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Chapter 5

A predictor—multicorrector
algorithm

In this Chapter we study a form of a predictor-multicorrector algorithm
customized to the unsteady, incompressible Navier-Stokes equations. This
algorithm, developed originally for general evolution equations in a discrete
setting, was applied succesfully to several unsteady incompressible flow prob-
lems in the eighties, such as fluid-structure interaction problems. Here, and
in the light of the viscositty splitting methods developed in the previous
Chapter, we redevelop the algorithm in a semidiscrete formulation, thus pro-
viding an interpretation of it within the context of fractional step methods.
This gives a theoretical explanation for some properties of the algorithm
such the need for the spatial interpolation used to satisfy the discrete LBB
condition, the order of accuracy of the discrete solutions with respect to the
time step or the reason behind the imposition of boundary conditions in each
phase of the algorithm. We will see, in particular, that our viscosity splitting
method can in some cases be understood as a predictor-corrector form of
this algorithm. Most of these ideas can be found in [26].

The predictor-multicorrector algorithm is usually implemented together
with a bilinear velocity, constant pressure (QiP0) finite element interpolation;
we implemented also the biquadratic velocity, linear pressure (QiPi) element,
which satisfies the LBB condition, to compare the properties of the two
discretizations.

The outline of the Chapter is the following: in Section 5.1 we present
our semidiscrete formulation of the scheme, proving that it corresponds to
the predictor-multicorrector algorithm and showing in what sense it can be
understood as a fractional step method. In 5.2 we introduce the two finite
element interpolations considered, the resulting fully discrete equations and
some considerations relative to the actual implementation of the scheme.
Finally, in 5.3 we present some numerical results obtained with the algorithm
on several test problems.

169
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5.1 Semidiscrete form of the algorithm

Let us consider the predictor-multicorrector algorithm developed by T.J.R.
Hughes and coworkers, which was applied to the incompressible Navier-
Stokes equations in [20]; it can also be found in [75] in a similar context.
We give here an alternative derivation of the algorithm, within the context
of fractional step methods.

Given a time step St > 0 and a parameter 7 such that 0 < 7 < 1, and
assuming that the velocity un and pressure pn are known at time tn = nSt,
an implicit method of the form:

_7an+1-(l-7)an = O
St

V-(un+1) = 0 (5.1)

|run+1r = 0

is considered for the solution of 1.7-1.5 with homogeneous Dirichlet boundary
conditions 1.10, where we define:

am = f(im) - Vpm - (um-V)um + i/Aum (5.2)

An iterative scheme is introduced for the solution of the nonlinear, cou-
pled problem 5.1. It starts with some predictions UQ+I and p£+1 f°r un+1

and pn+1, respectively, which will be specified next. Then, each iteration is
split into two steps. The first one accounts for viscous and convective effects,
but not for the incompressibility condition; this is dealt with in the second
step, in a similar way to the fractional step methods of Chapter 4. Pressure
correction is used, and the convective term is approximated explicitly for
simplicity. Given the z'-th iteration approximations u"+1 and p"+1 to un+1

and pn+1, the first step of the (i -f l)-th iteration then consists of finding an
intermediate iteration velocity u£j|jy2 such that:

= 7f(í«+i) + (1-7K

- 7«+1 • VK+I - 7Vtf+1 (5.3)

/a« i a i r = 0

The notation uj^/j has been chosen deliverately to emphasise that the
solution of 5.3 is an intermediate iteration aproximation of the velocity at
time £n+i. In the second step of each iteration, a pressure increment is used
to enforce incompressibility, in a similar way to the method of Section 4.5.
Thus, one looks for an end-of-iteration velocity u"^1 and pressure p"̂ 1 such
that:
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= 0

(5.4)

The multicorrector scheme 5.3-5.4 is performed, in principle, to conver-
gence in i, that is, until uj^1 = u7+1 and p"̂ 1 = p"+1, at which time one
sets un+1 = uj!̂ 1 and pn+1 = p"̂ 1 and goes back to the predictor phase.

We can show that this method is another version, independent of any
particular spatial discretization, of the predictor-multicorrector algorithm
of [20], which was given in a discrete setting after a Q\Po finite element
interpolation of the Navier-Stokes equations, which results in the following
constrained system of ODEs:

MÙ + KU + A(U)U + G0P = F
G1

QU = O

In terms of accelerations (*4) and time derivatives of elemental pressures
(P), the algorithm then reads:

Predictor phase:

= Un + (l -7) StA"
AZ+I = o
P0"

+1 = P" + (l-7)íípn

/T1 = 0

Solution phase:

B SAi = AI (5.5)
72 (St)2 (GoB~lG0) (SP) = GO (U?+1 + i6t(8Ai)) (5.6)

B S At = -7 8t Go (SP) (5.7)

where all the matrices have been defined before and the residual vector R\
is given by:
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Corrector phase:

+ SAl +
(l-i)8tAn + 7

+ SP

= Pn + (l-i}StPn + i

The value of i is then incremented in 1 and the scheme goes back to the
solution phase again. We now have:

Lemma 5.1: the scheme 5.3-5.4 is equivalent to the predictor-multicorrector
algorithm of [20].

PROOF: assume the velocity un, acceleration an, pressure pn and pressure
temporal variation pn are known at time tn = n8t, satisfying 5.2 and the
incompressibility condition 1.5. The iterative predictor-multicorrector pro-
cedure starts with the following predictions:

u£+1 = un -f- ( l-7)£ían (5.8)

= 0 (5.9)

= Pn + (1-7 W (5.10)

PÔ+1 = O (5.11)

Assume, further that after each correction phase the approximation of
velocity and pressure may be written as:

= un + (1-7) ¿lía" + 7¿fa?+1 (5.12)

= Pn + (1-7 W + 7«Pr+1 (5.13)

where a?+1 and p"+1 are the corrected values at the end of the t-th iteration.
Note that equations 5.12-5.13 are also valid for the initial prediction (i = 0).

The objective of each iteration is to compute new approximations u"^1

and p"̂ 1 by computing corrected values of a"̂ 1 and p™** . Since each iteration
is split into two steps, an intermediate velocity u^Sj and acceleration »"¿̂
are first calculated. If the intermediate velocity is expressed as:

»Sí/i = u" + (1-7) ft a" + 7««Si% (5.14)

and the intermediate acceleration is defined as:

• «Si% = ar1 + ia,

then the following relation is deduced from 5.12:
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The intermediate velocity and acceleration are computed from the first
split step, namely equations 5.3, which can thus be rewritten as:

Ssn\r = 0 (5.15)

The end-of-step velocity u"^1 is expressed, using 5.12, as:

= u" + (l-7)¿ían + 7

and can be further simplified in terms of the intermediate velocity, using
equation 5.14, and the end-of-step acceleration, which is defined as:

»Si1 = «Si1/» + Sa*
Thus:

«Si1 = «Si/2 + 7¿¿ía2 (5.17)

Likewise, from 5.13, the end-of-step pressure p^1 is expressed as:

(5.18)

where the new pressure variation is determined by:

and consequently one gets:

+ -rstsp (5.19)
With the previous expressions of the end-of-step velocity and pressure,

equations 5.17 and 5.19 respectively, the second split step defined by the
equation system 5.4 can be written as:

= 0

V • (¿a2) = ^-V - K+1 + 7ÍÍ ¿ai) (5.20)
70t

¿a2|r = 0

Given the time-discretization scheme defined by 5.12-5.13, equations 5.15
and 5.20 are another version of the two split-step equations 5.3 and 5.4 de-
fined previously. After they have been solved, the corresponding corrections
are performed, namely equations 5.16 and 5.18. The weak for of the split
equations 5.3-5.4 is the following:
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l

First step: find u"¿x
/2 6 H¿(Í2) such'that:

+ (l-7)(a",v)

Vv e HS(O) (5.21)

Second step: find u"^1 6 Hj(fi) and *£# =^Stp^ 6 Ig(ii) such that:

+ Xv,*n+1) = «rKïiVa.v), VveHj(íi)

6Kff,í) = O, " Ví6¿2(íl) (5.22)

where the bilinear form a7 was defined in 4.14. Existence and uniqueness of
solutions to these problems are established the same way as for the fractional
step methods of Chapter 4. In terms of accelerations and pressure time
derivatives,, the corresponding weak forms of equations 5.15 and 5.20 are:

First step: find S&i 6 Hj(fi) such that:

- KK+1,v)) - c(u?+1X+1,v), W e HS(fl) (5.23)

Second step: find Ía2 E H¿(Í2) and íp 6 L%(£1) such that:

a7(5a2,v) + j8tb(v,6p) = O, Vv e Hj(í2)

l l?)> Vç 6

A finite element discretization of this scheme is the same algorithm as the
one considered in [20]. 0

There is a clear formal relationship between the structure of the split
equations 5.3-5.4 and the viscosity-splitting pressure-correction method of
Section 4.3. In fact, the latter method with parameters 6 = (f> = 1 is equiv-
alent to a single correction of the former with 7 = 1, since in that case
UQ+I = un and po+1 = Pn (see 5.8 and 5.10); the only difference, though, is
the treatment of the nonlinear term, which is then explicit in the predictor-
multicorrector algorithm. One then has that u"^1 = un+1/2, u"+1 = un+1

and p"+1 = pn+l. The paralelism between these two methods implies that
discrete interpolations of the predictor-multicorrector algorithm are subject
to the satisfaction of the LBB condition, so that in confined flow problems
the QiPo element will develop checkboard pressure modes; that, at least for
7 = 1, one correction is enough to achieve first order accuracy in the time
step, and that when a steady state is reached with this algorithm, it will be
independent of the time step.
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5.2 Finite element discretization

We now introduce a finite element space discretization into the multicorrector
scheme 5.23-5.24. If Vh C H¿(íí) and Qh. C Ll(£l) denote finite dimensional
subspaces defined through a finite element discretization of ÍÍ, the discrete
version of 5.23 consists of finding Sa.ith € Vh such that:

, Vvh€ 14(5.25)

whereas in the discrete version of 5.24 we look for Sa.2th G V/, and Sph € Q h
such that:

+ ~f6tb(vh,6ph) = 0, Vvfc € V* (5.26)

, 9fc), Vch € Qh

Calling again A and P the vectors of nodal accelerations and pressure
time derivatives representing the functions a/, and p/t, respectively, the weak
form of equations 5.25-5.26 can be written in matrix form, with the notation
introduced up to now, as:

B S Ai = RI (5.27)

B 8 A* + -y 6t G0 (OP) = O (5.28)

&0 A, = —GKUF1 +1 St S Ai) (5.29)7 oí
By isolating 8Á2 from 5.28 and substituting it into 5.29, one gets equa-

tion 5.6, that is, the pressure update equation of the solution phase of the
predictor multicorrector algorithm. This equation, however, is not afford-
able in practice, since it involves the inversion of a full matrix B to form the
system matrix Gt

0B~1Go, which is prohibitive in general. Some approxima-
tions are introduced in [20] in this scheme, which make it computationally
feasible. The matrix B is approximated by M in all its appearances (the
difference between the two, StvL, is dropped). This approximation is first
order accurate in the time step, so that the errors it introduces are of the
same order of magnitude as those of the method itself. Moreover, the matrix
M is then lumped, which allows the pressure system 5.6 to be a possible way
to compute the pressure variation in each iteration. Thus, the final scheme
reads:

ML 8 AI = Ri
72 (St)2 (GÏ(ML)-1G0) (SP) = G1

0 (tff+1

MLSA2 = -jStG0(SP)



CHAPTER 5. A PREDICTOR-MULTICORRECTOR ALGORITHM 176

Inversion of the diagonal matrix M£ is now trivial. This is the algorithm
actually implemented in practice. It has to be said that the introduction of
these simplifications (which are due to T.J.R. Hughes and coworkers) has a
double theoretical implication: on the one hand, the approximation of B by
M in 5.5 leads to an explicit treatment of diffusion in each iteration (although
not in each time step, if the algorithm is iterated at least twice per step); on
the other hand, the approximation of B by M in 5.6 and 5.7 implies that
the algorithm actually used admits an interpretation within the context of
fractional step methods relative to the standard projection method, that is,
without a viscous term in the incompressibility phase. A single iteration
of this simplified predictor-multicorrector algorithm is actually equivalent to
the standard projection method. If it is understood this way, a question arises
about which boundary conditions are to be imposed in the incompressibility
phase, whether the full Dirichlet condition or only the normal component of
it.

If two or more iterations of this scheme are performed, all terms in the
Navier-Stokes equations are treated implicitly. Thus, no St limitations are
expected for the stability of the algorithm over a wide range of Reynolds
numbers. However, the iterative nature of the scheme and the simplifica-
tions introduced in it (such as the explicit treatment of the convective term)
impose restrictions on St for the stability of the iterative process, specially
for quadratic elements, as will be seen in the next Section.

5.3 Numerical results

We now present some results obtained with the predictor-multicorrector al-
gorithm just considered, both with a QiPo and a Q^Pi finite element interpo-
lation, on five test problems. First, van Kan's problem is used again to study
numerically the order of accuracy in the time step of this algorithm with dif-
ferent values of the parameter 7 and different numbers of iterations per time
step; then, we consider again the Kovasznay flow problem, this time to prove
numerically the independence of the steady state reached with a pressure
correction algorithm from the time step used, and to study the dependence
of the error with respect to the analytical solution on the mesh size for each
of the two elements; we then solve the standard cavity flow problem with
both interpolations, and the so called 'no flow test', and finally, we consider
a plane jet simulation as another example of a purely unsteady problem.

5.3.1 Numerical accuracy study

We considered again the test problem introduced by van Kan in [62], this
time to study numerically the order of accuracy with respect to the time
step of the predictor-multicorrector algorithm with different values of the
parameter 7 and different number of iterations in each time step. The same
mesh, boundary conditions and Reynolds number as in Subsection 4.5.1 were
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st

1/16
1/32
1/64
1/128

Kl(ft)

2.04
2.02
2.01
1.99

Kt(St)

2.02
2.01
2.01
1.99

Kp(«)

2.03
2.02
2.01
2.00

Table 5.1: QiPo element, 7 = 1, 1 iteration per step.

considered, and also the same definitions of the quotients Ki(St) (i = 1,2)
and Kp(íí).

In Tables 5.1 to 5.10, we present the results obtained with 7 = 1 both for
1 and 2 iterations of the multicorrector scheme per time step and iterating
it to convergence in each time step, and for 7 = 1/2 with 2 iterations and
iterating to convergence, both for the Q\Po and the QzP\ elements (the latter
was unstable for large values of the time step).

The backward Euler scheme 7 = 1 is clearly first order accurate, both for
the Q\PO and the Q^Pi elements and both for 1 and 2 iterations per step and
iterating to convergence in each time step. In this last case, it took an average
of 10 iterations per time-step to reduce the initial residuals by 7 orders of
magnitude. For this value of 7, anyway, it is unnecessary to converge in each
time step in order to obtain first order accuracy, since either 1 or 2 iterations
are sufficient for that purpose. In all these cases, the pressure solution was
also first order accurate.

For the Crank-Nicholson case 7 = 1/2, however, iterating to convergence
is compulsory to achieve second order accuracy in the velocity solution. If a
fixed number of 2 iterations per time step is chosen, second order accuracy
is lost, but the quotients obtained are still larger than 2 (indicating a higher
order than 1).

5.3.2 Kovasznay flow

We then solved the Kovasznay flow problem considered in Section 3.5, this
time with the predictor-multicorrector algorithm of the previous Section,
with 7 = 1 and 1 iteration per step, until a steady state was reached. Our
main interest here was proving numerically that the steady state obtained
with this pressure-correction method is independent of the time step used,
in agreement with the theoretical results of Section 4.6, as well as performing
a numerical study of the order of accuracy of the solution with respect to the
mesh size, for each of the two finite elements employed.
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st

1/16
1/32
1/64
1/128

Ki(St)

2.55
1.99
1.98
1.98

K2(St)

3.73
2.23
2.06
1.99

Kp(St)

2.11
2.03
2.01
2.00

Table 5.2: Q\Po element, 7 = 1, 2 iterations per step.

St

1/16
1/32
1/64
1/128

Ki(St)

2.00
1.97
1.97
2.01

K2(8t)

1.99
2.02
1.95
1.83

Kp(Sf)

2.02
2.00
2.00
2.01

Table 5.3: QiP0 element, 7 = 1, iterating to convergence.

St

1/7
1/8
1/10
1/12
1/14

K^St)

4.41
2.47
1.69
1.66
1.70

K2(St)

5.90
4.08
2.91
2.51
2.33

Table 5.4: Q\Po element, 7 = 1/2, 2 iterations per step.
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st

1/7
1/8
1/10
1/12
1/14

Ki(St)

4.06
4.04
4.03
3.75
4.00

K*(6t)

4.08
4.04
4.01
3.99
3.79

Table 5.5: QiPo element, 7 = 1/2, iterating to convergence.

St

1/16
1/32
1/64
1/128

Ki(ft)

2.24
2.01
2.00
1.97

K2(St)

2.27
1.99
1.99
1.99

Kp(St)

2.04
2.02
2.01
2.01

Table 5.6: QiP\ element, 7 = 1, 1 iteration per step.

St

1/32
1/64
1/128
1/256

Kl(St)

3.87
2.20
2.05
2.01

K2(ft)

5.62
2.60
2.15
2.05

Kp(6t)

2.57
2.09
2.03
2.02

Table 5.7: QiP\ element, 7 = 1, 2 iterations per step.
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st

1/32
1/64

1/128

K^ot)

1.98
1.99
2.00

K2(St)

1.98
2.00
1.95

ISp(ft)

2.01
2.01
1.99

Table 5.8: Q2P\ element, 7 = 1, iterating to convergence

St

1/16
1/20
1/24

Ai(íí)

5.80
3.38
2.57

K2(8t)

6.07
4.05
3.30

Table 5.9: Q2Pi element, 7 = 1/2, 2 iterations per step.

St

1/16
1/20
1/24

Kl(St)

3.83
3.96
3.86

K2(St)

4.15
4.04
3.92

Table 5.10: Q2Pi element, 7 = 1/2, iterating to convergence.
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We took again Í2 = [ -- , 1] x [ -- , -] and a uniform mesh consisting of
¿t ¿ ¿

31 x 21 nodes, which is used to define the elements for both the QiPo and
QiP\ cases. The Reynold's number was 10 this time. Since the flow is
confined, i.e., the velocity is prescribed on all the boundary (and equal to
the analytical solution 3.32), a linear restriction should be imposed on the
pressure to remove the hydrostatic (constant) pressure mode. In our code
we set the value of the pressure in the last element in the element numbering
strategy equal to zero (this corresponds to the degree of freedom number
(3 X ne — 2) for the Q2P\ element, where ne is the number of elements).

In order to compare the steady state obtained with two different time
steps Sti and 6tj, starting from the fluid at rest in the interior of il and the
analytical solution on the boundary, we define the difference between these
two solutions as the Euclidean norm of the difference of the nodal velocity
vectors, namely:

i*,-) = \U(6ti) - U(Stj}\2

where | .J2 is again the Euclidean norm of a vector and U(8t) is the nodal
velocity vector obtained at steady state with time step St. In this problem
we can also compare the numerical solutions with the analytical solution 3.32;
for that purpose we considered the relative maximum difference between the
exact and computed nodal velocity vector:

à (5.30)

where the subindex i refers to node at- (i = 1, . . . , npi np being the number of
nodal points), the subindeces x and y refer to the two components of velocity
and Z7ex is the vector of exact nodal velocities.

For the Q\Po element and the present mesh, we tried with time steps
5¿i = 0.01, St2 = 0.005 and St3 = 0.001. In each case, a steady state was
reached when \Un(6t)-Un+1(8t)\2 was less than 10~12. The three differences
Diff (it,-, 8tj) computed were smaller than 10~10, thus confirming indepen-
dence of the steady state with respect to the time step.

For the Q2Pi element we took Sti = 0.0025, St2 = 0.001 and St3 = 0.0005,
and a steady state was reached again at a tolerance of 10~12. The differences
were also smaller than 10~10 this time.

The velocity solutions obtained can be seen in Figures 5.1 and 5.2, where
we show the streamlines for the two elements. As for the pressures, the
QiPo developed an obvious checkboard mode, as could be anticipated by the
structure of the second step of the method 5.22. The elemental pressures for
this element can be seen in Figure 5.3; we also show, in Figure 5.4, the nodal
pressure contours obtained with the Q ¡Pi element after a least-squares nodal
interpolation process.
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Figure 5.1: Kovasznay flow, Q\Po element, streamlines.

Figure 5.2: Kovasznay flow, Q-^Pi element, streamlines.
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Figure 5.3: Kovasznay flow, Q\Po element, element pressure values.
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Figure 5.4: Kovasznay flow, element, nodal pressure contours.
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Figure 5.5: Kovasznay flow, Q\Po element with checkboard mode filtered,
element pressure values.

Since in this problem we know the exact pressure solution, we can de-
termine the actual value of the spurious pressure mode present in the Q\Po
element solution. We can then filter this mode by subtracting it from the
elements that it affects, given that on a uniform mesh the value of the check-
board mode is the same on all the 'red' cells of the mesh, assuming that the
last element is 'black' (the value of the spurious mode on 'black' cells is thus
0). We did so, and recovered the exact analytical solution, which we show
in Figures 5.5, in the form of elemental pressures, and 5.6, as nodal pressure
contours.

Finally, we solved this problem on three different uniform meshes with
each of the two elements, and computed the errors Errr (as defined in 5.30)
with respect to the exact solution; we plot them in Figure 5.7 as a function of
the mesh size. It can be seen that the steady states reached with this method
provide optimal order accuracy in the mesh size for the velocity solution in
the norm of L2(0) for these two elements, that is, quadratic for the Q\Po
and cubic for the Q-iP\. These steady states are the solutions of a standard
Galerkin mixed approximation of the steady, incompressible Navier-Stokes
equations.
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Figure 5.6: Kovasznay flow, Q\Po element with checkboard mode filtered,
nodal pressure contours.
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Figure 5.7: Kovasznay flow, maximum nodal error: •
element.
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5.3.3 Cavity flow problem

The third case we considered was again the lid-driven cavity flow problem,
this time solved with the predictor-multicorrector algorithm starting from
the fluid at rest (but for the velocity boundary condition) until a steady
state was reached. We took the leaky lid case (that is, with unit horizontal
velocity on the two top corners of the cavity) and a Reynolds number of 1000.
A regular, nonuniform mesh, which is finer near the boundaries, was used; it
is made up with 31 x 31 nodes. Two iterations of the multicorrector scheme
were performed per time step, and the value of 7 was set equal to 1 so as to
get a converged solution fastest.

Figure 5.8 shows the steady streamlines obtained with both the QiPo
and the QzPi elements. Secondary bottom left and right vortices can be
observed, but no top left vortex was found. Again, this is in good agreement
with benchmark solutions for this problem, ([42] or [88]) and other published
numerical solutions ([30], [65], [96] or [99])

The element pressures computed with the QiPo element are shown in
Figure 5.9. A checkerboarding phenomenon becomes apparent, which inval-
idates the pressure approximation without affecting the velocities. On the
other hand, the ^2-^1 element gave satisfactory pressure results; the pressure
contours obtained can be seen in Figure 5.10, and compare well with those
of the above mentioned references.

Finally, Figures 5.11 and 5.12 show the velocity profiles through the cavity
centerlines x = 0.5 (horizontal velocity) and y = 0.5 (vertical velocity),
respectively. As can be seen, these results compare well with the reference
data of U. Ghia eí al. ([42]), specially for biquadratic elements.

5.3.4 Noflow problem

The fourth example we present is the noflow test, introduced by P. Gresho
et al. in [47] and studied in [39] and [40]. The geometry and mesh for
this problem can be seen in Figure 5.13. Homogeneous Dirichlet boundary
conditions are imposed on all the boundary, and an external gravitational
force f = (0, —1) is applied. The exact analytical solution of this problem is
u = 0 and p = — y + pQ.

This simple case highlights another misbehaviour of the QiPo element
(and some other related constant pressure elements). Although it is a con-
fined flow problem, this time it is not the presence of checkboard pressure
modes, since the distorted character of the mesh filters them out, or the lack
of satisfaction of the LBB condition. The pressure space does not contain
the analytical solution, and a wrong pressure field induces the appearance of
a vortex of 0(h).

In this problem, we started from the fluid at rest and zero pressure until
a steady state was reached, with a time step of 0.01, two iterations per step
and a value of 7 equal to 1. The same results as in [39] and [40] were obtained
for the QiPo element after 300 steps, which can be seen in Figures 5.14 and
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Figure 5.8: Cavity flow, streamlines: a) Q\Po element; b) Q^P\ element.
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Figure 5.11: Cavity flow, horizontal velocity profile through cavity centerline
x = 0.5: — Q1PO element; Q2P1 element; o Reference [43].
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Figure 5.12: Cavity flow, vertical velocity profile through cavity centerline
y = 0.5: — Q1PO element; - - - Q2PI element; o Reference [43].
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Figure 5.13: Noflow problem, mesh.

5.16 in the form of nodal velocity vectors and pressure contours, respectively.
The QzPi element, on the contrary, yielded the exact analytical solution in
2 steps (see Figures 5.15 and 5.17).

5.3.5 Plane jet simulation

The fifth example considered is a purely unsteady case, consisting of a plane
jet simulation. The same conditions and mesh as in [73] were taken, which
are: a uniform 32 x 32 mesh of the 4 noded elements in the square [0,1] x
[—0.5,0.5]; a viscosity of v = 5 x 10~4; unit horizontal velocity at the central
node of the left wall, with natural boundary conditions on the other walls
and the fluid at rest at í = 0. A time step of 8t = 0.01 was taken. Once
again, 2 iterations per time step of the algorithm were performed, and 7
was set equal to 1. The streamlines at different times are shown in Figures
5.18 and 5.19 for the Q\Po and QiP\ elements, respectively; the pressure
contours for the same times can be found in Figures 5.20 and 5.21. They
are all in good agreement with the results of [73]. The presence of outlet
boundary conditions on part of the boundary prevents the appearance of
spurious checkboard modes for the Q\Po element. This example shows the
capability of the algorithm to reproduce purely unsteady situations.
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Figure 5.14: Noflow problem, Q\Po element, velocity vectors.
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Figure 5.15: Noflow problem, QiP\ element, velocity vectors.
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Figure 5.16: Noflow problem, Q\Po element, pressure contours.
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Figure 5.17: Noflow problem, QïP\ element, pressure contours.
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Figure 5.18: Jet flow, Q\Po element, streamlines: a) t = 1.2; b) t = 2.5; c)
t = 4.0.
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Figure 5.19: Jet flow, QiP\ element, streamlines: a) í = 1.2; b) í = 2.5; c)
t = 4.0.
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Figure 5.20: Jet flow, Q\Po element, nodal pressure contours: a) t = 1.2; b)
t = 2.5; c) t = 4.0.
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Figure 5.21: Jet flow, QiP\ element, nodal pressure contours: a) i = 1.2; b)
t = 2.5; c) t = 4.0.



Conclusions and future work

In this work we have studied fractional step, finite element methods for the
numerical solution of incompressible Navier-Stokes equations in primitive
variables. Two main objectives have been achieved: on the one hand, the
reason why some projection methods (the most popular among fractional
step methods) are not restricted by the standard inf-sup condition, which is
present in most incompressible flow formulations, has been unveiled; space
discretizations of such methods are only restricted by a weaker condition,
which has been proved to be satisfied by most equal order finite element
interpolations of velocities and pressures. On the other hand, a fractional
step method has been developed which bypasses the problem of enforcing
unphysical boundary conditions encountered in projection methods; this is
achieved by introducing a viscous term in the incompressibility phase of the
method.

It can be concluded from the present work that projection methods which
employ a continuous Pressure Poisson Equation in their formulation are not
restricted by the discrete LBB condition; pressure segregation, however, has
to be effected before space discretization takes place. Otherwise, a mixed
type discrete problem results, and a compatibility condition between the ap-
proximating spaces of velocity and pressure still applies. The reason why the
LBB restriction is so circumvented in standard projection methods has been
traced back to the appearance of a matrix A = L — GiM~lG in the discrete
continuity equation; this matrix, which can be understood as the difference
between two discrete Laplacian operators, has been proved to be positive
semidefinite. This has led to the conclusion that space discretizations of
projection methods are only restricted by a certain inf-sup condition which
is weaker than the standard one; we have then applied the macroelement
technique to showing that it is satisfied by equal order simplicial finite ele-
ments of arbitrary order in 2 and 3 dimensions, and equal order quadrilateral
(d = 2) and hexahedral (d = 3) finite elements of first order.

During the course of this study, we have also developed a numerical
method for the solution of the Stokes problem which allows the use of equal
order finite element interpolations. The Stokes problem is employed here as
a linear, steady model to study projection methods. Optimal order conver-
gence in the mesh size has been proved for our method, both in the natural
norm of the problem and in the L2-norm, for 'sufficiently smooth' domains
and meshes and under the weak compatibility condition just found. We have

197
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also studied different iterative schemes.for the numerical solution of the re-
sulting system of discrete linear equations. A comparison between the most
efficient scheme obtained and the well-known GLS method for the Stokes
problem has been given; our scheme seems to be a little more costly, but, in
some aspects, it is more accurate.

An extension of the previous method to the steady, incompressible Navier-
Stokes equation has also been provided. Optimal order convergence both in
natural and in Zf2-norm has been proved, in the case of a unique solution of
the original problem, under the same weak compatibility condition as in the
linear problem and again for 'sufficiently smooth' domains and meshes. A
study of different iterative schemes for the numerical solution of the resulting
system of discrete nonlinear equations has also been given, as well as a com-
parison between the most efficient scheme found and the GLS method applied
to the incompressible Navier-Stokes equations; once again, our scheme is a
little more costly, but it proved to be more accurate in all the cases we solved.

In the second part of this work, we developed an implicit fractional step
method which, unlike standard projection methods, allows the imposition of
the original boundary conditions of the problem in all phases of the method.
Space discretizations of this method, however, are restricted by the standard
LBB condition. We first proved convergence of this method in the time
step to a continuous solution, following the classical ideas of R. Temam for
the standard projection method; the convergence results for the end-of-step
velocities are improved with our method, due to the fact that they satisfy the
correct boundary conditions. We then obtained some error estimates for both
the intermediate and end-of-step velocities and the pressure as a function
of the time step, under stronger regularity assumptions on the solution and
mesh, and following the recent ideas of J. Shen for the standard projection
method, among others. Furthermore, we developed a similar method to the
previous one, but this time with pressure correction; we also obtained some
error estimates for this alternative method. We then proved independence of
the steady solution reached with implicit fractional step methods in steady
flow problems, provided pressure correction is used. Finally, we developed an
iterative scheme for the numerical solution of the resulting system of linear
equations in each time step for our pressure correction method; this scheme
is explicit in each iteration. We validated this scheme on some benchmark
problems, such as the flows over a backward facing step and around a circular
cylinder, with two different finite element space discretizations; good results
were obtained in all cases.

Finally, we redeveloped a well-known predictor multicorrector algorithm,
in a semi discrete setting within the context of fractional step methods, with
the help of the methods just introduced; this is an iterative algorithm in each
time step, in which each iteration is decomposed into two phases, in a similar
way to our pressure correction, fractional step method. This allowed us to
justify several properties of the algorithm, such as the possibility of imposing
the correct boundary conditions in all phases of the algorithm; the need for
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space interpolations of the algorithm to satisfy the discrete LBB condition;
the independence of the steady state reached with respect to the time step
in steady flow problems or the fact that a single iteration of the algorithm
is enough to achieve first order accuracy in the time step. We obtained
several numerical results with two different finite element discretizations of
the algorithm, the classical QiPo element and the QiP\ element.

As for future developments, we would first like to finish some aspects of
the present work which have been left open, such as the proof of the satisfac-
tion of our weak inf-sup condition in the case of quadrilateral and hexahedral
finite elements of higher order (Qk for k > 2), which we tried but not quite
succeeded; also, the analysis of our local discrete, reformulated Stokes and
Navier-Stokes problems, with parameters (XK defined elementwise, proving
optimal order convergence in a suitable mesh-dependent norm. But our main
next objectives will be the following: on the one hand, the theoretical anal-
ysis and implementation of a second order, viscosity splitting fractional step
method; we would like to obtain second order error estimates in the time
step size and numerical results which confirm them. This can be achieved
by fixing the parameters 6 and <f> to 1/2 in our pressure correction method.
An iterative scheme would then be considered for the solution of the result-
ing system of linear (or, maybe, nonlinear) equations, which would again
be explicit in each iteration. On the other hand, the theoretical analysis of
fully discrete fractional step methods: we would like to give error estimates
both in the time step size and the mesh size for the fully discrete solution of
the standard projection method without assuming that the approximating
spaces satisfy the standard inf-sup condition, but only the weak compatibil-
ity condition of Chapters 2 and 3. Moreover, we would also like to give error
estimates in space and time for the fully discrete solution of our viscosity
splitting method, this time assuming the standard inf-sup condition.





Appendix A

Improved error estimates

We give here some improved error estimates which we can prove for our vis-
cosity splitting method, both with and without pressure correction, assuming
that the semidiscrete velocities are uniformly bounded in H2(0). We also
prove some error estimates for the pressure which depend on the improved er-
ror estimates for the velocity; these show that the pressure is at least weakly
order 1/2 accurate for the method with and without pressure correction.

A.I Viscosity splitting method

We give here an improved error estimate for the end-of-step velocity of our
viscosity splitting method 4.8-4.10. We show that un+1 is actually a strongly
order 1 approximation of the solution in L2(íï) and weakly order 1 in Hj(íï),
assuming a uniform bound for un+1/2 in H2(fì).

Theorem A.I: assume that Al and A2 hold, and that the Stokes problem is
regular; assume also that the intermediate velocities satisfy:

||un+1/2||2 «7, V n > 0 (A.I)

with C > 0 independent of k; then, for N = 0, . . . , [T/k] — í, and small
enough k:

N

\eN+l\2 + A;i/^l|en+1||2 < C k2 (A.2)
n=0

PROOF: we recall equation 4.36 here:

i(e«+i _ en) - i/A(en+1) + V?
n+1 (A.3)

k
= (u".V)un+1/2 - (u(ín+1)-V)u(ín+1) + R"

201
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|
Taking the inner product of A. 3 with 2fcen~1"1, which is in Y, we get:

|en+i|2 _ |e"|2 + |en+1-en|2 + 2¿í/||en+1||2

+ 2 A <Rn,en+1 > (A.4)

The right-hand-side terms are bounded as follows. For the Taylor resid-
ual term we have:

2¿<R",en + 1> <

+T:

< *ü,
- 4 ''• " ' " " Jtn

For the nonlinear terms, we again use the splitting 4.27 to express them

f^*»4-l

+ Ck2 í \\utt\\
2
Y,dt

Jtn

as:

2k

= 2 k (-c(u(fn+1), e
n+1/2, e"+1) + c(u(in) - u(

- c(en,u"+1/2,en+1))

which we call I, II and III, respectively. Then:

I = -2*c(u(*M.i).eB+1/a,ewW)

C7A;|en+1/2|2

II = 2A;c(u(ín)-u(ín+1),u"+1/2,e"+1)

<



APPENDIX A. IMPROVED ERROR ESTIMATES 203

< C k2 * \\ut\\
2 dt +

III = -2fcc(en,un-fl/2,en+1)

< Ck\en\ ||un+1/2||2 |

<7Jfe|ef + ±1

where we have used 4.34 and A.I. Adding up A.4 for n = 0,... , N, taking
into account 4.31 for the term I, and the previous inequalities, we get:

n=0

n=0 n=0

< C k2 í \\vLtt\\Y'dt + G k2 /T||ut||
2dí

Jo Jo
N+l N

+ C k E |en|2 + C k ¿ |en+1 -en+1/2|2

n=0 n=0

+ C k2 E(||e"+1||2 + i|e"+1 - e"+1/2||2)
n=0

For sufficiently small k, we can apply the discrete Gronwall lemma to the
last inequality; using the regularity properties of the solution (R2 and R4)
and the estimates of Lemma 4.7, we get:

n=0 n=0

< Ck2

and 4.35 is proved. D

We now show that the pressure approximation of our viscosity splitting
fractional step method is order 1/2 accurate in the time step, as it is for
the classical projection method, according to [90]. We first recall a technical
result, similar to that of Lemma Al in [92]. In Theorem A.I we have proved
that, in particular:
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N

n=0

This implies that:

N

¿||eîi+1-en||l1 < C k2 (A.5)
n=0

since for all v 6 lJ2(iî), ||v||_i < C |v|. This is what we actually use to
prove the following error estimate for the pressure:

Theorem A.2: assume that Al and A2 hold, that the Stokes problem is
regular and that A.I also holds; then, for N = 0 , . . . , [T/k] — 1 and small
enough k:

N
k 2_j \pn ~~'P(^n+i)\i^m\ < Ck (A-6)

n=0

PROOF: we rewrite A. 3 as:

1 = (en+1 - en) - !/A(en+1) - Rn (A.7)

- (un - V)u"+1/2 + (u(in+1) - V)u

Using the continuous LBB condition 1.25:

\P\L*W < C sup , Vp e LIM (A.8)
veH(o) IMI

for the pressure error p = çn+1, we need to bound the products of the RHS
of A.7 with v e HJ(ÍÍ). We have:

,

<-z,A(en+1),v> = ((i

For the nonlinear terms, we use the following splitting, taken from [90]:

- (un - V)u"+1/2 + (u(ín+1)-V)u(ín+1) (A.9)

= ((u(ín+1)-u(ín)).v)u(ín+1) + (en - V)u(ín+1)

+ (un-V)en+1/2
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so that:

n! = C(u(ín+1)-u(ín),u(ín+1),v)

< (7|u(ín+1)-u(ín)|||u(ín+1)||2||v||

< C|u(ín+1)-u(ín)| ||v||

= C\ ftn*lutdt\\\v\\
Jtn

< C (k /tn+1|ut|
2cíí)1/2||v||

Jtn

T2 = c(en,u(in+1),v)

T3 = c(u",e"+12,v)

<

where we have used 4.33. Thus, taking the product of A. 7 with v and taking
into account A. 8 and all these inequalities, we obtain:

which yields:

< f

i* + k fn+1 |ut|
2 dt}

tn Jtn >

and A. 6 results from A. 5, the regularity of u, and Lemma 4.7. D

We have proved, in summary, that the pressure solution is weakly order
1/2 accurate in
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A. 2 Viscosity splitting, pressure correction
method :

We now give improved error estimates for the end-of-step velocities of our
pressure correction method, assuming again uniform bounds for the inter-
mediate velocities in H2(0) and uniform bounds for the pressure gradient in

Theorem A. 3: assume that Al and A2 hold, and that the Stokes problem is
regular; assume also that the intermediate velocities satisfy:

||un+1/2||2 < C, V n > 0 (A.10)

with C > 0 independent of k and that 4.46 also holds; then, for N —
0, . . . , [T/ k] — 1, and small enough k:

+ ^£||ën+1||2 < C k2 (A.ll)
n=0

PROOF: the proof is similar to that of Theorem A.I. We recall equation 4.55
here:

= (ün-V)ü"+1/2 - (u(ín+1) - V)u(ín+1) + Rn

where pn+<í = $pn+í + (1 - (f>)pn. Taking the inner product of A.12 with
2fcen+1, which is in Y, we get:

en+l2 _ g n 2 + gn+1 _ e„2 + 3 fc ̂  gn+l

+ Ik <R",ën+1> (A. 13)

The right-hand-side terms are bounded as in Theorem A.I, using again
the splitting 4.27 for the nonlinear terms, yielding:

2k<Rn,en+l> < ||en+1||2 + Ck2

4 t

2¿C(u(ín)-u(ín+1))u"+1/2,e"+1) < C k2 " \\ut\\
2 dt +

• tjj

L..
n 2) < C7Jb|ën|
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where A.10 has been used. Adding up A.13 for n = 0,..., N, taking into
account 4.31 for the nonlinear terms and the previous inequalities, we get:

N

n=0

„I J>» J t

n=0 n=0

< C k2 fT\\utt\\^dt + Ck2 f* \\ut\\* dt
Jo Jo

N+l N
+ c k £ |en|2 H- c k £ |en+1 - en+1/2|2

n=0 n=0

n=0

For sufficiently small &, we can apply the discrete Gronwall lemma to
the last inequality; using the regularity properties of the solution and the
estimates of Lemma 4.8, we get:

n=0 n=0

< Ck2

and A. 11 is proved. D

We finally show that the pressure approximation of our viscosity split-
ting fractional step method with pressure correction is also weakly order 1/2
accurate in the time step in the space Lg(ii). We also need a technical re-
sult, which is a consequence of the the proof of Theorem A.3. We have, in
particular, that:

N

n=0

which implies that:

N

Ellë^-ë"!!2.! < C k2 (A.14)
n=0

We then have:

Theorem A.4: assume that Al and A2 hold, that the Stokes problem is
regular, and that 4.46 and A.10 also hold; then, for N = 0, . . . , [T/k] — l,
and small enough k:
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Elí^-p(¿ti)IÍ5(n) ï Ck
n=0

PROOF: the proof is similar to that of Theorem A. 2. We call gn+1 = p(in+1) —
pn+<f>. We rewrite 4.55 as:

- Vgn+l = (en+1 - en) - i/A(en+1) - Rn (
K

- (Ü"-V)Ü"+1/2 + (u(ín+1)-V)u(ín+1)

that is, an equality similar to A. 7. Using again the LBB condition A. 8, we
bound the products of the RHS of A.16 with v 6 Hj(íí), to get:

<
tn

As for the nonlinear terms, we use again the splitting 4.27, to get:

T! = c(e",u"+1/2,v)

< a e -

-c(u(£n)-u(ín+1),ü"+1/2,v)

a||u(ín)-u(ín+1)lll|ün+1/2||||v|

= G 1 1 n utdt\\\ I v||

T3 = c(u

= -c(

< C7||u(¿n+1)i|2||v|||en+1/2|
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This way, we find:

f

+

that is:

£||-n+l_-n||2

|ut||
2 ¿É}

J

and A.15 foEows from A. 14, Theorems A.3 and 4.3 and the regularity R2
and R3 of u. D

In summary, we have obtained first order error estimates for the end-
of-step velocities of our viscosity splitting method with 0 = 1, both with
and without pressure correction, and order 1/2 estimates for the intermedi-
ate velocities, both of them strong in L2(O) and weak in Hj(Q), under the
usual regularity assumptions Al and A2 and the uniform bounds for the
intermediate velocities in H2(0); we have also obtained order 1/2 weak error
estimates for the pressure in
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Chapter 5

A predictor—multicorrector
algorithm

In this Chapter we study a form of a predictor-multicorrector algorithm
customized to the unsteady, incompressible Navier-Stokes equations. This
algorithm, developed originally for general evolution equations in a discrete
setting, was applied succesfully to several unsteady incompressible flow prob-
lems in the eighties, such as fluid-structure interaction problems. Here, and
in the light of the viscositty splitting methods developed in the previous
Chapter, we redevelop the algorithm in a semidiscrete formulation, thus pro-
viding an interpretation of it within the context of fractional step methods.
This gives a theoretical explanation for some properties of the algorithm
such the need for the spatial interpolation used to satisfy the discrete LBB
condition, the order of accuracy of the discrete solutions with respect to the
time step or the reason behind the imposition of boundary conditions in each
phase of the algorithm. We will see, in particular, that our viscosity splitting
method can in some cases be understood as a predictor-corrector form of
this algorithm. Most of these ideas can be found in [26].

The predictor-multicorrector algorithm is usually implemented together
with a bilinear velocity, constant pressure (QiP0) finite element interpolation;
we implemented also the biquadratic velocity, linear pressure (QiPi) element,
which satisfies the LBB condition, to compare the properties of the two
discretizations.

The outline of the Chapter is the following: in Section 5.1 we present
our semidiscrete formulation of the scheme, proving that it corresponds to
the predictor-multicorrector algorithm and showing in what sense it can be
understood as a fractional step method. In 5.2 we introduce the two finite
element interpolations considered, the resulting fully discrete equations and
some considerations relative to the actual implementation of the scheme.
Finally, in 5.3 we present some numerical results obtained with the algorithm
on several test problems.

169
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5.1 Semidiscrete form of the algorithm

Let us consider the predictor-multicorrector algorithm developed by T.J.R.
Hughes and coworkers, which was applied to the incompressible Navier-
Stokes equations in [20]; it can also be found in [75] in a similar context.
We give here an alternative derivation of the algorithm, within the context
of fractional step methods.

Given a time step St > 0 and a parameter 7 such that 0 < 7 < 1, and
assuming that the velocity un and pressure pn are known at time tn = nSt,
an implicit method of the form:

_7an+1-(l-7)an = O
St

V-(un+1) = 0 (5.1)

|run+1r = 0

is considered for the solution of 1.7-1.5 with homogeneous Dirichlet boundary
conditions 1.10, where we define:

am = f(im) - Vpm - (um-V)um + i/Aum (5.2)

An iterative scheme is introduced for the solution of the nonlinear, cou-
pled problem 5.1. It starts with some predictions UQ+I and p£+1 f°r un+1

and pn+1, respectively, which will be specified next. Then, each iteration is
split into two steps. The first one accounts for viscous and convective effects,
but not for the incompressibility condition; this is dealt with in the second
step, in a similar way to the fractional step methods of Chapter 4. Pressure
correction is used, and the convective term is approximated explicitly for
simplicity. Given the z'-th iteration approximations u"+1 and p"+1 to un+1

and pn+1, the first step of the (i -f l)-th iteration then consists of finding an
intermediate iteration velocity u£j|jy2 such that:

= 7f(í«+i) + (1-7K

- 7«+1 • VK+I - 7Vtf+1 (5.3)

/a« i a i r = 0

The notation uj^/j has been chosen deliverately to emphasise that the
solution of 5.3 is an intermediate iteration aproximation of the velocity at
time £n+i. In the second step of each iteration, a pressure increment is used
to enforce incompressibility, in a similar way to the method of Section 4.5.
Thus, one looks for an end-of-iteration velocity u"^1 and pressure p"̂ 1 such
that:
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= 0

(5.4)

The multicorrector scheme 5.3-5.4 is performed, in principle, to conver-
gence in i, that is, until uj^1 = u7+1 and p"̂ 1 = p"+1, at which time one
sets un+1 = uj!̂ 1 and pn+1 = p"̂ 1 and goes back to the predictor phase.

We can show that this method is another version, independent of any
particular spatial discretization, of the predictor-multicorrector algorithm
of [20], which was given in a discrete setting after a Q\Po finite element
interpolation of the Navier-Stokes equations, which results in the following
constrained system of ODEs:

MÙ + KU + A(U)U + G0P = F
G1

QU = O

In terms of accelerations (*4) and time derivatives of elemental pressures
(P), the algorithm then reads:

Predictor phase:

= Un + (l -7) StA"
AZ+I = o
P0"

+1 = P" + (l-7)íípn

/T1 = 0

Solution phase:

B SAi = AI (5.5)
72 (St)2 (GoB~lG0) (SP) = GO (U?+1 + i6t(8Ai)) (5.6)

B S At = -7 8t Go (SP) (5.7)

where all the matrices have been defined before and the residual vector R\
is given by:
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Corrector phase:

+ SAl +
(l-i)8tAn + 7

+ SP

= Pn + (l-i}StPn + i

The value of i is then incremented in 1 and the scheme goes back to the
solution phase again. We now have:

Lemma 5.1: the scheme 5.3-5.4 is equivalent to the predictor-multicorrector
algorithm of [20].

PROOF: assume the velocity un, acceleration an, pressure pn and pressure
temporal variation pn are known at time tn = n8t, satisfying 5.2 and the
incompressibility condition 1.5. The iterative predictor-multicorrector pro-
cedure starts with the following predictions:

u£+1 = un -f- ( l-7)£ían (5.8)

= 0 (5.9)

= Pn + (1-7 W (5.10)

PÔ+1 = O (5.11)

Assume, further that after each correction phase the approximation of
velocity and pressure may be written as:

= un + (1-7) ¿lía" + 7¿fa?+1 (5.12)

= Pn + (1-7 W + 7«Pr+1 (5.13)

where a?+1 and p"+1 are the corrected values at the end of the t-th iteration.
Note that equations 5.12-5.13 are also valid for the initial prediction (i = 0).

The objective of each iteration is to compute new approximations u"^1

and p"̂ 1 by computing corrected values of a"̂ 1 and p™** . Since each iteration
is split into two steps, an intermediate velocity u^Sj and acceleration »"¿̂
are first calculated. If the intermediate velocity is expressed as:

»Sí/i = u" + (1-7) ft a" + 7««Si% (5.14)

and the intermediate acceleration is defined as:

• «Si% = ar1 + ia,

then the following relation is deduced from 5.12:
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The intermediate velocity and acceleration are computed from the first
split step, namely equations 5.3, which can thus be rewritten as:

Ssn\r = 0 (5.15)

The end-of-step velocity u"^1 is expressed, using 5.12, as:

= u" + (l-7)¿ían + 7

and can be further simplified in terms of the intermediate velocity, using
equation 5.14, and the end-of-step acceleration, which is defined as:

»Si1 = «Si1/» + Sa*
Thus:

«Si1 = «Si/2 + 7¿¿ía2 (5.17)

Likewise, from 5.13, the end-of-step pressure p^1 is expressed as:

(5.18)

where the new pressure variation is determined by:

and consequently one gets:

+ -rstsp (5.19)
With the previous expressions of the end-of-step velocity and pressure,

equations 5.17 and 5.19 respectively, the second split step defined by the
equation system 5.4 can be written as:

= 0

V • (¿a2) = ^-V - K+1 + 7ÍÍ ¿ai) (5.20)
70t

¿a2|r = 0

Given the time-discretization scheme defined by 5.12-5.13, equations 5.15
and 5.20 are another version of the two split-step equations 5.3 and 5.4 de-
fined previously. After they have been solved, the corresponding corrections
are performed, namely equations 5.16 and 5.18. The weak for of the split
equations 5.3-5.4 is the following:
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l

First step: find u"¿x
/2 6 H¿(Í2) such'that:

+ (l-7)(a",v)

Vv e HS(O) (5.21)

Second step: find u"^1 6 Hj(fi) and *£# =^Stp^ 6 Ig(ii) such that:

+ Xv,*n+1) = «rKïiVa.v), VveHj(íi)

6Kff,í) = O, " Ví6¿2(íl) (5.22)

where the bilinear form a7 was defined in 4.14. Existence and uniqueness of
solutions to these problems are established the same way as for the fractional
step methods of Chapter 4. In terms of accelerations and pressure time
derivatives,, the corresponding weak forms of equations 5.15 and 5.20 are:

First step: find S&i 6 Hj(fi) such that:

- KK+1,v)) - c(u?+1X+1,v), W e HS(fl) (5.23)

Second step: find Ía2 E H¿(Í2) and íp 6 L%(£1) such that:

a7(5a2,v) + j8tb(v,6p) = O, Vv e Hj(í2)

l l?)> Vç 6

A finite element discretization of this scheme is the same algorithm as the
one considered in [20]. 0

There is a clear formal relationship between the structure of the split
equations 5.3-5.4 and the viscosity-splitting pressure-correction method of
Section 4.3. In fact, the latter method with parameters 6 = (f> = 1 is equiv-
alent to a single correction of the former with 7 = 1, since in that case
UQ+I = un and po+1 = Pn (see 5.8 and 5.10); the only difference, though, is
the treatment of the nonlinear term, which is then explicit in the predictor-
multicorrector algorithm. One then has that u"^1 = un+1/2, u"+1 = un+1

and p"+1 = pn+l. The paralelism between these two methods implies that
discrete interpolations of the predictor-multicorrector algorithm are subject
to the satisfaction of the LBB condition, so that in confined flow problems
the QiPo element will develop checkboard pressure modes; that, at least for
7 = 1, one correction is enough to achieve first order accuracy in the time
step, and that when a steady state is reached with this algorithm, it will be
independent of the time step.
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5.2 Finite element discretization

We now introduce a finite element space discretization into the multicorrector
scheme 5.23-5.24. If Vh C H¿(íí) and Qh. C Ll(£l) denote finite dimensional
subspaces defined through a finite element discretization of ÍÍ, the discrete
version of 5.23 consists of finding Sa.ith € Vh such that:

, Vvh€ 14(5.25)

whereas in the discrete version of 5.24 we look for Sa.2th G V/, and Sph € Q h
such that:

+ ~f6tb(vh,6ph) = 0, Vvfc € V* (5.26)

, 9fc), Vch € Qh

Calling again A and P the vectors of nodal accelerations and pressure
time derivatives representing the functions a/, and p/t, respectively, the weak
form of equations 5.25-5.26 can be written in matrix form, with the notation
introduced up to now, as:

B S Ai = RI (5.27)

B 8 A* + -y 6t G0 (OP) = O (5.28)

&0 A, = —GKUF1 +1 St S Ai) (5.29)7 oí
By isolating 8Á2 from 5.28 and substituting it into 5.29, one gets equa-

tion 5.6, that is, the pressure update equation of the solution phase of the
predictor multicorrector algorithm. This equation, however, is not afford-
able in practice, since it involves the inversion of a full matrix B to form the
system matrix Gt

0B~1Go, which is prohibitive in general. Some approxima-
tions are introduced in [20] in this scheme, which make it computationally
feasible. The matrix B is approximated by M in all its appearances (the
difference between the two, StvL, is dropped). This approximation is first
order accurate in the time step, so that the errors it introduces are of the
same order of magnitude as those of the method itself. Moreover, the matrix
M is then lumped, which allows the pressure system 5.6 to be a possible way
to compute the pressure variation in each iteration. Thus, the final scheme
reads:

ML 8 AI = Ri
72 (St)2 (GÏ(ML)-1G0) (SP) = G1

0 (tff+1

MLSA2 = -jStG0(SP)
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Inversion of the diagonal matrix M£ is now trivial. This is the algorithm
actually implemented in practice. It has to be said that the introduction of
these simplifications (which are due to T.J.R. Hughes and coworkers) has a
double theoretical implication: on the one hand, the approximation of B by
M in 5.5 leads to an explicit treatment of diffusion in each iteration (although
not in each time step, if the algorithm is iterated at least twice per step); on
the other hand, the approximation of B by M in 5.6 and 5.7 implies that
the algorithm actually used admits an interpretation within the context of
fractional step methods relative to the standard projection method, that is,
without a viscous term in the incompressibility phase. A single iteration
of this simplified predictor-multicorrector algorithm is actually equivalent to
the standard projection method. If it is understood this way, a question arises
about which boundary conditions are to be imposed in the incompressibility
phase, whether the full Dirichlet condition or only the normal component of
it.

If two or more iterations of this scheme are performed, all terms in the
Navier-Stokes equations are treated implicitly. Thus, no St limitations are
expected for the stability of the algorithm over a wide range of Reynolds
numbers. However, the iterative nature of the scheme and the simplifica-
tions introduced in it (such as the explicit treatment of the convective term)
impose restrictions on St for the stability of the iterative process, specially
for quadratic elements, as will be seen in the next Section.

5.3 Numerical results

We now present some results obtained with the predictor-multicorrector al-
gorithm just considered, both with a QiPo and a Q^Pi finite element interpo-
lation, on five test problems. First, van Kan's problem is used again to study
numerically the order of accuracy in the time step of this algorithm with dif-
ferent values of the parameter 7 and different numbers of iterations per time
step; then, we consider again the Kovasznay flow problem, this time to prove
numerically the independence of the steady state reached with a pressure
correction algorithm from the time step used, and to study the dependence
of the error with respect to the analytical solution on the mesh size for each
of the two elements; we then solve the standard cavity flow problem with
both interpolations, and the so called 'no flow test', and finally, we consider
a plane jet simulation as another example of a purely unsteady problem.

5.3.1 Numerical accuracy study

We considered again the test problem introduced by van Kan in [62], this
time to study numerically the order of accuracy with respect to the time
step of the predictor-multicorrector algorithm with different values of the
parameter 7 and different number of iterations in each time step. The same
mesh, boundary conditions and Reynolds number as in Subsection 4.5.1 were
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st

1/16
1/32
1/64
1/128

Kl(ft)

2.04
2.02
2.01
1.99

Kt(St)

2.02
2.01
2.01
1.99

Kp(«)

2.03
2.02
2.01
2.00

Table 5.1: QiPo element, 7 = 1, 1 iteration per step.

considered, and also the same definitions of the quotients Ki(St) (i = 1,2)
and Kp(íí).

In Tables 5.1 to 5.10, we present the results obtained with 7 = 1 both for
1 and 2 iterations of the multicorrector scheme per time step and iterating
it to convergence in each time step, and for 7 = 1/2 with 2 iterations and
iterating to convergence, both for the Q\Po and the QzP\ elements (the latter
was unstable for large values of the time step).

The backward Euler scheme 7 = 1 is clearly first order accurate, both for
the Q\PO and the Q^Pi elements and both for 1 and 2 iterations per step and
iterating to convergence in each time step. In this last case, it took an average
of 10 iterations per time-step to reduce the initial residuals by 7 orders of
magnitude. For this value of 7, anyway, it is unnecessary to converge in each
time step in order to obtain first order accuracy, since either 1 or 2 iterations
are sufficient for that purpose. In all these cases, the pressure solution was
also first order accurate.

For the Crank-Nicholson case 7 = 1/2, however, iterating to convergence
is compulsory to achieve second order accuracy in the velocity solution. If a
fixed number of 2 iterations per time step is chosen, second order accuracy
is lost, but the quotients obtained are still larger than 2 (indicating a higher
order than 1).

5.3.2 Kovasznay flow

We then solved the Kovasznay flow problem considered in Section 3.5, this
time with the predictor-multicorrector algorithm of the previous Section,
with 7 = 1 and 1 iteration per step, until a steady state was reached. Our
main interest here was proving numerically that the steady state obtained
with this pressure-correction method is independent of the time step used,
in agreement with the theoretical results of Section 4.6, as well as performing
a numerical study of the order of accuracy of the solution with respect to the
mesh size, for each of the two finite elements employed.
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st

1/16
1/32
1/64
1/128

Ki(St)

2.55
1.99
1.98
1.98

K2(St)

3.73
2.23
2.06
1.99

Kp(St)

2.11
2.03
2.01
2.00

Table 5.2: Q\Po element, 7 = 1, 2 iterations per step.

St

1/16
1/32
1/64
1/128

Ki(St)

2.00
1.97
1.97
2.01

K2(8t)

1.99
2.02
1.95
1.83

Kp(Sf)

2.02
2.00
2.00
2.01

Table 5.3: QiP0 element, 7 = 1, iterating to convergence.

St

1/7
1/8
1/10
1/12
1/14

K^St)

4.41
2.47
1.69
1.66
1.70

K2(St)

5.90
4.08
2.91
2.51
2.33

Table 5.4: Q\Po element, 7 = 1/2, 2 iterations per step.
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st

1/7
1/8
1/10
1/12
1/14

Ki(St)

4.06
4.04
4.03
3.75
4.00

K*(6t)

4.08
4.04
4.01
3.99
3.79

Table 5.5: QiPo element, 7 = 1/2, iterating to convergence.

St

1/16
1/32
1/64
1/128

Ki(ft)

2.24
2.01
2.00
1.97

K2(St)

2.27
1.99
1.99
1.99

Kp(St)

2.04
2.02
2.01
2.01

Table 5.6: QiP\ element, 7 = 1, 1 iteration per step.

St

1/32
1/64
1/128
1/256

Kl(St)

3.87
2.20
2.05
2.01

K2(ft)

5.62
2.60
2.15
2.05

Kp(6t)

2.57
2.09
2.03
2.02

Table 5.7: QiP\ element, 7 = 1, 2 iterations per step.
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st

1/32
1/64

1/128

K^ot)

1.98
1.99
2.00

K2(St)

1.98
2.00
1.95

ISp(ft)

2.01
2.01
1.99

Table 5.8: Q2P\ element, 7 = 1, iterating to convergence

St

1/16
1/20
1/24

Ai(íí)

5.80
3.38
2.57

K2(8t)

6.07
4.05
3.30

Table 5.9: Q2Pi element, 7 = 1/2, 2 iterations per step.

St

1/16
1/20
1/24

Kl(St)

3.83
3.96
3.86

K2(St)

4.15
4.04
3.92

Table 5.10: Q2Pi element, 7 = 1/2, iterating to convergence.
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We took again Í2 = [ -- , 1] x [ -- , -] and a uniform mesh consisting of
¿t ¿ ¿

31 x 21 nodes, which is used to define the elements for both the QiPo and
QiP\ cases. The Reynold's number was 10 this time. Since the flow is
confined, i.e., the velocity is prescribed on all the boundary (and equal to
the analytical solution 3.32), a linear restriction should be imposed on the
pressure to remove the hydrostatic (constant) pressure mode. In our code
we set the value of the pressure in the last element in the element numbering
strategy equal to zero (this corresponds to the degree of freedom number
(3 X ne — 2) for the Q2P\ element, where ne is the number of elements).

In order to compare the steady state obtained with two different time
steps Sti and 6tj, starting from the fluid at rest in the interior of il and the
analytical solution on the boundary, we define the difference between these
two solutions as the Euclidean norm of the difference of the nodal velocity
vectors, namely:

i*,-) = \U(6ti) - U(Stj}\2

where | .J2 is again the Euclidean norm of a vector and U(8t) is the nodal
velocity vector obtained at steady state with time step St. In this problem
we can also compare the numerical solutions with the analytical solution 3.32;
for that purpose we considered the relative maximum difference between the
exact and computed nodal velocity vector:

à (5.30)

where the subindex i refers to node at- (i = 1, . . . , npi np being the number of
nodal points), the subindeces x and y refer to the two components of velocity
and Z7ex is the vector of exact nodal velocities.

For the Q\Po element and the present mesh, we tried with time steps
5¿i = 0.01, St2 = 0.005 and St3 = 0.001. In each case, a steady state was
reached when \Un(6t)-Un+1(8t)\2 was less than 10~12. The three differences
Diff (it,-, 8tj) computed were smaller than 10~10, thus confirming indepen-
dence of the steady state with respect to the time step.

For the Q2Pi element we took Sti = 0.0025, St2 = 0.001 and St3 = 0.0005,
and a steady state was reached again at a tolerance of 10~12. The differences
were also smaller than 10~10 this time.

The velocity solutions obtained can be seen in Figures 5.1 and 5.2, where
we show the streamlines for the two elements. As for the pressures, the
QiPo developed an obvious checkboard mode, as could be anticipated by the
structure of the second step of the method 5.22. The elemental pressures for
this element can be seen in Figure 5.3; we also show, in Figure 5.4, the nodal
pressure contours obtained with the Q ¡Pi element after a least-squares nodal
interpolation process.
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Figure 5.1: Kovasznay flow, Q\Po element, streamlines.

Figure 5.2: Kovasznay flow, Q-^Pi element, streamlines.
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Figure 5.3: Kovasznay flow, Q\Po element, element pressure values.
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Figure 5.4: Kovasznay flow, element, nodal pressure contours.
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Figure 5.5: Kovasznay flow, Q\Po element with checkboard mode filtered,
element pressure values.

Since in this problem we know the exact pressure solution, we can de-
termine the actual value of the spurious pressure mode present in the Q\Po
element solution. We can then filter this mode by subtracting it from the
elements that it affects, given that on a uniform mesh the value of the check-
board mode is the same on all the 'red' cells of the mesh, assuming that the
last element is 'black' (the value of the spurious mode on 'black' cells is thus
0). We did so, and recovered the exact analytical solution, which we show
in Figures 5.5, in the form of elemental pressures, and 5.6, as nodal pressure
contours.

Finally, we solved this problem on three different uniform meshes with
each of the two elements, and computed the errors Errr (as defined in 5.30)
with respect to the exact solution; we plot them in Figure 5.7 as a function of
the mesh size. It can be seen that the steady states reached with this method
provide optimal order accuracy in the mesh size for the velocity solution in
the norm of L2(0) for these two elements, that is, quadratic for the Q\Po
and cubic for the Q-iP\. These steady states are the solutions of a standard
Galerkin mixed approximation of the steady, incompressible Navier-Stokes
equations.
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5.3.3 Cavity flow problem

The third case we considered was again the lid-driven cavity flow problem,
this time solved with the predictor-multicorrector algorithm starting from
the fluid at rest (but for the velocity boundary condition) until a steady
state was reached. We took the leaky lid case (that is, with unit horizontal
velocity on the two top corners of the cavity) and a Reynolds number of 1000.
A regular, nonuniform mesh, which is finer near the boundaries, was used; it
is made up with 31 x 31 nodes. Two iterations of the multicorrector scheme
were performed per time step, and the value of 7 was set equal to 1 so as to
get a converged solution fastest.

Figure 5.8 shows the steady streamlines obtained with both the QiPo
and the QzPi elements. Secondary bottom left and right vortices can be
observed, but no top left vortex was found. Again, this is in good agreement
with benchmark solutions for this problem, ([42] or [88]) and other published
numerical solutions ([30], [65], [96] or [99])

The element pressures computed with the QiPo element are shown in
Figure 5.9. A checkerboarding phenomenon becomes apparent, which inval-
idates the pressure approximation without affecting the velocities. On the
other hand, the ^2-^1 element gave satisfactory pressure results; the pressure
contours obtained can be seen in Figure 5.10, and compare well with those
of the above mentioned references.

Finally, Figures 5.11 and 5.12 show the velocity profiles through the cavity
centerlines x = 0.5 (horizontal velocity) and y = 0.5 (vertical velocity),
respectively. As can be seen, these results compare well with the reference
data of U. Ghia eí al. ([42]), specially for biquadratic elements.

5.3.4 Noflow problem

The fourth example we present is the noflow test, introduced by P. Gresho
et al. in [47] and studied in [39] and [40]. The geometry and mesh for
this problem can be seen in Figure 5.13. Homogeneous Dirichlet boundary
conditions are imposed on all the boundary, and an external gravitational
force f = (0, —1) is applied. The exact analytical solution of this problem is
u = 0 and p = — y + pQ.

This simple case highlights another misbehaviour of the QiPo element
(and some other related constant pressure elements). Although it is a con-
fined flow problem, this time it is not the presence of checkboard pressure
modes, since the distorted character of the mesh filters them out, or the lack
of satisfaction of the LBB condition. The pressure space does not contain
the analytical solution, and a wrong pressure field induces the appearance of
a vortex of 0(h).

In this problem, we started from the fluid at rest and zero pressure until
a steady state was reached, with a time step of 0.01, two iterations per step
and a value of 7 equal to 1. The same results as in [39] and [40] were obtained
for the QiPo element after 300 steps, which can be seen in Figures 5.14 and
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Figure 5.8: Cavity flow, streamlines: a) Q\Po element; b) Q^P\ element.
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Figure 5.11: Cavity flow, horizontal velocity profile through cavity centerline
x = 0.5: — Q1PO element; Q2P1 element; o Reference [43].
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Figure 5.12: Cavity flow, vertical velocity profile through cavity centerline
y = 0.5: — Q1PO element; - - - Q2PI element; o Reference [43].
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Figure 5.13: Noflow problem, mesh.

5.16 in the form of nodal velocity vectors and pressure contours, respectively.
The QzPi element, on the contrary, yielded the exact analytical solution in
2 steps (see Figures 5.15 and 5.17).

5.3.5 Plane jet simulation

The fifth example considered is a purely unsteady case, consisting of a plane
jet simulation. The same conditions and mesh as in [73] were taken, which
are: a uniform 32 x 32 mesh of the 4 noded elements in the square [0,1] x
[—0.5,0.5]; a viscosity of v = 5 x 10~4; unit horizontal velocity at the central
node of the left wall, with natural boundary conditions on the other walls
and the fluid at rest at í = 0. A time step of 8t = 0.01 was taken. Once
again, 2 iterations per time step of the algorithm were performed, and 7
was set equal to 1. The streamlines at different times are shown in Figures
5.18 and 5.19 for the Q\Po and QiP\ elements, respectively; the pressure
contours for the same times can be found in Figures 5.20 and 5.21. They
are all in good agreement with the results of [73]. The presence of outlet
boundary conditions on part of the boundary prevents the appearance of
spurious checkboard modes for the Q\Po element. This example shows the
capability of the algorithm to reproduce purely unsteady situations.
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Figure 5.15: Noflow problem, QiP\ element, velocity vectors.
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Figure 5.18: Jet flow, Q\Po element, streamlines: a) t = 1.2; b) t = 2.5; c)
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Figure 5.19: Jet flow, QiP\ element, streamlines: a) í = 1.2; b) í = 2.5; c)
t = 4.0.
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Figure 5.20: Jet flow, Q\Po element, nodal pressure contours: a) t = 1.2; b)
t = 2.5; c) t = 4.0.
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t = 2.5; c) t = 4.0.



Conclusions and future work

In this work we have studied fractional step, finite element methods for the
numerical solution of incompressible Navier-Stokes equations in primitive
variables. Two main objectives have been achieved: on the one hand, the
reason why some projection methods (the most popular among fractional
step methods) are not restricted by the standard inf-sup condition, which is
present in most incompressible flow formulations, has been unveiled; space
discretizations of such methods are only restricted by a weaker condition,
which has been proved to be satisfied by most equal order finite element
interpolations of velocities and pressures. On the other hand, a fractional
step method has been developed which bypasses the problem of enforcing
unphysical boundary conditions encountered in projection methods; this is
achieved by introducing a viscous term in the incompressibility phase of the
method.

It can be concluded from the present work that projection methods which
employ a continuous Pressure Poisson Equation in their formulation are not
restricted by the discrete LBB condition; pressure segregation, however, has
to be effected before space discretization takes place. Otherwise, a mixed
type discrete problem results, and a compatibility condition between the ap-
proximating spaces of velocity and pressure still applies. The reason why the
LBB restriction is so circumvented in standard projection methods has been
traced back to the appearance of a matrix A = L — GiM~lG in the discrete
continuity equation; this matrix, which can be understood as the difference
between two discrete Laplacian operators, has been proved to be positive
semidefinite. This has led to the conclusion that space discretizations of
projection methods are only restricted by a certain inf-sup condition which
is weaker than the standard one; we have then applied the macroelement
technique to showing that it is satisfied by equal order simplicial finite ele-
ments of arbitrary order in 2 and 3 dimensions, and equal order quadrilateral
(d = 2) and hexahedral (d = 3) finite elements of first order.

During the course of this study, we have also developed a numerical
method for the solution of the Stokes problem which allows the use of equal
order finite element interpolations. The Stokes problem is employed here as
a linear, steady model to study projection methods. Optimal order conver-
gence in the mesh size has been proved for our method, both in the natural
norm of the problem and in the L2-norm, for 'sufficiently smooth' domains
and meshes and under the weak compatibility condition just found. We have

197
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also studied different iterative schemes.for the numerical solution of the re-
sulting system of discrete linear equations. A comparison between the most
efficient scheme obtained and the well-known GLS method for the Stokes
problem has been given; our scheme seems to be a little more costly, but, in
some aspects, it is more accurate.

An extension of the previous method to the steady, incompressible Navier-
Stokes equation has also been provided. Optimal order convergence both in
natural and in Zf2-norm has been proved, in the case of a unique solution of
the original problem, under the same weak compatibility condition as in the
linear problem and again for 'sufficiently smooth' domains and meshes. A
study of different iterative schemes for the numerical solution of the resulting
system of discrete nonlinear equations has also been given, as well as a com-
parison between the most efficient scheme found and the GLS method applied
to the incompressible Navier-Stokes equations; once again, our scheme is a
little more costly, but it proved to be more accurate in all the cases we solved.

In the second part of this work, we developed an implicit fractional step
method which, unlike standard projection methods, allows the imposition of
the original boundary conditions of the problem in all phases of the method.
Space discretizations of this method, however, are restricted by the standard
LBB condition. We first proved convergence of this method in the time
step to a continuous solution, following the classical ideas of R. Temam for
the standard projection method; the convergence results for the end-of-step
velocities are improved with our method, due to the fact that they satisfy the
correct boundary conditions. We then obtained some error estimates for both
the intermediate and end-of-step velocities and the pressure as a function
of the time step, under stronger regularity assumptions on the solution and
mesh, and following the recent ideas of J. Shen for the standard projection
method, among others. Furthermore, we developed a similar method to the
previous one, but this time with pressure correction; we also obtained some
error estimates for this alternative method. We then proved independence of
the steady solution reached with implicit fractional step methods in steady
flow problems, provided pressure correction is used. Finally, we developed an
iterative scheme for the numerical solution of the resulting system of linear
equations in each time step for our pressure correction method; this scheme
is explicit in each iteration. We validated this scheme on some benchmark
problems, such as the flows over a backward facing step and around a circular
cylinder, with two different finite element space discretizations; good results
were obtained in all cases.

Finally, we redeveloped a well-known predictor multicorrector algorithm,
in a semi discrete setting within the context of fractional step methods, with
the help of the methods just introduced; this is an iterative algorithm in each
time step, in which each iteration is decomposed into two phases, in a similar
way to our pressure correction, fractional step method. This allowed us to
justify several properties of the algorithm, such as the possibility of imposing
the correct boundary conditions in all phases of the algorithm; the need for
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space interpolations of the algorithm to satisfy the discrete LBB condition;
the independence of the steady state reached with respect to the time step
in steady flow problems or the fact that a single iteration of the algorithm
is enough to achieve first order accuracy in the time step. We obtained
several numerical results with two different finite element discretizations of
the algorithm, the classical QiPo element and the QiP\ element.

As for future developments, we would first like to finish some aspects of
the present work which have been left open, such as the proof of the satisfac-
tion of our weak inf-sup condition in the case of quadrilateral and hexahedral
finite elements of higher order (Qk for k > 2), which we tried but not quite
succeeded; also, the analysis of our local discrete, reformulated Stokes and
Navier-Stokes problems, with parameters (XK defined elementwise, proving
optimal order convergence in a suitable mesh-dependent norm. But our main
next objectives will be the following: on the one hand, the theoretical anal-
ysis and implementation of a second order, viscosity splitting fractional step
method; we would like to obtain second order error estimates in the time
step size and numerical results which confirm them. This can be achieved
by fixing the parameters 6 and <f> to 1/2 in our pressure correction method.
An iterative scheme would then be considered for the solution of the result-
ing system of linear (or, maybe, nonlinear) equations, which would again
be explicit in each iteration. On the other hand, the theoretical analysis of
fully discrete fractional step methods: we would like to give error estimates
both in the time step size and the mesh size for the fully discrete solution of
the standard projection method without assuming that the approximating
spaces satisfy the standard inf-sup condition, but only the weak compatibil-
ity condition of Chapters 2 and 3. Moreover, we would also like to give error
estimates in space and time for the fully discrete solution of our viscosity
splitting method, this time assuming the standard inf-sup condition.





Appendix A

Improved error estimates

We give here some improved error estimates which we can prove for our vis-
cosity splitting method, both with and without pressure correction, assuming
that the semidiscrete velocities are uniformly bounded in H2(0). We also
prove some error estimates for the pressure which depend on the improved er-
ror estimates for the velocity; these show that the pressure is at least weakly
order 1/2 accurate for the method with and without pressure correction.

A.I Viscosity splitting method

We give here an improved error estimate for the end-of-step velocity of our
viscosity splitting method 4.8-4.10. We show that un+1 is actually a strongly
order 1 approximation of the solution in L2(íï) and weakly order 1 in Hj(íï),
assuming a uniform bound for un+1/2 in H2(fì).

Theorem A.I: assume that Al and A2 hold, and that the Stokes problem is
regular; assume also that the intermediate velocities satisfy:

||un+1/2||2 «7, V n > 0 (A.I)

with C > 0 independent of k; then, for N = 0, . . . , [T/k] — í, and small
enough k:

N

\eN+l\2 + A;i/^l|en+1||2 < C k2 (A.2)
n=0

PROOF: we recall equation 4.36 here:

i(e«+i _ en) - i/A(en+1) + V?
n+1 (A.3)

k
= (u".V)un+1/2 - (u(ín+1)-V)u(ín+1) + R"

201
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|
Taking the inner product of A. 3 with 2fcen~1"1, which is in Y, we get:

|en+i|2 _ |e"|2 + |en+1-en|2 + 2¿í/||en+1||2

+ 2 A <Rn,en+1 > (A.4)

The right-hand-side terms are bounded as follows. For the Taylor resid-
ual term we have:

2¿<R",en + 1> <

+T:

< *ü,
- 4 ''• " ' " " Jtn

For the nonlinear terms, we again use the splitting 4.27 to express them

f^*»4-l

+ Ck2 í \\utt\\
2
Y,dt

Jtn

as:

2k

= 2 k (-c(u(fn+1), e
n+1/2, e"+1) + c(u(in) - u(

- c(en,u"+1/2,en+1))

which we call I, II and III, respectively. Then:

I = -2*c(u(*M.i).eB+1/a,ewW)

C7A;|en+1/2|2

II = 2A;c(u(ín)-u(ín+1),u"+1/2,e"+1)

<
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< C k2 * \\ut\\
2 dt +

III = -2fcc(en,un-fl/2,en+1)

< Ck\en\ ||un+1/2||2 |

<7Jfe|ef + ±1

where we have used 4.34 and A.I. Adding up A.4 for n = 0,... , N, taking
into account 4.31 for the term I, and the previous inequalities, we get:

n=0

n=0 n=0

< C k2 í \\vLtt\\Y'dt + G k2 /T||ut||
2dí

Jo Jo
N+l N

+ C k E |en|2 + C k ¿ |en+1 -en+1/2|2

n=0 n=0

+ C k2 E(||e"+1||2 + i|e"+1 - e"+1/2||2)
n=0

For sufficiently small k, we can apply the discrete Gronwall lemma to the
last inequality; using the regularity properties of the solution (R2 and R4)
and the estimates of Lemma 4.7, we get:

n=0 n=0

< Ck2

and 4.35 is proved. D

We now show that the pressure approximation of our viscosity splitting
fractional step method is order 1/2 accurate in the time step, as it is for
the classical projection method, according to [90]. We first recall a technical
result, similar to that of Lemma Al in [92]. In Theorem A.I we have proved
that, in particular:
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N

n=0

This implies that:

N

¿||eîi+1-en||l1 < C k2 (A.5)
n=0

since for all v 6 lJ2(iî), ||v||_i < C |v|. This is what we actually use to
prove the following error estimate for the pressure:

Theorem A.2: assume that Al and A2 hold, that the Stokes problem is
regular and that A.I also holds; then, for N = 0 , . . . , [T/k] — 1 and small
enough k:

N
k 2_j \pn ~~'P(^n+i)\i^m\ < Ck (A-6)

n=0

PROOF: we rewrite A. 3 as:

1 = (en+1 - en) - !/A(en+1) - Rn (A.7)

- (un - V)u"+1/2 + (u(in+1) - V)u

Using the continuous LBB condition 1.25:

\P\L*W < C sup , Vp e LIM (A.8)
veH(o) IMI

for the pressure error p = çn+1, we need to bound the products of the RHS
of A.7 with v e HJ(ÍÍ). We have:

,

<-z,A(en+1),v> = ((i

For the nonlinear terms, we use the following splitting, taken from [90]:

- (un - V)u"+1/2 + (u(ín+1)-V)u(ín+1) (A.9)

= ((u(ín+1)-u(ín)).v)u(ín+1) + (en - V)u(ín+1)

+ (un-V)en+1/2
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so that:

n! = C(u(ín+1)-u(ín),u(ín+1),v)

< (7|u(ín+1)-u(ín)|||u(ín+1)||2||v||

< C|u(ín+1)-u(ín)| ||v||

= C\ ftn*lutdt\\\v\\
Jtn

< C (k /tn+1|ut|
2cíí)1/2||v||

Jtn

T2 = c(en,u(in+1),v)

T3 = c(u",e"+12,v)

<

where we have used 4.33. Thus, taking the product of A. 7 with v and taking
into account A. 8 and all these inequalities, we obtain:

which yields:

< f

i* + k fn+1 |ut|
2 dt}

tn Jtn >

and A. 6 results from A. 5, the regularity of u, and Lemma 4.7. D

We have proved, in summary, that the pressure solution is weakly order
1/2 accurate in



APPENDIX A. IMPROVED ERROR ESTIMATES 206
\

A. 2 Viscosity splitting, pressure correction
method :

We now give improved error estimates for the end-of-step velocities of our
pressure correction method, assuming again uniform bounds for the inter-
mediate velocities in H2(0) and uniform bounds for the pressure gradient in

Theorem A. 3: assume that Al and A2 hold, and that the Stokes problem is
regular; assume also that the intermediate velocities satisfy:

||un+1/2||2 < C, V n > 0 (A.10)

with C > 0 independent of k and that 4.46 also holds; then, for N —
0, . . . , [T/ k] — 1, and small enough k:

+ ^£||ën+1||2 < C k2 (A.ll)
n=0

PROOF: the proof is similar to that of Theorem A.I. We recall equation 4.55
here:

= (ün-V)ü"+1/2 - (u(ín+1) - V)u(ín+1) + Rn

where pn+<í = $pn+í + (1 - (f>)pn. Taking the inner product of A.12 with
2fcen+1, which is in Y, we get:

en+l2 _ g n 2 + gn+1 _ e„2 + 3 fc ̂  gn+l

+ Ik <R",ën+1> (A. 13)

The right-hand-side terms are bounded as in Theorem A.I, using again
the splitting 4.27 for the nonlinear terms, yielding:

2k<Rn,en+l> < ||en+1||2 + Ck2

4 t

2¿C(u(ín)-u(ín+1))u"+1/2,e"+1) < C k2 " \\ut\\
2 dt +

• tjj

L..
n 2) < C7Jb|ën|
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where A.10 has been used. Adding up A.13 for n = 0,..., N, taking into
account 4.31 for the nonlinear terms and the previous inequalities, we get:

N

n=0

„I J>» J t

n=0 n=0

< C k2 fT\\utt\\^dt + Ck2 f* \\ut\\* dt
Jo Jo

N+l N
+ c k £ |en|2 H- c k £ |en+1 - en+1/2|2

n=0 n=0

n=0

For sufficiently small &, we can apply the discrete Gronwall lemma to
the last inequality; using the regularity properties of the solution and the
estimates of Lemma 4.8, we get:

n=0 n=0

< Ck2

and A. 11 is proved. D

We finally show that the pressure approximation of our viscosity split-
ting fractional step method with pressure correction is also weakly order 1/2
accurate in the time step in the space Lg(ii). We also need a technical re-
sult, which is a consequence of the the proof of Theorem A.3. We have, in
particular, that:

N

n=0

which implies that:

N

Ellë^-ë"!!2.! < C k2 (A.14)
n=0

We then have:

Theorem A.4: assume that Al and A2 hold, that the Stokes problem is
regular, and that 4.46 and A.10 also hold; then, for N = 0, . . . , [T/k] — l,
and small enough k:
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Elí^-p(¿ti)IÍ5(n) ï Ck
n=0

PROOF: the proof is similar to that of Theorem A. 2. We call gn+1 = p(in+1) —
pn+<f>. We rewrite 4.55 as:

- Vgn+l = (en+1 - en) - i/A(en+1) - Rn (
K

- (Ü"-V)Ü"+1/2 + (u(ín+1)-V)u(ín+1)

that is, an equality similar to A. 7. Using again the LBB condition A. 8, we
bound the products of the RHS of A.16 with v 6 Hj(íí), to get:

<
tn

As for the nonlinear terms, we use again the splitting 4.27, to get:

T! = c(e",u"+1/2,v)

< a e -

-c(u(£n)-u(ín+1),ü"+1/2,v)

a||u(ín)-u(ín+1)lll|ün+1/2||||v|

= G 1 1 n utdt\\\ I v||

T3 = c(u

= -c(

< C7||u(¿n+1)i|2||v|||en+1/2|
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This way, we find:

f

+

that is:

£||-n+l_-n||2

|ut||
2 ¿É}

J

and A.15 foEows from A. 14, Theorems A.3 and 4.3 and the regularity R2
and R3 of u. D

In summary, we have obtained first order error estimates for the end-
of-step velocities of our viscosity splitting method with 0 = 1, both with
and without pressure correction, and order 1/2 estimates for the intermedi-
ate velocities, both of them strong in L2(O) and weak in Hj(Q), under the
usual regularity assumptions Al and A2 and the uniform bounds for the
intermediate velocities in H2(0); we have also obtained order 1/2 weak error
estimates for the pressure in
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