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1.1. Wine fermentation and quality control 

1.1.1. Wine: a beverage with history 

Spain is the third country in the world in terms of wine production after Italy and France, 

representing the 12.9% of the world production with 33.5 million hectolitres (mhl) in 20191. 

Despite the fact that the consumption of alcoholic beverages in Spain has undergone a small 

decline in the last decades, wine, beer and spirits are still considered one of the most 

important traits of Spanish culture and tradition, as almost 70% of these beverages are 

consumed in catering establishments and in social environments2,3. 

In Spain, there exist records of wine consumption and grapevine cultivation dating from 

the third millennium BC4. At that time, vine cuttings were imported into the Iberian 

Peninsula by the Phoenicians, who brought knowledge of viticulture and winemaking to 

Southern Spain5. 

1.1.2. Grapevine cultivars 

The scientific name of grapevine, which is the type of climbing plant on which grapes grow, 

is Vitis vinifera L. and it belongs to the Vitaceae plants family. The genus Vitis is considered 

the most important genus in agronomic sciences, being the species Vitis vinifera the most 

widely cultivated and the only species used in the global wine industry6. 

Vitis vinifera L. includes two subspecies: V. vinifera L. spp vinifera and V. vinifera L. ssp 

sylvestris. The latter is the wild form (wild-type), and it is considered the ancestor of the V. 

vinifera spp vinifera subspecies, which is the cultivated form7. This classification could be 

argued though, because the morphological differences between these subspecies are most 

likely the result of human domestication, rather than geographical isolation6. Cultivated 

grapevines with similar, uniform and stable vegetative and reproductive characteristics, 

which when propagated by appropriate means retain those characteristics, are called 

“varieties” by growers and “cultivars” by botanists8. Nowadays, thousands of Vitis vinifera 

cultivars exist, which have been generated by vegetative propagation and by crosses. In 

contrast, wild-type cultivars are rare9. The reason for this is that domestication of grapes 

involved several changes in their biology and morphology that ensured greater sugar 

contents for better fermentation and more regular wine production6,10.  

The global market for wine production is only dominated by few cultivars and they are 

classified according to their final production: wine grapes, table grapes and raisins6. Some 
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of the most famous cultivars in Spain are Tempranillo, Garnacha and Merlot for red wines, 

and Verdejo, Moscatel and Macabeo for white wines11. Catalonia is particularly famous for its 

wine tradition, especially for the production of cava (a type of sparkling wine made with 

Catalan grape varieties: Macabeu, Parellada and Xarel·lo) and for the production of wines 

under 12 Catalan designations of origin (DOs), which are the highest category of Spanish 

wine regulations. Products within a DO are expected to be of superior quality and to have 

specific characteristics of geographical region, as well as be derived from raw materials 

originating within the region. The most internationally recognized Catalan DOs are: 

Priorat (located in the province of Tarragona), Penedès, Terra Alta and Tarragona12. The 

most cultivated grape varieties in Catalonia include: Garnatxa blanca, Macabeu, Parellada 

and Chardonnay for white wines and Garnatxa negra, Ull de llebre, Carinyena and Cabernet 

Sauvignon for red wines13. 

1.1.3. The wine production process 

The understanding of the chemical nature of wine grapes is crucial to provide the wine 

industry with quality grapes, which will lead to the production of quality wines. Grape 

quality is affected by the maturity, purity, aroma/flavour and phenolic characteristics, 

harvesting methods, transportation and processing systems14. Traditionally, white wine 

cultivars aim at obtaining an ideal sugar-to-acid ratio together with moderate must pH and 

clean varietal character, whereas red wine cultivars are focused on obtaining grapes with 

rich sugar and anthocyanin content, matching a perfect texture with the grape tannins 

present in the skin and seeds15. 

For centuries, winemaking has been considered a practical art, and producing wine held 

great mystery. Making an excellent wine is still challenging, but the scientific principles 

for understanding wine production, since Louis Pasteur findings on the existence of yeasts, 

have gradually developed to the science of winemaking: oenology. This science encompasses 

several disciplines: chemistry, microbiology, sensory analysis, biochemistry and 

engineering16.  

The wine production process will differ depending on the type of wine that is being 

produced, and it involves a series of steps that need to be mastered and thoroughly 

controlled in order to obtain wines with the desired quality standards17. Many types of 

wines exist, which can be classified as natural wines (those containing only alcohol coming 

from alcoholic fermentation) and fortified wines (those that contain alcohol from alcoholic 

fermentation and also added alcohol)18. Figure 1 shows a schematic representation of the 
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steps involved in the production of natural white and red wines, the two most important 

types of wine. 

 

Figure 1. Schematic representation of wine production. Adapted from Bisson, 200419. 

The main difference between red and white wine production practices is that after 

harvesting, red grapes are crushed and fermented with grape skins and seeds in order to 

extract red pigments such as anthocyanins, while white grapes are directly pressed to 

release the must (grape juice), avoiding any contact with insoluble parts during alcoholic 

fermentation. In red wine fermentation, the insoluble components tend to form a cap on the 

surface of the wine once fermentation initiates and this cap must be submerged (pumping 

over) during fermentation to enhance the extraction of the skin and seeds components as 

well as inhibiting the growth of aerobes that may be on the exposed surface of the cap. After 

several pumping over cycles, red wine must is pressed and fermentation is completed.  

Depending upon the style, the wine is either immediately ready for bottling (preferably 

under sterile conditions to achieve microbial stability) or it undergoes post-fermentation 

processing such as aging in wood or stainless steel, a secondary malolactic fermentation, 

fining to remove undesirable components, or filtration to remove hazes and precipitates19. 
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As grapes are the principal raw material in wine, most part of the chemical composition in 

the final wine will be dominated by the final concentration of the compounds present in the 

grapes at the moment of harvesting mainly sugars, colour, pH, titrable acidity, organic acids 

and phenolic compounds14. 

Pulp is the most considerable fraction of the fruit and, in ripe grapes20. Sugars (essentially 

glucose and fructose) are the main constituents of ripe grapes, followed by organic acids 

(mainly tartaric, malic and citric acids), inorganic anions (phosphoric acid) and cations such 

as potassium and ammonium, and amino acids. Moreover, the pulp is also characterized by 

the accumulation of a wide variety of alcohols, aldehydes and esters, which participate in 

grape aromas21. 

The concentration of fermentable sugars in grape musts at the time of harvest can vary 

between 180 and 260 g·L-1. It is likely that the initial concentration of glucose and fructose 

selectively influences the type and activity of yeasts present during fermentation. Musts 

with a lower sugar concentration start to ferment quickly and the sugar ferments to the 

end, whereas musts with a high sugar content induce osmotic stress in the yeasts and 

ferment slowly with incomplete sugar consumption22. 

Grape harvesting and alcoholic fermentation are crucial steps in wine production, mainly 

because wine is especially susceptible to microbiological activity that can alter its quality23. 

In fact, there are microorganisms that are essential for wine (such as yeasts) and 

microorganisms that can alter the wine positively (some strains of lactic acid bacteria) or 

negatively (e.g. acetic acid bacteria)24. 

1.1.4. Alcoholic fermentation: the core of wine production 

Technically speaking, wine is an ethanolic beverage produced through alcoholic 

fermentation of grape juice (known as grape must) by the action of yeasts. These 

microorganisms transform sugars from the juice into ethanol and carbon dioxide (CO2). 

Saccharomyces cerevisiae is the most important species of yeast involved in the alcoholic 

fermentation of the grape must20.  

After alcoholic fermentation, the two major constituents in wine are water and ethanol, 

which represent more than 90% of its total composition21. The other wine components are 

minor compounds that can come directly from the grapes, or by the action of yeasts through 

their secondary metabolism. During alcoholic fermentation, yeasts are also responsible for 

the conversion of various chemical intermediates into by-products that contribute to the 
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characteristic flavour and aroma bouquet of the final wine25. To facilitate the complex 

composition of wine, a common classification of wine compounds is made between volatile 

compounds (those affecting wine aroma) and non-volatile compounds26: 

- Non-volatile compounds: Sugars, amino acids, organic acids, and phenolic 

compounds are the most important non-volatile flavour compounds in wine. 

- Volatile compounds: Hundreds of volatile compounds have been identified and 

many of them are directly responsible of wine aroma, including alcohols, esters, 

organic acids, volatile phenols, lactones, acetyls, aromatic ketones, terpenes and 

fatty acids.  

Yeasts are unicellular eukaryotic microorganisms that belong to the Fungi kingdom27. 

Depending on aerobic conditions, yeast can degrade sugars through alcoholic fermentation 

or through respiration. The primary metabolism, alcoholic fermentation, has been 

extensively studied due to its industrial applications20.  

Depending on the strain of S. cerevisiae used, some characteristics of the wine may be 

promoted or repressed28. On the surface of grapes, both harmful and beneficial species of 

yeasts are responsible of spontaneous fermentation. However, as Saccharomyces cerevisiae 

species do not naturally impose because they are found in very low concentrations on 

healthy berries, spontaneous fermentation is usually avoided29. 

Even though some autochthonous yeast species that influence the chemistry of the wine 

can remain during the early stages of alcoholic fermentation, their growth is limited to the 

first 2-3 days of fermentation due to their sensitivity to ethanol at concentrations above 5% 

to 6% (v/v). Under these conditions, strains of S. cerevisiae become the dominant yeasts and 

end the fermentation, as they are more tolerant than other species to ethanol and high 

concentrations of sugars22. 

The conversion of sugars into ethanol is affected by several factors, including temperature, 

initial sugar concentration, acidity, nutrient availability, yeast strain and yeast activity.  

1.1.5. Problems during alcoholic fermentation 

For most oenologists and winemakers, the quality of the wine is determined by its sensory 

quality and most of the efforts during winemaking are focused on avoiding the production 

of off-flavours, which can be defined as molecules that add undesirable sensory attributes 

(both aroma and taste) to wine and can substantially reduce its quality. Some of the 
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biochemical reactions that produce off-flavours are related to microorganism’s strains 

known as “spoilage microorganisms”. Other problems may arise as a result of unusual 

activities of common microorganisms that may develop at an inopportune moment during 

the process (bacterial spoilage) or under unfavourable conditions (stuck/sluggish 

fermentations)30. An incomplete use of sugars and nutrients during alcoholic fermentation 

can lead to the appearance of off-flavours in the wine and increases the risk of bacterial 

spoilage31. The need for more resistant strains to unfavourable wine conditions has led to 

the production of stress-resistant active dried yeasts starter cultures, which improve 

nutrient uptake and assimilation, and enhance resistance to ethanol, to other inhibitory 

molecules and to chemical preservatives (e.g. sulphites) or other antimicrobial 

compounds19. Microorganism spoilage usually takes place at the initial or final stages of 

alcoholic fermentation, and it is highly undesirable32. Monitoring wine fermentation to 

prevent the appearance of these problems is of utmost importance to the oenologist33.  

1.1.5.1. Stuck and sluggish fermentations 

The environment for yeast and bacteria during alcoholic fermentation is very stressful. 

Yeasts have mechanisms to respond to the evolving environment, but sluggish or stuck 

fermentations can occur if the yeast cannot adapt to the medium in time or its growth its 

limited34.  

The main factor that causes stuck and sluggish fermentations is a nutritional limitation, 

followed by a high concentration of inhibitory substances such as ethanol. Under these 

conditions, the fermentation performance is inefficient and can be aggravated by the 

appearance of adverse environmental factors, such as temperature fluctuations that 

strongly affect the utilisation of nutrients35. There are four types of sluggish fermentations, 

depending on when fermentation begins to slow down: slow initiation becoming to normal, 

normal initiation becoming sluggish, sluggish throughout the entire process and an abrupt 

arrest (stuck) at the end of the fermentation36. 

Nitrogen is the most common nutrient that limits wine fermentations; its deficiency can 

lead to a premature cessation of fermentation or slow down the process, as well as to the 

production of off-flavours such as hydrogen sulfide. In addition, nutritional limitations such 

as nitrogen deficiency can prevent yeast population from attaining a typical level of 

biomass, which is around 108 CFU·mL-1. This results in a sluggish fermentation because 

there are fewer cells fermenting in the medium37. 
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Apart from the nitrogen amounts its source must also be accounted. Thus, the preferred 

source is ammonium but, when it is depleted, yeasts can utilize amino acids (except proline) 

as nitrogen source. A correct metabolism of nitrogen-containing compounds by yeasts is 

important, as it produces some end products of sensory importance for wine quality38. 

To avoid stuck or sluggish fermentations, the oenologist can rely on several preventative 

measures such as ensuring a correct yeast nutrition by the addition of nutrients, using 

strains with good fermentation potential and monitoring the temperature throughout the 

fermentation36. For this reason, nitrogen supplementation is a common practice especially 

when using deficient musts, in which the nitrogen concentration is between 120 and 140 

mg N·L-1 and the complete fermentation of 200 g·L-1 of sugar is not guaranteed39. However, 

especial attention must be given to the winemaking strategies and the yeast strains used, 

as over-supplementation can modify the production of biomass, glycerol, acetic acid and 

volatile aroma compounds, thus decreasing the quality of the final wine40. 

1.1.5.2. Bacterial spoilage 

Part of the microflora present on the surface of the berries is considered to have a significant 

effect in the early stages of wine production and can have negative effects on the wine as 

can be seen in Table 129. Preventive measures during alcoholic fermentation to avoid 

microbiological alterations include: the use of antiseptics (mainly sulphites), the use of 

selected yeast strains and the thorough disinfection of wine receptacles, equipment and 

cellar facilities41.  

Table 1. Microflora found on the surface of grapes and their possible negative effect 
during wine alcoholic fermentation. 

Microorganisms  Negative effect 

Yeasts Autolysis; spoilage 

Lactic acid bacteria Malolactic fermentation; spoilage 

Acetic acid bacteria Spoilage; stuck fermentation 

Fungi Botrytised wines; mouldy; corky taints 

Bacillus species Spoilage 

Streptomyces species Earthy; musty taints 

Bacterial viruses 
Destruction of bacteria conducting 
malolactic fermentation 
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The most common effects of microbial spoilage are film formation in bulk wines, cloudiness, 

sediment formation, gas production in bottled wines and formation of off-flavour 

compounds. The latter effect is the most difficult to detect in time, because some microbial 

metabolites contribute to wine flavour even when their concentration is below their sensory 

threshold and can be in the order of nanograms42. 

1.1.5.2.1. Lactic acid bacteria spoilage 

Lactic acid bacteria (LAB) are anaerobic and aerotolerant Gram+ bacteria that are found 

naturally on the surface of healthy grapes. According to their metabolic activity, LAB are 

divided into three groups: homofermentative, facultatively heterofermentative and 

heterofermentative43. Several LAB species that have been isolated from the grape surface 

and the must have been associated with wine spoilage. They belong mainly to one of these 

strains: Lactobacillus, Leuconostoc, Oenococcus and Pediococcus23. Although lactic acid bacteria 

can be beneficial for some wines, when acting under uncontrolled conditions these can 

produce some negative effects such as: excessive deacidifcation, increase of volatile acidity 

due to acetic acid production, appearance of sourness or synthesis of biogenic amines44. 

1.1.5.2.1.1. Malolactic fermentation 

Malolactic fermentation (MLF) consists on the transformation of L-malic acid (a 

dicarboxylic acid) into L-lactic acid (a monocarboxylic acid) and CO2 (Figure 2). This 

transformation can reduce the titratable acidity of the wine by 0.01 to 0.03 g tartaric acid 

equivalents·L-1, and pH can also be increased by 0.3 pH units. This results in a 

deacidifcation of the wine, which has a major impact on the quality, flavour and aroma of 

the wine45.  

 

Figure 2. Conversion of malic acid to lactic and CO2 during malolactic fermentation. Malic acid has 
two acidic groups that can release protons, while lactic acid only contains one proton that can be 

released. 
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Secondary compounds are also generated through this fermentation process, bringing 

important changes in both the wine quality and composition and providing microbiological 

stability to the final wine46. 

The most common bacteria strain used for oenological practices is Oenococcus oeni. This 

strain can easily impose when sugars are almost depleted, and it tolerates high amounts of 

alcohol. They proliferate better if there are low levels of free SO2 in the wine. In addition, 

some of the products from the secondary metabolism of LAB soften the wine and add 

aromatic notes. Ethanol, acidic pH, phenolic compounds and sulphur dioxide can induce 

stress on LAB47. 

Traditionally, malolactic fermentation is desirable in red wines and high acidity white 

wines because MLF increases wine pH and produces some aromatic compounds that 

improve the organoleptic profile of the final wine48. Spontaneous MLF is generally 

discouraged, and an starter culture of LAB is added to avoid the growth of indigenous LAB 

that may produce negative compounds in the final wine49.  

There are three possible inoculation stages for MLF: 

- Pre-fermentation inoculation: In this stage, LAB can decrease nutrient 

availability for yeasts, resulting in stuck/sluggish fermentations. In addition, LAB 

can produce compounds that are inhibitory to yeast growth and fermentation.  

- Simultaneous with Yeast Inoculation: Co-inoculation allows LAB to acclimate 

more easily to the must media, as ethanol concentration is low and the availability 

of nutrients is high at this stage. This increases the adaptation of LAB to high 

ethanol levels in wine. However, inoculating at this stage can produce an increase 

in the production of acetic acid, and a decrease in the viable populations of both 

bacteria and yeast can be observed. This is due to the competitiveness for nutrients 

between the microorganisms. Some commercial yeast strains are more sensitive 

than others to fermentation arrest upon inoculation of LAB. 

- Mid-fermentation inoculation: Inoculation during alcoholic fermentation can be 

dangerous for the viability of LAB, as nutrients are limited due to yeast activity. 

Bacterial biomass may also deplete the fermentation of needed survival factors. At 

this point, the advantage is that the content of ethanol is still low and not inhibitory 

to MLF and most SO2 is combined. 

- Post-fermentation inoculation: This strategy prevents any inhibitory effect of 

LAB against the yeast and allows better temperature control. However, ethanol 
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concentration may be too high and nutrients are exhausted, so that LAB 

acclimation in these conditions is difficult. 

The most common decision is to inoculate LAB at the end of the alcoholic fermentation, to 

avoid an excessive development of LAB that can yield high levels of acetic acid. In addition, 

co-inoculation and inoculation during alcoholic fermentation tends to prolong MLF, 

suggesting that inhibition to LAB activity exists. Generally, the yeast-bacteria interaction 

must be closely studied, as certain strains of these microorganisms can either inhibit or 

stimulate alcoholic fermentation or MLF50.  

1.1.5.2.2. Acetic acid bacteria spoilage 

Acetic acid bacteria (AAB) are alfa-proteobacteria and they belong to the family of 

acetobacteria. They are commonly known as the vinegar bacteria and they can be naturally 

found in substrates rich in sugar and ethanol, such as fruits, flowers, foodstuffs and alcoholic 

beverages51. AAB are gram-negative and aerobic bacteria, and some of them can survive in 

wine, where they can rapidly oxidise glucose and ethanol as sources of energy52. 

Depending on the sugar concentration and the pH in the must, AAB can oxidise sugars or 

ethanol to produce acetic acid as the end-product through a process called acetification53. 

In healthy grapes, where the global AAB population is around 102 to 103 CFU·mL-1, the 

most common AAB strain present on the surface of the grape is Gluconobacter oxydans. In 

contrast, AAB population in damaged grapes can reach up to 106 CFU·mL-1, with 

Acetobacter aeri being the most present strain. When alcoholic fermentation begins, the 

medium conditions are unfavourable for most AAB strains. This is why most AAB found 

on the surface of grapes disappear as soon as alcoholic fermentation begins. However, 

Acetobacter aceti and Acetobacter pasteurianus, which are strains more tolerant to ethanol, can 

be found in fermenting musts and may survive due to a poor management (e.g. exposure of 

wine to air during pumping and transfer procedures, or contamination in wooden barrels) 

throughout alcoholic fermentation, having a negative influence on the final wine23. Growth 

of acetic acid bacteria has also been observed in bottled wine, mainly because the wine was 

bottled without sterile filtration and/or the concentration of sulphur dioxide was too low 

prior to bottling54. 

 

UNIVERSITAT ROVIRA I VIRGILI 
MONITORING WINE FERMENTATION 
USING ATR-MIR SPECTROSCOPY AND CHEMOMETRIC TECHNIQUES 
Julieta Cavaglia Pietro 



Chapter 1 15 
  

 

 

1.1.6. Wine Quality Control 

Wine quality can be defined from two perspectives: sensory or chemical, and it is difficult 

to measure. From a sensory perspective, wine quality assessment has traditionally relied 

on the sensory evaluation by wine experts (panellists) and winemakers, as they have the 

training and experience to detect wine defects and are capable of performing perceptual 

evaluations55. The problem of human assessment is that it is extremely subjective and 

depends on preferences of panellists and their individual taste and aroma limits of 

perception among other factors. There are several methodologies to alleviate subjectivity 

in evaluating wine quality which focus on the training of panellists both on recognition of 

descriptors or sensory attributes and in their evaluation56. The tasting room, 

environmental conditions and equipment are other parameters to be considered and can be 

designed according to specific guidelines for sensory analysis as, for example, ISO 

indications which become mandatory in the case of accreditation for quality purposes57. An 

analytical sensory panel is generally formed by 8 to 20 individuals, who must be trained to 

perform sensory tasks objectively and consistently58. 

From the chemical perspective, among hundreds compounds found in grapes and wines, 

there are some molecules that are considered as reference parameters for quality control. 

This is because their presence and/or concentration is related to a specific metabolic 

pathway or chemical behaviour of the sample. Thus, the continuous measurement of quality 

control parameters through the production process, especially during alcoholic 

fermentation, ensures a successful wine production. Chemical analyses of grapes and wine 

are essential to ensure that the different steps of winemaking take place under the desired 

conditions. However, the time between grape sampling and its arrival to the laboratory 

should be short enough to ensure that, if necessary, some adjustments can be made to the 

process. Monitoring the progress of fermentation ensures that the wine is under control 

and complies with legal specifications. 

There are a variety of analytical methods to analyse the different reference parameters that 

are used to assess wine quality. Methods range from classical chemical analysis to modern 

instrumental techniques. The International Organisation of Vine and Wine (OIV) is the 

organism responsible for the publication of official methods for the analysis of grapes, musts 

and wines, which are detailed in the Compendium of International Methods of Analysis of 

Wines and Musts. The Compendium aims at standardizing the methods of analysis at an 

international level, and includes the only accepted methods for specific parameters, as well 
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as benchmark methods and recommended alternative methods in cases of disputes and for 

calibration purposes59. It also includes methods for inspection and regulatory purposes. 

Auxiliary methods of recent implementation, in which the method performance has yet to 

be established, are also be described60.  

It is not surprising that, due to the complexity of wine, the number and variety of analytical 

methods found in OIV Compendium is large. Methods are divided into physical (e.g. 

density, specific gravity, total dry matter) and chemical analysis (e.g. sugars, alcohols, acids, 

gases and non-organic compounds). Methods range from classical techniques (e.g. 

colorimetric assays, distillation, etc.) to more modern methods such as the determination 

of mineral elements by inductively coupled plasma atomic emission spectroscopy (ICP-

AES)59. In practice, very few wine cellars cover all these analyses at all the steps of wine 

production, and a selection of key parameters that require a continuous checking must be 

made which usually are sugars, acids and nitrogen.  

1.1.6.1. Traditional fermentation monitoring 

For the purpose of assessing microbiological stability, alcoholic fermentation is controlled 

by means of analytical tests of the following parameters41: 

- Reducing sugars: they serve as an indicator of the consumption rate of yeasts. At 

the end of the alcoholic fermentation, their presence can cause microbiological 

instability by supporting the growth of yeast and bacteria. The consumption of 

sugars is usually monitored by densimetry. 

- Alcohol content Wines typically have a 10-14% w/w ethanol. Ethanol serves as 

a preservative of wine spoilage, as some bacteria are not resistant to high ethanol 

level. A low alcohol content can increase the risk of bacterial spoilage. 

- Total, free and molecular sulphur dioxide: The use of SO2 is critical to prevent 

bacterial spoilage in wine. However, recent health concerns against the use of SO2 

and its legal maximum limits in wine are leading towards the interest of 

minimizing the amount of SO2 in wine33,61. 

- pH: it normally ranges from 2.9 to 3.9 and it can be measured using a pH-meter. 

During alcoholic fermentation, there is a decrease in pH due to yeast activity. An 

increase in pH is an indication of alterations in acidity due to malolactic 

fermentation. Instead, a decrease in pH indicates advanced stages of acetic acid 

spoilage. Tartaric acid precipitation can also cause a change in the pH. 
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- Volatile acidity: an increase after alcoholic fermentation can indicate bacterial 

spoilage. 

- Total acidity: it decreases notably in case of malolactic fermentation. It increases 

in the case of acetic acid or lactic acid spoilage. 

- Malic Acid and lactic acid: the simultaneous disappearance of malic acid and 

formation of lactic acid is an indicator of malolactic fermentation. At the beginning 

of alcoholic fermentation, there is always a decrease in the malic acid level due to 

maloalcoholic fermentation by yeast. This decrease does not usually exceed 25% of 

the initial malic acid concentration.  

- Titratable acidity: it is a measure of the total acid content (except CO2) in wine. 

It can be determined by classical titration with an indicator or with a photometric 

analyser. It is usually expressed as g·L-1 equivalent of tartaric acid. 

Even though chemistry knowledge for the viticultural and oenological practices has made 

a remarkable progress in the last decades, small cellars might not have the economic 

capacity or infrastructure to analyse all these parameters in their facilities. Some cellars 

may send samples to external laboratories, but others may only rely on basic parameters to 

control the fermentation process (mainly reducing sugars and pH) and trust the expertise 

of the oenologist. In addition, many important sensory compounds cannot be detected or 

measured quickly, efficiently and inexpensively during the winemaking process. 

1.2. Process Analytical Technologies 

1.2.1. The idea behind PAT 

In the past, biopharmaceutical production was focused on the analysis of a target product, 

and the process was merely limited to the definition of a series of operating conditions that 

were required to achieve consistent product quality. The Quality by Design (QbD) 

principle, in contrast, states that the quality of products can and should be incorporated by 

process design, building quality in process design and improving process understanding, 

instead of post-production testing for quality62. This idea has been an emerging topic not 

only in the biopharmaceutical industry but also in the food industry, where the design of 

the process to deliver products with significant attributes of safety, quality and/or efficiency 

is reaching special importance63.  

To ensure process performance, a robust control strategy must be implemented. Process 

Analytical Technologies (PAT) facilitate the implementation of QbD, ensuring process 
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control by an ongoing monitoring of process performance64. The PAT concept was first 

introduced in the USA for the pharmaceutical industry in 2004, by the American Food and 

Drug Administration (FDA). PAT is defined as “a system for designing, analysing and 

controlling manufacturing through timely measurements (i.e., during processing) of critical quality 

and performance attributes of raw and in-process materials and processes with the goal of ensuring 

final product quality”65.   

The application of PAT implies the transition from a laboratory-based quality control to a 

process-based quality control, moving directly “into the field“ to the site of production66. In-

process measurements allow the permanent monitoring of the product or process 

conditions, providing lower risks of releasing a poor quality product and a high degree of 

process understanding and efficiency through continuous learning and improvement66,67. 

This idea results in the change from post-problem or feed-back process control to during-

problem control, where process adjustments can be made during manufacturing to 

compensate, for example, unwanted variations in raw materials. PAT emphasizes the 

anticipation of problems, rather than dealing with them post hoc68.  

The most popular analytical techniques recommended for PAT are Near infrared (NIR) 

and mid infrared (MIR) spectroscopy, followed by electrochemistry and chromatographic 

techniques69. It comes as no surprise that spectroscopic methods are the most suitable for 

PAT; their speed, flexibility, simplicity, non-destruction of the sample and portability make 

them the perfect choice for process measurements and non-invasive analysis70. 

1.2.2. Types of PAT measurements 

During product processing, different types of analysers can be used that provide 

information related to biological, physical, and chemical attributes of the process65. 

Depending on the physical characteristics of the analyser and how the measurement of the 

sample is obtained, we find:    

• At-line measurements: the analyser is located in the production area, near the 

process stream. Benchtop instruments and portable instruments meet this 

condition. They usually require an operator, and the sample is removed and 

isolated from the process stream, and finally analysed. These measurements may 

require fast pre-treatments or no pre-treatment at all71.  

• In-line measurements: they require probes or sensors that are placed directly in the 

process stream. They can be assembled in the production line, and the sample is 
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not removed from the process stream, allowing to analyse the sample in the most 

real possible conditions72.  

• On-line measurements: this strategy is very similar to the in-line, the only 

difference is that the sample must be diverted from the process stream and may be 

returned to it after the measurement73.  

A schematic outline of the different ways to implement process control is shown in Figure 

3. It is worth mentioning that both in-line and on-line measurements are usually fully 

automated. In addition, although the human error factor is removed, new errors related to 

the automation of the process may appear, and thus special attention must be paid to the 

development of these fully automated processes, in order to avoid electronic and computer 

errors74.  

Off-line measurements, in turn, imply that a sample from the process stream must be taken 

to an external laboratory for its analysis. This strategy is often used when the number of 

batches in a process is low and the analysis is difficult to automate. Analytical results from 

off-line measurements do not provide real-time results, as the process status information is 

obtained with an implied time delay and; therefore, these measurements cannot be 

considered as a PAT tool75. 

 

 

Figure 3. Outline of the different approaches that can be implemented for process control, 
specifying those possible measurements during processing. 
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Great efforts have been made to develop analytical instruments that bring the analysis 

closer to the process, making a switch from the laboratory to the location where the sample 

is. To this aim, handheld spectrometers have emerged as improved measurement tools for 

the qualitative and quantitative chemical quality control, not only in the pharmaceutical 

sector but also in many different industrial branches76. Nowadays, the tremendous advances 

in sensing technologies have even made it possible to develop smartphone-based optical 

biosensors77. 

1.2.3. PAT in the food and beverage industry 

With the pharmaceutical industry as a starting point, PAT has emerged as a platform for 

future good manufacturing practice (GMP) to other industry branches, introducing new 

concepts to different sectors regarding the monitoring and control of manufacturing 

processes. One of these sectors is the food and beverage industry, where the introduction 

of PAT has led to an improvement in process control, final product quality evaluation, 

productivity and optimization of raw materials78.  

Traditionally, in the food industry the quality of a product is evaluated through periodic 

chemical and microbiological analysis, following the HACCP (Hazard Analysis and Critical 

Control Point) principles, which were developed by the Codex Alimentarius Commission, 

in combination with the ISO 22000, to meet the needs of all organizations participating in 

the food supply chain79. Once the hazards of a product have been identified, control 

measures for each hazard must be defined, as well as the frequency of their application, the 

sampling procedures and the criteria for product acceptance80.  

In line with PAT principles, it is now possible for food manufacturers to deliver a product 

that does not necessarily require post-process testing, through continuous at-line testing of 

the products during production. Nowadays, the use of fast analytical techniques has an 

increasing role in the food industry, from the most classical analysis of quality control 

parameters in foodstuffs throughout their processing81,82. to more unusual analyses, such 

as the detection of fraud in value-added products83. One major advantage of using PAT 

tools, and especially spectroscopy-based process analysers, is that quality parameters or 

even factors that have an influence in the final product can be directly predicted by 

establishing a statistical relationship between the measured signals and reference analysis67. 

When defining the most effective quality control strategy to be implemented in the agro-

food sector under the PAT guidelines, it is important to thoroughly study the composition 
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and main characteristics of the raw materials concerned. One of the major challenges for 

the application of PAT in the food industry using vibrational spectroscopic techniques is 

that food samples are usually heterogeneous mixtures of complex biomolecules in different 

physical matrices (e.g. aqueous, solid, gels, etc.) and that these matrices usually evolve 

during processing (e.g. fruits ripeness, fermentation, ageing, etc.)67. First, the key quality 

parameters, which are the main chemical components or physical properties that define the 

quality of raw materials, must be determined. The measurement of these parameters, both 

in the final product and during processing, allows to assess the state of the process and the 

characterization of the raw materials and food products84. Then, all the factors influencing 

the process should be studied and included in a detailed experimental design whenever 

possible, as they can critically influence the conditions of the food matrix and, consequently, 

the analytical response85.  

The application of PAT has been studied in a wide variety of food and beverage products, 

such as meat86, dairy87,88, olive oil89, bakery products90 and fruits91,92. The use of 

spectroscopic methods in the wine industry is considerable, to the point that the OIV has 

published a series of guidelines for the use of infrared analysers in oenology, which describe 

the quality control procedures to obtain reliable results93. Hence, the application of PAT 

methodologies in the wine industry could be advantageous to obtain wines with the desired 

characteristics and reduce the risk of encountering problems during the different stages of 

wine production. 

1.2.4. PAT for bioprocess monitoring 

Processes involving the action of microorganisms (bioprocesses) are complex, time 

dependent, and highly nonlinear. These characteristics make these processes very difficult 

to systematise94. Of all food processing technologies, fermentation is one of the oldest and 

most well-established methods for the production of alcoholic beverages and basic food 

commodities such as bread and dairy products95. Real-time monitoring and control of 

fermentation processes appears to be quite useful for the food and beverage industries, in 

order to increase productivity, efficiency, and reproducibility96. 

Bioprocess control and monitoring involves the application of sensor or portable 

technologies for some traditional critical process parameters, including temperature, pH, 

and dissolved oxygen97. However, the process information that can be continuously 

obtained from these sensors is nowadays deficient, as new parameters, such as matrix 

composition, biomass concentration or product concentration, that yield valuable 
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information of the process and have an influence on the critical attributes, should also be 

controlled during processing. Consequently, research on bioprocess control has been 

expanding beyond the more traditional control parameters to include more sophisticated 

process information97.  

Traditional methods usually rely on conventional techniques, such as titration, 

chromatography, ultraviolet-visible spectroscopy and electrophoresis, among others. As 

mentioned in the previous section, these analytical techniques are not useful for continuous 

process monitoring because they are off-line, that is, they require that a sample is withdrawn 

from the bioreactor and, in some cases, steps of extraction or laborious sample pretreatment 

are needed, thus increasing the time of analysis98.   

There is a growing interest in the implementation of fast and affordable analytical methods 

in the food and beverage industries, as new instruments allow gaining process knowledge 

through the determination of compounds that could only be previously monitored using 

traditional techniques99. In this regard, Near-Infrared (NIR) and Mid-Infrared (MIR) 

spectroscopy have gained popularity in bioprocess monitoring during the last decades72,96. 

These techniques offer the possibility to obtain a significant amount of information about 

the process, which could be considered as “fingerprints” of the different stages of the 

process72.  

1.2.5. NIR and MIR for bioprocess control 

IR and MIR spectroscopies are ideal techniques for bioprocess monitoring, as they can 

simultaneously analyze a wide variety of organic compounds, including substrates, 

products, metabolites, nutrients and biomass concentrations. Some of the compounds that 

have been successfully determined with these techniques are: glucose, glutamate, fructose, 

glutamine, lactate, ammonia, glycerol, acetate and ethanol100. These measures have made it 

possible to implement process control strategies based on substrate depletion (e.g. rate of 

sugar consumption) or rate of product formation. When monitoring bioprocesses with IR 

techniques, the most challenging aspects to be considered are the huge matrix differences 

between the initial and final states of the sample, and the intrinsic variability among 

different batches of the same process. Both techniques have their advantages and 

disadvantages, and will be described in the next section. Even though MIR has gained 

popularity in recent years, its use is less widespread than NIR70. 
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The main bioprocesses studied by using NIR and MIR techniques are those related to the 

detection of substrates and metabolites in yeast and bacterial cultures and in suspended or 

immobilised cell cultures. It should be noted, however, that most studies have been 

conducted in synthetic media101. Many authors have proposed the use of NIR or MIR to 

monitor the evolution of organic compounds involved in alcoholic fermentation 

processes71,84,102. The main molecules analysed were glucose and ethanol103, but 

spectroscopic methods have proven to be efficient to monitor other important substrates 

and metabolites such as lactose, galactose, lactic acid and pH104.  

From NIR and MIR measurements, a large amount of data is obtained that requires the use 

of Multivariate Data Analysis (MVDA) techniques, such as Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) regression. These techniques are essential to gain 

process knowledge as the allow the interpretation and analysis of data105. 

1.3. Spectroscopy 

1.3.1. Principles of Spectroscopy 

Spectroscopy, one of the most important techniques in analytical chemistry, deals with the 

production, measurement, and interpretation of spectra arising from the interaction of 

electromagnetic radiation with matter. Spectroscopic methods provide valuable 

information on the molecular features of a wide variety of compounds, and it is widely used 

for both quantitative and qualitative analyses106. Electromagnetic radiation is the result of 

the combination of electric and magnetic fields (Figure 4)107.  

 

Figure 4. Representation of electromagnetic radiation. The electric and magnetic fields are in 
phase, perpendicular to each other and to the direction of propagation. Adapted from Penner, 

2017107. 
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Radiation waves are defined by their wavelength (λ, length of one wave), frequency (v, 

number of cycles per unit time), and wavenumber (𝑣̅, number of waves per unit length). 

These parameters are related to one another by the following expression: 

𝑣̅ =
𝑣

(𝑐∕𝑛)
=

1

λ
  Equation 1 

where c is the speed of light, n the refractive index of the medium where the radiation is 

passing through and v is the photon frequency. In fact, when interacting with matter, 

radiation acts as particles of energy (photons), giving rise to the wave-particle duality 

theory, which states that radiation acts, both at the same time, as a discrete particle and a 

continuous wave108. Photon frequency (v) and photon energy (EP) are related by: 

                                                       EP = ℎ𝑣  Equation 2 

where h is Planck’s constant (6.6256 x 10-27 erg sec). Photons of specific energy may be 

absorbed or emitted by a molecule, resulting in a transfer of energy. Depending on the 

energy of the electromagnetic radiation, transition between different types of energy states 

are induced at atomic and/or molecular level. The set of different levels of energy radiation 

constitute what is known as the electromagnetic spectrum (Figure 5), which classifies 

radiation according to wavelength/frequency values108.  

 

Figure 5. The electromagnetic spectrum. From Odularu, 2020109. 
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Different analytical methods exist depending on the region of the electromagnetic spectrum 

used in the analysis, the type of radiation-matter interaction to be monitored (such as 

absorption, emission, or fluorescence) and the species to be analysed (such as molecules or 

atoms)107.  

1.3.2. The infrared region 

The infrared region of the electromagnetic spectrum involves radiation waves with longer 

wavelengths and lower energy than visible light. The energy provided by the photons 

associated with the infrared region results in transitions between quantized vibrational 

energy states of molecules, inducing vibrational excitations of bonds or groups within 

molecules78. The identification of the absorption bands in an IR spectrum of specific 

chemical groups can be used for quantitative and qualitative molecular analysis. Infrared 

radiation can also cause rotational movements of molecules, but these are generally 

superimposed on the vibration bands and can only be observed with high-resolution 

spectrometers110.   

The infrared spectrum of a sample is obtained by passing a beam of infrared radiation 

through a sample and determining what fraction of the incident radiation is absorbed, 

transmitted or reflected by the sample at a given energy (represented by wavenumbers or 

wavelengths that are proportional to the energy as shown in Equations 1 and 2)111. Only 

asymmetric bonds with a dipole moment that changes as a function of time are capable of 

absorbing IR radiation112. The resulting signal represents the molecular infrared 

absorption, transmission or reflection of the sample. The most interesting feature of these 

IR signals is that two samples with different composition do not have the same IR spectrum, 

which is unique for each specific sample and can be seen as the sample fingerprint in the IR 

region113.  

1.3.3. The IR instrument 

There are two types of IR spectrometers: dispersive and Fourier transform (FT) 

instruments. Back in the 1940s, dispersive systems were the first IR spectrometers 

available, and they splitted the individual energy frequencies emitted from the infrared 

source. This was accomplished using a prism or a grating as dispersive elements. These 

dispersive systems contain elements similar to those of ultraviolet–visible (UV–Vis) 

spectrometers, including a radiation source, a monochromator, a sample holder, and a 

detector connected to an amplifier system to record the spectra. In this system, the detector 
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measures the amount of energy at each frequency that has passed through the sample and 

the resulting signal is plotted in the form of a spectrum of intensity vs. frequency114. 

The advances in IR technology lead to the appearance of Fourier Transform infrared 

spectrometers (FT-IR). This type of system was mechanically simpler as they only have 

one moving part (the interferometer), replacing in this way the dispersive instruments from 

the original IR instruments. This change drastically improved the quality of the spectra 

and decreased the time required to obtain an IR spectrum115.  

1.3.3.1. Michelson interferometer 

The FT technique uses a Michelson interferometer (Figure 6), an optical device whose main 

parts are: the source of infrared light, the beam splitter that splits the incoming IR beam 

from the source into two beams, and two perpendicular plane mirrors: one moving mirror 

and a fixed mirror116.  

The two beams generated from the beam splitter are reflected into their respective mirrors: 

one beam is reflected in the fixed mirror, while the other beam is reflected in the moving 

mirror. Then, they recombine when they meet back in the beam splitter. Because the beam 

reflecting on the fixed mirror moves at a fixed path length and the other is constantly 

changing its path length, the signal coming out of the interferometer is the result of the 

two beams interfering with each other117.  

When the two light beams have travelled the same distance from the beam splitter (zero 

path difference) the reflected light beams are in phase and all frequencies will interfere 

constructively to produce the highest intensity (centerburst). Due to the movement of the 

moving mirror, the position of the two mirrors modifies the distance travelled by the two 

light beams creating a continuous modification in the optical path difference between the 

two beams. This creates interferences in the radiation, and thus different interference 

patterns (intensities) are obtained. The two beams are only in phase when the optical path 

difference between the mirrors is an integer (n) multiple of the wavelength (λ). If the 

mirrors are not in phase, the interference is destructive, leading to a beam of low 

intensity116. 
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Figure 6. Schematic of a Michelson interferometer. From Stuart, 2005116. 

After the beam has passed through the sample, the resulting signal is called an 

interferogram (Figure 7). It is a unique type of signal where every data point has 

information of every infrared frequency coming from the source. The total intensity of the 

source (in volts) is shown by the centerburst, which does not contain any signal from the 

sample. The wings of the interferogram contain the information from the sample106. 

 

Figure 7. Typical interferogram of a modern FTIR spectrometer. From Sun, 2009106. 
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1.3.3.2. Fourier Transform Infrared Spectroscopy 

The interferogram resulting from the IR spectrometer cannot be directly interpreted. This 

signal must be transformed using a well-known mathematical technique called ‘Fourier 

Transformation’ in order to get the final spectrum. This calculation is performed directly 

by the computer using the FT algorithm96,118. and consists on breaking down the 

interferogram into sine waves for each wavelength or wavenumber106. 

The application of Fourier Transformation in IR (FT-IR) has dramatically improved the 

acquisition of infrared spectra and has given infrared spectroscopy the possibility to118: 

- Increase the speed of analysis, as all the frequencies are measured simultaneously. 

- Perform an internal calibration: these instruments employ a special laser as an 

internal wavelength calibration standard. 

- Increase sensitivity and signal stability: the optical throughput is much higher, 

resulting in much lower noise levels, and the fast scans enable the coaddition of 

several scans in order to reduce the random measurement noise to any desired 

level.  

- Reduce the possibility of mechanical breakdown thanks to its mechanical 

simplicity. 

A background spectrum must be measured, usually with air or water (when dealing with 

samples with high % of water) to determine the relative scale for the absorption intensity. 

Then, the sample is measured and both measurements (sample and background) are 

compared to determine the “percent transmittance/absorption”. The spectral features 

obtained in the final spectrum are strictly due to the interaction of the light beam with the 

sample119.  

For all these reasons, involving simplicity, sensitivity and versatility advantages, this 

technique is rapidly gaining importance for the analysis of foods and beverages120.  

1.3.4. NIR, MIR and FIR Spectroscopy 

Infrared spectroscopy can be subdivided into three categories (Figure 8) according to the 

level of energy: far-infrared (FIR, <400 cm-1), mid-infrared (MIR, 4000 to 400 cm-1) and 

near-infrared (NIR, 13000 to 4000 cm-1). Nowadays, most infrared applications employ the 

NIR region, which consists of overtones and combination bands, but the mid- and far-

infrared regions also provide important information about certain materials. Due to the 
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minor energetic distances between the energy levels in NIR, the resulting spectra are less 

defined, whereas MIR spectra exhibit a higher absorption capacity and well-defined peaks96. 

MIR has a shorter path length compared to NIR and this reduces light scattering, which is 

commonly experienced when using NIR. On the other hand, this means that MIR does not 

penetrate as much into the material as NIR does70. Also, MIR has a higher resolution, so it 

enables detecting and quantifying components in aqueous solutions at lower concentrations 

than with NIR96. 

 

Figure 8. Types of radiation in the infrared region of the electromagnetic spectrum. Adapted 
from Sun, 2009106. 

FIR spectroscopy is more limited than NIR and MIR for quantitative and qualitative 

analysis of food-related materials, but it does provide information regarding the vibrations 

of molecules containing heavy molecules, such as inorganic and organometallic 

substances116. FIR can be used to detect intramolecular stretching, bending and torsional 

modes involving heavy atoms121. Hence, this low-energetic region is not as useful as the 

other regions for the analysis of the organic constituents in food systems122.  

1.3.4.1. Near-Infrared Spectroscopy 

In NIR spectroscopy, the spectrum generated is the result of combinations and overtones 

of fundamental vibrations of molecules containing hydrogen atoms covalently bonded to 

carbon, oxygen or nitrogen: -CH, -OH, -NH groups. These groups are largely found in 

organic molecules such as proteins, carbohydrates and fats, which are the basis of food and 

beverage products. This characteristic makes NIR a very useful technique for the analysis 

of foods and beverages123.  

NIR spectroscopy is nowadays an established method for the physicochemical analysis of a 

wide variety of food products. It has been used for the determination of the concentration 

of fat, protein or sugars in dairy products, meat and cereals, the analysis of quality 

parameters such as moisture and tenderness, and the determination of the degree of 
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ripeness in some fruits123. In the beverages industry, it has been used for the analysis of 

beer, wine and spirits106. 

1.3.4.2. Mid-Infrared Spectroscopy   

sIn MIR spectroscopy signals arise from fundamental vibrations and overlap less than in 

NIR spectroscopy. In MIR spectra, the signal is characterized by absorption due to 

molecular vibrational and rotational motions. A representation of these vibrational motions 

inducing this type of energy absorption in the MIR region is shown in Figure 9114. 

 

Figure 9. Vibrational modes of the water molecule Stretching vibrations refer to those vibrations 
in which bond length changes, whereas bending vibrations refer to those vibrations in which bond 

angle changes. Adapted from Rodriguez-Saona et al., 2017114. 

An interesting feature of MIR spectra is that they contain a region which is specific for each 

sample. This region is called the fingerprinting region, and it ranges from 1500 to 1000 

cm-1 and is widely used for the identification of molecular structures124. 

Unlike NIR, MIR bands can be assigned to functional groups, and the intensity of the bands 

is related to the nature and polarity of the bonds present in the molecule. For example, the 

C-O bond (highly polarized), strongly absorbs in the MIR region while the C-C bond 

absorbance in the MIR region is much weaker. Also, stronger bonds vibrate at higher 

frequencies than weaker bonds and double or triple bonds are stronger than simple bonds 

(this is determined by the strength constant k of each bond)116. 

These characteristics make it possible to analyse a wide variety of complex samples, 

including those from the food industry. One of the major drawbacks when analysing food 

samples with MIR, however, is the strong absorption of water that can overlap or mask 
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other important peaks. Another drawback is that organic molecules have similar chemical 

structures, which makes it especially challenging to distinguish specific molecules113. This 

is mainly due to the presence of C-C, C-H and C-O in most of these molecule backbone 

structure. In food applications, MIR has been used for the determination of fat in dairy 

products, water, sugars and ethanol in alcoholic beverages, and authentication and quality 

control purposes110.  

1.3.5. IR analysis methods 

New developments in sampling techniques, thanks to innovation in optical probes as well 

as in electronic/computational techniques, have made it possible to address the 

identification of virtually any sample in the liquid, solid or gaseous state, solving 

challenging problems impossible to handle when using old dispersive spectrometers and 

traditional sampling techniques. Technological advances have also made it possible to 

transfer infrared spectroscopy instrumentation from the laboratory to on-site and on-line 

applications, by moving from benchtop instruments to portable miniature-type 

spectrometers76,125,126. Applications of these portable IR equipment are very diverse: study 

of air emissions127, analysis of plastics128, forensic science129,130 and analysis of food and 

beverages131,132. IR transmission methods are the most traditional, but more modern 

methods based on light reflectance are gaining special attention. These are subdivided into 

attenuated total reflectance, diffuse reflectance and specular reflectance methods133.   

1.3.5.1. Transmission methods 

Transmission is the oldest infrared method. It is based on the absorption of infrared 

radiation at specific frequencies as it passes through a sample. To analyse liquid solutions 

using this approach, the liquid is poured into a transmission cell of fixed or variable 

pathlengths. For the later, polytetrafluoroethylene (PTFE) spacers allow the cell to be used 

for various pathlengths, incorporating a mechanism for a continuous adjustment of the 

pathlength. Because of the high absorption of water in the transmission mode, alternative 

solvents should be considered. For solids, depending on the nature of the sample, three 

methods exist116: 

- Alkali halide discs: the sample is grounded and mixed with an alkali halide powder. 

The most commonly used alkali halide is potassium bromide (KBr), because it does 

not produce a signal in the mid-infrared region. The mixture is sintered with 

pressure to produce a clear transparent disc. 
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- Mulls: the sample is ground and suspended in one or two drops of a mulling agent. 

Then, further grinding is applied until a smooth paste is obtained. Nujol (liquid 

paraffin) is the most commonly used mulling agent.  

- Films: the sample is dissolved using a solvent capable of producing a uniform film. 

The resulting solution is poured onto a glass or metal plate and spread to a uniform 

thickness. The solvent is then evaporated and the film is stripped from the plate. 

Gaseous samples are analysed using a gas cell, which is usually filled by flushing or from a 

gas line. The walls of the cell are of glass or brass. The size of the sample compartment is 

limited and a multi-reflection gas cell is necessary to produce longer pathlengths.  

The use of vibrational spectroscopy in the transmission mode is not suitable for the on-line 

measurement of food and beverages as it involves a laborious sample preparation before 

analysis. Reflectance methods are preferred instead116.   

1.3.5.2. Reflectance methods 

Reflectance methods arose as an alternative for samples that are difficult to analyse by 

transmission methods. There are three types of reflectance modes, depending on how the 

beam interacts with the sample133. 

1.3.5.2.1. Attenuated Total Reflectance   

Attenuated Total Reflectance (ATR) is based on the principle of total internal reflection of 

an evanescent wave, that is, when the angle of incidence at the interface between the sample 

and a crystal is greater than the critical angle, the infrared beam entering the crystal will 

undergo total internal reflection. The critical angle is a function of the refractive indices of 

the two surfaces. The beam will penetrate a fraction of a wavelength beyond the reflecting 

surface and, when a material that absorbs radiation is placed in close contact with the 

reflecting surface, the beam will lose energy at the wavelength where the material absorbs. 

The resultant attenuated radiation will give rise to the absorption spectral characteristics 

of the sample. The amount of radiation that will penetrate the sample, known as depth of 

penetration (dp), is given by: 

                      dP = (λ/n1)/{2π[sin θ − (n1 ∕ n2)2]1∕2} Equation 3 

where λ ─ wavelength, n1 ─ refractive index of the sample, n2 ─ refractive index of the 

crystal, θ ─angle of incident radiation. As implied by the previous equation, the absorbing 
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path length of the infrared beam (0.5–5 μm) can be modified by angle of incident radiation, 

and it can be enhanced by applying multiple reflections in the sample (Figure 10)78.  

 

Figure 10. Schematic diagram of the attenuated total reflectance sampling technique. Adapted 

from Fagan and O’Donnell, 2008134. 

The crystals used in ATR, which act as internal reflection elements, are made from 

materials with low solubility in water and very high refractive index. The refractive index 

of the crystal must be significantly larger than that of the sample. The most common 

materials are zinc selenide (ZnSe), germanium (Ge) and thallium–iodide (KRS-5). However, 

the most suitable material is diamond, the high cost of which is compensated by its very 

long shelf-life and stability. Both liquid and solid samples can be analysed using ATR. In 

addition, a flow-through ATR cell can be installed, allowing the continuous flow of 

solutions through the cell116.  

The ATR method is gaining popularity because it solves important aspects in IR analysis: 

it drastically reduces sample preparation, the required sample volume is minimum and it 

increases spectral reproducibility117.  

Taking into account the above described advantages together with the analysis simplicity 

and rapidness, this technique was the one used in this thesis for wine alcoholic fermentation 

monitoring. 

1.3.5.2.2. Specular reflectance  

Specular reflection (also known as surface reflection) is based on external reflection 

principles, in which the incident radiation is focused onto the sample and the reflected 

radiation from the sample is measured. Specular reflectance occurs when the angle of 

reflection is equal to the angle of incidence. The sample must be reflective or attached to a 

reflective surface. This method is very useful for the study of solids with flat surfaces when 
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the sample cannot be melted, dissolved or finely ground. The sample is simply placed on a 

flat surface and measured. Liquid samples can also be measured using a PTFE cell135. 

The amount of light reflected depends on the angle of incidence, the refractive index, the 

surface roughness and the absorption properties of the sample. Grazing angle sampling 

accessories allow sample measurements at different angles of incidence. The resulting 

spectrum must be corrected using mathematical methods to get the traditional 

transmission spectrum116.  

1.3.5.2.3. Diffuse Reflectance 

This method is commonly referred as Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy (DRIFTS) and is also based on the external reflectance of infrared radiation. 

When the incident infrared light is directed to the sample, it penetrates one or more 

particles and it is reflected in all directions giving rise to diffusely scattered light117. This 

method is especially suitable to analyse powdered samples mixed with KBr and rough 

surface solids. The DRIFTS cell reflects radiation to the sample and collects the energy 

reflected back over a large angle. The obtained reflectance spectrum relates the sample 

concentration to the scattered radiation intensity according to the Kubelka-Munk theory. 

Figure 11 shows the difference between specular reflectance and diffuse reflectance from a 

solid surface. 

 
Figure 11. Representation of diffuse and specular reflectance in a powder sample. A single beam 

(right) can have a specular and a diffuse component at the same time. Adapted from Coates, 1998136. 
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1.4. Multivariate data analysis: chemometrics 

The first goal in the implementation of any PAT methodology is to get process data, which 

may include operating variables and process parameters. To acquire these data, the 

available tools have evolved from those that predominantly take simple univariate 

measurements, such as pH, temperature, or density, to those that measure biological, 

chemical and/or physical attributes using fast analytical instruments such as IR 

spectrometers.  

Such analytical instruments provide a large amount of data (in the form of spectral signals) 

in a short period of time. In order to properly process these data and extract the desired 

information, multivariate data analysis (MVDA) techniques are necessary. MVDA 

techniques are typically used in areas such as consumer and market research, quality control 

and quality assurance, process optimization and control, research and development. In 

chemical sciences, these techniques are known as “chemometrics”, and include all the 

appropriate mathematical algorithms that support analytical instruments providing large 

amounts of data in chemical measurements and chemical processes137. 

1.4.1. Multivariate IR data 

As mentioned in the previous section, IR spectra are complex combinations of vibrational 

absorptions from all the bonds contained in the molecules of a given sample. For this reason, 

these spectra are difficult to interpret and the use of MVDA techniques is needed to extract 

the relevant information. Typically, for the analysis of a single sample with IR, the 

instrument will provide a numeric value (absorbance, transmittance or reflectance) for each 

of the measured frequencies in the IR region (wavenumbers or wavelengths). As a result, 

when multiple spectra from different samples are measured, high amounts of data are 

obtained that can be gathered in a data matrix with dimensions IxJ, where I refers to the 

number of samples (spectra) and J refers to the number of frequencies (wavenumbers). 

Furthermore, when considering a process, spectra are obtained at different time points, and 

time can be considered as a third dimension (K). The resulting matrix (Figure 12) has then 

three dimensions (IxJxK), which is the typical structure of a MVDA data matrix for PAT 

analyses138. 
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Figure 12. Representation of the three-dimensional multivariate data arrangement (right) of 

several data matrices containing the I samples of J variables for each K time point. Adapted from 
Figuereido, 2016139. 

1.4.2. Data preprocessing 

Data preprocessing is a common step before multivariate data modelling. It involves the 

mathematical transformations of the raw data (i.e. in case of spectral data, the spectra 

resulting directly from the analytical instrument), in order to obtain meaningful qualitative 

or quantitative analytical models. Data preprocessing, can substantially enhance the quality 

of analytical data, as it minimizes the effects of instrumental or random noise, spectral 

artefacts, reduces sources of spectral systematic variability and improves selectivity. When 

the signal-to-noise (S/N) ratio of a given spectrum is very small, the application of 

preprocessing methods is especially important to maximize spectral differences.  

For spectroscopic data, preprocessing strategies must be carefully studied to avoid losing 

useful information. Some knowledge is required about the nature of the variability present 

in the spectra and how the different preprocessing algorithms work140. 

Systematic variability in IR spectra is mainly due to scattering effects, baseline shifts, 

trending and noise (Figure 13). Depending on the source of variability arising from 

spectroscopic data, different preprocessing techniques can be applied to correct or minimize 

such problems141: 

- Noise: is common to almost any analytical technique. In spectroscopy, it is related 

to small variations in absorbance that are not expected to be significant. The most 

common algorithm to reduce noise is the Savitzky-Golay smoothing, which is 

based on fitting polynomials to several data windows (one polynomial per window) 

with the same number of data points in each window142. 

- Baseline effects: the most common baseline effects in spectroscopy are offset and 

slope (Figure 13). In IR spectra, these effects lead to signals in which the baseline 

has shifted vertically (offset) or shows any type of baseline slope. Baseline effects 
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can be corrected by estimating a common baseline for all spectra, which is 

subtracted from each of the measured spectra. The most common baseline 

correction methods for spectroscopic data are Detrending and Multiplicative 

Scatter Correction (MSC). In detrending, one fits a polynomial of a fixed degree to 

the spectrum and subsequently subtracts this polynomial from the spectrum. In 

MSC, correction coefficients are estimated and a reference spectrum, which is 

usually the average spectrum of the calibration set, are used to build a corrected 

spectrum. First-order derivatives can also remove constant additive offsets, and 

second-order derivatives can remove baseline slopes. Second-order derivative, 

despite removing both offset and slope, has a major disadvantage, and is that it can 

increase the random noise of the signal. 

 
Figure 13. Most common baseline effects found in IR spectra. Baseline offset (left) represents a 
vertical shift at a constant value. Baseline slope (centre) is characterised by shifted baseline at 

an inconsistent value with an increase or decrease. Baseline curvature (right) is a special case of 
baseline slope in which baseline shifted at an inconsistent value which resembles a curve shape. 

Adapted from Chuen Lee et al., 2017143. 

- Scattering effects: IR spectra are affected by light scattering. Light scattering 

occurs because the size of the particles in the sample has at least one dimension 

that is roughly the same magnitude than the spectroscopic wavelengths. These 

effects usually appear in IR spectra as a drift in the signal. This effect is greater for 

high wavenumbers, and can be due to scattering of the infrared light at the surface 

or inner part of the sample. The most common preprocessing methods to correct 

scattering effects are Standard Normal Variate (SNV) and Multiplicative Signal 

Correction (MSC). The first method subtracts the spectrum mean from each 

spectral variable and subsequently divides that value by the standard deviation of 

the spectrum (i.e. the estimated scatter constant). As described previously, MSC 

estimates the coefficient describing the scattering by regressing the spectrum to 

correct onto a reference. It must be noted, though, that SNV has to be taken with 

caution, as it “shifts” informative regions along the signal range, making it difficult 

to interpret the spectra144. There exist newly developed algorithms to avoid this 

problem, such as Variable Sorting for Normalization (VSN), in which the variables 
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constituting the signals are suitably weighted before calculation of the mean and 

the standard deviation used in the SNV transform145,146. 

Derivatives are not only useful for minimizing baseline effects, but also to reduce noise 

(when used in combination with smoothing) and enhance slight spectral differences 

between nearly identical samples. More recent preprocessing techniques include 

Orthogonal Signal Correction (OSC) or External Parameter Orthogonalisation (EPO). 

OSC aims at removing all the variations in the spectra that are not related to a response 

variable. EPO specifically removes information related to the variation of an external 

parameter that negatively influences the response variable147–149. 

In many cases, mean centering and standardization are applied to the data after 

preprocessing. In mean centering, the mean of all the absorbance values from each variable 

is calculated and subtracted from each single value. The mean for all values is set to zero, 

which means that negative values will appear for some of the values. Mean centering is 

useful to emphasize the differences between samples. Standardization will make each 

column have the same “size”, as each single value is divided by the standard deviation of the 

column. The joint application of mean centering and standardization is referred as 

autoscaling 150,151. 

The choice of the most suitable combination of preprocessing techniques depends on the 

type of spectral signal and the nature of the application. Generally, there are three types of 

preprocessing approaches, which are commonly found in the literature: 

- Trial and error, in which the decision on the best strategy is based on the best 

performing one according to the goal of data analysis. 

- Visual inspection where, for each pre-processing strategy of interest, the pre-

processed data are inspected by simply looking at these data and checking if any 

artefacts are still visible. 

- Assessment of pre-processed data by data quality parameters, which aims at 

quantifying the presence of artefacts in the data141.  

1.4.3. Variable selection 

In chemometrics, it is important that variations in the data that are not related to the signals 

of interest are removed before building a chemometric model. Typically, chemometric 

algorithms are able to disregard this unimportant sources of variation. However, a variable 

selection step may be required in some cases, as part of the preprocessing strategy before 
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applying any MVDA method. This step aims at selecting specific wavelengths out of the 

whole spectra, that are relevant to the signal of interest and that better define the sample 

class or better correlate with the contents of analytes or properties of interest, removing 

non informative regions that could be hampering the model performance. The main idea is 

to remove those variables not contributing to improve the performance of the overall 

model. The procedure is normally conducted after some preprocessing of the raw spectra 

set. These methods are commonly applied when building prediction models for 

quantification purposes, such as Partial Least Squares Regression (PLSR), which will be 

discussed in the following section152,153. 

There exist three types of optimization methods for variable selection: 

- Filter methods: these methods are applied after building a chemometric model, 

and are generally implemented defining a ranking criterion and applying a 

threshold arranging variables into importance measures. The most well-known 

filtering methods include the Variable Importance in Projection (VIP) and the 

Selectivity Ratio (SR). Based on the outcome of such filter methods, variables can 

be selected by, e.g. setting a threshold on the value of the variable importance 

measure154.  

- Wrapper methods: in this case, variable selection is accomplished by iteratively 

removing variables from the data and refitting a chemometric model on the 

reduced data. Model performance is evaluated to choose the best subset of 

variables. Some wrapper methods are: uninformative variable elimination in PLS 

(UVE-PLS), interval PLS (iPLS), genetic algorithm (GA) and Predictive Property-

Ranked Variable (PPRV)155. 

- Embedded methods: in this type of methods, the variable selection is integrated 

in model building, so that the computation time required for reclassifying different 

subsets (as done in the wrapper methods) is reduced. The best subset of variables 

is assessed as part of the training process to build the model. Some of the typical 

methods of this category are based on the introduction of sparsity, e.g. in weight 

vectors, regression coefficients (PLS), loadings (PCA) or canonical vectors 

(LDA)156. 

Usually, model performance and interpretation is expected to improve through a correct 

combination of preprocessing and variable selection techniques, by highlighting the 

chemically relevant variables. It should be noted that, above all, variable selection should 

UNIVERSITAT ROVIRA I VIRGILI 
MONITORING WINE FERMENTATION 
USING ATR-MIR SPECTROSCOPY AND CHEMOMETRIC TECHNIQUES 
Julieta Cavaglia Pietro 



40 Introduction 
  

 
be performed with a priori knowledge of the researcher about the process and the IR 

spectrum, and that it is possible to build a multivariate model by restricting the analysis to 

a particular IR spectral region containing specific chemical information143. 

1.4.4. Exploratory data analysis 

Once the data set has been preprocessed, the first step in MVDA is exploring the data 

variability to get some preliminary information. This type of analysis is often called 

unsupervised, because the analysis is performed without taking into account any label or 

category. The most common method for data exploration is Principal Component Analysis 

(PCA). This method allows the identification of patterns in the data, including similarities 

and differences (for samples or variables), outliers and trends between data variables or 

samples157. PCA is based on dimensionality reduction, by transforming the original 

correlated variables into a fewer number of independent variables, while preserving the 

maximum variance information as possible. These new uncorrelated variables are called 

Principal Components (PCs), and they are orthogonal to each other. PCs are a linear 

combination of the original variables, and they are built by detecting the directions in space 

(the original space has J dimensions, being J the number of initial variables) involving the 

largest variability in the data. The first PC detects the direction with the largest variability, 

the second PC detects the direction with the second largest variability and is orthogonal to 

the first PC, and so on. Therefore, each PC is orthogonal to its previous PC, and detects 

the maximum variability which has not been explained by the previous PCs158. PCs 

represent the coordinates of the new space created by the PCA model. In practice, the first 

few components are the ones retained by a PCA model, as those include the useful 

information. Each PC is defined by the product of two vectors: the score vector (ta), and the 

loading vector (pa), where a is the number of a given PC. Data decomposition in fewer 

variables can be described by the following equation159: 

          𝐗 = 𝐭1 ⋅ 𝐩1
T + 𝐭2 ⋅ 𝐩2

T + ⋯ + 𝐭𝐀 ⋅ 𝐩A
T + 𝐄            Equation 4 

where X (IxJ) is the original data matrix, ta is the score vector for the ath component, pa is 

the loading vector for the ath component and E (IxJ) is the residual matrix containing the 

variation not modelled. A schematic representation of the PCA matrix decomposition is 

shown in Figure 14. The goal of PCA is to explain as much as possible the total sum of 

squares of X with the minimal number of PCs159. The calculated scores and loadings can be 

plotted in simple 1D or 2D graphs, allowing the interpretation of the whole data space in 
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an easy and visual way. Scores represent the projection of the samples into the new system 

of coordinates (the pa loadings) and they explain relationships between samples. In turn, 

loadings represent the weight coefficients of the original variables with respect to the PCs 

and they explain relationship between variables and PCs, and variables themselves. 

 

Figure 14. PCA decomposition in matrix form. The original matrix (X) is decomposed in the 
product of scores (T) and loadings (PT) plus the residual matrix (E). 

In PCA, it is common to calculate two statistical parameters in order to evaluate the 

performance of the model: Hotelling T2 and Q statistics. These two statistics are of great 

importance when determining if a sample is an outlier, that is, a sample showing unusual 

features. Detection and removal of outliers is necessary before building any MVDA model, 

as failing to do so can dramatically affect the performance of the model. The Hotelling T2 

statistic can be seen as an extension of the univariate t-test and can be applied to the scores 

of a PCA. It defines the statistical boundaries assuming a normal distribution of scores in 

the PCA, and it represents the distance of a sample to the center of the PCA model. 

Hotelling T2 for a given i sample is calculated as: 

                                             Ti
2 =

𝐭i
T(𝐓T𝐓)

−𝟏
𝐭i

𝐈−1
                   Equation 5 

where T (IxA) is the score matrix of the calibration samples and ti (Ax1) is a vector 

containing the A scores of the projected ith sample in the PCA space. A confidence limit 

can be calculated for the Hotelling T2, assuming that scores are normally this distributed 

(Equation 6). This limit can be used to control if some of the samples are showing unusual 

score values160. 

                                  T𝑖 (𝐈,𝐀)
2 =

𝐀(𝐈−1)

𝐈−𝐀
F𝐀,𝐈−𝐀,α                Equation 6 
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where A is the number of principal components, I the number of samples, and α the 

significance level of the test. The Q statistic is simply the sum of the squared residuals of 

each sample. Residuals can be defined as the squared difference between the measured 

values and the values calculated from the PCA (Equation 7) and it represents the 

perpendicular distance of a sample to the space of the PCA defined by the selected A 

components.  

                                Qi = eiei
T = xi(I - PAPA

T)xi
T              Equation 7 

where ei is the ith row of E, PA is the matrix of the A loadings vectors retained in the PCA 

model (where each vector is a column of PA) and I is the identity matrix of appropriate size 

(J x J)161. As for the Hotelling T2 statistic, a confidence limit can be calculated for the Q-

residual statistic162. The Q statistic represents the part of the information of the data that 

cannot be explained by the PCs in the PCA space151. Both statistics can be plotted together, 

in what is called “influence plot”, which is a very useful tool to look for samples that are not 

well described by the PCA model. 

1.4.4.1. ASCA: a new exploratory tool 

When studying a process, the influence of several factors is usually considered in the Design 

of Experiments (DoE). However, when dealing with multivariate data, it is very difficult to 

discern which part of the variables is directly influenced by the experiment factor and which 

is not. ANOVA-Simultaneous Component Analysis (ASCA) is a quite recent exploratory 

method in chemometrics, which aims at evaluating the significance of one or more 

experimental factors. Hence, it can be considered a direct generalization of analysis of 

variance (ANOVA) for univariate data, but applied in a multivariate way163. 

In the case of two known experimental factors, ASCA decomposes the centered data matrix 

(Xc) according to:  

               Xc = X - 1mT = Xfactor 1 + Xfactor 2 + Xfactor 1 x factor 2 + E             Equation 8 

where X is the original data matrix, 1 is a vector of ones, mT is the mean of all the 

observations, Xfactor 1 and Xfactor 2 are the matrices representing the effects of each one of the 

experimental factors, Xfactor 1 x factor 2 is the interaction matrix of the factors and E is the 

residual matrix. Each matrix is centered and contains the mean profiles of the samples 

corresponding to each factor or interaction level. As an example, if factor 1 has two levels 
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of 20 observations each, 20 observations will contain the average profile for the first level 

of factor 1, and the same will happen with level 2164. The interaction matrix is calculated 

after the subtraction of the main effect matrices. Since all the effect matrices are centered, 

the magnitude of the effects can be evaluated as the sum of the matrix elements. Given a 

factor i:  

                                         SSQfactor i = ||Xfactor i||2                     Equation 9 

To evaluate if the effect of a particular factor or interaction is statistically significant, the 

value of the sum of squares of the corresponding matrix is compared to its distribution 

under the null hypothesis, as evaluated non-parametrically by a permutation test165. The 

permutation test allows the calculation of a p-value for samples that do not necessarily meet 

the conditions of normality. Given a factor i and its associated matrix Xi, the p-value is 

calculated as:  

                                        𝑝 − value(𝐗𝑖) =
nbr(𝐒𝐒𝐐(𝐗𝑖,perm≥𝐒𝐒𝐐(𝐗𝑖)))

k
             Equation 10 

where “nbr” is the number of occurrences, k is the number of permutations, Xi,perm is the 

matrix obtained after a random row permutation. Thus, the p-value relates the number of 

cases where the variance of the studied factor is lower than the variances resulting from the 

permutations. In this way, the effect of the studied factor is compared to its distribution 

under the null hypothesis as estimated by the permutations166,167. 

Then, a bilinear decomposition of each matrix is performed using Simultaneous Component 

Analysis (SCA). In the context of ASCA (under the constraints of ANOVA), this reduces to 

PCA, as the goal is to model the variability linked to each of the factors. Hence, each matrix 

from Equation 8 can be decomposed as: 

                            𝐗factor 𝑖 = 𝐓factor 𝑖 ⋅ 𝐏factor 𝑖
T + 𝐄factor 𝑖                    Equation 11 

where Tfactor i is the score matrix, PT
factor i is the loading matrix and Efactor i is the residual 

matrix of the ith partitioned matrix in Equation 8. Reducing dimensionality enables a better 

interpretation and visualization of the data considering each experimental factor or 

interaction separately. The loadings for factor i define a subspace spanned by Xfactor i, 

highlighting the spectral directions related to the factor under study. In turn, the scores for 

factor i are the new coordinates of the observations on the PCs of the model166,168,169. 
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1.4.5. Predictive analysis 

Predictive methods focus on solving, using multivariate data, the regression problem, one 

of the most common data-analytical problems in science and technology. These methods 

aim at determining how to model one or several dependent variables (Y responses), by 

means of a set of predictor variables contained in a data matrix X. The Y responses are 

usually concentrations of chemical compounds or key parameter values (i.e. density)170. 

The gold-standard for multivariate regression in chemometrics is Partial Least Squares 

Regression (PLSR). PLSR relates two data matrices (X and Y) through a linear 

multivariate model. In PLSR, instead of finding those directions which maximize data 

variability in the X-space, the algorithm tries to find those directions in the X and Y-spaces 

corresponding to the maximum covariance between X and Y to get their best correlation, 

while explaining as much as possible the variability in X171. 

 PLSR seeks to build a linear regression equation between the scores of the predictor 

variables and the scores of the dependent variables. First, both X and Y matrices are 

decomposed creating principal directions that describe the maximum variability of X while 

considering the maximum covariance between the scores of X and Y. The X scores estimate 

the linear combination of the x variables, with weight coefficient W*: 

                                            𝐓 = 𝐗 · 𝐖∗             Equation 12 

The weight W can be transformed to W*, which is directly related to X. From Equation 

12, W* is defined as: 

                                          𝐖∗ = 𝐖(𝐏T𝐖)−1     Equation 13 

The PLSR model consists of an outer and an inner relation. The outer relations describe 

the X and Y matrices individually, and are given by:  

                                              𝐗 = 𝐓𝐏T + 𝐄            Equation 14 

                                                     𝐘 = 𝐔𝐂T + 𝐅            Equation 15 

where PT and CT are loading matrices of the X and Y spaces, respectively. T is the score 

matrix of X and U the score matrix of Y. E and F are the residual matrices of X and Y, 
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respectively. X scores (T) are good predictors for the Y variables. The inner relation 

between X and Y-scores (the new variables) can be defined by: 

                                       𝐘 = 𝐓𝐂T + 𝐆                 Equation 16 

By combining Equations 12 and 16, we can redefine Y as: 

                                𝐘 = 𝐗𝐖∗𝐂T + 𝐆 = 𝐗𝐁 + 𝐆              Equation 17 

where 

                                        𝐁 = 𝐖∗𝐂T                   Equation 18 

B are the coefficients of the PLSR model and G is the residual matrix. The prediction of y-

variables for new samples is calculated using Equation 17 172. 

Scores and loadings have the same properties described for PCA. However, in PLSR the 

loadings are linear combinations of the original variables, which are known as latent 

variables (LVs) and explain the variability of X that most correlates with Y. Loadings can 

be interpreted as the influence of each variable on each LV, while scores represent the 

projection of the samples in the LV space66. 

1.4.5.1. Calibration and validation steps 

Predictive analysis consists of two steps (Figure 15). First, a PLS model which best 

correlates X and Y is built and optimised, based on the data available. This is called 

calibration (or training) step. Once the model has been created, the regression coefficients 

obtained are used for the second step, in which new external data (Xtest), which were not 

used in the training step are presented to the model, and the values for Y are predicted. The 

data set used in this step is called test (or validation) set. When the number of samples is 

limited, it is common to apply a cross-validation (CV) strategy. Cross-validation involves 

selecting blocks of samples from the original training set. These samples are left-out, the 

model is built with the remaining samples and the left-out samples are used for subsequent 

prediction, to test the performance of the model. The process is repeated for consecutive 

blocks of samples. When only one sample is left-out at a time the method is called leave-

one-out cross validation.  
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Figure 15. Schematic representation of the calibration and validation processes using PLSR. 
Adapted from Geladi, 2003159. 

When selecting the number of optimal LVs in a PLSR model, special precaution must be 

taken to avoid overfitting, which means that the model may show a great fitting ability for 

a specific set of data, but when new data are used to predict the Y variables using the same 

PLSR model, the model fails at providing accurate results.  

To determine the optimal number of LVs, the root mean error of prediction (RMSEP) is 

typically used (Equation 19), which serves to evaluate the performance of a PLSR model.  

                                 RMSEP = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                   Equation 19 

yi and 𝑦̂𝑖 are the measured and predicted values for the ith sample, and n is the total number 

of samples in the validation set. When cross-validation is performed, the root mean squared 

error of cross-validation (RMSECV) is calculated (Equation 20): 

                                RMSECV = √∑ (𝑦𝑖−𝑦𝑖,CV)
2𝑛

𝑖=1

𝑛
             Equation 20 

where yi and 𝑦̂𝑖,𝐶𝑉  are the measured and predicted values for the ith sample, and n is the 

total number of cross-validation samples170. 
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1.4.6. Classification analysis 

Multivariate classification methods in chemometrics (also known as supervised pattern 

recognition methods) aim at classifying samples using the information provided by a set of 

measurements. Classification models are based on membership recognition of each sample 

to its appropriate class. Once a classification model has been developed, unknown samples 

can be classified. A mathematical relationship between a qualitative variable (i.e. categories 

or classes) and descriptive variables (e.g. chemical measurements, spectra) is established173. 

There are two different approaches for classification analysis: discriminant and class-

modelling methods. When using a discriminant method, a sample is always classified into 

a category. In class-modelling, a sample could be assigned to or rejected from one or more 

classes. One of the most common classification methods is Partial Least Squares Regression 

Discriminant Analysis (PLS-DA), which was originally proposed to an extension of 

PLSR155. 

In PLS-DA, the class vector y containing the membership of the samples is transformed 

into a dummy matrix Y (Figure 16), of dimensions IxC, where I is the number of samples 

and C is the number of classes in the dataset. Each 𝑦𝑖𝑐 value in the dummy matrix represents 

the membership of the ith sample in the cth class expressed in binary code (1 if it belongs 

to a given class or 0 if not)174.  

 
Figure 16. Class vector containing the membership number for each class (left) and subsequent 
transformation into a dummy matrix of binary values (right). Adapted from Pomerantsev and 

Rodionov, 2018175. 

Then, the PLSR model is built in the usual way, and estimated values of Y around 0 and 1 

are obtained for each sample and class. Although the estimated class values will not be 

exactly zero or one, if a predicted y value for a given class is closer to zero than to one, then 

it will not likely belong to that class, while a value closer to one would indicate the opposite. 
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To make a class assignment, a probability is calculated for each class and samples are 

therefore classified by choosing the class that has the highest probability. In this way, 

samples are always classified to one class. A decision threshold may also be determined 

based on the Bayes theorem, assuming that the estimated values follow a normal 

distribution, which should be comparable to what will be observed for future samples. The 

threshold is usually selected at the point where the number of false positives and false 

negatives is minimized, but other methods can be applied on order to avoid the limitation 

of using an arbitrary threshold for assignment between the classes173,176.  

As in PLSR, calibration and test steps are also needed to validate a PLS-DA model. The 

calibration set should have a balanced proportion of representative samples for each class 

to build the calibration model, and external test samples rather than CV samples should be 

preferred to evaluate the predictive ability of the calibrated model173. 

1.4.7. Resolution analysis 

Multivariate Curve Resolution (MCR) comprises a series of mathematical methods that aim 

at resolving the composition of a mixture into its pure components. One of the most 

important methods for resolution analysis is Multivariate Curve Resolution – Alternating 

Least Squares (MCR-ALS). MCR decomposes the data matrix into a bilinear model, in a 

similar way as PCA, but it also adds a series of constrains to the profiles of the components 

that give the mathematical solution a chemical meaning. MCR methods can be defined as 

the multilinear extension of Lambert-Beer’s law177. Beer’s law is the fundamental law of 

quantitative spectroscopy that relates the intensities of the incident and transmitted IR 

radiation to the concentration of the analyte. Lambert-Beer’s law can be described as: 

                                        A = log10 (
I0

I
) = Ɛcl              Equation 21 

where A is the absorbance of the sample, I0 is the intensity of the light entering the sample, 

I is the intensity of the light transmitted by the sample, ε is the molar absorptivity, c the 

concentration and l the path length of the sample111.  

In MCR, the original data matrix (D), with dimensions’ IxJ (being I the number of 

observations (i.e. spectra over time) and J the number of variables (i.e. wavenumbers) is 

decomposed as follows: 

                                           𝐃 = 𝐂𝐒T + 𝐄       Equation 22 
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where C (I x F) is the matrix of concentration profiles, which represents the variation in 

weight (abundance) of those particular compounds influencing the spectral signals. d is the 

number of relevant components found by the algorithm to resolve the mixture and m are 

the observations over time along the row direction in the data set. ST (F x J) is the matrix 

of pure spectral profiles of dimensions, being n the number of variables). Finally, E (I x J) 

is the residual matrix. An schematic overview of MCR the decomposition is shown in 

Figure 17178.  

 

Figure 17. Schematic representation of the MCR decomposition. Each column (cf) in matrix C 
represents the concentration profile of a component, while each row in ST (sf) represents the 

spectral profile of the pure component. Adapted from De Juan and Tauler, 2003178. 

Before applying MCR-ALS, the number of optimal components is selected by applying the 

PCA algorithm. The reduction of dimensionality in the original matrix is done using the 

Single Value Decomposition (SVD) method. Then, it is possible to include spectral 

information in the form of initial estimates of concentration or response profiles if we have 

information about the components present in the mixture177.  

The optimization of MCR matrices with ALS involves an iterative approach, which starts 

from initial estimates of C or ST that evolve until profiles with chemically meaningful 

shapes are obtained. The goal of the MCR-ALS iterations is to minimize as much as possible 

the residuals in the E matrix using least-squares and applying suitable constraints.  

Constraints involve the accommodation of external chemical information (chemical 

knowledge of the system) into the optimisation process, and they are necessary because the 

product C·ST is subjected to rotational and intensity ambiguities179.  

The most common constraints for chemical systems are180: 

- Non-negativity of spectral profiles: positive values for absorbance values are 

imposed, as negative absorbance values do not have chemical meaning.  

- Unimodality: presence of only one maximum in each concentration profile. 
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- Non-negativity of concentration profiles: only positive values for 

concentrations are allowed, as real concentrations cannot be negative. 

- Closure: mass balance conditions must be fulfilled for reaction-based systems. 

A common criterion to stop the MCR-ALS algorithm is the percentage of Lack of Fit 

(%LOF). When the relative difference between two consecutive iterations is equal or less 

than 0.1%, the algorithm stops the calculation. The %LOF is defined by the following 

equation: 

                                      lack of fit (%) = 100 · √
Σij𝑒ij

2

Σij𝑑ij
2               Equation 23 

were dij is an element of the experimental data matrix D and eij is the related residual value 

obtained from the difference between D and CST (the matrix product obtained by MCR-

ALS)181. 

It is possible to augment the D matrix in a column-wise manner (Figure 18) to add more 

experiments into the original dataset. In this way, the ST matrix will still be a single matrix 

containing the spectral profiles of the components in the different experiments and C will 

be composed by Ci submatrices, being i the number of individual experiments, Each Ci 

matrix will show the unique concentration profiles of each experiment that are independent 

to each other177.  

 
Figure 18. D matrix augmentation through the introduction of additional experiment data (Di). 

 C matrix augments, being each experiment independent to each other, whereas ST 
remains the same. Adapted from De Juan and Tauler, 2006177. 
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Resolution methods are increasingly being applied to study a wide variety of complex 

processes in biochemistry and biophysics from spectroscopic measurements. NIR and ATR-

MIR data from fermentation-related bioprocesses have been studied using MCR-ALS, 

allowing the determination of the concentration and spectral profiles of the main species 

involved (sugars, ethanol and biomass production) and other compounds such as acetate, 

ammonium and total phosphate182–184. 

1.4.8. Multivariate statistical process control 

Statistical process control (SPC) refers to statistical methods used to monitor and improve 

the quality and productivity of manufacturing processes. The goal of any SPC scheme is to 

monitor the performance of a process over time and determine if the process behaves as 

expected or detect any unusual event that may have occurred during the process. Knowing 

the causes of an unusual event can significantly improve the process performance, as they 

can be corrected or revised185.  

Control charts are the graphical expression of a process performance over time, which help 

to identify the magnitude and type of variation present in an observation. The 

implementation of PCA-based Multivariate Statistical Control (MSPC) charts has 

improved the ability to detect certain out-of-control situations. When using MVDA for 

process monitoring and control, MSPC charts are based on dimensionality reduction 

methods, such as PCA. By reducing the number of variables, the number of charts is also 

reduced, allowing a better and easier interpretation. Another significant benefit of using 

MSPC charts is that, unlike univariate statistical process control, interactions between 

variables and the combined effect of changes can be observed on the charts, in addition to 

univariate information186,187.  

The classical way to build MSPC charts is defining the reduced space for normal operation 

conditions (NOC) samples, which is done by building a PCA model using reference samples 

(i.e. those samples meeting the desired quality expectations). This is done by registering as 

much data as possible from a process over time. For this NOC model, limits are defined for 

T2 and Q statistics, and new samples are projected onto the model. Using T2 and Q statistics 

rather than the PCA score plot allows assessing in a better way how a sample fits in the 

model.  

At different stages of the process, if a projected sample falls inside the confidence limits of 

T2 and Q, the sample is considered normal, whereas if the sample falls outside those T2 and 

Q limits it is considered an outlier188. The contribution of each original variable to the T2 
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and Q statistics can be inspected to determine the causes of an unusual behaviour, helping 

the operators to determine quickly and efficiently the source of a problem. Figure 19 shows 

a typical example of MSPC charts189. 

 

Figure 19. MSPC scheme at a glance. Samples below the threshold limit are considered under 
Normal Operation Conditions, whereas unusual samples will appear above the threshold. Adapted 

from Kourti, 2006190. 

Multivariate statistical methods have significantly increased the potential of using 

multivariate data for process quality control to meet the PAT initiative guidelines. The use 

of projection methods such as PCA has modernised the idea of SPC, allowing an effective 

monitoring of complex processes by only looking at a few multivariate control charts. 

These charts improve the fault detection capabilities as faults can be detected earlier than 

in univariate charts, were only few process variables can be controlled at a time. In contrast 

to univariate SPC charts, in which some problems can be missed if the variables remain 

within their expected univariate operation limits, problems in MSPC charts are detected as 

changes in the covariance structure of the process variables190. The application of MSPC 

charts based on PCA for process monitoring of fed-batch fermentations has been 

investigated in the past, suggesting the usefulness of this method for predicting the 

behaviour of future batches191. The use of MSPC has also been studied for monitoring 

petroleum refining or coffee roasting processes, allowing the detection of abnormal batches 

before the end of each process192,193. 
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1.5. Wine fermentation process control 

In the wine industry, even though traditional analytical methods are still the most reliable 

methods for the determination of quality control parameters, IR techniques are gaining 

ground due to all of their above-mentioned advantages. Replacing old methods with PAT 

tools will provide the wine industry with fast (even real-time in some cases) and simple 

measurements, allowing a better understanding of the process and giving the possibility to 

take corrective measures in time if some variables of the process are not under control. 

Chemometric methods have been widely used for the prediction of chemical parameters 

(mainly PLSR) and for classification (using discrimination or clustering techniques)194. 

1.5.1. IR spectra of wine in the mid-infrared region 

In wine, the most important constituents are water and ethanol. These molecules show 

high absorption in the MIR region. For water, two broad peaks are found in the regions 

3626-2970 cm-1 and 1716-1543 cm-1. These peaks may hide characteristic bands of other 

minor constituents, such as organic acids and phenols. The most relevant region in wine 

MIR spectra is the fingerprinting region, which includes those vibrations corresponding to 

C-O, C-C, C-H and C-N bonds. This region provides important information regarding a 

large number of organic compounds such as sugars, alcohols and organic acids present in 

the sample, as their functional groups absorb in this region195. Figure 20 shows the main 

characteristic bands found in typical MIR spectra for different beverage samples. 

 

Figure 20. Average ATR-MIR spectra (4000–400 cm-1) for beverage samples, pointing out some of 
the most important absorption peaks with their corresponding associated molecular vibrations. The 

fingerprint region is highlighted with a grey box. Adapted from Pearce et al., 2006196. 
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In the fingerprinting region, the bands are mostly influenced by the changes during 

alcoholic fermentation. In fact, the bands change rapidly as sugars transform into ethanol 

(Figure 21)197. 

 

Figure 21. Detail of the spectral shapes for glucose, fructose and ethanol in the fingerprinting 
region of the MIR spectrum. From Wynne et al., 2007198. 

Similarly, organic acids show important peaks at 1740 cm-1, corresponding to the C=O 

bond stretching vibration of carboxylic acids. O-H bending of the carboxylic acid, C-O 

stretching of acid and alcohol (when present) and C-H bending vibrations in the 

fingerprinting region (around 1390 cm-1) are also important bands for the determination of 

organic acids in must and wine samples. The close similarities among organic acid 

molecular structures causes spectroscopic interferences and difficult the quantification of 

individual organic acids in wine199. 

1.5.2. Analysis of must and wine with MIR and chemometrics 

The analysis of must and wine with IR techniques involves the determination of a large 

number of wine parameters, including alcohol, volatile acidity, pH, tartaric acid, lactic acid, 

reducing sugars (mainly glucose and fructose), acetic acid, glycerol, anthocyanins and 

polyphenols200. It is by no surprise that the application of FT-IR spectrometers to measure 

the concentration of some of the most important molecules in must and wine has been 

extensively investigated in the last decades. Despite being considered very complex 

mixtures (especially fermentation samples, where the mixture is constantly evolving), the 

determination of a wide range of compounds in wine has been possible using FT-MIR and 

PLSR, with determination coefficients (R2) higher than 0.9 for alcohol, reducing sugars 
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(glucose and fructose), total acidity and glycerol201. In a study with more than 250 samples 

of different types of wine (white dry, white sweet, blush, red and dry red premium), the 

standard error of calibration (SEC) was 0.106% v/v for ethanol, 0.308 g·100mL-1 for 

titratable acidity, 0.05 for pH and between 0.108 and 0.486 g·L-1 for tartaric, malic and 

lactic acids, depending on the type of wine202.  

The calibration and validation process for the determination of organic acids (tartaric acid, 

malic acid, succinic acid, and lactic acid) in red and white wines using FT-IR is, however, 

less accurate when the measurement range is below 0.6 g·L-1 203. In another study, the 

quantification accuracy for the major fermentation compounds in wine showed low 

Standard Errors of Prediction (SEP): volatile acidity (0.08 g·L-1), ethanol (0.32%), glycerol 

(0.38 g·L-1) and reducing sugars (0.56 g·L-1)204. For the determination of tannins, FT-IR 

combined with PLS only allows developing regression models to provide approximate 

quantitative values of individual anthocyanin concentrations in wine must samples. Tannin 

concentration in wine is in the order of milligrams, which could explain the high SEP values 

obtained through external validation (between 13 and 26%)205. Another study covering red 

wine samples from different vintages reported RMSEP values between 75 mg·L-1 and 115 

mg·L-1 for tannins content, by testing different variable selection strategies206. Both studies 

concluded that the quantification of tannins is difficult due to interferences from spectral 

signals of other wine components. It is important to note that a balance must be reached 

between the required time to get an analytical result and the expected level of accuracy. As 

an example, in a winery it is more important to sort different musts within a harvest 

according to their anthocyanin content than to know their absolute anthocyanin content.  

The advent of ATR-MIR instruments has made it possible to obtain analytical results in a 

fast and easy manner, providing comparable sensitivities to commercial FTIR wine 

analyzers207,208. Alcohol content in several types of alcoholic beverages, including beer, 

wine and liquors, was successfully predicted using ATR-MIR and PLSR, achieving low 

RMSEP values for the validation sets209. The capability of ATR-MIR and PLSR to predict 

the concentration of total soluble solids (TSS, °Brix), pH, total phenolics, ammonia and free 

amino nitrogen was assessed in white grape juice samples, obtaining low standard errors 

of cross-validation (SECV) for all parameters210. The ferric reducing-antioxidant power 

assay (FRAP), the reference analysis for the quantification of the antioxidant capacity in 

wine, was correlated with ATR-MIR data in red wine samples, obtaining an RMSEP for 

the FRAP value of 4.7 mmol of Fe2+ per litre of wine211.  
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1.5.3. Wine fermentation monitoring using MIR spectroscopy 

As mentioned in section 1, wine fermentation is a complex process in which grape must is 

transformed into wine, involving the action of yeasts. In winemaking, monitoring of 

alcoholic fermentation is one of the most critical steps that defines if the final wine will be 

within the desired specifications. The wine industry needs fast and reliable process quality 

control methods that can operate in real time in order to assure the quality of the final 

product. Vibrational spectroscopy techniques have emerged as a powerful tool, not only for 

the analysis of must and wine samples, but also for process control and monitoring of the 

wine fermentation process. 

Several authors have reported the use of ATR-MIR spectroscopy to monitor different 

parameters during alcoholic fermentation. Glucose, fructose, ethanol and glycerol were 

determined using ATR-MIR during red wine fermentation, with RMSECV values of <2 

g·L-1 for glucose and fructose, 2.13 g·L-1 for ethanol and 0.42 g·L-1 for glycerol212. In a 

similar study, Buratti et al. monitored the progression of eight microvinifications using 

ATR-MIR and PLSR. They obtained high correlation coefficients when explaining the 

linear relationship between the kinetic parameters of chemical changes and the kinetic 

parameters obtained by MIR213. 

Using ATR-MIR spectra and PLSR for the determination of total antioxidant activity and 

total phenolic compounds, high correlations were found in red wines, while low correlations 

were found for rosé and white wines. This result suggests that, depending on the content 

of phenolic compounds, the accuracy of the models for the determination of antioxidant 

capacity will vary214. As it happened with the determination of organic acids, the 

quantification of antioxidant activity with ATR-MIR will vary depending on the 

concentration range, as the total antioxidant activity in rosé and white wines is low in 

comparison to red wines. A dispersive MIR spectrometer coupled with an ATR sensor was 

used to build PLSR models for on-line determination of glucose, fructose, ethanol, 

galactose, lactose and lactic acid in an industrial fermentation process. All SEP values were 

below 4 g·L-1, suggesting that ATR sensors can be used for alcoholic fermentation 

monitoring104. Fayolle et al. studied the effect of temperature in ATR-MIR spectra during 

alcoholic fermentation. They confirmed that the absorbance increased as the temperature 

decreased during the ATR-MIR analysis. but they obtained satisfactory SEP values in spite 

of temperature fluctuations: 5 g·L-1 for glucose, 5.8 g·L-1 for fructose, 0.6 g·L-1 for glycerol 

and 1.7 g·L-1 for ethanol215. The prediction of sulphate concentration was also investigated 
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in wines using FTIR spectroscopy and PLS-based calibration models (R= 0.98, LOD= 0.33 

g·L-1), pointing out the suitability of this method to quantify this compound216. Fragoso et 

al. investigated the determination of total phenolic compounds (mg·L-1 gallic acid), total 

anthocyanins (mg·L-1 malvidin-3-glucoside), and condensed tannins (mg·L-1 catechin) 

during red wine fermentation using FT-IR in the transmission mode and PLSR. Their 

results suggest that FT-IR spectra coupled to PLSR are able to monitor the phenolic 

extraction during alcoholic fermentation217. Finally, red wine micro-vinifications were 

conducted to predict fermentation parameters using ATR-MIR and PLSR. The RMSECV 

values were 1.95 g·L-1 for glucose, 1.85 g·L-1 for fructose, 2.13 g·L-1 for ethanol and 0.42 g 

L-1 for glycerol212. 

All these studies confirm the suitability of MIR spectroscopy and chemometrics to control 

the wine fermentation process. A fast and accurate process monitoring is achieved not only 

for substrate conversion (e.g. sugars to ethanol) but also for the determination of product 

quality through the determination of some quality control parameters. Thus, PLSR models 

based on ATR-MIR data have emerged as rapid, easy and low-cost solutions to support or 

replace the commonly used reference analysis. The ability to provide fast quantitative 

chemical information for multiple compounds from a single measurement is also a strong 

advantage of using ATR-MIR spectroscopy and chemometrics218. 

1.5.4. The apparition of portable IR instruments and IR sensors 

The appearance of hand-held and portable ATR-MIR spectrometers, or even ATR-MIR 

sensors for in- or on-line analysis, has allowed a much faster determination of chemical 

parameters in food and beverage products, and with good levels of accuracy. Several NIR 

and MIR hand-held and portable infrared spectrometers were used and compared to 

identify the presence of several adulterants in milk samples. Using PLSR regression, less 

than 1% of adulteration was detected for all the adulterants219. A portable ATR-MIR was 

used to build PLSR regression models to predict trans fats in edible oils, achieving low SEP 

values and estimating the limit of detection of the handheld instrument at 1% of trans by 

weight of fat220. A comparison between a hand-held and a benchtop ATR-MIR to monitor 

oil oxidative stability during a frying process showed similar RMSECV values for the PLSR 

models to predict the peroxide value, the acid value and the fatty acid composition221. Other 

applications of ATR-MIR portable spectrometers include the determination of alcohol 

mixtures or the quantitative determination of hydrocarbon contamination222. The 

determination of alcoholic strength, density and total dry extract in wine samples was also 
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achieved using an infrared sensor223. The use of portable ATR-MIR instruments and 

sensors together with chemometrics in the wine industry has led to the development of 

fully automated processes, making it possible to develop novel PAT tools to be applied in 

real-time during processing and manufacturing224. 

1.5.5. Detection of problems during alcoholic fermentation 

Problems during wine alcoholic fermentation can result in economic loss and the 

production of lower quality wines. Hence, the improvement of the prediction capability for 

problematic fermentations would enable winemakers to take timely corrective actions and 

significantly reduce problematic fermentations. To this aim, preventive control may be 

possible, based on modelling of the wine fermentation process, as well as the integration of 

such models into control systems for optimising fermentation225. 

Hérnandez et al., developed a method to detect abnormal wine fermentations using MIR 

spectral measurements during alcoholic fermentation and a multivariate classification 

method called Support Vector Machines (SVM). SVM correctly predicted 88% of the 

fermentation behaviour at 48 h from the beginning of fermentation226. Using an artificial 

must, Urtubia et al. studied two problematic fermentations: a fermentation with a 

temperature gradient and a nitrogen deficient fermentation. They found that ATR-MIR 

spectra and PLSR models for glycerol, ethanol and acetic acid allowed the discrimination 

of those problematic fermentations from the normal ones only after two days from 

inoculation time227. Applying different multivariate statistical and pattern recognition 

techniques, the behaviour of faulty wine fermentation batches was correctly predicted after 

72 h or three days of fermentation228. 

The advantages of using IR spectroscopy coupled to chemometrics for process control 

monitoring are evident. These methodologies can serve as the basis for establishing PAT 

tools in the wine industry, initially in wine fermentation, but they could be transferred to 

other stages of wine production, such as grape ripening or wine aging. 
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Attenuated Total Reflectance Mid-Infrared (ATR-MIR) spectroscopy has made it possible 

to analyse, in a fast and effective way, the composition of numerous food and beverage 

matrices. In the wine industry, it has been shown that ATR-MIR can be used to monitor 

several chemical parameters during alcoholic fermentation. However, its use as a Process 

Analytical Technology (PAT) tool has not been yet fully investigated in the literature. 

In the wine industry, the advantages of implementing fast analytical tools along the key 

stages of wine production (maturation, fermentation and aging) are well known, but it 

would be important to test whether these technologies are able to detect different types of 

deviations that may arise during the fermentation process. In this thesis, we focused on the 

deviations associated with the fermentation process that can substantially affect the quality 

of the final wine (sluggish fermentations and bacterial spoilage). Because the ATR-MIR as 

a PAT tool to control wine fermentation is in its early stages of development, all of these 

hypotheses were tested in laboratory-scale fermentations. 

Main objective 

To evaluate the suitability of a portable ATR-MIR spectrometer as a PAT tool to monitor 

the alcoholic fermentation process of white grape must on a laboratory-scale. To this aim, 

different chemometric tools were evaluated. This main objective can be subdivided in the 

following specific objectives. 

Specific objectives 

- To evaluate the capacity of a portable ATR-MIR instrument to predict quality 

control parameters during all the stages of alcoholic fermentation using 

multivariate regression methods.   

- To extract relevant information of the alcoholic fermentation process from ATR-

MIR spectra, applying advanced chemometric techniques, including: 

o ANOVA-Simultaneous Component Analysis: 

o Multivariate Curve Resolution Alternating Least Squares. 

- To detect deviations of normal operating conditions (NOC) fermentations using 

ATR-MIR spectra and multivariate classification methods. The induced deviations 

were: 
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o Nitrogen deficiency to induce a sluggish fermentation. 

o Inoculation of bacteria to induce a bacterial spoilage: 

▪ Inoculation of lactic acid bacteria to induce malolactic 

fermentation. 

▪ Inoculation of acetic acid bacteria to induce and increase of 

volatile acidity.  

- To develop control charts that could be used to detect deviations based on 

modelled NOC fermentations using techniques of multivariate data analysis. 
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The use of portable IR spectrometers has opened the possibility of applying IR 

spectroscopy together with chemometrics to monitor manufacturing processes on-site, that 

is, directly into the field. These instruments, however, require a prior validation to be 

accepted as suitable tools. The next chapter tries to address the main objective of this thesis 

(first and second subobjectives), focusing on the application of a portable ATR-MIR 

instrument to monitor alcoholic fermentation. 

First, we optimised the method of spectra acquisition in terms of sampling (sample 

pretreatment) and instrumental analysis (number of scans and resolution of the IR 

spectrometer). Alcoholic fermentation was monitored by analysing the fermenting samples 

at different time points during the course of fermentation. 

Despite process data can be regarded as a 3D data matrix built from layers of batches, a 

simpler way to arrange the data is assessed based on a 2D array unfolding. Unfolding means 

that all original batch data blocks are concatenated vertically or horizontally and, in this 

way, PCA models can be built in different ways. First, global PCA models (horizontal 

concatenation) were built by considering each batch as an independent representation of 

the process. Alternatively, k-PCA models (where k refers to a specific time point in which 

spectra are acquired) do not consider the whole process, but allow evaluating the process 

status at a specific point. Spectral residuals and Hotelling T2 were calculated, combined and 

simultaneously analysed in the so-called “influence plots”, providing the most-used classical 

way to detect abnormal samples. 

PLS regression was the chemometric tool used for quantitative determination of key 

fermentation monitoring parameters. Spectra were evaluated using a linear combination of 

the data with each individual chemical component, which is the basis for process control 

and monitoring.  

One common feature of fed-batch processes is the unavoidable variation among batches due 

to natural biological variability and to differences in composition of raw materials, which 

causes the well-known “batch-effect” (also found as inter-batch effect). These effect is 

produced when the basic shape of the time trajectories from batch to batch is similar, but 

their time duration (between runs) changes. A novel approach called “biological process 

time”, taking into account this variation within batches, is evaluated on fermentation 

samples. 
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Summary 

A portable FTIR-ATR spectrometer was used to monitor small-scale must fermentations 

(microvinifications) with the aims to describe the process and to early detect problematic 

fermentations. Twenty fermentations at normal operation conditions (NOC) and 3 

fermentations that were intentionally deviated from NOC (yeast assimilable nitrogen 

deficiency - YAN) were monitored. FTIR-ATR spectra were registered after a minimum 

sample pretreatment during the fermentation process. In addition, density, sugars (glucose 

and fructose) and acetic acid contents were determined by traditional methods.  

Different multivariate analysis strategies (global and local models) were applied to the 

spectroscopic data to describe the evolution of the NOC fermentation and to early detect 

the abnormal fermentations. Global models based on principal component analysi (PCA) 

and partial least squares discriminant analysis (PLS-DA) allowed to describe the 

fermentations evolution in time and to correctly classify NOC and YAN fermentations. 

Abnormal deviations were successfully detected by developing one model for each sampling 

time. YAN experiments could be identified 49 hours after the beginning of the 

fermentations by means of Hotelling T2 and residual F statistics.  

In conclusion, ATR-FTIR coupled to multivariate analysis showed great potential as afast 

and simple at-line analysis tool to monitor wine fermentation and to early detect 

fermentation problems.  

Key words: ATR-FTIR, fermentation monitoring, multivariate analysis, wine. 
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Introduction  

In the winemaking industry, the control of the whole production chain, from harvest to 

bottling, is essential to obtain high-quality wines. One of the crucial phases in wine 

production is certainly the must fermentation, which is the biological transformation of 

grape juice into wine. Whereas it comprises many biochemical reactions, the most 

important change is the conversion of sugars into ethanol and CO2. Nevertheless, 

the secondary reactions that take place during must fermentation have a substantial 

impact on the quality, flavor and character of the final wine1.  

Must fermentation requires, therefore, a thorough monitoring: failing to achieve a 

successful process control at this stage may result in stuck or sluggish fermentations that 

could throw away a whole vintage or lead to low quality wines2.  

Several routine measurements such as density, temperature and pH, are usually carried out 

throughout the fermentation process in wine cellars. However, additional measurements 

(e.g. total and volatile acidity, sugars, SO2, assimilable nitrogen) which are often costly, 

time-consuming and require specific equipment and personnel, are commonly performed to 

gain more information3. 

In 2004 the United States Food and Drug Administration introduced the concept of 

‘Process Analytical Technologies’ (PAT), aiming at implementing a real-time monitoring 

system through the production chain. This would replace final product testing as quality is 

controlled during the production process, giving the possibility to ‘readjust’ a process 

before the product is made and thus minimizing rejects4.   

Over the last decades, infrared spectroscopy, in combination with multivariate analysis, has 

proven to be a powerful tool for food analyses and, specifically, for wine analyses. Partial 

Least Squares Regression (PLSR) has been the most used calibration algorithm to predict 

chemical or physical parameters in wine from spectroscopic data5.  

As reviewed by dos Santos et al., it has been shown that Near Infrared Spectroscopy (NIR) 

and Mid Infrared Spectroscopy (MIR) are both suitable techniques to predict several 

quality control parameters in grape juice, must and wine at different production stages, 

including total sugars (mainly glucose and fructose), ethanol, glycerol, total phenolics, 

anthocyanins or acetic acid, among other compounds6. The potential of NIR and MIR to 

monitor and model alcoholic fermentations was also investigated, demonstrating the 

usefulness of these techniques to monitor the evolution of the fermentation process7-10. 
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Regmi et al. used MIR in the transmission mode with PLSR to predict the concentration of 

several acids in wine. They obtained good calibration results for citric, malic, tartaric, 

acetic, succinic, and lactic acids11. Moreover, MIR spectroscopy with PLS regression was 

also used for the quantification of reducing sugars, titrable acidity, total soluble solids, pH, 

and some phenolic compounds (see the review by Dambergs et al. and references therein)12. 

Among the different vibrational spectroscopic modes, the attenuated total reflectance MIR 

(ATR-MIR) mode is particularly advantageous over traditional transmission MIR modes 

because it requires little or even no sample pretreatment and it is faster and simpler to use. 

Moreover, as the infrared beam only penetrates the samples a few microns, so typical 

spectra saturation due to the high-water absorption band does not occur13. 

ATR-MIR was successfully employed to determine the total soluble solids (°Brix), pH, total 

phenolics, ammonia, free amino nitrogen, and yeast assimilable nitrogen (YAN) in grape 

juice samples14. Kim et al. were able to predict alcohol, reducing sugars and titratable acidity 

in fermenting samples of Makgeolli rice wine using ATR-MIR, thus proving the suitability 

of this technique to monitor the fermentation process15. Wu et al. used ATR‐MIR to 

successfully monitor the course of Chinese rice wine fermentation16. 

The researchers were capable to predict total sugar, ethanol, titratable acidity, and amino 

nitrogen by applying different calibration models. Previously, Cozzolino et al. had also 

investigated the suitability of ATR‐MIR to predict the time course of fermentation in 

samples at different days of fermentation using PLS discriminant analysis (PLS‐DA) 

models. They obtained promising results, with low standard errors of prediction17.  

Portable FTIR instruments are rapidly gaining popularity across the food industry sector. 

They are cheaper, simpler to use, and faster than traditional instruments and allow sample 

analysis to be performed directly on the field: for these reasons, they could be considered 

powerful tools to rapidly perform quality control test and process monitoring especially 

when coupled with multivariate analysis. Portable FTIR instruments have been used for 

multiple purposes in foodstuff analysis, including, eg, the prediction of fatty acid content in 

marine oil, quantification of acrylamide in potato chips, or quantification of trans‐fat 

content in fat and oil samples18-20. To our knowledge, this is the first time that a portable 

ATR‐FTIR device is used for the analysis of must and wine fermenting samples. 

The aim of this research was to develop a strategy to monitor the must fermentation and 

to early detect deviation from the typical fermentation using a portable ATR-FTIR 
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instrument coupled with multivariate analysis. The first step of the study concerned the 

investigation of the suitability of the instrument to the scope. Twenty‐three must 

fermentations were carried out, and data were recorded during the whole process after a 

minimum sample pretreatment. Different multivariate approaches were applied for 

modeling the typical fermentation process, thus describing the normal operation conditions 

(NOC), and to early predict deviation from the NOC, in particular for a fermentation run 

with deficiency of assimilable nitrogen. The choice of the chemometric strategy was driven 

by the idea to give to winemakers a quite easy to understand process control model, which 

coupled with a portable device resulted in a process control methodology cheap and easy to 

implement. 

Material and methods 

Samples 

Concentrated white natural must was obtained from “Concentrats Pallejà” (Riudoms, 

Spain). This was diluted 1:4 with distilled water to give an initial sugar (glucose and 

fructose) concentration of about 200 g·L-1 (to emulate the concentration of sugars found in 

a must coming from optimal mature grapes) and supplemented with 0.3 g·L-1 of 

Actimaxbio* (Agrovin, Ciudad Real, Spain) to ensure a YAN source. Table 1 summarizes 

the chemical parameters of must once diluted and supplemented. 

Table 1. Chemical Parameters of diluted must. 

209 g·L-1 glucose + fructose 

228 g·L-1 yeast assimilable nitrogen 

pH = 3.94 

Total Acidity = 7.0 g Tartaric acid·L-1 

Density = 1.0865 g·mL-1 

Malic acid = 2.12 g·L-1 

The microvinifications were conducted in 500 mL Erlenmeyer flasks containing 350 mL of 

diluted must and under constant temperature of 18°C. Twenty microvinifications were 

carried out without manipulating them or varying any parameter (NOC). Moreover, three 

microvinifications were intentionally altered to promote nitrogen deficiency: they were run 

without the addition of the YAN source. 
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Yeast and nutrients 

The alcoholic fermentations were carried out by Saccharomyces cerevisiae yeast, and the 

inoculation was done as follows: 3.15 g of active dry yeast “VitilevureDV10” (Danstar 

Ferment AG, Denmark) was rehydrated in 60 mL of milliQ water, and 2 mL of yeast 

solution was added to the 23 Erlenmeyer flasks containing 350 mL of must, to reach a final 

concentration of 0.3 g·L-1 in each flask. 

ATR-FTIR spectroscopic analysis 

Data acquisition was performed using a portable 4100 ExoScan FTIR instrument (Agilent, 

California, USA), equipped with an interchangeable spherical ATR sampling interface, 

consisting on a diamond crystal window.  

A total of 17 sampling points (times) were analyzed before the end of fermentation. Samples 

were randomly collected twice a day (every 12 hours approximately), centrifuged at 10 000 

rpm for 10 minutes so that the supernatant could be collected using a micropipette. A drop 

of the supernatant was placed on top of the crystal using a Pasteur pipette, ensuring that 

the surface was completely covered with the sample, and the spectrum was recorded 

immediately afterwards. All spectra were recorded in the region of 3999 to 649 cm, with 32 

scans and 8 cm-1 resolution. An air background was collected after every triplicate, that is, 

one background per sample. After each measurement, the crystal was carefully cleaned 

using deionized water and cotton wipes. Spectra were examined using the Microlab PC 

software (Agilent, California, USA), and data were saved as.spc files. 

Absorbance data were used for the chemometric calculation. The mean of the sample 

replicates was calculated, and different preprocessing (smoothing and normalization) 

methods were tested in order to remove unwanted variations not due to changes in chemical 

compounds during fermentation, such as baseline drifts and noise observed in the raw 

spectra. 

The final data was a three‐way array containing the spectroscopic signals of 23 samples (20 

NOC and three YAN) with 899 wavelengths recorded for 17 times covering a total of 258 

hours of fermentation. 

Quality Control Parameters 

Reference analyses were carried out every 24 hours to monitor the fermentation process. 

Density was measured using an Densito 30PX electronic densimeter (Mettler Toledo), 
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whereas sugars (glucose and fructose) and acetic acid were determined using a Y15 

Analyser (Biosystems, Barcelona, Spain). All the analyses were performed right after 

sample collection. 

Multivariate Analysis  

The collected data consisted of a three‐way structure containing spectra (J = 899), batches 

or samples (I = 23), and sampling times (K = 17). Depending on the information we want 

to obtain, this data matrix can be treated as a multiway structure, unfolded into a two‐way 

structure or divided into several matrices, usually one for each sampling time. Unfolding 

can be performed in several ways, depending on the mode that is kept in common. If 

unfolding is performed sample-wise, the final matrix has dimensions (I×KJ), with each row 

containing the spectra of a given sample at the different time points. If the spectral mode is 

common, then the final unfolded matrix has dimensions (J×IK). In this last matrix, each 

row contains a spectrum of sample i at time point k. Finally, if unfolding is performed 

timewise, the final matrix has dimensions (K×JI), where each row contains the spectra of 

all samples at time point k. Once unfolded, the matrix structure can be processed also in 

different ways. Global approaches can be applied, which means that all the data collected 

throughout the process are used in a global model. Alternatively, local approaches refer to 

the use of data separately from each sampling time to build independent models21. Principal 

component analysis (PCA), partial least squares regression (PLSR), and PLS‐DA were used 

to process the data. The strategies used in this work are described in the following section. 

All the models were cross‐validated with random subsets (10 splits and five iterations). In 

PLSR and in PLSDA, the root mean square error of cross‐validation (RMSECV) error was 

used to estimate the optimum number of latent variables to be used in prediction. 

All multivariate data analyses were performed using the PLS Toolbox v8.6.1 (Eigenvector 

Research Inc., Eaglerock, USA) with MATLAB R2015b (The MathWorks, Natick, USA). 

Results and discussion 

Spectroscopic Data  

Firstly, the signal quality was investigated. Several combinations of spectral resolution and 

number of acquisition scans were tested. An increase in the resolution (8‐4-2 cm−1 was 

tested) did not add any relevant information to the spectra: peaks were well described, and 

this was confirmed by the chemometric modeling, which did not change in performances 
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when using spectra recorded at higher resolution values. Regarding data acquisition, scan 

numbers from 32 to 512 were tested, but the final models did not change relevantly in their 

performances. For this reason, a more rapid solution (32 scans) was preferred as it allowed 

reaching satisfactory results. 

The evolution of the ATR-FTIR spectra throughout the whole fermentation process is 

shown in Figure 1. Due to the high absorbance of the O-H bond of water in the mid-infrared 

region and the high amount of overlapping vibrational modes in similar molecules, single 

molecules peak assignment is quite difficult. The main changes in the spectra are found 

between 950-1500 cm-1 and 3000-3500 cm-1. The bonds in the 950-1500 cm-1 region could 

be associated with sugars and organic acids. Peaks between 1500 and 1200 cm-1 correspond 

mainly to deformations of –CH2, deformations of C–C–H and H–C–O. On the other hand, 

peaks between 1200 and 950 cm-1 could be related to stretching modes of C–C and C–O. 

The broad band between 3000 and 3500 cm-1 could be ascribed to water and ethanol O-H 

stretching vibrations These results are in agreement with the literature, both in ATR and 

transmission IR modes.22 

 
Figure 1. FTIR full spectra for all the fermenting samples (including all time points). 

Data preprocessing  

After calculation of the mean of the sample replicates, different preprocessing methods were 

tested to overcome baseline drifts and noise observed in the raw spectra. The following 

combination of preprocessing methods gave the best results:   

- Smoothing (Savitzky-Golay) filter: window size 11pts, polynomial order 2 

- Standard Normal Variate (SNV) normalization 

- Mean Centering 
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Because the objective of the work was to detect deviations from the NOC, the average 

trajectory of each variable was subtracted in the batches. In this way, models focused the 

attention on the variability around these trajectories. 

 Fermentation control parameters 

Density, sugars (glucose and fructose) and acetic acid values during fermentation are 

depicted in Figure 2, in which NOC samples are described by circles and YAN samples are 

indicated with stars. Density vary between 1,09 g·mL-1 at the beginning of the fermentation 

and 0,99 at the end of the process, showing typical values for white wine fermentations. 

NOC samples reached sugar depletion sooner than nitrogen-deficient samples. This 

behaviour could be explained considering that a lack of nutrients causes a decrease in yeast’s 

enzymatic activity, which results in sluggish fermentations2. 

 

Figure 2. Evolution of chemical parameters: A: Density; B: Sugars (Glucose+Fructose); and 
 C: Acetic acid. 

A higher production of acetic acid could be observed in the nutrient deficient samples. 

Acetic acid is a by-product of yeast metabolism, which is generated from acetyl-coenzyme 

A derived from oxidative decarboxylation of pyruvate23. An increase of its values could be 

often observed in stuck fermentations, where conditions for yeast development are not 

optimal24.  

Global PCA model 

First, we decided to explore the whole data set following a global approach. Data collected 

from NOC experiments were arranged in a two‐way unfolded matrix with samples × times 

in the rows and spectra (wavenumbers) in the columns, with the aim to study the sample 

evolution throughout the fermentation process.  
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 The final matrix had size 391 × 899. The score plot for the first two PCs (90.16% of the 

total variance) is reported in Figure 3. A trend in the samples position clearly emerges from 

the graph: samples are located along the first PC, from positive to negative values, 

according to the sampling time. All the NOC experiments and the YAN experiments 

showed a similar trend. While the PC1 accounted for the spectra variation in time, the 

second PC seemed to account for an experimental variability that could be possibly related 

to small differences between the evolving of samples during the fermentation process. 

Focusing the attention on PC1, the scores showed a tendency very similar to the one 

described for density and sugar values, confirming that this component mainly explains the 

fermentation evolution in time. Moreover, it is possible to distinguish the NOC and YAN 

fermentations that show a similar but not identical behavior. This model was able to detect 

the main changes in the samples at the different sampling times. This first promising result 

motivated us to further investigate the possibility to use the portable ATR-FTIR 

instrument to monitor the wine fermentation process. 

Figure 3. Scores plot for the global PCA model (left), samples are marked according to their 

sampling time. PC1 scores for NOC and YAN batches (right). 

A partial least squares (PLS) regression model was then built on the same unfolded data 

matrix to predict the total sugars (glucose and fructose) concentration values from the 

recorded ATR‐FTIR spectra along the fermentation. The values obtained with the 

reference analytical method were used as the Y data. The aim of this model was to prove 

the suitability of the portable ATR‐FTIR spectrometer to monitor the wine fermentation 

through the prediction of one of the most important parameters, that is, the change in the 

total sugar content along fermentation. The statistical parameters of the regression model 

(two factors accounting the 98.68% of the Y variability) were RMSEC = 10.6 g·L-1, 

RMESCV = 10.9 g·L-1, R2 = 0.987, and bias = −0.02 g·L-1. 
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Figure 4 shows the measured vs PLSR predicted total sugar. There is a good agreement 

between measured and predicted values, confirming that coupling ATR-FTIR portable 

spectroscopy and multivariate analysis allowed to successfully monitor one of the major 

changes in fermenting wine samples and possibly the whole fermentation process. 

 

Figure 4. Measured vs Predicted concentrations of sugars (glucose+fructose). 

Global PLS-DA model 

The global data analysis strategy was then employed with the aim of evaluate the possibility 

to distinguish NOC fermentation from YAN fermentation using the spectra collected with 

the portable device during the whole fermentation process. In this case, the original three-

way data matrix was unfolded in a time-wise manner so that sample direction was 

maintained. The unfolded matrix size was 23x15283 (23 samples x (899 variables x 17 time 

points)). A PLS-DA strategy was chosen due to the small number of samples and a PLS-

DA model was built in order to classify fermentation experiments in NOC and YAN classes 

(in the Y vector, zeros were attributed to the NOC class samples, and ones were attributed 

to YAN class samples). 

Figure 5 depicts the classification between normal and nitrogen deficient fermentations. As 

emerged from the graph, the two classes are well separated and no overlapping between 

them could be observed. The threshold used to discriminate between the classes was 

calculated as the value that best splits the classes with the least probability of both false 
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positives and false negatives (assuming that the predicted values for each class are 

approximately normally distributed). The algorithm is implemented in the PLS‐Toolbox. 

Even if the number of YAN fermentation experiments is quite small with respect to the 

NOC fermentation, these results are really promising, showing the possibility to 

distinguish the different types of fermentation when spectra collected along all the 

fermentation process are available. 

 
Figure 5. PLS-DA model for control (CON) and nutrient deficient samples (YAN). Zero was 

assigned to CON samples whereas ones was used for YAN samples. 

k-PCA (Local Models) 

A local strategy to early predict deviations from NOC was then developed. Local k‐PCA 

models were built using the two‐way matrices (samples × wavelengths [23 × 899]) 

obtained separately for each sampling time collected (a total of 17 data matrices, one for 

each time). A very satisfactory result was obtained, as the model built with spectra recorded 

after 49 hours (time point 4) was able to distinguish between NOC and YAN fermentations 

processes. Figure 6 shows the influence plot for PC1. The same result was obtained with 

the PLS‐DA modeling strategy as expected. Several PLS‐DA models were built, one for 

each sampling time. The PLS‐DA model built after 49 hours (time point 4) gave the 100% 

of correct classification with no overlap between the classes (0 was attributed to NOC class, 

1 was attributed to YAN class). 

Using a moving window approach (see the article by Camacho et al. and references 

therein21) to try to perform an earlier prediction of the deviation from NOC did not provide 
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better results. A possible explanation to this behavior could be the quite small number of 

sampling points analyzed at the beginning of the fermentation, which is clearly the moment 

of the whole process in which the main changes (especially in abnormal fermentations) 

occurred. For this reason, any other evolving modeling approach was not considered in this 

first step of the research project. 

 
Figure 6. Influence plot for the k-PCA model at time point 4. 

Biological process time 

To monitor the evolution of the abnormal YAN fermentation, the approach developed by 

Jørgensen et al. was applied25. The reasoning behind the method is that each fermentation, 

starting similar initial conditions, can evolve slower or faster, and this different behavior 

can be detected. The idea is that spectra of the NOC samples can be modelled against the 

evolving time, but if this relationship is different for the abnormal batches then it means 

the fermentation has a different speed or has followed another direction. The method 

operates as follows: 

1) The original data structure is unfolded keeping as common the spectral mode. 

Then, the relative times of all fermentations of all NOC samples are calculated, as 

the real time at time point k divided by the total time of the fermentation: 

 

Rel timeferm i =
Actual timeferm i

Total timeferm i
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The final time of a fermentation is assumed to have a relative time of 1, and the 

rest of relative times take values within 0 and 1. The relative time is also the % of 

evolution of the fermentation (relative time 0.6 means the fermentation is at 60%).  

Finally, a PLS regression model is built between the spectra of all NOC samples 

against the relative times. At this point, it is important to decide what the total 

time of a fermentation is. We decided to use the time where the sugar value was 

around the detection limit of the instrument, what coincided with the usual glucose 

value of a wine at the end of the fermentation process. 

2) The spectra of all NOC samples at all fermentation times are regressed onto the 

previous PLS model to estimate what is called the “biological” process time. This 

is done because the assumption is that the difference between relative and 

biological time is due to the fermentation process. 

3) A second PLS model is built between the NOC spectra and the “biological” time, 

that is, the predicted time of the first PLS model.  

4) From this second PLS model, the resulting scores are used to build control charts 

for future batches. In these control charts (one for each PLS factor) confidence 

limits are calculated from the NOC training set (±2 and ±3 standard deviation 

curves) and represented vs “biological” time (see Fig 7). 

5) Finally, to monitor future batches, their spectra are used in the second PLS model 

to predict the scores and the biological process time. Both predicted biological 

process time and scores are used in the control chart evaluations (see Fig 7). This 

allows on-line monitoring of batch evolution. 

The approach was applied to monitor both normal control samples (NOC) and the YAN 

abnormal samples. Results areshown in Figure 7. It can be seen that YAN samples evolve 

in a substantially slower way, but the relationship betweenthe spectra and time works. The 

prediction of the biological time for the YAN sample confirms that, when the NOC samples 

are 100% fermented, YAN samples are about 60% fermented.  

Conclusions  

Monitoring the fermentation process is a crucial step in order to obtain high-quality wines 

and avoid materials and money waste. Several analytical techniques measuring a variety of 

analytes and properties fit for the purpose and give good performances, but often they need 

intensive sample preparation, or highly specialized instruments and operators, besides 

costly and time-consuming analyses. This work was focused on the use of a portable, easy-
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to-use ATR-MIR device, coupled with multivariate analysis, as a rapid and economical 

strategy to monitor fermentation processes and to detect deviation from NOC.  

The results obtained were very satisfactory. The prediction of the sugar content in 

fermenting samples from the beginning to the end of fermentation was performed, 

demonstrating the possibility to use this portable device to rapidly monitor fermentations 

running under normal operation condition. Moreover, slower fermentations (YAN) could 

be detected at an early stage of fermentation (when NOC are well described), giving the 

possibility to the winemaker to eventually correct the process and to obtain a good quality 

product.  

Future work will be done increasing the number of samples both in NOC and in abnormal 

operation conditions, especially at the beginning of the fermentation, as it emerged from 

the models that the first 50 hours of fermentation are possibly the crucial ones to detect 

deviations from NOC conditions. We will take advantage of other strategies (eg, time 

evolving and moving average) to develop multivariate models. Moreover, a chemometric 

strategy will be developed to compare fermentations running in different times, for different 

wine types and including other problems that may occur during the fermentation process.  
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In this chapter, subobjectives three and four were addressed. The use of ATR-MIR together 

with chemometrics to detect bacterial spoilage during alcoholic fermentation was 

investigated. To this aim, a deeper understanding of the ATR-MIR spectra of wine was 

needed.  

Finding the relevant MIR spectral bands affected by lactic acid bacteria spoilage was a 

difficult task. In this regard, ASCA was a suitable method to unravel small differences in 

the spectra coming from this spectral source of variability. The preliminary study entitled 

“ASCA: a suitable exploratory tool to unravel small differences in spectroscopic data during wine 

alcoholic fermentation“, gave some insights on how an exploratory tool can serve as a basis 

for a variable selection strategy. In addition, testing different preprocessing strategies and 

determining the best combination of variables for the detection of bacterial spoilage, 

allowed us to monitor the time course of malolactic fermentation at different points of the 

alcoholic fermentation. The detection of contaminated fermentations was evaluated using 

the Hotelling T2 and Q-residual statistics. 

As in the previous chapter, the different arrangement of the spectroscopic data matrix 

allowed us to obtain different models for the detection of abnormal fermentations. In this 

case, PLS-DA was used to discriminate between normal and deviated samples.  
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INTRODUCTION 

In recent years, vibrational spectroscopic techniques, including Raman, Near Infrared 

(NIR) and Mid-Infrared (MIR) spectroscopy, have been gaining popularity for the 

monitoring and control of food-related processes [1]. These methods are considered fast-

analytical tools, as they offer the possibility of obtaining information from a sample almost 

immediately [2].  

In the wine industry, a correct monitoring of alcoholic fermentation is crucial in order to 

ensure the production of high-quality wines, as an inefficient management of this process 

would result in the production of undesired molecules having a negative effect on the 

quality of the final wine, both organoleptically and chemically speaking [3]. Traditionally, 

alcoholic fermentation is controlled by the daily measurement of chemical and physical 

parameters that ensure that the process is undergoing under the desired conditions [4]. 

However, these measurements are time-consuming, require specific laboratory equipment 

and trained personnel, making this system impractical for some wineries, which must send 

samples to external laboratories during the production process. The implementation of 

Process Analytical Technologies (PAT), which support the idea of controlling the quality 

of a product during processing, would be highly beneficial for those wineries that cannot 

afford having an own analytical laboratory in the field to perform at-line analyses. Even for 

wineries having their own laboratory, PAT strategies may be helpful, as the frequency of 
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analysis would increase substantially and pre-treatment of the samples would be 

considerably simplified [5]. 

Despite the clear advantages of using vibrational spectroscopy techniques as part of the 

PAT strategy for process monitoring (e.g. fast, easy-to-use techniques and minimum 

sample pretreatment), they require the application of chemometric tools, such as Partial 

Least Squares Regression (PLSR) or Partial Least Squares- Discriminant Analysis (PLS-

DA) in order to extract useful information from spectroscopic data [6]. 

The first step in any study involving multivariate data analysis (MVDA) is data selection 

and pre-processing, which is usually the most time-consuming step [7]. This includes the 

selection of the most representative samples, the removal of redundant variables and, 

depending on the analytical instrument used, the use of data correction methods such as 

peak alignment for chromatographic data or baseline correction for spectroscopic data [8]. 

The type of preprocessing will largely depend on the aim of the study. In MIR data from 

alcoholic fermentation, it is almost mandatory to select the most important variables related 

to the molecules that are of interest. These variables are usually present in the 

fingerprinting region, where most organic bonds absorb infrared radiation [9]. In addition, 

the perfect pre-treatment combination (i.e. 1st or 2nd derivatives, Savintzky-Golay 

smoothing, multiplicative scatter correction) will strongly depend on the information 

related to the experimental problem at hand. This process also requires a vast knowledge 

from our data. 

During alcoholic fermentation, the transformation of sugars (glucose and fructose) into 

ethanol and CO2 accounts for most of the variability in the MIR spectra [10]. Although 

this is valuable information, it hinders the detection of other minor sources of variability, 

such as the production of organic acids that might be detrimental for the wine. An 

anomalous increase of acetic acid in the wine must (>0.5 g·L-1) suggests that acetic acid 

bacteria are developing in the wine and corrective measures must be taken immediately. 

Similarly, the production of lactic acid is a bad indicator of quality in most white wines, as 

it has a negative impact on their organoleptical profile [11]. 

In the food industry, when using vibrational spectroscopy for process control, it is common 

that the phenomenon we are interested in is hidden by unimportant variation from the main 

process [12]. It is in this type of situations where ANOVA Simultaneous Component 

Analysis (ASCA) can quickly help in finding other sources of variability different from the 

predominant ones. Applying ASCA before data preprocessing can drastically reduce the 
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time usually required to find the perfect preprocessing strategy for the data, as it would be 

possible to detect, directly from the raw spectra, what variables account for most of the 

variation for the effect(s) of interest [13]. In this way, during alcoholic fermentation, we 

might be interested in minor changes in the wine matrix, such as the production of organic 

acids, instead of the main process, which is the transformation of sugars into ethanol and 

CO2 [14]. 

Applying ASCA to NIR spectral data from a bread staling process, Amigo et al. studied the 

contribution of the three major design parameters: enzyme treatment, measurement zone 

and storage time manifest. They found that the main effect, accounting for 73% of the 

variance in the data, was the measurement zone, while the spectral variance due to the time 

of storage (days) and the treatment accounted for 6.8% and 5.4%, respectively. The three 

main effects were found to be significant [15]. In another study, Grassi et al. studied the 

effect of yeast strains, temperature and fermentation time points on the variability in 

fermentation metabolites during beer fermentation. They suggested the use of interval-

ASCA (i-ASCA), splitting variables into intervals of equal size in which each interval is 

independently evaluated. They found that time had always a significant effect in all 

intervals. The temperature and yeast strain factors showed significant influence (p<0.01) 

in some of the i-ASCA intervals, unlike classical ASCA results, which did not report 

significance for these factors [16]. 

The aim of this paper is to illustrate how ASCA is able to quickly unravel, from raw MIR 

data, the variation associated to the production of acetic and lactic acids during the alcoholic 

fermentation of white wine. The use of ASCA before data pre-processing and variable 

selection allowed to quickly address the regions of interest in the spectra that are related 

to the changes under investigation during alcoholic fermentation. 

MATERIAL AND METHODS 

Concentrated white must was provided by Mostos Españoles S.A., (Ciudad Real, Spain) and 

it was stored at -20 ºC until its use. Its defrosting was done at 5 ºC and it was then diluted 

with MilliQ water to adjust the sugar concentration to 200 ± 10 g·L-1. The diluted must 

was supplemented with 0.30 g·L-1 of ENOVIT® (SPINDAL S.A.R.L. Gretz Armainvilliers, 

France) and 0.30 g·L-1 of Actimaxbio* (Agrovin, Ciudad Real, Spain) in order to ensure a 

sufficient final concentration of yeast assimilable nitrogen. The commercial dry 

Saccharomyces cerevisiae yeast strain used was “E491” (Vitilevure Albaflor, YSEO, Danstar 
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Ferment A.G., Denmark). Regarding to lactic acid bacteria, a commercial freeze-dried blend 

of Oenococcus oeni and Lactobacillus plantarum “Co-inoculant Bacteria 3.2” (Anchor Oenology, 

South Africa) was used. Rehydration of the microorganisms was done following the 

suppliers’ instructions. 

For each fermentation batch, 350 mL of diluted must were added into 500 mL Erlenmeyer 

flasks and they were inoculated with 0.105 g of active dry yeast rehydrated in 2 mL of MiliQ 

water for 30 minutes at 25 ºC, reaching a final concentration of 3·106 CFU·mL-1. In eight 

of the batches a lactic acid bacteria contamination was induced. LAB co-inoculations were 

done taking into account the producer instructions (1 g = 1·1011 CFU·mL-1), reaching two 

final concentrations: 2.5⋅106 (LAB1) and 4⋅106 CFU·mL-1. To simulate the contaminations 

of the acetic acid bacteria, 5 microvinifications were spoiled by adding a medium consisting 

on Acetobacter pasteurianus, an acetic acid bacteria autochthonous strain, from the 

Oenological Biotechnology Department at Universitat Rovira i Virgili (Spain) to a final 

concentration of 1·106 CFU·mL-1. 

All microvinifications were kept under a constant temperature of 18 ºC until the end of 

alcoholic and malolactic fermentations. Alcoholic fermentation was considered finished 

when density was under 0.995 g·L-1, whereas malolactic fermentation ended when L-malic 

acid concentration was < LOD (0.06 g·L-1).  

The dimensions of the final data matrix were 692 rows (wavenumbers x time points) and 

266 variables (wavenumbers ranging from 1839 cm-1 to 850cm-1), which consisted on 15 

Normal Operation Conditions (NOC) and 13 abnormal microvinifications (5 inducing acetic 

acid bacteria spoilage (AAB) and 8 inducing lactic acid bacteria spoilage (LAB)). 

In this dataset, three factors were considered to affect the spectra: time (fermentation 

progress), contamination (whether it was a normal or a deviated fermentation) and 

experiment (two independent experiments were conducted). The experiment factor was 

considered because of the “batch-effect” (also known as inter-experiment effect). One of the 

experiments consisted on 37 time points, while the other consisted on 8 time points. At the 

time of analysis, AAB fermentations were considered finished when the production of acetic 

acid reached its maximum (approx. 1.6 g·L-1). Density measurements were made with a 

portable densimeter (Densito2Go, Mettler Toledo, United States). Reducing sugars, acetic 

acid and L-malic acid were measured using a Y15 Analyser (Biosystems, Barcelona, Spain). 

Acetic acid and sugars were measured until their concentrations were under 0.05 g·L-1. 
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Density was measured to a minimum value (0.99 g·L-1), at which time fermentation was 

considered completed. All the analyses were performed right after sample collection. 

After data preprocessing, ASCA models (were built using Matlab R2015 (The MathWorks, 

Natick, USA) and PLS Toolbox v8.7 (Eigenvector Research Inc., Eaglerock, USA). Four 

60-hour time intervals were used to describe the different stages of alcoholic fermentation. 

In a batch process, when applying ASCA to different time intervals this is known as 

interval-ASCA models. Validation was performed using permutation tests and assessing 

the statistical significance (p-value). 500 permutations were applied and results were 

considered to be statistically significant when p-value <0.05. 

RESULTS AND DISCUSSION 

Figure 1 shows the evolution of the chemical parameters measured. In both experiments, 

lactic and acetic acid bacteria were capable to deviate the fermentation process through the 

production of lactic acid and acetic acid, respectively. In addition, a slight difference in the 

sugar consumption rate can be seen for AAB fermentations in comparison to NOC samples, 

whereas no difference between NOC and LAB samples can be appreciated. This suggests 

acetic acid bacteria are more stressful to yeast metabolism than lactic acid bacteria. The 

reason for this might be that the starting culture used to induce the LAB contaminations 

was especially indicated to be used for co-inoculation with yeasts, and these 

microorganisms are specifically selected to grow at the same time as yeasts. 

 

Figure 1. Evolution of chemical parameters during alcoholic fermentation. 
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Spectra preprocessing consisted of a Savitzky-Golay smoothing with a 15 points window 

and a 1st order polynomial, as well as Standard Normal Variate. This preprocessing 

reduced spectral noise and allowed a better chemical interpretation of ASCA loadings. 

Table 1 shows the results for the ASCA models in all the fermentation intervals. The 

percentage of total variance accounting for each factor is indicated, as well as the p-value 

obtained after the permutation test. 

Table 1. ASCA results showing the percentage of variance for each factor and the result of the 
permutation tests. 

 

Time interval  
0-60h 

Time interval   
61-120h 

Time interval 
121-180h 

Time interval 
181h-End 

Factor   
% 

Variance 
p-

value 
% 

Variance 
p-

value 
% 

Variance 
p-

value 
% 

Variance 
p-

value 

Time 89.1 0.001 92.9 0.001 20.4 0.001 20.2 0.001 

Experiment 0.6 0.001 3.4 0.001 37.1 0.001 10.9 0.001 

Contamination 0.1 0.538 0.1 0.014 11.1 0.001 9.8 0.001 

Residuals 10.3  3.5  31.5  59.1  

At the beginning of the fermentation, both time and experiment are statistically significant 

(p-values <0.05) and account for 89.1% and 0.6% of the total variance. The contamination 

factor, however, is not significant. At 60 hours, the production of lactic acid and acetic acid 

is less than 0.8 g·L-1, which is close to the limit of detection of the instrument. In the second 

time interval (121-180 hours) the contamination factor has a statistical significance, but 

accounts for a very low variance in the spectra (0.1%) in comparison to time (92.9%) and 

experiment (3.4%). From the beginning of the fermentation to 120h, massive changes in 

the spectra occur due to the consumption of sugars by yeasts. In contrast, in the last interval 

the % variance for the factor “time” reduces drastically (20.2%), as sugar concentration after 

180 hours is less than 10 g·L-1, whereas the % variance for the factor “contamination” does 

not vary significantly (9.8%). The residual matrix of the last interval represents 59.1% of 

the total variance. This matrix includes all the variations that the model cannot explain. 

The microvinifications conducted in this study were not prevented against the action of 

microorganisms, and the yeasts were not subtracted from the medium. Yeast lysis may 

explain this increase in the residuals, as well as the action from other microorganisms that 

could have grown after the end of alcoholic fermentation if residual sugars are present. 

For illustration, the evolution of the % variance for the factor “time” is shown in Figure 2. 

It is interesting to note that the shape of the curve is very similar to that of a typical 

fermentation curve of sugar consumption. 
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Figure 2. The evolution of % variance for the time factor along the different intervals of the 
fermentation. 

One of the best features of ASCA is that a PCA can be built with the submatrices of interest, 

showing how the samples (scores) are distributed in the space according to those variables 

(loadings) that have more weight in the principal in of the PCA. Figure 3 shows the PCA 

of the contamination factor, for the time interval 121-180h, in which an 11.1% of the total 

variance of the data is attributed to the contamination factor. In this PCA, a clear grouping 

of the data can be observed.  

 

Figure 3. PCA plot for the contamination factor. NOC: fermentations in Normal Operation 
Conditions. LAB: Contaminated samples with Lactic Acid Bacteria. AAB: Contaminated 

samples with Acetic Acid Bacteria. 
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The loadings associated to the contamination factor shown in Figure 4. The arrows indicate 

those wavenumbers that can be clearly associated with the contamination factor. The 

wavenumbers showing clear peaks are 1720 cm-1, 1268 cm-1, 1196 cm-1 and 1134 cm-1. 

These regions have already been associated with the absorption of organic acid bonds: the 

C=O bond stretching vibration of carboxylic acids shows an important peak at 1740 cm-1. 

The O-H bending of the carboxylic acid and the C-O stretching absorb between 1200 and 

900 cm-1. Similarly, C-H bending vibrations absorb around 1400 and 1300 cm-1. 

  

Figure 4. Loadings for PC1 (solid line) and PC2 (dotted line) of the PCA based on the 
contamination factor.  

CONCLUSIONS 

ASCA allows the quick determination of variable contributions to one or more experimental 

factors. In this preliminary study, we showed how the variance of the ATR-MIR spectra is 

affected along the alcoholic fermentation process, considering three of the most influencing 

factors in the process: time, contaminations and experiment. The application of ASCA 

before the development of any chemometric model allows optimising the selection of 

variables to be included in the analysis and determine how each of the evaluated factors in 

an experiment are affecting the measured variables. When analysing spectroscopic data, 

most of the times the factors of interest account for a very small percentage of the total 

variability. Here we have shown how ASCA is capable to detect a small variation due to 

lactic acid bacteria spoilage during wine alcoholic fermentation. 
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Abstract 

Wine production processes still rely on post-production evaluation and off-site laboratory 

analyses to ensure the quality of the final product. Here we propose an at-line methodology 

that combines a portable ATR-MIR spectrometer and multivariate analysis to control the 

alcoholic fermentation process and to detect wine fermentation problems. In total, 36 

microvinifications were conducted, 14 in normal fermentation conditions (NFC) and 22 

intentionally contaminated fermentations (ICF) with different lactic acid bacteria (LAB) 

concentrations. ATR-MIR measurements were collected during alcoholic and malolactic 

fermentations and relative density, pH, and L-malic acid were analyzed by traditional 

methods. Partial Least Squares Regression could suitably predict density and pH in 

fermenting samples (root mean squared errors of prediction of 0.0014 g·mL-1 and 0.06 

respectively). With regard to ICF, LAB contamination was detected by multivariate 

discriminant analysis when the difference in L-malic acid concentration between NFC and 

ICF was in the order of 0.7-0.8 g·L-1, before the end of malolactic fermentation. This 

methodology shows great potential as a fast and simple at-line analysis tool for detecting 

fermentation problems at an early stage. 

Keywords: Process monitoring, alcoholic fermentation, wine, malolactic fermentation 
contamination, ATR-MIR, Process Analytical Technologies 

Acknowledgments: This work was supported by the Spanish Ministry of Science and 
Technology and the European Union (MINECO-FEDER) in the Project AGL2015-70106-
R and the Catalan Research Council (AGAUR) for the FI Grant 2019 awarded to Cavaglia, 

J. (Record Number FI_B100154). 

UNIVERSITAT ROVIRA I VIRGILI 
MONITORING WINE FERMENTATION 
USING ATR-MIR SPECTROSCOPY AND CHEMOMETRIC TECHNIQUES 
Julieta Cavaglia Pietro 



122 Article 3 
  

 

1. Introduction 

The production of wine is based on alcoholic fermentation, which consists in the 

biochemical transformation of sugar into ethanol by yeasts. There are many factors that 

have an influence over the complexity and quality of the final product such as the grape 

quality and variety, yeast strain or cellar practices used (Suárez-Lepe & Morata, 2012). 

However, even with the best raw materials and starting under the optimal conditions, 

problems during alcoholic fermentation can occur, in which yeast or other microorganisms 

synthetize undesirable compounds that negatively affect the quality of the wine. Stuck and 

sluggish fermentations along with contamination-related processes are the most common 

problems that can appear during alcoholic fermentation (Hernández, León, & Urtubia, 

2016). Nutrient deficiencies, sudden temperature changes or the imposition of undesired 

and non-inoculated yeast are the main causes of stuck and sluggish fermentations. Spoilage 

processes are due to the growth of unwanted microorganisms in the must, such as acetic 

acid or lactic acid bacteria (LAB), which are part of the normal microbiota found on the 

surface of leaves and grapes but can also be found in the environment of wineries (Portillo, 

Franquès, Araque, Reguant, & Bordons, 2016). Although the “piqûre acétique” is the most 

widely known spoilage, the “piqûre lactique” can also pose very important problems in some 

wines.  

LAB are responsible for the biochemical transformation of L-malic acid into L-lactic acid 

releasing carbon dioxide. This process, called malolactic fermentation, is promoted in red 

wines to decrease their acidity since, from an organoleptic point of view, a lower acidity is 

more compatible with the high tannicity of these wines (Cappello, Zapparoli, Logrieco, & 

Bartowsky, 2017). However, in white wines, this second fermentation is usually undesired 

because it increases pH and reduces their typical freshness, leading to wines with worse 

organoleptic quality (Cozzolino, Mccarthy, & Bartowsky, 2012). 

In the winemaking industry, a control of the alcoholic fermentation process is required in 

order to avoid problems that result in low quality wines and consequently, in economic 

losses. In the cellar, the process is mostly controlled by determining temperature, density 

and pH, which are usually measured twice a day, together with a visual and aroma 

evaluation of the fermenting grape must. These parameters are related to sugars, acids and 

other minor compounds that ultimately impact substantially the colour and/or aroma of 

the wine (Bisson, 1999). These parameters are sufficient to control the process when the 

fermentation progresses well. However, these control measures sometimes fail to timely 

detect problems when they could still be solvable by applying corrective measures to the 
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must. This is why the implementation of novel process control strategies to obtain real-

time information during alcoholic fermentation has a growing interest in the oenological 

field (Cozzolino, 2016). 

The Process Analytical Technologies (PAT) approach follows this trend. PAT is a system 

for designing, analysing and controlling a manufacturing process, through timely 

measurements of critical quality attributes of raw and in-process materials and processes in 

order to ensure final product quality. The hypothesis behind PAT is that quality must be 

controlled through process control and not only by evaluating postproduction information 

(Simon, Pataki, Marosi, Meemken, Hungerbühler, et al., 2015). This is especially 

advantageous when applied over expensive or complex samples such as pharmaceuticals or 

food products (Lourenço, Lopes, Almeida, Sarraguça, & Pinheiro, 2012; Van Den Berg, 

Lyndgaard, Sørensen, & Engelsen, 2013). For this reason, the winemaking industry is a 

sector where PAT could be widely applied.  

In the last decades, the use of spectroscopy to determine oenological parameters has 

increased considerably. Spectroscopic methods are fast, clean and provide large amounts of 

information with minimum sample preparation. Near and Mid Infrared Spectroscopy (FT-

NIR and FT-MIR) have been widely used to monitor wine fermentations because 

information can be obtained on-time all along the process (Buratti, Ballabio, Giovanelli, 

Zuluanga Dominguez, Moles et al., 2011; Urtubia, Pérez-Correa, Meurens, & Agosin, 2004). 

Several authors have reported good prediction of sugars (glucose and fructose), ethanol, 

volatile acids, phenolic compounds or volumic mass in must, fermenting must and wine 

samples (Cozzolino, 2016; Di Egidio, Sinelli, Giovanelli, Moles, & Casiraghi, 2010; dos 

Santos, Páscoa, & Lopes, 2017). In some cases, the prediction of chemical parameters has 

allowed detecting some problems such as sluggish fermentations (Urtubia, Pérez-Correa, 

Pizarro, & Agosin, 2008). Among these studies, those using MIR spectroscopy with 

attenuated total reflectance (ATR-MIR) stand out because this technique only requires one 

drop of sample and provides well resolved water peaks (Teixeira dos Santos, Páscoa, & 

Lopes, 2017; Shah, Cynkar, Smith, & Cozzolino, 2010). All these advantages, together with 

the fact that modern MIR spectrometers can also be portable, make this technique a very 

suitable tool in a cellar not only to monitor different fermentation parameters but also to 

detect fermentation problems as we demonstrated in a previous study (Cavaglia, Giussani, 

Mestres, Puxeu, Busto, et al., 2019). 

The present research aims to evaluate the application of a portable ATR-MIR spectrometer 

and multivariate analysis techniques to control the progress of alcoholic fermentations and 
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to detect problems at an early stage. Density and pH were evaluated using regression 

models, whereas discriminant models were used to detect wine fermentation deviations due 

to LAB contamination. 

2. Materials and methods 

2.1. Grape must and microorganisms 

Concentrated white must was provided by Mostos Españoles S.A., (Ciudad Real, Spain) and 

it was stored at -20 ºC until its use. Its defrosting was done at 5 ºC and it was then diluted 

with MilliQ water to adjust the sugar concentration to 200 ± 10 g·L-1. The diluted must 

was supplemented with 0.30 g·L-1 of ENOVIT® (SPINDAL S.A.R.L. Gretz Armainvilliers, 

France) and 0.30 g·L-1 of Actimaxbio* (Agrovin, Ciudad Real, Spain) in order to ensure a 

sufficient final concentration of yeast assimilable nitrogen.  

The commercial dry Saccharomyces cerevisiae yeast strain used was “E491” (Vitilevure 

Albaflor, YSEO, Danstar Ferment A.G., Denmark). Regarding to lactic acid bacteria, a 

commercial freeze-dried blend of Oenococcus oeni and Lactobacillus plantarum “Co-inoculant 

Bacteria 3.2” (Anchor Oenology, South Africa) was used. Rehydration of the 

microorganisms was done following the suppliers’ instructions. 

2.2.  Microvinifications 

Three small-scale alcoholic fermentation or microvinification batches were carried out as 

follows. For each sample, 350 mL of diluted must were added into 500 mL Erlenmeyer 

flasks and they were inoculated with 0.105 g of active dry yeast rehydrated in 2 mL of MiliQ 

water for 30 minutes at 25 ºC, reaching a final concentration of 3·106 CFU·mL-1. To prepare 

the simulated contaminated samples, LAB co-inoculations were done taking into account 

the producer instructions (1 g = 1·1011 CFU·mL-1) to reach different final concentrations 

ranging between 1·106 and 1·107 CFU·mL-1. All microvinifications were kept under a 

constant temperature of 18ºC until the end of alcoholic and malolactic fermentations. 

Alcoholic fermentation was considered finished when density was under 0.995 g·L-1 

whereas malolactic fermentation ended when L-malic acid concentration was < LOD (0.06 

g·L-1).  

The number of samples of each batch, the initial must parameter values (which are slightly 

different to simulate the natural maturity variability in grapes) and codification used are 

specified in Table 1. The normal fermentation conditions were coded as NFC and the 

intentionally contaminated fermentations as ICF. ICF samples were divided into 5 groups: 
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ICF1, ICF2, ICF3, ICF4 and ICF5, according to the concentrations of LAB inoculated. The 

aim of using different concentrations of LAB was to promote the transformation of L-malic 

acid into L-lactic acid at different points of the alcoholic fermentation. 

Table 1. Initial conditions for the 3 experiments conducted. Yeast concentration was 

3x106 CFU·mL-1 in all batches. 

  
Number of 
samples  

Sample 
name  

Inoculated LAB 
population 

(CFU·mL-1)  

Initial density 

(g·mL-1)  
Initial pH  

Initial L-
Malic Acid 

(g·L-1)  

Batch 1  
5   NFC  -  

1.0872  4.15  1.92  
5   ICF1  1·106  

Batch 2   

3   NFC  -  

1.0830  4.09  1.73  
3   ICF1  1·106  

3   ICF2  1.6·106  

3   ICF3  2.5·106  

Batch 3   

6   NFC  -  

1.0794  4.04  1.61  4   ICF4  7·106  

4   ICF5  1·107  

 

2.3.  ATR-MIR analysis 

The samples were collected at least once a day to follow both alcoholic and malolactic 

fermentations until both were finished. The sampled volume was 1.5 mL, which was 

centrifuged at 10000 rpm for 10 minutes to avoid the scattering effect in the spectroscopic 

measurements due to the presence of microorganisms. The pellet was discarded while the 

supernatant was kept in 1.5 mL eppendorfs for further analysis. Right after sample 

collection, spectra were obtained using a portable 4100 ExoScan FTIR instrument 

(Agilent, California, USA), equipped with an interchangeable spherical ATR sampling 

interface, consisting on a diamond crystal window. A drop of sample was placed onto the 

crystal using a Pasteur pipette and the spectra were acquired right afterwards. Each sample 

was analysed in triplicate and an air background was recorded between samples. Each 

sample was measured applying our previously optimized methodology (Cavaglia, Giussani, 

Mestres, Puxeu, Busto, et al., 2019). After each measurement, the crystal was thoroughly 

cleaned with deionized water and cotton wipes. Spectra were collected in absorbance mode 

from 4000 to 650 cm-1. The resolution and number of scans that provided the best results 

were 8 cm-1 and 32, respectively. Measurements were made at 63 ± 1 ºC, as this was the 
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stabilization temperature of the crystal. Spectra were examined using the Microlab PC 

software (Agilent, California, USA), and saved as .spc files. 

2.4.  Standard sample analysis 

As it is done in a cellar, density and pH were determined along the alcoholic fermentation 

to ensure the normal progress of this process. Density was measured using an electronic 

portable densimeter (Densito2Go, Mettler Toledo, United States) and pH was measured 

with a portable pH-meter with a 201 T portable electrode (7+ series portable pH-meter, 

XS Instruments, Italy). The remaining volume of the supernatant was used for L-malic acid 

analysis using an Y15 Analyser (Biosystems, Barcelona, Spain) in order to follow the 

malolactic fermentation. Measurements were performed in parallel to ATR-MIR analysis 

of the samples.  

2.5.  Multivariate analysis 

For each sample, the average of the three recorded spectra was used in all the models 

described below.  

The collected data had a three-dimensional structure, with I samples, J wavenumbers and 

K sampling times. This 3-way array was rearranged in different ways (Figure 1), depending 

on the aim of the study.  

 
Figure 1. Scheme of the data arrangement for each of the approaches applied to the three-way 

structure. 

First, a global approach was developed using all the spectra collected throughout the 

fermentation process for all the experiments, to explore the main information contained in 

the data and to correlate the spectra with the fermentation parameters. A time-wise 

unfolding of the 3-way array was performed to obtain a matrix with dimensions (IK x J), in 
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which rows were the spectra recorded for I samples at K sampling times and columns were 

the J spectroscopic wavenumbers.  

The individual examination of each sampling time was also considered for the 

discrimination between NFC and ICF samples for each experimental batch following a local 

approach. For each experimental batch, different K matrices (one for each time sampled) 

with dimensions (I x J) were thus independently investigated. 

Principal Component Analysis (PCA) was applied to visualize the variability among data 

both through alcoholic and malolactic fermentations and to detect potential outliers, while 

Partial Least Squares Regression (PLSR) models were developed to predict fermentation 

parameters.  

Finally, Partial Least Squares Discriminant Analysis (PLS-DA) was used to detect LAB 

spoilage. PLS-DA is similar to PLSR, but in this method the vector y contains dummy 

variables (0 or 1) for the classes you want to discriminate (here, NFC and ICF). The method 

seeks the optimal number of latent variables (LVs) that maximize the covariance (and thus 

the discrimination) between the infrared spectra and the classes. A discrimination threshold 

(between 0 and 1) is calculated taking into account the probability of classification error of 

the samples into the classes (Pérez, Ferré, & Boqué, 2008).  

To proceed with the study of the spectra, different pre-processing strategies were tested 

including first and second derivatives (to emphasise small peaks), Savitzky-Golay 

smoothing (to reduce noise) and Standard Normal Variate (SNV) (to reduce the variability 

between samples due to scatter). This step is crucial because the outcome of a multivariate 

model has a strong dependence on the pre-processing applied. According to the data matrix 

used in the calculation, different pre-processing combinations were tried and compared. 

Only those giving the best results are shown. After spectral pre-processing, data were 

mean-centered. The theoretical basis of these treatments can be found elsewhere (Rinnan, 

Van Den Berg, & Engelsen, 2009). 

In addition, to optimize the regression models and further reduce their complexity, a 

variable selection strategy based on the Selectivity Ratio algorithm was considered. It is 

based on the idea of progressively excluding variables in the X data block and evaluate the 

effectiveness of the Y prediction until the combination of X variables is optimized 

(Rajalahti, Arneberg, Berve, Myhr, Ulvik, et al., 2009). 

Regression models were validated considering three different validation strategies and the 

best model was selected by evaluating the best compromise between the higher percentage 
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of explained variance in Y and the minimum RMSECV/RMSEP (Root Mean Square Error 

of Cross-Validation/Prediction). In the first validation strategy, an internal cross-

validation (CV) was performed, where groups of samples (accounting for 5% of the total 

number of samples) were left out each time and used for prediction. The procedure was 

iterated 20 times and the average RMSECV was considered. In the second strategy, data 

were split into random halves and each half was used as calibration set in one model and as 

validation test set in the other. Thus, a random vector of zeros and ones was built, where 

zeros were considered calibration samples and ones were validation samples. The data split 

procedure was repeated 10 times to reduce the dependence of data splits in the performance 

of the models and the average RMSEP error was evaluated. Finally, the third strategy 

consisted on applying the Kennard-Stone sample selection algorithm which divides the data 

into calibration and test sets taking into account the distribution of the samples in the 

principal components space. This algorithm selects the samples for the calibration set 

providing uniform coverage over the X data, including samples at the limits of the 

measurements ranges (Kennard & Stone, 1969). This methodology tends to be 

overoptimistic, and for this reason the number of samples to be included in the calibration 

test was optimized, assuring a RMSEP comparable to the ones obtained by the other 

strategies. 

In the case of the PLS-DA models, different internal CV strategies were tested, depending 

on the number of samples available in each case. A leave-one-out CV was used when the 

number of samples ≤6, while a leave-two-out CV was used when the number of samples ≥6.  

All multivariate data analyses were performed using the PLS Toolbox v8.7 (Eigenvector 

Research Inc., Eaglerock, USA) with MATLAB R2015b (The MathWorks, Natick, USA). 

3. Results and discussion 

3.1. ATR-MIR spectra  

The evolution of the ATR-MIR spectra during alcoholic fermentation is shown in Figure 

2. The region from 850 to 649 cm-1 was excluded as it did not contain useful information, 

resulting in low quality models. As previously reported (Cozzolino & Curtin, 2012; Wu, 

Xu, Long, Zhang, Wang, et al., 2015), the regions that show most of the variability during 

wine alcoholic fermentation in the mid-infrared region are mainly found between 950 to 

1500 cm‐1, where CH2, C-C-H, H-C-O bonds and C-C, C-O stretching vibrations absorb, 

and between 3000 to 3700 cm-1, where O-H stretching absorbs.  
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Figure 2. Evolution of the full raw spectra in ATR-MIR mode highlighting in grey the areas that 
show most of the variability during alcoholic fermentation. 

3.2. Alcoholic fermentation  

All the spectra arranged in a time-wise unfolded matrix (Figure 1) were used to build a 

global PCA model. The evolution of each batch during alcoholic fermentation was best 

described when applying the following pre-processing combination: Savitzky-Golay second 

order polynomial smoothing through 7 points, SNV and mean-centering. The first 2 

principal components accounted for the 99.31% of the data variability (97.39% for PC1 and 

1.92% for PC2). As it can be noticed in Figure 3, when comparing the evolution in time of 

the PC1 scores with the evolution of the density curve with the values registered during 

the fermentation process, both plots show a similar trend. The loadings plot of PC1 shows 

that the most important region to follow the progress of alcoholic fermentation is between 

950-1700 cm-1 (data not shown), which was not surprising as this region mainly 

corresponds to sugars and ethanol absorptions (Cozzolino, Cynkar, Shah & Smith, 2011).  
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Figure 3. PC1 score values of the global model for all times (left). Density trend during alcoholic 

fermentation. Samples are labelled according to the batch experiment (right). 

Moreover, the PCA model built using the spectra shows small differences between batches. 

A hypothesis is that this behaviour could be related to small changes in the initial sample 

density, since all samples come from the dilution of the same must in the same experimental 

conditions. In other words, the spectra recorded by the portable instrument allowed to 

distinguish between experiments, confirming the capability of the spectroscopic technique 

coupled with chemometrics to spot small differences between fermentation processes.  

3.3. Prediction of chemical parameters  

As mentioned above, PC1 scores and density showed a similar trend when depicted against 

time. From this important result arose the idea of using the spectroscopic data to predict 

density by means of PLSR. All the available NFC experiments were used in this regression 

model (final data matrix dimensions 566 samples x 850 variables). 

By applying the Selectivity Ratio algorithm, the spectroscopic regions selected were 967 to 

1175 cm-1 and 1483 to 1771 cm-1. The validation errors for the density models using the 

different CV strategies are shown in Table 2. For the first model, a subset of 28 samples 

was used. The number of LVs to be considered was optimized taking into account the 

higher percentage of explained variance of Y data and the lower RMSECV/ RMSEP values. 

For the subsequent models, only one LV was used. The Kennard-Stone algorithm showed 

that only 29 calibration samples were necessary to build a model with an RMSEP value 

comparable to the ones obtained by the other validation methods.  
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Table 2. Results of the three different methods of validation, shown as RMSECV for internal CV, 
and RMSEP for halves splitting and Kennard Stone validation for density and pH prediction. 

 Density (g·mL-1) pH 

Internal CV 0.0014 0.06 

Halves splitting 0.0014 0.07 

Kennard Stone 0.0014 0.06 

Similar results have been reported using NIR spectroscopy. Fernandez-Novales et al. 

obtained an RMSECV of 0.0065 g·mL-1 for the prediction of density in wine fermenting 

samples (Fernández-Novales, López, González-Caballero, Ramírez, & Sánchez, 2011). In 

our study, we showed for the first time that the spectroscopic information obtained with a 

portable ATR-MIR spectrometer with PLSR can be used to predict density in must and 

fermenting samples, obtaining very satisfactory results considering the lower optical 

robustness of the instrument compared to benchtop devices. 

pH is another chemical parameter that is usually determined to control alcoholic 

fermentation. In this study, PLSR was applied to predict pH following the same 

methodology as for density (in this case, the data matrix dimensions were 427 samples x 

850 variables). The Selectivity Ratio algorithm selected regions all along the spectroscopic 

range, suggesting that pH prediction requires information from the full spectrum. A 

combination of Savitzky-Golay second order polynomial smoothing through 15 points, 

SNV and mean-centering pre-processing gave the best results. For all models, 5 LVs were 

needed to achieve good predictions. In the first model built with all the samples, a subset of 

22 samples was used for internal validation. The validation based on the Kennard-Stone 

selection method needed 43 calibration samples to obtain errors comparable to those of the 

other validation methods; therefore, 384 validation samples were used to test the model. 

Results from the different validation strategies for the pH models are summarised in Table 

2. Swanepoel et al. obtained a standard error of prediction (SEP) of 0.05 pH units for grape 

and must samples using FT-MIR in the transmission mode (Swanepoel, du Toit, & 

Nieuwoudt, 2007). Using ATR-MIR, Shah et al. obtained a standard error of cross-

validation (SECV) of 0.07 for the pH of grape juice samples (Shah, Cynkar, Smith, & 

Cozzolino, 2010). Our results show that the portable spectrometer used in this study can 

perform a fast and simple control of the progress of alcoholic fermentation with an 

acceptable error when combined with a chemometric strategy to manage the recorded 
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spectra. Additionally, the fact that similar validation errors were obtained using different 

validation strategies shows the robustness of the models. 

3.4. Malolactic fermentation deviation 

The spectra recorded during the experiments in which LAB co-inoculations were 

performed (ICF) showed only minor changes with respect to the ones recorded in NFC due 

to the small concentration changes involved in the malolactic fermentation process. The 

main information in both NFC and ICF spectra is ascribable, in fact, to the alcoholic 

fermentation evolution (sugars and ethanol signals).  

To focus the attention on the malolactic fermentation process, each batch was individually 

studied to avoid the variability among batches. In addition, the PCA models were built 

using the spectroscopic region between 1320 and 1109 cm-1, which is related to organic 

acid molecules involved in the malolactic fermentation as previously reported (Grassi, 

Vigentini, Sinelli, Foschino, & Casiraghi, 2012; Picque, Lefier, Grappin, & Corrieu, 1993). 

Three models were calculated, one for each batch experiment. The best results were 

obtained with a combination of 1st derivative Savitzky-Golay second order polynomial 

smoothing through 15 points, SNV and mean-centering as pre-processing methods. In this 

case, the 1st derivative emphasised the slight changes in small peaks. All models explained 

more than 98% of the variability using 3 PCs. 

The scores for two PCs against time are depicted for each batch in Figure 4. Samples are 

labelled according to the LAB co-inoculated concentrations. It can be observed that the 

evolution of malolactic fermentation takes different directions in the PCA space with 

respect to time and it is even possible to distinguish among the different LAB 

concentrations in the second and third batches. The models allowed to observe the different 

trends between ICF and NFC samples before the end of malolactic fermentations, and in 

some cases, before the end of alcoholic fermentation (Batch 3). A deep investigation of these 

plots allowed to qualitatively determine at which sampling time the trajectories of ICF 

samples started to deviate from NFC. In batches 1 and 2, trajectories showed different 

trends 100 hours after the beginning of alcoholic fermentation, whereas in batch 3, it was 

possible to qualitative see the different trajectories after 50 hours. 
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Figure 4. Score plots of the PCA global model for each batch using only the selected spectroscopic 
region. 

3.5. Discrimination between NFC and ICF  

Starting from the qualitative results previously shown (section 3.4), PLS-DA models for 

each batch were built at individual sampling times (local models) to determine at which 

sampling time the trajectories of ICF samples started to deviate from NFC. In other words, 

to determine as soon as possible when the deviation from the NFC occurred because of LAB 

spoilage. For each PLS-DA model at each sampling time (Figure 1) the y vector was built 

by assigning 1s to ICF samples and 0s to NFC samples.  

The first sampling time to find a discrimination threshold between the two groups with a 

100% correct classification was defined as the deviation time. The deviation time was 

confirmed with a local model of the consecutive sampling time when 100% correct 

classification was achieved. For all models, only one LV was needed for a successful 

discrimination of the classes. 

Samples deviated from NFC in the first batch 213 hours after the beginning of the 

fermentation. In the second batch, ICF1 deviated after 187 hours whereas ICF2 and ICF3 

deviated after 145 hours and 138 hours, respectively. In the third batch the difference of 

ICF4 and ICF5 from NFC was detected after 56 and 58 hours, respectively.  

At those deviation times, malolactic fermentation was around 50%-60%, which means that 

it is possible to differentiate the spectra before the end of malolactic fermentation, allowing 

to make corrective measures in wineries. Manley et al. considered the possibility of using 

FT-NIR to detect if malolactic fermentation has started, is in progress or has been 

completed in white wine, where L-lactic acid values were between 0-0.3 g·L-1, 0.3-2 g·L-1 

and above 3 g·L-1, respectively. They reported good classification of each class, with >95% 

of recognition rates (Manley, van Zyl, & Wolf, 2001). In our study, for all PLS-DA models, 
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the difference in L-malic acid concentration between NFC and ICF samples ranged from 

0.7 to 0.8 g·L-1. Despite the fact that this decrease in L-malic acid concentrations result in 

a slight increase in pH, this is the first time that an ATR-MIR device is used to detect 

deviations from NFC before the end of malolactic fermentation. 

4. Conclusions 

It has been demonstrated that a portable ATR-MIR spectrometer with multivariate 

analysis is a valuable analytical tool to rapidly control the progress of alcoholic 

fermentation in white wine. Here, the ability of this portable device has been proved to 

effectively predict density and pH in fermenting must samples. The methodology presented 

shows great potential as a fast and simple at-line analysis tool for the detection of 

fermentation problems, as is possible to use this instrument to rapidly assess a LAB spoilage 

during alcoholic fermentation. Upon this findings, further research will be developed based 

on PAT strategies to give the winemaker the possibility to correct the process and to obtain 

good quality wines.  
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This chapter focus on the development of robust MSPC charts based on the PCA models 

of experimental data from microvinification studies.  

The aim of this study was to apply different MSPC strategies to monitor wine alcoholic 

fermentation. The last specific objective of the thesis was addressed, as the control charts 

were developed to detect deviations based on the modelling of fermentations running under 

Normal Operation Conditions (NOC). These charts can then be used to monitor and 

eventually control the correct progression of wine alcoholic fermentation. The idea behind 

this PAT methodology is that, under NOC conditions, PCA on spectroscopic data can be 

used to describe a NOC space and then the corresponding Hotelling T2 and Q statistical 

limits (i.e. at 95% confidence) can be calculated. Then, any sample that is projected onto the 

NOC-PCA defined space will have a value for the two statistics. If a sample is deviated from 

the process, it is expected that at some time it will show unusual T2 or Q values (out-of-

control values). 

In addition, as ATR-MIR spectra change considerably during alcoholic fermentation, 

eight-hour interval Q-charts were developed to improve the performance of the process 

control monitoring.  

The variability between different batches and experiments was studied, as process control 

strategies must consider this variability factor in order to develop valid models.  
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Abstract 

Despite the winemaker’s efforts, deviations such as bacterial spoilage can occur during wine 

alcoholic fermentation resulting in economic losses and low quality wines. When a 

deviation is suspected, samples are usually sent to an oenological laboratory for the off-line 

analysis of specific quality control parameters. The use of ATR-MIR as a fast analytical 

tool to monitor the fermentation process could be very useful, as getting real-time 

information of the process allows making readjustments before the process ends. In this 

study, we aimed at detecting white wine spoilage during alcoholic fermentation due to the 

action of lactic bacteria using a portable ATR-MIR instrument and MSPC charts. A total 

of 33 small-scale alcoholic fermentations were conducted (25 in normal operation 

conditions (NOC) and 8 simulating a bacterial spoilage with the addition of lactic bacteria 

(MLF)) to evaluate the capability of the MSPC charts to detect deviations from NOC. 

MSPC control charts were developed based on Q residuals and Hotelling’s T2 statistics. 

Time-wise unfolding was applied to the original three-way data to build different PCA 

models, obtaining very satisfactory results: MLF samples were detected before the end of 

alcoholic fermentation in the Q residuals charts after 80 hours and Hotelling T2 chart could 

also differentiate the samples after 100 hours. 

Key words: Wine Alcoholic fermentation, ATR-MIR, MSPC, Process analytical 

technologies (PAT), Quality control. 
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1. Introduction 

The main biochemical change during wine alcoholic fermentation is the transformation of 

sugars from grape must into ethanol by the action of yeasts. In order to obtain high quality 

wines a close monitoring of this process is of utmost importance [1]. In the wine cellar, 

simple measurements such as density, pH and temperature are the main quality control 

parameters, which are usually measured once or twice a day to ensure a correct progression 

of the process and to avoid stuck and sluggish fermentations or contamination-related 

processes, which may lead to low quality wines [2]. If unexpected deviations occur, more 

exhaustive off-line laboratory analyses are needed, which involve delayed results that may 

not allow readjusting the process when it could still be solvable. Process Analytical 

Technologies (PAT) are based on the idea that quality of a product should be evaluated 

throughout the manufacturing process, by performing real-time measurements during 

processing instead of carrying out quality control measurements in the final product. PAT 

methodologies ensure that if a product operates under Normal Operation Conditions 

(NOC) it will probably meet the final quality requirements at the end of the process. PAT 

guidelines are founded on process understanding together with the fact that modern 

process analyzers can provide non-destructive measurements containing information 

related to biological, physical, and chemical attributes of the materials being processed [3]. 

Despite being developed for the pharmaceutical manufacturing, PAT have been gaining 

ground in the food and beverages industries [4]. In particular, when dealing with wine 

alcoholic fermentation monitoring and process control, the implementation of fast 

analytical tools, such as vibrational spectroscopy, has gained popularity over the last 

decades. Vibrational spectroscopy falls into the PAT guidelines as it allows getting real-

time information of the process and taking corrective measures, if necessary, before 

obtaining the final product [5]. Among the different vibrational spectroscopy options, 

attenuated total reflectance mid-infrared spectroscopy (ATR-MIR) is a very valuable PAT 

tool for food and beverages analysis, as it is a fast and easy-to-use technique, which requires 

little or no sample pre-treatment [6]. 

To obtain the useful process information, the use of vibrational spectroscopy involves the 

acquisition of multivariate data and so it implies the application of multivariate statistical 

process control (MSPC) techniques. Among the different MSPC charts, the ones based on 

Principal Components Analysis (PCA) to monitor fed-batch processes are simple to 

represent and easy to interpret [7]. However, fed-batch processes naturally present several 

features, which make the modelling of NOC (Normal Operation Conditions) batches a 
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difficult task (e.g. time-varying dynamics and uneven batch length), and different 

approaches can be adopted depending on the type of process followed and the type of faults 

sought [8]. In batch processing, data can be represented as a three-way matrix of 

dimensions IxJxK (where I is the number of samples, J refer to number of variables and K 

is the number of time points of each batch). A decomposition into a two-way matrix of 

dimensions IJxK or IxJK can be applied to build multivariate PCA models. The basis of 

MSPC is very similar to the traditional univariate SPC methods, where the confidence 

limits are built based on data obtained only from NOC batches. To study the evolution of 

new batches, the statistical information from the PCA model is used. Particularly, Q 

residuals and Hotelling’s T2 values (calculated under normal distribution assumptions) are 

the most used statistical measures to detect irregular batches. Q residuals represent the 

squared perpendicular distance of a sample at a specific time point from the reduced space 

defined by the PCA model. They become greater when a batch deviates over time from 

NOC batches. Then, the irregular batch, when projected, lies outside the model, 

perpendicular to the NOC PCA space. In turn, Hotelling’s T2 values provide information 

of how far a batch is from the centre of the NOC reduced space. In this case, an abnormal 

batch would be positioned further away from the centre of the model as the deviation 

becomes more evident [9]. 

The combination of vibrational spectroscopy and MSPC tools to detect deviations during 

fed-batch processes in the food and beverages industries has already been considered, 

confirming the growing interest to integrate fast analytical tools and MSPC techniques 

into the process control line. Using FT-NIR, disturbances during the coffee roasting 

process were detected outside the limits of both T2 and Q residual charts before the end of 

the process [10]. Similarly, faulty batches during the renneting process of milk were 

detected in the Q residuals chart [11]. Also, Q charts were used to detect off-specification 

coffee beans during storage in different packaging conditions using Raman spectroscopy 

[12]. However, information is very limited on the use of spectroscopic data and MSPC 

charts for on-line monitoring of fermentation processes in the agro-food sector to provide 

early indications of process deviations [13,14]. 

It has already been shown that ATR-MIR is suitable for real-time bioprocess monitoring 

[15] and particularly for monitoring industrial alcoholic fermentation processes [16,17]. 

In the winemaking industry, alcoholic fermentation monitoring using ATR-MIR has been 

widely studied and a review on the usefulness of this technique for process control can be 

found elsewhere [18]. Using ATR-MIR with PLSR, good prediction models were obtained 
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for alcohol, reducing sugars and titratable acidity during the alcoholic fermentation process 

in rice wine [19]. In another study, the prediction of glucose, fructose and glycerol during 

fermentation in red wine was achieved obtaining a rcv (coefficient of correlation in cross-

validation) above 0.99 [20]. The prediction of ethanol levels in several alcoholic beverages 

has also been reported, obtaining models with a root mean square error of prediction of 

0.1% (w/w) [21]. Furthermore, it has been reported that ATR-MIR can detect deviations 

from NOC, including sluggish fermentations and microbiological spoilage [22,23], 

suggesting that this tool could be used for process control. From an oenological point of 

view, among the possible microbiological contaminations, those promoted by lactic bacteria 

are especially interesting because these lead to malolactic fermentation with the subsequent 

increase of the pH values (the diprotic malic acid is transformed into the monoprotic lactic 

acid, resulting in a deacidification of the wine). Therefore, if this process is not controlled, 

it gives rise to defective wines, in terms of its organoleptic profile. The most common 

preventive action to avoid this microbiological contamination is adding sulphites into the 

must at the beginning of alcoholic fermentation. However, health risks have been associated 

with sulphites so, the addition of sulphites only when a contamination is detected would be 

highly beneficial in health terms. In this case, the implementation of real-time monitoring 

in the cellar, together with MSPC charts, could be more efficient than performing off-line 

laboratory analyses, which provide delayed results and may not allow taking corrective 

measures when a deviation could still be solvable. Yet, the potential of MSPC charts in this 

field has not yet been fully investigated [24]. 

The aim of this study was to develop MSPC control charts as a tool for spoilage detection 

in the wine alcoholic fermentation process. This spoilage was promoted by inducing an 

additional malolactic fermentation (MLF) in some wine fermentations to evaluate the 

capability of the MSPC charts to detect this deviation from the normal process. The 

implementation of fast analytical tools such as ATR-MIR for process control would be 

particularly useful when dealing with microbiological contamination, as it could allow to 

shift from a preventive approach to a corrective one. 

2. Materials and methods  

2.1 Samples 

The grape must employed to perform the small-scale fermentations (microvinifications) 

was obtained by the adequate dilution of a concentrated white grape must from Mostos 

Españoles S.A. (Ciudad Real, Spain). The diluted sugar (glucose and fructose) 
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concentrations were 200 ± 10 g·L-1, in order to reproduce natural variability in samples. In 

addition, yeast assimilable nitrogen was adjusted by supplementation with 0.30 g·L-1 of 

ENOVIT® (SPINDAL S.A.R.L Gretz Armainvilliers, France) and 0.30 g·L-1 of 

Actimaxbio* (Agrovin, Ciudad Real, Spain). 

Microvinifications were conducted in 500 mL conical flasks by adding 350 mL of diluted 

must. Each flask was inoculated with the commercial dry yeast strain Saccharomyces 

cerevisiae “E491” (Vitilevure Albaflor, YSEO, Danstar Ferment A.G., Denmark), to reach a 

final concentration of 3·106 CFU·mL-1. In total, 25 NOC microvinifications were carried 

out in 4 different experiments throughout the year. To emulate the variability due to a real 

grape ripening process, each one of the four microvinification experiments used a must with 

a slightly different sugar concentration. Simultaneously to the NOC experiments, 8 

additional microvinifications were intentionally contaminated with a freeze-dried blend of 

Lactic Acid Bacteria (Lactobacillus plantarum and Oenococcus oeni) in two different 

concentrations, 4 x 2.5·106 and 4 x 4·106 CFU·mL-1, to promote malolactic fermentation at 

different time points of the alcoholic fermentation. Samples were coded as MLF1 and 

MLF2, respectively. Rehydration of the microorganisms before co-inoculation was done 

following the suppliers’ indications. 

All the microvinifications were kept under constant temperature of 18 ºC until the end of 

the fermentations. Both alcoholic and malolactic fermentations were controlled by routine 

analysis twice a day until the end of both fermentations in order to ensure the normal 

progress of both processes (we considered that alcoholic fermentation ended when density 

was under 0.995 g·L-1 and malolactic fermentation ended when L-malic acid concentration 

was under 0.06 g·L-1). Alcoholic fermentations were controlled with density measurements 

with a portable densimeter (Densito2Go, Mettler Toledo, United States). Regarding to the 

malolactic fermentations, these were controlled by determining the L-malic acid 

concentration using a Y15 Analyser (Biosystems, Barcelona, Spain). pH was also 

continuously measured in both fermentations using a portable pH-meter with a 201 T 

portable electrode (7+ series portable pH-meter, XS Instruments, Italy). All the analyses 

were performed right after sample collection. 

2.2 ATR-MIR analysis 

After homogenization, 1,5 mL were collected at least once a day and centrifuged at 10000 

rpm for 10 minutes, to avoid the scattering effect produced by the microorganisms present 
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in the sample. The pellet was discarded, and the supernatant was kept in 1.5 mL eppendorfs 

for further analysis. Infrared measurements were performed with a portable 4100 ExoScan 

FTIR instrument (Agilent, California, USA), equipped with an interchangeable spherical 

ATR sampling interface, consisting on a diamond crystal window. Spectra were collected 

using our previously optimized methodology [14] over the range 4000 to 650 cm-1 

(resolution 8 cm-1; 32 scans; triplicate per sample; air-background before sample). A drop 

of the sample was placed on top of the crystal and the spectrum was recorded immediately 

afterwards. Spectra were obtained using Microlab PC software (Agilent, California, USA) 

and data was saved as .spc files. The mean of the triplicates was used in subsequent data 

analysis.  

2.3 Multivariate statistical process control 

The spectral region selected to proceed with the study was from 1309 to 1082 cm-1, which 

according to our previous studies is the region related to the malolactic fermentation [23]. 

The collected data consisted of a three-way matrix containing the absorbance values at 

different wavenumbers (J=62), for NOC and MLF samples (I=33) and at different sampling 

times (K) depending on the batch. Sampling times ranged from 0 to 210 hours, when the 

completion of both alcoholic and malolactic fermentations was achieved. Then, a time-wise 

unfolding of the three-way array was performed, resulting in a matrix with dimension IKxJ. 

After that, different pre-processing strategies where tested and optimized, including first 

and second derivatives, Savitzky-Golay smoothing and Standard Normal Variate (SNV). 

After spectral pre-processing, data were mean-centered.  

First, a preliminary PCA model was built using only the data from the first experiment, in 

order to qualitatively visualize the main changes in the spectra and to detect trends in 

sample types (NOC and MLF). This model allowed to explore the variability of batches 

from the same experiment and the variability associated to the malolactic fermentation.  

Next, three different strategies were applied with the unfolded, two-dimensional (IKxJ) 

matrix. In the first one, only NOC batches from a sole experiment were used to build a 

NOC PCA model (matrix of 340 rows – samples x time, and 62 columns - wavelengths). In 

the second strategy, NOC batches from the other experiments were added to build a new 

NOC PCA model including the variability among experiments. Thus, the 10 NOC samples 

from the previous model were used, but the matrix was augmented using 15 more NOC 

samples from the others three different experiments. The final NOC matrix consisted of 

771 rows (NOC samples coming from the 4 experiments x time) and 62 columns 
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(wavelengths). In both approaches, samples from all the sampling times were used. Finally, 

in the third strategy, eight-hour models (interval PCA models) were developed used all the 

NOC data. A scheme of the procedure followed for all models is shown in Figure 1. 

In the three strategies, MLF samples (272 rows – samples x time, x 62 columns - 

wavelengths) were projected in the different NOC PCA models by calculating their scores 

in the NOC reduced space and using the loadings obtained from each model. The capability 

of the PCA models to detect a deviation during the process using the defined reduced space 

and the statistical performance of the MLF samples were evaluated. All models were 

validated by applying the Kennard-Stone algorithm [25] using half of the NOC samples in 

the calibration set to ensure that the whole NOC variability is represented.  

For each one of three models, T2 and Q control charts were built. A 95% Hotelling’s T2 

confidence limit was calculated using the NOC calibration samples, and then NOC samples 

from the validation set and all MLF samples were plotted in the Hotelling’s T2 control 

charts, representing T2 values vs time. Similarly, a 95% confidence limit was calculated for 

the Q residuals using the NOC calibration samples, and then NOC samples from the 

validation set and MLF samples were projected in the Q control charts, representing in this 

case Q values vs time. 

 

 

Figure 1. Scheme of the procedure applied to build the IKxJ PCA models for NOC samples 
and the projection of MLF samples. 

All multivariate data analyses were performed using the PLS Toolbox v8.7 (Eigenvector 

Research Inc., Earglerock, USA) with MATLAB R2015b (The MathWorks, Natick, USA). 
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3. Results and discussion 

3.1. Evolution of alcoholic and malolactic fermentations  

As previously reported [26,27], the regions that show the greatest variability during 

alcoholic fermentation in the mid-infrared region are between 950 and 1500 cm-1, due to 

sugars, acids, proteins and ethanol bonds absorption. In this region, the greatest variability 

associated to the biochemical transformation of sugars into ethanol and carbon dioxide is 

observed between 950 and 1100 cm-1. However, when using the region from 950 to 1500 

cm-1, it was not possible to distinguish between NOC and MLF because spectral changes 

due to malolactic fermentation in this region were hidden by spectral changes 

corresponding to the main process (alcoholic fermentation) (data not shown). For this 

reason, to focus on the malolactic fermentation process, we used the region between 1309 

to 1082 cm-1, which maximised the differences between alcoholic and malolactic 

fermentations.  

The optimized pre-processing used was first derivative (1st order polynomial) with 

Savitzky-Golay smoothing through 15 points, SNV and mean-center. Figure 2 (left) shows 

the raw mean spectra for NOC, MLF1 and MLF2 at the end of both alcoholic and malolactic 

fermentations, when the difference in the classes is maximum. Although very little 

separation emerges from the raw data, a decrease in absorbance can be seen between 1320 

and 1170 cm-1, which can be ascribed to a reduction in H-bonding as this region is 

associated with O-H bending vibrations. A difference in the slope can be appreciated in the 

region between 1150 and 1100 cm-1, which is associated with stretching vibrations of C–C 

and C–O of carboxylic acids [28]. When applying our optimized pre-processing, the 

difference is noticeable and the differentiation between classes is detectable.  

 

Figure 2. Raw mean spectra (left) and preprocessed mean spectra (right) for NOC, MLF1 and 
MLF2 at completion of alcoholic and malolactic fermentations 
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A preliminary PCA model was built only using samples from a single experiment 

(consisting on 10 NOC and 8 MLF batches), attempting to screen different behaviours 

between NOC and MLF samples. The number of principal components used for this 

purpose was optimized to 2 PCs, to well-define alcoholic fermentation and avoid overfitted 

models. As it can be observed in Figure 3, the first principal component (98.61% explained 

variance) follows the trend of alcoholic fermentation kinetics, as shown in our previous 

work [23]. From the second principal component (accounting for only a 1.04% of the total 

variability), a difference can be observed between NOC and MLF samples from hours 60-

80 until the end of the process. It must be taken into account that the greatest variability 

in the spectra is due to the alcoholic fermentation, as it involves the transformation of 

sugars into ethanol from an initial concentration of 200 g·L-1. On the other hand, at the 

beginning of malolactic fermentation, malic acid concentration is only around 2 g·L-1 and 

the variability in the signal is much lower. Moreover, even though the second bioprocess 

does not interfere in the first bioprocess, sugars’ and acids’ bonds absorb in the same regions 

of the spectra, which makes it hard to detect MLF deviations. Figure 3 shows that 

differences between NOC and MLF start to be noticeable 80 hours after the beginning of 

the process, and a separation trend can be appreciated between 40 and 80 hours. 

 

Figure 3. Scores for PC1 (left) and PC2 (right) for a singles batch fermentation. 

3.2. MSPC charts for monitoring fermentations  

 3.2.1 Single experiment strategy 

The MSPC charts used in this strategy are based on the Q and T2 statistics. NOC samples 

used to build the PCA in Section 3.1 were also used to build a single experiment NOC PCA 
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confidence limit, and the residual matrix of this model was used to calculate the Q-residuals 

95% confidence limit. Q and T2 vs time control charts are shown in Figure 4 for the 10 

NOC and the 8 MLF batches (4 MLF1 and 4 MLF2). In both charts, NOC samples lie 

below the 95% confidence limit during the main course of the alcoholic fermentations. In 

contrast, MLF samples in the Q control chart show a significant difference from NOC 

samples from 80 hours onwards, as it was already observed in the PCA scores plot (Figure 

3, section 3.1). On the other hand, all MLF samples lie below the confidence limits in the 

T2 chart. Nevertheless, MLF samples exhibit a trend of higher T2 values with respect to 

NOC samples from hour 110. These higher values could be explained because malolactic 

fermentation at this time is almost finished, and the distance to the centre of the model 

increases but not significantly, from a statistical point of view.  

The fact that MLF samples are distinguishable from NOC samples in the Q chart but not 

in the T2 chart is a reasonable result because the enormous variability in the spectra due to 

alcoholic fermentation especially between hours 70 and 90 when tumultuous fermentation 

takes place (in Figure 3, from hour 40 to 120, when sugar consumption is at its fastest rate) 

hampers the possibility to establish a confidence limit to differentiate the samples. It is 

important to remark that, despite the fact that a different trend between MLF and NOC 

samples can be seen after >100 hours, all samples fall under the confidence limit because of 

the mentioned variability among samples between hours 70 and 90 hours. Furthermore, 

malolactic fermentation evolution in the spectrum is jumbled with alcoholic fermentation, 

explaining the difficulty in finding the differentiation. 

This methodology was validated by applying the Kennard-Stone algorithm. NOC samples 

were split using 50% of them to build the model (calibration set) and the remaining 50% 

for validation. Q values from the validation NOC samples were under the new Q residual 

confidence limit. Similarly, MLF samples showed a similar behaviour as in the model built 

with all NOC samples.  

This time-wise unfolding approach is proposed as an alternative to IxJK batch-wise 

unfolding [8], were the exact same number of sampling times is required in order to project 

new suspected samples. We previously reported the use of a time-wise approach to detect 

sluggish alcoholic fermentations [14]. Here, any spectrum from a MLF batch can be 

projected onto model, and the model is able to determine if the sample is under or above 

the confidence limit, with no need to neither follow its complete alcoholic fermentation, nor 

to have the same exact amount of sampling points during the process. To confirm this idea, 

UNIVERSITAT ROVIRA I VIRGILI 
MONITORING WINE FERMENTATION 
USING ATR-MIR SPECTROSCOPY AND CHEMOMETRIC TECHNIQUES 
Julieta Cavaglia Pietro 



Chapter 5  155 
  

 

 

MLF samples from a single time point (hour 119), which were above the Q confidence limit, 

were projected solely and, as samples are independent of the time, they were placed above 

the Q confident limit.  

 

Figure 4. Q and T2 charts for a single experiment. Symbols: (X) NOC, (   ) MLF1, (   ) MLF2.  
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To confirm the hypothesis that it is not necessary to have the same sampling times and 

number of sampling points, three different experiments consisting of 15 additional NOC 

batches were added to the model. In every experiment, sampling was performed at similar, 

but not exactly, the same time points. This methodology perfectly agrees with the typical 
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twice a day and not in each fermentation tank at the same time. In this case, as different 

NOC batches with different initial sugar concentrations (which implies different sugar 

consumption rates) were used (matrix dimensions of 771x62), the model was validated 

following the same procedure as in the single experiment model, assuring that NOC 

samples from all the experiments were included in both sets. As it can be observed in Figure 

5, NOC validation samples are generally under the 95% confidence limit in both Q and T2 

control charts, assuring the validation of the model. In this model the trend observed in the 

Q control chart for the MLF samples is similar as in the previous PCA model when using 

a single experiment (Section 3.2), with a separation from hour 80 onwards. For the T2 

control chart, despite exhibiting the same trend observed in the model from Section 3.2, 

MLF samples are now statistically different from hour 120 until the end of the process. 

This may be explained because as more NOC samples are included in the NOC model, 

alcoholic fermentation variability is better described, and the model is able to detect the 
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differences among NOC samples and MLF, which can now be statistically differentiated 

after hour 120.  

 
Figure 5. Q and T2 charts for all the experiments. (X) Calibration NOC samples, (󠇩󠇩) validation 
NOC samples, (   ) MLF1, (   ) MLF2.  
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time interval model could be useful as an alert indicator before all MLF batches are 

completely separated, to foresee a spoilage at early stages of the malolactic fermentation. 

In this case, the Q values of MLF1 samples are slightly smaller than the ones of MLF2, as 

MLF2 samples have a higher concentration of LAB (higher L-malic acid consumption rate). 

The complete statistical separation in the Q chart was obtained in the model between 81 

and 88 hours. Models were also built for subsequent time intervals, in order to assure that 

the separation is consistent until the end of the malolactic fermentation. Our results show 

that a malolactic fermentation detection threshold can be established as an indicator that a 

deviation is arising at the 65-72h interval, when 40-50% of this bioprocess has taken place. 

At this point, additional measures should be taken to readjust the principal process 

(alcoholic fermentation) and to avoid having a worse situation which could lead to wines 

with organoleptic defects or even worse, the loss of a whole vintage.  

 

Figure 6. Time interval 65-72 hours. (X) NOC samples, (   ) MLF1, (   ) MLF2. 

 4. Conclusions 

In the best of our knowledge, this is the first time that Q residuals and Hotelling’s T2 

control charts are used for the detection of an unwanted malolactic fermentation during 

alcoholic fermentation in wine based on ATR-MIR spectroscopic data. It was demonstrated 

that a specific signal pretreatment (e.g. batch alignment) is not required since typical year-

to-year variability is considered in the global model. Also, using specific interval models 

improves the performance of the statistical detection of malolactic fermentation in the Q 

residual control chart. In conclusion, the different approaches here presented have the 

potential to be used in the oenological field, as an early detection of fermentation problems 

based on MSPC charts. 
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Chemometric techniques are a valuable tool to extract information from spectroscopic data. 

In this chapter, spectroscopic data and MCR-ALS models are used to model both the 

alcoholic fermentation and the malolactic fermentation processes. We intended to address 

the last specific objective of the thesis, that is, whether MCR-ALS can be used to monitor 

and detect deviations during alcoholic fermentation, so that it could be applied as a PAT 

tool. 

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) is a powerful 

chemometric technique that aims at resolving complex mixtures. One interesting 

advantage of MCR-ALS is that it is possible to obtain the pure spectra of the components 

involved in a chemical process, as well as the relative concentration (over time) of each 

component, only using spectroscopic data. Thus, to build informative models about the 

state of the process, there is no need of building an extensive database of reference chemical 

analyses, as it is required, for example to build robust PLSR models. In addition, the 

information from the MCR-ALS models can be used to build MSPC charts, developing a 

PAT method for the detection of lactic acid bacteria spoilage. Here we suggest the 

implementation of “inverse” MSPC charts, in which the model is built using the information 

from the specific deviation to be detected. In this way, using this type of MSPC we do not 

only detect a deviation, but we also can confirm that it is a deviation caused by the 

production of lactic acid through malolactic fermentation caused by a lactic acid bacteria 

spoilage. 
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Abstract 

The aim of this study is to propose a new methodology based on the use of ATR-MIR 

spectra in combination with MCR-ALS to describe the evolution of the main components 

during alcoholic fermentation. Additionally, we propose a process control strategy base to 

detect changes between Normal Operation Conditions (NOC) fermentations and 

intentionally spoiled fermentations (MLF) with lactic acid bacteria at the beginning of 

alcoholic fermentation. In some wines, malolactic fermentation is avoided as it increases 

pH, which may have a detrimental effect on the final quality of the wine. 

MCR-ALS models upon these data showed a good data fit (R2= 99.95 and of lack of fit = 

2.31%). It was possible to determine the spectral profiles from all relevant molecules, 

including the one related to bacterial spoilage (lactic acid). In addition, MSPC charts were 

built based on the concentration profiles obtained from MCR-ALS models, and using T2 

and Q statistics. Spoiled wines showed off-limit values for T2 after 96 hours, making it 

possible to detect a lactic acid bacteria spoilage at early stages of alcoholic fermentation.  

Alcoholic fermentation monitoring using ATR-MIR spectra and MCR-ALS analysis shows 

a great potential to rapidly control the state of a fermentation process, giving the possibility 

to detect the appearance of undesired molecules during the process and to apply corrective 

measures.  

Key words: wine fermentation, bacterial spoilage, process control, Process Analytical Technologies 

(PAT), Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). 
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1. Introduction 

Wine alcoholic fermentation is a complex biological process that involves the 

transformation of grape must into wine by the action of yeasts. Although the main reaction 

is the conversion of reduced sugars into ethanol and CO2, many other secondary products 

are obtained throughout the process, some of them of major enological importance such as 

organic acids, tannins and phenolic compounds, conferring the special characteristics to 

each wine [1]. 

The amount of ethanol and other secondary products in the final wine will depend on 

several factors, including the region were the vineyard is located, the grape variety, the 

yeast species used, the availability of nutrients and the fermentation conditions. 

Consequently, the high variability associated to this process makes alcoholic fermentation 

a difficult process to control [2]. In a winery, the daily measurement of important quality 

control parameters is required to ensure the correct evolution of the process. This usually 

includes density, pH and temperature. The sensory evaluation from an oenological expert 

may also play an important role. Nevertheless, additional chemical information during the 

process is needed in order to avoid unexpected deviations such bacterial spoilage. If the 

winery does not have its own analytical laboratory, wine samples during fermentation must 

be sent to an external analytical laboratory for additional off-line measurements of specific 

quality control parameters, which may mean getting delayed results and thus reducing the 

chances of taking correctives measures in time, especially when a deviation is suspected 

[3]. 

Vibrational spectroscopy has shown its suitability for the monitoring of alcoholic 

fermentation [4]. Using MIR spectroscopy during the fermentation process, good 

prediction values (R2>0.99) were obtained for the most important quality control 

parameters in wine alcoholic fermentation monitoring, including glucose, fructose and the 

alcoholic degree [5–7]. Furthermore, the determination of other important parameters, 

such as total titratable acidity and total phenolic compounds have also been investigated, 

obtaining good models with low prediction errors [8,9]. 

Spectroscopic techniques, unlike traditional methods, are fast, nondestructive and usually 

require a minimum sample pretreatment [10]. These characteristics make vibrational 

spectroscopy of particular interest as a process analytical technology tool for bioprocess 

monitoring (e.g. alcoholic fermentation) [11]. Process analytical technologies (PAT) are a 

series of guidelines for the monitoring and quality control of products. They were first 
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introduced in 2004 by the American Food and Drugs Administration and aim at defining 

manufacturing processes through timely measurements (i.e., during processing) of critical 

quality and performance attributes of raw and in-process materials [12]. PAT tools have 

been gaining popularity for process and quality control of many food products, including 

wine [13].  

One of the most important advantages of getting information in-time through the 

implementation of PAT methodologies, is that process deviations can be detected and, if 

possible, corrective measures before the end of the process can be taken [14]. In wine 

fermentation, bacterial spoilage may occur as different bacteria may be encountered in the 

winery environment [15]. For this reason, most wineries add sulphites into the 

fermentation tanks as a preventive measure, to avoid the growth of unwanted bacteria that 

may have a detrimental effect in the quality of the final wine [16]. Nevertheless, the use of 

sulphites is raising health concerns, and most wineries are trying to add as less sulphites as 

possible, or even to produce “sulphite-free” wines [17].  

PLS is considered the most popular regression method for obtaining chemical information 

during alcoholic fermentation through spectroscopic data [18]. However, in order to 

obtain robust calibration models, it requires the analysis by traditional methods of key 

chemical parameters in a significant number of samples during the fermentation process, 

which is not always feasible [18]. In addition, food matrices consist of hundreds of organic 

compounds, making the analysis and interpretation of infrared spectra an extremely 

challenging task, due to the close similarity among the organic compounds, which results 

in overlapping bands [19].  

Several studies have suggested the use of MCR-ALS applied to spectroscopic data as a 

monitoring tool during the fermentation processes. Grassi et al. have successfully applied 

MCR-ALS models to ATR-MIR data to describe the evolution of different fermentable 

sugars and ethanol during beer fermentation, obtaining a good data fit (percentage of 

explained variance >0.91%) [20]. In another study, milk fermentation was monitored 

applying MCR-ALS to FT-NIR data obtaining spectroscopic profiles for all the coagulation 

phases of milk and describing the main changes of milk during fermentation [21]. 

González-Sáiz et al. successfully described the relative concentration profiles and pure 

spectra during alcoholic fermentation of onion juice for sugars, ethanol and biomass using 

NIR data and MCR-ALS, reproducing 99.99% of the data and obtaining a low lack of fit 

(LOF = 0.09%) [22].   
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Several authors have considered the use of MCR-ALS in spectroscopic data as a PAT tool. 

Oliveira et al. implemented Multivariate Statistical Process Control (MSPC) charts based 

on MCR-ALS models to control distillation processes [23]. Using a ‘Fixed size moving 

window strategy’ and evolving MSPC charts, they obtained improved control charts with 

respect to the individual process observation models. In another study, Grassi et al. 

investigated the application of MCR-ALS to FT-NIR data from the milk renneting process. 

In their study, MSPC charts based on T2 and Q statistics from PCA models built on MCR-

ALS concentration profiles were able to distinguish coagulation problems in failure batches 

from the first minutes of the process [24]. 

Using MCR-ALS, the extraction of relevant information from MIR spectra on the 

evolution of the most relevant components during wine alcoholic fermentation would allow 

determining if the fermentation process is developing correctly. In fact, bacterial spoilage 

of wine is related to the appearance of certain molecules during fermentation. In the present 

study, we explored the application of MCR-ALS to monitor wine alcoholic fermentation 

through ATR-MIR data and to detect undesirable deviations during the process caused by 

the addition of spoilage bacteria. The main goals of this paper were two. Firstly, to describe, 

using MCR-ALS models, the different concentration evolutions of the main components in 

wine fermentation (sugars and ethanol) and the appearance of a third component (lactic 

acid) originating from a lactic acid bacteria spoilage through malolactic fermentation. 

Secondly, to evaluate if the MCR-ALS models obtained could be used as a process control 

tool to detect possible deviations during wine alcoholic fermentation. 

2. Material and methods 

2.1. Microvinifications 

A batch of small-scale alcoholic fermentations (microvinifications) was performed using a 

concentrated white grape must (Mostos Españoles S.A, Ciudad Real, Spain). The must was 

defrosted and diluted to a final sugar (glucose and fructose) concentration of 200 ± 10 g·L-1. 

Microvinifications were performed in 500 mL conical flasks by adding 350 mL of diluted 

must. A total of 18 microvinifications were performed, 10 in Normal Operation Conditions 

(NOC), and 8 with an induced contamination of lactic acid bacteria (LAB). For all 

fermentations, yeast assimilable nitrogen was adjusted by supplementation with 0.30 g·L-1 

of ENOVIT (SPINDAL, S.A.R.L. Gretz-Armainvilliers, France) and 0.30 g·L-1 of 

Actimaxbio* (Agrovin, Ciudad Real, Spain). All flasks were inoculated with the commercial 
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dry yeast strain Saccharomyces cerevisiae “E491” (Vitilevure Albaflor, YSEO, Danstar 

Ferment A.G., Denmark), reaching a final concentration of 3·106 CFU·mL-1. To simulate 

the bacterial contaminations, the spoiled microvinifications were obtained by adding a 

freeze-dried blend of Lactic Acid Bacteria (Lactobacillus plantarum and Oenococcus oeni, 

Anchor Oenology, Montpellier, France) reaching two different concentrations: 2.5·106 and 

4·106 CFU·mL-1 (for LAB1 and LAB2, respectively). Adding different concentrations of 

bacteria induces the deviations to start at different time points of the alcoholic fermentation. 

2.2. Fermentation monitoring 

All the microvinifications were kept at 18 ºC and density was measured by routine analysis 

at different time points until the end of alcoholic fermentation (density > 0.995 g·L-1) to 

control the correct evolution of the process. After homogenization, 1.5 mL were collected 

at least once a day and centrifuged at 10000 rpm for 10 minutes, to avoid the scattering 

effect produced by the microorganisms present in the sample. The pellet was discarded, and 

the supernatant was kept in 2 mL eppendorfs for further analysis. Malolactic fermentation 

ended when L-malic acid concentration was under 0.06 g·L-1. Density measurements were 

made with a portable densimeter (Densito2Go, Mettler Toledo, United States). L-malic 

acid was measured using a Y15 Analyser (Biosystems, Barcelona, Spain). All the analyses 

were performed right after sample collection. 

2.3. ATR-MIR analysis 

Infrared measurements were performed with a portable 4100 ExoScan FTIR spectrometer 

(Agilent, California, USA), equipped with an interchangeable spherical ATR sampling 

interface with a diamond crystal window. The spectroscopic range was from 4000 to 650 

cm-1, and spectra were recorded with a resolution of 8 cm-1 and 32 scans. An air-background 

was collected before each sample to avoid interferences due to the variation in room 

conditions. All samples were measured in triplicate. From each one of the 2 mL eppendorfs, 

a drop of the sample was placed on top of the crystal and the spectrum was recorded 

immediately afterwards. Spectra were collected using the Microlab PC software (Agilent, 

California, USA) and data was saved as .spc files. The mean of the triplicates was used in 

subsequent data analysis. 
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2.4. Data treatment 

2.4.1. Data pretreatment 

Data pretreatment is usually required to allow the extraction of chemical/physical 

information and attenuate undesirable signal contributions from the samples and/or the 

instrument. In the present work, a common preprocessing for spectral data was used: 

combination of Savitzky–Golay (SG) smoothing [25] with standard normal variate (SNV) 

scaling [26]. 

The smoothing parameters in SG (smoothing window of 15 points and first-order 

polynomial degree) were selected to keep the spectral features contained in the original 

spectra. Scattering effects were reduced by applying SNV scaling. Moreover, in order to 

minimize the influence of sugars in the data and because our objective was to focus on the 

absorptions from bonds of organic acids, the spectroscopic region between 1309 and 1082 

cm-1 was selected for further analysis. This region falls in the fingerprinting region of the 

mid-infrared spectrum and is related to the absorption of several bonds that are 

characteristic of organic acids (C-O and C-C stretching, -CH2 and -CH3 bonds) [27,28]. 

2.4.2.  Multivariate curve resolution-alternating least squares (MCR-ALS) 

Every kth fermentation experiment monitored by ATR-MIR provides a data matrix, Dk, 

where the rows are the spectra collected at different process times and the columns are the 

spectral wavelengths. The D matrix obeys the following bilinear model: 

D = C·ST + E    Equation 1 

where C is the matrix of the kinetic profiles of the resolved compounds, ST is the matrix of 

corresponding resolved pure spectra and the E matrix contains the experimental error or 

variance unexplained by the bilinear model. 

In this case, in order to obtain more reliable results and the complete information about the 

different fermentations, all acquired ATR-MIR data should be treated together. For this 

purpose, all the Dk data matrices were arranged into a new augmented data matrix, setting 

one on top of each other and keeping the common wavelengths in the same column. The 

bilinear model in Equation 1 is now extended to the augmented data set as shown in 

Equation 2: 

Daug = [D1;D2;…;Dk] = [C1;C2;…;Cn] · ST + [E1;E2;…;Ek] = Caug · ST + Eaug    Equation 2 
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where Caug is a column-wise augmented matrix formed by the Ck submatrices that contain 

the resolved spectra at the different process times, and ST is a single data matrix of pure 

spectra, assumed to be common and valid for all the different process times.  

 

Figure 1. Bilinear model for the fermentation batches. A. Individual analysis for one single 
fermentation experiment. B. Simultaneous analysis including different fermentation batches to 

build the C augmented matrix (Caug). NC refers to the number of components. 

Multivariate curve resolution-alternating least squares (MCR-ALS) aims at resolving the 

underlying bilinear model (see Equations 1 and 2) by using the sole information contained 

in the raw data set D [29,30]. 

MCR-ALS estimates iteratively the matrices Caug and ST by alternating least squares under 

the application of some constraints. In this study, the constraints applied to improve the 

final resolution and to minimize the MCR-ALS ambiguities were: non-negativity in the 

concentration profiles (concentration of the chemical compounds must be positive to have 

a physicochemical meaning), unimodality in the concentration profiles (presence of a single 

maximum per profile), normalization of pure spectra profiles and the constraint of 

correspondence among species to encode the information related to the presence/absence 

of some components in the different Ck submatrices. 

The quality and reliability of the MCR-ALS models were evaluated by calculating two 

parameters that allow assessing the dissimilarity among the experimental data matrix (D) 

and the data modeled by MCR-ALS. These parameters are: the lack of fit (% LOF) and the 

explained variance (%r2), which are calculated using the following Equations:   
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% LOF = 100 × √
𝛴𝑒𝑖𝑗

2

𝛴𝑑𝑖𝑗
2      Equation 3 

% r2 = 100 × (1 −
𝛴𝑒𝑖𝑗

2

𝛴𝑑𝑖𝑗
2 )  Equation 4 

where dij is an element of the experimental data matrix D and eij is the related residual value 

obtained from the difference between the D matrix and the reproduced data (C·ST).                                                         

The number of components included in the MCR-ALS model is a compromise between 

model simplicity, maximum variance explained by the model, and model interpretability. 

MCR-ALS models were built using the MCR GUI (MCR UB, Barcelona) working under 

Matlab R2015 (The MathWorks, Natick, USA). More details about the MCR-ALS method 

are given in [31] and a GUI to use the algorithm is freely available at http://mcrals.info. 

2.4.3. ‘Inverse’ MSPC charts 

In process control involving multivariate data, MSPC charts are a valuable tool to monitor 

the effect of different variables at the same time. Due to the high amount of correlated data 

arising from spectroscopic data, MSPC methods are usually based on principal component 

analysis (PCA), where changes in the covariance structure of the process variables are 

detected. Conventional MSPC-PCA models identify process disturbances as soon as they 

occur using T2 and Q statistical limits. Typically, a calibration model is developed using 

data collected from normal operating conditions (NOC) samples to define the design-space 

limits covering the NOC space, and deviations are detected when changes in the covariance 

matrix occur or abnormal signal components arise. The T2 statistic calculates the distance 

from an observation to the center of the “in-control” set and determines whether a future 

observation has a systematic deviation in relation to the samples considered in statistical 

control. In turn, the Q statistic is defined as the square Euclidean distance perpendicular to 

an observation from the subspace defined by PCA, and it describes how well the PCA model 

predicts the recorded process variable [32]. 

In this study, the idea of ‘inverse’ MSPC charts is introduced. As explained in the 

introduction section, a fermentation deviation due to lactic acid bacteria spoilage is mainly 

due to the production of lactic acid. Thus, the modelling of lactic acid production cannot be 

performed only using NOC batches, as this molecule is not being produced during a normal 

alcoholic fermentation. In turn, the MCR-ALS model including the contamination samples 

must be considered, and all spectral profiles in the ST matrix are used to obtain new C 
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matrices from spectroscopic data, which will be projected onto a PCA model only built with 

the C matrices of LAB fermentation batches. Figure 2 shows a scheme of the procedure. 

 

Figure 2. Scheme of the procedure followed to obtain the ‘inverse’ MSPC charts. The 
pseudoinverse of ST ((ST)+) is used to obtain a Cnew matrix from spectroscopic data of control 

batches (DNOC). 

3. Results and discussion 

3.1 Fermentation monitoring 

Figure 3 shows the mean evolution of the measured chemical parameters. Similar behaviors 

were found for each of the batches in their respective fermentation type. Density is an 

indirect measurement of the content of sugars in the must. Density curves show the typical 

sigmoidal form of sugar consumption. After 180 hours of fermentation, the consumption of 

sugars was completed for all microvinifications. In the present study, we used malic acid as 

an indirect measure of lactic acid production. The theoretical balance of malolactic 

fermentation states that 1 gram of malic acid consumed is transformed into 0.672 g of lactic 

acid and 0.328 g of CO2. Thus, the approximate final concentration of lactic acid in the LAB 

fermentations, from the degradation of 1.6 g·L-1 of malic acid, is 1.075 g·L-1 [33]. 

All intentionally contaminated microvinifications produced lactic acid a few hours after the 

beginning of the alcoholic fermentation, confirming that those fermentations were deviated 

during the process. During the first 48 hours, changes in the concentration of malic acid 

were very slight. Between the third and fourth day of alcoholic fermentation, the conversion 
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rate of lactic acid increased. In LAB microvinifications, malolactic fermentation ended after 

180 hours from the beginning of alcoholic fermentation. All NOC fermentations were 

maintained under control throughout the whole process, as less than 0.1 g·L-1 of malic acid 

was consumed. 

 

Figure 3. Evolution of the chemical parameters measured by reference analysis. 

3.2 Multivariate Curve Resolution 

The first MCR-ALS analysis was oriented to identify the specific contributions of both NOC 

and LAB fermentations. To this aim, two multisets (DaugNOC and DaugLAB) were built 

containing batches related to each particular type of fermentation. MCR-ALS was applied 

separately to each multiset structure using as constraints non-negativity and unimodality in the 

concentration profiles and normalization of the spectral profiles. 

Table 1 lists the number of resolved components and the explained variance obtained from the 

MCR-ALS analyses of both multisets. Resolution of three contributions was necessary in both 

cases. No significant differences between resolved kinetic and spectral profiles of both 

fermentations (Figure not shown) were found. Therefore, it seems that there is a rank-

deficiency phenomenon in LAB fermentations. Rank-deficiency implies that the number of 

components that can be modelled by MCR-ALS is lower than the actual number of chemical 

species involved in the reaction [34]. 

In this case, the rank deficiency in LAB fermentations could be due to the fact that malic 

acid and lactic acid have very similar spectra. To solve this problem, the analysis of a 

multiset containing all the batches (both NOC and LAB fermentations) was necessary. The 

different information present in the multiset structure enabled a significant improvement 

of the models, reducing the ambiguities associated and removing the rank deficiency.  
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Table 1. Number of resolved components, %LOF and variance explained by MCR-ALS analysis of 
DaugNOC and DaugLAB multiset structures. 

Multiset Resolved components Lack of fit (%) Explained variance (%) 

DaugNOC 3 1,97 99,96 

DaugLAB 3 1,27 99,98 

So, MCR-ALS was applied to the multiset structure (DaugNOCLAB) and four species were 

resolved, with a lack of fit (LOF %) equal to 2,3074 and 99,9488% of explained variance. 

The inclusion of a different number of species provided worse mathematical solutions or 

unreliable spectra for the concentration profiles. In this case, the constraint of 

correspondence of species was applied to encode the absence of lactic acid in NOC 

fermentations. 

Figure 4 shows the CaugNOCLAB matrix for all fermentation batches. All batches showed similar 

concentration trends for all components, as expected. The curve that decreases during 

alcoholic fermentation (green curve) is related to sugars, which are consumed during 

alcoholic fermentation. Alcohol is produced from the consumption of sugars and is 

represented by the curve that increases (red line) a few hours after the beginning of the 

fermentation. Lactic acid was also simple to assign, given that only LAB fermentations 

showed the presence of this component (purple line). The curve showing a peak in the 

middle of the fermentation process (blue line) was more difficult to elucidate. It could be 

attributed to the presence of salts of tartaric acid, which precipitate by the end of alcoholic 

fermentation, or intermediate organic species that are part of the yeast metabolism.  

  

Figure 4. Relative concentrations for all fermentation batches. The reader is referred to the online 
version of the paper for legend colors. 
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In terms of proportion, the ratios obtained by the MCR-ALS are accurate, as the 

concentration of sugars goes from 200 to <0.05 g·L-1, while the concentration of lactic acid 

goes from zero to approximately 1.075 g·L-1, as calculated from theoretical conversion from 

malic acid. Our results show that MCR-ALS is able to find the relations between major 

components in wine (ethanol and sugars) and minor components such as lactic acid. 

Figure 5 shows the pure signals (ST matrix) obtained for the four components in the MCR-

ALS model considering all batches (NOC and LAB microvinifications). Spectral profiles are 

appropriate as they show absorbance levels in the expected regions for organic compounds. 

Glucose and fructose were considered as a single species (sugars), due to the high amount 

of overlapping of the absorption bands in the MIR region for these molecules. Between 

1089 and 1126 cm-1 the spectra are extremely overlapped. In this region C-C and C-H 

stretching vibrations are found, which are very common in organic molecules. A peak for 

lactic acid is observed at 1150 cm-1, which can be ascribed to C-O stretching from carboxylic 

acids [35]. 

 

Figure 5. Pure spectral profiles for the four components in the resulting MCR-ALS model. The 
reader is referred to the online version of the paper for legend colors. 

 

3.3 Inverse’ MSPC charts 

In this article, we propose the development of MSPC charts based on the contaminated 

samples, rather than on NOC samples. When a sample is projected into the model, if it falls 

under the “control” limits of the charts, it would mean exactly the opposite from a 

traditional MSPC chart. Instead of being under control, it would mean that lactic acid is 
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being produced and, therefore, the fermentation should be corrected to return to the normal 

conditions.   

Following the scheme in Figure 2, a PCA model was built using the CaugNOCLAB matrix, 

containing all fermentation batches. The ST matrix was used to create a new C matrix (Cnew) 

from the original NOC spectra. Then, the Cnew matrix was projected onto the PCA model 

and the Hotelling T2 values for these samples were included in the MSPC chart.  

Four principal components (PCs) were used to build the PCA model, which explained 100% 

of the variability in the data, as the projection was made in a four-dimensional space 

correspoding to the four components resolved by MCR-ALS. Figure 6 shows the loadings 

of each PC in this model. In PC1, sugars account for most of the variation, while ethanol is 

the dominating compound in PC2. In PC3, the intermediate species and ethanol are the 

most important. Finally, the information on lactic acid is found in PC4.  

 

Figure 6. Loadings for the 4 PCs in the PCA model obtained from the C matrix of the MCR-ALS 
model. 

The ‘inverse’ MSPC chart based on the Hotelling T2 statistic is shown in Figure 7. In this 

MSPC chart, all samples under the control limits (round shapes) belong to LAB 

fermentations, were lactic acid is produced during alcoholic fermentation. Between 0 and 

60 hours, all NOC samples are “under control”. This could be explained because during the 

first 65 hours of alcoholic fermentation, the concentration curve for lactic acid is 0 for both 

LAC and NOC samples, as the production of lactic acid in this time interval is below the 
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limit of detection of the ATR-MIR instrument. Atypical T2 values for NOC samples start 

to appear after 60 hours, as no lactic acid is being produced. All NOC samples are 

completely out of the limit after 96 hours. In our MSPC chart, four LAB samples were out-

of-limit after 110 hours, and another LAB sample was off the limit at 190 hours.  

Oliveira et al. used local PCA models and were able to build Fixed Size Moving Window 

MSPC charts and evolving MSPC charts to detect faulty batches during the distillation 

process using NIR data [23]. In our approach, faulty batches are detected using a global 

PCA model, with no need to build independent PCA models for different times. 

 
Figure 7. MSPC chart based on Hotelling T2, showing the distribution of NOC samples (diamond 

shape) and LAB samples (round shape) throughout the alcoholic fermentation.  

4. Conclusions 

Our results suggest that ATR-MIR data together with MCR-ALS models and MSPC 

charts could be used for the detection of lactic acid production during alcoholic 

fermentation. The use of MCR-ALS with ATR-MIR spectra from wine alcoholic 

fermentation provides the possibility to model the pure kinetic and spectra profiles of the 

main compounds involved in wine alcoholic and malolactic fermentations. This 

methodology comes as an improvement of the traditional MSPC charts as. this way, when 

combined with the use of traditional MSPC charts for bacterial spoilage detection (as 

suggested in Cavaglia et al. [36]), if a fermentation batch is out of control in a traditional 
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MSPC batch, but in control in this new ‘inverse’ MSPC chart, we could not only conclude 

that the sample is deviated, as previously reported, but we could also state that the 

fermentation is deviated because of the production of lactic acid, as shown in the relative 

concentration profiles of MCR-ALS. Using ‘inverse’ MSPC charts it has been possible to 

detect spoiled wines due to lactic acid bacteria before the end of alcoholic fermentation. 

Also, as no prior information of the process is required, spectroscopic data could be obtained 

as many times as possible in a real winery environment with no need of reference analysis 

nor previously validated calibration models, giving the possibility to gather a lot of data at 

a small cost.  
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In this thesis, we investigated the potential use of a portable ATR-MIR spectrometer, in 

combination with chemometric techniques, for the detection of undesirable deviations 

during wine alcoholic fermentation  

7.1. Instrumentation set-up 

At instrumental level, in our research the optimal spectral resolution was 8 cm-1, as we 

found that increasing the resolution did not add any relevant information to the spectra. 

Other authors have also reported that this resolution is sufficient to efficiently study the 

composition of wines and other beverages1,2. As for the number of scans, depending on the 

instrument and the goal of the study, different number of scans can be necessary to improve 

the outcomes of the multivariate data analyses. Even though increasing the number of scans 

improves the resolution of the spectra, the choice of the number of scans is a trade of the 

time required per measurement off for the resolution. For our fermentations, we found that 

32 scans were enough to build robust models. In contrast, Kölhed and Karlberg reported 

that 64 scans were more suitable for the identification and quantification of natural sugars 

(glucose, fructose and sucrose) in fruit juices using an on-line capillary electrophoresis 

system coupled to Fourier Transform infrared spectroscopy3. 

From a qualitative point of view, it was possible to monitor the evolution of the whole 

alcoholic fermentation process by following the changes of the ATR-MIR spectra samples 

throughout the fermentation, that is, including all time points (Articles 1, 2 and 3). The 

main changes were observed in the fingerprinting region between 950 and 1500 cm-1. In 

this region, organic acids and sugars show important absorption peaks. Specifically, 

deformations of –CH2, C–C–H and H–C–O can be found between 1500 and 1200 cm-1 

whereas C–C and C–O stretching vibrations are found between 1200 and 950 cm-1. In 

addition, a broad band between 3000 and 3500 cm-1 could be ascribed to water and ethanol 

O-H stretching vibrations, which also show variability during wine alcoholic fermentation 

due to ethanol content increase. These results are in agreement with the literature, both in 

ATR and transmission IR modes. Di Egidio et al. found that the main MIR regions showing 

variation during red wine alcoholic fermentation were 3700 to 3000, 1700 to 1400 and 1200 

to 1000 cm-1, which correspond to the absorption bands of O–H, C=O and C–C/C–O 

stretching vibrations4. Using an ATR-MIR, Schalk et al. also reported the spectral regions 

from 1200 to 950 cm-1 as the main regions where the consumption of glucose and the 

simultaneous formation of ethanol are predominantly reflected during aerobic yeast 

fermentation in a culture medium. Similar trends could be observed in the range from 3400 
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to 2600 cm-1, but with lower signal intensities5. In Article 3, the region from 850 to 649 

cm-1 was excluded, as it did not contain useful information and it added noise into the 

models. Additionally, a variable selection process was applied for the detection of lactic acid 

bacteria (LAB) spoilage. Some authors also reported the need of excluding some 

spectroscopic regions that are not related to any chemical information and would add 

unwanted variation to the data, such as the regions from 830 cm-1 downwards and 3627 

cm-1 onwards6-8. In addition, some authors have found that using water as the background 

spectra (prior to sample spectra acquisition) provides better results for the determination 

of some quality parameters such as ethanol or phenolic compounds9,10. In our case, however, 

using water as background did not improve the models, and instead an air background was 

taken each time. Other authors have also used air as background to build chemometric 

models on beverage samples using ATR-MIR and obtained satisfactory results11,12. 

Therefore, the choice of the type of background should be studied in each case depending 

on the goal of the study and the instrument characteristics. 

7.2. Spectral preprocessing 

One important aspect that must be addressed before any MVDA analysis is spectral 

preprocessing. From our results in Article 1 and Article 2, we found that the information 

arising from the spectra could improve depending on the preprocessing strategy applied. 

For the prediction of chemical parameters, we applied a minimum preprocessing: 

Savintzky-Golay Smoothing, Standard Normal Variate (SNV) normalization and mean 

centering, in order to maintain the structure of original data as much as possible and 

facilitate chemical interpretation, which is one of the advantages of using MIR spectra. In 

the literature, there is not a consensus on the use of specific preprocessing methods for MIR 

spectra in the analysis of foodstuffs and beverages. First derivative is one of the most 

common preprocessing methods, followed by SNV, second derivative and the combination 

of first derivative and Multiplicative Scatter Correction (MSC)13. Some authors, however, 

have proposed other alternatives. Vector normalization and no-preprocessing of spectral 

data was suggested to obtain suitable Partial Least Squares Regression (PLSR) models with 

low prediction errors (RMSECV) in the analysis of free and copigmented anthocyanins, 

polymeric pigment fractions and actual red color in wine samples14. Cozzolino and Curtin 

used raw spectra with no mathematical preprocessing to predict several chemical 

parameters in wine. They obtained low standard errors of prediction (SEP) for ethanol 

(0.11%), pH (0.10), titratable acidity (0.53 g·L-1) and glucose + fructose (1.35 g·L-1)15. With 

our data, we found that the absence of spectral preprocessing did not yield satisfactory 
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results, and the performance of PLSR models, in terms of RMSECV and RMSEP, improved 

substantially after preprocessing. One of the reasons for trying different preprocessing 

methods is that the validation and performance evaluation of PLSR models can vary greatly 

from one study to another. Some authors use cross-validation, while others use external 

datasets to validate the models.  

7.3. Predictive analysis 

In Article 1, a PLSR model was built to predict the concentration of sugars along the 

fermentation process, from the spectra of the fermenting samples. All data were used for 

model calibration, and the cross-validation method was used for validation. The root mean 

squared error of calibration (RMSEC) obtained was 10.6 g·L-1 and the RMESCV was 10.9 

g·L-1. Although traditional methods such as the enzymatic determination of sugars show 

lower error values, the simplicity and rapidity in obtaining results that offers an ATR-MIR 

instrument when using suitable chemometric tools, is an interesting alternative to provide 

valuable information on the status of the fermentation process. In Article 2, pH and density 

were measured throughout the fermentation process to investigate the prediction capability 

of the ATR-MIR spectrometer for these parameters. It was possible to predict density and 

pH with acceptable prediction errors using ATR-MIR spectra and PLSR. A variable 

selection step was introduced by applying the Selectivity Ratio algorithm. For the 

prediction of density, the spectroscopic regions selected were 967 to 1175 cm-1 and 1483 to 

1771 cm-1. For pH, the Selectivity Ratio algorithm selected regions all along the 

spectroscopic range, suggesting that pH prediction requires information from the full 

spectrum. Because pH has no direct effect on the molar absorptivity in MIR it is difficult to 

correlate it with specific regions, but it can be done with those associated with the 

absorbance of acids and their deprotonated forms16. In Article 2, different validation 

strategies (internal CV, halves splitting and Kennard Stone) were introduced to improve 

the robustness of PLSR models. Similar RMSECV and RMSEP were obtained (0.0014 

g·mL-1 for density and 0.06-0.07 for pH), suggesting that the models were robust and that 

parameter prediction was not dependent on the dataset used. In contrast to other studies, 

in which PLSR with low RMSECV and RMSEP are obtained by selecting a high number 

of latent variables (in most cases, more than 10), our PLSR models only needed one or two 

latent variables, so having less risk of overfitting17. This result is specially remarkable 

because previous works, achievied low SEP values for glucose and fructose through 

external validation, but they required high numbers of latent variables, which increases the 
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risk of overfitting15. A compromise between accuracy for the predictions and avoiding the 

risk of overfitting is essential. 

Some authors have reported the importance of temperature control during ATR-MIR 

measurements. Hence, when analysing food and beverage samples, fixing a constant 

temperature (or a range of temperatures) for ATR-MIR measurements is crucial. In our 

studies, our ATR-MIR instrument reached a constant temperature when reaching 63ºC, 

and we detected that measuring samples during the warming up of the spectrometer greatly 

affected the spectra, and thus the results of the models. This behaviour agrees with that 

found by Fayolle et al. who reported how temperature fluctuations could have a negative 

impact in the calibration and prediction of chemical parameters in wine18. 

7.4. Preprocessing and variable selection 

Spectral preprocessing depends not only on the type of signal to be collected (e.g. spectrum 

or chromatogram), but also on the goal of the study. Hence, despite the promising results 

in Articles 1 and 2 in the prediction of sugars, pH and density during alcoholic 

fermentation, other preprocessing combinations, including first derivatives, were tested to 

enhance the presence of smaller peaks, as one of our final objectives was to detect deviations 

due to unwanted deviations such as the production of lactic acid, which is a minor 

component in wine and cannot be easily detected using MIR spectra because main spectral 

changes are due to alcoholic fermentation (Article 2). In addition, a variable selection 

methodology was needed, based on chemical knowledge of the spectra and trial and error 

approach. This allowed to shift the focus towards malolactic fermentation variability.  

7.5. Principal Component Analysis 

The exploratory analysis (PCA) on the dataset with reduced variables (1320 to 1109 cm-1) 

revealed a different trend in the PCA space for the contaminated fermentations with LAB 

(respect to time) from the Normal Operation Conditions (NOC) samples. With only three 

PCs, 95% of the total variability could be explained. In the PCA, the different trajectories 

for the contaminated fermentation (MLF) samples appeared after 100 hours for 

experiments 1 and 2, while for experiment 3 it was possible to qualitative see the different 

trajectories after 50 hours. 

PCA was a valuable tool for exploring data, using a minimum preprocessing (Savitzky-

Golay second order polynomial smoothing through 7 points, SNV and mean-centering). In 

Article 1, a PCA model including all data points was built, using a time-wise unfolding. 
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PC1 showed the same trend as sugar consumption, confirming that alcoholic fermentation 

could be modelled using a portable ATR-MIR spectrometer. Likewise, the same trend was 

seen in Article 2, in which the evolution of density was compared to PC1 scores trend, 

showing a close similarity. In both cases, by looking at the loading values, the most 

important region to follow the progress of alcoholic fermentation was found to be between 

950-1700 cm-1. These results are similar to those obtained by Buratti et al., as in a PCA 

from fermenting wine samples, PC1 (explaining 98% of the total variability) showed that 

the main wavenumbers responsible of the separation of the samples were related to 

carbohydrates and ethanol19. In another study focusing on the time course of fermentation 

in wild ferments, it was found that more than 90% of the variation in ATR-MIR spectra 

was explained using four PCs. Similarly to our studies, in this case, the highest loadings in 

the MIR spectra were observed in the fingerprinting region, and were mostly associated 

with sugars and ethanol2. 

7.6. The batch-effect 

In Article 2, new experiments under the same conditions were conducted to evaluate how 

the use of data from new fermentations influenced the chemometric models. Also, new 

concentrations for the LAB fermentations where tested, to study different moments in 

which the fermentations should become deviated. When introducing samples from new 

experiments to build the PCA model, small differences between experiments could be 

observed. These differences however, could not be related to any specific region of the 

spectra. This effect is commonly referred as “batch-effect”, or even “experiment-effect”. This 

makes it difficult to include data from other experiments into the PCA models, as no specific 

variables related exclusively to the experiments can be excluded, or minimized (using 

preprocessing strategies) from the data. Zeaiter et al. also observed this ‘batch-effect’ when 

analyzing NIR data arising from two different wine fermentation experiments. They 

suggested the application of Dynamic Orthogonal Projection for correcting NIR data and 

increasing robustness of chemometric models robustness20. In all of our fermentation 

experiments (Articles 1, 2 and 3), the consumption rate for sugars was different even 

though they were performed under the same experimental conditions. This poses an 

important problem to detect fermentation deviations, as, in some cases, the difference 

between batches and experiments could exceed the differences among the types of 

fermentation. This experiment effect is addressed in Articles 2 and 3. Despite the obvious 

usefulness of applying corrective mathematical algorithms to minimize the batch-effects 

present in our data, we could not implement the orthogonalization method as the use of 
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this type of correction would compromise the information related to the deviations we 

wanted to detect (sluggish fermentations and bacterial spoilage).  

7.7. Classification analysis 

As for the detection of deviations, discrimination from NOC fermentations was possible 

using PLS-DA. For the discrimination between sluggish fermentations (YAN) and NOC, 

the whole spectra could be used (Article 1). However, for the discrimination between NOC 

and MLF samples, a variable selection process, based on chemical knowledge of the spectra 

and the trial and error approach, was necessary needed (Article 2). 

7.7.1 Sluggish fermentations 

In Article 1, the discrimination between YAN, promoted by nitrogen deficiency, and NOC 

fermentations was achieved. Two types of PLS-DA discrimination models were developed, 

depending on the matrix arrangement: a global model and k-local models where k refers to 

a specific time point. Using the global model, in which data were arranged using a time-

wise unfolding (including all time points), a 100% discrimination for NOC and YAN 

samples was achieved. Similarly, using the local strategy, where PLS-DA models were built 

for each individually collected sampling time, YAN and NOC samples could be 

discriminated with a 100% of correct classification using the models from 49 hours 

onwards. Comparing with other similar studies, Urtubia et al. found that using ATR-MIR 

spectra and PLSR models, glucose, fructose, ethanol, glycerol, succinic acid and acetic acid 

could be used as early indications of problems in nitrogen deficient fermentations. In their 

study, a distinctive behavior between sluggish and NOC fermentations could be seen after 

30 hours21. Cozzolino and Curtin used ATR-MIR to predict the time course of fermentation 

using PLSR and obtained a coefficient of determination (R2) and SEP of 0.93 and 1.21 days, 

respectively2. 

7.7.2. Lactic acid bacteria spoilage 

In Article 2, by selecting a small window of variables, the influence of the spectral changes 

corresponding to the main process (alcoholic fermentation) was minimized, allowing us to 

distinguish between NOC and MLF samples using PLS-DA. This variable selection step 

clearly indicates how other important variations can mask relevant peaks when 

discriminating different fermentation samples. Using k-local models, the earliest time point 

in which NOC and MLF fermentations could be 100% discriminated depended on the 

amount of LAB inoculated at the beginning of fermentation. The fermentations with the 
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lowest LAB concentration were discriminated after 213 hours, while the fermentations with 

the highest LAB concentration could be discriminated after 56-58 hours. At those 

deviations times, malolactic fermentation was halfway through, giving the chance to apply 

corrective measures. such as the addition of sulphites, to stop the bacterial activity. We 

estimated that the minimum difference in L-malic acid concentration between NOC and 

MLF samples detected with our instrument ranged from 0.7 to 0.8 g·L-1. These results are 

in agreement with the literature. Fayolle et al. monitored lactic acid fermentation using FT-

MIR in culture media; they developed PLSR models for lactose, galactose, biomass and 

lactic acid, obtaining a SEP value of 0.9 g·L-1 for lactic acid22. 

7.7.3. Acetic acid bacteria spoilage and ASCA 

The contamination with Acetic Acid Bacteria (AAB) was achieved using an autochthonous 

AAB strain (Preliminary ASCA results). In AAB contaminations, not only was acetic acid 

production observed, but also a slight difference in the rate of sugar consumption between 

NOC and AAB fermentations. This suggests that AAB are more stressful to yeast 

metabolism than LAB, slowing down the alcoholic fermentation process in AAB 

contaminated samples. When using ASCA for exploratory analysis of NOC, AAB and MLF 

samples, a grouping for the contamination factor was observed after 120 hours. Three 

groups were found, one for each type of fermentation. These results suggested that, using 

ATR-MIR and chemometrics, several types of contamination can be observed during 

alcoholic fermentation. From the beginning of fermentation until 120 hours, the time factor 

was the one accounting for most of the variance in the data. During the first days of 

fermentation sugars are rapidly consumed, which explains why this factor retains most of 

the variability in the data during this period of time. Because several fermentation batches 

(from different experiments under the same conditions) were included for ASCA analysis, 

experiment effect could be seen in the data, as some part of the total variability was be 

attributed to this factor, especially towards the end, when alcoholic fermentation is almost 

finished. In contrast to the study of lactic acid bacteria spoilage, in which several 

preprocessing combinations had to be tested and a very small window of variables was 

necessary to detect the LAB contaminations, using ASCA we could observe variations 

among groups only using Savitzky-Golay Smoothing and SNV. This suggest that ASCA 

could be useful to rapidly assess if ATR-MIR data contain any related variables to the 

factors under study. In Article 1, production of acetic acid was observed in YAN 

fermentations. A higher production of acetic acid is commonly observed in the nutrient 

deficient fermentations. However, in terms of spectral data, YAN deviations were detected 
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because of the slower rate in sugar consumption and not because of the production of acetic 

acid. Thus, the first preprocessing applied (without first derivatives) was not able to detect 

acetic acid production. In contrast, Urtubia et al.23 investigated the use of ATR-MIR data 

and PLSR to predict the concentration of acetic acid in wine fermenting samples and they 

obtained a standard error of cross-validation (SECV) of 0.18 g·L-1. 

7.8. MSPC charts: global and local approaches 

Deviated fermentations were also identified based on Q residuals and Hotelling T2 

statistics. In Article 1, using k-local models it was possible to distinguish between NOC 

and YAN fermentations with the 49-hour model, where YAN samples were out of the 

confidence limits for both Q and T2 statistics. Our following step was to develop MSPC 

charts for fermentation monitoring because we suspected that, when describing the NOC 

space, abnormal fermentations would fall outside the limits of the two statistics. For all 

models, the reduced region, from 1320 to 1109 cm-1, and preprocessing strategy including 

first derivatives, was required. The MSPC charts were developed at two levels: using a 

single experiment data or using data from different experiments. 

Using samples from a single experiment, a PCA model was first developed to see if different 

trends could be observed between NOC and MLF samples. The first PC accounted for 

98.6% of the total variability, while the second PC, showing the different trends from hours 

60-80 until the end of the process, accounted only for the 1.04% of the total variability. 

These results are in agreement with our expectations, because the main process (alcoholic 

fermentation) involves the transformation of sugars into ethanol from an initial 

concentration of 200 g·L-1, as opposition opposed to malolactic fermentation, in which the 

initial concentration of malic acid is only around 2 g·L-1. This means that less than 2 g·L-1 

of lactic acid will be produced, and the variability in the signal is much lower. In addition, 

in the fingerprinting region there are many overlapping peaks, as in this region of the 

infrared spectrum is where most of the organic molecules absorb (including sugars and 

acids). An MSPC chart was developed using only NOC samples from the single experiment. 

95% confidence limits of T2 and Q residual statistics were calculated and, when deviated 

fermentations were projected into these charts, they showed out-of-limit values from 80 

hours onwards in the Q chart but not in the T2 chart. From hour 110, however, T2 values 

for the contaminated samples showed higher T2 values, but they were below the confidence 

limit. A possible explanation for this behaviour is that malolactic fermentation, at this time, 

is almost finished and the distance to the centre of the model increases but not significantly, 
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from a statistical point of view. Some NOC samples were left out for validation purposes 

using the Kennard Stone algorithm. When the NOC samples were projected on the charts, 

all were below the limits. The fact that MLF samples are distinguishable from NOC 

samples in the Q-chart but not in the T2 -chart is a reasonable result. This is because the 

enormous variability of the spectra due to alcoholic fermentation (especially between hours 

70 and 90, when the so-called tumultuous fermentation takes place) makes difficult the 

possibility of establishing a confidence limit to differentiate the samples due to a very small 

variation. Using ATR-MIR data and MSPC charts, van Sprang et al. monitored a 

polymerisation process, in which some batches were disrupted by applying a different 

operating temperature which affected the kinetics of the reaction. They found that 

abnormal batches could be detected using the T2 chart because of the slow polymer 

conversion rate, but these batches were not detected in the Q charts24. In our study, the 

sugar conversion rate is always normal, which would explain why our T2 charts are not 

useful to detect a bacterial spoilage where a new compound is being synthetized. In 

contrast, as the Q chart detects the non-modeled data, when a new or unknown compound 

is found in the system, it should be observed in the Q chart. Abreu et al. used T2 and Q 

control charts to monitor the quality of green coffee beans during storage using Raman 

Spectroscopy. The T2 control chart was not able to detect out-of-control samples, but the 

same samples appeared outside the quality control region in the Q chart25. In contrast, 

Catelani et al. found that deviations during the coffee roasting process could be detected 

using both T2 and Q charts based on NIR data26. These studies suggest that the usefulness 

of each type of chart (T2 and Q) should be assessed individually. Depending on the type of 

deviation to be detected (e.g. a conversion rate, the synthesis of unwanted compounds), the 

type of analytical data and the type of process in hand, the performance of the charts will 

vary. 

When spectra of new NOC fermentation batches were included in the PCA model, these 

samples were below the 95% confidence limit in both Q and T2 control charts. The Q chart 

built was similar to the single experiment Q chart, but for the T2 control chart, deviated 

samples were above the limit from hour 120 until the end of the process. This may be 

explained because including more NOC samples in the PCA model increases the capability 

of better describing the alcoholic fermentation variability, and then it is possible to detect 

the differences between NOC and MLF samples, which can now be statistically 

differentiated, at the end of alcoholic fermentation. As described in the bibliography, when 

few control samples are available to build T2 charts it becomes difficult to test whether 
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statistical variations between control and faulty fermentation batches are significant. A 

higher number of control samples can drastically improve the quality of the T2 charts27.  

For PCA models of both single and multiple experiments, the time-wise unfolding approach 

was proposed as an alternative to a batch-wise unfolding. In this way, samples are time 

independent and the same number of sampling times is not required to project new 

suspected samples. In the bibliography, the batch-wise unfolding is the most common 

approach to monitor industrial scale fermentation data, but since batch operations have 

different durations, this requires the application of time synchronization methods in order 

to compare multiple batches. If the batches do not show small variations in duration these 

methods are difficult to apply28. 

7.9. Time interval-MSPC charts 

T2 values for NOC samples were high during the main stages of alcoholic fermentation 

(from 40 to 120 hours), and made it difficult to establish a control limit at which deviated 

samples could be detected. We raised the need to set control limits based on time intervals, 

in order to obtain more accurate confidence limits (especially for Hotelling T2), yet no 

statistical separation was achieved using T2 charts. On the other hand, the Q chart for the 

time interval between 65 and 72 hours showed a MLF separation trend, and could be used 

as an alert indicator before all MLF batches are completely separated. The complete 

statistical separation in the Q chart was obtained in the model between 81 and 88 hours. At 

the 65-72h interval, only 40-50% of this bioprocess has taken place so that readjustments 

could still be made in the system to avoid irreparable damage to the final wine. When using 

time intervals, it is possible to generate new models taking into account the variability at 

different points of the process, which is more representative of the current process operation 

than considering the whole process. Awhangbo et al. used the Moving Window (MW) PCA 

method to build MSPC charts to monitor an anaerobic digestion process using NIR, which 

addresses the same problem as we do with time interval models. This method “slides” along 

the data, to build a new fitted-model each time, including the newest sample and discarding 

the oldest one in each new model. They found that the global PCA model on the data was 

not as useful to predict anomalous samples in dynamic systems as the MW approach29. For 

our data, we preferred time intervals rather than MW because of the low number of data 

points, and because, in this way, different stages in alcoholic fermentation can be clearly 

differentiated. 
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7.10. Biological Process Time 

In Article 1, the concept of biological process time applied to alcoholic fermentation was 

discussed. The fact that alcoholic fermentation is a biological process, a slight variation in 

the speed of fermentation does not necessarily mean a deviated process. Hence, it is difficult 

to define control limits when there are variations in the duration of fermentation. Using 

biological process time, both NOC and YAN spectra could be modelled against the evolving 

fermentation time, and the status of future batches during the process was evaluated using 

a PLS model. The prediction of the biological time for YAN samples confirmed that when 

the NOC samples are 100% fermented, YAN samples were about 60% fermented. This 

result showed the possibility of using biological process time as an indication of normal 

progression of alcoholic fermentation. Besenhard et al.27 also applied the biological process 

time to determine the ‘maturity’ time of industrial fermentation batches, obtaining a good 

correlation for the biological time prediction and the actual response for all in-time batches. 

7.11. MCR-ALS models and ‘inverse’ MSPC charts 

In Article 4, the MCR-ALS resolution method was applied to extract relevant information 

from an experiment consisting of NOC and MLF samples. The final MCR-ALS model 

using the multiset structure showed good data fit (R2 = 99,9488) and a 2,3074% lack of fit. 

Similarly, in a study using ATR-MIR and MCR-ALS, Grassi et al. monitored the alcoholic 

fermentation of beer. Using 6 components, their MCR-ALS model explained a 99.9% 

variance and had a 3.5% lack of fit30. In our model, four components were considered, where 

three of them were directly related to sugars (glucose + fructose), ethanol and lactic acid. 

The fourth component, however, could not be attributed to any specific species in the 

mixture, but it was included because it improved model performance. Because of the shape 

of its relative concentration curve, we suspected that this fourth component could be due 

to the presence of salts of tartaric acid, precipitate by the end of alcoholic fermentation. The 

spectral profiles found were in agreement with the literature. The lactic acid profile showed 

an important peak at 1150cm-1, which can be attributed to the C-O stretching from 

carboxylic acid. As for sugars and ethanol, they appear extremely overlapped, as expected. 

Between 1089 and 1126 cm-1, C-C and C-H stretching vibrations are found, which are very 

common in these organic molecules. The relative concentration profiles for sugars, ethanol 

and lactic acid were also appropriate. All fermentation batches showed similar 

concentration trends for sugars, ethanol and intermediate species. The appearance of lactic 

acid was only detected in contaminated fermentations. Many authors have reported the use 
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of vibrational spectroscopy data and MCR-ALS to model fermentation processes. Garrido 

et al. used NIR data and MCR-ALS to monitor industrial alcoholic fermentation processes. 

Using three components in their MCR-ALS models (sugars, ethanol and biomass), the 

explained variance was always greater than 99.9% and the % lack of fit smaller than 0.1% 

31. Grassi et al. used NIR data and MCR-ALS models to monitor milk lactic acid 

fermentation. Their MCR-ALS models explained 99,9% of the variance in the data and had 

0.63665% lack of fit. They successfully described lactic acid fermentation and pointed the 

characteristic coagulation phases of milk lactic acid fementation32. In Article 4, we also 

investigated the use of MCR-ALS to develop MSPC charts based on the C matrix (relative 

concentrations) from the contaminated samples. These MSPC charts were used to 

specifically detect a fermentation deviation due to LAB spoilage. MSPC charts based on 

PCA models built with the relative concentration from the deviated samples were able to 

detect if NOC samples were out-of-limits, which would mean that the sample is not 

contaminated. Using the MSPC charts in the opposite way of traditional control charts 

means that if a projected sample falls below “control” limits, it would mean that lactic acid 

is being produced and thus, the model should be corrected to return to the normal 

conditions. Normal samples were detected in the T2 chart after 96 hours. Oliveira et al. used 

NIR and chemometric models to detect adulteration of commercial gasoline batches based 

on the distillation process. Using the resolved concentration profiles from MCR-ALS 

decomposition of NOC samples, they built different MSPC charts. They used different PCA 

matrix arrangements, and they could detect all off-specifications batches both in Q and T2 

charts, using a Global-MSPC model and a Fixed size moving window -MSPC model. Using 

Evolving-MSPC models, some off-specification batches were not detected in the T2 

charts33. Finally, in another study, Grassi et al. were able to detect coagulation failures from 

the initial phases of the milk coagulation process using both T2 and Q charts, based on NIR 

data for the global renneting process34. 
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In this thesis, monitoring of alcoholic fermentation using a portable ATR-MIR instrument 

and chemometric techniques has been investigated. The main conclusions arising from this 

work are: 

• A portable ATR-MIR spectrometer coupled with PLSR can quickly monitor 

sugars, pH and density in fermenting samples during all the stages of wine 

alcoholic fermentation, with no need of taking samples to a laboratory. Hence, it is 

a rapid and economical strategy to monitor fermentation processes. 

 

• Fermentation problems can be detected using ATR-MIR spectra and chemometric 

models, giving the winemaker the opportunity to eventually correct the process 

and obtain a good quality product. 

o Sluggish fermentations can be detected at an early stage of fermentation 

using multivariate discrimination techniques.  

o Lactic acid bacteria spoilage can be detected before the end of malolactic 

fermentation, that is, before total conversion of L-malic acid into lactic 

acid. 

 

•  Q residuals and Hotelling T2 statistics offer the possibility to develop MSPC 

charts based on the information from Normal Operation Conditions samples, and 

detect abnormal samples during alcoholic fermentation. 

o In the T2 control charts, the slower kinetics of sugars conversion into 

ethanol is detected as abnormal, and can be used to detect sluggish 

fermentations.  

o Q charts can detect deviations during wine alcoholic involving the 

apparition of undesired molecules. Because lactic acid is produced during 

lactic acid bacteria spoilage, Q charts can be used to detect its presence.  

 

• MSPC charts are a valuable tool to monitor wine alcoholic fermentation. Time 

interval-MSPC charts have better performance than charts based on global 

models, where all the variability is considered in a single model.   
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• ASCA can assess the statistical significance of minor variations due to 

experimental design factors, such as bacteria spoilage. The application of ASCA 

before the development of any chemometric model can optimise the selection of 

variables that are influencing a factor of interest. 

 

• ATR-MIR coupled to MCR-ALS can provide important information to evaluate 

alcoholic fermentation progression. 

o MSPC charts based on MCR-ALS data allow the detection of 

contaminated samples due to the production of lactic acid bacteria in wine 

fermenting samples. 
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