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Abstract

Low and high-order hybridised methods for compressible flows

Jordi Vila Pérez

The aerospace community is challenged as of today for being able to manage ac-

curate overnight computational fluid dynamics (CFD) simulations of compressible

flow problems. Well-established CFD solvers based on second-order finite volume

(FV) methods provide accurate approximations of steady-state turbulent flows but

are incapable to produce reliable predictions of the full flight envelope. Alternatively,

promising high-order discretisations, claimed to permit feasible high-fidelity simula-

tions of unsteady turbulent flows, are still subject to strong limitations in robustness

and efficiency, placing their level of maturity far away from industrial requirements.

In consequence, the CFD paradigm is immersed at this point into the crossroads out-

lined by the inherent limitations of low-order methods and the yet immature state

of high-order discretisations. Accordingly, this thesis develops a twofold strategy for

the high-fidelity simulation of compressible flows introducing two methodologies, at

the low and high-order levels, respectively, based on hybridised formulations.

First, a new finite volume paradigm, the face-centred finite volume (FCFV) method,

is proposed for the formulation of steady-state compressible flows. The present

methodology describes a hybrid mixed FV formulation that, following a hybridis-

ation process, defines the unknowns of the problem at the face barycentres. The

problem variables, i.e. the conservative quantities and the stress tensor and heat flux

in the viscous case, are retrieved with optimal first-order accuracy inside each cell by

means of an inexpensive postprocessing step without need of reconstruction of the

gradients. Hence, the FCFV solver preserves the accuracy of the approximation even

in presence of highly stretched or distorted cells, providing a solver insensitive to mesh

quality. In addition, the FCFV method is a monotonicity-preserving scheme, lead-

ing to non-oscillatory approximations of sharp gradients without resorting to shock

capturing or limiting techniques. Finally, the method is robust in the incompressible

limit and is capable of computing accurate solutions for flows at low Mach number

without the need of introducing specific pressure correction strategies.

In parallel, the high-order hybridisable discontinuous Galerkin (HDG) method is

reviewed in the context of compressible flows, presenting an original unified frame-
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work for the derivation of Riemann solvers in hybridised formulations. The frame-

work includes, for the first time in an HDG context, the HLL and HLLEM Riemann

solvers as well as the traditional Lax-Friedrichs and Roe solvers. The positivity pre-

serving properties of HLL-type Riemann solvers are displayed, demonstrating their

superiority with respect to Roe in supersonic cases. In addition, HLLEM specifically

outstands in the approximation of boundary layers because of its shear preservation,

which confers it an increased accuracy with respect to HLL and Lax-Friedrichs.

An extensive set of numerical benchmarks of practical interest is introduced along

this study in order to validate both the low and high-order approaches. Different

examples of compressible flows in a great variety of regimes, from inviscid to viscous

laminar flows, from subsonic to supersonic speeds, are presented to verify the accu-

racy properties of each of the proposed methodologies and the performance of the

introduced Riemann solvers.
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Chapter 1

Introduction

The rapid growth of computational resources during the last decades has entailed

an increasing relevance of numerical simulations within engineering processes. The

development of numerical methods, together with the increasing fidelity of physical

models, has allowed computational analysis to become a driving technology not only

for industrial development but also for scientific discovery.

The preeminent importance of numerical methods has been specially manifested

in the aeronautical industry, where computational fluid dynamics (CFD) has revo-

lutionised the process of aerodynamic design, as described by Johnson et al. (2005).

In particular, as Ball (2008) points out, the introduction of CFD in design processes

has relegated the costly and time-consuming wind tunnel experiments, predominant

in the aerospace sector some decades ago, to validation phases. Because of the ability

of CFD to provide predictions of numerous potential configurations at early stages

of development, such technology has been widely accepted among engineers, allowing

for an enhanced optimisation of final designs.

The uninterrupted growth of computing power over the last decades has driven

computational strategies to a far greater extent than ever possible. The development

of high-fidelity computational tools has been accompanied by the employment of

more accurate models, implying a continuous change of the CFD paradigm, as stated

by Kraft (2010). Such increasing complexity has boosted the potential of CFD to

deliver a superior understanding and insight into the physics behind. For this reason,

CFD has become a powerful technology not only for the development of new products

but also for the inspection of new frontiers of knowledge.
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1. Introduction

1.1 Motivation and state of the art

The role of computational analysis in current research and development stages of

aircraft design has been extensively reported by Malik and Bushnell (2012). The

profound impact of CFD has been specially relevant on the aerodynamic design in

cruise conditions, where the flow remains attached to the body and develops minimal

turbulent separation. In those cases, accurate predictions can be obtained with the

available tools, mostly based on second-order finite volume (FV) implementations of

the Reynolds-averaged Navier-Stokes (RANS) equations. Accordingly, the introduc-

tion of these computational strategies has allowed for a substantial reduction of wind

tunnel testing, now considered only for final configurations upon validation. Such

decrease in wind tunnel experiments has already implied an important reduction of

design costs and the fabrication of more efficient products in shorter cycle times.

However, other flight conditions still require experimental analyses for accurate

evaluations. Cruise conditions only describe a small part of the flight envelope of a

regular aircraft. For other phases, the presence of flow separation or other transient

effects limits the application of computational analysis, which still cannot offer reliable

predictions of the flowfield. In consequence, CFD is immersed in a double challenge

for modelling such more complex flow phenomena within reasonable time. On the

one hand, the availability of faster and more powerful machines, and, on the other,

the development of more accurate numerical schemes.

The NASA CFD Vision 2030 Study by Slotnick et al. (2014) describes some mid

and long-term perspectives of such aspects in CFD computation. For the first, high

performance computing (HPC) is aimed at addressing the high demands on compu-

tational capacity imposed by complex CFD modelling. To this end, improvements

in algorithm and hardware technologies are defined as necessary, enabling as well

an evolution towards new programming paradigms based on a higher portability

between HPC environments. Nonetheless, the complex challenges faced by CFD re-

quire as well a further development of more accurate numerical methods, high-fidelity

physics-based models, advanced solvers, adaptivity schemes and management of un-

certainties.

In particular, the modelling of separated and transitional turbulent flows remains

an open problem for the CFD community. Traditional CFD solvers are still inca-

pable to complete large-scale simulations of transient flows at high Reynolds num-

bers around complex geometric configurations. To this end, new models, such as
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1.1. Motivation and state of the art

the large-eddy simulation (LES) method, or new highly accurate discretisations have

been receiving increasing attention for their promising predictions of unsteady and

turbulent flows.

1.1.1 The horizon of high-order methods within CFD

In recent years, high-order methods have experienced a growing interest within the

CFD community because of their increased precision at reduced computational cost

when compared to low-order counterparts. The claimed superiority of high-order

methods has been supported by their low diffusion and dispersion errors, as described

by Ekaterinaris (2005), which confer them a major advantage for the simulation of

transient problems and transport phenomena.

Precisely, because of their promising potential to efficiently deliver high accuracy

in unsteady vortex transport, recent trends in aerodynamics open the way to reliable

and feasible LES runs, as introduced by Drikakis (2003) or Moura et al. (2015). This

has prompted the extension of low-order strategies to high-order, such as the FV dis-

cretisations proposed by Cueto-Felgueroso et al. (2007) or Chassaing et al. (2013), or

the stabilised finite element (FE) schemes employed by Chalot and Normand (2010)

or Sevilla et al. (2013, 2017). In parallel, new discretisation methods, such as the dis-

continuous Galerkin (DG) method, popularised by Cockburn et al. (2000) or Arnold

et al. (2002), among others, have been recently devised.

DG formulations have become one of the most adopted high-order approaches

within the computational engineering community, see for instance Cockburn et al.

(1989a), Cockburn and Shu (1998c) or Bassi and Rebay (1997a, 2002). In particular,

DG discretisations have been often seen as a methodology to combine the advantages

of both FV and FE schemes. On the one hand, contrary to FV methods, DG methods

allow to define high-order local approximations. On the other, the stabilisation term

required for solving convection dominated problems is easier to define when compared

to traditional stabilised FE methods.

The DG framework, reviewed in detail by Cockburn et al. (2000) or Ern and Di

Pietro (2011), allows to devise high-order numerical methods that enforce element-by-

element conservation. The method provides a suitable discretisation on unstructured

meshes and permits an efficient exploitation of parallel computing architectures, as

described by Roca et al. (2013). In addition, an easy implementation of adaptive

strategies for non-uniform degree approximations is admitted, as confirmed in several
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studies, such as those by Hartmann and Houston (2003), Giorgiani et al. (2014),

Balan et al. (2015) or Cangiani et al. (2017). However, the duplication of nodes at

the interface of neighbouring elements has limited its application mostly to academic

problems, see the discussion by Giacomini and Sevilla (2019) and references therein.

1.1.1.1 Hybridised formulations in high-order methods

Hybridisation of DG schemes has been devised as a significantly less expensive alter-

native to traditional formulations, as studied by Huerta et al. (2013) or Woopen et al.

(2014). For this reason, different hybrid discretisation methods have been proposed

in recent years. Among the most promising techniques, one can find the hybrid/hy-

bridised DG method introduced by Egger and Schöberl (2009) and Egger and Waluga

(2012a,b), the hybrid high-order (HHO) method presented by Di Pietro et al. (2014),

Di Pietro and Ern (2015) or Cockburn et al. (2016), or the hybridisable discontinuous

Galerkin (HDG) method, developed in a series of publications by Cockburn and Shu

(1998a) or Cockburn and Gopalakrishnan (2004).

The HDG approach proposed by Cockburn et al. (2009) reduces the number of

globally coupled degrees of freedom via the introduction of a hybrid variable, namely

the trace of the unknown on the mesh faces, and the appropriate definition of the

inter-element numerical fluxes. Furthermore, special attention has been devoted to

the HDG method which relies on a mixed formulation for second-order problems,

as described by Cockburn and Gopalakrishnan (2004, 2005a,b, 2009), Nguyen et al.

(2011), Nguyen and Peraire (2012), Qiu and Shi (2016), Sevilla and Huerta (2016)

or Giacomini et al. (2020).

In the context of compressible flows, different hybrid methods have been devised

for the formulation of the inviscid Euler and the laminar compressible Navier-Stokes

equations. The HDG method, first introduced by Peraire et al. (2010) and Nguyen

and Peraire (2012), has been well-established and employed in several studies, such as

those by Jaust and Schütz (2014), Jaust et al. (2015), Williams (2018), and Komala-

Sheshachala et al. (2020). Alternatively, other hybrid discretisations, such as the

embedded DG (EDG) scheme presented by Peraire et al. (2011), the interior em-

bedded DG (IEDG) method detailed in Nguyen et al. (2015), or the hybrid mixed

formulations introduced by Schütz et al. (2012) and Schütz and May (2013b,a), have

been also devised. It is worth noting that in the inviscid limit, i.e. for the Euler

equations, HDG methods based on primal and mixed formulations are equivalent. In
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1.1. Motivation and state of the art

addition, the resulting scheme is robust in the incompressible limit, circumventing

the Ladyzhenskaya-Babuška-Brezzi (LBB), as described by Cockburn and Gopalakr-

ishnan (2009).

Recently, the HDG method has been also employed for the simulation of turbulent

compressible flows. Indeed, the HDG discretisation of the RANS equations combined

with the Spalart-Allmaras turbulence model has been presented by Moro et al. (2011,

2017), whereas Woopen et al. (2014) introduced a formulation of the κ−ω model. In

addition, in the last years, Fernández et al. (2017) have proposed an HDG formulation

for turbulent compressible flows based on an LES approach.

A salient feature of the HDG formulation stemming from Peraire et al. (2010)

and Nguyen and Peraire (2012) is its associated optimal order of convergence for the

viscous stress and the heat flux. Therefore, the method provides an increased accuracy

in the computation of typical quantities of interest in aerodynamic applications, such

as lift and drag. Such optimal accuracy properties of the method rely on the equal-

order approximation of the primal, mixed and hybrid variables. In this context,

when the Cauchy stress tensor formulation is employed for the momentum equation,

the appropriate choice of the discretisation space for the mixed variable is crucial to

ensure the optimal convergence of the method. To this effect, different strategies have

been described in the last years, such as the M -decomposition framework, proposed

by Cockburn, Fu, and Qiu (2016), Cockburn, Fu, and Sayas (2016) and Cockburn and

Fu (2016a,b, 2017), or the utilisation of the reduced stabilisation, detailed by Oikawa

(2015, 2016), Qiu and Shi (2016) or Lehrenfeld and Schberl (2016). Alternatively,

Sevilla et al. (2018) and Giacomini et al. (2018, 2020) have recently proposed the

employment of a pointwise symmetric formulation of the stress tensor by means of

Voigt notation.

The promising potential of high-order methods and, in particular, of the HDG

scheme, has been closely related to the high-fidelity simulation of transient phenom-

ena. For this reason, high-order spatial discretisations in HDG have been combined

with high-order time integration schemes for the solution of unsteady flow problems,

as described by Nguyen and Peraire (2012), Jaust and Schütz (2014), Jaust et al.

(2014, 2015) or Fernández et al. (2017). It is worth noting that the HDG method

has been inherently combined with implicit time integrators. However, although less

explored, the recent works by Samii and Dawson (2018) and Samii et al. (2019)

have proposed the combination of the HDG method with explicit time-marching al-
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gorithms. Nevertheless, the use of implicit time integrators is well-established for

the solution of flows at high Reynolds numbers or near boundary layers generating

multiscale phenomena. Similarly, implicit methods are especially suited in the incom-

pressible limit, owing to stability requirements posed by the structure of the problem

and the treatment of the incompressibility constraint.

1.1.1.2 Current difficulties and limitations of high-order methods

Despite the great capabilities associated to high-order discretisations, the level of

maturity of such methods is still far away from industrial requirements, as concluded

by Kroll (2009) within the ADIGMA project. Current implementations of high-order

schemes are subject to strong limitations and significant progress is still needed for

their application to well-established solvers.

The review works by Wang et al. (2013) or Kroll et al. (2015) point out some

of the weaknesses that restrict their applicability as of today. Among others, the

inherent complexity of high-order methods has been established as one of the main

barriers for ther adoption in standard solvers. In conjunction with their claimed high

computational cost for solving transient problems and the corresponding memory

footprint, these features impose a challenging demand towards efficient and compet-

itive implementations. Additionally, one of the main bottlenecks in CFD simulation

nowadays is the difficulty of generating high-order meshes for complex configurations.

In particular, unstructured, highly clustered viscous meshes near curved boundaries

set one of the main challenges for current research. In those cases, significant user

intervention is required as of today to produce suitable, non-intersecting meshes of

the desired resolution.

Finally, the applicability of high-order schemes is also constrained by their lack of

robustness, specially to guarantee monotonicity in front of discontinuous solutions in

high-speed flows. In particular, whereas most of high-order solvers are able to produce

converged solutions at desired levels of accuracy for smooth flowfields, the presence of

complicated flow physics or complex geometries may reduce their performance. What

is more, in those cases, high-order schemes may eventually fail to converge or lead

to instabilities breaking the monotonicity, positivity or entropy preservation of the

approximation. Such effects are specially noticeable in presence of flow discontinuities

or steep gradients, such as shock waves or boundary layers.
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1.1.1.3 Monotonicity: from Riemann solvers to shock-capturing

The appropriate handling of discontinuous solutions represents one of the main chal-

lenges for high-order methods. Indeed, based on the work by Godunov and Bo-

hachevsky (1959), the monotonicity of the numerical approximation is only guaran-

teed for first-order accurate schemes. In those cases, conservation and positivity is

ensured by means of the appropriate definition of the interface numerical fluxes aris-

ing from the corresponding Riemann problems (Riemann, 1860). To this end, several

approximate Riemann solvers have been devised for low-order formulations of com-

pressible flows. This is the case of the numerical fluxes by Lax (1954), Roe (1981)

or of HLL type, following the derivation by Harten et al. (1983), as detailed in the

monograph by Toro (2009).

In particular, the Lax-Friedrichs Riemann solver, introduced by Lax (1954), de-

fines a robust but overdissipative numerical flux, which arises from the extrapolation

of scalar convection studies. On the contrary, the Roe Riemann solver provides in-

creased accuracy, but may fail to produce physically admissible solutions because of

a lack of dissipation in transonic and supersonic situations, as described by Quirk

(1994) or Perthame and Shu (1996). In those cases, a so-called entropy fix may be

needed to recover the entropy conditions and satisfy the positiveness of the density

and pressure fields. Finally, HLL-type Riemann solvers, such as HLL or HLLEM,

first introduced by Harten et al. (1983), provide a robust framework that inherently

preserves the positivity of the approximation. In addition, the HLLEM Riemann

solver, derived by Einfeldt (1988) and Einfeldt et al. (1991), introduces a special

treatment for shear preservation, likewise Roe, thus improving the Lax-Friedrichs

and HLL approximation of contact or shear waves.

Because of the seminal importance of numerical fluxes in the conservation and

positivity properties of the solution, the definition of approximate Riemann solvers

developed for low-order FV schemes has been extended to high-order. Indeed, dif-

ferent numerical fluxes have been employed in traditional DG methods, as described

by Cockburn and Shu (1998c), Qiu et al. (2006) or Moura et al. (2017). In contrast,

the definition of approximate Riemann solvers for HDG methods has received con-

siderably less attention, and only the traditional Lax-Friedrichs and Roe solvers have

been considered, see Peraire et al. (2010, 2011) or Nguyen and Peraire (2012).

Nevertheless, following the idea by Godunov and contrary to first-order schemes,

an appropriate definition of Riemann solvers is not sufficient to guarantee the mono-
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tonicity of high-order approximations. Indeed, the representation of a discontinuous

solution such as a shock wave by means of a high-order discretisation results in the

appearance of spurious oscillations leading to instabilities. For this reason, the cor-

rect setting of intercell fluxes must be combined with other numerical strategies to

ensure a stable and non-oscillatory behaviour of the approximation. To this end,

shock-capturing methods, such as flux limiters, ENO and WENO reconstructions or

the introduction of artificial diffusion, have been developed to effectively handle flow

discontinuities in high-order methods.

Flux or slope limiters were first introduced within DG methods by Cockburn and

Shu (1998b) and Cockburn et al. (1989b) in the so-called RKDG methods. These

approaches combined Riemann solvers and nonlinear slope limiters in order to satisfy

the Total Variation Bounded on the means (TVBM). Such techniques, formulated

for the first time in a series of papers by van Leer (1974, 1977a,b, 1979) and based

on total variation diminishing (TVD), rely on keeping the solution between certain

limits near discontinuities so as to control the corresponding gradients. Different

limiter functions, such as superbee, min-mod or those introduced by van Leer (1974,

1977a,b, 1979) or Osher and Chakravarthy (1986), have been proposed for numerical

discretisations.

Nevertheless, the most popular shock-capturing techniques employed in high-order

DG and HDG discretisations are based on artificial dissipation. Such approaches rely

on the introduction of a certain amount of non-physical viscosity in those elements

affected by the flow discontinuity, which are identified by means of a shock sensor. Dif-

ferent combinations of shock sensors and artificial viscosity functions can be found in

the literature. Among the most popular approaches, one can find physics-based sen-

sors that identify regions of high compression or sharp gradients, as proposed by Von

Neumann and Richtmyer (1950). For instance, this methodology has been recently

employed by Moro et al. (2016) and Fernández et al. (2018) to derive physics-based

shock-capturing methods for HDG. Alternatively, a completely different strategy for

a shock sensor based on a measure of the regularity of the approximate solution was

proposed by Persson and Peraire (2006). This approach has been employed both

in the context of DG or, more recently, of HDG methods by Casoni et al. (2012)

and Jaust et al. (2014, 2015), respectively.
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1.1.2 The current legacy of finite volumes

Because of the yet immature state of high-order discretisations, the vast majority of

CFD tools are based nowadays on low-order methods. In particular, second-order FV

schemes are the most widely employed strategy in open-source, industrial and com-

mercial CFD solvers. See for instance the CFD codes by the NASA Langley Research

Center, CFL3D or FUN3D (documented by Bartels et al. (2006) and Biedron et al.

(2019), respectively), or the open source solver OpenFOAM (Jasak, 2009). Other

examples of FV CFD solvers in those contexts are the FLITE code, developed in

Swansea University by Morgan et al. (1991), the TAU code employed by the German

Aerospace Center (Gerhold, 2005), or the CFD solver by Dassault Aviation (Chalot

and Perrier, 2004). Based on their efficiency and robustness in solving large-scale

problems, FV implementations of the RANS equations have become the high-fidelity

baseline for engineering standards.

Different formulations within the FV paradigm have emerged over the years, as

reviewed by Morton and Sonar (2007). Among them, the cell-centred finite volume

(CCFV) method and the vertex-centred finite volume (VCFV) method represent its

two main families. In such classification, the two categories are determined by the po-

sition of the degrees of freedom of the problem. Indeed, the CCFV scheme, described

by Eymard et al. (2000) or Randall J. Leveque (2013) and employed in several stud-

ies, such as by Maire et al. (2007), is characterised by defining the unknowns of the

problem at the centroid of the mesh cells or elements. Accordingly, their values cor-

respond to the cell averages of the problem solution. Conversely, the VCFV method,

used for instance in the works by Sørensen et al. (2003) or Asouti et al. (2010), sets

its unknowns at the mesh nodes. This strategy defines the control volumes for each

of these nodes by joining the centroids of the neighbouring mesh elements and the

midpoints of the corresponding faces. As a result, a dual mesh conformed by this

set of nonoverlapping subdomains surrounding each of the nodes of the discretisa-

tion is constructed and used for building the numerical approximation. Similarly to

the CCFV approach, the computed quantities represent the averages on the control

volume. A shared feature in both of the two strategies consists of the gradient re-

construction that is employed to compute the corresponding approximations at the

faces of the control volume. In correspondence, first-order accuracy of such recon-

struction is required in order to provide second-order accuracy to the corresponding

FV method.
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In this line, recent needs within computational engineering have established the

use of more complex geometries and larger meshes, revealing at the same time one of

the major limitations of current FV formulations. Indeed, the first-order accuracy of

the gradient reconstruction of both CCFV and VCFV schemes is a key aspect for the

overall accuracy of the method. However, as pointed out in different studies, such as

those by Svärd et al. (2008), Diskin et al. (2010) or Diskin and Thomas (2011), the

accuracy of such reconstructions is in turn limited by the mesh quality. In particular,

the use of irregular or highly stretched grids may result in a loss of the second-order

convergence of the solution and the first-order accuracy of the viscous stresses and

heat flux. In those cases, the quality of typical quantities of interest in engineering

applications, such as lift and drag, is strongly compromised.

Recently, the face-centred finite volume (FCFV) paradigm has been proposed

by Sevilla et al. (2018, 2019), Giacomini and Sevilla (2020) and Vieira et al. (2020)

for a series of linear elliptic partial differential equations (PDEs). The FCFV method

utilises a mixed FV formulation and eliminates the degrees of freedom within each

cell via a hybridisation step, leading to a problem defined in terms of the unknwons

at the face barycentres only. Finally, the variables inside each cell are retrieved via

a computationally inexpensive postprocessing step performed independently cell-by-

cell.

The FCFV method has shown its versatility in devising approximations based on

meshes of different cell types and on hybrid meshes, as described by Sevilla et al.

(2018) and Giacomini and Sevilla (2020), proving to be a robust methodology in-

sensitive to element type and mesh quality. Although the FCFV method is known

to introduce a larger number of unknowns than CCFV and VCFV approaches, the

simplified procedure required to generate meshes suitable for computation and its

capability to avoid gradient reconstruction make the FCFV scheme a competitive

alternative to traditional FV solvers from the computational viewpoint.

It is worth mentioning that FV methods have been reinterpreted in recent years

as particular cases of finite element discretisations, as detailed by Morton and Sonar

(2007). Under this perspective, Eymard et al. (2000) and Cockburn et al. (2000)

described the CCFV method as a discontinuous Galerkin (DG) method with piece-

wise constant degree of approximation in each cell. Similarly, Bank and Rose (1987)

and Selmin (1993) redefined the VCFV scheme on simplicial meshes as a conforming

piecewise linear continuous finite element method. Concerning the FCFV paradigm,
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it can be interpreted as the lowest-order version of the hybridisable discontinuous

Galerkin (HDG) method, in which constant approximations are selected for all the

variables. The resulting FCFV method thus inherits its properties from HDG, includ-

ing the optimal convergence of primal and mixed variables without need of reconstruc-

tion and its stability in the incompressible limit, circumventing the Ladyzhenskaya-

Babuška-Brezzi (LBB) condition. Hence, the FCFV method provides accurate ap-

proximations of incompressible flows without the need of introducing specific pressure

corrections like the well-known SIMPLE algorithm, described by Patankar and Spald-

ing (1972), implemented by commercial and open-source software, see e.g. ANSYS

Inc. (2017) or Jasak (2009).

1.2 Objectives and outline

The main goal of this thesis focuses on the high-fidelity simulation of compressible

flows by means of hybridisable discontinuous Galerkin methods. In particular, this

work is aimed at developing a robust and efficient framework, allowing to address

large-scale problems while tackling the inherent complex phenomena associated to

compressible flow physics.

Nonetheless, the frame of this work is build within the two paradigms that config-

ure the simulation of compressible flows as of today: the traditional low-order finite

volume schemes and the emerging high-order methods. Because of this dual vision

within CFD, this work pursues a twofold strategy aimed at contributing at both

levels.

For this purpose, the following partial goals are considered:

1. The formulation of a face-centred finite volume method for the sim-

ulation of steady-state compressible flows.

Second-order FV methods are well-established within the CFD community for

the solution of steady-state flows. Their high level of maturity has provided

them with robust and efficient strategies for tackling large-scale problems in

short computation times. However, these numerical schemes are limited by the

loss of precision that experience in irregular or highly stretched meshes, due to

an inaccurate reconstruction of the gradients of the flowfield variables.
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For this reason, the face-centred finite volume (FCFV) method, arising from

the constant order of approximation of HDG, is proposed for the solution of

steady-state compressible flows. The resulting scheme defines the unknowns

of the problem on the mesh faces and inherits the convergence properties of

HDG. Therefore, it ensures optimal first-order convergence of the conservation

quantities, viscous stresses and heat flux without need for reconstruction, hence,

regardless of a high stretching or distortion of the mesh. In addition, based

on its first-order accuracy, the FCFV scheme is inherently monotonic, which

results in no need for shock capturing techniques in the approximation of sharp

gradients or discontinuities. Finally, the method displays a robust behaviour in

the incompressible limit.

The FCFV formulation of compressible flows is presented in chapter 2 for the

solution of steady-state problems. Different test cases of inviscid and viscous

flows are displayed so as to examine the accuracy properties of the numerical

scheme, together with its robustness in front of high stretching or distortion

of the mesh or in the incompressible limit. Finally, a set of numerical bench-

marks consisting of transonic 2D and 3D external flows over aerofoils and wings

is introduced to demonstrate the capabilities and potential of the proposed

methodology and its applicability to large-scale realistic examples.

Additionally, the FCFV method is also extended to the formulation of the RANS

equations, equipped with a Spalart-Allmaras turbulence model, in appendix C.

By means of an analytical example with manufactured solution, the accuracy

properties of the FCFV scheme are evaluated.

2. The formulation of positivity preserving HLL-type numerical fluxes

for compressible flows in hybridisable discontinuous Galerkin meth-

ods, developed within a unified framework for the derivation of Rie-

mann solvers.

The future perspectives of CFD rely on the development of high-order strate-

gies, necessary for the resolution of transient complex flow phenomena arising

in conventional aircraft aerodynamics. However, high-order methods are still

challenged by the configuration of a robust framework allowing them to man-

age overnight computations of compressible flows in an effective way. In other

words, of being able to produce physically admissible solutions to complex flow
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problems within reasonable time and minimal user intervention.

The high-order hybridisable discontinuous Galerkin (HDG) method, which pro-

vides optimal accuracy not only for the conservation variables but also for vis-

cous stresses and heat flux, is considered for the high-fidelity simulation of

compressible flows. In this context, the study of Riemann solvers has been

limited to the use of Lax-Friedrichs and Roe numerical fluxes, contrary to FV

or traditional DG schemes, for which multiple alternatives have been devised,

as briefly summarised in appendix B. For this reason, this thesis proposes a

thorough exploration into the derivation of Riemann solvers in HDG, based on

extending existing DG formulations of approximate numerical fluxes.

Therefore, the HDG formulation of compressible flows, equipped with a shock

treatment strategy based on artificial viscosity, is described in chapter 3 together

with a unified framework for the derivation of Riemann solvers in hybridised

methods. This framework allows the formulation, for the first time in an HDG

context, of the HLL and HLLEM Riemann solvers as well as the traditional

Lax-Friedrichs and Roe solvers.

Then, a comprehensive set of relevant numerical benchmarks of viscous and

inviscid compressible flows is presented in chapter 4 to evaluate the robustness

and competitiveness of the resulting high-order HDG scheme. In particular, the

positivity properties of HLL-type numerical fluxes are thoroughly examined in

transonic and supersonic cases, for which the Roe solver may fail to satisfy

entropy conditions. In addition, the shear preservation of HLLEM solver is

also tested in a series of examples, proving its outstanding performance in the

approximation of boundary layers, providing an increased accuracy with respect

to HLL and Lax-Friedrichs.
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Chapter 2

A face-centred finite volume

method for compressible flows 1

Finite volume (FV) solvers are the most widespread technology within the aerospace

community for the simulation of steady-state compressible flows. Their success relies

on their capability of providing results for complex large-scale flow problems by means

of overnight simulations. Nonetheless, usual FV strategies require delicate mesh gen-

eration procedures with limited unstructured regions and distorted cells in order to

construct high-quality meshes suitable for computation. In this line, a new mixed hy-

brid FV paradigm, the face-centred finite volume (FCFV) scheme, has been recently

proposed, providing optimal first-order accuracy for the problem variables and their

gradients without need of reconstruction strategies. The resulting method is there-

fore insensitive to mesh quality and offers a competitive alternative to traditional FV

solvers from the computational viewpoint.

This chapter introduces the FCFV formulation of steady-state compressible flows,

spanning from viscous compressible Navier-Stokes to inviscid Euler equations, which

is also robust in the incompressible limit. The resulting method retrieves first-order

convergence for the the flow variables, i.e. density, momentum and energy, stress

tensor and the heat flux without need of gradient reconstruction strategies. In ad-

dition, the FCFV method defines a monotonicity-preserving framework, providing

1This chapter is a modified version of the in-preparation article: J. Vila-Pérez, M. Giacomini,
R. Sevilla, A. Huerta, A non-oscillatory face-centred finite volume method for compressible flows.
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2. A face-centred finite volume method for compressible flows

non-oscillatory approximations of shock waves and sharp fronts without the need of

shock capturing techniques.

The organisation of this chapter is detailed as follows. In section 2.1, the compress-

ible Navier-Stokes equations are recalled. Section 2.2 introduces the corresponding

FCFV discretisation and the integration of Riemann solvers in the definitions of the

numerical fluxes. A set of convergence tests to validate the optimal accuracy proper-

ties of the method for inviscid and viscous laminar flows is presented in section 2.3,

with special emphasis on the robustness to cell stretching and distortion. Two and

three-dimensional benchmarks of external flows of aerodynamic interest are reported

in section 2.4 to demonstrate the capabilities of the method in different flow regimes,

from inviscid to viscous laminar flows, from transonic to subsonic incompressible

flows. Finally, section 2.5 reviews the main results of this work.

Technical details on the symmetry enforcement of the deviatoric strain rate tensor,

employed as mixed variable of the problem, are provided in appendix A. In addition,

the extension of the FCFV method for the formulation of the RANS equations coupled

with the Spalart-Allmaras turbulence model is presented in appendix C.

2.1 Governing equations

Let Ω ⊂ Rnsd be an open bounded domain with boundary ∂Ω, being nsd the number

of spatial dimensions, and Tend > 0 the final time of interest. The Navier-Stokes

equations, governing unsteady viscous compressible flows in absence of external body

forces are expressed in nondimensional conservation form as

∂U

∂t
+∇· (F (U)−G(U ,∇U)) = 0, in Ω× (0,Tend], (2.1)

where U ∈ Rnsd+2 is the vector of dimensionless conservative variables and F and

G ∈ R(nsd+2)×nsd are the advection and diffusion flux tensors, respectively, given by

U =


ρ

ρv

ρE

, F (U) =

 ρvT

ρv ⊗ v + pInsd

(ρE + p)vT

, G(U ,∇U) =

 0

σd

(σdv + q)T

 . (2.2)

In these expressions, ρ denotes the density, v is the velocity vector, E is the total

specific energy, p is the pressure, σd is the viscous stress tensor and q is the heat flux.
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2.1. Governing equations

Remark 2.1 (Non-dimensional variables). The dimensionless physical variables are

obtained using the following reference free-stream quantities, indicated by the sub-

script ∞, namely

ρ̃ =
ρ

ρ∞
, ṽ =

v

v∞
, Ẽ =

E

v2
∞
, p̃ =

p

ρ∞v2
∞
,

x̃ =
x

L
, t̃ =

t

L/v∞
, µ̃ =

µ

µ∞
, T̃ =

T

v2
∞/cp

,

(2.3)

where T is the temperature, x and t denote spatial position and time, and L is

a characteristic length. For the sake of simplicity, tildes for the nondimensional

variables are dropped in this work.

The flow is assumed to obey the ideal gas law γp = (γ − 1)ρT , where γ = cp/cv

is the ratio of specific heats at constant pressure, cp, and constant volume, cv, and

takes value γ = 1.4 for air. Moreover, for a calorically perfect gas, it holds that

p = (γ − 1)ρ (E − ‖v‖2/2).

Under Stokes’ hypothesis, the viscous stress tensor is expressed as

σd =
µ

Re

(
2∇Sv − 2

3
(∇·v)Insd

)
, (2.4)

where ∇S := (∇+∇T )/2 is the symmetric part of the gradient operator.

Remark 2.2 (Cauchy stress tensor). The Cauchy stress tensor, σ, which assembles

the mechanical stresses of the fluid, is the combination of the viscous stress tensor σd

and the thermodynamical pressure p, that is σ = σd − pInsd .

In addition, the heat flux is modelled according to Fourier’s law of heat conduction,

that is

q =
µ

PrRe
∇T, (2.5)

and the nondimensional dynamic viscosity, µ, depends on the temperature following

Sutherland’s law, i.e.

µ =

(
T

T∞

)3/2
T∞ + S

T + S
, (2.6)

where the dimensionless free-stream temperature and the Sutherland constant are

expressed, respectively, as T∞ = 1/ ((γ − 1)M2
∞) and S = S0/ ((γ − 1)TrefM

2
∞), with

S0 = 110K for a reference temperature of Tref = 273K.
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2. A face-centred finite volume method for compressible flows

The nondimensional description of the problem is completed with the definition

of the Reynolds, Prandtl and Mach numbers, defined respectively as

M∞ =
v∞
c∞

, Re =
ρ∞v∞L

µ∞
, Pr =

cpµ∞
κ

, (2.7)

being c =
√
γp/ρ the speed of sound and κ the thermal conductivity. The Prandtl

number is considered constant and equal to Pr = 0.71 for air.

The problem is closed with the prescription of initial and boundary conditions,

namely

U = U 0 in Ω× {0},

B(U ,∇U) = 0 on ∂Ω× (0,Tend],
(2.8)

where U 0 stands for an initial state and the vector B describes a boundary condition

operator, imposing inflow, outflow or wall conditions with isothermal, adiabatic or

symmetry properties as detailed in section 2.2.3.

Remark 2.3 (Compressible Euler equations). The compressible Euler equations are

recovered in the inviscid limit, that is when Re → ∞. In such case, the set of

conservation equations (2.1) becomes a system of first-order hyperbolic PDEs, namely

∂U

∂t
+∇·F (U) = 0, in Ω× (0,Tend]. (2.9)

2.2 FCFV formulation for compressible flows

The FCFV formulation of compressible flows is detailed as follows. To this effect,

consider a partition of the domain Ω in nel disjoint subdomains Ωe satisfying Ω =⋃nel
e=1 Ωe. Additionally, let ∂Ωe denote the boundary of cell Ωe, obtained as the union

of its faces Γe,j, namely

∂Ωe :=

nefa⋃
j=1

Γe,j, (2.10)

where nefa is the total number of faces of the cell Ωe. Finally, let Γ denote the mesh

skeleton or internal interface, defined as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (2.11)

Furthermore, the notation for the jump operator, J}K = }+ + }−, is employed,

defining the sum of the values in the elements Ω+ and Ω− at each side of the internal

face Γf , respectively.
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2.2. FCFV formulation for compressible flows

2.2.1 Introducing a set of mixed variables

Following the HDG and FCFV rationales described by Cockburn et al. (2009), Cock-

burn and Gopalakrishnan (2009) or Nguyen and Peraire (2012) and Sevilla et al.

(2018, 2019), respectively, the second-order problem (2.1) is written as a system of

first-order PDEs via the introduction of a set of so-called mixed variables. In the

context of compressible flows, a detailed review of commonly employed mixed vari-

ables is discussed in section 3.1. As indicated, the most common approach relies on

defining the mixed variable as the gradient of the so-called primal variable U , namely

Q =∇U , such as in Peraire et al. (2010), Nguyen and Peraire (2012), Woopen et al.

(2014) or Fernández et al. (2017). Nonetheless, this choice leads to the introduction of

a mixed variable, associated with the gradient of density, which is redundant since the

mass conservation equation is a first-order PDE. In addition, several nonlinearities

appear in the resulting expressions to compute the viscous stress and the heat flux

starting from U and Q. Alternatively, the proposed FCFV scheme follows the HDG

formulation described in chapter 3 and only two mixed variables, i.e. the deviatoric

strain rate tensor and the gradient of temperature, are considered, namely

εd = 2∇Sv − 2

3
(∇·v)Insd , φ =∇T. (2.12)

Remark 2.4 (Deviatoric strain rate). It is worth noticing that the deviatoric strain

rate tensor can be expressed as a function of the gradient of velocity as εd = D∇Sv,

where the linear operator D is defined as

DW =
(
W +W T

)
− 2

3
tr(W )I. (2.13)

Interested readers are referred to appendix A for the details concerning the construc-

tion of the operator D and its implementation.

Besides reducing the number of mixed variables involved, from (2.12) it also follows

that the viscous stress tensor and the heat flux vector in equations (2.4) and .2.5 can

be obtained using the linear expressions

σd =
µ

Re
εd, q =

µ

RePr
φ. (2.14)

2.2.2 A mixed hybrid finite volume framework

The FCFV method solves the compressible Navier-Stokes equations in two stages.

First, an independent hybrid variable Û , representing the vector of conservative vari-
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2. A face-centred finite volume method for compressible flows

ables on the mesh faces Γ ∪ ∂Ω, is introduced. Equation (2.1) is thus rewritten in

each cell Ωe, e = 1, . . . , nel as

εd −D∇Sv = 0 in Ωe × (0,Tend],

φ−∇T = 0 in Ωe × (0,Tend],

∂U

∂t
+∇·

(
F (U)−G(U , εd,φ)

)
= 0 in Ωe × (0,Tend],

U = U 0 in Ωe × {0},

U = Û on ∂Ωe × (0,Tend].

(2.15)

Equation (2.15) represents the nel FCFV local problems. They define the vector

of conservative variables and the mixed variables (U , εd,φ) in each cell as functions

of the hybrid vector Û on the cell faces, in order to reduce the global number of

unknowns of the problem.

Second, the vector Û of conservative variables on the faces is computed by solv-

ing the FCFV global problem, which prescribes the continuity of the conservative

variables and of the normal fluxes on Γ and the boundary conditions on ∂Ω, namely
JU ⊗ nK = 0 on Γ× (0,Tend],

J
(
F (U )−G(U , εd,φ)

)
nK = 0 on Γ× (0,Tend],

B̂(U , Û , εd,φ) = 0, on ∂Ω× (0,Tend],

(2.16)

where n stands for the outward normal vector to the cell face and J}K = }+ + }−

denotes the jump operator defined on an internal face as the sum of the values in the

neighbouring elements Ω+ and Ω−, respectively, as detailed by Montlaur et al. (2008).

The trace boundary operator B̂(U , Û , εd,φ) imposes the boundary conditions on ∂Ω

exploiting the hybrid variable, as detailed in section 2.2.3.

It is worth noticing that the first condition in equation (2.16) is automatically

satisfied due to the Dirichlet boundary conditions imposed in the local problems (2.15)

and because of the unique definition of the hybrid variable Û on each face.

2.2.3 Boundary conditions in hybridised formulations

The global problem (2.27) imposes boundary conditions via B̂ = B̂(U , Û , εd,φ), the

traces of the corresponding boundary condition operator on the external interface.

Following the philosophy of the works by Peraire et al. (2010),Nguyen and Peraire

(2012), Fernández et al. (2017) and Mengaldo et al. (2014), different definitions of
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2.2. FCFV formulation for compressible flows

boundary conditions that commonly arise in simulations of compressible flow prob-

lems are presented in table 2.1.

Let the boundary ∂Ω be partitioned as ∂Ω = Γ∞ ∪ Γout ∪ Γad ∪ Γiso ∪ Γinv, where

the introduced portions are disjoint by pairs. From the modelling viewpoint, Γ∞

refers to a far-field boundary, Γout is a subsonic outlet with imposed pressure, Γad

and Γiso denote adiabatic and isothermal walls, respectively, whereas Γinv represents

a symmetry boundary or an inviscid wall with slip conditions.

Table 2.1: Definition of boundary conditions for compressible flow problems using a hybrid
discretisation.

Γ∞ Far-field, subsonic inlet, supersonic inlet/outlet

B̂ = A+
n (Û)(U − Û) +A−n (Û)(U∞ − Û)

Γout Subsonic outlet (pressure outlet)

B̂ =

{
ρ− ρ̂, [ρv − ρ̂v]T ,

pout

γ − 1
+
ρ‖v‖2

2
− ρ̂E

}T
Γad Adiabatic wall

B̂ =
{
ρ− ρ̂, ρ̂vT , µ

RePr
φn− τ dρE(ρE − ρ̂E)

}T
Γiso Isothermal wall

B̂ =

{
ρ− ρ̂, ρ̂vT , ρTw

γ
− ρ̂E

}T
Γinv Symmetry surface or inviscid wall

B̂ = {ρ− ρ̂, [(Insd − n⊗ n)ρv − ρ̂v]T , ρE − ρ̂E}T

In the expressions listed in table 2.1, U∞, pout and Tw denote free-stream values of

the conserved variables at the far-field and prescribed values of outflow pressure and

wall temperature, respectively. Additionally, τ dρE = 1/ [(γ − 1)M2
∞RePr] is a diffusive

stabilisation term for the heat flux.

Furthermore, note that inlet and outlet boundaries on Γ∞ are identified through

a 1D characteristics analysis in the direction of the outward normal to the boundary.

More precisely, A±n := (An ± |An|)/2 denote the positive and negative parts of

the matrix An(Û) and they are defined exploiting the spectral decomposition of

the Jacobian matrix of the convective flux in the normal direction to the boundary,

namely An(Û) := [∂F (Û)/∂Û ] · n = RΛL. Additionally, |An(Û)| := R|Λ|L and

the matrix |Λ| is a diagonal matrix containing the absolute value of the eigenvalues

in Λ.
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2. A face-centred finite volume method for compressible flows

The expression of the matrices of eigenvectors and eigenvalues, R, L and Λ, can be

found in the work by Rohde (2001).

2.2.4 Integral form of the FCFV local and global problems

For each cell Ωe, e = 1, . . . , nel, the integral form of the FCFV local problem is

obtained by applying the divergence theorem to equation (2.15). Given U = U 0 at

time t = 0, it holds that ∫
Ωe

εd dΩ−
∫
∂Ωe

Dv̂ ⊗ n dΓ = 0, (2.17a)∫
Ωe

φ dΩ−
∫
∂Ωe

T̂n dΓ = 0, (2.17b)∫
Ωe

∂U

∂t
dΩ +

∫
∂Ωe

(
F (U )n
∧

−G(U , εd,φ)n
∧)

dΓ = 0, (2.17c)

where v̂ and T̂ denote the velocity and temperature fields on the cell faces ∂Ωe,

respectively, and they are defined using the hybrid vector Û of conservative variables.

This problem corresponds to the hybridisation step of the FCFV method: the goal

is to eliminate the unknowns (U , εd,φ) within each cell by expressing them in terms

of the hybrid variable Û .

The unknown Û is thus computed by means of the global problem (2.16) whose

integral form is

nel∑
e=1

{∫
∂Ωe\∂Ω

(
F (U)n
∧

−G(U , εd,φ)n
∧)

dΓ +

∫
∂Ωe∩∂Ω

B̂(U , Û , εd,φ) dΓ

}
= 0.

(2.18)

The terms F (U )n
∧

and G(U , εd,φ)n
∧

appearing in equations (2.17c) and (2.18)

stand for the convection and diffusion numerical fluxes of the conservation equations,

respectively. It is worth recalling that the approximation of the numerical fluxes

in the FCFV method plays a crucial role in the accuracy and stability of the com-

puted solution, see Sevilla et al. (2018, 2019), Vieira et al. (2020) or Giacomini and

Sevilla (2020). Therefore, following the rationale introduced by Peraire et al. (2010,

2011), Nguyen and Peraire (2012) or Fernández et al. (2017) for high-order HDG

discretisations, the traces of the numerical fluxes on the cell faces are defined as

F (U)n
∧

= F (Û)n+ τ a(Û) (U − Û), (2.19a)
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2.2. FCFV formulation for compressible flows

G(U , εd,φ)n
∧

= G(Û , εd,φ)n− τ d (U − Û). (2.19b)

On the one hand, the stabilisation tensor τ a is associated with convection phe-

nomena. Different expressions of τ a are derived from the theory of Riemann solvers

for nonlinear hyperbolic PDEs, as described in section 2.2.5. On the other hand, the

term τ d stands for the stabilisation tensor related to viscous effects and is defined by

means of the diagonal matrix

τ d =
1

Re
diag

(
0,1nsd ,

1

(γ − 1)M2
∞Pr

)
, (2.20)

being 1nsd an nsd-dimensional vector of ones.

Remark 2.5 (FCFV method for inviscid Euler equations). The inviscid Euler equa-

tions are obtained as the limit of the compressible Navier-Stokes equations when

Re → ∞. Setting G = 0, equation (2.1) thus reduces to the well-known system

of first-order hyperbolic PDEs modelling inviscid compressible flows. For each cell

Ωe, e = 1, . . . , nel, the corresponding FCFV local problem for the Euler equations

is obtained from equation (2.17) by neglecting the mixed variables and the viscous

term, namely ∫
Ωe

∂U

∂t
dΩ +

∫
∂Ωe

F (U)n
∧

dΓ = 0. (2.21)

Similarly, the global problem follows from the simplification of equation (2.18) as

nel∑
e=1

{∫
∂Ωe\∂Ω

F (U)n
∧

dΓ +

∫
∂Ωe∩∂Ω

B̂(U , Û) dΓ

}
= 0. (2.22)

2.2.5 Riemann solvers for the FCFV method

In the context of the FCFV method, Riemann solvers are defined implicitly within the

convection fluxes, see equation (2.19a), via appropriate expressions of the stabilisation

term τ a. Following the detailed derivation described in section 3.4 for hybridised

formulations, the stabilisation terms leading to the Lax-Friedrichs, Roe, HLL and

HLLEM numerical fluxes are presented.

The following notation employed by the corresponding Riemann solvers is recalled.

First, letAn(Û) := [∂F (Û)/∂Û ]·n be the Jacobian of the convective fluxes along the

normal direction to a cell face. Moreover, denote by λ̂max := |v̂ ·n|+ ĉ the maximum

eigenvalue in absolute value of the matrix An(Û), v̂ and ĉ being the velocity and the

speed of sound evaluated from Û , respectively.
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2. A face-centred finite volume method for compressible flows

2.2.5.1 Lax-Friedrichs Riemann solver

The FCFV stabilisation tensor inspired by the Lax-Friedrichs Riemann solver, see Toro

(2009), is defined as

τ a = λ̂maxInsd+2. (2.23a)

with λ̂max := |v̂ ·n|+ĉ being the maximum eigenvalue in absolute value of the Jacobian

of the convective fluxes, i.e. An(Û) := [∂F (Û)/∂Û ]·n. Here, v̂ and ĉ are the velocity

and speed of sound evaluated at Û .

2.2.5.2 Roe Riemann solver

Consider the spectral decomposition An(Û) = RΛL. In addition, the diagonal

matrix Φ is given by Φ = diag (ϕ1, . . . , ϕnsd+2) where ϕi = max(|λi|, δ), δ ≥ 0 being

a user-defined parameter. The Roe Riemann solver equipped with the entropy fix

by Harten and Hyman (1983) is obtained for the FCFV method by setting

τ a = |Aδ
n(Û)| = RΦR−1. (2.23b)

The parameter δ represents the threshold value of the aforementioned Harten-Hyman

entropy fix. Such correction aims to remedy the failure of entropy conditions of the

Roe solver, which may produce nonphysical solutions in transonic and supersonic

cases. It is worth noticing that for δ = 0, Φ = |Λ| and the traditional Roe Riemann

solver is retrieved, namely τ a = |An(Û)|.

2.2.5.3 HLL Riemann solver

The Riemann solver by Harten et al. (1983) (HLL) is devised to recover the Rankine-

Hugoniot condition, for a simplified scenario in which contact discontinuities are

neglected, without the need of any user-defined parameter. The resulting positivity-

preserving Riemann solver for the FCFV method is given by

τ a = s+Insd+2, (2.23c)

where s+ := max(0, v̂ ·n+ ĉ) is an estimate of the largest wave speed of the Riemann

problem.
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2.2. FCFV formulation for compressible flows

2.2.5.4 HLLEM Riemann solver

The HLLEM Riemann solver was devised by Einfeldt (1988) and Einfeldt et al. (1991)

in order to exploit both the positivity-preserving properties of the HLL Riemann

solver and the capability of Roe’s method to capture shear layers. Accordingly, the

corresponding stabilisation tensor for hybridised formulations is constructed as

τ a = s+θ(Û ), (2.23d)

where s+ is the HLL wave speed estimate and θ(Û) = RΘL replaces the identity

Insd+2 in equation (2.23c). Note that the definition of θ(Û) exploits the matrices of

eigenvectors arising from the spectral decomposition of An(Û), whereas the diagonal

matrix Θ is given by Θ = diag
(

1, θ̂1nsd , 1
)

, where θ̂ = |v̂ · n|/λ̂max.

2.2.6 FCFV discrete problem

The discrete form of the FCFV method is obtained by introducing the definition (2.19)

of the numerical fluxes into the local (2.17) and global (2.18) problems. In addition,

the vector of conservative variablesU and the mixed variables εd and φ are discretised

using a constant value at the centroid of each cell, whereas a constant approxima-

tion at the barycentre of the faces is employed for the hybrid vector Û . Finally, a

quadrature rule based on a single integration point is utilised to evaluate the integral

quantities on cells and faces.

For each cell Ωe, the sets of all, Ae, internal, Ie, and boundary, Ee, faces are

introduced

Ae := {1, . . . , nefa}, Ie := {j ∈ Ae | Γe,j ∩ Γ 6= ∅}, Ee := Ae \ Ie. (2.24)

Moreover, χIe and χEe are defined to represent the indicator functions associated with

the sets Ie and Ee, respectively.

The semi-discrete form of the FCFV local problem (2.17) is: for e = 1, . . . , nel,

given the initial state Ue = U 0
e at t = 0 and the hybrid vector Ûj on the faces

Γe,j, j = 1, . . . , nefa, compute (Ue, ε
d
e,φe) that satisfy

|Ωe|εde −
∑
j∈Ae

|Γe,j|Dv̂j ⊗ nj = 0, (2.25a)

|Ωe|φe −
∑
j∈Ae

|Γe,j|T̂jnj = 0, (2.25b)
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2. A face-centred finite volume method for compressible flows

∫
Ωe

∂Ue
∂t

dΩ +
∑
j∈Ae

|Γe,j|
{
F (Ûj)nj −G(Ûj, ε

d
e,φe)nj

+
(
τ a(Ûj) + τ d

)
(Ue − Ûj)

}
= 0.

(2.25c)

Remark 2.6 (Symmetry of the mixed variable). The mixed variable εd is a second-

order symmetric tensor commonly represented using a matrix of dimension nsd× nsd.

In order to exploit the symmetry property in its discretisation, Voigt notation is

employed to store only its msd = nsd(nsd + 1)/2 non-redundant components. This ap-

proach, detailed in appendix A, was first proposed in the context of hybrid discreti-

sation methods for high-order HDG formulations by Giacomini et al. (2018, 2020)

and Sevilla et al. (2018), and later exploited also for FCFV approaches by Sevilla

et al. (2019). For the simulation of weakly-compressible flows, this approximation

of the deviatoric strain rate tensor was discussed in La Spina et al. (2020) and is

also employed for the high-order HDG formulation of compressible flows detailed in

chapter 3.

Remark 2.7 (Voigt notation for the deviatoric strain rate). Because of the partic-

ular definition of the mixed variable εd, a symmetric tensor or order nsd, its discrete

counterpart εde can be expressed employing Voigt notation. In this manner, the re-

arrangement of the non-redundant components of the nsd × nsd tensor into an msd-

dimensional vector, with msd = nsd(nsd + 1)/2, is exploited. This approach follows

directly from the studies by Sevilla et al. (2018) and Giacomini et al. (2018, 2020).

Remark 2.8 (Pseudo-time in steady-state flows). The present work focuses on the

development of a novel FV spatial discretisation for steady-state compressible flows.

In this context, t represents an artificial pseudo-time and time marching algorithms

are introduced to speed-up the convergence of the nonlinear solver, as detailed as

follows.

Remark 2.9 (Time integration scheme). In order to obtain the fully-discrete form

of the local problem (2.25c), an appropriate time integration scheme needs to be

introduced. As previously mentioned, the present work proposes a novel FV spatial

discretisations and the numerical examples in sections 2.3 and 2.4 focus on steady-

state flows, whence this term is neglected. Nonetheless, it is worth mentioning that

time marching based on an artificial time is a common relaxation approach to speed-

up the convergence of a nonlinear solver. In this context, time derivative may be
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2.2. FCFV formulation for compressible flows

discretised using a backward Euler scheme, that is∫
Ωe

∂Ue
∂t

dΩ ' |Ωe|
∆t

(
Un+1
e −Un

e

)
, (2.26)

where ∆t is the artificial time step. Note that similar FCFV discrete problems are

obtained using other implicit time integration schemes, such as higher-order back-

ward difference formulae (BDF), providing additional accuracy in the simulation of

transient phenomena, see for instance Nguyen and Peraire (2012), Jaust and Schütz

(2014) or Komala-Sheshachala et al. (2020). Of course, in the case of transient sim-

ulations, Newton-Raphson iterations are performed at each time step to solve the

nonlinear problem.

In a similar fashion, the discrete form of the FCFV global problem (2.18) is:

compute the hybrid vector Û such that

nel∑
e=1

|Γe,i|
{[
F (Ûi)ni −G(Ûi, ε

d
e,φe)ni +

(
τ a(Ûi) + τ d

)
(Ue − Ûi)

]
χIe(i)

+ B̂(U , Û , εd,φ)χEe(i)
}

= 0, (2.27)

for all i ∈ Ae.
It is worth noticing that both the local (2.25) and global (2.27) problems are

nonlinear. More precisely, let Qe = (εde,φe) be the set of mixed variables introduced

by the FCFV formulation in the cell Ωe. The resulting system of algebraic-differential

equations arising from the local problem (2.25) is

Qe = Qe(Û), (2.28a)

|Ωe|
dUe

dt
+ Re(Ue,Qe, Û) = 0, (2.28b)

where Ue and Qe are the vectors containing the values of the local and mixed variables,

respectively, at the centroid of the cell, whereas the vector Û collects the values of the

hybrid variable at the barycentres of its faces. On the one hand, equations (2.25a)

and (2.25b) provide analytical expressions of the mixed variables in terms of the

hybrid unknown, see equation (2.28a). On the other hand, equation (2.25c) is nonlin-

ear and the residual vector obtained from its spatial discretisation is denoted by Re.

Upon linearisation of equation (2.28b) via a Newton-Raphson procedure, the nel local

problems allow to express Ue and Qe in each cell Ωe, e = 1, . . . , nel in terms of the
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2. A face-centred finite volume method for compressible flows

unknown Û on its faces. The resulting expressions are plugged into equation (2.27)

and all the degrees of freedom inside the cells are eliminated from the global problem,

leading to
nel∑
e=1

R̂e(Û) = 0, (2.29)

where R̂e is the nonlinear residual vector related to the unknowns Û associated with

cell Ωe. The global problem (2.29), whose structure arising from the hybridisation

procedure is detailed as follows, is thus solved by means of a Newton-Raphson lin-

earisation.

2.2.7 Hybridisation of the FCFV solver

The hybrid nature of the FCFV method allows the solution procedure to be featured

in two stages, see 2.2.4. First, the nel local problems (2.25) are devised, in order to

eliminate the unknowns (Ue, ε
d
e,φe) within each cell by expressing them as functions

of the hybrid vector Û . Stemming from equation (2.28), the FCFV local problem for

Ωe, e = 1, . . . , nel is given by

Ae
QQQe = Ae

QÛ
Û + Fe

Q, (2.30a)

Ae
UUUe + Ae

UQQe = Ae
UÛ

Û + Fe
U , (2.30b)

where the matrices and vectors above arise from the Newton-Raphson linearisation

of nonlinear system of equations (2.25).

Following from the constant degree of approximation utilised to approximate Ue

and Qe at the centroid of each cell and Û at the barycentre of each face and from the

quadrature rule employing a single integration point on cell and faces, the primal,

Ue, and mixed, Qe, variables are expressed as functions of the hybrid unknown Û in

a decoupled manner, namely

Qe =
[
Ae
QQ

]−1
Ae
QÛ

Û +
[
Ae
QQ

]−1
Fe
Q, (2.31a)

Ue = [Ae
UU ]−1

(
Ae
UÛ
−Ae

UQ

[
Ae
QQ

]−1
Ae
QÛ

)
Û + [Ae

UU ]−1
(
Fe
U −Ae

UQ

[
Ae
QQ

]−1
Fe
Q

)
.

(2.31b)

It is worth noticing that the computations in equation (2.31) are independent cell-by-

cell and only involve the inverses of matrices Ae
UU and Ae

QQ. The former is a matrix

of dimension (nsd + 2) × (nsd + 2), that is, 4 × 4 in 2D and 5 × 5 in 3D. The latter
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is the identity matrix of dimension (msd + nsd) × (msd + nsd) (i.e., 5 × 5 in 2D and

9× 9 in 3D) scaled by the volume of the cell Ωe. Hence, this step requires a reduced

computational effort and can be easily performed in parallel.

Similarly, upon linearisation via the Newton-Raphson method, the global prob-

lem (2.27) is expressed as

nel∑
e=1

{
Ae
ÛÛ

Û +
[
Ae
ÛU

Ae
ÛQ

]{Ue

Qe

}
− Fe

Û

}
= 0. (2.32)

By plugging the expressions obtained from equation (2.31) into equation (2.32), the

number of unknowns is reduced by eliminating the local unknowns Ue and Qe from

the global problem. Hence, at each Newton-Raphson iteration, the linear system

K∆̂U = F, (2.33)

is solved, where the matrix K and the vector F are obtained from the assembly of

the contributions from each cell, namely

Ke = Ae
ÛÛ

+
[
Ae
ÛU

Ae
ÛQ

][Ae
UU ]−1

(
Ae
UÛ
−Ae

UQ

[
Ae
QQ

]−1
Ae
QÛ

)
[
Ae
QQ

]−1
Ae
QÛ

 , (2.34a)

Fe = Fe
Û
−
[
Ae
ÛU

Ae
ÛQ

]{[Ae
UU ]−1

(
Fe
U −Ae

UQ

[
Ae
QQ

]−1
Fe
Q

)
[
Ae
QQ

]−1
Fe
Q

}
. (2.34b)

2.3 Numerical convergence studies

In this section, the optimal convergence of the FCFV method is examined for different

compressible flows, namely inviscid and viscous laminar flows. The accuracy of the

method is evaluated using different types of meshes, employing both triangular and

quadrilateral elements, with special attention to the robustness of the methodology

to cell distortion and stretching.

2.3.1 Inviscid Ringleb flow

The convergence properties of the FCFV method in the inviscid limit are examined

through the Ringleb flow problem. This 2D example describes a smooth transonic

flow, for which there exists an analytical expression of the solution, obtained via the

hodograph method as described by Chiocchia (1985).
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At a given point (x, y), the solution is obtained as result of the following nonlinear

implicit equation (
x+

J

2

)2

+ y2 =
1

4ρ2V 4
, (2.35)

where c is the speed of sound, whereas density ρ, velocity magnitude V , pressure p

and J are determined as

ρ = c2/(γ−1), V =

√
2(1− c2)

γ − 1
, p =

1

γ
c2γ/(γ−1), J =

1

c
+

1

3c3
+

1

5c5
−1

2
log

(
1 + c

1− c

)
.

(2.36)

Finally, the velocity vector field is given by

v =

{
−sgn (y)V sin θ

V cos θ

}
(2.37)

being sgn (·) the sign operator, sin θ := ΨV and

Ψ :=

√
1

2V 2
+ ρ

(
x+

J

2

)
. (2.38)

Remark 2.10 (Domain of the Ringleb solution). Classicaly, the Ringleb flow problem

has been solved in a curvilinear domain symbolising a channel around a symmetric

blunt obstacle, bounded by two streamlines of the flowfield, as employed by Bassi

and Rebay (1997b), Hartmann and Houston (2003), Wang and Liu (2006), Dumb-

ser et al. (2007) or Vymazal et al. (2015). In such domain, the flow is transonic,

displaying a large supersonic region near the nose of the blunt body. Alternatively,

this problem has also been studied in rectangular domains located at different re-

gions, thus avoiding the introduction of geometric errors in the approximation of

the curved boundaries. Numerical tests performed both in regions of subsonic or

transonic speeds have been presented in the literature by Nguyen and Peraire (2012)

and Komala-Sheshachala et al. (2020), respectively.

In this work, the Ringleb problem is solved in the domain of transonic flow Ω =

[0, 1]2, such as Komala-Sheshachala et al. (2020), with a far-field boundary condition

imposed on ∂Ω. Figure 2.1 displays two levels of refinement of the domain using

uniform meshes of triangular and quadrilateral cells.

The corresponding approximation of the Mach number distribution on these meshes

is reported in figure 2.2.
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(a) Mesh M2 (b) Mesh M4 (c) Mesh M2 (d) Mesh M4

Figure 2.1: Uniform (a-b) quadrilateral and (c-d) triangular meshes of Ω = [0, 1]2.

(a) Quadrilaterals M2 (b) Quadrilaterals M4 (c) Triangles M2 (d) Triangles M4

Figure 2.2: Ringleb flow - Mach number distribution using the (a-b) quadrilateral and
(c-d) triangular meshes in Figure 2.1 employing the HLL Riemann solver.

The relative error of the numerical approximation, measured in the L2(Ω) norm

as function of the characteristic mesh size h, is examined for the the four Riemann

solvers discussed in section 2.2.5. The h-convergence study is performed using the

sets of meshes introduced above and the results are displayed in figure 2.3.

(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

Figure 2.3: Ringleb flow - h-convergence of the error of (a) density, (b) momentum and (c)
energy in the L2(Ω) norm, using Lax-Friedrichs (LF), Roe, HLL and HLLEM
Riemann solvers and uniform meshes of triangles and quadrilaterals.

Optimal convergence of order 1 is obtained for the approximation of the conser-

vative variables regardless of the Riemann solver utilised, showing the robustness of
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2. A face-centred finite volume method for compressible flows

the FCFV approach in the inviscid case. The method displays optimal convergence

properties using both triangular and quadrilateral cells. Errors of the order of 10−3

are achieved, independently of the type of cells, by Roe, HLL and HLLEM Riemann

solvers in the approximation of density and energy. Concerning the momentum, sim-

ilar levels of accuracy are obtained using the three Riemann solvers on triangular

meshes, whereas the errors are slightly higher using quadrilateral cells. The Lax-

Friedrichs (LF) numerical flux displays the worst performance among the analysed

Riemann solvers, showing errors almost half an order of magnitude and almost one

order of magnitude higher using triangular and quadrilateral meshes, respectively.

2.3.2 Viscous laminar Couette flow

A Couette flow with source term, introduced by Nguyen and Peraire (2012) or Schütz

et al. (2012), is defined in the domain Ω = [0, 1]2 to examine the convergence proper-

ties of the FCFV method in the viscous laminar regime. The analytical expressions

of velocity, pressure and temperature, are

v =

{
y log(1 + y)

0

}
, p =

1

γM2
∞

T =
1

(γ − 1)M2
∞

[
αc + y(βc − αc) +

(γ − 1)M2
∞Pr

2
y(1− y)

]
,

(2.39)

where αc = 0.8, βc = 0.85 and the free-stream Mach number is set to M∞ = 0.15

Assuming constant viscosity, the source term is determined from the exact solution

and is given by

S =
−1

Re

{
0,

2 + y

(1 + y)2
, 0, log2(1 + y) +

y log(1 + y)

1 + y
+
y(3 + 2y) log(1 + y)− 2y − 1

(1 + y)2

}T
.

(2.40)

Finally, the boundary conditions are prescribed on ∂Ω employing the expression of

the analytical solution.

The h-convergence study is performed in the meshes of triangular cells in fig-

ure 2.1. Figure 2.4 reports the results using different Riemann solvers and for

Reynolds number Re = 1 and Re = 100.

The approximation of the conservative variables displays optimal convergence re-

gardless of the Reynolds number and of the employed Riemann solver. The proposed

method is thus able to provide optimal accuracy in the conservative quantities also in
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(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

(d) Viscous stress, σd (e) Heat flux, q

Figure 2.4: Couette flow - h-convergence of the error of (a) density, (b) momentum (c)
energy, (d) viscous stress tensor and (e) heat flux in the L2(Ω) norm, using
Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers and Reynolds
number Re = 1 and Re = 100.

case viscous phenomena are considered, with errors between 10−3 and 10−5. Regard-

ing the viscous stress tensor and the heat flux, optimal accuracy is achieved using

HLLEM and Roe Riemann solvers independently of the Reynolds number, whereas

the Lax-Friedrichs and HLL fluxes appear to be more sensitive to increasing values

of the Reynolds number.

Finally, it is worth mentioning that the test case under analysis features an in-

compressible flow (∇ · v = 0, M∞ = 0.15). Despite this additional difficulty, the

FCFV method is capable of computing an accurate approximation without the need

of introducing specific pressure corrections like the well-known SIMPLE algorithm

described by Patankar and Spalding (1972). Thus, an important advantage of the

proposed methodology is its robustness in the incompressible limit as further detailed

in section 2.4.3.
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2.3.3 Influence of cell distortion and stretching

In this section, the sensitivity of the FCFV method to cell distortion and stretching

is investigated. For the sake of brevity, this study focuses on the viscous case in order

to analyse the effect of mesh regularity on both conservative and mixed variables. To

this end, two sets of meshes are generated for the domain Ω = [0, 1]2 by modifying

the regular ones employed in the previous examples.

First, a set of highly distorted meshes is generated by introducing a perturba-

tion on the position of the interior nodes of the regular meshes illustrated in fig-

ure 4.1.First, a set of highly distorted meshes is generated by introducing a per-

turbation on the position of the interior nodes of the regular meshes illustrated in

figure 4.1.

In particular, for a given node i, its new position is defined as x̃i = xi + ri, ri

being an nsd-dimensional vector whose components are randomly generated within

the interval [−`min/3, `min/3], where `min denotes the minimum edge length of the

regular mesh. The third and fifth level of refinement of the meshes featuring distorted

quadrilateral and triangular cells are illustrated in figure 2.5.

(a) Distorted mesh
M3D

(b) Distorted mesh
M5D

(c) Distorted mesh
M3D

(d) Distorted mesh
M5D

Figure 2.5: Distorted meshes of Ω = [0, 1]2 featuring (a-b) quadrilateral and (c-d) trian-
gular cells.

The previously introduced Couette flow example for Reynolds number Re = 100

is also employed for the current sensitivity study. More precisely, figure 2.6 shows

the approximation of the Mach number distribution on the meshes of distorted cells

in figure 2.5 employing the HLLEM Riemann solver.

Second, a set of meshes with stretching near the bottom boundary is produced.

For its construction in 2D, the vertical coordinate of the first mesh layer is fixed at

the desired stretching factor s. Then, the vertical coordinate of the subsequent layers
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(a) Quadrilaterals M3D (b) Quadrilaterals M5D (c) Triangles M3D (d) Triangles M5D

Figure 2.6: Couette flow - Mach number distribution using the distorted (a-b) quadrilat-
eral and (c-d) triangular meshes in Figure 2.5 employing the HLLEM Riemann
solver.

is defined as

yk = yk−1 +
h

s
βk−1, for k = 2, . . . , Ny + 1 (2.41)

where h is the maximum edge length of the corresponding regular mesh, Ny is the

number of cells in the vertical direction and the growth rate factor β is computed by

imposing that the vertical coordinate of the last layer is one, that is by finding the

roots of
h

s
βNy − β + 1− h

s
= 0. (2.42)

Figure 2.7 reports the second level of refinement of a set of triangular meshes for

different levels of stretching s.

(a) s = 0 (b) s = 10 (c) s = 100 (d) s = 1, 000

Figure 2.7: Second level of refinement of the stretched meshes of Ω = [0, 1]2 for different
values of the stretching factor s.

A quantitative evaluation of the influence of cell distortion and stretching on the

accuracy of the FCFV approximation is performed via an h-convergence study of the

error, measured in the L2(Ω) norm, using the HLLEM Riemann solver. The results,

reported in figures 2.8(a) and 2.8(b), respectively, show that optimal convergence of

order 1 is achieved for all the variables, independently of the distortion or of the
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stretching factor of its cells. In addition, the precision of the numerical approxima-

tion also results unaffected by the loss of orthogonality and loss of isotropy of the

mesh. Indeed, by comparing the results of figure 2.8 with the ones in figure 2.4,

almost identical levels of accuracy are obtained in the L2(Ω) error of the approximate

solutions using meshes with uniform, distorted or stretched cells.

(a) Effect of distortion on mesh convergence (b) Effect of stretching on mesh convergence

Figure 2.8: Couette flow - h-convergence of the error in the L2(Ω) norm of density, mo-
mentum, energy, viscous stress tensor and heat flux in (a) distorted and (b)
stretched meshes, using the HLLEM Riemann solver and for Reynolds number
Re = 100.

2.4 Numerical benchmarks

In this section, a set of numerical examples is presented to show the capabilities of

the proposed FCFV method to simulate inviscid and viscous compressible flows at

different regimes.

2.4.1 Inviscid transonic flow over a NACA 0012 profile

The first test case considers the inviscid transonic flow over a NACA 0012 aerofoil

at free-stream Mach number M∞ = 0.8 and angle of attack α = 1.25◦. This classical

benchmark for inviscid compressible flows, proposed as test case in Kroll (2009) and

employed in different studies such as by Sevilla et al. (2013), is proposed to evaluate

the ability of the FCFV solver to capture flow solutions involving shock waves. More
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precisely, this benchmark is used to demonstrate the importance of the choice of the

Riemann solver in the accuracy and stability of the FCFV approximate solution.

Unstructured meshes of triangular cells with non-uniform refinements on the sur-

face of the aerofoil and at the leading and trailing edges are used for the simulation.

Figure 2.9 reports the details of a coarse and a fine mesh featuring 89,250 and 712,164

triangular cells, respectively. The far-field boundary is located at 15 chord units away

from the profile and the aerofoil surface is defined as an inviscid wall.

(a) Mesh of the computational domain

(b) Coarse mesh

(c) Fine mesh

Figure 2.9: Mesh refinement for the inviscid transonic flow over a NACA 0012 profile.

The Mach number and the pressure distributions computed on the fine mesh using

the HLL Riemann solver are displayed in figure 2.10. Both the strong shock wave on

the upper surface and the weaker shock in the lower part of the aerofoil are accurately

represented. It is worth noticing that the FCFV method provides non-oscillatory so-

lutions in presence of abrupt variations without the need of any shock capturing or

limiting mechanism. This property follows form the result on the monotonicity of

first-order schemes by Godunov and Bohachevsky (1959). Hence, the FCFV method

with the HLL numerical flux ensures the positivity properties of the approximate

solution. In addition, the choice of the Riemann solver also controls the amount of

numerical diffusion introduced by the FCFV method, influencing the overall accu-

racy of the computed solution. A qualitative comparison of the different Riemann

solvers is performed in figure 2.11 by illustrating the pressure distribution in the fine

mesh at different sections along the vertical body axis. The results display that the
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(a) Mach (b) Pressure, p/p∞

Figure 2.10: Inviscid transonic flow over a NACA 0012 profile - (a) Mach number and (b)
pressure distributions around the aerofoil computed on the fine mesh using
the HLL Riemann solver.

Lax-Friedrichs numerical flux provides non-oscillatory solutions. Nonetheless, it in-

troduces excessive numerical dissipation leading to a smeared representation of the

shock wave. The Roe Riemann solver is equipped with a Harten-Hyman entropy fix:

without this correction, the method fails to converge and nonphysical solutions with

localised overshoots appear. On the one hand, using an entropy fix with threshold

parameter δ = 0.1, the Roe solver shows insufficient numerical dissipation producing

an approximation with oscillations in the vicinity of the shock wave. On the other

hand, a threshold value δ = 0.15 for the Roe solver leads to a physically-admissible

and accurate solution. It is worth noticing that the parameter δ, which is problem-

dependent, needs to be appropriately tuned a priori by the user. Finally, HLL-type

Riemann solvers exhibit their ability to produce positivity-preserving and accurate

solutions in presence of shocks without the need of any user-defined parameter, thus

remedying the aforementioned issue of the Roe solver.

To further analyse the accuracy of the Riemann solvers for the FCFV method,

the numerical computation of the pressure coefficient over the aerofoil surface is com-

pared with experimental data by Yoshihara and Sacher (1985). Figure 2.12 confirms

the overdissipative nature of the Lax-Friedrichs solution which shows a smeared rep-

resentation of the shock wave. The HLL, HLLEM and the Roe solvers (the latter with

an entropy fix parameter δ = 0.15) produce nearly identical solutions with a sharp
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(a) y/c = 0.50 (b) y/c = 0.25

(c) y/c = 0.10 (d) y/c = −0.075

Figure 2.11: Inviscid transonic flow over a NACA 0012 profile - Pressure distribution
at different sections parallel to the aerofoil chord using different Riemann
solvers.

representation of the shock wave showing excellent agreement with the experimental

data.

Figure 2.12: Inviscid transonic flow over a NACA 0012 profile - Pressure coefficient around
the aerofoil surface computed on the fine mesh using Lax-Friedrichs (LF),
Roe, HLL and HLLEM Riemann solvers.

Finally, a quantitative comparison is performed by computing the lift and drag
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coefficients, reported in table 2.2. According to experimental data by Thibert et al.

(1979), acceptable values lie within the range [0.342, 0.352] for the lift and [0.0217, 0.0227]

for the drag coefficient, accounting for a tolerance of 5 lift and drag counts.

Table 2.2: Inviscid transonic flow over a NACA 0012 aerofoil - Lift, Cl, and drag, Cd,
coefficients computed on the fine mesh using different Riemann solvers.

Lax-Friedrichs Roe (δ = 0.15) HLL HLLEM

Cl 0.274 0.312 0.314 0.313

Cd 0.0279 0.0222 0.0236 0.0223

The reported values for the drag coefficient employing the Roe and HLLEM Rie-

mann solvers lie within the specified reference intervals, whereas the value obtained

with the HLL solution is at 9 drag counts. Regarding the lift coefficient, the obtained

results show an underestimation of this quantity, regardless of the employed Riemann

solver. It is worth noticing that the proximity of the far-field boundary has a strong

influence on the precision of the computed quantities, as reported by Yano and Dar-

mofal (2012) or Wang et al. (2013). Indeed, the presented results are in quantitative

agreement with references employing a similar domain, see e.g. Sevilla et al. (2013)

where the far-field boundary is located at 20 chord units from the aerofoil. In the

work by Sevilla et al. (2013), the value of the lift coefficient computed using a first-

order stabilised finite element approximation is 0.308, differing between 4 and 6 lift

counts from the FCFV solution provided by Roe, HLL and HLLEM Riemann solvers.

2.4.2 Viscous laminar transonic flow over a NACA 0012

aerofoil

The next example consists of the viscous laminar transonic flow over a NACA 0012

profile at free-stream Mach number M∞ = 0.8 and angle of attack α = 10◦. The

Reynolds number, based on the chord length of the aerofoil, is Re = 500. This

benchmark is presented to establish the capability of the FCFV method to concur-

rently capture abrupt variations due to shock waves and viscous effects in boundary

layers and has been presented as test case by Bristeau et al. (1987) and employed

by Nogueira et al. (2009) or Sevilla et al. (2013) for verification purposes.

As for the meshes utilised in the previous section, a non-uniform refinement is

performed near the aerofoil surface. In addition, exploiting the information on the
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angle of attack of the free-stream, a priori mesh refinement is introduced in a region

surrounding the aerofoil, tilted 10◦ from its mean chord line, in order to accurately

capture the viscous effects of the flow in the wake of the profile. An unstructured

mesh of 1,005,199 triangular cells is displayed in figure 2.13(a) and a detail of its

refinement on the surface of the aerofoil is reported in figure 2.13(b). The far-field

boundary is located at 15 chord units from the profile and the aerofoil surface is

considered adiabatic.

(a) Mesh (b) Refinement on the surface

Figure 2.13: Mesh for the viscous laminar transonic flow over a NACA 0012 profile.

The flowfield computed with the HLLEM Riemann solver is depicted in figure 2.14.

The Mach number distribution illustrates the capacity of the method to accurately

describe the detached sonic region near the leading edge as well as the appearance of

a wake behind the profile.

The different Riemann solvers for the FCFV method are compared for this viscous

test case in figure 2.15. The results display the pressure and the skin friction coef-

ficients, computed on the aerofoil surface, as well as the numerical results obtained

by Kordulla in Bristeau et al. (1987). Similarly to the results observed in the invis-

cid simulation, the Lax-Friedrichs Riemann solver displays discrepancies with respect

to the reference curves for both the pressure and the skin friction coefficient. The

Lax-Friedrichs results are matched by the ones provided by the HLL Riemann solver

which shows an excessive numerical dissipation in the viscous boundary layer. The

overdiffusive nature of the HLL numerical flux, not observed in the inviscid case, is

attributed to its misrepresentation of contact and shear waves, as reported by Ein-

feldt (1988) and Einfeldt et al. (1991). Concerning Roe numerical flux, this Riemann

solver strongly depends upon the choice of the value of the entropy fix also in the
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(a) Mach (b) Pressure, p/p∞

Figure 2.14: Viscous laminar transonic flow over a NACA 0012 profile - (a) Mach num-
ber and (b) pressure distributions around the aerofoil computed using the
HLLEM Riemann solver.

(a) Pressure coefficient (b) Skin friction coefficient

Figure 2.15: Viscous laminar transonic flow over a NACA 0012 profile - (a) Pressure
and (b) skin friction coefficient on the aerofoil surface computed using Lax-
Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers.

viscous case. Without entropy fix (δ = 0), numerical oscillations of the solution near

the leading edge appear and larger values of the threshold parameter δ are required

to remedy this issue. For sufficiently large values of the entropy fix, the solution

computed using the Roe Riemann solver is in good agreement with the reference one.

Such an accurate approximation is also achieved by the FCFV method using the

HLLEM numerical flux, without the need of tuning any parameter.

Table 2.3 reports the values of the lift and drag coefficients, computed using

different Riemann solvers. Reference data from several numerical studies based on

various computational methods were collected by Bristeau et al. (1987), reporting
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values of the lift coefficient in the range [0.415, 0.483] and of the drag coefficient in

the interval [0.2430, 0.2868].

Table 2.3: Viscous laminar transonic flow over a NACA 0012 profile - Lift, Cl, and drag,
Cd, coefficients computed using different Riemann solvers.

Lax-Friedrichs Roe (δ = 0.1) HLL HLLEM

Cl 0.528 0.468 0.518 0.466

Cd 0.3215 0.2845 0.3135 0.2832

The excessive numerical dissipation introduced by the Lax-Friedrichs and HLL

numerical fluxes leads to estimate of the lift and drag coefficients with errors beyond

the acceptable accuracy. On the contrary, the FCFV method equipped with the

HLLEM and the Roe (with appropriate entropy fix) Riemann solvers provides values

of the lift and drag coefficients lying within the ranges of published values for this

benchmark, showing acceptable levels of accuracy also for the simulation of viscous

laminar flows.

2.4.3 Low Mach number flow over a cylinder

In this section, an incompressible flow over a 2D cylinder at angle of attack α = 0◦ is

considered, both in the inviscid and viscous laminar case. The objective is to show

the robustness of the proposed FCFV solver for compressible flows when low Mach

number flows are considered, as studied by Wong et al. (2001) and Sevilla et al.

(2013).

Unstructured meshes of triangular cells are considered for both the inviscid and

the viscous simulations. On the one hand, for the inviscid case, the mesh is isotropi-

cally refined in the vicinity of the cylinder, for a total of 359, 242 cells, as displayed in

figure 2.16(a). The far-field boundary is located at 50 chord units from the cylinder

where inviscid wall boundary conditions are imposed. On the other hand, the refine-

ment of the boundary layer and of the wake of the cylinder in the viscous simulation

leads to a mesh of 654, 194 triangular cells, reported in figure 2.16(b). In this case,

the far-field boundary is placed at 20 chord lengths from the obstacle and the surface

of the cylinder is considered adiabatic.

The isolines of the Mach number distribution computed with the HLLEM Rie-

mann solver for the inviscid flow are reported in figure 2.17 for different values of
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(a) Inviscid flow (b) Viscous flow

Figure 2.16: Meshes for the low Mach number flows over a cylinder in the inviscid and
viscous case.

the far-field condition. The results display the robustness of the FCFV solver for

low Mach number simulations, highlighting the capability of the method to devise

non-oscillatory solutions even in the incompressible limit. More precisely, the com-

puted solution is not deteriorated by the decrease of the Mach number, even when

it approaches zero. Note that the loss of symmetry of the solution is due to the

geometric error introduced by the piecewise linear approximation of the surface of

the cylinder. This well-known problem, see Bassi and Rebay (1997b), is related to

the production of nonphysical entropy by the low-order discretisation of the curved

boundary. It is worth recalling that the objective of this test is to show the ro-

bustness of the proposed method in the incompressible limit. In order to remedy the

above mentioned issue, several approaches proposed in the literature can be employed

within the FCFV paradigm. These include high-order approximation of the geom-

etry, by Bassi and Rebay (1997b), appropriate modification of the wall boundary

condition, by Krivodonova and Berger (2006) or exact treatment of the geometry via

the NURBS-enhanced finite element method, by Sevilla et al. (2008).

The robustness of the FCFV solver in the incompressible limit of the compressible

Navier-Stokes equations is studied through a steady-state flow at Re = 30. Figure 2.18

displays the isolines of the Mach number distribution for far-field conditions at M∞ =

0.1 and M∞ = 0.01. In this case, the FCFV solver is able to precisely approximate

the flow in the wake of the cylinder, with no loss of accuracy when approaching the

incompressible limit. It is worth noticing that in both figure 2.17 and figure 2.18, the

variation of the far-field boundary condition only affects the scale of the computed

Mach number and not its distribution.
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(a) M∞ = 0.1 (b) M∞ = 0.01

Figure 2.17: Inviscid subsonic flow over a cylinder - Mach number distribution computed
using the HLLEM Riemann solver for different values of the far-field condi-
tion.

(a) M∞ = 0.1 (b) M∞ = 0.01

Figure 2.18: Viscous laminar subsonic flow over a cylinder at Re = 30 - Mach number
distribution computed using the HLLEM Riemann solver for different values
of the far-field condition.

The values of the pressure and skin friction coefficients computed using the HLLEM

Riemann solver are compared with the results reported by Sevilla et al. (2013) of a

stabilised finite element simulation performed with polynomial approximation of de-

gree k = 3. Good agreement is displayed in figure 2.19 for both the pressure and

the skin friction coefficients, confirming the capability the proposed methodology of

accurately simulating viscous laminar flows also in the incompressible limit. In partic-
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ular, it is worth noticing that the FCFV results computed using the two values of the

far-field condition are almost identical and they are not affected by the value of the

Mach number going to zero. Hence, the FCFV method equipped with the HLLEM

(a) Pressure coefficient (b) Skin friction coefficient

Figure 2.19: Viscous laminar subsonic flow over a cylinder at Re = 30 - (a) Pressure and
(b) skin friction coefficient on the object surface computed using the HLLEM
Riemann solver.

numerical flux provides a robust solver for steady-state compressible flows able to

seamlessly handle both inviscid and viscous flows, at high and low Mach numbers.

Finally, it is worth mentioning that the pressure coefficient displayed in figure 2.19

has been computed employing the pressure evaluated at the hybrid state Û , defined

over the boundary. Conversely, the skin friction coefficient is computed from the

mixed variable defined inside the cell with constant value. In order to extend the

constant values inside the cells to the boundary, a C0 smoothing based on computing

an averaged mean on the mesh nodes based on the cell values can be performed. In

this manner, both the pressure and skin friction coefficient can be computed over

the cylinder boundary based on the corresponding nodal values obtained from such

operation. In figure 2.20, the postprocessing option based on the hybrid and cell

values is compared to the one based on the C0 smoothing. Accordingly, the pressure

and skin friction coefficients computed for the case of M∞ = 0.1 using an HLLEM

Riemann solver are displayed, with the k = 3 results by Sevilla et al. (2013) as

reference. The little oscillations displayed in those curves, specially in the skin friction

coefficient, are drastically reduced by means of simple postprocess.
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(a) Pressure coefficient (b) Skin friction coefficient

Figure 2.20: Viscous laminar subsonic flow over a cylinder at Re = 30 - (a) Pressure and
(b) skin friction coefficient on the object surface computed using the HLLEM
Riemann solver.

2.4.4 Inviscid transonic flow over an Onera M6 wing

The last example involves the 3D simulation of a steady inviscid transonic flow over

an ONERA M6 wing at free-stream Mach number M∞ = 0.84 and angle of attack

α = 3.06◦. This benchmark constitutes a classic CFD validation example for external

flows due to its complex flow physics and the availability of experimental results at

high Reynolds number by Schmitt and Charpin (1979).

A non-uniform mesh refinement is adopted in the vicinity of the wing surface and

towards the leading and trailing edges. Figure 2.21 details two levels of refinement

with meshes consisting of 236,682 and 5,061,252 tetrahedral cells, respectively. The

far-field boundary is located at approximately 12 chord lengths from the wing and

the aerofoil surface is defined as an inviscid wall.

The FCFV simulation is performed using the HLL Riemann solver, based on

its capability of producing positivity-conserving solutions and on its robustness in

inviscid transonic and supersonic cases. The linear system of equations arising from

the FCFV discretisation is solved using a GMRES with restarting parameter 10 and

no preconditioner. A detail of the flow computation obtained on the fine mesh is

reported in figure 2.22. The Mach number and pressure distributions clearly show

that the FCFV method is able of accurately capturing the characteristic lambda-shock

arising in this test benchmark.

The performance of the FCFV method is evaluated by examining the pressure
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(a) Coarse mesh (b) Fine mesh

Figure 2.21: Mesh refinement for the inviscid transonic flow over an ONERA M6 wing.

(a) Mach (b) Pressure, p/p∞

Figure 2.22: Inviscid transonic flow over an ONERA M6 wing - (a) Mach number and (b)
pressure distributions on the wing surface computed on the fine mesh using
the HLL Riemann solver.

coefficient, computed on the fine mesh, at different sections along the wing span, see

figure 2.23. The obtained results are compared both to experimental data by Schmitt

and Charpin (1979) and to computational simulations performed using second-order

CCFV and VCFV solvers on the same mesh. More precisely, the commercial CFD

software Ansys Fluent by ANSYS Inc. (2017) is employed as CCFV solver, whereas

the VCFV results are obtained using the CFD solver FLITE, documented by Sørensen

et al. (2003) and Hassan et al. (2008). An upwind scheme is utilised for the treatment

of the numerical fluxes in Fluent, whereas a Roe Riemann solver is selected for the

FLITE simulation. The numerical results obtained with the FCFV method show

excellent agreement both with the experimental data and with the remaining FV

schemes. It is worth noticing that both second-order FV schemes produce a small

oscillation in the representation of the shock-wave located at the upper mid-chord.

On the contrary, the first-order FCFV method based on the positivity-preserving
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(a) y/b = 0.20 (b) y/b = 0.44 (c) y/b = 0.65

(d) y/b = 0.80 (e) y/b = 0.90 (f) y/b = 0.95

Figure 2.23: Inviscid transonic flow over an ONERA M6 wing - Comparison of the pres-
sure coefficient distribution at different sections along the wing span using
different FV solvers.

HLL Riemann solver is capable of computing non-oscillatory solutions, establishing a

robust framework for the simulation of 3D problems involving complex flow features.

2.5 Conclusions

The face-centred finite volume (FCFV) paradigm was proposed for the first time for

the approximation of nonlinear hyperbolic PDEs modelling compressible flows. The

method is based on a mixed formulation and defines the unknowns, that is, the hybrid

vector of conservative variables, at the barycentre of the faces. The unknowns in

each cell, i.e. density, momentum, energy, deviatoric strain rate tensor and gradient

of temperature, are eliminated via a hybridisation procedure to reduce the global

number of degrees of freedom of the problem. In addition, traditional Riemann

solvers, i.e. Lax-Friedrichs, Roe, HLL and HLLEM, are devised in the context of

FCFV discretisations via appropriate definitions of the numerical fluxes.

The presented methodology achieves first-order accuracy of the conservative quan-

tities, the stress tensor and the heat flux without the need to perform a reconstruction
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of the gradients. Hence, the FCFV approximation is robust on unstructured meshes

and retains optimal accuracy even with highly stretched or distorted cells, avoiding

well-known issues of traditional FV schemes.

In addition, the FCFV method is able to construct non-oscillatory solutions of

sharp fronts without the need of any shock capturing or limiting technique. The

accurate treatment of shocks, expansion fans and shear waves is naturally handled

by the Riemann solvers implicitly embedded in the FCFV numerical fluxes.

Finally, the method is robust in the incompressible limit, allowing to seamlessly

simulate flows at low Mach number, without the need of introducing specific pressure

corrections like the well-known SIMPLE algorithm.

A comprehensive set of two and three-dimensional numerical examples is employed

to demonstrate the optimal convergence properties of the method and its capabilities

to solve complex flow problems of aerodynamic interest across various regimes, from

inviscid to viscous laminar flows, from transonic to subsonic incompressible flows.

Moreover, a detailed comparison of the accuracy and robustness of different Riemann

solvers is presented. The FCFV method equipped with HLL-type Riemann solvers

thus provides a solution strategy suitable for all flow regimes, which outperforms the

traditional Lax-Friedrichs numerical flux in terms of accuracy and the Roe solver in

terms of robustness.
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Chapter 3

Hybridisable discontinuous

Galerkin formulation of

compressible flows 1

The high-order HDG formulation of compressible flows, including both the inviscid

Euler and the viscous compressible Navier-Stokes equations, is reviewed in this chap-

ter. The presented HDG formulation stems from the reference approach proposed

by Peraire et al. (2010) and Nguyen and Peraire (2012) based on the mixed hybrid

formulation of the compressible Navier-Stokes equations. The HDG approximation

is characterised for the optimal accuracy properties not only of the conservation vari-

ables but also of the viscous stress and heat flux, which relies on an accurate choice

of the approximation spaces and a proper definition of numerical fluxes.

To this end, this work introduces a novel mixed formulation of the compressible

Navier-Stokes equations with strongly enforced symmetry of the viscous stress tensor.

Such approach uses the same discrete spaces for the primal and mixed variables and

retrieves optimal convergence properties of the stress tensor and the heat flux, with

reduced computational cost. Last but foremost, this study proposes a unified frame-

work for the derivation of Riemann solvers in hybridised formulations. The framework

includes the existing Lax-Friedrichs and Roe solvers and formulates, for the first time

in the context of HDG, the HLL and the HLLEM Riemann solvers. The HLL family

1This chapter is based on the published article Vila-Pérez et al. (2020)
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of Riemann solvers provide a robust framework to compute reliable solutions of tran-

sonic and supersonic flows, based on their associated positivity-preserving properties.

In addition, the HLLEM Riemann solver also displays shear preservation, providing

increased accuracy in the approximation of contact waves or boundary layers.

The remainder of this section is organised as follows. Section 3.1 reviews the mixed

formulation of the compressible Navier-stokes equations, which have been detailed in

section 2.1. The high-order HDG formulation of the compressible Navier-Stokes equa-

tions is then introduced in sections 3.2 and 3.3. Furthermore, section 3.4 presents a

unified description of the Riemann solvers in the context of high-order HDG methods.

Specifically, the HLL and HLLEM Riemann solvers are proposed for hybrid discretisa-

tions. Finaly, in section 3.5, the solution strategy of the HDG solver for the resulting

nonlinear problem and the numerical treatment of solutions with discontinuities and

sharp gradients is discussed.

3.1 Mixed formulation of the compressible

Navier-Stokes equations

One of the main features of the HDG method, as described in section 2.2.1 is the

mixed formulation of second-order problems.

In the case of the compressible Navier-Stokes equations, the mixed variables are

responsible for the description of the viscous stress tensor σd and the heat flux q

appearing in the viscous fluxes (2.2).

Usual mixed formulations of the compressible Navier-Stokes equations introduce

the gradient of the primal variable, ∇U , as mixed variable. This approach, initially

employed by Peraire et al. (2010) and Nguyen and Peraire (2012) in HDG, has been

well-established and has been adopted later by Woopen et al. (2014) or by Fernández

et al. (2017), among others.

The advantage of using ∇U is its linear expression with respect to the primal

variable U . Then, the system of equations (2.1) can be rewritten as a system of

first-order PDEs with an additional linear equation, that is Q−∇U = 0,

∂U

∂t
+∇· (F (U)−G(U ,Q)) = 0,

(3.1)
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where the viscous stress tensor and the heat flux appearing in G(U ,Q) (2.2) are

given by

σd =
1

Re

µ

ρ

[
∇S(ρv)− 1

ρ
(ρv ⊗∇ρ+∇ρ⊗ ρv)− 2

3

(
∇· (ρv)− 1

ρ
∇ρ · ρv

)
Insd

]
,

(3.2a)

q =
γ

RePr

µ

ρ

[
∇(ρE)− ρE

ρ
∇ρ− 1

ρ

(
∇(ρv)T − 1

ρ
∇ρ⊗ ρv

)
ρv

]
. (3.2b)

It is worth noticing that the viscous stresses and the heat flux are linear with respect

to the mixed variable. However, their expression presents a number of nonlinearities

with respect to the conservation variables.

An alternative formulation, introduced in section 2.2.1 for the FCFV method,

inspired by the mechanical description of the problem, employs the deviatoric strain

rate tensor

εd = 2∇Sv − 2

3
(∇·v)Insd = D∇Sv, (3.3)

and the gradient of temperature φ = ∇T as mixed variables for the mixed formula-

tion, being D the linear operator introduced in remark 2.4. The resulting system of

first-order PDEs is given by
εd −D∇Sv = 0,

φ−∇T = 0,

∂U

∂t
+∇·

(
F (U)−G(U , εd,φ)

)
= 0,

(3.4)

where the viscous stress tensor and the heat flux inG(U , εd,φ) (2.2) can be expressed

in a neat manner as

σd =
µ

Re
εd, q =

µ

RePr
φ. (3.5)

Note that, whereas such mixed variables are nonlinear with respect to the conser-

vation variables, this choice vastly reduces the number of nonlinearities and simplifies

the expression of the viscous fluxes, in contrast to (3.2).

Remark 3.1. Such choice for the mixed variables, which resembles the mixed formu-

lation proposed by Williams (2018), involves a reduced number of degrees of freedom,

when compared to Q = ∇U , thus decreasing the computational cost of the local

problems.
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3.2 Strong form of the local and global problems

In the present formulation, the deviatoric strain rate tensor εd and the temperature

gradient φ are adopted as mixed variables, following the same approach described

in section 2.2.2 for the FCFV formulation. The strong mixed form of the local and

global problems is then recalled.

First, the nel local problems, given by



εde −D∇Sve = 0 in Ωe × (0,Tend],

φe −∇Te = 0 in Ωe × (0,Tend],

∂Ue
∂t

+∇·
(
F (Ue)−G(Ue, ε

d
e,φe)

)
= 0 in Ωe × (0,Tend],

Ue = U 0 in Ωe × {0},

Ue = Û on ∂Ωe × (0,Tend],

(3.6)

for e = 1, . . . , nel, define the solution (Ue, ε
d
e,φe) = (U , εd,φ) for all x ∈ Ωe ⊂ Ω as

a function of an independent variable Û , representing the trace of the solution on

Γ ∪ ∂Ω.

Then, Û is computed as the solution of a global problem imposing boundary

conditions on ∂Ω and enforcing inter-element continuity of the solution and of the

normal fluxes on Γ via the so-called transmission conditions, namely


B̂(U , Û , εd,φ) = 0, on ∂Ω× (0,Tend],

JU ⊗ nK = 0 on Γ× (0,Tend],

J
(
F (U)−G(U , εd,φ)

)
nK = 0 on Γ× (0,Tend],

(3.7)

where n is the outward unit normal vector and B̂(U , Û , εd,φ) is a boundary trace

operator imposing the boundary conditions along ∂Ω exploiting the hybrid variable,

as described in section 2.2.3. In particular, the expression of the boundary operator

for the most common boundary conditions arising in compressible flows are detailed

in table 2.1.

Note that the second equation in (3.7) is automatically satisfied due to the Dirich-

let boundary condition Ue = Û imposed in the local problems (3.6) and by the fact

that the hybrid variable Û is unique on each face of the mesh skeleton.
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3.3 Weak form of the local and global problems

Following the notation employed by Sevilla and Huerta (2016) and Giacomini et al.

(2020), the following discrete functional spaces

Wh(Ω) :=
{
w ∈ L2(Ω) : w|Ωe ∈ Pk(Ωe) ∀Ωe, e = 1, . . . , nel

}
, (3.8a)

Ŵh(S) :=
{
ŵ ∈ L2(S) : ŵ|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω

}
, (3.8b)

are introduced, where Pk(Ωe) and Pk(Γi) denote the spaces of polynomial functions

of complete degree at most k in Ωe and on Γi, respectively. Moreover, let

Wh
t (Ω) := L2

(
(0,Tend];Wh(Ω)

)
, (3.9a)

Ŵh
t (S) := L2

(
(0,Tend]; Ŵh(S)

)
, (3.9b)

denote the spaces of square-integrable functions on the time interval (0,Tend] with

spatial approximation in Wh(Ω) and Ŵh(S), respectively.

Henceforth, the classical notation for L2 inner products of vector and tensor-valued

functions on a generic subdomain D ⊂ Ω is considered, that is

(v,w)D :=

∫
D

v ·w dΩ and (V ,W )D :=

∫
D

V : W dΩ. (3.10)

Analogously, the L2 inner products on a surface S ⊂ Γ ∪ ∂Ω are denoted by 〈·, ·〉S.

Remark 3.2. It is worth noticing that the mixed variable εd requires the definition

of an appropriate functional space. In particular, εd ∈ [H(div;D);S], D ⊆ Ω, that

is, the space of L2(D) symmetric tensors S of order nsd with L2(D) row-wise diver-

gence. Accordingly, its element-by-element approximation εde must be defined in an

appropriate discrete space for symmetric second-order tensors of dimension nsd×nsd.

Several approaches have been proposed in the literature, see for instance the studies

by Cockburn and Shi (2012), Cockburn and Fu (2017) or Qiu et al. (2017). In this

work, Voigt notation, introduced by Fish and Belytschko (2007), is exploited to rear-

range the diagonal and off-diagonal components of the tensor into an msd-dimensional

vector, being msd = nsd(nsd + 1)/2 the number of non-redundant terms. This allows

a simple construction of a pointwise symmetric mixed variable with reduced com-

putational cost, while retrieving optimal convergence of the approximation, see the
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studies by Giacomini et al. (2018) and Sevilla et al. (2018) for Stokes flows and linear

elasticity, respectively. For a detailed derivation of such approach, interested readers

are referred to the tutorial by Giacomini et al. (2020).

With the introduced notation, the discrete weak form associated to the local

problems (3.6) is: for every element Ωe, e = 1, . . . , nel, find an approximation

(Ue, ε
d
e,φe) ∈ [Wh

t (Ωe)]
nsd+2× [Wh

t (Ωe)]
msd× [Wh

t (Ωe)]
nsd , given Û ∈ [Ŵh

t (Γ∪∂Ω)]nsd+2,

such that(
ζ, εde

)
Ωe

+ (∇·Dζ,ve)Ωe
− 〈ζ,Dv̂ ⊗ n〉∂Ωe

= 0, (3.11a)

(ξ,φe)Ωe
+ (∇· ξ, Te)Ωe

−
〈
ξ, T̂n

〉
∂Ωe

= 0, (3.11b)(
W ,

∂Ue
∂t

)
Ωe

− (∇W ,F −G)Ωe
+
〈
W ,

(
F (Ue)−G(Ue, ε

d
e,φe)

)
n
∧〉

∂Ωe
= 0,

(3.11c)

for all (W , ζ, ξ) ∈ [Wh
t (Ωe)]

nsd+2 × [Wh
t (Ωe)]

msd × [Wh
t (Ωe)]

nsd .

Remark 3.3. Note that, rigorously, equation (3.11a) should be derived under the

assumption that εd belongs to the functional space [H(div;D);S]. Nonetheless, in an

abuse of notation, εd has been substituted by its discrete counterpart εde ∈ [Wh
t (Ωe)]

msd ,

expressed in Voigt notation. For further details on the functional spaces and the

derivation of the discrete forms, interested readers are referred to Giacomini et al.

(2020). In addition, technical details about the implementation the corresponding

equation are given in appendix A.

Similarly, the discrete weak formulation of the global problem in equation (3.7)

is: find Û ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2 such that

nel∑
e=1

{〈
Ŵ ,

(
F (Ue)−G(Ue, ε

d
e,φe)

)
n
∧〉

∂Ωe∩Γ
+
〈
Ŵ , B̂

〉
∂Ωe∩∂Ω

}
= 0, (3.12)

for all Ŵ ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2.

Equations (3.11c) and (3.12) introduce the traces of the numerical fluxes on the

boundary, (
F (Ue)−G(Ue, ε

d
e,φe)

)
n
∧

= F (Ue)n
∧

−G(Ue, ε
d
e,φe)n
∧

, (3.13)

where

F (Ue)n
∧

:= F (Û )n+ τ a(Û)(Ue − Û) and (3.14a)
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G(Ue, ε
d
e,φe)n
∧

:= G(Û , εde,φe)n− τ d(Ue − Û) (3.14b)

stand for the convective and the diffusive numerical fluxes, respectively, whose ap-

proximation is essential for the quality and accuracy of the HDG method.

On the one hand, the diffusive numerical fluxes, G(Ue, ε
d
e,φe)n
∧

, involve the diffu-

sive stabilisation term τ d, selected as the diagonal matrix

τ d = Re−1 diag
(

0,1nsd ,
[
(γ − 1)M2

∞Pr
]−1
)
, (3.15)

being 1nsd an nsd-dimensional vector of ones. This approach follows the philosophy

by Peraire et al. (2011) and Nguyen and Peraire (2012) owing to dimensional consis-

tency but considers different amounts of diffusive stabilisation for each of the three

conservation equations, i.e., mass, momentum and energy. In particular, note that

the continuity equation, which has a purely convective nature, does not include any

diffusive stabilisation.

It is worth noting that the termG(Û , εde,φe)n containing the physical flux in (3.14b)

can be approximated either using the interior state Ue or the trace of the primal vari-

able Û . In this work, the latter has been chosen, following the classical formulation

in hybridised DG methods proposed by Peraire et al. (2010) Peraire et al. (2011)

or Nguyen and Peraire (2012), which exploits the presence of an intermediate state,

namely the trace of the conservation variables, Û .

Remark 3.4. Note that in the incompressible limit and using the current choice for

mixed variables, both alternatives, G(Û , εde,φe)n andG(Ue, ε
d,φ)n, lead to the same

numerical flux. Indeed, the energy equation for which the tensor G depends on the

conserved variables U , is decoupled from the system of conservation equations.

On the other hand, the convective numerical fluxes, F (U)n
∧

, are approximated

using Riemann solvers, whose utilisation in FV —hence, in DG methods— has been

reviewed in detail by Toro (2009). In particular, some of the most relevant ap-

proximate Riemann solvers employed in these numerical schemes, specifically the

Lax-Friedrichs, Roe, HLL and HLLEM solvers, are described in appendix B.

The corresponding definition of such convective fluxes for hybridised methods is

detailed in section 3.4. Indeed, a unified framework for the derivation of Riemann

solvers in the context of hybridised methods is presented, including the newly pro-

posed HLL and HLLEM Riemann solvers.
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3. HDG formulation of compressible flows

Remark 3.5 (Compressible Euler equations). The associated weak forms for the

inviscid Euler equations reduce to:

Local problems: given Û ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2 and for every element Ωe, e =

1, . . . , nel, find Ue ∈ [Wh
t (Ωe)]

nsd+2 such that, for all W ∈ [Wh
t (Ωe)]

nsd+2,(
W ,

∂Ue
∂t

)
Ωe

− (∇W ,F (Ue))Ωe
+
〈
W ,F (Ue)n
∧〉

∂Ωe
= 0. (3.16)

Global problem: for all Ŵ ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2, find Û ∈ [Ŵh

t (Γ ∪ ∂Ω)]nsd+2 such

that
nel∑
e=1

{〈
Ŵ ,F (Ue)n
∧〉

∂Ωe∩Γ
+
〈
Ŵ , B̂

〉
∂Ωe∩∂Ω

}
= 0. (3.17)

3.4 A unified framework for the derivation of

Riemann solvers in hybridised DG methods

As mentioned above, the choice of the convective numerical fluxes F (Ue)n
∧

appear-

ing in equations (3.11c) and (3.12) —or in equations (3.16) and (3.17) for the Euler

equations— has a critical influence on the accuracy and stability of the numerical

solution. More precisely, such numerical fluxes are responsible for encapsulating the

information of the convective nature of the flow under analysis. For this reason, the

approximation of such interface fluxes has received great attention in the context of

discontinuous Galerkin methods, as described in appendix B, and, more recently, of

HDG by means of Riemann solvers.

In this section, a unified framework for the formulation of approximate Riemann

solvers in the context of the hybridised methods is proposed. The framework includes,

for the first time, the formulation of the HLL and HLLEM Riemann solvers within

hybridised formulations for compressible flows. This derivation stems from the sem-

inal work in HDG on linear and nonlinear convection-diffusion equations by Nguyen

et al. (2009a,b) and on compressible flows by Peraire et al. (2010, 2011) and Nguyen

and Peraire (2012). The topic has also been studied by Bui-Thanh (2015).

As described before, the general structure of the trace of the convective numerical

flux for a nonlinear problem is given by

F (Ue)n
∧

= F (Û)n+ τ a(Û)(Ue − Û), (3.18)
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3.4. A unified framework for the derivation of Riemann solvers in HDG

where τ a is the convective stabilisation matrix which encapsulates the information

of the Riemann solvers. In order to ease readability, the superindex in τ a to denote

the convective stabilisation term will be dropped in the upcoming derivations along

this section.

To this end, consider a pair of neighbouring elements, Ω+
e and Ω−e , with shared

interface Γi = ∂Ω+
e ∩ ∂Ω−e ⊂ Γ. The solution at each side of the interface is denoted

by U±e , whereas U ?(U+
e ,U

−
e ) represents an intermediate state between U+

e and U−e .

It is worth noting that in (3.18) the hybrid variable Û defined on the interface Γi

between two neighboring elements Ω+
e and Ω−e is utilised as the intermediate state U ?.

In order to derive the formulation of the Riemann solvers in the context of hy-

bridised DG methods, the inter-element continuity of the trace of the numerical fluxes

is considered in the convective limit, namely JF (Ue)n
∧

K = 0. It follows that the sum

of the contributions F (Ue)n
∧

from two neighbouring elements is set to zero. Exploit-

ing definition (3.18) and observing that JF (Û)nK = 0 because of the uniqueness of

Û on the internal faces, the above transmission condition reduces to

(τ+ + τ−)Û = τ+U+
e + τ−U−e , (3.19)

where τ+ and τ− denote stabilisation matrices seen from element Ω+ and Ω−, respec-

tively. Under the assumption of (τ+ + τ−) being invertible, the intermediate state

Û is determined as

Û = (τ+ + τ−)−1
[
τ+U+

e + τ−U−e
]
. (3.20)

Hence, the convective numerical flux (3.18) is formulated as an explicit function

of the left and right states U±e .

From the framework above, two cases are analysed hereafter. On the one hand,

a stabilisation matrix continuous across the interface is obtained by setting τ+ =

τ−. On the other hand, a stabilisation matrix, discontinuous across the interface, is

considered when τ+ 6= τ−.
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3. HDG formulation of compressible flows

3.4.1 Continuous stabilisation across the interface:

Lax-Friedrichs and Roe Riemann solvers

Consider a continuous definition of the stabilisation matrix across the interface, that

is τ+ = τ− = τ . It follows

Û =
U+
e +U−e

2
, (3.21a)

F (Ue)n
±
∧

= F

(
U+
e +U−e

2

)
n± +

1

2
τ (U±e −U∓e ). (3.21b)

By considering Û as an intermediate state between U+ and U− and under appro-

priate choices of the stabilisation matrix τ , a formulation that mimics Lax-Friedrichs

and Roe Riemann solvers for traditional FV and DG methods, see (B.1) and (B.2),

is retrieved for hybridised formulations, as proposed by Peraire et al. (2010, 2011)

and Nguyen and Peraire (2012).

More precisely, the Lax-Friedrichs numerical flux is retrieved by setting τ =

λ̂maxInsd+2, with λ̂max := |v̂ · n|+ ĉ, namely

F (Ue)n
∧

= F (Û)n+ λ̂max(Ue − Û). (3.22)

Similarly, the stabilisation matrix τ = |An(Û)| = R|Λ|L evaluated at the in-

termediate state (3.21a) lead to the formulation of the Roe Riemann solver in the

context of HDG methods, that is,

F (Ue)n
∧

= F (Û)n+ |An(Û)|(Ue − Û). (3.23)

Finally, the variant of the Roe numerical flux accounting for the entropy fix

by Harten and Hyman (1983) is given by τ = |Aδ
n(Û)| = RΦL, according to the

correction to matrix An(Û ) described in (B.3), that is

F (Ue)n
∧

= F (Û)n+ |Aδ
n(Û)|(Ue − Û). (3.24)

Again, this definition exploits the spectral decomposition of An(Û), but now em-

ploying the diagonal matrix Φ, defined as Φii = max(|λi|, δ), with λi being the i-th

eigenvalue of An(Û) and δ > 0, a user-defined parameter. In particular, the entropy

fix is aimed at recovering the failure of entropy conditions of the Roe solver, which

may produce non-physical solutions in transonic and supersonic cases.
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3.4. A unified framework for the derivation of Riemann solvers in HDG

Remark 3.6. It is worth noting that the stabilisation matrix introduced in (3.22) for

the Lax-Friedrichs Riemann solver is isotropic, whereas for the Roe numerical fluxes

in (3.23), different values of the stabilisation term are introduced in the equations of

conservation of mass, momentum and energy.

3.4.2 Discontinuous stabilisation across the interface:

HLL-type Riemann solvers

Consider a discontinuous stabilisation matrix across the interface, defined as τ± =

s±θ, with s+ 6= s− and θ a positive-definite square matrix of dimension nsd + 2. It

follows

Û =
s+U+

e + s−U−e
s+ + s−

, (3.25a)

F (Ue)n
±
∧

= F

(
s+U+

e + s−U−e
s+ + s−

)
n± +

s+s−

s+ + s−
θ(U±e −U∓e ). (3.25b)

It is worth noting that the intermediate state in (3.25a) is obtained as a weighted

average of the states U+ and U−. From this framework, HLL-type numerical fluxes,

mimicking the behaviour of HLL (B.4) and HLLEM (B.5) for standard FV ap-

proaches, are devised for the first time in the context of hybridised methods. More

precisely, the HLL Riemann solver is given by

F (Ue)n
∧

= F (Û)n+
[
s+Insd+2

]
(Ue − Û ), (3.26)

where s+ := max(0, v̂ · n+ ĉ).

Remark 3.7. A variant of the HLL Riemann solver in (3.26), the so-called Harten-

Lax-van Leer-Einfeldt (HLLE) numerical flux introduced by Einfeldt (1988), can be

devised by simply modifying the term s+ in the stabilisation parameter as

s+ := max(0, v̂ · n+ ĉ,v+ · n+ c+,v− · n+ c−), (3.27)

being }+ and }− the variables associated with the states U+
e and U−e , respectively,

at each side of the interface under analysis. Numerical experiments have shown that,

in the context of high-order discretisations, the practical difference between HLL and

HLLE numerical fluxes is not significant since the jumps across the interface are very

small. Henceforth, the former choice is considered for simplicity.
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3. HDG formulation of compressible flows

Following the same rationale, the HLLEM numerical flux can be devised as

F (Ue)n
∧

= F (Û )n+
[
s+θ(Û)

]
(Ue − Û ), (3.28)

where s+ := max(0, v̂ · n + ĉ) is the HLL estimate for the largest wave speed and

θ(Û ) = RΘL, as defined in (B.5). It is worth noticing that the intermediate state

is selected such that U ? = Û . Therefore, Θ employs θ? = θ̂ = |v̂ · n|/(|v̂ · n| + ĉ),

where the hat quantities are evaluated using the hybrid variable Û .

Remark 3.8. Because of the positive definition of the matrix θ introduced here, the

coefficient θ̂ is not allowed to reach zero. This situation is experienced in flows that

are perfectly aligned with the faces of the mesh. From a practical point of view, it

may be useful to set a minimum threshold 0 < θ0 � 1 to guarantee that θ̂ > θ0 and

avoid a null stabilisation.

3.5 HDG discretisation

The HDG discretisation is finally obtained by introducing the numerical fluxes (3.14)

and boundary conditions (detailed in table 2.1) in the weak forms of the local (3.11)

and global (3.12) problems.

Indeed, the corresponding expression of the weak forms of the local and global

problems is given by:

Local problems: given Û ∈ [Ŵh
t (Γ∪∂Ω)]nsd+2, find (Ue, ε

d
e,φe) ∈ [Wh

t (Ωe)]
nsd+2×

[Wh
t (Ωe)]

msd × [Wh
t (Ωe)]

nsd such that(
ζ, εde

)
Ωe

+ (∇·Dζ,ve)Ωe
− 〈ζ,Dv̂ ⊗ n〉∂Ωe

= 0, (3.29a)

(ξ,φe)Ωe
+ (∇· ξ, Te)Ωe

−
〈
ξ, T̂n

〉
∂Ωe

= 0, (3.29b)(
W ,

∂Ue
∂t

)
Ωe

−
(
∇W ,F (Ue)−G(Ue, ε

d
e,φe)

)
Ωe

+
〈
W ,

(
F (Û)−G(Û , εde,φe)

)
n
〉
∂Ωe

+
〈
W ,

(
τ a(Û) + τ d

)(
Ue − Û

)〉
∂Ωe

= 0,

(3.29c)

for all (W , ζ, ξ) ∈ [Wh
t (Ωe)]

nsd+2 × [Wh
t (Ωe)]

msd × [Wh
t (Ωe)]

nsd in every element Ωe,

e = 1, . . . , nel.

Global problem: find Û ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2 satisfying
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3.5. HDG discretisation

nel∑
e=1

{〈
Ŵ ,

(
F (Û)−G(Û , εde,φe)

)
n
〉
∂Ωe∩Γ

+
〈
Ŵ ,

(
τ a(Û) + τ d

)(
Ue − Û

)〉
∂Ωe∩Γ

+
〈
Ŵ , B̂(Û ,Ue, ε

d
e,φe)

〉
∂Ωe∩∂Ω

}
= 0, (3.30)

for all Ŵ ∈ [Ŵh
t (Γ ∪ ∂Ω)]nsd+2.

3.5.1 Solution strategy

The HDG solution can be then obtained in a process featuring two stages, owing to

hybridisation. First, the local problems are devised.

To this end, denote byZe = (Ue, ε
d
e,φe) ∈ [Wh

t (Ωe)]
nsd+2×[Wh

t (Ωe)]
msd×[Wh

t (Ωe)]
nsd

the vector of local unknowns, which includes the primal and mixed variables. By

considering an isoparametric approximation in space for the local, Z, and hybrid, Û ,

variables, the semi-discrete system of differential-algebraic equations resulting from

the local problem at element Ωe, e = 1, . . . , nel reads

Me
dZe

dt
+ Re(Ze, Û) = 0. (3.31)

where Ze and Û denote the vectors of nodal values of the local and hybrid variables,

respectively, and Me and Re are the mass matrix and nonlinear residual vector ob-

tained from the spatial discretisation of the integral terms of the local problem (3.11)

in element Ωe.

In a similar fashion, from the global problem (3.12) it follows

nel∑
e=1

R̂e(Û,Ze) = 0, (3.32)

where R̂e denotes the nonlinear residual vector involving the degrees of freedom

associated with element Ωe.

Finally, upon temporal discretisation, the resulting nonlinear system is solved

using a Newton-Raphson iterative method at each time step. In particular, the linear

system of equations arising at each time step and Newton-Raphson iteration for the

local problems reads

Ae
ZZZe + Ae

ZÛ
Û = Fe

Z (3.33)

for e = 1, . . . , nel, where vectors Fe
� and matrices Ae

�◦ are obtained from Newton-

Raphson linearisation of the system of equations (3.31). Similarly, the linear system
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3. HDG formulation of compressible flows

corresponding to the global problem (3.32) upon Newton-Raphson linearisation can

be expressed as
nel∑
e=1

{
Ae
ÛÛ

Û + Ae
ÛZ

Ze − Fe
Û

}
= 0. (3.34)

Note that, owing to the hybridisation procedure, the elemental degrees of freedom

of Ze can be rewritten in terms of the globally coupled degrees of freedom of Û

via (3.33), namely

Ze = [Ae
ZZ ]−1 Fe

Z − [Ae
ZZ ]−1 Ae

ZÛ
Û, (3.35)

which just involves the inverse of matrix Ae
ZZ , of dimension ((nsd + 2 + msd + nsd)nen),

for each element of the mesh, being nen the number of element nodes of Ωe. This

computation can be effectively parallelised and only involves the solution of small

systems with limited computing effort. Dimension of such local systems is displayed

in table 3.1 for different degrees of approximation k on simplexes and parallelepipeds

in 2D and 3D.

Table 3.1: Dimension of the local problem.

Degree of approximation, k 1 2 3 4 5 6

Simplexes
2D 27 54 90 135 189 252
3D 56 140 280 490 784 1,176

Parallelepipeds
2D 36 81 144 225 324 441
3D 112 378 896 1,750 3,024 4,802

The hybridisation procedure (3.35) permits to eliminate Ze in equation (3.34),

giving rise to a linear system with a reduced number of degrees of freedom, as de-

scribed by Cockburn (2016), similarly as the static condensation introduced by Guyan

(1965). This global system is the one to be solved at each Newton-Raphson iteration

and reads as

KÛ = F, (3.36)

where the global matrix K and the right-hand side vector F are obtained by assem-

bling the elemental contributions

Ke = Ae
ÛÛ
−Ae

ÛZ
[Ae

ZZ ]−1 Ae
ZÛ
, (3.37a)

Fe = Fe
Û
−Ae

ÛZ
[Ae

ZZ ]−1 Fe
Z . (3.37b)
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3.5. HDG discretisation

As the main purpose of this work is the evaluation of the HDG formulation of

compressible flows in terms of positivity and shear preservation when employing the

different Riemann solvers introduced in 3.4, only steady-state problems are consid-

ered. In this context, the temporal discretisation in equation (3.31) is used as a re-

laxation method to improve the convergence process in complex numerical examples,

e.g. in presence of shocks. To this effect, the backward Euler method is considered

in the simulations. However, the proposed methodology is applicable to other time

discretisations, such as high-order time integrators like backward difference formulas

(BDF) or diagonally implicit Runge-Kutta (DIRK) methods, especially suited for

transient problems, as described by Nguyen and Peraire (2012), Jaust and Schütz

(2014) and Jaust et al. (2015).

3.5.2 Shock-capturing method

It is well-known that high-order methods experience an oscillatory behaviour in the

vicinity of shocks and regions with sharp gradients, as described by Godunov and

Bohachevsky (1959) and detailed in Donea and Huerta (2003). In those cases, appro-

priate shock-capturing techniques are required, such as the introduction of an artificial

viscosity term, added to regularise the numerical approximation of the problem in

those regions.

Different approaches can be adopted to introduce artificial dissipation. In this

thesis, two different alternatives are presented. First, a physics-based shock capturing

method proposed by Fernández et al. (2017) which introduces the artificial viscosity

within the viscous flux G is detailed. Additionally, a Laplacian-based approach,

formulated in a discrete version to avoid the introduction of mixed variables, such as

the one employed by Jaust et al. (2015), is considered for the Euler equations.

3.5.2.1 Physics-based shock capturing

In this approach, shock waves are stabilised by correcting the diffusive flux in equa-

tion (2.2) using the physics-based approach proposed by Fernández et al. (2018).

This methodology, stemming from the work of Von Neumann and Richtmyer (1950)

and later considered by Cook and Cabot (2005), Kawai and Lele (2008) and Kawai

et al. (2010), among others, relies on defining the diffusive flux as a combination of

the physical flux G with an additional numerical contribution G∗. The latter is thus
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3. HDG formulation of compressible flows

based on an artificial bulk viscosity β∗, namely

G∗ = β∗

 0

(∇·v)Insd[
(∇·v)v + Pr−1

β φ
]T
 , (3.38)

where Prβ is an artificial Prandtl number.

First, a dilatation-based shock sensor proposed by Moro et al. (2016) and later

employed by Fernández et al. (2018), which identifies the regions of high compression,

is defined as

sβ = −h
k

∇·v
c̃

, (3.39)

where h is the element size, k is the degree of polynomial approximation and c̃ is a

reference speed of sound for non-dimensionalisation. Common choices for c̃ are the

critical speed of sound c?, the speed of sound at the actual point c, or simply the

reference free-stream value c∞. In the simulations presented in section 4, the latter

option is employed.

The shock sensor sβ is thus utilised to define the artificial bulk viscosity β∗ as

β∗ = Ψ

(
ε0

[
ρ∞
h

k
(v2
∞ + c2

∞)1/2

]
fβ(sβ)

)
, (3.40)

where Ψ denotes a smoothing operator consisting of a C0 reconstruction, as defined

by Persson (2013), ε0 is a user-defined positive constant and

fβ(sβ) = min {smax,max{smin, sβ − s0}} . (3.41)

Following Fernández et al. (2018) the values ε0 = 1.5, s0 = 0.01, smin = 0 and

smax = 2/
√
γ2 − 1 and the artificial Prandtl number Prβ = 0.9 are employed in the

numerical simulations of this chapter.

3.5.2.2 Laplacian-based shock capturing

The second alternative for the shock capturing detailed in this section consists of a

discretised Laplace operator, applied in HDG discretisations by Jaust et al. (2015,

2014) following standard approaches in the context of DG and SUPG methods, such

as in Bassi and Rebay (1995), Cockburn (2001), Casoni et al. (2012) or Sevilla et al.

(2013). Given the artificial viscosity ε, it relies on adding the term

(∇W , ε∇U)Ωe
(3.42)
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3.5. HDG discretisation

to the left-hand side of the local equation (3.11c), or (3.16) for the Euler case. This

approach is especially suited for the inviscid case, where the second-order term G

vanishes and the mixed variables in (3.11a) and (3.11b) are neglected.

The shock capturing technique is equipped with a discontinuity sensor Se, in-

troduced by Persson and Peraire (2006) and expressed in terms of the density field

according to Persson (2013), namely

Se :=
(ρe − ρ̃e, ρe − ρ̃e)Ωe

(ρe, ρe)Ωe

. (3.43)

The smoothness indicator Se is utilised to detect the regions with discontinuities.

In (3.43), ρe denotes the density in the element Ωe, computed using a polynomial

approximation of degree k, and ρ̃e is its truncation of order k−1. The sensor measures

the regularity of the approximate solution based on the rate of decay of its Fourier

coefficients. More precisely, if Se > k−4, such approximation is expected to be at

most C0, whereas smooth functions are expected to decay more rapidly, as detailed

by Casoni et al. (2012).

Following Sevilla et al. (2008) and Huerta et al. (2011), the sensor (3.43) is im-

plemented using nodal basis functions. It follows that

Se =
ρTe V−TPV−1ρe
ρTe V−TV−1ρe

, (3.44)

where ρe is the vector containing the nodal values of the density field in the ele-

ment Ωe, V is the Vandermonde matrix whose inverse maps the Lagrange basis onto

the orthonormal one and P is the orthogonal projection matrix onto the space of

monomials of degree k, namely

P := diag(

nL︷ ︸︸ ︷
0, . . . , 0,

nH︷ ︸︸ ︷
1, . . . , 1), (3.45)

being nL and nH the number of degrees of freedom for monomials of degree k− 1 and

k, respectively. In two dimensions, it holds nL := k + 1 and nH := k(k + 1)/2.

The amount of artificial viscosity introduced in each element is determined ac-

cording to

εe =


0, if se < s0 − ξ,
ε0

2

(
1 + sin

(
π(se − s0)

2ξ

))
, if s0 − ξ < se < s0 + ξ,

ε0, if se > s0 + ξ,

(3.46)
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3. HDG formulation of compressible flows

where se := log10 Se and ε0 ∼ h/k. In these expressions, s0 and ξ are selected such

that s0 + ξ = −4 log10 k and s0 − ξ is sufficiently large to detect the regions in which

mild shock waves are present, according to Huerta et al. (2011). In particular, a

value s0 − ξ = −11 log10 k is considered in upcoming numerical studies. Finally, the

smoothing operator Ψ is employed to perform a C0 reconstruction of the elemental

artificial viscosity obtained in (3.46), that is ε = Ψ(εe).
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Chapter 4

Benchmarking for high-order

compressible flows 1

A comprehensive set of computational benchmarks, spanning from subsonic flows

to supersonic inviscid and viscous cases with shocks, is presented in this chapter

to examine the capabilities of the high-order HDG solver presented in chapter 3.

In particular, the corresponding numerical examples are employed to evaluate the

performance of the HDG formulation equipped with the proposed Riemann solvers,

i.e. Lax-Friedrichs, Roe, HLL and HLLEM. This section is also aimed at providing a

useful extensive list of compressible flow examples of practical interest to be employed

for numerical validation.

It is worth mentioning that, in this work, the main interest has been focused

on the HDG formulation for compressible flows and the presentation of a unified

framework for the Riemann solvers in HDG. To this end, the examples considered

involve steady-state flows.

The organisation of this chapter is the following. Section 4.1 examines the optimal

accuracy properties of the proposed HDG formulation in a pair of convergence studies

for inviscid and viscous flows. Then, a set of numerical benchmarks for a variety of

flow conditions is presented in section 4.2 to test the performance and robustness of

the HDG solver. Finally, section 4.3 summarises the main results of this study.

1This chapter is based on the published article Vila-Pérez et al. (2020)
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4. Benchmarking for high-order compressible flows

4.1 Validation and convergence studies

The optimal convergence properties of the HDG method are tested both in inviscid

and viscous cases. The accuracy of the approximation is examined using the four

Riemann solvers presented in section 3.4 for different degrees of polynomial approxi-

mation.

4.1.1 Convergence analysis for inviscid flows: Ringleb flow

The Ringleb flow problem is considered to verify the optimal convergence of the

HDG method for inviscid flows. As described in section 2.3.1, where it has been

employed, the Ringleb problem, presented by Chiocchia (1985), consists of a smooth

transonic 2D solution of the Euler equations with analytical expression obtained via

the hodograph method. For any given spatial coordinates (x, y), the solution of the

Ringleb flow can be computed by solving the following nonlinear implicit equation in

terms of the speed of sound c,(
x+

J

2

)2

+ y2 =
1

4ρ2V 4
, (4.1)

where the following relationships for density ρ, radial velocity V and J hold

ρ = c2/(γ−1), V =

√
2(1− c2)

γ − 1
, J =

1

c
+

1

3c3
+

1

5c5
− 1

2
log

(
1 + c

1− c

)
. (4.2)

The exact velocity and pressure fields are

v =

{
−sgn (y)V sin θ

V cos θ

}
and p =

1

γ
c2γ/(γ−1), (4.3)

where sgn (·) is the sign operator, sin θ := ΨV and

Ψ :=

√
1

2V 2
+ ρ

(
x+

J

2

)
. (4.4)

Remark 4.1 (Computation of the Ringleb solution). It is worth noting that the

nonlinear equation driving the analytical solution of the Ringleb problem (4.1) needs

to be solved iteratively upon a certain tolerance, thus introducing an approximation

error in the estimated analytical solution. Further operations in order to compute

the rest of variables of the problem may be responsible for the propagation of such
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error, which may become critical in high-order convergence tests. In these cases, the

error introduced in the exact solution may be of similar level or even higher than the

error of the approximate solution. Then, the computed approximation error is no

longer reliable, showing a stagnation in the levels of accuracy.

Such numerical issues were circumvented in this study by avoiding the computa-

tion of Ψ directly as in (4.4) but using trigonometric identities and algebraic manip-

ulation of (4.1) to compute the direction of the flow, namely

sin(2θ) = 2 sin θ cos θ = 2ΨV
√

1−Ψ2V 2 = 2

√
1

4
− ρ2V 4 (x+ J/2)2 = 2ρV 2y. (4.5)

It is worth mentioning that these numerical issues may be more evident in those

regions of the domain where the solution displays greater variations, namely those

including supersonic speeds.

In this study, the Ringleb problem is solved in the domain Ω = [0, 1]2, with far-

field boundary conditions on ∂Ω. The computational domain is discretised using

uniform meshes of triangular elements. Figure 4.1 displays the first three levels of

refinement employed.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 4.1: Ringleb flow - Triangular meshes of Ω = [0, 1]2 for the h-convergence analysis.

The approximate solution of the Mach number distribution computed on the mesh

in figure 4.1(a) using polynomial degree k = 1, . . . , 3 is depicted in figure 4.2. The

results clearly display the gain in accuracy obtained increasing the degree of the

polynomial approximation, even in presence of extremely coarse meshes, motivating

the interest in high-order discretisations.

An h-convergence study is performed using a degree of approximation ranging

from k = 1 up to k = 4 and for the four Riemann solvers presented in section 3.4.
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(a) k = 1 (b) k = 2 (c) k = 3

Figure 4.2: Ringleb flow - Mach number distribution computed using the HLL Rie-
mann solver on the first level of mesh refinement with polynomial degree
k = 1, . . . , 3.

Figure 4.3 displays the error for the conserved variables, i.e. ρ, ρv and ρE, measured

in the L2(Ω) norm, as a function of the characteristic mesh size h. It can be observed

that the different Riemann solvers lead to an optimal rate of convergence hk+1 and a

comparable accuracy in all cases.

(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

Figure 4.3: Ringleb flow - Mesh convergence of the L2 error of (a) density, (b) momentum
and (c) energy, using Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann
solvers and polynomial degree of approximation k = 1, . . . , 4.

It is worth mentioning that the level of accuracy obtained in mesh 5 with a linear

approximation k = 1 (49,664 DOFs) is comparable to the one achieved on the coarsest

mesh with polynomial degree of approximation k = 4 (560 DOFs). Hence, the results

show the superiority of high-order discretisations, which allow to highly reduce the

size of the HDG problem for a given level of accuracy.
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4.1.2 Convergence analysis for viscous flows: Couette flow

The compressible Couette flow with a source term example presented in section 2.3.2 is

considered to numerically verify the accuracy and convergence properties of the high-

order HDG method for the compressible Navier-Stokes equations using the different

Riemann solvers presented in section 3.4.

The analytical expression of the solution, defined on the square domain Ω = [0, 1]2,

is

v =

{
y log(1 + y)

0

}
, p =

1

γM2
∞

T =
1

(γ − 1)M2
∞

[
αc + y(βc − αc) +

(γ − 1)M2
∞Pr

2
y(1− y)

]
,

(4.6)

where αc = 0.8 and βc = 0.85 are positive constants. The viscosity is assumed

constant and the source term, which is determined from the exact solution, is given

by

S =
−1

Re

{
0,

2 + y

(1 + y)2
, 0, log2(1 + y) +

y log(1 + y)

1 + y
+
y(3 + 2y) log(1 + y)− 2y − 1

(1 + y)2

}T
.

(4.7)

The exact solution is utilised to impose the boundary conditions on ∂Ω and the

nondimensional quantities are set to M∞ = 0.15 and Re = 1 in order to replicate

the case presented by Nguyen and Peraire (2012) and Schütz et al. (2012), taking a

characteristic length L = 1.

The computational domain is discretised using the uniform meshes of triangular

elements employed in the Ringleb example of section 4.1.1. Figure 4.4 displays the

approximate solution of the density field on the first mesh refinement for polynomial

degrees k = 1, . . . , 3.

The evolution of the error of the primal (conserved) and mixed variables measured

in the L2(Ω) norm is displayed in figure 4.5, as a function of the characteristic element

size h. The h-convergence study compares the results of the Lax-Friedrichs, Roe,

HLL and HLLEM Riemann solvers, using polynomial degrees of approximation from

k = 1 to k = 4. Optimal rates of convergence and comparable levels of accuracy are

obtained for the approximation of the primal and mixed variables using the different

Riemann solvers.

Finally, the rates of convergence of the mixed variables in the last mesh refine-

ment, r�, are examined with respect to the Reynolds number. In particular, whereas
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(a) k = 1 (b) k = 2 (c) k = 3

Figure 4.4: Couette flow - Density distribution computed using the HLLEM Riemann
solver on the first level of mesh refinement with polynomial degree k =
1, . . . , 3.

(a) Density, ρ (b) Momentum, ρv (c) Energy, ρE

(d) Stress tensor, σd (e) Heat flux, q

Figure 4.5: Couette flow - Mesh convergence of the L2 error of the (a–c) primal variables
–density, momentum and energy–, (d) stress tensor and (e) heat flux, using
Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers and polynomial
degree of approximation k = 1, . . . , 4.
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for Re = 1 the four Riemann solvers show similar rates of convergence of k + 1, as

displayed in figure 4.5, figure 4.6 illustrates the decreasing tendency of such conver-

gence rates as the problem turns convection-dominated. HLLEM and Roe Riemann

solvers display an increased accuracy with respect to Lax-Friedrichs and HLL, keep-

ing optimal rates of convergence even for Re = 1000. On the contrary, Lax-Friedrichs

and HLL exhibit a steeper drop in accuracy, experiencing a suboptimal behaviour as

the Reynolds number increases.

(a) Viscous stress tensor, σd (b) Heat flux, q

Figure 4.6: Couette flow - Rate of convergence of the viscous stress and the heat flux for
variable Reynolds, using Lax-Friedrichs (LF), Roe, HLL and HLLEM Rie-
mann solvers and polynomial degree of approximation k = 1, . . . , 4.

4.2 Numerical benchmarks

A set of numerical examples is presented in this section to evaluate the performance

and accuracy of the different Riemann solvers for inviscid and viscous compressible

flows in the context of the high-order HDG method. Different cases, listed in table 4.1,

are considered, ranging from viscous laminar to inviscid flows, both in subsonic,

transonic and supersonic regimes.

4.2.1 Entropy production due to geometrical error:

subsonic flow past a circular cylinder

The subsonic flow around a circular cylinder at free-stream Mach number M∞ = 0.3

is considered to assess the numerical dissipation introduced by the different Riemann

solvers in the context of HDG methods.
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Table 4.1: List of examples.

Inviscid examples

4.2.1 Subsonic flow past a circular cylinder
4.2.3 Transonic flow over a NACA 0012 aerofoil
4.2.4 Supersonic flow over a NACA 0012 aerofoil

Viscous examples

4.2.2 Subsonic laminar flow over a flat plate
4.2.5 Shock wave/boundary layer interaction
4.2.6 Supersonic flow over a compression corner

In particular, it is known that the geometrical error introduced by low-order de-

scriptions of curved boundaries is responsible for a substantial nonphysical entropy

production, as studied in detail by Bassi and Rebay (1997b). Possible solutions

involve the modification of the wall boundary condition, proposed by Krivodonova

and Berger (2006), or the incorporation of the exact boundary representation, de-

scribed by Sevilla et al. (2008). As mentioned earlier, isoparametric approximations

are considered in this work. Therefore, only approximations of degree at least k = 2

are reported, preventing the geometrical error from dominating over the dissipative

behaviour of the Riemann solvers under analysis.

Two meshes are considered for this example. The coarsest mesh consists of 1, 104

triangles with 32 elements to discretise the circle, whereas the finest mesh has 4, 635

elements and 64 subdivisions on the circle. A detailed view of the corresponding

meshes near the cylinder is depicted in figure 4.7. The far-field boundary is placed

at 15 diameters from the circle and inviscid wall conditions are set on the cylinder

boundary.

For isentropic subsonic flows, the entropy production is a measure of the numer-

ical dissipation introduced by the spatial discretisation. The nonphysical entropy

production is computed via the so-called entropy error, namely

εent =
p

p∞

(
ρ∞
ρ

)γ
− 1, (4.8)

measuring the relative error of the total pressure with respect to the undisturbed flow

in an isentropic process.

Figure 4.8 (top) shows the Mach number distribution and isolines of the numerical

solution computed on the first mesh with k = 2, . . . , 4, using the HLL Riemann
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(a) Mesh 1 (b) Mesh 2

Figure 4.7: Subsonic flow around a cylinder - Detail of the meshes near the 2D cylinder,
featuring (a) 32 and (b) 64 subdivisions on the circular boundary.

solver. Although the computed distribution of the Mach number is comparable in

the three settings, the superiority of high-order approximations becomes evident when

the corresponding entropy errors are compared (figure 4.8, bottom). The results

clearly display that, increasing the polynomial degree of discretisation, the numerical

dissipation introduced by the method is localised in the vicinity of the cylinder and

its overall amount is reduced.

To quantify the differences between the four Riemann solvers, the nonphysical

entropy production is compared through the L2 norm of the entropy error, measured

on the surface of the cylinder. Figure 4.9 displays the quantity (4.8) as a function of

the number of degrees of freedom of the global problem, for the two meshes under

analysis and an increasing value of the polynomial degree used to approximate the

solution. The results show that the entropy production of the HLL Riemann solver

is almost identical when compared to the Lax-Friedrichs Riemann solver, whereas

HLLEM matches the entropy production by the Roe numerical flux. Moreover, as

expected for a subsonic flow, the entropy production is slightly lower for the HLLEM

and Roe Riemann solvers.

It is worth noting that the differences among the Riemann solvers are less im-

portant as the polynomial degree of the approximation increases. This confirms the

observation above on the reduced amount of numerical dissipation introduced by the

method as the degree of the discretisation increases and the consequent extra accuracy

provided by high-order approximations.
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(a) k = 2, Mach (b) k = 3, Mach (c) k = 4, Mach

(d) k = 2, entropy error (e) k = 3, entropy error (f) k = 4, entropy error

Figure 4.8: Subsonic flow around a cylinder - Mach number distribution and isolines (top)
and entropy error in logarithmic scale (bottom) computed on the first mesh
using the HLL Riemann solver with k = 2 (left), k = 3 (middle) and k = 4
(right).

Figure 4.9: Subsonic flow around a cylinder - Entropy error on the cylinder surface for
different meshes and different degrees of polynomial approximation.
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4.2.2 Boundary layer resolution: subsonic viscous laminar

flow over a flat plate

The next example consists of the subsonic laminar flow over a flat plate at zero angle

of attack. This classical benchmark follows from the analytical study of boundary

layers by Blasius (1908) for incompressible flows and has been commonly used to test

laminar flow solvers in resolving boundary layers, such as described by Schlichting

and Gersten (2016).

This problem is used to evaluate the numerical diffusion introduced by the different

Riemann solvers in the approximation of shear layers and its effect over the boundary

layer description.

The example considers a nearly incompressible flow (M∞ = 0.1) at a high Reynolds

number (Re = 105) while preserving a laminar behaviour of the solution along the

flat plate.

The computational domain consists of a flat plate of length 5L, being L the

characteristic length of the problem, embedded in a rectangular domain, as shown in

figure 4.10. Adiabatic wall conditions are imposed along the plate, whereas symmetry

wall conditions are imposed upstream of the leading edge. Subsonic inflow and outflow

conditions are imposed at the outer boundaries. The pressure at the outflow is set to

p∞, forcing a zero pressure drop.

Figure 4.10: Laminar flow over a flat plate - Sketch of the geometry and boundary con-
ditions.

Uniform mesh refinement of the boundary layer is performed in order to analyse

the convergence of the solution. Details of the refinement are reported in table 4.2.

In particular, for each level of refinement, the number of layers of elements in the

boundary layer, nlay, and the number of subdivisions along the flat plate, ndiv, are

doubled and the height h0 of the first layer is halved. Additionally, h0 is chosen

according to the relation h0/k ∼ Re−0.75L. Finally, the geometric growth rate of the
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boundary layer, r, is determined in order for the height of the boundary layer mesh

to be h/L = 0.1.

Table 4.2: Laminar flow over a flat plate - Mesh refinement details for the convergence
study.

Refinement nlay ndiv h0/L r nel

1 4 10 8 ·10−4 4 501
2 8 20 4 ·10−4 2 1,154
3 16 40 2 ·10−4 1.4 3,512

The three mesh refinements used for this study are displayed in figure 4.11. Be-

cause of the explicit embedding of the flat plate on the lower boundary of the domain,

a singularity is introduced at the leading edge, as described by Tuck (1991). To alle-

viate its numerical effects, the mesh is further refined at this location.

(a) Mesh 1.

(b) Mesh 2.

(c) Mesh 3.

Figure 4.11: Laminar flow over a flat plate - Meshes used for the convergence study.

The skin friction coefficient computed in the first level of refinement using degree

of approximation k = 1 and k = 3 is depicted in figure 4.12 for the different Rie-

mann solvers. The superiority of Roe and HLLEM Riemann solvers with respect to

classical Lax-Friedrichs and HLL is clearly displayed in figure 4.12(a): for low-order

approximations, HLLEM and Roe achieve a better accuracy due to their ability to

capture contact wave-type phenomena and consequently, boundary layer effects by
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introducing a lower amount of numerical dissipation. Of course, such difference is

reduced when high-order approximations are considered, as the numerical dissipation

of the method decreases, see figure 4.12(b).

(a) Mesh 1, k = 1 (b) Mesh 1, k = 3

Figure 4.12: Laminar flow over a flat plate - Friction coefficient along the flat plate for
different polynomial degrees of approximation in the coarsest mesh, using the
Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers. The reference
solution is obtained using the HLLEM Riemann solver on the third mesh,
with k = 4.

In a similar fashion, velocity profiles along the flat plate and detail of the boundary

layer thickness are sketched in figure 4.13 for different degrees of approximation in the

different mesh refinements, computed with the HLLEM Riemann solver. The solution

is noticeably improved with mesh refinement (figure 4.13, top). It is worth noting

that accurate approximations are achieved on the coarsest mesh using high-order

polynomial approximation (figure 4.13, bottom).

In order to quantify the effect of the numerical dissipation introduced by the Rie-

mann solver in the quality of the approximate solution, the L2 error of the boundary

layer thickness and of the friction coefficient is measured along the flat plate. The

convergence study, shown in figure 4.14, reports the evolution of the error as a func-

tion of the number of degrees of freedom, obtained for each mesh by increasing the

polynomial degree of approximation from k = 1 up to k = 4.

The HLLEM solution on mesh 3 using fourth-order polynomials is taken as ref-

erence solution for comparison. The results display that Lax-Friedrichs and HLL

solutions introduce higher levels of error than HLLEM and Roe. These differences

are more remarkable in low order approximations, being the choice of Riemann solver

a critical issue for the accuracy of the computation. Furthermore, it is worth noticing

that high-order approximations on coarse meshes provide higher accuracy than lower-
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(a) Mesh 1, k = 1 (b) Mesh 2, k = 1 (c) Mesh 3, k = 1

(d) Mesh 1, k = 2 (e) Mesh 1, k = 3 (f) Mesh 1, k = 4

Figure 4.13: Laminar flow over a flat plate - Velocity profiles along the flat plate and
boundary layer thickness for the different meshes and polynomial degrees of
approximation, using an HLLEM Riemann solver.

(a) Boundary layer thickness, δ (b) Friction coefficient, Cf

Figure 4.14: Laminar flow over a flat plate - Convergence of the relative L2 error of the
(a) boundary layer thickness and (b) friction coefficient, using Lax-Friedrichs
(LF), Roe, HLL and HLLEM Riemann solvers under k-refinement (k =
1, . . . , 4) using three different meshes.

order solutions with similar number of degrees of freedom, emphasising the interest

for increasing the polynomial degree of approximation.

Similarly, the convergence of the drag coefficient is reported in figure 4.15. It is

confirmed that HLLEM and Roe Riemann solvers display an increased accuracy with

respect to Lax-Friedrichs and HLL, which is especially evident for k = 1. In this

case, even in the coarsest mesh, the drag coefficient computed with HLLEM and Roe

solutions lies within the admissible error of five drag counts, contrary to HLL and

Lax-Friedrichs. As the degree of approximation increases, differences among Riemann

solvers are notably reduced, due to the lower numerical dissipation introduced by
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HDG.

(a) k = 1 (b) k = 2 (c) k = 3

Figure 4.15: Laminar flow over a flat plate - Convergence of the drag coefficient, Cd,
using Lax-Friedrichs (LF), Roe, HLL and HLLEM Riemann solvers under
h-refinement using three different polynomial degrees of approximation.

Hence, Roe and HLLEM Riemann solvers have proved to be able to resolve the flow

solutions in thin boundary layers exhibiting an increased accuracy when low-order

approximations are constructed. More precisely, the numerical diffusion introduced

by Riemann solvers misrepresenting middle waves (i.e. Lax-Friedrichs and HLL)

results critical for an accurate approximation of the solution in the boundary layer

and its derived quantities. As the resolution increases, either by mesh refinement

or by increasing the polynomial order of approximation, such numerical diffusion is

reduced and the differences among Riemann solvers become negligible.

Henceforth, and in order to fully exploit the advantages of the presented HDG

solver with the different Riemann solvers, as proved in the previous examples, only

high-order approximations are considered.

4.2.3 Shock treatment in inviscid flows: transonic inviscid

flow over a NACA 0012 aerofoil

The transonic inviscid flow over a NACA 0012 aerofoil, at free-stream conditions

M∞ = 0.8 and angle of attack α = 1.25◦, is presented to assess the performance of the

shock capturing method for inviscid flows. This example is a classical benchmark used

to verify numerical inviscid codes and implementations of shock capturing techniques,

see for instance Sevilla et al. (2013) or the test case MTC2 in Kroll (2009).
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Figure 4.16: Transonic flow over a NACA 0012 aerofoil - Mach number distribution com-
puted using HLL Riemann solver with polynomial degree of approximation
k = 4.

The steady-state problem is solved via a relaxation approach with a time step

∆t = 10−1 such that the Courant number is C = 22. Convergence to the steady-state

is achieved when the residual of the steady terms of the continuity equation reaches

10−6 or is decreased by three orders of magnitude from its maximum value.

All Riemann solvers are equipped with the Laplacian-based shock capturing tech-

nique described in section 3.5.2.2 and the value ε0 = 0.4 is selected. In the case

under analysis, no entropy fix is required by the Roe flux since the artificial viscosity

introduced by the shock capturing strategy allows the Riemann solver to fulfill the

entropy conditions. Nonetheless, it is worth remarking that the need of an entropy

fix is not known a priori and the value of the corresponding parameter δ depends

upon the problem and requires to be appropriately tuned by the user. More details

will be provided in section 4.2.4 for the case of a supersonic flow over the NACA 0012

aerofoil.

A mesh with 1, 877 triangular elements, without any specific refinement in the

shock region, is used and an approximation degree k = 4 is considered. The far-field

boundary is placed 10 chord units away from the aerofoil.

Figure 4.16 displays the Mach number distribution computed using the HLL Rie-

mann solver. An accurate description of the flow around the aerofoil is obtained and

the shock is precisely captured with a coarse mesh, owing to the high-order polyno-

mial approximation constructed using the HDG framework and the shock capturing

term introduced. The resolution of the shock is clearly related to the local mesh
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size and sharper representations may be obtained by performing local mesh refine-

ment in the shock region, as described by Nguyen and Peraire (2011). Comparable

results, not reported here for brevity, were obtained by the proposed HDG method

with Lax-Friedrichs, Roe and HLLEM Riemann solvers.

The accuracy of the different numerical fluxes is thus evaluated comparing the

pressure coefficient, given by

Cp =
p− p∞

0.5ρ∞v2
∞
, (4.9)

over the aerofoil profile.

Figure 4.17: Transonic flow over a NACA 0012 aerofoil - Pressure coefficient around the
aerofoil surface computed using different Riemann solvers with polynomial
degree of approximation k = 4 and detailed views of the lower (left) and
upper (right) shocks.

A well resolved solution, in agreement with the experimental data by Yoshihara

and Sacher (1985), is obtained using all Riemann solvers. The results in figure 4.17

display that HLL and HLLEM Riemann solvers provide an approximation without

oscillations and with accuracy similar to the one of the Roe numerical flux near the

upper, stronger shock. It is worth noting that the jumps appearing at the extrema

of the shock region are due to the discontinuous nature of the HDG approximation.
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The lower, weaker shock, is reproduced less precisely by the four Riemann solvers.

In this case, HLL presents a behaviour closer to the Lax-Friedrichs solution, whereas

HLLEM and Roe produce a similar approximation.

Accordingly, the lift and drag coefficients reported in table 4.3 allow to quantify

very little differences among Riemann solvers.

Table 4.3: Transonic inviscid flow over a NACA 0012 aerofoil - Lift and drag coefficients
for different Riemann solvers using a polynomial degree of approximation k = 4.

Lax-Friedrichs Roe HLL HLLEM

Cl 0.320 0.314 0.317 0.315

Cd 0.0193 0.0190 0.0192 0.0191

The obtained values lie between 25 and 35 lift and drag counts with respect to

typical reference values provided by Thibert et al. (1979). Note that the precision

of the aerodynamic coefficients is strongly dependent on the location of the far-field

boundary, as reported by Yano and Darmofal (2012) or Wang et al. (2013). In

particular, for such kind of comparisons, far-field boundaries are tipically located at

distances from 50 up to 104 chord lengths from the aerofoil, as concluded by Woopen

et al. (2014), Balan et al. (2015) or Ekelschot et al. (2017).

Finally, the entropy production is considered for this non-isentropic case. In this

context, such quantity allows to estimate the numerical dissipation introduced in the

upstream region before the shock and the entropy produced by the artificial viscosity.

On the one hand, the results in figure 4.18 show that the regions of activation

of the sensor are almost identical for the four Riemann solvers. On the other hand,

the different amount of numerical dissipation introduced by the numerical fluxes is

responsible for the production of entropy. As observed in figure 4.17, HLL, HLLEM

and Roe Riemann solvers present a similar behaviour in the vicinity of the upper,

stronger shock, where comparable approximations are achieved. On the contrary, the

Lax-Friedrichs numerical flux introduces the largest amount of numerical dissipation

in this region, as shown in figure 4.18(f). In the vicinity of the weaker shock on the

lower part of the aerofoil, the four Riemann solvers show a similar entropy production.

Finally, Roe and HLLEM solvers provide the most accurate results in the region near

the trailing edge, where the HLL and the Lax-Friedrichs numerical fluxes introduce

extra dissipation.
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(a) HLL, sensor activation (b) HLL, entropy production

(c) HLLEM, sensor activation (d) HLLEM, entropy production

(e) LF, sensor activation (f) LF, entropy production

(g) Roe, sensor activation (h) Roe, entropy production

Figure 4.18: Transonic flow over a NACA 0012 aerofoil - Regions of activation of the
shock sensor (left) and entropy production in logarithmic scale (right) for
HLL (a-b), HLLEM(c-d), Lax-Friedrichs (LF, e-f) and Roe (g-h) Riemann
solvers using a polynomial degree of approximation k = 4.
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This example demonstrates an overall good performance of the Laplacian-based

shock capturing method for inviscid compressible flows. Furthermore, no significant

differences are observed among the Riemann solvers using a high-order approximation

of order k = 4. In particular, the four numerical fluxes lead to similar approximate

solutions, as reported with the aerodynamic measures of lift, drag and pressure co-

efficients, while displaying an accurate and positively conservative treatment of the

shock waves.

4.2.4 Positivity-preserving properties in presence of shocks:

supersonic inviscid flow over a NACA 0012 aerofoil

The second example of inviscid flow around a NACA 0012 aerofoil consists of a

supersonic flow at a free-stream Mach number M∞ = 1.5 and zero angle of attack,

also studied by Persson and Peraire (2006) or Balan et al. (2015).

This supersonic test case challenges the performance of the proposed Riemann

solvers in HDG in capturing solutions involving shocks and sharp gradients while

ensuring positivity-preserving properties using high-order approximations. It is worth

noticing that, in such case, Riemann solvers may fail to provide physically admissible

solutions, leading to a violation of the positiveness of the approximate density and

pressure fields, according to Peery and Imlay (1988), Quirk (1994) or Fleischmann

et al. (2019).

The computational mesh described in the previous case 4.2.3, consisting of 1,877

triangular elements and a far-field boundary placed at 10 chord units away from the

aerofoil, is employed for the simulation. A time step ∆t = 8× 10−2 is considered to

advance in time and the corresponding Courant number is C = 20. Convergence to

the steady-state is achieved when the residual of the steady terms of the continuity

equation reaches 10−6 or is decreased by three orders of magnitude from its maximum

value. The shock treatment is handled by means of the Laplacian-based technique

discussed in section 3.5.2.2, with a maximum value of artificial viscosity ε0 = 1.

The Mach number distribution computed using the HLL Riemann solver with a

polynomial degree of approximation k = 4 is presented in figure 4.19. The method is

able to accurately capture the physics of the problem, even on a coarse mesh, owing

to the high-order functional discretisation introduced by the HDG scheme.

This supersonic problem is especially challenging since it features an abrupt shock

in front of the aerofoil and allows to test the positivity properties of the approximate
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Figure 4.19: Supersonic flow over a NACA 0012 aerofoil - Mach number distribution
computed using an HLL Riemann solver with polynomial degree of approx-
imation k = 4.

solution. For this purpose, the performance of the Roe Riemann solver is compared

with those of the HLL family. Figure 4.20 shows the minimum nodal value of the

pressure computed using the Roe numerical flux with different values of the HH

entropy fix as well as with HLL and HLLEM.

Figure 4.20: Supersonic flow over a NACA 0012 aerofoil - Minimum nodal value of the
pressure computed using the different Riemann solvers with polynomial de-
gree of approximation k = 4.

In the case with no entropy fix (δ = 0), the Roe solver displays an insufficient

numerical dissipation. After few iterations, negative values of the pressure are com-

puted, leading to a nonphysical solution. This error is amplified from one time step

to the following ones and rapidly leads to the divergence of the Newton-Raphson

algorithm employed to solve the nonlinear problem. To remedy this issue, inherent
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to the Roe Riemann solver, an HH entropy fix with an empirically tuned value of the

threshold parameter δ is considered. It is worth emphasising that the tuning of such

parameter is problem-dependent. With a setting of δ = 0.1, the HDG method with

Roe Riemann solver converges to a steady-state solution including some nonphysical

undershoots in the pressure and density fields, giving rise to overshoots in the Mach

distribution.

(a) HLL, Mach (b) HLL, artificial viscosity

(c) Roe HH-EF δ = 0.1, Mach (d) Roe HH-EF δ = 0.1, artificial viscosity

Figure 4.21: Supersonic flow over a NACA 0012 aerofoil - Detail of the Mach number
distribution (left) and corresponding artificial viscosity (right) in the front
shock near the leading edge computed using HLL (top) and Roe Riemann
solver with HH entropy fix with threshold parameter δ = 0.1 (bottom) with
polynomial degree of approximation k = 4.

Precisely, the corresponding Mach number distribution computed using the Roe

numerical flux with entropy fix parameter δ = 0.1 is reported in figure 4.21 to

illustrate such spurious oscillations appearing in the region in front of the shock
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(Fig. 4.21(c)). Such oscillations appear despite the artificial viscosity introduced in

the corresponding elements, as displayed in figure 4.21(d). Hence, this value of the

HH entropy fix parameter leads to insufficient stabilisation and a higher threshold

needs to be introduced.

Remark 4.2. It is worth noting that the colour scale of figure 4.21 keeps the same

gradation of colours of figure 4.19 for the interval M ∈ [0, 1.8] but extends up to

M = 3.6 to visualise the peak values achieved by the overshoots in the Roe solution.

Such numerical issues are fixed by increasing the threshold value δ of the HH

entropy fix. Numerical results showed that a value δ = 0.25 or larger allows the high-

order HDG solver to achieve a physically admissible solution with no overshoots,

as reported in figure 4.20. Nonetheless, in case of exceeding the threshold value of

the entropy fix, the associated numerical dissipation of the Roe Riemann solver is

increased, turning the solver overdiffusive. In the limit, δ → λmax, the Lax-Friedrichs

Riemann solver is obtained. On the contrary, HLL and HLLEM numerical fluxes

provide a robust approximation with no oscillations without the need of any user-

defined entropy fix.

The entropy production is then examined for this non-isentropic case. In this

context, such quantity allows to estimate the numerical dissipation introduced in the

upstream region before the shock and the entropy produced by the artificial viscosity.

The map of the entropy production is reported in figure 4.22 for the HLL, HLLEM

and Lax-Friedrichs numerical fluxes. The results display that HLL-type Riemann

solvers introduce a limited amount of numerical dissipation in the vicinity of the

front shock. On the contrary, the Lax-Friedrichs solver is responsible for a large

entropy production in the shock region, confirming its over-diffusive nature also in

supersonic problems. Figure 4.22 also confirms that the shock-capturing sensor is

activated in the same regions independently on the Riemann solver considered.

Finally, the accuracy of the approximate solutions corresponding to the different

Riemann solvers is quantitatively evaluated with respect to the error in the lift coef-

ficient. It is well-known that a symmetric aerofoil subject to a flow at zero angle of

attack produces no lift force. Table 4.4 gathers the lift coefficient computed with the

different Riemann solvers. The HLL-type numerical fluxes, i.e., HLL and HLLEM,

are the most accurate in such computation, with a lift coefficient laying at 5 and 6 lift

counts from the reference value, respectively. Both the lift coefficient computed by
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(a) HLL, sensor activation (b) HLLEM, sensor activation (c) LF, sensor activation

(d) HLL, entropy production (e) HLLEM, entropy produc-
tion

(f) LF, entropy production

Figure 4.22: Supersonic flow over a NACA 0012 aerofoil - Regions of activation of the
shock sensor (top) and entropy production in logarithmic scale (bottom)
for HLL (left), HLLEM (middle) and Lax-Friedrichs (LF, right) Riemann
solvers using polynomial degree of approximation k = 4.

Roe with an entropy fix δ = 0.25 and by Lax-Friedrichs (LF) feature a higher error

of 8 lift counts with respect to the reference value.

Table 4.4: Supersonic inviscid flow over a NACA 0012 aerofoil - Lift coefficient for different
Riemann solvers using a polynomial degree of approximation k = 4.

Reference Lax-Friedrichs Roe (δ = 0.25) HLL HLLEM

Cl 0 −0.008 −0.008 −0.005 −0.006

This example involving a strong shock wave illustrates the ability of HLL-type

Riemann solvers, such as HLL and HLLEM, of guaranteeing positivity and thus

producing physically admissible solutions in a robust and parameter-free strategy, in

contrast with Roe Riemann solver.
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4.2.5 Shock wave/boundary layer interaction

The first example of this type considers the strong interaction between a shock wave

and a laminar boundary layer. Such interaction is a basic phenomenon of viscous-

inviscid interaction that happens when a shock impinges on the boundary layer pro-

ducing separation in it. In such a case, the shock, instead of reflecting off the wall,

turns into a combination of an expansion fan at the edge of the boundary layer plus

two compression waves around the separation and reattachment points, as described

by Hakkinen et al. (1959) and Katzer (1989).

The setup of this test case replicates the one introduced by Degrez et al. (1987)

and later reproduced by Moro et al. (2017) using a high-order HDG discretisation

with k = 3. It consists of a flat plate and a shock generator mounted inside a stream

at M∞ = 2.15 and Re = 105. A sketch of the geometry for a characteristic length

of L = 1 and the corresponding boundary conditions are detailed in figure 4.23. It

is worth noticing that a fillet is introduced at the leading edge in order to avoid the

singularity at this location.

(a) (b)

Figure 4.23: Shock wave/boundary layer interaction - (a) Geometry and boundary con-
ditions and (b) detail of the fillet at the leading edge.

The computational mesh, depicted in figure 4.24, is composed of 3,379 triangular

elements of degree k = 3. The boundary layer mesh consists of nlay = 12 layers

of elements with a growing rate r = 1.4 and the first layer located at a height of

h0/L = 2.5 · 10−4. In addition, the mesh is refined at the leading edge and ndiv = 80

divisions are defined along the plate.

The simulation is performed using the HLLEM Riemann solver due to its positivity-

preserving properties in presence of shocks, contrary to Roe, and its superiority with

respect to HLL or Lax-Friedrichs in resolving boundary layers. The physics-based
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Figure 4.24: Shock wave/boundary layer interaction - Computational mesh.

shock treatment involving an artificial bulk viscosity described in section 3.5.2.1 is

employed. The resulting flowfield is depicted in figure 4.25. The presence of shocks

generated at different locations as well as the effect of the strong shock wave/bound-

ary layer interaction can be observed.

Figure 4.25: Shock wave/boundary layer interaction - Mach number distribution obtained
with the HLLEM Riemann solver and polynomial degree of approximation
k = 3.

Detail of the impingement region showing the separation bubble induced by the

interaction between the reflecting shock wave and the boundary layer is illustrated in

figure 4.26.

Finally, figure 4.27 displays a comparison of the pressure coefficient and the skin

friction coefficient computed using the HLLEM Riemann solver with benchmark re-

sults by Degrez et al. (1987) and Moro et al. (2017).

The computed pressure and skin friction coefficients show excellent agreement

with both the experimental curve by Degrez et al. (1987) and the numerical solution

by Moro et al. (2017), whereas the numerical curve by Degrez et al. (1987) deviates

from the rest of results, especially downstream of the separation bubble. The HLLEM

computed solution lies on top of the reference results except for the region of shock

impingement, where the highly anisotropic adapted meshes by Moro et al. (2017)
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Figure 4.26: Shock wave/boundary layer interaction - Detail of the shock-induced sepa-
ration bubble in the Mach flowfield depicted in figure 4.25. Isolines of the
Mach are drawn in white.

(a) Pressure coefficient (b) Friction coefficient

Figure 4.27: Shock wave/boundary layer interaction - Pressure (a) and friction (b) coef-
ficients along the flat plate using the HLLEM Riemann solver and order of
polynomial approximation k = 3.

outperform the presented results. It is worth recalling that the HLLEM simulation in

this study is performed on a mesh with no a priori refinement except for the boundary

layer regions and the leading edge point.

This test case demonstrates a good behaviour of the HLLEM Riemann solver not

only in the resolution of the boundary layer or in the treatment of shock waves in high-

order but also in the strong interaction of these two flow features which challenges

the performance of Riemann solvers.
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4.2.6 Supersonic flow over a compression corner

The last case presented in this study considers the M∞ = 3 supersonic flow over a

10◦ compression corner. This example represents a classical benchmark for viscous

laminar compressible flow, first introduced by Carter (1972) and later reproduced by

several authors, such as Hung and MacCormack (1976), Shakib et al. (1991), Aliabadi

et al. (1993), Mittal and Yadav (2001) Qamar et al. (2006), or Kotteda and Mittal

(2014).

The setup of this problem consists of a laminar flow at Re = 16, 800 over an

isothermal flat plate of length L (the characteristic length of the problem) ended

with a 10◦ wedge. The isothermal surface is kept at the free-stream stagnation tem-

perature, namely

Tw = T∞,0 =
1

(γ − 1)M2
∞

(
1 +

γ − 1

2
M2
∞

)
. (4.10)

A sketch of the geometry and detail of the corresponding boundary conditions is

depicted in figure 4.28.

Figure 4.28: Supersonic flow over a compression corner - Sketch of the geometry and
boundary conditions.

The computational domain is discretised with 2,773 triangular elements of degree

k = 3, as illustrated in 4.29. In contrast to the shock wave/boundary layer interaction

example, the leading edge of the flat plate is not rounded by means of a fillet, thus

introducing a singularity. Such singular behaviour is alleviated by means of further

refinement and by reducing the order of polynomial approximation to k = 2 in the

elements surrounding the singularity, as depicted in red in 4.29(b).
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The boundary layer mesh consists of nlay = 12 layers of elements with the first

layer located at a height of h0/L = 5 · 10−4 and a growing rate of r = 1.4. The

isothermal wall is divided into ndiv = 72 elements.

(a)

(b)

Figure 4.29: Supersonic flow over a compression corner - (a) Computational mesh and
(b) detail of the leading edge, showing in red the elements employing a lower
degree of approximation, k = 2.

The physics-based shock capturing based on artificial bulk viscosity described

in 3.5.2.1 is employed for the simulation. The resulting flowfield obtained with the

HLLEM Riemann solver is presented in figure 4.30. The density field in figure 4.30

illustrates the regions of high compression, namely the shock wave generated at the

leading edge and the compression fan induced by the wedge.

Good resolution of the flow solution can be observed in figure 4.31, where the

separation bubble induced by the corner is depicted.

A qualitative comparison of the obtained results is carried out through the wall

pressure and the skin friction coefficient. Figure 4.32 compares such quantities with

respect to the reference results by Carter (1972) and Hung and MacCormack (1976),

showing an excellent agreement. Additional numerical results available in the litera-

ture such as those by Shakib et al. (1991), Aliabadi et al. (1993), Mittal and Yadav

(2001), Qamar et al. (2006) and Kotteda and Mittal (2014) are not included in the

comparison for the sake of readability because of the similarity among them.

Finally, the position of the separation, xs, and reattachment, xr, points, gathered

in table 4.5, allows a quantitative assessment of the computed solution.

The obtained results show a strong consistency with respect to those available in

the literature, proving the good performance of the high-order HDG solver.
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(a) Density

(b) Mach

Figure 4.30: Supersonic flow over a compression corner - Density (a) and Mach number (b)
distributions using the HLLEM Riemann solver with a combined polynomial
degree of approximation k = 2 and k = 3.

Figure 4.31: Supersonic flow over a compression corner - Detail of the Mach number
distribution around around the corner, using the HLLEM Riemann solver
with a combined polynomial degree of approximation k = 2 and k = 3.
Isolines of the Mach are drawn in white.

4.3 Conclusions

Optimal convergence properties of the HDG discretisation have been verified using

Lax-Friedrichs, Roe, HLL and HLLEM Riemann solvers both for inviscid and viscous

cases and for a wide range of the Reynolds number. HDG demonstrates its ability to
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(a) Pressure (b) Friction coefficient

Figure 4.32: Supersonic flow over a compression corner - Pressure (a) and friction co-
efficient (b) along the flat plate using the HLLEM Riemann solver with a
combined polynomial degree of approximation k = 2 and k = 3.

Table 4.5: Supersonic flow over a compression corner - Position of the separation, xs, and
reattachment, xr, points around the wall.

Reference xs/xc xr/xc

Present study 0.86 1.20

Carter (1972) 0.84 1.22
Hung and MacCormack (1976) 0.89 1.18
Shakib et al. (1991) 0.88 1.17
Mittal and Yadav (2001) 0.89 1.13
Kotteda and Mittal (2014) 0.88 1.17

approximate the conserved quantities as well as the viscous stress and the heat flux

with optimal order of convergence, k + 1.

Whereas the role of the Riemann solver shows little effect in the precision of the

approximate primal variables, significant differences are noticed in the precision of

the approximated mixed variables. In particular, HLLEM and Roe Riemann solvers

yield a gain in accuracy in the approximation of the heat flux and viscous stress,

specially as the Reynolds number increases.

Then, a set of 2D numerical benchmarks has been presented to show the advan-

tages of high-order approximations for compressible flow problems and the capabilities

of the novel HLL and HLLEM Riemann solvers in different flow regimes, from sub-

sonic to supersonic, with special attention to its comparison with well-established
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Lax-Friedrichs and Roe Riemann solvers in the context of HDG.

In particular, HLL-type Riemann solvers exhibit a superior performance in su-

personic cases, illustrating their positivity preserving properties. This allows a ro-

bust and parameter-free strategy in the solution of supersonic flows involving shock

waves, contrary to Roe Riemann solver, which may fail to produce physically admis-

sible solutions because of a lack of dissipation. Furthermore, HLLEM Riemann solver

demonstrates its ability to preserve contact or shear layers, likewise Roe, producing

results that introduce less numerical dissipation than HLL and Lax-Friedrichs, and

displaying a major advantage in the approximation of boundary layers.

Finally, a couple of benchmarks involving the interaction of boundary layers

and shock waves demonstrate the overall good performance of the high-order HDG

method, equipped with a shock-capturing technique based on artificial viscosity and

an HLLEM Riemann solver, in the resolution of problems with such combination of

viscous and inviscid-type phenomena.
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Chapter 5

Summary and future developments

This thesis has presented a series of developments in the context of hybridised nu-

merical methods, with the aim of devising a robust and efficient framework for the

high-fidelity simulation of compressible flows. Based on the current duality within

CFD between low-order and high-order discretisation methods, the scope of this work

has been set up in both of these levels. To this end, on the one hand, a novel low-

order strategy consisting of the introduction of a mixed hybrid finite volume method

for the simulation of steady-state compressible flows has been presented. On the

other, in the line of enhancing the robustness of current high-order approaches, a

suitable framework for the derivation of Riemann solvers for the HDG method has

been introduced, allowing the formulation of the HLL and HLLEM numerical fluxes.

This chapter outlines the principal contributions stemming from this thesis and

describes some open topics that could configure future research lines.

5.1 Summary and contributions

The main contributions of this thesis are summarised as follows.

1. Formulation of the HDG method for compressible flows with symme-

try enforcement of the stress tensor.

This thesis presents a review of the formulation of inviscid and viscous com-
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pressible flows, i.e. the Euler and the compressible Navier-Stokes equations,

in the context of high-order hybridised discontinuous Galerkin methods. The

high-order method is equipped with two different shock capturing strategies

based on artificial viscosity for the handling of sharp fronts of the flow. On the

one hand, a physics-based shock capturing method is employed for viscous flows

whereas a smoothness indicator combined with a Laplacian-based strategy that

does not require the introduction of mixed variables is considered for inviscid

cases.

The present formulation of the compressible Navier-Stokes equations introduces

a new choice for the mixed variables employed to describe the viscous flux

tensor. Indeed, contrary to common approaches that introduce the gradient of

the conservation variables, the deviatoric strain rate tensor and the temperature

gradient are considered in this work. Such election for the mixed variables

allows to impose pointwise the symmetry of the stress tensor with reduced

computational cost while retrieving optimal accuracy.

2. Presentation of HLL-type Riemann solvers for hybridised formula-

tions, derived under the unified framework for the expression of nu-

merical fluxes in HDG.

The treatment of convective numerical fluxes in HDG has been thoroughly stud-

ied in this thesis. Indeed, a unified framework for the derivation of Riemann

solvers in the context of hybridised methods has been presented. To this effect,

different approximate Riemann solvers popularly employed in DG formulations

have been extended to the hybrid setting. According to the HDG rationale, the

information of the Riemann solver is encapsulated within the HDG stabilisa-

tion term, whereas the hybrid variable of the formulation is exploited acting as

intermediate state.

Such framework includes the traditional Lax-Friedrichs and Roe solvers, already

formulated in HDG, and proposes for the first time in hybridised formulations

the HLL and HLLEM numerical fluxes. HLL-type Riemann solvers demonstrate

their superior performance in transonic and supersonic cases with respect to

the Roe flux, which may fail to satisfy entropy conditions, leading to a non-

physical approximation of the solution. In this context, the positivity preserving

properties of HLL-type numerical fluxes allow for a robust and parameter-free
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approach. Additionally, the shear preservation of the HLLEM numerical flux

is also exhibited, demonstrating a superior performance in the approximation

of boundary layers than HLL or Lax Friedrichs, and similar to Roe. Indeed,

HLLEM and Roe solvers introduce a reduced amount of numerical dissipation

in the approximation of contact or shear layers.

3. Formulation of the face-centred finite volume method for compress-

ible flows.

The FCFV method has been proposed for the first time for the formulation of

the inviscid Euler and the viscous compressible Navier-Stokes equations. Dif-

ferently from traditional CCFV or VCFV schemes, the FCFV scheme defines

the unknowns of the problem at the mesh faces and describes the conservation

variables, stress tensor and heat flux inside each cell by means of an inexpensive

computation.

Optimal first-order accuracy of the conservative quantities, stress tensor and

heat flux is obtained without need of reconstruction of the gradients. For this

reason, the precision of the FCFV method is not compromised by a high stretch-

ing or distortion of the mesh cells.

The proposed methodology displays an inherent non-oscillatory behaviour in

front of discontinuities, owing to the guarantee of monotonicity of first-order

approximations. Hence, wave-like phenomena, such as shear layers, expansions

and shock waves, are handled by means of Riemann solvers. Indeed, the tradi-

tional approximate Riemann solvers of Lax-Friedrichs, Roe, HLL and HLLEM

have been described for the FCFV formulation via a suitable definition of the

numerical fluxes. Finally, the method demonstrates its robustness in the incom-

pressible limit, producing stable low Mach solutions without need of specific

pressure corrections.

4. Benchmarking of compressible flows for low and high-order compar-

ison.

A comprehensive set of numerical benchmarks has been presented for the eval-

uation of the low and high-order strategies introduced in this thesis. On the

one hand, numerical convergence tests of inviscid and viscous flows consisting

of the well-known Ringleb and Couette flow problems, respectively, have been

introduced for the verification of the optimal accuracy properties of the ap-
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proximation. On the other, an extensive set of numerical examples of subsonic,

transonic and supersonic external flows has been employed to demonstrate the

capabilities of the proposed solvers.

By means of these test cases, an exhaustive evaluation of the robustness and

accuracy of the introduced Riemann solvers has been performed both in low and

high-order. In particular, the positivity properties of HLL-type Riemann solvers

have been demonstrated, whereas the HLLEM flux has displayed an increased

resolution of boundary layers. It is worth mentioning that the importance of the

numerical fluxes is specially critical in lower-order approximations, based on the

larger jumps between elemental and hybrid states. Conversely, the numerical

dissipation introduced by numerical fluxes in higher-order approaches tends to

vanish and little differences are observed.

The advantages of high-order approximations, supported by the reduced nu-

merical dissipation of the method and the little geometric error in the represen-

tation of curved boundaries, have been demonstrated by means of an extensive

set of numerical examples. Different transonic and supersonic examples involv-

ing shock-waves have also demonstrated the good performance of the shock-

capturing techniques presented in this work, including two problems involving

strong inviscid-viscous interactions between shock waves and boundary layers.

On the other hand, the FCFV paradigm has demonstrated its great capabilities,

offering a robust framework for constructing non-oscillatory solutions based on

the inherent monotonicity preservation of the method. The numerical scheme

has been employed for the solution of two and three-dimensional compressible

flow examples in realistic scenarios, demonstrating the potential of the method

to efficiently handle large-scale simulations of steady-state flows.

5.2 Future developments

The work presented in this thesis opens the way to future research lines in order to

improve the capabilities of the proposed solvers and to exploit the full potential of

the described methodologies. To this end, the following research items are proposed:

1. Adapt the high-order HDG solver with suitable high-order time-

integration schemes for the simulation of transient flows.
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The importance of high-order discretisation methods has been related to the

simulation of unsteady problems. Because of the reduced diffusion and disper-

sion errors of these schemes when compared to low-order, these methods provide

a suitable framework to deliver high accuracy in transient phenomena.

In this work, the main focus has been based on the spatial HDG formulation

of compressible flows in order to derive the expression of Riemann solvers in

hybridised formulations. To this end, the examples considered have just in-

volved steady-state flows. However, a natural next step for the high-fidelity

HDG solver would consist of the introduction of high-order time-integrators.

To this end, different time-marching algorithms can be considered. In partic-

ular, BDF or DIRK methods have been already proposed in HDG, offering a

well-suited environment for the simulation of unsteady problems.

2. Employ the high-order setting for the simulation of turbulent flows

by means of LES or coupled multiphysics phenomena such as aeroa-

coustics.

As previously described, the laminar regime of viscous flows is restricted to

a limited range of Reynolds numbers. Many flow applications of industrial

interest include the appearance of unsteady turbulent phenomena, for which

high-order solvers coupled with advanced methods for turbulence modelling are

required. In this case, turbulent predictions based on LES approaches, already

proposed within HDG by Fernández et al. (2017), are expected to provide an

accurate and efficient framework for the simulation of transition and separation

phenomena.

Moreover, the improvement of discretisation methods and the development of

high-order space-time formulations opens the way to a great progress of mul-

tiphysics simulations in fields such as aeroacoustics. In this case, high-order

approximations are essential for a good resolution of waves, which are in turn

driven by unsteady vortices of the flow, both of laminar and turbulent nature.

3. Improve the capabilities of the current solvers to efficiently perform

large-scale simulations in HPC environments.

Finally, it is worth mentioning that the proposed approaches have been devised

in an academic environment and have been mostly focused in the development

of the methodology itself, rather than centred in building a competitive frame-
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work for simulation. For this reason, the described implementations have been

performed in a high level programming environment such as Matlab.

In order to improve the capabilities of the described solvers and to exploit the

potential of HPC resources, different strategies could be incorporated. Among

others, the use of lower level programming languages suitable for scientific com-

puting, such as Fortran or C++, and the introduction of more efficient solv-

ing strategies, such as the employment of multigrid methods, parallel iterative

solvers for large systems of equations and suitable preconditioners. Additionally,

it is worth considering the implementation of hp-adaptivity techniques allowing

to address the inherent complexity of mesh generation, specially in presence of

complex or multiscale flow phenomena.

4. Extend the FCFV method to the formulation of the RANS equations

for steady-state turbulent flows.

The FCFV formulation of the inviscid Euler equations and the compressible

Navier-Stokes equations has been described and studied in detail in this thesis.

Nevertheless, multiple scenarios in viscous flows involve the presence of turbu-

lent effects, being the laminar regime constrained to a very limited range of

Reynolds numbers. For this reason, the RANS equations, coupled with simple

one or two-equations turbulence models, are commonly employed within FV

CFD solvers to provide reasonable predictions of steady-state turbulent flows.

In this context, the FCFV formulation of the RANS equations, integrated with

the Spalart-Allmaras turbulence model, has been briefly detailed in appendix C.

Indeed, the accuracy properties of the method have been tested by means of

a simple problem with analytical solution. However, the limited accuracy on

the approximation of the derivatives of different quantities of the flowfield that

drive the turbulence model, e.g. the vorticity of the fluid, in such convection-

dominated cases entails a tough difficulty for the accurate resolution of this kind

of problems. Therefore, the turbulent solver has not been successfully applied

to problems of academic or industrial interest yet and further progress needs to

be done in this line.

5. Explore the limits of the FCFV solver in front of well-established FV

codes.

The proposed FCFV solver has demonstrated a robust optimal accuracy in
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highly stretched and distorted cells, besides an inherent non-oscillatory be-

haviour in the approximation of sharp fronts or in low Mach scenarios without

shock capturing or pressure corrections. These features describe some of the

most prominent qualities of this FV paradigm by which the presented method

can be established as a competitive alternative to traditional CCFV or VCFV

solvers. However, a deeper comparison with respect to conventional FV strate-

gies in those scenarios would be of high interest in order to explore the limits

or the FCFV formulation with respect to open-source or commercial solvers.

6. Introduce an h-adaptivity strategy within the FCFV method for au-

tomatic mesh refinement.

The FCFV scheme has been employed in this thesis for the simulation of steady-

state compressible flow problems solved in general meshes of academic interest.

In those problems, complex flow features requiring high grid resolution such

as shock waves can appear in a priori unknown locations of the domain. In

this context, the present work has employed meshes displaying a progressive

refinement near regions of interest while keeping a uniformly fine grid resolu-

tion in the surrounding area. However, this ad hoc refinement cannot guarantee

neither the desired resolution of the flowfield nor that an excessive number of

degrees of freedom are introduced in regions where the solution could be already

well-resolved with coarser meshes.

In order to overcome the high computational cost derived from this strategy, a

mesh refinement procedure could efficiently provide an efficient and inexpensive

way to reach desired levels of accuracy. In this manner, the method could de-

liver high resolution of localised flow phenomena with minimal computational

cost by exploiting its accurate behaviour in highly non-isotropic meshes. Fur-

thermore, it would contribute in the design of a robust framework for automatic

mesh generation with adaptation to the flowfield necessities with minimal user

intervention.

7. Formulate a second-order accurate FCFV method for compressible

flows.

The FCFV method proposed in this thesis for the simulation of compressible

flow problems provides first-order accuracy for the approximation of the conser-

vation quantities and mixed variables. Despite the good performance demon-
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5. Summary and future developments

strated with respect to other numerical or experimental results, conventional

and well-established FV solvers generally display second-order accuracy for the

primal quantities.

To this end, a second-order strategy within the FCFV paradigm has been re-

cently devised for elliptic problems on simplicial elements by Vieira et al. (2020),

and later extended to general meshes by Giacomini and Sevilla (2020). This

approach relies on the piecewise linear approximation of the primal variable

inside each element, whereas a constant approximation of the mixed and hy-

brid variables are considered in each cell and face, respectively. In addition, a

particular definition of the numerical fluxes, employing a projection operator

similarly to reduced stabilisation approaches by Oikawa (2015, 2016) and Qiu

and Shi (2016), is introduced.

This second-order FCFV paradigm could be seamlessly explored for the for-

mulation of compressible flows. The resulting FV solver would be expected to

retain first-order and second-order accuracy of mixed and conservation vari-

ables, respectively, even in presence of high stretching or distortion of the mesh

cells, and to display a robust behaviour in the incompressible limit. However,

differently from the first-order approach presented in this thesis, a special treat-

ment for shock capturing would be required in this case, since the second-order

accuracy of the approximation would not guarantee the monotonicity of the

solution.
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Appendix A

Enforcing the symmetry of the

mixed variable

In sections 2.2.1 and 3.1, the deviatoric strain rate tensor εd has been introduced

as mixed variable in the FCFV formulation. In this appendix, the implementation

details to construct this symmetric mixed variable are provided.

First, it is worth recalling that the symmetric second-order tensor εd is commonly

represented using a matrix of dimension nsd × nsd. Nonetheless, only msd = nsd(nsd +

1)/2 components of this tensor are non-redundant. In order to exploit such symmetry

in the discretisation, Voigt notation Fish and Belytschko (2007) is employed. Its

discrete counterpart εdV can thus be expressed as an msd-dimensional vector after a

rearrangement of its non-redundant components, namely

εdV :=


[
εd11, ε

d
22, ε

d
12

]T
in 2D,[

εd11, ε
d
22, ε

d
33, ε

d
12, ε

d
13, ε

d
23

]T
in 3D.

(A.1)

Following remark 2.4, the discrete strain rate tensor is defined as εdV = DV∇Sv.

Here, the matrices DV and ∇S stand for the Voigt counterparts of the operator D
and of the symmetric part of the gradient ∇S, respectively, and are given by

DV :=

2Insd −
2

3
Jnsd 0nsd×nrr

0nrr×nsd Inrr

 (A.2a)
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A. Enforcing the symmetry of the mixed variable

and

∇S :=



∂/∂x1 0 ∂/∂x2

0 ∂/∂x2 ∂/∂x1

T in 2D,
∂/∂x1 0 0 ∂/∂x2 ∂/∂x3 0

0 ∂/∂x2 0 ∂/∂x1 0 ∂/∂x3

0 0 ∂/∂x3 0 ∂/∂x1 ∂/∂x2


T

in 3D.

(A.2b)

where Im and J` denote the m × m identity matrix and the ` × ` matrix with all

components equal to 1, respectively, and nrr = nsd(nsd − 1)/2 stands for the number

of rigid body rotations, that is, nrr = 1 in 2D and nrr = 3 in 3D.

By employing Voigt notation and exploiting the definitions in (A.2), the second

term of equation (2.25a) in the FCFV local problem is implemented as

(Dv̂ ⊗ n)V = DVNVv̂, (A.3)

the matrix NV, accounting for the normal to a surface, being defined as

NV :=



n1 0 n2

0 n2 n1

T in 2D,
n1 0 0 n2 n3 0

0 n2 0 n1 0 n3

0 0 n3 0 n1 n2


T

in 3D,

(A.4)

where nk denotes the k-th component of the unit normal vector n.

The expression in (A.3) is also employed for the implementation of equation (3.11a).

Indeed, the implementation of such equation of the weak form based on Voigt notation

is given by (
ζV, ε

d
V

)
Ωe

+
(
∇T

S DζV,ve
)

Ωe
− 〈ζV,DVNVv̂〉∂Ωe

= 0, (A.5)

with both εdV ∈ [Wh
t (Ωe)]

msd and ζV ∈ [Wh
t (Ωe)]

msd expressed in Voigt notation.
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Appendix B

Riemann solvers in standard

FV/DG methods

The choice of the convective numerical fluxes has a critical influence on the accuracy

and stability of the numerical solution. For this reason, the approximation of such

interface fluxes by means of Riemann solvers has received great attention in the

context of finite volumes and discontinuous Galerkin methods, see for example the

monograph by Toro (2009) or the works by Randall J. Leveque (2013), Cockburn and

Shu (1998c), Qiu et al. (2006) or Moura et al. (2017).

This section details the expression of numerical fluxes arising in FV and DG

discretisations with some of the most popular approximate Riemann solvers for com-

pressible flows, namely Lax-Friedrichs, Roe, HLL and HLLEM.

To this end, consider a pair of neighbouring elements, Ω+ and Ω−, with shared

interface Γi = ∂Ω+ ∩ ∂Ω− ⊂ Γ. The solution at each side of the interface is denoted

by U±, whereas U ?(U+,U−) represents an intermediate state between U+ and U−.

B.1 Lax-Friedrichs Riemann solver

The first option is represented by the Lax-Friedrichs numerical flux, first described

by Lax (1954). This Riemann solver is obtained as an extrapolation of the result for
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a scalar convection equation and defines the numerical flux as

F (U)n±
∧

=
1

2

[
F (U+) + F (U−)

]
n± +

λ?max
2

(U± −U∓), (B.1)

where λ?max := |v? ·n|+c? is the maximum eigenvalue of the matrix An(U ?) evaluated

at the intermediate state U ?. It is well-known that the Lax-Friedrichs numerical flux

is extremely robust but leads to over-diffusive solutions.

B.2 Roe Riemann solver

The Riemann solver by Roe (1981) approximates the complete wave structure of the

Riemann problem, as described by Randall J. Leveque (2013) and Toro (2009), by

means of the matrix |An(U ?)| that linearises the convective fluxes F (U ?). More

precisely, the Roe numerical flux is given by

F (U)n±
∧

=
1

2

[
F (U+) + F (U−)

]
n± +

1

2
|An(U ?)|(U± −U∓). (B.2)

In this expression, the spectral decomposition of the Jacobian matrix of the con-

vective flux is employed, namely An(U ?) := [∂F (U ?)/∂U ?] · n = RΛL, where Λ,

R and L denote the matrices of eigenvalues, right eigenvectors and left eigenvec-

tors, respectively. Finally, the expression of the matrix |An(U ?)| is recalled, namely

|An(U ?)| := R|Λ|L, with |Λ| is a diagonal matrix containing the absolute value of

the eigenvalues in Λ.

The expression of the matrices of eigenvectors and eigenvalues, R, L and Λ, can

be found in the work by Rohde (2001).

Although more accurate than the Lax-Friedrichs flux, the Roe Riemann solver is

not positivity preserving and it may produce nonphysical solutions in transonic and

supersonic cases due to the violation of entropy conditions, as discussed by Quirk

(1994) or Perthame and Shu (1996). In this context, the linearised Roe solver is

modified via a so-called entropy fix (EF) in order to recover the entropy conditions.

The entropy fix by Harten and Hyman (1983) proposes the following modification of

the Roe numerical flux

F (U)n±
∧

=
1

2

[
F (U+) + F (U−)

]
n± +

1

2
|Aδ

n(U ?)|(U± −U∓), (B.3)

where |Aδ
n(U ?)| denotes a dissipation matrix. The Harten-Hyman (HH) EF dis-

sipation matrix is defined as |Aδ
n(U ?)| := RΦL, being R and L the right and
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left eigenvector matrices previously introduced and Φ a diagonal matrix such that

Φii = max (|λi|, δ), being λi the i-th eigenvalue of the matrix An(U ?) and δ > 0 a

user-defined threshold for the entropy fix.

Remark B.1. In the expression of the dissipation matrix, a user-defined threshold

parameter δ > 0 needs to be appropriately tuned to introduce the correct amount

of extra diffusion for the problem under analysis. Note that, generally, δ � λmax.

Nonetheless, this value is problem-dependent and may require an empirical tuning to

provide the best performance of the Roe solver.

B.3 Harten-Lax-van Leer (HLL) Riemann solver

An alternative approach to remedy the entropy violation of the Roe solver is repre-

sented by the HLL Riemann solver, named after Harten et al. (1983). Such approach

relies on a weighted average of the information in two neighbouring elements Ω+ and

Ω− and leads to the following numerical flux

F (U)n±
∧

=

[
s+F (U+)− s−F (U−)

s+ − s−

]
n± +

s+s−

s+ − s−
(U± −U∓), (B.4)

where, respectively, s+ := max (0,v? · n+ + c?) and s− := min (0,v? · n+ − c?) denote

the estimates of the largest and smallest wave speeds, with the corresponding signs.

B.4 HLLEM Riemann solver

Finally, the HLLEM Riemann solver is introduced by Einfeldt (1988) and Einfeldt

et al. (1991) as a modification of the HLL Riemann solver, which approximates the

complete wave structure of the Riemann problem. More precisely, differently from

the HLL method, it introduces a special treatment for middle waves, ensuring an

accurate description of contact waves and shear layers, as described by Dumbser and

Balsara (2016). In addition, HLLEM inherits the positivity-preserving properties of

HLL-type Riemann solvers, fulfilling entropy conditions without the need of the user

defined entropy fix required by the Roe solver.

In particular, the HLLEM numerical flux is expressed as

F (U)n±
∧

=

[
s+F (U+)− s−F (U−)

s+ − s−

]
n± +

s+s−

s+ − s−
θ(U ?)(U± −U∓), (B.5)
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being s+ and s− the HLL estimates of the largest and smallest wave speeds previously

introduced. In addition, it holds that θ(U ?) = RΘL, where Θ denotes the diagonal

matrix Θ = diag (1, θ?1nsd , 1) and θ? = |v? ·n|/(|v? ·n|+ c?) is placed in the position

of the eigenvalues corresponding to contact waves.

Note that, in contrast to HLL, the HLLEM flux reduces the amount of numerical

dissipation associated to contact waves by means of the coefficient θ? < 1. Moreover,

it maintains an analogous treatment for shock waves and rarefactions, guarenteeing

its entropy enforcement and positivity-preserving properties.
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Appendix C

FCFV discretisation of the RANS

equations

The FCFV formulation of the viscous laminar regime described in section 2 restricts

the applicability of the proposed solver to a limited range of operating Reynolds

numbers provided that they do not involve turbulent phenomena. Nonetheless, many

realistic flows of interest in aerodynamic applications feature turbulent effects which

need to be accounted by the corresponding CFD solvers by means of turbulence

models, coupled to the system of conservation laws.

This appendix details the FCFV discretisation of the RANS equations equipped

with an Spalart-Allmaras turbulence model. The accuracy properties of the resulting

method are examined by means of a numerical example with manufactured analytical

solution. The convergence results approach the optimal first-order accuracy for all

the problem variables and a solid performance is achieved in meshes featuring a high

stretching near the boundary layer. Indeed, the behaviour of the approximation in

such stretched meshes outperforms the corresponding representation in analogous

uniform grids.

This appendix is organised in the the following way. In C.1, the coupling of the

Spalart-Allmaras one-equation model within the RANS equations is described. The

resulting FCFV formulation is then briefly outlined in C.2. The convergence prop-

erties of the proposed formulation are described in C.3, where the simulation results

for numerical test with manufactured analytical solution are introduced. Finally, C.4
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C. FCFV discretisation of the RANS equations

summarises the main conclusions of this section.

C.1 The Spalart-Allmaras turbulence model for

the RANS equations

The effect of turbulence is modelled in this study by means of the RANS equations

and employing Boussinesq’s assumption. Accordingly, the Navier-Stokes equations

detailed in (2.1) are modified by means of augmented viscous stresses and heat flux. In

this manner, a turbulent viscosity µt and turbulent thermal conductivity, described by

means of the turbulent Prandt number Prt, which takes the constant value Prt = 0.9,

are introduced to the viscous stresses and heat flux as

σd =
µ+ µt
Re

(
2∇Sv − 2

3
(∇·v)Insd

)
, q =

1

Re

(
µ

Pr
+

µt
Prt

)
∇T. (C.1)

Moreover, note that the different variables appearing in the equations denote now

time-averaged quantities.

The use of Boussinesq’s analogy requires a turbulence model for the closure of

the RANS equations. In this study, the non-tripped one-equation turbulence model

by Spalart and Allmaras (1992) (SA) is considered, with the corresponding modifica-

tions proposed by Allmaras et al. (2012), which is expressed in nondimensional form

as

∂ρν̃

∂t
+∇·

(
f̃ − g̃

)
= s̃, (C.2)

where the convective flux f̃ , the diffusive flux g̃ and the source term s̃ are given by

f̃ = ρν̃v, (C.3)

g̃ =
µ+ ρν̃

σRe
∇ν̃, (C.4)

s̃ = cb1S̃ρν̃ −
1

Re
cw1fw

ρν̃2

d2
+

1

σRe

[
cb2ρ∇ν̃ −

(
µ

ρ
+ ν̃

)
∇ρ
]
·∇ν̃. (C.5)

Moreover, the eddy viscosity is described as

µt = ρν̃fv1, (C.6)
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C.2. FCFV formulation of the RANS equations with SA turbulence model

and the following relations hold

χ =
ρν̃

µ
, fv1 =

χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1

, S̃ = ‖ω‖+
1

Re

ν̃

κ̃2d2
fv2,

r = min

(
1

Re

ν̃

Sκ̃2d2
, rlim

)
, g = r + cw2(r6 − r), fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

.

(C.7)

In these expressions, ω = ∇ × v denotes the vorticity and d is the distance from

a given point to the nearest wall. In addition, the set of constants appearing in

the above expressions are given by: cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ̃ = 0.41,

cw1 = cb1/κ̃
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2 and cv1 = 7.1.

Finally, the problem is closed with the prescription of boundary conditions for

the SA model. In particular, a characteristics approach is employed at the far-field,

setting ρν̃ = 0.1µ∞ at inflows, whereas ρν̃ = 0 is defined at viscous walls.

C.2 FCFV formulation of the RANS equations

with Spalart-Allmaras turbulence model

Following from the derivation of the FCFV method for the compressible Navier-Stokes

equations, the corresponding FCFV formulation of the system of PDEs that results

from appending the SA turbulence model to the RANS equations is briefly outlined

in this section.

C.2.1 A mixed hybrid formulation of the RANS equations

First, the mixed formulation of the Spalart-Allmaras equation is considered in order

to formulate the problem as a system of first-order PDEs. To this end, an additional

equation expressing the gradient of the eddy viscosity as mixed variable of the problem

is introduced, namely, η = ∇ν̃. Accordingly, the viscous flux and source term are

expressed in terms of η as

g̃ =
µ+ ρν̃

σRe
η,

s̃ = cb1S̃ρν̃ −
1

Re
cw1fw

ρν̃2

d2
+

1

σRe

[
cb2ρη −

(
µ

ρ
+ ν̃

)
∇ρ
]
· η.

(C.8)
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C. FCFV discretisation of the RANS equations

At this point, following the FCFV rationale described in 2.2.2, the mixed hybrid

FV formulation of the RANS equations is presented as follows, allowing the numerical

scheme to solve the problem in two phases via hybridisation.

Therefore, consider the set of hybrid variables of the problem (Û , ρ̂ν̃) denoting

the traces of the solution on Γ ∪ ∂Ω. Then, the nel FCFV local problems describing

the RANS equations in each cell Ωe, for e = 1, . . . , nel are written as

εd −D∇Sv = 0 in Ωe × (0,Tend],

φ−∇T = 0 in Ωe × (0,Tend],

η −∇ν̃ = 0 in Ωe × (0,Tend],

∂U

∂t
+∇·

(
F (U)−G(U , ρν̃, εd,φ)

)
= 0 in Ωe × (0,Tend],

∂ρν̃

∂t
+∇·

(
f̃(U , ρν̃)− g̃(U , ρν̃,η)

)
= s̃ in Ωe × (0,Tend],

(U , ρν̃) = (U 0, ρν̃0) in Ωe × {0},

(U , ρν̃) = (Û , ρ̂ν̃) on ∂Ωe × (0,Tend],

(C.9)

where (U , ρν̃, εd,φ,η) denote, correspondingly, the primal and mixed variables of the

problem, defining the solution inside each cell as function of the hybrid counterparts

(Û , ρ̂ν̃).

Then, the FCFV global problem prescribing boundary conditions on ∂Ω and the

so-called transmission conditions to ensure continuity of the solution and of the nor-

mal fluxes on Γ is defined to compute the solution of the hybrid unknowns (Û , ρ̂ν̃),

namely 

J
(
F (U)−G(U , ρν̃, εd,φ)

)
nK = 0 on Γ× (0,Tend],

J(f̃(U , ρν̃)− g̃(U , ρν̃,η)) · nK = 0 on Γ× (0,Tend],

B̂(U , Û , εd,φ) = 0, on ∂Ω× (0,Tend],

b̂ (Û , ρν̃, ρ̂ν̃) = 0, on ∂Ω× (0,Tend].

(C.10)

In these expressions, the usual notation for the unit normal vector and the jump

operator is employed, whereas B̂ is the boundary operator described in section 2.2.3.

Similarly, an additional boundary operator, b̂ , is introduced, being responsible for

imposing boundary conditions for the SA model.

Note that, in order to reduce the notation, the transmission conditions imposing

continuity of the solution are not expressed in equation (C.10). Indeed, they are

automatically satisfied due to the Dirichlet boundary conditions imposed in the local
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problems (C.9) and by the unique definition of the hybrid variables (Û , ρ̂ν̃) on each

face.

C.2.2 Integral form of the local and global problems

The integral form of the FCFV local problems is obtained at each cell Ωe, e =

1, . . . , nel, by applying the divergence theorem to equation (C.9) Then, given (U , ρν̃) =

(U 0, ρν̃0) at the initial time t = 0, it holds∫
Ωe

εd dΩ−
∫
∂Ωe

Dv̂ ⊗ n dΓ = 0, (C.11a)∫
Ωe

φ dΩ−
∫
∂Ωe

T̂n dΓ = 0, (C.11b)∫
Ωe

η dΩ−
∫
∂Ωe

̂̃νn dΓ = 0, (C.11c)∫
Ωe

∂U

∂t
dΩ +

∫
∂Ωe

(
F (U)n
∧

−G(U , ρν̃, εd,φ)n
∧)

dΓ = 0, (C.11d)∫
Ωe

∂ρν̃

∂t
dΩ +

∫
∂Ωe

(
f̃(U , ρν̃) · n
∧

− g̃(U , ρν̃, β) · n
∧)

dΓ =

∫
Ωe

s̃ dΩ, (C.11e)

where v̂, T̂ and ̂̃ν denote, respectively, the velocity, temperature and kinematic eddy

viscosity fields on the cell faces ∂Ωe, defined in terms of the hybrid variables.

On the other hand, the integral form of the global problem (C.10) is given by

nel∑
e=1

{∫
∂Ωe\∂Ω

(
F (U)n
∧

−G(U , ρν̃, εd,φ)n
∧)

dΓ +

∫
∂Ωe∩∂Ω

B̂(U , Û , εd,φ) dΓ

}
= 0,

(C.12a)
nel∑
e=1

{∫
∂Ωe\∂Ω

(
f̃(U , ρν̃) · n
∧

− g̃(U , ρν̃,η) · n
∧)

dΓ +

∫
∂Ωe∩∂Ω

b̂ (Û , ρν̃, ρ̂ν̃) dΓ

}
= 0,

(C.12b)

which allows to solve the problem for the hybrid unknowns, Û and ρ̂ν̃.

Note that the terms F (U)n
∧

and G(U , ρν̃, εd,φ)n
∧

appearing in equations (C.11d)

and (C.12a) stand for the convection and diffusion numerical fluxes described in

section 2.2.4, given by

F (U)n
∧

= F (Û)n+ τ a(Û) (U − Û), (C.13a)

G(U , ρν̃, εd,φ)n
∧

= G(Û , ρ̂ν̃, εd,φ)n− τ d (U − Û), (C.13b)
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where the diffusive stabilisation term τ d is given by equation 2.20 and the advective

stabilisation matrix is defined in terms of the corresponding Riemann solver employed

for the simulation, as detailed in section 2.2.5.

Similarly, equations (C.11e) and (C.12b) introduce the advective and diffusive

numerical fluxes for the SA equation, which are described by

f̃(U , ρν̃) · n
∧

= f̃(Û , ρ̂ν̃) · nj + τ̃a(Û ) (ρν̃ − ρ̂ν̃), (C.14a)

g̃(U , ρν̃, β) · n
∧

= g̃(Û , ρ̂ν̃,η) · n− τ̃ d (ρν̃ − ρ̂ν̃). (C.14b)

where the corresponding diffusive and advective stabilisation terms are defined as

τ̃ d =
1

Re
, τ̃a = |v̂ · n|. (C.15)

Note that the corresponding stabilisation terms are decoupled from the conservation

variables and just affect the jumps on the turbulent viscosity. Moreover, notice that

the SA convective numerical flux is defined following the spirit of the approximation

of Riemann solvers, employing a Roe-like strategy that provides an upwinded flux.

C.2.3 FCFV discrete problem

Finally, the discrete forms of the FCFV local and global problems arise from the

evaluation of the corresponding integral forms of these problems, provided that the

discretisation of the primal, mixed and hybrid variables consists of the constant value

at the centroid of the corresponding cells and faces.

Indeed, the FCFV discrete form of the local problems (C.9) is: given the initial

state (U , ρν̃) = (U 0, ρν̃0) at time t = 0 and the hybrid quantities Ûj and ρ̂ν̃j on the

faces Γe,j, j = 1, . . . , nefa, compute (Ue, ρν̃e, ε
d
e,φe,ηe) at each cell Ωe, for e = 1, . . . , nel,

satisfying

|Ωe|εde −
∑
j∈Ae

|Γe,j|Dv̂j ⊗ nj = 0, (C.16a)

|Ωe|φe −
∑
j∈Ae

|Γe,j|T̂jnj = 0, (C.16b)

|Ωe|ηe −
∑
j∈Ae

|Γe,j|̂̃νjnj = 0, (C.16c)

|Ωe|
dUe
dt

+
∑
j∈Ae

|Γe,j|
{
F (Ûj)nj −G(Ûj, ρ̂ν̃j, ε

d
e,φe)nj

+
(
τ a(Ûj) + τ d

)
(Ue − Ûj)

}
= 0,

(C.16d)
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|Ωe|
dρν̃e
dt

+
∑
j∈Ae

|Γe,j|
{
f̃(Ûj, ρ̂ν̃j) · nj − g̃(Ûj, ρ̂ν̃j,ηe) · nj

+
(
τ̃a(Ûj) + τ̃ d

)
(ρν̃e − ρ̂ν̃j)

}
= |Ωe|s̃e,

(C.16e)

where, |Ωe|s̃e =
∫

Ωe
s̃dΩ in equation (C.16e) is computed employing a quadrature rule

based on a single integration point.

Similarly, the discrete form arising from the FCFV global problem (C.10) reads:

find Û and ρ̂ν̃ such that

nel∑
e=1

|Γe,i|
{[
F (Ûi)ni −G(Ûi, ρ̂ν̃i, ε

d
e,φe)ni +

(
τ a(Ûi) + τ d

)
(Ue − Ûi)

]
χIe(i)

+ B̂(Ue, Ûi, ε
d
e,φe)χEe(i)

}
= 0,

(C.17a)
nel∑
e=1

|Γe,i|
{[
f̃(Ûi, ρ̂ν̃i) · ni − g̃(Ûi, ρ̂ν̃i,ηe) · ni +

(
τ̃a(Ûi) + τ̃ d

)
(ρν̃e − ρ̂ν̃i)

]
χIe(i)

+ b̂ (Ûi, ρν̃e, ρ̂ν̃i)χEe(i)
}

= 0,

(C.17b)

for all i ∈ Ae.

Finally, the FCFV discrete forms of the local and global problems, (C.16) and

(C.17), are linearised via the Newton-Raphson method. The resulting linear systems

of equations are then solved via a hybridisation procedure in an analogous way as

described in section 2.2.7.

C.3 Numerical convergence study

The convergence properties of the FCFV approximation of the RANS equations with

the Spalart-Allmaras model have been examined by means of an example with manu-

factured analytical solution introduced by Eça et al. (2007) and Rumsey and Thomas

(2008).

The computational domain of the problem consists of the square domain Ω =

[0.6L,L]× [0, 0.4L], with L = 1 being the characteristic length of the problem. Then,
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C. FCFV discretisation of the RANS equations

the different flowfield variables are defined as

v =

{
erf(η)(

1− exp−η
2
)
/ (σ
√
π)

}
, T =

1

(γ − 1)M2
∞
,

p = 0.5 log
(
2x− x2 + 0.25

)
log
(
4y3 − 3y2 + 1.25

)
,

ν̃ = ν̃max

√
2ην exp0.5−η2ν

(C.18)

where η = σy/x and ην = σνy/x are similarity variables, with σ = 4 and σν = 2.5,

ν̃max = 103ν and erf stands for the error function. In addition, the non-dimensional

quantities of the problem are given by Re = 106 and M∞ = 0.2. Finally, the source

term of the problem and the corresponding boundary conditions on ∂Ω are computed

from the analytical solution.

Four sets of meshes arising from the combination of triangular and quadrilat-

eral cells, and with stretching factor s = 0 (uniform meshes) and s = 1000 (high

stretching) are used in this study.

The eddy viscosity field, ν̃, obtained in two different refinements of uniform and

stretched meshes of triangular elements and employing an HLLEM Riemann solver

is displayed in figure C.1.

(a) Triangles M4 (b) Triangles M7 (c) Triangles M4S (d) Triangles M7S

Figure C.1: Turbulent flow with manufactured solution - Eddy viscosity field obtained
in (a-b) uniform and (c-d) stretched meshes of triangular elements using an
HLLEM Riemann solver.

Similarly, figure C.2 reports the Mach number distribution obtained in different

refinements of stretched meshes of triangular and quadrilateral cells.

Those figures illustrate the positive effect of mesh refinement and, foremost, of

a high stretching near the bottom boundary over the quality of the approximation.

Indeed, the increased resolution provided in the boundary layer allows the eddy vis-

cosity field to develop appropriately and reach its maximum value in the domain.
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(a) Quadrilaterals M4S (b) Quadrilaterals M7S (c) Triangles M4S (d) Triangles M7S

Figure C.2: Turbulent flow with manufactured solution - Mach number distribution us-
ing stretched meshes of (a-b) quadrilateral and (c-d) triangular cells and an
HLLEM Riemann solver.

Figure C.3 reports the h-convergence study performed in the set of triangular

meshes with high stretching, which is taken as baseline, employing the four Riemann

solvers described in section 2.2.5.

Figure C.3: Turbulent flow with manufactured solution - h-convergence of the error of the
flowfield variables in the L2(Ω) norm, using Lax-Friedrichs (LF), Roe, HLL
and HLLEM Riemann solvers.

A good evolution of the error is observed, with the respective rates of convergence

approaching the optimal rate 1. However, notice the high levels of error displayed by

the approximation of the stress tensor and the heat flux. These issues are attributed

to the high variations experienced by the flowfield and the tendency of numerical

approximations to display suboptimal accuracy in the convective limit.

In addition, the effect of the type of elements of the mesh —triangles or quadrilaterals—

is studied in the corresponding sets of stretched meshes, and displayed in figure C.4.
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C. FCFV discretisation of the RANS equations

Since differences among the approximations are only observed for the stress ten-

sor and heat flux, only these two variables are reported. Despite displaying nearly

Figure C.4: Turbulent flow with manufactured solution - h-convergence of the error of
stress tensor and heat flux in the L2(Ω) norm employing stretched meshes of
triangular and quadrilateral cells and using an HLLEM Riemann solver.

identical rates of convergence, lower levels of error are obtained in the meshes of

quadrilateral cells. These results confirm the increased accuracy delivered by meshes

of quadrilateral cells in the vicinity of walls and in the boundary layer

These results confirm the advantages of using quadrilateral meshes in boundary

layers, which are able to provide higher accuracy in the vicinity of walls, as reported

by Drosson et al. (2013) and Moro et al. (2017).

Finally, the effect of the mesh stretching, displayed qualitatively in the approxima-

tion of the eddy viscosity in figure C.1, is quantified by means of the evolution of the

error of such variable and its gradient as function of the mesh size. The h-convergence

study is detailed in figure C.5 and confirms the increased accuracy obtained in highly

stretched meshes providing very fine grid spacing near the wall in order to accurately

resolve these quantities in the boundary layer. Indeed, whereas the approximation

obtained in stretched meshes tends to approach the optimal rate of convergence, the

level of error of the corresponding curves on uniform meshes stagnates.

C.4 Conclusions

The face-centred finite volume (FCFV) method has been presented for the simula-

tion of steady state compressible flows by means of its formulation of the Reynolds-
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Figure C.5: Turbulent flow with manufactured solution - h-convergence of the error of
the eddy viscosity and its gradient in the L2(Ω) norm employing uniform and
stretched meshes of triangular cells and using an HLLEM Riemann solver.

averaged Navier-Stokes (RANS) equations employing an Spalart-Allmaras (SA) tur-

bulence model. The proposed numerical scheme extends the formulation devised for

laminar viscous compressible flows and devises a mixed hybrid FV approach for the

augmented system of equations.

The presented methodology has been tested by means of a numerical example

with manufactured analytical solution. It is important to emphasise that these kind

of analyses are restricted to significant limitations, since they are based on the de-

scription of unrealistic flows. For this reason, despite allowing a first estimation of the

performance of the method, the following conclusions cannot be firmly established as

absolute judgements.

The FCFV method displays optimal first-order accuracy for the different vari-

ables of the problem, i.e. density, momentum, energy, eddy viscosity, stress tensor,

heat flux and eddy viscosity gradient. Likewise in the laminar regime, the proposed

methodology does not require a reconstruction of the gradients and retains the ac-

curacy properties even in meshes displaying a high stretching. In particular, the

presence of highly stretched cells near the boundary layer results fundamental for a

good approximation of the flowfield. Conversely, uniform meshes have not been able

to provide reasonable accuracy levels. Finally, numerical results have also confirmed

the increased accuracy obtained in quadrilateral meshes for the approximation of the

mixed variables, that is stress tensor and heat flux.

Overall, these preliminary results suggest a close match between the capabilities

of the FCFV paradigm and the current needs of conventional FV methodologies.
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C. FCFV discretisation of the RANS equations

Indeed, the optimal accuracy delivered in meshes featuring a high grid stretching and

its versatility to employ different cell types or hybrid meshes describe some of the

advantages of the proposed FCFV approach with respect to traditional FV solvers,

motivating its further development for the simulation of such kind of flows.
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