és un dels grans reptes en el disseny
d’assajos cĺınics. La variable principal quantifica la resposta cĺınica i defineix, en
gran manera, l’assaig. Els assaigs cĺınics generalment inclouen diverses qüestions
d’interès. En aquests casos, s’estableixen hipòtesis primàries i secundàries, que són
avaluades mitjançant diferents variables.

Els assajos cĺınics amb múltiples variables d’interès utilitzen freqüentment les
anomenades variables compostes. Una variable composta es defineix com la unió
de diverses variables d’interès. La utilització de variables compostes en lloc de vari-
ables simples rau en el fet que amb aquestes augmenta el nombre d’esdeveniments
observats i s’obté una informació més completa sobre la resposta al tractament.
També es planteja sovint, d’una banda, que la potència estad́ıstica de l’estudi és
més gran si es fan servir variables compostes i, de l’altra, que l’efecte del tracta-
ment de la variable composta serà semblant a l’efecte mitjà de les variables que
la composen. No obstant això, aquestes afirmacions no són necessàriament certes
i el disseny d’un estudi amb una variable composta sol ser complex.

El tipus de variable escollida com a variable principal pot diferir en les diferents
etapes d’investigació. Per exemple, en el cas d’estudis oncològics, les variables
binàries avaluades a curt termini són utilitzades en fases inicials; mentre que
en fases més avançades, les variables més utilitzades són temps de vida. En els
últims anys, hi ha hagut un interès creixent en el disseny d’assaigs fase II/III amb
variables binàries i temps de vida. Aquest tipus d’assajos podria proporcionar
una caracterització més àmplia de l’efecte del tractament i també podria reduir
la durada dels assaigs cĺınics i els seus costos.

En aquesta tesi, proposem noves metodologies, juntament amb el software es-
tad́ıstic corresponent, per al disseny d’assajos cĺınics amb variables compostes i
per a la comparació de dos grups de tractament a partir de variables binàries
i temps de vida. Espećıficament, en el caṕıtol 2, proposem una estratègia per
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calcular la mida mostral d’un assaig amb una variable composta com a variable
principal d’estudi basat en la informació prèvia sobre els seus components. En el
caṕıtol 3, presentem el mètode ARE (Asymptotic Relative Efficiency) per triar
entre una variable composta o una de les seves components com a variable princi-
pal d’un assaig. En el caṕıtol 4, proposem una classe d’estad́ıstics no paramètrics
per contrastar la igualtat de proporcions i la igualtat de les funcions de super-
vivència. En el caṕıtol 5, descrivim el software desenvolupat per implementar els
mètodes proposats en aquesta tesi. En particular, presentem CompARE, una eina
web per dissenyar assajos cĺınics amb variables compostes i el seu corresponent
paquet d’R, i el paquet d’R SurvBin on hem implementat la classe d’estad́ıstics
presentada en el caṕıtol 4. La tesi conclou amb un resum de les principals aporta-
cions, algunes conclusions de caràcter general aix́ı com amb una discussió sobre
diversos problemes oberts i futures ĺınies d’investigació.
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B Appendix of Bofill and Gómez (2018) . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.1 Additional tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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Chapter 1

Introduction

Statistics come along with scientists in all stages of investigation of clinical re-
search, from design to analysis and prediction. Clinical research is most times
focused on the prevention or treatment of diseases, drug discovery being the cor-
nerstone of medical progress. Medical advances move forward through experimen-
tation and by using several study designs. There are two main types of clinical
studies depending on the study design and thus on the nature of data: clinical
trials and observational studies (Cook et al., 2008).

When a new drug is being investigated, the usual method for studying its
efficacy is by comparing how it acts with respect to a placebo or standard of care
(Pocock, 1983). The groups of patients that receive either of the treatments must
be as similar as possible and should only differ in the treatment that each group
receives. Otherwise, observed differences between groups may not be attributable
to the treatments, but can arise from other characteristics of the groups.

In clinical trials, the assignment of subjects to a group is through a random-
ization process. Randomization is, in its most simple form, a process by which all
subjects are equally likely to be assigned to either one of the treatment groups
(Friedman et al., 2010). When data come from clinical trials, we are able to an-
swer questions about the efficacy of a treatment with respect to another, or in
other words, to state causal relationships between the treatment and the response.
In observational studies, however, there is no randomly assignment of subjects to
groups. Such studies are mostly focused on the associational relationships between
the treatment and the outcome and can not generally draw causal inferences be-
tween them due to potential biases.

The emergence of clinical trials in 1948 laid the foundation for modern drug
development process (Medical Research Council, 1948). Subsequent advances in
ethics, statistical methodologies, and protocols and regulatory issues have led to
the development and improvement of clinical trials since their origin. But still,

1
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clinical trials are not exempted of challenges and they are continuously growing
and adapting to new problems.

Clinical trials are considered the gold standard procedure to evaluate efficacy
and safety of a new drug in human beings. However, the process until there is a new
drug to be tested is lengthy, and clinical trials are not just limited to comparative
studies when a candidate drug is available. Clinical trials put together several
steps, or phases, of drug discovery and are commonly classified into four phases,
each of them following a different purpose and helping scientists to answer different
questions (Friedman et al., 2010; Senn, 2008).

In phase I trials, the new drug is usually tested in healthy volunteers aiming
to estimate its tolerability and to characterize how the drug affects the organism
and vice versa. The main statistical challenges in phase I trials are to relate the
dose to the toxicity of the new drug and to establish the maximum tolerated
dose in a small group of patients (Storer, 1989; Buoen et al., 2005). Once the
range of appropriate doses is determined, in phase II trials the drug is tested in
a larger group of diseased patients with the objective of evaluating its efficacy.
There are some phase II studies that, because of uncertainty in dose-response,
consider several doses; whereas others use a fixed dose chosen based on previous
phase I trial results. The goals in this phase are identifying the optimal dose level
and estimating the effect of that dose on diseased patients. It is common to use
multiple testing procedures in order to acquire the optimal dose level. Moreover,
adaptive designs containing stopping rules are often considered for cases where
the drug is either very toxic or very effective, allowing the trial to be stopped
early. Phase II trials do not usually employ a comparative design. During this
phase, the treatment is usually evaluated on endpoints that can be measured in
a short period of time and that are related to the clinical outcome. The primary
objective of phase II trials is to determine whether the new drug should be used
in a large-scale comparative trial and, if so, to estimate the response so that it can
aid investigators in designing further studies. How precise the estimated response
is will be crucial in the design of subsequent controlled trials.

Phase III trials have much larger sample sizes, recruiting hundreds or even thou-
sands of patients, and aim to compare the new drug against the standard of care.
These trials are carefully designed, in concordance with the regulatory guidelines,
to ensure the reliability of the trial and the drug’s efficacy estimation, to monitor
side-effects, and to compare it to already approved treatments. Many statistical
challenges arise in this stage such as the selection and analysis of appropriate
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endpoints, or the calculation of the required sample size for detecting an specific
effect size.

Phase IV trials are conducted after a drug has been already approved by the
regulatory agencies. The purpose of these trials is to learn more about the side
effects and safety of the drug, or to assess long term risks and benefits in a broad,
general population not subjected to strict clinical scrutiny.

This classification is very general and might be very flexible. Additionally, there
may be differences depending on the disease under study. Whereas early phase
studies may be controlled or uncontrolled, later phases are usually controlled
trials with longer follow-up periods and with larger sample sizes. Not all the
trials may fit into a single phase, there are some blending different phase studies,
for instance, phase I/II trials. In the recent years, there has been an increasing
number of hybrids of phase II and phase III trials in order to foster a faster and
more efficient drug development process (Lai et al., 2012; Thall et al., 2012; Kieser
et al., 2018). Also the large number of promising drugs that fail in phase III has
lead to enlarge phase II trials to guarantee that the findings are clinically relevant
and to improve the estimates of the effect sizes (De Martini, 2019) to be used in
later phases.

Clinical trial designs often encounter the need of using more than one event
to measure the efficacy of treatment effect, specially in phase III trials. The use
of multiple responses contributes to a wider picture of the intervention effects
providing more information. Trials involving multiple endpoints commonly arise
in practice. For instance, in cardiovascular studies, multiple endpoints are often
considered, such as myocardial infarction, acute coronary syndrome, stroke and
death.

Multiple endpoints put forth challenges in the design and analysis of clinical
trials. How we deal with multiple endpoints will rely on the question that it is
addressed, since the efficacy claim in this situation might be defined in different
ways. The efficacy endpoints are called co-primary endpoints when it is necessary
to demonstrate a treatment effect on each of the endpoints to conclude that the
drug is effective; while they are called multiple primary endpoints when it is
sufficient to demonstrate a treatment effect on at least one of the endpoints to
conclude on the effectiveness of the drug (EMA Guideline, 2017). When designing
the trial to evaluate the effect on co-primary endpoints, no adjustment is needed
to control the type I error, but the statistical power decreases as the number of
endpoints to be evaluated increases (FDA Guidance, 2017). On the other hand,
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when designing the trial to evaluate an effect on multiple primary endpoints, an
adjustment is needed to control the type I error rate.

One popular alternative to multiple endpoints is to reduce the multi-dimensional
problem into a one-dimensional problem by collapsing the information of several
responses into a single endpoint. In the context of survival and binary data, com-
posite endpoints, defined as the union of several events, are frequently applied.
In this case, treatment effect is evaluated on the time until the occurrence of the
first of several events; or on the binary endpoint that takes value 1 whenever one
of the outcomes has occurred.

The growth in the number of trials with multiple endpoints has contributed
to the need of further research in the design and analysis of such trials. One
major concern is how to determine the required sample size. As it is well-known,
if the sample size is less than necessary the trial might not be able to conclude
meaningful results. On the other hand, the use of more sample size than necessary
might detect treatment differences too small to be clinically relevant. Both cases
would imply a waste of resources and an unnecessary patients’ risk exposure (Cook
et al., 2008).

The sample size calculation when multiple endpoints are involved mainly relies
upon the clinical question, which in turn defines the alternative hypothesis to be
tested. Many authors have proposed different approaches to size trials with mul-
tiple primary and co-primary endpoints. Sozu et al. (2010) and Sozu et al. (2015)
discussed sample size formulae for multiple co-primary and multiple primary bi-
nary endpoints, respectively; Senn and Bretz (2007) discussed sample size for trials
with multiple co-primary and multiple primary continuous endpoints; and Sugi-
moto et al. (2017) presented sample size calculations for multiple co-primary and
multiple primary time-to-event endpoints. Surprisingly, less attention has been
given to the design and sample size with composite endpoints.

Sometimes the major difficulty in the sample size calculation is that the required
information depends on parameters which are often unknown or highly variable.
In trials with multiple endpoints, the association among the considered endpoints
should be taken into account to obtain the appropriate sample size (FDA Guid-
ance, 2017). However, this association is usually unknown and difficult to obtain.
Although several authors have assessed how the degree of association between
endpoints affects on sample size when using multiple co-primary binary endpoints
(Ando et al., 2015; Sozu et al., 2010), methodologies for sample size calculations
which address how to deal with the lack of knowledge of the correlation are limited.



1 Introduction 5

Outline of the thesis

This thesis deals with the design and analysis of late phase trials with multiple
endpoints and it consists of two different parts. The first part concerns the design
of trials with composite binary endpoints; whereas in the second a binary endpoint
and a time-to-event endpoint are considered for the comparison of two treatment
groups.

Composite binary endpoints are commonly used as primary endpoints in clinical
trials. When designing a trial, it is crucial to determine the appropriate sample
size for testing the statistical differences between treatment groups for the pri-
mary endpoint. As shown in Chapter 2, when using a composite binary endpoint
to size a trial, one needs to specify the event rates and the effect sizes of the
composite components as well as the correlation between them. In practice, the
marginal parameters of the components can be obtained from previous studies
or pilot trials; however, the correlation is often not previously reported and thus
usually unknown. In Chapter 2, we first show that the sample size for composite
binary endpoints is strongly dependent on the correlation and, second, that slight
deviations in the prior information on the marginal parameters may result in un-
derpowered trials for achieving the study objectives at a pre-specified significance
level. We propose a general strategy for calculating the required sample size when
the correlation is not specified and accounting for uncertainty in the marginal
parameter values. Chapter 2 mainly reproduces the publication:

A new approach for sizing trials with composite binary endpoints using
anticipated marginal values and accounting for the correlation between

components.
Bofill Roig, M., and Gómez Melis, G.

Statistics in Medicine. Volume 38, Issue 11, 20 May 2019, Pages 1935–1956.
DOI: 10.1002/sim.8092.

Chapter 3 focuses on the choice of the primary endpoint in trials with composite
endpoints. This choice is an important issue when designing a clinical trial. It is
common to use composite endpoints as a primary endpoint because it increases the
number of observed events, captures more information and is expected to increase
the power. However, combining events that have no similar clinical importance and
have different treatment effects makes the interpretation of the results cumber-
some and might reduce the power of the corresponding tests. Gómez and Lagakos

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8092
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(2013) proposed the Asymptotic Relative Efficiency (ARE) method to choose be-
tween a composite or one of its components as primary endpoint for comparing
the efficacy of a treatment based on the times to each of these endpoints. In Chap-
ter 3, we expand the ARE method to binary endpoints. We show that the ARE
method depends on six parameters including the degree of association between
components, event proportion, and effect of therapy given by the corresponding
single endpoints. The main content of Chapter 3 has been published in:

Selection of composite binary endpoints in clinical trials.
Bofill Roig, M., and Gómez Melis, G.

Biometrical Journal. Volume 60, Issue 2, March 2018, Pages 246-261.
DOI: 10.1002/bimj.201600229.

Lifetime analysis has often been the sharp focus of clinical trial research. In
trials with multiple endpoints, the time until the event is not always the outcome
of interest for all endpoints while the occurrence of an event over a fixed time
period is important in itself. In cancer immunotherapies trials, short-term binary
endpoints based on the tumor size, such as objective response, are common in
early-phase trials, whereas overall survival remains the gold standard in late-phase
trials (Ananthakrishnan and Menon, 2013). In Chapter 4, we propose a class of
two-sample statistics for testing the equality of proportions and the equality of
survival functions. We build our proposal on a weighted combination of a score
test for the difference in proportions and a Weighted Kaplan-Meier statistic-based
test for the difference of survival functions. The proposed statistics are fully non-
parametric and do not rely on the proportional hazards assumption for the survival
outcome. We present the asymptotic distribution of these statistics, propose a
variance estimator and show their asymptotic properties under fixed and local
alternatives. The proposed class of statistics could be used in seamless phase
II/III cancer trials, where our approach would provide an insight of the tumor
activity through the binary endpoint while the study continues with the time-to-
event response. The work presented in Chapter 4 reproduces the following paper
currently under review:

A class of two-sample nonparametric statistics for binary and time-to-event
outcomes.

Bofill Roig, M., and Gómez Melis, G.
arXiv:2002.01369 [stat.ME]

Chapter 5 contains a description of the software developed to implement the
methodologies presented in this thesis. Specifically, we present CompARE, a web-

https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201600229
https://arxiv.org/abs/2002.01369
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based tool for designing clinical trials with composite endpoints and its corre-
sponding R package, and the R package SurvBin in which we have implemented
the class of statistics presented in Chapter 4. We end the thesis with some final
conclusions and possible lines for future research in Chapter 6.





Chapter 2

Sample size for composite binary
endpoints

The main content of this chapter has been published in:

A new approach for sizing trials with composite binary endpoints using
anticipated marginal values and accounting for the correlation between

components.
Bofill Roig, M., and Gómez Melis, G.

Statistics in Medicine. Volume 38, Issue 11, 20 May 2019, Pages 1935–1956.
DOI: 10.1002/sim.8092.

Sections 2.1 to 2.7 reproduce almost identically the corresponding work in the
paper. However some modifications have been done for coherence and cohesion
of the thesis. The illustration in Section 2.5 has been analysed using the soft-
ware CompARE, though we postpone the description of CompARE to Chapter
5. Section 2.8 summarizes the contents of the online supplementary material of
the paper, and Section 2.9 describes further work that has not been published.
The discussion corresponds mostly to the one in the paper, but we have slightly
changed some paragraphs to update and encompass the further work we have
made. Proofs and technical details are in the Appendix A.

9

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8092
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2.1 Introduction

Many trials are designed to evaluate more than one endpoint with the aim of
providing a wider picture of the intervention effects (FDA Guidance, 2017; Rosen-
blatt, 2017). When the rate of occurrence of an event is expected to be low, it
is common to consider the composite event defined as the occurrence of any of
a set of pre-specified events. This composite event is usually chosen as the pri-
mary efficacy endpoint for comparing two treatment groups, either by comparing
proportions between groups at the end of the study or by using time-to-event
analysis. In this work, we focus on composite binary endpoints.

Power analysis and its subsequent sample size calculation have been widely
discussed in the literature on comparing two proportions in the univariate case
(Lachin, 1981; Donner, 1984; Fleiss, 1981). These standard sample size formulae
are based on the effect size and the frequency of occurrence of primary endpoint,
and they could be applied in a straightforward way to a composite endpoint
if its effect size and frequency are known prior to the initiation of the study.
However, the effect size and frequency of observing the composite endpoint depend
on the corresponding effect and frequency of the composite components, which
are often quite dissimilar and thus make the composite parameters very difficult
to anticipate.

The TACTICS-TIMI 18 trial (Cannon et al., 2001) illustrates some problems
that might arise when determining the sample size for a primary composite binary
endpoint. TACTICS-TIMI 18 was an international, multicenter, randomized trial
that evaluated the efficacy of invasive and conservative treatment strategies in
patients with unstable angina or non-Q-wave acute myocardial infarction treated
with tirofiban, heparin, and aspirin. The primary hypothesis of the TACTICS-
TIMI 18 trial was that an early invasive strategy would reduce the combined
incidence of death, acute myocardial infarction, and rehospitalization for acute
coronary syndromes at six months when compared with an early conservative
strategy. The primary endpoint was the composite endpoint formed by death, non-
fatal myocardial infarction, and rehospitalization for acute coronary syndrome at
6 months.

Similar research questions such as those in TACTICS-TIMI 18 were previously
investigated in the TIMI IIIB and VANQWISH trials (Cannon et al., 1998). The
TIMI IIIB trial (Anderson et al., 1995) considered the primary composite end-
point of death, post-randomization myocardial infarction, and a positive exercise
test at 6 weeks; whereas the primary endpoint in the VANQWISH trial (Boden
et al., 1998) was the combination of death and non-fatal myocardial infarction
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at 12 months of follow-up. The initial planning of TACTICS-TIMI 18 was based
on those trials expecting 22% events of the primary composite endpoint in the
conservative-strategy group, to detect a relative difference of 25% between the two
groups for a 80% power. Those anticipated values resulted in the need to recruit
at least 1720 patients. However, TACTICS-TIMI 18 yielded a 19% frequency of
observing the combination of death, acute myocardial infarction and rehospital-
ization at six months, which was remarkably lower than expected and delivered a
relative difference of 20% between groups, a figure that is seriously lower than the
anticipated 25%. Note that if the anticipated frequency of observing the compos-
ite endpoint had been closer to the observed results, at least 2000 patients rather
than 1720 would have been required and the sample size needed would have been
larger than the one initially planned.

In this chapter, we present sample size formulations for detecting a hypothesized
difference between treatments in a primary composite binary endpoint based on
the event rates and effect sizes of the composite components. The motivation
for this is mainly because prior information on the marginal effects and event
rates is commonly available from previous or pivotal studies, as illustrated in the
TACTICS-TIMI 18 trial. Moreover, the major findings in a trial with a primary
composite endpoint should be well supported by its components (FDA Guidance,
2017; EMA Guideline, 2017), since the trial could be considered negative if the
components are not in line with the result (Pocock et al., 2015; ICH9, 1999).
Nevertheless, as shown in this work, the sample size calculation for composite
endpoints relies not only on the anticipation of the effect size and the event rates
of the composite components, but also on the correlation between them. However,
even though the marginal parameters could be obtained previously, the correlation
is usually not reported in practice and, thus, is frequently unknown and difficult
to anticipate.

Several authors have addressed the correlation’s influence on sample size de-
termination when more than one endpoint is used as the primary endpoint. Sozu
et al. (2010) discuss several methods for calculating power and sample size for
multiple co-primary binary endpoints, and they study the impact on the sam-
ple size, specifically regarding the association among endpoints. Senn and Bretz
(2007) examine sample size for trials under different power definitions for multiple
testing problems. Rauch and Kieser (2012) and Sander et al. (2016) define a mul-
tiple test procedure focused on a composite binary endpoint and a pre-specified
main component, and propose an internal pilot study for estimating the unknown
parameters and revising the sample size. However, to the best of our knowledge,
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methodologies are limited in regard to handling the sample size calculation for
composite binary endpoints when the correlation is unknown.

In this work, we focus on providing a general procedure for sizing trials with
composite binary endpoints, doing so on the basis of anticipated information of the
composite components even if the correlation is unknown. We show that the sam-
ple size for composite binary endpoints is strongly dependent on the correlation,
and that slight deviations in the prior information on the marginal parameters
may result in trials being too underpowered for achieving the study objectives at
the pre-specified significance level. We propose a sample size strategy to calculate
the minimum sample size that guarantees the planned power while accounting
for, on the one hand, the uncertainty of the correlation value and, on the other,
plausible deviations in the marginal parameter values. Furthermore, we have im-
plemented the methodologies presented in this chapter in CompARE. CompARE
is a freely available web-based tool for characterizing binary composite endpoints
and computing the needed sample size under several settings. CompARE provides
aids to help understand the role played by each one of the components of the com-
posite endpoint, as well as their consequences on the required sample size. In this
chapter, we use CompARE to illustrate the proposed methods. The presentation
of CompARE is postponed to Chapter 5.

This chapter is structured as follows. In Section 2.2, we introduce the settings of
the problem. In Section 2.3, we review sample size planning when evaluating risk
difference. In Section 2.4, we present sample size formulae for composite binary
endpoints based on the parameters of the components plus the correlation. We
further describe the performance of these formulae according to the parameters
and propose a strategy for sizing trials when the correlation is unknown. In Section
2.5, we exemplify the proposal by the TACTICS-TIMI 18 trial using CompARE,
and in Section 2.6 we extend the proposal to those trials for which the treatment
effect is measured by the relative risk or odds ratio. In Section 2.7, we investigate
the performance of the power and significance level under misspecification of the
correlation and evaluate the proposed sample size strategy with a simulation study.
In Section 2.8, we outline the contents of the supplementary material of Bofill
and Gómez (2019). In Section 2.9 we describe different association measures for
binary endpoints and state some properties of the composite effect. We conclude
the chapter with the Discussion.
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2.2 Notation and assumptions

We consider a randomized clinical trial comparing two treatment groups: the
control group (i = 0) and treatment group (i = 1), each one composed of n(i)

patients who are followed for a pre-specified time τ . For simplicity, we consider
only two events of potential interest, ε1 and ε2. Let Xijk denote the response of the
k-th binary endpoint for the j-th patient in the i-th group of treatment (i = 0, 1,
j = 1, ..., n(i), k = 1, 2). The response Xijk is defined by 1 if the event, εk, has
occurred during the follow-up and 0 otherwise.

We define the binary composite endpoint as the event that occurs whenever one
of the endpoints is observed, that is, ε∗ = ε1 ∪ ε2. At this point we assume that
the composite endpoint is well-defined, that is, both composite components are
important enough to be considered; and we include those adverse clinical outcomes
that are relevant to the clinical setting. We denote by Xij∗ the composite response
defined as a Bernoulli random variable with probability of observing the event
p

(i)
∗ = P(Xij∗ = 1) = 1− q(i)

∗ , where:

Xij∗ =

{
1, if Xij1 +Xij2 ≥ 1

0, if else Xij1 +Xij2 = 0
(2.1)

To evaluate whether there is a risk reduction in the treatment group compared
with the control group, we set a hypothesis test where the null hypothesis states
that there is no difference between the control and the treatment groups; whereas
the alternative hypothesis assumes a risk reduction in the treatment group. The
usual measures to evaluate the treatment effect when comparing two groups are
the difference in proportions (also called risk difference), denoted by δ∗; the relative
risk (or risk ratio), R∗; and the odds ratio, OR∗. The relationship between these
measures and the probabilities of observing the binary composite endpoint in each
group are given in Table 2.1, together with the null and alternative hypothesis
that should be set in each case. The following sections will be developed in terms
of the risk difference δ∗ = p

(1)
∗ − p(0)

∗ of the composite binary endpoint. Section 2.6
extends the results to the relative risk and odds ratio.

2.2.1 An insight into the parameters of the composite endpoint

Let p
(i)
k and q

(i)
k represent the probabilities that εk occurs or not, respectively, for

a patient belonging to the i-th group. Let ρ(i) denote Pearson’s correlation coeffi-



14 2 Sample size for composite binary endpoints

Table 2.1 Parameter to anticipate the effect, and set of hypotheses.

Parameter effect Null hypothesis Alternative hypothesis

Risk difference δ∗ = p
(1)
∗ − p(0)

∗ δ∗ = 0 δ∗ < 0

Relative risk R∗ = p
(1)
∗ /p

(0)
∗ log(R∗) = 0 log(R∗) < 0

Odds ratio OR∗ = p
(1)
∗ /q

(1)
∗

p
(0)
∗ /q

(0)
∗

log(OR∗) = 0 log(OR∗) < 0

cient between the components in the i-th group. The probability of observing the
composite event ε∗ is in terms of the probabilities of ε1 and ε2 and the correlation,
as follows:

p(i)
∗ = 1− q(i)

1 q
(i)
2 − ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2 , i = 0, 1 (2.2)

Note here that the probability of observing the composite endpoint becomes
smaller as the correlation between the components of the composite increases.

The effect size in the composite endpoint in terms of the risk difference, δ∗, is
given by:

δ∗ = δ1q
(0)
2 + δ2q

(0)
1 − δ1δ2 + ρ(0)

√
p

(0)
1 p

(0)
2 q

(0)
1 q

(0)
2 (2.3)

−ρ(1)

√
(p

(0)
1 + δ1)(p

(0)
2 + δ2)(q

(0)
1 − δ1)(q

(0)
2 − δ2)

where δk (k = 1, 2) corresponds to the risk difference for each of its components.
From now on the correlation is assumed equal for both groups and denoted

by ρ, that is, ρ = ρ(0) = ρ(1). A short discussion on the consequences on the
assumption ρ(0) = ρ(1) is available in the supplementary material (see Section
2.8). Let θ denote the vector of event rates of the composite components in the

control group, that is, θ = (p
(0)
1 , p

(0)
2 ), and let λ represent the vector of marginal

effect sizes, that is, λ = (δ1, δ2). We will denote the risk difference as a function
of the marginal parameters (θ, λ) and the correlation ρ by δ∗(θ, λ, ρ); and the

probability of observing ε∗ under the control group by p
(0)
∗ (θ, ρ). We remark here

that when λ and θ are fixed such that p
(0)
k < 0.5 and δk < 0 (k = 1, 2), the

risk difference δ∗(θ, λ, ρ) increases with respect to the correlation ρ (see Appendix
A.1).
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2.3 Sample size when the parameters of the composite
endpoint can be anticipated

In this section we summarize the statistics and sample size formulae to test for
a risk difference when the probability of occurrence in the control group of the
composite binary endpoint can be anticipated and for a given expected risk differ-
ence. Since the composite endpoint is an univariate outcome, a single statistical
test is performed and, consequently, no multiplicity problem occurs and no sta-
tistical adjustment is needed. Therefore, as we will see, the formulas follow the
univariate case and are straightforward but to make this work comprehensive and
the following sections meaningful, we displayed them in terms of the composite
endpoint parameters.

Herein, we assume a clinical trial where, first, patients are randomized to one of
two treatment arms following a balanced design and, second, where the primary
endpoint is a binary composite endpoint. The aim is to detect a hypothesized risk
reduction in the primary composite endpoint at the significance level of α and
with desired power equal to 1 − β. Let n be the total sample size required, with
n(i) = n

/
2 patients per group (i = 0, 1); and let us denote by zα and zβ the values

of standardized normal deviates corresponding to α and β.
The null hypothesis is stated as H∗0 : p

(1)
∗ − p(0)

∗ = 0 and is compared against

the alternative hypothesis H∗1 : p
(1)
∗ − p(0)

∗ < 0. To test H∗0 against H∗1 we use the
statistic:

T∗,n =
p̂

(1)
∗ − p̂(0)

∗√
V̂ ar(p̂

(1)
∗ − p̂(0)

∗ )

(2.4)

where p̂
(i)
∗ = 1

n(i)

∑n(i)

j=1Xij∗. Under H∗0, T∗,n follows, asymptotically, the standard
normal distribution. We will reject the null hypothesis at the α level of significance
if T∗,n < −zα. The variance V ar(p̂

(1)
∗ − p̂(0)

∗ ) in equation (2.4) can be estimated
under H∗0 using the pooled variance estimate (Donner, 1984):

V̂ arH0(p̂
(1)
∗ − p̂(0)

∗ ) =
1

2n(0)
·
(
p̂(0)
∗ + p̂(1)

∗
)
·
(
q̂(0)
∗ + q̂(1)

∗
)

or under H∗1 using the unpooled variance estimate:

V̂ arH1(p̂
(1)
∗ − p̂(0)

∗ ) =
1

n(0)

(
p̂(0)
∗ q̂

(0)
∗ + p̂(1)

∗ q̂
(1)
∗
)
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For a given probability under control group p
(0)
∗ , the required sample size using

the pooled estimate to have power 1− β in order to detect an effect size of δ∗ at
a significance level α is given by (Lachin, 1981; Fleiss, 1981):

n = 2 ·
(
zα ·

√
(2p

(0)
∗ + δ∗)(2q

(0)
∗ − δ∗) + zβ ·

√
p

(0)
∗ q

(0)
∗ + (p

(0)
∗ + δ∗)(q

(0)
∗ − δ∗)

)2
/
δ2
∗

(2.5)

Note that in (2.5) we have replaced p
(1)
∗ with p

(0)
∗ + δ∗.

Similarly, the corresponding sample size using the unpooled variance estimate
is given by:

n = 2 ·
(
zα + zβ
δ∗

)2

·
(
p(0)
∗ q

(0)
∗ + (p(0)

∗ + δ∗)(q
(0)
∗ − δ∗)

)
(2.6)

Note that, under the null hypothesis H∗0 : p
(1)
∗ − p(0)

∗ = 0, expressions (2.5) and
(2.6) coincide.

2.4 Sample size based on anticipated values of the com-
posite components

Sample size formulae underlined in Section 2.3 are based on the parameters of
the composite endpoint, that is, the event rate under the control group, p

(0)
∗ , and

the treatment effect, δ∗. In this section, we derive the sample size based on the
anticipated information on the marginal parameter values and the correlation,
even if the correlation value is not fully specified and/or the event rates values
are not accurately anticipated.

2.4.1 Sample size based on composite components

Given the event rates in the control group θ = (p
(0)
1 , p

(0)
2 ), the expected effect size

for each component λ = (δ1, δ2), and the correlation between the occurrence of
both components ρ, we will denote by n(θ, λ, ρ) the needed sample size, which
is computed by using the unpooled variance estimate, to detect a risk difference
δ∗(θ, λ, ρ) (see equation (2.3)) at significance level α with 1− β power.
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The expression for n(θ, λ, ρ) is obtained after direct substitution into formula
(2.6) and is as follows:

n(θ, λ, ρ) =
2 · (zα + zβ)2

δ∗(θ, λ, ρ)2
·
(
p

(0)
∗ (θ, ρ)

(
1− p(0)

∗ (θ, ρ)
)

+
(
p

(0)
∗ (θ, ρ) + δ∗(θ, λ, ρ)

)(
1− p(0)

∗ (θ, ρ)− δ∗(θ, λ, ρ)
))

(2.7)

where p
(0)
∗ (θ, ρ) is given in (2.2). Note that the sample size also relies on the

significance level α and the power 1−β, but these are omitted for ease of notation.
The corresponding sample size under the pooled estimate can be analogously
calculated by using θ, λ and ρ and its expression can be found in the online
support material.

2.4.2 Sample size bounds

Assuming that the correlation is the same in the two treatment groups, it follows
that the correlation takes values between the lower bound, BL(·), and the upper
bound, BU(·), which are functions of θ and λ, and are defined as:

BL(θ, λ) = max

−
√√√√p

(0)
1 · p

(0)
2

q
(0)
1 · q

(0)
2

, −

√√√√q
(0)
1 · q

(0)
2

p
(0)
1 · p

(0)
2

,

−

√√√√(p
(0)
1 + δ1) · (p(0)

2 + δ2)

(q
(0)
1 − δ1) · (q(0)

2 − δ2)
, −

√√√√ (q
(0)
1 − δ1) · (q(0)

2 − δ2)

(p
(0)
1 + δ1) · (p(0)

2 + δ2)


BU (θ, λ) = min

+

√√√√p
(0)
1 · q

(0)
2

p
(0)
2 · q

(0)
1

, +

√√√√p
(0)
2 · q

(0)
1

p
(0)
1 · q

(0)
2

,

+

√√√√(p
(0)
1 + δ1) · (q(0)

2 − δ2)

(p
(0)
2 + δ2) · (q(0)

1 − δ1)
, +

√√√√(p
(0)
2 + δ2) · (q(0)

1 − δ1)

(p
(0)
1 + δ1) · (q(0)

2 − δ2)


(2.8)

Note that when at least one of the event rates is very close to 0, the lower bound
BL(λ, θ) will also be close to 0 and the plausible correlation values will be always
positive. We also notice that, in clinical trials the probabilities of observing the
events are often quite low and commonly smaller than 0.5. In this case, the expres-
sions for BL(λ, θ) and BU(λ, θ) can be simplified. See the online supplementary
material for more details.
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Considering such bounds for a given marginal parameters θ and λ, the sample
size n(θ, λ, ρ) is an increasing function of the correlation ρ, and it is bounded
below and above by n(θ, λ,BL(θ, λ)) and n(θ, λ,BU(θ, λ)), respectively. As a con-
sequence, the more correlated the single endpoints are, the larger will be the nec-
essary sample size for detecting the differences between groups in the composite
endpoint. Details for this derivation are provided in Appendix A.2 (see Theorem
1).

2.4.3 Sample size with uncertain correlation value

Since the correlation plays an important role in calculating the sample size, we
propose a strategy for deriving the sample size when the parameters that corre-
spond to the composite components are known and the correlation value is not
specified in advance.

Prior knowledge about the effect of the treatment being investigated can lead
to scientists foreseeing whether the two events of interest, ε1 and ε2, are weakly,
moderately or strongly correlated. We allow for prior information by splitting
the rank of the correlation into three equal-sized intervals, and we consider three
correlations categories: weak for the interval whose correlation values are lower;
moderate for those intermediate correlation values; and strong for those correlation
values that are higher. If any information exists, we will take it into account and
will proceed as follows:

(i) Correlation bounds for each category:
Considering the categories weak/moderate/strong for the correlation, the
plausible correlation values for a given (θ, λ) are in this situation those be-
tween the lower and upper values within each category. If the events are
weakly correlated, the correlation is between BL(θ, λ) and
(BU(θ, λ)−BL(θ, λ))

/
3; if they are moderately correlated, its value lies be-

tween (BU(θ, λ)−BL(θ, λ))
/

3 and 2 · (BU(θ, λ)−BL(θ, λ))
/

3; and if they
are strongly correlated, it is between 2·(BU(θ, λ)−BL(θ, λ))

/
3 andBU(θ, λ).

If we cannot place the correlation in any of the above categories, we use the
most severe case within its plausible values, then, BU(θ, λ). (See Table 2.2).

(ii) Calculate the sample size in each category:
For the sample size, we advocate using the maximum sample size across all
its possible values. That is, n(θ, λ, (BU(θ, λ)−BL(θ, λ))

/
3),

n(θ, λ, 2 (BU(θ, λ)−BL(θ, λ))
/

3), and n(θ, λ,BU(θ, λ)) for weak, moderate
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or strong correlations, respectively. Note that since we are assuming the cor-
relation value that maximizes the sample size across its plausible values, we
are guaranteeing that the pre-specified power 1− β is attained.
If the correlation value can not be ascribed to any category, then, we propose
a conservative sample size strategy of using the overall possible maximum
sample size, that is, n(θ, λ,BU(θ, λ)). Table 2.2 outlines the range of corre-
lations and sample sizes values, together with the proposed sample size for
each category.

2.4.4 Sample size accounting for departures from the anticipated
event rates

The marginal parameters are often estimated through previous studies or pivotal
trials with a limited number of patients and whose patient populations or con-
comitant drugs could differ from the current ones. Because of that, there is great
uncertainty in the values that need to be anticipated for computing the sample
size. In this section, we consider that the event rates p

(0)
1 and p

(0)
2 have been pre-

viously estimated and their corresponding standard errors of the point estimate
are provided.

Let Ik =
[
p(0)
k
, p̄

(0)
k

]
denote a set of plausible values for the true value of p

(0)
k . For

instance, for those previous trials in which we have the standard deviations for the
event rates, we can use the set of plausible values for p

(0)
k that a 95% confidence

interval would yield. We address the issue of sizing a trial for a significance level
α and power 1 − β based on the intervals I1 and I2, and for fixed effects δ1 and
δ2 when the correlation value is not known.

We state that, for given δ1 and δ2 and at fixed ρ = r, the sample size
n(p

(0)
1 , p

(0)
2 , λ, r) (see equation (2.7)) that is needed for power 1−β at a significance

level α, falls into the interval:

I(r, I1, I2, λ) = [ n(p(0)

1
, p(0)

2
, λ, r), n(p̄

(0)
1 , p̄

(0)
2 , λ, r) ] (2.9)

This interval is such that it contains the sample size required to attain power
1− β, which is necessary for detecting an effect size equal to δ∗ = p

(1)
∗ − p(0)

∗ at a
significance level α according to the marginal effects δ1 and δ2, the correlation r,
and the event rates p

(0)
k within Ik (k = 1, 2). Note that the interval I(r, I1, I2, λ)

gives us the plausible sample size values by taking into account the uncertainty of
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the marginal parameter values, and it provides us the maximum sample size that
we would need even though the anticipated event rates are not accurate.

Considering Θ = (I1, I2, λ) the set of values for the marginal parameters, and
denoting by

ρL(Θ) = max
(π1,π2)∈I1×I2

BL(π1, π2, λ)

ρU(Θ) = min
(π1,π2)∈I1×I2

BU(π1, π2, λ)

the lower and upper bounds of the correlation within the set Θ. Then, for all
(π1, π2) ∈ I1 × I2, and ρ ∈ (ρL(Θ), ρU(Θ)), we have that:

n(π1, π2, λ, ρ) ≤ U(Θ) = n(p̄
(0)
1 , p̄

(0)
2 , λ, ρU(Θ)) (2.10)

Furthermore, for given p̄
(0)
1 , p̄

(0)
2 , λ, the sample size n(p̄

(0)
1 , p̄

(0)
2 , λ, ρ) is an increasing

function of the correlation ρ.
The sample size given by n(p̄

(0)
1 , p̄

(0)
2 , λ, ρ) delimits the values that the sample

size could have in terms of the correlation accounting for plausible deviations in the
anticipated event rates. If there is no prior information on the correlation, we can
use U(Θ) as the needed sample size. If otherwise, we have some prior information
on the correlation value, the rationale used in 2.4.3 using correlation categories
can be as well applied here to the function n(p̄

(0)
1 , p̄

(0)
2 , λ, ρ). Table 2.3 provides

the sample size strategy under this circumstance. We lay out the performance of
the sample size when varying the event rates in the intervals I1 and I2 and the
subsequent sample size behavior according to the correlation in Propositions 2
and 3 in the supplementary material.

2.4.5 Power performance of the proposed strategies

Given (θ, λ, ρ) and for a fixed sample sizeN , the power function using the unpooled
variance estimate is defined as:

ψ(θ, λ, ρ,N) = Φ

(√
N · δ∗(θ, λ, ρ)√
V (θ, λ, ρ)

− zα

)
(2.11)

where:

V (θ, λ, ρ) = p
(0)
∗
(
θ, ρ)(1−p(0)

∗ (θ, ρ)
)

+
(
p

(0)
∗ (θ, ρ) + δ∗(θ, λ, ρ)

)(
1−p(0)

∗ (θ, ρ)− δ∗(θ, λ, ρ)
)
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and where Φ(·) denotes the cumulative distribution of the standard normal dis-
tribution. The power function for the pooled variance estimator can be found in
the online support material.

In what follows, we show that the planned power 1− β is achieved with any of
the previous strategies in Subsections 2.4.3 and 2.4.4.

� If θ and λ are fixed and the correlation value is not known, we have n(θ, λ, ρ) ≤
n
(
θ, λ,BU(θ, λ)

)
and the proposed sample size becomes N = n

(
θ, λ,BU(θ, λ)

)
.

The resulting power is then such that:

ψ
(
θ, λ, ρ, n

(
θ, λ,BU(θ, λ)

))
≤ ψ (θ, λ, ρ, n(θ, λ, ρ)) .

The power attained using the upper bound of the correlation is equal to the
pre-specified power value (1− β) when the correlation ρ is the maximum value
within its range, that is, BU(θ, λ). Otherwise, if the correlation is less than
BU(θ, λ), the power will be always higher than the pre-specified power. Table
S1 in the online supplementary material details the power performance when
the correlation categories are taken into account.

� If the event rate value p
(0)
k is within the interval Ik for k = 1, 2 and the

effect sizes λ are fixed, then n(p
(0)
1 , p

(0)
2 , λ, ρ) ≤ n

(
p̄

(0)
1 , p̄

(0)
2 , λ, ρ

)
. If in ad-

dition we have no prior information on the correlation value, then since
the sample size increases with respect to the correlation, it follows that
n
(
p̄

(0)
1 , p̄

(0)
2 , λ, ρ

)
≤ n

(
p̄

(0)
1 , p̄

(0)
2 , λ, ρU(Θ)

)
, and then the proposed sample size

turns into N = n
(
p̄

(0)
1 , p̄

(0)
2 , λ, ρU(Θ)

)
. The corresponding power then satisfies:

ψ
(
θ, λ, ρ, n

(
p̄

(0)
1 , p̄

(0)
2 , λ, ρU(Θ)

))
≤ ψ

(
θ, λ, ρ, n(p

(0)
1 , p

(0)
2 , λ, ρ)

)
.

The power attained is equal to the pre-specified power value when the event
rates p

(0)
k take the upper values p̄

(0)
k and the correlation ρ is equal to ρU(Θ). If

that is not the case, the power obtained will be larger than the pre-specified
1− β.

2.5 TACTICS-TIMI 18 trial

In managing the syndrome of unstable angina and non-Q-wave acute myocardial
infarction, there is controversy over whether using an invasive strategy rather
than a conservative strategy offers any advantage. TACTICS-TIMI 18 was a ran-
domized trial that evaluated the efficacy of invasive and conservative treatment
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strategies in patients with unstable angina and non-Q-wave AMI treated with
tirofiban, heparin, and aspirin (Cannon et al., 2001).

Patients were randomly assigned to either an early invasive strategy or an early
conservative strategy. The primary hypothesis of the TACTICS-TIMI 18 trial
was that an early invasive strategy would reduce the combined incidence of death,
acute myocardial infarction, and rehospitalization for acute coronary syndromes at
six months when compared with an early conservative strategy. The primary end-
point was the composite endpoint formed by a combination of incidence of death
or non-fatal myocardial infarction (ε1), and rehospitalization for acute coronary
syndrome (ε2) at six months.

For illustrative purposes, we assume that a trial will be planned for a similar
setting and that the results of TACTICS-TIMI 18 are to be used. Since previous
studies to TACTICS-TIMI 18 also considered the events death and non-fatal
myocardial infarction altogether, we presume that the event rate and effect size
on the endpoint ε1 can be anticipated despite being composed by two events. The
estimated values for the frequency of death or non-fatal myocardial infarction
(ε1) in the conservative strategy group was p̂

(0)
1 = 0.095 with a standard deviation

of 0.009; whereas the frequency of rehospitalization for acute coronary syndrome
(ε2) was p̂

(0)
2 = 0.137 with a standard deviation of 0.010. Based on the standard

deviations of the estimated event rates, we use the 95% confidence intervals as
a set of plausible values among which the true values p

(0)
1 , p

(0)
2 take values, that

is, I1 = [0.078, 0.112] and I2 = [0.117, 0.157]. The observed effects on TACTICS-
TIMI 18 were δ1 = −0.022 and δ2 = −0.027, and we will use these as the expected
effects on the new experimental trial.

We consider these parameters to construct the correlation bounds outlined in
equation (2.8). The effects δ1 and δ2 and the values p̂

(0)
1 and p̂

(0)
2 imply that the

eligible values for ρ lie in the interval (−0.10, 0.80). Using the intervals I1 and I2,
the correlation bounds are such that the considered values are plausible for any
event rate within I1 and I2. This gives us the correlation bounds (−0.08, 0.77).
Table 2.5 and Figure 2.1 show the correlation bound according to δ1 and δ2 with
varying values of the event rates. Observe that the upper bound takes the value
1 when both event rates are equal, and the lower bound tends to 0 when at least
one of the event rates becomes smaller.

We illustrate the aspects of calculating power and sample size using the platform
CompARE. CompARE calculates the sample size by anticipating the marginal
information in terms of either risk difference, relative risk, or odds ratio. In this
particular case, we use the statistical test for risk difference under pooled variance
in order to ascertain the treatment differences in the composite endpoint at a
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Table 2.4 Lower bound, BL(θ, λ), and upper bound, BU (θ, λ), for the correlation ac-
cording to the effect sizes δ1 = −0.022, δ2 = −0.027 and for different values of the event
rates.

Event rate values Correlation Bounds

p̂
(0)
1 = 0.095, p̂

(0)
2 = 0.137 −0.10 ≤ ρ ≤ 0.80

p̄
(0)
1 = 0.112, p̄

(0)
2 = 0.157 −0.12 ≤ ρ ≤ 0.81

p
(0)
1 = 0.078, p

(0)
2 = 0.117 −0.08 ≤ ρ ≤ 0.77

Fig. 2.1 Lower bound (surface in blue) and upper bound (in red) for the correlation
according to the effect sizes δ1 = −0.022, δ2 = −0.027 and where the marginal event
rates take values between 0 and 0.2.

significance level of α = 0.025 and target power of 1 − β = 0.80. The results
obtained from CompARE are presented in the form of summary tables and plots.

Figure 2.2 (left panel) depicts the performance of the sample size in terms of

the correlation for given marginal parameters θ = (p̂
(0)
1 , p̂

(0)
2 ) and λ = (δ1, δ2); and

it illustrates the recommended sample size for each correlation category (weak,
moderate, and strong). The solid line represents the sample size as a function
of the correlation computed for the anticipated values θ, and the shaded areas
represent the region of values, constructed by I1, I2, δ1 and δ2, within which
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interval the sample size falls. Based on I1 and I2 the proposed sample size (in
dotted lines) is the upper value of the shaded area within the correlation category.

Note that the sample size is highly sensitive to the anticipated parameters. For
instance, for ρ = 0.3, using p̂

(0)
1 and p̂

(0)
2 , the required sample size is n = 3030.

This sample size, however, can differ substantially from that calculated using other
reasonable values, such as the upper or lower limits for the intervals I1 and I2,
which would imply n = 2511 and n = 3540, respectively.

Figure 2.2 (right panel) describes the statistical power achieved under the pro-
posed method. Assuming that we have correctly anticipated the correlation cate-
gory, observe that in all cases the achieved power is larger than the planned power,
1− β. Then, the method guarantees the desired power. If we could correctly an-
ticipate the values of the event rates, then the achieved power would lie between
0.80 and 0.87, in accordance with the plausible correlation values. If we base the
sample size calculation on the intervals I1 and I2, we will be overestimating the
statistical power more than in the previous case, thus obtaining a power between
0.80 and 0.95.

Table 2.5 describes the proposed sample size for each correlation category and
reports the possible values for the statistical power, assuming that we have cor-
rectly anticipated the correlation category.

2.6 An extension for risk ratio and odds ratio

In this Section, we show that the risk ratio and odds ratio for the composite
endpoint can also be expressed in terms of its margins plus the correlation, and
we extend the sample size derivation given in Section 2.4 for evaluating the risk
and odds ratio.

2.6.1 Composite effect expressed in terms of the risk ratio or the odds
ratio

Let Rk and ORk denote the risk ratio and odds ratio, respectively, for the k-th
event. The risk ratio for the composite endpoint, R∗, is expressed in terms of the

risk ratio of its components R1 and R2, the event rates under control group, p
(0)
1

and p
(0)
2 , and the correlation between them, ρ, as follows:
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Fig. 2.2 Sample size (left panel) and power (right panel) as a function of the correlation
according to the marginal effect sizes δ1 = −0.022 and δ2 = −0.027; either based on the

point values p̂
(0)
1 = 0.095, p̂

(0)
2 = 0.137 for the event rates (solid line) or based on the

interval of plausible values for the event rates I1 = [0.078, 0.112] and I2 = [0.117, 0.157]
(shaded areas). The proposed sample size for each correlation category is highlighted in
solid and dotted lines for, respectively, the point values and the interval values for the
event rates.

R∗ =
p

(0)
1 R1 + p

(0)
2 R2 − p(0)

1 p
(0)
2 R1R2 − ρ

√
p

(0)
1 R1p

(0)
2 R2(1− p(0)

1 R1)(1− p(0)
2 R2)

1− q(0)
1 q

(0)
2 − ρ

√
p

(0)
1 p

(0)
2 q

(0)
1 q

(0)
2

(2.12)

Analogously, the odds ratio for the composite endpoint OR∗ is defined according
to its margins and the correlation is given by:

OR∗ =

(
1+

OR1p
(0)
1

1−p(0)1

)(
1+

OR2p
(0)
2

1−p(0)2

)
−1−ρ

√
OR1OR2p

(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

1+ρ

√
OR1OR2p

(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )(
1+

p
(0)
1

(1−p(0)1 )

)
·

(
1+

p
(0)
2

(1−p(0)2 )

)
−1−ρ

√
p
(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

1+ρ

√
p
(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

(2.13)

The derivations of equations (2.12) and (2.13) are postponed to Appendix A.1. By
inspection of (2.3), (2.12), and (2.13), we observe that if there is no effect on the
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Table 2.5 Recommended sample size for testing differences between the invasive strat-
egy as compared with the conservative strategy. Underlying marginal parameters are

as follows: p
(0)
1 = 0.095, p

(0)
2 = 0.137, δ1 = −0.022, δ2 = −0.027. Both sample size

and power were calculated based on the statistic (2.4) under the pooled variance for a
one-sided test at the significance level of α = 0.025. The given sample size was calcu-
lated to detect the effect on the composite endpoint with the desired overall power of
1 − β = 0.80. For calculating the power of the test, three sample size situations were
considered, depending on the strength of the correlation: i) weak correlation; ii) mod-
erate correlation; iii) strong correlation.

Based on point values p
(0)
1 = 0.095, p

(0)
2 = 0.137 for the event rates:

Correlation bounds: BL(θ, λ) = −0.10, BU (θ, λ) = 0.80.
Association strength Correlation Sample size Achieved power

Weak −0.10 ≤ ρ ≤ 0.20 2860 (0.80, 0.86)
Moderate 0.20 < ρ ≤ 0.50 3425 (0.80, 0.87)

Strong 0.50 < ρ ≤ 0.80 4201 (0.80,0.87)

Based on intervals I1 = [0.078, 0.112] and I2 = [0.117, 0.157] for the event rates:
Correlation bounds: ρL(Θ) = −0.08, ρU (Θ) = 0.77.
Association strength Correlation Sample size Achieved power

Weak −0.08 ≤ ρ ≤ 0.21 3355 (0.80, 0.95)
Moderate 0.21 < ρ ≤ 0.49 3970 (0.80, 0.95)

Strong 0.49 < ρ ≤ 0.77 4782 (0.80, 0.95)

components, that is, δ1 = δ2 = 1, R1 = R2 = 1 or OR1 = OR2 = 1, then there is
no effect on the composite endpoint, δ∗ = R∗ = OR∗ = 1. However, the reciprocal
does not follow: no effect on the composite endpoint is compatible with some effect
on the components. Therefore, it is important to remark, as other authors have
warned before (Ferreira-González et al., 2007,b; Tomlinson and Detsky, 2010),
that not finding a beneficial effect on composite endpoint is not a guarantee of
not having some effect on the components, hence the effect on the composite
endpoint cannot be treated as if it were an indicator of some specific effect on its
components.

2.6.2 Sample size calculations in terms of risk ratio and odds ratio

The null hypothesis in terms of the risk ratio is stated as H∗0 : log(R∗) = 0 and the
alternative hypothesis assuming a risk reduction is H∗1 : log(R∗) < 0. The statistic
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that we use for testing the significance of the relative risk R∗ is:

Z∗,n = log(R̂∗)
/√

V̂ ar(log(R̂∗))

where R̂∗ = p̂
(1)
∗ /p̂

(0)
∗ . Under H∗0, Z∗,n asymptotically follows the standard normal

distribution; thus, we will reject H∗0 at the α significance level if Z∗,n < −zα.

As in Section 2.3, we estimate the variance V ar(R̂∗) using the pooled variance

by means of V̂ arH0(log(R̂∗)) = 2
n(0) · q̂

(0)
∗ +q̂

(1)
∗

p̂
(0)
∗ +p̂

(1)
∗

or by using the unpooled variance,

V̂ arH1(log(R̂∗)) = 1
n(0)

(
1−R̂∗p̂

(0)
∗

R̂∗p̂
(0)
∗

+ q̂
(0)
∗

p̂
(0)
∗

)
.

For a given probability under control group p
(0)
∗ , and a significance level α, the

needed sample size for detecting a risk ratio Γ∗ = p
(1)
∗ /p

(0)
∗ with power 1 − β is

given by:

n = 2 · (zα + zβ)2 ·

(
1− Γ∗p(0)

∗

Γ∗p
(0)
∗

+
q

(0)
∗

p
(0)
∗

)/
log(Γ∗)

2 (2.14)

The corresponding sample size when the pooled variance is used can be seen in
Table 2.6.

When measuring the effect of treatment with the odds ratio, the null hypothesis
H∗0 : log(OR∗) = 0 is compared with the alternative hypothesis H∗1 : log(OR∗) < 0.
To test the above hypotheses we use the statistic:

W∗,n = log(ÔR∗)
/√

V̂ ar(log(ÔR∗))

where ÔR∗ = p̂
(1)
∗ /q̂

(1)
∗

p̂
(0)
∗ /q̂

(0)
∗

and where the pooled and unpooled variance estimates are

given, respectively, by V̂ arH0(log(ÔR∗)) = 8

n(0)(p̂
(0)
∗ +p̂

(1)
∗ )(q̂

(0)
∗ +q̂

(1)
∗ )

and

V̂ arH1(log(ÔR∗)) = 1
n(0)

(
1

p̂
(0)
∗ q̂

(0)
∗

+ 1

p̂
(1)
∗ q̂

(1)
∗

)
.

Then the needed sample size is calculated using the unpooled variance, for
detecting a treatment difference of OR∗ = ∆∗ in order to have power 1 − β at
level α for given p

(0)
∗ , and it is given by:

n = 2 ·
(
zα + zβ
log(∆∗)

)2

·

(
(q

(0)
∗ + p

(0)
∗ ∆∗)

2

p
(0)
∗ q

(0)
∗ ∆∗

+
1

p
(0)
∗ q

(0)
∗

)
(2.15)

The sample size expression when using the pooled variance can be found in Table
2.6.
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2.6.3 Sample size derivation based on its margins

Analogously to Section 2.4 and following the notation in Section 4.4, we obtain the
sample size based on the risk ratio as a function of the marginal effects R1 and R2,
the event rates θ, and the correlation ρ. To do so, we take the event rate and risk
ratio of the composite endpoint for their expressions (which are defined according
to θ, R1, R2 and ρ, see equations (2.2) and (2.12)), and then substitute these into
the sample size formula in (2.14). We denote by n(θ,R1,R2, ρ) the needed sample
size for evaluating the risk ratio computed for specific values θ, R1,R2, and ρ. We
will analogously proceed with sample size in terms of the odds ratio using the
effects OR1 and OR2, then denote by n(θ,OR1,OR2, ρ) the corresponding sample
size.

In what follows, we describe the performance of the sample size when the effect
is measured by odds ratio or risk ratio. Further details of these properties and
their empirical proof are to be found in the web supplementary material.

� For fixed (θ,R1,R2) or (θ,OR1,OR2), the sample size for testing the effect
measured by the risk ratio, n(θ,R1,R2, ρ), and the sample size for testing the
odds ratio, n(θ,OR1,OR2, ρ), are increasing functions of the correlation ρ.

� For given R1 and R2 at fixed ρ = r, the needed sample size n(p
(0)
1 , p

(0)
2 ,R1,R2, r)

to have power 1− β at a significance level α falls into the interval:

I(r, I1, I2,R1,R2) = [ n(p̄
(0)
1 , p̄

(0)
2 ,R1,R2, r), n(p(0)

1
, p(0)

2
,R1,R2, r) ]

(2.16)

Analogously, for given OR1 and OR2, the needed sample size
n(p

(0)
1 , p

(0)
2 ,OR1,OR2, r) lies within the interval:

I(r, I1, I2,OR1,OR2) = [ n(p̄
(0)
1 , p̄

(0)
2 ,OR1,OR2, r), n(p(0)

1
, p(0)

2
,OR1,OR2, r) ]

� For all (π1, π2) ∈ I1 × I2 and ρ ∈ (ρL(Θ), ρU(Θ)), it follows that:

n(π1, π2,R1,R2, ρ) ≤ UR(Θ) = n(p(0)

1
, p(0)

2
,R1,R2, ρU(Θ))

n(π1, π2,OR1,OR2, ρ) ≤ UOR(Θ) = n(p(0)

1
, p(0)

2
,OR1,OR2, ρU(Θ))

Furthermore, for given (p(0)
1
, p(0)

2
,R1,R2) or (p(0)

1
, p(0)

2
,OR1,OR2), the sample

size functions n(p(0)
1
, p(0)

2
,R1,R2, ρ) and n(p(0)

1
, p(0)

2
,OR1,OR2, ρ) increase with

respect to the correlation ρ.
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Note that, unlike when using risk differences, the sample size has its maximum
value when both event rates take their lower interval values p(0)

1
, p(0)

2
(see equations

(2.9) and (2.16)).
Also note that if the marginal parameters (θ,R1,R2) or (θ,OR1,OR2) are an-

ticipated and the correlation is not known, the sample size strategy described in
Section 2.4.3 can be extended to the risk and odds ratio and analogously applied.
For fixed effects (R1,R2) or (OR1,OR2), and given intervals I1 and I2 for the
event rates, we can follow the same reasoning as for risk differences in Section
2.4.4, and use UR(Θ) (analogously UOR(Θ)) to calculate the required sample size
that guarantees the planned power while accounting for the unknown correlation
value and uncertainty of the marginal parameter values.

2.7 A simulation study

We conduct a simulation study to evaluate the strategies proposed in Section 2.4
for computing the sample size.

2.7.1 Design

We simulate a two-arm trial with a composite primary endpoint composed of two
events, ε1 and ε2, according to the following values (which are all summarized
in Table 2.7): the marginal probabilities of observing εk (k = 1, 2) in the control

group θ = (p
(0)
1 , p

(0)
2 ) take values between 0.01 and 0.2, and they are without loss

of generality such that p
(0)
1 < p

(0)
2 ; the risk ratios λ = (R1,R2) are specified for

beneficial effects and vary from 0.6 to 0.8; the true correlation between ε1 and ε2 is
assumed to be common for both groups, and it covers the positive range between
0 and 1. The possible combinations add up to a total of 421 different scenarios
which take into account that for given (θ, λ). Simulations are performed only for
those ρtrue between BL(θ, λ) and BU(θ, λ) (see (2.8)).

For each one of these 421 scenarios specified by (θ, λ, ρtrue), we compute the
required sample size n(θ, λ, ρ(θ, λ)) for a one-sided test with power 1−β = 0.80 at
the significance level α = 0.025, which is done by following one of the six different
formulations that are derived in Section 2.3 and Section 2.6 and, additionally, are
all summarized in Table 2.6.
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We distinguish 4 different situations according to the value we assume in ρ(θ, λ)
to calculate n(θ, λ, ρ(θ, λ)):

(1) For the weak correlation category, use ρ(θ, λ) = BU(θ, λ)/3
(2) For the moderate correlation category, use ρ(θ, λ) = 2BU(θ, λ)/3
(3) For the strong correlation category, use ρ(θ, λ) = BU(θ, λ)
(4) For guessing the true correlation, use ρ(θ, λ) = ρtrue.

Given one scenario specified by (θ, λ = (R1, R2), ρtrue), we evaluate the type
I error first by calculating n based on (θ, λ = (R1, R2), ρ(θ, λ)) and simulating
100000 trials using (θ, λ = (1, 1), ρtrue). To check the power, we start by calculating
n as above, based on (θ, λ = (R1, R2), ρ(θ, λ)), and then we simulate 100000
trials using (θ, λ = (R1, R2), ρtrue). Altogether, we have to analyze a total of 3368
scenarios.

The above steps have to be reproduced six times according to the different
sample size formulae used to compute n(θ, λ, ρ(θ, λ)), that is, by stating the effect
in terms of the difference in proportions, the risk ratios or the odds ratio, and using
both the pooled and the unpooled estimates of the variance. We have performed all
computations using the R software tool (Version 0.98.1087), and the time required
to perform the considered simulations was 55.58h.

Table 2.7 Simulation scenarios: Values of marginal event rates in the control group:

θ = (p
(0)
1 , p

(0)
2 ); treatment effects in terms of the risk ratio: λ = (R1,R2); and correlation

ρtrue between components. Note that not all the combinations are feasible because the
correlation is between BL(θ, λ) and BU (θ, λ).

Parameter Values

p
(0)
1 0.01, 0.05, 0.10

p
(0)
2 0.01, 0.05, 0.10, 0.15, 0.20

ρtrue 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Effects used to evaluate the power:
R1,R2 0.6, 0.7, 0.8

Effect used to evaluate the type I error:
R1 = R2 1
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2.7.2 Power analysis of the proposed strategies for computing sample
size

Let nl,m be the required sample size calculated using the formulae described in
Table 2.6 where l = p, u, indicating whether the pooled or unpooled variance has
been used; and m = D,R,OR, indicating the effect measure that has been tested.
In other words, for the difference in proportions, m = D; for relative risk, m = R;
and for odds ratio, m = OR. Let Ψl,m denote the empirical power when the total
number of participants is nl,m (l = p, u; m = D,R,OR).

Whenever the correlation we are using to compute the sample size coincides
with the one we have used to run the simulations (ρ(θ, λ) = ρtrue), the empirical
powers are always achieved whether we are using the pooled, Ψp,m, or unpooled,
Ψu,m, estimator of the variance. Nevertheless, when testing the difference in pro-
portions, the achieved powers do not substantially differ (Ψu,D ∼= Ψp,D); when
testing the treatment differences in terms of the risk ratio or the odds ratio, the
power achieved if the unpooled variance estimator is used is slightly larger than
the power achieved with the pooled estimator, Ψu,m ≥ Ψp,m, m = R,OR (see Ta-
ble S3 in supplementary material for a comparison of the two approaches). The
results presented herein refer to the unpooled variance estimator. The correspond-
ing results for the pooled variance are summarized in the supplementary material
(Table S4 and Figure S1).

When ρ(θ, λ) 6= ρtrue, we distinguish two types of misspecification. Misspec-
ification type I, ρtrue and ρ(θ, λ) pertain to the same correlation category; and
Misspecification type II, ρtrue and ρ(θ, λ) do not belong to the same category.
Table 2.8 describes the empirical power in these two cases, which account for the
correlation category for the three effect measures that we could use to test the
difference between groups. If Misspecification I occurs, the pre-specified power is
achieved and might exceed 7%.

For misspecification II, there are two possible scenarios. The first is for those
cases where the correlation ρ(θ, λ) is assumed in a stronger correlation category
than the one that ρtrue belongs to, for instance, if ρ(θ, λ) is assumed to be strong
and ρtrue is moderate. Under this scenario, ρ(θ, λ) > ρtrue, and then the planned
power is always achieved. The second scenario is when the ρ(θ, λ) is assumed to be
in a weaker correlation category than the one that ρtrue lies in. For instance, when
ρ(θ, λ) is assumed weak and ρtrue is moderate. In those cases where ρ(θ, λ) < ρtrue,
the trial will be underpowered.

The empirical power in terms of the difference between the assumed and true
correlations is illustrated in Figure 2.3. Observe that when the assumed corre-
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lation is greater than the true correlation, that is, ρ(θ, λ) > ρtrue, the empirical
power is equal to or greater than the pre-specified power. Note that in all cases
under the strong correlation category we have ρtrue ≤ ρ(θ, λ), the pre-specified
power is assured even though we failed to anticipate the category. Also note that
there are no differences in the achieved power, nor are there any in the method’s
performance in terms of the measure we are using to evaluate the effect.

Table 2.8 Median empirical power, given the sample size (under the unpooled vari-
ance), depending on the misspecification error and the assumed correlation. Values in
parentheses indicate the maximum and minimum of the empirical power.

Assumption
Misspecification I: Misspecification II:

Correlation Correlation
within the category outside the category

Risk Difference
Weak 0.82 (0.80, 0.86) 0.78 (0.67, 0.80)

Moderate 0.82 (0.80, 0.87) 0.82 (0.74, 0.91)
Strong 0.82 (0.80, 0.87) 0.87 (0.81, 0.95)

Risk Ratio
Weak 0.82 (0.80, 0.86) 0.78 (0.67, 0.81)

Moderate 0.82 (0.80, 0.87) 0.82 (0.74, 0.90)
Strong 0.82 (0.80, 0.87) 0.88 (0.81, 0.95)

Odds Ratio
Weak 0.82 (0.80, 0.86) 0.78 (0.67, 0.81)

Moderate 0.82 (0.80, 0.87) 0.82 (0.74, 0.91)
Strong 0.82 (0.80, 0.87) 0.87 (0.81, 0.95)

2.7.3 Type I error analysis of the proposed strategies for computing
sample size

The empirical results in the simulation study show that the type I error is not
affected by the misspecification of the correlation. Nonetheless, the empirical type
I error under the pooled estimator may be slightly superior to significance level
0.025, especially when the treatment is tested in terms of risk ratio and odds ratio
(see Figure S2 in the online support material).
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Fig. 2.3 Scatterplot showing the relationship between empirical power versus the dif-
ference between the assumed and true correlations for each of the sample size formulas
(under unpooled variance) that were used in the simulation study in section 2.7.

2.8 Supplementary material

Additional information of this work may be found online in the Supporting ma-
terial, which is available at:

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8092

The supplementary material contains: the sample size and power formulae for
the pooled variance estimator; a short discussion on the consequences on the
assumption ρ(0) = ρ(1); the derivation of the correlation bounds given in (2.8) (see
Section 2.4); an empirical demonstration of the sample size behavior when varying
the event rates in the intervals I1 and I2 outlined in Section 2.4.4; and a study of
the sample size performance when using I1 and I2.

The source code to reproduce the results may be found online in the GitHub
repository:

https://github.com/CompARE-Composite/Functions

2.9 Further work

This section has two main parts which include some work that has not been
published. First, we introduce different association measures for binary endpoints
–aside from Pearson’s correlation–, describe some of their characteristics and de-
fine the probability of the composite endpoint by means of them. Second, we

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8092
https://github.com/CompARE-Composite/Functions
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outline some properties of the composite effect aiming at shedding some light on
the interpretation of the composite effect.

2.9.1 On the association between binary endpoints

Pearson’s correlation is the most common measure to quantify the degree of asso-
ciation between binary endpoints, there are, however, more intuitive alternative
measures to define the association between two binary outcomes. In this section,
we present the relative overlap and the conditional probability as different ways
to measure the association between two binary endpoints, and we rewrite p

(i)
∗ in

terms of each of them.

Relative overlap

The relative overlap in the i-th group of treatment is defined as the conditional
probability of observing the two marginal events knowing that at least one of these
events has occurred (Marsal et al., 2015). This measure is evaluated as the ratio
between the probability of the intersection and the probability of the composite
endpoint, as follows:

RO(i) =
p

(i)
∩

p
(i)
1 + p

(i)
2 − p

(i)
∩

(2.17)

Note that this measure quantifies the ratio of the intersection versus the union of
having these two events. The relative overlap takes values between 0 and 1 and is
bounded by:

RO(i) ∈

[
max{0, p(i)

1 + p
(i)
2 − 1}, min

{
p

(i)
1

p
(i)
2

,
p

(i)
2

p
(i)
1

} ]
⊆ [0, 1] (2.18)

Clinical studies that include probabilities of observing the events smaller than 0.5
are common in many disease areas such as oncology, and cardiovascular disease.
We note that for p

(i)
1 ≤ p

(i)
2 ≤ 0.5, the bounds (2.18) can be simplified to:

RO(i) ∈

[
0,

p
(i)
1

p
(i)
2

]
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In the following proposition, we establish the relationship between the relative
overlap and the correlation and underline some properties.

Proposition 2.1. Let RO(i) and ρ(i) be the relative overlap and the correlation in
the i-th group, respectively. Then, the following is true:

(i) The relative overlap, RO(i), can be expressed by means of the event rates, p
(i)
1

and p
(i)
2 , and the correlation, ρ(i), as follows:

RO(i) =
ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2 + p

(i)
1 p

(i)
2

1− q(i)
1 q

(i)
2 − ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2

(ii) If the correlation is equal zero, the relative overlap is not, even when there is
independence between the events. That is:

ρ(i) = 0 ; RO(i) = 0

(iii) The relative overlap is zero if, and only if, the intersection probability is zero
and, hence, when the correlation is negative. That is:

RO(i) = 0⇔ p
(i)
∩ = 0 and p

(i)
∩ = 0⇒ ρ(i) < 0

Proof (Proof of Proposition 2.1). Consider ρ(i), defined as:

ρ(i) =
p

(i)
∩ − p

(i)
1 p

(i)
2√

p
(i)
1 q

(i)
1 p

(i)
2 q

(i)
2

(2.19)

The proof of (i) is straightforward by solving (2.19) by p
(i)
∩ , and then plugging this

back into the relative overlap definition given in (2.17). The proof of (ii) and (iii)
follows directly from the relationship stated in (i).

In the next result, we state how the probability of the composite endpoint can
be rewritten in terms of the marginal parameters and the relative overlap.

Proposition 2.2. The probability of having the composite event in terms of the
relative overlap and the event rates of the marginal parameters is given by:

p(i)
∗ =

p
(i)
1 + p

(i)
2

1 +RO(i)
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Proof. Consider first the definition of RO(i) given in (2.17). Noticing that p
(i)
∗ =

p
(i)
1 + p

(i)
2 − p

(i)
∩ , we have:

RO(i) =
p

(i)
1 + p

(i)
2 − p

(i)
∗

p
(i)
∗

(2.20)

Then, the expression given in the proposition is obtained by solving the previous
equation for p

(i)
∗ .

Note that the probability of the composite endpoint is inversely proportional to
the relative overlap.

Conditional probability

The conditional probability of observing the two marginal events is the probability
of an event occurring given that another event has occurred. Let P

(i)
X1|X2

denote
the conditional probability of X1 given X2 in group i, defined as follows:

P
(i)
X1|X2

= P (Xij1 = 1|Xij2 = 1) =
p

(i)
∩

p
(i)
2

(2.21)

Note that this measure quantifies the ratio of the intersection probability over the
probability of having had the event ε2. Also note that the conditional probability
is that is not symmetrical with respect to the role of X1 and X2 plays on it.
Indeed, we have that:

P
(i)
X1|X2

= P
(i)
X2|X1

· p
(i)
1

p
(i)
2

where P
(i)
X2|X1

is the conditional probability of X2 given X1.
The conditional probability takes values between 0 and 1 and is parametrically

bounded:

P
(i)
X1|X2

∈

[
p

(i)
1 ,min

{
p

(i)
1

p
(i)
2

, 1

}]
(2.22)

Note that, if p
(i)
1 < p

(i)
2 , then the bounds are simplified to

[
p

(i)
1 ,

p
(i)
1

p
(i)
2

]
; otherwise,[

p
(i)
1 , 1

]
.

We state the relationship between the conditional probability and the correla-
tion in the following proposition.
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Proposition 2.3. Let P
(i)
X1|X2

be the conditional probability of X1 given X2 and

ρ(i) be the correlation in the i-th group. Then, the following is true:

(i) The relationship between the conditional probability and the correlation is
given by:

P
(i)
X1|X2

=
p

(i)
1 · p

(i)
2 + ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2

p
(i)
2

= p
(i)
1 + ρ(i) ·

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2

p
(i)
2

(ii) If the correlation is zero, the conditional probability is not. Indeed,

ρ(i) = 0⇒ P
(i)
X1|X2

= p1

(iii) If ρ = ρmax, P
(i)
X1|X2

depends on the marginal probabilities: if p
(i)
2 > p

(i)
1 , then

P
(i)
X1|X2

=
p
(i)
1

p
(i)
2

; otherwise P
(i)
X1|X2

= 1.

(iv) The conditional probability is zero if, and only if, the intersection probability
is zero and, hence, when the correlation is negative.

P
(i)
X1|X2

= 0⇔ p
(i)
∩ = 0 and p

(i)
∩ = 0⇒ ρ(i) < 0

Proof. Let us consider ρ(i) defined in (2.19). The proof of (i) follows directly by

solving (2.19) by p
(i)
∩ , and then plugging this back into the conditional proba-

bility definition given in (2.21). The proofs of (ii), (iii) and (iv) come from the
relationship stated in (i).

Next, we show that the probability of the composite endpoint can be expressed
as well in terms of the conditional probabilities and the probabilities of the com-
posite components.

Proposition 2.4. The probability of having the composite event in terms of the
conditional probability and the probability of its components is given by:

p(i)
∗ = p

(i)
1 + p

(i)
2 − P

(i)
X1|X2

· p(i)
2

Proof (Proof of Proposition 2.4). The proof follows by noticing that:

p(i)
∗ = p

(i)
1 + p

(i)
2 − p

(i)
∩ = p

(i)
1 + p

(i)
2 − P

(i)
X1|X2

· p(i)
2 (2.23)

Note that the composite probability decreases with respect to P
(i)
X1|X2

. Also

notice that taking into account (2.22), we have:

p(i)
∗ ∈

[
max{p(i)

1 , p
(i)
2 }, p

(i)
1 + p

(i)
2 − p

(i)
1 · p

(i)
2

]
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2.9.2 On the magnitude of the composite effect

By inspection of the expression of the composite endpoint (see equations 2.3,
2.12, and 2.13), we observe that if there is no effect on the components, then
there is no effect on the composite endpoint. However, not finding a beneficial
effect on composite endpoint is not a guarantee of not having some effect on the
components, hence the effect on the composite endpoint cannot be treated as if
it was an indicator of which is the effect on its components.

Under the particular case of independence between the components, the effect
on the composite endpoint in terms of the odds ratio takes values between the
margins effects, that is, assuming OR1 ≤ OR2, then OR1 ≤ OR∗ ≤ OR2, and
analogously for the odds ratio (See Theorem 2.1). But if the components are
correlated, this property is not assured, then the composite effect could be greater
(or smaller) than both marginal effects, i.e., OR∗ < OR1 ≤ OR2 (or OR∗ > OR1 ≥
OR2).

In many trials the composite components represent relatively rare events (FDA
Guidance, 2017), since studying each component separately would require unman-
ageable large sample sizes. In those cases when there is one event –let’s say event
ε1– whose event rate is low and smaller than the second event (p

(0)
1 < 0.1 and

p
(0)
1 < p

(0)
2 ), the effect on the composite endpoint is approximately equal to the

treatment effect for the second event, that is, OR∗ ∼= OR2 (see Theorem 2.2). Nev-
ertheless, when there are different frequencies and effect sizes on the composite
components, this effect should be approached carefully because it may strongly
dependent on the correlation.

Theorem 2.1. If the independence assumption holds between the composite com-
ponents, the correlation is the same in the two groups, that is, ρ(0) = ρ(1) = 0,
and if OR1,OR2 < 1 (beneficial effect), then:

OR∗ ∈ [min(OR1,OR2),max(OR1,OR2)] (2.24)

Proof (Proof of Theorem 2.1). Denote by O
(i)
k the odds for each endpoint in the

i-th group, that is, O
(i)
k = p

(i)
k /q

(i)
k . Then, the expression (A.4) become in this case:

OR∗ =
OR1O

(0)
1 + OR2O

(0)
2 + OR1OR2O

(0)
1 O

(0)
2

O
(0)
1 + O

(0)
2 + O

(0)
1 O

(0)
2

Let M denote max(OR1,OR2), then ORkO
(0)
k ≤MO

(0)
k , and it follows:
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OR∗ ≤
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= M = max(OR1,OR2)

where the last inequality follows from MO
(0)
1 O

(0)
2 < O

(0)
1 O

(0)
2 whenever ORk < 1.

If follows analogously that OR∗ ≥ min(OR1,OR2).

Theorem 2.2. Let p
(0)
1 and p

(0)
2 be the probabilities of observing the individual

components of the composite in the control group, and let OR1 and OR2 be the
odds ratio for the individual components. Denoting by OR∗(p

(0)
1 , p

(0)
2 ,OR1,OR2, ρ)

the odds ratio function described in (A.4) in terms of the event rates, odds ratio

and correlation, the odds ratio for the composite endpoint tends to OR1, as p
(0)
2

tends to 0.

Proof (Proof of Theorem 2.2). The proof is straightforward by noting that:

lim
p
(0)
2 →0

OR∗(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ) = OR1 (2.25)

As a consequence, for every ε > 0, there exists a δ > 0 such that∣∣∣OR∗(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ)−OR1

∣∣∣ < ε, for all p
(0)
2 < δ.

2.10 Discussion

Composite endpoints are increasingly used as primary endpoints to achieve greater
incidence rates of observing the primary event, larger effect sizes and, hopefully,
higher statistical power while avoiding multiplicity adjustment. Even so, their use
creates challenges in both the design and interpretation of the studies.

It is well known that sample size determination plays a key role in trial design.
We have shown that calculating the sample size for composite binary endpoints
needs more than the anticipated effect size and event rates of the composite com-
ponents; it also needs the correlation between them. Sizing clinical trials in which
composite endpoints are involved often implies facing the challenge of dealing with
the unknown value of the correlation. We have assessed how much the correlation
impacts the sample size and, consequently, the attained power. Our conclusion
is that the sample size strongly depends on the correlation and that the more
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correlation between the components are, the more sample size is needed. Moti-
vated by this concern, we have proposed some strategies for deriving the sample
size when the correlation is not specified. The strategy, based on the stratification
of the correlation into different categories, assures the pre-specified power even
without previous knowledge on the correlation. In addition, if at least we could
anticipate the category where the correlation falls into, the achieved power would
slightly surpass the planned power (see Table 2.8). In those cases where not even
the correlation category can be anticipated, the interval of plausible values for
the sample size might be too wide and the proposed strategy might be extremely
conservative. Further research is needed in such cases to obtain more accurate
power.

We have illustrated our proposal using the platform CompARE. CompARE
is an open-source and completely free web platform that can be used as a tool
for clinicians, medical researchers and statisticians to compute the sample size
according to the procedure proposed in this work. We will present CompARE and
describe its features in Chapter 5.

Throughout this work, we have assumed that we are in the planning stage of a
randomized clinical trial whose aim is to test the efficacy of a new treatment by
comparing its performance with others that have already been approved. These
trials are usually known to have much larger sample sizes. For this reason, we have
restricted this work to sample size calculation based upon asymptotic approxima-
tions of the normal distribution. In previous trial phases devoted to obtain the
optimal dose level or to study the toxicity of the new drug, the sample size is not
as large as in efficacy trials. In those cases, it could be more appropriate to base
the sample size calculations on an exact test. Unlike the tests based on asymp-
totic distributions, the power function of an exact test usually does not have an
explicit form, and the sample size is obtained numerically by greedy search over
the sample space. In practice, the applicability of such methods can come across
difficulties because intensive computing is required (Chow et al., 2008). There is
controversy over whether or not to use exact tests, since when the sample size
is not large enough, the asymptotic test may not preserve the test size, whereas
exact tests could be conservative (Fagerland et al, 2015; Crans and Shuster, 2008;
Andrés and Tejedor, 2009).

The sample size calculation in this work has been derived using the same cor-
relations for both groups. Although this assumption is very often being used
(Sugimoto et al., 2017; Asakura et al., 2017; Ando et al., 2015), it remains to
be studied how plausible is in practice. We are working on an extension of our
methods to account for different group correlations. Moreover, we are currently
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studying and implementing in CompARE other association measures for charac-
terizing the strength of dependence between pairs of binary endpoints, such as
the ones presented in Section 2.9, which in practice might be easier to anticipate.

Interpreting the results of a trial with a primary composite endpoint is par-
ticularly challenging. Composite endpoints comprise the information of its com-
ponents and capture a more complex picture of the intervention’s efficacy, how-
ever, they might oversimplify the evidence by looking only at the composite effect
(Pocock et al., 2015). A proper study of the contribution from each separate com-
ponent should be conducted to ensure a clear understanding of the results. What
is more, composite endpoints are in many cases formed by a set of endpoints
among whom the clinical relevance highly differs. This could lead to misleading
results about whether the treatment benefits only the less important endpoints.
Moreover, as shown in Sections 2.6 and 2.9, the effect for the composite does not
necessarily reflect the effects for the components. As we will see in Chapter 5,
CompARE computes the effect on the composite endpoint and gets constructive
numerical and graphical results in order to investigate the role that each compo-
nent plays.

Different strategies such as the win ratio (Pocock et al., 2012; Luo et al., 2015)
and the weighted combined approach (Rauch et al., 2017) have been developed
to take into consideration the order of clinical priorities for the composite com-
ponents when analyzing composite endpoints. Extending this work to more than
two components and by incorporating weights remains open for future research.



Chapter 3

Endpoint selection on composite binary
endpoints

The main content of this chapter has been published in:

Selection of composite binary endpoints in clinical trials.
Bofill Roig, M., and Gómez Melis, G.

Biometrical Journal. Volume 60, Issue 2, March 2018, Pages 246-261.
DOI: 10.1002/bimj.201600229.

Sections 3.1 to 3.6 reproduce almost identically the corresponding work in the
paper. However, some modifications have been done for coherence and cohesion of
the thesis. Section 3.7 describes further work that has not been published. The dis-
cussion corresponds mostly to the one in the paper, but we have slightly changed
some paragraphs to update and encompass the further work we have made. The
methodology presented in this chapter has been implemented in CompARE, but
we postpone the software’s explanation to Chapter 5. Additional tables and fig-
ures may be found in Appendix B. The code to reproduce the results of this work
may be found online at: https://github.com/MartaBofillRoig/CompARE.
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3.1 Introduction

Nowadays, randomized clinical trials guide the advance of medical knowledge.
They are the most well-grounded procedure for evaluating the applicability of
clinical research and also comparing the safety and effectiveness of a new inter-
vention against the standard of care. The protocol formalizes the medical question
and specifies the design of the trial. One key decision that has to be defined is the
choice of the primary endpoint which measures the clinical evidence by quanti-
fying the treatment effect. Sample size requirement, analysis and conclusions on
efficacy are based on the primary endpoint.

Clinical trials often take into account two or more efficacy endpoints. If we use
multiple co-primary endpoints, we could capture different attributes. Moreover,
multiple co-primary endpoint might provide a better explanation about how the
disease behaves under treatment and an improvement of the evaluation of whether
there are the differences in the efficacy between different interventions. However,
the use of multiple endpoints entails challenges in analyses and planning. On the
one hand, we need a multiplicity adjustment for avoiding an inflation of the over-
all type I error (Pocock et al., 1987). On the other hand, multiple co-primary
endpoints are usually correlated between them. Since the correlation affects pa-
rameters estimation and sample size calculation, we should correctly specify them,
because if we define the endpoints as if they were not correlated, we will not achieve
the desired power (Sozu et al., 2010).

One possible approach to deal with these challenges is to transform the mul-
tivariate problem into a univariate one combining several outcomes in a single
summary indicator (Rauch et al., 2014). In this regard, it is common to use the
combination of several responses into a unique variable, specially in the settings
of time-to-event and binary outcomes. Then, the focus is on the time of first event
between a set of possible adverse events which are assumed to be relevant to the
disease progress, or, in the binary context, the composite collapses the information
into a binary endpoint which takes value 1 if whenever one of the outcomes has
occurred.

Composite endpoints are frequently chosen as primary endpoint in many health
areas and specially in cardiovascular and oncology trials. There are three key ad-
vantages for using a composite. First, they avoid the need of multiplicity adjust-
ment. Second, a composite endpoint contains more information on the course of
the disease than a single endpoint providing a better explanation about the differ-
ences between treatment groups. Third, the increment of the number of observed
events is expected to increase the power (Rauch et al., 2014).
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The main drawback of using a composite endpoint is its interpretation since
its components rarely have comparable clinical importance and similar treatment
effects (Ferreira-González et al., 2007). Besides, a combination of different events
changes the mean and also the variance of the response upon which the analysis
is based (Lefkopoulou and Ryan, 1993). The addition of components which are
not relevant enough could compromise the interpretation of results and reduce
power. Hence, the choice of the particular components for the composite has a
great importance in the design phase (Mascha and Sessler, 2011) and a deeper
study about the meaning of the composite response is needed (Rauch and Kieser,
2013).

Legler et al. (1995) and Lefkopoulou and Ryan (1993) presented a framework
for comparing the performance of several tests based on multiple binary end-
points. They compare as well those tests to the test that results of collapsing the
data into a composite. In the framework of survival analysis, Gómez and Lagakos
(2013) proposed the Asymptotic Relative Efficiency (ARE) method to compare
the efficiencies of two trial designs according to the chosen primary endpoint. The
motivation lied in deciding between one relevant primary endpoint or the com-
pound of this relevant and one additional endpoint as primary endpoint of the
trial. Their methodology, referred to as the ARE method, provides a tool to quan-
tify the improvement in efficiency of adding a secondary endpoint to the primary
endpoint. However, the ARE method has not been studied for binary outcomes.

Assume a binary composite endpoint and also the most severe and relevant of
its components. Aiming to provide statistical guidelines that would indicate when
it is more efficient to use the composite endpoint over one of its components as the
primary endpoint of the trial, we expand the ARE method proposed by Gómez and
Lagakos to binary endpoints. We show that the ARE method for binary composite
endpoint depends on six parameters including the degree of association between
the components of the composite endpoint on each group, the event proportion,
and the effect of therapy on each component.

The chapter is structured as follows. In Section 3.2, we relate the parameters of
the composite to the parameters of the components and the correlation between
them. In Section 3.3, we find a relationship between the odds ratio of the composite
and the odds ratios of its components. In Section 3.4, we define the extension of
the ARE method for binary endpoints and we explain the applicability of the
method. We illustrate the use of the methodology by means of a clinical trial
in Section 3.5. In Section 3.6, we present recommendation guidelines in order to
assess in which cases a composite endpoint should be preferred because is more
efficient than the most relevant of its components. In Section 3.7 we derive the
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ARE method for hypothesis problems in terms of the difference in proportions.
We present the expression of the ARE for both contiguous and fixed alternatives,
and discuss its relationship with the ARE definition given in terms of the odds
ratios. A short discussion concludes the chapter.

3.2 Notation and main assumptions

3.2.1 Binary endpoints

Consider a randomized clinical trial comparing two treatment groups, control
group (i = 0) and treatment group (i = 1), each group composed of ni patients
and denoting by n = n0+n1 the total number of patients. We assume two different
binary endpoints of potential interest, ε1 and ε2. Let Xijk denote the response
of the k-th binary endpoint for the j-th patient in the i-th group of treatment
(i = 0, 1, j = 1, ..., ni, k = 1, 2). The response Xijk is defined by 1 if the event, εk,
has occurred and 0 otherwise. Then, for all j ∈ {1, ..., ni}, i ∈ {0, 1}, k ∈ {1, 2},
the event rates are defined as:

p
(i)
k = P(Xijk = 1) = 1− q(i)

k

where p
(i)
k and q

(i)
k are the probabilities that εk occurs or not, respectively, for a

patient belonging to the i-th group of treatment.
We consider a binary composite endpoint of two components, ε∗ = ε1 ∪ ε2,

defined as the event that occurs whenever one of the endpoints is observed. More-
over, we assume that there exists one endpoint which is more relevant for the
scientific question than the other, with no loss of generality, consider ε1 the rele-
vant endpoint and ε2 the additional one. Denote by Xij∗ the composite response

defined as a Bernoulli random variable of parameter p
(i)
∗ = P(Xij∗ = 1) = 1− q(i)

∗ ,
where

Xij∗ =

{
1, if Xij1 +Xij2 ≥ 1

0, if else Xij1 +Xij2 = 0

In order to quantify the differences in efficacy between the two treatments, we
might use the odds ratio for each k-th endpoint defined as:

ORk =
p

(1)
k /q

(1)
k

p
(0)
k /q

(0)
k
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Hereafter, we assume that both the composite endpoint and the relevant endpoint
could lead to answer the clinical question, that is, both might be used as the
primary endpoint of the trial.

3.2.2 The relevant endpoint as primary endpoint

If we test the treatment effect on the relevant endpoint, we establish the following
hypothesis test:

H1 :

{
H0 : log(OR1) = 0

H1 : log(OR1) < 0
(3.1)

where the null hypothesis of no-treatment effect is stated as OR1 = 1 or equiv-
alently log(OR1) = 0 and the alternative hypothesis assumes a risk reduction of
the relevant endpoint, then, a negative log(OR1). For addressing the problem, we
consider the score test defined as:

T1,n =
p̂

(0)
1 − p̂

(1)
1√

1
n0
p̂

(0)
1 q̂

(0)
1 + 1

n1
p̂

(1)
1 q̂

(1)
1

(3.2)

where p̂
(i)
1 = 1

ni

∑ni
j=1 Xij1 = 1 − q̂(i)

1 , that is, the proportion of relevant events
in the i-th group of treatment.

Under the null hypothesis, the score test asymptotically follows the standard
normal distribution. Under contiguous alternatives of the form H1,n : log(OR1)n =
v1√
n
, where v1 < 0, the score test is asymptotically normal with unit variance and

mean δ1, called non-centrality parameter of the test, given by:

δ1 = −v1

√
p

(0)
1 q

(0)
1 π(1− π) (3.3)

where π denotes the proportion of patients allocated to control group, that is,
π = limn→+∞ n0/n.

For any finite sample size, log(OR1)n = v1√
n

is the treatment effect assumed as
alternative. The effects are determined by the sample size and the constant v1

which is interpreted as the limiting treatment effect as sample size increases, i.e.:

lim
n→+∞

√
n log(OR1)n = v1

Since the contiguous alternative changes with n, it forms a sequence that converge
to 0, that is, to the null hypothesis as n→ +∞. Whereas the power of the score
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test under any fixed alternative goes to 1 as sample size goes to infinity, under
contiguous alternatives the limiting power is strictly less than 1.

3.2.3 The composite endpoint as primary endpoint

If the treatment effect is evaluated at the composite endpoint, the hypotheses are
defined by:

H∗ :

{
H0 : log(OR∗) = 0

H1 : log(OR∗) < 0
(3.4)

where under the null hypothesis, we assume that there is not treatment effect on
the composite endpoint and, under the alternative hypothesis, we state a reduction
of the risk evaluated on the composite event.

Following the same procedure as above, the difference between treatment groups
is tested by means of the score test, T∗,n, namely:

T∗,n =
p̂

(0)
∗ − p̂(1)

∗√
1
n0
p̂

(0)
∗ q̂

(0)
∗ + 1

n1
p̂

(1)
∗ q̂

(1)
∗

(3.5)

The score test T∗,n under the null hypothesis is asymptotically N(0, 1), and under
a sequence of contiguous alternatives, H∗,n : log(OR∗)n = v∗√

n
, is asymptotically

normal with unit variance and mean δ∗ (non-centrality parameter) given by:

δ∗ = −v∗
√
p

(0)
∗ q

(0)
∗ π(1− π) (3.6)

3.3 Binary Composite Endpoint defined from the margins

3.3.1 Parameters

Bahadur’s theorem (Bahadur, 1961) allows to determine the joint distribution
of multiple correlated binary endpoints and shows that the joint distribution is
uniquely determined by the marginal probabilities and the degree of association
between the endpoints. As noted by Sozu et al. (2010), the association degree
among the correlated binary endpoints might be defined by different measures.
We consider Pearson’s correlation coefficient as the association measure between
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endpoints. Let ρ(i) be the correlation coefficient, also referred as phi coefficient, in
the i-th group defined as:

ρ(i) =
p

(i)
∩ − p

(i)
1 p

(i)
2√

p
(i)
1 q

(i)
1 p

(i)
2 q

(i)
2

Note that the correlation coefficient is represented by the underlying probabili-
ties and the overlap between these marginal events, expressed by p

(i)
∩ = P(Xij1 =

1, Xij2 = 1). Applying results from Bahadur (1961), the probability of the com-

posite endpoint in the i-th group of treatment, p
(i)
∗ , is uniquely determined by the

probabilities of the single endpoints, p
(i)
1 , p

(i)
2 , and the correlation between them,

as follows:

p(i)
∗ = 1− q(i)

1 q
(i)
2 − ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2 , i = 0, 1 (3.7)

The odds ratio of the composite endpoint, OR∗, is given in terms of the correlation
between endpoints for each group, the event proportions in the control group given
by the respective odds and the therapy effect given by the corresponding odds
ratio, as follows:

OR∗ =

(
1+

OR1p
(0)
1

1−p(0)1

)(
1+

OR2p
(0)
2

1−p(0)2

)
−1−ρ(1)

√
OR1OR2p

(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

1+ρ(1)

√
OR1OR2p

(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )(
1+

p
(0)
1

(1−p(0)1 )

)(
1+

p
(0)
2

(1−p(0)2 )

)
−1−ρ(0)

√
p
(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

1+ρ(0)

√
p
(0)
1 p

(0)
2

(1−p(0)1 )(1−p(0)2 )

(3.8)

The full derivation is to be found in Appendix A.1. Observe that OR∗ depends on
the following six parameters (p

(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1)) and that the parame-
ters associated to each component together with the correlation between them is
what we only need to assess the effect on the composite endpoint.

A special property of binary endpoints is that the correlation takes values be-
tween two bounds which are defined according to the marginal probabilities (Pren-
tice, 1988) –the parametric space of ρ(i) is more confined than (−1, 1)–, that is:

ρ(i) ∈ [ m(p
(i)
1 , p

(i)
2 ), M(p

(i)
1 , p

(i)
2 ) ] ⊆ [−1, 1]
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where:

m(p
(i)
1 , p

(i)
2 ) = max

−
√√√√p

(i)
1 · p

(i)
2

q
(i)
1 · q

(i)
2

,−

√√√√q
(i)
1 · q

(i)
2

p
(i)
1 · p

(i)
2


M(p

(i)
1 , p

(i)
2 ) = min

+

√√√√p
(i)
1 · q

(i)
2

p
(i)
2 · q

(i)
1

,+

√√√√p
(i)
2 · q

(i)
1

p
(i)
1 · q

(i)
2


3.3.2 Treatment effects and non-equivalence between hypotheses

It can be easily proved by inspection of (3.8) that if the treatment has no effect
on any of the marginal components and the correlation between them is the same
in the two groups, then, the treatment has no effect on the composite endpoint,
that is:

OR1 = 1, OR2 = 1, ρ(0) = ρ(1) =⇒ OR∗ = 1

Note that this result could be restated in terms of the event proportions:

p
(0)
1 = p

(1)
1 , p

(0)
2 = p

(1)
2 , ρ(0) = ρ(1) =⇒ p(0)

∗ = p(1)
∗

However, the reciprocal is not necessarily true, that is to say, the effect of treat-
ment on any endpoint (OR1 < 1 or OR2 < 1) could be diluted on the composite
(OR∗ = 1). This complex relationship between the odds ratios of each component
and the composite shows how the treatment effects are differently measured on
each endpoint, and cannot be taken as equivalent. Thus, the two hypothesis tests
being considered to test the treatment effect on either endpoint, H1 (stated in
(3.1)) and H∗ (stated in 3.4)), are not equivalent.

3.4 Asymptotic Relative Efficiency

We extend the ARE method developed by Gómez and Lagakos for time-to-event
endpoints to binary endpoints. The extension relies on the asymptotic behaviours
of the score tests T1,n for the relevant endpoint given in (3.2) and T∗,n for the
composite endpoint given in (3.5) presented in section 3.2, instead of the log-rank
test that was used for survival endpoints. In the following sections we present the
ARE method and its version for fixed alternatives.
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3.4.1 ARE method for contiguous alternatives

Consider the following not equivalent hypothesis tests based on the relevant end-
point and on the composite endpoint:

H1,n :

{
H0 : log(OR1) = 0

H1,n : log(OR1)n = v1√
n

H∗,n :

{
H0 : log(OR∗) = 0

H∗,n : log(OR∗)n = v∗√
n

(3.9)

Let T1,n, T∗,n be the score tests corresponding to H1,n and H∗,n, respectively.
Whereas under the null hypothesis both tests asymptotically follow the stan-
dard normal distribution, under contiguous alternatives, they are asymptotically
N(δ1, 1) and N(δ∗, 1) with δ1 and δ∗ presented in (3.3) and (3.6), respectively. Both
tests behave as a displaced normal distribution according to the non-centrality pa-
rameter of the test, δ1 and δ∗. Since the power of both tests is governed by the
non-centrality parameters δ1 and δ∗, and the larger the parameter is the greater
the power (see Figure 3.1), a comparison between them yields a criterion for rela-
tive efficiency. We define the ARE as the square of the ratio of the non-centrality
parameters, that is:

ARE(T∗,n, T1,n) =

(
δ∗
δ1

)2

=
v2
∗p

(0)
∗ q

(0)
∗

v2
1p

(0)
1 q

(0)
1

. (3.10)

ARE(T∗,n, T1,n) > 1 would imply larger powers if using ε∗ while ARE(T∗,n, T1,n) ≤
1 would be in favour of using ε1 as the best option for primary endpoint. Hence,
choosing between ε1 or ε∗ is reduced to a comparison between the two means
of the asymptotic law under contiguous alternatives. The best primary endpoint
would be the one which has the greatest non-centrality parameter.

The method quantifies the differences in efficiency of using the composite or the
relevant as primary endpoint to lead the trial and, moreover, provides a decision
rule to define the primary endpoint. If the ARE is larger than 1, the composite
endpoint may be considered the best option as primary endpoint. Otherwise, the
relevant endpoint is preferred. However, when the ARE value is in the vicinity
of one, the advantages of the composite endpoint over the relevant endpoint are
too small to counteract the complicate interpretation of the composite endpoint.
Thus, under this circumstance, the relevant endpoint could be used instead as
primary endpoint.

Summarizing, for every endpoint, given their event rates in the control group
and their limiting treatment effect, the ARE value captures which endpoint is
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more efficient for designing a clinical trial and provides a criterion to choose among
them.

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

T under Ho Under H1 Under H1

δ* δ1

Fig. 3.1 Asymptotic behavior of the score test under the null hypothesis (most left
curve) and under contiguous alternatives for each endpoint ε1 (most right curve) and
ε∗ (second right).

3.4.2 ARE method for fixed alternatives

The ARE criterion to choose the primary endpoint given in (3.10) is based on
alternative odds ratios which are close to 1. From a practical point of view, the
interest might often be on detecting treatment effects ORk (k = 1, ∗), not neces-
sarily near 1, and to address this we propose an approximated ARE value.

The efficiency criterion for fixed alternatives, based on the two-sample score
tests T∗,n and T1,n, is defined as:

are(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1)) =
(log(OR∗))

2p
(0)
∗ q

(0)
∗

(log(OR1))2p
(0)
1 q

(0)
1

(3.11)
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Expression (3.11) approaches the ARE definition in (3.10) if for each endpoint,
we would consider the fixed treatment effect stabilized for the sample size as an
approximate value for the limiting treatment, that is:

√
n log(OR1) ∼= v1 and√

n log(OR∗) ∼= v∗.
Hence, the decision on whether to use a composite binary endpoint versus its

most relevant component as the primary endpoint can be assessed by computing
the ARE for fixed alternatives, referred to as are. The are depends on the joint
law of (Xij1, Xij2) (i = 0, 1) and can be determined by the following anticipated

parameters: (i) p
(0)
1 and p

(0)
2 , event rates in control group for the relevant endpoint,

ε1, and the additional endpoint, ε2; (ii) OR1 and OR2 fixed treatment effects for
ε1 and ε2; (iii) ρ(0) and ρ(1), correlation between Xij1 and Xij2 for each group.

3.5 TAXUS-V trial

Drug-eluting stents have been proved to reduce restenosis in noncomplex lesions,
even so, their utility has not been studied in a patient population with more
complex lesions. TAXUS-V was a prospective, multicenter, randomized trial to
investigate the safety and efficacy of a paclitaxel-eluting stent in a patient pop-
ulation with more complete lesions than previously studied (Stone et al., 2005).
The trial was conducted from February 2003 to March 2004 at 66 academic and
community-based institutions with 1156 patients who underwent stent implan-
tation in a single coronary artery stenosis, including 664 patients (57.4%) with
complex or previously unstudied lesions and 9-month clinical and angiographic
follow-up. Patients were randomly assigned to receive one or more bare metal
stents (n = 579) or identical-appearing paclitaxel-eluting stents (n = 577).

The primary endpoint was the 9-month incidence of ischemia-driven target ves-
sel revascularization, ε1. As a secondary endpoint, major adverse cardiac events,
ε∗, were defined as ischemia-driven target-vessel revascularization, ε1, or death
from cardiac causes or myocardial infarction, ε2. The study shows that compared
with a bare metal stent, implantation of the paclitaxeleluting stent in a patient
population with complex lesions effectively reduces the rate of vessel revascular-
ization.

For illustrative purposes, we assume that a study in a similar setting is to
be planned, and the question that arises is which primary endpoint should be
used to lead the trial. We also assume that the results of TAXUS-V are used
for this purpose. Aiming to study whether it would be more efficient to base the
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study on major adverse cardiac events, ε∗, instead of ischemia-driven target vessel
revascularization, ε1, we exemplify the use of the ARE method.

The frequency of target vessel revascularization in bare metal group is p
(0)
1 =

0.173, whereas the frequency of death from cardiac causes or myocardial infarction
is p

(0)
2 = 0.055. Furthermore, the frequencies under the test group are p

(1)
1 = 0.121

and p
(1)
2 = 0.057, respectively. We discuss the use of the composite endpoint as

primary endpoint, for given values p
(0)
1 = 0.173, p

(0)
2 = 0.055 and p

(1)
1 = 0.121

and for the values for the parameter p
(1)
2 and ρ presented in Table 3.1. For given

pairs (p
(0)
1 , p

(0)
2 ) and (p

(1)
1 , p

(1)
2 ) and assuming equal correlation in both groups,

the eligible values for ρ lie in the interval (−0.09, 0.53).

Table 3.1 Values of p
(0)
1 and p

(1)
1 , probability of target vessel revascularization in bare

metal group and in paclitaxel-eluting group; p
(0)
2 and p

(1)
2 , probability of death from

cardiac causes or myocardial infarction in bare metal group and in paclitaxel-eluting
group; ρ, correlation among target vessel revascularization and death from cardiac causes
or myocardial infarction; OR1, odds ratio for target vessel revascularization; OR2, odds
ratio for death from cardiac causes or myocardial infarction, used for the discussion.
The left part of the table shows the treatment effects in terms of p, the right part shows
the treatment effects in terms of OR.

Parameter Values Parameter Values

p
(0)
1 0.173 p

(0)
1 0.173

p
(1)
1 0.121 OR1 0.67

p
(0)
2 0.055 p

(0)
2 0.055

p
(1)
2 0.057, 0.050, 0.045, 0.040, 0.035 OR2 1.04, 0.90, 0.81, 0.72, 0.62
ρ (−0.09, 0.53) ρ (−0.09, 0.53)

Figure 3.2 depicts the ARE values (in log scale) in terms of the correlation for
each of the five different values of the treatment effect on ε2. Observe that for a
fixed correlation the ARE takes greater values as the odds ratio OR2 for death
from cardiac causes or myocardial infarction decreases. Therefore, the composite
endpoint becomes more effective and more useful when the odds ratio for the
additional endpoint, OR2, shows a greater treatment effect. Furthermore, notice
that the ARE decreases when the correlation increases, that is, the more correlated
among target vessel revascularization and death from cardiac causes or myocardial
infarction are, the less appropriate necessary is the composite as primary endpoint.
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Especially, when the odds ratio for death from cardiac causes or myocardial
infarction, OR2, is equal or larger than 0.81, the ARE is almost always less than
1 (see Figure 3.2). Hence, the use of target vessel revascularization, ε1, provide
more efficient detection of the differences between treatments. In the case that
OR2 ≤ 0.62, the ARE is greater than 1. Then, the primary endpoint major adverse
cardiac events, ε∗, would have been more efficient instead of relevant endpoint.
Finally, note that when OR2 is around 0.72, the decision depends on the value
that correlation has.
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Fig. 3.2 ARE of major adverse cardiac events (death from cardiac causes, myocardial
infarction, or target-vessel revascularization) versus target-vessel revascularization for a

range of correlation coefficient and different values of OR2 for the parameters: p
(0)
1 =

0.173, p
(0)
2 = 0.055 and p

(1)
1 = 0.121. The plot shows the curves of the are for each OR2

depending on the assumed ρ.
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3.6 Statistical efficiency guidelines

We have seen that the relative efficiency to choose between a composite endpoint
or one of its relevant components can be expressed in terms of the following antic-
ipated parameters: treatment effects, event rates and correlations. In this section,
we discuss the influence that these parameters have on the relative efficiency value.
For example, which role does play the correlation between the two components in
preferring the composite as primary endpoint? We conclude reporting guidelines
which could be of some help when designing a randomized clinical trial and facing
the choice between several binary endpoints or their combination.

3.6.1 Design

Our efficiency guidelines will be based on event rates, p
(0)
1 , p

(0)
2 , smaller than 0.1,

odds ratios, OR1, OR2, between 0.5 and 1, and positive correlations (see Table
3.2). This choice is in accordance with the values that are usually encountered in
clinical trials. From now on, we assume that the correlations are the same in the
two groups and we denote it by ρ. Although Table 3.2 yields 436810 scenarios,
since for every pair (p

(0)
1 , p

(0)
2 ) and (p

(1)
1 , p

(1)
2 ) not all the correlation values are

feasible, the total number of possible scenarios is reduced to 315348.
Since the ARE method for fixed alternatives given in (3.11) depends on the

parameters p
(0)
1 , p

(0)
2 , OR1, OR2 and ρ, we calculate the are for each scenario.

The ARE values that we have obtained has 1.52 as a median, and 0.81 and 4.82
as first and third quartile. We follow the principle that if are > 1, the use of
the composite endpoint is recommended, and if are ≤ 1, the relevant endpoint
should be used as primary endpoint. At last, we compute the percentage of cases
on which the composite is preferred over the relevant endpoint. We conclude with
recommendations for the choice of the primary endpoint in terms of the values
of the correlations, the treatment effects and the event rates in control group for
each individual component. We have performed all computations using R software
tool (Version 0.98.1087), the time required to perform the considered scenarios
was 16.58h.

As said earlier, when the ARE values are close to one, in particular if are ∈
(1, 1.1), the benefits of using the composite endpoint over the relevant endpoint
are small. Despite the value one is regarded as the threshold of our study and is
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the focus of the subsequent discussion, guidelines using 1.1 as the threshold for
the decision can be viewed in Appendix B.1.

Table 3.2 Values of parameters p
(0)
1 , p

(0)
2 ,OR1,OR2 and ρ for the settings used for the

efficient guidelines.

Parameter Values

p
(0)
1 , p

(0)
2 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050,

0.055, 0.060, 0.065, 0.070, 0.075, 0.080, 0.085, 0.090, 0.095, 0.100
OR1, OR2 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99
ρ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Total scenarios 436810

Possible scenarios 315348

3.6.2 General pattern of the percentage of cases in which are > 1

We study the influence that the value of certain anticipated parameters, such as
the treatment effect on the relevant endpoint or the event rate of the additional
endpoint, has on the selection between a composite endpoint or its more relevant
component as primary endpoint. As we will see, the most well-suited primary
endpoint might differ according to the anticipated parameters of the clinical trial.

We have computed the are values for each of the 315348 scenarios described
in Table 3.2 and in each case we have recorded whether are > 1 –the composite
endpoint would be recommended– or are ≤ 1 –the relevant endpoint should be
kept as primary endpoint–. A given scenario is characterized by the following 5
parameter values θ = (OR1,OR2, ρ, p

(0)
1 , p

(0)
2 ). Let P1(a) indicate the percentage of

cases yielding are > 1 among all the scenarios with OR1 = a. Analogously define
Pj(a) as the percentage of cases yielding are > 1 among all the scenarios with
θj = a (j = 2, · · · , 5).

We have examined P1(OR1) for 0.5 ≤ OR1 < 1, P2(OR2) for 0.5 ≤ OR2 < 1 and
P3(ρ) for 0 ≤ ρ ≤ 1. We observe that the percentage of situations in which are > 1
increases whenever: i) the relative effect of treatment on the relevant endpoint
increases, ii) the relative effect of treatment on the additional endpoint decreases
and iii) the correlation between the two endpoints decreases. In other words, the
number of situations where the composite endpoint is preferred is larger i) for



60 3 Endpoint selection on composite binary endpoints

larger values of OR1, ii) for smaller values of OR2 and iii) for weakly correlated
endpoints. Figure 3.3 and Figures B.1, B.2 (in Appendix B.1) summarize these
findings.

We have studied the behavior of P2(OR2) as a function of OR1. Figure 3.4
represents P2(OR2 = OR1 + a) for OR1 = 0.6 and −0.10 ≤ a ≤ 0.35. We observe
that the percentage of cases in which the composite is preferred drops off rapidly
when the effect of treatment is not as strong on the additional endpoint as it is on
the relevant endpoint (see Figures B.3 and B.4 when OR1 = 0.7 and OR1 = 0.8
in Appendix B.1).

 = 0

  63% (CE)   73% (CE) 

Lower correlation 

1  2

Higher correlation 

1  2
 

 = 0.2

 67% (CE) 

 = 0.8

 58% (CE) 

 = 0.6

  60% (CE) 

are

 = 0.1  = 0.3  = 0.4  = 0.5  = 0.7  = 0.9

  71% (CE)   69% (CE)  65% (CE)  61% (CE)  60% (CE)  

Fig. 3.3 Percentage of scenarios in which the composite endpoint should be used de-
pending on ρ.

OR
1
-0.10

42% (RE)100% (CE) 89% (CE) 0% (RE)1% (RE)are 100% (CE) % (CE) 7 % (CE) % (RE) 0% (RE)

OR
2

Lower relative risk of 

2

Higher relative risk 

2

OR
2

OR
1
-0.05 OR

1
OR

1
+0.05 OR

1
+0.10 OR

1
+0.15 OR

1
+0.20 OR

1
+0.25 OR

1
+0.30 OR

1
+0.35

Fig. 3.4 Percentage of scenarios in which the composite endpoint should be used de-
pending on OR2 when OR1 = 0.6.

We have also studied the behavior of P4(p
(0)
1 ) for 0.01 ≤ p

(0)
1 ≤ 0.1 and of P5(p

(0)
2 )

for 0.01 ≤ p
(0)
2 ≤ 0.1. There is a certain trend showing (plots not provided) that
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P4(p
(0)
1 ) decreases with p

(0)
1 while P5(p

(0)
2 ) increases with p

(0)
2 , indicating that less

frequent event rates for the relevant endpoint and more frequent for the additional
endpoint are in the direction of preferring the composite endpoint. However, the
values for P4(p

(0)
1 ) or P5(p

(0)
2 ) are between 60% and 75%, implying that the other

parameters (OR1,OR2, ρ) play a more important role in the choice between the
relevant and the composite endpoint.

3.6.3 Recommendations for the choice of the primary endpoint

We have split the recommendations into the following three cases: (i) when the
correlation takes values between 0 and 1 (0 < ρ < 1); (ii) when the relevant and
the additional endpoint are independent (ρ = 0); and (iii) when ρ = 1, implying
that the relevant and the additional endpoint take the same value.

(i) Although the total number of scenarios that we have reproduced is very
large and it has been useful to understand how the are behaves, when it comes to
anticipate parameter values on which to base our decisions, accuracy cannot be
as slim and is more realistic to render the recommendations to 3 or 4 categories
of association, of strengths of the relative effect and of levels of frequency of the
events. To this end, we have chosen four degrees of association: weak (0 < ρ < 0.3),
medium-weak (0.3 ≤ ρ < 0.6), medium-strong (0.6 ≤ ρ < 0.8), strong (0.8 ≤
ρ < 1); three categories for treatment effect: Large for Odds Ratios between 0.5
and 0.7, Medium for Odds Ratios between 0.7 and 0.9 and Low for Odds Ratios
between 0.9 and 1; and four event rates in control group for the relevant and
additional endpoints, low (p ≤ 0.025), medium-low (0.025 ≤ p ≤ 0.05), medium-
large (0.05 ≤ p ≤ 0.075), large (p > 0.075).

To derive recommendations, for each case we provide the percentage of cases in
which the composite is preferred. On the basis of these percentages, we indicate
whether the relevant or composite endpoint should be used. We are considering
here that if the percentage of are > 1 is larger than 60%, the recommendation
is to use of the composite endpoint; if the percentage is less than 40%, the rec-
ommendation is to use of the relevant endpoint; otherwise, if the percentage lies
between 40% and 60%, the recommendation cannot be given. In this last case,
we have reported that the recommendation is not conclusive and we have writ-
ten CE/RE. There are not conclusions for all situations, therefore, the ensuing
computation of the ARE is needed for the rest of particular situations.

Table 3.3 summarizes the recommendation in terms of the categories for
(OR1,OR2). Basically, the composite endpoint should be used when: i) treatment
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effect on the additional endpoint is large; ii) treatment effects on the relevant and
additional endpoint are medium; iii) treatment effects on the relevant and addi-
tional endpoint are low and medium, respectively. On the other hand, the relevant
endpoint is almost always preferred if the treatment effect on the additional end-
point is low and the treatment effect on the relevant is large or medium.

Table 3.3 Recommendations in terms of treatment effects of the relevant and the
additional endpoint, large (0.5 ≤ OR < 0.7), medium (0.7 ≤ OR < 0.9) or low (0.9 ≤
OR < 1). Each cell indicates whether the relevant endpoint (RE) (are ≤ 1) or composite
endpoint (CE) (are > 1) should be used and, in parentheses, the percentage of cases in
which composite is preferred based on the scenarios described in Table 3.2.

Large treatment Medium treatment Low treatment
effect on ε2 effect on ε2 effect ε2

Large treatment effect on ε1 CE (91.18%) RE (23.06%) RE (0%)
Medium treatment effect on ε1 CE (100%) CE (83.65%) RE (6.52%)
Low treatment effect ε1 CE (100%) CE (100%) CE (68.81%)

Recommendations taking into account the level of association together with the
treatment effects on the relevant and on the additional endpoint, event rates in
control group for both the relevant and the additional endpoint are summarized
in Table 3.4. As earlier, we observe that the percentage of are > 1 decreases as the
degree of association increases. This underlines the importance of the correlation
to decide the primary endpoint. In particular, when the treatment effect either
on the relevant or additional endpoint is medium, the value of the correlation
might play a crucial role in the decision. Notice that the percentages of are > 1
in terms of the event rates are never larger than 75% or smaller than 50%, hence
the frequency of the relevant and additional endpoints cannot characterize by
themselves the decision on which primary endpoint to use.

(ii) Whenever the relevant and additional endpoints are independent (ρ = 0),
the composite endpoint would be intuitively preferred, however this is not always
the case as Figure 3.3 shows. Following the rationale outlined above, Table 3.5
takes care of this situation. Note that the relevant endpoint is always preferred
to the composite endpoint when the treatment effect on the relevant endpoint is
large and the treatment effect on the additional endpoint is low. Besides, whenever
the treatment effect on the relevant endpoint is medium and the treatment effect
on the additional endpoint is low, the relevant endpoint should be the primary
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endpoint to lead the trial. Otherwise, if the treatment effect on the additional
endpoint is large (OR2 ≤ 0.7), the composite endpoint is always preferred.

Table 3.5 Recommendations in case of independence between the relevant and the ad-
ditional endpoint (ρ = 0) in terms of treatment effects of the relevant and the additional
endpoint, large (0.5 ≤ OR < 0.7), medium (0.7 ≤ OR < 0.9) or low (0.9 ≤ OR < 1).
Each cell indicates whether the relevant endpoint (RE) (are ≤ 1) or composite endpoint
(CE) (are > 1) should be used and, in parentheses, the percentage of cases in which
composite is preferred based on the scenarios described in Table 3.2.

Large treatment Medium treatment Low treatment
effect on ε2 effect on ε2 effect ε2

Large treatment effect on ε1 CE (100%) CE/RE (48.84%) RE (0%)
Medium treatment effect on ε1 CE (100%) CE (96.36%) RE (15.12%)
Low treatment effect ε1 CE (100%) CE (100%) CE (76.55%)

(iii) The case of ρ = 1 was excluded from the settings of scenarios because
in this case are = 1. The reason is that perfect linear dependence implies that
the probabilities of the composite and the relevant endpoint are the same. As a
result, it can be seen by inspection of (3.11) that the resulting are is equal to
one. Hence, the decision rule sets up an equivalence between the relevant and
composite endpoints in terms of efficiency.

3.7 Further work

In this section we derive the ARE for hypothesis problems in terms of the difference
in proportions. We present the ARE for both contiguous and fixed alternatives,
and discuss its relationship with the ARE in terms of the odds ratios given in
(3.10).

3.7.1 An extension of the ARE method for difference in proportions

As before, we assume two different binary endpoints of potential interest, ε1 and
ε2, and the binary composite endpoint ε∗ = ε1 ∪ ε2. Additionally, we assume that
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there exists one endpoint which is more relevant for the scientific question than
the other. Consider ε1 the relevant endpoint and ε2 the additional one.

Hypothesis problem in terms of the difference in proportions

If we consider the relevant endpoint ε1 as primary endpoint, we can formulate the
hypothesis problem as:

H(p)
1 :=

{
H0 : p

(0)
1 − p

(1)
1 = 0

H1 : p
(0)
1 − p

(1)
1 > 0

where, as before, the null hypothesis states the non-treatment effect p
(0)
1 = p

(1)
1

and the alternative hypothesis assumes a risk reduction in the intervention group
as compared with the control group.

Let T1,n be the statistic defined in (3.2), that is:

T1,n =
p̂

(0)
1 − p̂

(1)
1√

1
n0
p̂

(0)
1 q̂

(0)
1 + 1

n1
p̂

(1)
1 q̂

(1)
1

where p̂
(i)
1 = 1

ni

∑ni
j=1 Xij1 = 1− q̂(i)

1 . The statistic T1,n is asymptotically N(0, 1)
under H0. For any fixed alternative, T1,n is consistent so that the power of T1,n

will go to 1 as n→ +∞. Let us consider the sequence of contiguous alternatives
to H0 defined by:

H1,n : p
(0)
1 − p

(1)
1,n =

u1√
n

where u1 ∈ R+. Observe that p
(0)
1 is considered fixed and p

(1)
1,n varies depending on

the sample size, n. For any finite n, p
(0)
1 −p

(1)
1,n = u1√

n
is the treatment effect assumed

as alternative. Besides, the constant u1 is interpreted as the limiting treatment
effect as n→ +∞, i.e.:

√
n(p

(0)
1 − p

(1)
1,n) −→ u1

Under the sequences of contiguous alternatives H1,n, T1,n is asymptotically normal
with unit variance and mean (non-centrality parameter) µ1 defined as:

µ1 = u1

√
π(1− π)

p
(0)
1 q

(0)
1
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If the treatment is evaluated through the composite endpoint ε∗, the hypothesis
problem is stated as:

H(p)
∗ :=

{
H0 : p

(0)
∗ − p(1)

∗ = 0

H1 : p
(0)
∗ − p(1)

∗ > 0

where under the null hypothesis, we assume that there is not treatment effect on
the composite endpoint and, under the alternative hypothesis, there is a reduction
in the number of composite events in the intervention group as compared with
the control group.

Let T∗,n be the statistic defined in (3.5), that is:

T∗,n =
p̂

(0)
∗ − p̂(1)

∗√
1
n0
p̂

(0)
∗ q̂

(0)
∗ + 1

n1
p̂

(1)
∗ q̂

(1)
∗

The score test T∗,n is asymptotically N(0, 1) under H0 : p
(0)
∗ − p

(1)
∗ = 0. Under

sequences of contiguous alternatives of the form H∗,n : p
(0)
∗ − p

(1)
∗,n = u∗√

n
, the

statistic T∗,n is asymptotically N(µ∗, 1), where the non-centrality parameter µ∗ is
given by:

µ∗ = u∗

√
π(1− π)

p
(0)
∗ q

(0)
∗

(3.12)

ARE method for difference in proportions

Consider the following hypothesis tests based on the relevant endpoint, ε1, and
on the composite endpoint, ε∗, in terms of the difference in proportions:

H(p)
1,n :=

{
H0,1 : p

(0)
1 = p

(1)
1

H1,1 : p
(1)
1,n = p

(0)
1 − u1√

n

H(p)
∗,n :=

{
H0,∗ : p

(0)
∗ = p

(1)
∗

H1,∗ : p
(1)
∗,n = p

(0)
∗ − u∗√

n

(3.13)

Let T1,n, T∗,n be the statistics given in (3.2) and (3.5) for testing H(p)
1,n and

H(p)
∗,n, respectively. Note that both tests asymptotically follow the standard normal

distribution under the null hypothesis of non-treatment effect, while under the
alternative hypothesis asymptotically follow a normal distribution with variance
1 and non-centrality parameter µ1 and µ∗, respectively.



3.7 Further work 67

To assess the difference in efficiency between ε1 and ε∗, we base our decision
on the comparison between the asymptotic behavior of T1,n under H1 and T∗,n
under H∗. Following the same rationale that in section 3.4, we define the ARE as
the square of the ratio of the non-centrality parameters as a criterion for relative
efficiency. The ARE is then defined by the square of the ratio of µ∗, µ1, that is:

AREp(T∗,n, T1,n) =

(
µ∗
µ1

)2

=

u∗
√

π(1−π)

p
(0)
∗ q

(0)
∗

u1

√
π(1−π)

p
(0)
1 q

(0)
1


2

=
u2
∗p

(0)
1 q

(0)
1

u2
1p

(0)
∗ q

(0)
∗

(3.14)

As mentioned in Section 3.4.2, in practice, we want to apply the ARE method
for fixed alternatives. However, the ARE criterion given in (3.14) is based on
alternative hypotheses close to 0. Our approach to define the ARE method for
fixed alternatives is to use an approximation to the asymptotic value of ARE.

The ARE method for fixed alternatives, based on the two-sample score tests
T∗,n and T1,n, is defined as:

arep(p
(0)
1 , p

(0)
2 , p

(1)
1 , p

(1)
2 , ρ) =

p(0)
∗ − p(1)

∗√
p

(0)
∗ q

(0)
∗

2/p(0)
1 − p

(1)
1√

p
(0)
1 q

(0)
1

2

(3.15)

The arep approximates the ARE definition given in (3.14). Note that we have
considered the fixed treatment effect stabilized for the sample size as an ap-
proximate value for the limiting treatment, that is:

√
n(p

(0)
1 − p

(1)
1 ) ∼= u1 and√

n(p
(0)
∗ − p(1)

∗ ) ∼= u∗.
By using that the probability of the composite endpoint can be written by

means of the probabilities of the composite components and the correlation (see

(3.7)), the are is then in terms of the following anticipated parameters: (i) p
(0)
1 and

p
(0)
2 , event rates in control group for the relevant endpoint, ε1, and the additional

endpoint, ε2; (ii) p
(0)
1 − p

(1)
1 and p

(0)
2 − p

(1)
2 fixed treatment effects for ε1 and ε2;

(iii) ρ(0) and ρ(1), Pearson’s correlation in each group.

3.7.2 Asymptotic invariance of ARE

In this section, we study the relationship between ARE and AREp given in (3.10)
and (3.14), respectively. We will see that these two measures are, under certain
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conditions, invariant. To do so, we first compare the speed of convergence of
sequences of alternatives using differences of proportions over sequences of alter-
natives using odds ratios.

Convergence speed for contiguous alternatives

Let p
(1)
p,n be the sequence of probabilities in the treatment group corresponding to

contiguous alternatives of the form Hn : p(0)−p(1)
p,n = u√

n
, where u > 0. Then, p

(1)
p,n

is given by:

p(1)
p,n = p(0) − u√

n
(3.16)

Let p
(1)
β,n be the sequence of probabilities in the treatment group corresponding

to contiguous alternatives of the form Hn : log(OR)n = v√
n
, where v < 0. Denoting

by βn = log(OR)n, we have that:

βn =
v√
n

where βn = log

(
p

(1)
β,n/q

(1)
β,n

p(0)/q(0)

)

where q
(1)
β,n = 1− p(1)

β,n. Therefore, p
(1)
β,n is given by:

p
(1)
β,n = e

v√
n
p(0)

q(0)

(
1 + e

v√
n
p(0)

q(0)

)−1

(3.17)

Note that both p
(1)
p,n and p

(1)
β,n converge to p(0) as n→ +∞. In order to compare

the speed of convergence of p
(1)
p,n and p

(1)
β,n, we define the limiting ratio of their

corresponding distances to the p(0) as:

L = lim
n→+∞

p
(1)
p,n − p(0)

p
(1)
β,n − p(0)

which has the following interpretation:

� If L = 0, the sequence p
(1)
p,n converges faster than p

(1)
β,n.

� If L =∞, the sequence p
(1)
β,n converges faster than p

(1)
p,n.

� If L = 1, both sequences converge to null hypothesis at the same time, i.e., they
have the same speed of convergence.
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� If L ∈ (0,+∞), the rates of convergence are proportional.

In the following proposition, we state the expression of the limiting ratio L
when considering the sequences p

(1)
p,n and p

(1)
β,n given in (3.16) and (3.17).

Proposition 3.1. Let p(0) be the probability under the group 0, and let p
(1)
p,n and

p
(1)
β,n be the sequences of probabilities given in (3.16) and (3.17). Then:

L = −u
v

1

p(0)q(0)
∈ (0,+∞)

Consequently, the convergence to the null hypothesis is proportional among
parametrizations.

Proof. By considering p
(1)
p,n and p

(1)
β,n given in (3.16) and (3.17), then we have:

L = lim
n→+∞

p
(1)
p,n − p(0)

p
(1)
β,n − p(0)

= lim
n→+∞

− u√
n

e
v√
n p(0)

q(0)

1+e
v√
n p(0)

q(0)

− p(0)

= lim
n→+∞

− u√
n

e
v√
n

q(0)

p(0)
+e

v√
n
− p(0)

x= 1√
n

= lim
x→0

−ux
evx

q(0)

p(0)
+evx
− p(0)

H
= lim

x→0

−u
vevx( q

(0)

p(0)
+evx)−evxvevx(

q(0)

p(0)
+evx

)2

= lim
x→0

−u
vevx( q

(0)

p(0)
)(

q(0)

p(0)
+evx

)2

= −u
v

1

p(0)q(0)

where H denotes the application of l’Hôpital rule. Finally, since u > 0, v < 0, and
p(0)q(0) > 0, we have L > 0.

Asymptotic invariance

Based on the results from Section 3.7.2.1, we now focus on the invariance between
the ARE in terms of the odds ratio (defined in (3.10)) and the ARE in terms of
the risk difference (defined in (3.14)).

We start noticing that given the event rates p
(0)
1 and p

(0)
∗ and the sequences of

alternatives

{p(1)
β,k}n = e

v√
n
p(0)

q(0)

(
1 + e

v√
n
p(0)

q(0)

)−1

and {p(1)
p,k}n = p

(0)
k −

uk√
n
,
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it follows from the Proposition 3.1 that:

L1 = −u1

v1

1

p
(0)
1 q

(0)
1

and L∗ = −u∗
v∗

1

p
(0)
∗ q

(0)
∗
.

which are the convergence speed for contiguous alternatives using the risk differ-
ence over the odds ratio for the relevant and the composite endpoints, respectively.

Theorem 3.1. Let p
(0)
k be the event rate in the control group for the k-th endpoint

(k = 1, ∗). Consider the hypotheses in terms of the odds ratio given in (3.9) and the
hypotheses in terms of the risk difference given in (3.13). Suppose Lk ∈ (0,+∞)
defined by:

Lk = −uk
vk

1

p
(0)
k q

(0)
k

, k = 1, ∗

Then, if L1 = L∗, the ARE is invariant with respect to the parametrization, i.e.:

AREp(T∗, T1) = AREβ(T∗, T1)

Proof. The proof is straightforward by applying Proposition 3.1 and then noticing
that:

v2
kp

(0)
k q

(0)
k =

(
− 1

L
uk

1

p
(0)
k q

(0)
k

)2

p
(0)
k q

(0)
k =

(
1

L

)2
u2
k

p
(0)
k q

(0)
k

where L = L1 = L∗ and for k = 1, ∗. Hence, we obtain:

AREβ(T∗, T1) =
v2
∗p

(0)
∗ q

(0)
∗

v2
1p

(0)
1 q

(0)
1

=

(
1
L

)2 u2∗
p
(0)
∗ q

(0)
∗(

1
L

)2 u21

p
(0)
1 q

(0)
1

=

u2∗
p
(0)
∗ q

(0)
∗

u21

p
(0)
1 q

(0)
1

= AREp(T∗, T1)

The assumption L1 = L∗ may be thought of as representing that both endpoints
have the same proportionality of the speed of convergence. However, further re-
search is needed for the deep understanding and the implications of this condition.

3.8 Discussion

In this chapter, we have proposed a method that allows an informed selection be-
tween a binary composite endpoint or one of its components as primary endpoint.
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Although composite endpoints are widely used as primary endpoints in clinical
trials, as we have seen, they are not always the best option. The law governing
the composite endpoint depends on the event rates, the magnitude of the treat-
ment effects and the correlation between the components that form the composite.
While the event rates and magnitude of the treatment effects can be reasonably
well anticipated, this is not the case for the correlation between endpoints. Our
methodology, and hence, the computation of the ARE has been established for dif-
ferent correlation values in each treatment group. However, the scenarios to derive
the guidelines have been restricted to the same correlation in both groups. The
impact of this assumption as well as the scenarios with two different correlations
remain as future work.

If at least we could anticipate the degree of association in terms of weak, medium
or large, we could use Table 3.4 to decide which endpoint to use. The treatment
effects of the relevant and the additional endpoints also have an important role for
deciding the primary endpoint. As seen earlier in Table 3.3, when the additional
endpoint presents a smaller treatment effect than the relevant endpoint, it could
not be more efficient to base the trial on the composite instead of the relevant
endpoint, since the effect of the therapy in these settings could be diluted by
adding an endpoint.

In order to assess the appropriate choice of the primary endpoint, we have cre-
ated an interactive web-platform called CompARE to calculate the ARE method
based on the information of the different endpoints together with anticipated val-
ues. We will present CompARE and describe its features in Chapter 5.

This work has been restricted to composite endpoints defined by two compo-
nents. The method could be used for composite endpoints formed by more than
two components by identifying two subsets of possible components (SR and SA)
and then comparing the composite versus one of its subsets, for instance, SR.

We have developed the ARE method for two different parametrizations (odds
ratio and difference of proportions) and shown that the ARE is asymptotically
invariant with respect to the parametrization in Section 3.7. Further work (not
shown), however, suggest that this property is not longer true for fixed alterna-
tives, that is to say, that are and arep given in (3.11) and (3.15), respectively,
are not equal. Further research is needed to explore whether or not this issue
could affect the decision of using the composite endpoint or the relevant endpoint
as the primary endpoint. Also, in addition to the odds ratio and risk difference
parametrizations, we could have considered the hypothesis problem in terms of
the risk ratio. The are method in terms of the risk ratio might be a topic of future
research.
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The standard definition of the Asymptotic Relative Efficiency relates the effi-
ciency of two statistic tests for the same set of hypothesis. In this case, it can be
interpreted as the limiting ratio of sample sizes to give the same asymptotic power
under sequences of contiguous alternatives (Noether, 1954). Gómez and Gómez-
Mateu (2014) empirically proved that the interpretation of the ARE as the ratio
of required sample sizes still holds when using two logrank tests to compare the
hazard ratios under the relevant or the composite endpoint. It remains to be seen
whether the are we have proposed for binary endpoints can as well be interpreted
as a ratio of required sample sizes.

Finally, in this work, the ARE method has been developed for discussing the
use of a composite or one of its components as primary endpoint. We have as-
sumed that both endpoints, ε1 and ε2, are important enough to be considered
into the study and that one of the endpoints, ε1, is more relevant than the other,
ε2. However, the ARE method does not take into account the relative relevance
between ε1 and ε2. We understand this could be an important issue and remains
open for future research.



Chapter 4

A class of statistics for binary and
time-to-event endpoints

The work presented in this chapter reproduces the following paper currently under
review:

A class of two-sample nonparametric statistics for binary and time-to-event
outcomes.

Bofill Roig, M., and Gómez Melis, G.
arXiv:2002.01369 [stat.ME]

Appendix C contains the proof of theorems and the derivation and estimation of
the covariance. The methodology presented in this chapter has been implemented
in an R package called Survbin. We postpone the software’s description to Chap-
ter 5. The source code to reproduce the results of this work are online in the
GitHub repository: https://github.com/MartaBofillRoig/SurvBin.
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https://arxiv.org/abs/2002.01369
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4.1 Introduction

In many clinical studies, two or more endpoints are investigated aiming to provide
a comprehensive picture of the treatment’s benefits and harms. Survival analysis
has often been the sharp focus of clinical trial research. However, when there is
more than one event of interest, the time until the appearance of the event is not
always the unique center of attention; often the occurrence of an event over a fixed
time period is as well an outcome of interest.

In the context of cancer immunotherapies trials, short-term binary endpoints
based on the tumor size, such as objective response, are common in early-phase
trials, whereas overall survival remains the gold standard in late-phase trials (Wil-
son et al., 2015; Ananthakrishnan and Menon, 2013). Since traditional oncology
endpoints may not capture the clinical benefit of cancer immunotherapies, the idea
of looking at both tumor response and survival has grown from the belief that
together may achieve a better characterization of the clinical response (Thall,
2008).

Several authors have considered both objective response and overall survival
as primary endpoints in cancer trials. Lai and ZeeLai and Zee (2015) proposed
a single-arm phase II trial design with tumor response rate and a time-to-event
outcome, such as overall survival or progression free survival. In their design, the
dependence between the binary response and the time-to-event outcome is mod-
eled through a Gaussian copula. Lai et al. (2012) proposed a two-step sequential
design in which the response rate and the time to the event are jointly modeled.
Their approach relates the response rate and the time to the event by means of a
mixture model build on the basis of the Cox proportional hazards model assump-
tion. Chen and Wang (2020) presented a joint model for binary marker responses
and survival outcomes for clustered data. They based the statistical inference on a
multivariate penalized likelihood method and estimate the standard errors using
a jackknife resampling method.

An additional challenge in immunotherapy trials lies in the fact that delayed
effects are likely to be found, bringing the need of alternative methods accounting
for the non-proportionality of the hazards (Mick and Chen, 2015). Statistics that
look at differences between integrated weighted survival curves, such as those
defined by Pepe and Fleming (1989, 1991) and extended by Gu et al. (1999), are
better suited to detect early or late survival differences and do not depend on
the proportional hazards assumption. In this work, we aim to propose a class of
two-sample statistics that could be used in seamless phase II/III design to jointly
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evaluate the efficacy on binary and survival endpoints, even in the presence of
delayed treatment effects.

The problem of how to analyze multiple outcomes has been widely discussed in
the literature (Dmitrienko and Agostino, 2013; Alosh et al., 2014). The classical
approach is to restrict the attention to multiple testing procedures that control
the probability of one or more false rejections, the so-called familywise error rate,
which guarantee the nominal significance level (Lehmann and Romano, 2005).
However, classical multiple testing procedures based on correcting the significance
level (e.g, Bonferroni procedure (Bland and Altman, 1995)) may not be appro-
priate since they do not take into account the potential association between the
binary and survival outcomes and might lead to conservative designs.

Other alternative approaches have been developed allowing for the joint distri-
bution of test statistics. O’Brien (1984) and Pocock et al. (1987) proposed global
test statistics through the sum of individual statistics. O’Brien (1984) developed
a generalized least squares method by combining multiple statistics into a single
hypothesis test when variables are normally distributed; whereas Pocock et al.
(1987) extended O’Brien’s work to asymptotically normal test statistics. Hothorn
et al. (2008) and Pipper et al. (2012) approached the problem of testing multiple
hypothesis using parametric and semi-parametric models. Hothorn et al. (2008)
used the limiting distribution of the parameter estimators to build upon the corre-
sponding test statistics and their joint distribution. Based on that, their approach
corrects the significance level by means of the simultaneous asymptotic normality
of the test statistics. Pipper et al. (2012) proposed a procedure for evaluating
the efficacy in trials with multiple endpoints of different types. Their procedure
is based on simultaneous asymptotic normality of the effect estimators from the
single-models for each endpoint together with multiple testing adjustments.

Extensive research has been done on joint modeling of longitudinal measure-
ments and survival data (comprehensive overviews can be found in Tsiatis and
Davidian (2004), Rizopoulos (2012) and Papageorgiou et al. (2019)). In most cases,
the primary focus is on characterizing the association between the longitudinal
and event time processes. The common framework is to relate the time-to-event
and longitudinal outcomes through the proportional hazard model. Nevertheless,
the relationship between binary response at a specific time point and survival
outcome has received less attention (Chen and Wang, 2020).

In this work, we have followed the idea launched by Pocock et al. (1987) of
combining multiple test statistics into a single hypothesis test. Specifically, we
propose a class of statistics based on a weighted sum of a difference in propor-
tions test and a weighted Kaplan-Meier test-based for the difference of survival
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functions. Our proposal adds versatility into the study design by enabling different
follow-up periods for each endpoint, and flexibility by incorporating weights. We
define these weights to specify unequal priorities to the different endpoints and to
anticipate the type of time-to-event difference to be detected.

This article is organized as follows. In Section 2, we present the class of statistics
for binary and time-to-event outcomes. In Section 3, we set out the assumptions
and present the large sample distribution theory for the proposed statistics. In
Section 4, we introduce different weights and discuss their choice. We give an
overview of our R package SurvBin in Section 5 and illustrate our proposal with a
recent immunotherapy trial in Section 6. In Section 7, we evaluate the performance
of these statistics in terms of the significance level and the statistical power with
a simulation study. We conclude with a discussion.

All the required functions to use these statistics have been implemented in R
and have been made available at: https://github.com/MartaBofillRoig/SurvBin.

4.2 A general class of binary and survival test statistics

Consider a study comparing two groups, control group (i = 0) and intervention
group (i = 1), each composed of n(i) individuals, and denote by n = n(0) +n(1) the
total sample size. Suppose that both groups are followed over the time interval
[0, τ ] and are compared on the basis of the following two endpoints: the occurrence
of an event εb before τb (0 < τb ≤ τ), and the time to a different event εs within
the interval [τ0, τ ] (0 ≤ τ0 < τ). For the i-th group (i = 0, 1), let p(i) (τb) be the
probability of having the event εb before τb, and S(i)(·) be the survival function of
the time to the event εs.

We consider the problem of testing simultaneously Hb,0: p(0)(τb) = p(1)(τb) and
Hs,0: S(0)(t) = S(1)(t),∀t ∈ [τ0, τ ], aiming to demonstrate either a higher proba-
bility of the occurrence of εb or an improved survival with respect to εs in the
intervention group. The hypothesis problem can then be formalized as:

H0 : p(0)(τb) = p(1)(τb) and S(0)(t) = S(1)(t), ∀t ∈ [τ0, τ ]

H1 : p(0)(τb) < p(1)(τb) or S(0)(t) ≤ S(1)(t), ∀t ∈ [τ0, τ ],

∃t∗ ∈ [τ0, τ ], S(0)(t∗) < S(1)(t∗)

(4.1)

We propose a class of statistics –hereafter called L-class– as a weighted linear
combination of the difference of proportions statistic for the binary outcome and
the integrated weighted difference of two survival functions for the time-to-event
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outcome, as follows,

Uω
n(τ0, τb, τ ; Q̂) = ωb ·

Ub,n (τb)

σ̂b
+ ωs ·

Us,n(τ0, τ ; Q̂)

σ̂s
(4.2)

for some real numbers ωb, ωs ∈ (0, 1), such that ωb + ωs = 1, and where:

Ub,n (τb) =

√
n(0)n(1)

n

(
p̂(1) (τb)− p̂(0) (τb)

)
(4.3)

Us,n(τ0, τ ; Q̂) =

√
n(0)n(1)

n

(∫ τ

τ0

Q̂(t) ·
(
Ŝ(1)(t)− Ŝ(0)(t)

)
dt

)
(4.4)

denoting by p̂(i)(τb) the estimated proportion of events εb before τb, and by Ŝ(i)(·)
the Kaplan-Meier estimator of S(i)(·) for group i. The estimates σ̂2

b and σ̂2
s are

such that converge in probability to σ2
b and σ2

s , respectively, as n → +∞, where
σ2
b and σ2

s represent the asymptotic variances of Ub,n (τb) and Us,n(τ0, τ ; Q̂), respec-
tively. Both theoretical and estimated expressions for the variances of Ub,n (τb) and

Us,n(τ0, τ ; Q̂) will be given in Section 4.3 (see equations (4.5, 4.6) for the theoretical

expressions and (4.10, 4.11) for the estimates). The term Q̂(·) is a possibly random
function which converges pointwise in probability to a deterministic function Q(·).
For ease of notation, and letting ω = (ωb, ωs), we will suppress the dependence on
τ0, τb, τ and use instead Uω

n(Q̂), Ub,n, Us,n(Q̂). Note that p̂(i)(τb), Ŝ
(i)(·), σ̂b and σ̂s

depend on the sample size n(i), but it has been omitted in notation for short.
The weights ω control the relative relevance of each outcome -if any- and the

random weight function Q̂(·) serves two purposes: to specify the type of survival
differences that may exist between groups and to stabilize the variance of the
difference of the two Kaplan-Meier functions. Some well-known special cases of
Q̂(·) are:

(i) Q̂(t) = Ĝ(t−), where Ĝ(t−) is the pooled Kaplan-Meier estimator for the
censoring distribution. This choice of Q̂(t) down-weights the contributions
on those times where the censoring is heavy.

(ii) Q̂(t) = Ŝ(t−)ρ · (1 − Ŝ(t−))γ, where ρ, γ ≥ 0 and Ŝ(t−) is the pooled
Kaplan-Meier estimator for the survival function. This Q̂(t) corresponds to
the weights of the Fleming-Harrington Gp,q family (Fleming and Harring-
ton, 1991). Then, for instance, if ρ = 1 and γ = 0, Q̂(t) emphasizes early
differences between survival functions; whereas late differences could be high-
lighted with ρ = 0 and γ = 1.
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(iii) Q̂(t) = Ȳ (t−), where Ȳ (t−) denotes the number of individuals at risk of εs
at time t. In this case Q̂(t) accentuates the information at the beginning of
the survival curve allowing early failures to receive more weight than later
failures.

We state the precise conditions for the weight function Q̂(·) in Section 4.3 and
postpone the discussion about the choice of Q̂(·) and ω = (ωb, ωs) to Section 4.4.

The statistics in the L-class are defined for possible different follow-up configu-
rations based on different choices of: the overall follow-up period, τ ; the time where
the binary event is evaluated, τb; and the origin time for the survival outcome, τ0;
taking into account that 0 < max{τ0, τb} < τ . There are however no restrictions
on whether or not these periods overlap and, if they do, how much and when. We
illustrate two different situations with different configurations for τ0, τb, τ in Figure
4.1. The first case is exemplified by an HIV therapeutic vaccination study where
safety-tolerability response (binary outcome) and time-to-viral rebound (survival
outcome) are outcomes of interest. Whereas the safety-tolerability is evaluated
at week 6 (τb = 6), the time-to-viral rebound is evaluated from week 6 to 18
(τ0 = 6 and τ = 18) (De Jong et al., 2019). The second example in the area of im-
munotherapy trials includes a binary outcome (objective response), evaluated at
month 6, and overall survival, evaluated from randomization until year 4 (τ0 = 0,
τb = 0.5 and τ = 4) (Hodi et al., 2010).

The L-class statistics includes several statistical tests. If τ0 = 0, τb = τ and
ωb = ωs, then, Uω

n(Q̂) corresponds to the global test statistic proposed by Pocock
et al. (1987). If εb = εs, τ0 = τb, and ωb = ωs, the statistic Uω

n(Q̂) is the equivalent
of the linear combination test of Logan et al. (2008) when there is no censorship
until τb for testing for differences in survival curves after a pre-specified time-point.

4.3 Large sample results

In this section, we derive the asymptotic distribution of the L-class of statistics
given in (4.2) under the null hypothesis and under contiguous alternatives, present
an estimator of their asymptotic variance, and discuss the consistency of the L-
statistics against any alternative hypothesis of the form of H1 in (4.1). We start
the section with the conditions we require for the L-class of statistics. In order to
make the work more concise and more readable, proofs and technical details are
in Appendix C.
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Time

Example 1. HIV therapeutic vaccination:
• Safety response (Binary outcome)
• Time to viral rebound (Time-to-event outcome)

Time

τb

End of the study τ

τ  

τ0 = 0

τ0 = τb

Example 2. Immunotherapy trials:
• Objective response (Binary outcome)
• Overall survival (Time-to-event outcome)

0

Fig. 4.1 Illustration of two different follow-up configurations, the red and blue arrows
represent the time-frame for binary and time-to-event outcomes, respectively. The red
line goes from the start of the study (at time-point 0) until the binary outcome is eval-
uated at time τb. The blue (dashed) line goes from when the time-to-event information
begins to be collected (τ0) to the end of the study (τ).

4.3.1 Further notation and Assumptions

We consider two independent random samples of n(i) (i = 0, 1) individuals and
for each we denote the binary response by Xij = I{εb has occurred}, the time
to εs by Tij and the censoring time by Cij for j = 1, ..., n(i) and where I{·}
is the usual 0/1 indicator function. Assume that Tij is non-informatively right-
censored by Cij, that Xij is independent of Cij, and that the occurrence of the
survival and censoring times, Tij and Cij, does not prevent to assess the binary
response, Xij. The observable data are summarized by {Xij, Tij ∧Cij, δij}, where
δij = I{Tij ∧ Cij = Tij} and a ∧ b = min(a, b).

Denote by G(i)(·) and Ĝ(i)(·) the censoring survival function and the Kaplan-
Meier estimator for the censoring times, respectively. As we will see in the next
section, the distribution of the L-statistics relies, among others, on the survival
function for those individuals who respond (Xij = 1) to the binary endpoint,

We then introduce here the survival function for responders as S
(i)
X (t) = P(Tij >

t|Xij = 1) (t > τb).

Furthermore we assume that: (i) at the end of follow-up, S(i)(τ) > 0, S
(i)
X (τ) > 0

and G(i)(τ) > 0; (ii) the limiting fraction of the total sample size is non-negligible,
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i.e., lim
n→+∞

n(i)/n = π(i) ∈ (0, 1); and (iii) Q(·) is a nonnegative piecewise con-

tinuous with finitely discontinuity points. For all the continuity points in [0, τ ],
Q̂(t) converges in probability to Q(t) as n → +∞. Moreover, Q̂(·) and Q(·) are
functions of total variation bounded in probability.

Finally, we introduce the counting process N̄ (i)(t) =
∑n(i)

j=1Nij(t) =
∑n(i)

j=1 I{Tij∧
Cij ≤ t, δij = 1} as the number of observed events that have occurred by time t

for the i-th group (i = 0, 1) and Ȳ (i)(t) =
∑n(i)

j=1 Yij(t) =
∑n(i)

j=1 I{Tij ∧ Cij ≥ t}
as the number of subjects at risk at time t for the i-th group. We define y(i)(s) =
E (Yij(s)) and suppose that y(i)(τ) > 0.

4.3.2 Asymptotic distribution

In order to derive the asymptotic distribution of the statistic Uω
n(Q̂), we use

that Uω
n(Q̂) can be approximated by Uω

n(Q), the same statistic with the weights
replaced by its deterministic function (see Lemma 1 in Appendix C). Roughly
speaking, thanks to this approximation we can ignore the randomness of Q̂(·) and
use Uω

n(Q) to obtain the limiting distribution of Uω
n(Q̂). In what follows, we state

the asymptotic distributions under the null hypothesis in Theorem 4.1 and under
a sequence of contiguous alternatives in Theorem 4.2.

Theorem 4.1. Let Uω
n(Q̂) be the statistic defined in (4.2). Under the conditions

outlined in 4.3.1, if the null hypothesis H0 : Hs,0 ∩Hb,0 holds, Uω
n(Q̂) converges in

distribution, as n→ +∞, to a normal distribution as follows:

Uω
n(Q̂)→ N

(
0, ω2

b + ω2
s + 2ωbωs ·

σbs
σb · σs

)
where σ2

b , σ2
s stand for the asymptotic variances of Ub,n and Us,n(Q), respectively,

and σbs is the covariance between Ub,n and Us,n(Q). Their corresponding expres-
sions are given by:
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σ2
b =

∑
i=0,1

(
1− π(i)

)
p(i) (τb)

(
1− p(i) (τb)

)
(4.5)

σ2
s = −

∑
i=0,1

(
1− π(i)

) ∫ τ

τ0

(K
(i)
τ (t))2

(S(i)(t))2G(i)(t)
dS(i)(t) (4.6)

σbs =
∑
i=0,1

(
1− π(i)

)
·
(
I{τmax = τb} ·

∫ τb

τ0

K
(i)
τb (t)

S(i)(t)
·
(
p

(i)
N (t)− p(i) (τb)

)
dS(i)(t)

+

∫ τ

τmax

K
(i)
τ (t)

S(i)(t)
· p(i) (τb)

(
dS

(i)
X (t)− dS(i)(t)

))
(4.7)

where τmax = max(τ0, τb), K
(i)
τ∗ (t) =

∫ τ∗
t
Q(u)S(i)(u)du (τ∗ = τ or τb),

p
(i)
N (t) = P (Xij = 1|dNij(t) = 1), and S

(i)
X (t) = P (Tij > t|Xij = 1) for i = 0, 1.

Recall that σ2
b , σ

2
s , and σbs depend on τ0, τb, τ , but we omit them for notational

simplicity.

Theorem 4.2. Let Uω
n(Q̂) be the statistic defined in (4.2). Under the conditions

outlined in 4.3.1, consider the following sequences of contiguous alternatives for
both binary and time-to-event hypotheses satisfying, as n→ +∞:

√
n(p(1)

n − p(0))→ g

and √
n(S(1)

n (t)− S(0)(t))→ G(t)

for some constant g ∈ R+ and bounded function G(·) ∈ R+, and ∀t ∈ [τ0, τ ]. Then,
under contiguous alternatives of the form:

H1,n :
√
n(p(1)

n − p(0)) = g and
√
n(S(1)

n (t)− S(0)(t)) = G(t), ∀t ∈ [τ0, τ ](4.8)

we have that:

Uω
n(Q̂)→ N

(
ωbg + ωs

∫ τ

τ0

Q(t)G(t)dt, ω2
b + ω2

s + 2ωbωs
σbs

σb · σs

)
in distribution as n → +∞, where σ2

b , σ2
s and σbs are given in (4.5), (4.6) and

(4.7), respectively.

The covariance in (4.7) involves the conditional probabilities S
(i)
X (t) and p

(i)
N (t),

while S
(i)
X (t) represents the survival function for responders –individuals that have
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had the binary event εb–, p
(i)
N (t) stands for the probability of being a responder

among individuals experiencing εs at t. Also note that, if τb < τ0, the survival
experience starts after the binary event has been evaluated and only involves the
second integral in (4.7).

We notice that the efficiency of the L-statistics, Uω
n(Q̂), under contiguous al-

ternatives is driven by the non-centrality parameter µc = ωbg + ωs
∫ τ
τ0
Q(t)G(t)dt,

that is, by the sum of the weighted non-centrality parameters of Ub,n and Us,n(Q̂).

4.3.3 Variance estimation and consistency

We now describe how to use the L-statistics to test H0 versus H1 given in (4.1).
In particular, we propose a consistent estimator of the asymptotic variance of
Uω
n(Q̂), and present the standardized L-statistics to test H0 : Hs,0 ∩ Hb,0.

The asymptotic variance of Uω
n(Q̂), given in Theorem 4.1, can be consistently

estimated by:

V̂ar(Uω
n(Q̂)) = ω2

b + ω2
s + 2ωbωs

σ̂bs
σ̂b · σ̂s

(4.9)

where σ̂b, σ̂s, and σ̂bs denote the estimates of σb, σs and σbs, and are given by:

σ̂2
b = p̂ (τb) (1− p̂ (τb)) (4.10)

σ̂2
s = −

∫ τ

τ0

(K̂τ (t))
2

Ŝ(t)Ŝ(t−)
· n

(0)Ĝ(0)(t−) + n(1)Ĝ(1)(t−)

Ĝ(0)(t−)Ĝ(1)(t−)
dŜ(t) (4.11)

σ̂bs = −
∫ τb

τ0

K̂τb(t)

(∑
i=0,1

n− n(i)

n
· λ̂(i)

X,T (t)dt+
p̂ (τb) · dŜ(t)

Ŝ(t)

)

+

∫ τ

τb

K̂τ (t) · p̂ (τb)

Ŝ(t−)

(
− Ŝ(t−) · dŜ(t)

Ŝ(t)
+
∑
i=0,1

n− n(i)

n
· Ŝ

(i)
X (t−) · dŜ(i)

X (t)

Ŝ
(i)
X (t)

)
(4.12)

where K̂τ∗(t) =
∫ τ∗
t
Q̂(u)Ŝ(u)du (τ∗ = τ or τb), Ŝ(t) is the pooled Kaplan-Meier

estimator of the survival functions, p̂ (τb) is the pooled estimator of the probabil-

ities p(i) (τb), Ŝ
(i)
X (t) is the Kaplan-Meier estimator of S

(i)
X (t), and λ̂

(i)
X,T (t) is the

estimator of λ
(i)
X,T (t) = limdt→0 P (Xij = 1, t ≤ Tij < t+ dt|Tij > t)/dt.

The variance estimator presented in (4.9) is obtained assuming that the vari-
ances of the two groups are equal (pooled estimator). An unpooled variance es-
timator is proposed in Appendix C. For both pooled and unpooled estimators,
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smoothing techniques are used to estimate λ
(i)
X,T (t) over the time period [τ0, τb].

In this work, we have chosen kernel smoothing methods. Note that resampling
methods can also be used to get an estimator of the variance of Uω

n(Q̂). In the
simulation section, we will discuss the results using the pooled, unpooled and
bootstrap variance estimators.

In order to test the global null hypothesis H0 : Hs,0 ∩ Hb,0 in (4.1), we consider

the normalized statistic of Uω
n(Q̂):

Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂)) (4.13)

Because this statistic (C.4) converges in distribution to a standard normal distri-

bution, it can be used to test H0 : Hs,0∩Hb,0 by comparing Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂))

to a standard normal distribution. Moreover, for positive Q(·), the statistic is
consistent against any alternative hypothesis of the form of H1 in (4.1).

4.4 On the choice of weights

An important consideration when applying the statistics proposed in this work is
the choice of the weight functions. The L-class of statistics involves the already
mentioned random weight function Q̂(t) and deterministic weights ω = (ωb, ωs).
These weights are defined according to different purposes and have different roles
into the statistic Uω

n(Q). In this section, we include different weights and discuss
some of their strengths as well as shortcomings. The list provided is not exhaustive,
other weights are possible and might be useful in specific circumstances.

4.4.1 Choice of ω = (ωb, ωs)

The purpose of the weights ω is to prioritize the binary and the time-to-event out-
comes. They have to be specified in advance according to the research questions.
Whenever the two outcomes are equally relevant, we should choose ωb = ωs = 0.5.
In this case the statistics will be optimal whenever the standardized effects on both
outcomes coincide.
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4.4.2 Choice of Q̂(·)

The choice of Q̂(·) might be very general as long as Q̂(·) converges in probability
to a function Q(·), and both Q̂(·) and Q(·) satisfy the conditions outlined in 4.3.1.
In this section, we center our attention on a family of Q̂(·) weights of the form:

Q̂(t) = f̂(t) · v̂(t),

where: (i) f̂(·) is a data-dependent function that converges, in probability to f(·),
a nonnegative piecewise continuous function with bounded variation on [0, 1]. The
term f̂(t) takes care of the expected differences between survival functions and can
be used as well to emphasize some parts of the follow-up according to the time-
points (τ0, τb, τs); (ii) the weights v̂(·) converge in probability to a deterministic
positive bounded weight function v(·). The main purpose of the weight v̂(t) is
to ensure the stability of the variance of the difference of the two Kaplan-Meier
functions. To do so, we make the additional assumption that:

|v(t)| ≤ Γ ·G(i)(t)1/2+δ and |v̂(t)| ≤ Γ · Ĝ(i)(t)1/2+δ

for all t ∈ [τ0, τ ], i = 0, 1 and for some constants Γ, δ > 0.
Different choices of f̂(t) yield other known statistics. For instance, if f(·) = 1,

Us,n(Q̂) corresponds to the Weighted Kaplan-Meier statistics (Pepe and Flem-

ing, 1989, 1991). Whenever f̂ and v̂ correspond to the weights (4.15) and (4.14),
respectively, introduced below, we have the statistic proposed by Shen and Cai
(2001). Furthermore, note that the weight functions of the form Q̂(t) = f̂(t) · v̂(t)
are similar to those proposed by Shen and Cai (2001); while they assume that f̂
is a bounded continuous function, we assume that f̂(·) is a nonnegative piecewise
continuous function with bounded variation on [0, 1], and instead of only consid-
ering the Pepe and Fleming weight function corresponding to (4.15), we also allow
for different weight functions v̂(t). Finally, if we do not consider any weight, that
is, if Q̂(t) = 1, ∀t, Us,n(Q̂) corresponds to the difference of restricted mean survival
times from τ0 to τ .

In what follows, we outline different choices of v̂(t) and f̂(t), together with a
brief discussion for each one:

� We require v̂(t) to be small towards the end of the observation period if censor-
ing is heavy. The usual weight functions v̂(t) involve Kaplan-Meier estimators
of the censoring survival functions. The most common weight functions are:

v̂c(t) =
nĜ(0)(t−)Ĝ(1)(t−)

n(0)Ĝ(0)(t−) + n(1)Ĝ(1)(t−)
(4.14)
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and v̂√(t) =
√
v̂c(t), both proposed by Pepe and Fleming. Among other prop-

erties, v̂c(·) has been proved to be a competitor to the logrank test for the
proportional hazards alternative (Pepe and Fleming, 1989). Note that if the
censoring survival functions are equal for both groups and the sampling design
is balanced (n(0) = n(1)), then, the differences in Kaplan-Meier estimators are
weighted by the censoring survival function, that is, w(t) = C(t) = C(i)(t) for
i = 0, 1. Also note that w(t) = 1 for uncensored data.

� Analogously to Fleming and Harrington(Fleming and Harrington, 1991) statis-
tics, f̂(t) could be used to specify the type of expected differences between
survival functions. That is, if we set:

f(Ŝ(t−)) = Ŝ(t−)ρ(1− Ŝ(t−))γ, ρ, γ ≥ 0 (4.15)

the choice ρ > 0, γ = 0 leads to a test to detect early differences, while ρ = 0,
γ > 0 leads to a test to detect late differences; and ρ = γ = 0 leads to a
test evenly distributed over time and corresponds to the weight function of the
logrank.

� In order to put more emphasis on those times after the binary follow-up period
we might consider:

f(t) =

{
a, t < τb

1− a, t ≥ τb

for a < 0.5.

4.5 Implementation

We have developed the SurvBin package to facilitate the use of the L-statistics
and is now available on GitHub (https://github.com/MartaBofillRoig/SurvBin).
The SurvBin package contains two key functions: lstats to compute the stan-

dardized L-statistic, Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂)), using the variance estimator given in
Section 4.3; and lstats boots to compute the standardized L-statistic by using
a bootstrap procedure to estimate the variance.

The SurvBin package also provides the functions survbinCov to calculate σ̂bs;
and bintest and survtest to compute the univariate binary and survival statis-
tics (4.3) and (4.4), Ub,n (τb)

/
σ̂b and Us,n(τ0, τ ; Q̂)

/
σ̂s, respectively. In addition, the

SurvBin package includes the function simsurvbin that can be used to simulate
bivariate binary and survival data in a variety of situations.

https://github.com/MartaBofillRoig/SurvBin
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The main function lstats can be called by:

lstats(time , status , binary , treat ,
tau0 , tau , taub , rho , gam , eta , wb , ws , var_est)

where time, status, binary and treat are vectors of the right-censored data,
the status indicator, the binary data and the treatment group indicator, re-
spectively; tau0, tau, taub denote the follow-up configuration; wb, ws are the
weights ω; rho, gam, eta are scalar parameters that controls the weight Q̂(t)
which is given by Q̂(t) = Ĝ(t−)η · Ŝ(t−)ρ · (1 − Ŝ(t−))γ; and var est indicates
the variance estimate to use (pooled or unpooled).

In this work, we estimate λ
(i)
X,T (t) by means of the Epanechnikov kernel func-

tion, and the local bandwidth selection and the boundary correction described
by Muller and Wang (1994) by using the muhaz package (Hess and Gentleman,
2019).

4.6 Example

Melanoma has been considered a good target for immunotherapy and its treat-
ment has been a key goal in recent years. Here we consider a randomized, double-
blind, phase III trial whose primary objective was to determine the safety and
efficacy of the combination of a melanoma immunotherapy (gp100) together with
an antibody vaccine (ipilimumab) in patients with previously treated metastatic
melanoma (Hodi et al., 2010). Despite the original endpoint was objective response
rate at week 12, it was amended to overall survival and then considered secondary
endpoint. A total of 676 patients were randomly assigned to receive ipilimumab
plus gp100, ipilimumab alone, or gp100 alone. The study was designed to have at
least 90% power to detect a difference in overall survival between the ipilimumab-
plus-gp100 and gp100-alone groups at a two-sided α level of 0.05, using a log-rank
test. Cox proportional-hazards models were used to estimate hazard ratios and
to test their significance. The results showed that ipilimumab with gp100 im-
proved overall survival as compared with gp100 alone in patients with metastatic
melanoma. However, the treatment had a delayed effect and an overlap between
the Kaplan-Meier curves was observed during the first six months. Hence, the
proportional hazards assumption appeared to be no longer valid, and a different
approach would have been advisable.

In order to illustrate our proposal, we consider the comparison between the
ipilimumab-plus-gp100 and gp100-alone groups based on the overall survival and
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objective response as multiple primary endpoints of the study. For this purpose,
we have reconstructed individual observed times by scanning the overall sur-
vival Kaplan-Meier curves reported in Figure 1A of (Hodi et al., 2010) using the
reconstructKM package (Sun, 2020) (see Figure 4.2), and, afterwards, we have
simulated the binary response to mimic the percentage of responses obtained in
the study.

Fig. 4.2 Kaplan-Meier Curves for Overall Survival for ipilimumab-plus-gp100 and
gp100-alone groups (arms 1 and 0, respectively).

Using the data obtained, we employ the L-statistic by means of the function
lstats in the SurvBin package. To do so, we need to specify the weights (Q̂, ω) to
be used, and the time-points (τ0, τb, τ). In our particular case, we take τ0 = 0, τb =
0.5, τ = 4 according to the trial design, choose Q̂(t) = Ĝ(t−) · (1 − Ŝ(t−)) to
account for censoring and delayed effects in late times, and (ωb, ωs) = (0.25, 0.75)
to emphasize the importance of overall survival over objective response.
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As shown below, the function lstats returns the standardized L-statistic, to-
gether with the L-statistic and its standard deviation, and the individual statistics.

lstats(time=data$time , status=data$status , binary=data$
binary , treat=data$treat ,

tau0=0, tau=4, taub =0.5, rho=0, gam=1, eta=1,
wb=0.25, ws=0.75, var_est = "Pooled")

##
## $LTest
## Parameter Value
## 1 (Standardized) L-Test 4.0950273
## 2 L-Test 3.2362929
## 3 Standard deviation 0.7902982
##
## $Binary_Tests
## Parameter Value
## Test Standardized L-Test 1.8678088
## Ub Binary Test 0.4540763
## sd Standard deviation 0.2431064
##
## $Survival_Tests
## Parameter Value
## Test Standardized Test 3.6924543
## Us Survival Test 2.4398019
## sd Standard deviation 0.6607534
##
## $Covariance
## Parameter Value
## 1 Covariance -0.0001836297

The value of the L-statistic, Uω
n(Q̂) in (4.2), is 3.24 and is obtained by using the

values of Ub,n (τb) and Us,n(τ0, τ ; Q̂) (0.45 and 2.44, respectively), and σ̂b and σ̂s

(0.24 and 0.66). The statistic Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂)) equals 4.10 and is computed

by using the variance estimator in (4.9) and then by means of σ̂b and σ̂bs together
with the estimated covariance σ̂bs (−0.0002).

Since we obtained Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂)) = 4.10 > zα=0.05, we have a basis to
reject H0 and conclude that the ipilimumab either improved overall survival or in-
creased the percentages of tumor reduction in patients with metastatic melanoma,
or both. Note that, in this example, we have been using the pooled variance esti-
mator for the L-statistic. We have also calculated the statistic using the unpooled
and bootstrap variance estimators (see Appendix C) and notice that the results
were not substantially different.
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4.7 Simulation study

4.7.1 Design

We conducted a simulation study to evaluate our proposal in terms of the statis-
tical power and the type-I error with small sample sizes. We generated bivariate
binary and time-to-event data through a copula-based framework and used con-
ditional sampling as described in Trivedi and Zimmer (2007).

The parameters used for the simulation (summarized in Table 4.1) have been
the following:

� Frank’s copula with association parameter between the marginal distributions
of the binary and time-to-event outcomes equal to θ = 0.001, 2, 3. These values
correspond, respectively, to Spearman’s rank correlation values equal to 0.0002,
0.32, 0.45 which represent increasing associations between the binary and time-
to-event outcomes. We have not considered higher values of θ as they do not
fulfill the condition that S

(i)
X (τ) > 0 (i = 0, 1).

� Weibull survival functions, S
(0)
b,a (t) = e−(t/b)a , with a = 0.5, 1, 2 and b = 1.

� Probability of having the binary endpoint p(0) = 0.1, 0.3; and
� Sample size per arm n(i) = 250.
� The censoring distributions between groups were assumed equal and uniform
U(0, c) with c = 3.

� Two different follow-up configurations were considered for τ0 < τb ≤ τ : (i)
τ0 = 0, τb = 0.5, τ = 1; and (ii) τ0 = 0, τb = τ = 1.

� We have considered the weights: Q̂(t) = Ĝ(t−)η · Ŝ(t−)ρ · (1 − Ŝ(t−))γ with
η = 1 and ρ, γ = 0, 1. When simulating under the null hypothesis, we considered
(ωb, ωs) equal to (0.5, 0.5); whereas when simulating under the alternative hy-
potheses, we considered (ωb, ωs) equal to (0.25, 0.75), (0.5, 0.5), and (0.75, 0.25).

The simulations under the alternative hypothesis considered four different sit-
uations depending on whether there is treatment effect on both endpoints and
the type of difference between the survival curves. Specifically, the following cases
were considered:

(1) Effect on both binary and survival endpoints. The effect on the survival end-
point satisfies the proportional hazards assumption, that is, the hazard ratio
(HR) between treatment groups is constant over the study duration;

(2) Effect on the binary endpoint and non-effect on the survival endpoint (Hs,0 :
S(0)(t) = S(1)(t), ∀t);
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(3) Non-effect on the binary endpoint (Hb,0 : p(0)(τb) = p(1)(τb)) and effect on the
survival endpoint with HR constant over the study duration;

(4) Effect on both binary and survival endpoints. The treatment differences on
the survival endpoint have a delayed effect, that is, the survival functions are
assumed to be equal until time t∗, and there is a constant hazard ratio (HR)
between treatment groups from t∗ to τ .

We used d = p(1)(τb) − p(0)(τb) = 0.075 to simulate the effects on the binary
endpoint. For the survival endpoint, we considered HR= 0.75 under proportional
hazards, and HR= 0.70 and t∗ = 0.5 under delayed effects.

We evaluated the empirical significance level and the statistical power using the
L-statistics with pooled, unpooled and bootstrap variance estimators, and for the
sake of the comparison, using the Bonferroni procedure. In addition, we presented
the empirical results for testing the individual hypothesis Hb,0 and Hs,0 by using
the statistics (4.3) and (4.4).

The total number of scenarios was 1456 (144 under the null hypothesis and
1312 under the alternative hypothesis). We ran 1000 replicates and estimated the
significance level (α = 0.05) for each scenario under the null hypothesis. We ran
100 replicates and estimated the statistical power for each scenario under alter-
native hypotheses. We performed all computations using the R software (version
4.0.2). The time required to perform the considered simulations was 89 hours.

Table 4.1 Scenarios used in the simulation study.

Parameter Value Parameter Value

p(0) 0.1, 0.3 a 0.5, 1, 2
b 1 c 3

θ 0.001, 2, 3 n(i) (i = 0, 1) 250
τb 0.5, 1 τ 1
ρ, γ 0, 1 η 1
d 0, 0.075 HR 0.75, 1
(ωb, ωs) (0.25, 0.75),(0.5, 0.5),(0.75, 0.25) t∗ 0, 0.5
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4.7.2 Power properties

When there is treatment effect on both endpoints and the proportional hazards
assumption is fulfilled (case 1), we obtained empirical powers with medians 0.84,
0.84, 0.83 using the L-statistics with pooled, unpooled and bootstrap variance
estimators, respectively; whereas the median of the empirical powers using Bon-
ferroni was 0.78. When there is treatment effect on both endpoints and there are
delayed effects (case 4), the empirical powers for the L-statistics have medians
0.79, 0.79, 0.77 using the pooled, unpooled and bootstrap variance estimators,
respectively; whereas the median of the empirical powers using Bonferroni was
0.67.

Table 4.2 summarizes the simulation results on the power across different pa-
rameters in case 1. We compared the performance of the different variance esti-
mators and noticed that the empirical powers do not substantially differ between
them. We also observed that the power is not affected by the different weight
functions in the case of proportional hazards. We obtained higher powers when
emphasizing late-differences between the survival curves (γ = 1) in the case of
delayed effects (median powers of 0.84, 0.83, 0.78 for unpooled, pooled and boot-
strap variance estimators, respectively, with γ = 1 against 0.77, 0.74, 0.71 for
unpooled, pooled and bootstrap variance estimators with γ = 0).

Figure 4.3 shows boxplots for the empirical powers using the pooled, unpooled
and bootstrap variance estimators and using the Bonferroni procedure. These
simulations show the superiority of the L-statistics over the Bonferroni procedure,
in terms of power, both under proportional hazards and under delayed effects and
regardless of the choice of the weights (ωb, ωs).

When there is treatment effect only one of the endpoints (cases 2 and 3), the
behavior of the power mainly relies on the pre-specified weights (ωb, ωs) (see Figure
4.3). If the survival endpoint is considered clinically more important than the
binary endpoint and we use the weights (ωb = 0.25, ωs = 0.75), then the median
of the empirical powers is around 0.60 in case 2 (i.e., when there is treatment
effect on the survival endpoint) and around 0.16 in case 3 (i.e., when there is no
effect on the survival endpoint). We found a similar behavior when the binary
endpoint is considered more important and (ωb = 0.75, ωs = 0.25).

If both endpoints are equally important and there is treatment effect in only one
of them, the empirical powers using the L-statistics take values between the power
would have had using the two individual statistics. Given that the Bonferroni
procedure assigns more importance to the more highly significant of the endpoints
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(Pocock et al., 1987), the powers are in this case higher using Bonferroni than using
L-statistics.
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Fig. 4.3 Boxplot of empirical powers based on scenarios in Table 4.1. The empirical
powers are calculated using: the L-statistics (in (4.2)) according to the pooled, unpooled,
bootstrap variance estimators; the Bonferroni procedure; and the individual statistics
(4.3) and (4.4). The individual statistics for the binary and survival endpoints are labeled
respectively as BE and SE. The color indicates which combination of weights (ωb, ωs)
were used: red for (ωb = 0.25, ωs = 0.75); blue for (ωb = 0.5, ωs = 0.5); and green for
(ωb = 0.75, ωs = 0.25).
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We have also evaluated the empirical powers if we have had an endpoint with a
small effect instead of no effect. We observe that the difference in powers between
the L-statistics and Bonferroni procedure is smaller, and that the powers using
L-statistics could be even higher than the ones using Bonferroni (see Appendix
C).

Table 4.2 Median empirical size and median empirical power from 1000 and 100 repli-
cations, respectively. The empirical size and powers are calculated using: the L-statistics
(in (4.2)) according to the pooled, unpooled, bootstrap variance estimators (labeled as
Pooled, Unpooled, and Boots.); and the Bonferroni procedure (Bonf.). Under the null
hypothesis there is no effect on any of the endpoints (d = 0,HR= 1). Under the alterna-
tive hypothesis there is effect on both endpoints (Case 1: d = 0.075, HR= 0.75) and the
effect on the survival endpoint satisfies the proportional hazards assumptions (t∗ = 0).

Empirical Size Empirical Powers (Case 1)

Pooled Unpooled Boots. Bonf. Pooled Unpooled Boots. Bonf.

(τb, τ) (0.5, 1) 0.054 0.054 0.047 0.050 0.82 0.84 0.81 0.79
(1, 1) 0.057 0.057 0.048 0.049 0.83 0.83 0.81 0.78

θ 0.001 0.054 0.056 0.048 0.049 0.82 0.83 0.81 0.78
2 0.055 0.055 0.047 0.049 0.82 0.83 0.82 0.78
3 0.055 0.055 0.048 0.050 0.84 0.84 0.82 0.78

p(0) 0.1 0.055 0.056 0.048 0.051 0.88 0.89 0.87 0.84
0.3 0.054 0.056 0.047 0.049 0.78 0.78 0.77 0.72

a 0.5 0.055 0.055 0.050 0.049 0.85 0.85 0.85 0.81
1 0.055 0.056 0.048 0.049 0.83 0.84 0.83 0.79
2 0.054 0.055 0.046 0.050 0.81 0.81 0.79 0.77

(ρ, γ, η) (0,0,1) 0.055 0.054 0.048 0.049 0.84 0.84 0.82 0.79
(0,1,1) 0.054 0.055 0.048 0.052 0.85 0.85 0.84 0.79
(1,0,1) 0.054 0.055 0.045 0.050 0.83 0.81 0.81 0.76
(1,1,1) 0.055 0.056 0.048 0.048 0.84 0.84 0.83 0.78

4.7.3 Size properties

The empirical results show that the type I error is very close to the nominal
level α = 0.05 across a broad range of situations. The empirical size resulted in
type I errors with a median of 0.054, 0.055 and 0.048 using the unpooled, pooled
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and bootstrap variance estimators, respectively. Table 4.2 summarizes the results
according to the parameters of the simulation study. The results show that the
L-statistics have the appropriate size and that are not specially influenced by the
selection of weights (η, ρ, γ).

We observed that when using the unpooled and pooled estimators, the empiri-
cal size is slightly larger than 0.05, especially when τb = 1. This can be explained
mainly by the number of individuals at risk at the end of the follow-up. Having
a small number of individuals difficults the smooth estimation of the probabil-
ity p

(i)
N (t) in (4.7). Therefore, we recommend the use of the bootstrap variance

estimator for studies with small sample sizes with long follow-ups for both the
binary and survival endpoints and where the probability of observing the binary
endpoint is low.

4.8 Discussion

We have proposed a class of statistics for a two-sample comparison based on
two different outcomes: one dichotomous taking care, in most occasions, of short
term effects, and a second one addressed to detect long term differences in a
survival endpoint. Such statistics test the equality of proportions and the equality
of survival functions. The approach combines a score test for the difference in
proportions and a Weighted Kaplan-Meier test-based for the difference of survival
functions. The statistics are fully non-parametric and α level for testing the null
hypothesis of no effect on any of these two outcomes. The statistics in the L-
class are appealing in situations when both outcomes are relevant, regardless of
how the follow-up periods of each outcome are, and even when the hazards are
not proportional with respect to the time-to-event outcome or in the presence of
delayed treatment effects, albeit the survival curves are supposed not to cross.

We have incorporated weighted functions in the L-statistics in order to con-
trol the relative relevance of each outcome and to specify the type of survival
differences that may exist between groups. In our proposed statistics, the weights
(ωb, ωs) have been defined with the goal of incorporating the potential difference
in clinical importance between the binary and survival endpoint, and therefore
they must be fixed in the planning stage. As shown in the simulation study, the
power of the trial will depend on the trial objectives and then on the relevance
of each of the endpoints by means of (ωb, ωs). The extension of these statistics
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incorporating data-driven weights to maximize the power will be considered in
future works.

The testing procedure using the L-class of statistics satisfies a property called
coherence that says that the nonrejection of an intersection hypothesis implies
the nonrejection of any sub-hypothesis it implies, i.e., Hs,0 and Hb,0 (Romano and
Wolf, 2005). However, the testing procedure based on the L-class of statistics
does not fulfil the consonant property that states that the rejection of the global
null hypothesis implies the rejection of at least one of its sub-hypothesis. Bittman
et al. (2009) faced the problem of how to combine tests into a multiple testing
procedure for obtaining a procedure that satisfies the coherence and consonance
principles. An extension of this work to obtain a testing procedure that satisfies
both properties could be an important research line to consider.

This work has been restricted to those cases in which censoring does not prevent
to assess the binary endpoint response. We are currently working on a more general
censoring scheme where the binary endpoint could be censored. Last but not least,
extensions to sequential and adaptive procedures in which the binary outcome
could be tested at more than one time-point remain open for future research.





Chapter 5

Software

In this chapter we present the original software contributions that have been made
throughout this thesis. The contents of this chapter have been partly published
accompanying the corresponding methodologies in:

A new approach for sizing trials with composite binary endpoints using
anticipated marginal values and accounting for the correlation between

components.
Bofill Roig, M., and Gómez Melis, G.

Statistics in Medicine. Volume 38, Issue 11, 20 May 2019, Pages 1935–1956.
DOI: 10.1002/sim.8092.

Selection of composite binary endpoints in clinical trials.
Bofill Roig, M., and Gómez Melis, G.

Biometrical Journal. Volume 60, Issue 2, March 2018, Pages 246-261.
DOI: 10.1002/bimj.201600229.

A class of two-sample nonparametric statistics for binary and time-to-event
outcomes.

Bofill Roig, M., and Gómez Melis, G.
arXiv:2002.01369 [stat.ME]

Decision tool and Sample Size Calculator for Composite Endpoints.
Bofill Roig, M., Cortés Mart́ınez, J., and Gómez Melis, G.

arXiv:2001.03396 [stat.AP]

The chapter is twofold. First, in Section 5.1, we present CompARE, a web-based
tool for designing clinical trials with composite endpoints, and its corresponding
R package. Second, in Section 5.2, we present the SurvBin package in which we
have implemented the L-statistics presented in Chapter 4.
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https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8092
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201600229
https://arxiv.org/abs/2002.01369
https://arxiv.org/abs/2001.03396
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5.1 CompARE

We present CompARE, a comprehensive and freely available web-tool intended to
provide guidance on how to deal with composite endpoints in the planning stage
of a randomized controlled trial.

CompARE was initially created aiming to offer an easy implementation of the
Asymptotic Relative Efficiency (ARE) method for time-to-event endpoints accord-
ing to the seminal paper by Gómez and Lagakos (2013). From then on, CompARE
has been continuously updated and broadened: first by adding the CompARE
version for binary endpoints; later incorporating further capabilities, such as the
sample size calculation. Nowadays, CompARE can be useful for different purposes
as shown in Figure 5.1. In particular, it can be used to:

1. Choose the best primary endpoint to lead the trial. CompARE computes the
Asymptotic Relative Efficiency method (Gómez and Lagakos, 2013; Bofill and
Gómez, 2018; Bofill et al., 2020), which quantifies differences in the efficiency
of using –as the primary endpoint– a composite endpoint over one of its com-
ponents.

2. Specify the treatment effect for the composite endpoint based on the marginal
information of the composite components and to study the performance of
the composite parameters according to these. In a survival trial, it can also
evaluate the proportional hazards assumption for the composite endpoint.

3. Determine the sample size for different situations, such as when the associa-
tion between composite components is unknown or when the hazards are not
proportional.

4. Calculate and interpret the different association measures among the compos-
ite components.

CompARE was originally build using the software Tightly Integrated Knowl-
edge Infrastructure (Tiki Wiki CMS/groupware, 2020), but was subsequently
moved to R Shiny. More recently, we have launched the R package CompARE which
includes the R functions upon which the web-tool CompARE is built.

In this section, we first describe the R functions in the CompARE package. Second,
we detail the basic features of the web-tool CompARE and describe how to use it
and get the results. From now on, we focus on the CompARE for binary endpoints
whose contents belong to this thesis. In particular, we show how the methodologies
presented in Chapters 2 and 3 can be easily computed through CompARE.
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Fig. 5.1 Scheme with the inputs to be provided by the researcher and the outputs re-
turned by the application. Link to the CompARE homepage: http://cinna.upc.edu/
compare/. Open-source code is available at: https://github.com/MartaBofillRoig/
CompARE.

5.1.1 CompARE R Package

In this section, we describe the R package upon which the web-tool CompARE
has been built. The package is available on GitHub at:

https://github.com/CompARE-Composite/CompARE-package.

The CompARE package contains six functions: prob cbe, lower corr, upper corr,
effect cbe, sample size cbe, and ARE cbe. Table 5.1 gives an overview of these
functions and relates them to the contents of this thesis and to the capabilities of
the CompARE web-tool.

For the remainder of this section, we characterize each function and briefly
explain the method implemented within it. As it will be shown, most functions
in the CompARE package take common arguments. We summarize these arguments
and their descriptions in Table 5.2.

Probability of the composite endpoint

This function calculates the probability of the composite of two events ε1 and ε2.
This probability is calculated by means of the probabilities of each event and the
correlation between them (Bahadur, 1961; Sozu et al., 2010; Bofill and Gómez,
2018) (see Section 3.3).

http://cinna.upc.edu/compare/
http://cinna.upc.edu/compare/
https://github.com/MartaBofillRoig/CompARE
https://github.com/MartaBofillRoig/CompARE
https://github.com/CompARE-Composite/CompARE-package
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Table 5.1 R functions included in CompARE package along with the corresponding
description and the CompARE web-tool’s tab where the function is used.

Function Description CompARE web-tool

prob cbe Computes the probability Summary
of the composite of two events.

lower corr Computes the lower limit
Association Measures

for Pearson’s correlation.

upper corr Computes the upper limit
Association Measures

for Pearson’s correlation.

effect cbe Computes the treatment effect Effect size
for composite binary endpoint

(Bofill and Gómez, 2019)

samplesize cbe Computes the sample size Sample size
for composite binary endpoint

(Bofill and Gómez, 2019).

ARE cbe Computes the ARE method Endpoint selection
for composite binary endpoint

(Bofill and Gómez, 2018).

Table 5.2 Arguments of the functions included in CompARE package and their cor-
responding description. Denoting by ε1 and ε2 two binary endpoints and by ε∗ the
composite endpoint defined as ε∗ = ε1 ∪ ε2.

Argument Description

p0 e1 Probability of occurrence ε1 in the control group (Numeric parameter)
p0 e2 Probability of occurrence ε2 in the control group (Numeric parameter)
eff e1 Anticipated effect for ε1 (Numeric parameter)
effm e1 Effect measure used for ε1 (Character)
eff e2 Anticipated effect for ε2 (Numeric parameter)
effm e2 Effect measure used for ε2 (Character)
effm ce Effect measure used for the composite endpoint (Character)
rho Pearson’s correlation between ε1 and ε2 (Numeric parameter)

alpha Type I error (Numeric parameter)
beta Type II error (Numeric parameter)

unpooled Variance estimate used for the treatment effect (Logical argument)
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The function prob cbe can used by means of:

prob_cbe(p_e1 ,p_e2 , rho)

where p e1 and p e2 denote the probabilities of ε1 and ε2, respectively; and rho

is the correlation between ε1 and ε2.

Correlation Bounds

Pearson’s correlation between two binary outcomes takes values between two
bounds defined according to the probabilities of the binary outcomes. The func-
tions lower corr and upper corr calculate the lower and upper bounds of Pear-
son’s correlation based on the probabilities of two binary outcomes (Bahadur,
1961; Bofill and Gómez, 2018) (see Section 3.3).

These functions can be called by:

lower_corr(p_e1 ,p_e2)

and

upper_corr(p_e1 ,p_e2 , rho)

where p e1 and p e2 denote the probabilities of two binary endpoints.

Effect size for composite endpoints

We have implemented the calculation of the effect size for composite endpoints
in the function effect cbe. The composite endpoint is assumed to be the com-
bination of two events (ε1 and ε2). We compute the effect size on the basis of
anticipated information of the composite components and the correlation between
them as it is explained in Chapter 2 (see Sections 2.2 and 2.6).

The function effect cbe can be called by:

effect_cbe(p0_e1 , p0_e2 ,
eff_e1 , effm_e1 , eff_e2 , effm_e2 ,
effm_ce ="diff", rho)

where p0 e1 and p0 e2 denote the probabilities of ε1 and ε2 in the control group,
respectively; eff e1 and eff e2 are the anticipated effects for the events ε1 and
ε2, respectively; rho is Pearson’s correlation between ε1 and ε2.

The effects for ε1 and ε2 can be anticipated in eff e1 and eff e2 by means of
the difference of proportions, risk ratio, and odds ratio. The arguments effm e1

and effm e2 can be used for specifying the effect measure preferred. We will
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use effm e1 = “diff” for difference of proportions, effm e1 = “rr” for risk ratio,
effm e1 = “or” for odds ratio (similarly for effm e2). Also, using the argument
effm ce, we specify the effect measure we are interested in for the composite
endpoint.

Sample size for composite endpoints

We have implemented the sample size calculation for composite binary endpoints
in the function samplesize cbe. The primary endpoint is assumed to be a com-
posite binary endpoint formed by combining two events (ε1 and ε2). The sample
size is computed for evaluating differences between two groups in terms of the
risk difference, risk ratio or odds ratio. We calculate the sample size based on an-
ticipated information of the composite components and the correlation between
them as it is explained in Chapter 2 (see Sections 2.4 and 2.6).

The function samplesize cbe can be called by:

samplesize_cbe(p0_e1, p0_e2,
eff_e1 , effm_e1 , eff_e2 , effm_e2 ,
effm_ce ="diff",
rho , alpha = 0.05, beta = 0.2,
unpooled = TRUE)

where p0 e1 and p0 e2 denote the probabilities of ε1 and ε2 in the control group,
respectively; eff e1 and eff e2 are the anticipated effects for ε1 and ε2, respec-
tively; rho is Pearson’s correlation between ε1 and ε2; alpha and beta are the
type I and type II errors, respectively; and unpooled denotes the variance estimate
used for the sample size calculation (“TRUE” for unpooled variance estimate, and
“FALSE” for pooled variance estimate).

The effects for ε1 and ε2 can be anticipated in terms of the difference of pro-
portions, risk ratio, and odds ratio as before by means of the arguments effm e1

and effm e2. Using the argument effm ce, we specify the effect measure for the
composite endpoint.

Endpoint selection for composite endpoints

We have implemented the Asymptotic Relative Efficiency (ARE) method for bi-
nary composite endpoints in the function ARE cbe. The composite endpoint is
assumed to be the combination of two events (ε1 and ε2), and additionally we as-
sume that there is one endpoint that is more relevant than the other. We consider
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ε1 the most relevant endpoint and ε2 the additional one. The ARE gives then
a criterion to decide whether to use a composite binary endpoint (ε∗) or to use
its more relevant component (ε1) as the primary endpoint to lead the study. We
compute the ARE method in terms of the odds ratio as well as in terms of the
risk difference according to the methodology explained in Chapter 3.

The function ARE cbe can be called by:

ARE_cbe(p0_e1 , p0_e2 ,
eff_e1 , effm_e1 , eff_e2 , effm_e2 ,
effm_ce = "or", rho)

where p0 e1 and p0 e2 denote the probabilities of ε1 and ε2 in the control group,
respectively; eff e1 and eff e2 are the anticipated effects for ε1 and ε2, respec-
tively; and rho is Pearson’s correlation between ε1 and ε2.

The effects for ε1 and ε2 can be anticipated in terms of the difference of pro-
portions, risk ratio, and odds ratio as before using the arguments effm e1 and
effm e2.

5.1.2 Web-tool CompARE

The web-tool CompARE is a completely free web platform that can be used as
a tool for clinicians, medical researchers and statisticians. All users can access
through a standard web browser using the web address https://cinna.upc.

edu/compare/.
CompARE is built for clinical trials with multiple endpoints of interest and, in

particular, with composite endpoints. Specifically, CompARE is appropriate for
trials that meet the following conditions:

� Two-arm design. Studies aimed at comparing two different groups.
� Superiority design. Studies designed to establish whether a new intervention

is superior to the standard care.
� Endpoints under study. Studies with the following endpoints of interest:

two binary endpoints, ε1 and ε2, and the composite endpoint defined as the
event that occurs whenever one of the endpoints ε1 and ε2 is observed, that is,
ε∗ = ε1 ∪ ε2.

The basic structure of the user interface of CompARE is schematized in Figure
5.2. The user interface of CompARE is composed of three parts: Input panel, Menu
bar, and Output panel. The workflow within CompARE relates these three parts
with each other as follows: the first step is to enter the input parameters for the

https://cinna.upc.edu/compare/
https://cinna.upc.edu/compare/
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computations in the left panel (Input panel) according to available information
based on previous knowledge; the second step is to select the output the user is
interested in by using the menu at the top (Menu bar); the third and final step
is to examine the results and use the explanation boxes to understand them (in
Output panel). Next, we explain in detail these three parts that compose the
webtool CompARE.

Fig. 5.2 Structure of CompARE: Input panel where users introduce the values; Menu
bar where capabilities of CompARE are exposed; and Output panel where results and
plots are showed.

Input panel

The user is prompted for the anticipation of different parameter values in the
Input panel. The Input panel of CompARE-Binary is composed of three tabs:
(i) Endpoints; (ii) Association; and (iii) Alpha and beta. We exemplify the Input
panel in Figure 5.3.

(i) Endpoints : This is the main part of the Input panel in which users should
anticipate information about the composite endpoint ε∗ and the composite
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components ε1 and ε2. We list below the parameters that the users should
provide.

Required information about the composite endpoint:
– Effect measure: Measure for quantifying the effect for the composite

endpoint. The user can choose from the options: Odds ratio, Risk dif-
ference, and Risk ratio.

Required information about each composite component:
– Effect measure: Measure for quantifying the effect for the endpoint 1

(analogously for endpoint 2).
– Probability under control group: whether the user anticipates a point

value or an interval of plausible values for the probability of observ-
ing the event for the endpoint 1 in the control group (analogously for
endpoint 2).
· If “Point value” has been chosen, then the user should provide the

anticipated value for the probability of observing the event for the
endpoint 1 in the control group.

· If “Interval plausible values” has been chosen, then the user should
provide the lower and upper values between which the probability of
the endpoint 1 in the control group takes values on.

– Effect measure: Measure for quantifying the effect for the endpoint 1
(analogously for endpoint 2). The user can choose between: Odds ratio,
Risk difference, and Risk ratio.
· Effect value: Expected effect size on the Endpoint 1 according to

the effect measure previously chosen (Odds ratio, Risk difference, or
Risk ratio).

(ii) Correlation: In the second tab of the Input panel, the users should set the
strength of correlation between endpoints by means of Pearson’s correlation
coefficient.

Remarks:
– The correlation is bounded and its bounds depend on the marginal pa-

rameters. See Association Tab (in the Menu bar) for more information.
– In CompARE, the correlation is assumed to be equal between groups.
– Since in practice most of the times this information is unavailable, Com-

pARE will produce plots to visualize how much the correlation impacts
on the calculations.
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(iii) Alpha and Power : In third tab of the Input panel, the user can enter some
additional information for the sample size calculation.

Required information:
– Significance level: Type I error considered for the study.
– Power: Statistical power considered for the study.
– Variance of the effect: Formula used for estimating the variance of the

effect. The user can choose between the unpooled variance estimator
and the pooled variance estimator.

Fig. 5.3 Input panel of CompARE.
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Menu bar and Output panel

Throughout the Menu bar, the users can select the calculations they are interested
in. Immediately after that, the results are shown in the Output panel. An example
of the results displayed in the Output panel can be seen in Figure 5.4. In this
section, we explain all available options in the Menu bar together with the outputs
that this provides.

Fig. 5.4 Example of Output panel.

� Summary : In the first tab, CompARE provides a key messages about the trial
design as well as a short report according to the parameters anticipated in the
Input panel.

Outputs obtained:
· Answer for several key questions, such as: “How much sample size is

needed?” or “What is the expected odds ratio for the composite end-
point?”.

· Summary for the composite endpoint.
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· Summary for the composite components.

� Association measures : When using a composite binary endpoint, one needs to
take into account the degree of association between the composite components.
However, this association is usually unknown or difficult to anticipate.
In CompARE, you can calculate which values the association between the com-
ponents could have based on the marginal parameters. The association can be
specified using Pearson’s correlation measure or Relative Overlap.

Outputs obtained:
· Lower and upper bounds for the correlation.
· Probability of the composite endpoint.
· Probability of the overlap: probability of the intersection of both outcomes.
· Relative overlap: the ratio between the probability of the intersection and

the probability of the composite endpoint.

� Effect Size: Before a study is conducted, investigators need to anticipate which
is the minimum effect relevant to be detected. Depending on this effect, analysis
and sample size will be carried out.
By means of CompARE, you can calculate the effect size for a composite binary
endpoint based on the marginal parameters of its components.

Outputs obtained:
· Effect Size for each composite component.
· Effect Size for the composite endpoint given the correlation value.
· Effect Size for the composite endpoint given the correlation category.

� Sample Size: When designing a study, investigators need to determine how
many subjects should be included. By enrolling too few subjects, a study may
not have enough statistical power to detect a treatment difference. Enrolling
too many patients can be unnecessarily costly or time-consuming.
To size a trial with a composite binary endpoint, one needs to specify the event
rates and the effect sizes of the composite components along with the correlation
between them. In practice, the marginal parameters of the components can be
obtained from previous studies or pilot trials, however, the correlation is often
not previously reported and thus usually unknown.
By means of CompARE, the user can calculate the required sample size for
composite binary endpoints based on the anticipated information on the com-
ponents in cases where the correlation is totally or partially known, as well as
where there is uncertainty in the event rate values of the components.
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Outputs obtained:
· Sample Size for each composite component.
· Sample Size for the composite endpoint given the correlation value.
· Sample Size for the composite endpoint given the correlation category.

� Endpoint Selection: CompARE can help you to make a more informed decision
on the Primary Endpoint you should use in your study.
Considering the Endpoint 1 as the most relevant endpoint you must use in your
trial to test the treatment efficacy, CompARE will help you to choose between
Endpoint 1 (ε1) and the Composite Endpoint (ε∗) as the primary endpoint for
the trial.

Outputs obtained:
· ARE criteria for deciding between ε1 and ε∗.
· ARE criteria according to the correlation value.

� Help: CompARE includes a tutorial to guide users through the software and
whereby details of the methods on which CompARE is based are provided.

5.2 SurvBin R Package

We developed the R package SurvBin to facilitate the computation of the L-
statistics presented in Chapter 4, and made it available on GitHub at:

https://github.com/MartaBofillRoig/SurvBin.

The SurvBin package offers several tests for the comparison of two populations:
the L-statistic for comparisons based on binary and time-to-event outcomes; the
score statistic for binary outcomes; and Kaplan-Meier based-tests for time-to-
event outcomes. The SurvBin package also provides additional functions for com-
puting the covariance between binary and survival statistics, and for simulating
bivariate binary and survival data. Table 5.3 gives an overview of these functions
and their capabilities. Table 5.4 summarizes the arguments used in the functions
in the SurvBin package.

https://github.com/MartaBofillRoig/SurvBin
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Table 5.3 R functions included in SurvBin package along with the corresponding
description and the methods implemented. Theorems are available in Appendix C.

Function Description Methods

lstats Compute standardized L-statistics Section 4.2 (Theorem 4.4)

lstats boots Compute standardized L-statistics Sections 4.5 and 4.7
using the bootstrap variance estimator

bintest Compute univariate binary statistics Section 4.2 (Theorem 4.3)

survtest Compute univariate survival statistics Section 4.2 (Theorem 4.3)

survbinCov Compute the covariance between
binary and time-to-event statistics Section 4.3 (Theorem 4.3)

simsurvbin Simulate bivariate Section 4.7
binary and survival data

Table 5.4 Arguments of the functions included in SurvBin package and their corre-
sponding description.

Argument Description

time Vector of the right-censored data
status Vector of the status indicator
binary Vector of the binary data
treat Vectors of the treatment group indicator

tau0, tau, taub Follow-up configuration
wb, ws Scalar parameters that controls the weight ω

rho, gam, eta Scalar parameters that controls the weight Q̂(t)
var est Variance estimate to use (pooled or unpooled).
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5.2.1 R functions in SurvBin package

Herein, we describe the functions of the SurvBin package and their usage.

L-statistics

The function lstats computes the L-statistics presented in Chapter 4. The call
to the function lstats is as follows:

lstats(time , status , binary , treat ,
tau0 , tau , taub ,
rho , gam , eta , wb , ws ,
var_est)

where time, status, binary and treat are vectors of the right-censored data,
the status indicator, the binary data and the treatment group indicator, re-
spectively; tau0, tau, taub denote the follow-up configuration; wb, ws are the
weights ω; rho, gam, eta are scalar parameters that controls the weight Q̂(t)
which is given by Q̂(t) = Ĝ(t−)η · Ŝ(t−)ρ · (1 − Ŝ(t−))γ; and var est indicates
the variance estimate to use (pooled or unpooled).

As a result, lstats returns a list consisting of:

(i) the standardized L-statistic given in (C.4), Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂));

(ii) the L-statistic given in (4.2), Uω
n(Q̂);

(iii) the standard deviation of the L-statistic given in (4.9).

We have also included in the SurvBin package the function lstats boots. This
function computes the standardized L-statistics by using the bootstrap variance
estimator. The function lstats boots can be used by means of:

lstats_boots(time , status , binary , treat ,
tau , rho , gam , eta ,
wb, ws, Boot)

where time, status, binary,treat, and tau, rho, gam, eta, wb, ws are
the same parameters that we have in lstats; and where Boot denotes the number
of bootstrap samples.
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Binary statistics

The function bintest performs a test statistic for testing the difference in two
population proportions. The call to the function bintest is as follows:

bintest(binary , treat , var_est)

where binary and treat are vectors of the binary data and the treatment group
indicator, respectively; and var est indicates the variance estimate to use (pooled
or unpooled).

The output provided by bintest returns a list consisting of:

(i) the standardized binary statistic Ub,n (τb)
/
σ̂b;

(ii) the binary statistic given in (4.3), Ub,n (τb);
(iii) the standard deviation of the binary statistic given in (4.10).

Survival statistics

The function survtest performs a test for right-censored data. It uses the
Weighted Kaplan-Meier family of statistics (see (4.4)) for testing the differences
of two survival curves.

survtest(time , status , treat , tau , rho , gam , eta , var_est)

where time, status and treat are vectors of the right-censored data, the status
indicator and the treatment group indicator, respectively; tau denote the end of
follow-up; wb, ws are the weights ω; rho, gam, eta are scalar parameters that
controls the weight Q̂(t) which is given by Q̂(t) = Ĝ(t−)η · Ŝ(t−)ρ · (1− Ŝ(t−))γ;
and var est indicates the variance estimate to use (pooled or unpooled).

As a result, survtest returns a list consisting of:

(i) the standardized survival statistic, Us,n(τ0, τ ; Q̂)
/
σ̂s;

(ii) the survival statistic given in (4.4), Us,n(τ0, τ ; Q̂);
(iii) the standard deviation of the survival statistic given in (4.11).

Covariance computation

The function survbinCov calculates the estimator of the covariance between the
binary and survival statistics, Ub,n and Us,n(Q), defined by (4.3) and (4.4). It
computes the covariance estimator σ̂bs given in Section 4.3.3.
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The function survbinCov can be called by:

survbinCov(time , status , binary , treat ,
tau0 , tau , taub ,
rho , gam , eta ,
var_est)

where time, status, binary and treat are vectors of the right-censored data,
the status indicator, the binary data and the treatment group indicator, re-
spectively; tau denote the end of follow-up; wb, ws are the weights ω; rho,

gam, eta are scalar parameters that controls the weight Q̂(t) which is given by
Q̂(t) = Ĝ(t−)η · Ŝ(t−)ρ ·(1− Ŝ(t−))γ; and var est indicates the variance estimate
to use (pooled or unpooled).

In this work, we estimate λ
(i)
X,T (t) (see definition in Theorem 4.3 in Appendix C)

by means of the Epanechnikov kernel function, and the local bandwidth selection
and the boundary correction described by Muller and Wang (1994) by using the
muhaz package (Hess and Gentleman, 2019).

Simulating bivariate binary and time-to-event data

The function simsurvbin simulates bivariate binary outcomes and survival times.
The simulation is based on a copula-based framework and uses the conditional
sampling described in (see Appendix A of Trivedi and Zimmer, 2005 for further
information). The function simsurvbin can be called by:

simsurvbin(a.shape , b.scale , rate.param ,
prob0 , ass.par , ss ,
censoring="Exp")

where a.shape and b.scale are the shape and scale parameters for the Weibull
distribution; rate.param is the distributional parameter for the censoring; prob0
probability binary outcome; ass.par denotes the association between the binary
and time-to-event outcomes according to a Frank’s copula; and ss is the sample
size per arm.

Throughout the argument censoring, the user can choose between uniform and
exponential distributions for the censoring distribution. Depending on that, the
parameter rate.param will correspond to the rate for the exponential distribution
(say c where Exp(c)) or the maximum for the uniform (say c where Unif(0, c)).





Chapter 6

Conclusions and Future Research

This thesis addresses the design and analysis of trials with multiple endpoints.
The thesis is mainly divided into two topics. In the first, we coped with the
design of trials with composite binary endpoints, going from the effect size and
sample size calculation to the selection of the components for a primary composite
endpoint. In the second, we proposed new methods for comparing two groups in
seamless phase II/III trials using binary and survival endpoints. We look forward
to continuing the work started in this thesis and adapting it to current problems.
In this chapter, we summarize the main conclusions of this thesis and outline some
future lines of research.

6.1 Composite endpoints

Despite being widely used, composite endpoints entail challenges in both designing
trials and interpreting results. In Chapter 2, we have shown that calculating the
sample size for composite binary endpoints needs more than the anticipated effect
size and event rates of the composite components; it also needs the correlation
between them. We demonstrated that the sample size increases as the correlation
does and that it strongly depends on the correlation value. We proposed strategies
for deriving the sample size when the correlation is not specified. The strategies
are based on the stratification of the correlation into different categories. We did
so by splitting the rank of the correlation into three equal-sized intervals, and then
considering three correlations categories: weak for the interval whose correlation
values are lower; moderate for those intermediate correlation values; and strong
for those correlation values that are higher. The sample size is then calculated
using the maximum correlation value across the correlation category. We showed
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in the simulation study in Section 2.7 that the sample size strategies assure the
pre-specified power even without previous knowledge on the correlation.

In Chapter 3, we have proposed the Asymptotic Relative Efficiency (ARE)
method to quantify the gain in efficiency of using a composite binary endpoint
instead of its most relevant component as primary endpoint to lead the trial.
The ARE method allows to make an informed decision by providing a criteria
to choose between these two endpoints. The method relies on the magnitude of
the treatment effects and the event rates of the composite components, and the
correlation between them. We discussed the influence that these parameters have
on the decision throughout a numerical study and summarized the conclusions into
statistical guidelines. Although composite endpoints are widely used as primary
endpoints in clinical trials, we noticed that they are not always the best option.

In summary, we have shown that the design of a randomized controlled trial
involving a composite endpoint needs a careful specification of the expected rates,
the treatment effects and the correlation. While the parameters of the composite
components can often be derived from previous studies, the correlation are seldom
disclosed. In this thesis, we have seen that the correlation between the composite
components plays an important role in both selecting the primary endpoint –by
means of the ARE method– and calculating the appropriate sample size. There-
fore, it is of utmost importance to consider how much the components of the
composite endpoint are associated, to quantify this association and to report it in
all documents derived from the trials.

The methodologies presented in Chapters 3 and 4 are focused solely on studies
with composite endpoints with two components, but they might be extended as
follows. The sample size formula for composite endpoints with more than two
components can be straightforwardly obtained following the same rationale that
in Bofill and Gómez (2019). However, the difficulty in this case will rely on the
fact that the underlying correlation structure will become increasingly complex
with the rising number of components. This complicates the study of the behavior
of the sample size in terms of the correlation, and makes the assumption of equal
correlation structure between groups even stronger than it already was.

In studies with more than two composite components and where there exists an
order of importance of such components, the ARE method can be recursively used
to decide whether to add more endpoints into the composite primary endpoint.
Extensions of the method that could select the most efficient components for the
composite endpoint are left for future research.

Furthermore, extensions to unbalanced designs can be considered as well in
future works. Despite the fact that sample size formulae for composite endpoints
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under unbalanced designs can be easily obtained from Bofill and Gómez (2019),
it would be interesting to assess the impact of the unbalanced settings in keeping
the type I error, especially in studies with small sample sizes.

The ARE method has been done accounting for unbalanced designs. However,
the method assumes that the designs for both relevant and composite endpoints
have the same proportion of patients allocated in the control group. It might
be interesting to evaluate whether having different allocation proportions in the
relevant and composite endpoints affects the decision of the primary endpoint.

We have presented in Chapter 5 the implementations of the previous mentioned
methodologies in the web-tool CompARE and its corresponding R package. In the
forthcoming future, we plan to continue working on CompARE, upgrading it in
several directions.

A good data visualization may give at first glance more information to users
than some summary statistics and may aid the newcomer to understand what
CompARE is offering quickly. We plan to improve the plots in CompARE by
using ggplot (Wickham and Grolemund, 2020) and make them interactive by
using plotly (Sievert, 2020). So that the plots can be for instance zoomed and
exported by the user. Also, some functions for plotting R objects will be added
into the R package CompARE.

Another feature we would like to add in CompARE is the option of generating
dynamic reports. The idea here is to allow users to download summary reports
after using CompARE. We are going to explore the possibility of incorporating
add-ons for the generation of reports by means of rmarkdown (Wickham, 2020b;
Xie et al., 2020).

Last but not least, we plan to enhance and complete the R package CompARE

and make it available from the CRAN (http://cran.r-project.org).

6.2 Binary and survival endpoints

Many biomedical studies are conducted to compare a treatment group with a con-
trol group on the basis of several hypotheses. In Chapter 4, we have proposed a
class of statistics for comparing two groups based on binary and time-to-event out-
comes. The statistics are appealing in a broad life-studies situations and, specially,
in cancer immunotherapy trials where both binary and time-to-event endpoints
are of interest and where the proportional hazards assumption is rarely met.

http://cran.r- project.org
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We based the proposed class of statistics on a weighted combination of a differ-
ence in proportions test and a weighted Kaplan-Meier test-based for the difference
of survival functions. The statistics are fully non-parametric and do not need the
proportional hazards assumption for the survival outcome. Moreover, our proposal
adds versatility into the study by incorporating random weights and flexibility by
allowing for different follow-up configurations for the binary and survival out-
comes. We presented our proposal together with the R package SurvBin where
the methodology has been implemented.

As mentioned in the discussion in Section 4.8, the major limitation of this work
is that the methodology does not accommodate the situation where censoring may
prevent the observation of the binary outcome. We are aware of the importance of
extending the methodology to encompass studies with complex censoring schemes
between the binary and time-to-event outcomes, and we plan to work on this issue
in the near future. A second limitation is that there may be a semi-competing risk
problem between the binary and time-to-event outcomes. In clinical practice, it
is common to assign the “worse” response to those patients that died before the
evaluation of the binary response. For example, if a patient died before evaluating
tumor progression, it is usually considered that the patient had progression, albeit
it was not observed. Further work should be done to evaluate the implications of
this practice to guide better use.

As future research, we would like to study potential extensions for sequential
monitoring designs. Besides, alternatives approaches for estimating the covariance
between the binary and survival statistics will be as well considered and incorpo-
rated into the R package SurvBin. We will also improve the SurvBin package by
adding long-form guides (vignettes) and examples.

We believe that this work might be exploited and extended in several directions.
Next, we go through open questions and related research lines that motivate our
future work.

6.2.1 Survival by tumor response

In neoadjuvant cancer trials, the binary endpoint pathologic complete response
(pCR) has been commonly used as the primary endpoint for phase II trials or even
as an endpoint for accelerated approval in high-risk populations (FDA Guidance,
2014). If granted, a two-arm confirmatory trial is often required to demonstrate the
efficacy with long-term endpoints, such as overall survival. However, the design of
such a trial based on prior information on the pCR effect is not straightforward.
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Patients whose tumors show pathological complete response (pCR) at surgery
after neoadjuvant chemotherapy seem to have better long-term survival outcome
than patients whose tumors do not, regardless of the treatment group they are
assigned to (Cortazar et al., 2014).

Aiming at designing a phase III trial with overall survival for comparing two
treatment groups using the results from previous trials with pCR outcome, we
are currently working on the anticipation of the expected effect size and on the
calculation of the sample size under different scenarios and based on the pCR
response and the survival by response by each arm. For this purpose, we consider
the distribution of overall survival as a mixture of pCR responders and non-
responders in each treatment arm. We base the comparison between groups on
the difference of restricted mean survival times, which gives a clinically meaningful
summary of treatment effect and moreover does not rely on the proportionality of
the hazards. The preprint version of this joint work with Prof. Y. Shen and Prof.
G. Gómez Melis is available in Arxiv (arXiv:2008.12887 [stat.ME]).

A somehow similar situation is found in the treatment of acute leukemia. When
a patient is diagnosed with acute leukemia, an induction therapy is selected aimed
at reducing the total body leukemic cell population. A bone marrow biopsy is
afterwards performed to evaluate the patient’s response to that initial therapy.
The patient is then deemed a responder, if he/she achieved the desired response,
or non-responder, if not. Based on that, the clinician should typically choose the
next of treatment to follow, seeking to maximize the expected benefit to the
patient with respect to a time-to-event outcome, such as overall survival.

This problem has triggered the interest in sequential multiple assignment ran-
domized trials, where patients are randomized repeatedly at each time in which
the therapy could be changed or modified (Tsiatis et al., 2020). In this context,
we would like to explore the extension of the statistics proposed in Chapter 4 for
comparing response rates and survival after reassignment by tumor response.

Additional related topics such as the study of the association between pCR and
overall survival (Broglio et al., 2016; De Michele et al., 2015), the estimation of the
time-to-tumor under different scenarios (Gómez Melis, 1986; Vardi et al., 2001;
Weedon-Fekjaer et al., 2008) and its evaluation as surrogate of overall survival
(Burzykowski and Buyse, 2006; Buyse et al., 2018) are several directions we may
explore in the future.

https://arxiv.org/abs/2008.12887
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6.2.2 Estimands in clinical trials

Randomized controlled trials are expected to be free from confounding variables,
however, in practice, certain events may occur that complicate the measurement
of the endpoints associated with the clinical question and affect the interpretation
of treatment effects (ICH E9(R1), 2020). These events, named as intercurrent
events, include treatment discontinuation and treatment switching, among many
others (Akacha et al., 2017).

The occurrence of intercurrent events may be especially worrisome in survival
trials. Since intercurrent events occur between randomization and before the ob-
servation of the time-to-event endpoint, they may affect how we evaluate the
scientific question. Just as an example, in the case of treatment switching, pa-
tients switch from their assigned treatment onto an alternative. This provokes
that the observed time for a patient that switched will not be the one specified
in the design. Would this observed time have been the same if treatment switch-
ing had not taken place? Under circumstances where the answer is yes, the trial
integrity could be compromised (Rufibach, 2018).

The ICH E9(R1) (2020) addendum takes the first step in drawing designs ac-
cording to trial objectives and accounting for plausible intercurrent events. By
means of the definition of the so-called estimands (“what to be estimated”), the
addendum promotes trial designs that distinguish between: what to be estimated,
how this will be estimated, and how much robust the conclusions would be ac-
cording to the assumptions made in the design.

The estimands framework and the potential confounding when intercurrent
events are present open the door to start using new methodologies, such as causal
inference (Robins, 1986; Tsiatis et al., 2020; Hernán and Robins, 2020), in clini-
cal trials. As future work, we will explore the estimation of the effect measured
through time-to-event endpoints where intercurrent events may happen and how
the design of such trials would be.

6.3 Extending Pitman’s Asymptotic Relative Efficiency

In recent years, there has been an increasing interest in clinical trials designed to
evaluate multiple drugs and/or multiple disease populations in parallel. Specially
in cancer studies, where multiple drugs might be tested over different cancer types.
The so-called master protocol describes the design of such trials (FDA Guidance,
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2018). In contrast to traditional clinical trial designs, which are often limited in
the questions they deal with, master protocols cover multiple substudies, which
may have different objectives, and thus address different questions. However, the
complex structure of master protocols leads to regulatory and statistical chal-
lenges.

Master protocols use a single infrastructure, trial design, and protocol allowing
for efficient and accelerated drug development. Such trials are often classified
into: (i) trials testing a single drug across multiple cancer populations, referred
to as basket trial; (ii) trials testing multiple drugs in a single disease population,
referred to as umbrella trials; and (iii) trials which may take the form of basket or
umbrella trials and in which new substudies can potentially be added or stopped
dynamically during the course of the trial, named platform trials.

In the context of studies where the full population is divided into two subpop-
ulations in which treatment could potentially have different modes of action and
different benefits, we want to explore the extension of the definition of the Asymp-
totic Relative Efficiency (ARE) given by Pitman (Lehmann and Romano, 2005)
aiming at designing more efficient basket trials by maximizing the information we
obtain for each subpopulation.

Given two statistics for the same hypothesis test, the ARE compares the asymp-
totic efficiencies of the statistics and can be interpreted as the ratio of the Fisher
information associated to each statistic. In previous works, Gómez and Lagakos
(2013) and Bofill and Gómez (2018) used the ARE to compare two non-equivalent
set of hypotheses in the context of composite endpoints. Following the same ra-
tionale, we would like to consider the extension of the ARE as a key measure
to quantify the information contained in a set of hypotheses. Since the concept
of information is closely related to the sample size, we plan to exploit this fact
in designing trials, specifically, in determining the sample size when dealing with
multiple correlated hypotheses.
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Appendix A

Appendix of Bofill and Gómez (2019)

Let Xijk denote the response of the k-th binary endpoint for the j-th patient in
the i-th group of treatment (i = 0, 1, j = 1, ..., n, k = 1, 2). We denote by Xij∗
the composite response defined as

Xij∗ =

{
1, if Xij1 +Xij2 ≥ 1

0, if else Xij1 +Xij2 = 0
(A.1)

W denote by p
(i)
1 = P(Xij1 = 1) = 1 − q

(i)
1 , p

(i)
2 = P(Xij2 = 1) = 1 − q

(i)
2 and

p
(i)
∗ = P(Xij∗ = 1) = 1 − q

(i)
∗ the probabilities of observing each endpoint in

the i-th group. Let O
(0)
k , δk,Rk,ORk be the odds under the control group, the

risk difference, risk ratio and odds ratio, respectively, for the k-th endpoint, that

is, O
(0)
k =

p
(0)
k

q
(0)
k

, δk = p
(1)
k − p

(0)
k , Rk =

p
(1)
k

p
(0)
k

, and ORk =
p
(1)
k /q

(1)
k

p
(0)
k /q

(0)
k

. We denote by

θ = (p
(0)
1 , p

(0)
2 ) the vector of marginal event rates, and λ = (δ1, δ2) the vector of

effect sizes.
Let ρ(i) represent the correlation between Xij1 and Xij2 in the i-th treatment

group, and ρ refer to the correlation when it is assumed to be equal in both groups,
i.e., ρ = ρ(0) = ρ(1).

A.1 Derivation of the composite effect from the margins

We derive the expression for the composite treatment effect in terms of the
marginal component and the correlation described in Sections 2.2 and 2.6, and
we prove the monotone performance of the risk difference with respect to the
correlation ρ.
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Theorem A.1 (Composite effect from margins). The composite effect for
the composite endpoint can be expressed in terms of the component parameters as
follows:

(i) The risk difference for the composite endpoint, δ∗, is determined by the six

parameters p
(0)
1 , p

(0)
2 , δ1, δ2, ρ(0), ρ(1) and has the following expression:

δ∗ = δ1q
(0)
2 + δ2q

(0)
1 − δ1δ2 + ρ(0)

√
p

(0)
1 p

(0)
2 q

(0)
1 q

(0)
2

−ρ(1)

√
(p

(0)
1 + δ1)(p

(0)
2 + δ2)(q

(0)
1 − δ1)(q

(0)
2 − δ2) (A.2)

(ii) The risk ratio for the composite endpoint, R∗, is determined by the six pa-

rameters p
(0)
1 , p

(0)
2 , R1, R2, ρ(0), ρ(1) and has the following expression:

R∗ =
p

(0)
1 R1 + p

(0)
2 R2 − p(0)

1 p
(0)
2 R1R2 − ρ(1)

√
p

(0)
1 R1p

(0)
2 R2(1− p(0)

1 R1)(1− p(0)
2 R2)

1− q(0)
1 q

(0)
2 − ρ(0)

√
p

(0)
1 p

(0)
2 q

(0)
1 q

(0)
2

(A.3)
(iii) The odds ratio for the composite endpoint, OR∗, is determined by the six

parameters p
(0)
1 , p

(0)
2 , OR1, OR2, ρ(0), ρ(1) and has the following expression:

OR∗ =

(
1+

OR1p
(0)
1

1−p(0)1

)(
1+

OR2p
(0)
2

1−p(0)2

)
−1−ρ(1)

√
OR1OR2p

(0)
1 p
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2
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√
OR1OR2p

(0)
1 p
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2
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p
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1
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)
·

(
1+

p
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2
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2
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1+ρ(0)

√
p
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1 p
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(A.4)

Proof (Proof of Theorem A.1). (i), (ii) The two expressions (A.2) and (A.3) follow
in a straightforward manner after noting that:

p(i)
∗ = 1− q(i)

1 q
(i)
2 − ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2 = p

(i)
1 + p

(i)
2 − p

(i)
1 p

(i)
2 − ρ(i)

√
p

(i)
1 p

(i)
2 q

(i)
1 q

(i)
2

(A.5)

and taking into account p
(1)
k = δk + p

(0)
k and p

(1)
k = p

(0)
k R1.

(iii) Replacing the probabilities of the composite endpoint with its expression
in terms of the marginal parameters plus the correlation (A.5), we have:
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OR∗ =
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By replacing O
(0)
k by

p
(0)
k

1−p(0)k
, we obtain (A.4).

Theorem A.2 (Risk difference performance). Assume that p
(0)
k < 1/2 and

δk < 0 (k = 1, 2). We denote by δ∗(ρ, θ, λ) the risk difference for the composite
endpoint function described in (A.2), specifically in terms of the vector of event
rates θ, the marginal effects λ and the correlation ρ. Then, the risk difference for
the composite endpoint for a given θ and λ is an increasing function with respect
to ρ.

Proof (Proof of Theorem A.2). Observe that the difference in proportions (A.2)
can be written as:
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δ∗(ρ, θ, λ) = x(θ, λ) + ρ · y(θ, λ).

where x(θ, λ) = δ1q
(0)
2 +δ2q

(0)
1 −δ1δ2 and y(θ, λ) =

√
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2 .

Then: δ∗(ρ+ε; θ)−δ∗(ρ; θ) = ε·y(θ, λ). Therefore, δ∗(ρ; θ) is an increasing function
if and only if y(θ, λ) > 0, ∀λ, θ, which is equivalent to showing that:
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It is enough to prove that for k = 1, 2,

p
(1)
k q

(1)
k

p
(0)
k q

(0)
k

< 1

To ease the notation call p
(1)
k = a and p

(0)
k = b; and, by assuming a < b < 1/2,

that implies a− b < 0 and a+ b < 1. We need to prove that:

a(1− a)

b(1− b)
=
a− a2

b− b2
< 1⇔ b− a < b2 − a2 = (b+ a)(b− a)

Since b − a > 0 and a + b < 1, then we have (a + b)(b − a) < (b − a). As a
consequence y(θ, λ) > 0 and the risk difference of the composite endpoint is an
increasing function with respect to the correlation.

A.2 Derivation of the sample size for the composite binary
endpoint

We establish the sample size formulae for the composite endpoint in terms of the
margins and derive its properties, as outlined in Sections 2.4 and 2.6.

A.2.1 Sample size performance according to the correlation

Lemma A.1. Let N(p, d) denote the sample size function for testing the differ-
ence in proportions under the unpooled variance estimate, where p denotes the
probability under the control group and d the relevant difference to be detected,
that is:
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N(p, d) =

(
zα + zβ

d

)2

· (p · (1− p) + (p+ d) · (1− p− d)) (A.6)

It follows that N(p, d) is an increasing function with respect to p and with respect
to d.

Proof. Observe that:

∂

∂p
N (p, d) =

(zα + zβ)2 (2− 4 p − 2 d)

d2

Assuming p < 0.5, then 1−2p > 0 and 2−4p0−2d > 0. Therefore ∂
∂p
N (p, d) > 0,

the sample size is increasing with respect to p. Moreover,

∂

∂d
N(p, d) = −2

(zα + zβ)2 (p (1− p) + (d+ p) (1− p− d))

d3

+
(zα + zβ)2 (1− 2p− 2 d)

d2

Note that 1 − 2p − 2d > 0 and therefore, ∂
∂d
N(p, d) > 0; thus, the sample size is

increasing with respect to d.

Theorem 1. Let θ and λ be the vectors of, respectively, marginal event rates
and effect sizes for the composite components, and we denote by ρ the correlation
between both components. Then, the sample size n(θ, λ, ρ), for a given θ and λ is
an increasing function of the correlation ρ.

Proof (Proof of Theorem 1).
Since the probability of observing the composite event is given by θ and ρ (see

equation (A.5)), and the risk difference for the composite endpoint is given by
λ, θ and ρ (see equation (A.2)), then the sample size for the composite endpoint
computed by n(θ, λ, ρ) = N (p∗(θ, ρ), δ∗(λ, θ, ρ)) is a function of λ, θ and ρ.

To prove that the sample size for the composite endpoint N (p∗(θ, ρ), δ∗(λ, θ, ρ))
increases with ρ, we will show that:

∂N(p∗(θ, ρ), δ∗(λ, θ, ρ))

∂ρ
=
∂N(p∗(θ, ρ), δ∗(λ, θ, ρ))

∂p∗(θ, ρ)
· ∂p∗(θ, ρ)

∂ρ
+

+
∂N(p∗(θ, ρ), δ∗(λ, θ, ρ))

∂δ∗(λ, θ, ρ)
· ∂δ∗(λ, θ, ρ)

∂ρ
> 0

(A.7)
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From now on we will omit θ, λ and ρ and use p∗ and δ∗ instead of p∗(θ, ρ) and
δ∗(λ, θ, ρ). From Lemma A.1, the sample size N(p, d) in (A.6) is increasing with
respect to the treatment effect, d, and with respect to the probability of observing
the event under control group, p, hence:

∂N(p∗, δ∗)

∂p∗
> 0 and

∂N(p∗, δ∗)

∂δ∗
> 0

We denote by:

∂p∗(θ, ρ)

∂ρ
= −a and

∂δ∗(ρ)

∂ρ
= a− b

where a, b > 0 and, from Theorem A.2, a− b > 0. Then we have:

∂N(p∗, δ∗)

∂ρ
= (a− b) ·

(
−2

(zα + zβ)2 (p∗ (1− p∗(θ, ρ)) + (δ∗ + p∗) (1− p∗ − δ∗))
δ∗

3

+
(zα + zβ)2 (1− 2 p∗ − 2δ∗)

δ∗
2

)
− a ·

(zα + zβ)2 (2− 4 p∗ − 2δ∗)

δ∗
2

and this is positive if and only if:

(a− b)
(
− 2

p∗ (1− p∗) + (δ∗ + p∗) (1− p∗ − δ∗)
δ∗

+ 1− 2(p∗ + δ∗)
)
− (2− 4 p∗ − 2δ∗) a

(A.8)
(A.8) is positive. Then we have:

− 2
(a− b)
δ∗

(p∗ (1− p∗) + (δ∗ + p∗) (1− p∗ − d))− b (1− 2 p∗ − 2δ∗) + a (−1 + 2 p∗)

> −2
(a− b)
δ∗

p∗ (1− p∗)− 2
(a− b)
δ∗

(δ∗ + p∗) (1− p∗ − δ∗)− 2a (1− p∗ − δ∗) + 2ap∗

(A.9)
Then (A.8)> (A.9), because a > b. Note that the first and forth terms are positive,
so we end if we see that the second plus third are also positive. This follows from
the fact that:

−2
(a− b)
δ∗

(δ∗ + p∗)− 2a > 0⇔ a

(
1 +

δ∗ + p∗
δ∗

)
< b

(
δ∗ + p∗
δ∗

)
⇔ a

b
>

δ∗+p∗
δ∗

1 + δ∗+p∗
δ∗

Since a, b > 0 and a− b > 0, we have a
b
> 1; and since

(
δ∗+p∗
δ∗

)
,
(

1 + δ∗+p∗
δ∗

)
< 0,

we have
(
δ∗+p∗
δ∗

)/(
1 + δ∗+p∗

δ∗

)
∈ (0, 1). Therefore (A.7) is positive, as we intended

to prove.
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B.1 Additional tables and figures
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Fig. B.1 Percentage of scenarios in which the composite endpoint should be used
depending on OR1.
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Fig. B.2 Percentage of scenarios in which the composite endpoint should be used
depending on OR2.
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Fig. B.3 Percentage of scenarios in which the composite endpoint should be used
depending on OR2 when OR1 = 0.7.
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Fig. B.4 Percentage of scenarios in which the composite endpoint should be used
depending on OR2 when OR1 = 0.8.



B.1 Additional tables and figures 133

Table B.1 Recommendations in terms of treatment effects of the relevant and the
additional endpoint, large (0.5 ≤ OR < 0.7), medium (0.7 ≤ OR < 0.9) or low
(0.9 ≤ OR < 1). Each cell indicates whether the relevant endpoint (RE) (are ≤ 1.1) or
composite endpoint (CE) (are > 1.1) should be used and, in parentheses, the percent-
age of cases in which composite is preferred based on the scenarios described in Table
3.2.

Large treatment Medium treatment Low treatment
effect on ε2 effect on ε2 effect ε2

Large treatment effect on ε1 CE (80.97%) RE (15.65%) RE (0.00%)
Medium treatment effect on ε1 CE (99.84%) CE (74.53%) RE (4.23%)
Low treatment effect ε1 CE (100.00%) CE (99.99%) CE (63.89%)
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Define, for the i-th group (i = 0, 1), the counting processes Nij(t) = I{Tij ∧Cij ≤
t, δij = 1}, N̄ (i)(t) =

∑n(i)

j=1Nij(t); the at-risk processes Yij(t) = I{Tij ∧ Cij ≥ t},
Ȳ (i)(t) =

∑n(i)

j=1 Yij(t); and let Λ(i)(t) = − log{S(i)(t)} be the cumulative hazard

function. Then, Mij(t) = Nij(t)−
∫ t

0
Yij(s)dΛ

(i)(s) is a zero-mean martingale with

respect to the filtration F(t) = σ < {Nij(t), Yij(t)}, j = 1, ..., n(i), i = 0, 1 >.

Consider M̄ (i)(t) =
∑n(i)

j=1Mij(t). We write dN(t) for the increment N((t+dt)−)−
N(t−) of the counting process N(·) over the small time interval [t, t+ dt).

Consider the subgroup of patients who had the binary outcome before the time-
to-event outcome, from now on, we call them responders subgroup. Let S

(i)
X (t) =

P(Tij > t|Xij = 1), Λ
(i)
X (t) and λ

(i)
X (t) be the survival, cumulative hazard and

hazard functions, respectively, for the responders. Define:

Nij,X(t) = I{Tij ∧ Cij ≤ t, δij = 1, Xij = 1} = Nij(t) ·Xij (C.1)

Yij,X(t) = I{Tij ∧ Cij ≥ t,Xij = 1} = Yij(t) ·Xij (C.2)

and N̄
(i)
X (t) =

∑ni
j=1Nij,X(t) and Ȳ

(i)
X (t) =

∑ni
j=1 Yij,X(t). Then, Mij,X(t) =

Nij,X(t) −
∫ t

0
Yij,X(s)dΛ

(i)
X (s) is a zero-mean martingale with respect to the fil-

tration F(t) = σ < {Nij,X(t), Yij,X(t)}, j = 1, ..., n(i), i = 0, 1 >. Consider

M̄
(i)
X (t) =

∑ni
j=1Mij,X(t).

A sequence of random vectorsXn that converges in probability toX as n→ +∞
will be denoted by Xn

p−→ X. The convergence in distribution will be written as

Xn
d−→ X.
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C.1 Main results and their proofs

Lemma 4.1:
Let Uω

n(Q) be the statistic defined by:

Uω
n(Q) = ωb ·

Ub,n
σ̂b

+ ωs ·
Us,n(Q)

σ̂s

where Ub,n is the statistic given in (4.3) and Us,n(Q) is the statistic given in (4.4)

with Q̂(t) replaced by Q(t), that is:

Us,n(Q) =

√
n(0)n(1)

n

(∫ τ

τ0

Q(t) ·
(
Ŝ(1)(t)− Ŝ(0)(t)

)
dt

)
for some real numbers ωb, ωs ∈ (0, 1), such that ωb+ωs = 1, and for a function Q(·)
satisfying the conditions outlined in Section 4.3.1. Then, the L-statistic Uω

n(Q̂),
given in (4.2), can be written as:

Uω
n(Q̂) = Uω

n(Q) + ωs ·
En
σ̂s

where

En =

√
n(0)n(1)

n

∫ τ

τ0

(Q̂(t)−Q(t)) · (Ŝ(1)(t)− Ŝ(0)(t))dt

converges in probability to 0. Hence, the asymptotic distribution of the statistic
Uω
n(Q) is the same as that of Uω

n(Q̂).

Proof of Lemma 4.1:
The proof is a direct consequence of the asymptotic representation of the time-
to-event statistic Us,n(Q̂) which can be written as Us,n(Q) + En, where:

Us,n(Q) =

√
n(0)n(1)

n

(∫ τ

τ0

Q(t) ·
(
Ŝ(1)(t)− Ŝ(0)(t)

)
dt

)
and

En =

√
n(0)n(1)

n

(∫ τ

τ0

(Q̂(t)−Q(t)) ·
(
Ŝ(1)(t)− Ŝ(0)(t)

)
dt

)
and where En is a second-order term that is asymptotically negligible. For a
detailed proof of this representation, we refer to (Gu et al., 1999).
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In order to prove that Uω
n(Q̂) and Uω

n(Q) are asymptotically equivalent, we first
note that:

Uω
n(Q̂)−Uω

n(Q) = ωs ·
En
σ̂s

Since

En =

√
n(0)n(1)

n

∑
i=0,1

(−1)i+1

(∫ τ

τ0

(Q̂(t)−Q(t)) · (Ŝ(i)(t)− S(i)(t))dt

+

∫ τ

τ0

(Q̂(t)−Q(t)) · S(i)(t)dt

)
,

following Lemma 1 from Gu et al. (1999), for i = 0, 1, we have:√
n(0)n(1)

n

∫ τ

τ0

(Q̂(t)−Q(t)) · (Ŝ(i)(t)− S(i)(t))dt
p−→ 0

and √
n(0)n(1)

n

∫ τ

τ0

(Q̂(t)−Q(t)) · S(i)(t)dt
p−→ 0

because Q̂(t) − Q(t)
p−→ 0 uniformly for t. Thus, En

p−→ 0 and since σ̂2
s

p−→ σ2
s and

σ̂2
s is bounded away from 0, we conclude that Uω

n(Q̂) − Uω
n(Q)

p−→ 0. Hence, by
Slutsky’s Theorem, both statistics are asymptotically equivalent:

Uω
n(Q̂) =

(
Uω
n(Q̂)−Uω

n(Q)
)

+ Uω
n(Q)

d−→ Uω
n(Q)

�

Theorem 4.1:
Let Uω

n(Q̂) be the statistic defined in (4.2). Under the conditions outlined in 4.3.1,
if the null hypothesis H0 : Hs,0 ∩ Hb,0 holds, Uω

n(Q̂) converges in distribution, as
n→ +∞, to a normal distribution as follows:

Uω
n(Q̂)→ N

(
0, ω2

b + ω2
s + 2ωbωs ·

σbs
σb · σs

)
where σ2

b , σ
2
s stand for the variances of Ub,n and Us,n(Q), respectively, and σbs

is the covariance between Ub,n and Us,n(Q). Their corresponding expressions are
given by:
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σ2
b =

∑
i=0,1

(
1− π(i)

)
p(i) (τb)

(
1− p(i) (τb)

)
σ2
s = −

∑
i=0,1

(
1− π(i)

) ∫ τ

τ0

(K
(i)
τ (t))2

(S(i)(t))2G(i)(t)
dS(i)(t)

σbs =
∑
i=0,1

(
1− π(i)

)
·
(
I{τmax = τb} ·

∫ τb

τ0

K
(i)
τb (t)

S(i)(t)
·
(
p

(i)
N (t)− p(i) (τb)

)
dS(i)(t)

+

∫ τ

τmax

K
(i)
τ (t)

S(i)(t)
· p(i) (τb)

(
dS

(i)
X (t)− dS(i)(t)

))

where τmax = max(τ0, τb), K
(i)
τ∗ (t) =

∫ τ∗
t
Q(u)S(i)(u)du (τ∗ = τ or τb),

p
(i)
N (t) = P (Xij = 1|dNij(t) = 1), and S

(i)
X (t) = P (Tij > t|Xij = 1) for i = 0, 1.

Proof of Theorem 4.1:
Since Uω

n(Q̂) −Uω
n(Q)

p−→ 0, it is sufficient to find the asymptotic distribution of
Uω
n(Q). Suppose that the global null hypothesis H0 : Hs,0 ∩Hb,0 holds. The statis-

tic Uω
n(Q) is a weighted sum of two statistics: Ub,n

/
σ̂b for the sub-hypotheses

Hb,0, and Us,n(Q)
/
σ̂s for the sub-hypotheses Hs,0. Under Hb,0, the statistic Ub,n

asymptotically follows a 0-mean normal distribution with variance σ2
b (Lachin,

1981), where σ2
b is given by (4.5). On the other hand, the statistic Us,n(Q) asymp-

totically follows a 0-mean normal distribution with variance σ2
s under Hs,0 (Gu

et al., 1999), where σ2
s is given by (4.6). Since σ̂b and σ̂s, given in (4.10) and

(4.11), consistently estimate σ2
b and σ2

s , by Slutsky’s Theorem, we have that both
Ub,n

/
σ̂b and Us,n(Q)

/
σ̂s are asymptotically N(0, 1) under H0. Then, we have that,

as n→ +∞, the asymptotic distribution of Uω
n(Q) under H0 is:

Uω
n(Q)

d−→ N

(
0, ω2

b + ω2
s + 2ωbωs

σbs
σbσs

)
where σbs denotes the covariance between Ub,n and Us,n(Q). The expression of the
covariance and its corresponding derivation are postponed to Appendix C.2.1.

�

Theorem 4.2:
Let Uω

n(Q̂) be the statistic defined in (2). Under the conditions outlined in 3.1.,
consider the following sequences of contiguous alternatives for both binary and
time-to-event hypotheses satisfying, as n→ +∞:



C.1 Main results and their proofs 139

√
n(p(1)

n − p(0))→ g

and √
n(S(1)

n (t)− S(0)(t))→ G(t)

for some constant g ∈ R+ and bounded function G(·) ∈ R+, and ∀t ∈ [τ0, τ ]. Then,
under contiguous alternatives of the form:

H1,n :
√
n(p(1)

n − p(0)) = g and
√
n(S(1)

n (t)− S(0)(t)) = G(t), ∀t ∈ [τ0, τ ]

we have that:

Uω
n(Q̂)→ N

(
ωbg + ωs

∫ τ

τ0

Q(t)G(t)dt, ω2
b + ω2

s + 2ωbωs
σbs

σb · σs

)
in distribution as n → +∞, where σ2

b , σ
2
s and σbs are given in (4.5), (4.6) and

(4.7), respectively.

Proof of Theorem 4.2:
Suppose H1,n :

√
n(p

(1)
n − p(0)) = g and

√
n(S

(1)
n (t) − S(0)(t)) = G(t), ∀t ∈ [τ0, τ ]

holds. Let us consider the sub-hypotheses H1b,n :
√
n(p

(1)
n − p(0)) = g and H1s,n :√

n(S
(1)
n (t)−S(0)(t)) = G(t), ∀t ∈ [τ0, τ ]. Analogously to the proof of Theorem 4.2,

the statistics Ub,n
/
σ̂b and Us,n(Q)

/
σ̂s follow, respectively, a normal distribution

with mean g and variance equal to 1 under Hb,0 and mean
∫ τ

0
Q(t)G(t)dt and

variance equal to 1 under H1s,n Gu et al. (1999). Therefore, we have that Uω
n(Q)

d−→
N (µc, σ

2
c ) , where µc = ωbg + ωs

∫ τ
τ0
Q(t)G(t)dt, and σ2

c = ω2
b + ω2

s + 2ωbωs
σbs
σbσs

.
�

Theorem 4.3:
Let Uω

n(Q̂) be the statistic defined in (4.2), and let σ2
b , σ

2
s and σbs be the vari-

ances and covariance given in (4.5), (4.6) and (4.7), respectively. The asymptotic
variance of Uω

n(Q̂), given in Theorem 4.2, can be consistently estimated by:

V̂ar(Uω
n(Q̂)) = ω2

b + ω2
s + 2ωbωs

σ̂bs
σ̂b · σ̂s

where σ̂b, σ̂s, and σ̂bs denote the estimates of σb, σs and σbs, and are given by:
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σ̂2
b = p̂ (τb) (1− p̂ (τb))

σ̂2
s = −

∫ τ

τ0

(K̂τ (t))
2

Ŝ(t)Ŝ(t−)
· n

(0)Ĝ(0)(t−) + n(1)Ĝ(1)(t−)

Ĝ(0)(t−)Ĝ(1)(t−)
dŜ(t)

σ̂bs = −
∫ τb

τ0

K̂τb(t)

(∑
i=0,1

n− n(i)

n
· λ̂(i)

X,T (t)dt+
p̂ (τb) · dŜ(t)

Ŝ(t)

)

+

∫ τ

τb

K̂τ (t) · p̂ (τb)

Ŝ(t−)

(
− Ŝ(t−) · dŜ(t)

Ŝ(t)
+
∑
i=0,1

n− n(i)

n
· Ŝ

(i)
X (t−) · dŜ(i)

X (t)

Ŝ
(i)
X (t)

)

where K̂τ∗(t) =
∫ τ∗
t
Q̂(u)Ŝ(u)du (τ∗ = τ or τb), Ŝ

(i)
X (t) is the Kaplan-Meier esti-

mator of S
(i)
X (t); and λ̂

(i)
X,T (t) is the estimator of λ

(i)
X,T (t) = limdt→0 P (Xij = 1, t ≤

Tij < t + dt|Tij > t)/dt. Kernel-density methods are used in the estimation of

λ
(i)
X,T (t).

Proof of Theorem 4.3:
As stated in Theorem 4.1, the asymptotic variance of Uω

n(Q̂) is given by:

Var(Uω
n(Q̂)) = ω2

b + ω2
s + 2ωbωs

σbs
σbσs

(C.3)

This variance can be consistently estimated by using the plug-in method, i.e., by
substituting σ̂2

b , σ̂
2
s , and σ̂bs for σ2

b , σ
2
s and σbs, respectively, and Q̂(·) for Q(·).

Consistent estimators for σ2
b , σ

2
s are given by (4.10) and (4.11). For further details

of these estimators, we refer to (Lachin, 1981) and (Pepe and Fleming, 1989).
On the other hand, the covariance can be estimated by (4.12). The differences

between the theoretical and estimated covariance expressions ((4.7) and (4.12))

arise from the fact that pN(t) can be expressed as the ratio of λ
(i)
X,T (t) and the time-

to-event hazard function λ(i)(s)ds = −dS(i)(s)

S(i)(s)
. Further details of the derivation and

estimation of the covariance are postponed to Appendixes C.2.1 and C.2.2.
�

Theorem 4.4:
Let Uω

n(Q̂) be the statistic defined in (4.2), and let V̂ar(Uω
n(Q̂)) be the variance

estimator given in (4.9). Consider the global null hypothesis H0 ((4.1)) and let
the normalized statistic of Uω

n(Q̂) be:

Uω
n(Q̂)

/√
V̂ar(Uω

n(Q̂)) (C.4)
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Then, the statistic defined in (C.4) converges in distribution to a standard normal
distribution. Moreover, for positive Q(·), the statistic is consistent against any
alternative hypothesis of the form of H1 in (4.1) which contemplate differences
and stochastic ordering alternatives for the binary and time-to-event outcomes,
respectively.

Proof of Theorem 4.4:
Following the asymptotic results, under H0, in Theorems 3.2 and 3.4, and relying

on Slutsky’s theorem, the statistic Uω
n(Q̂)/

√
V̂ar(Uω

n(Q̂)) asymptotically follows

a standard normal distribution. Moreover, since both
√

n(0)n(1)

n
Us,n(Q̂)

/
σ̂s and√

n(0)n(1)

n
Ub,n

/
σ̂b are consistent Pepe and Fleming (1991), the normalized statistic

of Uω
n(Q̂) for Q(·) > 0 is consistent against any alternative hypotheses of the form

of H1 in (4.1).

Theorem C.1. Let Uω
n(Q̂) be the statistic defined in (4.2), and let σ2

b , σ2
s and σ2

bs

be the variances and covariance given in (4.5), (4.6) and (4.7), respectively. An
unpooled estimate of the asymptotic variance of Uω

n(Q̂), given in Theorem 4.2, is:

V̂arup(U
ω
n(Q̂)) = ω2

b + ω2
s + 2ωbωs

σ̂bs,up
σ̂b,upσ̂s,cup

(C.5)

where σ̂b,up, σ̂s,up, and σ̂bs,up denote the unpooled estimates of σb, σs and σbs, given
by:

σ̂2
b,up =

∑
i=0,1

n− n(i)

n
· p̂(i) (τb)

(
1− p̂(i) (τb)

)
(C.6)

σ̂2
s,up = −

∑
i=0,1

n− n(i)

n

∫ τ

τ0

(K̂(i)(t))2

Ŝ(i)(t)Ŝ(i)(t−)Ĝ(i)(t−)
dŜ(i)(t)

(C.7)

σ̂bs,up =
∑
i=0,1

n− n(i)

n

(
−
∫ τb

τ0

K̂(i)
τb

(t)

(
λ̂

(i)
X,T (t)dt+

p̂(i)dŜ(i)(t)

Ŝ(i)(t)

)

+

∫ τ

τb

K̂
(i)
τ (t)p̂(i)

Ŝ(i)(t−)

(
Ŝ

(i)
X (t−) · dŜ(i)

X (t)

Ŝ
(i)
X (t)

− Ŝ(i)(t−) · dŜ(i)(t)

Ŝ(i)(t)

))
(C.8)
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where K̂
(i)
τ∗ (t) =

∫ τ∗
t
Q̂(u)Ŝ(i)(u)du (τ∗ = τ or τb), Ŝ

(i)
X (t) is the Kaplan-Meier

estimator of S
(i)
X (t); and λ̂

(i)
X,T (t) is the estimator of λ

(i)
X,T (t) = limdt→0 P (Xij =

1, t ≤ Tij < t+ dt|Tij > t)/dt and is estimated with kernel-based methods.

C.2 Covariance derivation and estimation

C.2.1 Covariance derivation

Lemma C.1. Assume that S(i)(τ) > 0, S
(i)
X (τ) > 0, and G(i)(τ) > 0 for i = 0, 1.

Then,

sup
t∈[0,τ ]

|Ȳ (i)(t)/n(i) − y(i)(t)| p−→ 0 and sup
t∈[0,τ ]

|Ȳ (i)
X (t)/n(i) − y(i)

X (t)| p−→ 0

where y(i)(t) = S(i)(t)G(i)(t) and y
(i)
X (t) = p(i)S

(i)
X (t)G(i)(t).

Proof of Lemma A.
The proof follows analogous arguments as those used in the proof of Lemma 1 in
the Appendix of Elashoff et al. (2012). The proof for both processes Ȳ (i)(t)/n(i)

and Ȳ
(i)
X (t)/n(i) mainly takes into account that at a given t,

E(Yij(t)) = P(Yij(t) = 1) = S(i)(t−)G(i)(t−) = S(i)(t)G(i)(t)

because S(i)(·) and G(i)(·) are continuous functions, and

E(Yij,X(t)) = P(Yij(t) ·Xij = 1) = P(Xij = 1)P(Yij(t)|Xij = 1)

= p(i)S
(i)
X (t−)C

(i)
X (t−)

where C
(i)
X (t−) is the censoring survival function for the responders. Since the

binary outcome and censoring are independent, we have C
(i)
X (t) = G(i)(t) and

because S
(i)
X (·) and C

(i)
X (·) are continuous functions it follows that E(Yij,X(t)) =

p(i)S
(i)
X (t)G(i)(t) = y

(i)
X (t). The remainder of the proof is based on applying the

weak law of large numbers for each t and the Lebesgue dominated convergence
theorem to both Ȳ (i)(t)/n(i) and Ȳ

(i)
X (t)/n(i).
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Theorem C.2. Assume that S(i)(τ) > 0, S
(i)
X (τ) > 0, G(i)(τ) > 0 and that

y(i)(τ) > 0 for i = 0, 1. Let Ub,n (τb) and Us,n(τ0, τ ; Q̂) be the binary and time-to-
event statistics given in (3) and (4), respectively. Let σbs be the asymptotic covari-
ance between Ub,n (τb) and Us,n(τ0, τ ; Q̂) under the null hypothesis H0 : Hs,0 ∩Hb,0.
Then:

σbs =
∑
i=0,1

(
1− π(i)

)(∫ τb

τ0

∫ τb
s
Q(t)S(i)(t)dt

S(i)(s)
·
(
p

(i)
N (s)− p(i)

)
dS(i)(s) (C.9)

+

∫ τ

τb

p(i) ·
∫ τ
s
Q(t)S(i)(t)dt

S(i)(s)

(
dS

(i)
X (s)− dS(i)(s)

))
(C.10)

Proof of Theorem B.
As earlier, we will use Ub,n, Us,n(Q̂), and p(i) instead of Ub,n (τb), Us,n(τ0, τ ; Q̂) and

p(i) (τb) for short. Since Us,n(Q̂)−Us,n(Q)
p−→ 0 as n→ +∞ (see Lemma 3.1 in Ap-

pendix C.1), it is sufficient to find the asymptotic covariance of Cov(Ub,n, Us,n(Q)).

Cov(Ub,n, Us,n(Q)) =
n(0)n(1)

n
Cov

((
p̂(1) − p̂(0)

)
,

∫ τ

τ0

Q(t)
(
Ŝ(1)(t)− Ŝ(0)(t)

)
dt

)
=
n(0)n(1)

n

∑
i=0,1

Cov

(∫ τ

τ0

Q(t)Ŝ(i)(t)dt, p̂(i)

)

=
n(0)n(1)

n

∑
i=0,1

E

(
(p̂(i) − p(i)) ·

(∫ τ

τ0

Q(t)(Ŝ(i)(t)− S(i)(t))dt

))
(C.11)

To derive (C.11), we use the following results:

� The approximation

√
n(i)

(
Ŝ(i)(t)− S(i)(t)

)
= −
√
n(i)S(i)(t)

∫ t

τ0

dM̄ (i)(s)

Ȳ (i)(s)
+ op(1) for t ∈ [τ0, τ ]

(C.12)

given by Fleming & Harrington (see Page 98 in(Fleming and Harrington, 1991));

� E
(∫ τ

τ0
Q(t)Ŝ(i)(t)dt

)
=
∫ τ
τ0
Q(t)S(i)(t)dt (Gill (1980), pag 38), since y(i)(τ) > 0;

� E(p̂(i)) = p(i) and denoting by K(i)(s) =
∫ τ
s
Q(t)S(i)(t)dt,
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hence we have:

(C.11) =
n(0)n(1)

n

∑
i=0,1

E

(
(p̂(i) − p(i)) ·

(
−
∫ τ

τ0

K(i)(s)
dM̄ (i)(s)

Ȳ (i)(s)

))
+ op(1/

√
n(i))

= −n
(0)n(1)

n

∑
i=0,1

E

(
p̂(i) ·

(∫ τ

τ0

K(i)(s)
dM̄ (i)(s)

Ȳ (i)(s)

))
+ op(1/

√
n(i))

Furthermore:

n(i)E

(
p̂(i) ·

(∫ τ

τ0

K(i)(s)
dM̄ (i)(s)

Ȳ (i)(s)

))
=

∫ τ

τ0

K(i)(s)E

(
p̂(i)dM̄

(i)(s)
Ȳ (i)(s)

n(i)

)
(C.13)

because:

�
K(i)(s)

Ȳ (i)(s)
is a bounded Fs-predictable process, then

∫ τ
τ0
K(i)(s)dM̄

(i)(s)

Ȳ (i)(s)
is a martin-

gale and

E
(∫ τ

τ0
K(i)(s)dM̄

(i)(s)

Ȳ (i)(s)

)
= 0 (Theorem 2.4.4. in Fleming and Harrington (1991));

� the integrand of (C.13) is a measurable function and by Fubini’s Theorem, we
can interchange the order of the integral.

We now work with the integrand in (C.13):

E

(
p̂(i)dM̄

(i)(s)
Ȳ (i)(s)

n(i)

)
= E

(
p̂(i)dN̄

(i)(s)
Ȳ (i)(s)

n(i)

)
− n(i)p(i)λ(i)(s)ds

=
E(p̂(i)dN̄ (i)(s))

y(i)(s)
+ op(1) (C.14)

because

� dM̄ (i)(s) = dN̄ (i)(s)− Ȳ (i)(s)λ(i)(s)ds;
� using Lemma C.1:

p̂(i)dN̄
(i)(s)

Ȳ (i)(s)

n(i)

= p̂(i)dN̄ (i)(s)

(
1

Ȳ (i)(s)

n(i)

− 1

y(i)(s)
+

1

y(i)(s)

)
=
p̂(i)dN̄ (i)(s)

y(i)(s)
+ op(1)

We now work out E(p̂(i)dN̄ (i)(s)) and use that XijdNij(s) are independent and
identically distributed and Xij is independent of dNik(s) (k 6= j):
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E(p̂(i)dN̄ (i)(s)) = E

(∑n(i)

j=1 Xij

n(i)

) n(i)∑
k=1

dNik(s)


=

1

n(i)
E

 n(i)∑
j=1

XijdNij(s)

+
1

n(i)
E

 n(i)∑
j=1

n(i)∑
k=1,k 6=j

XijdNik(s)


=

1

n(i)
n(i)E (Xi1dNi1(s)) +

1

n(i)
n(i)(n(i) − 1)E (Xi1dNi2(s))

= E (Xi1dNi1(s)) + (n(i) − 1)p(i)y(i)(s) · λ(i)(s)ds (C.15)

In order to calculate E (Xi1dNi1(s)), we distinguish whether s ≤ τb or s > τb and
prove that:

E (Xi1dNi1(s)) =

{
p

(i)
N (s) · y(i)(s) s ≤ τb

p(i)J
(i)
X (s)λ

(i)
X (s)ds s > τb

(C.16)

where p
(i)
N (s) = P (Xi1 = 1|dNi1(s) = 1) and J

(i)
X (s) = E(Yi1(s)|Xi1 = 1).

Indeed, for s ≤ τb:

E (Xi1dNi1(s)) = P (Xi1 = 1, dNi1(s) = 1) = p
(i)
N (s) · y(i)(s) · λ(i)(s)ds

for s > τb:

E (Xi1dNi1(s)) = P (Xi1 = 1, dNi1(s) = 1) = p(i) · E (dNi1(s)|Xi1 = 1)

= p(i) · E (Yi1(s)|Xi1 = 1)λ
(i)
X (s)ds = p(i)J

(i)
X (s)λ

(i)
X (s)ds

By substituting (C.16) in (C.15), we obtain:

E(p̂(i)dN̄ (i)(s)) =

{
(p

(i)
N (s) + (n(i) − 1)p(i))y(i)(s) · λ(i)(s)ds s ≤ τb

p(i)
(
λ

(i)
X (s)ds · J (i)

X (s) + (n(i) − 1)y(i)(s) · λ(i)(s)ds
)

s > τb

and then (C.14) becomes:

E

(
p̂(i)dM̄

(i)(s)
Ȳ (i)(s)

n(i)

)
=

{
(p

(i)
N (s)− p(i))λ(i)(s)ds+ op(1) s ≤ τb
p(i)

y(i)(s)

(
J

(i)
X (s)λ

(i)
X (s)ds− y(i)(s)λ(i)(s)ds

)
+ op(1) s > τb

(C.17)

Collecting equations (C.11),(C.13),(C.17):
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Cov(Ub,n, Us,n(Q)) =
n(0)n(1)

n

∑
i=0,1

E

(
(p̂(i) − p(i)) ·

(∫ τb

τ0

Q(t)(Ŝ(i)(t)− S(i)(t))dt

+

∫ τ

τb

Q(t)(Ŝ(i)(t)− S(i)(t))dt

))
= −n

(0)n(1)

n

∑
i=0,1

E

(
p̂(i) ·

(∫ τb

τ0

K(i)
τb

(s)
dM̄ (i)(s)

Ȳ (i)(s)

+

∫ τ

τb

K(i)
τ (s)

dM̄ (i)(s)

Ȳ (i)(s)

))
+ op(1/

√
n(i))

= −
∑
i=0,1

n− n(i)

n

(∫ τb

τ0

K(i)
τb

(s)E

(
p̂(i) · dM̄

(i)(s)
Ȳ (i)(s)

n(i)

)

+

∫ τ

τb

K(i)
τ (s)E

(
p̂(i) · dM̄

(i)(s)
Ȳ (i)(s)

n(i)

))
+op(1/

√
n(i))

= −
∑
i=0,1

n− n(i)

n

(∫ τb

τ0

K(i)
τb

(s)
(

(p
(i)
N (s)− p(i))λ(i)(s)ds

)
+

+

∫ τ

τb

K(i)
τ (s)

p(i)

y(i)(s)

(
J

(i)
X (s)λ

(i)
X (s)ds− y(i)(s)λ(i)(s)ds

))
+op(1/

√
n(i))

where K
(i)
τ∗ (t) =

∫ τ∗
t
Q(u)S(i)(u)du (τ∗ = τ or τb). Noticing that λ(i)(s)ds =

−dS(i)(s)

S(i)(s)
, λ

(i)
X (s)ds = −dS

(i)
X (s)

S
(i)
X (s)

, y(i)(t) = S(i)(t)G(i)(t) and J
(i)
X (s) = S

(i)
X (t)G(i)(t),

we finally obtain:

Cov(Ub,n, Us,n(Q)) =
∑
i=0,1

n− n(i)

n

(∫ τb

τ0

∫ τb
s
Q(t)S(i)(t)dt

S(i)(s)
·
(
p

(i)
N (s)− p(i)

)
dS(i)(s)

+

∫ τ

τb

p(i) ·
∫ τ
s
Q(t)S(i)(t)dt

S(i)(s)

(
dS

(i)
X (s)− dS(i)(s)

))
+op(1/

√
n(i))

Since Us,n(Q̂)− Us,n(Q)
p−→ 0 as n→ +∞, it follows that
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lim
n→+∞

Cov(Ub,n, Us,n(Q̂)) = lim
n→+∞

Cov(Ub,n, Us,n(Q)) = σbs,

and since lim
n→+∞

n(i)/n = π(i) ∈ (0, 1), we finally obtain:

σbs =
∑
i=0,1

(
1− π(i)

)(∫ τb

τ0

∫ τb
s
Q(t)S(i)(t)dt

S(i)(s)
·
(
p

(i)
N (s)− p(i)

)
dS(i)(s)

+

∫ τ

τb

p(i) ·
∫ τ
s
Q(t)S(i)(t)dt

S(i)(s)

(
dS

(i)
X (s)− dS(i)(s)

))

Then the proof is complete. �

C.2.2 Covariance estimation

We will prove at the end of this section that the probability
p

(i)
N (t) = P (Xij = 1|dNij(t) = 1) can be approximated by the ratio of two hazard

functions p
(i)
N (t) = λ

(i)
X,T (t)/λ(i)(t) where λ

(i)
X,T (t) = lim

∆t→0

1

∆t
P (X = 1, t ≤ T1 <

t + ∆t|T1 > t). Using this alternative expression for p
(i)
N (t) and noticing that

λ(i)(s)ds = −dS(i)(s)/S(i)(s), σbs given in (C.9) can be rewritten as:

σbs =
∑
i=0,1

(
1− π(i)

)(
−
∫ τb

τ0

(∫ τb

s

Q(t)S(i)(t)dt

)
· λ(i)

X,T (s)ds

−
∫ τb

τ0

∫ τb
s
Q(t)S(i)(t)dt

S(i)(s)
· p(i)dS(i)(s)

+

∫ τ

τb

p(i) ·
∫ τ
s
Q(t)S(i)(t)dt

S(i)(s)

(
dS

(i)
X (s)− dS(i)(s)

))

A consistent estimator for σbs is obtained by replacing S(i)(t), S
(i)
X (s) by the cor-

responding Kaplan-Meier estimators of Ŝ(i)(t), Ŝ
(i)
X (s); Q(t) by Q̂(t); and finally

replacing λ
(i)
X,T (s) by a kernel function estimator (Andersen et al., 1992).

Derivation of p
(i)
N (t) =

λ
(i)
X,T (t)

λ(i)(t)
:

We first write:
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p
(i)
N (t) = P (Xij = 1|dNij(t) = 1) =

P (Xij = 1, dNij(t) = 1)

P (dNij(t) = 1)

and now:

� P (Xij = 1, dNij(t) = 1) = y(i)(t)λ
(i)
X,T (t) because:

P (Xij = 1, dNij(t) = 1) = E (XijdNij(t)) = E (E (XijdNij(t)|Yij(t)))

and

E (XijdNij(t)|Yij(t)) = Yij(t)P (XijdNij(t) = 1|Yij(t))

= Yij(t)
P (Xij = 1, dNij(t) = 1, Yij(t) = 1)

P (Yij(t) = 1)

= Yij(t)
P (Xij = 1, t ≤ Tij < t+ dt, Tij > t,Cij > t)

P (Tij > t,Cij > t)

= Yij(t)P (Xij = 1, t ≤ Tij < t+ dt|Tij > t)

hence:

P (Xij = 1, dNij(t) = 1) = y(i)(t)P (Xij = 1, t ≤ Tij < t+ dt|Tij > t)

∼= y(i)(t)λ
(i)
X,T (t)dt

(C.18)

because: E
(
Xij · (Nij(t+∆t)−Nij(t))|Yij(t) = 1

)
= λ

(i)
X,T (t)∆t+ o(∆t).

� P (dNij(t) = 1) = y(i)(t)λ(i)(t)dt because:

P (dNij(t) = 1) = P (Yij(t) = 1)E (N(t+ dt)−N(t)|Yij(t)) ∼= y(i)(t)λ(i)(t)dt

(C.19)

because E(Nij(t+∆t)−Nij(t)|Yij(t) = 1) = λ(i)(t)∆t+ o(∆t) (Andersen et al.
(1992)).

Taking (C.18) and (C.19) into account, we finally obtain:

p
(i)
N (t) =

P (Xij = 1, t ≤ Tij < t+ dt|Tij > t)

P (dNij(t) = 1)
∼=
λ

(i)
X,T (t)

λ(i)(t)
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C.3 Additional results case study

In the illustration section, we used the pooled variance estimator for the L-
statistic. Next, we show the results by using the pooled and bootstrap variance
estimator.

We employ the function lstats to compute the L-statistic using the unpooled
variance estimator as follows:

lstats(time=data$time , status=data$status ,
binary=data$binary , treat=data$treat ,
tau0=0, tau=4, taub =0.5, rho=0, gam=1, eta=1,
wb=0.25, ws=0.75,
var_est = "Unpooled")

##
## $LTest
## Parameter Value
## 1 (Standardized) L-Test 4.8550922
## 2 L-Test 3.8415352
## 3 Standard deviation 0.7912384
##
## $Binary_Tests
## Parameter Value
## Standardized L-Test 2.3073454
## Ub Binary Test 0.4540763
## sd Standard deviation 0.2431064
##
## $Survival_Tests
## Parameter Value
## Standardized Test 4.3529318
## Us Survival Test 2.4398019
## sd Standard deviation 0.5604962
##
## $Covariance
## Parameter Value
## 1 Covariance 0.0003844938

We use the function lstats boots to calculate the standardized L-statistic
using the bootstrap variance estimator:

lstats_boots(data$time , data$status , data$binary , data$
treat ,

tau=4, rho=0, gam=1, eta=1,
wb=0.25, ws=0.75, Boot = 100)

##
## $LTest
## Parameter Value
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## 1 (Standardized) L-Test 3.9572756
## 2 L-Test 3.8415352
## 3 Standard deviation 0.9707525
##
## $Binary_Tests
## Parameter Value
## Test Standardized L-Test 2.3073454
## Ub Binary Test 0.4540763
## sd Standard deviation 0.1967960
##
## $Survival_Tests
## Parameter Value
## Test Standardized Test 4.3529318
## Us Survival Test 2.4398019
## sd Standard deviation 0.5604962

C.4 Additional results simulation study

As mentioned in the simulation section, we have also evaluated what powers we
would have had if instead of having an endpoint with no effect (cases 2 and 3), we
have had an endpoint with a small effect. To do so, we considered the parameter
configuration that we used in case 2 but instead of considering equal survival
curves, we considered HR = 0.85; and the parameter configuration in case 3 but
instead of d = 0 we used d = 0.05.

The next two figures show the boxplots of the empirical power when the binary
endpoint has small treatment effect (Figure C.1) and when the survival endpoint
has small treatment effect (Figure C.2). We observe that the powers when the
endpoints are equally important, the L-statistics are still more powerful than the
Bonferroni procedure.
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Fig. C.1 Boxplots empirical powers when the binary endpoint has small treatment
effect.
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effect.
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