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Abstract

This thesis is dedicated to the study of rectifiable measures, quan-
titative rectifiability, and to a lesser degree, the boundedness of sin-
gular integral operators defined with respect to measures with poly-
nomial growth. It consists of seven chapters. The first chapter is a
general introduction to the area of quantitative rectifiability, and the
second contains various preliminary lemmas used throughout the the-
sis. The remaining five chapters are largely self-contained, as they
are based on articles written by the author during his PhD studies:
[Dab19b, Dab19a, Dab20a, Dab20b, AD20, DV20] (the last two were
co-authored by Jonas Azzam and Michele Villa, respectively).

In Chapters III and IV we show that a Radon measure p is n-
rectifiable if and only if

1 dr
/ aua(r,r)? — < oo for prae. xR
0 r

where o 2(x,r) are coefficients quantifying local flatness of p using
the Wasserstein distance W5. This provides an as counterpart to
recent results of Azzam-Tolsa and Azzam-Tolsa-Toro, where similar
characterizations where shown in terms of other coefficients, the so-called
B2 and « numbers. Contrary to their results, the ay characterization
requires no additional assumptions on densities or doubling properties
of .

In Chapter V we introduce conical energies, which can be seen as a
quantification of the notion of approximate tangent plane. We then use
these energies to prove several results: a characterization of rectifiable
measures, a characterization of sets containing big pieces of Lipschitz
graps, and finally, a sufficient condition for boundedness of SIOs valid
for measures with polynomial growth.

In Chapter VI we use a square function involving a numbers to
characterize LP functions defined on uniformly rectifiable sets. This
can be seen as an extension of Tolsa’s characterization of uniformly
rectifiable sets in terms of the same square function.

Finally, in Chapter VII we prove a Heisenberg group counterpart
of a lemma due to Guy David which asserts that non-atomic measures
that define L? bounded Riesz transform have polynomial growth.
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Introduction |

The main goal of this introduction is to sketch out the history of the quantitative
rectifiability area, as well as provide background and motivation for results
obtained in the thesis. A brief overview of the new results is given in Section 8.

1 Rectifiability

At its very core, this thesis is dedicated to the study of rectifiable sets and
measures.

Definition 1.1. Let 1 < n < d. We say that a Borel set E C R? is n-rectifiable
if there exists a countable number of Lipschitz maps g; : R® — R? such that

10 (8 () =0,

where H" denotes the n-dimensional Hausdorff measure.

More generally, we say that a Radon measure i on R? is n-rectifiable if
p < H™ and there exists an n-rectifiable set F C R? such that u(R?\ E) = 0.
Throughout most of the thesis we will be working with n-dimensional objects
in R?, and so we will usually write “rectifiable” instead of “n-rectifiable”.

The polar opposite of rectifiable sets are purely unrectifiable sets.

Definition 1.2. We say that a Borel set F' C R? is purely n-unrectifiable if
for any Lipschitz map ¢ : R — R? we have

H™(F N g(R")) = 0.

The history of these objects goes back almost a hundred years. The
foundation stone for the study of rectifiability was laid by Besicovitch in his

1
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Fl F2 F3 F4

F1GURE 1.1: The first four steps of the construction of the four-corner Cantor
set

1928 paper “On the fundamental geometrical properties of linearly measurable
plane sets of points” [Bes28]. In the article, Besicovitch defined 1-rectifiable and
purely l-unrectifiable sets (in his terminology, “regular” and “irregular” sets)
and proved their characterizations using densities and approximate tangents.
A new discipline was born, one that would eventually come to be known as
geometric measure theory.

One could think of rectifiable sets as a very weak measure-theoretic coun-
terpart of C''-manifolds. Compared to smooth surfaces they are very rough,
and they may contain complex singularities. However, they still possess some
crucial regularity properties that make them very useful.

Things go south once we lose rectifiability. It is purely unrectifiable sets that
are the villains of this story. They exhibit numerous pathological behaviours:
for example, suppose that F' is a purely unrectifiable set with H"(F) > 0.
Then, for almost all n-dimensional planes V', the projection of F' onto V is
H"-null. This is truly baffling, and at first rather hard to imagine, since the
set we started with had positive H" measure! To get an idea of how this can
be, let us take a look at the most classical example of a purely 1-unrectifiable
set, the four-corner Cantor set in the plane.

Example 1.3. The four-corner Cantor set F' C R? is defined as F' := ;> Fj,
where the sets F}, are defined as follows (see also Figure I.1). We start with a
set F} consisting of four squares, all of sidelength 47!, located in the corners
of a unit square. In the next step, we replace each of the squares by a copy of
F}, rescaled by a factor of 471, so that we get a set I, consisting of 4% squares
of sidelength 472. In general, to construct Fj,; we replace all the 4% squares
comprising F}, by copies of F}, rescaled by a factor of 47*.

It is relatively easy to show that 0 < H!'(F) < oo, see e.g. [Toll4, p. 35] *.
At the same time, it can be shown that for almost all lines V', the projection
of F' onto V has zero length. See [Mat15, Chapter 10] for two different proofs
of this fact. It then follows by the Besicovitch-Federer projection theorem (see
Theorem 2.5) that F' is purely l-unrectifiable.

*With some more effort, one may actually prove that H!(F) = v/2, see [XZ05].
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The example above gives us a good idea of how purely unrectifiable sets
look. They are very non-flat, very sparse, like a mist. Now, it is easy to show
that for any Borel set £ C R? with 0 < H"(FE) < oo one can decompose it
into two parts E, and E,, such that £ = F, U E,,, E, is rectifiable, and E,,
is purely unrectifiable. For the proof see [Mat95, Theorem 15.6]. In other
words, each set as above has a “nice”, rectifiable part, and an “ugly”, purely
unrectifiable part. It is then important to be able to distinguish between these
two parts, or to verify whether the entire set is rectifiable or purely unrectifiable.
To do that, many criteria have been developed throughout the years. Before
we review some of them, let us say a few words about why rectifiable sets are
useful.

There are at least two big, overarching motivations to study rectifiability.
The first one comes from the calculus of variations. Suppose we wish to
minimize a functional F(¥) among a class of competitors ¥ € C' satisfying
some additional constraints. For example, in the classical Plateau problem
F would be the area, while C would be a class of surfaces with a given fixed
boundary. Of course, one has to be more precise when defining C, and it
turns out that for F' as above (but also for many other important geometric
functionals) the class of smooth manifolds is too restrictive. There are two
main reasons: firstly, the solutions to some problems may contain singularities.
Secondly, in calculus of variations one often wishes to pass to the limit, in
which case it is desirable for the class of objects we are working with to have
good compactness properties. Note that both reasons are reminiscent of the
motivation for introducing Sobolev functions when studying PDEs!

An incredibly rich theory has been developed to propose alternative classes
of “generalised surfaces”, better suited for variational problems. Perhaps
the most important are the sets of finite perimeter, rectifiable currents, and
rectifiable varifolds. All three classes are closely connected to rectifiable sets
discussed before, essentially using them as building blocks. For an introduction
to geometric measure theory oriented at calculus of variations see for example
[Mor16], [Mag12], or [Sim14].

The second big motivation for the study of rectifiability comes from its
connection to singular integral operators (often abbreviated as “SIOs”). This
connection will be explored more in depth later on, for now let us just say that,
due to omnipresence and importance of SIOs, rectifiability also plays a role in
the study of removable sets for bounded analytic function, LP solvability of
the Dirichlet problem in rough domains, and the study of harmonic measure.

2 Classical rectifiability criteria

The key intuition necessary to understand rectifiability is the following: n-
rectifiable sets are precisely those that resemble n-dimensional planes as you
zoom in on them. Similarly, n-rectifiable measures should behave like (a
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constant times) n-dimensional Lebesgue measure on R™, on infinitesimal scales.
These flatness properties are made more precise by the four classical char-
acterizations of rectifiability: in terms of densities, approximate tangents,
projections, and tangent measures. We will briefly overview them below, for a
more in-depth discussion and proofs we refer the reader to [Mat95, Chapters
15-18].

Densities

Definition 2.1. Given a Radon measure i on R? and = € supp y, the lower
and upper n-dimensional densities of p at x are defined as
(B(z,7))

B
Olp, 2) = lim fnf : and  ©™"(u,z) = limsup M

T r—0 rr

If at some point = the upper and lower densities are equal, we say that the
n-dimensional density exists at x, and we denote it by ©"(u,x) := O%(u, z) =
©"*(p, z). In the special case p = H"|,, we will write ©"(E, z) instead of
O™ (u, z), and similarly for upper and lower densities.

The idea behind densities is the following: we are comparing the p-measure
of infinitesimal balls with the Lebesgue measure of n-dimensional balls of
the same radius. If at many points the two quantities agree (that is, the
n-dimensional density of u exists), then one may hope that p behaves like
Lebesgue measure on infinitesimal scales, and so it is rectifiable. This is indeed
the case.

Theorem 2.2. Let p be a finite Radon measure. Then, u is n-rectifiable if
and only if for u-a.e. x € supp p the density O"(u, x) exists, and is positive
and finite.

First result of this type was obtained by Besicovitch in [Bes38], in the
case n =1, d =2, and p = H"|,. Morse and Randolph [MR44] obtained the
result for general measures p, still under the assumption n = 1, d = 2. The
case n = 1 and arbitrary d is due to Moore [Moo50]. The theorem in its full
generality remained an open problem for many years. It was finally solved by
Preiss in his famous paper [Pre87]. An accessible version of Preiss’ proof can
also be found in the lecture notes of De Lellis [DLO0S].

Approximate tangent planes

Let V' € G(d,m), where G(d,m) denotes the Grassmanian space of m-
dimensional linear subspaces of R? (we will always consider either m = n
or m =d—n). Given a point x € R? and a € (0,1), we define

K(z,V,a) ={y € R* : dist(y,V +z) < ajz —y|}.
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That is, K(x,V,«) is an open cone centered at x, with direction V', and
aperture a.. For r > 0 we define also the truncated cone

K(x,V,a,r) = K(z,V,a) 0 B(z,7),

Recall that an n-plane W € G(d, n) is a tangent plane to a set E if for every
a € (0,1) there exists some r = r(a) > 0 such that EN K(x, W+ a,r) = 2.
While this notion is very useful if E is a smooth manifold, in the context of
general rectifiable sets it makes more sense to consider a relaxed definition.

Definition 2.3. We say that an n-plane W € G(d,n) is an approzimate
tangent plane to a Radon measure p at x € supp p if ©™*(u, z) > 0 and for
every o € (0,1)

r—0 rn

~0. (2.1)

Clearly, the existence of approximate tangents is a form of local flatness.
Besicovitch used this property to characterize rectifiability in the case of
n =1, d = 2 [Bes28|, while the remaining cases are due to Federer [Fed47].

Theorem 2.4. Let j1 be finite Radon measure on R? satisfying 0 < O™*(u, z) <
oo for p-a.e. x € RE. Then, the following are equivalent:

(i) w is n-rectifiable,
(ii) for p-a.e. x € R? there is a unique approzimate tangent plane to p at x,

(iii) for p-a.e. x € RY there is W, € G(d,n) and o, € (0,1) such that

1
lim sup 5 (x’% ) e ) O (), (2.2)
r—0

where €(n) is a small dimensional constant.

Projections

Given an n-dimensional plane V, we denote by 7 : R? — V the orthogonal
projection onto V. Consider some n-plane W, and a set A C W with 0 <
H"(A) < oo. It is trivial to see that for such a perfectly flat set we have
H™(my (A)) > 0 for y4,-a.e. V € G(d,n), where 74, denotes the Haar measure
on G(d,n). Tt is easy to see that the same is true also for subsets of C*
surfaces, or subsets of Lipschitz graphs. The celebrated Besicovitch-Federer
projections theorem asserts that this property characterizes rectifiable sets of
finite measure.

Theorem 2.5. Let E C R? be a Borel set satisfying 0 < H"(E) < oo. Then,
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e FE is n-rectifiable if and only if every Borel subset A C E with H™(A) > 0
satisfies

H"(my(A)) >0 for van-a.e. V€ G(d,n).
o FE is purely n-unrectifiable if and only if

H"(my(A)) =0 for van-a.e. V€ G(d,n).

The case n = 1,d = 2 was shown by Besicovitch [Bes39], and the general
theorem is due to Federer [Fed47].

Tangent measures

Perhaps the most literal way of understanding the expression “asymptotically
flat” is the one given by tangent measures.

Definition 2.6. Let ; be a Radon measure on R%. Given x € R? and r > 0
define T, . (y) = (y — x)/r. Denote by (1}, ).p the image measure of p by T, ,,
so that

(Tpp)upt(A) = p(rA+2), AcCRL

We will say that a non-zero Radon measure v is a tangent measure to y at x if
there exists sequences r, — 0 and ¢ of positive numbers such that

Ck<Taz,rk )>s<,u —w_> v,

where the convergence is understood in the sense of weak convergence of
measures. The set of all tangent measures as above will be denoted by
Tan(u, ).

The idea is the following: the maps 7T}, zoom in on the measure around
the point z, so that when passing to the limit (along some subsequence 7y,
and with ¢, acting as normalizing factors) we get information about the local
behaviour of p around x. This notion of tangent measures was introduced
by Preiss in [Pre87], where he also proved the following characterization of
rectifiability.

Theorem 2.7. Suppose that i is a Radon measure satisfying 0 < O%(u, x) <
O™*(u,x) < oo for p-a.e. x. Then p is n-rectifiable if and only if for p-a.e. x
all v € Tan(p, z) are of the form v = cH™|,, for some ¢ >0 and V € G(d, n).

The four characterizations of rectifiability from above are nowadays con-
sidered classical. Let us move on to more recent results, and the field of
quantitative rectifiability.
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3 The Analyst’s Traveling Salesman
Theorem

Recall that the classical Traveling Salesman Problem consists of finding the
shortest path connecting a finite number of points in the plane. An analyst’s
variant of the problem would be the following: given some set £ C R2, not
necessarily finite, what is the shortest curve containing E? Here, by curve we
mean a Lipschitz image of an interval. Obviously, if H!(E) = oo there can be
no finite length curve containing £, and so the second question is: what are
the conditions ensuring that such a curve exists? In the language of GMT, this
can be recast as a problem of finding a characterization of 1-rectifiable sets of
finite length, along with some quantitative length estimates. This problem was
solved by Peter Jones in [Jon90]. Along the way Jones laid the first building
blocks for the quantitative rectifiability area. To state his result, we need to
introduce his famous  numers.

Definition 3.1. Let £ C R? be a Borel set, z € R? and r > 0. If B(z,r)NE #

& we define q
ist(y, L
BEc(x,7) =1inf  sup Ly,)’
L yeEENB(z,r) r
where the infimum is taken over all lines L intersecting B(x,r). For B(z,r)N
E = @ we set fpoo(x,7) =0. If B= B(x,r), we will also write g «(B) 1=

BE.co(z,T).

In other words, Bg o (x,7) - 7 is the radius of the thinnest tube containing
E N B(xz,r), see Figure 1.2. Hence, fg (2, ) measures how flat the set £ is
inside the ball B(z,r). The normalization by r ensures that 5 numbers are
scale invariant: if £’ = (E — x)/r, then we have Bg o (2,7) = Br00(0,1).

Let D denote the standard dyadic grid on R?) and for @ € D let By be
the ball with the same center as @ and of radius 5/(Q), where ¢(Q) is the
sidelength of (). Define

B(E) = 3. Brec(Ba) Q).

QeD

Summing over all dyadic cubes gives us information about flatness of E at
all scales and locations. The main result of [Jon90] is the following Analyst’s
Traveling Salesman Theorem (abbreviated as TST).

Theorem 3.2 (TST). Let E C R? be Borel. If f*(E) < oo, then there exists
a curve I' such that E C T", and

HY(T) < diam(E) + 5%(E).
Conversely, if T is a curve satisfying H'(T') < oo, then
p*I) S HU(D). (3.1)
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ﬁE‘,oo(xa T) T

— —-—

B(z,r)

FIGURE 1.2: The definition of Bg o (2, 7).

Two remarks are in order.

Remark 3.3. Note that the curve I' given by the theorem is, up to a constant,
optimal, in the sense that for any curve I'y containing £ we have

(3.1)
diam(E) + B*(E) < diam(E) + (o) < HYT).
Hence, if T is a shortest curve containing E, we have H!(T') =~ H(Ty).

Remark 3.4. Observe that if F is a bounded subset of a line, then 5%(E) = 0,
and the shortest curve containing F is a segment of length diam(F). Hence, the
sum %(E) captures the information about the curvature of set £. The reason
for using squares of 3 numbers in $%(E) is, roughly speaking, Pythagorean
theorem. To see that, suppose E C R? is the union of segments [(—1,0), (0, ¢)]
and [(0,¢), (1,0)] for some small € > 0. By Pythagorean theorem,

HYE) =2V1+e2 =2+ + o(e?).

Note that g «(0,2) = €/2, and so H'(F) < diam(F) + 605 0 (0, 2)?, assuming
e is small enough. As we see, compared to the line segment [(—1,0), (1,0)],
the increase in length related to the curvature at a given scale is controlled by
the sum of squares of 8 numbers of that same scale.

Theorem 3.2 has found many application, for example in [BJ90], [BJ94],
[BJO7], see also [Jon91]. It is natural then that much effort has been put into
generalizing it. By “generalizing” one might understand two things: either
proving a similar statement about curves in some metric space X, or considering
coverings by higher dimensional objects instead of curves. A lot of progress has
been made in both directions. In [Oki92] Okikiolu proved TST for curves in R,
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and in [Sch07b] Schul further generalized it to the Hilbert space setting. Some
results are also available for the Heisenberg group [FSSC06, LS16a, L.S16b],
Carnot groups [CLZ19], graph inverse limits spaces [DS17], ¢, spaces [BM20],
and general metric spaces [Hah05, Sch07a, DS19]. In the other direction, i.e.
finding a TST for higher dimensional sets, there are results related to covering
sets by Holder curves [BNV19] or by so-called topologically stable surfaces, see
[AS18, AV19, Vill9a, Hyd20].

The original motivation for the Traveling Salesman Theorem came from
the study of the Cauchy transform on Lipschitz curves, see [Jon90, p. 4].
This connection between geometry of sets and singular integral operators
(abbreviated as SIOs) has been explored in great depth by Guy David and
Stephen Semmes in their theory of uniform rectifiability.

4 Singular integral operators

To motivate the definition of uniform rectifiability, let us first make a brief
detour into the world of singular integral operators. As the name suggests, they
are operators given by integration against a kernel possessing some singularity:.
The most archetypical example is the Hilbert transform on R, formally defined

as
1
_ 1 /) dy.
TJRT —Y

H f(x)

The higher dimensional analogue is the (vector valued) n-dimensional Riesz
transform
Rf) = [ i () dy.
B o =yl

Observe that the kernels above are not integrable (even locally), and so the
definitions as stated make little sense, even for very nice functions. There
are several standard ways of dealing with this problem, either by considering
principal values, or by using truncated operators (see Definition 4.1). In any
case, due to the antisymmetry of kernels, a lot of cancellations take place. In
consequence, the modified definitions make sense for smooth and compactly
supported f, and the operators can be extended to bounded operators on
L? for 1 < p < oo. Operators of this type naturally arise in many different
contexts, including the study of convergence of Fourier series, partial differential
equations, and others. For the introduction to the singular integral operators
theory in this standard setting we refer the reader to [Ste70], [Duo01] or
[Gralda, Graldb].

Observe that in the examples above the singularity of the kernel is of
the same order as the dimension of the space. One could say that they are
n-dimensional SIOs defined with respect to the Lebesgue measure on R"™. In
the sequel we will be concerned with the study of n-dimensional SIOs in
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d-dimensional spaces defined with respect to more general measures (think of
‘H™ restricted to n-dimensional sets). Let us fix some notation.

We are intersted in n-dimensional singular integral operators of convolution
type, with odd C? kernels k : R?\ {0} — R satisfying for some constant Cj > 0

Vik(a)] <

— ’x‘nJrj

forx #0 and j e {0,1,2}. (4.1)

We will denote the class of all such kernels by K"(R?).

Definition 4.1. Given a kernel £ € K*(R%), a constant £ > 0, and a (possibly
complex) Radon measure v, we set

Tov(x) = /|xy|>€ k(y — ) dv(y), x€R%

For a fixed positive Radon measure p and all functions f € L}, (1) we define

T,u,ef(x) = Ts(f:u) (l‘)

We say that T}, is bounded in L?(p) if all T}, . are bounded in L?(p), uniformly
in e > 0. Let M(R?) denote the space of all finite real Borel measures on R?.
When endowed with total variation norm |-||7v, this is a Banach space. We
say that T is bounded from M (R?) to L1*°(u) if there exists a constant C
such that for all v € M(R%) and all A > 0

Clvlrv
pl{r €RY ¢ Tv(a)] > A}) < ATV,
uniformly in £ > 0.
To motivate our interest in SIOs defined with respect to general measures,
we give two applications.

Removable sets

Other than Hilbert transform and Riesz transform, perhaps the most classical
SIO is the Cauchy transform. Given a finite complex valued Radon measure p
on C, and z ¢ supp i we define

Cu(z) = [C dp(w)

w—z

The importance of Cauchy transform in complex analysis comes from the fact
that Cp defines an analytic function on C \ supp p. This fact made Cauchy
transform a perfect tool for the study of removable sets for bounded analytic
functions.

We say that a compact set £ C C is removable for bounded analytic
functions if for every open U D E and any bounded analytic function f :
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U\ E — C, f can be extended to an analytic function on U. The Painlevé
problem consists of finding geometric criteria for removability. It is not too
difficult to show that if #*(F) = 0, then E is removable. Conversely, if the
Hausdorft dimension of E is larger than 1, then E is not removable. The
case of 1-dimensional sets F with H'(FE) > 0 is much more delicate, and is
closely related to the so-called analytic capacity, introduced by Ahlfors [Ahl47].
After decades of collective effort from many mathematicians it was finally
settled by Mattila, Melnikov, Verdera [MMV96] and David [Dav98] that if we
additionally assume that H'(E) < oo, then E is removable if and only if F
is purely 1-unrectifiable. We refer the reader to books [Paj02] and [Tol14] for
the complete story and proofs of these beautiful results.

The results mentioned above rely deeply on identifying the measures p on
C such that the Cauchy transform with respect to u is bounded on L*(p), in
the sense that the truncated operators

Cuefl)= [ W

lw—z|>e W — 2

dpu(w) (4.2)

are bounded on L?(j1) uniformly in ¢ > 0. Without delving into the proofs of the
previous results, the connection between removability and Cauchy transform
becomes evident thanks to a theorem of Xavier Tolsa. In [Tol99] and [Tol03]
he showed that a set £/ C C is non-removable for bounded anaylytic functions
if and only if there exists a (non-atomic) measure p with supp u C E such
that C,, is bounded on L?(p) (in fact, he showed a quantitative version of this
result involving analytic capacity, see also [Toll4, Theorems 4.14, 6.1]). This is
essentially the only solution to the Painlevé problem available for 1-dimensional
sets with H(E) = occ.

Method of layer potentials

Suppose a domain £ C R""! is given, and we are interested in solving the
Laplace equation Au = 0 in €2, with either Dirichlet or Neumann L? boundary
condition on 9€). One of the ways to do it is by using the so-called method of
layer potentials. Without going into details, let us just say that it consists of
studying integral operators of the form

SH@)=C [ fly) M), € B\ 00

o0 |z —y[*~!

v(y) - (z —y) |
D =Ch —_ dH"(y), e R"\ 09,
f(z) b0 |z — g fy) dH"(y), « \
where f € LP(H"|,,) and v(y) denotes the inward unit normal of 9Q at y.
These operators are the so called single and double layer potentials, and their
kernels originate from the fundamental solution for the Laplace equation. An
elementary computation shows that the functions Sf and Df are harmonic

11
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in R?\ 992. Hence, they may be treated as candidates for the solutions of
the problem — Df is used in the Dirichlet problem, and Sf in the Neumann
problem. Of course, to solve the boundary value problem one needs to study
the behaviour of Df(z) and VSf(x) as x approaches 0f), which inevitably
leads to the study of n-dimensional singular integral operators defined with
respect to the surface measure on 0€2. For an introduction to the method of
layer potentials see [DK96], [Ken94], or [Vanl4].

In the case of domains with C1%regular boundaries, the scheme sketched
above can be implemented rather easily. In the case of C* domains, it was first
achieved in [FJR78]. A few years later a generalization to Lipschitz domains
was obtained [Ver84]. The method of layer potentials has also been applied to
a variety of other problems, including more general elliptic equation [HMT10],
the heat equation [FR79, Bro89, LM95, HL96, Wat97], the Stokes systems
[MMS09], or the sub-elliptic Kohn-Laplace equation [OV20]. All these results
rely on a careful analysis of certain singular integral operators, whose definition
depends on the problem.

With the hope that the two applications above were enough to stoke reader’s
curiosity and enthusiasm for the study of SIOs defined with respect to general
measures, the natural question that comes to mind is the following: what are
the measures p such that reasonable n-dimensional SIOs (say, with kernels in
K™(R%)) are bounded on L?(1)?

5 Uniform rectifiability

First, let us look at the Cauchy transform (4.2). In the case of u being the
arclength measure on a C* curve, the L?(p) boundedness of C,, can be easily
derived from the boundedness of Hilbert transform on R. The reason for that
is the following: C1“ curves can be very well approximated by lines, we have
uniform control over the errors made by the approximation, and the Cauchy
transform over a straight line is essentially the Hilbert transform. As it turns
out, this idea of approximating measures by lines (or planes) is crucial for the
understanding of singular integral operators with respect to general measures.
The question is, just how good the approximation has to be?

Contrary to the C** case, proving L? boundedness of Cauchy transform
over Lipschitz graphs is a delicate matter. It was first obtained by Calderén
in the case of graphs with small Lipschitz constants [Cal77], and the general
case was solved by Coifman, McIntosh and Meyer [CMMS&2]. Since then, many
other proofs have been found [Dav&4, Mur88, CJS89, Chr90, MV95]. In fact,
in [Dav84] David showed that the Cauchy transform is bounded on any curve
I satisfying

H (T N B(x,r)<Cr, z&T,r>0.
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He called such curves “regular”. A few years later it was shown that regular
curves provide just the right framework for the study of 1-dimensional SIOs.
To explain this, let us introduce more definitions.

Definition 5.1. We say that a Radon measure p on R? is n-Ahlfors-David
regular (n-ADR) if there exists some constant A > 0 such that for all x € supp p
and 0 < r < diam(supp p) we have

A7 < p(B(z, 7)) < Ar™.
We say that a Borel set E is n-ADR if the measure H"| is n-ADR.

It is easy to show (using e.g. [Mat95, Theorem 6.9]) that any n-ADR
measure u can be represented as p = gH"|,, where A™! < g(z) < A and F is
n-ADR. Hence, it usually does not make much difference whether one studies
ADR sets or ADR measures. The ADR property should be thought of as
“quantitative n-dimensionality”. Note that regular curves are 1-ADR.

The ADR condition alone cannot imply boundedness of Cauchy transform
(or SIOs in general). Note that the four-corner Cantor set F' from Example 1.3
is 1-ADR, but it has been known for a long time that Cauchy transform is not
L? bounded on F (this essentially follows from [Gar70], see also [Tol14, Section
4.7]). The reader may recall, however, that the set F' is purely l-unrectifiable.
Together with our earlier remarks on the kinds of sets for which the Cauchy
transform is bounded (Lipschitz graphs, regular curves), one could hope that
rectifiability together with ADR condition suffice for the boundedness of SIOs.
That is not the case. Observe that rectifiability, as defined in Definition 1.1,
is a qualitative condition, while the boundedness of SIOs is a quantitative
property. For this reason, one could construct a rectifiable, 1-ADR set E that
approximates the four-corner Cantor set arbitrarily well, and in consequence
the Cauchy transform would not be L? bounded on FE.

The appropriate quantitative notion of rectifiability has been defined and
studied by Guy David and Stephen Semmes in their monumental monographs
[DS91] and [DS93a].

Definition 5.2. Suppose £ C R? is n-ADR. We say that F is uniformly
n-rectifiable (abbreviated as UR) if there exist constants £ > 0 and L > 0

such that for every # € E and 0 < r < diam(FE) there exists a Lipchitz map
g : R" — R? with Lip(g) < L such that

H"(E N B(x,r)Ng(B"(0,7))) > kr",

where B"(0, ) is the n-dimensional ball in R". In other words, F is UR if and
only if every ball B centered at E contains a “big piece of Lipschitz image”
(BPLI).

"It was communicated to the author by Guy David that Ahlfors already called such
curves “regular” in the 30s.

13
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Analogously, we will say that p is uniformly n-rectifiable if p is n-ADR and
(RN E) = 0 for some UR set E.

This somewhat technical definition becomes much simpler in the case of
n = 1: uniformly 1-rectifiable sets are precisely 1-ADR subsets of regular
curves. Observe also that any UR set is rectifiable, but the converse is not
true.

David and Semmes proved in [DS91] the following fundamental result.

Theorem 5.3. Suppose E is n-ADR. Then, it is uniformly n-rectifiable if
and only if for all kernels k € K"(R%)* the singular integral operator Ty,
associated to k is bounded on L*(H"|,).

Thus, David and Semmes gave an almost complete answer to the problem
of characterizing measures for which the SIOs are L? bounded. They also
proved in [DS91] and [DS93a] a dazzling number of geometric and analytic
characterizations of UR sets; throughout the years the list of criteria for
uniform rectifiability has been further expanded by many authors, and to this
day it is an active area of research. Later on we will mention some of the
characterizations, but now let us make a few remarks concerning the sharpness
of the theorem above.

Remark 5.4. How restrictive is the ADR assumption in this context? Not
too much. Recall that the (truncated) n-dimensional Riesz transform R, is
given by
r—y
Ruef@)= [ o W) duty)

yloe |7 —

David has shown in [Dav91, Part III, Proposition 1.4] that if R, is bounded
on L*(p1) (in the sense of Definition 4.1), and p is atomless (all singletons have
zero p-measure), then p satisfies the so-called n-polynomial growth condition,
i.e. there exists some constant C' such that

w(B(z,r) <Cr*, xeRY r>0. (5.1)

In other words, if we disregard measures containing atoms, the upper bound
from the ADR condition is necessary for the boundedness of reasonable SIOs.

Concerning the lower bound from the ADR condition, it can be seen as a sort
of non-degeneracy condition. It ensures that the measure is n-dimensional in a
strong sense. If we consider a measure i that does not satisfy the lower bound,
the SIOs may still be bounded on L?(y), but it may be not too interesting.
That is for example the case for pu equal to Lebesgue measure on a compact
subset of R? — if n < d, then of course all SIOs with kernels in K"(R?) are

tOriginally David and Semmes assumed that kernels are C>°, with appropriate estimates
on the derivatives. The assumptions were relaxed to C?, as in the definition of K" (R%), by
Tolsa [Tol09).
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bounded on L?(y), but this is simply because the order of singularity is smaller
than dimension of u, and so the kernel is integrable.

However, there are interesting measures that are not ADR but that define
bounded SIOs. For example, certain probability measures on Cantor-type
sets, such as the one described in Section V.125. See also the discussion in
Subsection V.1.3 for available results related to L? boundedness of SIOs in
non-ADR setting.

Remark 5.5. One of the implications of Theorem 5.3 is the following: if all
SIOs with kernels in K"(R%) are bounded, and F is AD regular, then E is
UR. However, David and Semmes conjectured that it should be enough to
assume boundedness of a single (vectorial) SIO - the Riesz transform. The
David-Semmes conjecture is one of the most famous problems in the field, and
this far it has been shown to be true only for n = 1 by Mattila, Melnikov and
Verdera [MMV96] and for n = d — 1 by Nazarov, Tolsa and Volberg [NTV14a].

6 Quantifying flatness

In this section we finally introduce the whole menagerie of flatness quantifying
coefficients which play a central role in this thesis. Recall that in Section 3
we defined Jones’ 8 numbers that quantified local flatness of sets in a scale-
invariant way. In fact, even before proving the Traveling Salesman Theorem,
Jones showed the following.

Theorem 6.1 ([Jon89]). Suppose that I' C R? is a 1-dimensional Lipschitz
graph. Then, there exists C' > 0 such that for any z € I' and R > 0

/B(z,R) /oR Pr.o(,7)’ Cﬁnd}[llr(ﬂﬁ) < CR.

We will call an estimate as above a Carleson condition. Jones used the
theorem above in his proof of the L? boundedness of Cauchy integral over
Lipschitz graphs. Interestingly, a more general version of Theorem 6.1 was
proved earlier by Dorronsoro [Dor85] while studying affine approximations of
Sobolev functions. However, Dorronsoro did not relate it to geometry or SIOs.

Note that the definition of fr(z,7) makes perfect sense also for n-
dimensional sets, as long as we replace in Definition 3.1 lines by n-planes.
However, the estimate above is not true for n-dimensional Lipschitz graphs
if n > 1, and the counterexample is due to Fang [Fan90]. One can fix this
problem by considering a modified version of 5 numbers.

SThat is, Section 12 in Chapter V. We explain the cross-referencing system used through-
out the thesis on p. 25.
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6.1 (3, numbers
Definition 6.2. For 1 < p < co and a Radon measure 1 on R set?

1/p

Bup(w,r) = inf (rln /B(x,r) (W)p dM(?J)) , (6.1)

where the infimum runs over all n-planes L intersecting B(x,r). If p = H"|,
for some set E, we will write fg,(z, ) instead of 5, ,(x, ). Furthermore, given
a ball B = B(z,r), we set f5,,(B) := f,,(x,7), and the same convention will
be used with all the other coefficients.

Thus, 8, numbers can be seen as LP variants of Jones’ ., numbers. It
follows immediately by Holder inequality that if p < ¢ then

1/p—1/q
ﬁu,p(x,r) < <H<B(W> qu(xﬂ")-

T’N/

Hence, for measures with polynomial growth (5.1) we have f§,,(z,r) <
CPuglz,T).

Fang used 3, numbers to prove a modification of Theorem 6.1 valid for
n-dimensional Lipschitz graphs (though again, it follows from [Dor85]). This
result was soon extended by the following theorem of David and Semmes.

Theorem 6.3 ([DS91]). Let u be n-AD regular. If n =1 let 1 < p < oo, and
if n > 2 assume that 1 < p < % Then, p is uniformly n-rectifiable if and
only if there exists C' > 0 such that for any ball B = B(z, R) with z € supp u

and R >0 n J
L Buale.r? Sdnta) < Cu().

Together with Theorem 5.3 this answers the question we posed at the
beginning of Section 5: how well should a set £ be approximated by planes in
order for SIOs to be L? bounded on E.

Due to their natural definition, coefficients 3, found many more applications.
In [Toll5] Tolsa showed that for a rectifiable measure p we have

d
T e for p-a.e. v € R (6.2)
”

1
/ BM,Q(x7T)2
0

On the other hand, Azzam and Tolsa proved in [AT15] that if a Radon
measure 4 satisfies (6.2) and

0< O™ (r,u) <oco  for p-ae. x€RY (6.3)

YThe definitions of By.,p and other coefficients may vary slightly between different chapters,
see Remark I1.3.1
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then p is n-rectifiable. More recently, Edelen, Naber and Valtorta [ENV16]
managed to weaken the assumption (6.3) to

O™ (x,u) >0 and OF(x,u) < oo for p-a.e. x € RY. (6.4)

Theorem 6.4 ([Toll5, AT15, ENV16]). Let u be a Radon measure on R
Then, u is n-rectifiable if and only if (6.2) and (6.4) hold for u-a.e. v € RY,

Further generalization of this result to Hilbert and Banach spaces was
achieved in [ENV19].

Remark 6.5. Measures of the form u = H"|, for E C R? with 0 < H"(E) <
oo automatically satisfy (6.3) (see [Mat95, Theorem 6.2]), and so in this
special case, by the results of Azzam and Tolsa, we get a particularly clean
characterization: E is n-rectifiable if and only if (6.2) holds.

Going back to general measures, it is well known that (6.3) implies p < H",
which is included in our definition of rectifiable measures. However, (6.4) does
not imply p < H™ on its own, and so it is remarkable that together with (6.2)
it gives rectifiability. An alternative proof of this fact is also given in [Tol19].

Remark 6.6. Note that in Theorem 6.3 we have some liberty when choosing
p in B, numbers. In the case of qualitative rectifiability, the choice of p = 2
is the best possible. Condition (6.2) with §,2(z,r) replaced by B, ,(z, ) is
necessary for rectifiability only for 1 < p < 2. On the other hand, (6.2)
together with (6.3) imply rectifiability only for p > 2. See [Tol19] for relevant
counterexamples. Still, if instead of (6.3) we assume that O”(u,z) > 0 and
O™*(u, z) < oo for p-a.e. x € RY then the finiteness of 3, square function for
certain p < 2 becomes sufficient for rectifiability, see [Paj97, BS16].

Let us mention that modified versions of g numbers are also used to
study a competing notion of rectifiability for measures, the so-called Federer
rectifiability. We say that a measure p is n-rectifiable in the sense of Federer
if there exists a countable number of Lipschitz images of R", denoted by I,
such that p(R?\ U;T;) = 0. No absolute continuity with respect to H" is
required. Dropping the absolute continuity assumption makes such measures
very difficult to characterize: a surprising example of a doubling, Federer
1-rectifiable measure supported on the whole plane was found by Garnett,
Killip and Schul [GKS10]. Nevertheless, for n = 1 significant progress has
been achieved in [Ler03, BS15, BS16, AM16, BS17, MO18a, Nap20]. See also
a recent survey of Badger [Bad19].

Finally, let us remark that if a set £ C R? satisfies faster decay of Sz,
numbers than (6.2), then it is actually C™ rectifiable, in the sense that it can
be covered H"-a.e. by Ch* surfaces. See [Ghi20] and [DNI19] for details.

17
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6.2 «o numbers

We would like to stress that S numbers were originally introduced to study
sets, and they do have some limitations when applied to general measures.
They capture the shape of the support of measures, but they do not see the
distribution of mass within the support. Observe that any measure with support
contained in an n-dimensional plane has all 5 numbers equal to 0, but of course
such measure may be very far from being rectifiable - think of Dirac deltas. For
this reason, some assumptions on densities in Theorem 6.4 are unavoidable.

Tolsa’s a numbers, introduced in [Tol09], offer a way to solve the issue
mentioned above. To define them, we need a distance on the space of measures.
Given Radon measures p and v, and an open ball B, we set

F3<u,u>—sup{\/¢du—/¢ v

NS Lipl(B)} ,

where
Lip;(B) = {¢ : Lip(¢) <1, supp¢ C B}.

Note that Fp(u, ) measures the distance between p and v inside the ball B.
See [Mat95, Chapter 14] for more information about this distance.

Definition 6.7. Given a Radon measure p and a ball B = B(z,r) we define

. 1 n
o(w,r) = inf WFB(M, ML),

where the infimum runs over all ¢ > 0 and all n-planes L.

The idea is the following: o, (B) quantifies how far p is from flat measures
(i.e. measures of the form ¢H"|;, L an n-plane) inside B. Tolsa characterized
uniform rectifiability in terms of a Carleson condition imposed on a numbers.

Theorem 6.8 ([Tol09]). Let u be n-AD regular. Then, p is uniformly n-
rectifiable if and only if there exists C' > 0 such that for any ball B = B(z, R)
with z € suppp and R >0

// a(z,7) ﬂzu( ) < Cu(B). (6.5)

Concerning the qualitative notion of rectifiability, one might expect that a
condition of the form
! o dr d
/oc#(x,r) RS for p-a.e. z € R (6.6)
0
could characterize rectifiable measures. Tolsa showed in [Toll5] that (6.6)
is necessary for rectifiability. But is it sufficient? Azzam, David, and Toro
proved in [ADT16] that if 4 is doubling, then some condition related to (6.6)
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is sufficient for rectifiability. In [Orpl8a] Orponen showed that for n =d =1
a variant of (6.6) is sufficient for rectifiability (which in this case is equivalent
to absolute continuity with respect to H'). Finally, Azzam, Tolsa and Toro
[ATT20] proved that a measure u satisfying (6.6) which is also pointwise
doubling, i.e. such that

B(x,2
lim sup pB(z, 2r)) <oo  for prae. v € RY (6.7)

root u(B(z,7))
is rectifiable.

Theorem 6.9 ([Toll5, ATT20]). Let 1 be a Radon measure on RY. Then, p
is m-rectifiable if and only if (6.6) and (6.7) hold for u-a.e. x € RY,

Also in [ATT20], the authors construct a purely l-unrectifiable measure on
R? satisfying (6.6). This shows that, for general n and d, (6.6) on its own is
not a sufficient condition for rectifiability.

To mention a few other applications of o« numbers, in [Tol08] they are used
to characterize rectifiability of sets of finite measure in terms of existence of
principal values for the Riesz transform, and in [DEM18, Fen20, DM20] they
are used to study higher co-dimensional analogues of harmonic measure.

6.3 «, numbers

Coefficients «, were introduced by Tolsa in [Tol12]. They can be thought of as
a generalization of @ numbers — in fact, under relatively mild assumptions, one
has o, (B) = «a,,1(B), see [Tol12, Lemma 5.1]. As in the case of a coefficients,
in order to define o, numbers we need a metric on the space of measures.

Let 1 < p < oo, and let u, v be two probability Borel measures on R?
satisfying [ |z|P dp < oo, [ |x|? dv < co. The Wasserstein distance W), between
w and v is defined as

T JRIXR

1/p
Wy(p,v) = (inf |z — y|? d7r(:c,y)> :

where the infimum is taken over all transport plans between p and v, i.e.

Borel probability measures 7 on R? x R? satisfying 7(A x RY) = p(A) and
7(R? x A) = v(A) for all measurable A C R?. The same definition makes sense
if instead of probability measures we consider u, v, and 7 of the same total
mass. For more information on Wasserstein distance see for example [Vil03,
Chapter 7] or [Vil08, Chapter 6.

Similarly as a numbers, o, numbers quantify how far is a given measure
from being a flat measure, that is, from being of the form ¢H"|, for some
constant ¢ > 0 and some n-plane L. In order to measure it locally (say, in a
ball B), we introduce the following auxiliary function.
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Let ¢ : R — [0, 1] be a radial Lipschitz function satisfying ¢ = 1 in B(0, 2),
supp ¢ C B(0,3), and for all = € B(0, 3)

¢ Hdist(z, 0B(0,3))? < o(z) < edist(z, 0B(0,3))?,
V(o) < cdist(z, 0B(0, 3)),
for some constant ¢ > 0. For example, one could take ¢(x) = ¢(|x|) where

¢ :[0,00) — [0,1] is such that ¢(r) =1 for 0 <r <2, ¢(r) =0 for r > 3, and
P(r) = (3 —r)% for 2 < r < 3. Given a ball B = B(x,r) C R? we set

r

oY) = ¢ (y — x) : (6.8)

wp should be thought as a regularized characteristic function of B.

Definition 6.10. For 1 < p < oo, a Radon measure p on R? and a ball
B = B(z,r), we define

1
a,p(x,r) = inf

0 WWp(SOBM, ap,resM"|;),

where the infimum is taken over all n-planes L intersecting B, and

. [ep du

apL = 7,1 -
[ B dHn|L

Even though their definition is more involved than that of o numbers, a,
numbers have some advantages. Under mild assumptions on the measure, one
can show that, on the one hand,

Bup(B) S aup(B),

and on the other hand, if p < ¢, then

aup(B) S auq(B),

see Lemma I1.3.2. Thus, recalling that o, ~ «,, 1, coefficients c,, simultaneously
capture information given by /5, and o numbers.

Tolsa introduced «;, numbers in [Tol12] with the aim of characterizing
uniformly rectifiable measures.

Theorem 6.11 ([Tol12]). Let p be an n-AD reqular measure on R?, and
suppose that 1 < p < 2. Then, u is uniformly n-rectifiable if and only if there
exists C' > 0 such that for any ball B = B(z, R) with z € suppp and R >0

/B /OR App(@,7)° drdu(x) < Cu(B).

r
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6.4 Other coefficients

Finally, let us briefly mention that a few other kinds of coefficients have been
used in the study of rectifiability.

Menger curvature (and its higher dimensional counterparts) was studied in
[Lég99, LW09, LW11, Koll7, Meul8, Goel8, GG20]. A coefficient involving
center of mass is developed in [Vil19b]. In [TT15, Toll7] rectifiable sets

and measures are characterized using A numbers, defined as A, (z,7) =

|u(B(xﬂ“)) _ M(B(x,%))|
rn (2r)m .

7 Recent trends

Despite our best efforts to make this introduction broad and inclusive, there
are many important developments in quantitative rectifiability and related
topics that we were not able to describe, simply due to the vast size of the
subject matter. Nevertheless, we feel obliged to at least hint at some of them,
to give the reader an idea of how diverse and active this research area is. The
references below are by no means complete, they should be seen merely as an
invitation to explore the topic further.

Firstly, there is the connection between rectifiability and harmonic measure.
Given a domain 2 C R™*! and a continuous function f € C(99), let us denote
the harmonic function on €2 with boundary values f. Fixing some X € €,
f — up(X) becomes a positive functional on C(0€2), and so by the Riesz
representation theorem, it defines a measure on 9§2. We denote it by w¥, and
we call it the harmonic measure on 0f) with a pole at X. As it turns out, there
is a deep connection between rectifiability of 9, the relation between w* and
H" |50, and the L? solvability of the Dirichlet problem on 2. This has been
explored in depth by many authors and by now it is very well understood. See
e.g. [HMUT14, AHM"16, AHM*20].

The harmonic measure was defined using the Laplace operator A. More
generally, given a suitable elliptic operators L we may define the elliptic
measure wy. A lot of effort has been put into replicating the results obtained
for harmonic measure to this more general setting, see e.g. [KP01, PPTIS,
HMM"20]. On the other hand, one can also study the caloric measure related
to the heat equation. This introduces further complications due to the parabolic
geometry: one has to define parabolic counterparts to uniform rectifiability
and other GMT notions. See e.g. [HLNO04, NS17, MP20].

As demonstrated above, and also by our remarks from the end of Section
1, one of the main motivations for the study of rectifiability are PDEs and
calculus of variations. However, the natural setup for certain problems is not
the Euclidean space, but another metric space (e.g. R"™! with parabolic metric
in the case of heat equation, the Heisenberg group in the case of Kohn-Laplace
operator). This led to a flurry of activity aiming at generalizing classical
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notions and results of (Euclidean) GMT to this metric space setting. See e.g.
[AK00, FO19, Bat20, AM20].

Finally, we would like to mention a trend of “quantification” of well-known
qualitative results. A nice example, lying at the intersection of fractal geometry
and GMT, is obtaining bounds for the Favard length of the four-corner Cantor
set. Recall that in Example 1.3 we defined the four-corner Cantor set I’ as an
intersection of sets F}, which can be seen as better and better approximations
of F. Recall that by Theorem 2.5 H'(my (F)) = 0 for vy1-a.e. line V. Thus, if
we define the Favard length of F' as

Fav(F) = /G oy MOV () o (V),

we have Fav(F) = 0. In particular, Fav(F;) — 0 as K — oo. That is a

qualitative result. Its quantitative counterpart is: what is the rate of decay of
Fav(Fy) as k — 0o? See e.g. [Tao09, NPV11, BLV14, CDT20].

8 New results and structure of the thesis

In this section we give a short overview of the results obtained in the thesis.
Full presentations are given in the introduction to each chapter, together with
an explanation of how they relate to previously known results.

Chapter II is dedicated to some preliminary definitions and estimates used
throughout the thesis. We recall the definition of David-Mattila cubes, used in
Chapters Il and V, and we prove some basic estimates of o and § numbers.

In Chapters III and IV we show that a Radon measure p is n-rectifiable if

and only if
! o dr d

/0 a2z, ) <o for p-a.e. x € R,
see Theorem II1.1.4 and Theorem IV.1.1. Thus, we provide an as counterpart
to Theorem 6.4 and Theorem 6.9. This characterization is especially satisfying
due to no additional assumptions on densities or doubling properties of pu.
Along the way we show a sufficient condition for rectifiability in terms of «
and [, numbers, see Theorem II1.1.2. These chapters contain the results from
[Dab19b, Dab19al.

In Chapter V we introduce conical energies, which can be seen as a quan-
tification of the notion of approximate tangent plane. We then use these
energies to prove several results: a characterization of rectifiable measures
Theorem V.1.3, a characterization of sets containing big pieces of Lipschitz
graps (which is a stronger condition than UR) in Theorem V.1.9, and finally,
a sufficient condition for the boundedness of SIOs valid for measures with
polynomial growth (not necessarily ADR), see Theorem V.1.14. This chapter
is based on [Dabh20a, Dab20b].



8. New results and structure of the thesis

In Chapter VI we use a square function involving o numbers, similar to
that from (6.5), to characterize L? functions defined on uniformly rectifiable
sets, see Theorem VI.1.3. Based on joint work with Jonas Azzam [AD20].

Finally, recall that in Remark 5.4 we mentioned David’s lemma which
asserted that non-atomic measures defining L? bounded Riesz transform have
polynomial growth. In Chapter VII we prove a counterpart of this result for
Heisenberg groups, see Theorem VII.1.1. This chapter is based on [DV20],
co-authored by Michele Villa.
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1 Notation

The notation given below will be used in Chapters [1I-VI. We may use slightly
different notation in Chapter VII due to the non-Euclidean, Heisenberg group
setting.

Cross-referencing

Since the chapters are mostly self-contained, we decided to adapt the following
system for cross-references: each object (theorem, lemma etc.) is assigned only
two numbers, the first standing for section. When referencing content withing
the same chapter, only those two numbers are used; when referencing an object
from another chapter, three numbers are used, with the number of the chapter
given at the beginning. For example, Lemma 2.1 references a lemma from the
second section of the current chapter, but Lemma VI.2.2 denotes Lemma 2.2
from the second section of Chapter VI.

Estimates

Throughout the paper we will write A < B whenever A < CB for some
constant C, the so-called “implicit constant”. All such implicit constants
may depend on dimensions n, d, and we will not track this dependence. If the
implicit constant depends also on some other parameter ¢, we will write A <; B.
The notation A ~ B means A < B < A, and A ~; B means A <, B <; A.
Moreover, if symbols < or & appear in the assumptions of a lemma, then the
implicit constant of the proven estimate will depend on the implicit constants
from the assumptions (see Lemma 3.4 for example).
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Balls

We denote by B(z,7) C R? an open ball with center at z € R? and radius
r > 0. Given a ball B, its center and radius are denoted by z(B) and r(B),
respectively. If A > 0, then AB is defined as a ball centered at z(B) of radius

Ar(B).
For a ball B and measure pu, we define the n-dimensional density of y at B
as
pu(B)
@u(B ) =

Planes

Given two n-planes Ly, Lo, let L] and L} be the respective parallel n-planes
passing through 0. Then,

L(Ly, Ly) = disty (L}, N B(0,1), L,N B(0,1)),

where disty stands for Hausdorff distance between two sets. Clearly, we always
have £(Ly, Ly) € [0, 1], and £(Ly, Ls) = 0 if and only if Ly and Lo are parallel.
Note that if L; and Lo are lines in the plane, then £(Lq, Ls) is the sine of the
angle between L, and L.

Given an affine subspace L C R?, we will denote the orthogonal projection
onto L by 7. The orthogonal projection onto L+ will be denoted by 7.

Sets

Given a set A C R?, we denote by 1,4 : R — {0, 1} the characteristic function
of A, and by #A the cardinality of A. If f:R? — R is a function, then f]|,
denotes its restriction to A. Similarly, u| , will denote the measure y restricted
to A.

For sets A, B C RY we define

dist(A, B) = inf inf |a — b|,
acAbeB
while disty (A, B) will stand for the Hausdorff distance between A and B.

Dyadic lattices

Throughout all of the thesis, dyadic techniques are heavily used. However,
usually we won’t be able to work with “true” dyadic cubes, relying instead on
certain “generalized dyadic cubes”. The most classical constructions of this
kind are due to Chirst [Chr90] and David [Dav88a]. Since then many other
constructions of this type has been done, and depending on the context it is
convenient to use different kinds of cubes. To avoid confusion, we use different
fonts to distinguish between them:



2. David-Mattila cubes

D denotes the David-Mattila lattice [DMO00], defined in Section 2 below,
and used in Chapters IIT and V.

e Dgn and Dga denote the true dyadic grids on R™ and R? respectively,
as defined in Subsection IV.2.2 and used in Chapter IV. In the same
subsection a few other grids are derived from them, e.g. Dr, Df, Dr.

e 9(w) denote the adjacent systems of cubes of Hyténen and Tapiola
[HT14], see VI.2.2. They are used in Chapter VI.

e © denotes the cubes of Kédenméki, Rajala and Suomala [KRS12], used
in Chapter VII. See Subsection VII.2.3.

2 David-Mattila cubes

In Chapters IIT and V we will use the lattice of “dyadic cubes” constructed by
David and Mattila [DMOO].

Lemma 2.1 ([DMO00, Theorem 3.2]). Let p be a Radon measure on R, E =
supp p. For any constants Cy > 1, Ay > 5000C, there exists a sequence of
partitions of E into Borel subsets (), Q) € Dy, with the following properties:

(a) For each integer k > 0, E is the disjoint union of the “cubes” Q, Q) € Dy,
and if k <1, Q € Dy, and R € Dy, then either QN R = & or else R C Q.

(b) The general position of the cubes QQ can be described as follows. For each
k >0 and each cube Q) € Dy, there is a ball B(Q) = B(zq,7(Q)), such
that

20 €Q, Ayt <r(Q) < CoAy*,
ENB(Q)CQ C EN28B(Q) = EN B(zg,287(Q)),

and the balls 5B(Q), Q € Dy, are disjoint.

Remark 2.2. The cubes of David and Mattila have many other useful prop-
erties, most notably the so-called small boundaries. We will not need them,
however.

For any @ € D := U0 Dr we denote by D(Q) the family of P € D such
that P C Q. Given Q € Dy we set J(Q) = k and £(Q) = 56Cy Ay *. Note that
r(Q) = £(Q). We define also Bg = 28B(Q) = B(zg,287(Q)), so that

EN %BQ cQcC BQ.
Denote by D% the family of doubling cubes, i.e. @ € D satisfying
H(100B(Q)) < Con(B(Q)). (2.1)
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One of the most useful properties of the David-Mattila lattice is that it
provides a lot of information about doubling cubes. If the constants Cy, Ay
in Lemma 2.1 are chosen of the form Ay = C(C()'%, and Cy = Cy(n, d) large
enough, then it follows from the construction of the lattice that the following
lemmas hold.

Lemma 2.3 ([DMO00, Lemma 5.28)). For any R € D there exists a family
{Qi}ier € DP such that Q; C R and u(R\ U; Qi) = 0.

Lemma 2.4 ([DMO00, Lemma 5.31]). Let R € D and Q C R be cubes such that
all the intermediate cubes S, Q C S C R, are non-doubling, i.e. S € D\ DP.
Then,

p(100B(Q)) < Ay V@D (100B(R)). (2:2)

Remark 2.5. The constant 10d in (2.2) can be replaced by any positive
constant if Cy is chosen big enough. See [DMO00, (5.30)] for details.

As a simple corollary we get the following:

Lemma 2.6 ([AT15, Lemma 2.4]). Suppose the cubes Q € D, R € D, Q) C R,
are such that all the intermediate cubes Q@ € S C R are non-doubling, i.e.
S ¢ D®. Then

0,(100B(Q)) < (Co)" A, P~ =Vg (100B(R)), (2.3)

and

> 0,(100B(S)) < ©,(100B(R)).
SeD:QCSCR

In Chapter V we will use the following lemma.

Lemma 2.7 ([CT17, Lemma 4.5]). Let R € D®. Then, there exists another
doubling cube Q C R, Q € D%, such that

@) = p(R) and £(Q) = ((R).

In Chapter III it will be convenient for us to work with cubes satisfying a
doubling condition stronger than (2.1). To introduce them we need a version
of [Toll4, Lemma 2.8]. For reader’s convenience, we provide the proof below.

Lemma 2.8. Let i be a Radon measure on R and oo > 1 be some constant.
Then, for u-a.e. x € R? there exists a sequence r; — 0 such that for every j
we have

w(B(x,ar;)) < 2a%u(B(z,r;)). (2.4)
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Proof. Consider the set Z C supp u of points such that for x € Z there does
not exist a sequence of radii r; — 0 satisfying (2.4). We want to show that
w(Z) =0. Let

Z; = {w € suppjt : p(Bla,ar)) > 2a’u(B(,r)) for all r < 277},

Clearly Z = U; Z;, and so it suffices to prove p(Z;) = 0 for all j > 0.

Let By be an arb