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Preface 

- Good Morning Doctor

- Good Morning, I have bad news. You have high blood

pressure. 

- Oh! Is this serious?

- No, you do not have to worry. Taking some pills, you can

control your hypertension. 

- Great! But I'm a bit skeptical with medications, you

know? Surely these pills will lower my pressure right? 

- Of course. If you want, I can give you the article of the

study that demonstrates this medication decreased by an 

average of 5 mmHG the systolic blood pressure compared to 

those who did not take such medication. 

- Mmmm! I see. But does that mean that all patients

lost 5 mmHg of systolic blood pressure? 

- No. This is an average difference of the pressures between

the two groups at the end of the study. For each patient, it is 

not possible to know the exact effect on their systolic blood 

pressure, due to the fundamental problem of causal inference 

- The fundamental problem of what?

- I want to say that you cannot know it because only one

measurement was taken per patient and it depends on if the 

pill was taken or not. 

- But then, it could be that for some patients the

medication is not effective or it’s even harmful, right? 

- Well, this could be one possibility, but it is not the most

likely. 

- How do you know?

[Continue reading to know more] 
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Abstract 

The past decade has seen continuous growth in so-called precision medicine, due especially to 

great advances in the genetics. While applying it presently goes unquestioned in certain fields like 

oncology, it is more controversial in other medical specialties that usually practice it. Precision 

medicine is justified under two assumptions. First, it must be more cost-effective than the universal 

standard of care, as a world with limited resources requires that an individual treatment’s benefits 

be inversely related to the number of people on whom it is effective. Second, and most importantly, 

the intervention under study should actually show different responses among patients or subgroups 

of them, which this work focuses on. 

Strictly speaking, the fundamental problem of causal inference makes the latter requirement 

impossible to prove, because a conventional trial observes patient outcome only under a single 

treatment. However, the variability of a continuous outcome provides important information about 

the presence (or absence) of a constant treatment effect, of which a direct consequence is that 

outcome variance remains unchanged under different treatment regimens. Thus, homoscedasticity 

may be a useful tool for testing the hypothesis of a homogeneous effect. 

Our work here conducts a methodological review of randomized clinical trials (RCT) with two 

treatment arms and a quantitative primary endpoint. Among other variables, we collected the 

outcome and baseline variances for each treatment group with two purposes: to quantify the 

outcome variance ratio between the experimental and reference groups; and to estimate the 

proportion of studies with variance discrepancies large enough to be attributed to a heterogeneous 

treatment effect among participants. This variance comparison was carried out between treatment 

arms (independent by randomization) and over time, contrasting the end-of-study and baseline 

outcomes. 

The Medline database provided us 208 randomized clinical trials fulfilling the eligibility criteria 

and published in the years 2004, 2007, 2010 and 2013. A random effects model was used to 

estimate the variance ratios (experimental to reference), of which the mean was 0.89, 95% CI from 

0.81 to 0.97. Thus, contrary to popular belief, the point estimate indicate that the experimental 

treatments reduce the variability of patient response by 11%. The experimental group’s variance 

ratio (final to baseline) in the comparison over time was 0.86, 95% CI from 0.76 to 0.98, meaning 

lower variability at the end of the study. 

This analysis provides no statistical evidence to justify ruling out a constant intervention effect on 

our target population in four out of five studies (80.3%, 95% CI from 74.1 to 85.3%). This 

percentage barely changed in four sensitivity analyses with percentage point estimates ranging 



17 

from 79.8 to 90.0%. Among the studies that we found evidence of a non-constant intervention 

effect, the experimental group showed 7.2% and 12.5%, respectively, greater and lower outcome 

variance than the reference arm. The high number of studies with lower variability in the 

experimental group can be explained by the ceiling and floor effects of some measurement scales, 

which generally group patients at one of the scale boundaries in cases of highly effective 

interventions. 

This work aims to show that comparing variances provides evidence on whether or not precision 

medicine is a sensible choice for a specific treatment. When both arms have equal variances, a 

simple interpretation is that the treatment effect is constant. If true, searching for any predictors of 

a differential response is futile. This means that the average treatment effect can be viewed as an 

individual treatment effect, which justifies using a single clinical guideline for all patients fulfilling 

the eligibility criteria. This in turn supports using parallel controlled trials to guide decision-

making in these circumstances. 

Abstract (spanish) 

La medicina de precisión ha experimentado un auge continuo en la última década debido sobre 

todo a grandes avances en la genética. Aunque su uso es actualmente incuestionable en campos 

como la oncología, es más controvertido en otras especialidades médicas. La medicina de precisión 

queda justificada bajo dos supuestos. Por una parte, debe ser más rentable que el tratamiento 

estándar en el sentido que los beneficios individuales de un tratamiento deben relacionarse 

inversamente con el número de personas en las que es realmente eficaz. En segundo lugar, y más 

importante, la intervención debe actuar realmente de forma diferencial entre los pacientes. 

Formalmente, el problema fundamental de la inferencia causal establece que este último requisito 

es indemostrable debido a que los ensayos convencionales muestran la respuesta de cada paciente 

bajo un único tratamiento. Sin embargo, la variabilidad de una respuesta continua proporciona 

información valiosa sobre la presencia de un efecto constante, siendo una consecuencia directa 

que la variabilidad permanece inalterable bajo diferentes intervenciones. Por tanto, el estudio de 

la homoscedasticidad de la respuesta puede ser una herramienta útil para probar la hipótesis de 

homogeneidad del efecto. 

Se realizó una revisión metodológica de ensayos clínicos aleatorizados paralelos con una variable 

respuesta principal cuantitativa. Se recogió información referente a las varianzas de dicha variable 

respuesta al final y al inicio del estudio para cada grupo de tratamiento con dos propósitos: estimar 

la razón de varianzas y estimar la proporción de estudios con discrepancias en la varianza lo 
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suficientemente grandes como para ser atribuidas a un efecto heterogéneo. Se compararon las 

varianzas entre brazos de tratamiento (independiente por la asignación aleatoria) y a lo largo del 

tiempo, comparando las varianzas de las respuestas al final y al inicio del estudio. 

Se obtuvieron 208 ensayos clínicos publicados en los años 2004, 2007, 2010 y 2013 de la base de 

datos Medline que cumplían los criterios de elegibilidad. El análisis principal se basó en un modelo 

de efectos aleatorios que estimó la media de las razones de varianzas (experimental vs. control) en 

0,89, IC95% de 0,81 a 0,97. Contrariamente a la creencia popular, los tratamientos experimentales 

redujeron en media la variabilidad de la respuesta del paciente en un 11%. La razón de varianzas 

dentro del grupo experimental a lo largo del tiempo (final vs. basal) fue de 0,86, IC del 95% de 

0,76 a 0,98, implicando una variabilidad menor al final del estudio. 

Nuestro análisis principal no proporcionó evidencia estadística para descartar un efecto constante 

del tratamiento en nuestra población objetivo en cuatro de cada cinco estudios (80,3%, IC95% de 

74,1 a 85,3%). Este porcentaje apenas cambió en cuatro análisis de sensibilidad que arrojaron 

estimaciones puntuales entre 79,8 y 90,0%. Entre los estudios en los que se halló evidencia de un 

efecto no constante, un 7.2% y un 12,5% presentaron una mayor y menor variabilidad en el grupo 

experimental, respectivamente. Este resultado podría explicarse por los efectos techo y suelo 

característicos de algunas escalas, que tienden a agrupar a los pacientes en alguno de sus extremos 

cuando las intervenciones son altamente eficaces. 

El objetivo de este trabajo es mostrar que la comparación de varianzas proporciona evidencia sobre 

si la medicina de precisión es una opción razonable para un tratamiento específico ya que una 

interpretación simple de la presencia de homoscedasticidad es que el efecto del tratamiento es 

constante. En caso de ser constante, la búsqueda futura de predictores de una respuesta diferencial 

es inútil y el efecto promedio del tratamiento puede asimilarse como un efecto individual. Esto 

justificaría el uso de una única guía clínica para todos los pacientes que cumplan los criterios de 

elegibilidad y respalda el uso de ensayos paralelos para guiar la toma de decisiones.  



19 

1 Introduction. State of the art and objectives 

1.1 Synopsis 

Precision medicine is the Holy Grail of interventions that are tailored to a patient’s individual 

characteristics. As a patient’s response can vary with a new treatment, clinical trials try to estimate 

individual treatment effects and therefore outcome variability may be greater among treated 

participants than reference patients. However, the conventional design and analysis of randomized 

trials might gain an advantage by assuming that each individual benefits by the same amount. We 

have reviewed parallel group trials with quantitative outcomes to examine this assumption. The 

results of the present work controvert popular belief, indicating that variability is reduced in some 

treatments, which thus obviates the pursuit of precision medicine in those cases. Conversely, some 

increase in treatment effect has been observed in a few interventions, which could provide more 

tailored treatments through finer selection criteria. This study demonstrates that homoscedasticity 

might be used to assess whether the eligibility criteria in clinical trials needs to be refined once 

precision medicine provides new effect modifiers.  

1.2 Precision medicine 

The idea of precision medicine is to develop prevention and treatment strategies that take 

individual characteristics into account. The prospect of applying this concept broadly has been 

dramatically improved by recent developments in large-scale biological databases (such as the 

human genome sequence), new methods for characterizing patients (such as proteomics, 

metabolomics, genomics, diverse cellular assays, and mobile health technology), and 

computational tools for analyzing large sets of data. US President Obama launched the Precision 

Medicine initiative in 2015 to capitalize on these developments1,2. Most of the emphasis 

underlying this initiative was made in the field of oncology, even though the incursion of precision 

medicine has recently increased in other areas of disease study, such as psychiatry. Nevertheless, 

it is uncertain whether these fields could fit well into this new paradigm, because their benefits 

have not been as well established as in oncology3,4. 

There are several terms to conceptualize the idea behind a tailored intervention. The distinction 

between precision and personalized medicine is fuzzy, and there is no consensus in the literature, 

neither in the definition nor in the difference between both terms. Each one focuses on identifying 

which treatments will be effective for which patients based on genetic, environmental and lifestyle 

factors. In both cases, preventative and therapeutic interventions are concentrated on those who 

will benefit while avoiding expenses and side effects for those who will not. For instance, the 
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National Research Council does not make any distinction between these terms beyond the 

particular concern about the word personalized, which could be misinterpreted in the sense that it 

can be understood that treatments are being developed uniquely for each individual when the word 

can – and often does – refer to interventions applied to subgroups of patients5. Other authors have 

delved further into the idiosyncrasies of each term and find subtle differences between both terms6. 

The term personalized (much older and prior to current advances in the field of genetics) is 

associated with integrated medicine in which the patient is viewed as a whole (patient-centered), 

thus considering all her/his possible components, from biochemistry to behavior to subjective 

well-being to environmental exposure. In contrast, precision medicine is seen as a new all-

integrating endeavor of rational, data-driven, mechanism-based health care that focuses more on 

the disease7. In some way, the term precision could be literally interpreted in its original linguistic 

meaning as a deterministic (not probabilistic) knowledge of all relevant details of a system that 

would allow discovering the cause of any malfunction and deduce possible successful remedies. 

On the other hand, individualized medicine combines standardization with individualization, i.e., 

the target is fixed on individuals8. Whereas the former two terms pertain to prevention, diagnosis, 

and treatment, individualized medicine is directly related to the N-of-1 studies and, therefore, the 

definition is more close to a specific clinical research strategy. Table 1 tries to summarize the main 

peculiarities of each term. 

Table 1. Characteristics of the different terms related to tailored interventions. 

Terms Origin Application Design Focus GS entries* 

Personalized c. XIX Subgroups Any Patient-centered 406,000 

Precision 2010 Subgroups Any Disease-centered 784,000 

Individualized 1986 Individuals N-of-1 Patient-centered 19,500 

*GS: Google Scholar entries (10th April 2020) for the searches: i) “Personalized medicine”; ii) “Precision

medicine”; and iii) ”Individualized medicine”  OR  “N of 1”  OR  “N of one”  OR  ”N-of-1” 

Despite the fact that technological advances have allowed for the development of 

personalized/precision medicine in recent times, the idea of treating the patient in the most 

individualized way is very old. As Simeon-Denis Poisson et al.9 pointed out in reference to a 

previous article by Double10,  

“In the field of statistics, that is to say in the various attempts at numerical assessment of 

facts, the first task is to lose sight of the individual seen in isolation, to consider him only 

as a fraction of the species. He must be stripped of his individuality so as to eliminate 

anything accidental that this individuality might introduce into the issue in hand. 
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In applied medicine, on the contrary, the problem is always individual, facts to which a 

solution must be found only present themselves one by one; it is always the patient's 

individual personality that is in question, and in the end it is always a single man with all 

his idiosyncrasies that the physician must treat. For us, the masses are quite irrelevant to 

the issue”. 

In recent times, many supporters and detractors have generated much controversy about the utility 

of precision medicine, but the reality is that precision medicine is gaining more and more ground: 

in the last decade, projects related to genetics have received 50% more funding than those ones 

with the goal of disease prevention, and there has been a 90% decrease in the terms “public” and 

“population” in the titles of published articles11.The defenders warn about the presence of a 

treatment–patient interaction in many interventions, arguing that medicine requires a different type 

of clinical trial that focuses on individual (not average) responses to therapy12,13. Conversely, most 

of the industry guidelines rely on the assumption of the constant effect among patients and they 

warn that the interpretation of heterogeneity treatment effects among patients is controversial14. 

Another criticism lies in the fact that precision medicine amplifies the gap between social classes 

and moves away from the global objective of achieving a healthier population:11 although they can 

be cost-effective in some cases, the development of expensive medications diverts resources from 

the R&D of more effective global therapies15. One last current weakness concerns the application 

of precision medicine being limited to some medical areas. For example, the SHIVA trial16 

compared a molecularly targeted therapy based on tumor molecular profiling (precision medicine) 

versus the conventional therapy for advanced cancer; no statistically significant difference was 

found between groups in regard to the primary endpoint progression-free survival (hazard ratio 

0·88, 95% CI 0·65–1·19). 

1.3 The constant effect assumption is a misnomer 

Variability in a clinical trial outcome measure should interest researchers, because it conveys 

important information about the treatment effect and whether or not there is a need for precision 

medicine. Does variability come only from unpredictable sources of patient variability? Or should 

it also be attributed to a different treatment effect that requires more precise prescription rules?17–

19 Usually, researchers assess treatment effect modifications among subgroups based on relevant 

variables. The term interaction refers to divergent effects in each subgroup of patients (stratum), 

and its determination requires large samples in all stratums sharing the same treatment effect. This 

often results in underpowered interaction analyses20. The main problem is, however, that those 

stratification factors should be known in advance and be measurable. This in turn implies that 
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when new variables are discovered and introduced into the causal path, these can only be analyzed 

in an exploratory manner and an additional clinical trial will be needed to obtain confirmatory 

results. Fortunately, one observable consequence of a constant effect is that the treatment will not 

affect variability, and therefore the outcome variances in both groups should be equal.  

1.3.1 The fundamental problem of causal inference 

The fundamental problem of causal inference is that for each patient in a parallel group trial we 

can only know the response for one of the interventions. That is, we observe the response to either 

the reference treatment or the new treatment, but not both. By experimentally controlling unknown 

confounders through randomization, a clinical trial may estimate the average causal effect (ACE). 

However, in order to translate this population estimate into effects for individual patients, 

additional assumptions are needed, with the premise of a constant effect being the simplest one. In 

this work, we try to elucidate whether the comparison of observed variances may shed some light 

on the non-observable individual treatment effect. 

1.3.2 Scenarios for the non-observable individual effect. 

Let us begin with a description of what can be observed in different hypothetical scenarios. First, 

imagine a fictional trial with eight participants (four in each arm) and systolic blood pressure (SBP) 

as the primary endpoint. Figure 1A shows the potential outcome values that we could obtain from 

each patient if the treatment effect was null. As explained above, a participant in a parallel RCT is 

allocated to a single arm and, thus, we observe only one outcome, which is represented in the 

figure by squares with fully saturated colors. Opposite, transparent squares represent the missing 

potential outcomes that would have been observed if the volunteer were to have been allocated to 

the other group. As the intervention has no effect at all, both groups have the same distribution 

(i.e., mean and variance). Having equal variances across treatment groups is referred to as 

homoscedasticity.  Figure 1B shows the scenario of a constant effect, meaning that the effect is 

exactly the same in every patient: the intervention lowers the SBP by a single, constant value in 

each participant and, again, variability remains unalterable. 

For instance, the study from Duran-Cantolla et al.21 compared the 24-hour SBP among 340 patients 

randomized to either continuous positive airway pressure (CPAP) or sham–CPAP, and they found 

a greater decrease of 2.1 mmHg (95%CI from 0.4 to 3.7) in the intervention group compared to 

the control group. Furthermore, baseline standard deviations (SDs) were 12 and 11; and final SDs 

were 13 for both groups. Therefore, their results agree with the trial design’s assumption of a 

constant effect and nothing contradicts the inference that each patient exhibits a constant reduction 
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of 2.1 mmHg, although the uncertainty derived from random allocation makes the results 

compatible with a constant effect that lies anywhere between 0.4 and 3.7.  

Figure 1. SBP values of each patient in both groups (C: Control; T: Treated) under a constant treatment 

effect. Fully saturated colored squares represent observed values, and transparent squares are missing 

outcomes (not observed) values. The line slope indicates the individual and non-observable effect for 

each patient. Densities of the potential outcome distributions are represented assuming normality. 

On the other hand, if the treatment effect varies among patients, the variance may be greater (or 

lower) in treated patients. An example of this situation can be found in the study of Kojima et al.22, 

in which the primary outcome measure is the 3-hour postprandial area under the curve (AUC) of 

apolipoprotein (Apo) B48. Outcome SDs were 0.78 and 0.16 in the experimental and reference 

group, respectively, with a variance ratio equal to 23.77. This is consistent with an intervention 

that increases variability and with diverse individual treatment effects that need further refinements 

with the help of precision medicine.  

Let us imagine two completely different scenarios that may apply to this increased variability. 

Panel C of Figure 2 represents a hypothetical scenario with a couple of different effects in two 

subpopulations (subgroup interaction). Although the effects are identical within any subgroup, the 

overall observable distribution in the treated arm would have higher variability. Here, we need 

precision medicine in order to find more restrictive eligibility criteria and to identify any criterion 

that classifies patients in those subpopulations, as well as to be able to assume a constant effect. 
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Figure 2. SBP values of each patient in both groups (C: Control; T: Treated) for several heterogeneous 

treatment effect scenarios. Fully saturated colored squares represent observed values, and transparent 

squares represent missing outcomes. The line slope indicates the individual non-observable effect for 

each patient. Densities of the potential outcome distributions are represented assuming normality. 

However, in panel D, the treatment has a variable (i.e., random) effect in each patient, resulting 

also in greater variability within the treated arm. Unfortunately, there is no longer any subgroup 

of patients sharing a common effect, and results from previous patients are poorly predictive about 

the outcomes of future ones. When taken to this extreme case, no group of patients shares a 

common effect, and precision medicine should become individualized medicine by means of 

observing the outcome in a specific patient receiving both treatments. This is only feasible for 
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chronic, stable conditions without carry-over effects, meaning that we can run specific N-of-1 

trials, as previously suggested13,23–26. This “treatment by patient interaction” was already 

highlighted by W. S. Gosset in the data of his 1908 paper proposing the Student t-distribution27. 

As we have already stated, the presence of greater variance in the treated arm leads to a hard 

interpretation of the main treatment effect,14 and guidelines for treating new patients should be 

based either on additional eligibility criteria (precision medicine, panel C) or on N-of-1 trials 

(individualized medicine, panel D). 

Alternatively, interactions can result in smaller variances in the treated arm. In panel E, there is a 

different effect in two subgroups, but the variability is now reduced. Again, the best solution would 

be to identify the subpopulations in order to refine the selection criteria and to provide a better 

estimate of the effect size. In panel F, the treatment has a stabilizing effect, with higher blood 

pressure falling more in severe patients, and resulting in lower variability in the treated arm. Notice 

that in the last scenario, although heteroscedasticity is present, there is no problem at all: the 

intervention has improved the conditions of every patient and, although the individualized 

treatment effect cannot be provided, the outcome distribution represents a more stable situation 

that can be described in order to summarize treatment effects. Our most extreme example of a 

study with the smallest variance ratio comes from Kim et al.28, in which the outcome is the PTSD 

Checklist–Civilian version (PCL-C). This scale is based on the sum of 17 Likert symptoms, 

ranging from 17 (perfect health) to 85 (worst clinical situation). The 11 control patients had an 

average score of around 42 at baseline and post-baseline, while the mean score of 11 treated 

participants decreased from 42 to 24, which results in a statistically significant reduction. The 

respective SDs at the end of the trial were 3 and 16 for the treated and control arms, respectively 

(variance ratio equal to 0.035), implying that variance was reduced by a factor of approximately 

28. 

1.3.3 Sample size depends on the nature of the treatment effect 

Whether an intervention has a constant effect or not is a relevant issue in itself to determine the 

scope of a given intervention, but it is also important for the design of a trial that aims to find a 

mean difference in the primary endpoint. The sample size calculation in RCTs with this purpose 

is performed on the basis of a single parameter to specify the treatment effect (commonly called 

Δ). This fact implicitly implies the assumption of a constant effect; otherwise, at least one 

additional parameter would be required to specify the variability of this effect. 

Appendix A shows two tables containing sample size calculations drawn from 20 articles in the 

journals Trials and NEJM. None of them explicitly mentions that the treatment effect could be 
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variable. In addition to being reasonable, the constant effect assumption simplifies the problem, 

since the presence of a heterogeneous treatment effect has consequences on the needed sample 

size. By means of examples, this Appendix A introduces four different scenarios: constant 

treatment effect, random treatment effect and two types of interactions. The required sample sizes 

for these situations differ from each other, ranging from 32 to 75 patients, even though the 

parameters used in the traditional formula are the same. 

1.4 Objectives and structure 

After describing the challenges derived from the variability of the treatment effect, we introduce 

the objectives and structure of this PhD thesis. The data used in this study came from a 

methodological review which is extensively described in Chapter 2. The two main objectives of 

this work are: 

 To compare the variance of the main outcome between arms (at the end of the study) and

over time (from baseline to the end of the study in the experimental group) in RCTs

published in medical journals and to provide an estimation of the variance ratio.

 To estimate the proportion of studies with a plausible constant effect based on this variance

comparison.

We compared the variances in a set of parallel 

RCTs with quantitative outcome in two types 

of comparisons (Figure 3): 

 Between arms at the end of the study:

Treated (T) vs. Control (C)

 Between final and baseline outcome in the

experimental arm: Outcome (O) vs.

Baseline (B)

This distinction is pertinent because of the 

nature of the relationship between the data; 

while in the comparison between arms the data 

of each group are independent. In the 

comparison over time the data are related 

through the different measures in the same 

patient. 

Figure 3. Schema of the two studied comparisons 

in a parallel RCT. 
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We have implemented five different methodologies to carry out the objectives for both 

comparisons. Three of them are based on the theory behind the random effects model (REM) and 

two are based on the usual tests of variance comparison. 

 Based on REM:

 Random effects model. Main Analysis.

 Heuristic procedure. Sensitivity Analysis I.

 Simulation study. Sensitivity Analysis II.

 Based on variance comparison tests:

 Usual tests for variance comparison. Sensitivity Analysis III.

 Mixture distributions for the p-values. Sensitivity Analysis IV.

These are explained in detail in the following chapters. Their common goal is to determine which 

proportion of the population studies could take advantage of the precision medicine setup due to 

the absence of a constant effect. In addition, the first main methodology also provides an estimate 

of the variance ratio between arms and between final and baseline outcome. See Table 2 for an 

overview of the complete structure of this work. 

Table 2.Schema of how the objectives, the type of analysis and the type of comparisons are related to the 

chapters/sections of this document. 

Chapter/ 

Section 

Analysis Objective Type of comparison 

Type 
Specific 

analysis 

Variance 

ratio 

estimation 

Proportion 

of constant-

effect trials 

Between 

Arms 

Over 

time 

Chapter 

3 

R
an

d
o
m

 e
ff

ec
ts

 

m
o
d
el

 

MA. Random 

effects model 
   

Section 

4.1 

SA1. Heuristic 

procedure 
  

Section 

4.2 

SA2. Simulation 

study  
 

Section 

4.3 

V
ar

ia
n
ce

 t
es

t 

SA3. Variance 

tests 
  

Section 

4.4 

SA4. Mixture 

distributions 
  

MA: Main Analysis; SA: Sensitivity Analysis. 
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2 Data source. Methodological review 

The data for our work was gathered through a methodological review, which differs from 

systematic or bibliographic reviews in that it is not limited to a specific topic but instead focuses 

on peculiar characteristics of a design or analysis. In our case, we wanted to collect parallel clinical 

trials (see Section 2.1.1) through a search strategy that is detailed in Section 2.1.2. The list of 

collected variables in the dataset is specified in Section 2.1.3 and some issues related to the data 

and the software used in the analysis are present in Section 2.1.4. Finally, Sections 2.2.1 and 2.2.2 

show the flow diagram for selecting the data and a preliminary descriptive analysis, respectively. 

2.1 Methods 

2.1.1 Population 

Our target population was parallel randomized clinical trials with quantitative outcomes 

(continuous or not); so, studies with categorical or time-to-event primary endpoints were not 

included. Trials needed to provide enough information to assess both homoscedasticity 

assumptions in the primary endpoint: between arms and over time. Therefore, baseline and final 

standard deviations for the main outcome were necessary or, failing that, at least one measure 

(variances, standard errors or mean confidence intervals) that would allow us to calculate them 

(see Appendix B for some examples). 

2.1.2 Search strategy 

Articles on parallel clinical trials from the years 2004, 2007, 2010 and 2013 were selected from 

the Medline database via EBSCO with the following criteria: 

Years 2004 and 2007 

AB(clinical trial* AND random*) AND AB(change OR evolution OR (difference AND baseline) 

Years 2010 and 2013 

AB((trial* AND random*) AND ((change OR evolution) AND (difference AND baseline))) 

For the years 2004 and 2007, we selected all papers that met our inclusion criteria; while for the 

years 2010 and 2013, we chose a random sample of 300 papers from the articles retrieved from 

the search. 

One limitation of the search strategy was the usage of terms "clinical trial" and "trial" instead of 

setting a filter for this type of design. Although this limitation works against specificity (studies 
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that were not clinical trials would be returned), it does not limit sensitivity (very few clinical trials 

omit these terms in the abstract). Therefore, the only drawback was the need for more effort to 

screen the articles. 

The initial purpose of the data collection was not to assess the homoscedasticity of the treatment 

effect, but primarily to estimate the correlation between the baseline and final measurements of 

the primary endpoint; under this rationale, the word “difference” was paired with “baseline” in an 

alternative option that is included in the abovementioned criteria. 

In June 2017, we tried to reproduce this search strategy via PubMed (the original searches were 

run on the EBSCO platform) by adapting the syntax in a pertinent way in order to assess the 

variation of the returned articles some time later. A noteworthy different number of articles was 

observed from those previously retrieved. Two explanations would be that some factors may vary 

over time, such as the indexing of articles or that the platform for accessing the Medline database 

was distinct (EBSCO versus PubMed) in the two periods. Table 3 shows the specific search 

strategy conducted and the number of articles returned for each year. 

Table 3. Summary of the original methodological review and the validation. 

Original Strategy (EBSCO) Validation strategy (PubMed) 

Year 

no. 

papers 

Search 

date Search 

no. 

papers 

Search 

date Search 

2004 266 
January 

2005 

AB(clinical trial* AND 

random*) AND  

AB (change OR 

evolution OR 

(difference AND 

baseline)) 

326 
June 

2017 

(clinical trial*[Title/Abstract] AND 

random*[Title/Abstract]) AND 

(change[Title/Abstract] OR 

evolution[Title/Abstract] OR   

(difference[Title/Abstract] AND 

baseline[Title/Abstract]) 

2007 348 
January 

2008 
503 

June 

2017 

2010 478 
January 

2015 
AB((trial* AND 

random*) AND 

((change OR evolution) 

AND (difference AND 

baseline))) 

319 
June 

2017 

(  trial*[Title/Abstract] AND 

random*[Title/Abstract]) AND 

(change[Title/Abstract] OR 

evolution[Title/Abstract] AND 

(difference[Title/Abstract] AND 

baseline[Title/Abstract])) 

2013 657 
January 

2015 
442 

June 

2017 

Data were collected by two different researchers in two phases: 2004/2007 and 2010/2013. After 

merging the two databases, two statisticians checked the correctness of the data by reviewing all 

articles from the first two years (2004, 2007) and a random sample (10% of the total) from the last 

two years (2010, 2013). 
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2.1.3 Variables 

Various pieces of information regarding the clinical trials of the selected articles were collected 

and they were reflected in the following variables: baseline and outcome standard deviations; 

experimental and reference interventions; initial and final sample size in each group; medical field 

labeled according to Web of Science (WoS) classification; primary endpoint; disease under study; 

kind of disease (chronic or acute); outcome type (measured or scored); intervention type 

(pharmacological or not); improvement direction (upwards or downwards) and whether or not the 

main analysis of the trial proved the intervention efficacy. The last five variables were involved in 

the subgroup analyses and they are widely explained in Section 3.1.6. 

For studies with more than one quantitative outcome, primary endpoint was determined according 

to the following hierarchical criteria: (1) variable appearing in either the objective or hypothesis; 

(2) employed in sample size determination; (3) response in main statistical analysis; or (4) first

quantitative variable reported in results. In the same way, the choice of the “experimental” or 

“treated” group was determined depending on their role in the following sections of the article: (1) 

objective or hypothesis; (2) sample size determination; or (3) study rationale. In trials with more 

than two treatment arms, the experimental intervention was the one involved in the first 

comparison reported in the results. 

2.1.4 Software and Data 

All analyses were performed with the R statistical package version 3.6.3 or higher. We used the 

rma function from metafor package to fit the random effects models.  

Our data is made available through two sources: 

 A shiny app (see Section 6.1) that allows the user to interact with the data by means of

several visualization tools: http://shiny-eio.upc.edu/pubs/F1000_precision_medicine/29

 The Figshare repository: https://doi.org/10.6084/m9.figshare.555265630

In both sources, the data can be downloaded under a Creative Commons License v. 4.0. 

2.2 Results 

2.2.1 Flowchart 

Exactly 1,749 articles were retrieved from the search, but a random selection of 300 articles in 

2014 and 2017 involved a total of 1,214 initial papers, with 542 of them pertaining to the target 

population. Of those, 212 contained enough information to conduct the analysis, but four papers 

were excluded because the change over time in the reported variance of the outcome (final minus 

http://shiny-eio.upc.edu/pubs/F1000_precision_medicine/
https://dx.doi.org/10.6084/m9.figshare.5552656


31 

baseline) was inconsistent with both the baseline and final variances, which would lead to 

infeasible absolute correlation estimates above 1. Ultimately, 208 (38.4%) were included in the 

analysis (Figure 4).  

Figure 4. Percentages represent the number of papers with respect to the ones retrieved from the 

methodological review. The number of articles for each year (2004/2007/2010/2013) is specified in each 

box separated by slashes. $300 papers were randomly selected for years 2010 and 2013. 

MA: Main analysis; SA1: First Sensitivity analysis; CDB: Complete Dataset for Between-arm 

comparison; CDO: Complete Dataset for comparison Over time; RDBB: Reduced Dataset for 

Between-arm comparison at Baseline; RDB; Reduced Dataset for Between-arm comparison; 

RDO: Reduced Dataset for comparison Over time.  
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The end of the flow chart is split into several datasets that were used, depending on the type of 

analysis or comparison. The complete datasets for the main analysis (MA) and all the sensitivity 

analyses except the first one (SA2, SA3, SA4) were called CDB (Complete Dataset for Between-

arm comparison) and CDO (Complete Dataset for comparison Over time). The datasets used in 

the first sensitivity analysis (SA1), which are subsets of the previous ones, were named RDBB 

(Reduced Dataset for Between-arm comparison at Baseline), RDB (Reduced Dataset for Between-

arm comparison) and RDO (Reduced Dataset for comparison Over time). 

2.2.2 Descriptive results 

Following the WoS criteria, 156 articles (75%) pertained to exactly one medical field; 47 (22.6%) 

to more than one and 5 (2.4%) were not classified. The main areas of study were: General & 

Internal Medicine (𝑛 = 31, 14.9%), Nutrition & Dietetics (𝑛 = 21, 10.1%), Endocrinology & 

Metabolism (𝑛 = 19, 9.1%), and Cardiovascular System & Cardiology (𝑛 = 16, 7.7%). See 

Appendix C for more detailed information and the complete list of the medical fields. 

Mainly, collected studies were non-pharmacological (𝑛 = 122, 58.6%); referred to chronic 

conditions (𝑛 = 101, 57.4%); had an outcome measured with units (𝑛 = 132, 63.8%) instead of 

a constructed scale; were measured (𝑛 = 125, 60.1%) rather than assessed; and had lower values 

associated with an improvement in health status (𝑛 = 141, 67.8%). Regarding the primary 

objective of the trials, the authors proved the intervention efficacy in 83 (39.9%) studies.  

Table 4 shows the main statistics for the logarithm of the sample variance (S2) at the end and at 

the beginning of the trial in both arms, as well as their differences. The mean of the log (𝑆2) in the

experimental arm at the end of the study (2.76) is lower than in the control group (2.81), and it is 

also lower than the outcome measure in the experimental group at baseline (2.88).  

Table 4. Descriptive statistics for the logarithm of the S2 (rows 1-4) and for their differences (rows 5-7). 

n mean sd min. Q1 median Q3 max. 

Baseline Reference or Control arm (BC) 208 2.77 3.22 -7.82 0.35 3.26 4.94 11.28 

Experimental or Treated arm (BT) 208 2.88 3.29 -7.01 0.28 3.60 5.19 13.65 

Outcome Reference or Control arm (OC) 208 2.81 3.26 -7.82 0.36 3.20 5.08 11.56 

Experimental or Treated arm (OT) 208 2.76 3.26 -7.01 0.19 3.02 5.02 13.47 

D
if

fe
re

n
ce

s Between arms at the end (OT-OC) 208 -0.05 0.82 -4.29 -0.44 0.00 0.34 3.92 

Over time in Experimental arm (OT-BT) 208 -0.12 0.76 -3.19 -0.34 -0.05 0.21 3.17

Over time between arms [(OT-BT) - (OC-BC)] 208 -0.16 0.77 -2.94 -0.44 -0.10 0.12 5.11

B: Baseline, O: Outcome, T: Treated or experimental, C: Control or reference. 
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Figure 5 and Figure 6 highlight these differences in each single study for both comparisons: 113 

(54.3%) studies revealed lower variability in the outcome in the experimental arm; 12 (5.8%) trials 

reported exactly the same variability in both arms at the end of the study; and 83 (39.9%) provided 

a higher variability in the reference arm. Arrow lengths represent the variance difference between 

arms. Although it is subtle, the magnitude of the differences seems slightly higher in trials with 

less variability in the experimental group.  

Figure 5. Arrows go from the outcome variance in the control group to the outcome variance in the 

treated group for each trial, and it may be increasing (blue) or decreasing (red). Y-axis is log-scaled. 

Figure 6. Arrows go from the baseline variance to the outcome variance in the treated group for each 

trial, and it may be increasing (blue) or decreasing (red) over time. Y-axis is log-scaled. 
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For the comparison over time in the treated arm, 97 (46.6%) interventions increased the variability; 

101 (48.6%) decreased it; and the remaining 11 (4.8%) did not affect the dispersion of the outcome. 
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3 Random effects models analysis 

Summary key points 

 The estimate of the variance ratio both between arms and over time can be modeled by

means of random effects models.

 The variance of this statistic in the model can be split into two sources of variability: the

random sampling and heterogeneity among studies.

 What the models provided:

 An estimate of the variance ratio.

 The proportion of studies whose variability discrepancies are not simply due to

random sampling, but also to real heterogeneity.

 The main results:

 The point estimate of the variance ratio was 0.86 (treated versus control) and 0.89

(final versus baseline in treated arm), implying that experimental interventions

decrease the variance on average.

 The percentages of studies with discrepancies in variability that can only be

attributed to the random sampling were 86% and 66% for the comparison between

arms and over time, respectively. Precision medicine in these trials is not justified.

We applied the theory that underlies random effects models to the framework of a meta-analysis 

study, though we did not focus on the differences in the outcome means but instead on the ratio of 

the outcome variances. 

Chapter 3 is divided into two large blocks that present the methods and the results of the random 

effects model analysis. As regards the methods (Section 3.1), we begin by providing an overview 

of the methodology (Section 3.1.1). Subsequently, the models for comparison between arms 

(Section 3.1.2) and over time (Section 3.1.3) are specified. The most challenging issue when fitting 

these models was distinguishing between the random variability and the heterogeneity among 

studies. The methodology used to estimate the former is explained in Sections 3.1.2.1 and 3.1.3.1 

for both comparisons. Due to its complexity, some simulations were performed to confirm the 

previous theoretical results. The way to create and interpret the funnel plots resulting from the 

models is addressed in Section 3.1.4, and the potential bias of the estimators of the model is 

assessed in Section 3.1.5. The last section on the methods (Section 3.1.6) describes the factors 

considered in the subgroup analysis and provides examples. Section 3.2 basically contains the 

results for our two objectives: estimating the variance ratios (Section 3.2.1) and the proportion of 

constant-effect studies (Section 3.2.2); and validating the model (Section 3.2.3). It also includes 

the main findings of the subgroup analysis (Section 3.2.4). In addition, Appendix D shows a 

collateral analysis that weighs the concordance between both comparisons. 
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3.1 Methods 

3.1.1 Explanation 

A random effects meta-analysis model assumes that the observed estimates of treatment effect can 

vary across studies either because of real differences in the effect in each study (heterogeneity) or 

due to the sampling process (random variability). Thus, even if all the involved studies had an 

infinite sample size, the observed study effects would still vary because of the real differences in 

“treatment” effects. Such heterogeneity is caused by differences in study populations, 

interventions received, follow-up length, and other factors31. For us, the need for this kind of model 

is clear since all of these settings are completely diverse in collected studies: the only common 

link among them was that they had a quantitative outcome, but there was no other commonality 

beyond this. 

In our context, the model response to be estimated was: 

�̂� 𝑖 = 𝑙𝑜𝑔 (
𝑆𝑖1
2

𝑆𝑖0
2 ) 

where 𝑆𝑖1
2   is the sample variance of the outcome of the experimental arm for the i-th study and 𝑆𝑖0

2

is either the variance of the outcome in the reference arm (comparison between-arms) or the 

variance of the outcome at baseline in the treated arm (comparison over time). From now on, we 

will refer to both variance ratios and their logarithms as measures of “variability discrepancy” or 

“variance discrepancy”. Later, it will be explained why this response is log-transformed. 

We dealt with the problem of combining the estimated variance discrepancies from a series of k 

RCTs, with sample sizes 𝑛𝑇𝑖 and 𝑛𝐶𝑖 in treated and control groups, respectively. A random effects 

model for meta-analysis stipulates that the observed �̂�𝑖, from the i-th study is made up of two 

additive components: the true difference for the specific study (𝜃𝑖) and the sampling error (𝑒𝑖). 

𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖           𝑒𝑖~𝑁(0, 𝜈𝑖
2)         𝑖 = 1,… , 𝑘

The variance 𝜈𝑖
2 of 𝑒𝑖 is the sampling variance reflecting within-study variability, which especially

depends on the sample size. This within-study variance or sampling variance is usually unknown, 

and conventional meta-analysis studies estimate this using the data of the i-th observed trial. 

However, we did not have access to the raw data and had to make some assumptions in order to 

estimate it. In addition to the sampling error associated with each study, the random effects model 

includes a component for a true variability discrepancy among trials influenced by several other 

factors. That is to say, the model explicitly accounts for possible heterogeneity and stipulates that 

𝜃𝑖 = 𝜇 + 𝑇𝑖, where 𝜃𝑖 is the true variance discrepancy in the i-th study; 𝜇 is the expected variance 
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discrepancy for the entire population; and 𝑇𝑖 = 𝜃𝑖 − 𝜇 is the deviation of the i-th study's effect 

from 𝜇. The variance (𝜏2) of 𝑇𝑖 is the inter-study variance or heterogeneity and represents the

degree to which true variance discrepancy vary across studies. The special case of 𝜏2 = 0 would

represent lack of heterogeneity, i.e., the variance discrepancies are all equal among studies and 

their common value is 𝜇.32 

In Subsections 3.1.2 (between arms) and 3.1.3 (over time), the models for both comparisons are 

specified. 

3.1.2 Between-arm comparison 

For measuring the variance discrepancy in between-arm comparison, we fitted a random effects 

model for the logarithm of the outcome variance ratio (at the end of the study) as the response, and 

this included the study as a random effect, 𝑇𝑖 while the logarithm of the variance ratio at baseline 

was a fixed effect. 

Between arms model 

log (
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 )

𝑖

= 𝜇 + 𝑇𝑖 + β · log (
𝑆𝐵𝑇
2

𝑆𝐵𝐶
2 )

𝑖

+ 𝑒𝑖      𝑤𝑖𝑡ℎ    𝑒𝑖~𝑁(0, 𝑣𝑖
2)   𝑎𝑛𝑑   𝑇𝑖~𝑁(0, 𝜏

2)

𝑆𝑂𝑇
2 , 𝑆𝑂𝐶

2  represent the sample variances of the outcome in each arm at the end of the study and

𝑆𝐵𝑇
2 , 𝑆𝐵𝐶

2  serves as the counterparts at baseline. The μ parameter is the expected value of the

response across all the studies; Ti is the deviation of the i-th study's effect from 𝜇, which is assumed 

to be Normally distributed with variance τ2 that represents the heterogeneity associated with the 

study population; β is the coefficient for the model response measured at baseline; and ei  represents 

the sampling error associated with each trial, which is also Normally distributed with variance 𝑣𝑖
2.

As there was only one available measure (primary endpoint) for each study, the data did not allow 

us to differentiate both sources of variability: (i) the random sampling (also called within-study) 

variability (𝑣𝑖
2); and (ii) heterogeneity (𝜏2). To isolate the latter, the former was theoretically

estimated using a method explained in Section 3.1.2.1 which provides the following estimate: 

�̂�𝑖
2 =

2

𝑛𝑂𝑇𝑖 − 2
+

2

𝑛𝑂𝐶𝑖 − 2

with 𝑛𝑂𝑇𝑖 and 𝑛𝑂𝐶𝑖 being the final sample sizes in the experimental and reference arms in the i-th

study, respectively. 
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In addition, we explored the models for forced values of 𝛽: 

 𝛽 = 0. The model that does not take into account the baseline heteroscedasticity.

 𝛽 = 1. The model equivalent to the analysis of change.

Table 5 shows a complete definition of the models involved in the between-arm comparison. In 

any case, it is well known that the most efficient analysis is the one that does not place any 

restriction on the estimate of the 𝛽 parameter33. 

Table 5. Model descriptions for between-arm comparison. 

Response 𝜷 ID Model 

log (
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 ) 

Between arms 

discrepancy 

Unadjusted. 𝛽 = 0 1 Log(𝑆𝑂𝑇
2 𝑆𝑂𝐶

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + 𝑒𝑖

Adjusted. Estimated 𝛽 2 Log(𝑆𝑂𝑇
2 𝑆𝑂𝐶

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + β1 · log(𝑆𝐵𝑇
2 𝑆𝐵𝐶

2⁄ )𝑖 + 𝑒𝑖

Adjusted (offset). 𝛽 = 1 3 Log(𝑆𝑂𝑇
2 𝑆𝑂𝐶

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + 1 · log(𝑆𝐵𝑇
2 𝑆𝐵𝐶

2⁄ )𝑖 + 𝑒𝑖

ID: model identifier for later use 

3.1.2.1 Standard error of log (𝑆𝑂𝑇
2 /𝑆𝑂𝐶

2 ) in independent samples (between arms)

The aim of this section is to prove that the standard error of the statistic logarithm of the variance 

ratio is: 

√
2

𝑛𝑂𝑇𝑖 − 2
+

2

𝑛𝑂𝐶𝑖 − 2

Proof 

First step. We need to prove the next convergence in distribution (D): 

𝜉 = √𝑛 − 1 · (𝑆𝑛
2 − 𝜎2)

𝐷
→𝑁(0, 2𝜎4)

Let 𝑆𝑛
2 be the sample variance. The statistic expressed below follows a 𝜒2 distribution with (𝑛 − 1) degrees of

freedom provided that the sample comes from a Normal distribution: 

(𝑛 − 1) · 𝑆𝑛
2

𝜎2
~𝜒𝑛−1

2

Knowing the expected value [(𝑛 − 1)] and the variance [2(𝑛 − 1)] of a random variable with a 𝜒2 distribution,

the expected value and variance of the sample variance are: 

𝐸 [
(𝑛 − 1) · 𝑆𝑛

2

𝜎2
] =

𝑛 − 1

𝜎2
𝐸[𝑆𝑛

2] = (𝑛 − 1) → 𝐸[𝑆𝑛
2] = 𝜎2

𝑉 [
(𝑛 − 1) · 𝑆𝑛

2

𝜎2
] =

(𝑛 − 1)2

𝜎4
𝑉[𝑆𝑛

2] = 2(𝑛 − 1) → 𝑉[𝑆𝑛
2] =

2𝜎4

𝑛 − 1
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And the expected value and the variance of 𝜉 can be easily deducted: 

𝐸[√𝑛 − 1 · (𝑆𝑛
2 − 𝜎2)] = √𝑛 − 1 · 𝐸[𝑆𝑛

2 − 𝜎2] = √𝑛 − 1 · (𝐸[𝑆𝑛
2] − 𝜎2) = 0

𝑉[√𝑛 − 1 · (𝑆𝑛
2 − 𝜎2)] = (𝑛 − 1) · 𝑉[𝑆𝑛

2 − 𝜎2] = (𝑛 − 1) · 𝑉[𝑆𝑛
2] = (𝑛 − 1)

2𝜎4

𝑛 − 1
= 2𝜎4

The convergence to a Normal distribution is explained by the convergence of the Maximum Likelihood Estimators 

to this distribution. 

Second step. Deducting the variance of the logarithm of the sample variance. The univariate version of the Delta 

method34 (DM) or equivalently, the use of the approximation by the Taylor series allows us to estimate this variance. 

Let 𝜃 and 𝜎2  be constant values and let  𝑋𝑛 be a sequence of random variables satisfying:

√𝑛 · (𝑋𝑛 − 𝜃)
𝐷
→𝑁(0, 𝜎2)

The first order approximation of the Taylor series for 𝑋𝑛 of any function g satisfying that 𝑔′(𝜃) exists and is non-

zero can be expressed as: 

𝑔(𝑋𝑛) ≈ 𝑔(𝜃) + 𝑔
′(𝜃) · (𝑋𝑛 − 𝜃)

In our specific context, 𝜃 = 𝜎2 and  𝑔(𝑥) = log (𝑥) imply:

log(𝑆𝑛
2) ≈ log(𝜎2) +

1

𝜎2
· (𝑆𝑛

2 − 𝜎2)

We can now calculate the target variance: 

𝑉[log(𝑆𝑛
2)] ≈ 𝑉 [log(𝜎2) +

1

𝜎2
· (𝑆𝑛

2 − 𝜎2)] = 𝑉[log(𝜎2)] + 𝑉 [
1

𝜎2
· (𝑆𝑛

2 − 𝜎2)] = 0 +
1

𝜎4
𝑉[(𝑆𝑛

2 − 𝜎2)]

=
1

𝜎4
𝑉[𝑆𝑛

2] =
1

𝜎4
·
2𝜎4

𝑛 − 1
=

2

𝑛 − 1

Therefore, the standard error (SE) of the log-sample variance is approximated by √2/(𝑛 − 1) and the within-

variance for our statistic in the model can be deducted assuming independence between groups: 

𝑉 [log (
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 ) ] = 𝑉[log(𝑆𝑂𝑇

2 ) − log (𝑆𝑂𝐶
2 ) ] = 𝑉[log(𝑆𝑂𝑇

2 ) ] + 𝑉[log (𝑆𝑂𝐶
2 ) ] −

2𝐶𝑜𝑣[log(𝑆𝑂𝑇
2 ) , log(𝑆𝑂𝐶

2 )] =
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝑉[log(𝑆𝑂𝑇
2 ) ] + 𝑉[log(𝑆𝑂𝐶

2 )] =
2

𝑛𝑂𝑇𝑖−1
+

2

𝑛𝑂𝐶𝑖−1

The approximated SE with this methodology is the square root of this variance: 

𝑆𝐸𝐷𝑀 = √
2

𝑛𝑂𝑇𝑖 − 1
+

2

𝑛𝑂𝐶𝑖 − 1

Although it may seem anti-intuitive, the variance of this statistic does not depend on the magnitude 

of the variability of the random variable but only on the sample size of each group.  

As the sample sizes of the collected trials were not very large and this result relies on asymptotic 

properties, we tried to correct the obtained expression in a way to what is done in the estimation 
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of GEE models,35 in which a degrees-of-freedom-adjusted strategy is proposed to correct the bias 

in small sample size scenarios.  

𝑉 [log (
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 ) ] ≈

2

𝑛𝑂𝑇𝑖 − 2
+

2

𝑛𝑂𝐶𝑖 − 2
→ 𝑆𝐸𝐷𝑀

𝐶 ≈ √
2

𝑛𝑂𝑇𝑖 − 2
+

2

𝑛𝑂𝐶𝑖 − 2
 

 

We verified by simulation that this approach provides a better fit than the first approximation, 

which underestimates the actual variance in small-sample scenarios. 

Comparing 𝑺𝑬𝑫𝑴 and 𝑺𝑬𝑫𝑴
𝑪  by simulation 

A simulation was carried out in order to assess the performance of both estimators. We compared 

empirical estimates (𝑆𝐸𝐸) of the standard error of the log-variance coming from the simulation 

with the previous analytically deducted estimators (𝑆𝐸𝐷𝑀 and 𝑆𝐸𝐷𝑀
𝐶 ). Two different scenarios 

were considered to carry out this comparison: 

 Setting A. A wide range of sample sizes and equal variances in both arms. 

 Setting B. Simulation parameters based on collected sample sizes and sample variances. 

Setting A 

The next box contains the parameter settings to perform this simulation. 

Parameters of the simulation 

 100,000 replications 

 (Constant) variance of the first group (𝜎1
2): 1 

 (Constant) variance of the second group (𝜎2
2): 1 

 Total Sample size (𝑛): 12, 24, 48, 96, 192, 384, 768, 1536 

 Sample size in control group (𝑛2): 𝑛/2, 𝑛/3, 𝑛/4 

 

The empirical estimator 𝑆𝐸𝐸 was obtained according to the procedure explained in the box below. 

Estimator 𝑺𝑬𝑬  

For each iteration: 

 Simulate two samples with sizes 𝑛1 and 𝑛2 from the Standard Normal distribution (𝜇1 = 𝜇2 = 0; 𝜎1
2=𝜎2

2=1). 

 Calculate the sample variance (𝑆1
2 and 𝑆2

2) for each sample. 

 Calculate the statistic log(𝑆1
2/𝑆2

2 ) 

The empirical 𝑆𝐸𝐸 is the standard deviation of the last statistic through all the iterations.   

 

Figure 7 shows the ratios of these two estimators with 𝑆𝐸𝐸. The different color lines are function 

of the sample size (x-axis) and the allocation ratio (panels). With small sample sizes, it can be seen 
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that the variance obtained from the delta method (𝑆𝐸𝐷𝑀) infra-estimates the real variance, 

especially with unbalanced groups. This could be a problem, since 39% of our studies have sample 

sizes below 50 (Table 6 shows the mean and some quantiles). In contrast, the correction of the 

delta method estimator (𝑆𝐸𝐷𝑀
𝐶 ) lessens this divergence.

Figure 7. Ratios between theoretical and empirical standard errors as function of the total sample size (x-

axis) and allocation ratio (panels) between arms: 𝑆𝐸𝐷𝑀/𝑆𝐸𝐸  (red lines) and 𝑆𝐸𝐷𝑀
𝐶 /𝑆𝐸𝐸 (blue lines). Y-

axes are log-scaled. 

Table 6. Descriptive statistics for the overall/total sample sizes of collected studies. 

Mean Min. Q1 Median Q3 Max. 

119.40 12.00 37.75 66.00 161.20 852.00 

Setting B 

Once we saw that 𝑆𝐸𝐷𝑀
𝐶 outperforms the same statistic without correction in a wide range of sample

size scenarios, we decided to explore if the conclusions hold by conducting another simulation 

using settings that were closer to the observed data, i.e., with the sample sizes and variances 

obtained from the 208 collected trials. 

Parameters of the simulation 

 10,000 replications

 Real variance of the first group (𝜎1𝑖
2 ): 𝑆𝑂𝑇𝑖

2

 Real variance of the second group (𝜎2𝑖
2 ): 𝑆𝑂𝐶𝑖

2

 Sample size in first group (𝑛1𝑖): 𝑛𝑂𝑇𝑖

 Sample size in second group (𝑛2𝑖): 𝑛𝑂𝐶𝑖

𝑆𝑂𝑇𝑖
2 : sample outcome variance in treated arm in the i-th study

𝑆𝑂𝐶𝑖
2 : sample outcome variance in control arm in the i-th study

𝑛𝑂𝑇𝑖: sample size in the experimental arm in the i-th study

𝑛𝑂𝐶𝑖: sample size in the control arm in the i-th study
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In Figure 8, discrepancies among both estimators 𝑆𝐸𝐷𝑀
𝐶  and 𝑆𝐸𝐸  were pointless (<1%) and did

not depend on sample size or the unbalanced sample variances. Larger discrepancies between 𝑆𝐸𝐸 

and 𝑆𝐸𝐷𝑀 were present for very small sample sizes. For instance, 𝑆𝐸𝐷𝑀 underestimated the actual 

SE by more than 8% in those studies with less than 30 patients and by up to 5% in trials with 

around 50 participants. 

Figure 8. Ratios 𝑆𝐸𝐷𝑀/𝑆𝐸𝐸  (red line) and 𝑆𝐸𝐷𝑀
𝐶 /𝑆𝐸𝐸 (blue line) vs. the total sample size (x-axis). Y-

axis is log-scaled. 

3.1.3 Comparison over time 

An analogous model was employed to assess the homoscedasticity over time. 

Over time model 

log (
𝑆𝑂𝑇
2

𝑆𝐵𝑇
2 )

𝑖

= 𝜇 + 𝑇𝑖 + β · log (
𝑆𝑂𝐶
2

𝑆𝐵𝐶
2 )

𝑖

+ 𝑒𝑖      𝑤𝑖𝑡ℎ    𝑒𝑖~𝑁(0, 𝑣𝑖
2)  𝑎𝑛𝑑  𝑇𝑖~𝑁(0, 𝜏

2)

Note that the only difference from the between-arm model is that the terms 𝑆𝑂𝐶
2  and 𝑆𝐵𝑇

2  are

interchanged. Again, we needed to distinguish between the two sources of variability. The random 

sampling variability deducted in Section 3.1.3.1 providing the following estimated within-study 

variance: 

�̂�𝑖
2 =

4

𝑛𝑂𝑇𝑖 − 1
− 2𝑙𝑜𝑔 (1 +

2 · 𝑟𝑖(𝑌𝑂𝑇, 𝑌𝐵𝑇)
2

𝑛𝑂𝑇𝑖
2 /(𝑛𝑂𝑇𝑖 − 1)

) 

where 𝑟𝑖(𝑌𝑂𝑇 , 𝑌𝐵𝑇) is the sample correlation between outcomes measured at baseline and at the end

of the i-th study in the experimental arm. Therefore, for this model involving paired samples, we 
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required the covariance or the correlation (or some information that allows us to deduct them, such 

as the variance or the standard error of the difference between baseline and final outcomes) 

between the logarithm of the variances (final and initial). Only 95 studies had reported this 

information and were used in this analysis. 

As in the between-arm model, we explored the models for forced values of 𝛽 (𝛽 = 0 and 𝛽 = 1). 

See Table 7 for the expression of the models. 

Table 7. Model descriptions for comparison over time. 

Response 𝜷 ID Model 

log (
𝑆𝑂𝑇
2

𝑆𝐵𝑇
2 ) 

Over time discrepancy 

Unadjusted. 𝛽 = 0 4 Log(𝑆𝑂𝑇
2 𝑆𝐵𝑇

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + 𝑒𝑖

Adjusted. Estimated 𝛽 5 Log(𝑆𝑂𝑇
2 𝑆𝐵𝑇

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + β1 · log(𝑆𝑂𝐶
2 𝑆𝐵𝐶

2⁄ )𝑖 + 𝑒𝑖

Adjusted (offset). 𝛽 = 1 6 Log(𝑆𝑂𝑇
2 𝑆𝐵𝑇

2⁄ )𝑖 = 𝜇 + 𝑇𝑖 + 1 · log(𝑆𝑂𝐶
2 𝑆𝐵𝐶

2⁄ )𝑖 + 𝑒𝑖

ID: model identifier for later use 

3.1.3.1 Standard error of log (𝑆𝑂𝑇
2 /𝑆𝐵𝑇

2 ) in paired samples (over time)

In order to estimate the variance of the logarithm of the sample variances ratios for the paired case 

(over time), we need to estimate the covariance between the logarithms of the sample variances. 

𝑉 [𝑙𝑜𝑔 (
𝑆𝑂𝑇
2

𝑆𝐵𝑇
2 )] = 𝑉[log(𝑆𝑂𝑇

2 ) − 𝑙𝑜𝑔(𝑆𝐵𝑇
2 )] = 𝑉[log(𝑆𝑂𝑇

2 )] + 𝑉[log(𝑆𝐵𝑇
2 )] − 2𝐶𝑜𝑣[log(𝑆𝑂𝑇

2 ) , log(𝑆𝐵𝑇
2 )]

The variance of the log-variance can be estimated as in Section 3.1.2.1: 

𝑉[log(𝑆𝑂𝑇
2 )] =

2

𝑛𝑂𝑇𝑖 − 2
𝑉[log(𝑆𝐵𝑇

2 )] =
2

𝑛𝐵𝑇𝑖 − 2

The next boxes show how to estimate the covariance by dividing the procedure into three steps. 

The reason for splitting the proof into three parts is to later assess by simulation the approximations 

made after each step. 

Proof – First Step 

Demonstrate: 𝑪𝒐𝒗[𝐥𝐨𝐠(𝑺𝑶𝑻
𝟐 ) , 𝐥𝐨𝐠(𝑺𝑩𝑻

𝟐 )] ≈ 𝐥𝐨𝐠 [𝟏 +
𝑪𝒐𝒗[𝑺𝑶𝑻

𝟐 ,𝑺𝑩𝑻
𝟐 ]

𝑬[𝑺𝑶𝑻
𝟐 ]·𝑬[𝑺𝑩𝑻

𝟐 ]
] 

We are going to define the following random variables: 

𝑈 = log (𝑆𝑂𝑇
2 ) 𝑉 = log(𝑆𝐵𝑇

2 ) 𝑊 = 𝑈 + 𝑉 

𝑋 = exp(𝑈) = 𝑆𝑂𝑇
2 𝑌 = exp(𝑉) = 𝑆𝐵𝑇

2
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We will use the following two properties: 

 Relationship between covariance and expected values for X, Y and their product:

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) 

 Taylor expansion of X:

𝐸[𝑋] = 𝐸[exp(𝑈)] ≈
(1)

E [exp(𝜇𝑈) +
exp(𝜇𝑈)

1
(𝑈 − 𝜇𝑈) +

exp(𝜇𝑈)

2
(𝑈 − 𝜇𝑈)

2] =

= exp(𝜇𝑈) + exp(𝜇𝑈) · 𝐸[𝑈 − 𝜇𝑈] +
exp(𝜇𝑈)

2
𝐸[(𝑈 − 𝜇𝑈)

2] =

= exp(𝜇𝑈) + 0 +
exp(𝜇𝑈)

2
𝜎𝑈
2 = exp(𝜇𝑈) · [1 +

σU
2

2
] ≈
(2)

exp(𝜇𝑈) · exp (
𝜎𝑈
2

2
) = exp (𝜇𝑈 +

𝜎𝑈
2

2
) 

(1) Second order Taylor expansion around 𝜇𝑈: 𝑒𝑥𝑝(𝑈) ≈ exp(𝜇𝑈) +
exp(𝜇𝑈)

1
(𝑈 − 𝜇𝑈) +

exp(𝜇𝑈)

2
(𝑈 − 𝜇𝑈)

2

(2)First order Taylor expansion around 0: exp (
𝜎𝑈
2

2
) ≈ 1 +

σU
2

2

[This approximation is exact for U Normal and good enough for not too large departures from Normality] 

We can express the expected value for the X and Y product as follows: 

𝐸[𝑋𝑌] = 𝐸[exp(𝑈) · exp (𝑉)] = 𝐸[𝑒𝑥𝑝(𝑊)] ≈ exp (𝜇𝑊 +
𝜎𝑊
2

2
) 

The variance of W is: 

𝑉𝑎𝑟(𝑊) = 𝑉𝑎𝑟(𝑈) + 𝑉𝑎𝑟(𝑉) + 2𝐶𝑜𝑣(𝑈, 𝑉) 

Using the last two expressions, we can obtain another one for the exponential of the covariance: 

1 +
𝐶𝑜𝑣(𝑋, 𝑌)

𝐸(𝑋)𝐸(𝑌)
=

𝐸(𝑋𝑌)

𝐸(𝑋)𝐸(𝑌)
=

exp (𝜇𝑊 +
𝜎𝑊
2

2
)

exp (𝜇𝑈 +
𝜎𝑈
2

2
) · exp (𝜇𝑉 +

𝜎𝑉
2

2
)

=

exp (𝜇𝑈 + 𝜇𝑉 +
1
2
· (𝜎𝑈

2 + 𝜎𝑉
2 + 2𝐶𝑜𝑣(𝑈, 𝑉)))

exp (𝜇𝑈 +
𝜎𝑈
2

2
) · exp (𝜇𝑉 +

𝜎𝑉
2

2
)

≈ 𝑒𝑥𝑝[𝐶𝑜𝑣(𝑈, 𝑉)] 

Therefore: 

𝐶𝑜𝑣(𝑈, 𝑉) ≈ 𝑙𝑜𝑔 (1 +
𝐶𝑜𝑣(𝑋, 𝑌)

𝐸(𝑋) · 𝐸(𝑌)
) → 𝐶𝑜𝑣[log(𝑆𝑂𝑇

2 ) , log(𝑆𝐵𝑇
2 )] = log [1 +

𝐶𝑜𝑣[𝑆𝑂𝑇
2 , 𝑆𝐵𝑇

2 ]

𝐸[𝑆𝑂𝑇
2 ] · 𝐸[𝑆𝐵𝑇

2 ]
]

≈ log [1 +
𝐶𝑜𝑟𝑟[𝑆𝑂𝑇

2 , 𝑆𝐵𝑇
2 ] · √𝑉[𝑆𝑂𝑇

2 ] · 𝑉[𝑆𝐵𝑇
2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] 

Proof – Second step 

Demonstrate: 𝑪𝒐𝒓𝒓[𝑺𝑶𝑻
𝟐 , 𝑺𝑩𝑻

𝟐 ] ≈ 𝑪𝒐𝒓𝒓[𝒀𝑶𝑻, 𝒀𝑩𝑻]
𝟐

Some authors have proposed methods for estimating the covariance of the two sample variances using sample 

cumulants and k-statistics36, but information about the moments of order higher than 2 was either not available or 
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these methods were not suitable in our setting. As an alternative, an approximated relationship between the 

abovementioned correlations is proposed by Muirhead et al.37: the squared correlation of the outcomes is a good 

enough approximation of the correlation between the sample variances of the outcomes. Therefore, we can 

reformulate the expression obtained in step 1. 

log [1 +
𝐶𝑜𝑟𝑟[𝑆𝑂𝑇

2 , 𝑆𝐵𝑇
2 ] · √V[𝑆𝑂𝑇

2 ] · 𝑉[𝑆𝐵𝑇
2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] = log [1 +
𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]

2 · √V[𝑆𝑂𝑇
2 ] · 𝑉[𝑆𝐵𝑇

2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] 

Proof – Third step 

Demonstrate: 
𝟐𝒔𝑿𝑻

𝟒

𝒅𝒇𝑿𝑻
is an estimator of 𝑽[𝑺𝑿𝑻

𝟐 ]

Let Y be a random variable defined as: 

𝑌 =
(𝑛 − 1) · 𝑆2

𝜎2
~𝜒𝑛−1

2

As we have already mentioned: 

𝑉 [
(𝑛 − 1) · 𝑆2

𝜎2
] = 𝑉[Y] → 𝑉[𝑆2] =

𝜎4

(𝑛 − 1)2
· 𝑉[Y] =

𝜎4

(𝑛 − 1)2
· 2 · (𝑛 − 1) =

2𝜎4

𝑛 − 1

So: 

𝑉[𝑆2]̂ =
2𝑠4

𝑛 − 1
=
2𝑠4

𝑑𝑓

where lowercase s is the estimate of the parameter 𝜎. The expression obtained in step 2 can be reformulated: 

𝐶𝑜𝑣(𝑈, 𝑉) = 𝐶𝑜𝑣[log(𝑆𝑂𝑇
2 ) , log(𝑆𝐵𝑇

2 )] = log [1 +
𝐶𝑜𝑟𝑟[𝑆𝑂𝑇

2 , 𝑆𝐵𝑇
2 ] · √V[𝑆𝑂𝑇

2 ] · 𝑉[𝑆𝐵𝑇
2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] 

This is estimated by: 

𝐶𝑜𝑣(𝑈, 𝑉)̂ = log

[

1 +

𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]
2 · √

2𝑠𝑂𝑇
4

𝑑𝑓
·
2𝑠𝐵𝑇

4

𝑑𝑓

𝑠𝑂𝑇
2 · 𝑠𝐵𝑇

2

]

≈ log [1 +
𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]

2 ·
2𝑠𝑂𝑇

2 · 𝑠𝐵𝑇
2

𝑑𝑓

𝑠𝑂𝑇
2 · 𝑠𝐵𝑇

2 ]

≈  log [1 +
2 · 𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]

2

𝑑𝑓
] 

We have achieved a complete expression for the variance of the logarithm of the variance ratio: 

𝑉 [𝑙𝑜𝑔 (
𝑆𝑂𝑇
2

𝑆𝐵𝑇
2 )] =

2

𝑑𝑓𝑂𝑇 − 1
+

2

𝑑𝑓𝑂𝐵 − 1
− 2 · log [1 +

2 · 𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]
2

𝑑𝑓𝑂𝑇
] 

The appropriate degrees of freedom to calculate the covariance should be 𝑑𝑓𝑂𝑇 (not 𝑑𝑓𝑂𝐵) since this 

is based on those patients with complete follow-up information. 
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Validation by simulation 

A simulation was performed in order to assess if this approximation was good enough to be used 

in the random effects model. 

Parameters of the simulation 

 Replications (𝑛𝑠𝑖𝑚) for each fixed 𝜎2: 1,000 

 SD (𝜎)  for the change over time from baseline to the end of the study in the treated arm:  

 Minimum 𝜎 (𝜎𝑚𝑖𝑛): 0.1 → 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝜌 ≈ 0.99 

 Maximum 𝜎 (𝜎𝑚𝑎𝑥): 10 → 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝜌 ≈ 0.10 

 Values: 𝜎𝑚𝑖𝑛 = 0.1, 0.1𝑒
0.02, 0.1𝑒0.04, … ,0.1𝑒4.6, 10 = 𝜎𝑚𝑎𝑥 

 Sample size by group (𝑛): 100 

Remark: 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥  values were chosen to cover a wide spectrum of correlations*. The sequence of values 

(232 in total) was chosen based on a geometric series, thus making the values of the correlations more equidistant. 

*Knowing how the baseline values (Z) and final outcomes (Y) were generated, the relationship between 𝜎 and 𝜌 

can be deducted: 

𝑍~𝑁(0,1)
𝐶~𝑁(0, 𝜎)

} → 𝑌 = 𝑍 + 𝐶~𝑁 (0,√1 + 𝜎2) 

𝐶𝑜𝑣(𝑍, 𝑌) = 𝐶𝑜𝑣(𝑍, 𝑍 + 𝐶) = 𝐶𝑜𝑣(𝑍, 𝑍) + 𝐶𝑜𝑣(𝑍, 𝐶) = 𝑉(𝑍) = 1 

𝜌𝑍,𝑌 =
𝐶𝑜𝑣(𝑍, 𝑌)

𝜎𝑍 · 𝜎𝑌
=

1

1 · √1 + 𝜎2
=

1

√1 + 𝜎2
 

Regarding to the simulation parameters, several scenarios with different treatment effects were 

tested, but this parameter did not lead to any influence at all in the results. 

Simulation procedure 

 For each sigma(𝜎2) value and for each iteration (𝑛𝑠𝑖𝑚): 

a. Generate a Standard Normal sample Z~𝑁(0,1) representing the baseline values. 

b. Let C~𝑁(0, 𝜎) be the change over time, so the response at the end of the study is generated as Y=Z+C.  

c. Estimate the correlation and covariance between Y and Z. 

d. Estimate the variances for Y and Z. 

 Calculate the covariance of the sample variances for the 𝑛𝑠𝑖𝑚 iterations. 

 Calculate the means of the correlation and covariance between Y and Z for the 𝑛𝑠𝑖𝑚 iterations, respectively. 

 Store the different indicators before/after each step of the proof: 
 

a. Left-hand term:  𝐶𝑜𝑣(𝑆𝑂𝑇
2 , 𝑆𝐵𝑇

2 ) 

b. Right-hand term after the first step: 𝑙𝑜𝑔 [1 +
𝐶𝑜𝑟𝑟[𝑆𝑂𝑇

2 , 𝑆𝐵𝑇
2 ] · √𝑉[𝑆𝑂𝑇

2 ] · 𝑉[𝑆𝐵𝑇
2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] 

c. Right-hand term after the second step: 𝑙𝑜𝑔 [1 +
𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]

2 · √V[𝑆𝑂𝑇
2 ] · 𝑉[𝑆𝐵𝑇

2 ]

𝑆𝑂𝑇
2 · 𝑆𝐵𝑇

2 ] 

d. Right-hand term after the third step: 𝑙𝑜𝑔 [1 +
2 · 𝐶𝑜𝑟𝑟[𝑌𝑂𝑇 , 𝑌𝐵𝑇]

2

𝑑𝑓𝑂𝑇
] 
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The quality of the approximations obtained is shown in Figure 9, which compares the left-hand 

side of the formula with the different right-hand sides after each step.  

Figure 9. The three first panels: scatterplot between the covariance of the log-variances (x-axis) and the 

right-hand expression achieved after each step of the previous proof. The last bottom-right panel: Bland-

Altman plot of the concordance between the left- and right-hand sides of the final expression. 

The approximation is almost perfect after the first step (absolute difference in mean between real 

value and the approximated value, 0.17·10-3) and good enough after second (0.26·10-3) and third 

(0.28·10-3) ones. The last panel represents the Bland-Altman plot, which assesses the concordance 

between the left-hand side of the formula and the last expression; the growing trend of the points 

on this plot indicates a slightly poorer performance of the approximation as the covariance between 

the log-variance increases: a difference between the approximate and real values equal to 0.5·10-3 

is equivalent to a relative increase of 1.25% in the covariance values for larger magnitudes around 

0.04. 
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3.1.4 Funnel plots 

Centered at zero, pseudo-funnel plots for the measurement of interest (variance discrepancy) as a 

function of its standard error are reported in order to help investigate asymmetries. We use the 

term pseudo because they are centered on the 0 value instead of the point estimate. The aim of 

representing these plots is to emphasize potential asymmetries in the variance ratios. As a 

complement to the visual inspection, a non-parametric rank correlation test based on Kendall's τ 

statistic —similar to those used to assess publication bias in the meta-analysis context— was 

performed to determine such asymmetries38. Confidence intervals were obtained by bootstrap. 

A confidence interval region within the funnel plot is drawn around zero, with bounds equal to 

±1.96 SE. The usual way of representing the confidence regions in the presence of heterogeneity 

among studies is to consider that the SE takes into account the two sources of variability: 

𝑆𝐸𝑖 = √𝜈𝑖
2 + 𝜏2 

However, since we were interested in discerning which studies have a variance discrepancy that is 

not explained by random sampling, we will only include the first term of the previous expression 

to represent the confidence regions: 

𝑆𝐸𝑖 = √𝜈𝑖
2 

This analysis related the points outside the triangle with those studies having different variability 

either between groups (comparison between arms) or between baseline and final variability 

(comparison over time).  

3.1.5 Validation of the random effects model 

We assessed if the results obtained using the random effects model matched our expectations. 

Specifically, we studied the behavior of the three main statistics of the model: �̂�, �̂� and 𝐼2. First, a 

simulation study was conducted, in which we used the REM of the estimated �̂� and �̂� to compare 

them with the ones in the specific parameter setting. Second, the Jackknife estimator was used to 

evaluate the bias of these three estimators.  

3.1.5.1 Assessing �̂�, �̂�, 𝐼2 in random effects model by simulation 

The appropriateness of the random effects model was evaluated by simulation taking into account 

the results obtained after applying the corrected Delta method. We wanted to discern if the model 

was able to separate the within (random) and between (studies) variabilities. The next boxes show 

the characteristics of the conducted simulation. 
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Parameters of the simulation 

 100 replications

 Real variance ratio (𝜎1
2/𝜎2

2): 0.1, 0.2, 0.3,…,2

 Real heterogeneity (𝜏): 0, 0.1 ,0.2 ,…1

Simulation procedure 

For each iteration and each combination of simulation parameters: 

 The response is generated according to the next structure:

𝑦𝑖 = 𝑅𝑒𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 + 𝐻𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 + 𝑅𝑎𝑛𝑑𝑜𝑚 𝐸𝑟𝑟𝑜𝑟

𝑦𝑖 = 𝜇 + 𝑇𝑖 + 𝜖𝑖              𝑇𝑖~𝑁(0, 𝜏)   𝜖𝑖~𝑁(0, 𝑆𝐸𝐷𝑀
𝐶 )

𝑦𝑖 = 𝑙𝑜𝑔 (
𝜎1
2

𝜎2
2) + 𝑁(0, 𝜏) + 𝑁 (0,√

2

𝑛𝑇𝑖−2
+

2

𝑛𝐶𝑖−2
) 

 Each model is fitted with the rma function from the metafor R package.

 The estimated 𝜇 and 𝜏 in the model were stored.

All estimated 𝜇 and 𝜏 were averaged for all iterations corresponding to the same parameter setting. 

3.1.5.2 Jackknife estimator 

Jackknife is a resampling technique that is especially useful for variance and bias estimation. The 

Jackknife estimator of a parameter is found by systematically leaving out each observation from a 

dataset and calculating the i-th estimate for each subsample. The final estimate is found by 

averaging all these estimates39,40. 

Bias estimation 

Let �̂� be the estimator to assess and �̂�(𝑖) the same estimator applied over the whole sample without the i-th 

observation. The �̂�(·) is the mean of all these estimators which allows us to obtain the estimated bias of an estimator 

calculated over the entire sample: 

�̂�(·) =
1

𝑛
·∑ �̂�(𝑖) → 𝐵𝑖𝑎�̂� = (𝑛 − 1) · (�̂�(·) − �̂�)
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3.1.6 Subgroup analysis 

With the subgroup analysis, we want to know whether homoscedasticity is indeed modified or not 

by measurable factors such as the positive result of the trial’s main objective. Conditions studied 

together with an example for each of their levels are explained in the box below. 

Factors considered in the subgroup analysis 

 Intervention efficacy in the primary endpoint (No/Yes). This refers to whether the authors rejected the null

hypothesis of no effect for the primary endpoint according to their pre-specified significance level (α).

 Example No: Hormone treatment provided no overall protection against functional decline in

nondisabled postmenopausal women 65 years or older in 6 years of follow-up41

 Example Yes: This study shows that self-management of hypertension, consisting of regular self-

measurements of blood pressure and a simple predetermined titration plan for antihypertensive

drugs, is more effective in lowering systolic blood pressure than the usual care during 1 year42

 Intervention type (Non-pharmacological/Pharmacological). Basically, this criterion distinguishes between

studies that tested drugs or other kinds of interventions.

 Example Non-pharmacological: Physical exercise vs. Cognitive-behavioral therapy43

 Example Pharmacological: Metformin vs. Placebo44

 Outcome type (Measured/Scored). This variable classifies the outcomes into those that were the result of a

measurement of a physical parameter and those that were the result of a rating scale.

 Example Measured: Body weight45

 Example Scored: Montgomery-Asberg depression rating scale (MADRS)46

 Condition type (Acute/Chronic). If the main disease considered in the eligibility criteria was acute or chronic.

This classification was made with the help of a researcher with medical training. In some trials, the participants

were healthy patients without any relevant pathology.

 Example Acute: Individuals with first mild stroke47

 Example Chronic: Active Crohn's disease48

 Example Healthy: Late postmenopausal women49

 Measurement type (Assessed/Automatic). This should not be confused with the type of variable outcome.

This criterion refers to whether the measurement is carried out subjectively or objectively.

 Example Assessed: Plaque index (example of assessed and measured outcome)50

 Example Automatic: Star excursion balance test (example of automatic and scored outcome)51

 Improvement (Downwards/Upwards). If the improvement of a patient is associated with a higher (upwards)

or smaller (downwards) value of the outcome.

 Example Downwards: Intraocular Pressure52

 Example Upwards: Visual acuity53
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3.2 Results 

3.2.1 Estimate of variance ratios 

The point-estimate coefficients of the REM for both comparisons are shown in the next box, and 

Table 8 shows the estimates for all the fitted models including 95% confidence intervals. 

Estimated coefficients 

Between arms → log (
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 )

𝑖

= −𝟎. 𝟏𝟐 + 𝑇𝑖 + 𝟎. 𝟒𝟕 · log (
𝑆𝐵𝑇
2

𝑆𝐵𝐶
2 )

𝑖

+ 𝑒𝑖        𝑇𝑖~𝑁(0, �̂�
2 = 𝟎. 𝟑𝟎)

 

Over time        → log (
𝑆𝑂𝑇
2

𝑆𝐵𝑇
2 )

𝑖

= −𝟎. 𝟏𝟓 + 𝑇𝑖 + 𝟎. 𝟔𝟐 · log (
𝑆𝑂𝐶
2

𝑆𝐵𝐶
2 )

𝑖

+ 𝑒𝑖        𝑇𝑖~𝑁(0, �̂�
2 = 𝟎. 𝟑𝟓)

 

Table 8. Estimated coefficients from the random effects models. 

Response  

in the model 
Type of model �̂� (𝟗𝟓%𝑪𝑰) �̂� (𝟗𝟓%𝑪𝑰) �̂� (𝟗𝟓%𝑪𝑰) 

 

Outcome  

variance ratio 

CDB (n = 208) 

Unadjusted1 

Adjusted2 

Adjusted (offset)3 

 

-0.11 (-0.20, -0.01) 

-0.12 (-0.21, -0.03) 

-0.14 (-0.24, -0.04) 

 

0 

0.48 (0.30, 0.65) 

1 

 

0.60 (0.54, 0.71) 

0.55 (0.49, 0.65) 

0.60 (0.55, 0.72) 

 

Outcome vs. 

baseline ratio 

in treated group 

CDO (n = 95) 

Unadjusted4 

Adjusted5 

Adjusted (offset)6 

 

-0.14 (-0.30, 0.01) 

-0.15 (-0.28, -0.02) 

-0.16 (-0.29, -0.02) 

 

0 

0.63 (0.42, 0.84) 

1 

 

0.71 (0.61, 0.85) 

0.59 (0.51, 0.73) 

0.62 (0.55, 0.78) 

�̂�: Average of the model response. �̂�: Coefficient for the model response measured at baseline 

(comparison between groups) or in control arm (comparison over time). �̂�: standard deviation of 

the study’s random effect (heterogeneity). Superscripts represent the fitted model identifier (see 

Table 5 and Table 7). 

 

Regarding the comparison between arms, the adjusted point estimate of the ratio (experimental to 

reference group) of the outcome variances was 0.89 (𝑒−0.12). This indicates that, contrary to 

popular belief, treatments seem to reduce the variability of the patient's response. The comparison 

over time provided another interesting and similar result: the average variability at the end of the 

study was 14% (𝑒−0.15 = 0.86) lower than that at baseline. This may be due to some 

measurements having ceiling or floor effects, whereby the top or bottom range of a variable is 

truncated. An example of a ceiling effect arises when one is unable to score better than 100% on 
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a quality of life measure. The previous mentioned article about the PCL-C scale based on the sum 

of 17 Likert symptoms28 is an example of a floor effect: if the intervention reduced the number of 

affected symptoms, then variance, as well as average, would also be decreased. 

The measures of heterogeneity could be considered as quite high keeping in mind that we are on 

a logarithmic scale. The value of 𝜏2 = 0.30 in the comparison between arms implies that expected

typical variations could increase typically by 73% (𝑒√0.30 = 1.73) or decrease by 42%

(𝑒−√0.30 = 0.58)  the variance discrepancies between one study and another. For the comparison

over time, these fluctuations were even greater going from an increase of 81% (𝑒√0.35 = 1.81) to

a decrease of 45% (𝑒−√0.35 = 0.55).

In the between-arm comparison, the value of  �̂� being lower than 1 (�̂� = 0.47) could be interpreted 

as a regression to the mean effect. In other words, in those trials whose randomization process 

produced greater variance discrepancies by chance (or due to methodological failures, as we will 

explain in Section 4.1.1), these discrepancies could be mitigated during the trial follow-up. In the 

second model, the same value of �̂� being below 1 (�̂� = 0.62) indicated that the variations in the 

dispersion of the response over time were more moderate in the experimental arm. 

For the between-arm comparison, the point estimate �̂� ranged from -0.14 (𝛽 = 1) to -0.11 (𝛽 =

0). The analysis without forced 𝛽 gave a point estimate equal to -0.12 (95% CI from -0.21 to -0.03), 

making the average variance ratios (treated to control) between 0.81 and 0.97 compatible with the 

data. For the comparison over time, the point estimate �̂� ranged from -0.16 (𝛽 = 1) to -0.14 (𝛽 =

0). Without constraining the 𝛽 value, the point estimate was equal to -0.15 (95% CI from -0.28 to 

- 0.02), causing average variance ratios (final to baseline) between 0.76 and 0.98, which are

compatible with our data. 

3.2.2 Estimated proportion of studies with heteroscedasticity 

The funnel plots of both comparisons were used to assess the percentage of studies having more 

extreme values of the variance ratio that those expected by chance. In Panel A of Figure 10, points 

on the right and on the left indicate higher and lower outcome variability for the treated patients, 

respectively. Points on the right in Panel B indicate higher variability in the experimental arm at 

the end of the study, as expected in a scenario of heterogeneous treatment effect, and the points on 

the left correspond to lower variability at the end, which implies a more homogenous response 

after treatment. The largest number of points on the left side indicates a majority of experimental 

interventions that reduced variability.  
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Figure 10. Funnel plots of variance ratio between arms with 208 studies (Panel A) and for comparison 

over time with the 95 studies for which the variance of the difference between the basal and final response 

was available (Panel B). Vertical axes represent the SE derived from the model. X axis is log-scaled. 

For the between-arm comparison, the REM found 15 studies (7.2%) with greater variability and 

26 (12.5%) with lower variability in the experimental arm, respectively; in the remaining 167 

studies (80.3%), there was no evidence of differences in variability between groups. For the 

comparison over time, among the 95 studies with enough information to conduct the analysis, 16 

(16.8%) of them showed greater variability at the end of the study, while 22 (23.2%) trials reduced 
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the outcome variability over time. In the remaining 57 studies (60.0%), there was no evidence of 

differences in variability regarding this comparison. 

Although the visual perception of asymmetry was more marked in the funnel plot of panel B, the 

test to assess it in the comparison over time provided a Kendall’s τ statistic equal to -0.084 (95% 

CI from -0.224 to 0.059), which include the null value and, thus, there was no evidence to state 

such asymmetry. In contrast, Kendall’s τ coefficient was -0.122 (95% CI from -0.202 to -0.034) 

when comparing treatment groups, thus manifesting the existence of asymmetry. It is likely that 

the divergent conclusions in both comparisons are also partially conditioned by the number of 

studies involved in each analysis. Regardless of this formal analysis, both funnels plots clearly 

show a trend towards having less variability in the outcome of the treated arm. 

3.2.3 Validation of the random effect models 

3.2.3.1 Assessing �̂�, �̂�, 𝐼2 in random effects model by simulation

We have inferred and drawn some conclusions based on the random effects models. We have 

assumed that the estimates provided by the fitted models using maximum likelihood estimation 

(MLE) are unbiased and precise. The theory about MLE already guarantees good properties based 

on reasonable premises. We checked the model estimates for the parameters �̂�, �̂� and 𝐼2 from the

model 2 (adjusted model for between-arms comparison, see Table 5) with the values resulting from 

a simulation study under the scenarios explained in Section 3.1.5.1. 

Figure 11 compares the real with the averaged estimated parameters throughout the 100 

replications. The estimators were not biased except for very small heterogeneities where the 

estimated heterogeneity (�̂�) overestimates the actual parameter (𝜏). 

3.2.3.2 Jackknife estimator 

Another well-known methodology for evaluating the bias of an estimator is the Jackknife method. 

This technique allows obtaining an alternative estimate whose proximity to the initial estimate is 

an indicator of absence of bias. Figure 12 shows that the three estimators of 𝜇, 𝜏 and 𝐼2are not

biased since the Jackknife estimators (horizontal dashed lines) match the estimates obtained from 

the model (red crosses). 
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Figure 11. Plots comparing  �̂� (left y-axis) and �̂� (right y-axis) with the real values fixed in the simulation 

(x-axes respectively). Axes in the left plot are log-scaled. 

Figure 12. Distribution of the 𝜃(𝑖) Jackknife estimators for the main statistics involved in the REM.

Dashed lines represent the estimates from the model (𝜃). Red crosses represent the estimates obtained

using the Jackknife method (𝜃(·))
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3.2.4 Subgroup analyses 

We collected some features of the studies: whether or not the comparison for the primary endpoint 

yielded “positive” results; the experimental intervention type; the outcome type; the nature of the 

illness; the measurement type; and the improvement direction. 

For each subgroup variable and the overall sample, Figure 13 shows the 95% CI of the outcome 

variance ratio between arms. Interventions of trials with “positive” results also had an effect on 

reducing variability, which had already been observed in other studies54,55. Not only this, but it has 

been previously shown that there is a positive correlation between the effect size and its 

heterogeneity56,57, that is, if the intervention has an effect on the mean, it also has an effect on 

diminishing the variance, which is in accordance with some kind of stabilizing effect. For this 

reason, this factor was hypothesized a priori to be the most relevant. On the other hand, studies 

that failed to demonstrate the intervention’s efficacy were almost centered around the point that 

represents homoscedasticity: a treatment effect that does not affect the centrality parameter will 

rarely affect the dispersion. 

Figure 13. For whole data and each subgroup, the point estimate and the 95% confidence intervals for 

the outcome variance ratio between Treated (T) and Controls (C), after adjusting by baseline 

discrepancies through the rma function (Model 3 of Table 11). X-axis is log-scaled. *32 studies were 

performed with healthy participants, i.e., without any particular disease. 
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Regarding other factors, trials with assessed measurement, showed a trend of having less 

variability in the experimental group. However, the most marked difference was observed in 

relation to the direction of improvement. For those trials with an endpoint with lower values 

associated with a health improvement the variance was clearly lower in the treated arm, while in 

those studies with outcomes whose values positively correlate with health status, there was a trend 

in the experimental group of having greater variances. Estimates of differences according to the 

remaining subgroups did not raise major concerns.  

Figure 14 shows the 95% CI for the over-time variance ratio in the experimental arm. No major 

additional conclusions arise beyond those already mentioned above. 

Figure 14. For whole data and each subgroup, the point estimate and the 95% confidence intervals for 

the estimated variance ratio between Outcome (O) and Baseline (B), after adjusting by the change over 

time ratio in the control group through the rma function (Model 6 of Table 11). X-axis is in log scale.*13 

studies were performed with healthy participants. 

The most interesting factor involved in the subgroups analyses was whether or not the trials to 

demonstrated the treatment efficacy. The pseudo funnels plot presented in Section 3.2.2 were 

replicated by stratifying the statistical significance achieved in the main analysis of the trial 

measure, using the corresponding p-values. Figure 15 highlights the studies according to the level 

of such statistical significance. We expected to observe more positive studies (red points) with 
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markedly different variances (outside the triangles). In Panel A, more red points on the left side 

indicates that changes in the average, came with reductions in the variance. In Panel B, the largest 

number of points also on the left side indicates a majority of experimental interventions that 

reduced variability, of which several of them yielded significant results in the primary endpoint. 

Nevertheless, the dependence of the statistical significance on the sample size must be taken into 

account and, consequently, this figure must be interpreted with caution. 

Figure 15. Funnel plots of variance ratio between arms (Panel A) and over time (Panel B). Vertical axis 

indicates precision for the comparison of variances with points outside the triangle being statistically 

significant. Red points indicate significant differences between means (main trial objective). 

The first two sections of appendix E introduce some ancillary analyses regarding the subgroup 

analyses, which were not included in the main body because they did not provide relevant findings. 
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4 Sensitivity analyses 

This chapter collects a series of sensitivity analyses that were carried out to assess the robustness 

of the analysis proposed in Chapter 3. Four alternative methodologies were implemented. The first 

two methods are based on the random effects model. The first (Section 4.1) aims to infer which 

studies have discrepancies in variability by removing those trials that would contribute more to 

heterogeneity. The second (Section 4.2) simulates scenarios to inspect which of them would 

provide better concordance between simulation parameters and the estimates coming from the 

random effect models analysis. The other two methods are based on the usual tests for variance 

comparison: either on their direct application (Section 4.3) or by means of a more exhaustive 

analysis of the p-values resulting from these tests (Section 4.4). Each section referring to sensitivity 

analyses starts with a summary box that is intended as a guide for further reading. 

4.1 Sensitivity Analysis I: Heuristic procedure 

Summary key points 

 By simulation, we were able to know the expected heterogeneity in a random effects

model in a situation of perfect randomness.

 Baseline variance discrepancies between treatment arms observed in some studies cannot

be derived from a randomization procedure. These initial discrepancies might cause

greater outcome variances variability.

 Removing the studies one by one allowed us to identify which trials had outcome

variability discrepancies.

 Thirty out of 208 and 32 out of 95 studies had to be eliminated in the comparisons between

arms and over time, respectively, to achieve a scenario of non-heterogeneity (or constant

effect).

This methodology pursues two goals. On the one hand, we wanted to identify those studies whose 

discrepancy in baseline variability cannot be due solely to chance and, on the other hand, we aimed 

to determine those trials whose differences in variances at the end of the study are so large that 

they cannot be attributed to a non-constant treatment effect. This methodology provides a way to 

determine the number of studies that are promoting the presence of heterogeneity in variance 

discrepancies and, therefore, we can highlight trials that are suspect of a non-constant effect. 

The heuristic term is applied to this methodology on the grounds that, the result does not rely on 

a formal statistical theory but on a logical strategy that nevertheless does not guarantee optimal 

results. 
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4.1.1 Methods 

4.1.1.1 Explanation 

Because of random allocation, baseline sample variances were expected to be identical on average, 

with some minor variation among studies due to random sampling. In order to obtain a measure 

of the baseline variability discrepancy between arms, we fitted a reference random effects model 

for the ratio of baseline variances. 

Reference model 

𝑙𝑜𝑔 (
𝑆𝐵𝑇
2

𝑆𝐵𝐶
2 )

𝑖

= 𝜇 + 𝑇𝑖 + 𝑒𝑖 𝑤𝑖𝑡ℎ    𝑒𝑖~𝑁(0, 𝑣𝑖
2)     𝑎𝑛𝑑    𝑇𝑖~𝑁(0, 𝜏

2)

As mentioned, the expected heterogeneity of this model should be equal to 0, due to randomization. 

If some heterogeneity is present after randomization, it can be explained by methodological flaws 

similar to those presented by Carlisle58, which are from honest errors to data fabrication. For 

example, the study by Hsieh et al.59 used an analysis adjusted for baseline values, though these 

values were obtained one month after the intervention was administered. The reference model 

allowed knowing the proportion of studies that could have additional heterogeneity due to these 

methodological impurities and, therefore, the random allocation variability could be separated 

from the undesired heterogeneity. 

At the end of any trial, a possible explanation for discrepancies in the variances could be a direct 

consequence of the randomization method. Allocation is often performed by permuted blocks or 

minimization to ensure a balance in prognostic factors between treatment groups, but the block 

effect or the minimization variables involved in the allocation are rarely fitted in the analysis of 

clinical trials. This has an undesired consequence: to the extent that the block or covariate is 

predictive of the outcome, it will increase the variance estimate because the whole purpose of 

minimizing is to balance for predictive factors and reduce their effect on the true outcome 

variation; but if the effects are not separately fitted (i.e., adding further predictors in the ANOVA), 

this additional sum of squares increases the residual term54. 

Simulating studies without heterogeneity will yield a set of heterogeneity measure values under 

the scenario of a constant effect. Therefore, a criterion is required to decide how much 

heterogeneity could come from a population of randomized studies in normal circumstances. In 

other words, what cut-off value for the heterogeneity (𝜏) determines that the initial discrepancy 

was too high to occur only by chance? Once again, we rely on a simulation described in Section 

4.1.2.3 to verify that such discrepancies were highly unlikely to occur after randomization and, on 
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the other, determine this boundary. In summary, the application of this methodology was carried 

out in three steps: 

1. Simulation in order to know the 𝛕𝐓𝐚𝐫𝐠𝐞𝐭. By simulation, we obtained an estimate of the

distribution of the 𝜏 statistic under a non-heterogeneity scenario. We chose the arbitrary

0.90 quantile of this distribution as a cut-off (τTarget) in order to determine that greater

heterogeneity than this value was unlikely in randomized studies.

2. Baseline variance discrepancies. Using the reference model, we have removed from the

sample all those studies whose variance discrepancy cannot be due solely to chance, up

until the heterogeneity achieved the value τTarget. This helped us to detect studies with an

excessive and irrational variance discrepancy at baseline.

3. Outcome variance discrepancies. Trials with more extreme variance discrepancies

between arms or over time have been removed one by one until the random effects model

provided heterogeneity as close as possible to the τTarget. These deleted studies were

considered to be those that had different variances, because the experimental treatment

either increased or decreased the outcome variance.

Two questions arise regarding whether this heuristic methodology is appropriate. First of all, did 

any studies in our sample have suspicious high variance discrepancies at baseline? Section 4.1.2.1 

lists the studies with the most divergent values; at first glance, one can see that the discrepancies 

of these studies are clearly anomalous when keeping in mind that they come from a randomization 

process. The second question concerns whether there was a relationship between the baseline and 

final variance discrepancies; albeit fuzzy, a weak association was present (see Section 4.1.2.2).  

4.1.2 Results 

4.1.2.1 Studies with unexpected baseline heteroscedasticity 

Table 9 lists the studies with more extreme baseline variance ratios. They were suspected of having 

methodological impurities. All of them except one (𝐼𝐷 = 5) were studies with relative small 

sample size.  

From Figure 16 to Figure 22, more details about these studies are provided. The outcome variance 

in the treated arm in the first study was exactly the squared value of the one in the control arm. 

This fact could lead to think that it was a typo due to confusion between variances and standard 

deviations, but this explanation was discarded because the information was consistent throughout 

the whole article. The second study was the only phase II trial in all collected trials and the one 

with lower sample size. The fifth trial on the list surprisingly showed higher variance discrepancy 

in those patients with complete follow-up (per protocol analysis) than in the allocated patients 

(intention to treat analysis). 
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Table 9. Descriptive statistics of baseline variances in studies with  𝑆𝐵𝑇
2 /𝑆𝐵𝐶

2  > 4  or  𝑆𝐵𝑇
2 /𝑆𝐵𝐶

2  < 0.25.

ID 𝑺𝑩𝑻
𝟐 𝑺𝑩𝑪

𝟐 𝑺𝑩𝑻
𝟐 /𝑺𝑩𝑪

𝟐 𝒏𝑩𝑻 𝒏𝑩𝑪

1 256 16 16 15 18 

2 7,007 675 10.4 6 5 

3 0.476 0.102 4.65 12 10 

4 44.6 9.73 4.58 31 27 

5 5.29 23.1 0.23 145 143 

6 17.4 99.6 0.18 20 20 

7 0.012 0.084 0.14 20 16 

Figure 16. Study 1 (Passive versus Active Stretching of Hip Flexor Muscles in Subjects with Limited Hip 

Extension: A Randomized Clinical Trial.). 

Figure 5 of this paper shows that 95% CIs 

of the baseline means are quite different. 

The width of the interval in the active 

group (rhombus) is four-fold the width of 

the interval in the passive group (square). 

Figure 17. Study 2 (The COPE Healthy Lifestyles TEEN Program: Feasibility, Preliminary Efficacy, & 

Lessons Learned from an After School Group Intervention with Overweight Adolescents). 

Table 4 of this paper reports baseline 

standard deviations with a ratio equal to 

3.22, which is equivalent to a variance 

ratio of 10.4. 

Figure 18. Study 3 (Additive beneficial effects of lactotripeptides intake with regular exercise on 

endothelium-dependent dilatation in postmenopausal women). 

Table 2 of this paper reports the baseline SE of the mean. Variances (0.102 and 0.476) can be 

deduced from SE and sample sizes, and their ratio is 4.65. The precision (number of significant 

figures) when reporting these values might have played a relevant role in this discrepancy. 
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Figure 19. Study 4 (Consumption of yogurts fortified in vitamin D and calcium reduces serum 

parathyroid hormone and markers of bone resorption: a double-blind randomized controlled trial in 

institutionalized elderly women). 

Table 2 of this paper reports the baseline 

mean standard errors. Deducted variances 

are 9.73 and 44.6, leading to a variance 

ratio equal to 4.58. 

Figure 20. Study 5 (Randomized, double-blind, controlled study of losartan in children with proteinuria). 

Baseline standard deviations reported in 

the text are 2.30 and 4.81, with a variance 

ratio equivalent to 0.23. 

Figure 21. Study 6 (Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in 

children with autistic disorder: a double-blind, placebo-controlled, randomized trial). 

Table 2 provides the standard deviations for the primary endpoint (irritability). Their ratio is 

0.42 and the variance ratio is 0.18. 

Figure 22. Study 7 (Comparison between sitagliptin and nateglinide on postprandial lipid levels: The 

STANDARD study). 

Table 1 shows the baseline characteristics. The ratio for the primary endpoint Apo-B48 AUC 

iss equal to 0.14, which is the smallest variance ratio of the whole sample in our study. 



64 

4.1.2.2 Relationship between baseline and outcome variance discrepancies. 

Figure 23 shows the relationship between outcome 

and baseline variance discrepancies. The Pearson 

correlation coefficient between both discrepancies 

was 0.35 indicating that the differences in the 

variability between-arms at the end of the study 

might be slightly influenced by imbalances at 

baseline, although most of the studies are 

concentrated in the center of the plot without any 

apparent relationship. Note the presence of more 

studies in the first and third quadrant pointing out 

to a positive correlation between the two 

represented magnitudes. 

4.1.2.3 Expected heterogeneity under randomization by simulation. Estimation of 𝜏𝑇𝑎𝑟𝑔𝑒𝑡 

The feasibility of the observed baseline heterogeneity in our data was assessed by simulating 

scenarios with identical variances in both arms. The variances were retrieved from the treated arms 

and sample sizes were also the same that in the 208 collected studies. 

Parameters of the simulation 

 Total iterations (𝑛𝑠𝑖𝑚): 10,000

 Variance in treated and control arms (𝜎𝑖
2): 𝑆𝑇𝑖

2

 Sample size in treated group (𝑛𝑖1): 𝑛𝑇𝑖

 Sample size in control group (𝑛𝑖2): 𝑛𝐶𝑖

𝑆𝑇𝑖
2 : sample outcome variance in treated arm in the i-th

study 

𝑛𝑇𝑖: sample size in the treated arm in the i-th study

𝑛𝐶𝑖: sample size in the control arm in the i-th study

Simulation procedure 

 For each iteration:

o For each study, generate 𝑛𝑇𝑖 and 𝑛𝐶  baseline values for treated and control groups, respectively, from

a Normal distribution 𝑁(𝜇 = 0, 𝜎 = 𝑆𝑇𝑖)

o A random effect models is fitted to the generated data and the heterogeneity parameter (𝜏) , and the

random sampling variability is stored

The quantile 0.90 of all the simulated 𝜏’s will be the 𝜏𝑇𝑎𝑟𝑔𝑒𝑡

Figure 23. Between-arm variance discrepancy 

at the end of the study as a function of baseline 

discrepancy. The point size is proportional to 

the square root of the study sample size. 
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As an illustration, the forest-plot in Figure 24 is taken to compare the 95% CI of the baseline 

variance ratio from a randomly chosen instance of simulated data with the 95% CI obtained for 

the real data at baseline and at the end of the study. In the simulated data, the point estimates vary 

from one iteration to another, but the interval width for each study remains constant because it 

depends only on the sample size in each group. The number of studies with confidence intervals 

for real baseline variance discrepancy that do not include the value 1 (n=26, 12.5%), which 

represents perfect homoscedasticity, is higher that the number of intervals not including the value 

1 provided by simulated data (n=14, 6.7% in the represented plot; and 10.5 studies, 5.1% on 

average throughout the complete simulation) 

Figure 24. Forest plot of 95% CI for the estimated variance ratio for each study: single instance of 

simulated data with no effect and no heterogeneity (left); the reference model (middle); and outcome 

model (right). Red intervals do not contain the value 1. Studies are sorted according their point estimate 

and, thus, the order of the studies in the two last plots can vary. 

Figure 25 shows the distribution of the three estimators for the main model parameters 

(𝜇, 𝜏 𝑎𝑛𝑑 𝐼2) provided by the complete simulation procedure. The 2nd and 3rd plots of this figure

show that indicators of heterogeneity in the baseline data (blue crosses) were clearly higher than 

expected compared with the simulated distributions when no heterogeneity was present. This 

causes suspicion regarding whether the random allocation of some trials was correct, and this fact 

could imply more heterogeneity at the end of the study (red crosses).  
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Figure 25. Boxplots of the 3 parameters of interest along 10,000 simulations based on a random effects 

model applied to data with no heterogeneity and equal variances in both arms. Blue and red crosses 

represent the estimated parameters using the random effects model with baseline variances (reference 

model) and outcomes variances (outcome model) as response, respectively. 

An average 𝜏 = 0.03 resulted from the simulation, which is a plausible value under a non-

heterogeneity scenario. Table 10 shows the quantiles for the three parameters under study 

throughout the 10,000 iterations. The quantile 0.90 of the 𝜏 values was defined as the 𝜏𝑇𝑎𝑟𝑔𝑒𝑡. 

Studies were removed from the three random effects models (reference, between-arms and over-

time) until the estimated heterogeneity was below (or very close to) this 𝜏𝑇𝑎𝑟𝑔𝑒𝑡, which was equal 

to 0.08 in the simulated data. 

Table 10. Estimated values for the three main parameters in the reference model and the adjusted between 

arms model (model 2 of Table 5), and the quantiles of the three parameters in the simulated data. 

Parameter 

Models Quantiles in simulated data 

R
ef

er
en

ce
 

B
et

w
ee

n
 

a
rm

s 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝜇 0.03 -0.11 -0.07 -0.02 -0.01 -0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.07 

𝜏 0.31 0.60 0.00 0.00 0.03 0.05 0.06 0.08 0.16 

𝐼2 58.73 83.55 0.00 0.01 1.27 3.07 5.21 8.18 27.08 
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4.1.2.4 Proportion of studies causing heterogeneity 

We first modeled the baseline variance ratio as the response in the complete database (CDB, 𝑛 =

208), which was expected to have a null heterogeneity. The reference model provided an estimate 

of the logarithm of the variance ratio equal to 0.03, 95% CI from -0.03 to 0.09 and, surprisingly, 

the estimated baseline heterogeneity was �̂� = 0.31 with an 𝐼2 = 58.7 (Table 10), a very high value

if we bear in mind the randomization procedure. However, the exclusion of the four most extreme 

studies lessened the value of �̂� to 0.066 at baseline (RDBB, 𝑛 = 204), slightly lower than the 

τTarget = 0.08. When the outcome discrepancy rather than the baseline variances was modeled as 

the response in the CDB, heterogeneity was almost doubled (0.55), and we needed to exclude up 

to 29 studies so that we could lower this heterogeneity to 0.08 in the reduced database for the 

between-arm comparison (RDB, 𝑛 = 179), with 10 out of 208 (4.8%) studies increasing their 

variance in the treated group and 19 (9.1%) doing just the opposite. Finally, in the comparison 

over time, 28 studies had to be eliminated to achieve a 𝜏 = 0.079 in the reduced database for the 

comparison over time (RDO, 𝑛 = 67). Specifically, we had to remove 10 (10.5%) and 18 (18.9%) 

studies with, respectively, greater and lower variance at the end of the study. The comparisons 

among all the model heterogeneities (𝜏 estimates) are presented in Table 11. Unadjusted and offset 

models showed greater heterogeneity in all situations since these models have less flexibility due 

to the forced value of β.  

Table 11. Estimated heterogeneities (�̂�) from the random effects models. Superscripts represent the fitted 

model identifier (see Table 5 & Table 7). 

Response 

in the model 
Type of model 

�̂� 

Full Data 

(main analysis) 

Reduced data 

(heuristic analysis) 

Baseline variance ratio Reference model 

CDB (n=208) 

0.31 

RDBB (n=204) 

0.066 

Outcome variance ratio 

Unadjusted1 

Adjusted2

Adjusted (offset)3 

CDB (n=208) 

0.60 

0.55 

0.60 

RDB (n=179) 

0.085 

0.080 

0.188 

Outcome vs. baseline ratio 

in treated group 

Unadjusted4 

Adjusted5

Adjusted (offset)6 

CDO (n=95) 

0.71 

0.59 

0.62 

RDO (n=67) 

0.137 

0.079 

0.277 
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4.2 Sensitivity analysis II: Simulation study 

Summary key points 

 Misclassification errors were not controlled in the analysis based on random effects

models.

 A simulation study was performed to explore under which simulated scenarios we would

attain the parameters we have estimated in the principal analysis.

 A variable proportion of studies with random effect were generated under several settings.

 The models in a scenario where 10% of trials have random treatment effects produced

coefficients that were similar to those from the random effects model analysis.

4.2.1 Methods 

4.2.1.1 Explanation 

Several assumptions were made about the conclusions derived from the random effects model in 

the Chapter 3. The most important was that studies that fell outside the region of natural variability 

in the funnel plot came from studies with heteroscedasticity, and vice versa. In the absence of a 

design for controlling probabilities of the type I and type II errors, an unknown proportion of these 

studies could be misclassified. The purpose of this sensitivity analysis was, on the one hand, to 

simulate realistic situations with specified proportions of studies having a random treatment effect 

(and, therefore, heteroscedasticity) and, on the other, to explore under which of these scenarios the 

model parameter estimates for between-arm comparison match those previously obtained. Hence, 

these scenarios provide us the proportion of trials with random effects. The simulation may be 

conducted in several ways, and it also requires some assumptions: 

 All the treatment effects are additive. Usually, the main analysis of the collected trials

rests on a comparison of the outcome mean, which assumes an additive treatment effect. If

trialists were to have expected a multiplicative treatment effect, then they would have log-

transformed the main outcome to achieve an additive effect.

 There is a proportion 𝝅𝑹 of studies with a random treatment effect. It is sensible to

assume that some interventions produce a different treatment effect, depending on the

patient. We simulated a proportion 𝜋𝑅 of interventions with a variable (random) treatment

effect and another proportion (1-𝜋𝑅) with a constant effect.

 The random treatment effects have different variability among studies. Some

interventions may produce more heterogeneous effects than others. The variability of the

random treatment effect was generated using a uniform distribution between 0 and 𝜃𝑀,

which was one of the simulation parameters.

 On average, the variability in the control arm is greater than in the treated arm.

Despite the fact that we also simulated scenarios with higher variability in the treated arm,
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the results obtained under the settings with greater variability in the control arm fitted better 

to the main results shown in Chapter 3. 

The simulation was performed only for the between-arm comparison because of two main reasons. 

First, the sample size was quite small for the comparison over time: only 95 studies do not provide 

enough precision to this specific goal. Second, and most importantly, we had the constraint of a 

fixed correlation between outcome and baseline values for each collected study. This restriction 

made the simulation procedure much more complex and, in turn, would result in obtaining 

estimates that lack the necessary reliability. 

4.2.1.2 Simulation models 

The next box describes the models for simulating the data. Two separate models for the 

interventions with constant and random treatment effects were set.  

Simulation model 

Constant effect 𝑌𝐵~𝑁(0,1)

𝑌𝑂𝑇 = 𝑌𝐵 + 𝛾𝑇  𝛾𝑇 = 𝑘 

𝑌𝑂𝐶 = 𝑌𝐵 + 𝛾𝐶  𝛾𝐶 = 𝑘
′

Random effect 𝑌𝐵~𝑁(0,1)

𝑌𝑂𝑇 = 𝑌𝐵 + 𝛾𝑇  𝛾𝑇~𝑁(0, 1)

𝑌𝑂𝐶 = 𝑌𝐵 + 𝛾𝐶   𝛾𝐶~𝑁(0, 𝜎𝐶)    𝜎𝐶~𝑈(0, 𝜃𝑀)

𝑌𝐵: Baseline values; 𝑌𝑂𝑇: Potential outcome in treated arm; 𝑌𝑂𝐶: Potential outcome in control arm; 𝛾𝑇:

Change from baseline to the end of the study in treated arm; 𝛾𝐶: Change from baseline to the end of the

study in control arm; k, k’: constant values; 𝜎𝐶: standard deviation of 𝛾𝐶; 𝜃𝑀: maximum value of 𝜎𝐶. 

The box below provides the selected simulation parameters.

Parameters of the simulation 

 100 replications (nsim)

 Maximum standard deviations for the treatment effect on the control arm (𝜃𝑀): 1, 3, 5, 7

 Expected treatment effect (𝐸[𝛾𝑇− 𝛾𝐶]): 0

 Proportion of studies with random effect (𝜋𝑅): 0, 0.05, 0.10, 0.15, … , 0.5

 Sample size in treatment and control group: 𝑛𝑇𝑖 , 𝑛𝐶𝑖
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Some remarks about the choice of the simulation parameters should be highlighted. The number 

of replications (100) was enough to draw conclusions because, as the number of iterations 

increased, the differences in the simulated model parameters showed that the results remained 

quite stable above 50 replications. In order to obtain a more accurate estimation of 𝜋𝑅, once the 

most plausible value for 𝜃𝑀 among the predefined subset of values (1, 3, 5 and 7) was obtained, 

other values for 𝜃𝑀 were tested around the value that provided a closest estimates to the target 

coefficients. In the same way as with 𝜃𝑀, we tested values in the full range from 0 to 1 for 𝜋𝑅 , but 

only values up to 0.5 are shown. The expected treatment effect had no impact at all on the 

simulation results; hence, for simplicity, we assigned it a 0 value, which is equivalent to an absence 

of treatment effect. Note that the model is flexible enough to allow studies with random treatment 

effects that provide either lower or greater variation in the experimental arm, since variance for 

the change over time in the reference group is bounded within a range (0, 𝜃𝑀) that covers values 

above and below 1, which is the standard deviation in the treated group. 

4.2.2 Results 

Figure 26 shows that the simulated parameters closest to the target estimates were reached in a 

setup that combines a maximum random treatment effect value of 7 (𝜃𝑀 = 7, last panel) with a 

proportion of studies whose random treatment effect equals 0.10 (𝜋𝑅 = 0.10). Under this scenario, 

the solid lines (simulation estimates) cross the dashed lines (random effects model estimates) at 

approximately the same x-value. Additional simulation scenarios around the optimal setting of 

𝜃𝑀 = 7 and 𝜋𝑅 = 0.10  were tested: we explored the grid from 𝜃𝑀 = 6.5 to 𝜃𝑀 = 7.5 and from 

𝜋𝑅 = 0.05 to 𝜋𝑅 = 0.15, in both cases, with evenly spaced intervals of 0.01. For each 

combination, we calculated the mean square error (MSE) between the simulated data’s mean 

estimates and the estimates from the random effects model analysis. The parameters for which a 

lower MSE was achieved were 𝜃𝑀 = 7.2 and 𝜋𝑅 = 0.1. Table 12 shows the values of the estimates 

coming from both sources: real and simulated data.  

Table 12. Parameter estimates from the real and data from the closest simulated scenario. 

Data source 

Estimated parameter 

MSE 𝝁 𝝉 𝐼2

Collected data -0.121 0.546  0.809 

0.00080 Simulated data in the optimal setting 

(𝜃𝑀 = 7.2; 𝜋𝑅 =0.1)
-0.162 0.528 0.788 

The value 𝜃𝑀 = 7.2 represents the maximum standard deviation of the control group in the studies 

with random effects. It has been interpreted as if the standard deviation in the reference group is, 
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on average, approximately three and a half times greater than in the experimental group. This value 

may seem very high, but it may be due to studies where the patients in the experimental group are 

either subjected to severe monitoring or to really efficient interventions that place outcomes of 

treated patients in a narrower range of normality. 

Figure 26. Solid lines represent the average estimates of the parameters 𝜇, 𝜏,  𝐼2 in an additive treatment

effect setup, depending on the maximum variability of the random effect (𝜃𝑀) in each panel and on the

proportion of studies with random effects (𝜋𝑅) on the x-axis. Dashed lines are the estimated values from

the analysis using the real data for the between-arm comparison. 

In the fitted models with simulated data under this scenario (𝜃𝑀 = 7.2), 1.4% and 8.6% of studies 

were expected to show greater variability in, respectively, the control and treated arms: 

𝑃(𝜎𝐶 < 𝜎𝑇) = 𝑃(𝜎𝐶 < 𝜎𝑇|𝛾𝐶 = 𝑘′) · 𝑃(𝛾𝐶 = 𝑘′) + 𝑃(𝜎𝐶 < 𝜎𝑇|𝛾𝐶 ≠ 𝑘′) · 𝑃(𝛾𝐶 ≠ 𝑘′)

= 0 · (1 − 𝜋𝑅) + 𝑃[𝑈(0, 𝜃𝑀) < 1] · 𝜋𝑅 =
1

7.2
· 0.1 = 0.014

𝑃(𝜎𝐶 > 𝜎𝑇) = 𝑃(𝜎𝐶 > 𝜎𝑇|𝛾𝐶 = 𝑘′) · 𝑃(𝛾𝐶 = 𝑘′) + 𝑃(𝜎𝐶 > 𝜎𝑇|𝛾𝐶 ≠ 𝑘′) · 𝑃(𝛾𝐶 ≠ 𝑘′)

= 0 · (1 − 𝜋𝑅) + 𝑃[𝑈(0, 𝜃𝑀) > 1] · 𝜋𝑅 =
6

7.2
· 0.1 = 0.086

Note that in the above expression (𝛾𝐶 = 𝑘′) and (𝛾𝐶 ≠ 𝑘′) equates to the presence of a constant 

and random effect, respectively. 
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4.3 Sensitivity Analysis III: Comparison using common tests for comparing variances 

Summary key points 

 Formal tests for variance comparison can be applied to each single collected study.

 An independent sample test was performed for between-arm comparison, and a paired test

was implemented for comparison over time.

 Almost 20% and 40% of the studies showed statistically significant differences in the

between-arm and over-time comparisons, respectively.

4.3.1 Methods 

4.3.1.1 Explanation 

This method aimed to assess the homoscedasticity in each single study through the usual tests of 

variance comparisons:  

 Between outcomes in both arms with the usual F-test for independent samples

 Between baseline and outcome in the treated arm with a specific test for paired samples60.

Both tests were two-sided with a significance level of 𝛼 = 5%. The formal hypotheses for both 

comparisons are expressed below. 

Independent samples Paired samples 

{
𝐻0: 𝜎𝑂𝑇

2 = 𝜎𝑂𝐶
2

𝐻1: 𝜎𝑂𝑇
2 ≠ 𝜎𝑂𝐶

2 {
𝐻0: 𝜎𝑂𝑇

2 = 𝜎𝐵𝑇
2

𝐻1: 𝜎𝑂𝑇
2 ≠ 𝜎𝐵𝑇

2

4.3.1.2 Independent samples 

Although there are other alternatives, for the independent samples situation, an F-test was 

implemented for comparing variances. The statistic for this test is: 

𝐹 =
𝑆𝑂𝑇
2

𝑆𝑂𝐶
2 ~𝐹𝑛𝑂𝑇−1,𝑛𝑂𝐶−1

This statistic follows an F distribution with (𝑛𝑇 − 1) and (𝑛𝐶 − 1) degrees of freedom under the 

null hypothesis of homoscedasticity given the next premises: 1) the population outcome is 

normally distributed (this is reasonable because collected trials were designed to compare means); 

and 2) the samples are independent, which is guaranteed by design. 

4.3.1.3 Paired samples 

For the paired comparison, the Lothar Sachs test60 was implemented for comparing variances. The 

statistic for this test is: 



73 

𝑡 =
(𝑄𝑂𝑇 − 𝑄𝐵𝑇) · √𝑛 − 2

√𝑄𝑂𝑇𝑄𝐵𝑇 − 𝑄𝑂𝑇,𝐵𝑇
2

~𝑡𝑛−2 

where:     𝑄𝑂𝑇 = (𝑛 − 1) · 𝑆𝑂𝑇
2   ;  𝑄𝐵𝑇 = (𝑛 − 1) · 𝑆𝐵𝑇

2   ;  𝑄𝑂𝑇,𝐵𝑇 = (𝑛 − 1) · 𝐶𝑜𝑣(𝑌𝑂𝑇 , 𝑌𝐵𝑇)

The statistic follows a t-distribution with (𝑛 − 2) degrees of freedom under the null hypothesis of 

equal variances, keeping in mind two assumptions: 1) the population outcome is normally 

distributed; and 2) the samples are paired. As this test was applied to a before-after comparison, 

this last premise is met in any case. 

4.3.2 Results 

4.3.2.1 Independent samples: Between arms 

Using the F-test, we found that 41 trials (19.7%) showed heteroscedasticity in the outcome over 

the 208 collected studies. Among them, 26 (63.4%) presented lower variability in the treated arm, 

and 15 (36.6%) had significantly greater variability in the experimental group. We set the inverse 

of the square root of the total sample size at the end of the study as a measure of uncertainty in 

Figure 27, which tries to emulate the funnel plot obtained from the random effects model. This 

figure is a little bit tricky in the sense that the limits of the non-rejection region are not a linear 

function of this uncertainty measure, especially in small trials. For instance, both the studies of 

Moe et al.61 and Wöhrle et al.62 had 40 

patients (uncertainty= 1/√40 = 0.16) with 

comple-te follow-up at the end of the study. 

However, in the former, the groups were 

balanced and the upper limit of the non-

rejection region is 2.53 (𝐹0.975,19,19); while 

in the latter, with unbalanced arms (12 vs. 

28), the upper limit is 3.14 (𝐹0.975,27,11).

Consequently, it would have been possible 

for a study with different variances (red 

point) to have fallen inside the triangle, 

although did not occur in any case. The 

triangle limits, as a function of the 

uncertainty, are the result of fitting a linear 

regression to the boundaries of the non-rejection region of the test. 

Figure 27. Funnel plot for the variance discrepancy 

between arms. Red points mean heteroscedastic trials 

according to the F-test. The white triangle represents 

the non-rejection region. Uncertainty was measured as 

the inverse of the square root of the total sample size. 
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4.3.2.2 Paired samples: Over time 

 Using the variance test for paired samples60, 

38 (40%) trials presented heteroscedasticity 

over time among the 95 studies with 

available covariance between pre- and post-

outcome. Among them, 22 (57.9%) show 

lower variability at the end of the study, and 

16 (42.1%) studies had significant greater 

variability at baseline. 

Figure 28 shows the funnel plot for the 

over-time variance ratio. The horizontal 

axis represents the ratio for the final (O) and 

baseline (B) variances in the treated arm. 

The vertical axis is the inverse of the square 

root of the sample size at baseline, which  

represents a possible measure of uncertainty. 

The limits of the triangle are not directly 

related to this measure, because the 

covariance also plays an important role in 

their configuration. Given 𝑆𝐵𝑇
2 and 

covariance of each single study, we 

calculated the limit value of 𝑆𝑂𝑇
2 , from

which the null hypothesis of equal 

variances would be rejected according to 

the test, either because 𝑆𝑂𝑇
2  is too large (red

points on the right) or because it is too small 

(red points on the left). Once these limit 

values were calculated for each study, the 

boundaries of the non-rejection region were 

the result of applying a linear regression to these limits for individual studies as a function of the 

uncertainty (𝑅2 = 0.985 and 𝑅2 = 0.991 for the lower and upper limits, respectively).

Since the limits of the triangle depend not only on n but also on the correlation, there can be studies 

with significant differences within the triangle and vice versa. For example, the leftmost black 

Figure 28. Funnel plot for the variance discrepancy 

over time. Red points represent studies with 

heteroscedasticity according to the paired test based 

on the Q-statistic. The white triangle is the non-

rejection region. Uncertainty was measured as the 

inverse of the square root of the baseline sample size. 

Figure 29. Q statistic versus a measure of uncertainty. 

The dotted lines that limit the white shaded region 

represent the upper and lower limits according to a t- 

distribution with n-2 degrees of freedom for each 

study. 
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point is a study63 located outside the triangle with a moderate correlation (r = 0.30), while the 

significant (red point) study64 with a ratio of variances closest to 1 is the one with a higher 

correlation (r = 0.99). To avoid this problem, another plot including the Q statistic on one of the 

axes has been represented in Figure 29. As it follows a Student’s t-distribution under the null 

hypothesis, the boundaries of the non-rejection region are around two, regardless of the studies’ 

sample sizes. 

4.4 Sensitivity Analysis IV: Comparison through distribution mixture 

Summary key points 

 The p-values obtained in the tests for variance comparison come from two distributions: a

uniform distribution under equal population variances and an unknown distribution,

otherwise.

 This distribution mixture can be modeled to elucidate the proportion of studies under each

hypothesis.

 The estimated proportion of studies with no evidence of heteroscedasticity at the end of the

study was 0.80 (95% CI from 0.72 to 0.88) in the between-arm comparison and 0.57 (95%

CI from 0.44 to 0.71) in the comparison over time

The American Statistical Association (ASA) published a statement in 2016 with a set of 

recommendations regarding the use and interpretation of the p-values65. Among the various 

suggestions, they advised about that scientific conclusions and policy decisions should not be 

based only on whether a p-value passes a specific threshold. We fully agree with this point and 

believe that the results of the previous sensitivity analysis (which are based on hypothesis tests 

that lack power) should be complemented by a more sophisticated analysis, which is presented in 

this Section 4.4. 

4.4.1 Methods 

4.4.1.1 Explanation 

Since the collected studies were not designed to find differences in variances, but in means, the 

previous tests in Section 4.3 could lack statistical power. For this reason, we devised our new and 

final method for estimating the proportion of trials that have a variance discrepancy. The method 

is based on fitting a mixture of distributions to the p-values that resulted from the previous variance 

comparison tests, and it is similar to the methodology applied by Pounds et al.66 
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Under the null hypothesis of equal variances, it is well known that the p-values follow a uniform 

distribution (U) in the interval [0,1]. In contrast, under the alternative hypothesis, studies with 

different population outcome variances provide p-values coming from an unknown distribution, 

which might depend on the magnitude of the variance difference. Therefore, these p-values come 

from two different populations and they lead to a distribution mixture. One of the distributions that 

compound the mixture should be uniform. For the other distribution, we first explored the 

empirical distribution of the p-values (Figure 30 and Figure 31 for both comparisons). We used 

the one-sided p-values (under the alternative hypothesis that the treatment arm outcome has greater 

variance) in order to distinguish those studies with lower or greater variance in the treated group’s 

outcome. That is, small p-values will correspond to trials with less variability in the outcome of 

the treated group, while p-values very close to 1 will come from studies with lower variability in 

the outcome of this arm. Both empirical distributions show two peaks (close to 0 and 1, 

respectively) caused by those trials with real variance discrepancies between groups and over time. 

Q–Q plots show how closely the empirical distributions form a theoretical uniform distribution. 

Both comparisons (especially the comparison over time) indicate the presence of trials with 

different variability and, therefore, with a non-constant effect. The aim of this methodology is to 

quantify the percentage of these studies. 

Figure 30. Distribution of one-sided p-values for between-arm comparison: histogram (left) 

and Q-Q plot for a theoretical uniform distribution (right). 
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Figure 31. Distribution of one-sided p-values for comparison over time: histogram (left) and 

Q-Q plot for a theoretical uniform distribution (right). 

To fit the distribution mixture, we should choose one or more distributions to model the p-values 

coming from the studies with variance discrepancies while taking into account the observed peaks 

in both histograms. We fitted four distribution mixtures to these data with the goal of estimating 

the proportion of studies derived from trials with different final outcome variability or variance 

discrepancy over time. 

4.4.1.2 Distributions 

This section provides an overview of the distributions that were used to model the p-values coming 

from heteroscedastic trials. Four different distributions are presented. 

 Triangular (T). This distribution (Figure 32) has three parameters (a, b and c) and a

piecewise density probability function (𝑓𝑇).

Figure 32. Triangular distribution.

𝑓𝑇(𝑥; 𝑎, 𝑏, 𝑐) =

{

0 𝑖𝑓 𝑥 < 𝑎

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
𝑖𝑓 𝑐 < 𝑥 ≤ 𝑏

0 𝑖𝑓  𝑏 < 𝑥
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In our specific case, we need two triangular distributions to cover the two empirical peaks, 

in which case, only one parameter is enough to determine each triangle’s distribution on 

the condition of two additional restrictions: 

 They should be right triangles with 𝑎 = 𝑐 (or 𝑐 = 𝑏) in order to accommodate the

peaks in the lower (or higher) p-values.

 The vertical side of the triangles should be located at 𝑥 = 0 (or 𝑥 = 1). This

constraint implies that 𝑎 = 𝑐 = 0 for the triangle at the left (or 𝑐 = 𝑏 = 1 for the

triangle at the right).

Consequently, the 

only parameters that 

should be estimated 

are parameter b 

(called b1) for the 

left-hand triangular 

distribution (𝑓𝑇
1) and

parameter a (called 

a2) for the right-

hand triangular 

distribution (𝑓𝑇
2)

(Figure 33). 

 Exponential (E). We used a usual exponential with event rate 𝜆1 to fit the left peak and

a translated and inverted exponential distribution with event rate 𝜆2 and fixed location

parameter 𝜇 = 1 to fit the right peak. Their densities (𝑓𝐸 , 𝑓𝐸
′) are below Figure 34.

Figure 34. Exponential distribution at left and translated exponential distribution at right. 

𝑓𝐸(𝑥; 𝜆) = 𝜆1 · 𝑒
−𝜆1𝑥 𝑓𝐸

′(𝑥; 𝜆, 𝜇) = 𝜆2 · 𝑒
−𝜆2(𝜇−𝑥)

Figure 33. Triangular distributions constrained to additional 

restrictions: right triangles located at the extremes. 
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As this distribution is not bounded, we standardized it to the domain of the interval (0,1) 

and both exponentials are included in the distribution mixture (Figure 35): 

𝑓𝐸
1(𝑥; 𝜆) = 𝜆1 · 𝑒

−𝜆1𝑥/(1 − 𝑒−𝜆1)      𝑓𝐸
2(𝑥; 𝜆, 𝜇) = 𝜆2 · 𝑒

−𝜆2(𝜇−𝑥)/(1 − 𝑒−𝜆2)

Figure 35. Combining two exponential distributions. 

 Beta (B). This distribution has two parameters of shape (𝛼) and scale (𝛽). It is especially

appropriate for this kind of data because its domain is the interval (0,1) and is enough

flexible to fit both peaks. Its density (𝑓𝛽) is represented in Figure 36.

Figure 36. Beta distribution 

𝑓𝐵(𝑥; 𝛼, 𝛽) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)

𝐵(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
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As with the triangular and exponential distributions, two beta distributions (𝑓𝛽
1, 𝑓𝛽

2) are

combined in order to obtain more flexibility (Figure 37). 

Figure 37. Combining two beta distributions. 

To sum up, four different distribution mixtures were tested, and they are expressed in the next box. 

Simulation model 

 U(0,1) + 𝑇(𝑎1 = 0, 𝑏1, 𝑐1 = 𝑎1 = 0) + 𝑇(𝑎2, 𝑏2 = 1, 𝑐2 = 𝑏2 = 1).

 U(0,1) + 𝐸(𝜆1) + 𝐸′(𝜆2, 𝜇 = 1)

 U(0,1) + 𝐵(𝛼, 𝛽)

 U(0,1) + 𝐵(𝛼1, 𝛽1) +  𝐵(𝛼2, 𝛽2)

4.4.1.3 Optimization formulae 

The parameters of the mixture were estimated by maximizing the log-likelihood using the 

Augmented Lagrangian Minimization Algorithm method67. After this, the best distribution mixture 

was selected by means of two goodness-of-fit measures: the Akaike Information Criterion (AIC) 

and the Kolmogorov-Smirnov statistic. The four Log-Likelihood functions from the four mixture 

distributions, with their corresponding constraints are detailed in the following boxes. 
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Uniform + 2 Triangle distributions 

Max 𝑙 = ∑ log [𝜋0 + 𝜋11 · (
2

b1
−

2𝑥𝑖

𝑏1
2 ) + (1 − 𝜋0 − 𝜋11) · (

2

(1−a2)
2 · (𝑥𝑖 − 𝑎2))]

𝑖=𝑛
𝑖=1  

Subject to 

𝜋0 ≥ 0
𝜋11 ≥ 0

𝜋0 + 𝜋11 ≤ 1
        

𝑏1 ≥ 0
𝑎2 ≥ 0

𝑏1 ≤ 1
𝑎2 ≤ 1

where 𝜋0, 𝜋11 represent the proportion of studies coming from, respectively, the (uniform) distribution under the

null hypothesis and the left triangular distribution (part of the alternative hypothesis). 

Uniform + 2 Exponential distributions 

Max 𝑙 = ∑ log [𝜋0 + 𝜋11 ·
𝜆1·𝑒

−𝜆1𝑥𝑖

1−𝑒−𝜆1
+ (1 − 𝜋0 − 𝜋11) ·

𝜆2·𝑒
−𝜆2(1−𝑥𝑖)

1−𝑒−𝜆2
]𝑖=𝑛

𝑖=1  

Subject to 

𝜋0 ≥ 0
𝜋11 ≥ 0

𝜋0 + 𝜋11 ≤ 1
 

𝜆1 ≥ 0
𝜆2 ≥ 0

where 𝜋0, 𝜋11 represent the proportion of studies coming from, respectively, the (uniform) distribution under the

null hypothesis and the left exponential distribution (part of the alternative hypothesis). 

Uniform + 1 Beta distribution 

Max 𝑙 = ∑ log [𝜋0 + (1 − 𝜋0) ·
𝑥𝑖
𝛼1−1(1−𝑥𝑖)

𝛽1−1

𝐵(𝛼1,𝛽1)
]𝑖=𝑛

𝑖=1  

Subject to 

𝜋0 ≥ 0
𝛼1 ≥ 0
𝛽1 ≥ 0
𝜋0 ≤ 1

where 𝜋0 is the proportion of events coming from the (uniform) distribution under the null hypothesis. 

Uniform + 2 Beta distributions 

Max 𝑙 = ∑ log [𝜋0 + 𝜋11 ·
𝑥𝑖
𝛼1−1(1−𝑥𝑖)

𝛽1−1

𝐵(𝛼1,𝛽1)
+ (1 − 𝜋0 − 𝜋11) ·

𝑥𝑖
𝛼2−1(1−𝑥𝑖)

𝛽2−1

𝐵(𝛼2,𝛽2)
]𝑖=𝑛

𝑖=1  

Subject to 

𝜋0 ≥ 0
𝜋11 ≥ 0

𝜋0 + 𝜋11 ≤ 1
  

𝛽1 ≥ 0
𝛼2 ≥ 0
𝛽2 ≥ 0

𝛼1 ≥ 0
𝛼1 − 𝛽1 ≥ 0
𝛼2 − 𝛽2 ≤ 0

where 𝜋0, 𝜋11 represent the proportion of studies coming from, respectively, the (uniform) distribution under the

null hypothesis and the left beta distribution (part of the alternative hypothesis). The last two restrictions are 

imposed to guarantee that 𝜋11 is the proportion associated with the left-hand (and not to the right-hand) beta

distribution. 

Once the best model was found, the proportion of studies with different population outcome 

variance was estimated as 1 − �̂�0, being  �̂�0 the estimated proportion of p-values coming from the 

uniform distribution. 
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4.4.2 Results 

4.4.2.1 Between-arm comparison 

For the between-arm comparison, we used MLE to fit our four models to the empirical p-values, 

and several goodness-of-fit measures were calculated. Table 13 provides a summary of the results 

derived from each distribution mixture, and Figure 38 shows the model and empirical data 

comparison of the density and distribution functions.  

Table 13. Goodness-of-fit measures and estimated proportion of constant-effect trials in between-arm 

comparison. 

Mixture Distribution no. parameters AIC KS �̂�𝟎 (𝟗𝟓% 𝑪𝑰)

Uniform + 2 triangular 4 -126.0 0.10 0.88 (0.84, 0.94) 

Uniform + 2 exponential 4 -139.6 0.08 0.86 (0.81, 0.91) 

Uniform + 1 beta 3 -562.9 0.06 0.80 (0.72, 0.88) 

Uniform + 2 betas 6 -568.8 0.08 0.71 (0.58, 0.84) 

KS: Kolmogorov-Smirnov statistic; �̂�0: estimated proportion of p-values coming from a uniform

distribution; CI: Confidence interval 

Figure 38. Distribution mixtures in between-arm comparison: histogram of the empirical data with 

overlapped theoretical density (left) and comparison of theoretical (blue) versus empirical (black) 

cumulative density functions. 

The fits provided by mixtures formed by exponential and triangular distributions were clearly 

worse than those obtained using the beta distribution while taking into account the AIC statistic. 

This may be due in part to these distributions having poor flexibility in presenting different 

curvature patterns that capture the shape of the empirical peaks. Regarding the models that involve 
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the beta distribution, the two goodness-of-fit indicators gave discordant results: while the model 

with two beta distributions presented a better AIC value, the mixture distribution with a single beta 

distribution derived a better value of the Kolmogorov-Smirnov (KS) statistic. The KS statistic 

value is easily perceived at the right hand of Figure 38: a smaller maximum distance between the 

empirical and theoretical distributions is present for the mixture with a single beta distribution. 

The bottom Q-Q plots hint at the reason for this mismatch. The model that includes two beta 

distributions fitted all the quantiles almost perfectly, except for those located in the central range 

(near 0.5). The presence of a less marked peak in the central part of the empirical distribution of 

the p-values penalizes this mixture, resulting in a higher KS statistic value than, the distribution 

with a single beta. 

Applying the principle of parsimony, we chose the distribution with the fewest number of 

parameters, which is the one that uses a single distribution to model the two empirical peaks. With 

this distribution mixture, the estimated proportion of studies coming from a uniform distribution 

and, therefore, from a population of constant effects was 0.80 (95% CI from 0.72 to 0.88). 

Unfortunately, as this mixture distribution fits a unique distribution to all the studies under the 

alternative hypothesis, we could not distinguish from among these trials which one provided less 

(p-values close to 0) or greater (p-values close to 1) variance in the treated arm. 

4.4.2.2 Comparison over time 

We applied the same methodology to the 95 p-values that resulted from the paired tests for over-

time comparisons of the variances. We used the same four abovementioned mixture distributions. 

In this case, Table 14 shows that the model using two beta distributions provided a better fit in 

both the AIC and the KS statistics, and Figure 39 validates this finding. Thus, we have chosen the 

mixture that comprises two beta distributions.  

Table 14. Goodness-of-fit measures and estimated proportion of constant effects trials in comparison over 

time. 

Mixture Distribution no. parameters AIC KS �̂�0 (95% CI)

Uniform + 2 triangulars 4 -122.1 0.18 0.55 (0.44, 0.66) 

Uniform + 2 exponentials 4 -217.7 0.09 0.70 (0.60, 0.79) 

Uniform + 1 beta 3 -1356.4 0.11 0.57 (0.44, 0.71) 

Uniform + 2 betas 6 -1393.4 0.06 0.35 (0.15, 0.55) 

KS: Kolmogorov-Smirnov statistic; �̂�0: estimated proportion of p-values coming from a uniform

distribution; CI: Confidence interval. 
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According to the selected model, the proportion of trials in which the intervention did not affect 

the dispersion of the outcome was 0.35 (95% CI from 0.15 to 0.55). This estimate is clearly inferior 

to the one for the comparison between arms; but in some way it is reasonable, since the “time 

effect” makes a contribution by modifying the variability of some primary endpoints. Furthermore, 

this estimate agrees neither with that of the analysis from Chapter 3 nor with the estimates of the 

other sensitivity analyses over time. 

This model uses two different distributions to model each of the empirical distribution peaks, and 

it allows us to estimate the proportion of tests that point towards an increase (0.03) or a decrease 

(0.62) of the variance over time. 

Figure 39. Distribution mixtures in comparison over time: histogram of the empirical data with 

overlapped theoretical density (left) and comparison of theoretical (blue) versus empirical (black) 

cumulative density functions. 

The last ancillary analysis in appendix E contains  a simulation study for assessing the 

appropriateness of the distribution mixture approach by simulation. 
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5 Discussion 

5.1 Summary findings and explanations 

The aim of this work is primarily twofold. First, it studies whether the comparison of variances 

can provide any evidence about the constant effect assumption. Second, it seeks to provide 

preliminary evidence on how frequently this assumption behind precision medicine holds. To 

answer these questions, we use published RCTs with numerical outcomes to estimate, on the one 

hand, the outcome variance ratio between two randomized groups and, on the other, an analogous 

ratio over time between outcome and baseline variances in the treated arm.  

Regarding the first objective, all analyses point toward an unexpected result: the outcome 

variability in the experimental group is lower than both that of the reference group and the 

variability at the beginning of the study. The point estimates of all the fitted models (see Table 8) 

show that the variance in the experimental group is between 10.4% and 13.1% lower than in the 

control group and between 13.1% and 14.8% lower than the baseline. Specifically, the variance of 

the treated group in the adjusted models is 11.3% (95% CI from 3.0 to 18.9%) lower than that of 

the control group and 13.9% (95% CI from 2.0 to 24.4%) lower than that of the baseline. 

Concerning the second objective, we have provided a rough estimate of the proportion of 

interventions with different variability in both arms, which might benefit from more precise 

medicine. Considering the most extreme result of the between-arm comparison indicated in Table 

15, one out of 14 interventions (n=15, 7.2%) had greater variance in the treated arm while one out 

of eight interventions (n=26, 12.5%) had lower variance. Overall, we have found evidence of effect 

variation in only one out of five trials (n=41, 19.7%), suggesting a limited role for tailored 

interventions. These might be pursued either through finer selection criteria (common effect within 

specific subgroups) or with n-of-1 trials (no subgroups of patients with a common effect). The 

most important finding is that the remaining 80.3% of interventions were compatible with a 

constant treatment effect.  

The analyses of the change over time in the treated arm generally agree with the findings of the 

between-arm comparison, although this comparison is not protected by randomization. For 

example, the existence of eligibility criteria at baseline may have limited the initial variance (a 

hypertension trial might recruit patients with baseline SBP between 140 and 159 mm Hg), leading 

to the variance increasing naturally over time — contrary to our results. 
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Table 15. Classification of the studies according to their variability discrepancies with different methods 

(main and sensitivity analyses). ¥Over-time comparison was performed only on studies reporting enough 

information to obtain the variability of the change from baseline to outcome. 

Comparing variances N Method 

After treatment, variability … 

Increased 

n (%) 

Decreased 

n (%) 

Did not changed 

(n %) 

Outcome between 

treatment arms 
208 

Random effects 

model 
15 (7.2%) 26 (12.5%) 167 (80.3%) 

Heuristic 

method 
10 (4.8%) 19 (9.1%) 179 (86.0%) 

Simulation study 3 (1.4%) 18 (8.7%) 187 (90.0%) 

F 

test 
14 (6.7%) 26 (12.5%) 168 (80.8%) 

Mixture 

distribution 
- - 166 (79.8%) 

Outcome versus baseline 

in treated arm 
95¥ 

Random effects 

model 
16 (16.8%) 22 (23.2%) 57 (60.0%) 

Heuristic 

method 
10 (10.5%) 18 (18.9%) 67 (70.5%) 

Paired 

test 
16 (16.8%) 22 (23.2%) 57 (60.0%) 

Mixture 

distribution 
3 (3.2%) 59 (62.1%) 33 (34.7%) 

Regarding the subgroup analyses, we found that variability seems to decrease for effective 

treatments; otherwise, it remains similar. Therefore, the treatment seems to be doing what 

medicine should do: having larger effects in the most ill patients. Two considerations may be 

highlighted here: (1) as the outcome range becomes reduced, we may interpret that, following the 

intervention, this population is under additional control; and also, (2) as subjects are responding 

differently to treatment, this opens the way for not treating some (e.g., those subjects who are not 

very ill and thus lack the scope to respond very much), which subsequently incurs savings in side 

effects and costs. 

This reduced variability could also be due to methodological reasons. One is that some 

measurements may have a “ceiling” or “floor” effect (e.g., in the extreme case, if a treatment heals 

someone, no further improvement is possible). In fact, according to the subgroup analysis of the 

studies with outcomes that indicate the degree of disease (high values implying greater severity, 

e.g., pain), greater variance (20.4%) is obtained in the treated arm (see Figure 13). However, in
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the studies with outcomes that measure the degree of healthiness (high values implying better 

condition, e.g., mobility), the average variances match between arms, which does not suggest a 

ceiling effect. As mentioned previously, another reason might be that the treatment effect is not 

additive on the scale used for analysis, suggesting that further exploration of other metrics and 

transformations would be suitable. For instance, if the treatment acts proportionally rather than 

linearly, the logarithm of the outcome would be a better scale. 

5.2 Limitations 

The results of this work rely on published articles, which raises some relevant issues. First, some 

of our analyses are based on Normality assumptions that are unverifiable without access to raw 

data.  

Second, 330 out of 542 (61.6%) manuscripts act contrary to CONSORT guideline68 advice in that 

they do not report variability (Figure 4). Thus, the included studies may not be representative. The 

selected articles are from the years 2004 to 2013, and it is probable that nowadays the percentage 

of trials that do not report variability would be much lower. 

Third, trials are usually powered to test constant effects and thus the presence of greater variability 

would lead to an underpowered design. In other words, if the control group variance is used to 

plan the trial, increased treatment group variance would reduce power (perhaps leading to non-

publication). 

Fourth, and in relation to the aforementioned limitation, the sample size of the collected studies 

does not provide enough power to detect differences between variances. For this reason, additional 

sensitivity analyses have been proposed (e.g., sensitivity analyses I, II and IV) that take this 

concern into account, reaching similar results. 

Fifth, the heterogeneity observed in the random effects model may be the result of methodological 

inaccuracies arising from typographical errors in data translation, inadequate follow-up, 

insufficient reporting, or even data fabrication58.  

A sixth limitation is that many clinical trials are not completely randomized. For example, 

multicenter trials often use a permuted blocks method. This means that if variances are calculated 

as if the trial were completely randomized (which is standard practice), the standard simple theory 

covering the random variation of variances from arm to arm is at best approximately true54. 

The seventh limitation refers to our selection criteria for collecting articles. Our work focuses only 

on parallel clinical trials and, despite these being the most frequent, we are leaving out other 

designs, such as crossover or cluster trials. Furthermore, trials with quantitative outcome are not 
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comparable to those with binary or time-to-event endpoints. The former, in general, requires a 

lower sample size to detect clinically relevant treatment effects, and it would not be convenient to 

relate a small number of patients with a low-quality study. 

Eighth, the choice of the experimental and reference groups may be controversial in some cases 

where both interventions include active treatments. However, the objectives of the studies in most 

cases dispel this doubt, and conflicts were usually resolved through the consensus of two 

evaluators. 

The ninth limitation refers to the fact that an alternative to subgroup analysis would have been to 

include the subgroup variables as covariates in the models. Even though this is feasible, this option 

could cause some instability in models fitted with so many covariates and, further, the variable 

selection procedure would have exponentially increased the number of models to analyze. 

Finally, the most important limitation of our 

study arises from the fact that, although a 

constant effect always implies homoscedasticity 

on the chosen scale, the reverse is not true; i.e., 

homoscedasticity does not necessarily imply a 

constant effect. For example, the highly specific 

and non-parsimonious situation reflected in 

Figure 40 reveals homoscedasticity but without 

a constant effect. Nevertheless, a constant effect 

is the simplest explanation for 

homoscedasticity. This point is further 

discussed in the next subsection. 

 

 

 

 

5.2.1 Conditions for homoscedasticity without constant effect 

Under an additive model, the relationship between the two potential (𝑌0, 𝑌1) outcomes in each 

group is the following: 

𝑌1 = 𝑌0 + 𝐸            𝐸~𝑁(𝜇𝐸 , 𝜎𝐸) 

Figure 40. Example of homoscedasticity without 

constant effect. 
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With E being the treatment effect. We can devise four situations, which are detailed in the box 

below. 

Relationship between variances according to different scenarios 

 Fixed effect model.  If the treatment effect is constant [𝑉(𝐸) = 0] and independent of the potential outcomes,

the homoscedasticity holds.

𝑉(𝑌1) = 𝑉(𝑌0 + 𝐸) = 𝑉(𝑌0) + 𝑉(𝐸) = 𝑉(𝑌0)

 Random effects model with no correlation between treatment effect and the potential outcome in the

control group.  As 𝜎𝐸
2 is positive, 𝑉(𝑌1) should be larger than 𝑉(𝑌0), implying heteroscedasticity.

𝑉(𝐸) = 𝜎𝐸
2 > 0 → 𝑉(𝑌1) = 𝑉(𝑌0 + 𝐸) = 𝑉(𝑌0) + 𝑉(𝐸) > 𝑉(𝑌0)

 Random effects model with positive correlation between treatment effect and the potential outcome in

the control group. This situation also leads to heteroscedasticity, with 𝑉(𝑌1) > 𝑉(𝑌0)

𝑉(𝐸) = 𝜎𝐸
2 > 0, 𝜌𝑌0,𝐸 > 0 → 𝑉(𝑌1) = 𝑉(𝑌0 + 𝐸) = 𝑉(𝑌0) + 𝑉(𝐸) + 2𝐶𝑜𝑣(𝑌0, 𝐸) > 𝑉(𝑌0)

 Random effects model with negative correlation between treatment effect and the potential outcome in

the control group. Let K be equal to −
𝜎𝐸

2𝜎𝑌0
; then, the following situations can occur:

 Homoscedasticity. 𝑉(𝑌1) = 𝑉(𝑌0)   if  𝜌𝑌0,𝐸 = 𝐾

 Heteroscedasticity with 𝑉(𝑌1) > 𝑉(𝑌0)   if 𝜌𝑌0,𝐸 > 𝐾

 Heteroscedasticity with 𝑉(𝑌1) < 𝑉(𝑌0)  if 𝜌𝑌0,𝐸 < 𝐾

Proof: 

𝑉(𝑌1) = 𝑉(𝑌0 + 𝐸) = 𝑉(𝑌0) + 𝑉(𝐸) + 2𝐶𝑜𝑣(𝑌0, 𝐸) = 𝑉(𝑌0) + 𝑉(𝐸) + 2 · 𝜌𝑌0,𝐸 · 𝜎𝑌0 · 𝜎𝐸

𝑉(𝑌1) = 𝑉(𝑌0)↔𝜎𝐸
2 + 2𝜌𝑌0,𝐸𝜎𝑌0𝜎𝐸 = 0↔ 𝜎𝐸 + 2𝜌𝑌0,𝐸𝜎𝑌0 = 0↔ 𝝆𝒀𝟎,𝑬 = −

𝝈𝑬
𝟐𝝈𝒀𝟎

Thus, under the standard parameterization of an additive effect, the only situation without a 

constant effect but with homoscedasticity has a specific negative correlation (−
𝜎𝐸

2𝜎𝑌0
). For example,

if the variances of the effect and the outcome in the control group are identical, then this negative 

correlation should be -0.5 in order for the assumption to hold. We have proved that we need a very 

specific correlation in order to obtain homoscedasticity without a constant effect. 

5.3 Main conclusions and impact 

We have aimed to show that comparing variances provides evidence on whether or not precision 

medicine is a sensible choice for a specific study. When both arms have equal variances, then a 

simple interpretation is that the treatment effect is constant, which, if correct, would render futile 

any search for predictors of differential response. This means that the average treatment effect can 
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be seen as an individual treatment effect (not directly observable), which supports the use of a 

unique clinical guideline for all patients within the eligibility criteria. This in turn also supports 

using parallel controlled trials to guide decision-making in these circumstances. Otherwise, 

heteroscedasticity may suggest a need to further specify the eligibility criteria or search for an 

additive scale54,69. Because interaction analyses cannot include unknown variables, there might be 

value in repeating trials once any new potential interaction variable emerges (e.g., a new 

biomarker) as a candidate for a new subgroup analysis. However, we should highlight that past 

attempts to corroborate statistically significant subgroup differences have failed because the 

initially observed interactions could not be reproduced19.  

We have described how homoscedasticity can be assessed when reporting trials with numerical 

outcomes, regardless of whether every potential effect modifier is known. As far as we know, no 

studies prior to ours70, compare variances in order to assess the suitability of precision medicine. 

To this date, February 5, 2021, we were aware of 20 publications that had cited our work, most of 

them coming from psychology journals (n=14). Next, we will briefly summarize our contribution 

to these studies, identifying those that use our methodology (n=10) and those that cite us for other 

reasons (n=10).  

Among the studies that emulate our analysis based on the random effects model applied on the 

logarithm of the variance ratio, a recent 2019 meta-analysis71 published in JAMA Psychiatry 

reproduced our method and achieved results similar to ours on 52 RCTs to assess the efficacy of 

antipsychotic drugs in patients with schizophrenia: the estimated average variance ratio (treated 

versus controls) was 0.97 (95% CI 0.95 to 0.99). Therefore, no evidence was found to indicate that 

antipsychotic drugs increased the outcome variance, thus suggesting no personal response to 

treatment but instead indicating that the variance was slightly lower in the treatment group than in 

the control group. Even though it cannot be ruled out that subsets of patients respond differently 

to treatment, it remains possible that the average treatment effect is a reasonable assumption for 

the individual patient. Another meta-analysis performed by Munkhölm et al.72 included 222 RCTs 

assessing antidepressants in patients with major depressive disorder, with at least one group of 

patients receiving placebo. Again, they found no evidence for greater variance overall in the 

antidepressant group compared with placebo (variance ratio=1.00, 95% CI: from 0.98 to 1.01), 

and the heterogeneity among studies was null (𝐼2 = 0%). Again, their findings did not provide

empirical support for individual differences in response to antidepressants. A similar study 

conducted by Plöderl et al.73 explored the need to personalize antidepressant prescriptions in 

patients with depression. Applying the same technique, they found an estimated average variance 

ratio between outcomes equal to 1.01, with a 95% CI from 0.99 to 1.02. Senior et al.74 applied a 
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version of our method using two alternative measures: the log-transformed variability ratio (the 

ratio of two standard deviations) and the log-transformed CV ratio (the ratio of two coefficients of 

variation) under the setting of dependent responses. They found a heterogeneous treatment effect 

for lifestyle interventions on gestational weight gain in obese women and a homogenous treatment 

effect for low-GI diets on glycemic control in diabetics. Mills et al.75 show several methods to 

assess the heterogeneity based on variance comparison both for a single trial when the raw data is 

available and for meta-analyses. They present our methodology as a feasible one in the absence of 

pre-specified effect modifiers. Radua et al.76 performed a meta-analysis to estimate the variance 

ratio at 6 (95% CI 0.89–1.12) and at 12 months (95% CI 0.94–1.25) in treatments for individuals 

at clinical high risk for psychosis. They also found no evidence of greater variance on average in 

any group. In a systematic review of RCTs including participants with psychiatric disorders 

conducted by Winkelbeiner et al.77, an average greater variability in the active stimulation group 

than in the reference arm (variability ratio=1.05; 95% CI, 1.01-1.11) was found. This result might 

indicate that there is a component of variation in the treatment effect due to patient-by-treatment 

or subgroup-by-treatment interaction. In another systematic review, Watson et al.78 studied the 

effect of a pain neuroscience education intervention in order to quantify the inter-individual 

variation in pain, disability and psychosocial outcomes using a random effects meta-analysis. 

Treatment effect heterogeneity could not be proved. Neumeier et al.79 assessed the heterogeneity 

of antipsychotic treatment effects in patients with schizophrenia disorders. In this case, they found 

some variance increase in treated patients with respect to weight gain (1.08; 95% CI: 1.02-1.14) 

and prolactin levels (1.38; 95% CI: 1.17-1.62) outcomes. Finally, the last study to use our methods 

to this date was conducted by Smith et al.80 They did not find significant differences in the pre-

post body weight change variance between the study arms  when comparing Low‐Carbohydrate 

and Low‐Fat Diets. The application of the comparison of variances in all these studies to evaluate 

the heterogeneity of the treatment effect, leads to postulate the proposed methodology as a valid 

procedure to discern whether or not to personalize the treatments. 

Other studies have cited our work to strengthen some of their assertions, especially, in the 

discussion section. In a letter published in Jama Psychiatry, Winkelbeiner et al.81 cited our study 

to argue that different treatment effects might lead to different variances between arms both at 

individual or at subgroup level. Atkinson et al.82 shows that the dichotomization of continuous 

variables in psychological research implies biased conclusions. Based on our findings, they claim 

that any substantial treatment effect heterogeneity that is larger than the heterogeneity in the data 

owing to random within subject variability over time would be revealed if the SD of changes in 

the treatment arm is larger than that in the comparator group. In an editorial of Acta Psychiatrica 
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Scandinavica, Homan et al.83 weighed the benefits of clozapine and regretted that the treatment 

effect heterogeneity is very rarely evaluated or tested, although they know that the presence of 

heterogeneity is scarce. In another article of the same first author84, the investigators (wrongly) 

cited us to justify the lack of a placebo group in their study based on the fact that the outcome 

variability in the treated group would have been greater than the (not observed) variance in a 

placebo group. Feczko et al.85 present several methods for assessing the heterogeneity together 

with their limitations. They urge for the need to evaluate the homogeneity assumption in all the 

clinical studies and they mention the variance comparison as an option to achieve this goal. 

Hieronymus et al.86 in a way, criticize our method by reasoning that similar variabilities do not 

exclude a heterogeneous treatment effect. We guess that this statement is motivated by Figure 40 

(also present in the article derived from this work). As we have already explained, the purpose of 

this illustration is to show how odd this situation is and make it clear to the reader that the most 

plausible cause of homoscedasticity is a constant treatment effect. There are three articles about 

the role of instrumental variables on causal inference that cited our work. Sandu et al.87 propose a 

new two-step randomization analysis to enhance the value of feasibility studies. Among the list of 

limitations, they remark that some assumption to apply the instrumental variables theory might not 

be met since the observed intervention effect could only apply to a specific subgroup of patients 

referring to some scenarios drawn in Figure 1 and Figure 2. Pires et al.88 comment on that these 

assumptions could be empirically checked and give the example that the instrument effect 

heterogeneity would generally imply that treatment is heteroscedastic with respect to the 

instrument. Bowden et al.89 emphasize one limitation of our study, which is that the low number 

of trials with statistically different variances reflect a lack of power to detect these discrepancies, 

which generally require larger sample sizes. Finally, Aron90 in a chapter of the book “Precision 

Medicine and Complexity” stands out that the recent success of personalized medicine might be 

due more to the hype than to scientific evidence. 

There are several reasons why the findings of this work do not invalidate precision medicine. First, 

some studies indicate glaringly different variability in the response, thus indicating the presence 

of a non-constant effect. This heterogeneity might be the result of relevant undetected factors 

interacting with the treatment, which would indeed justify the suitability of precision medicine. 

Second, the outcomes of some types of interventions, such as surgeries, are greatly influenced by 

the skills and training of those administering the intervention. Such situations could have some 

effect on increasing variability. Third, this study focuses on numerical endpoints, for which time-

to-event and categorical outcomes are out of scope. 
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We do not intend to discourage researchers from pursuing precision medicine, but to instead 

encourage them to get a better sense of its potential at the outset. As Senn91 stated, there is room 

for improvement in this field, and any a posteriori inference that subgroups have a better response 

to a specific treatment is a bad idea. On the other hand, the N of 1 trials is somehow a good choice 

for assessing differences between administering the same intervention at various times on the same 

individual, specifically when seeking to compare the data with differences from other drugs that 

are administered the same way. 

Critics of medical protocols developed through classical evidence-based medicine may argue that 

ATE does not imply a constant effect. However, we propose that some evidence is needed to 

indicate that the effect is not constant before advocating for precision medicine (rather than the 

opposite). In summary, medical researchers must be transparent about their premise; and 

statisticians should develop methods to study these premises. 

The contribution of this work to the scientific community is twofold. On the one hand, it is intended 

that researchers do not evade the question of whether the constant effect premise is reasonable in 

the interventions or treatments in their studies. On the other hand, a new methodology is provided 

that has been proven feasible in view of the studies that have cited our article derived from this 

PhD doctoral thesis. 

5.4 Future work 

Future lines of work are divided into 3 main objectives: 

1. To further explore the implications of sample size having a heterogeneous treatment effect

in studies with continuous response.

2. To provide evidence by a literature review to indicate the degree of heterogeneity in

treatments effects from other types of studies, such as crossover RCTs and time-to-event

studies.

3. To propose new techniques for the comparison of variances to test the heterogeneity of the

treatment effect in a single specific study.

The goal of the first objective is to broaden and formally address the topic discussed in Section 

1.3.3. We have already seen that assuming a constant treatment effect when there is none could 

have important implications for the sample size, since this can lead to different variabilities 

between arms. The problem is even greater if the outcome distribution in the experimental group 

is bimodal, where the distribution of the sample mean statistic no longer has the usual variance of 

𝜎/√𝑛, which is derived from the central limit theorem. Therefore, the classic sample calculations 

are invalid. If trialists can anticipate different behaviors among individuals, it is necessary to make 
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assumptions in the study design and take them into account in the sample size calculations in order 

to achieve adequate power. Appendix A contains a first attempt to enumerate several examples 

under different scenarios in which some issues could arise due to a non-constant treatment effect. 

Regarding the second objective, one of the medical fields where personalized medicine plays an 

important role is oncology. Studies seeking evidence in this area often have a time-to-event 

outcome (usually to disease progression or death). It would be interesting to review how the 

variability of the response behaves in both groups and what the implications would be in trials that 

use hazard ratio as a treatment effect measure and that are based on the proportional hazard 

assumption. This would incur additional difficulties, such as the presence of censored times or 

variability not only in the treatment effect among patients but also over time. Dealing with these 

issues is a challenge we want to overcome. 

Finally, because trialists are interested in whether their interventions produce a reasonably constant 

effect on the entire target population, they would thus prefer to test this hypothesis in a single 

study. Being able to verify the heterogeneity of the treatment effect would be a useful tool for 

health administrations to authorize drugs. Currently, aside from subgroup analyses based on pre-

specified variables, no restrictions on heterogeneity are required by drug regulatory agencies. As 

a consequence, it is just as feasible to put on the market a drug with a constant effect as it is to 

authorize a drug with the same average treatment effect but also huge variability and that may even 

be harmful to some patients. Precision medicine is becoming increasingly fashionable due to the 

belief that one specific intervention can produce different responses in each patient. For this 

reason, our aim will be to measure this heterogeneity in a single RCT by following the 

methodology developed in this work, which is based on the comparison of outcome variances. 

This is not a new pursuit, as the extension of the CONSORT reporting guidelines for non-

pharmacological interventions92 requests that the performance of interventionists be reported. 

Rather than describing individual performance or ranking the surgeons, the correct challenge is to 

ascertain how much heterogeneity is added by interventionists. If not us, we would be happy to 

see other researchers explore the clinical acceptability of this alternative way of reporting 

heterogeneity. Some work has already been done in this regard. Caughey et al.93 defined a method 

for finding one-sided confidence intervals based on the idea of the permutations test that Fisher94 

proposed in the last century. Nevertheless, the drawback of these intervals is that they are very 

inaccurate, and adding the information provided by the observed variances could be interesting for 

testing heterogeneity and, subsequently, for prioritizing interventions and treatments that are closer 

to a constant treatment effect. 
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6 Shiny app and R code 

Until the eighteenth century, disciplines based on deductive reasoning adhered to self-contained 

treaties that needed no additional information for self-validation. With the growth of statistics at 

the beginning of the twentieth century, researchers published their results based on data that—

although indispensable for confirming their hypotheses—were not published for different reasons: 

space, privacy, budgetary considerations or perhaps egocentrism. 

In studies with patient data, strict measures should be established to maintain privacy. Regulatory 

agencies have always demanded that clinical trial data be made available, but it was only in the 

past decade that its publication began to be promoted95–97 , although the intended purposes for this 

varied: for comparing results; studying deviations from the protocol (http://compare-trials.org/); 

or allowing others to re-study them with new objectives.  

Given the material and human cost of data collection, greater access can lead to less waste of 

resources98. In this study, we have built an application with the R Shiny package in order to share 

data interactively (see Section 6.1) . In addition, our data has also been made available through the 

Figshare repository: 

https://figshare.com/articles/review_homoscedasticity_clinical_trials_csv/5552656 

6.1 Shiny app 

The main features of the Shiny app we developed for making the data more accessible are 

described in this section. The app is accessible via the following link: 

http://shiny-eio.upc.edu/pubs/F1000_precision_medicine/ 

Shiny is an R package that allows sharing and interacting with data, thus opening up new 

opportunities for statisticians in the Open Data era. This kind of web app allows researchers to 

explore the data in a very simple way while sometimes arriving at new findings, detecting errors 

or discovering abnormalities in the analyses. 

Figure 41 shows a screenshot of the web app’s homepage, which contains a menu for accessing 

the different features. 

http://compare-trials.org/
https://figshare.com/articles/review_homoscedasticity_clinical_trials_csv/5552656
http://shiny-eio.upc.edu/pubs/F1000_precision_medicine/
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Figure 41. Screenshot of the Shiny app homepage. It allows directly accessing the main features. 

The Data tab gives access to the data in a comma-separated value (CSV) format by means of a 

download button or direct visualization of it on the web interface. The latter way also allows 

filtering any of the subgroup variables and performing global or partial searches for any term or 

figure in the entire dataset (Figure 42) 

Figure 42. Screenshot of the Data tab of the Shiny app. Data can be filtered and/or downloaded. 
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The Scatterplots tab (Figure 43) supports building customized scatterplots with the following 

features:  

 Choice of variables represented on each axis (e.g., standard deviations, variances or sample

sizes).

 Choice of the axis scale (additive or logarithmic).

 Choice of a subgroup factor in order to color-code points according to their categories.

 Dynamic filter for selecting studies according to specific characteristics.

In addition, the user can select a certain area on the graphic at the left to zoom in on the right side 

of the screen. If a point is clicked in this last graphic, the corresponding study details (such as the 

article title and other information) are shown at the bottom of the screen. Furthermore, clicking 

the title links the user directly to the published article’s abstract on the PubMed interface.  

Figure 43. Screenshot of the Scatterplots tab of the Shiny app. 

For an example of a completely ad hoc exploratory analysis not conducted in this work, but which 

can be carried out with the Shiny application, we can consider a comparison of variance 

discrepancies over time between both treatment groups. Figure 45 highlights a great correlation 

between these two measures, where the most discordant studies are located in the second and 

fourth quadrants and correspond to pharmacological interventions. Although these findings should 

be taken with caution because they are not pre-specified in advance, they demonstrate how this 

app can serve to generate new hypotheses for future research. 
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Figure 44. Screenshot of the scatterplot representing variance discrepancies over time in treated arm 

versus control arm. 

Finally, as its name suggests, the Funnel plots tab (Figure 45), contains different funnel plot 

graphics. It brings together practically all the characteristics mentioned for the Scatterplots tab and 

can be useful for inquiring about studies with very specific characteristics in a remarkably easy 

way. For example, one can filter by pharmacological trials on chronic diseases. 

Figure 45. Screenshot of the Shiny app’s Funnel plots tab for building customized funnel plots. 



99 

6.2 R code 

The R code used for the random effects model analysis of the published paper related to this work 

can be found on the Zenodo platform by following this link: 

https://doi.org/10.5281/zenodo.123953999. The complete R code for conducting all the analyses 

and generating the figures shown in this work is available at the GitHub repository: 

https://github.com/jordicortes40/constant-effect-RCT 

The GitHub platform is designed to share the code while researchers simultaneously develop it. 

This repository contains four main folders: 

 data. This contains the data collected from the 208 studies involved in this work.

 code. The scripts with the R code for conducting the analyses.

 results_figures. Some of the figures presented in this document

 results_tables. Some of the main tables resulting from this work, in .txt format.

Sections 6.2.1 and 6.2.2 briefly explain the role of each R script contained in the code folder. 

Scripts were run using R version 4.0.1. 

6.2.1 Main scripts 

Each of the main R scripts can be run independently. For example, the script summary_table.R 

produces the table with information on the proportion of studies with a constant effect for each 

analysis, and it runs each of the previous scripts in order to provide this table. Below is a brief 

explanation of each script: 

 read_data. This installs and loads libraries. It also reads and cleans the data.

 descriptive. Descriptive of the dataset containing information on our 208 randomized

clinical trials.

 MA_main_analysis_rma. Main analysis based on random effects models.

 SA_I_heuristic. Sensitivity Analysis I. Heuristic procedure based on removing studies

one by one until achieving negligible heterogeneity.

 SA_II_simulation. Sensitivity Analysis II. Simulation study for determining the

conditions under which the estimations of the random effects model will be obtained.

 SA_III_usual_tests. Sensitivity Analysis III. Based on classic tests for comparing

variances.

 SA_IV_mixture_distribution. Sensitivity Analysis IV. Based on fitting a mixture

distribution to the p-values derived from the previous Sensitivity Analysis III.

 summary_table. Main results of all previous analyses.

https://dx.doi.org/10.5281/zenodo.1239539
https://github.com/jordicortes40/constant-effect-RCT
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6.2.2 Ancillary scripts 

These scripts are called on by the main scripts and contain pieces of code that are placed in separate 

files to facilitate readability, due to their complexity. The names of these scripts along with short 

descriptions are listed below: 

 functions. Ancillary functions used in the main scripts.

 rma_models. Fit of all models for the main analysis.

 subgroups. Subgroup analyses.

 rma_models_reduced_data. Fit of all models for Sensitivity Analysis II.

 SE_validation_BA. Validation of standard errors for the between-arm comparison.

 SE_validation_OT. Validation of standard errors for the comparison over time.

6.2.3 R libraries 

Several R packages were used to carry out the analyses. They are listed below, together with their 

main purpose. 

 data.table. This library allows working with a class of objects (data.table) similar to

data.frames, but with some properties that streamline data handling.

 weights. This is for weighted t-tests, of which we performed some (not shown in this work)

with the aim of comparing their results with those obtained for the main and sensitivity

analyses.

 catspec. For building good tables.

 alabama. For optimizing the log-likelihood in Sensitivity Analysis IV.

 metaphor. For fitting the random effects model.

 epitools. For calculating the odds ratios.

 ggplot2. For plotting good visualizations.

 ggpubr. For arranging several ggplots in a single window with ggarrange.

 gridExtra. For arranging several ggplots in a single window with grid.arrange.

 bootstrap. For estimating the confidence interval for Kendall’s τ statistic.

Funding 

This research was partially funded by the Ministerio de Ciencia e Innovación (Spain) (PID2019-

104830RB-I00), the Ministerio de Economía y Competitividad (Spain) (MTM2015-64465-C2-1-

R (MINECO/FEDER)), the Ministerio de Ciencia e Innovación y Universidades (PID2019-

104830RB-I00) and the Departament d’Economia i Coneixement de la Generalitat de Catalunya 

(Spain) (2017 SGR 622 (GRBIO)).  



101 

Appendix A: Sample size in studies with quantitative outcome: scenarios 

Special attention should go to sample size in when designing RCTs. If the number of patients 

exceeds that which is required, the trial will be unnecessarily expensive and prolonged, due to 

exposing an unnecessary number of patients to a less efficacious drug. In contrast, if this number 

is too small, the study will lack power for detecting real treatment effects by statistical methods. 

In that case, the voluntary participation in any trial will have been in vain. A researcher should 

strike a balance between enrolling enough participants for detecting relevant differences and not 

having too many patients that resources are wasted unnecessarily. The consideration of whether 

the treatment effect is constant or not should be borne in mind. The usual sample size rationale 

specified by statisticians in RCTs includes a single parameter (without specifying its variability) 

that quantifies the desirable treatment effect. Consequently, there is a premise of a constant and 

unique effect that agrees with the clinical and legal interpretations that the benefit is the same for 

all the patients fulfilling the eligibility criteria – or at least similar enough to be considered 

homogeneous. Thus, as only a single effect is specified in most RCTs, the assumption that the 

ACE equals the single unit effect underlies the rationale behind the sample size calculation.  

As an example, 10 protocols of RCTs published in the journal Trials in October 2017100–109 (Table 

S - 1) and 10 RCTs published in NEJM  in June/July 2017110–119 (Table S - 2) provide a unique 

effect in the sample size calculation. Although many of these studies do not deal with quantitative 

response variables, the examples could be extrapolated to our context. For example, many of these 

trials refer to “a reduction of some adverse event of X%” in the treated group or to a “change of X 

points in some measurement scale”; but in no case do they mention whether a different effect 

should be considered among different patients. 

Table S - 1. Ten RCT protocols published in October 2017 in the journal Trials. The last column (Sample 

size explanation) includes the paragraph in the statistical analysis section, which specified the sample size 

calculation. Specific sentences that denote a constant treatment effect are highlighted in bold. 

Date Title Sample size explanation 

Oct 

23 

A multi-centre randomised trial to 

compare the effectiveness of 

geriatrician-led admission 

avoidance hospital at home versus 

inpatient admission 

Our proposed study effect estimate is based on a control group 

(inpatient admission) event rate at 12 months of 50% living in a 

residential setting, with a 10% reduction to 40% in the admission 

avoidance hospital at home group, equal to a relative risk of 0.8 



102 

Oct 

30 

SCORE: Shared care of Colorectal 

cancer survivors: protocol for a 

randomised controlled trial 

Evidence of a substantial detriment associated with shared care as 

measured by a reduction of 0.6 (or worse) on a patient-reported 

outcome measure would be detected with 80% power (at the 2.5% 

one-sided level of significance) 

Oct 

23 

Efficacy of inhaled HYdrogen on 

neurological outcome following 

Brain Ischemia During post-cardiac 

arrest care (HYBRID II trial): study 

protocol for a randomized 

controlled trial 

On the basis of published data […] and assumed that the absolute 

risk reduction by HI is 15%; that is, the favourable neurological 

outcome rate improves from 50% to 65% with HI. A sample size of 

167 patients in each group will provide 80% power to detect a 15% 

change in the proportion of good neurological outcomes (CPCs of 1 

and 2), from 50% to 65%, 

Oct 

25 

Neoadjuvant everolimus plus 

letrozole versus fluorouracil, 

epirubicin and cyclophosphamide 

for ER-positive, HER2-negative 

breast cancer: study protocol for a 

randomized pilot trial 

Because of the exploratory nature of this study, statistical power was 

not calculated to assess specific study outcomes […]. This sample 

size calculation was developed in accordance with the 

recommendations by previous reports on sample size 

determination for pilot studies. 

Oct 

27 

Long-term Effects of high-doSe 

pitavaStatin on Diabetogenicity in 

comparison with atorvastatin in 

patients with Metabolic syndrome 

(LESS-DM): study protocol for a 

randomized controlled trial 

The sample size was calculated by assuming an expected difference 

of 0.2% in hemoglobin A1c change between the groups and a 

population variance of 0.5%, based on previous studies. 

Oct 

26 

Safety of tubal ligation by 

minilaparotomy provided by 

clinical officers versus assistant 

medical officers: study protocol for 

a noninferiority randomized 

controlled trial in Tanzanian 

women 

Assuming a 3% major AE rate in the control group (AMOs), we will 

demonstrate noninferiority within the margin of 2% at a one-sided 

significance level of α = 0.05 and a power of 80% (calculated when 

AE rates in both arms are the same) with a sample size of 895 per arm 

(1790 women in total). 

Oct 

27 

Improving oxygen therapy for 

children and neonates in secondary 

hospitals in Nigeria: study protocol 

for a stepped-wedge cluster 

randomised trial 

Based on an alpha of 5%, we calculated that we would have 

approximately 80% power to detect a 35% reduction in pneumonia 

case fatality rate (6.1% to 4%), and 90% power to detect a 20% 

reduction in neonatal case fatality rate (8.2% to 6.6%) 

Oct 

27 

The effects of exercise on the quality 

of life of patients with breast cancer 

(the UMBRELLA Fit study): study 

protocol for a randomized 

controlled trial 

[…] we assume a 6-point increase in QoL in the control group and a 

16-point increase in the intervention group […]. As a result, we

estimate a mean improvement of 13 points in the intervention 

group ((70*16 + 30*6)/100 = 13) instead of 16 points and a mean 

improvement of 6 points in the control group. 
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Oct 

30 

Targeting low- or high-normal 

Carbon dioxide, Oxygen, and Mean 

arterial pressure After Cardiac 

Arrest and REsuscitation: study 

protocol for a randomized pilot trial 

In a previous, small RCT, the use of 30% FiO2, compared with 100% 

FiO2, resulted in approximately 50% increase of NSE values at 48 h in 

the subset of patients treated with hypothermia. Assuming this 

previous finding, a study with 39 patients in each arm would have a 

power of 80%, with the significance set at 0.05, to detect a 50% 

increase in NSE. 

Oct 

24 

A randomised controlled trial 

assessing the severity and duration 

of depressive symptoms associated 

with a clinically significant 

response to sertraline versus 

placebo, in people presenting to 

primary care with depression 

(PANDA trial): study protocol for a 

randomised controlled trial 

The results from previous metaanalyses suggest that the effect size of 

SSRIs versus placebo is about an 11% reduction in the Hamilton 

Rating Scale for Depression (HAM-D) score […] Our best estimate of 

the minimal clinically important difference (MCID) from the PANDA 

cohort study is that this corresponds to a 14 percentage points (95% 

CI 10 to 17 percentage points) reduction in score on the PHQ-9 

[…] Therefore giving the power for effect sizes of 11 and 14 

percentage points is reasonable and conservative in the light of the 

confidence limits and the previous results from the systematic review. 

Table S - 2. Calculation of the sample size assuming a constant effect in 10 RCTs published in the NEJM 

during June/July 2017. 

Date Title Sample size explanation 

Jun 

22 

Efficacy of Recombinant 

Influenza Vaccine in Adults 

50 Years of Age or Older 

The sample size required to provide 80% power to show the noninferiority of 

relative vaccine efficacy was 4257 participants per treatment group, assuming 

influenza attack rates of 1.6% in the RIV4 group and 2.0% in the IIV4 

group 

Jun 

22 

Cluster-Randomized, 

Crossover Trial of Head 

Positioning in Acute Stroke 

We estimated that at least 100 patients with acute ischemic stroke would need 

to be assigned to a head position at each hospital (i.e., 50 patients per 

intervention phase [or “period”]) across 120 centers (a total of 12,000 

patients) for the study to have 90% power to detect a 16% or greater 

relative shift in levels of disability outcome between intervention groups at 

90 days in the ordinal logistic-regression analysis, at an 

alpha level of 0.05 

Jun 

22 

Oral Glucocorticoid–Sparing 

Effect of Benralizumab in 

Severe Asthma 

We estimated that 70 patients per group would be required for the trial to 

detect a difference in the primary end point between each benralizumab group 

and the placebo group with 86% power by means of a Wilcoxon rank-sum 

test with a two-sided level of 5%. Our estimation was based on simulations 

that used data from the Steroid Reduction with Mepolizumab Study 

(SIRIUS), which yielded a median percentage reduction from baseline of 

50% in the glucocorticoid dose in the active-treatment group, as compared 

with no reduction in the placebo group. 

Jun 

22 

First-Line Nivolumab in 

Stage IV or Recurrent Non–

Small-Cell Lung Cancer 

The sample-size estimation for the primary efficacy analysis population 

(patients with PDL1 expression level of ≥5%) was based on expected median 

progression-free survival of 7 months in the chemotherapy group and an 

overall HR for disease progression or death of 0.71 favoring nivolumab. 
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Jun 

29 

Thyroid Hormone Therapy 

for Older Adults with 

Subclinical Hypothyroidism 

[…] provided the trial with 80% power to detect a change with levothyroxine 

treatment (vs. placebo) of 3.0 points on the Hypothyroid Symptoms score 

and 4.1 points on the Tiredness score with our revised maximum expected 

number of recruited participants of 750, with changes of 3.5 points and 4.9 

points, respectively, with our minimum expected number of 540 participants. 

Jun 

29 

Trial of Electrical Direct-

Current Therapy versus 

Escitalopram for Depression 

The sample size was estimated on the basis of results from our previous 

study, the Sertraline versus Electrical Current Therapy for Treating 

Depression Clinical Study (SELECT-TDCS), with the use of an attrition rate 

of 13% and a noninferiority margin of 50% of the comparative efficacy of 

placebo versus escitalopram. The noninferiority margin was based on our 

hypothesis that tDCS would be associated with at least 50% of the 

difference in efficacy of escitalopram as compared with placebo 

Jun 

29 

A Placebo-Controlled Trial 

of Antibiotics for Smaller 

Skin Abscesses 

The trial was designed as a superiority trial with 80% power to detect a 10-

percentage-point absolute difference in cure rates (e.g., 85% vs. 95%) 

among the three study groups in the population that could be evaluated. 

Jul 

6 

Treatment of Endometriosis-

Associated Pain with 

Elagolix, an Oral GnRH 

Antagonist 

We calculated that the enrollment of 875 women in Elaris EM-I and 788 in 

Elaris EM-II (with the latter adjusted according to the withdrawal rate in 

Elaris EM-I) would provide a power of more than 90% to determine the two 

primary end points in each trial, assuming response rates of 55% in each 

elagolix group and 29% in the placebo group, at a two-sided alpha level of 

0.025. 

Jul 

13 

Adjuvant Pertuzumab and 

Trastuzumab in Early HER2-

Positive Breast Cancer 

The trial was designed to have 80% power to detect a hazard ratio of 0.75 at 

a 5%, two-sided significance level 

Jul 

13 

Follow-up of Prostatectomy 

versus Observation for Early 

Prostate Cancer 

We revised our sample on the basis of estimates that 740 men enrolled over a 

period of 7 years, with an additional 8 years of follow-up, would provide 91% 

power to detect a 25% relative reduction in all-cause mortality, assuming a 

median survival of 10 years [Paragraph from the original study] 

In a study that expects a non-constant treatment effect among patients, an additional parameter 

considering this variability would be necessary, since the distribution of the sample mean would 

be affected. The omission of such information indicates that such a treatment effect is expected to 

be homogeneous. An example of the wording in a sample size calculation that assumes certain 

variability would be: "N patients are needed to detect a mean change of X in the primary endpoint, 

with a standard deviation of the treatment effect equal to Y" 

The following parts of this appendix are a modest attempt to exemplify the underlying problem of 

how variability in the intervention effect could condition sample size. No complete formal 

development is included, and we intend only to illustrate the fact that different casuistic errors 

occur when beginning with different situations with common features (for example, the Average 
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Treatment Effect [ATE] equals 1). Ignoring them leads to other errors of several magnitudes. We 

considered four possible scenarios: 

A. Constant treatment effect. Equivalent to panel B of Figure 1. 

B. Constant treatment effect with interaction. Equivalent to panels C and E of Figure 2. 

C. Constant treatment effect with interaction and different baseline characteristics. This 

creates a new scenario with no equivalence, as seen in Figure 1 and Figure 2. 

D. Random treatment effect. Equivalent to panel D in Figure 2. 

Figure S - 1. Four hypothetical scenarios for calculating sample size. 

 

Figure S - 1 represents these situations. In all of them, we consider that the distribution of the 

potential outcome in the control arm (YC, at left in the four graphs) has an expected null value and 

an overall variance equal to 1. In addition, the Average Treatment effect (ATE) equals 1 in all 

scenarios. In the following pages, the required sample size for detecting a difference in means 

between arms (balanced) of one unit (population difference) with a probability of a one-side type 
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I error of α=0.05 and power of 80% was calculated for each of the scenarios. We will discuss what 

considerations should be taken into account in each case and what would occur by ignoring them. 

Scenario A: Constant effect 

The usual sample size formula for a mean comparison between two populations is120: 

𝑛 =
2𝜎2 · (𝑍1−𝛼/2 + 𝑍1−𝛽)

2

Δ2

where n is the sample size in each group; 𝜎2 is the outcome variance; α and β are the probabilities

of Type I and Type II errors, respectively; and Δ is the average (constant in this case) population 

treatment effect for which we want a specific power (1 − 𝛽) to detect it. As we will see, the key 

point in that formula is the determination of the outcome variance (𝜎2)

In order to simplify the problem, we have chosen very simple values for the indicators of the 

distributions of the potential responses. The following expected values and variances for the 

outcome are assumed in the treated (T) and control (C) arms: 

𝐸[𝑌𝐶] = 0  ;   𝑉[𝑌𝐶] = 1

𝐸[𝑌𝑇] = 1  ;   𝑉[𝑌𝑇] = 1

Under this setting, the derivation of the needed sample size for each group (n) does not present 

any complication and can be directly obtained by applying the above formula: 

𝑛 =
2 · 12 · (1.96 + 0.84)2

12
≈ 16 

Scenario B: Effect Interaction with same baseline characteristics 

In this setup, there are two subpopulations (e.g., men (M) and women (W)), each one with different 

treatment effects (Δ) of the intervention (constant treatment effect within the population). Again, 

we have chosen plain values that meet the constraint that the average treatment effect is 1: 

Δ𝑀 = 0  ;  Δ𝑊 = 2

Assuming Normality for both subpopulations in the control (C) arm, the distributions of the 

outcome in the treated (T) arm are also Normal with the same variance but different expected 

values: 

𝑌𝐶
𝑀~𝑁(𝜇 = 0, 𝜎2 = 1)   ;   𝑌𝑇

𝑀~𝑁(𝜇 = 0, 𝜎2 = 1)

𝑌𝐶
𝑊~𝑁(𝜇 = 0, 𝜎2 = 1)   ;    𝑌𝑇

𝑊~𝑁(𝜇 = 2, 𝜎2 = 1)

The overall variance of the outcome in the control arm is lower than in the experimental arm. That 

is, assuming the same proportion (0.5) of men and women, the overall variance in the treated arm 

doubled the one in the control arm: 
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Proof 

𝐸[𝑌𝑇] = 0.5 · 𝐸[𝑌𝑇
𝑀] + 0.5 · 𝐸[𝑌𝑇

𝑊] = 0.5 · 0 + 0.5 · 2 = 1

𝐸[(𝑌𝑇
𝑀)2] = 𝑉[𝑌𝑇

𝑀] + 𝐸[𝑌𝑇
𝑀]2 = 1 + 02 = 1

𝐸[(𝑌𝑇
𝑊)2] = 𝑉[𝑌𝑇

𝑊] + 𝐸[𝑌𝑇
𝑊]2 = 1 + 22 = 5

} → 𝐸[𝑌𝑇
2] = 0.5𝐸[(𝑌𝑇

𝑀)2] + 0.5𝐸[(𝑌𝑇
𝑊)2] = 0.5 · 1 + 0.5 · 5 = 3

𝑉[𝑌𝑇] = 𝐸[𝑌𝑇
2] − 𝐸[𝑌𝑇]

2 = 3 − 12 = 2

Although the real variance doubled the expected one in the presence of this interaction, the 

variance of the sample mean random variable is not 2/𝑛, as anyone could expect if the Central 

Limit theorem is applied, but it is the same as in the constant effect scenario: 

𝑉[�̅�𝑇] = 𝑉 [
𝑌𝑇1
𝑀 + 𝑌𝑇2

𝑀 +⋯+ 𝑌𝑇𝑛/2
𝑀 + 𝑌𝑇1

𝑊 + 𝑌𝑇2
𝑊 +⋯+ 𝑌𝑇𝑛/2

𝑊

𝑛
] =

1

𝑛2
· [𝑛/2 · 𝑉[𝑌𝑀] + 𝑛/2 · 𝑉[𝑌𝑊]]

=
1

𝑛2
·
𝑛

2
· [𝑉[𝑌𝑀] + 𝑉[𝑌𝑊]] =

1

2𝑛
· (1 + 1) =

1

𝑛
= 𝑉[�̅�𝐶]

Thus, provided that the averaged effect remains constant in respect to the constant effect scenario, 

the required sample size would be the same independently of the level of interaction and its 

magnitude.  

Table S - 3 shows different situations according to researcher behavior. Basically, the researcher 

should make two decisions: 1) how much variability to consider in the sample size calculation and 

2) whether to include an interaction term in the model for the analysis. From what we have seen,

the correct choices would be 1) to choose the overall variability derived from the control group 

and 2) to consider the interaction term within the model as it actually exists. Therefore, the best 

decision (second row of the table completely in green) under this setting consists of 1) estimating 

the outcome variance from the control group (usual approach) and 2) conducting the analysis while 

taking into account the interaction. If the researcher takes into account the variability of the control 

group but does not include the interaction (first row), then the excess variability of the 

experimental group produced by the interaction will lead to a loss of power in the analysis. On the 

other hand, if trialists take into account the overall variances of both treatment arms (3rd and 4th 

row) based on previous studies, it can have several consequences, all of them undesirable. Not 

considering the interaction term (3rd row) would provide a well-powered study but with an 

unrealistic estimated treatment effect for any of the sex subgroups. Furthermore, the sample size 

would be larger than under the correct choice scenario. Finally, if the interaction in the model (4th 

row) is considered, the variability within each sex subgroup would be artificially inflated and lead 

to a study with a power that is higher than desired.  
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Table S - 3. Power analysis according to researcher behavior under the interaction setting. T: Treatment S: 

Sex covariate 

Researcher behavior 

Power 

𝝈𝟐 used in sample size formula Model Analysis 

Based on the overall variance of the 

control group 

𝑌~𝑇 + 𝑆 Underpowered 

𝑌~𝑇 ∗ 𝑆 Well powered 

Based on the overall variances of 

the control and experimental groups 

𝑌~𝑇 + 𝑆 Well powered 

𝑌~𝑇 ∗ 𝑆 Overpowered 

Scenario C: Effect Interaction with different baseline characteristics 

We deal with the situation that the expected values and variances in both arms are known but the 

baseline characteristics differ between two subpopulations (e.g, M and W). Therefore, the outcome 

distribution in the control arm also differs between them. We will assume that the distributions of 

the potential outcomes in both strata of the control (C) group are:  

𝑌𝐶
𝑀~𝑁(𝜇 = 0.8, 𝜎2 = 0.36)   ;   𝑌𝐶

𝑊~𝑁(𝜇 = −0.8, 𝜎2 = 0.36)

It is easy to demonstrate that the expected value and variance for the overall population is identical 

to the previous scenarios if men and women are distributed 50/50 in both groups. 

𝐸[𝑌𝐶] = 0  ;   𝑉[𝑌𝐶] = 1

Proof 

𝐸[𝑌𝐶] = 0.5 · 𝐸[𝑌𝐶
𝑀] + 0.5 · 𝐸[𝑌𝐶

𝑊] = 0.5 · 0.8 + 0.5 · (−0.8) = 0

𝐸[(𝑌𝐶
𝑀)2] = 𝑉[𝑌𝐶

𝑀] + 𝐸[𝑌𝐶
𝑀]2 = 0.36 + 0.82 = 1

𝐸[(𝑌𝐶
𝑊)2] = 𝑉[𝑌𝐶

𝑊] + 𝐸[𝑌𝐶
𝑊]2 = 0.36 + 0.82 = 1

} → 𝐸[𝑌𝐶
2] = 0.5(𝐸[(𝑌𝐶

𝑀)2] + 𝐸[(𝑌𝐶
𝑊)2]) = 0.5(1 + 1) = 1

𝑉[𝑌𝐶] = 𝐸[𝑌𝐶
2] − 𝐸[𝑌𝐶]

2 = 1 − 02 = 1

The values for the distributions in the control group and the effects are chosen so that the averaged 

effect would be 1 and the outcome variance remains constant (𝑉[𝑌𝑇] = 1) in the overall

experimental arm. Keeping this in mind, the following constant effects for each subpopulation are 

considered: 

Δ𝑀 = −0.6  ;   Δ𝑊 = 2.6

Thus, the potential outcomes in the Treated (T) group are: 

𝑌𝑇
𝑀~𝑁(𝜇 = 0.2, 𝜎2 = 0.36)  ;   𝑌𝑇

𝑊~𝑁(𝜇 = 1.8, 𝜎2 = 0.36)

If someone tries to find statistical differences in means between the treated and control arms 

without taking into account the two subpopulations, the sample size required should be based on 
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the variance of the mixture distributions (i.e., 𝜎2 = 1). Then, the sample size (n) required for each

group in this scenario should be based on the sample mean random variables and the differences 

between them with following distributions: 

�̅�𝑇~𝑁(𝜇 = 1, 𝜎
2 = 1/𝑛)

�̅�𝐶~𝑁(𝜇 = 1, 𝜎2 = 1/𝑛)

However, the real variance of the sample mean random variable in the control arm is derived as 

follows: 

𝑉(�̅�𝐶) = 𝑉 [
𝑌𝐶1
𝑀 + 𝑌𝐶2

𝑀 +⋯+ 𝑌𝐶𝑛/2
𝑀 + 𝑌𝐶1

𝑊 + 𝑌𝐶2
𝑊 +⋯+ 𝑌𝐶𝑛/2

𝑊

𝑛
] =

1

𝑛2
· [𝑛/2 · 𝑉[𝑌𝑀] + 𝑛/2 · 𝑉[𝑌𝑊]]

=
1

𝑛2
· 𝑛/2 · [𝑉[𝑌𝑀] + 𝑉[𝑌𝑊]] =

1

2𝑛
· 2 · 0.36 =

0.36

𝑛

In a similar way, it can be seen that the variance for the sample mean random variable in the treated 

arm is the same, and, therefore the variance of the mean difference and its distribution is: 

𝑉[�̅�𝑇 − �̅�𝐶] =
2 · 0.36

𝑛

�̅�𝑇 − �̅�𝐶~𝑁(𝜇 = 1, 𝜎
2 = 0.72/𝑛)

If the researcher is able to anticipate this interaction, the required sample size would be: 

𝑛 =
2 · √0.72 · (1.96 + 0.84)2

12
≈ 14 

Table S - 4 shows the consequences for power and sample size based on researcher’s decisions. In 

this setting, the usual approach represented in the second row of the table entails a non-desirable 

overpowered design with a larger sample size than the one actually needed. The variability of the 

statistic of the sample mean required in the third and fourth rows of the table should be calculated 

by taking into account the a priori subgroups involved in the interaction. 

Table S - 4. Power analysis according to researcher behavior under interaction setting according to baseline 

characteristics. T: Treatment effect; S: Sex covariate. 

Researcher behavior 

Power 

𝝈𝟐 used in sample size formula Analysis 

Based on the overall variance of the 

control group 

𝑌~𝑇 + 𝑆 Well powered 

𝑌~𝑇 ∗ 𝑆 Overpowered 

Based on the real variance of the 

sample mean statistic of the control 

group 

𝑌~𝑇 + 𝑆 Underpowered 

𝑌~𝑇 ∗ 𝑆 Well powered 
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Scenario D: Random effect 

We deal here with the case that there are no subpopulations that differ from each other, that the 

treatment effect (Δ) is specific for each individual, and that Δ is distributed according to a Normal 

distribution with the following expected value and variance: 

𝑌𝐶~𝑁(𝜇 = 0, 𝜎
2 = 1)  ;   Δ~𝑁(𝜇 = 1, 𝜎2 = 1)

The potential outcome in the Treated (T) group is directly deducted:  𝑌𝑇~𝑁(𝜇 = 1, 𝜎
2 = 2)

Both the outcome variance and the sample mean variance in the treated group are inflated, and this 

should be contemplated in the sample size. With unequal variances between arms, the sample size 

is the minimum n that meets the inequality121:  

𝑛𝐶 ≥
(
𝑠𝑇
2

𝐴 + 𝑠𝐶
2) · (𝑡

𝑑𝑓,1−
𝛼
2
+ 𝑡𝑑𝑓,1−𝛽)

2

Δ2

where A is the ratio between sample sizes in both groups  (𝑛𝑇/𝑛𝐶) and is the optimal sample size

ratio equal to the ratio of standard deviations. Therefore: 

𝑛𝐶 ≥

(
𝑠𝑇
2

𝑠𝑇
𝑠𝐶

+ 𝑠2
2) · (𝑡

𝑑𝑓,1−
𝛼
2
+ 𝑡𝑑𝑓,1−𝛽)

2

Δ2
=
(
𝑠𝑇
𝑠𝐶
+ 𝑠𝐶

2) · (𝑡
𝑑𝑓,1−

𝛼
2
+ 𝑡𝑑𝑓,1−𝛽)

2

Δ2

=
(2 + 1) · (𝑡

𝑑𝑓,1−
𝛼
2
+ 𝑡𝑑𝑓,1−𝛽)

2

12
= 3 · (𝑡

𝑑𝑓,1−
𝛼
2
+ 𝑡𝑑𝑓,1−𝛽)

2

The required sample size is 𝑛𝐶 = 25 and 𝑛𝑇 = 50. Table S - 5 contains the results of several 

strategies in the design and analysis phases of the trial. Again, the most common decision (second 

row of Table S - 5) entails a non-desirable underpowered design with a sample size lower than the 

one that is actually needed. 

Table S - 5. Power analysis according to researcher behavior in a random treatment effect setting. T: 

Treatment effect. 

Researcher decision 

Power 

𝝈𝟐 used in sample size formula Analysis 

Based on the variance of the control 

group 

𝑌~𝑇  𝜎𝑇 = 0 (𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡) Under or overpowered 

𝑌~𝑇  𝜎𝑇 > 0 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡) Underpowered 

Based on the variance of the control 

and the random effect 

𝑌~𝑇  𝜎𝑇 = 0 (𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡) Overpowered 

𝑌~𝑇  𝜎𝑇 > 0 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡) Well powered 
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Sample size calculations in all scenarios 

Table S - 6 summarizes all the abovementioned scenarios. The purpose of these illustrations 

through numerical examples was not to make a formal study of the entire spectrum of situations 

that may arise, but to illustrate a non-trivial issue: the presence of a non-constant treatment effect 

has relevant implications for the sample size calculation and should not be neglected. The fact that 

RCTs are looking for differences in the population means does not remove this problem. 

Table S - 6. Summary results of power analysis under each scenario. 

Scenario 

Sample size 

Power assuming 

constant effect 

Correct 

calculation 

Calculation assuming 

constant effect 

Control 

group 

Treated 

group 

Control 

group 

Treated 

group 

Constant effect 16 16 

16 16 

Well powered 

Interaction 16 16 Well powered 

Interaction with different 

characteristics 
14 14 Overpowered 

Random effect 25 50 Underpowered 
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Appendix B: Reporting uncertainty 

Some collected studies did not report the standard deviation (S) or the variance (S2) of the primary 

endpoint. Instead, they reported standard errors or confidence intervals. This appendix explains 

how the standard deviations were obtained in these cases.  

Studies that report standard errors 

The estimated standard error (SE) of the mean is defined as: 

𝑆�̂� =
𝑆

√𝑛
→ 𝑆 = 𝑆�̂� ⋅ √𝑛

Example: In the study by Yancy et al.122, they report the SE for the primary endpoint (pH) at baseline (week 

0) and at the end of the follow-up (week 24).

Table S - 7 summarizes how we transform the standard errors in standard deviations using the 

formula above. 

Table S - 7. Example of calculating S from SE. 

Moment Group N SE S 

Baseline 

(week 0) 

Control (LFD) 12 0.006 𝑆 = 0.006 ⋅ √12 = 0.02 

Intervention (LCKD) 27 0.004 𝑆 = 0.004 ⋅ √27 = 0.02 

End of follow-up 

(week 24) 

Control (LFD) 12 0.009 𝑆 = 0.009 ⋅ √12 = 0.03 

Intervention (LCKD) 27 0.006 𝑆 = 0.006 ⋅ √27 = 0.03 

Studies that report confidence intervals 

The (1-α)% confidence interval of the population mean from one sample is defined as: 

𝐼𝐶(1 − 𝛼, 𝜇) = �̅� ∓ 𝑡0.975,𝑛−1
𝑆

√𝑛
= �̅� ∓ 𝛿 → 𝑆 =

𝛿 ⋅ √𝑛

𝑡0.975,𝑛−1

Example: In the study by McManus123, they report the 95% confidence interval for the primary 

endpoint (systolic blood pressure) at baseline (month 0) and at the end of the follow-up (month 

12). Table S - 8 summarizes how we transform the 95% CIs in standard deviations using the 

formula above. 



113 

Table S - 8. Example of calculating S from 95% confidence interval. 

Moment Group N 95% CI S 

Baseline 

(month 0) 

Control  

(self-management) 
264 (150.3 to 153.3) 𝑆 =

1.5 ⋅ √264

1.97
= 12.38 

Intervention  

(tele-monitoring) 
263 (150.6 to 153.6) 𝑆 =

1.5 ⋅ √263

1.97
= 12.35 

End of follow-up 

(month 12) 

Control  

(self-management) 
246 (138.0 to 142.2) 𝑆 =

2.1 ⋅ √246

1.97
= 16.72 

Intervention  

(tele-monitoring) 
234 (132.6 to 137.1) 𝑆 =

2.25 ⋅ √234

1.97
= 17.47 
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Appendix C: Medical specialties 

Table S - 9 shows the frequency and percentage of the medical fields pertaining to the collected 

articles, according to WoS.  

Table S - 9. Medical fields according to WoS criteria for the collected studies. 

Medical field N % Medical field N % 

General & Internal Medicine 31 14.9 Sport Sciences 5 2.4 

Nutrition & Dietetics 21 10.1 Surgery 5 2.4 

Endocrinology & Metabolism 19 9.1 Anesthesiology 3 1.4 

Cardiovascular System & Cardiology 16 7.7 Gastroenterology & Hepatology 3 1.4 

Dentistry, Oral Surgery & Medicine 14 6.7 Integrative & Complementary Medicine 3 1.4 

Neurosciences & Neurology 14 6.7 Nursing 3 1.4 

Pharmacology & Pharmacy 13 6.3 Public, Environmental & Occupational Health 3 1.4 

Psychiatry 12 5.8 Reproductive Biology 3 1.4 

Ophthalmology 11 5.3 Dermatology 2 1.0 

Health Care Sciences & Services 9 4.3 Science & Technology - Other Topics 2 1.0 

Orthopedics 9 4.3 Allergy 1 0.5 

Pediatrics 9 4.3 Biomedical Social Sciences 1 0.5 

Obstetrics & Gynecology 7 3.4 Engineering 1 0.5 

Psychology 7 3.4 Immunology 1 0.5 

Rehabilitation 7 3.4 Mathematics 1 0.5 

Respiratory System 6 2.9 Microbiology 1 0.5 

Rheumatology 6 2.9 Otorhinolaryngology 1 0.5 

Urology & Nephrology 6 2.9 Physiology 1 0.5 

Geriatrics & Gerontology 5 2.4 Research & Experimental Medicine 1 0.5 

Oncology 5 2.4 Transplantation 1 0.5 

Prior to this classification, Erik Cobo (EC), José Antonio González (JAG) (the supervisors of this 

work), and Jordi Cortés (JC) classified these articles. In a first round, EC and JC classified while 

blinded to each other; they matched 127 out of 208 articles to a specific medical field. In the 

remaining 81 articles, JAG decided between two discordant medical categories. The concordance 

between the classifications that we and WoS ultimately assigned is shown in Table S - 10.  
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Table S - 10. Concordance of medical field between researchers’ allocation and WoS classification. 
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Cardiovascular 15 2 6 2 1 1 7 3 1 38 3 1 42 

Dermatology 2 2 1 1 6 6 

Endocrinology 14 4 1 1 1 5 1 27 1 1 29 

Gastroenterology 2 1 1 4 4 

General medicine 1 1 2 3 5 

Gynecology 1 1 4 5 

Hematology 1 1 1 

Nephrology 1 3 4 2 6 

Odontology 13 13 1 14 

Oncology 1 1 1 3 4 7 

Ophthalmology 1 10 2 13 1 14 

Otolaryngology 0 1 1 

Pediatric 1 1 2 3 5 

Pneumology 1 1 2 4 5 9 

Psychology/ 

Psychiatry/Neurology 1 2 1 5 7 1 3 1 21 8 1 30 

Rheumatology/ 

Traumatology 1 4 3 1 1 1 1 1 1 2 16 13 1 30 

Grand Total 15 2 18 2 24 3 4 13 1 10 4 2 5 7 2 4 1 4 3 2 16 1 6 1 2 2 1 155 48 4 208 
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Appendix D: Concordance between both comparisons 

We wanted to analyze the concordance between both criteria to detect an increase in the outcome 

variance of the comparisons between arms (treated vs. control) and over time in the treated group 

(outcome vs. baseline). The hypothesis behind this analysis was that a true increase in the 

variability of the treated group’s outcome variance should be detected in both comparisons. 

Concordant studies would be more suspect of having a non-constant effect, and discordant studies 

deserve a deeper analysis to explore the existence of some methodological impurities, which will 

be commented on Section 4.1. However, this latest and more qualitative scrutiny was outside the 

scope of this work and, thus, we did not formally address it. Figure S - 2 combines the information 

from both comparisons. Although most of the studies were distributed in a random way around 

the point (1,1) of perfect concordance, the Pearson correlation coefficient is 0.74. However, 

Spearman’s correlation coefficient is more appropriate due to the presence of outliers, and it was 

equal to 0.36, which can be considered a mild correlation. Since the regression line passes through 

the origin of the logarithmic scale (1,1), the usual correlation coefficients can serve the purpose of 

measuring agreement, provided that the variances of the two involved measures have similar 

magnitude. 

Figure S - 2. Variance discrepancy between arms vs. over time. Colors indicate the availability of the 

information from the over-time model. Point size is proportional to the precision of each study. The 

dashed blue line is the linear regression fitted to all the points. 
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Table S - 11 shows a summary of the concordance between both comparisons dichotomized 

according to their statistical significance in the random effects models. 

Table S - 11. Concordance between both comparisons. 

Comparison over time Significant between-arm comparison 

Total Complete 

reporting 
Significant No Yes 

No - 87 26 113 

Yes 

No 52 5 57 

Yes 28 10 38 

Total 167 41 208 

 

The concordance between both comparisons may be assessed only in those studies (n = 95) where 

the significance of the results is available for both comparisons. A positive association was found 

for these studies, with variance discrepancies between both comparisons (OR=3.61, 95% CI from 

1.14 to 12.9). Among the 10 studies for which both comparisons showed statistically significant 

differences in variances, two and seven had respectively greater and lower variances in the treated 

arm at the end of the follow-up. Surprisingly, one single study presented significantly greater 

variance at the end of the study in the over-time comparison, but this was lower than the variance 

in the control arm at the end. In other words, despite the fact that the treated patients increased the 

outcome variability over time, it increased even more in the reference group.  

These results should be cautiously interpreted, because the significance is highly influenced by the 

trial’s sample size, which was determined to achieve a specific power in order to compare outcome 

means (not variances). 

We will now explore more detailed information regarding the concordance in order to formulate 

tentative interpretations of each kind of (dis)concordance. Table S - 12 shows such interpretations 

for the specific situations given in Figure S - 2. It should be borne in mind that these are plausible 

interpretations that can help a researcher understand their results; but in no case have they been 

verified. Concordance may be evaluated and examined only in those studies (n = 95) where the 

significance of the results is available for both comparisons. 
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Table S - 12. Interpretive summary table for the concordance between both comparisons. 

Between 

Arms 

Over 

Time 

n/N 

(%) 
Interpretation 

NS 

NI 
87/208 

(42%) 

Studies without information on the concordance between the two variance 

discrepancies. No conclusion available. 

NS 
53/95 

(56%) 

Ineffective treatments. Generally, not modifying the centrality parameter implies that the 

dispersion parameter is not affected either. 

S 
28/95 

(29%) 

Homogeneous patients at the start of the study. In the 13 studies with this pattern, the 

increasing variance over time in the experimental group did not trigger differences in 

variability between arms. This indicates that the included sample was too homogeneous in 

the trial and the outcome would have increased its variability in a natural way. Mild 

diseases. In contrast, these are the 15 studies with decreasing variability in the 

experimental group over time and without differences between groups at the end of the 

study. They probably deal with a condition under study that naturally fades over time. 

S 

NI 
26/208 

(12%) 

Studies without information on the concordance between the two variance 

discrepancies. No conclusion available. 

NS 
4/95 

(4%) 

Control group not properly followed. Here, the experimental group has no increase in 

variability over time but there are differences at the end of the study, which could be due to 

poor monitoring of patients in the control group. 

S 
10/95 

(11%) 

The treatment modifies the variability. There are two and seven studies with, 

respectively, increasing and decreasing variance in the experimental arm in both 

comparisons. In these studies, the change in variability is directly due to treatment, as 

patients in the experimental group increase or decrease their variability over time. This 

change does not occur equally in the reference group and thereby causes a difference in the 

variances at the end of the study between treatment arms. There is a single study with 

increasing variability over time and decreasing variability between-arms, both with no 

plausible explanation. 

S: significant; NS: Not significant; NI: No information 
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Appendix E: Ancillary analyses 

Subgroup analysis according to the significance 

One subgroup analysis was performed according to the significance of the main analysis of each 

collected trial. Thus, the variable significance was dichotomized. We wanted to explore if some 

relationship existed between the variance discrepancy between arms and the significance of the 

main analysis of each study, but by measuring it through the uncategorized p-values.  

Figure S - 3 shows the between-arm variance as functions of the main study result’s p-value and 

of statistical significance. 

Figure S - 3. Relationship between statistically significant differences and the variance discrepancy in 

the between-arm comparison. 
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Subgroup analysis for change in the comparison over time between arms 

Figure S - 4 shows the difference in the change in variability (from baseline to the end of the study) 

between arms. The results were quite similar to those observed in the subgroup analysis regarding 

the comparison over time, and they do not yield any conclusions beyond to those already 

mentioned in Section 3.2.4. 

Figure S - 4. For whole data and each subgroup, point estimate and the 95% confidence intervals for the 

estimated outcome (O) variance ratio between Treated (T) and Controls (C) (Model 7 of Table 11). X-

axis is in log scale.*13 studies were performed with healthy participants. 
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Simulation study to check the distribution mixture approach 

We conducted a simple simulation to check the validity of the results. In the sensitivity analysis 

based on the mixture distribution, we included each p-value in all the components of the likelihood 

function. In other words, each p-value contributes in the same way to all distributions. An 

alternative approach would be to assign each p-value to a single distribution. We performed the 

simulation with a specific proportion (0.1, 0.2…, 0.9) of p-values coming from a uniform 

distribution and with a complementary proportion of p-values coming from a beta distribution with 

both parameters (shape and scale) equal to 0.5. For each proportion, we conducted 1000 runs and 

collected the estimates of the proportion (𝑃 = �̂�0) of studies under the null hypothesis. The 

distributions of the estimated proportions under each scenario are shown in Figure S - 5. Each 

boxplot represents the estimated proportions of p-values coming from a uniform distribution 

according to the actual proportion simulated, as indicated by the label on the horizontal axis. In all 

cases, estimates were slightly biased towards lower proportions, especially those with a real large 

proportion. However, the most worrisome problem is that these estimates present a large amount 

of variability. For example, under the scenario with an actual proportion (P) of studies with a 

constant effect equal to 0.90, the estimates ranged from 0 to 1, almost uniformly. 

Figure S - 5. Distribution of the estimates according to the real 

proportion of p-values coming from a uniform distribution. 

In the paper by Pounds et al.66, the authors did not have to deal with this problem because their 

distribution was unimodal with a single peak of around 0, unlike our data. Furthermore, the same 

paper warns that it is unfeasible to obtain a precise estimate of the proportion of p-values coming 

from a specific distribution, although it is nevertheless possible to find an upper bound for this 

proportion. This could be partially explained by our simulation results: the upper bound for the 

estimates increases as the real proportion of homoscedastic studies increases; but the lower bound 

remains almost constant, independently of the actual proportion. 
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