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Abstract

This thesis is dedicated to the study of rectifiable measures, quan-
titative rectifiability, and to a lesser degree, the boundedness of sin-
gular integral operators defined with respect to measures with poly-
nomial growth. It consists of seven chapters. The first chapter is a
general introduction to the area of quantitative rectifiability, and the
second contains various preliminary lemmas used throughout the the-
sis. The remaining five chapters are largely self-contained, as they
are based on articles written by the author during his PhD studies:
[Dąb19b, Dąb19a, Dąb20a, Dąb20b, AD20, DV20] (the last two were
co-authored by Jonas Azzam and Michele Villa, respectively).

In Chapters III and IV we show that a Radon measure µ is n-
rectifiable if and only if∫ 1

0
αµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd,

where αµ,2(x, r) are coefficients quantifying local flatness of µ using
the Wasserstein distance W2. This provides an α2 counterpart to
recent results of Azzam-Tolsa and Azzam-Tolsa-Toro, where similar
characterizations where shown in terms of other coefficients, the so-called
β2 and α numbers. Contrary to their results, the α2 characterization
requires no additional assumptions on densities or doubling properties
of µ.

In Chapter V we introduce conical energies, which can be seen as a
quantification of the notion of approximate tangent plane. We then use
these energies to prove several results: a characterization of rectifiable
measures, a characterization of sets containing big pieces of Lipschitz
graps, and finally, a sufficient condition for boundedness of SIOs valid
for measures with polynomial growth.

In Chapter VI we use a square function involving α numbers to
characterize Lp functions defined on uniformly rectifiable sets. This
can be seen as an extension of Tolsa’s characterization of uniformly
rectifiable sets in terms of the same square function.

Finally, in Chapter VII we prove a Heisenberg group counterpart
of a lemma due to Guy David which asserts that non-atomic measures
that define L2 bounded Riesz transform have polynomial growth.
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Introduction I

The main goal of this introduction is to sketch out the history of the quantitative
rectifiability area, as well as provide background and motivation for results
obtained in the thesis. A brief overview of the new results is given in Section 8.

1 Rectifiability
At its very core, this thesis is dedicated to the study of rectifiable sets and
measures.

Definition 1.1. Let 1 ≤ n < d. We say that a Borel set E ⊂ Rd is n-rectifiable
if there exists a countable number of Lipschitz maps gi : Rn → Rd such that

Hn
(
E \

⋃
i

gi(Rn)
)

= 0,

where Hn denotes the n-dimensional Hausdorff measure.
More generally, we say that a Radon measure µ on Rd is n-rectifiable if

µ� Hn and there exists an n-rectifiable set E ⊂ Rd such that µ(Rd \ E) = 0.
Throughout most of the thesis we will be working with n-dimensional objects
in Rd, and so we will usually write “rectifiable” instead of “n-rectifiable”.

The polar opposite of rectifiable sets are purely unrectifiable sets.

Definition 1.2. We say that a Borel set F ⊂ Rd is purely n-unrectifiable if
for any Lipschitz map g : Rn → Rd we have

Hn(F ∩ g(Rn)) = 0.

The history of these objects goes back almost a hundred years. The
foundation stone for the study of rectifiability was laid by Besicovitch in his
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I. Introduction

F1 F2 F3 F4

Figure I.1: The first four steps of the construction of the four-corner Cantor
set

1928 paper “On the fundamental geometrical properties of linearly measurable
plane sets of points” [Bes28]. In the article, Besicovitch defined 1-rectifiable and
purely 1-unrectifiable sets (in his terminology, “regular” and “irregular” sets)
and proved their characterizations using densities and approximate tangents.
A new discipline was born, one that would eventually come to be known as
geometric measure theory.

One could think of rectifiable sets as a very weak measure-theoretic coun-
terpart of C1-manifolds. Compared to smooth surfaces they are very rough,
and they may contain complex singularities. However, they still possess some
crucial regularity properties that make them very useful.

Things go south once we lose rectifiability. It is purely unrectifiable sets that
are the villains of this story. They exhibit numerous pathological behaviours:
for example, suppose that F is a purely unrectifiable set with Hn(F ) > 0.
Then, for almost all n-dimensional planes V , the projection of F onto V is
Hn-null. This is truly baffling, and at first rather hard to imagine, since the
set we started with had positive Hn measure! To get an idea of how this can
be, let us take a look at the most classical example of a purely 1-unrectifiable
set, the four-corner Cantor set in the plane.

Example 1.3. The four-corner Cantor set F ⊂ R2 is defined as F := ⋂
k≥1 Fk,

where the sets Fk are defined as follows (see also Figure I.1). We start with a
set F1 consisting of four squares, all of sidelength 4−1, located in the corners
of a unit square. In the next step, we replace each of the squares by a copy of
F1, rescaled by a factor of 4−1, so that we get a set F2 consisting of 42 squares
of sidelength 4−2. In general, to construct Fk+1 we replace all the 4k squares
comprising Fk by copies of F1, rescaled by a factor of 4−k.

It is relatively easy to show that 0 < H1(F ) <∞, see e.g. [Tol14, p. 35] ∗.
At the same time, it can be shown that for almost all lines V , the projection
of F onto V has zero length. See [Mat15, Chapter 10] for two different proofs
of this fact. It then follows by the Besicovitch-Federer projection theorem (see
Theorem 2.5) that F is purely 1-unrectifiable.

∗With some more effort, one may actually prove that H1(F ) =
√

2, see [XZ05].
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2. Classical rectifiability criteria

The example above gives us a good idea of how purely unrectifiable sets
look. They are very non-flat, very sparse, like a mist. Now, it is easy to show
that for any Borel set E ⊂ Rd with 0 < Hn(E) < ∞ one can decompose it
into two parts Er and Epu such that E = Er ∪ Epu, Er is rectifiable, and Epu
is purely unrectifiable. For the proof see [Mat95, Theorem 15.6]. In other
words, each set as above has a “nice”, rectifiable part, and an “ugly”, purely
unrectifiable part. It is then important to be able to distinguish between these
two parts, or to verify whether the entire set is rectifiable or purely unrectifiable.
To do that, many criteria have been developed throughout the years. Before
we review some of them, let us say a few words about why rectifiable sets are
useful.

There are at least two big, overarching motivations to study rectifiability.
The first one comes from the calculus of variations. Suppose we wish to
minimize a functional F (Σ) among a class of competitors Σ ∈ C satisfying
some additional constraints. For example, in the classical Plateau problem
F would be the area, while C would be a class of surfaces with a given fixed
boundary. Of course, one has to be more precise when defining C, and it
turns out that for F as above (but also for many other important geometric
functionals) the class of smooth manifolds is too restrictive. There are two
main reasons: firstly, the solutions to some problems may contain singularities.
Secondly, in calculus of variations one often wishes to pass to the limit, in
which case it is desirable for the class of objects we are working with to have
good compactness properties. Note that both reasons are reminiscent of the
motivation for introducing Sobolev functions when studying PDEs!

An incredibly rich theory has been developed to propose alternative classes
of “generalised surfaces”, better suited for variational problems. Perhaps
the most important are the sets of finite perimeter, rectifiable currents, and
rectifiable varifolds. All three classes are closely connected to rectifiable sets
discussed before, essentially using them as building blocks. For an introduction
to geometric measure theory oriented at calculus of variations see for example
[Mor16], [Mag12], or [Sim14].

The second big motivation for the study of rectifiability comes from its
connection to singular integral operators (often abbreviated as “SIOs”). This
connection will be explored more in depth later on, for now let us just say that,
due to omnipresence and importance of SIOs, rectifiability also plays a role in
the study of removable sets for bounded analytic function, Lp solvability of
the Dirichlet problem in rough domains, and the study of harmonic measure.

2 Classical rectifiability criteria
The key intuition necessary to understand rectifiability is the following: n-
rectifiable sets are precisely those that resemble n-dimensional planes as you
zoom in on them. Similarly, n-rectifiable measures should behave like (a

3



I. Introduction

constant times) n-dimensional Lebesgue measure on Rn, on infinitesimal scales.
These flatness properties are made more precise by the four classical char-
acterizations of rectifiability: in terms of densities, approximate tangents,
projections, and tangent measures. We will briefly overview them below, for a
more in-depth discussion and proofs we refer the reader to [Mat95, Chapters
15–18].

Densities

Definition 2.1. Given a Radon measure µ on Rd and x ∈ suppµ, the lower
and upper n-dimensional densities of µ at x are defined as

Θn
∗ (µ, x) = lim inf

r→0

µ(B(x, r))
rn

and Θn,∗(µ, x) = lim sup
r→0

µ(B(x, r))
rn

.

If at some point x the upper and lower densities are equal, we say that the
n-dimensional density exists at x, and we denote it by Θn(µ, x) := Θn

∗ (µ, x) =
Θn,∗(µ, x). In the special case µ = Hn|E, we will write Θn(E, x) instead of
Θn(µ, x), and similarly for upper and lower densities.

The idea behind densities is the following: we are comparing the µ-measure
of infinitesimal balls with the Lebesgue measure of n-dimensional balls of
the same radius. If at many points the two quantities agree (that is, the
n-dimensional density of µ exists), then one may hope that µ behaves like
Lebesgue measure on infinitesimal scales, and so it is rectifiable. This is indeed
the case.

Theorem 2.2. Let µ be a finite Radon measure. Then, µ is n-rectifiable if
and only if for µ-a.e. x ∈ suppµ the density Θn(µ, x) exists, and is positive
and finite.

First result of this type was obtained by Besicovitch in [Bes38], in the
case n = 1, d = 2, and µ = Hn|E. Morse and Randolph [MR44] obtained the
result for general measures µ, still under the assumption n = 1, d = 2. The
case n = 1 and arbitrary d is due to Moore [Moo50]. The theorem in its full
generality remained an open problem for many years. It was finally solved by
Preiss in his famous paper [Pre87]. An accessible version of Preiss’ proof can
also be found in the lecture notes of De Lellis [DL08].

Approximate tangent planes

Let V ∈ G(d,m), where G(d,m) denotes the Grassmanian space of m-
dimensional linear subspaces of Rd (we will always consider either m = n
or m = d− n). Given a point x ∈ Rd, and α ∈ (0, 1), we define

K(x, V, α) = {y ∈ Rd : dist(y, V + x) < α|x− y|}.

4



2. Classical rectifiability criteria

That is, K(x, V, α) is an open cone centered at x, with direction V , and
aperture α. For r > 0 we define also the truncated cone

K(x, V, α, r) = K(x, V, α) ∩B(x, r),

Recall that an n-planeW ∈ G(d, n) is a tangent plane to a set E if for every
α ∈ (0, 1) there exists some r = r(α) > 0 such that E ∩K(x,W⊥, α, r) = ∅.
While this notion is very useful if E is a smooth manifold, in the context of
general rectifiable sets it makes more sense to consider a relaxed definition.

Definition 2.3. We say that an n-plane W ∈ G(d, n) is an approximate
tangent plane to a Radon measure µ at x ∈ suppµ if Θn,∗(µ, x) > 0 and for
every α ∈ (0, 1)

lim
r→0

µ(K(x,W⊥, α, r))
rn

= 0. (2.1)

Clearly, the existence of approximate tangents is a form of local flatness.
Besicovitch used this property to characterize rectifiability in the case of
n = 1, d = 2 [Bes28], while the remaining cases are due to Federer [Fed47].

Theorem 2.4. Let µ be finite Radon measure on Rd satisfying 0 < Θn,∗(µ, x) <
∞ for µ-a.e. x ∈ Rd. Then, the following are equivalent:

(i) µ is n-rectifiable,

(ii) for µ-a.e. x ∈ Rd there is a unique approximate tangent plane to µ at x,

(iii) for µ-a.e. x ∈ Rd there is Wx ∈ G(d, n) and αx ∈ (0, 1) such that

lim sup
r→0

µ(K(x,W⊥
x , αx, r))
rn

< (αx)n ε(n) Θn,∗(µ, x), (2.2)

where ε(n) is a small dimensional constant.

Projections

Given an n-dimensional plane V , we denote by πV : Rd → V the orthogonal
projection onto V . Consider some n-plane W , and a set A ⊂ W with 0 <
Hn(A) < ∞. It is trivial to see that for such a perfectly flat set we have
Hn(πV (A)) > 0 for γd,n-a.e. V ∈ G(d, n), where γd,n denotes the Haar measure
on G(d, n). It is easy to see that the same is true also for subsets of C1

surfaces, or subsets of Lipschitz graphs. The celebrated Besicovitch-Federer
projections theorem asserts that this property characterizes rectifiable sets of
finite measure.

Theorem 2.5. Let E ⊂ Rd be a Borel set satisfying 0 < Hn(E) <∞. Then,

5



I. Introduction

• E is n-rectifiable if and only if every Borel subset A ⊂ E with Hn(A) > 0
satisfies

Hn(πV (A)) > 0 for γd,n-a.e. V ∈ G(d, n).

• E is purely n-unrectifiable if and only if

Hn(πV (A)) = 0 for γd,n-a.e. V ∈ G(d, n).

The case n = 1, d = 2 was shown by Besicovitch [Bes39], and the general
theorem is due to Federer [Fed47].

Tangent measures

Perhaps the most literal way of understanding the expression “asymptotically
flat” is the one given by tangent measures.

Definition 2.6. Let µ be a Radon measure on Rd. Given x ∈ Rd and r > 0
define Tx,r(y) = (y − x)/r. Denote by (Tx,r)∗µ the image measure of µ by Tx,r,
so that

(Tx,r)∗µ(A) = µ(rA+ x), A ⊂ Rd.

We will say that a non-zero Radon measure ν is a tangent measure to µ at x if
there exists sequences rk → 0 and ck of positive numbers such that

ck(Tx,rk)∗µ
w−−→ ν,

where the convergence is understood in the sense of weak convergence of
measures. The set of all tangent measures as above will be denoted by
Tan(µ, x).

The idea is the following: the maps Tx,r zoom in on the measure around
the point x, so that when passing to the limit (along some subsequence rk,
and with ck acting as normalizing factors) we get information about the local
behaviour of µ around x. This notion of tangent measures was introduced
by Preiss in [Pre87], where he also proved the following characterization of
rectifiability.

Theorem 2.7. Suppose that µ is a Radon measure satisfying 0 < Θn
∗ (µ, x) ≤

Θn,∗(µ, x) <∞ for µ-a.e. x. Then µ is n-rectifiable if and only if for µ-a.e. x
all ν ∈ Tan(µ, x) are of the form ν = cHn|V for some c > 0 and V ∈ G(d, n).

The four characterizations of rectifiability from above are nowadays con-
sidered classical. Let us move on to more recent results, and the field of
quantitative rectifiability.

6



3. The Analyst’s Traveling Salesman Theorem

3 The Analyst’s Traveling Salesman
Theorem

Recall that the classical Traveling Salesman Problem consists of finding the
shortest path connecting a finite number of points in the plane. An analyst’s
variant of the problem would be the following: given some set E ⊂ R2, not
necessarily finite, what is the shortest curve containing E? Here, by curve we
mean a Lipschitz image of an interval. Obviously, if H1(E) =∞ there can be
no finite length curve containing E, and so the second question is: what are
the conditions ensuring that such a curve exists? In the language of GMT, this
can be recast as a problem of finding a characterization of 1-rectifiable sets of
finite length, along with some quantitative length estimates. This problem was
solved by Peter Jones in [Jon90]. Along the way Jones laid the first building
blocks for the quantitative rectifiability area. To state his result, we need to
introduce his famous β numers.

Definition 3.1. Let E ⊂ Rd be a Borel set, x ∈ Rd and r > 0. If B(x, r)∩E 6=
∅ we define

βE,∞(x, r) = inf
L

sup
y∈E∩B(x,r)

dist(y, L)
r

,

where the infimum is taken over all lines L intersecting B(x, r). For B(x, r) ∩
E = ∅ we set βE,∞(x, r) = 0. If B = B(x, r), we will also write βE,∞(B) :=
βE,∞(x, r).

In other words, βE,∞(x, r) · r is the radius of the thinnest tube containing
E ∩B(x, r), see Figure I.2. Hence, βE,∞(x, r) measures how flat the set E is
inside the ball B(x, r). The normalization by r ensures that β numbers are
scale invariant: if E ′ = (E − x)/r, then we have βE,∞(x, r) = βE′,∞(0, 1).

Let D denote the standard dyadic grid on R2, and for Q ∈ D let BQ be
the ball with the same center as Q and of radius 5`(Q), where `(Q) is the
sidelength of Q. Define

β2(E) =
∑
Q∈D

βE,∞(BQ)2`(Q).

Summing over all dyadic cubes gives us information about flatness of E at
all scales and locations. The main result of [Jon90] is the following Analyst’s
Traveling Salesman Theorem (abbreviated as TST).

Theorem 3.2 (TST). Let E ⊂ R2 be Borel. If β2(E) <∞, then there exists
a curve Γ such that E ⊂ Γ, and

H1(Γ) . diam(E) + β2(E).

Conversely, if Γ is a curve satisfying H1(Γ) <∞, then

β2(Γ) . H1(Γ). (3.1)

7



I. Introduction

E
βE,∞(x, r) · r

L

B(x, r)

Figure I.2: The definition of βE,∞(x, r).

Two remarks are in order.

Remark 3.3. Note that the curve Γ given by the theorem is, up to a constant,
optimal, in the sense that for any curve Γ0 containing E we have

diam(E) + β2(E) ≤ diam(E) + β2(Γ0)
(3.1)
. H1(Γ0).

Hence, if Γ0 is a shortest curve containing E, we have H1(Γ) ≈ H1(Γ0).

Remark 3.4. Observe that if E is a bounded subset of a line, then β2(E) = 0,
and the shortest curve containing E is a segment of length diam(E). Hence, the
sum β2(E) captures the information about the curvature of set E. The reason
for using squares of β numbers in β2(E) is, roughly speaking, Pythagorean
theorem. To see that, suppose E ⊂ R2 is the union of segments [(−1, 0), (0, ε)]
and [(0, ε), (1, 0)] for some small ε > 0. By Pythagorean theorem,

H1(E) = 2
√

1 + ε2 = 2 + ε2 + o(ε2).

Note that βE,∞(0, 2) = ε/2, and so H1(E) ≤ diam(E)+6βE,∞(0, 2)2, assuming
ε is small enough. As we see, compared to the line segment [(−1, 0), (1, 0)],
the increase in length related to the curvature at a given scale is controlled by
the sum of squares of β numbers of that same scale.

Theorem 3.2 has found many application, for example in [BJ90], [BJ94],
[BJ97], see also [Jon91]. It is natural then that much effort has been put into
generalizing it. By “generalizing” one might understand two things: either
proving a similar statement about curves in some metric spaceX, or considering
coverings by higher dimensional objects instead of curves. A lot of progress has
been made in both directions. In [Oki92] Okikiolu proved TST for curves in Rd,
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4. Singular integral operators

and in [Sch07b] Schul further generalized it to the Hilbert space setting. Some
results are also available for the Heisenberg group [FSSC06, LS16a, LS16b],
Carnot groups [CLZ19], graph inverse limits spaces [DS17], `p spaces [BM20],
and general metric spaces [Hah05, Sch07a, DS19]. In the other direction, i.e.
finding a TST for higher dimensional sets, there are results related to covering
sets by Hölder curves [BNV19] or by so-called topologically stable surfaces, see
[AS18, AV19, Vil19a, Hyd20].

The original motivation for the Traveling Salesman Theorem came from
the study of the Cauchy transform on Lipschitz curves, see [Jon90, p. 4].
This connection between geometry of sets and singular integral operators
(abbreviated as SIOs) has been explored in great depth by Guy David and
Stephen Semmes in their theory of uniform rectifiability.

4 Singular integral operators
To motivate the definition of uniform rectifiability, let us first make a brief
detour into the world of singular integral operators. As the name suggests, they
are operators given by integration against a kernel possessing some singularity.
The most archetypical example is the Hilbert transform on R, formally defined
as

Hf(x) = 1
π

∫
R

f(y)
x− y

dy.

The higher dimensional analogue is the (vector valued) n-dimensional Riesz
transform

Rf(x) =
∫
Rn

x− y
|x− y|n+1f(y) dy.

Observe that the kernels above are not integrable (even locally), and so the
definitions as stated make little sense, even for very nice functions. There
are several standard ways of dealing with this problem, either by considering
principal values, or by using truncated operators (see Definition 4.1). In any
case, due to the antisymmetry of kernels, a lot of cancellations take place. In
consequence, the modified definitions make sense for smooth and compactly
supported f , and the operators can be extended to bounded operators on
Lp for 1 < p < ∞. Operators of this type naturally arise in many different
contexts, including the study of convergence of Fourier series, partial differential
equations, and others. For the introduction to the singular integral operators
theory in this standard setting we refer the reader to [Ste70], [Duo01] or
[Gra14a, Gra14b].

Observe that in the examples above the singularity of the kernel is of
the same order as the dimension of the space. One could say that they are
n-dimensional SIOs defined with respect to the Lebesgue measure on Rn. In
the sequel we will be concerned with the study of n-dimensional SIOs in

9
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d-dimensional spaces defined with respect to more general measures (think of
Hn restricted to n-dimensional sets). Let us fix some notation.

We are intersted in n-dimensional singular integral operators of convolution
type, with odd C2 kernels k : Rd \{0} → R satisfying for some constant Ck > 0

|∇jk(x)| ≤ Ck
|x|n+j for x 6= 0 and j ∈ {0, 1, 2}. (4.1)

We will denote the class of all such kernels by Kn(Rd).

Definition 4.1. Given a kernel k ∈ Kn(Rd), a constant ε > 0, and a (possibly
complex) Radon measure ν, we set

Tεν(x) =
∫
|x−y|>ε

k(y − x) dν(y), x ∈ Rd.

For a fixed positive Radon measure µ and all functions f ∈ L1
loc(µ) we define

Tµ,εf(x) = Tε(fµ)(x).

We say that Tµ is bounded in L2(µ) if all Tµ,ε are bounded in L2(µ), uniformly
in ε > 0. Let M(Rd) denote the space of all finite real Borel measures on Rd.
When endowed with total variation norm ‖·‖TV , this is a Banach space. We
say that T is bounded from M(Rd) to L1,∞(µ) if there exists a constant C
such that for all ν ∈M(Rd) and all λ > 0

µ({x ∈ Rd : |Tεν(x)| > λ}) ≤ C‖ν‖TV
λ

,

uniformly in ε > 0.

To motivate our interest in SIOs defined with respect to general measures,
we give two applications.

Removable sets

Other than Hilbert transform and Riesz transform, perhaps the most classical
SIO is the Cauchy transform. Given a finite complex valued Radon measure µ
on C, and z 6∈ suppµ we define

Cµ(z) =
∫
C

dµ(w)
w − z

.

The importance of Cauchy transform in complex analysis comes from the fact
that Cµ defines an analytic function on C \ suppµ. This fact made Cauchy
transform a perfect tool for the study of removable sets for bounded analytic
functions.

We say that a compact set E ⊂ C is removable for bounded analytic
functions if for every open U ⊃ E and any bounded analytic function f :

10



4. Singular integral operators

U \ E → C, f can be extended to an analytic function on U . The Painlevé
problem consists of finding geometric criteria for removability. It is not too
difficult to show that if H1(E) = 0, then E is removable. Conversely, if the
Hausdorff dimension of E is larger than 1, then E is not removable. The
case of 1-dimensional sets E with H1(E) > 0 is much more delicate, and is
closely related to the so-called analytic capacity, introduced by Ahlfors [Ahl47].
After decades of collective effort from many mathematicians it was finally
settled by Mattila, Melnikov, Verdera [MMV96] and David [Dav98] that if we
additionally assume that H1(E) < ∞, then E is removable if and only if E
is purely 1-unrectifiable. We refer the reader to books [Paj02] and [Tol14] for
the complete story and proofs of these beautiful results.

The results mentioned above rely deeply on identifying the measures µ on
C such that the Cauchy transform with respect to µ is bounded on L2(µ), in
the sense that the truncated operators

Cµ,εf(z) =
∫
|w−z|>ε

f(w)
w − z

dµ(w) (4.2)

are bounded on L2(µ) uniformly in ε > 0. Without delving into the proofs of the
previous results, the connection between removability and Cauchy transform
becomes evident thanks to a theorem of Xavier Tolsa. In [Tol99] and [Tol03]
he showed that a set E ⊂ C is non-removable for bounded anaylytic functions
if and only if there exists a (non-atomic) measure µ with suppµ ⊂ E such
that Cµ is bounded on L2(µ) (in fact, he showed a quantitative version of this
result involving analytic capacity, see also [Tol14, Theorems 4.14, 6.1]). This is
essentially the only solution to the Painlevé problem available for 1-dimensional
sets with H1(E) =∞.

Method of layer potentials

Suppose a domain Ω ⊂ Rn+1 is given, and we are interested in solving the
Laplace equation ∆u = 0 in Ω, with either Dirichlet or Neumann Lp boundary
condition on ∂Ω. One of the ways to do it is by using the so-called method of
layer potentials. Without going into details, let us just say that it consists of
studying integral operators of the form

Sf(x) = Cn

∫
∂Ω

1
|x− y|n−1f(y) dHn(y), x ∈ Rn+1 \ ∂Ω

Df(x) = Cn

∫
∂Ω

ν(y) · (x− y)
|x− y|n+1 f(y) dHn(y), x ∈ Rn+1 \ ∂Ω,

where f ∈ Lp(Hn|∂Ω) and ν(y) denotes the inward unit normal of ∂Ω at y.
These operators are the so called single and double layer potentials, and their
kernels originate from the fundamental solution for the Laplace equation. An
elementary computation shows that the functions Sf and Df are harmonic
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in Rd \ ∂Ω. Hence, they may be treated as candidates for the solutions of
the problem – Df is used in the Dirichlet problem, and Sf in the Neumann
problem. Of course, to solve the boundary value problem one needs to study
the behaviour of Df(x) and ∇Sf(x) as x approaches ∂Ω, which inevitably
leads to the study of n-dimensional singular integral operators defined with
respect to the surface measure on ∂Ω. For an introduction to the method of
layer potentials see [DK96], [Ken94], or [Van14].

In the case of domains with C1,α-regular boundaries, the scheme sketched
above can be implemented rather easily. In the case of C1 domains, it was first
achieved in [FJR78]. A few years later a generalization to Lipschitz domains
was obtained [Ver84]. The method of layer potentials has also been applied to
a variety of other problems, including more general elliptic equation [HMT10],
the heat equation [FR79, Bro89, LM95, HL96, Wat97], the Stokes systems
[MMS09], or the sub-elliptic Kohn-Laplace equation [OV20]. All these results
rely on a careful analysis of certain singular integral operators, whose definition
depends on the problem.

With the hope that the two applications above were enough to stoke reader’s
curiosity and enthusiasm for the study of SIOs defined with respect to general
measures, the natural question that comes to mind is the following: what are
the measures µ such that reasonable n-dimensional SIOs (say, with kernels in
Kn(Rd)) are bounded on L2(µ)?

5 Uniform rectifiability
First, let us look at the Cauchy transform (4.2). In the case of µ being the
arclength measure on a C1,α curve, the L2(µ) boundedness of Cµ can be easily
derived from the boundedness of Hilbert transform on R. The reason for that
is the following: C1,α curves can be very well approximated by lines, we have
uniform control over the errors made by the approximation, and the Cauchy
transform over a straight line is essentially the Hilbert transform. As it turns
out, this idea of approximating measures by lines (or planes) is crucial for the
understanding of singular integral operators with respect to general measures.
The question is, just how good the approximation has to be?

Contrary to the C1,α case, proving L2 boundedness of Cauchy transform
over Lipschitz graphs is a delicate matter. It was first obtained by Calderón
in the case of graphs with small Lipschitz constants [Cal77], and the general
case was solved by Coifman, McIntosh and Meyer [CMM82]. Since then, many
other proofs have been found [Dav84, Mur88, CJS89, Chr90, MV95]. In fact,
in [Dav84] David showed that the Cauchy transform is bounded on any curve
Γ satisfying

H1(Γ ∩B(x, r)) ≤ Cr, x ∈ Γ, r > 0.

12
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He called such curves “regular”†. A few years later it was shown that regular
curves provide just the right framework for the study of 1-dimensional SIOs.
To explain this, let us introduce more definitions.

Definition 5.1. We say that a Radon measure µ on Rd is n-Ahlfors-David
regular (n-ADR) if there exists some constant A > 0 such that for all x ∈ suppµ
and 0 < r < diam(suppµ) we have

A−1rn ≤ µ(B(x, r)) ≤ Arn.

We say that a Borel set E is n-ADR if the measure Hn|E is n-ADR.

It is easy to show (using e.g. [Mat95, Theorem 6.9]) that any n-ADR
measure µ can be represented as µ = gHn|E, where A−1 . g(x) . A and E is
n-ADR. Hence, it usually does not make much difference whether one studies
ADR sets or ADR measures. The ADR property should be thought of as
“quantitative n-dimensionality”. Note that regular curves are 1-ADR.

The ADR condition alone cannot imply boundedness of Cauchy transform
(or SIOs in general). Note that the four-corner Cantor set F from Example 1.3
is 1-ADR, but it has been known for a long time that Cauchy transform is not
L2 bounded on F (this essentially follows from [Gar70], see also [Tol14, Section
4.7]). The reader may recall, however, that the set F is purely 1-unrectifiable.
Together with our earlier remarks on the kinds of sets for which the Cauchy
transform is bounded (Lipschitz graphs, regular curves), one could hope that
rectifiability together with ADR condition suffice for the boundedness of SIOs.
That is not the case. Observe that rectifiability, as defined in Definition 1.1,
is a qualitative condition, while the boundedness of SIOs is a quantitative
property. For this reason, one could construct a rectifiable, 1-ADR set E that
approximates the four-corner Cantor set arbitrarily well, and in consequence
the Cauchy transform would not be L2 bounded on E.

The appropriate quantitative notion of rectifiability has been defined and
studied by Guy David and Stephen Semmes in their monumental monographs
[DS91] and [DS93a].

Definition 5.2. Suppose E ⊂ Rd is n-ADR. We say that E is uniformly
n-rectifiable (abbreviated as UR) if there exist constants κ > 0 and L > 0
such that for every x ∈ E and 0 < r < diam(E) there exists a Lipchitz map
g : Rn → Rd with Lip(g) ≤ L such that

Hn(E ∩B(x, r) ∩ g(Bn(0, r))) ≥ κrn,

where Bn(0, r) is the n-dimensional ball in Rn. In other words, E is UR if and
only if every ball B centered at E contains a “big piece of Lipschitz image”
(BPLI).

†It was communicated to the author by Guy David that Ahlfors already called such
curves “regular” in the 30s.
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Analogously, we will say that µ is uniformly n-rectifiable if µ is n-ADR and
µ(Rd \ E) = 0 for some UR set E.

This somewhat technical definition becomes much simpler in the case of
n = 1: uniformly 1-rectifiable sets are precisely 1-ADR subsets of regular
curves. Observe also that any UR set is rectifiable, but the converse is not
true.

David and Semmes proved in [DS91] the following fundamental result.

Theorem 5.3. Suppose E is n-ADR. Then, it is uniformly n-rectifiable if
and only if for all kernels k ∈ Kn(Rd)‡ the singular integral operator THn|E
associated to k is bounded on L2(Hn|E).

Thus, David and Semmes gave an almost complete answer to the problem
of characterizing measures for which the SIOs are L2 bounded. They also
proved in [DS91] and [DS93a] a dazzling number of geometric and analytic
characterizations of UR sets; throughout the years the list of criteria for
uniform rectifiability has been further expanded by many authors, and to this
day it is an active area of research. Later on we will mention some of the
characterizations, but now let us make a few remarks concerning the sharpness
of the theorem above.

Remark 5.4. How restrictive is the ADR assumption in this context? Not
too much. Recall that the (truncated) n-dimensional Riesz transform Rµ is
given by

Rµ,εf(x) =
∫
|x−y|>ε

x− y
|x− y|n+1f(y) dµ(y).

David has shown in [Dav91, Part III, Proposition 1.4] that if Rµ is bounded
on L2(µ) (in the sense of Definition 4.1), and µ is atomless (all singletons have
zero µ-measure), then µ satisfies the so-called n-polynomial growth condition,
i.e. there exists some constant C such that

µ(B(x, r)) ≤ Crn, x ∈ Rd, r > 0. (5.1)

In other words, if we disregard measures containing atoms, the upper bound
from the ADR condition is necessary for the boundedness of reasonable SIOs.

Concerning the lower bound from the ADR condition, it can be seen as a sort
of non-degeneracy condition. It ensures that the measure is n-dimensional in a
strong sense. If we consider a measure µ that does not satisfy the lower bound,
the SIOs may still be bounded on L2(µ), but it may be not too interesting.
That is for example the case for µ equal to Lebesgue measure on a compact
subset of Rd – if n < d, then of course all SIOs with kernels in Kn(Rd) are

‡Originally David and Semmes assumed that kernels are C∞, with appropriate estimates
on the derivatives. The assumptions were relaxed to C2, as in the definition of Kn(Rd), by
Tolsa [Tol09].
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bounded on L2(µ), but this is simply because the order of singularity is smaller
than dimension of µ, and so the kernel is integrable.

However, there are interesting measures that are not ADR but that define
bounded SIOs. For example, certain probability measures on Cantor-type
sets, such as the one described in Section V.12§. See also the discussion in
Subsection V.1.3 for available results related to L2 boundedness of SIOs in
non-ADR setting.

Remark 5.5. One of the implications of Theorem 5.3 is the following: if all
SIOs with kernels in Kn(Rd) are bounded, and E is AD regular, then E is
UR. However, David and Semmes conjectured that it should be enough to
assume boundedness of a single (vectorial) SIO - the Riesz transform. The
David-Semmes conjecture is one of the most famous problems in the field, and
this far it has been shown to be true only for n = 1 by Mattila, Melnikov and
Verdera [MMV96] and for n = d− 1 by Nazarov, Tolsa and Volberg [NTV14a].

6 Quantifying flatness
In this section we finally introduce the whole menagerie of flatness quantifying
coefficients which play a central role in this thesis. Recall that in Section 3
we defined Jones’ β numbers that quantified local flatness of sets in a scale-
invariant way. In fact, even before proving the Traveling Salesman Theorem,
Jones showed the following.

Theorem 6.1 ([Jon89]). Suppose that Γ ⊂ R2 is a 1-dimensional Lipschitz
graph. Then, there exists C > 0 such that for any z ∈ Γ and R > 0

∫
B(z,R)

∫ R

0
βΓ,∞(x, r)2 dr

r
dH1

∣∣∣
Γ
(x) ≤ CR.

We will call an estimate as above a Carleson condition. Jones used the
theorem above in his proof of the L2 boundedness of Cauchy integral over
Lipschitz graphs. Interestingly, a more general version of Theorem 6.1 was
proved earlier by Dorronsoro [Dor85] while studying affine approximations of
Sobolev functions. However, Dorronsoro did not relate it to geometry or SIOs.

Note that the definition of βΓ,∞(x, r) makes perfect sense also for n-
dimensional sets, as long as we replace in Definition 3.1 lines by n-planes.
However, the estimate above is not true for n-dimensional Lipschitz graphs
if n > 1, and the counterexample is due to Fang [Fan90]. One can fix this
problem by considering a modified version of β numbers.

§That is, Section 12 in Chapter V. We explain the cross-referencing system used through-
out the thesis on p. 25.
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6.1 βp numbers
Definition 6.2. For 1 ≤ p <∞ and a Radon measure µ on Rd set¶

βµ,p(x, r) = inf
L

 1
rn

∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

1/p

, (6.1)

where the infimum runs over all n-planes L intersecting B(x, r). If µ = Hn|E
for some set E, we will write βE,p(x, r) instead of βµ,p(x, r). Furthermore, given
a ball B = B(x, r), we set βµ,p(B) := βµ,p(x, r), and the same convention will
be used with all the other coefficients.

Thus, βp numbers can be seen as Lp variants of Jones’ β∞ numbers. It
follows immediately by Hölder inequality that if p < q then

βµ,p(x, r) ≤
(
µ(B(x, r))

rn

)1/p−1/q

βµ,q(x, r).

Hence, for measures with polynomial growth (5.1) we have βµ,p(x, r) ≤
Cβµ,q(x, r).

Fang used βp numbers to prove a modification of Theorem 6.1 valid for
n-dimensional Lipschitz graphs (though again, it follows from [Dor85]). This
result was soon extended by the following theorem of David and Semmes.

Theorem 6.3 ([DS91]). Let µ be n-AD regular. If n = 1 let 1 ≤ p <∞, and
if n ≥ 2 assume that 1 ≤ p < 2n

n−2 . Then, µ is uniformly n-rectifiable if and
only if there exists C > 0 such that for any ball B = B(z,R) with z ∈ suppµ
and R > 0 ∫

B

∫ R

0
βµ,p(x, r)2 dr

r
dµ(x) ≤ Cµ(B).

Together with Theorem 5.3 this answers the question we posed at the
beginning of Section 5: how well should a set E be approximated by planes in
order for SIOs to be L2 bounded on E.

Due to their natural definition, coefficients βp found many more applications.
In [Tol15] Tolsa showed that for a rectifiable measure µ we have

∫ 1

0
βµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd. (6.2)

On the other hand, Azzam and Tolsa proved in [AT15] that if a Radon
measure µ satisfies (6.2) and

0 < Θn,∗(x, µ) <∞ for µ-a.e. x ∈ Rd, (6.3)
¶The definitions of βµ,p and other coefficients may vary slightly between different chapters,

see Remark II.3.1
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then µ is n-rectifiable. More recently, Edelen, Naber and Valtorta [ENV16]
managed to weaken the assumption (6.3) to

Θn,∗(x, µ) > 0 and Θn
∗ (x, µ) <∞ for µ-a.e. x ∈ Rd. (6.4)

Theorem 6.4 ([Tol15, AT15, ENV16]). Let µ be a Radon measure on Rd.
Then, µ is n-rectifiable if and only if (6.2) and (6.4) hold for µ-a.e. x ∈ Rd.

Further generalization of this result to Hilbert and Banach spaces was
achieved in [ENV19].

Remark 6.5. Measures of the form µ = Hn|E for E ⊂ Rd with 0 < Hn(E) <
∞ automatically satisfy (6.3) (see [Mat95, Theorem 6.2]), and so in this
special case, by the results of Azzam and Tolsa, we get a particularly clean
characterization: E is n-rectifiable if and only if (6.2) holds.

Going back to general measures, it is well known that (6.3) implies µ� Hn,
which is included in our definition of rectifiable measures. However, (6.4) does
not imply µ� Hn on its own, and so it is remarkable that together with (6.2)
it gives rectifiability. An alternative proof of this fact is also given in [Tol19].

Remark 6.6. Note that in Theorem 6.3 we have some liberty when choosing
p in βp numbers. In the case of qualitative rectifiability, the choice of p = 2
is the best possible. Condition (6.2) with βµ,2(x, r) replaced by βµ,p(x, r) is
necessary for rectifiability only for 1 ≤ p ≤ 2. On the other hand, (6.2)
together with (6.3) imply rectifiability only for p ≥ 2. See [Tol19] for relevant
counterexamples. Still, if instead of (6.3) we assume that Θn

∗ (µ, x) > 0 and
Θn,∗(µ, x) <∞ for µ-a.e. x ∈ Rd, then the finiteness of βp square function for
certain p < 2 becomes sufficient for rectifiability, see [Paj97, BS16].

Let us mention that modified versions of β numbers are also used to
study a competing notion of rectifiability for measures, the so-called Federer
rectifiability. We say that a measure µ is n-rectifiable in the sense of Federer
if there exists a countable number of Lipschitz images of Rn, denoted by Γi,
such that µ(Rd \ ⋃i Γi) = 0. No absolute continuity with respect to Hn is
required. Dropping the absolute continuity assumption makes such measures
very difficult to characterize: a surprising example of a doubling, Federer
1-rectifiable measure supported on the whole plane was found by Garnett,
Killip and Schul [GKS10]. Nevertheless, for n = 1 significant progress has
been achieved in [Ler03, BS15, BS16, AM16, BS17, MO18a, Nap20]. See also
a recent survey of Badger [Bad19].

Finally, let us remark that if a set E ⊂ Rd satisfies faster decay of βE,p
numbers than (6.2), then it is actually C1,α rectifiable, in the sense that it can
be covered Hn-a.e. by C1,α surfaces. See [Ghi20] and [DNI19] for details.
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6.2 α numbers
We would like to stress that β numbers were originally introduced to study
sets, and they do have some limitations when applied to general measures.
They capture the shape of the support of measures, but they do not see the
distribution of mass within the support. Observe that any measure with support
contained in an n-dimensional plane has all β numbers equal to 0, but of course
such measure may be very far from being rectifiable - think of Dirac deltas. For
this reason, some assumptions on densities in Theorem 6.4 are unavoidable.

Tolsa’s α numbers, introduced in [Tol09], offer a way to solve the issue
mentioned above. To define them, we need a distance on the space of measures.
Given Radon measures µ and ν, and an open ball B, we set

FB(µ, ν) = sup
{∣∣∣∣∫ φ dµ−

∫
φ dν

∣∣∣∣ : φ ∈ Lip1(B)
}
,

where
Lip1(B) = {φ : Lip(φ) ≤ 1, suppφ ⊂ B}.

Note that FB(µ, ν) measures the distance between µ and ν inside the ball B.
See [Mat95, Chapter 14] for more information about this distance.

Definition 6.7. Given a Radon measure µ and a ball B = B(x, r) we define

αµ(x, r) = inf
c,L

1
rµ(B)FB(µ, cHn|L),

where the infimum runs over all c ≥ 0 and all n-planes L.

The idea is the following: αµ(B) quantifies how far µ is from flat measures
(i.e. measures of the form cHn|L, L an n-plane) inside B. Tolsa characterized
uniform rectifiability in terms of a Carleson condition imposed on α numbers.

Theorem 6.8 ([Tol09]). Let µ be n-AD regular. Then, µ is uniformly n-
rectifiable if and only if there exists C > 0 such that for any ball B = B(z,R)
with z ∈ suppµ and R > 0∫

B

∫ R

0
αµ(x, r)2 dr

r
dµ(x) ≤ Cµ(B). (6.5)

Concerning the qualitative notion of rectifiability, one might expect that a
condition of the form∫ 1

0
αµ(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd (6.6)

could characterize rectifiable measures. Tolsa showed in [Tol15] that (6.6)
is necessary for rectifiability. But is it sufficient? Azzam, David, and Toro
proved in [ADT16] that if µ is doubling, then some condition related to (6.6)
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is sufficient for rectifiability. In [Orp18a] Orponen showed that for n = d = 1
a variant of (6.6) is sufficient for rectifiability (which in this case is equivalent
to absolute continuity with respect to H1). Finally, Azzam, Tolsa and Toro
[ATT20] proved that a measure µ satisfying (6.6) which is also pointwise
doubling, i.e. such that

lim sup
r→0+

µ(B(x, 2r))
µ(B(x, r)) <∞ for µ-a.e. x ∈ Rd, (6.7)

is rectifiable.

Theorem 6.9 ([Tol15, ATT20]). Let µ be a Radon measure on Rd. Then, µ
is n-rectifiable if and only if (6.6) and (6.7) hold for µ-a.e. x ∈ Rd.

Also in [ATT20], the authors construct a purely 1-unrectifiable measure on
R2 satisfying (6.6). This shows that, for general n and d, (6.6) on its own is
not a sufficient condition for rectifiability.

To mention a few other applications of α numbers, in [Tol08] they are used
to characterize rectifiability of sets of finite measure in terms of existence of
principal values for the Riesz transform, and in [DEM18, Fen20, DM20] they
are used to study higher co-dimensional analogues of harmonic measure.

6.3 αp numbers
Coefficients αp were introduced by Tolsa in [Tol12]. They can be thought of as
a generalization of α numbers – in fact, under relatively mild assumptions, one
has αµ(B) ≈ αµ,1(B), see [Tol12, Lemma 5.1]. As in the case of α coefficients,
in order to define αp numbers we need a metric on the space of measures.

Let 1 ≤ p < ∞, and let µ, ν be two probability Borel measures on Rd

satisfying
∫
|x|p dµ <∞,

∫
|x|p dν <∞. The Wasserstein distanceWp between

µ and ν is defined as

Wp(µ, ν) =
(

inf
π

∫
Rd×Rd

|x− y|p dπ(x, y)
)1/p

,

where the infimum is taken over all transport plans between µ and ν, i.e.
Borel probability measures π on Rd × Rd satisfying π(A × Rd) = µ(A) and
π(Rd×A) = ν(A) for all measurable A ⊂ Rd. The same definition makes sense
if instead of probability measures we consider µ, ν, and π of the same total
mass. For more information on Wasserstein distance see for example [Vil03,
Chapter 7] or [Vil08, Chapter 6].

Similarly as α numbers, αp numbers quantify how far is a given measure
from being a flat measure, that is, from being of the form cHn|L for some
constant c > 0 and some n-plane L. In order to measure it locally (say, in a
ball B), we introduce the following auxiliary function.
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Let ϕ : Rd → [0, 1] be a radial Lipschitz function satisfying ϕ ≡ 1 in B(0, 2),
suppϕ ⊂ B(0, 3), and for all x ∈ B(0, 3)

c−1 dist(x, ∂B(0, 3))2 ≤ ϕ(x) ≤ c dist(x, ∂B(0, 3))2,

|∇ϕ(x)| ≤ c dist(x, ∂B(0, 3)),

for some constant c > 0. For example, one could take ϕ(x) = φ(|x|) where
φ : [0,∞)→ [0, 1] is such that φ(r) = 1 for 0 ≤ r ≤ 2, φ(r) = 0 for r ≥ 3, and
φ(r) = (3− r)2 for 2 < r < 3. Given a ball B = B(x, r) ⊂ Rd we set

ϕB(y) = ϕ

(
y − x
r

)
. (6.8)

ϕB should be thought as a regularized characteristic function of B.

Definition 6.10. For 1 ≤ p < ∞, a Radon measure µ on Rd, and a ball
B = B(x, r), we define

αµ,p(x, r) = inf
L

1
rµ(B)1/pWp(ϕBµ, aB,LϕBHn|L),

where the infimum is taken over all n-planes L intersecting B, and

aB,L =
∫
ϕB dµ∫

ϕB dHn|L
.

Even though their definition is more involved than that of α numbers, αp
numbers have some advantages. Under mild assumptions on the measure, one
can show that, on the one hand,

βµ,p(B) . αµ,p(B),

and on the other hand, if p < q, then

αµ,p(B) . αµ,q(B),

see Lemma II.3.2. Thus, recalling that αµ ≈ αµ,1, coefficients αp simultaneously
capture information given by βp and α numbers.

Tolsa introduced αp numbers in [Tol12] with the aim of characterizing
uniformly rectifiable measures.

Theorem 6.11 ([Tol12]). Let µ be an n-AD regular measure on Rd, and
suppose that 1 ≤ p ≤ 2. Then, µ is uniformly n-rectifiable if and only if there
exists C > 0 such that for any ball B = B(z,R) with z ∈ suppµ and R > 0

∫
B

∫ R

0
αµ,p(x, r)2 dr

r
dµ(x) ≤ Cµ(B).
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6.4 Other coefficients
Finally, let us briefly mention that a few other kinds of coefficients have been
used in the study of rectifiability.

Menger curvature (and its higher dimensional counterparts) was studied in
[Lég99, LW09, LW11, Kol17, Meu18, Goe18, GG20]. A coefficient involving
center of mass is developed in [Vil19b]. In [TT15, Tol17] rectifiable sets
and measures are characterized using ∆ numbers, defined as ∆µ(x, r) =
|µ(B(x,r))

rn
− µ(B(x,2r))

(2r)n |.

7 Recent trends
Despite our best efforts to make this introduction broad and inclusive, there
are many important developments in quantitative rectifiability and related
topics that we were not able to describe, simply due to the vast size of the
subject matter. Nevertheless, we feel obliged to at least hint at some of them,
to give the reader an idea of how diverse and active this research area is. The
references below are by no means complete, they should be seen merely as an
invitation to explore the topic further.

Firstly, there is the connection between rectifiability and harmonic measure.
Given a domain Ω ⊂ Rn+1 and a continuous function f ∈ C(∂Ω), let uf denote
the harmonic function on Ω with boundary values f . Fixing some X ∈ Ω,
f 7→ uf(X) becomes a positive functional on C(∂Ω), and so by the Riesz
representation theorem, it defines a measure on ∂Ω. We denote it by ωX , and
we call it the harmonic measure on ∂Ω with a pole at X. As it turns out, there
is a deep connection between rectifiability of ∂Ω, the relation between ωX and
Hn|∂Ω, and the Lp solvability of the Dirichlet problem on Ω. This has been
explored in depth by many authors and by now it is very well understood. See
e.g. [HMUT14, AHM+16, AHM+20].

The harmonic measure was defined using the Laplace operator ∆. More
generally, given a suitable elliptic operators L we may define the elliptic
measure ωL. A lot of effort has been put into replicating the results obtained
for harmonic measure to this more general setting, see e.g. [KP01, PPT18,
HMM+20]. On the other hand, one can also study the caloric measure related
to the heat equation. This introduces further complications due to the parabolic
geometry: one has to define parabolic counterparts to uniform rectifiability
and other GMT notions. See e.g. [HLN04, NS17, MP20].

As demonstrated above, and also by our remarks from the end of Section
1, one of the main motivations for the study of rectifiability are PDEs and
calculus of variations. However, the natural setup for certain problems is not
the Euclidean space, but another metric space (e.g. Rn+1 with parabolic metric
in the case of heat equation, the Heisenberg group in the case of Kohn-Laplace
operator). This led to a flurry of activity aiming at generalizing classical
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notions and results of (Euclidean) GMT to this metric space setting. See e.g.
[AK00, FO19, Bat20, AM20].

Finally, we would like to mention a trend of “quantification” of well-known
qualitative results. A nice example, lying at the intersection of fractal geometry
and GMT, is obtaining bounds for the Favard length of the four-corner Cantor
set. Recall that in Example 1.3 we defined the four-corner Cantor set F as an
intersection of sets Fk, which can be seen as better and better approximations
of F . Recall that by Theorem 2.5 H1(πV (F )) = 0 for γ2,1-a.e. line V . Thus, if
we define the Favard length of F as

Fav(F ) =
∫
G(2,1)

H1(πV (F )) dγ2,1(V ),

we have Fav(F ) = 0. In particular, Fav(Fk) → 0 as k → ∞. That is a
qualitative result. Its quantitative counterpart is: what is the rate of decay of
Fav(Fk) as k →∞? See e.g. [Tao09, NPV11, BŁV14, CDT20].

8 New results and structure of the thesis
In this section we give a short overview of the results obtained in the thesis.
Full presentations are given in the introduction to each chapter, together with
an explanation of how they relate to previously known results.

Chapter II is dedicated to some preliminary definitions and estimates used
throughout the thesis. We recall the definition of David-Mattila cubes, used in
Chapters III and V, and we prove some basic estimates of α and β numbers.

In Chapters III and IV we show that a Radon measure µ is n-rectifiable if
and only if ∫ 1

0
αµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd,

see Theorem III.1.4 and Theorem IV.1.1. Thus, we provide an α2 counterpart
to Theorem 6.4 and Theorem 6.9. This characterization is especially satisfying
due to no additional assumptions on densities or doubling properties of µ.
Along the way we show a sufficient condition for rectifiability in terms of α
and β2 numbers, see Theorem III.1.2. These chapters contain the results from
[Dąb19b, Dąb19a].

In Chapter V we introduce conical energies, which can be seen as a quan-
tification of the notion of approximate tangent plane. We then use these
energies to prove several results: a characterization of rectifiable measures
Theorem V.1.3, a characterization of sets containing big pieces of Lipschitz
graps (which is a stronger condition than UR) in Theorem V.1.9, and finally,
a sufficient condition for the boundedness of SIOs valid for measures with
polynomial growth (not necessarily ADR), see Theorem V.1.14. This chapter
is based on [Dąb20a, Dąb20b].
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In Chapter VI we use a square function involving α numbers, similar to
that from (6.5), to characterize Lp functions defined on uniformly rectifiable
sets, see Theorem VI.1.3. Based on joint work with Jonas Azzam [AD20].

Finally, recall that in Remark 5.4 we mentioned David’s lemma which
asserted that non-atomic measures defining L2 bounded Riesz transform have
polynomial growth. In Chapter VII we prove a counterpart of this result for
Heisenberg groups, see Theorem VII.1.1. This chapter is based on [DV20],
co-authored by Michele Villa.
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Preliminaries II

1 Notation
The notation given below will be used in Chapters III–VI. We may use slightly
different notation in Chapter VII due to the non-Euclidean, Heisenberg group
setting.

Cross-referencing

Since the chapters are mostly self-contained, we decided to adapt the following
system for cross-references: each object (theorem, lemma etc.) is assigned only
two numbers, the first standing for section. When referencing content withing
the same chapter, only those two numbers are used; when referencing an object
from another chapter, three numbers are used, with the number of the chapter
given at the beginning. For example, Lemma 2.1 references a lemma from the
second section of the current chapter, but Lemma VI.2.2 denotes Lemma 2.2
from the second section of Chapter VI.

Estimates

Throughout the paper we will write A . B whenever A ≤ CB for some
constant C, the so-called “implicit constant”. All such implicit constants
may depend on dimensions n, d, and we will not track this dependence. If the
implicit constant depends also on some other parameter t, we will write A .t B.
The notation A ≈ B means A . B . A, and A ≈t B means A .t B .t A.
Moreover, if symbols . or ≈ appear in the assumptions of a lemma, then the
implicit constant of the proven estimate will depend on the implicit constants
from the assumptions (see Lemma 3.4 for example).
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Balls

We denote by B(z, r) ⊂ Rd an open ball with center at z ∈ Rd and radius
r > 0. Given a ball B, its center and radius are denoted by z(B) and r(B),
respectively. If λ > 0, then λB is defined as a ball centered at z(B) of radius
λr(B).

For a ball B and measure µ, we define the n-dimensional density of µ at B
as

Θµ(B) = µ(B)
r(B)n .

For a ball B = B(x, r), we write Θµ(x, r) := Θµ(B).

Planes

Given two n-planes L1, L2, let L′1 and L′2 be the respective parallel n-planes
passing through 0. Then,

](L1, L2) = distH(L′1 ∩B(0, 1), L′2 ∩B(0, 1)),

where distH stands for Hausdorff distance between two sets. Clearly, we always
have ](L1, L2) ∈ [0, 1], and ](L1, L2) = 0 if and only if L1 and L2 are parallel.
Note that if L1 and L2 are lines in the plane, then ](L1, L2) is the sine of the
angle between L1 and L2.

Given an affine subspace L ⊂ Rd, we will denote the orthogonal projection
onto L by πL. The orthogonal projection onto L⊥ will be denoted by π⊥L .

Sets

Given a set A ⊂ Rd, we denote by 1A : Rd → {0, 1} the characteristic function
of A, and by #A the cardinality of A. If f : Rd → R is a function, then f |A
denotes its restriction to A. Similarly, µ|A will denote the measure µ restricted
to A.

For sets A,B ⊂ Rd we define

dist(A,B) = inf
a∈A

inf
b∈B
|a− b|,

while distH(A,B) will stand for the Hausdorff distance between A and B.

Dyadic lattices

Throughout all of the thesis, dyadic techniques are heavily used. However,
usually we won’t be able to work with “true” dyadic cubes, relying instead on
certain “generalized dyadic cubes”. The most classical constructions of this
kind are due to Chirst [Chr90] and David [Dav88a]. Since then many other
constructions of this type has been done, and depending on the context it is
convenient to use different kinds of cubes. To avoid confusion, we use different
fonts to distinguish between them:
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• D denotes the David-Mattila lattice [DM00], defined in Section 2 below,
and used in Chapters III and V.

• DRn and DRd denote the true dyadic grids on Rn and Rd respectively,
as defined in Subsection IV.2.2 and used in Chapter IV. In the same
subsection a few other grids are derived from them, e.g. DΓ,De

Γ, D̃Γ.

• D(ω) denote the adjacent systems of cubes of Hytönen and Tapiola
[HT14], see VI.2.2. They are used in Chapter VI.

• D denotes the cubes of Käenmäki, Rajala and Suomala [KRS12], used
in Chapter VII. See Subsection VII.2.3.

2 David-Mattila cubes
In Chapters III and V we will use the lattice of “dyadic cubes” constructed by
David and Mattila [DM00].

Lemma 2.1 ([DM00, Theorem 3.2]). Let µ be a Radon measure on Rd, E =
suppµ. For any constants C0 > 1, A0 > 5000C0 there exists a sequence of
partitions of E into Borel subsets Q, Q ∈ Dk, with the following properties:

(a) For each integer k ≥ 0, E is the disjoint union of the “cubes” Q, Q ∈ Dk,
and if k < l, Q ∈ Dl, and R ∈ Dk, then either Q∩R = ∅ or else R ⊂ Q.

(b) The general position of the cubes Q can be described as follows. For each
k ≥ 0 and each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)), such
that

zQ ∈ Q, A−k0 ≤ r(Q) ≤ C0A
−k
0 ,

E ∩B(Q) ⊂ Q ⊂ E ∩ 28B(Q) = E ∩B(zQ, 28r(Q)),

and the balls 5B(Q), Q ∈ Dk, are disjoint.

Remark 2.2. The cubes of David and Mattila have many other useful prop-
erties, most notably the so-called small boundaries. We will not need them,
however.

For any Q ∈ D := ⋃
k≥0Dk we denote by D(Q) the family of P ∈ D such

that P ⊂ Q. Given Q ∈ Dk we set J(Q) = k and `(Q) = 56C0A
−k
0 . Note that

r(Q) ≈ `(Q). We define also BQ = 28B(Q) = B(zQ, 28 r(Q)), so that

E ∩ 1
28BQ ⊂ Q ⊂ BQ.

Denote by Ddb the family of doubling cubes, i.e. Q ∈ D satisfying

µ(100B(Q)) ≤ C0µ(B(Q)). (2.1)
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One of the most useful properties of the David-Mattila lattice is that it
provides a lot of information about doubling cubes. If the constants C0, A0
in Lemma 2.1 are chosen of the form A0 = C(C0)100, and C0 = C0(n, d) large
enough, then it follows from the construction of the lattice that the following
lemmas hold.

Lemma 2.3 ([DM00, Lemma 5.28]). For any R ∈ D there exists a family
{Qi}i∈I ⊂ Ddb such that Qi ⊂ R and µ(R \ ⋃iQi) = 0.

Lemma 2.4 ([DM00, Lemma 5.31]). Let R ∈ D and Q ⊂ R be cubes such that
all the intermediate cubes S, Q ( S ( R, are non-doubling, i.e. S ∈ D \ Ddb.
Then,

µ(100B(Q)) ≤ A
−10d(J(Q)−J(R)−1)
0 µ(100B(R)). (2.2)

Remark 2.5. The constant 10d in (2.2) can be replaced by any positive
constant if C0 is chosen big enough. See [DM00, (5.30)] for details.

As a simple corollary we get the following:

Lemma 2.6 ([AT15, Lemma 2.4]). Suppose the cubes Q ∈ D, R ∈ D, Q ⊂ R,
are such that all the intermediate cubes Q ( S ( R are non-doubling, i.e.
S /∈ Ddb. Then

Θµ(100B(Q)) ≤ (C0)nA−9d(J(Q)−J(R)−1)
0 Θµ(100B(R)), (2.3)

and ∑
S∈D:Q⊂S⊂R

Θµ(100B(S)) . Θµ(100B(R)).

In Chapter V we will use the following lemma.

Lemma 2.7 ([CT17, Lemma 4.5]). Let R ∈ Ddb. Then, there exists another
doubling cube Q ( R, Q ∈ Ddb, such that

µ(Q) ≈ µ(R) and `(Q) ≈ `(R).

In Chapter III it will be convenient for us to work with cubes satisfying a
doubling condition stronger than (2.1). To introduce them we need a version
of [Tol14, Lemma 2.8]. For reader’s convenience, we provide the proof below.

Lemma 2.8. Let µ be a Radon measure on Rd and α > 1 be some constant.
Then, for µ-a.e. x ∈ Rd there exists a sequence rj → 0 such that for every j
we have

µ(B(x, α rj)) ≤ 2αdµ(B(x, rj)). (2.4)
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Proof. Consider the set Z ⊂ suppµ of points such that for x ∈ Z there does
not exist a sequence of radii rj → 0 satisfying (2.4). We want to show that
µ(Z) = 0. Let

Zj = {x ∈ suppµ : µ(B(x, α r)) > 2αdµ(B(x, r)) for all r ≤ 2−j}.

Clearly Z = ⋃
j Zj, and so it suffices to prove µ(Zj) = 0 for all j ≥ 0.

Let B0 be an arbitrary ball of radius 2−j centered at Zj, and choose some
integer k ≥ d. For each x ∈ Zj ∩B0 we set Bx = B(x, α−k2−j). Observe that,
by the definition of Zj, for h = 0, . . . , k − 1 we have

µ(αh+1Bx) > 2αdµ(αhBx).

Thus,

µ(Bx) < (2αd)−1µ(αBx) < · · · < (2αd)−kµ(αkBx) = (2αd)−kµ(B(x, 2−j))
≤ (2αd)−kµ(2B0). (2.5)

Now, we use Besicovitch covering theorem to choose points {xm} ⊂ Zj ∩B0
such that ⋃mBxm covers Zj ∩B0, and moreover ∑m 1Bxm ≤ Cd. The bounded
intersection property implies that N := #{xm} <∞, and more precisely

Nωd(α−k2−j)d =
∑
m

Hd(Bxm) ≤ CdHd(2B0) = Cd2dωd2−jd,

where ωd stands for the volume of a d-dimensional ball. Hence,

N ≤ Cd2dαkd.

Consequently, we may use (2.5) and the fact that ⋃mBxm ⊃ Zj ∩B0 to obtain

µ(Zj ∩B0) ≤
∑
m

µ(Bxm) ≤ N(2αd)−kµ(2B0) ≤ Cd2d−kµ(2B0).

Since k can be chosen as large as we wish, this gives µ(Zj ∩B0) = 0. But B0
was an arbitrary ball, and so µ(Zj) = 0.

We may use the lemma above to show the following.

Lemma 2.9. There exists a constant C = C(d, C0, A0) such that for µ-a.e.
x ∈ Rd there exists a sequence of cubes Qj ∈ Ddb satisfying x ∈ Qj, `(Qj)→ 0,
and

µ(100BQj) ≤ C µ(B(Qj)). (2.6)

Proof. Let α = 2C2
0 A

k+1
0 , where k is a constant that will be fixed later on.

Consider a sequence of balls B(x, rj) given by Lemma 2.8. Fix some j. Let Q
be the smallest cube satisfying x ∈ Q and B(x, rj) ⊂ 100B(Q). We have

72A−1
0 C−1

0 r(Q) ≤ rj ≤ 100 r(Q).
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It is easy to check that, with the choice of α we made at the beginning, we
have

B(x, α rj) ⊃ 100B(R),
where R is the k-th ancestor of Q, i.e. Q ⊂ R and J(Q)− J(R) = k.

Now, if all the intermediate cubes S, Q ( S ( R, were non-doubling, then
by (2.2) and Lemma 2.8 we would have

µ(B(x, rj)) ≤ µ(100B(Q))
(2.2)
≤ A

−10d(k−1)
0 µ(100B(R))

≤ A
−10d(k−1)
0 µ(B(x, α rj)) ≤ A

−10d(k−1)
0 2 (2C2

0 A
k+1
0 )dµ(B(x, rj))

= 2d+1C2d
0 A

−9dk+11d
0 µ(B(x, rj)).

For k = k(d, C0, A0) big enough the constant on the right hand side is smaller
than 1, and so we reach a contradiction. It follows that one of the intermediate
cubes S is doubling. Thus,

µ(100BS) ≤ µ(100B(R)) ≤ µ(B(x, α rj)) ≤ 2αdµ(B(x, rj))
≤ 2αdµ(100B(Q)) ≤ 2αdµ(100B(S)) ≤ 2C0 α

dµ(B(S)).

Setting Qj = S finishes the proof.

We will call the cubes satisfying (2.6) strongly doubling, and the family of
all such cubes will be denoted by Dsdb. We fix constants C0 and A0 so that all
of the above holds, and from now on we will treat them as absolute constants.
We will not mention dependence on them in our estimates.

3 Estimates of α and β numbers
In this section we provide some estimates of α and β coefficients used throughout
the thesis.

Remark 3.1. In different parts of the thesis the definitions of α and β numbers
vary slightly – the coefficients αµ(B), αµ,p(B), and βµ,p(B) are normalized
either using µ(B), µ(3B), or r(B)n. However, within each chapter the normal-
izing factor is the same for all coefficients. Since the choice of normalization
does not typically alter the proofs of lemmas below, we chose not to specify the
normalizing factor at this point. Instead, we will simply denote it by “ n(B)”,
so that

βµ,p(B)p = inf
L

1
n(B)

∫
B

(
dist(x, L)
r(B)

)p
dµ(x),

and so on. Unless stated otherwise, the lemmas hold for n(B) = µ(B),
n(B) = µ(3B), or n(B) = r(B)n.

We begin by showing that α2 numbers bound from above α and β2 numbers.
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Lemma 3.2. Suppose that µ is a Radon measure, and B is a ball intersecting
suppµ. Then

βµ,2(B) ≤ αµ,2(B), (3.1)

and
αµ(B) ≤ αµ,1(B). (3.2)

Furthermore, if n(B) = µ(3B), then

αµ,1(B) ≤ αµ,2(B). (3.3)

Remark 3.3. The fact that (3.3) only holds for n(B) = µ(3B) is precisely
the reason why we choose this normalization in Chapter III.

Proof. To see βµ,2(B) ≤ αµ,2(B), let L be a minimizing plane for αµ,2(B)
and π be a minimizing transport plan between ϕBµ and aB,LϕBHn|L, where
aB,L = (

∫
ϕB dµ)/(

∫
ϕB dHn|L) is as in the definition of αµ,2(B). Then, by

the definition of a transport plan, and the fact that ϕB ≡ 1 on B,

αµ,2(B)2r(B)2 n(B) =
∫
|x− y|2 dπ(x, y)

≥
∫
B

dist(x, L)2 dµ ≥ βµ,2(B)2 n(B)r(B)2.

For the estimate (3.2) we will use the so-called Kantorovich duality for W1
Wasserstein distance. It states that

W1(µ, ν) = sup
Lip(f)≤1

∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ ,
see [Vil08, Remark 6.5] for more information.

Let L be a minimizing plane for αµ,1(B), and let aB,L be as in the definition
of αµ,1(B). Since ϕB ≡ 1 in B, it follows from the definition of αµ that

αµ(B)r(B) n(B) ≤ FB(µ, aB,LHn|L) = sup
Lip(f)≤1

supp(f)⊂B

∣∣∣∣∫ f dµ−
∫
f aB,LdHn|L

∣∣∣∣
= sup

Lip(f)≤1
supp(f)⊂B

∣∣∣∣∫ fϕB dµ−
∫
fϕB aB,LdHn|L

∣∣∣∣
≤ sup

Lip(f)≤1

∣∣∣∣∫ fϕB dµ−
∫
fϕB aB,LdHn|L

∣∣∣∣
= W1(ϕBµ, aB,LϕBHn|L) = αµ,1(B)r(B) n(B).

Finally, suppose that n(B) = µ(3B). In that case the estimate αµ,1(B) ≤
αµ,2(B) follows immediately by the Cauchy-Schwarz inequality and the fact
that

∫
ϕB dµ ≤ µ(3B).
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If we assume more on the ball B, then we can improve (3.1) to an estimate
of the bilateral β numbers, defined as

bβµ,2(x, r)2 = inf
L

1
rn

∫
B(x,r)

(
dist(y, L)

r

)2

dµ(y)

+ 1
rn

∫
B(x,r)

(
dist(y, suppµ)

r

)2

dHn|L(y).

Lemma 3.4. Suppose that µ is a Radon measure, B is a ball satisfying
µ(B) ≈ r(B)n ≈ n(B), and L is a plane minimizing αµ,2(B). Then

bβµ,2(B)2 . r(B)−n−2
∫
B

dist(x, L)2 dµ . αµ,2(B).

Proof. Let π be a minimizing transport plan between ϕBµ and aB,LϕBHn|L
(where aB,L is as in the definition of αµ,2(B); note that aB,L & 1 since µ(B) ≈
r(B)n). Then, by the definition of a transport plan, and the fact that ϕB ≡ 1
on B,

αµ,2(B)2r(B)2 n(B) =
∫
|x− y|2 dπ(x, y)

≥ 1
2

∫
B

dist(x, L)2 dµ(x) + aB,L
2

∫
B

dist(y, suppµ)2 dHn|L(y)

& bβµ,2(B)2r(B)2 n(B).

The following lemma allows us to control β1 numbers in terms of β2 and α
numbers. We also show that if B1 ⊂ B2 and they have comparable radii, then
the coefficients of B2 bound those of B1.

Lemma 3.5. Suppose that µ is a Radon measure on Rd, and that B ⊂ Rd is
a ball satisfying n(B) ≈ n(2B). Then

βµ,1(B) ≤ βµ,2(B), (3.4)

and
βµ,1(B) . αµ(2B). (3.5)

Moreover, given balls B1 ⊂ B2 such that r(B1) ≈ r(B2) and n(B1) ≈ n(B2) we
have

βµ,2(B1) . βµ,2(B2), (3.6)
αµ(B1) . αµ(B2). (3.7)

32



3. Estimates of α and β numbers

Proof. The first estimate is a direct consequence of the Cauchy-Schwarz in-
equality.

In order to prove the second estimate, let LB be the minimizing plane
for βµ,1(B). The estimate follows if we consider the 1-Lipschitz function
φ(x) = ψ(x) dist(x, LB), where ψ is r(B)−1-Lipschitz, ψ ≡ 1 on B, and
supp(ψ) ⊂ 2B.

The last two inequalities follow immediately from the definitions of βµ,2
and αµ.

Remark 3.6. Under suitable assumptions, an analogue of (3.6) and (3.7) is
true also for α2. However, the proof is much more involved, and we will only
use it in Chapter IV in a very specific context. See Lemma IV.3.3, or [Tol12,
Lemma 5.4].

Lemma 3.7. Suppose that µ is a Radon measure, B is a ball with µ(B) > 0,
L an n-plane intersecting 0.9B, and assume that c minimizes FB(µ, cHn|L).
Then

c .
µ(B)
r(B)n . (3.8)

Furthermore, there exists ε > 0 such that if µ(0.9B) ≈ µ(B), and FB(µ, cHn|L) ≤
εµ(B)r(B), then

c &
µ(B)
r(B)n . (3.9)

Proof. Let r = r(B) and consider Φ(x) = (r−|x−z(B)|)+ ∈ Lip1(B). It is not
difficult to see that on a significant portion (say, a half) of the n-dimensional
ball L ∩B we have Φ(x) ≈ r, and so

c
∫

Φ(x) dHn|L(x) ≈ crn+1.

If we had c ≥Mµ(B)r−n for some large M > 100, then

FB(µ, cHn|L) ≥ c
∫

Φ(x) dHn|L(x)−
∫

Φ(x) dµ(x) ≥ Ccrn+1 − µ(B)r

≥ (MC − 1)µ(B)r.

But in that case, if M ≥ 3C−1, the constant c̃ = 0 would be better than c,
since we always have FB(µ, 0) ≤ µ(B)r, and thus we reach a contradiction
with optimality of c. Hence, c ≤Mµ(B)r−n.

Now, assume further that FB(µ, cHn|L) ≤ εµ(B)r, and µ(0.9B) ≈ µ(B),
so that

∫
Φ(x) dµ(x) ≈ µ(B)r. If we had c ≤M−1µ(B)r−n, then

FB(µ, cHn|L) ≥
∫

Φ(x) dµ(x)− c
∫

Φ(x) dHn|L(x) ≥ Cµ(3B)r − C̃crn+1

≥ Cµ(B)r − C̃

M
µ(B)r ≥ C

2 µ(B)r,

33
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assuming M large enough. This contradicts the assumption FB(µ, cHn|L) ≤
εµ(B)r.

The following lemma shows that if α and β2 numbers are simultaneously
small, then the minimizing planes for both of them are close to each other and
can be used interchangeably.

Lemma 3.8. Suppose that µ is a Radon measure on Rd, and that B1, B2 ⊂ Rd

are concentric balls satisfying B1 ⊂ 0.9B2 and

µ(B1) ≈ µ(B2) ≈ r(B1)n ≈ r(B2)n ≈ n(B2).

Let Lβ be the n-plane minimizing βµ,2(B2), and Lα, c > 0, be the n-plane
and constant minimizing αµ(B2). Suppose further that Lα, Lβ intersect 0.9B1.
Then

1
µ(B1)r(B1)FB1(µ, cHn|Lβ) . βµ,2(B2) + αµ(B2). (3.10)

Proof. Set r = r(B1). It follows easily by (3.8) that c . µ(B2)r(B2)−n ≈ 1,
and so FB1(µ, cHn|Lβ) . rµ(B1). Thus, without loss of generality, we may
assume that βµ,2(B2) + αµ(B2) < ε for some small ε > 0.

By the triangle inequality, we have

FB1(µ, cHn|Lβ) ≤ FB1(µ, cHn|Lα) + FB1(cHn|Lα , cH
n|Lβ)

≤ FB2(µ, cHn|Lα) + FB1(cHn|Lα , cH
n|Lβ).

The first term on the right hand side is precisely αµ(B2) n(B2)r(B2) ≈ αµ(B2)µ(B1)r,
and so what remains to show is that

1
µ(B1)rFB1(cHn|Lα , cH

n|Lβ) . βµ,2(B2) + αµ(B2).

Let xα ∈ Lα ∩ B̄1 and xβ ∈ Lβ be such that

|xα − xβ| = dist(xα, Lβ) = inf
x∈Lα∩B1

dist(x, Lβ).

Without loss of generality we may assume that xα = 0, so that Lα is a linear
subspace. Denote L′β = Lβ − xβ. It follows by basic linear algebra that for
x ∈ Lα ∩B1

dist(x, Lβ) = |x− ΠLβ(x)| = |x− xβ − ΠL′
β
(x− xβ)|

= |Π⊥L′
β
(x− xβ)| = |Π⊥L′

β
(x)− xβ|. (3.11)

Note that by the above and the triangle inequality

dist(x, Lβ) = |Π⊥L′
β
(x)− xβ| ≤ |xβ|+ |Π⊥L′

β
(x)|.
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On the other hand, by our choice of xβ, |xβ| ≤ dist(x, Lβ) for all x ∈ Lα ∩B1.
Together with the triangle inequality and the identity (3.11) this gives

|xβ|+ |Π⊥L′
β
(x)| ≤ 2|xβ|+ |Π⊥L′

β
(x)− xβ| ≤ 3 dist(x, Lβ).

We put the two estimates above together to get

|xβ|+ |Π⊥L′
β
(x)| ≈ dist(x, Lβ). (3.12)

Now, observe that, by the definition of ](Lα, Lβ), for every x ∈ Lα we have
|Π⊥L′

β
(x)| ≤ |x|](Lα, Lβ). Moreover, there exists a subspace ` ⊂ Lα on which

the equality is achieved, i.e. for all x ∈ ` we have |Π⊥L′
β
(x)| = |x|](Lα, Lβ).

Consider a cone around `:

K =
{
x ∈ Rd : |Π`(x)| ≥ 4

5 |x|
}
.

Since 0 ∈ B1 ∩K ∩ Lα, it is easy to see that Hn(B1 ∩K ∩ Lα) & rn, which
in turn implies that for some small constant 0 < δ � 1 (depending on the
implicit constant in the previous inequality and dimension) we have

Hn(B1 ∩K ∩ Lα \B(0, δr)) & rn. (3.13)

Moreover, for x ∈ B1 ∩K ∩ Lα \B(0, δr) we have

|Π⊥L′
β
(x)| = |Π⊥L′

β
(Π`(x)) + Π⊥L′

β
(Π⊥` (x))| ≥ |Π⊥L′

β
(Π`(x))| − |Π⊥L′

β
(Π⊥` (x))|

≥ |Π`(x)|](Lα, Lβ)− |Π⊥` (x)|](Lα, Lβ)
x∈K
≥ 4

5 |x|](Lα, Lβ)− 3
5 |x|](Lα, Lβ)

= 1
5 |x|](Lα, Lβ) ≈ r](Lα, Lβ).

Hence, using the above, (3.13), and (3.12) yields

|xβ|rn−1 + rn](Lα, Lβ) .
∫
B1

dist(x, Lβ)
r

dHn|Lα(x)
(3.9)
. c

∫
B1

dist(x, Lβ)
r

dHn|Lα(x). (3.14)

Now, consider φ ∈ Lip1(B2) such that φ(x) ≈ dist(x, Lβ) in B1, and
φ(x) . dist(x, Lβ) in B2. Then,

c
∫
B1

dist(x, Lβ)
r

dHn|Lα(x) . c
∫
B2

φ(x)
r

dHn|Lα(x)

.
∫
B2

φ(x)
r

dµ(x) + r−1FB2(µ, cHn|Lα) . (βµ,2(B2) + αµ(B2)) n(B2). (3.15)
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The estimate (3.14) and the calculation above give ](Lα, Lβ) . βµ,2(B2) +
αµ(B2) < ε. Let Π : Lα → Rd be the orthogonal projection onto L′β, and
i : Lα → Rd an embedding. We have

‖Π− i‖op = ‖Π− i‖L∞(Lα∩B(0,1)) . βµ,2(B2) + αµ(B2) < ε. (3.16)

Thus, Π is a linear isomorphism onto L′β, with a bound on Jacobian∣∣1− |JΠ|
∣∣ . βµ,2(B2) + αµ(B2). (3.17)

It follows that for any f ∈ Lip1(B1) we have∣∣∣∣∫ f(x) dHn|Lα(x)−
∫
f(y) dHn|Lβ(y)

∣∣∣∣
=
∣∣∣∣∫ f(x) dHn|Lα(x)−

∫
f(xβ + Π(x))|JΠ(x)| dHn|Lα(x)

∣∣∣∣
≤
∫
|f(x)−f(xβ+Π(x))| dHn|Lα(x)+

∫
|f(xβ+Π(x))|

∣∣1− |JΠ(x)|
∣∣ dHn|Lα(x)

≤
∫
B1∪Π−1(B1−xβ)

|xβ|+ |x− Π(x)| dHn|Lα(x)

+
∫

Π−1(B1−xβ)
‖f‖L∞

∣∣1− |JΠ(x)|
∣∣ dHn|Lα(x)

(3.16),(3.17)
. |xβ|rn + (βµ,2(B2) + αµ(B2))rn+1.

Taking supremum over all f ∈ Lip1(B1), dividing by rn+1, using (3.14), (3.15),
the fact that µ(B1) ≈ rn, and that c . 1, yields the desired inequality:

1
µ(B1)rFB1(cHn|Lα , cH

n|Lβ) . βµ,2(B2) + αµ(B2).

We finish this section by showing that, for rectifiable measures, the planes
minimizing βµ,2(x, r) converge to approximate tangent planes as r → 0. Since
the choice of normalization does not affect the minimizing planes, without loss
of generality we may assume n(B) = r(B)n.

Lemma 3.9. Let µ be a n-rectifiable measure. For x ∈ suppµ and r > 0
let Lx,r denote a minimizing plane for βµ,2(x, r), let W ′

x be the approximate
tangent plane to µ at x, whenever it exists, and let Wx = W ′

x + x. Then for
µ-a.e. x ∈ suppµ we have

distH(Lx,r ∩B(x, r),Wx ∩B(x, r))
r

r→0−−→ 0. (3.18)

Proof. Recall that since µ is n-rectifiable, the density Θn(µ, x) exists and
satisfies 0 < Θn(µ, x) < ∞ for µ-a.e. x. Let M ≥ 100 be some big constant.
Define

EM := {x ∈ suppµ : M−1 ≤ Θn(µ, x) ≤M}.

36



3. Estimates of α and β numbers

Note that for any M0 ≥ 1 we have µ(Rd \ ⋃M≥M0 EM) = 0, and so it suffices
to show that for all sufficiently large M (3.18) holds for µ-a.e. x ∈ EM . Fix
some big M , and set ν = µ|EM . It is well-known that

M−1 ≤ Θn(ν, x) = Θn(µ, x) ≤M for ν-a.e. x ∈ supp ν, (3.19)

which can be shown e.g. using [Mat95, Corollary 6.3] in conjunction with the
Lebesgue differentiation theorem. For ν-a.e. x the plane Wx is well defined by
Theorem I.2.4, and also by Theorem I.6.4∫ 1

0
βµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd. (3.20)

Fix x ∈ EM such that (3.20) and (3.19) hold, and such that Wx is well-defined.
Once we show that (3.18) holds at x, the proof will be finished. From now on
we will suppress the subscript x, so that Lr =: Lx,r, W := Wx. By applying
an appropriate translation, we may assume that x = 0.

Given some small r > 0, let Ar(y) = y
r
, so that Ar(B(0, r)) = B(0, 1). Set

L′r = Ar(Lr). It is easy to see that (3.18) is equivalent to showing

distH(L′r ∩B(0, 1),W ∩B(0, 1)) r→0−−→ 0.

We will prove that the convergence above holds by contradiction. Suppose it
is not true, so that there is ε > 0 and a sequence rk → 0 such that for all k we
have

distH(L′rk ∩B(0, 1),W ∩B(0, 1)) ≥ ε. (3.21)

Let η > 0 be some tiny constant. Observe that by (3.20) for k ≥ k0(η,M)
large enough we have

βµ,2(0, rk)2 ≤ η3

M
. (3.22)

Indeed, otherwise one could use the fact that βµ,2(0, r) . βµ,2(0, 2r) (by (3.6))
to conclude that

∫ 1
0 βµ,2(0, r)2 dr/r = ∞. Moreover, let us remark that for

every 0 < δ < 1/2, if k = k(δ) is large enough, then we have L′rk ∩B(0, δ) 6= ∅.
This can be shown easily using the fact that Θn(µ, x) ≥ M−1, that Lrk are
minimizers of βµ,2(0, rk), and the fact that βµ,2(0, rk)→ 0. We leave checking
the details to the reader.

Now, we use the fact that for k large enough L′rk ∩ B(0, δ) 6= ∅ and the
compactness properties of the Hausdorff distance to conclude that there exists
some subsequence (again denoted by rk) such that L′rk ∩B(0, 1) converges in
Hausdorff distance to a compact set of the form V ∩ B(0, 1), where V is an
n-plane intersecting B(0, δ). Since δ > 0 can be chosen arbitrarily small, we
get that V passes through 0. Note that by (3.21)

distH(V ∩B(0, 1),W ∩B(0, 1)) ≥ ε. (3.23)
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Let Bηrk(V ) denote the ηrk-neighbourhood of V . We will show now that a
large portion of measure ν in B(0, rk) is concentrated at the intersection of
Bηrk(V ) and Bηrk(W ).

Since V passes through 0, for every r > 0 we have A−1
r (V ) = V . Thus,

distH(Lrk ∩B(0, rk), V ∩B(0, rk))
rk

k→∞−−−→ 0. (3.24)

Note that for k big enough

1
ν(B(0, rk))

∫
B(0,rk)

(
dist(y, V )

rk

)2

dν(y)

≤ 1
ν(B(0, rk))

∫
B(0,rk)

(
dist(y, Lrk)

rk

)2

dν(y)

+
(

distH(Lrk ∩B(0, 2rk), V ∩B(0, 2rk))
rk

)2

(3.24)
≤ rnk

ν(B(0, rk))
βµ,2(0, rk)2 + η3

(3.19)
≤ 2Mβµ,2(0, rk)2 + η3

(3.22)
≤ 3η3.

It follows from Chebyshev’s inequality and the estimate above that

ν(B(0, rk) \Bηrk(V )) ≤ η−2
∫
B(0,rk)

(
dist(y, V )

rk

)2

dν(y) ≤ 3ην(B(0, r)).

Hence, ν(B(0, rk) ∩ Bηrk(V )) ≥ (1 − 3ηrk)ν(B(0, rk)). On the other hand,
by the definition of the approximate tangent plane W and (3.19), for any
0 < α < 1 we have

ν(K(0,W, α, rk)) = ν(B(0, rk))− ν(K(0,W⊥,
√

1− α2, rk))

≥ ν(B(0, rk))−
η

2Mrnk ≥ (1− η)ν(B(0, rk)),

if k is large enough (depending on α, η and M). Note that K(0,W, α, rk) ⊂
Bαrk(W ) ∩B(0, rk). Thus, choosing α = η, if we define

S = S(k, η) = B(0, rk) ∩Bηrk(V ) ∩Bηrk(W ),

then by the two previous estimates we have

ν(S) ≥ (1− 4η)ν(B(0, rk)) ≥
1

2Mrnk , (3.25)

where in the second inequality we used (3.19).
We will show that if η is chosen small enough (depending on ε, the constant

from (3.23)), then the estimate above leads to a contradiction. Roughly
speaking, (3.25) means that a lot of measure is concentrated in the intersection
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of Bηrk(V ) and Bηrk(W ), but since V and W are somewhat well-separated by
(3.23), this intersection behaves approximately like an (n− 1)-dimensional set.

Let us start by exploiting (3.23). By the definition of Hausdorff distance and
the fact that V andW are n-planes, it follows from easy linear algebra that there
exists some w ∈ W⊥ with |w| = 1 and |πV (w)| ≥ ε. Let v1 = πV (w)/|πV (w)|,
and let V0 ⊂ V be the orthogonal complement of span(v1) in V .

We define T = T (k, η) to be a tube-like set defined as

T = T (k, η) = {z ∈ Rd : |z · v1| ≤ 2ηε−1rk, |πV0(z)| ≤ rk, |π⊥V (z)| ≤ ηrk}.

We claim that S(k, η) ⊂ T (k, η). Indeed, let z ∈ S. The estimate |πV0(z)| ≤ rk
is trivial since S ⊂ B(0, rk). The estimate |π⊥V (z)| ≤ ηrk follows from the fact
that z ∈ Bηrk(V ). Concerning |z·v1|, note that since z ∈ Bηrk(W ) and w ∈ W⊥,
we have |z · w| ≤ ηrk. We can use our choice of w and v1 = πV (w)/|πV (w)| to
get

ηrk ≥ |z · w| = |z · πV (w) + z · π⊥V (w)|
≥ |z · πV (w)| − |z · π⊥V (w)| = |z · v1||πV (w)| − |π⊥V (z) · π⊥V (w)|

≥ |z · v1|ε− |π⊥V (z)||π⊥V (w)| ≥ |z · v1|ε− ηrk,

where in the last inequality we used again z ∈ Bηrk(V ). Thus, we have
|z · v1| ≤ 2ηε−1rk, and the proof of S(k, η) ⊂ T (k, η) is finished.

Choose η = γε for some tiny γ = γ(M) > 0, and let k be large enough
for (3.25) to hold. It follows from the definition of T that we can cover T
with a family of balls {Bi}i∈I such that r(Bi) = ηrk and #I . ε−1η−(n−1).
It is well-known that (3.19) implies that for all y ∈ Rd and r > 0 we have
ν(B(y, r)) ≤ Mrn. In particular, for each i ∈ I we have ν(Bi) ≤ M(ηrk)n.
Thus,

1
2Mrnk

(3.25)
≤ ν(S) ≤ ν(T ) ≤

∑
i∈I

ν(Bi) ≤ #IM(ηrk)n

. ε−1η−(n−1)M(ηrk)n = ε−1ηMrnk .

That is,
M−2 . ε−1η = γ.

This is a contradiction for γ = γ(M) small enough. Hence, (3.21) is false, and
so (3.18) holds for µ-a.e. x ∈ EM . Taking M →∞ finishes the proof.
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Sufficient condition for rectifiability involving
Wasserstein distance W2 III

1 Introduction
In this chapter we prove a sufficient condition for rectifiability involving the
α2 coefficients. In fact, we will show a bit more: a sufficient condition for
rectifiability involving α and β2 numbers. Let us recall some definitions.

For 1 ≤ p <∞ and a Radon measure µ on Rd we define

βµ,p(x, r) = inf
L

 1
µ(B(x, 3r))

∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

1/p

.

Remark 1.1. Note that in this chapter we use µ(B(x, 3r)) as the normalizing
factor. This choice is explained in Remark 1.6 and Remark II.3.3.

Let us also recall the definition of α numbers. Given Radon measures µ
and ν, and an open ball B, we set

FB(µ, ν) = sup
{∣∣∣∣∫ φ dµ−

∫
φ dν

∣∣∣∣ : φ ∈ Lip1(B)
}
,

where
Lip1(B) = {φ : Lip(φ) ≤ 1, suppφ ⊂ B}.

The coefficient α of a measure µ in B is defined as

αµ(B) = inf
c,L

1
r(B)µ(3B)FB(µ, cHn|L),

where the infimum runs over all c ≥ 0 and all n-planes L.
We prove the following sufficient condition for rectifiability in terms of α

and β2 square functions.
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III. A sufficient condition for rectifiability via W2

Theorem 1.2. Let µ be a Radon measure on Rd. Suppose that∫ 1

0
αµ(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd, (1.1)

and ∫ 1

0
βµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd. (1.2)

Then µ is n-rectifiable.

Since Tolsa has shown in [Tol15] that (1.1) and (1.2) are also necessary
conditions for rectifiability, we immediately get the following characterization.

Corollary 1.3. Let µ be a Radon measure on Rd. Then, µ is n-rectifiable if
and only if (1.1) and (1.2) hold for µ-a.e. x ∈ Rd.

Our main motivation for proving Theorem 1.2 was to get a sufficient
condition for rectifiability in terms of α2 numbers. Recall that αp numbers
were defined in Subsection I.6.3 using the Wasserstein distance Wp. Just as
a quick reminder, given 1 ≤ p < ∞, a Radon measure µ on Rd, and a ball
B ⊂ Rd, we defined

αµ,p(B) = inf
L

1
r(B)µ(3B)1/pWp(ϕBµ, aB,LϕBHn|L),

where the infimum is taken over all n-planes L intersecting B, ϕB is a “regu-
larized characteristic function of B”, and

aB,L =
∫
ϕB dµ∫

ϕB dHn|L
.

Since α2 numbers bound from above both α and β2 numbers (see Lemma II.3.2),
Theorem 1.2 implies the following.

Theorem 1.4. Let µ be a Radon measure on Rd. Suppose that∫ 1

0
αµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd. (1.3)

Then µ is n-rectifiable.

In Chapter IV we show that (1.3) is also a necessary condition for rectifia-
bility, and so we get the following characterization.

Corollary 1.5. Let µ be a Radon measure on Rd. Then, µ is n-rectifiable if
and only if for µ-a.e. x ∈ Rd we have∫ 1

0
αµ,2(x, r)2 dr

r
<∞.
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2. Sketch of the proof

We would like to stress that, compared to Theorem I.6.4 and Theorem I.6.9,
the characterization above does not make any additional assumptions on
densities or on doubling properties of the measure.

The organization of the paper, as well as the general strategy of the proof,
are outlined in Section 2. For now, let us just say that Lemma 3.1, our main
lemma, can be seen as a technical, more quantitative version of Theorem 1.2.

Remark 1.6. Suppose one prefers to work with homogeneous coefficients
βhµ,2 and αhµ, that is coefficients where the normalizing factor is r−n (i.e.
βhµ,2(x, r) = µ(B(x,3r))

rn
βµ,2(x, r) and αhµ(x, r) = µ(B(x,3r))

rn
αµ(x, r)). Then, a pos-

sible “homogenized” modification of Lemma 3.1 is discussed in Remark 3.4.
However, it is clear that “homogenized” (i.e. with α and β2 numbers replaced
by their homogeneous counterparts) versions of Theorem 1.2 and Theorem 1.4
are not true (unless we assume more about densities) – think of Lebesgue
measure on Rd.

2 Sketch of the proof
The proof of Theorem 1.2 is organized as follows. In Section 3 we formulate
the main lemma. Given an appropriate David-Mattila cube R0, the main
lemma provides us with a Lipschitz graph Γ such that we have µ� Hn|Γ on a
large chunk of Γ ∩R0, and µ(Γ ∩R0) ≥ 1

2µ(R0). In the same section we show
how to use the main lemma to prove Theorem 1.2. Everything that follows is
dedicated to proving the main lemma.

In Section 4 we perform the usual stopping time argument. We define the
family of stopping cubes Stop, comprising high density cubes HD, low density
cubes LD, big angle cubes BA (cubes whose best approximating planes form a
big angle with L0, the best approximating plane of R0), big square function
cubes BS (cubes with a big portion of points for which the square functions are
larger than a certain threshold), and far cubes F (cubes with a big portion of
RFar, points that are far from certain best approximating planes). Cubes not
contained in any of the stopping cubes form the Tree. Next, we show various
good properties of cubes from the Tree, as well as estimate the measure of
cubes from BS and F (it is easy).

Section 5 is devoted to constructing the Lipschitz graph Γ. One possible
way to do it would be to use the tools from [DT12] – this was done for example
in [AT15, ATT20]. In this paper we decided to use another well-known method,
dating back at least to [DS91] and [Lég99]. We follow the way it was applied in
[CMT18] and [Tol14]. It consists of showing that R0 \

⋃
Q∈Stop Q forms a graph

of a Lipschitz map F defined on a subset of L0, and then carefully extending
F to the whole L0. The remaining part of the paper is dedicated to showing
that the measure of stopping cubes is small.
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III. A sufficient condition for rectifiability via W2

In Section 6 we first show that cubes from Tree lie close to Γ (the graph
of F ), and then use this property to estimate the measure of low density
cubes. Roughly speaking, we may cover (almost all) LD cubes with a family of
(almost) disjoint balls satisfying B ∩ Γ ≈ r(B)n, and such that the densities
Θµ(B) are low. Small measure of LD easily follows. It is crucial that we have
the finiteness of the β2 square function (1.2), as it lets us estimate the size of
RFar (see Lemma 4.6). This approach to bounding the measure of low density
cubes comes from [AT15].

In Section 7 we define a measure ν supported on Γ. We show that ν is
very close to µ for the distance FB(µ, ν), so that the αν numbers are close to
αµ. The measure ν is then used in Section 8 to estimate the size of the high
density set. The general idea is to consider f – the density of ν with respect
to Hn|Γ, and then to bound the L2 norm of |f − c0|, where c0 is a certain
constant. We do it using the smallness of αµ square function (1.1), the fact
that ν approximates µ well, and an appropriate type of Paley-Littlewood result
(see (8.8)). Estimating ‖f − c0‖L2 requires a lot of work, but once we have it,
it is not very difficult to bound the measure of HD cubes. Roughly speaking,
high density cubes correspond to big values of f , and those we can control
since ‖f − c0‖L2 is small. This method of estimating HD is due to [ATT20],
where a similar approach from [Tol17] was refined and simplified.

Finally, in Section 9 we bound the size of big angle cubes BA. First, we
show that this amounts to estimating ‖∇F‖L2 (recall that F is the Lipschitz
map whose graph is Γ). Using Dorronsoro’s theorem, this reduces to estimating
the βσ,1 square function, where σ is the surface measure on Γ. This could be
done using the smallness of either βµ,2 or αµ square functions. For us it was
easier to deal with αµ, due to all the estimates from Section 7.

Thus, having estimated the measure of the stopping region, the proof of
the main lemma is finished.

3 Main Lemma
Given ε > 0 and r > 0 let us define the set of “good points”:

Gε
r =

{
x ∈ suppµ :

∫ 1000r

0

(
αµ(x, s)2 + βµ,2(x, s)2

) ds

s
< ε2

}
. (3.1)

Let D denote the David-Mattila lattice corresponding to measure µ, as in §II.2.
Recall that Dsdb is the family of strongly doubling cubes satisfying

µ(100BQ) ≤ Cµ(B(Q)),

with C as in Lemma II.2.9. Using this notation we may formulate our main
lemma.
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3. Main Lemma

Lemma 3.1. Let µ be a finite Radon measure on Rd. There exists a small
dimensional constant ε0 > 0 such that the following holds: suppose that
R0 ∈ Dsdb satisfies

µ
(
R0 \Gε0

r(R0)

)
≤ ε0 µ(3BR0). (3.2)

Then, there exists a set RG ⊂ R0, and a Lipschitz map F : LR0 → L⊥R0 (recall
that LR0 denotes the n-dimensional plane minimizing βµ,2(3BR0)), such that
for

Γ =
{

(x, F (x)) : x ∈ LR0

}
we have RG ⊂ Γ,

µ(RG) ≥ µ(R0)
2 , (3.3)

and µ|RG is absolutely continuous with respect to Hn.

Several remarks are in order.

Remark 3.2. Assumption (3.2) is implied by a somewhat more natural con-
dition ∫

R0

∫ 1000r(R0)

0

(
αµ(x, s)2 + βµ,2(x, s)2

) ds

s
dµ(x) < ε3

0 µ(3BR0).

Remark 3.3. The constant 1
2 in (3.3) can be replaced by any δ ∈ (0, 1), as

long as we allow ε0 to depend on δ. Naturally, ε0(δ)→ 0 as δ → 1.

Remark 3.4. Recall that we defined homogeneous β and α numbers in
Remark 1.6. A careful inspection of the proof of Lemma 3.1 (see Remark 3.6)
shows the following. If instead of (3.1) we define for Q ∈ D

Gε
Q =

{
x ∈ Q :

∫ 1000r(Q)

0
αhµ(x, s)2 ds

s
< ε2 Θµ(3BQ)2 and

∫ 1000r(Q)

0
βhµ,2(x, s)2 ds

s
< ε2 Θµ(3BQ)

}
,

and we replace the assumption (3.2) by µ
(
R0 \Gε0

R0

)
≤ ε0 µ(3BR0), then the

conclusion of Lemma 3.1 still holds. In other words, if the homogeneous square
functions in some initial cube R0 are small relative to density of µ in the initial
cube, then µ is rectifiable on a large chunk of R0.

Let us show how Lemma 3.1 may be used to prove Theorem 1.2.

Proof of Theorem 1.2 using Lemma 3.1. To show that µ is n-rectifiable it suf-
fices to show that for any E ⊂ Rd satisfying µ(E) > 0 there exists F ⊂ E with
µ(F ) > 0 and such that µ|F is rectifiable. Let us fix E ⊂ Rd with µ(E) > 0.
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III. A sufficient condition for rectifiability via W2

Let ε0 > 0 be so small that Lemma 3.1 holds. Note that by the assumption
on the finiteness of α and β square functions (1.1), (1.2), we have

µ(Rd \Gε0
r ) r→0−−→ 0.

In particular, µ-almost all of E is contained in ⋃r>0G
ε0
r . By the Lebesgue

differentiation theorem, for µ-almost every x ∈ E ∩Gε0
r

µ(B(x, s) ∩ E ∩Gε0
r )

µ(B(x, s))
s→0−−→ 1.

Taking into account that for s < r we have Gε0
s ⊃ Gε0

r , it follows that for
µ-almost every x ∈ E

µ(B(x, r) ∩ E ∩Gε0
r )

µ(B(x, r))
r→0−−→ 1.

Choose some x ∈ E such that the above and the property of Lemma II.2.9
hold. Let r0 > 0 be so small that µ(B(x, r) ∩ E ∩ Gε0

r ) > (1 − ε0)µ(B(x, r))
for all r < r0.

Using Lemma II.2.9 we may choose R0 ∈ Dsdb such that x ∈ R0 and
r̃ := 2r(BR0) < r0. We have R0 ⊂ B(x, r̃) ⊂ 3BR0 , and so

µ(R0 \Gε0
r(R0)) ≤ µ(R0 \Gε0

r̃ ) ≤ µ(B(x, r̃) \Gε0
r̃ ) ≤ ε0µ(B(x, r̃)) ≤ ε0µ(3BR0).

Hence, R0 satisfies the assumptions of Lemma 3.1. We obtain a Lipschitz
graph Γ and a set RG ⊂ R0 ∩ Γ such that µ(RG) ≥ 0.5µ(R0), and µ|RG is
absolutely continuous with respect to Hn. On the other hand, arguing as above,
and using the fact that R0 is doubling, we see that µ(R0 \ E) ≤ ε0µ(3BR0) ≤
C0ε0µ(R0) < 0.5µ(R0), assuming ε0 < 0.5C−1

0 .
It follows that µ(RG ∩ E) ≥ µ(RG) − µ(R0 \ E) > 0, and µ|RG∩E is n-

rectifiable. Setting F = RG ∩ E concludes the proof.

The rest of the paper is dedicated to proving Lemma 3.1. We fix R0 ∈ Dsdb
satisfying (3.2). The constant ε0 will be chosen later on. To simplify notation,
we set G = Gε0

r(R0), B0 = BR0 , r0 = r(B0), z0 = zR0 , c0 = cR0 (where cR0 is a
constant minimizing αµ(3B0)), L0 = LR0 , (where LR0 is an n-plane minimizing
βµ,2(3B0)), and Π0 = ΠL0 .

Remark 3.5. Without loss of generality we may (and will) assume that

Θµ(3B0) = 1,

so that (using the strong doubling property of R0 (II.2.6))

µ(100B0) ≈ µ(R0) ≈ rn0 ≈ `(R0)n. (3.4)
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4. Stopping cubes

Indeed, if we consider the normalized measure ν = µ/Θµ(3B0), then: Θν(3B0) =
1; for any ball B with µ(B) > 0 we have αµ(B) = αν(B), βµ,2(B) = βν,2(B);
and if the assumptions of Lemma 3.1 were satisfied for µ, then they are also
satisfied for ν. Sets Γ and RG constructed for ν will also have all the desired
properties when applied to µ.

Remark 3.6. The reduction to case Θµ(3B0) = 1 performed above is one of the
main reasons why we decided to work with non-homogeneous (i.e. normalized
by µ(3B)) α and β coefficients. If we assumed a priori that Θµ(3B0) = 1, then
we could replace αµ and βµ,2 numbers in (3.1) by αhµ and βhµ,2, and then carry
on with the proof without making any changes. Roughly speaking, throughout
most of the proof we work with cubes Q satisfying µ(3BQ) ≈ `(Q)nΘµ(3B0),
so that αhµ(3BQ) ≈ αµ(3BQ)Θµ(3B0) and βhµ,2(3BQ) ≈ βµ,2(3BQ)Θµ(3B0)1/2 –
see Remark 4.2.

Now, the claim we made in Remark 3.4 follows because the modified
assumption (involving Gε

Q) allows us to make the reduction Θµ(3B0) = 1.

4 Stopping cubes
This section is dedicated to performing the stopping time argument. We will
show basic properties of the resulting tree of cubes, and estimate the size of
two families of stopping cubes.

The stopping conditions involve parameters A� 1, τ � 1, θ � 1, which
depend on dimension and which will be fixed later on. The constant ε0 is fixed
at the very end of the proof, and depends on A, τ, θ.

We define the following subfamilies of D(R0):

• HD0 (“high density”), which contains cubes Q ∈ D(R0) satisfying

µ(3BQ) > A`(Q)n,

• LD0 (“low density”), which contains cubes Q ∈ D(R0) satisfying

µ(1.5BQ) < τ`(Q)n,

• BS0 (“big square functions”), which contains cubes Q ∈ D(R0) \ (LD0 ∪
HD0) satisfying

µ(Q \G) > 1
2µ(Q). (4.1)

Let Stop0 be the family of maximal (and thus disjoint) cubes from HD0∪LD0∪
BS0, and let Tree0 ⊂ D(R0) be the family of cubes that are not contained in
any Q ∈ Stop0. In particular, Stop0 6⊂ Tree0.

Recall that LQ is an n-plane minimizing βµ,2(3BQ). We define

RFar = {x ∈ 3B0 : dist(x, LQ) ≥ √ε0`(Q) for some Q ∈ Tree0 s.t. x ∈ 3BQ}.

We introduce two more families of stopping cubes:
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III. A sufficient condition for rectifiability via W2

• BA0 (“big angles”), which contains cubes Q ∈ D(R0) \ Stop0 satisfying

](LQ, L0) > θ, (4.2)

• F0 (“far”), which consists of Q ∈ D(R0) \ (Stop0 ∪ BA0) satisfying

µ(3BQ ∩RFar) > ε
1/4
0 µ(3BQ). (4.3)

Let Stop ⊂ D(R0) be the family of maximal (and thus disjoint) cubes from
Stop0 ∪ BA0 ∪ F0. Set HD = HD0 ∩ Stop, LD = LD0 ∩ Stop, BS = BS0 ∩
Stop, BA = BA0 ∩ Stop, F = F0 ∩ Stop. We define Tree ⊂ Tree0 as the family
of cubes that are not contained in any Q ∈ Stop. Note that Stop 6⊂ Tree. For
P ∈ D we set Tree0(P ) = Tree0 ∩ D(P ), Tree(P ) = Tree ∩ D(P ).

4.1 Properties of cubes in Tree
Lemma 4.1. The following estimates hold:

µ(1.5BQ) ≥ τ`(Q)n ∀ Q ∈ Tree0 ∪ Stop0 \ LD0, (4.4)
µ(100BQ) . A`(Q)n ∀ Q ∈ Tree0 ∪ Stop0, (4.5)

µ(Q \G) ≤ 1
2µ(Q) ∀ Q ∈ Tree0, (4.6)

](LQ, L0) ≤ θ ∀ Q ∈ Tree, (4.7)
µ(3BQ ∩RFar) ≤ ε

1/4
0 µ(3BQ) ∀ Q ∈ Tree. (4.8)

Proof. All estimates except for (4.5) follow immediately from the stopping
time conditions. (4.5) holds for R0 because R0 ∈ Dsdb. To see it for Q ∈
Tree0 ∪ Stop0, Q 6= R0, note that the parent of Q, denoted by R, satisfies
R ∈ Tree0, and so µ(100BQ) ≤ µ(3BR) ≤ A`(R)n ≈ A`(Q)n.

Remark 4.2. Note that, by (4.4) and (4.5), for Q ∈ Tree0 ∪ Stop0 \ LD0 we
have βµ,2(3BQ) ≈A,τ βhµ,2(3BQ) and αµ(3BQ) ≈A,τ αhµ(3BQ).

Lemma 4.3. Let R ∈ Tree0. Then∑
Q∈Tree0(R)

αµ(3BQ)2`(Q)n .A,τ ε
2
0`(R)n, (4.9)

∑
Q∈Tree0(R)

βµ,2(3BQ)2`(Q)n .A,τ ε
2
0`(R)n. (4.10)

Moreover, for any x ∈ 3B0 ∑
Q∈Tree0
x∈3BQ

αµ(3BQ)2 .A,τ ε
2
0, (4.11)

∑
Q∈Tree0
x∈3BQ

βµ,2(3BQ)2 .A,τ ε
2
0. (4.12)
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4. Stopping cubes

Proof. Let Q ∈ Tree0(R). By the definition of G, for any z ∈ 4BQ ∩G we have∫ 1000r(R0)

0
αµ(z, r)2 dr

r
< ε2

0. (4.13)

It is easy to see that for 300r(Q) ≤ r ≤ 400r(Q) we have 3BQ ⊂ B(z, r) ⊂
25BQ, and that µ(9BQ) ≈A,τ µ(B(z, 3r)) ≈A,τ µ(100BQ). Using (II.3.7) with
B1 = 3BQ and B2 = B(z, r) yields

αµ(3BQ) .A,τ αµ(B(z, r)).

Integrating with respect to r gives us for every z ∈ 4BQ ∩G∫ 400r(Q)

300r(Q)
αµ(z, r)2 dr

r
&A,τ αµ(3BQ)2. (4.14)

To see (4.11), let x ∈ 3B0 and choose some P ∈ Tree0 satisfying x ∈ 3BP . By
(4.6) we may pick z ∈ P ∩G. It is clear that for all cubes Q ∈ Tree0 such that
`(Q) > `(P ) and x ∈ 3BQ we have z ∈ 4BQ ∩G. Thus, summing (4.14) over
all such Q ⊂ R0, and noticing that for any fixed sidelength `(Q0) > `(P ) there
are only boundedly many Q with `(Q) = `(Q0) and 3BQ 3 x, yields∑

Q∈Tree0
x∈3BQ, `(Q)>`(P )

αµ(3BQ)2 .A,τ

∫ 1000r(R0)

0
αµ,2(z, r)2 dr

r
. ε2

0.

Since the estimate holds for arbitrary P ∈ Tree0 with x ∈ 3BP , (4.11) follows.
To see (4.9), we integrate (4.11) over x ∈ 3BR to get

ε2
0`(R)n &A,τ

∫
3BR

∑
Q∈Tree0

αµ(3BQ)2 13BQ(x) dµ(x)

=
∑

Q∈Tree0

αµ(3BQ)2µ(3BQ ∩ 3BR) &A,τ

∑
Q∈Tree0(R)

αµ(3BQ)2`(Q)n.

The estimates for βµ,2(3BQ) can be shown in the same way.

Corollary 4.4. We have∑
Q∈Tree0(R)

F2.5BQ(µ, cQHn|LQ)2`(Q)−(n+2) .A,τ ε
2
0`(R)n, (4.15)

∑
Q∈Tree0
x∈3BQ

F2.5BQ(µ, cQHn|LQ)2`(Q)−(2n+2) .A,τ ε
2
0. (4.16)

Proof. Let Q ∈ Tree0. Recall that by (4.4), (4.5), we have µ(2.5BQ) ≈A,τ
µ(3BQ) ≈A,τ `(Q)n. Moreover, it follows easily by (4.4) and the smallness of α
and β numbers (4.11),(4.12), that the best approximating planes for βµ,2(3BQ)
and αµ(3BQ) intersect 2BQ.

Hence, by Lemma II.3.8 applied to B1 = 2.5BQ and B2 = 3BQ, and by
Lemma 4.3, we get the desired estimates.
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III. A sufficient condition for rectifiability via W2

Corollary 4.5. For every Q ∈ Tree0

cQ ≈A,τ 1. (4.17)

Proof. By (4.4), (4.5), we have µ(1.5BQ) ≈A,τ µ(9BQ) ≈A,τ `(Q)n. Together
with the smallness of αµ(3BQ) (4.11), this implies that the best approximating
plane for αµ(3BQ) intersects 2BQ. Thus, Lemma II.3.7 yields

cQ ≈A,τ 1.

Lemma 4.6. We have

µ(RFar) .A,τ

√
ε0µ(R0)n. (4.18)

Proof. We begin by using the Chebyshev and Cauchy-Schwarz inequalities to
obtain

√
ε0µ(RFar) ≤

∫
3B0

 ∑
Q∈Tree0
x∈3BQ

(
dist(x, LQ)

`(Q)

)2
1/2

dµ(x)

≤

∫
3B0

∑
Q∈Tree0
x∈3BQ

(
dist(x, LQ)

`(Q)

)2

dµ(x)
1/2

µ(3B0)1/2.

By Fubini, the right hand side is equal to
 ∑
Q∈Tree0

∫
3BQ

(
dist(x, LQ)

`(Q)

)2

dµ(x)
1/2

µ(3B0)1/2

.A,τ

( ∑
Q∈Tree0

βµ,2(3BQ)2`(Q)n
)1/2

µ(R0)n/2.

We can estimate this using the smallness of β-numbers (4.10), and thus
√
ε0µ(RFar) .A,τ ε0µ(R0)n.

4.2 Balanced balls
Lemma 4.7 ([AT15, Lemma 3.1, Remark 3.2]). Let µ be a Radon measure on
Rd, and let B ⊂ Rd be some ball with radius r > 0 such that µ(B) > 0. Let
0 < γ < 1. Then there exist constants ρ1 = ρ1(γ) > 0 and ρ2 = ρ2(γ) > 0 such
that one of the following alternatives holds:
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4. Stopping cubes

(a) There are points x0, . . . , xn ∈ B such that

µ(B(xk, ρ1r) ∩B) ≥ ρ2µ(B) for 0 ≤ k ≤ n,

and for any yk ∈ B(xk, ρ1r), k = 1, . . . , n, if we denote by Lyk the k-plane
passing through y0, . . . , yk, then we have

dist(yk, Lyk−1) ≥ γr. (4.19)

(b) There exists a family of balls {Bi}i∈IB , with radii r(Bi) = 4γr, centered
on B, so that the balls {10Bi}i∈IB are pairwise disjoint,∑

i∈IB
µ(Bi) & µ(B), (4.20)

and
Θµ(Bi) & γ−1Θµ(B). (4.21)

We will say that a ball B is γ-balanced if the alternative (a) holds.

Lemma 4.8. Let µ be a Radon measure on Rd, B ⊂ Rd be a ball such that
µ(B) ≈ µ(1.1B) > 0. Suppose L is the n-plane minimizing αµ(1.1B) and that
L intersects 0.9B. There exist C = C(n, d) < 1, γ = γ(n, d) < 1 such that if
αµ(1.1B) ≤ Cγ, then B is γ-balanced.

Proof. Proof by contradiction. Suppose that B is not γ-balanced, i.e. that the
alternative (b) in Lemma 4.7 holds.

We will estimate αµ(1.1B) from below. Let c be the constant minimizing
αµ(1.1B), so that by (II.3.8)

c . Θµ(1.1B) ≈ Θµ(B).

Let balls {Bi}i∈IB be as in Lemma 4.7 (b), with r(Bi) = ri = 4γr(B). Let
f ∈ Lip1(1.1B) be defined in such a way that f ≡ ri on each Bi and supp f ⊂⋃
i∈IB 2Bi ⊂ 1.1B. Then,∫

f dµ ≥
∑
i∈IB

µ(Bi)ri
(4.20)
& γr(B)µ(B).

On the other hand,

c
∫
f dHn|L

(II.3.8)
. Θµ(B)

∑
i∈IB

rn+1
i = Θµ(B)

∑
i∈IB

Θµ(Bi)−1µ(Bi)ri

(4.21)
. γ

∑
i∈IB

µ(Bi)ri . γ2r(B)µ(B).

The two estimates above imply that for some dimensional constants C1, C2

αµ(1.1B) ≥ C1γ − C2γ
2 > Cγ,

if we take γ and C = C(C1, C2) small enough. We reach a contradiction with
the assumption αµ(1.1B) ≤ Cγ.
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III. A sufficient condition for rectifiability via W2

Corollary 4.9. Let Q ∈ Tree0. Then 2.5BQ is γ-balanced, where γ = γ(n, d).

Proof. We know that µ(1.5BQ) ≈A,τ µ(9BQ), and that

αµ(3BQ)
(4.11)
.A,τ ε0,

which implies (for ε0 small enough) that the best approximating plane for 3BQ

intersects 2BQ. Applying Lemma 4.8 to B = 2.5BQ finishes the proof.

4.3 Small measure of cubes from BS and F
Lemma 4.10. We have ∑

Q∈BS
µ(Q) . ε0µ(R0),

∑
Q∈F

µ(Q) .A,τ ε0
1/4 µ(R0).

Proof. We start by estimating the measure of cubes from BS. We use the
definition of BS (4.1) to get

∑
Q∈BS

µ(Q) ≤ 2
∑
Q∈BS

µ(Q \G) ≤ 2µ(R0 \G)
(3.2)
≤ 2ε0µ(3B0) ≈ ε0µ(R0).

Concerning F, we use the 5R-covering lemma to get a countable family of
pairwise disjoint balls Bi := 3BQi , Qi ∈ F, such that ⋃i 5Bi ⊃

⋃
Q∈F Q. For

every i we have

µ(5Bi) = µ(15BQi)
(4.5)
. A`(Qi)n

(4.4)
≤ A

τ
µ(Bi).

Then∑
Q∈F

µ(Q) .
∑
i

µ(5Bi) .A,τ

∑
i

µ(Bi)

(4.3)
≤ 1

ε
1/4
0

∑
i

µ(Bi ∩RFar) ≤
1
ε

1/4
0
µ(RFar)

(4.18)
.A,τ ε

1/4
0 µ(R0).

5 Construction of the Lipschitz graph
In this section we construct the Lipschitz graph Γ. At the beginning of
Subsection 5.2 we define also the good set RG ⊂ Γ ∩ R0, and we show that
µ|RG � H

n. We start by proving some auxiliary estimates.
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5. Construction of the Lipschitz graph

5.1 Estimates involving best approximating planes
Lemma 5.1 ([AT15, Lemma 6.4]). Suppose P1, P2 are n-planes in Rd, X =
{x0, . . . , xn} is a collection of n points, and

d1 = d1(X) = 1
diam(X) min

i

{
dist

(
xi, span(X \ {xi})

)}
∈ (0, 1), (a)

dist(xi, Pj) < d2 diam(X) for i = 0, . . . , n and j = 1, 2, (b)

where d2 < d1/(2d). Then for y ∈ P2

dist(y, P1) ≤ d2

(
2d
d1

dist(y,X) + diam(X)
)
. (5.1)

Lemma 5.2. Suppose Q1, Q2 ∈ Tree0 are such that dist(Q1, Q2) . `(Q1) ≈
`(Q2). Let P ∈ Tree0 be the smallest cube such that 3BP ⊃ 3BQ1 ∪ 3BQ2 . Then
`(P ) ≈ `(Q1), and for all y ∈ LQ2

dist(y, LQ1) .A,τ βµ,2(3BP )(dist(y,Q2) + `(Q2)).

In particular,
](LQ1 , LQ2) .A,τ βµ,2(3BP ) .A,τ ε0. (5.2)

Proof. Since 3B0 ⊃ 3BQ1 ∪ 3BQ2 and R0 ∈ Tree0, the cube P is well-defined.
The comparability `(P ) ≈ `(Q2) holds due to the assumption dist(Q1, Q2) .
`(Q1) ≈ `(Q2).

Since Q1 ∈ Tree0, Corollary 4.9 tells us that 2.5BQ1 is γ-balanced. Let
x0, . . . , xn ∈ 2.5BQ1 be the points from alternative (a) in Lemma 4.7. Thus,
we have a family of balls {Bk := B(xk, ρ1r(2.5BQ1))}k=0,...,n, such that µ(Bk ∩
2.5BQ1) ≥ ρ2µ(2.5BQ1) ≈A,τ ρ2`(Q1).

Since r(Bk) = ρ1r(2.5BQ1) ≈ `(P ), and Bk ⊂ 3BQ1 ⊂ 3BP , it is clear that

1
µ(Bk)

∫
Bk

(
dist(x, LQ1)

r(Bk)

)2

dµ(x) .ρ2,A,τ βµ,2(3BQ1)2 .A,τ βµ,2(3BP )2,

and
1

µ(Bk)

∫
Bk

(
dist(x, LP )
r(Bk)

)2

dµ(x) .ρ2,A,τ βµ,2(3BP )2.

Keeping in mind that ρ2 is a dimensional constant, we will not signal dependence
on it in further computations. We use the above estimates and the Chebyshev
inequality to find points yk ∈ Bk such that

dist(yk, LQ1) .A,τ βµ,2(3BP )`(P ),
dist(yk, LP ) .A,τ βµ,2(3BP )`(P ).

We would like to apply Lemma 5.1 to n-planes LQ1 , LP and points X =
{y0, . . . , yn}. We have d1 & γ thanks to (4.19). Furthermore, due to estimate
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III. A sufficient condition for rectifiability via W2

(4.12) we know that βµ,2(3BP ) .A,τ ε0, and so βµ,2(3BP ) ≈A,τ d2 < d1/(2d)
for ε0 small enough. Thus,

dist(y, LQ1) .A,τ βµ,2(3BP )(dist(y,Q1) + `(Q1)) for y ∈ LP , (5.3)
dist(y, LP ) .A,τ βµ,2(3BP )(dist(y,Q1) + `(Q1)) for y ∈ LQ1 .

Since the assumptions about cubes Q1 and Q2 are identical, it turns out that
the estimates above are also valid if we replace Q1 with Q2, i.e.

dist(y, LQ2) .A,τ βµ,2(3BP )(dist(y,Q2) + `(Q2)) for y ∈ LP ,
dist(y, LP ) .A,τ βµ,2(3BP )(dist(y,Q2) + `(Q2)) for y ∈ LQ2 . (5.4)

Using the triangle inequality, estimates (5.4), (5.3), and the fact that (dist(y,Q1)+
`(Q1)) ≈ (dist(y,Q2) + `(Q2)) we finally reach the desired inequality

dist(y, LQ1) .A,τ βµ,2(3BP )(dist(y,Q2) + `(Q2)) for y ∈ LQ2 .

Lemma 5.3. Let Q,P ∈ Tree be such that `(Q) . `(P ) and dist(Q,P ) . `(P ).
Then for any x ∈ LQ ∩ CBQ we have

dist(x, LP ) .A,τ,C

√
ε0`(P ).

Proof. Consider first the special case Q ⊂ P .
By Corollary 4.9, there exist balls Bk = B(xk, ρ1r(Q)), k = 0, . . . , n, such

that µ(Bk∩2.5BQ) ≥ ρ2µ(2.5BQ), and dist(yk, Lyk−1) & γ`(Q) for yk ∈ Bk (see
(4.19)).

It follows by (4.8) that, for ε0 small enough, Bi \ RFar 6= ∅. Fix some
yi ∈ Bi \RFar for every i = 0, . . . , n, so that

dist(yi, LQ) . √ε0`(Q),
dist(yi, LP ) . √ε0`(P ).

Let zi be the orthogonal projection of yi onto LQ. Since `(Q) . `(P ), the
triangle inequality yields

dist(zi, LP ) ≤ |yi − zi|+ dist(yi, LP ) . √ε0`(P ). (5.5)

Furthermore, if ε0 is small enough, |yi − zi| .
√
ε0`(Q) and dist(yk, Lyk−1) &

`(Q) imply that dist(zk, Lzk−1) & `(Q), and that zi ∈ 3BQ. Since LQ =
span(z0, . . . , zn), it follows by elementary geometry and (5.5) that for any
x ∈ LQ ∩ CBQ

dist(x, LP ) .C

√
ε0`(P ),

which concludes the proof in the case Q ⊂ P .
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5. Construction of the Lipschitz graph

Now, the general case follows by the above and Lemma 5.2. Indeed,
take a cube R ∈ Tree such that R ⊃ Q and `(R) = `(P ). The assumption
dist(Q,P ) . `(P ) gives us dist(R,P ) . `(P ), and so we can apply Lemma 5.2
to get

dist(y, LP ) .A,τ,C ε0`(P ), y ∈ LR ∩ CBR.

On the other hand, since Q ⊂ R, we already know that for x ∈ LQ ∩ CBQ we
have

dist(x, LR) .C

√
ε0`(R) = √ε0`(P ).

Putting together the two inequalities above yields the desired result.

Lemma 5.4. Suppose the cubes Q1, Q2 ∈ Tree0 satisfy 2.5BQ1 ⊂ 2.5BQ2 , `(Q1) ≈
`(Q2). Then

|cQ1 − cQ2| .A,τ ε0.

Proof. Set Bi = 2.5BQi , ri = r(Bi), zi = z(Bi), ci = cQi , Li = LQi for i = 1, 2.
Let φ(z) = (r1 − |z1 − z|)+ ∈ Lip1(B1). Then

rn1 |c1 − c2| .
∣∣∣∣∫ φ c1dHn|L1

−
∫
φ c2dHn|L1

∣∣∣∣
≤
∣∣∣∣∫ φ c1dHn|L1

−
∫
φ dµ

∣∣∣∣+ ∣∣∣∣∫ φ dµ−
∫
φ c2dHn|L2

∣∣∣∣
+ c2

∣∣∣∣∫ φ dHn|L2
−
∫
φ dHn|L1

∣∣∣∣
≤ FB1(µ, c1Hn|L1

) + FB2(µ, c2Hn|L2
) + c2

∣∣∣∣∫ φ dHn|L2
−
∫
φ dHn|L1

∣∣∣∣
(4.16),(4.17)
.A,τ ε0r

n
1 +

∣∣∣∣∫ φ dHn|L2
−
∫
φ dHn|L1

∣∣∣∣ .
The fact that the last term above can also be estimated by ε0r

n
1 follows easily

by the fact that L1 and L2 are close to each other, see Lemma 5.2.

5.2 Lipschitz function F corresponding to the good
part of R0

Consider an auxiliary function

d(x) = inf
Q∈Tree

(
dist(x,Q) + diam(BQ)

)
, x ∈ Rd. (5.6)

Let
RG = {x ∈ Rd : d(x) = 0}.

Observe that, by the definition of function d, we have R0 \
⋃
Q∈Stop Q ⊂ RG.

Lemma 5.5. We have µ|RG � H
n, and for x ∈ RG

Θn
∗ (µ, x) ≈A,τ Θ∗n(µ, x) ≈A,τ 1.

In consequence, dµ|RG = g dHn|RG with g ≈A,τ 1.
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III. A sufficient condition for rectifiability via W2

Proof. Let x ∈ RG. Given some small h > 0 we use the fact that d(x) = 0 to
find Q ∈ Tree such that B(x, h) ⊂ 3BQ and `(Q) ≈ h. Then

µ(B(x, h)) ≤ µ(3BQ)
(4.5)
.A `(Q)n ≈ hn.

Now, let P ∈ Tree be such that 3BP ⊂ B(x, h) and `(P ) ≈ h. Then

µ(B(x, h)) ≥ µ(3BP )
(4.4)
&τ `(P )n ≈ hn.

Letting h → 0 we get 1 .τ Θn
∗ (µ, x) ≤ Θ∗n(µ, x) .A 1 for x ∈ RG. The

upper density estimate and [Mat95, Theorem 6.9 (1)] imply µ|RG � H
n|RG

and µ|RG(B) .A Hn|RG(B) for all B ⊂ Rd Borel. The lower density estimate
together with [Mat95, Theorem 6.9 (2)] give Hn|RG � µ|RG and Hn|RG(B) .τ

µ|RG(B) (in particular, Hn|RG is a finite Radon measure). Putting it all
together, we use Radon-Nikodym theorem to get dµ|RG = g dHn|RG , with
g ≈A,τ 1.

In this subsection we will define F (x) for x ∈ Π0(RG) ⊂ L0.

Lemma 5.6. If ε0 and θ are small enough, then for any x1, x2 ∈ Rd

|Π⊥0 (x1)− Π⊥0 (x2)| . θ|Π0(x1)− Π0(x2)|+ d(x1) + d(x2). (5.7)

Proof. Fix some small h > 0. Let Q1, Q2 ∈ Tree be such that

dist(xi, Qi) + diam(BQi) ≤ d(xi) + h, i = 1, 2.

Take any yi ∈ Qi. Note that |xi− yi| ≤ d(xi) +h. The triangle inequality gives
us

|Π⊥0 (x1)− Π⊥0 (x2)|
≤ |Π⊥0 (y1)− Π⊥0 (y2)|+ |Π⊥0 (x1)− Π⊥0 (y1)|+ |Π⊥0 (x2)− Π⊥0 (y2)|

≤ |Π⊥0 (y1)− Π⊥0 (y2)|+ d(x1) + d(x2) + 2h,

and similarly

|Π0(y1)− Π0(y2)| ≤ |Π0(x1)− Π0(x2)|+ d(x1) + d(x2) + 2h.

Hence, if we show that

|Π⊥0 (y1)− Π⊥0 (y2)| . θ|Π0(y1)− Π0(y2)|+ d(x1) + d(x2) + 2h, (5.8)

use the two former inequalities, and let h→ 0, we will get (5.7).
Let Pi ∈ Tree be the smallest cubes such that 3BPi ⊃ BQi and

`(Pi) ≈ ε
1/n
0 |y1 − y2|+

∑
i

`(Qi).
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5. Construction of the Lipschitz graph

We also take the smallest cube R ∈ Tree such that 3BR ⊃ 3BP1 ∪ 3BP2 and

`(R) ≈ |y1 − y2|+
∑
i

`(Qi). (5.9)

We use the fact that 3BR ⊃ 3BP1 ∪ 3BP2 , the estimates (4.4), (4.5), the
smallness of β numbers (4.12), and the bound ε0`(R)n . `(Pi)n, to get

1
µ(9BPi)

∫
3BPi

(
dist(w,LR)

`(R)

)2

dµ(w) .A,τ
`(R)nβµ,2(3BR)2

`(Pi)n
.A,τ

`(R)nε2
0

`(Pi)n
. ε0.

Hence, by Chebyshev’s inequality, there exist some zi ∈ 3BPi such that

dist(zi, LR) = |zi−π(zi)| .A,τ

√
ε0`(R) . √ε0(|y1− y2|+ d(x1) + d(x2) + 2h),

(5.10)
where π denotes orthogonal projection onto LR, and the second inequality is
due to (5.9). Note also that, since yi, zi ∈ 3BPi , we have

|yi − zi| . `(Pi) . ε
1/n
0 |y1 − y2|+ d(x1) + d(x2) + 2h. (5.11)

Now, the triangle inequality and 1-Lipschitz property of Π⊥0 give us

|Π⊥0 (y1)− Π⊥0 (y2)| ≤ |Π⊥0 (π(z1))− Π⊥0 (π(z2))|+
2∑
i=1

(
|zi − π(zi)|+ |yi − zi|

)
.

To estimate the first term from the right hand side we use the fact that
projections onto LR and L0 are close to each other (4.7), the triangle inequality,
and 1-Lipschitz property of Π:

|Π⊥0 (π(z1))− Π⊥0 (π(z2))| . θ|π(z1))− π(z2)| . θ|Π0(π(z1))− Π0(π(z2))|

≤ θ
(
|Π0(y1)− Π0(y2)|+

2∑
i=1

(
|zi − π(zi)|+ |yi − zi|

))
.

Putting together the two estimates above, as well as (5.10), (5.11), yields

|Π⊥0 (y1)− Π⊥0 (y2)| . θ|Π0(y1)− Π0(y2)|+
2∑
i=1

(
|zi − π(zi)|+ |yi − zi|

)
. θ|Π0(y1)− Π0(y2)|+ C(A, τ)√ε0

(
|y1 − y2|+ d(x1) + d(x2) + 2h

)
+ ε

1/n
0 |y1 − y2|+ d(x1) + d(x2) + 2h.

Since |y1 − y2| ≈ |Π0(y1) − Π0(y2)| + |Π⊥0 (y1) − Π⊥0 (y2)|, we may take ε0 =
ε0(A, τ, θ) so small that(
C(A, τ)√ε0 + ε

1/n
0

)
|y1 − y2| ≤ θ

(
|Π0(y1)− Π0(y2)|+ |Π⊥0 (y1)− Π⊥0 (y2)|

)
.

Then, for θ small enough, we obtain the desired inequality (5.8):

|Π⊥0 (y1)− Π⊥0 (y2)| . θ|Π0(y1)− Π0(y2)|+ d(x1) + d(x2) + 2h.

57



III. A sufficient condition for rectifiability via W2

The lemma above gives us for any x, y ∈ RG

|Π⊥0 (x)− Π⊥0 (y)| . θ|Π0(x)− Π0(y)|.

This allows us to define a function F on Π0(RG) ⊂ L0 as

F (Π0(x)) = Π⊥0 (x), x ∈ RG, (5.12)

with Lip(F ) . θ. Note that the graph of such F is precisely RG.

5.3 Extension of F to the whole L0

For any z ∈ L0 let us define

D(z) = inf
x∈Π−1

0 (z)
d(x) = inf

Q∈Tree

(
dist(z,Π0(Q)) + diam(BQ)

)
. (5.13)

For each z ∈ L0 with D(z) > 0, i.e. z ∈ L0 \Π0(RG), we define Jz as the
largest dyadic cube from L0 such that z ∈ Jz and

diam(Jz) ≤
1
20 inf

u∈Jz
D(u).

Let Ji, i ∈ I, be a relabeling of the set of all such cubes Jz, without repetition.

Lemma 5.7. The cubes {Ji}i∈I are disjoint and satisfy the following:

(a) If z ∈ 15Ji, then 5 diam(Ji) ≤ D(z) ≤ 50 diam(Ji).

(b) If 15Ji ∩ 15Ji′ 6= ∅, then

`(Ji) ≈ `(Ji′).

(c) For each interval Ji there are at most N intervals Ji′ such that 15Ji ∩
15Ji′ 6= ∅.

(d) L0 \ Π0(RG) = ⋃
i∈I Ji = ⋃

i∈I 15Ji.

The proof is straightforward and follows directly from the definition of Ji,
see [Tol14, Lemma 7.20].

Note that, since βµ,2(3B0) is very small (4.12) and R0 is doubling, we have
dist(z0, L0) ≤ 2r(R0) = 1

14r0. It follows that

Π0(R0) ⊂ Π0(B0) ⊂ Π0(1.01B0) ⊂ 1.1B0 ∩ L0. (5.14)

We define the set of indices

I0 = {i ∈ I : Ji ∩ 1.5B0 6= ∅}. (5.15)
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5. Construction of the Lipschitz graph

Lemma 5.8. The following holds:

(a) If i ∈ I0, then diam(Ji) ≤ 0.2r0, and 3Ji ⊂ L0 ∩ 1.9B0.

(b) If Ji ∩ 1.4B0 = ∅ (in particular if i 6∈ I0), then

`(Ji) ≈ dist(z0, Ji) ≈ |z0 − z| & `(R0) for all z ∈ Ji.

Proof. We begin by proving (a). Suppose i ∈ I0. Then Ji ∩ 1.5B0 6= ∅ and

3Ji ⊂ L0 ∩B(z0, 1.5r0 + 2 diam(Ji)).

We need to estimate diam(Ji). By the definition of Ji, we have

diam(Ji) ≤
1
20 inf

u∈Ji
D(u).

Since Ji ∩ 1.5B0 6= ∅ we have infu∈Ji D(u) ≤ maxu∈L0∩1.5B0 D(u), and so it
suffices to estimate the latter quantity. Note that the definition of d (5.6) gives
for x ∈ 1.5B0

d(x) ≤ dist(x,R0) + diam(B0) ≤ 1.5r0 + 2r0 = 3.5r0.

Hence, by the definition of D (5.13)

max
u∈L0∩1.5B0

D(u) ≤ max
x∈1.5B0

d(x) ≤ 3.5r0.

It follows that diam(Ji) ≤ 7
40r0, and

3Ji ⊂ L0 ∩B(z0, 1.85r0).

Now, let us prove (b). Suppose Ji ∩ 1.4B0 = ∅ and z ∈ Ji. Clearly,
|z0 − z| ≥ 1.4r0. Together with the definition of D (5.13) this gives

D(z) ≤ |Π0(z0)− z|+ diam(B0) ≤ 3|z0 − z|.

On the other hand, by (5.14) we have

D(z) ≥ dist(z,Π0(R0)) ≥ dist(z, 1.1B0) = |z0 − z| − 1.1r0 ≥
3
14 |z0 − z|.

Putting together the two estimates above gives for z ∈ Ji
1
5 |z0 − z| ≤ D(z) ≤ 3|z0 − z|.

Applying Lemma 5.7 (a) yields

5
3 diam(Ji) ≤ |z0 − z| ≤ 250 diam(Ji).
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III. A sufficient condition for rectifiability via W2

Moreover, since

|z0 − z| − diam(Ji) ≤ dist(z0, Ji) ≤ |z0 − z|,

we finally obtain

2
3 diam(Ji) ≤ dist(z0, Ji) ≤ 250 diam(Ji).

Lemma 5.9. Given i ∈ I0, there exists a cube Qi ∈ Tree such that

`(Ji) ≈ `(Qi),
dist(Ji,Π0(Qi)) . `(Ji).

Proof. Let i ∈ I0 and z ∈ Ji. We know by Lemma 5.7 (a) that D(z) ≈ `(Ji).
Thus, by the definition of D (5.13) we may find Q ∈ Tree such that

dist(z,Π0(Q)) + diam(BQ) ≈ `(Ji).

Clearly, `(Q) . `(Ji), and dist(Ji,Π0(Q)) . `(Ji). If `(Q) & `(Ji), we set
Qi = Q and we are done. If that is not the case, then we define Qi as the
ancestor P ⊃ Q satisfying `(P ) & `(Ji) (we can always do that because
`(Ji) . `(R0) by Lemma 5.8 (a)).

For all i ∈ I0 we define Fi : L0 → L⊥0 as the affine function whose graph
is the n-plane LQi . Since ](LQi , L0) ≤ θ by (4.7), we have Lip(Fi) . θ. For
i 6∈ I0 set Fi ≡ 0, so that the graph of Fi is the plane L0.

Lemma 5.10. Suppose 10Ji ∩ 10Ji′ 6= ∅. We have:

(a) if i, i′ ∈ I0, then
dist(Qi, Qi′) . `(Ji),

(b) for x ∈ 100Ji
|Fi(x)− Fi′(x)| . √ε0`(Ji),

(c) ‖∇Fi −∇Fi′‖∞ .
√
ε0.

Proof. Let us start with (a). We know by Lemma 5.7(b) and Lemma 5.9
that `(Qi) ≈ `(Qi′) ≈ `(Ji) ≈ `(Ji′). Let z1 ∈ Qi, z2 ∈ Qi′ be such that
|Π0(z1) − Π0(z2)| ≈ dist(Π0(Qi),Π0(Qi′)). Note that d(z1) . `(Qi), d(z2) .
`(Qi′). It follows that

dist(Qi, Qi′) ≤ |z1 − z2| ≤ |Π⊥0 (z1)− Π⊥0 (z2)|+ |Π0(z1)− Π0(z2)|
(5.7)
. |Π0(z1)− Π0(z2)|+ d(z1) + d(z2) . dist(Π0(Qi),Π0(Qi′)) + `(Ji).
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5. Construction of the Lipschitz graph

On the other hand, we have by Lemma 5.9

dist(Π0(Qi),Π0(Qi′)) ≤ dist(Π0(Qi), Ji)) + dist(Ji, Ji′)+
dist(Ji′ ,Π0(Qi′)) + diam(Ji) + diam(Ji′) . `(Ji).

The two estimates together give us (a).
Now, (b) and (c) for i, i′ ∈ I0 follow immediately because we can apply

Lemma 5.2 to Qi and Qi′ . If i, i′ /∈ I0, then (b) and (c) are trivially true, since
Fi = Fi′ ≡ 0. The only remaining case is i ∈ I0, i

′ /∈ I0.
Since 10Ji ∩ 10Ji′ 6= ∅, we know by Lemma 5.7 (b) and Lemma 5.8 that

`(Ji) ≈ `(Ji′) ≈ `(R0). We apply Lemma 5.2 to Qi and R0, and the result
follows..

Now, to define function F on L0\Π0(RG) we consider the following partition
of unity: for each i ∈ I let ϕ̃i ∈ C∞(L0) be such that ϕ̃i ≡ 1 on 2Ji,
supp ϕ̃i ⊂ 3Ji, and

‖∇ϕ̃i‖∞ . `(Ji)−1,

‖D2ϕ̃i‖∞ . `(Ji)−2.

Now, we set
ϕi = ϕ̃i∑

j∈I ϕ̃j
.

Clearly, the family {ϕi}i∈I is a partition of unity subordinated to sets {3Ji}i∈I .
Moreover, the inequalities above together with Lemma 5.7 imply that each ϕi
satisfies

‖∇ϕi‖∞ . `(Ji)−1,

‖D2ϕi‖∞ . `(Ji)−2.

Recall that in (5.12) we defined F (z) for z ∈ Π0(RG). Concerning L0 \
Π0(RG), by Lemma 5.7 (d) we have L0 \ Π0(RG) = ⋃

i∈I Ji = ⋃
i∈I 3Ji. Thus,

for z ∈ L0 \ Π0(RG) we may set

F (z) =
∑
i∈I0

ϕi(z)Fi(z). (5.16)

Using Lemmas 5.7–5.10, one may follow the proofs of [Tol14, Lemma 7.24,
Remark 7.26, Lemma 7.27] to get the following.

Lemma 5.11. The function F : L0 → L⊥0 is supported on L0 ∩ 1.9B0 and
is Cθ-Lipschitz, where C > 0 is an absolute constant. Furthermore, for
z ∈ 15Ji, i ∈ I,

|∇F (z)−∇Fi(z)| . √ε0, (5.17)
and

|D2F (z)| .
√
ε0

`(Ji)
.
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III. A sufficient condition for rectifiability via W2

We denote the graph of F as Γ, and we define a function f : L0 → Γ as

f(x) = (x, F (x)).

We set also
σ = Hn|Γ.

Lemma 5.12. Let i ∈ I0. Then B(f(zJi), 2 diam(Ji)) ⊂ 2.3B0.

Proof. By the definition of I0 we have Ji∩1.5B0 6= ∅. We know by Lemma 5.8
that diam(Ji) ≤ 0.2r0, and so zJi ∈ 1.7B0. Moreover, since F is supported on
L0 ∩ 1.9B0 and is Lipschitz continuous with constant comparable to θ, we have
dist(f(zJi), zJi) = |F (zJi)| . θr0.

It follows easily that B(f(zJi), 2 diam(Ji)) ⊂ 2.3B0.

We have defined a Lipschitz graph Γ, and a set RG ⊂ Γ ∩ R0 such that
µ|RG � H

n. Clearly, the measure µ|RG is n-rectifiable. What remains to
be shown is that µ(RG) ≥ 0.5µ(R0). Since RG contains R0 \

⋃
Q∈Stop Q, it is

enough to estimate the measure of the stopping cubes – this is what we will
do in the remaining part of the article.

6 Small measure of cubes from LD
In this section we will bound the measure of low density cubes. First, let us
prove some additional estimates.

6.1 Γ lies close to R0

Lemma 6.1. There exists a constant C1 such that for any x ∈ 3B0

dist(x,Γ) ≤ C1 d(x).

Proof. First, notice that if x ∈ 3B0 \ 1.01B0, then d(x) & r0, and so the
estimate dist(x,Γ) ≤ C1 d(x) is trivial. Now, assume x ∈ 1.01B0.

Let ξ = Π0(x) ∈ L0, y = (ξ, F (ξ)) ∈ Γ. Lemma 5.6 gives us

dist(x,Γ) ≤ |x− y| = |Π⊥0 (x)− Π⊥0 (y)| . d(x) + d(y). (6.1)

If ξ ∈ Π0(RG), then y ∈ RG, which means that d(y) = 0 and we get dist(x,Γ) .
d(x).

Now suppose ξ 6∈ Π0(RG). Let i ∈ I be such that ξ ∈ Ji. Note that since
x ∈ 1.01B0, then by (5.14) ξ ∈ 1.1B0, and so Ji ∩ 1.5B0 6= ∅. Hence, i ∈ I0.
Let Qi ∈ Tree be the cube from Lemma 5.9 corresponding to Ji. It follows that

d(y) ≤ dist(y,Qi) + `(Qi) . dist(y,Qi) + `(Ji). (6.2)
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Now we will estimate dist(y,Qi). Let z = (ξ, Fi(ξ)) ∈ LQi . We have

|y−z| = |F (ξ)−Fi(ξ)| =
∣∣∣ ∑
j∈I0

ϕj(ξ)Fj(ξ)−Fi(ξ)
∣∣∣ =

∣∣∣ ∑
j∈I0

ϕj(ξ)(Fj(ξ)−Fi(ξ))
∣∣∣

≤
∑
j∈I0

ϕj(ξ)
∣∣∣Fj(ξ)− Fi(ξ)∣∣∣.

Since ϕj(ξ) 6= 0 only for j ∈ I0 such that ξ ∈ 3Jj , we get from Lemma 5.10 (b)
that |Fj(ξ)− Fi(ξ)| . `(Ji). Hence,

|y − z| . `(Ji).

We use the smallness of βµ,2(3BQi) and Chebyshev inequality to find
p ∈ 2BQi , q ∈ LQi such that |p − q| . `(Ji). We know from Lemma 5.9 (b)
that |Π0(p)− ξ| . `(Ji), and so |Π0(q)− ξ| . `(Ji). Together with the fact that
both q and z belong to LQi , and that ](L0, LQi) ≤ θ by (4.7), this implies

|z − q| . `(Ji).

Thus,
dist(y,Qi) ≤ |y − z|+ |z − q|+ |q − p| . `(Ji).

From this, (6.2), Lemma 5.7 (a), and the definition od D, we get

d(y) . `(Ji) ≈ D(ξ) ≤ d(x).

The estimate above together with (6.1) conclude the proof.

Corollary 6.2. For every Q ∈ Tree we have

dist(Q,Γ) . `(Q).

Moreover, for i ∈ I0 we have

dist(Qi, f(Ji)) . `(Qi). (6.3)

Proof. Since Q ⊂ R0 ⊂ B0, the first inequality follows immediately by
Lemma 6.1 and the definition of function d.

The second inequality is implied by the first one, the fact that dist(Π0(Qi), Ji) .
`(Qi) by Lemma 5.9, and that Γ is a Lipschitz graph with a small Lipschitz
constant.

Lemma 6.3. Let C > 0. If ε0 is chosen small enough, then for each Q ∈ Tree
and x ∈ Γ ∩ CBQ

dist(x, LQ) .A,τ,C

√
ε0`(Q).
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III. A sufficient condition for rectifiability via W2

Proof. There are three cases to consider.
Case 1. x ∈ RG, i.e. d(x) = 0.
Fix some small h > 0. Let P ∈ Tree be such that (dist(x, P )+diam(BP )) ≤

h� `(Q). Since x ∈ Γ∩CBQ, we have dist(P,Q) . `(Q). Setting y = ΠLP (x),
we clearly have |x− y| . h, and in consequence y ∈ LP ∩ C ′BQ with C ′ ≈ C.
Thus, we may apply Lemma 5.3 to get

dist(y, LQ) .A,τ,C

√
ε0`(Q).

Thus, dist(x, LQ) .A,τ,C
√
ε0`(Q) + h. Letting h → 0 ends the proof in this

case.
Case 2. x = (ζ, F (ζ)) for ζ ∈ L0 \ Π0(RG), and∑

i∈I0
ϕi(ζ) = 1.

Since F (ζ) = ∑
i ϕi(ζ)Fi(ζ), we get that x is a convex combination of points

{(ζ, Fi(ζ))}i∈I1 , where I1 ⊂ I0 consists of indices i such that ϕi(ζ) 6= 0. Thus,
it suffices to show that for each i ∈ I1

dist
(
(ζ, Fi(ζ)), LQ

)
.A,τ,C

√
ε0`(Q).

First, note that since x ∈ CBQ,

D(ζ) ≤ d(x) .C `(Q).

Let Ji′ be the dyadic cube containing ζ, i′ ∈ I1. Then

diam(Ji′) ≤
1
20D(ζ) .C `(Q). (6.4)

Moreover, as each ϕi is supported in 3Ji, we necessarily have 3Ji ∩ Ji′ 6= ∅ for
i ∈ I1. Thus, by Lemma 5.7 (b) and by Lemma 5.9,

`(Qi′) ≈ `(Ji′) ≈ `(Ji) ≈ `(Qi)
(6.4)
.C `(Q). (6.5)

Furthermore, Lemma 5.10 (a) implies

dist(Π0(Qi),Π0(Qi′)) ≤ dist(Qi, Qi′) . `(Ji).

Taking into account Lemma 5.9 and the fact that ζ ∈ Ji′ ∩Π0(CBQ) we obtain

dist(Π0(Qi′),Π0(Q)) ≤ dist(Π0(Qi′), Ji′) + diam(Ji′) + dist(Π0(Q), Ji′)
.C `(Ji′) + `(Q).
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The three estimates above yield

dist(Π0(Qi),Π0(Q)) ≤ dist(Π0(Qi),Π0(Qi′)) + diam(Π0(Qi′))
+ dist(Π0(Qi′),Π0(Q)) .C `(Q).

Applying Lemma 5.6 to any y1 ∈ Qi, y2 ∈ Q gives us

dist(Qi, Q) .A,τ dist(Π0(Qi),Π0(Q)) + `(Q) + `(Qi) .C `(Q). (6.6)

Note that (ζ, Fi(ζ)) ∈ LQi ∩ C ′BQi for some C ′ = C ′(n, d) > 0. Indeed:
(ζ, Fi(ζ)) ∈ LQi by the definition of Fi; to see that (ζ, Fi(ζ)) ∈ C ′BQi ob-
serve that ϕi(ζ) 6= 0, and so ζ ∈ 3Ji, which together with Lemma 5.9 gives
(ζ, Fi(ζ)) ∈ C ′BQi .

Due to the observation above and (6.5), (6.6), we can use Lemma 5.3 to
get the desired inequality:

dist
(
(ζ, Fi(ζ)), LQ

)
.A,τ,C

√
ε0`(Q).

Case 3. x = (ζ, F (ζ)) for ζ ∈ L0 \ Π0(RG), and∑
i∈I0

ϕi(ζ) < 1.

It follows that there exists some k 6∈ I0 such that ζ ∈ 3Jk. Hence, by Lemma 5.8
(b)

`(Jk) ≈ dist(Π0(z0), Jk) & `(R0).
Furthermore, if Ji′ is the cube containing ζ = Π0(x), then using the definition
of functions d and D yields

`(Ji′) . D(Π0(x)) ≤ d(x) ≤ dist(x,Q) + diam(BQ) . `(Q) ≤ `(R0).

Since Ji′ ∩ 3Jk 6= ∅, Lemma 5.7 (b) gives us `(Ji′) ≈ `(Jk). Thus,

`(Ji′) ≈ `(Q) ≈ `(R0),

and again using Lemma 5.7 (b) we get that `(Ji) ≈ `(R0) for all i ∈ I1,
where I1 ⊂ I0 are indices such that ζ ∈ 3Ji. By the definition of cubes Qi in
Lemma 5.9, we also have `(Qi) ≈ `(R0).

It is clear that dist(Qi, R0) = 0, and so the assumptions of Lemma 5.2 are
satisfied for Qi and R0. Since dist((ζ, Fi(ζ)), Qi) . `(R0) ≈ `(Qi), we get that

|Fi(ζ)| = dist
(
(ζ, Fi(ζ)), L0

)
.A,τ ε0`(R0) ≈ ε0`(Q)

for i ∈ I1. Hence,

dist
(
(ζ, F (ζ)), L0

)
= |F (ζ)| ≤

∑
i∈I1

ϕi(ζ)|Fi(ζ)| .A,τ ε0`(Q)
∑
i∈I1

ϕi(ζ) ≤ ε0`(Q).
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At the same time, the planes LQ and L0 are close to each other due to
Lemma 5.2, and so

dist
(
(ζ, F (ζ)), LQ

)
.A,τ ε0`(Q).

Corollary 6.4. Let θ and ε0 be small enough. Suppose Q ∈ Tree satisfies
10BQ ∩ Γ 6= ∅. Then for y ∈ LQ ∩ 10BQ

dist(y,Γ) .A,τ

√
ε0`(Q).

Proof. Let F̃ : LQ → L⊥Q be defined in such a way that Γ is the graph of F̃ .
This definition makes sense because ](LQ, L0) ≤ θ. Moreover, Lip(F ) . θ
implies that Lip(F̃ ) . θ.

Let x ∈ LQ be such that (x, F̃ (x)) ∈ 10BQ ∩ Γ. By the triangle inequality
and Lemma 6.3 we have for y ∈ LQ ∩ 10BQ

|F̃ (y)| ≤ |F̃ (y)− F̃ (x)|+ |F̃ (x)| . θ`(Q) + C(A, τ)√ε0`(Q).

Thus, for θ and ε0 small enough, we have (y, F̃ (y)) ∈ 11BQ ∩ Γ and we may
use Lemma 6.3 once again to conclude that

dist(y,Γ) ≤ |F̃ (y)| = dist
(
(y, F̃ (y)), LQ

)
.A,τ

√
ε0`(Q).

Recall that

RFar = {x ∈ 3B0 : dist(x, LQ) ≥ √ε0`(Q) for some Q ∈ Tree0 s.t. x ∈ 3BQ}.

Lemma 6.5. For all x ∈ 3B0 \RFar

dist(x,Γ) .A,τ

√
ε0 d(x).

Proof. If d(x) = 0, then x ∈ RG ⊂ Γ and we are done. Suppose that d(x) > 0.
Let Q ∈ Tree be such that

dist(x,Q) + diam(BQ) ≤ 2d(x).

Fix some z ∈ Q and note that |z − x| ≤ 2d(x).
Let C1 be the constant from Lemma 6.1. If we have B(z, 2(C1 + 2)d(x)) ⊂

3B0, then let P ∈ Tree be the smallest cube satisfying B(z, 2(C1 + 2)d(x)) ⊂
3BP ; otherwise, set P = R0.

In both cases we have `(P ) ≈ d(x), as well as x ∈ 3BP . Moreover, we know
from Lemma 6.1 that

dist(z,Γ) ≤ |z − x|+ dist(x,Γ) ≤ (2 + C1)d(x).
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6. Small measure of cubes from LD

Hence, 3BP ∩ Γ 6= ∅ (for P = R0 this is obvious, and for P ( R0 it follows
from the fact that B(z, 2(C + 2)d(x)) ⊂ 3BP ).

The assumption x 6∈ RFar gives us

|x− ΠLP (x)| ≤ √ε0`(P ),

and so ΠLP (x) ∈ 4BP ∩ LP . We apply Corollary 6.4 to ΠLP (x) to get

dist(ΠLP (x),Γ) .A,τ

√
ε0`(P ).

The two inequalities above and the fact that `(P ) ≈ d(x) imply

dist(x,Γ) .A,τ

√
ε0 d(x).

Lemma 6.6. For every x ∈ Γ we have D(Π0(x)) ≤ d(x) . D(Π0(x)).

Proof. The inequality D(Π0(x)) ≤ d(x) follows directly from the definition of
D (5.13).

To see that d(x) . D(Π0(x)), let Q ∈ Tree be such that

diam(BQ) + dist(Π0(Q),Π0(x)) ≤ D(Π0(x)) + h (6.7)

for some small h > 0. Take any y ∈ 3BQ \RFar, then by Lemma 6.5 we have
some z ∈ Γ such that

dist(y,Γ) = |y − z| .A,τ

√
ε0d(y) . √ε0 diam(BQ)

(6.7)
≤ D(Π0(x)) + h.

Using the fact that x, z ∈ Γ, that y ∈ 3BQ, and the inequality above, we have

|x−z| ≤ 2|Π0(x)−Π0(z)| ≤ 2|Π0(x)−Π0(y)|+2|Π0(y)−Π0(z)|
(6.7)
. D(Π0(x))+h,

and so
|x− y| ≤ |x− z|+ |z − y| . D(Π0(x)) + h.

It follows that

d(x) ≤ d(y) + |x− y| . diam(BQ) +D(Π0(x)) + h
(6.7)
. D(Π0(x)) + h.

Letting h→ 0 ends the proof.
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6.2 Estimating the measure of LD
Lemma 6.7. If ε0 and τ are small enough, with ε0 = ε0(τ)� τ , then∑

Q∈LD
µ(Q) . τµ(R0). (6.8)

Proof. Recall that by Lemma 4.6 we have µ(RFar) .A,τ
√
ε0µ(R0). Hence, for

ε0 small enough we get µ(RFar) ≤ τµ(R0), and so to show (6.8) it suffices to
prove

µ(RLD) . τµ(R0),
where RLD = ⋃

Q∈LD Q \RFar.
We use Besicovitch covering theorem to find a countable collection of points

xi ∈ RLD such that xi ∈ Qi \RFar, Qi ∈ LD, and

RLD ⊂
⋃
i

B(xi, r(Qi)),∑
i

1B(xi,r(Qi)) ≤ N,

where N is a dimensional constant.
Observe that B(xi, r(Qi)) ⊂ 1.5BQi . It follows that

µ(RLD) ≤
∑
i

µ(B(xi, r(Qi))) ≤
∑
i

µ(1.5BQi) . τ
∑
i

r(Qi)n,

where the last inequality was obtained using the fact that Qi ∈ LD. Further-
more, since xi 6∈ RFar we may use Lemma 6.5 to get dist(xi,Γ) .A,τ

√
ε0 d(xi).

Note also that d(xi) . r(Qi). Hence,

dist(xi,Γ) .A,τ

√
ε0r(Qi).

So, if ε0 is small enough, Γ passes close to the center of B(xi, r(Qi)). Since Γ
is a Lipschitz graph with small Lipschitz constant we get

r(Qi)n . Hn(Γ ∩B(xi, r(Qi))).

Thus,

µ(RLD) . τ
∑
i

r(Qi)n . τ
∑
i

Hn(Γ ∩B(xi, r(Qi)))

. τHn
(
Γ ∩

⋃
i

B(xi, r(Qi))
)
≤ τHn(Γ ∩ 1.5B0) ≈ τ`(R0)n.

We have `(R0)n ≈ µ(3B0) ≈ µ(R0) because Θµ(3B0) = 1, see Remark 3.5, and
R0 is doubling. Hence,

µ(RLD) . τµ(R0).
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7. Approximating measure ν

7 Approximating measure ν
In order to estimate the measure of high density cubes, we need to introduce a
measure ν supported on Γ which will approximate µ.

7.1 Definition and properties of ν
Let η < 1/1000 be a small dimensional constant which will be fixed in the
proof of Lemma 7.1 (c). For every i ∈ I (the set of indices from Section 5.3)
consider a finite collection of points {z′k}k∈Ki ⊂ Ji, #Ki .n 1, such that the
balls B(z′k, 0.5η`(Ji)) cover the whole Ji. We set K = ⋃

iKi, K0 = ⋃
i∈I0 Ki.

For k ∈ Ki we define

zk = f(z′k) ∈ Γ,
rk = η`(Ji),
Bk = B(zk, rk).

The following lemma collects basic properties of Bk.

Lemma 7.1. We have the following:

(a) For k ∈ Ki

Π0(3Bk) ⊂ 2Ji. (7.1)

(b) For k ∈ K there exist at most C = C(n) indices k′ ∈ K such that
Π0(3Bk) ∩ Π0(3Bk′) 6= ∅ (in particular, there are at most C indices
k′ ∈ K such that 3Bk ∩ 3Bk′ 6= ∅). Moreover, for all such k′ we have

rk ≈ rk′ . (7.2)

(c) For k ∈ K and x ∈ 3Bk we have

rk ≤ d(x) ≤ η−3/2rk. (7.3)

(d) For k ∈ K0
3Bk ⊂ 2.3B0. (7.4)

(e) For k 6∈ K0
rk ≈ |zk − z0| & `(R0). (7.5)

If additionally 3Bk ∩ 3B0 6= ∅, then

rk ≈ `(R0). (7.6)

(f) Finally, ⋃
k∈K

Bk ∩ Γ =
⋃
k∈K

3Bk ∩ Γ = Γ \RG. (7.7)
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III. A sufficient condition for rectifiability via W2

Proof. (a) follows immediately by the definition of Bk.
Concerning (b), suppose k ∈ Ki and Π0(3Bk) ∩ Π0(3Bk′) 6= ∅ for some

k′ ∈ Ki′ . By (a) we know that 2Ji ∩ 2Ji′ 6= ∅, and there are at most N such
indices i′, see Lemma 5.7) (c). Since #Ki .n 1 by the definition, we get that
there are at most C(n,N) indices k′ satisfying Π0(3Bk) ∩ Π0(3Bk′) 6= ∅. The
estimate rk ≈ rk′ follows by Lemma 5.7 (b).

To prove (c), recall that zk is the center of Bk. By the definition, Π0(zk) ∈ Ji
for i ∈ I such that rk = η`(Ji). Lemma 5.7 (a) gives us D(Π0(zk)) ≈n `(Ji).
Hence, by Lemma 6.6 we get

d(zk) ≈ `(Ji) = η−1rk.

Now, for an arbitrary x ∈ 3Bk we have by the 1-Lipschitz property of function
d that

|d(x)− d(zk)| ≤ |x− zk| ≤ 3rk,

Since d(zk) ≈ η−1rk, choosing η small enough we arrive at d(x) ≈ η−1rk, and
so for η small enough rk ≤ d(x) ≤ η−3/2rk.

Concerning (d), let i ∈ I0 be such that Π0(zk) ∈ Ji. We know by Lemma 5.12
that B(f(zJi), 2 diam(Ji)) ⊂ 2.3B0. Since 3Bk ⊂ B(f(zJi), 2 diam(Ji)), we get
3Bk ⊂ 2.3B0.

To show (e), let k ∈ K \ K0. Let i ∈ I \ I0 be such that k ∈ Ki, i.e.
Π0(zk) ∈ Ji. By (c) and Lemma 6.6 we have d(zk) ≈ D(Π0(zk)) ≈ rk. At the
same time, |Π0(zk)− z0| ≈ `(Ji) & `(R0) by Lemma 5.8 (b). Recall also that
‖F‖∞ . θ`(R0) due to Lipschitz continuity and the fact that supp(F ) ⊂ 1.9B0,
see Lemma 5.11. It follows that

|zk−z0| ≤ |zk−Π0(zk)|+|Π0(zk)−z0| . |F (zk)|+`(Ji) . θ`(R0)+`(Ji) . `(Ji),

and on the other hand

|zk−z0| ≥ |Π0(zk)−z0|−|zk−Π0(zk)| ≥ C `(Ji)−|F (zk)| ≥ C `(Ji)−C ′ θ`(R0)
≥ C `(Ji)− C ′′ θ`(Ji) & `(Ji),

for θ small enough. Hence, |zk − z0| ≈ `(Ji) ≈ rk & `(R0).
Now, assume also 3Bk ∩ 3B0 6= ∅, and suppose x ∈ 3B0 ∩ 3Bk. We

have Π0(x) ∈ 2Ji by (7.1). Clearly, D(Π0(x)) ≤ d(x) . `(R0), and so
rk ≈ `(Ji) ≈ D(Π0(x)) . `(R0) by Lemma 5.7 (a).

Finally, to see (7.7) note that by the definition of Bk and by (a) we have

f(Ji) ⊂
⋃
k∈Ki

Bk ∩ Γ ⊂
⋃
k∈Ki

3Bk ∩ Γ ⊂ f(2Ji).

Together with Lemma 5.7 (d) this implies (7.7).
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Since η is a dimensional constant, we will usually not mention dependence
on it in our further estimates.

Due to bounded superposition of 3Bk (Lemma 7.1 (b)) we may define a
partition of unity {hk}k∈K such that 0 ≤ hk ≤ 1, supphk ⊂ 3Bk, Lip(hk) ≈
`(Ji)−1, and

h =
∑
k∈K

hk ≡ 1 on
⋃
k∈K

2Bk. (7.8)

Again, by the bounded superposition of 3Bk we may assume

hk(x) ≈ 1, x ∈ Bk. (7.9)

Recall that σ = Hn|Γ, and that c0 is a constant minimizing αµ(3B0). We set

ck =


∫
hk dµ∫
hk dσ

for k ∈ K0,

c0 for k 6∈ K0.
(7.10)

We define the approximating measure as

ν = µ|RG +
∑
k

ckhkσ. (7.11)

Note that, since µ|RG � σ by Lemma 5.5, we also have ν � σ. To simplify
the notation, we introduce

µG = µ|RG ,
µB = µ− µG,
νB = ν − µG =

∑
k

ckhkdσ.

Note that by Lemma 7.1 (d), (7.7), and the fact that RG ⊂ B0, we get

Γ \ (2.3B0) = L0 \ (2.3B0) ⊂ Γ ∩
⋃
k 6∈K0

Bk,

and so by the definition of ν we have

ν|(2.3B0)c = c0Hn|L0\(2.3B0). (7.12)

Lemma 7.2. For each k ∈ K0 there exists Pk ∈ Tree such that 3Bk ⊂ 2.5BPk ,
and `(Pk) ≈ rk.

Proof. We know by (7.4) that 3Bk ⊂ 2.3B0. Thus, we may define Pk as the
smallest cube in Tree such that 3Bk ⊂ 2.5BPk . We have `(Pk) ≈ rk due to
(7.3).
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We will write for k ∈ K0

B̃k = 2.5BPk , (7.13)
c̃k = cPk ,

Lk = LPk ,

and for k 6∈ K0 set B̃k = 2.5B0, c̃k = c0, and Lk = L0.
Note that for every k ∈ K

dist(zk, Lk) .A,τ

√
ε0rk. (7.14)

Indeed, for k ∈ K0, it follows by Lemma 6.3 applied to zk and Pk. For k 6∈ K0,
but such that zk ∈ 1.9B0, again it follows by Lemma 6.3 applied to zk and
R0. Finally, for k 6∈ K0 such that zk 6∈ 1.9B0 this is trivially true because
Γ \ (1.9B0) = L0 \ (1.9B0), and so dist(zk, L0) = 0.

Lemma 7.3. For k ∈ K the set Γ ∩ 3Bk is a Lipschitz graph over Lk, with a
Lipschitz constant at most C√ε0.

Proof. Suppose k ∈ K0, i.e. that k ∈ Ki for some i ∈ I0. We know by (5.17)
that f(15Ji) is a C√ε0-Lipschitz graph over LQi (recall that Fi is an affine
function whose graph is LQi).

At the same time, since Pk satisfies dist(Pk, Qi) . `(Qi) (see (6.3) and the
definition of Pk) and `(Pk) ≈ rk ≈ `(Qi), we can apply Lemma 5.2 to get
](LQi , Lk) .A,τ ε0. It follows that f(15Ji) is a C√ε0-Lipschitz graph over Lk.
The same is true for k 6∈ K0: since Lk = L0 = graph(Fi), it follows immediately
by (5.17). We conclude by noting that

Γ ∩ 3Bk

(7.1)
⊂ f(15Ji).

Lemma 7.3 and (7.14) imply that for every k ∈ K

F3Bk(σ,Hn|Lk) .A,τ

√
ε0r

n+1
k . (7.15)

Furthermore, by (4.16) we have

F
B̃k

(µ, c̃kHn|Lk) .A,τ ε0r
n+1
k . (7.16)

Lemma 7.4. For k ∈ K we have

|ck − c̃k| .A,τ

√
ε0. (7.17)
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Proof. For k 6∈ K0 we have ck = c0 = c̃k, so the claim is trivially true. Suppose
k ∈ K0. Recall that hk ≈ 1 in Bk (7.9), Lip(hk) ≈ r−1

k , and c̃k ≈A,τ 1 by (4.17).
It follows that

|ck − c̃k| rnk
(7.9)
≈ |ck − c̃k|

∫
hk dσ =

∣∣∣∣∫ hk dµ−
∫
hkc̃k dσ

∣∣∣∣
≤
∣∣∣∣∫ hk dµ−

∫
hkc̃k dHn|Lk

∣∣∣∣+ c̃k

∣∣∣∣∫ hk dHn|Lk −
∫
hk dσ

∣∣∣∣
≤ F

B̃k
(µ, c̃kHn|Lk)r

−1
k + c̃kF3Bk(σ,Hn|Lk)r

−1
k

(7.15),(7.16)
.A,τ

√
ε0r

n
k .

An immediate corollary of (4.17) and the lemma above is that for k ∈ K

ck ≈A,τ 1. (7.18)

Lemma 7.5. The measure ν is n-AD-regular, that is, for x ∈ Γ, r > 0

ν(B(x, r)) ≈A,τ rn

Proof. We know by (7.7), the definition of h (7.8), and (7.18) that

dσ|Γ\RG =
∑
k

hkdσ ≈A,τ
∑
k

ckhkdσ.

Together with Lemma 5.5 this gives

dν = dµG +
∑
k

ckhkdσ ≈A,τ dσ.

Lemma 7.6. If k, j ∈ K satisfy 3Bk ∩ 3Bj 6= ∅, then

|ck − cj| .A,τ

√
ε0.

Proof. If 3Bk ∩ 3Bj 6= ∅, then by (7.1) and Lemma 5.7 (b) it follows that

rk ≈ rj.

Now, since 3Bk ∩ 3Bj 6= ∅ and rk ≈ rj, we get that there exists R ∈ Tree
such that 2.5BR ⊃ B̃k ∪ B̃j and `(R) ≈ rk. Hence, we may use Lemma 5.4 and
Lemma 7.4 to obtain

|ck − cj| ≤ |ck − c̃k|+ |c̃k − cR|+ |cR − c̃j|+ |c̃j − cj| .A,τ

√
ε0.
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7.2 ν approximates µ well
Lemma 7.7. We have

3B0 \ (RG ∪RFar) ⊂
⋃
k∈K

2Bk.

In consequence, for every x ∈ 3B0 \ (RG ∪RFar) we have h(x) = 1.

Proof. Let x ∈ 3B0 \ (RG ∪RFar). We will find k ∈ K such that x ∈ 2Bk.
By Lemma 6.5 we have y ∈ Γ such that

|x− y| .A,τ

√
ε0d(x). (7.19)

Since x 6∈ RG, we have d(x) > 0. Moreover, since d(x) ≤ d(y) + |x − y| ≤
d(y) + 0.5d(x), we get that 0 < d(x) ≤ 2d(y). In particular, y 6∈ RG and by
(7.7) there exists k ∈ K such that y ∈ Bk ∩ Γ. It follows by Lemma 7.1 (c)
that

d(x) ≤ 2d(y) ≈ rk.

Together with (7.19) this gives |x − y| ≤ rk/2, for ε0 small enough. Since
y ∈ Bk, we get that x ∈ 2Bk.

Lemma 7.8. Suppose that x ∈ 2.5B0, r ≥ Cd(x) for some C > 0, and that
B(x, r) ⊂ 3B0. Then,

FB(x,r)(µB, hµ) .A,C ε
1/4
0 rn+1.

Proof. Since B(x, r) ⊂ 3B0, and r ≥ Cd(x), there exists a cube Q ∈ Tree such
that B(x, r) ⊂ 3BQ and `(Q) ≈C r. In consequence, using the properties of
Tree yields

µ(B(x, r) ∩RFar) ≤ µ(3BQ ∩RFar)
(4.8)
≤ ε

1/4
0 µ(3BQ)

(4.5)
.A,C ε

1/4
0 rn.

Thus, given any φ ∈ Lip1(B(x, r)) we have∣∣∣∣∫ φ dµB −
∫
φ dµB|(RFar)c

∣∣∣∣ ≤ rµ(B(x, r) ∩RFar) .A,C ε
1/4
0 rn+1,

and so FB(x,r)(µB, µB|(RFar)c) .A,C ε
1/4
0 rn+1. Similarly, FB(x,r)(hµ, hµ|(RFar)c) .A,C

ε
1/4
0 rn+1.

Now, observe that hµ = hµB by the definition of h. Moreover, inside
B(x, r) we have

hµB|(RFar)c = µB|(RFar)c

because h ≡ 1 on 3B0\(RG∪RFar) by Lemma 7.7. Thus, the triangle inequality
yields

FB(x,r)(µB, hµ) ≤ FB(x,r)(µB, hµ|(RFar)c) + FB(x,r)(hµ, hµ|(RFar)c) .A,C ε
1/4
0 rn+1.
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Lemma 7.9. If x ∈ 2.5B0 and r > 0 satisfy B(x, r) ⊂ 2.5B0, then

FB(x,r)(νB, hµ) .A,τ

√
ε0

∑
3Bk∩B(x,r)6=∅

rn+1
k . (7.20)

Proof. Since νB = ∑
k ckhkσ, our aim is estimating FB(x,r)(

∑
k ckhkσ, hµ). Set

K(x, r) = {k ∈ K : 3Bk ∩B(x, r) 6= ∅}.

First, we will deal with k ∈ K(x, r) \K0. For such k by (7.6) we have

rk ≈ `(R0). (7.21)

In particular, r . rk, and so given φ ∈ Lip1(B(x, r)) we have Lip(φhk) .
1, supp(φhk) ⊂ B(x, r) ∩ 3Bk ⊂ 2.5B0.

Moreover, recall that

F2.5B0(µ, c0Hn|L0
)

(4.16),(4.5)
.A ε0`(R0)n+1 (7.21)

≈ ε0r
n+1
k . (7.22)

In consequence, since ck = c0 by (7.10), we have for any φ ∈ Lip1(B(x, r))
∣∣∣∣∣∣∣

∑
k∈K(x,r)\K0

(∫
φhkc0 dσ −

∫
φhk dµ

)∣∣∣∣∣∣∣
≤

∑
k∈K(x,r)\K0

(∣∣∣∣∫ φhkc0 dHn|L0
−
∫
φhk dµ

∣∣∣∣+ c0

∣∣∣∣∫ φhk dHn|L0
−
∫
φhk dσ

∣∣∣∣
)

≤
∑

k∈K(x,r)\K0

(
F2.5B0(µ, c0Hn|L0

) + c0F3Bk(σ,Hn|L0
)
)

(7.22),(7.15),(4.17)
.A,τ

∑
k∈K(x,r)\K0

√
ε0r

n+1
k .

Now, we turn our attention to k ∈ K0(x, r) = K(x, r) ∩ K0. For any
φ ∈ Lip1(B(x, r)) we have
∣∣∣∣∣∣∣

∑
k∈K0(x,r)

(∫
φckhk dσ −

∫
φhk dµ

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

k∈K0(x,r)

(∫
(φ− φ(zk))ckhk dσ −

∫
(φ− φ(zk))hk dµ

)∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

k∈K0(x,r)
φ(zk)

(∫
ckhk dσ −

∫
hk dµ

)∣∣∣∣∣∣∣ =: I1 + I2.
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We start by estimating I1. Observe that setting Φk = (φ− φ(zk))hk we have
Lip(Φk) . 1 and supp Φk ⊂ 3Bk. Hence,

I1 =

∣∣∣∣∣∣∣
∑

k∈K0(x,r)

(∫
ckΦk dσ −

∫
Φk dµ

)∣∣∣∣∣∣∣
(7.15),(7.18)
≤

∑
k∈K0(x,r)

(∣∣∣∣∫ ckΦkdHn|Lk −
∫

Φk dµ

∣∣∣∣+ C(A, τ)√ε0r
n+1
k

)
(7.17)
≤

∑
k∈K0(x,r)

(∣∣∣∣∫ c̃kΦkdHn|Lk −
∫

Φk dµ
∣∣∣∣+ C(A, τ)√ε0r

n+1
k

)
(7.16)
.A,τ

∑
k∈K0(x,r)

√
ε0r

n+1
k .

Concerning I2, note that for k ∈ K0(x, r) we have by the definition of ck
(7.10) ∫

ckhk dσ −
∫
hk dµ = 0,

and so
I2 = 0.

Putting together the estimates for k ∈ K(x, r) \K0 and for k ∈ K0(x, r), and
taking supremum over φ ∈ Lip1(B(x, r)), we finally get

FB(x,r)(νB, hµ) .A,τ

√
ε0

∑
k∈K(x,r)

rn+1
k .

The previous two lemmas, and the fact that FB(ν, µ) = FB(νB, µB), imply
the following:

Lemma 7.10. For x ∈ 2.5B0 and r & d(x) such that B(x, r) ⊂ 2.5B0 we have

FB(x,r)(ν, µ) .A,τ ε
1/4
0 rn+1 +√ε0

∑
3Bk∩B(x,r) 6=∅

rn+1
k . (7.23)

In particular, we have

F2.5B0(ν, µ) .A,τ ε
1/4
0 `(R0)n+1. (7.24)

Lemma 7.11. For x ∈ Γ and r & `(R0) such that B(x, r)∩ 3B0 6= ∅ we have

FB(x,r)(ν, c0Hn|L0
) .A,τ ε

1/4
0 r`(R0)n. (7.25)
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Proof. Recall that by (7.12) we have

ν|(2.3B0)c = c0Hn|L0∩(2.3B0)c .

To take advantage of this equality, we define an auxiliary function ψ such that
ψ ≡ 1 on 2.3B0, supp(ψ) ⊂ 2.5B0, and Lip(ψ) . `(R0)−1. Then,∣∣∣∣∫ ψ dν − c0

∫
ψ dHn|L0

∣∣∣∣
(7.24)
.

∣∣∣∣∫ ψ dµ− c0

∫
ψ dHn|L0

∣∣∣∣+ ε
1/4
0 `(R0)n

(4.16)
≤ C(A, τ)ε0`(R0)n + ε

1/4
0 `(R0)n . ε

1/4
0 `(R0)n. (7.26)

Recall that z0 = zR0 . It follows that for φ ∈ Lip1(B(x, r)) we have∣∣∣∣∫ φ (dν − c0dHn|L0
)
∣∣∣∣

=
∣∣∣∣∫ (

(φ− φ(z0))ψ + φ(z0)ψ + φ(1− ψ)
)

(dν − c0dHn|L0
)
∣∣∣∣

(7.12)
≤ F2.5B0(ν, µ) + F2.5B0(c0Hn|L0

, µ) + |φ(z0)|
∣∣∣∣∫ ψ (dν − c0dHn|L0

)
∣∣∣∣+ 0

(7.24),(4.16)
.A,τ ε

1/4
0 `(R0)n+1 + ε0`(R0)n+1 + |φ(z0)|

∣∣∣∣∫ ψ (dν − c0dHn|L0
)
∣∣∣∣

(7.26)
. ε

1/4
0 `(R0)n+1 + rε

1/4
0 `(R0)n . ε

1/4
0 r`(R0)n.

8 Small measure of cubes from HD
For brevity of notation let us denote by Π∗ν the image measure of ν by Π0,
that is the measure such that Π∗ν(A) = ν(Π−1

0 (A)). Set

f = dΠ∗ν
dHn|L0

.

The key estimate necessary to bound the measure of high density cubes is the
following.

Lemma 8.1. We have

‖f − c0‖2
L2(Hn|L0

) .A,τ ε
1/8
0 µ(R0). (8.1)

We postpone the proof of the above lemma to the next subsection. Let us
show now how we can use it to estimate the measure of cubes in HD.
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Lemma 8.2. We have ∑
Q∈HD

µ(Q) .A,τ ε
1/8
0 µ(R0). (8.2)

Proof. Recall that by Lemma 4.6 we have µ(RFar) .A,τ
√
ε0µ(R0). Thus, to

show (8.2) it suffices to prove

µ(RHD) . ε
1/8
0 µ(R0),

where RHD = ⋃
Q∈HD Q \RFar.

For every x ∈ RHD we define Bx = B(x, r(Qx)/100), where Qx ∈ HD is
such that x ∈ Qx. We use the 5r-covering theorem to choose {xj}j∈J such
that all Bxj are pairwise disjoint and ⋃j 5Bxj covers

⋃
x∈RHD Bx. Observe that

5Bxj ⊂ 3BQxj
, and so by (4.5)

µ(5Bxj) .A r(Bxj)n. (8.3)

For every j set Bj = 1
2Bxj , Qj = Qxj , and let Pj ∈ Tree be the parent of

Qj. We have `(Pj) ≈ `(Qj) ≈ r(Bj). Since xj 6∈ RFar, we can use Lemma 6.5
to obtain

dist(xj,Γ) .A,τ

√
ε0d(xj) .

√
ε0`(Pj) ≈A,τ

√
ε0r(Bj).

Since 2Bj are disjoint, the centers of Bj are close to Γ, and Γ is a graph of
function F with Lip(F ) . θ � 1, it follows that Π0(Bj) are disjoint as well.

We use the above to get

µ(RHD) ≤
∑
j∈J

µ(5Bxj)
(8.3)
.A

∑
j∈J

r(Bxj)n ≈
∑
j∈J
Hn(Π0(Bj)) = Hn

( ⋃
j∈J

Π0(Bj)
)
.

(8.4)
We claim that ⋃

j∈J
Π0(Bj) ⊂ BM, (8.5)

where
BM = {x ∈ L0 : M(f − c0) > 1},

andM is the Hardy-Littlewood maximal function on L0. BM stands for “big
M”. Before we prove (8.5), note that due to the weak type (2, 2) estimate for
M we have

Hn(BM) . ‖f − c0‖2
L2(Hn|L0

).

Putting this together with (8.4), (8.5), and our key estimate from Lemma 8.1,
we get that

µ(RHD) .A,τ ε
1/8
0 µ(R0).

Therefore, all that remains is to show (8.5).

78



8. Small measure of cubes from HD

Let j ∈ J, y ∈ Π0(Bj). Since |y − Π0(xj)| ≤ r(Bj) ≤ r(BQj) and Π0(xj) ∈
Π0(BQj ), we have B(y, 25r(BQj )) ⊃ Π0(10BQj ). Clearly, for some C = C(n) >
0

M(f − c0)(y) ≥ C

r(BQj)n
Π∗ν(B(y, 25r(BQj)))− c0

≥ C

r(BQj)n
Π∗ν(Π0(10BQj))− c0 ≥

C

r(BQj)n
ν(10BQj)− c0. (8.6)

Recall that by (II.3.8) and Remark 3.5 we have

c0 . 1.

Thus, if we show that ν(10BQj) & Ar(BQj)n, for A big enough we will have
M(f − c0)(y) > 1, and so we will be done.

Let us define
λ(z) = (r(10BQj)− |z − zQj |)+.

Note that λ is 1-Lipschitz and that supp(λ) ⊂ 10BQj ⊂ 2.5B0. Moreover,

7r(BQj)13BQj ≤ λ ≤ 10r(BQj)110BQj .

Note that r(BQj) & d(zQj). We get that

r(BQj)ν(10BQj) &
∫
λ(z) dν(z)

(7.23)
≥

∫
λ(z) dµ(z)− C(A, τ)

(
ε

1/4
0 r(BQj)n+1 + ε

1/2
0

∑
3Bk∩10BQj 6=∅

rn+1
k

)
≥ 7r(BQj)µ(3BQj)− C(A, τ)

(
ε

1/4
0 r(BQj)n+1 + ε

1/2
0

∑
3Bk∩10BQj 6=∅

rn+1
k

)
.

Note that for all k such that 3Bk∩10BQj 6= ∅ we have rk .A,τ r(BQj ). Indeed,
for x ∈ 10BQj it holds that d(x) .A,τ r(BQj), and for x ∈ 3Bk we have
rk ≤ d(x) by Lemma 7.1 (c). Moreover, since the balls Π0(3Bk) are of bounded
intersection by Lemma 7.1 (b), we get∑

3Bk∩10BQj 6=∅
rnk ≤

∑
Π0(3Bk)∩Π0(10BQj )6=∅

rnk .A,τ r(BQj)n.

Hence, using the above and the fact that Qj ∈ HD

r(BQj)ν(10BQj) & r(BQj)µ(3BQj)− C(A, τ)ε1/4
0 r(BQj)n+1

&Ar(BQj)n+1 − C(A, τ)ε1/4
0 r(BQj)n+1 & Ar(BQj)n+1,

for ε0 small enough. Thus, ν(10BQj) & Ar(BQj)n and by (8.6) we get

M(f − c0)(y) > 1.
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8.1 Λ-estimates
The aim of this section is to prove the crucial estimate from Lemma 8.1, i.e.

‖f − c0‖2
L2(Hn|L0

) .A,τ ε
1/8
0 µ(R0). (8.7)

From now on we will denote by φ : Rd → R a radial C∞ function such that
φ ≡ 1 on B(0, 1/2), supp(φ) ⊂ B(0, 1), and

φr(x) = r−nφ
(
x

r

)
.

We also set
ψr(x) = φr(x)− φ2r(x).

A classical result of harmonic analysis (see [Ste93, Sections I.6.3, I.8.23])
states that

‖f − c0‖2
L2(Hn|L0

) ≈
∫
L0

∫ ∞
0
|ψr ∗ Π∗ν(z)|2dr

r
dHn(z), (8.8)

and so we will work with the latter expression.
For r > 0 and x ∈ Rd let us define

ψ̃r(x) = ψr ◦ Π0(x) · φ
(
x

5r

)
.

Given a measure λ on Rd we set

Λλ(x, r) =
∣∣∣ψ̃r ∗ λ(x)

∣∣∣ .
Lemma 8.3. We have for all x ∈ Γ

Λν(x, r) = |ψr ∗ Π∗ν(Π0(x))|. (8.9)

Proof. By the definition of Λν , it suffices to show that for all x, y ∈ Γ we have

ψ̃r(x− y) = ψr(Π0(x)− Π0(y)).

Hence, by the definition of ψ̃r, we need to check that φ((5r)−1(x − y)) = 1
whenever ψr(Π0(x)− Π0(y)) 6= 0.

Since supp(ψr) ⊂ B(0, 2r), we get that |Π0(x)−Π0(y)| ≤ 2r. Thus, due to
the fact that Γ is a Cθ-Lipschitz graph, we have

|x− y| ≤ 2(1 + Cθ)r ≤ 5
2r.

Hence, y ∈ B(x, 5r/2), which gives φ((5r)−1(x− y)) = 1.
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The lemma above and the fact that Π0 is bilipschitz between Γ and L0
imply that∫

L0

∫ ∞
0
|ψr ∗ Π∗ν(z)|2dr

r
dHn(z) ≈

∫
L0

∫ ∞
0
|ψr ∗ Π∗ν(z)|2dr

r
dΠ∗σ(z)

=
∫

Γ

∫ ∞
0

Λν(x, r)2dr

r
dσ(x).

In consequence of (8.8) and the above, to prove Lemma 8.1 it suffices to
show that ∫

Γ

∫ ∞
0

Λν(x, r)2dr

r
dσ(x) .A,τ ε

1/8
0 µ(R0). (8.10)

We start with the following simple calculation.

Lemma 8.4. For x ∈ Γ we have

Λν(x, r) .A,τ αν(x, 2r). (8.11)

Moreover, for x ∈ Γ ∩ 2.5B0 and d(x) . r < ηr0 we have

Λµ(x, r) .A,τ αµ(3BQ), (8.12)

for some Q ∈ Tree such that B(x, 5r) ⊂ 3BQ and r ≈ `(Q).

Proof. First, we will prove (8.11). Let B = B(x, 2r), and LB, cB be the
minimizing plane and constant for αν(B). Using the fact that Λν(x, r) =
|ψr ∗ Π∗ν(Π0(x))| we get

Λν(x, r) =
∣∣∣∣∫ ψr(Π0(x)− Π0(y)) dν(y)

∣∣∣∣
≤
∣∣∣∣∫ ψr(Π0(x)− Π0(y)) d(ν − cBHn|LB)(y)

∣∣∣∣+∣∣∣∣∫ ψr(Π0(x)− Π0(y)) d(cBHn|LB)(y)
∣∣∣∣

. r−(n+1)FB(ν, cBHn|LB) + 0.

Hence, by n-AD-regularity of ν we arrive at

Λν(x, r) .A,τ αν(x, 2r).

Now, let us look at (8.12). Since x ∈ Γ ∩ 2.5B0 and d(x) . r < ηr0, we
may find Q ∈ Tree such that B(x, 5r) ⊂ 3BQ and `(Q) ≈A,τ r. We use the
fact that |∇ψ̃r| . r−n−1 and supp ψ̃r ⊂ B(x, 5r) to get

Λµ(x, r) ≤
∣∣∣∣∫ ψ̃r(x− y)d(µ− cQHn|LQ)

∣∣∣∣+ cQ

∣∣∣∣∫ ψ̃r(x− y)dHn|LQ
∣∣∣∣

≤ r−(n+1)FB(x,5r)(µ, cQHn|LQ) + cQ

∣∣∣∣∫ ψ̃r(x− y)dHn|LQ
∣∣∣∣

.A,τ αµ(3BQ) + cQ

∣∣∣∣∫ ψ̃r(x− y)dHn|LQ
∣∣∣∣ .
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We claim that the last integral above is equal to 0. To prove this, it suffices
to show that for x ∈ Γ and y ∈ LQ we have ψ̃r(x − y) = ψr(Π0(x) − Π0(y)),
because ∫

ψr(Π0(y)− Π0(x)) d(Hn|LQ)(y) = 0.

Since ψ̃r(x− y) = ψr(Π0(y)−Π0(x))φ((5r)−1(x− y)), we only have to check
that φ((5r)−1(x−y)) = 1 for Π0(y)−Π0(x) ∈ suppψr. In other words, knowing
that |Π0(y)− Π0(x)| ≤ 2r, we expect that |x− y| ≤ 5

2r.
Indeed, the fact that Γ is a Cθ-Lipschitz graph, that ](LQ, L0) ≤ θ,

|Π0(y)− Π0(x)| ≤ 2r, and Lemma 6.3, imply

|Π⊥0 (y)− Π⊥0 (x)| .A,τ θr.

Hence,
|x− y| ≤ 2r + C(A, τ)θr ≤ 5

2r,

as expected.

Before we proceed, let us state the following auxiliary result. Recall that
given a ball B, z(B) denotes the center of B.

Lemma 8.5 ([ATT20, Lemma 6.11]). Let B be a ball centered on an ε-Lipschitz
graph Γ, and f a function such that

‖f − f(z(B))‖L∞(3B∩Γ) . ε,

and f(x) ≈ 1 uniformly for x ∈ 3B ∩ Γ. Then
∫
B

∫ r(B)

0
αfσ(x, r)2dr

r
dσ(x) . ε2r(B)n,

where σ denotes the surface measure on Γ.

We split the area of integration from (8.10) into several pieces. We will
estimate each of them separately.

Lemma 8.6. For every k ∈ K we have
∫
Bk

∫ η2d(x)

0
|Λν(x, r)|2

dr

r
dσ(x) .A,τ ε0r

n
k .

Proof. By Lemma 7.1 (c) we know that for x ∈ Bk we have η2d(x) ≤ η1/2rk.
Hence,

∫
Bk

∫ η2d(x)

0
|Λν(x, r)|2

dr

r
dσ(x) ≤

∫
Bk

∫ η1/2rk

0
|Λν(x, r)|2

dr

r
dσ(x).
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Let g(x) = ∑
j∈K cjhj(x). Note that for x ∈ 3Bk ∩Γ we have h(x) = 1, due

to (7.7) and the definition of h (7.8). Thus, by Lemma 7.6,

|g(x)− ck| =
∣∣∣ ∑
j∈K

(cj − ck)hj(x)
∣∣∣ .A,τ

√
ε0
∑
j∈K

hj(x) = √ε0.

Hence, by (7.18), g(x) ≈A,τ 1. Since ν|3Bk = gσ|3Bk , and Γ ∩ 3Bk is a C√ε0-
Lipschitz graph by Lemma 7.3, we can apply Lemma 8.5 and get∫
Bk

∫ η1/2rk

0
|Λν(x, r)|2

dr

r
dσ(x)

(8.11)
.A,τ

∫
Bk

∫ η1/2rk

0
|αν(x, 2r)|2

dr

r
dσ(x) .A,τ ε0r

n
k .

(8.13)

Let M(Rd) denote the space of finite Borel measures on Rd.

Lemma 8.7 ([ATT20, Lemma 8.2]). For λ ∈M(Rd) we define

Tλ(x) =
(∫ ∞

0
Λλ(x, r)2 dr

r

)1/2

,

and for f ∈ L2(σ) set Tσf = T (fσ). Then Tσ is bounded in Lp(σ) for
1 < p < ∞, and T is bounded from M(Rd) to L1,∞(σ). Furthermore, the
norms ‖Tσ‖Lp(σ)→Lp(σ) and ‖T‖M(Rd)→L1,∞(σ) are bounded above by some abso-
lute constants depending only on p, n and d.

Lemma 8.8. We have∫
Γ∩2.4B0

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x) .A,τ ε

1/8
0 `(R0)n.

Proof. Since ν = (νB − hµ) + (hµ− µB) + µ, for each x ∈ Γ ∩ 2.4B0 we split∫ ηr0

η2d(x)
Λν(x, r)2 dr

r

.
∫ ηr0

η2d(x)
(ΛνB(x, r)− Λhµ(x, r))2 dr

r
+
∫ ηr0

η2d(x)
ΛµB−hµ(x, r)2 dr

r

+
∫ ηr0

η2d(x)
Λµ(x, r)2 dr

r
. (8.14)

Let
H =

{
x ∈ Γ ∩ 2.4B0 :

∫ ηr0

η2d(x)
ΛµB−hµ(x, r)2 dr

r
> ε

1/4
0

}
.

We divide our area of integration into two parts:∫
Γ∩2.4B0

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x) =∫

H

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x) +

∫
Γ∩2.4B0\H

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x) =: I1 + I2.

(8.15)
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III. A sufficient condition for rectifiability via W2

In order to estimate I1, note that for x ∈ 2.4B0 and r < ηr0 we have B(x, 5r) ⊂
2.5B0. Since supp ψ̃r ⊂ 5B(0, r) we get ΛµB−hµ(x, r) = Λ(µB−hµ)|2.5B0

(x, r).
Hence, by Lemma 8.7 applied to λ = (µB − hµ)

∣∣
2.5B0

σ(H) ≤ σ
({
x ∈ Γ : T

(
(µB − hµ)

∣∣
2.5B0

)
> ε

1/8
0

})
. ε

−1/8
0 (µB − hµ)(2.5B0).

Since h = 1 on 3B0 \ (RFar ∪RG) by Lemma 7.7, µB(RG) = (hµ)(RG) = 0 by
their definition and (7.7), and µ(RFar) is small by Lemma 4.6, we have

(µB − hµ)(2.5B0) ≤ µB(RFar) = µ(RFar) .A,τ ε
1/2
0 `(R0)n.

Thus, for ε0 small enough

σ(H) ≤ C(A, τ)ε−1/8
0 ε

1/2
0 `(R0)n ≤ ε

1/4
0 `(R0)n.

Now, consider the density q = dν|2.5B0
dσ

. Arguing as before we see that for
x ∈ 2.4B0 and r < ηr0 we have Λν(x, r) = Λqσ(x, r). By n-AD-regularity
of ν (Lemma 7.5) we get ‖q‖4

L4(σ) .A,τ σ(2.5B0) ≈ `(R0)n. Using the L4(σ)
boundedness of Tσ yields

I1 ≤
∫
H
|Tσq(x)|2 dσ(x) ≤ σ(H)1/2‖Tσ(q)‖2

L4(σ) .A,τ ε
1/8
0 `(R0)n. (8.16)

We move on to estimating I2. Observe that by the definition of H we have∫
Γ∩2.4B0\H

∫ ηr0

η2d(x)
ΛµB−hµ(x, r)2 dr

r
dσ(x) . ε

1/4
0 `(R0)n.

Thus, by (8.14),

I2 =
∫

Γ∩2.4B0\H

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x)

.
∫

Γ∩2.4B0

∫ ηr0

η2d(x)
(ΛνB(x, r)− Λhµ(x, r))2 dr

r
dσ(x) + ε

1/4
0 `(R0)n

+
∫

Γ∩2.4B0

∫ ηr0

η2d(x)
Λµ(x, r)2 dr

r
dσ(x) =: I21 + ε

1/4
0 `(R0)n + I22. (8.17)

To handle I22, we use (8.12) to get for x ∈ Γ ∩ 2.4B0.

∫ ηr0

η2d(x)
Λµ(x, r)2 dr

r
.η

∑
Q∈Tree
x∈3BQ

αµ(3BQ)2
(4.11)
.A,τ ε

2
0.

Hence,
I22 =

∫
Γ∩2.4B0

∫ ηr0

η2d(x)
Λµ(x, r)2 dr

r
dσ(x) . ε2

0`(R0)n. (8.18)
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8. Small measure of cubes from HD

Finally, we deal with the integral I21. Observe that, since ΛνB(x, r) −
Λhµ(x, r) = ψ̃r ∗ νB(x)− ψ̃r ∗ hµ(x), and |∇ψ̃r| . r−n−1, we have

|ΛνB(x, r)−Λhµ(x, r)|2 .
(
r−n−1FB(x,5r)(νB, hµ)

)2 (7.20)
.A,τ ε0

 ∑
3Bk∩B(x,5r)6=∅

rn+1
k

rn+1

2

.

Note that for k ∈ K such that 3Bk ∩B(x, 5r) 6= ∅, for η2d(x) < r < ηr0, and
for any y ∈ 3Bk ∩B(x, 5r), we have

rk
(7.3)
≤ d(y) ≤ d(x) + 5r ≤ (η−2 + 5)r. (8.19)

Thus, rk ≤ η−3r, and for some big C ′ = C ′(A, τ) we have Bk ⊂ C ′B0. It
follows by the Cauchy-Schwarz inequality, the fact that Bk are centered on Γ,
and that they are of bounded intersection, that ∑

3Bk∩B(x,5r)6=∅

rn+1
k

rn+1

2

≤

 ∑
3Bk∩B(x,5r)6=∅

rn+2
k

rn+2

 ∑
3Bk∩B(x,5r)6=∅

rnk
rn

 (8.20)

.
∑

3Bk∩B(x,5r)6=∅

rn+2
k

rn+2 . (8.21)

Together with the fact that rk ≤ η−3r this implies

I21 =
∫

Γ∩2.4B0

∫ ηr0

η2d(x)
(ΛνB(x, r)− Λhµ(x, r))2 dr

r
dσ(x)

. ε0

∫
Γ∩2.4B0

∫ ηr0

η2d(x)

∑
3Bk∩B(x,5r)6=∅

rn+2
k

dr

rn+3dσ(x)

= ε0
∑
k∈K

rn+2
k

∫
Γ∩2.4B0

∫ ηr0

η2d(x)
1B(x,5r)∩3Bk 6=∅(x) dr

rn+3dσ(x)

≤ ε0
∑

Bk⊂C′B0

rn+2
k

∫
Γ∩2.4B0

∫ ηr0

η3rk
1B(x,5r)∩3Bk 6=∅(x) dr

rn+3dσ(x).

Now, note that if B(x, 5r) ∩ 3Bk 6= ∅, then

x ∈ B(zk, 5r + 3rk)
(8.19)
⊂ B(zk, η−3r).

Hence,

I21 . ε0
∑

Bk⊂C′B0

rn+2
k

∫ ηr0

η3rk

∫
B(zk,η−3r)

dσ(x) dr

rn+3

. ε0
∑

Bk⊂C′B0

rn+2
k

∫ ηr0

η3rk

dr

r3

. ε0
∑

Bk⊂C′B0

rnk . ε0σ(C ′B0) . ε0`(R0)n.

Together with (8.15), (8.16), (8.17), and (8.18), this concludes the proof.
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III. A sufficient condition for rectifiability via W2

We are finally ready to complete the proof of (8.10). Let us split the area
of integration into four subsets:

A1 = {(x, r) : B(x, 2r) ∩ 2.3B0 = ∅},
A2 = {(x, r) : B(x, 2r) ∩ 2.3B0 6= ∅, r > ηr0},
A3 = {(x, r) : B(x, 2r) ∩ 2.3B0 6= ∅, η2d(x) < r ≤ ηr0},
A4 = {(x, r) : B(x, 2r) ∩ 2.3B0 6= ∅, 0 < r ≤ min(η2d(x), ηr0)},

we also set
Ii =

∫∫
Ai

Λν(x, r)2 dr

r
dσ(x).

Since ν|(2.3B0)c = c0Hn|L0∩(2.3B0)c by (7.12), for (x, r) ∈ A1 we have
Λν(x, r) = c0ΛHn|L0

(x, r) = 0,
and so I1 = 0.

Now let (x, r) ∈ A2. Since B(x, 2r) ∩ 2.3B0 6= ∅, r > ηr0, we have
|x− z0| ≤ 2r + 2.3r0 < η−2r,

so that r ≥ max(ηr0, η
2|x− z0|). It follows that

I2 ≤
∫

Γ

∫ ∞
max(ηr0, η2|x−z0|)

Λν(x, r)2 dr

r
dσ(x)

(8.11)
.A,τ

∫
Γ

∫ ∞
max(ηr0, η2|x−z0|)

αν(x, 2r)2 dr

r
dσ(x)

(7.25)
.A,τ ε

1/2
0 `(R0)2n

∫
Γ

∫ ∞
max(ηr0, η2|x−z0|)

dr

r2n+1dσ(x)

≈ ε
1/2
0 `(R0)2n

∫
Γ

1
max(r0, η|x− z0|)2n dσ(x)

≈ ε
1/2
0 `(R0)2n

(∫
Γ∩1.9B0

1
r2n

0
dσ(x) +

∫
Γ\1.9B0

1
|x− z0|2n

dσ(x)
)
≈ ε

1/2
0 `(R0)n,

where we used in the last line that Γ \ 1.9B0 = L0 \ 1.9B0, see Lemma 5.11.
Concerning (x, r) ∈ A3, note that necessarily x ∈ 2.4B0, and so by

Lemma 8.8

I3 ≤
∫

Γ∩2.4B0

∫ ηr0

η2d(x)
Λν(x, r)2 dr

r
dσ(x) .A,τ ε

1/8
0 `(R0)n.

Finally, for (x, r) ∈ A4, we only need to consider x such that d(x) > 0 and
x ∈ 2.4B0 ∩ Γ, and since all such x are contained in some Bk we get

I4 ≤
∫

Γ∩2.4B0

∫ η2d(x)

0
Λν(x, r)2 dr

r
dσ(x) ≤

∑
Bk∩2.4B0 6=∅

∫
Bk

∫ η2d(x)

0
Λν(x, r)2 dr

r
dσ(x)

Lemma 8.6
.A,τ

∑
Bk∩2.4B0 6=∅

ε0r
n
k ≈

∑
Bk∩2.4B0 6=∅

ε0σ(Bk)
Lemma 7.1

. ε0σ(CB0) ≈ ε0`(R0)n.

Putting together all the estimates above finishes the proof of (8.10) and
Lemma 8.1.
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9. Small measure of cubes from BA

9 Small measure of cubes from BA
We know by Lemma 4.6 that µ(RFar) .A,τ

√
ε0µ(R0). Thus, in order to estimate

the measure of ⋃Q∈BA Q, it suffices to bound the measure of

RBA =
⋃

Q∈BA
Q \RFar.

Lemma 9.1. We have

µ(RBA) .A θ
−2‖∇F‖2

L2 .

Proof. For every x ∈ RBA we define Bx = B(x, r(Qx)/100), where Qx ∈ BA is
such that x ∈ Qx. We use the 5r-covering theorem to choose {xi}i∈J such that
all Bxi are pairwise disjoint and ⋃i 5Bxi covers

⋃
x∈RBA Bx. Observe that

5Bxi ⊂ 3BQxi
. (9.1)

Set Bi = 1
2Bxi , Qi = Qxi , and let Pi ∈ Tree be the parent of Qi. We have

`(Pi) ≈ `(Qi) ≈ r(Bi). Since xi 6∈ RFar, we can use Lemma 6.5 to obtain

dist(xi,Γ) .A,τ

√
ε0d(xi) .

√
ε0`(Pi) ≈

√
ε0r(Bi).

Hence, for small ε0, we get that 1
4Bi ∩ Γ 6= ∅. It follows that for each i ∈ J we

can choose balls Bi,1, Bi,2 ⊂ Bi centered at Γ, with r(Bi,1) ≈ r(Bi,2) ≈ r(Bi),
and such that dist(Bi,1, Bi,2) & r(Bi). Then, for any points yk ∈ Bi,k ∩ Γ, k =
1, 2, we have

r(Bi) . |y1 − y2| . |Π0(y1)− Π0(y2)|. (9.2)
Since y1, y2 ∈ Γ ∩Bi ⊂ Γ ∩BPi , we have by Lemma 6.3

dist(yk, LPi) .A,τ

√
ε0`(Pi), k = 1, 2.

Let wk = ΠLPi
(yk). By the estimate above we have |yk − wk| .A,τ

√
ε0`(Pi).

Moreover, it is easy to see that wk ∈ BPi .
Since ](LQi , L0) > θ and Qi ∈ Tree0 by the definition of BA (4.2), `(Qi) ≈

`(Pi), and dist(Qi, Pi) = 0, we may use Lemma 5.2 with Qi, Pi to get

](LPi , L0) ≥ ](LQi , L0)− ](LPi , LQi) ≥ θ − C(A, τ)ε0 & θ.

Thus,

|F (Π0(y1))− F (Π0(y2))| = |Π⊥0 (y1)− Π⊥0 (y2)|

≥ |Π⊥0 (w1)− Π⊥0 (w2)| −
2∑

k=1
|yk − wk| & θ|Π0(w1)− Π0(w2)| −

2∑
k=1
|yk − wk|

≥ θ|Π0(y1)− Π0(y2)| − 2
2∑

k=1
|yk − wk|

(9.2)
& θr(Bi)− c(A, τ)√ε0r(Bi) & θr(Bi),
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III. A sufficient condition for rectifiability via W2

for ε0 small enough.
Now, denoting by mi the mean of F over the ball Π0(Bi), we have

|F (Π0(y1))− F (Π0(y2))| ≤ |F (Π0(y1))−mi|+ |F (Π0(y2))−mi|
≤ 2 max

k=1,2
|F (Π0(yk))−mi|.

Hence, the estimates above give us for some k ∈ {1, 2}

|F (Π0(yk))−mi| & θr(Bi). (9.3)

Since the estimate above holds for all points yk ∈ Bi,k ∩ Γ, and Π0(Bi,k ∩ Γ) ≈
r(Bi)n, we can use Poincaré’s inequality to get

r(Bi)2
∫

Π0(Bi)
|∇F (ξ)|2 dHn(ξ) &

∫
Π0(Bi)

|F (ξ)−mi|2 dHn(ξ) & θ2r(Bi)n+2

for all i ∈ J .
We claim that the n-dimensional balls {Π0(Bi)}i∈J are pairwise disjoint.

This follows easily by the fact that 2Bi = Bxi are pairwise disjoint, 1
4Bi∩Γ 6= ∅,

and Γ is a graph of a Lipschitz function with a small Lipschitz constant.
Hence, we may sum the inequality above over all i ∈ J to finally get

‖∇F‖2
L2 ≥

∑
i∈J

∫
Π0(Bi)

|∇F |2 dHn &
∑
i∈J

θ2r(Bi)n

(4.5)
& A−1θ2∑

i∈J
µ(3BQi)

(9.1)
&A θ

2∑
i∈J

µ(5Bxi) ≥ θ2µ(RBA).

To estimate ‖∇F‖L2 we will use a well-known theorem due to Dorronsoro.
We reformulate it slightly for the sake of convenience.

Theorem 9.2 ([Dor85, Theorem 2]). Let F : Rn → Rd−n be an L-Lipschitz
function, with L sufficiently small, and let Γ ⊂ Rd be the graph of F , and
σ = Hn|Γ. Then ∫

Γ

∫ ∞
0

βσ,1(x, r)2 dr

r
dσ ≈ ‖∇F‖2

L2 .

To estimate the integral above we split the area of integration into four
subfamilies:

A1 = {(x, r) : B(x, r) ∩ 1.9B0 = ∅},
A2 = {(x, r) : B(x, r) ∩ 1.9B0 6= ∅, r > 0.1r0},
A3 = {(x, r) : B(x, r) ∩ 1.9B0 6= ∅, η2d(x) ≤ r < 0.1r0},
A4 = {(x, r) : B(x, r) ∩ 1.9B0 6= ∅, r < min(η2d(x), 0.1r0)},
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9. Small measure of cubes from BA

we also set
Ii =

∫∫
Ai
βσ,1(x, r)2 dr

r
dσ(x).

Firstly, note that for (x, r) ∈ A1 we have B(x, r) ∩ Γ = B(x, r) ∩ L0 because
supp(F ) ⊂ 1.9B0, and so

I1 = 0. (9.4)

Lemma 9.3. We have
I2 .A,τ ε

1/2
0 `(R0)n.

Proof. Let (x, r) ∈ A2. Observe that since σ ≈A,τ ν, we have

βσ,1(x, r) ≈A,τ βν,1(x, r)
(II.3.5)
. αν(x, 2r)

(7.25)
.A,τ ε

1/4
0
`(R0)n
rn

.

Note that if B(x, r) ∩ 1.9B0 6= ∅, then necessarily x ∈ B(z0, 1.9r0 + r) ⊂
B(z0, 20r). Hence,

I2 ≤
∫ ∞

0.1r0

∫
B(z0,20r)

βσ,1(x, r)2 dσ
dr

r
.A,τ ε

1/2
0

∫ ∞
0.1r0

∫
B(z0,20r)

`(R0)2n

r2n+1 dσdr

. ε
1/2
0

∫ ∞
0.1r0

`(R0)2n

rn+1 dr ≈ ε
1/2
0 `(R0)n.

Lemma 9.4. We have
I3 .A,τ ε0`(R0)n.

Proof. Let (x, r) ∈ A3. Since B(x, r) ∩ 1.9B0 6= ∅ and η2d(x) ≤ r < 0.1r0, it
is clear that B(x, 2r) ⊂ 2.1B0 and we may find a cube P = P (x, r) ∈ Tree such
that B(x, 2r) ⊂ 3BP and r ≈ `(P ). We will estimate the average distance of
B(x, r) ∩ Γ to LP .

Bounding the part corresponding to B(x, r) ∩RG ⊂ 3BP ∩RG is straight-
forward: Lemma 5.5 states that dµ|RG = g dHn|RG with g ≈A,τ 1, and so
∫
B(x,r)∩RG

dist(y, LP )
r

dσ(y) .A,τ

∫
3BP∩RG

dist(y, LP )
`(P ) dµ(y)

.A,τ

∫
3BP∩RG

(
dist(y, LP )

`(P )

)2

dµ(y)
1/2

`(P )n/2 .τ βµ,2(3BP )`(P )n. (9.5)

Dealing with the part outside of RG is a bit more delicate. By (7.7) and
the definition of functions hk (7.8),∫

B(x,r)\RG

dist(y, LP )
r

dσ(y) =
∑
k∈K

∫
B(x,r)

dist(y, LP )
r

hk(y) dσ(y)

(7.18)
≈A,τ

∑
k∈K

∫
B(x,r)

dist(y, LP )
r

ckhk(y) dσ(y) =
∫
B(x,r)

dist(y, LP )
r

dνB(y).
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III. A sufficient condition for rectifiability via W2

Consider the 1-Lipschitz function Φ(y) = ψ(y) dist(y, LP ), where ψ is r−1-
Lipschitz, ψ ≡ 1 on B(x, r), |ψ| ≤ 1, and supp(ψ) ⊂ B(x, 2r).

∫
B(x,r)

dist(y, LP )
r

dνB(y) ≤
∫
B(x,2r)

ψ(y) dist(y, LP )
r

dνB(y)

≤
∫
B(x,2r)

ψ(y) dist(y, LP )
r

h(y) dµ(y) + r−1
∣∣∣∣∣
∫
B(x,2r)

Φ(y) d(νB − hµ)(y)
∣∣∣∣∣

Since |ψ|, |h| ≤ 1, the first term on the right hand side above can be
bounded by βµ,2(3BP )`(P )n, just as in (9.5). Concerning the second term,

r−1
∣∣∣∣∣
∫
B(x,2r)

Φ(y) d(νB − hµ)(y)
∣∣∣∣∣ (7.20)
.A,τ

√
ε0r
−1 ∑

3Bk∩B(x,2r) 6=∅
rn+1
k

Gathering all the calculations above we get that

βσ,1(x, r)2 .A,τ βµ,2(3BP )2 + ε0

 ∑
3Bk∩B(x,2r)6=∅

rn+1
k

rn+1


2

. (9.6)

Integrating the first term over A3, since each P (x, r) has sidelength comparable
to r and dist(P (x, r), x) .A,τ r, it is easy to see that

∫∫
A3
βµ,2(3BP (x,r))2 dr

r
dσ .A,τ

∑
P∈Tree

βµ,2(3BP )2`(P )n
(4.10)
.A,τ ε

2
0`(R0)n.

Moving on to the second term from (9.6), note that if y ∈ 3Bk ∩B(x, 2r) 6=
∅, then by (7.3) we have rk ≤ d(y) ≤ 2r + d(x) ≤ (2 + η2)r. Thus, following
calculations from the proof of Lemma 8.8 (more precisely (8.19) and onwards),
we get that

ε0

∫∫
A3

 ∑
3Bk∩B(x,2r)6=∅

rn+1
k

rn+1


2
dr

r
dσ .A,τ ε0`(R0)n.

Hence, I3 .A,τ ε0`(R0)n.

Lemma 9.5. We have
I4 . ε0`(R0)n.

Proof. Let (x, r) ∈ A4, so that η2d(x) ≥ r > 0. It follows by (7.7) that x ∈ Bk

for some k ∈ K. Then,

r ≤ η2d(x)
(7.3)
≤ η1/2rk.

90



9. Small measure of cubes from BA

Note also that x ∈ 2B0. Thus,

I3 ≤
∑

Bk∩2B0 6=∅

∫
Bk

∫ η1/2rk

0
βσ,1(x, r)2 dr

r
dσ(x)

Lemma 7.5≈A,τ
∑

Bk∩2B0 6=∅

∫
Bk

∫ η1/2rk

0
βν,1(x, r)2 dr

r
dσ(x)

(II.3.5)
.

∑
Bk∩2B0 6=∅

∫
Bk

∫ η1/2rk

0
αν(x, 2r)2 dr

r
dσ(x)

(8.13)
.A,τ

∑
Bk∩2B0 6=∅

ε0r
n
k . ε0`(R0)n.

Putting together the estimates for I1, I2, I3 and I4, we get that∫
Γ

∫ ∞
0

βσ,1(x, r)2 dr

r
dσ .A,τ

√
ε0`(R0)n ≈ √ε0µ(R0).

Thus, Lemma 9.1 and Theorem 9.2 give us

µ(RBA) .A,τ,θ

√
ε0µ(R0).

Taking into account the estimates for other stopping cubes, we arrive at

µ

 ⋃
Q∈Stop

Q

 <
µ(R0)

2 .

Thus, µ(RG) ≥ 0.5µ(R0), and since RG is a subset of the Lipschitz graph Γ
and µ|RG is n-rectifiable, the proof of Lemma 3.1 is finished.
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Necessary condition for rectifiability involving
Wasserstein distance W2 IV

1 Introduction
The aim of this chapter is to prove a necessary condition for rectifiability
involving the α2 coefficients. The complete definition was given in Subsection
I.6.3, now let us fix the notation specific to this chapter: for 1 ≤ p < ∞, a
Radon measure µ on Rd, a ball B = B(x, r) ⊂ Rd with µ(B) > 0, and an
n-plane L intersecting B, we define

αµ,p,L(B) = 1
r µ(B)1/pWp(ϕBµ, aB,LϕBHn|L), (1.1)

where ϕB is a “regularized characteristic function”, and

aB,L =
∫
ϕB dµ∫

ϕB dHn|L
.

We will usually omit the subscripts and just write a. We define also

αµ,p(B) = inf
L
αµ,p,L(B),

where the infimum is taken over all n-planes L intersecting B. For a ball
B = B(x, r) we will sometimes write αµ,p(x, r) instead of αµ,p(B).

Our goal is to show the following.

Theorem 1.1. Let µ be an n-rectifiable measure on Rd. Then for µ-a.e.
x ∈ Rd ∫ 1

0
αµ,2(x, r)2 dr

r
<∞. (1.2)
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IV. A necessary condition for rectifiability via W2

Remark 1.2. Note that in this chapter we chose the normalizing factor µ(B).
However, in this case it is not really important: for rectifiable measure µ the
density Θn(µ, x) exists, and is positive and finite, for µ-a.e. x. Thus, the
condition (1.2) satisfied by α2 numbers normalized by µ(B) is equivalent to
that same condition satisfied by r−n or µ(3B)-normalized α2 numbers.

In Theorem III.1.4 we showed that (1.2) is also a sufficient condition for
rectifiability (we used a different normalization of α2, but it does not matter,
see Remark 1.5). Putting the two results together, we get the following
characterization.

Corollary 1.3. Let µ be a Radon measure on Rd. Then µ is n-rectifiable if
and only if for µ-a.e. x ∈ Rd we have∫ 1

0
αµ,2(x, r)2 dr

r
<∞.

Remark 1.4. The characterization above is sharp in the following sense.
Suppose 1 ≤ p ≤ q < ∞. Then it follows easily by Hölder’s inequality,
definition of αp numbers, and the fact that suppϕB ⊂ 3B, that

αµ,p(B) ≤
(
µ(3B)
µ(B)

)1/p−1/q

αµ,q(B).

Hence, for doubling measures, αp numbers are increasing in p. It is well known
that rectifiable measures are pointwise doubling, i.e.

lim sup
r→0+

µ(B(x, 2r))
µ(B(x, r)) <∞ for µ-a.e. x ∈ Rd,

and so the finiteness of α2 square function (1.2) implies finiteness of αp square
function for any 1 ≤ p ≤ 2. However, in general one cannot expect finiteness
of αp square function for p > 2, see Remark 1.6. In other words, Theorem 1.1
cannot be improved.

Remark 1.5. For technical reasons, in Chapter III we defined αp numbers
normalizing by µ(3B) (i.e. in (1.1) we replace µ(B) with µ(3B)). Of course,
the 3B-normalized coefficients are smaller than the B-normalized variant used
here. Hence, if (1.2) is finite for B-normalized α2 numbers, then it is finite
for 3B-normalized α2 numbers, and so Theorem III.1.4 may be applied to get
Corollary 1.3.

Remark 1.6. The example from [Tol19] shows that one cannot expect finite-
ness of the αp square function when p > 2. Indeed, it is easy to see that αp
numbers bound from above βp numbers (see Lemma II.3.2, the same proof
works with arbitrary 1 ≤ p < ∞). Tolsa gave an example of a rectifiable
measure such that for all p > 2 the square function involving βp in infinite
almost everywhere. Hence, the αp square function of that measure is also
infinite almost everywhere.
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1. Introduction

Theorem 1.1 yields an easy corollary involving bilateral β numbers. Set

bβµ,2(x, r)2 = inf
L

1
rn

∫
B(x,r)

(
dist(y, L)

r

)2

dµ(y)

+ 1
rn

∫
B(x,r)

(
dist(y, suppµ)

r

)2

dHn|L(y).

As shown in Lemma II.3.4, if a ball B(x, r) satisfies µ(B(x, r)) ≈ rn, then
αµ,2(x, r) bound from above bβµ,2(x, r). Since for n-rectifiable measure µ we
have 0 < Θn(µ, x) <∞ µ-almost everywhere, we immediately get the following.

Corollary 1.7. Let µ be an n-rectifiable measure on Rd. Then for µ-a.e.
x ∈ Rd we have ∫ 1

0
bβµ,2(x, r)2 dr

r
<∞.

1.1 Localizing Theorem 1.1 and Organization of the
Paper

Theorem 1.1 follows easily from the following lemma.

Lemma 1.8. Let µ be an n-rectifiable measure on Rd, and let Γ ⊂ Rd be an
n-dimensional 1-Lipschitz graph. Suppose R ∈ DΓ with `(R) = 1 (see (2.2) for
the defintion of DΓ). Then, for any 0 < ε < 1, there exists a set R′ ⊂ R such
that µ(R′) ≥ (1− ε)µ(R) and

∫
R′

∫ 1

0
αµ,2(x, r)2 dr

r
dµ(x) <∞. (1.3)

Proof of Theorem 1.1 using Lemma 1.8. Let µ be n-rectifiable. It is well known
that in the definition of rectifiability (Definition I.1.1) one may replace Lipschitz
images by Lipschitz graphs, or by C1 manifolds, see e.g. [Mat95, Theorem
15.21]. Each C1 manifold is contained in a countable union of (possibly rotated)
Lipschitz graphs Γ with Lip(Γ) ≤ 1. Hence, there exists a countable family of
n-dimensional 1-Lipschitz graphs Γi such that

µ
(
Rd \

⋃
i

Γi
)

= 0.

Each Γi is a countable union of dyadic Γi-cubes Rj
i ∈ DΓi satisfying `(R

j
i ) = 1.

Clearly, µ(Rd \ ⋃i,j Rj
i ) = 0.

Now, denote the set of x where (1.2) does not hold by B, and suppose that
µ(B) > 0. Then, there exists Rj

i such that µ(B ∩Rj
i ) > 0. Let ε > 0 be such

that µ(B ∩ Rj
i ) > 2εµ(Rj

i ). Applying Lemma 1.8 to Rj
i and ε as above we

reach a contradiction. Thus, µ(B) = 0.
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IV. A necessary condition for rectifiability via W2

The rest of the article is dedicated to proving Lemma 1.8. Let us give a
brief outline of the proof.

We introduce the necessary tools in Section 2. In Section 3 we show various
estimates of α2 coefficients, usually relying heavily on the results from [Tol12].
In Section 4 we define a family of measures {νQ}Q∈DΓ , where νQ � Hn|Γ,
and each νQ approximates µ in some ball around Q. Roughly speaking, νQ
is defined by projecting the measure of Whitney cubes onto the graph Γ –
but only those Whitney cubes whose sidelength is not much bigger than `(Q).
Then, we construct a tree of good cubes satisfying∑

Q∈Tree
ανQ,2(B̃Q)2`(Q)n <∞,

where B̃Q are balls with the same center as the corresponding cube Q. The
stopping region of the tree of good cubes is small. In Section 5 we use the
estimate above to show that actually∑

Q∈Tree
αµ,2(B̃Q)2`(Q)n <∞.

Using the inequality above, we prove (1.3) with R′ = R \ ⋃Q∈Stop(Tree) Q. This
finishes the proof of Lemma 1.8.

2 Preliminaries

2.1 Notation
For a Borel measure ν on Rd and a Borel map T : Rd → Rd, we denote by T∗ν
the pushforward of ν, that is, a measure on Rd such that for all Borel A ⊂ Rd

T∗ν(A) = ν(T−1(A)).

In expressions of the form Wp(µ1, aµ2), the letter a will always mean the
unique constant for which the total mass of aµ2 is equal to that of µ1. In other
words,

a = µ1(Rd)
µ2(Rd) .

It may happen that a appears in the same line several times, and every time
refers to a different quantity. We hope that this will not cause too much
confusion.

Let us once and for all fix a measure µ, an n-dimensional 1-Lipschitz graph
Γ, and a constant 0 < ε < 1 for which we are proving Lemma 1.8. We fix
also a coordinate system such that Γ = {(x,A(x)) : x ∈ Rn} ⊂ Rd, where
A : Rn → Rd−n is a 1-Lipschitz map.
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2. Preliminaries

We will denote by L0 the subspace of Rd formed by the points whose last
d − n coordinates are zeros, so that Γ is a graph over L0. We will write Π0
and ΠΓ to denote projections onto L0 and Γ, respectively, orthogonal to L0.
For the sake of convenience, instead of dealing with the usual surface measure
on Γ we will work with

σ = (ΠΓ)∗Hn|L0
,

which is comparable to Hn|Γ (note that for x ∈ Γ we have σ(B(x, r)) ≈ rn).
Given a ball B ⊂ Rd centered at Γ denote by LB an n-plane minimizing

ασ,2(B) (note that for an open ball B, it could happen that LB ∩ B = ∅).
Concerning the existence of minimizers, it follows easily from the fact that W2
metrizes weak convergence of measures (see e.g. [Vil08, Theorem 6.9]), from
good compactness properties of weak convergence, and from the fact that the
minimizing sequence is of the special form ϕBaB,LkHn|Lk . There may be more
than one minimizing plane; if that happens, we simply choose one of them.

For any Radon measure ν such that ν(B) > 0 we set

α̂ν,2(B) = αν,2,LB(B).

Clearly, α̂ν,2(B) ≥ αν,2(B). We will show that∫
R′

∫ 1

0
α̂µ,2(x, r)2 dr

r
dµ(x) <∞, (2.1)

which implies (1.3).

2.2 Γ-cubes
We denote by DRn ,DRd the dyadic lattices on L0 and Rd, respectively. We
assume the cubes to be half open-closed, i.e. of the form

Q =
[
k1

2j ,
k1 + 1

2j

)
× · · · ×

[
ki
2j ,

ki + 1
2j

)
,

where i = n for DRn , i = d for DRd , and k1, . . . , ki, j, are arbitrary integers.
The sidelength of Q as above will be denoted by `(Q) = 2−j.

The dyadic lattice on Γ is defined as

DΓ = {ΠΓ(Q0) : Q0 ∈ DRn}. (2.2)

The elements of DΓ will be called Γ-cubes, or just cubes. For every Q ∈ DΓ and
the corresponding Q0 ∈ DRn we define the sidelength of Q as `(Q) = `(Q0),
and the center of Q as zQ = ΠΓ(zQ0), where zQ0 is the center of Q0. We set

BQ = B(zQ, 3 diam(Q)),
B̃Q = ΛBQ,
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IV. A necessary condition for rectifiability via W2

where Λ = Λ(n) > 1 is a constant fixed during the proof. We define also

ϕQ = ϕBQ ,

LQ = LBQ ,

V (Q) = {x ∈ Rd : ΠΓ(x) ∈ Q}.

Recall that LBQ is the n-plane minimizing ασ,2(BQ), and that ϕBQ was defined
in (I.6.8). The “V ” in V (Q) stands for “vertical”, since V (Q) is a sort of
vertical cube. Note also that Q ⊂ BQ ⊂ B̃Q and r(BQ) ≈ `(Q).

Given P ∈ DΓ, we will write DΓ(P ) to denote the family of Q ∈ DΓ such
that Q ⊂ P .

Remark 2.1. Let us fix R ∈ DΓ with `(R) = 1 for which we are proving
Lemma 1.8. Note that for x ∈ R and 0 < r < 1 computing αµ,2(x, r) involves
only µ|B, where B is some ball containing R. Thus, when proving (2.1), we
may and will assume that µ is a finite, compactly supported measure.

For every e ∈ {0, 1}n consider the translated dyadic grid on L0

De
Rn = 1

3(e, 0 . . . , 0) + DRn ,

and the corresponding translated dyadic grid on Γ

De
Γ = {ΠΓ(Q) : Q ∈ De

Rn}.

Let us also define the translated dyadic lattice on Rd

De
Rd = 1

3(e, 0, . . . , 0) + DRd .

The union of all translated dyadic grids on Γ will be called an extended grid
on Γ:

D̃Γ =
⋃

e∈{0,1}n
De

Γ.

For each Q ∈ D̃Γ we define BQ, ϕQ etc. in the same way as for Q ∈ DΓ.
The main reason for introducing the extended grid is to use a variant of the

well-known one-third trick, which was already used in this context by Okikiolu
[Oki92].

Lemma 2.2. There exists k0 = k0(n,Λ) > 0 such that for every Q ∈ DΓ with
`(Q) ≤ 2−k0 there exists PQ ∈ D̃Γ satisfying `(PQ) = 2k0`(Q) and 3B̃Q ⊂
V (PQ).

Proof. First, we remark that for every j ≥ 0 and for every x ∈ L0 there exists
e ∈ {0, 1}n and P ∈ De

Rn with `(P ) = 2−j and x ∈ 2
3P . For a nice proof of this

fact see [Ler03, Section 3].
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2. Preliminaries

Now, consider the point Π0(zQ). If we take P ∈ De
Rn with `(P ) = 2k0`(Q)

such that Π0(zQ) ∈ 2
3P , we see that the n-dimensional ballBn(Π0(zQ), 9Λ diam(Q))

is contained in P as soon as 2k0
3 `(Q) ≥ 9Λ diam(Q).

It follows that for PQ ∈ De
Γ such that Π0(PQ) = P we have 3B̃Q ⊂

V (PQ).

It may happen that the cube PQ ∈ D̃Γ from the lemma above is not
unique, so let us just fix one for each Q ∈ DΓ. The direction e ∈ {0, 1}n
such that PQ ∈ De

Γ will be denoted by e(Q), and the integer k such that
`(PQ) = 2k0`(Q) = 2−k will be denoted by k(Q).

We will use later on the fact that

9 diam(Q) ≤ 2k0`(Q) = 2−k(Q). (2.3)

2.3 Whitney cubes
A very useful tool for approximating the measure µ close to Γ are Whitney
cubes. For each e ∈ {0, 1}n we consider the decomposition of Rd \ Γ into
a family We of Whitney dyadic cubes from De

Rd . That is, the elements of
We ⊂ De

Rd are pairwise disjoint, their union equals Rd \ Γ, and there exist
dimensional constants K > 20, D0 ≥ 1 such that for every Q ∈ We

a) 10Q ⊂ Rd \ Γ,

b) KQ ∩ Γ 6= ∅,

c) there are at most D0 cubes Q′ ∈ We such that 10Q ∩ 10Q′ 6= ∅. Fur-
thermore, for such cubes Q′ we have `(Q′) ≈ `(Q).

For the proof see [Ste70, Chapter VI, §1] or [Gra14a, Appendix J]. Moreover, it
is not difficult to construct Whitney cubes in such a way that if y ∈ Γ, Q ∈ We

and B(y, r) ∩Q 6= ∅, then
diam(Q) ≤ r,

Q ⊂ B(y, 3r),
(2.4)

see [Tol15, Section 2.3] for details. We set

We
k = {Q ∈ We : `(Q) ≤ 2−k},

and also, for every Q ∈ DΓ satisfying `(Q) ≤ 2−k0 ,

WQ =We(Q)
k(Q).

Remark 2.3. It follows immediately from the definition of k(Q) that if
P ∈ WQ, then

`(P ) ≤ 2−k(Q) = 2k0`(Q).
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IV. A necessary condition for rectifiability via W2

2.4 Constants and Parameters
For reader’s convenience, we collect here all the constants that appear in
the proof. We indicate what depends on what, and when each constant gets
fixed. As usually, the notation “C1 = C1(C2)” means that C1 is a constant
whose precise value depends on some parameter C2. An absolute constant is a
constant that does not depend on any other parameter.

Recall that the measure µ, the Lipschitz graph Γ, and the constant 0 < ε < 1
were fixed at the very beginning, in Subsection 2.1, and also that Lip(Γ) ≤ 1.
Moreover, in Remark 2.1 we fixed R ∈ DΓ with `(R) = 1, and without loss of
generality we assumed that µ is finite and compactly supported.

• Λ is an absolute constant from the definition of B̃Q = ΛBQ, it is fixed in
(5.2) (actually, one can take Λ = 9

√
2);

• k0 = k0(n,Λ) is an integer from Lemma 2.2;

• ε0 = ε0(n) is the constant from Lemma 3.1;

• K and D0 are dimensional constants from the definition of Whitney
cubes;

• λ = λ(k0, K, n, d) > 3 is fixed in Lemma 5.1, more precisely in equation
(5.1) (one can choose e.g. λ = C(n, d)K 2k0);

• M = M(ε, λ,Λ, n, d, µ) > 100 is chosen in Lemma 4.2.

3 Estimates of α2 coefficients
Recall that Γ is an n-dimensional 1-Lipschitz graph that was fixed in Subsection
2.1, σ = (ΠΓ)∗Hn|L0

, and that LQ is the plane minimizing ασ,2(BQ). The next
lemma states that Γ-cubes Q whose best approximating planes LQ form big
angle with L0 have large α2 numbers. In consequence, there are very few cubes
of this kind (in fact, they form a Carleson family).

Lemma 3.1. There exists ε0 = ε0(n) > 0 such that for every Q ∈ D̃Γ with
](LQ, L0) > 1− ε0 we have

ασ,2(BQ) & 1.

Proof. Suppose Q ∈ D̃Γ. Take xk ∈ 0.5BQ ∩ Γ, k = 1, . . . , n, such that
|xk− zQ| = 0.5r(BQ), and the vectors {Π0(xk− zQ)}k form an orthogonal basis
of L0. Set B0 = B(zQ, ηr(BQ)), Bk = B(xk, ηr(BQ)), where η = η(n) < 0.01
is a small dimensional constant that will be chosen later. Clearly, for all
k = 0, . . . , n we have Bk ⊂ BQ.
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3. Estimates of α2 coefficients

If LQ does not intersect one of the balls, say Bk, then by Lemma II.3.2

ασ,2(BQ)2r(BQ)n+2 &
∫
BQ

dist(x, LQ)2 dσ

≥
∫

1
2Bk

dist(x, LQ)2 dσ & ηn+2r(BQ)n+2.

Now suppose that LQ intersects all Bk. Then, since Bk are all centered at
Γ, Γ is 1-Lipschitz, and xk were chosen appropriately, it is easy to see that for
η = η(n) and ε0 = ε0(n) small enough we have ](LQ, L0) ≤ 1− ε0.

The following two lemmas will let us compare α2 coefficients at similar
scales, so that we can pass from the integral form of α2 square function (1.2)
to its dyadic variant.

Lemma 3.2 ([Tol12, Lemma 5.3]). Let ν be a finite measure supported inside
the ball B′ ⊂ Rd. Let B ⊂ Rd be another ball such that 3B ⊂ B′, with
r(B) ≈ r(B′) and ν(B) ≈ ν(B′) ≈ r(B)n. Let L be an n-plane which intersects
B and let f : L→ [0, 1] be a function such that f ≡ 1 on 3B, f ≡ 0 on L \B′.
Then

W2(ϕBν, aϕBHn|L) . W2(ν, afHn|L).

Recall that α̂µ,2(B) = αµ,2,LB(B).

Lemma 3.3. Let ν be a Radon measure on Rd, B1, B2 ⊂ Rd be balls centered
at Γ with 3B1 ⊂ B2, r(B1) ≈ r(B2), ν(B1) ≈ ν(3B2) ≈ r(B2)n. Then we have

α̂ν,2(B1) . α̂ν,2(B2) + ασ,2(B2). (3.1)

Proof. We begin by noting that since ν(3B1) . ν(B1), we have α̂ν,2(B1) . 1.
As a result, it suffices to prove the lemma under the assumption ασ,2(B2) ≤ δ
for some small constant δ > 0 which will be fixed later on.

For brevity of notation set ϕi = ϕBi , Li = LBi for i = 1, 2. We want to
apply Lemma 3.2 with B = B1, B

′ = 3B2, ν = ϕ2ν, L = L2, f = ϕ2|L. What
needs to be checked is that B1 ∩ L2 6= ∅. If this intersection were empty, we
would have by Lemma II.3.4

ασ,2(B2)2r(B2)n+2 &
∫
B2

dist(x, L2)2 dσ ≥
∫
B1

dist(x, L2)2 dσ

≥
∫

1
2B1

1
2r(B1)2 dσ ≈ r(B1)n+2 ≈ r(B2)n+2.

Thus, if B1 ∩ L2 = ∅, then ασ,2(B2) & 1 and we arrive at a contradiction with
ασ,2(B2) ≤ δ for δ small enough.

So the assumptions of Lemma 3.2 are met and we get

W2(ϕ1ν, aϕ1Hn|L2
) . W2(ϕ2ν, aϕ2Hn|L2

). (3.2)
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IV. A necessary condition for rectifiability via W2

Similarly, taking ν = ϕ2σ and B = B1, B
′ = 3B2, L = L2, f = ϕ2|L it

follows that
W2(ϕ1σ, aϕ1Hn|L2

) . W2(ϕ2σ, aϕ2Hn|L2
). (3.3)

Using the triangle inequality, the scaling of W2, the fact that L1 minimizes
ασ,2(B1), and the inequalities above, we arrive at

W2(ϕ1ν, aϕ1Hn|L1
) ≤ W2(ϕ1ν, aϕ1Hn|L2

)

+
(∫

ϕ1 dν∫
ϕ1 dσ

)1/2 (
W2(ϕ1σ, aϕ1Hn|L1

) +W2(ϕ1σ, aϕ1Hn|L2
)
)

L1 minimizer
. W2(ϕ1ν, aϕ1Hn|L2

) +
(
ν(3B1)
r(B1)n

)1/2

W2(ϕ1σ, aϕ1Hn|L2
)

. W2(ϕ1ν, aϕ1Hn|L2
) +W2(ϕ1σ, aϕ1Hn|L2

)
(3.2),(3.3)

. W2(ϕ2ν, aϕ2Hn|L2
) +W2(ϕ2σ, aϕ2Hn|L2

). (3.4)

Dividing both sides by r(B1)1+n/2 yields

α̂ν,2(B1) . α̂ν,2(B2) + ασ,2(B2).

For technical reasons we define a modified version of α2 coefficients. For
any Q ∈ D̃Γ set

α̃ν,2(Q) =

1 if ](LQ, L0) > 1− ε0,

`(Q)−(1+n
2 )W2(ψQν, aψQHn|LQ) otherwise,

where ε0 is as in Lemma 3.1, and

ψQ = 1V (Q),

a =
∫
ψQ dν∫

ψQ dHn|LQ
.

Recall that σ = (ΠΓ)∗Hn|L0
≈ Hn|Γ.

Lemma 3.4. Let ν � σ, B ⊂ Rd be a ball, Q ∈ D̃Γ. Suppose they satisfy
3B ⊂ V (Q) ∩BQ, r(B) ≈ `(Q), ν(B) ≈ ν(Q) ≈ `(Q)n. Then

α̂ν,2(B) .ε0 α̃ν,2(Q) + ασ,2(BQ).

Proof. Since ν(B) > 0 and supp ν ⊂ Γ, we certainly have σ(3B) ≈ r(B)n.
Moreover, our assumptions imply that ν(3B) ≈ ν(B), and so α̂ν,2(B) . 1.
Thus, we may argue in the same way as in the beginning of the proof of
Lemma 3.3 to conclude that, without loss of generality, LQ ∩B 6= ∅. Similarly,
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3. Estimates of α2 coefficients

we may assume that ](LQ, L0) ≤ 1 − ε0, because otherwise it would follow
from Lemma 3.1 that ασ,2(BQ) is big.

Now, since ](LQ, L0) ≤ 1 − ε0, we get that V (Q) ∩ LQ ⊂ κBQ for some
constant κ depending on ε0; we may assume κ > 10.

We use Lemma 3.2 twice, first with B = B, B′ = κBQ, ν = ψQν, L =
LQ, f = ψQ

∣∣∣
L
, and then withB = B, B′ = κBQ, ν = ϕQσ, L = LQ, f = ϕQ

∣∣∣
L
,

to obtain

W2(ϕBν, aϕBHn|LQ) .κ W2(ψQν, aψQHn|LQ),
W2(ϕBσ, aϕBHn|LQ) .κ W2(ϕQσ, aϕQHn|LQ).

By the triangle inequality, the scaling of W2, the fact that LB minimizes
ασ,2(B), and the estimates above we get

W2(ϕBν, aϕBHn|LB) ≤ W2(ϕBν, aϕBHn|LQ)

+
(∫

ϕB dν∫
ϕB dσ

)1/2 (
W2(ϕBσ, aϕBHn|LB) +W2(ϕBσ, aϕBHn|LQ)

)

. W2(ϕBν, aϕBHn|LQ) +
(
ν(3B)
r(B)n

)1/2

W2(ϕBσ, aϕBHn|LQ)

.κ W2(ψQν, aψQHn|LQ) +W2(ϕQσ, aϕQHn|LQ).

Dividing both sides by r(B)1+n/2 yields the desired result.

We will need an estimate which is a slight modification of [Tol12, Lemma
6.2]. In order to formulate it, let us introduce the usual martingale difference
operator. Recall that if P ∈ De

Γ for some e ∈ {0, 1}n, then P ′ ∈ De
Γ is a child of

P if P ′ ⊂ P and `(P ′) = 1
2`(P ). Children of P ∈ De

Rn are defined analogously.
Given g ∈ L1

loc(σ) and P ∈ De
Γ we set

∆σ
Pg(x) =


∫
P ′ g dσ

σ(P ′) −
∫
P
g dσ

σ(P ) : x ∈ P ′, P ′ a child of P,
0 : x 6∈ P.

Given h ∈ L1
loc(Hn|L0

) and P ∈ De
Rn we define analogously ∆Ph(x):

∆Ph(x) =


∫
P ′ h dHn

`(P ′)n −
∫
P
h dHn

`(P )n : x ∈ P ′, P ′ a child of P,
0 : x 6∈ P.

Recall that for g ∈ L2(σ) we have

g =
∑
P∈DeΓ

∆σ
Pg,
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in the sense of L2(σ), and

‖g‖2
L2(σ) =

∑
P∈DeΓ

‖∆σ
Pg‖2

L2(σ),

for details see e.g. [Dav91, Part I] or [Gra14a, Section 6.4.2].
Let us introduce also some additional vocabulary. We will say that a family

of cubes Tree ⊂ De
Γ is a tree with root R0 if it satisfies:

(T1) R0 ∈ Tree, and for every Q ∈ Tree we have Q ⊂ R0,

(T2) for every Q ∈ Tree such that Q 6= R0, the parent of Q also belongs to
Tree.

By iterating (T2), we can actually see that if Q ∈ Tree, then all the intermediate
cubes Q ⊂ P ⊂ R0 also belong to Tree.

The stopping region of Tree, denoted by Stop(Tree), is the family of all the
cubes P ∈ De

Γ(R0) satisfying:

(S) P 6∈ Tree, but the parent of P belongs to Tree.

It is easy to see that the cubes from Stop(Tree) are pairwise disjoint, and that
they are maximal descendants of R0 not belonging to Tree. Moreover, for
every x ∈ R0 we have either x ∈ P for some P ∈ Stop(Tree), or x ∈ Qk for a
sequence of cubes {Qk}k ⊂ Tree satisfying `(Qk) k→∞−−−→ 0.

The following lemma is a modified version of [Tol12, Lemma 6.2].

Lemma 3.5. Let ν be a Radon measure on Γ of the form ν = gσ, with
g ∈ L1(σ), 0 ≤ g ≤ C for some C > 1. Consider a cube Q ∈ D̃Γ and a tree
Tree with root Q. Suppose that for all P ∈ Tree we have C−1`(P )n ≤ ν(P ) ≤
C`(P )n. Then, we have

α̃ν,2(Q)2 .ε0,C ασ,2(BQ)2 +
∑

P∈Tree
‖∆σ

Pg‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
S∈Stop(Tree)

`(S)2

`(Q)n+2ν(S),

(3.5)
and ∑

P∈Tree
‖∆σ

Pg‖2
L2(σ) ≤ C‖g‖L1(σ) = Cν(Γ). (3.6)

In the proof we will use [Tol12, Remark 3.14]. It can be thought of as a flat
counterpart of Lemma 3.5 – it is valid for more general measures ν (even more
general then what we state below), but at the price of assuming Γ = L0 ' Rn.

Lemma 3.6 (simplified [Tol12, Remark 3.14]). Suppose Q ∈ DRn is a dyadic
cube in Rn and Tree is a tree with root Q. Consider a measure ν = gHn|Q
such that ν(P ) ≈ `(P )n for P ∈ Tree. Then,

W2(ν, aHn|Q) .
∑

P∈Tree
‖∆Pg‖2

L2(Hn)`(P )`(Q) +
∑

S∈Stop(Tree)
`(S)2ν(S).
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Remark 3.7. The definition of a tree of dyadic cubes in [Tol12, p. 492] is
slightly more restrictive than the one we adopted. Apart from conditions (T1)
and (T2), they also satisfy

(T3) if Q ∈ Tree, then either all the children of Q belong to Tree, or none of
them.

Equivalently, if Q ∈ Tree, and Q is not the root, then all the brothers of Q also
belong to Tree. To underline the difference between the two notions, sometimes
the terms coherent and semicoherent family of cubes are used. The former
refers to trees satisfying (T1–T3), the latter to those satisfying (T1–T2).

Nevertheless, [Tol12, Remark 3.14] cited above is true for both coherent
and semicoherent families of cubes. That is, property (T3) is never used in
the proof of either [Tol12, Remark 3.14] or the preceding “key lemma” [Tol12,
Lemma 3.13].

We are finally ready to prove Lemma 3.5.

Proof of Lemma 3.5. Let L = LQ. If ](L,L0) > 1 − ε0, then by Lemma 3.1
and the definition of α̃ν,2(Q)

α̃ν,2(Q)2 = 1 . ασ,2(BQ)2,

and we are done. Now assume that ](L,L0) ≤ 1− ε0.
Let Π̃L be the projection from Rd onto L, orthogonal to L0. We also

consider the flat measure σL = (Π̃L)∗σ = (Π̃L)∗Hn|L0
= cLHn|L (recall that ΠΓ

is a projection orthogonal to L0, so that Π̃L ◦ΠΓ = Π̃L). Define g0 : L0 → R
as g0 = g ◦ ΠΓ.

By triangle inequality

W2(ψQν, aψQHn|L) = W2(ψQν, aψQσL)
≤ W2(ψQν, ψQ(Π̃L)∗ν) +W2(ψQ(Π̃L)∗ν, aψQσL). (3.7)

The first term from the right hand side is estimated by ασ,2(BQ):

W2(ψQν, ψQ(Π̃L)∗ν)2 ≤
∫
Q
|x− Π̃L(x)|2 dν(x) ≈ε0

∫
Q

dist(x, L)2 dν(x)

.C

∫
Q

dist(x, L)2 dσ(x) . ασ,2(BQ)2`(Q)n+2.

We estimate the second term from the right hand side of (3.7) using the
fact that Π0|L∩V (Q) : L ∩ V (Q) → L0 ∩ V (Q) is bilipschitz, with a constant
depending on ε0 (because ](L,L0) ≤ 1− ε0):

W2(ψQ(Π̃L)∗ν, aψQσL) ≈ε0 W2(ψQ(Π0)∗((Π̃L)∗ν), aψQ(Π0)∗σL)
= W2(ψQg0Hn|L0

, aψQHn|L0
).
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By Lemma 3.6 we have

W2(ψQg0Hn|L0
, aψQHn|L0

)2

.
∑

P ′∈TreeRn
‖∆P ′g0‖2

L2(L0)`(P ′)`(Q) +
∑

S∈Stop(Tree)
`(S)2ν(S),

where TreeRn ⊂ DRn is the tree formed by cubes P ′ = Π0(P ), P ∈ Tree, and
L2(L0) = L2(Hn|L0

).
Using (3.7) and the estimates above we get

W2(ψQν, aψQHn|L)2

.ε0 ασ,2(BQ)2`(Q)n+2+
∑

P ′∈TreeRn
‖∆P ′g0‖2

L2(L0)`(P ′)`(Q)+
∑

S∈Stop(Tree)
`(S)2ν(S).

We conclude the proof of (3.5) by noting that for each P ∈ Tree

‖∆σ
Pg‖L2(σ) = ‖∆Π0(P )g0‖L2(L0).

The estimate (3.6) follows trivially from the fact that if e ∈ {0, 1}n is such
that Q ∈ De

Γ, then∑
P∈Tree

‖∆σ
Pg‖2

L2(σ) ≤
∑
P∈DeΓ

‖∆σ
Pg‖2

L2(σ) = ‖g‖2
L2(σ) ≤ C‖g‖L1(σ).

We would like to use Lemma 3.5 also on measures with unbounded density.
An approximation argument allows us to get rid of the boundedness assumption,
at least if we assume additionally that ν(BP ) ≤ C`(P )n for P ∈ Tree.

Lemma 3.8. Let ν = gσ with g ∈ L1(σ), g ≥ 0. Consider a cube Q ∈ D̃Γ and
a tree Tree with root Q. Suppose there exists C > 1 such that for all P ∈ Tree
we have C−1`(P )n ≤ ν(P ) ≤ ν(BP ) ≤ C`(P )n. Then, we have

α̃ν,2(Q)2 .ε0,C ασ,2(BQ)2 +
∑

P∈Tree
‖∆σ

Pg‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
S∈Stop(Tree)

`(S)2

`(Q)n+2ν(S),

(3.8)
and ∑

P∈Tree
‖∆σ

Pg‖2
L2(σ) ≤ C‖g‖L1(σ) = Cν(Γ). (3.9)

We divide the proof into smaller pieces. Let Stop = Stop(Tree). First, we
define the set of good points as

G = Q \
⋃

P∈Stop
P.
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3. Estimates of α2 coefficients

Note that the points from x ∈ G are not contained in any stopping cube, and
so there are arbitrarily small cubes P ∈ Tree containing x. We introduce the
following approximating measure:

ν̃ = ν|G +
∑

S∈Stop

ν(S)
σ(S)σ|S.

It is clear that for Q ∈ Tree ∪ Stop we have ν̃(Q) = ν(Q). Moreover, for
Q ∈ Tree

C−1`(Q)n ≤ ν̃(Q) = ν(Q) ≤ C`(Q)n. (3.10)
On the other hand, each S ∈ Stop is a child of some Q ∈ Tree, so that

ν̃(S) = ν(S) ≤ ν(Q) ≤ C`(Q)n = 2nC`(S)n. (3.11)

Lemma 3.9. We have ∥∥∥∥∥dν̃dσ
∥∥∥∥∥
L∞(σ)

. C.

Proof. It is trivial that for x ∈ S ∈ Stop the density is constant and

dν̃

dσ
(x) = ν(S)

σ(S) = ν(S)
`(S)n

(3.11)
≤ 2nC.

On the other hand, by the definition of ν̃, for σ-a.e. x ∈ G we have dν̃
dσ

(x) =
dν
dσ

(x) = g(x). Moreover, for σ-a.e. x ∈ G we have a sequence of cubes
Qj ∈ Tree such that `(Qj) = 2−j and x ∈ Qj. Note that there exists some
integer j0 > 0 (depending on dimension) such that

Qj+j0 ⊂ B(x, 2−j) ⊂ BQj .

It follows that

dν̃

dσ
(x) = dν

dσ
(x) = lim

j→∞

ν(B(x, 2−j))
σ(B(x, 2−j)) ≤ lim

j→∞

ν(BQj)
σ(Qj+j0) ≤ lim

j→∞

C`(Qj)n
`(Qj+j0)n = C 2nj0 .

Thus, ∥∥∥∥∥dν̃dσ
∥∥∥∥∥
L∞(σ)

. C.

Let g̃ ∈ L1(σ) ∩ L∞(σ) be such that ν̃ = g̃σ. Applying Lemma 3.5 to ν̃
yields

α̃ν̃,2(Q)2 .ε0,C ασ,2(BQ)2 +
∑

P∈Tree
‖∆σ

P g̃‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
S∈Stop

`(S)2

`(Q)n+2 ν̃(S),

(3.12)
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and ∑
P∈Tree

‖∆σ
P g̃‖2

L2(σ) ≤ C‖g̃‖L1(σ) = Cν̃(Γ) = Cν(Γ). (3.13)

Observe that for P ∈ Tree we have

∆σ
P g̃ = ∆σ

Pg. (3.14)

Indeed, for x /∈ P both quantities are equal to zero. For x ∈ P ′ ⊂ P , where P ′
is a child of P , we have P ′ ∈ Tree ∪ Stop, and so

∆σ
P g̃(x) =

∫
P ′ g̃ dσ

σ(P ′) −
∫
P g̃ dσ

σ(P ) = ν̃(P ′)
σ(P ′) −

ν̃(P )
σ(P ) = ν(P ′)

σ(P ′) −
ν(P )
σ(P ) = ∆σ

Pg.

Hence, (3.9) follows immediately from (3.13).
Since for S ∈ Stop we have ν̃(S) = ν(S), we can use (3.14) to transform

(3.12) into

α̃ν̃,2(Q)2 .ε0,C ασ,2(BQ)2 +
∑

P∈Tree
‖∆σ

Pg‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
S∈Stop

`(S)2

`(Q)n+2ν(S).

(3.15)
In order to reach (3.8) and finish the proof of Lemma 3.8, we only need to
show how to pass from the estimate on α̃ν̃,2(Q) (3.15) to one on α̃ν,2(Q).

Proof of Lemma 3.8. Recall that if ](LQ, L0) > 1− ε0, then α̃ν,2(Q) = 1, but
at the same time ασ,2(BQ) & 1 by Lemma 3.1, so this case is trivial. Suppose
](LQ, L0) ≤ 1− ε0. We define a transport plan between ψQν̃ and ψQν:

dπ(x, y) = 1Q∩G(x)dν(x)dδx(y) +
∑

S∈Stop

1S(x)1S(y)
σ(S) dν(x)dσ(y),

and we estimate

W2(ψQν̃, ψQν)2 ≤
∫
|x− y|2 dπ(x, y) .

∑
S∈Stop

`(S)2ν(S).

From the triangle inequality, the bound above, and (3.15), we get that

α̃ν,2(Q)2 ≈ `(Q)−(n+2)W2(ψQν, aψQHn|LQ)2

. `(Q)−(n+2)
(
W2(ψQν̃, ψQν)2 +W2(ψQν̃, aψQHn|LQ)2

)
.ε0,C ασ,2(BQ)2 +

∑
P∈Tree

‖∆σ
Pg‖2

L2(σ)
`(P )

`(Q)n+1 +
∑

S∈Stop

`(S)2

`(Q)n+2ν(S).
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4 Approximating measures
We will construct a family of measures on Γ that will approximate µ. For every
Whitney cube P ∈ We we define gP : Γ→ R as

gP (x) = µ(P )
`(P )n1ΠΓ(P )(x).

Note that
∫
gP dσ = µ(P ).

Given e ∈ {0, 1}n, k ∈ Z, we define the following measures supported on Γ:

νe = µ|Γ +
 ∑
P∈We

gP

σ,
νek = µ|Γ +

 ∑
P∈We

k

gP

σ.
Moreover, for every Q ∈ DΓ with `(Q) ≤ 2−k0 we set

νQ = ν
e(Q)
k(Q) = µ|Γ +

 ∑
P∈WQ

gP

σ.
Note that, since we assume µ is finite and compactly supported (see Remark
2.1), all the measures νe, νek, are also finite and compactly supported.

We defined νQ in such a way that, for “good” Q ∈ DΓ, the measures µ|BQ
and νQ

∣∣∣
BQ

are close in the W2 distance. This will be shown in Section 5. The
rest of this section is dedicated to the construction of a tree of “good cubes”.

Recall that R ∈ DΓ is a Γ-cube fixed in Remark 2.1, and 0 < ε � 1 is a
small constant fixed in Subsection 2.1.

Lemma 4.1. Let λ > 3. Then, there exist a big constantM = M(ε, λ,Λ, n, d, µ)�
1 and a tree of good cubes Tree = Tree(λ, ε,M) ⊂ DΓ(R) with root R, such
that for every Q ∈ Tree we have

µ(λB̃Q) ≤M`(Q)n,
µ(Q) ≥M−1`(Q)n,

the stopping region Stop = Stop(Tree) is small:

µ

( ⋃
Q∈Stop

Q

)
< ε,

and α̂νQ,2(B̃Q)2 satisfy the packing condition:∑
Q∈Tree

α̂νQ,2(B̃Q)2`(Q)n <∞. (4.1)
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IV. A necessary condition for rectifiability via W2

We split the proof into several small lemmas. First, we define auxiliary
families of good cubes in De

Γ using a standard stopping time argument.
For each e ∈ {0, 1}n there exists a finite collection of cubes {Re

i} ⊂ De
Γ

such that `(Re
i ) = 1, Re

i ∩R 6= ∅. Set Re = ⋃
iR

e
i . Let M � 1 be constant to

be fixed later on, and set

HDe
ν,0 = {Q ∈ De

Γ : Q ⊂ Re, νe(λB̃Q) > M`(Q)n},
HDe

µ,0 = {Q ∈ De
Γ : Q ⊂ Re, µ(λB̃Q) > M`(Q)n},

LDe
0 = {Q ∈ De

Γ : Q ⊂ Re, µ(Q) < M−1`(Q)n}.

HD and LD stand for “high density” and “low density”. Let Stope ⊂ De
Γ be the

family of maximal with respect to inclusion cubes from HDe
ν,0 ∪HDe

µ,0 ∪ LDe
0,

and set HDe
ν = HDe

ν,0 ∩ Stope, HDe
µ = HDe

µ,0 ∩ Stope, LDe = LDe
0 ∩ Stope.

Note that cubes from Stope are pairwise disjoint. We define Treee as the family
of those cubes from ⋃

iDe
Γ(Re

i ) which are not contained in any cube from Stope.
Actually, this might not be a tree, but it is a finite collection of trees with
roots Re

i .

Lemma 4.2. For M = M(ε, λ,Λ, n, d, µ) big enough, we have for all e ∈
{0, 1}n

µ

( ⋃
Q∈Stope

Q

)
<

ε

2n . (4.2)

Proof. Let e ∈ {0, 1}n. It is easy to see that the measure of LDe is small: for
every Q ∈ LDe we have µ(Q) ≤M−1σ(Q), so

µ

( ⋃
Q∈LDe

Q

)
≤M−1σ(Re) ≈M−1. (4.3)

To estimate the measure of HDe
µ, define for some big N � 1

HN = {x ∈ Rd : µ(B(x, r)) > Nrn for some r ∈ (0, 1)}.

Since µ is n-rectifiable, the density Θn(x, µ) exists, and is positive and finite
µ-a.e. Moreover, recall that µ(Rd) is finite. This implies that for N = N(µ, ε, n)
big enough

µ(HN) ≤ ε

2n+2 .

We will show that, if M is chosen big enough, then for all Q ∈ HDe
µ we

have Q ⊂ HN . Indeed, let x ∈ Q ∈ HDe
µ. Then B(x, 2λr(B̃Q)) ⊃ λB̃Q, and so

µ(B(x, 2λr(B̃Q))) ≥ µ(λB̃Q) > M`(Q)n > N(6λΛ diam(Q))n = N(2λr(B̃Q))n,

for M big enough with respect to N, λ,Λ, n. Moreover, note that for Q ∈ HDe
µ

we have
µ(Rd)
M

> `(Q)n ≈Λ r(B̃Q)n,
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and so taking M big enough (depending on µ(Rd), λ,Λ, n) we can ensure that
all Q ∈ HDe

µ satisfy 2λr(B̃Q) < 1. Thus, x ∈ HN , and we conclude that

µ

( ⋃
Q∈HDeµ

Q

)
≤ µ(HN) ≤ ε

2n+2 . (4.4)

Since νe is a finite n-rectifiable measure, we can argue in the same way as
above to get

νe
( ⋃
Q∈HDeν

Q

)
≤ ε

2n+2 .

Smallness of µ(⋃Q∈HDeν Q) follows from the fact that µ|Γ ≤ νe. Putting this
together with (4.3) and (4.4) we get

µ

( ⋃
Q∈Stope

Q

)
<

ε

2n .

We take M so big that the above holds for all e ∈ {0, 1}n, and the proof is
finished.

For each e ∈ {0, 1}n, k = 0, 1, 2, . . . , let gek be the density of νek with respect
to σ. Note that, due to the definition of Treee, for any Q ∈ Treee we have

M−1 `(Q)n ≤ νek(Q) ≤ νek(BQ) ≤M `(Q)n.

Hence, given a cube Q ∈ Treee with `(Q) = 2−k, we can estimate α̃νe
k
,2(Q)2

using Lemma 3.8 (applied to νek and Tree = {P ∈ Treee : P ⊂ Q}) to get

α̃νe
k
,2(Q)2 .ε0,M ασ,2(BQ)2+

∑
P∈Treee
P⊂Q

‖∆σ
Pg

e
k‖2

L2(σ)
`(P )

`(Q)n+1 +
∑

S∈Stope
S⊂Q

`(S)2

`(Q)n+2ν
e
k(S).

(4.5)
The following lemma states that the right hand side of this estimate can

be made independent of k.

Lemma 4.3. For all Q ∈ Treee with `(Q) = 2−k, k ≥ 0, we have

α̃νe
k
,2(Q)2 .ε0,M ασ,2(BQ)2+

∑
P∈Treee
P⊂Q

‖∆σ
Pg

e
0‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
S∈Stope
S⊂Q

`(S)2

`(Q)n+2ν
e(S).

(4.6)
Moreover, ∑

P∈Treee
‖∆σ

Pg
e
0‖2
L2(σ) .M‖ge0‖L1(σ) = Mνe0(Γ) ≤Mµ(Rd). (4.7)
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Proof. We claim that for P ∈ Treee with `(P ) ≤ 2−k (in particular, for
P ∈ Treee such that P ⊂ Q) we have

∆σ
Pg

e
k = ∆σ

Pg
e
0. (4.8)

Indeed, for x 6∈ P both sides of (4.8) are zero. For x ∈ P ′ ⊂ P , where
P ′ ∈ Treee ∪ Stope is a child of P , we have

∆σ
Pg

e
0(x)−∆σ

Pg
e
k(x) = νe0(P ′)− νek(P ′)

`(P ′)n − νe0(P )− νek(P )
`(P )n

= `(P ′)−n
 ∑
S∈We

0\W
e
k

µ(S)
`(S)nσ(P ′ ∩ ΠΓ(S))


− `(P )−n

 ∑
S∈We

0\W
e
k

µ(S)
`(S)nσ(P ∩ ΠΓ(S))

 .
The Whitney cubes S in the sums above above satisfy `(S) > 2−k ≥ `(P ),
and moreover we have ΠΓ(S) ∈ De

Γ. Hence, we either have P ∩ ΠΓ(S) = P or
P ∩ΠΓ(S) = ∅. The same is true for P ′. Moreover, we have P ∩ΠΓ(S) 6= ∅ if
and only if P ′ ∩ ΠΓ(S) 6= ∅. It follows that the right hand side above is equal
to ∑

S∈We
0\W

e
k

P ′∩ΠΓ(S) 6=∅

µ(S)
`(S)n −

∑
S∈We

0\W
e
k

P∩ΠΓ(S)6=∅

µ(S)
`(S)n = 0.

Thus ∆σ
Pg

e
k = ∆σ

Pg
e
0. Using this equality, and also the fact that νek ≤ νe, we

transform (4.5) into

α̃νe
k
,2(Q)2 .ε0,M ασ,2(BQ)2+

∑
P∈Treee
P⊂Q

‖∆σ
Pg

e
0‖2
L2(σ)

`(P )
`(Q)n+1 +

∑
P∈Stope
P⊂Q

`(P )2

`(Q)n+2ν
e(P ).

(4.9)
Concerning (4.7), it is an immediate consequence of (3.9) when we apply
Lemma 3.8 to νe0 and the trees {Q ∈ Treee : Q ⊂ Re

i} (recall that the union
of such trees gives the entire Treee).

We finally define Tree as the collection of cubes Q ∈ DΓ such that for every
e ∈ {0, 1}n there exists P ∈ Treee satsfying `(P ) = `(Q) and P ∩ Q 6= ∅.
It is easy to check that Tree is indeed a tree, and that the stopping cubes
Stop = Stop(Tree) satisfy ⋃Q∈Stop Q ⊂

⋃
e

⋃
Q∈Stope Q. Thus,

µ

( ⋃
Q∈Stop

Q

)
≤

∑
e∈{0,1}n

µ

( ⋃
Q∈Stope

Q

)
(4.2)
≤ ε.
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4. Approximating measures

Moreover, Tree ⊂ Tree(0,...,0), so for all Q ∈ Tree

µ(λB̃Q) ≤M`(Q)n,
µ(Q) ≥M−1`(Q)n.

The only thing that remains to be shown is the packing condition (4.1).

Lemma 4.4. We have ∑
Q∈Tree

α̂νQ,2(B̃Q)2`(Q)n <∞.

Proof. Recall that in Lemma 2.2 we defined a constant k0 > 0 such that for
any Q ∈ DΓ, `(Q) ≤ 2−k0 , there exists a cube PQ ∈ D̃Γ satisfying 3B̃Q ⊂
V (PQ), `(PQ) = 2k0`(Q). Since there are only finitely many Q ∈ Tree with
`(Q) > 2−k0 , we may ignore them in the estimates that follow.

Suppose Q ∈ Tree and `(Q) ≤ 2−k0 , let PQ be as above. Recall that
νQ = ν

e(Q)
k(Q), where e = e(Q), k = k(Q) are such that PQ ∈ De

Γ and `(PQ) = 2−k.
We defined Tree in such a way that necessarily PQ ∈ Treee. It follows from

Lemma 3.4 applied with ν = νQ, B = B̃Q, Q = PQ, that

α̂νQ,2(B̃Q) .ε0,M,k0 α̃νQ,2(PQ) + ασ,2(BPQ).

We use (4.6) and the inequality above to obtain

α̂νQ,2(B̃Q)2

.ε0,M,k0 ασ,2(BPQ)2 +
∑

P∈Treee
P⊂PQ

‖∆σ
Pg

e
0‖2
L2(σ)

`(P )
`(PQ)n+1 +

∑
S∈Stope
S⊂PQ

`(S)2

`(PQ)n+2ν
e(S).

Taking into account that each PQ ∈ Treee may correspond to only a bounded
number of Q ∈ Tree, and that `(Q) ≈k0 `(PQ), we get∑

Q∈Tree:PQ∈Treee
α̂νQ,2(B̃Q)2`(Q)n .ε0,M,k0

∑
Q′∈Treee

ασ,2(BQ′)2`(Q′)n

+
∑

Q′∈Treee

∑
P∈Treee
P⊂Q′

‖∆σ
Pg

e
0‖2
L2(σ)

`(P )
`(Q′) +

∑
Q′∈Treee

∑
S∈Stope
S⊂Q′

`(S)2

`(Q′)2ν
e(S).

The first sum from the right hand side is finite because σ is uniformly rectifiable,
see Theorem I.6.8. We estimate the second sum by changing the order of
summation:

∑
Q′∈Treee

∑
P∈Treee
P⊂Q′

‖∆σ
Pg

e
0‖2
L2(σ)

`(P )
`(Q′) =

∑
P∈Treee

‖∆σ
Pg

e
0‖2
L2(σ)

∑
Q′∈Treee
Q′⊃P

`(P )
`(Q′)

.
∑

P∈Treee
‖∆σ

Pg
e
0‖2
L2(σ)

(4.7)
. Mµ(Rd) <∞.
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IV. A necessary condition for rectifiability via W2

The third sum is treated similarly:
∑

Q′∈Treee

∑
S∈Stope
S⊂Q′

`(S)2

`(Q′)2ν
e(S) =

∑
S∈Stope

νe(S)
∑

Q′∈Treee
Q′⊃S

`(S)2

`(Q′)2 .
∑

S∈Stope
νe(S) <∞.

Thus,∑
Q∈Tree

α̂νQ,2(B̃Q)2`(Q)n =
∑

e∈{0,1}n

∑
Q∈Tree:PQ∈Treee

α̂νQ,2(B̃Q)2`(Q)n <∞.

5 From approximating measures to µ

To prove Lemma 1.8 we need to pass from the estimates on α̂νQ,2(B̃Q) shown
in Lemma 4.1 to estimates on α̂µ,2(BQ).

Recall that K > 20 is the constant such that for all Whitney cubes Q ∈ We

we have KQ ∩ Γ 6= ∅, and k0 = k0(n,Λ) is an integer from Lemma 2.2.

Lemma 5.1. There exists λ = λ(k0, K, n, d) > 3 such that ifM = M(ε, λ,Λ, n, d, µ)
and Tree = Tree(λ,M, ε) are as in Lemma 4.1, then for all Q ∈ Tree with
`(Q) ≤ 2−k0

α̂µ,2(BQ)2 .M,λ,Λ α̂νQ,2(B̃Q)2 + ασ,2(B̃Q)2 + 1
`(Q)n+2

∑
P∈WQ

P⊂λB̃Q

µ(P )`(P )2.

Proof. Let Q ∈ Tree with `(Q) ≤ 2−k0 . We will define an auxiliary measure
µQ. Set

IQ = {P ∈ WQ : ΠΓ(P ) ∩ 3B̃Q 6= ∅}.
It is easy to check that ⋃

P∈IQ
P ⊂ λB̃Q, (5.1)

for λ = λ(k0, K, n, d) big enough (e.g. λ = C(n, d)K2k0 works). It is crucial
that all cubes in IQ have sidelength bounded by 2k0`(Q), otherwise no such λ
would exist.

Recall that the functions gP (x) = µ(P )
`(P )n1ΠΓ(P )(x), P ∈ WQ, were used to

define νQ at the beginning of Section 4. Let

aP =
∫
ϕ
B̃Q
gP dσ

µ(P ) .

Note that for P ∈ WQ \ IQ we have aP = 0. The measure µQ is defined as

µQ = ϕ
B̃Q
µ|Γ +

∑
P∈IQ

aPµ|P .
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First, let us show that if Λ (the constant from the definition of B̃Q = ΛBQ)
is big enough, then µ|3BQ = µQ

∣∣∣
3BQ

. We need to check the following: if
P ∈ We(Q) is such that P ∩ 3BQ 6= ∅, then P ∈ IQ and aP = 1.

Note that for all such P we have

`(P ) ≤ diam(P )
(2.4)
≤ r(3BQ) = 9 diam(Q)

(2.3)
≤ 2−k(Q),

and so P ∈ WQ. Furthermore, the fact that P ∩ 3BQ 6= ∅ and (2.4) imply
that P ⊂ 9BQ. Since ΠΓ is

√
2-Lipschitz continuous, and BQ is centered at Γ,

we get that for Λ big enough (e.g. Λ = 9
√

2)

ΠΓ(P ) ⊂ ΛBQ = B̃Q. (5.2)

We conclude that P ∈ IQ and aP = 1, and so,

µ|3BQ = µQ
∣∣∣
3BQ

. (5.3)

Set L = L
B̃Q

. We will apply Lemma 3.2 with ν = µQ, B1 = BQ, B2 =
λB̃Q, L = L, and f = ϕ

B̃Q
. Notice that suppµQ ⊂ λB̃Q by (5.1). Moreover,

using the same trick as in the beginning of the proof of Lemma 3.3, we
may assume that L ∩ BQ 6= ∅. Since µQ(BQ) ≈M µQ(λB̃Q) ≈M `(Q)n by
Lemma 4.1, and r(λB̃Q) = λΛr(BQ), the assumptions of Lemma 3.2 are met,
and we get that

W2(ϕQµQ, aϕQHn|L) .M,λ,Λ W2(µQ, aϕB̃QH
n|L). (5.4)

Applying the triangle inequality yields

W2(µQ, aϕB̃QH
n|L)2 . W2(µQ, ϕB̃QνQ)2 +W2(ϕ

B̃Q
νQ, aϕB̃QH

n|L)2

≈M W2(µQ, ϕB̃QνQ)2 + α̂νQ,2(B̃Q)2`(Q)n+2. (5.5)

To estimate W2(µQ, ϕB̃QνQ) we define the following transport plan:

dπ(x, y) = ϕ
B̃Q

(x)dµ|Γ(x)dδx(y) +
∑
P∈IQ

1
µQ(P )dµQ

∣∣∣
P

(x)ϕ
B̃Q

(y)gP (y)dσ(y).

Then,

W2(µQ, ϕB̃QνQ)2 ≤
∫
|x− y|2 dπ(x, y) .

∑
P∈IQ

`(P )2
∫
ϕ
B̃Q

(y)gP (y)dσ(y).

≤
∑
P∈IQ

µ(P )`(P )2
(5.1)
≤

∑
P∈WQ

P⊂λB̃Q

µ(P )`(P )2.
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Putting together (5.3), (5.4), (5.5), and the estimate above, we get

W2(ϕQµ, aϕQHn|L) .M,λ,Λ α̂νQ,2(B̃Q)2`(Q)n+2 +
∑

P∈WQ

P⊂λB̃Q

µ(P )`(P )2.

Finally, we use the triangle inequality, the estimate µ(3BQ) ≈M σ(BQ) ≈
r(BQ)n, and the fact that LQ minimizes ασ,2(BQ), to get

α̂µ,2(BQ)2`(Q)n+2 ≈M W2(ϕQµ, aϕQHn|LQ) ≤ W2(ϕQµ, aϕQHn|L)

+
(∫

ϕQ dµ∫
ϕQ dσ

)1/2 (
W2(ϕQσ, aϕQHn|LQ) +W2(ϕQσ, aϕQHn|L)

)
.M W2(ϕQµ, aϕQHn|L) +W2(ϕQσ, aϕQHn|L)

. W2(ϕQµ, aϕQHn|L) + ασ,2(B̃Q)2`(Q)n+2,

and so the proof is complete.

We are ready to finish the proof of Lemma 1.8.

Proof of Lemma 1.8. Recall that R is a Γ-cube with `(R) = 1, and ε > 0 is
an arbitrary small constant, and that they were both fixed in Subsection 2.1.
Let λ, M, Tree, and Stop be as in Lemma 5.1 and Lemma 4.1. Set

R′ = R \
⋃

P∈Stop
P.

By Lemma 4.1, we have µ(R′) ≥ (1− ε)µ(R). Our aim is to show that∫
R′

∫ 1

0
αµ,2(x, r)2 dr

r
dµ(x) <∞.

For any x ∈ R′ we have arbitrarily small cubes from Tree containing x.
Hence, for any k ≥ k0 + 3, r ∈ (2−k, 2−k+1], we have 3B(x, r) ⊂ BQ for the
cube Q ∈ Tree containing x and satisfying `(Q) = 2−k+3. Thus, by Lemma 3.3,

α̂µ,2(B(x, r))2 .M α̂µ,2(BQ)2 + ασ,2(BQ)2.

Integrating both sides with respect to r yields
∫ 2−k+1

2−k
α̂µ,2(B(x, r))2 dr

r
.M

∫ 2−k+1

2−k
(α̂µ,2(BQ)2 + ασ,2(BQ)2) dr

r
≈ α̂µ,2(BQ)2 + ασ,2(BQ)2.

The inequality above holds for all x ∈ Q ∩R′, so
∫
Q∩R′

∫ 2−k+1

2−k
α̂µ,2(B(x, r))2 dr

r
dµ(x) .M (α̂µ,2(BQ)2 + ασ,2(BQ)2)µ(Q)

≈M (α̂µ,2(BQ)2 + ασ,2(BQ)2)`(Q)n.
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Summing over all Q ∈ Tree with `(Q) = 2−k+3, and then over all k ≥ k0 + 3,
we get

∫
R′

∫ 2−k0−2

0
α̂µ,2(B(x, r))2 dr

r
dµ(x)

.M

∑
Q∈Tree

`(Q)≤2−k0

α̂µ,2(BQ)2`(Q)n +
∑

Q∈Tree
`(Q)≤2−k0

ασ,2(BQ)2`(Q)n. (5.6)

On the other hand, for any r > 0 we have

α̂µ,2(B(x, r))2 .
µ(Rd)
rn

,

so ∫
R′

∫ 1

2−k0−2
α̂µ,2(B(x, r))2 dr

r
dµ(x) <∞.

Thus, in order to prove Lemma 1.8, it suffices to show that the sums on the
right hand side of (5.6) are finite.

The finiteness of ∑
Q∈DΓ, Q⊂R

ασ,2(BQ)2`(Q)n

follows by Theorem I.6.8. To estimate the other sum we apply Lemma 5.1:
∑

Q∈Tree
`(Q)≤2−k0

α̂µ,2(BQ)2`(Q)n .
∑

Q∈Tree
`(Q)≤2−k0

α̂νQ,2(B̃Q)2`(Q)n

+
∑

Q∈Tree
`(Q)≤2−k0

ασ,2(B̃Q)2`(Q)n +
∑

Q∈Tree
`(Q)≤2−k0

∑
P∈WQ

P⊂λB̃Q

µ(P )`(P )2

`(Q)2 .

The first sum is finite by Lemma 4.1, the second by Theorem I.6.8. Concerning
the last sum, we may estimate it in the following way:

∑
Q∈Tree

`(Q)≤2−k0

∑
P∈WQ

P⊂λB̃Q

µ(P )`(P )2

`(Q)2 .
∑

e∈{0,1}n

∑
P∈We

P⊂λB̃R

µ(P )
∑

Q∈Tree
λB̃Q⊃P

`(P )2

`(Q)2

.
∑

e∈{0,1}n

∑
P∈We

P⊂λB̃R

µ(P ) ≤
∑

e∈{0,1}n
µ(λB̃R) = 2nµ(λB̃R) <∞.

Thus, ∑
Q∈Tree

α̂µ,2(BQ)2`(Q)n <∞.
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Cones, rectifiability, and singular integral
operators V

1 Introduction
Let m < d be positive integers. Given an m-plane V ∈ G(d,m), a point x ∈ Rd,
and α ∈ (0, 1), we define

K(x, V, α) = {y ∈ Rd : dist(y, V + x) < α|x− y|}.

That is, K(x, V, α) is an open cone centered at x, with direction V , and
aperture α.

Let 0 < n < d. It is well-known that if a set E ⊂ Rd satisfies for some
V ∈ G(d, d− n), α ∈ (0, 1), the condition

x ∈ E ⇒ E ∩K(x, V, α) = ∅, (1.1)

then E is contained in some n-dimensional Lipschitz graph Γ, and Lip(Γ) ≤ 1
α
,

see e.g. [Mat95, Proof of Lemma 15.13].
To what extent can we weaken the condition (1.1) and still get meaningful

information about the geometry of E? It depends on what we mean by
“meaningful information”, naturally. One could ask for the rectifiability of
E, or if E contains big pieces of Lipschitz graphs, or whether nice singular
integral operators are bounded on L2(E). In this chapter we answer these
three questions.

1.1 Rectifiability
Ameasure-theoretic analogue of (1.1), well-suited to the study of rectifiability, is
that of an approximate tangent plane from Section I.2. For reader’s convenience
we recall the definition below.
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V. Cones, rectifiability and SIOs

For r > 0 we define the truncated cone

K(x, V, α, r) = K(x, V, α) ∩B(x, r),

and for 0 < r < R we define the doubly truncated cone

K(x, V, α, r, R) = K(x, V, α,R) \K(x, V, α, r).

Definition 1.1. We say that an n-plane W ∈ G(d, n) is an approximate
tangent plane to a Radon measure µ at x ∈ suppµ if Θn,∗(µ, x) > 0 and for
every α ∈ (0, 1)

lim
r→0

µ(K(x,W⊥, α, r))
rn

= 0. (1.2)

Recall that a classical result of Federer characterizes rectifiable measures
in terms of existence of approximate tangent planes, see Theorem I.2.4.

The results we prove in this paper are of similar nature. More precisely, we
introduce and study conical energies.

Definition 1.2. Suppose µ is a Radon measure on Rd, and x ∈ suppµ. Let
V ∈ G(d, d− n), α ∈ (0, 1), 1 ≤ p < ∞ and R > 0. We define the (V, α, p)-
conical energy of µ at x up to scale R as

Eµ,p(x, V, α,R) =
∫ R

0

(
µ(K(x, V, α, r))

rn

)p
dr

r
.

For E ⊂ Rd we set also EE,p(x, V, α,R) = EHn|E ,p(x, V, α,R).

The conical energies can be seen as a “quantification” of the notion of
approximate tangent plane. We are ready to state our first result.

Theorem 1.3. Let 1 ≤ p <∞. Suppose µ is a Radon measure on Rd satisfying
Θn,∗(µ, x) > 0 and Θn

∗ (µ, x) < ∞ for µ-a.e. x ∈ Rd. Assume that for µ-a.e.
x ∈ Rd there exists some Vx ∈ G(d, d− n) and αx ∈ (0, 1) such that

Eµ,p(x, Vx, αx, 1) <∞, (1.3)

and the mapping x 7→ (Vx, αx) is measurable. Then, µ is n-rectifiable.
Conversely, if µ is n-rectifiable, then for µ-a.e. x ∈ Rd there exists Vx ∈

G(d, d− n) such that for all α ∈ (0, 1) we have

Eµ,p(x, Vx, α, 1) <∞. (1.4)

Remark 1.4. The “necessary” part of Theorem 1.3 improves on Theorem I.2.4
in the following way. Existence of approximate tangents means that the conical
density simply converges to 0, while (1.4) means that the conical density
satisfies a Dini-type condition, and converges to 0 rather fast.
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Remark 1.5. Concerning the “sufficient” part of Theorem 1.3: clearly, con-
dition (I.2.2) is weaker than (1.3). However, Theorem 1.3 has the following
advantage over Theorem I.2.4: we only require Θn,∗(µ, x) > 0 and Θn

∗ (µ, x) <∞
for our criterion to hold. In particular, we do not assume µ� Hn. It is not
clear to the author how to show a criterion involving (I.2.2) or (1.2) without
assuming a priori µ� Hn.

Question 1.6. Suppose µ is a Radon measure on Rd satisfying Θn,∗(µ, x) > 0
and Θn

∗ (µ, x) <∞ for µ-a.e. x ∈ Rd. Assume that for µ-a.e. x ∈ Rd there is an
approximate tangent plane to µ at x. Does this imply that µ is n-rectifiable?

Let us mention related results. The behaviour of conical densities on purely
unrectifiable sets is studied in [CKRS10] and [Käe10, §5]. In [Mat88, KS08,
CKRS10, KS11] the relation between conical densities for higher dimensional
sets and their porosity is investigated.

Higher order rectifiability in terms of approximate differentiability of sets
is studied in [San19]. In [DNI19] the authors characterize C1,α rectifiable
sets using approximate tangents paraboloids, essentially obtaining a C1,α

counterpart of Theorem I.2.4. See also [Ghi20] and [GG20] for related results.
We would also like to mention recent results of Badger and Naples that

nicely complement Theorem 1.3. In [Nap20, Theorem D] Naples showed that
a modified version of (1.2) can be used to characterize pointwise doubling
measures carried by Lipschitz graphs, that is measures vanishing outside of a
countable union of n-dimensional Lipschitz graphs. In an even more recent pa-
per [BN20] the authors completely describe measures carried by n-dimensional
Lipschitz graphs on Rd. They use a Dini condition imposed on the so-called
conical defect, and their condition is closely related to (1.3). Note the absence
of densities in the assumptions (and conclusion) of their results.

1.2 Big pieces of Lipschitz graphs
Before stating our next theorem, we need to recall some definitions.

Definition 1.7. We say that an n-ADR set E ⊂ Rd has big pieces of Lipschitz
graphs (BPLG) if there exist constants κ, L > 0, such that the following holds.

For all balls B centered at E, 0 < r(B) < diam(E), there exists a Lipschitz
graph ΓB with Lip(ΓB) ≤ L, such that

Hn(E ∩B ∩ ΓB) ≥ κ r(B)n.

Sets with BPLG were studied e.g. in [Dav88b, DS93a, DS93b] as one of the
possible quantitative counterparts of rectifiability. Let us point out that the
class of sets with BPLG is strictly smaller than the class of uniformly rectifiable
sets – sets containing BPLG are uniformly rectifiable, but the converse is not
true. An example of a uniformly rectifiable set that does not contain BPLG is
due to Hrycak, although he never wrote it down, see [Azz19, Appendix].
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While many characterizations of uniformly rectifiable sets are available, the
sets containing BPLG are not as well understood. David and Semmes showed
in [DS93b] that a set contains BPLG if and only if it has big projections and
satisfies the weak geometric lemma. We refer the reader to [DS93b] or [DS93a,
§I.1.5] for details. In a very recent paper [Orp20] Orponen characterized the
BPLG property in terms of having plenty of big projections, which settled a
problem going back to [DS93b].

In another recent paper, Martikainen and Orponen [MO18b] managed
to characterize sets with BPLG in terms of L2 norms of their projections.
Interestingly, the authors use the information about projections of an n-ADR
set E to draw conclusions about intersections with cones of some subset E ′ ⊂ E
with Hn(E ′) ≈ Hn(E). This in turn allows them to find a Lipschitz graph
intersecting an ample portion of E ′. We will use some of their techniques to
prove a characterization of sets containing BPLG in terms of the following
property.

Definition 1.8. Let 1 ≤ p < ∞. We say that a measure µ has big pieces
of bounded energy for p, abbreviated as BPBE(p), if there exist constants
α, κ,M0 > 0 such that the following holds.

For all balls B centered at suppµ, 0 < r(B) < diam(suppµ), there exist
a set GB ⊂ B with µ(GB) ≥ κµ(B), and a direction VB ∈ G(d, d− n), such
that for all x ∈ GB

Eµ,p(x, VB, α, r(B)) =
∫ r(B)

0

(
µ(K(x, V, α, r))

rn

)p
dr

r
≤M0. (1.5)

Theorem 1.9. Let 1 ≤ p < ∞. Suppose E ⊂ Rd is n-ADR. Then E has
BPLG if and only if Hn|E has BPBE(p).

Remark 1.10. In particular, for n-ADR sets, the condition BPBE(p) is
equivalent to BPBE(q) for all 1 ≤ p, q <∞.

Remark 1.11. In fact, one can show that an a priori slightly weaker condition
than BPBE is already sufficient for BPLG. To be more precise, in (1.5) replace
K(x, V, α, r) with K(x, V, α, r) ∩GB, so that we get

∫ r(B)

0

(
Hn(K(x, V, α, r) ∩ E ∩GB)

rn

)p
dr

r
≤M0. (1.6)

We show that this “weak” BPBE is sufficient for BPLG in Proposition 9.1. It
is obvious that (1.6) is also necessary for BPLG: if E contains BPLG, then
choosing GB = ΓB as in Definition 1.7, one can pick the corresponding V and
α so that K(x, V, α, r) ∩ ΓB = ∅.

It is tempting to consider also the following definition.
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Definition 1.12. Let 1 ≤ p < ∞. We say that a measure µ has bounded
mean energy (BME) for p if there exist constants α,M0 > 0, and for every
x ∈ suppµ there exists a direction Vx ∈ G(d, d− n), such that the following
holds.

For all balls B centered at suppµ, 0 < r(B) < diam(suppµ), we have∫
B
Eµ,p(x, Vx, α, r(B)) dµ(x)

=
∫
B

∫ r(B)

0

(
µ(K(x, Vx, α, r))

rn

)p
dr

r
dµ(x) ≤M0 µ(B).

In other words we require µ(K(x, Vx, α, r))pr−np drr dµ(x) to be a Carleson
measure. This condition looks quite natural due to many similar charac-
terizations of uniform rectifiability, e.g. Theorem I.6.3, Theorem I.6.8 or
Theorem I.6.11.

It is easy to see, using the compactness of G(d, d − n) and Chebyshev’s
inequality, that BME for p implies BPBE(p). However, the reverse implication
does not hold. In Section 11 we give an example of a set containing BPLG
that does not satisfy BME. The problem is the following. In the definition
above, the plane Vx is fixed for every x ∈ suppµ once and for all, and we do
not allow it to change between different scales. This is too rigid.

Question 1.13. Can one modify the definition of BME, allowing the planes
Vx to depend on r, but with some additional control on the oscillation of Vx,r,
so that the modified BME could be used to characterize BPLG, or uniform
rectifiability?

1.3 Boundedness of SIOs
Recall that in Section I.4 we introduced Kn(Rd), the class of odd C2 kernels
k : Rd \ {0} → R satisfying for some constant Ck > 0

|∇jk(x)| ≤ Ck
|x|n+j for x 6= 0 and j ∈ {0, 1, 2}. (1.7)

A singular integral operator applied to a Radon measure ν, with a kernel
k ∈ Kn(Rd), and a truncation parameter ε > 0, was defined as

Tεν(x) =
∫
|x−y|>ε

k(y − x) dν(y), x ∈ Rd.

For a fixed positive Radon measure µ and a function f ∈ L1
loc(µ) we also set

Tµ,εf(x) = Tε(fµ)(x).

If µ is n-ADR, the necessary and sufficient conditions for L2(µ) boundedness
of Tµ were discussed in Section I.5. In the non-ADR setting less is known. A
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V. Cones, rectifiability and SIOs

necessary condition for the boundedness of SIOs in L2(µ), where µ is Radon
and non-atomic, is the polynomial growth condition:

µ(B(x, r)) ≤ C1 r
n for all x ∈ suppµ, r > 0, (1.8)

see [Dav91, Proposition 1.4 in Part III]. Eiderman, Nazarov and Volberg showed
in [ENV14] that if µ has vanishing lower density, then the Riesz transform is
unbounded. Their result was generalized to SIOs associated to gradients of
single layer potentials in [CAMT19]. Nazarov, Tolsa and Volberg proved in
[NTV14b] that if E ⊂ Rn+1 satisfies Hn(E) <∞ and the n-dimensional Riesz
transform is bounded in L2(Hn|E), then E is n-rectifiable. That the same is
true for gradients of single layer potentials was shown by Prat, Puliatti and
Tolsa in [PPT18].

Concerning sufficient conditions for boundedness of SIOs, in [AT15] Azzam
and Tolsa estimated the Cauchy transform of a measure using its β numbers.
Their method was further developed by Girela-Sarrión [GS19]. He gives a
sufficient condition for boundedness of singular integral operators with kernels
in Kn(Rd) in terms of β numbers. We use the main lemma from [GS19] to
prove the following criterion involving 2-conical energy.

Theorem 1.14. Let µ be a Radon measure on Rd satisfying the polynomial
growth condition (1.8). Suppose that µ has BPBE(2) Then, all singular inte-
gral operators Tµ with kernels k ∈ Kn(Rd) are bounded in L2(µ), with norm
depending only on BPBE constants, the polynomial growth constant C1, and
the constant Ck from (1.7).

Remark 1.15. A similar result, with BPBE(2) condition replaced by BPBE(1)
condition, has already been shown in [CT17, Theorem 10.2]. It is easy to see
that for measures satisfying polynomial growth (1.8) we have

Eµ,2(x, V, α,R) ≤ C1 Eµ,1(x, V, α,R),

and so BPBE(2) is a weaker assumption than BPBE(1). Moreover, in Section
12 we show that the measure constructed in [JM00] does not satisfy BPBE(1),
but it trivially satisfies BPBE(2). Hence, Theorem 1.14 really does improve
on [CT17, Theorem 10.2].

Remark 1.16. Recall that for n-ADR sets the condition BPBE(p) was equiv-
alent to BPLG, regardless of p. By the remark above, it is clear that if we
replace the n-ADR condition with polynomial growth (i.e. if we drop the lower
regularity assumption), then the condition BPBE(p) is no longer independent
of p. In general we only have one implication: for 1 ≤ p < q <∞

BPBE(p) ⇒ BPBE(q).
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Remark 1.17. Theorem 1.14 is sharp in the following sense. If one tried
to weaken the assumption BPBE(2) to BPBE(p) for some p > 2, then the
theorem would no longer hold. The reason is that for any p > 2 one may
construct a Cantor-like probability measure µ, say on a unit square in R2, that
has linear growth and such that for all x ∈ suppµ

∫ 1

0

(
µ(B(x, r))

r

)p
dr

r
. 1,

(that is, a much stronger version of BPBE(p) holds), but nevertheless, the
Cauchy transform is not bounded on L2(µ). See [Tol14, Chapter 4.7].

Sadly, the implication of Theorem 1.14 cannot be reversed. Let E ⊂ R2

be the previously mentioned example of a 1-ADR uniformly rectifiable set
that does not contain BPLG. In particular, by Theorem 1.9 E does not
satisfy BPBE(p) for any p. Nevertheless, by the results of David and Semmes
Theorem I.5.3, all nice singular integral operators are bounded on L2(E).

1.4 Cones and projections
Let us note that [CT17, Theorem 10.2] was merely a tool to prove the main
result of [CT17]: a lower bound on analytic capacity involving L2 norms of
projections. Chang and Tolsa proved also an interesting inequality showing
the connection between 1-conical energy and L2 norms of projections. We
introduce additional notation before stating their result.

Definition 1.18. Suppose V ∈ G(d, d− n), α ∈ (0, 1), and 1 ≤ p <∞. Let
B be a ball. The (V, α, p)-conical energy of µ in B is

Eµ,p(B, V, α) =
∫
B

∫ r(B)

0

(
µ(K(x, V, α, r))

rn

)p
dr

r
dµ(x).

We define also

Eµ,p(Rd, V, α) =
∫
Rd

∫ ∞
0

(
µ(K(x, V, α, r))

rn

)p
dr

r
dµ(x).

We will often suppress the arguments V, α, and write simply Eµ,p(B), Eµ,p(Rd).

Remark 1.19. For p = 1 we have

∫ ∞
0

µ(K(x, V, α, r))
rn

dr

r
=
∫
K(x,V,α)

∫ ∞
|x−y|

dr

rn+1 dµ(y)

= n−1
∫
K(x,V,α)

1
|x− y|n

dµ(y), (1.9)
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and so
Eµ,1(Rd, V, α) = n−1

∫
Rd

∫
K(x,V,α)

1
|x− y|n

dµ(y)dµ(x). (1.10)

In their paper Chang and Tolsa were working with the expression from the
right hand side above.

Given V ∈ G(d,m) we will denote by πV : Rd → V the orthogonal
projection onto V , and by π⊥V : Rd → V ⊥ the orthogonal projection onto V ⊥.
We endow G(d,m) with the natural probability measure γd,m, see [Mat95,
Chapter 3], and with a metric d(V,W ) = ‖πV − πW‖op, where ‖·‖op is the
operator norm. We write πV µ to denote the image measure of µ by the
projection πV . If πV µ � Hn|V , then we identify πV µ with its density with
respect toHn|V , and ‖πV µ‖L2(V ) denotes the L2 norm of this density. Otherwise,
we set ‖πV µ‖L2(V ) =∞.

Proposition 1.20 ([CT17, Corollary 3.11]). Let V0 ∈ G(d, n) and α > 0.
Then, there exist constants λ,C > 1 such that for any finite Borel measure µ
in Rd,

Eµ,1(Rd, V ⊥0 , α)
(1.10)
≈

∫
Rd

∫
K(x,V ⊥0 ,α)

1
|x− y|n

dµ(y)dµ(x)

≤ C
∫
B(V0,λα)

‖πV µ‖2
L2(V ) dγd,n(V ).

Let us note that a variant of this estimate was also proved in [MO18b], for
a measure of the form µ = Hn|E, with E a suitable set.

The inequality converse to that of Proposition 1.20 in general is not true,
but it is not far off. Additional assumptions on µ are necessary, and one has
to add another term to the left hand side. See [CT17, Remark 3.12, Appendix
A].

In the light of results mentioned above, as well as the characterization of
sets with BPLG from [MO18b], the connection between L2 norms of projections
and cones is quite striking. Note that the proof of the Besicovitch-Federer
projection theorem also involves careful analysis of measure in cones, see
[Mat95, Chapter 18]. Exploring further the relationship between cones and
projections would be very interesting.

Question 1.21. Is it possible to obtain an inequality similar to that of Propo-
sition 1.20, but with Eµ,2 on the left hand side, and some quantity involving
πV µ on the right hand side?

1.5 Organization of the chapter
In Section 2 we state our main lemma, a corona decomposition-like result.
Roughly speaking, it says that if a measure µ has polynomial growth, and for
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2. Main lemma

some V ∈ G(d, d − n), α ∈ (0, 1) we have Eµ,p(Rd, V, α) < ∞, then we can
decompose D into a family of trees such that:

• for every tree, µ is “well-behaved” at the scales and locations of the tree,

• we have a good control on the number of trees (see (2.2)).

We prove the main lemma in Sections 3–5. Let us point out that in the case
p = 1 an analogous corona decomposition was already shown in [CT17, Lemma
5.1]. Our proof follows the same general strategy, but some key estimates had
to be done differently (most notably the estimates in Section 4).

In Section 6 we show how to use the main lemma and results from [GS19] to
get Theorem 1.14. Sections 7 and 8 are dedicated to the proof of Theorem 1.3.
The “sufficient part” follows from our main lemma, while the “necessary
part” is deduced from the corresponding β2 result of Tolsa [Tol15]. We prove
Theorem 1.9 in Sections 9 and 10. To show the “sufficient part” we use the
results from [MO18b], whereas the “necessary part” follows from a simple
geometric argument. Finally, in Section 11 we construct a set with BPLG that
does not satisfy BME condition, and in Section 12 we show that the measure
from [JM00] satisfies BPBE(2), but not BPBE(1).

2 Main lemma
In order to formulate our main lemma we need to introduce some additional
notation.

Let µ be a compactly supported Radon measure with polynomial growth
(1.8). Suppose D is the associated David-Mattila lattice, as in Lemma II.2.1,
and assume that

R0 = suppµ ∈ D

is the biggest cube.
Given a family of cubes Top ⊂ Ddb satisfying R0 ∈ Top we define the

following families associated to each R ∈ Top:

• Next(R) is the family of maximal cubes Q ∈ Top strictly contained in R,

• Tr(R) is the family of cubes Q ∈ D contained in R, but not contained in
any P ∈ Next(R).

Clearly, D = ⋃
R∈Top Tr(R). Define

Good(R) = R \
⋃

Q∈Next(R)
Q.
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V. Cones, rectifiability and SIOs

Lemma 2.1 (main lemma). Let µ be a compactly supported Radon measure
on Rd. Suppose there exists r0 > 0 such that for all x ∈ suppµ, 0 < r ≤ r0,
we have

µ(B(x, r)) ≤ C1r
n. (2.1)

Assume further that for some V ∈ G(d, d− n), α ∈ (0, 1), and 1 ≤ p <∞, we
have Eµ,p(Rd, V, α) <∞.

Then, there exists a family of cubes Top ⊂ Ddb, and a corresponding family
of Lipschitz graphs {ΓR}R∈Top, satisfying:

(i) the Lipschitz constants of ΓR are uniformly bounded by a constant de-
pending on α,

(ii) µ-almost all Good(R) is contained in ΓR,

(iii) for all Q ∈ Tr(R) we have Θµ(2BQ) . Θµ(2BR).

Moreover, the following packing condition holds:∑
R∈Top

Θµ(2BR)pµ(R) .α (C1)pµ(Rd) + Eµ,p(Rd, V, α). (2.2)

The implicit constant does not depend on r0.

We prove the lemma above in Sections 3–5. From this point on, until the
end of Section 5, we assume that µ is a compactly supported Radon measure
satisfying the growth condition (2.1), and that there exist V ∈ G(d, d−n), α ∈
(0, 1), 1 ≤ p <∞, such that

Eµ,p(Rd, V, α) <∞.

For simplicity, in our notation we will suppress the parameters V and α.
That is, we will write Eµ,p(Rd) = Eµ,p(Rd, V, α), as well as K = K(0, V, α),
K(x) = K(x, V, α), and K(x, r) = K(x, V, α, r). Finally, given 0 < r < R, set

K(x, r, R) = K(x,R) \K(x, r).

Parameters
In the proof of Lemma 2.1 we will use a number of parameters. To make
it easier to keep track of what depends on what, and at which point the
parameters get fixed, we list them below. Recall that “C1 = C1(C2)” means
that “the value of C1 depends the value of C2.”

• A = A(p) > 1 is the “HD” constant, it is fixed in Lemma 5.1.

• τ = τ(α, t) is the “LD” constant, it is fixed in (4.1).

• M = M(α) > 1 is the “key estimate” constant, it is chosen in Lemma 3.3.
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3. Construction of a Lipschitz graph ΓR

• η = η(M, t) ∈ (0, 1) is the constant from the definition of Eµ,p(Q) in (3.1),
it is fixed in the proof of Lemma 4.4.

• t = t(M,α) > M is the “t-neighbour” constant, see Section 3.3. It is
fixed just below (4.7), but depends also on Lemma 3.5 and Lemma 3.7.

• Λ = Λ(M) > 2M is the constant from Lemma 3.8.

• ε = ε(τ, α, η) ∈ (0, 1) is the “BCE” constant, it is fixed in Lemma 4.4.

3 Construction of a Lipschitz graph ΓR
Suppose R ∈ Ddb. In this section we will construct a corresponding tree of
cubes Tree(R), and a Lipschitz graph ΓR that “approximates µ at scales and
locations from Tree(R)”; see Lemma 3.8.

3.1 Stopping cubes
Consider constants A � 1, 0 < ε � τ � 1, and 0 < η � 1, which will be
fixed later on. Given Q ∈ D we set

Eµ,p(Q) = 1
µ(Q)

∫
2BQ

∫ η−1r(Q)

ηr(Q)

(
µ(K(x, r))

rn

)p
dr

r
dµ(x). (3.1)

For any R ∈ Ddb we define the following families of cubes:

• BCE0(R), the family of big conical energy cubes, consisting of Q ∈ D(R)
such that ∑

Q⊂P⊂R
Eµ,p(P ) > εΘµ(2BR)p.

• HD0(R), the high density family, consisting of Q ∈ Ddb(R) \ BCE0(R)
such that

Θµ(2BQ) > AΘµ(2BR).

• LD0(R), the low density family, consisting of Q ∈ D(R) \ BCE0(R) such
that

Θµ(2BQ) < τ Θµ(2BR).

We denote by Stop(R) the family of maximal (hence, disjoint) cubes from
BCE0(R) ∪ HD0(R) ∪ LD0(R), and we set BCE(R) = BCE0(R) ∩ Stop(R),
HD(R) = HD0(R) ∩ Stop(R), LD(R) = LD0(R) ∩ Stop(R).

Note that the cubes in HD(R) are doubling (by the definition), while the
cubes from LD(R) and BCE(R) may be non-doubling.

We define Tree(R) as the family of cubes from D(R) which are not strictly
contained in any cube from Stop(R) (in particular, Stop(R) ⊂ Tree(R)). Note
that it may happen that R ∈ BCE(R), in which case Tree(R) = {R}.

Basic properties of cubes in Tree(R) are collected in the lemma below.
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Lemma 3.1. Suppose Q ∈ Tree(R). Then,

Θµ(2BQ) . AΘµ(2BR). (3.2)

Moreover, for Q ∈ Tree(R) \ Stop(R)

τ Θµ(2BR) ≤ Θµ(2BQ), (3.3)∑
Q⊂P⊂R

Eµ,p(P ) ≤ εΘµ(2BR)p. (3.4)

Finally, for every Q ∈ Tree(R) there exists a doubling cube P (Q) ∈ Tree(R) ∩
Ddb such that Q ⊂ P (Q) and `(P (Q)) .A,τ `(Q). If R 6∈ Stop(R), we have
P (Q) ∈ Tree(R) ∩ Ddb \ Stop(R).

Proof. First, note that if R ∈ Stop(R), then Tree(R) = {R} and the lemma
above is trivial. Assume that R 6∈ Stop(R).

Inequalities (3.3) and (3.4) are obvious by the definition LD(R) and BCE(R).
Concerning (3.2), note that for Q ∈ Tree(R) ∩ Ddb \ Stop(R) we have

Θµ(2BQ) ≤ AΘµ(2BR) by the high density stopping condition. In general,
given Q ∈ Tree(R), let P (Q) be the smallest doubling cube containing Q,
other than Q. Since R ∈ Ddb and R 6∈ Stop(Q), we certainly have P (Q) ∈
Tree(R) ∩ Ddb \ Stop(R), and so Θµ(2BP (Q)) ≤ AΘµ(2BR).

Denote by P1, P2, . . . , Pk all the intermediate cubes, so that Q ⊂ P1 ⊂
· · · ⊂ Pk ⊂ P (Q). Since Pj are non-doubling, we have by Lemma II.2.6

Θµ(2BQ) . Θµ(2BP1) . Θµ(100B(P1)) ≤ (C0A0)dA−9d(k−1)
0 Θµ(100B(P (Q)))

. Θµ(2BP (Q)) ≤ AΘµ(2BR),

which proves (3.2).
Finally, to see that `(P (Q)) .A,τ `(Q), note that P1 ∈ Tree(R) \ Stop(R),

and so τ Θµ(2BR) ≤ Θµ(2BP1). On the other hand, a minor modification of
the computation above shows that

Θµ(2BP1) .C0,A0 A
−9d(k−1)
0 AΘµ(2BR).

It follows that k .A,τ 1.

The following estimate of the measure of cubes in BCE(R) will be used
later on in the proof of the packing estimate (2.2).

Lemma 3.2. We have
∑

Q∈BCE(R)
µ(Q) ≤ 1

εΘµ(2BR)p
∑

P∈Tree(R)
Eµ,p(P )µ(P ). (3.5)
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Proof. We use the fact that for Q ∈ BCE(R) we have∑
Q⊂P⊂R

Eµ,p(P ) > εΘµ(2BR)p

to conclude that

Θµ(2BR)p
∑

Q∈BCE(R)
µ(Q) ≤ 1

ε

∑
Q∈BCE(R)

µ(Q)
∑
P∈D

Q⊂P⊂R

Eµ,p(P )

= 1
ε

∑
P∈Tree(R)

Eµ,p(P )
∑

Q∈BCE(R)
Q⊂P

µ(Q) ≤ 1
ε

∑
P∈Tree(R)

Eµ,p(P )µ(P ).

3.2 Key estimate
We introduce some additional notation. Given x ∈ Rd and λ > 0 set

Kλ(x) = K(x, V, λα).

For Q ∈ D, we denote
Kλ
Q =

⋃
x∈Q

Kλ(x).

If λ = 1, we will write KQ instead of K1
Q.

Lemma 3.3. There exists a constantM = M(α) > 1 such that, if Q ∈ Tree(R)
and P ∈ D(R) satisfy

P ∩K1/2
Q \MBQ 6= ∅ (3.6)

and
dist(Q,P ) ≥Mr(P ),

then P 6∈ Tree(R).

Proof. TakingM = M(α) > 1 big enough, we can choose cubes P ′, Q′ ∈ D(R)
such that

• P ( P ′ ⊂ R, P ′ ⊂ K
3/4
Q , and `(P ′) ≈ dist(P ′, Q),

• Q ( Q′ ⊂ R, `(Q′) ≈M−1`(P ′), and dist(P ′, Q′) ≈ `(P ′).

Moreover, if M is taken big enough, we have for all x ∈ 2BQ′

2BP ′ ⊂ K(x).
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Thus, if η is taken small enough (say, η �M−1), we have
(
µ(2BP ′)
`(P ′)n

)p
µ(2BQ′) .η

∫
2BQ′

∫ η−1r(Q′)

ηr(Q′)

(
µ(K(x, r))

rn

)p
dr

r
dµ(x)

= Eµ,p(Q′)µ(Q′). (3.7)

Since Q ∈ Tree(R) and Q ( Q′, we have Q′ ∈ Tree(R) \ Stop(R), and so

Θµ(2BP ′)p ≈
(
µ(2BP ′)
`(P ′)n

)p (3.7)
.η

µ(Q′)
µ(2BQ′)

Eµ,p(Q′) ≤ Eµ,p(Q′)
(3.4)
≤ εΘµ(2BR)p.

It follows that, for ε small enough, P ′ ∈ LD0(R). Since P ( P ′, we get that
P /∈ Tree(R).

We set

GR = R \
⋃

Q∈Stop(R)
Q and G̃R =

∞⋂
k=1

⋃
Q∈Tree(R)
r(Q)≤A−k0

2MBQ. (3.8)

Note that GR ⊂ G̃R.

Lemma 3.4. For all x, y ∈ G̃R we have y 6∈ K1/2(x). Thus, G̃R is contained
in an n-dimensional Lipschitz graph with Lipschitz constant depending only on
α.

Proof. Proof by contradiction. Suppose that x, y ∈ G̃R and x − y ∈ K1/2.
Let Q,P ∈ Tree(R) be such that x ∈ 2MBQ, y ∈ 2MBP , with sidelength so
small that P ∩ (K1/2

Q \MBQ) 6= ∅ and dist(Q,P ) ≥ Mr(P ). It follows by
Lemma 3.3 that P /∈ Tree(R), and so we reach a contradiction.

3.3 Construction of ΓR
The Lipschitz graph from Lemma 3.4 can be thought of as a first approximation
of ΓR. It contains the “good set” G̃R, but we would also like for ΓR to lie close
to cubes from Tree(R). In this subsection we show how to do it.

Given t > 1, we say that cubes Q,P ∈ D are t-neighbours if they satisfy

t−1 r(Q) ≤ r(P ) ≤ t r(Q) (3.9)

and
dist(Q,P ) ≤ t(r(Q) + r(P )). (3.10)

If at least one of the conditions above does not hold, we say that Q and P are
t-separated. We will also say that a family of cubes is t-separated if the cubes
from that family are pairwise t-separated.
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Consider a big constant t = t(M,α) > M which will be fixed later on. We
denote by Sep(R) a maximal t-separated subfamily of Stop(R) (it exists by
Zorn’s lemma). Clearly, for every Q ∈ Stop(R) there exists some P ∈ Sep(R)
which is a t-neighbour of Q.

Furthermore, we define Sep∗(R) as the family of all cubes Q ∈ Sep(R)
satisfying the following two conditions:

2MBQ ∩ G̃R = ∅, (3.11)

and for all P ∈ Sep(R), P 6= Q, we have

2MBP 6⊂ 2MBQ. (3.12)

Lemma 3.5. Suppose t = t(M) is big enough. Then, for all Q,P ∈ Sep∗(R), Q 6=
P , we have Q 6⊂ 1.5MBP .

Proof. Suppose Q ∈ Sep∗(R), and Q ⊂ 1.5MBP . We will show that P /∈
Sep∗(R).

Firstly, if r(Q) > t−1r(P ), then Q ⊂ 1.5MBP implies that Q and P
are t-neighbours (for t big enough), and so P /∈ Sep∗(R). On the other
hand, if r(Q) ≤ t−1r(P ), then (if t is big enough) Q ⊂ 1.5MBP implies
2MBQ ⊂ 2MBP , contradicting (3.12).

Lemma 3.6. For every Q ∈ Sep(R) at least one of the following is true:

(a) 2MBQ ∩ G̃R 6= ∅,

(b) there exists P ∈ Sep∗(R) such that 2MBP ⊂ 2MBQ.

Proof. If Q ∈ Sep∗(R), then of course (b) holds (with P = Q). Suppose that
Q /∈ Sep∗(R), and that (a) does not hold (i.e. 2MBQ ∩ G̃R = ∅). We will find
P ∈ Sep∗(R) such that 2MBP ⊂ 2MBQ.

Since Q /∈ Sep∗(R) and (3.11) holds, condition (3.12) must be false. Thus,
we get a cube Q1 ∈ Sep(R) such that 2MBQ1 ⊂ 2MBQ. If Q1 ∈ Sep∗(R), we
get (b) with P = Q1. Otherwise, we continue as follows.

Reasoning as before, Q1 ∈ Sep(R) \Sep∗(R) and 2MBQ1 ∩ G̃R = ∅ ensures
that there exists a cube Q2 ∈ Sep(R) such that 2MBQ2 ⊂ 2MBQ1 . Iterating
this process, we get a (perhaps infinite) sequence of cubes Q0 := Q, Q1, Q2, . . .
satisfying 2MBQj+1 ⊂ 2MBQj .

If the algorithm never stops, then ⋂∞j=0 2MBQj 6= ∅. But, by the definition
of G̃R (3.8) we have ⋂∞j=0 2MBQj ⊂ G̃R, and so we get a contradiction with
2MBQ ∩ G̃R = ∅. Thus, the algorithm stops at some cube Qm, which means
that Qm ∈ Sep∗(R). Setting P = Qm finishes the proof.

Lemma 3.7. Suppose t = t(M) is big enough. Then:

133



V. Cones, rectifiability and SIOs

(a) for all Q,P ∈ Sep∗(R), Q 6= P, we have

Q ∩K1/2
P = P ∩K1/2

Q = ∅, (3.13)

(b) for all x ∈ G̃R and for all Q ∈ Sep∗(R) we have

x /∈ K1/2
Q and Q ∩K1/2(x) = ∅. (3.14)

Proof of (a). Proof by contradiction. Suppose Q ∩ K1/2
P 6= ∅ (which by

symmetry of cones implies P ∩K1/2
Q 6= ∅). Without loss of generality, assume

r(Q) ≤ r(P ). Since Q and P are t-separated, at least one of the conditions
(3.9), (3.10) fails, i.e.

r(Q) ≤ t−1r(P ) or dist(Q,P ) > t(r(Q) + r(P )).

We know by Lemma 3.5 that Q 6⊂ 1.5MBP . It is easy to see that in either
of the cases considered above, this implies Q ∩ 1.2MBP = ∅. It follows that
Q∩ (K1/2

P \MBP ) 6= ∅ and r(Q) ≤ r(P ) ≤M−1 dist(Q,P ). Hence, we can use
Lemma 3.3 to conclude that Q /∈ Tree(R). This contradicts Q ∈ Sep∗(R).

Proof of (b). Proof by contradiction. Suppose x ∈ K1/2
Q . We have x /∈ 2MBQ

by (3.11). Since x ∈ G̃R, we can find an arbitrarily small cube P ∈ Tree(R)
such that x ∈ 2MBP . Taking r(P ) small enough we will have r(P ) ≤
M−1 dist(Q,P ) and P ∩ K1/2

Q \ MBQ 6= ∅ (because x ∈ K
1/2
Q \ 2MBQ).

Lemma 3.3 yields P /∈ Tree, a contradiction.

Lemma 3.8. There exists a Lipschitz graph ΓR, with Lipschitz constant de-
pending only on α, such that

G̃R ⊂ ΓR.
Moreover, there exists a big constant Λ = Λ(M, t) > 1 such that for every
Q ∈ Tree(R) we have

ΛBQ ∩ ΓR 6= ∅. (3.15)

Proof. Recall that for each cube Q ∈ D we have a “center” denoted by xQ ∈ Q.
Set F = {xQ : Q ∈ Sep∗(R)} ∪ G̃R. It follows by Lemma 3.4 and Lemma 3.7
that for any x, y ∈ F we have x − y /∈ K1/2. Thus, there exists a Lipschitz
graph ΓR, with slope depending only on α, such that F ⊂ ΓR.

Concerning the second statement, it is clearly true for Q ∈ Sep∗(R) (even
with Λ = 1). For Q ∈ Sep(R), we have by Lemma 3.6 that either 2MBQ∩G̃R 6=
∅ or there exists P ∈ Sep∗(R) with 2MBP ⊂ 2MBQ. Thus, (3.15) holds if
Λ ≥ 2M .

If Q ∈ Stop(R), there exists some P ∈ Sep(R) which is a t-neighbour of
Q, so that for some Λ = Λ(t,M) > 1 we have ΛBQ ⊃ 2MBP , and 2MBP

intersects ΓR. Finally, for a general Q ∈ Tree(R), either Q contains some cube
from Stop(R), or Q ⊂ G̃R. In any case, ΛBQ ∩ ΓR 6= ∅.
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Remark 3.9. Note that while for a general cube Q ∈ Tree(R) we only have
ΛBQ ∩ ΓR 6= ∅, we have a better estimate for the root R:

BR ∩ ΓR 6= ∅. (3.16)

Indeed, (3.16) is clear if the set G̃R is non-empty. If G̃R = ∅, then Sep∗(R) 6= ∅,
so that for some P ∈ Sep∗(R) we have xP ∈ ΓR ∩BR.

4 Small measure of cubes from LD(R)
In the proof of the packing estimate (2.2) it will be crucial to have a bound on
the measure of low density cubes.

Lemma 4.1. We have ∑
Q∈LD(R)

µ(Q) .t,α τµ(R).

In particular, for τ small enough we have∑
Q∈LD(R)

µ(Q) ≤ τ 1/2µ(R). (4.1)

We begin by defining some auxiliary subfamilies of LD(R).

Lemma 4.2. There exists a t-separated family LDSep(R) ⊂ LD(R) such that∑
Q∈LD(R)

µ(Q) .t

∑
Q∈LDSep(R)

µ(Q).

Proof. We construct the family LDSep(R) in the following way. Define LD1(R)
as a maximal t-separated subfamily of LD(R). Next, define LD2(R) as a
maximal t-separated subfamily of LD(R) \ LD1(R). In general, having defined
LDj(R), we define LDj+1(R) to be a maximal t-separated subfamily of LD(R) \
(LD1(R) ∪ · · · ∪ LDj(R)).

We claim that there is only a bounded number of non-empty families
LDj(R), with the bound depending on t. Indeed, if Q ∈ LDj(R), then Q has
at least one t-neighbour in each family LDk(R), k ≤ j. It follows easily from
the definition of t-neighbours that the number of t-neighbours of any given
cube is bounded by a constant C(t). Hence, j ≤ C(t).

Set LDSep(R) to be the family LDj(R) maximizing ∑Q∈LDj(R) µ(Q). Then,
∑

Q∈LD(R)
µ(Q) ≤ C(t)

∑
Q∈LDSep(R)

µ(Q).

135



V. Cones, rectifiability and SIOs

We define also a family LD∗Sep(R) ⊂ LDSep(R) in the following way: we
remove from LDSep(R) all the cubes P for which there exists some Q ∈ LDSep(R)
such that

1.1BQ ∩ 1.1BP 6= ∅ and r(Q) < r(P ). (4.2)

Lemma 4.3. For each Q ∈ LDSep(R) at least one of the following is true:

(a) 1.2BQ ∩ G̃R 6= ∅

(b) There exists some P ∈ LD∗Sep(R) such that 1.2BP ⊂ 1.2BQ.

Proof. Suppose Q ∈ LDSep(R), and that (a) does not hold. We will find P
such that (b) is satisfied.

If Q /∈ LD∗Sep(R), then there exists some cube Q1 ∈ LDSep(R) such that

1.1BQ ∩ 1.1BQ1 6= ∅ and r(Q1) < r(Q). (4.3)

Since Q and Q1 are t-separated, and (3.10) holds, it follows that t r(Q1) < r(Q).
Thus, Q1 is tiny compared toQ and we have 1.2BQ1 ⊂ 1.2BQ. IfQ1 ∈ LD∗Sep(R),
we set P = Q1 and we are done. Otherwise, we iterate as in Lemma 3.6 (with
2M replaced by 1.2) to find a finite sequence Q1, Q2, . . . , Qm satisfying
1.2BQj+1 ⊂ 1.2BQj , and such that Qm ∈ LD∗Sep(R).

Lemma 4.4. For each Q ∈ LD∗Sep(R) we have

µ
(
Q ∩

⋃
P∈LD∗Sep(R)

(K1/2
P \MBP )

)
.τ,α,η εµ(Q). (4.4)

In particular, if ε is small enough, then for each Q ∈ LD∗Sep(R) we can choose
a point

wQ ∈ Q \
⋃

P∈LD∗Sep(R)
(K1/2

P \MBP ). (4.5)

Proof. Suppose Q ∈ LD∗Sep(R) and that we have Q∩K1/2
P \MBP 6= ∅ for some

P ∈ LD∗Sep(R). Note that if we hadMr(Q) ≤ dist(Q,P ), then the assumptions
of Lemma 3.3 would be satisfied, and we would arrive at Q 6∈ Tree(R), a
contradiction. Thus,

dist(Q,P ) ≤Mr(Q) < t r(Q). (4.6)

It follows that (3.10) – one of the t-neigbourhood conditions – is satisfied. Since
Q and P are t-separated, we necessarily have t r(Q) ≤ r(P ) or t r(P ) ≤ r(Q).

If we had t r(Q) ≤ r(P ), then (4.6) implies dist(Q,P ) ≤ r(P ). Hence,
1.1BQ ∩ 1.1BP 6= ∅. But this cannot be true, by the definition of LD∗Sep(R). It
follows that

t r(P ) ≤ r(Q). (4.7)
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Let S ⊃ P be the biggest ancestor of P satisfying r(S) ≤ δr(Q) for some
small constant δ = δ(α) which will be fixed in a few lines. If t is big enough,
then S 6= P . Thus, r(S) ≈δ r(Q), and S ∈ Tree(R) \ Stop(R). Recall that
by the definition of LD∗Sep(R) we have 1.1BQ ∩ 1.1BP = ∅. It follows that
if δ < 0.001, then 4BS ∩ 1.05BQ = ∅. Now, using this separation, it is not
difficult to check that for δ = δ(α) small enough, for any x ∈ K1/2

P ∩Q we have

2BS ⊂ K(x).

Observe also that, due to (4.6) and the fact that r(S) ≤ δr(Q), we have

2BS ⊂ B(x, r) for r ∈
(
η−1

2 r(Q), η−1r(Q)
)
,

provided that η is small enough (say, η−1 � t). Putting together the two
estimates above, we get that

µ(2BS) ≤ µ(K(x, r))

for any x ∈ K1/2
P ∩Q ⊃ Q ∩K1/2

P \MBP and all r ∈ (η−1r(Q)/2, η−1r(Q)).
Integrating the above over all x ∈ A, where A ⊂ Q ∩K1/2

P \MBP is an
arbitrary measurable subset, yields

µ(A)Θµ(2BR)p
(3.3)
≤ τ−1µ(A)Θµ(2BS)p ≈τ,α µ(A)

(
µ(2BS)
r(Q)n

)p

.η

∫
A

∫ η−1r(Q)

ηr(Q)

(
µ(K(x, r))

rn

)p
dr

r
dµ(x). (4.8)

Now, let Pi be some ordering of cubes P ∈ LD∗Sep(R) satisfying Q ∩K1/2
P \

MBP 6= ∅. We define A1 = Q ∩K1/2
P1 \MBP1 , and for i > 1

Ai = Q ∩K1/2
Pi
\
(
MBPi ∪

i−1⋃
j=1

Aj

)
.

Observe that Ai are pairwise disjoint and their union is Q∩⋃P∈LD∗Sep(R)(K
1/2
P \

MBP ). Thus,

µ
(
Q ∩

⋃
P∈LD∗Sep(R)

K
1/2
P \MBP

)
Θµ(2BR)p =

∑
i

µ(Ai)Θµ(2BR)p

(4.8)
. τ,α,η

∫⋃
i
Ai

∫ η−1r(Q)

ηr(Q)

(
µ(K(x, r))

rn

)p
dr

r
dµ(x) ≤ Eµ,p(Q)µ(Q).

Note that since Q /∈ BCE(R), we have Eµ,p(Q)µ(Q) ≤ εΘµ(2BR)pµ(Q). So the
estimate (4.4) holds.
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Lemma 4.5. There exists an n-dimensional Lipschitz graph ΓLD passing
through all the points wP , P ∈ LD∗Sep(R). The Lipschitz constant of ΓLD
depends only on α.

Proof. It suffices to show that for any Q,P ∈ LD∗Sep(R), Q 6= P, we have

wQ − wP /∈ K1/2. (4.9)

Without loss of generality assume r(P ) ≤ r(Q). By (4.5) we have

wQ /∈ K1/2
P \MBP .

In particular,
wQ /∈ K1/2(wP ) \MBP .

So, to prove (4.9), it is enough to show that

wQ /∈MBP . (4.10)

Assume the contrary, i.e. wQ ∈MBP . Then,

dist(Q,P ) ≤ CMr(P ) ≤ t(r(Q) + r(P )).

That is, (3.10) holds. But Q and P are t-separated, and so (3.9) must fail.
Hence,

r(P ) ≤ t−1r(Q).
Q and P belong to LD∗Sep(R), so by (4.2) we have 1.1BQ ∩ 1.1BP = ∅. Thus,

dist(wQ, BP ) ≥ 0.1r(BQ) ≥ Ct r(BP ) > Mr(BP ).

So (4.10) holds.

We can finally finish the proof of Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.2 it suffices to estimate the measure of
cubes from LDSep(R). Let G denote an arbitrary finite subfamily of LDSep(R).
We use the covering lemma [Tol14, Theorem 9.31] to choose a subfamily F ⊂ G
such that ⋃

Q∈G
1.5BQ ⊂

⋃
Q∈F

2BQ,

and the balls {1.5BQ}Q∈F are of bounded superposition.
The above and the LD stopping condition give∑

Q∈G
µ(Q) ≤

∑
Q∈F

µ(2BQ) . τ Θµ(2BR)
∑
Q∈F

r(BQ)n. (4.11)

Now, it follows from Lemma 4.3 and Lemma 4.5 that for eachQ ∈ G ⊂ LDSep(R)
there exists either wQ ∈ ΓLD ∩ 1.2BQ or x ∈ G̃R ∩ 1.2BQ ⊂ ΓR ∩ 1.2BQ. Hence,

Hn(1.5BQ ∩ (ΓLD ∪ ΓR)) ≈α r(BQ)n.
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Now, using the bounded superposition property of F we get
∑
Q∈F

r(BQ)n ≈α
∑
Q∈F
Hn(1.5BQ∩ (ΓLD∪ΓR)) . Hn

( ⋃
Q∈F

1.5BQ∩ (ΓLD∪ΓR)
)

≤ Hn(2BR∩(ΓLD∪ΓR)) ≈α r(R)n ≈ µ(2BR)Θµ(2BR)−1 R∈Ddb≈ µ(R)Θµ(2BR)−1.

Together with (4.11), this gives∑
Q∈G

µ(Q) .α τµ(R).

Since G was an arbitrary finite subfamily of LDSep(R), we finally arrive at∑
Q∈LDSep(R)

µ(Q) .α τµ(R).

5 Top cubes and packing estimate

5.1 Definition of Top
In order to define the Top family, we need to introduce some additional
notation. Given Q ∈ D, letMD(Q) denote the family of maximal cubes from
Ddb(Q)\{Q}. It follows from Lemma II.2.3 that the cubes fromMD(Q) cover
µ-almost all of Q.

Given R ∈ Ddb set

Next(R) =
⋃

Q∈Stop(R)
MD(Q).

Since we always haveMD(Q) 6= {Q}, it is clear that Next(R) 6= {R}.
Observe that if P ∈ Next(R), then by Lemma 3.1 and Lemma II.2.6 we

have for all intermediate cubes S ∈ D, P ⊂ S ⊂ R,

Θµ(2BS) .A Θµ(2BR). (5.1)

We are finally ready to define Top. It is defined inductively as Top =⋃
k≥0 Topk. First, set

Top0 = {R0},

where R0 was defined as suppµ. Having defined Topk, we set

Topk+1 =
⋃

R∈Topk

Next(R).

Note that for each k ≥ 0 the cubes from Topk are pairwise disjoint.
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5.2 Definition of ID
We distinguish a special type of Top cubes. We say that R ∈ Top is increasing
density, R ∈ ID, if

µ

( ⋃
Q∈HD(R)

Q

)
≥ 1

2µ(R).

Lemma 5.1. If A is big enough, then for all R ∈ ID

Θµ(2BR)pµ(R) ≤ 1
2

∑
Q∈Next(R)

Θµ(2BQ)pµ(Q). (5.2)

Proof. The definition of ID and the HD stopping condition imply that for any
R ∈ ID

Θµ(2BR)pµ(R) ≤ 2 Θµ(2BR)p
∑

Q∈HD(R)
µ(Q) ≤ 2A−p

∑
Q∈HD(R)

Θµ(2BQ)pµ(Q).

Note that all Q ∈ HD(R) are doubling, and so by Lemma II.2.7

Θµ(2BQ)pµ(Q) .
∑

P∈MD(Q)
Θµ(2BP )pµ(P ) =

∑
P∈Next(R)
P⊂Q

Θµ(2BP )pµ(P ).

If A is taken big enough, then the estimates above yield (5.2).

5.3 Packing condition
We will now establish the packing condition (2.2). For S ∈ Top set Top(S) =
Top ∩ D(S) and Topj(S) = Topj ∩ D(S). For k ≥ 0 we also define

Topk0(S) =
⋃

0≤j≤k
Topj(S),

IDk
0(S) = ID ∩ Topk0(S).

Recall that µ satisfies the following polynomial growth condition: there exist
C1 > 0 and r0 > 0 such that for all x ∈ suppµ, 0 < r ≤ r0, we have

µ(B(x, r)) ≤ C1r
n. (5.3)

Lemma 5.2. For all S ∈ Top we have∑
R∈Top(S)

Θµ(2BR)pµ(R)

.ε,η,τ (C1)pµ(S) +
∫

2BS

∫ η−1C0r(S)

0

(
µ(K(x, r))

rn

)p
dr

r
dµ(x). (5.4)

The implicit constant does not depend on r0.
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Proof. First, we deal with ID cubes. Note that

∑
R∈IDk0(S)

Θµ(2BR)pµ(R)
(5.2)
≤ 1

2
∑

R∈IDk0(S)

∑
Q∈Next(R)

Θµ(2BQ)pµ(Q)

≤ 1
2

∑
Q∈Topk+1

0 (S)

Θµ(2BQ)pµ(Q),

where the last inequality follows from the fact that ⋃R∈Topk0 Next(R) = Topk+1
0 .

Now, observe that for Q ∈ Topk+1 we have r(Q) ≤ C0A
−k
0 r(R0), and so if k is

big enough, then r(2BQ) ≤ r0. Thus, by (5.3)

Θµ(2BQ) ≤ C1. (5.5)

Hence,∑
R∈Topk0(S)

Θµ(2BR)pµ(R) =
∑

R∈Topk0(S)\ID

Θµ(2BR)pµ(R)+
∑

R∈IDk0(S)

Θµ(2BR)pµ(R)

≤
∑

R∈Topk0(S)\ID

Θµ(2BR)pµ(R) + 1
2

∑
R∈Topk+1

0 (S)

Θµ(2BR)pµ(R)

≤
∑

R∈Topk0(S)\ID

Θµ(2BR)pµ(R) + 1
2

∑
R∈Topk0(S)

Θµ(2BR)pµ(R) + (C1)p
2 µ(S).

(5.6)

Note that for small cubes Q ∈ Topk0(S) (i.e. satisfying r(2BQ) ≤ r0) we have
(5.5), while for big cubes the trivial estimate Θµ(2BQ) ≤ µ(2BS)r−n0 holds. It
follows that∑

R∈Topk0(S)

Θµ(2BR)pµ(R) ≤ (k + 1)
(
(C1)p + µ(2BS)pr−np0

)
µ(S) <∞,

and so we may deduce from (5.6) that∑
R∈Topk0(S)

Θµ(2BR)pµ(R) ≤ 2
∑

R∈Topk0(S)\ID

Θµ(2BR)pµ(R) + (C1)pµ(S).

Letting k →∞ we arrive at∑
R∈Top(S)

Θµ(2BR)pµ(R) ≤ 2
∑

R∈Top(S)\ID
Θµ(2BR)pµ(R) + (C1)pµ(S). (5.7)

Now, we need to estimate the sum from the right hand side. By the definition
of ID we have for all R ∈ Top(S) \ ID

µ

(
R \

⋃
Q∈HD(R)

Q

)
≥ 1

2 µ(R),
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and so by Lemma II.2.1 (c) we get

µ(R) ≤ 2µ
(
R \

⋃
Q∈Stop(R)

Q

)
+ 2µ

( ⋃
Q∈Stop(R)\HD(R)

Q

)

= 2µ
(
R \

⋃
Q∈Next(R)

Q

)
+ 2

∑
Q∈LD(R)

µ(Q) + 2
∑

Q∈BCE(R)
µ(Q).

The measure of low density cubes is small due to (4.1), and so for τ small
enough we have

µ(R) ≤ 3µ
(
R \

⋃
Q∈Next(R)

Q

)
+ 3

∑
Q∈BCE(R)

µ(Q).

Thus,

∑
R∈Top(S)\ID

Θµ(2BR)pµ(R) ≤ 3
∑

R∈Top(S)
Θµ(2BR)pµ

(
R \

⋃
Q∈Next(R)

Q

)

+ 3
∑

R∈Top(S)\ID
Θµ(2BR)p

∑
Q∈BCE(R)

µ(Q). (5.8)

Concerning the first sum, notice that if µ
(
R \ ⋃Q∈Next(R) Q

)
> 0, then we

have arbitrarily small cubes P belonging to Tree(R). In particular, by (3.3) and
(5.3), we have Θµ(2BR) ≤ τ−1Θµ(2BP ) ≤ τ−1C1, taking P ∈ Tree(R)\Stop(R)
small enough. Recall also that for R ∈ Top(S), the sets R \ ⋃Q∈Next(R) Q are
pairwise disjoint. Hence,

∑
R∈Top(S)

Θµ(2BR)pµ
(
R \

⋃
Q∈Next(R)

Q

)
≤ (τ−1C1)pµ(S). (5.9)

To estimate the second sum from (5.8), we apply (3.5) to get
∑

R∈Top(S)
Θµ(2BR)p

∑
Q∈BCE(R)

µ(Q) ≤ 1
ε

∑
R∈Top(S)

∑
P∈Tree(R)

Eµ,p(P )µ(P )

≤ 1
ε

∑
P∈D(S)

Eµ,p(P )µ(P )

By the definition of Eµ,p(P ), and the bounded intersection property of the balls
2BP for cubes P of the same generation, we have

∑
P∈D(S)

Eµ,p(P )µ(P ) =
∑
k

∑
P∈Dµ,k(S)

∫
2BP

∫ η−1r(P )

ηr(P )

(
µ(K(x, r))

rn

)p
dr

r

.
∑
k

∫
2BS

∫ η−1C0A
−k
0

ηA−k0

(
µ(K(x, r))

rn

)p
dr

r

.η

∫
2BS

∫ η−1C0r(S)

0

(
µ(K(x, r))

rn

)p
dr

r
dµ(x).
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Consequently,

∑
R∈Top(S)

Θµ(2BR)p
∑

Q∈BCE(R)
µ(Q) .ε,η

∫
2BS

∫ η−1C0r(S)

0

(
µ(K(x, r))

rn

)p
dr

r
dµ(x).

Together with (5.7), (5.8), and (5.9), this gives (5.4).

Let us put together all the ingredients of the proof of the main lemma.

Proof of Lemma 2.1. Let Top ⊂ Ddb be as above, and {ΓR}R∈Top be as in
Lemma 3.8. Then, properties (i) and (ii) are ensured by Lemma 3.8. Property
(iii) follows from (5.1). We get the packing estimate (2.2) from (5.4) by taking
S = R0.

6 Application to singular integral operators
To prove Theorem 1.14, we will use geometric characterizations of boundedness
of operators from Kn(Rd) shown in [GS19, Sections 4, 5, 9]. For n = 1, d = 2,
a variant of this characterization valid for the Cauchy transform was already
proved in [Tol05].

For Q,S ∈ D, Q ⊂ S, we set

δµ(Q,S) =
∫

2BS\2BQ

1
|y − xQ|n

dµ(y).

The notation Good(R), Tr(R), Next(R) used below was introduced in Section
2.

Lemma 6.1 ([GS19]). Let µ be a compactly supported Radon measure on
Rd satisfying the growth condition (1.8). Assume there exists a family of
cubes Top ⊂ Ddb, and a corresponding family of Lipschitz graphs {ΓR}R∈Top,
satisfying:

(i) Lipschitz constants of ΓR are uniformly bounded by some absolute con-
stant,

(ii) µ-almost all Good(R) is contained in ΓR,

(iii) for all Q ∈ Tr(R) we have Θµ(2BQ) . Θµ(2BR).

(iv) for all Q ∈ Next(R) there exists S ∈ D, Q ⊂ S, such that δµ(Q,S) .
Θµ(2BR), and 2BS ∩ ΓR 6= ∅.

Then, for every singular integral operator T with kernel k ∈ Kn(Rd) we have

sup
ε>0
‖Tεµ‖2

L2(µ) .
∑

R∈Top
Θµ(2BR)2µ(R),

with the implicit constant depending on C1 and the constant Ck from (1.7).
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V. Cones, rectifiability and SIOs

We are going to use Lemma 2.1 together with Lemma 3.8 and Lemma 6.1
to get the following.

Lemma 6.2. Let µ be a compactly supported Radon measure on Rd satisfying
the growth condition (1.8). Assume further that for some V ∈ G(d, d − n),
α ∈ (0, 1), we have Eµ,2(Rd, V, α) <∞.

Then, for every singular integral operator T with kernel k ∈ Kn(Rd) we
have

sup
ε>0
‖Tεµ‖2

L2(µ) . µ(Rd) + Eµ,2(Rd, V, α), (6.1)

with the implicit constant depending on C1, α and the constant Ck from (1.7).

Proof. Using Lemma 2.1 (with p = 2), it is clear that the assumptions (i)-(iii)
of Lemma 6.1 are satisfied. We still have to check if (iv) holds. Once we do
that, the packing estimate (2.2) together with Lemma 6.1 will ensure that (6.1)
holds.

Suppose R ∈ Top, Q ∈ Next(R). We are looking for S ∈ D such that
δµ(Q,S) . Θµ(2BR), and 2BS ∩ ΓR 6= ∅. Let P ∈ Stop(R) be such that
Q ⊂ P . By Lemma 3.8 we have some constant Λ such that

ΛBP ∩ ΓR 6= ∅.

Together with (3.16), this implies that there exists S ∈ Tree(R) such that
P ⊂ S, r(S) ≈Λ r(P ), and

2BS ∩ ΓR 6= ∅.

We split

δµ(Q,S) =
∫

2BS\2BP

1
|y − xQ|n

dµ(y) +
∫

2BP \2BQ

1
|y − xQ|n

dµ(y).

Concerning the first integral, for y ∈ 2BS \ 2BP we have |y − xQ| ≈ r(S) ≈Λ
r(P ), and so ∫

2BS\2BP

1
|y − xQ|n

dµ(y) . Θµ(2BS)
(3.2)
.A Θµ(2BR).

To deal with the second integral, observe that there are no doubling cubes
between Q and P . Then, it follows from Lemma II.2.6 that∫

2BP \2BQ

1
|y − xQ|n

dµ(y) . Θµ(100B(P )).

If P = R, then P is doubling and we have Θµ(100B(P )) . Θµ(2BR). Otherwise,
the parent of P , denoted by P ′, belongs to Tree(R)\Stop(R). Since 100B(P ) ⊂
2BP ′ , we get

Θµ(100B(P )) . Θµ(2BP ′)
(3.2)
.A Θµ(2BR).

Either way, we get that δµ(Q,S) .A Θµ(2BR), and so the assumption (iv) of
Lemma 6.1 is satisfied.
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6. Application to singular integral operators

Lemma 6.2 allows us to use the non-homogeneous T1 theorem of Nazarov,
Treil and Volberg [NTV97] to prove a version of Theorem 1.14 in the case of a
fixed direction V , i.e. if for all x ∈ suppµ we have Vx ≡ V .

Lemma 6.3. Let µ be a Radon measure on Rd satisfying the polynomial growth
condition (1.8). Suppose that there exist M0 > 1, α ∈ (0, 1), V ∈ G(d, d− n),
such that for every ball B we have

Eµ,2(B, V, α) ≤M0µ(B). (6.2)

Then, all singular integral operators Tµ with kernels in Kn(Rd) are bounded in
L2(µ). The bound on the operator norm of Tµ depends only on C1, α,M0, and
the constant Ck from (1.7).

Proof. We apply Lemma 6.2 to µ|B, where B is an arbitrary ball, and get that

sup
ε>0
‖Tε(µ|B)‖2

L2(µ|B) .C1,α,Ck µ(B) + Eµ|B ,2(Rd, V, α).

It is easy to see that, using the assumptions (1.8) and (6.2), we have

Eµ|B ,2(Rd, V, α) . Eµ,2(B, V, α) + C2
1µ(B) ≤ (1 + C2

1)µ(B).

Hence,
sup
ε>0
‖Tε(µ|B)‖2

L2(µ|B) .C1,α,Ck,M0 µ(B). (6.3)

The L2 boundedness of Tµ follows by the non-homogeneous T1 theorem from
[NTV97]. The condition (6.3) is slightly weaker than the original assumption
in [NTV97], but this is not a problem, see the discussion in [Tol14, §3.7.2].

We are ready to finish the proof of Theorem 1.14.

Proof of Theorem 1.14. Let B be an arbitrary ball intersecting suppµ. Recall
that, by the definition of BPBE(2), there existM0 > 1, κ > 0, VB ∈ G(d, d−n),
and GB ⊂ B such that µ(GB) ≥ κµ(B) and for all x ∈ GB

∫ r(B)

0

(
µ(K(x, VB, α, r))

rn

)2
dr

r
≤M0.

By the polynomial growth condition (1.8) we also have

∫ ∞
r(B)

(
µ(K(x, VB, α, r))

rn

)2
dr

r
≤
∫ ∞
r(B)

µ(B)2

r2n+1 dr .
µ(B)2

r(B)2n ≤ C2
1 .

Hence, for all x ∈ GB

∫ ∞
0

(
µ(K(x, VB, α, r))

rn

)2
dr

r
.C1,M0 1.
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V. Cones, rectifiability and SIOs

Set ν = µ|GB . The estimate above implies that for all balls B′ ⊂ Rd we have

Eν,2(B′, VB, α) =
∫
B′

∫ r(B′)

0

(
ν(K(x, VB, α, r))

rn

)2
dr

r
dν(x) .C1,M0 ν(B′).

Clearly, ν = µ|GB has polynomial growth, and so we may apply Lemma 6.3
to conclude that all singular integral operators Tν with kernels in Kn(Rd) are
bounded in L2(ν). Thus, the corresponding maximal operators T∗, defined as

T∗ν(x) = sup
ε>0
|Tεν(x)| for ν ∈M(Rd), x ∈ Rd,

are bounded from M(Rd) to L1,∞(ν), see [Tol14, Theorem 2.21].
Recall that for all balls B we have µ(GB) ≈κ µ(B). For any fixed T , the

operator norm of Tµ|GB ,ε : L2(µ|GB)→ L2(µ|GB) is bounded uniformly in B and
ε, and so the same is true for the operator norm of T∗ : M(Rd)→ L1,∞(µ|GB).
Hence, we may use the good lambda method [Tol14, Theorem 2.22] to conclude
that Tµ is bounded in L2(µ).

7 Sufficient condition for rectifiability
The aim of this section is to prove the following sufficient condition for rectifia-
bility.

Proposition 7.1. Suppose µ is a Radon measure on Rd satisfying Θn,∗(µ, x) >
0 and Θn

∗ (µ, x) <∞ for µ-a.e. x ∈ Rd. Assume further that for µ-a.e. x ∈ Rd

there exists some Vx ∈ G(d, d− n) and αx ∈ (0, 1) such that

∫ 1

0

(
µ(K(x, Vx, αx, r))

rn

)p
dr

r
<∞, (7.1)

and the mapping x 7→ (Vx, αx) is µ-measurable. Then, µ is n-rectifiable.

We reduce the proposition above to the following lemma.

Lemma 7.2. Suppose µ is a Radon measure on B(0, 1) ⊂ Rd, and assume
that there exists a constant C∗ > 0 such that Θn

∗ (µ, x) ≤ C∗ and Θn,∗(µ, x) > 0
for µ-a.e. x ∈ Rd. Assume further that there exist M0 > 0, V ∈ G(d, d − n)
and α ∈ (0, 1) such that for µ-a.e. x ∈ Rd

∫ 1

0

(
µ(K(x, V, α, r))

rn

)p
dr

r
≤M0. (7.2)

Then, µ is n-rectifiable.
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7. Sufficient condition for rectifiability

Proof of Proposition 7.1 using Lemma 7.2. To show that µ is rectifiable, it
suffices to prove that for any bounded E ⊂ suppµ of positive measure there
exists F ⊂ E, µ(F ) > 0, such that µ|F is rectifiable. Given any such E we
may rescale it and translate it, so without loss of generality E ⊂ B(0, 1).

Since 0 < Θn,∗(µ, x) and Θn
∗ (µ, x) <∞ for µ-a.e. x ∈ E, choosing C∗ > 1

big enough, we get that the set

E ′ = {x ∈ E : Θn,∗(µ, x) > 0, Θn
∗ (µ, x) ≤ C∗} (7.3)

has positive µ-measure.
Let αj → 0 be a decreasing sequence of numbers, and let {Vm}m∈N be

a countable and dense subset of G(d, d − n). It is clear that for any α ∈
(0, 1), V ∈ G(d, d−n), there exist αj, Vm, such that K(0, Vm, αj) ⊂ K(0, V, α).

We consider all the pairs {(αj, Vm)}j,m, and relabel them to get a sequence
(αk, Vk), k ∈ N. For µ-a.e. x ∈ suppµ let αx, Vx be the angle and (d−n)-plane
for which (7.1) holds. Set

Ek = {x ∈ E ′ : K(x, Vk, αk) ⊂ K(x, Vx, αx)},

Observe that Ek are measurable due to measurability of x 7→ (Vx, αx), and
that µ(E ′ \ ⋃∞k=0Ek) = 0. Pick any k ∈ N such that µ(Ek) > 0. For µ-a.e.
x ∈ Ek we have ∫ 1

0

(
µ(K(x, Vk, αk, r))

rn

)p
dr

r
<∞.

Thus, choosing M0 � 1 big enough, we get that the set F ⊂ Ek of points such
that ∫ 1

0

(
µ(K(x, Vk, αk, r))

rn

)p
dr

r
≤M0

satisfies µ(F ) > 0. Finally, using the Lebesgue differentiation theorem and (7.3),
it is easy to see that for µ-a.e. x ∈ F we have Θn,∗(µ|F , x) = Θn,∗(µ, x) > 0
and Θn

∗ (µ|F , x) = Θn
∗ (µ, x) ≤ C∗. Hence, µ|F satisfies the assumptions of

Lemma 7.2, and so it is n-rectifiable.

7.1 Proof of Lemma 7.2 for µ� Hn

First, we will prove Lemma 7.2 under the additional assumption Θn,∗(µ, x) <∞
for µ-a.e. x ∈ Rd (which is equivalent to µ� Hn).

Using similar tricks as in the proof of Proposition 7.1, it is easy to see that
we may actually replace Θn,∗(µ, x) <∞ by a stronger condition: without loss
of generality, we can assume that there exist C1 > 0 and r0 > 0 such that for
all x ∈ suppµ and all 0 < r ≤ r0 we have

µ(B(x, r)) ≤ C1 r
n. (7.4)
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V. Cones, rectifiability and SIOs

Then, the assumptions of Lemma 2.1 are satisfied, and we get a family of cubes
Top ⊂ Ddb and an associated family of Lipschitz graphs ΓR, R ∈ Top. The
cubes from Top satisfy the packing condition∑

R∈Top
Θµ(2BR)pµ(R) . µ(Rd) + Eµ,p(Rd, V, α) ≤ (1 +M0)µ(B(0, 1)).

It follows that for µ-a.e. x ∈ Rd we have∑
R∈Top:R3x

Θµ(2BR)p <∞.

Fix some x for which the above holds. Denote by R0 ⊃ R1 ⊃ . . . the sequence
of cubes from Top containing x. We claim that for µ-a.e. x this sequence is
finite.

Indeed, if the sequence is infinite, we have Θµ(2BRi) → 0. On the other
hand, let i ≥ 0 and r(Ri+1) ≤ r ≤ r(Ri). Since Ri+1 ∈ Next(Ri), we get from
(5.1)

Θµ(x, r) .A Θµ(2BRi).
In consequence,

Θn,∗(µ, x) .A lim sup
i→∞

Θµ(2BRi) = 0,

which may happen only on a set of µ-measure 0 because Θn,∗(µ, x) > 0 for
µ-a.e. x ∈ Rd.

Hence, for µ-a.e. x ∈ Rd the sequence {Ri} is finite. This means that if
Rk denotes the smallest Top cube containing x, then x ∈ Good(Rk). It follows
that

µ

(
Rd \

⋃
R∈Top

Good(R)
)

= 0.

By Lemma 2.1 (ii) we have µ(Good(Rk) \ ΓRk) = 0. Hence,

µ

(
Rd \

⋃
R∈Top

ΓR
)

= 0,

and so µ is n-rectifiable.

7.2 Proof of Lemma 7.2 in full generality
Thanks to the partial result from the preceding subsection, it is clear that to
prove Lemma 7.2 in full generality, it suffices to show that for µ satisfying the
assumptions of Lemma 7.2 we have

Mnµ(x) = sup
r>0

µ(B(x, r))
rn

<∞ for µ-a.e. x ∈ B(0, 1).

To do that, we will use techniques from [Tol19, Section 5].
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7. Sufficient condition for rectifiability

Lemma 7.3 ([Tol19, Lemma 5.1]). Let C > 2. Suppose that µ is a Radon
measure on Rd, and that Θn

∗ (µ, x) ≤ C∗ for µ-a.e. x ∈ Rd. Then, for µ-a.e.
x ∈ Rd there exists a sequence of radii rk → 0 such that

µ(B(x,Crk)) ≤ 2Cdµ(B(x, rk)) ≤ 20C∗Cn+d rnk . (7.5)

Let λ < 1
2 be a small constant depending on α, to be chosen later. By the

lemma above (used with C = λ−1) and Vitali’s covering theorem (see [Mat95,
Theorem 2.8]), there exists a family of pairwise disjoint closed balls Bi, i ∈ I,
centered at xi ∈ suppµ ⊂ B(0, 1), which cover µ-almost all of B(0, 1), and
which satisfy

µ(Bi) ≤ 2λ−dµ(λBi) ≤ 20C∗λ−d r(Bi)n,
and

r(Bi) ≤ ρ

for some arbitrary fixed ρ > 0. We may assume that (7.2) holds for all the
centers xi. Choose I0 ⊂ I a finite subfamily such that

µ(B(0, 1) \
⋃
i∈I0

Bi) ≤ εµ(B(0, 1)),

where ε > 0 is some small constant. Clearly, I0 = I0(ρ, ε).
For each i ∈ I0 we consider an n-dimensional disk Di, centered at xi,

parallel to V ⊥ ∈ G(d, n), with radius λr(Bi). We define an approximating
measure

ν =
∑
i∈I0

µ(Bi)
Hn(Di)

Hn|Di .

Note that
ν(Di) = µ(Bi) ≈λ µ(λBi) .λ C∗r(Bi)n. (7.6)

Moreover, since I0 is a finite family, the definition of ν and (7.6) imply that ν
satisfies the polynomial growth condition (2.1) with r0 = mini∈I0 r(Bi)/2 and
C1 = C(λ)C∗, i.e. for 0 < r < r0 and x ∈ supp ν

ν(B(x, r)) ≤ C(λ)C∗rn. (7.7)

Lemma 7.4. For λ = λ(α) < 1
2 small enough, we have

Eν,p(Rd, V, 1
2α) .λ,p (M0 + µ(B(0, 1))p)µ(B(0, 1)).

The implicit constant does not depend on ρ, ε.

Proof. Let i ∈ I0 and x ∈ Di. We will estimate the ν-measure of K(x, V, 1
2α, r).

First, note that ν(K(x, V, 1
2α, r)) = ν(K(x, V, 1

2α, r) \ Bi). Indeed, Bi ∩
supp ν = Di, and Di ∩K(x, V, 1

2α) = ∅ because Di is parallel to V ⊥. Thus,
ν(K(x, V, 1

2α, r) ∩ Bi) = 0. It follows immediately that for r ≤ (1 − λ)r(Bi)
we have ν(K(x, V, 1

2α, r)) = 0.
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V. Cones, rectifiability and SIOs

Concerning r > (1− λ)r(Bi), if λ = λ(α) is small enough, then

K(x, V, 1
2α, r) \Bi ⊂ K(xi, V, 3

4α, 2r) \Bi

because x ∈ λBi. Thus, it suffices to estimate ν(K(xi, V, 3
4α, 2r) \Bi).

Suppose r > (1−λ)r(Bi) and j ∈ I0 is such that Dj∩K(xi, V, 3
4α, 2r)\Bi 6=

∅. Since Bi and Bj are disjoint, we have

r(Bj) + r(Bi) + dist(Bi, Bj) ≤ 3r and dist(Di, Dj) ≥
r(Bi)

2 + r(Bj)
2 .

It follows easily that, for λ = λ(α) small enough, we get λBj ⊂ K(xi, V, α, 4r).
Thus,

ν(K(xi, V, 3
4α, 2r)) = ν(K(xi, V, 3

4α, 2r) \Bi) ≤
∑

j∈I0:λBj⊂K(xi,V,α,4r)
ν(Dj)

(7.6)
≈λ

∑
j∈I0:λBj⊂K(xi,V,α,4r)

µ(λBj) ≤ µ(K(xi, V, α, 4r)).

Hence,
∫ 1/4

0

(
ν(K(xi, V, 3

4α, 2r))
rn

)p
dr

r
.λ

∫ 1

0

(
µ(K(xi, V, α, r))

rn

)p
dr

r

(7.2)
≤ M0.

This gives

∫
Di

∫ ∞
0

(
ν(K(x, V, 1

2α, r))
rn

)p
dr

r
dν(x)

≤
∫
Di

∫ ∞
0

(
ν(K(xi, V, 3

4α, r))
rn

)p
dr

r
dν(x)

≤ C(λ)M0ν(Di) +
∫
Di

∫ ∞
1/4

(
ν(Rd)
rn

)p
dr

r
dν(x)

.λ,p M0ν(Di) + ν(Rd)pν(Di) ≤M0µ(Bi) + µ(B(0, 1))pµ(Bi).

Summing over i ∈ I0 yields

Eν,p(Rd, V, 1
2α) .λ,p (M0 + µ(B(0, 1))p)µ(B(0, 1)).

Lemma 7.5. For λ = λ(α) < 1
2 small enough, we have∫

Mnν(x)p dν(x) .α,λ,p

(
(C∗)p +M0 + µ(B(0, 1))p

)
µ(B(0, 1)).

The constants on the right hand side do not depend on ρ, ε.
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7. Sufficient condition for rectifiability

Proof. By (7.7) and Lemma 7.4, we may use Lemma 2.1 to get a family of
cubes Topν satisfying properties (i)-(iii) of Lemma 2.1, and such that∑

R∈Topν

Θν(2BR)pν(R) .α,λ (C∗)pν(Rd) + C(p)(M0 + µ(B(0, 1))p)µ(B(0, 1))

.α,λ,p

(
(C∗)p +M0 + µ(B(0, 1))p

)
µ(B(0, 1)). (7.8)

Now, the property (iii) of Lemma 2.1 lets us estimate Mnν(x). Indeed,
suppose x ∈ supp ν, and let r1 > 0 be such that

Mnν(x) ≤ 2ν(B(x, r1))
rn1

.

Since supp ν ⊂ B(0, 2), we have r1 ≤ 4. Let Q ∈ Dν be the smallest cube
satisfying x ∈ Q and B(x, r1) ∩ supp ν ⊂ 2BQ (such a cube exists because the
largest cube Q0 := supp ν clearly satsfies supp ν ⊂ 2BQ0). Let R ∈ Topν be
the top cube such that Q ∈ Tr(R). Clearly, `(Q) ≈ r1. By Lemma 2.1 (iii), we
have

ν(B(x, r1))
rn1

. Θν(2BQ) . Θν(2BR).

Thus, Mnν(x)p . ∑
R∈Topν 1R(x)Θν(2BR)p. Integrating with respect to ν and

applying (7.8) yields the desired estimate.

Lemma 7.6. We have∫
Mnµ(x)p dµ(x) .α,λ,p

(
(C∗)p +M0 + µ(B(0, 1))p

)
µ(B(0, 1)).

In particular, Mnµ(x) <∞ for µ-a.e. x ∈ B(0, 1).

Proof. Denote
Mn,ρµ(x) = sup

r≥ρ

µ(B(x, r))
rn

.

Recall that I0 = I0(ρ, ε) and set

Eε,ρ = suppµ ∩
⋃
i∈I0

Bi.

We claim that∫
Eε,ρ

Mn,ρ(1Eε,ρµ)(x)p dµ(x) .
∫
Mn,ρν(x)p dν(x). (7.9)

Indeed, let x, x′ ∈ Bj, j ∈ I0, and r ≥ ρ. Then, using repeatedly the fact that
r(Bi) ≤ ρ ≤ r for i ∈ I0,

µ(B(x, r) ∩ Eε,ρ) ≤ µ(B(x′, 3r) ∩ Eε,ρ) ≤
∑

i∈I0:Bi∩B(x′,3r)6=∅
µ(Bi)

=
∑

i∈I0:Bi∩B(x′,3r)6=∅
ν(Di) ≤ ν(B(x′, 5r)).
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V. Cones, rectifiability and SIOs

Hence, for all x ∈ Bj, j ∈ I0,

Mn,ρ(1Eε,ρµ)(x) ≤ 5n inf
x′∈Bj

Mn,ρν(x′).

Integrating both sides of the inequality with respect to µ in Eε,ρ yields (7.9).
Lemma 7.5 and (7.9) give∫
Eε,ρ

Mn,ρ(1Eε,ρµ)(x)p dµ(x)

≤ C(α, λ, p)
(
(C∗)p +M0 + µ(B(0, 1))p

)
µ(B(0, 1)) =: K,

where K is independent of ρ and ε.
Set εk = 2−k. Observe that, for a fixed ρ > 0, we have µ(Rd\lim infk Eεk,ρ) =

0, where
lim inf

k
Eεk,ρ =

∞⋃
j=1

Gj and Gj =
∞⋂
k=j

Eεk,ρ.

The inclusion Gj ⊂ Eεj ,ρ gives∫
Gj
Mn,ρ(1Gjµ)(x)p dµ(x) ≤

∫
Eεj ,ρ

Mn,ρ(1Eεj ,ρµ)(x)p dµ(x) ≤ K.

Since the sequence of sets Gj is increasing, we easily get that for µ-a.e. x ∈
B(0, 1)

1Gj(x)Mn,ρ(1Gjµ)(x) j→∞−−−→Mn,ρµ(x),
and the convergence is monotone. Hence, by monotone convergence theorem,∫

Mn,ρµ(x)p dµ(x) ≤ K.

The estimate is uniform in ρ, and so once again monotone convergence gives∫
Mnµ(x)p dµ(x) ≤ K.

Taking into account Lemma 7.6 and Section 7.1, the proof of Lemma 7.2 is
finished.

8 Necessary condition for rectifiability
In this section we will prove the following.

Proposition 8.1. Suppose µ is an n-rectifiable measure on Rd and 1 ≤ p <∞.
Then, for µ-a.e. x ∈ Rd there exists Vx ∈ G(d, d−n) such that for any α ∈ (0, 1)
we have ∫ 1

0

(
µ(K(x, Vx, α, r))

rn

)p
dr

r
<∞.
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8. Necessary condition for rectifiability

First, we recall the definition of β2 numbers, as defined by David and
Semmes [DS91].

Definition 8.2. Given a Radon measure µ, x ∈ suppµ, r > 0, and an n-plane
L, define

βµ,2(x, r) = inf
L

(
1
rn

∫
B(x,r)

(
dist(y, L)

r

)2

dµ(y)
)1/2

,

where the infimum is taken over all n-planes intersecting B(x, r).

Tolsa showed the following necessary condition for rectifiability in terms of
β2 numbers.

Theorem 8.3 ([Tol15]). Suppose µ is an n-rectifiable measure on Rd. Then,
for µ-a.e. x ∈ Rd we have

∫ 1

0
βµ,2(x, r)2 dr

r
<∞. (8.1)

Remark 8.4. When showing that rectifiable sets have approximate tangents
almost everywhere one uses the so-called linear approximation properties, see
[Mat95, Theorems 15.11 and 15.19]. The theorem of Tolsa improves on the
linear approximation property, and that allows us to improve on the classical
approximate tangent plane result.

Before proving Proposition 8.1 we need one more lemma. Recall that if α >
0, W is an n-plane, and 0 < r < R, then K(x,W⊥, α, r, R) = K(x,W⊥, α, R)\
K(x,W⊥, α, r).

Lemma 8.5. Let α, ε ∈ (0, 1) be some constants satisfying η := 1−α−3ε > 0.
Let x ∈ Rd, r > 0, and suppose that W and L are n-planes satisfying x ∈ W
and

distH(L ∩B(x, r),W ∩B(x, r)) ≤ εr. (8.2)

Then
K(x,W⊥, α, r, 2r) ⊂ B(x, 2r) \Bηr(L).

Proof. Suppose y ∈ K(x,W⊥, α, r, 2r), so that r < |x − y| < 2r and |x −
πW (y)| < α|x− y|. We need to show that dist(y, L) > ηr.

Set y′ = πL(y), x′ = πL(x). Then

dist(y, L) = |y − y′| ≥ |x− y| − |x′ − y′| − |x− x′|

= |x− y| − |x′ − y′| − dist(x, L)
(8.2)
≥ |x− y| − |x′ − y′| − εr.
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V. Cones, rectifiability and SIOs

Let π̃W and π̃L denote the orthogonal projections onto the n-planes parallel to
W and L passing through the origin. It follows from (8.2) that‖π̃W − π̃L‖op ≤ ε.
Thus,

|x′−y′| =
∣∣π̃L(x− y)

∣∣ ≤ ∣∣π̃W (x− y)
∣∣+‖π̃W − π̃L‖op |x−y| ≤ ∣∣π̃W (x− y)

∣∣+2εr.

Hence, using the fact that |π̃W (x− y)| = |x− πW (y)| < α|x− y|, we get from
the two estimates above

dist(y, L) ≥ |x−y|−|π̃W (x− y)|−3εr ≥ (1−α)|x−y|−3εr ≥ (1−α−3ε)r = ηr.

Proof of Proposition 8.1. Let µ be n-rectifiable. For r > 0 and x ∈ suppµ let
Lx,r be the n-plane minimizing βµ,2(x, r). We know that for µ-a.e. x ∈ suppµ
we have (8.1) and (II.3.18) (in particular, the approximate tangent plane Wx

exists). Fix such x. Set Vx = W⊥
x , let α ∈ (0, 1) be arbitrary, and for 0 < r < R

set K(r) = K(x, Vx, α, r), K(r, R) = K(x, Vx, α, r, R). We will show that

∫ 1

0

(
µ(K(r))
rn

)p
dr

r
<∞. (8.3)

Let ε > 0 be a constant so small that η := 1−α−3ε > 0. Use Lemma II.3.9
to find r0 > 0 such that for 0 < r ≤ r0 we have

distH(Lx,r ∩B(x, r),Wx ∩B(x, r)) ≤ εr.

Then, it follows from Lemma 8.5 that for all 0 < r ≤ r0

K(r/2, r) ⊂ B(x, r) \Bηr(Lx,r).

Note that by Chebyshev’s inequality

µ(B(x, r) \Bηr(Lx,r)) ≤ η−2
∫
B(x,r)

(
dist(y, Lx,r)

r

)2

dµ(y) = η−2rnβµ,2(x, r)2.

Hence, for 0 < r ≤ r0 we have

µ(K(r/2, r))
rn

.η βµ,2(x, r)2,

and so ∫ r0

0

µ(K(r/2, r))
rn

dr

r
.η

∫ r0

0
βµ,2(x, r)2 dr

r

(8.1)
< ∞. (8.4)
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Now, observe that for any integer N > 0
∫ r0/2

2−Nr0

µ(K(r))
rn

dr

r
. (r0)−n

N∑
k=1

µ(K(2−kr0))2kn

≤ 2n(r0)−n
N∑
k=1

µ(K(2−kr0))2kn − (r0)−n
N∑
k=1

µ(K(2−kr0))2kn

= (r0)−n
N∑
k=1

µ(K(2−kr0))2(k+1)n − (r0)−n
N∑
k=1

µ(K(2−kr0))2kn

≤ (r0)−n
N+1∑
k=2

(
µ(K(2−k+1r0))− µ(K(2−kr0))

)
2kn + µ(K(2−(N+1)r0))

(2−(N+1)r0)n

.
∫ r0

0

µ(K(r/2, r))
rn

dr

r
+ Θµ(x, 2−(N+1)r0).

Letting N →∞, we get from the above and (8.4) that∫ r0

0

µ(K(r))
rn

dr

r
.η

∫ r0

0
βµ,2(x, r)2 dr

r
+ Θn,∗(µ, x) <∞,

for µ-a.e. x ∈ suppµ, where we also used the fact that Θn,∗(µ, x) <∞ µ-almost
everywhere (because µ is n-rectifiable). The integral

∫ 1
r0

µ(K(r))
rn

dr
r
is obviously

finite, and so we get that ∫ 1

0

µ(K(r))
rn

dr

r
<∞,

which is precisely (8.3) with p = 1. To get the same with p > 1, note that
since Θn,∗(µ, x) <∞ for µ-a.e. x, we have
∫ 1

0

(
µ(K(r))
rn

)p
dr

r
≤
∫ 1

0

µ(K(r))
rn

Θµ(x, r)p−1 dr

r

≤ sup
0<r<1

Θµ(x, r)p−1
∫ 1

0

µ(K(r))
rn

dr

r
<∞.

9 Sufficient condition for BPLG
In this section we prove the “sufficient part” of Theorem 1.9. After a suitable
translation and rescaling, it suffices to show the following:

Proposition 9.1. Suppose p ≥ 1, E ⊂ Rd is n-AD-regular, and 0 ∈ E. Let
α > 0, M0 > 1, κ > 0, and assume that there exist F ⊂ E ∩ B(0, 1) and
V ∈ G(d, d− n), such that Hn(F ) ≥ κ, and for all x ∈ F∫ 1

0

(
Hn(K(x, V, α, r) ∩ F )

rn

)p
dr

r
≤M0. (9.1)
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V. Cones, rectifiability and SIOs

Then there exists a Lipschitz graph Γ, with Lipschitz constant depending on
α, n, d, such that

Hn(F ∩ Γ) & κ, (9.2)
with the implicit constant depending on p,M0, α, n, d, and the AD-regularity
constants of E.

To prove the above we will use techniques developed in [MO18b]. Fix
V ∈ G(d, d − n). Let θ > 0 and M ∈ {0, 1, 2 . . . }. In the language of
Martikainen and Orponen, a set E ⊂ Rd has the n-dimensional (θ,M)-property
if for all x ∈ E

#{j ∈ Z : K(x, V, θ, 2−j, 2−j+1) ∩ E 6= ∅} ≤M.

It is easy to see that if E has the n-dimensional (θ, 0)-property, then E is
contained in a Lipschitz graph with Lipschitz constant bounded by 1/θ, see
[MO18b, Remark 1.11].

The main proposition of [MO18b] reads as follows.

Proposition 9.2 ([MO18b, Proposition 1.12]). Assume that E is n-AD-
regular, and assume that F1 ⊂ E ∩ B(0, 1) is an Hn-measurable subset with
Hn(F1) ≈C 1. Suppose further that F1 satisfies the n-dimensional (θ,M)-
property for some θ > 0, M ≥ 0. Then there exists and Hn-measurable subset
F2 ⊂ F1 with Hn(F2) ≈C,θ,M 1 which satisfies the (θ/b, 0)-property. Here b ≥ 1
is a constant depending only on d.

Remark 9.3. It follows immediately from the proposition above that if we
construct F1 ⊂ E ∩ B(0, 1) with Hn(F1) ≈ κ satisfying the n-dimensional
(α/2,M)-property, then we will get a Lipschitz graph Γ such that (9.2) holds.
Hence, we will be done with the proof of Proposition 9.1.

To construct F1 we will use another lemma from [MO18b].

Lemma 9.4 ([MO18b, Lemma 2.1]). Let E be an n-AD-regular set with
Hn(E) ≥ C > 0, let F ⊂ E ∩B(0.1) be an Hn-measurable subset, and let

Fε = {x ∈ F : Hn(F ∩B(x, rx)) ≤ εrnx for some radius 0 < rx ≤ 1}.

Then Hn(Fε) . ε with the bound depending only on C and the AD-regularity
constant of E.

Note that the set F \ Fε does not have to be AD-regular. Nevertheless, we
gain some extra regularity that will prove useful.

Now, let E and F ⊂ E∩B(0, 1) be as in the assumptions of Proposition 9.1.
We apply Lemma 9.4 to conclude that for some ε, depending on κ and the
AD-regularity constant of E, we have

Hn(F \ Fε) ≥
κ

2 .

Set F1 = F \ Fε.
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10. Necessary condition for BPLG

Lemma 9.5. There exists M = M(M0, ε, α, n) such that F1 satisfies the
n-dimensional (α/2,M)-property.

Proof. Denote by FBad ⊂ F1 the set of x ∈ F1 such that

#{j ∈ Z : K(x, V, α/2, 2−j, 2−j+1) ∩ F1 6= ∅} > M. (9.3)

We will show that, if M is chosen big enough, the set FBad is empty.
Let x ∈ FBad and j ∈ Z be such that there exists xj ∈ K(x, V, α/2, 2−j, 2−j+1)∩

F1. It is easy to see that for some λ = λ(α), independent of j, we have

B(xj, λ2−j) ⊂ K(x, V, α, 2−j−1, 2−j+2).

Since xj ∈ F1 = F \ Fε, it follows that

Hn(F ∩B(xj, λ2−j)) > ε(λ2−j)n.

The two observations above give

Hn(F ∩K(x, V, α, 2−j+2))
(2−j+2)n ≥ H

n(F ∩K(x, V, α, 2−j−1, 2−j+2))
(2−j+2)n &α,λ ε.

By (9.3), there are more than M different scales (i.e. j’s) for which the above
holds. Thus, for x ∈ FBad we have∫ 1

0

(
Hn(K(x, V, α, r) ∩ F )

rn

)p
dr

r
&α,λ Mεp.

Taking M = M(M0, ε, α, n, p) big enough we get a contradiction with (9.1).
Thus, FBad is empty. Now, it follows trivially by the definition of FBad that F1
satisfies the n-dimensional (α/2,M)-property.

By Remark 9.3, this finishes the proof of Proposition 9.1.

10 Necessary condition for BPLG
In this section we prove the “necessary part” of Theorem 1.9. After rescaling,
translating, and using the BPLG property, it is clear that it suffices to show
the following:

Proposition 10.1. Suppose E ⊂ Rd is n-AD-regular, and 0 ∈ E. Let p ≥ 1.
Assume there exists a Lipschitz graph Γ such that Hn(Γ∩E∩B(0, 1)) ≥ κ. Then
there exists α = α(Lip(Γ)) > 0, V ∈ G(d, d−n), and a set F ⊂ Γ∩E∩B(0, 1),
such that Hn(F ) & κ, and for x ∈ F∫ 1

0

(
Hn(K(x, V, α, r) ∩ E)

rn

)p
dr

r
≤M0, (10.1)

where M0 > 1 is a constant depending on p, Lip(Γ), κ and the AD-regularity
constant of E.

157



V. Cones, rectifiability and SIOs

We begin by fixing some additional notation. Set µ = Hn|E. We will
denote the AD-regularity constant of E by C0, so that for every x ∈ E, 0 <
r < diam(E),

C−1
0 rn ≤ µ(B(x, r)) ≤ C0r

n.

Remark 10.2. Since we assume that E is AD-regular, the exponent p in
(10.1) does not really matter. For any p > 1 we have(

Hn(K(x, V, α, r) ∩ E)
rn

)p
≤ Cp−1

0
Hn(K(x, V, α, r) ∩ E)

rn
,

and so it is enough to prove (10.1) for p = 1.

Set L = Lip(Γ). Let V ∈ G(d, d − n) be such that Γ is an L-Lipschitz
graph over V ⊥, and let θ = θ(L) > 0 be such that

K(x, V, θ) ∩ Γ = ∅ for all x ∈ Γ.

Set α = min( θ2 , 0.1,
1

4L).
For every x ∈ E ∩B(0, 1) \ Γ consider the ball Bx = B(x, 0.01 dist(x,Γ)).

We use the 5r-covering lemma to choose a countable subfamily of pairwise
disjoint balls Bj = B(xj, rj), rj = 0.01 dist(xj,Γ), j ∈ Z, such that

E ∩B(0, 1) \ Γ ⊂
⋃
j∈Z

5Bj.

Observe that∑
j∈Z

rnj ≤ C0
∑
j∈Z

µ(Bj) = C0µ
( ⋃
j∈Z

Bj

)
≤ C0µ(B(0, 2)) . C2

0 . (10.2)

For each j ∈ Z set

Kj =
⋃

y∈5Bj
K(y, V, α), Kj(r) =

⋃
y∈5Bj

K(y, V, α, r).

Lemma 10.3. For each j ∈ Z we have

Hn(Kj ∩ Γ) .L r
n
j . (10.3)

Moreover,
Kj(r) ∩ Γ = ∅ for r < rj. (10.4)

Proof. (10.4) is very easy – observe that for r < rj we have Kj(r) ⊂ 6Bj, and
so for y ∈ Kj(r)

dist(y,Γ) ≥ dist(xj,Γ)− 6rj = (1− 0.06) dist(xj,Γ) > 0.
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Concerning (10.3), we claim that since Γ = graph(F ) for some L-Lipschitz
function F : V ⊥ → V , and since α is sufficiently small, for all x ∈ Rd we have

K(x, V, α) ∩ Γ ⊂ B(x,C dist(x,Γ)), (10.5)
where C = C(L) > 1. Indeed, if dist(x,Γ) = 0, then K(x, V, α) ∩ Γ = ∅ and
there is nothing to prove. Suppose dist(x,Γ) > 0, y ∈ K(x, V, α) ∩ Γ, and let
z ∈ Γ be the image of x under the projection onto Γ orthogonal to V ⊥, i.e.
z = π⊥V (x) + F (π⊥V (x)).

Observe that, since Γ is a Lipschitz graph,
|x− z| .L dist(x,Γ),

and also π⊥V (x) = π⊥V (z). By the definition of a cone, y ∈ K(x, V, α) gives
|π⊥V (z − y)| = |π⊥V (x− y)| < α|x− y|.

On the other hand, y ∈ Γ and the above imply
|πV (z − y)| ≤ L|π⊥V (z − y)| < Lα|x− y|.

The three estimates above yield

|x− y| ≤ |x− z|+ |z − y| ≤ C(L) dist(x,Γ) + |π⊥V (z − y)|+ |πV (z − y)|

≤ C(L) dist(x,Γ) + α|x− y|+ Lα|x− y| ≤ C(L) dist(x,Γ) + 1
2 |x− y|.

Hence, |x− y| .L dist(x,Γ) and (10.5) follows.
Now, going back to (10.3), note that for y ∈ 5Bj we have dist(y,Γ) ≈ rj , so

that K(y, V, α) ∩ Γ ⊂ B(y, Crj) for some C = C(L). Moreover, B(y, Crj) ⊂
B(xj, 10Crj). Therefore, Kj ∩ Γ ⊂ B(xj, 10Crj) ∩ Γ, and (10.3) easily follows.

Proof of Proposition 10.1. Let x ∈ Γ ∩B(0, 1) and 0 < r < 1. Since {5Bj}j∈Z
cover E ∩B(0, 1) \ Γ, and K(x, V, α, r) ∩ Γ = ∅, we have
µ(K(x, V, α, r)) ≤

∑
j∈Z : 5Bj∩K(x,V,α,r) 6=∅

µ(5Bj) . C0
∑

j∈Z : 5Bj∩K(x,V,α,r) 6=∅
rnj .

Notice that 5Bj ∩K(x, V, α, r) 6= ∅ if and only if x ∈ Kj(r). Hence, using the
above and Lemma 10.3 yields∫

Γ∩B(0,1)

∫ 1

0

µ(K(x, V, α, r))
rn

dr

r
dHn(x)

.C0

∫
Γ∩B(0,1)

∫ 1

0

1
rn
∑
j∈Z

rnj 1Kj(r)(x)dr
r
dHn(x)

=
∑
j∈Z

rnj

∫
Γ∩B(0,1)

∫ 1

0

1
rn
1Kj(r)(x)dr

r
dHn(x)

(10.4)
≤

∑
j∈Z

rnj

∫
Kj∩Γ

∫ 1

rj

1
rn
dr

r
dHn(x)

.
∑
j∈Z

rnj

∫
Kj∩Γ

r−nj dHn(x)
(10.3)
.L

∑
j∈Z

rnj
(10.2)
.C0 1.
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We know thatHn(Γ∩B(0, 1)∩E) ≥ κ, and so we can use Chebyshev’s inequality
to conclude that there exist M0 = M0(L,C0, κ) > 1 and F ⊂ Γ ∩B(0, 1) ∩ E
with Hn(F ) ≥ κ

2 such that for all x ∈ F
∫ 1

0

µ(K(x, V, α, r))
rn

dr

r
≤M0.

11 Set with BPLG but no BME
We will show the following.

Proposition 11.1. Fix an aperture parameter α ∈ (0, 1). There exists a
sequence of 1-ADR sets EN = EN (α) ⊂ B(0, 1) ⊂ R2, N ≥ 100(1+log2(α−1)),
with the following properties:

(i) they all contain BPLG in a uniform way, that is, they are 1-ADR with
the same constans C0, and they all satisfy the BPLG condition (see
Definition 1.7) with L = 1 and some uniform κ > 0.

(ii) regardless of the choice of directions Vx ∈ G(2, 1), they all have big
conical energies:
∫
EN
EEN ,1(x, Vx, α, 1) dH1(x)

=
∫
EN

∫ 1

0

H1(K(x, Vx, α, r) ∩ EN)
r

dr

r
dH1(x) &α N. (11.1)

Let αk → 0. Now, a disjoint union of appropriately rescaled sets EN(αk)
would contain BPLG and would not satisfy the BME condition (Definition
1.12) for any M0 and α > 0. We omit the details.

Remark 11.2. In this section, the notation ](L1, L2) will denote the “true”
angle between two lines, and not its sine, as it was used in other chapters.

Let M = 100dα−1e, so that M ≈ α−1. In the lemma below we construct a
Lipschitz graph Γ = Γ(N,M) that can be seen as the first approximation of
the set EN . There exists a fixed direction V0, such that for all directions V
close to V0 (](V, V0) ≤ π/8), the conical energy EΓ,1(x, V, α, 1) is bigger than
N for all x belonging to a neighbourhood of a large portion of Γ. Rescaled and
rotated copies of Γ will be then used as building blocks in the construction of
EN .

Let ∆ be the usual dyadic grid of open intervals on (−1, 1), and let ∆k

denote the dyadic intervals of length 2−k.
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11. Set with BPLG but no BME

π/8

V0

Figure V.1: V0 is the line forming angle π/8 with the x axis. The lines V for
which (11.2) holds are lying in the grey region.

Lemma 11.3. Let N ≥ 100(1 + log2(α−1)) be an integer. There exists a piece-
wise linear 1-Lipschitz function g : [−1, 1]→ [−M−1,M−1], and a collection
of disjoint dyadic intervals I ⊂ ∆ with the following properties:

(P1) g(−1) = g(1) = 0.

(P2) For every I ∈ I we have I ⊂ [−1/2, 1/2], the function g|I is increasing,
and for t ∈ I we have g′(t) = 1.

(P3) #I = 2−M 2N(M+1) and I ⊂ ∆N(M+1). Hence,

H1

⋃
I∈I

I

 = 2−M ≈α 1.

(P4) Let Γ = graph(g), G : [−1, 1] → Γ be the graph map G(t) = (t, g(t)),
and let V0 = {(x, y) : y = tan(π/8)x} ∈ G(2, 1). For any I ∈ I, any
x ∈ R2 with dist(x,G(I)) < 2−N(M+1), and all V ∈ G(2, 1) satisfying
](V, V0) ≤ π/8, we have

∫ 1

0

H1(K(x, V, α, r) ∩ Γ)
r

dr

r
& N. (11.2)

See Figure V.1.

For an idea of what Γ looks like, see the graph at the bottom of Figure
V.3. Before we prove Lemma 11.3, let us show how it can be used to prove
Proposition 11.1.
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11.1 Construction of EN

Let Γ = Γ(M,N) be the 1-Lipschitz graph from Lemma 11.3. The set EN
will consist of one “big” Lipschitz graph Γ0 = Γ, and three layers of much
smaller Lipschitz graphs stacked on top of the big one. The small graphs will
be rescaled and rotated versions of Γ. Another way to see EN is as a union
of four bilipschitz curves Γ0, . . . ,Γ3, and this is how we are going to define it.
Roughly speaking, if Γi is already defined, Γi+1 will be constructed by replacing
some of the segments comprising Γi with rescaled and rotated copies of Γ.

First, let ρ : R2 → R2 be the counterclockwise rotation by π/4. Set
L0 = {(x, 0) : x ∈ R} and for k ≥ 1 set Lk = ρk(L0) ∈ G(2, 1) (here ρk
denotes k compositions of ρ, and the same notation is used for δ defined below).

Define also rk = 2−kN(M+1)−k/2, and let δ : R2 → R2 be the dilation by
factor r1, i.e. δ(x) = r1x. Note that rk = (r1)k, so that δk is the dilation
by factor rk. The constant r1 was chosen in such a way that for an interval
I ∈ I ⊂ ∆N(M+1) we have H1(G(I)) = 2r1 by (P2) (where G is the graph map
of g).

We will abuse the notation and identify the segment S0 := [−1, 1] × {0}
with [−1, 1] ⊂ R.

Set Γ0 = Γ, and let γ0 = σ0 : S0 → Γ0 be defined as the natural graph map
γ0(t) = σ0(t) = G(t) = (t, g(t)).

Lemma 11.4. Let k ∈ {1, 2, 3}. There exist maps γk : S0 → R2 such that:

a) the sets Γk := γk(S0) are of the form

Γk =
(

Γk−1 \
⋃
I∈Ik

Sk,I

)
∪
⋃
I∈Ik

Γk,I ,

where I = (I1, . . . , Ik) ∈ Ik and I is the family of intervals from
Lemma 11.3,

b) the sets Sk,I are segments, with Sk,I = Gk,I(S0) and Gk,I := τI ◦ρk ◦δk for
some translation τI (in particular, H1(Sk,I) = 2 rk and Sk,I are parallel
to Lk),

c) the Γk,I are rescaled and rotated copies of Γ, with Γk,I = Gk,I(Γ0) (in
particular, since the endpoints of Γ0 and S0 coincide, the same is true
for Γk,I and Sk,I),

d) for k = 1, J ∈ I, we have S1,J = σ0(J) ⊂ Γ0, and for k > 1, if
I = (I ′, J) ∈ Ik−1 × I, then Sk,I = Gk−1,I′(S1,J) ⊂ Γk−1,I′ ⊂ Γk−1,

e) if I = (I ′, J), a1, a2 are the endpoints of Sk,I , and b1, b2 are the endpoints
of Γk−1,I′, then

|ai − bj| & rk−1

for i, j ∈ {1, 2} (i.e. Sk,I is “deep inside” Γk−1,I′),
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11. Set with BPLG but no BME

f) the maps γk are of the form γk = σk ◦ · · · ◦ σ0, where σk : Γk−1 → Γk is
defined as

σk(x) =

x, for x ∈ Γk−1 \
⋃
I∈Ik Sk,I

Gk,I(x) ◦ σ0 ◦G−1
k,I(x), for x ∈ Sk,I , I ∈ Ik.

In particular, σk(Sk,I) = Γk,I .

g) ‖σk − id‖L∞(Γk−1) ≤ 2M−1rk,

Proof of Lemma 11.4. We will define σk inductively.
First, for any I ∈ I set S1,I := σ0(I) ⊂ Γ0. Observe that by (P2) S1,I is a

segment parallel to L1. Moreover, since H1(I) = 21/2 r1, we have H1(S1,I) =
2 r1. It follows that S1,I = τI ◦ ρ ◦ δ(S0) for some translation τI . Define
G1,I : R2 → R2 as G1,I = τI ◦ ρ ◦ δ, and Γ1,I = G1,I(Γ0).

We define σ1 : Γ0 → R2 as in f). In other words, σ1|S1,I
can be seen as a

graph map parametrizing the Lipschitz graph Γ1,I . It is very easy to see that
S1,I , Γ1,I , and σ1 defined in this way satisfy all the conditions except for e)
and g), which we will prove later on.

Now, suppose that σk−1, γk−1, etc. have already been defined, and that
they satisfy a) – d), f).

For any I = (I ′, J) ∈ Ik−1 × I set Sk,I := Gk−1,I′(S1,J) ⊂ Γk−1,I′ . Since
S1,J is parallel to L1 and Gk−1,I′ = τI′ ◦ ρk−1 ◦ δk−1, Sk,I is a segment parallel
to Lk. Moreover, since H1(S1,J) = 2 r1, we have H1(Sk,I) = 2 r1 rk−1 = 2rk. It
follows that Sk,I = τI ◦ ρk ◦ δk(S0) for some translation τI .

We define σk : Γ0 → R2 as in f), so that σk|Sk,I can be seen as a graph
map parametrizing the Lipschitz graph Γk,I . It is easy to see that σk,Γk, etc.
defined this way satisfy a) – d), f).

Proof of e). Let k = 1. Recall that for all I ∈ I we have I ⊂ [−1/2, 1/2]
by (P2). Hence, S1,I = σ0(I) ⊂ σ0([−1/2, 1/2]) ⊂ Γ0. If x ∈ σ0([−1/2, 1/2]) is
arbitrary and if y ∈ Γ0 is one of the endpoints of Γ0, we have |x− y| & 1 = r0.
So e) holds for k = 1. For k ∈ {2, 3} the claim follows from the fact that if
I = (I ′, J) ∈ Ik−1 × I, then Sk,I = Gk−1,I′(S1,J) and Γk−1,I′ = Gk−1,I′(Γ0).

Proof of g). We have σk = id on Γk−1 \
⋃
I∈Ik Sk,I , and for x ∈ Sk,I

|σk(x)− x| =
∣∣∣Gk,I ◦ σ0 ◦G−1

k,I(x)−Gk,I ◦G−1
k,I(x)

∣∣∣
= rk

∣∣∣σ0 ◦G−1
k,I(x)−G−1

k,I(x)
∣∣∣ ≤ rk‖g‖∞ ≤ 2M−1rk,

where we used the fact that σ0(t) = (t, g(t)), and that ‖g‖∞ ≤ 2M−1 by
Lemma 11.3.

Lemma 11.5. The maps γk and σk from Lemma 11.4 are bilipschitz, with
bilipschitz constants independent of N .
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Proof. It suffices to show that σk is bilipschitz with Lip(σk) and Lip(σ−1
k )

independent of N , and then the same will be true for γk by Lemma 11.4 f).
Suppose that σj are already known to be bilipschitz for 0 ≤ j ≤ k− 1, with

Lip(σj) and Lip(σ−1
j ) independent of N (clearly, the condition holds for σ0).

Let x, y ∈ Γk−1. Our aim is to show that |σk(x)− σk(y)| ≈ |x− y|.
Case 1. |x− y| > 6M−1rk. It follows from Lemma 11.4 g) that

|σk(x)−σk(y)| ≤ |x−y|+|σk(x)−x|+|σk(y)−y| ≤ |x−y|+4M−1rk ≤ 2|x−y|,

and

|σk(x)−σk(y)| ≥ |x−y|−|σk(x)−x|−|σk(y)−y| ≥ |x−y|−4M−1rk ≥
1
3 |x−y|.

Case 2. x, y ∈ Γk−1 \
⋃
I∈Ik Sk,I . This case is trivial, because |σk(x) −

σk(y)| = |x− y|.
Case 3. |x− y| ≤ 6M−1rk, and x, y ∈ Sk,I for some I ∈ Ik. Using the fact

that σ0 is bilipschitz we get

|σk(x)− σk(y)| =
∣∣∣Gk,I ◦ σ0 ◦G−1

k,I(x)−Gk,I ◦ σ0 ◦G−1
k,I(y)

∣∣∣
= rk

∣∣∣σ0 ◦G−1
k,I(x)− σ0 ◦G−1

k,I(y)
∣∣∣ ≈ rk

∣∣∣G−1
k,I(x)−G−1

k,I(y)
∣∣∣ = |x− y|.

Case 4. |x− y| ≤ 6M−1rk, x ∈ Sk,I for some I ∈ Ik, and y ∈ Γk−1 \ Sk,I .
We claim that

y ∈ Γk−1,I′ , (11.3)
where I = (I ′, J) ∈ Ik−1 ×I and Γk−1,I′ is the Lipschitz graph containing Sk,I .
Indeed, by the induction assumption, the map γ−1

k−1 : Γk−1 → S0 is bilipschitz
with Lip(γk−1), Lip(γ−1

k−1) independent of N . Since H1(Sk,I) = 2 rk and
H1(Γk−1,I′) ≈ rk−1, we get that H1(γ−1

k−1(Sk,I)) ≈ rk and H1(γ−1
k−1(Γk−1,I′)) ≈

rk−1. Moreover, we have

γ−1
k−1(Sk,I) ⊂ γ−1

k−1(Γk−1,I′) ⊂ S0, (11.4)

where all three sets are segments. If a1, a2 and b1, b2 are the endpoints of
γ−1
k−1(Sk,I) and γ−1

k−1(Γk−1,I′), respectively, then it follows from Lemma 11.4 e)
and from the bilipschitz property of γk−1 that for i, j ∈ {1, 2} we have

|ai − bj| & rk−1. (11.5)

Recall that x ∈ Sk,I and |x − y| . M−1rk, so that dist(y, Sk,I) . M−1rk.
Hence,

dist(γ−1
k−1(y), γ−1

k−1(Sk,I)) .M−1rk.

Putting this together with (11.4) and (11.5), and assuming that M ≥M0 for
some absolute constant M0 > 10, we get that γ−1

k−1(y) ∈ γ−1
k−1(Γk−1,I′), which is

equivalent to y ∈ Γk−1,I′ .
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Now, let z ∈ Sk,I be an endpoint of Sk,I minimizing the distance to x.
Observe that x− z ∈ Lk and σk(x)− x ∈ L⊥k , so

|σk(x)− z|2 = |σk(x)− x|2 + |x− z|2. (11.6)

Moreover, since z is an endpoint of Sk,I , the point G−1
k,I(z) is an endpoint of

S0, and so by (P1) g(G−1
k,I(z)) = 0. Together with the fact that g is 1-Lipschitz

this gives

|σk(x)− x| =
∣∣∣Gk,I ◦ σ0 ◦G−1

k,I(x)−Gk,I ◦G−1
k,I(x)

∣∣∣
= rk

∣∣∣σ0 ◦G−1
k,I(x)−G−1

k,I(x)
∣∣∣ = rk

∣∣∣g(G−1
k,I(x))

∣∣∣ = rk
∣∣∣g(G−1

k,I(x))− g(G−1
k,I(z))

∣∣∣
≤ rk

∣∣∣G−1
k,I(x)−G−1

k,I(z)
∣∣∣ = |x− z|. (11.7)

Furthermore, observe that since y ∈ Γk−1,I′ \ Sk,I , z ∈ Sk,I is an endpoint of
Sk,I , H1(Sk,I) = 2 rk, and |x− y| .M−1rk, we get that the point γ−1

k−1(z) ∈ S0
lies between the points γ−1

k−1(x) and γ−1
k−1(y). We already know that γk−1 is

bilipschitz, and so

|x− z|+ |z − y| ≈ |γ−1
k−1(x)− γ−1

k−1(z)|+ |γ−1
k−1(z)− γ−1

k−1(y)|
= |γ−1

k−1(x)− γ−1
k−1(y)| ≈ |x− y|. (11.8)

Now, we need to further differentiate between two subcases.
Subcase 4a. |x−y| ≤ 6M−1rk, x ∈ Sk,I , and y ∈ Sk,Y for some Y ∈ Ik, I 6=

Y.
We claim that the point z is a common endpoint of Sk,Y and Sk,I . Indeed,

since y ∈ Γk−1,I′ by (11.3), we have Y = (I ′, Z) ∈ Ik−1 × I and Sk,Y ⊂ Γk−1,I′ .
By Lemma 11.4 d) Sk,Y = Gk−1,I′(S1,Z) = Gk−1,I′ ◦ σ0(Z), and Sk,I = Gk−1,I′ ◦
σ0(J). Recall that |x− y| ≤ 6M−1rk, which implies dist(Sk,I , Sk,Y ) ≤ 6M−1rk,
and so dist(Z, J) .M−1r−1

k−1rk = M−1r1. By (P3) J and Z are dyadic intervals
of length

√
2 r1, which implies that dist(Z, J) = 0. Hence, the point z is a

common endpoint of Sk,I and Sk,Y , and the estimates (11.6), (11.7) are also
valid with x replaced by y.

The Lipschitz property of σk follows easily:

|σk(x)−σk(y)| ≤ |σk(x)−z|+ |z−σk(y)|
(11.6),(11.7)

. |x−z|+ |z−y|
(11.8)
≈ |x−y|.

The converse inequality is a consequence of the fact that Sk,I and Sk,Y are
co-linear, x− y ∈ Lk, σk(x)− x ∈ L⊥k , and σk(y)− y ∈ L⊥k :

|σk(x)− σk(y)|2 = |σk(x)− x+ x− y + y − σk(y)|2

= |x− y|2 + |σk(x)− x+ y − σk(y)|2 ≥ |x− y|2.

Subcase 4b. |x − y| ≤ 6M−1rk, x ∈ Sk,I for some I ∈ Ik, and y ∈ Γk−1 \⋃
Y ∈Ik Sk,Y .
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x

σk(x)

z

y

K̃

Sk,I

S̃

Γk,I
Γk−1,I′ Lk−1

π
4

Figure V.2: Points x, y, z lie on Γk−1,I′ (continuous curve above), which is a
1-Lipschitz graph over the line Lk−1. x belongs to the segment Sk,I ⊂ Γk−1,I′

(thick segment above), and z is an endpoint of Sk,I . σk(x) lies on Γk,I (dashed
curve above), a 1-Lipschitz graph over Sk,I with the same endpoints as Sk,I .
The 1-Lipschitz property implies that Γk,I ⊂ S̃, where S̃ is a square having
Sk,I as diagonal. On the other hand, the 1-Lipschitz property of Γk−1,I′ implies
that Γk−1,I′ ⊂ K0 := K(z, Lk−1, sin(π/4)), i.e. it lies in the two-sided version
of cone K̃ above. In particular, y ∈ K0. However, in Subcase 4b we assume
that |x − y| ≤ 6M−1rk and y 6∈ Sk,I , and so y must lie in K̃, and not in the
other one-sided cone comprising K0. Since Lk−1 and Sk,I form an angle π/4,
the observations above imply π/4 ≤ ](σk(x), z, y) ≤ π (see the dotted angle).

In this case we have σk(y) = y. The upper bound follows from previous
estimates:

|σk(x)− y| ≤ |σk(x)− z|+ |z − y|
(11.6),(11.7)

. |x− z|+ |z − y|
(11.8)
≈ |x− y|.

Concerning the lower bound, it follows by elementary geometry and prop-
erties of our construction that π/4 ≤ ](σk(x), z, y) ≤ π, see Figure V.2. Thus,
using the law of cosines

|σk(x)− y|2 = |σk(x)− z|2 + |z− y|2− 2|σk(x)− z||z− y| cos(](σk(x), z, y))
≥ |σk(x)− z|2 + |z − y|2 −

√
2|σk(x)− z||z − y|

≥

1−
√

2
2

 (|σk(x)− z|2 + |z − y|2)
(11.6)
& |x− z|2 + |z − y|2 & |x− y|2.

Since this was the last case we had to check, we get that σk is bilipschitz, as
claimed.
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Finally, we set
EN = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3.

Note that due to Lemma 11.4 a)

EN = Γ0 ∪
⋃
I∈I

Γ1,I ∪
⋃
I∈I2

Γ2,I ∪
⋃
I∈I3

Γ3,I . (11.9)

That is, EN is a union of a single big Lipschitz graph, and three layers of
smaller Lipschitz graphs.

11.2 EN has BPLG
In this section we show that EN has big pieces of Lipschitz graphs, with
constants independent of N .

Observe that EN is AD-regular because it is a union of four bilipschitz
curves. The ADR constants do not depend on N due to Lemma 11.5.

Lemma 11.6. For any x ∈ EN and any 0 < r < diam(EN) we can find a
Lipschitz graph Σ (depending on x and r) such that

H1(EN ∩B(x, r) ∩ Σ) & r, (11.10)

with the implicit constant independent of N .

First, we prove an auxiliary estimate. Given integers i, l ∈ {0, 1, 2, 3} define
γl,i : Γl → Γi as γl,i = γi ◦ γ−1

l .

Lemma 11.7. Let i, l ∈ {0, 1, 2, 3} and k = min(i, l). Then

‖γl,i − id‖L∞(Γl) ≤ 6M−1rk+1. (11.11)

Proof. If i = l the result is clear because γl,i = id. Assume l > i. Applying
(l − i)-many times Lemma 11.4 g) we get that

|x− γl,i(x)| ≤
l∑

j=i+1
|γl,j−1(x)− γl,j(x)| =

l∑
j=i+1

|γl,j−1(x)− σj(γl,j−1(x))|

≤
l∑

j=i+1
2M−1rj ≤ 2(j − k)M−1ri+1 ≤ 6M−1ri+1.

On the other hand, if l < i, then applying the estimate above to y = γl,i(x) we
get

|x− γl,i(x)| = |γi,l(y)− y| ≤ 6M−1rl+1.
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Proof of Lemma 11.6. Let x ∈ EN and 0 < r < diam(EN). By (11.9) there
exist j ∈ {0, 1, 2, 3} and I ∈ Ij such that x ∈ Γj,I .

Suppose r < rj . Since Γj,I is a Lipschitz graph satisfying H1(Γj,I) ≥ rj > r,
we have

H1(EN ∩B(x, r) ∩ Γj,I) = H1(B(x, r) ∩ Γj,I) & r.

That is, we may choose Σ = Γj,I .
Now assume rj ≤ r < r0 = 1. Let k ∈ {0, 1, 2} be such that rk+1 ≤ r < rk

(of course, k + 1 ≤ j). Let y = γj,k(x). Observe that, by Lemma 11.4 a), since
y ∈ Γk, there exists some k′ ∈ {0, . . . , k} such that y ∈ Γk′,I′ for some I ′ ∈ Ik′ .
Since k′ ≤ k, we have H1(Γk′,I′) ≈ rk′ ≥ rk > r. Moreover, assuming M ≥ 12,
(11.11) gives

dist(x,Γk′,I′) ≤ |x− y| = |x− γj,k(x)| ≤ rk+1

2 ≤ r

2 ,

and so
H1(EN ∩B(x, r) ∩ Γk′,I′) = H1(B(x, r) ∩ Γk′,I′) & r.

Hence, we may choose Σ = Γk′,I′ .
Finally, for 1 < r < diam(EN) ≈ 1, the condition (11.10) is satisfied with

Σ = Γ0.

11.3 EN has big conical energy
In this section we show that EN satisfies (11.1).

We introduce additional notation. Analogously to the definition of Sk,I for
k ∈ {0, 1, 2, 3}, for I = (I ′, J) ∈ I3 × I we define S4,I = G3,I′(S1,J).

If I ∈ Ik+j is of the form I = (I ′, I ′′) ∈ Ik × Ij, we will write

Sk,I := Sk,I′ , Γk,I := Γk,I′ , Gk,I := Gk,I′ .

Lemma 11.8. Let I = (I1, I2, I3, I4) ∈ I4, and let x ∈ S4,I ⊂ Γ3,I ⊂ EN .
Then, for any V ∈ G(2, 1) we have

∫ 1

0

H1(K(x, V, α, r) ∩ EN)
r

dr

r
& N. (11.12)

Proof. Let I ∈ I4, x ∈ S4,I and V ∈ G(2, 1) be as above. Recall that
L0 = {(x, 0) : x ∈ R}, ρ is the counterclockwise rotation by π/4, and
Lk = ρk(L0) ∈ G(2, 1). Recall also that V0 = {(x, y) : y = tan(π/8)x} is the
line from (P4) in Lemma 11.3. Observe that there exists some k ∈ {0, 1, 2, 3}
such that ](ρ−k(V ), V0) ≤ π/8. Fix such k. We are going to use (P4) with
respect to Γk,I to arrive at (11.12).

Recall that Sk+1,I = Gk,I(S1,Ik+1), where Gk,I = τ ◦ ρk ◦ δk for some
translation τ . Recall also that Gk,I(Γ) = Γk,I . Let x′ = G−1

k,I(x), and V ′ =
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ρ−k(V ). Then, using the fact that Gk,I is a similarity with stretching factor rk,
we get

∫ 1

0

H1(K(x, V, α, r) ∩ EN)
r

dr

r
≥
∫ 1

0

H1(K(x, V, α, r) ∩ Γk,I)
r

dr

r

=
∫ 1

0
rk
H1(K(x′, V ′, α, r−1

k r) ∩ Γ)
r

dr

r
=
∫ r−1

k

0

H1(K(x′, V ′, α, s) ∩ Γ)
s

ds

s
.

(11.13)

Recall that k was chosen in such a way that V ′ = ρ−k(V ) satisfies ](V ′, V0) ≤
π/8. In order to use (P4), it only remains to show that dist(x′, G(I ′)) ≤
2−N(M+1) for some I ′ ∈ I.

Observe that γ3,k(S4,I) ⊂ Sk+1,I . We know from (11.11) that if M ≥ 6,
then

dist(x, Sk+1,I) ≤ dist(x, γ3,k(S4,I)) ≤ |x− γ3,k(x)| ≤ rk+1. (11.14)

Thus,

dist(x′, S1,Ik+1) = dist(G−1
k,I(x), G−1

k,I(Sk+1,I)) = r−1
k dist(x, Sk+1,I)

≤ r−1
k rk+1 = r1 = 2−N(M+1)−1/2 ≤ 2−N(M+1).

S1,Ik+1 was defined as σ0(Ik+1) = G(Ik+1), and so it follows from (P4) that the
last term in (11.13) is greater than CN for some absolute constant C. Thus,
(11.12) holds.

Now we can finish the proof of Proposition 11.1. Observe that

H1
( ⋃
I∈I4

S4,I

)
=

∑
I′∈I3, J∈I

H1(G3,I′(S1,J))

= (#I)3 r3
∑
J∈I
H1(S1,J) ≥ (#I)3 r3

∑
J∈I
H1(J)

(P3)= 2−3M 23N(M+1) 2−3N(M+1)−3/2 2−M+1 = 2−4M−1/2 ≈α 1,

where we also used that M is a constant depending only on α. Together with
Lemma 11.8, this shows that the set EN has the desired property (11.1), i.e.

∫
EN

∫ 1

0

H1(K(x, Vx, α, r) ∩ EN)
r

dr

r
dH1(x)

≥
∑
I∈I4

∫
S4,I

∫ 1

0

H1(K(x, Vx, α, r) ∩ EN)
r

dr

r
dH1(x) &α N.

Thus, the proof of Proposition 11.1 is complete. All that remains to prove is
Lemma 11.3. We do that in the following two subsections.
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Figure V.3: Top to bottom: graphs of g1, g2, and g3 = g when N = 2 and
M = 3. The thick segments denote intervals in G1, G2, and G3, respectively.

11.4 Construction of g
In this subsection we construct a function g and a family of dyadic intervals I
that satisfy (P1), (P2), and (P3).

First, we define a family of auxiliary functions. For j = 1, . . . ,M we define
fj : [−1, 1]→ [−M−12−jN ,M−12−jN ] as

fj(t) = h(2jN t)
M2jN ,

where h(t) : R→ [−1, 1] is the 1-Lipschitz triangle wave:

h(t) = |t mod 4− 2| − 1.

In the above t mod 4 denotes the unique number s ∈ [0, 4) such that t = 4k+ s
for some k ∈ Z.

Note that for all j we have Lip(fj) = M−1. For j = 1, . . . ,M we define
also gj : [−1, 1]→ [−M−12−N+1,M−12−N+1] as

gj(t) =
j∑
i=1

fi(t),

and we set Γj = graph(gj) ⊂ B(0, 1) ⊂ R2, g = gM , Γ = ΓM . See Figure V.3.
Observe that g is 1-Lipschitz.
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Proof of (P1). We want to show that g(1) = g(−1) = 0. Since h is an even
function, the functions fj and gj are also even. Hence, g(1) = g(−1). Note
also that if we have some function g̃ satisfying properties (P2) and (P4), then
for any constant C ∈ R the function g̃ + C will also satisfy (P2) and (P4). In
other words, these properties are invariant under adding constants. It follows
that we can work with the function g as defined above, prove (P2) and (P4),
and at the end replace g by g− g(1). So the property (P1) is not an issue.

We proceed to define the family I ⊂ ∆(M+1)N .
Recall that ∆k denotes the open dyadic intervals of length 2−k. Observe

that for any j the functions fj and gj are linear on each interval from ∆jN ,
and we have f ′j = M−1 on every second interval, and f ′j = −M−1 on the rest.

Set Gj ⊂ ∆jN to be the family of dyadic intervals I contained in [−1/2, 1/2]
such that for all 1 ≤ i ≤ j we have f ′i = M−1 on I. It is easy to see that
each Gj consists of 2jN−j disjoint intervals of length 2−jN , see Figure V.3. We
define also I ⊂ ∆(M+1)N as the family of dyadic intervals of length 2−(M+1)N

contained in ⋃I∈GM I.
Proof of (P3). By the definition above we have

#I = 2N ·#GM = 2(M+1)N−M , (11.15)

so the property (P3) holds.

Proof of (P2). We have defined Gj in such a way that if t ∈ I ∈ Gj then
g′j(t) = jM−1. It follows that if t ∈ I ∈ I, then t ∈ J for some J ∈ GM , and
so g′ = 1. Thus, (P2) holds.

11.5 Γ has big conical energy
This subsection is dedicated to proving (P4). We recall the statement for
reader’s convenience:

(P4) Let Γ = graph(g), G : [−1, 1] → Γ be the graph map G(t) = (t, g(t)),
and let V0 = {(x, y) : y = tan(π/8)x} ∈ G(2, 1). For any I ∈ I, any
x ∈ R2 with dist(x,G(I)) < 2−N(M+1), and all V ∈ G(2, 1) satisfying
](V, V0) ≤ π/8, we have

∫ 1

0

H1(K(x, V, α, r) ∩ Γ)
r

dr

r
& N. (11.16)

Fix x, I, and V as above. We will show (11.16).
Since dist(x,G(I)) < 2−N(M+1), there exists t0 ∈ I such that |x−G(t0)| ≤

2−N(M+1). Fix such t0.
For every j = 1, . . . ,M define Gj(t) = (t, gj(t)). For every t ∈ ⋃I∈∆jN

I

set Lj(t) ⊂ R2 to be the line tangent to Γj at Gj(t). We define also Ij(t) as
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the unique interval from ∆jN containing t. Note that, since gj is linear on
intervals from ∆jN , we have Lj(t) = Lj(t′) whenever t′ ∈ Ij(t). Denote by L0
the x-axis.

Observe that if IM (t) ∈ GM , then for each 1 ≤ j ≤M we have g′j(t) = jM−1.
Thus,

](Lj(t), L0) = arctan(jM−1), and ](Lj(t), V0) ≤ π/8. (11.17)

Set Lj = Lj(t)− (t, gj(t)). Note that (0, 0) ∈ Lj, and that the definition of Lj
does not depend on t, as long as IM (t) ∈ GM . Since ](V, V0) ≤ π/8, it follows
from (11.17) that there exists some 1 ≤ j ≤M such that

](V, Lj) ≤ max
1≤i≤M

(
arctan(iM−1)−arctan((i−1)M−1)

)
= arctan(M−1) ≤M−1.

(11.18)
Fix such j. Recall that M = 100dα−1e, and so

](V, Lj) ≤M−1 ≤ α

10 . (11.19)

Hence, for any r > 0

K(x, V, α, r) ⊃ K(x, Lj, α/2, r). (11.20)

Lemma 11.9. For t ∈ [−1, 1] we have |G(t) − Gj(t)| = |g(t) − gj(t)| ≤
2M−1 2−N(j+1).

Proof. The estimate follows immediately from the definition of g and gj:

|g(t)− gj(t)| =

∣∣∣∣∣∣
M∑

i=j+1
fi(t)

∣∣∣∣∣∣ ≤
M∑

i=j+1
|fi(t)| ≤

∞∑
i=j+1

1
M

2−iN ≤ 2M−1 2−N(j+1).

Recall that t0 ∈ I ∈ I was such that |x−G(t0)| ≤ 2−N(M+1). Set x′ = Gj(t0).
Then, by the lemma above, we have

|x− x′| ≤ |x−G(t0)|+ |G(t0)−Gj(t0)| ≤ 2−N(M+1) + 2−N(j+1) ≤ 2−N(j+1)+1.
(11.21)

Let I ′ ∈ Gj be the unique dyadic interval in ∆jN containing I. That is,
I ′ = Ij(t0).

Recall that for any 0 < r < R the notation K(x, V, α, r, R) stands for a
twice truncated cone K(x, V, α,R) \B(x, r). In the lemma below we show that
for all the scales between 2−N(j+1) and 2−Nj, G(I ′) has large intersection with
the the twice truncated cone centered at x′ with direction Lj corresponding to
that scale.
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Lemma 11.10. For t ∈ I ′ such that |G(t) − x′| ≥ 2−N(j+1) we have G(t) ∈
K(x′, Lj, α/8). Moreover, for integers k satisfying Nj ≤ k ≤ N(j + 1)− 1 we
have

H1(G(I ′) ∩K(x′, Lj, α/8, 2−k−1, 2−k+2)) & 2−k. (11.22)

Proof. Let t ∈ I ′ satisfy |G(t)− x′| ≥ 2−N(j+1). Recall that, since I ′ ∈ Gj, the
set Gj(I ′) is a segment parallel to Lj . We also know that x′ = Gj(t0) ∈ Gj(I ′),
and so by Lemma 11.9

dist(G(t), Lj + x′) ≤ |G(t)−Gj(t)| ≤ 2M−1 2−N(j+1) ≤ α

8 |G(t)− x′|,

where we also used that M = 100dα−1e. Thus, G(t) ∈ K(x′, Lj, α/8).
Now, let k be an integer such that Nj ≤ k ≤ N(j + 1)− 1. Let t ∈ I ′ be

such that 2−k < |t− t0|, so that

|G(t)− x′| ≥ |Gj(t)−Gj(t0)| − |G(t)−Gj(t)| ≥ |t− t0| − 2M−1 2−N(j+1)

≥ 2−k − 2M−1 2−N(j+1) ≥ 2−N(j+1).

Hence, by our previous result, G(t) ∈ K(x′, Lj, α/8). At the same time, the
calculation above shows that |G(t)− x′| ≥ 2−k−1. Similarly,

|G(t)− x′| ≤ |Gj(t)−Gj(t0)|+ |G(t)−Gj(t)| ≤
√

2|t− t0|+ 2M−1 2−N(j+1).

Hence, for t ∈ I ′ such that 2−k ≤ |t− t0| ≤ 2−k+1 we have

2−k−1 ≤ |G(t)− x′| ≤ 2−k+2.

That is, for t ∈ I ′ with 2−k ≤ |t− t0| ≤ 2−k+1 we have

G(t) ∈ K(x′, Lj, α/8, 2−k−1, 2−k+2).

Since G is bilipschitz, (11.22) follows.

Later on we will need the following simple lemma about the inclusions of
twice truncated cones.

Lemma 11.11. Let x1, x2 ∈ R2, L ∈ G(2, 1), r > 0 and α0 ∈ (0, 1/4).
Suppose that |x1 − x2| ≤ α0 r. Then

K(x1, L, α0, α
−1
0 |x1 − x2|, r) ⊂ K(x2, L, 4α0, 2r).

Proof. Let y ∈ K(x1, L, α0, α
−1
0 |x1−x2|, r), so that α−1

0 |x1−x2| < |y−x1| ≤ r
and dist(y, L + x1) ≤ α0|y − x1|. It is clear that for any p ∈ L + x1 we have
dist(p, L+ x2) = |x1 − x2|, and so

dist(y, L+ x2) ≤ dist(y, L+ x1) + |x1 − x2| ≤ α0|y − x1|+ α0|y − x1|
≤ 2α0|y − x2|+ 2α0|x1 − x2|.
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V. Cones, rectifiability and SIOs

At the same time, we have

|y − x2| ≥ |y − x1| − |x1 − x2| ≥ (α−1
0 − 1)|x1 − x2| ≥ |x1 − x2|.

Putting the two estimates together gives y ∈ K(x2, L, 4α0). To see that
y ∈ B(x2, 2r), note that |y − x2| ≤ |y − x1|+ |x1 − x2| ≤ 2r.

Recall that in (11.22) we showed a lower bound on the length of intersection
of G(I ′) with a cone centered at x′. However, to prove (11.16) we need
information about the intersections with cones centered at x. We use (11.22)
and Lemma 11.11 to get the following.

Lemma 11.12. Let k be an integer such that α−1 2−N(j+1)+8 < 2−k ≤ 2−Nj−3.
Then, we have

H1(G(I ′) ∩K(x, Lj, α/2, 2−k)) & 2−k, (11.23)

Proof. First, recall that x′ = Gj(t0) and |x− x′| ≤ 2−N(j+1)+1 by (11.21). By
our assumptions on k we have

8α−1|x− x′| ≤ α−1 2−N(j+1)+4 ≤ 2−k−4 < 2−k−1. (11.24)

Hence, we may apply Lemma 11.11 with x1 = x′, x2 = x, L = Lj, α0 =
α/8, r = 2−k−1, to get

K(x′, Lj, α/8, 8α−1|x− x′|, 2−k−1) ⊂ K(x, Lj, α/2, 2−k).

Since 8α−1|x− x′| ≤ 2k−4 by (11.24), it follows from the above that

K(x′, Lj, α/8, 2−k−4, 2−k−1) ⊂ K(x, Lj, α/2, 2−k). (11.25)

Note that we have Nj ≤ k − 3 ≤ N(j + 1)− 1 due to our assumptions on k.
Thus, we may use (11.22) to get

H1(G(I ′) ∩K(x, Lj, α/8, 2−k−4, 2−k−1)) & 2−k.

Together with (11.25), this concludes the proof.

We are ready to finish the proof of Lemma 11.3.

Proof of (P4). We want to show that∫ 1

0

H1(K(x, V, α, r) ∩ Γ)
r

dr

r
& N. (11.26)

We use (11.20) to write
∫ 1

0

H1(K(x, V, α, r) ∩ Γ)
r

dr

r
≥
∫ 1

0

H1(K(x, Lj, α/2, r) ∩ Γ)
r

dr

r

≥
∫ 2−Nj−3

α−1 2−N(j+1)+9

H1(K(x, Lj, α/2, r) ∩ Γ)
r

dr

r
. (11.27)
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Note that α−1 2−N(j+1)+9 < 2−Nj−3 due to the assumption N ≥ 100(1 +
log2(α−1)). Now let α−1 2−N(j+1)+9 ≤ r < 2−Nj−3, and let k be the unique
integer such that 2−k ≤ r < 2−k+1. Then, k satisfies the assumptions of
Lemma 11.12, and we get

H1(K(x, Lj, α/2, r) ∩ Γ) ≥ H1(K(x, Lj, α/2, 2−k) ∩ Γ) & 2−k ≈ r.

It follows from (11.27) and the above that

∫ 1

0

H1(K(x, V, α, r) ∩ Γ)
r

dr

r
&
∫ 2−Nj−3

α−1 2−N(j+1)+9
1 dr

r

= log(2) (N(j+1)−9−log2(α−1)−Nj−3) = log(2)(N−log2(α−1)−12) ≥ N

100 ,

where we used the assumption N ≥ 100(1 + log2(α−1)) in the last inequality.
Thus, the proof of (11.26) is finished.

12 Example of Joyce and Mörters
In this section we will show that the measure µ constructed in [JM00] satisfies
the assumptions of Theorem 1.14, but does not satisfy BPBE(1). Hence,
Theorem 1.14 is a true improvement on its Eµ,1 analogue [CT17, Theorem
10.2].

12.1 Construction of µ
For reader’s convenience, we sketch out the construction of Joyce and Mörters
below.

Let M ≥ 3 be a large constant, and 1/2 < βk < 1 be a sequence of numbers
converging to 1. For k ≥ 1 we define mk = Mk, m(k) = m1 . . .mk = Mk k!,
and

σk =
(
k + 1
k

)βk
.

We set also αj = 2−n π for all 2n ≤ j < 2n+1, n ≥ 0.
We proceed to define a compact set E ⊂ R2 on which the measure µ will

be supported. First, let E0 be a closed ball of diameter 1. We place m1 closed
balls of diameter 2r1 := σ1/m1 inside E0. We do it in such a way, that

• their centers lie on the diameter of E0 forming angle α1 with the x axis,

• the boundaries of the first and the last ball touch the boundary of E0,

• they overlap as little as possible, i.e. the distance between the centers of
two neighbouring balls is (1− σ1/m1)/(m1 − 1).
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V. Cones, rectifiability and SIOs

We call these balls the balls of generation 1, we denote their family by B1, and
we set E1 = ⋃

B∈B1 B.
Now suppose that Ek has already been defined as a union of balls ⋃B∈Bk B,

and that #Bk = m(k). Inside every ball B ∈ Bk we place mk+1 closed balls of
diameter 2rk+1 := σ1 . . . σk+1/m(k + 1). We do it in such a way, that

• their centers lie on the diameter of B forming angle ∑k+1
i=1 αi with the x

axis,

• the boundaries of the first and the last ball touch touch the boundary of
B,

• they overlap as little as possible, i.e. the distance between the centers of
two neighbouring balls is

dk+1 := σ1 . . . σk
m(k) · 1− σk+1/mk+1

mk+1 − 1 .

The balls defined above are called the balls of generation (k+1), and their
family is denoted by Bk+1. Clearly, #Bk+1 = mk+1 ·m(k) = m(k + 1). We set
Ek+1 = ⋃

B∈Bk+1 B, and E = ⋂
k≥0Ek.

It is shown in [JM00, §2.1] that if M is chosen appropriately, then two balls
of generation (k + 1) may intersect only if they are contained in the same ball
of generation k. It follows that there exists a natural probability measure µ
supported on E defined by

µ(B) = m(k)−1 for B ∈ Bk, k ≥ 1. (12.1)

If the sequence βk is chosen properly, the set E has the following curious
property: it is of non-σ-finite length, but all the projections of E onto lines
are of zero length. Moreover, the Menger curvature of E is finite. However, we
will not use those properties.

12.2 The assumptions of Theorem 1.14 are satisfied
In [JM00, §2.1] Joyce and Mörters construct a function ϕ : [0, d1) → R
satisfying ϕ(r) < r and ∫ d1

0

ϕ(r)2

r3 dr <∞.

They also show that for 0 < r < d1 the measure µ satisfies µ(B(x, r)) ≤ 84ϕ(r).
It follows easily that µ(B(x, r)) ≤ C1r for C1 = max(84, 1/d1) and all r > 0.
Furthermore, by the observations above and the fact that µ(R2) = 1, for all
x ∈ E = suppµ we have

∫ ∞
0

(
µ(B(x, r))

r

)2
dr

r
.
∫ d1

0

ϕ(r)2

r3 dr +
∫ ∞
d1

1
r3 dr ≤M0 (12.2)
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12. Example of Joyce and Mörters

for some M0 depending only on d1 and ϕ.
Obviously, for any V ∈ G(2, 1), α ∈ (0, 1), R > 0, we have

Eµ,2(x, V, α,R) =
∫ R

0

(
µ(K(x, V, α, r))

r

)2
dr

r
≤
∫ ∞

0

(
µ(B(x, r))

r

)2
dr

r
,

and so the assumptions of Theorem 1.14 are trivially satisfied.
Let us note that the boundedness of nice singular integral operators on

L2(µ) for this particular measure µ is not a new result. It is well known that
measures satisfying (12.2) behave well with respect to SIOs. For example, one
can use (12.2) and [Mat96, Theorem 2.2] to prove local curvature condition for
µ, and then boundedness of Cauchy transform follows from [Tol99, Theorem
1.1].

12.3 Eµ,1 is not bounded
Let x ∈ E, V ∈ G(2, 1), and α ∈ (0, 1) be given. We will show that

Eµ,1(x, V, α, 1) =
∫ 1

0

µ(K(x, V, α, r))
r

dr

r
=∞. (12.3)

First, we identify the lines W ∈ G(2, 1) with the angle θW ∈ [0, π) they form
with the x axis. We will abuse notation by writing K(x, θW , α, R) to denote
K(x,W, α,R). Set θ := θV .

Definition 12.1. We will say that an integer k is a good index if∣∣∣∣∣(
k∑
j=1

αj −Nπ
)
− θ

∣∣∣∣∣ ≤ α

8 , (12.4)

where N is the integer satisfying 2N ≤ k < 2N+1 . By the definition of αj , this
is equivalent to ∣∣∣(k − 2N + 1) π2N − θ

∣∣∣ ≤ α

8 . (12.5)

Our strategy is the following: first, we show that there are many good
indices. Then, we prove that if k is a good index, then µ(K(x, θ, α, 2 rk))r−1

k

is large. Put together, the two facts will imply (12.3).
We define N0 = N0(α) to be a large integer, to be fixed in Lemmas 12.2

and 12.3.

Lemma 12.2. If N0 = N0(α) is large enough, then for all N > N0 we have a
large portion of good indices satisfying 2N ≤ k < 2N+1, that is,

#{2N ≤ k < 2N+1 : k is a good index} & 2Nα.
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Proof. Let N0 be so big that 2−N0π < α/100, and let N > N0. Let 2N ≤ k0 <

2N+1 be the index minimizing |(k0 − 2N + 1)π2−N − θ
∣∣∣. It is clear that

|(k0 − 2N + 1)2−Nπ − θ
∣∣∣ ≤ 2−Nπ,

and so it follows from (12.5) that all integers k such that 2N ≤ k < 2N+1 and
|(k − k0)2−Nπ| ≤ α/10 are good indices. It is easy to see that there are at
least C2Nα such integers, where C is some absolute constant.

Recall that rk was the radius of balls of k-th generation, and x ∈ E is
arbitrary. For k ≥ 1 let Bk ∈ Bk be a ball of generation k containing x (there
may be two such balls, in which case we just choose one).

Lemma 12.3. If N0 = N0(α) is large enough, then for all good indices k ≥ 2N0

we have
µ(K(x, θ, α, 2 rk)) & µ(Bk).

Proof. Let y be the center of Bk+1, so that |x− y| ≤ rk+1. By construction,

rk+1 = rk σk+1(Mk)−1 ≤ rk k
−1. (12.6)

Since k ≥ 2N0 , for N0 big enough we get

|x− y| ≤ rk+1 ≤
α

50rk. (12.7)

Then, it follows from Lemma 11.11 that

K(y, θ, α/4, 4α−1|x− y|, rk) ⊂ K(x, θ, α, 2 rk).

Since 4α−1|x− y| ≤ rk/2 by (12.7), we get

K(y, θ, α/4, rk/2, rk) ⊂ K(x, θ, α, 2 rk). (12.8)

On the other hand, using the definition of good index (12.4) we arrive at

K(y,∑k
j=1 αj −Nπ, α/20, rk/2, rk) ⊂ K(y, θ, α/4, rk/2, rk). (12.9)

For brevity, set K to be the cone from the left hand side above, and let L be
the axis of K. Recall that the diameter of Bk (let us call it D) forms angle∑k
j=1 αj −Nπ with the x axis; that is, D is parallel to L. Since y is the center

of Bk+1, it follows from the construction of E that y ∈ D. Hence, D ⊂ L.
We claim that the balls of generation (k + 1) contained in Bk ∩B(y, rk) \

B(y, rk/2), are in fact contained in K. Indeed, suppose z belongs to such ball,
so that

dist(z, L) = dist(z,D) ≤ rk+1
(12.7)
≤ α

50rk ≤
α

25 |z − y|.

Thus, z ∈ K.
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Since y ∈ D and Bk is a ball of radius rk, it follows that a large portion
of balls of generation (k + 1) contained in Bk is also contained in B(y, rk) \
B(y, rk/2). That is, they are of the type considered above. Hence,

µ(K) & µ(Bk).

By (12.9) and (12.8) we have K ⊂ K(x, θ, α, 2 rk), and so the proof is finished.

Lemma 12.4. For k ≥ 2
µ(Bk)
2 rk

&
1
k
.

Proof. By the definition of µ (12.1), rk, and σk we have

µ(Bk)
2 rk

= m(k)−1 m(k)
σ1 . . . σk

= 1
σ1 . . . σk

=
(

1
2

)β1

. . .

(
k

k + 1

)βk
≥ 1

2 . . .
k

k + 1 = 1
k + 1 ,

where in the last inequality we used the fact that 1/2 < βk < 1.

We are ready to finish the proof of the estimate (12.3).

Proof of (12.3). Observe that if k > N0 is a good index, then by Lemma 12.3
and Lemma 12.4 for r ∈ (2 rk, 4 rk)

µ(K(x, θ, α, r))
r

&
1
k
,

and so ∫ 4 rk

2 rk

µ(K(x, θ, α, r))
r

dr

r
&

1
k
. (12.10)

Recall that rk+1 ≤ k−1 rk by (12.6). Hence,

∫ 1

0

µ(K(x, θ, α, r))
r

dr

r
≥

∑
k≥2N0

∫ 4 rk

2 rk

µ(K(x, θ, α, r))
r

dr

r

≥
∞∑

N=N0

∑
2N≤k<2N+1

k is good

∫ 4 rk

2 rk

µ(K(x, θ, α, r))
r

dr

r

(12.10)
&

∞∑
N=N0

∑
2N≤k<2N+1

k is good

1
k

≈
∞∑

N=N0

∑
2N≤k<2N+1

k is good

2−N
Lemma 12.2

&
∞∑

N=N0

2−N2Nα =∞.
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An α number characterization of Lp spaces on
uniformly rectifiable sets VI

1 Introduction
Recall that in Section I.6.2 we defined α numbers, the flatness quantifying
coefficients introduced in [Tol09]. In this chapter we will use a slightly modified
definition compared to that of Definition I.6.7. For a (possibly real-valued)
measure µ and n ∈ N, if B = B(x, r) we define

αnµ(x, r) = αnµ(B) := 1
rn+1 inf

c∈R,L
FB(µ, cHn|L), (1.1)

where the infimum is taken over all c ∈ R and all n-planes L that intersect B.
We will often omit the superscript n, as it will be fixed throughout.

Remark 1.1. Note that in this chapter we normalize α numbers by r−n.
Furthermore, since we will be working with real-valued measures, the infimum
above is taken over c ∈ R (if µ is a positive measure then it does not make
any difference).

For an extended discussion of α numbers, see Section I.6.2. Recall that
α numbers can be used to characterize uniformly rectifiable measures by the
following result of Tolsa.

Theorem 1.2 ([Tol09, Theorem 1.2]). An n-ADR measure σ is UR if and
only if the measure ασ(x, r)2dσ(x)dr

r
is a Carleson measure, meaning that for

all balls B centered on suppσ with 0 < r(B) < diam(suppσ),∫ rB

0

∫
B
ασ(x, r)2 dσ(x)dr

r
≤ C0 σ(B)

for some fixed C0 > 0.
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VI. An α number characterization of Lp spaces on UR sets

The purpose of this chapter is to extend Tolsa’s result to measures that
are not AD-regular, but are given by Lp functions defined on UR sets.

Given a Radon measure σ, f ∈ L1
loc(σ), and a ball B = B(x, r) with

σ(B(x, r)) > 0 set

fB = fx,r =
∫
B f dσ

σ(B) .

Theorem 1.3. Let σ be a UR measure and f ∈ Lp(σ) where 1 < p < ∞.
Then

‖f‖Lp(σ) ≈

∥∥∥∥∥∥∥
(∫ ∞

0

(
αfσ(x, r) + |f |x,rασ(x, r)

)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

, (1.2)

with the implicit constant depending on p and σ.

Sharpness of the result
An interesting aspect of our result is the presence of two terms that comprise
our square function. We don’t know whether the result holds for general
UR sets without the second term. Neither of the terms bounds the other in
the pointwise sense: one could be zero while the other is nonzero. On the
other hand, we don’t know whether the norm of the square function involving
only αfσ dominates the one involving only |f |x,rασ. The reverse inequality is
certainly not true, as the latter square function vanishes if σ is the Lebesgue
measure on Σ = Rn.

Question. Let σ be a UR measure and f ∈ Lp(σ) where 1 < p <∞. Do we
have

‖f‖Lp(σ) .

∥∥∥∥∥∥∥
(∫ ∞

0
αfσ(x, r)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

? (1.3)

Equivalently, is it true that
∥∥∥∥∥∥∥
(∫ ∞

0
(|f |x,rασ(x, r))2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

.

∥∥∥∥∥∥∥
(∫ ∞

0
αfσ(x, r)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

?

The answer to the question above is obviously affirmative in the flat case, i.e.
σ = Hn|L for L a n-dimensional plane. It is also positive if σ is an AD-regular
measure on a n-dimensional plane L, i.e. σ = gHn|L for some function g
satisfying A−1 ≤ g(x) ≤ A. Indeed, let σ̃ = Hn|L, so that fσ = fgσ̃. In that
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case, by Theorem 1.3

‖f‖Lp(σ) ≈A ‖fg‖Lp(σ̃) ≈p

∥∥∥∥∥∥∥
(∫ ∞

0
αfgσ̃(x, r)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ̃)

≈A

∥∥∥∥∥∥∥
(∫ ∞

0
αfσ(x, r)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

.

Finally, one could show that (1.3) is true for “sufficiently flat” UR measures
σ. What we mean by this is that if the constant C0 from Theorem 1.2 is
sufficiently small, then some variant of Carleson’s embedding theorem can be
used∗ to show that∥∥∥∥∥∥∥

(∫ ∞
0

(
|f |x,rασ(x, r)

)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

.p C0‖f‖Lp(σ) .

Together with (1.2) this gives

‖f‖Lp(σ) ≤ C(p, σ)

∥∥∥∥∥∥∥
(∫ ∞

0
αfσ(x, r)2 dr

r

) 1
2

∥∥∥∥∥∥∥
Lp(σ)

+ C(p, σ)C0‖f‖Lp(σ) .

Assuming the Carleson constant C0 to be small enough, we get that the last
term can be absorbed by the left hand side. To make this more rigorous, one
should perhaps track the dependence of C(p, σ) (the implicit constant from
(1.2)) on the UR constants of σ with more diligence than we did. However, the
implicit constants can only get better as σ becomes flatter, and they certainly
cannot blow-up as the Carleson constant C0 goes to 0: if σ satisfies the Carleson
condition of Theorem 1.2 with some C0, then it also satisfies it with constant
C ′0 for every C ′0 ≥ C0.

Organization of the chapter
In Section 2 we introduce the necessary tools and make some initial reductions.
We define also Jf , a dyadic variant of the square function from Theorem 1.3,
see (2.4).

We show that ‖Jf‖2 . ‖f‖2 in Section 3. The proof uses martingale
difference operators, and it is inspired by how Theorem 1.2 was originally
proved, see [Tol09, Section 4]. In Section 4 we use the estimate ‖Jf‖2 .‖f‖2

∗For p = 2 use e.g. [Tol14, Theorem 5.8], for p 6= 2 one can show a corresponding
statement by proving an appropriate good-lambda inequality, in the spirit of what we do in
Section 4 (but simpler).
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VI. An α number characterization of Lp spaces on UR sets

and an appropriate good-lambda inequality to conclude that ‖Jf‖p .‖f‖p for
general 1 < p <∞.

Finally, in Section 5 we prove ‖f‖p . ‖Jf‖p. To do that we use the
Littlewood-Paley theory of David, Journé and Semmes [DJS85].

2 Preliminaries

2.1 Notation
In our estimates we will write f . g to denote f ≤ Cg for some constant
C (the so-called “implicit constant”). If the implicit constant depends on a
parameter t, i.e. C = C(t), we will write f .t g. The notation f ≈ g and
f ≈t g stands for g . f . g and g .t f .t f , respectively. To make the
notation lighter, we will usually not track the dependence of C on dimensions
n, d, on the ADR constant of σ, or the parameter 1 < p <∞.

For simplicity, we will sometimes write

‖f‖p :=‖f‖Lp(σ) .

Recall that we introduced the notation fB to signify the average of f over
a ball B with respect to σ. For general Borel sets E ⊂ Rd with σ(E) > 0 and
f ∈ L1

loc(σ) we will write

〈f〉E =
∫
E f dσ

σ(E) .

If v, w ∈ Rd, then v · w denotes their scalar product.

2.2 Adjacent systems of cubes
As usual, we will work with a family of subsets of suppσ =: Σ that in many
ways resemble the family of dyadic cubes on Rn. For this reason we will call
these sets “cubes”. Many different systems of cubes have been constructed
throughout the years, beginning with the work of David [Dav88a] and Christ
[Chr90]. In our proof it will be convenient to use adjacent systems of cubes
constructed by Hytönen and Tapiola [HT14]. One should think of them as a
generalization of the translated dyadic grids in Rn, widely used to perform the
“1/3 trick”.

First, we will say that a family D of Borel subsets of Σ satisfies the usual
properties of David-Christ cubes if D = ⋃

k∈Z Dk, and for each k ∈ Z:

(a) for P, Q ∈ Dk, P 6= Q, we have σ(P ∩Q) = ∅,

(b) the sets in Dk cover Σ:
Σ =

⋃
Q∈Dk

Q,
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2. Preliminaries

(c) for each Q ∈ Dk and each l ≥ k

Q =
⋃

P∈Dl:P⊂Q
P,

(d) there exists 0 < δ < 1 (independent of k) such that each Q ∈ Dk has a
center z(Q) ∈ Q satisfying

B
(
z(Q), δ

k

5
)
∩ Σ ⊂ Q ⊂ B(z(Q), 3δk) ∩ Σ. (2.1)

Consequently, as long as δk . diam(Σ), we have σ(Q) ≈ δkn. Set
`(Q) := δk.

(e) the cubes Q ∈ Dk have thin boundaries, that is, there exists γ ∈ (0, 1)
such that for η ∈ (0, 0.1) we have

σ({x ∈ Σ : dist(x,Q) + dist(x,Σ \Q) < η`(Q)}) ≤ ηγσ(Q). (2.2)

Remark 2.1. Note that in the above we assume Dk to be defined for all k ∈ Z.
In the case of unbounded Σ, this translates to having arbitrarily large cubes
as k → −∞. In the case of compact Σ, there exists some k0 such that for all
k ≤ k0 we have Dk = {Σ}. However, in our proof we will assume that Σ is
unbounded, see Lemma 2.5.

In our setting, the results [HT14, Theorem 2.9, Theorem 5.9] can be
summarized as follows.

Lemma 2.2. Let σ be a n-AD regular measure on Rd. Then, there exist
1 ≤ N <∞ and a small constant 0 < δ < 0.01, depending only on the ADR
constant of σ, such that the following holds. Let Ω = {1, . . . , N}. For each
ω ∈ Ω we have a system of cubes D(ω) satisfying the usual properties of
David-Christ cubes, and additionally, for all x ∈ Σ and 0 < r < diam(Σ) there
are ω ∈ Ω, k ∈ Z and Q ∈ Dk(ω) with

B(x, r) ∩ Σ ⊂ Q

and
`(Q) = δk ≈δ r.

Remark 2.3. The construction in [HT14] is valid for general (geometrically)
doubling metric spaces, possibly with no underlying measure space structure.
The constants N and δ from Lemma 2.2 depend on the doubling constant
of the metric space. Hytönen and Tapiola construct two different kinds of
cubes, which they call open and closed cubes, see [HT14, Theorem 2.9]. In
the above we consider closed cubes, so that properties (b), (c) and (d) follow
immediately from [HT14, Theorem 2.9]. To get the property (a) one uses
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the fact that interiors of P and Q are disjoint by [HT14, (2.11)], and then
σ(∂P ) = σ(∂Q) = 0 follows from (e). To prove the thin boundaries property
(e) one may adapt the proof of Christ [Chr90, pp. 610–612] together with
AD-regularity of σ. We omit the details.

From now on, let us fix a uniformly rectifiable measure σ, with Σ = suppσ.
Let Ω, δ and D(ω) be as in Lemma 2.2. For simplicity, in our estimates we
will not track the dependence of implicit constants on δ.

For all ω ∈ Ω and Q ∈ Dk(ω) we will write

D(Q) := {P ∈ D(ω) : P ⊂ Q},
Ch(Q) := D(Q) ∩Dk+1(ω).

The elements of Ch(Q) will be called children of Q, and Q will be called their
parent.

Set
BQ := B(z(Q), 4`(Q)),

so that Q ⊂ BQ ∩ Σ, and whenever P ∈ D(Q) we also have BP ⊂ BQ.
Fix some ω0 ∈ Ω, and set

D := D(ω0).

This will be our system of reference. Given Q ∈ D we define ω(Q) ∈ Ω to be the
index such that there exists R(Q) ∈ D(ω(Q)) satisfying BQ ∩ suppσ ⊂ R(Q)
and `(R(Q)) ≈ `(Q). If there is more than one such ω, we simply choose one.
We define also G(ω) ⊂ D as the family of cubes Q ∈ D such that ω(Q) = ω.
Clearly, ⋃

ω∈Ω
G(ω) = D .

2.3 α-numbers
In proving the main theorem, it will be more convenient to work with dyadic
versions of the α-numbers. Below we will introduce the notation needed for this
framework. Given a Radon measure µ we denote by Lµx,r a minimizing n-plane
for αµ(x, r), and by cµx,r the corresponding constant. They may be non-unique,
in which case we just choose one of the minimizers. Set Pµx,r = Hn|Lµx,r and
Lµx,r = cµx,rPµx,r. If B = B(x, r) we will also write LµB, c

µ
B etc.

For Q ∈ D and a Radon measure µ we set

αµ(Q) := αµ(BQ).

We will write LµQ := LµBQ , c
µ
Q := cµBQ etc.
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Observe that whenever B1 ⊂ B2 are balls, we have Lip1(B1) ⊂ Lip1(B2),
and so if r(B1) ≥ Cr(B2), then

αµ(B1) = 1
r(B1)n+1 inf

c∈R,L
FB1(µ, cHn|L)

≤ 1
r(B1)n+1FB1(µ,LµB2) ≤ 1

r(B1)n+1FB2(µ,LµB2) ≈C αµ(B2). (2.3)

Consider the following square function:

J(x) =
( ∑
x∈Q∈D

αfσ(Q)2 + |f |2BQασ(Q)2
)1/2

. (2.4)

Theorem 1.3 will follow from the following dyadic version:

Theorem 2.4. Let σ be a uniformly rectifiable measure with unbounded support,
and let f ∈ Lp(σ) for some 1 < p <∞. Then

‖Jf‖Lp(σ) ≈‖f‖Lp(σ) .

First, let us show why we may assume that suppσ is unbounded.

Lemma 2.5. It suffices to only prove Theorem 1.3 in the case that suppσ is
unbounded.

Proof. Suppose σ did have compact support. Without loss of generality, we
may assume diam(suppσ) = 1, suppσ ⊆ B = B(0, 1), and LσB = Rn. Let

µ = σ + PσB |Rn\4B.

It is not hard to show that µ is also UR. If Theorem 1.3 holds for UR measures
of unbounded support, then it holds for µ. Let f ∈ Lp(σ) ⊆ Lp(µ) and let

θfσ(x, r) := αfσ(x, r) + |f |x,rασ(x, r),

so that, by the Theorem 1.3,∥∥∥∥∥∥
( ∫ ∞

0
θfµ(x, r)2 dr

r

)1/2
∥∥∥∥∥∥
Lp(µ)

≈‖f‖Lp(µ) =‖f‖Lp(σ) . (2.5)

Observe that

θfσ(x, r) = θfµ(x, r) for x ∈ suppσ and 0 < r < 2.
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Thus,

∥∥∥∥∥∥
( ∫ 2

0
θfσ(x, r)2 dr

r

)1/2
∥∥∥∥∥∥
Lp(σ)

=

∥∥∥∥∥∥
( ∫ 2

0
θfµ(x, r)2 dr

r

)1/2
∥∥∥∥∥∥
Lp(σ)

≤

∥∥∥∥∥∥
( ∫ ∞

0
θfµ(x, r)2 dr

r

)1/2
∥∥∥∥∥∥
Lp(µ)

(2.5)
. ‖f‖Lp(σ) .

Furthermore, we claim that for any x ∈ suppσ and r > 2 we have

θfσ(x, r) . r−n|f |B. (2.6)

Indeed, since supp f ⊂ suppσ ⊂ B,

αfσ(x, r) ≤ 1
rn+1FB(x,r)(fσ, 0) ≤ 1

rn

∫
B
|f | dσ ≈ 1

rn
|f |B, (2.7)

and also

|f |x,rασ(x, r) . 1
rn

∫
B
|f | dσ ≈ 1

rn
|f |B.

It follows from (2.6) that

∫ ∞
2

θfσ(x, r)2dr

r
.
∫ ∞

2
|f |2B

dr

r2n+1 . |f |2B,

and so

∥∥∥∥∥∥
( ∫ ∞

0
θfσ(x, r)2 dr

r

)1/2
∥∥∥∥∥∥
Lp(σ)

.‖f‖Lp(σ) +
∫
B
|f |dσ .‖f‖Lp(σ) .

To finish the proof we now need to show the reverse inequality. Notice that
since f is supported on suppσ, αfµ(x, r) = αfσ(x, r) for all x ∈ suppµ and
r > 0. We can argue just as in (2.7) to get that for x ∈ suppµ and r ≥ 2,

αfµ(x, r) = αfσ(x, r) ≤ 1
rn+1FB(x,r)(fσ, 0) . |f |B

rn
.
|f |2B
rn

ασ(2B),

where we also used ασ(2B) ≈ 1.
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Hence,
∫
B

(∫ ∞
0

αfµ(x, r)2dr

r

) p
2

dµ(x)

.
∫
B

(∫ 2

0
αfµ(x, r)2dr

r

) p
2

dµ(x) +
∫
B

(∫ ∞
2

αfµ(x, r)2dr

r

) p
2

dµ(x)

.
∫
B

(∫ 2

0
αfσ(x, r)2dr

r

) p
2

dµ(x) +
∫
B

(∫ ∞
2

(|f |2Bασ(2B))2 dr

r2n+1

) p
2

dµ(x)

.
∫
B

(∫ 2

0
αfσ(x, r)2dr

r

) p
2

dµ(x) + (|f |2Bασ(2B))p

.
∫
B

(∫ ∞
0

θfσ(x, r)2dr

r

) p
2

dµ(x)

where we used (2.3) in the final inequality.
Furthermore, for x ∈ Rn\4B, if αfµ(x, r) 6= 0, then r ≥ |x|/2 and so

∫
Rn\4B

(∫ ∞
0

αfµ(x, r)2dr

r

) p
2

dµ(x)

=
∞∑
j=2

∫
Rn∩(2j+1B\2jB)

(∫ ∞
|x|/2

(|f |2Bασ(2B))2 dr

r2n+1

) p
2

dµ(x)

. (|f |2Bασ(2B))p
∞∑
j=2

∫
Rn∩(2j+1B\2jB)

|x|−pddµ(x)

. (|f |2Bασ(2B))p .
∫
B

(∫ ∞
0
|f |x,rασ(x, r)2dr

r

) p
2

dµ(x)

again using (2.3). These two estimates imply∥∥∥∥∥∥
( ∫ ∞

0
αfµ(x, r)2dr

r

)1/2
∥∥∥∥∥∥
Lp(µ)

.

∥∥∥∥∥∥
( ∫ ∞

0
θfσ(x, r)2dr

r

)1/2
∥∥∥∥∥∥
Lp(σ)

. (2.8)

Note that for x ∈ suppσ and r < 2, we have Pσx,r = Pµx,r. For r ≥ 2, notice
that ασ(2B) ≈ 1, and so

αµ(x, r) ≤ 1
rn+1FB(x,r)(µ,PσB) = 1

rn+1FB(x,r)(σ,PσB 4B) . r−n .
ασ(2B)
rn

,

hence
|f |µx,rαµ(x, r) ≤ |f |2B

ασ(2B)
r2n ,

where |f |µx,r =
∫
B(x,r) f dµ/µ(B(x, r)). Thus, just as how we proved (2.8), we

can show∥∥∥∥∥
∫ ∞

0
(|f |µx,r)2αµ(x, r)2dr

r

∥∥∥∥∥
Lp(µ)

.

∥∥∥∥∥
∫ ∞

0
|f |2x,rασ(x, r)2dr

r

∥∥∥∥∥
Lp(σ)

.
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This, (2.8) and (2.5) imply the desired estimate:

‖f‖Lp(σ) .

∥∥∥∥∥∥
( ∫ ∞

0
θfσ(x, r)2dr

r

)1/2
∥∥∥∥∥∥
Lp(σ)

.

Proof of the Theorem 1.3 using Theorem 2.4. By Lemma 2.5, we may assume
that suppσ = Σ is unbounded, so that Theorem 2.4 holds.

Let x ∈ Σ, r > 0. Let k ∈ Z be such that δk+1 < r ≤ δk, and let Q be a
cube in Dk containing x. Recall that Q ⊂ B(z(Q), 3`(Q)). Since r ≤ `(Q), we
have

B(x, r) ⊂ B(z(Q), 3`(Q) + r) ⊂ B(z(Q), 4`(Q)) = BQ.

Hence, by (2.3),
αfσ(x, r) . αfσ(Q).

We also have |f |x,r . |f |BQ , and so

|f |x,rασ(x, r) . |f |BQασ(Q).

Consequently,∫ δk

δk+1
(αfσ(x, r) + |f |x,rασ(x, r))2 dr

r
. αfσ(Q)2 + |f |2BQασ(Q))2.

Summing over k ∈ Z yields∫ ∞
0

(αfσ(x, r) + |f |x,rασ(x, r))2 dr

r
.

∑
x∈Q∈D

αfσ(Q)2 + |f |2BQασ(Q))2.

Similarly, for x ∈ Σ, r > 0, δk+1 < r ≤ δk, we may consider a cube
Q ∈ Dk+2 such that x ∈ Q ⊂ BQ ⊂ B(x, r). Mimicking the estimates above,
one gets

∑
x∈Q∈D

αfσ(Q)2 + |f |2BQασ(Q))2 .
∫ ∞

0
(αfσ(x, r) + |f |x,rασ(x, r))2 dr

r
.

Putting the two estimates together, we get the comparability of the dyadic
and continuous variants of the square function:

Jf(x)2 =
∑

x∈Q∈D

αfσ(Q)2 + |f |2BQασ(Q))2 ≈
∫ ∞

0
(αfσ(x, r)+ |f |x,rασ(x, r))2 dr

r
.

Theorem 2.4 will follow from the results from the next three sections. From
now on we assume that σ is a uniformly rectifiable measure with unbounded
support.
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3 ‖Jf‖2 .‖f‖2

First, we prove the estimate ‖Jf‖p .‖f‖p in the case p = 2.

Proposition 3.1. Let f ∈ L2(σ). Then

∑
Q∈D

(αfσ(Q)2 + |f |2BQασ(Q)2)`(Q)n .‖f‖2
L2(σ) .

Our main tool in the proof of Proposition 3.1 are the martingale difference
operators associated to systems of cubes D(ω).

Given ω ∈ Ω, Q ∈ D(ω), and f ∈ L1
loc(σ) we set

∆Qf =
∑

P∈Ch(Q)
〈f〉P1P − 〈f〉Q1Q.

Observe that all ∆Qf have zero mean, i.e.
∫

∆Qf dσ = 0.
It is well known (see e.g. [Gra14a, Chapter 6.4]) that given f ∈ L2(σ) and

some system of cubes D(ω) we have

f =
∑

Q∈D(ω)
∆Qf

with the convergence understood in the L2 sense. It is crucial that σ(Σ) =∞,
so that f + C ∈ L2(σ) if and only if C = 0 (in the case σ(Σ) <∞ one would
have to subtract from the left hand side above the average of f).

Note that ∆Qf are mutually orthogonal in L2(σ), so that

‖f‖2
L2(σ) =

∑
Q∈D(ω)

∥∥∥∆Qf
∥∥∥2

L2(σ)
(3.1)

Moreover, if Q ∈ D(ω), then for σ-a.e. x ∈ Q

f(x) = 〈f〉Q +
∑

P∈D(Q)
∆Pf(x). (3.2)

Lemma 3.2. Suppose Q ∈ D , and let R = R(Q) ∈ D(ω(Q)) be as in Section
2.1. Then, for f ∈ L2(σ) we have

αfσ(Q) . |〈f〉R|ασ(R) +
∑

P∈D(R)

`(P )1+n/2

`(Q)1+n ‖∆Pf‖2 . (3.3)
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Proof. Let ϕ ∈ Lip1(BQ) and consider a candidate for LfσQ of the form 〈f〉RLσQ.
For all x ∈ BQ ∩ suppσ we have x ∈ R, so that using (3.2)

∣∣∣∣∫ ϕ(x)f(x) dσ(x)− 〈f〉R
∫
ϕ(x) dLσQ(x)

∣∣∣∣
=
∣∣∣∣∫ ϕ(x)〈f〉R +

∑
P∈D(R)

ϕ(x)∆Pf(x) dσ(x)−
∫
ϕ(x)〈f〉R dLσQ(x)

∣∣∣∣
≤
∣∣〈f〉R∣∣∣∣∣∣∫ ϕ(x) dσ(x)−

∫
ϕ(x) dLσQ(x)

∣∣∣∣
+

∑
P∈D(R)

∣∣∣∣∫ ϕ(x)∆Pf(x) dσ(x)
∣∣∣∣ =: I1 + I2.

It is clear that

I1 ≤
∣∣〈f〉R∣∣ασ(Q)`(Q)n+1

(2.3)
.
∣∣〈f〉R∣∣ασ(R)`(Q)n+1,

which gives rise to the first term on the right hand side of (3.3).
Concerning I2, we use the zero mean property of martingale difference

operators, and the fact that ϕ ∈ Lip1(BQ), to get

I2 =
∑

P∈D(R)

∣∣∣∣∫ (
ϕ(x)− ϕ(z(P ))

)
∆Pf(x) dσ(x)

∣∣∣∣
≤

∑
P∈D(R)

∫ ∣∣ϕ(x)− ϕ(z(P ))
∣∣∣∣∆Pf(x)

∣∣ dσ(x)

.
∑

P∈D(R)
`(P )‖∆Pf‖1

Hölder
.

∑
P∈D(R)

`(P )1+n/2‖∆Pf‖2 .

Dividing by `(Q)n+1 and taking supremum over ϕ ∈ Lip1(BQ) yields (3.3).

Proof of Proposition 3.1. We begin by noting that, since σ is uniformly rec-
tifiable, ασ(Q)2`(Q)n is a Carleson measure by the results from [Tol09], see
Theorem 1.2. Therefore, the estimate

∑
Q∈D

|f |2BQασ(Q)2`(Q)n .‖f‖2
L2(σ)

follows immediately from Carleson’s embedding theorem, see e.g. [Tol14,
Theorem 5.8], and we only need to estimate the sum involving αfσ(Q).

Observe that for each ω ∈ Ω and R ∈ D(ω) there is at most a bounded
number of cubes Q ∈ D such that R(Q) = R.
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Fix some ω ∈ Ω. Recall that G(ω) is the family of cubes Q ∈ D such that
ω(Q) = ω. We apply (3.3) and the observation above to get∑

Q∈G(ω)
αfσ(Q)2`(Q)n

.
∑

R∈D(ω)
|〈f〉R|2ασ(R)2`(R)n +

∑
R∈D(ω)

( ∑
P∈D(R)

`(P )1+n/2

`(R)1+n/2‖∆Pf‖2

)2

=: S1 + S2.

Concerning S1, we may use Carleson’s embedding theorem again to estimate
S1 .‖f‖2

2.
Moving on to S2, we apply the Cauchy-Schwarz inequality to get

S2 ≤
∑

R∈D(ω)

( ∑
P∈D(R)

`(P )
`(R)‖∆Pf‖2

2

)( ∑
P∈D(R)

`(P )n+1

`(R)n+1

)
.

It is easy to see that, due to AD-regularity of σ, ∑P∈D(R)
`(P )n+1

`(R)n+1 . 1. Thus,

S2 ≤
∑

R∈D(ω)

∑
P∈D(R)

`(P )
`(R)‖∆Pf‖2

2 =
∑

P∈D(ω)
‖∆Pf‖2

2
∑

R∈D(ω)
R⊃P

`(P )
`(R)

.
∑

P∈D(ω)
‖∆Pf‖2

2

(3.1)
. ‖f‖2

2 .

Putting the estimates above together we arrive at∑
Q∈G(ω)

αfσ(Q)2`(Q)n .‖f‖2
2 .

Summing over all ω ∈ Ω (recall that #Ω is bounded) we get the desired
estimate.

4 ‖Jf‖p .‖f‖p for 1 < p <∞
In this section we use the estimate ||Jf ||2 .‖f‖2 to prove ||Jf ||p .‖f‖p for
general 1 < p < ∞. More precisely, we will show a localized version of the
estimate, which implies the global estimate via a limiting argument.

Fix an arbitrary Q0 ∈ D and set

J0f(x) :=
( ∑
x∈Q∈D(Q0)

αfσ(Q)2 + |f |2BQασ(Q)2
)1/2

.

Proposition 4.1. Let 1 < p <∞ and f ∈ Lp(σ). Then,

‖J0f‖Lp(Q0) .p ‖f‖Lp(BQ0 ) .
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The proposition follows easily from a good-lambda inequality stated below.
Let M denote the non-centered maximal Hardy-Littlewood operator with
respect to σ, i.e.

Mf(x) = sup{|f |B : x ∈ B, B is a ball}.

Since σ is AD-regular, the operator M is bounded on Lp(σ) for p > 1, see e.g.
[Tol14, Theorem 2.6, Remark 2.7].

Lemma 4.2. Let f ∈ L1
loc(σ). For any α > 1 there exists ε = ε(α) > 0 such

that for all λ > 0

σ({x ∈ Q0 : J0f(x) > αλ, Mf(x) ≤ ελ}) ≤ 9
10σ({x ∈ Q0 : J0f(x) > λ}).

(4.1)

Let us show how to use the above to prove Proposition 4.1.

Proof of Proposition 4.1. Note that J0f = J0(f1BQ0
), so without loss of gen-

erality we may assume that supp f ⊂ BQ0 . Let α = α(p) > 1 be so close to
1 that 0.9αp < 0.95, and let ε = ε(α) be as in Lemma 4.2. We use the layer
cake representation to get∫

Q0
J0f(x)p dσ(x) = p

∫ ∞
0

λp−1σ({x ∈ Q0 : J0f(x) > λ}) dλ

= pαp
∫ ∞

0
λp−1σ({x ∈ Q0 : J0f(x) > αλ}) dλ

≤ pαp
∫ ∞

0
λp−1σ({x ∈ Q0 : J0f(x) > αλ, Mf(x) ≤ ελ}) dλ

+ pαp
∫ ∞

0
λp−1σ({x ∈ Q0 : Mf(x) > ελ}) dλ

(4.1)
≤ 9

10pα
p
∫ ∞

0
λp−1σ({x ∈ Q0 : J0f(x) > λ}) dλ+ αpε−p

∫
Q0
Mf(x)p dσ(x)

≤ 19
20p

∫ ∞
0

λp−1σ({x ∈ Q0 : J0f(x) > λ}) dλ+ αpε−p
∫
Q0
Mf(x)p dσ(x)

= 19
20

∫
Q0
J0f(x)p dσ(x) + αpε−p

∫
Q0
Mf(x)p dσ(x).

Absorbing the first term from the right hand side into the left hand side, we
arrive at ∫

Q0
J0f(x)p dσ(x) ≤ 20αpε−p

∫
Mf(x)p dσ(x).

We use the Lp boundedness ofM and the assumption supp f ⊂ BQ0 to conclude∫
Q0
J0f(x)p dσ(x) .α,ε

∫
BQ0

f(x)p dσ(x).

The remainder of this section is dedicated to proving Lemma 4.2.
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4.1 Preliminaries
Fix α > 1 and λ > 0. First, we set

Eλ = {x ∈ Q0 : J0f(x) > λ}.

Consider the covering of Eλ with a family of cubes Cλ ⊂ D(Q0) such that for
every S ∈ Cλ we have

σ(S ∩ Eλ) ≥ 0.99σ(S)
and S is the maximal cube with this property. Since the cubes from Cλ are
pairwise disjoint, to get (4.1) it is enough to find ε = ε(α) such that for each
S ∈ Cλ we have

σ({x ∈ S : J0f(x) > αλ, Mf(x) ≤ ελ}) ≤ 8
10σ(S). (4.2)

Fix S ∈ Cλ. Without loss of generality assume that

σ({x ∈ S : Mf(x) ≤ ελ}) > 8
10σ(S), (4.3)

otherwise there is nothing to prove.
Given x ∈ S, we split the sum from the definition of J0f(x) into two parts:

J0f(x)2

=
∑

x∈Q∈D(S)

(
αfσ(Q)2 + |f |2BQασ(Q)2

)
+

∑
S(Q∈D(Q0)

(
αfσ(Q)2 + |f |2BQασ(Q)2

)
=: J1f(x)2 + J2f(x)2. (4.4)

Clearly, J2f(x) ≡ J2f is just a constant. By the definition of Cλ there exists
y ∈ Ŝ (where Ŝ is the parent of S) such that y 6∈ Eλ. By the definition of Eλ,
we get that

J2f ≤ J0f(y) ≤ λ.

We will show the following.

Lemma 4.3. There exists a set S1 ⊂ S such that σ(S1) ≥ 0.5σ(S) and∫
S1
J1f(x)2 dσ(x) . ε2λ2σ(S1)

The estimate (4.2) follows from the above easily. Indeed, using Chebyshev,
we can find S2 ⊂ S1 such that for all x ∈ S2 we have J1f(x) . ελ and
σ(S2) ≥ 0.5σ(S1) ≥ 0.2σ(S). Then, choosing ε = ε(α) small enough, (4.4)
gives J0f(x)2 ≤ λ2 + Cε2λ2 ≤ α2λ2 on S2, so that

σ({x ∈ S : J0f(x) > αλ, Mf(x) ≤ ελ}) ≤ σ(S \ S2) ≤ 8
10σ(S).

So our goal is to prove Lemma 4.3.
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4.2 Calderón-Zygmund decomposition
Let R = R(S) be as in Section 2.2, so that BS ∩ suppσ ⊂ R. We consider a
variant of the Calderón-Zygmund decomposition of f1R with respect to D(R)
at the level 2ελ.

First, let {Qj}j ⊂ D(R) be maximal cubes satisfying |f |BQj ≥ 2ελ. Note
that for all x ∈ Qj (and recalling thatM is the non-centered maximal function)
we have

Mf(x) ≥ |f |BQj ≥ 2ελ.
Hence, ⋃j Qj ⊂ {x ∈ S : Mf(x) ≥ 2ελ}, and so

σ(R \
⋃
j

Qj) ≥ σ(S \
⋃
j

Qj) ≥ σ({x ∈ S : Mf(x) ≤ ελ})

(4.3)
≥ 8

10σ(S) ≈ `(S)n ≈ `(R)n. (4.5)

In particular, Qj 6= R for all j. Thus, by the maximality of Qj we get easily

|f |BQj ≈ ελ. (4.6)

We define g ∈ L∞(σ) by

g(x) = f(x)1R\⋃
j
Qj

(x) +
∑
j

〈f〉Qj1Qj(x).

From the definition of Qj and (4.6) it follows that ‖g‖∞ . ελ. We define also
b ∈ L1(σ) as

b(x) =
∑
j

(f(x)− 〈f〉Qj)1Qj(x) =:
∑
j

bj(x).

Note that f = g + b and for all j we have
∫
bj dσ = 0.

4.3 Definition of S1

We set S1 = S \Nη, where Nη is some small neighbourhood of ⋃j Qj. To make
this more precise, given a small η > 0 we define Nη = ⋃

j Nη,j, where

Nη,j = {x ∈ suppσ : dist(x,Qj) < η`(Qj)}.

The thin boundaries property of D (2.2) gives

σ(Nη,j \Qj) ≤ ηγσ(Qj)

for some γ ∈ (0, 1). From (4.5) and the fact that σ(S) ≈ σ(R) we get

σ(S \Nη) ≥ σ(S \
⋃
j

Qj)−
∑
j

σ(Nη,j \Qj)
(4.5)
≥ 8

10σ(S)−
∑
j

ηγσ(Qj)

≥ 8
10σ(S)− ηγσ(R) ≥ 8

10σ(S)− Cηγσ(S) =
(

8
10 − Cη

γ

)
σ(S).
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Here C depends only on the implicit constant in σ(S) ≈ σ(R), which in turn
depends on the ADR constant of σ and on the parameters from the definition
of the system D .

Choosing η so small that Cηγ < 0.1, we get that S1 = S \Nη satisfies

σ(S1) ≥ 7
10σ(S).

4.4 Estimating J1f

Now, we will show that
∫
S1
J1f(x)2 dσ(x) . ε2λ2σ(S1) (4.7)

Recall that

J1f(x)2 =
∑

x∈Q∈D(S)
αfσ(Q)2 +

∑
x∈Q∈D(S)

|f |2BQασ(Q)2 =: J ′1f(x)2 + J ′′1 f(x)2.

First we deal with J ′′1 f . Observe that for all Q ∈ D(S) intersecting S1 we
have

|f |BQ . ελ. (4.8)

Indeed, let y ∈ Q ∩ S1, and let P ∈ D(R) be such that y ∈ P , `(Q) ≈ `(P ),
and BQ ⊂ BP . By the maximality of Qj and the fact that P \ ⋃j Qj 6= ∅ we
get |f |BP ≤ 2ελ. Estimate (4.8) follows from the inclusion BQ ⊂ BP .

Using (4.8) as well as Theorem 1.2 we get

∫
S1

∑
x∈Q∈D(S)

|f |2BQασ(Q)2 dσ(x) . ε2λ2 ∑
Q∈D(S)

ασ(Q)2σ(Q ∩ S1)

. ε2λ2 ∑
Q∈D(S)

ασ(Q)2σ(Q) . ε2λ2σ(S) ≈ ε2λ2σ(S1).

Thus, we are only left with showing
∫
S1
J ′1f(x)2 dσ(x) =

∫
S1

∑
x∈Q∈D(S)

αfσ(Q)2 dσ(x) . ε2λ2σ(S1). (4.9)

Lemma 4.4. For Q ∈ D(S) we have

αfσ(Q) . αgσ(Q) + ελ
∑

j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1 .
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Proof. Let ϕ ∈ Lip1(BQ). Then, using the decomposition f(y) = g(y) + b(y)
valid for all y ∈ R ⊃ BS ∩ suppσ ⊃ BQ ∩ suppσ,∣∣∣∣∫ ϕ(y)f(y) dσ(y)−

∫
ϕ(y) dLgσQ (y)

∣∣∣∣
≤
∣∣∣∣∫ ϕ(y)g(y) dσ(y)−

∫
ϕ(y) dLgσQ (y)

∣∣∣∣+∣∣∣∣∫ ϕ(y)b(y) dσ(y)
∣∣∣∣

. `(Q)n+1αgσ(Q) +
∑
j

∣∣∣∣∫ ϕ(y)bj(y) dσ(y)
∣∣∣∣ .

Concerning the second term on the right hand side, recall that
∫
bj dσ = 0 and

that supp bj ⊂ Qj. Keeping that in mind, denoting by xj the center of Qj, we
estimate in the following way:

∑
j

∣∣∣∣∫ ϕ(y)bj(y) dσ(y)
∣∣∣∣ =

∑
j

∣∣∣∣∫ (ϕ(y)− ϕ(xj))bj(y) dσ(y)
∣∣∣∣

≤
∑
j

∫ ∣∣∣(ϕ(y)− ϕ(xj))bj(y)
∣∣∣ dσ(y) .

∑
j:Qj∩BQ 6=∅

`(Qj)
∫ ∣∣∣bj(y)

∣∣∣ dσ(y)

=
∑

j:Qj∩BQ 6=∅
`(Qj)

∫
Qj

∣∣∣f(y)− 〈f〉Qj
∣∣∣ dσ(y) .

∑
j:Qj∩BQ 6=∅

`(Qj)n+1〈|f |〉Qj

(4.6)
. ελ

∑
j:Qj∩BQ 6=∅

`(Qj)n+1.

Together with the previous string of estimates, taking supremum over all
ϕ ∈ Lip1(BQ), we get

αfσ(Q) . αgσ(Q) + ελ
∑

j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1 .

An immediate consequence of Lemma 4.4 is the estimate∫
S1
J ′1f(x)2 dσ(x)

.
∫
S1
J ′1g(x)2 dσ(x) + ε2λ2

∫
S1

∑
x∈Q∈D(S)

 ∑
j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1


2

dσ(x).

(4.10)

Using Proposition 3.1 and the fact that ‖g‖∞ . ελ, supp g ⊂ R, we get∫
S1
J ′1g(x)2 dσ(x) ≤‖Jg‖2

2 .‖g‖
2
2 ≤‖g‖

2
∞ σ(R) . ε2λ2σ(R) ≈ ε2λ2σ(S1).

(4.11)
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Moving on to the second term from the right hand side of (4.10), denote
by Tree ⊂ D(S) the family of cubes contained in S that intersect S1. We have

∫
S1

∑
x∈Q∈D(S)

 ∑
j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1


2

dσ(x)

≤
∑

Q∈Tree
σ(Q)

 ∑
j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1


2

Cauchy-Schwarz
.

∑
Q∈Tree

`(Q)−n−2

 ∑
j:Qj∩BQ 6=∅

`(Qj)n+2


 ∑
j:Qj∩BQ 6=∅

`(Qj)n
 .

(4.12)

Note that since Q ∈ Tree, we have Q ∩ S1 6= ∅. By the definition of S1, this
implies that for all j such that Qj ∩BQ 6= ∅ we have `(Q) &η `(Qj). Indeed, if
`(Q)� η`(Qj), then BQ ∩Qj 6= ∅ implies Q ⊂ Nη,j, which would contradict
Q ∩ S1 6= ∅.

By the observation above, we have some C = C(η) such that if BQ∩Qj 6= ∅,
then Qj ⊂ CBQ. Consequently,∑

j:Qj∩BQ 6=∅
`(Qj)n .

∑
j:Qj⊂CBQ

σ(Qj) ≤ σ(CBQ) ≈η `(Q)n.

Thus, the right hand side of (4.12) can be estimated by∑
Q∈Tree

`(Q)−2 ∑
j:Qj∩BQ 6=∅

`(Qj)n+2 =
∑
j

`(Qj)n+2 ∑
Q∈Tree:Qj∩BQ 6=∅

`(Q)−2. (4.13)

As noted above, Qj ∩BQ 6= ∅ implies `(Q) &η `(Qj). Hence,∑
Q∈Tree:Qj∩BQ 6=∅

`(Q)−2 .η `(Qj)−2,

where we used the fact that the sum above is essentially a geometric series.
Putting this together with (4.13) and (4.12), we get

∫
S1

∑
x∈Q∈D(S)

 ∑
j:Qj∩BQ 6=∅

`(Qj)n+1

`(Q)n+1


2

dσ(x) .η

∑
j

`(Qj)n . `(R)n ≈ σ(S1).

Together with (4.10) and (4.11) this gives the desired estimate (4.9):∫
S1
J ′1f(x)2 dσ(x) .η ε

2λ2σ(S1).

This finishes the proof of Lemma 4.3.
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5 ‖f‖p .‖Jf‖p for 1 < p <∞
In this section we show the second inequality of Theorem 2.4.

Proposition 5.1. Let f ∈ Lp(σ) for some 1 < p <∞. Then

‖f‖Lp(σ) .‖Jf‖Lp(σ) . (5.1)

5.1 Littlewood-Paley theory
Our main tool will be the Littlewood-Paley theory for spaces of homogeneous
type developed by David, Journé and Semmes in [DJS85]. We follow the way
it was paraphrased (in English) in [Tol17, Section 15].

For r > 0, x ∈ Σ, and g ∈ L1
loc(σ), let

Drg(x) = φr ∗ (gσ)(x)
φr ∗ σ(x) − φ2r ∗ (gσ)(x)

φ2r ∗ σ(x)

where φr(y) = r−nφ(y/r) and φ is a radially symmetric smooth nonnegative
function supported in B(0, 1) with

∫
Rd φ = 1.

For a function g ∈ L1
loc(σ) and r > 0, we denote

Srg(x) = φr ∗ (gσ)(x)
φr ∗ σ(x) ,

so that
Drg = Srg − S2rg.

Let Wr be the operator of multiplication by 1/S∗r1. We consider the
operators

S̃r = SrWr S
∗
r and D̃r = S̃r − S̃2r.

Note that S̃r, and thus D̃r, are self-adjoint and S̃r1 ≡ 1, so that

D̃r1 = D̃∗r1 = 0. (5.2)

Let sr(x, y) the kernel of Sr with respect to σ, that is, so we can write

Srg(x) =
∫
sr(x, y) g(y) dσ(y).

Observe that
sr(x, y) = 1

φr ∗ σ(x) φr(x− y)

and the kernel of S̃r is

s̃r(x, y) =
∫
sr(x, z)

1
S∗r1(z) sr(y, z) dσ(z).
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We claim that the kernel d̃r(x, ·) for the operator D̃r is supported in B(x, 4r)
and satisfies the Lipschitz bounds

|d̃r(x, y)− d̃r(x, z)| . |y − z|r−n−1. (5.3)

Indeed, let x, x′ ∈ suppσ. Since φr is Cr−n−1-Lipschitz and σ is AD-regular,

|φr ∗ σ(x)− φr ∗ σ(x′)| =
∣∣∣∣∫ (φr(x− y)− φr(x′ − y))dσ(y)

∣∣∣∣
.
|x− x′|
rn+1 σ(B(x, r) ∪B(x′, r)) . |x− x

′|
r

.

Thus, for y ∈ suppσ,

|sr(x, y)− sr(x′, y)|

≤ |φr(x− y)− φr(x′ − y)|
φr ∗ σ(x) + φr(x′ − y)

∣∣∣∣∣ 1
φr ∗ σ(x) −

1
φr ∗ σ(x′)

∣∣∣∣∣
.
|x− x′|
rn+1 + r−n

|φr ∗ σ(x)− φr ∗ σ(x′)|
φr ∗ σ(x)2 ≈ |x− x

′|
rn+1 .

Hence,

|s̃r(x, y)− s̃r(x′, y) =
∣∣∣∣∣
∫

(sr(x, z)− sr(x′, z))
1

S∗r1(z) sr(y, z) dσ(z)
∣∣∣∣∣

.
|x− x′|
rn+1

∣∣∣∣∣
∫ 1
S∗r1(z) sr(y, z) dσ(z)

∣∣∣∣∣ . |x− x′|rn+1

where in the last line we used the fact that
∫
sr(y, z)dσ(z) = 1 and

S∗r1(z) =
∫ φr(x− z)
φr ∗ σ(x) dσ(x) ≥

∫
B(z,r/2)

r−n

φr ∗ σ(x)dσ(x) ≈ 1.

Since d̃r = s̃r−s̃2r and is symmetric, this proves (5.3). Moreover, notice that
if x ∈ suppσ, supp sr(x, ·) ⊆ B(x, r), and so the integrand of s̃r is nonzero only
when z ∈ B(x, r) ∩ B(y, r), meaning |x− y| ≤ 2r, and so supp s̃r ⊆ B(x, 2r),
hence supp d̃r ⊆ B(x, 4r), which proves our claim.

Theorem 5.2. [DJS85] Let rk = 2−k, and g ∈ Lp(σ), 1 < p <∞, we have

‖g‖Lp(σ) ≈

∥∥∥∥∥∥∥∥
∑
k∈Z
|D̃rkg|2

 1
2

∥∥∥∥∥∥∥∥
Lp(σ)

. (5.4)

The original result is stated for p = 2, but this case implies the other cases
(see for example the proof of [Tol01, Corollary 6.1]).
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Let D̃k := D̃rk , d̃k := d̃rk . By (5.4), it is clear that to prove (5.1), it suffices
to show that ∥∥∥∥∥∥∥∥

∑
k∈Z
|D̃kf |2

 1
2

∥∥∥∥∥∥∥∥
Lp(σ)

.‖Jf‖Lp(σ) .

In fact, we will show a stronger, pointwise inequality which immediately implies
the one above.

Lemma 5.3. Let x ∈ Σ, k ∈ Z, and let Q ∈ D be the smallest cube containing
x and such that supp d̃k(x, ·) ⊂ 0.5BQ. Then, `(Q) ≈ rk and

|D̃kf(x)| . αfσ(Q) + |f |BQασ(Q). (5.5)

The remainder of this section is devoted to the proof of this lemma.

5.2 Preliminaries
Fix x ∈ Σ, k ∈ Z, and let Q be as above. As noted just above (5.3), we have
d̃k(x, ·) ⊂ B(x, 4rk), and so `(Q) ≈ rk follows immediately.

We make a few simple reductions.

Remark 5.4. Without loss of generality we may assume that ασ(Q) ≤ ε for
some small ε. Indeed, if we had ασ(Q) ≥ ε, then using (5.3) and the fact that
supp d̃k(x, ·) ⊂ BQ

|D̃kf(x)| =
∣∣∣∣∫ d̃k(x, y)f(y) dσ(y)

∣∣∣∣ ≤∥∥∥d̃k(x, ·)∥∥∥∞
∫
BQ
|f(y)| dσ(y)

. `(Q)−n
∫
BQ
|f(y)| dσ(y) ≈ |f |BQ .ε |f |BQασ(Q),

and so in this case (5.5) holds. From now on we assume ασ(Q) ≤ ε.

Remark 5.5. Similarly, without loss of generality we may assume that LfσQ ∩
0.5BQ 6= ∅. If we had LfσQ ∩ 0.5BQ = ∅, then LfσQ ∩ supp d̃r(x, ·) = ∅ so that

∫
d̃k(x, y) dLfσQ (y) = 0.

This implies

|D̃kf(x)| =
∣∣∣∣∫ d̃k(x, y)f(y) dσ(y)

∣∣∣∣ . αfσ(B),

and so (5.5) is true also in this case.
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Recall that cfσQ , cσQ are the constants minimizing αfσ(Q), ασ(Q), respec-
tively. Since σ is AD-regular and ασ(Q) ≤ ε, we get by [ATT20, Lemma
3.3]

cσQ ≈ 1. (5.6)
To show (5.5) we begin by using (5.2) and the triangle inequality:

|D̃kf(x)| =
∣∣∣∣∫

Σ
d̃k(x, y)f(y) dσ(y)

∣∣∣∣
(5.2)=

∣∣∣∣∣∣
∫

Σ
d̃k(x, y)f(y) dσ(y)−

cfσQ
cσQ

∫
Σ
d̃k(x, y) dσ(y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

Σ
d̃k(x, y)f(y) dσ(y)−

∫
LfσQ

d̃k(x, y) dLfσQ (y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
LfσQ

d̃k(x, y) dLfσQ (y)−
cfσQ
cσQ

∫
LσQ

d̃k(x, y) dLσQ(y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣c
fσ
Q

cσQ

∣∣∣∣∣∣
∣∣∣∣∣∣
∫
LσQ

d̃k(x, y) dLσQ(y)−
∫

Σ
d̃k(x, y) dσ(y)

∣∣∣∣∣∣ =: (I) + (II) + (III).

(5.7)

Using the Lipschitz property of d̃k (5.3) we immediately get that (I) . αfσ(Q),
and that

(III) .

∣∣∣∣∣∣c
fσ
Q

cσQ

∣∣∣∣∣∣ασ(Q)
(5.6)
≈

∣∣∣cfσQ ∣∣∣ασ(Q). (5.8)

Lemma 5.6. We have
∣∣∣cfσQ ∣∣∣ . |f |BQ.

Proof. Indeed, if we had
∣∣∣cfσQ ∣∣∣ ≥ Λ|f |BQ for some big Λ > 10, then c̃fσQ = 0

would be a better competitor for a constant minimizing αfσ(Q). To see that,
note that for any ϕ ∈ Lip1(BQ)∣∣∣∣∫ ϕf dσ − 0

∣∣∣∣ ≤ C`(Q)n+1|f |BQ .

That is, FBQ(fσ, 0) ≤ C`(Q)n+1|f |BQ . On the other hand, taking a positive
ψ ∈ Lip1(BQ) such that ψ(x) = `(Q) for x ∈ 0.7BQ, and using the assumption
LfσQ ∩ 0.5BQ 6= ∅ we get

αfσ(Q)`(Q)n+1 &

∣∣∣∣∣∣
∫
ψf dσ − cfσQ

∫
LfσQ

ψ dHn

∣∣∣∣∣∣
≥
∣∣∣cfσQ ∣∣∣ `(Q)Hn(0.7BQ ∩ LfσQ )−

∣∣∣∣∫ ψf dσ

∣∣∣∣
≥ C̃Λ|f |BQ`(Q)n+1 − C`(Q)n+1|f |BQ ≥

C̃Λ
2 |f |BQ`(Q)n+1 > FBQ(fσ, 0),
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assuming Λ big enough. This contradicts the optimality of cfσQ .

Using the lemma above and (5.8) we get

(III) . |f |BQασ(Q).

Hence, by (5.7), to finish the proof of (5.5) it remains to show that

(II) =
∣∣∣cfσQ ∣∣∣

∣∣∣∣∣∣
∫
LfσQ

d̃k(x, y) dHn(y)−
∫
LσQ

d̃k(x, y) dHn(y)

∣∣∣∣∣∣ . αfσ(Q)+|f |BQασ(Q).

This can be seen as an estimate of how far from each other the planes LfσQ and
LσQ are.

The inequality above follows immediately from Proposition 5.7 proven in the
next subsection, together with the already established estimate

∣∣∣cfσQ ∣∣∣ . |f |BQ .
5.3 Angles between planes approximating fσ and σ

In the following proposition we do not use uniform rectifiability in any way,
and so we state it for a general AD-regular measure µ. Recall that given a ball
B we defined PµB = Hn LµB.

Proposition 5.7. Let µ be an n-AD-regular measure on Rd, and let f ∈
L1
loc(µ). Let x ∈ suppµ, r > 0, B = B(x, r), and suppose that LfµB ∩0.5B 6= ∅.

Then,
|cfµB |

1
rn+1FB(PµB,P

fµ
B ) . αfµ(B) + |cfµB |αµ(B). (5.9)

In the proof of Proposition 5.7 we will use the following lemma.

Lemma 5.8. Let B = B(x, r) and let L1, L2 be two n-planes intersecting
0.5B. Set P1 = Hn|L1

, P2 = Hn|L2
. Then,

1
rn
FB(P1,P2) . distH(L1 ∩B,L2 ∩B). (5.10)

Proof. First, set
D = distH(L1 ∩B,L2 ∩B)

r
.

Note that we always have FB(P1,P2) . rn+1 so that if D & 1, then (5.10)
follows trivially. Hence, without loss of generality we may assume that D ≤ ε
for some ε > 0 to be fixed later.

We claim that if ε is chosen small enough (depending only on n, d), then
there exists an isometry A : L1 → L2 such that for y ∈ B ∩ L1 we have
|y − A(y)| . Dr. To see that, let y1 ∈ L1 ∩B be arbitrary. Set y2 = πL2(y1).
Clearly,

|y1 − y2| ≤ Dr ≤ εr.
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Let v1, . . . , vn be an orthonormal basis of the linear plane L′1 := L1 − y1. For
i = 1, . . . , d define

wi := πL2(y1 + vi)− y2 ∈ L2 − y2 =: L′2.

In fact, since y2 = πL2(y1), we have wi = πL′2(vi). It is easy to see that for all
v ∈ L′1 we have

|πL′2(v)− v| . D|v|.

Hence, |wi − vi| . D ≤ ε and for i 6= j

|wi · wj| = |(wi − vi) · (wj − vj) + (wi − vi) · vj + vi · (wj − vj)| . D ≤ ε.

Choosing ε small enough (depending only on dimensions), we get easily that
{wi} is a basis of L′2. Moreover, if {ŵi} is the orthonormal basis of L′2
constructed from {wi} using the Gram-Schmidt process, then it follows from
the estimates above that for all i = 1, . . . , n

|ŵi − vi| . D.

We define the map A : L1 → L2 as the unique isometry such that A(y1) = y2
and A(y1 + vi) = y2 + ŵi. It follows immediately from basic linear algebra that
for y ∈ L1 ∩B we have |y − A(y)| . Dr.

Now, let ϕ ∈ Lip1(B). We have∣∣∣∣∣
∫
L1
ϕ(y) dHn(y)−

∫
L2
ϕ(y) dHn(y)

∣∣∣∣∣ =
∣∣∣∣∣
∫
L1
ϕ(y) dHn(y)−

∫
L1
ϕ(A(y)) dHn(y)

∣∣∣∣∣
≤
∫
L1
|ϕ(y)− ϕ(A(y))| dHn(y) .

∫
L1∩B

Dr dHn(y) . Drn+1.

Taking supremum over ϕ ∈ Lip1(B) finishes the proof.

Proof of Proposition 5.7. For simplicity of notation we will usually omit the
subscript B, i.e. we will write Lµ := LµB, c

fµ := cfµB , and so on.
Without loss of generality we can assume that cfµ ≥ 0. Indeed, if that

was not the case we could consider g = −f . Then the plane and constant
Lgµ = Lfµ, cgµ = −cfµ ≥ 0 are minimizing for αgµ(B), and we have αgµ(B) =
αfµ(B). Thus, proving (5.9) for g is equivalent to proving it for f , and cgµ ≥ 0.

Note that we always have FB(Pµ,Pfµ) . rn+1 so that if αµ(B) & 1, then
(5.9) is trivial. Assume that αµ(B) ≤ ε for some small ε > 0 (depending on
dimensions and AD-regularity constants), to be fixed later.

Note that if ε is small enough, then one can use AD-regularity of µ to
conclude that Lµ ∩ 0.5B 6= ∅ (see for example [Tol09, Lemma 3.1]). We use
this observation, the assumption Lfµ ∩ 0.5B 6= ∅ and (5.10) to estimate

cfµ
1

rn+1FB(Pµ,Pfµ) . cfµ
distH(Lµ ∩B,Lfµ ∩B)

r
=: cfµD.
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Our aim is to show that

cfµD . cfµαµ(B) + αfµ(B). (5.11)

Let 0 < η < 0.01 be some dimensional constant. Note that, since Lfµ ∩
0.5B 6= ∅, the set Lfµ∩0.9B is a n-dimensional ball with Hn(Lfµ∩0.9B) ≈ rn.
We claim that we can find a n-dimensional ball B0 contained in Lfµ ∩ 0.9B, of
radius ηr (in particular r(B0) ≈η r(B)), and such that

dist(z, Lµ) ≥ 10ηDr for all z ∈ B0. (5.12)

Indeed, if there was no such ball, i.e. if for all n-dimensional balls B0 ⊂
Lfµ ∩ 0.9B of radius ηr there was some z ∈ B0 with dist(z, Lµ) ≤ 10ηDr, then
it would follow easily from the definition of Hausdorff distance, and from the
fact that Lµ and Lfµ are n-planes intersecting 0.5B, that

distH(Lµ ∩B,Lfµ ∩B) . ηDr = η distH(Lµ ∩B,Lfµ ∩B).

For η small enough, this is a contradiction. We omit the details, which can be
readily filled in e.g. using [AT15, Lemma 6.4].

Consider an open neighbourhood of B0 given by

U := {y ∈ Rn : dist(y,B0) < ηDr},

and also for λ > 0 set

λU := {y ∈ Rn : dist(y,B0) < ληDr}.

Since D ≤ 1, one should think of U as a d-dimensional pancake around B0
of thickness ηDr, so that the smaller D, the flatter the pancake. Note that
by (5.12) for all 0 < λ < 10 we have λU ∩ Lµ = ∅, and also λU ⊂ B because
B0 ⊂ 0.9B.

Let ϕ : Rd → [0, ηDr] be a function satisfying ϕ ≡ ηDr in U , suppϕ ⊂ 2U ,
and Lip(ϕ) ≤ 1. Clearly, ϕ ∈ Lip1(B), and so∣∣∣∣∣

∫
ϕf dµ−

∫
ϕ dLfµ

∣∣∣∣∣ ≤ αfµ(B)rn+1. (5.13)

Furthermore, note that ϕ ≡ ηDr on B0, so that∫
ϕ dLfµ = cfµ

∫
Lfµ

ϕ dHn ≥ cfµηDrHn(B0) = C(d)cfµDηn+1rn+1.

Together with (5.13) this implies∫
ϕf dµ ≥ C(η, d)cfµDrn+1 − αfµ(B)rn+1. (5.14)
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Recall that we are trying to prove cfµD . cfµαµ(B) + αfµ(B). If we had
cfµD ≤ Λαfµ(B) for some Λ = Λ(η, d) > 100, then there is nothing to prove.
So without loss of generality assume that cfµD ≥ Λαfµ(B). In that case (5.14)
gives ∫

ϕf dµ &η c
fµDrn+1. (5.15)

Now we define a modified version of ϕ. Recall that suppϕ ⊂ 2U . For
all y ∈ suppµ ∩ 2U let By = B(y, ηDr/5). We use the 5r covering theorem
to extract from {By}y∈suppµ∩2U a subfamily of pairwise disjoint balls {Bi}i∈I
such that suppµ ∩ 2U ⊂ ⋃

i 5Bi. Note that ⋃i 10Bi ⊂ 4U , and in particular,⋃
i 10Bi ∩ Lµ = ∅. Moreover, the balls 10Bi have bounded intersection. Thus,

we may consider a partition of unity

Ψ =
∑
i∈I

ψi,

such that suppψi ⊂ 10Bi for each i ∈ I, Ψ ≡ 1 on ⋃
i 5Bi, and Lip Ψ .

(ηDr)−1.
Consider Φ = ϕΨ. We have

‖∇Φ‖∞ ≤‖∇ϕ‖∞‖Ψ‖∞ +‖ϕ‖∞‖∇Ψ‖∞ . 1 + ηDr(ηDr)−1 = 1.

Hence, CΦ ∈ Lip1(B) for some C ≈ 1, so that∣∣∣∣∣
∫

Φf dµ−
∫

Φ dLfµ
∣∣∣∣∣ ≤ C−1αfµ(B)rn+1. (5.16)

On the other hand, observe that Ψ ≡ 1 on suppϕ ∩ suppµ. By (5.15)∫
Φf dµ =

∫
ϕf dµ &η c

fµDrn+1.

Together with (5.16) this gives∫
Φ dLfµ ≥ C(η)cfµDrn+1 − C−1αfµ(B)rn+1 &η c

fµDrn+1, (5.17)

where we used once again the additional assumption cfµD ≥ Λαfµ(B) we made
along the way (and choosing Λ large).

Now we will show that∫
Lfµ

Φ dHn .η αµ(B)rn+1. (5.18)

Since Lfµ = cfµHn|Lfµ , together with (5.17) this will give cfµD .η c
fµαµ(B),

and so the proof of (5.11) will be finished.
Recall that supp Φ ⊂ supp Ψ ⊂ ⋃

i 10Bi, and that ‖Φ‖∞ ≤‖ϕ‖∞ = ηDr.
Hence, ∫

Lfµ
Φ dHn .η Dr

∑
i∈I
Hn(Lfµ ∩ 10Bi) .η #I(Dr)n+1.
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To estimate #I we will use AD-regularity of µ. Recall that {Bi}i∈I are pairwise
disjoint, they are centered at points from suppµ ∩ 2U , and r(Bi) = ηrD/5.
Thus,

#I(rD)n ≈η
∑
i∈I

µ(Bi) = µ
( ⋃
i∈I
Bi

)
.

On the other hand, since the balls {Bi} are centered at points from 2U , we
have ⋃i∈I Bi ⊂ 3U and

µ
( ⋃
i∈I
Bi

)
≤ µ(3U).

To bound µ(3U) consider ϕ̃ ∈ Lip1(B) such that ϕ̃ ≥ 0, ϕ̃ ≡ ηrD on 3U and
supp ϕ̃ ⊂ 4U . Recalling that 4U ∩ Lµ = ∅, we arrive at

rDµ(3U) .η

∫
ϕ̃ dµ =

∣∣∣∣∣
∫
ϕ̃ dµ−

∫
ϕ̃ dLµ

∣∣∣∣∣ ≤ αµ(B)rn+1.

Putting all the estimates above together we get (5.18):∫
Lfµ

Φ dHn .η #I(Dr)n+1 .η rDµ(3U) .η αµ(B)rn+1.
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A necessary condition for the L2 boundedness
of the Riesz transform on Heisenberg groups
VII

1 Introduction

The motivation behind this note is the following question: what are the
measures µ on the Heisenberg group Hn which guarantee that the (correct
notion of) Riesz transform is bounded from L2(µ) to itself? This question
(or some variant of it) with Rn instead of Hn, was one of the major starting
points of quantitative rectifiability, as described in Chapter I. We described
some motivation for developing GMT in more general settings (including
the Heisenberg group) in Section I.7. We should mention that the study of
Heisenberg geometry can be approached from different perspectives and with
different applications in mind; for example, see [NY18] for a connection with
theoretical computer science.

In the last couple of years, there has been some progress towards an answer
to our initial question; see for example [CFO19], [FO19] and [Orp18b]. In this
chapter we give a necessary condition to be imposed on a Radon measure µ
on Hn for the Riesz transform to be L2(µ) bounded. Here Rµ is the singular
integral operator whose kernel is the horizontal gradient of the fundamental
solution of the Heisenberg sub-Laplacian, as defined in [CM12]. Note that due
to the non-Euclidean setting, we will use different notation than in previous
chapters (e.g. B(p, r) will denote the ball with respect to the Korányi metric,
and not the Euclidean distance). See Section 2 for precise definitions.

Theorem 1.1. Let µ be a Radon measure on Hn such that Rµ is bounded on
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VII. On L2 boundedness of Riesz transform in Hn

L2(µ) with norm C1, and such that µ(F ) = 0 whenever dimH(F ) ≤ 2∗. Then
there exists a constant C2 such that for all balls B(x, r) ⊂ Hn, we have

µ(B(x, r)) ≤ C2r
2n+1. (1.1)

Here C2 depends only on n and C1, and the ball B(x, r) is defined with respect
to the Korányi metric, see Section 2.

A corresponding statement holds in the Euclidean setting, and is a result
of David, [Dav91, Part III, Proposition 1.4]. See also [Orp17], Proposition
6.9 for a more detailed proof of the same result. Let Rn

µ denote the standard
n-dimensional Riesz transform in Rd.

Theorem 1.2. Assume that µ is a non-atomic Radon measure on Rd such
that Rn

µ is bounded on L2(µ) with norm C1. Then, for all Euclidean balls
BRd(x, r) ⊂ Rd we have

µ(BRd(x, r)) ≤ C2r
n (1.2)

Here C2 depends only on C1, n, and d.

A measure satisfying (1.2) (or (1.1)) is said to have polynomial growth. Let
us give a couple of remarks.

Remark 1.3. Although the result itself (both in the Euclidean and Heisenberg
case) is not very hard, it is nevertheless very useful. For example, most tools
developed in the last two decades that take quantitative rectifiability beyond
AD-regular measures still need polynomial growth† (see for example the book
by Tolsa [Tol14]). Thus, we expect that our result will be quite useful, too.

Remark 1.4. While the two results above look similar, there is actually a
difference, in the sense that, in the Heisenberg case, there actually exist lower
dimensional measures which give a bounded Riesz transform, but are not
atomic.

This is not a byproduct of the proof, but rather a fact of the Heisenberg
geometry. Indeed, the 2-dimensional t-axis (or any Heisenberg translate of it)
gives a bounded (2n+ 1)-dimensional Riesz transform; this is simply because
on these sets the kernel vanishes identically, see (2.4).

One can construct a more interesting example in the vertical plane of the
one dimensional Heisenberg group H, say. Consider a tube of height 1 and
radius ε2

1 around the t-axis, and take the intersection with the vertical plane.
Call the resulting rectangle R1,1. Cut out from R1 two smaller rectangles R2,1
and R2,2, one in the top right corner and one in the bottom left corner, both

∗This assumption comes from the fact that the kernel of Rµ vanishes on the vertical
lines, which have dimension 2. See also Remark 1.4 below.

†With some exceptions, see for example [AS18], or [BS15].
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of height ε2 and width ε2
2, for some ε2 ≤ ε1/4. We proceed in this way, so

that after k steps we have 2k−1 disjoint rectangles {Rk,i}i of height εk and
width ε2

k. Consider the natural probability measure µ on the Cantor-like set
C = ⋂

k

⋃
iRk,i. It is not difficult to show that, if εk → 0 are small enough,

the Heisenberg Riesz transform is bounded on L2(µ); the idea is that the set
is concentrated along the t-axis, and thus the kernel is very small (see (2.4)
below). Depending on the choice of (εk) we have dimH(C) ∈ [0, 2].

Plan of the chapter
In Section 2 we briefly recall basic facts about Heisenberg groups and the
Riesz transform. We also introduce a family of “dyadic cubes” suitable to our
setting.

Section 3 is dedicated to Lemma 3.1, our main technical lemma. Roughly
speaking, we show that if a measure µ is such that Rµ is bounded on L2(µ),
and there is some cube Q0 with a very high concentration of µ (i.e. µ(Q0)�
`(Q0)2n+1), then we can find a family HD(Q0) of much smaller cubes, contained
in Q0, such that

a) a very large portion of measure µ on Q0 is concentrated on the cubes
from HD(Q0),

b) the family HD(Q0) is relatively small, in the sense that it consists of few
cubes.

In Section 4 we show that if the polynomial growth condition (1.1) is not
satisfied, then we can find a cube satisfying the assumptions of our main lemma.
This in turn allows us to start an iteration algorithm, consisting of using the
main lemma countably many times, that results in constructing a set Z with
µ(Z) > 0 and dimH(Z) ≤ 2. This finishes the proof of Theorem 1.1.

2 Preliminaries
In our estimates we will often use the notation f . g which means that there
exists some absolute constant C for which f ≤ Cg. If the constant C depends
on some parameter t, we will write f .t g. Notation f ≈ g will stand for
f . g . f, and f ≈t g is defined analogously. For simplicity, in our estimates
we will suppress the dependence on dimension n and on absolute constants
λ, Λ (see (2.7)).

2.1 Heisenberg group
In this paper we consider the n-th Heisenberg group with exponential coor-
dinates (see [CDPT07] or [Fäs19] for a swift introduction to the Heisenberg
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group in a context close to ours). In practice, we will denote a point p ∈ Hn as
(z, t) ∈ R2n × R, and z = (x1, ..., xn, y1, ..., yn). In these coordinates the group
law in Hn takes the form

p · q =
z + z′, t+ t′ + 1

2

n∑
i=1

(xiy′i − yix′i)
 ,

where p = (z, t) and q = (z′, t′). Note that the group operation is not
commutative. The identity element is the origin (0, 0) and the inverse is given by
p−1 = (−z,−t). We make Hn into a metric space by setting d(p, q) := ‖q−1 ·p‖H,
where

‖p‖4
H := |z|4 + 16t2, (2.1)

and |z| denotes the Euclidean norm of z ∈ R2n.
Note that ‖ · ‖H is 1-homogeneous with respect to the anisotropic dilation

p 7→ λp = (λz, λ2t), λ > 0. The metric d is sometimes called the Korányi
metric.

Given p ∈ Hn and r > 0 we set

B(p, r) =
{
q | d(p, q) ≤ r

}
, U(p, r) =

{
q | d(p, q) < r

}
.

For α > 0 we will write Hα to denote the usual α-dimensional Hausdorff
measure with respect to metric d. For A ⊂ Hn we set dimH(A) to be the
Hausdorff dimension of A.

It follows easily from the definition of the Korányi metric that for all p ∈ Hn

and r > 0 we have

H2n+2(B(p, r)) = H2n+2(B(0, 1)) r2n+2. (2.2)

Thus, even though the topological dimension of Hn is 2n+ 1, the Hausdorff
dimension of Hn is equal to 2n+ 2. For the sake of brevity we set D := 2n+ 2.
Usually one denotes the Hausdorff dimension of Hn by Q, but we have decided
to save that letter for cubes; hence the non-standard notation.

It is also easy to check that if L2n+1 denotes the usual Lebesgue measure
on R2n+1 ' Hn, then we have a constant C > 0 such that

L2n+1 = CHD. (2.3)

2.2 Heisenberg Riesz transform
Recall that, for a function u : Hn → R, the horizontal gradient of u is given by

∇Hu := (X1u, ..., Xnu, Y1u, ..., Ynu) ,

where the vector fields X1, . . . , Xn, Y1, . . . , Yn and ∂
∂t

represent the left invariant
translates of the canonical basis at the identity. In particular,X1, . . . , Xn, Y1, . . . , Yn
span the horizontal distribution in Hn.
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The Heisenberg sublaplacian ∆H is given by ∑n
i=1X

2
i + Y 2

i , and its funda-
mental solution is

G(p) := cn‖p‖2−D
H .

The (D − 1)-dimensional Riesz kernel in Hn, first considered in [CM12], is
given by K(p) = ∇HG(p). The Riesz transform is formally defined as

Rµf(p) =
∫
Hn
K(q−1 · p)f(q) dµ(q).

Since it is not clear whether the integral above converges, one considers the
truncated Riesz transform given by the formula

Rµ,δf(p) =
∫
Hn\B(p,δ)

K(q−1 · p)f(q) dµ(q),

for δ > 0. We say that Rµ is bounded on L2(µ) if the truncated operators Rµ,δ

are bounded on L2(µ) uniformly in δ > 0.
One can easily check that the Riesz kernel is actually equal to

K(z, t) = n

(
−2x1|z|2 + 8y1t

‖(z, t)‖2n+4
H

, · · · , −2xn|z|2 + 8ynt
‖(z, t)‖2n+4

H
,

−2y1|z|2 − 8x1t

‖(z, t)‖2n+4
H

, · · · , −2yn|z|2 − 8xnt
‖(z, t)‖2n+4

H

)
.

Hence,

|K(z, t)|2 = n2 4|z|2
(|z|4 + 16t2)n+1 . (2.4)

This implies the curious fact that |K(z, t)| ≤ C whenever

|z| ≤ 16|t|n+1, (2.5)

which is a ‘paraboloidal’ double cone around t-axis with vertex at the origin.
This fact will play a key role in the subsequent analysis.

Chousionis and Mattila showed in [CM12, Proposition 3.11] that the Riesz
kernel is a standard kernel. In particular, it satisfies the following continuity
property: whenever q1, q2 6= p ∈ Hn, we have

|K(p−1 · q1)−K(p−1 · q2)| . max
{
d(q1, q2)
d(p, q1)D ,

d(q1, q2)
d(p, q2)D

}
.

Taking p = 0 and q1 = q̃1
−1 · p̃, q2 = q̃2

−1 · p̃, one gets immediately that for all
q̃1, q̃2 6= p̃ ∈ Hn

|K(q̃1
−1 · p̃)−K(q̃2

−1 · p̃)| . max
{
d(q̃1, q̃2)
d(p̃, q̃1)D ,

d(q̃1, q̃2)
d(p̃, q̃2)D

}
. (2.6)
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2.3 Dyadic cubes
We are going to use a family of decompositions of Hn into subsets that share
many properties with the standard dyadic cubes from Rn. The most classical
constructions of this kind are due to Chirst [Chr90] and David [Dav88a], but
for us it will be more convenient to use the “cubes” constructed in [KRS12].

First, note that given any ball B(p, 2r), one may use the 5r-covering lemma
and the property (2.2) to conclude that there exists some absolute constant
m such that B(p, 2r) may be covered by m balls B(pi, r), where {pi}mi=1 are
points in B(p, 2r). That is, Hn is geometrically doubling. In particular, we
can use [KRS12, Theorem 2.1, Remark 2.2].

Lemma 2.1 ([KRS12]). For all k ∈ Z there exists a family of subsets of Hn,
denoted by Dk, such that

(i) Hn = ⋃
Q∈Dk Q,

(ii) if k ≥ l, and Q ∈ Dk, P ∈ Dl, then either Q ∩ P = ∅ or Q ⊂ P ,

(iii) for every Q ∈ Dk there exists pQ ∈ Q such that

U(pQ, λ2−k) ⊂ Q ⊂ B(pQ,Λ2−k) (2.7)

for some absolute constants λ,Λ > 0.

Let us stress once more that we will not keep track of how various parameters
appearing in the proof depend on λ and Λ.

We set D = ⋃
kDk. For Q ∈ Dk we define the sidelength of Q as `(Q) = 2−k.

Clearly, by (2.2) and (2.7), for Q ∈ D we have

HD(Q) ≈ `(Q)D.

It follows that if Q ∈ D, then for k ≥ 0

#
{
P ∈ D | P ⊂ Q, `(P ) = 2−k`(Q)

}
≈ 2kD. (2.8)

Given a Radon measure µ and Q ∈ D we will denote the (D−1)-dimensional
density of µ in Q by

Θµ(Q) = µ(Q)
`(Q)D−1 .

For simplicity, we will suppress the dependence on µ and simply write Θ(Q).

3 Main lemma
Our main tool in the proof of Theorem 1.1 is the following lemma.
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Lemma 3.1. Let µ be a Radon measure on Hn such that Rµ is bounded on L2(µ)
with norm C1. There exist constants A = A(n) > 1, s = s(A, n) ∈ (0, 1/2)
and M = M(C1, n) > 100 such that the following holds.

Suppose that Q0 ∈ D satisfies Θ(Q0) ≥ M . Set N =
⌊
A−2 log(Θ(Q0))

⌋
.

Then, the family of high density cubes

HD(Q0) =
{
Q ∈ D | Q ⊂ Q0, `(Q) = 2−N`(Q0), Θ(Q) > 2 Θ(Q0)

}
satisfies ∑

Q∈HD(Q0)
µ(Q) ≥ (1−Θ(Q0)−s)µ(Q0). (3.1)

Moreover, we have ∑
Q∈HD(Q0)

`(Q)2 ≤ Cp `(Q0)2 (3.2)

for some dimensional constant Cp (“p” stands for “packing”).

The rest of this section is dedicated to proving the lemma above. For
brevity of notation, we set Θ0 = Θ(Q0). Observe that the integer N was
chosen in such a way that

2A2N ≈ Θ0 ≥M. (3.3)

In particular, we have N ≥ N0 for some very big N0 depending on M and A.
We split the proof of Lemma 3.1 into several steps.
First, note that by the pigeonhole principle and (2.8), we can find a cube

Q1 ∈ D with sidelength `(Q1) = 2−AN`(Q0) such that

µ(Q1) & µ(Q0)
2AND . (3.4)

Without loss of generality, by applying the appropriate translation, we can
assume that Q1 is centred at the origin, i.e. pQ1 = 0. Set

T :=
{

(z, t) ∈ Q0 | |z| ≤ 2−N`(Q0)
}

and for any κ > 0 set

Tκ :=
{

(z, t) ∈ Q0 | |z| ≤ κ 2−N`(Q0)
}
.

Observe that Q1 ⊂ T. In a sense, T can be seen as a tube with vertical axis
passing through pQ1 = 0. Note also that for any cube Q ⊂ Q0 \ T we have
dist(Q,Q1) & 2−N`(Q0).

We start by proving a few preliminary results.

Lemma 3.2. There are at most C(κ) 22N cubes of sidelength 2−N`(Q0) con-
tained in Tκ.
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Proof. Observe that since 0 ∈ Q0, and by (2.7) Q0 ⊂ B(pQ0 ,Λ`(Q0)), we have
Q0 ⊂ B(0, 2Λ`(Q0)). Hence,

Tκ ⊂
{

(z, t) ∈ B(0, 2Λ`(Q0)) | |z| ≤ κ 2−N`(Q0)
}

⊂
{

(z, t) ∈ Hn | |z| ≤ κ 2−N`(Q0), 16|t|2 ≤ (2Λ`(Q0))4
}

=: T̃κ.

By (2.3),

HD(T̃κ) = CL2n+1(T̃κ) ≈ (κ2−N`(Q0))2n(2Λ`(Q0))2 ≈κ 2−2nN`(Q0)D.

It follows that HD(Tκ) .κ 2−2nN`(Q0)D. On the other hand, recall that for
any cube Q with sidelength `(Q) = 2−N`(Q0) we have HD(Q) ≈ 2−ND`(Q0)D.
Since all such cubes are pairwise disjoint, we get

#
{
Q ∈ D | `(Q) = 2−N`(Q0), Q ⊂ Tκ

}
.

HD(Tκ)
2−ND`(Q0)D

.κ
2−2nN`(Q0)D

2−N(2n+2)`(Q0)D = 22N .

Lemma 3.3. Let Q ∈ D satisfy Q ⊂ Q0 \ T and `(Q) = `(Q1) = 2−AN`(Q0).
Then

µ(Q) ≤ µ(Q0)
Θ0 2AND .

Proof. Suppose the claim above is false. Then we can find a cube Q2 ⊂ Q0 \ T
with `(Q2) = 2−AN`(Q0) such that

µ(Q2) ≥ µ(Q0)
Θ0 2AND . (3.5)

Let 0 < δ < dist(Q1, Q2), let p ∈ Q2 be arbitrary, and consider

Rµ,δ(1Q1)(p) =
∫
Q1
K(q−1 · p) dµ(q).

By triangle inequality,

|Rµ,δ(1Q1)(p)| ≥
∣∣∣∣∣
∫
Q1
K(p) dµ(q)

∣∣∣∣∣−
∣∣∣∣∣
∫
Q1
K(q−1 · p)−K(p) dµ(q)

∣∣∣∣∣ . (3.6)

We estimate the first term as follows. Note that, since p ∈ Q2 and Q2 lies
outside T , then, writing p = (z, t) and using (2.4), we have

|K(p)|2 ≈ |z|2

(|z|4 + 16t2)n+1 &
|z|2

`(Q0)4(n+1) ≥ 2−2N`(Q0)−4n−2 = 2−2N`(Q0)−2D+2.
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And thus we also have∣∣∣∣∣
∫
Q1
K(p) dµ(q)

∣∣∣∣∣ =
∣∣K(p)

∣∣µ(Q1) & 2−N µ(Q1)
`(Q0)D−1 . (3.7)

For the second term in (3.6) we use the continuity of the kernel K (2.6)
and the fact that d(p, q) ≈ ‖p‖H ≥ 2−N`(Q0) (because p ∈ Q2 ⊂ Q0 \ T ):

|K(q−1 · p)−K(p)| . ‖q‖H
min(‖p‖H, d(p, q))D .

2−AN`(Q0)
(2−N`(Q0))D = 2−AN+DN

`(Q0)D−1 .

(3.8)

Taking A ≥ 2D we get∣∣∣∣∣
∫
Q1
K(q−1 · p)−K(p) dµ(q)

∣∣∣∣∣ . 2−AN/2 µ(Q1)
`(Q0)D−1 .

Together with (3.7) and (3.6), assuming N0 bigger than some absolute constant
(recall that N ≥ N0), this gives

|Rµ,δ(1Q1)(p)| & 2−N µ(Q1)
`(Q0)D−1

for all p ∈ Q2.
Now, we use the estimate above and the L2(µ) boundedness of Rµ to get

2−N µ(Q1)
`(Q0)D−1µ(Q2) 1

2 .
(∫
|Rµ,δ(1Q1)(p)|2 dµ(p)

) 1
2
≤ C1µ(Q1) 1

2 .

Our assumptions on Q1 (3.4) and Q2 (3.5) yield

C1 & 2−N µ(Q1) 1
2µ(Q2) 1

2

`(Q0)D−1 & 2−N µ(Q0)
2AND`(Q0)D−1 Θ−1/2

0 = 2−AND−NΘ1/2
0

(3.3)
≈ 2−AND−N 2A2N/2.

Taking A ≥ 5D we can bound the last term from below in the following way:

2−AND−N+A2N/2 ≥ 2A2N/4
(3.3)
& M1/4.

Putting together the estimates above gives C1 &M1/4, which is a contradiction
for M = M(C1, n) big enough.

We immediately get the following cor.

Corollary 3.4. We have

µ(T2) ≥ (1−Θ−1
0 )µ(Q0). (3.9)
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Proof. Observe that if Q ∈ D satisfies `(Q) = `(Q1) = 2−AN`(Q0) and Q 6⊂ T2,
then we have Q ∩ T = ∅ (assuming A large enough with respect to Λ). It
follows that Q satisfies the assumptions of Lemma 3.3, and so

µ(Q) ≤ 2−ANDΘ−1
0 µ(Q0).

Summing over all such Q and using (2.8) yields

µ(Q0 \ T2) ≤ Θ−1
0 µ(Q0).

Recall that

HD(Q0) =
{
Q ∈ D | Q ⊂ Q0, `(Q) = 2−N`(Q0), Θ(Q) > 2Θ0

}
,

and that Λ is the absolute constant such that Q ⊂ B(pQ,Λ`(Q)). Without loss
of generality, we may assume Λ > 2.

We are ready to prove the first part of Lemma 3.1, the estimate (3.1).

Lemma 3.5. There exists s = s(A, n) ∈ (0, 1/2) such that∑
Q∈HD(Q0)

µ(Q) ≥ (1−Θ−s0 )µ(Q0). (3.10)

Proof. We will prove (3.10) by contradiction. Suppose that∑
Q∈HD(Q0)

µ(Q) < (1−Θ−s0 )µ(Q0). (3.11)

Set

LD(Q0) =
{
Q ∈ D | Q ⊂ T2Λ, `(Q) = 2−N`(Q0), Θ(Q) ≤ 2Θ0

}
.

It is easy to see that the cubes from HD(Q0) ∪ LD(Q0) cover T2. If we assume
Θ0 ≥ M > 100, and s < 1/2, then Θ−s0 /2 ≥ Θ−1

0 , and so by (3.9) and (3.11)
we get ∑

Q∈LD(Q0)
µ(Q) ≥ Θ−s0

2 µ(Q0). (3.12)

On the other hand, recall from Lemma 3.2 that there are at most C22N

cubes of sidelength 2−N`(Q0) contained in T2Λ, where C = C(Λ, n). Moreover,
for any Q ∈ LD(Q0) we have

µ(Q) ≤ 2Θ0`(Q)D−1 = 2µ(Q0) `(Q)D−1

`(Q0)D−1 = 2−N(D−1)+1µ(Q0).

In consequence, ∑
Q∈LD(Q0)

µ(Q) ≤ C22N2−N(D−1)+1µ(Q0).
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This contradicts (3.12) because

C 2−ND+3N+1 = 2C (2−A2N)(−D+3)A−2 (3.3)
≤ C̃(n)Θ(−D+3)A−2

0 ≤ Θ−s0
2 ,

choosing s = s(A, n) small enough.

We move on to the second part of Lemma 3.1, i.e. the packing estimate
(3.2).

Lemma 3.6. We have ⋃
Q∈HD(Q0)

Q ⊂ T2Λ. (3.13)

In consequence, ∑
Q∈HD(Q0)

`(Q)2 . `(Q0)2. (3.14)

Proof. We will prove that for Q ∈ HD(Q0) we have Q ∩ T2 6= ∅. Then, since
`(Q) = 2−N`(Q0), it follows easily from (2.7) that indeed Q ⊂ TΛ+2(Q0) ⊂
T2Λ(Q0).

We argue by contradiction. Suppose that Q ∈ HD(Q0) and Q ∩ T2 = ∅.
Consider the cubes {Pi}i∈I with `(Pi) = 2−AN`(Q0) = 2−(A−1)N`(Q) and
Pi ⊂ Q. Then, Q = ⋃

i Pi, for all i ∈ I we have Pi∩T2 = ∅, and #I ≈ 2(A−1)ND

by (2.8).
We use Lemma 3.3 to conclude that for all i ∈ I

µ(Pi) ≤
µ(Q0)

Θ0 2AND .

Summing over i ∈ I yields

µ(Q) =
∑
i∈I

µ(Pi) ≤ #I · µ(Q0)
Θ0 2AND ≈ 2(A−1)ND µ(Q0)

Θ0 2AND = µ(Q0)
Θ0 2ND ,

so that

Θ(Q) = µ(Q)
(2−N`(Q0))D−1 .

µ(Q0)
Θ0 2ND ·

1
2−N(D−1)`(Q0)D−1 = Θ0

Θ0 2N = 2−N ≤ 1.

But this contradicts the assumption Q ∈ HD(Q0):

Θ(Q) ≥ 2Θ0 ≥ 2M > 1,

and so the proof of (3.13) is finished.
Concerning (3.14), note that by (3.13) and Lemma 3.2 we have

#HD(Q0) . 22N . (3.15)

Hence, ∑
Q∈HD(Q0)

`(Q)2 = `(Q0)2 2−2N ∑
Q∈HD(Q0)

1 . `(Q0)2.
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4 Iteration argument
To complete the proof of Theorem 1.1, we assume that the measure µ does
not satisfy the polynomial growth condition (1.1). Then we will use Lemma
3.1 countably many times to construct a set Z with positive µ-measure and
with Hausdorff dimension at most 2.

Suppose that there exists a ball B(x, r) with µ(B(x, r)) ≥ C2r
2n+1; if C2 is

big enough, we can find a cube Q0 ∈ D, Q ⊂ B(x, r) such that

Θ(Q0) ≥M,

where M is the constant from Lemma 3.1.
Let A > 1 be as in Lemma 3.1. Following the notation of Lemma 3.1, for

an arbitrary cube Q ∈ D with Θ(Q) ≥M , set

N(Q) :=
⌊
A−2 log(Θ(Q))

⌋
and

HD(Q) :=
{
P ∈ D |P ⊂ Q, `(P ) = 2−N(Q)`(Q), Θ(P ) > 2Θ(Q)

}
.

Put Z0 := Q0, HD0 := {Q0}, HD1 := HD(Q0), and Z1 := ⋃
Q∈HD1 Q. Proceed-

ing inductively, for all j ≥ 2 we define

HDj :=
⋃

Q∈HDj−1

HD(Q),

Zj :=
⋃

Q∈HDj
Q.

Note that for each j the cubes in HDj form a disjoint family. Moreover, {Zj}j≥0
form a decreasing sequence of sets, that is Zj+1 ⊂ Zj. Define

Z :=
⋂
j≥0

Zj.

Lemma 4.1. We have
µ(Z) &M,s µ(Q0).

Proof. Observe that for Q ∈ HDj we have

Θ(Q) ≥ 2jΘ(Q0) ≥ 2jM. (4.1)

In particular, Θ(Q) ≥ M and so we may apply Lemma 3.1 to Q. It follows
that for any j ≥ 0 we have

µ(Zj+1) =
∑

Q∈HDj+1

µ(Q) =
∑

Q∈HDj

∑
P∈HD(Q)

µ(P )
(3.1)
≥

∑
Q∈HDj

(1−Θ(Q)−s)µ(Q)

(4.1)
≥

∑
Q∈HDj

(1− 2−jsM−s)µ(Q) = (1− 2−jsM−s)µ(Zj).
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Using this estimate (j + 1) times we arrive at

µ(Zj+1) ≥
j∏
i=0

(1− 2−isM−s)µ(Q0). (4.2)

Since Zj form a sequence of decreasing sets, we get by the continuity of measure

µ(Z) = lim
j→∞

µ(Zj) ≥
∞∏
i=0

(1− 2−isM−s)µ(Q0) = C(s,M)µ(Q0),

where C(s,M) is positive and finite because ∑∞i=0 2−is <∞.

Lemma 4.2. We have
dimH(Z) ≤ 2.

Proof. Recall that N(Q) =
⌊
A−2 log(Θ(Q))

⌋
. It follows from (4.1) that for

Q ∈ HDj we have N(Q) ≥ C3jA
−2 for some absolute constant C3 > 0. Thus,

for Q ∈ HDj and P ∈ HD(Q)

`(P ) = 2−N(Q)`(Q) ≤ 2−C3jA−2
`(Q).

Using this observation j times we get that for P ∈ HDj+1

`(P ) ≤ 2−C4j(j+1)A−2
`(Q0),

where C4 = C3/2. Hence, the cubes from HDj form coverings of Z with
decreasing diameters, well suited for estimating the Hausdorff measure of Z.

Let 0 < ε < 1, 0 < δ < 1 be small. Let j ≥ 0 be so big that for Q ∈ HDj

we have diam(Q) ≤ Λ`(Q) ≤ δ. Then,

H2+ε
δ (Z) ≤ Λ2+ε ∑

Q∈HDj
`(Q)2+ε ≤ Λ2+ε(2−C4j(j−1)A−2

`(Q0))ε
∑

Q∈HDj
`(Q)2.

(4.3)
It follows by (3.2) that∑

Q∈HDj
`(Q)2 =

∑
P∈HDj−1

∑
Q∈HD(P )

`(Q)2 ≤ Cp
∑

P∈HDj−1

`(P )2.

Using the estimate above j times, and putting it together with (4.3) we arrive
at

H2+ε
δ (Z) ≤ Λ2+ε(Cp)j 2−εC4j(j−1)A−2

`(Q0)2+ε.

The right hand side above converges to 0 as j → ∞ (just note that the
exponent at Cp is linear in j while the exponent at 2 is quadratic in j). Hence,
H2+ε
δ (Z) = 0. Letting δ → 0 we get H2+ε(Z) = 0. Since this is true for

arbitrarily small ε > 0, it follows that

dimH(Z) = inf{t ≥ 0 : Ht(Z) = 0} ≤ 2.
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Proof of Theorem 1.1. We have found a set Z ⊂ Hn of dimension smaller than
or equal to 2 (Lemma 4.2) but which nevertheless has positive µ-measure
(Lemma 4.1). This contradicts the assumptions of Theorem 1.1. Thus, there
exists C2 = C2(n,C1) such that µ(B(x, r)) ≤ C2r

2n+1 for all x ∈ Hn and
r > 0.
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