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Abstract

During the last decades, urbanmobility has become themain concern for city councils and transportation
operators. The main problem is the traffic congestion that easily appears in urban networks, producing
negative economic impacts for the associated cost and, what is becoming more relevant from the sus-
tainability point of view, pollution and noise that affect negatively not only the environment of the city
but also to the public health of the citizens and also of our planet. In this context, the transportation
operators and planners make use of traffic simulation models that assist their strategic decisions aiming
at improving the mentioned problems.

The dynamicODmatrices estimation problem is a crucial step in transportationmodeling and simulation
because they contain the total number of vehicles that are circulating throughout the city, including their
origins, destinations, and their departing time and describe the associated mobility patterns in terms of
trip distributions. As this information is not directly observable in reality, this problem has been widely
studied and many different methodologies have been proposed in order to obtain the suitable OD
matrices that reflect the urbanmobility of the studied area. The common approach is to use the counting
stations data sets to estimate, using a minimization problem, the OD matrices that produce them. This
is called the bi-level optimization approach. However, the main problem of this approach is that it is
mathematically underdetermined, because many different OD matrices can produce the same traffic
counts on certain links of the urban network, but presenting totally different trip distributions that could
not correspond to the socio-demographic structure originating them. Many researchers addressed this
problem with different types of conventional data, such as link speeds and densities with the intention
of reducing the degrees of freedom of the problem.

The structure of an OD matrix describes how trips are distributed from the different origins to the
different destinations and then represents the demand pattern of the area of study. Since two different
OD matrices can generate the same traffic counts, the study of the structural similarity between OD
matrices is completely necessary. In this thesis, we address the different studies measuring the structural
similarity between the estimated OD matrix and the reliable OD matrices, which are the ground truth
OD matrix in synthetic experiments or the historical OD matrix in the real ones.

The appearance of new sources of traffic data from the growth of the information and communication
technologies (ICT) appeals to the researchers to use it for reducing such underdetermination, adding it
to the OD estimation problem. GPS devices are increasingly used by vehicles and a huge volume of data
is generated every day that, implicitly, contains information of the traffic state under real conditions.
These data can be analyzed and processed in order to clean, filter and extract this information and can



be then introduced into the OD estimation problem. Most of the theoretical research since the ICT
technologies are available assume implicitly or explicitly that GPS tracking data can be done through a
controlled collection process. However, in the practical world, GPS data are supplied by companies that
use different data collection policies and constraints imposed by privacy policies, which invalidate some
of these theoretical hypotheses. One of themain research aspects of this thesis is to investigate how these
commercial data can be used for the OD estimation problem.

However, the introduction of such information in the bi-level optimization problem is not direct and
many alternatives arise. The extensively used analytical techniques do not permit an easy addition
of such data, because it is not clear how to analytically relate it with the OD flows. On the other
hand, the versatility of the simulation-based optimization methods permit such incorporation but its
computational burden is an inherent drawback. This thesis proposes a data-driven estimation of the
dynamic assignment matrix to introduce the GPS data information to an analytical model, reducing the
underdetermination of the problem. Moreover, such estimation replaces the dynamic traffic assignment
reducing also the computational effort of the OD estimation problem.

As this thesis results from the collaboration between the simulation software company PTV Group and
the Universitat Politècnica de Catalunya, all the experiments of this thesis have been carried out in PTV
Visum and using the already existing products. Moreover, the results have been analyzed both from the
computational performance and from the quality aspect. The latter, as mentioned above, aims to analyze
and find the structurally most appropriate OD matrix in the OD matrix estimation problem.



Resum

Durant les últimes dècades, les externalitats que es deriven de la mobilitat urbana han estat una de les
principals preocupacions dels ajuntaments, gestors metropolitans i operadors de transport. El principal
problema és la congestió, que fàcilment apareix en infraestructures urbanes i que impacta negativament
en la nostra economia i, el que ésmés greu, en la sostenibilitat del planeta en que vivim. La contaminació
i el soroll provocats per la congestió no només afecten nocivament a la qualitat de l’aire, sinó que també
afecten la salut ciutadana i mediambiental. En aquest context, els operadors i planificadors de trànsit
utilitzen models de planificació i simulació de trànsit que els aporten coneixement per dur a terme
decisions estratègiques i operatives que mitiguin els problemes associats a la mobilitat urbana.

El problema d’estimació de les matrius origen-destinació (OD) és un tema crucial en la modelització i
simulació del trànsit. Aquestes contenen el nombre total de vehicles que circulen per la ciutat, incloent
informació sobre els l’origen, destinació i tempsde sortidade cadascun enunhoritzó temporal. D’aquesta
manera, la distribució de viatges definida en les matrius OD descriu el patró de mobilitat de la xarxa.
No obstant això, aquesta informació no és directament observable en un cas pràctic real i, per aquest
motiu, es tracta d’un problema profundament estudiat. S’han desenvolupat diferents metodologies que
procuren obtenir matrius OD apropiades, és a dir, que reprodueixin correctament la mobilitat de la zona
estudiada. L’enfoc més comú consisteix en usar dades recollides per sensors de trànsit que compten
vehicles en certs punts de la xarxa per estimar les matrius OD mitjançant la resolució d’un problema de
minimització. De tota manera, aquest problema complex és altament indeterminat i diferents matrius
OD, que representen realitats sociodemogràfiques i patrons de mobilitat diferents, poden reproduir els
mateixos comptatges de vehicles en les vies de la xarxa dotades de sensors. Per tant, moltes línies de
recerca han usat diferents tipus de dades de transport addicionals, com ara velocitats mitjanes i densitats
de flux, per reduir els graus de llibertat del problema.

L’estructura d’una matriu OD descriu el nombre de viatges i la forma com es distribueixen espaialment
en la xarxa urbana, des del seu origen a la seva destinació, traçant així el patró de mobilitat global de
la xarxa d’estudi. Com que dues matrius OD poden generar els mateixos comptatges, és absolutament
necessari fer un estudi exhaustiu de la similaritat de les seves estructures. En aquesta tesi, enfoquem
les diferents propostes mesurant sempre el grau de similaritat estructural entre la matriu OD estimada i
una matriu OD de referència, sent aquesta la matriu OD històrica en casos reals o la matriu fonamental
en el cas dels experiments sintètics.

L’aparició de noves fonts de dades de trànsit degut al creixement de les tecnologies de la informació
i comunicació (TIC) obre noves línies de recerca adreçades a reduir la indeterminació del problema



d’estimació de les matrius OD. L’ús d’aparells GPS en vehicles va en augment, fet que contribueix a
la generació diària de grans volums de dades. Aquestes contenen, de manera implícita, informació de
l’estat del trànsit en condicions reals. Mitjançant un procés de neteja, filtratge i extracció es pot derivar
informació del trànsit per a després introduir-la al problema de l’estimació de matrius OD. El conjunt
de dades GPS de tipus comercials no permet conèixer el procediment de recol·lecció de dades i, sovint,
està subjectes a polítiques de protecció i privacitat que no permeten assumir certes hipòtesis de qualitat
i control en relació als orígens i destinacions. En aquesta tesi, investiguem el valor que poden afegir
aquests conjunts de dades comercials per a l’estimació de matrius OD.

La introducció d’aquestes dades al problema d’optimització binivell no és directa i existeixen diverses
alternatives. Els enfocs analítics no permeten introduir directament aquestes dades perquè la relació
entres les dades GPS i els fluxos OD no és elemental. Per altra banda, la versatilitat dels mètodes
de simulació-optimització permeten usar-los directament, però l’inconvenient és l’esforç computacional
associat. Aquesta tesi proposaunmodel de lamatriudinàmicad’assignacions basat endades (data-driven)
per aprofitar la informació implícita de les dades GPS i reduir, així, la indeterminació del problema. A
més, aquesta tècnica substitueix la necessitat de recórrer a un model de simulació y redueix l’esforç
computacional del problema.

Aquesta tesi és fruit de la col·laboració entre l’empresa de software de simulació PTV Group i la Univer-
sitat Politècnica de Catalunya. Tots els experiments d’aquesta tesi han estat implementats en PTV Visum
i usant els productes existents. A més, els resultats de la tesi han estat sempre analitzats des d’una doble
perspectiva: computacional i de la qualitat. Aquesta última té com a objectiu analitzar la matriu OD pel
que fa a la seva similaritat estructural amb la matriu de referència.



Resumen

Durante las últimas décadas, las externalidades que se derivan de la movilidad urbana han sido una de
las principales preocupaciones de los ayuntamientos, gestoresmetropolitanos, y operadores de tráfico. El
principal problema es la congestión, que fácilmente aparece en infraestructuras urbanas y que impacta
de forma negativa en nuestra economía y, lo que es más grave, en la sostenibilidad del planeta que
habitamos. La contaminación y el ruido provocados por la congestión no solo afectan nocivamente a la
calidad del aire, sino que también perjudican la salud ciudadana y medioambiental. En este contexto,
los operadores y planificadores de transporte usan modelos de planificación y simulación de tráfico que
les aportan conocimiento para tomar decisiones estratégicas y operativas que mitiguen los problemas
asociados a la movilidad urbana.

El problema de la estimación de las matrices origen-destino (OD) es un tema crucial en la modelización
y simulación de tráfico. Éstas contienen el número total de vehículos que circulan por la ciudad,
incluyendo información sobre el origen, destino y tiempo de salida de cada uno de los vehículos en un
horizonte temporal. De esta manera, la distribución de viajes definida en las matrices OD describe el
patrón de movilidad de la red. Aún así, esta información no es directamente observable en un caso
práctico real y, por este motivo, se trata de un problema extensamente estudiado. Se han desarrollado
diferentes metodologías con el fin de obtener las matrices OD más apropiadas, es decir, aquellas que
reproducen adecuadamente la movilidad de la zona estudiada. El enfoque más común consiste en usar
datos recogidos por sensores de tráfico que cuentan vehículos en ciertos puntos de la red para estimar las
matrices ODmediante la resolución de un problema de minimización. Aún así, este complejo problema
es altamente indeterminado y diferentes matrices OD, que representan realidades sociodemográficas y
patrones demovilidad distintos, pueden reproducir losmismos conteos de vehículos en las vías de la red
dotadas de sensores. Por consiguiente, muchas líneas de investigación han utilizado de forma adicional
diferentes tipos de datos de tráfico, como velocidades medias y densidades de flujo, para reducir los
grados de libertad del problema.

La estructuradeunamatrizODdescribe el númerodeviajes y la formacomosedistribuyenespacialmente
en la red urbana, desde su origen hasta su destino, trazando, así, el patrón de movilidad global de la red
de estudio. Como dos matrices OD pueden reproducir los mismos conteos, es absolutamente necesario
hacer un análisis exhaustivo de la similitud de sus estructuras. En esta tesis, abordamos las diferentes
propuestasmidiendo siempre el grado de similitud estructural entre lamatriz OD estimada y unamatriz
OD de referencia, siendo ésta la matriz OD histórica en casos reales o la matriz fundamental en el caso
de los experimentos sintéticos.



La aparición de nuevas fuentes de datos de tráfico debido al crecimiento de las tecnologías de la infor-
mación y comunicación (TIC) abre nuevas líneas de investigación dirigidas a reducir la indeterminación
del problema de estimación de las matrices OD. El uso de aparatos GPS en vehículos va en aumento,
hecho que contribuye a la generación diaria de grandes volúmenes de datos. Éstos contienen, de manera
implícita, información del estado del tráfico en condiciones reales. Mediante un proceso de limpieza,
filtrado, y extracción se puede derivar información del tráfico para luego introducirla en el problema
de estimación de matrices OD. El conjunto de datos GPS de tipo comercial no permite conocer el pro-
cedimiento de recolecta de datos y, a menudo, está sujeto a políticas de protección y privacidad que
no permiten asumir ciertas hipótesis de calidad y control en relación a los orígenes y destinos. En esta
tesis, investigamos el valor que pueden añadir estos conjuntos de datos comerciales para la estimación
de matrices OD.

La introducción de estos datos en el problema de optimización binivel no es directa y existen diferentes
alternativas. Los enfoques analíticos no permiten incorporar directamente estos datos puesto que la
relación entre los datos GPS y los flujos OD no es elemental. Por otro lado, la versatilidad de los métodos
de simulación-optimización permiten usarlos directamente, pero el inconveniente es el esfuerzo com-
putacional asociado. Esta tesis propone un modelo de la matriz dinámica de asignaciones basado en
datos (data-driven) para aprovechar la información implícita de los datos GPS y reducir, así, la indeter-
minación del problema de estimación. Además, esta técnica reemplaza la necesidad de recurrir a un
modelo de simulación y reduce el esfuerzo computacional del problema.

Esta tesis es fruto de la colaboración entre la empresa de software de simulación PTV Group y la
Universitat Politècnica de Catalunya. Todos los experimentos de la tesis han sido implementados en
PTV Visum y usando los productos existentes. Además, los resultados de la tesis han sido siempre
analizados desde una doble perspectiva: computacional y de calidad. Esta última tiene como objetivo
analizar la matriz OD estimada respeto la similitud estructural con la matriz de referencia.
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1
Introduction: The role of

origin-destination matrices
in transport models

This chapter introduces the OD matrix estimation problem and presents the different approaches that have been
studied from its origins. It also shows the context of this thesis, the outline, the contributions and the related
publications of the author.

Transportation analysis attempts to understand traffic patterns in a given geographic area, most fre-
quently an urban or metropolitan area spanned by a transportation network. Such analysis represents
the transport network under certain conditions in order to provide insight into how the transport in-
frastructure is used by transport demand, that is, the trips in the area. Transport demand is commonly
defined in terms of an origin-to-destination (OD) matrix, X, whose entries (i, j) represent the number of
trips from a certain origin i to a certain destination j. From a practical point of view, the area object of
study is partitioned into a number of transport analysis zones (TAZ) by followingwell established criteria
that balance land use and socioeconomic information provided by various sources such as censuses and
city planners (Ortúzar & Willumsen (2011)). Traffic demand is defined in terms of an OD matrix, and
the traffic assignment is the process determining how that demand loads onto the network. In this way,
it is possible to compute the path flows and thus the traffic flows on the network links in order to explain
trip behavior and accessibility to specific locations (Figure 1.1).

Traffic analysis zones (TAZ) Demand model OD matrix

Traffic assignment

Supply model: Transport network

Figure 1.1: Transport analysis supported by traffic assignment models
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The underlying modeling hypothesis predicts that vehicles travel from origins to destinations in the
network along the available routes connecting them, in accordancewith rules explaining their behavioral
choices. The characteristics of a traffic assignment procedure are determined by hypotheses on how
travelers use the routes. Themainmodeling hypothesis is based on the concept of user equilibrium, which
assumes that travelers try to minimize their individual travel times, that is, travelers choose the routes
that they perceive to be the shortest under the prevailing traffic conditions. This modeling hypothesis
is formulated in terms of Wardrop’s first principle (Wardrop (1952)): the journey times on all the routes
actually used between an origin and a destination are equal to and less than those which would be
experienced by a single vehicle on any unused route.

Traffic assignment models based on this principle are known as user equilibrium models, as opposed to
models in which the objective is to optimize the total system travel time independently of individual
preferences (see Sheffi (1985), Florian & Chen (1995), Patriksson (1994)). Florian & Hearn (1995) stated
the equations to be satisfied for a user equilibriummodel. Given the following: an origin i; a destination
j with flow xij; all the different paths between them p ∈ Pij; a certain flow xijp; travel time ttijp; and
the shortest path between this origin and destination represented by tt∗

ij
; then:

(ttijp − tt∗
ij
)xijp = 0 ∀p ∈ Pij ∀(i, j) ∈ N

ttijp − tt∗
ij
≥ 0 ∀p ∈ Pij ∀(i, j) ∈ N

ttijp, tt
∗
ij
, xijk ≥ 0 ∀p ∈ Pij ∀(i, j) ∈ N∑

p∈Pij
xijp = xij ∀(i, j) ∈ N

(1.1)

If all the equations are satisfied, then these flows are in an equilibrium that satisfiesWardrop’s principle.
Effectively, if path p from origin i to destination j carries a flow xijp > 0, then the first equation is satisfied
only if the path cost ttijp is equal to the minimum path cost tt∗

ij
for all paths from i to j, as required

by Wardrop’s principle. Reciprocally, to satisfy the first equation if the path cost ttijp is greater than
the minimum path cost, then the flow on path p must be zero. In other words, it is an unused path,
according to Wardrop’s principle. This formulation is usually applied in the static traffic assignment
models that are widely used in strategic transportation analysis.

New technology has given rise to intelligent transport systems (ITS), advanced traffic management
systems (ATMS), and advanced traffic information systems (ATIS), for which there exists a need for
models that account for flow changes with time. More specifically, these dynamic models must be able
to appropriately describe the time dependencies of traffic demand and the corresponding induced traffic
flows. The dynamic traffic assignment (DTA) problem can thus be considered an extension of the traffic
assignment problemdescribed above. DTA can determine such time-varying link or path flows,meaning
that it describes how the network’s traffic flow patterns evolve in time and space (Mahmassani (2001)).
The problem can be formulated as a dynamic user equilibrium problem using the dynamic version of
Wardrop’s principle (Friesz et al. (1993), Smith (1993), Ran & Boyce (1996)), which states that if, for each
OD pair at each instant of time, the actual travel times experienced by travelers departing at the same
time are equal and minimal, the dynamic traffic flow over the network is in a travel-time-based dynamic
user equilibrium (DUE) state.

Wu (1998) shows that the DUE approach can be implemented by solving the following mathematical
model:
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(ttijp(t) − tt
∗
ij
(t))xijp(t) = 0 ∀p ∈ Pij(t) ∀(i, j) ∈ N ∀t ∈ [0, T ]

ttijp(t) − tt
∗
ij
(t) ≥ 0 ∀p ∈ Pij(t) ∀(i, j) ∈ N ∀t ∈ [0, T ]

ttijp(t), tt
∗
ij
(t), xijp(t) ≥ 0 ∀p ∈ Pij(t) ∀(i, j) ∈ N ∀t ∈ [0, T ]∑

p∈Pij(t)
xijp(t) = xij(t) ∀(i, j) ∈ N ∀t ∈ [0, T ]

(1.2)

where, as before, xijp(t) is the flow on path p from i to j, departing from origin at time interval t; ttijp(t)
is the actual path cost from i to j on route p, departing from origin at time interval t; tt∗

ij
(t) is the cost of

the shortest path from i to j, departing from origin at time interval t; and Pij(t) is the set of all available
paths from i to j at time interval t.

The formulation above is equivalent to solving a finite-dimensional variational inequality problem
consisting of finding a vector of path flows x∗ and a vector of path travel times τ, such that

[x− x∗]>τ ≥ 0 ∀x ∈ N (1.3)

whereN is the set of feasible flows defined by

N =

x =
{
xijp(t)

}
, xijp(t) ≥ 0

������ ∑
p∈Pij(t)

xijp(t) = xij(t) ∀(i, j) ∈ N ∀t ∈ [0, T ]

 (1.4)

Wu (1991), Wu et al. (1998) proved that this is equivalent to solving the discretized variational inequality:

∑
t∈[0,T ]

∑
p∈∪Pij

ttijp(t)[xijp(t) − x
∗
ijp(t)] ≥ 0 (1.5)

The objective of traffic assignment models is to assign a trip OD matrix onto a network by incorporating
a route choice mechanism, in order to estimate the traffic flows in the network. Therefore, they all use
OD trip matrices as major data input to describe the patterns of traffic behavior across the network.
All formulations of static (Florian & Hearn (1995)) and dynamic traffic assignment models (Ben-Akiva
et al. (2001)) assume the availability of a reliable OD estimate. However, since neither static ODmatrices
nor time dependent OD matrices are directly observable, but they are key inputs to traffic assignment
models, namely to the dynamic ones, the problem of how to estimate them becomes crucial for the use
of these models.

1.1 Formulating the origin-destination matrix estimation problem
using traffic counts

Historically, the processes used to construct OD matrices for simulating traffic in large transportation
networks were direct OD estimation methods, such as sampling surveys and home interviews. These
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methods are usually expensive, complex, and they usually lack any acceptable precision. On the other
hand, the late 1970s gave rise to researchers taking more interest in indirect OD estimation methods
because they infer OD matrices from real traffic measurements that are collected from the network.

These indirect estimation methods are the so-called matrix adjustment methods, whose main modeling
hypothesis is stated in Section 8.5 of Cascetta (2001). Traffic flows in the links of a network are the
consequence of assigning an OD matrix onto a network. Then, if it is possible to measure such link
flows, estimating the ODmatrix that generates the network flows becomes the inverse of the assignment
problem.

Network model Path choice
model

OD demand

Traffic
assignment

Calculated
link flows

(a) Direct problem of traffic assignment

Network model Path choice
model

OD demand

Traffic
Assignment

Calculated
link flows

(b) Reciprocal problem of OD estimation

Figure 1.2: Traffic assignment and OD estimation problems

The assignment problem shown in Figure 1.2a uses the ODmatrix, the cost, and the network conditions
to estimate the user equilibrium flows on the road network’s links. That is, Y = Assignment(X), where
Y is the set of all link flows, X is the OD matrix, and Assignment is an equilibrium assignment algorithm
assigning the OD matrix X onto the network. Then, the reciprocal problem (Figure 1.2b) would be
the inverse, which is namely estimating from the observed link flows Ŷ = [ŷl]l the OD matrix X that
gave origin to them. In other words, the reciprocal problem (as defined by Cascetta (2001)) consists
of assuming that the observed flows ŷl in a subset L̂ ⊆ L of network links constitute a Wardrop user
equilibrium flow pattern. Therefore, the link flows determine the ODmatrix Xwhose assignment would
produce such observed flows ŷl. This approximation is called origin–destination count-based estimation
(ODCBE).

Using traffic counts for OD matrix estimation originated with Van Zuylen & Willumsen (1980), who
used maximum entropy models and emphasized that the main advantages of traffic counts are their
low cost and availability. Cascetta (1984), Cascetta & Nguyen (1988) followed in their steps but used a
generalized least squares (GLS) approach to estimate OD trips. In the following years, many approaches
were developed by Spiess (1990), Yang et al. (1992), Florian & Chen (1995), who were the first to treat the
OD estimation problem as a bi-level optimization problem in which one optimization problem needs
to solve another optimization problem. The aforementioned authors presented algorithmic methods to
solve them.

OD estimation methods fall under broad classifications because they have been intensively studied
under different approaches due to the importance of model calibration. They are classified according to
various factors such as demandprofile (static or dynamic); the trafficdata defining the input to the problem
(direct traffic measurements like traffic counts and/or indirect data like prior OD matrices induced from
surveys); the calibration model’s purpose (offline for designing traffic management strategies and online
for predicting real-time traffic situations); and how the problem is solved (analytical or simulation-based
optimization techniques). This thesis focuses on offline models for both static and dynamic demand, and
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it uses direct traffic measurements such as traffic counts, as well as both analytical and simulation-based
optimization techniques.

1.2 The bi-level optimization problem

Van Zuylen & Willumsen (1980) were pioneers in proposing a model for estimating OD matrices based
on knowledge of paths used and the traffic counts of certain links in the network. However, thesemodels
consider the path proportions to be constant and independent of the congestion produced by changing
demand. Therefore, that initial approach had to be reformulated to overcome these drawbacks, this was
the bi-level optimization, Spiess (1990), Yang et al. (1992), usually considered as the most appropriate
adjustment for combining available data sourceswhen estimatingODmatrices, because it explicitly takes
into account congestion effects that influence the paths used between OD pairs. The problem is then
formulated as an optimization problem that minimizes some discrepancy functions between observed
measurements and their corresponding simulation measurements, which must be computed using a
traffic assignment procedure. The problem can be written as

min Z (X) = w1F1
(
Y, Ŷ

)
+w2F2

(
X,XH

)
s. to: Y = Assignment(X)

X ≥ 0

(1.6)

where F1 and F2 are distance functions between estimated and observed values, and w1 and w2 are
weighting factors reflecting the uncertainty and importance of the information contained in Ŷ and XH,
respectively. The underlying hypothesis is that Y = {yl} are the link flows predicted by assigning the
demand matrix X =

{
xijr
}
. As shown, the traffic volumes on certain links constitute the core of the

problem, but an available historical OD matrix XH can be added to the formulation of the objective
function, which is usually provided by either a household survey or a former demand model.

From a mathematical point of view, the problem is highly underdetermined, because there are usually
more variables, the OD flows, than number of observations, the traffic counts. Moreover, as traffic
counts are the combination of different OD flow proportions, there are multiple combinations of such
proportions that can provide the same sum on a certain link. Finally, it is notorious the work of Bierlaire
(2002) proving that the problem is also underdetermined in the extreme case of a full coverage, when a
sensor is placed at each link. That facts imply that there are infinitely many solutions that with different
OD flows can supply the same traffic counts.

Moreover, the complexity of the assignment problem shows that it is generally a non-convex and non-
differentiable function; therefore, analytical approaches are limited because they are constrained to
simple uncongested cases. Consequently, other formulations have been proposed, which is the reason
for moving from theminimization problem of Equation 1.6 to the bi-level ODmatrix estimation problem
shown in Figure 1.3.

The problem is split into two different parts. At the lower level of the algorithmic scheme shown
above, a traffic assignment is made at each iteration of the minimization algorithm in order to obtain
the assignment outputs Y(X(k)), which are the traffic counts on certain links in the network. The role
of the lower level is to update the assignment matrix at each iteration and to build it using the new OD
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Z(X) = w1F1(Y, Ŷ) + w2F2(X, XH)

Ŷ = Assignment(X)
X ≥ 0

s. to

min
X

Z(X) = w1F1(Y(k), Ŷ) + w2F2(X, XH)
X ≥ 0

min
X

Upper level
Non-linear optimization problem

Y(X(k)) = Assignment(X(k))

Lower level
User equilibrium traffic assignment

X(k) Y(k)

Figure 1.3: The bi-level optimization problem

proportions in the path search, due to changing congestion effects. The upper level calculates a sequence
of OD matrices using the assignment outputs and the measured traffic counts in order to minimize the
objective function. Therefore, solving the OD estimation problem consists of conducting a sequence of
iterations between the lower and upper level in order to find, at each step, a better ODmatrix X. Together
with the corresponding outputs of the traffic assignment, this improved matrix decreases the objective
function until a suitable solution is reached. Many approaches can be taken to solving the upper level of
the problem, but a user equilibrium traffic assignment is always required for the lower level. Originally,
the analytical approaches were often used to solve the offline static OD estimation (Spiess (1990), Florian
& Chen (1995), Lundgren & Peterson (2008)).

1.2.1 Analytical Formulations

The reference formulation of the OD matrix estimation problem is Equation 1.6. However, in order to
solve it analytically, the static traffic assignment can be approachedwith a linear function. The underlying
hypothesis is that the link flows are predicted by assigning the demandmatrixX onto the network, which
can be expressed by a proportion of the ODdemand flows passing through the count location at a certain
link. In terms of the assignment matrix A = [al

ij
]ijl, which is the proportion of an OD flow, xij, that

contributes to a certain link’s traffic counts, which can therefore be calculated as the sum of all these
contributions as follows:

yl =
∑

(i,j)∈N
alijxij , ∀l ∈ L̂ ⊆ L ⇒ Y = [yl]l = A(X)X , A(X) =

[
alij

]
ijl

(1.7)

where A(X) indicates that the assignment matrix depends on the ODmatrix X. This approach is indeed
an approach of the traffic assignment function. The bi-level optimization problem therefore consists of a
nonlinear optimization problem at the upper level, and it requires the lower level assignment calculation
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in order to obtain the corresponding assignment matrix that will be introduced into the following
objective function:

min Z (X) = w1F1
(
A(X)X, Ŷ

)
+w2F2

(
X,XH

)
s. to: X ≥ 0

(1.8)

When F1 and F2 are differentiable functions, this assumption converts the objective function into a
differentiable function in terms of the minimization variables, which are the OD values X. This is
because all the objective function’s elements depend directly on the OD values.

The analysis of the existing analytical approaches that are used to solve the offline static OD estimation
without additional constraints, reveals that, either are based on Spiess (Spiess (1990), Florian & Chen
(1995)), or on extensions of Spiess (Lundgren& Peterson (2008), Toledo&Kolechkina (2013)), while other
approaches modify the formulation adding constraints (Codina & Barceló (2004), Doblas & Benitez
(2005)). For the case without additional constraints this thesis explores further extensions to Spiess
(1990), which basic formulation is outlined below, while the addition of constraints will be considered
in a different context.

Spiess Method (1990)

Spiess (1990) proposes a classic gradient descentmethod to solve the staticODmatrix estimation problem
(Equation 1.8) once the assignment matrix is calculated. This approach relates linearly traffic counts to
OD flows. Moreover, the second term of the objective function is not considered (that is, w2 = 0), and
F1 is a quadratic difference function between the traffic count measurements and their corresponding
simulated values. Hence, the formulation of the Spiess method is

min Z (X) =
∑
l∈L̂

(yl − ŷl)
2

s. to: yl =
∑

(i,j)∈N
alijxij

X ≥ 0

(1.9)

The iterative procedure for solving the bi-level optimization problem is the following.

1) Assign X using simulation. Obtain A =
[
al
ij

]
ijl

.

2) Calculate the traffic counts and the objective function:

yl =
∑

(i,j)∈N
alijxij (1.10)

Z(X) =
∑
l∈L̂

(yl − ŷl)
2 (1.11)
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3) Calculate the gradient Z(X):

∂Z

∂xij
=

∑
l∈L̂

2alij(yl − ŷl) (1.12)

4) Calculate the optimal step for the gradient method, λ∗:

y′l =
∑

(i,j)∈N
−xij

∂Z

∂xij
alij (1.13)

(1.14)

λ∗ =

∑
l∈L̂

y′l(ŷl − yl)∑
l∈L̂

y′l
2

(1.15)

5) Calculate the next iteration of the OD matrix, Xk+1:

X(k+1) = X(k)
(
1− λ∗(k)∇Z

(
X(k)

))
(1.16)

6) Go back to 1.

In practice, the Spiess method for the static OD matrix estimation problem is among the most robust for
solving the bi-level optimization problem. Moreover, its simplicity and ease of implementation make it
one of the most used methods for demand calibration. The problem shown in Equation 1.9 is a non-
negative constrained problem, meaning that the OD flows can take a wide range of values. Codina &
Barceló (2004) and Doblas & Benitez (2005) aimed at reducing the feasible set adding constraints and
using an augmented Lagrangian function in Frank and Wolfe method.

The multiplicative formulation in Equation 1.16 of the gradient formulation preserves the zeroes of the
initial ODmatrix. This has been object of controversy because the usual additive formulation in iterative
procedures could make that null cells of the initial OD become no null through the iterative process.
The question is whether this is realistic or consequence of the numerical procedure with no relation with
the underlying reality. If the initial OD matrix is structurally reliable then null cells will correspond to
OD pairs for which no trips have been observed, and then, generating trip between these OD pairs just
because the numerical method does, it would not be realistic. Since one of the hypothesis in this thesis
is that structurally reliable historical ODmatrices are available in most cases of interest, then we will use
this assumption directly or indirectly whenever it could be possible.

1.2.2 Simulation-based optimization approaches

Another stream of research takes into account that traffic phenomena are usually stochastic and, thus,
analytical approaches cannot capture all variable interactions or their effects on the objective function.
Simulation-based optimization (SO) algorithms combine the simulator and the optimization algorithm
to obtain the next OD matrix with a lower objective function value without any explicit analytical or
numerical gradient. Different simulation-optimization techniques have been successfully proven, and
these are heuristic optimization methods for stochastic systems (Bierlaire (2015)).

One powerful advantage of the SO approaches is that the objective function can include other traffic
measurements such as travel times and link speeds, since these approaches need no analytical expression
to obtain the gradient direction.
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Some relevant alternatives are the Nelder–Mead simplex algorithm (Nelder & Mead (1965)); SNOBFIT
(Huyer & Neumaier (2008)); genetic algorithms (Ma & Abdulhai (2002), Kim & Rilett (2004), Ma et al.
(2006)); metamodels embedded into the simulation-based optimization approaches (Osorio & Chong
(2015), Osorio (2019)); and simultaneous perturbation stochastic approximation (SPSA), (Spall (1998,
2003)), which is one of the most used in demand adjustment.

Simultaneous perturbation stochastic approximation

The simultaneous perturbation stochastic approximation (SPSA) is an iterative optimization algorithm
that does not depend on the objective function’s direct gradient information. It computes an approxi-
mation to the gradient after measuring the objective function in perturbed points on the neighborhood
(further details on this are in Chapter 4). This gradient approximation is calculated without requiring an
explicit functional relationship between the variables and the objective function, which makes it suitable
for the OD estimation problem (Equation 1.6). Moreover, the gradient approximation is calculated with
only a few evaluations of the objective function, which makes it computationally more efficient than a
numerical gradient approximation.

Because of the characteristics described above and the possibility of easily including additional measure-
ments like link speeds and travel times into the objective function (Antoniou et al. (2016), Carrese et al.
(2017), Nigro et al. (2018)), many researchers have chosen to use SPSA (Balakrishna (2006), Cipriani et al.
(2011), Antoniou et al. (2015), Cantelmo, Cipriani, Gemma & Nigro (2014), Lu et al. (2015), Kostic et al.
(2015), Tympakianaki (2018)).

1.3 From static to dynamic: the dynamic origin-destination matrix
estimation problem

Traffic modeling and simulation evolved together with the increase in computational power, allowing
to address the new paradigm known as dynamic traffic assignment models. These models are able to
capture the dynamics and evolution of a traffic network over time, thus increasing the level of detail and
closeness to the reality represented by the model, although also its complexity. Moreover, the demand
profile must be dynamic when used as a model input, thus requiring OD matrices that evolve over time
and are usually split into time periods, so they can be understood as a time series of OD matrices. The
transition from static OD matrices (Figure 1.4a) to dynamic OD matrices (Figure 1.4b) opened up the
field for studying indirect estimation methods for dynamic OD matrices. The problem of obtaining a
suitable dynamic ODmatrix that is associated with the dynamic traffic assignment is called the dynamic
OD matrix estimation (DODME) problem.
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Figure 1.4: OD matrices for traffic simulation

The OD estimation problem formulated in Equation 1.6 indeed holds for both demand profiles. A
static demand means a unique OD matrix for the whole time period under study, and therefore it is
also expected that the traffic counts outputs of the static user equilibrium will be static.. On the other
hand, a dynamic demandprofilemeans thatODmatrices evolving over time capture the traffic situation’s
dynamicity over time, and thus the traffic counts are also dynamic over time. The only thing that changes
in the formulation is the problem’s dimension of vectors and variables. Therefore, givenT = {t1, . . . , tT },
which are the time periods dividing the simulation time, the OD matrices are X =

[
xijr

]
ijr

, where xijr
is the flow from origin i to destination j, departing at time period r, and the traffic counts are Y = [ylt]lt,
where ylt stands for the flow crossing link l at time period t.

As mentioned above, dynamic traffic assignment models imply a dynamic demand profile, which in
turn leads to the emergence of complex dynamic phenomena derived from traffic propagation over time
such as congestion over time periods and different used paths for each time period. This incremental
complexity has led researchers to explore new and different approaches that take into account the
temporal behavior of the transport system as a complex one. The analytical approach, which will be
further described in this thesis, has its origins on Frederix et al. (2010, 2011), Toledo & Kolechkina (2013),
Cantelmo, Viti, Tampère, Cipriani &Nigro (2014). Many other approaches have been successfully tested,
such as Kalman filter approaches for online dynamic OD problems (Ashok (1996), Ashok & Ben-Akiva
(2002), Antoniou et al. (2004), Bierlaire & Crittin (2004), Lin & Chang (2007), Barceló et al. (2013)). Others
include simulation-based optimization approaches, which have been proposed mainly by Balakrishna
(2006), Cipriani et al. (2011), Djukic (2014), Antoniou et al. (2015), Tympakianaki (2018).

1.3.1 Extension of the analytical formulations

Similarly to the approach described in Section 1.2.1, the DODME problem can use the dynamic assign-
ment matrix as an approximation of the DTA, which is A = A(X) =

[
alt
ijr

]
, and alt

ijr
represents the

proportion of (i, j)OD flow departing at time r, xijr and passing through link l at time t, ylt. Therefore,
the linear relationship between traffic counts and OD flows is

ylt =
∑

(i,j)∈N

t∑
r=1

altijrxijr ⇒ Yt =
t∑
r=1

Atr · Xr (1.17)

which takes into account flows departing in past time periods r ≤ t that can feed the sensor due to
congestion and long travel times. Similarly,Atr is the partial assignment matrix that relates the OD flows
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departing at time r and which are detected by all the sensors at time t. Finally, the global information
can be summarized as a matrix product between the dynamic assignment matrix and the OD flows for
each time interval. This is expressed as

Y = A(X) · Xwith A =

©«
A11 0 . . . 0

A21 A22 0
...

...
. . .

. . . 0
AT1 · · · ATT−1 ATT

ª®®®®®¬
where Atr =

©«
a
l1t
i1j1r

· · · a
l1t
iIjIr

...
. . .

...

a
lLt
i1j1r

. . . a
lLt
iIjJr

ª®®®¬ (1.18)

where the vector of detected flows is Y = (Y1, . . . ,YT ) = (y11, . . . , yL1, . . . , y1T , . . . , yLT ), and the
vector of OD flows is X = (X1, . . .XT ) = (xi1j11, . . . , xiIjJ1, . . . , xi1j1T , . . . , xiIjJT ). This linear mapping
between the linkflows and theODflows is indeed the first term in the Taylor expansion of the relationship
between link flows and OD flows, where additional terms capture the assignment matrix’s sensitivity
to changes in the OD flows, path choice and congestion propagation effects, as shown in Frederix et al.
(2011, 2013). Let x̃ijr be in the neighborhood of xijr. Then, the Taylor expansion is

ylt =
∑

(i,j)∈N

t∑
r=1

altijr(X̃)x̃ijr +
∑

(i,j)∈N

t∑
r=1

∂ylt(X̃)
∂xijr

(xijr − x̃ijr) + · · · = (1.19)

=
∑

(i,j)∈N

t∑
r=1

altijr(X̃)x̃ijr +
∑

(i,j)∈N

t∑
r=1


∂


∑

(i,j)∈N

t∑
r=1

altijr(X̃)xijr


∂xijr


(
X̃
)
(xijr − x̃ijr) + · · ·

One second-order approach for solving DODME is Toledo & Kolechkina (2013). However, although
theoretically the second order terms apparently could bring more details to the dynamic aspects, they
require a more complex numerical optimization procedures (e.g., Armĳo rules to compute the step
length) that require more computational effort, while not showing a significant improvement in the
quality of the results.

A GLS-based quasi-dynamic OD flows estimator was proposed by Cascetta et al. (2013). It uses traffic
counts, under the assumption that ODmatrices shares are constant across a reference period, whilst total
flows leaving each origin vary for each sub-period within the reference period. The advantage of this
approach over conventional within-day dynamic estimators is that of reducing drastically the number
of unknowns given the same set of observed time-varying traffic counts.

1.3.2 Extensions to dynamic formulations: Simulation-based optimization
approaches

The extension to the dynamic traffic assignment naturally increases the complexity of the traffic assign-
ment. Due to the increase in the number of variables, stochasticity, congestion, and the MSA iterative
procedure that is used to launch the assignment, the analytical objective function becomes unavailable.
Therefore, unless some additional assumptions are considered as shown in previous Section 1.3.1, the
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gradient cannot be calculated analytically, and the significant increase in variablesmakes it computation-
ally inefficient to calculate it numerically. This has led to the growth in recent years of using stochastic
algorithms and simulation-based optimization methods for dynamic traffic models.

Moreover, and as already mentioned, the possibility of including new traffic measurements makes
these approaches very suitable for emerging information and communication techonlogies (ICT) methods
for collecting data. To see some examples of dynamic traffic assignment models, the use of other traffic
measurements, and SO approaches, these can be found in Cipriani et al. (2011), Cantelmo, Cipriani,
Gemma & Nigro (2014), Bullejos et al. (2014), Antoniou et al. (2016), Kostic et al. (2017).

1.4 Thesis environment

The work of this thesis is a collaboration between the German company PTV Group and the Universitat
Politècnica de Catalunya, with an agreement under the programDoctorats Industrials of the Catalan Gov-
ernment. This is a research program that partially funds the three participants (PhD student, University
and Company) in order to motivate innovation and research in the Catalan industry environment. The
collaboration should disruptively solve a problem that the company has and the university must address
and validate the solution, that must be innovative and fulfill the requirements of a PhD thesis.

1.4.1 PTV Group

PTV Group1 is a simulation software company founded in 1979 in Karlsruhe, Germany. His main
product is a macroscopic and mesoscopic simulator called Visum, PTV AG (2020). In the context of the
increase of use of the dynamic models, Visum offers a Simulation-based Assignment (SBA) based on
Mahut (2000). Transportation planning and simulationmodels are widely used by traffic authorities and
planners as a decision support tool and scenario assessment and the inputs of such models are crucial to
accurately reflect reality. This is themain reasonwhy traffic simulation software companies are investing
in research on procedures to improve the generation of suitable data inputs for a proper operation of the
simulation models, which are the appropriate ODmatrices, that identify the dynamic mobility patterns.

The Innovation department of PTV is based in the headquarters of Karlsruhe and directed by Dr. Klaus
Nökel that, together with the collaboration of Dr. Jaume Barceló, co-advisor of this thesis, opened in
2017 an Innovation and Research Center in Barcelona. The main objective of this delocalized subsidiary
is to develop solutions for the most appealing long-term objectives of the Visum platform.

The first problem to handle is the one of this thesis, which consists of finding ways to improve the OD
estimation process usually supplied by conventional technologies (e.g. inductive loop detectors, radar...)
and now in combination with traffic-related measurement supplied by ICT applications (e.g. Bluetooth,
GPS, Smartphones...) and its main objectives will be to enhance the knowledge in the mathematical
models to successfully develop new methods for the estimation of dynamic Origin-Destination (OD)
matrices that the new technologies make available.

From the perspective of a simulation modeling software company, the OD matrices are crucial for the
transportation analysis models, both in the strategic planning models and operational ones. The OD
estimation problem is an appealing and complex problem that, due to its underdetermination can lead to
different solutions, depending on the initial ODmatrix. Moreover, the complexity of the dynamic traffic

1www.ptvgroup.com

https://www.ptvgroup.com
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assignment produces a non-analytical objective function. The addition of ICT traffic measurements
aims to reduce the underdetermination of the problem. This company objective implies the study of
the current methods that are used in both static and dynamic assignment, learning from them and
checking their computational and convergence properties, the quality of the solution that they provide
and advantages and disadvantages of these methods when new ICT data is included in the statement of
the problem formulation.

1.4.2 Universitat Politècnica de Catalunya

This thesis has been carried out in the Department of Statistics and Operations Research2 at Universitat
Politècnica de Catalunya, in Barcelona, Spain. This department is a multi-focus research department
related to themathematics fields of statistics and operations research and is internationally recognized for
their works in statistical clinical and trial analysis, supply chain processes, simulation and optimization.
Among these areas, there is a groupofprofessors that haswide and recognizedexpertise in transportation
problems related to traffic data analysis and simulation.

The line of research followed by this thesis began with the works in Bullejos et al. (2014) related to
Bluetooth data and Kalman filtering to address the OD estimation by Barceló et al. (2013). Followingly,
the research group was involved in the MULTITUDE cost action study, Antoniou et al. (2016), of the
simulation-based optimizationmethods, relying on the use of the SPSAmethod. From the university de-
partment, this thesis is under the supervision of Dr. Lídia Montero, associate professor in transportation
analysis and modeling for more than 20 years.

1.4.3 Previous work of this thesis

The PhD candidate developed his Master’s thesis within the same research group and coadvisored by
the same professors, Dr. Jaume Barceló and Dr. Lídia Montero. The master’s thesis was a first approach
to the simulation-based optimization approach to address calibration methods for traffic simulation
models. In this work, we used the SPSA algorithm to properly calibrate the car following parameters of
a microscopic model of a Bluetooth and radar sensorized motorway in Sweden. The successful results
were presented in EWGT 2017 and published in Ros-Roca et al. (2017) and Ros-Roca (2017).

This Master’s thesis was also awarded as the Best Master’s thesis for Transport Infrastructure in Spain 2017
by the Abertis Chair of Transportation3.

1.5 Thesis motivations and objectives

The main objective of this thesis is to use ICT traffic measurements provided by commercial vendors for
improving the OD estimation process in Visum software not only from the computational point of view
but also from the quality of the resulting estimated OD matrix.

As this thesis is under the Industrial Doctorate program, the results of this thesis are highly oriented
towards producing a methodology that can be used by the customers that use Visum. Nevertheless,
the theoretical aspects and the contributions to knowledge have been also considered and validated

2www.eio.upc.edu
3Abertis Press Note (www.abertis.com/en/press-room/press-releases/992)

https://www.eio.upc.edu/en
https://www.abertis.com/en/press-room/press-releases/992
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under the supervision of the University. In this sense, we are focused on using real ICT data, such as the
(pre-processed or not) GPS data provided by commercial vendors and that the customers can have access
to them. Differently from the Bluetooth and WiFi data that require a detection layout design involving
also infrastructure costs, the privacy policies of the commercial vendors that collect and distribute the
GPS data do not permit to infer the origin and destination for each GPS trace (to preserve anonymity)
nor the data set information (how is it collected, vehicle types...). Therefore, the high volume of these
GPS data sets and the ease of generation make them appealing and interesting, aiming at accessing the
implicit information regarding the traffic state. Moreover, the computational aspect of the OD estimation
problem-solving process must be taken into account, analyzing each step and studying alternatives to
reduce the computational burden.

PTVGroup has 40 years of experience in the deployment of software solutions that are now commercially
available. PTV Group was born from academic research groups and these deployed solutions are based
always on the trend lines of research and updated with the current advancements. The Industrial Doc-
torate environment permits also to use of such deployed solutions and takes advantage of its availability
to produce more rapidly and efficiently. In this sense, this thesis uses the SBA assignment for dynamic
mesoscopic models and also the k shortest paths algorithm implemented in Visum.

Last but not least, it is well known that the existing OD estimation procedures are great in increasing
the fitting between simulated and observed traffic counts. However, the drawback of this increase is
usually the demand pattern structure. In this tessitura, we also focus on providing an OD estimation
procedure that maintains the structure of the reference OD matrix. Since the customers of PTV Group
are transport planners that aim to re-estimate past years’ OD matrices that must be updated, we assume
that a reliable reference OD matrix is available and we focus particularly on preserving such structure,
which is the demand pattern of the network. In this sense, we always analyze the similarity between
them in all experiments of the thesis.

1.6 Thesis outline

This thesis is organized into 7 chapters.

Chapter 1 introduces the OD matrix estimation problem and its importance in traffic simulation and
presents how this problem has been historically addressed. Here, the motivation, objectives and con-
tributions of this thesis are also explained. Chapter 2 explains the traffic data and its evolution from
conventional traffic data from counting stations equippedwith the usual sensors to the emergence of ICT
traffic measurements. Chapter 3 discusses how to measure the quality of an estimated OD matrix after
the OD estimation process since it is crucial to obtain estimates that are reflecting a realistic mobility
pattern. Chapter 4 shows the advances, findings and contributionsmade regarding the simulation-based
optimization procedures to solve the OD matrix estimation problem, using or not travel times coming
from ICT data. In Chapter 5, we analyze carefully the analytical approaches for the dynamic models. In
Chapter 6, we propose an alternative analytical approach derived from the GPS data, which is the base
for an original approach in the data-driven estimation procedures of the dynamic assignment matrix. In
Chapter 4, 5 and 6 we show a complete set of experiments that support the conclusions of such chapters.
Finally, in Chapter 7 we summarize the major contributions and outcomes from this thesis, concluding
with further research and some final remarks.
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Chapter 1
The OD matrix estimation problem and the state of the art

Chapter 2
Traffic data evolution, from traffic counts to
ICT data. Synthetic data generation and link
travel times estimation

Chapter 3
Underdetermination, similarity measures,
estimated OD matrix quality

Chapter 4
Simulation-based Optimization techniques: SPSA
Computacional testing

Chapter 5
Analytical approaches: Dynamic Spiess
Computational testing

Chapter 6
Data-Driven Assignment-Free Dynamic OD matrix estimation
Computational testing

Chapter 7
Conclusions, contributions and further research

OD Estimation, data sources and goodness-of-fit

Algorithmic development

Conclusions

Figure 1.5: Thesis outline

1.7 Thesis Contributions

The main contributions of this thesis are listed below:

In this thesis and all the related works, we always analyze and validate the obtained results using
a goodness-of-fit measure based on matrix similarity to guarantee the reliable OD travel pattern,
according to the demographics of the study area.

The GPS data acquired from commercial vendors present some problems of cleansing, filtering
and quality. Consequently, in order to be able of conducting a sensitivity-like analysis, we had to
design in Chapter 2, a combined mesoscopic and microscopic framework to consistently generate
synthetic data to test under controlled conditions the OD estimation process, producing traffic
counts, GPS data and a historical OD matrix. This procedure emulates very closely the physical
GPS data collection process.
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In Chapter 3, we propose a weightedMSSIM similarity measure based on the contribution of each
origin and destination regarding the number of vehicles.

In Chapter 4, we propose an enhanced SPSA procedure, with normalization of variables and an
automatic parameters selection procedure.

We also propose a new heuristic methodology to include maximal subpaths travel times in SPSA,
that are extracted from GPS traces.

In Chapter 5, we state the analytical formulation and implementation of the dynamic variant of the
Spiess (1990) proposal to solve the dynamic OD estimation problem.

We propose a data-driven assignment-free dynamic OD matrix estimation in Chapter 6. This new
proposal combines GPS data, traffic counts and the historical OD matrix to find an estimate of the
OD matrix. In this proposal, we replace the dynamic traffic assignment by a process of the GPS
data, to reduce the computational burden.

At the end of Chapter 6, we propose a set of stopping criteria that aimed to get the best quality of
the estimated ODmatrix, using a measure of similarity, rather than objective function convergence
criteria.

1.8 Thesis Publications

Journal articles

Ros-Roca, Xavier; Montero, Lídia; Barceló, Jaume; Nökel, Klaus; Gentile, Guido (2020). “A practical
approach to Assignment-Free Dynamic Origin-Destination Matrix Estimation problem”. Submitted to
Transport Research Part C: Emerging Technologies.

Ros-Roca, Xavier; Montero, Lídia; Barceló, Jaume (2020). “Investigating the Quality of Spiess-Like and
SPSA approaches for Dynamic OD Matrix Estimation”. Transportmetrica A: Transport Science, Vol. 17(3),
pp 235–257.

Peer reviewed conference papers

Ros-Roca, Xavier; Montero, Lídia; Barceló, Jaume andNökel, Klaus (2021). “DynamicOrigin-Destination
Matrix Estimation with ICT Traffic Measurements using SPSA”. To be published in IEEE Proceedings for
the 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS
2021). 21st − 24th June 2021. Virtual due to COVID-19.

Montero, Lídia and Ros-Roca, Xavier (2020). “Using GPS tracking data to validate route choice in OD
trips in dense urban networks”. Transportation Research Procedia, Vol. 47, pp 593–600. 22nd Euro Working
Group of Transportation, EWGT 2019, 18th − 20th September 2019, Barcelona, Spain.

Montero, Lídia; Ros-Roca, Xavier; Herranz, Ricardo and Barceló, Jaume (2019). “Fusing mobile phone
datawith other data sources to generate input ODmatrices for transport models”. Transportation Research
Procedia, Vol. 37, pp 417–424. 21st Euro Working Group of Transportation, EWGT 2018, 17th − 19th

September 2018, Braunschweig, Germany.

Ros-Roca, Xavier; Montero, Lídia; Schneck, Arne and Barceló, Jaume (2018). “Investigating the Per-
formance of SPSA in Simulation-Optimization Approaches to Transportation Problems”. Transportation

https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
https://www.tandfonline.com/doi/abs/10.1080/23249935.2020.1722282
https://www.tandfonline.com/doi/abs/10.1080/23249935.2020.1722282
https://www.sciencedirect.com/science/article/pii/S2352146520303355
https://www.sciencedirect.com/science/article/pii/S2352146518306276
https://www.sciencedirect.com/science/article/pii/S2352146518306276
https://www.sciencedirect.com/science/article/pii/S2352146518303065
https://www.sciencedirect.com/science/article/pii/S2352146518303065
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Research Procedia, Vol. 34, pp 83–90. 6th International Symposium of Transport Simulation and 5th In-
ternational Workshop on Traffic Data Collection and its Standardization, ISTS-IWTDCS 2017, 3rd − 6th

August 2018, Ehime, Japan.

Ros-Roca, Xavier; Montero, Lídia and Barceló, Jaume (2017). “Notes on Using Simulation-Optimization
Techniques in Traffic Simulation”. TransportationResearch Procedia, Vol. 27, pp 881–888. 20th EuroWorking
Group of Transportation, EWGT 2017, 4th − 6th September 2017, Budapest, Hungary.

Peer-reviewed presentation at Conferences

Ros-Roca, Xavier (2021). “A Data Driven Approach to Dynamic Origin-Destination Matrix Estimation”.
In 2021 International Symposium on Transportation Data andModelling (ISTDM 2021), 21st−24th June 2021.
Virtual due to COVID-19.

Ros-Roca, Xavier; Montero, Lídia; Barceló, Jaume; Nökel, Klaus (2021). “Dynamic Origin-Destination
Matrix Estimation with ICT Traffic Measurements using SPSA”. In 7th International IEEE Conference on
Models and Technolgies for Intelligent Transportation Systems (MT-ITS 2021), 16th − 17th June 2021. Virtual
due to COVID-19.

Ros-Roca, Xavier; Montero, Lídia; Barceló, Jaume; Nökel, Klaus; Gentile, Guido (2020). “Transport
Analytics approaches to the Dynamic Origin-Destination Estimation Problem”. In 3rd Symposium on
Management of Future Motorway and Urban Traffic Systems (MFTS 2020), 6th − 8th July 2020. Virtual due
to COVID-19.

Ros-Roca, Xavier; Montero, Lídia and Barceló, Jaume. “Transport Analytics approaches to the Dynamic
Origin-Destination Estimation Problem”. In IV Campus Científico del Foro de Ingeniería del Transporte (FIT),
24th − 26th June 2020. Virtual due to COVID-19.

Ros-Roca, Xavier; Montero, Lídia and Barceló, Jaume. “Exploiting ICT Measurements in the Dynamic
Origin-Destination Estimation Problems”. In III Campus Científico del Foro de Ingeniería del Transporte (FIT),
4th − 5th April 2019. Cercedilla, Madrid, Spain.

Ros-Roca, Xavier; Montero, Lídia; Schneck, Arne and Barceló, Jaume. “Investigating the quality of SPSA
and Spiess-like approaches for Dynamic OD Estimation”. In Mathematics Applied in Transport and Traffic
Systems (MATTS 2018), 17th − 19th October 2018. Technical University of Delft, The Netherlands.

Ros-Roca, Xavier; Montero, Lídia and Barceló, Jaume. “Avances en la investigación de PTV IBERIA en
materia de estimación dinámica de matrices OD”. In XII Congreso de Ingeniería del Transporte Spain (CIT),
6th − 8th June 2018. Gĳón, Spain.

https://www.sciencedirect.com/science/article/pii/S2352146518303065
https://www.sciencedirect.com/science/article/pii/S2352146518303065
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2
Traffic data: From traffic

counts to ICT traffic
measurements

This chapter focuses on the evolution of the traffic data from conventional traffic counts to the new paradigm of ICT
devices, that permit to collect information about the vehicles at different places through time. These new devices
open the range of traffic data to path reconstruction, and estimation of link and path travel times. At the same time,
we propose a framework to synthetically generate consistent traffic counts, GPS and historical OD matrix data sets
to build a synthetic experiment to test the OD matrix estimation procedures. At the end of the chapter, we also
design and test a methodology to extract the information from GPS data and transform it into estimates of link
travel times.

Motorized vehicles have become a key transportation mode that supports individual mobility, which
has led to a continuous increase in traffic flows on road networks. Thus, it is necessary to develop
applications that increase the efficiency of road networks and diagnose problems while trying to avoid,
alleviate, and solve these problems in a variety of circumstances. Planning and designing road networks
have been the strategic tools for achieving these objectives since the beginning, and traffic control and
management systems are the operational tools for managing traffic systems in real-time. Acting on
a system requires acquisition of knowledge about the system. Such knowledge is usually generated
from the observational data of variables that characterize the state of the system, which means that
many sensors are needed to capture these data. The advent of information and communication technologies
(ICT) and their pervasive dissemination make it possible to acquire new and unprecedented amounts
of data, thus enabling the generation of new, richer knowledge. This in turn makes more efficient ways
of controlling and managing the traffic network possible, as well as the possibility of translating the
knowledge into information that, when properly conveyed to users, can help them use the network
better and change their behaviors. These are the objectives of the intelligent transport systems that are
made possible by ICT applications.

2.1 Conventional traffic data

In the case of transportation systems, traffic data is usually collected by sensors that gather different
measures describing the traffic and vehicle conditions in certain places on the network. There are many
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sensors that measure different physical variables, and they can be placed in vehicles or installed in the
pavement and other infrastructures in the urban network.

In traffic management, one useful measure is the traffic volume on different roads in the network.
Installing these sensors allows monitoring the traffic conditions in specific zones. Depending on how
they are installed in the infrastructure, the sensors can be divided into:

Intrusive sensors: These are installed across the pavement surface. Installing road sensors thus
implies traffic disruption during their installation as well as high maintenance and repair costs.
On the other hand, their advantage is that they are highly accurate—when well calibrated—at
detecting vehicles, which is why they have been widely implemented over the years. These high
costs and implications require that their installation usually be strategic, not only for the specific
purpose of OD estimation, but also for other traffic management purposes.

Non-intrusive sensors: These are installed in other places on the roads, such as atop a mast. These
sensors are also expensive, but their installation does not imply disruption. They are less accurate
and sensitive to weather, environmental conditions, and interference from other objects.

Figure 2.1: (a), (b) and (c) are intrusive sensors and (d), (e) and (f) correspond to non-intrusive sensors.
Image taken from Guerrero-Ibáñez et al. (2018)

Figure 2.1 and Table 2.1 are taken from Guerrero-Ibáñez et al. (2018), and they describe the different
intrusive and non-intrusive sensors that measure traffic counts on the network. All these sensors detect
vehicles crossing the studied road in the network, and they aggregate the counts for a certain time period.
The most used sensor is the inductive loop detector (ILD), which consists of a long wire coiled into a
loop installed under the road surface. It measures changes in the electrical properties of the circuit when
a vehicle passes over it, producing an electrical current due to the magnetic field perturbation. However,
they need to be recalibrated regularly, a policy that is not always possible. Furthermore, according to the
experience shared bymost practitioners, a significant amount of detectors (i.e., about 20% of all installed)
are either out of service or require recalibration.
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Table 2.1: Categories of sensors currently used for trafficmanagement. Table taken fromGuerrero-Ibáñez
et al. (2018)

Category Sensor Type Application and Use

Intrusive

Pneumatic road tube Used for keeping track of the number of vehi-
cles, vehicle classification and vehicle count.

Inductive Loop Detector (ILD)
Used for vehicle’s movement, presence, count
and occupancy. The signals generated are
recorded in a device at the roadside.

Magnetic sensors Used for detection of presence of vehicle,
identifying stopped and moving vehicles.

Piezoelectric Classification of vehicles, count vehicles and
measuring vehicle’s weight and speed.

Non-intrusive

Video cameras

Detection of vehicles across several lanes and
can classify them by their length and report
vehicle presence, flow rate, occupancy and
speed for each class.

Radar sensors

Vehicular volume and speed measurement,
detection of direction of motion of vehicles
and used by applications for managing traffic
lights.

Infrared Application for speed measurement, vehicle
length, volume and lane occupancy.

Ultrasonic Tracking the number of vehicles, vehicle’s
presence and occupancy.

Acoustic array sensors
Used in the development of applications for
measuring vehicle’s passage, presence and
speed.

RFID (Radio-Frequency identifi-
cation)

Used to track vehicles mainly for toll manage-
ment.

However, these conventional sensors are not capable of capturing the network’s mobility patterns, which
therefore must be inferred. According to Cascetta (2001), the data available from traffic counts is suitable
for estimating OD matrices. Assuming that traffic flows on the links of a road network are the result of
assigning an ODmatrix to it and that these traffic flows are measurable by traffic counting stations, then
the problem of finding the OD matrix where they originated can be considered the inverse of the traffic
assignment problem. For instance, one can appreciate in Problem 1.6 that traffic counts on certain links
in the network play a decisive role in the OD estimation problem.

All these previously mentioned sensors must be installed on the network. Furthermore, they also need
calibration, maintenance, and repairs in order to provide precise measurements of traffic counts. All
these costs require deciding on the location and number of traffic measurement stations in order to
place them strategically. Several studies have been conducted on the optimal placement of such sensors
for maximizing network coverage and observability while also minimizing the number of stations in
order to reduce the cost of the whole detection layout. The detection layout is strongly related to the
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observability of the system (Castillo et al. (2008)). Some heuristic techniques for finding a suboptimal
detection layout can be found in Barceló et al. (2012).

2.2 The emergence of ICT and traffic measurements

Information and communications technologies (ICT) have opened the range of traffic measurements that can
be used in intelligent transportation systems, because the communication between sensors provides new
insights and information about the traffic phenomenon on the studied network. The main advantage
that should be highlighted is vehicle identification, by which one vehicle can be detected in two different
places using sensors connected in the network infrastructure. Moreover, connected devices in vehicles,
such as GPS devices ormobile phones, provide geolocation data, whichmust be post-processed to obtain
different measures of their trip. These data are different from conventional traffic data, which measures
a certain variable at a fixed point in the network. This new technology allows collecting spatio-temporal
information about the traffic conditions.

A large class of ICT detection devices is known as space-based. These are devices that capture the
identity of a vehicle or an on-board device in the vehicle. Some examples are license plate recognition,
Bluetooth/Wi-Fi antennas, and tag readers. The vehicle or device is identified at the point where the
detector is located, and reidentified downstreamby another detection device. Moreover, the forthcoming
road side units (RSU) also dialogue with the equipped vehicle passing through its detection range.
However, these are different from inductive loop detectors that capture all the vehicles, as some studies
have shown that only about 30% of all vehicles are visible (Daamen et al. (2014)). Another example can
be found in public transport in the form of smart cards that record the origin and destination of their
user’s trips.

Despite thepromise of this non-conventional data to supplymuch informationandnewanalyses that gain
a better understanding of the transportation system, differentmethods and techniques for processing and
modeling are needed to obtain the desired information. Those techniques are different from those used in
the case of the previous sensor data, that is gathered with an intended purpose. The ICT sensors usually
do not require active and controlled solicitation. Moreover, the large size and continuous generation
makes such data challenging. Some examples of working with these data for OD estimation areMo et al.
(2020), who use license plate recognition technology, and Barceló et al. (2013), who use Bluetooth pairing
information when a vehicle is sequentially captured by two antennas.

The following section defines another class of ICTdetection devices, the time-baseddevices, which capture
the evolution of the same vehicle’s location instead of the visible vehicles at a certain location. This thesis
will focus on this class of data. This classification between space-based and time-based devices was
proposed by Nanthawichit et al. (2003).

2.3 Time-based ICT devices

Time-based devices are able to sequentially capture the location of a vehicle over time. These are usually
external devices inside a vehicle that track the device’s geoposition and thus that of the vehicle. Themain
examples of this class are probe vehicles designed for tracking their own trajectory, GPS devices, and
most recently drivers’ smartphones that passively record their locations. In recent years, probe vehicles
(or floating car data) have been poorly used because of the growth of smartphones and GPS devices that
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spontaneously capture vehicle locations. As in the space-based class, vehicles captured by these devices
are obviously only a sample of the total population circulating on the network. Nevertheless, when a
huge amount of data is gathered on these vehicles circulating on similar days (for example, during rush
hour on workdays), the traffic state can be inferred using data analysis techniques that overcome the
drawbacks and limitations of conventional transportation data collection methods, such as household
surveys and conventional traffic measurement stations.

Nowadays, the main producers and owners of these data sets are the Netherlands-based commercial
vendor TomTom in the case of GPS units and, in the case of probe vehicles, INRIX from the United States
and HERE from the Netherlands. In the case of smartphones, the data come from the phone operators
and commercial providers who buy and process these large sets of geopositioning data, Antoniou et al.
(2019).

These data sets provide information on the mobility of many individuals throughout the network and
at high temporal resolution, which in some cases allows either tracking the trajectory of the vehicle or at
least correctly inferring the route choice. However, the time latency of each individual depends on the
particular device and commercial policy, which implies a great amount of heterogeneity in the latency
(Chen et al. (2016)). Therefore, from a generic perspective, one can neither assume that the positioning
frequency is uniform in the data set nor that there is a unique route between two consecutive waypoints.
Moreover, in the case of mobile phone data (also called call detail record; CDR), positioning the device can
be imprecise, since it is uniquely determined by triangulation between nearby cell towers. In this case, at
least three cell towers are required for capturing distance to the device, which makes this more precise
in urban networks. However, many factors related to the antenna’s technology significantly affect the
precision of the CDR data.

These difficulties in finding the exact vehicle locations based on the phone’s data limit the use of such
data sources for traffic analysis. In fact, the CDR data allow locating the devices within the range of
the antennas, which allows obtaining global information (meaning all transport modes and purposes)
regarding the mobility of the devices at a certain time of the day, but they do not allow reconstructing
the trajectories of such mobile phones. Moreover, they do not inform us of the purpose or mode of
transport. Thus, mobile devices can be used for analyzing global mobility patterns and for calculating
scaling factors that convert the obtained OD matrix into a population-level count, thereby providing a
final estimate. Chen et al. (2016), Calabrese et al. (2011) and Alexander et al. (2015) used a census-based
ratio for each different zone, but they observed biases in zones with low penetration rates. Ma et al.
(2012) and Iqbal et al. (2014) took other interesting approaches that scale the obtained ODmatrices using
external procedures, such as traffic assignment and optimization steps.

Although both mobile phone and GPS data sets track vehicles circulating through the network, the
devices do not report the purpose of the trip or mode of transport. Some inference can be made by
studying each single user and their different days. For example, Phithakkitnukoon et al. (2010) and
Alexander et al. (2015) infer that the most frequently visited weekday locations during the day and at
night are home and work. Moreover, one can use CDR data to infer the purpose of the trip through
contextual information such as activity locations and service hours at points of interest (POIs) in the
network, as done in Xie et al. (2009), Huang et al. (2010) and Chen et al. (2010). Another interesting
approach when using CDR data for OD estimation is the work on Caceres et al. (2013), that uses the cell
changing of the devices as traffic counts on the link that crosses the boundary of two adjacent cells.

On the other hand, inferring the mode of transport from tracking requires more sophisticated methods.
For example, by projecting the points obtained from the mobile phone data onto the supply network of
different transport modes, one can therefore decide which mode of transport is used, although this has
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been tested successfully only for long distances and in low density areas. Moreover, some studies have
analyzed travel speeds and compared them to those of each transport mode, as well as whether there is
a station at the beginning or end of the trajectory (Wang et al. (2010)). Montero et al. (2019) combines the
information with other data sources to extract the mode of transport.

In summary, GPS data and the former use of probe vehicles producemore precise data sets by accurately
locating ICT devices. An example of a data set produced by this class of devices is shown in Table 2.2,
where the IDdefines eachdifferent device and its latitudinal and longitudinal position at each timestamp.
Each row of the data set is usually called a waypoint, which takes the form (IDk, tsk,l, latk,l, longk,l),
where k denotes the trip and l is the ordered l-th waypoint of the trip k. From now on, we will refer to
these data sets as either a waypoint data set or waypoint database.

Table 2.2: An example of a waypoint data set

ID Date Timestamp Latitude Longitude
4261353 2019-11-30 07:43:58 45.445988 9.1244048
4261353 2019-11-30 07:44:11 45.445496 9.1241952
.............. .................. .............. ................. .................
4261353 2019-11-30 07:45:08 45.444767 9.1192517
4261355 2019-11-30 07:45:02 45.445980 9.1247048
4261355 2019-11-30 07:45:23 45.445574 9.1192821
.............. .................. .............. ................. .................
4261355 2019-11-30 07:46:56 45.444767 9.1197541

In this thesis, we will assume that the available ICT traffic data is like what is shown in Table 2.2, which
is typical of what comes from GPS devices that are more precise reporting the exact latitudinal and
longitudinal position.

2.3.1 Time-based devices for OD estimation

The ODmatrix estimation problem is a bi-level minimization problem based on traffic counts, as shown
in Equation 1.6. It is a highly underdetermined problem,mainly because the number of variables (i.e., the
ODflows) ismuch larger than the number of available link traffic counts in urbannetworks. Furthermore,
a determined problem cannot be ensured even by a full detection layout that acquires traffic counts for
all links in the network. Therefore, many researchers have studied alternative methodologies and how
to exploit different data sources.

Van Aerde et al. (1993) and Eisenman & List (2004) made use of the data generated by probe vehicles
circulating through the network. As Eisenman & List (2004) stated, the question that arises is how the
available probe data can help overcome the underdetermination of the OD estimation problem. In the
case of probe vehicles, the assumption of full visibility is widely accepted, which means that the origins,
destinations, time departures, and paths of all tracked vehicles are known. In all these cases, a simple
count of probe vehicles and traffic counts for all the links provide estimates of the detection technology’s
penetration rates, which in turn can be used intelligently to improve the ODmatrix estimation problem.
However, biases can appear if the probe vehicles are not distributed similarly to the overall population
of vehicles.
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On the other hand, the tracking data sets of GPS devices and smartphones present more problems in
terms of the previously mentioned assumptions. In these cases, the waypoint data sets contain millions
of trips taken by anonymized users throughout the network every day over a long time period that is
usually more than a month and around a year. In the case of GPS devices, it is acceptable to assume that
the waypoint sequences pertain to on-road vehicles, but there is no reliable information regarding their
origin, destination, or travel purpose. For instance, last-mile fleet vehicles are usually equipped with
GPS devices, but they do not reflect real origin-to-destination trips. And smartphone tracking cannot
determine whether these trips pertain to private transport, pedestrians, or public transport. For such
cases, advanced analytics processes have been designed to infer the key aspects, origin, destination, time
departure, purpose, and mode.

Despite the drawbacks, a globalODmatrix can be obtained bymap-matching thesemillions ofwaypoints
and constructing paths between the different OD pairs using GPS or, as alreadymentioned, by observing
the change of regions in a mobile phone data set. Added value can be used to differentiate these trips
according to purpose and type of day, as in Alexander et al. (2015).

By agreementwith data providers, many researchers have designed a data collection process that gathers
onlyprivate vehicle tracking fromGPSdevices ormobile phonesduring timeperiods ondayswith similar
traffic conditions, for example by analyzing the morning rush hour for each weekday. Although these
trips are only a sample of the total trips in the network on a large scale, they can represent mobility
patterns for the selected time period on days with similar characteristics. In such cases, the assumptions
gathered from probe vehicles about origins, destinations, and purposes are also accepted, by which a
simple procedure can map the initial and ending waypoints of each trajectory onto the zonification of
the network, thus obtaining the origin and destination of each.

However, all the cited researchers agree on the fact that these OD matrices are initial approaches that
must be compared with other data sources like traffic counts to validate their accuracy, even when
the data collecting process has been designed. This requires resorting to very specific data analysis
techniques, given the huge amount of recorded data. Gundlegård et al. (2013) and Jiang et al. (2016)
provide good examples of this data processing to extract OD matrices. Ma et al. (2012) suggest that
the obtained OD matrix is a good candidate for use as an initial OD matrix in classic OD estimation
procedures, such as those described in Chapter 1.

It is a fact that waypoint data sets provide more information than a household survey and its posterior
processing, because they capture the network movement of many vehicles, human mobility patterns,
and the traffic state of the studied area. However, commercial data sets have an uncontrolled data
collection process whose accuracy and quality cannot be assumed. In fact, biases could be present in
data sets on anonymous vehicles due to detecting different samples of vehicles for different OD pairs.
Other problems with anonymized data are poor quality (i.e., low latencies that impede unequivocal
reconstruction of trajectories) and different vehicle purposes (such as fleet vehicles) that must be filtered.
These characteristics must be taken into account for specific uses because, if not, they can lead to wrong
conclusions. Moreover, given the commercial nature of these data sets that are gathered and sold by
private companies, as well as privacy rules, the validation and comparative analysis of the data set
quality is usually limited (Antoniou et al. (2019)).

To conclude,waypoint data sets haveproven tobe increasingly interesting to researchers andpractitioners
seeking to obtain new and different information on the traffic conditions in a study area. Using these
sets of data requires that one at least clearly understand the data collection process, which is responsible
for the quality, accuracy, and possible problems in the data set. Once the data has been analyzed, the
data must be pre-processed, cleansed, and filtered for its specific purpose and use.
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2.4 A procedure for generating synthetic GPS data

In most papers that deal with DODME by adding richer ICT traffic measurements to the conventional
link flow counts (Yang et al. (2017), Krishnakumari et al. (2020), Mitra et al. (2020)), the authors assume
specific conditions for controlling the data collection processes proposed by Lopez, Krishnakumari,
Leclercq, Chiabaut & van Lint (2017), Lopez, Leclercq, Krishnakumari, Chiabaut & van Lint (2017).
These conditions for collecting the data ensure their quality and allow making assumptions that form
the basis of the approaches. This is not always possible with commercial data, because the researcher
has no access to it, the fleet size is very limited, or the only available data are supplied by commercial
companieswhoprohibit access to the rawdata that they instead pre-process, depending on their business
model. Therefore, it is common to conduct simulation experiments that emulate reality, which is then
mimicked by generating synthetic data. Antoniou et al. (2016) provide an experimental framework that
has been widely used by researchers. However, they use specific microscopic simulation models and
numerical software (i.e., MATLAB). This is why we propose a synthetic and agnostic software data
generation process that fulfills the functional requirements.

This thesis proposes a procedure for synthetically generating data sets in order to computationally test
any network. The scheme in Figure 2.2 represents the synthetic data generation. As it is explained below,
the two data sets have been produced emulating the real process of collection in real word, so it validates
the procedure for computationally generating the different traffic measures. From a ground truth OD
matrix, XGT , and using both amesoscopic andmicroscopic model of the same network, the three needed
data objects are generated:

Ground truth
OD matrix

Detection
layout

Mesoscopic
model

Microscopic
model

Traffic
counts

Full waypoint
data base

GPS sampled
data base

Waypoint
sampling
process

Perturbation
process

Historical
OD matrix

Figure 2.2: Methodological scheme of the synthetic data generation for computational testing

The traffic count data set, ylt, is generated by inductive loop detectors installed in the network,
which tally the total number of vehicles that cross them in a fixed time period.

The GPS data set comprises the trajectories of a sample of vehicles circulating in the network.
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The historical OD matrix, XH, which acts as a reliable OD matrix that could be obtained from a
household survey or from a past project that must be updated.

The three data source outputs in this methodological scheme are the data sets this thesis needs to
investigate how to incorporate the GPS data set into the OD matrix estimation problem.

Traffic count data set

In real life, the counting stations are inductive loop detectors in the network. In practice, traffic counts
are commonly obtained by averaging traffic counts from a few days under the same traffic conditions,
since these are fairly stable counts. Therefore, to obtain the traffic count data set, a dynamic traffic
assignment uses the mesoscopic model with the ground truth OD matrix to produce link flow values
through simulation, measured in vehicles per hour (veh/h). The data set contains the ID code of the
detector and the flow captured for a certain time period. An example is shown in Table 2.3.

Table 2.3: An example of a traffic count data set

ID Initial Time Ending Time Flow
35 07:30:00 07:45:00 80.125
41 07:30:00 07:45:00 75.852
47 07:30:00 07:45:00 83.147
53 07:30:00 07:45:00 52.761
...... .............. .............. ............
35 07:45:00 08:00:00 124.547
41 07:45:00 08:00:00 112.365
47 07:45:00 08:00:00 183.787
53 07:45:00 08:00:00 102.643
...... .............. .............. ............
35 08:00:00 08:15:00 127.741
41 08:00:00 08:15:00 102.654
47 08:00:00 08:15:00 164.512
53 08:00:00 08:15:00 174.102
...... .............. .............. ............

In a real network, suitably placed counting stations collect the observed traffic counts in the network;
therefore, the detection layout (i.e., the detector placement) is another aspect that must be considered
when generating the synthetic data. In this case, we propose using any heuristic methodology that
satisfies some desired criteria. An optimal scenario would maximize the observability of the network.
Thus, we use the first phase of Barceló et al. (2012)’s detection layout procedure, which proposes an
easily implementation greedy algorithm that finds a suboptimal solution for maximizing coverage of the
OD demand in terms of link and path flows. This heuristic is an iterative process, as follows:

1) After a traffic assignment, compute the total flows on each link in the network.
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2) While detectors remain for placement:

a) Find the link with greatest flow and add a detector to it.

b) For each path that used the link, set its flow to zero.

c) Sum up and update the link flows, after (b).

3) Return to step 2.

This greedy algorithm finds a suboptimal detection layout because it is always placing a detector on the
link that captures the most after removing the already captured flow. One can stop the procedure once
a desired number of sensors have been placed or after capturing a percentage of total flow or of OD.

GPS data set

The properly calibrated dynamic traffic assignment model is usually supported by a mesoscopic sim-
ulation platform that emulates flow propagation with a given OD matrix, which will be used as the
ground truth OD matrix, XGT . This can be imported into microscopic modeling software that allows
tracking individual vehicles circulating throughout the network. This software uses the Vehicle Tracking
Procedure tool to generate vehicle-tracking data that are similar to those that are physically collected
from GPS devices. They are in the same format shown in Table 2.1.

In our case, we opted to generate a sample with a uniform penetration rate, meaning that each OD
pair has the same penetration rate for the GPS technology. On the other hand, we use an empirical
distribution of latencies for our synthetic experiments. In other words, we used GPS data from a past
project from which we obtain the empirical distribution of latencies using all the vehicles in the sample
and then assigned a uniform latency to each vehicle, following the mentioned distribution.

Historical OD matrix

The historical ODmatrix can be generated with multiple different perturbations of the ground truth OD
matrix, depending on the desired degree of similarity. This thesis obtains it from the ground truth OD
matrix by following Antoniou et al. (2016)’s MULTITUDE procedure, that is:

xHijr = x
GT
ijr (p+ q · εijr) , ∀i ∈ I, j ∈ J, r ∈ T (2.1)

where p, q are two parameters and εijr ∼ N(0, t), t ∈ (0, 1/2). These parameters p, q ∈ (0, 1) and p > q
decrement the historical ODmatrix relative to the ground truth value using a random perturbation. This
perturbation tries to emulate a realistic historical ODmatrix from surveys and past projects with similar
traffic conditions, although the emulation is certainly not identical to the ground truth OD matrix.

Taking an overall perspective of the methodology, the consistency between the three generated data
sources is ensured. Trafficcounts aregeneratedusingamesoscopicmodel; amicroscopicmodel generates
GPS tracks through simulation replicas; and vehicles are randomly sampled on different days under
similar traffic conditions. This realistically emulates the actual data collection process. Finally, the
historical OD matrix is generated by perturbing the ground truth OD matrix in order to preserve a high
degree of reliability. Therefore, the proposed methodology generates these data sources in such a way
that the synthetically generated data are indistinguishable from the physically measured data, making



2.4. A procedure for generating synthetic GPS data 29

them usable for computationally testing the proposed methods for estimating OD matrices when the
physical data are neither available nor good enough for these purposes.

2.4.1 Applying the methodology to a synthetic network

The proposed methodology has been tested on many different networks, but we present here the results
from applying it to the network shown in Figure 2.3, which is further analyzed to check the consistency
of the synthetically generated data sets.

Figure 2.3: The network used to test the proposed synthetic data generation process. Red arrows indicate
the installed counting sensors

This network was prepared using a ground truth OD matrix divided into time periods of 15 minutes.
This ODmatrix contains a total of 8300 trips, divided into the studied time periods. Both the mesoscopic
andmicroscopic simulations run from 07:00AM to 09:00AM in order to have data from 07:30AM to 08:30
AM (8 time periods) and from the preceding and posterior loading and unloading periods, respectively.
With the preceding and posterior time periods, the total number of trips increased to 15126 trips.

The microscopic simulator generated GPS data for around 14870 simulated trips each day, which is
similar to the ground truth OD matrix. Losses (around 2%) are attributed to the decimal numbers of
the cells that cannot be generated in a microscopic simulation. That amounts to almost 3 million trips
and almost 700 million waypoints for all 200 simulated days. With a 5% uniform penetration rate for all
OD pairs, the number of trips decreases to 750 trips per day, which correspond to around 150k trips and
37 million waypoints. At this point, each trip is represented by waypoints every 0.1 seconds, so latency
must be assigned to each vehicle.

As already mentioned, the empirical distribution of latencies was obtained from Montero & Ros-Roca
(2020), and it corresponds to the distribution of latencies in the GPS sample of the city of Barcelona
(Catalonia, Spain), as shown in Figure 2.4. This distribution shows that nearly 75% of the tracked
vehicles have latencies below 6 seconds. Once all sampled vehicles are assigned to one of these intervals,
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the specific latency is assigned uniformly. For example, if one vehicle is assigned to the interval [6, 15],
then, a latency of between 6 and 15 seconds is assigned with equal probability. Therefore, once each
latency is applied and the waypoints are filtered, the resulting database is reduced to around 44460
waypoints per day, meaning a total of around 9 million waypoints for all 200 days, with a penetration
rate of 5%.
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Figure 2.4: Empirical distribution of latencies (in seconds) of the GPS data from Barcelona

The detection layout was generated as explained before, using the heuristic of Barceló et al. (2012). A
total of 40 sensors were placed according to a certain level of desired coverage. They cover 97.27% of the
total ground truth flow, which is 69.64% of the OD pairs totally captured and 13.07% of those partially
captured.

Finally, regarding the historical OD matrix, we have applied Equation 2.1, with p = 0.75 and q = 0.15.
The historical OD matrix is decremented by an average of 25% with a random perturbation. This
perturbation emulates a realistic historical OD matrix from surveys and past projects that represent
highly similar traffic conditions. Effectively, the ground truth ODmatrix has 8300 trips and the historical
OD matrix 6232 trips.

2.5 A practical map-matching procedure for estimating link travel
times from commercial GPS data

As it is, the GPS data (Table 2.2) cannot be used directly for transportation analysis. Nevertheless, it
shows individuals circulating through the network that contain implicitly valid information regarding
the traffic conditions. Moreover, as already mentioned, we assume that the commercial nature of the
used data do not ensure reliability regarding neither the origin-destination information nor the overall
demand pattern. In order to bring to light the information on the traffic conditions hidden in the GPS
data, we propose map-matching these trajectories onto the network. Map-matching (explained in detail
below) reconstructs the defined trajectories from the waypoint sequence and estimates the travel times
at the link level by using the timestamps of each waypoint. In this thesis, we will consider that the GPS
data allows estimating link travel times by following the described procedure.

The map-matching process transforms waypoint sequences to paths in the network (PTV AG (2020)).
First, waypoints are projected onto the network using a map-matching approach (Kubicka et al. (2018)),
assigning them to an appropriate point on the nearest link in the network and, secondly, the trajectory
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is reconstructed. Figure 2.5 shows an example of how this process works, where the red stars are the
waypoints and the red numbers near the links are the relative position of the waypoint projection onto
the target link. Timestamps for waypoints are depicted in green. The first and last links are not fully
covered by time information and are thus dropped from the link sequence.
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Figure 2.5: Example of the interpolation of travel times according to the waypoints sequence

This map-matching process estimates the link travel times from the sequences in the waypoint times-
tamps. For all links in the sequence, their interpolated travel time is the sum of the timestamp differences
between two consecutive waypoints mapped on the target link. In the case of two consecutive waypoints
that are not wholly projected within one link, the distance-based fraction within the link is taken (lk is
the length of link k in Figure 2.5).

For instance, the travel time for link l3 can be estimated by taking into account that the travel time for a
trip between the 3rd and 4th waypoints is 20 seconds, and this time is the estimated travel time of the
whole link l3 plus a 0.2 fraction of l2 and a 0.7 fraction of l4 (Equation (a) in Figure 2.5). The estimated
travel time of link l4 is obtained by adding two parts (Equation (b)). The first part is the travel time
proportion between the 3rd and 4th timestamps in link l4 (adding 0.7 of l4 to 0.2 of the length of link
l2 plus the entire length of link l3). The second part is estimated directly from the proportion of link
l4 lying between the 4th and 5th timestamps (a fraction of 7 seconds calculated as 0.3 of the l4 distance
within the total distance between the 4th and 5th waypoints: 0.3l4 + 0.2l5).

The map-matching process transforms each trajectory from a waypoint sequence {WP1, . . . ,WPk} (see
Table 2.2) into a sequence of links in the network {L1, . . . , Ln} with an extrapolated travel time for each
link; that is, into a sequence (tt1, . . . , ttn), such that the sum of all these travel times is the difference
between the first and last waypoint of the trajectory. In this process, it is useful to store the departure
time of each path, which is indeed the timestamp of the first waypoint. Therefore, one can estimate the
timestamp when crossing each link by using the estimated travel time. Table 2.4 shows an example of
the map-matched floating car database.

Finally, once all the waypoint sequences are converted to several paths with full details at the link level,
link travel times can be estimated using an average of all the extrapolated link travel times for the same
time period. The outcome of this process is the set of estimated link travel times in each time period t:
ttlt,∀l ∈ L,∀t ∈ T for all links in the network that are used by the GPS tracking. This is the data set of
estimated link travel times.
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Table 2.4: An example of the map-matched database

Path ID
Link

Sequence
Link ID

Starting
Time

Travel Time
[sec]

Cumulated
Travel Time

[sec]
4261353 1 1542 07:43:58 2.5 2.5
4261353 2 1574 - 3.7 6.2
4261353 3 1562 - 8.1 14.3
.............. ...... ........ ............... ........ ........
4261353 12 1598 - 6.5 65.8
4261353 13 1602 - 3.9 69.7
.............. ...... ........ ............... ........ ........
4261355 1 1841 07:45:02 10.4 10.4
4261355 2 1714 - 7.9 18.3
4261355 3 1542 - 4.7 23.0
.............. ...... ........ ............... ........ ........
4261355 24 1562 - 5.4 114.1
.............. ...... ........ ............... ........ ........

Despite the huge quantity of trajectories introduced into the network, the GPS samplemay uncover some
links, depending on the GPS data’s penetration rate among the population. Moreover, the procedure
that infers link travel times can produce non-feasible values when link travel times are below free-flow
link travel times. In these situations, scaled travel time is used:

ttl′t = R · tt0l′ , R = meanl∈GPS

(
ttlt

tt0l′

)
(2.2)

where tt0l is the free-flow travel time at each link and R is computed using all observed link travel times
and their corresponding free-flow travel times. R is then the arithmetic mean of the expanding factors
found for each link, which can be understood as a global expanding factor that implicitly accounts for
the congestion effects. The methodological process for generating the observed link travel times data set
is summarized in Figure 2.6.

GPS vehicle
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(waypoint)

Network
model

Waypoint
importer

Map-matching
GPS waypoints to

network paths

Heuristic
calculation of link

travel times
Link travel

times data set

Figure 2.6: Conceptual methodological approach to importing waypoints into a mesoscopic model and
using them to estimate link travel times
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Algorithm 2.1 explains how the estimated link travel times are obtained.

Algorithm 2.1: From GPS data to estimated travel times

Input: A waypoint data set (WP), like the one shown in Table 2.2.
Input: The link travel times at free flow, tt0l.

// Phase 1: Importing GPS trips to links;

foreach ID in unique(WP.ID) do

Import: Waypoints into Visum;
Map-match: Trajectories to sequence of links;
Estimate: Travel Times at link level ; // Figure 2.5

Calculate: Starting time at each link;
Obtain: ttlt(WP);

// Phase 2: Estimate travel times;

foreach t in Time Periods do

foreach l in Links do

Set: ttlt ← mean(ttlt(WP));

// Phase 3: Missing values;

Calculate: R← mean(ttlt/tt0l);
foreach missing ttlt do

Set: ttlt = R · tt0l ; // Equation 2.2

Output: Return TT =
[
ttlt

]
lt

2.5.1 Applying the methodology to a synthetic network (Part II)

Building on the synthetic network based on generated synthetic data in Section 2.4, our intention at this
point is to convert the GPS data set (with 150k trips and 9 million waypoints) into reliable information
on the traffic conditions. Since the data generation procedure is synthetic, we assume, first, that the
GPS data set contains exclusively private vehicles that circulate with a fixed origin and destination and,
second, that the GPS data is highly accurate.

As this thesis is a collaboration with the company PTV Group (see Section 1.4.1), we make use of the
Visum tool GPX Import (PTV AG (2020); Section 29.14), which map-matches a GPS data base onto the
network by means of the procedure described previously. After this internal Visum process, we obtain
a large data set of trajectories at the link level with interpolated travel times across the network. These
results provide the input for the heuristic calculation of the time-dependent link travel times, because
they indicate the precise time when the vehicle used the link. Therefore, these extrapolated link travel
times can be split into different time periods. At the end of the process and after imputing the missing
value by means of Equation 2.2, we have obtained estimates of link travel times for each time period.

Figure 2.7 shows in black the links where the averaged travel times are available, which represent the
96% of the links of the network, which represents a sufficiently large coverage. The ones in red were
estimated as show in Equation 2.2, either because they were not available or because they were under
the free flow travel time, as explained. One can see that this last set of links belongs mostly to ending
links, which could happen that do not have traffic flow in simulation.
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Figure 2.7: Links of the network covered by the GPS data set.

As stated before, a large amount of data should ensure reliable estimates by averaging those travel times
at each link and time interval. In order to check their reliability, they must be compared with the path
travel times obtained from the ground truth OD matrix. All the path travel times for each OD pair at
each different time interval are collected, and the mean has been calculated by OD pair and time interval
in order to obtain the OD travel times. The comparison is shown in Figure 2.8.
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Figure 2.8: Comparison of observed OD travel times with ground truth OD travel times

The correspondence of both measurements is high, because the fit is R2 = 0.9445 after removing some
outliers that represent only 0.31% of total OD flow. These results ensure that when the GPS sample
is appropriately filtered, cleansed, and free of bias in the OD pairs, the proposed methodology for
estimating link travel times is reliable, since using them to construct different OD paths presents travel
times that are similar to those under ground truth conditions.



3
Quality Measures for the

Estimated ODMatrix
This chapter deals with the underdetermination of the OD matrix. After justifying that the conventional measures
are not able to compare different OD matrices from the traffic demand perspective, we study a measure that permits
to evaluate the structural similarity between OD matrices.

3.1 The underdetermined DODME problem

The DODME bi-level optimization problem (Equation 1.6) is complex and can lead to solutions that are
far from the real mobility pattern of the network. Frederix et al. (2013) carefully analyzed the congestion
behavior of a dynamic traffic assignment and highlighted many factors that influence the dynamic OD
matrix estimation. The main reasons for it being difficult are that the OD estimation problem’s objective
function is inherently non-convex and the assignment matrix has a nonlinear dependence on the OD
flows. Congestion in the network produces indirect spatial and temporal effects on the link traffic counts,
and these effects are usually not captured by the analytical methods that use the dynamic assignment
matrix to approximate it. Moreover, adding a Taylor expansion (Equation 1.19) to capture the mentioned
congestion effects are not computationally feasible, because it requires a large number of evaluations for
the dynamic traffic assignment.

The non-convexity of the objective function makes it feasible to converge to a local minimum of the
function and, therefore, as Tavana (2001) suggested, one requirement for tackling this is starting with a
reliable reference ODmatrix. Moreover, Frederix et al. (2013) highly recommend throughout their paper
the use of a reference OD matrix that presents the correct traffic regime, despite the fact that it still does
not ensure convergence to the global minimum of the function.

Moreover, the detection layout coverage has an effect on the underdetermination of the problem. Due to
the fact that there are always fewer sensors (equations) than OD pairs (variables), the problem is always
underdetermined. Moreover, due to the low number of detectors and their locations, the detection layout
is usually not able to capture 100% of the OD flows circulating throughout the network; thus, their effects
are not reflected in the objective function. The underdetermination and, of course, the lack of coverage
imply that one can reach different estimated OD matrices that reproduce the target traffic counts on the
covered links, depending on which seed ODmatrix is used. Bierlaire (2002) studied this phenomenon in
the static case, defining the Total Demand Scale (TDS). This measure shows how large underdetermination
gap is for a specific assignment matrix and for specific link coverage. It measures the difference between
the maximum and minimum OD matrix (in terms of number of trips) that can satisfy the assignment
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equations and provide the correct estimation of traffic counts. When the detection layout cannot cover
at all all the OD flows, then TDS = ∞, even in the cases when there is full link coverage, meaning one
sensor at each link of the network. As Bierlaire (2002) points out, TDS could then be equal to 0, meaning
that “the OD estimation algorithm has captured correctly the total level of demand in the network. The
underdetermination relates only to the repartition of that demand across OD pair”. From a practical
point of view, a larger TDS requires a better a priori matrix. Although measuring the TDS allows one
adjust the position and number of detectors and see its effect on the coverage, the full link coverage does
not guarantee a unique solution for the OD estimation problem.

3.2 R2 as measure of goodness of fit for DODME

As already mentioned, the ODmatrices of an urban network indicate the trips that circulate throughout
the network, but they are not directly observable. Therefore, there is no solution to which can be
compared an estimated OD matrix obtained by the DODME problem. On the other hand, the objective
function of the OD matrix estimation problem is commonly stated as a discrepancy function between
trafficmeasurements and the corresponding simulated values using either amacroscopic or amesoscopic
model. Therefore, the objective function is not analytical because of its dependence on the dynamic traffic
assignment and congestion effects, and it can thus be evaluated only by simulation.

So the question is: How do we measure the quality of the estimated OD matrix? Since research began
on OD matrix estimation (Van Zuylen & Willumsen (1980), Spiess (1990), Florian & Chen (1995)), the
most common approach is to check if the estimated ODmatrix is capable of reproducing the same traffic
counts on the available links. This is measured by fitting a linear regression between observed counts
and estimated counts while also using R2 as a goodness-of-fit indicator. Even though there are many
other goodness of fit measures, as shown in Hollander & Liu (2008), that are used regarding the traffic
counts in the dynamic OD matrix estimation problem (such as the root mean square error (RMSE), its
normalized version (nRMSE) and, in practical environments, the GEH and the Theil’s proportions), we
consider the most common metric, the R2 and new similarity measures that are presented below.

The linear regression effectively shows how the estimated OD matrix produces the simulated traffic
counts, once it has been assigned to the simulationmodel. However, as already explained, there aremany
ODmatrices that can reproduce similar traffic counts on certain links, but they can be totally different in
terms of mobility patterns. Because the objective function is non-analytical, it is difficult to understand
how the optimization problem works. Moreover, the minimization problem tries to fit these values and
reaches the global minimum once the simulated traffic counts are identical to their corresponding real
values. The optimization problem can be viewed as merely a meta-regression problem that adjusts the
OD flows in order to minimize the discrepancies. However, the problem as defined in Equation 1.6 does
not take into account the socio-economic demographics and land use of the study area. Furthermore, it
can produce unrealistic OD flows in this regard, although it provides a good fit on the linear regression
of the traffic counts.

As a matter of fact, despite R2 being a good indicator of the optimization problem’s performance, it can
produce misleading results in which a high regression value is achieved but the resulting estimated OD
matrix can be far from the reality of the demand pattern and the internal mobility of the study area.
Therefore, some other indicators are needed to evaluate the mobility pattern of the OD matrices.
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3.3 Comparing OD matrices

Some examples of a reference ODmatrix are a historical ODmatrix from a previous project that needs to
be updated or a reference OD matrix obtained by surveys and socio-demographic studies. Using such
a reference OD matrix is usually the best approach for obtaining the mobility pattern of the network,
because it is not possible to obtain the ground truth ODmatrix, which represents the real mobility of the
network. If this referenceODmatrix is available, one can naturally compare the estimatedODmatrix to it
and obtain another measure of goodness of fit for the procedure. Moreover, in the case of a synthetic OD
matrix estimation problem where the ground truth OD matrix is available, the estimates can be directly
compared to it and, therefore, it makes sense to consider good measures for comparing OD matrices.

Typical measures between OD matrices are those that are extrapolated from classical vector distances
by considering both matrices A =

[
Aij

]
ij
,B =

[
Bij

]
ij
∈ ℳm×n(R) as vectors of Rm×n. However,

the measures inspired by the Euclidean distance (RMSE(A,B)), Manhattan distance (RMAE(A,B)),
and other vector distances fail to capture the differences and similarities in many aspects, such as the
structure of the OD matrix. One example inspired by Djukic (2014) is shown in Figure 3.1, where a
reference ODmatrix can produce twomatrices (A and B) with clearly different structures, although they
are indistinguishable in terms of the RMSE, which is calculated as:

RMSE(A,B) =

√√√
1

n2

n∑
i=1

n∑
j=1

(
Aij − Bij

)2 (3.1)

Graphically, one can see that the OD matrix A is structurally similar to the reference OD matrix, despite
the values being greater. On the other hand, the ODmatrixB has similar values but is clearly structurally
different.

Table 3.1 quantifies this phenomenon. BothODmatrices have the same RMSEwith respect to the ground
truth OD matrix, but another measure also exists for capturing the structural similarity (MSSIM), and
this will be described in Section 3.4.

Table 3.1: RMSE andMSSIM values for comparing both OD matrices to the reference OD matrix

RMSE MSSIM
GT-M1 14.125 0.7629
GT-M2 14.125 0.5543

From a traffic point of view, the structure of an OD matrix represents the network’s mobility pattern.
For example, a row of an OD matrix represents all the trips departing from the same origin zone to all
the other destination zones. Analogously, a column of an OD matrix counts all the trips that arrive at a
certain destination zone from all other zones in the network. Therefore, it is important to use a measure
that compares not only the values of both matrices but also their structure while taking into account the
meaning of row and column totals in the context of urban mobility.

For this purpose, Djukic et al. (2013), Djukic (2014), Behara et al. (2018) propose and use a similarity
measure called the Mean Structural Similarity Index (MSSIM), which was created for image quality
assessment by Wang et al. (2004) in order to compare two different images. This is the measure that is
studied in this thesis, and we propose some modifications that provide transportation meaning.



38 3. Quality Measures for the Estimated OD Matrix

(a) Ground truth OD matrix

(b) OD matrixM1 (c) OD matrixM2

Figure 3.1: Heatmaps of a ground truth OD matrix and 2 different OD matrices
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Other researchers also studied how to compare two OD matrices with a structure perspective. Ruiz
de Villa et al. (2014) and Behara et al. (2020a) proposed the Wasserstein and Levenshtein. However,
as Behara (2019) thesis studied exhaustively, these distances, designed to account for similarities and
dissimilarities among string of characters, do not have a clear intermediation in terms of what an OD
matrix physically means, while the analogy between pixels and OD cells is more clear, and its physical
interpretation more suitable, so there were discarded.

Therefore it has finally the one selected by Djukic (2014) or Behara (2019), Behara et al. (2020b), providing
explicit procedures based on that physical interpretation, and this has been the reason for proposing
and using in this thesis a refinedMSSIM and a windowing procedure explicitly based on the physical
interpretation of the meaning of an OD.

3.4 Mean Structural Similarity Index (MSSIM)

In the context of an image quality assessment process for comparing two different images, Wang et al.
(2004) present SSIM – the structural similarity index – for a matrix of pixels that is the product of three
different comparison components: luminance, contrast, and structure. It is calculated as follows:

SSIM(a,b) = L(a,b)αC(a,b)βS(a,b)γ (3.2)

where 

L(a,b) = 2µaµb + C1

µ2a + µ2
b
+ C1

C(a,b) = 2σaσb + C2

σ2a + σ2
b
+ C2

S(a,b) = σab + C3
σaσb + C3

(3.3)

Here, µa, σa, µb, σb, σab are the mean, standard deviation, and covariance of the vectors a and b, while
C1, C2, C3, are small stability constants for avoiding numerical problems. α,β, γ are weighting coeffi-
cients typically set to 1, Wang et al. (2004). Luminance (L) corresponds to the intensity of illumination,
which is the mean of the different pixels in a sub-matrix. Contrast (C) is the root of the squared average
between pixels once the luminance is removed from the sub-matrix, making it the standard deviation.
Structure (S) is the comparison between the two sub-matrices using the covariance. As follows, these
three measures are first transformed in order to adjust them to the interval [−1, 1], where 1 means a
perfect match and 0 means they are totally different. Negative values on S mean a negative correlation
between the vectors. They are then placed together in Equation 3.2.

TheSSIM indexhas a symmetric andboundedconstruction thatpresents auniquemaximum(SSIM(a,b) =
1), which means a perfect match between the two vectors. These three properties are very powerful in
helping us understand the similarity of two matrices. However, SSIM is not a distance in a metric space,
because SSIM(a,b) ≠ 0 when a = b. In cases where C3 = C2/2 are set, SSIM can be equivalently
rewritten as follows, specifically by equivalently defining SSIM(a,b) as:
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SSIM(a,b) = S1(a,b) · S2(a,b) where


S1(a,b) =

2µaµb + C1

µ2a + µ2
b
+ C1

S2(a,b) =
2σab + C2

σ2a + σ2
b
+ C2

(3.4)

Moreover, Brunet et al. (2012) prove that the quantities in Equation 3.5 are bounded metrics in the
corresponding space, aside from SSIM not being a distance:

√
1− Si(a,b) and D2(a,b) =

√
2− S1(a,b) − S2(a,b) (3.5)

For instance, D2 is the associated distance to SSIM because it satisfies the three axioms:

Identity: D2(a,b) = 0⇐⇒ a = b

Symmetry: D2(a,b) = D2(b, a)

Triangle Inequality: D2(a,b) ≤ D2(a, c) +D2(c,b)

In the original problem, Wang et al. (2004) obtain the MSSIM by averaging the SSIM using sliding
windows, which are submatrices of size Ns. In extrapolating the sliding windows to OD matrices,
Djukic (2014) proposes reordering the OD matrix by volume, both by rows and by columns in order to
obtain theMSSIM using the same sliding submatrices, because the term S of SSIM is highly sensitive
to the order of the OD pairs. Another open question is the dimension of the submatrices Ns, which
should be fixed, and it does affect the final measure. Behara et al. (2018) also reorder the OD pairs, but
in this case they propose clustering them in greater regional areas. In the same article, they show how
the dimension of the submatrices affects theMSSIMmeasure, so this new proposal solves the problem
of tuning Ns, which is fixed automatically by the dimension of these regional areas.

We propose here a more meaningful variant that is easy to apply in practice and considers the physical
meaning of the ODmatrices. This variant consists of calculating the averages of SSIM according to rows
and columns rather than submatrices, that is, by using rectangular sliding rules that correspond to either
rows or columns in theODmatrix. One row in anODmatrix represents the distribution of trips departing
from a single origin zone while, analogously, one column is the distribution of trips arriving at a single
destination zone. This therefore corresponds to a physical interpretation of patterns in the underlying
transport system. Thus, SSIM will capture the similarity between these described distributions by
considering the mean, the variance, and the structure of departure and arrival distributions, all of which
correspond to the structural property of the trip patterns described by the OD. Moreover, this proposal
also fixes Ns to the number of origins and destinations in the network.

Then, if MSSIM is averaged over Ns sliding windows, a key question arises in regard to whether all
windows have the same weight or if their role in the total demand requires that they have different
weights. In the case of OD Matrices, it is obvious that not all origins and destinations are equivalent in
a transport network. Therefore, a weightedMSSIM (as in Wang & Simoncelli (2008)) prioritizes those
origins and destinations with more impact on the network. This proposed weighting average is defined
as follows:
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MSSIM(A,B) =

Ns∑
i=1

W(ai,bi)SSIM(ai,bi)

Ns∑
i=1

W(ai,bi)

(3.6)

where ai,bi are, respectively, the i-th windows of A,B, while the weightW(ai,bi) is given by:

W(ai,bi) = log

[(
1+

σ2ai

C2

) (
1+

σ2
bi

C2

)]
(3.7)

In terms of the variance of the selected windows in OD matrices, these weighting factors correspond
to the variance of the total generated trips from an origin (or total attracted trips to a destination) to all
destinations (from all origins); thus, weighting is increased as the origin is distributed to all destinations
(or the destination attracts from origins) becomes more non-uniform. Moreover, these weights also take
into account the magnitude of their contribution (implicitly in the variance value), so the contribution of
each origin or destination to the overall demand pattern is well balanced.

The same weights are used to calculate the weighted D2 for the entire OD matrix, that is:

MD2(A,B) =

Ns∑
i=1

W(ai,bi)D2(ai,bi)

Ns∑
i=1

W(ai,bi)

(3.8)

Brunet et al. (2012) proved that MD2 is a distance measure, and as that it has the properties making
it suitable to be included in the distance minimization term of the objective function, Equation 1.6.
However, the wayMSSIM andMD2 are formulated leads to mathematical models that are analytically
and numerically hard to deal with, unless simplifications based on very restrictive assumptions. An
example it the proposal of Behara (2019), Behara et al. (2020b) that seems valid only when ICT data are
collected by Bluetooth antennas under very specific layouts that cannot be replicated in GPS scenarios.

3.4.1 MSSIM computation with a synthetic network

Let us imagine that a fictitious network with 18 zones is available. In order to calculate the different
approaches of MSSIM, let us imagine that the ground truth OD matrix, XGT , and an estimated OD
matrix, X∗, are also available. These ODmatrices can be arranged by proximity using wider zonification
by regions (from I toV), as in Behara et al. (2018). The regionswe created for this purpose are summarized
in Table 3.2. Regions IV and V generate more than 60% of the trips, while regions II and IV attract more
than 80% of the trips.

Figure 3.2 shows the heatmaps of both OD matrices when different arrangements are applied. In the
first row (Figures 3.2a and 3.2b), they are ordered by the zonification code for origins and destinations,
which is the original OD matrix. In the second row (Figures 3.2e and 3.2f), the rows and columns are
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in increasing order according to the total number of trips generated or attracted, which we have done in
order to calculate the measurement as suggested by Djukic et al. (2013). Finally, in the third row (Figures
3.2e and 3.2f), we can see it is ordered by the graphical divisions so they are grouped by regions, as
suggested by Behara et al. (2018).

Table 3.2: Fictitious ground truth network demand by regions and zones

Region Zone
Generated

Trips
Attracted
Trips

Region
Generated

Trips

Region
Attracted
Trips

I
1 393 102

830 3242 235 103
15 202 119

II

5 173 413

807 2006
12 177 572
13 196 532
16 261 489

III

3 98 114

303 252
6 90 41
11 50 48
14 65 49

IV

4 331 496

2202 2382
7 501 474
10 355 368
17 588 495
18 427 549

V
8 595 145

1137 315
9 542 170

TOTAL 5279 5279 5279 5279
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(a) Ground truth OD matrix
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(b) Estimated OD matrix
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(c) Ground truth OD matrix by flows
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(d) Estimated OD matrix by flows
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(e) Ground truth OD matrix by regions
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(f) Estimated OD matrix by regions

Figure 3.2: The ground truth and estimated OD matrices
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The RMSE calculation is independent of the arrangement, as it does not depend on the position of each
value in the matrix and its result is RMSE(XGT ,X∗) = 12.072. In any event, theMSSIM calculation is
influenced by the OD flow arrangement, as can be seen in Table 3.3. The last row indicates the average
of both calculations, by origins and by destinations, which leads to a globalMSSIM indicator.

Table 3.3: DifferentMSSIM calculations

Ns Not weighted Weighted

Original
OD matrix

3 0.64651 0.64654
5 0.65161 0.65205
7 0.65264 0.65276
9 0.65048 0.65055

Arranged by
flows

3 0.58501 0.58471
5 0.59273 0.59241
7 0.59145 0.59414
9 0.59458 0.59553

Arranged by
Regions - 0.62342 0.62773

MSSIM by
rows - 0.64582 0.64538

MSSIM by
columns - 0.63963 0.64026

average
MSSIM

- 0.64273 0.64282

Although the values are quite similar and lead to the same conclusions, the arrangements result in
differentMSSIM values, depending on the dimensions of the submatrices, Ns.

CalculatingMSSIM by rows and by columns does not depend on theNs nor on the regional zonification,
which indeed provides more information about the network but is not always available. Moreover, it
has a physical meaning, as already mentioned. Finally, depending on their magnitude and dispersion,
adding weights prioritizes those that contribute more to the mobility pattern and gives more detail to
the similarity measure. Table 3.4 shows µx, µy, σx, σy, and σxy for each origin. Moreover, it shows the
calculations of all the measures that comprise theMSSIM (luminance, contrast, and structure) and the
weights.

As shown in this example, the weights are higher when the magnitudes µx and µy are higher, because
they contribute more to the mobility pattern. However, when comparing the origins that generate the
most trips, theirweights take into account not only total trips generated, but also their standard deviation,
which means their capacity of being more widely distributed throughout the network.
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Table 3.4: Calculation of L,C, S,W,MSSIM,MD2 for the specific example

Origin µx µy σx σy σxy L C S W MSSIM MD2

1 21.83 10.77 18.86 9.66 175.84 0.79338 0.81151 0.96488 38.04169 0.62123 0.65085
2 13.06 6.01 14.29 7.07 95.92 0.75979 0.79529 0.94883 36.86310 0.57333 0.69686
3 5.44 2.91 2.79 1.55 4.09 0.83152 0.84785 0.94798 30.55599 0.66833 0.60393
4 18.39 10.26 13.76 8.57 114.00 0.85101 0.89729 0.96672 37.17102 0.73820 0.53062
5 9.61 4.50 12.03 5.25 61.47 0.76757 0.73264 0.97358 35.92177 0.54750 0.72052
6 5.00 2.63 3.48 1.97 6.57 0.82375 0.85721 0.95827 31.48140 0.67666 0.59566
7 27.83 13.71 20.54 9.89 194.30 0.79280 0.78155 0.95681 38.25809 0.59285 0.67779
8 33.06 16.62 27.69 13.63 366.63 0.80267 0.79235 0.97162 39.49733 0.61795 0.65381
9 30.11 17.36 22.52 14.02 303.14 0.86537 0.89746 0.95978 39.14151 0.74540 0.52275
10 19.72 9.82 16.99 8.86 140.20 0.79822 0.82032 0.93103 37.66015 0.60963 0.66184
11 2.78 1.44 1.63 0.99 1.48 0.81706 0.88942 0.91517 28.59560 0.66506 0.60743
12 9.83 5.51 7.85 4.57 34.74 0.85308 0.87008 0.96845 34.79120 0.71882 0.55163
13 10.89 4.89 9.74 4.74 43.43 0.74740 0.78664 0.94074 35.29563 0.55309 0.71595
14 3.61 1.95 2.45 1.43 3.32 0.83535 0.86946 0.94763 30.13729 0.68827 0.58372
15 11.22 5.90 12.25 6.47 78.39 0.82396 0.82541 0.98938 36.37582 0.67289 0.59949
16 14.50 7.13 14.03 6.88 88.65 0.79209 0.79108 0.91801 36.77142 0.57523 0.69404
17 32.67 19.12 29.46 18.69 536.49 0.87186 0.90479 0.97429 40.25321 0.76857 0.49660
18 23.72 11.37 20.74 10.51 205.27 0.77970 0.80648 0.94116 38.40094 0.59182 0.67917
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4
Simulation-based

Optimization Approaches

This chapter focuses on the simulation-based optimization approaches. We study the existing SPSA studies for
OD estimation and propose enhancements that permit to add more information to the problem. We also present
a heuristic methodology that allows the addition of estimated travel times from GPS data. All the proposed
enhancements are presented with a complete set of experiments and results.

The simulation-based optimization approaches to solving DODME are heuristic techniques that, as the
name states, combine simulation engines and optimization algorithms in order to estimate the optimal
solution without computing the objective function. Moreover, contrary to the analytical approaches that
linearize the objective function, these approaches are able to capture the traffic phenomena changes and
congestion effects that occur when performing dynamic traffic assignment with different OD matrices.

Using new ICT traffic measurements that complement the traffic counts used could help reduce under-
determination in the DODME problem. Furthermore, it is no straightforward task to introduce them
into the analytical version of the problem in Equation 1.8, since there is no clear relationship between
the problem variables, the OD flows, and these new traffic measurements, such as travel times between
arbitrary points in the network or certain link speeds. The simulation-based optimization techniques
can overcome this problem by using non-analytical optimization methods with stochastic gradients that
make them computationally fast. However, these usually obtain only an estimate of an optimal solution.

Of all the different approachesmentioned in Chapter 1, the simultaneous perturbation stochastic approx-
imation (SPSA) is one of the most commonly used for solving the OD estimation problem, principally
because of its versatility and easiness of implementation.

4.1 A specific approach based on SPSA

SPSA, originally proposed by Spall (1992), is a heuristic optimizationmethod that estimates the direction
of descent by calculating a stochastic gradient and evaluating the objective function only twice instead
of N times, as in the case of a finite-difference gradient approach. This is appropriate for cases where
the objective function cannot be analytically expressed as a function of the parameters and when the
evaluation is costly, because it requires a simulation engine to produce the data involved in the evaluation.
This is the case of the DODME problem, where a gradient approximation with only two dynamic traffic
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assignments is desirable, because it is the most time-consuming step of the optimization, especially in
the case of large networks.

The SPSA procedure, as in many iterative procedures, begins with an initial OD matrix (usually a
historical OD matrix), and the next OD matrix is computed using the first order Taylor development:

X(k+1) = X(k) − akĝ(X(k)) (4.1)

which is modified with the term akĝ
(
X(k)

)
, compounded by a gain sequence ak and the estimated

gradient ĝ
(
X(k)

)
. Moreover, with only the two evaluations, Z
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where ∆(k) is a random N-dimensional vector (N corresponds to the number of problem variables)
with ∆i = ∆

(k)

i
,∀i independent identically distributed random variables that satisfy E (∆i) = 0 and��E((∆−1

i
)n)

�� <∞,∀n. The gain sequences ak and ck are named step size and spacing coefficient, and they
are decreasing sequences of positive real numbers. Moreover, they must accomplish some regularity
conditions (described in Spall (1992)) to ensure the almost certain convergence of Z to a local minimum.

Typically, the two sequences of step size ak and spacing coefficient ck are set as

ak =
a

(A+ k+ 1)α
, ck =

c

(k+ 1)γ
(4.3)

which satisfies the regularity conditions. a,A, c are fixed and depend on the specific problem. On
the other hand, Spall (1992) proved that α = 0.602 and γ = 0.101 are optimal for the success of the
procedure. Finally, the commonly used perturbation random variable is ∆i ∼ Be(1/2,±1), which is a
Bernoulli distribution with probability of 1/2 for each outcome, ±1.
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Algorithm 4.1 summarises the SPSA procedure.

Algorithm 4.1: Original SPSA

Input: A seed OD matrix, X0

Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax

Evaluate: DTA
(
X0

)
and obtain Y;

Set: X← X0;
Set: a,A, c;
Set: α = 0.602;
Set: γ = 0.101;

foreach k = 1, . . . ,IterMax do

Set: ck ← c/(k+ 1)γ;
Set: ak ← a/(A+ k+ 1)α;

Generate: ∆(k) ∼ Be(1/2,±1,N);

Set: X+ = X+ ck∆
(k) ; X− = X− ck∆

(k);

Evaluate: Z+ ← Z
(
X+

)
; Z− ← Z

(
X−

)
;

Calculate: ĝ (X)← (Z+ − Z−)/
(
2ck∆

(k)
)
;

Set: X← X− akĝ(X);

Evaluate: DTA (X) and obtain Y;

if rel_diff < thrsh_stop then
Stop;

Set: X∗ ← X ; // X∗ represents the estimated OD matrix

Output: Return X∗

4.1.1 Variants of SPSA

The previous description of SPSA is the original one given by Spall (1992). However, many improvements
and alternatives have been developed and used for years. Below is a list of the most relevant variants of
the DODME problem, especially for this thesis.

Average of independent estimates

Spall (1992) shows that averaging many independent estimates of the Equation 4.2 gradient contributes
to a more stable and quicker convergence of the SPSAmethod. Therefore, the gradient estimate is finally
calculated as:

ĝ
(
X(k)

)
=

1

ng

ng∑
j=1

ĝj
(
X(k)

)
(4.4)
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where ĝj
(
X(k)

)
is calculated as in Equation 4.2. ng represents the number of independent perturbations

used to calculate different estimated directions of descent before averaging them.

Asymmetric Design

As with numerically calculating the finite-differences gradient, it is possible to build the estimated
asymmetric stochastic gradient. That means using Z

(
X(k)

)
and Z

(
X(k) + ck∆

(k)
)
in Equation 4.2:
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(k)
)
− Z

(
X(k)

)
ck

·
©«
∆−1
1
...

∆−1
N

ª®®¬(k) =
©«

Z
(
X(k) + ck∆

(k)
)
− Z

(
X(k)

)
ck∆

(k)

1
...

Z
(
X(k) + ck∆

(k)
)
− Z

(
X(k)

)
ck∆

(k)

N

ª®®®®®®®®®®¬
(4.5)

In the case of combining the averaged estimatedgradient, a largenumber of objective function evaluations
are saved because all ĝj

(
X(k)

)
share the mid-point X(k) evaluation and, therefore, the combination is

computationally more efficient. The example in Figure 4.1 graphically shows the number of evaluations
that must be made with multiple perturbations in the cases of a symmetric (2 · ng) and asymmetric
design (ng + 1). In the latter, all the gradients share the midpoint evaluation Z(X).

  

(a) Symmetric Design

  

(b) Asymmetric Design

Figure 4.1: The symmetric and asymmetric design with averaging gradient and the corresponding
number of evaluations

Conjugate gradient (CG) descent version

Some researchers in past works (Bullejos et al. (2014), Cantelmo, Cipriani, Gemma & Nigro (2014)) used
the conjugate gradient (CG) (Luenberger & Ye (1973)) descent method for the optimization procedures in
the OD estimation problem. This technique modifies the direction of descent in the iterative procedure
by means of a linear combination of the current estimated gradient and the previous iteration direction.
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It can be understood as an intermediate direction between the direction of maximum descent and
the direction obtained from Newton’s method. Moreover, it can easily be incorporated into SPSA by
replacing Equation 4.1 with:

X(k+1) = X(k) + akd(k) (4.6)

d(k) = −ĝ(k)
(
X(k)

)
+ βkĝ(k−1)

(
X(k−1)

)
βk =

ĝ(k)
(
X(k)

)
· d(k−1)������d(k−1)
������2

The main purpose of this is to avoid a slow convergence, which is typically associated with the gradient
method’s behavior. The implementation consists of incorporating more information but at an acceptable
level of computation and storage. With this modification to the direction of descent, each succeeding
step moves in a direction that is orthogonal to the previous iteration, as proven in Luenberger & Ye
(1973).

W-SPSA, C-SPSA and Hyb-SPSA

Since SPSA is a method that estimates the gradient direction with few evaluations, many correlations
between the problem variables are underestimated. In the case of the DODME problem, correlations
between OD flows are evident, since one change in one OD flow can produce congestion that affects
the others. The proposed W-SPSA in Antoniou et al. (2015) is a weighted SPSA that estimates these
correlations and introduces them as weights into the estimated gradient. However, these weights must
be calibrated, and they can introduce some bias into the OD estimation process.

Another variant that originates from applying SPSA to OD estimation tries to solve one of its other
limitations. As it can be easily deduced from developing the SPSA, the perturbation induced at each
iteration is the same for all system variables of the system, independently of their magnitudes. In the
specific problem of OD estimation, a wide range of magnitudes exists for the OD flows, and the same
perturbation for all them can produce strange effects or long convergences. Tympakianaki et al. (2015,
2018) propose a cluster-wise SPSA (c-SPSA) that groups the OD flows by magnitude (and by spatial
correlation in the second paper), with the aim of intelligently perturbing the OD flows according to the
clusters. However, these approaches need to calibrate more parameters, since there are different c, a,A
for each cluster; and the number of clusters must also be set. Moreover, the second clustering strategy is
based on a complex analysis of the spatial correlations of the OD flows and their influence on sensors,
which depends on the congestion-building process and the location of the sensors. Although it improves
the results, such an analysis implies a substantial increase in the computational burden.

The Hybrid SPSA (Hyb-SPSA) variant was proposed for solving any potential source of instability
induced by approximating the gradient for SPSA. Tympakianaki et al. (2018) propose calculating a
hybrid form of the estimated gradient when some parts of the objective function are analytical and easily
differentiable. For instance, the perturbation of the SPSA is used for computing only part of the gradient,
and then the other part is provided by means of its analytical derivative. For example, if the objective
function is Z(X) = w1

����Y (X) − Ŷ
����2
2
+w2

����X− XH
����2
2
, its hybrid gradient is calculated as:
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ĝhyb
(
X(k)

)
= w1ĝF1

(
X(k)

)
+ 2w2

(
X(k) − XH

)
= (4.7)
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������Y (
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)

4.2 Advantages and limitations of SPSA

Since it is a method that computes the gradient by few perturbed simulation replications, SPSA is
very versatile because it allows minimizing any objective function, even when it can not be analytically
formulated and its evaluation must be made by other means, like, for instance, simulation. Moreover,
another advantage is the simplicity of its implementation and, unlike the finite-differences gradient, the
gradient is estimated by evaluating the objective function only twice, which is a nice property when
the objective function is costly, which is the case for the OD estimation problem because a full dynamic
traffic assignment is executed for each evaluation.

However, this method has pros and cons. Despite the advantages indicated above, due to the few
number of evaluations and the way in which the gradient is estimated, it may omit some correlation
effects between the variables and it can not guarantee a monotonous sequence of descent directions that
can enlarge notably the computational times. Besides, the same property also allows modifying the
objective function without modifying the algorithm. Furthermore, adding constraints requires a minor
modification to the implementation, which is detailed in Sadegh (1997).

On the other hand, the sensitivity of the parameter settings is the main disadvantage of the SPSA, as
these parameters have a large effect on the performance of the optimization procedure. One can easily
deduce that a large step size ak implies undesirable large jumps at each iteration. On the other hand,
however, a small step size naturally leads to slow convergence. The same happens with the spacing
coefficient ck, which must be adjusted well in order to have a suitable estimated gradient.

Another disadvantage of SPSA is that it uses an approximated and stochastic gradient. Therefore, it
is recommended to provide an appropriate seed value in order to remain near the desired minimum.
Finally, the same perturbation is applied to each variable at each iteration, which seems inconvenient in
cases where variables have different magnitudes because they cannot be perturbed identically.

Table 4.1 summarizes the different advantages and limitations of SPSA.

Table 4.1: Advantages and disadvantages of SPSA

Advantages Disadvantages
Versatility Parameters settings

Easy implementation Approximated and stochastic
Few evaluations Same perturbation at each variable

Additional information
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4.2.1 Advantages and limitations of SPSA for DODME

The OD estimation problem has a complex objective function, so SPSA’s strongest feature is its ability to
deal with unknown objective functions. Moreover, because it allows adding new traffic measurements
to the objective function as new summands, SPSA is suitable for OD estimation using diverse types of
data that analytical models are unable to incorporate. Finally, the low number of evaluations needed
for SPSA is a strong reason to use it in OD estimation, since evaluating the objective function requires
simulating the full traffic assignment of the corresponding OD matrix.

On the other hand, OD matrices are typically sparse and, moreover, they usually present few cells with
very high values, while many of them actually have low values. Therefore, SPSA performs badly by
producing the same perturbation to all the different magnitudes of OD values. Furthermore, as already
mentioned, SPSA’s estimated gradient can fail on capturing the correlations between OD values and they
are important as the effects that a specific OD value increasing produce to the other are notorious due to
the availability of alternative routes.

It is known that the OD estimation problem is underdetermined, so many different OD matrices can
produce the same traffic counts (that is, the same objective function value, thus leading to many local
minima), even though they are different in terms of the network’s socio-demographic information.
Therefore, the heuristic nature of the algorithm requires a sound seed ODmatrix to conduct to a proper
local minimum. Finally, the setting of SPSA parameters is also crucial in the case of OD estimation, as it
is always for the SPSA performance.

4.3 SPSA improvements

After some experimentation with different networks to explore the performance and sensitivity of SPSA,
we have implemented some improvements and tested them for the OD estimation problem, always with
the aim of overcoming the limitations presented above.

4.3.1 Normalization of variables

The OD flows in an OD matrix usually have different magnitudes, depending on the network’s socio-
demographic information. As already mentioned, the original version of SPSA applies the same pertur-
bation to all the different OD flows, which can produce two effects:

If the magnitude of the perturbation is linked to a greater magnitude of OD flows, very low OD
flows are greatly perturbed, thus significantly changing them and the OD matrix structure.

If the magnitude of the perturbation is linked to a lower magnitude of OD flows, very high OD
flows will experience an insignificant perturbation, which implies that the method produces small
changes to the most important flows of the system and longer convergences.

Tympakianaki et al. (2015, 2018) approached this phenomenon by clustering the variables according to
their magnitudes. This thesis proposes the alternative of normalizing the OD values to the interval [0, 1]
before obtaining the perturbation. This is, indeed, a transformation of the perturbation according to
the magnitude of each OD value. To do this, some lower and upper bounds must be set for each OD
value. For example, one can use some additional information from the network, such as socioeconomic
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data, to set a reasonable interval for each OD value or to perhaps set a relative percentage of acceptable
change relative to a reliable reference OD matrix. This normalization can be performed easily with a
linear application for each OD flow:

ϕijr : [aijr, bijr]→ [0, 1] (4.8)

xijr ↦→ x̃ijr =
xijr − aijr

bijr − aijr

where aijr, bijr are the lower and upper bounds corresponding to the OD value xijr. Once the transfor-
mation is set, the perturbation is applied to the normalized OD value and, therefore, the inverse of the
linear transformation is needed:

ϕ−1
ijr

: [0, 1]→ [aijr, bijr] (4.9)

x̃ijr ↦→ xijr = aijr + x̃ijr(bijr − aijr)

Note that the entire transformationmust be applied to the objective function and to the estimatedgradient
in order to be consistent. That is, if the joint linear transformation is built asΦ = (ϕi1j1r1 , . . . , ϕiIjJrT ),
the objective function must be composed with the inverse linear function Z̃(X̃) = Z(Φ−1(X̃)) = Z(X),
and the gradient should be calculated according to the set of normalized OD flows.

Therefore, when using the normalized variables in the SPSA procedure, each variable will be perturbed
according to its magnitude. It should be highlighted that the optimization problem remains free of
constraints when adding the normalization, because the intervals are used only to equate the magnitude
and thus, they are not constraints added to the problem. So, the equivalent OD estimation problem is as
follows:

min Z̃
(
X̃
)
= w1F1

(
Y, Ŷ

)
+w2F2

(
Φ−1(X̃),XH

)
s. to: Y = Assignment(Φ−1(X̃))

Φ−1(X̃) ≥ 0

(4.10)

4.3.2 Selection of SPSA gain sequences

Spall (1992, 1998) and his experiments with SPSA in optimization problems show that the selection of
SPSA gain sequences, ak, ck, is crucial for the algorithm’s convergence and performance. The sequences
in the form of Equation 4.3 are widely used, as they satisfy the conditions of convergence that were
proved in Spall (1992). This reduces the problem to a matter of selecting appropriate values for a,A, α, c
and γ. Moreover, Kostic et al. (2017) show the sensitivity of SPSA with respect to these parameters, but
no research has been conducted on finding a criterion to select them in an automatized procedure. Based
on the guidelines in Spall (2003), we propose an automated selection of the parameters a,A and c. The
choice of these parameters is based on the objective function’s variability, which itself results from the
simulation and the desired perturbation steps in the early iterations. The schema is detailed below:
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1) Fix α = 0.602, γ = 0.101, as Spall (1998) determines, where it is stated that they are optimal values
for the convergence.

2) Compute several evaluations of Z(XH) in order to capture the variability of the objective function.
Since the variables have been normalized, asmentioned above, it seems natural to use the coefficient
of variation (CoV(Z) = σZ/µZ). The parameter c is set at c = CoV .

3) Set A as 10% of the maximum number of iterations (A = 0.1 · itermax).

4) Simulate ng experiments using the SPSA logic Xi = XH + c∆N and find the respective gradients,
ĝ(k), as in the SPSA procedure.

5) Determine the desired iterative modification of the first iteration:

X(k+1) = X(k) − akĝ(k) → X(k+1) − X(k) =
��akĝ(k)�� (4.11)

For example, the desired iterative perturbation could be set to
��akĝ(k)�� = 0.2, which in the case of

normalized variables would mean allowing a 20% change.

6) Therefore, one can compute the corresponding parameter a for the desired change in the initial
iteration, when k = 1:��akĝ(k)�� = a

(1+A+ k)α
|ĝ(k)|→ a =

��akĝ(k)�� (1+A+ k)α

|ĝ(k)|
(4.12)

7) Since ng experiments have been performed, one has to choose the minimum, which is calculated
as above, that is:

a = min
{
a{i=1}, . . . , a{i=Ng}

}
(4.13)

Using this methodology for selecting the SPSA parameters reduces the problem to setting a desired
perturbation modification for the first iteration, which is easier to contemplate, especially when the
variables are normalized. Algorithm 4.2 summarises the proposed methodology.

4.3.3 SPSA variants: Reducing the feasible set

The versatility of simulation optimization techniques – especiallywhen using SPSA – allows us to include
additional information in a newer form, such as the constraints in the OD estimation problem.

As mentioned, the underdetermination of the DODME problem from Equation 1.6 can lead to different
adjusted OD matrices that show the same traffic counts as the sensors, even though they are different.
Furthermore, the adjusted ODmatrix can also be inconsistent with the socioeconomic factors of the area
under study. In traffic studies, practitioners usually have access to historical data in the form of an OD
matrix, XH, which provides prior information about the mobility patterns of the study area. Therefore,
by including constraints that account for this information in the SPSA formulation, more realistic results
can be provided. Cipriani et al. (2011) were pioneers in introducing a total generation constraint into the
minimization problem when solving it with SPSA:

tT∑
r=1

Gri ≤ G∗i , ∀i ∈ I (4.14)
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Algorithm 4.2: Selection of gain sequences for SPSA

Input: A seed OD matrix, X0

Input: Number of independent evaluations for step 2, N_eval
Input: A maximum number of iterations, IterMax
Input: Number of independent gradients, ng
Input: Admissible initial change, rel_change

Set: X← X0;

// STEP 1;

Set: α = 0.602;
Set: γ = 0.101;

// STEP 2;

foreach i = 1, . . . ,N_eval do

Change: Simulation seed;

Evaluate: DTA
(
X0

)
and obtain Y;

Set: Zi ← Z(X);

Evaluate: µZ ← mean(Zi) ; σZ = std(Zi);
Set: c← σZ/µZ;

// STEP 3;

Set: A← rel_change · IterMax;

// STEP 4;

foreach k = 1, . . . ,ng do

Generate: ∆(k) ∼ Be(1/2,±1,N);

Set: X+
i

= Xi + c∆(k);

Evaluate: Z+
i
← Z

(
X+
i

)
; Zi ← Z (Xi) ;

Calculate: ĝi (X)← (
Z+
i
− Zi

)
/(c∆(k)) ; // Asymmetric Design, Equation 4.5

// STEPS 5 AND 6;

Calculate: ai ← rel_change · (1+A+ 1)α/norm
(
ĝi(X)

)
; // Equation 4.12

// STEP 7;

Set: a← min{ai}; // Equation 4.13

Output: Return a,A, c
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with G∗
i
being the a priori generation value for the origin zone i; and T is the number of time periods.

Indeed, many different constraints can be added to the OD estimation problem in order to give more
physical meaning to the feasible set. However, the process of building constraints can be tedious,
depending on the granularity and the information being introduced, such as when adding information
on the demographics of each zone.

Assuming that the historical OD matrix XH is reliable, we propose a global constraint approach that
assumes an admissible percentage of change relative to this reference OD value. More formally, let
xH
ijr

be the historical OD value for a certain origin i, destination j, and departure time r. Therefore, the

estimatedOD value is expected to be nearby, such as xijr ∈
[
xH
ijr

(1− β), xH
ijr

(1+ β)
]
, whereβ represents

the admissible relative discrepancy between the historical and estimated OD flows.

The proposed relative changeβ can be applied to all the OD values of theminimization problem, leading
to the following feasible rectangle in the variable space. We consider a value of β ∈ (0, 1) in order to
obtain a solution in an acceptable neighborhood around the historical OD matrix:

G =
{
X

�� xHijr(1− β) ≤ xijr ≤ xHijr(1+ β) , xijr ∈ X , β ∈ (0, 1)} ⊂ R|I|×|J|×|T | (4.15)

Note that the single constraint of Equation 4.14 is the constraint that results from summing all the upper
bounds defined in G for each origin. The summation of all the constraints makes the feasible region
larger and thus allows greater values among some variables, which is compensated by others having
low values. The proposal of Equation 4.15 for constraining the OD estimation problem defines a smaller
feasible region that accounts for further information for each OD pair.

Constrained SPSA

The feasible set can be added as constraints to the minimization problem of OD estimation, as seen in
Equation 1.6. This is done as follows:

min Z (X) = w1F1
(
Y, Ŷ

)
+w2F2

(
X,XH

)
s. to: Y = Assignment(X)

(1− β)XH ≤ X ≤ (1+ β)XH

X ≥ 0

(4.16)

The natural way that SPSA interacts with any feasible set is to orthogonally project the next calculated
vector of variables onto the border of G, as proposed in Sadegh (1997). This projection can be difficult
to implement in cases of strange constraints. However, in the case of separable constraints for each
variable, as in the case of Equation 4.16, it consists of projecting each component onto the bounding
values (1 − β)xH

ijr
and (1 + β)xH

ijr
when they go under or over the value limits during the iterative

procedure, Equation 4.1:
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x
(k+1)

ijr
=


(1− β)xH

ijr
if x

(k)

ijr
− akĝ

(
X(k)

ijr

)
< (1− β)xH

ijr

x
(k)

ijr
− akĝ

(
X(k)

ijr

)
if (1− β)xH

ijr
≤ x(k)

ijr
− akĝ

(
X(k)

ijr

)
≤ (1+ β)xH

ijr

(1+ β)xH
ijr

if (1+ β)xH
ijr
< x

(k)

ijr
− akĝ

(
X(k)

ijr

) (4.17)

Algortihm 4.3 shows the addition of Equation 4.17 to the original SPSA.

Algorithm 4.3: Constrained SPSA

Input: A seed OD matrix, X0

Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax
Input: Admissible relative change for X, β

Evaluate: DTA
(
X0

)
and obtain Y;

Set: X← X0;
Set: a,A, c;
Set: α = 0.602;
Set: γ = 0.101;
Set: Xlow = (1− β)X0 ; Xup = (1+ β)X0;

foreach k = 1, . . . ,IterMax do

Set: ck ← c/(k+ 1)γ;
Set: ak ← a/(A+ k+ 1)α;

Generate: ∆(k) ∼ Be(1/2,±1,N);

Set: X+ = X+ ck∆
(k) ; X− = X− ck∆

(k);

Evaluate: Z+ ← Z
(
X+

)
; Z− ← Z

(
X−

)
;

Calculate: ĝ (X)← (Z+ − Z−)/
(
2ck∆

(k)
)
;

Set: X← X− akĝ(X);
Set: X← min{max{X,Xlow},Xup}; // Equation 4.17

Evaluate: DTA (X) and obtain Y;

if rel_diff < thrsh_stop then
Stop;

Set: X∗ ← X ; // X∗ represents the estimated OD matrix

Output: Return X∗

Penalized SPSA

Alternatively,Wang& Spall (1999) propose anotherway to add the constraints defined by the trust region
G, which is based on adding penalty functions to the objective function, that is:
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min Z (X) = w1F1
(
Y, Ŷ

)
+w2F2

(
X,XH

)
+ rkP(X,XH)

s. to: Y = Assignment(X)

X ≥ 0

(4.18)

where rk is an increasing sequence of the form rk = (1 + k)ρ, and P(X,XH) is a set of penalization
functions for the set of constraints that delimit the constraints of set G. Formally:

G ,
{
qijr(X,X

H) ≤ 0 , qUijr(X,XH) ≤ 0,∀i, j, r
}
= (4.19)

=
{
xijr − (1+ β)xHijr ≤ 0 , (1− β)xHijr − xijr ≤ 0 , ∀i, j, r

}

The penalty function P(X,XH) has to be differentiable, non-negative, and an increasing function, such
that propels the iterative procedure to values where P(X,XH) = 0. Wang & Spall (1999) propose a sum
positive functions, p(x), that penalize when each constraint is violated. These positive functions satisfy
p(x) = 0 if and only if x ≥ 0, such as:

P(X,XH) =
∑
i∈I

∑
j∈J

T∑
r=1

wijrp(qijr(X,XH)) =
∑
i∈I

∑
j∈J

T∑
r=1

wijrmax
{
0, qijr(X,XH)

}2 (4.20)

As in the previous variant, the iterative procedure is also modified in order to incorporate the gradient
of the penalization function. In this case, it affects the objective function and, consequently, the gradient.
Since the penalty function is analytical, one can use its gradient to update the iterative process of Equation
4.1 to:

X(k+1) = X(k) − akĝ
(
X(k)

)
− akrk∇P

(
X(k),XH

)
(4.21)

where the gradient can be calculated:

∇P(X,XH) = ∇

(∑
i∈I

∑
j∈J

T∑
r=1

wijrmax
{
0, qijr(X,XH)

}2)
= (4.22)

=
∑
i∈I

∑
j∈J

T∑
r=1

wijr∇
(
max

{
0, qijr(X,XH)

}2)
=

=
∑
i∈I

∑
j∈J

T∑
r=1

2wijrmax
{
0, qijr(X,XH)

}
· ∇qijr(X,XH)



60 4. Simulation-based Optimization Approaches

Algortihm 4.4 shows how the Penalized SPSA is proposed for DODME.

Algorithm 4.4: Penalized SPSA

Input: A seed OD matrix, X0

Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax
Input: Admissible relative change for X, β

Evaluate: DTA
(
X0

)
and obtain Y;

Set: X← X0;
Set: a,A, c;
Set: α = 0.602;
Set: γ = 0.101;
Set: Xlow = (1− β)X0 ; Xup = (1+ β)X0;

foreach k = 1, . . . ,IterMax do

Set: ck ← c/(k+ 1)γ;
Set: ak ← a/(A+ k+ 1)α;

Generate: ∆(k) ∼ Be(1/2,±1,N);

Set: X+ = X+ ck∆
(k) ; X− = X− ck∆

(k);

Evaluate: Z+ ← Z
(
X+

)
+ P(X+,X0) ; Z− ← Z

(
X−

)
+ P(X−,X0); // Equation 4.20

Calculate: ĝ (X)← (Z+ − Z−)/
(
2ck∆

(k)
)
;

Set: X← X− akĝ(X) − akrk∇P(X,X0); // Equation 4.21

Evaluate: DTA (X) and obtain Y;

if rel_diff < thrsh_stop then
Stop;

Set: X∗ ← X ; // X∗ represents the estimated OD matrix

Output: Return X∗

4.4 Case study: Results of SPSA without travel times

All SPSA proposed variants were tested on the downtown area of the city of Hillsboro (Oregon, United
States). The network available in PTV Visum is calibrated for using the simulation-based assignment
(SBA), which is a dynamic traffic assignment based on Mahut (2000).

The middle-size network consists of 618 links and 58 zones, with the simulation running over a time
horizon from 08:00 AM to 09:00 AM in 3 periods of 20 minutes. This replicates the traffic conditions
during rush hour on weekday mornings. The network is represented in Figure 4.2.
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Figure 4.2: The network of the city of Hillsboro. Red arrows indicate the installed counting sensors

Following Antoniou et al. (2016), we prepared a set of synthetic experiments to test the different versions
and variants proposed for SPSA before adding new terms to the objective function. In this sense, a
detection layout of 80 sensors was set and traffic counts were generated for each time period. The
historical OD matrix is a design factor for the set of experiments, because it is well known that the SPSA
procedure is highly sensitive to the given seed.

Below, the factors for full factor experiments are listed:

Historical OD matrix: This is also used as a seed for the SPSA procedure. Six different initial-
izations were used to contemplate different situations, from similarly structured matrices with
different numbers of trips to non-similar-structure matrices:

Incremental+: Incrementing all the OD values of the ground truth matrix by a fixed percent-
age: Inc+ = XGT (1+ δ) , δ = 0.25.
Incremental-: Decrementing all the OD values of the ground truth matrix by a fixed per-
centage: Inc− = XGT (1− δ) , δ = 0.25.
Chaos: Equidistributing all the OD values of the ground truth matrix by rows while fixing
generated trips by rows.
Chaos+Inc+: Equidistributing all the OD values of the ground truth matrix by rows and
incrementing all of them by the same δ = 0.25 fixed proportion.
Chaos+Inc-: Equidistributing all the OD values of the ground truth matrix by rows and
decrementing all of them by the same δ = 0.25 fixed proportion.
Multitude: Adapted from Antoniou et al.’s (2016) low demand initialization: XM = XGT (r+
qε), with r = 0.75, q = 0.15 and ε ∼ N(0, 1/3).

Note that the Incremental+ and Incremental– OD matrices have the same spatial distribution
structure and mobility pattern as the ground truth OD matrix, because only a regular increment
or decrement has been applied; while the Chaos matrices present a complete perturbation that
changes the structure of the OD matrix. In other words, the mobility patterns of the ground truth
are different from those of the historical OD matrix, which is used as the seed for the estimation
procedure. Figure 4.3 visualizes thedifferences between three of thoseODmatrices usingheatmaps
in red, orange, yellow, and white. As can be seen, the Incremental+ and ground truth ODmatrices
have the same structural similarity (the one following theMULTITUDE approach also has a similar
structure). Furthermore, the Chaos family of OD matrices presents a totally different structure.
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SPSA variant: The three described variants used were the Free SPSA (Equation 4.10), the Con-
strained SPSA (Equation 4.16) and the Penalized SPSA (Equation 4.18). All three methods were
used using the improvements: variable normalization, and the automatic selection of the gain
sequence parameters a,A, c. We generically tested the SPSA variants that add transport informa-
tion for the test site. Based on the historical OD matrix for each experiment, we used β = 0.25

constraints on the form (1 − β)XH ≥ X ≥ (1 + β)XH. This means that the OD values can vary
between −25% and +25% of their original values, which come from a historical and reliable OD
matrix.

Second term objective function: In the bi-level problem of Equation 1.6, the second term of
differences can be added to the historical OD matrix. This factor is equivalent in mathematical
terms to changing w2 = 0 to w2 = 1. Toledo & Kolechkina (2013) studied the effect of this term
with respect to the optmization procedure, and concluded that the overall optimization process
can be significantly affected even by a small coefficient. We use w2 = 1 because we want to make
use of the historical OD matrix and analyze the effect on the quality of the estimated OD matrix.

Conjugate gradient approach: This approach refines the estimated descent direction using Equa-
tion 4.6, and we also tested it by analyzing its effects on the estimated OD matrix.

(a) Ground truth ODmatrix (XGT ) (b) Incremental+ (Inc+) (c) Chaos+Inc+

Figure 4.3: Heatmaps of the OD matrices

Therefore, having a full design raises the total number of experiments to 72, which are fully detailed in
Appendix B.1. Below, we present some remarkable results and conclusions.

In the next figures, and also in Chapters 5 and 6, the four KPIs that are plotted are, from one side the
objective function to verify the descent nature of the optimization procedure; the R2 value as indicator
of the fitting between the simulated and observed traffic counts; the total number of trips to check if the
approach is able to reach the ground truth number of trips; and the MSSIM to compare the demand
pattern with respect to the ground truth OD matrix.

The results from the first set of experiments are shown in Figure 4.4, and these experiments were
performed using the historical ODmatrix built by theMultitude proposal based on the different variants
of SPSA. This initial OD matrix serves as a reliable OD matrix that has a high degree of structural
similarity to the ground truth OD matrix, although its demand is lower than the ground truth OD total
number of trips.
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Figure 4.4: Results for different variants of SPSA (without CG) and the Multitude initial OD matrix

Figure 4.4a and 4.4b indicate an acceptable performance of all SPSAvariants as aminimization procedure
and as ameta-regressor for traffic flow counts, specifically when seeking to increment the fitting between
measures. In these cases, the descent is clear, despite the oscillations resulting from the stochastic nature
of the algorithm. The total number of trips (Figure 4.4d) cannot significantly increase to where it reaches
the ground truth total number of trips, which is NT(XGT ) = 9878 trips.

Naturally, the Free SPSA presents a better descent, followed by Penalized SPSA and, finally, Constrained
SPSA, which has the worst descent. A similar phenomenon occurs in the evolution of total number of
trips, where Free SPSAmost approximates the ground truthODmatrixwhile Penalized andConstrained
SPSA approximate it less so, because of the constraints added to the problem. On the other hand, the
constraints are reflected in the evolution of MSSIM, where these constraints clearly help maintain the
structure of the OD matrix, more similar to the ground truth OD matrix structure. Constrained SPSA
seems to perform better. Of the four indicators in Figure 4.4, the second term of the objective function
(when w2 = 1) performs better.

On the other hand, Figure 4.5 shows the SPSAperformance for the initialODmatrices that are structurally
different from the ground truth OD matrix (Chaos, Chaos+Inc+, Chaos+Inc-) when w2 = 1.
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Figure 4.5: Results for different variants of SPSA (without CG and w2 = 1) for different initial OD
matrices

Comparing all plots in Figure 4.4 and Figure 4.5 clearly shows that SPSA variants work properly only
for those initial OD matrices that are structurally similar to the ground truth ODmatrix. When the seed
ODmatrix is one of the Chaos initializations (Figure 4.5), the SPSA variants do not act as a minimization
procedure; they do not increase values; and they do not perturb the matrices at all. The variants are
therefore useless in these cases, indicating that the SPSA procedures are in no way robust in terms of the
initial ODmatrix. This is a drawback to using SPSA when one is not confident about the structure of the
seed OD matrices being used.

Figure 4.6 studies the conjugate gradient variant. In this case, the Multitude initial ODmatrix was used,
and w2 = 1 and Constrained SPSA were selected, since these seem to be the best choice, based on past
performance. We can see here that the conjugate gradient technique does not perform better in SPSA
and, moreover, the classic stochastic gradient version is better in terms of similarity, as shown in Figure
4.6d.

After studying the performance of these experiments, we consider that SPSA has been significantly
studied as an optimization technique for solving the bi-level OD estimation problem in the dynamic case.
Its versatility and ease of implementation allow adding many variants for enhancing the results. For
instance, adding constraints to the problem helps obtain an ODmatrix estimate that remains structurally
similar to the initial OD matrix. Moreover, adding the second term in the objective function helps
obtain better results, not only in terms of the total number of trips, but also in terms of similarity.
On the other hand, the conjugate gradient variation adds no significant improvements, while it uses
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more computational memory. In summary, we can conclude that the initial OD matrix is essential to
SPSA-basedmethods, because SPSAhas no effectwhen the initialization lacks a reliablemobility pattern.
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Figure 4.6: Results for the Constrained SPSA with and without the conjugate gradient for Multitude
initialization

4.5 SPSA with travel times obtained from GPS data

As already mentioned, one of the main advantages of the SPSA approach for solving the OD estimation
problem is that it is a method that does not require an analytical gradient calculation, which means that
there is no need to know the analytical form of the objective function. This allows adding different terms
in the objective function, such as the discrepancy functions of different trafficmeasurements, which have
beenwidely exploredwith link speeds and travel times. Some examples are Cantelmo, Cipriani, Gemma
& Nigro (2014), Kostic et al. (2015), Carrese et al. (2017) and Nigro et al. (2018).

A GPS data set contains many waypoints that describe the trajectories of vehicles circulating through
the network. These data sets are usually huge and contain several days’ worth of tracking under similar
traffic conditions. The proposed methodology aims to gain insights from the data set, which can then
be translated to traffic measurements and incorporated into the SPSA procedure as another term in the
objective function.
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Figure 4.7: Methodological scheme for GPS processing in SPSA

A common optionwould be to use these trajectories to estimate averageOD travel times, which can easily
be compared to the outputs of a dynamic traffic assignment model. However, as already mentioned in
Section 2.3.1, a commercial GPS data set from an uncontrolled data collection process could carry biases
in the OD pairs, as well as poor quality and different vehicle purposes being grouped together, all of
which must be taken into account. For this reason, we discarded the first and last waypoint of each
trajectory as origin and destination points, and instead opted to extract the travel times of a common
subpath with other vehicles.

Themethodological approach is described in the logical diagram in Figure 4.7. TheGPSdata is processed
in order to obtain the most used paths in the network and their observed path travel times, t̂t. These
are map-matched to the dynamic traffic assignment’s transport model, thus allowing us to estimate the
corresponding travel times, tt.

4.5.1 From GPS data to travel times on subpaths

The processing of the waypoint database starts with map-matching the waypoints onto the links in the
network (see details in Section 2.4). The output of this process is a data set of trajectories at the link level,
such as the one shown in Table 2.4.
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The network links in this data set can appear repeatedly when they have been used by tracked vehicles
in the real network. Other links appear only once because only one vehicle in the sample passed through
it, and some do not appear at all because they were not used by the tracked vehicles.

The presented methodology aims to extract the most reliable information from the sample by selecting
the maximal subpaths that are captured most in the floating car data set. Therefore, they have more
information on the observed travel times under the given traffic conditions. The heuristic procedure is
the following:

Figure 4.8: OD path flows intercepted by the purple link

1) From Table 2.4, the most used link is selected. One example is highlighted in purple in Figure 4.8,
with orange representing all the different paths using this link.

2) As shown in the same figure, all the paths that use the selected link are selected. Therefore,
simultaneously searching forward and backward adds the previous and subsequent links that
maximize the number of paths using this path. In the first iteration, the result is a sequence of
three links, with the most used link being in the middle. A fictitious example is shown in Figure
4.9 in order to provide a better understanding of the heuristic procedure for selecting the maximal
subpath. Let us imagine that the incoming path (blue part) is shared by 110 trajectories in the data
set. In order to addmore links, a forward and backward search is conducted to find the distribution
of these 110 paths. Therefore, the subset of 110 trajectories is reduced to the 66 trajectories that
enlarge the subpath.

Path

6

13

66

25

Figure 4.9: Fictitious example to select the subsequent links
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3) Step 2 is repeated until the number of paths used by the found sequence is reduced from the
number of paths using the initial link to a threshold (for example 20%). This threshold is a design
parameter. At the end of this step, subpath P1 = {L1

1
, . . . , L1m1

} is found. The travel time ttP1 is the
average of all the trajectory times circulating over this subpath.

4) Once the previous subpath (Pk−1) has been selected, the links forming it are removed from the list
of paths, and the remaining paths are split into two new paths.

5) Go back to step 1 to find the next maximal subpath. Stop when there are no available links.

Algorithm 4.5 shows the implementation of the suggested heuristic.

Algorithm 4.5: From GPS data to estimated travel times

Input: P Paths described by a sequence of links and link travel times, like the one shown in Table 2.4.
Input: Percentual threshold, thrsh.

Set: k← 1 ; // Counter

while more subpaths needed do

// Step 1: Select the most used link;

Select: Lk ←Most used link in P;
Calculate: NL

k
← number of paths using Lk;

Set: Pk ← {L1};
Calculate: NP

k
← number of paths using Pk;

while NP
k
> thrsh ·NL

k
do

// Step 2 and 3: Find Backward and Forward;

Find: previous and next links Lip from the path Ljn;
foreach Combination {Lip, L

j
n} do

Count: number of paths using it;

Select: the maximum used path, {Lip, L
j
n};

Set: Pk ← {Lip,Pk, Ljp};
Calculate: NP

k
← number of paths using Pk;

// Step 4: Update P;

Remove: Links in Pk from P;
Divide: Affected paths in P in two paths;
Set: k← k+ 1;

Output: Return {P1, . . . ,Pp}

The heuristic is valid for static and dynamic OD estimation. In the case of dynamic OD estimation, as in
this thesis, the heuristic must be run separately for each time period of the simulation, thereby capturing
the changing dynamics of the congestion on the different subpaths found for each time period. From
now on, the set of maximal subpaths of a certain network is denoted as P = PT1 ∪PT2 ∪· · ·∪PTT , which
is the union of the subpaths found for each of the time periods. Therefore, if the path k is obtained for
the time period Tt, the corresponding simulated travel time ttp must also be calculated by simulation
for the same time period.

Once the iterative heuristic is performed, the resulting travel times for all the maximal subpaths are
calculated as the mean of the different trajectories that use it. If the trajectories map-matched onto the
network are sufficient and cover the network, it is expected that these maximal subpaths will have a
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reliable estimated travel time and that the entire set will cover the majority of the links in the network,
thus providing more information about the traffic dynamics of the network in the time period under
study.

4.5.2 SPSA with travel times

The extension of the bi-level formulation accounting for measured t̂t and estimated travel times (tt =
(tt1, . . . , ttP)) is straightforward, as it simply expands the objective function by adding a third term
F3(tt, t̂t) to minimize the distance between the measured and estimated travel times of the paths, which
are calculated with the heuristic procedure that uses the GPS tracking of vehicles. The formulation is,
therefore, as follows:

min Z (X) = w1F1
(
Y, Ŷ

)
+w2F2

(
X,XH

)
+w3F3

(
tt, t̂t

)
s. to: (Y, tt) = Assignment(X)

X ≥ 0

(4.23)

This is also a bi-level problem that solves a dynamic traffic assignment at the lower level to obtain the
estimated traffic counts (Y) and travel times (tt). Since SPSA is a estimated gradient method and does not
need a specific form of the objective function, adding the new term F3 does not modify the procedure
for solving the problem. Moreover, all the proposed variants can also be applied in order to find an
estimated OD matrix that improves the fitting of the objective function.

4.5.3 Hybridization of SPSA with travel times

Tympakianaki (2018) propose a hybrid SPSAgradient that takes advantage of the differentiable analytical
part of the objective function in order to obtain a better estimate of the maximum descent direction in
the bi-level problem (Equation 4.7). This research shows that the SPSA procedure’s convergence and
robustness is improved, which thus inspires the following formulation.

Given the problem shown in Equation 4.23, the dynamic assignment matrixA states a linear relationship
between the traffic counts and the OD flows, which are the optimization problem’s variables. Further-
more, the three distance functions (F1, F2, andF3) are the quadratic distance, by which the optimization
problem is as follows:

min Z (X) = w1
∑
l∈L̂

∑
t∈T

©«©«
∑

(i,j)∈N

t∑
r=1

altijrxijr
ª®¬− ŷltª®¬

2

+w2
∑

(i,j)∈N

∑
r∈T

(
xijr − x

H
ijr

)2
+w3

∑
p∈P

(
ttp − t̂tp

)2
s. to: tt = (tt1, . . . , ttP) = Assignment(X)

X ≥ 0

(4.24)

In this case, if alt
jir

is assumed to be constant in a neighborhood of xijr, the partial derivative of the terms
F1 and F2 can be calculated. On the other hand, travel times are not directly related as a function of
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the variables of the problem. Therefore, a formal partial derivative cannot be calculated and it must be
estimated using the SPSA approach. Using derivative rules of the sum:

[
∂Z

∂xijr

]
hyb

= w1
∂F1

∂xijr
+w2

∂F2

∂xijr
+w3

∂F3

∂xijr
= (4.25)

= 2w1
∑
lt

©«
∑

(i,j)∈N

t∑
r=1

altijrxijr − ŷlt
ª®¬altijr + 2w2(xijr − xHijr) +w3 ∂̂F3∂xijr

Thehybrid gradient approach is expected to be a better approximation of themaximumdescent direction,
so the method should present better results on convergence and stability. However, as the problem
is highly underdetermined, the hybrid gradient could not lead to a better local minimum tan other
approaches.

4.6 Case Study: Results of SPSA with travel times

We have used the same network in Section 4.4, namely the city of Hillsboro, USA. In this case, the
experiments aim to show the effect of adding new data to the SPSA.

We used the methodology described in Section 2.4 to consistently generate the three data sources. We
used the same detection layout for this network and simulated 120 days using different random seeds
in Vissim. This allowed us to obtain enough GPS trips and time latencies based on the learning process
from the physical data. The full GPS data set contains 9.1M waypoints, which equals approximately
109k trips. This data set was transformed to PrT Paths in Visum using the GPX import tool and its map-
matching techniques to obtain, from the waypoint sequence, the interpolated travel times at the link
level, as explained in Section 2.5. All the experiments used the historical OD matrix that was proposed
for benchmarking purposes in MULTITUDE Cost Action (Antoniou et al. (2016)), as in Section 4.4. We
also normalized the variables in the objective function without taking the conjugate gradient approach,
which also corresponds to the conclusions extracted from the experiments in Section 4.4.

The iterative procedure described in Section 4.5.1 was executed to find the maximal subpaths used by
the GPS data in this network. We also considered the departing time period of each path in order to find
subpaths at each time period in the dynamic traffic assignment procedure, thus allowing us to capture
its dynamicity. The heuristic stops when no more paths are found, which results in 379 subpaths (127
on T1, 123 on T2, and 129 on T3), whose observed path travel times (t̂t) are calculated as the sum of their
observed link travel times.
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Figure 4.10: The subpaths found on the Hillsboro network

These subpaths and their observed travel times cover thewhole network, as shown in Figure 4.10 (orange
color means that the link is covered), and they are used by many GPS paths (158 for each, on average),
which instill confidence in their use and observed travel times. The average length of these subpaths is
911m. In this case, we consider only subpaths with more than 5 links.

The minimization problem used for the experiments is shown in Equation 4.23. The two methods used
in the computational experiments were:

SPSA with travel times, with the objective function defined by:

Z (X) = w1
∑
l∈L̂

∑
t∈T

(ylt − ŷlt)
2 +w2

∑
(i,j)∈N

∑
r∈T

(
xijr − x

H
ijr

)2
+w3

∑
p∈P

(
ttp − t̂tp

)2 (4.26)

where ylt and ttp are calculated at the lower level by performing a dynamic traffic assignment.

Hybrid SPSA with travel times, with the objective function defined in Equation 4.24.

Following the computational experiments in Section 4.4, we used the Constrained SPSA as the SPSA
variant in all cases. Here, the feasible set G is determined by the bounding constraints, as shown
in Equation 4.15, and it preserves the structural similarity of the historical OD matrix. A total of 8
experiments were performed in order to see the effects of each proposed innovation. Three main factors
were combined to generate the set of experiments:

The term of the reference historical OD matrix in the objective function (w2 = 0 and w2 = 1).

The term of travel times on the objective function (w3 = 0 and w3 = 1).

Hybridization or non-hybridization of the SPSA gradient.

The weight w3 was set as w3 = F1(X0)/F3(X0) in order to equalize the importance of traffic counts and
travel times.

Figure 4.11 summarizes the computational results. In terms of the structural similarity indexMSSIM, and
the total number of trips, when adding both the terms F2 and F3, the total number of trips increases and
we get closer to the ground truth NT(XGT ) = 9878. Furthermore, the estimated OD matrices are more
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reliable, from a structural point of view. The hybrid approach therefore demonstrates more consistent
behavior. In the case of the Hybrid SPSA without travel times, the effect of adding the historical OD
matrix (w2 = 0) is negligible because the curves overlap. That is because the optimization process is no
longer stochastic and the term’s contribution is not significant.
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Figure 4.11: Results for SPSA with travel times variants

On the other hand, we have experimentally proven that the Hybrid SPSA gradient (Equation 4.25)
outperforms the SPSA gradient. As expected, the analytical part of the linearized objective function’s
gradient is a better approximation of the maximum descent direction. This effect is notably appreciated
in the case of w3 = 0 (curves in yellow). However, when w3 ≠ 0, the effects of the hybrid SPSA vanish
due to the SPSA gradient part (curves in green).

Figure 4.12 shows the simulated and real traffic measurements in the objective function for the case of
w2 = 1. Table 4.2 summarizes the R2 adjustment between the measurements and theMSSIM between
the ground truth OD matrix used to generate the synthetic data and the estimated OD matrix.

Regarding traffic counts, including travel times in the objective function decreases the R2. On the other
hand, the two variants of SPSAwith travel times properly adjust the path travel times with respect to the
real measurements, but SPSA with travel times shows greater R2 values. TheMSSIM always increases
when w2 = 1, because the objective function considers the historical OD matrix. On the other hand,
including travel times in SPSA improves the structural similarity with respect to the ground truth OD
matrix. In the case of Hybrid SPSA, theMSSIM value decreases because adding the travel times converts
the algorithm from deterministic to stochastic, as seen. In Figure 4.12, a remarkable group of outliers is
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Figure 4.12: R2 between simulated and real measurements

Table 4.2: R2 between traffic measurements andMSSIM between the estimated and the ground truth
OD matrix

SPSA Hybrid SPSA
no tt tt no tt tt

R2 Traffic
Counts

w2 = 0 0.8297 0.7614 0.7598 0.6485
w2 = 1 0.8319 0.7488 0.7684 0.7243

R2 Travel
Times

w2 = 0 - 0.8312 - 0.8371
w2 = 1 - 0.8426 - 0.8297

MSSIM
w2 = 0 0.9189 0.9282 0.9371 0.9283
w2 = 1 0.9207 0.9318 0.9371 0.9278

shown for traffic count measurements. All these points pertain to the same detector in the outer limits
of the study area and they appear in all methods, thus indicating that traffic counts cannot be satisfied
without perturbing the global fit. A general trend can be highlighted: the SPSA without travel times
method has a greater R2 because the estimation procedure behaves as a metamodel that modifies the
output matrix in such a way that traffic counts are forced. Nevertheless, as travel times are included, a
compromise must be made between traffic counts and travel times and a jointly enhancement requires
to relax traffic counts fit for obtaining a global benefit in the estimation of the output matrix.

4.7 Conclusions of SPSA

The SPSA method has been widely used for solving the OD estimation problem, mainly when the use
of new traffic measurements is desired, because its versatility allows easily adding new discrepancies
terms to the objective function. This chapter has studied and analyzed the SPSA in depth in order to
understand its behavior when solving the OD estimation problem, as well as to improve it by modifying
the SPSA with a focus on its performance in estimating the specific OD matrix.

We conducted a complete study of previous research works in order to compile proposed modifications
to SPSA for OD estimation. This study ends with an enhanced SPSA methodology that specifically
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works for OD estimation while tackling its inherent weaknesses when used for OD estimation. Two
contributions of this thesis are the normalization of variables and the automatization of selecting the
SPSA parameters, which have been used in all the experiments of this chapter.

The proposed improvements to SPSA aimed at limiting the total number of trips of the OD matrix
and improving the structural similitude between the historical and the resulting OD matrix, led to two
alternative formulations. First, a Constrained SPSA in terms of bounding constraints on the changes in
the entries of X. Second, a Penalized SPSA, adding a penalty term to the objective function to limit the
changes in the OD matrix values. Both versions provided similar results in term of better convergence
and quality of the estimated OD matrix when compared to the ground truth OD matrix.

In this sense, Section 4.4 first studied using SPSA without adding travel times. The objective of this
was to find the best settings for estimating OD matrices. Since SPSA is a stochastic estimated gradient
based method, the initial OD matrix is crucial for successfully obtaining a structurally similar estimate,
as proven. The reliability of such an initial OD matrix is also helpful as a second term in the bi-level
optimization form of the OD estimation problem (Equation 1.6). The SPSA procedure performs better
in terms of similarity when adding some constraints, both when using constraints to define a feasible set
and when adding the penalizing term in the objective function. Moreover, adding the second term that
refers to the historical OD matrix helps maintain the structure of the estimation, which is desirable for
mobility patterns.

On the other hand, SPSA is not a suitable method when the reliability of the OD matrix is not certain.
As shown in Figure 4.4, the experiments performed using structurally different OD matrices show bad
performance of SPSA, which acts as a mere random perturbation method without finding an optimal
direction for improving any of the indicators.

Adding ICT trafficmeasurements is the main objective of this thesis, with the aim of taking advantage of
ICT technologies and BigData. Section 4.5 presents an innovative and specific approach for transforming
a GPS tracking data set into traffic measurements that define the traffic phenomena in the network
during the studied time periods. With this heuristic procedure, travel times on the most used subpaths
are estimated and added to the objective function as a third term of discrepancies between estimated
measurements and its corresponding simulated measurements. This methodology has been tested and
validated using a synthetic data generation process and, finally, by observing its performance.

In terms of similarity, adding new data sources contributes positively to the SPSA performance, which
increases the final value ofMSSIM and also leads to the total number of trips reaching the ground truth
value. Thus, we have proved that the proposed methodology is suitable for adding information from
GPS tracking.



5
Analytical approaches to

solve DODME
In this chapter, we analyze the analytical approaches based on the assignment matrix. We formulate the dynamic
version of the Spiess (1990) method and present some variants. We show and test its performance with some
synthetic experiments.

As we introduced in Chapter 1, the OD estimation problem of Equation 1.6 is the reference to estimate
ODmatrices, both in the static and in the dynamic case. In the first case, the researchers have made wide
use of the analytical approaches, as described in Section 1.2.1, to solve the bi-level optimization prob-
lem. The key object in these approaches is the static assignment matrix, Equation 1.7, that converts the
objective function to a nonlinear optimization problem once assumed constant on a reduced neighbor-
hood. Selecting appropriate differentiable distance functions, one can design computationally efficient
algorithms that reevaluate the static assignment matrix at each iteration and present nice properties for
convergence and stability, Codina & Montero (2006), Lundgren & Peterson (2008), Spiess (1990).

On the stepmoving to the dynamic traffic assignment case thatwedescribed in Section 1.3, the congestion
effects and traffic dynamics are taken into consideration and the assignment matrix involves the time
dimension twice. The terms of the dynamic assignment matrix, Equation 1.17, are alt

ijr
and represent

the proportion of the OD flow xijr that departs at time period r from origin i to destination j and is
detected on link l at time period t ≥ r. The dynamic assignment matrix acts as a linear function that
relates the OD flows with the traffic counts detected on the sensors, and therefore replaces the dynamic
traffic assignment.

The linearization of the relationship between OD flows and the traffic counts is indeed the first term of
the Taylor expansion of the unknown specific dynamic traffic assignment function, Equation 1.19. In the
dynamic case, where temporal evolution is important, this linearization cannot properly account for the
impacts of traffic dynamics, time dependencies and route choice alternatives induced by congestions.
As Frederix et al. (2011, 2013) highlight, counts in and downstream of congestion are not informative of
demand, but of discharge capacity. Additional terms of such Taylor expansion would help to capture
the assignment matrix’s sensitivity to spatial and temporal changes and its effects. However, Frederix
et al. (2013) state that the use of a reference OD matrix that presents the correct traffic regime is a right
starting point, despite it cannot ensure convergence to an estimated OD matrix that represents correctly
the demographics of the network.

Some researchers (Frederix et al. (2013), Toledo & Kolechkina (2013), Yang et al. (2017)) drew attention to
the role played by the quality of the assignment matrix, which results from the lower level assignment
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process when estimating the flows used in the upper level. Therefore, those researchers have proposed
either analytical or empirical approaches for improving it. While Frederix et al. (2013) offers a relevant
theoretical contribution, Toledo & Kolechkina (2013) provides more insight into applying it in larger
networks. However, their paper mentions Spiess (1990) as one of the tested alternatives, and yet they do
not provide further details about its extension to dynamic scenarios. It seems to be a particular case of
their approach, which uses second-order derivatives and complex numerical optimization procedures
(e.g., Armĳo rules to compute the step length), which require higher computational effort. Therefore,
in this chapter, we seek to validate the modification of the Spiess procedure using, on the one hand, a
first-order approach to the assignment matrix that is provided by a Dynamic Traffic Assignment; and,
on the other, an ad hoc reformulation of the analytical calculation of the gradient that is suitable for a
straightforward calculation of the step length at each iteration.

The problem studied in this chapter is the one shown in Equation 1.8, but in the dynamic case. In order
to state it clearly, we think necessary formulating again the problem in this chapter.

Given a network with a set of links L, a set I of OD pairs, and the set of time periods T . The goal of the
dynamic OD-matrix estimation problem is to find a feasible vector (OD-matrix) X∗ ∈ G ⊆ RI×J×T+ , where
X∗ = (x∗

ijr
), i ∈ I, j ∈ J, r ∈ T , consists of the demands for all OD pairs. It can be assumed that, when

assigning the time-sliced OD matrices onto the links of the network, it should be done according to an
assignment proportion matrixA =

[
alt
ijr

]
, where each element in the matrix is defined as the proportion

of the OD demand xijr that uses link l at time period t. The notation A = A(X) is used to indicate
that, in general, these proportions depend on the demand but the main assumption on the analytical
approaches is that the assignment matrix is constant on a reduced neighborhood, as mentioned. The
linear relationship between the flow count on a link and the given OD pair is in matrix form, which thus
sets the vector of detected flows as Y = (Y1, . . . ,YT ) = (y11, . . . , yL1, . . . , y1T , . . . , yLT ) and the vector
of OD flows as X = (X1, . . .XT ) = (xi1j11, . . . , xiIjJ1, . . . , xi1j1T , . . . , xiIjJT ). The relationship can be
expressed as a matrix product, that is

Y = A(X) · X with A =

©«
A11 0 . . . 0

A21 A22 0
...

...
. . .

. . . 0
AT1 · · · ATT−1 ATT

ª®®®®®¬
where Atr =

©«
a
l1t
i1j1r

· · · a
l1t
iIjIr

...
. . .

...

a
lLt
i1j1r

. . . a
lLt
iIjJr

ª®®®¬ (5.1)

where Art represents the assignment matrix for the departing flows at time window r detected at time
window t and, therefore, A is a lower-diagonal matrix, because OD flow departing at time r cannot
pass through link l at time t < r. The resulting bi-level optimization problem, once replacing the static
assignment by the dynamic assignment matrix, is as follows:

min Z (X) = w1F1
(
A(X)X, Ŷ

)
+w2F2

(
X,XH

)
s. to: X ≥ 0

(5.2)

5.1 Analytical approaches and ICT traffic measurements

Themain objective of this thesis is to add ICT trafficmeasurements to theOD estimation problem, aiming
to reduce the underdetermination of the problem supplementing it with new data sources, different to
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the used traffic counts. The simulation optimization-based procedures, Chapter 4, are very suitable for
introducing different traffic measurements, since they do not necessarily need an analytical objective
function to find a sound estimated OD matrix. Indeed, we propose a methodology to use GPS data in
the SPSA procedure, after processing it and transforming to reliable travel times.

However, the case of analytical approaches is different. As it is already shown, the analytical approaches
base their functionality on finding relationships between the variables of the system, that are the OD
flows, and the traffic measurements, which are the traffic counts. The traffic counts are algebraically
relationable to the OD variables, because they are just sums of proportions of them, as explained. The
other trafficmeasurements, as link speeds or travel times are not that easy, sincemore complex dynamics
relate these measurements to the OD flows, such as a traffic assignment. In the dynamic case, the traffic
assignment and the consequences of reflecting congestion effects, makes it infeasible to find a suitable,
but simple, relationship between OD flows and other new ICT traffic measurements.

In this chapter, we analyze in depth the analytical approaches to solve the dynamic version of the bi-
level optimization problem. Therefore, we explore the Spiess approach, aiming at achieving a deeper
understanding of its robust and deep functionality, to explore the possibilities of finding ways of relating
them with the ICT data.

5.2 Dynamic Spiess approach: Spiess gradient based method

In this section, wepropose the extension of the Spiess’ static approach (Spiess (1990)), described in Section
1.2.1, to the dynamic case because it is one of the most robust approaches in practice. That means to
make the calculations but accounting too for the time dependencies. Therefore, the proposed approach,
that we name it the Dynamic Spiess, does not account for the propagation effects, but it explicitly considers
the time dependencies. Moreover, after the mentioned experiences with the inclusion of a second term
in the objective function, we include also this term to the formulation, that compares the OD matrix to
the historical OD matrix, that is assumed to be a reference reliable OD demand.

As mentioned earlier, the extrapolation of the Spiess method to a dynamic traffic assignment (DTA) is
possible by including the time windows to the entire formulation, as follows:

min Z (X) = w1
∑
l∈L̂

∑
t∈T

(ylt − ŷlt)
2 +w2

∑
(i,j)∈N

∑
r∈T

(
xijr − x

H
ijr

)2
s. to: ylt =

∑
(i,j)∈N

t∑
r=1

altijrxijr

X ≥ 0

(5.3)

As in Spiess (1990), the proposed iterative procedure is amore realistic approach of the gradient, based on
a relative change of the demand. And the gradient and the optimal stepmust be calculated following the
original calculations but including the time dependencies and the second term of the objective function.
That is:



78 5. Analytical approaches to solve DODME
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where the partial derivative of the objective function is calculated using the chain rule:
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The optimal length, λ∗, is that one larger enough to avoid small steps and long convergences but smaller
enough to avoid increasing the value of the objective value on the next point. Mathematically, it is
desired to use a value λ∗ such that Z

(
X(k+1)

)
is minimum. That is:

min
λ

h(λ) = Z
(
X(k+1)

)
= w1

∑
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∑
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(5.6)

In order to solve this 1-dimensional optimization problem, we must compute h′(λ) = 0 and therefore,
we first calculate:

y′lt =
dylt

dλ
=

∑
(i,j)∈N

t∑
r=1

∂ylt

∂x
(k+1)

ijr

dx
(k+1)

ijr

dλ
= −

∑
(i,j)∈N

t∑
r=1

altijrx
(k)

ijr

∂Z

∂xijr
(5.7)

where we used the chain rule and Equation 5.4 to measure the change of the traffic counts along the
gradient direction. And therefore, to find the minimum:

h′(λ) =
∑
l∈L̂

∑
r∈T

∂h

∂ylt
y′lt = 2w1
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l∈L̂
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= 2w1
∑
l∈L̂

∑
r∈T

(ylt + λy
′
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and results to determine the optimal value of λ∗:

λ∗ =

∑
l∈L̂

∑
r∈T

(ylt − ŷlt)y
′
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l∈L̂

∑
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y′lt
2

(5.9)
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Algorithm 5.1 summarizes the procedure, where as it can be seen, a full dynamic traffic assignment at
each iteration is needed to update the dynamic assignment matrix, A at the lower level of the bi-level
optimization problem.

Algorithm 5.1: Dynamic Spiess algorithm

Input: A seed OD matrix, X0

Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax

Evaluate: DTA
(
X0

)
and obtain A = A(X0);

Set: X← X0;

foreach i = 1, . . . ,IterMax do

Evaluate: Z(X) ; // Equation 5.3

Evaluate: ∇Z(X); // Equation 5.5

Evaluate: λ∗ ; // Equation 5.9

if any(λ∗ ∗ ∇Z(X)) > 1 then
λ∗ ← 1/max(∇Z(X)) − ε ; // ε is to avoid numerical problems

Set: X← X(1− λ∗∇Z(X)) ; // Equation 5.4

if rel_diff < thrsh_stop then
Stop;

Evaluate: DTA (X) and obtain A = A(X);

Set: X∗ ← X ; // X∗ represents the estimated OD matrix

Output: Return X∗

5.2.1 Dynamic Spiess variants

With the aim of improving the computational performance, an analysis of the computational burden of
the algorithm has been done. In this sense, the most expensive step is the DTA procedure to update the
dynamic assignment matrix. Assuming again that small changes on the ODmatrix imply small changes
to the dynamic assignment matrix, we reduce the number of assignments to improve the computational
performance. On the other hand, we propose and analyze an alternative distance term between OD
matrices in the objective function.

Reassigning at convergence

As in Spiess (1990), the iterative procedure used to solve the minimization problem on Equations 5.3
employs gradient methods, Equation 5.4, 5.5 and 5.9, and this requires one full assignment of the OD
matrices at each single iteration of the minimization procedure. The assignment matrix, A =

[
alt
ijr

]
,

depends directly on X; so each iteration of the minimization problem requires a single assignment
of X onto the network, which increases the computational time. Let us assume that the assignment
matrix does not change significantly at each iteration. Then, reassigning at every single iteration is not
needed and the computational time would significantly be reduced, because DTA assignment is a time-
consuming procedure. In this case, we propose to distinguish the iterations between major iterations
(when an assignment is required at the lower level) and minor iterations (when only the minimization
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iterations at the upper level are considered). The jump from the upper level to the lower level is made
only when a convergence criterion is satisfied. The assignment matrix is then recalculated, and more
minor iterations are launched. At the end, a dynamic traffic assignment is needed to update the resulting
traffic counts according to an updated assignment matrix. Algorithm 5.2 shows the new design, where
two thresholds determine if it is needed to launch a DTA and update the assignment matrix or the
stopping criterion is reached. Both thresholds consider the relative decrease of the objective function.

Algorithm 5.2: Dynamic Spiess algorithm innovation: Reassigning at convergence

Input: A seed OD matrix, X0

Input: A DTA criterion, thrsh_DTA
Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax

Evaluate: DTA
(
X0

)
and obtain A = A(X0);

Set: X← X0;

foreach i = 1, . . . ,IterMax do

Evaluate: Z(X) ; // Equation 5.3

Evaluate: ∇Z(X); // Equation 5.5

Evaluate: λ∗ ; // Equation 5.9

if any(λ∗ ∗ ∇Z(X)) > 1 then
λ∗ ← 1/max(∇Z(X)) − ε ; // ε is to avoid numerical problems

Set: X← X(1− λ∗∇Z(X)) ; // Equation 5.4

if rel_diff < thrsh_stop ; // Stopping criterion

then
Stop;

if rel_diff < thrsh_DTA ; // Reassignment criterion

then
Evaluate: DTA (X) and obtain A = A(X);

Set: X∗ ← X ; // X∗ represents the estimated OD matrix
Evaluate: DTA (X) ; // Final Assignment

Output: Return X∗

Entropy function as a distance function between OD matrices

Due to criticism of using Euclidean distances of Frederix et al. (2013), using a different distance function is
another alternative for the objective function. Furthermore, as alreadymentioned and shown in Chapter
3, Djukic (2014) also shows that using a Euclidean distance term can result in twomatrices that have very
different structures but maintain the same distance value with respect to the reference matrix. However,
MSSIM has been discarded as we seek for an easy differentiable distance function that permits us to
obtain the gradient and use the maximum descent iterative procedure.

In this sense, the classical entropy function, Ortúzar &Willumsen (2011), has been chosen because of its
structural meaning and ease to derive. Then, the objective function is still similar to the one in Equation
5.3, but the differences function F2 is replaced by the entropy function, that is:
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Z(X) = w1
∑
l∈L̂

∑
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(ylt − ŷlt)
2 +w2
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xijr log

(
xijr
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ijr

)
(5.10)

And therefore, the partial derivatives are also affected, so it results:

∂Z

∂xijr
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(ylt − ŷlt)
2
altijr +w2

(
log
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xijr

xH
ijr

)
+ 1

)
(5.11)

5.3 Case Study: Results of Dynamic Spiess different versions

All Dynamic Spiess proposed variants have been tested using the same test site than in the experiments
of SPSA, which is the downtown of the city of Hillsboro (Oregon, United States), see details in Section
4.4. Using the same network permits us to analyze and compare both methodologies. As in the previous
experiments with SPSA, the convergence threshold has been deactivated to study also the effects of the
methodology on the late iterations.

As in the previous chapter, following the framework of Antoniou et al. (2016), we prepared a set of
synthetic experiments to test the different versions and variants proposed for Dynamics Spiess. As in the
previous chapter, the historical OD matrix and the addition of the second term of the objective function
are design factors.

Therefore, the factors for a full factor experiments are listed, which are similar to those in Chapter 4:

Historical OD matrix: 6 different initializations have been used in order to contemplate different
situations, from similar-structure matrices with different number of trips to non-similar-structure
matrices. These are the same initializations as in SPSA testing experiments, we refer to Section 4.4
to see the details of each initial OD matrix.

Dynamic Spiess variant: The three variants described have been used. That are:

Original Dynamic Spiess: The one presented in Algorithm 5.1. A major iteration assigns the
ODmatrix at each iteration, X(k), in order to update the assignment matrixA(k). This is done
after a minor iteration at the upper level that updates the OD matrix iteration by iteration.

Dynamic Spiess reassigning at convergence: Major iterations are done after the upper level
optimization procedure converges, when the relative error is lower than thrsh_DTA = 10−4.

Dynamic Spiess with entropy: The Original Dynamic Spiess in Algorithm 5.1, but using the
entropy function as a second term in the objective function, as shown in Equation 5.10.

Second term objective function: As in SPSA experiments, we will check the effect of using or not
the second term of the objective function, that is between w2 = 0 or w2 = 1.

The full design accounts for 30 different experiments, which are fully detailed in the Appendix B.3.
Following these lines, we present some remarkable results and conclusions.



82 5. Analytical approaches to solve DODME

5.3.1 Original Dynamic Spiess results

The results of the 6 different initial OD matrices and for w2 = 0 and w2 = 1 are shown in Figure 5.1,
where it can be seen that in all cases, the Dynamic Spiess approaches show an excellent descent of the
objective function and convergence behavior.

The same KPIs as in Chapter 4 are plotted in these experiments, which are the objective function, the R2,
the total number of trips and theMSSIM.
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Figure 5.1: Results for Dynamic Spiess for different initial matrices

Dynamic Spiess behaves very well on all the different variants, working as a meta-regression procedure
in which the fitting between traffic counts, R2 becomes high no matter the initial matrix. However, the
number of trips presents in all cases an uncontrolled increase far from the objective ground truth number
of trips. A deeper study on this behavior is shown in Figure 5.2, where two boxplots of the growth of all
the different OD pairs is graphed. The growth has been calculated as a quotient between the final value
and the initial value for each OD pair.
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Figure 5.2: Boxplots showing the growth of the OD flows after the Dynamic Spiess procedure

We see in Figure 5.2a that the OD pairs that increase at most their flow after the optimization procedure
are those that in the historical ODmatrix were very low. Moreover, the OD pairs that increase their flow
become the greatest, once the algorithm is finished, as seen in Figure 5.2b.
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Figure 5.3: Analysis of R2, number of trips andMSSIM evolution

In order to show better the phenomenon, we plotted in Figure 5.3a the OD flows evolution iteration by
iteration of those that increase their value with a growth factor greater than 100. Note that, again, these
OD pairs were the ones that had low values in the seed OD matrix. In Figure 5.3b we show a principal
components analysis between the R2, the number of trips and theMSSIM at each iteration. In this case,
we can see that the number of trips and R2 are positively correlated butMSSIM is inversely correlated
as detected.

Moreover, coming back to Figure 5.1, the descent structural similarity indicator shown can be understood
after the analysis of Figures 5.2 and 5.3. The seed OD matrix has a high structural similarity with the
ground truth ODmatrix, and once the Dynamic Spiess method increase the OD flows for those that were
very small, it is completely modifying its structure and therefore, affecting negatively theMSSIM with
respect to the ground truth, both in the term L of the SSIM that describes the similarity of magnitudes
and also in the case of S (Equation 3.2), because it is affecting clearly to the correlation between rows.
However, on the early iterations, when the objective function decreases at most, the MSSIM value
increases significantly, before starting to decrease on a second phase. That confirms that the Dynamic
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Spiess procedure acts as a mere regressor of the traffic counts and pulls up the OD matrices to fulfill
these traffic counts, without considering the demand pattern nor controlling the total number of trips.

In all cases, the addition of the second term to the objective function, that is w2 = 1, helps to behave
better, in terms of both number of trips and similarity to the ground truth OD matrix.

5.3.2 Dynamic Spiess reassigning at convergence results

In Figure 5.4, we compare the Original Dynamic Spiess with the Dynamic Spiess reassigning at conver-
gence. The last one is much faster because it only launches a dynamic traffic assignment once a threshold
of convergence is reached. In the figure, we show the experiments for the Multitude-based initial OD
matrix, which is the most realistic one.

0e+00

1e+06

2e+06

3e+06

4e+06

0 100 200 300 400

O
bj

ec
tiv

e 
F

un
ct

io
n

(a) Objective Function

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400

R
2

(b) R2

8000

9000

10000

11000

12000

0 100 200 300 400

Iteration

N
um

be
r 

of
 T

rip
s

(c) Number of trips

0.7

0.8

0.9

0 100 200 300 400

Iteration

M
S

S
IM

(d)MSSIM

w2=0 w2=1 Dynamic Spiess Dynamic Spiess on convergence

Figure 5.4: Results for Dynamic Spiess reassigning always or only on convergence, for the same initial
OD matrix, the Multitude approach

From the graphs shown, we want to highlight that in the case when w2 = 0, there is no reassignment
in 400 minor iterations, meaning that the algorithm does not converge according to the threshold.
The previous results with Dynamic Spiess algorithm in Section 5.3.1 showed the behavior in the later
iterations, where there is a continuous degradation of the structure of the resulting matrix. In the case of
Dynamic Spiess reassigning only on the convergence, this degradation occurs immediately, as shown in
Figure 5.4d. Therefore, it is not a suitable alternative when reducing the computational time is desired.
Moreover, the total number of trips increases more than when launching the DTA at each iteration.
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5.3.3 Original Dynamic Spiess with entropy function

In Figure 5.5, we represent the same four indicators for 6 different experiments. These experiments
correspond to the three decremented initial matrices (Multitude, Incremental- and Chaos+Inc-) with the
different second term, whether the Euclidean distance or the entropy function.
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Figure 5.5: Results for Dynamic Spiess with the second term, using Euclidean distance and entropy and
three different decremented initial OD matrices

The results obtainedwith the entropy function are similar to those using the Euclidean distance and they
present no evidence of better performance. The Chaos+Inc- initialization shows an excellent R2 and
convergence properties, by adding many trips, but being unable to discover the ground truth demand
pattern (as indicated inMSSIM plot). Either Euclidean, or entropy distance produce similar results, with
slightly better results when entropy distance is set.

5.3.4 Comparison between Dynamic Spiess and SPSA procedures (without travel
times)

As we used the same network and the same initial OD matrices, we can compare the KPIs of SPSA,
from Chapter 4, and Dynamic Spiess approaches. In Figure 5.6, we show the evolution of the same
four KPIs for the different approaches. In this set, we only present the results with the Multitude-based
historical OD matrix. In the case of SPSA algorithms, only the experiments without the conjugate
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gradient variant are shown. We show here the experiments referred to the different variants of SPSA
(Free, Constrained, Penalized, Hybrid) without travel times. As a reminder, all the set of experiments
are plotted in Appendices B.1 and B.3.
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Figure 5.6: Results for Dynamic Spiess and SPSA approaches using the Multitude-based initial OD
matrix and w2 = 1

The Dynamic Spiess procedures outperform clearly the SPSA approaches in terms of objective function
descent and convergence which makes sense because the SPSA approaches are stochastic optimization
approaches and therefore, use an estimation of the gradient descent direction. In terms of R2, the
Dynamic Spiess approaches do also reach greater values than SPSA.However, Figures 5.6c and 5.6d show
that, as mentioned, the good performance on the two first indicators for Dynamic Spiess approaches is
at the cost of the total number of trips andMSSIM on the latter iterations. The Hybrid SPSA without
travel times, which is indeed an iterative procedure with analytical gradient shows a very slow increase
of theMSSIM indicator, because its step size is smaller than the one in the dynamic Spiess approach.

5.4 Conclusions for the comparison between Dynamic Spiess and
SPSA

In previous Section 5.3.4, we have compared the four KPIs evolution of the different proposed method-
ologies of Chapter 4 and 5, that are the SPSA variants and the Dynamic Spiess. Both methodologies are
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interesting and present nice properties to be used and they have a common stochastic component as far
as both use DTA in the lower level, but the long convergence of SPSA variantmay be due to the additional
intrinsic stochastic nature of SPSAwhen calculating the perturbations for the stochastic gradient. On the
other hand, Dynamic Spiess method is faster and improves significantly on the early iterations, which
make it very usable.

However, Dynamic Spiess approaches present a significant anomalous increase of the total number of
trips that affects negatively to the structure of the OD matrix, while SPSA shows stability regarding the
number of trips and theMSSIM as indicator of structural similarity. Moreover, the SPSA algorithmics
permits to add bounding constraints that adds more stability and present better results, while Dynamic
Spiess methodology can not add constraints.

As a summary, from a practical point of view and effectivity, the Dynamic Spiess method is an efficient
method that properly calibrates the OD flows for a network, also in the cases where the starting point is
a bad estimation of the ODmatrix. However, longer iterations of the method carry to undesirable effects
on the structure of the matrix. On the other hand, the slowness of SPSA makes it infeasible to be used
in practice for large networks, even though its versatility and ease at the moment of adding new traffic
measurements or bounding constraints.

5.5 Conclusions of Analytical Approaches

It is very well known that analytical approaches, such as the Spiess (1990) algorithm, are suitable for the
static OD matrix estimation problem. Moreover, these approaches present nice convergence, stability
and robustness characteristics, so they are widely used to solve the bi-level optimization problem.

As mentioned, the step to the dynamic traffic assignment models aims to include the complexity of
congestion effects propagation and makes the OD estimation problem more complex, because the OD
flows changes on a certain time period do affect the same but also posterior traffic counts. In this sense,
Frederix et al. (2011, 2013) made a significant theoretical study about these effects on the assignment ma-
trix and also on the underdetermination of the bi-level estimation problem. Moreover, these approaches,
based on finding relationships between the variables (the OD flows) and the trafficmeasurements do not
fulfill the objective of this thesis, of adding different traffic measurements to the OD estimation problem.

However, we studied in depth these analytical approaches on the static version and proposed an ex-
trapolation of the Spiess method to the dynamic version of the bi-level approach, following the aim of
understanding better the dynamics of these approaches and what are the key aspects in these cases.

After using the called Dynamic Spiess on a synthetic case study, with the city of Hillsboro, we have
understood how this approach works and what are its advantages and inconvenients. On one hand, its
main advantage is the ease of implementation and fast convergence. In a few iterations, the proposed
methodology obtains a great descent of the objective function, reaching a very nice fitting between
the simulated and observed traffic counts, no matter how bad the initial OD matrix is. However, the
impossibility of adding bounding constraints, as we proposed in Chapter 4 for SPSA, shows an important
limitation of the methodology. The Dynamic Spiess works as a perfect fitter between simulated and
observed counts but it presents an uncontrolled increase of the number of trips that affects completely
the structure of the resulting OD matrix, that is the demand pattern of the network. Therefore, in a real
case, it is very important to properly set a threshold that stops the procedure at the early iterations in
order to avoid the uncontrolled second phase that is presented in all the studies performed.
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Furthermore, in general aspects, all the proposed Dynamic Spiess variants that aimed to find alter-
natives that improve the results obtained with the classic bi-level problem do not present significant
improvements regarding the quality of the estimated OD matrix.

The main information for the objectives of this thesis is that brought into the mathematical model by the
dynamic assignment matrix, which is a key component of the OD estimation process, because it is the
way that we can relate the variables of the problem that wewant to estimatewith the observed data of the
network, that are the traffic counts through certain links of the network. Furthermore, the assignment
matrix appears in all the steps of the algorithm, that are the gradient calculation and iterative procedure.
The objective of adding analytically new ICT trafficmeasurements directly as a new term of the objective
functions is not possible because there is not an analytical relationship between them and the estimated
OD matrices. However, the GPS data is a collection of vehicles circulating through the network and
contains information about the traffic dynamics and congestion at each studied time period. A deeper
analysis of the structure of the assignment matrix, in terms of the use of a link by OD paths raises the
question of whether empirical evidence of that use could be exploited to estimate the assignment matrix.
Therefore, GPS traces could be an interesting data source to generate such information that would have
the additional interest of corresponding to the current state of the network at the time period considered.
Consequently, this is the next step of our research.



6
A Data-Driven

Assignment-Free DODME
methodology

In this chapter, based on the current information of the traffic state from the GPS Data, we estimate a dynamic
assignment matrix without executing aDTA and it could be considered a data-driven assignment-free method. This
procedure is validated and tested on a synthetic network and also with two real networks of Turin and Barcelona.
At the end, we propose some stopping criteria based on the structural similarity.

The dynamic assignment OD has been proven to be the key element in analytical approaches and ICT
data is a new source that opens the possibility of empirically estimating this matrix and developing
assignment free approaches for DODME that is the aim of this chapter. Among the most efficient
approaches to solving the OD estimation problem, the one that formulates the problem in terms of a bi-
level optimization problem has been widely used. This formulation solves at the upper level a nonlinear
optimization problem thatminimizes some distancemeasures between observed and estimated link flow
counts at certain counting stations located in a subset of links in the network, and at the lower level a traffic
assignment that estimates these link flow counts assigning the current estimated matrix. The variants
of this formulation differ in the analytical approaches that estimate the link flows in terms of the traffic
assignment and their time dependencies. Since these estimations are based on a traffic assignment at the
lower level, these analytical approaches, although numerically efficient, imply a high computational cost.
The advent of ICT applications hasmade available new sets of traffic relatedmeasurements enabling new
approaches; under certain conditions, the data collected allows to estimate the most likely used paths,
from which a de facto assignment matrix can be computed. This allows extracting empirically similar
information to that provided by the dynamic traffic assignment that is used in the analytical approaches.

6.1 Setting the foundations: a review of the previous approaches

The OD estimation problem in terms of the bi-level optimization problem is shown in Equation 1.6,
aimed at adjusting an initial target ODmatrix, XH, so that it could explain the observed link flow counts
Y at counting stations in the network. The underlying hypothesis is thatY(X) are the link flows predicted
by assigning the demand matrix X onto the network. This mathematical model is highly undetermined
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since the number of variables of the problem, the OD flows, is much larger than the number of the
available link traffic counts. Therefore, the resolution of the optimization problem can lead to different
solutions, even in the case when the seed OD matrix is proper to the solution, Yang et al. (1992). As
already mentioned in Chapter 3, it is well known that even a full covered network with traffic sensors
on each link does not ensure a determined problem, Bierlaire (2002), therefore, an appealing research
topic has been to explore new approaches including further information, such as link speeds or travel
times (Cantelmo, Viti, Tampère, Cipriani & Nigro (2014), Nigro et al. (2018), Kostic et al. (2015), aimed
at reducing such underdetermination.

Trafficmodeling for transportation analysis has evolved to the dynamic traffic assignmentmodels, which
are able to include the time dependencies on the traffic system, overcoming in this way the main draw-
backs of static assignment of not accounting for the congestion generation and its dynamic propagation
across the network. Dynamic models require then dynamic inputs, which means dynamic OD matrices
that are represented as a time series of sequentially OD matrices. Therefore, the dynamic OD matrix es-
timation problem (DODME) becomes more complex, with more variables and time dependencies across
the time periods of the traffic simulation, Frederix et al. (2010, 2011).

Cantelmo (2018) have considered the DODME problem based on the bi-level approach and include
utility-based DTA models in the lower level relying on activity location and trip duration information.
They demonstrate that, extending the bi-level approach by taking into account such information, the
number of free parameters in the DODME problem systematically decreases, improving the reliability
of the estimated dynamic OD matrices by reducing the underdetermination of the solution.

Recent literature is addressed to include ICTmeasures into the DODME problem to reduce the underde-
termination of the underlying problem. Mo et al. (2020) propose a two-step ordinary least squares (OLS)
OD estimation model, which incorporates the output from a Bayesian path reconstruction model devel-
oped to cope with insufficient coverage rate of ICT data from Licence Plate Recognition and estimates
both the dynamic OD demand and assignment matrix without any historical matrix need. Finally, Yang
et al. (2017) and Krishnakumari et al. (2020) use the geopositioning data of probe vehicles from an ad
hoc experiment designed by the authors to obtain an a priori dynamic ODmatrix and the reconstructed
paths are included into the OD estimation process.

As explained in Chapter 5, the linearization of the relationship between traffic counts andODflows is one
way of solving these problems in a more computationally efficient way. This can be achieved by using
the proportion of the OD demand flows passing through the count location at a certain link. In these
terms, the dynamic assignment matrix A(X) =

[
alt
ijr

]
is the result of the mapping and alt

ijr
represents

the proportion of the OD flow that departs from origin i at time period r and goes to destination j that
crosses link l ∈ L̂ ⊆ L at time period t ≥ r.

These analytical approaches to DODME problem show that all of them rely on the availability of the
assignment matrix A =

[
alt
ijr

]
for the various time intervals, calculated at the lower level of the bi-level

problem (Equation 5.2) by the dynamic traffic assignment at each time interval.

The availability of the GPS generated data enables us to assume that, after a suitable data processing
to find the empirical paths and the inference of path choice proportions, it is possible to estimate a
dynamic assignment matrix that relies on the information regarding traffic conditions. Since it would
play a similar role to that of the analytical assignment matrix obtained by a DTA, we focus our attention
on how to efficiently estimate that assignment matrix, in practical terms, from available commercial data
as discussed above.
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Figure 6.1: The Data-driven Assignment-free DODME methodology

6.2 A Data-Driven Assignment-Free DODME

In Section 2.3, we discuss the use of empirical data for the intended purpose. As mentioned, a key aspect
is whether one can control the data collection process or, on the contrary, one depends on the commercial
GPS traces as supplied by data providers. The first situation ensures the quality and reliability of the
data collected and also its adequacy to make the necessary estimations in terms of complete reliable
trajectories from origins to destinations (Yang et al. (2017) and Krishnakumari et al. (2020)).

In the second case, data are usually of two types, either non-processed waypoints or in-house processed
information as, for instance, speed profiles. Non-processed waypoints are not directly usable for trans-
portation analysis, and they must be processed before: they must be filtered, cleansed to remove outliers
and correct errors, and suitably map matched to fit the transport network. Alternatively, data supplier
companies also provide references to tools to extract additional information like speed profiles at link
level from the waypoints, which can be used for transportation analysis to infer OD travel times among
other applications. An example of such a tool would be OpenLR, OpenLR (2020).
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In this thesis, we want to work with available reliable data, coming from GPS traces and transformed
to link travel times, either using the proposed map-matching methodology of Section 2.4, obtaining it
directly from the provider or generated by the analyst using other available tools. In all cases, this paper
assumes that the available data have already been filtered, cleansed and processed, and therefore, we
focus the work on what can be done with the available link travel times estimations.

Therefore, assuming that a set of estimated link travel times and a set of traffic counts are available for a
selected period of time; a specific purpose designed process produces route choice paths and proportions
for generating an estimated dynamic assignment matrix, A. Then, the research question addressed in
the following sections is to investigate whether it is possible to use such information to state a different
formulation of the DODME problem, in terms of an optimization model, not requiring the execution
of any dynamic traffic assignment procedure. The conceptual computational scheme of the proposed
data-driven assignment-free DODME approach, powered by the ICT applications capturing GPS data
trajectories and providing estimated link travel times, is summarized in Figure 6.1.

6.2.1 Calculation of the dynamic assignment matrix

According to assignment-based methods, the paths used to travel between origins and destinations are
provided by a user equilibrium assignment. In an assignment-free approach, we propose an alternative
method relying on the available estimated link travel times to generate a plausible Route Choice Set,
P =

{
Pijr,∀i ∈ I,∀j ∈ J,∀r ∈ T

}
, specifically from among the most likely used paths between each

origin and each destination at each departure time.

The estimated link travel times for each link of the network l at each time period t, t̂tlt are the main
inputs for generating the route choice set. That is the set of most likely alternatives. This is usually done
through a selective approach that identifies the routes based on some previously mentioned criteria (k
shortest paths, path flows computation, etc.).

Many alternative approaches can be used for this, and all them are essentially based on variants of k
shortest paths. Alternatives based on iteratively applyingDĳkstra-based algorithms for similar purposes
while explicitly accounting for overlapping penalties have been analyzed by Janmyr &Wadell (2018) and
Nassir et al. (2014). Other alternative procedures based on Chabini (1998) time dependent shortest paths
or path search algorithms can be found in the literature. In this thesis, aswe are in collaborationwith PTV
Group, we use a specific tool in PTV Visum, which is a path search algorithm available in Visum (PTV
AG (2020), 6.18) that calculates specified sets of k shortest paths by perturbing the link’s impedanceswith
a normal distribution perturbation. The parameter kmust be stated differently according to the network
characteristics in order to generate sufficient number of paths but limiting the number of irrelevant paths.

Once the candidate routes in the route choice set are specified, a key question in the route choice
model is how to address the problem that the alternatives are usually not independent but correlated
due to overlapping paths. From a theoretical point of view, Probit models are likely those who better
account for these correlations, but the difficulties in practically implementing them led to search for
other approaches. Cascetta et al. (1996) and Ben-Akiva & Bierlaire (1999) propose alternative models
for capturing the correlation among alternatives by modifying the logit-based choice, specifically by
measuring the degree of similarity between the alternatives and adding it to the utility’s deterministic
component in the corresponding discrete choicemodel. This term is usually called the commonality factor,
and its main role, Cascetta (2001), is to overcome the problems deriving from the basic hypothesis of
independence of irrelevant alternatives, which discrete choice logit models assume and could otherwise
lead to unrealistic results. This term reduces the systematic utility of a path in proportion to its level
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of overlapping with other alternative paths. The formulation adopted in this thesis is Janmyr & Wadell
(2018)’s proposed modification of the formulation of Bovy et al. (2008).

The paths in Pijr are p = p(i, j, r) ∈ Pijrwhich explicitly show the dependence on (i, j, r). For simplicity,
we denote only p but always refer to a path of a certain OD pair, (i, j, r). For a certain path p, the
sequence of links that compound it is the set Γp = {e1, . . . , emp }. Then, the proportion of path choice for
each path, Pp, in the set Pijr is calculated as a modified discrete logit-based choice model that uses the
commonality factor within the OD pair and time period, CFp. It further acts as an additive penalization
factor on current travel times Bovy et al. (2008). The commonality factor penalization for a certain path
p ∈ Pijr is defined as follows:

CFp =
1

µCF(P)

∑
a∈Γp

©« laLp log ©«
∑
h∈Pijr

(δahr + 1)
ª®¬ª®¬ (6.1)

where δahr indicates whether path h ∈ Pijr uses link a; la is the length of link a ∈ Γp; and Lp is the total
length of path p ∈ Pijr. µCF(P) is a parameter that depends on the set Pijr and normalizes the effect of
the penalization.

Once the penalization term is calculated for each path of the set of k shortest paths, Pijr, the proportions
of flow assigned to each path are calculated:

Pp =
exp[µP(P)(−ttp − CFp)]∑

h∈Pijr
exp[µP(P)(−tth − CFh)]

(6.2)

where ttp is the estimated travel time for path p ∈ Pijr, that can be obtained either estimating it from
a GPS data set using the methodology in Section 2.4, or obtaining it from the commercial provider, and
summating for all the links that conform the path, that is:

ttp =
∑
a∈Γp

tta (6.3)

Note that, the sum of the proportions for all the paths of a set Pijr is, naturally, up to 1. In order to
adapt magnitudes for the discrete choice summation, µCF(P) and µP(P) are parameters that are fixed as
follows:

µCF(P) = µP(P) =
©« 1��Pijr�� ∑

p∈Pijr
ttp

ª®¬
−1

(6.4)

which aims at helping to discriminate between paths when the average travel time of the OD pair is low.

These calculations obtain the flow distribution for each path on the basis of observed path travel times,
that as long as they are estimated from the actual traffic conditions from GPS data, are proportions
based on the given traffic state. Once Pp =

[
Pp

]
is determined, we can then calculate the estimated
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time-dependent assignment matrix Ā =
[
ālt
ijr

]
, that must be calculated for all the OD pairs and for all

the equipped sensors at each time period:

āltijr =
∑
p∈Pijr

δltp Pp , ∀i, j, r, l, t (6.5)

where δltp is the estimated incidence indicator:

δltp =

{
1 if path p uses link l at time t
0 otherwise

(6.6)

This estimated assignment matrix is the outcome of the Dynamic Assignment Matrix Calculation box
included in Figure 6.1 and constitutes an estimate of the dynamic assignment matrix that would be
obtained by a DTA assignment based on the ground truth matrix. As a consequence, the estimated
assignment matrix derived by the proposed process does not depend on a perfect calibrated model
allowing to split the calibration process into the network supply calibration and the demand calibration
stages.

6.2.2 Optimization Procedure

The possibility of estimating an assignment matrix, Equation 6.5, allows reformulating DODME by
relating the estimated traffic counts with the OD flows using the estimated assignment matrix:

ylt =
∑

(i,j)∈N

t∑
r=1

altijrxijr (6.7)

where ylt is the estimated flow in link l at time period t; xijr is the flow departing origin i ∈ I, with
destination j ∈ J, at time interval r ∈ T ; and alt

ijr
is the estimated assignmentmatrix, which is the fraction

of trips from origin iwith destination j, departing at time r reaching link l at time t estimated by the use
of the GPS traces.

In Equation 6.7, the estimated assignment matrix is applied to the ODmatrix to obtain the estimated link
flows. In the bi-level optimization problem, the OD flows are always the variables that must be adjusted
to minimize the objective function. However, from the experience with analytical approaches in Chapter
5, we observed in our experiments that OD flows may be modified to fit traffic counts implying high
volumes to certain OD pairs. We propose a data-driven approach aiming to preserve the OD pattern
included in the seed OD matrix.

The proposal is inspired by gravity models, that set bi-dimensional constraints for rows and columns, as
in the double-constrained models that are common for updating gravity distribution models, Ortúzar &
Willumsen (2011). Therefore, the OD flow appearing in Equation 6.7 can be decoupled into independent
scaling factors different for origins and destinations. That is:

xijr = αiβjx
0
ijr , ∀i ∈ I,∀j ∈ J,∀r ∈ T (6.8)
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where x0
ijr

represents any reference ODmatrix, that can be used as a starting point for the OD estimation,
as in the Furness process to calculate theODmatrix using gravitymodels. The inclusion of a third scaling
factor γr, depending on the sliding time windows, could make sense for larger time periods, when the
time variability of the demand can be influenced by other structural aspects, but not in the short term
investigated in this thesis.

As in all optimization methods that aim to find a solution, a seed ODmatrix must be provided to the OD
estimation process as a feasible starting point. In this described methodology, many alternatives arise.
One common option is to use a reliable historical OD matrix, XH, as a suitable seed for the optimization
algorithm (Cascetta et al. (2013), Kostic et al. (2015), Cantelmo, Cipriani, Gemma & Nigro (2014), Nigro
et al. (2018)), specially, in those cases inwhichDODME is applied to not very long time periods to support
dynamic traffic models in conditions where surveillance systems likely provide reliable historical OD
estimates containing a wealth of structural information (Ashok & Ben-Akiva (1993), Ben-Akiva et al.
(2001)). Moreover, in real life applications of these approaches for trafficmanagement, the assumption of
having a reliable referenceODmatrix also holds, Djukic et al. (2018), Aimsun (2017). Another alternative,
if data collected from a sample of GPS-tracked vehicles is available, is to create a discrete time estimate
of the target OD matrix from it, which is the observed OD matrix, X̂ = [x̂ijr], which is a simple counting
of the GPS traces. With the aim of adding both information sources, a seed matrix x0

ijr
can be generated

combining the Historical OD matrix xH
ijr

with the observed ODmatrix x̂ijr, which is obtained from GPS
tracked trips. This possibility consists of generating a proper seed OD matrix as a combination of the
two different sources.

x0ijr =


x̂ijr when only x̂ijr is available

f(x̂ijr, x
H
ijr

) when both matrices are available

xH
ijr

when only xH
ijr

is available

(6.9)

If ŷlt, l ∈ L̂ ⊆ L, t ∈ T are the link flows measured at the counting stations, the dynamic data-driven
assignment-freeODmatrix estimation problem can be formulated as an optimization problem for finding
the values of the scaling factors αi, i ∈ I and βj, j ∈ J, without any need to conduct the traffic assignment
at the lower level of Problem 1.6. This is done by exploiting the estimated assignment matrix alt

ijr
. The

proposed new formulation of the DODME problem including the estimated assignment matrix and
using a seed OD matrix of the form is:

min
αi,βj


∑
l∈L̂

∑
t∈T

©«ŷlt −
∑

(i,j)∈N

t∑
r=1

αiβja
lt
ijrx

0
ijr

ª®¬
2

+w2
©«

∑
(i,j)∈N

t∑
r=1

(
xHijr − αiβjx

0
ijr

)2ª®¬


s. to: αi, βj ≥ LB > 0

(6.10)

Now, the problem variables are the multiplicative scaling factors for each origin αi and destination βj,
that have been chosen to drastically reduce the number of variables from |I| · |J| · |T | to |I|+ |J|. Moreover,
using the scaling factors as variables aims to preserve the structure of the seed OD matrix, as gravity
models do. The minimization problem is solved iteratively by means of the L-BFGS-B method, Morales
& Nocedal (2011). It is a quasi-Newton method solved for constrained non-linear problems with a high
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number of variables that efficiently reduces the memory requirements and the computational burden.
The available version in python package scipy.optimize has been used in this case.

Theoretically, LB should be a non-negativity constraint for all the scaling factors αi, βj. However, from
a practical point of view, αi = 0 or βj = 0 implies that a positive OD flow of the seed OD matrix from
a certain origin or certain destination must be converted to 0. Therefore, considering that the seed OD
matrix, in Equation 6.9, comes from reliable information on mobility, the scaling factors cannot be 0 and
the lower bound should therefore be LB > 0.

By the end of the optimization procedure, an estimation of the OD matrix, X∗ = [x∗
ijr

], is obtained.
Therefore, as shown in Figure 6.1, a dynamic traffic assignment is launched to obtain the corresponding
simulated values for traffic counts, that are Ŷ∗ = [y∗

lt
].

Algorithm 6.1 summarizes the Data-Driven Assignment-Free DODME methodology.

Algorithm 6.1: Data-Driven Assignment-Free DODME

Input: A historical OD matrix, XH

Input: A data set of traffic counts, Ŷ
Input: A data set of GPS traces, GPS
Input: A stopping criterion, thrsh_stop
Input: A maximum number of iterations, IterMax

// Estimate Link Travel Times from GPS;

Calculate: TT = TT(GPS) ; // Algorithm 2.1

// Set Initial OD Matrix;

Calculate: X̂← count(GPS);

Set: X0 ← f
(
XH, X̂

)
; // Equation 6.9

// Estimate the Dynamic Assignment Matrix;

foreach (i, j, r) in ODpairs do

Compute: Pijr; // Set of k shortest paths

foreach p in Pijr do

Calculate: CFp; // Equation 6.1

Calculate: Pp; // Equation 6.2

Calculate: A; // Equation 6.5

// Optimization Procedure;

Set:
{
αi, βj

}
,∀i, j;

Optimize:
{
α∗
i
, β∗
j

}
= L-BFGS-B

(
init = {αi, βj

}
, fun = Z, params =

(
X0,A, Ŷ

))
Set: x∗

ijr
← αiβjxijr ; // Equation 6.8

Evaluate: DTA (X∗) ; // Final Assignment

Output: Return X∗

6.3 Case Study: Results of the DDAF DODME procedure

In Section 2.3, we propose a synthetic data generation procedure to be applied to any network and
synthetically generate the needed consistent data sources. In the case of this algorithmic methodology,
these data sources are GPS traces, traffic counts and a historical OD matrix and it is used to evaluate the
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robustness of the presented method and validate its effectiveness on a potential real case under certain
goodness conditions of the available data.

The network used in this case study is the same as in Section 2.3.1, where we show the synthetic data
generation of the different data sets. It should be highlighted that, since the synthetic generation allows
to control the traffic conditions and data gathering, the final GPS data set is a data set without biases,
filtered and cleansed to obtain reliable estimations of travel times at link level.

As a summary and reminder, the test network is shown in Figure 2.3 in Section 2.4.1 and its main
characteristics are detailed in Table 6.1. The simulation time interval is from 07:30 AM to 08:30 AM sliced
into 15-minutes time periods.

Table 6.1: Network and OD characteristics

Time periods 4
Zones 114

Detectors 40
OD pairs X Time ≈52k

Ground Truth Trips 8300
Ground Truth
Positive OD

≈41k (78.49%)

Average number
of paths per OD

7.27

As shown, the average number of alternative meaningful paths for each OD pair is approximately 7,
which makes it a suitable network to study the assignment matrix calculation methodology. Further
than the size of the network, what is relevant is its structure and the average number of meaningful
routes between each OD pair.

By construction, the historical ODmatrix is on average decremented by 25%with a randomperturbation,
see Section 2.4.1 for further details. This perturbation tries to emulate a realistic historical OD matrix
from surveys and past projects that represent similar traffic conditions.

In the case of the estimated link travel times, they are calculated after generating theGPS traces of different
vehicles of the network. In this case, we emulated a controlled data collection, which consists of recording
the waypoints sequences of vehicles on different days but on similar traffic conditions. We collected data
during 200 days in similar conditions (independent replications by microsimulation), equivalent to an
annual average working days, and fixed different penetration rates, which represent the number of
random vehicles (among the total) that are recorded each day. In this study, a uniform penetration rate
has been used for every day and also for all the OD pairs. Depending on the selected penetration rate,
5, 10 or 15%, these samples contain between 4.7M and 14M waypoints, which represent between 106k
and 318k different vehicle trips circulating on the network. The frequency of recording waypoints has
been assigned differently to each vehicle, following an empirical distribution of latencies from an INRIX
real GPS data set of another network, see Section 2.4.1 for further details. Improvements would be
expected as penetration rates increase, since a higher penetration rate provides better information about
the traffic conditions.

As the thesis is a collaboration with the company PTV Group, we make use of already implemented
tools. For example, in order to process the simulated GPS data, we used the tool GPX Import, which
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transforms the GPS data set into paths using Visum links and interpolating travel times at the link level,
as explained in Section 2.5. The estimated time-dependent link travel times are used to generate a route
choice set (see Section 6.2.1) by using an independent tool, namely a path search algorithm available in
Visum (PTV AG (2020), 6.18) that calculates specified sets of k shortest paths by perturbing the link’s
impedances with a normal distribution perturbation. The initial link costs are the estimated link travel
times, and the maximum number of paths between connectors for each OD pair are set to Nmax = 5,
meaning that the tool calculates at least 1 but at maximum 5 paths between the connectors of the origin
and destination zones.

As in all the synthetic experiments of this thesis, the optimization procedure in Equation 6.10 is set
without the stopping criteria. Therefore, one can observe its behavior along all the iterations of the
procedure.

6.3.1 Validation

In order to computationally test the consistency and quality of the algorithmic framework that is defined
conceptually in Figure 6.1 and to analyze the quality of the partial results at each step, we have conducted
a set of computational experiments based on the synthetic data generated by simulation. This allows
further analysis of the quality of themethodology described above. Following Figure 6.1, all the different
sub-results of the steps of the algorithm are analyzed.

Observed OD matrix analysis

The observed OD matrix is the mere counting of how many trips depart from each origin and arrive at
each destination at each time period on the synthetic generated data. Based on the building process of
the GPS tracking data, Section 2.4.1, it is expected to obtain an observed OD matrix similar in the OD
pattern structure to the ground truth OD matrix, given that the penetration rate of the GPS technology
has been set homogeneous to all the OD pairs.

As explained in Chapter 3, instead of using the conventionalMSE or similar indicators to compare OD
matrices theMSSIM and related metrics are used. The measure used to compare both OD matrices is
the MSSIM and its components L, C and S. In order to use L and C, the observed OD matrix must be
scaled in order to have the same magnitude for both matrices in terms of total OD trips.

Table 6.2: MSSIM values for the observed OD matrix

Reference
OD Matrix

penetration
rate

L C S MSSIM

XGT
5% 0.9753 0.9595 0.9046 0.8654
10% 0.9856 0.9773 0.9357 0.9113
15% 0.9894 0.9844 0.9548 0.9355

XH
5% 0.9396 0.9059 0.9047 0.7884
10% 0.9472 0.9284 0.9351 0.8320
15% 0.9501 0.9375 0.9537 0.8550
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Table 6.2 shows the MSSIM values for the observed OD matrix with respect to the ground truth and
historical OD matrices. The L values, which correspond to magnitude, are very high because of the
previously mentioned scaling; therefore, no further analysis has to be made. High C values indicate
similar dispersion of the values, and high S means that the observed OD matrix has a similar pattern,
thus indicating that the GPS sample is not biased and the penetration rate is homogeneous for origins
and destinations, as expected. Globally, MSSIM values are high, and they increase as the penetration rate
increases, meaning that the built sample of GPS data presents the appropriate goodness to be used to
estimate the link travel times. Furthermore, these results are a proof to validate the use of the observed
OD matrix as a seed OD matrix for the DODME method’s optimization procedure.

The effect of the Commonality Factor

As mentioned in Section 6.2.1, the term CFp acts as a penalization for the discrete choice. CFp, Pp
and alt

ijr
are calculated by applying Equations 6.1, 6.2 and 6.5. The commonality factor, CFp, penalizes

those paths that are similar to others in the same set Pijr. Then, it reallocates the flows accordingly by
increasing or decreasing the corresponding flow. In order to visualize the effect of CFp on the path flow
distribution, a positive OD flow is selected. Its corresponding route choice set is depicted in Figure 6.2,
where eight paths resulted from the route choice set calculations. Since there are three paths that are
very similar, they were clustered by similarity into three sets (I, II, III) in order to better understand the
role played by the commonality factor. Although link lengths are not large, network complexity in terms
of number of OD paths per OD pair is high making the network suitable to address the consistency of
the estimated assignment matrix appearing in the methodological proposal.

Figure 6.2: Path set (Pijr) for a selected origin and destination in the network

As shown in Figure 6.2, Table 6.3 and Table 6.4, set I is compounded by four very similar paths and
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without the penalization (using only travel times) results inmore than one-half of the flowbeing assigned
to I. On the other hand, when the penalization is applied, 48.50% of the flow is assigned to these four
paths. This is because the four paths are very similar and capture the majority of the flow from the
beginning.

Table 6.3: Results of path distribution for a selected OD pair in the network

Path Length Observed Time
Pp

without CFp

Pp
with CFp

% of gain Set

1 1.20 km 2 min 11 s 15.21% 15.18% -0.03% I
2 1.61 km 2 min 57 s 12.64% 11.63% -1.01% I
3 1.55 km 3 min 13 s 11.68% 13.33% +1.65% II
4 1.52 km 2 min 59 s 12.45% 13.29% +0.84% III
5 1.38 km 3 min 02 s 12.24% 11.15% -1.09% I
6 1.26 km 3 min 06 s 12.02% 10.54% -1.48% I
7 1.32 km 3 min 18 s 11.54% 12.69% +1.15% II
8 1.29 km 3 min 03 s 12.22% 12.19% -0.03% III

On the other hand, this flow is assigned to the other sets, which are different and do not share very
much with the other sets in Table 6.4. For instance, set II receives more flow after the commonality factor
penalization, because it is the one that shares less with the other sets.

Table 6.4: Results of path distribution by sets for a selected OD pair in the network

Set
Mean
Length

Mean
Observed Time

Pp
without CFp

Pp
with CFp

% of gain

I 1.36 km 2 min 49 s 52.11% 48.50% -3.61%
II 1.43 km 3 min 15 s 23.22% 26.02% +2.80%
III 1.41 km 3 min 01 s 24.67% 25.48% +0.81%

Qualitative analysis of the Estimated assignment matrix

The estimated assignment matrix resulting from this methodology is used to capture the real mobility of
the network, doing so by processing a large amount of GPS waypoints. While solving the optimization
problem, in which an objective function minimizes the traffic flow differences detected by sensors, this
assignment matrix remains invariant for each time interval, thus confirming the stability hypothesis
formulated by Cascetta et al. (2013). Therefore, it is important to check the consistency between paths in
the SBA (which is used to generate the reference data) and to identify the paths used to analyze the route
choice set of paths (which are generated from the empirical data). Stated briefly, one should confirm that
the theoretical assignment matrix from SBA is consistent with the estimated assignment matrix. Our
qualitative proposal is to use the most relevant link in the network to compare OD flows.
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(a) using SBA assignment (b) using estimated OD matrix for a selected experiment

Figure 6.3: OD flows for the most used link

The left-hand side of Figure 6.3 shows the OD flows using a singular link (the most used link) in the
network, according to the ground truth SBA assignment. On the right, the same picture is plotted by
means of the estimated assignment matrix and the historical OD values. Both graphs are qualitatively
similar, such that the downstream and upstreampropagation of the flows circulating on this link indicate
a similar assignment matrix.

Optimization Procedure

As seen in Figure 6.4, the convergence of the method is clear and fast.
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Figure 6.4: Optimization performance for a selected experiment

Figure 6.5 shows two versions of the linear regression between the traffic counts measured by sensors
and their corresponding simulated values. On the left is the regression before optimization, when the
estimated assignment matrix is already calculated but the OD values are not yet calibrated. On the
right is the linear regression after computing the convergence of the minimization method and using
Visum-SBA to incorporate the resulting assignment matrix from the assignment of the estimated OD
matrix, X∗.
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Figure 6.5: R2 improvement in a selected experiment

The evolution shown in the figure validates the optimization method, which uses scaling factors instead
of OD values as variables. The estimated scaling factors correctly adjust the flows in order to replicate
the traffic counts measured in the network.

Finally, the use of scaling factors as optimization variables has also been studied. It has been done
by comparing the estimated OD matrix with the one obtained by using the OD variables as variables
on Equation 6.10. That is, firstly scaling the OD flows to the Historical magnitude and then using a
maximum descent method to solve the optimization problem.

Concretely, the experiment performed used the historical OD matrix as seed, with a penetration rate of
10% andw2 = 0. The results of convergence and fitting are high, presenting a final R2 = 0.974. However,
and as expected, the MSSIM values with respect the ground truth OD matrix is MSSIM(XGT ,X∗) =

0.5479, significantly lower than the ones obtainedbyusing the scaling factors,MSSIM(XGT ,X∗) = 0.7980.
Therefore, we consider that the use of scaling factors not only reduces the number of variables but also
permits us to obtain a more stable solution in terms of similarity to the given seed.

6.3.2 Experimental Design

Finally, a set of experiments using the synthetic network and data generated is used to assess the
robustness and the sensitivity of the methodology described with regard to some factors. This design
factors are:

The penetration rate of the GPS technology, as a percentage of vehicles that are captured by the
GPS sample: 5%, 10% and 15%.

The initial OD matrix for the minimization procedure
(
X0 = [x0

ijr
]
)
. As stated in Equation 6.9,

the seed OD matrix can be the historical (X0 = XH), the observed (X0 = X̂), or both OD matrices
combined. In this case, the combination tries tofill in the empty cells of the observedODmatrixwith
information from a reliable historical OD matrix. The two tested combinations are the following:

x0ijr = f1(x̂ijr, x
H
ijr) =

{
k · x̂ijr when x̂ijr > 0
xH
ijr

otherwise (6.11)

x0ijr = f2(x̂ijr, x
H
ijr) =

{
x̂ijr when x̂ijr > 0
xH
ijr
/k otherwise (6.12)
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where k is a factor that increases or reduces the number of trips in the seed OD matrix in order to
approximate both magnitudes:

k =
NT(XH(X̂ > 0))
NT(X̂(X̂ > 0))

=
NT(XH(X̂ > 0))

NT(X̂)
(6.13)

These four matrices are named, respectively, Hist, Obs, Comb1 and Comb2.

The objective function for the minimization procedure. By using w2 = 0 or w2 = 1 in Equation
6.10, the objective function may or may not include the discrepancy term regarding the historical
OD matrix.

These design factors result with 24 different experiments. Some results are shown in the next Section,
and they are fully detailed in Appendix B.4.

6.3.3 Results

Similarly to the other synthetic experiments of this thesis, the KPIs used to analyze the experiments are
the objective function, the R2, the total number of trips and theMSSIM. Figure 6.6 show the results for
the three different penetration rates and w2 = 0 and w2 = 1, resulting in six different experiments:
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Figure 6.6: Results for data-driven assignment-free with different penetration rates and the Hist seed
OD matrix
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As seen in Figure 6.6, the objective function presents a fast and nice convergence in all cases. R2 reaches
very high values in all experiments, which means that the DODME procedure works very well as an
optimization problem for adjusting traffic count measurements. In particular, R2 is lower when w2 = 1

as the second term of the objective function compensates the first term as a fitting regressor of the traffic
counts.

The total number of trips (NT) in the estimatedODmatrices is always near the ground truth total number
of trips, which is NTGT = 8300 vehicles. There are some initial anomalies in the case of w2 = 0, but
they are rapidly fixed. What is more, these anomalies do not occur when there is the second term in the
objective function.

In terms of similarity, the contribution of w2 = 1 in obtaining betterMSSIM results is well known and
clearly reflected on the graph. Generally, the estimated OD matrix presents a higher MSSIM when
comparing to the ground truth OD matrix, than when comparing to the historical. However, as the
procedure is actually an analytical-based methodology, theMSSIM evolution is similar to those shown
in Chapter 5, where after an initial increase, there is an erratic behavior, decreasing at the same time as
the R2 increase. The suggestion in this case is, as in previous experiments, to find a manner of stopping
the procedure in the early iterations, in order to preserve the structure of the matrix.
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Figure 6.7: Results for data-driven assignment-free with different initial OD matrices and penetration
rate 10%

In Figure 6.7, we show the resulting experiments for the different initial OD matrices at fixed mid
penetration rate, that is 10%. The best choice is the historical OD matrix, since it is the OD matrix with
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the largest MSSIM compared to the ground truth. However, Comb1 and Comb2, that contain information
about the GPS traces, do not significantly improve these indicators. That means, especially when the
seed is the historical OD matrix, since the resulting OD matrix has adapted its structure to the ground
truth traffic conditions, by using the proposed methodology.

6.3.4 Comparison to the Dynamic Spiess

In Chapter 5, a dynamic version of the Spiess method was built and studied. This method is also
applied to the currently discussed network, using the same historical OD matrix as the seed OD matrix
in the optimization procedure. The main difference is that Dynamic Spiess requires a dynamic traffic
assignment at each iteration, while the supplementary data, link travel times, can not be included in the
process. The quality of the results is compared to those obtained by DDAF in Figure 6.8.
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Figure 6.8: Results for data-driven assignment-free with penetration rate 10% and Dynamic Spiess

The results of dynamic Spiess and DDAF at 10% of penetration rate confirm that both analytical ap-
proaches behave similarly. While the objective function and R2 are clearly showing better performance
on the dynamic Spiess approach, the quality shown by the number of trips and theMSSIM confirms
that the additional information of the estimated dynamic assignment matrix from the GPS traces helps
to maintain the structure of the resulting OD matrix.

As previously noted, the DDAF method improves the similarity of KPIs whenw2 = 1. Moreover, all the
procedures have similar computational times, although DDAF takes advantage of available data while
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dynamic Spiess cannot include it in the OD matrix estimation.

Furthermore, it has not been taken into account that the main requirement to use a dynamic Spiess is
that the network must be previously calibrated for launching a dynamic traffic assignment, from which
the assignment matrix is calculated and is always a very time-consuming task. In contrast, the proposed
DDAFmethodology does not require a fully calibratedmodel since the necessary information, link travel
times, can be estimated from the data.

6.4 Stopping criteria to preserve the structure of the OD matrix

As already seen, the analytical approaches in Chapter 5 but also the data-driven analytical approach
proposed in this chapter do excellently fit the traffic counts, as it is the goal of the corresponding term
of the objective function. However, they make it at the cost of increasing or decreasing certain OD flows
and, therefore, altering the structure of the resulting OD matrix.

As mentioned in the objectives of this thesis, we take a special interest in the structure of the resulting
OD matrix, since it reflects the demand pattern of the network. That is the reason why we address a
chapter for the discussion of the structural similarity between matrices, through the use ofMSSIM, and
applied it in all the different case studies of this thesis. After all the results on the synthetic analysis, we,
therefore, state some stopping criteria to properly stop the proposed iterative methodologies, based on
the structural similarity.

In order to show and test these proposals, wewill use the previous case studywith the synthetic network
with w2 = 1 and the Historical OD matrix used as the initial OD matrix and penetration rate of the
GPS technology set at 10%. This experiment is the same used in Section 6.3.1. These proposed stopping
criteria are applied to the different cases and results are shown in Appendix C.2.

6.4.1 Based on the ground truth OD matrix
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Figure 6.9: MSSIM
(
X(k),XGT

)
In Figure 6.9, we show theMSSIM evolution between the ground truth OD matrix and the OD matrix
found at iteration k. This is, indeed, one of the indicators that have been plotted at each synthetic
experiment of this thesis. As already detected, there is an increase at the early iterations, which means
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that the estimated OD matrix is structurally more similar to the ground truth than the one used at the
beginning of the iterative procedure.

Theoretically, it would then bemore appropriate to use a different stopping criterion accounting for other
quality indicators, as for instance the maximum of of theMSSIM evolution of Figure 6.9a. Let us call it
M1. In this experiment, that maximum corresponds to the third iteration (k = 3), which corresponds to
the following performance indicators of Table 6.5:

Table 6.5: Results with the proposed stopping criterion,M1

OF R2 Number of trips MSSIM to GT
Initial 242637.70 0.9248 6232.14 0.9219
k = 3 86417.38 0.9353 7752.56 0.9743

Improve -64.38% +1.13% +24.40% +5.68%

However, this criterion is only available for those experiments that are synthetically designed, and
therefore the ground truth OD matrix is available.

6.4.2 Based on the historical OD matrix

In a real network with real data, the ground truth OD matrix is not known. Therefore, in these cases,
theMSSIM cannot be applied with respect to that ODmatrix. The most reliable ODmatrix that one can
obtain is what we called the Historical OD matrix, which represents a household survey ODmatrix that
may have been used in the past and needs an estimate. These ODmatrices are accepted to be structurally
similar to the ground truth, representing the real demand pattern of the studied network.

Therefore, we propose to use as a stopping criterion for the analytical approaches of this thesis the
MSSIM calculation between the OD matrix at iteration (k) and the historical OD matrix. That is,
MSSIM

(
X(k),XH

)
.

It is expected that the behavior of this new indicator to be a decreasing function, since the historical OD
matrix is the initial OD matrix, for this experiment, and the iterative procedure perturbs it to become
another function, aiming at improving the objective function.
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In Figure 6.10 we show how the MSSIM evolves at each iteration. The relative change shown in
Figure 6.10b shows that after a notable increase at the beginning, the evolution is more or less constant.
Therefore, a threshold on the relative change can be applied:

M2 =

�����MSSIM(X(k),XH) −MSSIM(X(k−1),XH)
MSSIM(X(k−1),XH)

����� < ε (6.14)

This threshold is denoted byM2. In this experiment, this stopping condition occurs at iteration k = 7,
with ε = 10−3. In this case, the performance indicators are shown in the next Table:

Table 6.6: Results with the proposed stopping criterion,M2

OF R2 Number of trips MSSIM to GT
Initial 242637.70 0.9248 6232.14 0.9219
k = 7 71899.04 0.9438 7694.62 0.9626

Improve -70.37% +2.05% +23.47% +4.41%

6.4.3 Based on theMSSIM change at each iteration

The latter proposal is thought for the cases when a reliable historical OD matrix is not available for a
real application. In this situation, nor the ground truth nor the historical ODmatrix serve as a reference.
Therefore, we propose a stopping criterion based on the change at successive iterations, that is calculating
theMSSIM

(
X(k),X(k−1)

)
. Figure 6.11 shows the corresponding graph for the selected experiment. On

the left, the relative change is also shown.
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Figure 6.11: MSSIM
(
X(k),X(k−1)

)
As before, after a fast increase at the beginning of the iterative procedure, theMSSIM becomes stable
around 1, meaning that the changes between iterations are not very remarkable. In this sense, a similar
threshold criterion can be applied, based on the relative change:
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M3 =

�������
MSSIM

(
X(k),X(k−1)

)
−MSSIM

(
X(k−1),X(k−2)

)
MSSIM

(
X(k−1),X(k−2)

)
������� < ε (6.15)

This criterion is denoted byM3. In this example, ε = 10−3 stops the procedure at iteration k = 5, which
results in the following indicators.

Table 6.7: Results with the proposed stopping criterion, M3

OF R2 Number of trips MSSIM to GT
Initial 242637.70 0.9248 6232.14 0.9219
k = 5 75694.07 0.9409 7681.72 0.9651

Improve -68.80% +1.74% +23.26% +4.69%

6.4.4 A more robust criterion relying on the threshold band

There is a wide range of possibilities analyzing differentMSSIM between OD matrices. In this case, we
represent In Figure 6.12 the relativeMSSIMwith respect to the historical ODmatrix, Equation 6.14, and
also the same with respect to the previous iteration OD matrix, Equation 6.15, with the threshold band
around zero, also using ε = 10−3.

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0 25 50 75 100

Iteration

R
el

at
iv

e 
M

S
S

IM
 It

er
at

io
n

(a) RelativeMSSIM
(
X(k),XH

)
0.000

0.005

0.010

0.015

0.020

0 25 50 75 100

Iteration

R
el

at
iv

e 
M

S
S

IM
 It

er
at

io
n

(b) RelativeMSSIM
(
X(k),X(k−1)

)
Figure 6.12: Stopping criteria with threshold ε = 10−3

It can be seen that naturally the criterion with respect to the historical OD matrix, Figure 6.12a, is more
unstable than the same criterion but between the successive iterative OD matrices, Figure 6.12b. For the
sake of completeness, it has been checked for different experiments of the set, and the behavior is similar
in all cases.

In this specific case, the threshold is satisfied once in the left figure, and after that, the relativeMSSIM
does not satisfy the stopping criterion again. It could be an effect of a particular iteration where the
descent direction and step size are changing slightly in this specific measure. In general, a stopping
criterion is intended to be satisfied continuously after the first reaching.
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The likely conjecture that the objective function could be very plate could explainwhywhen the stopping
criterion is not the number of iterations, and the algorithms continue iterating trying to reach the
convergence threshold for the objective function, if that threshold is relatively small, the iterations
oscillate between values very close to the threshold. The key role is then that of the second term,
fitting the simulated link flow values to the observed ones, and then the observed effect in other cases
is reproduced, while the OD values are changed but keeping the value of the objective function under
control, the flows fitting is improved, as the R2 shows, at the price of structurally degrading the estimated
OD. This suggests that possibly a more significant convergence criterion could be looking at the stability
of the relative changes for a number r of iterations. We denote this criterion byM4.

Therefore, after studying carefully the behavior of the suggested criteria, we suggest a more robust
stopping criterion, based on the successive iterative ODmatricesM3, Equation 6.14, but when is satisfied
on the r successive iterations. This last criterion, based on r satisfied in consecutive iterations is denoted
by M4. In this example, Figure 6.12b shows that this occurs at iteration k = 9 when r has been set to
r = 3, showing the results in the following table.

Table 6.8: Results with the proposed stopping criterion,M4

OF R2 Number of trips MSSIM to GT
Initial 242637.70 0.9248 6232.14 0.9219
k = 9 70423.20 0.9441 7779.71 0.9634

Improve -70.97% +2.09% +24.83% +4.50%

6.4.5 Summary of the suggested criteria

Table 6.9 summarizes the different criteria for the example used along this section, ordered by the
iteration when it is first satisfied. In the end, we have added the ground truth OD matrix indicators.
From the results shown in Section 6.3.3, we already know that R2 increases iteration by iteration and
the number of trips approximate the ground truth reference number of trips. Conversely, the similarity
indicator initially increases and after reaching a maximum starts to decrease.

Table 6.9: Results with all the proposed stopping criterion

Criteria
Satisfied

OF R2
Number
of trips

MSSIM
to GT

Initial 242637.70 0.9248 6232.14 0.9219
k = 3 M1 86417.38 -64.38% 0.9353 +1.13% 7752.56 +24.40% 0.9743 +5.68%
k = 5 M3 75694.07 -68.80% 0.9409 +1.74% 7681.72 +23.26% 0.9651 +4.69%
k = 7 M2 71899.04 -70.37% 0.9438 +2.05% 7694.62 +23.47% 0.9626 +4.41%
k = 9 M4 70423.20 -70.97% 0.9441 +2.09% 7779.71 +24.83% 0.9634 +4.50%
GT 0.00 1.000 8300.00 1.000

As already stated, the best criterion isM1 because it is comparing directly to the ground truthODmatrix.
However, from a practical point of view, where the ground truth is not always available. The relative
change of theMSSIM between the estimated ODmatrix and the historical OD matrix shows difficulties
in converging in the band of the threshold, as seen in Figure 6.12a. On the other hand, the relative
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MSSIM between successive iterations, M3 is more stable, as the minimization procedures normally
generate smaller steps iteration by iteration. In this sense,M3 andM4 are the more suitable criteria for
stopping the iterative procedure, as the stopping criterion because it controls the structural variability at
the early iterations, near the maximum of theMSSIM and stops the uncontrolled decrease at the next
iterations. It is then an equilibrium between the desired increase of the number of trips and fitting of
traffic counts with the undesired decrease of the structural similarity.

6.5 Real networks with real data

Despite the already mentioned drawbacks of the currently available physical measurements in Chapter
2 and considering our experience with the synthetic data, we, for the sake of completeness, conducted
a further test on two real networks using commercial GPS data to infer estimated link travel times. The
selected exercise is useful for the practitioner’s point of view since a ground truth OD matrix is not
available, but only traffic counts, a historical OD matrix and estimated link travel times obtained from
GPS commercial data.

6.5.1 Case Study 2: Real Network of Turin

The network used is shown in Figure 6.13, with its characteristics presented in Table 6.10. It corresponds
to the downtown of the capital of Piemonte region, Turin, in Italy. The detection layout comprises
302 counting stations, situated in the network as shown and prioritizes traffic counts over main streets.
Furthermore, there is a historical OD matrix with a high level of confidence, since it is the estimated OD
matrix of a previous study.

Figure 6.13: The Turin network used with the detection layout
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The available mobility data for this network is a sample of GPS tracking data provided by INRIX that
contains one year of indistinguishable private and fleet vehicles circulating on labor days during the
peak period in the morning. The sample contains 3.76M waypoints, which represents 232k different
trips (partially) circulating on the network. The penetration rate is 1.32% if we compare yearly GPS
trips to the historical OD matrices for the selected period in terms of the number of trips. Moreover,
this incompleteness reflects a mobility pattern that does not correspond to the network’s OD pattern, as
shown by further analysis of the matrix structure.

Table 6.10: Network and OD characteristics

Time periods 4
Zones 221

Detectors 302
OD pairs X Time ≈195k
Historical Trips 129k

Historical
Positive OD

≈77.5k (39.71%)

Since the data set does not provide information regarding the vehicle types, we cannot distinguish
between fleet and regular vehicles nor filter and cleansing the sample to obtain estimations of the link
travel times with a controlled degree of confidence. However, an estimation of link travel times for each
time period of study has been made using the methodology described in Section 2.5.

Because this is a real network experiment, the ground truth conditions are unknown and it is, therefore,
impossible to compare the resulting ODmatrix to the ground truth ODmatrix. The reference ODmatrix,
in this case, is the available historical OD matrix, as it is a reliable OD matrix from a previous study.

The observed ODmatrix is built from the GPS data set by aggregating the trips according to their origin
and destination zones, as well as their departure times. The obtained ODmatrix, X̂, has 35k positive OD
values, which are 17.76% of the OD values. The term S of theMSSIM index of Equation 3.3 between the
observed and the historical OD matrices is an appropriate indicator of whether the observed ODmatrix
is a good seed choice for the optimization procedure since it indicates how similar these matrices are.
In this case, the term S(X̂,XH) = 0.0287, thus indicating it is not suitable as a seed OD matrix, since the
captured mobility pattern is not similar to that of the more reliable historical OD matrix. The presence
of fleet vehicles and the unknown percentage of them is the main cause for discarding this observed OD
matrix as a seed, since fleet vehicles have neither a fixed origin nor destination.

In Figure 6.14, we show the objective function, R2, number of trips and MSSIM evolution. In this
case, as it is a real network with unknown ground truth OD matrix, theMSSIM is performed between
the estimated OD matrix and the Historical one, which also serves as the starting OD matrix for the
optimization procedure. The behavior showed of the objective function and R2 evolution are similar
to those obtained in the synthetic exercise. However, regarding the number of trips, the evolution is
different. In Figure 6.14c we see an initial descent, followed by an increasing return to the historical OD
number of trips. It can be understood saying that initially the number of trips are decreased to globally
match traffic counts, but fine tuning the fitting to traffic counts requires modifying the OD matrix by
increasing some OD flows (thus increasing the trips across iterations within the prescribed limits for
some OD pairs to enhance R2, while decreasing the similarity with respect toMSSIM indicator). The
MSSIM starts at 1 because the historical OD matrix is used as a seed for optimization.
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Figure 6.14: Results for data-driven assignment-free with Turin’s network

The DDAF method converged after 45 iterations using a threshold on the objective function relative
change at each iteration, and the linear regression between the traffic counts of sensors and the corre-
sponding simulated values is included in Figure 6.15. The corresponding simulated traffic counts have
been obtained by launching a DTAwith the resulting estimated ODmatrix. As shown, the optimization
procedure increases the fitting of these measurements, from R2

0
= 0.3261 to R2

f
= 0.7266.
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Figure 6.15: R2 improvement after DDAF method in Turin

The total number of trips resulting from the estimated OD matrix areNT = 120974 and the positive OD
values are 71983 (36.85%). The similarity between the historical and the estimated OD matrix measured
withMSSIM isMSSIM

(
X∗,XH

)
= 0.5167.
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In Section 6.4, we suggested 4 different stopping criteria based on the structural similarity. In this case,
we use three of them (since the first one does not apply because the ground truth ODmatrix is unknown)
in a posteriori process to see their effect in relation to the final results. Figure 6.16 shows the relative
MSSIM with respect to the Historical OD matrix, left, and the relative MSSIM between successive
iterations, right. In the two cases, the threshold is indicated, which has been set to ε = 103.
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Figure 6.16: Relative MSSIM with threshold ε = 10−3

On the left graph, the relativeMSSIM does not fit into the band, meaning that it never reaches a value
in [−ε, ε]. On the right, the first time it occurs is at iteration k = 6. The more sophisticated criterion,
when the relativeMSSIM remains 3 successive iterations inside the band stops the algorithm at iteration
k = 19. In Table 6.11, we show the KPIs, for the stopping points, at iterations k = 6, 19, 45.

Table 6.11: Results with the proposed stopping criteria

Criteria satisfied OF R2 Number of trips MSSIM to Hist
Initial 47035189 0.3261 129990 1.0000
k = 6 M3 11516217 0.4975 96761 0.8809
k = 19 M4 8423369 0.6034 102338 0.6557
k = 45 ObjFun 7458148 0.6393 115899 0.5167

The proposed criteria set the stop at different iterations. However,M2 does not reach the fixed threshold.
In this case, M4 is the best stopping criterion because, as shown in Figure 6.16b, M3 would stop the
criterion at an early iteration, because it suddenly reached the threshold band, but there are some
iterations after that. Therefore, k = 19 is the suggested stopping iteration,which represents a compromise
between a good fit to traffic counts (indicated by R2), limiting the increase of OD flows in some OD pairs
(and thus the total number of trips) while preserving the Historical OD pattern (MSSIM).

6.5.2 Case Study 3: Real Network Barcelona

The last network used is shown in Figure 6.17, with its characteristics presented in Table 6.12. It
corresponds to the downtown of my birth city, Barcelona, in Catalonia, Spain. The detection layout
comprises 70 counting stations, situated in the network as shown and prioritizes traffic counts over main
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streets. Furthermore, there is a historical OD matrix estimated OD matrix of a previous study by using
a submatrix extraction procedure based on a partially calibrated network.

Figure 6.17: The Barcelona network used with the detection layout

The available mobility data for this network is a sample of GPS tracking data provided by INRIX that
contains only 1 month of distinguishable private and fleet vehicles circulating on labor days during the
peak period in the morning. The sample contains 566k waypoints, which represent 20k different trips
(partially) circulating on the network. The penetration rate, including the two classes of vehicles, is
around 2% if we compare the available GPS trips for one month to the historical OD matrices for the
selected period in terms of the number of trips.

Table 6.12: Network and OD characteristics

Time periods 4
Zones 202

Detectors 70
OD pairs X Time ≈163k
Historical Trips 60k

Historical
Positive OD

≈44k (26.77%)

Different from the GPS data from Turin, in this data set, we have information about the nature of the
trip, distinguishing between fleet and private vehicles. We use this information to build the observed
OD matrix. Since the fleet vehicles have neither an origin nor destination, they will not be included in
the observed OD matrix. On the other hand, they were included in the estimation of link travel times
because they use the same network with the same traffic conditions, so their travel times are reliable.
Effectively, both scenarios were initially considered and the effects of removing the fleet vehicle were
insignificant. The methodology used to obtain the link travel times estimates is the one described in
Section 2.5 of this thesis.

Because this is a real network experiment, the ground truth conditions are unknown and it is, therefore,
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impossible to compare the resulting ODmatrix to the ground truth ODmatrix. The reference ODmatrix
in this case is the available historical OD matrix.

The observed OD matrix is built from the GPS data set by aggregating only the private trips according
to their origin and destination zones, as well as their departure times. The obtained OD matrix, X̂, has
around 23k positive OD values, which are 13.91% of the OD values. The term S of theMSSIM index of
Equation 3.3 between the observed and the historical ODmatrices is an appropriate indicator of whether
the observed OD matrix is a good seed choice for the optimization procedure, since it indicates how
similar these matrices are. In this case, the term S(X̂,XH) = 0.1814, thus indicating it is not suitable as a
seed OD matrix, since the captured mobility pattern is not similar to that of the more reliable historical
ODmatrix. Even in this case, that the fleet cars are removed to build the observedODmatrix, the S factor
is still low, showing that the observed OD matrix does not reflect the mobility pattern of the network,
which is another detected problem of the commercial GPS data sets.

In Figure 6.18, we show the same indicators as in the other networks. In this case, as it is a real network
with unknown ground truth OD matrix, the MSSIM is performed between the estimated OD matrix
and the Historical one, which also serves as the starting OD matrix for the optimization procedure.

The behavior showed of the objective function and R2 evolution are similar to those obtained in the
synthetic exercise. However, regarding the number of trips, the evolution is similar to those in Turin. In
Figure 6.18c we see an initial descent, followed by an increasing return to the historical OD number of
trips. TheMSSIM starts at 1, because the historical OD matrix is used as a seed for the optimization.
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Figure 6.18: Results for data-driven assignment-free with Barcelona’s network

The DDAF method converged after 68 iterations using a threshold on the objective function relative
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change at each iteration, and the linear regression between the traffic counts of sensors and the corre-
sponding simulated values is included in Figure 6.19. The corresponding simulated traffic counts have
been obtained by launching a DTAwith the resulting estimated ODmatrix. As shown, the optimization
procedure increases the fitting of these measurements, from R2

0
= 0.4969 to R2

f
= 0.7367.
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Figure 6.19: R2 improvement in a selected experiment

The total number of trips resulting from the estimated ODmatrix areNT = 73190, +21% higher than the
historical number of trips (NT(XH) = 60083), and the positive OD values are 43215 (26.47% of the total
OD pairs). The similarity between the historical and the estimated OD matrix measured withMSSIM
isMSSIM

(
X∗,XH

)
= 0.4308.

As done in Turin, we use the four stopping criteria proposed in Section 6.4 in a posteriori process to
see their effect concerning the final results. Figure 6.20 shows the relativeMSSIM with respect to the
Historical ODmatrix, left, and the relativeMSSIM between successive iterations, right. In the two cases,
the threshold is indicated, which has been set to ε = 10−3.
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Figure 6.20: Relative MSSIM with threshold ε = 10−3

In the left graph, the relativeMSSIM fits into the band only at iteration k = 42 and k = 67. On the right,
the first time it occurs is at iteration k = 15. TheM4 sophisticated criterion, when the relativeMSSIM
remains r = 3 successive iterations inside the band stops the algorithm at iteration k = 17. In Table 6.13,
we show the KPIs, for the stopping points, at iterations k = 15, 17, 42, 68.
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Table 6.13: Results with the proposed stopping criteria

Criteria Satisfied OF R2 Number of trips MSSIM to Hist
Initial 18849753 0.4969 60083 1.0000
k = 15 M3 6794112 0.6762 58676 0.6884
k = 17 M4 6707685 0.6813 58042 0.6823
k = 42 M2 5466618 0.7272 69243 0.4778
k = 68 ObjFun 5252524 0.7367 73190 0.4308

The analysis of the different criteria shows similar behavior. On one hand,M2 reaches the threshold at
iteration 42, because it oscillates during the early iterations. On the other hand, M3 and M4 stop the
optimization algorithm at earlier iterations, preserving better the structure of the matrix, but reaching
lower fittings values.

6.5.3 Revision for Dynamic Spiess with Stopping criteria

0.80

0.85

0.90

0.95

0 100 200 300 400

Iteration

M
S

S
IM

(a)MSSIM
(
X(k),XGT

)

−0.06

−0.04

−0.02

0.00

0 100 200 300 400

Iteration

R
el

at
iv

e 
M

S
S

IM

(b) RelativeMSSIM
(
X(k),XH

)
0.00

0.01

0.02

0.03

0.04

0 100 200 300 400

Iteration

R
el

at
iv

e 
M

S
S

IM

(c) RelativeMSSIM
(
X(k),X(k−1)

)
Figure 6.21: MSSIM and RelativeMSSIMwith threshold ε = 10−3

After testing this proposal with the data-driven assignment-free DODME experiments in this chapter,
we wanted to test these criteria with the experiments in Chapter 5, using the Dynamic Spiess algorithm.
In that case, there was the same phenomenon, where after an increase of the similarity between the
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estimated OD matrix and the ground truth of the synthetic experiment, there was an uncontrolled
decrease of such similarity.

Consistently with the criteria proposed in Section 6.4, we show in Figure 6.21 an experiment of the case
study shown in Section 5.3. It consists of the experiment with the Dynamic Spiess algorithm applied
to the Hillsboro network, with w2 = 1 and using the Multitude OD matrix as historical. The different
MSSIM and relative MSSIM are shown to determine, in each case, when the algorithm would be
stopped. The rest of the experiments of the Dynamic with the criteria are graphed in Appendix C.1.

In Figure 6.21a, we show theMSSIM with respect to the ground truth, because it is again a synthetic
experiment. In this case, the algorithm should be stopped when the maximum is reached, that is at
iteration k = 11. In Figure 6.21b, the relativeMSSIM to the historical ODmatrix is shown, and it satisfies
the threshold criteria at iteration k = 5. Finally, in Figure 6.21c, we show theMSSIM between successive
iterations, which reaches the threshold also at iteration k = 5. In the latter, the threshold is satisfied from
k = 5 to the last iteration, so the last suggestion would stop the algorithm at iteration k = 7. In summary,
the results of the four KPIs are shown in Table 6.14, where at the end the ground truth indicators are
included.

Table 6.14: Results with the proposed stopping criteria

Criteria Satisfied OF R2 Number of trips MSSIM to GT
Initial 6358827 0.5345 7408 0.9169
k = 5 M2,M3 540415 0.8423 8883 0.9709
k = 7 M4 409375 0.8534 8966 0.9725
k = 11 M1 303638 0.8889 8953 0.9736
GT 0 1.0000 9878 1.000

As we see, the synthetically designed experiments of Chapter 5 show a similar behavior regarding the
stopping criteria. The one that is structurally more similar to the ground truth isM1 followed byM4.
As before, the use ofM4 has a highMSSIM value but worsens the fitting and the total number of trips.

6.6 Conclusions of Data-driven Assignment-Free DODME

The components shared by most of the DODME approaches are: an assignment matrix A = [alt
ijr

],
whose elements represent the proportion of the OD demand; xijr travelling from origin i to destination
j, departing the trip at time period r; and reaching the counting station on link l at time t; a historical
OD matrix XH that provides additional information on the mobility patterns, namely their space-time
structure; and link flow counts, Ŷ = [ŷlt], for a subset of links l ∈ L̂ ⊆ L where counting stations are
located. In analytical methods, the assignment matrix describing the dynamic structure of the temporal
use of the network is usually costly to obtain using dynamic traffic assignment procedures that depend
on an initial OD matrix. This initial matrix is not always reliable and in addition, the OD estimation
applications are limited by the significant computational effort that they require to rely on a goodnetwork
calibration.

In this chapter, we investigated whether the data provided by new ICT sources (namely GPS data) could
empirically provide better estimates in DODME practical applications. In other words, our general
hypothesis assumes that the data contain information about the generating phenomenon, by which we
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aim to specifically find a suitable mean to process the data and incorporate the information into the
DODME process.

As already mentioned in this thesis, the exploratory analysis of the GPS tracking from the commercial
providers reveals that data collection methods are tailored to commercial goals and that nowadays this
data is not able to generate a reliable initial OD matrix for a traditional DODME process. The process of
synthetic data generation described in Chapter 2 permitted us to generate a framework to validate each
step of the assignment matrix building process from the information about the real mobility enhanced
in the GPS data. From this information, we can estimate link travel times from the traffic state revealed
from the ICT data.

The experimental design based on synthetic data allows conducting a sensitivity analysis of the equipped
vehicles’ penetration rate. Furthermore, this analysis couldbedifficult toperformwhenusingonlypurely
empirical data. The sensitivity analysis shows the robustness of the assignment-free approach, and, as
expected, an increase in the quality of the results when the percentage of equipped vehicles increases.

The computational results prove that the proposed methodology is reliable for estimating the key
component: the assignment matrix. The estimated assignment matrix is consistent, as well as the
empirical route choice set approach to identify the most likely used paths, their travel times, and the
path flow proportions from which the assignment matrix is derived.

The computational performance is very good, converging very quickly in a few iterations to achieve good
results. A relevant point to highlight is the consistent performance regarding the total number of trips
and the structure of the final estimatedmatrix. Most of the approaches in the literature also exhibit good
performance in terms of the converging objective function and the quality of the results when using only
R2 as a KPI to measure the performance, but no analysis is made on the total number of trips in the final
estimated OD matrix or its structure.

Quite frequently, R2 is a very good indicator for a simple meta-regression model, but at the price of
increasing or decreasing the number of trips or destroying historical OD trip matrix patterns. In order
to fit the observed flow count in a link, it pulls forward to and backward from the OD pairs whose paths
use that link. However, considering the underlying physical system (i.e., the transportation system),
the resulting estimated OD matrix may not be realistic because some affected OD pairs are forced to
generate or attract an unrealistic number of trips. The developed assignment-free DODME outperforms
onmatrix similarly, nevertheless is also based on obtaining a good quality of the R2 that explains the link
flows, but it exhibits remarkable stability in the total number of vehicles when comparing the ground
truth OD to the resulting estimated OD. A high degree of structural similarity also exists between both
matrices. Therefore, we can conclude that the estimated OD is more reliable than those obtained by
other approaches.

The computational results reported using real networks and real data in Turin and Barcelona case studies
show clearly that, as with all data-driven approaches, the quality of the results strongly depends on the
quality of the data used, achieving in these cases worse results than in the synthetic case. Although
the observed OD matrices from commercial providers data do not directly reflect OD pattern, there
is a significant improvement when the data-driven OD estimation procedure is applied. Using only
measured data to define an initial OD matrix is recommended when the data quality ensures observed
OD matrices, which could perhaps be achieved when using purpose-oriented commercial data (per
agreement with the data providers). This would thus overcome the mentioned drawbacks.

Even in analytic assignment-based oriented methods, using a stopping criterion based only on the
objective function convergence is not a guarantee of quality, since theR2 fittingdominates the convergence
process, and good flow fits do not ensure good structural quality. Alternative stopping criteria that
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orchestrate between R2 (traffic counts fit) andMSSIM (structure similarity of the travel pattern in the
estimated matrix) has been found to perform better and therefore has been proposed. These criteria are
useful for Spiess-like methods and assignment-free DODME as shown.
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7
Conclusions

This final chapter summarizes the main contributions and conclusions of the thesis. Moreover, some further research
is highlighted.

This thesis deals with the Dynamic OD Matrix Estimation problem, which is an appealing and crucial
problem for traffic analysis modeling and simulation. The OD matrices are key inputs for the traffic
simulation models and therefore, they must be properly calibrated in order to reproduce the correct
traffic mobility. This problem has been studied for decades and the bi-level optimization formulation
is the reference approach as it permits to constantly compare to the observed traffic data from the real
network to correct the OD matrix accordingly. However, the problem is highly underdetermined and
computationally costly, increasing the computational burden as the size of the network does.

This thesis studied carefully and systematically thedynamicODestimationproblem, aimingatproposing
a methodology that permits to add the GPS data information about the traffic state and thus reduces the
inherent underdetermination of the problem. For this purpose, we worked on different lines of research
that are related to how the problem is solved. Moreover, we always focused the analyzes not only on
the computational and convergence point of view but also on the quality of the obtained results. In
this sense, we have studied the computational experiments using four different indicators: the objective
function, the fitting between traffic counts, the total number of trips of the ODmatrices and the measure
of similarity between OD matrices, that takes into account the structure of the OD matrices, which
represent indeed the demand pattern of the network.

The emergence of information and communication technologies (ICT) generated different types of traffic
data. Before it, the traffic data was collected by sensors placed onto the network that permitted to count
the number of vehicles that circulate through it. The new paradigm of sensors, that are connected
due to the ICT technology, permitted reidentification of the same vehicle downstream, which opens a
wide range of information about the traffic state, as a form of travel times, path reconstruction, etc. We
took a special interest in commercial GPS data, which thanks to the emergence of GPS devices, collects
continuously big amounts of data from the vehicles and permits us to obtain vehicle location information
evolving in time. This data is usually subject to many privacy policies and the origin and destination
information is not available because it has been pre-processed before the acquisition of it. In Chapter
2, we propose a methodology to estimate the link travel times for the different time periods, based on
the big amount of vehicles using the network during many days with similar conditions. This extracted
information of the form of link travel times permits us to obtain further information regarding the traffic
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state and it can be included in the OD estimation procedures. In the same chapter, we also propose
a methodological framework to synthetically generate consistent traffic counts, GPS and historical OD
matrix databases.

In Chapter 3, we follow the studies from Djukic (2014) and Behara et al. (2018) about the measures of
quality of the solution. In this sense, we adapt theMSSIM measure of similarity to the OD estimation
problem, proposing a weighting formula that takes into account the total origin or destination vehicles
contributing to the travel demand pattern. With this, we suppress the degree of freedom of selecting the
sliding window size and we do not depend on further information regarding the regional aspect of the
zonification.

In the exhaustive study of the existing methodologies to solve the OD estimation problem, on one hand,
we studied the simulation-based optimization approaches, which reference is the SPSA procedure. In
Chapter 4, we stated an automatic procedure for selecting the gain sequences parameters, which are key
inputs for the good behavior of the stochastic process. Moreover, we proposedmany alternativemethods
and variants that permit us to add further information, as constraints to the problem, and to overcome
the drawbacks of SPSA for solving the OD estimation problem. By the end of the chapter, we propose
an alternative of introducing the travel times information coming from commercial GPS data. As these
data do not provide reliable information regarding the origin-to-destination travel times, we proposed a
maximal subpaths heuristic to introduce the travel times to the objective function of the bi-level problem.

For the SPSA contributions, we completed a full set of experiments testing the different variants and
the improvement of such inclusion. We finally concluded that the computational times of SPSA and the
high sensitivity that the quality of the estimated OD matrix has with respect to the initial OD matrix
are two aspects that make SPSA unsuitable to find a proper estimated OD matrix in a computationally
reasonable time.

On the other hand, we studied the analytical approaches in Chapter 5. In this chapter, we stated
the formulation of the dynamic version of Spiess (1990) approach and tested it with many different
experiments. With the experimental results, we concluded that the analytical approaches, despite their
impossibility to add new traffic data to the objective function, are more robust to the initial OD matrix,
present fast convergence properties and are computationally more efficient. Moreover, we noticed the
important role of the dynamic assignment matrix in all the different steps of the iterative procedure.

After the knowledge acquired, in Chapter 6, we designed carefully a data-driven assignment-free
methodology to obtain from the GPS data information an estimate of the dynamic assignment ma-
trix on the traffic conditions of the traffic data. Therefore, we reduce notably the computational effort of
the OD estimation problem, because a traffic assignment is not needed anymore, since the assignment
matrix is obtained from the GPS data processing. To wrap it up, we propose an optimization problem
with scaling factors that both reduces the number of variables of the problem (and thus reduces the
computational effort and the underdetermination) and also permits to add constraints to the OD flows.

This methodology has been validated and tested with a synthetically generated database to study its
consistency, robustness and sensitivity. It has been also compared with the Dynamic Spiess to see the
effect of the assignment-free nature of the procedure. By the end, it has been tested with real networks
(Turin and Barcelona) showing promising improvements, even though the difficulties found in working
with real commercial GPS data.

At the end of Chapter 6, we also designed a set of stopping criteria based on several measures of
performance including theMSSIMmatrix similarity of the estimated matrices over the iterations. This
is a proposal that aims to find an equilibrium between the regression nature of the bi-level optimization
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problem and the quality of the obtained solution, that could be deeply studied thanks to the set of
synthetic experiments, where the ground truth OD matrix is available.

After the experience gained in this thesis with the dynamic ODmatrix estimation, we analyzed carefully
different methodologies that tackle the OD estimation. In the case when the available traffic data are
only from traffic counts on links, we strongly suggest using an analytical approach such as the dynamic
Spiess proposed in Chapter 5. However, these approaches need a DTA engine and a properly calibrated
model. On the other hand, the data-driven approaches are alternative methods that use a GPS trace data
set to estimate the dynamic assignment matrix and reduce the underdetermination of the problem. The
proposed alternative takes advantage of this new data set and the DTA is not required anymore.

7.1 Further Research

The ICT devices are generating more and more data about mobility in urban networks. Therefore, the
traffic models, analysis and simulation must evolve together with these data, making use of them to
improve the likelihood of their outputs. However, the huge volume of data can become a problem if
these data are not well collected, meaning subject to a data gathering methodology; processed, filtered
and cleansed. The quality of these data sets is a key point that must be guaranteed.

The data-driven assignment-free DODME proposal of Chapter 6 is a methodology that uses the current
commercial GPS data, with the already mentioned problems. In this sense, the assumptions that are
taken about the quality and certainty of the data set are very few. One supplementary line of research
is to analyze in detail the quality of the GPS data and how to measure it. If the quality of the data
becomes higher, then, we can then use the information to build a more sophisticated observed OD
matrix, including specific scaling factors for each OD pair, that can be used also as a seed OD matrix for
the data-driven assignment-free OD estimation approach.

Another enhancement that must be studied in the future is the addition of more complex constraints
to the data-driven proposal. At this moment, the unique constraint is to maintain the positivity of the
OD flows with respect to the seed OD matrix. In SPSA, we also added bounding constraints for each
OD flow that permit to control of the total number of trips. As the non-linear optimization method
used, the L-BFGS-B, permits to add other constraints, one immediate step is to add such constraints to
the data-driven formulation. In the future, other different constraints, related to the production and
attraction based on land-use models, can also be considered.

Last but not least, it would be of interest to build a bi-level approach for the data-driven approach where
at the upper level the OD flows are optimized, based on a lower level optimization of the scaling factors
despite this approach is more demanding on the computational point of view.
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Notation

Sets

I Set of origin zones

J Set of destination zones

N Set of OD pairs (N = I × J)

L Set of links of the network

L̂ Set of equipped links of the network, so L̂ ⊆ L

T Set of time periods of the simulation

Pijr Set of paths for a certain OD pair (i, j) departing at certain time interval r

Objects

X is an OD matrix (and can be represented as a vector of length |I| · |J| · |T |), that is X =
[
xijr

]
.

xijr is an OD flow for (i, j) OD pair departing at Time Interval r.

Y is a vector of traffic counts on L̂ over time, that is Y = [ylt].

ylt is a traffic count measurement on link l ∈ L̂ at Time Interval t.

A is the Assignment Matrix, that is A =
[
alt
ijr

]
.

alt
ijr

is the proportion of xijr that uses link l at time t.

Subindexes

i stands for Origins

j stands for Destinations

n stands for OD pairs, normally n ≡ (i, j)



l stands for Links

r stands for departing time period (from an origin)

t stands for arriving time interval (to a link)

p stands for a path of the set Pijr. In fact, p = p(i, j, r)

Superindexes

H means Historical, reference.

0 means seed for an optimization problem

∗ means obtained as a solution of an optimization problem

(k) means at iteration k

Accents

∧ means measured or observed measure

− means estimated after a suitable process of a traffic measurement
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A
Urban networks used

A.1 Fictitious network

The fictitious network is provided by PTV Group1, built in Visum and Vissim and calibrated to be used
with the Simulation-based Assignment (SBA), the mesoscopic dynamic traffic assignment available in
Visum.

Table A.1: Fictitious network and OD characteristics

Time periods 4
Zones 114

Detectors 40
OD pairs X Time 51984

Ground Truth Trips 8300
Ground Truth
Positive OD

40802
(78.49%)

Figure A.1: The fictitious network

Acknowledgements: PTV AG (Karlsruhe, Germany). Specially to Klaus Nökel, Arne Schneck, Niko
Roßkopf, Jochen Lohmiller and Peter Sukennik.

1www.company.ptvgroup.com/en

https://company.ptvgroup.com/en/
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A.2 Hillsboro (Oregon, United States)

The Hillsboro network is provided by PTV Group, built in Visum and Vissim and calibrated to be used
with the Simulation-based Assignment (SBA), the mesoscopic dynamic traffic assignment available in
Visum.

Table A.2: Hillsboro network and OD characteristics

Time periods 3
Zones 58

Detectors 80
OD pairs X Time 10092

Ground Truth Trips 9878
Ground Truth
Positive OD

8100
(80.26%)

Figure A.2: Network of Hillsboro

Acknowledgements: PTV AG (Karlsruhe, Germany). Specially to Klaus Nökel, Arne Schneck and Niko
Roßkopf.
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A.3 Turin (Piemonte, Italy)

The Turin network is provided by PTV Sistema (part of PTV Group), built in Visum and calibrated to be
used with the Traffic Realtime Equilibrium (TRE) Assignment2.

Table A.3: Turin network and OD and GPS data characteristics

Time periods 4
Zones 221

Detectors 302
OD pairs X Time 195364
Historical Trips 129990

Historical
Positive OD

77579
(39.71%)

GPS trips 232418
GPS waypoints 3758445

Figure A.3: Network of Turin

Acknowledgements: PTV Sistema (Rome, Italy). Specially to Guido Gentile, Alessandro Attanasi,
Lorenzo Meschini and Daniele Tiddi.

2Traffic Realtime Equilibrium (TRE)

https://www.ptvgroup.com/en/contact-support/add-in-marketplace/traffic-realtime-equilibrium/
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A.4 Barcelona (Catalonia, Spain)

The Barcelona Visum model comes from the Virtual Mobility Lab, a CARNET project3. It is calibrated
to be used with the Simulation-based Assignment (SBA), the mesoscopic dynamic traffic assignment of
Visum.

Table A.4: Barcelona network and OD and GPS data characteristics

Time periods 4
Zones 202

Detectors 70
OD pairs X Time 163216
Historical Trips 60083

Historical
Positive OD

43693
(26.77%)

GPS trips 19974
GPS waypoints 566359

Figure A.4: Network of Barcelona

Acknowledgements: The Virtual Mobility Lab project and CARNET.

3www.carnetbarcelona.com/

https://www.carnetbarcelona.com/


B
Full results of the Case
Studies in this thesis

B.1 Results of SPSA without Travel Times

Table B.1: Initial values of the KPIs

KPI Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude
R2
0

0.3149 0.2775 0.3453 0.6226 0.8278 0.5345
NT 9878 7408 12347 7408 12347 7408

MSSIM0 0.5538 0.6301 0.4684 0.9808 0.9898 0.9769

Since the experiments were launched for 400 iterations without a stopping criterion, the final indicators
show the values at the iteration when R2 reached the maximum value.

Table B.2: Final R2 between traffic counts

Method w2 CG Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude

Free
SPSA

w2 = 0
NO 0.3229 0.3197 0.3673 0.8303 0.7832 0.7655
YES 0.3208 0.3017 0.3682 0.7776 0.8541 0.7784

w2 = 1
NO 0.3630 0.3005 0.3445 0.7471 0.8640 0.8110
YES 0.3221 0.2949 0.3459 0.8130 0.8631 0.7177

Constrained
SPSA

w2 = 0
NO 0.3292 0.2760 0.3428 0.7486 0.8423 0.7704
YES 0.3175 0.3046 0.3604 0.7428 0.8351 0.7395

w2 = 1
NO 0.3134 0.2928 0.3642 0.7346 0.8702 0.7447
YES 0.3122 0.3123 0.3616 0.7221 0.8693 0.8016

Penalized
SPSA

w2 = 0
NO 0.3202 0.3061 0.3667 0.8287 0.8242 0.7759
YES 0.3358 0.2758 0.3538 0.7852 0.8374 0.7564

w2 = 1
NO 0.3326 0.2675 0.3489 0.8069 0.8614 0.7822
YES 0.3071 0.2836 0.3647 0.7682 0.8216 0.8350
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Table B.3: Final total number of trips, NT

Method w2 CG Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude

Free
SPSA

w2 = 0
NO 9891 7420 12307 7869 12314 7638
YES 9873 7430 12273 7520 12110 7502

w2 = 1
NO 10722 7589 12289 8325 12108 7819
YES 9826 7384 12365 8149 11329 7521

Constrained
SPSA

w2 = 0
NO 9852 7410 12302 7597 11779 7561
YES 9916 7436 12314 7448 12166 7454

w2 = 1
NO 9877 7412 12300 7603 12013 7601
YES 9853 7433 12354 7422 11877 7593

Penalized
SPSA

w2 = 0
NO 9896 7476 12294 7679 11929 7535
YES 9980 7402 12247 7593 12341 7531

w2 = 1
NO 10336 7847 12311 7805 11399 7568
YES 9952 7407 12322 7905 11853 7716

Table B.4: FinalMSSIM between X∗ and XGT

Method w2 CG Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude

Free
SPSA

w2 = 0
NO 0.2492 0.2758 0.2084 0.8844 0.9386 0.9116
YES 0.2368 0.2744 0.2174 0.9011 0.9411 0.9024

w2 = 1
NO 0.2008 0.2430 0.2228 0.7859 0.9310 0.8801
YES 0.2475 0.2728 0.2176 0.8305 0.8680 0.8984

Constrained
SPSA

w2 = 0
NO 0.2553 0.2779 0.2292 0.9145 0.9346 0.9227
YES 0.2534 0.2801 0.2204 0.9175 0.9474 0.9126

w2 = 1
NO 0.2553 0.2725 0.2183 0.9166 0.9468 0.9198
YES 0.2549 0.2786 0.2189 0.9101 0.9477 0.9169

Penalized
SPSA

w2 = 0
NO 0.2533 0.2619 0.2198 0.9014 0.9186 0.9130
YES 0.2372 0.2803 0.2184 0.9024 0.9520 0.8976

w2 = 1
NO 0.2031 0.2336 0.2011 0.9066 0.8940 0.9080
YES 0.2417 0.2790 0.2201 0.7988 0.8794 0.8849
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Figure B.1: Multitude initial matrix, with YES conjugate gradient
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Figure B.2: Multitude initial matrix, with NO conjugate gradient
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Figure B.3: Chaos initial matrix, with YES conjugate gradient
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Figure B.5: Chaos+Inc- initial matrix, with YES conjugate gradient
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Figure B.6: Chaos+Inc- initial matrix, with NO conjugate gradient



154 B. Full results of the Case Studies in this thesis

4100000

4200000

4300000

4400000

0 100 200 300 400

O
bj

ec
tiv

e 
F

un
ct

io
n

0.34

0.35

0.36

0 100 200 300 400

R
2

10000

10500

11000

11500

12000

12500

0 100 200 300 400

Iteration

N
um

be
r 

of
 T

rip
s

0.210

0.215

0.220

0.225

0 100 200 300 400

Iteration

M
S

S
IM

w2=0 w2=1 Free SPSA Constrained SPSA Penalized SPSA

Figure B.7: Chaos+Inc+ initial matrix, with YES conjugate gradient
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Figure B.8: Chaos+Inc+ initial matrix, with NO conjugate gradient
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Figure B.9: Incremental- initial matrix, with YES conjugate gradient
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Figure B.10: Incremental- initial matrix, with NO conjugate gradient
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Figure B.11: Incremental+ initial matrix, with YES conjugate gradient
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Figure B.12: Incremental+ initial matrix, with NO conjugate gradient
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B.2 Results of SPSA with Travel Times

Table B.5: Initial values of the KPIs

KPI Multitude
R2
0
Traffic counts 0.5345

R2
0
Travel times 0.4714

NT 7408
MSSIM0 0.9769

Since the experiments were launched for 400 iterations without a stopping criterion, the final indicators
show the values at the iteration when R2 reached the maximum value.

Table B.6: Final R2 between traffic counts

Method w2 = 0 w2 = 1

SPSA without TT 0.8297 0.8319
SPSA with TT 0.7614 0.7488

HybSPSA without TT 0.7598 0.7684
HybSPSA with TT 0.6485 0.7243

Table B.7: Final R2 between travel times

Method w2 = 0 w2 = 1

SPSA without TT - -
SPSA with TT 0.8312 0.8426

HybSPSA without TT - -
HybSPSA with TT 0.8371 0.8297

Table B.8: Final total number of trips, NT

Method w2 = 0 w2 = 1

SPSA without TT 7415 7458
SPSA with TT 7572 7529

HybSPSA without TT 7612 7598
HybSPSA with TT 7416 7385

Table B.9: FinalMSSIM between X∗ and XGT

Method w2 = 0 w2 = 1

SPSA without TT 0.9189 0.9207
SPSA with TT 0.9282 0.9318

HybSPSA without TT 0.9371 0.9371
HybSPSA with TT 0.9283 0.9278
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Figure B.13: Results for SPSA with travel times variants

B.3 Results of Dynamic Spiess

Table B.10: Initial values of the KPIs

KPI Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude
R2
0

0.3149 0.2775 0.3453 0.6226 0.8278 0.5345
NT0 9878 7408 12347 7408 12347 7408

MSSIM0 0.5538 0.6301 0.4684 0.9808 0.9898 0.9769

Since the experiments were launched for 400 iterations without a stopping criterion, the final indicators
show the values at the iteration when R2 reached the maximum value.
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Table B.11: Final R2 between traffic counts

Method w2 Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude
Dynamic
Spiess

w2 = 0 0.9670 0.9616 0.9660 0.9667 0.9583 0.9658
w2 = 1 0.9476 0.9450 0.9461 0.9404 0.9316 0.9371

Dynamic Spiess
on convergence

w2 = 0 0.9994 0.9996 0.9988 0.9953 0.9937 0.9939
w2 = 1 0.9818 0.9792 0.9728 0.9747 0.9655 0.9666

Dynamic Spiess
with Entropy

w2 = 0 0.9436 0.9490 0.9440 0.9406 0.9362 0.9410

Table B.12: Final total number of trips, NT

Method w2 Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude
Dynamic
Spiess

w2 = 0 12906 12140 13847 11219 12892 11160
w2 = 1 12616 12088 13783 10748 10758 10924

Dynamic Spiess
on convergence

w2 = 0 14474 14471 14704 11603 12193 11870
w2 = 1 12897 12820 14345 11159 11178 11322

Dynamic Spiess
with Entropy

w2 = 0 12580 11729 13060 10066 11677 10712

Table B.13: FinalMSSIM between X∗ and XGT

Method w2 Chaos Chaos+Inc− Chaos+Inc+ Inc− Inc+ Multitude
Dynamic
Spiess

w2 = 0 0.3730 0.3880 0.3594 0.6852 0.6645 0.7015
w2 = 1 0.3795 0.3605 0.3355 0.7945 0.9524 0.7906

Dynamic Spiess
on convergence

w2 = 0 0.3363 0.2836 0.3896 0.6724 0.7911 0.6731
w2 = 1 0.3283 0.3008 0.3457 0.7963 0.8901 0.7957

Dynamic Spiess
with Entropy

w2 = 0 0.3509 0.3875 0.3837 0.8524 0.8431 0.7911
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Figure B.14: Multitude initial matrix
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Figure B.15: Chaos initial matrix
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Figure B.16: Chaos+Inc- initial matrix

0e+00

1e+06

2e+06

3e+06

4e+06

0 100 200 300 400

O
bj

ec
tiv

e 
F

un
ct

io
n

0.4

0.6

0.8

1.0

0 100 200 300 400

R
2

10000

11000

12000

13000

14000

0 100 200 300 400

Iteration

N
um

be
r 

of
 T

rip
s

0.2

0.3

0.4

0.5

0 100 200 300 400

Iteration

M
S

S
IM

w2=0 w2=1 Dynamic Spiess Dynamic Spiess on convergence Dynamic Spiess with Entropy

Figure B.17: Chaos+Inc+ initial matrix
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Figure B.18: Incremental- initial matrix
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Figure B.19: Incremental+ initial matrix
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B.4 Results of Data-Driven Assignment-Free DODME

Table B.14: Initial values of the KPIs

KPI Pen Rate Hist Obs Comb1 Comb2

R2
0

5% 0.9248 0.9433 0.9414 0.9414
10% 0.9249 0.9243 0.9228 0.9229
15% 0.9398 0.9388 0.9379 0.9381

NT0

5% 6232.14 6200.36 6179.25 6178.93
10% 6232.14 6189.27 6177.57 6177.58
15% 6232.14 6196.09 6187.39 6187.39

MSSIM0

5% 0.9219 0.8025 0.8612 0.8611
10% 0.9219 0.8502 0.8857 0.8857
15% 0.9219 0.8653 0.8980 0.8979

Since the experiments were launched for 100 iterations without a stopping criterion, the final indicators
show the values at the iteration when R2 reached the maximum value.

Table B.15: Final R2 between traffic counts

Penetration
Rate

w2 Hist Obs Comb1 Comb2

5%
w2 = 0 0.9821 0.9858 0.9833 0.9855
w2 = 1 0.9718 0.9729 0.9715 0.9725

10%
w2 = 0 0.9640 0.9701 0.9651 0.9700
w2 = 1 0.9531 0.9553 0.9542 0.9566

15%
w2 = 0 0.9775 0.9818 0.9779 0.9820
w2 = 1 0.9690 0.9696 0.9684 0.9693

Table B.16: Final total number of trips, NT

Penetration
Rate

w2 Hist Obs Comb1 Comb2

5%
w2 = 0 8600.7125 8572.1045 8847.1183 8686.4964
w2 = 1 8233.1443 8144.4301 8268.5176 8271.5702

10%
w2 = 0 8582.2539 8186.3194 8636.3183 8262.0999
w2 = 1 8208.4121 8158.0665 8207.2455 8226.9533

15%
w2 = 0 8526.7401 8376.0333 8426.4535 8378.8388
w2 = 1 8225.5134 8118.8477 8183.0890 8129.7176
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Table B.17: FinalMSSIM between X∗ and XGT

Penetration
Rate

w2 Hist Obs Comb1 Comb2

5%
w2 = 0 0.7048 0.4358 0.5940 0.5588
w2 = 1 0.8437 0.6475 0.7501 0.7225

10%
w2 = 0 0.6806 0.4932 0.6046 0.5500
w2 = 1 0.8099 0.6664 0.7312 0.6684

15%
w2 = 0 0.7163 0.5292 0.6955 0.5954
w2 = 1 0.8000 0.7073 0.7863 0.7566
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Figure B.21: Obs initial matrix

50000

100000

150000

200000

0 25 50 75 100

O
bj

ec
tiv

e 
F

un
ct

io
n

0.92

0.94

0.96

0.98

0 25 50 75 100

R
2

7000

7500

8000

8500

0 25 50 75 100

Iteration

N
um

be
r 

of
 T

rip
s

0.6

0.7

0.8

0.9

0 25 50 75 100

Iteration

M
S

S
IM

10% 15% 5% w2=0 w2=1

Figure B.22: Comb1 initial matrix



166 B. Full results of the Case Studies in this thesis

50000

100000

150000

200000

0 25 50 75 100

O
bj

ec
tiv

e 
F

un
ct

io
n

0.94

0.96

0.98

0 25 50 75 100

R
2

6500

7000

7500

8000

8500

0 25 50 75 100

Iteration

N
um

be
r 

of
 T

rip
s

0.6

0.7

0.8

0.9

0 25 50 75 100

Iteration

M
S

S
IM

10% 15% 5% w2=0 w2=1

Figure B.23: Comb2 initial matrix
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C.1 Results of Dynamic Spiess
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Figure C.1: Multitude initial matrix, with threshold ε = 10−3
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Figure C.2: Chaos initial matrix, with threshold ε = 10−3
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Figure C.3: Chaos+Inc- initial matrix, with threshold ε = 10−3
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Figure C.4: Chaos+Inc+ initial matrix, with threshold ε = 10−3
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Figure C.5: Incremental- initial matrix, with threshold ε = 10−3
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Figure C.6: Incremental+ initial matrix, with threshold ε = 10−3
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Figure C.7: Hist initial matrix, with threshold ε = 10−3
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Figure C.8: Obs initial matrix, with threshold ε = 10−3
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Figure C.9: Comb1 initial matrix, with threshold ε = 10−3
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Figure C.10: Comb2 initial matrix, with threshold ε = 10−3
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