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Abstract

The degradation of structures and their component materials is irreversible due to many factors,
such as the change of temperature, humidity, corroding agents, the effect of wind, and accidental
collision. Thus, the concern of structure health has increased for the occurrence of some
engineering accidents, and structural health monitoring (SHM) has become a powerful tool to
help decision making during the structure’s life cycle. Structure system identification (SSI) is a
key component of SHM, whose aim is to identify the integrity and the state of the structure using
non-destructive techniques.

SSI can be classified as static and dynamic depending on the type of excitation. SSI by
Observability Method (OM) using static tests was proposed and analyzed to address the
observability of the estimated parameters. This mathematical approach has been used in other
fields such as hydraulics, electrical, and power networks or transportation. Usually, the structural
behavior of engineering structures can be identified according to dynamic characteristics such as
mode shapes, natural frequencies, and damping ratios. However, the analysis of SSI by dynamic
Observability Method using dynamic information is lacking.

This Ph.D. thesis developed the dynamic Observability Method using masses, modal frequencies,
modal deflections based on the static OM to obtain the geometrical and mechanical parameters
of the structure. This thesis mainly contains three aspects of work.

Firstly, in Chapter 3, the development, for the first time, of constrained observability techniques
(COM) for parametric estimation of structures using dynamic information such as frequencies
and mode-shapes was proposed. New algorithms are introduced based on the dynamic
eigenvalue equation. Two step by step examples are used to illustrate the functioning of these.
Parametric expressions for the observed variables are successfully obtained, which will allow
the study of the sensitivity of each of the variables in the problem and the error distribution,
which is an advantage with respect to non-parametric SSI techniques. A large structure is used to
validate this new application, whose structural properties can be obtained satisfactorily in either
the whole or local analysis, and the results show that the required measurement set is smaller
than the required for a static analysis. Chapters 4 and 5 are the applications of COM to fill the
shortcomings of current research, such as the optimal SHM+SSI strategy and uncertainty
quantification.

Secondly, in Chapter 4, the role of the SHM strategy and the SSI analysis based on the
Constrained Observability Method (COM), which aims at reducing the estimation error, is
discussed. A machine learning decision tool to help building the best-combined strategy of SHM
and SSI that can result in the most accurate estimations of the structural properties is proposed,
and the combination of COM and decision tree algorithm is used for the first time. The machine
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learning algorithm is based on the theory of Decision Trees. Decision trees are firstly presented
to investigate the influence of the variables (layout of bridge, span length, measurement set, and
weight factor in the objective function of the COM) involved in the SHM+SSI process on the
error estimation in a general structure. The verification of the method with a real bridge with
different levels of damage shows that the method is robust even for a high damage level,
showing the SHM+SSI strategy that yields the most accurate estimation.

Finally, an analysis of uncertainty quantification (UQ) is necessary to assess the effect of
uncertainties on the estimated parameters and to provide a way to evaluate these uncertainties.
This work is carried out in Chapter 5. There are a large number of UQ approaches in science and
engineering. It is identified that the proposed dynamic Constrained Observability Method (COM)
can make up for some of the shortcomings of existing methods. After that, the COM is used to
analyze a real bridge. A result is compared with a method based on a Bayesian approach
demonstrating its applicability and correct performance through the analysis of a reinforced
concrete beam. In addition, during the bridge system identification by COM, it is found that the
best measurement set will depend whether the epistemic uncertainty (model error) is involved or
not. As the epistemic uncertainty can be decreased as the knowledge of the structure”s
performance increases it is concluded that the optimum sensor placement will be achieved
considering not only the sensors accuracy, but also the location of unknown parameters.

Keywords: structure system identification, dynamic Observability Method, decision trees,
uncertainty analysis, sensors
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Resumen de la Tesis

La degradacicn de las estructura y de las propiedades de sus materiales es irreversible debido a
muchos factores, como el cambio de temperatura, el efecto del viento, agentes externos y la
colisidn accidental. Por lo tanto, la preocupacicn por el estado de conservacicn de las estructuras
ha aumentado debido tambié a la ocurrencia de algunos accidentes. La monitorizacian de la
salud estructural (SHM) se ha convertido en una herramienta poderosa para ayudar a la toma de
decisiones durante el ciclo de vida de la estructura. La identificacicn del sistema estructural (SSI)
es un componente clave de SHM, cuyo objetivo es identificar la integridad y el estado de la
estructura utilizando téenicas no destructivas.

SSI puede clasificarse como estdico y dinanico segtn el tipo de excitacidn. Recientemente, se
ha propuesto y analizado SSI mediante el Mé&odo de Observabilidad (OM) utilizando medidas
experimentales de pruebas estéicas para abordar la observabilidad de los parametros estimados.
Este enfoque matem&ico se ha utilizado en otros campos como la hidraulica, la electricidad y las
redes de energ R 0 transporte. Por lo general, el comportamiento de las estructuras de ingenier R
se puede identificar de acuerdo con caracter gticas din&nicas como formas modales, frecuencias
naturales y amortiguamiento. Sin embargo, hasta la fecha, no se han propuesto andisis de SSI
por el méodo de observabilidad utilizando informacién dinamica.

Esta tesis desarrolla el Mé&odo de Observabilidad Dinamico usando masas, frecuencias propias y
modos de vibracicn para identificar los par@metros mecanicos de los elementos de una
estructura. A tal fin, se desarrollan tres | meas de trabajo.

En primer lugar, se propone la primera aplicacién de té&nicas de observabilidad restringida para
la estimacién paramérica de estructuras utilizando informacién dinémica como frecuencias y
modos de vibracidn. Se introducen nuevos algoritmos basados en la ecuacidn dinamica de
valores propios. Se utilizan dos ejemplos paso a paso para ilustrar su | funcionamiento. Se
obtienen con &ito expresiones paraméricas para las variables observadas, lo que permite
estudiar la sensibilidad de cada una de las variables en el problema y la distribucin del error, lo
cual es una ventaja respecto a las téenicas SSI no paraméricas. Para la validacicn de esta nueva
aplicacicn se utiliza una estructura compleja, cuyas propiedades estructurales se pueden obtener
satisfactoriamente en el andisis total o local, y los resultados muestran que el conjunto de
medidas requerido es menor que en el caso del andisis est&ico. Los capiulos 4 y 5 son las
aplicaciones de COM para subsanar las deficiencias de la investigacién actual, como la estrategia
Gtima de SHM + SSl y la cuantificacicn de la incertidumbre.

En segundo lugar, se discute el papel que juega la estrategia SHM y el andisis SSI basado en el
Méodo de Observabilidad Restringido (COM), con el objetivo reducir el error de estimacicn. Se
propone una herramienta de decisién de aprendizaje automd&ico para ayudar a construir la mejor
estrategia combinada de SHM y SSI que puede resultar en estimaciones m& precisas de las
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propiedades estructurales. Para ello, se utiliza la combinacicn de algoritmo COM dinamico y el
meéodo de los &boles de decisian por primera vez. Los aboles de decisicn se presentan, en
primer lugar, como una herramienta Uil para investigar la influencia de las variables (tipolog &
estructural del puente, longitud del vano, conjunto de medidas experimentales y pesos en la
funcidn objetivo) involucradas en el proceso SHM + SSI con el objetivo de minimizar el error en
la identificacidn de la estructura . La verificacidh del méodo con un puente real con diferentes
niveles de dafo muestra que el mé&odo es robusto incluso para un nivel de daf importante ,
resultando en la estrategia SHM + SSI que arroja la estimacién m& precisa.

Por dtimo, es necesario un andisis de cuantificacicn de la incertidumbre (UQ) para evaluar el
efecto de las incertidumbres sobre los parametros estimados y proporcionar una forma de evaluar
las incertidumbres en los pardmetros identificados. Hay una gran cantidad de enfoques de UQ en
ciencia e ingenier B. En primer lugar, se identifica que el Mé&odo de Observabilidad Restringido
(COM) dinamico propuesto puede compensar algunas de las deficiencias de los méodos
existentes. Posteriormente, el COM se utiliza para analizar un puente real. Se compara el
resultado con un méodo existente basado, demostrando su aplicabilidad y correcto desempefp
mediante la aplicacidn a una viga de hormig& armado. Adem&, se obtiene como resultado que
el mejor conjunto de puntos de medicicn experimental depender&de la incertidumbre epistémica
incorporada en el modelo. Dado que la incertidumbre episténica se puede eliminar a medida
que aumenta el conocimiento de la estructura, la ubicacién &tima de los sensores debe lograrse
considerando no sdo la precisién de los mismos, sino también los modos de vibracién de la
estructura.

Palabras clave: identificacicn de sistemas estructurales, observabilidad din&mica, &boles de
decisidn, andisis de incertidumbre, , sensores
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Chapter 1: Introduction

1.1. Motivation

With the rapid development of the construction industry in the past few decades, many buildings,
bridges, and infrastructure are used in our daily life, which gives us a lot of convenience in
transportation, experience, and other aspects. These permanent structures or building facilities
are designed for a service life in between 50 to 120 years, depending on the country and the built

asset.

However, existing structures are inevitably exposed to the natural environment (wind,
earthquake, temperature, or even some extreme climate) and human operation (traffic, impact,
daily degradation by use). Thus, the material properties are degraded, such as bending stiffness,
axial stiffness, and mass. In this case, the durability of the structures may be affected, leading

them into a dangerous condition instead of the initially safe state.

According to US data, there are over 600,000 bridges that ensure network continuity across all
50 states. According to the American Society of Civil Engineers (ASCE), one out of every nine
bridges in the United States has a structural flaw (ASCE, 2013, Ghonima, O. et al. 2018). The
average lifespan of a structurally deficient bridge is less than 75 years. The average age of
structurally defective bridges in the US National Bridge Inventory is 69 for concrete bridges, 67
for steel bridges, 48 for pre-stressed concrete bridges, and 65 for all bridges (Farhey, D et al.
2018). According to the Federal Highway Administration (FHWA, 2018), two billion dollars
were spent annually on concrete bridge deck upkeep and capital costs (ASCE, 2013).
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Figure 1-1. Some examples of bridge collapse
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Figure 1-2. Damage cost contribution (Proske, D. 2020)

Some cases of extreme damage in bridges are shown in Figure 1-1, which will make a significant
impact on the regional economy or even public safety. Figure 1-2 shows the allocation of various
damage costs (relative to the damage of the bridge), such as damage to the bridge itself, to other
property, traffic restrictions, additional accidents, damage to life and limb (Fat.), damage to the
environment (Envir.), impairment of business activities, and negative effects on the public for
bridge collapses and damages based on the work of Saydam, D (2013) and Al-Wazeer, A (2007).
The possibility of decreasing the risks associated with structural damage is based on the
feasibility of assessing the actual performance. This can be achieved by visual inspection or non-
destructive testing. A continuous monitoring is the optimal strategy, as presented by the
Structural Health Monitoring (SHM). Thus, structural health monitoring (SHM) and structural
system identification (SSI) become powerful tools to help engineer decision making during the
life cycle of civil and infrastructure systems in order to decrease the failure risk. In most cases,

the actual characteristics of the structures are unknown due to damage and uncertainties in the
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construction methods or stress state. Actually, to derive the actual value of the unknown property
is the target of SSI.

1.2. Objectives

The global objective of this work is to propose an SSI method based on the constrained
observability method, using the measured natural frequencies and mode shapes of the structure
as input, and to deal with the error propagation in the identification process taking into account
the errors/uncertainties in the measurement input. To serve this purpose, the detailed objectives

of this thesis can be presented as follows.

Obijective 1: To obtain a method based on the observability method and to deal with the effect of

measurement error in the vibration data.

Objective 2: To apply the proposed COM method into several examples and a large frame,

which verifies the feasibility of COM.

Objective 3: To propose the combination of COM and CART algorithm to define the best
strategy combining SHM and SSI, as well as to investigate the influence of the variables
(structural layout of the bridge, span length, measurement set, and weight factor in the objective

function).

Objective 4: To enhance a quantitative recognition of how the uncertainty inherent to model
parameters and measured variables propagates across dynamic COM and to analyze the obtained

uncertainty in the identified parameters.

1.3. Methodology

To achieve the proposed objectives, the following works were organized to be done.

Step 1: Literature review on SSI methods and understanding the state of the static and dynamic
SSIL

Step 2: Learning the method of static OM, static COM, static NOM (numerical observability
method), static EMOM (error-minizing observability method) and their corresponding codes,
deepen the understanding of observability method.
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Step 3: Based on results from step 2, developing the dynamic COM, using the measured
frequencies and mode shapes as input, and application to several examples to check its feasibility

and reliability.

Step 4: Learning the skill of decision tree (DT) techniques and the relative knowledge of
Machine Learning and exploring the combination of COM and DT. Application to the bridge
Hollandse Brug, building the FEM model, considering different impact factors and model

parameters,

Step 5: Application of the uncertainty analysis to the Hollandse Brug.

1.4. Thesis organization

Based on the proposed objectives and the corresponding methodology, this thesis is organized
into six chapters. Each chapter is thought to deal with particular topics: state of the art, the
development of Dynamic Constrained Observability Method (D-COM), the combination of D-

COM and DT, the uncertainty analysis. The summary content of each chapter is as follows.

Chapter 2 is the state of the art. Firstly, the state of structural health monitoring and structure
system identification is gathered. Secondly, the static SSI by observability method is summarized,
and the main idea of static observability method is illustrated. Lastly, three gaps are detected

according to the relate literature review.

Chapters 3 proposes the first application of constrained observability techniques for parametric
estimation of structures using dynamic information such as frequencies and mode shapes. After
that, the step by step process and the merit of COM are illustrated by an academic example. To
verify the feasibility of this method, two examples using experimental data are used as a proof of
concept, whose estimated results are compared with other SSI methods. Aftermost a large

structure is identified to reveal the potential applicability of the dynamic COM method.

Chapter 4 analyzes the combination of COM with a machine learning decision tool. The aim is to
help building the best-combined strategy of SHM and SSI, resulting in the most accurate
estimations of the structural properties. In this chapter, the variables (the layout, measurement set,

and frequency-related weighting factor) are studied to analyze their effect when applying the
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observability method with COM. The verification of this method with a real bridge with different

levels of damage shows that the combination is robust even for a high damage degree.

In Chapter 5 the uncertainty analysis to a real bridge is analyzed using the COM method. This
part aims at understanding how the uncertainty regarding epistemic and aleatory uncertainties
affects the uncertainty of the output variables (how the uncertainty propagates). Through the

uncertainty analysis, the robustness of COM can be verified

Finally, in Chapter 6, the conclusions are given based on the above chapter analysis. In addition,

the major contributions of this thesis and possible future research works are presented.

1.5. Activities

To develop this work, the following activities have been carried out:

Literature review (in the first year).

Learn the knowledge of the static OM (in the first year) .

Learn the basic principle of dynamic OM (in the first year).

Program Matlab code using dynamic OM (in the first and the second years).

Update COM to enable SSI achieve fully observability (in the second and the second years).
International stay (in the third year).

Use COM to work with SHM+SSI strategy (in the third years).

Use COM to do the uncertainty quantitative analysis (in the fourth year).

© 0o N o g Bk~ w DN PE

Conclusions (in the fourth year).

10. Writing conference and SCI papers (in the third and fourth years).
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Chapter 2: State of the art

2.1 Structural system identification

The up-dated knowledge of the integrity of in-service structures through its lifetime is a very
important objective for owners, end-users and both, construction and maintenance teams, to
whom this information might help in decision making (Castillo, E. et al 2006, Castillo, E. et al
2013, Pimentel, M. et al 2017 & Xiong, H.B. et al 2019), as mentioned in Chapter 1.1. For this

reason, SSI has attracted research’s massive interest in recent years.

Simplified Finite Element Models (FEMs) are often used to simulate the response of civil
structures (Bentz, E.C. et al 2017). When this structural response is modeled through computer
simulations, mechanical and geometrical properties of the structural elements, such as the
Young’s modulus and the cross-section area are assumed to be known. Nevertheless, in most of
the cases, the actual characteristics are unknown due to damage and uncertainties in the
construction methods or stress state. System identification is the process of developing or
improving a mathematical model of a physical system using experimental data to describe the
input, output or response, and noise relationship (Juang, J. et al 1994). The range of possible uses
of system identification is wide. When performed in order to model a structural system, system
identification allows the identification of structural parameters, such as stiffness, mass or stress
and strain (Li, S. etal 2013 & Maes, K. et al 2013).

Structural System Identification (SSI) methods can be classified according to the relationship
between inputs and outputs used to calibrate the model. On the one hand, non-parametric
methods link outputs and inputs creating a mathematical model to characterize the system. Hence,
the established relationship has no explicit physical meaning. Examples of non-parametric SSI
methods might be found in references (Abdeljaber, O. et al 2017, Stutz, L.T. et al 2015 & Torres
Cedillo, S. et al 2016). On the other hand, parametric methods relate inputs to outputs on the
basis of an actual physical meaning; due to this physical basis, this type of methods drive to a
better understanding of the problem and of the sensitivity to certain parameters. Examples of
these methods might be found in references (Spiridonakos, M. et al 2009 & Viola, E. et al 2013).
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Besides the non-parametric/parametric classification, SSI might be classified depending on the
nature of the excitation test used for the calibration; this is, dynamic and static ones, according to
whether or not they engage inertial effects. Examples of different techniques involving static
identification can be found in references (Hajela, P. et al 1990, Hjelmstad, K.D. et al 1997). On
the other hand, examples of dynamic identification methods can be found in references (Kijewski,
T. et al 2003, Huang, C.S. et al 2005, Tarinejad, R. et al 2014 & Zhou, Z. et al 2003). There have
also been attempts to combine dynamic and static data in the SSI (Hajela, P. et al 1990, Perera, R.
et al 2013 & Sanayei, M. et al 2001).

2.2 Observability method

The observability Method (OM) has recently been implemented as a SSI method in the static
scenario (Maes, K. et al 2013). The basis of the observability analysis lies on the problem of
identifying if a set of available measurements is sufficient to uniquely estimate the state of a
system or of a part of it. The application of this technique has the advantage of providing, for the
first time in the literature, symbolic equations of the estimates.

The OM has demonstrated its efficiency in the structural engineering field in a number of
structural typologies (such as trusses, columns, frame systems, and cable-stayed bridges) (see e.g.
Lozano-Galant, J.A. et al 2014, Nogal, M. et al 2015, Castillo, E. et al 2008, Castillo, E. et al
2015, Lozano-Galant, J.A. et al 2015, Lei, J. et al 2016, Lei, J. et al 2017, Lei, J. et al 2019).
Table 2.1 summarizes the various works in the literature that deal with the application of
observability techniques to SSI. The following characteristics are described in this table: (1) Test:
A kind of test used on-site to track structural reaction. S is for static. (2) Computation: This is a
kind of analysis that is used to solve a system of equations. Symbolic: P, or Numerical, N, (3)
Numerical optimization tool: If a numerical optimization tool was used to describe the parameter
values, and (4) Shear: Whether or not the shear deformations are taken into account in the

scheme of equations.

The analysis of Table 2.1 shows that up to now, all studies in the literature are based on the
monitored response on static tests. This table also evidences an evolution in the analysis methods.
In fact, to enable the application of the OM to real structures the parametric simulation

introduced into the first applications has been successively changed to a numerical one. To deal
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with the numerical errors in the system of equations, most of the latter studies use the
optimization tool named Constrained Observality Method, COM introduced by Lei, J. et al.

(2017). A more detailed explanation of this method is presented in Section 2.3.

Table 2-1: Characteristics of the observability methods presented in the literature: P: Symbolic,
and N: Numerical.

Test Analysis Optimization  Shear
Lozano-Galant et, J.A. et al (2013) S P
Lozano-Galant et, J.A. et al (2014) S
Castillo, E. et al (2015) S
Nogal, M. et al (2015)
Castillo, E. et al (2016)
Lei, J. et al (2016)
Lei, J. et al (2017)
Tom&, D. et al (2018)
Emadi, E. et al (2019)
Lei, J. et al (2019)

mw u u u u nu m
o
+
Z

However, there are researchers (Lozano-Galant, J.A. et al 2013) that argue that from a practical
point of view, estimation of parameters from static response is less appealing than doing it from
modal or dynamic response. This is so because it is much easier to dynamically excite a large
structure than statically, especially in large scale structures. Moreover, it is easier to measure
accelerations than displacements because of the simplicity of establishing an inertial reference
frame for measuring accelerations (Hjelmstad, K. et al 1995). Hence, within the framework of
observability, the problem of dynamic identification from vibration modes and frequencies can
be also addressed, with a mathematical approach similar to the problem of static identification
(Lozano-Galant, J.A. 2013).

As indicated this method is blank to deal with dynamic SSI. To fill this gap, a first paper (Peng,
T. et al 2020) was published proposing a new methodology on how to use vibration data in
system identification by observability techniques. The method is based on the idea of static COM.

A detailed review of this work is presented in Chapter 3.
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2.3 Static SSI by COM

It is said that a subset of variables is observable when the system of equations derived from a set
of experimental measurements implies a unique solution for this subset, even though the
remaining variables remain undetermined. When the system is observable, it might be relevant to
identify critical measurements; this is, those measurements that, if unknown, render the state of
the system unobservable. Conversely, if the system is unobservable, it is relevant to identify
observable islands; this is, those areas of the system whose respective states can be estimated. It
is also important to identify the minimum set of additional measurements that renders the whole
system observable. Therefore, observability analysis is the previous step to the identification of
the system. It addresses the question of stating whether enough measurements to estimate the
state of a system are available. The static approach of the SSI by OM is based on the stiffness
matrix method. It will be briefly introduced as it may be interesting to the reader for the sake of

comparison with the dynamic observability, which is the basis of the present doctoral thesis.

The equations corresponding to this method when static measurements are used, are written in
terms of nodal forces and displacements. For a certain structure, the following matrix equation

can be written:
[K](3NNX3NN){6}(3NNX1) — {f}(SNNXI) (21)

where [K] stands for the stiffness matrix, {6} for the vector of displacements and {f} for the
vector of forces; the sizes of the matrices are indicated by its superscripts, in which Ny denotes
the number of nodes. To solve this system of equations, where unknowns appear in K (bending
and axial stiffnesses); 6 (displacements) and f (reactions); once the boundary conditions and
applied forces at nodes are introduced in Eqg. (2.1), the terms of K and & can be rearranged as
shown in Eq. (2.2), by extracting the unknown bending or axial sfiffness from [K] to {} and
removing the measured variables from {6} , in such a way that K* is a matrix of known
coefficients and &* is a vector of knowns and unknowns, either bending or axial stiffness,

unknown displacements or a product of both.

The subset §;0f 6" and the subset f;" of f* are known, and the remaining subsets &, of §* and a

subset f; of f* are not.
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KB KPS K13 K19 are the partitioned matrices of [K*] and 857, 8;5%1, £,P*1, £79* are
the partitioned vectors of {§*} and {f*} respectively. The dimensions of each of the elements are

given by their superscripts.

In order to apply the OM, it is necessary to join together all the known variables in one side to
form a vector {D} of known parameters and all the unknowns to the other side, forming a vector
{z} of unknown parameters; this is done by rearranging the system in an equivalent form, which
in this case yields into:

qxr X x1 XS osx
[B1(z) = [K“’ ’ ]{6" 1}={1q e 1}:{1;} 23)

pxr x px1 PXS o5x1
Kgo —IrPxa fo —Ko1 61

In (2.3), taking the product of unknowns in z as a new single variable, then [B]{z} = {D} is a
system of linear equations and its general solution can be written in terms of the particular

solution z,, and the homogeneous one, z,,, which will correspond to the case [B]{z} = 0.
Therefore, z,, + z,, Will also be a solution of the system of equations. This general solution is

given by:

855"
{z} = { pxl} + [V]{z} (2.4)

00

rx1

Where{ ?f,’cl} is the particular solution of the system and [V]{t} is the homogeneous one and

00

represents a generic vector in the null space. In this vector, [V] is a basis of the space and {t} are
arbitrary real values that represent the coefficients of all possible linear combinations. For the
system of equations to have a unique solution vector, [V] has to either be null or have some null
rows. However, even if the system of equations does not have a unique solution, any unknown
associated with a null row in the null space [V] is observable. In this case, the general solution
equals the particular one and it can be computed by calculating the pseudo inverse of matrix [B].
If there are observed parameters, the input is updated by incorporating observed variables and
the previous procedure repeated until no new variables are observable. If some variables remain

non-observed, the equation of the last recursive step is recorded as the form B,,,Zom = Dom-
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However, it should be noted that in static SSI by OM, the vector {z} in Eq. (2.3) might contain
two types of unknowns: (a) monomials of degree one, for example, axial and flexural stiffness,
horizontal and vertical displacements, and the rotations, {EA;, El;, wuy, vy, wix }, and (b)
monomials of degree two, for example,{ EA;u; , Eljvy, Eljw; } and they are all regarded as
simple variables in {z}. In fact, there is a relation between some monomials of degree one
{EA;, El;, uy, vix, wy } and monomials of degree two { EAjuy , Eljvy, Eljwy }, that is,
EAjuy, = EAj * uy , Eljvy = EI; x vy, Eljwy, = EIj * wy, . As these constrains cannot be
imposed in SSI by OM because it is a linear method, the variables may not be successfully
detected in some cases (i.e., it might happen that full observability is not achieved). Constrained
Observability Method (COM) (Lei, J. et al 2018) is proposed to overcome the drawback of OM
to continue the identification of unknown parameters by defining the residual values:

€ = BomZom — Dom (2-5)

The unknown variables in z,,, are identified by minimizing the squared sum of the residual.

2.4 Gaps detected and solutions proposed

Based on the previous state of the art, where the problems detected in the parametric SSI and the
available observability techniques using static data are emphasized, this thesis elaborates a

framework for their solution as presented in the following chapters.
2.4.1 Dynamic OM
1) Gaps: a fully observability by dynamic OM

Sections 2.2 and Table 2.1 show the evolution in static SSI by OM. However, the
dynamic data (frequencies and mode-shapes) is easier to obtain compared with the data
for the static OM analysis. The dynamic observability method (OM) (Josa, I. 2017) has
great limitations for complex structure and might not be able to detect any parameter.

Even for a simple structure, a fully observability is hard to achieve by a dynamic OM.
2) Strategies in this thesis: dynamic COM

The dynamic COM (Chapter 3) is proposed to achieve a fully observability, which is
evolved based on the static COM (Section 2.3).
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The aim of Chapter 3 is to propose a new constrained dynamic SSI methodology; namely,
a technique that allows the identification of a subset of characteristics of a structure, such
as axial or flexural stiffnesses that might be uniquely defined when a subset of natural
frequencies and modal shapes is obtained from an experimental modal analysis. Two
examples (Lam, HF. 1998 & Haralampidis, Y. 2010 Simoent, E. et al 2015) are used as a
proof of concept of the dynamic COM proposed in Chapter 3. A fully observability can

be obtained, as well as the successful application to a complex structure.

2.4.2 SHM+SSI strategy

1) Gaps: Current SHM+SSI strategy

The dynamic COM in Chapter 3 addresses the nonlinearity of the SSI methods by using
subsets of natural frequencies and/or modal shapes. Obtaining natural frequencies and
mode shapes is limited to the case when no traffic is present on the bridge (Li, H. 2020),
and the effect of environmental changes (mainly temperature) in the recorded sensor data
can be easily processed and removed by a Principal Component Analysis (PCA) (Nie, Z.
2020) or similar, before the application of the method. The dynamic COM combines the
unknown parameters including the theoretical frequencies and mode shapes into an
optimization process that minimizes the objective function obtained as the squared sum

of the frequencies- and mode shape-related errors.

The selection of the objective function to minimize in the optimization process has a
profound impact on the problem output. It does not only affect the interpretation of the
best correlation between the unknown parameters but also influences the performance of
the selected optimization algorithm. Normally, eigenvalue residual and consideration of
the modal assurance criterion MAC related function are used, as well as the residual
vector of the deviation from the orthogonality of the experimental mode shapes to the
analytical ones (Teughels, A. et al. 2001). Most of the sensitivity-based approaches
reported for FE updating of real case studies have considered only the eigenvalue or
frequency residual (Brownjohn, J. M. W. et al. 2000 & Zhao, J. et al 2002). Additionally,
some papers are concentrated on the multi-objective identification method by dividing

the frequencies or eigenvalue residual (Christodoulou, K. & Papadimitriou, C. 2007) and
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mode shape-related residual as two parts to estimate the structural parameters (Farhat, C.
et al 1993 &Mares, C. et al 2002). On the other hand, some researchers establish
weighted multi-objective functions considering frequency residual, mode shape-related
residual, and modal flexibility residual together (Jaishi, B. & Ren, W., 2005), the
majority of them giving equal weights to each residual (Zarate, B., & Caicedo, J. 2008).
The dynamic SSI in this thesis is using the optimization process of dynamic COM, thus
defining an objective function of eigenvalue residual and MAC related residual. In order
to get a better accuracy, different values of weighting factors affecting the eigenvalue and
MAC residual are proposed. However, a clear methodology on the selection of the

optimum weight factors to consider is not fully available in the existing literature.

A major goal of conducting SHM and the subsequent SSI is to derive conclusions about
the real state of a given structure (Hasni, H. et al 2019 & Park, H. et al 2018). Whereas
the SHM focuses on collecting the structural system response, SSI aims at determining
the actual mechanical properties of the structure based on the observed response. Both the
monitoring strategy and SSI analysis play an essential role in the uncertainty level of the
estimated features. However, this combined approach is not common in the literature. For
instance, Guo, Y. et al. (2016), Brimacombe, J. et al. (2008) and Han, L. et al (2014)
show how the sensors’ accuracy, the optimal placement of sensors, and how they are
combined highly influence the quality of the estimation. However, these analyses do not
consider both the monitoring setting and the characteristics of the method used for SSI as
design variables at the same time. Improving one of the sides, i.e., either the conditions of
monitoring or the definition of the model used for SSI, does not guarantee the most
accurate estimation, which can be obtained if both of them are combined.

2) Strategies in this thesis: an optimal SHM+SSI strategy

An adequate combination of the monitoring strategy and SSI analysis can yield an
accurate estimation of the structural parameters. Making the right decisions when
designing a strategy that combines both SHM and SSI can result in significant time and
cost savings, avoiding estimations that cannot be trusted due to their large uncertainty.
With this aim, an optimal SHM+SSI strategy is proposed in Chapter 4. This strategy is
the combination of COM and decision tree (DT) analysis, considering several factors that
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may influence the final result as the structural layout (boundary conditions), geometrical
dimensions (for instance the span length in case of bridges), the measurement set
(optimal sensor deployment). Also the weighting factors to be used in the objective

function are considered.

The approach is based on decision tree analysis. Decision tree algorithms are one of the
most common techniques of inductive learning, especially in the field of Machine
Learning (ML) (Chandra, B. & Varghese, P. P, 2008 and Salzberg, S. 1995). The
decision tree algorithm can be used for solving regression and classification problems.
For its powerful capability to combine numerical with categorical data, its application in
the area of civil engineering is gaining relevance (Salazar, F. et al 2007). A fuzzy group
decision making (FGDM) approach offered a flexible, practical, and effective way of
modeling bridge risks (Wang, Y., & Elhag, T., 2007). A decision support system for
bridge maintenance was developed by extensive literature review, interviews with bridge
maintenance experts, and a national survey (Yehia, S. et al, 2008). The decision tree
algorithm is used to analyze the deterioration of the health index of a set of concrete
bridge decks (Melhem, H. G. et al 2003). A decision tree learning algorithm is adopted to
train the model of a full-scale long-span suspension bridge using six recent years’
database (Li, S. et al 2018). However, the analysis of the decision tree algorithm on the
most critical factors to reduce the error of the estimated parameters is still insufficient.
Decision trees dealing with the selection of the optimal measurement sets or model
parameters do not appear in the literature. In Chapter 4, the new application of decision
trees combined with SHM+SSI provides a new insight into the problem of structural
identification and damage detection.

Chapter 4 represents an optimal SHM+SSI strategy that helps:

)] To select an adequate combined SHM+SSI strategy that minimizes the
uncertainty of the estimations;

i) To determine to which extent the decisions on the SHM process influence the
final error in the estimation;

i) To assess the contribution of the SSI-COM in this final error.
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2.4.3 Uncertainty quantification (UQ)

1) Background of UQ analysis

Most research works focus on the deterministic SSI and probabilistic approach (Raich,
A.et al 2011, Eskew, E. et al 2016, & Jang, J. et al 2017), which aims to find the
structural parameters of a numerical model that guarantees the best possible fit between
the model output and the observed data. Nevertheless, considering the uncertainties
related to the structure model and observed data, uncertainty quantification (UQ) is
necessary for assessing the effect of uncertainty, as well as the estimated accuracy
(Simoen, E. et al 2015).

As described in Section 2.2, the Observability Method (OM) has been used in many
fields. However, OM identification needs to be robust in terms of variations of systematic
modeling uncertainty introduced when modeling complex systems and measurement
uncertainty caused by the quality of test equipment and the accuracy of the sensors (Zhou,
S. et al 2017). The uncertainty analysis is necessary to conduct OM efficiently and with

required reliability.

UQ analysis seems to be highly probability-independent from optimal sensor placement.
In contrast, the sensors need to be installed on the most informative position, that is, the
location that provides the least uncertainty in the bridge parameter evaluations (Liu, W. et
al. 2008). One of the most known and commonly adopted approaches for optimal sensor
placement was developed by Kammer (Kammer, D. 1991). Since then, several variants of
this approach have been suggested to resolve the positioning of SSI sensors (Song, J. et al.
2021, Lei, J. etal. 2019, Liu, W et al. 2008 & Meo, M. et al. 2005). However, no research
works have noticed that the choice in the best position of the sensors might change when

different sources of uncertainty are considered in the uncertainty analysis.

The uncertainty could be divided into two types: epistemic uncertainty and aleatory
uncertainty. Epistemic uncertainty refers to the type of uncertainty caused by the lack of
knowledge, thus, with more data acquisition, this type of uncertainty can be reduced. On
the other hand, the aleatory uncertainty refers to the intrinsic uncertainty that depends on

the random nature of the observed property or variable, thus it cannot be removed no
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matter the amount of data is used (Der Kiureghian, A. et al 2009) as the noise of

measurement sensors always exist.

From the practical point of view, determining the level of uncertainty of the estimated
parameters through the dynamic observability method is of interest to determine the
accuracy and robustness of the method. Moreover, an informed decision-making process
requires not only of a punctual estimation of the variables, but also the level of
confidence of the estimation. The knowledge of the uncertainty level of the identified
structural parameters will allow a more accurate reliability analysis of the structure. It is
also essential to compare the advantages and disadvantages of the dynamic COM with
the existing methods regarding the error propagation in order to show the applicability of
COM.

2) Gaps: drawback of existing UQ method

The ill-posedness of the inverse SSI problem occurs frequently and is extremely
susceptible to errors, or, in more general terminology, to uncertainties. Uncertainty
quantification isa tool to explore and improve the robustness of the SSI methods. In
general, methods for quantifying uncertainty can be divided into two major categories:
probabilistic and non-probabilistic approaches. Probabilistic approaches reflect the
traditional approach to modeling uncertainty, set on the firm foundations of probability
theory, where uncertainty is modeled by appointing unknown quantities to probability
density functions (PDFs); these PDFs are then propagated to probabilistic output
descriptions. Non-probabilistic methods use random matrix theoryto construct an
uncertain output of the prediction model operator (Soize, C. 2000 & Simoen, E. et al.,
2015).

Non-probabilistic approaches, such as interval methods (Moens, D.et al 2011, Wang, C.
et al. 2017, Garc &, O. et al. 2008), fuzzy theory (Jena, S. et al. 2020) and convex model
theory (Cao, L. 2021), and probabilistic methods, such as maximum likelihood estimation
method (Sankararaman, S. et al 2011), Bayesian method (Zhang, F. et al 2016 & Cao, J.
et al. 2020), stochastic inverse method (Choi, C. et al 2016), non-parametric minimum
power method (Chee, C. 2017) and probabilistic neural networks (Cao, M. et al. 2015)

have been presented in the existing literature.
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In the management of uncertainty, probabilistic Bayesian theory is an attractive
framework. It has been widely applied, such as in the identification of material
parameters in a cable-stayed bridge (Ni, Y. et al. 2021), plate structures (Huang, T. et al.
2021) and steel tower (Lam, H. et al. 2015). Although the probabilistic method is
commonly seen as the most rigorous methodology for dealing with uncertainties
effectively and is exceptionally robust to sensors errors (Lei, J. 2019), it is not especially
suitable for epistemic uncertainty modeling (Mdler, B. et al. 2008, Oberkampf, W. et al.
2002, & Baudrit, C. et al. 2008). The argumentation behind this relates to the definition
of the (joint) PDFs explaining the unknown quantities: it is argued that adequate
qualitative knowledge for constituting a truthful and representative probabilistic model is
hardly available. However, model uncertainty has a major effect on estimating structural
reliability (Hu, Z. et al., 2017).

To respond to some obvious disadvantages/limitations of the probabilistic approach
related to the construction of PDFs and the modeling of epistemic uncertainty, the last
few decades have seen an increase in non-probabilistic techniques for uncertainty
modeling. It was developed by Soize (Soize, C. 2000, 2003, 2005 & 2009), based on the
principle of maximum entropy. Most non-probabilistic methods are generated based on
interval analysis. Interval methods are useful to consider the crisp bounds on the non-
deterministic values (Moens, D.et al 2011). The non-probabilistic fuzzy approach, an
extension of the interval method, was introduced in 1965 by Zadeh (Zadeh, L.A. 1965),
aiming to evaluate the response membership function with different confidence degrees
(Hanss M, 2005 & Haag, T. 2012). Ben-Haim developed the convex model method for
evaluating the model usability based on the robustness to uncertainties (Ben-Haim, Y. et
al. 1998). Interval approaches, however, are not capable of distinguishing dependency
between various model responses by themselves, which may make them severely over-
conservative with regard to the real complexity in the responses to the model. Most of the
non-probabilistic methods are somehow based on a hypercubic approximation of the
result of the interval numerical model, and therefore neglect possible dependence

between the output parameters (Legault, J. et al. 2012, & Faes, M. et al. 2019).

3) Strategies in this thesis: UQ analysis by COM
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A probabilistic UQ approach is proposed in Chapter 5 to analyze the error propagation
through the SSI by the dynamic Constrained Observability Method, by considering both
the epistemic and aleatory uncertainty. To overcome some of the drawbacks mentioned
above (the need for a definition of the (joint) PDFs; the neglect of possible dependence
between the output parameters), different modal orders are considered separately, after
that, all involved mode orders are put together to estimate the output parameters in an
objective function. The method of simultaneous evaluation can appropriately take into

account the dependence between various parameters.
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Chapter 3 Dynamic constrained observability techniques

3.1 Introduction

According to the state of the art analysis of dynamic OM in Chapter 2.4.1., the previous research
of dynamic OM has great limitations for complex structure and might not be able to identify
actual structural parameters. Thus a new constrained dynamic SSI methodology which can
achieve the fully observability is needed.

The application of the OM to dynamic analysis proposed in this chapter is based on the dynamic
equation of motion of a system with no damping and no external applied forces (Josa, I. 2017).
The equation can be expressed for a two-dimensional structure with Ny nodes, Ng boundary

conditions and R vibration modes as:

K[(3NN—NB)X(3NN—NB)]@i[(3NN_NB)><1] — AiM[(3NN—NB)><(3NN—NB)]@i[(3NN_NB)X1]]
(i=123..,R) (3.1
where K and M stand for the stiffness matrix and the mass matrix, respectively. Besides, @;
represents the vector of modal displacements, for a 2D model with beam elements, this vector
includes the deformation in the x-direction (u;;), y-direction (v;;,) and rotation (w;;) at each

node k for each vibration mode i. And A4; stand for the squared frequency for it* vibration mode.

As done with the static approach (Lei, J. et al 2017 & 2018, Lozano-Galant, J.A. et al 2014), the
previous Eq. (3.1) might be written in terms of its known and unknown parameters in modal
vector, these being indicated by subscripts 1 and 0, respectively. These operations generate the
modified stiffness and mass matrices K;and M; and the modified modal shapes @}; and @;,; as
shown in Eq. (3.2).

* 1
K:gh. = [K*(3NN—NB)xrx K*(3NN—NB)xsx] {Q)KT;).COX}
i¥’Ki —

i,0 i,1 *Sx X1
Q)Ki,l
( ) ( ] [OMi0
_ *(BNNy—Np)xXmx *(BNNy—Np)Xnx Mi,0 _ * Ak
- [Mi,o Mi,l ] Q)*nxxl - MiQ)Mi
Mi,1

(i=123..,R) (3.2)
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Note that now the squared frequencies are included in the right-hand side of the equation M; and
from this step on product variables might be obtained from coupling the target unknowns with

other unknowns. Examples of these product variables are EAjw;., EAjvy, Eljuy, ELvy

and ELwy, on the left-hand side of the equation, in @y , and Amjuy, , A;myvy

and A;mjwy, on the right-hand side, in (2)}“”"1{’5“, where j represents the j** element and k
*mxXx1

represents k" node. @mio ~ might content the simple variables u;, v;x, wix once the value of

Aym; is kKnown.

As a consequence of these product variables, nonlinear parameters appear and the system of
equations becomes a non-linear one. Due to the fact that the observability technique requires
linear equations in order to properly determine the observed parameters, this is solved by treating

product variables as single linear variables, which linearizes the system.

The final step is to rearrange all the system in order to have all the unknowns of the system in
one column vector. By doing so, it is possible to obtain the system of equations in the form Eq.
3.3)

*TXX1
B.z: = [K*(3NN—NB)XTx _M*(3NN—NB)XTT'LJC {QKZ% }
| Sl

i,0 i,0 *mxX1
Dwmi,o
_ *(BNNy—NB)XNX 4xnxx1 *(BNy—NpB)Xsx *sxxl} _
- {Mi,l (Z)Mi,l - Ki,l Q)Ki,1 - Di

(i=123..,R) (3.3)
When multiple modal frequencies are considered together, the equation will be built by
combining information of several models. For example, the first R modal information is given by

Bz = D shown as follows:

B, 0 0 07(& D, 0 0 O
lo B, 0o of)z| _|o b, 0 of_
Bz=|, ¢ - oli7t=lo & - ol=D (3.4)
0 0 0 Bpllz 0 0 0 D

Expression in which B is a matrix of constant coefficients, D is a fully known vector and z;
contains the full set of unknown variables. This system can be solved obtaining the solution of
the coupled variables as presented in Eq. (2.4). Thus, the identified coupled variables

(e.9., El;wy) are referred as observed variables. In other to uncouple the observed variables, e.g.,
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Elwy= EI; * wy,, the dynamic COM is here proposed based in a similar way as in the static

case. However, in this case, the objective function is defined as:

R 2 R
] = le (%) + Wy Z(l — MACl-)2 (3.5)
i=1 t i=1

2

(07 Pl

MAC; (Byni, Do) = o —
l( i ml) (Q’Tniq’mi)(@mqu’ml)

(3.6)

The modal assurance criterion (MAC;) (Simoen, E. et al 2015) is used in Eq. (3.5), which
consists of computing the so-called MAC values as a measure for the correspondence between
the calculated mode shape @,,;, obtained from the inverse analysis using the estimated stiffnesses
and areas and the measured shape @,,, as shown in Eq. (3.6). Besides, A}; are the differences
between the measured, 4, and the estimated. W, and W, represent the weighting factors of
frequencies and mode-shapes respectively. In this study, W, and W, are assumed to be equal
(Boris Zaate, A. et al 2008).

The solution is obtained by minimizing Eq. (3.5) with the imposed constraints of the

form: EAjuy, = EAj * uy, ELvy = EI; x vy, Elwy = EI; = wy, present in Eq. (3.4).

The proposed approach addresses the possibility of ill-conditioning by means of two actions.
First, the unknowns are normalized by the a-priori best estimate, such as designer parameters
(see Section 3.4.1), which can make the condition number of coefficient matrix smaller. Second,
the range of some normalized unknowns is given when the optimization process is conducted
according to Eq. (3.5) to capture the fact that they have a physical meaning and their values
cannot be either negative or extremely high (see Section 3.5), which helps to accelerate
optimization and limit value range. These two actions reduce the effect of a potential ill-
conditioned equation. If the result does not make sense, then the process will be repeated with a

new initial guess.

The functioning of COM will be explained step by step in the next section with a simple
numerical example, which, additionally, fully demonstrates the excellence of COM compared to

OM in the dynamic case.


https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
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3.2 The dynamic COM method

3.2.1 Algorithm of dynamic COM

The proposed algorithm takes as inputs the topology of the structure, node connectivity and the
subset of measured variables, which are the mode shapes (fully or partially known) and natural
frequencies obtained from the modal analysis. On the other hand, the outputs obtained from the

known data are the subset of observable variables along with their estimations.

The algorithm for the structure system identification by COM is depicted in Figure 3-1 and

detailed as follows:
Step 1. Build stiffness and mass matrices of the structure, K and M.

The stiffness matrix K and the mass matrix M are built based on the 2D analysis using beam
elements. Every single mode inverse analysis will use the same K and M matrix since the

structure itself will not change.

Step 2. Modify stiffness and mass matrices K and M in order to have matrices made out

of monomial terms.

Those terms in the matrices that are made up of summands are separated and arranged in

different columns. Modal displacements vectors @; and @,,; are transformed accordingly.
Step 3. Generate the list of product variables.

The list of product variables is obtained by moving all the unknown variables from the matrices
to its corresponding vectors of modal displacements. After this step, the terms of matrices K and

M are known values.
Step 4. Remove measured variables from vectors and update vectors and matrices.

The columns of matrices associated with measured values are multiplied by their corresponding
values. Non-null factors are removed from the vectors of modal displacements and introduced in
the matrices. As a consequence of this, duplicated unknowns might appear in the rows of the

vectors.

Step 5. Eliminate duplicated variables.
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The duplicated unknowns in the vectors are identified and combined together in the same row
and the matrices are modified accordingly. At the end of this step the matrices are made out of

coefficients K; and M; and the vectors are made out of unrepeated unknowns @y; and @,;.
Step 6. Build Bz = D equation.

Matrix B; is assembled using matrices K; and M; and vector z; is formed by joining all the
unknown information of the system as presented in Equation (3.3). Matrix B; and vector D; are
built up by the completely known terms. The overall equation is established by combining
several single modal information, like Eq. (3.4). If there are repeated product variables in z, they

are identified and grouped together by summing up the corresponding columns of B.
Step 7. Obtain null space of matrix B.

In order to obtain the set of observable variables the null space [V] of matrix B is obtained,
which can be done by using internal functions of programming codes such as the backslash in
Matlab.

START

v

unknowns in z

l-—————————t————-' 11. Obtain the equation
1 Build the stiffness : no Bz = D from the step 9
and mass matrices : of 551 by OM

v 1 10. Fully observable
1
Lo v

2. Generate the modified 1 yes
stiffness and mass matrices : no 12. Identify

1

1

1
3. Generate the list Of | s e e o o o o e o o o e *
product variables yes 9. Have new 13. Form the

Ye&——————  vyariable been new matrix B
4, Remove measured variables observed?

|

14. Identify the constraints

and update vectors matrices
‘ t

5. Eliminate duplicated variables 8. Identify the and optimization applying

Eq. (3.5)
and remove null columns observable variables

\ t

6. Build B matrix » 7. Obtain null space of B

—_— END

e e e
———————————————— ————— -

Figure 3-1. The flow-chart of COM
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Step 8. Identify observable variables.

The observable variables are identified by examining the null rows of the null space [V] of

matrix B. The associated product variables with these rows are the observable ones.
Step 9. Recursive processes.

For the measured variables available, it is possible that no all the parameters can be observed. In
these cases, the output of the problem can be incorporated to the original input, so that the range
of final observed parameters for a given data set is increased. Therefore, if new parameters are

observed in the previous step, the process is repeated from step 3 onwards again.
Step 10. Check whether the full observability is achieved or not.

If full observability is achieved at the end of step 9, there is no need to perform following steps.
Otherwise, go to step 11 by using the constrained condition.

Step 11. Updated Bz = D.
Extract the updated system of equations B,,,z,, = D,, from step 9, obtain the unknown
variables z.

Step 12. Identify whether there are hidden unknowns in z or not.
Divide z,,, into two sets: (a) single variables z,, for example, EA;, ET;, uk, Vi, Wik, and (b)
coupled variables z., for example, EA;u;y , EL;vy, EIjwy,. Split the coupled variables of z. into
single ones, and those which are not in z yet (let the subset of new identified singles variable

be z,) have to be added to z,,,obtaining z* = {z,,,, z,}". For instance, under a specific

glven set Obtained Zom == {Ellwll, Ellwlz, E11W13}, then Z* == {EIIWM, E11W12 E11W13, EIl,

Wi1, Wia, Wi3}.

Step 13. Form the new matrix B*

In order to link vector z* with D,,,,, a new matrix B* is required. Matrix B,,, should be

transformed into B* adding the null matrix, which can be shown in Eq. (3.7).

Bz =[B" {3} =Dy (3.7)

Step 14. Identify the constraints and optimization.
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Establish the nonlinear constraints between z., z;and z,, then, chooses the initial values of
z* and set upper and lower bounds for the solution (inertia and area). In this step, the nonlinear
constraints are imposed to ensure the equality between the coupled known z. and the single
unknowns zg and z,. The optimization function, Eq. (3.5), is used to minimize the square sum

of the residual vector of frequencies and MAC with the considered constraints.

The algorithm for the structure system identification by COM is also depicted in Table 3-1.For
the sake of illustration, Section 3.3 shows its application to an academic example.

Table 3-1. Algorithm of Constrained Observability Method

Input: Geometric information (Geom), boundary conditions (Bound), measured
partial mode shapes and frequecies (@,,; 1, and 4; 1), known structural
parameters (Elj 1, EA;1and m; ;) and number of modes to consider (R).

Output: Observable variables {EI o, EA,}

1: (K, @;) < BuildStiffnessMatrix (Geom, Bound)
2: (M, 1) € BuildMassMatrix (Geom)
3: (K, M;, Ox;, Dy,;) € RearrangeMatrices (K, M, @;, 4;)

4: ([Bi],{z;},{D;}) € ObservabilityEquation (K;, M, ®x;, Dy, Ai 1, Dmi 1, Elja,
EA;1)

5: (B,z, D <CombineModalFreq (B;, z;, D;, R)

6: {Identified} < 1

7: While {Identified} is not empty

8:  [V] € ObtainNullSpace (B)

9: ({Ildentified} € ldentifyObservableVariables ([V])

10: If {Identified} is not empty

11:  {Valueldentified} < GetParticularSolution (B, z, D,{Identified})

12: (B, z,D) € UpdateEquation (B, z, D,{Identified}, {Valueldentified})
13: {Estimated} < Collect ({Identified})
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14 endif

15: end while %OM end

16: (Bym Zom, Dom) € ExtractEquations (B, z, D)

17: If z,,,,, is not empty

18: z,< GetHiddenUnknowns (z,,,)

19: (B*,z",D,,,)<DefineEquations ( By, Zom, Doms Zn)
20: Constraints < GetNonlinearConstraints (z*)

21: z" € Optimization (B*,z*, D,,,, Constraints)

22:end  %COM end

23: {El,, EA,} € Findresult ({Estimated}, z*)

Note: Known and unknown are being indicated by subscripts 1 and 0.

3.2.2 An example by dynamic COM

In this part, the academic example presented in Figure 3-2 is analyzed symbolically step by step
with the objective of achieving a better understanding of the proposed methodology. The
structure is composed of 2 elements and 3 nodes. One single mode of vibration is studied,
although the technique can be applied to multiple vibration modes. Therefore, the size of the
matrix of coefficients of the system of equations is (3Ny — Ng) X (3Ny — Ng). The structure
has the vertical and horizontal displacements restrained at nodes 1 and 3, that is, Ny = 4. In this
structure, the consistent mass matrix formulation has been used. Then, for each structural

element j the mass matrix depends on the total mass of the element m; and on its length L;.

2 W13

Wo— { 2 )3

AN

Unknown: EA,, El,

Knowns: EA;, ElL, my, my, A

L,

;‘,)“’11

1

L

Figure 3-2. Frame studied in Example 1 and degrees of freedom with positive value
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For the problem in Figure 3-2, the axial and flexural stiffness of elements 1, EA;, EI;, the
squared value of the first natural frequency, 4, the length of the elements, L,=L, = L, and their
masses per unit length, m,; and m,, are assumed to be known. Besides, to show the application,
three known parameters are introduced: the first natural frequency and the horizontal
displacement and rotation at node 2 of the first mode shape (u;,, wy,). The known and unknowns
properties are shown in the Figure 3-2. Thus, the input includes geometric information,
boundary conditions, measured partial mode shapes and squared frequency (uq,, wy, and 4,),
known structural parameters (EA,, EI; and m;, m,) and number of modes to consider (R = 1).

The goal output of this analysis is EA, and E',.

If the example was experimentally analysed, the modal frequency and the components of the
vibration mode would be obtained by performing a modal analysis of measured vibrations of the
real structure. In order to identify the observable variables (namely, set of variables that can be
estimated on the basis of the mentioned measured data) the following steps are considered

according to Table 3-1.

Step 1. First, the characteristic equation of the system is written by building the stiffness K
matrix of the structure, its mass matrix M and the modal displacements vector (line 1 and line 2

in Table 3-1). This is shown in Figure 3-3.

Steps 2 and 3. To generate the modified stiffness and mass matrices, those parameters made up
of several summands are separated and all the possible unknown parameters are moved to the
column vectors as shown in Figure 3-4 (line 3 in Table 3-1). With this, new variables appear as a

result of having stiffnesses (E4;, E1;) coupled with modal displacements (u;y, v1x, Wik).

Step 4 and 5. The stiffness and mass matrices are updated by introducing the known variables
(line 4 in Table 3-1). This is done by multiplying the columns associated with known variables
by its corresponding values and by removing the associated factors from the vectors. Note that a
new column vector appears after carrying out this step; this is a vector of independent terms,
which is built by all those terms that become fully known after introducing measured variables.
Since there are terms in the modified vectors of modal displacements that appear more than once,
these are joined by adding together their corresponding columns resulting in Ki and Mj. Besides,

if there are null columns in the matrices, they can be removed together with their corresponding
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variable giving us vectors @%, and @;,,. The resulting system of equations can be seen in Figure

3-5. Matrix B; is assembled using matrices K; and M; and vector z; is formed by joining all the

unknown information of the system as presented in Eg. (3.3) as shown in Figure 3-6.

- 4E1, —6El, 0 2E1,
Ly 12 Ly
—6El, 12El, EA, 0 —6E1, .
L Li L L3 ()
EA, 12EI 6El 6EL, | | 12
0 0 3 > 3 Viz p =
L, L 12 L5 ||y,
2E1, —6El, 6E1, 41511+41512 2ED [ \wy,)
Ly L2 13 Ly L, L,
6E1 2E1 4E]
0 0 22 2 2
L2 L, L,
F my L3 13m, L2 0 -my L3 0
105 420 140
13my13 13myL,; m,lL —11m, L3
1+1 1 1+ 252 0 151 0 Wip
420 35 3 210 ()
o . myL, 13myL,  11myl2  —13myl3 vi;&
3 35 210 420 || wy,
140 210 210 105 105 140
0 0 —13m,13 -m,L3 m,L3
420 140 105
Figure 3-3. Example 1. Characteristic equation of the structure in Figure 3-2.
P20 0 0 0 2 0 0]
L, L% Ly
E11W11\
-6 —12 1 —6 El
-2 3 T 0 0 —-7 0 1U12
L Ly L L1 Ly ¢ EA,uq,
0 0 0 — = 0 — —|{EAvel_
Ly L3 L5 L51|| ELvy,
2 -6 6 4 4 2||ELwy
LB "B L L L||fkw
El,wi3)
6 2 4 2W13
0 0 0 0 — 0 — —
L3 L, L,]
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13 1312 —L3
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1313 13L; L 0 —111% 0 0 myus,
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L, 13L 1113 —13L3| ) mivyz
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itV N € S R s | B
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Figure 3-4. Example 1. Modified stiffness and mass matrices from Figure 3-3.
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[ my L] —mywi,Li | 13myLiug,
105 0 0 P 140 420 :
13m, L2 0 0 —11mqwy,L3  13myLiu;,  myLloug,
420 Lo 210 35 , 3
Al o mbi, 13mal, —13mald {vlz}i i, 11mywy, L3
3 35 120 flw.k 210
: —m; L3 11m,L3 —myLy Homuwipld | mawipld | —11myLiug,
140 210 140 105 105 210
—13m,lL3 myL3 —mywy, L3
0 420 105 140
M;E)3NN—NB)><mx @Z/Inlwéxl M;(13NN_NB)XHXQX/Z-}'61X1

Figure 3-5. Example 1. Modified stiffness and mass matrices of the structure in Figure 3-4 after
upating them with measured variables and summing up the columns with common terms.
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Figure 3-6. Example 1. System of equations in the form of Eq. (3.4) for structure in Figure 3-2.

Step 6. When multiple modal frequencies are considered together, the equation will be built by
combining information of several models B;z; = D; (line 5 in Table 3-1). In this example, R = 1,

thus Bz = D is same as Figure 3-6.

Steps 7 and 8. Afterwards, the null space [V] of matrix B is obtained (line 8 in Table 3-1). This
allows the identification of the null rows of the null space, which corresponds to the observable

parameters.

From the expression of z, the EA, and w;; can be uniquely specified (line 9 in Table 3-1) and
observable as the associated rows in [V] are null and their values will not be affected by p; 1, p1 2
(line 11 in Table 3-1). Because it is a parametric method, the proposed technique allows the
parametric expressions of the variables in this case. However, because of the complexity of these

expressions they are not shown here due to space limitations.

Step 9. New variables are obtained in step 8. The unknowns obtained here in previous step,

EA, and w,; are merged into the initial inputs by OM. Therefore, the new set of variables, that is,
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{11, w11,u12, EA, and wy, } are considered as known for the next iteration to renew the Bz = D

(line 12 in Table 3-1).

Wi1
EA,
ELv1,
z=z,+[V{r} ={ V12
El,
Elwy3
Wiz J »
0 0 3\
0 0
132EA;L5A\;m, — 44L7A3m;m, — 27L7A;m3
504(—60EA; + 20L2A;m; + 21L2A;m,)
iy 0 2L37\1m2 >{‘L’l_l}
—60EA; + 20L2A;m, + 21L2\;m, T1.2
L*(60EA;A;m, — 20L?A?m;m, — 11L2A;m3)
AL 120w;,(60EA; — 20L2A;m; — 21L2A;m,)
1 0
\ 0 1

Figure 3-7. Example 1. Solution given by the particular and the homogeneous solution.
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Figure 3-8. Example 1. System of equations in the form of Eq. (3.4) for structure in Figure 3-2.
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EA, and w, are collected into the list of estimated item (line 13 in Table 3-1). Given that some
variables were identified in the previous iteration, a next iteration starts. The null space, [V] and

the general solution of Figure 3-8 (line 8 in Table 3-1), are given as:

ElLvy,
El,
Z; = Zpy + [V]o{t}, = { ElaWis

Vi |
wis )
( LS\, m, (44120 m, — 132E,A, + 27120m,) )
B 504(20L2A;m; — 60E;A; + 2112\, m,)
1 L2(11L*A3m3 + 20m,L*A2m, — 60E; A, L3\, m,)
+wg, 120w, (20120, m; — 60E; A, + 2112\, m,) >{’§2-1}
1 0 22
(2L3)\1m2)
0 20020, m, — 60E,A; + 21L2\;m,
\ 0 1 J

Figure 3-9. Example 1. Solution given by the particular and the homogeneous solution.

Step 10. It is obvious that no new variable is observable as no null row exists in the null space
of [V] (line 9 in Table 3-1). Therefore, no new yielded variable can be identified through the
OM (line 10 in Table 3-1), thus, the iterative process of line 7 stops (line 14 in Table 3-1).

Steps 11-13. Extract the equation B,,,Zym = D, from OM, Figure 3-8 (line 16 in Table 3-1).
Only partial observability is achieved and still 3 unknowns remain, especially the stiffness E1,.
Hence, the full observability is not achieved, triggering the execution of COM (from line 17 in
Table 3-1). and check if hidden unknowns exist or not (line 18 in Table 3-1). First split the
complex variables z, ={EIl,v,,, EIl,w;3} into single ones { E1,, v;,, w;3}, Which are included in
single variables z;, = { El,,vi5,wy3 }. Thus z* = { ELLbvy,, ElLbwis,El,vi5,wy3 }, B'Z2" =
BymZom = Dym (line 19 in Table 3-1).

Steps 14. Identify the nonlinear constraints in z* (line 20 in Table 3-1). Establish the
constraints El,v,, = El, * v1,, EIw;3 = EI, * wy3.Then an optimization routine, is used to
achieve the fully exploitation of the information in measurements with the acquired nonlinear

constraints and all the parameters observed (line 21 in Table 3-1). In the optimization process,
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the nonlinear constraints are imposed by ensuring the equality between the coupled unknowns
and the product of corresponding single unknowns. Thus, all the unknowns are obtained

successfully.

As shown, just using OM (step 1 to step 10) to solve the problem, the structural parameter, E1,,
cannot be identified, and the recursive process will end at step 10. Although p,; and p,,in
Figure 3-9 play the essential role to make the establishment of constraints El,v;, = El, * V15,
El,w;3 = EI, * wy3 and to make sure the identification of El,v,,, El,w;3,El,,v;,, W3, the
value of p, ; and p,, cannot be uniquely determined by OM. Hence, the main idea of COM is to
introduce the nonlinear constraint relationship between the coupled unknowns and single
unknowns of OM. After that, the optimization is performed to achieve fully observability by the

objective function in Eq. (3.5).
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Figure 3-10. Frequency of the occurrence of fully observability by OM and COM in the first
mode
Figure 3-10 shows the comparison of fully observability obtained by OM and by COM for this
simple structure. It can be seen that COM, as an extended version of OM, enhances the
performance of OM. Especially, the frequency of fully observability soars from 0 to 100% when
the number of measured components of the first mode shape is equal to 2. The larger the number
of measured components, the larger the likelihood of fully observability, nevertheless, the
restriction of the feasible number of sensors in real structures should be considered. Because the
values of the mode-shapes are normalized by a reference value, considering just one single

measure of each vibration mode does not provide meaningful information, therefore single
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measures can be ignored. Hence, COM has demonstrated great superiority when compared to
OM even in this simple case with numerical and non-experimental values. Therefore, COM

should be strongly recommended in the following examples where real experimental data is used.

3.3 The verification of dynamic COM

In the previous chapter the good performance of the dynamic COM was demonstrated in a
numerical example. The next step is to check the performance when real experimental data is

used.
3.3.1 Two dof by dynamic COM

In this example, taken from reference (Haralampidis, Y et al, 2010), the reliability of the
proposed dynamic COM method is checked when experimental data is considered. Whereas a
simple academic example was used in the previous section for the sake of illustration, this

example allows the comparison of the method with existing results.

m,

Experimental modal frequencies and mode-
m, shapes of the two-story aluminum building model.

Mode 1 Mode 2

k, Modal frequencies (Hz) 17.2 50.4
Modeshapes Ist Floor 0.48 —1.23

2nd Floor 1.00 1.00

) b)

Figure 3-11. a) Two DOF lumped mass model; b) experimental modal frequencies and mode-
shapes

The dynamic COM is applied to identify the stiffness properties of two floors. For this, the
structure is modeled by a two-DOF linear lumped mass shear building model as schematically
shown in Figure 3-11 a). In the modelling, the masses are treated as deterministic, while the
model parameters are chosen to be the two interstory stiffness of the two-story building.

According to Reference (Haralampidis, Y et al, 2010), the model masses were estimated from
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the structural drawings to be m;=3.9562 kg and m, =4.4482 kg. The a priori best estimate of the
interstory stiffness calculated from the structural drawings is the same for both stories and equal
to ky = 2.3694 x 10° Nm™~!. The following parameterization of the two- DOF model shown in
Figure 3-11 is used: k; = x;k,,i = 1,2, which can avoid the ill-posed problems since the
unknowns x; were normalized by the a-priori best estimate and it can reduce the morbidity of the
matrix. The purpose of the identification is to update the values of the stiffness parameters x;

and x, using the measured modal data reported in Figure 3-11 b).

Through the COM analysis, the results are displayed in the Table 3-2, and compared with the
two reference results (Haralampidis, Y et al, 2010). Here, the measured data in Figure 3-11 b) are

assumed as true values.

Table 3-2. Observed properties in Figure 3-11

Method Fully x=[x1 x3] Af1(%)  Afy(%)  MAC(9; 0))
Observability

COM YES [0.517 0.709] 0.32 -0.42 0.976 0.0063]
0.010 0.982
Reference results 1 YES [0.546 0.648] 1.384 -3.174 [0.983 0.011
0.006 0.976

Reference results 2 YES [0.511 0.718] 0.025 -0.057 [0.974 0.0057]
0.011 0.983

From Table 3-2, the results of frequencies from COM are between Reference results 1 and 2. The
total errors of frequencies and MAC of the results are calculated by the sum of squares of the
difference between the obtained and the theoretical values obtaining, E¢_.om = 2.75 X 107°
EMac—com = 1.039 X 1073 and E¢_ge, = 3.874 X 1077 , Epmac—rez = 1.12 X 1073, Reference
results 2, x =[0.511 0.718], fit very well the frequency properties to values as low as Ef_gep, =
3.874 x 1077 at the expense of deteriorating significantly the fit of modal properties to the
values as high Eyac—grez = 1.12 X 1073 compared with the COM results. This could suggest
that if the tiny sacrifice in the fit of frequencies is not of concern in the identification to preserve
the accuracy of modal information, the results of COM x =[0.5167 0.7091] are the most

representative of this structure.
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3.3.2 Reinforced concrete beam by dynamic COM

The dynamic COM is applied to the damage assessment of a reinforced concrete beam with a
length of 6 m and dimensions as shown in Figure 3-12 (Simoen, E et al 2014). The transverse
mode shape displacements are observed at 31 point equidistant locations along the beam, and the
resulting mode shape measurements are shown with their corresponding natural frequencies in
Figure 3-13. Initially, all bending stiffness parameters are assumed to be equal Eli, = 7.23 X
10° Nm~2. The beam is divided into 10 substructures with a uniform stiffness value or Young’s
modulus in Figure 3-12 a). The following parameterization of the 10 bending stiffness model
shown in Figure 3-12 is used: EI; = x;El;,, i = 1~10. The purpose of the identification is to
update the values of the stiffness parameters x;~x,, using the measured modal data reported in
Figure 3-13.

The estimated yielded by COM analysis are [1.153 1.031 0.860 0.903 0.799 0.511 0.563 0.717

0.864]. Here, the measured data in Figure 3-13 are assumed as true values, which come from the
original data shown in Reference (Simoen, E et al 2014). This result gives the engineer the best
approximation, as justified below, and determines the location of damage; the most serious
damage is located in substructure 6 and 7. The comparison of frequencies and MAC are shown
in Table 3-3 where these are provided with high precision. All the errors between the estimated
frequencies and the experimental ones are lower than 5%. This value is the maximum precision
that can be expected according to the results presented in Reference (Murat, G et al, 2018) for a
reinforced concrete structure. In addition, MAC is very close to 1, that is to say, the estimated
mode shapes fit well with the data from Figure 3-13. Regarding the comparison between these
estimated stiffnesses and the values from Reference (Murat, G et al, 2018) and from Figure 3-14,

it is to highlight that the largest difference between two outcomes is 1.2%.
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a) b)
Figure 3-12. a) set-up of static loading; b) image of vibration testing (E Simoen. Et al 2014)
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Figure 3-13. The first four experimental bending mode and the corresponding frequencies

Table 3-3. Observed properties in Figure 3-12

Method  Fully Observability X=[x1~X10] Mode  Af(%)  MAC(9;,0,)
[1.154 1.029 0.856 1 -1.05 0.996
COM YES 0.902 0.797 0.544 2 -0.76 0.999
0.508 0.560 0.713 3 -0.04 0.999
0.864] 4 1.68 0.999
1.0x10" A [ |Reference results
1 Il COM results
8.0x10°
& 6
= 6.0x10
E 6
Z 4.0x10%
I
2.0x10°

1 2 3 45 6 7 8 910
Elements

Figure 3-14. Bending stiffness of COM method and Reference results (G. Murat. et al, 2018)
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3.4 Potential application

In order to show the possible applications and potential of the proposed methodology to real
world structures, a more complex structure is presented in this example. The 13-story building
shown in Figure 3-15 is taken under study. This structure was already considered in Reference
(Lei, J et al 2018).

This frame is modelled using a total of 226 nodes and 273 elements and it is composed of a set of
8 different sections described in Figure 3-15 and Table 3-4. Therefore, the size of the system of
equations is 678 x 678. In this study, all these 16 mechanical parameters are perturbed by
random numbers in order to simulate measurement errors. To illustrate the robustness of the
dynamic COM, four sets of the 16 mechanical parameters are synthesized by the product of the
intact values and random numbers evenly distributed in the interval [0.8, 1.2], referred as
perturbation factors later. The first mode shape of this frame calculated by SAP200 using these

four parameter sets and shown in Figure 3-15 c) is used as the input of dynamic SSI by COM.
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Figure 3-15. lllustration of the 13-floor frame studied in Example 3. a) The members with
different characteristics are represented with different colours; b) Sets of measurements used in
the global analysis; c) First mode shape.

Performing a global study is of interest whenever it might be necessary to know the state of the
whole structure or when the damage location is unknown. One study is carried out in order to
check the effectiveness of the method, considering a set of known measurements. These sets of
known measurements are measured at nodes 5, 9, 14, 19, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65,
70 consisting on the vertical and horizontal displacements in the first mode at each of the
mentioned nodes as seen in Figure 3-15 b) and Figure 3-15 ¢). The unknown parameters are
bending stiffness, EI, of elements | to VIII and the displacements of the nodes that are not
measured. The areas of elements are assumed to take the theoretical values. For this purpose, the
estimated values of the structural parameters in four different sets affected by random perturbed
factors of mechanical parameters are provided in Figure 3-16. The values of flexural stiffness are
bounded as they have a physical meaning; their values cannot be neither negative or extremely
high. Hence, the range for estimated normalized values should be in the range [0, 1.5]. From the
observed ratio between the estimate and the true value, the error is within 8%, which is
acceptable. It should be noted that no inertia (bending stiffness) can be identified by OM, while

all these parameters are yielded by COM using only the first-mode information.

Table 3-4. Properties of the frame shown in Figure 3-16.

Section Elements A(m?)  I(m*)
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I : Outer Bottom Columns 1to4 and 53 to 56 0.563 0.026
II: Outer Intermediate Columns 5to8and 57 to 60 0.360 0.011
[I: OuterUpper Columns 9to13and 61to 65  0.250 0.005

IV: Interior Bottom Columns 14 to17and 40to 43  0.360 0.011
V :Interior Intermediate Columns 18 to 21land 44to47 0.250 0.011
VI: Interior Upper Columns 22to26and 48to 52 0.160 0.002

VII: Central Core 27 to 39 1.800 5.400
VII: Beams 66to 273 0.180 0.005
1.2+ —=—Setl --+-Set3
- Set2 v Set4
o 1.14
>
=
E 1.0¢<--9--~
I
£
E 0.9
0.8

I 1II O v vV VI VI Vi
Bending stiffnesses

Figure 3-16. Estimated bending stiffnesses in four random perturbation factors sets

3.5 Conclusions

This chapter proposes, for the first time, the application of constrained observability techniques
for parametric estimation of structures using dynamic information such as frequencies and mode-

shapes.

The nonlinearity of the system obtained when observability is applied, can be properly treated to
identify the unknown variables by rearranging the matrix expression and moving the parameters
to the modified vectors of mode-shapes and by considering the coupled variables as single
variables. After that, the nonlinear constraints between the unknowns are added to tackle the
issue of partial observability, as can be seen in Section 3.3.1 and the example in Section 3.3.2.
Besides, the merit of the dynamic COM is demonstrated as a good solution to the fully

observability which OM cannot achieve. In order to verify the feasibility of this method, two
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examples using experimental data are used as a proof of concept. In both examples, the dynamic
COM shows acceptable errors of frequencies and MAC, providing similar or sometimes higher
accuracy compared to the reference data. The identified frequencies are approved with less than
2 % error with respect to the experimental ones. At the same time, the errors in the MAC values
are less than 3% in the first example and 0.5% in the second example. However, a main
advantage is obtained by using dynamic COM compared to other SSI methods. This is the
possibility to identify if a set of available measurements is sufficient or not to uniquely estimate
the state of the structure or a part of it.

To test the performance of the proposed method in real world scenarios, a large structure is used
whose real mechanical parameters are perturbed by random numbers in order to simulate
measurement errors. It can be seen that the flexural stiffness of all elements can be estimated
within acceptable errors. These may allow the application by choosing the most adequate sets of

measurements according to the supposed particular condition of the structure.
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CHAPTER 4 Combined SHM+SSI strategy by COM

4.1 Introduction

This chapter aims to discuss the role that the SHM strategy and further SSI analysis have in
reducing the estimation error, in response to the gap identified in Section 2.4.2. The objective is
to define the optimal strategy of parameter estimation by the intelligent combination of SHM
plus SSI by dynamic COM. A decision support tool based on machine learning is proposed to
help engineers to establish the best SHM+COM strategy yielding the most accurate estimations,
and then to determine to which extent the decisions on the SHM process influence the final error

in the estimation, and to assess the contribution of the SSI-COM in this final error.

4.2 Methodology

4.2.1 Constrained observability method

The methodology followed to obtain the optimum sensor locations (the SHM that provides the
lowest estimation error) and the best choice of the weighting factors in the objective function is

the combination of COM and decision tree (DT) analysis.

The dynamic SSI by COM is explained in previous chapter, highlighting the differences with the
OM. Dynamic SSI by COM (Peng, T. et al, 2020) is used by imposing constraints on variables

when no more parameters can be observed using SSI by OM (Josa, 1. 2017).

The new approach from the previous chapter is that the influence of the weighting factor
(W,, W5 in Eqg. (3.5)) on the accuracy of the identified parameters will be considered, always

keeping their relation as illustrated in Eq. (4.1).
W;\ + Wg =1 (41)

In the following analysis, the weighting factor for the frequency error part is the value of W,
and the corresponding value for mode-shapes is equal to 1-W;. The displacements and rotations
mentioned in this COM method refer to the mode shape displacements and rotations. This means
that displacements and rotations are not directly measured, but obtained from the mode shape.
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In order to compare the evaluation effect of all parameters, an error index y, associated with the
final estimation by Eq. (4.2) is proposed. The error index is calculated as the mean squared error

of the n estimated parameters 6, that is,

Zn 9'2

i=1"i

y=—- (4.2)

4.2.2 Decision tree algorithm

The complex interactions between several factors involved in the SSI (structural layout, length,
measurement set and weight factor) make the identification of the best SHM+SSI strategy

challenging. In order to tackle that problem, decision trees are proposed (Quinlan, J. 1986).

A decision tree learning algorithm is employed in this study to establish a regression model to
assess the effect of each input factor on the error-index y of the estimation. The algorithm starts
from a root node, and then many child nodes gradually grow, forming a tree structure. The merits
of decision trees are that they are computationally cheap to use, the learned results are easy to
understand, the results can be obta ined even if some values are missing, and they can deal with
irrelevant features (Harrington, P. et al 2012).

To build a decision tree successfully, the decision about which factor is used to split the data
should be made based on an established splitting criterion. To make sure which factors are
adequate, every factor needs to be considered and its effect on the splitting results measured.
Then, the best factor is chosen. A binary decision tree is proposed in this chapter, thus, at each
node, the data is split into two subsets. If the data of the subset on the branches are of the same
class, there is no need of continuing to split the data, stopping the branch at this point. Otherwise,
the splitting process on this subset should continue. Some stopping criteria can be imposed to
stop the splitting process, such as a minimum number of data points belonging to a subset and a

maximum depth of the tree.

The process uses the CART (classification and regression tree) algorithm (Bel, L. et al, 2009),

which is an effective method of decision tree learning algorithm. The CART algorithm builds
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binary trees and can handle discrete as well as continuous split values. Given that the response
variable is the error-index vy, regression trees are used, and the splitting criterion is the variance
reduction. The variance reduction of a node is defined as the total reduction of the variance of the
response variable x due to the split at this node (Breiman, L et al, 1984), which is calculated as

follows:

1 1 2
VR :WZZE(DQ —Xj)

i€S jES

SRR DI CE) (43
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where S, S, and Sy are the set of sample indices before splitting, set of sample indices for which
the split test is true, and set of sample indices for which the split test is false, respectively. Note

that the concept of variance underlies in each summand of Eq. (4.3).
4.2.3 Method of optimal SHM+SSI

In a general case, the application of the DT in combination with the COM method to plan an
optimal SHM+SSI is summarized as follows; (1) the undamaged structure is considered,
assuming the design layout and the original mechanical properties. Its dynamic behavior is
obtained (direct analysis), that is, the displacement in the x- and y- direction and rotation at each
node for each considered vibration mode and their corresponding frequencies; (2) different
measurement sets (i.e., number, type, and location of sensors) are defined along with the
accuracy of the devices. The sensors should be located aiming at determining the unknown
(target) parameters; (3) measured records given by the SHM are simulated by considering, for
each combination of measurement devices, the theoretical (undamaged) values of deformation
and rotation distorted by a random error consistent with the corresponding sensor accuracy. In
this way, the dynamic behavior of an undamaged structure recorded by inaccurate devices is
simulated. The number of simulations related to each measurement set should be large enough to
capture the stochastic nature of the process; (4) the observability-based SSI using the COM is

conducted (inverse analysis) to obtain the unknown (target) parameters for each simulated
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measurement record. Different values of the weighting factor W, are used to conduct this
analysis; (5) the error-index y is obtained by comparing the values of the target parameters
obtained through the direct and inverse analyses; (6) the decision tree is built using the
measurement sets and values of the weighting factors as explanatory variables, and the error-
index as the response variable; (7) The information provided by the decision tree will support the
decision on the best measurement set and the weighting factors to be used in further system

identification processes aimed to identify damage.

For the sake of illustration, Figure 4-1 shows a roadmap of the steps to follow.

Stepl: Define undamaged structure

(theoretical stiffness, axial stiffness, layout,...)
v

Step2: Define different combinations
of measurement sets

(position, measurement type, ...)

v

Step 3: Simulate measure records
for each combination
(statistical representation of the

measurement set with errors)

Step 4: Conduct COM to obtain the Step5: Obtain error-index p
target parameters using different W, ———® by comparing estimated and

(estimated stiffness, ...) theoretical value

Explanatory variables T

Weighting factors
Measurement sets

Step6: Built Decision Tree

\/

Step7: Selection of the optimal combination

Yy

(presenting the minimum error)

Figure 4-1. Roadmap for the application of SHM+SSI decision tool for a general case
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4.3 Example of application: single-span bridge

This section provides a theoretical framework to clarify the method and illustrates the utility of
this technique regarding structural behavior by performing an initial descriptive analysis of the

most important variables influencing the estimation accuracy of a SHM+SSI strategy.
4.3.1 Bridge configurations

In this part, an academic example with different factors (layout or boundary conditions, span
length, measurement sets, and weighting factors) is introduced in detail under the COM
framework with the objective of (i) achieving a better understanding of the influence of these
factors on the output uncertainty and (ii) showing the need for more sophisticated tools able to
capture the joint effect of these factors and (iii) defining the best SHM strategy. Four bridge
layouts are assumed according to different boundary conditions: 1|Pinned-pinned, 2|Pinned-
clamped, 3|Clamped-pinned, 4|Clamped-clamped, which are shown in Figure 4-2. The FEMs of
the four bridge types are defined by 7 nodes and 6 beam elements. Three types of sections are
considered: (O, @, 3. The bending stiffness EI, and EI; indicated in Figure 4-2 are assumed
to be unknown. For these layouts, the mass information m,, m,, ms, the length of each element
L/6, and the bending stiffness of Section 1 El;, are assumed as known. Considering that the
horizontal displacement of the bridge is small, the influence of the horizontal direction can be
ignored. The first two vibration modes are used in this study. The monitored points are studied
for three scenarios that differ in the measurement sets considered, as shown in Figure 4-3. These
three measurement sets include the vertical and rotational modal displacement at nodes (4, 5, 7),
(4-7) and (1-7), respectively. The nodes are given in Figure 4-2. The reason for choosing these
three sets is representative (obtain fully observability by OM) for illustrate the theoretical

analysis of the proposed method.

A variable span length is also considered, that is, 50m, 55m, 60m, and five cases of weighting
factors W,, that is, 0.5, 0.6, 0.7, 0.8, 0.9. The collection of all scenarios is illustrated in Table 4-1.
The reason for choosing W, > 0.5 is that the frequencies are more sensitive to small changes of
stiffnesses compared to mode-shape (Simoen. E et al 2015). Besides, for each scenario
combining layout, measurement set, span length, and weighting factor, the frequencies, vertical

displacement, and rotational modal coordinates are introduced with a given error level. The error
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is assumed to follow a uniform distribution between 1~3%, 2%~6% and 10%~30%, respectively.
The frequency error range was chosen checking the frequency accuracy of several dynamic tests
(Li, Z et al 2016, Hou, R. et al 2019, Chen, J.G. et al 2015) where different analytical methods
were used for identification. The vertical displacement error range were chosen from reference
(Li, Z et al 2016), who identifies the vertical displacement with accuracies of about 2%- 6%. As
accuracy of rotation is lower than the accuracy of vertical displacement (Mares, C. et al, 2002), a
range of 10-30% was chosen for that purpose. In experiments or field measurements under
free/ambient vibration, modal analysis was originally used for Experimental Modal Analysis
(EMA).While for the drawback of EMA which needs the input forces, some Operational Modal
Analysis (OMA) method were developed (Brincker, R. et al 2015), including Peak-Picking
method, the Auto Regressive-Moving Average Vector model, the Natural Excitation Technique,
the Random Decrement Technique, the Frequency Domain Decomposition and the Stochastic
Subspace Identification. The Frequency Domain Decomposition (translational frequency
response function (Ewins, D. et al 2001) and rotational frequency response function (Hosoya, N.
et al 2019)) is verified to yield the value of vertical and rotational mode displacements with

acceptable accuracy.

A total of 1000 samples are used to analyze each measurement set. In one sample there is one
model response of frequencies and mode-shape displacement. For both, clamped and pinned
supports, their vertical displacements are set to 0. For the clamped supports, the rotations of the
corresponding nodes are set equal to 0. The total combination of influence factors is presented in
Table 4-1.

Table 4-1. Combination of influence factors

Factors Cases Number
Layout 1|Pinned-pinned, 2|Pinned-clamped, 4
3|Clamped-pinned, 4|Clamped-Clamped
Measurement Set Set 1, Set 2, Set 3 3
Span Length 50m, 55m, 60m 3
Weighting factor, W, 0.5,0.6,0.7,0.8,0.9 5

Total scenarios 180
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Figure 4-2. Layout of four bridge types (The numbers in circles indicate the cross-section type)
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4.3.2 Results

The error index y,calculated by Eq. (4.2) results in the following expression when applied to the

analyzed case

y =5 J(E% - 1) + (8, - 1)’ @4)

where ET, and ET; are the estimated stiffnesses normalized by the actual value, i.e., a value of 1
denotes a perfect estimation of the parameter. The larger the value of y , the lower the overall

accuracy of the estimated parameters.

For each of the 180 scenarios, an average value of the stiffnesses is obtained from the 1000
samples assuming different random errors in the measurements. The results are depicted in
Figures 4-4, 4-5, and 4-6. From these figures, it can be seen that the span length has a minor
contribution to the error-index y, whereas the bridge layout presents the larger influence. It is
also noted that the results obtained for the pinned-clamped and clamped-pinned layouts are
sensibly similar. The influence of the weighting factor W, varies with the measurement set, that
is, its influence is very small for Set 1, especially for the layouts of pinned-clamped and
clamped-pinned; for Set 2, the weighting factor displays the largest influence, which is exhibited
in the case of pinned-pinned support conditions; and for Set 3, the larger influence of the
weighting factor occurs with the pinned-clamped and clamped-pinned layouts.

The worst results are given in the case of clamped-clamped support conditions and measurement
Set 1, with values of the error-index y close to 12%, whereas the best results (error index
around 1.8%) correspond to the same support conditions, clamped-clamped, and measurement
Set 3. These values are acceptable for SSI. These two results highlight the complexity of
designing an optimal SHM+SSI strategy, given the joint influence of the involved variables on

the quality of the estimation.

To facilitate the understanding of these interactions, the following section presents the decision

trees that will allow the organization of the scenarios according to the resulting error-indices y.
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Figure 4-4. Set 1 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned,
pinned-clamped, clamped-pinned and clamped-clamped, respectively.
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Figure 4-5. Set 2 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned,
pinned-clamped, clamped-pinned and clamped-clamped, respectively.
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Figure 4-6. Set 3 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned,
pinned-clamped, clamped-pinned and clamped-clamped, respectively.

4.3.3 Identification of impact factor by decision tree learning algorithm

The CART is applied to the 180 scenarios, obtaining the decision tree model shown in Figure 4-7
whose node characteristics are indicated in Table 4-2. Therefore, the decision tree considers four
explanatory variables: layout, span length, measurement set, and weighting factor, W, . Although
the decision tree can be pruned to remove those branches that provide little classification power,
the entire decision tree has been presented to allow the interpretation of the results and the
explanation of the tree itself. The response variable (error-index y ) of the 180 total cases has

value of 3.97% for the mean and 2.59% for the standard deviation (see Node 1).

From Figure 4-7, it is clear that the structural layout is the first factor to draw the tree at the first
level, which means the influence of the layout on the error-index y is essential compared to the
other three explanatory variables. The layouts of 2|pinned-clamped and 3|clamped-pinned belong
to the left branch, and 1|pinned-pinned and 4|clamped-clamped belong to the right branch.
Besides, it seems that the error-index is smaller when the boundary conditions of the bridge are
asymmetric (left branch). This may be because asymmetric conditions can decompose by
symmetric and anti-symmetric conditions. The two conditions exhibit some offsetting behaviors
in the parameter evaluation process. That is why the values of PP60 and CC60 in Figure 4-4 are
larger than the other two. After this, the next important factor is the selection of the measurement

set as indicated by the second level of the tree. The values of measurement Set 1 are classified
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separately from the ones of measurement Sets 2 and 3. The selection of both pinned-clamped or
clamped-pinned support conditions and measurement Set 1 yields a mean value of the error-
index y of 1.93% with 0.12% of standard deviation (see Node 4 in Table 4-2), whereas selecting
measurement Sets 2 and 3 for these types of support almost doubles the error, with 3.17% of
mean (see Node 5 in Table 4-2).

For the cases of Layout 2|pinned-clamped and 3|clamped-pinned and measurement Set 1, either
the weighting factor, W, or the span length does not pose a big influence, as shown by the small
value of the coefficient of variation at Node 4 (0.12/1.93=0.06). However, in other cases, such as
the case of Nodes 11 (Layout 2| pinned-clamped or 3| clamped-pinned and measurement Set 3)
and 14 (Layout 1|pinned-pinned and measurement Set 2), the adequate selection of the weighting
factor (W, = 0.85 for the first and W, > 0.65 for the second) can almost double the accuracy of

the results.

It is noted that the effect of the span length does not appear in the right side of the tree (Layouts
1|pinned-pinned and 4|clamped-clamped), and only appears at Node 8 (cv=0.08/1.88=0.04),
meaning that the span length has a residual influence on the results, at least in the studied range

(50 to 60 m). This is consistent with the outcome of Section 4.3.2.

Table 4-2. Node characteristics of the decision tree shown in Figure 4-7

Node Explanatory Variables  Left Right Mean (%)  St. Dev (%)

1 Layout [23] [14] 3.97 2.59
2 M. Set [1] [2 3] 2.76 0.80
3 M. Set [1] [2 3] 5.2 3.14
4 w <0.85 >0.85 1.93 0.12
5 M. Set [2] [3] 3.17 0.66
6 Layout [1] [4] 9.00 1.44
7 Layout [1] [4] 3.29 1.67
8 L. span <5250 >52.50 1.88 0.08
9 end node 2.13 0.07
10 w <0.75 >0.75 3.58 0.40
11 w <0.85 >.85 2.76 0.62
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12 w <0.65 >0.65 7.76 0.67
13 w <0.75 >0.75 10.26 0.70
14 w <0.65 >0.65 4.74 1.11
15 M. Set [2] [3] 1.84 0.36
16 end node 1.79 0.04
17 end node 1.93 0.02
18 end node 3.78 0.39
19 end node 3.29 0.19
20 end node 3.03 0.29
21 end node 1.65 0.16
22 end node 7.08 0.42
23 end node 8.20 0.31
24 end node 9.79 0.41
25 end node 10.95 0.41
26 M. Set [2] [3] 5.59 1.08
27 M. Set [2] [3] 4.17 0.71
28 end node 2.19 0.06
29 end node 1.49 0.04
30 end node 6.50 0.75
31 end node 4.66 0.06
32 end node 3.67 0.70
33 end node 4.66 0.13

The performance of an SHM+SSI strategy for the structural Layout 1|pinned-pinned or
4|clamped-clamped using the measurement Set 1 is really poor due to the high values of the
error-index y compared to the other cases. In the case of structural Layout 4|clamped-clamped, it
is recommended to choose the measurement Set 3 if possible (yielding a mean error-index y of
1.49%, Node 29), or measurement Set 2 otherwise, resulting in a very acceptable mean value of
the error-index y of 2.19% (Node 28).

From this decision tree, the best decisions are obtained by comparing the classifications. Some
best choices can be drawn. Firstly, measurement Set 1 is the best choice for Layouts 2|pinned-

clamped and 3|clamped-pinned. In this case, the role that the weighting factor, W,, has on the
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accuracy of the estimated ET, and ET; is negligible. Secondly, a weighting factor of 0.9 is the
best choice for Layouts 2|pinned-clamped or 3|clamped-pinned and measurement Set 3. In this
case, the weighting factor plays a relevant role in improving the accuracy of the estimation.
Thirdly, the optimal measurement choices for the Layout 4|clamped-clamped are Sets 2 and 3.
Finally, the combination of the Layout 1|pinned-pinned or 4|clamped-clamped and measurement
Set 1 should be avoided due to the resulting large error-index y, no matter the assumed value of

the weighting factor, W;.

It is noted that these values correspond to the training set, so different values can be observed in
real practice.

4.3.4 Discussion on the optimal SHM+SSI strategy

This part is to investigate the sensitivity of the outcomes to the effects encompassed by each
scenario. Using the analysis result in Section 4.3.3, the influence of each factor is found by the
control variable method. After removal of one of the four variables (Table 4-1), DT is used to
analyze the remaining three ones. Table 4-3 demonstrates the corresponding optimal SHM+SSI

strategy when considering the remaining three factors.

Table 4-3. Sensitivity analysis: Strategy comparison when considering three factors

Remove Variables Optimal SHM+SSI Strategy
Layout Set2and 3 & W, > 0.75;
Measurement Set Layout 2| and 3| &W, > 0.75;
Span Length Layout 2| and 3| & Set 1;
Layout 4| & Set 2 and 3;
Weighting factor Layout 4| & Set3;

Layout 2| and 3| & Set1,

From the result of Table 4-3, the optimal SHM+SSI strategy corresponds to the choice in Section

4.3.3. For this particular structural analysis, it is clear that the span length of the bridge is not a
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Figure 4-7. Overall structure of the obtained decision tree model. The value of the end nodes refers to the mean error-index p of the
split.
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relevant variable to consider in any optimal strategy, at least in the studied range for the reason
that no strategy about the span length appears in Table 4-3. This is a sound result that validates
the rationality of the method. Regarding the other studied variables, the layout, measurement set
and error frequency-related weighting factor, are the more complex cases when applying the
observability method with COM. Although the structural layout is not a decision variable as it
cannot be selected, it is the most important input when deciding the optimal SHM+SSI strategy
which can be seen in the last three rows of Table 4-3. Besides, the second important decision is
the selection of the measurement set. Thirdly, the selection of an adequate value of the weighting
factor can significantly increase the quality of the estimation in some cases when ignoring the
influence of layout and measurement. Whether low or high values of the weighting factor
perform better will depend on the specific case. Decision trees can be used to derive this value. It
is highlighted that these results are case-specific but the process of choosing a strategy can be

followed in a similar way.

The next section analyses to which extent the information provided by the decision trees based
on the assumption of undamaged structure can be useful to support decisions on the optimal

SHM+SSI strategy for damage detection in a real case.

4.4 Applicability to best SHM+SSI methodology for damage detection

4.4.1 Bridge description

The Hollandse Brug (Figure 4-8), located in the center part of the Netherlands, belongs to one of
the main highway connections between Amsterdam and the Northeast of the Netherlands. The
bridge is a pre-stressed concrete bridge composed of precast beams and an upper concrete slab
poured in situ and was opened for traffic in 1969. The bridge has seven spans of 50.55 meters. A
dilatation joint was placed between each span, which causes that the bending moments cannot be
transferred from one span to another. Thus, each span can be considered separately. To extend its

service life renovations and strengthening were conducted in 2008.

SHM data collection was conducted to understand the service-life assessment of this renovation
bridge by the Infra-Watch research project. The SHM system consists of sensors positioned on

three cross-sections of the first span (Figure 4-9 a)).
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Figure 4-8. Overview of Hollandse Brug
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Figure 4-9. a) Locations of the sensors (Miao. S.f. 2014); b) The first two mode shape of
Hollandse Brug

Based on the vibration data gathered with accelerometers (geo-phones), located at various
intervals along and across the bridge, detailed information about the mode shapes (Figure 4-9 b))
and natural frequencies (f; = 2.51 Hz, f, = 10.09 Hz) could be obtained (Miao, S.f. et al 2013
& 2014, Veerman, R. 2017) by Peak-Picking method and Stochastic Subspace Identification. It
is worth mentioning that the previous studies on this bridge focus on the data collection,
processing, and the comparison of the FEM model results instead of the identification of

structural health. The next analysis can fill this gap.
4.4.2 Decision tree for the Hollandse Brug (original bridge un-damaged)

The goal is to define the best SHM+SSI strategy to assess the unknown parameters EI, and El;

according to Figure 4-2. The layout of each span of the bridge can be assumed as pinned-pinned



Planning low-error SHM strategy by COM | Tian Peng
61

due to the dilatation joint. Through the model calibration, based on the two natural frequencies,
the simplified model could be identified as corresponding to Figure 4-2, Layout 1. The

parameters of each element are shown in Table 4-4.

Table 4-4. Parameter of each element of Hollandse Brug

Mode value
Section Types  Length ( m/each) EI (N-m?) Mass(kg/m)

D, ®,3 8.425 8.15el1 49000

The errors of the measured frequencies, vertical displacement, and rotation are assumed to
follow uniform distributions bounded between 1%~3%, 2%~6%, and 10%~30%, respectively. A
total number of 1000 samples are analysed by dynamic COM under 6 different measurement sets.

The six sets are shown in Figure 4-10.
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Figure 4-10. Six measurement sets of Hollandse Brug
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Figure 4-11. Decision tree model for the SHM+SSI of Hollandse Brug

An initial decision tree with no information on the level of damage of the structure (undamaged
bridge with all cross-sections with properties as presented in Table 4-4) can be drawn according
to Section 4.2.2, see Figure 4-11. From this decision tree, it is clear that the best decision is to
select Set 4 (see Node 4). The results of Set 2, 5, and 6 are significantly better than the ones of
Set 1 and 3. This clear difference cannot be easily foreseen without the decision tree, showing
that the obtained results are not trivial at all. When considering the effect of the weighting factor,
W,, the performance of lower weighting factors (W, < 0.75) is better than the case of higher
weighting factors (W, > 0.75), being a relevant aspect to consider to reduce the error-index y in
most of the cases (compare Nodes 8 and 9). The detailed information of each node is shown in
Table 4-4. In the last column of the table, the coefficient of variation, i.e., standard deviation
normalized by the mean, exhibits a maximum value of 0.41 for an end node, which shows the

robustness of the tree.

Table 4-5. Node characteristics of decision tree shown in Figure 4-11

Node Explan. Vble Left Right  Mean (%)  St. Dev (%)  St. Dev/ Mean
1 M. Set [2456] [13] 7.28 5.48 0.75
2 M. Set [4] [256] 431 3.09 0.72
3 W, <0.75 >0.75 13.2 4.26 0.32
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4 end node 0.71 0.26 0.37
5 W <0.75 >0.75 551 2.60 0.47
6 end node 11.2 2.30 0.21
7 end node 16.1 5.15 0.32
8 end node 3.87 1.60 0.41
9 end node 7.98 1.64 0.21

4.4.3 Damaged bridge

Once the theoretical decision tree is obtained for the undamaged bridge, two damage scenarios
are analyzed in this section. The bridge mid-span is assumed to be damaged considering 5% and
30% of reduction of E1,, as shown in Figure 4-12. The damage patterns have been assumed to
create the scenarios needed to validate the approach. Nevertheless, this knowledge is not
introduced as an input of the model. Therefore, knowing the damage patterns is not required for

its application.
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Figure 4-12. 5% and 30% of stiffness reduction at mid-span of Hollandse Brug

The COM is used to obtain the estimated EI, and EI;, with the parameters in Table 4-4 and the
two damage levels. The errors of frequencies and vertical displacements are the ones indicated in
Section 4.4.2. To account for the measurement error, the average value of 1000 simulations has

been considered. Finally, the parameters have been estimated for W, = 0.5, 0.6, 0.7, 0.8 and 0.9.

Table 4-6 summarizes the error-index y comparison between the values given by the decision
tree (undamaged structure) and the estimation of the damaged structure. According to the

analysis in Section 4.4.2, the largest estimation error occurs with measurement Sets 1 and 3
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(Nodes 6 and 7), whereas the best estimation is obtained with measurement Set 4 (Node 4).

These two scenarios are used to validate the decision tree.

Table 4-6. Error-index comparison between the original (undamaged) and damaged values. DT
stands for decision tree

Case W, Mean (%) St. Dev (%)
DT: Node 6 Undamaged <0.75 11.20 2.30
DT: Node 7 Undamaged >0.75 16.10 5.15
5% damaged <0.75 12.70 7.34
Obtained values: 5% damaged >0.75 17.22 3.92
Sets 1and 3 30% damaged ~ <0.75 11.73 6.50
30% damaged  >0.75 18.39 3.96
DT: Node 4 Undamaged 0.71 0.26
Obtained values: 5% damaged 0.59 0.01
Set 4 30% damaged 2.38 0.01

When comparing the values yielded by Nodes 6 and 7 to the obtained ones in case of damage is
present, the results are fully consistent for both damage levels. Note that the influence of W,
indicated by the decision tree remains in the damaged bridge, showing a larger standard

deviation for W, < 0.75 in the case of the damaged bridge.

Regarding the values given by Node 4, they are consistent with the results of 5% of damage,
however, a larger mean of error-index y is found for the case of 30% of damage. This can be
related to the small value of the error-index y obtained in the case of the undamaged structure
(0.71%). Nonetheless, the values of the error-index y obtained for the measurement Set 4 are
clearly better than the ones of Set 1 and 3. The small value of the standard deviation obtained for
the damaged bridge denotes the low influence of the weighting factor, which is consistent with
the left branch of the decision tree (the weighting factor is not included in this branch).

Based on these results, for the Hollandse Brug, the optimal measurement set is Set 4, the second
choice is Set 2, 5, and 6, the worst set is Set 1 and Set 3 no matter the bridge is undamaged or not.

It could be seen that decision trees in combination with the COM method seem to be a useful
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tool to plan the best strategy of SHM+SSI, providing information that is not trivial and highly

reliable.
4.4.4 Discussion

This section is used to verify the efficiency of the combined method of COM and decision tree.
The effective independence method (EIF), as one of the most reliable methods for optimal sensor
placement of engineering structures, could provide efficient solutions (Sunca, F. et al. 2020).
This method aims to maximize of the linear independence of target modes. But this method is
only used to choose the optimal sensor placement and cannot work on SHM+SSI strategies (such
as choosing a layout, weighting factors) and the worse optimal sensor placement. But it can be

used to verify node 4 in Figure 4-11.

The effective independence method was proposed by Kammer (1991). It attempts to maximize

the linear independence between the m target mode shapes through the following Equation (4.5):

EIF=[0) xnp[@®lnpxq = Zie, (817 [8]) (4.5)

Where [@] IS a matrix containing the eigenvector, np is the total number of measurement

npxq
point and q is the number of mode shapes of interest that are used for the analysis, [@]; =

[@il, 1) P Q)iq] is a row vector of vibration shade shapes corresponding to the ith DOF.

E, is using to represent the effective independence distribution vector of the candidate sensor set.
The DOF corresponding to the largest element of E,; is the DOF that contributes most to the rank
of EIF. And thus that DOF should be retained. E4 can be expressed as Equation (4.6),

Eq = @S[QZQ)S]—lQ)Z (4.6)
By repeating the process of removing the DOF with the smallest contribution to the rank of EIF

until the desired number of sensor is achieved, the sensor locations are determined.

For the case in Section 4.4.1, the optimal sensor placement for 5 mode-shapes as input by EIF is
Set 4, which is consistent with the conclusion in Section 4.4.3. However, this EIF method cannot
obtain the worse set. What is more, if more variables are considered, such as weight factor, the
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optimal SHM+SSI Strategy, such as the one in Table 4-3, will not be able to yield. This is to say,
compared with the traditional optical sensor placement (OSP), the merit of the proposed method

is efficient to consider all the parameters (including all SHM parameters and SSI parameters).

4.5 Conclusions

This chapter proposes a machine learning decision tool to help building the best combined
strategy of SHM (proposal of a measurement set) and SSI (proposal of weighing factors in the
objective function of dynamic COM) that can result in the most accurate estimations of the
structural properties. To this end, the combination of COM method and CART algorithm is used
for the first time.

The main concept of the optimal SHM+SSI strategy is given, as shown in roadmap (Figure 4.1).
Decision trees (DT) are firstly presented to investigate the influence of the variables involved in
the SHM+SSI process on the error estimation in a general structure, including structural layout,
measurement set, span length and weighting factor based on the estimated parameters from COM.
Through the sensitivity analysis of the COM and DT, the ranking of the four variables are as
follows: layout, measurement set, parameters of the COM (weighting factor) and span-length.
The analysis of different variables provides a theoretical framework to clarify this method and
illustrate the utility of this technique.

Later, the same concept is applied to a specific structure, the Hollande Brug. The decision tree is
used as a tool to plan the optimal SHM+SSI strategy, with no initial knowledge of the actual
structural state, and the robustness of the results is given for two levels of damage. For this
specific bridge, the optimal measurement set is Set 4, and Set 1 and Set 3 should be avoided.
This real application shows the merit of this strategy in proposing the best sensor deployment
and its potential application in the field of damage identification

It is worth mentioning that the verification of the method with a real bridge with different levels
of damage (5% damage and 30% damage) is conducted, which shows that the method is robust
even for a high damage degree, showing the SHM+SSI strategy that yields the most accurate
estimation. Thus in analyzing other structures, the roadmap in Figure 4.1 can be used as a guide

for action.
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The application of this work allows making better use of existing sensor devices and SSI
methodologies. Also, it can be useful to identify the main sources of inaccuracy or uncertainty of
the results, and thus, helping to put the focus on the aspects to be improved within the SHM+SSI
strategy. For instance, the role of the weighting factor in the total accuracy of the results has been
identified, thus it can be concluded that it is worthy to further investigate this parameter. By

using this tool beforehand, erroneous decisions can be avoided.

The approach does not consider the modeling error, such as the error introduced when making
wrong assumptions on the support conditions. In some cases these errors can bring large
uncertainty regarding the results and they should be addressed before translating the proposed
approach into practice. The proposed approach can be extended towards this direction. Also, the
decision tree can be extended by adding different SSI methods to select the ones providing the
most accurate results in each case. Moreover, the development of the SHM+SSI strategy for
more slender structures will be conducted in the future. In addition, the operational effects due to
traffic in the bridge on the final results were not considered in the present example and are a
future line to be explored.
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CHAPTER 5 Uncertainty quantification (UQ) with the

dynamic constrained observability method

5.1 Introduction

This chapter aims at understanding how the uncertainty in the model parameters and measured
variables affects the uncertainty of the output variables, that is, how the uncertainty propagates in
the SSI process by dynamic COM. Moreover, by dividing the source of uncertainty into aleatory
and epistemic, important insights can be obtained regarding the extent of uncertainty that can be
potentially removed. With this procedure, the gap of uncertainty quantification identified in
section 2.4.3 can be filled by the dynamic COM.

A probabilistic UQ approach is proposed to analyze the SSI through the dynamic Constrained
Observability Method, by considering both the epistemic uncertainty modeling and the aleatory
uncertainty. To overcome some of the drawbacks mentioned above, different modal orders are
considered separately, after that, all involved mode orders are put together to estimate the output
parameters in an objective function. The method of simultaneous evaluation can appropriately

take into account the dependence between various parameters.

The objective of this chapter is to check the possibility of having some insight in the uncertainty
quantification and error propagation before the actual monitoring of a structure. The Dutch
bridge known as ‘Hollandse Brug’ is used as an example. The background of ‘Hollandse Brug’ is
described in Section 4.4.1. This bridge was monitored without a previous evaluation and after its

monitoring, the conclusion was that uncertainty was too big to make any conclusive assessment.

The dynamic SSI by COM is explained in Chapter 3. The effect of weighting factor is ignored in
the present analysis so W, = Wy = 0.5 (Boris Zaate, A. et al 2008, Brownjohn, J. et al 2000)
in Eg. (3.5).
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5.2 Model calibration

The unidimensional model of the span of Hollandse Brug is divided into 6 elements, as shown in
Figure 5-1 a). The background of Hollandse Brug is described in Section 4.4.1. According to the
parameters estimated in refences (Miao. s.f. et al 2013 & 2014, Veerman, R. 2017) and model
calibration, the simplified model uses the following parameters (Table 5-1), obtaining
estimations of the frequencies and mode shapes (Figure 5-1 b)) close to the experimental data
(f1 = 2.51 Hz, f, = 10.09 Hz). The first and second frequencies match the experimental data

correctly with -0.1% and -0.5% errors respectively.
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Figure 5-1. a) First span of Hollandse Brug; b) First and second mode shape

Table 5-1. Parameter of each element

Mode value
Element Number Length ( m/each)  EI (N-m?) Mass(kg/m)
1-3 8.425 8.15el1 49000

Thus, this model is considered as the exact representation of the real bridge. The estimated
values obtained through the SSI will be compared against the parameters of this model, which
are referred as the real values. The measure of an error free deflection or rotation refers to the
deflection or rotation of this model. Thus, The bridge's stiffness can be derived through modal
analysis (Drygala, Izabela J. et al 2020).

5.3UQ analysis

The goal of this section is to assess the uncertainty regarding the estimation of E1, and EI; of the

Hollandse Brug when EI; and m are known with some degree of uncertainty.
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To assess the uncertainty associated with the output of the structural system identification, the
epistemic uncertainty involved in the assumption of the input-parameters (error incurred during
the modelling process) and the aleatory uncertainty involved in the measurement error
(inaccuracy of sensors) are independently considered. In that way, insights into the contribution
of each type of error to the total uncertainty can be obtained. Then, the combined effect is

analysed to determine the total uncertainty of each estimated parameter.
5.3.1 Epistemic uncertainty: input-parameter errors

The contribution of the errors in the input parameters of the structural model, sometimes,
referred as model errors are first analyzed. Here, the effect of boundary conditions are not
considered as it is assumed that they have been perfectly determined through the model
calibration carried out in Section 5.3. In fact, the calibration using the first 2 modal frequencies
has identified that a pin connection is the correct assumption. In addition, the shear deformation

is ignored based on the low value of the ratio cross-section depth to span length.

Table 5-2 shows the input parameters considered in this analysis, namely, the mass of the bridge,
m, assumed as constant for the entire bridge, the Young modulus of element type 1, E; and its
flexural inertia, I; (see Figure 5-1 a)). The probabilistic distributions assumed to introduce the

uncertainty regarding those parameters are also indicated.

Table 5-2. Statistical definition of input variables

List of Variables (Units) Sampling Probabilistic 95% Confidence
Size Distribution Interval
m; = m, = m; = m (kg/m) N (49000, 49000 * 0.05) 49000 (1 + 0.1)
E, (N/m?) 10° N(4e10,4e10 x 0.25) 4e10(1 £ 0.5)
I, (m%) N(20.4,20.4 * 0.02) 20.4 (1 + 0.04)

They are assumed to follow a normal distribution N(u, §), where u is the mean corresponding to
the expected value of the variable. The standard deviation, &, has been chosen to guarantee that
the 95% of the distributions falls over the interval [0.9u 1.1u], [0.5u 1.5u] and [0.96u 1.04u],

respectively. The variability in the Young modulus was chosen according to the reference
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(Bungey, H.B. et al 1995). All the input parameters are assumed to be statistically independent. It
is noted that the uncertainty of the three input parameters of the model can be reduced by

conducting non-destructive tests in the bridge.

In order to propagate the uncertainty, Monte Carlo simulation (MCS) is used. MCS requires an
input sample made of combinations of realizations of each parameter upon which a model will
be evaluated to obtain a sample of the model response. However, this approach may be very
time-consuming and for large dimensional problems and some reliability problems, the selected
combinations might not yield a response sample that can be considered as a good representation
of the population. In other words, relevant information can be dismissed if the input sample is
not large enough or not adequately selected. To overcome this issue, several sampling methods
have been developed. In this research, the Fast Optimal Latin Hypercube (FOLH) sampling is
preferred for its sampling strategy, which can achieve higher sampling accuracy with a smaller

sampling scale (Viana, F. et al 2009).

The FOLH, as the common Latin hypercube method, requires of the selection of the individual
realizations of the input parameters according to their probability distribution. To do that, the
Cumulative Distribution Function (CDF) of each input parameter is equally divided into the
number of required realizations, and then, the corresponding percentile is obtained. By doing so,
the set of selected realizations will follow the required probability distribution. The main
contribution of FOLH with respect to LH is the way that the realizations are combined (pairing
process). To illustrate this process, Figure 5-2 shows an example considering only two random
variables, for instance m and E;. Figure 5-2 a) depicts the equal division of the CDFs to obtain
10° realizations of each variable. Then the realizations are paired into 10° combinations. Figure
5-2 b) shows the resulting sample points. In the case of the variables shown in Table 5-2,
combinations of the three variables should be generated. In this case, a total of 10° sampling
points are selected to statistically represent the 3-dimensional space. It is noted that the benefit of
the FOLH method is not so obvious in this case, as only 3 variables are combined. Nevertheless,
in the following sections, the number of the involved variables is significantly larger, thus, the
FOLH method is required to reduce the computational time without a loss of representation of

the input space.
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Figure 5-2. a) Division of the CDFs equally and pairing process; b) Resulting sample points

The sample points are studied for three scenarios that differ in the considered measurement sets.
It is noted that in this stage the measurements are assumed error free. The three measurement
sets are shown in Figure 5-3. v;;, and w;;, denote the vertical and rotation mode-shapes of the
k" node in the i*mode. Thus, measurement Set A mainly focuses on the estimation of element
type 2, the distribution of measurement Set B aims at both element types, 2 and 3, and
measurement Set C includes all the possible measures as it is expected to improve the estimation
accuracy of EI, and EI5. Given that the corresponding raw row of [V] to EI, and EI; is equal to
0 under these three sets, EI, and EI; can be directly identified by Eq. (2.4), with no need of

conducting the optimization step.
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Figure 5-3. Three measurement sets
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The results corresponding to the three measurement sets are depicted by their empirical
cumulative distribution functions (ECDF) to avoid making any assumption on the probability
distribution of the results. The obtained values, shown in Figure 5-4, are normalized with respect
to the real values. In all the cases, the distributions are almost unbiased and symmetric, which is

reflected in the mean and probability of overestimated rows in Table 5-3.

More precisely, for the measurement Set A, the expected values of the estimated parameters (E1,,
El;) have 0.0% and 0.3% skewness with respect to the real values, respectively. The 5% and 95%
percentages of the normalized values of EI, and EI; are [0.684,1.312] and [0.608, 1.383],
respectively. In absolute terms, EI, will be in the range of [5.57, 10.68]* 10! and EI; in [4.96,
11.27]= 10! within 95% confidence interval. It can be seen that the output variable EI, exhibits
less uncertainty. This can be explained by the amount of information provided per unit length,

which in the case of EI, is bigger than in the case of E1; (see Figure 5-4).

For the case of the measurement Set B, the skewness and 90% confidence intervals of the
normalized EI, and EI; are -0.1%, -0.1% and [0.879, 1.117], [0.884, 1.113], respectively. In this
case, both estimations exhibit the same level of uncertainty. For the measurement Set C, the 90%
confidence intervals of the normalized EI, and El; are [0.770, 1.228] and [0.782, 1.217], which
are surprisingly wider than in the case of the Set B even though the Set C contains more
information than Set B. This is because of the introduction of redundant information that may
derive in some lack of consistency between the mechanical properties of Section (O and the
observed displacement and rotation in this part of the structure. In fact, the model is assuming the
same mass per unit length all along the span, but not for the stiffness. As no error is assumed in
the measurements and those are obtained assuming both mass and stiffness uniformly distributed
along the span, this produces an inconsistency with the introduction of additional information in
Set C.

Therefore, it seems that the best measurement set is B. Table 4 summarizes the discussed results.
It is noted that the observed errors can also be affected by the unavoidable computational
inaccuracies. As seen in Table 4, the probability of over/underestimation is similar and roughly

about 50 % in all the cases.
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Figure 5-4. ECDF of estimated under different sets considering epistemic uncertainty. The
vertical dotted line represents the correct value, and the 5 and 95 percentiles are indicated with
horizontal dotted lines.

Table 5-3. Statistical data of the estimated EI, and EI; under different measurement sets
(normalized)

El, El;

Measurement Set A B C A B C
p5 0.684 0879 0.77 0.608 0.884 0.782
p95 1312 1117 1228 1383 1113 1.217
p50 1.000 0999 0.999 1.003 0.999 0.999
Range 0.628 0.238 0.458 0.775 0.229 0.435
Skewness 0.000 -0.001 -0.001 0.003 -0.001 -0.001
Mean (Bias) 0.999 0999 1000 0.999 0.999 1.000
Standard Deviation 0.257 0.096 0.185 0.319 0.092 0.176

Probability of Overestimated 49.8% 49.8% 49.8% 49.9% 49.6% 49.8%

5.3.2 Aleatory uncertainty: measurement errors from sensors

This part considers the error caused by the accuracy of measurement devices, although the effect
of other factors, such as the computational error and the accuracy of the data-extraction method

are implicitly included as part of the data processing.

The error assumed for the analysis of this section adopts the values indicated in Table 5-4.

Following the same method as the previous section, 10* samples are generated for each set with
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a frequency error level of 3%, a vertical displacement error level of 6% and a rotation
displacement error level of 30%. Normally, the frequency error is small according to the relevant
literature (Li, Z. 2016, Hou, R. 2018 & Chen, J. 2015), the vertical displacement error range was
chosen following Li, Z. (2016), who identifies the first vertical displacement with accuracies of
about 3%. Given that the accuracy of rotations is lower than the accuracy of vertical

displacements (Mares, C. et al, 2002), 30% was chosen for this purpose.

Table 5-4. Measurement input variables

List of variables Sampling Probabilistic 95% Confidence
size Distribution Interval
Frequencies (f;, i = {1,2}) N(f;, f; *0.015) fi (1 £0.03)
Main Vertical displacements (v;;) 10* N vk, i * 0.03) v (14 0.06)
bridge  Rotation displacements (w;;) NWi, wig *0.15)  wy (1+0.3)

The choice of the sampling size is because the number of actual optimization parameters in Eqg.
(3.5) is 4 when the information of two mode-shapes is used, two frequencies and two MAC. To
further check the rationale of this sample size, the MAC,; and MAC, are analyzed under different
sample sizes and measurement sets. Figure 5-5 shows an example of the corresponding ECDF
under different sample sizes. It shows how the quality of the ECDF for different sample sizes
significantly improves till the case of 10* . After this, there is not a significant improvement. See
how the sample size of 10* is extremely close to the ECDF of 10° in Figure 5-5.
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Figure 5-5. ECDF of MAC, under Set C and different sample sizes
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Figure 5-6 shows the ECDF of the estimated EI, and El; under the three measurement sets
considering the aleatory uncertainty of the sensor measurements. Table 5-5 shows 5%, 95%
percentages, the bias, standard deviation and skewness of the estimated data. Here, again, the
obtained results show that Set B is the best among the three original sets because it presents the
smallest confidence interval, which is un-skewed in the case of EI, and slightly skewed in the
case EI; towards conservative values (i.e., underestimate the structural stiffness). Sets A and C
exhibit comparable results in terms of confidence intervals. However, the results yielded by Set
A are clearly skewed; El; towards conservative values compensated by EI,, which tends to be
overestimated under this measurement set. It is recalled that, similarly, Set B presented the most
reliable results in terms of epistemic uncertainty, whereas Set A presented the worst estimation.
As in the case of epistemic uncertainty, it seems illogical that Set C, which provides more

measured data into the system than Set B, provides worse results than Set B.

In Set C, more measurements corresponding to the left part of the beam are introduced. Error
level of the measurements taken from the left and right part of the beam is the same. However,
the measurement errors from the left part of the beam have a worse effect on the observed values
(corresponding to parameters from the right part of the beam) than the measurement errors from
the right part of the beam. In this sense, on the one hand, adding more information should
improve the results but on the other hand the errors of this new information are impacting much
more the variability and values of the targeted parameters, in such a way that the overall result is
worse. This is an interesting and non-intuitive result, as it can be thought that, with the same
error level the more measurements, the better and it is not always the case. It is always
interesting to add more measurement points, but in the vicinity of the structural part whose
mechanical properties are to be identified. This aligns with the fact that where new information
without error is introduced (Set D, Figure 5-7) results from Set B are improved. The most
important conclusion of this example is that when the model error is supposed to be low, to
decide the sensor locations and, therefore, where to obtain information, it should be taken into
account not only the measurement number, but also the structural part whose properties need to
be identified. Only in this way, the optimum sensor deployment will be achieved in order to get

the maximum of information (not being redundant) with the minimum uncertainty.



Error propagation with the dynamic constrained observability method | Tian Peng
78

Normalized EI

Figure 5-6. ECDF of estimated under different set considering aleatory uncertainty. The
vertical dotted line represents the correct value, and the 5 and 95 percentiles are indicated with
horizontal dotted lines.
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Figure 5-7. Measurement Set D

Table 5-5. Statistical data of the estimated EI, and EI; under different measurement sets

El, El3
Measurement Set A B Cc D A B C D

p5 0.788 0.865 0.728 0.936 0.666 0.827 0.670 0.857
p95 1313 1.092 1292 1060 1336 1.169 1352 1.165
p50 1.006 1.000 0.997 0.998 0.968 0.995 1.000 0.999
Range 0525 0.227 0564 0.124 0.67 0342 0.682 0.308
Skewness 0.006 0.000 0.003 0.002 -0.032 -0.005 0.000 0.001
Mean (Bias) 1.032 1.003 0.980 0.998 0.997 1.000 1.007 0.997
Standard Deviation 0.144 0.064 0.195 0.053 0.152 0.099 0.191 0.087

Probability of Overestimated 56.8% 50.1% 49.8% 50.2% 45.7% 49.8% 49.5% 51.2%
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5.3.3 Combination of epistemic uncertainty and aleatory uncertainty

The combination of the two types of errors, i.e., input-parameter error and measurement error,
are considered, as well as the three measurement sets shown in Figure 5-3. The total calculation
sample is 10* for each set by the fast optimal Latin hypercube (FOLH) sampling to produce the
independent and representative samples and ensure the accuracy of MAC. The ECDF under this
combination is shown in Figure 5-8, and the related numerical information is illustrated in Table
5-6.

When both aleatory and epistemic uncertainties are considered, the best measurement set in
terms of the uncertainty range is Set C, which includes all the measurement information, instead
of Set B that was identified as the best measurement set when considered the uncertainties
individually. However, the results from Set C produce some skewness compared with the
corresponding value in Tables 5-3 and 5-5, especially for El;, where a overestimation probability
of 81.6% is observed. While in terms of structural safety, compared with the huge overestimation
estimated of Set C, the results by Set A and Set B tend to be safer with lower percentage of
overestimated, the former one performs better on the range and the latter one on the standard
deviation. Set B results in the least skewed estimation when compared to the other two sets,
while the values of the 5% and 95% percentiles are worse than the ones under Set C. Compared
to Figures 5-4 and 5-6, the best measurement set in terms of accuracy is Set C rather than Set B,
which highlights the importance of understanding the error source when trying to improve the
quality of the estimation. When both model and measurement errors play an important role in the
identification process, introducing as many measurements as possible is the best strategy because
the information provided by them is not redundant in this case to improve the estimated accuracy.
The result for Set C is slightly more biased (compared with the normalized value 1), however,
with less uncertainty, as clearly shown by the rows of standard deviation and probability of

overestimation in Table 5-6.

As a summary it can be concluded that both error sources, epistemic and measurement, interacts
in a non-linear way due to the dynamic effects, in such a way that from the results of their
individual effects it cannot be concluded what will happen when both sources act in a combined
way. Hence, to study this, it is necessary to tackle both effects jointly and not in a disaggregate

manner.
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Figure 5-8. ECDF of estimated under different set considering aleatory and epistemic
uncertainties. The vertical dotted line represents the correct value, and the 5 and 95 percentiles
are indicated with horizontal dotted lines.

Table 5-6. Statistical data of the estimated EI, and EI; under different measurement sets

El, El;
Measurement Set A B C A B C

p5 0.663 0.754 0.860 0.709 0.742 0.911
p95 1250 1.320 1.080 1295 1.304 1.094
p50 0.906 1.000 1.013 0.9691 0.9946 1.050
Range 0587 0566 0.222 0586 0562 0.183
Skewness -0.094 0.000 0.013 -0.031 -0.005 0.050
Mean (Bias) 0915 1.032 1006 0979 1.003 1.042
Standard Deviation 0.168 0.158 0.079 0.172 0.152 0.072

Probability of Overestimated  26.6% 49.9% 67.8% 428% 42.8% 81.6%

5.4 Discussion

Hollandse bridge was studied in InfraWatch project (Miao. s.f. et al 2013 & 2014, Veerman, R.
2017). After much effort in collecting and analysing data, no conclusive results were obtained in
the structural identification process due to the large level of uncertainty. This fact has motivated
the present work, because it is important to know in advance if the uncertainty related to a given

SSI approach when applied to a specific structural setup is acceptable or not in real practice.
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With proper sensor placement, the 90% confidence interval range of the estimated stiffness is
found as small as 0.222 for EI, and 0.183 for EI; when considering both sources of uncertainty
(Table 5-6). This means that the estimated stiffness presents around 10% of uncertainty to each
direction given that the range is sensibly unbiased. This uncertainty range seems very reasonable
if we consider the high level of uncertainty of the input variables (e.g., 50% in the case of the

Young modulus or 30% in the rotation displacements).

To assess to which extent the dynamic COM provides acceptable results in terms of uncertainty
when compared with other SSI methods in the literature, the example proposed by Simoen, E. et
al. 2015, and further investigated in Peng, T. et al., 2020 and presented in Chapter 3.3.2 is used
(see Figure 3-12). This is a reinforced concrete beam with a length of 6m divided into 10
substructures with a uniform stiffness value, as shown in Figure 3-13. The measured transverse
mode shape displacements are observed at equidistant positions along the beam at 31 points. The
resulting mode shape measurements are shown in Figure 3-13 with their corresponding natural
frequencies. The stiffness of these 10 elements given in Reference (Simoen, E. et al. 2015), are
taken as the real values for this beam. The considered measurement set includes the frequencies
and vertical displacement at the 31 points given by the same reference. Regarding the errors
considered, to introduce the epistemic uncertainty, given that it is a free-free vibration beam with
unknown stiffness, only the input parameter, m is considered. It takes the common density of
reinforced concrete p = 2551kg/m?3 (probabilistic distribution N(1,1 = 0.05), the same as in
Table 5-2). The aleatory uncertainty has been calculated through the difference between the
experimental bending modes and frequencies and the corresponding theoretical data at each of

these 31 points. The average values of the obtained uncertainty are given in Table 5-7.

Table 5-7. Measurement input variables (averaged values for the 31 measured points)

List of variables Probabilistic 95% Confidence
Distribution Interval
Structure in Frequencies (f;,i = {1,4}) N(f;, fi *0.005) fi (1+0.01)

Figure 3-12 Vertical displacements (v;,) N (i, Vi * 0.03) v (1 £0.06)

Considering the epistemic and aleatory uncertainty together, the sample size is determined based
on the ECDF of MAC;, as shown in Figure 5-9. The MAC; distributions obtained for sample sizes

of 10° and 10*are very close to each other, which implies that a sample size of 10% is enough to
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guarantee the accuracy of MAC;. Figure 5-10 shows the estimated unknown stiffnesses E1;, i =
1~10, as well as their standard deviation. The COM tends to slightly underestimate the mean
values of the stiffness when all mode-shape information is used. The stiffness range associated
with the 99% confidence interval obtained by COM is shown in red colour in Figure 5-11, in
comparison with the results reported by Simoen when using a Bayesian approach for the SSI
(grey shadow). The real values are indicated with a thick black line. For all the elements, COM
provides less uncertain estimations. All in all, this figure shows how the UQ associated with
COM provides reasonable and acceptable results, and slightly better than the Bayesian approach.
Figure 5-12 depicts the distribution of Young's moduli E, and Eg by UQ analysis of COM (red
line) and the distributions obtained by the Bayesian approach (grey line). It is shown that the

proposed approach does not require a prior joint PDF to obtain an accurate stiffness probability

distribution.
] ‘ 10210° ‘ ‘
-—100 Il Real Parameters
—1000 [ ] Estimated Parameters
0.8¢ - -10000 8 [ Error Bar
L 0.6] 6
o E
Lu z
0.4+ o4
02 2
0. ‘ p o 2 3 4 5 6 7 8 9 10
0.998 0.9985 0.999 0.9995 1 El t
Figure 5-9. ECDF of MAC, under different  Figure 5-10. Uncertainty of EI;,i = 1~10
sample sizes of RC beam given by the mean value and the standard

deviation

Even when the obtained uncertainty is acceptable, it is always desirable to minimise such an
uncertainty. The analysis of the two sources of uncertainty takes relevance in this context. For
instance, it is appreciated that there is no bias and skewness in Table 5-3 (epistemic uncertainty),
whereas obvious bias and skewness is presented in Tables 5-5 and 5-6, which mean these are
caused by the sensor error. Thus, increasing the sensor accuracy might reduce the bias and
skewness effects. Besides, compared to the estimated data of Sets A, B and C in Tables5-3, 5-5,
and 5-6, the optimal sensor set shifts from Set B under a single source of uncertainty to Set C
when considering both uncertainties. This means that selecting the optimal placement of the

sensor sets is also an effective method to lower uncertainty of the output in addition to increase
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the sensor accuracy. However, because the aleatory uncertainty is hard to remove, efforts must
be made in minimizing the epistemic uncertainty involved in the problem. The more information

about the structural setup, the closer the UQ of the SSI will be to the analysis of Section 5.4.2.
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Figure 5-11. The stiffness range associated Figure 5-12. Uncertainty distribution of
with the 99% confidence interval along the Young's modulus E, and Eg, prior and

beam (the grey shadow represents the result posterior PDF (grey line) of element Young's
by Bayesian analysis given in [4], the red modulus according to [4], the red PDF by
line represents the range obtained by COM) COM UQ analysis

5.5 Conclusions

The UQ analysis of the proposed dynamic COM method is carried out in this chapter. Two
sources of uncertainty, that is, epistemic and aleatory, are studied separately and also together to
better understand the role of modelling error and measurement error when dynamic COM is used.

The following conclusions can be drawn:

The analysis of the error propagation in the case of the Hollandse bridge has made evident that
when the epistemic uncertainty is low (i.e., when very accurate models are used in the
identification process), the sensor deployment should take into account not only the
measurement accuracy but also the location of unknown structural part. Only in this way, the
optimum sensor placement will be achieved in order to get the maximum of information (not
being redundant) with the minimum uncertainty. Feeding the model with redundant information
(if, for instance the location of sensors is not conveniently chosen) can produce worse results,

although more measurement points (more sensors) are deployed.
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When both epistemic and aleatory uncertainties are relevant, the error propagation decreases
with the increase of the measurement points. In this case, the results show that Set B, which
includes 2 additional sensors, is biased to the overestimation side when compared to Set A. If the
objective of the identification process is to detect damage, as damage will produce a reduction of
the stiffness (due to cracking, for instance), it will be a better solution the use of fewer sensors,
as the trend to the overestimation of the stiffness in the identified elements could hide the
existence of damage. This appears as a contradictory conclusion, where the use of an increasing
number of sensors derives on decreasing the potentiality of damage detection. However, this
result is well in line with the result obtained in the case when only aleatory uncertainty is
considered and stated in the previous paragraph, where the addition of more data measurements
(Set C compared to Set B) resulted in a worse identification due to the redundancy in the
information and the increase in the global measurement error introduced by the additional

measurements.

The analysis of Hollandse bridge shows that the best measurement set will change from Set B to
Set C in terms of range depending whether the epistemic uncertainty is involved or not.
Therefore, before the field test execution, when deciding the optimal sensor deployment, it is
important to consider the effect of epistemic uncertainty in the sense of trying to gather
information from the test that is compatible and non-contradictory with the proposed model. The
calculated mode shapes can help on this objective.

The correct performance of the UQ analysis by COM is verified by an example where the results
from the Bayesian method are compared. The performance of the proposed approach is better
despite the modelling error in the mass of the structure is considered. The results show the

robustness of the method in terms of propagated uncertainty.
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CHAPTER 6 Conclusions and future research

6.1 Conclusions

The major contributions of this work might be summarised as follows:

1) The first application of constrained observability techniques for parametric estimation of

structures using dynamic information such as frequencies and mode-shapes is proposed.

2) A new algorithm is introduced based on the dynamic eigenvalue equation. One step by step
example is used to illustrate the functioning of constrained observability techniques. In addition,
the merit of the dynamic constrained observability analysis is demonstrated as a good solution to

the fully observability which OM cannot achieve.

3) Two examples using experimental data are used as a proof of concept to verify the feasibility
and accuracy of the proposed COM method.

4) A large frame structure is used to show the potential of this new application, whose structural
properties can be obtain satisfactorily even if the real mechanical parameters are perturbed by
random numbers in order to simulate measurement errors. The results show that the flexural

stiffness of all elements can be estimated with errors smaller than 8%.

5) A machine learning decision tool, based on Decision Trees, to help building the best-
combined strategy of SHM and SSI that can result in the most accurate estimations of the
structural properties is proposed, and a combination of COM and CART algorithm is used for the

first time.

6) Decision trees are firstly applied to investigate the influence of several variables (bridge
layout, span length, measurement set, and weight factor) involved in the SHM+SSI process on
the error estimation of the parameters in a general structure. This helps in the identification of the

best sensor deployment and weight factors to be used in the objective function
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7) The verification of the method with a real bridge with different levels of damage shows that
the method is robust even in the case of identification of the structure with a high damage level,

showing the SHM+SSI strategy that yields the most accurate parameter estimation.

8) In order to get the minimum uncertainty in the identified parameters, the sensor deployment
should take into account the measurement accuracy and the location of the unknown structural
parts to get the maximum of information with minimum uncertainty from the input parameters,
thus avoiding redundant information from the measurement set, what in some cases can derive in

more uncertain results.

9) The best measurement set is not a stable set and it depends on whether the epistemic
uncertainty is involved or not. The effect of epistemic uncertainty in the objective of trying to
gather maximum information from the test cannot be ignored when defining the experimental

campaign

10) The UQ analysis by COM is verified by a reinforced concrete beam and compared with the
Bayesian method. The COM approach is better than the Bayesian method, even considering that

the epistemic uncertainty is involved.

6.2 Future research

The future research lines are summarized as follows.

1. The approach of COM (Constrained Observability Method) as formulated in this thesis does
not consider the modeling error, such as the error introduced when making wrong assumptions

on the support conditions. The future research can be extended towards this direction.

2. The decision tree algorithm proposed in Chapter 4 can be extended by adding different SSI
methods to select the ones providing the most accurate results in each case. In addition, the
operational effects due to traffic in the bridge on the final results were not considered in the
present example and are a future line to be explored. The development of the SHM+SSI strategy

for more slender structures is also worth of further investigation.

3. The implementation of the observability technique to the dynamic eigenvalue equation may

not provide enough accurate results when dealing with real structures, either because of the
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existence of damping or torsion, which have not been considered in this work. To do so, the

general dynamic equation should be used and its applicability studied.

4. The identification of the structures presented in this work is based on measurements obtained
numerically with a Matlab program. However, to further check the reliability of the proposed
method in real structures, more cases using dynamic measurements taken on site should be

analysed.

5. The sensor optimal placement based on the dynamic Constrained Observability Method (COM)
needs to develop further based on some sensor placement guidance in this thesis.

6.3 Related works and publications
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Appendix 1. List of symbols and notation

Appendix 1 | Tian Peng

Symbol Significance
B Total coefficient matrix
B; Coefficient matrix of i*" mode
B, Coefficient matrix from the last recursive step by OM
B* Coefficient matrix from the last recursive step by COM
D Total constant vector
D; Constant vector of it"* mode
) J Constant vector from the last recursive step by OM
Elever Error level in the measurement
EA; Axial stiffness of jt" element
EI, Flexural stiffness of jt* element
7 Hypothetical measurement frequencies
f Vector of forces
K Stiffness matrix
K* Modified stiffness matrices of static analysis
[K;] Modified stiffness matrices of it" mode
L Length of jt* element
m; Mass density of jt" element
M Mass matrix
M; Modified mass matrices of i*"* mode
Ng Number of boundary condition
Ny Number of nodes
V] Null space of B
R Total number of modes considered
Uk Horizontal displacement of k** point and i*" mode
Vik Vertical displacement of k" point and i*" mode
Wik Rotation of k" point under i* mode
174 Weighting factors of squared frequencies
Ws Weighting factors of mode-shapes
VA Total vector of OM unknowns
Z; Vector of unknowns of i* mode
Znn Vector of homogeneous solution
Zom Vector of unknowns from the last recursive step by OM
z, Particular solution
z* Total vector of COM unknowns
Ze Coupled variables unknowns
Z, Subset of new identified singles variable
Z Single varia}bles unknowns
s Vector of displacements
5 Vector of knowns and unknowns of static analysis
€ Squared sum of the residual

Mode-shape vector under it" mode
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D mi Measured mode-shape vector under it"* mode
D Estimated mode-shape vector under i** mode corresponded to measured
nodes

Xi Modified modal shapes for the part of stiffness and i*"* mode

Mi Modified modal shapes for the part of mass and i* mode
A Theoretical circular frequency under it" mode

1, Measured frequencies, A

A Differences between the measured, 4, and the estimated
T Arbitrary real values that represent the coefficients of all possible linear
combinations

) Hypothetical measurement

) Theoretical values (frequencies/mode shape)

$ A random number following a normal distribution

Y Error-index

x Response variable

S Set of sample indices before splitting

St Set of sample indices for which the split test is true

5[ Set of sample indices for which the split test is false

0 Estimated parameters

[@lapxq | A matrix containing the eigenvector
np Total number of measurement point
q Number of mode shapes of interest that are used for the analysis
E,4 Effective independence distribution vector of the candidate sensor set
N(u,8) A normal distribution, u is the mean, & is standard deviation
p Density
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Appendix 2. Code of decision tree drawn

function DecisionTress vl

%decision tress serves for both, (a) classification (fit) and (b) prediction
(regression)

clc

close all

clear

%% Generate data

var lab={'Layout',K 'M Set','L span','W'}; %%%%%%%
lay={'pin-pin', 'pin-fix', 'fix-pin', "fix-fix'}; %%%%%%%
mset={'A','B','C"};

span=[50, 55, 60]; % (m)

weigF=0.5:0.1:0.9;

categ=[1,2]; %categorical variables

% Load data
load('data.mat', "data')

%% Fittig Decision tree
DT fit(data,var_lab,categ,16)

9900000000000 0000000000000000000000000000000000000000000000000000000000

function DT fit (data,var lab,categ,nsplits)
%% Create regression tree (binary type)
%$categ is a vector indicating the position of the categoric variables

tree = fitrtree(data(:,l:end-1),data(:,end)/2,...
'PredictorNames',var_ lab, ...

'CategoricalPredictors',categ,... %$indicate which are categorical
'MaxNumSplits',nsplits) % limit the number of branches
Default=10.

view(tree) % text description

view (tree, 'Mode', "graph')

tr=view (t)

inspect (tr)
allHandles=findall (tr, 'Type', "text")
set (allHandles, 'FontSize',16)

end
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1. Introduction

The up-dated knowledge of the integnty of in-service structures through its lifetime is a very important objective for
owners, end-users and both, construction and maintenance teams, m whom this information might help in decision making
[1-3]

Simplified Finite Element Models (FEMs) are often used to simulate the response of civil structures [4]. When this
structural response is modeled through computer simulations, mechanical and geometrical properties of the structural
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