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ABSTRACT 

In this work we present a new whole genome sequencing dataset 

with samples gathered from the Spanish Eastern Pyrenees (SEP) 

with more than 40x coverage. We apply both classical and new 

methods to unveil their particular demographic histories and we 

present the use of a newly in-house developed algorithm to detect 

genetic barriers taking into account the use of geo-statistics. With 

these analyses we detect fine population substructure for the first 

time in this region. 

 

We also report the presence of an important batch effect in one of 

the most important datasets used in genomics: the 1,000 Genomes 

Project. We find this batch effect when considering very low 

frequency variants, such as loss of function mutations and the 

amount of singletons (both ancestral and derived) detected in each 

sample. 

 

Keywords: population genomics; rural areas; whole-genome 

sequencing; batch effect; 1,000 Genomes Project 
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RESUM 

En aquest treball presentem un nou dataset de whole genome 

sequencing amb mostres recollides del Pirineu Oriental espanyol 

(SEP) amb un coverage superior a 40x. Apliquem mètodes clàssics i 

nous per descobrir les seves particulars històries demogràfiques i 

presentem l’ús d’un algorisme desenvolupat recentment en el nostre 

laboratori per detectar barreres genètiques tenint en compte l’ús de 

geoestadística. Amb aquestes anàlisis detectem, per primera vegada, 

una delicada subestructura de poblacions en aquesta regió. 

 

També informem de la presència d’un important batch effect en un 

dels datasets més importants utilitzats en genòmica: the 1.000 

Genomes Project. Trobem aquest batch effect quan considerem 

variants rares, com per exemple mutacions que comporten pèrdua 

de funció i la quantitat de singletons (tant ancestrals com derivats) 

detectats en cada mostra. 

 

Paraules clau: genòmica de poblacions; zones rurals; whole-

genome sequencing; batch effect; 1,000 Genomes Project   
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PREFACE 

Whole genome sequencing (WGS) has boosted our current 

knowledge about the general architecture of the genetic diversity 

present in human populations. However, as we go deeper into the 

detection of population substructure, new methods for detecting 

population substructure are required and infrequent biases 

associated with the WGS technology become more important. 

 

In this thesis we explore the limits of the detection of fine 

population substructure and their implications in the context of rural 

populations from the Pyrenees, and the technical artifacts generated 

by WGS data due to the different sequencing centres the samples 

were generated.  

 

In the Introduction I talk about how variation is generated and how 

the frequency of new variants is modified across generations. I also 

recapitulate two of the more used technologies to search for 

variation: microarrays and next-generation sequencing (NGS). To 

finalize, I briefly describe the history of Homo sapiens since the 

out-of-Africa, recapitulate its demographic history across Europe 

and the importance of studying rural areas, with a particular 

emphasis on the Spanish Eastern Pyrenees. 

 

In Material and Methods I describe the different datasets used in 

this work, with special attention to the SEP dataset. Also, I present a 

new algorithm to detect genetic barriers between groups of samples 

taking into account principles of geo-statistics. Furthermore, I also 
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explain the use of old and new techniques to quantify levels of 

autozigosity in different datasets. To end this part, I show the 

methodology used to quantify the batch effect in the 1,000 

Genomes Project dataset. 

 

In Chapter 1 I present the results of the study of the Spanish Eastern 

Pyrenees dataset. 

 

In Chapter 2 I present the results of our analysis of a possible batch 

effect regarding the 1,000 Genomes Project dataset affecting 

population genetics statistics. 
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1. INTRODUCTION 

 

1.1 Generation of variation 

Genetic variation is generated by a combination of two physical 

processes: mutation and recombination.  

 

a) Mutation 

A mutation is defined as a change that occurs in the DNA and it is 

the basic source of generating variation in the genome. Mutations 

usually appear as a result of an error during DNA replication or 

while repairing DNA damage caused by an external factor. A 

mutation can involve from a single nucleotide to megabases of 

nucleotides. The most common type of mutation in our genome is a 

point mutation (Figure 1), referred to as a single nucleotide variant 

(SNV) when it is not fixed in the population and single nucleotide 

polymorphism (SNP) when it reaches a certain frequency (i.e. 1%) 

in the population.  

 

 

 

Figure 1: example of mutation. Source: University of California 

Museum of Paleontology's Understanding Evolution  
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Mutations present in the germline have the possibility to be 

transmitted to the next generation. These mutations can represent 

the somatic variation of the individual, but they can also represent 

new variation that appears during the gametogenesis process.  

 

Mutations usually appear when DNA is copied during cell division. 

Although the DNA polymerase used in this step copies DNA with 

high fidelity (DNA polymerase delta has an error rate of 1 error 

every 104-105 incorporated nucleotides in vitro, possibly more in 

vivo; (Ganai & Johansson, 2016)), these errors can bypass the error 

proofing machinery of the cell. These errors tend to be corrected in 

zones enriched in adenine (A) and thymine (T), as it is easier to 

maintain the replication fork opened (A-T pairs form only 2 

hydrogen bonds, while guanine (G)-cytosine (C)  pairs form 3 

hydrogen bonds). This phenomenon can be a possible explanation 

for the higher mutation rate found in GC-rich regions (Bloom et al., 

1994; Petruska & Goodman, 1985). 

 

Another important factor that affects the mutation rate is the 

methylation state of the nucleotide in question. In most mammals 

the 5’ C in a CpG context tends to be methylated, which can 

undergo spontaneous deamination into T. This mismatch is repaired 

by low efficiency mechanisms (Schmutte et al., 1995) which results 

in a higher prevalence of C-to-T transitions in CpG sites (Coulondre 

et al., 1978; Duncan & Miller, 1980). These same CpG sites are less 

mutagenic in a high GC content, possibly because deamination of 

Cs depends on local strand separation (Fryxell & Zuckerkandl, 

2000).  
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The region where the mutation takes place also plays an important 

role. For example, in CpG islands (regions of the genome with high 

abundance of C and G) we find a high number of de novo mutations 

(CpGs account for ~2% of the human genome, but they constitute 

~19% of de novo mutations). This is consistent with the hypothesis 

of spontaneous deamination (where a C becomes a T or a G 

becomes an A). This process happens, mostly, in regions with 

medium levels of deamination (Xia et al., 2012). A secondary 

problem is the low number of polymorphisms that have been found 

in these regions, which could reflect the effect of gene conversion 

(process that favours the fixation of strong (G/C) over weak (A/T) 

alleles) (Capra et al., 2013) and purifying selection to maintain 

CpGs (Schmidt et al., 2008). 

 

The region on which the mutation takes place also plays a role in 

the probability of observing a mutation. DNA damage can be 

sensed by a protein complex that recruits the nucleotide excision 

repair (NER) machinery to excise the oligonucleotide carrying the 

damage and then recruiting replication polymerases to copy the 

strand pair. A special case of NER can occur while transcription, 

directed towards the transcribed strand of the gene (Pleasance et al., 

2010). 

 

Another factor to take into account is mutations occurring in genes 

responsible for DNA proofreading (NER, for example) that can lead 

to mutational spectra in populations or even whole species. This is 

the case regarding an increased TCC to TTC mutation rate found in 

European populations (Harris & Pritchard, 2017). 
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Endogenous factors are not the only source of mutation: exogenous 

effects like ionizing radiation or certain chemicals can also produce 

mutations. For example, the higher UV part of the light spectrum 

can produce transitions from C-to-T in dipyrimidine sequences 

(Pfeifer et al., 2005). Regarding chemical exposure, certain cigarette 

components have been demonstrated to have effect on germline 

mutations, for example benzo(a)pyrene can cause G-to-T 

transversions or DNA adducts, disrupting the normal double helix 

structure (Yoon et al., 2001; Zenzes, 2000). 

 

Another point of interest when estimating the mutation rate is the 

mean paternal age at which the individual has been conceived. In 

multiple pedigree studies (Conrad et al., 2011; Francioli et al., 2015; 

Kong et al., 2012) it has been proved that paternal age has an effect 

on the mutation load of the offspring. This effect is exclusive to the 

age of the father because males produce sperm through all their life, 

meaning that mutations occurring in the spermatogonial stem cells 

(the cells which, ultimately, produce spermatozoa) can accumulate 

through time (Figure 2). In contrast, females are born with most of 

its oocytes already formed and “frozen” mid maturation, so the 

probability of generating a new mutation is only depending on the 

exogenous factors (as duplication of the genetic material has 

already taken place).   
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Figure 2: Accumulation of mutations in protein-coding regions at a higher rate in 

older compared with younger fathers. Source: adapted from Shendure & Akey, 

2015 

 

In the literature we can find numerous attempts to estimate the 

mutation rate in the human lineage. However, they have a high 

disparity between them, ranging from ~1.0 x 10-8 to ~3.0 x 10-8 

(Figure 3). This heterogeneity in the estimations reflects the fact 

that mutations in general are rare events and to the genomic regions 

that have been used to estimate the mutation rate. 

 

For example, we can find that CpG transitions compared with non-

CpG transitions are increased 12-13 fold in polymorphism and 

divergence data; in disease studies this value goes to a 15 fold 

increase, while in pedigree data this number is close to 18 fold.  
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Figure 3: Estimates of the human mutation rate per base per generation.  

Source: Ségurel et al., 2014. 

 

Since the mutation rate defines the tempo at which genetic variation 

appears, and the genetic variation present in a population depends 

on the number of chromosomes that reproduce and the mutation rate 

(see section Demographic factors), the ascertainment of a proper 

mutation rate is a key point to interpret the parameters of any 

demographic model. 

 

SNVs that fall within a gene can be functionally classified in four 

main categories depending on their phenotypic consequences: 

 

 Non-coding: these are those SNPs that fall in intergenic 

regions and, mostly, are not affected by selective forces. 

They compose the majority of the neutral variation found. 
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 Coding: the SNP occurs in the coding region (or close to 

one) of a gene. This has different subtypes depending on the 

effect that the mutation has on the protein. As example, we 

will see the changes that occur at the amino acid level given 

different mutations on the codon TTC (Figure 4). 

 

o Silent: due to the redundancy of the genetic code, 

this type of mutation does not change the amino acid 

present in the protein. For example: TTC (Lys) -> 

TTT (Lys) 

 

o Missense: the mutation causes a change in the amino 

acid sequence. This change can be conservative or 

non-conservative depending on the differences of 

the  physicochemical properties between the original 

and the new amino acid. For example: TTC (Lys; 

basic polar) -> TCC (Arg; basic polar) and TTC 

(Lys; basic polar) -> TGC (Thr: polar), respectively 

 

o Nonsense/nonstop: this type of variation is the one 

that produces the most “visible” effect. In the first 

case the codon changes from an amino acid to a stop 

codon, producing a shortened, often non-functional, 

protein. In the second case the stop codon for the 

protein is changed into an amino acid, elongating the 

protein and, usually, making it non-functional.  
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Figure 4: Different types of mutations and its consequences at the 

protein level. (Source: Jonsta247, n.d.) 

 

Independent of how variation is generated, a mutation can affect the 

fitness of an individual (its ability to generate descendants) in four 

main categories: 

 

 Beneficial: variation that increases the fitness of the 

individual. They are also called advantageous variation. 

 

 Harmful: variation that decreases the fitness of the 

individual. Also called deleterious variation. 

 

 Neutral: this type of variation does neither increase nor 

decrease fitness. This variation becomes the basis of the 

molecular clock.  

 

 Nearly neutral: here we can find variation that is not purely 

neutral but they are slightly beneficial or slightly harmful. 
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Therefore, a basic question to address given an observed mutation is 

to which functional category it belongs, as well as its phenotypic 

consequences. Usually, predictors focus on the variation present in 

genes. Several approaches have been developed for predicting the 

functional effect of a given mutation. Ideally, one should in vitro 

experimentally verify novel variants; however, this approach is 

often infeasible due to facility limitations. In practice, several 

algorithms have been developed for predicting the functional effect 

of a nonsynonymous SNV (nsSNV). These algorithms lie into three 

different categories: 

 

 Function prediction: refers to scores that predict the 

likelihood of a given nsSNV causing deleterious functional 

change of the protein. 

 

 Conservation score: refers to scores that measure the 

conservativeness of a given nucleotide site across multiple 

species. 

 

 Ensemble score: refers to scores that combine information of 

multiple component scores. 
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The most used ones are the following: SIFT (Vaser et al., 2015), 

MutationAssessor (Reva et al., 2011) and PolyPhen2 (Adzhubei et 

al., 2010). These three algorithms correspond to the function 

prediction category. They work in different ways: 

 

 SIFT: this algorithm is based on a multiple sequence 

alignment of proteins with similar functions or sequence, 

and then it calculates a normalized probability of all possible 

substitutions for the given sequence. If the probability is 

lower than 0.05 that mutation is marked as deleterious, 

above that threshold is marked as tolerated. 

 

 MutationAssessor: in this algorithm a score is calculated 

based on two different alignments. It aligns proteins of the 

same family (or sub-family) of sequence homologs within 

the same species and between different species.  

 

 Polyphen2: bases the prediction of the impact on the 

function and structure of the human protein on features 

present in the sequence, the structure and the phylogenetic 

information. This gets fed into a Naive Bayes classifier, 

trained on two different datasets:  

 

o HumDiv: all damaging alleles with known effects 

causing human Mendelian diseases, present in the 

UniProtKB database, together with differences 

between human proteins and their closely related 

mammalian homologs, assumed to be non-damaging. 
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o HumVar: all human disease-causing mutations from 

UniProtKB, together with common human non-

synonymous SNPs (MAF>1%) without annotated 

involvement in disease, which were treated as non-

damaging. 

 

Depending on the amount of evidence, each classifier ranks a given 

mutation according to a “risk classification” system (naming of 

such classification varies depending on the algorithm used). The 

overlap between the different algorithms is not total, but strong 

discrepancies between the different classifications have been 

reported (Dong et al., 2015). This implies that it is difficult to 

confidently establish from an in silico point of view the functional 

effect of a genetic variant. Conservative approaches run the 

different algorithms and establish the effect of a mutation by 

consensus, only considering it as highly damaging if all the 

algorithms agree on the damaging status of the mutation. In 

practice, this means that databases considering the effect of 

mutations are noisy and reaching useful conclusions is ultimately 

complex (Narasimhan et al., 2016).  
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b) Recombination 

It is defined as the process that physically interchanges nucleotide 

sequences between two identical (or near identical) chromosomes. 

This process starts when two homologous non-sister chromatids 

align and crossover, usually during prophase I of meiosis, although 

it can also happen during mitotic division (A. J. Griffiths et al., 

1999).  In order for the crossover to start, a double-strand break is 

induced by the Spo11 protein (Keeney et al., 1997). This allows the 

interchange of non-sister chromatids. 

 

This interchange allows the shuffling of the variation found in the 

maternal and paternal DNA and allows for new allelic combinations 

that will inherit the daughter germ cells, breaking the linkage that 

can be established between SNPs. Recombination events usually 

happen in localized (1-2 kb) regions of each chromosome, which 

are called hotspots.  

 

In order for meiosis to proceed correctly, at least one crossover 

event is needed. If too few crossover events happen, it can lead to 

aneuploidy or to compromises in genomic integrity (Hassold & 

Hunt, 2001). Even in some cases, having a mean crossover rate 

higher than the average slightly increases the number of 

descendants (Kong et al., 2004). 
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In some occasions, recombination can be done in regions that are 

non-homologous in sister chromatids but share a high degree of 

sequence similarity. In these cases there is a non-homologous 

crossover, and it can result in one of the two sister chromatids 

carrying an “extra” copy of a given region (which can contain one 

or more genes). This process is called gene duplication (Figure 5). 

These genes then can change in an independent manner. 

 

 

 

Figure 5: Example of gene duplication. 

Source: Silver, 1995, Figure 5.5 (adapted) 
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Given the importance of recombination, one would think that this 

process is tightly regulated. This is correct for most species, as they 

possess mechanisms to ensure that at least one crossover event 

happens during meiosis, but it is also surprisingly variable between 

species.  

 

In the following table (Table 1) I present a summary of genetic 

maps from different species with an average interval between 

markers studied. In the fifth column there is the measure of 

centiMorgans (cM) between markers. Morgans are a measurement 

of how likely a segment of DNA is to recombine from one 

generation to the next; in this case cM corresponds to a probability 

of 1% to recombine.  

 

Species Order 

Genetic 

map length 

(cM) 

Number of 

markers 

Average 

intermarker 

interval (cM) 

Human Primates 3615 5136  0.704 

Baboon Primates 2013  352  5.719 

Macaque Primates 2275  326  6.979 

Mouse Rodentia 1361 6336  0.215 

Rat Rodentia 1542 3824  0.403 

 

Table 1. Summary of genetic map distance in different species. Source: adapted 

from Table 1 on Dumont & Payseur, 2008. 
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In some cases, these variations can even happen between 

individuals from the same species. This variation affects all possible 

scales, from single hotspots to the whole genome. At least in 

humans, it has been proven  a pronounced variation of the female 

genetic map (Broman et al., 1998; Lenzi et al., 2005). 

 

Recombination in itself can be both good and bad. It can be good 

for the species as it generates new combinations of pre-existing 

variants that can lead to a better adaptation. At the same time it can 

be bad, as it can break favourable combinations of alleles acting on 

epistasis. 

 

In some cases, crossovers are not carried correctly. One of the 

chromatids ends up copied in the other chromosome. If the non-

sister chromatids contain different alleles in that region (the 

individual is heterozygous for one or more SNVs), the four derived 

germ cells end up as homozygous for the “copied” allele. This event 

is known as gene conversion (GC). In Figure 6 you can see a toy 

example with the difference between crossover and gene 

conversion. 

 

Figure 6: Differences between crossover and gene conversion. 

Source: (Häggström, n.d.) 
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In some cases of gene conversion one of the alleles is more 

favoured to be the copied allele (or donor allele), in which case is 

known as biased gene conversion (BGC). In the case of humans 

there is a large body of evidence suggesting that in cases of GC/AT 

heterozygotes tend to produce a higher number of GC- than AT-

gametes (Duret & Galtier, 2009). Although this can seem an 

unimportant feature of the molecular machinery, it can explain why 

local recombination rates tend to be positively correlated with GC 

content (Fullerton et al., 2001). 

 

Recombination is also an important factor in breaking haplotypes 

(groups of alleles from different SNVs that tend to be inherited 

together from a single parent because they are located in the same 

genomic region). Haplotypes, both in structure and frequency, can 

vary between different populations. The statistical phenomenon that 

the frequencies in a population of the different allelic combinations 

between two loci that are in the same genomic region depart from 

the expected under the assumption of independence is known as 

linkage disequilibrium (LD). The patterns of LD for a given 

genomic distance vary among populations (Figure 7) due to 

demographic factors such as isolation or recent admixtures and can 

be used to make predictions about when such events occurred 

(Patterson et al., 2012). 
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Figure 7: Example of Linkage Disequilibrium. The mutation is indicated by a red 

triangle; ancestral stretches are shown in yellow; new stretches in blue. Markers 

that are physically close tend to remain associated. Source: Ardlie et al., 2002. 

 

Because recombination is a much more frequent event than the 

mutation, sharing a large proportion of haplotypes between 

individuals is also indicative of relatedness. This feature has been 

used to develop new algorithms, such as fineSTRUCTURE 

(Lawson et al., 2012), for identifying fine population substructure, 

or to predict genomic segments shared between individuals by 

descendent (identical by descent or IBD). Finally, studying the 

similarity of two haplotypes in a single individual provides 

information about the historical inbreeding patterns in her or his 

pedigree. Long runs of homozygosity (RoHs), indicating that for the 

two copies of the chromosome the same alleles are observed for a 

large number of SNVs, is indicative of  high amounts of inbreeding. 

When such analysis is extended to all the sampled individuals from 
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a population, the patterns of RoHs suggest different demographic 

events (Figure 8). 

 

 

Figure 8: Variation of RoH distribution across different populations. Density 

function of the LOD scores from all individuals of a given population, coloured 

by geographic affiliation. Source: Pemberton et al., 2012. 

 

1.2 Demography 

Once a mutation has occurred in the germ line of an individual, it 

has the opportunity to pass to the next generation. The fate of such 

mutation in the population depends on different factors. If the 

mutation has no fitness effect in the carriers, then it is said to be 

neutral, and its change in the population in terms of allele frequency 

is ruled by demographic factors, ultimately determined by the 

number of individuals that reproduce at each generation in the 

population, and the strategy that is used to generate the couples 

reproducing to the next generation. 
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The simplest demographic model initially defined by Wright and 

Fisher (Tran et al., 2013) considers that all the individuals from the 

same generation mate at random -in panmixia- to produce the next 

generation and then die. Classical Moran’s model (Moran, 1958) 

assumes that generations can overlap, but individuals mate also at 

random. Nevertheless, it has been shown that, from a coalescence 

point of view, the results from Moran’s model are extrapolable after 

scaling to the ones obtained by Wright and Fisher (Kingman, 1982). 

 

Demography has mainly two forces to take into account: genetic 

drift and migration. 

 

a) Genetic drift 

Genetic drift is the change in the frequency of a variant in a 

population due to random sampling of the organisms that reproduce 

at each generation. In more layman terms, genetic drift is the 

evolutionary equivalent of the sampling error from one generation 

to the next. This process can be easily visualized using a toy 

example of marbles (Figure 9). Imagine a box of 100 marbles that -

by analogy with a SNV- has two possible colour states (green and 

brown), each at the same frequency (50%). If we sample at random 

100 marbles with replacement to be our new box of marbles, the 

frequency of each colour category is likely to be different from the 

initial 50%. If this process is repeated over time, we will reach a 

point where one of the two colours gets fixed in the box and no 

colour variation is observed. 
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Figure 9: Toy example of how genetic drift works. Source: Source: University of 

California Museum of Paleontology's Understanding Evolution 

 

From a frequentist point of view, the way how a frequency of a 

mutation changes over time can be modelled as a Markov Chain, in 

which its value only depends on the previous generation and the 

number of chromosomes that reproduce to the next one -called 

effective population size or Ne (see Figure 10). 

 

 

Figure 10: Fate of a new mutation over time in a population of 100 Ne size. Each 

generation a mutation occurs in the population. New mutations have low chances 

of surviving to the next generation, and are removed just by chance from the 

population. In probability proportional to Ne, some mutations start increasing in 

frequency (Y-axis) over time, and few of them reach fixation. 



Introduction 

21 
 

The change of the frequency of a single allele over time can be 

approached by means of the diffusion process (Hartl, 1980) and as a 

Brownian movement for frequent variants (i.e. minimum allele 

frequency (MAF) in the population > 0.01, for example) (Cavalli-

Sforza & Bodmer, 2013). 

 

If we consider the information of which marble we sample each 

time, in addition to its colour -status-, then the change in frequency 

of a mutation is the consequence of the fact that some marbles are 

just by chance more ascertained than others.  

 

In the context of population genetics, this implies that in a finite 

population some chromosomes reproduce more than others. Using 

this principle, we can predict that backwards in time there will be, 

in probability, some chromosomes from one generation that are 

copies -share a common ancestor between them- from the previous 

generation. This process of coalescence backward in time of 

chromosomes towards the previous generation ensures that all 

copies of a given nucleotide in the current generation are 

descendants in the past from a single common ancestor (Figure 

11). This common ancestor shared by all samples of a population is 

referred to as most recent common ancestor (MRCA). 
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Figure 11. A toy example of the process of coalescence in a Wright-Fisher model. 

Each circle represents a chromosome, each column a generation, and each arrow 

how many copies forward in time each chromosome parent produces. Some 

chromosomes produce by chance more than one copy, and others do not produce 

offspring. The ultimate consequence of this process is that all the chromosomes 

from the present generation share a most common ancestor (MRCA, red circle) 

somewhere in the past. 

 

The rate at which some of the chromosomes from a given 

generation share a common ancestor, or coalesce, with the previous 

generation is a function of the number of chromosomes that 

reproduce at each generation: 

 

𝐸[𝑇𝑤] = 𝐷 

𝐸[𝑇𝑏] = 𝐷 (1 + 
𝐷−1

𝑀 𝐷
)   

 

Source: Wakely, 2016. 
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In the equation shown before Tw corresponds to the time to the 

MRCA between 2 given sequences in the same subpopulation; Tb 

corresponds to the time to the MRCA between 2 given sequences in 

different subpopulation; D corresponds to the number of 

subpopulations; M corresponds to the movement of lineages 

between subpopulations. 

 

Because the behaviour of the coalescence process can be 

mathematically predicted, it is very easy to simulate neutral 

genomic regions. First, we generate the coalescence tree of the 

different sampled sequences and then we add mutations to the 

topology given the length of each branch and the mutation rate of 

the simulated genomic region (Wakeley 2009; Figure 12).  

 

 

 

Figure 12: Genealogy tree constructed around polymorphism on a given gene. 

Source: Rosenberg & Nordborg, 2002. 

https://books.google.es/books/about/Coalescent_Theory.html?id=x30RAgAACAAJ&source=kp_book_description&redir_esc=y
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The coalescence process becomes more complex when 

recombination is taken into account, which is usually approximated 

by means of the ancestral coalescence graph (R. C. Griffiths, 1991). 

Several simulators (Hoban et al., 2012), such as ms (Hudson, 2002), 

extend the basic coalescence process to incorporate recombination. 

Others, such as fastSimcoal2 (Excoffier et al., 2013) apply shortcuts 

to the coalescence process to efficiently allow simulating large (i.e. 

megabases) genomic regions. 

 

Genetic drift has several important effects on evolution: 

 

1. From a frequentist (that is, the study of the frequency of a 

mutation in a population) point of view, the ultimate fate of 

a neutral mutation is either being fixed (i.e. reaching a 

frequency of 1 in the population) or being removed from the 

population (i.e. frequency = 0). In this sense, genetic drift is 

a force that reduces the variation present in the 

population.  However, because genetic drift can raise the 

frequency of a rare mutation towards fixation, at 

intermediate steps towards the fixation genetic drift 

increases the variation in the population. 

 

2. It is stronger the smaller the effective population size gets. 

 

3. It can drive speciation processes.  
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Given the direct dependence between random sampling and 

effective population size, a process in which genetic drift becomes 

really important is when a population suffers a bottleneck. This 

happens when the effective population size contracts to a 

significantly smaller size in a very short period of time due to a 

random event (usually environmental). Because of the randomness 

of the event, the chances of survival of each individual in the 

population are random and are not improved by any inherent 

genetic advantage. The bottleneck causes a drastic change of the 

allele frequencies that is independent from selection. 

 

From a coalescence point of view, a bottleneck process implies 

multiple coalescent events from the generation at which starts the 

bottleneck towards the parental generation (Figure 13). 

 

 

 

Figure 13: Graphical example of a bottleneck and how it can affect the diversity 

of generations after the event. Source:  Biology at OpenStax, chapter 19, section 2 
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An example of a bottleneck is the high proportion of individuals 

with red colour blindness (achromatopsia) in the Pingelap atoll in 

Micronesia. The bottleneck can be traced to a typhoon in 1775 that 

left around 20 survivors on the island, one of them being a carrier of 

this genetic condition. The effect of the bottleneck was first seen in 

the fourth generation after the event, when around 3% of the 

population was affected. In the sixth generation around 5% was 

affected. Nowadays the 10% of the population is affected and 

another 30% are unaffected carriers (in comparison in the US it has 

a prevalence of 0.003% are affected) (Hussels & Morton, 1972). 

 

b) Population substructure and Migration 

When the probability of ascertaining mate is not uniform, 

population substructure occurs. The sources of such population 

substructure are multiple. In species -such as Homo sapiens- where 

the reproduction depends on the physical contact of the mates, and 

mobility is limited or the species covers a large geographic range 

compared to the amount of mobility, geography is a strong player in 

shaping the genetic variation of a population. Mountains (such as 

the Himalayas, Qiong et al., 2017) or water landmasses (such as 

between the American continent and the European and African, 

Luiz et al., 2012) can represent genetic barriers for humans.  

 

In humans, in addition to physical barriers, cultural factors such as 

the religion or the language among others, can condition the mating 

preferences of an individual. When the mating preferences are 

shared between a set of individuals, the population is structured into 
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subpopulations or demes. Between these subpopulations genetic 

exchange is possible if there exists migrants. From a coalescence 

point of view, a subdivision of the population implies that the time 

of the most common recent ancestor must precede, backward in 

time, the time when the barrier was established (see Figure 14). 

 

 

 

Figure 14. A toy example of the coalescent process under population 

substructure. Each dot corresponds to a chromosome. Each column corresponds 

to a generation. The vertical dash line indicates when the population is subdivided 

in two demes. The horizontal dash line indicates the physical subdivision. Read 

arrows indicate the ancestors of the current generation of chromosomes. The time 

of the most common recent ancestor must predate the time of split (not shown in 

the graph). 
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Migration, also called gene flow, is the transfer of variants from one 

sub-population to another, via individuals or gametes. 

This interchange is very important, as it can prevent two 

populations from diverging due to genetic drift (theoretically, with 

only one migrant in ideal populations, Wright, 1969) and, if it is 

high enough, two populations can have equivalent allele frequencies 

and be, effectively, a single population. 

 

Migration is also important for the fact that migrants can carry new 

variation to other populations, even some gene forms that did not 

exist previously (Figure 15). 

 

 

Figure 15: Example of migration between two populations. Image source: 

(Krueger, n.d.).  

 

If migration in a population is too low (or impeded), its inbreeding 

usually increases. For example, many island populations have low 

rates of gene flow due to geographical isolation and small 

population sizes. A usual example of this situation is the state of the 

Black Footed Rock Wallaby, which has several populations in 
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islands off the coast of Australia. This has led to an increase of the 

inbreeding in each of these populations (Eldridge et al., 1999). 

 

The amount of genetic differentiation between demes is a 

consequence of when the population got structured into demes, the 

amount of genetic drift within each deme (i.e. their particular Ne) 

and number of migrants that the demes exchange (Weir & 

Cockerham, 1984).   

 

1.3 Selective factors 

Generation of genetic variation, through mutation and 

recombination, and shaping of the genetic variation by random 

processes such as gene drift and migration, are not enough to 

explain the distribution of all the observed allele frequencies. 

Selection (or natural selection) pushes for some variants to be more 

frequent, or to disappear from the population, depending on the 

effect of the variant in the fitness of the carriers. Selection was first 

described by Charles Darwin in a set of papers, published with 

Alfred Russel Wallace, in 1858 (Darwin & Wallace, 1858), and 

elaborated in On the Origin of the Species the following year. One 

has to take into account that selection acts at a phenotype level, 

which usually is the composition of a number of genetic factors. 

These forces are the main way to explain adaptive evolution 

(specialization in certain ecological niches, for example) and, in 

some cases, are strong enough to result in speciation.  
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Selective pressures are classified depending on the sign of the 

selective pressure: positive selection (a particular variant is selected 

in favour), purifying selection (new variants are selected against) 

and balancing selection (multiple alleles are actively maintained in 

a gene pool).  

 

Selective pressures may act in a directional manner: it may be 

favoured and propagate (positive selection) or disfavoured and 

eliminated (negative selection) from the population. However, the 

classification of a particular mutation into one of these categories is 

not monolithic over space and time. The type of selection can be 

different depending on the environment the individual is living. For 

example, in sickle cell disease, the mutated allele is clearly 

detrimental (as it causes the disease in a homozygous state) but in 

locations where malaria has become endemic this allele is 

maintained in heterozygotes as it confers an advantage against 

malaria. In a meta-analysis done in 2018 (Wastnedge et al., 2018), it 

was found that the meta-estimate of heterozygotes in Africa (where 

malaria is endemic inside the tropical region) is around 16,121.91 

per 100,000 births, while in Europe (where malaria is not endemic 

in the larger part of the continent) this meta-estimate falls to 803.57 

per 100,000 births.  
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a) Positive selection 

Also called directional selection, is a type of natural selection in 

which a phenotype is favoured over all others. This effect causes a 

huge shift in the allele frequencies that are present in the population, 

favouring those that represent the selected phenotype. The change 

in allele frequency of the favoured allele is independent of the 

dominance of the allele. In some cases, even recessive alleles can 

become fixed in a population. 

 

The identification of the fingerprint of positive selection in the 

genome has a long tradition in the field of population genetics. 

Classical methods focus on detecting hard selective sweeps in the 

genome (Pavlidis & Alachiotis, 2017). Under this model, a new 

mutation confers a strong fitness advantage to the carriers. As a 

consequence, the mutation increases rapidly in frequency in the 

population, reaching fixation in a relatively reduced amount of 

evolutionary time. Depending on the timing of the selective event, 

different statistics have been defined for detecting positive selection 

within a species (Figure 16).  

 

Depending on which is the type of genomic feature that is used for 

identifying the fingerprint of positive selection, methods can be 

classified in site frequency spectrum (SFS) based and linkage 

disequilibrium (LD) based.  
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Figure 16: Time scales for the signatures of selection. The five signatures of 

selection persist over varying time scales, with a rough estimate of how long each 

is useful for detecting selection in humans. Source: Sabeti et al., 2006.  

 

SFS-based methods 

Over a region of the genome, the full SFS is defined as the 

distribution of the number of SNPs whose derived allele is observed 

at a particular frequency in the population. Under the null 

hypothesis of neutrality, and assuming the Wright and Fisher model 

of neutral demographic evolution, the SFS of a population follows 

an exponential distribution (Wakely, 2016; Figure 17). 
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Figure 17: Relative expected numbers of unfolded (E[ξi]) and folded (E[ηi]) site 

frequencies (represent the mutation rate) for 2 different population sizes (n = 10 

and n = 11). Source: Wakely, 2016. 

 

That is, under neutrality the derived allele of a large fraction of 

SNPs is present only in one chromosome in the population (i.e. they 

are private alleles in the population). Under an event of positive 

selection from the hard selective sweep model, a rare derived allele, 

and its surrounding genetic variants, increases rapidly in frequency 

in the population, creating an excess of SNPs whose derived 

variants are close to fixation (Figure 18). 

 

Different statistics, such as Tajima’s D (Tajima, 1989, 1993) or   

Fay & Wu’s H (Fay & Wu, 2000), take advantage of the shape of 

the SFS under the neutrality and under the expected bump of 

derived variants at high frequency in the population under a hard 

selective sweep.  
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Figure 18: SFS signature of a neutral region (A) and a selective sweep (B). In the 

polymorphic table black squares denote derived alleles, while white squares 

denote ancestral alleles. Source: Pavlidis & Alachiotis, 2017. 

 

Tests based on comparing the allelic frequency among populations 

(Fst-based and similar statistics) also use the SFS. They use the 

information of the allelic frequency in populations where it is 

supposed that the selective event did not take place against a target 

population where the positive selection is being tested.  

 

In the populations where there was no selective event, the frequency 

of the derived allele will change over time due to stochastic factors 

(i.e. genetic drift). In contrast, in the population under selection, the 

frequency will be driven by positive selection. Thus, we can expect 

that variants that are highly divergent between genetically similar 

populations correspond to differential selective pressures.  
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For example the allele found to be selected in the Bajau people to 

be better divers is also found in other populations (nearby Saluans), 

but at a much lower frequency (37.1% in Bajau vs 6.7% in Saluans) 

(Ilardo et al., 2018).  

 

Linkage disequilibrium methods 

LD based methods take advantage of the recombination information 

around a variant under positive selection. The genomic context 

where a mutation appears is broken over time by recombination 

(Figure 19).  

 

Nevertheless, because genetic variants under a hard selective sweep 

increase rapidly in the population, the speed at which recombination 

is able to generate new variation is slower than under neutrality. In 

practice, this means that the haplotypes of genetic variants under a 

hard selective sweep will tend to keep the genetic background 

where the mutation initially appeared, and extend this genetic 

background longer than expected under neutrality.  

 

Several methods have been developed to take advantage of this fact, 

for example: EHH (Sabeti et al., 2002), iHS (Voight et al., 2006) or 

EHH-XP (Sabeti et al., 2007). 

 

Hybrid algorithms have been proposed by combining the properties 

of both types of philosophies, as well as machine learning 

approaches that extract the information from the different methods. 
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Figure 19: Haplotype around the lactase gene. In the African population it has 

been broken due to the generations passed since the mutation appeared. Source: 

Sabeti et al., 2006  

 

b) Positive selection on standing variation and polygenic 

adaptation 

The profusion of methods for identifying hard selective sweeps 

during the last decade has provided some astonishing results about 

the recent evolution and local adaptation of particular traits in 

different human populations (for example, Fan et al., 2016). 

However, it also pointed out the difficulties of consistently 

identifying such signatures in the genome when using many tests at 

the same time (i.e. Pybus et al., 2015), as well as to the surprisingly 

reduced number of genes that are under hard selective sweeps in the 

genome. 
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One explanation for such results is that many of the traits are not 

monogenic, but are rather complex traits in which many alleles are 

involved in the expression of a given phenotype. 

 

Another possible explanation is that positive selection in a way that 

we couldn’t properly detect. Until now we have developed methods 

to detect hard selective sweeps (a rare allele raise in frequency and 

lowering variability around it over a few generations), but, perhaps, 

most of the genome is not subject to a hard sweep. The idea of soft 

sweep (as opposed to hard sweep) is as follows: selection is not 

acting over recent rare alleles, but on already present alleles that 

promote a better adaptation due to changes in the habitat.  

 

An example of a soft sweep is what Hamblin and Di Rienzo 

(Hamblin & Di Rienzo, 2000) found in Sub-Saharan populations. 

They found a fixed (or near fixed) null allele for the Duffy blood 

group that was virtually absent in other populations (individuals 

from central Italy). But, in four out of the five Sub-Saharan 

ethnicities studied they did not find a high proportion of rare alleles 

or a decline in variation in the region studied. At first, they 

proposed that this panorama can be due to recombination, 

demography in the form of population structure or other factors.  

 

This type of selection is important as it does not need to create new 

variation (as classical positive selection) but acts on already present 

variation that does not have a noticeable effect on fitness. 
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c) Purifying selection 

Also called negative selection (as opposed to positive selection), 

purifying selection is the selective removal of deleterious alleles. 

This type of selection is responsible for the stabilization of the 

genetic background of a species. We can also find a more short term 

negative selection: most biological structures represent a 

conditional optimal (as they usually depend on other pieces of the 

machinery to perform its function). This is further complicated by 

the fact that it can also depend on the ecological conditions in which 

the individual lives in. 

 

If negative selection in a locus is strong enough it can lead to 

removal of spatially linked variation, independently to the effect it 

has on fitness. The purging, in the long run, decreases the level of 

variation in the zone around the locus. This effect is also called 

background selection (Charlesworth et al., 1993). An example of 

this effect is what happens with housekeeping genes (genes that are 

required for the maintenance of basic cellular functions). Almost 

any mutation in any of these genes will be deleterious and it will be 

taken out, due to the importance of these genes.  

 

We can also consider the opposite case, when purifying selection is 

too weak. In this case the accumulation of deleterious mutations can 

lead to the extinction. Sometimes this can be counteracted by back 

mutations, a type of mutation that restores the original sequence. 
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We can find an example in humans regarding the IFN-γ in African 

populations. In the work of Campbell, Smith and Harvey (Campbell 

et al., 2019) they have found that this gene is under purifying 

selection, specially 3 variants found in intron 3 from this gene.  

 

d) Balancing selection 

In diploid (or polypoid) organisms we can find more subtle 

combinations of positive and/or negative selection. Balancing 

selection refers to a type of selective process that maintains multiple 

alleles of a locus at intermediate frequencies. This can happen in 

various ways, mainly 2: heterozygote advantage and frequency-

dependent selection. 

 

 Heterozygote advantage: in this case the heterozygotes have 

a higher relative fitness than both the homozygous dominant 

and homozygous recessive. This happens in environments 

where the heterozygote is both advantageous and 

disadvantageous, but the homozygotes are disadvantageous. 

An example of this is Sickle-cell Anaemia. The homozygous 

for the normal allele (HgA) is selected against due to 

malaria while the homozygous for the mutant allele (HgS) is 

also selected against due to the disease. The heterozygous 

state confers resistance to malaria. In zones where malaria is 

endemic, the HgS allele is maintained thanks to the higher 

fitness of the heterozygotes. In zones, where malaria is not 

endemic, the allele has decreased fitness compared to the 

homozygous normal allele. 
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 Frequency-dependent: this occurs when the fitness of a 

given phenotype is dependent on its relative frequency to the 

other phenotypes. This relation can be positive (when the 

fitness increases the more common an allele is) or negative 

(when the fitness decreases the more common an allele is). 

A clear example of the second is the relation between prey 

and predator. As predators tend to hunt the most common 

phenotype of the prey, this is selected against, but other less 

common phenotypes have higher fitness. Then a new cycle 

starts when one of the once rare alleles becomes the 

common one. 

 

From a coalescent point of view, each type of selection shows a 

different fingerprint in the genome (Figure 20) 

 

 

Figure 20. How the shape of the gene genealogy is modified by the different 

types of evolutionary forces. Source: Bamshad & Wooding, 2003  
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Given that the different types of selective processes modify the 

genetic variation in a functional genomic region and the gene 

genealogy is not independent anymore of the genetic variation 

(Figure 20), a basic problem when attempting to do demographic 

modelling is which genomic regions must be considered. The 

classical view of “almost everything is neutral in the genome” is 

being replaced by an “almost everything is under background 

selection” point of view (Pouyet et al., 2018).  

 

Many of the described selective pressures tend to minimize the 

genetic variation within a population and to increase the amount of 

divergence between populations. Therefore, using these regions as 

neutral ones implies that the demographic estimates will tend to be 

biased towards demographic processes that produce similar 

signatures in the genetic variation of the genome. Namely, 

decreasing the effective population size (so the amounts of genetic 

variation in a region are lower) and increasing the time since the 

separation of populations (so the genetic differentiation among 

populations increases).  

 

On the other side, the conservative way of considering almost 

everything under purifying selection produces very limited amounts 

of data and sparse genomic regions, hindering the inferences 

(Pouyet et al., 2018).  As a compromise, investigators use regions 

that are putatively not functional (i.e. they are out of genes or CpG 

islands (Allentoft et al., 2015; Mondal et al., 2019) to do 

demographic inferences. 
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1.4 Identification of genetic variation 

Until now we have discussed how variation appears and how this 

variation can change across generations in a given population. 

Nevertheless, in order to use these changes in evolutionary 

inferences we have to be able to find and to characterize these 

changes. This is a very important step, since the way how these 

changes in DNA are identified can introduce potential biases in the 

final detected genetic variation and influence our conclusions.  

 

One of the first ways that variation was explored was using blood 

markers (now called classical markers) such as blood groups or 

subtypes of proteins found in blood. These markers were easily 

obtainable, but offered limited information about demographic and 

evolutionary processes. However, these markers were, by 1978, first 

used to make geographic and evolutionary inferences in European 

human populations (Menozzi et al., 1978) and extended to 

worldwide populations in the monumental “The History and 

Geography of Human Genes” (Cavalli-Sforza et al., 1996).  

 

The era of sequencing started with the publication in 1977 of the 

full genome of the bacteriophage φ X174. In 1986 the first semi-

automated sequencer was patented and presented, followed in 1987 

by the first full-automated sequencer from Applied Biosystems: the 

ABI 370, which used a novel technique (different fluorescent 

markings on the terminating nucleotides) that allowed sequencing 

on a single lane. Before, the method used for sequencing any piece 

of DNA was Sanger sequencing: four different sequencing reactions 
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(one of each termination nucleotide) that were resolved using a 

polyacrylamide-urea gel in four different bands and being 

visualized using autoradiography or UV light (see Figure 21).   

 

 

 

Figure 21: Overview of how Sanger sequencing works. We have four different 

PCR reactions, each one containing a mixture between normal nucleotides and 

different termination nucleotides (ddNTPs). The results of the four reactions are 

then separated in the polyacrylamide-urea gel and the sequence can be 

reconstructed. Source: Mardis, 2013. 
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In 1981 the concept of DNA arrays was developed, although at the 

time it was a macro array. The array technology is based on the 

immobilization of DNA or RNA molecules in a solid support. Each 

spot contains a specific sequence (called probe) that is used to 

hybridize cDNA extracted from the sample, using high-stringency 

conditions. Then the probe-target hybridization is detected using a 

fluorophore or chemiluminescence techniques. The first use of a 

microarray was by Mark Schena in 1995 (Schena et al., 1995) to 

measure gene expression in the flowering plant Arabidopsis 

thaliana. 

 

All these different techniques and technologies were the base for the 

commercial use of sequencing and microarrays at the start of the 

2000s. These new methods (called “Next Generation Sequencing, 

NGS, or Second Generation Sequencing) were characterized by an 

easy and high scalability, which in turn allowed the sequencing of 

the entire genome of an individual.  

These “easy-to-get” genomes carried a series of problems of their 

own, requiring bioinformatic tools to process the vast amounts of 

information that these technologies were getting.  

 

Current high-throughput technologies for defining the genetic 

variation of a sample can be classified in two main categories: 

microarrays and next generation sequencing. 
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a) Microarrays 

Microarrays are a technology based on the principle of sequence 

complementarity (i.e. the more complementarity two sequences 

have, the stronger the bond is). A sequence of DNA/RNA (called 

probe) is immobilized on a surface, typically glass or plastic, then 

the DNA of interest (called target) is added and those targets that 

are not hybridized are washed away.  

 

The probes are marked (radioactive or fluorescent markings are the 

most commonly used ones), and then they are detected using the 

proper methods.  

 

This kind of technology can be used to detect the levels of 

transcription of certain genes (you can measure the strength of the 

mark of the label) or to genotype known genetic variation 

(especially SNPs). This latter use is accomplished using two 

different probes in the same dot, labelled with different fluorescent 

colours for example (Figure 22). There were two main technologies: 

Affymetrix and Illumina.  

 

In the case of Affymetrix we have a collection of 25-mer probes for 

both alleles fixed on a plastic/glass plate that differentiate between 

them in the position of the SNP in the sequence. The sample DNA 

will bind to these probes. However, due to sequence 

complementarity it will bind stronger in the sequence with the 

perfect match (the 25-mer with the SNP in the proper place and the 

proper allele). The one with the brightest signal from the probes 



Introduction 

46 
 

corresponds to the correct genotype of the sample. For a simple 

example check Figure 22 a. 

 

Illumina opted for a different approach. In its technology, the 

probes were fixed on beads and were longer, 50-mer. In this case 

the sequence on the bead ended just before the SNP and a step of a 

single-base extension was performed, adding one of the two 

possible alleles. These nucleotides were marked with fluorescent 

colours (red and green in the example). For a simple example check 

Figure 22 b. 

 

 

 

Figure 22: Overview of how the most prominent SNP genotyping arrays work: 

Affymetrix (a) and Illumina (b). Affymetrix uses a set of different probes that 

have the same sequence with the exception of the location of the SNP; the probe 

that has a higher degree of complementarity will have a stronger signal. In the 

case of Illumina we detect the SNP by incorporating a fluorescently labeled 

nucleotide using the sample as primer. Source: LaFramboise, 2009.  
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In both cases a computer algorithm is needed to transform the 

brightness of the signal (Affymetrix) or the colour in the well 

(Illumina) into a proper inference of the genotype present on the 

sample.  

 

In the case of Affymetrix the algorithm produces the inference 

depending on the relation between the perfect match (PM) probe for 

allele A or B and the mismatch (MM) probe for allele A or B. The 

PM is defined as the probe that has perfect complementarity to the 

target allele and MM is defined as the probe identical to the PM 

with the exception that the allele in the SNP is altered as to not be 

complementary to either allele (it can be more than one MM probe 

per SNP). Depending on the brightness from these probes (PMA, 

MMA, PMB, MMB) the algorithm can infer the genotype of the 

sample: AA, AB or BB. 

 

In the case of Illumina the algorithms had a much easier work: the 

inference of the genotype was more direct, as we have two different 

colours for every SNP (green and red in the example). Depending 

on which colour was more intense in the sample the algorithm 

determines the genotype of the sample: AA (red), BB (green) or AB 

(both red and green). 

 

When this technology was first used in humans around 1998 (D. G. 

Wang, 1998), only 1494 SNPs were genotyped in every sample 

(Affymetrix HuSNP assay). Advances in the genomic architecture 

of human populations thanks to projects such as the Human 
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Genome Project (International Human Genome Sequencing 

Consortium, 2001) and the HapMap project (The International 

HapMap Consortium, 2003) in addition to technical advances in 

Bioinformatics and wet lab have allowed to exponentially increase 

the number of SNPs that can be interrogated in a single array. In the 

last version of both Affymetrix and Illumina there has been an 

effort to detect and genotype copy number probes to interrogate 

non-SNPs human genetic variation. 

 

Furthermore, in recent times SNP microarrays have become really 

cheap, allowing the genotyping of hundreds or even thousands of 

individuals for the same study. This fact can partially solve the 

batch effect that occurs when comparing datasets generated at 

different times and labs. In the past, as every study had its own 

protocols or used different platforms to search for variation, 

comparison between samples was tricky. Using microarrays, as you 

are analysing all individuals on that study using the same platform 

and protocols solves part of the batch effect problem. However, the 

problem of batch effect, even if it is minimized, it is not completely 

fixed (J. Luo et al., 2010).  

 

One of the main problems with arrays is the lack of new variation 

discovered in the samples. As arrays work with fixed DNA 

molecules, the results we can get from an array are fixed from the 

start. The decision of what SNVs include is also crucial, as it can be 

counterproductive: for example, if we choose to include SNVs that 

are typically found in European populations, we will see that in 
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most other populations these SNVs are genotyped as reference 

alleles. The reality is that we are losing the real source of variation 

for these populations (Albrechtsen et al., 2010). 

 

b) Next-generation sequencing 

Next-generation sequencing (or NGS) is a series of techniques that 

operate on the basis of splitting the genome of a sample in 

individual molecules of different length by digesting it with a 

restriction enzyme or mechanically breaking it, and then sequencing 

these individual strands. To be able to capture and sequence the 

DNA, a first step of ligation with an adapter is needed (owned by 

each platform). Then, the sequencing is conducted in each molecule 

by different protocols and the platform is able to detect the 

incorporation of each individual nucleotide, normally using 

different fluorescent molecules. 

 

In 2005, the first commercially available NGS instrument was 

mentioned on a scientific publication (Margulies et al., 2005) and, 

in the next 2 years, it became obvious that NGS was meant to have 

a major impact on our ability to explore and answer genome-wide 

questions with more than 100 related manuscripts in this period 

(Mardis, 2008).  

 

Initially, three different platforms were available: Roche’s 454, 

Illumina’s SOLEXA and Applied Biosystems SOLiD.  
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In the case of Roche’s 454, the molecule is binded (through the 

adapter) to agarose beads. This population of sample-beads is then 

isolated into micro-reactors (oil:water micelles that contain the PCR 

reactants). This is followed by a step of PCR amplification inside 

the micro-reactors, usually producing a million copies of each DNA 

molecule. This emulsion is then transferred to a picotiter plate (a 

fused silica capillary structure) that can hold a single bead in each 

of its single wells. In these wells takes place the pyrosequencing 

reaction: the incorporation of single nucleotides is detected thanks 

to the release of pyrophosphate which starts a chain reaction that 

ultimately produces light thanks to the firefly enzyme luciferase. 

This technique has the problem that when the same nucleotide is 

repeated more than a few times (usually more than 6), the base 

calling algorithm is not able to properly differentiate the signal and 

is prone to commit insertion and deletion errors. 

 

Illumina’s SOLEXA first steps are the same as before. Then, the 

DNA-adapter molecule is bound (through the adapter) to the inside 

surface of the flow cell channels. The sample DNA is amplified 

using a classical PCR reaction. Since the adapter sequence is also 

copied, the PCR products will stay close to the original molecule, 

creating a sort of cluster of around a million copies of the same 

DNA molecule. Then we add the reagents of the sequencing 

reaction, especially a set of fluorescently labelled nucleotides (each 

different base is labelled with a different fluorescent colour). When 

this nucleotide is incorporated, it blocks further nucleotide 

incorporations and creates a fluorescent event that the platform can 
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detect, because the signal is amplified in each cluster. After this 

imaging step, the nucleotide is modified so the next nucleotide can 

be incorporated. This series of steps continues for a specific amount 

of cycles. After these sequencing steps, a base-calling algorithm is 

applied to assign the proper base and to establish the quality to each 

of the imaging steps.  

 

Finally, the third NGS method available was Applied Biosystems 

SOLiD platform. This platform uses a similar approach as 

SOLEXA, with the main difference being that it reads two bases at 

every imaging step and it considers a set of primers for the adapter 

that moves the frame of the sequencing. After the sequencing steps 

we still have the need for an algorithm for the base-calling and to 

assign quality to the bases sequenced. 

 

After the proper sequencing steps in all three platforms end, we 

obtain a file with the collection of reads for the sample that is being 

processed. After this an alignment step is needed. This step uses an 

algorithm to find the proper coordinates in the genome for every 

read, usually setting aside those that can map to multiple 

coordinates (as this reads can be useful to determine CNV or indel 

events). This algorithm assigns a quality score to simplify the fit of 

the reads for the given coordinates. 

 

A final step is needed to obtain the variation found in the sample: 

SNP and genotype calling. The SNP-calling algorithm compares the 

bases in the reads to a reference genome and marks which of those 
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bases are different between said reference and our sample. The 

genotype-calling algorithm examines the different reads that 

overlap a given position (as more than one read can map to a given 

position) and assigns a genotype and a score to the SNP present on 

the sample based. The genotype depends on the proportion of reads 

that carry the reference allele or the non-reference allele, while the 

score depends on the quality score for the alignment of the different 

reds used to determine the genotype. 

 

In the recent years both the yield (amount of DNA sequenced) and 

read-length for these platforms has grown, almost at an exponential 

pace. Also, new technologies are appearing that allow for extremely 

long reads (up to 10,000 bases long in some cases) (see Figure 23). 

 

 

 

Figure 23: Comparison between the length of the reads (X axis) and the total 

DNA (Y axis). Each colour represents a platform and each point represents a 

different machine of the same platform. Source: Levy & Myers, 2016  
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A common problem in all these platforms is the possible bias when 

considering if a base is an SNP. This can happen at multiple levels: 

the instrument can misread the base that is being incorporated, the 

base-calling algorithm does not call the proper base, the alignment 

algorithm matches the read to an incorrect place or the SNP-calling 

or the genotyping algorithm calls a SNP were it is none (or vice 

versa). To solve this inconvenience a quality filter is used, filtering 

out those bases that have a poor quality and are more prone to have 

a wrong base or genotype assigned (Nielsen et al., 2011). A 

different approach that can be useful is to examine the distributions 

of the different alleles across samples and test if said distribution 

fits within an expected distribution (Muyas et al., 2019).  

 

In these techniques we also have the problem regarding batch 

effect. In this case it can be more severe than with microarrays, as 

different techniques can be applied in order to split the genome. 

This can affect the length of the fragments and, due to the limiting 

step of the number of amplification cycles, lead to differences in 

quality and/or mappability (chance of finding a unique location for 

a read) of the reads. Changes in both pose a problem for the aligner 

algorithm and, by extension, for the SNP-calling and genotype-

calling algorithm (Leek et al., 2010). This can result in major 

problems if the genotype is associated with an outcome of interest 

leading to incorrect conclusions. 
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1.5 What does the observed genetic variation say 

about the demographic history of human 

populations? 

a) Origin of anatomically modern humans 

Already by 1980, a first tree was inferred using mitochondrial DNA 

(mtDNA) from different populations and the out-of-Africa model 

was accepted as the best model explaining human evolution. These 

results represented a milestone for human population genetics, as 

they unequivocally rejected other competing hypotheses explaining 

the origin of current anatomically modern humans (AMH), based on 

what was known from an archaeological point of view. In 

particular, there were three main classical hypotheses explaining 

human evolution (Stoneking, 2005): 

 

1. The candelabra hypothesis proposed that AMH would have 

independently appeared in the different geographic regions 

as a consequence of the evolution of the first hominins that 

left Africa around 2 million years ago (mya); local 

adaptation would have produced the fossils of archaic 

hominins such as the Neanderthals in Eurasia, that date as 

far back as 400 thousand years ago (kya) (Higham et al., 

2014), and these populations would have produced the 

current Eurasian populations. 
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2. The multiregional hypothesis stated that modern features 

evolved in a fragmented manner across several areas that 

then were connected through gene flow (Wolpoff & Caspari, 

1997).  

 

3. The out of Africa model proposed that AMH originated in 

Africa and then expanded outwards to the other continents, 

replacing other archaic populations (Vigilant et al., 1991).  

 

Whereas they were equally likely from an archaeological point of 

view when these hypotheses were proposed, the expected signature 

in the DNA of each topology model was different. Both the 

candelabra hypothesis and the multiregional hypothesis expected 

higher levels of genetic diversity out of Africa, as well as old (>2 

mya) coalescent times out of that continent. In contrast, the Out of 

Africa hypothesis implied greater diversity within Africa, as well as 

recent coalescent times in that continent.  

 

The problem with this type of tree, and using mtDNA in general, is 

that it only reflects the female inheritance (although this is still a 

controversial issue, see S. Luo et al., 2018), and it behaves as a 

single marker, making it not representative of the overall genomic 

pattern and history of humans (Nordborg, 1998).  

 

Further studies using autosomal microsatellite data (Ramachandran 

et al., 2005; N. A. Rosenberg et al., 2002) observed the predicted 

patterns under the out of Africa hypothesis, with higher genetic 
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variation in the African continent and a decay of the genetic 

diversity with space as we moved far away from the African 

continent. Similar results have been observed in the analysis of 

haplotypic data (Jakobsson et al., 2008), as well as when using 

panels of SNPs (J. Z. Li et al., 2008).  

 

The Out of Africa hypothesis became the most accepted hypothesis 

during the last decade of the last century and the first one of the 

XXI. However, after the sequencing of the Neanderthal genome 

(Prüfer et al., 2014) and the Denisovan genome (Meyer et al., 

2012), evidence of archaic introgression in AMH were found out of 

Africa. In particular, all non-African populations contain around 2% 

of Neanderthal ancestry (Sankararaman et al., 2014). According to 

patterns of linkage disequilibrium, this admixture happened 50-65 

kya (Sankararaman et al., 2012).  

 

This observation, as well as the prediction of other archaic 

introgressions from currently archaic populations out of Africa 

(Mondal et al., 2019) but also within Africa (Lorente-Galdos et al., 

2019), has forced considering a new model of recent human 

evolution based on partial assimilation (Smith et al., 2017) and the 

existence of an African meta-population (Scerri et al., 2019).  
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Overall, the current picture of archaic populations and interactions 

with AMH is becoming more and more complex (see Figure 24). 

 

 

 

Figure 24: Family tree of the four groups of early humans living in Eurasia 

50,000 years ago and the inferred gene flow between the groups due to 

interbreeding. Source: Dolgova & Lao, 2018. 

 

The evidence of archaic introgression in the human genome has 

fuelled the development of methods that attempt to identify the 

regions in our genome that are introgressed from archaic 

populations using NGS data. The way how these methods usually 

identify the introgressed fragments is by considering simple 

demographic models such as the one depicted in Figure 25 (Racimo 

et al., 2015).  

 

The regions that are found as introgressed in an individual by the 

different methods tend to be out of functional regions, and 

particularly in genes expressed in the brain (McCoy et al., 2017), 

which has been interpreted as evidence of purifying selection in the 

hybrid individual (Petr et al., 2019; Telis et al., 2020). However, it 
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has been shown that some genomic regions show enrichment for 

archaic introgression supporting also the role of positive selection in 

the archaic introgression (Dolgova & Lao, 2018; Kelso & Prüfer, 

2014). 

 

 

Figure 25: Pink and blue chromosomes represent modern populations. Yellow 

chromosomes represent archaic populations. Stars represent shared mutations. In 

the case of red stars, these mutations appeared on the archaic population and were 

passed to the blue population through an admixture event (dashed line). In this 

particular case an event made the red star mutation raises to high frequency due to 

selection. Source: Racimo et al., 2015 
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The probability of a region to be introgressed is approximated using 

variation maps built from big population studies such as the 

HapMap Project (The International HapMap Consortium, 2003) or 

the 1,000 Genomes Project (1kG) (The 1000 Genomes Project 

Consortium et al., 2015).  

 

A problem with these gargantuan projects is the fact that samples 

are divided across different sequencing centres and technologies, 

which could lead to important batch effect problems. This has 

already happened in, at least, one of the populations of the 1kG. In 

the study from Anderson-Trocmé (Anderson-Trocmé et al., 2020) 

they found a particular mutational signature in the Japanese 

population from 1kG (JPT), that was not found in a more recent 

cohort from Japanese individuals (the Nagahama cohort). This fact 

could mean that the variation maps are biased and the introgression 

probabilities calculated from them could be skewed. 

 

b) Demographic history of Europe  

After the Out of Africa diaspora, human species have gone through 

multiple regional migrations, independently affecting each 

continent (Figure 26). 

 

In Europe, AMH arrived around 43 kya (Benazzi et al., 2011). 

However current European populations are a mixture of these 

Palaeolithic populations and from others that migrated into Europe 

in more recent times (Günther & Jakobsson, 2016). Around 11 kya, 

the Neolithic populations of the Fertile Crescent (actual Middle 
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East) started to emerge (Asouti & Fuller, 2013) and this type of 

populations from Central Anatolia expanded to the present Europe 

(Günther & Jakobsson, 2016). This first wave of migrants absorbed 

the hunter-gatherers that were already established (Günther et al., 

2015). This wave reached the Iberian Peninsula around 7 kya 

(Günther & Jakobsson, 2016). A second wave of migrants came 

from the herders of the Yamnaya culture from the Pontic-Caspian 

steppe, in modern-day Russia, about 4.5 kya (Allentoft et al., 2015). 

 

 

 

Figure 26: Major human migrations of AMH inferred from genomic data. This 

map shows a brief summary of the different migrations and estimated times in 

which they happened. FC = Fertile Crescent; CA = Central Anatolia;    IP = 

Iberian Peninsula; PCS = Pontic-Caspian steppe. Peopling of Asia and America 

are outside of the scope of the present thesis. Source: Nielsen et al., 2017. 
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These three different components (early hunter-gatherers, farmers 

from the Fertile Crescent and herders from the Yamnaya) contribute 

in different ways to the modern variation found in Europe: for 

example, the wave of farmers from Central Anatolia has a more 

prominent ancestry in southern European populations such as the 

Sardinian people (Cavalli-Sforza et al., 1996).  

 

From a continental scale, the genetic variation of current non-

Romani European populations strongly correlates with geography 

(Lao et al., 2008; Novembre et al., 2008), showing a gradient of 

decreasing variation with increasing Northern latitude (Auton et al., 

2009) (Figure 29).  

 

Figure 29: Density plot of the first two dimensions of PCA (A) and geographical 

distribution of the samples (B). Plot in (A) is the result of applying PCA to the 

collection of 309,790 SNPs used in the study. Plot in (B) corresponds to the 

geographical distribution of the country of origin of the samples used in the study. 

Source: Lao et al., 2008.  
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c) Regional European demographic history  

Although the principal components of the European genetic 

background were established in these three waves, subsequent 

processes of gene flow that were limited by geography have shaped 

its present day landscape.  

 

An example of geography as a limiting factor is the case of the 

British islands. The British Isles were firstly inhabited by 

Palaeolithic hunter-gatherers around 11.6 kya (Cunliffe, 2013). The 

most important migration wave was the Roman colonisation 

happening in 43 AD that mostly affected the south-east of the 

British Isles. This has shaped the present day variation in a way that 

the Romanized zoned can be recuperated from the genomic data. 

After this period, three main realms were established: Wales, 

Scotland and England.  

 

The study from Leslie, Winney, Hellenthal et al. (Leslie et al., 

2015), using techniques for “painting” the haplotypes to enhance 

the detection of fine population substructure, found that nowadays 

the British population can still be clustered into these same groups: 

Scotland/north England, Central/south England and Wales (see 

Figure 30 for a map representation). 

 



Introduction 

63 
 

 

 

Fig. 30: Map and the hierarchy of the cluster mergings. The map represents the 

2,039 samples of the study with colour and shape depending on the cluster they 

belong to. The tree depicts the order of the hierarchical merging of the clusters. 

Source: Leslie et al., 2015. 

 

Another effect of geography being a limiting factor in gene flow is 

the different incidence of genetic diseases across the continent. An 

example of this is the island of Sardinia, whose inhabitants have 

frequencies of diabetes type I (Marrosu et al., 2004), multiple 
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sclerosis (Pugliatti et al., 2006) or beta-thalassemia (Cao & 

Galanello, 2010) that cannot be explained by genotype variation in 

its causal genes. The case of Sardinia is special given the fact that 

they constitute a genetic isolate.  

 

Genetic isolates are defined as those populations that have little 

genetic mixing with other populations. This can lead to enriching 

some variants and/or deplete others. In these types of populations 

bottleneck effects, such as wars or pandemics, can have a more 

profound effect on the genetic pool due to its smaller effective 

population size (Kääriäinen et al., 2017).  

 

Geography is not the only basis to be genetically isolated in 

humans. Cultural aspects, such as language or religion, can 

contribute to the isolation of a population and, given enough time, 

show the traits associated with genetic isolation.  

 

A clear example of cultural genetic isolation is the case of the 

Ashkenazi Jews. This population is from medieval Jew populations 

that were present in Northern France and the Rhineland (banks 

across the Rhine, Germany) around the 10th century. These 

medieval populations were founded by migration that started in the 

Levant (Behar et al., 2004). Given this history, their ancestry is a 

mix between Levantine and varying degrees of European 

populations (especially Southern Europe) (J. Xue et al., 2017). This 

cultural isolation has left a mark in the genetic background of 

Ashkenazi Jews in the form of particular haplotype groups in the Y 
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chromosome and particular Mendelian diseases incidences, such as 

the Tay-Sachs disease or Gaucher disease (Ostrer & Skorecki, 

2013). 

 

d) Micro-Regional European demographic history: the 

genetics of rural areas  

In a sort of middle ground between isolation due to orography and 

particular cultural characteristics we find the modern-day rural 

populations. With the dawn of the Industrial Revolution, the 

transition from rural to urban communities deeply shaped the 

demography of different countries and areas within the same 

country during the last century (Champion, 2012).  

 

In Europe, this transition was due to young adults seeking a better 

education, work and services, rather than by differences in the 

fertility rate between rural and urban areas (Brown, 2012). These 

demographic movements had the effect of depopulating and aging 

European rural areas (Kulcsár & Curtis, 2012). The genetic effects 

of such micro-population substructure in European rural areas are 

still not yet fully understood. It has been shown that rural areas can 

be more prone to rare diseases due to higher levels of consanguinity 

(Yali Xue et al., 2017). The latest can be due to a higher isolation of 

rural populations (i.e. see Nutile et al., 2019) , and/or to the fact that 

rural populations have shrunk in size during the last generations. 

 

Within this context, the Spanish population appears as a good 

candidate for analysing the genetic diversity of rural areas. In Spain, 
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by 1900 rural areas still accounted for 68% of the total population 

(Pinilla & Sáez, 2017) and they have followed the same patterns of 

depopulation as in other regions of Europe (Silveira et al., 2013). 

Spanish rural areas tend to have a high number of small 

municipalities (Vidal & Recano, 1986), which may have 

experienced isolation for multiple generations (Calderón et al., 

2018), and tend to have a higher rate of inbreeding than urban areas 

independently of the time transect consulted (Fuster & Colantonio, 

2003). This situation is the main factor to explain the higher levels 

of consanguinity found in Spain when compared to other European 

countries (Mccullough & O’Rourke, 1986).  

 

Multiple sociocultural and socioeconomic factors can also be 

responsible for this trend (Fuster & Colantonio, 2004). For example, 

aunt-nephew or uncle-niece marriages or first cousin mating was a 

practice to maintain and/or expand the family inheritance. However, 

the main force explaining the higher inbreeding coefficients in 

Spanish rural areas compared to urban areas is geography. In small 

and dispersed rural localities the limited amount of suitable local 

partners conditioned marriage to a point that marrying a distant 

relative was a likely option; this situation was common even when 

the population started to increase due to medical advancements but 

still with restricted mobility (Gamella & Núñez-Negrillo, 2019). 

 

Taking this into context, the Spanish Eastern Pyrenees (SEP) has 

been suggested as a good representation to understand the particular 

demographic dynamics of traditional Spanish rural areas (Toledo et 
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al., 2017). The Pyrenees is a mountain chain with a longitude of 430 

km West to East oriented that connects the North of the Iberian 

Peninsula with the rest of Europe. The Pyrenees have a complex 

orography; mountains can reach more than 3,000 meters high and 

valleys tend to be narrow and transversal (Martín-Còlliga & 

Vaquer, 1995). SEP follows a similar pattern as observed in other 

Spanish rural areas: it reached its maximum recorded population 

peak around 1860 and has been intensively depopulated since then 

(Solé et al., 2014) and it is distributed mainly in municipalities of 

less than 500 inhabitants (in fact only eight of them exceed 2,000 

inhabitants). 

 

SEP micro-regions (referred as comarques) tend to reflect the 

medieval counties of Pallars Jussà, Urgell (Alt Urgell), Berga 

(Berguedà), and Besalú, which included current Ripoll (Ripollès) 

and Olot (Garrotxa) (Riu-Riu, 1995). Although these counties 

shared a rural lifestyle each one had different methods of 

subsistence depending on the geographic location. This caused the 

Industrial Revolution, and by extension the urban exodus, to affect 

this regions in different ways. For example, the economy of 

Berguedà focused on the exploitation of natural resources (in the 

northern part of the region) and textile (in the southern part), which 

granted a railway that connected the region to the most 

industrialized part of Catalonia by 1914 (Serra-Rotés, 2017). This 

railway was a possible influx of migrants to Berguedà in 

comparison to the other regions. Despite its close proximity, 

different recent demographic dynamics in these populations could 



Introduction 

68 
 

be expected and it remains unclear to which extent orography could 

influence its demography. 

 

Studies using classical markers, such as blood markers, proteins and 

HLA antigens (Calafell & Bertranpetit, 1994) did not detect genetic 

barriers within the Spanish Pyrenees but a strong West to East 

gradient that has been explained in terms of ancient demographic 

events. Others using immunoglobulin data (Giraldo et al., 2001) did 

not replicate these results but proposed that the observed patterns of 

diversity are better explained by micro-differentiation. One Y 

chromosome study detected a subtle degree of substructure in the 

whole Spanish Pyrenees mountain range (López-Parra et al., 2009).  

 

The most recent study considered autosomal microarray data and a 

limited number of samples from the Pyrenees (Biagini et al., 2019); 

it did not identify any genetic difference with other Iberian samples 

nor detected signals of excess of autozygosity compatible with 

endogamous practices in the region.  

 

Overall, the discrepancies among these studies suggest that, if the 

orography of the Pyrenees has shaped the genetic diversity of the 

rural human populations living within this mountain chain, a much 

deeper characterization of their genetic variation is required to 

detect it. 
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2. OBJECTIVES 

The genetic diversity in human populations is not random, but 

depends on geographic factors reflecting the past demographic 

history of the species. The limits to detect such population 

substructure depend on three main factors: the sensitivity of the 

methods applied to identify population substructure, the type of data 

that is used and how this data is produced. 

 

The global objective of this thesis is to identify fine population 

substructure in human populations, using as a case of study WGS 

from populations from the Catalan Pyrenees, and to better 

understand the role of batch effects from NGS technologies in the 

inference of genomic parameters. To achieve this main goal, three 

different objectives have been conducted: 

 

1. The implementation of a new algorithm that implements 

geostatistic principles to identify genetic barriers while 

assuming anisotropic patterns within each geographic group. 

 

2. The population genomics analysis of WGS data at 40X from 

30 individuals from the Catalan Pyrenees, covering an area 

of 140 km. 

 

3. The quantification of the batch effect of the sequencing 

centre in 1000G in relevant statistics for population genetics 

such as the loss of function, the amount of archaic 

introgression, or the proportion of derived alleles. 
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3 MATERIAL AND METHODS 

3.1 Datasets 

The outcome of this thesis is based on analysing different genomic 

datasets, either individually, or after merging them. The main one 

corresponds to a set of individuals' whole genome sequenced at 

CNAG from the Southern Eastern Pyrenees (SEP). Publicly 

available datasets comprised: the Simon Genome Diversity Project 

(SGDP) (Mallick et al., 2016), the Spanish Exomes (SpExomes) 

(Dopazo et al., 2016) and the 1,000 Genomes Project phase 3 

(1kGp3) (The 1000 Genomes Project Consortium et al., 2015). 

 

a) Spanish Eastern Pyrenees 

This dataset is the result of sampling a region of 140 km from the 

Catalan Pyrenees. The samples come from the comarques of 

Pallars, Alt Urgell, Berga, Ripollès and Garrotxa. All individuals  

were born in the region they were sampled from, as well as their 

four grandparents. This dataset also represents the oldest extract of 

the population, with an average age of 74.14 years and an equal 

proportion of both sexes. By doing it this way, we are sure that we 

are capturing variation found in that particular region and we are 

not introducing a confounding factor in further analyses. A total of 

six individuals from both sexes were sampled in each region (see 

Table 2 for details). 
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Sample name Region Age Sex Coverage 

G178 Garrotxa 86 Male 41,092 

G26 Garrotxa 83 Male 38,281 

G199 Garrotxa 81 Male 39,56 

G23 Garrotxa 87 Female 42,223 

G104 Garrotxa 83 Female 40,155 

G164 Garrotxa 83 Female 38,175 

R86 Ripollès 71 Male 42,485 

R97 Ripollès 71 Male 41,885 

R47 Ripollès 70 Male 42,16 

R88 Ripollès 68 Female 41,512 

R87 Ripollès 66 Female 42,306 

R17 Ripollès 66 Female 38,256 

H67 Berguedà 83 Male 40,679 

H76 Berguedà 80 Male 40,844 

H109 Berguedà 77 Male 40,891 

H77 Berguedà 84 Female 39,465 

H96 Berguedà 79 Female 41,743 

H16 Berguedà 77 Female 41,432 

S141 Alt Urgell 70 Male 39,198 

S138 Alt Urgell 64 Male 41,737 

S128 Alt Urgell 63 Male 39,319 
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Sample name Region Age Sex Coverage 

S70 Alt Urgell 69 Female 40,196 

S74 Alt Urgell 65 Female 43,123 

S12 Alt Urgell 64 Female 39,587 

P81 Pallars 81 Male 36,98 

P96 Pallars 80 Male 41,821 

P10 Pallars 79 Male 38,439 

P11 Pallars 77 Female 43,416 

P77 Pallars 77 Female 42,563 

P53 Pallars 77 Female 42,622 

 

Table 2: Summary of the SEP dataset. 
 

Blood samples were extracted from the individuals and processed to 

obtain DNA. The samples were sequenced at Centre Nacional de 

Anàlisis Genòmic of the Centre de Regulació Genòmica (CNAG-

CRG) using Illumina® paired ends 150 bp reads in a HiSeq 

3000/4000 (Illumina®). The mean coverage per sample was ~40x 

(see Table 2 for details of the coverage). 

 

The read files were then used for SNP calling, which was performed 

using the Genome Analysis Toolkit (GATK) HaplotypeCaller v3.6 

(McKenna et al., 2010) using the defaults found on the GATK 

Handbook v3.6 (Depristo et al., 2011). The reference genome used 

was hs37d5 (Hg19) and all samples were called jointly to obtain a 

single VCF file.  
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After this step we decided to continue with data cleaning. In this 

case we first filtered the VCF to filter out those variants that were 

not labeled as SNP. After this we filtered out those SNPs that had 

more than 1 alternative allele. We set a strict threshold of 0% 

missingness, filtering out those SNPs that did not meet these 

criteria. As a final step we filtered out those SNPs that do not follow 

Hardy-Weinberg equilibrium. To have a proper dataset to use in a 

population genomics framework, we decided to keep only those 

SNPs that are polymorphic in the SEP populations sampled.  

 

As a last step in data cleaning we decided to run the algorithm 

KING (Manichaikul et al., 2010) to ascertain if our samples had any 

family relation of second degree or closer. The results from KING 

found that individuals S138 and S12, so we proceeded to remove 

individual S138 from the analysis. 

 

All data cleaning steps were done with a combination of bcftools 

(Heng Li, 2011) and PLINK (Purcell et al., 2007).  

 

The final dataset from SEP has a total of 29 individuals and 

9,309,056 biallelic polymorphic SNPs. 

 

To predict loss of function variants (LoF) in SEP first we annotated 

the variants we found in this work. In order to do so we downloaded 

the already annotated table of variants from dbNSFP (Liu et al., 

2013), a database developed for functional prediction and 

annotation of all potential non-synonymous single-nucleotide 
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variants (nsSNVs) in the human genome. This table contains 

prediction scores for several algorithms (37 different algorithms in 

the last version).  

 

To merge the contents of the table with our VCF file with the 

variants found in SEP we used the program called SnpSift 

(Cingolani, Patel, et al., 2012) and to add the functional prediction 

of said variants we used SnpEff (Cingolani, Platts, et al., 2012). 

 

From this annotated and functionally predicted VCF file we decided 

to use 3 different algorithms to consider that a variant is a LoF 

variant: Polyphen2 (Adzhubei et al., 2010), MutationAssessor 

(Reva et al., 2011) and SIFT (Cingolani, Patel, et al., 2012). If these 

three algorithms marked a variant as LoF, we accepted that variant 

into the study. We restricted the analysis to those variants that do 

not appear in homozygosis because they would reflect redundant or 

advantageous effects of dispensable genes (Rausell et al., 2020). To 

account for this bias, the frequency of LoF variants of each 

individual was estimated using all the variants in the exome that did 

not report homozygote individuals for the derived allele in the 

dataset, and that were heterozygote for the individual. 

 

b) Simon Genome Diversity Project (SGDP) 

The Simon Genome Diversity Project is an effort to obtain a more 

detailed picture of human genetic variation. The selection of 

samples in this dataset pretends to represent most of the genetic, 
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cultural and linguistic human variation. The dataset comprises a 

total of 278 samples sequenced using standard Illumina to an 

average coverage of 43x (Mallick et al., 2016). These samples can 

be assigned to circa 140 populations distributed in seven continental 

supergroups. In our analyses, we ascertained the samples from the 

SGDP labeled as “WestEurasia” to have a more accurate depiction 

of the SEP situation inside Europe. Genomes were aligned to 

hs37d5 (Hg19), and SNP calling was done in a similar way as SEP.  

 

After merging SGDP and SEP and applying data cleaning 

procedures (the same as SEP minus KING) we have a total of 104 

individuals and 5,388,964 SNPs in this dataset. 

 

A problem of this dataset is the number of individuals: one or two 

per population. This factor makes it less reliable to use in LoF 

studies as it could easily bias the analysis due to its low sample size. 

 

c) Spanish Exomes (SpExomes) 

The SpExomes dataset is a collection of Spanish individuals that 

were Whole Exome Sequenced (WES) in order to produce controls 

for the Medical Genome Project. Dopazo et al. sampled 267 

individuals from the north (Galicia and Catalonia), centre (Madrid) 

and south (Andalucia) of Spain. Sequencing was done using SOLiD 

5500xl. The dataset was stored in the European Genome-phenome 

Archive (EGA) under accession number EGAS00001000938 (both 

VCF and FASTQ files). 
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Although the SpExomes dataset offers ready-to-use VCF files, 

when examining these files we realized that they were not processed 

according to the standards we used in SEP. This produced biases in 

some of the population statistics that we were using when 

comparing both datasets. To solve this problem, we downloaded the 

FASTQ files and conducted mapping and SNP-calling using the 

same Bioinformatic pipeline as in SEP. We did the same data 

cleaning (with the exception of KING) as in SEP. 

 

The final dataset comprised a total of 288 individuals and 239,349 

SNPs. 

 

d) The 1,000 Genomes Project phase 3 (1kGp3) 

This dataset corresponds to the first effort to sequence a large group 

of individuals from different populations and continents (The 1000 

Genomes Project Consortium et al., 2015)This project had the main 

goal to describe most of the genetic variants with frequencies of at 

least 1% in the populations studied. It started in 2008 and ended in 

2015, publishing the results in three different phases. It finally 

comprised 2,504 individuals from 26 different populations across 

five different continental regions.  

 

1kGp3 used a combination of low and high coverage whole genome 

sequencing, whole exome sequencing, high density microarray 

genotyping and Complete Genomics (a sequencing company with 

its own proprietary sequencing and analysis techniques) to generate 

the sequence data.  
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This huge effort was done in nine different centres: the Broad 

Institute, the Baylor College of Medicine (Human Genome 

Sequencing Center), BGI, Max Planck Institute for Molecular 

Genetics, Washington University, Wellcome Trust Sanger Institute, 

Illumina, Affymetrix and Complete Genomics. Each centre did 

different protocols to produce the sequence data in the form of 

FASTQ files. These files were then sent to the Sanger Institute to be 

mapped using bwa (H. Li & Durbin, 2009) and proceed through a 

series of steps for data cleaning. After the mapping the consortia 

proceeded to do variant calling on the samples. They used a total of 

ten different SNP-calling tools (not taking into account micro-

satellites and structural variants discovery tools), with a final step to 

create the integrated call set. This integrated call set contained all 

the variation found in the samples that passed a series of filters. 

 

This strategy was applied to minimize the effect of putative batch 

effects due to the used Bioinformatic pipeline. However, recent 

studies (Anderson-Trocmé et al., 2020) point to the fact that these 

data are not exempt of sequencing errors and other biases. This is 

particularly relevant because, due to the geographic coverage and 

the amount of individuals, data from the 1kGp3 are widely used to 

SNP imputation in Genome Wide Analysis studies (GWAS) or 

haplotype phasing (Delaneau et al., 2013). Furthermore, this dataset 

has been studied in depth from an evolutionary point of view (S. R. 

Browning et al., 2018; Colonna et al., 2014; Huang & Siepel, 2019) 

and has been used in multiple medical studies (Papadimitriou et al., 

2019).   
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3.2 Detection of population substructure 

The identification of (hidden) population substructure in a set of 

individuals from the same species has been one of the most active 

fields in population genomics during the last twenty years. 

Consequently, a large number of algorithms have been proposed for 

identifying population substructure. Some of them, such as 

Principal Component Analysis (PCA) or Principal Coordinate 

Analysis (also called classical multidimensional scaling), are 

directly inherited from the field of statistical learning (Hastie et al., 

2001) for dimensionality reduction. Therefore, they are not 

population genomic specific.  

 

However, the way how the genomic data is produced allows its use 

and -in some cases- interpret them from a demographic point of 

view (Patterson et al., 2006). These methods apply classical matrix 

decomposition (i.e. the output are two matrices of eigenvectors and 

eigenvalues) to map the individuals into a set of new orthogonal 

variables, each explaining a proportion of the variance present in 

the original data. The main difference is the starting matrix. In PCA, 

a covariance matrix between SNPs and individuals is generated. In 

PCoA, a distance matrix between pairs of individuals is estimated 

and used for the algebraic decomposition.  

 

The ultimate goal is to represent the genetic relationships of the 

individuals into a lower (usually the first two dimensions) 

dimensional space, so it is possible to identify sub-groups of 

individuals more genetically related than others. The latest can be 
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achieved using algorithms such as mclust (Scrucca et al., 2016), that 

assume that the data can be modelled as a mixture of Gaussian 

distributions. The position of one individual relative to the other 

individuals can be interpreted in terms of admixture and time since 

the subpopulations diverged (see Figure 31). 

 

 
 

Figure 31. The output from different algorithms for identifying population 

substructure using simulated data. Two populations (blue and red) diverged for a 

long time. They create a new population (orange)  at time of Admixture. 

Depending on when it occurred, the position of the individuals in the plot 

changes. If the admixture occurred a long time ago, the admixed population 

appears as something completely different from the parental populations. Upper 

panels report the MDS analysis. Lower panels, an ADMIXTURE (Alexander et 

al., 2009) analysis. Source: Lao & van Oven, 2015 
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The application of methods for reducing the dimensionality of the 

data has shown that genetic maps tend to resemble the physical 

sampling location of each individual (Lao et al., 2008; Novembre et 

al., 2008; C. Wang et al., 2010). However, the demographic 

interpretation of these maps is complex, since multiple demographic 

events can produce similar plots (Novembre & Stephens, 2008).  

 

The state of art of this approach in population genomics is the 

fineSTRUCTURE algorithm (Lawson et al., 2012). This algorithm 

defines a matrix of relationships between individuals taking into 

account the haplotypic information. In this framework, a donor 

chromosome is “painted” by the chromosome of other individuals, 

and the total amount of shared chunks between pairs of individuals 

is reported. From this matrix of similarity, one can apply different 

approaches for establishing the genetic relationship between 

individuals (Lawson et al., 2018). 

 

A second type of algorithms, also unsupervised, models the 

ancestry of an individual as a mixture of ancestry proportions from 

different K ancestral populations, all of them equally related, 

assuming that within each ancestral population each SNP is in 

HWE. The parameters to estimate are the percentage of admixture 

of each individual and the frequency in each ancestral population so 

the likelihood of the model is maximized.  

 

The different algorithms depend on how this optimization problem 

is solved or the statistical flavour that is applied. For example, 
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STRUCTURE (Pritchard et al., 2000) and fastSTRUCTURE (Raj et 

al., 2014) take a Bayesian approach to estimate the posterior 

distributions of the ancestry individual proportions. FRAPPE (Tang 

et al., 2005) and ADMIXTURE (Alexander et al., 2009) maximize 

the log likelihood function of the ancestry proportions of each 

individual given the allele frequencies of each ancestral population. 

sNMF (Frichot et al., 2014) uses an algebra based approach 

conditioning the matrix output to estimate the ancestry proportions. 

 

A third type of algorithms include geodesic (spatial) information in 

the model, either implicitly (unsupervised algorithms such as SPA, 

Yang et al., 2012) in order to predict the geographic location of an 

individual, explicitly and implicitly, in which case we use the 

geographic information for identifying admixture patterns, or 

explicitly by identifying the migration patterns (i.e. EEMS, Petkova 

et al., 2015) or genetic barriers (i.e. SAMOVA, Dupanloup et al., 

2002, or BARRIER, Manni et al., 2004) in the space. The difference 

between them is the assumptions that are considered when spatially 

modelling the genetic variation present in the samples. For example, 

SAMOVA assumes that the individuals from one geographic group 

are genetically homogeneous and genetically distinct from other 

groups (as defined by the AMOVA algorithm, Excoffier et al., 

1992).  

 

The objective is to find the geographic groups and assign each 

population/individual to its geographic group. Such optimization is 

conducted by means of a natural computing algorithm (Brabazon et 
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al., 2015) called simulated annealing (Kirkpatrick et al., 1983). 

However, it can be objected that the assumption of geographic 

homogeneity within each geographic group is unrealistic for many 

species and, particularly, in the case of humans. As previously 

described, human populations tend to show isolation by distance 

patterns.  

 

Therefore, any genetic barrier should take into account that within 

the geographic groups genetic variation is not going to be 

distributed homogeneously, but following the patterns of isolation 

by distance and anisotropy.  

 

The latest is a classical concept in the field of geostatistics, and 

refers to the Tobler’s law (Tobler, 1970): “everything is related to 

everything else, but near things are more related than distant 

things”. Following the same principle, the genetic differentiation 

between two individuals with regards to the physical distance just 

due to genetic isolation can be modelled as in Figure 32. 

 

These principles have been previously used for spatially modelling 

the genetic diversity in human populations (Bradburd et al., 2016) 

but never used in the context of identifying genetic barriers using 

genetic matrices between individuals. 
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Figure 32. A graphical description of how genetic divergence between two 

individuals (Y axis) variate with geographic distance (X axis) using a kriging 

model. The nugget corresponds to the minimum amount of genetic differentiation 

you can find in a given set of samples that belong to the same population (i.e. the 

geographic distance between them is 0). Sill is the difference between the 

maximum amount of genetic distance that can be observed between two samples. 

The range refers to the geographic distance needed in order for the variable to 

reach a stable point. 
 

If the genetic differentiation follows a direction in space (a genetic 

gradient in the data points) we can extend the model to include an 

angle α of maximum genetic divergence in space.  

 

Given this framework we define genetic distance as follows: 

 

(1)    𝐺𝑒𝑛𝐷𝑖𝑠𝑡 = 𝑠 ∗ 𝑘 + 𝑛 

 

Where s corresponds to the sill, n to the nugget and k to a factor of 

proportionality defined as: 
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(2)    𝑘 =
√𝑏2 ∗ (𝑥 ∗ cos(𝛼) + 𝑦 ∗ sin (𝛼))2 + 𝑎2 ∗ (𝑥 ∗ sin(𝛼) − 𝑦 ∗ cos (α))2

𝑎2 ∗ 𝑏2
 

 

Where α corresponds to the angle that gives the maximum genetic 

divergence, a and b to the foci on an ellipse and x and y to the 

position of the sample in the space. 

 

In order to estimate the parameters (a, b and α), we can use multiple 

regression on distance matrices (Legendre & Legendre, 2012; 

Lichstein, 2007). In particular we can use nonlinear regression 

fitting methods, in this case the Nelder and Mead Simplex method 

implemented at Flanagan’s JAVA package (Thomas-Flanagan, 

2016).  

 

For a given K geographic groups of genetically related points, the 

identification of the genetic barriers consist on identifying the set of 

geographically related points that minimizes the goodness of fit of 

the estimated parameters as the mean sum of square error of each 

point between the observed genetic distance and the inferred D’ 

from the fitted parameters: 

 

(3)  𝑆𝑆𝐸 = 𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟𝑔 = 
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To optimize the SSE function and to identify the genetic barriers, 

we define each geographic group by a [x,y] pair of coordinates, and 

assign each observed point based on its proximity to each 

geographic group, such as in K-means algorithm. The problem is 

then to find the geographic coordinates of each group that minimize 

the SSE. In order to explore the space of possible solutions, we use 

a genetic algorithm, which has been already applied in optimization 

problems involving geographic divisions (Sergeeva et al., 2017). 

 

3.3 Methods for quantifying the levels of 

autozygosity  

RoHs are conceptually very easy to define: long genomic segments 

that for a given individual all the SNPs are homozygotes suggesting 

recent inbreeding (see Recombination section in the Introduction). 

However, from an algorithmic point of view, RoHs are challenging, 

and different algorithms have been proposed for identifying them, 

each showing a different performance (Howrigan et al., 2011). 

 

The first problem that RoHs face is the definition of SNV. Since the 

definition of SNPs is ultimately population specific (i.e. a SNP in 

one population can be fixed in another and therefore not be a SNP), 

in order to identify recently inbred individuals we need to remove 

SNPs that are fixed in our population or, more commonly, below a 

certain minimum allele frequency (MAF) threshold. In addition, 

RoHs algorithms must be robust against the presence of sequencing 

errors, which usually introduce heterozygote genotypes thus 

breaking the RoHs.  
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In practice, most of the algorithms allow for a certain frequency of 

heterozygote SNPs before stopping a RoH. Pemberton et al 

(Pemberton et al., 2012) suggested minimizing these effects by 

estimating RoHs in terms of the likelihood of observing a particular 

genotype combination in a genomic region given the allele 

frequencies of the SNPs in the population from which the individual 

was sampled. In the present thesis we have used this approach to 

compute RoHs over all the genome of the SEP samples.  

 

A second problem is that RoHs are dependent on the SNP density in 

the genome. To estimate the levels of autozygosity in the exomic 

dataset we used the heterozygosity ratio (HetR) statistic, initially 

proposed by Guo et al. (Samuels et al., 2016). This statistic is 

independent of the density of SNVs genotyped. This measure is 

defined as the ratio of SNPs for which the individual is 

heterozygote with respect to the number of SNPs for which the 

individual is homozygote for the non-reference allele. However, we 

noticed that the HetR depends on the sample size.  

 

Under the assumption of a constant population size, the expected 

number of SNPs following a particular site frequency i (1 < i < n-1) 

out of a sample of n chromosomes is determined by (Wakely, 

2016): 

(1)     𝐸[𝜉𝑖] =
2𝑁𝑒𝜇

𝑖
=  
𝜃

𝑖
 

 

 

 



Material and Methods 
 

88 
 

The probability of being heterozygote for a particular SNP with i 

derived alleles is: 

(2)     𝑃(𝐻𝑒𝑡) =
(
𝑖
1
) (
𝑛 − 𝑖
1
)

(
𝑛
2
)

=
2𝑖(𝑛 − 𝑖)

𝑛(𝑛 − 1)
 

 

The probability of being homozygote derived out of i derived alleles 

is: 

(3)    𝑃(𝐻𝑜𝑚) =
(
𝑖
2
) (
𝑛 − 𝑖
0
)

(
𝑛
2
)

=
𝑖(𝑛 − 𝑖)

𝑛(𝑛 − 1)
 

Using (1), (2) and (3), the expected HetR under the assumption of 

no inbreeding is defined as: 

 

𝐻𝑒𝑡𝑅 =  
∑  
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2∑ (𝑛 − 1)𝑛−1
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𝑖=1

=
2(∑ 𝑛𝑛−1

𝑖=1 −∑ 𝑖𝑛−1
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∑ 𝑖𝑛−1
𝑖=1 − ∑ 1𝑛−1

𝑖=1

=

2((𝑛 − 1)𝑛 − (
𝑛(𝑛 + 1)

2
− 𝑛))

𝑛(𝑛 + 1)
2 − 𝑛 − 1 − (𝑛 − 2)

 

𝐻𝑒𝑡𝑅 =
2

𝑛
 

 

Therefore, the HetR is not independent of the sample size. 

 

As we have an extremely different sample size between the two sets 

of populations (maximum of 6 individuals in SEP populations, 259 

individuals in the SpExomes) we devised a method to normalize the 
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score. This normalization follows the next steps: we pick a random 

set of five samples from every population (each subgroup from SEP 

and SpExomes) and calculate the heterozygosity ratio for each 

selected sample. We repeat this sampling a total of 5,000 times. The 

normalized score is the result of dividing the sum of the 

heterozygosity ratio between all runs and the total number of runs in 

which that sample has appeared. 

 

3.4 Method for analysing batch effect 

In order to quantify the possible batch effect in the 1,000 Genomes 

Project dataset we downloaded the ready-to-go VCF files from the 

1,000 Genomes FTP site. As these files were downloaded on a per 

chromosome basis we used bcftools (Heng Li, 2011) to concatenate 

them into a single VCF file. Then we proceeded to annotate the 

single VCF file using the same procedures as with the SEP samples. 

Information about the sequencing center of every sample was 

extracted from the supplementary data from the 1,000 Genomes 

Project 2015 paper (The 1000 Genomes Project Consortium et al., 

2015).  

 

To ascertain this possible batch effect we used three different 

measures: amount of LoF variants per sample, amount of alleles 

considered to be introgressed by the Sprime algorithm (S. R. 

Browning et al., 2018), and the amount of derived allele singletons 

per sample. 
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Number of LoF variants was calculated using the same procedure as 

with the SEP samples. 

 

To count the number of introgressed alleles we downloaded the 

output from the Sprime algorithm used in Browning et al (S. R. 

Browning et al., 2018) from S. Browning, 2018. Output is divided 

on a per population and chromosome basis. These files provide the 

introgressed allele for the SNP according to the algorithm. We used 

this information to count the number of alleles of each individual of 

each population (using the proper file to do so). We used the 

following scoring: if the individual is homozygous for the 

introgressed allele we add 2 to the score, if the individual is 

heterozygous we add 1 to the score, if the individual is homozygous 

for the non-introgressed allele we add 0 to the score. Finally we 

sum up the score for the individual across all the chromosomes. 

 

To ascertain the number of derived allele singletons present in each 

sample we used the ancestral allele already present in the VCF file 

(AA flag in the INFO field), which uses the 6-way EPO alignments 

available in Ensembl v71 (Flicek et al., 2014) (according to the 

Supplementary Information of the 1,000 Genome Project). From the 

general VCF file we extracted those SNPs that were considered 

singletons using bcftools (Heng Li, 2011), selecting those whose 

allele count was equal to one (AC flag in the INFO field). From 

these singletons VCF file we checked if the reference allele is the 

same as the ancestral allele, and assign the derived singleton to the 

proper sample. 
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In order to check for the possible effect of the sequencing center 

over these variables we used the R package lmer4 (Bates et al., 

2015) to construct hierarchical mixed models controlling for the 

random effects of the continent and population of assignation of 

each individual. The models were as follows: 

 

𝑆𝑒𝑞𝐶𝑒𝑛𝑡𝑒𝑟 𝑀𝑜𝑑𝑒𝑙 =  𝑙𝑚𝑒𝑟(𝑙𝑜𝑔(𝑆) ~ 𝑆𝑒𝑞𝐶𝑒𝑛𝑡𝑒𝑟 + (1|𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡/𝑃𝑜𝑝)) 

 

Where S is the variable of interest. The mixed null model followed 

the next formula 

 

𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 =  𝑙𝑚𝑒𝑟(𝑙𝑜𝑔(𝑆) ~  (1|𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡/𝑃𝑜𝑝)) 

 

To compare both models we used the ANOVA framework 

implemented in R (R: The R Project for Statistical Computing). 

 



 

 
 

 

  



Results 
 

93 
 

4 RESULTS 

 

4.1 Chapter 1 

 

Fine-scale population structure in five rural populations from the 

Spanish Eastern Pyrenees using high-coverage whole-genome 

sequence data.  

 

Iago Maceda, Miguel Álvarez-Álvarez, Georgios Athanasiadis, 

Raúl Tonda, Jordi Camps, Sergi Beltran, Agustí Camps, Jordi 

Fàbrega, Josefina Felisart, Joan Grané, José Luis Remón, Jordi 

Serra, Pedro Moral, and Oscar Lao 
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Abstract 

The Spanish Pyrenees is particularly interesting for studying the 

demographic dynamics of European rural areas given its orography, 

the main traditional rural condition of its population and the 

reported higher patterns of consanguinity of the region. Previous 

genetic studies suggest a genetic continuity of the area in the West 

to East axis. However, it has been shown that micro-population 

substructure, compatible with ancient and recent demographic 

events, can be detected when considering high quality NGS data 

and using methods specially designed for identifying fine 

population substructure. In this work we have analyzed the genome 

of 30 individuals sequenced at 40× from five different valleys in the 

Spanish Eastern Pyrenees (SEP) covering 140 km. Using haplotype-

based tools and spatial analyses we have been able to detect micro-

population substructure within SEP not seen in previous studies. 

Linkage disequilibrium and autozygosity analyses suggest that the 

SEP populations show diverse demographic histories. In agreement 

with these results, demographic modelling by means of ABC-DL 

identify heterogeneity in their effective population sizes despite of 

their close geographic proximity, and suggest that the population 

substructure within SEP could have appeared 100 generations ago. 

Finally, we observed heterogeneity among the populations for the 

loss of function burden. Overall, these results suggest that each rural 

population of the Pyrenees could represent a unique entity. 

 

Keywords: fine population substructure, rural population, Spanish 

Eastern Pyrenees, whole genome sequencing 
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Introduction 

The transition from a rural to an urban world has been mainly 

triggered by the industrial revolution that started in Europe, which 

promoted large-scale, differentiated and coordinated activities that 

were better accomplished by urban communities (1), which caused 

population movements from rural areas to urban cities (2). From a 

practical point of view, the division in rural and urban areas has 

implications for health (3), as well as for generating genetic isolates 

explaining the predisposition to rare diseases (4). 

 

In Spain, by 1900 rural areas comprised 68% of the total Spanish 

population (5) and, similarly to other rural European regions, they 

have been intensively depopulated with massive migratory 

movements towards industrialized urban areas (6). Spanish rural 

areas are traditionally characterized by a low demographic density 

and a high number of small municipalities that may have 

experienced isolation for generations (7). This situation has been 

suggested as a main factor for explaining the higher levels of 

consanguinity of Spain compared to other European countries (8). 

From a temporal point of view, the levels of consanguinity in urban 

and particularly rural Spanish areas reached its maximum between 

the end of the 19th century and 1929 (8). 

 

The main force explaining the higher inbreeding coefficients in 

Spanish rural areas compared to urban areas is geography (9). In 

particular, islands and high mountains, as well as altitude within a 

valley, have been reported as the most effective geographic barriers 
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increasing the levels of inbreeding in Spain (9). In this context, the 

rural population of the Spanish Eastern Pyrenees (SEP) has been 

suggested as a particularly interesting system for understanding the 

demographic dynamics of traditional Spanish rural areas (10). The 

Pyrenees is a mountain chain of a complex orography with a 

longitude of 430 km West to East oriented that connects the North 

of the Iberian Peninsula with the rest of Europe (11). From a 

demographic point of view, the area reached its maximum-recorded 

population peak in 1860 and it has been intensively depopulated 

since then (12). 

 

Studies using classical markers, such as blood markers, proteins and 

HLA antigens (13) did not detect genetic barriers within the Spanish 

Pyrenees but a strong West to East gradient that has been explained 

in terms of ancient demographic events. Others using 

immunoglobulin data (14) did not replicate these results but 

proposed that the observed patterns of diversity are better explained 

by micro-differentiation. One Y chromosome study detected a 

subtle degree of substructure in the whole Spanish Pyrenees 

mountain range (15). The most recent study considered autosomal 

microarray data and it did not find any genetic difference with other 

Iberian samples nor detected signals of excess of autozygosity 

compatible with endogamous practices in the region (16). Overall, 

the discrepancies among these studies suggest that, if the orography 

of the Pyrenees has shaped the genetic diversity of the rural human 

populations living within this mountain chain, a much deeper 

characterization of their genetic variation is required to detect it. 
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In the present study we have characterized the genetic variation of 

the SEP rural population from five regions (Pallars (P), Alt Urgell 

(U), Berga (B), Ripolles (R) and Garrotxa (G) (see Figure 1B) 

covering around 140 km, making use, for the first time, of high-

coverage whole genome sequencing (WGS) data. This allowed us 

the use of powerful haplotype-based methods, revealing genetic 

differences between close groups. Likewise, it ensured a non-biased 

capture of the allele frequency spectrum, something necessary in 

demographic modeling. 

 

Material and methods 

Datasets description 

In total, five regions corresponding to the political separations 

established by the government from SEP were sampled (Garrotxa, 

Ripollés, Berguedà, Alt Urgell and Pallars), covering circa 140 km, 

with six samples per region. All samples were born and had all their 

grandparents born in the same sampled region. This dataset 

represents the oldest extract of the population, with an average age 

of ~76 years and equal proportions of both sexes (see 

Supplementary Table 1). Therefore, this sample is effectively 

unaffected by the demographic changes occurred during the 20th 

century. All subjects signed an informed consent and the study had 

the approval of the Ethics Committee of the University of 

Barcelona. Each individual was whole genome sequenced (WGS) 

using standard Illumina ( San Diego, California, USA) paired-ends 

sequencing technology with a read-length of 150 bp with an average 

sequencing coverage of ~40×. SNP-calling used GATK 
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HaplotypeCaller v3.6 (17), using the default settings according to 

the GATK Handbook v3.6 (18), with hs37d5 as the reference 

assembly, using all samples jointly. For an overview on the data 

cleaning steps, see Supplementary Information. The final dataset 

contained 29 individuals and 9,309,056 SNPs. 

 

To make comparisons with other European populations, we used 

samples geographically classified as “West Eurasian” from the 

Simons Genome Diversity Project (SGDP) (19) (Supplementary 

Table 1). After the merging with the SEP dataset, we applied the 

same quality control as conducted with SEP. The SEP-SGDP 

dataset contains a total of 104 individuals and 5,388,964 SNPs. 

Spanish exome data from (20) was accessed from EGA (accession 

number: EGAS00001000938). Data were downloaded as FASTQ 

files and mapped. SNPs were called following the same procedure 

used in the SEP samples. We used the same data cleaning 

procedures as conducted with SEP. The resulting dataset has a total 

of 288 individuals and 239,349 SNPs. To make a comparison 

between our dataset and the one presented in (16), we ascertained 

the shared SNPs between the two datasets, namely ~231K SNPs. 

 

Analyses 

Detection of population substructure of SEP at a macro and 

microgeographic scale  

A classical multidimensional scaling (MDS) analysis on an identical 

by state (IBS) matrix between pairs of individuals ('1-ibs' function 

of PLINK (21)) was carried out to summarize the genomic 
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relationships within SEP as well as with SGDP samples. SEP-

SGDP data were phased with SHAPEIT2 (22) using all defaults and 

a publicly available genetic map based on the 1000 Genomes 

Project phase 3 database (23). Phased data were used in 

Chromopainter/fineSTRUCTURE (24) to identify fine population 

substructure. The haplotype lengths matrices from 

Chromopainter/fineSTRUCTURE were analyzed with 

GLOBETROTTER (25). Finally, we repeated the haplotype-based 

analyses with SEP individuals in order to detect fine-scale 

population substructure in the area. 

 

Identification of genetic barriers and differential migration rates 

In order to identify genetic barriers, we developed an algorithm that 

models the shared co-ancestry matrix from 

Chromopainter/fineSTRUCTURE in terms of anisotropy within 

each geographic group (see Supplementary Information). In 

parallel, we used the Estimated Effective Migration Surfaces 

(EEMS) algorithm to have an estimate of migration rates between 

the individuals of SEP dataset, (26). The algorithm was run using 

the default parameters and a total of 1,000 demes to conform the 

surface on which to situate the individuals. 

 

Estimation of the effective population sizes and time of split of 

SEP populations 

To estimate the effective population size and the time of split of the 

SEP populations, we modelled its demographic history using a 

simple demographic model (see Supplementary Figure 1). We used 
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an ABC approach coupled to deep learning (ABC-DL) (27) to 

estimate the posterior distribution of the different parameters of the 

model (see Table 1 for the prior distributions and Supplementary 

Information for details). 

 

Quantification of Linkage Disequilibrium and levels of 

autozygosity in SEP and Spanish-exomes samples 

The decay of linkage disequilibrium (LD) was estimated for each 

population with the HR statistic (28). In order to minimize the 

effects of frequency-dependence in LD measures (29), LD was 

computed by averaging the HR between pairs of SNVs showing a 

similar MAFs (|MAFSNVa - MAFSNVb| < 0.05). Runs of 

homozygosity (RoH) were quantified by means of two different 

approaches. For WGS data from SEP, we used the RoH as defined 

in (30). For the exomic data, we used the heterozygosity ratio 

(HetR) (31). We sampled sets of five samples from every 

population and calculated the HetR for each selected sample. We 

repeated this sampling a total of 5,000 times. A normalized estimate 

(nHetR) was obtained averaging all the replicates for each sample. 

 

Prediction of loss of function (LoF) genetic variants in SEP and 

Spanish-exomes samples 

We used SNPsift (32) to annotate the genomic variants using the 

table from dbNSFP (33) and SNPEff (34) to add the functional 

prediction. To classify an SNV as damaging (LoF), we required it to 

be predicted as such by three different algorithms: PolyPhen2 (35), 

MutationAssessor (36) and SIFT (32). We restricted our analyses 
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towards LoF variants that do not appear in homozygosis, as these 

most likely reflect redundant and/or advantageous effects of 

dispensable human genes (37). To account for this bias, the 

frequency of LoF SNVs of each individual was estimated using all 

the variants in the exome that did not report homozygote individuals 

for the derived allele in the SEP and Spanish-exomes databases, and 

that were heterozygote for the individual. 

 

Results 

Genetic variation of SEP in the European context 

In order to describe the genetic relationships of the SEP samples 

with the European continent, we first performed a classical 

multidimensional scaling (MDS) analysis. SEP populations cluster 

with samples from the Iberian Peninsula (Supplementary Figure 2), 

following the geographic dependence of the genetic diversity 

observed for whole Europe in other studies (38). Complementary to 

these analyses, we ran a Chromopainter/fineSTRUCTURE analysis 

with the SEP-SGDP dataset. In agreement with the previous result, 

the phylogenetic tree (Supplementary Figure 3) shows all 

individuals from SEP sharing a private cluster with the Basque 

samples from the French Western Pyrenees. The 

GLOBETROTTER analysis (Supplementary Figure 4) did not 

identify a differential genomic contribution to SEP from any 

particular European population from the SGDP dataset, thus 

suggesting that historical migrations did not influenced the 

population substructure present in the SEP. 
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Fine-scale population structure in SEP 

We wondered if such structure would extend at a micro-geographic 

level in SEP. We repeated the MDS and 

Chromopainter/fineSTRUCTURE analyses considering the SEP 

samples alone. As shown in Figure 1A, the first two dimensions 

mimic the geographic sampling location (correlation in a symmetric 

Procrustes rotation = 0.35 (p-value = 0.033 after 99,999 

permutations), mainly distributing the SEP samples in the 

longitudinal axis in the second dimension. 

Chromopainter/fineSTRUCTURE also identified two main clusters 

that split the west to east axis (Figure 1B). We wondered if this 

result could reflect different patterns of spatial anisotropy in our 

data. We applied an algorithm that describes the genetic relationship 

between individuals in terms of genetic barriers and different 

patterns of anisotropy between groups (see Supplementary 

Information). Our result for two groups (Figure 2A) detected a 

geographic barrier between Garrotxa-Ripollés and Pallars-Alt 

Urgell-Berguedà. In order to confirm this identified genetic barrier, 

we run EEMS in the SEP dataset. As shown in Figure 2B, EEMS 

identified a migration depletion compared to the rest of the 

geographic area between the same set of regions previously 

detected by Chromopainter/fineSTRUCTURE analysis and the 

detection of genetic barriers. This previously undetected population 

substructure compared to microarray data (16) could reflect 

differences in WGS vs array-based data and/or the applied 

methodology. Using the SNPs that are common with those used in 

(16), Chromopainter/fineSTRUCTURE failed to detect geographic 
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clusters (see Supplementary Figure 5). Overall, these results suggest 

the presence of micro-population substructure in SEP that requires 

WGS to be detected. 

 

Autozygosity, inbreeding and LD in SEP compared to Spanish-

exomes 

We analyzed the patterns of LD by means of HR, using the genetic 

variation present in the whole genome of the SEP populations. We 

observed differences between the SEP populations in the decay of 

LD heterogeneity (Figure 3A). In particular, the Alt Urgell region 

showed more LD than others. We wondered whether the observed 

pattern was specific of SEP, or if it was particular to the Spanish 

population. We repeated the LD analyses on the exome using the 

Spanish-exomes dataset. First, we observed that the source of 

genetic variation (WGS vs exome) did not influence the decay of 

the HR score in SEP populations (Supplementary Figure 6). When 

comparing SEP and Spanish-exomes, we observed that all regions 

have higher HR scores than Spanish-exomes and, again, that Alt 

Urgell is the one that has the highest HR score among all the 

populations sampled (Figure 3B). 

 

We wondered whether these results would be in agreement with the 

reduction of genetic diversity due to a traditionally low 

demographic density and endogamy. We found that not all the 

populations showed the same amount of RoHs (Kruskal-Wallis Test 

P-value = 4.413e-05). Out of the five considered populations, Alt 

Urgell was the one with the longest RoHs and Bergueda with the 
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shortest ones (Figure 3C). When comparing SEP populations with 

the SpExomes dataset, Alt Urgell has the lowest nHetR of all the 

SEP populations and within the nHetR of the SpExomes 

(Supplementary Figure 7). 

 

Therefore, all the results suggest that the rural populations of the 

Pyrenees show particular demographic histories compared with the 

general Spanish population as well as between them, despite of their 

close geographic proximity. 

 

Demographic history of SEP  

We modelled the demography of the SEP populations by means of 

ABC-DL (see Material and Methods). The ABC-DL analysis 

suggests that the observed population substructure in SEP generated 

around the 7th century BPE (15th - 4th BPE CI95%), and that the 

five SEP populations have endured a population decline during the 

last ~100 generations (see Supplementary Figure 1 and Table 1). Alt 

Urgell showed the strongest reduction in effective population size; 

in contrast, the estimated effective population size of Bergueda was 

eight times the observed in Alt Urgell. These results agree with the 

different decay of LD and different RoHs patterns in Alt Urgell 

compared to the other SEP populations. In particular, a statistically 

significant negative Pearson correlation is observed between the 

median of the log(RoHs) by population and the estimated effective 

population size per population (-0.942, p-value = 0.017). 

Loss of Function (LoF) analyses 
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From these results, we inquired the effect that demographic history 

of SEP could have on the LoF burden compared to the general 

population from the Spanish-exomes. Berguedà and Garrotxa 

showed a significantly lower LoF median than expected if they 

were sampled from the Spanish-exomes population (Monte Carlo p-

value after 100,000 resampling = 0.0022 for Berguedà and 0.0286 

for Garrotxa, respectively) (see Figure 4); however, after Bonferroni 

correction for multiple testing, only Berguedà remained statistically 

significant. 

 

Discussion 

In agreement with previous results based on non-NGS data (16,38), 

our MDS analyses place the SEP individuals within the South 

Western context of the genomic diversity within Europe and, 

particularly, within the Iberian samples of the SGDP dataset. Within 

SEP, we recover the west to east axis of genetic diversity in the 

Pyrenees initially reported using classical markers, which has been 

explained in terms of the original peopling of the area (13). More 

interestingly, our analyses detected the presence of ultra-fine-

geographic differentiation across the five SEP populations when 

using haplotype-based data and Chromopainter/fineSTRUCTURE. 

Similar levels of ultra-fine genetic differentiation have been 

observed in some rural regions of Galicia (39). Nevertheless, in our 

study we observed that this fine-population substructure can only be 

detected by using WGS. The two clusters identified by 

Chromopainter/fineSTRUCTURE show a marked geographical 

component, as estimated by a spatial model that includes 
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geographic barriers and anisotropy, and independently replicated by 

EEMS. The orography between the two clusters cannot explain this 

genetic differentiation, as within the PUB cluster there are greater 

orographic phenomena than between PUB and RG. Furthermore, 

the presence in Alt Urgell and Pallars of the genetic component 

characteristic of Berguedà (in blue in Figure 1B), but not in 

Ripollés, which is geographically closer to Berguedà, suggests the 

presence of complex historical demographic processes within SEP 

on top of the orography.  

 

The absence of differences between regions with respect to their 

patterns of Western Eurasian ancestry, as shown in the 

GLOBETROTTER results, suggests that geographic isolation 

within SEP is likely the cause of the identified substructure. This 

isolation should have appeared after major migrations into the 

region, or these had a very limited impact in the genetic makeup of 

SEP. In particular, it has been claimed that fine genetic variation 

has been shaped in Spain by linguistic and geopolitical boundaries 

at the time of Muslim rule in Spain (39). However, the Roman and 

Visigoth people only represented a 2.2-4.4% of the SEP population, 

while the Islamic conquest of this region lasted only 80 years (40). 

In this line, ABC-DL suggests that the population structure 

observed in SEP originated in the 7th century BPE. Furthermore, 

the low effective population sizes inferred from genomic data 

support genetic isolation as the main factor for explaining the 

geographic structure. However, it is interesting to notice the large 

heterogeneity in the estimates of the effective population size given 
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the geographic proximity of the SEP populations. These estimations 

are in agreement with the estimated levels of autozygosity and LD. 

Therefore, despite the short distances between populations, the 

particular demographic histories of the different villages played a 

role in shaping the genomic landscape of the regions. In fact, these 

counties traditionally shared a rural lifestyle but considered 

different methods of subsistence depending on their geographic 

location and period (40). For example, by the end of the XIX 

century, the economy of Berguedà focused on the exploitation of 

natural resources (in the upper part) and textile (in the lower part). 

This type of economy granted a railway to the county connecting it 

to the most industrialized part of Catalonia by 1914 (41). 

 

Our analyses suggest that the observed individual LoF patterns are 

consistent with the LoF diversity present in Spain individuals for all 

SEP, but not for Berguedà, which consistently showed a lower 

number of LoF than expected in the Spanish population. One 

possible explanation is the systematic bias in the age of the samples, 

which could have favored ascertaining individuals with a low 

number of LoF mutations to reach elderly. Similarly, sequencing 

errors and batch effects between the SEP and SpEx datasets could 

bias the amount of reported LoF. However, in both cases we would 

have expected similar LoF patterns over all the SEP populations. It 

has been shown that long-term isolation and endogamy can clean 

the genome from deleterious mutations (42). Nevertheless, this 

explanation is incompatible with the estimated effective population 

sizes and the identified levels of micro-population substructure of 
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the region, particularly in Berguedà. Therefore, other factors related 

to the particular demographic history must be shaping the lower 

amount of LoF in this population. 

 

In this work we have described the genetic variation of five rural 

villages from the SEP through the analysis of high coverage WGS 

data accompanied by detailed genealogical information. Our results 

suggest that geographically close SEP villages could show 

particular demographic histories. However, further analyses will be 

required to study if the observed pattern extends to other geographic 

regions of the Pyrenees, at both the Spanish and French side. 
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Figure 1. Genetic variation of SEP. A) Classical MDS of the 

samples from SEP. B) Map showing SEP painted accordingly to the 

cluster they belong to. Ripollès samples are artificially dispersed for 

the sake of clarity. Simplified fineSTRUCTURE tree of SEP 

samples, showing six clusters which can be further summarized in 

two main groups: Garrotxa-Ripollès and Pallars-Alt Urgell-

Berguedà. 
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Figure 2. Autozygosity, inbreeding and LD in SEP. A) Genetic 

barrier between Garrotxa-Ripollés (red dots) and Pallars-Alt Urgell-

Berguedà (blue dots) identified by an algorithm that models the 

genetic variation present in the data in terms of anisotropy and 

genetic barriers. B) EEMS result also state a migration barrier 

between Garrotxa-Ripollés and Pallars-Alt Urgell-Berguedà. 
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Figure 3. Decay of LD and ROH and HetR of SEP and 

SpExomes samples. A) LD decay in SEP samples using WGS. B) 

LD decay of SEP samples with the Spanish Exomes dataset using 

exome sequencing data. C) Violin plot of the total amount of 

homozygous fragments in each SEP individual using WGS.  
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Figure 4. Mutation load analysis. Violin plot of the frequency of 

Damaging Heterozygote SNPs of each individual compared to all 

the SNPs in the exome that do not show homozygote derived 

genotypes, and that are heterozygote in the considered individual. 

 

 

Prior Posterior  

Minimum Maximum CI 2.5% Median CI 97.5% Mean 

NeGRUPB 15000.00 40000.00 27992.65 28427.69 28818.08 28421.97 

NeG 2000.00 10000.00 2729.9 4107.69 6520.49 4250.97 

NeR 2000.00 10000.00 2380.96 3392.74 5040.98 3470.81 

NeU 1000.00 10000.00 1005.02 1124.95 1359.1 1142.67 

NeB 2000.00 10000.00 5599.93 8568.44 9957.02 8328.27 

NeP 2000.00 10000.00 2256.47 3119.74 4663.26 3214.29 

tGRUBP 3625.00 2320.00 2319.12 2624.85 3449.17 2697.68 
 

 

Table 1. 95% Credible interval (2.5% - 97.5%), median and mean 

for the effective population size of the meta-population 

(NeGRUBP), Garrotxa (NeG), Ripollés (NeR), Urgell (NeU), 

Berguedà (NeB) and Pallars (NeP) and the time of the split 

(tGRUBP, in thousands of years ago, assuming a generation time of 

29 years (Fenner, 2005)) estimated using ABC-DL. 
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Supplementary information  

Fine-scale population structure in five rural populations from 

the Spanish Eastern Pyrenees using high-coverage whole-

genome sequence data  

Iago Maceda, Miguel Álvarez-Álvarez, Georgios Athanasiadis, 

Raúl Tonda, Jordi Camps, Sergi Beltran, Agustí Camps, Jordi 

Fàbrega, Josefina Felisart, Joan Grané, José Luis Remón, Jordi 

Serra, Pedro Moral, and Oscar Lao  

 

SEP WGS data cleaning 

Data cleaning was performed using a strict threshold of 0% 

missingness and excluding those SNPs that were out of HWE. As a 

last step for data cleaning, we checked for kinship between our 

individuals using KING (1), resulting in the exclusion of one 

individual from Alt Urgell. Only the autosomes were kept at the end 

of the data cleaning step. The final dataset contained 29 individuals 

and 9,309,056 biallelic polymorphic SNPs. 

 

Inference of the ancestral allele 

In order to define the derived allele needed in the ABC-DL 

algorithm, we downloaded the best reciprocal alignments between 

Hg19 and PanTro4 from the UCSC in AXT format. From these files 

we reconstructed a chimpanzee genome adding "-" (no base) as 

filler for the gaps in the alignment, using chromosome lengths from 

Hg19 from the UCSC. An intermediate BED was generated 

containing the chimpanzee alleles for the SNPs present in the VCF, 

which was merged with the original VCF. Those SNPs for which 



Results 

124 
 

the chimpanzee allele was either unknown or not properly aligned 

were filtered out. 

 

Identification of genetic barriers and anisotropy patterns in the SEP 

dataset using the shared coancestry matrix 

For samples from the same geographic group, one can define the 

minimum genetic distance expected (nugget, n), as well as a 

maximum genetic distance no matter how much geographically 

distant are the two samples (sill, s). If the genetic differentiation 

follows a direction in space (i.e. there is a genetic gradient in the 

data points), then the model can be extended to include an angle α 

of maximum genetic differentiation over space. We define the 

genetic distance between two points as: 

 

(1)    𝐺𝑒𝑛𝐷𝑖𝑠𝑡 = 𝑠 ∗ 𝑘 + 𝑛 

 

(2)    𝑘 =
√𝑏2 ∗ (𝑥 ∗ cos(𝛼) + 𝑦 ∗ sin (𝛼))2 + 𝑎2 ∗ (𝑥 ∗ sin(𝛼) − 𝑦 ∗ cos (α))2

𝑎2 ∗ 𝑏2
 

      

In particular, under the Multiple regressions on distance matrices 

(2) framework, α and β can be estimated using classical nonlinear 

regression fitting methods. Here we applied the Nelder and Mead 

Simplex method implemented at Flanagan’s JAVA package (3). For 

a given K geographic groups, the identification of the genetic 

barriers consists on identifying the set of geographically related 

points that minimizes the goodness of fit of the estimated 

parameters. Let be the mean sum of square error of each point 
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between the observed genetic distance and the inferred D’ from the 

fitted parameters: 

(3)  𝑆𝑆𝐸 = 

∑

𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟𝑔 =

{
  
 

  
 
∑∑

(𝐷(𝑖, 𝑗) − 𝐷′(𝑖, 𝑗))
2

𝑚 − 1

𝑛𝑔
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   𝑖𝑓 
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∑ ∑
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  𝑖𝑓 
𝑛𝑔(𝑛𝑔 − 1)

2
< 3

𝑛𝑔

𝑖=1 }
  
 

  
 

 

𝐾

𝑔

 

 

In order to optimize the SSE function and to identify the genetic 

barriers, we define each geographic group by a [x,y] pair of 

coordinates, and assign each observed point based on its proximity 

to each geographic group, such as in K-means algorithm. The 

problem is then to find the geographic coordinates of each group 

that minimize the SSE. In order to explore the space of possible 

solutions, we propose using a genetic algorithm. This type of 

approaches have been already applied in optimization problems 

involving geographic divisions (4).  

 

Estimation of the effective population sizes and time of split of SEP 

populations 

A total of 300,000 simulations were generated using fastsimcoal2 

(5), each simulating 7,314 genomic regions separated by at least 

100 kb encompassing ~647 Megabases (Mb), that do not contain 

CpG islands or genes. The generation time was 29 years (6) and the 

mutation rate was set to 1.61e-8 with a standard deviation of 0.13e-
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8 (7). From the 300,000 simulations, a total of 30,000 simulations 

were used in the DL training, and the remaining 270,000 in the 

ABC step. One sample from each comarca was used for generating 

the jSFS which, by repeatedly being added noise before merging 

with each normalized simulation, was employed in the artificial 

neural network (ANN) training (see (8) for details of the 

implementation). For each parameter of the demographic model, a 

total of 10 independent ANN's, each featuring four neural layers 

with 100 neurons, were trained using resilient backpropagation and 

dropout at 0.1 for a maximum duration of 2.5 hours, or until an 

error <0.01 was reached. In order to generate a single summary 

statistic out of all the 10 independent ANN’s, the output from each 

ANN, namely the prediction of the value of the considered 

parameter, was averaged over all the ANN’s. 

 

For the ABC step, the remaining individuals not used in the noise 

injection step were considered. We generated 100 resampled 

datasets by taking one individual at random from each population. 

With each dataset we computed the jSFS and used the trained 

ANN’s to predict the different parameters, which were then used as 

summary statistics in the ABC approach to infer the posterior 

distributions of each parameter. For that, we used the abc package 

(9) with the local linear algorithm (10). The final posterior 

distribution of each parameter was obtained by combining the 

posterior distributions out of the 100 sampled datasets. 
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Supplementary Figure 1. Representation of the demography used 

in the ABC_DL approach. All numbers represent the median of the 

posterior distribution. (G: Garrotxa; R: Ripollés; U: Alt Urgell; B: 

Bergadà; P: Pallars; GRUBP: meta-population; tGRUBP: time of 

split of the meta-population in the present day populations).
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Supplementary Figure 2. Multidimensional scaling using SEP 

samples (circles, colours denote origin) and SGDP West Eurasian 

samples. 
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Supplementary Figure 3. fineSTRUCTURE tree showing the 

relationship of SEP regions with other West-Eurasian populations 

using data from the SEP-SGDP dataset. 

 

 

 

 

Supplementary Figure 4. GLOBETROTTER ancestral 

components plot showing the SGDP populations (y-axis) that 

contributed to the haplotype profiles of the recipient SEP 

populations (x-axis). 
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Supplementary Figure 5. fineSTRUCTURE tree including SEP 

samples and based on 231K SNPs that are common with the Biagini 

et al. 2019 dataset and present variation in more than one sample.  

Note that the downsampling causes the patterns of population 

structure -observed when the full amount of variation is included in 

the analyses- to disappear. SEP sample codes are explained in the 

Supplementary table. 

 

 

Supplementary Figure 6. Comparison between the results of the 

HR algorithm regarding LD between WGS and Exome datasets in 

SEP samples. In the x-axis is represented the HR score in the WGS 

dataset, in the y-axis is represented the HR score in the exome 

dataset.
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Supplementary Figure 7. Normalized Heterozigosity Ratio of SEP 

and SpExomes samples. SEP samples nHetR fall inside the 

distribution of the score for SpExomes samples. 
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Dataset Population Sample Sex Age 

SEP Garrotxa G178 male 86 

SEP Garrotxa G26 male 83 

SEP Garrotxa G199 male 81 

SEP Garrotxa G23 female 87 

SEP Garrotxa G104 female 83 

SEP Garrotxa G164 female 83 

SEP Ripollès R86 male 71 

SEP Ripollès R97 male 71 

SEP Ripollès R47 male 70 

SEP Ripollès R88 female 68 

SEP Ripollès R87 female 66 

SEP Ripollès R17 female 66 

SEP Berguedà H67 male 83 

SEP Berguedà H76 male 80 

SEP Berguedà H109 male 77 

SEP Berguedà H77 female 84 

SEP Berguedà H96 female 79 

SEP Berguedà H16 female 77 

SEP Alt Urgell S141 male 70 

SEP Alt Urgell S138 male 64 

SEP Alt Urgell S128 male 63 

SEP Alt Urgell S70 female 69 

SEP Alt Urgell S74 female 65 

SEP Alt Urgell S12 female 64 

SEP Pallars P81 male 81 

SEP Pallars P96 male 80 

SEP Pallars P10 male 79 

SEP Pallars P11 female 77 

SEP Pallars P53 female 77 

SEP Pallars P77 female 77 

SGDP_WestEurasia Crete B-Crete-1 - - 

SGDP_WestEurasia Crete B-Crete-2 - - 

SGDP_WestEurasia French B-French-3 - - 

SGDP_WestEurasia Sardinian B-Sardinian-3 - - 

SGDP_WestEurasia Abkhasian S-Abkhasian-1 - - 

SGDP_WestEurasia Abkhasian S-Abkhasian-2 - - 

SGDP_WestEurasia Adygei S-Adygei-1 - - 
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Dataset Population Sample Sex Age 

SGDP_WestEurasia Adygei S-Adygei-2 - - 

SGDP_WestEurasia Albanian S-Albanian-1 - - 

SGDP_WestEurasia Armenian S-Armenian-1 - - 

SGDP_WestEurasia Armenian S-Armenian-2 - - 

SGDP_WestEurasia Basque S-Basque-1 - - 

SGDP_WestEurasia Basque S-Basque-2 - - 

SGDP_WestEurasia BedouinB S-BedouinB-1 - - 

SGDP_WestEurasia BedouinB S-BedouinB-2 - - 

SGDP_WestEurasia Bergamo S-Bergamo-1 - - 

SGDP_WestEurasia Bergamo S-Bergamo-2 - - 

SGDP_WestEurasia Bulgarian S-Bulgarian-1 - - 

SGDP_WestEurasia Bulgarian S-Bulgarian-2 - - 

SGDP_WestEurasia Chechen S-Chechen-1 - - 

SGDP_WestEurasia Czech S-Czech-2 - - 

SGDP_WestEurasia Druze S-Druze-1 - - 

SGDP_WestEurasia Druze S-Druze-2 - - 

SGDP_WestEurasia English S-English-1 - - 

SGDP_WestEurasia English S-English-2 - - 

SGDP_WestEurasia Estonian S-Estonian-1 - - 

SGDP_WestEurasia Estonian S-Estonian-2 - - 

SGDP_WestEurasia Finnish S-Finnish-1 - - 

SGDP_WestEurasia Finnish S-Finnish-2 - - 

SGDP_WestEurasia Finnish S-Finnish-3 - - 

SGDP_WestEurasia French S-French-1 - - 

SGDP_WestEurasia French S-French-2 - - 

SGDP_WestEurasia Georgian S-Georgian-1 - - 

SGDP_WestEurasia Georgian S-Georgian-2 - - 

SGDP_WestEurasia Greek S-Greek-1 - - 

SGDP_WestEurasia Greek S-Greek-2 - - 

SGDP_WestEurasia Hungarian S-Hungarian-1 - - 

SGDP_WestEurasia Hungarian S-Hungarian-2 - - 

SGDP_WestEurasia Icelandic S-Icelandic-1 - - 

SGDP_WestEurasia Icelandic S-Icelandic-2 - - 

SGDP_WestEurasia Iranian S-Iranian-1 - - 

SGDP_WestEurasia Iranian S-Iranian-2 - - 

SGDP_WestEurasia Iraqi-Jew S-Iraqi-Jew-1 - - 

SGDP_WestEurasia Iraqi-Jew S-Iraqi-Jew-2 - - 
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Dataset Population Sample Sex Age 

SGDP_WestEurasia Jordanian S-Jordanian-1 - - 

SGDP_WestEurasia Jordanian S-Jordanian-2 - - 

SGDP_WestEurasia Jordanian S-Jordanian-3 - - 

SGDP_WestEurasia Lezgin S-Lezgin-1 - - 

SGDP_WestEurasia Lezgin S-Lezgin-2 - - 

SGDP_WestEurasia North-Ossetian S-North-Ossetian-1 - - 

SGDP_WestEurasia North-Ossetian S-North-Ossetian-2 - - 

SGDP_WestEurasia Norwegian S-Norwegian-1 - - 

SGDP_WestEurasia Orcadian S-Orcadian-1 - - 

SGDP_WestEurasia Orcadian S-Orcadian-2 - - 

SGDP_WestEurasia Palestinian S-Palestinian-1 - - 

SGDP_WestEurasia Palestinian S-Palestinian-2 - - 

SGDP_WestEurasia Palestinian S-Palestinian-3 - - 

SGDP_WestEurasia Polish S-Polish-1 - - 

SGDP_WestEurasia Russian S-Russian-1 - - 

SGDP_WestEurasia Russian S-Russian-2 - - 

SGDP_WestEurasia Saami S-Saami-1 - - 

SGDP_WestEurasia Saami S-Saami-2 - - 

SGDP_WestEurasia Samaritan S-Samaritan-1 - - 

SGDP_WestEurasia Sardinian S-Sardinian-1 - - 

SGDP_WestEurasia Sardinian S-Sardinian-2 - - 

SGDP_WestEurasia Spanish S-Spanish-1 - - 

SGDP_WestEurasia Spanish S-Spanish-2 - - 

SGDP_WestEurasia Tajik S-Tajik-1 - - 

SGDP_WestEurasia Tajik S-Tajik-2 - - 

SGDP_WestEurasia Turkish S-Turkish-1 - - 

SGDP_WestEurasia Turkish S-Turkish-2 - - 

SGDP_WestEurasia Tuscan S-Tuscan-1 - - 

SGDP_WestEurasia Tuscan S-Tuscan-2 - - 

SGDP_WestEurasia Yemenite-Jew S-Yemenite-Jew-1 - - 

SGDP_WestEurasia Yemenite-Jew S-Yemenite-Jew-2 - - 

 
Supplementary Table 1. List of samples initially considered for 

the analyses. 
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Abstract 

 

The 1,000 Genomes Project (1000G) is one of the most popular 

whole genome sequencing used in different genomics fields, 

boosting our knowledge in medical genomics and population 

genomics, among others. Recent studies have reported the presence 

of ghost mutation signals in the 1000G. Furthermore, they have 

shown that these mutations can influence the outcome from follow 

up studies based on the genetic variation of 1000G, such as SNP 

imputation in GWAS studies. 

 

In this study we analyze the effect of the sequencing center in the 

predicted loss of function (LoF) alleles, the amount of singletons 

and the patterns of archaic introgression. Our results support 

previous studies showing that the sequencing center is 

systematically associated with LoF and singletons. Furthermore, we 

observed that the patterns of archaic introgression were distorted for 

some populations depending on the sequencing center. When 

analyzing the frequency of SNPs showing extreme patterns of 

genotype differentiation among centers for CEU, YRI, CHB and 

JPT, we observed that the magnitude of the sequencing batch effect 

was stronger at MAF < 0.2, as well as different profiles between 

CHB and the other populations.  All these results suggest that the 

data from 1000G must be interpreted with caution when considering 

statistics considering infrequent events. 
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Introduction 

 

The 1,000 Genomes Project (1000G) (1) has been one of the 

cornerstones of population genetics, as it provided the first dataset 

that considered human worldwide variation. This dataset is 

normally used as basis for imputation in microarrays (2) or to obtain 

haplotype phased data (3), in evolutionary studies (4–7), in multiple 

medical studies (8) or as a basis to identify potential genetic isolates 

(9).  

 

The 1000G corresponds to the first attempt to characterize the 

worldwide genetic variation on humans. It was born to provide 

accurate haplotype information across different human populations. 

To do so, the project aimed to characterize over 95% of variants in 

genomic regions that have >1% allele frequency in each of the 

major population groups (populations in or with ancestry from 

Europe, East Asia, South Asia, West Africa and the Americas). The 

project started with 15 populations in the Pilot Phase, and it had a 

total of 26 populations by the end of Phase 3, when the project was 

concluded. In the Pilot Phase the project characterized a total of 

1,092 samples (not evenly distributed across the different 

populations) and, by the end of the Phase 3 it accounted for a total 

of 2,504 samples (closely to have an even distribution across all 

populations). The final genomic dataset is heterogeneous in nature, 

comprising individuals at low coverage and exome sequencing data, 

produced in nine sequencing centers, using five sequencing 

technologies and bioinformatic pipelines. An additional problem is 
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that populations were not divided evenly across all sequencing 

centers. For example, the BGI sequenced 25 individuals, the Broad 

Institute sequenced 86 individuals and the Washington University 

sequenced 2 individuals of the GWD population. Also, not all 

centers did all the types of technologies. For example, the Broad 

Institute ran low coverage whole genome sequencing and whole 

exome sequencing. In contrast, Max Planck Institute for Molecular 

Genetics only conducted low coverage whole genome sequencing. 

Furthermore, each center followed its own set of protocols to 

prepare the samples.  

 

Some problems related to the genotypes called in 1000G have been 

already reported. For example, Anderson-Trocmé et al., 2020 

cannot reproduce a particular mutation signature (*AC →*CC) 

reported in the 1000G JPT population (Japanese in Tokyo, Japan) 

by  (11) using a different cohort from the same population (the 

Nagahama cohort). Also, (12) evaluated the accuracy of the phasing 

in the Phase 3 samples, concluding that the 1,000 Genomes Project 

data is best used to impute common variants (MAF>= 0.01) and has 

limited utility to impute rare variants. Finally, (13) described sets of 

SNPs showing patterns of linkage disequilibrium likely due to the 

presence of sequencing errors, and directly linking them to the 

sequencing center where the individual was sequenced.  

 

Singletons can be artifactually generated in a variety of ways: the 

sequencer can misread the base that is being incorporated, the base-

calling algorithm does not call the proper base, the alignment 
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algorithm matches the read to an incorrect place or the SNP-calling 

or the genotyping algorithm calls a SNP were it is none (or vice 

versa). In order to solve this problems, a series of different solutions 

have been created: filtering SNPs by means of quality score (an 

associated measure of uncertainty to the SNP) (14) or either 

examining allele distributions across individuals and calculating its 

fit to an expected distribution (15).  

 

In this study we wondered to which extent these batch effects due to 

the sequencing centre could affect measures of genetic variation 

that have been previously used in estimating loss of function 

mutations (4), the patterns of singletons and archaic introgression. 

 

Material and Methods 

 

Dataset 

To generate the dataset that we used across this work we 

downloaded the ready-to-use VCF files from the FTP site of the 

1,000 Genomes Project (link). These VCF files are divided by 

chromosome and we decided to concatenate all the files into a 

single file using bcftools (16). After this step we selected those 

variants that correspond to SNV, are biallelic and polymorphic 

across the whole dataset. 

 

We obtained the sequencing centre information from the 

spreadsheet available in the 1,000 Genomes Project site 

(https://www.internationalgenome.org/data/). From this spreadsheet 
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we selected the Exome sequencing centre as our sequencing centre 

reference for all the samples. This decision was made based on the 

fact that for the low coverage whole genome sequencing some of 

the samples seem to be sequenced in two different centres according 

to the spreadsheet. Also based on this parameter we had to exclude 

one of the samples from the ACB population (HG02537). 

 

Quantification of LoF variants 

To predict loss of function variants (LoF) we annotated using the 

already annotated table of variants from dbNSFP (17). To merge the 

contents of the table with the VCF file SnpSift (18) and to add the 

functional prediction we used SnpEff (19). From this annotated and 

functionally predicted VCF file we decided to use 3 different 

algorithms to consider categorize a variant as LoF: Polyphen2 (20), 

MutationAssessor (21) and SIFT (18). If these three algorithms 

marked a variant as LoF, we accepted that variant into the study.  

 

We restricted the analysis to those variants that do not appear in 

homozygosis as they would reflect redundant or advantageous 

effects of dispensable genes (22). To account for this bias, the 

frequency of LoF variants of each individual was estimated using 

all the variants in the exome that did not report homozygote 

individuals for the derived allele in the dataset, and that were 

heterozygote for the individual. 
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Quantification of derived singletons 

From the general VCF file we generated we extracted those SNPs 

that correspond to singletons, using the flag AC (number of 

alternative alleles for that variant across samples) from the INFO 

field. From this we used the ancestral allele already present in the 

dataset (flag AA from the INFO field), which uses the 6-way EPO 

alignments available in Ensembl v71 (23). We compared the 

reference allele to the ancestral allele. If they are the same allele, we 

marked the singleton as derived. We excluded those SNPs that 

either had no alignment for the ancestral allele (AA=.), that were 

considered as a lineage-specific insertion (AA=-), or those in which 

the allele was not present (AA=N). 

 

Quantification of archaic introgressed alleles 

To count the number of introgressed alleles, we downloaded the 

output from the Sprime algorithm used in Browning et al (6) in 

1000G samples. The output from Sprime is divided on a per 

population and chromosome basis. These files provide the 

introgressed allele for the SNP according to the algorithm. We used 

this information to count the number of alleles of each individual in 

each population.  

 

Analyses 

In order to quantify the batch effect of the sequencing centre in the 

studied statistics of human population genetics, we used the R 

package lmer4 (25) to generate hierarchical mixed models 
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controlling for the random effects of the continent and population of 

assignation of each individual of the type: 

 

𝑙𝑚𝑒𝑟(𝑙𝑜𝑔 (𝑆)~ 𝑆𝑒𝑞𝐶𝑒𝑡𝑒𝑟 + (1|𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡/𝑃𝑜𝑝) 

 

Where S is the variable of interest. Contrast of hypothesis with the 

mixed null model: 

 

𝑙𝑚𝑒𝑟(𝑙𝑜𝑔 (𝑆)~(1|𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡/𝑃𝑜𝑝) 

 

were conducted with the anova command of R (26).  

 

We also analysed the variants showing an excess of genetic 

differentiation due to the sequencing centre in YRI, CEU, JPT and 

CHB populations. These populations were the first considered in the 

Phase 1 of the 1000G project (27) and they have been widely used 

in population genomics. For each population and SNP, we assigned 

each genotype to each sequencing centre and estimated the Fst 

between the different sequencing centres. Since it has been shown 

that the magnitude of Fst is dependent on the MAF (28), we 

controlled all our analyses by MAF bins of 0.05 by weighting the 

observed Fst in a given SNP by the maximum Fst that could be 

obtained given that MAF. Furthermore, we only considered SNPs 

that in the population the MAF allele was present in 10 or more 

chromosomes, and selected the same number of individuals by 

centre. For each MAF category, Fst outliers were defined from the 

top > 99.9% SNPs with Fst > 0 showing the largest Fst 

differentiation. 
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Results & Discussion  

 

The finalization of the 1000G project represented a milestone for 

the human population genetics community (1). Since then, it has 

been one of the most widely used human population genetic 

datasets, medical genetics and genetic epidemiology. In human 

population genetics,  the 1000G project has been widely used for 

understanding the mutation patterns (4), characterizing the genetic 

variation of the considered human populations (9), identifying 

segments of archaic introgression (6), studying signatures of 

positive selection (7,29) or as a gold standard for comparing the 

burden of LoF (9). In genetic epidemiology, 1000G is routinely 

used for data phasing and imputation (3,30) in order to increase the 

SNP density panels genotyped at microarray. Prevalence of LoF 

variants in healthy individuals (31), insides in cancer genomics 

(32), short tandem repeats variation (33), evolution and functional 

impact of short indels (34) and many of the results from this project, 

have boosted our understanding of the genomics of the species and 

about the general patterns of diversity present in human 

populations. Its usage in combination with other WGS datasets as a 

reference dataset is also a common practice in the field of medical 

genomics (9).  

 

However, two different papers (10,12) have recently raised 

concerns about the presence of batch effects at low frequency 

variants. Maffessoni et al (13) in particular pointed to the 

sequencing centre as one of the main factors affecting the presence 
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of rare spurious mutations in 1000G individuals. Given these 

results, in this study we wondered to which extend the sequencing 

centre, as reported by the spreadsheet of the 1000G 

(https://www.internationalgenome.org/data/), could influence 

statistics of population genomics that quantify phenomena that are 

infrequent in the human genome. First, we studied the number of 

LoF alleles in each of the 1000G individuals. Assessing the 

biological impact of in silico predicted LoF is usually complex (35). 

Therefore, we adopted a conservative approach for predicting 

recessive damaging variants that severely affect the function of 

protein-coding genes. We used variants consistently predicted as 

highly deleterious by Polyphen2 (20), MutationAssessor (21) and 

SIFT (18) algorithms. We further restricted our analyses towards 

LoF variants that do not appear in homozygosis, as these most 

likely reflect redundant and advantageous effects of dispensable 

human genes (22). By doing such filtering we created a putative 

bias among populations (i.e. populations that are more genetically 

diverse will tend to have more chances to have homozygote pseudo-

LoF genotypes and therefore to remove them from the analyses). 

However, this should not influence the comparisons of centres 

within each population (i.e. see Figure 1). We run a hierarchical 

mixed model in which the dependent variable was the log(LoF) per 

individual, the fixed variable was the sequencing centre (BGI, BI 

and WUGSC) and the random effects were nested by continent and 

population. We observed statistically significant differences 

between a mixed model that includes the sequencing centre as 

variable (ANOVA p-value = 4.87e-20) (Supplementary Table 1). 
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Next, we wondered if we would observe such batch effect bias in 

mutations in coding regions classified by the three LoF predictors as 

benign (Figure 2). In this case, the hierarchical mixed model also 

supports the role of the sequencing centre (ANOVA p-value 

=8.315e-08) (Supplementary Table 2). Taken together, the 

hierarchical mixed models of the LoF and Benign variables suggest 

that the sequencing centre plays an important role as a batch effect. 

The presence of such batch effects relates to what Mafessoni, 2019 

reported on the enrichment of mutation artifacts in genes. 

Moreover, as we are considering LoF, and setting the threshold to 

absence of homozygotes, any sequencing error occurring in a gene 

will likely tend to produce a false positive that will be recovered by 

the three algorithms (31). Therefore, it is not surprising that the 

statistical significance was bigger in the case of LoF compared to 

Benign, as well as in the magnitude of the estimated slopes 

(Supplementary Table 1 and Supplementary Table2).  

 

We wondered whether such bias could also be found in the presence 

of derived singletons in each individual. Mixed models with the 

log(derived singletons by individual) and log(singletons by 

individual) support also a role of the sequencing centre (ANOVA p-

value for derived singletons = 9.81e-10; ANOVA p-value for 

singletons = 1.28e-09). However, in this case not all the sequencing 

centres equally contribute to the bias (see Supplementary Table 3 

and Supplementary Table 4), suggesting some heterogeneity 

between the centres (see Figure 3 and Figure 4). For example, 

whereas WUGSC tends to decrease the number of derived 
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singletons observed in the individuals sequenced at that centre, BI 

increases the number of derived singletons and BGI does not 

significantly affect this variable. 

 

Given these results, we studied if the batch effect due to the 

sequencing centre could affect the estimation of variables of 

population genetics that use the derived alleles to make inferences 

usually at low frequencies. One of these variables is the 

identification of chunks of DNA that are enriched for derived 

alleles, which under certain demographic models are indicative of 

the presence of archaic introgression (6). Furthermore, it has been 

shown that the presence of archaic introgression depends on the 

function of the genomic region, being depleted in genomic regions 

that contain genes (36,37). We used the archaic regions from S. 

Browning, 2018 that were identified in the 1000G samples, and 

computed the number of archaic alleles that are found in each 

individual. No statistical significant differences are observed 

between a mixed model using the log(number of introgressed 

alleles) and the sequencing centre and one without the sequencing 

centre (ANOVA p-value = 0.88; Supplementary Table 5), thus 

suggesting that these regions are not enriched by batch effect 

artifacts due to sequencing centre. However, it is interesting to 

notice that strong discrepancies were observed in the amount of 

introgressed alleles for some populations (CHB and CHS; see 

Figure 5). This is particularly relevant because several studies 

pointed to the presence of heterogeneous patterns of ghost archaic 

populations in these populations (6,38). 
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Next, we studied the properties of genetic markers showing strong 

deviations between sequencing centres for CEU, CHB, JPT and 

YRI. Our results show that extreme (>99.99%) SNP outliers per 

MAF category do not show the same Fst pattern after normalizing it 

by the maximum Fst value that can be obtained given the observed 

MAF. For CEU, we observed that the normalized Fst value of the 

outliers (1878 SNPs) decreased with the MAF (Spearman rho = -

0.883; p-value < 2.2e-16). This effect was particularly strong for 

MAF < 0.2 (Figure 6). A similar pattern is observed in the YRI 

population (2677 SNPs; Spearman’s rho = -0.84; p-value < 2.2e-16; 

Figure 7) and JPT population (1771 SNPs; Spearman’s rho = -

0.888; p-value < 2.2e-16; Figure 8). In contrast, for CHB (930 

SNPs) we do not observe such strong correlation between MAF and 

normalized Fst (Figure 9; Spearman’s rho = 0.095, p-value = 

0.0038). In fact, for this population, an inverted U-shape is 

observed, with SNPs at MAF = 0.35 showing the strongest 

normalized Fst values. The fact that JPT and CHB share a common 

ancestry (i.e. they were usually merged in the first analyses of Phase 

1 (27)) suggests that the observed pattern is unlikely to be explained 

by the different ancestry of CHB. Another possibility is that the way 

how the CHB samples have been processed is different from the 

carried in the other populations. In any case, the fact that we 

observed SNPs showing large Fst after normalizing by MAF 

supports that the effect that we observed in singletons is also 

observed at higher frequencies. However, the total amount of SNPs 

that we have considered is quite reduced due to the stringent filters 

that we applied, and the reported biases are likely not to strongly 
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affect main conclusions out of the 1000G project. Nevertheless, our 

results suggest that caution must be taken when using the 1000G 

data and, particularly, when merging it with another dataset that can 

have its private batch effects. 
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Figure 1 - Number of LoF variants by sequencing centres across 

continental groups and populations. Each panel corresponds to a 

continental group. In the x-axis is displayed the name of the 

population, in the y-axis is displayed the number of LoF snps per 

individual. 

  



Results 
 

159 
 

 

 

Figure 2 - Number of benign variants by sequencing centre 

across continental groups and populations. Each panel 

corresponds to a continental group. In the x-axis is displayed the 

name of the population, in the y-axis is displayed the number of 

LoF snps per individual. 
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Figure 3 - Number of derived singletons by sequencing centres 

across continental groups and populations. Each panel 

corresponds to a continental group. In the x-axis is displayed the 

name of the population, in the y-axis is displayed the number of 

derived singletons per individual. 
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Figure 4 - Number of singletons by sequencing centres across 

continental groups and populations. Each panel corresponds to a 

continental group. In the x-axis is displayed the name of the 

population, in the y-axis is displayed the number of singletons per 

individual. 
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Figure 5 - Number of introgressed alleles by sequencing centre 

across continental groups and populations. Each panel 

corresponds to a continental group. In the x-axis is displayed the 

name of the population, in the y-axis is displayed the number of 

introgressed alleles as defined by Browning et al. 2018 
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Figure 6 - log(Normalized Fst) values binned by MAF in the 

CEU population. In the x-axis are the different MAF bins, in the  

y-axis is logarithm of the normalized Fst value 

 

 

Figure 7 - log(Normalized Fst) values binned by MAF in the 

YRI population. In the x-axis are the different MAF bins, in the   

y-axis is logarithm of the normalized Fst value. 
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Figure 8 - log(Normalized Fst) values binned by MAF in the 

JPT population. In the x-axis are the different MAF bins, in the   

y-axis is logarithm of the normalized Fst value 

 

 

Figure 9 - log(Normalized Fst) values binned by MAF in the 

CHB population. In the x-axis are the different MAF bins, in the  

y-axis is logarithm of the normalized Fst value. 
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Supplementary Material 

 

Supplementary Table 1. Results from the hierarchical mixed 

model using as dependent variable the number of LoF variants 

 Estimate Std. Error df t value 

(Intercept) 2.660e+00 7.457e-02 4.274e+00 35.669 

SeqCenterBGI 1.260e-01 1.643e-02 2.433e+03 7.668 

SeqCenterBI 1.381e-01 1.677e-02 2.469e+03 8.232 

SeqCenterWUGSC 4.120e-02 1.891e-02 2.493e+03 2.179 

 

Supplementary Table 2. Results from the hierarchical mixed 

model using as dependent variable the number of benign variants. 

 Estimate Std. Error df t value 

(Intercept) 7.812e+00 4.735e-02 4.029e+00 164.959 

SeqCenterBGI 1.040e-02 2.146e-03 2.484e+03 4.849 

SeqCenterBI 1.277e-02 2.185e-03 2.482e+03 5.845 

SeqCenterWUGSC 8.206e-03 2.456e-03 2.480e+03 3.341 

 

Supplementary Table 3. Results from the hierarchical mixed 

model using as dependent variable the number of derived 

singletons. 

 Estimate Std. Error df t value 

(Intercept) 9.41341 0.06802 4.28727 138.388 

SeqCenterBGI 0.02382 0.01551 2482.01039 1.536 

SeqCenterBI 0.03280 0.01579 2481.35467 2.076 

SeqCenterWUGSC -0.06524 0.01775 2479.05950 -3.674 
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Supplementary Table 4. Results from the hierarchical mixed 

model using as dependent variable the number of singletons. 

 Estimate Std. Error df t value 

(Intercept) 9.45823 0.06829 4.28888 138.508 

SeqCenterBGI 0.02295 0.01558 2482.05989 1.473 

SeqCenterBI 0.03116 0.01586 2481.39533 1.965 

SeqCenterWUGSC  -0.06650 0.01783 2479.08794 -3.730 

 

Supplementary Table 5. Results from the hierarchical mixed 

model using as dependent variable the log(number of introgressed 

alleles as defined by S. Browning, 2018. 

 Estimate Std. Error df t value 

(Intercept) 1.015e+01 6.218e-02 3.033e+00 163.310 

SeqCenterBGI 1.179e-03 6.009e-03 1.827e+03 0.196 

SeqCenterBI -2.372e-03 6.340e-03 1.824e+03 -0.374 

SeqCenterWUGSC 1.784e-03 7.149e-03 1.825e+03  0.249 
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5 DISCUSSION 

The limits of geographic detection 

An almost universal conclusion from studying human genetic 

variation is that geography matters. Genetic differentiation tends to 

increase as the geographic distance of the individuals increases (Lao 

et al., 2008; C. Wang et al., 2012). This differentiation is quite 

modest compared to other organisms including close relative 

species such as Chimp (de Manuel et al., 2016). The main reason 

for this low amount of differentiation must be interpreted in terms 

of the recent (in evolutionary terms) spread of anatomically modern 

humans out of Africa (Nielsen et al., 2017). The amount of archaic 

introgression present in our genome (around 2% up to 5% in some 

Oceanian populations) is not enough to define strongly genetically 

stratified populations. However, the observed geographic 

dependence of genetic variation is due to the fact that most of the 

demographic processes that dominate humans depend on 

geography: migrations, isolations and regional selective processes. 

As a general model, until recently, one of the variables mostly 

influencing mating in human species was geographic proximity.  

 

This raises some basic questions in human population genetics: 

which is the minimum unit of geographic differentiation that we can 

identify and how can we estimate it? It must be stressed that both 

parts of the question are not independent. Depending on the power 

we have to estimate population substructure, we will be able to 

identify putative hidden geographic structure. This power will 
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depend on the assumptions of the model that we are using, and the 

type of data that we are considering.  

 

During the last 10 years, human population data have been mostly 

microarray-based. This type of data, as previously explained in the 

introduction of this thesis (see section 1.4, subsection a), is based on 

genotyping genetic variants that have been previously defined in 

human populations. Consequently, this type of data is biased 

towards genetic variants that tend to be frequent in particular 

populations, not necessarily the ones we are considering in our 

particular case (Clark et al., 2005). Furthermore, if they are present 

in our samples, one can be expected that they are old enough to 

have spread over different populations, thus limiting the level of 

geographic resolution that one could observe. Therefore, it is not 

surprising that previous studies using microarray data and the 

genotypic information of SNPs in European populations can recover 

the global geographic structure (Lao et al., 2008; Novembre et al., 

2008), but failed to identify more fine population differentiation (for 

example, see Lao et al., 2013).  

 

Methods that start considering haplotype information, either in 

terms of IBD (S. R. Browning & Browning, 2012) or chromosome 

painting (Lawson et al., 2012) overcome this problem by using the 

higher recombination rate expected in the genome compared to the 

mutation rate (Bycroft et al., 2019; Byrne et al., 2020). This higher 

rate of generating genetic variation allows us to find relatively 

recent events which, according to the previously stated, relate to 
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recent geographic events (Hellenthal et al., 2014). Therefore, deeper 

population substructure can be identified. However, since the SNP 

density in the microarray is defined a priori, the fine haplotype 

architecture is still ignored, and haplotype inference can also be 

biased. In fact, in our study using samples from SEP (Chapter 1 of 

results) we observed that fine population substructure cannot be 

identified when microarray based SNPs are used, even if we apply 

haplotype based methods. With microarray data we recovered the 

geographic profile that has been previously described when using 

classical markers. 

 

In principle, all these putative reported problems are expected to be 

minimized, and higher population substructure detected, when using 

NGS data. Previous studies analysing the genetic variation in 

Sardinia using NGS data (Chiang et al., 2018) reported fine-scale 

variation in the ancient population ancestry proportions across the 

island, with the most remote and interior areas of Sardinia to have 

been the least exposed to contact with outside populations.  

 

In my first work, I show that fine population substructure can be 

identified in the SEP populations separated by less than 140 km 

using unsupervised analyses such as fineSTRUCTURE, and that 

this substructure can be interpreted in geographic terms of near 

valleys. Such level of fine-population substructure has only been 

reported in some rural villages of Galicia using fineSTRUCTURE 

with microarray data (Bycroft et al., 2019), and supports the 

hypothesis that micro-population substructure due to the same 
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demographic processes that determine the global pattern observed 

in Europe, mainly isolation by distance, exists. 

 

The second part of the question, how we identify it, points to the 

need to develop new algorithms that allow the identification of fine 

population substructure, particularly in a geographic context. This 

field has been developing for more than 10 years now (Yang et al., 

2012), reaching the start of art with software such as EEMS 

(Petkova et al., 2015), which attempts to estimate the migration 

surfaces given the expected allele frequencies and the genotypes 

observed in the geographically sampled individuals.  

 

The identification of genetic barriers normally implies a difference 

between allele frequencies on both sides of the barrier. In this case, 

with the SEP populations being geographically close, this could 

pose a problem. In order to solve this problem, we decided to apply 

tools from a field that has encountered a similar problem before: 

geostatistics. We created an algorithm that uses a matrix of 

distances between individuals to find a genetic barrier between 

them. The principles of this algorithm can be found in classical 

works of Sokal and Owen (i.e. the The Bearing Correlogram M. S. 

Rosenberg, 2010). Using this framework, the genetic distance and 

the physical distance between two individuals can be related 

through an angle indicating the maximum amount of differentiation 

between all the pairs of comparisons. The model can be extended to 

account for isolation by distance processes using kriging principles 

(Bradburd et al., 2016).  Then, for K geographic groups we identify 
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a genetic barrier by identifying the set of sample coordinates that 

minimizes the goodness of fit of the parameters. We accomplish 

this by finding the mean sum of square error for each point between 

the real distance and the inferred new distance. To optimize this 

function we define geographic groups as a set of coordinates and 

assign each sample to a geographic group based on its proximity. 

To find this set of coordinates we use a genetic algorithm (Sergeeva 

et al., 2017). One of the virtues of this algorithm is that it can use 

any kind of genetic distance, not only the typical ones such as the 

Fst or identity-by-descent matrices. 

 

Using this algorithm we found a genetic barrier between the SEP 

populations that was replicated by fineSTRUCTURE and EEMS.  

 

The importance of studying rural areas for understanding 

complex global demographic patterns 

The importance of rural areas in generating the general genomic 

landscape has been so far poorly studied in the European continent, 

despite they represented until recent times the main part of the 

population until the start of the 20th century (Champion, 2012). The 

Industrial Revolution shifted the population from rural areas to be 

concentrated in the cities. This depopulated the rural world and 

produced a trend of higher inbreeding and consanguinity due to the 

lack of potential marriage partners.  

 

One of the main reasons for the low number of studies over rural 

areas is the lack of high quality genomes from samples of rural 
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areas. For example, the Pyrenees, although it constitutes a physical 

border between the Iberian Peninsula and the rest of Europe, has 

been poorly studied. Up to our knowledge there has been a study 

using classical markers (Calafell & Bertranpetit, 1994), a study 

using immunoglobulin data (Giraldo et al., 2001) one using the Y-

chromosome (López-Parra et al., 2009) and the most recent one that 

used microarrays (Biagini et al., 2019). None of these studies have 

been able to find the population structure that we have found in this 

work. One of the problems of these studies is the lack of high 

coverage whole genome sequenced samples. Also another 

advantage of using this kind of samples is the ability to ascertain 

LoF variants and return part of the knowledge we have acquired 

while working on this study. 

 

In this work we have shown that genetics and demography are 

interconnected. We observed a trend regarding autozigosity that 

was already visible using individuals born in the first half of 

the 20th century. In this dataset we already see the first marks of 

isolation in terms of higher LD and longer RoHs compared to the 

general Spanish population. An example of how demography can 

shape the genetic variation of an area is the case of Berguedà. This 

region has the shortest RoHs, higher effective population size and 

lowest LoF diversity from all the studied SEP populations. Given 

that these patterns are at a microgeographic scale, a possible 

explanation for the different profile compared to the other studied 

populations could be the fact that Berguedà has not been as isolated. 

In particular, the creation of a railway in 1914 (Serra-Rotés, 2017) 
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connected Berguedà with the most industrialized part of Catalonia. 

This railway could have meant an influx of migrants to this region 

due to the flourishing economy (based on natural resources and 

textile manufacturing). 

 

The importance of batch effects in datasets generated at 

different times and centres 

When analysing the demography of SEP, we noticed non-

reproducible results when using 1,000 Genomes data (1000G) (The 

1000 Genomes Project Consortium et al., 2015). In our particular 

case, we observed an unusually low amount of LoF variants in the 

SEP individuals compared to the IBS (Iberian Peninsula samples) 

and FIN (Finnish samples) from the 1,000G. The latest was used as 

a prototype of inbred population enriched for rare deleterious 

mutations (Kääriäinen et al., 2017). We did not find this trend 

regarding the benign alleles in these populations.  

 

It has been proposed that highly inbred populations for long periods 

of time can purge the highly deleterious alleles (Y. Xue et al., 

2015). Despite what we observed in our ABC-DL modelling that 

the effective population size of the SEP populations was reduced 

during the last ~2,700 years, it seemed unlikely to explain the 

pattern that was observed. Other putative biological bias of the SEP 

data was the age of the sampled individuals. The SEP sample 

consisted on old individuals as a part of the study design to avoid 

recent demographic events masking the inner structure of the rural 

area. Therefore, one could in principle expect that this population 
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could be pruned of deleterious variants that would have prevented 

reaching such old age. However, this hypothesis could not explain 

why we also observed differences in the LoF composition within 

the SEP populations. 

 

Taking into account that the 1000G data show a large degree of 

heterogeneity on the way it has been produced, we wondered 

whether the effects that we were observing were due to sequencing 

and bioinformatic artifacts. The second point was addressed by 

using the same bioinformatic pipeline as the one applied to generate 

our data using whole exome sequenced individuals from IBS and 

FIN. However, the trend was still present. The first point, which 

finally provided a plausible explanation, was tested by considering 

the sequencing centre that produced the samples of the 1000G data. 

It had been previously reported the presence of sequencing errors in 

the 1000G, mainly related to the sequencing centre and particularly 

in genes (Mafessoni, 2019). In the context of studying LoF, it could 

be expected that any sequencing error occurring at a gene is going 

to produce a damaging allele, thus enriching the dataset with ghost 

LoF mutations. Since we were considering micro-population 

substructure, such bias was large enough to produce the differences 

we observed between IBS and SEP. We excluded the SNVs that 

Maffessoni et al had identified as putatively sequencing errors but 

we still identified the same batch effect in the IBS and FIN 

samples.  
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After noticing this fact, we decided to study whether the effect we 

observed in IBS and FIN could be extended to other 1000G 

populations and in other statistics used in human population 

genetics that summarize events related to rare alleles. Although the 

precision of rare alleles in 1000G has already been questioned 

(Belsare et al., 2019), their work was more centred regarding the 

quality of imputing rare alleles.  

 

Our analyses in the amount of singletons, derived singletons and 

LoF, support that the sequencing centre plays a role in the amount 

of alleles from these types that are observed in the 1000G 

individuals over all the populations (see Figures 1, 2, 3 and 4 in 

Chapter 2).  

 

We also analysed the number of archaic introgressed alleles defined 

by SPrime (S. R. Browning et al., 2018). This statistic was 

ascertained because it has been claimed that the fingerprint of 

archaic introgression is rare in the human genome (Green et al., 

2010), mainly due to the deleterious effect of the hybrid archaic-

anatomically modern human (Dolgova & Lao, 2018). Since one of 

the ways to identify such introgressed fragments is based on 

analyzing tracks of derived alleles compared to reference non-

archaic introgressed populations, we wondered whether batch 

effects due to the sequencing center could affect the estimates 

obtained in the 1000G individuals by (S. R. Browning et al., 2018). 

No clear pattern is observed by the sequencing center.  
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Nevertheless, particular heterogeneous trends were observed in 

some East Asian populations, such as CHB (see Figure 5 in Chapter 

2). This is particularly interesting because this population has been 

claimed to have different waves of archaic introgressions (S. R. 

Browning et al., 2018).  

 

We studied the properties of genetic markers showing strong 

deviations between sequencing centres. In this case we selected the 

YRI, CEU, JPT and CHB populations. When binning the extreme 

SNP outliers per MAF category these populations did not show the 

same pattern Fst pattern (after normalizing by the maximum Fst 

obtained in each MAF category). While YRI, CEU and JPT showed 

the same pattern (the normalized Fst value decreases with MAF) 

(see Figures 6, 7 and 8 in Chapter 2) we observed a different pattern 

regarding CHB. In the latter instead of a decreasing pattern we 

observed an inverted U-shape.  

 

The shared ancestry of JPT and CHB s (as they are used together in 

The 1000 Genomes Project Consortium, 2010) suggests that this 

pattern is unlikely to be explained by ancestry alone. This particular 

pattern of CHB is more compatible with the way CHB samples 

have been processed compared to other populations. 

 

When selecting those SNPs that showed the strongest biases in 

some populations (YRI, CEU, JPT, CHB) we observed large Fst 

values, even after normalizing inside each MAF bin. This is and 

indicative that the effect we observed in singletons is also patent 
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regarding SNPs at higher frequency. A caveat of this analysis is that 

the number of SNps we used is low due to the filter we applied to 

obtain these extreme SNPs. 

 

Our results of Chapter 2 show that the scientific community must 

use 1000G data with caution, especially when merging it with new 

dataset as the latter can have its private batch effects. 
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6 CONCLUSIONS 

 

From Chapter 1 we conclude that: 

1. Fine population substructure can be identified when using 

WGS. 

2. Particular demographic histories exist even at populations 

<140 km separated from the Pyrenees. 

3. Geography shaped the genetic relationships of the rural 

areas of the Pyrenees. 

4. SEP populations show particular markers associated with 

genetic isolates but not all of them. 

5. Further analysis adding samples from other geographic 

regions of the Pyrenees are required to study if this pattern 

extends to the whole Pyrenees. 

 

From Chapter 2 we conclude that: 

1. The 1,000 Genomes Project (1000G) is a study used in 

multitude of projects either as a general population dataset 

or to perform imputation to complete microarray datasets. 

2. The 1000G dataset has been generated with the 

collaboration of nine different sequencing centers, 

generating a possible batch effect. 

3. The 1000G dataset has quality problems regarding rare 

variants due to the use of low coverage whole genome 

sequencing. 

4. We have found proof of a batch effect regarding the 

sequencing centre in most of the cases. 
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