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4.5.7 Test NECKING

The necking problem is a well-known benchmark test in nonlinear solid mechanics,

(Simo, 1988; García-Garino, 1993). A circular bar, with a radius of 6.413 mm and 53.334

mm length, is subjected to uniaxial tension. A slight geometric imperfection (1% radius

reduction) induces necking in the central part of the bar. Because of symmetry, only

a quarter of the specimen is modelled. The uniaxial constitutive law may be found in

Simo (1988).

A mesh of 50 eight-noded quadrilaterals with 2x2 Gauss points is employed to simu-

late an axial elongation of 14 mm (26% of initial length). To assess the time-increment

sensitivity of each algorithm, the computation is performed with three different time-

increments (100, 200, and 1000 steps) for both algorithms.

The final deformed shape of the specimen is shown, for the reference solution (second

algorithm with 1000 time-steps), in Figure 4.25. Since an Updated Lagrangian formula-

tion is employed, a good shape definition in the necking zone is not obtained. This test

will be reproduced in Chapter 5 with an Arbitrary Lagrangian-Eulerian formulation,

but the objective here is to compare the two stress update algorithms.

The influence of the time-increment can be seen in Figure 4.26, where radius reduction

is plotted versus elongation. The differences are important for the first algorithm, see

Figure 4.26a, starting at around 10% elongation and leading to significantly different

final values of the neck radius (21%). On the other hand, the second algorithm shows

much less sensitivity to the time-increment: the three curves, see Figure 4.26b, are

much closer together, with the 200 and 1000 time-step solutions almost superimposed

and with a discrepancy in the final neck radius of only 3%. Moreover, these last curves

are very similar to those portrayed in Simo (1988).

Figure 4.25 Test NECKING. Final deformed suape. Second algorithm with 1000 time-steps
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Figure 4.26 Test NECKING. Ilauius reduction vs. bar elongation curves computed with 100,
200 and 1000 time-steps, a) First algorithm, b) Second algorithm
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4.5.8 Test SHELL

An axisymmetric shell made of an elastic material is clamped at its border, and a

ring load P is applied to the shell, causing a deflection v of the apex. This test was

employed in Chapter 3 to compare various nonlinear solvers, see Subsection 3.5.2 and

Figure 3.1, and will be employed here to assess the performance of the two stress update

algorithms for structural finite elements.

This problem is solved in Zienkiewicz & Taylor (1991), with a displacement- controlled

technique (Crisfield, 1991), on the central point (i.e., by prescribing increasing values

of u), and for different values of the load eccentricity e = r/R^. For comparison pur-

poses, the maximum value of e = 0.42 employed in Zienkiewicz & Taylor (1991) has

been chosen. The analysis has been performed with two values of the increment of v:

Au = O.OOSin and Ay = O.OOlin.

Figure 4.27 shows the load- deflection curves for the two stress update algorithms. It

can be seen that the response for the first algorithm, Figure 4.27a, is much more depen-

dent on the size of Au than for the second algorithm, Figure 4.27b. This shows again

the superior accuracy of the second algorithm. It must be remarked that the solution

with the first algorithm and Au = O.OOlin converges to the solution with the second

algorithm which, moreover, shows good agreement with that of Zienkiewicz & Taylor

(1991) with a load peak around P = 751b.

For larger values of the eccentricity e, a displacement- controlled method is no longer

valid, because the load-deflection curve shows a snap-back behaviour. An arc-length

technique, (Crisfield, 1991), is then necessary, see Appendix C or Vila et al. (1996).

A cylindrical arc-length formulation, combined with the full Newton-Raphson method,

has been used to solve the problem with e = 0.60. The arc length is automatically

updated at every step as proposed by Crisfield (1991), by prescribing a desired number

of four iterations per step. An initial arc length of A€ = O.Olin and a lower bound of

O.OOSin have been employed.

The load- deflection curves are presented in Figure 4.28. The computational cost for

the two algorithms is shown in Table 4.1. It can be seen that the required number
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of both time steps and iterations for the first algorithm is about twice as much as for

the second algorithm. Recalling that the computational cost per iteration of the first

algorithm is about half the cost per iteration for second algorithm, it can be concluded

that the stress update costs approximately the same in both computations. It must be

remarked, however, that the overall cost per iteration includes, apart from the stress

update, other important and expensive features (evaluation of residuals, resolution of

the system of equations, etc.). Therefore, the overall cost for the second algorithm is

indeed lower than for the first one.

It is interesting to note that the average number of iterations per step is 4.1 for the

first algorithm and 4.2 for the second one, thus indicating a very good performance of

the automatic arc-length control, (Crisfield, 1991). Because of its second-order accu-

racy, the second algorithm shows superior global convergence properties, thus allowing

for larger arc lengths. This point is clear from Figure 4.29, which depicts the arc length

versus the accumulated length t. Except for a few steps, the first algorithm generally

demands smaller A¿ to satisfy the requirement of four iterations per step. As a result,

the total number of iterations is higher for the first algorithm. Figure 4.30 shows the

accumulated number of iterations versus the accumulated length t.

First algorithm

Second algorithm

Load steps

418

198

Iterations

1719

822

Iterations per step

4.1

4.2

Table 4.1 Test SHELL. Computational cost of the two stress update algorithms

As a final remark, it is worth mentioning that the second algorithm yields a more

accurate load-deflection response in Figure 4.28. This fact can be verified by repro-

ducing the test with the first algorithm and a very small constant A£ = O.OOoin (i.e.,

the lower bound previously used, with no automatic update of the arc length). A total

of 1098 steps and 3643 iterations are required. As shown in Figure 4.31, the solution

then converges to that obtained with the second algorithm with only 198 steps and 822

iterations. In conclusion, the second algorithm provides a clearly better solution, both

in terms of accuracy and computational cost.
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Figure 4.27 Test SHELL. Load vs. deflection curves for an eccentricity e = 0.42.
Displacement-control solutions with Av = O.OOSin and Aw = O.OOlin. a) first
algorithm, b) Second algorithm
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Figure 4.28 Test SHELL. Load vs. deflection curves for an eccentricity e = 0.60. Arc-length
solutions with automatic arc-length control
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Figure 4.29 Test SHELL. Arc length vs. accumulated length
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Figure 4.31 Test SHELL. Load vs. deflection curves. Constant A¿ = O.OOSin for the first
algorithm
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4.6 Concluding remarks

A methodology to compare stress update algorithms for large strains from an analyti-

cal point of view has been presented and applied to two simple algorithms for hypoelastic

constitutive laws.

An accuracy analysis has been performed to deduce the order of the truncation error

associated to each numerical algorithm. This provides an a priori knowledge on the ac-

curacy for each algorithm. Therefore the performance of the algorithms can be studied

from an analytical point of view apart from the usual numerical experiments.

The basic ingredient of this approach is the use of convected frames. This choice

enables standard techniques of numerical analysis in finite differences to evaluate the

accuracy of the numerical time integration.

The convected frame formalism also allows a unified derivation of both algorithms.

The first algorithm, (Bathe et a/., 1975), which is first-order accurate, uses the full

incremental Lagrange strain tensor as the strain measure. The second one measures

strain with the usual small strain tensor, but computed in the midstep configuration.

This algorithm, (Pinsky et al., 1983), is second-order accurate.

Moreover, it has been shown that the main difference, from an accuracy point of view,

resides in the elastic modulus tensor (in particular: when it is evaluated). Because both

algorithms use the exact value for the strain increment.

After the error analysis, the two algorithms have been adapted to a fixed frame. With

this adaptation, both algorithms can be employed to add large strain capabilities to a

small-strain finite element code in a simple way.

Regarding the computational efficiency, the second algorithm is superior for the qua-

sistatic problems considered here, where an implicit integration is performed. This con-

clusion, however, cannot be readily extended to explicit algorithms for fast-transient dy-

namics. In those problems, the time step is usually restricted by stability requirements,

so first-order accuracy may be sufficient. Moreover, since no iterations are performed

and no consistent systems of equations are solved, the stress update has a relevant

impact on the overall computational cost.



134 _^__^_^^__-___^___ Two stress update algorithms for large strain solid mechanics Chapter 4

A set of simple deformation paths (simple shear, uniaxial extension, extension and

compression, dilatation, extension and rotation) have been used to assess the relative

performance of the two algorithms, both for large-strain elastic and elastoplastic anal-

ysis. The general outcome of these numerical tests is in good agreement with the

accuracy analysis: the predicted solutions are much more dependent on the time-step

for the first-order algorithm than for the second-order one. The extension and rotation

test, however, illustrates that the first-order algorithm can have a superior performance

for certain stress components in shear-free deformation paths. Finally, two well docu-

mented benchmark tests, a necking analysis and a shell under a ring load, confirm the

previous conclusions and show the superior performance of the second-order algorithm

with continuum and structural elements.

Appendix 4.A The midstep material components of the modulus tensor

It is shown in this Appendix that the constant-velocity assumption yields a second-

order approximation to the exact midstep material components of the modulus tensor.

This property, Eq. (4.32), is essential for the second-order accuracy of the second stress

update algorithm.

It is assumed that the modulus tensor C depends on the deformation (Pinsky et al.,

1983), represented in a material setting by the metric tensor G. That is, the dependence

of C with respect to time is not explicit, but associated to the deformation of the body,

and can be written as

where / is a function of the components of the metric tensor gmn- The exact midstep

components of the modulus tensor are then

= f Ç* gmn), (4A2)

where n+2grmn are the exact midstep components of the metric tensor, while the ap-

proximate midstep components of C are
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with gmn the constant- velocity approximation of gmn. Recalling the definition of gmn,

Eq. (4.7), and the relation between exact and approximate midstep orthonormal coor-

dinates, n+2za and "+22", Eq. (4.39), it can be easily concluded that

(4.AA)

As previously shown for other quantities, the constant-velocity assumption also pro-

vides a second-order approximation to the components of the metric tensor. Substitut-

ing Eq. (4.A.4) into Eq. (4.A.2) and performing a first-order Taylor's expansion finally

renders, assuming that the first derivative of / is bounded,

which is Eq. (4.32).

Appendix 4.B Stress update for shear-free deformation paths

Here, a particular behaviour of the first stress update algorithm is demonstrated. This

algorithm correctly predicts null shear stresses for any shear-free deformation path. The

second algorithm, on the contrary, only provides similar results for some particular de-

formation paths of this type.

The general expression for shear-free deformation paths is

x(t) = Xax(t)cosO(t) — Yau(t)s'md(t) \
, (4.B.1)

y(t) = Xax(t}sm0(t) + Yay(t)cos9(t) J

where ax(t) and ay(i) represent the axial deformations in the x and y directions respec-

tively, and 0(t) = 2?ri accounts for the rigid rotation. Taking ax(i) — 1 + i and ay(€) = I

yields the extension-rotation test of Subsection 4.5.6. An extension-compression-

rotation test with no change in volume can be obtained with ax(i) = —Wr = 1 + í,

and choosing ax(t) = o,y(i) = 1 + í renders a dilatation-rotation test.
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The deformation gradient of motion (4.B.1) is

\ ax(t)cosd(t) -a/.,__.,.,
F= , (4.5.2)

ax(í)sino(í) av(t)cosd(t). ™* \ / \ ./ i f \ / V ' ,

and the Jacobian is J = ax(í)ay(f ).

To assess the behaviour of the two stress update algorithms, it is enough to study

the stress predicted after one time-step, and to check if the shear stress component (in

rotated axes, to account for the rigid rotation) is null or not.

First stress update algorithm

For the first time-step Ai, the incremental Lagrange strain tensor is, Eq. (4.42),

(Al - 1)
0

(4.5.3)

with AX = ax(Ai) and Ay = ay(Ai). Recalling the expression of the first algorithm,

Eq. (4.46a), the stress after one time-step is

E
er =

2AXAy

(.0xcos20 + 5ysin20) (J3xsin0cos0 — 5ysin0cos0

(5xsm0cos0 — 5ysin0cos0) (5xsin20 + 5ycos20)
(4.5.4)

with 0 = 27TAÍ, BX = Al(A\ - 1) and By = A^A^ - I).

If the stress <r is transformed into the rotated stress <r' = RtrR , where R is a

orthogonal tensor that accounts for the rigid rotation, the result is

*'=!
r A,•(A* - I) 0

(4.5.5)

Equation (4.B.5) shows that null shear stresses o"xy
 are predicted, independently

of the axial deformations ^4X and Ay. It can be easily checked that the analysis just

performed for the first time-step can be extended to the successive increments. In con-

clusion, the first algorithm predicts null shear stresses (in the rotated axes) 0"xy f°r anv

number of time-steps and for any choice of ax(i) and Oy(i).
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Second stress update algorithm

A similar analysis has been performed for the second algorithm. Since the midstep

configuration is employed, the required computations are rather cumbersome in this

case. The incremental displacements for the first time-step can be computed from

Eq. (4.B.1). After that, the midstep coordinates are obtained following Eq. (4.24).

Then the incremental displacements are written in terms of the midstep coordinates, so

the strain increment can be written as, Eq. (4.47),

n+2 Ae =
Ax Ay + (Ax + Ay)cosQ + I

AX Ay + (Ax — .Ay)cos0 - 1 (Ax — Ay}sm®

(Ax — Ay)sÍn0 AX Ay — (Ax — Ay)cOsQ — 1

(4.B.6)

Once the strain increment is known, the stress a is computed according to Eq. (4.51a)

and then transformed into the rotated stress a1. The final result is that the shear stress

<rxtyi is proportional to a factor that depends on axial deformations Ax and Ay:

(4.5.7)

It can be seen from Eq. (4.B.7) that erxy is not null for any choice of ax(t) and ay(t).

Taking ax(t) = 1 + i and ay(i) = 1, for instance, yields a non- null <rx/y/, as shown

for the extension-rotation test of Subsection 4.5.6. On the contrary, for ax(t) = ay(t)

(dilatation-rotation test) and for ax(t)ay(t) = 1 (extension-compression-rotation test,

with no volume change), null values for <rzv are predicted. In conclusion, the second

stress update algorithm predicts correct null shear stresses (in the rotated axes) for some

particular deformation paths of the form (4.B.1), but not for every shear-free path.
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Chapter 5

ARBITRARY LAGRANGIAN-EULERIAN

QUASISTATIC ANALYSIS

5.1 Introduction

The Arbitrary Lagrangian-Eulerian (ALE) formulation was developed with the goal

of overcoming the limitations of the Lagrangian and Eulerian descriptions, the two

classical formulations of continuum mechanics (Malvern, 1969).

In a Lagrangian formulation the reference system is attached to the continuum and

moves with it. A particle can be readily identified by its material coordinates, although

it occupies different points in space as it moves. If a numerical method is used to solve

the problem, the mesh nodes represent the same particles throughout the computa-

tion. As there is no relative motion between the continuum and the mesh, there are

no convective terms in the conservation laws that govern the problem; this eases con-

siderably the task of solving them. Moreover, boundary conditions can be treated in

a straightforward manner as the contour is always represented by the same nodes. On

the other hand, a Lagrangian formulation may result inappropriate in a large deforma-

tion analysis, where elements may become too distorted or even entangled. Lagrangian

formulations are common in solid and structural mechanics, see Bathe (1982), Crisfield
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(1991), Zienkiewicz & Taylor (1991).

In an Eulerian formulation the reference is fixed in the laboratory and the material

flows through it. Attention is put in points in space, which are constantly identified by

their spatial coordinates even though different particles occupy them at different times.

Eulerian formulations are mostly used in fluid mechanics, because the fixed mesh can

handle arbitrarily large distorsions of the continuum. It has two important drawbacks:

1) the relative motion between mesh and material leads to convective terms in the

governing equations which present numerical difficulties and 2) it is cumbersome to

describe large boundary motion.

In an attempt to combine the strong points of both formulations, the ALE formula-

tion, (Doñea, 1983), was initially developed for fluid dynamics, both in Finite Differences

(Noh, 1964; Trulio, 1966; Hirt et al., 1974) and in the Finite Element Method (Doñea

et al, 1977; Belytschko & Kennedy, 1978; Hughes et al, 1978, 1981; Huerta & Liu,

1988). In the ALE formulation, the reference system is neither attached to the particles

nor fixed in space; it moves with respect to the laboratory with an arbitrary velocity,

independent from that of the continuum. A node in the reference mesh corresponds, as

time passes, to different points in space (because the mesh is not fixed in space) and

also to different particles (because the mesh motion is not that of the material). The

basic idea is to choose the mesh movement in such a way that 1) material surfaces can

be correctly tracked (see, for instance, Sarrate (1996)) and 2) the mesh elements are

kept as regular as possible.

More recently, the ALE formulation has been extended to nonlinear solid mechanics

(Schreurs, 1983; Huétink, 1986; Liu et al, 1986; Benson, 1989; Huerta &: Casadei, 1991;

Ghosh & Kikuchi, 1991). Compared to ALE fluid dynamics, the main additional diffi-

culty is then the stress update (i.e., the time-integration of the constitutive equation).

Indeed, the rate-form constitutive equation of ALE nonlinear solid mechanics contains

a convective term that accounts for the relative motion between mesh and material.

Because of this, the stress update cannot be performed at the Gauss-point level, as

simply as in a Lagrangian analysis, and more involved procedures are required. In fact,

the correct treatment of the convective term in the constitutive equation is a key point
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in ALE nonlinear solid mechanics, see Benson (1992).

This Chapter is organized as follows. The basic ALE equations are reviewed in Sec-

tion 5.2. Special emphasis is put in stressing the similarities and differences between

ALE transient and quasistatic analyses. Section 5.3 presents the state-of-the-art in ALE

stress update, a crucial aspect of ALE nonlinear analysis. The two basic issues are 1)

explicit versus implicit algorithms and 2) split versus unsplit algorithms. Unsplit algo-

rithms treat the ALE governing equations as a whole, while split algorithms perform

an operator split to handle material and convective terms separately. It is shown that

any combination of explicit/implicit, split/unsplit can be found in the literature.

Section 5.4 is dedicated to ALE stress update for quasistatic analysis. After assess-

ing the various options, it is concluded that the most natural choice is to use an split

formulation. By doing so, the material terms in the governing equations can be han-

dled just like in an Updated Lagrangian analysis, so the nonlinear equation solvers of

Chapter 3 and the stress update algorithms of Chapter 4 are directly applicable. After

that, the convection terms are handled with explicit algorithms. Some numerical exam-

ples are employed in Section 5.5 to assess the performance of the various stress update

algorithms. Finally, some concluding remarks are made in Section 5.6.

5.2 Basic ALE equations

5.2.1 ALE kinematics

Two domains are commonly employed in continuum mechanics: the material domain

RX, made up of material particles X, and the spatial domain Rx, consisting of spatial

points as. Neither of these two is taken as the reference in the ALE description, so a

third domain is needed: the referential domain Ax, formed by reference (or grid) points

X-

One-to-one transformations between these three domains are needed. The referential

domain R% is mapped into the material and spatial domains by $? and 4? respectively.

The particle motion rj may then be put as rj = $ o Ç"1, clearly showing that, of course,
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the three mappings SP, $ and I/ are not independent.

The particle motion r¡ can be represented as

17: x [ 0, oo)

(*,*)

RX x [ 0, oo)

OM)

with

t-t. (5.16)

Equation (5.1b) explicitly states the particular nature of 17: 1) the spatial coordinates

x depend both of the material particle X and time í, and 2) physical time is measured

by the same variable t in both material and spatial domains. For every fixed instant t,

the mapping

(5.1C)
x

defines a configuration O of the spatial domain -Rz. It is convenient to employ a matrix

representation for the gradient of »7,

017
d(X,t)

_ _
dX

0J

v

iJ

(5.2)

where 0 is a null row-vector and the material velocity v is

v =
dx_
dt (5.3)

where means "holding X fixed".

In a similar way, the mapping $ from the referential domain to the spatial domain is

represented by

$: Ax x [ 0,oo) —c Rx x [ 0,oo)

(**) >—» OM)

(5.4)
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and its gradient is

.0T

(5.5)

where now the mesh velocity v is involved,

v =
_

dt (5.6)

Note that, since both the material and the mesh move with respect to the laboratory,

corresponding material and mesh velocities have been defined, Eqs. (5.3) and (5.6),

by derivating with respect to time the equations of material motion and mesh motion

respectively.

Finally, regarding ^?, it is convenient to represent directly its inverse $ ,

,-1. x [ 0,oo)

(*,*)

x [ 0, oo)
(5.7)

and its gradient

, d

-l

d(X,t)

ff w

1 J

(5.8)

where velocity w is defined as

w =
dt

(5.9)

and can be interpreted as the particle velocity in the referential domain, since it mea-

sures the time variation of the referential coordinate x holding the material particle X

fixed.

The relation between velocities «, v and w can be obtained by derivating 17 = $ o W ,

ftf
d(X,t) (*.*) = *-!(*, í)) > *) = ,0,

(5.10)
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or, in matrix format:

.0 .0 0

W

1 J

(5.11)

which yields, after block-multiplication,

-= v + -r—KJ. (5.12)

Equation (5.12) may be written as

, dx
c := v — v = —— w), (5.13)

thus defining the convective velocity c, that is, the relative velocity between the material

and the mesh.

Remark 5.1: The convective velocity c, Eq. (5.13), should not be confused

with w, Eq. (5.9). As stated before, w is the particle velocity as seen from the

referential domain J?x, whereas c is the particle velocity relative to the mesh

as seen from the spatial domain Rx (both v and v are variations of coordinate

35). In fact, Eq. (5.13) implies that c = w if and only if dx/dx = I (where I

is the identity tensor), that is, when the mesh motion is purely translational,

without rotations or deformations of any kind.

After the fundamentals on ALE kinematics have been presented, it should be re-

marked that both Lagrangian or Eulerian formulations may be obtained as particular

cases. With the choice \P = J, Eq. (5.7) reduces to X = x and a Lagrangian descrip-

tion results: the mesh and material velocities, Eqs. (5.3) and (5.6), coincide, and the

convective velocity c, Eq. (5.13), is null.

If, on the other hand, $ = /, Eq. (5.4) simplifies into x = x, thus implying an Eu-

lerian description: a null mesh velocity is obtained from Eq. (5.6) and the convective

velocity c is simply the material velocity v.
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In order to express the conservation laws in an ALE framework, the relation between

time derivatives are needed. Let JF be an scalar physical quantity, described by /(«, í),

/*(Xi *) an<^ f**(X, ¿) in the spatial, referential and material domains respectively. Stars

are employed to emphasize that the functional forms are, in general, different.

With the help of the mapping *, the transformation from /*(x>*) *° f**(X,f) can

be put as

/** = /* o tf-1, (5.14)

and derivation with respect to time yields

df** df*1 , *) = (5.15)

Equation (5.15) is amenable to the matrix form

oí

L O 1 J

(5.16)

which renders, after block-multiplication,

dT*__df*_ d f*
«M | _ (5.17)

By employing Eq. (5.13), Eq. (5.17) may be rearranged into

f** __ df* df
dt dt dxc'

(5.18)

Dropping the stars to ease the notation, the fundamental ALE relation between ma-

terial time derivatives, referential time derivatives and spatial derivatives is finally cast

as
Af f)f df

*«ne- («-I»)di X dt
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which can be interpreted in the usual way: the variation of the physical magnitude F

for a given particle X, is the local variation (i.e., with respect to the reference x) plus a

convectivo term taking into account the relative motion between the material and the

reference system.

Mesh acceleration plays no role in the ALE formulation, so only the material ac-

celeration a is needed, which may be expressed in the Lagrangian, Eulerian or ALE

formulation respectively as
dv
¥

a = — ; (5.20a)

dv
a = âT

a =
dv_
dt X

(5.206)

dv
c— . (5.20c)

'

It must be noted that the ALE expression of acceleration, Eq. (5.20c), is simply a par-

ticularization of the fundamental relation (5.19), taking material velocity as the physical

quantity F.

Since acceleration is the material derivative (i.e., for a fixed particle X) of velocity,

Eq. (5.20a), two terms are needed to represent it in both the Eulerian and the ALE

formulations, Eqs. (5.20b) and (5.20c): the local acceleration, (dv/dt) \x or (dv/dt) \%,

and the convective acceleration, v(dvfdx] or c(dv/dx). These convective terms reflect

the fact that particle X is neither attached to spatial point x nor to grid point x- One

of the benefits of the ALE formulation in fluid dynamics is the reduction of convective

terms in the governing equations: if the mesh motion is properly selected, the convec-

tive velocity c is smaller than the material velocity v, Eq. (5.13), so the ALE convective

acceleration c(dv/dx) is smaller than the Eulerian convective acceleration v(dv/dx).
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5.2.2 ALE transient analysis

Conservation laws

Equation (5.19) is the starting point to deduce the three fundamental conservation

laws of continuum mechanics (mass, momentum and energy) in the ALE description.

If mechanical effects are uncoupled from thermal effects, then the mass and momentum

equations can be solved independently from the energy equation. The ALE version of

these two equations is, (Doñea, 1983),

Balance of mass

El , dp
dt

Balance of momentum

(5.2U)

where p is the density, a is the Cauchy stress tensor and 6 is the force per unit volume.

A standard procedure in nonlinear solid mechanics is dropping the equation of mass

balance (5.21a), which is not explicitly accounted for, thus solving only the momentum

balance (5.21b). In solid mechanics, the domain boundary is typically composed of

material surfaces. Since these surfaces are accurately tracked by the Lagrangian de-

scription commonly employed in solid mechanics (and also by the ALE description, as

commented later), the balance of mass is verified at the global level without explicitly

stating it.

Of course, Eq. (5.21a) must also hold at the local level. A common assumption is

taking the density p a constant. The mass balance then becomes

Jg-O. (5.22)
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which is the well-known incompressibility equation. This simplified version of the mass

balance is also commonly neglected in solid mechanics. This is due to the fact that i)

elastic deformations typically induce very small changes in volume and ii) plastic defor-

mations are isochoric or volume preserving, (Khan & Huang, 1995). That means that

changes in density are negligible, and that Eq. (5.22) automatically holds to sufficient

approximation without need of adding it to the set of governing equations.

In conclusion, if the two common assumptions of i) uncoupled thermal and mechani-

cal effects and ii) constant density are made, then the only conservation law that needs

to be solved is the momentum balance (5.21b).

Since the ALE formulation has been chosen, the ALE expression of acceleration,

Eq. (5.20c), is employed to represent the inertia forces pa (which are taken into account

in the general, i.e. transient, case). Because of this, Eq. (5.21b) contains convective

terms associated to the convective velocity c. These convective terms are similar to

those encountered in the Eulerian formulation and reflect the relative motion between

mesh and material.

Equation (5.21b) must be complemented with appropriate boundary conditions, which

are imposed on the spatial domain. The boundary Tx of Rx is composed of two portions

it and Tx with prescribed velocities and tractions respectively:

V{ = gi in It (5.23a)

aijUj = hi in rj. (5.236)

In Eqs. (5.23), g are prescribed velocities, h are prescribed tractions and n is the

outward unit normal to rx. A detailed discussion of the implementation of boundary

conditions in the ALE formulation can be found in Huerta & Liu (1990) and Huerta &

Casadei (1994).
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Constitutive equations for nonlinear solid mechanics

In nonlinear solid mechanics, material behaviour is often described by a rate-form

constitutive equation

»* = /(«», (5-24)

relating an objective rate of stress a* to stress, stretching (rate-of-deformation) and ve-

locity, see Malvern (1969) and Appendix B. The material rate of stress, à = (Off /dt) \x

is not employed in Eq. (5.24) to measure the stress variation because it is not an ob-

jective tensor. Infinitely many objective rates of stress may be defined; this is typically

done by adding to cr some additional terms that counteract the non-objectivity of ¿% so

that an objective a* results. After doing so, Eq. (5.24) may be rearranged into

(5.25)

where q contains both / and the terms in cr* additional to ¿r which ensure the objectivity

of <T*.

In the ALE context, referential time derivatives, not material time derivatives, are

employed to represent, evolution in time. Specializing the general relationship (5.19) to

the stress tensor yields

do-
= —

X ~ dt
(5-26)

which can be combined with Eq. (5.25) to get a rate-form constitutive equation for ALE

nonlinear solid mechanics

fx + c^ = ̂  (5-27)

where, again, a convective term reflects the motion of material particles relative to the

mesh.
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Remes hing

To define completely the problem posed by Eqs. (5.21b), (5.23) and (5.27), it is nec-

essary to take Eq. (5.13) into account. Since the mesh moves independently from the

material, it is necessary to specify the mesh velocity v so that the convective velocity c

can be determined.

Various remeshing strategies have been proposed, see Doñea (1983), Benson (1989),

Huerta & Casadei (1991), Ponthot (1995) and Sarrate (1996). The basic common fea-

tures are: i) boundary nodes are required to remain in the boundary (i.e., they are

forced to move with the material along the normal to the surface, with relative motion

allowed along the tangent), thus ensuring an accurate tracking of the boundaries; ii)

mesh distorsion is controlled by moving inner nodes in an appropriate way.

In conclusion, if the density is assumed constant and the mass equation is neglected,

a transient process is modelled by the ALE (transient) momentum balance (5.21b),

and the ALE constitutive equation (5.27), see Box 5.1, complemented with boundary

conditions (5.23) and a remeshing strategy to select the mesh velocity.

da_
dt

Box 5.1 ALE transient analysis

5.2.3 ALE quasistatic analysis

A process is termed quasistatic if the inertia forces pa are negligible with respect

to the other forces in the RHS of Eq. (5.21b). In this case, the momentum balance

becomes

t?+6i = 0' (5-28>
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that is, a static equilibrium equation where time and velocity play no role.

Since inertia forces have been neglected, the different descriptions of acceleration,

Eqs. (5.20), do not appear in Eq. (5.28), which is valid in either the Eulerian or the

ALE formulations. In conclusion, there are no convective terms in the ALE

momentum balance for quasistatic processes.

A process is called steady, on the other hand, if the material velocity v in every

spatial point x is constant in time. In the Eulerian description, this results in a null

local acceleration (dv/dt) \x, and only the convective acceleration is present in the mo-

mentum balance, which reads

It must be remarked that quasistatic and steady have clearly different meanings.

Nothing is said about the local acceleration in a quasistatic process, which is in general

non-null. On the other hand, inertia forces associated to the convective acceleration are

in general non-negligible and included in the steady momentum balance, see Eq. (5.29).

There is a further difference between quasistatic and steady. The local acceleration

is assumed to be exactly zero in a steady process. Many flows of practical interest in

fluid dynamics are steady, and typically described by a constant spatial velocity field

t?(œ).

On the contrary, the inertia forces are not equaled to zero in a quasistatic process,

they are just neglected in comparison with other forces. In fact, prescribing the inertia

forces to be exactly zero results in a very particular body motion. Indeed, the inertia

forces pa only equal zero if the material acceleration a is null, that is, if the material

velocity v of every material particle X is constant. This only happens if all the material

particles move along parallel straight lines at constant speed.

Remark 5.2: In a quasistastic process, inertia forces are neglected, but this

does not imply that the acceleration is assumed to be zero. A process may

have relevant, non-null local, convective and total accelerations and still be
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correctly modelled as quasistatic, if stress variations and/or body forces are

much larger than inertia forces. This is a common situation in solid mechanics

(encompassing, for instance, various metal forming processes, see NUMIFORM

(1995)).

Remark 5.S: In the ALE context, it is also possible to assume that a process

is steady with respect to a grid point x and neglect the ALE local acceleration

(dv/dt) |̂ , (Ghosh &; Kikuchi, 1991). The momentum balance then becomes

(pa.} = p c . L = + bi (5.30)

However, the physical meaning of a null ALE local acceleration is not completely

clear, because a grid point holds different material particles and occupies differ-

ent spatial points at different instants (recall that the mesh moves with respect

to the particles and the laboratory).

Summarizing, the momentum balance in ALE quasistatic analysis is the classical

equilibrium equation (5.28). Regarding the ALE constitutive equation for quasistatic

processes, it should be remarked that the source term q in Eq. (5.27) measures the stress

variation of a certain particle X. Because of this, the convective term Cj (dff/dxj) is

needed to reflect the fact that the grid point x is occupied, due to the arbitrary mesh

motion, by different particles at different times. This remark is inherent to the ALE

kinematics and also applies for quasistatic processes, because the assumption of negli-

gible inertia has no effect on it. In conclusion, convective terms are present in the

ALE constitutive equation for quasistatic processes.

To conclude: a quasistatic process is modelled by the ALE (quasistatic) momentum

balance (5.28), the ALE constitutive equation (5.27), see Box 5.2, complemented with

boundary conditions (5.23) and the definition of mesh velocity.
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da,

dx
& + 6,- = 0

dt
cj-— = q3

Box 5.2 ALE quasistatic analysis

5.2.4 Finite element discretization

The weak form of Eq. (5.21b) is obtained by multiplying by the test functions Sv{ and

employing the divergence theorem to account for the traction force on the boundary Tx,

f pSvi^- dRx + í p8viCj-^-
JRX & X JR, Jdxj

í SvibidRx+ f 8vihidTx.
jRr Jri

(5.31)

A finite element method proceeds by dividing the domain Rx into elements. When

an appropriate set of shape and test functions are chosen to interpolate the velocity, the

matrix equation corresponding to Eq. (5.31) is (Liu et o/., 1986),

Mv' + NV + /¡„t = /ext (5.32)

where M is the mass matrix, JV the convective matrix, v1 the vector of nodal values

of referential rate of velocity, v the velocity vector, /¡nt the internal force vector and

/ext the external load vector. Equations (5.31) and (5.32) simply state the equilibrium

of forces, including the inertia terms caused by acceleration. The relative velocity c is

included in the definition of N.

If the process is assumed to be steady with respect to a grid point, (Ghosh & Kikuchi,

1991), the first term in Eqs. (5.31) and (5.32) is disregarded. However, a more common
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and physically meaningful hypothesis (see Remark 5.3) is to neglect all inertia terms,

and a quasistatic process is obtained. The resulting weak form is then

/ -^•<rijdRx= í 6vibidRx + j Arç^-dT*, (5.33)
JRX

 dxi JRx Jr%

which yields, after finite element discretization,

/int = /ext- (5.34)

Equation (5.24) is the standard equilibrium equation of nonlinear mechanics, see

Eq. (3.2). As commented above, there are no convective terms in the momentum bal-

ance of ALE quasistatic analysis.

5.3 State-of-the-art in ALE stress update

5.3.1 Preliminaries

Due to the semi-discretization (in space) associated to the FEM, Eqs. (5.32) and

(5.34) are systems of ordinary differential equations to be solved by numerical time-

integration, in conjunction with the ALE constitutive equation (5.27). As previously

remarked, the convective term in this equation is needed to represent relative motion

between mesh and material, an essential feature of the ALE formulation.

Remark 5.4: The only difference in the ALE constitutive equation for transient

and quasistatic cases lies in the meaning of variable t. In a transient analysis,

t represents physical time, which appears explicitly in the momentum balance,

see Box 5.1. For quasistatic analyses, however, physical time is usually not em-

ployed as an independent variable, because it is not present in the momentum

balance, Box 5.2. Thus, the variable t in the constitutive equation should be

interpreted as the non-physical, pseudo-time parameter typically employed as

a load factor in quasistatic simulations.
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The methods for the numerical time-integration of Eqs. (5.32) and (5.34) can be

classified into implicit and explicit.

If an implicit time-integration method is chosen, velocities and accelerations are writ-

ten, by means of difference formulas, as functions of displacements, (Gerardin et al.,

1983; Belytschko, 1983). The fundamental unknowns are then the incremental material

displacements AM from one (known) equilibrium configuration íín at time tn to a new

(unknown) equilibrium configuration ÍÍR+I at time in+i, a time increment Ai later, see

Subsection 4.3.1. It is very important to note that, because of the ALE description,

the incremental mesh displacements AÄ are selected according to a remeshing strat-

egy and are different from Au; this fact must be properly dealt with when checking

equilibrium at time in+i- On the other hand, when explicit time-integration methods

are employed, (Belytschko, 1983), accelerations drawn from the momentum balance are

integrated to obtain velocities and then displacements. Time is advanced incrementally

with no iterations over the time-step.

Whether an implicit or explicit method is chosen, stresses must be updated from f t n

to fín-f-i to compute the internal forces n /int> which are required either to check equi-

librium (implicit methods, see Chapter 3) or to compute the acceleration at time tn+i

(explicit methods).

The time-integration of the ALE constitutive equation (5.27) cannot be performed at

the Gauss-point level, as typically done in Lagrangian formulations, because a certain

Gauss point is occupied by different particles at times tn and tn+\. This is reflected by

the convective term Cjdff/dxj in Eq. (5.27).

In fact, the convective term in the constitutive equation makes the ALE stress up-

date rather more involved than in the Lagrangian case. Various strategies have been

proposed to cope with the annoying convective term in Eq. (5.27). Following Benson

(1992), they will be classified here into split and unsplit methods.

If an unsplit method is employed, (Liu et a/., 1986; Ghosh & Kikuchi, 1991) the

fully coupled equations are solved. Coupling refers here to the combination of mate-
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rial and convective effects, see Boxes 5.1 and 5.2. Note that in a quasistatic analysis,

the convective matrix N of Eq. (5.32) is no longer present and coupling is only due

to the constitutive equation (5.27). For transient analysis, on the contrary, both the

momentum balance and the constitutive equation exhibit coupling.

Split methods (or fractional-step methods), on the other hand, proceed by performing

an operator split on the equations, (Huétink, 1986; Huerta & Casadei, 1991; Baaijens,

1993). The basic idea is to treat material and convective terms separately, by dividing

each time-increment into two phases: a material (or Lagrangian) phase, where convec-

tive effects in the momentum balance (transient process) and constitutive equation are

neglected, and a convection (or transport) phase.

Any combination of explicit/implicit, split/unsplit may be made. This point will be

illustrated in the next Subsection, where some choices in the literature are reviewed.

5.5.2 Literature review

Implicit split ALE formulations

An implicit split ALE formulation is employed in Huétink (1986) and Huétink et al.

(1990) to model quasistatic metal forming processes. The material displacement incre-

ment Au is computed exactly as ::: the Updated Lagrangian method, (Bathe, 1982).

The mesh displacement increment Aw is selected following a remeshing strategy.

The Lagrangian stress update involves the time-integration of the material term q in

Eq. (5.27). This process may be symbolically expressed as

A<rm, (5.35)

where the subscript m emphasizes that Ao>n is the stress increment of a material parti-

cle X. After that, the convective term Cjda/dxj has to be integrated so that n+*o"(x)>

the stress in configuration £ln+l °f a certain grid point x, is obtained.

The stress gradient dff/dxj is especially troublesome, because it cannot be computed

at element level. In finite elements with linear interpolation of the displacements, for
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instance, the element stress gradient vanishes because the stress is a discontinuous,

element-wise constant field.

The method proceeds by regularizing this discontinuous field, following an interpola-

tion procedure typical of postprocessing and error estimation techniques. First, local

smoothing (least-squares interpolation at element level) provides nodal values of stresses.

Then, mean nodal values are employed to define, via the shape functions, a continuous

stress field na. The stress update is then

»+1«. (x) = V (x) + A<rm - (Au,- - Afy) ~, (5.36)

where the continuous stress na enables the gradient determination. Note that, contrary

to Eq. (5.35), Eq. (5.36) provides the new stress in a certain grid point X-

This algorithm is prone to numerical instabilities in some cases, that can be solved

by a process of global smoothing: not only the gradient, but also the stress at time

tn is evaluated with the regularized, continuous stress ncr, instead of with the known

discontinuous stress na. The algorithm is then

n+1o" (X) = n* (X) + A<rm - (Ati,- - Aty) |£ (5.37)

This 6lobal smoothing supresses the instabilities, but tends to be excesively diffusive.

The method finally adopts a weighted global smoothing: the stress at time tn is a

weighted sum of the discontinuous and continuous stress fields. This results in

n+la(x) = (1 - /?) "¿(X) + ßn*(x) + &*m - (Au,- - Aty) £7 (5.38)

where ß is the weight parameter, which is proportional to the ratio of the relative

displacement between grid and material point to the element size. This parameter is

estimated by numerical experiments.

A more sophisticated approach is that of Baaijens (1993). Profiting from the body

of knowledge in fluid mechanics, a Time-Discontinuous/Galerkin-Least-Squares formu-

lation is employed to handle the convective parts in the governing set of equations.
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A comparison is made between the standard split ALE formulation, where convection

is performed after the Lagrangian step in every iteration within the time-increment,

and the Updated-ALE formulation, where the iterative process is carried on a purely

Lagrangian fashion and the convection is performed just once, at the end of the time-

step. The conclusion is that, for a certain type of problems, this latter strategy makes

computation considerably cheaper while the decrease in accuracy is minimum.

Explicit split ALE formulations

An example of explicit split formulation may be found in Huerta & Casadei (1991). In

the context of fast transient dynamics, they employ a centered second-order scheme for

the Lagrangian phase, classical of the Lagrangian formulation of such problems. After

that, the convection phase is treated in two different ways: a Lax-Wendroff technique

and a Godunov-type technique. These two techniques have been employed in this work

in the context of quasistatic analysis, and are discussed in detail in Subsections 5.4.2

and 5.4.3 respectively.

Implicit unsplit ALE formulations

Ghosh & Kikuchi (1991) employ an implicit unsplit ALE formulation. As mentioned

in Remark 5.3, the process is assumed to be steady with respect to a grid point; the

momentum balance is then

Nv + f-mt = /ext (5.39)

and the convective matrix N results in the non-symmetry of the tangent stiffness matrix

K.

Since the formulation is unsplit, there is no separation between Lagrangian and con-

vection phases. The momentum balance is verified by employing the referential mesh

in the midstep configuration fi , j., so the computed material displacement increments

AIÍ correspond to the material particles X that occupy the grid points x at time ¿n • i-

The fact that these particles are not the same that the grid points holded at time tn is
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carefully taken into account: through a process of particle tracing, the location of the

material particles at the beginning of the step is found.

The stress na of these particles is then found by interpolating the Gauss-point values.

The integration of the rate constitutive equation yields the material stress increment

A<rm- The stress at the midstep configuration is then simply computed as

(5.40)

where m emphasizes, as in Eq. (5.35), that the various quantities refer to the same

material particles, not the same grid points. Finally, the stresses are updated to the

grid configuration at tn+i using the fundamental ALE relation, Eq. (5.19).

Explicit unsplit ALE formulations

To end this review, the explicit unsplit ALE formulation of Liu et al. (1986) will

be presented. To account for all inertia effects, Eq. (5.21b) is employed as momentum

balance. The treatment of the stress gradient in the constitutive equation is based in

the idea of the definition of the stress- velocity product,

Y = re, (5.41)

where r is a component of the stress tensor a. With the help of Y , the ALE constitutive

equation (5.27) is rewritten as an equation for every component r of a and q of tensor

dr
+ = q + T - (5'42)

The weak forms of Eqs. (5.41) and (5.42) are obtained with the help of appropriate test

functions. After finite element discretization, the corresponding matrix equations are

q (5.43)

MYY = NYtr (5.44)
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where Mff and M are the generalized luass matrices for the corresponding variables,

N the generalized convection matrix, G is the divergence operator matrix, D is the

generalized diffusion matrix, and </ (referential rate of stress), <r, Y and q represent

nodal vectors instead of fields.

Equation (5.44) may be eliminated by incorporating it into Eq. (5.43),

~ NY<r-Dff = q (5.45)

Equations (5.32) and (5.45) are integrated by an explicit predictor-corrector method.

Lumped mass matrices are used to enhance the computational efficiency.

5.4 ALE stress update in quasistatic analysis

5.4.1 Preliminaries

Choice of the strategy for ALE stress update

It can be seen in Boxes 5.1 and 5.2 (Section 5.2) that the ALE momentum balance for

transient processes, Eq. (5.21b), and for quasistatic processes, Eq. (5.28), are different:

the former accounts for inertia forces, while the latter does not (a similar situation is

found in the Lagrangian analysis of transient and quasistatic processes). Because of this,

radically different techniques are employed for its time-integration. The transient mo-

mentum balance is typically handled, both in the Lagrangian and ALE formulations,

by an explicit, velocity-based scheme, see Halleux & Casadei (1987) and Pijaudier-

Cabot et al. (1995), where stability requirements impose a tight upper bound on the

time-step Ai. The quasistatic momentum balance, on the other hand, is commonly

time-integrated with an implicit, incremental-iterative, displacement-based algorithm,

which allows for larger time-steps.

Regarding the ALE constitutive equation (5.27), it is valid for both transient and

quasistatic processes, see Boxes 5.1 and 5.2. Since the constitutive equation does not
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change, it is a natural requirement that the numerical schemes employed for the stress

update apply to both transient and quasistatic analyses. It is also reasonable to de-

mand that these schemes be explicit. Indeed, in the transient case an explicit stress

update is needed to be consistent with the explicit time-integration of the momentum

balance: an implicit stress update procedure to be used in every time-step within an

hydrocode, (Benson, 1992), would be completely unaffordable. As for the quasistatic

case, the stress update should be cheap -which, in practice, means explicit-, if the

ALE formulation is to be competitive with alternative techniques, such as a Lagrangian

formulation combined with an adaptive remeshing strategy, (Peraire et a/., 1991).

In exchange for a certain loss of accuracy, split methods offer a generic benefit: the

original equation is split into simpler equations, and that means simpler, more robust

algorithms, specifically designed for each equation. Regarding the ALE equations, an

added advantage results: profit is taken from the experience in solid mechanics and fluid

dynamics in handling material and convec'tive terms respectively.

The simplification associated to a split approach is especially interesting for the ALE

constitutive equation. Indeed, the stress field a is typically discontinuous across ele-

ment edges, so its gradient cannot be reliably computed at the element level. Moreover,

stress values are known at the Gauss points —where they are needed to compute inter-

nal forces— , not at the nodes. These two difficulties are easier to circumvent with a

splitting technique.

This splitting technique may be regarded as the natural choice for ALE quasistatic

analysis: since the momentum balance has no convective term, this equation is com-

pletely handled by the material phase, so the transport phase need only deal with the

convective term in the constitutive equation. The implementation of ALE capabili-

ties in a Lagrangian code for quasistatic analysis is then a straightforward matter, see

Rodriguez-Ferran & Huerta (1995).

The material (or Lagrangian) phase

In the first phase within every time-step, the convective terms are neglected and only
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material effects are accounted for. The constitutive equation then reads

fx=" <-'

and it must be integrated in time to update stresses from na (stress at time tn) to ^<r

(stress after the Lagrangian phase). Neglecting the convective terms is equivalent to

assuming that grid points x move attached to material particles X. Because of this,

the Lagrangian phase can be performed with the same stress update algorithms used

in Lagrangian simulations, which handle the constitutive equation at the Gauss-point

level. In this work, the two algorithms discussed in Chapter 4 have been employed for

the Lagrangian phase of the ALE stress update.

The convection (or transport) phase

The time-step is completed with a convection phase, which handles the convective

terms not taken into account during the material phase. The constitutive equation is

then
dff dff

+ c.—= 0, (5.47)
Oí Y OX '

and its time-integration is required to update stresses from a to n~*~ a (i.e., the stress

at time

Remark 5.5: The fractional-step strategy has resulted in the splitting of the

constitutive equation (5.27) into the parabolic equation (5.46) of the material

phase and the hyperbolic equation (5.47) of the convection phase. This en-

ables the use of specific algorithms, specially designed to handle each type of

equation.

Since it contains a convective term, all the known numerical difficulties associated to

convection (typically encountered in computational fluid mechanics) will appear when

handling Eq. (5.47). It must be remarked, however, that the main source of trouble in

the convective term of Eq. (5.47) is the stress gradient, not the convective velocity itself.
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Indeed, the convective velocity c is usually moderate (in practice, the mesh velocity v

is often selected by modifying the material velocity v in order to reduce element distor-

sion). The stress gradient, on the contrary, is a troublesome term, because it cannot be

computed properly at the element level.

A possible solution to this problem is that of Huétink (1986), see Subsection 5.3.2.

The main disadvantage of this approach is that it results in an implicit algorithm (for

the least-squares interpolation), which may be acceptable for quasistatic analyses (al-

though explicit schemes are preferred, as commented previously) but not for transient

analyses, where the momentum balance is treated explicitly. More recently, various

explicit procedures for the convection phase of the ALE stress update have appeared,

see Huerta & Casadei (1991), Akkerman et al. (1995).

In this work, three explicit algorithms to integrate Eq. (5.47) will be presented and dis-

cussed (Huerta & Casadei, 1991; Rodriguez-Ferran & Huerta, 1995; Huerta et al., 1995).

To avoid computing gradients of the discontinuous stress field at the element level, two

different approaches have been taken: either i) use an explicit smoothing procedure

(Lax-Wendroff update) or ii) employ algorithms that circumvent the computation of

the stress gradient (Godunov-like technique and simple interpolation procedure). In

any case, the starting point is noting that Eq. (5.47) contains a scalar equation for

every stress component T

dt
* ~ j

In fact, the internal variables commonly employed in nonlinear mechanics must also

be convected following Eq. (5.48), so r can be any stress-related component (a

component of the stress tensor or an internal variable).

Remark 5.6: The term stress-related component does not imply that only

stress measures are employed as internal variables. In isotropic plasticity, for

instance, it is common to choose the equivalent plastic strain as an internal vari-

able, see Khan & Huang (1995). Stress-related component is just a convenient

way to refer to all the variables that must be updated according to Eq. (5.48).
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5.4.2 Algorithm 1: Lax-Wendroff update

As classically done in Lax-WendrofF or Taylor-Galerkin schemes, (Lax & Wendroff,

1960 and 1964; Doñea, 1984; Doñea & Quartapelle, 1992), a Taylor series expansion of

Eq. (5.48) is followed by substitution of the original equation into the expansion. This

yields

(,49)
where n+2c is the convective velocity evaluated at the midstep. For a transient analysis,

"~*"2~c is computed directly as the difference of material and mesh velocity,

n+2C ="+2 v -"+2 V, (5.50)

where n~*~îv is obtained in the time-integration of the momentum balance and n"*"2t; is

provided by the ALE remeshing procedure, see Halleux & Casadei (1987) and Pijaudier-

Cabot et al. (1995). For a quasistatic analysis, on the other hand, solving the momen-

tum balance yields an increment of material displacements Aw and the ALE remeshing

an increment of mesh displacements Au. The convective velocity, which is assumed to

be constant within the time-step, is then computed as

In Eq. (5.49), both the stress gradient, which will be denoted by 7 (7,- = d r/<9x,-), and

its spatial derivatives are required. An explicit interpolation procedure, based originally

in a classical least-squares projection, is employed to obtain a smoothed field of stress

gradient, (Huerta & Casadei, 1991). The starting point is the integral relation

/ /1 VhdV = - f h^hdV + í hhnxdS, (5.52)
JV JV JS=dV

where f\ and /2 are scalar functions defined on volume V, nx is the outward unit

normal to the boundary S of volume V , and V denotes the gradient operator. For

two-dimensional problems, Eq. (5.52) reduces to

/
Jç

xdr, (5.53)
çi Jçi r=dn
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where O is the two-dimensional domain associated to volume V, and dT is its boundary.

Equation (5.53) is valid both for plane stress/strain and axisymmetrical problems.

Equation (5.53) can be specialized into

NafdV = - í rVNadV + f NaTnxdS, (5.54)
R% JRe

x JdRe
x

where R%. and dRx represent element e and its boundary, nx is the outward unit normal

in the current configuration and JVa is the shape function of node a. The assembly of

Eq. (5.54) results in the linear set of equations

MT = $, (5.55)

where M is a consistent pseudo-mass matrix, P is a vector of nodal smoothed values

of the stress gradient, and the independent vector $ = [$a] is defined as

f
Jd

NarnxdS (5.56)

To compute the integrals along element boundaries dR%, the scalar field T is extrapo-

lated from Gauss points to nodes with the aid of Gauss-point shape functions.

Since an explicit procedure is sought, the consistent matrix M of Eq. (5.55) is sub-

stituted by the lumped matrix Mlp = Ma
p , with

[ArfP l=£/ NadV (5.57)
L J e ÍRl

After doing so, J1 is explicitly computed by solving a trivial system of equations, with

diagonal matrix Mlp. Then Eq. (5.49) can be solved. Since n+1r is required at the

Gauss points, a collocation technique is used to handle the weak form of Eq. (5.49).

This results in

(5.58)
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for each Gauss point £.

A special treatment is required for symmetric boundary conditions. Since the stress-

related component T is symmetric with respect to an axis or plane of symmetry, the

normal component of its gradient 7 must be set to zero. Since the smoothed nodal

gradients are obtained by solving a diagonal set of equations, the cancellation of a cer-

tain component 7,- is equivalent to the cancellation of the corresponding independent

term <&,-, prior to the solution of the trivial system. This is the approach taken in the

algorithm.

A flowchart of the Lax-Wendroff update technique is presented in Box 5.3.

1.— Update the mesh configuration from tn to tn+\ taking into account the mesh

velocity

2,— Compute convective velocity c according to Eq. (5.50) (transient processes)

or Eq. (5.51) (quasistatic processes)

3.— Compute the lumped mass matrix JVf'p, Eq. (5.57)

FOR EVERY STRESS-RELATED COMPONENT T:

4.— Compute the independent vector <&, Eq. (5.56)

5.— Treatment of symmetry: for nodes in an axis/plane of symmetry, set to zero

the normal component of $a

6.— Solve the trivial linear set M PJ1 = $ (diagonal matrix M p) to get the

vector of smoothed nodal gradients J1

7.— Interpolate stress gradient 7 and its spatial derivatives from nodes to Gauss

points with the aid of shape functions

8.— Employ the one-step Lax-Wendroff method to find n+1r at the Gauss-point

level, Eq. (5.58)

Box 5.3 Lax-Wendroff stress update
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5.4.3 Algorithm 2: Godunov-like update

The second algorithm for the convection phase is based on Godunov's method for con-

servation laws, (Le Veque, 1990). With the help of the stress-velocity product Y = re,

Eq. (5.41), Eq. (5.47) is rewritten as the conservation equation

dr
dt

(5.59)^ '

which is similar to Eq. (5.42) but without the material term g, because only convective

effects are considered now.

One-point quadratures

Godunov's method, which was developed in the context of finite volumes, assumes

a piecewise constant field r, (Le Veque, 1990). In a finite element framework, this is

the situation if one-point quadratures are employed; Godunov's method is then directly

applicable. However, to allow for a subsequent generalization to multiple-point quadra-

tures, a residual weak formulation of the method is preferred, (Huerta & Casadei, 1991).

Since the test functions w are also piecewise constant, the integral equation is valid at

the element level:

/ w^-dV = í UT^Í-dV - I u(Y-nx}dS. (5.60)
JR% Ot j/je OX j JdRex

Since both r and u are constant within finite element e, Eq. (5.60) results in

a i Ns

^ = -¿b E /• (TS - r)[! - sisn(/*)i ' (5-61)
s=l

where r is the stress-related component of element e, which has volume V and Ns faces,

Tg is the stress-related component in the contiguous element across face s, and fs is the

flux of convective velocity c across face 5, /s = Js c • nxdS.

For two-dimensional problems, Eq. (5.61) can be simplified into

1 J r
= -ÎT E /r W - 0 [1 - signtfr)] ' (5-62)
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where JVp is the number of edges of element e and Tp is the stress-related component in

the contiguous element across edge F. For plane strain and plane stress problems, A is

the area of element e and /r is the flux across edge F, /p = Jr c • nxdT. For axisymmet-

ric problems, on the other hand, axisymmetry is accounted for by taking A = J^e rdS

and /p = /r(c ' nx)rcT, where r is the radial coordinate.

Explicit time-integration of Eq. (5.62) yields

Nr
n+ir = Lr - j £ /F W - r) [1 - sign(/r)] (5.63)

for each element.

Multiple-point quadratures

Two different strategies have been tested to extend the Godunov-like update to

multiple-point quadratures, (Huerta et o/., 1995; Casadei et a/., 1995). The first ap-

proach is a generalization of the residual formulation of Eq. (5.60) which takes into

account that the stress-related component r and the test function u are no longer

piecewise constant. The second one is a simpler, more straightforward technique which

is directly based on the algorithm for one-point quadratures just presented.

If the first strategy is chosen, T and u> are interpolated *ia Gauss-point shape func-

tions LÍ, which equal 1 for the ¿-th Gauss point and zero for the other Gauss points.

If quadrilaterals with 2 x 2 integration points are employed, for instance, these shape

functions are

««-') = ï

where £ and 77 are the natural coordinates ranging from — 1 to 1 and (£¿,??¿) are the

coordinates of the i-th Gauss point.

A Galerkin formulation of Eq. (5.60) followed by numerical time-integration results

in a set of linear equations for every element,

MÍJ n+lr = MÍJ Lr + Ai [Cij Lr - S¡] i, j = l, . . . , NG. (5.65)
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In Eq. (5.65), NQ is the number of Gauss points in the quadrature, M is a pseudo-mass

matrix, C is a matrix accounting for spatial variations of the stress-velocity product

and S is a vector associated to the flux integral, see Huerta et al. (1995).

It must be remarked that the pseudo-mass matrix in Eq. (5.65) is diagonal. Indeed,

since it is computed as

Mij= í L¡LjdV (5.66)
JRX

and because of the choice of shape functions LI, Eq. (5.64), off-diagonal terms are null.

Because of this, an explicit algorithm for the stress update is obtained.

The second approach is an engineering-like extension of the algorithm for piecewise

constant fields. The basic idea is to divide every finite element into NQ subelements,

each of them corresponding to the influence domain of a Gauss point, (Huerta et al.,

1995). If quadrilaterals with 2 x 2 integration points are employed, for instance, ev-

ery element is divided into four subelements. In every subelement, T is assumed to be

constant, and represented by the Gauss-point value. Because of this, r is a piecewise

constant field with respect to the mesh of subelements, and Eq. (5.63) can be employed

to update the value of T for every subelement. A very simple and efficient algorithm is

obtained, because the submeshing of the original mesh into subelements need only be

performed once, at the beginning of the analysis.

This second technique, which has shown better results than the first one, is reflected

in Box 5.4.
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1.— Update the mesh configuration from tn to in+i taking into account the mesh

velocity

2.— Compute convectivo velocity c according to Eq. (5.50) (transient processes)

or Eq. (5.51) (quasistatic processes)

3.— Transfer convective velocity from original mesh to auxiliary mesh of subele-

ments

FOR EVERY SUBELEMENT:

4.— Compute area A

LOOP ON SIDES OF THE SUBELEMENT

5.— Compute the flux of convective velocity across side, fs

LOOP ON STRESS-RELATED COMPONENTS

6.— Compute jump across side, (rjj — r), and add up the RHS of Eq. (5.62)

END OF LOOP ON STRESS-RELATED COMPONENTS

END OF LOOP ON SIDES OF THE SUBELEMENT

7.- Employ Godunov's method to find n+1r at the subelement level, Eq. (5.63)

Box 5.4 Godunov-like stress update

5.4.4 Algorithm 3: simple interpolation procedure

The computation of stress gradients may be circumvented by recalling the relation-

ship between material and referential time derivatives, Eq. (5.19), and by rewritting the

equation of stress transport (5.47) simply as

The splitting strategy represented by Eqs. (5.46) and (5.67) is amenable to the follow-

ing geometrical interpretation, (Benson, 1989): the mesh velocity is assumed to equal
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the material velocity -thus resulting in null convective effects- during the Lagrangian

phase, which yields stress-related components ^T in a fictitious, Lagrangian mesh; in

the convection phase, the material is fixed in space and the mesh is allowed to move

to its final configuration, so T must be remapped from the fictitious Lagrangian mesh

to the true ALE mesh. From this viewpoint, Eq. (5.67) states that the value of T of

a material particle X, which is fixed in a spatial point œ, remains unaffected by the

motion of grid point ^.

The remapping from the fictitious to the ALE mesh can be performed by means of a

simple interpolation procedure similar to those typically employed in adaptive remesh-

ing. For every Gauss point in the ALE mesh, the updated value n+1r is computed in

two steps: 1) detect the element in the fictitious mesh containing the ALE Gauss point

and 2) interpolate T from the Lagrangian element to the ALE Gauss point with the aid

of shape functions, (Rodriguez-Ferran & Huerta, 1995).

This is a very general algorithm, because it does not require the old and new meshes

to have the same topology. This generality makes the algorithm relatively expensive,

especially the element search of step 1). However, the location of every new Gauss point

in the old mesh can simplified by taking profit from the fact that the ALE remeshing is

topology-conserving. The key idea is that each finite element has the same neighbour

elements throughout the analysis.

The basic steps of the interpolation procedure are shown in Box 5.5.
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1.— Produce a list of all the neighbour elements (i.e., sharing at least one node)

of every element (Important: only once, for the convection phase of the first

time-increment)

2.— Compute convective velocity c according to Eq. (5.50) (transient processes)

or Eq. (5.51) (quasistatic processes)

3.— Obtain the (fictitious) Lagrangian mesh with the aid of the material velocity

4.— Update the coordinates of the (true) ALE Gauss points from tn to tn+i

taking into account the mesh velocity

FOR EVERY ELEMENT OF THE ALE MESH:

LOOP ON GAUSS POINTS OF THE ELEMENT

5.— Locate the ALE Gauss point in the Lagrangian mesh. Restrict the search

to the element under consideration and its neighbours

6.— Compute the natural coordinates (£, rj) of the ALE Gauss point by solving

the nonlinear set of order 2

nnod nnod

where xgp and ygp are the (known) Cartesian coordinates of the Gauss

point, (xi,y{) the nodal coordinates of the Lagrangian element, JV,- the

shape functions and nnod the number of nodes.

LOOP ON STRESS-RELATED COMPONENTS

7,— Compute "+1r by interpolating, at element level, the Gauss-point val-

ues in the Lagrangian element to the ALE Gauss point

END OF LOOP ON STRESS-RELATED COMPONENTS

END OF LOOP ON GAUSS POINTS

Box 5.5 Simple interpolation procedure for stress update
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5.4.5 Limitations on the time-step

The numerical time-integration of the momentum balance places a limit on the max-

imum time-step Ai. For transient analysis, this limitation is associated to the stability

of the explicit algorithm employed to integrate Eq. (5.21b). For quasistatic analysis, on

the other hand, Ai is restricted by the convergence properties of the nonlinear solver

employed for the implicit integration of Eq. (5.28).

According to the numerical experimentation of this work, the limitation on time-step

associated to the numerical time-integration of the constitutive equation is not more

restrictive than for the momentum balance, in either transient or quasistatic analysis.

In other words, the same Ai that is used for the momentum balance can then be em-

ployed for the stress update, with any of the algorithms of the previous Subsections.

The basic idea is that, with the typical values of time-step Ai and convective velocity c,

the relative motion between the material and the mesh that occurs during the convec-

tion phase carries material particles to a neighbour element (at most), but no further.

This situation can be symbolically expressed as

|c|Ai < h, (5.68)

where h is the clement size. In fact, Eq. (5.68) can be regarded as the well-known

Courant condition. Since the three algorithms previously presented take into account

the stress transport between contiguous elements, they can be used for the stress update

in both transient and quasistatic processes.

It must be remarked, then, that the explicit algorithms for the convection phase of

Subsections 5.4.2, 5.4.3 and 5.4.4 are applicable in combination with either an explicit

algorithm for the momentum balance (transient analysis) or an implicit algorithm (qua-

sistatic analysis). In the latter case, there is no need to develop different, implicit stress

update procedures for the convection phase.

If the time-integration of the momentum balance is explicit (transient analysis), no

iterations are made. Thus, every time-step involves performing each of the following

tasks once: 1) material phase of the stress update; 2) selection of mesh velocity (i.e.,

remeshing); 3) convection phase of the stress update.
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On the contrary, if the momentum balance is handled by an implicit algorithm (qua-

sistatic analysis), iterations up to equilibrium are required. This means that tasks 1),

2) and 3) must be performed once per iteration, until equilibrium in the ALE mesh

is achieved.

An alternative, simplified approach, however, is keeping only task 1) (material phase

of the stress update) inside the iteration loop. By doing so, iterations are carried out

until equilibrium is verified in the fictitious Lagrangian mesh. After that, tasks 2) and

3) are performed just once, at the end of the time increment, see Box 5.6. This approach

has the advantage that the only overhead cost of ALE quasistatic analysis with respect

to a Lagrangian analysis is due to the remeshing and the explicit convection phase

required at the end of every time-step. This overhead cost is acceptable when compared

to the cost of the implicit time-integration of the equilibrium equation. It must be

noted, on the other hand, that with this approach equilibrium is only achieved in the

fictitious Lagrangian mesh, not in the true ALE mesh. Indeed, the convection phase

somewhat disrupts equilibrium. Numerical experimentation, however, shows that the

spurious residual forces associated to the convection phase are small and do not affect

the quality of the solution, see next Section and (Baaijens, 1993).

1.— Iteration loop: neglect the convective velocity and solve the equilibrium

equation (5.34) complemented with the Lagrangian constitutive equation

(5.46) iteratively, as in a Lagrangian analysis

2.— Remeshing: compute the convective velocity c and update the mesh from

its fictitious Lagrangian configuration to its true ALE configuration

3.— Convection: perform the convection phase of the stress update, Eq. (5.47),

with any of the algorithms of the previous Subsections

Box 5.6 Simplified approach for ALE quasistatic analysis
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5.5 Numerical examples

5.5.1 Test HILL

The explicit algorithms for the convection phase are compared with the aid of a simple

test, see Figure 5.1. The mesh is formed of 10 x 10 unit eight-noded squares, with 2 x 2

Gauss points. The initial stress field is a cosinuidal hill of radius 3 centered in point P.

To assess the 2-D behaviour of the algorithms, a uniform mesh velocity is prescribed in

the direction of diagonal AC, Figure 5.1. Material velocity is null, so only convective

effects are present (i.e., Eq. (5.48) must be solved). The time-step is set to Ai = 0.25.

Figure 5.1 Test HILL. Mesh, initial stress field and mesh velocity

Figure 5.2 shows the stress field at í = 2. For the interpolation procedure, the initial

circular shape of the hill is well maintained, Figure 5.2a. For the Godunov-type up-

date, on the contrary, the diameter normal to velocity direction is quite larger than in
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the input field, Figure 5.2b. This is due to the lack of "corner convection" in the Go-

dunov update: since convection is accounted for as fluxes through the element edges,

Eq. (5.63), there is no stress transport between two elements that only share a corner

node. This leads to the crosswind diffusion that alters the hill shape, and makes this

algorithm more diffusive than the interpolation procedure. Figure 5.3 shows the stress

profile along diagonal AC at i — 2 corresponding to the exact solution (identical to

the initial profile, since there are no material effects), and to the two algorithms. The

Godunov-type update shows a 13.5% reduction of the peak stress value, compared to

only 3.6% reduction for the interpolation procedure.
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D

B A B

Figure 5.2 Test HILL. Stress field at í = 2. a) Interpolation procedure, b) Godunov update.

STRESS

DIAGONAL

t.« >.B4 4.01 C.M I.«« If.M U.It 14.M 1«.H ll.M

Figure 5.3 Test HILL. Stress profiles along diagonal AC: exact solution (dashed), interpola-
tion procedure (triangles), Godunov update (squares).
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5.5.2 Test NECKING

The necking test of Subsection 4.5.7 (Simo, 1988) is employed here to test the full

ALE stress update algorithms (i.e. material and convection phases). Two meshes of

eight-noded quadrilaterals with 2 x 2 Gauss points are employed for the analysis, a

coarse mesh of 50 elements and a fine mesh of 320 elements. Both Lagrangian and ALE

simulations have been carried out, for comparison purposes. For the ALE cases, the

simplified approach of Box 5.6 has been employed.

Figure 5.4 shows the whole deformed piece after an axial elongation of 14 mm (7 mm

for half the piece, or 26% of initial length). If the Lagrangian formulation is employed

in combination with the coarse mesh, Figure 5.4a, the elements in the neck zone be-

come very distorted, following the large material deformation. As a consequence, a poor

definition of the deformed shape of the piece is obtained.

1\\ \ \\\\\
Y\I

/7/1
////
///f

_, _j

--ÍO¡IIIt
Im\\\

Fig. 5.4a Fig. 5.4b Fig. 5.4c

Figure 5.4 Test NECKING. Deformed mesh after 7mm elongation, a) Lagrangian formulation
with coarse mesh, b) Lagrangian formulation with fine mesh, c) ALE formulation
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The quality of the solution may be improved by performing the Lagrangian simulation

on the fine mesh, Figure 5.4b. An alternative approach, however, is to keep the coarse

mesh and use employ the ALE formulation. A very simple ALE remeshing strategy is

suggested by the results of the Lagrangian analyses: 1) the upper part of the piece,

where strains are not large, remains Lagrangian (that is, convective velocity is set to

zero, so there is no need to perform the convection step of the stress update) and 2)

equal height of elements is prescribed in the central part, thus avoiding the excessive

distorsion of elements near the neck of Figure 5.4a. The three update algorithms result

in very similar deformed shapes; the output with the interpolation procedure is shown

in Figure 5.4c.

Current radius / initial radius

1.25

1.00

0.75

0.50

0.25

0.00

m
Elongation (mm)

A ALB (Lax-Wendroff)

"*" ALÈ (Godunov)

x ALE (interpolation)

Lagrangian (fine mes

Lagrangian (coarse mesh)

esh)

0 1 10

Figure 5.5 Test NECKING. Radius reduction vs. bar elongation for various simulations

A more quantitative comparison of the various simulations is offered in Figure 5.5,

which shows the evolution of radius reduction (ratio of current radius to initial radius)
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to elongation (in mm, for half the specimen). It can be seen that, up to 7 mm elonga-

tion, all the curves are very similar and in good agreement with those in Simo (1988).

If pulling proceeds, however, discrepancies arise between the Lagrangian solution with

the coarse mesh, on one side, and the Lagrangian solution with the fine mesh and the

ALE solutions, on the other. With only one row of (very distorted) elements in the

necking zone, the Lagrangian simulation on the coarse mesh does not fully capture the

plastification process, and this results in less necking.

A closer look to this behaviour is presented in Figure 5.6. Taking the Lagrangian

solution with the fine mesh as a reference, the relative error in radius of the simulations

with the coarse mesh is plotted versus elongation. After a pull of 7 mm, the Lagrangian

solution offers an acceptable error of 5%, compared to ALE values of slightly under 1%.

If pulling continues up to 8 mm, however, the error for the Lagrangian solution grows to

80% while it stays below 5% for the three ALE cases, see Figure 5.6a. A zoom focusing

on the ALE analyses, Figure 5.6b, shows that the three update procedures yield almost

identical results.

It is apparent from Figures 5.5 and 5.6 that the evolution of necking is properly

described by the three ALE stress update algorithms, and that tougher criteria must

be employed to assess their relative performance. A possibility is to compare the dis-

tributions of a certain stress-related component. Figure 5.7 shows the profiles of the

equivalent plastic strain in the neck zone after an elongation of 7 mm. Again, the La-

grangian analysis with the fine mesh is taken as a reference, Figure 5.7a. The Lagrangian

simulation with the coarse mesh correctly describes the general aspect of the field, but

fails to capture the large plastification in the neck and underestimates the peak value

of the plastic strain by 23%, see Table 5.1. As for the ALE cases, the best performance

is shown by the interpolation procedure, Figure 5.7c, with a very similar profile and

an underestimation of the peak value of only 1.4%. Second comes the Lax-Wendroff

update, Figure 5.7d, with an error in the peak value of 4%, and finally the Godunov-like

update, Figure 5.7e, with an error of 6%.
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Elongat i on (mm)

ALE (Lax-Kondroff)

ALE (Godunov)

ALE (interpolation)
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Fig. 5.6a
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Fig. 5.6b

Figure 5.6 Test NECKING. Relative error in radius vs. bar elongation for various simulations,
a) Full view, b) Zoom
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Fig. 5.7a Fig. 5.7b

Plastic strain

0.16
0.32
0.47
0.63
0.79
0.94
1.1
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1.4
1.6
1.7
1.9
2.0
2.2

Fig. 5.7c Fig. 5.7d Fig. 5.7e

Figure 5.7 Equivalent plastic strain in the neck zone. Lagrangian formulation: a) fine mesh
; b) coarse mesh. ALE formulation (coarse mesh): c) interpolation update ; d)
Lax-Wendroff update ; e) Godunov update
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Lagrangian analysis

Fine mesh

Coarse mesh

ALE analysis, coarse mesh

Lax-Wendroff update

Godunov update

Interpolation update

Max. plastic strain Relative error

2.28

1.76

Reference value

-23%

2.18

2.14

2.25

-4%

-6%

-1.4%

Table 5.1 Test NECKING. Maximum plastic strain for various simulations

5.5.3 Tesi COINING

In this test, a coining process is simulated (Casadei ei a/., 1995). A metallic disk,

with a radius of 30mm and a height of 10mm, is deformed by a punch 12mm in ra-

dius, see Figure 5.8. The disk is made of an elastoplastic material with elastic modulus

E = 200GPa, Poisson's coefficient v = 0.3, yield stress ay = 250MPa and plastic modu-

lus Ep = IGPa. Both the punch and the die are rigid. Perfect friction (stick) conditions

are assumed in the punch-disk and disk-die interfaces.

STICK

STICK

Figure 5.8 Test COINING. Problem statement
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An Asymmetric analysis is performed to model a 60% height reduction. The finite

element mesh is made of 8 x 20 eight-noded elements, with 2 x 2 Gauss points.

Figure 5.9 shows the output of a Lagrangian simulation. It can be seen that, at 36%

height reduction, the finite elements under the punch corner and in contact with the

die become very distorted, and the analysis cannot proceed. The pattern of material

flow is also clear from this sequence of pictures: Since there is perfect friction in the two

interfaces, the material tends to flow outward from the central part of the disk. The

outer part of the disk is relatively unaffected by deformation and moves in a rather rigid

manner.

With an ALB analysis, on the contrary, the analysis can be completed. Figure 5.10

shows the evolution of the ALE mesh and the yield stress. The Godunov-like algorithm

is employed for the convection phase of the ALE stress update. A similar result is

obtained with the Lax-Wendroff algorithm, see Figure 5.11.

In Casadei et al. (1995), a transient analysis of this coining test is performed. To

assess the influence of dynmic effects, various punch velocities, ranging from 300m/s

to 0.15m/s, are simulated. It is interesting to note that the results shown here for a

quasistatic analysis (Figures 5.10 and 5.11) are in good agreement with those of Casadei

et al. (1995), in the sense that they are the limit case with null inertia effects in the

sequence of punch velocities (both in terms of deformed shape and yield stress profile).
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Figure 5.9 Test COINING. Distorted mesh in a Lagrangian analysis
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Figure 5.10 Test COINING. Evolution of ALE mesh and yield stress
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Figure 5.11 Test COINING. Final ALE mesh and yield stress, a) Godunov update, b) Lax-
Wendroff update
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5.6 Concluding remarks

In this Chapter, a unified presentation of the ALE formulation for quasistatic and

transient analysis has been made. In the general (i.e. transient) case, the governing

equations have convective terms that reflect the relative motion between mesh and ma-

terial. In the quasistatic case, on the contrary, there are no convective terms in the

momentum balance (because inertia effects associated to the convective acceleration

are neglected), but they are still present in the constitutive equation (representing the

arbitrary mesh motion which is inherent to ALE kinematics).

Numerical time-integration of the governing equations has been performed by means

of split methods, thus treating material and convection terms separately. It has been

shown that split methods are the natural choice for ALE quasistatic analysis: the mo-

mentum balance and the material terms in the constitutive equation can be handled

with the same algorithms used in a Lagrangian analysis. After that, during the con-

vection phase it is only necessary to worry about the convection terms in the ALE

constitutive equation.

As illustrated with some numerical examples, this convection phase can be performed

by means of explicit algorithms, in spite of the implicit algorithm employed for the mo-

mentum balance. Three explicit algorithms (Lax-Wendroff, Godunov and interpolation

procedure) have been discussed in detail.
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CONCLUSIONS

A methodology for the ALE analysis of quasistatic problems in nonlinear solid mechanics

is presented in this work. The basic features of the proposed strategy are:

General framework. A unified treatment of ALE quasistatic and transient analysis

has been made. Emphasis is put on stressing the similarities and differences between the

two types of problems. Split methods are employed for the numerical time-integration of

the ALE constitutive equation. With this choice, material terms and convection terms

are accounted for in two separate phases. It has been shown that the convection term

in the ALE constitutive equation can be handled by means of explicit algorithms, in

spite of the implicit time-integration of the momentum balance. In this manner, the

same algorithms, with no modification, can be used for the ALE stress update in both

quasistatic and transient analyses.

Easy implementation. The presented strategy can be used to add ALE capabilities

into a small-strain finite element code in a simple way, with few additional features.

Since a split approach is chosen for the ALE stress update, the Lagrangian phase can

be performed with the algorithms of Chapter 4, just like in a Lagrangian analysis, and

the convection phase can be handled with the explicit algorithms of Chapter 5.

Low extra cost (with respect to a Lagrangian analysis). All the additional features

(i.e. the determination of mesh motion and the treatment of the convective term in
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the ALE constitutive equation) are performed by means of explicit algorithms. Com-

pared with the implicit algorithms typically employed in quasistatic analysis for the

momentum balance, this results in a low extra computational cost.

The ALE formulation of quasistatic nonlinear problems has motivated research in

some more fundamental topics of nonlinear computational mechanics, which are rele-

vant issues in ALE quasistatic analysis and many other fields: the solution of nonlinear

systems of equations, the time-integration of constitutive equations in large strain solid

mechanics and the choice of a programming environment to implement and test the new

algorithms. These three topics have been addressed in separate Chapters.

Object-oriented codes

Object-oriented codes are a robust, valid tool for both real applications and research.

Since the objects directly represent the entities required in a finite element computation,

there is no need to translate them into more rudimentary variables.

GASTEM 2000, the object-oriented code employed for this work, provides an inter-

active object-oriented language which is well suited for research tasks. The new devel-

opments can be implemented and tested in a simple way, by writing new metaoperators

in this interactive language. Besides, they can be shared among various workteams in

an efficient way.

Nonlinear equation solvers

If an object-oriented code is employed, the Lagrange-multiplier technique is a natural

way to impose linear constraints (associated to boundary conditions) into the nonlin-

ear equilibrium equation. In this work, various nonlinear equation solvers have been

adapted to the Lagrange-multiplier, object-oriented environment.

The adaptation is straightforward for the methods of the Newton-Raphson family (full

Newton-Raphson, modified Newton-Raphson and initial stress methods). The stiffness

matrix is enlarged into the Jacobian matrix with the constraint matrix. For the Quasi-

Newton and Secant-Newton methods, on the contrary, this adaptation process is rather

more involved. In fact, two different approaches to defining secant approximations to

the Jacobian matrix have been presented: the natural (or standard) approach, and
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an alternative (or modined) approach. The alternative approach takes profit from the

partial linearity of the nonlinear system of equations.

It has been shown here that these two approaches are identical for rank-two Quasi-

Newton methods (DFP and BFGS). They are different, on the contrary, for the rank-one

Broyden method. Two different Broyden methods have been found: the total Broyden

(natural approach) and the partial Broyden (alternative approach) methods. All these

Quasi-Newton methods have superlinear convergence under standard regularity condi-

tions.

A similar situation is found with the Secant-Newton methods (i.e. a partial Secant-

Broyden method and a total Secant-Broyden method, but only one Secant BFGS

method, are found).

The numerical experiments demonstrate the effectiveness of the adapted algorithms

and the superior performance of the partial versions of the Broyden method (QN and

SN) over the total versions.

Stress update algorithms for large strains

Two stress update algorithms for large strains, originally developed in a fixed Carte-

sian frame, have been presented here with a convected frame formalism. The use of

convected frames has enabled the development of a general strategy for the accuracy

analysis of stress update algorithms, based on standard techniques in numerical anal-

ysis. The basic idea is that, if the constitutive equation is stated in convected com-

ponents, then any standard finite difference scheme can be employed for its numerical

time-integration.

For the two algorithms discussed here, this accuracy analysis has shown that one al-

gorithm (Bathe et al., 1975) is first-order accurate, while the other one (Pinsky et a/.,

1983) has second-order accuracy. This a-priori accuracy analysis is corroborated by a

set of numerical experiments.

Regarding the implementation aspects, it has been shown that any of the two algo-

rithms can be employed to add large strain capabilities to a small-strain code in a simple

way.
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This global approach to the problem has been taken at the expense of some issues

which are relevant for more realistic simulations: a general ALE remeshing algorithm,

friction and lubrification in the piece-tool interface,.... These issues are not addressed

here and are prospective topics for future research.

Another issue which needs to be studied is the coupling of the ALE formulation and

an error estimator. The basic idea would be to define the arbitrary mesh motion to con-

centrate finite elements where they are most needed according to the error estimator.

This strategy could complement the geometrical criteria (i.e. reduction of the element

distorsion) used here. In a second stage, it is intended to combine the ALE formulation

with an adaptive remeshing technique, to profit from their respective advantages: adap-

tive remeshing allows to increase/decrease the number of elements in the mesh, but the

information transfer is simpler in the ALE formulation.
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A review of nonlinear equation solvers

In Chapter 3, the adaptation of nonlinear solvers to the context of Lagrange multipliers

is discussed. In this Appendix, some of the various solvers are reviewed in their classical

form.

A.I A classical approach to nonlinear problems: Newton-Raphson methods

A. 1.1 An incremental solution. The tangent stiffness matrix

We recall first Eq. (3.2),

»•(«*) = /int(w) - /ext = 0,

which describes the system of nonlinear equations that needs to be solved. It will be

assumed also that the total external load has been fractioned into N increments of load

or load steps.

Denoting each increment by "A/ and the intermediate forces by nf = n~lf+ "A/

we have that /ext =
 l A/ + 2A/ + . . . + ^~1 A/ + NAf = Nf. The original problem

(3.2) is then transformed into the following collection of JV nonlinear problems:

1) Find lu such that

2) Find 2Au such that, if 2u is built as 2u = *u + 2Aw, then

r(2u) = /int(
2«) - 2/ = 0,
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etcetera.

This procedure (incremental approach) is summarized in Box A.I.

Forn = 0, ..., N - l

and assuming we know a vector nu of nodal displacements for which

r("«0 = /int(n«) - "/ = 0,

we want to obtain a vector n+* Au of incremental displacements such that

for point n+1w, calculated as n+1u = nu+ n+1A«,

we have that

«) = /int(
n+1tt) - n+lf = 0.

Box A.I Incremental approach

All efforts must now be concentrated on the obtention of vector

What we are going to do is linearize each system of nonlinear equations that is listed

in Box A.I; next, we need to check if the solution of the equivalent linear system of

equations is similar to that of the original, nonlinear system.

Let us begin by considering the function

and making a Taylor expansion of r(n+1u) around point nu. This expansion

consists of an infinite number of terms of increasing order. However, since a lineariza-

tion of the problem is performed, only terms of first order are taken into account; this

means that the following approximation is made

r(»+'u) « if«) + |£
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where vector r(n+1u) is forced to be null. Reorganizing terms in the resulting equation,

n+1Au = 0, (Al)

we obtain the desired system of linear equations

= -nr, (A2)

where nr stands for r(nu) and
nK = ~

OU u

is the expression of the the tangent stiffness matrix (Crisfield, 1991).

A. 1.2 The need for incremental/iterative solutions

In the previous Subsection, the N nonlinear systems of equations that make up the

initial nonlinear problem (3.2) have been transformed into N linear systems of the type

However, for each load step the solution of the linearized system of equations is just an

approximation to the solution of the nonlinear system defined by Eq. (3.2). Thus, the

vector of displacements
n+1u= nu+ n+1Au

does not give null residual forces r(n+ it).

This last point in illustrated in Figure A.I. The solution to the nonlinear problem is

denoted by n~*" «.

The obtention of vector n+1w begins by performing a Taylor first-order expansion of

the function
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around point nu. As only conservative forces are considered, n+1/ is constant. There-

fore, the nonlinear function / = /int(
w) is approximated by the linear function

/= nf+ nK(u- nu),

which is tangent to the curve / = /¡nt(
M) a* point (nu, n/).

The intersection of this linear function with the constant function /

point n+*u, for which

- nu) = n+lf.

n+lf gives

(or also HK n+1Au = nK(n+lu- nu) = n+1/~ "/= -Br).

, n, n , n «
f= f+ K (u- u)

n+1

Figure A.l Solutions to the nonlinear and linearized problems
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Visibly, the use of an incremental strategy is not sufficient by itself. However, what can

be done is to take profit of the previous ideas to obtain successive approximations (itera-

tions) to the solution within each load step. The final scheme (incremental/iterative

solution) is described as follows.

• For a certain load step n+1 A/, the linear system of equations

(A3)

is solved.

Writing the out-of-balance forces associated to the displacement vector u as

*•(«) = /i„t(«) -

we have that

»r = rO) = /intC«) - n+lf = - n+1A/,

that is, the residual forces "r equal minus the total increment of load associated to the

current load step. The solution to Eq. (A. 3) will be denoted by n+1 Att* to indicate that

it yields a prediction "+*«! = nu + ""*" Au* to the solution of the nonlinear

problem.

• The prediction vector n+1w* might however be a good solution for Eq. (A. 4). To

check this possibility, we compute the value of the residual forces

If this value is close enough to zero, no iterations are needed.

• If, on the contrary, r(n+^u^} is too different from zero, the iterative part of the

process begins, where point n+1«* will be asumed to play the same role as nu did in

the prediction phase.
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The out-of-balance forces are computed as

and we consequently need to solve the linear system

n+lKl n+l6u* = - n , (A5)

where n+1r1 = r("+1«1) and n+lK^ is the tangent matrix calculated at point

(n+1«1,/mt(n+1«1)), namely

n+lKl = L
OU n+lul

The solution n+ 8u to Eq. (A. 5) is a correction of the solution to Eq. (A.3); this cor-

rection is used to build a better approximation n+*u2 to the solution of the nonlinear

system after a simple update such as the following:

n+1u2= nu+ n+1Au2.

• At this stage, we need to check if point "+1Att2 supplies a good enough solution to

the problem by evaluating the residual vector

Otherwise, we calculate n+ Su such that

and proceed to obtain a new -corrected- vector of displacements.
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After a certain amount of iterations, this process is expected to come to an end. To

decide whether the solution is good enough to stop iterating, we evaluate how close the

approximation n+*u + is to the real solution (for example, by computing how different

the residual vector r(n+1w*+1) = /int(
n+1w*+1) - "* 1f is from zero).

In Box A.2 the whole process is described for a generic iteration k -f 1. For k = 0, we

assume that Su = Au .

Solve n+lKk n+lSuk+l = _n+lrk

Update n+1Awfc+1 = n+1Aufc + n+l6uk+l

Update "+!«*+! = n
u + n+l&uk+l

Convergence control : if the approximation n+lt¿*+l is good enough, exit.

Box A.2 Iterative scheme within load step n + 1

To end this Subsection, a word needs to be said about the convergence control

step. A force-based criterion has been used up until now; however, many other strate-

gies can be followed to check convergence. For instance, we could use the following

displacement-based variation measure of the solution vector

where || • || stands for some vectorial norm (typically, the Euclidean or maximum norm).

A very small value of the scalar e means that the total displacements are experimenting

a very small change and that we can consequently pass on to the next load step.

Force-based and displacement-based convergence criteria are the most common. Other

criteria, such as those involving energies, need to be used with more precaution, (Cris-

field, 1990).
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A. 1.3 Full and modified Newton-Raphson methods

In Subsections A. 1.1 and A. 1.2 the classical incremental/iterative approach to non-

linear problems has been presented. As a matter of fact, a specific method (the full

Newton—Raphson or fNR method) has already been used to illustrate this approach.

In this Subsection, we review some variations on the fNR method that also follow the

incremental/iterative scheme.

Let us begin by rewriting the full Newton-Raphson algorithm. Suppose we are lo-

cated in a certain load step n + 1, where (nw,n/) is a known equilibrium point and

we want to obtain n+*w. Considering nu as a starting point for this increment, we

rename it to ""^1« , where the right superscript 0 indicates that the construction of

point n+*w" is previous to iterations 1,2,— Consequently, the stiffness matrix nK

and the out-of-balance force vector nr can also be rewritten respectively as n+^K^ and
n+lrO

After these substitutions, all terms in the iterative scheme presented in Subsection

A.1.2 turn up to have a n + 1 left superscript. To lighten the overall notation, we drop

left superscripts. Thus, in the coming equations, n+ljf" js written as K®, n~*"*Aií* is

denoted by Au*, and so on.

Finally, the original list of instructions can be rearranged to produce the compact

algorithm that is detailed in Box A.3. Figure A.2 illustrates how this method works for

a one-dimensional problem.
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prédiction

1.- Compute KQ

2.- Solve the linear system K° Ati1 = -r°

3.- Update ul = w° + Au1

4.— Evaluate r1 = r (tí1)

5.— Convergence control: if point u is good enough, exit.

corrections

Jb> 1

6.- Compute Kk

7,— Solve the linear system Kk Suk+l = —rk

8- Update uk+l = uk + 6uk+l

9.- Evaluate

10.— Convergence control: if point u + is good enough, exit.

11.- Assign k =• k + 1 and go back to 6.—

Box A.3 Algorithm for the full Newton-Raphson method

Remark A.I: Under certain conditions, (Crisfield, 1991; Dennis & Schnabel, 1983), the

full Newton-Raphson method shows a quadratic rate of convergence,i.e., a scalar 7 can

be found for which

\\uk+1 -«*||< 7 \\uk-u*f

where u* denotes the solution corresponding to the current increment. Thus, fNR

results in a powerful technique.

Remark A.2: At every iteration, we must compute and factorize one tangent stiffness
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matrix, solve one linear system of equations and evaluate one vector of residual forces.

Consequently, the fNR is an expensive method.

Load, f A
Iterations

Displacement, u

Figure A.2 The full Newton-Raphson method

Once the basic full Newton-Raphson scheme is defined, a whole collection of 'modified

Newton-Raphson methods' can be derived from it. The idea of these methods is to

keep the original pattern, but using not always up-to-date stiffness matrices.

The reason for these modifications is that calculating a stiffness matrix K and fac-

torizing it to solve the corresponding linear system of equations at every iteration is a

very expensive task. Therefore, using a previously calculated and factorized stiffness

matrix will result in a much lower computational cost per iteration.

For instance, while in the fNR method a new tangent stiffness matrix is computed

at every iteration, in the standard modified Newton-Raphson (or mNR) method
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the stiffness matrix is updated just at the beginning of each load step, see Figure A.3.

This means that less work is required because only one tangent matrix is computed and

factorized per increment. But it also means that a higher amount of iterations should

be expected to attain convergence. Thus, the relative global cost between a mNR and a

fNR method for the resolution of a given nonlinear problem will in general be unknown

beforehand. The algorithm for the mNR method is listed in Box A.4.

Remark A.8: This method has a linear rate of convergence, i.e., a scalar 7 can be found

for which

\\uk+l-u*\\<7\\u
k-u*\\,

where u* denotes the solution corresponding to the current increment, (Crisfield, 1991;

Dennis & More, 1977).

Load,

'Af

Displacement, u

Figure A.3 The modified Newton-Raphson method
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prediction

1.- Compute K°

2.— Solve the linear system K Au* = —r"

3.- Update u1 = u° + Au1

4.— Evaluate r1 = r(u1)

5.— Convergence control: if point it1 is good enough, exit.

corrections

k > 1

6.— Solve the linear system A"0 6uk+i = —rk

7.- Update u*+1 = uk + Suk+l

8.- Evaluate rk+l = r(uk+l)

9.— Convergence control: if point u "*"* is good enough, exit.

10,— Assign k = k + 1 and go back to 6.—

Box A.4 Algorithm for the modified Newton-Raphson method

Obviously, an infinite number of Newton-Raphson techniques can be produced by

updating the tangent stiffness matrix at different times during the resolution of the

problem.

One more of those techniques, the so-called initial stress method, will be discussed

here. In this case, one tangent stiffness matrix is computed at the beginning of the

first load step, namely "ÜL", and it is used to solve all the linear systems of equations

that are encountered during the resolution of the problem. Therefore, just one tangent

matrix is calculated and factorized in all. This means, as it has already been indicated,

that more iterations will probably be needed within each load step before convergence

is reached - that is, if the process converges, which becomes more improbable since the
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tangent stiffness matrix differs more radically from the employed matrix. This technique

is illustrated in Figure A.4.

Load, f A

"Af

'Af

Displacement, u

Figure A.4 The Initial Stress method

A.2 Quasi-Newton methods

A.2.1 Motivation and theory

In Section A.I, the classical Newton-Raphson methods have been presented. First,

the full Newton—Raphson method, which provides second order convergence (i.e.,

reduced number of iterations) in most of the cases where tangent stiffness matrices are

available, but requires in return the computation and factorization of a tangent matrix

at the beginning of every iteration.
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On the other hand, the modified Newton—Raphson and initial stress methods re-

quire a lower computational cost per iteration as far as stiffness matrices are concerned.

However, their convergence rates are also lower, which means that more iterations will

probably be needed, with the associated increase in the total cost; moreover, the process

may fail to converge.

Naturally, it would be interesting to obtain a method with the convergence behaviour

of fNR at a computational cost similar to that of the mNR technique. Quasi-Newton

(QN) methods were designed for this purpose. These methods, which have their origin

in the field of unconstrained optimization, are generalizations to n-dimensional prob-

lems of the well-known "secant method" for finding roots of one nonlinear equation.

In fact, the choice of a secant iteration matrix instead of a tangent stiffness matrix

ensures the two following properties:

• the secant stiffness matrix resembles the tangent stiffness matrix

• but a strict recompilation of this secant stiffness matrix is not required at all

when performing the matrix update.

All Quasi-Newton methods use secant stiffness matrices; however, for n-dimensional

problems with n > 1, while the tangent stiffness matrix is unique, the secant matrix

is not (for n = 1, both matrices are unique). Consequently, a whole number of differ-

ent Quasi-Newton methods can be produced by employing different secant stiffness

matrices.

Before describing some of those methods, let us formalize the unifying feature of all

Quasi-Newton techniques: they all use secant stiffness matrices. Assume that iteration

k belonging to load step n has just been completed, Figure A.5.

Points tt*~~*, 11* in Figure A.5 are known from the previous iterations. Consequently,

the vectors of residual forces r*~~* and r are also known.

Let us turn back for a moment to the one-dimensional problem. In this case, we are

able to compute the slope Bk of the secant line that passes through points (u
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-r
k-1

Figure A.5 Performance of a generic Quasi-Newton method

and ("*,/£*,)> see Figure A.5, directly as

In an n-dimensional problem (n > 1), and for a generic value of n, Eq. (A.7) is rewritten

into

Bk Suk = rk-rk~l. (A.8)

The previous expression (A.8) is known as the Quasi-Newton equation, which char-

acterises the secant stiffness matrix Bk for a general nonlinear problem. It is im-

portant to notice that in this system of equations, the unknown is the matrix, not the

vector. That is, if a total of n equations are listed in Eq. (A.8), n2 unknowns will be

obtained. Therefore, as it was briefly indicated in some previous paragraph, the secant

matrix that passes through two specified points is not unique, and there is a need to
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impose some additional equations on B (n — n equations, to be precise) in order to

be able to determine it.

Defining

sk~l = 6uk = uk- uk~l, (¿.10)

Eq. (A. 8) can be put in its most common form

-l = yk-1

From this point on, the notation [s, y], which is widely accepted in the Quasi-Newton

context, will be preferred to the original notation, [w,r],

Once a secant matrix B is computed, vector u "*" is obtained as shown in Figure

A.5, i.e., by solving the linear system

Bk sk = -r* (¿.12)

and updating subsequently
Jfc-4-l k . kuKti _ u* _j_ gie

A new secant matrix B + that passes through points (u , /¡*t) and («*+*, /•j~ ) can

then be computed, yielding a new approximation tt*"*~ , and so on.

This "direct" extension of the one-dimensional secant method into n-dimensional

nonlinear problems induces the computation of the "generalized" slope, i.e. matrix B,

which is an approximation of the tangent matrix. This strategy defines the Direct

Quasi-Newton family, in opposition to the Inverse Quasi-Newton techniques which

are concerned with the approximation of the inverse of the tangent matrix, namely

H = B~^. In fact, the Quasi-Newton equation (A.ll) can also be written as

Hkyk~l=8k~\ (¿.13)
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which, together with some extra conditions, enables the determination of matrix H .

Inverse Quasi- Newton are usually preferred, because Eq. (A. 12) can be transformed into

8k = -Hk rk, (A.U)

so that there is no need for solving linear systems of equations.

Some Quasi-Newton methods -direct and inverse- are discussed in the following Sub-

section.

A.2.2 Discussion of various Quasi-Newton methods. Algorithms for Inverse Broyden and BFGS

The Broyden method

Let us consider the direct form of the Quasi-Newton equation that was introduced in

Eq. (A.ll),

As indicated in Subsection A. 2.1, if n is the number of equations in Eq. (A.ll), then

n? — n additional equations on Bk are needed to determine its n2 components.

Notice that condition (A.ll) defines completely the behaviour of Bk along the

direction given by sk~^. Moreover, it is the only new information about B with re-

spect to Bk~^. For this reason, Broyden suggested that matrices J3 and B * should

have the same behaviour in any direction except s*"1. To accomplish this purpose, the

Broyden method requires for the secant matrix Bk to behave in the same way as JB*"1

on the orthogonal complement of sk~l

Bk z = Bk~l z for all z such that zT s¿-1 = 0. (A15)

It can be proved, (Dennis & More, 1977; Fletcher, 1987b), that Eq. (A.ll) together

with Eq. (A. 15) determines one and only one matrix Bk in terms of B*"1, following

the expression
, , (Tjk-l _ nk-l -*-lwJb-l\T

n* _ o*-l i i!/ — -P s ) \a
B = tí -\ jb-i\T k-K l 1 Kjb-i\T(8K l)1 S
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It is interesting to remark that Eq. (A. 16) describes a simple update of Bk after

Defining vectors v * and wk~^ as

Eq. (A. 16) is rewritten as

Bk = Bk~l + vk~l (wk~l)T, (A.ll]

which is the common expression of the rank-one update, so termed because the mod-

ification v * (io*~*)* is a rank-one matrix. Equation (A.17) must be initialized with

a certain B , some options are discussed later on.

The inverse version of the Broyden method

Once B is computed from Eq. (A.16), we need to solve the linear system (A.12),

nk ak — -rk
r> s — —T ,

to obtain vector s . This operation can be avoided if an expression for H rather than

for B is obtained. By doing so, we can compute s directly after Eq. (A.14),

Hk rk = -8k. (¿.18)

In order to obtain an expression for H from H , the Sherman & Morrison lemma

is employed, see Sherman & Morrison (1949) or Dennis & Schnabel (1983).

From the lemma and since (B *) = H , we can write (B*)~~* = Hk as
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which can also be expressed as

H k _ j , ( - H
1 ~ - ( }

where J denotes the n-dimensional identity matrix. Equation (A.20), which must be

initialized with some matrix H^, is the fundamental relation in the Inverse Broyden

method. Notice that, for this inverse QN method, the update formula for Hk is ob-

tained by inverting explicitly the update formula for B rather than by using the inverse

Quasi-Newton equation and imposing additional conditions on H .

From an algorithmic viewpoint, instead of employing Eq. (A.20), it is more convenient,

(Engelman et al, 1981; Soria, 1990), to relate Hk to ff° through

Hk=

(A21)
i=k

where the auxiliar vectors w1"*" are defined as

u>í+1 =

Before discussing the advantages of Eq. (A.21) over Eq. (A.20), it is convenient to deal

with the initialization of the Quasi-Newton updates. As it was previously commented,

it is necessary to initialize all Quasi-Newton methods with some matrix J3° (direct

QN) or H° (inverse QN). The simplest choice is B° = I or H° = I, where I is the

n-dimensional identity matrix.

Nevertheless, if the computation of tangent stiffness matrices is available, it seems

that a better choice could be

B° = K°, (A23)

that is, initializing the algorithm with a true tangent matrix. This last choice of the

initial secant matrix is expected to yield better secant matrices fí , in the sense that
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these matrices B are expected to resemble tangent stiffness matrices more closely than

the ones we would obtain after B = I.

Assume then that B® is the true tangent stiffness matrix at the beginning of the

increment. If we want to use the inverse version of the Broyden method, Eq. (A.21),

matrix K® should be inverted in order to define if . A more efficient strategy is to

rewrite the computation of the prediction s®

5° = Au1 = -H° r°

into the linear system

K° s° = K° Au1 = -r°.

At this point, the algorithmic convenience of Eq. (A.21) becomes clear: since it relates

H to H , the computation af a generic correction vector s , Eq. (A. 14), involves a

matrix-vector product of the form

x = -H° r*,

which can be transformed into the linear system

K° x = -rk.

The advantadge of Eq. (A.21) over Eq. (A.20) is then justified by the fact that the

same matrix, K , is employed at every iteration.

The final algorithm for this version of the inverse Broyden method is presented in

Box A.5, where the original formulation [M, r] has been recovered through Eqs. (A.9)

and (A.10). It is assumed, as usual, that Su = Au . Also, two auxiliary vectors £ and

v are defined.
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1,- Compute KQ

2,— Solve the linear system K® Atí = — r"

3.- Update u1 = u° + Aw1

4.— Evaluate r1 = rfu1)

5.— Convergence control: if point w1 is good enough, exit.

k>l

6.— Solve the linear system K® v = — r*

T.— k = 1 assign t = v

k>l compute t = Eíí=jfc-i(Jr + <•»*' (*wí)T) v

8- Compute and store uk = (¿ufe)T (fafc-t) *

9.- Compute and store 6uk+1 = t + ((Suk)T t) wk

10.- Update w*+1 = uk + Suk+l

11.- Evaluate r*+1 = r(u*+1)

12.— Convergence control: if point u +* is good enough, exit.

13.— Assign k = ¿ + 1 and go back to 6.—

Box A.5 Algorithm for the Inverse Broyden method

Remark A.4-' All linear systems are solved with matrix Ä" , see step 6.—. Thus, only

one tangent stiffness matrix needs to be computed and factorized per increment.

Remark A.5: Step 7.— of the algorithm does not require the computation of matrix

n!__fc-l(I' + wl (5wl) ), since the matrix-vector products of the form (/ + a b )c can

be computed as c + (6^c)a (only scalar products and scalar-vector products). As a

matter of fact, apart from the linear systems of steps 2,— and 6.—, all the operations

involved in Box A.5 are vectorial operations.
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Remark A. 6: For each iteration k, the computational cost consists approximately, (En-

gelman et al, 1981; Soria, 1990), in

• evaluating one vector of out-of-balance forces and solving one linear system (the

same as in mNR)

• recovering 2k vectors from storage (w1, Su% for z = 1, . . . , k).

• computing Ik scalar products.

Therefore, the total cost of iteration k increases with k, which means that this

method will only be competitive if convergence is attained within a small number of

iterations per increment.

Remark A. 7: Under certain conditions, (Dennis & Schnabel, 1983), this method shows

a superlinear rate of convergence, i.e., a succession {7^} such that lim^oo 7^ = 0

can be found for which

\\uk+l-u*\\<*fk\\u
k-u*l

where u* denotes the solution corresponding to the current increment.

Symmetrical rank-one update

As it has already been indicated, it is advisable in general to iterate with a secant

matrix as similar to the tangent stiffness matrix as possible. In many applications, tan-

gent matrices are symmetrical (see Section 3.5). It seems thus interesting to begin with

a symmetrical J3 and transfer this property at every iteration. Therefore, to impose

hereditary symmetry as

B symmetrical ==>• B symmetrical (.4.24)
seems a reasonable choice.

It can be proved, (Dennis & Moré, 1977), that the direct Quasi-Newton equation

(A. 11) together with (A. 24) leads to the following update formula for B *:

Equation (A.25) is known as the symmetrical rank-one formula. According to

Dennis & Moré (1977), this method shows a poor perfomance and is not frequently

employed.
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Rank-two updates

Direct rank-two updates

In many applications, the tangent stiffness matrices are not only symmetrical but also

positive definite. Thus, it is a reasonable strategy to initialize a Quasi-Newton method

with a symmetrical positive definite (SPD) J3" and transfer these properties at every

iteration. That is, we want to satisfy the Quasi-Newton equation (A.ll), the symmetry

condition (A.24) and

B positive definite ==> B positive definite. (A26)

The only rank-one update with hereditary symmetry is the one shown in Eq. (A.25),

so there is a need for more complicated updates if condition (A.26) must be verified as

well.

Rank-two updates, where Bk is obtained by adding to Bk~l two rank-one matri-

ces instead of one, fulfill this need. In particular, a family of rank-two updates is defined

by

_ (y*-l - B*-l ,*-!) (C*-1)T + cfe-l (yk-l _ Bk-l sk-l}T

° "*"

where ck~^ represents any vector belonging to ]Rn. Equation (A.27) satisfies both the

Quasi-Newton equation (A.ll) and the hereditary symmetry condition (A.24), (Den-

nis & Moré, 1977). It has the interesting property that vector c*"1 is arbitrary (for

instance, for c^~* = y — .B*"1 s• * the rank-one symmetrical update (A.25) is

recovered).

If it is required for matrix Bk in (A.27) to be positive definite if JB*"1 is positive def-

inite, that is, if conditions (A.ll), (A.24) and (A.26) must be satisfied simultaneously,

a natural choice for c*"1 is y*"1, (Dennis & Moré, 1977).
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Substituting
ck-l _ yk-l

into Eq. (A.27) and rearranging the resulting expression of Bk, the Davidon-Fletcher

Powell compact update formula is obtained, (Fletcher ,1987b),

yk-l (y*-l)T

which describes the DFP method.

Inverse ranlc-iwo updates

In an inverse Quasi-Newton context, it is possible to impose hereditary symmetry and

positive definiteness on the inverse of matrix Bk,

H symmetrical ==ï H symmetrical (.4.30)

H positive definite =*• H positive definite (A31)

After some algebra, (Brodlie et a/., 1972), the Broyden-Fletcher-Goldfarb-Shanno up-

date formula for H can be obtained

+( y * - l ) T , f t - l ( y * - l ) A

which describes the BFGS method.

It is interesting to remark, by comparing Eqs. (A. 29) and (A. 32), that one can be

obtained from the other simply by interchanging

s M y> B^H.

In this sense, Eqs. (A. 29) and (A. 32) are said to be dual or also complementary.

The detailed algorithm for this method (Brodlie et a/., 1972; Matthies & Strang, 1979;

Soria, 1990), is listed in Box A. 6.
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1.- Compute K°

2.— Solve the linear system A"" Au = —r"

3.- Update w1 = u° -f Au1

4.— Evaluate r* = r (tí*)

5.— Convergence control: if point u* is good enough, exit.

6- Compute and store uk =

l· ü- (du*)1 (r*-1-r*) ¿-iK — „K I -I i . / \y "•—í ü '.—£. «•*• 17.- Compute and store v« = r« - 1 + « / ' (¿uk\Trk~i ' I r

L V ' .

8.- Compute p = Ilí=i(^ + vl (w*)T) rk

9.— Solve the linear system K® q = —p

10.- Compute and store 8uk+* = Il¿=jb(^ + w* (rí)T) 9

11.- Update tí*+1 = uk + £u*+1

12.- Evaluate rfc+1 = r(uk+l)

13.— Convergence control: if point u + is good enough, exit.

14.— Assign k = k + 1 and go back to 6.—

Box A.6 Algorithm for the BFGS method

Remark A.8: As explained in Remark A.5 for the Inverse Broyden method, step 10.—

does not require the computation of matrix J + tu' (¿ü') .

Remark A.9: For each iteration fc, we need to solve one linear system and evaluate one

vector of out-of-balance forces, recover Ik vectors from storage and compute 4k scalar

products, (Brodlie et a/., 1972; Soria, 1990).
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The cost of a BFGS iteration is therefore higher than that of a Broyden iteration.

However, we should expect this difference in cost to be compensated by a difference in

the quality of the matrices: assuming that tangent stiffness matrices are SPD, BFGS

iteration matrices, which are also SPD, are supposed to be better -that is, more similar

to the true tangent matrices- than Broyden matrices (nor symmetrical neither positive

definite).

Remark A. 10: The BFGS method shows the same kind of superlinear convergence as

the Broyden method, see Dennis & Moré (1977).

A.3 Secant-Newton methods

A.3.1 Secant-related acceleration techniques

As commented in Section A.2, a generic iteration k of a Quasi-Newton method in-

volves the evaluation of one vector of residual forces and the resolution of one linear

system of equations (as in mNR), plus the recovery of 2k vectors from storage and the

computation of 2fc(Broyden)/4fc(BFGS) scalar products, (Brodlie et al, 1972; Engelman

et al, 1981; Soria, 1990).

The increasing cost of the iterations is indeed a handicap of the Quasi-Newton meth-

ods in the sense that, if convergence is not reached within a small number of iterations,

the total cost of the method may turn up to be prohibitive. However, the use of secant

matrices has been shown to supply a very good alternative to tangent matrices.

Thus the so-called Secant-related acceleration techniques or simply Secant-

Newton methods (SN), see Crisfield (1991), appeared as a modification of the Quasi-

Newton scheme with a constant computational cost per iteration. The keyword

'acceleration' indicates that SN iterations are computed faster (indeed, Quasi-Newton

iterations have an increasing cost, whereas for Sécant-Newtons the cost is kept constant

and equal to that of the first iteration).

In all direct/inverse Quasi-Newton methods, matrix Bk /Hk can be obtained as a

function of Bk~l/Hk~l and other parameters, Eqs. (A.16), (A.19), (A.25), (A.29),
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(A.32). In the corresponding Secant-Newton version, matrix Bk/Hk is built as if the

previous secant matrix had never been updated. In other words, Bk~^/Hk~l

is replaced with B®/H® in the QN update formula that gives the value for matrix

Bk /H . This is equivalent to a Quasi-Newton without memory where only the last

correction is recalled.

In the following Subsection, the Inverse Broyden and BFGS methods in their Secant-

Newton form will also be presented.

A.3.2 Algorithms for Secant Inverse Broyden and Secant BFGS methods

Secant Inverse Broyden method

Recalling the original update formula for the Quasi-Newton Inverse Broyden method,

Eq. (A.19), the Secant-Newton version of this method is obtained after exchanging

Hk~l for H°, which yields

n (*k-1 Ff0 «*-lï (*k-l\T H°nrk _ uO , Vs ""•" V Ms ' ,
yk-1}

Thus, vector s is obtained by postmultiplying Eq. (A. 33) by (— r*),

H» ( rk\ 4- * " - - * - *_! T Q t
= H (-r ) + - (S*-1)T (H0 yk-1) - (S ) H (~r )'

We can now introduce

sk = H° (-rfc), (A35)

which is in fact the mNR correction vector.

Using Eq. (A. 35) and recalling the definition given in Eq. (A. 8) for yk~^ we have that

H° yk~l = H° (rk - rk~l) = H° rk - H° rk~l = 8k~l - äk. (A36)
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Replacing now Eqs. (A.35) and (A.36) into Eq. (A.34), we obtain the following expres-

sion for sk, (Soria, 1990):

sk = 8k + S
k_txT f-jfc-.i1*-t\ C**"1/1 «*> (^-37)

which can be rearranged to yield

sk = (1 + p) sk + p sk-1 - p 8k-\ (A38)

where

P = (8 "^ * (A.39)

and

7- — /'s M (<t s \ ( À Aft}> — \«* ) \*> — ° )• ^/l.frUy

From Eq. (A.38) it is clear that the correction vector s will be obtained by perform-

ing a linear combination of vectors sfc, sfc-1, s*"1, which correspond respectively,

Eq. (A.35), to the previous Broyden correction vector, the previous mNR correction

vector and the current mNR correction vector. Notice that only two vectors («*""*,

s *) will need to be transferred from one iteration to the next and that just two scalar

products are performed to obtain r and p.

The complete algorithm for this method is listed in Box A.7. As in the QN version,

if the first secant matrix B® is chosen as the tangent stiffness matrix K®', the compu-

tation of the inverse matrix H® should be avoided. This is accomplished by solving

linear systems with matrix A" rather than performing direct products with matrix

HQ =

Apart from this, the original context [u, r] is recovered in Box A.7. For that purpose,

the notation

Suk = sk~l (A41)

is introduced.
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1.- Compute K°

2.- Solve the linear system K° Au1 = -r°

3.— Assign 6u = Au*

4.- Update it1 = w° + Au1

5.- Evaluate r1 = r(w1)

6.— Convergence control: if point u1 is good enough, exit.

k> I

7.— Solve the linear system K® 6ük+í = —rk

8.- Compute r = (Suk)T (8uk - 6uk+l)

a n * (fo*)9.— Compute /9 = J - '

10.- Compute £u*+1 = (!+/?) Äüfc+1 + p €uk - p 6ûk

11- Update uk+l =uk + Suk+l

12.- Evaluate rfc+1 = r(uk+l)

13.— Convergence control: if point u +* is good enough, exit.

14.— Assign k — k + 1 and go back to 7.—

Box A.7 Algorithm for the Secant Inverse Broyden method

Remark A. 11: For each iteration fc, we need to evaluate one vector of out-of-balance

forces and solve one linear system of equations (the same as in mNR), recover two vec-

tors from storage and compute two scalar products. Therefore, the cost of a Secant

Inverse Broyden iteration is constant, as it was intended from the beginning.

Remark A. 12: No rate-of-convergence properties are known for the Secant-Newton

methods.
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Remark A. IS: If p is equal to zero in Eq. (A. 38), the following value for the correction

vector is obtained

8
k = sk = H° (-rk) = (K0)-1 (-r*),

which corresponds to the modified Newton-Raphson method. In this sense, the SN

Inverse Broyden method can also be regarded as a refinement of a mNR in which

a weighted linear combination of the mNR correction vector è together with vectors

8 and 8k~* is performed.

Secant BFGS method

The Secant BFGS (or BFGSS) method is obtained by exchanging matrix Hk~l for H°

in the QN BFGS update formula, (Crisfield, 1991),

•t-1(vk-1FQHTBFGSS = - (yk-l}1 sk-l H [* - (yt-l)TAt-l (y*-l)T,t-r

Using Eq. (A.42), the correction vector s can be computed as

. . . r Jb-1 (vk-l\Ti r „t-1 /Jb-iyi"i
«* = H*(-r*)= J ' /» ¿, \HQ \I-y

( k <1 k\ \(-rk)+
l (y ) s J L (y*"1)1 sk~1j

sk-l /8k-l\T
"

Equation (A.43) can be manipulated in a similar way as in the Secant Broyden

method. The final result of this manipulation is, using the previous definition of sk,

Eq. (A.35),

sk = (l + C) sk + (-C) s*-1 + (c - (1 + C)B + C A) sk~\ (A44)

with A, B, C being the three following scalar values:
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k

y

From Eqs. (A.43) to (A.47) it can be seen that a Secant BFGS update involves the

storage of two vectors and the computation of four scalar products.

Box A.8 contains the step-by-step algorithm of this method.

Remark A. 14: For each iteration fc, we need to evaluate one vector of out-of-balance

forces (the same as in mNR), recover two vectors form storage and compute four scalar

products (TI, T2, T3, r4).

Remark A. 15: The Secant BFGS method can also be interpreted as a refinement of the

modified Newton-Raphson method. The mNR correction can be recovered by setting

the values of A, B, C in Eq. (A.44) to zero.

Remark .A.I6: As commented previously, no rate-of-convergence properties are known

for the Secant-Newton methods.

Equation (A.44) may be further simplified into the linear combination of only two

or one correction vectors. The resulting methods, developed by Crisfield, are known

respectively as SN2, SN1, see Crisfield (1991).
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1.- Compute K°

2.— Solve the linear system KQ Au1 = — r°

3.— Assign Sü^ — Au

4.- Update u1 =u° + Au1

5.- Evaluate r1 = r(u1}

6.— Convergence control: if point u is good enough, exit.

k> 1

7.— Solve the linear system KQ Sük+í = —r*

8.— Compute

T2 = (rk~l - rfc)T Suk+l

T3 = (Suk)T Tk

T4 = (6uk)T (rk-1 - rk)

9.— Compute

j _ n R _ 12. c = ̂A - n , X3 - T4 , C< r4

10.— Compute

Suk+l = (1 + C) iufc+1 + (-C) ¿Ü* + (C - (1 + C)S + C^) Suk

11.- Update w**1 = uk +

12.- Evaluate rfc+1 = r(u

13.— Convergence control: if point u +1 is good enough, exit.

14.— Assign k = k + 1 and go back to 7.—

Box A.8 Algorithm for the Secant BFGS method
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A.4 Line searches

A.4.1 Theory and detailed flowchart

So far, several methods have been discussed that supply different solution techniques

for nonlinear problems. In this Section, we will be concerned about performing simple

modifications of those solutions to yield better results.

Assume that 6u "^1 is the correction vector supplied by some NR, QN or SN method

at iteration k. Up until this point, displacement updates have been performed following

the expression

uk+l=uk + 6uk+í. (AA8)

What we do now is keep the advance direction determined by Su + , but modify its

modulus so that a different update

(AA9)

is obtained. The scale factor %+l 'm Eq. (A.49) is the advance length, (Crisfield, 1991;

Matthies & Strang, 1979; Soria, 1990), which has been implicitly set to 1 in the previous

Sections. Obviously, we want to compute %+! so that vector u +* in Eq. (A.49) be

better than the one in Eq. (A.48). In other words, we want to search for a better

solution tt*"*"* along the line determined by point u and the direction 6u + .

As for all nonlinear strategies, the main target is to find a displacement vector «*"*"*•

for which r(u *+l) = r(u + Su *+*) = 0. In the line-search context, since u and

£u*+1 are fixed, all functions of u +* can be rewritten, after Eq. (A.49), as functions

of f/jk+i- Thus, the problem is reduced to finding the value of the scalar rj^i for which

*(%+l) = ••(«* + %+i ¿«¿+1) = O- (A50)

However, in general the real solution «fc+1 to r(u*+1) = 0 does not lie on the search

line. This means that we can expect to minimize the vectorial function of residual

forces given in Eq. (A.50), but not to cancel it.
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A typical alternative requirement consists of finding the value of »7¿+i that gives the

minimum absolute value of the function ip defined by

*(%+l) = (*«*+1)T r(uk + rjk+l Suk+l). (AM)

The expression of ij> given in Eq. (A.51) is a linearized version of the total potential

energy associated to point uk + Vk+l ¿** +1, (Crisfield, 1991). This means that the

vectorial problem of minimizing the out-of-balance forces in Eq. (A.50) is transformed

into the scalar problem of minimizing the energy function (A.51).

Almost any minimization technique can be used to obtain ^fc+i for which IVK^Jb+l)!

is the least possible, (Fletcher, 1987b). Nevertheless, we want to use a simple strategy,

since the evaluation of function i¡) involves the evaluation of a vector of residual forces,

and this is an expensive operation from a computational point of view; furthermore,

more accurate values of T/fc+i have been shown to give smaller but not zero norms of

the residual forces. For this reason, most of the line-search procedures, (Crisfield, 1991;

Zienkiewicz & Taylor, 1991), just demand for the modulus of V'fojb+l) to be small in

comparison to the modulus of V>((3)> i.e.,

with e being the line-search tolerance. This tolerance is set to large values that range

from 0.5, see Matthies & Strang (1979), to 0.8, see Crisfield (1991), thus not making

Eq. (A.52) a restrictive condition.

To find an %+! that meets Eq. (A.52), it seems interesting to take profit of the fact

that the values of V*(0) and ip(l) are almost known:

* For tJk+i = 0, the residual forces equal »"(rçjfc+i) = i*(0) = r(u ) = r , where vector

rk can be obtained from the previous iteration.

• For rjk+i = 1, we have r(?7¿+i) = r(l) = r(uk+l) = r*+1, which needs to be

calculated anyhow at the end of iteration k+1.

Therefore, to obtain the values of

0(0) = (Suk+if rk (A53)
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= (Suk+1)T (A.54)

only two scalar products need to be computed.

For a start, it is advisable to check if condition (A.52) is satisfied for rjk+i = 1. If this

is not the case, a simple interpolation in the plane (77, ̂ ) is performed between points
= 0 and JJk+1 — 1> Figure A.6. This results in

(4.55)

where the additional subindex 1 in %^.i \ indicates that Eq. (A.55) is a prediction of

^(0)t \ \ \ \ \ \ \ \\ \ \ \\ \ \
\

\
77=1 77

\ \

Figure A.6 Line-search interpolation procedure
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A common approach is to compute %+ i(i from Eq. (A. 55), update displacements as

u ~*~* = u -f ??jfc.f i i Su +* and pass on to the next iteration k -f 2. However, if condition

(A.52)

is not met, more 'line-search iterations' can be performed by interpolating between

points (0 , ^(0)) and (%+!,! , ^(*7fc+i,i))» then between points (0 , ^>(0)) and

(%+! 2 i ^(yik+l 2))' and so on- In this case, the value for the step-length

associated to line-search iteration i is computed as

(AM)

If the ratio V'C^Jb+l.i-lVV'iO) ig positive, that is, if ^(0) and *j>(iJk+l,i-l) have the same

sign, an extrapolation instead of an interpolation is automatically carried out. This

extrapolation can give very large values of %+!,,-, which in general will not lead to good

results. To avoid this situation, an upper bound for rjk+i must be specified.

In a similar way, for large negative values of V'fajfc+i.i-iVV'CO), Eq. (A.56) will pro-

duce an almost null value of */£+! ¿44. This is also a bad situation, since point u "*"

will be placed very near to u and thus the algorithm will not progress. Consequently,

we also specify a lower bound for %-j.i .

If a fixed number of line-search iterations is not sufficient to verify the line-search

convergence condition (A.52), the following update is performed

uk+1 = uk + 77fc+1)0pt Suk+í (A57)

and the procedure passes on to the next iteration k + 2. The term %+l,opt m ̂ - (A.57)

represents the optimum value of iJk+ii that is, the one that yields the least ratio

Figure A. 7 gives the flowchart of a complete line search.
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Compute t/>(0) = (£ufc+1)y r

Compute ufc+1'° = uk + 6uk+1

Evaluate rk+l'° = r(ufc+1>

Compute

Assign
i?opt = 1

V'opt =

Compute

1 <
or

1 >

YES

NO

Assign

Figure A.T Flowchart for the line-search procedure
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I

Begin iterative line-search loop
i = Q, nitmax

Compute u+1 '* = u + ijk+l,i

Evaluate r*+1'1' = r(ufc+1-f)

fc+1(i) = (6uk+l}T rfc+1''"

Assign
= 1k+l,i

Compute ï7fc+1|í = i7fc+i,f-i

Assign u*+l=tt*+l,i

Assign u*+1 = u*+1'°

Update u = u + »?oPt

Figure A.7 F'owchart for the line-search procedure (continued)
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A. 5 Arc-length methods

A. 5.1 Some words about load control and the need for continuation techniques

In Section A.I, the incremental/iterative solution for nonlinear problems was intro-

duced. This procedure consists of splitting up the total load /ext into N increments

of load "A/, so that

/ext= JA/+ 2A/ + ...+ N~lAf+ *A/= Nf. (A58)

Once this fragmentation is performed, we only need to focus on each load step.

Indeed, all the discussed methods deal with the calculation of n~*~*u for which

/int(n u) ~ n+*f = 0, given that nu is an output from the previous increment.

This is also known as a load control procedure.

This Section starts with an exposition of some cases in which the decomposition of

the load described in Eq. (A. 58) may not provide a good solution to the problem. Later

on, some alternative techniques will be presented.

Figure A.8 shows a typical "brittle collapse" load-displacement curve: both load and

displacement increase until a limit point A is achieved; beyond this point, displace-

ment goes on growing but load starts to decrease. When using a load control procedure,

solutions for all loads below the limit load will be obtained, but the algorithm will fail

to find a solution past point A.

If a pre-collapse analysis of the solid is made, the previous indicators may precipitate

the conclusion of a limit point being passed by. However, this is a dangerous interpre-

tation to make, since a failure of the algorithm may be also due to a bad choice of the

load increment, etc.

On the contrary, we may want to follow the equilibrium path of the structure; for

instance, because it is integrated in some bigger structure, or because we believe that

point A is just a local maximum and not the ultimate load, or even because we want to

make sure that we have gone past a limit point. In this case, a load control procedure

will be of no use.
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Load, f

Displacement, u

Figure A.8 Brittle collapse

The curve in Figure A.9 describes a ductile collapse. This behaviour is identical

to the one represented in Figure A.8, except for the fact that the load stays constant

instead of lessening beyond point A. As in Figure A.8, if increments of load are applied,

the load-displacement curve can be followed up until point A, but no further.

Let us consider now the curve in Figure A. 10. In this case, A is a local maximum.

If a load control is performed by imposing some small increments of load, we will be

able to get close enough to point A. The next increment, if converged, is going to yield

point C, passing over everything that happens under the straight line AC. Figure A. 10

describes what is known as a snap-through response.

To obtain good solutions to the problems illustrated in Figures A.8 to A.10, an al-

ternative technique could be used that consists of applying increments of displacement

rather than increments of load. This displacement control procedure would follow
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Load, f A

Load, f

t

B
-o-

Displacement, u

Figure A.9 Ductile collapse

A
C

Displacement, u

Figure A.10 Snap-through

succesfully path AB and beyond, since in this case increasing values of the displacement

axis would be used.
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In the case of Figure A.ll, however, neither of the two procedures, load or displace-

ment control, is good enough. A load control would give the same problems as in Figure

A. 10, while a displacement control would force loads to jump from A to C, ignoring the

snap-back behaviour around point B.

Load, f

C Displacement, u

Figure A.ll Snap-back

For cases such as the one in Figure A.ll, we need to use the so-called continua-

tion methods. These methods allow for the obtention of points on the load-deflection

curve by prescribing the distance from one point to the next rather than by requiring

increasing values of loads or displacements.

A.5.2 The arc-length method. A general formulation including various control strategies

The arc-length method

Arc-length methods were firstly introduced by Riks (1979), and Wempner (1971), and

have been thoroughly studied later on by Crisfield (1980, 1983, 1991), and others, see
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Cervera (1986), Kouhia & Mikkola (1989), Schweizerhof and Wriggers (1986). As indi-

cated in the previous Subsection, these methods consist of imposing fixed arc lengths

between points on the load-displacement curve, so that any structural behaviour can be

captured.

We start by defining the total load associated to the current increment as

The increment of load n+ A/ is then written as

where /ext denotes a fixed referential load and a is the so-called load-level parameter.

If n+1Aor is fixed a priori, then Eq. (A. 59) describes a load control procedure. For the

arc length method, however, the value of "+^Aa is unknown at the beginning of the

increment.

Let n+*Au be, as usual, the solution associated to the increment of load

Then, the expression

(A6i)

gives the distance between points (nu,n /) and ("+*u,n+* /) in the load- displacement

space. Recalling from Eq. (A.60) that n+1A/ = n~*~*Aa /ext and introducing a scale

parameter c to weigh the contribution of load and displacement terms, we go on to

require for this distance to equal a prescribed arc length

-f c (n+1 Aa)2 (/ext)T /ext = M. (A62)

The value c = 0 leads to the so-called cylindrical arc-length methods; c = 1 yields the

spherical methods.
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The arc-length condition (A.62) involves n + 1 unknowns (n for n"*"*Au and one

more for the scalar n+ Act), which need to be computed from the n equilibrium equa-

tions

/int(n+1«) - n+1/ = /int(n« + n+1Au) - ("/ + n+1 Ac* /«t) = 0 (A63)

together with the additional condition (A.62).

Riks (1971) and Wempner (1971) suggest to obtain those n + 1 variables by using

an extended Taylor expansion. First, a prediction n"*"*Aur to ""^Aa and also a pre-

diction ""^Au1 to n~*"*Au are computed. For this purpose, the following system of n

linear equations and n + 1 unknowns must be solved

Defining a new vector "+1 Awy through the expression

(¿.65)

Eq. (A. 64) can be rewritten in terms of n+1 Auj1 as

where the T subscript stands for total load. The arc-length condition (A.62) can now

be applied to the prediction n+1Au yielding

(/ext)T /ext = A£,

or also, using ""Aw?1 rather than n+l&ul

("+1 Ac*1)2 [(n+1Aur)
T "+1A«r + c (/ext)T /ext] = (A£)2. (¿.67)
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The sequence of computations consists of:

1. Compute n+1Attr by solving Eq. (A.66).

2. Obtain the value of n+1Aa1 from Eq. (A.67) as

= ± (A68)
C (/ext)T /ext

The choice of the sign in Eq. (A. 68) will be discussed later on.

After n+1Auy and ""^Ae*1, a prediction ""^Aw1 to the displacements can be ob-

tained from Eq. (A. 65).

We can now update displacements

"+V= nu+ n+1Aul (A69)

and also external forces, computing first the new value of the load level,

n+V = na + n+l Aa1 (A70)

where na is such that n/ = na /ext- After n+lal is obtained from Eq. (A.70), the

updated load "+*/ * is calculated as

n+1/1 = »+lal /ext. (A71)

In general, (n+^u^,n+^ /^) will not be an equilibrium point. Therefore, we need to

iterate on the variables u and also on the load level a since n~*" Aa is not prescribed a

priori, until convergence is achieved.

In a general iteration, we look for a displacement correction vector n+1£u +1 such that

r(n+1uk+1) = r(n+luk + n+lSuk+l) = 0. (A72)

Under the arc- length formulation, and dropping n + 1 left superscripts, Eq. (A. 72) yields

K(uk] 8uk+l = -r(uk) + Sak+l /ext, (A73)
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where K can be any iteration matrix depending on the method that is used and the

term Sa +1 /ext accounts for the variation of external load due to the iterative correction

of the load level a.

Equation (A.73) can be inverted symbolically to give the following expression for

6uk+l

Suk+1 = (K(uk))-1 (~r(uk)) + 6ak+l (K(uk)rl /ext- (A74)

If two vectors $uk+l and SuT^"1 are now defined as

6ük+í = (K(uk)rl (-»-(u*)) (¿.75)

¿4+1 = (K(uk)rl /ext, (A76)

then Eq. (A.74) can be rewritten into

8uk+l = 6uk+l + 6ak+l Sufi1. (A.77)

The arc-length condition must then be imposed. Points (u ,/^) , (u "*"*,/*"*"*) are

forced to maintain the same distance A£ all through the iterations. Consequently,

the arc-length restriction will be expressed as

(/ext)
T /ext = (A¿)2. (A.78)

Recalling that Ati*"*"* = Au + Su*+ , where the arc-length condition is verified

for AM*, and using Eq. (A.77), Eq. (A.78) can be manipulated to yield the following

quadratic equation on ¿afc+1, (Crisfield, 1991),

ai (Sak+ï f + a2 Sak+l + a3 = 0, (A79)

with aj, 02, 03 being the three scalar values given by

ai = (6uk
T

+lf ¿4+1 + c (/ext)T/ext (¿-80)
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a2 = 2 (Au* + Sük+1f ¿i4+1 + Aa* c (/ext)T/ext (A.81)

a3 = 2 (Au*)T ¿u*+1 + (6uk+1)T £u*+1 (A.82)

The sequence of computations can be arranged as follows:

1. Compute 5u*+1 by solving

K(u) 6ü+ = -r(u) (A83)

(equivalent to Eq. (A.75)).

2. Compute Suí^ by solving

K(uk) Suk
T

+1 = /ext (AM)

(equivalent to Eq. (A.76)).

3. Compute the values of ai, 02, 03 from Eqs. (A. 80), (A.81) and (A. 82).

4. Solve Eq. (A. 79). Here, two cases are possible:

If no real values are obtained, that is, if Eq. (A. 79) has two conjugate complex roots,

the process will stop*.

If two real values are obtained, one of them* will be used to compute Suk^ from

Eq. (A.77).

Finally, we update the load-level parameter, and also displacements and forces, as

=ak+ 6

uk+l =uk+ 6uk+l

= fk + 6ak+l /ext = «*+1 /ext-

* Further considerations on this situation will be made later on.



240 ___^__________^_______^^_— _ A review of nonlinear equation solvers Appendix A

Additional considerations on the arc-length procedure

1. Choosing the sign of the prediction n+ Aor

As indicated in Fafard & Massicotte (1993), the natural choice for the sign of n+1 Ac*1

is

sign (n+1Aa1) = sign((nAu)T n+1Atir).

Writing this scalar product as

(nAw)T n+1Aur = ||nA«|| ||B+1Atir|| cos(n Aw,

we have that

• An acute angle between the previous increment of displacement nAtt and n+1 AM y

forces an increase of the load level

• whereas an obtuse angle ("Au,n+ Awj1) yields a negative value of ""^Aa1 and

thus a decrease of the load level.

2. Choosing the appropriate root n+1<5cv +

Let us assume that the quadratic equation

ai ( B 6 a ) + a2
 nSa + a3 = 0

has two real roots n+1a«j and n^8a<¿ . We denote the associated correction vectors

respectively as n+1£uf+1 and n+1£«ji+1.

To choose between these two roots, and since we want to continue to move in the

same direction as in the previous iteration, we demand for the angle defined by vectors
n~*"* Au and ""*"* Au^* to be acute. This means that we need to build the two vectors
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We take the correction n^6a¿ that gives a positive value of the scalar product

If both scalar products have the same sign, we will choose, (Cervera, 1986), the load-

level correction n+iSa^ that is most similar to the solution ¿«/¿„ = —03/02 °f the

linearized version of the quadratic equation, 02 n+1£a*+1 -f 03 = 0.

3. What to do when complex roots are obtained

When complex values of the roots are obtained, the algorithm fails. Some authors, how-

ever, detect this situation and force a smaller value of the arc length A£; in this way,

an additional computational effort is required as we need to go back to the previous

iteration, but in return the algorithm does not stop.

Nevertheless, this situation (presence of complex roots) is less likely to happen if an

automatic update of the arc length is performed.

4. Automatic update of the arc length

Since an appropriate value of the arc length A£ is unknown a priori, it is not advisable

in general to choose a value at the beginning of th analysis and keep it fixed. Besides,

the appropriate value may differ from one step to the next.

Crisfield (1991) suggests a recomputation of A£ at the beginning of each increment

following the expression

(A85)

where A£0/¿ is the arc length that was used in the previous increment, N0¡¿ is the total

number of iterations that were needed before convergence and Nopt is the desired num-

ber of iterations. In this way, if N0¡¿ < Nopt, the arc length will be increased. If, on the

contrary, the previous increment required a number of iterations N0¡¿ > Nopt, the arc

length will be made smaller.
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Alternative updates have been suggested. In Bellini &: Chulya (1987), the expression

(AM)

is employed and compared to Crisfield's update, Eq. (A.85).

A general formulation of the arc-length method

including load and displacement control

Let us recall the arc-length condition in its original form

(Au)T Aw + c (Aa)2 (/ext)
T /ext = (A/)2- (A87)

As indicated in Fafard & Massicotte (1993), Eq. (A.87) can be generalised by introduc-

ing an n-dimensional diagonal matrix P as follows

(Au)1 P A« + c (Ac^ (/ext)1 /ext = (A/)2. (A88)

In this way, most solution strategies can be obtained by defining an adequate P matrix

in (A.88).

• The original arc-length method is recovered by using P = J; indeed, this choice

of matrix P turns us back to Eq. (A.87).

• To perform a load control, we only need to set P to a zero matrix and assign c =

1.

• A displacement control on the m-th degree of freedom um will be associated to

the following definition of P:

PU — &imi z = 1,..., n

In this case, we also need to set c to zero.

• Finally, a general arc-length method can be produced that takes into account

only some specified components of u\ this is accomplished by setting to zero the rest of

the associated diagonal terms of matrix P.



Appendix B

The two stress update algorithms in

Cartesian coordinates

In Chapter 4, two stress update algorithms for large strains are discussed in a convected

framework. The use of convected frames allows for a unified presentation of both algo-

rithms and a-priori error analysis. In this Appendix, these two algorithms are presented

in a more classical way, by using Cartesian coordinates.

B.I Preliminaries

B.I.I Basic equations

The first ingredient of continuum mechanics is the equation of motion, x = x(X,t),

which yields the position x of material particles, denoted by their material coordinates

X, at time í, (Malvern, 1969). If the initial spatial coordinates are employed as material

coordinates, the material displacements can be defined as u(t) = x(t) — X. Once the

displacements are defined, the kinematical description continues with strain represen-

tation. The starting point is the deformation gradient F

Various strain tensors may be defined by means of JP. The Lagrange strain tensor,

for instance, is

E = i (FTF - /) , (5.2)
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where T means transpose and / is the identity. Another tensor representing strain is

the spatial gradient of velocity /. This tensor yields relevant tensors if decomposed into

symmetric part (rate-of-deformation tensor, d) and skew-symmetric part (spin tensor,

(5.3)

A very common simplification in solid mechanics is that of small deformations. If

displacements, rotations and strains are small enough, two important points follow: i)

the relation between displacements and strain is linear and ii) the initial configura-

tion of the body, f&o, can be used to solve the governing equations. Because of this, a

geometrically linear problem results.

In some other problems, on the contrary, displacements are large when compared to

the initial dimensions of the body. The relation between displacements and strains is

no longer linear and, moreover, the governing equations must be solved over the current

configuration £lt at time <, not over ÎÎQ- Since the motion that transforms ÛQ into 0¿ is

precisely the fundamental unknown, a geometrically nonlinear problem is obtained.

The balance laws of continuum mechanics state the conservation of mass, momentum

and energy, (Malvern, 1969). For a wide range of problems in solid mechanics, three

simplifying assumptions are common: i) mechanical and thermal effects are uncoupled,

ii) the density is constant and Hi) inertia forces are negligible in comparison to the

other forces acting on the body (quasistatic process). The mechanical problem is then

governed by the momentum balance alone, which becomes a static equilibrium equation,

(B A)

where a is the Cauchy stress tensor and 6 is the force per unit volume. Equation (B.4)

models many problems of practical interest -including, for instance, various forming

processes, see NUMIFORM (1995).
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B. 1.2 Stress tensors

The most common representation of stress is the Cauchy stress tensor <r, defined in

the current configuration fi¿ and already presented in Eq. (B.4). This tensor has a clear

physical meaning, because it involves only forces and surfaces in the current configura-

tion. Experimental stress measures taken in a laboratory correspond to Cauchy stresses,

also known as true stresses.

In a large strain context, other representations of stress are possible and indeed useful.

The key idea, (Pinsky et o/., 1983), is that ÍÍQ and í)¿ are different configurations, so

tensors defined in each configuration cannot be combined by operations such as sub-

traction and addition. Let ®<r and V be the Cauchy stress tensors at the initial time ÍQ

and current time í respectively; the increment of stress may not be defined as t<r — ^<r,

because the two tensors are referred to different configurations. As stress increments

will be needed to update stresses, a proper definition is required.

An alternative representation of stress is the second Piola-Kirchhoff tensor S, defined

as the pull-back of a

S = JF-lffF-T, (B.5)

where J = det(F] is the Jacobian of the motion, which reflects the variation of unit

volume associated to the deformation, and the inverse of the deformation gradient F

is employed to transform a from Ut to ÎÎQ, see Figure B.la. Equation (B.5) is called

the pull-back Piola transformation. It must be remarked that S represents the state of

stress at time í but referred to configuration fiu) and should not be confused with *V,

the stress at initial time ÍQ.

Equation (B.5) may be reversed, and then a may be seen as the push-forward of S

a = jFSFT, (B.6)
«/

where F transforms S from ÎÎQ to íí¿. Equation (B.6) is the so-called push-forward

Piola transformation, Figure B.lb. With the help of Eqs. (B.5) and (B.6), the stress

increment may be represented either as
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—1

<í

n0: initial configuration Q t: current configuration

-T

Figure B.la Pull-back Piola transformation

Figure B.lb Push-forward Piola transformation
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* t - - 1 ° TA<7 = ff-J-FffF (B. l a)

or

°A<r = JF~l V F~T - °ff (B.7b)

referred to û$ or Orj respectively. The Piola transformations are employed to refer the

two tensors to a common configuration, where the subtraction can be properly per-

formed.

B.1.3 Constitutive equations and objectivity

In nonlinear solid mechanics, the material behaviour is often described by a rate-form

constitutive equation, relating the stress rate to velocity and/or its derivatives and the

stress state (and eventually, some internal variables). The particular case of hyp o elas-

tic materials, where the stress rate depends linearly on the rate-of-deformation tensor

d, (Malvern, 1969), will be considered here to present the two stress update algorithms.

The two algorithms, however, can be extended to elastoplastic problems, by profiting

from the decomposition of the rate-of-deformation d into elastic and plastic parts, see

Khan & Huang (1995). The hypoelastic constitutive law is

¿r = C : d, (B. B)

where ¿r is the material rate of stress, and C is the fourth-order modulus tensor. For

isotropic materials, C can be written in terms of just two parameters, the Lamé con-

stants A and //, just like in classical elasticity, (Malvern, 1969).

In fact, Eq. (B.8) is only valid for small strains. As shown next, the material rate of

stress ò may not be employed to represent stress variation in a large strain problem,

because it is not an objective tensor.

The principle of objectivity is a fundamental requirement regarding the constitu-

tive equation in large strain solid mechanics, (Hughes, 1984; Marsden & Hughes, 1983):
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if the constitutive equations really describe the physical behaviour of the continuum,

they must be independent of the observer. In other words, they must remain invariant

under any change of reference frame.

This requirement is fulfilled if objective quantities appear in the constitutive equa-

tions. A quantity is said to be objective if it transforms in a proper tensorial manner

under a superposed rigid-body motion. Let the rigid motion be represented by an or-

thogonal rotation tensor Q, (Q~~* = Q^) and a translation a. The time-dependent

relation between old and new coordinates is then œnew(i) = Q(t)x + a(i). It is pos-

tulated that the Cauchy stress tensor a is objective. As it is a second-order tensor, it

transforms according to

<rnew(i) = Q(t}a(t}Q(tf . (B.9)

If Eq. (B.9) is derivated with respect to time, it is readily observed that the material

derivative of an objective tensor is not objective:

ffnew = QeQT + QaQT + QaQT ¿ QâQ1 . (B.IO)

This invalidates the use of à as the stress rate in a rate-form constitutive equation.

An alternative, objective stress rate a* is therefore needed. In fact, Eq. (B.8), which

is valid for small strain analysis, provides unrealistic stress distributions in very simple

large strain tests, such as a rigid rotation test (see, for instance, Rodriguez-Ferran &

Huerta (1996)).

As for the rate-of-deformation tensor d, it can be shown that it is an objective ten-

sor, so it may be employed to represent strains in a constitutive equation. Indeed, the

hypoelastic constitutive equation is rewritten, in a large strain framework, as

a* = C : d. (B.ll)

The stress rate a* is not uniquely determined by the objectivity principle. Some classical

options reviewed by Pinsky et al. (1983) are the Jaumann rate

a j = ij + aw — UNT, (J3.12a)

the Green-Naghdi rate
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(B. lib)

and the Truesdell rate

o-*, = ó- _ la - cr/T + tr(d)a, (B.12c)

where il is the so-called rate-of-rotation tensor, see Malvern (1969), and tr(d) denotes

the trace of tensor d.

It can be easily checked that the terms in the RHS of Eqs. (B.12) additional to the

material rate à ensure that the defined rates are indeed objective. Either by means of

the spin rate w, the rate-of-rotation ii or the gradient of velocity /, the non-objectivity

of ò is compensated, and an objective a* is obtained.

Regarding the Truesdell rate, it has been defined in Eq. (B.12c) in terms of the Eule-

rian tensors <r, I and d, referred to the current configuration. An alternative expression,

which provides insight into its physical meaning and is useful from an algorithmic view-

point, see Pinsky et al. (1983), is

In this equation, the Truesdell rate can be interpreted as the push-forward Piola trans-

formation of the material derivative of the second Piola- Kirchhoff stress tensor S. Thus,

instead of using the time derivative of the Cauchy stress tensor which yields the non-

objective material rate, see Eq. (B.10), the Truesdell rate is preferred because it is by

construction an objective rate. In Eq. (B.13) it is easily observed that the Truesdell

rate proceeds in three steps: i) a is pulled-back into S, ii) the material derivative of S

is performed and in) the resulting rate is pushed-forward into the current configuration.

Where the rationale is that the material derivative of a material tensor (i.e., a tensor

referred to the initial configuration) yields an objective tensor.
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B.2 Two stress update algorithms for large strain solid mechanics

B.2.1 Introductory remarks

If the Finite Element Method (Bathe, 1982; Zienkiewicz &: Taylor, 1991) is employed,

the partial differential equation (B.4) is transformed into the nonlinear system of equa-

tions

K«) = /int(«) - /«t(«) = O, (B.14)

where /¡nt is the internal force vector, /ext is the external load vector and r are the

residual forces, which are null if equilibrium is attained. Equation (B.14) is typically

solved incrementally with a displacement-based implicit method, (Bathe, 1982). The

fundamental unknowns are then the incremental displacements AM = n^x — nx from

one (known) equilibrium configuration íïn at time in to a new (unknown) equilibrium

configuration Í2n+i at time tn+\ =tn + Ai.

Nonlinear systems of equations like Eq. (B.14) may be solved by a number of iter-

ative techniques, (Crisfield, 1991). The two key ideas are that ¿^ a linearized form of

Eq. (B.14) is used to predict and then iteratively correct Aw, and ii) the constitutive

equation (B.ll) must be integrated after each iteration to check equilibrium. Indeed,

each iteration i yields a candidate configuration ß^+l' "̂ 0 cnec^ whether it is the

equilibrium configuration at time <n+i, stresses must be updated from the previous

configuration i!n by time-integrating the rate-form constitutive equation. By doing so,

the internal forces and the residual forces, Eq. (B.14), may be computed.

B.2.2 Incremental objectivity

As remarked by Hughes (1984), stress update is the central problem in nonlinear solid

mechanics and affects fundamentally the accuracy of the overall algorithm.

In the context of the incremental build-up of the solution, it is useful to define the

incremental versions of the tensors presented in Eqs. (B.I) and (B.2). Let nF and

be the deformation gradients relating fin and On+i respectively to the reference
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0

On+1

Figure B.2 Deformation gradients in incremental analysis

configuration ÛQ, see Figure B.2. The incremental deformation gradient nA is

"A = n+1F nF~\ (B.15)

which refers configuration $ln+l

Lagrange strain tensor is then

configuration fin- The corresponding incremental

= i (n/lT "A - /) . (B.16)
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The objectivity of the constitutive equation (B.ll) is attained through the definition

of ob jective stress rates, Eqs. (B.12). Incremental objectivity is a requirement on

the algorithm for the numerical time-integration of the constitutive equation, which is

often presented as the discrete counterpart of the principle of objectivity (Hughes &

Winget, 1980). Let the incremental deformation gradient nA relating configurations Í2n

and íïn+i be an orthogonal tensor nR. The numerical algorithm is said to be incre-

mentally objective if it predicts a stress state at in_|_i that is simply a rotation of the

stress state at tn»

= nR n<r "HT.

In other words, an incrementally objective algorithm assumes that the body motion

between tn and ¿n+i is a rigid rotation and rotates stresses in accordance with that

assumption, with no spurious stress variations, Eq. (B.17). It must be remarked, how-

ever, that the incremental deformation gradient nA being an orthogonal tensor nR does

not necessarily imply that the true (unknown) body motion between tn and <n_|_i is a

rigid rotation. For this reason, incremental objectivity is just a reasonable property of

the numerical algorithm (i.e., a rigid rotation is assumed when possible) rather than a

physical requirement like the principle of objectivity.

B.2.3 Two stress update algorithms for large strains

First stress update algorithm

It is possible to employ the incremental Lagrange strain tensor defined in Eq. (B.16)

as the strain measure in the increment Ai. The stress increment is then

"Atr = C : "AJS, (£.18)

where the superscript n in A<r indicates that this tensorial quantity is, like nA12, re-

ferred to configuration ÍÍ«.

In a large-strain context it is no longer valid to compute the new stresses n+1<r by

simply adding the stress increment nA<r to the old stresses na, because these latter two
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tensors are in the configuration íïn and n+ is sought in the configuration un+i. It

is necessary to transform the tensors adequately by means of the push-forward Piola

transformation, Eq. (B.6). The numerical algorithm for stress update is then

n+ V = " J~l nA na nAT + nj~l nA (nA<r) ny!T, (5.19)

where the Jacobian n J is defined as det (nA) and the incremental deformation gradient,

Eq. (B.15), is employed to push-forward both n<r and nA<7 into the new configuration

This algorithm is incrementally objective: if nA is an orthogonal tensor, Eq. (B.16)

yields a null strain tensor "A.E and Eq. (B.19) reduces to Eq. (B.17), thus predicting a

rigid rotation of stresses, with no spurious stress variations. Note that the use of the full

incremental Lagrange tensor, including quadratic terms, is essential for the incremental

objectivity of the algorithm.

Second stress update algorithm

An alternative, more accurate numerical algorithm will be shown next. Following

Pinsky et al., 1983), the hypoelastic constitutive equation is written in terms of the

Truesdell objective stress rate, Eq. (B.12c),

<r*T = C : d. (B.20)

A basic ingredient of this algorithm is that d is evaluated in the midstep configuration

O ,1, defined through linear interpolation between iîn and Í2n+i- The midstep spatial
'»"i o

coordinates are

= nx + ,

the associated deformation gradient is

= i("F+ n+1F), (5.22)
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and, similarly to Eq. (B.15), the incremental deformation gradient relating the midstep

and final configurations is
n+2yl = n+1F n+ 2 F"1. (£.23)

The different deformation gradient tensors are summarized in Figure B.2. Using a

midpoint rule algorithm to integrate Eq. (B.20), the stress update becomes

= " J~l "A nff nAT + n+2 J"1 n+2 A (Ai C:d)\
i*"

(£.24)

with the Jacobian n+2 J defined as det f n + 2yl j . As in Eq. (B.19), tensors referred to

the initial and midstep configurations are pushed-forward into the final one by means

of the appropriate incremental deformation gradients nA and n+2yl.

Recalling the definition of d, Eq. (B.3), the approximation to "+2 d needed in

Eq. (B.24) will be

n+9. (5.25)

The stress increment is then

= (Ai C : d) in+i = C :
Lô(n+2x)J

(5.26)

It must be noted that in Eq. (B.25) the strain increment n~*"2Ae is represented by

the symmetrized gradient of the incremental displacements, like in a small strain anal-

ysis. No additional quadratic terms are needed in Eq. (B.26), because large strains are

properly modelled by employing the midstep configuration to compute the gradient of

displacements. As discussed in Pinsky et al. (1983), this algorithm is also incremen-

tally objective. Both the accuracy analysis and the numerical experiments of Chapter 4

show that the second algorithm (which is second-order accurate) is superior to the first

(which only has first-order accuracy).
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The two stress update algorithms can also be employed in elastoplasticity. The basic

idea is to model the elastic part of the deformation with an hypoelastic law, and use

any of the two algorithms to compute the elastic trial stress, (Hughes, 1984; Pinsky et

al., 1983). After that, a plastic corrector -a radial return algorithm, for instance-, is

required to account for material nonlinearity, see Hughes (1984).

B.2.4 Implementation aspects

It is shown in this Subsection that any of the two stress update algorithms can be

employed to add large-strain capabilities to a small-strain FE code in a simple way.

The basic idea is that the incremental deformation gradients required in Eqs. (B.19)

and (B.24) can be computed in a straightforward manner by using quantities that are

available in a small strain code. Consider, for instance, the incremental deformation

gradient HA relating Q,n to fïn+lî Eq. (B.15). Recalling the definition of F in Eq. (B.I)

and the expression of incremental displacements, it can be easily checked that nA can

be put as

•'-&" + $§•

If an Updated Lagrangian formulation is used, (Bathe, 1982), the configuration iîn

is taken as a reference to compute the incremental displacements. In such a context,
n A can be computed from Eq. (B.27) with the aid of standard nodal shape functions,

by expressing Aw in terms of the nodal values of incremental displacements. Since

the derivatives of shape functions are available in a standard FE code, (Hughes, 1987;

Oñate, 1991; Zienkiewicz & Taylor, 1991), no new quantities must be computed to

obtain nA.

Recalling the expression of the incremental Lagrange strain tensor n&E in terms of
nA, Eq. (B.16), it can written as

_ I í- 2 ¿x««) ¿x»«) ¿x»«) (
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As for n+2yl, combining Eqs. (B.21), (B.22) and (B.23) renders

L (B.29)
2x 2x)

so n~*"2 A can also be directly computed with the aid of the shape functions, once the

configuration of the mesh has been updated from un to ßn • i-

As a result, the only two additional features that are required to handle large strains

are 1. the updating of mesh configuration and 2. the computation of incremental defor-

mation gradients, Eqs. (B.27) and (B.29). This can be seen by comparing the schematic

algorithm for a small-strain analysis with nonlinear material behaviour, shown in Box

B.I with the large-strain versions, depicted in Box B.2 (first stress update algorithm)

and Box B.3 (second stress update algorithm). In Boxes B.2 and B.3 (large strains),

the modifications with respect to Box B.I (small strains) are highlighted with boldface,

and the symbol * is employed to designate additional steps.
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FOR EVERY TIME-INCREMENT [*„,<„+i];

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1.— Compute the incremental displacements Au by solving a linearized form of
Eq. (B.14)

2.— Compute the incremental strains Ae as the symmetrized gradient of dis-
placements:

dXdX

3.— Compute the elastic trial incremental stresses Ao^- i via the elastic modulus
tensor:

= C : Ae*

4,— Compute the elastic trial stresses at

n

5.— Compute the final stresses a at tn+i by performing the plastic correction

6.— Compute the internal forces /mt by integrating the stresses a

7.— Check convergence. If it is not attained, go back to step 1.

Box B.I Small-strain analysis with nonlinear material behaviour
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FOR EVERY TIME-INCREMENT [i„,t„+i];

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1,— Compute the incremental displacements Au* by solving a linearized form of
Eq. (B.14)

2.— Compute the incremental strains Ae accounting for quadratic terms,
Eq. (I

1
2 d(nx) d(nx) d(nx) d(nx)

3.— Compute the elastic trial incremental stresses
tensor:

= C : Ae*

via the elastic modulus

4.— Compute the elastic trial stresses at ¿n+i, pushing forward both na and
°m configuration Qn to un+i, Eq. (B.19):

_fc _ n T— 1 n \ n_ n ̂ T , n T— 1 n A ( \ _fc \ n jT^tria^ J A ff A + J A ^A<rtrialJ A

if.- Update the configuration from On to Un+i by using the incremental
displacements of the current step

5.— Compute the final stresses cr at in+i by performing the plastic correction

6.— Compute the internal forces /^t by integrating the stresses <rk

7.— Check convergence. If it is not attained, recover configuration íïn and go
back to step 1.

Box B.2 First stress update algorithm
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FOR EVERY TIME-INCREMENT [

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1.— Compute the incremental displacements A tí by solving a linearized form of
Eq. (B.14)

*.- Update the configuration from iln to Û ¿, Eq. (B.21)

2.— Compute the incremental strains Ae as the symmetrized gradient of dis-
placements:

3.— Compute the elastic trial incremental stresses Ao^r¡aj via the elastic modulus
tensor:

Aafrial = C : Ae*

if.- Compute the incremental deformation gradients nA and
Eqs. (B.27) and (B.29), and their determinants nJ and R+2 J

4.— Compute the elastic trial stresses at <n-)-i, pushing forward na and
to fin+i, Eq. (B.24):

*friai = nJ~l "A n* MT + B+a J~l n+2^A<rfria,
 n+2AT

L Fla! trial

if.- Update the configuration from ÍÏ , ± to nn+i
** r" o

5.— Compute the final stresses a at tn+l by performing the plastic correction

6.— Compute the internal forces /£t by integrating the stresses <rk

7.— Check convergence. If it is not attained, recover configuration fin and go
back to step 1.

Box B.3 Second stress update algorithm
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Appendix C

A note on a numerical benchmark test:

an axisymmetric shell under ring loads

The same shell test that was used in Chapter 3 (to test various nonlinear solvers in

combination with Lagrange multipliers) and in Chapter 4 (to compare the two stress

update algorithms for large strains), is presented here as a possible tool to validate the

implementation of an arc-length algorithm.

C.I Introduction

Nonlinear equation solvers in a general sense (i.e. resolution strategies, acceleration

techniques, path following methods, etc.) is a subject of much current research (Cr-

isfield, 1991; Kelley, 1995; Riks, 1992; Soria & Pegón, 1993; Van der Boogaard &

de Borst, 1994; Zienkiewicz & Taylor, 1991). Development and analysis of nonlinear

techniques requires to use numerical benchmark tests involving both material and ge-

ometrical nonlinearities, recall that there are only a few nonlinear mechanics problems

with analytical solution, (Lubliner, 1990). Thus, a collection of benchmark tests in non-

linear computational mechanics has been produced over the past decade, see Crisfield

(1991), Zienkiewicz & Taylor (1991), Papadrakakis & Pantazopouolos (1993) among

others. These tests are of extreme importance to researchers, because they can check

and validate the implementation and performance of new or even classical algorithms.

Moreover, it is important to notice that it is difficult to find benchmarks where the

same problem can be solved using a displacement controlled technique and an arc-length
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method to overcome limit points. That is, simple problems that present snap-through

and snap-back depending on the controlled variable.

Here, a well-known example: "an axisymmetric shell under ring loads", (Zienkiewicz

& Taylor, 1991), is reviewed as a possible tool to verify the implementation of arc-

length algorithms. This example presents under certain circumstances snap-through

or snap-back depending on the controlled variable. Therefore, the easily obtained dis-

placement controlled solution of the snap-through case can be employed, after simple

post-processing, as a reference to validate an arc-length implementation which uses as

controlling variable the one that presents snap-back. Moreover, the analysis is extended

beyond published results and the applicability of displacement-controlled techniques.

C.2 Problem statement

An axisymmetric shell made of an elastic material is clamped at its border, and a ring

load is applied to the shell, causing a deflection v of the apex. Figure C.I shows a descrip-

tion of the problem. This problem is classically solved using a displacement-controlled

technique on the apex, namely, by forcing increasing values of u, see Zienkiewicz &

Taylor (1991).

Figure C.2 shows the load-deflection curves presented in Zienkiewicz & Taylor (1991),

each of them associated to a different eccentricity of the ring load, e = r/Ä/,. Such

a figure clearly shows that this example presents a snap-through tendency as the

eccentricity increases.

C.3 An alternative to displacement control

The behaviour of the structure may also be examined by plotting the load versus the

displacement of the loaded node, u>. This can be done as a simple post-processing of the

displacement-controlled solution, i.e. the solution is obtained controlling v but curves

P versus u; are plotted. Figure C.3 shows the curves load P versus displacement of

the loaded node, w, associated again to eccentricities 0, 0.25 and 0.42. It is important
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Figure C.I Problem statement

:oo

90

80 .

70

60

50 .

30

20

10
disp-control

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Figure C.2 Load P vs. deflection of apex t>; e = O, t = 0.25, e = 0.42.
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to note that the last one of these curves (e = 0.42) shows snap-back, which means

that this particular problem cannot be solved using a displacement-controlled

procedure on the displacement u of the loaded node. Therefore, for e = 0.42

the apex displacement-controlled solution may be employed as a reference to validate

the implementation of arc-length techniques.

100

90

80

70

60

50

40

30

20

10
disp-control

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Figure C.3 Load P vs. deflection of loaded node; e = O, e = 0.25, e = 0.42.

Furthermore, as it will be shown in the following examples, the growing complexity

of the structure's behaviour (increasing number of limit points) is accentuated as the

eccentricity of the load increases. In Figure C.4 the eccentricity is raised to a value of

0.50, and a qualitatively identical situation to the e = 0.42 case is obtained; that is, the

P — v curve presents snap-through and may thus be displacement-controlled, whereas

the P — it} curve presents snap-back. Hence, for the e = 0.42 and e = 0.50 cases,

arc-length techniques (restricted, for instance, to the P — u plane) can be verified by
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post-processing the data from a v-displacement-controlled computation. As a matter of

fact, Figure C.4b shows the reference solution obtained after post-processing the data

from a u-displacement-controlled computation, D, and the arc-length results (restricted

to the P — u plane), x, which as expected coincide with the reference.

C.4 Further considerations

In the previous Section the structure shows snap-through or snap-back depending on

the controlled variable. However, when the eccentricity of the ring load is increased,

for instance up to 0.60, this mixed behaviour is not present anymore. Figure C.5a

shows the P — v response obtained with a displacement-controlled technique, and the

behaviour seems, at least qualitatively, correct. But if the P — u> curve is plotted as a

post-process of the previous results, see Figure C.5b, serious doubts on the validity of

the computations obviously appear. In this case, the correct response of the structure

(i.e. initial negative deflections for the P — v curve, and a smooth initial slope for

the P — u curve) must be determined with an arc-length algorithm, see Figure C.6.

This solution can never be captured via a displacement-controlled strategy on any of

the presented variables. In fact, if in an attempt to capture the correct response the

initial displacement increments of v were drastically reduced, the computations would

follow an equilibrium path with negative values of the load. Thus, an arc-length pro-

cedure must be employed. In this particular case, a cylindrical arc-length solution with

automatic control of the arc length, (Crisfield, 1991), has been employed to determine

Figure C.6.

Similar conclusions can be drawn if the eccentricity of the load is raised up to e = 0.65.

Figure C.7 presents the unrealistic results obtained with a tJ-displacement-controlled

strategy. On the other hand, Figure C.8 presents the correct behaviour obtained with

an arc-length method. For even larger values of e, arc-length techniques are definitely

necessary, see Figures C.9 and C.10.
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Fig. C.4a
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Figure C.4 Response for an eccentricity e = 0.50: a) Load P vs. deflection of central node v;
b) Load P vs. deflection of loaded node w.
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Figure C.5 Displacement-controlled solution for an eccentricity e = 0.60: a) P versus v; b) P
versus w.
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Figure C.6 Arc-length solution for an eccentricity e = 0.60: a) P versus v; b) P versus u.
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Figure C.7 Displacement-controlled solution for an eccentricity e = 0.65: a) P versus v; b) P
versus u>.
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Figure C.8 Arc-length solution for an eccentricity e = 0.65: a) P versus v; b) P versus u.
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Figure C.9 Response for an eccentricity e = 0.70: a) Load P vs. deflection of central node v;
b) Load P vs. deflection of loaded node u.
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Figure C.10 Response for an eccentricity e = 0.80: a) Load P vs. deflection of central node
v; b) Load P vs. deflection of loaded node w.
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C.5 Analysis of the results and conclusions

A well-known spherical shell test has been analyzed from a numerical point of view for

a complete range of eccentricities of the ring load, e. Notice that from a physical point

of view other concerns (not addressed here) must be taken into account, apart from the

numerical resolution of the nonlinear equations. Both the displacement of the apex,

u, and the displacement under the ring load, w, have been employed as the controlling

variables. Depending on the value of e the following results have been obtained, see

Figure C.ll:

1.— for low values of e, the problem can be solved with displacement control using either

v or w, because the curves P — v and P — u do not show snap-back.

2.— for intermediate values of e, the displacement control is still valid for u, but the

arc-length control is needed for u) because the P — u> curve presents snap-back.

Therefore, in the intermediate range, the displacement controlled solution (with u)

can be employed to validate the arc-length implementation (with w).

3.— for large values of e, the arc-length method must be employed with either v or w,

because both P — v and P — u curves show complex snap-back behaviour.

e=0 e=0.5 e=1

w ^DISPLACEMENT/

(3)

Figure C.ll Schematic representation of the controlling technique for each variable and the
range of eccentricities.
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