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Introduction

The numerical solution of viscous incompressible flow problems is a hard and
challenging subject, which has received much attention in the last decades.
The main difficulties it poses are of three different kinds: first, the incom-
pressibility condition, and consequently the pressure computation, estab-
lishes a coupling between the unknowns of the problem which, in standard
formulations, restricts the freedom to choose discrete approximating spaces
to those satisfying a certain compatibility condition; second, the advective-
diffusive character of the equations may require of appropriate stabilizing
techniques or extremely fine meshes, specially in convection dominated flow
situations; finally, the nonlinearity of the equations increases the computa-
tional burder of the solution procedures.

Beyond those theoretical and computational challenges, the development
of numerical methods for incompressible flow equations is of an undoubtable
practical importance. These equations find numerous applications in dif-
ferent areas, both scientific and industrial, such as aeronautical sciences,
metereology, ocean dynamics, environmental flows, oil industry, turbulent
flows and many others. Besides, they are the basis for several extentions
to more complex flow situations, such as thermal flows, free-surface flows,
magnetohydrodynamics and others.

Many numerical schemes have been developed to approximate the so-
lution of flow equations. For the space variables, discretizations range from
finite differences, the simplest and most intuitive discretization method, to fi-
nite volume, finite element, boundary element and spectral element methods.
Finite element methods have proved to be the most versatile, since they can
cope with arbitrarily complex geometries and work on unstructured, auto-
matically generated meshes, are based on more rigorous theoretical grounds
and are liable to generalizations of arbitrary order of accuracy. As for the time
integration, all these numerical schemes can be sorted, in a first approach,
into single step, multistep and fractional step methods. These last methods
are also sometimes known as operator splitting or projection methods.

The present work is devoted to the study of fractional step, finite element
methods for the numerical solution of incompressible, viscous flow equations,
and in particular of the Navier-Stokes equations. The main advantages of
some of these methods over other time stepping strategies are the decoupling
of the unknowns of the problem, thus reducing the size of the discrete prob-
lems to be solved, and the possibility of employing space interpolations which
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do not satisfy the compatibility condition, such as equal order ones. This last
fact has been known for some time but, to our knowledge, not fully explained
up to now; the first objective of this thesis is to provide a full explanation for
it. On the other hand, projection methods are known to suffer from certain
drawbacks, the main one being the need to impose some boundary condi-
tions in one of the substeps of the method which are unphysical and may be
a source of error; the second objective of this work is to develop a fractional
step method which allows the imposition of the boundary conditions of the
original problem in all substeps of the method.

In order to find the ultimate reason why fractional step projection meth-
ods allow the use of arbitrary space interpolations, a new method is devel-
oped for the simpler, linear, steady Stokes problem. This method retains
the main features of projection methods for the full problem as far as space
discretization is concerned; in particular, it allows the use of equal order in-
terpolations, thus explaining why projection methods also do so. Optimal
order convergence in the mesh size is proved for this method under a com-
patibility condition on the approximating spaces which is weaker than the
standard one, and in particular satisfied by equal order interpolations. An
extention of this method to the nonlinear, steady problem is also studied,
and optimal order convergence, under the same compatibility condition as in
the linear case and assuming a unique solution of the problem, is also proved.

As for the treatment of boundary conditions, a fractional step method
is developed in which the viscous term is split into the two substeps of the
scheme, which, unlike in standard projection methods, allows to enforce the
boundary conditions conditions of the original problem in both substeps.
Convergence in the time step both for the intermediate and end-of-step
velocities of this method is proved in the spaces L2(u) and HQ(U); in this last
space, convergence of the end-of-step velocities does not hold for the classical
projection method, due to the wrong boundary conditions they satisfy. Our
fractional step method was also developed to explain the properties of a well
known predictor multicorrector algorithm, which is here shown to be of a
fractional step kind.

The primitive variable, velocity-pressure formulation of the equations has
been considered throughout this work, and, although possible, no attempt
has been made to extend it to other formulations. Moreover, simple bound-
ary conditions have been used in the theoretical developments presented here,
usually homogeneous Dirichlet conditions; in the numerical examples, how-
ever, 'natural' boundary conditions have also been considered sometimes.
The extention of the theory to other kinds of boundary conditions is, again,
possible, but not pursued here.

Since we have considered only low to moderate Reynolds' number flows,
leaving aside highly convective flows, we have found no need to stabilize
convection, and standard Galerkin formulations have been employed. In this
sense, we have only dealt with laminar flow regimes.

We have also restricted ourselves to bounded domains and finite time
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problems, since extentions to other cases pose some additional theoretical
difficulties into the formulations. Moreover, the numerical examples we have
actually solved are all two-dimensional, although the theoretical develop-
ments are also valid for three-dimensional problems.

This work is structured into five Chapters. In the first one, a review of
known results, which will be frequently referred to afterwards, is provided,
where the notation and terminology used here is also introduced; in partic-
ular, a description of several fractional step methods is presented, classified
according to different criteria. The second and third Chapters are devoted
to the study of the new method for the steady Stokes and Navier-Stokes
equations, respectively, which allow the use of equal order interpolations
and explain why projection methods also do so. The structure of these two
Chapters is similar, with some theoretical Sections first, where stability and
optimal order convergence both in H1 and L2 norms are proved, followed
by some computational aspects and the presentation of numerical results on
some test problems.

In Chapter 4 the fractional step method that we consider is introduced
and studied, for which first order convergence in the time step is proved
both for the intermediate and end-of-step velocities. A convergence theorem
which we originally proved for this method using more classical arguments
and less restrictive assumptions on the solution and domain is also given. A
variant of this method, using pressure correction, is also considered in this
Chapter, and first order convergence for the velocities is also proved for this
new scheme. An implementation of this pressure correction method as well
as some numerical results obtained with it are also provided in this Chapter.
Finally, in Chapter 5 a predictor-multicorrector algorithm is studied, showing
in what sense it can be understood as a fractional step method and how it
behaves in front of different space interpolations, both satisfying and not
satisfying the standard compatibility condition. Numerical results obtained
with this algorithm for two different space interpolations on several problems
are also presented.





Chapter 1

Preliminaries

This first Chapter is devoted to the introduction of the basic mathematical
concepts required for the development of the present work. In particular,
we first recall the equations of motion of an incompressible fluid; then we
review the basic function spaces, norms and forms needed for the study of
those equations; later on we introduce the basic theory of finite element
approximation and some standard results about mixed problems, and finally
we give a comprehensive presentation of existing fractional step methods for
the unsteady, incompressible Navier-Stokes equations, the study of which is
the ultimate objective of this thesis.

1.1 Flow equations

Let us recall here the basic theory of fluid mechanics, which can be found in
standard references such as [72]. The equations of fluid motion are obtained
from principles of conservation of physical quantities, and simplified under
various hypothesis. Several aspects of this theory are closely related to linear
elasticity theory.

We consider a region fi C IRd, where d = 2 or 3, filled with fluid material.
The domain fi is assumed to be open, bounded, connected and Lipschitz
continuous, that is, its boundary F is a (d — l)-dimensional locally Lipschitz
manifold. In particular, we will sometimes consider the case of fi a convex
polygon in IR2 or a convex polyhedron in IR3.

For a given T > 0, let p(x, £) and u(x, í) denote the density and velocity
of the fluid at a point x 6 fi and time t 6 (O, T), respectively (boldface char-
acters denote vector quantities). Conservation of mass leads to the continuity
equation:

^ + V - ( p u ) = 0 in f i x (0 ,T ) (1.1)

n pt

where V = ( — — , . . . , ——). If the fluid is subject to a volumetric force
OXi OX¿

field f (x, í) per unit density, conservation of momentum leads to the Cauchy
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equations: |
f\ •-«

-^ + (u -V)u - -V-0- = f i n f ìx (0 ,T) (1.2)
ut p

where <r is the stress tensor, representing the internal forces acting on the
fluid. In the case of a viscous fluid, where internal frictions are taken into
account, which is assumed to be Newtonian and isotropie, a constitutive
equation of the form:

a = -pi + 2/ie(u) + A ( V - u ) I (1.3)

is obtained, where p(x, f ) is the fluid's pressure, I is the identity tensor,
1 Q o

e(u) is the deformation rate tensor with components e^- = ~(T~ + ~7r^)>
2 oxj oxi

fi is the dynamic viscosity of the fluid and A is its second viscosity. We
will assume that these two scalar parameters remain constant if there are no
temperature or density variations. The unsteady Navier-Stokes equations
are then obtained under all these hypothesis:

^ + (u • V)u + Vp - 2z/V • e(u) - -V( V • u) = f in í ïx (0 ,T) (1.4)
ut p

where v — fi/ p is the fluid's kynematic viscosity and p(x, í) stands for the
fluid's kynematic pressure (pressure divided by density).

We next consider the incompressibility condition, which establishes the
limits of the scope of this work. Conservation of fluid volume leads to the
condition:

V - u '= 0 innx(0 , r ) (1.5)

which will be frequently referred to in what follows. Equation 1.5 replaces the
continuity equation for an incompressible homogeneous fluid (that is, with
constant density in space), since then p is constant at all times. No equation
of state is then required to relate p and p. Equation 1.4 reduces in this case
to:

-^ + (u -V)u + Vp - 2i/Ve(u) = f in f ìx (0 ,T) (1.6)
t/C

Under the incompressibility condition, 1.6 can further be rewritten as:

-^ + (u -V)u + Vp - i/Au = f in f ìx (0 ,T) (1.7)
C/C

where A is the Laplacian operator; equation 1.7 is the best known form
of the unsteady, incompressible Navier-Stokes equations. A third possible
formulation of the viscous term is obtained by making use of the vector
identity Au = V(V • u) — V X (V X u) and the incompressibility condition
1.5, resulting in the substitution of Au in 1.7 by —V x ( V X u) (this is usually
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refered to as the rot-rot form of the viscous term, and is also employed in
some numerical methods).

As for the convective term, some other formulations can also be consid-
r\f \

ered. Thus, the j-th component of the conservative form is — ' J , where

the summation convention is assumed on the ¿-th index. Under the incom-
pressibility condition 1.5, this formulation is equivalent to that of 1.7. The
skew-symmetric form (u • V)u + ¿(V • u)u, also equivalent to that of 1.7 for
an incompressible fluid, will also be frequently used.

Equation 1.7 is formally equivalent to its dimensionless form, provided
v = I/Re, Re being the fluid's Reynolds number defined as Re = puL/fi.
Here, ü and L stand for a characteristic velocity and length of the fluid's
motion, respectively. We will make this identification throughout this work.

The equation system 1.6-1.5 (or 1.7-1.5) has to be completed with suit-
able boundary and initial conditions to form a well-posed initial/boundary
value problem. One generally assumes that the boundary F can be parti-
tioned into two non-overlapping subsets TD and FJV which accomodate given
Dirichlet and Neumann boundary conditions, that is to say, prescribed ve-
locitites and stresses, respectively:

u(x,i) = ü(x,í), xeFjD, ¿e(0,T)

n.<r(x,i) = h(x,i), XEF* , i € ( 0 , r ) (1.8)

In equation 1.8, and throughout this work, n denotes the unit outward
normal to F, <r = —pi + 2z/e(u) is the stress tensor (per unit density), ü
is the prescribed velocity and h the prescribed stress. In the formulation
of equation 1.6 the condition h = 0 in 1.8 comes up as a natural boundary
condition, as is often employed in outflow boundaries, having the physical
meaning of a no stress condition. On the contrary, when the formulation of
equation 1.7 is employed, the natural condition for outflow boundaries does
not have a physical meaning.

Purely Dirichlet type boundary conditions for the velocity, or equivalently
Tff = 0, are also considered sometimes. For consistency with the incompress-
ibili ty condition 1.5, in that case it is required that the net flux of ü through
F be zero:

/n-u(x , i )dF = 0, Vi€(0 , r ) (1.9)

In the theory to be developed in this work, homogeneous Dirichlet bound-
ary conditions will be frequently assumed:

which is commonly referred to as the solid wall condition (no slip and no
penetration). However, in some of the numerical examples presented, natural
boundary conditions are also employed.
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j .
An initial condition is also required for the velocity:

u(x,0) = u0(x), x e f i , (1.11)

where u0 is assumed to be incompressible (V-u0 = 0). No initial or boundary
conditions need be specified for the pressure, although this variable is subject
to some a posteriori conditions (see Section 1.4).

The numerical approximation of the equation system 1.7-1.5-1.10-1.11 is
the main concern of this work. This system is an unsteady, nonlinear problem
coupled with the incompressibility constraint. Related but more simplified
problems are also important to deal with. Thus, at steady state one gets the
steady, incompressible Navier-Stokes equations:

(u • V)u + Vp - i/Au = f in fi (1.12)

which retain the nonlinear, convective/diffusive character of the full problem.
Furthermore, under the assumption of slow motion, and for low Reynolds

number flows, the convective (quadratic) term can be neglected in 1.12, re-
sulting in the Stokes problem, which consists of equation 1.5 together with:

- i/Au + Vp = f in fi (1.13)

This is the linear, steady counterpart of the original problem, still retaining
the coupling with the incompressibility constraint.

1.2 Function spaces, norms and forms

We introduce here the basic mathematical theory of Lp and Sobolev spaces,
where weak solutions of the pfeceeding equations belong. The results stated
herein and the notation introduced will be of constant use in the following
Chapters. The general theory presented in this Section is rather classical,
and can be found in several texts such as [1] or [111]. However, some aspects
are specific to incompressible flow equations, mainly those related to the
divergence operator. These are treated in [19], [43], [71] and [105].

Let Q°(fi) denote the set of infinitely differentiable real functions with
compact support on fi, and £>(fi) the space C~(fi) with a topology that
makes derivation continuous (see [83], for instance); the dual space of D(u),
denoted by D'(£l), is the set of distributions on fi. Distributions are infinitely
differentiable in the sense of distributions.

Given 1 < p < oo, Lp(fi) is the space of real functions u such that up is
absolutely integrable in fi with respect to the Lebesgue measure in IR . It is
a Banach space for the norm ||u||Lp(n) = (Set \u(x)\pdxY'p, and it is separable.
For 1 < p < oo, jLp(fi) is reflexive and its dual space is L?(fi), for q such
that l/p + í/q — 1; since we are assuming that fi is bounded, one also has
that for 1 < s < r <.oo, Lr(fi) C ¿*(fi). The set C~(fi) is dense in
for 1 < p < oo.
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The special case p = 2 is of main importance; L2(ii) is in fact a Hubert
space for the scalar product:

(u,v) = í u(x)v(x)dx, Vu,v

and norm:

Here, and in what follows, the notation = is employed to denote equalities
by definition. The space JL

2(Í2) is usually identified with its dual space.
For p = oo, the space JS°°(fi) consists of essentially bounded, real funtions

on ÍÏ, which is also a Banach space for the norm ||u||oo = ^ss^Pagním2)!}-
Again, since 0 is bounded L°°(0) C I>p(0) for all p G [l, oo). One has that
(¿'(Q))' = £°°(Q), but (I°°(ß))' D L^iî) with an strict inclusion.

Any function / E £2(0) can be understood as a distribution if one iden-
tifies < /, u >= (/, tí), Vu G -D(O) (we use the notation <, > for duality
pairings). The Sobolev space of order 1, Hl(£l), consists of functions in
L2(u) such that their generalized first order derivatives (that is, derivatives
in distribution sense) are also in L2(tl). It is also a Hubert space with respect
to the scalar product:

\^E
and norm:

The inclusion Hl(fï) C L2(Ü] is compact. The closure of C~(0) in fT
for the norm ||TÍ||I is denoted by -íf¿(ÍÍ), and it is a proper subspace of JET
To characterize the functions in íf¿(íí), we need to recall a classical trace
theorem (see [43]): if the boundary F of Í7 is Lipschitz continuous, then there
exists a linear, continuous operator 70 mapping íT1(íí) into L2(T) such that
for any u € C2(Û), 7o(«) is the restriction of u to F. The subspace Hg(£l) can
then be shown to be the kernel of 70, i.e., it consists of functions in Jï1(n)
which vanish at the boundary. The image space 7o(#1(fì)) is denoted by
H^2(T); its dual space is called H~l/2(T).

In the case Í2 bounded, the classical Poincaré inequality holds; essentially,
it says that there exists C'n > 0 such that:

M < ^n IMI, V« €#¿(0) (1.14)

where:

,,2 . T ^ f d u du
I N I = E Í . )
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This shows that ||u|| is a norm'on fí¿(íí), equivalent to ||tt||i; the associ-
ated scalar product is: !

The dual space of #¿(fi) is denoted by H"l(u).
Sobolev spaces of order higher than one are also required sometimes.

Thus, given m > 1, one considers the space ifm(fi) made up with functions
in L2(ii) whose generalized derivatives up to order m are in L2(fi). It is also
a Hilbert space with respect to the scalar product:

M <m

where 77 = (771 , . . . , 77^) 6 IN^ and (17 1 = ̂  + ---- h r)d- The norm in ífm(íï) is
denoted by ||u|(m.

All the preceeding results have been stated for scalar functions u. The
extentions to á-dimensional vector functions u are made in the usual way,
with the help of product norms. Spaces like D(íi), L2(f2), H^íí) or H¿(f2)
will often be considered.

We now turn to the consideration of the subspaces needed for the treat-
ment of the incompressibility condition 1.5. One usually defines the space:

/ V - u < E L 2 ( f ì ) }

which is a Hilbert space with respect to the norm IJuJI^Q = |u¡2 + |V • u|2,
Vu G #(div, £2). It is well known that there exists a normal trace operator
for functions in /f(div,u): if. F is Lipschitz continuous, then there exists a
linear, continuous operator 71 mapping if(div, ÎÎ) into if~x/2(r) such that for
every u G D(Ö), 71 (u) = n • U|r>. The kernel of 71 is denoted by íf0(div, ÍÍ).

The set of smooth, solenoidal vector fields is defined as:

V = {u 6 D(fi) / V • u = 0}

The closure of V in L2(fì) is denoted by H, and plays a key role in theory
of approximation of the Navier-Stokes equations . It can be shown that when
fì is bounded and F is Lipschitz continuous:

H = {u 6 L2(f2) / V • u = 0, 7l(u) = 0}

that is, H consists of vector fields in L2(ii) with zero divergence and zero
normal trace at the boundary.

Since H is a. closed subspace of L2(iî), one has the decomposition L2(fZ) =
H © H*~\ the characterization of H*~ is a main concern in this context. It
derives from a theorem due to Ladyzenskaya (see [71]), which essentially
states that:
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HL = {u G L2(ii) / 3p G #*(«), u =

This is related to the classical Helmholtz decomposition of a vector field
into the sum of a solenoidal field and the gradient of a scalar function, and
ultimately to a powerful theorem proved by De Rham within the context
of distributions (see [84]). This characterization implies, in particular, that
for every u 6 L2(f2), (u,v) = 0 Vv G V if and only if u = Vp for some
p G H1 (Cl) defined up to an additive constant.

The projection of L2(iî) onto H, denoted by PH, is also of main impor-
tance, and actually gives name to a whole category of numerical methods (see
Section 1.5). It is obviously continuous on L2(iî), but it also maps H1(iî)
into itself and is continuous with respect to the norm of H1(iî) (see [105] or
[71]); that is to say, there exists a constant G\ > 0 such that:

||Pff(u)||i < Ci l lu l lx , VuGH1^)

One also considers the closure of V in H¿(íí). This space is classically
denoted by V, but here we will refer to it as Y, keeping the notation V for
other purposes. It can be shown (see [43]) that when £2 is bounded and F is
Lipschitz continuous:

Y = {u G Hj(ß) / V • u = 0}

The decomposition H¿(Í2) = Y ® Y^, analogous to the previous one, can
be characterized in this case as follows (see [43]):

Y^ = {u G HJ(0) / 3p G I2(íi), u = (-A)-1(Vp)} (1.15)

where (— A)~: is the inverse of the Riesz representation isomorphism, that
is, -Aiífo^íi) -» H-^Sl) defined by < -Au, v >= ((«,«)); 1.15 is to be
understood in the following sense: for every u G H¿(Í2), ((u, v)) = O Vv G V
if and only if ((u, v)) =< Vp, v >= -(p, V • v), Vv G H¿(íí), for a certain
p G L2(Í2) determined up to an additive constant. The indeterminacy of
these functions p, as well as that of the pressure in some incompressible flow
problems, leads to the introduction of the quotient space Z/o(fi) = L2(ÍÏ)/IR.

The strong form of the incompressible Navier-Stokes equations considered
in the previuos Section is usually understood in distribution sense, resulting
in a weak formulation. For this, we need to introduce some continuous forms,
defined on appropriate function spaces, associated to each term of the equa-
tions. For the viscous term, two different forms will be considered, related
respectively to the Laplacian formulation (as in equation 1.7) and to the rate
of deformation tensor formulation (as in equation 1.6). For the former case,
one defines:

a(u,v) = i/((u,v)), Vu,vGHj(f2) (1.16)
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1
This is a bilinear, continuous forní on H¿(íi) which is coercive with respect
to the norm ||u||, since a(u,u) = i/||u||. As for the latter case, one defines:

a(u,v) = 2 I/e(u):e(v) = 2I/5:(et·j(u),ei;í(v)), Vu,v6l·lJ(íï) (1.17)
ij=i

This form is also bilinear, continuous and coercive on H¿(íí), due to the
Körn's inequality (see [43], page 82).

On the other hand, both the pressure gradient term and the weak form
of the incompressibility condition require of the bilinear form:

Hv,?) = -(<7,V.v), V« € ¿2(íí), Vv 6 HS(il) (1.18)

which is also continuous with respect to the norms \q\ and ||v||. Finally, the
standard formulation of the convective term gives rise to a trilinear form c
defined by:

c(u,v,w)= ((u-V)v,w), \/u€U1(iì)1veHl(Sì),w€Hl
0(SÌ) (1.19)

This form is well defined and continuous on these spaces (see [105]), and is
skew-symmetric in its last two arguments if u 6 Hì that is, if V • u = 0 and
n • u = 0. Moreover, c posseses some other boundedness properties, such as
(see [104]):

c(u,v,w) < 0

||u|| ||v|| ||w||
M ||v|| ||w||2

021

The skew component of c is also used sometimes. Calling c(u,v, w) =
f(c(u, v, w) - c(u, w, v)),Vu 6 H^flJ.v € Hj(fi), w € H¿(íí), one has that
c is also trilinear continuous on these spaces (see [104]), and is the weak form
of the skew-symmetric formulation of the convective term introduced in the
previous Section. It satisfies c(u, v, v) = 0 for all u and v.

To end this Section, let us introduce the spaces requiered for the evo-
lution problems. Given T > 0, 1 < p < oo and a Banach space W with
norm ||u||w, the space LP(Q,T; W) consists of functions u: (0,T) —» W such

that: ||ti||£p(o,T;W) = (So" Ilu(0llwr)1 < °°- ^ *s a^so a Banacn space with
respect to the norm ||ií||Lp(o,r¡vr)- The space of essentially bounded functions
on (0,T) into W is denoted by L°°(0,r;W), and is a Banach space with
respect to the appropriate norm. The spaces Lp(0, T; W) possess similar
properties as far as separability and reflexiveness is concerned as Lp(íí) for
1 < p < oo whenever W also has those properties. The case p = 2 is, again,
special: when W is a Hubert space with scalar product (u,v)w, the space
£2(0, T; W) is likewise with respect to: (u,v) = /O

r(«(i), v(t}}wdt. Spaces
like ¿2(0, T] H¡(ü)), I°°(0, T; L2(Ü)) and others wiU often be considered.



CHAPTER 1. PRELIMINARIES 17

1.3 Finite element approximation

This Section is devoted to the introduction of the basic results concerning
the approximation of the previous function spaces in finite elements. We first
summarize the definitions of finite element function spaces and then state an
approximation theorem and an inverse inequality in these spaces, under the
usual regularity assumptions on the meshes. This general theory reviewed
here can be found in standard references such as [25] or [83].

We consider a partition Qh of 0 into elements {Ke}e _ ^ n (ne is
the number of elements). For each element K, the diameter of K is denoted
by hx, and its sphericity (diameter of the maximum sphere inscribed in
K) by QK- We also call h = maxK-60fc(/ijr) and Q = mìnKe@k(eK)- We
assume that each element is the image of a reference element K (bounded
and connected) through transformations FK: K —> K, which are supposed
to be diffeomorphisms. Functions v defined on K are transported to K by
taking v = v o FK

l.
A finite dimensional subspace Rk(K} (indexed by k Ç IN) of approximat-

ing functions is chosen on K\ polynomial functions are usually employed.
Lagrange finite elements consider the degrees of freedom on Rk(K) as values
of the functions at a certain set of points S = {a,-},- _ i „ of K. calledr \. j ) j — 1 , . . . , 7ln

(reference) nodes (nn is the number of nodes per element). These points are
chosen so that the set of linear restrictions {p(a,-)}," _ i „ on p is uni-

" v J ' J J — • " • ) • • • > "n *

solvent in Rk(K}, that is, their values determine p in Rk(K); in particular,

Two classes of isoparametric finite elements (that is, those in which the
transformations FK also belong to Rk(K)) will be considered. For simplicial
finite elements, K is the standard simplex in IR . In this case, Rk(K) is the
set of polynomials in {xi, . . . , x¿} of degree less than or equal to fc, called Pk-

It is easy to see that dim Pfc = ( i ) •

On the other hand, for quadrilateral (d = 2) and hexahedral (d = 3) finite
elements, K is the unit cube [0, l]d; Rk(K) then consists of polynomials in
{xi, . , . , x¿} of degree less than or equal to k in each variable, space denoted
by Qk. One has that dim Qk = (k + l)d.

With the help of these definitions, functions defined on fì are approxi-
mated by other functions which, in each element, are the images of polynomi-
als in Rk(K). In other words, any function space V of those considered in the
previous Section is approximated by a finite dimensional subspace Vh, whose
degrees of freedom are the point values at the (mesh) nodes Sj, = {a.j}j=i ..... np

(np is the number of nodal points); these are the images of the reference nodes
in K. When the elements K have straight sides (or plane faces, for d = 3) for
simplicial elements, or straight and parallel sides (or faces) for quadrilaterals
(and hexahedra), the transformations FK are affine (that is, they belong to
Pi(K)); in this case, the functions v = v o FK

l belong to Pk(K] and Qk(K),
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respectively, whenever v belongs to Pfc(-ftT) or Qk(K).
Discrete finite element spaces like:

£ L2(fi) I Ve = 1, . . . ,n., v{Ke = ve o F^A 6 Rk} (1-20)

are considered. If, moreover, one requires these finite element functions to
be continuous on fi, this approximating space is spanned by the functions
{JV¿}¿ _ j n C Vh defined through the relations: JV¿(a¿) = £t-¿; these
functions NÍ are called the standard shape functions.

For continuous functions v, a classical interpolate can be defined by:

veC°(n)—>Hh(v)€Vh/Ilh(v)(x)±'Ev(ai)Nj(x) Vx e ñ (1.21)
J=l

A projection operator H/, can also be defined on more general spaces of
(not necessarily continuous) functions onto VH (see [98], for instance). To
obtain approximating properties of the operator ü/j, some restrictions have
to be enforced on the meshes. A family {0fc}/,>o of discretizations of fi is

@Kcalled regular if there exists Ci > 0 independent of h such that - — > £j > 0,
n-K

for all if G Qh and for all h > 0. Regularity of {o/l}^>o means geometrically
that the elements do not collapse into segments as h tends to zero. If {®h}h>o
is regular, if v Ç. fP"(fi) for r > 2 and if Rk = Pk or Qfc, then the following
approximation result holds (see, for instance, [98]):

0,... ,r, ||V-nfc(t,)||m<(7A'|M|r, (1.22)

where 5 = min{& + 1 — TO, r — TO}. In 1.22, and throughout this work,
C represents a generic constant independent of the mesh size A, possibly
depending on fi and other constants.

Moreover, (0fc}h>o is called uniformly regular, or quasi-uniform, as h
tends to zero if there exists £2 > 0 independent of h such that — > £2 > 0

for all h > 0. Under this condition, the following inverse inequality can be
proved by scaling arguments (see [13]):

Q
IKHi < ^K|, VvheVh (1.23)

Both the approximation result 1.22 and the inverse inequality 1.23 will be
used in what follows.

1.4 Mixed problems and the LBB condition

The understanding of the properties of discrete approximations of incom-
pressible flow problems, as well as some other related mechanical problems
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(such as incompressible elasticity), led to the development of a general theory
of mixed problems. From the variational viewpoint, these are understood as
saddle point problems, the simplest of which is the optimization of a certain
quadratic functional under a linear restriction on the appropriate function
space. The main example of a mixed problem within the context of incom-
pressible flow equations is the steady Stokes equations 1.13-1.5 with homo-
geneous boundary conditions 1.10; in this case, the linear restriction is the
divergence-free condition 1.5, and the Lagrange multiplier associated with
it is the pressure. This mixed character of the equations implies that the
approximating (in our case, finite element) spaces for velocity and pressure
should satisfy a compatibility condition in order to obtain optimal results,
as will be seen in what follows.

1.4.1 Mixed problems

A complete exposition of the theory of mixed methods, which came about
with the work of I. Babuska ([4]) and F. Brezzi ([14]), has been recently given
in [19], reference which we mainly follow here. A different approach can also
be found in [15].

If V and Q denote two real Hubert spaces with norms \\v\\v and \\q\\Q,
respectively, a: V x V —> IR and b: V x Q —» IR are bilinear, continuous forms
with norms ||a|| and ||6||, respectively, and / E V, g Ç. Q' are given, a general
mixed problem consists of finding u G V and p G Q such that:

a(u,v) + b(v,p) = </, t>>, Vv Ç V

b(u,q) = <g,q>, Vq£Q (1.24)

The study of this problem leads to introduce the forms:

B: V -> Q1 I < B(v), q >Q(XQ= b(v, q) Vg G Q, Vv £ V

B*: Q -> V I < B'W, v >VKV= b(v, q) Vv € V, Vq G Q

Assuming that a is coercive on V, that is, a(iz, tí) > /3a||u||v V« 6 V, the
conditions for a solution of 1.24 to exist are that g G ImJ5 and that there
exists a constant /?& such that:

(sup n n\cV \\v\\v

in which case u is unique and p is determined up to an arbitrary element of
Ker5*. Condition 1.25 is usually refered to as the inf-sup or LBB condition,
after the work of O.A. Ladyzhenskaya ([71]), I. Babuska ([4]) and F. Brezzi

([14]). ' • - . . . .
The Stokes problem is cast into this framework by taking V = H¿(íí),

Q = L2(fi), a and b defined by 1.16 and 1.18, respectively, g = 0 and
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/ G H 1(Í7) given. In this case, the form a is coercive and symmetric; the
forms B and Bl are defined by: ;

B: Hj(íï) -* £2(íï) / 5(v) = V - v , VveHj(íï)

Vq G

One then has that Kerf?* = {ç € L2(Í2) / ? is constant on ÍÏ}, space
isomorphic to IR. Condition 1.25 was first proved for this case by O.A.
Ladyzenskaya (see [71]); existence and uniqueness of the velocity solution u
and existence of the pressure p defined up to an additive constant are thus
established (we are considering the Dirichlet case). This indeterminacy in
the pressure is usually surpassed by working on Q = LO(ÍÍ), where Bl is
injective; however, in the discrete problem other linear restrictions may be
used (such as fixing an arbitrary discrete value of the pressure to zero).

1.4.2 Discrete approximations

We now turn to the consideration of an approximate discrete solution of the
mixed problem 1.24, where several difficulties may be encountered. Some of
these were observed in practice in the early stages of Computational Fluid
Dynamics, before this theory was even developed. We outline the basic
results in what follows, inspired again in [19].

Let Vh and Qh denote finite dimensional subspaces of V and Q, respec-
tively, where the index h refers to a mesh size. The discrete version of problem
1.24 reads: find tz/, G Vh and ph G Qh such that:

b(uhiqh) = <9,qh>, VqheQh (1-26)

Let Bh and Bl
h denote the discrete equivalent to the operators B and Bl

on Vh and Qh. For a given g G Q', let:

= K €Vh/ b(vh, qh) =<9,qh >, V?fc 6 Qh}

Then, if a is coercive on V, if Zh(g) ^ 0 and if the discrete equivalent of
the LBB condition holds with a constant ß0 independent of h:

ft>A>o, (1-27)
VhV ?

then there exists a unique Uh G Vh and a ph G Qhi defined up to an arbi-
trary element of Ker-5/;, solution of 1.26 which satisfy the following optimal
approximation property:
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||p-pfc||Q/KerB«)
'

(1.28)
with constant C depending on ||a||, ||6||, ßa and ß0i but not on h.

Unfortunately, the discrete LBB condition 1.27 does not hold for sim-
ple combinations of finite element spaces for velocity and pressure, such as
equal order ones. Those for which 1.27 holds are called div-stable in the
terminology of [12]. Problems may develop in the following circumstances:

• The constant ßh in 1.27 may not be bounded away from zero uniformly
in h] in this case, it is interesting to know the exact dependence of
ßh with respect to h, so that weaker error estimates than 1.28 may be
obtained.

• KerSj; <£. KerS4; in this case, the discrete solution ph may be polluted
with unphysical (non constant) modes, called spurious pressure modes.
Moreover, Zh(g) may be empty, in particular for some nonhomogeneous
Dirichlet boundary conditions, leading to ill-posed discrete problems.

• (dim Qh — l)> dim Vh] this case leads to locking of the solution, since
there are more restrictions on it than degrees of freedom. The only
discrete divergence free vector field is the null one.

The problem of spurious pressure modes is, in essence, an algebraic prob-
lem. Calling K the matrix associated to the discretization of the form a, G
the discrete gradient matrix and G£ the discrete divergence matrix, problem
1.26 can be written as:

where U and P are the vectors of discrete values of velocity and pressure,
respectively, and FI, F? come from external forces and (nonhomogeneous)
boundary conditions. The system matrix of 1.29 will have a nontrivial kernel
when Ker5j; <£ Kerl?4, since spurious modes satisfy GP = 0, P ^ 0.

Some of the most popular examples of mixed finite elements for incom-
pressible flows are listed next, classified according to whether the discrete
pressure is continuous on fì or not; some of the terminology used applies
only to the two-dimensional case:

1. Discontinuous pressure quadrilateral elements.

(a) QiPo element: the bilinear-velocity, constant-pressure element
does not satisfy the discrete LBB condition. For a regular mesh,
the kernel of the discrete gradient matrix is two-dimensional, con-
taining two independent spurious modes which are constant on the
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1
red and wniíe cells of the mesh, viewed as a checkboard; they are
called checkboard modes. The constant ßh can be shown to be
O(h) in this case (see [78]). A thorough study of the properties of
this element was given in [85].

(b) <32pi element: the biquadratic-velocity, linear-pressure element
is a div-stable element commonly used in practice. The pressure
values on each element can be understood as the pressure and its
first order spatial derivatives at the centroid of the element, in a
hierarchical way. In general, the element Q¡P¡-i is div-stable for
I > 2 (see [43]).

2. Continuous pressure elements.

(a) Equal order interpolations: elements where the velocity and pres-
sure are interpolated by continuous functions on the same mesh
points and to the same order of accuracy, such as Q\Q\ on quadri-
laterals or PI PI on triangles, are the simplest ones to implement;
however, these elements also present spurious pressure modes, and
yield unstable pressures which need to be filtered to get accurate
results. A study of spurious modes for these elements was given
in [86].

(b) Taylor-Hood elements: it was found experimentally that a P^Pi
continuous pressure approximation on triangles and a Q^Qi on
quadrilaterals yielded stable and convergent results. Some analy-
sis of these elements were given in [9] and [109], and an extension
to P3P2 and QkQk-i (for k > 2) in [18].

1.4.3 Some stabilizing techniques

Several alternatives have been proposed to overcome the difficulties intro-
duced by mixed methods. Efforts have been directed into three main direc-
tions:

• The development of div-stable finite element combinations, some of
which we have just seen.

• The stabilization of known unstable elements, in particular the QiPo
element, through the use of appropriate filtering techniques ([95], [94]),
the use of macroelements ([97]) or by enriching the velocity space by
bubble functions ([3]).

• Obtaining alternative formulations of the original equations, which cir-
cumvent the LBB restrictions, either by employing non primitive vari-
ables (vorticity, streamfunction or others) or by augmented or stabilized
formulations. We summarize this last possibility for its relevance.
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Stabilized formulations of the Stokes and incompressible Navier-Stokes
equations developed from the original work on SUP G formulation for ad-
vective diffusive problems in [20] (which in turn was an extension of pre-
vious work on upwind finite differences), and the series of papers [57], [58]
and [59]. The consistent Galerkin Least Squares (GLS) formulation then
came about ([60], [61]). When applied to incompressible flow problems, it
allows the use of arbitrary velocity-pressure elements. For a given mesh
Qh = {Ke}e _ j n with element sizes hx, the GLS method for the
Stokes problem can be understood as a modification of the discrete prob-
lem 1.26 by adding to each equation a multiple of the strong form of the
momentum equation:

b(vhiph) + E aK(-&uh + Vph - f, -

l/fc (1.30)

6(tifc, qh) + £ aK(- Aiifc + VPh - f , Vqh)K = 0, Vqh e Qh

where OK > 0 VK 6 Qh (we have neglected the term r2( V • u, V • v) from
1.30, which appears in the definition of the method, since it turns out to be
unnecessary). These new integrals are evaluated on element interiors, where
the approximating functions are sufficiently differentiate. Equations 1.30 are
the Euler-Lagrange equations of a saddle point problem with a Lagrangian
augmented by the addition, at element level, of a multiple of the square of
the residual of equation 1.13, residual which is to be minimized; this is why
this method is called Galerkin Least Squares.

Stability and optimal convergence for this and related methods were
proved in [37] and [17], in mesh dependent norms such as:

for any choice of Vh and Qh', the coefficients ax (called TI in the usual ter-
minology) are obtained as the diffusive limit of those of a similar method for
the Navier-Stokes case, yielding, after some simplifications (see [37]):

<*K = «0^ (1.31)

For linear elements and small enough HK, a value of a0 = 1/3 is optimal
(see [37]). For quadratic elements, an optimal value of a0 = 1/9 was obtained
in [27] for a related scheme.

The stabilization of the pressure in these residual methods is mainly due
to the appearance of a nonzero diagonal term on the system matrix of the
discrete problem 1.29 multiplying the pressure, which comes from the term
( V?,,, V?fc) in 1,30.

A great amount of work has been developed recently on stabilized meth-
ods (see [5], [16], [35], [36] and [107], for instance).
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!1.5 Description of fractional step methods

In this last Section we present several methods of fractional step type for
the time integration of the unsteady, incompressible Navier-Stokes equations
1.7-1.5, with homogeneous Dirichlet boundary conditions 1.10 (for simplicity
of exposition) and initial condition 1.11.

The common feature to these methods is the decomposition of each time
advancement step into a sequence of two or more substeps. The way this
decomposition is chosen in each method determines properties such as its
stability, convergence, order of accuracy in the time step, steady state reached
(if so), boundary conditions to be imposed in each substep, stabilization or
not of the pressure and type of fully discrete problems actually solved, as
will be explained in what follows.

We present the methods classified into four categories established accord-
ing to different criteria, which may well overlap with one another. Given the
great amount of fractional step methods developed nowadays, this presenta-
tion does not pretend to be exhaustive, but rather a wide view of the variety
of existing methods, paying special attention to the most significant ones;
besides, the classification could also respond to other criteria, but the ones
chosen here emphasize some ideas to which we will come back later on.

Some representative methods of each category are explained in more de-
tail. They are presented respecting as much as possible the structure and
notation used in their original references. Some of them are introduced di-
rectly in fully discrete form, after some space discretization (finite differ-
ences, finite elements, finite volumes or spectral methods) has already been
performed. However, we are mainly concerned with their semidiscrete for-
mulations, which are more general, not depending on the particular form of
space discretization used, and mòre suitable for the study of properties intrin-
sic to the time integration process, such as well-posedness of the intermediate
problems or appropriate boundary conditions for them.

In what follows, we assume that a constant time step St > 0 is given, and
define the time levels tn = nSt for n = 0 , . . . , [T/St}.

1.5.1 Classical Projection Methods

We group here the first fractional step methods to appear in the literature
that gave rise to this kind of methods, as well as some of their closest variants
and studies.

The original ideas of fractional step methods for general evolution equa-
tions go back to the work of Yanenko (see [110]). The concept of a splitting of
the different operators appearing in the equations in succesive steps was first
introduced there. In the early times, this splitting was usually associated to
the different space dimensions. An interpretation of this general splitting in
the case of the incompressible Navier-Stokes equations can be found in the
scheme with (n -f- 1) intermediate steps of Temam (see III.7.2 in [105]).
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But the actual origin of fractional step methods for Navier-Stokes equa-
tions is generally credited to the work of Chorin (see [22], [23] and [24])
and Temam (see [100], [101], [102] and [103]). The former is a 3-substep
method, in which the first two substeps can be thought of as an ADI scheme
(Alterning Directions Implicit) and the third one is a projection onto the
subspace of solenoidal vector fields (in a sense to be explained in what fol-
lows); for the case of periodic boundary conditions in a unit cube and for
a centered finite difference space approximation, it was shown in [24] that
provided 8t = 0(/i2), the convergence of this method was of first order in 8t
and second order in h. We present Temam's method in more detail, since it
is the most popular of fractional step methods and one of the best studied.
We name it the classical method, and follow the presentation of III. 7.1 in
[105].

Let us call k = 8t, and assume that f € L2(0,T; H) and u0 6 H. Given
un €E if, approximation of u at time in, the first step of the classical method
consists of finding an intermediate velocity un+1/2 such that:

..n+l/2 _ „n

(un+1/2 • V)un+1/2 +
K

i(V - un+1/2)un+1/2 = P (1.32)
¿a

„n+l/2 _ nU|p - U

An implicit backward Euler method is employed for the diffusive term,
and the skew-symmetric form adopted for convection is also approximated
implicitly. The force term f" is the time average of f in [i„, ¿n+ij- On u""1"1/2,
the full Dirichlet boundary condition is imposed. The weak formulation of
1.32 consists of finding un+1/2 6 H¿(Í2) such that for all v 6 H¿(Í2):

i(un+1/2 - un, v) + a(un+1/2, v) + c(un+1/2, un+1/2, v) = (F, v) (1.33)
K

Once un+1/2 is determined, the second step consists of finding an end-of-
step velocity un+1 and a function pn+l such that:

-^ + Vpn+1 = O (1.34)
K

V-un+1 = O (1.35)

n-uj1/1 = O (1.36)

This is equivalent to saying that un+1 is the projection of un+1/2 onto
the space H, so that equations 1.34-1.35-1.36 can also be written as un+1 =
Pff(un+1'2). This is the reason why this method, and other related schemes,
is usually called the projection method.
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iAs can be seen, the splitting of operators in this case consists of separating
the effects of incompressibility fromithose of diffusion and convection, which
are kept together.

This classical projection method posseses some advantages over standard
single-step methods. From the computational standpoint, the main one is
the decoupling of the computation of the 'pressure' pn+1 from that of the
velocity; this is achieved with the help of a 'pressure Poisson equation' (PPE,
from now on), obtained from equation 1.34. In fact, taking the divergence of
1.34 leads to:

Apn+i = iV.u
n+1/2 (1.37)

n-Vpjy1 = 0 (1.38)

Once this Neumann problem is solved for pn+1, the final velocity un+1

is obtained explicitly from 1.34. Another advantage of this scheme is that
the space discretization used in combination with it is not restricted by the
compatibility (inf-sup) condition encountered in the Stokes problem; this fact
has been observed by some authors who have used this method together with
different space discretizations, including some equal order finite elements.
But, to the author's knowledge, the reason for this pressure stabilization has
not yet been fully explained. We provide an explanation for it in Chapter 2.

The classical projection scheme, however, presents some drawbacks too.
As can be seen in 1.36, the final velocity un+1 does not satisfy the correct
Dirichlet boundary condition, but only the normal component of it. This may
result in the presence of a numerical boundary layer in the solution, whose
size has been estimated to be 0(\/i/if) (see [45], [79] and [106] ). Another
side of the same problem is the need to impose the unphysical homogeneous
Neumann boundary condition on pn+1, while the exact pressure satisfies, for
sufficiently smooth solutions (see [48]):

Ap(i) = V • (f (t) - (u(i) • V)u(i)) (1-39)
Q

n.Vp(í)|r = n.(f(t) + i/Au(í)--^-(u.V)u)| r (1.40)

This has led several authors to believe that pn+1 is not an approximation
of p(fn+i), but a mere auxiliary mathematical variable needed to enforce the
incompressibility condition on un+1 (a Lagrange multiplier), although both
un+i/2 anj un+i are legjt¡mate approximations of u(in+1) (see [106]).

Convergence of this scheme to a continuous solution u was proved by
Temam (see [101] and [102]). He introduced the following approximating
functions:

ul
k: [0,T] -» L2(íí) / u£(i) = un+1/2, nk < t < (n

uJ:[0,rj-»La(ß) / u|(í) = un+1, nk < t < (n +
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Ufe: [O, T] —» L2(íï) / Ufe is continuous, linear on t on each interval
[nk, (n + l)k] and ufc(in) = un, for n = 0 , . . . , [T/k].

He proved convergence of u\ (that is, of un+1/2) to u in H¿(fi); but for
u2, and Ufc, the convergence was only in L2(Í2), and this was due to the fact
that un+1 does not satisfy the correct boundary condition. In fact, he had:

• if d = 2, u'fe (i = 1,2) and ufe converge to u in L2(0, T; L2(0)) strongly
as k tends to 0, and weak-star in L°°(0,T;L2(fi)); u£ converges to u
in L2(0,T;H¿(n)) strongly.

• if d = 3S there exists a subsequence A;' of k such that u^, (t = 1,2)
and Ufc' converge to u in £2(0,T;L2(Í2)) strongly as k' tends to 0, and
weak-star in L°°(0, T; L2(ii)); ul

k, converges to u in £2(0,T;H¿(n))
weakly.

Further studies of this method have been performed by other authors.
The most relevant one is the work of J. Shen: in [90] he considered the clas-
sical projection method with a slightly different formulation of the convective
term, namely, (un • V)un+1/2. This results in a skew-symmetric weak form
c(un,un+1/2, v), since un G H. For this scheme, he proved first order error
estimates in the time step for un+1/2 and un+1, and order 1/2 error estimates
for pn+l and pn+1 — kvApn+1, in the appropriate sense. A mistake in the
original proof pointed out by J.L. Guermond (see [50]) was corrected in [92],
The definitions of order of approximation employed in these proofs are as
follows: given a Banach space X with norm \\ • \\x, a continuous function
/: [0, T] —> X and a partition On}n = n N °^ t^> ̂ l whose maximum step
tends to zero as k tends to zero, a function /&: [0,T] —* X is a weakly order
a approximation of f in X if there exists C > 0 independent of k such that:

N

k y^ ll/fc(t f c) — /f£ fc)l|2 < Ck2a

n=0

On the other hand, f k is a strongly order a approximation of / in X if:

It was proved in [90] that both u""*"1/2 and un+1 are weakly first order
approximations of u in L2(Í2), and that pn+1 and pn+1 — fci/Apn+1 are weakly
order 1/2 approximations of p in ¿g(ii). Once again, the incorrect bound-
ary condition satisfied by un+1 forbids to get satisfactory error estimates in
HJ(fl).

In order to get improved error estimates, a modified scheme was also
considered in [90]. It consists of adding the term Vpn to 1.32 and regarding
the Lagrange multiplier of equation 1.34 as a pressure correction, rather than
an end-of-step pressure, that is, $V(pn+1 — pn) for some (j> > 0. In this case,
both un+1/2 and un+1 are strongly first order approximations of u in L2(íí),
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i
whereas pn+l and pn+l — &i/Apn+1'are weakly first order approximations of

More recently, a general framework for these classical projection meth-
ods has been introduced in [96], where it is shown that the classical method,
among others, with Shen's formulation of the convective term, is uncondition-
ally stable (in the appropriate sense). A similar scheme was also considered
in [10], but it was obtained by arguments of approximate matrix factoriza-
tion, and proved to be equivalent to a form of fractional step method. The
classical projection method was also used in [29] in conjunction with a finite
volume space discretization on unstructured triangular meshes.

1.5.2 Higher Order Methods

We have seen how simple splittings of the incompressible Navier-Stokes equa-
tions generally lead to first order schemes in the time step. Several alterna-
tives have been proposed to achieve higher order methods; we present some
of the most outstanding ones.

To the author's knowledge, there are three main ways to develop higher
order fractional step methods, which are the use of improved velocity bound-
ary conditions, improved pressure boundary conditions and pressure correc-
tion, respectively, all of them developed in the mid-eighties.

As a representative of fractional step methods with improved velocity
boundary conditions we consider the work of Kim and Moin (see [65]). It
consists of the following fully discrete scheme, where a centered finite differ-
ence space approximation on a staggered grid is assumed (some staggered
grid finite differences are equivalent to Q\Po finite element discretizations
with mass lumping):

n+l/2 _U U
st
un+l/2

-: - — i - = -G<f>n+l, £<+1 = 0 (1.42)
of

In 1.41 and 1.42 Ui represents the nodal vector containing the i-th compo-
nent of velocity, H is a. discretization of the conservative form of the convec-
tive operator, which is approximated by an explicit, second order multistep
Adams-Bashforth method, and L is a centered discretization of the Laplacian
operator (a second order, implicit Crank-Nicholson method is employed for
diffusion, which enhances stability for low Reynolds number flows). In 1.42,
G and D are the discrete gradient and divergence operators, respectively;
this equation can be viewed as a projection step, and is actually solved by
a discrete PPE. The main novelty of this scheme, however, is the boundary
conditions imposed on the intermediate velocity: in the homogeneous Dirich-

let case that we are considering, these are u"+1'2 = — — , i.e., un+1/2 =
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obtained through a Taylor expansion of u"+1/2 (see [65]). An improvement of
this method was presented in [74], where a three-step Runge-Kutta scheme
was considered in which each step is decomposed into two fractional substeps
in a similar manner to Kim and Moin's method. Improved velocity boundary
conditions for fractional-step methods were also studied by M. Fortin and
coworkers in [41].

Improved pressure boundary condition fractional-step methods stem from
the work of Orzag, Israelli and Deville (see [79]). For a one dimensional linear
model with no convection, a two-step method is devised in reversed order,
that is, with a projection step first and a diffusion implicit Crank-Nicholson
step second. The novelty, this time, is the second order boundary condition
n • Vpn+1 = —z/n • (V x (V X un)) employed (the roí-roí form of the viscous
term is used), which is closer to the continuous boundary condition 1.40 than
the homogeneous Neumann condition 1.38. Several generalizations of this
idea can be found in [63]; in this reference, a three-step method is considered
consisting of an explicit Adams-Bashforth step for convection, followed by
a projection step and an implicit Adams-Moulton step for diffusion. The
projection step is solved via a continuous PPE with higher order pressure
boundary conditions obtained from the continuous one. Stiffly stable schemes
are also considered for the time derivative term, which enhance stability.
All these methods are used in combination with a spectral element space
discretization, and an extension to triangular spectral elements is provided
in [93].

A second order pressure-correction fractional-step method was intro-
duced by van Kan in [62]. It was developed for a system of ordinary dif-
ferential equations with a linear constrain, representing a finite difference
approximation of the Navier-Stokes equations on a uniform staggered-grid.
Namely, he considered a system of the form x = f (x] + Gp, Gtx = g(t). In
this context, the pressure correction methods reads:

n+l/2 _ n
_ _ _ lfffxn+l/2\ + yr(a

8t 2

_n+l _ „n+l/2
X- ^ =iG(pn+l_pn), 0_

The second step is actually solved by a discrete PPE:

It is shown in [62] that the solution (xn,pn) of this split scheme differs
from the solution of a coupled Crank-Nicholson method by 0(£f)2, so that
this is also a second order method. A linearization of the convective term is
used for the extension of the method to the Navier-Stokes equations. Van
Kan's method was recently used in [81] with a spectral method for the space
variables, in which the same mesh points were used for velocity and pressure.
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Another second order projection method was introduced by Bell, Colella
and Glaz in [8]. They considered 'an iterative scheme in each time step
which converges to the solution of a coupled Crank-Nicholson scheme. Each
iteration is decomposed into two substeps, the first one being a convective-
diffusive step, which is explicit in convection and implicit in diffusion, and the
second one an incompressibility step; thus, the fc-th iteration of the scheme
is split as follows (see [8]):

..n+l.fc+l „nH — — H_
oí 2

V . un+l,fc+l _ Q

It is assumed that the convective term is computable from the velocity at
time tn and the current approximation of the pressure pn+1/2·fe by an explicit,
second order Godunov procedure (see [8]), and a standard finite difference
approximation is used for the Laplacian term.

Several fractional step projection methods were studied by P. Gresho in
[45]. They include optimal projection methods, with optimal boundary con-
ditions for velocity and pressure, and simpler projection schemes, of which
there is a first order (Projection 1, equivalent to the classical projection
method), a second order (Projection 2, related to van Kan's, Kim and Moin's
and Bell, Colella and Glaz's methods) and a third order version (Projection
3). These are presented in continuous, semidiscrete and fully discrete forms
(in [46]), the latter with a Q\Po .finite element interpolation. Gresho's Pro-
jection 2 method also employs pressure correction.

More recently, error estimates of some of these and other higher order
splitting methods were proved by J. Shen in [91], in a similar way to [90]
and with the modifications of [92]. Roughly speaking, he showed that, under
several hypothesis:

• A pressure correction method similar to van Kan's provided weakly
order (2 — e) and strongly order (3/2 — e) approximations to the velocity
in L2(0) and weakly order (3/2 - e) in H^Q) for any e > 0, both for
the intermediate and the end-of-step velocities; he also proved weakly
order (3/2 — e) error estimates for the pressure in £o(0).

• A method similar to Kim and Moin's (for the linear unsteady Stokes
problem) provided weakly order 3/2 approximations to the velocity in
L2(0) both for the intermediate and the end-of-step velocities, and
weakly order 1 estimates for a modified pressure in

• A penalty-projection scheme with pressure correction provided weakly
order 2 approximations to the velocity in L2(fî) for the intermediate
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velocity, strongly order 3/2 in L2(fi) for the end-of-step velocity and
weakly order 3/2 in H1(0) for both; the pressure was found to be
weakly order 3/2 accurate.

To end this subsection, let us mention the work of Dukovicz and Dvin-
sky (see [32]), where some higher order splitting methods are developed by
arguments of approximate matrix factorizations.

1.5.3 Viscosity splitting methods

We have seen that most fractional step methods employ a projection step
at some point of the calculations, thus uncoupling the effects of incompress-
ibility from all the other terms in the equations. Some other fractional step
methods, however, do not fully uncouple incompressibility from diffusion,
still splitting it from convection. We call them viscosity splitting methods.

As a clear example of this kind of methods, we consider the work of R.
Natarajan (see [77]). Developed from a general splitting of operators for
linear evolution equations, it consists of the following three-step procedure:

= f + (l - 0)i/Aun - (un • V)u"

V - u * = O

«fr = O

- (1 - 0)i/Au** + (u** • V)u" = f + ôi/Au* - Vp*

uff, = O

un+l _

- 0í/Aun+1 + Vpn+1 = f + (1 - 0)i/Au" - (u** • V)u"

V-un + 1 = O

-F = «
The parameters 6, AI and A2 can be chosen to yield first and second order

accurate methods. As can be seen, in the first and third substeps an implicit
approximation of the viscous term is used together with the incompressibility
condition, with the help of a Lagrange multiplier related to the pressure, and
an explicit approximation of the convective term is considered. The second
substep is a nonlinear problem, which is fully implicit both in convection and
diffusion. This algorithm is discretized in space with a QiP\ finite element
interpolation.
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1
The method just explained is similar to the well known 6-method of

R. Glowinsky and others (see [44]); The convergence of two fully discrete
6-schemes to a continuous solution was first proved by E. Fernández-Cara
and M. Marín (see [38]), where stability restrictions on the time step were
also provided. Other stability and convergence results were proved in [67],
assuming a div-stable mixed finite element interpolation. The 0-scheme was
also considered in [108], named as T3 method; a T6 method was developed
there, in which each substep of T3 was split into two, so as to apply efficient
SUP G techniques to all convective terms appearing in the equations.

The three-step Runge-Kutta scheme of [74] mentioned in the previuos
subsection can also be considered a viscosity splitting method. In it, each
step is decomposed into two substeps: the first one is implicit in viscosity
and explicit in convection; the second one is also implicit in viscosity and
coupled with incompressibility. The implicitness parameters and boundary
conditions are chosen so as to achieve second order accuracy.

Other viscosity splitting schemes were studied by L-a Ying in a series of
papers in a continuous formulation (see [76] and the references therein). For
one of them, and in the 2-dimensional case, he proved O(St) error estimates
for both the intermediate and the end-of-step velocities in £°°(0, T; H¿(íí)).

Finally, a linearized stability analysis for a fully discrete, staggered-grid
finite difference two-step scheme was given in [70]; in this case, the second
step is also implicit in viscosity and coupled with incompressibility.

1.5.4 Other methods

We briefly review here other fractional step methods also present in the
literature.

A two-step projection scheme was considered by J. Doñea eí al. in [30],
where the first step was explicit both in convection and diffusion, and the
second was a projection step, solved by a discrete PPE; the method was ap-
proximated in space with a Q\Po finite element interpolation. This scheme
is related to the veJociíy-correcíion method, developed and extensively used
by M. Kawahara and coworkers (see, for instance, [68]), employing a contin-
uous PPE for the projection step and equal order QiQi finite element space
interpolation.

The velocity correction method was also studied in [113], among other
schemes (such as a simple predictor-corrector method, Taylor-Galerkin and
Runge-Kutta type schemes) for the linear, unsteady Stokes flow of a slightly
compressible fluid. A fractional step method for both compressible and in-
compressible flow in a characteristic-Galerkin formulation was developed in
[112]; in both references, the inf-sup restrictions on the discrete approximat-
ing spaces are shown to be bypassed by the appearance, in the steady state
solution, of a nonzero diagonal term for the pressure in the system matrix.

A three-step explicit scheme was developed in [73], and more recently
a two-step, fully implicit, pressure correction method was presented in [51].
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An explicit and an implicit Taylor-Galerkin based three-step algorithms were
introduced in [53]. Other studies on splitting methods can be found in [33],
[99], [80] and [52], among several others.

1.5.5 Further comments and conclusions

We have now seen the great variety of fractional step methods for the un-
steady, incompressible Navier-Stokes equations existing nowadays. The main
advantages of many of these schemes, specially of projection methods using a
PPE, are the uncoupling of the computation of the pressure from that of the
velocity, thus reducing the order of the discrete systems of equations to be
solved, and the possibility of using discrete approximations not restricted by
the LBB compatibility conditions. The reasons for this latter fact appear not
to be fully understood up to now; the ultimate objective of the next Chapter
is to provide a full explanation of why these conditions do not apply to this
kind of methods.

Moreover, the problem of which boundary conditions for velocity and
pressure should be used in fractional step methods and the numerical bound-
ary layer and tangential slip velocities introduced by some of them have also
been met. Chapter 4 is mainly devoted to the study of a fractional step vis-
cosity splitting method allowing the imposition of correct velocity boundary
conditions in all substeps, while needing no boundary conditions at all for
the pressure.





Chapter 2

A reformulated Stokes
problem

As has already been said, understanding the properties of approximations of
the Stokes problem 1.13-1.5 is crucial when trying to study the full unsteady
Navier-Stokes equations, since it serves as a linear, steady model embracing
the difficulties involved in the treatment of the incompressibility condition.
Appari from some cases of steady creeping flow with large viscosity values,
this problem is used as a physical model in incompressible elasticity problems.

The aim of this Chapter is to provide a stabilized pressure reformulated
finite element method to solve the steady Stokes problem 1.13-1.5 numeri-
cally, which works with 'most' element pair velocity-pressure combinations.
These are only restricted by a compatibility condition which is weaker than
the standard inf-sup condition. In particular, the satisfaction of this weak
condition is proved for most equal-order interpolations. Under this restric-
tion, stability and optimal convergence both in Hl and L2-norms and both
for the velocity and pressure variables are proved. The main idea behind
the method consists of introducing a new variable which at the continuum
level is the gradient of the pressure; a multiple of the residual of the equation
defining this variable is then added to the continuity equation, yielding a
consistent scheme.

But moreover, this method was ultimately studied to inherit the proper-
ties of classical fractional-step projection methods with a continuous PPE
with respect to the stabilization of the pressure, so as to explain in particular
why the compatibility conditions on the approximating spaces do not apply
to these methods.

In Section 2.1 we study the stabilizing properties of projection methods
for the unsteady, incompressible Navier-Stokes equations with respect to the
pressure solution; in Section 2.2 we introduce the reformulated Stokes prob-
lem, which we analyse in Section 2.3. In 2.4 we study the weak compatibility
condition required for the stability and convergence of this method, with the
use of a macroelement technique. The next Section deals with the computa-
tional aspects of the method and the study of different iterative techniques

35
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r

of the block Gauss-Seidel type for the solution of the algebraic system of
equations. Finally, we present some numerical results in Section 2.6.

2.1 Stabilizing properties of projection me-
thods

We make here some considerations concerning the discretization of classical
fractional step projection methods such as those of [22] and [101]. The basic
idea for this analysis stems from previous work of [112] and [28], and for the
incompressible case it can also be found in [26].

Since the analysis is linear in essence, we consider, for simplicity, the
unsteady Stokes equations with homogeneous boundary conditions:

- - v Au + Vp = f in Q x (O, T)
ötf

V - u = O inííx(0,T) (2.1)

u = O on T x (O, T)

The classica! projection method for this problem reads:

U ll.
I I /n ^_ M.-1-1 I*) t \- . A _,TI-\-\l¿> __ fn T*T"A/¿ n /« fy\- !/Au - T, u|r -O (2.2)

un+l n+1 2 ^ ̂ n+i = o^ n _ = o

OC '

V-un + 1 = O (2.4)

The projection step is usually solved via a PPE, which is deduced at the
continuous level by taking the divergence of equation 2.3 and using 2.4:

n - VpjJ1 = 0 (2.5)

A finite element discretization of each of these equations, not taking into
account boundary conditions (see Remark 2.1), yields:

B Un+l/2 = Fn (2.6)
rrn+l _ r/n+1/2

M- -̂  + GPn+1 = 0 (2.7)
OÍ

(Jttfn+l = Q (2.8)

Lpn+l = !Gt

OÍ

from 2.2, 2.3, 2.4, and 2.5, respectively, where B = M + St K, M is the
mass matrix, K is the viscous stiffness matrix, Fn = StFn + MUn, Fn comes
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from the force term fn, L is the scalar Laplacian matrix and the rest of the
notation was introduced in Chapter 1.

At this point, two alternatives are possible in order to deduce a fractional
step projection method, once a split-step time discretization as that of 2.2-
2.3-2.4 has taken place, which lead to entirely different schemes. On the one
hand, if a space discretization is introduced into the semidiscrete problem
2.2-2.3-2.4, it turns out that the linear equations to be finally solved are
2.6, 2.7 and 2.8. These two last equations have the form of the discretization
of a mixed problem, and restrictions in the choice of discrete velocity and
pressure spaces still apply. By isolating Un+l from 2.7 and substituting it
into 2.8, one finds:

St(GtM~1G)Pn+1 = G't/"*1/2 (2.10)

which, followed by 2.7, is the usual way to solve the projection step in this
type of methods (see [30] and [46]). However, the consistent mass matrix
which appears in 2.10 is too expensive to be inverted, and mass lumping is
usually employed here, the effects of which are extensively discussed in [46].

On the other hand, if the segregation of the pressure from the velocity is
done at a continuous level, by using equation 2.5, and then a space discretiza-
tion is introduced, the resulting system of linear equations to be solved is, in
this order, 2.6, 2.9 and 2.7. In this case, by eliminating t/n+1/2 from 2.7 and
substituting it into 2.6 and 2.9, one gets:

StGPn+l = F + O(6t)2Pn+1 (2.11)

= 0 (2.12)

It is thus seen that although at the continuous level it is equivalent to use
2.3-2.4 or 2.3-2.5, at the discrete level it is quite different to use 2.7-2.8 than
2.7-2.9. In the latter case, the matrix A = (L — G1M~1G] is introduced as
a nonzero diagonal term which stabilizes the pressure, in a way that will be
explained in what follows. This matrix, which appeared first in [87] and [64],
can be understood as a difference between two discrete Laplacian operators.

The matrix A was recently proved to be positive semidefinite in [28], thus
partially explaining its stabilizing properties, in a way which we outline next.
The technique employed for this purpose sets the basic grounds of the theory
to be developed in this Chapter. We are still considering no fixed boundary
conditions.

Proposition 2.1: for any combination of finite element spaces Vh and Qh.
approximating the velocity and pressure variables with continuous functions,
respectively, the matrix A is positive semidefinite.

PROOF: one defines the space
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«fr <E Qfc

which is a finite dimensional subspace of L2(0). One defines, also:

another finite dimensional subspace of L2(fi). Given a basis set {vi, . . . , vnc}
of Vh, let us complete it with {v'i,. . . , v'nd} C V¿-, orthogonal subspace of
Vh in Eh with respect to the L2-product, to form a basis set of Eh = Vh® V^
(the indeces nc and nd refer to the continuous and discontinuous parts of
Vpfc, respectively). Given a vector P, let ph 6 Qh be the finite element
function with nodal values given by the components of P, and let us express

nd

y¿v¿ + E yW
t=l i=l

We want to show that PtAP > 0; one has:

P'LP = (VPh,VPh) = (z,z) + (Z-L.Z^) = |z|2 + (z-1]2

On the other hand, calling M~l = (My1), one has:

nc nc

= Ç E y
t,j=l m,/=l

= E ym
m,/=l j=l t=l

= z 2

m,I=l

One gets, thus, P'AP = [z1]2 > 0. D

The components of Vp/i belonging to V^, which we call essentially dis-
continuous pressure gradients, are stabilized by the matrix A; we will see
in the next Sections how the other components are stabilized. We ob-
serve that for a given ph 6 Qh with associated nodal vector P, one has:
P1AP = 0 •<=>• Vph G Vh, i.e., when Vph is continuous. Defining the
space Qc

h = {qh G Q h / Vç/, G Vh}, we can determine the null space of A
by studying Qc

h, since dim<3£ = dim(Ker.A). We present some results con-
cerning the determination of this dimension for some common equal order
interpolations.
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We begin by the simplest one-dimensional case. For a mesh of linear
elements, let qh G QH have a continuous derivative. Since Vc^ is constant on
each element, it must be constant on fi, and qh globally linear. We find, this
way, that dimQ£ = 2. If we now consider a mesh of N quadratic elements,
we have IN + 1 degrees of freedom in Qh and N — 1 continuity conditions at
element boundary nodes, yielding dim Qc

h = N + 2. A mesh of N elements
with polynomials of arbitrary degree k has dim Qc

h = (k — 1)N + 2.
In the two-dimensional case the situation is different. We consider each

case separately:

• PI element: for a triangular mesh with linear polynomials, Vqh will be
constant on each element; if it is continuous, it must be constant on fi,
and qh globally linear. This gives dim Qc

h = 3.

• Qi element: for a mesh of quadrilaterals with bilinear polynomials, we

have that —— is constant on each element with respect to x; if it is

continuous, it will be constant on x on all the domain, -5— = rji(y)
d

globally. By the same argument, -7— = 772(2) on fi. Since qh is a
oy

C2-function on element interiors, the Schwarz theorem implies that

l((y) = ifa) = C, that is, ̂  = Cx + D, ̂  = Cy + E. This leads
ox oy

to qh = Cxy + Dx -f Ey + F, so that qh is globally a Qi polynomial.
Thus, dim Qc

h = 4.

In higher d-dimensional cases, it is easy to see that dim Qh — d + 1 for
the PI element and dimQjj = 2d for the Qi element (functions of Qh are
globally linear and multilinear, respectively).

This study of the kernel of the matrix A will be useful in the theory to
be developed in the next Sections.

REMARK 2.1: up to now we have deliverately omitted the imposition
of boundary conditions in the discrete systems of equations. If we take them
into account in the projection method 2.6-2.7-2.9, the matrix A should be
modified to A = L — Go(M~1GT)°, where the subscript 0 indicates that the
columns corresponding to all boundary components have been omitted, the
superscript 0 likewise for rows, and the subscript and superscript r refer to
normal components on the boundary omitted but free tangential components.
A similar analysis to the one performed for the matrix A, and in particular
an appropriate decomposition of the space Eh, would explain the stabilizing
properties of fractional step projection methods.
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1
2.2 Development of the method

2.2.1 The continuous problem

We pretend to develop a finite element method for the steady Stokes equa-
tions with the same stabilizing properties as the fractional step methods just
considered. In particular, we want the matrix A = L — GtM~lG to be present
in this method. We will restrict our attention to a class of Stokes problems
with some additional regularity of the solution: we require the pressure gra-
dient to be in L2(fi). Following [43] (page 126), we first define a regular
Stokes problem as:

Definition 2.1: let O, C IR be an open, bounded, connected set; then the
homogeneous Stokes problem:

—i/Au + Vp = f in fi
V - u = O ini) (2.13)

u = 0 on T

is called regular ¿fu G H2(Í2) n Y and p G Hl(£l) whenever f G L2(fi), and
there exists a constant CT > 0 such that:

Hi, + iHii < aif|

According to P. Grisvard (see [49]), the Stokes problem is regular when ÍÏ
is of class C2 in any dimension of space. Moreover, when d = 2 it is sufficient
that fi be a bounded, convex polygon.

This definition, however, is rather restrictive; for our purposes, it is suf-
ficient that p G H1 (il). We will call this case p-regular:

Definition 2.2: let fi C IRd be an open, bounded, connected set; then the
homogeneous Stokes problem 2.13 is called p-regular if p G H1 (il) whenever
f G L2(fi).

In any of these situations, we consider the spaces: VQ = H¿(fi), V =
L2(fi) and Q = ^(ÍÏJ/IR; this quotient space is isomorphic to the subspace
{q G Hl(SÌ) / /n ç ¿fi = 0}. We then define:

Definition 2.3: given f G L2(fi), the reformulated Stokes problem consists of
finding (n,p, w) G V0 x Q x V such that:
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-i/Au + Vp = f in fi

Vp - w = O in íï

V - u + a(-Ap + V - w ) = O iníí (2.14)

u = O on T

n • Vp — n • w = O on F

where a > 0 is a constant.

This problem is, at the continuous level, equivalent to the p-regular Stokes
problem; its weak form is:

i/(Vu,Vv) + (Vp,v) = (f,v), We To (2.15)

( V - u > ? ) + a(Vp,V<?) - a(w,V?) = 0 , V9 e Q (2.16)

(Vp, y) - (w, y) = 0 , V y e V (2.17)

where the consistent boundary condition n • Vp — n • w = 0 has been enforced
weakly (see Subsection 2.6.3). For a p-regular Stokes problem, 2.14 has a
unique solution:

Proposition 2.2: if the Stokes problem 2.13 is p-regular and f 6 L2(Í2), then
the reformulated Stokes problem 2.14 has a unique solution (u,p, w), where
(u,p) is the solution 0/2.13 and w = Vp in Í7. Moreover:

||u|| < (2.18)

where Cn was introduced in 1.14.

PROOF: existence is obtained from the properties of the solution (u,p) of the
p-regular Stokes problem; as for uniqueness, let us define the bilinear form
D on (Vo x Q x V)2 by:

£>(u,p,w;v,ç,y) = i/(Vu, Vv) + (Vp,v) + ( V - u , ç) + a(Vp,

- a(w,Vç) - a(Vp,y) + a(w,y) (2.19)

and the linear form:

£(v,î,y) = (f, v)
Problem 2.15-2.16-2.17 can then be written as:

D(u,p,w;v> 9 >y) = /:(vl9>y), V(v,9,y) G (V0 x Q x V) (2.20)
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The bilinear form D has the following coercivity property: for any (u, p, w),
one has:

D(u,p,w;u,p,w) = z/||u||2 + <x|Vp-w|2

Therefore, if (u,p, w) is a solution of 2.20:

H|u||2 < (f,u) <

so that the stability condition 2.18 holds. If now (ui,pi, Wi) and
are two solutions, the difference (ui — 112, pi — p2) Wi — U2) satisfies the homo-
geneous problem, that is, 2.20 with f = 0. Therefore, by 2.18, Ui = u2, and,
by 2.15, (V(pi - p2), v) = 0; Vv e Hj(iì). The continuous LBB condition
1.25 ensures that V(pi — p2)

 = 0) so that pi and p2 differ by a constant.
Finally, equation 2.17 implies that Wi = W2. D

We have obtained, therefore, an equivalent formulation of the Stokes prob-
lem. Although at the continuous level not much is gained, we will see that
this formulation allows 'almost' any combination of approximating spaces
for the velocity and pressure, including equal order ones, at the expense
of introducing a new variable which at the continuous level is the pressure
gradient.

2.2.2 The discrete problem

We now consider a finite element discretization of the reformulated problem
2.15-2.16-2.17. With the notation of Section 1.3, the approximating spaces
for each variable are:

Vh,0 = {vh£

Qh = {qhe

Vh = {yh£

Here, the indeces kv, kp and kg refer to (possibly different) orders of
approximation to the velocity, pressure and pressure gradient, respectively.
The discrete equivalent to 2.15-2.16-2.17 is, then:

= (f,v fc),Vv fc e 1^,0(2.21)
(V • u,,, qh) + a(VPhì Vqh) - a(wh> Vqh) = 0, Vqh 6 Qh (2.22)

= 0, Vy^eVfe (2.23)

Existence and uniqueness of a solution of 2.21-2.22-2.23 is established
next, under a mild restriction on the approximating spaces. Let us first
introduce the matrix form of this problem:
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KU + G0P = F (2.24)

-G^U + aLP - aGlW = O (2.25)

GP - MW = O (2.26)

where C/, P and W represent the nodal vectors of u^, ph and w/j, respectively.
By eliminating W from 2.26 and substituting it into 2.25 we get:

-G^U + a(L-&M-rG)P = 0 (2.27)

The similarity with 2.12 is now clear; once again, the matrix A = (L —
GtM~1G) is introduced in the discrete continuity equation, and stabilizes
the pressure.

Equation 2.23 essentially says that the discrete pressure gradient w/, is
the £2-projection of the gradient of the discrete pressure, Vp/,, onto the
space Vh- Recalling the space Eh = Vh + VQh introduced in Section 2.1, and
the decomposition Eh = Vh © V^ of this space in the form Vç/, = z + z^
for any qh G Q h, equation 2.23 is also equivalent to w^ = z. We know by
Subsection 2.1.1 that the component zx of V% is stabilized by the matrix A.
We now decompose z into a component vanishing on the boundary, that is,
belonging to Vh,o, and an orthogonal component in Vh. The first one will be
stabilized by equation 2.21; for the second one, we need to require a stability
condition on the approximating spaces. Namely, we define:

ITI rr
&h,l — Vh,0

Eh,3 = VfnEh

so that Eh = Eh,i © Eh,2 © Eh,3- For í = 1,2,3, we call Ph¿ the I2-projection
of Eh onto Eh,i, and for » ̂  j, Ph>ij = Ph,i + Phj and Eh,ij = Eh,i © Ehj.
In this notation, w^ = P^iaiVp^). We require the interpolating spaces to
be such that the following stability condition holds: there exists k's > 0 such
that for all qh G Qh,

IVcfcl < k't\Ph,l3(Vqh)\ (2.28)

This inequality says, basically, that the second component of Vqy, can be
bounded in terms of the other two. As will be seen, condition 2.28 is weaker
than the standard inf-sup condition 1.27, and in particular satisfied by equal
order interpolations; it is a sufficient condition for existence, stability and
convergence of the discrete solution of 2.15-2.16-2.17:

Proposition 2.3: if (Vhloì QhìVh) satisfy 2.28, then there exists a solution
(uh,ph,~Wh) of 2.21-2.22-2.23; u^ and\Vh are unique, ph is determined up to
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an additive constant on Í2. ! '

PROOF: we will use both the matrix and function notation. Since the problem
is finite dimensional, it suffices to consider the homogeneous case f = 0. By
multiplying 2.24 by Ut

i 2.25 by P* and adding them up, we get, using 2.26:

U*KU + aPlAP = 0

This implies U = 0 and P e Keryl, that is, Vph = wa + w2 6 Eh,i2- By

2.24, we then have GoP = 0; if we take M = ( ° , ,± J , associated to

the decomposition Eh,iz = Eh,i © Eh¿, this implies, by 2.26, that MoW\ = 0,
that is, Wi = 0. The inequality 2.28 then establishes that w2 = 0, so that
wh = 0 and Vph = 0. O

2.3 Stability and convergence of the method

We present a numerical analysis of the reformulated method, from which we
obtain optimal error estimates for the approximate solution, based on the
satisfaction of condition 2.28. Most of these results can be found in [26].

2.3.1 Stability

We begin by the following stability result:

Proposition 2.4: assume that the family of partitions Qh of ÍÏ is such that
the inverse inequality 1.23 holds, and that condition 2.28 also holds. Assume
also that a satisfies:

a^h2 < a (2.29)

for some a_ > 0 independent of h. Then, the solution of 2.21-2.22-2.23
satisfies the stability estimate:

where we have used the mesh-dependent norm:

, (2.31)

for all (VA, çfc,yfc) G Vh,0 xQhx Vh.

PROOF: t h e solution u h h satisfies:

a\Vph-wh\
2 = (f,uA) (2.32)
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where D is the bilinear form introduced in 2.19. The stability estimate for
Uh is, therefore, the same as for the continuous problem:

IM < ^Jfl (2.33)

Since Wh = Ph,i2(^Ph)i 2.32 also says that:

a\Ph,3(Vph)\
2 = a\VPh-wh\

2 < <7n|f||M,

so that, from 2.33:

|PM(VP/O| < ^S (2.34)

On the other hand, since P^il(Vp/l) 6 V/^o, we have, from 1.23:

) (2.35)

Estimate 2.30 now follows from 2.28, 2.33, 2.34, 2.35 and 2.29, noticing
that K|2 = |PM(VP/l)|

2 + \Ph,2(VPhW. ü

2.3.2 Convergence in natural norms

We now provide a convergence analysis of the method in the natural norms
for this problem, which are the ff¿-norm for the velocity and the L2-norm
for the pressure gradient, as given by the stability estimate 2.30.

Theorem 2.1: assume the same hypothesis as in Proposition 2.4 hold, but
now suppose that a satisfies:

a-h2 < a < a+h2 (2.36)

with a- and a+ independent of h. Then, the solution of 2.21-2.22-2.23
satisfies the error estimate:

< CE(h) (2.37)

with C > 0 independent of h and:

E(h] = ^inf ||u-vh|| + rv
in/ lu~v>i| + inf \P ~ Qh\

+ h inf \Vp-Vqh\ + h inf \Vp-yh\ (2.38)
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PROOF: the discrete problem 2.21-2.22-2.23 can be written as:

D(uhi ph, wh; vhi qhi yh) = £(vfc> qhi yh), V(vh, qhi yh) É (Vh,0 xQhx Vh)
(2.39)

Substracting 2.39 from 2.20 and taking as test functions (v/! — u^, ç/, —
Ph, y/. - wh) G Vh,o xQhXVh we obtain:

D(u - u/», p - pfc, Vp - wh; u - UH, p - PH, Vp - WH) (2.40)

= D(u -uhlp- PH, Vp - w/,; u - vh,p - ?/,, Vp - yfc),

for all (v/,, qh,yh) € Vh,o X Qh x V/,. Using the definition of the form £>, it is
found from 2.40 that:

a(u - uh, u - Uh) + a(wh - Vph, wh - Vph) = a(u - u^, u -

+( Vp - Vph, u - vh) + b(p -qhiu- uh) + a(wh - Vpfc, yh - Vqh).

Using the coercivity of a, the continuity of a and 6 and Schwarz inequality,
we get:

II« - u*llî + K - Vp/,12 < C ' n i u - U f c l M l u - V f c l l ! (2.41)

-f a\wh - Vph\ \yh -

Let us denote by -Em(') the error in the Hm norm of either u, p or Vp
and Jm(u) = ||u-Vfc||m, Io(p) = |p-?fc|, ^o(Vp) = |Vp- Vgfc| and J0(w) =

— yh\- Also, let G = \Wh — Vp/J. We can thus write 2.41 as:

+~G2 < C (El(u)I1(u) + E0(Vp)I0(u) + I0(p)E1(u) + aG\yh - Vqh\]
Pa

(2.42)
Since:

< |yfc - Vp| + I Vp - Vqh\ = /o(w) + /o(Vp), (2.43)

from 2.42 we obtain:

(2.44)

x max | J^u), /o(p), i/o(u), al'2I0(vr)t a1/2 J0(Vp)} .
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The problem now is to bound -E0(Vp). We have that:

(2.45)

+ |Pfc,2(V?fc) - Pfc,2(Vpfc)| + |Pfc

Using now the stability condition 2.28, we obtain:

\Ph,2(Vqh)-Ph,2(VPh)\ < C\Ph<13(Vqh)-Ph,13(Vph)\ (2.46)

On the other hand:

Using this in 2.46 it is found that:

- Vp| + I Vp - Pfc,

+ |PM(Vpfc)|]

Using this inequality in the estimate 2.45, we get:

C7)|Vp-PM2(V?fc)l (2-47)

Let us bound now the different terms in 2.47. If we still denote by Ph,iz
the extension of the projection onto Eh,i2 — VH from the whole space L2(Í2),
we have that:

|Vp - Pfc,i2(V9fc)l < |Vp - Pfc,i2(Vp)| + |PM2(Vp) - PM2(V^)|. (2.48)

Since:

(Vp-PM2(Vp),y fc) = 0 Vyh€Vhl (2.49)

and Pfc,i2(Vp) - y/, € Vh for y^ e Vhì we have that:
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|Vp-PM2(Vp)|2 = (Vp-PM2(Vp),Vp-PM2(Vp)
= (Vp-PM2(Vp),Vp-y/l)

that is:

|Vp-PM2(Vp)|</0(w). (2.50)

K ||P/i,i2|| is the norm of Ph,i2 as a linear operator from L2(fì) to Eh,i2i
since this norm is less than or equal to 1, we have that:

| < ||PM2|||Vp-Vgh| (2.51)

< /o(Vp).

Using inequalities 2.50 and 2.51 in 2.48 we obtain:

|Vp - PMI(V<fo)| < Jo(w) + 70(Vp). (2.52)

The second term in 2.47 can be bounded using the first equation of the
problem, that is, 2.21, and making use of the inverse estimate 1.23:

PM(VP/l)|
2 =

= (Vp -

- Vp,

- Vp,

x \Ph

Therefore:

IPfc.iíVçfcJ-PMÍVpfcJl^cM^uj + j^Vp). (2.53)

The third term in 2.47 is (1 + C}G and the last one is C70(Vp). Thus,
using bounds 2.52 and 2.53 in 2.47 we obtain:

#o(Vp) < C fjo(w) + Jo(Vp) + M^CU) + G] , (2.54)
L "- J

and using this in 2.44, we get:
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u) + hI0(Vp) + hI0(vf) + (h + a1/2)G (2.55)

x max /^u), I0(p), j-I0(u), a1/2/0(w),-a1/2/0

From the behaviour assumed for the parameter a, 2.55 implies that there
exist constants G\ and C'a such that:

E!(U) < C'1max|j1(u),i/o(u),AJo(Vi»),/o(p),A/o(w)}, (2.56)

G < max^H.ijoíu^A/oíV^/oCpXA/oíw). (2.57)

Equation 2.56 is the error estimate for the velocity. Using 2.56 and 2.57
in 2.54, we obtain the error estimate for the pressure:

hEQ(Vp) < C73 max j/^u), ±/0(u), A/0(Vp), /„(?), A/0(w)| . (2.58)

On the other hand:

|Wfc - Vp\ = \VPh - Vp - Ph,3(VPh)\ < E0(Vp) + G. (2.59)

The theorem follows combining inequalities 2.56 to 2.59. D

We have obtained, therefore, 'optimal' error estimates for the velocity
and pressure solutions. From the approximating properties 1.22 and the
definitions of I4,o, Qh a^d Vh-, it follows that:

Corolary 2.1: if the solution (u,p) of 2.13 satisfies u Ç Hr(fi) n Y and
p G H*(iï) with r>2,s>l, then:

| | |(u-uA,p-pA,Vi»-w fc)|| | < C tí (2.60)

with I = min{r — 1, s, ku, kp + 1, kg + 2}

It is thus possible to use discrete approximations in which the pressure is
interpolated with polynomials of one degree less than the velocity, and the
pressure gradient with two degrees less. Nevertheless, we will concentrate on
the case of equal order interpolation.

We have seen that for stability it was necessary that a-h2 < a, whereas
for convergence we needed a-h2 < a. < a+h2. The behaviour of the coeffi-
cient a is mandated by this numerical analysis, and, as in the GLS method,
we take it of the form:
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: a = a0— (2.61)
4f

An extension of this theory to the case where a is defined elementwise

by OÍR — ao—i Vif € 0^, and the integrals it multiplies on 2.22 evalu-
4f

ated on each K, could be performed, which would allow the use of less uni-
form meshes, thus opening the door to selective mesh refinement. This local
method would not admit a continuous interpretation, and in it local inverse

C
inequalities like ||U/I||II.K- < -—\VH\K should be used. We have considered

this possibility in some of the numerical examples.

2.3.3 Convergence in L2—norms
Wç use now the classical Aubin-Nitsche argument to obtain improved error
estimates for the velocity and pressure in the space L2(íï), in a similar way to
[17] for the GLS method. The shift used in these duality arguments requires
of more regularity of the problem than was needed up to now.

Theorem 2.2: Assume that 1.23, 2.28 and 2.36 hold, and that the Stokes
problem 2.13 is regular. Then, the solution (u/,,p/,, w^) 0/2.21-2.22-2.23
satisfies:

|u - uh| + h |p - pfcj^o) < C h E(h] (2.62)

where E(h) was defined in 2.38

PROOF: we begin by the estimate for the velocity. Let y 6 H2(O) n Y and
X G Q be the solution of the regular Stokes problem:

- Ay + Vx = u - uh in fi (2.63)

V -y = O iníï

y = 0 on T

so that:

i|y||2 < a i u - U f c l (2.64)

\\X\\i < Cr\u-nh\

Let y/i 6 Vh,o and Xh £ Qh be optimal order approximations to y and %,
respectively, satisfying:

l|y-y fc |U < C'Aa-ml|y||a (2.65)
- < C^-
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for m = 0, 1. We then have:

= (Vy.V(u-Ufc)) - (x ,V-(u-Ufc) )

= ((V(y-yfc) ,V(u-Ufc)) - ( x ~ X f c , V - (u -ufc)))

+ (Vy f t >V(u-Ufc)) - (x fc ,V- (u -u h ) ) - TX + T2 + T3

We bound each term separately:

Ti = (V(y - yfc), V(u - ufc)) - (X - Xfc, V - (u - ufc))
< l l (y -y f c ) l l l l (u -u f c ) | | + C\x-XH\\\(n-uh)\\

< CMKu-uOIKMIyl l , + MMIi)
< CA||(u-u f c) | | |(u-u f c) |

by 2.65, 2.63 and the continuity of the operator V- on H¿(f2). Moreover:

T2 = (Vyfc.V(u-Ufc))

*< |V(p-ph)||y-yf t | < C h* ||y||2 \V(P-Ph)\

by 2.21, 2.63 and 2.65. Finally:

= a [(V(p - ph), V(xfc - x)) + (V(p - pfc), Vx)

- Wfc, V(xh - x)) -

|Vp -

< Ch* |(u - ufc)| (|V(p - Ph)\ + |Vp -

by 2.23, 2.63, 2.65 and 2.36. We obtain the error estimate for the velocity
combining the above inequalities for 2\, TZ and T$. As for the pressure, we
call z £ H¿(íí) and £ 6 L^(ÇÏ) the solution of the Stokes problem:

- Az + V£ = O in ÌÌ (2.66)
V • z = (p - ph) in fi

z = O on T
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Standard results for this problem yield (see Remark 2.5, page 32 on [105]):

INI < C\p-Ph\ (2.67)

IÍI < C\p-Ph\

If Zh G I4,o now satisfies:

||z-zfc||ra < CrA1-m||z||1 (2.68)

for m = 0, 1, we have:

\P-Ph\2 = (p~Ph,p-ph) = (V-z,p
- (z/,,

= - (z - z*, V(p - j»fc)) + i/ (V(u -

= - (z - zfc> V(p - pfc)) + z/ ( V(u - Ufc), V(zfc - z))

+ Kv(u - u*), Vz)
C||u-u f c | | ( | |z-Zfc| | + IN) )

and the estimate 2.62 is finally established. D

2.4 A weakened inf-sup condition

The stability and convergence results just proved rely on the satisfaction of
condition 2.28. The very existence of a discrete solution is affected by this
condition. We will see that this can be expressed in the form of an inf-sup
condition, and then we present an analysis of sufficient conditions for 2.28 to
hold, based on a macroelement technique. This will let us show that ours is
weaker than the standard LBB condition 1.27, and prove that equal order,
simplicial finite element interpolations of arbitrary order in two and three
dimensions and first order quadrilateral interpolations satisfy condition 2.28,
thus providing stable and convergent results of 2.15-2.16-2.17.

We first have the following previous result:

Lemma 2.1: condition 2.28 is equivalent to the existence of a constant k, > 0
such that:

inf sup v > k, > 0, (2.69)~
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PROOF: assume that 2.28 is satisfied; then, for all qn G Qh'-

> •

and 2.69 holds with ks = 1/fc^. On the other hand, if 2.69 is assumed, for all

qh É Qh'

„ „<. SUD -j - — - - = SUD

so that 2.28 holds with k't = 1/fc,. D

We will use this equivalence between our stability condition 2.28 and 2.69
in what follows to obtain sufficient conditions for it to hold, which are simpler
to check in practice than 2.28. Moreover, we will show that this condition is
weaker than the standard LBB condition 1.27.

2.4.1 Macroelement technique

The ideas used here to obtain simple conditions for 2.69 to hold are an
extension to our case of the theory of macroelement techniques, developed
mainly by R. Stemberg (see [97]). We take part of our notation from this
reference. A macroelement M is the union of one or more elements in 0^. For
each h > 0, let M.h be a collection of macroelements covering ÎÎ. One of these
macroelements M G MH is said to be equivalent to another macroelement
MO G M. h0 if there exists an homeomorphism G^- : M0 — > M such that:

(i) GM(M0) = M,

(ii) If Mo = U7=1#o,¿, then M = U£i GM(#O¿), where K0<j 6 O

(iii) GM|Ko = FK o P-J, where K = GM(K0) and F# and FKo are the

mappings from the reference element K to K G 0/i and to K0 G Q/i0 >
respectively, introduced earlier.

Notice that equivalent macroelements can be associated with the same or
with a different finite element partition. Thus, with this definition, {M.h}h>o
is split into a finite number of equivalence classes Eci, ..., Ecnc.

Let us consider the spaces VM<0, QM, VMi EM and EM¿, ¿ = 1,2, 3, defined
as their analogues V/,,0, Qh, Vh, Eh and E^i, i = 1,2,3, but replacing the
partition 0^ by the partition of a macroelement M 6 M.h (the zero mean
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restriction is not imposed on QM).' Also, PMi¿ are the orthogonal projections
from EM to EMli, ¿ = 1,2,3.

We first show that if a condition like 2.28 holds in a macroelement, then
it also holds in ÍÍ:

Lemma 2.2: if there exists a constant C > 0 such that

< C\PMii.3(Vqh)\M Vqh 6 Qfc, (2.70)

for all M € -M/,, then condition 2.28 holds for a constant k'3 independent ofh.

PROOF: let qh G Qh and let v^,- be the extension by zero of PM>i(Vqh),i =
1,3, to the whole domain Í2. Consider also the vector field:

M,i+VM,3), (2.71)
M

Clearly, vM,i € Eu.i C Eh,i VM and thus £M vM,i € £/,,!• Let vM2 €
,12. Since Vh,i2\M £ -̂ ,̂12 =: -̂ ¿,3 (orthogonality in EM) we have that:

/ vM2 - { 53 vMi3 j dfì = £ / vM2|M • vM,3 dfi = 0, (2.72)
•/n \ M ) M JM

that is, 52MvMi3 G ^^2 = Eh,3- Therefore, vh in 2.71 belongs to ,̂13.
Let N M be the maximum number of macroelements to which an ele-

ment domain belongs, and NK the maximum number of element domains
per macroelement. Let us bound first

E

M

EI VttiL
M

that is, there exists a constant CQ > 0 such that:

(2.73)
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On the other hand, from 2.70 it follows that:

Vqh • vh dii = X) / V?fc • v" díï í2'74)n M

M

> ¿
U M

>

But, using inequality 2.73:

/ Vcfc • V/l dfì = / PMs(V9fc) • Vfc dii < Cfo|Pfc,i3(Vgfc)| |Vgfc|. (2.75)
Jn Jfi

The lemma follows combining inequalities 2.74 and 2.75 with k's = C0C
2. D

The next step is to give sufficient conditions for property 2.70 to hold.
First we give a rather technical lemma:

Lemma 2.3: Let M be a metric space with distance dist, X and Y two subsets
of M and {l^(}íí>o a family of subsets of M such that:

lim sup inf dist(t/u,y) = lim sup inf dist(yM,y) =0. (2.76)
-

Let Z be another subset of M such that Y C Z and Y^ C Z for all
(j, > 0. Consider a family of functions {f^^o from M x M io IR that
converge uniformly in X x Z to a function f uniformly continuous in its
second argument. Then:

Km Imf jmp |/p(x,yM)|] = mf sup |/(z,y)|. (2.77)

PROOF: Let e > 0 be given. Since {f^} converges uniformly to / as fi —» 0
in X x Z:

x, y) - f(x, y)\ < - V(z, y) <= X x Z

Thus, if // < (¿i:
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inf sup |/„(z,y)| < inf sup |/„(z,y) - /(z,y)| + sup |/(z,y)|
seXyey^ *ex [y&Ylí yeyM J

< ^ + inf sup \ f ( x , y ) \ (2.78)
d X6X ygy^Uy

Given x € -XT, let:

Sß(x) = sup |/(z,y)| > 50(z) = sup|/(z,y)|

Since / is uniformly continuous in its second argument in X X Z and
C Z:

(2.79)
Condition 2.76 implies that:

3/i2 = /í2(5(e)) : V/x < /í2, VyM € ̂  U F, 3y G F / dist^.y) < 6 (2.80)

On the other hand, we have that:

3y„ = y„(6) e F, U y / I/O*, &.)!>$.(*)-f (2.81)

VyeF, -i/(x,.y)| > -S0(x) (2.82)

and therefore:

|/(x, y^) - /(x, y)| > 5^(x) - 50(x) - |, Vy 6 Y

If fi < min{^i,/i2} and we take y such that condition 2.80 holds for the
y^ that verifies condition 2.81, from condition 2.79 we have that:

that is:

2
sup |/(z,y)| < -e-f sup|/(z,y)|

Y 3 j,6y

Using this in inequality 2.78 it follows that:

inf sup |/„(z, y)| < inf sup |/(x, y)| + e (2.83)
xGX yÇYit xÇX y€Y

One can similarly show that if fi is small enough:
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inf sup |/(x,y)| < inf sup \fß(x,y}\ + e (2.84)

The lemma follows from inequalities 2.83 and 2.84. CD

This result is used now to prove the following:

Lemma 2.4: Let Eci be one of the equivalence classes introduced above, i 6
{1,2, ...,nc}, and suppose that the following condition holds:

3M0 € Eci such that \/q e QMo,

f Vq-vdM = O, Vv£EMoil3 =ï Vq = Q. (2.85)
J MOMO

Then, there exists a constant GÌ > 0 such that, for all M £

< C{\PM,l3(Vq)\M Vq£QM. (2.86)

PROOF: Let us consider the following function defined on the class Ec¡:

/?(M) = inf sup ,17?' T V - (2.87)
^^ ' v '

Inequality 2.86 is equivalent to saying that ß(M) > I/ GÌ for all M G E GÌ
(this can be proved as Lemma 2.1).

From assumption 2.85 it is easy to see that ß(M) > 0 for all M G Ec{.
Since M is defined by the coordinates of its nodes, ß can be considered as
a function of these coordinates. Due to the quasi- uniformity of the fam-
ily {0}/i>o (or simply due to its non-degeneracy), all the nodes are isolated
points of IRd, and therefore they form a compact set. Thus, ß can be con-
sidered as a function defined on a compact set. To prove that it is bounded
below by a positive constant it is enough to prove that it is continuous.

Let M, M' € Ea. We want to show that ß(M') -> ß(M) as M' -> M.
Let G : M — > M' be the homeomorphism that relates M and M'. We denote
its Jacobian matrix (piecewise continuous) by DG. Let also:

J'= max IDG-'KX'), j'= min [DG^Kx'), (2.88)
x'6M'' I V " J x'eM'1 I V " V '

where | • | stands now for the determinant of a matrix. Here and below, we
use the symbol ' to refer to quantities associated with M'. The two functions
in 2.88 depend on the macroelement M' and tend to 1 as M' — * M, that is,
as G -> I.

Let us write the function ß as:
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ß(M) = inf sup /( Vì v), /( Vg, v) =
i M . o v e S g M M

where QM,o = {? G Q M I V<? 7^ 0} and S is the the unit sphere of ^M,i3-
Let v' g EMtti3, q' € QM>,o and v, ç the pull-backs of v' and q' (that is,

v = G*v' = v'o G, q = G*q' = q'o G). It can be readily checked that:

/ V'q'-v'dM' = f Vq-DG-l-v\DG\dM,
J M' J M

f v'-v'dM' = f vvlDGldM,
JM' JM

f VY • V'q'dM' = í (Vq - DG-1) • (Vo • DG'1) IDGWM.
JM' J M x ' \ '

If we introduce the abbreviation VGc = Vc-DG"1 and denote by (•, ~]G,M
the L2 scalar product in M with weight |DG|, we have that:

jM

where | • |GjAf is the norm associated with (•, -)G,M-
Since DG is nonsingular, if Vq' ^ 0 then Vq ^ 0, that is, if q' 6 QM',O

then G*q' £ QM,Q. If v' 6 S', let us see where does v = G*v' belong. Let
v' = vj + Vg, with vi £ EM'tí and Vg e '̂,3- Since v{ is continuous and
vanishes on dM' and G is continuous, G*v[ 6 EMt\. In general, G*v'l2 6
-EM.12 for all v£2 e -Ejií',12- However, G*Vg ^ ̂ ,3 if v3 6 ^M',3- This is due
to the fact that:

Vv12 6 £M,i2, / v12 - G*v3dM = / (v12o G-1) • V3iDG|dM', (2.90)
J 'M

which is in general not zero since Vi2oG~1|DG| ^ j^M',12 if |DG| is not
continuous. Therefore, if SG = G*S' then SG ̂  S.

Using the previous results, the function ß evaluated at M' can be written
as:

ß(M')= inf sup/G(Vc,v). (2.91)
?€QM,O vesG

Now we use Lemma 2.3 to prove the continuity of ß. Let:

Z = {v € EM I ¿ < |v|M < 2} . (2.92)

We have that:

iG-vj^ = f v'.v'lDG-^M', (2.93)
J M'
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and thus v7 < |G*v|M < >, with j' and J' defined in 2.88. If we take M'
sufficiently close to M, j1 > 1/4 and J' < 4, so that S C Z and SG C Z.

It is now easy to prove that /( Vç, v) is uniformly continuous in the second
argument in QM,o x Z and that /G(Vg,v) converges uniformly to /(Vg, v)
in QM,O x •£. To apply Lemma 2.3 it remains to check condition 2.76 with
Y = S and Y^ = SG, the parameter ft being now replaced by the function G
and \i -> 0 by G -> I.

Let VG G SG C EM and v' = vi + v3 G S' such that VG = G*v', with
vi G EM',! and v3 G EM'i3. Then VG = G*vi + G*v3, with G*vi 6 EM,! but
G*v3 6" EM>3 (in general). Let:

It is easily verified that the second component in w belongs to EM¡3, and
therefore v 6 S. A simple calculation shows that dist(vG, v) — » 0 as G — » I,
that is, as j', J' — » 1. Hence:

sup inf dist(vc,v)->0 as G -» I. (2.95)
vGeSGveS

Also, given v = Vi + v3 £ S, with vx 6 EM>1 and v3 G -E^.a, let:

It turns out that VG 6 SG and that dist(vc,v) — > 0 as G — > I, thus
proving that:

sup inf dist(vc,v) ->• 0 as G -> I. (2.97)

From 2.95 and 2.97 it may be concluded that hypothesis 2.76 holds in
the present situation and ultimately that the function ß defined in 2.87 is
continuous, which is what had to be proved. D

Combining Lemmas 2.2 and 2.4 we obtain the following result:

Theorem 2.3: Suppose that for all the equivalence classes Eci, i = l,...,nc

of macroelements of {&h}h>o condition 2.85 holds. Then, there exists a con-
stant k, > 0, independent ofh, for which the inf-sup condition 2.69 is verified.

PROOF: let C = min-fCi, ..., (?„,.}, where d is the constant for the equivalence
class Eci established by Lemma 2.4. Since for all h > 0 functions qh G Qh
restricted to a macroelement M G M.H belong to QM, we are in the hypothesis
of Lemma 2.2. The theorem follows from Lemma 2.1. d

We remark that condition 2.85 is the key to prove that a finite element
interpolation is stable for our method; it is similar to the condition obtained
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in [97] for the standard LBB condition, but weaker than it: the space where
v runs here (EMo>is) is larger than in the standard case (EMoii).

2.4.2 Equal order interpolations

We prove now that condition 2.28 is fulfilled by simplicial equal order finite
element interpolations with polynomials of arbitrary degree k on the sim-
plex, both in two and three dimensions. They are only restricted by a weak
condition on the meshes at the boundary that will be specified next. This
result is achieved by applying the macroelement technique just considered,
which can also be extended to the case of equal order interpolations with
polynomials of Qk on quadrilaterals and hexahedra.

Proposition 2.5: let ku = kp = kg = k in the definition of Vh,o, Qh
Vh, and K be the standard simplex in IRd. Let Eci be a class of equivalent
macroelements with reference macroelement M such that there is at least one
interior vertex, and, for d = 3 and k > 2, no element K C M has three faces
on dM. Then, condition 2.85 is satisfied on M .

PROOF: we prove condition 2.85 by imposing continuity of Vçh on M rather
than orthogonality to Ehi3, due to the difficulty of characterizing this space.
Orthogonality to Eh,i is enforced directly.

Let us consider the case of linear elements (k = 1) first, both for d = 2
and 3. For a given qh G Qh, Vtft is constant on each element K C M; if we
assume Vc^ is continuous, it must be constant on M . Since we have assumed
the existence of at least one node P interior to M, orthogonality of Vc^ with
respect to velocity fields which take a value of one on P in each of the space
dimensions and zero elsewhere, implies the vanishing of V%.

Let's now turn to the case of higher order elements (k > 1). Given
Qh G Qht f°r each K d M the components of (^qh)\K belong to Pk-i(K).
Thus, if these components are continuous, they can be determined by their
nodal values on a discretization of M with the same elements K but with
nodes corresponding to an interpolation with polynomials of degree k — 1.
Let n¡nt be the number of nodes in the interior of M, denoted by Int(M), and
njt_i the number of nodes associated to an interpolation with polynomials
of PIC-I. Since the orthogonality conditions with respect to all continuous
vector functions that take arbitrary values at the nodes of Int(M) are linearly
independent restrictions on Vqh, it is enough to prove that n¡nt > Uk-\.

Let's consider the two-dimensional case first; for any triangle K C M,
there are (k — l)(k — 2)/2 nodes associated to Pk on Int(K) and (k + 1) on
each edge of K (including the vertices). Thus, there are (k — 2)(& — 3)/2 nodes
associated to Pk-i on Ini(K) and k on each edge of K. If an element K lies
on Int(Af), its contribution to n¡nt is clearly greater than to fik-i. Thus, we
restrict the analysis to the boundary. Suppose first that all the elements have
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at most one edge on the boundary. Let neie denote the number of elements
in M with one edge on the boundary, and n,.dg the number of edges with one
node on the boundary; we study the various contributions to the difference

From element interiors: neie X [(k - l)(k - 2)/2 - (k - 2)(k - 3)/2] =
x (k - 2)

• From edges with one boundary vertex (including it): raedg x [k — k] = 0

• From boundary edges, of which there are neie due to the assumption
on M: neie x [0 - (k - 2)] = -neie x (k - 2)

This proves that nint — nj._i > 0 in this case. If we now include triangles
with two edges on the boundary, the contribution to n-mi is (k — !)(& — 2)/2 +
(k - 1), whereas the contribution to nk-i is (k - 2)(k - 3)/2 + 2(k - 2) + 1.
These two quantities are equal, so that we still have njnt — nj,-\ > 0.

Finally, in the three dimensional case each tetrahedron K C M has (k —
l)(k - 2}(k - 3)/6 nodes of Pk(K) on Int(A"), and (k - 2)(k - 3)(fc - 4)/6
of Pk-i(K). As before, we first consider the case in which the elements have
at most one face on dM. If neie is the number of elements with one face on
dM, nfac the number of faces with one edge on dM, ne¿g the number of edges
with one node on dM and rabdr the number of edges on dM, contributions
to n¡nt — Tifc_i are:

• From element interiors: neie x [(k — l}(k — 2)(k — 3)/6 — (k — 2)(k —
3)(fc-4)/6] = nele x [(k - 2)(k - 3)/2]

• From the interiors of faces with one edge on the boundary: nfac X [(k —
l)(fc - 2)/2 -(k- 2)(k - 3)/2] = nfac x (k - 2)

• From edges with one boundary vertex (including it): nedg x [k — k] = 0

• From the interior of boundary faces, of which there are neie due to the
assumption on M: neiex [0-(J:-2)(A:-3)/2] = -nelex(fc-2)(&-3)/2

• From boundary edges: nbdr x [0 — (k — 2)] = — nbdr x (k — 2)

Since nfoc > nbdr in general, we find again that n¡nt — nk-i > 0. If we now
consider elements with two faces on dM, for each of them n¡nt increases by
(k - l)(k - 2)(k - 3)/6 + (k- l)(k - 2) + (k - 1), whereas the increase of
nfc_! is only (k - 2)(* - 3)(fe - 4)/6 + (k - 2)(k - 3) + (k - 2). D

We have proved, in summary, that simplicial equal order interpolations
of arbitrary order satisfy condition 2.28, thus yielding optimally convergent
results. We now prove that this holds for equal order bilinear quadrilateral
interpolations, under a mild nondegeneracy restriction on the mesh, to be
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specified next. The proof does not lequiere of the macroelement technique,
since it is given in the whole of the domain:

Proposition 2.6: assume that the discretization Qh of the domain £1 is such
that there are at least two nodes in the interior of ÍÏ, if d = 1, or three nodes
if d = 3. Consider a finite element interpolation such that ku = kp = kg = 1
in the definition ofV^o, Qh and Vh, and K is the unit square (d = 1) or cube
(d = 3j. Then, condition 2.28 holds.

PROOF: let us start by the two dimensional case first; we will show that
condition 2.85 holds on all the domain ÍÏ. We know by the study of the
kernel of the matrix A = L — G*M~1G of Section 2.1 that gradients of
discrete pressures p/, which are orthogonal to Eh,s are continuous, and that
for the 'Qi element this can only hold if ph is globally a Qi function, thus
determined by 4 arbitrary constants. Orthogonality of Vp^, which depends
on 3 arbitrary constants, with respect to velocity fields which vanish at the
boundary of ÍÏ and take arbitrary values at the two interior nodes of the
mesh implies the vanishing of Vp/,, since there are 4 of such fields that are
linearly independent.

In the three dimensional case, discrete pressures with a continuous gra-
dient are determined by 23 = 8 constants, so that 7 linearly independent
restrictions are enough to ensure the vanishing of Vp/,. Since we are assum-
ing that there are at least 3 interior nodes, orthogonality to velocity vectors
defined from these nodes amounts to 9 independent restrictions, which imply
that Vp/, = 0. D

We conjecture this result to be true also for equal order quadrilateral
(and hexahedral) finite elements of higher order, but have not come up with
a definite proof of this fact yet.

2.5 Computational aspects

We have studied several possibilities for the solution of the linear equa-
tion system 2.24-2.25-2.26, guided by some of the experience on the nu-
merical solution of algebraic systems existing nowadays. Direct Gaussian-
decomposition-based methods did not look appealing for solving 2.24-2.25-
2.26, due to the large bandwidth of the system matrix for this problem,
which is neither symmetric (although it can be symmetrized) nor positive
definite. We propose iterative schemes which take advantage of the structure
of problem 2.24-2.25-2.26; rather than standard Gauss-Seidel methods, we
considered generalized block Gauss-Seidel schemes, in which each iteration
is decomposed into a number of smaller linear problems with a symmetric,
positive definite matrix, if possible.

We first present in 2.5.1 a simple scheme which we call uncoupled block
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Gauss-Seidel method. In it, each equation from 2.24-2.25-2.26 is used to
obtain updated values of one of the three variables, velocity, pressure and
pressure gradient, from the others. This way, each of the smaller uncoupled
subsystems has a symmetric, positive definite matrix, K, L and M respec-
tively.

The slow convergence rates showed by this method led us to consider
another scheme, which we call coupled block Gauss-Seidel method. In it,
the velocity and pressure are solved together with an old pressure gradient,
which is then updated using the new values just computed. In this case, the
matrix for the velocity-pressure subsystem is either symmetric or positive
definite, but not both at a time. The matrix for the pressure gradient is
again the mass matrix. For it, the well known lumping technique was also
considered in both the coupled and the uncoupled schemes, and comparison
results with the consistent mass matrix case are provided.

Convergence results for the coupled block Gauss-Seidel scheme are much
better than for the uncoupled one, but still not competitive. In 2.5.3, we
present some techniques to accelerate this convergence, such as successive-
over-relaxation methods or equation rescaling.

As mentioned earlier, a possible variant of the reformulated method 2.21-
2.22-2.23 is the use of a local parameter OR- on each element K, specially
suited for nonuniform meshes. We present some numerical experience con-
cerning this possibility in 2.5.4.

In the implementation of the method we have studied 2-dimensional prob-
lems with interpolating polynomials of PI and PZ on triangles and Q\ and
Q2 on quadrilaterals. Where possible, the same mesh nodes have been used
to define the elements for all four interpolations. In confined flow problems,
where the velocity is prescribed on all the boundary, a pressure datum of 0
is enforced on the last node in the global numbering.

For a homogeneous external force f = 0 and a nonhomogeneous boundary
condition, the Stokes problem scales with the viscosity, in the sense that if
(ut,,p„) is the solution associated to a value of v > 0, one has that u„ = Ui
and pv — vpi. We have therefore considered unit viscosity throughout.

2.5.1 Uncoupled block-Gauss-Seidel method

We consider the following iterative scheme for the solution of 2.24-2.25-2.26,
where P° = 0, W° = 0 and U° contains the prescribed velocity boundary
conditions and is zero elsewhere:

KIT = F - Go?*'1 (2.98)
aLPi = aG'W^-1 + G*tP (2.99)
MWi = GPi (2.100)

Each subsystem has a symmetric, positive definite matrix; they are solved
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by the conjugate gradient method; to a given tolerance ecg. In the lumped
mass matrix case, 2.100 is replaced by:

(2.101)

where ML is the diagonal lumped matrix of M. In the P2 element case,
rather than by the standard row-sum technique, ML is computed by a nodal
quadrature rule obtained by splitting each PI element into 4 P\ elements, in
order to avoid null entries.

The scheme 2.98-2.99-2.100 was iterated to convergence at a given tol-
erance em«;. The following convergence criterion was chosen:

(2.102)

max

where \X\% is the Euclidean norm of a vector X.
Other permutations of the order in which the variables are updated in

2.24-2.25-2.26 were also considered. Two sets of three different permuta-
tions, even and odd respectively, are possible. Let us call I to 2.24, II to
2.25 and III to 2.26, equations which are used to update the velocity, pres-
sure and pressure gradient, respectively, from the last updated values of the
other variables; the initialization of the pressure as zero and the absence of
boundary conditions for the pressure gradient imply that III-I-II is equivalent
to I-II-III, and III-II-I equivalent to II-I-III. Four possibilities are therefore
left. We performed some testsr with them which showed that they all pro-
vide practically identical results, and chose I-II-III (that is, 2.98-2.99-2.100)
throughout.

As a test problem, the standard cavity flow case was solved, which has
become a compulsory benchmark problem for incompressible flow codes. We
took the ia,mp case, in which the velocity is zero at the two upper corners
and one in the horizontal direction at the rest of the upper lid. A uniform
mesh of 21 X 21 nodes was used to discretize the unit square; it is shown in
Figure 2.1 for the PI element. The pressure was set to zero at the top right
corner.

We put off for the next Section the analysis of the results obtained for this
problem, and concentrate here on the performance of the numerical scheme
to reach a solution. We allowed a tolerance of eunc = 10~3. A study of the
influence of the tolerance for the conjugate gradient method to solve each
subsystem of equations on the convergence of the whole iterative scheme
showed that a minimum number of iterations was needed for ecg in the order
of 10~4, which is the value that we selected.

We tried to use values of the coefficient a of the order given by equation
2.61, with a value of a<j near unity. But we found that larger values of c*o
were needed for the iterative scheme to be stable; when a low value of this
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Figure 2.1: Cavity flow, uniform 21 x 21 mesh.

parameter was used, the scheme diverged. We will see in the next Section
how this affects the accuracy of the solution. We finally selected CCQ = 40 for
the PI and Q\ elements and OÍQ = 5 for the PI and Q-¿.

The results obtained for this problem, in the form of number of iterations
needed for convergence and CPU time spent, relative to the P\ element case
with a consistent mass matrix (in percentage of that case), are given in Table
2.1 for the four elements considered, both with consistent (C) and lumped
(L) mass matrix. As can be seen, this scheme is top costly, due to the
large numbers of iterations needed for convergence, specially in higher order
elements. The P2 element case with a lumped mass matrix did not converge
at all.

Element

Iterations

Relative cost

Pi-C

106

100

Pj-L

66

65

Qi-C

126

61

Qi-L

59

30

P2-C

212

122

P2-L

.

_

C2-C

571

316

Q2-L

195

99

Table 2.1: Convergence of the uncoupled block-Gauss-Seidel method.
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2.5.2 Coupled block—Gauss—Seidel method.

We now introduce another iterative scheme for the solution of 2.24-2.25-2.26
with better convergence rates than the one just considered. The velocity and
pressure are now coupled in a unique linear subsystem, in which the value of
the pressure gradient at the previous iteration is used; this variable is then
updated with the new pressure. With the same initializations as before, the
scheme reads:

KIT + G0P
i = F (2.103)

-Gtfr + aLPí = aCPW^1 . (2.104)
MWÍ = GPi (2.105)

Notice that the equation system 2.103-2.104 for ({7*,P*) introduces a
Laplacian term in the diagonal of the system matrix, in a similar way to
stabilized methods of the GLS type. In fact, for linear elements the system
matrix of this problem is the same as that of the GLS method 1.30; it is
positive definite but non-symmetric. The solution (t/^P*) can be obtained
in several different ways, such as a direct LU decomposition or the GMRES
method. We tried these two possibilities and decided to use the first one,
since the size of the problems that we deal with is small enough as to allow
a direct method of solution.

Mass lumping was also considered for the solution of 2.105; when a con-
sistent mass matrix was used, we tried solving 2.105 by a direct method and
by the conjugate gradient algorithm. In the latter case, and for a tolerance of
ecg = 10~5, it took about 10 iterations to find the solution in the first global
iterations, but this reduced monotonically to 5 in the last iterations, as the
initial approximation was closer to the solution. Nevertheless, we chose to
use a direct method for 2.105.

Once again, due to the initialization of the pressure as zero and the ab-
sence of boundary conditions for the pressure gradient, it is inconseqüència!
to start the iterations by the pressure gradient equation 2.105 or by the
velocity-pressure system 2.103-2.104.

The same convergence criterion 2.102 was used, and also the same test
case and mesh. We took a as in 2.61, with ao = 1/3 for PI and Qi and
«o = 1/9 for PÎ and C?2- We present the convergence results for this case
in Table 2.2. This time we show the number of iterations for convergence
with a tolerance of ecou = 10~3, together with the CPU time spent in the
first iteration (as a percentage of the total time in each case) and the total
CPU time relative to the Pi-G case (in percentage of that case). We split
the time of the first iteration to emphasize that when using direct methods
to solve the linear subsystems of equations 2.103-2.104 and 2.105, it is the
first iteration that requires most of the computing time, since it is then that
the system matrices are assembled and factorized. The remaining iterations
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Element

Iterations

1st. Iteration

Total CPU time

P!-C

16

76

100

Pj-L

12

74

77

Qi-C

35

66

106

Qi-L

13

71

61

P2-C

41

67

110

P2-L

45

64

88

Q2-C

118

50

179

Q2-L

42

64

109

Table 2.2: Convergence of the coupled block-Gauss-Seidel method.

consist of the computation of the RHS vector and a backward and forward
substitution only.

It can be seen, again, that linear and bilinear elements show better conver-
gence properties than quadratic and biquadratic ones, and that mass lumping
also accelerates the convergence. For the reference Pj-C case, the computing
time for this coupled scheme was 34% that of the uncoupled scheme for the
same case.

Finally, we present in Figures 2.2 and 2.3 the convergence history of each
variable for all four interpolations, from which it can be deduced that it is
the pressure and pressure gradient that dominate the convergence. It can
also be observed that in the first two iterations there is a drastic reduction
of the error.

2.5.3 Acceleration of convergence

The convergence results of the coupled block-Gauss-Seidel method are still
not satisfactory. We employed simple techniques to accelerate this conver-
gence, which yielded better results.

We first tried rescaling the different subsystems of linear equations in
2.24-2.25-2.26, to achieve a better conditioning of the global system matrix,
hoping this way to accelerate the convergence of our block-Gauss-Seidel type
schemes. Since the parameter a multiplying the Laplacian matrix in the
pressure equations is of order A.2, too small for a diagonal term, we multiplied
this equations by a parameter ß, and replaced the pressure variable P by

R = -P, so that 2.24-2.25-2.26 becomes:

KU + ßG0R = F

-ßG*0U + ß2aLR - ßaG'W = 0
ßGR - MW = 0

(2.106)

A dimensional analysis (by comparison with the diagonal term of the first
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Convergence of Velocity Convergence of Pressure

0. 10. 20. 30. 40. 50. 60. 70. 80. 90.100.110.120.

Iteration
0. 10. 20. 30. 40. 50. 60. 70. 80. 90.100.110.120.

Iteration

Convergence of Pressure Gradient

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.110.120.

Iteration

Figure 2.2: Convergence history, consistent mass matrix: -f PI Element;
• Q\ Element; o P2 Element; x Q^ Element.
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Convergence of Velocity Convergence of Pressure
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0. 10. 20. 30. 40. 50. 60. 70. 80. 90.100.110.120.

Iteration

Convergence of Pressure Gradient

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.110.120.

Iteration

Figure 2.3: Convergence history, lumped mass matrix: + PI Element; • Q\
Element; o P2 Element; x Qi Element.
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equation) suggested taking ß2a = 72z/, where 7 is a free (dimensionless)
parameter of order 1. The definition of a then gives:

(2-107)

It can be shown that this scaling of equations is equivalent to a diagonal
preconditioning strategy.

We performed several tests with the coupled-block-Gauss-Seidel scheme
2.103-2.104-2.105 applied to the rescaled equation system 2.106 and, after
varying the value of 7 by several orders of magnitude, we needed exactly the
same number of iterations in each case as for the original problem 2.24-2.25-
2.26, that is, those of Table 2.2. Nevertheless, scaling of equations improved
the performance of the iterative GMRES method when it was used to solve
the velocity-pressure system of equations.

We then considered standard successive-over-relaxation methods applied
to 2.103-2.104-2.105, with the same relaxation parameter a; > 0 for all three
variables. Thus, this scheme was replaced by:

Kir + GOPÍ =
-Gtfr" + aLPi =

MW* = GPi

where the variables are updated by:

ir = ' uïr + (i-w)er-1

Pi = wPi + (1-uOP1'-1 (2.108)

pj/-» _ (¿W* + (1 — u>) W*"1

Different optimal relaxation parameters were found numerically for each
element, all of them in the range (1,2); they all lowered substantially the
number of iterations needed for convergence. The results are summarized
in Table 2.3, where we give the optimal relaxation values for each element
together with the number of iterations needed for convergence and the total
computing time, once again as a percentage of the reference Pi-C case of
Table 2.2.

We then allowed the possibility of using a different relaxation parameter
for each variable, u>u, up and ug, respectively, so that 2.108 was replaced by:
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Element

u>

Iterations

CPU time

Iterations
with wu = 1

P!-C

1.3

7

90

7

P!-L

1.3

7

76

7

Qi-C

1.5

12

90

10

Qi-L

1.5

12

76

10

P2-C

1.4

10

93

9

P2-L

1.4

10

86

9

<?2-C

1.79

30

122

25

<?2-L

1.79

30

100

25

Table 2.3: Convergence of the relaxed coupled block-Gauss-Seidel method.

We found slightly improved convergence results only when we set o>u = 1,
i.e., no relaxation for the velocity, and u»p and u>g equal to the optimal value
for each element. We expected this to be the 'best' choice according to the
convergence histories shown in Figures 2.2 and 2.3, where it is observed that
it is the pressure and pressure gradient that slow the convergence. We also
show in Table 2.3 the number of iterations for convergence in this case, where
it can be observed that there is an improvement in some cases.

2.5.4 Local stability parameter

The uniform mesh used up to now is impractical in many situations, such as
when convection is present. We solved the same test case on a non-uniform
39 x 39 noded mesh, with increasing density of elements near the boundary,
made up with triangular linear elements (it is shown in Figure 2.4).

A question arises in this case about what value of the coefficient a is to be
taken when the mesh size is not constant for all elements. We first considered
the simple possibility of taking a unique value of a for all elements, as defined
in 2.61 for a value of h equal to the maximum element diameter (just as it
is defined). Then we adopted the idea of using a different value of a on each
element, evaluating the integrals it multiplies on 2.22 elementwise. The local
discrete reformulated problem reads:

(V • U*, qh)

(Vpfc.Vfc) =

)K - (-WH, Vg/,)*) = O, Vgh G Qh

= O,

¿Í
The local coefficients are, again, defined as ctK = ao-r^, with a0 = 1/3 for

the PI element. Although it is not computationally practical, the third equa-



CHAPTER 2. A REFORMULATED STOKES PROBLEM 72

Figure 2.4: Cavity flow, nonuniform 39 x 39 mesh.

tion should actually be replaced by ^,Kceh «/fuVp^jX^)^ — (W^,X^)K') = 0,
so as to be consistent with the second equation.

A comparison of the two methods shows that the local one provides faster
convergence rates (as can be observed in Table 2.4) and more accurate results
(see the next Section). In Table 2.4 we present the number of iterations for
convergence in each case, the CPU time spent in the first iteration (as a per-
centage of the total time in each case) and the total computing time relative
to the global method with a consistent mass matrix. A unique relaxation
parameter u> = 1.3 was used in this problem for all the variables.

Method

Iterations

1st. Iteration

CPU time

Global-C

13

80

100

Global-L

8

82

75

Local-C

7

84

93

Local-L

7

82

76

Table 2.4: Comparison of global and local parameters.
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2.5.5 Summary of computational aspects

We have considered several possibilities for the solution of the linear equa-
tion system 2.24-2.25-2.26, resulting from a finite element discretization of
the reformulated Stokes problem 2.14. They include two iterative schemes of
the block-Gauss-Seidel type, which we call uncoupled and coupled, respec-
tively, and some other ideas such as rescaling or diagonally preconditioning
the equations and the use of successive-over-relaxation methods. For the
pressure gradient mass matrix, we also considered lumping methods.

After several tests on a uniform mesh for the lid-driven cavity flow prob-
lem with the PI, Qi, PI and Q2 elements, we have found that the most
efficient method is the coupled block-Gauss-Seidel scheme applied to the
original equation system (without rescaling) with selective successive-over—
relaxation, which acts on the pressure and pressure gradient variables with
an optimal relaxation parameter c*>0pt) but leaves the velocity unrelaxed. Dif-
ferent optimal relaxation parameters were found experimentally for each el-
ement: 1.3 for the P1, 1.5 for the Qlt 1.4 for the P2 and 1.79 for the Q2.

For the PI element, the system matrix of the velocity-pressure subsystem
to be solved at each iteration of that method is the same as that of the GLS
method; this is also the case for the Qi element, if the Laplacian term is
omitted on the GLS method from element interiors (for a mesh of parallel-
ograms, the transformations from the reference element are affine, and this
term vanishes identically for this element). The GLS formulation is one of the
most widely used methods nowadays for incompressible flow problems; like
our method, it is formulated in terms of primitive velocity-pressure variables,
and it also allows the use of equal order interpolations. When direct solution
methods are used to solve the velocity-pressure subsystems, the extra cost
of our scheme with respect to the GLS method is that of computing and
factorizing the mass matrix for the pressure gradient (if it is not lumped),
forming the right-hand-side vectors and performing forward and backward
substitutions at a few extra iterations, since the system matrices are com-
puted and factorized only once. This represents, in average, about 25% of
extra cost.

When nonuniform meshes are used, it seems more efficient to use local
stability parameters OLK defined elementwise, rather than a unique global
parameter a.

Finally, mass lumping also accelerates the convergence of the unrelaxed
coupled block-Gauss-Seidel scheme, at the expense of a loss of accuracy
(see the next Section). However, it does not affect the convergence of the
faster over-relaxed coupled block-Gauss-Seidel schemes. It is, therefore, not
recommended for general use with this method.
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2.6 Numerical results

We now present the numerical results obtained with the reformulated method
2.21-2.22-2.23 for three test cases: the cavity flow problem considered in the
previous Section, a problem with an analytical solution and a channel flow
problem problem on a trapezoidal domain. These problems highlight other
features of the method than those proved up to now, and confirm some of
these.

2.6.1 Cavity flow problem

We present some selected numerical solutions obtained for the cavity flow
problem in the convergence studies of the previous Section. The main flow
features'which we looked at in this problem are flow symmetry about the
vertical centerline of the cavity and the pressure singularity at the two top
corners. We will show that the method provides an excellent capturing of
this singularity. Since the zero prescription for the pressure is enforced at the
top right corner (the 'last node'), the minimum pressure value corresponds
to the top left corner, and stablishes the (negative) pressure singularity.

We first present results obtained with the uniform 21 x 21 mesh, both
with and without mass lumping. Pressure singularity capturing degrades
with mass lumping. These results can be observed in Figure 2.5 for triangular
elements and Figure 2.6 for quadrilateral elements.

Better results were obtained with the finer 39 x 39 nonuniform mesh of
Figure 2.4. We compare the results obtained with a global stability parameter
a and with local parameters a#, both with and without mass lumping. The
solution was symmetric in all cases. We present the pressure results in Figure
2.7, where it is observed that the best results are achieved with local stability
parameters and a consistent mass matrix.

We conclude that the best results obtained for this problem with the
nonuniform 39 x 39 mesh were for local stability parameters and a consistent
mass matrix, iterating the scheme 2.103-2.104-2.105 to convergence: a pres-
sure minimum of —1070 was achieved in this case. For the uniform 21 x 21
mesh, the best results correspond to the Q2 element with a consistent mass
matrix: the pressure minimum was of —1160 in that case.

2.6.2 A test with an analytical solution

We next consider a test problem with an analytical polynomial solution on
the unit square, with homogeneous Dirichlet boundary conditions, which
was introduced by J.T. Oden and coworkers (see [78]). We study this case
in order to check numerically the optimal error estimates proved in Section
2.3. Setting v — 1, a polynomial force is selected so that the solution of 1.13
is u = (ux, Uy) with: .
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MODEL: P1CM
STEP
STEP.O TIMBO
NOD AL PRESS PRESS
MAX*0
MIN«-209

MODEL: P2CM
STEP
STEP-.O TIMfcO
NODAL PRESS PRESS

MODEL: KLM
STEP
STEP: 0 TIME 0
NODAL PRESS PRESS
MAX-0
MIN * -261

Figure 2.5: Cavity flow, uniform 21 x 21 mesh, triangular elements, pressure
contours: a) Pl - C; b) P^ - L\ c) P2 - C; d) P2 - L.
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MODBLQlt
STEP
STEP. 0 TIME 0
NODAL PRESS PRESS
MAXoO
MIN«-*64

Figure 2.6: Cavity flow, uniform 21 x 21 mesh, quadrilateral element, pressure
contours: a) Ql - (7; b) Ql - L\ c) Q2 - C\ d) Q2 - L.
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MODEL NOUGLC
STEP
STEP: 0 TÎMB; 0
NODAL PRESS PRESS
MAX=0
MTN--»05

L_

MODEL: NOUtOC
STEP
STEP-0 TIME 9
NODAL PRESS PRESS
MAX*0
MDf c --I07E4

MODEL: NOULOL
STEP
STEPiOTÏMEO
NODAL PRESS PRESS

Figure 2.7: Cavity flow, nonuniform 39 x 39 mesh, pressure contours: a)
global a, consistent mass matrix; b) global a, lumped mass matrix; c) local
a, consistent mass matrix; d) local a, lumped mass matrix.
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ux = x2(l - x2)(2y - Qy2 + 4y3) (2.109)

uy = (2x - 6z2 + 4x3)y2(l - 7/2)

for 0 < x,y < 1, and the pressure solution is then:

p = x-x2 (2.110)

(so that p vanishes at the top right corner). With this test case, we first
performed a study of the influence of the parameter a0 on the exact errors
of velocity, pressure and pressure gradient solutions in the L2 and HQ norms
on a uniform mesh; we will see, in particular, that there are minimum values
of these errors at critical values of the parameter, which we select. Uniform
meshes are used here so that a study of the order of error with respect to
a characteristic mesh size h can be provided, using the optimal values of
the parameter a0 just obtained. The expected orders of accuracy for all the
variables, norms and elements have been found.

The first results we present were obtained with a uniform 21 x 21 mesh,
using the coupled block Gauss-Seidel method with a consistent mass matrix
and a tolerance of ecou = 10~5. In Figure 2.8 we show the variation of the
exact error of the velocity in L2(ii) and Hj(fì), the pressure in L2(íï) and the
pressure gradient in L2(íï), both with respect to Vp/, and w^, as a function
of the coefficient ao, for the elements PI, Qi, P2 and Q¿. It can be seen
that minimum values for the pressure error are attained for values of ao in a
range close to the optimal values of the GLS method for each element type:
1/3 for linear and bilinear elements and 1/9 for quadratic and biquadratic
ones; these are the values that we have used up to now, and that we adopt
in what follows. Nevertheless, minimum errors for the pressure gradient are
achieved at a larger value of a0 than the critical one. The velocity errors
are less sensitive to variations of ao, but tend to be minimized close to the
optimal values of the GLS method.

The variation of ao does not only affect the precision of the method but
also the convergence rates of the iterative scheme. It is seen in Figure 2.9
that the number of iterations required for convergence grows drastically with
an increase of ao beyond the critical values, while small values of ao yield
rapidly convergent schemes, at the expense of a loss of precision.

Having found optimal values of the parameter ao, we then checked numer-
ically the theoretical orders of accuracy of the velocity, pressure and pressure
gradient solutions as a function of the mesh size h, as given by Theorems
2.1 and 2.2.; we summarize these orders of error in Table 2.5 for reference.
To this end, we solved the reformulated Stokes problem 2.21-2.22-2.23 for
this test case on three uniform meshes with 11 X 11, 21 x 21 and 41 x 41
nodes, respectively, and with the four elements considered up to now. The

h2

value of a was always computed as a = a0—, and a0 was taken as the
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PI Element

l.E-04 l.E-03 l.E-02 l.E-011.E+001.E+011.E+021.E+03

AlphaJ)

P2 Element

i i i
l.E-04 l.E-03 l.E-02 l.E-011.E+001.E+011.E+021.E+03

Ql Element

l.E-04 l.E-03 l.E-02 l.E-01 l.E+00l.E+01 l.E+02l.E+03

AlphaJ

Q2 Element

AlphaJ

l.E-04 l.E-03 l.E-02 l.E-01 l.E+00l.E+01 l.E+02 l.E+03

AlphaJ

Figure 2.8: Error variation with a0: ° = ¡u —
•= \P~Ph\l x = |Vp-Vpfc|; o=

|; + = ||u —
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Iterations for Convergence
80

c/3
e
o

•Z3
cd

l.E-04 l.E-03 l.E-02 l.E-01 l.E+OO l.E+01 l.E+02 l.E+03

Alpha.O
Figure 2.9: Iteration for convergence with a0: + PI Element; • Q\ Element;
o P2 Element; x Q2 Element.

optimal values just established. The results were obtained with the coupled
block-Gauss-Seidel scheme 2.103-2.104-2.105 with a consistent mass matrix
and a tolerance of ecou = 10~3; we also tried higher and lower values of the
tolerance: in the first case, larger errors were found, whereas in the second
the precision did not improve (but rather degraded due to round-off errors).
We present these results in Figures 2.10 to 2.14, where we have included the
errors for a PiP\ mixed interpolation of the Stokes problem for comparison.
The linear regression coefficients computed for these lines are given in Table
2.6.

It can be observed that the optimal orders of accuracy predicted in Table
2.5, and even higher orders for the pressure solution, are achieved with our

Element

Pi,Qi

P^Qi

I U - U A !
2

3

IP-PA!

1

2

l|u-u,||

1

2

|V(p-p*)l

0

1

IVp-w^l

0

1

Table 2.5: Theoretical orders of error in the mesh size h.
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Figure 2.10: Velocity error in L2: + PI Element;
Element; x Q2 Element; o Mixed P-iP\ Element.
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Figure 2.11: Pressure error in L2: + PI Element; •
Element; x Q2 Element; o Mixed P2Pi Element.
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Figure 2.12: Velocity error in if1: + PI Element;
Element; x Q2 Element; o Mixed PiP\ Element.

Q i Element; o P2

s—, <=>
O tú

S
tu

0.01 0.10

Mesh size (h)
Figure 2.13: Pressure error in H1: + PI Element; •
Element; x Q2 Element; o Mixed PiP\ Element.
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Figure 2.14: Pressure gradient error in L2: + PI Element; • Ql Element;
o P2 Element; x Q2 Element.

Element

Pi

Qi

P2

Q2

|u-Ufc|

2.0

2.0

3.3

3.2

IP-PA!

1.9

1.9

2.3

2.3

HU-U.II

1.0

1.0

2.0

2.0

|Vp-VPA|

0.7

0.6

1.4

1.4

iVp-w/J

0.7

0.6

1.4

1.5

Table 2.6: Oden's flow: linear regression coefficients for different errors.
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Mesh size (h)
Figure 2.15: Velocity error in L2: • Qi Element; x Q-¿ Element; D = GLS
method, Qi Element; o GLS method, Q? Element.

method for all variables and norms. Moreover, both the discrete pressure
gradient and the gradient of the discrete pressure seem to converge for the
PI and Qi elements to Vp, a fact which is not predicted by the theory.

We then compared the accuracy results obtained with our method to
those of the GLS formulation. We show in Figures 2.15 to 2.18 the errors
computed for the solutions on quadrilateral elements, both the Q\ and the
Qi, for the GLS method and ours. The velocity solution is the same for the
two methods with both elements; the pressure solution, however, is slightly
more accurate for the GLS method than ours when using bilinear elements,
at least for the present value of the parameter GO] for biquadratic elements,
however, our method seems to be assymptotically more accurate.

2.6.3 Behaviour of the pressure near the boundary

This last example is intended to discuss a misbehaviour of the pressure near
the boundary which appears when using the GLS method, as described by
J.J. Droux and T.J.R. Hughes in [31]. Although this method is optimal both
in Hl and L2 norms, the pressure may be poorly approximated near the
boundary for linear elements. This is so because in this case the term z/Au^
vanishes identically on element interiors, so that a wrong boundary condition
n ' C^Ph — f ) = 0 is being imposed weakly (see the modification of the GLS
method in [31] to overcome this difficulty).

In our reformulated method the boundary condition n • Vp — n • w = O
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Figure 2.16: Pressure error in L2: • Q\ Element; x Q2 Element; O = GLS
method, Q\ Element; o GLS method, Q-¿ Element.
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Figure 2.17: Velocity error in H1: • Q\ Element; x Q2 Element; D
GLS method, Q\ Element; o GLS method, $2 Element.
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Figure 2.18: Pressure error in Hl: • Q\ Element; x <J2 Element;
GLS method, Qi Element; o GLS method, Q-¿ Element.

D =

enforced weakly is consistent with the original Stokes problem, so that correct
behaviour of the pressure near the boundary was expected. The same test
case as in [31] was considered, consisting of fully developed Poiseuille flow on
a 2-dimensional trapezoidal domain. We solved this problem on two meshes
of PI elements, with 13 x 13 and 25 x 25 nodes uniformly distributed along
the sides. The first mesh is shown in Figure 2.19. For this problem, there is
no external force, a parabolic velocity profile is prescribed both at the inlet
and outlet and a solid wall condition is imposed on the top and bottom edges.
The pressure gradient in this case is constant and horizontal.

The pressure contours obtained for the GLS method and the reformulated
method on both meshes are shown in Figure 2.20. Although they improve
with mesh refinement, the pressure results for the GLS method are not correct
near the boundary, whereas the results for our method are exact on both
meshes.
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Figure 2.19: Trapezoidal domain, coarse mesh.
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f\

Figure 2.20: Trapezoidal domain, pressure contours: a) GLS method, coarse
mesh; b) GLS method, fine mesh; c) Present method, coarse mesh; d) Present
method, fine mesh.



Chapter 3

Reformulated Navier—Stokes
equations

The object of this Chapter is to extend the reformulated method studied in
Chapter 2 to the steady, incompressible Navier-Stokes equations 1.12. The
difference of this equations with the Stokes problem 1.13 is the appearance of
a nonlinear term embracing convective effects, which was neglected in 1.13.

The incompressible Navier-Stokes equations model a large number of flow
situations, and are used in many practical applications. Moreover, they are
the 'next stage' towards the study of the unsteady Navier-Stokes equations:
they are still affected by the incompressibility condition and they introduce
the difficulties relative to the nonlinearity, but not the time evolution yet.

The development and study of numerical methods to approximate the
solution of these equations has received much attention in the last decades.
Besides incompressibility, they have to deal with the treatment of the nonlin-
earity of the problem and the advective-diffusive character of the equations,
which is specilly hard for high Reynolds number flows. Thus, nonlinear
solvers and, in some cases, techniques to stabilize the convection, are re-
quired to approximate these equations, as well as adequate treatment of
incompressibility.

We review a few basic facts about the steady, incompressible Navier-
Stokes equations in Section 3.1, concerning the existence, uniqueness and
approximation of solutions. In Section 3.2, we present the extention of the
reformulated method to this problem, while in 3.3 we prove stability and op-
timal convergence of the method to the solution of the equations, assuming
uniqueness of such a solution and the stability condition 2.28 of the linear,
reformulated Stokes problem. We then consider several possibilities for the it-
erative solution of the resulting nonlinear system of discrete equations, which
we present in Section 3.4. Finally, we show some numerical results obtained
with this method on three test cases, including a numerical convergence study
which confirms the optimal error estimates proved theoretically.

89
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3.1 The steady, incompressible Navier Sto-
kes equations í

We recall here the steady, incompressible Navier-Stokes equations for refer-
ence, with homogeneous Dirichlet boundary conditions:

(u-V)u - i/Au + Vp = f infì

V - u = O in fi (3.1)

u = 0 on T

Complete studies of this equation system can be found, among others,
in [71], [105] and [43]. We mainly follow these last two references here.
With the definitions of the operators b and c given in Section 1.2, and given
f 6 H~1(íï), the weak form of these equations consists of finding u G Hj(íï)
and p G L%(£l) such that:

c(u,u,v) + i/(Vu,Vv) + 6(v,p) = < f , v > , Vv

6(11,3) = 0, Vï€

Since we are assuming fi bounded and Lipschitz continuous, problem 3.2
has at least one solution (see [43]), which satisfies 3.1 in distribution sense.
Uniqueness does not hold in general, but it holds for sufficiently small data
or sufficiently large viscosity. The precise form of these statements may be
written in different ways; following [105], we take it as the following condition,
where from now onwards we assume that f (E L2(fi):

~ . Pn Cm |f | n ,, o\T = < 1 (3.3)

The constant Cn was introduced in 1.14 and Cm is the constant appearing
in the standard continuity condition of the trilinear form c.

Under the assumption 3.3, the solution (u,p) of 3.1 is unique. If the ho-
mogeneous boundary condition is replaced by a nonhomogeneous condition:

u = ü on F

where ü satisfies the null flux condition 1.9, similar existence and uniqueness
results can be obtained, the latter under a condition similar to 3.3.

Standard Galerkin finite element approximation of the Navier-Stokes
problem 3.2 is subject to the same compatibility restrictions as the Stokes
problem: the inf-sup condition 1.27 should hold for standard optimal con-
vergence results. This is the case for the QzPi element; for the popular Q\Po
element, however, macroelement techniques may be used again.

We introduce here the matrix form of a discretization of the Navier-Stokes
equations 3.2 by the Galerkin finite element method. In the notation used
up to now, the discrete version of 3.2 can be written as:
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A(U)U + KU + G0P = F

G1
QU = 0 (3.4)

where A(U) is the convective matrix with a given (nodal) velocity field U.
Some iterative method should be used to find a solution of the nonlinear
problem 3.4; standard schemes for this problem are Picard's iteration and
Newton-Raphson's method, which are first and second order schemes re-
spectively, apart from methods of gradient type (see [43]). One drawback
of Newton-Raphson's method is that the initial approximation used in it
should belong to the attraction basin of the solution for the scheme to con-
verge. These two schemes take the following form in this context:

• Picard's method:

A(ir-l)ir + KIT + G0P
i = F

= 0

• Newton-Raphson's method:

A^-^ir + A(ir')ir'-1 + KIT + Copt = F + A(ir-l)ir'-1

= o

We will use these two approximations in Section 3.4.

3.2 Development of the method

3.2.1 The continuous problem

We present our extension of the reformulated method for the Stokes problem
2.14 to the Navier-Stokes problem 3.1 with homogeneous boundary condi-
tions. Our analysis is valid for any trilinear form c defined on (H¿(íí))3

which is skew-symmetric in its last two arguments and continuous; it is also
restricted to a class of Navier-Stokes problems with some additional regular-
ity conditions, which we define next in a similar way to the Stokes case.

Definition 3.1: the steady, incompressible Navier-Stokes equation 3.1 is ca-
lled regular if its solutions satisfy u g H2(íí) and p £ Hl($l) whenever
f 6 L2(fì), and there exists a constant Cr > 0 such that:

IMI» + iwii < cr\t\
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As in the linear case, this is too restrictive for our purposes. We only
need the pressure gradient to be in L2(Í2); we call this case again a p-regular
Navier-Stokes problem:

Definition 3.2: the steady, incompressible Navier-Stokes equation 3.1 is called
p-regular if its solutions satisfy p (E H1 (fi) whenever f g L2(íi)

The reformulation of problem 3.1 that we propose is the following, where
we adopt the skew-symmetric form of the convective operator:

-(V-u)u + (u-V)u - i/Au + Vp = f infì
Z»

Vp — w = O in fì

V - u + ct(-Ap-J-Vw) = O iniì (3.5)

u = O on T
n • Vp — n • w = O on F

where, again, a > 0. Calling again V0 = H¿(O), Q = Hl (ti) /IR and V =
L2(ÌÌ), and assuming f 6 L2(íï), the weak form of this problem consists of
finding u € Vo, p 6 Q and w € V such that:

c(u,u,v) + i/(Vu,Vv) + (Vp,v) = (f,v), VveVi,

(V-u,g) + a(Vp,Vg) - a(w,V€) = 0 , Vg € Q (3.6)

(Vp,y) - (w,y) = 0 , V y e F

We prove that in case the Navier-Stokes problem is p-regular and under
the uniqueness condition T < 1, problem 3.6 has a unique solution, which is
the solution of the original problem:

Proposition 3.1: assume that the Navier-Stokes problem is p-regular and
that condition 3.3 holds; then, there exists a unique solution (u,p,w) G
VQ x Q x V of 3. 6, where (u,p) is the unique solution 0/3.1 and w = Vp tn

PROOF: existence is a consequence of the properties of the solution (u,p)
assumed. To prove uniqueness, we define a form D on (Po X Q x V)2 as:

¿(u, p, w; v, ç, y) = i/( Vu, Vv) + ( Vp, v) + c(u, u, v) + ( V • u, q)

+a(Vp, V?) - a(w, V q) - a( Vp, y) + a(w, y)
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which is quadratic in its first argument and linear in its second. Problem 3.6
can then be written as:

¿(u, p, w; v, q, y ) = (f, v), V(v, q, y) € ( V0 x Q x V)

The coercivity of the linear problem is preserved due to the skew-sym-
metry of the operator c:

¿(u,p,w;u,p,w) = i/||u||2 + a|Vp-w|2, V(u,p,w) € (V0 x Q x V]

so that the stability estimate:

Hul l < (3.7)

holds for any solution. Let now (u»,p*,w*) and (u^p,*, w,.) be two such
solutions. We call (u,p, w) their difference, so that for all (v, 9, y) 6 (Vo x
QxV):

¿(ü,p,w;v,g,y) = -c(u„,ü,v) - c(ü,u„v) + c(ü,ü,v) (3.8)

Thus:

i/||ü||2 + a|Vp-w|2 = ¿(ü, p, w; ü, p, w) = -c(ü,u»,ü)

Therefore:

so that condition 3.3 implies ü = O, that is, u* = u**. The continuous LBB
condition ensures that there exists v 6 VQ such that:

** <- - .
according to 3.8 with u = 0; this implies p» = p*» in Q. Finally, w = Vp = 0
yields w* = w»*, so that the solution is indeed unique. G

3.2.2 The discrete problem

Let now Vh,o C Vo, Q h C Q and VH C V be finite dimensional subspaces
associated to a discretization of ÍÏ into finite elements, indexed by h > 0.
The discrete version of 3.6 reads:

c(uhìuhìvh) + i/(VuhìVvh) + (Vpfc.Vfc) = (f.v^.VvfcG Vh,0
+ a(Vj»fc>V9fc) - a(wfc,V«fc) = O, VqheQh (3.9)

- (wfc,yfc) = 0, VyheVh
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We prove existence of a solution of 3.9 as the limit of an iterative Picard's
method. Given u° 6 Vh,o arbitrary, we generate a sequence (uj^p^, wjj 6
Vh,o x Qh x Vh such that: :

Cufc-Siifc.Vfc) + i/(Vufc,Vvfc) +

(V-u f c ) 9 fc) + a(Vpfc,V9fc) - a(wfc>V<Zfc) = 0, Vqh£Qh (3.10)

= O, V v f c G V f c

This hnear problem has a unique solution if the interpolation satisfies
condition 2.28:

Proposition 3.2: assume that Vh,o, Qh and Vh satisfy 2.28. Then, given
ujf1 e Vfc.0, 3.10 /las a unique solution (uk,2^,wîj € V/,i0 x Qfc X 14-

PROOF: problem 3.10 can be seen as a reformulated Stokes problem; the
bilinear form associated to it is defined on (V/,,o x Qh x V/,)2 by:

Di(uh, Ph, w/,; Vfc, qh, Yh) = K Vu*, Vvh) + ( Vpfc , vfc) + c«"1 , uh, vft)

ufc, gfc) + a( Vphi Vqh) - a(wfc> VcA) - a(Vp^, yh) + a(wfc>

This form satisfies the same coercivity condition as the linear problem,
since, for all (uh,ph,\vh) 6 (Vh,o X Qh x 14):

Problem 3.10 then reads:

Â(ufc,pfc,wfc;vfc,çfc,yfc) = (f,Vfc), V(vfc,Çfc,yfc) 6 (Vhfl x Qh x

so that any solution satisfies the stability estimate:

IKII < ~ (3.11)

Moreover:

so that:
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Since problem 3.10 is linear and finite dimensional, it is sufficient to show
that the homogeneous problem has a unique solution. Setting f = O in 3.11
and 3.12, we get u'h = 0 and Ph,3(VpÍ) = 0. Taking vh = Ph,i(Vp\) in 3.10,
given that |PM(Vpl)|2 = (V^.P^V^)), we obtain Ph,i(Vp\) = 0, and,
by 2.28, Vpl = 0. Finally v£ = Ph,i2(VpÍ) = 0. D

We next prove that the sequence of iterates converges to a solution of
3.9. In particular, this establishes the existence of such a solution. For this
purpose, we require condition 2.28 and the inverse inequality 1.23 to hold;
we will also assume the uniqueness condition T < 1, which will be shown
later to be a sufficient condition for uniqueness here too.

Proposition 3.3: assume that the discretization ©/, of fì is uniformly regu-
lar, so that the inverse inequality 1.23 holds, that the interpolation satisfies
condition 2.28 and that 3.3 also holds. Then, for arbitrary u° 6 Vh,o, the
sequence of Picard iterates (u/^P/,, wjj converges to a solution (u^p/,, W;,)
0/3.9.

PROOF: substracting 3.10 for i and i — 1, we get:

+ (Vfrl-pirVfc) (3.13)

+ c(ur i ,u t
f c-ur i ,v f c)= o, vvfc.e^o

+ aCVCpl-pM.VflO (3.14)
- a(wl - wr1, Vqh) = O, Vqh G Qh

yfc) = 0 , V y f c 6 % (3.15)

Taking vh = ul-uJT1 in 3.13, qh = PÍ-pÍ~l in 3.14, yh = -a(wji -wjf x)
in 3.15 and adding them up, we find:

+ aiv^-prVK-wr1)!2 (3.16)
= o

Thus:

<
<

or equivalently:
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and, by induction:

IK-uf1]] < 114-411 IT"1 < C T

The hypothesis T < 1 ensures the convergence of ujj in the finite di-
mensional space Vh,Q. If we now take Vh — Ph,i(^(ph ~~ P/T*)) ^n 3.13, we
get:

- ' - uf2, uf1, pM(v(pi - pi-1))

< [v ||4 - uf1!! + Cm Hur1 - u

+ cm ||uf »u IK - «f x

2|

so that:

< r-1 (3.17)
From 3.16 we also get:

Í - pf J))|2 = a'|V(p[ - p«) - (wl - wf >)|»
< C'mlluniHu^-uf^lllul-uf1!!

< C T2Í-1

which implies:

l/UVfà-pf1))! < CT-1 (3.18)

From 3.17, 3.18, 2.28 and 3.3, convergence of p^ to some ph in Qh is
established. Finally, w^ = P/,,i2(Vp}l) also converges to some w^ G 14-
Taking the limit of 3.10 when i tends to infinity, we prove that (u/^p/,, w/j)
is a solution of 3.9. D

The proof of Proposition 3.3 shows in particular that Picard's method is
a first order scheme for this problem.

We have proved, in particular, that under the inverse inequality 1.23,
the compatibility condition on the interpolation 2.28 also required for the
linear problem and the uniqueness condition 3.3 of the standard continuous
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problem, a solution of the discrete reformulated problem 3.9 exists, which
can be obtained as the limit of the Picard iteration 3.10 starting from an
arbitrary u£. To end this Section, we establish the uniqueness of such a
solution under the same conditions:

Proposition 3.4: assume that 1.23, 2.28 and 3.3 hold. Then, the solution of
3.9 is unique.

PROOF: the proof is essentially the same as in Proposition 3.1. Any solution
satisfies:

(V0 x Q x V)

and therefore:

IMI <
I/

If (u/^p/^w/,,,,) and (uh>**,ph>**, wfc|,,) are two solutions, and we call
again (ü^p/i, w^) their difference, we find again that for all (v^ç^y^) G
(Vh.0 xQhX Vh):

(3.19)
This implies:

i/Hu/JI2 -f

and:

CmCn|f| , , _ 1,2
IKII ,

so that 3.3 implies u^ = 0. Taking now v^ = Ph,i(^ph), Qh = 0 and y^ = 0
in 3.19, we find Ph,i(Vph) = 0, whereas v^ = O, ç/, = ph and y/, = w^ yields
Pfcj3(Vp/,) = Vph — WH. ~ 0. Condition 2.28 then ensures that Vp/, = 0, and
finally wfc = Ph,i2(Vph} = 0 D

In summary, we have proved existence and uniqueness of a discrete solu-
tion of the reformulated Navier-Stokes problem 3.9, assuming the weak com-
patibility condition 2.28, the 'classical' uniqueness condition 3.3 and some
regularity of the mesh: the discrete LBB condition is not required at all.
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3.3 Stability and convergence of the method

We extend now the stability and convergence analysis performed in Section
2.3 for the reformulated Stokes problem to the Navier-Stokes case. The
conditions needed for this purpose are, again, the stability condition 2.28,
the inverse inequality 1.23, some regularity of the solution of the original
problem and a certain behaviour if the coefficient a in terms of the mesh size
h; for this nonlinear problem, however, we will also require the uniqueness
condition 3.3.

3.3.1 Stability

Let us first establish a stability estimate, which is essentially underlying the
existence results already proved:

Proposition 3.5: assume that 1.23, 2.28 and 3.3 hold; assume also that a
satisfies 2.29. Then, the solution (u/^p/^Wh) of 3.9 satisfies the stability
estimate:

< C|f|, (3.20)
for some constant C independent of h, where |||.||| is the mesh dependent
norm defined in 2.31.

PROOF: we proof that the Picard iterates (ujl,p)l,wji) satisfy 3.20, so that
this will also hold for (U^,P/,,WH) by passing to the limit. According to

C If I
3.11, we have that \\u\\\ < - -, and by 3.12 and the assumption on a,

£|f|. Moreover:
n

(3.21)

= (f,PM(Vpl)) - KVu^

||PM(Vpl)||

< c |PM(VPJ,)|
according to 3.10, 1.23, the continuity of c and the Schwarz inequality. This

f~i ft
yields \Ph,i(^Ph)\ < T\t\- Condition 2.28 then ensures that |VpjJ < — |f|

h . . . . h
and since ]w^| = iPhiiCVpUl < |Vp^|, we prove 3.20 for (ul

fc,p^, wj,), and,
by taking the limit when i tends to infinity, for (u/,,p/i, w/,). D
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3.3.2 Convergence in natural norms
To prove optimal convergence of the discrete solution of 3.9 to the continuous
solution in natural norms, we repeat the analysis of the linear problem, only
modified to account for the effects of the convective term. We will therefore
focus only on these effects here.

Theorem 3.1: assume that the Navier-Stokes problem 3.1 is p-regular, and
that conditions 1.23, 2.28 and 3.3 hold; assume also that a satisfies 2.36.
Then, the solution (u^,pfc,w^) o/3.9 satisfies:

(u-u f c ,p-p f c >Vp-w f c) | | | < CE(h) (3.22)
for some sonstant C > 0 independent ofh, where (u,p) is the solution o/3.1
and the interpolation error function E(h) was defined in 2.38.

PROOF: for any (vfc,g/,,yA) e Vh¡0 X Q x V, we have:

¿>(u - \ih,p - ph, Vp - Wfc; vk, g/,,

fc) + c(u,u,Vfc) (3.23)

- (Vph, v/,) + c(ufc, uh, vh)

- c(uhiU,VH)

= cXufe-U.Ufe .V/J-f c(uhiUh -U, V,,)

This implies, by the linearity of D in its second argument, that:

D(u -uh,p- Ph, Vp - Wfc; u - uh,p - phi Vp -

= ¿(u-u/.^-pA.Vp-w^ju- vh,p-qhi Vp-y/,) (3.24)

+ c(uh - U, Uhi Vh - Uh) + c(uhì Uh - U, Vfc - Uh)

for any (v/,, qh, y h) 6 (Vhja x Qh x V/,). Coercivity of Z? implies that:

LES of 3.24 = i/Hu - Ufc l l 2 +

whereas:

RHSof3.24 =

+ ( V(cfc - p), u - UÀ) + a(vrh

+ C(U - Uh, U - Uh, U - Vfc) +

+ C(U/,, Ufc - U, Vh - Uh)
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For the linear part, the same argument as in Section 2.3 is valid here, so
that it will not be repeated. As for the quadratic terms, we have:

íi

QT = e(u-Uh,u-uh,u-Vh) (3.26)

+ c(uh - u, uh, Vfc - Ufc) + c(ufc, UH - u, v/, - uh)

= c(u - Ufc, U - Uhì U - Vfc) + c(u - Uh, Uh, U - Vfc)

+ C(U - Uh, Uh, Uh - U) + c(Ufc, U - Uh, U - Vfc)

4- c (u fc ,u -Ufc ,Ufc -u)

= c(u - uh, u, u - Vfc) -f c(u - uh, uh, uh - u)

+ c ( U f c , U - U f c , U - Vfc)

according to the stability estimates derived above for the continuous and
discrete solutions. The first term of 3.26 is the product of an error of the
method and an interpolation error, and it can be included in the convergence
analysis of the linear problem. The second term can be passed to the left-

C1 C1 If I
hand-side, yielding (y -- ) ||u — Ufc||2. Condition 3.3 ensures that
this coefficient is positive, and the analysis of the linear problem can then be
repeated. D

3.3.3 Convergence in L2-norm

We finally prove that the error estimates derived for the discrete solution of
the reformulated Navier-Stokes problem can be improved by an order in h in
the norm of L2(iì), in a similar way to the Stokes problem. For the velocity
error estimates, we will need an auxiliary problem which we study first. In
a similar way to [21], we call y G H¿(Í2) and x £ -^o(^) *ne solution of the
following linear problem:

- c(ufc,y,v) + c(v,u,y)

- (x.V-v) = (u-iifc.v), VveHj(í2) (3.27)

(V-y.ç) = 0, Vqe

Existence and uniqueness of a solution to this problem is guaranteed by
the stability estimate of the continuous solution u, the uniqueness condition
3.3 and the continuous LBB condition:

Lemma 3.1: assume that 3.3 holds; then, problem 3.27 has a unique solution

(y.x).
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PROOF: taking v G V, the first equation of 3.3 can be written as:

aaux(y,v) = K(y>v)) - c(uA,y,v) + c(v,u,y) = (u-u f c ,v) (3.28)

The bilinear form aaux is continuous in Y x Y, due to the continuity of the
trilinear form c on (H¿(Í2))3 and the stability properties 3.7 and 3.11 of the
continuous and discrete solutions u and U;,, respectively. Skew-symmetry of
c implies that, for all v G Y:

a-"(v,v) = i/||v||a - ¿-(v, v, u) > HHI2 - C7m||v||2||u||

v

and the uniqueness condition 3.3 ensures that this coefficient is possitive, so
that aaux is coercive on Y. The Lax-Milgram theorem establishes existence
and uniqueness of a solution of 3.28 in Y, and the continuous LBB condition
1.25 that of x m

This result is now used to obtain improved error estimates for the velocity
and pressure in the space L2(ii), assuming more regularity on the domain:

Theorem 3.2: assume that the domain Í7 is such that the Stokes problem
2.13 is regular, that conditions 1.23, 2.28 and 3.3 hold, and that a satisfies
2.36. Then, the solution (u/,,p/i, w^) o/3.9 satisfies:

\u-uh\ + h\p- Ph\Ll(n) < Ch E(h) (3.29)

where (u,p) is the solution o/3.1.

PROOF: the proof is essentially the same as in that of Theorem 2.2 in Section
2.3, so that only the modifications related to the convective term will be
specified. The regularity now assumed on ÌÌ implies that the estimates 2.64
hold for the solution (y, %) of the auxiliary problem 3.27. Let now y^ and Xh
be optimal order approximations satisfying 2.65 and TÍ (i=l,2,3) the three
terms into which |u — u/,|2 can be split (see the proof of Theorem 2.2); we
only need to account for T2) which is now:

- c(u f c ,y,u-u f c) + c(u-u f c lu,y)

c(uhiuH,yh) - c(u,u,yfc)
c(u-Ufe ,u ,y)

c(uh-u,u,yH) - c(ufc-u,u,y)
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pfc) .y-yfc) +c(uh,uh-u,yh-y)
+ c(uh-u,u,yh-y) j

< Ch2\\y\\2\v(p-Ph)\ + ch\\uh-u\\\\y\\,
< Ch(h\V(p-Ph)\ + | |(u-u fc)||)|(u-uk)|

and the error estimate for the velocity is established. As for the pressure,
we call again z and £ the solution of the Stokes problem 2.66 and Zh an
approximation of z satisfying 2.68; we now have:

\P-Ph\2 = (p-Ph,p-ph) - (V-z ,p
= (V -(z-z^.p-ph) - (zk ,V(p-pfc))
= - (z - zfc> V(p - pk)) + i / (V(u-Ufc) ,Vzfc)

+ C(U,U,ZA) - c(uh,Uh,zh)

= - (z _ zfc, V(p - j»fc)) -f z / (V(u-Ufc) ,V(zfc -z ) )

= - (z - ZK, V(p - PA)) + i / (V(u-Ufc) ,V(z f c-z))
+ (V(u-u^),Vz) + c(u,u-uA ,z^-z)

+ c(u,u-u^,z) + c(u-uh,uh,zh-z)

+ c(u-uhìuhìz)

< |z - zh\ I V(p - Pfc)| + „ ||u - i

and the estimate for the pressure is established. D

3.4 Computational aspects

The discrete nonlinear equation system 3.9 can be solved numerically in
different ways. We studied and compared several possibilities for its solution,
all of which take the form of iterative methods.

With the notation introduced up to now, the equation system 3.9 relative
to a finite element discretization of the domain Í2 can be written as:

A(U)U + KU + G0P = F

-GlU + aLP - aG'W = 0 (3.30)

GP - MW = 0
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This equation system is a nonlinear problem for the variables (Í7, P, W);
standard nonlinear solvers may be applied to it, but, once more, it seemed
appropriate to take advantage of the particular structure of the system, so as
to reduce its size and storage requirements. We decided to develop iterative
solvers based on the coupled block-Gauss-Seidel method for the linear prob-
lem introduced in 2.5.2 ( the uncoupled block-Gauss-Seidel scheme of 2.5.1
was impractical even for the linear case). We will first present the different
alternatives considered, which employ either a Picard or a Newton-Raphson
method for the nonlinearity, and then show their performance on a standard
test problem. We concentrate here again on the performance of each of the
different schemes, putting off to the next Section the analysis of the results
actually achieved, which, anyway, were almost the same for all the methods.

All the schemes are presented in the form of an iterative process for the
variables Í7, P and W. The same initializations as in the linear case are
assumed.

In the implementation on the computer, we have adopted the standard
formulation of the convective term (u • V)u, as in equation 3.1, although
the analysis of the reformulated method for the Navier-Stokes problem was
based on a skew-symmetric formulation. Nevertheless, the discrete velocity
field in this method is 'nearly' incompressible, since, according to 3.9, we
have that V • u/, = O(a\ Vj?/, — w/,|). This quantity will be small, given that
a = O(h2) and that both Vph and w^ approximate Vp to optimal order in
h. The difference between the two formulations of the convective term in
this method is negligible.

3.4.1 Nonlinear iterative solvers

We considered several possibilities for the numerical solution of the nonlinear
system of equations 3.30, which we explain in what follows.

• Coupled formulation-nonlinearity scheme.

We considered the possibility of coupling the iterations required to solve
the linear problem with the coupled block-Gauss-Seidel scheme, which
we say are due to the formuJaiion, with those of a nonlinear solver,
either by an explicit, Picard's or Newton-Raphson's method.

The first and simplest alternative consists of evaluating the nonlinear
term A(U)U at the previous iteration values, in an explicit way. Thus,
a straightforward extension of the coupled block-Gauss-Seidel scheme
to the nonlinear case reads:

KIT + Gopt = F -
G^IT + aLPi = aG'

MWi = GPi
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The obvious advantage of this scheme is that the system matrix of
the linear problems to be solved at each iteration is the same for all
the iterations; it can thus be computed and factorized only once at
the beginning of the calculations, if direct methods are to be used for
these linear problems. The computational cost of this method is, in
principle, similar to that of the linear problem, but for the evaluation
of the convective residue A(U*~l}Ul~l at each iteration and if a similar
number of iterations were required for convergence.

The explicit approximation of the convective term is a zero-th order
method. Its main disadvantage, however, is that it is highly. unstable,
even for relatively low Reynolds number flows; in our computations, we
could not go beyond a value of Re = 10 with this scheme. This makes
this alternative not usable in practical situations.

If a Picard's approximation is used for the nonlinear term, the scheme
reads:

A(ir'-l)ir + KIT + G0p
1' = F

-d'oir + aLPi =
MWi = GPi

whereas for Newton-Raphson, it is:

KIT + GOP =
ir + aLpi =

MWi = GPi

We expected this coupled schemes to combine the stability properties
of the nonlinear solvers with the convergence properties of the method
for the linear problem, maybe at the expense of a few extra iterations
with respect to the linear problem. However, the matrix for the linear
systems for velocity and pressure to be solved at each iteration is not
constant any more, and needs being computed and factorized at each
iteration. The mass matrix for the pressure gradient equations may,
again, be considered consistent or lumped. The convergence criterion
for this method is the same as for the linear problem, that is, 2.102.

This method produced acceptable convergence results, but still not
comparable to standard nonlinear solvers (see 3.4.2). Other sources
of trouble were that the method was unstable for large values of the
Reynolds number and that succesive over (or under) relaxation proved
inadequate in this case.
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• Nested formulation-nonlinearity scheme.

We considered a second possibility consisting of a pair of nested loops,
an ouier iterative process for the formulation, similar to the coupled
block-Gauss-Seidel scheme of the linear problem but with a fully im-
plicit approximation of the nonlinear term, and an inner iteration loop
to solve this nonlinearity at each of the outer iterations. That is, at
the z-th iteration level of the outer scheme, and with the following
initializations for the nonlinear solver: Í7*'° = í/*"1, P*'0 = P'"1 and
Wt>0 = VF*"1, the nested formulation-nonlinearity scheme with a Pi-
card's method for the nonlinearity is:

+ KUi>j + Copt'* = F
+ alp*'* =

This scheme is iterated in j until the convergence criterion:

holds. In that case, we set U* and P* equal to the last iteration values,
and update W'"1 as MWi = GP*. For Newton-Raphson's case,
this scheme becomes:

G0P = F
+ A(

+ ccLP*'* = aGtWi-1

In either case, the outer iteration loop stops when condition 2.102 is
satisfied.

These methods have the disadvantage that at each of the outer itera-
tions, a number of linear systems has to be solved with different system
matrices, which have to be computed and factorized every time. Nev-
ertheless, we hoped that as the outer iteration scheme proceeds, the
number of inner iterations needed to solve the nonlinearity would de-
crease, since the initial values for the nonlinear solver progressively ap-
proach the solution. This fact could, in principle, make these methods
competitive with the previous ones, but that was not the case.

Nested nonlinearity-formulation scheme.

Finally, we developed a method in which the inner and outer iterations
loops of the previous schemes are performed in reversed order. That
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jis, an outer iterative method is considered to solve the nonlinearity of
the full problem, within which- an inner iteration scheme of the coupled
block-Gauss-Seidel type is used for the formulation of the method. In
Picard's case, setting UQ>j = Uj~l, P0-' = Pj~l and W°'j = Wj~l at
the j'-th outer iteration level, this means:

A(U'-l)Ui·i + KUiJ + GoP^ = F

-Cf0U
ili + aLP^ = a

MWi<j = GPÍ

This scheme is iterated in i until:

IT- P*-J W - J < ecou,

where the error function Err was defined in 2.102; the final values of
Uitj, P''* and Wi>j are then taken as Uj, Pj and CP, respectively. The
outer iteration (in j) proceeds until:

Err(£P, Pj, Wj; t^1, P'"1, W^1} < e^

Convergence of this Picard's iteration in j was proved theoretically in
Section 3.2.

In Newton-Raphson's case, this becomes:

A(U'-l)Ui'i + A^ÌU'-1 + KUiJ + GoP^ = F +

These methods proved to be superior to any of the schemes previously
considered. At each of the outer iterations, a single system matrix
needs being computed, which is the same for all the inner iterations
(since it does not depend on (i — 1)). Moreover, the number of inner
iterations required to solve the linear formulation decreases as the outer
iteration scheme advances, becoming very small in the last stages, as
the initial approximation approaches the solution.

In the next Subsection we present a study of the computational perfor-
mance of all these different iterative schemes on a test problem. In particular,
we compare the convergence rates of these methods for the solution of the
reformulated Navier-Stokes equations 3.30 among themselves and with the
GLS method, which is again one of the most widely used methods for the
Navier-Stokes equations existing nowadays; besides, this scheme, like ours,
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is also formulated in terms of primitive variables and allows the use of equal
order interpolations.

The extension of the GLS formulation of the Stokes problem to advective-
diffusive equations first and then to a linearized form of the incompressible
Navier-Stokes equations was studied by L.P. Franca et al. in [35] and [36],
and convergence analysis for these methods were also given in [37]. For the
full nonlinear, incompressible Navier-Stokes equations, the GLS method can
be written as:

((ufc.V)u fc,v fc) +

+ Vph - f , (uh

(V • Uh, qh) + £ <*K (Ufc ' V)ufc - I/AUfc + Vph - f ,
Kçeh

= O, Vçfc 6 Q

(once again, we have omitted term r2(V • u/,, V • v^)) present in the original
formulation of the method, see [36]). The local parameters ax are taken here

h2

again as ajc = OLO~ — , where cto = 1/3 for the PI and Q\ elements.
Notice that this scheme introduces additional nonlinearities in the prob-

lem, such as a cubic one or the dependence of the coefficients ajf on u^.
Quadratic convergence rates of Newton-Raphson's scheme are not preserved
for this problem, so that a Picard approximation is used for all convective
terms in these equations. The proof of convergence of this method to the
continuous solution is still an open problem.

3.4.2 Performance of the iterative schemes

As a test problem to evaluate the convergence rates of the different schemes
just presented, we considered again the cavity flow problem, this time for the
Navier-Stokes equations 3.1. This flow problem was solved at two different
Reynolds numbers, Re= 400 and Re= 1000.

We used the nonuniform 39 X 39 mesh of Figure 2.4, with a PI element
interpolation. We employed local values of the parameter a. A consistent
mass matrix was taken for the pressure gradient in all cases (mass lumping
did not affect the convergence of the nonlinearity). These data were selected
because they displayed the best results in the linear case, so as to concentrate
here on the performance of the nonlinear solvers.

We present the convergence results for the different schemes in Table 3.1
for Re= 400 and in Table 3.2 for Re= 1000 (the explicit scheme diverged in
both cases). The methods are coded according to the following notation:

• CFNP: coupled formulation-nonlinearity Picard method
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]
• CFNNR: coupled formulation-nonlinearity Newton-Raphson method

• NFNP: nested formulation-nonlinearity Picard method

• NFNNR: nested formulation-nonlinearity Newton-Raphson method

• NNFP: nested nonlinearity-formulation Picard method

• NNFNR: nested nonlinearity-formulation Newton-Raphson method

We include the performance rates for the GLS method for comparison.
We show the number of outer and, when applicable, inner iterations needed
for convergence in each case for the following values of the different tolerances:

• CFN: ecou = IO'3.

• NFN: ecou = 10~3, e„i = 10~4.

. NNF: ecou = KT3, e^ = KT3, for Re= 400.

• NNF: ecou = 10-4, eni = 10~3, for Re= 1000

• GLS: enl = IO'3.

which were chosen so that the precision of the solution of the inner iteration
loop did not influence the convergence of the outer loop, which was always of
0.1%, and so as to converge fastest in each case (in this sense, in the NNFP
case for Re=1000 a relaxation value of 1.3 was used). We also show the total
computing time, as a percentage of that of the NNFP scheme. The cases
that are not indicated in this Tables diverged.

It can be observed that both in CFN and NFN based schemes the conver-
gence is dominated by the formulation, and rather slow; NFN schemes are
specially costly because of the need to form and factorize the system matrix
at each of the inner iterations. On the contrary, in NNF schemes the overall
convergence is dominated by the nonlinearity, and the convergence of the
inner iteration loops becomes faster as the outer loop proceeds; in particu-
lar, Newton-Raphson's scheme requires a few iterations less than Picard's,
but it is globally more expensive due to the evaluation of some extra terms,
and becomes unstable at Re=1000 (we tried starting it after as many as 5
Picard's iterations and it still diverged). Finally, our NNFP scheme proved
to be a little more costly than the GLS method, given that it needed one
more iteration in both cases and that it has to deal with the inner iteration
loop for the coupling with the pressure gradient variable.
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Scheme

CFNP

CFNNR

NFNP

NNFP

NNFNR

GLS

Outer Iterations

17

17

17

8

6

7

Inner Iterations

.

.

14,14,13,10,10,10
9,6,6,6,6,6
5,5,2,2,2

16,11,7,5,4,2,2,1

16,11,5,10,10,1

_

Total CPU time

200

285

1461

100

108

85

Table 3.1: Convergence of the nonlinear solvers, Re=400.

Scheme

CFNP

NNFP

GLS

Outer Iterations

67

11

10

Inner Iterations

_

9,15,17,17,13,12
10,8,7,6,5

.

Total CPU time

563

100

82

Table 3.2: Convergence of the nonlinear solvers, Re=1000.
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i
3.4.3 Summary of computational aspects

We have developed several methods for the solution of the nonlinear discrete
problem 3.30, all of which take the form of iterative schemes with either
a Picard or a Newton-Raphson approximation of the nonlinearity. After
several tests on a benchmark problem for two different values of the Reynolds
number, it turns out that the most efficient scheme is a system of two nested
loops, the outer one being a Picard iteration for the nonlinearity and the
inner one a variant of the coupled block-Gauss-Seidel scheme of the linear
problem with an additional advective term. This method remained stable and
convergent even for moderately convective problems, when Newton-Raphson
based schemes diverged due to poor initializations.

A comparison of the performance of this scheme with the GLS method for
the same test case indicates that the latter needs about 20% less computa-
tional time than the former, in average. However, the reformulated method
retains the quadratic convergence of Newton-Raphson's iteration, which, al-
though unstable for high Reynolds numbers, can be very efficient in transient
problems. Moreover, we will show in the examples of the next Section that
our scheme produces more accurate results than the GLS method on the
same mesh. Besides, in one of the numerical examples of the next Section
we present a more detailed comparison of the numerical performance of our
Nested Nonlinearity-Formulation Picard method with the GLS method.

3.5 Numerical results

We present here some of the results obtained with the reformulated method
for the Navier-Stokes equations on three test problems: the cavity flow prob-
lem considered in the convergence analysis of the previous Section, a problem
with an analytical solution and a problem of Poiseuille flow through a junc-
tion of pipes. The second case was intended again to achieving the optimal
orders of accuracy in the mesh size proved theoretically for the different vari-
ables, norms and element types, while in the third one we give a detailed
comparison of the performance of our method with the GLS method.

3.5.1 Cavity flow problem

The results obtained in the convergence analysis of the previous Section
for the lid-driven cavity flow problem were identical for the different solu-
tion methods. We present the results of the nested nonlinearity-formulation
scheme with a Picard approximation of the nonlinearity, for Re=400 (in
Figures 3.1 and 3.2) and Re=1000 (in Figures 3.3 and 3.4), in the form of
streamlines and pressure contours. Secondary bottom left and right sub-
vortices, commonly found for these values of the Reynolds number, can be
observed, whereas no top left vortex is present. These results compare well
with benchmark solutions for this problem, such as those of [42] and
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Figure 3.1: Cavity flow, Re=400, streamlines.

and other published solutions such as those of [6], [96] or [99], for Re=400,
and [30],[65], [96] or [99], for Re=1000. The pressure results also compare
well with those present in these references.

3.5.2 Kovasznay flow
In order to check numerically the optimal orders of accuracy proved theoret-
ically for the different variables and norms in Section 3.3, we considered a
problem introduced by Kovasznay (see [69]), modelling laminar flow behind
a two dimensional grid, in which an analytical solution of the steady in-
compressible Navier-Stokes equations with no forcing term is available. The
velocity solution u = (u, v) is given by:

u(x,y) = l - eAzcos(27T7/)

/ ^ A A* .v(x,y) = ^e si

(3.32)

for (x, y) € IR2, whereas the pressure is:

p(x,y) = Po - ~ (3.33)

where po is an arbitrary constant and the parameter A is given in terms of
the Reynolds Re number by:
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Figure 3.2: Cavity flow, Re=400, pressure contours.

Figure 3.3: Cavity flow, Re=1000, streamlines.
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Figure 3.4: Cavity flow, Re=1000, pressure contours.

Re .Re2

A = — - (— 2.1/247T2)1/2 < 0

This flow problem was solved numerically in [93] and [63] for a value of

Re= 40. We solved it in the domain ÍÏ = [— — , 1] x [ — — , — ] for that value
Zt £ ¿

of the Reynolds number (that is, for v = 0.025), with the four elements
considered and on four different uniform meshes, made up with 19 x 13,
31 x 21, 43 x 29 and 61 x 41 nodes, respectively. In all cases, the solution
was obtained by the nested nonlinearity-formulation scheme with a Newton-
Raphson approximation of the convective term and a consistent mass matrix
for the pressure gradient system, starting from the fluid at rest, but for
the prescribed boundary conditions (which were given by the value of the
analytical solution at the boundary). The tolerance for convergence in the
iteration for nonlinearity was eni = 10~4, and the same value was taken for the
tolerance of the inner formulation iteration. It took 5 iterations of Newton-
Raphson's method in all cases to find the solution. The only exception was
the P-2 element case with the finer 61 x 41 mesh: Newton-Raphson's method
diverged in that case; we used Picard's iteration instead, which required 9
iterations to find the solution for the same values of the tolerances. The
number of inner iterations decreased with the outer iteration scheme in all
cases, from about a hundred in the first iteration, in the worst cases, to one
in the fifth iteration in all cases. No relaxation was used for this problem.
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Figure 3.7: Kovasznay flow, velocity error in Hl: + P\ Element; • Q\
Element; o P2 Element; x Q2 Element; D = GLS method, Q\Q\ element.
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Figure 3.8: Kovasznay flow, pressure error m H1: + P\ Element; • Q\
Element; o P2 Element; x Qi Element; D = GLS method, Q\Q\ element.
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Figure 3.9: Kovasznay flow, pressure gradient error in L2: + PI Element;
• Qi Element; o P2 Element; x Qi Element.

We then computed the exact errors |u — u/J, ||u — u^||, \p— p^|, |Vp— Vp/J
and |Vp — w/t] for each mesh and element. Since this is a confined flow
problem, we fixed the value of the pressure at the last node to zero, which
always corresponded to the top right corner (l.,0.5). We then had to take
Po = feA in 3.33 so that the analytical solution also satisfied this linear
restriction.

The results obtained can be seen in Figures 3.5 to 3.9 as a function of the
mesh size, where we have included the errors obtained for the GLS method
with a QiQi element interpolation for comparison. The linear regression
coefficients computed for these lines are shown in Table 3.3. As can be ob-
served, the theoretical orders of accuracy are found in all cases (they are
again those of Table 2.5); those of the velocity solution are specially sharp,
whereas for the pressure there seems to be a gain of one order of accuracy
both in L2 and H 1 . In particular, the convergence of the pressure gradient
was not ensured by the theory for linear and bilinear elements, but never-
theless they display at least first order convergence for this variable. We
conjecture that this improvements in the accuracy of the pressure solution
are a consequence of some superconvergence phenomenon, which is probably
due to the extreme regularity of the meshes used (they are all made up of
uniform square elements).

Moreover, it is clearly seen that the GLS method, although optimal in
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Element

Pi

Qi

P2

Q,

|U - Ufc|

2.0

2.0

3.0

3.0

IP - Pfcl

2.0

2.1

2.9

3.4

H u - U f c H

1.0

1.0

2.0

2.0

1 Vp - Vph

1.1

1.2

2.0

1.6

I Vp - Wfc|

1.3

1.8

2.0

1.7

Table 3.3: Kovasznay flow: linear regression coefficients for different errors.

all cases, produces less accurate results than our method, specially for the
pressure. Once again, the Q2 element provides the most accurate results.

We present the numerical solution obtained with the PI element on the
31 X 21 mesh in Figures 3.10 and 3.11 for the velocity and the pressure,
respectively. All the solutions we computed were almost indistinguishable
from one another from a graphic point of view.

3.5.3 Poiseuille flow through a junction of pipes

We finally considered a test problem introduced by J.G. Hey wood et al. in
[56], which consists of a fully developed channel flow in a pipe which bifur-
cates into two. This problem was considered in [56] to study the effect of the
truncation of an unbounded domain and the introduction of artificial bound-
aries; they were specially concerned about the effect of 'natural' boundary
conditions in outflow boundaries, associated to different formulations of the
Navier-Stokes equations. Beside this issue of artificial boundary conditions,
here we use this problem as a numerical check of the performance of our
method with respect to the GLS formulation.

The geometry and mesh used for this problem can be seen in Figure 3.12;
we used bilinear quadrilateral elements. The mesh consists of 2076 nodes
and 1950 elements. A Poiseuille inflow was prescribed upstream, the no-
slip condition was enforced on the channel walls and natural conditions were
applied weakly at the two outlets. We also set f = 0 for this problem.

We iterated our NNFP scheme to convergence at a tolerance of Cjj = 10~3,
starting from the fluid at rest, but for the inflow boundary condition, with
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Figure 3.10: Kovasznay flow, streamlines.

Figure 3.11: Kovasznay flow, pressure contours.
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Figure 3.12: Flow through a junction, mesh.

Klocal parameters C*K = GO- — with aQ = 1/3, and for a Reynolds number

of 50 (as in [56]). It took 8 iterations of our scheme to reach convergence,
each of which needed 15, 10,8,6,4,2,2 and 1 iterations, respectively, for the
inner loop to converge at a tolerance of ecou = 10~3. We also considered the
GLS method with a Picard iteration and the same initial values. It took 7
iterations of this scheme to reach a converged state.

In Table 3.4 we present the results of a study of computing times (in
seconds) for different phases of the two methods. The first row displays
the average CPU time spent per iteration in the two cases, which is then
split into the following four rows. The first one of these shows the average
cost of the computation and assembly of the system matrix for the velocity-
pressure equation; we have included here the times required for the common
terms of the two methods, that is, the Laplacian for velocities and pressure,
the gradient and divergence matrices and the advective term A(Ul~l). The
next row shows the time needed for the additional terms with respect to the
previous ones: in the GLS method, these correspond to the extra terms in the
formulation, whereas in ours they are due to the need to evaluate the pressure
residue aGW"1'-7 at each of the inner iterations (of which there are 6 in each
of the outer ones in average). The average time for the matrix factorization
in each iteration and the system solution (once per iteration in the GLS
method and 6 times, in average, in ours) is shown in the fourth row; it can
be deduced from it that it takes about 0.1 seconds, in average, to perform a
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CPU times

Average per
iteration

Matrix
computation

Additional
terms

Matrix fact.
and solution

Pres. grad.
solution

Total time

GLS method

18.2

14.7

1.7

1.7

-

84

Present method

18.4

15.2

0.6

2.2

0.3

100

Table 3.4: Flow in a junction of pipes: comparison of performance of the two
methods.

forward and a backward substitution in this case (the unknowns are reordered
at the beginning of the program following a certain renumbering strategy
which minimizes the storage requirements of the system). Finally, we show
the average time (in the outer iterations) required in our method for the
pressure gradient residue formation and solution for all the inner iterations
(this gives about 0.04 seconds per forward and backward substitution for this
variable in this case). The total computing time, as a percentage of that of
our method, is given in the last row.

It can be concluded from these computations that the evaluation of the
extra terms in the GLS formulation makes it more costly to form the system
matrix for that case in each iteration; but the need to perform the inner
iteration loops for the coupling with the pressure gradient makes the average
cost per iteration comparable for the two methods. Once again, our scheme
needs one more iteration for the overall convergence, and this makes it about
19% more costly than the GLS method, in this example.

We show the results obtained for this problem in Figure 3.13, for both
the GLS method and ours. The pressure contours and streamlines are quite
satisfactory in both cases. To check the effect of the shorter outflow region
introduced in the computational domain, we computed the flux through the
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Method

GLS

Present

Upper outflow

0.36779

0.36804

Lower outflow

0.24369

0.24344

Total outflow

0.61148

0.61148

Table 3.5: Flow in a junction of pipes: flux through outflow regions.

upper and lower outflow sections for the two methods. Knowing that the
inflow flux was 0.61148, ideally one would like to find half of that flux flowing
through each outlet region, that is, 0.30574. The actual results obtained,
which can be seen in Table 3.5, are very similar for the two methods; in both
cases there is a greater flow through the upper section, but the total flux was
conserved very accurately.
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Figure 3.13: Flow through a junction: a) GLS method, streamlines; b)
GLS method, pressure contours; c) Present method, streamlines; d) Present
method, pressure contours.



Chapter 4

Viscosity splitting fractional
step method

In this Chapter we develop and study a fractional-step method for the solu-
tion of the unsteady, incompressible Navier-Stokes equations. These equa-
tions constitute the full nonlinear, time evolution problem of incompressible
viscous flow motion, whose numerical solution is of an undoubtable practi-
cal importance. Numerical methods for this problem have to deal with the
discretization of both space and time.

The fractional-step method that we consider is mainly intended to over-
come the difficulties encountered in projection methods regarding the impo-
sition of boundary conditions. In our method, each time step is decomposed
into two substeps, and in each of these the velocity boundary conditions of
the continuous problem are enforced. Moreover, incompressibility is split
from the nonlinearity, which are the two main difficulties met when solving
the Navier-Stokes equations.

Furthermore, this method was introduced during the study of a known
predictor-multicorrector algorithm applied to the solution of the unsteady,
incompressible Navier-Stokes equations, which was this way shown to belong
to the category of fractional-step methods. The study of this algorithm is
the object of Chapter 5.

We review some known facts about the unsteady, incompressible Navier-
Stokes equations in Section 4.1. In 4.2 we introduce the fractional step
method that we consider, and prove the convergence of this method to the
continuous solution. Moreover, under some stronger regularity assumptions
on the continuous solution, we prove some error estimates for the velocity
solution in the case of homogeneous Dirichlet boundary conditions; these es-
timates show that in this method both the intermediate and the end-of-step
velocities are weakly order 1 accurate in the time step in the space L2(íï),
and weakly order 1/2 in H¿(Í2)¡ this last fact is possible due to the satisfac-
tion of the correct boundary conditions at the two steps of the scheme. The
pressure solution is also shown to be at least order 1/2 accurate. In Section
4.3 we consider a similar fractional step method, this time with pressure cor-

123
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\

rection; similar error estimates are proved for this method for the velocity
and pressure solutions. We then make some further remarks on fractional
step methods, concerning the dependence of the steady state solution reached
with these methods with respect to the time step. Furthermore, in 4.4 we
present the fully discrete version of our viscosity splitting, pressure correc-
tion method with two different finite element space interpolations, and an
efficient implementation of this method, while in 4.5 we show some numerical
results obtained with it.

4.1 The unsteady, incompressible Navier Sto-
kes equations

We recall here the standard formulation of the unsteady, incompressible
Navier-Stokes equations in primitive velocity-pressure variables, assuming
homogeneous Dirichlet boundary conditions for simplicity of exposition:

r\

-^ + (u . V)u + Vp - i/Au = f in O x (O, T)
C/£

V • u = 0 in O x (O, T)
u = o on r x (o, r)

u(x, 0) = u0(x) in Q

Complete studies of this equation system can be found in [105], which we
mainly follow here, and [71].

With the notation introduced in Chapter 1, the weak form of this problem
consists of finding two functions u 6 ¿2(0, T; H¿(Í7)) and p 6 X2(0, T;
such that, given f 6 £2(0, TjH-^fi)) and u0 6 H:

= (f, v), Vv 6 Hj(fl)

6(u(í),ç) = 0, Ví6¿S(fl)

u(0) = uo (4.1)

If the dimension of space is d < 4 and the domain Í2 is bounded and
Lipschitz continuous, problem 4.1 has at least one solution (u,p), which
satisfies u G L°°(0,T;H) (see [105]). Uniqueness holds in the 2-dimensional
case; in fact, if d = 2 the solution (u,p) is unique, u is a.e. equal to a
continuous function from [0, T] into H and limt_o+ u(<0 = uo in H. We
assume that this continuity result also holds in the three dimensional case.

Uniqueness and more regularity of the solution can be proved by assuming
more regularity on the data f and u0 and the domain ÍÏ. In fact, according
to Heywood and Rannacher (see [54]), if d < 3 and fì is such that the Stokes
problem is regular, and if one assumes:
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Al) uo G H2(0) n Y and f, ft € £°°(0, T; L2(íi)).

A2) if d = 3, supí6[0iT] (||u(í)||) < ML

Q

(the subindex í is employed hereafter for —) then the solution u of 4.1 is
c/c

unique and satisfies u Ç. C°(0, T; Y), ||u(í) — U0||2 —> O as í —> O and:

Rl) supte[0iT] {||u(í)||2 + |ut(í)| + \Vp(t)\} < C

R2) tflKOH'Ä < C

R3) £t\Mtt(t)\*dt < C

Condition A2 is automatically satisfied in the 2-dimensional case. Under
the assumptions Al—A2, it is also shown in [90] that, according to the
modifications introduced in [92]:

R4) /0
r|iu«(í)Hf,,dí < C

These regularity results will be used in the following Sections. As is
common practice in this context, we will use repeatedly in our proofs a
discrete version of the Gronwall inequality. For the sake of completeness we
recall the result here, but we refer to Hey wood and Rannacher ([55]) for a
proof. The version of this inequality that we shall use is the following:

Lemma 4.1: let o¿, 6;, c¿, 7,- (i € TN), k and B be positive real numbers such
that, for n > 0:

n+l n+1 n+1

«n+i + k £ bi < k^ 7,-Oi + k £ a + B (4.2)
¿=0 «=0 t=0

Suppose that k-fc < 1 for all i, and set crt- = (1 — &7,-)"1. Then:

n+1 n n+1

k E b< ^ exp(* 5>™) (k Ê « + B)
t=0 t=0 t=0

Moreover, as it is deduced from a Remark in page 370 of [55], when the
first sum on the right-hand-side of 4.2 extends only to n, then 4.3 holds for
all k with (TÍ = 1. In both cases, when all the coefficients 7,- are bounded from
above, k = 5t and n < [T/k], the exponential term in the right-hand-side
of 4.3 can be bounded by a constant C independent of k. This is the result
that we will actually use.

In some of our proofs we will also make use of the operator A~l, defined
as the inverse of the Stokes operator A = — Pg-A. The latter is defined for
u 6 D(A] = Y H H2(Í7), and is an unbounded, positive, self-adjoint closed
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|
operator onto H. Given u € if, by definition of .A, v = .A"1 u is the solution
of the following Stokes problem: í

-Av -f- Vr = u

V - v = 0 (4.4)

V|r = 0

When fi is such that this problem is regular, there exists a constant
Ci > 0 such that:

p-'ull. < CiNU for 5 = 1,2 (4.5)

Some inequalities were given by J. Shen in [90] for (j4-1u, u), with u 6 H,
in terms of ||u|j_i, and used there to deduce error estimates for the standard
projection method. Namely, he had:

C^MIÏ! < (A-lu,u) < CiHuJlij (4.6)
where C\ is the constant appearing in 4.5. But, as pointed out by J.L.
Guermond in [50] and corrected in [92], the first inequality in not correct
and has to be modified to:

Ca||u||^ < (A'1!!,!!) (4.7)

With this modification, it is claimed in [92] that the results obtained in
[90] (and [91]) still hold if the norm ||u||_i is replaced by ||u||y/ throughout
the proofs. This is not quite true, since he is still using the inequality 4.5 for
5 = 1. We now show that in 4.5 with 5 = 1 the norm ||u||_i can be replaced
by ||u||y», which is what we actually use in our proofs. Thus, given u € H
let us call v = A~xu; we have:

VA-'ll)) = ((V,V))

= (u,v) + (r ,V-v) = (u,v) = < u , v >

< IMMMI = ||u|M|A-lu||
Thus, we have proved that:

P'1"!! < ||u||y.

We will use this result in what follows.

4.2 Viscosity splitting method

4.2.1 Development of the method

We present here a fractional-step method for the approximation in time of
4.1, in a semidiscrete form. The main purpose of introducing this scheme
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is to be able to enforce the boundary conditions of the original problem in
the two substeps of the method, thus overcoming the difficulties of standard
projection methods in this sense, which were explained in Section 1.5. This
is achieved by splitting the viscous term into the two substeps. Some of
the results presented here can be found in [11]. The method is presented
depending on a free parameter 0 > 0, which we subsequently fix to 1.

First step: The first step of the method consists of finding, given un 6 Y,
an intermediate velocity un+1/2 such that:

U«+l/2 _ un

SÍ
- 0z/Aun+1/2 - (l-0)i/Aun + (un-V)un+1/2 =

un+1/2|r = 0 (4.8)

where 0 < 6 < 1. The approximation of the convective term may take other
forms; the semi-implicit approximation adopted here is taken from [90]. The
weak form of 4.8 can be written as:

a?(u"+1/2,v) = ^(v), VveHj(ft) (4.9)

where the bilinear form a£ is defined by:

<(u,v) = (u,v) + 0¿íz/((u,v)) + ¿>f((u n .V)u,v) ,

and the linear form l\ includes the known terms of 4.8, namely ¿i(v) =
(un,v) - (l-0)áíi/((un,v)) + íí(f(ín+1),v). One has that a% is continu-
ous and coercive with respect to ||u|| in Hj(iî), due to the skew-symmetric
character of the approximation of the convective term (which is in turn a
consequence of the solenoidal character of un and the vanishing of un at the
boundary) and the presence of the Laplacian term. The form l\ is continuous
on H¿(Í2) because of the Schwarz and Poincaré inequalities, so that existence
and uniqueness of u"+1/2 is established by the Lax-Milgram theorem.

The fully implicit case 6 — 1 can be found in the original projection
method of R.Temam (see [100]) and in the method of J.Shen ([90]), among
others. The Crank-Nicholson case 0 = 1/2 is of main importance, since it
provides a second order approximation of the viscous term. It is present in
higher order methods such as [8], [45], [62] and [65]. The basic difference
among these methods is the treatment of the nonlinearity, which is normally
second order in time and explicit. The explicit case 0 = 0 has also been
considered before (see [30] or [73], for instance); we exclude it from the
present study because in that case the bilinear form a£ is not coercive on
Hj(fi).

Second step: For the second step of the method, we avoid using the stan-
dard projection idea; instead, we include a diffusion term together with in-
compressibility, which allows the imposition of the full boundary conditions
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i

for the velocity. That is, given un+1/2 from equation 4.9, we look for an
end-of-step velocity un+1 and an end-of-step pressure pn+1 such that:

0z/A(un+1 - un+1/2) + Vpn+1 = 0 (4.10)
oír

V-un + 1 = 0 (4.11)

un+1|r = 0 (4.12)

Similar ideas to this scheme can be found in some of the viscosity splitting
methods of subsection 1.5.3. The weak form of 4.10-4.11-4.12 consists of
finding un+1 <E Hj(fì) and sn+1 = Stpn+l e L2

0(ti) such that:

b(v,sn+l) = Z2(t,), Vve

) = 0, Vcelftfl) (4.13)

where now:

a*(u,v) = (u,v) + 0«»/((u,v)) (4.14)

is a bilinear, symmetric, continuous form on Hj(fi), which is also coercive
with respect to j|u||, and ̂ (v) = a«(un+1/2, v) is a known linear continuous
map. Problem 4.13 is a mixed problem, in which ag is coercive and b satisfies
the continuous LBB condition 1.25, so that existence and uniqueness of a
solution (un~l~1,,sn+1) is guaranteed.

REMARK 4.1: By adding 4.8 and 4.10 one gets:

+ (un • V)un+1/2
un+l _

il

(4.15)
where the implicit treatment of the viscous term in un and un+1, and not
in the intermediate velocity un+1/2, can be observed. Moreover, it is clear
from 4.15 that, at least for the linear problem, pn+1 keeps its meaning as an
end-of-step pressure (this is not the case for some fractional step projection
methods). The advantage of using a split scheme like 4.8-4.10 rather than a
single (u,p) step is the decoupling of the convective effects from incompress-
ibility, which allows the use of suitable approximations for each term.

REMARK 4.2: As in standard projection methods, a Poisson equation
can be derived for the pressure to solve 4.10-4.11-4.12. In fact, taking the
divergence of 4.10 and using 4.11 yields:

6t&pn+l = (I - O St i/A) V • un+1/2 eH-l(Sl) (4.16)

sufficient smoothness of the functions involved been assumed. But in order
that 4.16 and 4.10 imply 4.11, the incompressibility condition V • un+1 = 0
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must also be enforced on the boundary (see [66]), as in the original method
of A.J. Chorin (see [22]). Besides, boundary conditions for pn+1 cannot be
directly derived, and pn+1 is subject to integral conditions (see [82]). There-
fore, the original grad-div formulation 4.10-4.11 is adopted, which has the
advantage of allowing discontinuous pressure approximations and requires of
no boundary conditions at all for this variable. One drawback of solving
4.10-4.11 is the need for the spatial approximation chosen to satisfy the dis-
crete LBB condition, a problem that will be encountered in the fully discrete
version of the method, and that the velocity and pressure unknowns have to
be dealt with at the same time.

REMARK 4.3: This method can also be understood as a projection
method in a different sense than the classical one. In the space H¿(íí), let us
define the norm [[u]] induced by the scalar product ag, which is an equivalent
norm to ||u||. Recalling the decomposition H¿(Í2) = Y © Y^ of Section 1.2
and the characterization of Y"-1, and calling Py the orthogonal projection
from H¿(Í2) onto Y in the norm [[u]], one has that for any v 6 HJ(Í7) there
exist u G Y and s E Ll(ü) such that u = Py(v) and s = (I — Py)(v), or
equivalently, v = u + (— A)-1(V-s). That is to say, one has that:

aô(v,w) = aô(u,w)-(V.w,s"+1), Vw e H¿(Í2)
(V-u"+1,Ç) = 0, Vçe

Equation 4.13 amounts to saying that un+1 = Py(u
n+1/2), so that un+1

is the projection of un+1/2 onto Y with respect to the norm [[u]].

For the case 6 = 1, we first proved convergence of the intermediate and
end-of-step velocities to a continuous solution in the spaces H¿(íí) and
L2(Ì2), in the appropiate sense, in a similar way to the proof of the con-
vergence of the classical projection method given by R. Temam in [100]. The
convergence of un+1 in H¿(f2) could not be obtained for the standard projec-
tion method, since in that case un+1 ^ H¿(fi) (it does not satisfy the proper
boundary condition).

We then obtained weakly order 1 error estimates in the time step for
un+1/2 and un+1 in L2(Í2) and weakly order 1/2 in Hj(íí), Mowing the
ideas of J. Shen in [90] and under some more regularity conditions on the
continuous solution; the estimates for un+1 can be improved to strongly or-
der 1 in L2(Í2) and weakly order 1 in H¿(íí), under some rather restrictive
assumptions; we give the proof of this improvement in an Appendix. We also
obtained order 1/2 error estimates for the pressure.

4.2.2 Convergence of the method

We include here our first proof of convergence of the viscosity splitting, frac-
tional step method just considered, which is based on the proof of convergence
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|
of the original projection method given by R. Temam in [101] and included
in [105]. The proof for our scheme can also be found in [11].

Let us assume that f G -L2(0,T;L2(ÎÎ)), and consider the weak form of
the unsteady, incompressible Navier-Stokes equations 4.1. Its solutions are
characterized by satisfying (see [105]) u 6 L2(0,T;Y) and:

|(u(i),v) + ((«(*)• V)n(*),v) + *((„(*), v)) = (f(i),v), VveF

(4.17)
We consider the fractional step method 4.8 and 4.1Q-4.11-4.12 with 0 = 1,

but with an approximation of the force term f" which is the time average of
f in [in, in+i] (as is taken in [105]). For this method, and calling k — 8t to
follow the standard notation in this context, we have:

Lemma 4.2: for all N = 0 , . . . , [T/k] — 1, the following a priori estimate
holds:

JV
i RJ i i É *»
lu

N
2 4. fci/y^ ||un+1-u"4"1/2!!2 < d (4.18)

1 /__-* I ' ' ' * \ /

n=0

C2

where C\ = |u°|2 -\ /O
r |f(s)|2 ds and Cn was introduced in 1.14.

PROOF: the proof is similar to that of Lemma 7.1.2 in [105]. Taking the
product of 4.8 with 2 k un+1/2 and using the identity (a - b, 2a) = |a|2 -16|2 +
|a — 6|2, we get:

|un+l/2j2 _ |U„J2 + ju„+l/2 _ u„|2 + 2 „ k\\U

= 2¿(fn
)u

n+1/2) < 2A;|fn||un+1/2|

so that:

- |un|2 + |un+1/2-un|2 + i/A||ur

< k-^\r\2 (4.19)

Taking now the product of 4.10 with 2fcun+1, we get:
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_ |un+l/2|2 + |un+l _ un+l/2|2

n+1||2 - ||un+1/2||2 + ||un+1 - un+1/2||2) = 0

Adding up 4.19 and 4.20 for n = 0, . . . , N, we obtain 4.18 using the fact
that (see [105]):

n=0

D

Notice the last term appearing in the left-hand side of 4.18, which is not
present in [105].

Lemma 4.3: for every m, N = 0 , . . . , [T/k] — 1:

1) |um+í/2|2 < d, t = 1,2

2) k\\
N

3) E
n=0

N

4) El"
n=0

N
c\ fc V^t)) K 2__,

n=0

6) k

n=0

PROOF: the proof is, again, similar to that of [105]. Parts 3) through 6)
follow from 4.18. Part 1) with i = 1 and part 2) follows from the addition
of 4.19 for n = 0, . . . , m and 4.20 for n = 0, . . . , m — 1. Finally, part 1) with
i = 2 is obtained by adding up 4.19 and 4.20 for n = 0, . . . , m. D

Notice that the bound 5) was not obtained in [105]. We now define some
approximating functions uj. and Ujt in a similar way to [105], which were
mentioned in Section 1.5. We introduce a new function u| which we need for
the treatment of the convective term:

ul [0, T] -> L2(íï) / ujt(f) = un+1/2, nk < t < (n + l)k

u¿: [O, T] -> L2(íï) / u|(í) = u"+1, nk < t < (n + l)k
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u|: [0, T] -» L2(ii) / uJE(i) = un, nfc < í < (n +

Ufc: [0,T] — » L2(fi) / Ufc is continuous, linear on t on each interval
[nfc, (n + l)fc] and ufc(in) = un, for n = 0, . . . , [T / k ] .

These approximating functions u¿. and Ufc satisfy, for decreasing k:

Lemma 4.4: as k tends to zero,

1) u[ and Ufc are bounded in L°°(0, T; L2(i))), ¿ = 1,2,3

2) ufc and ufc are bounded in L2(0, T; H¿(íí)), i = 1,2,3

3) (ujt - u£) and (u^ - u|) are bounded in L2(0, T; Hj

PROOF: these results are a consequence of Lemma 4.3 and the definitions of
the functions. D

The main novelty with respect to [105] is now the boundedness of u2. and
in L2(0,T;H¿(Í))), together with that of the differences (u2. — u£) and
— U . Moreover:

Lemma 4.5:

2)

3)

PROOF: part 1) follows from Lemma 4.3, part 3); 2) results from Lemma 4.3,
parts 3) and 4) and the triangle inequality. Finally, 3) is a consequence of
the definition of Ufc and Lemma 4.3, parts 3) and 4). D

Following [105], let us now define ffc 6 ¿2(0,T;L2(fì)) as ffc(i) = f" for
¿n < í < ín+i and n = O, . . . , [T/k] - 1. Then:

Lemma 4.6:

)) - c(ufc(í)X(í),v) + (ffc(í))V)

= <<7fc( í ) ,v> , wer, v* e (o, r) (4.21)



CHAPTER 4. VISCOSITY SPLITTING FRACTIONAL STEP METHOD 133

with gk bounded in L2(0,T;F'). In particular, Ufc is a.e. equal to a continu-
ous function from [0, T] into Y.

PROOF: the weak form of 4.8 and 4.10-4.11-4.12 can also be written as:

nn+l/2 _ ..n

c(u",u"+1/2,v) (4.22)

= (r»,
and:

,,«+1 _ ,,«+1/2

+ 6(v,pn+1) (4.23)

= O, VveHj(íï)

= 0, V

respectively. By adding 4.22 and 4.23 for v 6 Y, one gets:

(Un+1
fe~

U",v) + K(u"+1,v) + c(u",u"+1/2,v)

= <r>>
so that 4.21 follows from the above definitions. Besides:

where C'm > 0 is a constant related to the continuity of the trilinear form c
(see Section 1.2); the remaining statements are a consequence of Lemma 4.4
and Lemma III.l.l of [105]. D

The proof of a convergence theorem is now ready:

Theorem 4.1: let f 6 L2(0,T;H) and u° G Y. Then, there exists a sub-
sequence k' of k and a solution u of the Navier-Stokes equations 4.17 such
that:

1) Ufc, and u*./ converge to u in L2(0, T;L2(fi)) strongly, i = 1,2,3.
2) uj., and Ufe/ converge to u in L°°(0,T;L2(ÍÍ)) weak-star, i = 1,2,3.
Z) u^, and Ufc' converge to u in £2(0, T; H¿(íí)) weakly, i = 1,2,3.
For any other subsequence k" such that these convergence results hold, u

must be a solution of 4.17.

PROOF: since u¿ (i = 1,2,3) and u¿. are bounded in L°°(0, T; L2(íï)), there
exists a subsequence k' (which can be taken the same for all 4 sequences)
and u'' (t = 1, 2, 3), u* g ¿°°(0, T; L2(íi)) such that:
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ui, — > u{ in L°°(0,T;L2(ÍÏ) weak - star (i = 1,2,3)

u,./ — > u* in £°°(0,T;L2(Q) weak - star

Since Ufc, (i = 1, 2, 3) and iiy are bounded in L2(Q, T; HQ(U)), there exists
a subsequence of k' (which is also denoted by k'} such that:

ufc, — -> u1 in L2(0,T;H¿(Q) weakly (t = 1, 2, 3)

ufc, — > u* in ¿2(0, T; Hj(ii) weakly

This convergence also holds in I/2(0, T;L2(íï)). Since, by Lemma 4.5:

(u2,-u*,), K -ujt,), K-«*)— + OmL2(0,r;L2(n)) strongly,

it must be u1 = u2 = u3 = u* in ¿°°(0, T; #) n ¿2(0, T; F).
Since u|, € L°°(0,r;ír) n L2(0,T;Y), one has that u*(í) G F a.e. in

(0, T), and u* e ¿°°(0, T; F) n L2(0, T; F).
The proof of strong convergence in ¿2(0, T; L2(íí)) is the same as in [105],

and is therefore omitted. It only remains to show that u* is a solution of
4.17. The same argument as in [105] is used, so that the convergence results
already proved imply, by taking 4.21 to the limit when k' tends to 0, that:

¿K,v) + KK.v)) + c(u-,u*,v) = (f,v) Vt;eF

in distribution sense in (0, T), i.e., u* satisfies 4.17. This, in turn, implies

(see [105]) that ^- G LVO.T^F'), u*(0) = u° weakly in F and u* is a.e.
at

equal to a continuous function from (0, T) into F. These results ensure that
u* is a weak solution of 4.17, and the theorem is thus proved. D

In the two dimensional case, one has:

Corollary 4.1: let d = 2. Then, the convergence given in Theorem 4.1 is of
the sequence as a whole.

PROOF: this result is a consequence of the uniqueness of the solution u in
the two-dimensional case. D

In summary, both the intermediate un+1/2 and the end-of-step velocities
un+1 have been shown to converge to u(in+1) in H¿(íi), through the functions
Ufc and u2. respectively. This is an improvement with respect to [105], where
un+1 only converges in L2(fì).
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4.2.3 Error estimates

We now present an error analysis of our viscosity splitting, fractional step
method with parameter 0 = 1, which follows mainly the ideas of [90] with
the modifications introduced in [92].

Let us define the velocity error functions for this method as:

en+1/2 =

We give an estimate for en+1 and en+1'2; in particular, we show that both
un+1 and un+1/2 are strongly order 1/2 approximations to u(in+1) in L2(fi)
and weakly order 1/2 in H¿(íí).

Lemma 4.7: if Al and A2 hold, and if the Stokes problem is regular, then

N

ï.
n=0

N

El
n=0

+ |en+l/2_e„|2j

-f ||en+1/2||2 + \\en+l-en+1/2\\2}<Ck

PROOF: the first part of the proof is similar to that of [90]. We call Rn the
truncation error defined by:

+ (u(ín+1)-V)u(ín+1)

= f(ín+1) + Rn (4.25)

so that:

Subtracting 4.8 from 4.25, we get:

= (un - V)u"+1/2 - (u(in+1) - V)u

Rn - Vp(*n+i) • (4-26)

We split the nonlinear terms on the right hand side of 4.26 into three
terms as in [90]:
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(un-V)un+1/2 - (u(i„+i) • V)u(ín+1) (4.27)

= - (en - V)un+1/2 + ((u(ín) - u(ín+1)) - V) u"

- (u(ín+1) - V)en+1/2

and then take the inner product of 4.26 with 2&en+1/2 to obtain:

|en+l/2|2 _ |en|2 + 2^||en+l/2||2 + |en+l/2_en|2

= 2 k < Rn, en+1/2 > - 2 k (Vp(ín+1), e
n+1/2)

- 2fcc(en,un+1/2,en+1/2) + 2kc(u(tn) - u(in+1),u
n+1/2,en+1/2)

We bound each term in the RHS of 4.28 independently:

• Taylor residual term:

Ik <Rn,en+1/2> < 2¿||Rn||_1||e
n+1/2||

kv

— II

< "i l l <

+ C- ftn+\t-tn)\\utt\\ì,dt (tn'\t-tn)dt
K Jt„ Jtn

k v..
— —II*

• Pressure gradient term:

-2 k (Vp(¿n+1), e"+1/2) = -2 k (Vp(ín+1), e"+1/2 - e")

since V • en = 0.

• Nonlinear terms:
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Pi = -2¿c(en,un+1/2,en+1/2) = 2Jbc(en,en+1/2,un+1/2)

T2 = 2A;c(u(ín)-u(ín+1))u"+1/2,e'l+1/2)

= -2 k c(u(O - u(ín+1), e
n+1/2, u"+1/2)

= -2fcc(u(ín) - u(ín+1),e
n+1/2,u(ín+1))

< Ck\u(tn) - u(ín+1)| ||e"+1/2|| !|u
< Ck\u(tn)-u(tn+1)\\\e

n+ì/2\\

T3 = ^ f c c u + ^ ^ . e ^ 1 2 = O

where we have used Rl and the boundedness and skew-symmetry prop-
erties of the trilinear form c.

From all these inequalities we deduce:

|en+l/2|2 _ |en|2

L

< Ckítn+lt\\utt\\
2_ldt + Ck2í"*l\ut\

2dt (4.29)

+ 2k2\Vp(tn+l)\
2 + Ck\en\2

The proof is now different from that of [90]. From 4.10 we have:

_n4-l _n+l/2

_en+1/2) - Vpn+1 = 0 (4.30)
K

aner product of 4.30 ^
and that ejj,+1 = 0, we get:

¡e
n+i|2 _ \e

n+l/2\'2 + |en+1 - en+1/2|2

+ kv (||en+1||2 - ||en+1/2||2 + ||en+1 - en+1/2||2) = 0

k

Taking the inner product of 4.30 with 2¿en+1, given that V • en+1 = 0
n+
|r
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Adding up 4.29 and 4.31 for n;= 0, . . . , JV, we find:

n=0

n=0

< C k( t \\utt\f_idt + k \ut\
2dt + sup |Vp(i)|2)

Vo Jo íe[o,r] '

+ c- * " »
n=0

Applying the discrete Gronwall lemma to the last inequality and using
the regularity properties of the solution (u,p), we obtain:

n=0

+ *:" E{lle"+1H2 + He^-e"-*-1/2!!2} (4.32)
n=0

< Ck

We still have to prove the bounds for un+1/2. From 4.31 and the triangle
inequality, we get:

n=0

2 J f e i /
n=0

n=0

n=0

< Ck

according to 4.32, so that 4.24 follows.

REMARK 4.4: Lemma 4.7 shows, in particular, that the method pro-
vides uniformly stable velocities in H¿(Í2), that is to say, that there ex-
ists a constant C > 0 independent of the time step k such that for all
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||un+1|| < C (4.33)
||un+l/2|| < C (434)

We will use this bounds later on.

We are now in a position to obtain an improved error estimate for the
velocity. We will show that un+1/2 and un+1 are actually weakly order 1
approximations of the solution in L2(fì).

Theorem 4.2: if Al and A2 hold, and if the Stokes problem is regular, then
for N = 0, . . . , [T/k] — 1 and small enough k:

ffI
n=0

|en+1/T) < Ck2 (4.35)

PROOF: let us call cn+1 = p(tn+i) -pn+1. From 4.15 (with 9 = 1) and 4.25,
it turns out that:

-en) - z/A(en+1) + Vqn+1 (4.36)
»*/

= (un - V)un+l/2 - (u(in+1) • V)u(in+1) + Rn

We could take the inner product of 4.36 with 2fcen"fl, which is in Y (and in
particular satisfies the proper boundary condition); but then we would need
some extra regularity of en+1, which we cannot prove (see the Appendix).
Instead, we take the inner product of 4.36 with 2kA~1en+l

i as in [90], and
use the self-adjointness of A~l to get:

(en+1,J4-1en+1) - (e^-V) +

- 2fci/(Aen+1,A-1en+1)

= 2fcc(u",u'l+1/2,A-1e"+1) - 2¿c(u(ín+1),u(¿n+1),A-1e"+1)
+ 2 k < R", A~len+1 > (4.37)

The treatment of the term —2 k v (Aen+1, A~1en+l) is simpler in our case
than in the standard projection method. In fact, if we take u = en+1 in 4.4,
we have:

= 2fci/(en+1,en+1- Vr) = 2¿i/(en+1,en+1)
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|
since V • en+1 = 0. The right-hand-side terms are bounded as follows. For
the Taylor residual term we have: ;

2k <R",A-1en+1> < 2

< 2fc||e"+1||H|R'l||
y, + k\\Rn\\2

Y,

-1 ft
tn+í(t-tn}

2dtft
tn+1\\utt\\

2
Y,dt\Y'

tn

For the nonlinear terms, we use the splitting 4.27 to express them as:

Ik

= 2fc(-c(u(in+1),e"+1/2,A-1e"+1) + c(u(in)

- c(en,un+1/2
>A-1en+1))

which we call I, II and III, respectively. Then:

I = -2Ac(u(in+1),e"+1/2,A-1en+1)

|en+1/2|

= Ck\\en+l\\2
Y, + {\en+l\2 + \en+l - e"+1/2|

+ fcï/||en+1||2 + H|en+1 -en+1/2||2 -

where we have used 4.31.

< Ck\u(tn)-u(tn+l)\ Hu
< Ck\ /fn+1ufáí||en+1|

Jtn

+lutdt\2 + ~\
4
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where we have used the bound 4.34. Finally:

III = -2fcc(en,un+1/2,A-1en+1)

= 2fcc(en,J4-1en+1,un+1/2)

= in, + m*
so that:

in, = 2A;C(e",A-1en+1,u(in+1))

C k (|en+1| + |en+1 - en+1/2| + |en+1/2 - en|) |

^|e»+i|* + Ck (|en+1 - en+1/2|2 + |en+1/2 - e"|2)

and:

< Cfcle^
< Ck\en\

< C7A3/2|en+1|||en+1/2||

since, according to Lemma 4.7, |e"| < Ck1'2. All these inequalities yield:

(en+\A~len+l) - (e^^-V) + (en+1-en,>l-1(en+1-en))

+ ¿z/|en+T

< Ck3 \\Utt\\Y'dt + Ck2 \ut\
2 dt

Jtn Jtn

+ Cfclle1*1!!2,, + C7fc2||en+1||2

+ C k |en+1 - en+1/2|2 + C k |en+1/2 - en|2

+ C7A2||en+1-en+1/2||2 + (7¿2||e"+1/2||2 (4.38)

Adding up 4.38 for n = 0,.. . , TV, we get:
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n=0
N

n=0
fT

f \ \ U t t \ \ 2 y , d t + Ck2

Jo

12,, + C
n=0 n=0

+ C k £ |en+1 - en+1/2|2 + C k £ |en+1/2 - en|2

n=0 n=0

+ Ck2 £ ||en+1 -en+1/2||2 + Ck2 2 ||en+1/2||2

n=0 n=0

Using now 4.7, the regularity properties Rl and R4 of the continuous
solution and the estimates of Lemma 4.7, we get:

+ Elle^-e-H2. +
n=0 n=0

< Ck2 + CkJ£\\en+*\\2
Y,

n=0

For suiRciently small k, we can apply the discrete Gronwall lemma to the
last inequality, and we get:

N N

H„W+1||2 i V~^ II n+1 n||2 , T V^ |„n+l|2e lly + 2-f IIe e Hl" + kv L·, Ie l
n=0 n=0

< Ck2

and the estimate for un+1 is proved. For u"+1/2, we have:

n=0 n=0

< Ck2

due to Lemma 4.7 and the estimate for un+1, so that 4.35 is proved. D

REMARK 4.5: Shen's proof of 4.35 for the standard projection method
in [90] is not quite correct. Apart from the corrections pointed out in [50],
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he uses the equivalence between ||u||_]. and (A~1u,u)1/2 as norms on H in
an improper way. Apparently, he bounds:

!-! - Hell2.! + l|e"+1-e"||2-i

by:

C'(en+1-en,2>l-1en+1),

which cannot be deduced from 4.6.

REMARK 4.6: since we are assuming that the domain ÍÏ is smooth
enough for the Stokes problem to be regular, we can assure that our semidis-
crete velocities un+1/2 and un+1, which are solutions of elliptic problems on
Í2, actually belong to H2(Í7). We can improve our error estimates for un+1

to strongly first order in L2(fi) and weakly first order in Hj(i2) by assuming
that un+1/2 is uniformly bounded in H2(íï), that is, bounded by a constant
independent of k. But we cannot prove this assumption, so we keep our weak
order 1 error estimates (which are the same as those obtained in [90] for the
standard projection method) and give this improvement in an Appendix.

REMARK 4.7: in Theorem 4.2 we have proved that, in particular:

Elle^-e-H2,, < Ck*
n=0

But to get some pressure error estimates we would need this inequality
in terms of the norm ||.||-i. This is the reason why the proof presented in
[90] of weakly order 1/2 pressure error estimates for the classical projection
method is not correct, as explained in [92]; in this last reference this proof
is modified for the linear Stokes problem, dropping the nonlinear terms. We
could also do so very easily here, but prefer to put off this question to the
Appendix, when, using the improved error estimates proved there, we can
deal with the full nonlinear problem and still obtain weakly order 1/2 error
estimates for the pressure in

4.3 A pressure— correction method

4.3.1 Development of the method
We now modify the viscosity splitting method of the previous Section to
account for pressure correction. This modified scheme will let us study the
predictor-multicorrector algorithm in Chapter 5. Another advantage of using
a pressure correction method will be explained in Subsection 4.3.3.

As was seen in some of the methods presented in Section 1.5, such as those
of [90], [62] or [81], the basic idea of pressure correction consists of including
a pressure gradient term in the first step of the method evaluated at the
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previous time step, and regarding the Lagrange multiplier of the second step
as a pressure increment, rather than an end-of-step pressure in itself. The
scheme is started by an arbitrary pressure p°, which we assume belongs to

); then, the scheme reads:

First step: Given ün e Y and pn 6 £jj(fì), we seek un+1/2 such that:

f.n+l/2 _ Ü" ,

0i/Aun+1/2 - (1 - 0)i/Aun -f (un • V)un+1/2 + Vp"

= f(ín+1) (4.39)

The weak form of this problem consists of finding un+1/2 6 H¿(fi) such
that:

4(ün+1/2,v) = ÍJ(v), VveHj(f ì) (4.40)

where now /"(v) = /i(v) — 6(v,pn). Since this linear form is also continuous
in H¿(Í2), once more we have existence and uniqueness of a solution un+1'2

due to the Lax-Milgram theorem.

Second step: Given now ün+1/2 e Hj(íí), we look for un+1 and p"+1 such
that:

_ un+1/2

- ün+1/2) + <¿V(p"+1 - p") = O (4.41)
Oí

V-ün+1 = O (4.42)

ün+1|r = O (4.43)

where <f> > O is an arbitrary parameter. The weak form of this problem
consists of finding un+1 and sn+l = St<f>(pn+l - pn) such that:

ae(u"+1,v) + 6(v,5"+1) = Z2(t,), VveHj(ii)

b(un+1,q) = 0, VgeL 2 (n) (4.44)

which is again a mixed problem.
By adding 4.39 and 4.41 we find:

¿n+l _ ¿n

- öi/Aün+1 - (1 - 0)t/Aü" -f (ün - V)ün+1/2

+ (I -W = f(ín+i) (4.45)

where the implicit, but not necessarily fully implicit, character of the ap-
proximation of the pressure gradient term can be observed. This allows to
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choose <j> — d to keep the same order of approximation in all the terms of
the equation, which is specially relevant if one takes 0 = 1/2 to get a second
order method (we will see how to obtain second order accuracy in a different
way in the next Chapter).

A pressure Poisson equation similar to 4.16 can also be developed in this
case, this time for the pressure increment (pn+1 — pnj; but again it seems
impractical to use it.

The second step of the scheme can still be written as a generalized pro-
jection: un+1 = Py(un+1/2); the Lagrange multiplier associated with it is
6t(j>(pn+1 -pn) this time, rather than Stpn+l alone.

For this modified scheme we can prove the same first order error estimates
for the end-of-step and intermediate velocities as for the original one. Under
the assumption of uniformly bounded velocities in H2(£2), we can improve
the estimates for the end-of-step velocities (see the Appendix).

4.3.2 Error estimates

We present an error analysis of our viscosity splitting, pressure correction
fractional step method with parameters 0 = 1 and arbitrary <j>, which is
similar to that of the previous Section. However, we will need some extra
regularity assumption on the semidiscrete pressure solution, which will be
stated in what follows.

We define the velocity error functions for this method as:

e"+1 = u(ín+1)-ün+1

gn+l/2 = u(in+1) _ „n+1/3

We give a first estimate for en+1 and en+1/2 which shows that both un+1

and un+1/2 are strongly order 1/2 approximations to u(in+1) in L2(fì) and
weakly order 1/2 in H¿(Í2), in a similar way to Lemma 4.7. Since the domain
is regular, the solution of the mixed problem 4.41 actually satisfies un+1 6
H2(Í2) and (pn+1 - pn) 6 H1^); since we are assuming that f 6 Hl(Ü),
this implies by induction that pn+1 € A1(0). We will assume that the norm
of Vpn+1 is bounded uniformly in L2(Í2), that is, that there exists a constant
C > 0 independent of k such that:

< C, V n > 0 (4.46)

We then have:

Lemma 4.8: assume that Al and A2 hold, that the Stokes problem is regular
and that 4.46 also holds; then forN = Q,..., [T/k] - 1:
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N

n=0

n-O

l_ ën+l/2 |2 + | ën+l/2_ ën|2j (447)

en+1/2||2 + ||en+1 - en+1/2||2} < C k

PROOF: the proof is similar to that of Lemma 4.7. Subtracting 4.39 from
4.25, we get:

(ü".V)ün+1/2 - (u(ín+1).V)u(ín+1)

+ Rn + V^-Kín+O) (4.48)

Taking the inner product of 4.48 with 2fcen+1/2 and using the splitting
4.27 of the nonlinear terms, we obtain:

|en+l/2|2 _ |en|2 + 2fcl/||en+1/2||2 + |ën+1/2-ën|2 (4.49)

= 2k <R",ë"+1/2> +2fc(V(p"-P(in+i)),ëri+1/2)

- 2 k c(ë", ü"+1/2, ê"+1/2) + 2 k c(u(ín) - u(ín+1), ü
n+1/2, e"+1/2)

- 2A;c(u(ín+1),e"+1/2,é't+1/2)

We bound each term in the RHS of 4.49 as in Lemma 4.7:

2k <R",e"+1/2> < ^||e"+1/2||2 + Ck r*' illudili!
3 Jtn

-2A;c(ên,un+1/2,ën+1/2) < ^||ên+1/2||2 + Ck\én\2

ö

< ^||ë"+1/2||2 + Ck*
O

= 0

As for thé pressure gradient term, we use 4.46 to get:

< 2k\V(pn-p(tn+l)\\é
n+l/2-ên\

2- -ën|î

_ ëf +
¿à

since V • ën = 0.
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From all these inequalities we deduce:

|en+l/2|2 _ |g„|2 + fcl,||en+l/2||2 + |en+l/2 _ g„|2

£t

< C k I*"*' í I |u«| Hid* + C k2 í*"*1 \ut\
2dt (4.50)

•/tn Jt„

+ C k2 + Ck\ën\2

From 4.41 we now have:

_

i/A(en+1 - en+1/2) - <¿V(p"+1 - P") = 0 (4.51)

Taking the inner product of 4.51 with 2fcen+1, given that V • en+1 = 0
and that eĵ 1"1 = 0, we get an equality similar to 4.31, namely:

|en+l|2 _ |en+l/2|2 + |gn+l _ en+l/2|2

+ kv (||ën+1||2 - ||ën+1/2||2 + ||ën+1 - ën+1/2||2) = 0

Adding up 4.50 and 4.52 for n = 0, . . . , N, we find:

n=0
rn rri

< Ckif ¿Huulll^i + k í \ut\
2dt + k)

vo Jo '

n=0

Applying the discrete Gronwall lemma to the last inequality and using
the regularity properties of the solution u, we obtain:

n=0

+ kv E{l|ën+1H2 + l|ën+1 - ë"+1/2||2} (4.53)
n=0

< Ck

We still have to prove the bounds for un+1/2. Once again, from 4.52 and
the triangle inequality, we get:
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N

n=0

n=0

n=0

< Ck

according to 4.53, so that 4.47 follows. D

Once again we have, in particular, uniformly stable velocities in H¿(íí),
which will be used later on. We now improve these estimates to weakly first
order, in a similar way to Theorem 4.2.

Theorem 4.3: if Al and A2 hold, if the Stokes problem is regular and if
4.46 also holds, then for N = 0, . . . , [T/k] — 1 and small enough k:

N
k» E(len+T + |en+1/T) < Ck2 (4.54)

n=0

PROOF: the proof is similar to that of Theorem 4.2. Let us call qn+l =
P(*n+i) - </>Pn+l - (1 - <}>}pn- From 4.45 (with 0 = 1) and 4.25, we get:

- ën) - i/A(ën+1) + Vç"+1 (4.55)

= (un - V)un+1/2 - (u(in+1). V)u(fn+1) + Rn

Once again, we could take the inner product of 4.55 with 2fcen+1, which is
in Y (and satisfies the proper boundary condition); but then we would need
some extra regularity of en+1, which we cannot prove (see the Appendix).
Instead, we take the inner product of 4.55 with 2A;^l~1en+1, to get:

(ën+1,>T1ën+1) - (ên,A-lén) + (en+1-

- 2Jfei/(Aen+1,>r1en+1)

+ 2k <Rn,A-1ên+1> (4.56)
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The same treatment as in Theorem 4.2 is given to all the terms in 4.56,
yielding:

2k <Rn,A-1ë"+1> < fc||ên+1||y, + Ck2 \\utt\\l, dt

= Ck\\en+l\\2
Y, +

+ H|ën+1-ën+1/2||2 -

2kc(u(tn)-u(tn+l),û
n+i/2

iA-1ën+l) < G k2 ítn+1\ut\
2dt + ̂

ín

-f C k (|ën+1 - ën+1/2|2 + |ë"+1/2 - ën|2)

These inequalities yield:

- (ën, A-xë") + (ën+1 - ën,^-1(ën+1 - ën))

l||utí|£,¿í + C k2 [tn+1\ut\
2dt

, + C-A2||ën+1||2

+ C k |ën+1 - ën+1/2|2 + C k |ën+1/2 - ën|2

+ C7A;2||en+1-en+1/2||2 + ¿7¿2||e"+1/2||2 (4.57)

Adding up 4.57 for n = O, . . . , ̂ V, we get:

n=0

n=0

< Ck2 í Huttll^dí + C k2 f \ut\
2dt

Jo Jo

?,, + ck

+ C k |ën+1 - ë"+1/2|2 + C k X; |ên+1/2 - ê

n=0

n=0 n=0
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+ Ck2 £ l|en+1 - en+1/2||2 + Ck2 £ ||en+1/2||2
n=0 n=0

Using again 4.7, the regularity properties of the continuous solution and
the estimates of Lemma 4.8, we get:

N N
-/V+l||2 i V""* |l-n+l ^n||2 , r ,. V~* l
6 111" + L·ll6 ~ e Hi" + kV U

n=0 n=0

< Ck2 +

For sufficiently small k, we can apply the discrete Gronwall lemma to the
last inequality, and we get:

N N

n=0 n=0

< Ck2

and the estimate for un+1 is proved. For un+1/2, we have, once again:

n=0 n=0

< Ck2

due to Lemma 4.8 and the estimate for un+1, so that 4.54 is proved. D

REMARK 4.8: once again, since we are assuming that the domain fì
is smooth, we can assure that our semidiscrete velocities un+1/2 and un+1,
actually belong to H2(fi). We can also improve our error estimates for ü""*"1

to strongly first order in L2(fì) and weakly first order in HO(U), by assuming
that un+1/2 is uniformly bounded in H2(ii); we give this improvement in the
Appendix.

REMARK 4.9: these error estimates are valid for any value of the
parameter (j>, but are restricted by condition 4.46. However, this condition
is less restrictive than the uniform bound for the intermediate velocity in
H2(n).

REMARK 4.10: we also proved some error estimates for the pressure,
but again these depend on the improved estimates for the velocity; we present
them in the Appendix.
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4.3.3 Dependence of the steady state on the time step

In this subsection we address the issue of whether a steady solution obtained
by a fractional-step transient algorithm, when neither the forcing term nor
the boundary conditions depend on time, depends on the time step size used
to find that solution. We will show that, in general, when pressure correction
is used the steady solution is independent of the time step, while if it is not
used the final solution may depend on the time step if implicit approximations
of the viscous and/or the convective term are employed. This is so because
with pressure correction methods the intermediate and end-of-step velocities
turn out to be the same at steady state, while in the other methods they do
not. We will justify this idea on two methods: the classical projection method
and our viscositty splitting method. We drop the boundary conditions for
simplicity.

Classical projection method: let us recall here Shen's version of the
projection method:

„n+l/2 _ n

- - !/Aun+1/2 + (u" • V)un+1/2 = f (4.58)
St

un+l _ un+l/2

oí
+ Vpn+1 = 0 (4.59)

A steady state is reached when un+1 = un, un+1/2 = un~1/2 and pn+1 =
p", which we call u, u1/2 and p, respectively. Adding up 4.58 and 4.59 at
steady state yields:

-i/Au1/2 + (u.V)u1/2 + Vp = f

If we now isolate u1/2 from 4.59 and substitute it (formally) into this
equation, we get:

- r/Au + (u • V)u + Vp + St (-i/AVp + (u • V)Vp) = f (4.60)

It is thus apparent that (u,p) is not a solution of the steady Navier-Stokes
equations 1.12, but of the modified equation 4.60, which depends on 6t. The
solution (u,p) will therefore also depend on the time step.

Classical projection method with pressure-correction: let us now
consider the pressure-correction projection scheme studied in [90]:

..n+l/2 _ ..n -.

— - z/Aun+1/2 + (un . V)un+1/2 + Vp" = f (4.61)
of

un+l un+l 2 ̂  ̂ n+i _ ?n) = 0 (462)
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At steady state, we first obtain un+1/2 = u from 4.62 and then, from 4.61:

-z/Au -}- (u-V)u + Vp = f

so that (u,p) is actually a solution of 1.12, and thus independent of St.

Viscosity splitting method: for the method presented in Section 4.2 with
0 = 1:

..n+l/2 _ ..n

— - t/Aun+1/2 + (un • V)un+1/2 = f (4.63)

un+l _ un+l/2
st

•1/2
- !/A(un+1 - un+1/2) + Vpn+1 = 0 (4.64)

St

We add 4.63 and 4.64 at steady state, and get:

-i/Au + (u-V)u1/2 -f Vp = f

By isolating (formally) u1/2 from 4.64 and retaining only first order terms
in the time step, we obtain:

u1/2 = u + St(I - Stv&)
= u + O(St}Vp

so that at steady state:

-i/ Au + (u • V)u + Vp + O(St) ((u • V)Vp) = f

The steady solution does not satisfy 1.12 but this modified equation,
which depends on fit; it is therefore dependent on the time step.

Viscosity splitting method with pressure— correction: finally, we con-
sider the method of this Section, with 0 = 1 and arbitrary <f>:

u
St

un+l _ „n+l/2

i/Aun+1/2 + (un • V)un+1/2 + Vpn = f (4.65)

- i/A(un+1 - un+1/2) + <¿V(pn+1-pn) = 0(4.66)
St

At steady state, we find again that u1/2 = u from 4.66, and then from
4.65:

-i/Au + (u -V)u + Vp = f

The steady solution satisfies 1.12 and is independent of the time step.
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4.4 Computational aspects

We next consider the implementation of our viscosity splitting, pressure cor-
rection method with a finite element interpolation of the space variables.

4.4.1 Finite element discretization

We consider space discretizations of our viscosity splitting, pressure correc-
tion method 4.39-4.41 with parameters 0 = 1 and <f> = 1.

Given two finite dimensional spaces VH C H¿(íi) and Qh C -^o(^)> the
discrete equivalent to the weak problems 4.40 and 4.44 consists of finding
un+i/2 e

G Ffc (4.67)

and u£+1 € VH. and p£+1 e Qh such that:

= 0, VvheFh(4.68)
) = o, vç fceg f c

respectively. We are mainly interested in the case when Vh and Qh are defined
through a discretization of 0 into finite elements. In particular, we consider
two kinds of quadrilateral elements (in the terminology of two dimensions):
the bilinear velocity, constant pressure element (QiPo)i which does not satisfy
the discrete LBB condition and may develop spurious pressure modes, and
the biquadratic velocity, linear pressure element (QiPi), which is div-stable.

4.4.2 Numerical scheme

The matrix form of equations 4.67 and 4.68 is, in the notation used up to
now, the following:

rjn+l/2 _ rjn

M - — îi_ + Kir+l/2 + A(Un}Un^12 + G0P
n = Fn+1(4.69)

ot
r/n+i _ r/»+i/2

MZ - Jl - + K(Un+l - Un+1/2) + G0(P
n+l - Pn)

= 0 (4.70)

G£i7n+1 = 0 (4.71)

The numerical solution of these equations presents some problems. On
the one hand, the system matrix for the intermediate velocity equation 4.69
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has to be computed and factorized once every time step, due to the implicit
approximation of the convective term; moreover, that matrix is not symmet-
ric, since the convective term is skew-symmetric. On the other hand, the
coupled system 4.70-4.71 has the structure of a mixed problem, with a zero
diagonal term in the incompressibility equation 4.71. Equation 4.70 can be
rewritten as:

B(Un+l - Un+l/2) + StG0(P
n+1 - Pn) = 0 (4.72)

where B •= M + St K was defined in Section 2.1. One can then isolate C7n+1

from 4.72 and substitute it into 4.71, thus segregating the computation of
the pressure from that of the velocity; this yields:

(Gt
0B-lG0)(P

n+l-Pn) = -G^n+1/2 (4.73)
OC

But the computation of the system matrix for this pressure equation
requires of the inversion of a full matrix B, which is prohibitive in most cases.
We present an alternative way to solve 4.69-4.70-4.71, which bypasses the
problem of inverting the matrix B.

We propose an iterative solution of the discrete equations 4.69-4.70-4.71;
in it, each iteration consists of the solution of two diagonal systems and
another system with a symmetric, positive (semi)definite matrix, which is
simple to compute. This matrix need only be computed and factorized once
at the beginning of the calculation; the computational cost of each iteration
is, then, only due to the formation of three residual vectors, the solution
of two diagonal systems and a backward and forward substitution, if direct
methods of solution are used for the pressure system. If few iterations of
the proposed scheme are needed, it will be more efficient than solving the
original equations 4.69-4.70-4.71, which require of the inversion of the full
matrix B once and the computation and factorization of a non-symmetric
matrix for the intermediate velocity system, the formation of three right-
hand-side vectors and two backward and forward subtitutions every time
step. Most of the techniques employed here are adopted from similar ideas
within the context of the predictor-multicorrector algorithm to be studied
in the next Chapter.

Given the n-th step values Un and Pn of velocities and pressures, respec-
tively, the iterative procedure starts with the initializations £/£ = Un,
U£+1 = Un and P0

n+1 = Pn for the values at time in+1. Then, if U?+l/2 and
f/"+1 are the i-th iteration approximations to f/n+1/2 and Un+l , respectively,
we consider the scheme:

_

M i+1 + KU?+i2 + A(Un)U?+l/2 + G0P
n = Fn+1(4.74)

_
M st * ~ 2
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= 0 (4.75)

= 0 (4.76)

At convergence, that is, when U^'2 = t/^1/2, UQ1 = U?+l and P?*1 =
, these values satisfy 4.69-4.70-4.71. The actual stopping criterion that

we use is:

where \X\i is again the Euclidean norm of a vector X.
We can also isolate U"^ from 4.75 and substitute it into 4.76, so as to

segregate the computation of the pressure from that of the velocity. By doing
this, we obtain:

(4.77)
To make the scheme computationally efficient, we consider the approxi-

mation of the matrix M by its lumped diagonal ML in all its appearances,
which is common practice in similar contexts (see [46], for instance). The
computation of the system matrix for 4.77 then becomes feasible, since the
inversion it involves is then trivial.

The actual implementation of the scheme, however, is somewhat different.
It is given in terms of nodal accelerations A. and time derivatives of elemental

77"+l/2 _ rjn rrn+1 rrn+1/2

pressures, A Calling ̂ 1/2 = "*' , U , A?£ = ̂ +1 /^ and
of at

pn+l _ pn

pT£* = i+l - , equations 4.74, 4.77 and 4.75 can be written, with the

approximation of M by M , as:

Af£An+i1/2 = ÄI
with:

! = Fn+1 - KU?+l/2 - A(Un)Ui+l'2 - G0P
n

with:

Rp ,̂

and:

= un + st A
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Finally:

M

with:

The end-of-step values are then corrected as:

= U"

st
pn+l _ D" i Kf pn+l
-Q+l ~ -T -t Ot-Ti+l

In the next Section we present some numerical results obtained with this
scheme.

In the implementation of this method we have adopted the rate-of-
deformation tensor formulation of the viscous term e(u), as that of equation
1.6. This formulation does not assume incompressibility, which is in general
not satisfied by the discrete velocity field, and, in outflow boundaries, the
natural boundary condition associated with it has the physical meaning of a
no stress condition. For the convective term we have employed the standard
formulation (u • V)u.

4.5 Numerical results

We present the results obtained with our viscosity splitting, pressure correc-
tion method with parameters 6 = <f> = 1 on three test problems. The first one
is a test case introduced by van Kan (see [62]), intended to study numerically
the order of approximation of the scheme in the time step; the second one
is the classical problem of steady flow over a backward facing step, and the
third one is the problem of flow around a cylinder.

4.5.1 Numerical accuracy study

As a numerical check for the accuracy properties of the method, we considered
a test case introduced by van Kan (see [62]). It consists of the Navier-Stokes
flow on a unit square cavity in which an inflow velocity profile is prescribed
at the top wall defined by u((z, l),i) = (0, -sin(7r(a:3-3a;2 + 3x))e(1-1/t)) for
0 < x < 1 and t > 0, the bottom and left walls are solid walls and natural
boundary conditions are enforced on the right, outlet wall. As in [62], a
Reynolds number of 10 was selected, and the fluid was at rest at the start.
A uniform mesh consisting of 6 X 6 elements was used for the Q\Po case; in
order to compare the results from both interpolations, the same mesh points
were used to define a 3 x 3 mesh for the QiP\ element.
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st

1/60
1/64
1/80
1/85

K^St)

2.1
2.0
2.0
2.0

K2(5t)

3.5
3.4
3.0
2.9

Kp(St)

2.3
2.4
2.2
2.1

Table 4.1: Van Kan's flow, Q\Po element.

St

1/75
1/80
1/85

Kl(tt)

2.2
2.1
2.1

K2(6t)

3.5
3.3
3.1

Kp(St)

2.5
2.5
2.4

Table 4.2: Van Kan's flow, Q2P1 element.

Let's denote by the quotient:

Ki(St) =

where Ui (i = 1,2) contains the i-th component of the nodal velocities ob-
tained at í = 1 with the indicated time-step. Euclidean norms are used for
these vectors. Similarly, Kp(8i) denotes the same quotient for the elemental
pressure (and eventually, pressure spatial derivative) values.

We show in Tables 4.1 and 4.2 the most accurate results obtained with our
viscosity splitting, pressure correction method with parameters 0 = <f> = 1
for the two different space interpolations. We fixed the value of the tolerance
to 10~4; convergence of the iterative scheme was reached in 7 iterations in
average for the largest time steps to 4 for the smallest. It can be observed
that the scheme is, at least assymptotically, first order accurate in the time
step both in velocities and in pressures.
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Figure 4.1: Backward facing step, mesh.

4.5.2 Backward facing step
We then studied the well-known problem of the flow over a backward facing
step. This problem was extensively studied by B.F. Armaly et al. in [2], both
experimentally and numerically, and other numerical results have been given
by many authors (see [29], [36] or [65], for instance). Here we considered a
geometry similar to that of [2], that is, an inflow channel of length 2 and
height 1, an expansion ratio of 1 : 1.90 and a total channel length of 40. A
Poiseuille parabolic profile was prescribed at the inflow, with a maximum
velocity of 1; the top and bottom sides are solid walls, and natural boundary
conditions are enforced at the outlet. The mesh used for this problem, which
is finer near the step, can be seen in Figure 4.1, where the y-axes has been
magnified three times; it consists of 1305 mesh points, which were used to
define both the Q\Po and the Q^Pi elements. There are 1220 and 305 of such
elements, respectively.

We solved this problem for three different values of the Reynolds number:
40, 200 and 400. This was defined upon the average inflow velocity (which
is 4/3 for our data), and the inflow channel height. It was obtained experi-
mentally in [2] that in this range of Reynolds numbers the flow is virtually
two-dimensional, so that planar numerical models become meaningful. With
a time step size of 8t = 0.01, we iterated the scheme 4.74-4.75-4.76 to con-
vergence in each time step with a tolerance of e¡s = 10~3; this was obtained
in a very few iterations: 3 or 4 in the first steps, decreasing to 1 in the last
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steps. A steady state was considered when the accelerations were in the order
of UT5.

We show the results obtained for the different Reynolds numbers in Fig-
ures 4.2, for the QiPo element, and 4.3, for the QzPi, in the form of steady
streamlines, where the z-axes has been limited to the range [0,10]. It can
be clearly observed in these Figures how the reatachment length of the main
vortex increases with increasing Reynolds numbers, a characteristic of the
flow which is well known for this problem, since we are working within the
laminar Reynolds number range (see [2]). Moreover, the appearance of a
secondary separation bubble on the no-step wall at Re = 400 can also be
observed, which is in good agreement with the experimental results of [2].

4.5.3 Flow past a circular cylinder

We finally considered the challenging problem of the flow past a circular
cylinder, which has attracted the attention of several authors (see [7], [34],
[20], [93], [96], [99] or [108], for instance), This has become a compulsory
bechmark test for transient algorithms for Navier-Stokes equations.

It is well known that for low values of the Reynolds number, the solution
is steady and symmetric about a line parallel to the free-stream flow through
a cylinder diameter; a pair of symmetrical eddies develops downstream of
the cylinder. But beyond a critical value of Re (which is larger than 40),
the steady solution becomes unstable and a periodic solution develops, so
that vortex shedding sets in: vortices begin to generate periodically and
alternately from each side of the cylinder, and are 'transported' by the flow
away from it. This scenario is known in the literature as a von Karman
vortex street.

We considered a cylinder of unit diameter and took a computational do-
main consisting of the rectangle [0,21] X [0,9], the center of the cylinder being
situated at the point (4.5,4.5). These data, however, may not be sufficient
to prevent any effect of the introduction of artificial boundaries on the com-
puted solution, as was recently studied in [7], who discussed the influence of
the location of the lateral boundaries on the computed flow field; we will see
how this may affect our computations. A unit free-stream horizontal velocity
was prescribed on the left boundary, whereas natural conditions are enforced
on all the others. The mesh used in this case can be seen in Figure 4.4, which
consists of 3000 nodes and 2880 of the QiPo elements.

We first solved the problem for a Reynolds number of 40, which is based
upon the free-stream velocity and the cylinder diameter, starting from the
fluid at rest but for the prescribed boundary condition. We iterated the
scheme 4.74-4.75-4.76 to convergence in each time step with a tolerance of
Cfs = 10~2, which took an average of 2 iterations. After 1000 steps of size
8t = 0.005, the steady, symmetric solution had been reached, with accelera-
tions in the order of 1Û74. It can be seen in Figures 4.5, 4.6 and 4.7, where we
show, respectively, the streamlines, the stationary streamlines (that is, the
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Figure 4.2: Backward facing step, Q\Po element, streamlines: a) Re — 60;
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= 60;
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Figure 4.4: Flow past a cylinder, mesh.
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Figure 4.5: Flow past a cylinder, Re = 40, streamlines.
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Figure 4.6: Flow past a cylinder, Re = 40, stationary streamlines.
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Figure 4.7: Flow past a cylinder, Re = 40, nodal pressure contours.
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Nodal Velocity

100.0 500.0

time

Figure 4.8: Flow past a cylinder, Re — 100, nodal velocity history.

streamlines obtained assuming that it is the cylinder that moves with a con-
stant velocity of (—1,0)) and the nodal pressure contours obtained from the
elemental pressures after a least-squares interpolation process. Symmetry is
very accurately achieved.

We then raised the value of the Reynolds number to 100, which is the
one commonly used for this problem. We started the computation from
the steady solution obtained for Re = 40, and performed 19000 steps of
size 8t = 0.025; in each of them, 1 or 2 iterations were enough to reach
convergence at the same value of the tolerance as before. We found that the
solution started oscillating freely at a time near t = 110; the final periodicity
of the solution was reached by í = 170. In Figure 4.8 we show the history
of the horizontal velocity at a node situated at the point (9.0,5.25), that is,
downstream of the cylinder and slightly higher. The qualitative change in
the solution regime can be clearly observed. In this case, no artificial trick
was needed to start up the periodic solution.

The streamlines obtained at the end of the computation (t = 475) are
shown in Figure 4.9. In Figure 4.10 we plot the stationary streamlines; the
wakes behind the cylinder can be clearly seen there. Finally, we show the
pressure contours in Figure 4.11. All these results compare very well with
other published solutions (see [34], [20], [96] or [108]).

Some flow features are generally used to compare quantitatively the solu-
tions obtained for this problem. Thus, the Strouhal number or adimensional
frequency of the solution is one of the most studied quantities; it is defined



CHAPTER 4. VISCOSITY SPLITTING FRACTIONAL STEP METHOD 165

I IffiiHI
! -UliMl
! IMÜdl
I IJJWtl!

Figure 4.9: Flow past a cylinder, .Re = 100, streamlines.

•MM
! IJKHtN
1 IMH!
I IffilM
( l.liHiH
! UOEM
I IMiN
1 IJUIWI

Figure 4.10: Flow past a cylinder, Re = 100, stationary streamlines.
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Figure 4.11: Flow past a cylinder, Re — 100, nodal pressure contours.

as St = , where D is the cylinder diameter, UQ is the free-stream velocity
UOT

(in our case, both equal to 1) and r is the shedding period of the solution.
We. performed a Fourier analysis of the nodal velocity signal within the time
range [175,475] (that is, for most of the developed periodic solution) in or-
der to find the dominant frequency of our solution. In Figure 4.12 we show
the Fourier spectrum obtained, from which we found a Strouhal number of
St = 0.18667 (smaller peaks can also be seen at twice and three times that
frequency), or equivalently, a period of 5.3571. This period is somewhat
smaller than the one generally admitted for this value of the Reynolds num-
ber, which is 6, that is, a Strouhal number of St = 0.16667 (see [20]). We
attibute this discrepancy to the fact that we are using a standard Galerkin
finite element interpolation, which is less dissipative than stabilized formula-
tions of the SUPG or GLS type usually employed for this problem. However,
discrepances in the value of the Strouhal number depending on the formula-
tion employed were also found by other authors (see [96] or [108]). Moreover,
the location of the lateral boundaries in our computational domain may not
be far enough from the cylinder to avoid any influence on the solution of the
artificial boundary conditions introduced by the formulation; in fact, it was
obtained in [7] that at least 12 cylinder diameters on each side of the cylinder
are needed to avoid that influence; otherwise, larger Strouhal numbers were
obtained. This may be another cause of increase of our computed Strouhal
number.
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Figure 4.12: Flow past a cylinder, Re = 100, Fourier spectrum of the nodal
velocity solution.
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