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ABSTRACT

D iabetes Mellitus (DM) is a chronic metabolic condition characterized by raised levels
of blood glucose (BG), which can lead to long-term health complications if not treated.
The irreversible destruction of the insulin producing β-cells in the pancreas or an

increased body resistance to insulin action lead to type 1 diabetes (T1D) and type 2 diabetes
(T2D), respectively. In 2019 the total world adult population with DM in the range of 20-79
years was estimated in 463 million, number that is predicted to rise to 578 million by 2030.

Type 1 diabetes is a serious disease that must be monitored and controlled artificially
by supplying exogenous insulin to the body. Intensive insulin therapy was demonstrated to
alleviate DM symptoms and to reduce the risk of diabetes complications. It can be performed
using multiple daily injections (MDI) or using a continuous subcutaneous insulin infusion
(CSII). During the last decade, several technological advancements in BG sensing led to reliable
continuous glucose monitors (CGM). The artificial pancreas (AP) is a closed-loop (CL) system
that resulted from integrating an insulin pump with a CGM and uses a control algorithm
to automate insulin infusion. Several control approaches have been explored and tested in
simulation and in clinical trials, showing that AP systems have the potential to revolutionize
T1D and T2D treatment. However, big disturbances such as meals and exercise, important
delays in the measurements and control actions, and having the patient in the control loop pose
major impediments for the success of AP systems.

In this work, a novel control approach is presented for an AP system aimed to be robust
against patient variability, meals and exercise. To enhance safety, fault detection strategies are
also developed as an integral part of the system. One of the hurdles of AP systems lies in the fact
that the plant to control is also its operator, i.e. the patient is in the loop. This poses limitations
on performance if the controller tuning and performance is not monitored and adapted if needed.
A fuzzy adaptive system has been developed to supervise the control performance during
postprandial periods, and to adapt the controller tuning if needed. Another disturbance that
increases the risk of hypoglycemia is physical activity. To cope with this, a multivariable control
algorithm has been developed, which uses insulin infusion and prompts rescue carbohydrates.
The proposed approach was firstly tested in-silico simulations and validated later in an inpatient
clinical study. The multivariable approach relies on patient compliance. For that reason, a fault
detection (FD) mechanism that uses a bank of observers is developed to detect patient modes
and potential faults.

All of the results obtained from the different experiments conducted using the presented
approaches are promising. Specifically, the clinical trial results suggest that physical activity

xv



ABSTRACT

can be done safely with an AP system. The obtained outcomes have the potential to contribute
in the future AP development.
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RESUMEN

La Diabetes Mellitus (DM) es una enfermedad metabólica crónica caracterizada por
elevados niveles de glucosa en sangre, que pueden provocar complicaciones a largo plazo
sin el tratamiento apropiado. La destrucción irreversible de las células β productoras

de la insulina en el páncreas o un aumento de la resistencia a la acción de la insulina conduce
respectivamente a la diabetes tipo 1 (T1D) o a la diabetes tipo 2 (T2D). En 2019 la población
total adulta mundial con DM en el rango de 20-79 años fue estimada en 463 millones, número
que se prevé que aumente hasta los 578 millones en 2030.

La T1D es una enfermedad seria que requiere monitorización y tiene que ser controlada de
forma artificial, subministrando insulina exógena al cuerpo. La terapia intensiva de insulina
demostró que podía mitigar los síntomas de la DM y reducir el riesgo de las complicaciones de
la diabetes. Esta puede ser realizada mediante múltiples inyecciones diarias (MDI) o usando
infusión subcutánea continua de insulina (CSII). Durante la última década, varios avances
tecnológicos en la medición de glucosa en sangre han permitido obtener monitores continuos
de glucosa (CGM) de confianza. El páncreas artificial (AP) es un sistema en lazo cerrado
(CL) resultante de integrar una bomba de insulina con un CGM, y usa un algoritmo de control
para automatizar la infusión de insulina. Varios enfoques de control han sido explorados
y probados tanto en simulación como en ensayos clínicos, mostrando que los sistemas AP
tienen el potencial para revolucionar el tratamiento de la T1D y la T2D. No obstante, grandes
perturbaciones como las comidas o el ejercicio, el retardo en las medidas y en las acciones de
control, y teniendo el paciente en el lazo de control imponen obstáculos importantes para el
éxito de los sistemas AP.

En este trabajo se presenta un sistema de control nuevo para sistemas AP, diseñado para
ser robusto en frente a variabilidad del paciente, a comidas y ejercicio. Para aumentar la
seguridad del paciente, se diseñan también estrategias para la detección de fallos como una
parte integral del sistema. Uno de los obstáculos de los sistemas AP radica en el hecho que la
planta a controlar es muy variable en el tiempo. Esto pone limitaciones en el rendimiento si el
ajuste del controlador y su rendimiento no se monitoriza y no se adapta si fuera necesario. Un
sistema adaptativo difuso ha sido desarrollado para supervisar el rendimiento del controlador
en periodos postprandiales, y para adaptar el ajuste del controlador si fuera necesario. Otra
perturbación que incrementa el riesgo de hipoglucemia es la actividad física. Para hacer frente
a esto un sistema multivariable de control ha sido desarrollado. Este sistema usa infusión de
insulina y sugiere carbohidratos de rescate. El enfoque propuesto fue probado en simulaciones
in silico y posteriormente validado en un ensayo clínico. El sistema de control multivariable
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RESUMEN

depende de la obediencia del paciente. Por esta razón, un sistema de detección de fallos que
usa un banco de observadores ha sido desarrollado para detectar fallos del paciente.

Todos los resultados obtenidos de los diferentes experimentos realizados utilizando las
propuestas de este trabajado son prometedores. En particular, los resultados del ensayo clínico
sugieren que la actividad física se puede realizar de forma segura con un sistema AP. Los
resultados tienen el potencial para contribuir en el futuro del desarrollo de sistemas AP.

xviii



RESUM

La Diabetis Mellitus (DM) és una malaltia metabòlica crònica, caracteritzada per elevats
nivells de glucosa en sang que poden provocar complicacions a llarg termini sense el
tractament apropiat. La destrucció irreversible de les cèl·lules β productores d’insulina

al pàncrees o un augment de la resistència a l’acció de la insulina condueixen respectivament a
la diabetis tipus 1 (T1D) o a la diabetis tipus 2 (T2D). El 2019 la població total adulta mundial
amb DM dins el rang de 20-79 anys va ser estimada en 463 milions, xifra que es preveu que
s’incrementi fins als 578 milions al 2030.

La T1D és una greu que requereix de monitorització i que ha de ser controlada de forma
artificial subministrant insulina exògena. La teràpia intensiva d’insulina va demostrar que podia
mitigar els símptomes de la DM i reduir el risc de les complicacions de la diabetis. Aquesta
pot ser realitzada mitjançant múltiples injeccions diàries (MD) o utilitzant infusió continua
subcutània d’insulina (CSII). Durant l’última dècada, varis avenços tecnològics en la mesura
de glucosa en sang han aconseguit obtenir monitors continus de glucosa (CGM) de confiança.
El pàncrees artificial (AP) és un sistema de llaç tancat (CL) resultant d’integrar una bomba
d’insulina amb un CGM, i utilitza un sistema de control per automatitzar la infusió d’insulina.
Varis enfocaments de control han estat explorats i provats tant en simulació com en assajos
clínics, mostrant que els sistemes AP tenen el potencial per revolucionar el tractament de la
T1D i la T2D. No obstant, grans pertorbacions com els menjars o l’exercici, el retard en les
mesures i en les accions de control, y tenir el pacient dins el llaç de control imposen obstacles
importants per l’èxit del AP.

En aquest treball es presenta un sistema de control nou per a sistemes AP, dissenyat per
ser robust davant la variabilitat del pacient, a menjars i exercici. Per augmentar la seguretat
del pacient, també es dissenyen estratègies de detecció de fallades com una part integral dels
sistema. Un dels obstacles dels sistemes AP radica en el fet que la planta a controlar és molt
variable en el temps. Això imposa restriccions sobre el rendiment si l’ajust del controlador
y el seu rendiment no es monitoritzen i no s’adapten en cas que fos necessari. Un sistema
adaptatiu difús ha estat desenvolupat per a supervisar el rendiment del controlador en períodes
postprandials, i per ajustar el controlador si és necessari. Una altra pertorbació que incrementa
el risc d’hipoglucèmia és l’activitat física. Per fer-ne front, un sistema multivariable de control
ha estat desenvolupat. Aquest sistema utilitza la infusió d’insulina i suggereix carbohidrats de
rescat. L’enfocament proposat ha estat provat en simulacions in silico i posteriorment validat
en un assaig clínic. El sistema de control multivariable depèn de l’obediència del pacient. Per
aquesta raó, un sistema de detecció de fallades que utilitza un banc d’observadors ha estat
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desenvolupat per a detectar fallades del pacient.
Tots els resultats obtinguts dels diferents experiments realitzats utilitzant les propostes

d’aquest treball són prometedors. En particular, els resultats de l’assaig clínic suggereixen
que l’activitat física es pot realitzar de forma segura amb un sistema AP. Els resultats tenen el
potencial per a contribuir en el futur del desenvolupament de sistemes AP.
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1
INTRODUCTION

T his chapter presents a concise introductory background to diabetes mellitus (DM)

in Section 1.1 and Section 1.2, where the reader is introduced to DM associated

problems and current technologies aimed to overcome them. Then, Section 1.3

describes the context in which this work has been developed. Finally, the main objectives of

the work are presented in Section 1.4, and Section 1.5 concludes with the organization of this

document.

1.1 Diabetes Mellitus

DM is a chronic condition caused by a group of metabolic disorders characterized by raised

levels of blood glucose (BG) (Ahmad, 2013). The cause of high glucose concentration, also

known as hyperglycemia, lies in the fact that the body cannot produce or effectively use an

hormone called insulin. Insulin is an essential hormone secreted by the β-cells in the pancreas,

and is fundamental for the glucose, protein and fat metabolism. In healthy people, BG levels are

appropriately regulated by complex metabolic feedback processes driven by the action of several

1



CHAPTER 1. INTRODUCTION

endocrine hormones produced in the pancreas, see figure 1.1. Insulin allows glucose uptake

by tissue cells from the bloodstream to be used as energy, and also activates the glycogenesis

process by which excessive glucose can be stored as glycogen in the liver. Glucagon is a

hormone, also produced in the pancreas by the α-cells, that is also key to correctly regulate

the glucose metabolism. The secretion of glucagon is stimulated by low BG and insulin levels,

and triggers another metabolic process known as gluconeogenesys. This process results in

the generation of glucose by breaking down previously stored glucose as glycogen. In people

with DM the insulin signal flows from figure 1.1 are seriously severed, disabling glucose

homeostasis. Over time, the production and effectivity of glucagon is also decreased. Therefore,

people with DM cannot regulate properly BG levels because both pathways are severely injured

or even broken (Greenbaum et al., 2002; Sayama et al., 2005; Atkinson et al., 2011).

Normal Blood Glucose (70 - 140 mg/dl)

Insulin

Tissue Cells

Glucagon

Liver

Liver Pancreas

Pancreas

↑ in BG

↑ in BG
promotes the

↓ in BG

↓ BG↓ BG

Stimulates glucose
consumption by

Stimulates
production of

Stimulates
breakdown

of glycogen
in the

to release Formation of
glycogen by the

Gluconeogenesys

Glycogenesis

Figure 1.1: Homeostasis regulation of BG in healthy people. Red color depicts mechanisms
triggered to lower BG, and blue color shows mechanisms that increase BG.

According to the International Diabetes Federation (IDF), 463 million of adults between

20-79 years are estimated to have one form of DM in 2019, with projections to rise to 578

2
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million by 2030. This represents the 9.3% of the adult world population in that age group and

has huge social and economical impacts. The global health care expenditure on DM in 2019

was estimated to be 760 billion US dollars. Table 1.1 shows the fact that DM is growing steadily

in the countries with more incidence in the world. More importantly, figure 1.2 illustrates that

DM is a worldwide pandemic with incidence in all countries.

2019 2030

Rank Country
Number of people

(milion) Country
Number of people

(milion)
1 China 116.4 China 140.5
2 India 77.0 India 101.0
2 United States 31.0 United States 34.4
4 Pakistan 19.4 Pakistan 26.2
5 Brazil 16.8 Brazil 21.5
6 Mexico 12.8 Mexico 17.2
7 Indonesia 10.7 Indonesia 13.7
8 Germany 9.5 Egypt 11.9
9 Egypt 8.9 Bangladesh 11.4

10 Bangladesh 8.4 Germany 10.1

Table 1.1: Top 10 counties with the highest number of adults (20-79 years) with diabetes in
2019 and estimated numbers for 2030 according to the (IDF, 2019) projection.

DM can be mainly classified into three groups, type 1 diabetes (T1D), type 2 diabetes (T2D)

and gestational diabetes. T1D is generally thought to be caused by an autoimmune reaction

in which the body’s immune system destroys the insulin producing β-cells of the pancreas.

This results in a permanent insulin deficiency, leaving the body with little to none insulin

production. Therefore, people with T1D need to exogenously supply insulin to the body to

survive (Atkinson et al., 2014). Contrarily, T2D is caused by a combination of resistance to

insulin action and insufficient insulin secretory response. It is commonly developed in older

adults due to obesity and sedentary lifestyles (Chatterjee et al., 2017). Gestational diabetes is

usually temporal and arises during pregnancy in women with insufficient insulin production.

The diminished insulin secretory response is insufficient to regulate BG due to an increased

insulin resistance caused by the production of other hormones by the placenta (American
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<100 thousand
100-<500 thousand
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Figure 1.2: Estimated number of adults (20-79 years) with diabetes in 2019. Adapted from the
(IDF, 2019)

Diabetes Association, 2004). Other types of DM exist, such as the Maturity-Onset Diabetes

of the Young (MODY) and the Latent Autoimmune Diabetes in Adults (LADA) (American

Diabetes Association et al., 2014; Canivell and Gomis, 2014). The MODY is described as a

type of β-cell dysfunction caused by mutations in different genes. It is usually misclassified

as T1D or T2D leading to suboptimal BG control (Thanabalasingham and Owen, 2011). The

LADA is a specific form of DM that describe adult people that have a slowly progressive T1D,

often not requiring insulin therapy initially (Fourlanos et al., 2005; Kumar and de Leiva, 2017).

This work is focused on T1D, which if left untreated will lead to the development of

serious disabling, long-term and life-threatening complications, with severe mortality (Lind

et al., 2014; Rawshani et al., 2017). Some of the complications include but are not limited

to neuropathy, nephropathy, retinopathy, cardiovascular disease and death (IDF, 2019). The

results from Diabetes Control and Complications Trial (DCCT) showed that controlling BG by

exogenously injecting insulin was able to reduce diabetes related complications (DCCT, 1993).
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The study also revealed that intense insulin therapy was associated with an increased incidence

of low BG levels. Hypoglycemia or low BG levels is also a complication from DM and pose

short term risks that can be severe, including seizures, comma and death (Shafiee et al., 2012).

People with T1D are encouraged to regularly check and keep track of their BG levels,

because it is associated with better glucose control (Schütt et al., 2006). It is known that

glycated hemoglobin (HbA1c), a marker that reflects the average BG levels of the past 3 months,

correlates with the frequency of BG measurements (Miller et al., 2015). However, better HbA1c

levels may also correlate with an increased hypoglycemia occurrence (Ziegler et al., 2011).

Self-monitoring of blood glucose (SMBG) refers to the home monitoring of BG for people

with DM, and it is usually done by pricking a finger and taking a blood sample (Benjamin, 2002).

Then, the blood sample is deposited on a test strip and an electronic device, called glucometer,

returns the estimated BG levels. Glucometers offer accurate readings and enable people with

diabetes to make daily decisions on insulin infusion. However, some of the disadvantages of

SMBG are the need to prick fingers multiple times a day and that it does not give continuous

readings (Boland et al., 2001; Klonoff, 2007; Erbach et al., 2016).

Continuous glucose monitoring (CGM) is a newer technology that estimates BG levels from

glucose in the subcutaneous tissue (Klonoff et al., 2017). It is based on a small subcutaneous

sensor that measures interstitial glucose. The main advantage of CGM devices over SMBG

is the amount of readings they provide, CGM can provide BG estimates every five minutes

in contrast with the few daily measurements of SMBG. Even though CGM showed great

potential to overcome the limitations of glucometers, their BG estimations were traditionally

not as accurate (Clarke et al., 2005; Kovatchev et al., 2008). This resulted in CGM’s only

being used as an adjunctive tool to glucometers, and insulin decisions were not allowed to be

taken from CGM data (Rodbard, 2016). However, CGM technology has substantially evolved

during the last years and in 2016 the Food and Drud Administration (FDA) approved the

first non-adjunctive CGM for diabetes treatment decisions (Beck et al., 2020). This marked
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a milestone for future CGM devices, since CGM measurements can now be used to make

diabetes treatment decisions. The newest available CGM is the Dexcom G6, that comes factory

calibrated and does not require people to prick their fingers (Shah et al., 2018). Currently,

two types of CGM technology are available on the market, real-time CGM and intermittently

scanned CGM. While real-time CGM provides constanat readings over time, intermittently

scanned CGM require the user to purposely scan the sensor to download glucose information.

Each of these types of CGM provide the same type of information and they should be adjuncted

based on the patient needs (Edelman et al., 2018).

Treatments for T1D are based on exogenous insulin infusion. Traditionally, insulin has

been administered through either conventional or intensive insulin therapy (IIT). Conventional

therapy involved two or three injections of slow acting insulin per day and proper diet manage-

ment. Contrarily, IIT requires more than three daily injections and require people with diabetes

to take several BG readings every day. The DCCT showed that IIT improves BG control and

has the potential to reduce long-term health complications (DCCT, 1993). However, it also

showed that an intensive treatment also increases the risk of hypoglycemia. Hypoglycemia

is not caused by DM, but is rather an effect of poorly adjusted insulin therapies. Moreover,

severe cases of hypoglycemia can lead in the short-term to loss of consciousness, seizures,

coma, and ultimately death (Zoungas et al., 2010). Therefore, there is a trade-off between the

achievable performance without increasing too much the risk of low BG levels. IIT has become

the standard of care for T1D due to its proven ability to reduce complications. Within IIT there

are two common treatments on the market, multiple daily injections (MDI) and continuous

subcutaneous insulin infusion (CSII). Both approaches use a basal-bolus strategy for delivering

insulin, are individualized for each patient characteristics and require people with diabetes to

estimate carbohydrate (CHO) consumption (Brazeau et al., 2013). MDI therapies consist on

using long-term insulin injections to simulate a basal insulin profile, and fast acting injections

to cover postprandial periods (PP). Contrarily, CSII therapies use an insulin pump with fast
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acting insulin, which allow more customization of the insulin therapy and have been showed to

outperform MDI therapies (Hoogma et al., 2006). The integration of insulin pumps and CGM

sensors resulted in the so-called sensor augmented pump (SAP) therapy, which has shown to

improve glycemic control compared to MDI therapy (Bergenstal et al., 2010; Hermanides et al.,

2011; Slover et al., 2012). A first step of closing the loop was made by the low glucose suspend

(LGS) approach on SAP therapies. As the name suggests, LGS systems suspend insulin infusion

if BG is lower than a given threshold and have been shown to enhance performance and safety

in avoiding hypoglycemia (Danne et al., 2011; Ly et al., 2013). Predictive low glucose suspend

(PLGS) systems became the next step after LGS systems, they use CGM readings to predict

hypoglycemia and automatically suspend insulin infusion. PLGS systems have shown to be

feasible, safer and offer better performance than LGS systems (Buckingham et al., 2013; Müller

et al., 2019; Choudhary et al., 2016; Battelino et al., 2017; Forlenza et al., 2018; Abraham

et al., 2018; Chen et al., 2019). Even though the advancements that T1D management has

experienced, it is known that there is still room to improve the outcomes for T1D treatments

(Miller et al., 2015).

Assessing the glycemic control of people with T1D is fundamental. It allows physicians

to adjust the therapy if it is underperforming and to optimize it over time to ultimately delay

or avoid long-term complications. The current gold standard metric, the HbA1c, is known to

be associated with how good glucose control is. However, it does not provide information

on glycemic variability, BG daily patterns or even hyper- and hypoglycemia events. BG may

substantially fluctuate even in well-controlled people, and these fluctuations may end up into

hyperglycemia and hypoglycemia events, also associated with short and long-term health

complications. With the rise of CGM technology and the increase of available data, newer

metrics have been proposed for BG monitoring (Battelino et al., 2019; Ajjan et al., 2019;

American Diabetes Association, 2020). Most of the newer metrics evaluate glycemic control

based on time spent in different glycemic ranges (TIR), the definition of level 1 and level 2
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hypoglycemia events and glycemic variability in terms of the coefficient of glucose variation

(Agiostratidou et al., 2017). The aforementioned CGM metrics are usually included in the

Ambulatory Glucose Profile (AGP). The AGP is a widely used report by clinicians and patients

for glucose management (Johnson et al., 2019) and is recognised to facilitate therapy decisions

(Forlenza et al., 2017; Carlson et al., 2017).

1.2 The Artificial Pancreas

The artificial pancreas (AP) is a technology that automates the regulation of BG concentration.

From a control oriented point of view an AP is a closed-loop (CL) control system that aims

to improve traditional diabetes treatment. AP systems date back to the 1960’s with the first

inpatient commercial device in 1977 (Cobelli et al., 2011). Compared to those early CL

prototype systems, which were developed for in-hospital use and used intravenous sensing and

delivery, current AP technology is small, portable, designed to be suitable for day to day use

and are the next step to PLGS (Jackson and Castle, 2020).

The basic AP system is composed of a control algorithm, a CGM device and an insulin

pump. The first commercially available AP system was the Medtronic Minimed 670G, which

included the basic three elements of any AP (Saunders et al., 2019). However, AP systems are

not limited to basic configurations and much more complex systems are under development

(Bertachi, Ramkissoon, Bondia and Vehí, 2018; Ramli et al., 2019). Figure 1.3 shows an

updated taxonomy of current AP configurations (Doyle et al., 2014). An AP configuration is

obtained by selecting options from each of the elements shown in the figure. Solid lines are

connections that exists in any AP configuration and snaked lines represent connections that

may partly be present in some configurations. Grey color distinguishes specific features of a

block, teal lines are information/action flows conducted during operation, and yellow color

show physiological states of the system. AP systems must be first and foremost safe, for that

reason not only control algorithms have to be developed, but also appropriate fault diagnosis
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mechanisms to ensure a safe operation (Bequette, 2014; Ramkissoon et al., 2017).

Controller
MPC
PID

Fuzzy

Insulin Pump

Patient
Treatment

Meal announcement
Insulin Bolus
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Other (pramlintide...)
None

Feed-forward
control

Tuning Disturbance Detection Meals
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Figure 1.3: Updated taxonomy of the AP, adapted from (Doyle et al., 2014).

The disruptive element firstly introduced by AP technology was the embedded control

algorithm within the strategy. AP systems are various and can be mainly classified into hybrid or

fully CL systems depending on their level of automation. Hybrid AP systems rely on user input

to counteract external disturbances, such as meals or exercise. Contrarily, fully CL systems can

operate with minimal user interaction and do not require meal information. Hybrid systems are

still very popular due to the existing limitations of AP systems, specially on postprandial periods.

A primary challenge of BG control is related to the delays caused by the pharmacokinetic

and pharmacodynamic behavior of current insulin analogues. The use of insulin infusion to

counteract meals can lead to late posptrandial hypoglycemia as AP systems may overactuate as
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a measure to mitigate high postprandial BG. This is caused by the implicit delays in the insulin

action and in the subcutaneous route, where insulin is infused. Current fast acting insulin is

not rapid enough to achieve optimal postprandial control (Gingras et al., 2018). The use of

meal announcement as a feed-forward control approach in hybrid AP systems is intended to

enhance the performance while mitigating the risk of late postprandial hypoglycemia. The

use of a fully CL AP is aimed to reduce the patient burden of T1D managment at the cost

of sacrificing performance when compared to hybrid solutions. Additionally, AP systems are

usually categorized into uni-hormonal or bi-hormonal systems. Uni-hormonal systems are AP

that only use insulin as a control action, whereas bi-hormonal systems use both insulin and

glucagon as control actions (Ward et al., 2008; Van Bon et al., 2012; Taleb et al., 2017).

The feasibility and performance of several control algorithms for AP have been investigated

extensively during the last decade. Specifically, most AP use either model predictive control

(MPC) (Incremona et al., 2018; Boiroux et al., 2018; Gondhalekar et al., 2018; Abuin et al.,

2020), proportional-integral-derivative (PID) (Steil et al., 2003; Marchetti et al., 2008; León-

Vargas et al., 2013; Huyett et al., 2015; Beneyto et al., 2018) or fuzzy algorithms (Mauseth

et al., 2013; Nimri and Phillip, 2014). There has been a lot of discussion comparing MPC and

PID performance for BG regulation supporting the use of either algorithms (Bequette, 2013;

Steil, 2013; Pinsker et al., 2016). Updated review on existing control algorithms for AP systems

under development can be found elsewhere (Lunze et al., 2013; Tagougui et al., 2019).

Recently, additional modules have been incorporated into AP systems. This was motivated

by the highly varying scenarios where AP have to work. Additionally, these systems are being

managed by people, which are not experts on the system and may not behave as expected.

Therefore, mechanisms to detect disturbances such as meals (Turksoy et al., 2015; Ramkissoon

et al., 2018; Samadi et al., 2018; Sala-Mira et al., 2019) or exercise (Jacobs et al., 2015; DeBoer

et al., 2017; Ramkissoon et al., 2019), insulin limiting techniques (Revert et al., 2013), fault

detection mechanisms (Baysal et al., 2013; Del Favero et al., 2014; Meneghetti et al., 2018),
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multivariable and adaptive systems (Cinar, 2017; Beneyto et al., 2018; Hajizadeh et al., 2018;

Moscardó et al., 2019) and optimization strategies for the tunning of controllers (Toffanin et al.,

2017; Shi et al., 2018; Beneyto and Vehi, 2018; Resalat et al., 2019; Bertachi et al., 2020) have

been proposed.

AP systems have to undergo extensive testing before reaching the market. In silico simula-

tions use a mathematical model of the glucose insulin system for testing control algorithms

(Kovatchev et al., 2009). The use of in silico simulations rapidly increased after the FDA

accepted a meal simulation model as a substitute to animal trials in the preclinical testing of CL

strategies in 2013 (Dalla Man et al., 2007; Man et al., 2014; Visentin et al., 2018). Thus, most

AP development included intensive in silico simulation of control strategies prior to clinical

trials in humans. This was shortly followed by inpatient clinical trials, generally with a reduced

number of subjects, to test the viability of the systems. Currently, the leading companies and

research groups in the AP field have already gone beyond this point and are rapidly performing

clinical outpatient trials to assess AP performance in free living conditions (Bekiari et al.,

2018).

1.3 Research Context

The work presented in this thesis has been supported by the FPU15/00244 grant from the Span-

ish Government and has been developed in the Modeling, Identification & Control Engineering

Laboratory (MICELAB) from the Universitat de Girona (UdG). The group is researching

technologies for diabetes since 2004. It is a leading research group in technologies for diabetes

and member of the Spanish Consortium on Artificial Pancreas and Diabetes Technology (eS-

CAPE). Since 2018 the consortium belongs to the prestigious center of excellence in diabetes

Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas

(CIBERDEM). The consortium integrates several multidisciplinary teams of engineers and

physicians from the following institutions:
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• MICELAB. This research group, led by professor Josep Vehí, was founded in 2000. Since

2005 the group is recognized and funded by the Government of Catalonia as "quality

research group" (2017SGR1551). The group is characterized by having a solid theoret-

ical basis in control engineering, artificial intelligence, machine learning, biomedical

engineering, computer engineering and applied mathematics, with expertise in systems

and control theory, modeling and control of biomedical systems, uncertain dynamical

systems, robust and predictive control and decision support systems. Main research con-

tributions to technologies for diabetes include the development of the AP, modeling and

control in diabetes, including glucose prediction, uncertainty and intra-patient variability,

optimization of insulin therapy, identifying patterns of CHO absorption and gastric emp-

tying, calibration algorithms for CGM, fault detection (FD) in continuous monitors and

insulin pumps and machine learning methods and its applications to diabetes.

• MEDERI Living Lab. The MEDERI Living Lab (Medical Devices Research & Inno-

vation Living Lab) is a multidisciplinary research group aimed to create an innovative

environment in the health technology sector. It was created in 2014 within the Instituto

Universitario de Automática e Informática Industrial (Institute ai2) of the Universitat

Politècnica de València (UPV).

• IDIBAPS. The IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer) is

a biomedical research centre of excellence founded in 1996. It is a public consortium

whose members are the Catalan Government, the Hospital Clínic de Barcelona, the

Faculty of Medicine and Health Sciences at the University of Barcelona and the CSIC

Institute of Biomedical Research of Barcelona.

The experiments, equipment and infrastructure resources used in this thesis have been

partially funded by the following projects

• New strategies for postprandial glycemic control using insulin pump therapy in type 1
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diabetes (ClosedLoop4Meals). Project funded by the Ministerio de Ciencia e Innovación

(MICINN) (ref. DPI2010-20764-C02-02). The general objective of this project was the

development of new efficient and safe strategies for postprandial glucose control in

people with T1D, aiming at the relieve of the burden of hypoglycemia.

• New methods for an efficient and safe domiciliary artificial pancreas in type 1 diabetes

(SAFE-AP). Project funded by the Ministerio de Economía y Competitividad (MINECO)

(ref. DPI2013-46982-C2-2-R). The main objective of this project was the development

of new methods and tools for efficiency and long-term safety of the AP at home.

• Solutions for the improvement of efficiency and safety of the artificial pancreas by

fault tolerant multivariable control architectures (mSAFE-AP). Project funded by the

Ministerio de Economía, Industria y Competitividad (MINECO) (ref. DPI2016-78831-

C2-2-R). The overall objective of this project was the design of an efficient and safe

artificial pancreas in normal free-living use, by means of new multivariable reconfigurable

fault tolerant control architectures.

1.4 Thesis Objectives

With the background on AP technology and its current associated challenges alongside with

the previous clinical trials conducted at eSCAPE, we can set the main goal of the thesis.

The goal of this thesis is to investigate and develop new robust strategies for AP systems

to reject big and external disturbances. Additionally, the system must have fault

tolerant tools to detect patient-in-the-loop behaviors.

The research objectives in this thesis can be further split into the following specific goals

• To assess current state of the art of multivariable control and fault-tolerant technologies

for AP systems.
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• Design a specific multivariable control system for AP, robust against patient variability,

meals and exercise. To accomplish this objective, a control system that combines insulin

infusion and CHO suggestions is presented. The robustness of this strategy against meals

and heavy exercise is tested.

• To clinically test and validate the performance of the proposed AP against current open-

loop (OL) therapies. To that aim an inpatient clinical trial was done at the Hospital Clínic

de Barcelona in collaboration with the Universitat Politècnica de València.

• Design adaptive support systems for the tuning of the controller. Any AP system have

tuning parameters that may negatively impact the system’s performance if they are not

correctly set. Most AP will be adjusted by physicians, with little to none engineering

background. A fuzzy system is designed to help maintain proper tunings for few key

parameters of the proposed AP system to alleviate tuning issues in real life.

• Design a FD algorithm to assess patient-in-the-loop behaviors. AP systems have the

particularity that the patient is an active part of the control loop. With the developed

system, the patient is responsible to follow the CHO recommendations made by the

system. If the patient does not follow those recommendations, the system is under an

actuator fault.

1.5 Thesis Structure

This document is organized as follows: Chapter 2 is constituted by a copy of the articles that

allowed the presentation of this thesis as a compendium of publications. Chapter 3 presents

a brief discussion on the main contributions of the articles that are part of this thesis. Finally,

Chapter 4 presents the conclusions and future works. Two appendixes are included that include

the article with clinical results and extended modules to the controller.
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ROBUST AND FAULT-TOLERANT STRATEGIES FOR

CONTROLLING BLOOD GLUCOSE IN PATIENTS WITH TYPE

1 DIABETES

T his chapter consists of four sections. Section 2.1 presents a paper which develops

a methodology to adapt on real time the tuning of an AP to enhance safety and

performance during postprandial periods. Section 2.2 consists of a paper in which a

multivariable controller that uses insulin and CHO is designed. Section 2.3 presents a paper

that introduces a FD methodology that considers the patient-in-the-loop modes and faults.

Additional key results derived from this thesis are included in appendix A, which includes a

clinical paper where the multivariable controller is tested against exercise.

• 2.1 Postprandial fuzzy adaptive strategy for a hybrid proportional derivative con-

troller for the artificial pancreas

• 2.2 A new blood glucose control scheme for unannounced exercise in type 1 diabetic

subjects
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• 2.3 A hybrid automata approach for monitoring the patient in the loop in artificial

pancreas systems
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2.1. POSTPRANDIAL FUZZY ADAPTIVE STRATEGY FOR A HYBRID PROPORTIONAL
DERIVATIVE CONTROLLER FOR THE ARTIFICIAL PANCREAS

2.1 Postprandial fuzzy adaptive strategy for a hybrid

proportional derivative controller for the artificial

pancreas

In this publication, we propose a novel adaptive strategy to automatically tune and keep

tuned parameters of the Proportional-Derivative (PD) + Safety Auxiliary Feedback Element

(SAFE) controller. The PD + SAFE algorithm was used in prior clinical trials during the

ClosedLoop4Meals project (Rossetti et al., 2017). The goal is to optimize the performance of

the control strategy during PP. The candidate’s contribution for this publication consisted in the

development, design and implementation of the fuzzy adaptive strategy, writing the manuscript,

contributing to discussion, writing and editing the manuscript throughout the review rounds.

During the development of the work, the candidate was assisted by Dr. Josep Vehí.
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Abstract
This paper presents a support fuzzy adaptive system for a hybrid proportional derivative controller that will refine its parameters
during postprandial periods to enhance performance. Even though glucose controllers have improved over the last decade, tuning
them and keeping them tuned are still major challenges. Changes in a patient’s lifestyle, stress, exercise, or other activities may
modify their blood glucose system, making it necessary to retune or change the insulin dosing algorithm. This paper presents a
strategy to adjust the parameters of a proportional derivative controller using the so-called safety auxiliary feedback element loop
for type 1 diabetic patients. The main parameters, such as the insulin on board limit and proportional gain are tuned using
postprandial performance indexes and the information given by the controller itself. The adaptive and robust performance of the
control algorithm was assessed Bin silico^ on a cohort of virtual patients under challenging realistic scenarios considering mixed
meals, circadian variations, time-varying uncertainties, sensor errors, and other disturbances. The results showed that an adaptive
strategy can significantly improve the performance of postprandial glucose control, individualizing the tuning by directly taking
into account the intra-patient variability of type 1 patients.

Keywords Adaptive glucose control . Artificial pancreas . Fuzzy system . Slidingmode control

1 Introduction

Type 1 diabetes mellitus (T1DM) results from an autoimmune
reaction that leads to the destruction of the pancreatic β cells
in the islets of Langerhans, the place where insulin is pro-
duced. Thus, T1DM patients lose the capacity to produce
insulin, leaving them in a chronic condition of concurrent
hyperglycemia levels. The resulting excessive plasma glucose
leads to long-term diseases, including microvascular and neu-
rologic diseases [1]. The appropriate regulation of blood glu-
cose concentration must be performed by infusing external
insulin to maintain the glucose level within the euglycemic
range (70–120mg/dl). It has been proven that intensive insulin

treatment that maintains the blood glucose level near
normoglycemia significantly reduces diabetes complications [1].

Traditional treatments, such as multiple daily injections
(MDI) and continuous subcutaneous insulin infusion (CSII)
are currently used by T1DM patients to control their blood
glucose. New hardware allows a patient to take more actions
to maintain their glucose near normoglycemia. Insulin pumps
can be programmed with different basal rates throughout the
day. In addition, they can send alarms to the patient in the case
of abnormal or dangerous glucose trends and can help the
patient calculate the correct amount of bolus to administer
[2, 3]. Likewise, the accuracy and reliability of continuous
glucose monitoring (CGM) devices have increased since their
first appearance. Thus, CGM devices can assist patients to
take further corrective actions. However, incorrect ingested
carbohydrate estimations, lifestyle changes, exercise, alcohol,
stress, etc. can easily affect the patient treatment and lead to
undesirable hypoglycemic events [1].

The artificial pancreas (AP) terminology encompasses a set
of technological solutions that aim to overcome the drawbacks
of conventional insulin therapies. The common AP includes a
CGM sensor that reads the interstitial glucose and is connect-
ed to a closed-loop controller that computes the necessary
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insulin to administer through an insulin pump (actuator).
Although these systems have shown promising results and
easily have the capacity to surpass traditional therapies, the
current CGM systems are not reliable enough, e.g., the rapid
glucose drops caused by exercising usually remain undetected
by CGM systems. This leads to decreased system perfor-
mance. In addition, the subcutaneous route used by the ma-
jority of APs to administer insulin is affected by large and
variable delays.

Regarding the closed-loop glucose control, the main re-
search concern has been centered on developing reliable and
robust controllers and ensuring safety under the current hard-
ware limitations. Thus, a great variety of glucose control al-
gorithms have appeared, from model predictive control
(MPC) [4–10] and H∞ [11, 12] to sliding mode control
[13–16]. Simple linear control algorithms, such as
proportional-integral-derivative (PID) techniques have also
been proposed. The attractiveness of these approaches lies in
the fact that PID techniques mimic the β cell response.
Moreover, they represent a variety of control methods that
are widely used in industry because they are reliable, with
few parameters and easy tuning [2, 7, 15, 17–20].
Controllers based on fuzzy inference engines are also found
in the literature [21–23]. Readers are referred to [24, 25] for
the complete state of the art of AP control algorithms.

However, only a few of these approaches have been tested
in clinical trials, mainly MPC and PID controllers.
Furthermore, the majority of the reported clinical trials have
focused on specific situations, such as postprandial control,
exercise, alcohol consumption, or fasting conditions among
others [26–28]. On top of this, the inter- and intra-patient
variability also compromises the AP systems for real daily
life. Recent AP research is moving to more adaptive strategies
to deal with the time-varying changes of T1DM patients [29].

Concerning the postprandial response, the closed-loop con-
troller of an AP has to be able to minimize the postprandial
excursion and avoid late hypoglycemia due to excessive insu-
lin infusion. Along this line, the implicit restrictions of the
subcutaneous route impose the use of feedforward actions
[19, 20, 30]. Semi-closed-loop control schemes with meal
suggestions have shown superior performance and safety
compared to fully closed-loop systems [20].

Independently of the used control algorithm, a trade-off be-
tween postprandial peak and late hypoglycemia risk is unavoid-
able. This is the point where the tuning of the controller should
be taken into account. A more aggressive tuning will usually
lower the postprandial peak but increase the hypoglycemia risk.

Mainly PID and MPC techniques have been used to deal
with the postprandial period. For instance, the ePID-IFB algo-
rithm uses plasma insulin feedback and pole placement to deal
with delays in the subcutaneous route [18]. Regarding MPC
algorithms, meal compensation, additional constraints, or
model individualization have been used [27, 28]. In addition,

insulin on board (IOB) constraints to overcome insulin stack-
ing have been proposed in MPC strategies [4, 10]. Recently, a
new safety scheme based on sliding mode reference condi-
tioning (SMRC) has been designed to prevent hypoglycemia
events and has shown promising performance during post-
prandial periods. This approach incorporates a new control
layer that monitors the IOB and is called the safety auxiliary
feedback element (SAFE) [14–16, 31].

Numerous AP control algorithms from the literature use
static control parameters that cannot guarantee acceptable per-
formances for all the situations that an AP is prone to face.
Adaptive control can assist in tuning the parameters of the
controller to maintain a tolerable performance level.

In this work, a fuzzy inference system was implemented,
along with the hybrid proportional derivative (PD) control
scheme developed at our research team [31]. This system will
automatically update some parameters of the controller to saf-
er values prior to meal disturbances. The results showed that
providing the controller with adaptive parameter tuning could
increase its performance.

2 Methods

2.1 Control algorithm: PD + SAFE loop

In this section, we briefly review the hybrid PD scheme with
the SAFE layer shown in Fig. 1; the reader is referred to
[14–16, 31] for further details. This control strategy is com-
posed of two loops: an inner loop with the PD controller and
outer loop with the SAFE layer. The inner PD control loop is
composed of three insulin actions: (1) ub represents the
feedforward pre-meal bolus, (2) ubasal represents the constant
insulin infusion due to the patient’s daily basal profile, and 3)
uPD represents the PD control action. Then, the total insulin
control action is as follows:

ud tð Þ ¼ kp e tð Þ þ τd
dCGM tð Þ

dt

� �
þ ubasal tð Þ þ ub ð1Þ

with

ub ¼ grams of CHO

I : CHO
þ ∫

tþ60 min

t
ubasal dt þ CGM tð Þ−Gd

CF
ð2Þ

where kp is the proportional gain, τd is the derivative time,
I:CHO is the insulin to carbohydrates rate, CF is the correction
factor, and Gd is the glucose target. Specifically, the propor-
tional gain is tuned according to [18]:

kp ¼ 60

τd

ITDD
1500

ð3Þ

where ITDDis the total daily insulin dose.
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The control action is then computed as follows:

ud ¼ uc þ ub ¼ uPD þ ubasal þ ub ð4Þ
where ud is the total delivered insulin, uc is the controller
computed insulin, and Gds is the filtered reference.

The main action of the outer SAFE loop, depicted in Fig. 2,
is to guarantee that the IOB is bounded, i.e., IOB∈ 0; �IOB½ �.
The SAFE layer will modify the predefined glucose reference

Gd to a safety reference Gds if the estimated IOB, i.e., dIOB, is
about to violate the imposed constraint. This makes the con-
troller robust prior to delays in the subcutaneous route. The

idea is to stop the insulin infusion if ^IOB is close to IOB and
prevent stacking.

The IOB estimation can be computed using any available
model from the literature [32]. The main SMRC technique is
implemented within the switching action block from Fig. 2.
The sliding surface [31] is defined as follows:

σ tð Þ ¼ dIOB−IOBþ τ dIOB: −
:

IOB

� �
ð5Þ

where τ is a constant gain that regulates the sensibility of the
reference conditioning prior to IOB changes. Then, the
switching law follows:

ω tð Þ ¼ ωþ

0
if σ tð Þ > 0
otherwise

�
ð6Þ

Finally, the filter is defined as a low-pass first-order filter
by the following:

dω f tð Þ
dt

¼ −λ ω f tð Þ−ω tð Þ� � ð7Þ

where λ is the cutoff frequency and ωf is the filtered switching
signal. The background theory of the switching action and
development of the sliding surfaces are based on invariance
control. The full development can be found in [16].

2.2 Fuzzy adaptive strategy

In this section, we introduce a support strategy, which pro-
vides continuous adaptive tuning for the parameters of the
control algorithm presented in Section 2. The dynamics of a
T1DM patient are time-varying and thus require (1) robust
controllers or (2) controllers that can be modified according
to some performance index or heuristic to adapt to new situ-
ations in order to maintain acceptable performance. In this
paper, we describe a fuzzy adaptive system that will automat-
ically tune the PD + SAFE controller based on the expertise of
engineers and physicians.

The attractiveness of fuzzy systems lies in the fact that they
can seamlessly incorporate knowledge from physicians into
the control algorithm, e.g., by setting rules or membership
functions. Therefore, physicians can incorporate corrective
actions into the controller when the patient’s circumstances
change, e.g., when the patient is ill or behaving abnormally.

The rest of this section introduces (A) the chosen adaptive
parameters and (B) the characteristics of the fuzzy adaptation
algorithm and how it works.

A. Selecting parameters to adapt

The first thing to decide is which parameters of the control
algorithm are going to be adapted. In this sense, we differen-
tiate the candidate parameters of the inner and outer loops in
Tables 1 and 2.

An optimal tuning of these parameters for a virtual cohort
can be found in [14]. The main parameters of this optimal
tuning are listed in Table 3.

Table 3 shows that only two out of the seven parameters are
individualized, whereas the rest of the parameters have been
adjusted based on a population analysis in [14].

We selected the proportional gain from the inner loop and
the limit of the IOB from the outer loop as the parameters to
adapt. The following are the underlying reasons for these
choices.

1. The proportional gain is the main element that regulates
the basal profile dosing from the inner PD algorithm.

Fig. 1 Hybrid PD + SAFE
algorithm
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2. The robustness of the SAFE layer is mainly guaranteed by
the fact that once the sliding mode is on the surface σ(t); it
is insensitive to reference changes, measurement noise,
and overestimated boluses [16]. The capacity to reach
the sliding surface mainly depends on the choice of

IOB. If IOB is set too small, the SAFE layer will constant-
ly actuate and suppress insulin, leaving the controller in

the open loop. On the other hand, if IOB is too high, ^IOB
will not reach this limit, and the SAFE layer will not
prevent hypoglycemia, leaving the closed-loop controller
as a simple PD method.

Finally, the control algorithm will end up in a device oper-
ated by physicians and patients. Among the parameters of the

controller, kp and IOB are the most clinically relevant and
easiest for physicians to understand.

B. Adaptation strategy

The adaptation strategy utilizes a fuzzy system, which in-
cludes a database of rules. This fuzzy system is used to im-
prove and maintain the performance of the postprandial con-
trol. The adaptation algorithm will allow the controller to
adapt and maintain acceptable performance despite changes
in the behaviors of the patient.

Particularly, the algorithmmonitors postprandial period da-
ta up to 480 min after a meal and stores it in a database. After
four complete postprandial periods are recorded, the algorithm
computes the input linguistic variables used to adapt the pa-
rameters. Then, the process is repeated when the next four
postprandial periods are available. The fuzzy system only acts
once every four postprandial periods, ensuring a gradual
adaptation.

Figure 3 shows the implementation of the fuzzy inference
engine with the PD + SAFE control strategy. It configures a
new layer that takes real time information from the CGM and

from the output of the switching law. Afterward, the system
modifies two main blocks of the control scheme (the PD and
switch). Thus, the presented system can adjust the controller
based on patient needs, individualizing the tuning. Notice that
this approach is applicable to any closed-loop controller that
uses the SAFE law and a CGM. The only element to modify
would be the database of rules according to the specific
controller.

For this application, we use a Mamdani-style inference
method. The fuzzy inference system is composed of three
main parts: the linguistic variables, membership functions,
and rules stored in a database. This section discusses the im-
plementation of a new fuzzy inference engine for the hybrid
PD strategy developed at MICElab. Appendix includes the
complete description of the fuzzy system.

1) Monitoring input data

To correctly adapt kp and IOB, it is necessary to work with
real time data. Thus, the system has to obtain data from two
different locations of the scheme. The system only obtains
data during postprandial periods, i.e., up to 480 min after a
meal, because the aim of this approach is to correctly control
them. Outside those time periods the system stops the acqui-
sition and rests in standby.

Figure 3 shows that the fuzzy inference engine uses data
from the CGM and the output of the switching law of the
SAFE loop. These inputs were selected because (1) the
CGM readings can be used as indicators of the overall perfor-
mance of the controller and (2) the switch block provides
information about how long the SAFE layer has been
actuating.

Then, the data obtained during the four postprandial pe-
riods are stored and used to create a sliding window. The
sliding window will be constantly updated online and
reinitialized every four postprandial periods. In this work, four

Fig. 2 SAFE layer elements

Table 1 Eligible parameters of inner loop

Parameter Specifications

kp Proportional gain [IU h−1 mg−1 dl−1]

τd Derivative weight [min]

Gd Glucose reference [mg/dl]

Table 2 Eligible parameters of SAFE loop

Parameter Specifications

ω+ Upper bound of signal ω(t) [mg/dl]

τ Controller gain [min]

IOB Limit of the IOB [IU]

λ Cutoff frequency of the filter
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postprandial periods are used based on the assumption that the
adaptation must be smooth. It is not desirable that the adaptive
strategy individually corrects each postprandial period be-
cause it could increase the probability of overfitting and insta-
bility. Furthermore, using these four postprandial periods the
system is more robust against uncommon patient behavior.

Table 4 lists the monitored variables, and Figs. 4 and 5
graphically show a typical postprandial period with the mon-
itored variables.

2) Linguistic variables

The input linguistic variables correspond to the means of
the four postprandial periods from the variables of Table 3,
e.g., the input linguistic variable for Gmin is BmeanGmean^

mean Gmean ¼ ∑k
k−3Gmin

4
; if k ¼ 4n ð8Þ

where k represents the current postprandial period, and n cor-
responds to the grouping of four postprandial periods and is
initialized at one. Hence, the system obtains indicators of the

postprandial performance of the last four meals. For example,
if we are at the eighth postprandial period n = 2, meaning that
we are waiting for the second group of postprandial periods to
be completed, and as k = 4n = 8, we will compute the input
linguistic variables and update n = n + 1.

The output linguistic variables are exactly the ones wewant
to adapt: kp and �IOB. The domain of these variables is the
allowed adaptation percentage.

3) Membership functions and linguistic terms

The linguistic variables have different membership
functions but the same linguistic terms, producing an
easy and understandable system. The linguistic terms
for the five input linguistic variables are Small, Normal,
and High. On the other hand, the linguistic terms for the
output variables are NoChange, IncreaseLittle, Increase,
DecreaseLittle, and Decrease. The complete set of mem-
bership functions for the input and output linguistic var-
iables is attached in Appendix.

Notice, as previously stated, that the domain for the
output variable is a percentage between − 15 and 15% of
the actual variable value. Hence, the maximum rate of
parameter adaptation is limited. This adaptation range
worked properly for our control approach and may vary
depending on the controller used. With the PD + SAFE
controller, higher ranges lead to heavy oscillations in the
long run, while smaller ranges lead to poor performance.
Here, the sensitivity of the controller should be consid-
ered when shaping the output membership functions to
ensure that no risk of instability can happen.

The tuning of a fuzzy system mainly corresponds to the
design of the fuzzy sets of the input/output linguistic variables.
Particularly, for this application the fuzzy sets for the input
linguistic variables can be directly defined from the common
acceptable understanding of how a postprandial period should
be. For example, when looking at the minimum level of
glycaemia it is commonly accepted that between 70 and
100 mg/dl correspond to good performance. Hence, the fuzzy

Table 3 Optimal parameter values of hybrid PD strategy

Patient
Gd kp τd IOB ω+ τ λ

1 110 0.0122 60 6.1 350 10 0.1

2 110 0.0315 60 1.9 350 10 0.1

3 110 0.0147 60 5.7 350 10 0.1

4 110 0.0113 60 3.9 350 10 0.1

5 110 0.0122 60 7.8 350 10 0.1

6 110 0.0122 60 6.1 350 10 0.1

7 110 0.0147 60 3.8 350 10 0.1

8 110 0.0122 60 5.3 350 10 0.1

9 110 0.0099 60 8.9 350 10 0.1

10 110 0.0113 60 8.1 350 10 0.1

Values of optimal parameters for virtual patient cohort from [14]

Fig. 3 Hybrid adaptive PD +
SMRC and fuzzy inference
engine
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sets involved with glycaemia were defined according to clin-
ical criteria. The rest of the variables are focused on the actu-
ation of the SAFE layer. For the PD + SAFE controller to
work optimally, it must be a ratio between the time when the
SAFE layer is actuating and when it is not. This ratio for
optimum performance was assessed after analyzing the data
obtained from the clinical trial NCT02100488 from
clinicaltrials.gov, and used to shape the membership
functions for TOFF and #switch variables.

4) Rule database

The fuzzy system was initially created with a total of
15 rules. There are two groups with different rules. The
first is used to exclusively improve the postprandial con-
trol of the PD + SAFE controller. However, it is neces-
sary to consider safety rules, which are included in the
second group. These heuristic auxiliary rules have the
purpose of sending notifications to the patient and care-
givers in the case of bad adaptation or degraded perfor-
mance. The idea is that a marketable system must ensure
the patient’s safety. Thus, we already included a safety
layer for a future real life application that could be im-
plemented inside a smartphone with a support decision
system. This should provide the patient and caregivers

with enough time to safely shut down the system or
rapidly take corrective actions.

The whole first set of rules from the fuzzy system is
described in Appendix A. The auxiliary rules were not
included in the fuzzy engine, but were used as supervisory
rules for the adaptation process, and hence for the fuzzy
system. The implemented rules are as follows:

1. If meanGmin is Small for the last five postprandial periods,
then shut down the fuzzy engine and notify the patient.

2. If the adjusted kp is greater or lower than 50% of the initial
kp, then send a warning to the patient.

3. If Excursion is High for the last five postprandial periods,
then send a warning to the patient.

5) Defuzzification method

The defuzzification process is used to convert the degrees
of membership of the output variables within the possible
linguistic terms into numerical outputs in the range of the
output domain. Thus, in this particular case, the system gives
a number between − 0.15 and 0.15.

Along the same line, the chosen defuzzification method is
the modified center of area (mCoA), which is selected because
it enables the system to span the full domain of the output
linguistic terms. The mCoA is defined as

mCoA ¼ ∫ f xð Þ∙x dx
∫ f xð Þdx ð9Þ

where f(x) represents the solution fuzzy set for the output
variables and x the specific degree of membership. Testing
scenario.

2.3 Testing scenario

The new adaptive control algorithm has been implemented
within the UdGAPsim platform for testing glucose controllers
[33]. The whole strategy has been programmed with NI
LabView® code and the fuzzy inference engine with the
PID and fuzzy toolkit from NI LabView®.

Table 4 Variables monitored for each postprandial period

Variable Specifications

Gmin Minimum level of postprandial blood
glucose (mg/dl)

Excursion Difference between maximum glucose
peak and initial level of glycaemia
in the postprandial period (mg/dl)

TOFF Time of the postprandial period where
the control algorithm is turned off
due to the meal bolus (min)

#switch 0–4 h Number of times that SMRC acts in the
TOFF–4-h period

#switch 4–8 h Number of times that SMRC acts in the
4–8-h period.
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Fig. 4 Glycemic variables monitored by the fuzzy inference engine
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Fig. 5 SAFE related variables monitored by the fuzzy inference engine
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The PD + SAFE controller has already been tested in the
clinical trial BImproving postprandial glycaemia by a new
developed closed-loop control system (NCT02100488 from
clinicaltrials.gov)^ as part of the Closedloop4meals project.
The objective of this trial was to show that closed-loop sys-
tems can have better performances than open-loop systems
during the postprandial period. One of the issues that we

found during the trial was a hindrance when tuning IOB.
Therefore, we will use the same Bin silico^ scenario used to
validate the PD + SAFE controller to revalidate this controller
using an adaptive strategy.

This scenario includes ten virtual patients from the FDA-
approved UVa simulator [34]. Regarding the insulin therapy,
each patient has its own basal profile ubasal(t), with an attempt
made to reflect a real basal profile for a T1DM patient [15].

The meals used in this trial have been selected from the
mixed meal library [35].Mixedmeals are limited to those with
close to 60 g of carbohydrates (CHO), and the intake is
established at 12:00. This allows the control algorithm to en-
sure that the glycemic level is as close as possible to 90 mg/dl
at 12:00 as a result of nighttime control. The rates of glucose
absorption of the selected meals are displayed in Fig. 6.

Thus, the meal absorption model has been replaced by
the mixed meals rate of appearance from the mixed-meal
library. The scenario also includes subject specific circadi-
an variability in insulin sensitivity depending on the basal
requirements [15]. Finally, following [15], we also include
sinusoidal variability to the insulin absorption.

3 Results

The original tuning [14] was taken as a starting point for the

simulations. The kp- and �IOB -tuned parameters for each

patient were randomly modified between − 50 and 50% of
their original value. We repeated this procedure three times
to obtain three starting misadjusted tunings for each patient.
A total of 30 simulations were performed using the UdG
APsim simulator and the PD + SAFE method with the fuzzy
adaptive strategy.

First, we let the system adapt both parameters for all the
cases with the initial misadjusted parameters. These adap-
tive simulations included a total of 101 meals (one meal
per day) with the system adapting both kp and �IOB to safer
ones. Notice that because we only consider one meal per
day, the fuzzy engine requires a large number of simulation
days to correctly adapt the parameters. In contrast, in a real
setting where the patient eats many times a day, this would
not be an issue. Figures 7 and 8 show example results of
the adaptation mechanism.

After obtaining fine-tuned parameters from the fuzzy
adaptive algorithm, we performed two more sets of simu-
lations for validation purposes with the fuzzy inference
engine deactivated. These simulations used the same sce-
nario as the adaptive ones but restricted the number of
meals to 18. This was done to match the validation analysis
performed in NCT02100488. The first set used the original
misadjusted parameters during the entire time, while the
second set used the final tuned parameters.

A. Parameter adaptation

Figures 7 and 8 show how kp and �IOB start from three
different misadjusted values. Then, for each group of four
postprandial periods, the fuzzy engine adapts each of the
parameters. When a sufficient number of postprandial pe-
riods have occurred, the parameters are optimized and con-
verge to an optimal value regardless of the original tuning.
The �IOB presented a better adaptation and less oscillatory
behavior than the kp. Even though the parameters present
small oscillations in some cases, the system is able to drive
all the parameters to the same final one. This occurs with
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is the original tuning, the red, green and blue asterisk signals correspond
to the first, second and third simulation respectively
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all the simulated patients and suggests that the adaptation
fuzzy engine works with the controller.

In this particular patient, it is demonstrated that the fuzzy

inference engine adjusts IOB with more accuracy than kp.
Although IOB tends to achieve a unique value for the three
simulations, kp begins to stabilize at approximately the elev-
enth iteration. However, there is an obvious and visible vari-
ation in the end.

Figure 9 is attached to further analyze the behavior of the
adaptive fuzzy system. The figure shows how much the pa-
rameters were adapted during the simulation. The conver-
gence to a final parameter value was good for the �IOB, mean-
ing that the system was able to find a stationary parameter
value that optimizes the therapy. Contrarily, the kp was more
sensitive due to the variability of insulin sensitivity and car-
bohydrates absorption.

B. Tuned simulation versus original misadjusted simulation

To compare the adjusted and misadjusted simulations, we
performed control variability grid analysis (CVGA) and

calculated some statistics. Figures 10 and 11 show the
CVGA results for these simulations.

There is an obvious improvement in the postprandial
control after the adaptive process. Moreover, an important
reduction in hypoglycemic episodes has occurred, from 65
to 27, and most of the points of the CVGA have moved to
the A and B zones.

The time with a value greater than 180 mg/dl has been
reduced from 9.19 to 5.62%. Not only has the adaptive strat-
egy been able to minimize the number of hypoglycemic
events, but also a significant reduction in hyperglycemia ex-
posure has occurred. This translates into lower excursions
during postprandial periods, as listed in Table 5.

Please note that Fig. 10 shows what would have happened
with the original controller. On the other hand, Fig. 11 shows
what would have happened if we kept the fuzzy inference
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engine activated for a prolonged period of time, i.e., after a
month of normal life. Most of the points in the E and inferior
D zones correspond to one particular patient from the cohort.
This suggests that more parameters of the controller should be
adapted to further improve the performance.

C. Qualitative analysis of the adaptive strategy improvements

In this section, qualitative measures will provide insights
into the performance improvement. Firstly, recall that the sys-
tem is designed to adapt postprandial periods. Figure 12
shows the aggregated postprandial blood glucose profiles of
the whole cohort. It clearly outlines how the adaptation
allowed for better control in the late postprandial period: the
mean blood glucose and the variability were reduced without
increasing the risk of hyperglycemia. Moreover, the risk of
hypoglycemia is also reduced.

If we compare the mean curves from Fig. 12 and the mem-
bership functions of the glycemic input variables, we can

verify that both the excursion and minimum glucose are with-
in the normal case. That is the reason behind getting almost
the same postprandial peak for both cases but not getting the
same glycaemia level in the late period.

We can also analyze the adaptation of the SAFE layer
inspecting the amount of time that it has been active during
postprandial periods. The adapted system keeps the SAFE
layer activated between 15 and 25% of the postprandial time.
These values belong to the normal membership functions for
the #switch04 and TOFF input variables. For the misadjust
system the SAFE layer was actuating mostly in these ranges
too. However, notice that the fuzzy system has been able to
drive all the points to a desired narrower range. Figure 13
shows the active time variation of the SAFE layer.

4 Discussion

Recently, AP systems under research have started to include
adaptive strategies to tune or optimize their controllers. It is
not surprising that automatic systems aimed to control highly
varying patients include adaptation mechanisms to improve

Table 5 Results of Bin silico^
simulations Parameters Adjusted simulation Misadjusted simulation

Time in range [70–180] mg/dl 93.75% 88.18%

Time above 180 mg/dl 5.62% 9.19%

Time below 70 mg/dl 0.63% 2.63%

N° hypoglycemia episodes 27 65

Mean duration of hypoglycemia episode (min) 60.6 105.3

Postprandial excursion (mg/dl) 37.4 ± 35.2 75.8 ± 43.3

Mean glycaemia (mg/dl) 120.6 ± 14.6 124.1 ± 22.1

Percentage of zones A and B 95% 87.03%

Percentage of zone C 1.3% 6.3%

Percentage of zone D 2.59% 6.3%

Percentage of zone E 1.11% 0.37%
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Fig. 12 Aggregated postprandial blood glucose profiles of the cohort as
mean ± STD. The blue curve corresponds to the misadjusted case and the
red curve to the adjusted case
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Fig. 13 Time percentage during postprandial periods that the SAFE layer
is activated. Each point represents the mean value for each patient
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performance. However, adaptive systems usually come at the
price of a higher risk of instability. In most cases, stability
cannot be analytically checked for highly complex systems
under adaptive strategies. Therefore, one way to minimize
the risks of instability is to develop a conservative adaptive
system. This is the philosophy followed by our work.We used
small adaptation gains, and we only allowed the system to
adapt itself after a sufficient enough number of data was re-
corded. Although conservative, the adaptive system is capable
to adapt enough the parameters and optimize the controller in
a safe way. The resulting adaptive system keeps the controller
well-tuned while ensuring safety.

We acknowledge that the design and validation procedures
of this new fuzzy system have limitations. The scenario only
included one meal per day, making the simulations not as
realistic as they could have been if more meals were consid-
ered. Also, other type of disturbances, such as exercise or
illness were not considered. The system has been tested with
10 Bin silico^ adult patients limiting the validity of the ap-
proach for a bigger cohort. To minimize this issue, we includ-
ed high variability in the insulin sensitivity and absorption as
done in [31]. This high variability makes our scenarios a very
good test bench since they reproduce most of the expected
situations in a real environment.

AP systems will inevitably have to deal with inter- and
intra-patient variability. Therefore, they will also have to deal
with day-to-day and patient-to-patient variability. In such a
case, we can forecast that adapted parameters will show an
oscillatory behavior. The results showed that even after a long
simulation time kp still had small variations. Then, adaptive
systems should allow these kind of parameter variations even
if the subject lifestyle has not changed. However, as a safety
measure they should include an acceptable variation range.

Finally, we believe that adaptive systems should only be
used by patients who are fit to use them. So, adaptive
systems should undergo extensive Bin silico^ and clinical
studies to prove stability and to define what subject profile
is fit to use them.

5 Conclusions

A fuzzy inference engine for hybrid PD control with the SAFE
algorithm was developed in NI LabView® code within the
UdG APsim software. The implementation allows the control
algorithm to gradually adapt its parameters to safer ones.

The system was tested based on the validation scenarios
and procedures from a previous clinical trial (NCT02100488).
The systemwas primarily designed to finely adapt two control

parameters, i.e., kp and �IOB, during the postprandial period in
a meal announced scheme, with the objective of enhancing the
glycemic control.

The results showed that the fuzzy inference engine contrib-
utes to a better postprandial glycemic control and improves
the safety of the previously developed hybrid PD controller
when using the SAFE layer with initially poor tunings.

The findings suggest that more complex adaptive systems
based on some performance index rather than heuristic rules
could be applied to refine the tunings of a given controller.
Thus, individualizing the controller based on the patient’s
needs or lifestyle changes is a feasible and attractive approach
for a commercial AP.
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Appendix

Overview of the fuzzy system

The presented fuzzy system is a multiple-input multiple-out-
put (MIMO) system. Particularly, the system considers five
input and two output variables as shown in Fig. 14.

The fuzzy inference engine is based on the Mamdani meth-
od. When using the Mamdani method the inference is per-
formed in four stages: (1) fuzzification of the crisp inputs,
(2) rule evaluation, (3) aggregation of the outputs, and (4)
defuzzification of the output fuzzy set.

Prior to the description of the fuzzy system engine, let us
make some definitions that will be used throughout the text.

Definition 1 The universe of discourse X is a collection of
objects {x} that can be discrete or continuous.

Crisp Input 1
meanGmin

Crisp Input 2
meanExcursion

Crisp Input 3
mean#switch04 RULE BASE

Fuzzification

Rule evaluation 
and aggregation 
of rule outputs Defuzzification

Crisp Input 4
mean#switch48

Crips Input 5
meanToff

Crisp output 1
Kp adaptation

Crisp output 2
IOBmax adaptation

Fig. 14 Overview of the fuzzy system
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Definition 2 Let X be the universe of discourse with elements
{x}. Then, a fuzzy membership function is defined as

μA xð Þ : X→ 0; 1½ � ð10Þ

where A is a fuzzy set, and if μA(x) = 1 means that x is in A,
μA(x) = 0 means x is not in A and 0 < μA(x) < 1 means that x
belongs to A up to a certain degree.

Definition 3 The degree of membership is the value that takes
μA(x) ∈ [0, 1] given an object {x} of the universe of discourseX.

Definition 4 The linguistic variable constitutes the range of
possible values that can take the universe of discourse of that
variable.

Definition 5A fuzzy rule is a conditional statement of the form.
IF (antecedents), THEN (consequences).
where the antecedents and consequences are relations be-

tween linguistic variables and their fuzzy sets. The anteced-
ents are referred to the input linguistic variables, and for the
consequences the output linguistic variables.

Fuzzification

The fuzzification process starts by taking the input crisp lin-
guistic variables and determining the degree of membership
for their respective membership functions. Specifically, we
consider five input linguistic variables: (1) meanGmin, (2)
meanExcursion, (3) mean#switch04, (4) mean#switch48,

and (5) meanToff. We designed three membership functions
for each input variable. The membership functions are labeled
by the linguistic terms Small, Normal, and High. The uni-
verses of discourse for all input variables are continuous and
their elements belong to ℝþ

0 . Figures 15, 16, 17, 18, and 19
show the membership functions for the five input variables.

All of the designed membership functions are based on
trapezoidal shapes with linear hedges defined as follows:

μN xja; b; c; dð Þ ¼

0x−a
b−a
1

d−x
d−c
0

8>>>>><
>>>>>:

for x≤a
for x∈ a; b½ �
for x∈ b; c½ �
for x∈ c; d½ �
for x≥d

ð11Þ

where the parameter set (a, b, c, d) define the domain of each
sub-function of the piecewise trapezoidal membership func-
tion, e.g., the Normal membership function from Fig. 15 is
defined by μNormal(x| 70,80,90,100).

We used trapezoidal shapes to lower the computational
burden of more complex shapes, and also because they de-
scribe well enough the knowledge of the experts who partic-
ipated in the system design.

The fuzzification process is performed by taking a spe-
cific crisp value of the input variables and evaluating the
degree of membership. For example, for an input
mean_Excursion = 70 mg/dl, the membership functions
tell us that the particular excursion belongs 50% to
Small, 50% to Normal and 0% to High. This process is
performed for each input over all the membership
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Fig. 15 Fuzzy sets for input linguistic variable meanGmin
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Fig. 16 Fuzzy sets for input linguistic variable meanExcursion
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Fig. 17 Fuzzy sets for input linguistic variable mean_#switch04
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functions. The output of the fuzzification process is the
degree of membership of all the input variables to each
of their fuzzy membership functions.

Rule evaluation

In this step, the rules stored at the rule database are used to
apply the fuzzified inputs to the rule antecedents. The rule
database of the system is composed by the following rules

1. IF meanGmin is Small, THEN, IOBmax is Decrease.
2. IF meanGmin is High AND meanExcursion is High,

THEN, IOBmax is IncreaseLittle.
3. IF meanGmin is High, THEN, kp is IncreaseLittle.
4. IF meanTOFF is Small AND meanGmin is Small, THEN,

IOBmax is DecreaseLittle.
5. IF meanTOFF is High AND meanGmin is High, THEN,

IOBmax is IncreaseLittle.
6. IF meanSwitch04 is Small, THEN, kp is IncreaseLittle.
7. IF meanSwitch04 is High, THEN, kp is DecreaseLittle.
8. IF meanSwitch48 is High, THEN, kp is Decrease.
9. IF meanSwitch48 is Small OR meanSwitch48 is

Normal, THEN, kp is NoChange.
10. IFmeanGmin is Normal ANDmeanExcursion is Normal,

THEN IOBmax is NoChange AND kp is NoChange.
11. IF meanTOFF is High, THEN, IOBmax is Increase.
12. IFmeanTOFF is HighANDmeanGmin is Normal, THEN,

IOBmax is IncreaseLittle and kp is NoChange.
13. IF meanTOFF is Small AND mean#switch04 is High,

THEN IOBmax is Increase.

14. IF meanTOFF is High AND mean#switch04 is Small,
THEN IOBmax is Decrease.

15. IF meanExcursion is Normal OR meanExcursion is
High, THEN, IOBmax is IncreaseLittle.

Both the antecedents and consequences can have multiple
parts. These parts can use the fuzzy union (OR) and intersec-
tion (AND) operators. The union and intersection of two fuzzy
sets A and B are defined as follows:

μA⋃B xð Þ ¼ max μA xð Þ;μB xð Þ½ � ð12Þ

μA∩B xð Þ ¼ min μA xð Þ;μB xð Þ½ � ð13Þ

Using these operations, the system evaluates the anteced-
ents of the rule to obtain the truth number. Then, this number
is used to obtain the degree of membership of the output
variables by applying the rule consequences.

For the output variables kp and IOBmax, we designed iden-
tical membership functions as shown in Figs. 20 and 21.

By maintaining a sufficient overlap between adjacent mem-
bership functions, we tried to ensure a smooth response of the
fuzzy system. Here, we clipped the consequent membership
functions based on the degree of membership of the antecedent.

Aggregation of the outputs

Once all the rules have been evaluated, the clipped consequent
sets are all combined into a single fuzzy set. The union operator
is used to that aim. This generates an overall fuzzy output set.

Defuzzification

The defuzzification is a process that allows us to obtain a
single value out of the overall fuzzy output set. In this appli-
cation, the single value is contained in the universe of dis-
course of the output linguistic variables, i.e., [− 0.15, 0.15].
The system uses the mCoA defined as follows:

mCoA ¼ ∫ f xð Þ⋅xdx
∫ f xð Þdx ð14Þ
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Fig. 19 Fuzzy sets for input linguistic variable mean_#Toff
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Fig. 20 Fuzzy sets for output linguistic variable kp

-0.15 -0.1 -0.05 0 0.05 0.1
IOBmax

0

0.5

1

D
eg

re
e

of
m

em
be

rs
hi

p Decrease
DecreaseLittle

NoChange
IncreaseLittle

Increase

Fig. 21 Fuzzy sets for output linguistic variable IOBmax
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where f(x) represents the overall fuzzy output set and x be-
longs to the output domain. Therefore, the system takes the
centroid of gravity of the overall fuzzy output. The x that
corresponds to the centroid of gravity is taken as the output
of the fuzzy inference engine.
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2.2. A NEW BLOOD GLUCOSE CONTROL SCHEME FOR UNANNOUNCED EXERCISE
IN TYPE 1 DIABETIC SUBJECTS

2.2 A new blood glucose control scheme for unannounced

exercise in type 1 diabetic subjects

In this publication, we propose the first version of the multivariable AP system. The algorithm

uses two coordinated feedback loops for insulin infusion and rescue CHO suggestion. The

system is tested in-silico under challenging and realistic scenario settings. This control system

has been tested in clinical trials and results are included in Appendix A. The candidate’s
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A New Blood Glucose Control Scheme for Unannounced
Exercise in Type 1 Diabetic Subjects

Aleix Beneyto , Arthur Bertachi, Jorge Bondia, and Josep Vehi

Abstract— The artificial pancreas (AP) system or closed-loop
blood glucose (BG) regulation is a technological advancement
that aims to relieve diabetic subjects from their current decision-
making burden while tightening their BG levels. However, large
disturbances such as meals and exercise still pose great challenges
to a fully closed-loop system. In this paper, the problem of
BG regulation with unannounced physical activity for type 1
diabetic subjects is addressed. We use a coordinated control
strategy with insulin infusion and extra carbohydrates (CHO)
for hypoglycemia avoidance. The insulin algorithm is based
on a proportional–derivative controller with insulin feedback
and the so-called safety auxiliary feedback element (SAFE)
layer, and the algorithm for CHO is based on a predictive,
quantified proportional-derivative controller. The UVa/Padua
simulator glucose-insulin model is modified to include the effects
of physical activity and is used to test the new AP. We consider
scenarios where the subject does not announce physical activity
and with challenging meals. Then, we analyze the performance
and robustness of the combined insulin and CHO recommender
system and compare them to the insulin-only controller. The
simulation results show that the new AP system is able to mitigate
daily hypoglycemia episodes (0.9 versus 0.2, p < 0.01) and
increase the time in range during day (91.5% versus 92.4%,
p < 0.01) without increasing the time above 180 mg/dl (6.3%
versus 6.4%, p > 0.05).

Index Terms— Artificial pancreas, blood glucose (BG) control,
carbohydrates (CHO), insulin, physical activity, proportional–
derivative (PD), recursive least squares, sliding mode reference
conditioning (SMRC), type 1 diabetes.
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I. INTRODUCTION

D IABETES is a chronic metabolic condition in which
blood glucose (BG) levels are not properly regulated.

Type 1 diabetes mellitus (T1DM) is a form of diabetes
characterized by an autoimmune reaction in which the insulin-
producing β-cells of the pancreas are destroyed. Insulin is
a key hormone that allows muscle tissue to use glucose for
energy and the liver to store the excess of glucose as glycogen.
People with T1DM suffer from an absolute deficiency of
insulin, which develops to high BG levels or hyperglycemia.
In addition, T1DM may also lead to impaired glucagon
production, the counter-regulatory hormone to insulin.

People with T1DM have to administer exogenous insulin
in order to keep BG levels in a safe range (70–180 mg/dl).
Current therapy for T1DM can be divided into two approaches:
multiple daily injections of insulin or insulin pump therapy.
Multiple daily injections consist of measuring BG levels using
a glucose meter and administer subcutaneously the insulin
dose. Insulin pump therapy uses an insulin basal profile
programmed into the pump to continuously administer insulin
subcutaneously 24/7 with bolus doses to compensate meals.

The artificial pancreas (AP) is a system that integrates a
continuous glucose monitor (CGM), a continuous subcuta-
neous insulin infusion pump, and a control algorithm. The
controller uses the BG levels measured by the CGM to drive
the insulin pump to maintain euglycemia, i.e., BG levels
between 70 and 140 mg/dl in subjects with T1DM. Overall,
the AP encompasses closed-loop system technology designed
to be used by the people with T1DM.

Common AP technology can be classified in two categories:
1) fully closed-loop systems, where the subject is not a part of
the control and 2) hybrid systems, where the system allows the
subject to perform feed-forward actions to compensate known
disturbances. Due to the delays in the subcutaneous route,
hybrid systems with a feed-forward controller consisting of
a premeal bolus usually perform better than fully closed-loop
systems.

AP technology has been extensively tested both in-silico and
in inpatient/outpatient clinical studies [1], and a large amount
of control techniques have been developed and tested [2].
The most common controllers within AP systems can be
classified as proportional–integral–derivative, model predictive
control, or fuzzy control algorithms. These systems have been
tested in daily life conditions. However, disturbances such as
meals and physical activity are still a challenge.

Physical activity is a large and fast disturbance that brings
AP systems to the limit. The metabolic effect of exercise
may vary depending on the type of exercise [3]. For example,
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if a T1DM subject engages in an aerobic exercise session, e.g.,
cycling, then their BG levels will likely decrease and insulin
sensitivity will be increased for the next 24–48 h. Conversely,
high-intensity interval training may result in hyperglycemia
(BG > 180 mg/dl). In addition, the performance of AP
systems is typically affected by the BG and insulin state at
the onset of exercise and by when the subject exercises, e.g.,
the risk of hypoglycemia is considerably higher if the subject
engages in aerobic physical exercise after a meal where a
bolus has just been delivered. All these factors combined will
typically drive the AP system to open loop, i.e., suspending
the insulin infusion because the physical activity has driven
the system to an uncontrollable state.

Regarding aerobic exercise, insulin-only controllers have
shown poor performance, which is mainly due to the lack of a
control action that counteracts the metabolic effect of exercise,
i.e., a higher glucose uptake by muscles. The lasting effect of
increased insulin sensitivity also increases the risk of postex-
ercise hypoglycemia (BG < 70 mg/dl) for at least 12 h [3].
A recent study [4] tested an insulin-only AP system against
unannounced exercise to the control algorithm. The study
showed that the closed-loop guaranteed more time in the
euglycemia range and less insulin infusion compared to open-
loop therapy. However, the time in the hypoglycemia range,
which was their primary endpoint, was not met, and rescue
carbohydrates (CHO) were still needed to avoid hypoglycemia.
Insulin-only AP systems have been widely tested in response
to exercise; see [5]–[7] for other recent studies.

In an attempt to solve this limitation of insulin-only con-
trollers, several research groups have explored alternative
control actions. The bihormonal AP appeared as a possible
solution to minimize the risk of hypoglycemia by combining
both insulin and glucagon hormones. Glucagon is a hormone
secreted by the alpha cells in the pancreas that raises BG
levels via glycogenolysis. Therefore, the administration of
subcutaneous glucagon can potentially help minimize the risk
of hypoglycemia in AP systems. The effectivity and safety of
a bihormonal AP were clinically tested in [8]. A head-to-head
comparison between insulin-only and bihormonal AP systems
in front of physical activity showed that the bihormonal AP
reduced the time in hypoglycemia along with the number of
hypoglycemic events compared to the insulin-only AP [9].

Another strategy was recently presented in which an insulin-
only controller was aided by suggesting CHO intakes to the
subject if there was a risk of hypoglycemia [10]. In their
strategy, an ARMAX model is used to predict BG levels
30 min ahead. Then, if below 70 mg/dl, the system classified
in different phases the measured BG levels and BG trend.
Finally, depending on the classification, the system suggested
different fixed amounts of CHO ranging from 4 to 24 g. Their
results showed that their system was able to prevent most
hypoglycemic events by issuing rescue CHO consumption.

In this paper, we propose combining a previously devel-
oped [11] and clinically tested [12] insulin-only controller with
a fast-acting CHO recommender system. The insulin-only con-
troller is based on a proportional–derivative (PD) with insulin
feedback (IFB) and a safety layer with insulin on board (IOB)
constraints and sliding mode reference conditioning (SMRC).

Meanwhile, CHO will be suggested by another feedback con-
troller with a predictive PD, delivering fixed amounts of CHO
that match commercially available products. The result will
be a new control algorithm that mixes the insulin and CHO
strategies in a coordinated way with the aim of maintaining BG
in the euglycemic range even if measurable or unmeasurable
disturbances appear. This constitutes a novel hybrid AP with
an automatic insulin infusion algorithm and a reactive subject
that will be asked to take CHO. The strategy is extensively
tested in silico under realistic scenarios with a cohort of adult
subjects.

II. PROBLEM STATEMENT

A. Models and Assumptions

1) Glucose-Insulin Model: In this paper, we use the UVa/
Padova meal simulation model of T1DM subjects approved by
the Food and Drug Administration [13]. We included circadian
variability in the insulin sensitivity [11].

2) Exercise Model: At present, few exercise models are
available [14]–[17]. In this paper, we use model C detailed
in [16], which acts as a disturbance in the glucose uptake.
This model increases the glucose uptake during and after an
exercise session. Therefore, it is a disturbance model that may
characterize aerobic exercise.

Model C from [16] was selected because it gave the highest
fit in BG drops according to our clinical data. A Monte
Carlo method was used to determine the values of the model
parameter β f and the coefficient of variation. The details of
this procedure can be found in [18]. The fit model is able to
accurately reproduce BG drops caused by aerobic exercise at
60% VO2 max but is not able to model the lasting effect of
exercise in insulin sensitivity.

III. INSULIN FEEDBACK LOOP

The algorithm is composed of two loops: an inner loop with
the PD controller with IFB and an outer loop with the safety
auxiliary feedback element (SAFE) layer.

The inner control action is composed of three insulin
signals: 1) ub represents the feed-forward meal bolus; 2) ubasal
is the insulin infusion due to the patient’s daily basal profile;
and 3) u P D is the PD control action. Then, the total insulin
control action is

uc(t) = kp

[
ei (t) + τd

dCGM(t)

dt

]
+ ubasal(t) + ub (1)

with ub being a super bolus

ub = M

I2C
+

∫ t+60
t ubasaldt

60
M + CGM(t) − Gd

CF
(2)

where k p is the proportional gain, τd is the derivative time,
I2C is the insulin to CHO ratio, CF is the correction factor,
Gd is the predefined glucose reference, and M is the meal
CHO content in grams. Specifically, the proportional gain is
tuned according to [19]

k p = 60

τd

ITDD

1500
(3)

where IT D D is the subject’s total daily insulin.
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The SAFE outer layer defines the conditions under which
the reference Gd may be changed. The reference is changed
to guarantee that the IOB is bounded, i.e., IOB ∈ [0, IOB],
by ceasing insulin infusion. The SAFE layer will modify the
reference Gd to a virtual reference Gds if the estimated IOB,
i.e., ÎOB, is about to violate the imposed constraint on the
maximum allowed IOB, i.e., IOB. This makes the controller
robust to delays in the subcutaneous route.

The SAFE layer is composed of: 1) a model that estimates
the IOB online; 2) an SMRC block; and 3) a low-pass first-
order filter to smooth the reference adaptation.

We use an expanded form of the insulin absorption
model [20] to account for basal and deviation IOB

dc1(t)

dt
= ubasal(t) − KDIAC1(t)

dc2(t)

dt
= KDIA (C1(t) − C2(t))

d�C1(t)

dt
= ud (t) − ubasal(t) − KDIA�C1(t)

d�C2(t)

dt
= KDIA (�C1(t) − �C2(t))

ÎOB(t) = C1(t) + C2(t) + �C1(t) + �C2(t) (4)

where C1(t) and C2(t) are the two compartments that account
for the basal conditions, �C1(t) and �C2(t) are the two
compartments that account for IOB deviations from basal con-
ditions, ud(t) is the total insulin dose, and KDIA is a subject-
specific time constant that replicates the patient’s duration of
insulin action (DIA).

The idea behind the switching action block that includes
SMRC is invariance control [21]. Basically, the set

� := {x(t)|IOB(t) − ÎOB(t) ≤ 0} (5)

where x(t) is the state of the system, which is invariant when
using the following discontinuous signal:

ω(t) =
{

ω+ if σ(t) > 0

0 otherwise
(6)

with the sliding surface defined as

σ(t) = ÎOB(t) − I O B(t) + τ (
˙̂IOB(t) − ˙IOB(t)). (7)

Finally, a low-pass first-order filter is defined to smooth the
reference change

dω f (t)

dt
= −λ(ω f (t) − ω(t)). (8)

The IFB is a mechanism that is widely used by AP systems
to reproduce the β-cells response to plasma insulin concentra-
tion (PIC). Basically, the secretion of insulin is inhibited as the
PIC increases. A straightforward way to replicate this effect
in the control algorithm is to estimate the PIC ( Î p) online and
then proportionally inhibit the insulin control action. Then,
the new insulin dose computed by the controller becomes

ud(t) = uc(t) − γ ( Î p(t) − Î ss
p ) = uc(t) − γ δ Î ss

p (9)

where Î ss
p refers to the PIC at steady state, i.e., plasma insulin

due to the basal infusion and δ Î ss
p represents PIC deviations

Fig. 1. PD+SAFE+ IFB insulin controller in blue with the CHO controller
in orange.

from the basal infusion. Hence, the implemented IFB only
accounts for deviations of plasma insulin from the basal one.
To estimate the deviations of plasma insulin, we use the
description of PIC from [20] and the deviation absorption rate
from �C2(t) compartment

dδ Î ss
p (t)

dt
= �C2(t)

tmax,I VI
− keδ Î pss (10)

where tmax,I is the time to maximum insulin absorp-
tion (min), ke is the fractional elimination rate (min-1), and
VI is the insulin distribution volume (L).

IV. CARBOHYDRATE RECOMMENDER SYSTEM

In this section, we introduce a novel approach to handle
any type of disturbance that has a lowering effect on BG. The
approach consists of a second feedback loop that will act as
a recommender system. The CHO recommender system uses
feedback signals to compute current control actions, inhibition
signals to coordinate both loops, and past and predicted control
actions to determine whether to recommend fixed amounts
of 15 g of CHO.

The complete block diagram of the control strategy is
presented in Fig. 1. Note the second negative feedback loop
for the CHO controller that has been added to the previous
insulin-only controller. Specifically, this negative feedback
loop features: 1) a new PD controller; 2) an online recursive
estimation in closed-loop for BG prediction; 3) a quantification
of the CHO controller action; and 4) inhibition signals between
both loops in both directions.

A. PD Controller for Carbohydrates

The CHO system was originally based on the insulin PD
controller used in clinical trials [12]. The integral term has
also been discarded because the aim of the CHO loop is
not to closely regulate BG but rather to minimize the risk of
hypoglycemia. A strong integral action would lead to too much
error accumulation during low glucose periods and would
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trigger unnecessary CHO recommendations. Here, the CHO
PD is defined as

uPDC = kpCHO

[
ec(t) + τCHO

dCGM(t)

dt

]
(11)

with

kpCHO = αkp (12)

where kp is the proportional gain of the insulin controller,
α is a design gain parameter to adjust the CHO controller,
and τCHO is the derivative time.

Therefore, the CHO PD controller computes control actions
that require insulin extraction from the body, i.e., negative
control actions. Later, these actions are transformed to the
equivalent effect, i.e., BG increase, which a consumption of
CHO would have.

B. Prediction Model

The BG levels of a T1DM subject can be represented as
a function of past glucose and past input signals. For this
purpose, an online adaptation of a linear time-invariant system
can be used to express the patient’s current and future BG
concentrations. Particularly, we consider the family of linear
time-invariant models M(θ) of the form

A(q)y(t) =
m∑

j=1

B j (q)u j (t) + C(q)e(t) (13)

with

A(q) = 1 + a1q−1 + · · · + ana q−na

B j (q) = b1 j q
−1 + · · · + nnb j q

−nbj

C(q) = 1 + c1q−1 + · · · + cnc q−nc (14)

where q−1 is the backward shifting operator. To estimate the
model parameters, we use the recursive extended least squares
algorithm [22]. The prediction capabilities for the family of
models M(θ) were evaluated, and an autoregressive model of
fourth order was selected to predict BG levels up to 20 min
ahead of time. The complete procedure on the parameter
estimation and prediction step can be found in [23].

Then, the system uses the predicted CHO control actions to
build the following moving vector centered at the current time
instant k

uC(k) = [
ũPDC(k − 3) ũPDC(k − 2) ũPDC(k − 1)

ũPDC(k) ˆ̃uPDC(k + 1|k) ˆ̃uPDC(k + 2|k)

. . . ˆ̃uPDC(k + Hp|k)
]

(15)

where Hp is the prediction horizon in samples, ũPDC are the
past and current CHO control action inhibited by the insulin
loop, and ˆ̃uPDC are the predicted and inhibited CHO control
actions.

C. Carbohydrates on Board

CHO on board (COB) is a concept similar to IOB. That is,
the COB is the CHO that has been consumed but that still has
not appeared in plasma. Here, the COB is used to estimate
how many of the recommended CHO will still increase the

BG concentration in the future. In this paper, we use the meal
absorption model from [24], and glucose gels with 15 g of
CHO are considered. Then, when the subject responds to a
CHO recommendation, the input is D(t) = 15 g. In addition,
we model tmax = 20 min and B = 0.9. Then, the COB is
defined as

ĈOB(t) = 1 −
∫ t

t∗
D(t∗)Bte− t

τmax

t2
max

dt

BD(t∗)
(16)

where t∗ corresponds to the time instant when the subject has
consumed the recommended CHO and ĈOB(t) represents the
percentage of remaining CHO.

D. Inhibition Signals From the Carbohydrate Loop

The COB is being used to inhibit the insulin control action
ud when the subject consumes fast-acting CHO recommended
by the system. This allows the insulin controller to be
coordinated with the CHO controller and not counteract the
BG increase due to this specific type of CHO. Specifically,
as shown in Fig. 1, there are two different COB inhibitions.

1) Direct Carbohydrates to Insulin Inhibition (C O B1):
COB1(k) is a virtual COB estimation computed from the
positive CHO PD controller actions. It is used to continu-
ously minimize the hypoglycemia risk if the prediction of
hypoglycemia is high irrespective of whether CHO has been
delivered.

2) Real Carbohydrates to Insulin Inhibition (C O B2):
COB2(k) is the COB estimation when there is a real CHO
recommendation. Therefore, the inhibition of the insulin action
is triggered because there is an actual consumption of CHO.

3) Insulin Control Action: The insulin control action ud(k)
is therefore modified to ũd(k) by the two COB signals

ũd (k) =
{

ud(k) − νCOB1(k) − βCOB2(k), if uPDC > 0

ud(k) − βCOB2(k), otherwise

(17)

where COB1(k) and COB2(k) are the COB estimations at time
instant k and ν ∈ R+

0 and β ∈ R+
0 are the gain parameters

that adjust the insulin inhibition factor.

E. Inhibition Signal From the Insulin Loop

An inhibition signal from the insulin loop to the CHO loop
is also considered to minimize the CHO recommendations.
Thus, the CHO PD control action is modified to

ũPDC(k) = uPDC(k) − κud(k)

where κ is the inhibition gain.

F. Quantification of Carbohydrates

The CHO controller signal will be quantified according to
15 g of the glucose gels by using the following quantifier:

δ(k) = σ(k) + 10
N∑

i=1

K�i uC(i − 1) (18)
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where δ(k) is the quantified CHO controller action, σ(k)
accounts for the deficit or excess of CHO from past actions, K
(CHO grams/insulin units (IU)) is a gain that allows transform-
ing insulin control actions into the equivalent CHO control
actions, N is the length of the vector uC, and uC is a moving
window of CHO controller actions. Then, CHO is suggested if

uCHO =
{

15, if δ(k) ≥ TCHO

0, otherwise
(19)

where TCHO is a control design threshold, and the counter
σ(k) is updated as

σ(k) =
{

−�(k), if 0 ≤ �(k) < TCHO

|�(k)|, if �(k) < 0
(20)

where �(k) = 15 − δ(k).

G. Controller Tuning

Controller parameters were fixed to the same value except
the proportional gain of both controllers, the IOB and the indi-
vidualization gain K . These three varying parameters are used
to individualize the AP tuning according to each individual
needs. Specifically, the tuning for IOB is time varying and
depends on the subject’s current basal profile [18]

IOB(t) = KIOB(t)
2ubasal(t)

60KDIA
(21)

where KIOB(t) is a gain designed to cope with day/night
variability and is defined as

KIOB(t) =
{

1.3 if 07:00 < t ≤ 23:00

1.1 otherwise.
(22)

Table I shows the parameters value of the insulin and
CHO controllers. The parameters for the IFB model of (10)
were taken from [20]. The inhibition gains (ν, β, and κ)
were manually and individually tuned using a 3-day scenario
without exercise. Specifically, we used the percentage time in
range 70–180 mg/dl as the objective to be maximized.

The following weights were applied to the CHO control
actions:

�i = [0.025 0.025 0.025 0.1 0.4 0.2 0.125 0.1]. (23)

The original insulin-only AP system used the same insulin
parameters from Table I. In addition, the system considered
standard of care rescue CHO to treat hypoglycemia

CHO =
{

15 gr, if CGM < 70 mg/dl

0, otherwise.
(24)

Rescue CHO is suggested again if after 15 min CGM has not
recovered above 70 mg/dl.

V. SCENARIO

A challenging scenario with combined meals and unan-
nounced exercise has been used to benchmark the controllers.
The duration of the scenario is 15 days, and we use an adult
cohort of 10 subjects from the meal simulation model [13].
Meals of 30, 60, and 50 g are scheduled at 8:30, 13:00,

TABLE I

TUNING PARAMETERS FOR THE INSULIN-ONLY AND CHO CONTROLLERS

and 19:00, respectively. The controller is challenged by contin-
uous aerobic exercise sessions for 50 min at 60% VO2max for
the scenario with exercise. Each subject performed a total of
eight exercise sessions on alternating days (starting on Day 1).
The first four exercise sessions were randomly scheduled at
different times (7:00, 10:00, 15:00, or 21:00), and the last four
sessions repeated the same time schedule.

VI. RESULTS

In this section, we compare the original insulin-only AP
system that conforms to the PD + SAFE + IFB with the new
AP system with CHO recommendations.

Table II show that both controllers have performed well
during the night when no disturbances affect the system. The
low time in hypoglycemia range during the night is caused
by late exercise sessions that affect the beginning of the
night period. Nevertheless, the new system has mitigated the
hypoglycemia occurrence during the night and significantly
increased the minimum measured CGM. During the day,
the performance of both systems is reduced by the combined
effects of meals and physical activity, e.g., see Fig. 2. However,
the new AP system is able to mitigate most hypoglycemias
(0.9 versus 0.1, p < 0.01). At the same time, the system
was able to mitigate hypoglycemia episodes even with less
rescue CHO (26.5 gr/day versus 15.5 gr/day). Hypoglycemia
mitigation is also shown by the minimum CGM reached during
day (42.8 mg/dl versus 59.2 mg/dl, p < 0.01) and by the time
spent below 70 mg/dl (2.2% versus 0.9%, p < 0.01).

The inhibition signals play an important role in stabiliz-
ing BG. Fig. 2 reflects the effects of the inhibition at the
end of the figure. On that day, patients engaged exercise
at 21:00 and CHO were delivered by both controllers. The
inhibition signals are able to mitigate the oscillatory behavior
that BG presents after delivering rescue CHO, reducing the
insulin over-actuation and the consumption of the subsequent
rescue CHO. Fig. 3 shows when the new AP system suggests
CHO based on the CGM and CGM trend. The distributed
points show a negative trend for higher values. The new system
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TABLE II

GLYCEMIC AND TECHNICAL PERFORMANCE WHEN SUBJECTS HAVE MIXED MEALS AND UNANNOUNCED PHYSICAL ACTIVITY

was not able to mitigate two severe hypoglycemias for the
whole cohort as shown by the two points in the red zone.

VII. DISCUSSION

In this paper, we propose a closed-loop algorithm to prevent
hypoglycemia by issuing alarms to encourage patients to con-
sume CHO. The presented control strategy has been designed
to avoid exercise-induced hypoglycemia, but it inherently
mitigates any disturbance that lowers BG levels and poses a
threat of hypoglycemia.

We have already tested the insulin-only portion of the algo-
rithm in clinical trials [12]. The system is being complemented

by a feed-forward controller to mitigate announced exer-
cise [18] and a meal detection system [25]. The goal is to add
features to the AP to provide as much automatism as possible
while ensuring safety.

Our results have shown that BG levels can be predicted, and
most hypoglycemia events induced by external disturbances
can be avoided. Hypoglycemia is avoided by consuming
extra fast-acting CHO. However, under closed-loop operation,
the CHO action alone is not enough. The system must be
informed of the ingested CHO, otherwise, the insulin con-
troller will react to any BG rise, over-actuating and possi-
bly inducing again hypoglycemia. Coordination mechanisms
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Fig. 2. Representative CGM trajectory (MEAN ± STD), insulin and bolus decisions for days 7 and 8 of the scenario. The blue curve corresponds to the full
algorithm and the magenta curve to the insulin-only controller aided with CHO. Exercise started 07:00 (199 hour) of day 8 and lasted for 50 min.

Fig. 3. Phase plane of CGM(k) versus ˙CGM(k) at time instant where CHO is suggested by the algorithm.

between different control actions should be a must have for
any multivariable AP system.

A similar strategy in the sense of issuing alarms to encour-
age patients to consume CHO can be found in [10]. This paper
included physical activity two times per day during a period
of 3 days. Hypoglycemia was successfully predicted in most
cases allowing the system to suggest the appropriate amount of
CHO to rise back BG levels. The BG levels at hypoglycemia
alarm are higher in average in their approach compared to the
proposed algorithm (122 mg/dl versus 102 mg/dl), the average
consumption of CHO per alarm was also lower (12.8 gr versus
15 gr). However, the lower consumption of CHO per alarm and
the earlier alarm triggering may require the patient to be more
dependent on the system. No coordination mechanism with
their closed-loop algorithm is used.

Although the proposed closed-loop CHO control strategy is
able to prevent most of BG decreases, it suffers from some
limitations. Since the patient is in the loop, the CHO control

action must be applied by them. Patient behavior not following
the recommendations may affect closed-loop performance in
terms of hypoglycemia avoidance.

VIII. CONCLUSION

The proposed insulin-only and CHO recommendation sys-
tem is able to minimize the risk of hypoglycemia in front
of mixed meals and unannounced aerobic exercise sessions.
Different internal coordination signals are used by the system
to avoid oscillatory behaviors after the consumption of rescue
CHO. The performance of the system is evaluated in-silico,
and the results reveal that by suggesting CHO in a timely
manner most hypoglycemias are avoidable.
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3
DISCUSSION

I n this thesis an AP system has been developed and tested in a clinical trial. The main

goal has been to develop robust strategies for controlling the BG against big external

disturbances, such as meals or exercise. To do so, the previously developed AP system

(León-Vargas et al., 2013) has been transformed into a multivariable controller that uses insulin

and suggests CHO to avoid hypoglycemia. The second goal was to take into account patient-in-

the-loop effects on the overall performance and safety of the AP system. In that line, several

methodologies to enhance the robustness of AP systems have been proposed. Firstly, a fuzzy

system was designed to keep an AP system tuned during PP. Secondly, a FD system was

developed to detect patient modes and potential behavioral faults. The following sections of this

chapter summarize the completed work and discuss the benefits and potential limiting factors

of the proposed approaches.
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3.1 Artificial Pancreas Systems for Controlling Meals and

Exercise

In (Beneyto and Vehi, 2017; Beneyto et al., 2018) we proposed a new multivariable AP system

that uses insulin infusion and CHO. The system was upgraded with a feed-forward exercise

controller (Bertachi, Beneyto, Ramkissoon and Vehi, 2018) and with an adaptive constraint

system for the IOB (Bertachi et al., 2020). The whole system has been implemented in the Java

Artificial Pancreas (jAP) platform and tested in an inpatient clinical trial.

The motivation behind the development of this AP was to provide the system with the

necessary tools to be efficient, safe and robust against meals and exercise. Previous observations

of BG control when people with diabetes engage aerobic exercise (Quirós et al., 2018) suggest

that insulin only AP systems offer limited protection against exercise induced hypoglycemia.

This is caused by the fact that this type of exercise rapidly and significantly lowers BG

concentrations (Riddell et al., 2017). The only counteractive action by insulin-only controllers

is to cease insulin infusion, and even in that situation patients are at high risk of hypoglycemia.

Therefore, additional counteractive control actions that prevent exercise hypoglycemia by

offering a way to raise BG levels had to be explored. The immediate option was to follow

the bi-hormonal AP approach, where insulin and glucagon are used. Bi-hormonal controllers

have been also tested in clinical trials and showed potential to become a reality (El-Khatib

et al., 2009; Taleb et al., 2016; Jacobs et al., 2016). However, bi-hormonal systems suffer from

several major limitations. Firstly, no stable glucagon formulation was available for daily use

(Pohl et al., 2014) until recently when in 2019 the FDA approved the first glucagon based

injection analogue GVOKE (Ranjan et al., 2020). Secondly, a bi-hormonal system increases the

complexity of the overall control system (Bally and Thabit, 2018). Even though any additional

control action would increase the system complexity, including glucagon would also require

additional hardware such as a second pump for glucagon since no dual chamber pumps exists.
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All that complexity may lead to a system that burdens the daily life of patients and lead to

patient dissatisfaction (Barnard et al., 2015).

In that scenario, our approach was to keep using a hybrid uni-hormonal system. Then, we

considered rescue CHO for the prevention and treatment of hypoglycemia. To improve how

and when CHO were suggested we decided to develop a specific control strategy instead of

using heuristic rules for CHO delivery (Turksoy et al., 2016) or additional modules (Liu et al.,

2020). Using a control strategy for CHO allow us to individualize the tuning for each patient.

Even with the CHO, we soon realized that proper coordination between insulin infusion and

CHO was essential to ensure performance and safety. Therefore, we included the concept of

carbohydrates on board (COB) and coupled both feedback loops. This prevented the insulin

loop to overreact to glucose increase caused by rescue CHO and helped in smoothing the later

glucose stabilization. The main drawback of using rescue CHO to avoid hypoglycemia is that

it may lead to hyperglycemia. In our approach, we minimize this possibility by taking into

account the past control actions and the current COB estimations.

Including CHO also posed patient uncertainty into the system. Clearly, this control action

cannot be performed automatically by means of a physical device. Instead, the patient itself

has to follow the controller recommendation and consume them. The performance of CHO

dependent systems could clearly be degraded with uncooperative patients. Additionally, CHO

based systems have restrictions on the CHO delivery. Carbohydrates cannot be delivered

continuously, such as insulin, and a CL system should not suggest different amounts of CHO

during operation. To cope with this limitation we developed a quantization strategy that enabled

the system to suggest a fixed amount of CHO. We decided to use 15 grams of CHO if rescue

CHO where suggested. That amount of CHO was selected based on common available products

on the market to treat hypoglycemia, such as glucose gels or tablets.

Finally, the whole system was stressed in-silico and validated in an inpatient clinical study

conducted at the Hospital Clínic de Barcelona. Results showed the potential benefits of the
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system and outperformed the OL therapy. However, further experimentation is still required

to assess the performance, robustness and reliability of the system in free living conditions.

This study also allowed our consortium to validate for the first time our smartphone based

AP platform, the jAP system. The jAP joins as one of the few academic platforms for AP

prototyping in the world (Choi et al., 2018; Deshpande et al., 2019; Herrero et al., 2019).

3.2 The Tuning of Artificial Pancreas Systems

Each person with T1D is unique and can exhibit highly different dynamics. Indeed, people

with diabetes may have significantly different BG dynamics based on age, sex, weight and

other physiological parameters or lifestyles (Miller et al., 2015). Furthermore, patients also

show great day to day variability. All these effects combined originate a necessity to develop

methodologies to tune and keep AP systems tuned.

During the ClosedLoop4Meals project we detected that the insulin on board (IOB) limit

was a fundamental control parameter in our AP approach. Conservative IOB limits would lead

to higher median BG levels, but in return, the system would become extremely robust against

hypoglycemia occurrence. Contrarily, higher and more aggressive IOB limits would lower BG

levels at the cost of having a higher hypoglycemia risk. These findings were specifically crucial

during the PP of the conducted clinical trial. In these periods there is a trade off between PP

peak and late PP hypoglycemia.

We started in-silico experiments with an adult cohort of 10 patients. The insulin controller

was carefully tuned by trial and error for each of the patients under challenging scenarios to

achieve satisfactory results. Afterwards we included variations on the IOB limits, with the

goal to mimic a misadjusted controller. The results confirmed that the performance decreased

significantly, and that a proper method for tuning the controller was needed.

To improve the tuning of the controller we decided to use an adaptive system based on fuzzy

logic. Fuzzy systems allowed us to include general concepts provided by expert endocrinologists
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into the system. After running the system in-silico we observed how the misadjusted IOB

limits converged to the tuned ones and improved the performance results. Because of that, we

also included the proportional controller gain into the adaptation strategy. These experiments

confirmed that our AP system tuning was key for its success.

Even though the system was only tested in-silico with a small cohort, it showed that

proper methodologies for tuning AP systems are needed. However, it should be noted that

the scenarios were specifically designed with the ClosedLoop4Meals clinical protocol. As an

inpatient clinical trial in a well controlled environment, the scenarios may not fully capture free

living conditions. Because of that, there is a possibility that the adaptation strategy will need to

be upgraded with newer rules and fuzzy sets.

Other adaptive strategies have been proposed in the literature to tune parts of AP systems.

The most widely used is the so-called run-to-run approach (Magni et al., 2009; Toffanin et al.,

2017), while others use more traditional adaptive control strategies (Turksoy et al., 2013).

However, the uncertainty of how current AP systems are tuned and are kept tuned is still present

in the literature. More data will become available as more systems enter the market. Then, data

driven approaches may be the way towards proper initialization, tuning and monitoring of these

systems (Kushner et al., 2018).

3.3 The Fault Detection and Patient Modes Classification

The performance and safety of AP systems are closely related. For many years, the research

community invested resources in developing complex control algorithms without paying much

attention on reliability and robustness of such systems. Given the fact that AP systems are

being designed for humans, safety should be at the most important level of priority. However,

the concepts of fault tolerant control or FD began to appear in the literature only around ten

years ago.

The firsts works in FD were essentially oriented and designed for CGM devices. The CGM
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technology allowed the development of AP systems in the first place. Therefore, efforts were

made to ensure the development of CGM technology. The first FD and calibration algorithms

started to be developed during the early 2000’s (Lodwig and Heinemann, 2003; Facchinetti

et al., 2007; Bequette, 2010), and after each new generation of CGM’s new algorithms appeared

(Andelin et al., 2016; Biagi et al., 2017; Vettoretti et al., 2019). In the same line, insulin

pump faults such as pump obturations, reservoir leakages or overdosing issues were addressed

(Herrero et al., 2012; Bequette, 2014).

None of the early works of this decade addressed the issue of having an automatic control

system centered on people. We wanted to revisit the concept of having a person in the control

loop, which in the case of diabetes resulted in the term patient-in-the-loop. In this line, the

role of patients could be classified into two categories based on the implications on the system:

situations in which the patient decisions have an impact on the system while it keeps running

and situations in which the system must be interrupted. Some issues that may raise from the

first category are related to meal or exercise announcements, carbohydrate misestimations or

CGM calibrations. All of these actions can be done during CL operation and could compromise

the system performance. In this thesis, we address some of these issues by providing a way to

detect patient modes. The second category includes actions that may require an interruption

of CL operation such as a battery replacement. Clearly, patients will have to wear and use

these systems in their day to day life and maintenance of the system will be carried out by

them. Therefore, not only the patients are the plant to control, but they also take the role of

the operator of the control system. Safety strategies when the system is interrupted must be

developed further for a fully fault safe AP.

The works described in (Beneyto et al., 2018; Bertachi, Beneyto, Ramkissoon and Vehi,

2018; Viñals et al., 2020) use a hybrid AP system in which the patient plays fundamental roles.

On one hand, the patient is the plant to control. On the other hand, the patient is required

to perform actions such as announce meals or exercise or consume rescue CHO. Because of
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that, we proposed a FD of patient modes that could be used to monitor the patient state, i.e.

monitoring the plant, and that allows the detection of potential actuator faults, i.e. faults related

to patient actions such as meal misestimations.

During the research stay at the Rensselaer Polytechnic Institute, we started to investigate

the use of multiple models in the context of state observers. Most of the available models in

the literature are compartmental and described by a set of nonlinear differential equations. We

decided to investigate the use of the Hovorka model, an intermediate complexity model with

nine states. The model was able to capture many of the nonlinear behavior of T1D patients,

without incorporating excessive complexity in its differential equations.

The detection of patient modes and patient-in-the-loop faults was done by generating

residuals and analyzing their consistency at every sampling time. To achieve that, we started

investigating observer structures for the Hovorka model. The firstly explored observers where

based on the traditional Kalman filter. Particularly, we investigated the performance of the

extended and unscented Kalman filters. However, we soon realized that the Hovorka model

had observability issues. The observer design step considered a single measurable signal, the

BG levels, and a single input signal, the insulin infusion. This resulted in observer designs

with extraordinary small gains, making the observer system work as a pure simulator. The

model presented several differential equations that were increasing the system complexity and

that could be easily removed without losing much of the essential dynamics of the glucose

subsystem compartments. Because of that, we reduced the Hovorka model and decided to use

the LPV paradigm to allow us the implementation of traditional linear control theory.

The foundation of the LPV Hovorka model was the bounding box approach. This allowed

the use of a finite set of models defined at the vertices of a designed polytope. The observability

issues were removed by checking and ensuring that the rank of the observability matrix of those

systems was of full rank. The traditional linear Kalman filter was then used for state estimation.

To do so, we used linear matrix inequalities to design the different observer gains for the vertex
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systems in a way that ensured all the interior points of the polytope were included.

For patient-in-the-loop FD we needed to have residuals that were discriminant. The residuals

were generated by transforming the observers into interval observers by considering the

propagation of uncertainty. Then, the consistency of the generated interval observers was

checked at every sampling time. If an interval residual did not include zero within its upper and

lower boundaries a binary signal was triggered. With this approach, we could tell in a robust

way that the model used for each of the particular observers was not valid anymore.

The bank of observers alone was not able to characterize patient-in-the-loop faults. To do

so, we designed a hybrid automaton that tries to mimic a real patient. The automaton included

several normal and faulty operational modes. Each of the modes was basically detected by

checking on the validity of each of the residuals. Transitions between different modes were

triggered by analyzing the residuals and patient inputs. Then, transition events meant a change

of patient operational mode and/or patient-in-the-loop faults. After experimenting with the

system we obtained reliable transitions between modes. The results are, as far as the authors

are concerned, one of the first systems designed specifically to address the patient-in-the-loop

problem.

The developed system can easily be upgraded and was designed to be expandable. Addi-

tional patient-in-the-loop modes and faults can be considered by adding appropriate modes

and transitions into the automaton. Also, the bank of observers can be expanded and the use

of additional models can be considered. In theory, any method that generates a set of robust

residual signals could be used as a complement for the bank of observers.

Finally, the system has been designed to work with AP systems. However, it can be used

in any OL treatment as well. There are many future possibilities for this system, including its

testing with traditional MDI therapy.
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4
CONCLUSIONS

T his thesis has contributed in developing tools required for the next generation of

AP systems. A new approach to control T1D, which include insulin and CHO as

control actions, has been proposed and validated in a clinical trial. Furthermore, an

algorithm for online tuning of an AP has been proposed. This thesis has also contributed in

advancing the state of the art in the patient-in-the-loop paradigm by providing a novel patient

mode detection.

4.1 Contributions

The mentioned contributions can be detailed further into more particular ones that have been

achieved during the development of the thesis:

• Controller tuning methodology. We have proposed a fuzzy strategy to tune and keep

an AP system tuned during PP periods. The system uses available metric information

collected online for assessing the performance of the control system, and retuning

is performed depending on a set of rules developed by engineers and clinicians. It
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is an expandable approach that can be used with other AP systems and that directly

incorporates the expertise of physicians into the tuning of a controller.

• New control action. This work has also introduced a new controller action to the AP

systems. CHO were previously used to treat hypoglycemia as a last resource, but never

as an active asset. We proposed to incorporate rescue CHO as a secondary control action

inside a multivariable controller that also uses insulin.

• Carbohydrates On Board. The concept of COB has been used in this work as a key

component when using CHO as a control action.

• Robustness against meals and exercise. The developed tools were designed to be robust

and safe during PP periods and during and after aerobic exercise sessions. By using the

proposed approaches the time in hyperglycemia and hypoglycemia levels is decreased

when compared to standard up to date treatments.

• Patient-in-the-loop. The thesis has contributed in emphasizing the patient-in-the-loop

paradigm within AP systems. The concept of patient modes is introduced and a system

to detect mode changes is developed and tested. Having a patient monitoring system is

an advantage for AP systems. Not only hybrid AP systems can benefit from this, but also

fully CL systems could use it to increase performance and safety.

• Multiple models approach. The proposed methodology for patient-in-the-loop FD is

deeply rooted on using multiple models. Each of the models is used for the detection of

specific operational modes. By using multiple models we can characterize the complex

dynamics of a T1D patient in a simpler yet robust way.

• Observer based fault detection. In this work we have used a bank of interval Kalman

observers. The generated residuals showed that they can be used to detect patient modes

and faults. However, because of the limitations of AP systems, observer based systems

may have issues when trying to perform a full state estimation.
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• Adaptability and expandability. The design of the tools and algorithms have been done

with the goal of usability in mind. All of the systems are easily expandable to include

new tools. Also, all of them can be easily adapted to work with other AP systems.

• Java Artificial Pancreas. The jAP system has been developed by our consortium by

members of the MEDERI laboratory. The controller presented in this work has been

implemented in Java and is the first to be used with such platform. To our knowledge, the

jAP system is one of the few academic systems in the world and the clinical trial showed

its future potential.

• Extensive validation. The proposed tools and algorithms have been extensively validated.

In-silico simulations using the FDA approved simulator with challenging scenarios were

done. Furthermore, a complete clinical trial was also performed with a cohort of 10 adults

with T1D.

• Additional contributions of this thesis by working together with other people from

MICELAB also include a feed-forward controller for exercise, an adaptation algorithm

for IOB constraints and a system for the detection of unannounced aerobic exercise.

4.2 Future Work

The results presented in this thesis are promising and provide hope for T1D patients. Tools to

help improve their day to day quality of life were developed and designed for the future AP.

However, additional research is needed to further improve the control and patient monitoring,

specially in free living conditions. This section discusses potential future pathways that can be

developed from the bases of this work.

The fuzzy tuning controller algorithm during PP periods has been shown to be effective.

However, the system had several limitations that should be solved in future steps. The first

limitation was originated by the scenarios used. We implemented the same scenarios that were
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used to validate the controller during the ClosedLoop4Meals project. Therefore, the generated

scenarios included only single meals per day. This allowed for better characterization of PP

periods without mixed effects from previous meals. The second limitation lies on the fuzzy

system. The developed system was a proof of concept strategy that included only triangular or

trapezoidal membership functions with a relatively small set of rules. It is expected that the

use of more challenging scenarios will also require more complex membership functions and a

bigger rule database.

The multivariable controller was developed on top of a previous validated insulin controller.

Although it has been designed to work with our insulin controller, the system can also be used

by any other single-hormone algorithm. It would be interesting to test other insulin control

strategies with the proposed CHO controller with the COB concept at its core.

The conducted clinical trial was promising and suggests that aerobic exercise can be done

by patients with T1D if they follow the controller’s recommendations. However, the study had

some limitations. The biggest limitation was that the experiment was performed in the clinic in

a highly controlled environment. This might have minimized patient-in-the-loop behaviors and

reduced interactions between the patient and the system. The next step is to conduct a clinical

trial in free living conditions using the jAP system.

The patient mode FD system is a first step to automatically monitor the patient. Although it

has been used in the context of AP systems, the system can also be used for OL approaches

such as MDI. The system can be easily upgraded by adding more observers into the bank,

which can use any of the available models in the literature. The hybrid automaton can also be

personalized and new operational modes can be added depending on the patient lifestyle. The

biggest limitation of the approach is that it was only validated in-silico where patient-in-the-

loop behaviors might not match completely real life behaviors. Therefore, a next step would be

to implement the system inside the jAP and conduct a clinical trial under free living conditions

with both OL and CL approaches.
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RESULTS OF THE MSAFE-AP CLINICAL TRIAL

I n this publication, we present the clinical results obtained in our inpatient study. The

control algorithm used for this study is an improved version of the original multivariable

controller. The controller is implemented in Java and embedded in a mobile platform

for Android, the jAP system. Appendix B includes additional controller documentation. The

candidate’s contribution for this publication consisted in the conception, design, implementation,

testing and validation of all control strategies, performed the statistical analysis, analyzed

and interpreted the data, contributing to discussion and writing and editing the manuscript

throughout the review rounds. During the development of the work, the candidate worked with

Clara Viñals, Arthur Bertachi, Juan-Fernando Martín-SanJosé and Clara Furió-Novejarque.

They were assisted by Dr. Marga Giménez, Dr. Ignacio Conget, Dr. Jorge Bondia and Dr. Josep

Vehí who conceived and designed the experiments, contributed to discussion and reviewed the

manuscript.
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OBJECTIVE—To evaluate the safety and performance of a new multivariable closed-loop 

glucose controller with automatic carbohydrate suggestion (MCL) during and after 

unannounced and announced exercise in adults with type 1 diabetes (T1D). 

RESEARCH DESIGN AND METHODS—A randomized, three-arm, crossover clinical trial was 

conducted. Participants completed a heavy aerobic exercise session including three 15-min sets 

on a cycle-ergometer with 5 minutes rest in-between. In a randomly determined order, we 

compared MCL control with unannounced (CLNA) and announced (CLA) exercise to open-loop 

therapy (OL). Adults with T1D, insulin pump users and HbA1c between 6.0-8.5% were eligible. 

We investigated glucose control during and 3 hours after exercise.  

RESULTS—Ten subjects (40.8±7.0 years-old; an HbA1c of 7.3±0.8%) participated. The use of the 

MCL in both closed-loop arms decreased the time <70 mg/dl of sensor glucose (0.0%,[0.0-16.8] 

and 0.0%,[0.0-19.2] vs. 16.2%,[0.0-26.0], (%,[Percentile 10-90]) CLNA, CLA and OL respectively, 

p=0.047, p=0.063) and the number of hypoglycemic events when compared to OL (CLNA 4 and 

CLA 3 vs. OL 8; p=0.218, p=0.250). The use of MCL system increased the proportion of time 

within 70-180 mg/dl (87.8%,[51.1-100] and 91.9%,[58.7-100] vs. 81.1%,[65.4-87.0], 

(%,[Percentile 10-90]) CLNA, CLA and OL respectively, p=0.227, p=0.039). This was achieved 

with the administration of similar doses of insulin and less amount of carbohydrates.  

CONCLUSIONS—MCL with automatic carbohydrate suggestion performed well and was safe 

during and after both unannounced and announced exercise maintaining glucose mostly within 

the target range and reducing the risk of hypoglycemia despite of less amount of carbohydrate 

intake.   

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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INTRODUCTION 

Physical exercise has been shown to improve glycemic control and general wellbeing for people 

with type 1 diabetes. However, despite growing evidence about the health benefits of regular 

exercise in diabetes, exercise-associated glycemic imbalance remains a challenge in subjects 

with type 1 diabetes (1–4). Guidelines for exercise management exist for type 1 diabetes (T1D) 

subjects, which commonly include recommendations for carbohydrate consumption and basal 

insulin adjustment (1). Nonetheless, the current exercise strategies remain a burden for most 

patients in daily life conditions and require high engagement and further individualization (5).  

Closed-loop (CL) or artificial pancreas (AP) systems with automatic insulin infusion in response 

to a continuous glucose monitor (CGM) signal are safe and efficient in free-living conditions (6–

8). However, physical exercise is one of the main disturbances that challenge these devices due 

to rapid changes in insulin sensitivity, limitations in the subcutaneous route, and the lag time 

and accuracy of glucose sensing in the subcutaneous space (9,10). 

Recently, Tagougui et al. (11) reviewed the studies that have examined the performance of AP 

systems in response to exercise. Several approaches have been used to maintain optimal 

glycemic control during exercise, such as the use of glucagon, heart rate to automate exercise 

detection, additional variables to improve glucose predictions, pre-exercise snacks, and a 

combination of these strategies. Overall, these studies have demonstrated that AP systems are 

able to maintain glycemic control while reducing the occurrence of hypoglycemia. However, 

supplemental carbohydrates (CHO) consumption is still required before, during, and/or after 

exercise to reduce the occurrence of hypoglycemia. Despite the use of different strategies, 
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there is no clear consensus as to which has the most effective effects on glucose control as 

results are difficult to compare due to the variations in AP systems, duration of use, exercise 

protocol, carbohydrate quantities, and outcomes reported.  

The SAFE-AP system is a single-hormone hybrid closed-loop (HCL) controller that includes 

carbohydrates recommendations as an additional control input. It is based on a proportional-

derivative (PD) with insulin feedback (IFB) controller that integrates a safety layer with insulin-

on-board (IOB) constraints and sliding mode reference conditioning (SMRC) (12–15). The HCL 

system includes a second feedback loop with a controller that triggers carbohydrates 

suggestions to the patient (16). Both control loops are coordinated to ensure that the counter-

regulatory effect of rescue carbohydrates is not counteracted with insulin. Additionally, if 

physical activity is announced, the system can also take feed-forward actions to further prevent 

hypoglycemia (17,18). Mitigation modules to improve safety and performance of the overall 

system were also used (17,19). 

The objective of this study was to evaluate the safety and performance of this new 

multivariable single-hormone HCL control system with carbohydrate suggestion (MCL) under 

challenging unannounced and announced exercise in patients with T1D.  

 

RESEARCH DESIGN AND METHODS 

Study design and participants 

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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This open-label, randomized, three-arm, crossover, in-hospital clinical trial was conducted at 

the Hospital Clínic de Barcelona, Spain. The study was performed in compliance with the 

Declaration of Helsinki, Good Clinical Practice, and applicable regulatory requirements. The 

study was approved by the local Ethics Committee and all subjects gave informed consent. The 

study is listed on clinicaltrials.gov under the registration number NCT03577158. 

The inclusion criteria were: age 18 – 65 years (inclusive), clinical diagnosis of T1D for at least 1 

year, HbA1c between 6.0% and 8.5%, on continuous subcutaneous insulin infusion (CSII) for at 

least 6 months, BMI within 18-30 kg/m2, and without advanced chronic micro- and 

macrovascular complications. Subjects with prior history in the last 6 months of at least one 

episode of severe hypoglycemia, diabetes ketoacidosis requiring hospitalization with 

hypoglycemia unawareness assessed using a validated questionnaire (20), or who were 

pregnant or breastfeeding were excluded.  

Patients were instructed to wear a CGM device during a 6-day period before the first exercise 

test. Data from CGM was used to optimize the following parameters: insulin to carbohydrates 

ratio, sensitivity factor, basal insulin needs. These parameters were used to optimize the overall 

home blood glucose control (21,22), after which the controller was tuned. Initial IOB during 

each trial was also estimated from CGM data for the controller initialization. 

Randomization and masking 

Participants were randomly assigned (1:1:1) to perform physical exercise on three different 

sequences: MCL with unannounced exercise (CLNA), MCL with announced exercise (CLA), and 

open-loop (OL) with announced exercise, (sensor augmented pump therapy). There was a 
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wash-out period of at least 1 week between studies. Each subject underwent an in-hospital 

standardized physical exercise protocol on three occasions. Participants and investigators 

analyzing this study data were not masked to treatment.  

Procedures 

The screening visit included informed consent acquisition, a detailed physical examination, 

confirmation of the inclusion/exclusion criteria, an EKG, a safety clinical laboratory analysis, and 

an HbA1c measurement. In women of childbearing age, a urine test for pregnancy was also 

performed. Participants also answered the short version of the International Physical Activity 

Questionnaire (23). Participants were randomized into the three sequences and CGM training 

was given. During three separate in-hospital visits, participants arrived at the investigational 

clinical site at 8:00h in the morning after having a standardized breakfast of 50g of 

carbohydrates at home. Although patients received instructions on breakfast protocol, 

compliance was not checked. At 8:30h the MCL controller was initialized in the closed-loop 

sequences. The exercise protocol started at 12:00h (t = 0) and consisted of three 15-minute sets 

on a cycle ergometer (Wattbike Pro, Wattbike Ltd., UK) at 70% of maximum heart rate with 5 

minutes of rest between sets. Participants were in MCL or OL until 15:00h (t = 180 minutes). 

Patients wore a heart rate monitor (Polar RCX3®, Kempele, Findland) to ensure the desired 

exercise intensity, calculated as: 

𝐻𝑅!"!#$%&! = 𝐻𝑅#!&' +
70(𝐻𝑅()" − 𝐻𝑅#!&')

100  

where HRexercise is the heart rate (bpm) during the physical activity period, HRmax is the 

maximum heart rate (bpm), and HRrest is the rest heart rate (bpm).  

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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Exercise announcement (11:40h) was confirmed 20 minutes prior to the start of the activity 

(12:00h) in both the OL and CLA studies. The OL study used a temporal basal rate of 0% until 

the completion of the exercise protocol and followed recommended glucose management 

strategies considering blood glucose concentration before exercise commencement (1). The 

CLA system initiated the exercise mode (17) upon confirmation of exercise by the user.  

Devices and assays 

The MCL system was based on a glucose controller (12,15–17,19) built in an Android platform 

designed for investigational purposes (jAP). The jAP is a configurable and scalable platform in 

which different AP architectures can be used (unihormonal/bihormonal, with or without 

additional sensors, selection of different types of controllers). The platform also includes all 

necessary tools for the correct monitoring and visualization of the user’s data, as well as 

different permission levels for the adjustment of the therapy.  

The system was installed in a Samsung S7 (4 GB RAM, 32GB memory) smartphone with 

Android® 7.0 (kernel 3.18.14-12365438) including only the preinstalled and jAP applications. 

The smartphone was wirelessly connected to both the insulin pump and CGM using Bluetooth 

technology. The jAP platform retrieved glucose/insulin data from both the insulin pump and 

CGM and set insulin treatment according to the selected therapy of either OL or MCL. A backup 

Asus ZenBook (i7-7500U @ 2.70GHz, 16 GB RAM, Windows 10 Home v18362.418) laptop was 

prepared for troubleshooting issues and connection errors.  
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All participants used the same CSII set (Dana Diabecare R, Sooil, Seoul, Korea), CGM (Dexcom 

G5, Dexcom, San Diego, CA, United States), and glucose meter (Contour Link Meter 2.4, 

Ascensia Health Care, Basel, Switzerland).  

The MCL, which received glucose measurements from one CGM device every 5 minutes, 

calculated two control actions: insulin delivery and a fast-acting carbohydrate intake 

suggestion. Calculated insulin was delivered automatically by changing the basal rate of the 

insulin pump during the next time interval. The control software had two main elements: (1) a 

multivariable closed-loop control algorithm based on the CGM measurement that computes 

the insulin infusion and a suggestion of carbohydrate intake (if necessary) every 5 minutes and 

(2) an exercise mitigation module that triggers feed-forward actions for better glycemic control 

when exercise is announced. When necessary, suggestions of carbohydrate intake by the 

controller are given as a predefined amount of fast-acting carbohydrates (15 g). When exercise 

is announced, the controller may suggest additional pre-exercise carbohydrates that were 

quantized in multiples of 5 g. This was a manual action performed by the patient. 

The MCL system was designed, tuned, and validated using Matlab (R2017a, MathWorks, Natick, 

MA, USA) (12,15–17,19). The CLNA and CLA version of the controller were implemented in Java 

1.8 for their integration within the jAP platform. The MCL system requires insulin, meals, and 

glucose data from the previous 5 hours to correctly initialize its integrated components.  

The time window from the computation of the current control action to the next available 

measurement was used, among other things, to upload data to a server used as a remote 

monitoring tool. A web application allowed the authorized users to remotely monitor the status 

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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of the patient in each trial. Data like CGM, infused insulin, IOB and other useful controller 

parameters were presented in timed graphics in order to follow the whole trial in real time. 

Safety monitoring 

Arterialized reference blood glucose samples (Yellow Spring Instruments (YSI); YSI 2300 STAT 

Plus, YSI Inc. Life Sciences, Yellow Springs, OH) were collected every 15 minutes before exercise 

and during recovery and every 10 minutes during exercise. If any glucose value reading was 

below 70 mg/dl and the patient showed symptoms of hypoglycemia, 15 g of glucose were 

provided (Diabalance® gel).  

Endpoints 

Primary endpoints were the percentage of time < 70 mg/dl of sensor glucose, as well as, the 

number of hypoglycemic events (plasma glucose < 70 mg/dl) during exercise and recovery (180 

minutes). Hypoglycemic events were classified as L1 events if plasma glucose was <70 mg/dl for 

at least 15 minutes and L2 if it was <54 mg/dl for at least 15 minutes (24).  

The secondary outcomes were the following: (1) percentage of time spent in 70-180 mg/dl and 

>180 mg/dl during exercise and recovery; (2) coefficient of variation (CV) of CGM values during 

and after exercise (3) total insulin and carbohydrates during, after exercise and on the exercise 

announcement event.  

All study endpoints used are in line with the up to date recommended outcome measures 

(24,25). CGM sensor values and control action variables analysis during the exercise and 

recovery periods were also recorded. 
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Statistical analysis 

Due to the exploratory nature of this study, sample size calculations were not formally 

performed. Comparisons between all three arms (CLNA vs CLA, CLNA vs OL, and CLA vs OL) 

were performed using the paired nonparametric Wilcoxon signed rank test (MATLAB R2019a, 

MathWorks, Natick, MA, USA). Descriptive statistics, including the mean, standard deviation 

(SD), median, 10 - 90 percentile range, coefficient of variation (CV), and interquartile range 

(IQR) were also computed to describe the sample characteristics. Missing values from the 

original CGM signal were linearly interpolated for the computation of secondary outcomes.  

 

RESULTS 

The baseline characteristics of the cohort are reported in Table 1. All 10 patients completed the 

study. During the exercise protocol, CGM data were available 93.33% of the time. One patient 

had an available CGM time below 60% during the OL trial due to constant disconnection of the 

CGM sensor and therefore, the patient was excluded from the CGM outcomes and from the 

CLNA vs OL and CLA vs OL comparisons.  

The glycemic outcomes were calculated using the glucose readings from the YSI and CGM 

during the exercise and recovery periods, which resulted in a total of 180 minutes of data for 

each trial (Tables 2 and 3). The heavy aerobic physical activity generally provoked large and 

rapid glucose drops as shown in Figure 1.  

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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During this study, a total of 15 hypoglycemic events were recorded by the YSI (4 for the CLNA 

arm, 3 for the CLA arm and 8 for the OL arm) as reported in Table 2. Participants received 

supplemental carbohydrates, either as a feed-forward action or as suggestion by the controller 

on the CLNA/CLA arms and also, following recommended glucose management strategies in the 

OL arm (1). The CLNA and CLA systems decreased the proportion of time spent in the 

hypoglycemic ranges (< 70 mg/dl) with values of 0.0% (0.0% – 16.8%) and 0.0% (0.0% - 19.2%) 

compared to 16.2% (0.0% - 26.0%) for the OL system (Table 2). 

The median (10 - 90 percentile ranges) proportion of time spent in range (70-180 mg/dl) for the 

exercise and recovery period based on CGM sensor was 87.8% (51.1% – 100%) for CLNA, 91.9% 

(58.7% – 100%) for CLA, and 81.1% (65.4% – 87.0%) for OL. The overall descriptive statistics 

were more favorable for the CLNA and CLA arms compared to OL, mainly the system achieved 

tighter control in terms of glucose variability during and after exercise (CV  26.4 mg/dl (22.1 – 

46.9), 21.5 mg/dl (13.1 – 55.8), and 49.1 (16.4 – 79.4) for CLNA, CLA, and OL, respectively). CGM 

values and estimated IOB at the beginning of the physical activity were comparable in all three 

arms (Table 3). 

The improvement of the overall glucose during both CL arms was achieved with a trend to 

lower amount of carbohydrates when compared to OL, 15.0 g (0.0 – 31.5) for CLNA, 22.5 g (15.0 

– 40.5) for CLA, and 32.5 g (0.0 – 40.0) for OL, while  infusing similar amounts of insulin in all 

three arms, see Table 3.  

There were no serious adverse events, the full CL period was completed for all subjects, and in 

no instances was the stopping criteria met. For the entire study period, there were 0 
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hyperglycemic events involving PG >250 mg/dl. Due to signs and symptoms of hypoglycemia 

there were two instances that for medical criteria the investigational team gave carbohydrate 

rescues to the participants before the carbohydrate were suggested by the controller. 

 

DISCUSSION 

The results of this study show that the use of the new multivariable single-hormone HCL control 

system with carbohydrate suggestion is effective and safe in maintaining blood glucose within 

target values during and after unannounced and announced heavy physical activity. To our 

knowledge, this is one of the few randomized controlled trials that has compared the 

performance of a CL controller for unannounced and announced exercise and sensor 

augmented pump therapy.  

Other studies have incorporated bi-hormonal control strategies with glucagon to cope with 

exercise (26–29). In our case, the glucagon counter-regulatory action is substituted by the 

suggestion of carbohydrate consumption given by the controller. There are other approaches 

using an AP system and carbohydrates to compensate the exercise effect (30,31). These 

strategies mostly consist on ad-hoc modules that encourage the patient to eat rescue 

carbohydrates in case a hypoglycemic event is predicted. Most common strategies in AP clinical 

trials involving exercise only use rescue carbohydrates as a reactive action when glucose is 

below a given threshold for safety, e.g. <70 mg/dl, such as (29,32). A key difference from other 

AP systems is that the investigated algorithm, MCL, incorporates a specific CL control strategy 

not only for insulin delivery, but also for suggesting carbohydrates as an additional control 

APPENDIX A. RESULTS OF THE MSAFE-AP CLINICAL TRIAL
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action. By incorporating the carbohydrates as a new control action, this multivariable algorithm 

intends to optimize the carbohydrate intake required to improve performance and 

guaranteeing safety. It is a fully multivariable controller with coordination between insulin and 

carbohydrate intake suggestion. Moreover, the CL controller used a static glucose set-point of 

100 mg/dl to assess the ability of the controller to maintain tight glucose control during and 

after heavy aerobic exercise.  

The number of hypoglycemic events in the MCL studies (4 in CLNA, 3 in CLA) is about half that 

of the OL studies (8 instances). The small sample size of this exploratory study and meticulous 

adherence to the in-hospital procedures for preventing hypoglycemia implemented by trained 

investigators prevented the demonstration of statistical significance. Additionally, the trial 

revealed that the CL strategies decreased the proportion of time spent in the hypoglycemic 

range (< 70 mg/dl), especially in the CLNA arm. The use MCL system maintained or increased 

the proportion of time spent within target glucose range with a significant improvement in 

glucose variability in both, CLNA and CLA arms. The improvement in glucose variability is far 

from negligible because it is associated to a higher risk of hypoglycemia in the upcoming hours 

(33). 

At the same time, the controllers have reduced the control action efforts in terms of 

carbohydrate suggestions when compared to standard exercise recommendations in open loop 

(1). Particularly, the OL arm required twice the carbohydrates as the CLNA. In addition, the CL 

system was safe with a fixed set-point of 100 mg/dl, while other similar studies used increased 

set-points during exercise (24,34). Our results are in line with the study performed by Patel et 

al. (35), that showed in a CL study that using a snacking strategy could help decreasing the 
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exercise-induced hypoglycemia. Additionally, our approach required a lower quantity of CHO to 

reduce hypoglycemia.  

In this study, 15 and 5-gram glucose gels were used, which were the only source of rescue 

carbohydrates provided to the subjects. One limitation of this study is that the carbohydrates 

taken as feed-forward actions 20 minutes before exercise may not have had a full impact on the 

exercise period due to the high glycemic index and rapid rate of absorption of the gels used. 

Additional research is required to study the impact of different carbohydrate sources as 

counteractive measures to physical activity in CL strategies.  

Physical exercise has a profound impact on blood glucose control. Depending on the type and 

duration of the activity as well as the patient’s state, blood glucose levels may be difficult to 

maintain within the target range (1). Numerous factors can alter the performance of HCL 

controllers, such as over-bolusing of previous meals, which is an event that can lead to high IOB 

levels at the beginning of physical exercise. We observed a steady decline in blood glucose and 

a comparable amount of active IOB across all arms during exercise periods. CLNA had a steeper 

decrease in blood glucose during exercise when compared to CLA and OL. The patient’s IOB was 

postprandial (following the morning breakfast) and glucose was largely in the target range at 

the start of exercise, regardless of the treatment arm.  

CL control could benefit from additional sources of information (e.g., heart rate or energy 

expenditure) and/or additional control actions such as the use of glucagon. Studies have shown 

that the use of glucagon may mitigate the risk of hypoglycemia (26–30,32,36). Regardless of the 

controller used, we observed that proper coordination with the different available control 
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actions is mandatory. The controller must be aware of control actions performed by the 

patient, i.e., the act of eating rescue carbohydrates should not be counteracted by the insulin 

control.  

Our study has limitations. It was conducted in a well-controlled in-hospital environment. Free-

living studies including more types and durations of physical activities are required in order to 

fully assess the performance and safety of the CL systems tested. The majority of the controller 

parameters were kept the same across all patients to generalize the tuning and make it as 

simple as possible. In free-living conditions, the control parameters should be further 

individualized to each specific subject and adapted to optimize performance and enhance 

safety. Due to the small duration and the exploratory nature of this study, it was not possible to 

address this issue. Since this study protocol ended at 15:00h, the study did not include the 

assessment of blood glucose levels during the night following exercise. Further investigation is 

needed to assess the ability of the CL therapy to deal with common exercise complications like 

overnight hyperglycemia rebound  (37–39) or hypoglycemia due to increased insulin sensitivity 

in a longer post-exercise periods. 

In conclusion, the present study demonstrated that both CLA and CLNA control systems 

performed well and were safe during and after exercise in adults with T1D performing heavy 

aerobic exercise compared to OL insulin delivery. The system was able to maintain tight glucose 

control reducing the risk of hypoglycemia despite of less amount of carbohydrate intake.  

Finally, longer term outpatient studies are still required to further assess the safety and 

performance of the SAFE-AP system in free-living conditions. 
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Table 1. Baseline characteristics of the cohort. Data presented as Mean ± STD 

Characteristic All (n = 10) Male (n = 7) Female (n = 3) 
Age (years) 40.8 ± 7.0 41.7 ± 6.9 38.7 ± 8.4 
Diabetes onset (years) 24.9 ± 11.6 27.0 ± 10.7 20.0 ± 14.5 
Duration using pump 
(years) 

8.1 ± 4.1 7.6 ± 2.4 9.3 ± 7.4 

HbA1c (%) 7.3 ± 0.8 7.2 ± 0.9 7.4 ± 0.4 
Weight (kg) 76.5 ± 10.7 80.6 ± 9.7 67.0 ± 6.3 
Height (cm) 172.9 ± 7.7 176.0 ± 5.9 165.7 ± 6.8 
Total Daily Infusion (U) 37.5 ± 5.9 39.1 ± 5.8 33.6 ± 4.7 
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Table 2. Primary endpoints of the study. Number of hypoglycemic events and the percentage of 

time < 70 mg/dl of sensor glucose 

  CLNA CLA OL p* p† p‡ 

Plasma 
Glucose 
(mg/dl) 

54 - 70 2 2 4 1.000 0.500 0.688 
       

<54 2 1 4 1.000 0.625 0.250 
       

< 70 4 3 8 1.000 0.218 0.250 

CGM 
Glucose 
(mg/dl) 

       
% <70 0.0† (0.0–16.8) 0.0 (0.0–19.2) 16.2 (0.0–26.0) 1.000 0.047 0.063 

       
% <54 0.0 (0.0–0.0) 0.0 (0.0–8.4) 0.0 (0.0–6.0) 0.500 0.500 1.000 

       
*P-value between CLNA-CLA. †P-value between CLNA-OL. ‡P-value between CLA-OL. 

Data expressed as number or median (10th - 90th percentile ranges). 

CGM: continuous glucose monitor. 
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Table 3. Secondary outcome measures, CGM values and control action variables during the 

exercise and recovery periods.  

Variable CLNA CLA OL p* p† p‡ 

Mean Glucose (mg/dl) 120.5 (92.7 – 181.6) 127.1 (84.7 – 189.4) 119.6 (91.9 – 168.5) 0.922 1.000 0.910 

Median Glucose (mg/dl) 106.5 (92.5 – 180.5) 119.0 (86.5 – 194.0) 130.0 (85.6 –170.4) 0.826 0.733 0.441 

IQR, Glucose (mg/dl) 26.4 (22.1 – 46.9) 21.5‡ (13.1 – 55.8) 49.1 (16.4 – 79.4) 0.625 0.055 0.020 

CV (%) 17.8† (9.4 – 31.2) 17.3‡ (10.7 – 25.3) 30.8 (8.5 – 37.4) 0.846 0.027 0.020 

% of time       

>250 mg/dl 0.0 (0.0 – 0.74) 0.0 (0.0 – 0.0) 0.0 (0.0 – 0.0) 1.000 1.000 1.000 

>180 mg/dl 0.0 (0.0 – 48.9) 0.0 (0.0 – 41.4) 0.0 (0.0 – 15.1) 0.813 0.625 0.375 

70-180 mg/dl 87.8 (51.1 – 100.0) 91.9‡ (58.7 – 100.0) 81.1 (65.4 – 87.0) 0.688 0.227 0.039 

Glucose (mg/dl) at 
Exercise announcement 136.0 (115.8–200.5) 118.0 (98.4–146.4) 118.0 (67.4–209.4) 0.250 0.426 1.000 

 
Exercise start 121.0 (98.4 – 190.4) 114.0 (95.5–141.0) 116.0 (71.0–169.8) 0.359 0.734 0.910 

Estimated IOB (U) at 
Exercise announcement 2.9 (2.0 – 4.7) 2.6 (1.8 – 4.2) 2.6 (1.9 – 4.2) 0.846 0.922 0.770 

 
Exercise start 2.4 (1.8 – 4.2) 2.2 (1.5 – 3.6) 2.3 (1.6 – 3.6) 0.695 0.922 0.557 

Insulin (U) during       
Exercise 0.0 (0.0 – 0.2) 0.0 (0.0 – 0.3) 0.0 (0.0 – 0.1) 1.000 1.000 0.813 

 
Recovery 1.9*, † (0.8 – 2.7) 1.3 (0.3 – 2.5) 1.2 (0.5 – 2.3) 0.020 0.020 0.625 

 
Exercise + Recovery 2.0† (0.8 – 2.7) 1.3 (0.3 – 3.1) 1.3 (0.6 – 2.3) 0.492 0.049 0.695 

Carbohydrates (g) during 
Exercise and recovery 15.0 (0.0 – 31.5) 22.5 (15.0 – 40.5) 32.5 (0.0 – 40.0) 0.148 0.219 0.880 

 

*P-value between CLNA-CLA. †P-value between CLNA-OL. ‡P-value between CLA-OL. 

Values expressed as Median (10th - 90th percentile ranges).  

IQR, interquartile range; CV coefficient of variation; IOB: insulin on board. 
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Figure 1. CGM sensor values in Median (IQR) during closed-loop arms (blue, red) and open-loop 

(green). Exercise started at 12:00h (t = 0 on the x-axis) and finished 60 minutes later.  
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ADDITIONAL MODULES FOR THE MULTIVARIABLE AP

T his appendix presents two modules that were included within the AP system used

for the mSAFE-AP clinical trial, which results are included in Appendix A of this

thesis. These two modules are included in two publications were contributions from

this thesis were used. The first module corresponds to a feed-forward controller to cope with

exercise (Bertachi, Beneyto, Ramkissoon and Vehi, 2018). The second module includes an

adaptive system for PP periods (Bertachi et al., 2020). Figure B.1 depicts the complete block

diagram of the strategy, and outlines the additional included blocks. Red color distinguishes

the exercise feed-forward controller blocks, and teal color the PP adaptive system.

B.1 Feed-forward Exercise Controller

The feed-forward exercise actions complement the control algorithm and provide extra safety

for the patient when performing aerobic exercise at moderate to high intensity (Bertachi,

Beneyto, Ramkissoon and Vehi, 2018). For these actions to take place, the patient must inform

to the system that he or she is going to exercise. The patient will have to inform the starting
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Figure B.1: Multivariable Hybrid Artificial Pancreas used in mSAFE-AP clinical trial.

time and duration of the exercise session. With the provided information, the feed-forward

controller will actuate on top of the feedback insulin controller to decrease its aggressiveness

during and after the exercise session. Particularly, two sets of actions are performed:

• Suggestion of CHO (C HOF F ) depending on the glycemic state and the estimated IOB at

the start of the exercise session. At the beginning of the announced exercise session, the

feed-forward controller may suggest fast acting CHO according to

C HOCGM =



20, if CGM(t ) ≤ 90

10, if 90 <CGM(t ) ≤ 124

0, otherwise

C HOIOB = (�IOB(t )−βIOB IOBb(t )
)

C R
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B.1. FEED-FORWARD EXERCISE CONTROLLER

C HOF F = 5bC HOCGM+C HOIOB−COB2(t )e, s.t. C HOF F ≤
max

(
0, CGM −CGM(t )

)
KC HO

where C HOF F are the final suggested CHO in grams, C HOCGM are the CHO due to the

glycemic level of the patient at the start of the exercise session in grams, C HOIOB are

the CHO due to the amount of IOB at the start of the exercise session in grams, COB2 is

the COB estimation due to previously given CHO by the feedback controller and may

inhibit feed-forward CHO, C R is an individualized insulin-to-CHO ratio, CGM is the

maximum allowed increase of BG due to C HOF F consumption and is set to 250 mg/dl,

βIOB is a tuning gain set to 0.7 and the notation 5be indicates that CHO are rounded to

the nearest 5 grams.

• Gain reduction of the insulin feedback controller to minimize the hypoglycemia risk

during and after the exercise session due to an insulin sensitivity increase, see figure B.2.

Figure B.2: Insulin controller modified parameters by the feed-forward exercise controller
during the mSAFE-AP clinical trial.
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The feed-forward adaptation is composed of three different stages. The first one includes a

period of 20 minutes and the whole exercise period, the second one (∆1 = 120 minutes) follows

the ending of the exercise session, and the last stage (∆2 = 240 minutes) follows ∆1.

All the variables are modified using a step following the exercise announcement and are

maintained until the end of the ∆1 period. After that period, the variables are linearly returned to

their original values during∆2. The adaptation objective is to minimize the risk of hypoglycemia,

and thus reduce insulin infusion during exercise, without excessively compromising the system

performance (Bertachi, Beneyto, Ramkissoon and Vehi, 2018; Bertachi et al., 2019).

One of the problems of using feed-forward control is that it relies on how accurately is

known the effect of a given disturbance on the system, i.e., how accurately you know the

disturbance model. Therefore, we included several escape conditions that allow the controller

to return earlier to its original tuning. The following rules were used:

1. CGM(k) > 140∧ ˙CGM(k) > 0, ∀k ∈ (k −2, . . . ,k)

2. ˙CGM(k) > 1∧ ũd (k) = 0, ∀k ∈ (k −2, . . . ,k)

3. ˙CGM(k) > 1.5∧ ũd (k) = 0, ∀k ∈ (k −1, . . . ,k)

where ˙CGM is the derivative of the CGM signal in mg/dl/min, ũd is the insulin delivered in

units/hour and k refers to the current sampling period. If any of the previously mentioned

conditions is fulfilled during the ∆1 period, then the system directly switches to ∆2.

B.2 Postprandial IOB adaptation

The PP IOB adaptation (Bertachi et al., 2020) is activated after giving an insulin bolus due

to a meal announcement. The natural trend of BG after a meal is to rise, and that rise is what

we refer as a PP excursion. In the proposed PP strategy we use and augmented bolus, called

super-bolus, with the SMRC module that minimizes the risk of PP hypoglycemia. This results
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in a singular effect of ceasing, almost instantly, the insulin infusion after the super-bolus.

What happens is that the super-bolus, which is given almost as an impulse input, makes the

estimated IOB(t ) > IOB(t ) almost instantly. That is the reason why the insulin controller

usually suppresses the insulin infusion after a bolus, even if the BG trend is positive. An

example of this behavior can be seen in figure B.3.
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Figure B.3: Representative controller behavior during PP periods without adaptation. Follow-
ing the super-bolus, the �IOB(t ) > IOB . Thus, insulin infusion is zero for almost two hours
until �IOB(t ) < IOB . After resuming insulin infusion at around 9:00, the SMRC module still
supresses insulin infusion due to how close �IOB(t ) is to IOB .

It is noticeable in figure B.3 that IOB(t ) determines when the system can resume in-

sulin infusion during PP periods. A conservative tuning of the SMRC module with a small

IOB(t ) would result in a slow, but safe, BG return to normoglycemia. On the other side, a

more aggressive SMRC tuning would result in higher performance, but also a higher risk of

hypoglycemia.

The PP IOB adaptation module is designed to adapt the IOB(t ) during PP periods to allow
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insulin infusion even after a super-bolus is given. This allows the system to give insulin even if

�IOB(t ) > �IOB , and thus improves the performance while maintaining robustness and safety.

This module only uses CGM measurements and meal information (time and amount of grams

of the meal). The strategy is executed as follows

1. When a meal is announced, compute the following time

TIOB = 1.5MC HO

where TIOB is a time interval in minutes and MC HO is the meal amount in grams.

2. After TIOB minutes, iteratively do

a) If CGM(t ) >CGM , update IOB(t ) := IOB PP as follows

IOB PP = max
(�IOB(k −1), IOB bl

)
where IOB PP is the adapted maximum IOB in the PP period, CGM is the upper

CGM threshold of 150 mg/dl, �IOB(k −1) is the estimated IOB in the previous

sampling time and IOBbl is the usual �IOB . This ensures �IOB < IOB PP in the next

time instants, thus allowing insulin infusion again.

b) The IOB is kept at IOB PP until CGM <CGM , with CGM = 140 mg/dl.

c) Once IOB has returned to IOBbl , the PP adaptation is deactivated.

3. There is no adaptation if CGM <CGM after TIOB . However, the system keeps track if

CGM >CGM so that the adaptation can be applied.

Figure B.4 shows the flowchart of the adaptation system. The variables PP_state and

flag_PP refer to specific boolean variables from the code implementation. On the system

initialization both variables are false. One one hand, PP_state keeps track if a meal has been

consumed and that IOB can be adapted. On the other hand, flag_PP guarantees that the system

only calculates one value for IOB PP . Figure B.5 shows an operation example with the adaptive

PP system on.
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Figure B.4: Flowchart of the PP adaptive system for the IOB
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Figure B.5: Representative controller behavior during PP periods with adaptation. The IOB is
adapted to a new IOB PP between 8:45 and 11:05 approximately. This allows the controller to
resume insulin infusion, and thus allowing all the infused insulin during 9:00 and 11:05.
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