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Abstract 
 

Systems pharmacology is the discipline that studies the so-called 

‘pharmacological space’ with a holistic and network-based perspective. Its 

challenge is to shed light on the astonishingly sophisticated biological 

processes that characterize living cells, and the effect that exogenous 

chemical entities with therapeutic purposes have when entering them. From 

this perspective, a series of novel computationally-developed 

methodologies are presented in this Thesis. They aim from the exploration 

of the pharmacologically-relevant chemical space claimed in patents, to the 

unveiling of pharmacological opportunities to drug yet untargeted proteins. 

 

Resumen 
 

La Farmacología de Sistemas es la disciplina que estudia el llamado «espacio 

farmacológico» desde una perspectiva holística y basada en redes. Su reto 

consiste en arrojar luz a los deslumbrantemente sofisticados procesos 

biológicos que caracterizan las células vivas y el efecto que tienen entidades 

químicas exógenas con fines terapéuticos al entrar en ellas. Desde esta 

perspectiva se presentan en esta tesis una serie de novedosas metodologías 

desarrolladas computacionalmente. Éstas pretenden desde la exploración 

del espacio químico farmacológicamente relevante reclamado en patentes, 

hasta el descubrimiento de oportunidades farmacológicas para atacar 

proteínas para las cuales aún no se ha encontrado un fármaco. 
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Preface 
 

In the era of Big Data with zettabytes of data/information within our reach, 

devising ways to structure, organise, integrate and ultimately query them is 

an utmost need to unveil the cosmos of knowledge they enclose. Data 

generated in the context of Biology defines what is known as biological space 

and its study from a holistic and network-based perspective has given rise 

to the new discipline of Systems Biology. Similarly, data generated in the 

context of Chemistry defines the chemical space which is the object of study 

of Systems Chemistry. In the area where these two spaces converge, which 

could be termed as the pharmacological space, the novel discipline of Systems 

Pharmacology has emerged. Its challenge is to shed light on the astonishingly 

sophisticated biological processes that characterize living cells, and the 

effect that exogenous chemical entities with therapeutic purposes have 

when entering them. 

With this vision, the main objective of the present Thesis was the 

development of new methods and tools that contribute to explore 

pharmacological opportunities at both the chemical and the biological 

space. The document has been divided into six parts. The first part provides 

an overview of current state of the art of the system-based disciplines 

mentioned. The next one introduces the primary objectives pursued. The 

third part compiles the two publications and the two manuscripts in 

preparation that have resulted from this Thesis. Finally, the last three parts 

discuss the results obtained, list the main conclusions derived, and provide 

a general list of relevant references, respectively. 
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I.1 The chemical space 

 

Analogous to the cosmic space, with around 200 billion trillion stars 

grouped in around 2 trillion galaxies1 and new nascent ones in continuous 

forming process (Figure 1), the concept of chemical space refers to the 

ensemble of all possible molecular entities, both naturally occurring and 

artificially synthetized in a laboratory, which should be considered when 

searching for a new drug2. Current theoretical estimations of the chemical 

space size point at orders of magnitude of 1060 organic molecules showing 

the chemical and physical properties necessary to be likely orally active 

drugs.2,3 

 
 

Figure 1. The Pillars of Creation. Photography taken by the Hubble Space Telescope of 
towers of cosmic gas and dust in a star-forming region of the Eagle Nebula. Figure 
extracted from NASA.4 
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In the early era of pharmacology, back in the mid-19th century, the known 

chemical space was mainly constituted by active ingredients extracted from 

medicinal plants to be tested in vivo in model animals, such as morphine, 

isolated from opium extract, and papaverin with antispasmodic properties.5 

More recently, with the molecular biology revolution and the explosion of 

combinatorial chemistry and high-throughput screening (HTS) 

programmes,6 the amount of synthetic compounds produced in mass to be 

tested in vitro against isolated macromolecular targets increased dramatically 

the known chemical space size with almost 400 chemical libraries of 10,000 

to 100,000 compounds each one7 produced every year.8 

In an attempt to organize this chemical data and make it accessible for 

the scientific community, the first chemical open-access databases, 

ChEBI (Chemical Entities of Biological Interest)9 and PubChem,10 were 

launched in 2004 by the European Molecular Biology Laboratory (EMBL) 

and the National Center for Biotechnology Information (NCBI), 

respectively. This was followed by the release of several other public 

chemical repositories built with a medicinal chemistry focus that have been 

updated with new upcoming chemical information since then (Table 1). 

Together with the structure and molecular information of chemical 

compounds, most of these repositories also contain data related to the 

interactions these molecules are known to have over specific biological 

systems. This information is used by drug discoverers as a map to improve 

their understanding of chemical structure-activity relationships (SAR) 

and to identify better pharmacological opportunities. 
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Table 1. Public databases of the known chemical space.  
 

Name 
 

Size 
 

Description (Website) 

ChEBI9 0.03 M 

Dictionary of molecular entities focused on small 

chemical compounds. 

(https://www.ebi.ac.uk/chebi/) 

PubChem10 110.0 M 
Known molecules from various public sources. 

(http://pubchem.ncbi.nlm.nih.gov) 

ChemSpider11 100.0 M 
Online resource from the Royal Society of 

Chemistry. (http://www.chemspider.com/) 

ZINC12 750.0 M 
Commercially-available small molecules. 

(http://zinc.docking.org) 

BindingDB13 1.0 M 
Bioactive molecules with binding affinity data. 

(http://www.bindingdb.org) 

ChEMBL14 2.1 M 

Small molecules annotated with experimental 

bioactivity data. 

(https://www.ebi.ac.uk/chembldb) 

DrugBank15 0.5 M 
Experimental and approved small molecule 

drugs. (http://www.drugbank.ca) 

DrugCentral16 0.001 M 
Experimental and approved small molecule 

drugs. (https://drugcentral.org/) 

GtoPdb17  

Expert-curated database of molecular 

interactions between ligands and their targets. 

(https://www.guidetopharmacology.org) 

SureChEMBL18 17.0 M 

Small molecules extracted from patents by text- 

and image-mining techniques. 

(https://www.surechembl.org/search) 

 

  

https://www.ebi.ac.uk/chebi/
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I.2 Biologically-active chemical space 

 

Despite the vastness of the chemical space, the interest of drug discovery 

(DD) researchers is mainly focused on the regions that are occupied by 

biologically-active compounds, which are the ones showing potentially-

therapeutic characteristics.7,19 These characteristics include topological and 

physicochemical properties that allow for the specific binding interaction 

with the molecular recognition patterns on biological molecules implicated 

in disease phenotypes, such as proteins, RNAs and DNAs.19 

To assess the distribution of this bioactive chemical space throughout 

the whole chemical space, multidimensional representations in form of 

chemographic maps have been proposed.20 These are global positioning 

systems, built on the basis of SAR, that involve mapping compounds into 

coordinates of chemical descriptors derived from their topological and 

physicochemical properties, in order to group together molecules with 

similar structures, and thus similar bioactivities. These representations solve 

the dimensionality problem of comparing and visualizing multiple 

molecular properties at once in two- or three-dimensional maps by reducing 

them to a series of molecular descriptors using algorithms such as the self-

organized maps (SOM) or the principal component analysis (PCA, Figure 

2).21 

  



Introduction 

7 

a)                                                            b) 

     

 

Figure 2. a) Projection of a dataset of molecules on a three-dimensional PCA plot. b) 

Translation of the three principal components in (a) into interpretable chemical descriptors. 

Figure adapted from Oprea and Gottfries (2001).20 

 

Current chemographic maps built with the data generated during a 

century of medicinal chemistry and HTS programmes show that the known 

biologically-relevant compounds are not sparse throughout all the chemical 

universe but clustered together in small and discrete regions of it enriched 

with compounds of similar structure that bind to similar targets, being 

reminiscent to galaxies. The question that remains, is whether these galaxies 

of known bioactive molecules are the only ones in the chemical space 

worthy to be explored for therapeutic opportunities, or whether they are 

only a subpart of it and we are way far from fully unveiling the likely 

bioactive chemical space (Figure 3).19 
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a) 

 

b) 

 

Figure 3. Possible distributions of the biologically-active chemical space. a) Full 

biologically-active chemical space is already known (galaxies). b) Only a subpart of the 

biologically-active chemical space is known (galaxies), with other regions yet to be 

discovered (white starts). 
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I.3 Pharmacologically-active chemical space 

 

Continuing with the cosmic analogy, biologically-active compounds can 

also be seen as planets that possess the basic suitable conditions to harbour 

life. But, like having liquid water does not ensure the planet habitability, the 

capacity of a compound to potently bind a biological target in vitro is not 

enough to be a drug but it constitutes only the first step in a typical DD 

process. Hit compounds, as this biologically-active compounds are known, 

need to be then tested for its potential bioavailability, this is, its potential 

susceptibility to be processed as a drug by the human body according to 

pharmacokinetics. Decades of successes and failures in the approval of 

promising hits as new drugs, have led to some basic rules to describe the 

molecular properties important for orally-administered drugs bioavailability. 

The most important ones have been encapsulated in the Lipinski’s rule of 

five (RO5), so named in honour of the first one to define them in 1997,22 

also known as the ‘ADME’ properties: absorption, distribution, 

metabolism and excretion. The absorption property refers to the orally-

administered compound capacity of being aqueous soluble enough to 

permeate the mucosa surfaces in the digestive tract and be taken into the 

bloodstream. Once in the bloodstream the compound needs to be carried 

to its effector site by distribution and transfer from one body compartment 

to another and this depends on its molecular size, polarity and binding to 

serum proteins capacity. Distribution can be a serious problem at some 

natural barriers like the blood-brain barrier. The third ADME property is 

the drug metabolism. Compounds begin to break down as soon as they 

enter the body but the majority of small-molecule drugs metabolism is 

carried out in the liver by cytochrome P450 enzymes. They attack the 

vulnerable chemical functionalities of the initial compound to convert it into 
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new compounds called metabolites which should be pharmacologically-

active for a useful in vivo effect.19 Finally, initial compounds and 

their metabolites need to be removed from the body via excretion to avoid 

the accumulation of foreign substances that may adversely affect normal 

metabolism. Hydrophobic drugs, to be excreted, must undergo metabolic 

modifications making them more polar, while hydrophilic drugs can 

undergo excretion directly, without the need for metabolic changes to their 

molecular structures. The main excretion via are the kidneys by the urine, 

and others include the gut by the faeces and the lungs by anaesthetic gases.  

Hit compounds optimized in their ADME properties are named ‘leads’ 

and the limited range of leads’ molecular properties define the areas of the 

chemical space where orally administered drugs are more likely to reside, 

known as the pharmacologically-active chemical space. This 

notwithstanding, despite candidate drugs that conform to the RO5 tend to 

have lower attrition rates during clinical trials,23 the fact that a molecule 

fulfils these rules does not always guarantee its drug-likeness19 and it must 

be borne in mind that it can always be place for failure in the following DD  

phases, which include the pre-clinical testing in animal models and the 

clinical development in humans to assess both drug efficacy and safety in 

vivo (Figure 4). 

 

 

Figure 4. Scheme of the drug discovery and development process. 



Introduction 

11 

I.4 Chemical series and privileged structures 

 

Biologically-active and pharmacologically-active chemical spaces can be 

organized in chemical series, defining collections of structurally-analogue 

compounds with similar biological annotations. This chemical series 

concept is very widely used in DD projects today since the seed step in most 

of them is precisely the identification of chemical series of hit compounds 

showing promising affinities for therapeutic targets. Apart from with 

chemographic coordinates, as shown in Chapter I.2, these chemical sets can 

also be characterized using more human-intuitive approaches that put the 

focus on structural properties. These approaches consist of the extraction 

of the most repeated substructures found in the compounds, named the 

‘privileged structures’, as the most likely ones to contain the structural 

properties responsible for the molecules bioactivity against the target 

(Figure 5). The term was first introduced by Evans et al. (1988)24 as ‘single 

molecular frameworks able to provide ligands for diverse receptors’, and it 

was exemplified with the benzodiazepines framework which is present in 

several types of central nervous system (CNS) agents.25 Nowadays, the 

definition has evolved to a more generic concept that includes all the 

structures very frequently occurring in a given chemical series of bioactive 

molecules. 
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Figure 5. Chemical series of bioactive structurally-analogue compounds, here represented 

as galaxies, can be described using chemographic coordinates or privileged structures. 

  

Like its definition, the way to obtain the privileged structures of a 

chemical series is quite versatile with many chemoinformatic groups 

worldwide proposing their own. Reviewing current published approaches, 

I concluded that they can be summarised in three categories (Figure 6): (i) 

approaches based on the extraction of the Murcko scaffolds26 shared 

between the molecules, (ii) approaches based on the assessment of 

maximum common substructures (MCS) found between the molecules,27 

and (iii) approaches based on the identification of common fragment-based 

structures derived from the retrosynthetic fragmentation of the molecules 

(privileged fragments), which is the basis of some popular algorithms for 

chemical series characterization, like the matched molecular pairs (MMP) 

one.28 

  



Introduction 

13 

 

Figure 6. Examples of privileged structures calculation for a chemical series. 

 

Once the privileged structures in a collection of hit compounds with 

bioactivity for a given target are identified, they are commonly used in the 

following DD steps to design focused chemical libraries, a.k.a. targeted 

chemical libraries,29,30 to be experimentally tested against the target in order 

to enhance hit discovery rates. These libraries are enriched with other 

compounds containing the privileged cores as well, but with variations in 

their side chains decoration with respect to the initial ones. The diversity 

coverage of chemical libraries built on the basis of privileged structures will 

depend on the size and complexity of the privileged structures chosen. 

Large and complex structures will result in panels of highly congeneric 

molecules, while small fragment-based ones will give rise to more diverse 

molecular collections. The election between a congeneric panel and a more 

diversity-covering one will ultimately depend on the purpose of the 

screening. 
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I.5 Patent-derived chemical data and SureChEMBL 

database 
 

Chemical series of bioactive compounds for therapeutic targets are reported 

in public literature and in patents, being the later one the first line source of 

novel chemical data of biological relevance. As soon as a new lead 

compound is identified, discoverers claim for legal protection of their 

finding through a patent application document (there are some 

exceptions) containing a very detailed technical description31 that includes 

the chemical structure of the compound or series of compounds claimed, 

their synthesis process and some bioannotations for them. Also, as an 

abstract representation of the compounds claimed, applicants normally 

include a Markush structure (Figure 7). 

 

 

Figure 7. Example of a chemical patent application extract. *Date of patent application 

granted. 
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Compared to literature-derived chemical data, only 3% of the 

compounds claimed in patents are then reported in scientific publications. 

And for this 3%, the average lag time between patent deposition and 

scholarly literature report goes from 3 to 4 years.32 Early access to this 

patent-derived data is quite easy using commercial databases such as Excelra 

GOSTAR, Thomson Reuter Pharma and Elsevier Reaxys, which provide 

regularly-updated and high-quality chemical information extracted from 

patents using automatized text- and image-mining techniques and later 

manual-curation (Table 2). Alternatively, there are public counterparts 

offering open-access data, such as SCRIPDB or ChEBI (Table 2), but they 

have very limited patent and chemical coverages in comparison and have 

had few or none data updates since years (Table 2). However, this scenario 

changed drastically in 2016 with the release of the first open-access and 

weekly-updated database of chemical information extracted from patents 

by text- and image-mining techniques, SureChEMBL database.18 Derived 

from a commercial chemistry patent mining product originally developed as 

SureChem by Digital Science Ltd, SureChEMBL was acquired by the 

EMBL-EBI in 2013 with the remit to expose full functionality and 

underlying chemical structure content to the public domain.33 Following a 

short migration period, the first version was released (April 2016) 

containing 17 million compounds extracted from 14 million patent 

documents (and their attached MOL files if available) from all four major 

patent authorities, namely, the European Patent Office (EPO, 

https://www.epo.org), the United States Patent and Trademark Office 

(USPTO, http://www.uspto.gov), the Japanese Patent Office (JPO, 

https://www.jpo.go.jp) and the World Intellectual Property Organization 

(WIPO, http://www.wipo.int) (Figure 8). 
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SureChEMBL database represents a huge step forward in the early and 

free access by the whole scientific community to novel chemical space of 

biological relevance. Given the time and scope penalties associated to 

literature-derived chemical data in comparison and the significance of 

patent-derived information for early identification of compound-target 

interaction hypotheses, in the future, more DD investments should be 

devoted to the development and provision of databases and tools to search 

patent information in a more comprehensive, reliable, and efficient 

manner.34 

 

 

Figure 8. Overview of SureChEMBL data pipeline from the raw patent feed to the 

standardized compounds in the database. Figure adapted from Papadatos et al. (2016).18 
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Table 2. Databases of patent-derived chemical space. 

 

Name 

 

Description (Website) 

 

Commercial databases 

PatentPak 

(CAS SciFinder) 

 

Product of CAS SciFinder that provides access to 

chemical data extracted from 18 million patents. Daily-

updated. (https://scifinder.cas.org) 

GOSTAR 

(Excelra) 

 

Largest manually-curated resource of SAR data extracted 

from 2,900 patents and 3,400 papers. 

(https://www.gostardb.com) 

Reaxys 

(Elsevier) 

 

It contains chemical data extracted from 2 million patents 

from 105 patent offices. 

(https://www.elsevier.com/solutions/reaxys) 

Derwent 

(Clarivate) 

 

Database derived from Thomson Reuter Pharma for 

searching and analysing chemical patents. 

(https://clarivate.com/derwent) 
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Table 2. (continued) 

 

Name 

 

Description (Website) 

 

Public databases 

ChEBI9 

 

It contains chemistry automatically extracted from the title 

and abstract of a subset of biologically-relevant EPO patent 

documents. Data has not been updated in the last years. 

(https://www.ebi.ac.uk/chebi) 

SRIPDB35 

 

Database containing >10 million compounds automatically 

extracted from the attached MOL files of granted US 

patents published between 2001 and 2011. 

(http://dcv.uhnres.utoronto.ca/SCRIPDB) 

IBM 

contribution to 

the NIH*,36 

 

It contains >2 million chemical structures extracted from 4 

million full-text patents (EPO, WIPO, USPTO). Data has 

not been updated since 2011 and is deposited in PubChem. 

UniChem37 

 

Repository that integrates several sources of patent 

chemistry, such as IBM, ChEBI, SCRIPDB and Thomson 

Pharma. (https://www.ebi.ac.uk/unichem) 

SureChEMBL18 

 

Large-scale, chemically-annotated, up-to-date database that 

contains 17 million compounds extracted from 14 million 

patents (EPO, WIPO, USPTO, JPO) by text- and image-

mining techniques. (https://www.surechembl.org/search) 

*US National Institutes of Health 
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I.6 Chemoinformatics tools 

 

In order to close the chemical space section, I will now describe the main 

tools employed nowadays in chemoinformatics to process and analyse 

chemical data. To computationally integrate and compare chemical data 

from different sources, chemical structures need to be identified and 

represented in a standardized and transferable manner. Today, different 

approaches have been taken to address this issue. Since 2005, the IUPAC 

(International Union of Pure and Applied Chemistry) proposes the InChI 

(IUPAC International Chemical Identifier) as a textual unique identifier for 

chemical substances.38 To get the InChI of a compound, the process starts 

with the normalization of its structure, removing redundant information, 

and then it follows with the canonicalization into a unique form, such that 

any representation of this compound would collide into a single unique 

graph representation. This canonical representation is serialized into a 

textual form containing six different layers of information related with the 

structure, the charges, the stereo chemistry and other chemical features of 

the compound. When this InChI was found to be too long to be efficiently 

searched and stored, the InChI keys were developed. For their calculation, 

InChI string is hashed into a 25 characters length alphanumeric code were 

14 of this characters result from the connectivity information of the InChI 

followed consecutively by a hyphen and 8 more characters resulting from 

the remaining layers of the InChI. After this, a single character indicating 

the version of InChI used and a single checksum character are found. The 

chance for two different compounds to have the same InChI key is 

estimated in 1.3 for every 109compounds, meaning a single collision into 75 

databases of 109compounds each. A more human-readable representation 

of chemical structures than InChI are the simplified molecular-input line-
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entry system (SMILES), a specification in form of a line notation for 

describing the structure of chemical species using short ASCII strings. The 

original SMILES specification was initiated in the 1980s by David 

Weininger at the USEPA Mid-Continent Ecology Division Laboratory 

in Duluth.39,40,41 It has since been modified and extended by others, most 

notably by Daylight Chemical Information Systems.42 In contrast with 

InChI, there are usually a large number of valid generic SMILES which 

represent a given structure, thus, a canonicalization algorithm exists to 

generate one special generic SMILES among all valid possibilities; this 

special one is known as the ‘unique SMILES’.42 Related to SMILES, the 

SMILES arbitrary target specification (SMARTS) is a line notation for 

specifying substructural patterns in molecules.43 Another way to transfer 

molecular information is using chemical table files (CT files), such as the 

popular MOL file format (molfile) and the structure-data file (SDF) format 

developed by MDL Information Systems (MDL), which was acquired 

by Symyx Technologies, then merged with Accelrys Corp., and now called 

BIOVIA, a subsidiary of Dassault Systèmes of Dassault Group.44 The 

molfile consists of some header information about the molecule, the 

‘Connection Table’ (CT) listing each atom in the molecule in its x-y-z space 

coordinates, and then the information of the bonds connecting atoms, 

followed by other sections for more complex information.45 SDF files wrap 

multiple molfiles of different compounds and join them using lines of four 

dollar signs ($$$$) as delimiters. A feature of the SDF format is its ability to 

include associated data of the molecules represented. 

To determine the similarity between two molecules, their structures can 

be encoded in the named molecular fingerprints and then compared 

calculating their level of molecular similarity. The most common types of 

fingerprints consist of a series of binary digits (bits) that represent the 

https://en.wikipedia.org/wiki/Duluth,_Minnesota
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presence or absence of particular substructures in the molecule like a boolean 

array.46,47 Topological or path-based fingerprints index the small molecule 

fragments based on linear segments of up to 7 atoms, ignoring single atom 

fragments of ‘C’, ‘N’, and ‘O’. A fragment is terminated when the atoms form 

a ring. For each of these fragments, the atoms, bonding and whether they 

constitute a complete ring is recorded and saved in a set so that there is only 

one of each fragment type. Chemically identical versions, i.e. ones with the 

atoms listed in reverse order and rings listed starting at different atoms, are 

identified and only a single canonical fragment is retained. Each remaining 

fragment is assigned a hash number from 0 to 1020 which is used to set a bit 

in a 1024 bit vector. On the other hand, Atom pair fingerprints are 

constructed by extracting the shortest path between all pairs of atoms in a 

small molecule, encoding the paths with descriptors of the atom types, the 

number of bonds for both atoms and their topological distance. The 

descriptors are then converted into bit strings, which are subsequently 

concatenated into one number. This number is hashed into the index space 

and its corresponding position in the fingerprint set to 1.48 Topological 

Torsion fingerprints (TT) are calculated in essentially the same way but 

considering as fragments four consecutive bonded non-hydrogen atoms 

along with the number of non-hydrogen branches.49 Finally, circular or 

Extended Connectivity Fingerprints (ECFPs), firstly introduced in 2000 

by Dassault Systèmes, offer a number of advantages over the other schemes. 

Each atom in a molecule can be viewed as the centre of a radius of 

perception or ‘orbit’. Information about an atom can be iteratively gathered 

by first examining immediate neighbours, then the neighbours of those 

neighbours, and so on. An ECFP is defined as the set of all atom identifiers 

for each radius of perception up to the limit n. As the radius of perception 

expands (n increases), this set includes all identifiers found in both previous 
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iterations and the current one. Typical ECFPs used are ECFP4s 

corresponding to a radius of perception of 2 (diameter of perception 4). The 

features that make ECFPs especially useful compared to other options are 

that the calculation algorithm is composed of very few units, making 

implementation straightforward; that many variations on the base algorithm 

are possible conferring it flexibility to be optimized for different uses; that 

they are not predefined and can represent an essentially infinite number of 

different molecular features (including stereochemical information); and 

that their features represent the presence of particular substructures, 

allowing easier interpretation of analysis results.50,51 Once obtained the 

fingerprints of a pair of molecules, no matter which type, the similarity 

between them can me calculated using similarity metrics like the Tanimoto 

(or Jaccard) coefficient, defined as the ratio of the number of features 

common to both molecules relative to the total number of features,52 or the 

Dice coefficient (Hodgkins-Richards index), defined as the number of 

features in common to both molecules relative to the average size of the total 

number of features present.53 They range from 0.0 to 1.0 inclusive. 

Today, several software solutions are available to translate compound 

libraries from one format to another, compute molecular fingerprints and 

calculate similarities between them. Of mention are OpenBabel,54 

ChemAxon55 and the very popular open-source RDKit56 which can be easily 

imported and used as a Python library. In Figure 9 a summary of the main 

molecular identifiers and descriptors mentioned are exemplified. 
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Figure 9. Example of molecular formats and descriptors. Maximum common substructure 

highlighted in blue. T, Tanimoto similarity between ECFP4 fingerprints. D, Dice similarity 

between ECFP4 fingerprints. 
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I.7 The biological space 

 

The historical feat achieved in 2001 by the Human Genome Project 

(HGP) of sequencing and assembling the euchromatic portion of the 

human genome (Figure 10),57,58 could be comparable to an outward 

exploration of a planet, a galaxy or the cosmos, since it was an 

unprecedented inward voyage to discover the nature's complete genetic 

blueprint for building a human being (Figure 11). This international effort, 

carried out by the biotech company, Celera Genomics, and the International 

Human Genome Sequencing Consortium,58 unveiled a huge and complex 

genetic cosmos until then unknown of size ~3 billion base pairs (bp) and 

~30 thousand protein-coding human transcripts.57 Provided since then to 

the whole scientific community, it serves as a guide to help understand the 

human genetic instructions book and to explode this knowledge for 

therapeutic purposes.  

 

Figure 10. The Human Genome publication on Science57 and Nature58 covers. 
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For the 20th anniversary of the publication of the first draft of the 

human genome that we are celebrating this year, special issues in very 

relevant scientific journals in the field, such as Science and Nature,59 have 

been published reviewing the impact of this achievement in fields like 

genomics, drug discovery, medicine and scientific literature since 2001. 

Analysis of the evolution of the amount of genomic elements discovered 

since 1980 have shown that the start of the HGP in 1990 implied an initial 

sharp increase in the number of genes discovered (or ‘annotated’, Figure 

10), that was suddenly levelled out in the mid-2000s at about 20,000 protein-

coding genes, with no change after the publication of the first human 

genome draft in 2001.60 The amount of genetic elements discovered in non-

coding regions, in contrast, did experimented an exponential increase with 

this publication, climbing from 0 in 2000 to 130 thousand before 2020 

(Figure 12). These non-coding regions, ignored until that moment to be 

considered as junk DNA or the dark matter of the genome, revealed to 

occupy the majority of the human functional sequences (Figure 11); 

including long non-coding RNAs, promoters, enhancers and other motifs; 

and to act as gene-regulatory elements of protein expression that work 

together with the coding regions in a complex and interconnected network 

to bring the genome to life.  
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Figure 11. The human genome. (Left) chromosomes 1 through 22 as well as X and Y. 

(Middle) chromosome features and staining density. (Right) genes associated with 

Mendelian disorders and genetic mutations found in cancers.59 
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Figure 12. Evolution of the amount of genomic elements discovered in the context of the 

Human Genome Project. *Including single nucleotide polymorphisms, pseudogenes, non-

coding RNAs, promoters and so on. Figure extracted from Gates et al. (2021).60 

 

 

Figure 13. Evolution of the amount of publications associated to genes per year in the 

context of the Human Genome Project. Figure extracted from Gates et al. (2021).60 
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Although discoveries of new protein-coding genes reached a plateau 

after 2001, the interest in some specific genes grew rapidly following the 

HGP, most of them associated to cancer settings, such as TP53, EGFR, 

TNF, VEGFA and IL6 (Figure 13). Each year since 2001, between 10,000 

and 20,000 papers were published mentioning these ‘superstar’ genes.60 The 

same trend is observed in the amount of drug targets: of the roughly 20,000 

proteins revealed by the HGP as potential drug targets, only about 10% 

have so far been targeted by approved drugs with for instance 5% of all 

drugs currently approved (99 distinct molecules) targeting the protein 

ADRA1A, which is involved in cell growth and proliferation.  

There could be good reasons for the detected skew towards specific 

genes and proteins, like the big importance of some genes in human health 

or the easier druggability of specific proteins, or it could be that there are 

many more proteins worth exploring as drug targets if only researchers, 

funders and publishers were less risk-averse.60  
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I.8 The proteome space 
 

Access to information on gene-coded proteins derived from genome 

sequencing projects is possible thanks to several open-access repositories 

such as UniProt, PDB and the very recently launched AlphaFoldDB. 

UniProt (Universal Protein)61 database was released in 2003 by the UniProt 

Consortium, which comprises the European Bioinformatics Institute (EBI, 

https://www.ebi.ac.uk/), the Swiss Institute of Bioinformatics (SIB, 

https://www.sib.swiss/), and the Protein Information Resource (PIR, 

https://proteininformationresource.org/). It has since then been 

maintained with a current content of 0.5 million protein sequences extracted 

from literature and manually-annotated by curators. For some of these 

proteins, their 3D structures obtained by X-ray crystallography, NMR 

spectroscopy or cryo-electron microscopy by biologists and biochemists all 

around the world are deposited in the PDB (Protein Data Bank)62 under 

the supervision of the Worldwide Protein Data Bank (wwPDB). On the 

other hand, earlier in this year, AlphaFoldDB (AlphaFold Protein Structure 

Database) was launched as a partnership between the EMBL-EBI group 

and DeepMind company (acquired by Google in 2014).63 In their words, 

this is the most complete and accurate database yet of predicted 3D protein 

structures for the human proteome obtained using the artificial intelligence 

(AI)-based AlphaFold 2 program.64 It covers all ~20,000 proteins expressed 

by the human genome openly available to the scientific community. 

Years of study of protein sequences and structures had allowed for the 

design of classification schemes to organize the known proteome space 

according to phylogeny. Proteins with common evolutionary origin are 

grouped in protein families including enzymes (protein kinases included), 

G protein-coupled receptors (GPCRs), ion channels, nuclear receptors, 
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transporters and transcription factors. Branched from these major families, 

smaller subfamilies of closer related proteins can be built following a 

hierarchical system65 as exemplified in Figure 14. Also, according to their 

subfamily assignment, proteins can be given multi-level classification codes 

that summarize their position in the phylogenetic tree and inform about 

their structure and function. Some examples are the Enzyme Comission 

Number66,67, used to classify catalytic proteins, and the one stated by the 

IUPHAR (Union of Basic and Clinical Pharmacology), centred on channels 

and transporters. Accurate protein classification systems are of vital need in 

the context of DD for target and hit identification, since, when proper 

classifications are available, the functional properties and the drug-target 

interaction information associated to a protein can serve as a highly valuable 

touchstone to infer the functionality and druggability of their 

phylogenetically-related yet untargeted proteins, following the paradigm 

that similar proteins tend to have similar functions and tend to bind similar 

ligands.68,69 

 

Figure 14. Hierarchical classification of tyrosine kinases subfamilies. Image adapted from 

http://www.kinhub.org/kinmap/. 
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I.9 The Illuminating the Druggable Genome Initiative 
 

As a complement of the sequence- and structure-based classifications 

mentioned, in an attempt to classify protein targets according to the level of 

biomedical and pharmacological knowledge available for them to date and 

ultimately shed light on areas of understudied ones, the Illuminating the 

Druggable Genome (IDG) initiative, launched by the US National 

Institutes of Health (NIH) in 2014, proposes the ‘Target Development 

Level’ classification scheme.70 This initiative comprises several American 

and European universities, hospitals and research centres working together 

in the IDG consortium. The Target Development Level (TDL) scheme 

consists of four target categories; namely Tclin, Tchem, Tbio and Tdark; to classify 

currently known protein targets, with special emphasis in GPCRs, kinases, 

ion channels and nuclear receptors. Tclin (clinic) targets refer to those having 

an approved drug annotated as its mechanism of action (MoA). Tchem 

(chemistry) proteins stand for those that lack a MoA-based link to approved 

drugs but that are known to bind to small molecules with high potency. 

Ligand-target interaction bioactivities for Tclin vs Tchem discrimination are 

extracted from ChEMBL and DrugCentral databases already described in 

Table 1. On the other hand, Tbio (biology) refers to those proteins with 

known biological role and some evidences of linkage to a disease phenotype 

despite lacking an identified small molecule or approved drug with 

biological activity for them. Finally, Tdark (dark genome) assignments refer 

to the remaining proteins that have been manually-curated at the primary 

sequence level in UniProt, yet do not meet any of the criteria for Tclin, Tchem 

or Tbio. Access to TDL annotations of the druggable genome are publicly 

available through the Target Central Resource Database (TCRD) and 

Pharos website.71 
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A snapshot of the distribution of these TDL categories applied to the 

human proteome in 2018 is shown in Figure 15. From the ~20,000 targets 

analysed, only 10% are classified as Tclin (3%) or Tchem (7%), indicating 

proteins respectively targeted by approved drugs or other ligands with 

clinically-relevant activities.69 Protein families with higher proportions of 

clinic and chemistry targets are those having more clinical implications 

known, such as GPCRs, nuclear receptors or ion channels in central 

nervous system (CNS) disorders, and kinases in oncological settings. The 

remaining 90% of the proteome still lacks an identified ligand to target it, 

including 55% Tbio and 35% Tdark proteins. Most of these understudied 

proteins are olfactory GPCRs (oGPCRs), transcription factors, transporters 

and epigenetic targets, and are the object of study of protein de-

orphanization campaigns seeking to elucidate their function and identify 

bioactive ligands for them.68 
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Figure 15. Target development level categories applied to the human proteome. a) 

Percentages of categories and families in the whole proteome. b) TDL distribution across 

protein families. Figure extracted from Oprea et al. (2017).70 

  



Introduction 

35 

I.10 Polypharmacology in drug discovery 

 

In the previous pages, we have reviewed current knowledge on chemical 

space and biological space in the context of medicinal chemistry and drug 

discovery, and have shown that the place where these two spaces collapse 

is in Pharmacology. This is the science that integrates chemistry, biology, 

pharmacy and medicine to study the molecular mechanisms behind the 

biological effects that a chemical has in the human body. The advances 

made in these various fields in the last 20 years, especially those mentioned 

in this chapter, have substantially improved our understanding on biological 

systems behaviours and their response to exogenous chemicals and have 

inevitably cause a necessary shift in the philosophical view that we had of 

pharmacology.72 

In the second half of the 20th century, in a context of genetic 

reductionism where the ultimate responsible of a specific disease phenotype 

was believed to be one or two isolated genes,73 finding a drug able to 

selectively target the individual chemoreceptors derived from those ‘disease 

causing’ genes and with undesirable off-target effects removed was the 

standard in drug discovery. This was known as the ‘magic bullet’ 

paradigm.74 After years of focusing on the development of highly selective 

ligands, accompanied by an unexpected constantly decreasing rate in the 

amount of drug candidates that were translated into effective clinical 

therapies in the last decade of the 20th century,75 the ‘one gene, one drug, 

one disease’ thesis was challenged.72  

Together with the high clinical attrition rates observed, large-scale 

functional genomics studies carried out in a variety of model organisms at 

the beginning of the new century76,77,78 evidenced the fact that living cells 
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may not be seen anymore as sets of isolated proteins independently working 

for a specific phenotype, but as ensembles of complex networks of 

interconnected proteins, sensible to both intra- and extra-cellular 

conditions, all together orchestrated to give rise to the different phenotypes. 

The complexity in this networks revealed redundancy mechanisms of 

compensatory signalling routes to keep the robustness of the system when 

one of its elements was perturbed, what may explain the limited efficacy of 

magic bullet-based drugs.79 Thus, in the last years, the classical 

pharmacology view has slowly been replaced by a ‘network pharmacology’ 

view, a.k.a ‘polypharmacology’, which seeks for non-selective or 

promiscuous multi-target drugs able to perturb not only isolated elements 

in the cell but whole networks to obtain the desired clinical efficacies72 

(Figure 16).  

 

Figure 16. Polypharmacology in the kinases proteome. Pairs of kinases in the tree are 

connected when they share a common inhibitor. Figure extracted from Knight et al. 

(2010).80 



Introduction 

37 

In this context, dual-action drugs (DADs), defined as compounds that 

combine two different pharmacological actions at similar efficacious dose,81 

are more and more gaining interest as examples of polypharmacology 

success stories (Table 3). Applied especially in the treatment of complex 

diseases; such as cancer,82 metabolic disorders83 and CNS disorders;84 where 

single-action drugs’ efficacy has seen to be limited, understanding DADs 

way of action can set the basis for the discovery of other dimensionally-

extended poly-action drugs in the future with improved pharmacological 

profiles. 

 

Table 3. Success stories of dual-action drugs. 

 

Name 

 

Indication 

 

Mechanism of action 

Carvedilol83 Hypertension 
Dual beta and alpha-1 adrenoceptor 

blocker 

Bupropion84 Depression 
Dual serotonin and dopamine 

receptors blocker 

Bosutinib85 CML* Dual SRC and ABL inhibitor 

Lapatinib86 Breast cancer Dual EGFR and ERBB2 inhibitor 

Clozapine87 Antipsychotic 
Dual serotonin and dopamine 

receptors blocker 

*Chronic myeloid leukaemia 

 

It is from this polypharmacological perspective that this Thesis has been 

conceived.
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The main objectives pursued by this Thesis can be summarised as follows: 

i) To design a computational protocol able to identify the core chemical 

structure best representing the congeneric series of pharmacologically 

relevant molecules in patents. 

 

ii) To apply the new methodology to obtain a filtered version of 

SureChEMBL database enriched with pharmacologically relevant 

compounds around the patent claim. 

 

iii) To develop a new similarity-based approach to assess the degree of 

congenericity of collections of molecules, with emphasis on the 

claimed molecules from pharmacological patents. 

 

iv) To design a protocol able to identify those core scaffolds best 

representing the bioactive chemical series enriched within families of 

phylogenetically-related proteins. 

 

v) To apply the new methodology to shed light on the bioactive 

chemical space of yet untargeted proteins based on their 

phylogenetically. 

 

vi) To explore current polypharmacological opportunities for targeting 

the human proteome by dual-acting agents. 

 
 

The first and the second objectives were accomplished by the generation of 

a computationally filtered version of SureChEMBL database, named 

SureChEMBLccs, enriched with patent claimed molecules from US 

pharmacological patents, and available for download at an EMBL ftp site 
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(see Chapter III.1). To address the third objective, this newly generated 

database was used to quantitatively analyse the degree of congenericity of 

collections of molecules claimed by pharmacological patents (see Chapter 

III.2). The fourth and fifth objectives were accomplished by the 

identification of a set of family-associated core scaffolds that, when 

chemically expanded, are highly probable of containing active small 

molecules for untargeted proteins included in the families (see Chapter 

III.3). Finally, to address the sixth objective, a new ontology of terms to 

help characterize dual-pharmacological opportunities for targeting the 

human proteome is proposed and applied to current bioactivity data 

available in the public domain (see Chapter III.4). 
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III.1 Identification of the core chemical structure in 

SureChEMBL patents 

 

 

Falaguera, M. J. & Mestres, J. Identification of the core chemical 

structure in SureChEMBL patents. J Chem Inf Model 2021,  

61(5), 2241–2247. 

Quartile: Q1; Impact Factor 2021: 4.945; Citations: 1 

 

 

A poster and an oral communication were presented on this topic. 

- Falaguera, M. J. & Mestres, J. Identification of the core chemical 

structure in SureChEMBL patents. Poster communication 

presented at the Symposium to Celebrate 10 Years of the ChEMBL 

Database. 2019. Hinxton (UK). (See Appendix). 

- Falaguera, M. J. Defend your PhD Project in 7 Minutes. Oral 

communication presented at the PhD Battle at IMIM 1st PhD Day. 

2019. Barcelona (Spain). 
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Introduction 

 

Pharmacological patents are a key source of information in drug discovery 

as they offer early access to novel chemical space of biological relevance. 

Motivated by the competitiveness of the business sector, the patent system 

encourages the constant discovery and disclosure of new active structures,1 

often poorly covered in the scientific literature.2 In this respect, a recent 

comparison between patent-derived and literature-extracted data revealed 

that, from the 15.4 million chemical structures available in all large patent-

derived chemical sources, only 0.5 million were found to be present also in 

literature-derived databases.3 And when comparing the deposition date in 

patents of these 0.5 million molecules with their corresponding publication 

date in scholar literature, an average lag time of four years was observed,2 

with delays going up to six years for its final storage in publicly available 

sources such as ChEMBL.4 Therefore, there is a need for an early, more 

complete and accurate open access to molecules exemplified in 

pharmacological patents. 

For years, access to chemical information published in patents was only 

possible through commercial databases such as CAS SciFinder, Excelra 

GOSTAR, Elsevier Reaxys, or Thomson Reuters Pharma,1 which guarantee 

manually curated, regularly updated data.3 Alternatively, other sources such 

as SCRIPDB,5 IBM contribution to the US National Institutes of Health 

(NIH),6 ChEMBL4 and PubChem7  offer open access to patent chemical 

data of pharmacological relevance, although the first two have not been 

updated for years and the patent coverage is generally limited compared to 

their commercial counterparts.1  
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But in 2016, open access to patent chemical data changed completely 

with the publication of SureChEMBL,1 a database derived from SureChem,8 

a commercial product with significantly wider patent coverage than most of 

the other patent chemical databases. In its first release (April 2016), 

SureChEMBL contained 17 million chemical structures from 14 million 

patents published since 1970 from all three major patent authorities, 

namely, the World Intellectual Property Organization (WIPO), the United 

States Patent and Trademark Office (USPTO), and the European Patent 

Office (EPO). Apart from chemical structures, SureChEMBL provides 

patent titles, International Patent Classification (IPC) codes (IPCPUB v8.0, 

WIPO) and it is regularly updated.1  

The high patent coverage of SureChEMBL compared to other chemical 

databases of its kind is the result of applying automated chemical named 

entity recognition technology to extract every chemical structure from text, 

images and MOL files attached to the patent document.3 This process 

ensures the identification and extraction of all chemical entities mentioned 

in patents. However, this is also one of the recognized limitations of 

SureChEMBL, as there is no distinction between starting materials, 

intermediate products and pharmacologically relevant compounds, all 

ultimately being deposited in the database. To address this situation, 

Kunimoto and Bajorath9 applied the matched molecular pairs (MMP) 

concept to detect the main substructure shared by the small molecules 

contained in a patent claim. More recently, Akhondi et al. (2019)10 developed 

a text-mining recognition system for relevant compounds in a patent based 

on analyzing the patent's context of a compound defined by its position in 

the document, the section where it appears, the frequency of appearance, 

its wide usage in other patents, and any other compounds being mentioned 

in its textual vicinity. In spite of these efforts, a fully automatic and efficient 
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process to detect molecules of therapeutic relevance in SureChEMBL 

patents is still missing.  

Here we introduce a new filtering protocol to identify the core chemical 

structure in SureChEMBL patents and extract all pharmacologically 

relevant molecules exemplifying the patent claims. The approach is 

validated on its ability to automatically extract the manually curated subset 

of compounds from 890 SureChEMBL patents present in ChEMBL. 

Subsequently, the protocol is applied to all 240,988 pharmacological patents 

from the United States (US) covered in SureChEMBL. The final subset of 

filtered SureChEMBL molecules from US pharmacological patents is 

available at the EMBL-EBI website.11 

 

Methods 

 

SureChEMBL database. In the release used in this work (July, 2019), 

SureChEMBL covered 1,975,722 US patents containing 167,662,929 

patent-molecule associations involving 14,284,051 unique small molecules. 

Out of this total number of US patents, 240,988 (12.2%) can be considered 

“pharmacological” patents, which contain 45,539,938 patent-molecule 

associations with 9,111,706 unique small molecules. We define a patent as 

“pharmacological” when it has an A61K* IPC code, with the exception of 

A61K6 (preparations for dentistry), A61K7 or A61K8 (cosmetics or similar 

toilet preparations), A61K9 (medicinal preparations characterized by special 

physical form), A61K38 (medicinal preparations containing peptides), 

A61K39 (medicinal preparations containing antigens or antibodies) and 

A61K48 (medicinal preparations containing genetic material which is 
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inserted into cells of the living body to treat genetic diseases). However, 

patents tend to have multiple IPC codes to describe their uses and 

applications. The most frequent classification code in US A61K* patents is 

A61K31 (medicinal preparations containing organic active ingredients), but 

annotations to non-A61K* codes, such as A61P25 (drugs for disorders of 

the nervous system), C07D401 (heterocyclic compounds containing two or 

more hetero rings, having nitrogen atoms as the only ring hetero atoms), 

and C07D413 (heterocyclic compounds containing two or more hetero 

rings, at least one ring having nitrogen and oxygen atoms as the only ring 

hetero atoms), are also frequently encountered.  

The most repeated terms present in the title of pharmacological patents 

are “derivatives”, “inhibitor”, “compounds”, “active”, or “modulator” 

reflecting the main underlying nature of the compounds claimed by those 

patents. But patent compounds collected in SureChEMBL do not include 

only claimed bioactive small molecules but also common reactants, 

intermediate products, inorganic compounds, and any other small 

molecules mentioned in patent files. In this respect, SureChEMBL patents 

have over one order of magnitude (x12) more patent-molecule associations 

than unique small molecules, clearly reflecting the existence of some 

molecules frequently included in multiple patents. Interestingly, this 

promiscuity is significantly reduced (x5) in pharmacological patents. 

Filtering protocol. A filtering protocol was implemented to identify the 

set of pharmacologically relevant molecules covered by the patent claim 

from all molecules of a given patent. The protocol is based on the 

assumption that all relevant compounds in a patent share a core chemical 

structure that may be represented by an ensemble of candidate maximum 

common substructures (MCSs) and that these candidate MCSs are 
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significantly more populated with similar congeneric compounds than any 

other MCS identified from the other compounds in the patent. The entire 

process includes three filtering steps and two additional refinement steps, 

implemented as a concatenated series of Python scripts that are executed 

sequentially. The main operations were built using the open-source 

cheminformatics toolkit RDKit12 version 2017.09.1. 

(1) Extraction of MCSs. Using as input the SMILES of all compounds in a 

SureChEMBL patent, the first step is to extract the MCSs for all pairwise 

combinations of compounds. For this, the rdkit.Chem.rdFMCS.FindMCS 

function is used with the parameters RingMatchesRingOnly and 

CompleteRingsOnly activated. A total of 10,377,468 unique MCSs were 

extracted from all 240,988 US pharmacological patents. At this stage, a 

promiscuity value, defined as the number of patents in which a given MCS 

is found, is also assigned to each MCS. About 59% of all unique MCSs are 

found exclusively in a single patent, whereas less than 3% are present in 10 

or more patents (Supplementary Table S1). 

(2) Deletion of promiscuous MCSs. The main objective of this second step is to 

discard all molecules in patents likely to be associated with reactants and 

other substances commonly used in chemistry and thus, unrelated to the 

patent claims. To this aim, all molecules containing MCSs found above the 

1-quantile of the distribution of associated patent promiscuities within a 

patent were discarded (Supplementary Table S1). About 46% of the patents 

retained only molecules with MCSs exclusive to them. In contrast, almost 

33% of the patents admitted molecules containing MCSs with promiscuities 

ranging from 1 to 10 or higher. 
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(3) Selection of candidate MCSs. This third step aims at identifying the ensemble 

of MCSs that are most likely to represent the core chemical structure of the 

patent claim. Three properties of the molecules defining each MCS are 

considered: i) coverage, calculated as the percentage of patent molecules 

containing the MCS; ii) homogeneity, calculated as the average pairwise 

Tanimoto similarity between the RDKit fingerprints of all molecules 

sharing a MCS; and iii) inclusion, measured as the percentage of all other 

MCSs found to be substructures of a given MCS. Then, a final score 

reflecting the properties of the chemical space of each MCS (MCScore) is 

calculated as MCScore = coverage * homogeneity * inclusion. Once scored, 

for a MCS to be considered as a candidate MCS likely to reflect the core 

chemical structure of the patent claim, its MCScore needs to be equal or 

greater than the 70-quantile threshold of the distribution of MCScores in 

the patent. At the end of this step, from all molecules of a pharmacological 

patent in SureChEMBL, only those molecules associated with at least one 

of the candidate MCSs will be retained for further consideration. 

(4) Recovery of highly similar molecules. Singular molecules representing some 

low coverage and slightly heterogenous MCS, yet highly similar to molecules 

from those candidate MCSs selected in the previous step, can still be 

recovered here if the pairwise Dice similarity between their Morgan 

fingerprints and those of any of the previously selected molecules is equal 

or greater than 80%.  

(5) Selection of high confidence patents. This fifth step is added to assign a 

confidence label to each patent based on the degree of structural 

congenericity of the final selected molecules. In this respect, under the 

assumption that molecules exemplifying a patent claim should define a close 

congeneric chemical series, the median value of the distribution of pairwise 
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Dice similarities between all patent molecules will be associated with the 

level of confidence on the patent. Based on a validation analysis (vide infra), 

patents will be given a “high confidence” flag if the median similarity value 

is equal or higher than 40%. 

 

Results and discussion 

 

Validation against SureChEMBL patents in ChEMBL. In order to 

validate the performance of the filtering protocol on its ability to extract 

claimed molecules from SureChEMBL patents, we took the highly curated 

set of molecules available in ChEMBL_23 (May, 2017) extracted from a 

selected number of those patents. We found a total of 51,738 molecules 

annotated with in vitro pharmacology data in ChEMBL coming from 890 

SureChEMBL US A61K* pharmacological patents. However, there are 

270,968 molecules in SureChEMBL associated with those same 890 patents. 

Therefore, the challenge is to assess to which extent an unsupervised 

filtering protocol is able to automatically retrieve those 51,738 molecules 

from the pool of 270,968 molecules. The results are compiled in Table 1. 

As it can be observed, MCSs can be extracted from all patents except 

one. This is patent US-8685986 claiming a medical composition for 

treatment or prophylaxis of glaucoma and for which only one molecule was 

extracted from its abstract, namely, 2-(pyridine-2-ylamino)acetic acid. Since 

you need at least a pair of molecules to define a MCS, that patent was 

dropped at the very first step. 

The second step, involving the removal of molecules associated with 

promiscuous MCSs, is the one having the strongest filtering effect. A total 
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of 78,475 molecules are discarded, which correspond to 61.0% of all 

molecules that will be ultimately filtered out. At this stage, we are left with 

192,492 molecules, 71.0% of the initial number of SureChEMBL molecules, 

which nonetheless include 49,464 molecules present in ChEMBL, that is, 

95.6% of all molecules in ChEMBL for those patents. 

 

Table 1. Filtering protocol applied to the 890 SureChEMBL US pharmacological patents 

included in ChEMBL. The number of (and percentage from total) patents, molecules in 

ChEMBL and corresponding molecules in SureChEMBL left at each filtering step is 

provided. 

Filtering step 

No. 
patents 
(% from 

total) 

No. 
molecules 

in ChEMBL 
(% from 

total) 

No. molecules 
in 

SureChEMBL 
(% from total) 

(0) SureChEMBL@ChEMBL 890 
(100.0%) 

51,738 
(100.0%) 

270,968 
(100.0%) 

(1) Extraction of MCSs 889   
(99.8%) 

51,737 
(100.0%) 

270,967 
(100.0%) 

(2) Deletion of promiscuous 
MCSs 

889   
(99.8%) 

49,464   
(95.6%) 

192,492 
(71.0%) 

(3) Selection of candidate 
MCSs 

889   
(99.8%) 

43,931   
(84.9%) 

142,414 
(52.6%) 

(4) Recovery of highly similar 
molecules  

889   
(99.8%) 

48,335   
(93.4%) 

163,091   
(60.2%) 

(5) Selection of high 
confidence patents 

851   
(95.6%) 

47,857   
(92.5%) 

159,439   
(58.8%) 

 

Selecting molecules from candidate MCSs only results also in an 

important reduction of the number of molecules kept from patents. A total 
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of 50,078 molecules are excluded in this third step, which correspond to 

39.0% of all molecules discarded at the end of the three filtering steps. The 

number of molecules remaining at this stage is 142,414, almost half (52.6%) 

of the initial number of SureChEMBL molecules. Within them, there are 

43,931 molecules present in ChEMBL, which represent 84.9% of all 

molecules in ChEMBL for those patents. 

Applying similarity criteria to identify molecules that may have been 

discarded at any of the previous steps because of their relatively high MCS 

promiscuity or low coverage, homogeneity and inclusion values of their 

MCSs results in the recovery of 20,677 molecules. This increases the 

number of molecules retained at this fourth step up to 163,091, 60.2% of 

the initial number of SureChEMBL molecules, which include 48,335 

molecules present in ChEMBL, 93.4% of all molecules in ChEMBL for 

those 890 patents. 

  a)       b)

         

Figure 1. a) Kernel density plot for the distribution of pairwise similarities between the 

163,091 filtered molecules (white surface) and the 107,877 discarded molecules (grey 

surface) up to step 4 of the filtering protocol; b) Density plot of median structural 

homogeneity values against the ratio of filtered molecules in patents. Grey scale of 

hexagons corresponds to the relative density of patents. Also included are the distributions 

of the number of patents corresponding to each median structural homogeneity (top x-
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axis) and each ratio of filtered molecules (right y-axis). The dotted line at a median 

structural homogeneity of 0.4 marks the threshold for high confidence patents.  

 

The 163,091 molecules that passed all filters (filtered molecules) within 

each patent up to this stage should have clearly a higher degree of 

congenericity than the 107,877 molecules that did not pass any of the filters 

(discarded molecules). To confirm this assumption, kernel density plots of 

the pairwise similarity distributions for filtered and discarded molecules 

were compared (Figure 1a). As it can be observed, there is a clear separation 

between the two sets, with similarity values at the density peaks of the 

distributions being 0.60 and 0.19 for filtered and discarded molecules, 

respectively. A more in-depth analysis would involve adding another 

dimension to reflect the ratio of filtered molecules remaining in the end 

within each patent (Figure 1b). As it is shown, most patents have median 

structural homogeneities between 0.5 and 0.8 and retain between 10% and 

60% of the original molecules in SureChEMBL.  

A close look at patents having median structural homogeneity values 

below 0.4 (Figure 1b) revealed that their filtered molecules come from 

multiple candidate MCSs that may define different regions of a large 

Markush structure or simply different congeneric series. For these patents, 

visual inspection of their filtered molecules would be strongly advised. 

Accordingly, a homogeneity value of 0.4 was established as the lower-bound 

threshold to identify patents with a high degree of confidence that the final 

filtered molecules reflect a congeneric series of a well-defined and consistent 

patent claim. When this threshold was implemented as the last step of the 

filtering protocol (Table 1), a total of 38 patents were affected, leaving a 

final number of 851 high-confidence patents, 95.6% of the initial 
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SureChEMBL patents in ChEMBL. This affected 3,652 molecules in 

SureChEMBL, leaving the final count of filtered molecules to 159,439, 

58.8% of the initial number of SureChEMBL molecules for those patents. 

This means that over 40% of molecules in those SureChEMBL patents are 

likely common reactants, intermediate products, and other small molecules 

not relevant for the patent claims. In contrast, the filtering protocol was able 

to retain 47,857 molecules present in ChEMBL, that is, 92.5% of all 

pharmacologically relevant molecules carefully selected and included in 

ChEMBL from those SureChEMBL patents.  

Results for some illustrative examples of high-confidence patents are 

collected in Table 2. One of them is patent US-8501708 that aims at 

protecting a class of purine nucleoside compounds as selective A1 

adenosine receptor agonists. A total of 115 molecules are present in 

SureChEMBL. For this particular patent, we found a perfect match between 

the Markush structure provided in the claim and the only candidate MCS 

contained in 69 molecules (60% of total) that form a highly congeneric 

series (median similarity of 0.87). Among them, all 18 molecules (16% of 

total) contained in ChEMBL were recovered. Another example is patent 

US-8754099 that protects beta-carboline derivatives as selective antagonists 

of the somatostatin subtype receptor 3 for the treatment of type-2 diabetes. 

In this case, SureChEMBL contains 184 molecules, of which 26 (14%) were 

found to define a highly congeneric series (median similarity of 0.80) around 

a candidate MCS that matches nicely the Markush structure of the claim. 

All 4 molecules (2% of total) present in ChEMBL were found within the 26 

molecules selected by the filtering protocol. A third example is provided by 

patent US-8933040 that protects a series of compounds as selective 

glycosidase inhibitors. Of the 170 molecules in SureChEMBL, 57 molecules 

(33% of total) were selected by the filtering protocol, among which all 6 
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molecules (3% of total) in ChEMBL were present. Note that in this case, 

not just one but two candidate MCS were identified, both of which match 

well with the Markush structure of the claim. Another example of a two-

candidate MCS case is patent US8871783 that protects the use of 2-aza-

bicyclo[2.2.1]heptane-3-carboxylic acid (cyano-methyl)-amides as cathepsin 

C inhibitors. A total of 255 molecules were found in SureChEMBL for this 

patent. Of them, 58 molecules (22% of total) passed all steps of the filtering 

protocol among which all 26 molecules (10%) present in ChEMBL were 

recovered. Finally, an example of a case for which the filtering protocol 

selected three candidate MCS is offered by patent US-8501783. 

Interestingly, the abstract of the patent states that the invention relates to 

inhibitors of the soluble epoxide hydrolase that incorporate multiple 

pharmacophores, therefore justifying the need for multiple candidate MCS 

to identify all pharmacologically relevant molecules covered by the patent. 

Of the 190 molecules present in SureChEMBL, 66 molecules (35% of total) 

passed all filters. In this case, of the 72 molecules contained in ChEMBL 

for this patent, 51 molecules (71%) were contained within the 66 molecules 

selected. In general, for any given patent, beyond recovering most of the 

molecules already in ChEMBL, additional molecules belonging to the same 

chemical series were retrieved (see details in Supplementary Material). This 

exemplifies the potential of the approach to produce a version of 

SureChEMBL containing only molecules around the main core chemical 

structures (ccs) identified in patents (SureChEMBLccs).   
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Table 2. Illustrative examples of SureChEMBL patents present in ChEMBL. The Markush 

structure is the one provided in the patent document. Performance of the filtering protocol 

is assessed in terms of ability to identify the core chemical structure and extract exemplified 

molecules covered in ChEMBL. 
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Table 2. (continued) 
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Application to all SureChEMBL US A61K patents. The 890 

SureChEMBL patents covered in ChEMBL represent only 0.4% of all US 

A61K pharmacological patents in SureChEMBL. Having validated the 

performance of the filtering protocol on those 890 patents, the next step 

was to apply it to the entire set of 240,988 SureChEMBL patents. Since the 

filtering protocol takes on average 7 seconds per patent, such a large-scale 

application required extensive computational resources. In a cluster 

composed of 20 nodes, each having 96 Gb of RAM, 2 CPUs AMD 

Opteron™ Processor 6234, providing 24 cores, a GlusterFS distributed file 

system with 90 Tb of storage and using Slurm Workload Manager as queue 

batch system, all those SureChEMBL patents were processed in about 5 

days. The results obtained are collected in Table 3. 

The first filtering step of the protocol, involving the extraction of MCSs 

from molecules in the patent, resulted in a drop of 4,299 patents. There are 

essentially two main reasons why no MCS could be extracted for 1.8% of 

the patents. One of them is that, in some cases, there is a limited number of 

molecules extracted from the patent and these molecules are highly diverse. 

This is often due to the absence of formulas and images of the claimed 

molecules in the patent or due to the low-quality of the documents 

describing the patents. Indeed, patent documents prior to 2007 can contain 

low-quality chemical names and images that may hinder SureChEMBL’s 

image and text mining procedures. In this respect, it is important that patent 

offices encourage applicants to submit chemical structure files of claimed 

molecules attached to the patent application document. On the other hand, 

some patents contain very large molecules that make MCS extraction 

extremely time consuming. To skip these cases, a time limit was imposed 

when attempting to extract MCSs from a given patent. Overall, a total of 

938,170 molecules associated with these 4,299 patents were discarded, 
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27.8% of all molecules that will be filtered out along the process, leaving 

8,173,536 molecules at this stage, 89.7% of the initial number of molecules. 

The removal of molecules associated with promiscuous MCSs in a 

second step affected 768,406 molecules, 22.8% of all molecules removed by 

the filtering protocol. Molecules containing these promiscuous MCSs come 

from three main sources. The first group is composed of a heterogeneous 

set of molecules considered common reactants (e.g. EDTA, halazone, 

nitrophenyl phosphate and HEPES), inorganic compounds (such as 

polyalcohols), substituent groups (e.g. thiol, methyl and butane) and amino 

acids that are commonly present in patents claiming some heterogeneous 

formulations used as topical remedies, solutions containing an active 

principle or dialysis solutions, among others. The second group includes 

monosaccharides, nucleotides and its derivatives present frequently in 

patents claiming oligonucleotides for gene therapy, antibodies or other 

biologics. Molecules of this sort were not expected to be encountered, since 

we removed a priori all patents with IPC codes A61K39 (antibodies), 

A61K48 (genetic material) and A61K9 (physical forms). However, it was 

found that in some cases, especially for old patents, these classification 

codes were not as specific as expected. Finally, the third group contains a 

short list of very popular bioactive molecules that are included, either 

themselves or some derivatives of them, in the claim of patents for different 

uses, as ingredients of in vivo cell cultures and medical formulations, or 

appear as example drugs in the section that describes the background of the 

invention. Examples of such drugs are porphyrin (used as chelant in 

photodynamic therapy), fluorescein (used as diagnostic tool in the field of 

ophthalmology and optometry), staurosporine (used in cancer treatment), 

omeprazole and pantoprazole (used for stomach ulcer treatment), and 

vitamins (such as folic acid derivatives and ergocalciferol). A total of 
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7,405,130 molecules remained at this stage, 81.3% of the initial number of 

molecules. 

Table 3. Filtering protocol applied to all 240,988 SureChEMBL US pharmacological 

patents. The number of (and percentage from total) patents and molecules in 

SureChEMBL left at each filtering step is provided. 

Filtering step 
No. patents 

(% from total) 

No. molecules in 
SureChEMBL 
(% from total) 

(0) SureChEMBL@ChEMBL 240,988 (100.0%) 9,111,706 (100.0%) 

(1) Extraction of MCSs 236,689   (98.2%) 8,173,536   (89.7%) 

(2) Deletion of promiscuous MCSs 236,689   (98.2%) 7,405,130   (81.3%) 

(3) Selection of candidate MCSs 236,689   (98.2%) 5,736,478   (63.0%) 

(4) Recovery of highly similar molecules  236,689   (98.2%) 6,240,500   (68.5%) 

(5) Selection of high confidence patents 188,795   (78.3%) 5,949,214   (65.3%) 

 

Retaining molecules from candidate MCSs only had the strongest 

filtering effect, with 49.4% (1,668,652 molecules) of all molecules discarded 

being removed in this third step. The number of molecules remaining at 

this stage is 5,736,478, 63.0% of the initial number of molecules. 

Subsequently, applying the similarity criteria defined above to identify 

molecules that may have been discarded previously because of the relatively 

high promiscuity or low coverage, homogeneity and inclusion values of 

their MCSs recovers 504,022 molecules. This increases the number of 

molecules retained up to 6,240,500 molecules, 68.5% of the initial 

molecules. 



Results 

66 

 

Figure 2. Density plot of median structural homogeneity values against the ratio of filtered 

molecules in all US pharmacological patents in SureChEMBL. Grey scale of hexagons 

corresponds to the relative density of patents. Also included are the distributions of the 

number of patents corresponding to each median structural homogeneity (top x-axis) and 

each ratio of filtered molecules (right y-axis). The dotted line at a median structural 

homogeneity of 0.4 marks the threshold for high confidence patents. 

 

Finally, based on the previous validation exercise, a median structural 

homogeneity threshold of 0.4 was applied to select the list of high 

confidence patents that contain sets of highly congeneric compounds 

(Figure 2). The application of this filter affected 47,894 patents, 19.9% of 

the initial SureChEMBL patents, resulting in the removal of 291,286 

molecules. In the end, a total of 5,949,214 molecules were left, 65.3% of all 

molecules from SureChEMBL US pharmacological patents considered 

originally. 
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Conclusion 

With the advent of a new generation of artificial intelligence algorithms to 

recognize and extract chemical structures from patent documents in a more 

reliable and efficient manner,13 unsupervised processes to confidently 

identify the subset of molecules covered by patent claims from all extracted 

chemical structures are required. In this work, a filtering protocol was 

designed to automatically select the core chemical structures best 

representing a congeneric series of pharmacologically relevant molecules in 

a patent. To demonstrate the validity of the approach, we applied it first to 

a set of 270,968 chemical structures from a selection of 890 SureChEMBL 

patents for which a total of 51,738 manually curated molecules are deposited 

in ChEMBL. Our protocol was able to identify and discard 41.2% of all 

molecules in SureChEMBL and retain, within the remaining 58.8%, up to 

92.5% of all molecules in ChEMBL. In a second step, we performed a large-

scale experiment against 240,988 US pharmacological patents for which 

9,111,706 molecules are available in SureChEMBL. With a computational 

cost of approximately 5 days, our protocol selected 5,949,214 molecules 

(65.3% of the total number of molecules) that form highly congeneric 

chemical series in 188,795 of those patents (78.3% of the total number of 

patents). We believe that this protocol will be useful to assist in the process 

of producing regular updates of a SureChEMBL version enriched with 

molecules of pharmacological relevance for the benefit of the entire 

scientific community. 
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Supplementary material 

Table S1. Distribution of the number of MCSs across patent promiscuity values (left) and 

distribution of the number of patents across 1-quantile threshold values derived from the 

distribution of patent promiscuities associated with their MCSs (right). 

Patent 
promiscuity  

No. MCSs 
(% from total) 

 
1-quantile 
promiscuity 
threshold 

No. patents 
(% from total) 

0 0     (0.0%)  0 4,289     (2.0%) 

1 6,104,651  (58.8%)  1 111,369   (46.2%) 

2 2,242,727  (21.6%)  2 20,450     (8.5%) 

3 766,034     (7.4%)  3 8,286     (3.4%) 

4 421,330     (4.1%)  4 5,362     (2.2%) 

5 213,800     (2.1%)  5 3,647     (1.5%) 

6 141,142     (1.4%)  6 2,851     (1.2%) 

7 86,151     (0.8%)  7 2,421     (1.0%) 

8 62,641     (0.6%)  8 1,954     (0.8%) 

9 45,563     (0.4%)  9 1,731     (0.7%) 

≥10 293,429     (2.8%)  ≥10 78,628   (32.6%) 

Total 10,377,468 (100.0%)  Total 240,988 (100.0%) 
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Patent US-8501708. List of molecules selected by the filtering protocol 

from all molecules in SureChEMBL. 

Selected candidate MCS: 

vs Markush structure:   

ChEMBL molecules NOT recovered: 0 

 

SureChEMBL molecules selected: 69 

Molecule labels: SCHEMBL ID (‘S-*’) | CHEMBL ID (‘C-*’) 
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Patent US-8754099. List of molecules selected by the filtering protocol 

from all molecules in SureChEMBL. 

Selected candidate MCS: 

 vs Markush structure:   

ChEMBL molecules NOT recovered: 0 

 

SureChEMBL molecules selected: 26 

Molecule labels: SCHEMBL ID (‘S-*’) | CHEMBL ID (‘C-*’) 
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Patent US-8933040. List of molecules selected by the filtering protocol 

from all molecules in SureChEMBL. 

Selected candidate MCSs: 

 vs Markush structure:   

ChEMBL molecules NOT recovered: 0 

 

SureChEMBL molecules selected: 57 

Molecule labels: SCHEMBL ID (‘S-*’) | CHEMBL ID (‘C-*’) 
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Patent US-8871783. List of molecules selected by the filtering protocol from 

all molecules in SureChEMBL. 

Selected candidate MCSs: 

 vs Markush structure:  

ChEMBL molecules NOT recovered: 0 

 

SureChEMBL molecules selected: 58 

Molecule labels: SCHEMBL ID (‘S-*’) | CHEMBL ID (‘C-*’) 
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Patent US-8501783. List of molecules selected by the filtering protocol from 

all molecules in SureChEMBL. 

Selected candidate MCSs: 

 

vs Markush structure:  

ChEMBL molecules NOT recovered: 21 
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SureChEMBL molecules selected: 66 

Molecule labels: SCHEMBL ID (‘S-*’) | CHEMBL ID (‘C-*’) 
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III.2 Congenericity of claimed compounds in patent 

applications 

 

 

Falaguera, M. J. & Mestres, J. Congenericity of claimed compounds in 

patent applications. Molecules 2021, 26(17), 5253. 

Quartile: Q1; Impact Factor 2021: 4.148; Citations: 1 

 

 

The new database generated in Chapter III.1, named SureChEMBLccs, is 

used in this chapter to quantitatively analyze the degree of congenericity of 

claimed compounds in pharmacological patents. The results obtained are 

then compared with those for other patent-derived databases, namely 

SureChEMBL and ChEMBL. 
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Introduction 

A chemical series is a central concept in drug discovery to define a set of 

small molecules sharing a core structure decorated with different 

functionalities.1-5 These molecular analogues effectively map the chemical 

space around their common scaffold and thus, they constitute the basis to 

explore structure-activity relationships6 and to identify activity cliffs,7-9 cases 

of structurally similar compounds with large differences in binding affinities 

for a given target. When chemical series are enriched with molecules active 

against several members of a target family their common molecular 

framework is referred to as a privileged scaffold,10-15 one of the basic 

principles in chemogenomics initiatives.16-18 

The development of unsupervised computational protocols for the 

identification of chemical series in large compound collections has become 

in recent years an active area of research in chemoinformatics.19-21 In 

particular, applications to automatically detecting the core chemical 

structure of patent claims among all chemical entities stored in patent 

databases22,23 has received special attention.24-26 Because of the use of 

chemical entity recognition technologies to extract all small molecules from 

patent text and images, the main difficulty in these cases lies in 

distinguishing the exemplified compounds intended to be protected from 

many other starting materials and intermediate products mentioned in the 

patent. Under the assumption that claimed molecules fit into a chemical 

series defined by the Markush structure of the patent claim, recent 

computational protocols have exploited this concept to successfully extract 

and make publicly available all pharmacologically relevant molecules 

contained in the largest patent database.27 
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Having the ability to automatically identify chemical series of claimed 

compounds in patents, one may then wonder how well the chemical space 

around the patent claim is covered by those exemplified compounds in the 

patent. In essence, what we are interested in here is defining a set of 

quantitative parameters to assess the degree of congenericity of patent 

compounds. A highly congeneric chemical series of exemplified 

compounds will be associated with a narrow protection of a well-defined 

portion of the chemical space, whereas a set of exemplified compounds 

with low congenericity may reflect a loose attempt to cover the chemical 

space defined by the patent claim, offering opportunities to fill in the gaps 

left. 

 

Database and Methods 

 

SureChEMBLccs. We used a subset of the SureChEMBLccs 2021 

release27 that includes 159,439 unique small molecules from 851 US 

pharmacological and high confidence patents26 of which 47,857 molecules 

are also present in ChEMBL.28 Of those 851 patents, 750 have more than 

one molecule in ChEMBL. A patent is described as pharmacological when 

it has an A61K* IPC code, with the exception of A61K6 (preparations for 

dentistry), A61K7 or A61K8 (cosmetics or similar toilet preparations), 

A61K9 (medicinal preparations characterised by special physical form), 

A61K38 (medicinal preparations containing peptides), A61K39 (medicinal 

preparations containing antigens or antibodies) and A61K48 (medicinal 

preparations containing genetic material which is inserted into cells of the 

living body to treat genetic diseases). Also, a patent is considered of high 
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confidence when the molecules exemplified in it describe a similarity 

distribution with median value equal or higher than 0.4. 

Similarity distribution descriptors. A list of three descriptors is suggested 

to be used in congenericity analyses of sets of molecules. They can be 

computed from any of the pairwise similarity distributions derived for a 

given set of N molecules. One intuitive approach is to base the construction 

of the similarity distribution on the prior selection of a reference molecule. 

In principle, any molecule can be used as reference. In this work, a centroid 

is selected as the reference molecule having the maximum value of its 

minimum pairwise similarity. The centroid similarity distribution is then defined 

as the counts of pairwise Dice similarities between the Morgan fingerprints 

of the centroid against the other N-1 molecules in the set, calculated with 

RDKit,29 within each hundredth of the 0.00 to 1.00 range of similarity 

values. Alternatively, one can avoid the reference compound selection and 

directly compute the similarities between all N*(N-1)/2 unique pairs of 

non-identical molecules to construct an all pairwise similarity distribution. Then, 

the shape of the centroid or all pairwise similarity distribution will be 

quantitatively characterized by its extent, mode, and density. The extent is given 

by the minimum similarity value populated in the distribution. The mode is 

the most frequent similarity value in the distribution. Finally, the density 

measures the degree of dispersion around the mode. It is obtained by 

subtracting from unity the normalized projected Shannon entropy of the 

distribution,30 that is, the projected optimal number of uniformly occupied 

bins. A set of compounds having a similarity distribution with high extent, 

high mode, and high density values will be associated with a highly 

congeneric series. An additional fourth descriptor, size, is considered to 

account for the number of molecules in the set. 
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Results and Discussion 
 

Use of similarity distribution descriptors on illustrative patent 

applications. A set of representative examples were selected to illustrate 

the use of similarity distribution descriptors to perform congenericity 

analyses of exemplified compounds in patent applications. The first 

example is patent US-8598357, a typical case of a patent containing a highly 

congeneric series of 128 benzodioxole piperidine compounds claimed as 

dual modulators of the serotonin 2A and dopamine D3 receptors. Figure 1a 

shows the distribution of pairwise similarity values of all exemplified 

molecules against the selected centroid, SCHEMBL12081311. The high 

extent (0.80), high mode (0.84) and high density (0.88) values obtained are 

all consistent with a highly congeneric chemical series of patent molecules. 

Correspondingly, the distribution obtained from all 8,128 pairwise 

similarities (Figure 1b) results also in high extent (0.69), high mode (0.80) 

and high density (0.81) values. This situation will occur when the core 

structure common to all exemplified compounds in a patent application 

covers a large portion of the chemical structures and most molecules differ 

only by rather small functional groups at one edge of that core structure. 

This conclusion is confirmed by visual inspection of a selection of 

molecules with similarity values covering the entire range of the extent in 

the centroid similarity distribution (Figure 1a). 
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a) centroid similarity distribution 

 

 
 

   

SCHEMBL12081311 

Centroid 

SCHEMBL12081309 

(1.00) 

SCHEMBL12080934 

(0.93) 

 

 

  

SCHEMBL12080305 

(0.85) 

SCHEMBL12080632 

(0.80) 

 

 

b) all pairwise similarity distribution 

 

 
 
Figure 1. Centroid (a) and all pairwise (b) similarity distributions for the set of exemplified 

molecules in SureChEMBLccs patent US-8598357. Also included (a) is a sample of 

chemical structures with their SCHEMBL identifiers and similarity values (in parenthesis). 

The extent and mode are indicated, respectively, by vertical dashed and solid lines. 
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A completely different scenario is found in patent US-8586617 

protecting a chemical series of 504 amino-4-methyl imidazoles for the 

treatment of depression, anxiety and bipolar disorders among others. In this 

case, the centroid similarity distribution around SCHEMBL632986 is 

quantitatively characterized by low extent (0.28), low mode (0.38) and 

medium density (0.59) values consistent with a chemical series of patent 

molecules aiming at sampling diversity rather than coverage completeness 

(Figure 2a). Similarly, the corresponding distribution derived from all 

126,756 pairwise similarities (Figure 2b) results in low extent (0.15), low 

mode (0.44) and low density (0.49) values. In contrast to the previous patent 

example, this situation is likely to occur when the common core structure 

covers only a minor portion of the chemical structure in most of the 

exemplified compounds in the patent that contains a wide range of diverse, 

and often large, functionalities around it. This inference is substantiated by 

the selection of molecules with similarity values covering the entire range of 

the extent in the centroid similarity distribution (Figure 2a). 

  



Results 

97 

a) centroid similarity distribution 

 

   

SCHEMBL632986 

Centroid 

SCHEMBL631575 

(0.92) 

SCHEMBL632400 

(0.68) 

  

SCHEMBL631876 

(0.47) 

SCHEMBL14189389 

(0.28) 

 

b) all pairwise similarity distribution 

 

Figure 2. Centroid (a) and all pairwise (b) similarity distributions for the set of 

molecules exemplified in SureChEMBLccs patent US-8586617. Also included (a) 

is a sample of chemical structures with their SCHEMBL identifiers and similarity 

values (in parenthesis). The extent and mode are indicated, respectively, by vertical 

dashed and solid lines. 
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An intermediate situation between the two cases presented above is 

provided by patent US-8962608 aiming at protecting cycloalkylnitrile 

pyrazole carboxamides as Janus kinase inhibitors. Most of the 1,034 

exemplified molecules extracted from this patent show in fact relatively high 

similarity values (>0.60) against the centroid, SCHEMBL14811497, but a 

small number of molecules form a long tail below that similarity mark with 

values as low as 0.37 (Figure 3a). Therefore, despite the medium mode 

(0.65) and high density (0.79) values, the centroid similarity distribution has 

also a low extent (0.37) value. The corresponding distribution derived from 

all 534,061 pairwise similarities (Figure 3b) follows very much the same 

trend, with a low extent (0.26) value despite the relatively high mode (0.67) 

and density (0.67) values. This may help in the unsupervised identification 

of patents for which a large subset of the exemplified compounds extracted 

automatically form a reasonably tight congeneric series but this 

congenericity is somehow masked with medium to low extent values due to 

the presence of a few distant compounds that nonetheless share some core 

structure attributes. As can be observed in Figure 3a, this is indeed the case 

for this patent because some intermediate products were recognized by the 

automatic extracting protocol26 as being part of the core structure of claimed 

compounds (SCHEMBL14821023, SCHEMBL14809296 and 

SCHEMBL14808945). 
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a) centroid similarity distribution 

 

   

SCHEMBL14811497 

Centroid 

SCHEMBL14810536 

(0.88) 

SCHEMBL14821023 

(0.52) 

  

SCHEMBL14809296 

(0.42) 

SCHEMBL14808945 

(0.37) 

 

b) all pairwise similarity distribution 

 

Figure 3. Centroid (a) and all pairwise (b) similarity distributions for the set of molecules 

exemplified in SureChEMBLccs patent US-8962608. Also included (a) is a sample of 

chemical structures with their SCHEMBL identifiers and similarity values (in parenthesis). 

The extent and mode are indicated, respectively, by vertical dashed and solid lines.  
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The shape of similarity distributions and the descriptor values derived 

from them depend ultimately on the choice of the reference compound. In 

the patent examples presented above, the similarity centroid was selected as 

reference compound. To assess the dependency of the similarity 

distribution descriptors on the selected reference, a random sample of 10% 

of all compounds from each patent was extracted, each compound selected 

as individual reference, and the corresponding similarity distributions and 

associated descriptors calculated. The results reveal that, even though the 

exact values of extent, mode and density may vary slightly, the overall 

quantitative description of the different similarity distributions obtained 

from random claimed compounds in a patent is essentially retained. 

Accordingly, the corresponding mean and standard deviation values for 

extent, mode and density using 13 random compounds as references to 

derive the similarity distributions of patent US-8598357 are 0.74 ± 0.02, 

0.82 ± 0.02 and 0.86 ± 0.02, respectively, not too distant from the values 

reported in Figure 1a. Similarly, the extent, mode and density values 

calculated from the similarity distributions constructed when using a set of 

50 random claimed compounds from patent US-8586617 are 0.21 ± 0.03, 

0.46 ± 0.10 and 0.61 ± 0.06, respectively, all close to the values shown in 

Figure 2a, and those resulting from taking 103 random compounds from 

patent US-8962608 are 0.31 ± 0.02, 0.65 ± 0.07 and 0.76 ± 0.04, 

respectively, all values near those reported in Figure 3a. Therefore, even 

though similarity distribution descriptors depend on the reference 

compound selected, the variability observed in their exact values does not 

affect the ability of the descriptors to capture quantitatively the essence of 

the degree of congenericity in sets of claimed patent compounds.  

The alternative to using a reference molecule to construct the similarity 

distribution is to simply account for all pairwise similarities. The advantages 
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are that it alleviates the reference compound selection dilemma, and it 

provides a unique, more robust, similarity distribution. However, there are 

also some disadvantages worth considering. For example, the selection of a 

centroid from which the similarity distribution is derived offers a sense of 

chemical space coverage around a molecular structure central to the set of 

patent molecules that cannot be obtained from an all pairwise similarity 

distribution. Also, one may argue that plotting the percentage of molecular 

pairs instead of the percentage of molecules in the corresponding similarity 

distributions provides a less intuitive picture of the similarities between 

molecules and may confound comparisons between patents. Balancing all 

these advantages and disadvantages and considering also the good 

correspondence between descriptor values obtained from centroid and all 

pairwise similarity distributions observed in the three patent examples 

presented above, centroid similarity distributions will be used in the 

reminder of this work. 

 

Correlations of similarity distribution descriptors across patents. 

Having illustrated the use of similarity distribution descriptors to quantify 

the degree of congenericity of claimed compounds in three patent examples, 

the set of 851 US pharmacological and high confidence SureChEMBLccs 

patents present also in ChEMBL was processed. In terms of size, the 

number of claimed molecules per patent ranged from 2 to 2,790, with a 

median value of 98 molecules, and 425 (50%) and 785 (92%) of the patents 

containing more than 100 and less than 600 molecules, respectively. The 

analysis of the centroid similarity distributions gave a wide range of extent 

values, ranging from 0.09 to 1.00, with a median value of 0.50, and of mode 

values from 0.12 to 0.96, with a median value of 0.67. It is worth mentioning 

here that the limit case of extent values equal to unity is due to seven patents 
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(e.g. US-8895245) having two molecules (e.g. SCHEMBL804176 and 

SCHEMBL803938) with identical Morgan fingerprints but different 

structures. In contrast, density values tended to be relatively high for all 851 

patents, with minimum and median values of 0.53 and 0.78, respectively. 

Overall, the median values obtained for the three similarity distribution 

descriptors reflect the fact that patent molecules in SureChEMBLccs form 

rather compact chemical series around common core chemical structures 

and provide further reassurance of the filtering protocol applied to extract 

them from the original SureChEMBL database.26 

Examination of the potential existence of pairwise correlations between 

the descriptors obtained for the 851 patents resulted in the identification of 

both positive and negative correspondences. As shown in Figure 4, the 

strongest correlation identified (r2 = +0.70) is between extent and mode, a 

trend exposing that, on one hand, patents having high extent values 

necessarily accumulate pairs of molecules at high mode values (see Figure 

1) and, on the other hand, as extent values decrease, the similarity 

distribution tends to disperse its bin population across the extent and thus, 

the mode values have also a tendency to decrease accordingly. In this 

respect, almost 79% of the patents (669) have minimum similarity values 

(extent) within 0.25 orders of magnitude from the mode indicating that 

patents with high modes and low extents are exceptional. The second 

strongest correlation, albeit negative (r2 = –0.68), is between density and 

size. This is an expected situation as the larger the number of claimed 

molecules in a patent, the larger its chemical diversity in principle is and 

thus, the more difficult that pairwise similarities accumulate around the 

mode, resulting in lower density values. The third trend encountered (r2 =+ 

0.52) is between extent and density, which is consistent with the fact that 

molecular sets having high minimum pairwise similarities (high extent) are 
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more likely to have their similarity distributions concentrated in a small 

number of bins (high density) and vice versa. No significant relationships 

were found between extent and size, mode and size and mode and density. 

   

 
 

   

Figure 4. Pairwise correlations between the four descriptors obtained from centroid 

similarity distributions of 851 patents. The correlation coefficient (r2) is provided on top of 

each graph. 
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To illustrate these correlations with concrete examples, a set of four 

patents was selected with consistent high density values (0.73) and varying 

extent, mode and size values. Their corresponding centroid similarity 

distributions are shown in Figure 5. The first patent (US-8999998) contains 

a highly congeneric chemical series of 550 pyrazolopyrimidine Janus kinase 

inhibitors, with a centroid similarity distribution characterized by a medium 

extent (0.50) and a high mode (0.80). The second patent (US-8637507) is 

composed of 155 heterocyclic compounds as diacylglycerol acyltransferase 

inhibitors that has a centroid similarity distribution of comparable density 

to US-8999998 but with slightly higher extent (0.56) and lower mode (0.71). 

The third (US-8815891) and fourth (US-9073870) patents exemplify, 

respectively, 310 tricyclic derivatives as poly(ADP-ribose) polymerase 

inhibitors and 464 alicyclic carboxylic acid derivatives of benzomorphans 

and related scaffolds as 11b-hydroxysteroid dehydrogenase 1 inhibitors. 

Despite having consistent density values with the first two patents, their 

centroid similarity distributions have clearly lower extent (0.34 and 0.28, 

respectively) and lower mode (0.50 and 0.41, respectively) values consistent 

with sets of more diverse compounds that nonetheless share a core chemical 

structure.26 

The shape of the four centroid similarity distributions shown in Figure 

5 is representative of the average similarity distribution obtained for the set 

of 851 SureChEMBLccs patents analyzed in this work, with average density 

values of 0.78 (vide supra). Comparing the values of the descriptors across 

the four patents, the positive trend between extent and mode detected 

above (Figure 4) is recovered and can be visually assessed. For the remaining 

descriptor pairs, it becomes evident that no clear trend can be established. 
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Figure 5. Centroid similarity distributions for four patents with almost identical density 

values. The mode and the extent are indicated, respectively, by vertical solid and dashed 

lines. 

 

As a final remark, it is worth stressing that the level of precision in the 

wording of the patent summary defining the chemical nature of the 

compounds being claimed already provides some clues on the expected 

degree of congenericity for the set of exemplified compounds in those 

patents. For example, defining a set of pyrazolopyrimidine inhibitors in 

patent US-8999998 is a more chemically precise wording that the generic 
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mention of alicyclic carboxylic acid derivatives of benzomorphans and 

related scaffolds in patent US-9073870, and this is then clearly reflected in 

the differences between extent (0.50 vs 0.28) and mode (0.80 vs 0.41) values. 

This aspect could be exploited in the use of text-mining techniques when 

processing patent titles and summaries. 

 

Congenericity analysis of SureChEMBL patents. SureChEMBLccs27 

was derived by applying an unsupervised automatic filtering protocol to 

identify the core chemical structure in SureChEMBL patents and extract all 

pharmacologically relevant molecules exemplifying the patent claims.26 

Accordingly, SureChEMBLccs should be in principle intrinsically biased 

towards highly congeneric chemical series of compounds. In order to assess 

this assumption and validate the use of similarity distribution descriptors to 

quantify congenericity in sets of molecules, a principal component analysis 

(PCA) was performed on a focused set of 750 SureChEMBL patents for 

which a filtered subset of compounds sharing a core chemical structure is 

available in SureChEMBLccs and a carefully curated selection of at least 

two compounds is also present in ChEMBL. For the PCA, each patent was 

quantitatively defined by the extent, mode and density values of the centroid 

similarity distributions derived from the corresponding full set of 

compounds in SureChEMBL, SureChEMBLccs, and ChEMBL. 
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Figure 6. Principal Component Analysis of 750 patents based on the corresponding 

molecules available in ChEMBL (white triangles), SureChEMBLccs (dark grey circles) and 

SureChEMBL (light grey circles). PC1 and PC2 describe 75% and 23% of the total 

variance, respectively. 

 

Figure 6 shows the projection of the 750 common patents between 

SureChEMBL (light grey circles), SureChEMBLccs (dark grey circles) and 

ChEMBL (white triangles) on the first two principal components that 

combined accumulate 98% of the variance (PC1 75% and PC2 23%). The 

loadings of the extent, mode and density values in PC1 (-0.65, -0.59 and -

0.48, respectively) reveal a major contribution of extent and mode values in 
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the first principal component, whereas the corresponding loadings in PC2 

(0.14, 0.53 and -0.84, respectively) denote a major contribution of density 

values. The fact that PC1 describes already 75% of the variance allows the 

ordering of patents from all sources according to their intrinsic 

congenericity from left to right in the PC1 axis. Indeed, as can be observed, 

there is clear separation between the highly congeneric sets of claimed 

molecules assigned to all 750 patents in ChEMBL and SureChEMBLccs, 

on the left (PC1 < 1), and all molecules originally extracted from those 

patents and deposited in SureChEMBL, on the right (PC1 > 1). The strong 

presence of starting materials and intermediate products in SureChEMBL 

is certainly responsible for the low degree of congenericity associated with 

the full set of patent compounds in SureChEMBL. As clearly visible in 

Figure 6, this situation was corrected in SureChEMBLccs through the 

automatic identification of those molecules in the patent sharing a core 

chemical structure,26 resulting in sets of patent compounds with significantly 

higher congenericities, comparable to those observed for the curated sets 

contained in ChEMBL. In this respect, it ought to be stressed that the size 

values for the 750 patents in ChEMBL range from 2 to 787 molecules per 

patent with a median value of 23, significantly smaller than the median size 

of 111 molecules in SureChEMBLccs for those same 750 patents. In fact, 

the number of claimed compounds per patent in SureChEMBLccs is on 

average 7.5 times larger than in ChEMBL. Therefore, the fact that 

SureChEMBLccs overlap well with ChEMBL for 750 patents (Figure 6) 

provides confidence for the high degree of congenericity of the chemical 

series for all 188,795 pharmacological patents available in 

SureChEMBLccs.26 

Given the optimal split obtained between patents in ChEMBL and 

SureChEMBLccs, on one side, and in SureChEMBL, on the other side, a 
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congenericity score (CScore) was defined as the geometric mean of the three 

similarity distribution descriptors used in the PCA. The distribution of 

CScores from the molecules available in the three patent sources for the set 

of 750 patents is presented in Figure 7. As can be observed, all patents in 

SureChEMBL (except three) have CScores below 0.4. In contrast, all 

patents in ChEMBL and 737 patents (98%) in SureChEMBLccs obtained 

CScores above 0.4. Therefore, a CScore threshold of 0.4 is recommended 

to assume a minimum degree of congenericity within patent molecules. 

To illustrate the difference between patents containing a highly 

congeneric set of compounds and patents exemplified with more diverse 

chemical structures, two patent examples from SureChEMBLccs having 

CScores above and below 0.4 are included in Figure 7. Patent US-8796310 

refers to the invention of amino-pyridine-containing compounds as spleen 

tyrosine kinase (SYK) inhibitors. The centroid of the patent molecules in 

SureChEMBLccs is compound SCHEMBL14840516 and its structure 

matches perfectly the Markush structure of the patent claim. The extent, 

mode and density values of its centroid similarity distribution are 0.72, 0.87 

and 0.81, respectively. The resulting CScore of 0.80 reflects that molecules 

exemplified in this patent do not deviate much from the Markush structure. 

Conversely, patent US-9085555 has a CScore of 0.39 in SureChEMBLccs, 

right below the recommended CScore threshold of 0.4. The patent claims a 

set of compounds around a Markush structure that allows a wide diversity 

of ring sizes and composition, linkers and functional groups. The centroid 

of the filtered patent molecules in SureChEMBLccs is compound 

SCHEMBL12480885 and the similarity distribution constructed around it 

returned extent, mode and density values of 0.25, 0.43 and 0.56, 

respectively. Based on these results, CScore values offer a good simple 
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metric to assess the congenericity of claimed compounds in patent 

applications. 

Finally, it ought to be stressed that, very much in agreement with the 

results presented above (Figures 1-3), a strong correlation (r2 =+ 0.93) was 

found between the CScores calculated from the extent, mode and density 

values obtained from centroid similarity distributions and all pairwise 

similarity distributions. Therefore, even though this work focused on the 

use of centroid similarity distributions to perform a congenericity analysis 

of molecular sets (Figures 4-7), comparable results would be obtained by 

using all pairwise similarity distributions instead. 

 

 

Figure 7. Congenericity Score (CScore) distributions for the same 750 patents in 

SureChEMBL, SureChEMBLccs and ChEMBL. 
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Conclusions 
 

Pharmacological patent applications aim at protecting the invention of 

chemical series of compounds acting on the same mechanism-of-action 

target(s) or having similar cellular phenotype(s). Therefore, by definition, 

the sets of molecules claimed in patents can be chemically defined by a 

Markush structure with only small functional variations allowed or by a 

looser definition of a chemical series to cover the widest possible portion 

within that chemical space. Both patent strategies have their strengths and 

limitations and they could be balanced if a quantitative means to assess the 

degree of chemical compactness of all molecules contained in the patent 

would be available. 

To this aim, a method was designed to calculate the degree of 

congenericity of claimed compounds in patent applications. The approach 

was applied and validated on a set of 750 patents from SureChEMBL for 

which a filtered set of molecules sharing a core chemical structure was 

available in SureChEMBLccs and a carefully curated set of at least two 

molecules was present also in ChEMBL. Patents were described by the 

similarity distribution around a reference compound and quantitatively 

characterized by its extent, mode and density values. 

A principal component analysis (PCA) using the three similarity 

distribution descriptors successfully differentiated the patent molecular 

composition in each source, with filtered molecules in SureChEMBLccs 

showing overlapping congenericities with the manually curated sets in 

ChEMBL. A congenericity score (CScore), defined as the geometric mean 

of the extent, mode and density of similarity distributions, allowed for 

ranking patents according to the chemical compactness of their claimed 

molecules. Patent descriptors, CScores, and PC coordinates are provided as 
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Supplementary Material to facilitate mapping future patents onto the PC 

space defined by the set of 750 curated patents. The current approach can 

be useful to describe the chemical space coverage of claimed compounds in 

pharmacological patent applications. More research in this direction is 

underway in our group. 
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Supplementary Material 

Sample of original Table S1. Patent descriptors (size, extent, mode and density), CScores 

and Principal Component coordinates (PC1 and PC2) for the 750 patents common in the 

three patent sources used (SureChEMBL, SureChEMBLccs and ChEMBL). 

patent dataset size extent mode density cscore PC1 PC2 

US-20070135499 SureChEMBL 264 0.05 0.19 0.78 0.19 1.774 -0.902 

US-20070135499 SureChEMBLccs 126 0.42 0.56 0.75 0.56 0.107 0.3 

US-20070135499 ChEMBL 94 0.51 0.59 0.87 0.64 -0.658 -0.419 

US-20070208166 SureChEMBL 346 0.04 0.28 0.54 0.18 2.531 0.949 

US-20070208166 SureChEMBLccs 156 0.31 0.73  0.63 0.52 0.434 1.441 

US-20070208166 ChEMBL 86 0.4 0.73 0.75 0.6 -0.258 0.658 

US-20080096907 SureChEMBL 122 0.07 0.72 0.61 0.31 1.114 1.433 

US-20080096907 SureChEMBLccs 43 0.69 0.77 0.86 0.77 -1.487 0.134 

US-20080096907 ChEMBL 29 0.69 0.74 0.87 0.76 -1.454 -0.0 

US-20080207655 SureChEMBLccs 24 0.7 0.71 0.86 0.75 -1.365 0.009 

US-20080207655 ChEMBL 18 0.75 0.76 0.9 0.8 -1.765 -0.133 

US-20080207655 SureChEMBL 120 0.04 0.14 0.69 0.16 2.276 -0.392 

US-20080249081 ChEMBL 2 0.79 0.79 0.99 0.85 -2.291 -0.67 

US-20080249081 SureChEMBL 369 0.15 0.28 0.76 0.32 1.395 -0.516 

US-20080249081 SureChEMBLccs 67 0.64 0.72 0.85 0.73 -1.206 0.069 

US-20100113462 ChEMBL 77 0.56 0.68 0.75 0.66 -0.52 0.633 

US-20100113462 SureChEMBL 772 0.07 0.15 0.89 0.21 1.386 -1.739 

US-20100113462 SureChEMBLccs 456 0.41 0.56 0.7 0.54 0.329 0.641 

US-20100130505 ChEMBL 17 0.33 0.42 0.89 0.5 0.107 -1.019 

US-20100130505 SureChEMBLccs 76 0.32 0.45 0.75 0.48 0.614 0.01 
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III.3 Illuminating the chemical space of untargeted 

proteins 

 

 

Falaguera, M. J. & Mestres, J. Illuminating the chemical space of 

untargeted proteins. To be submitted.  

 

 

Similar to the methodology introduced in Chapter III.1 to identify a core 

chemical structure representing the claim of pharmacological patents, in this 

article, a new approach is presented to identify those core scaffolds best 

representing the bioactive chemical series enriched within families of 

phylogenetically-related proteins. The obtained core scaffolds are then used 

to shed light on the chemical space of yet untargeted proteins included in 

the families. 
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Abstract 
 

According to the Illuminating the Druggable Genome (IDG) initiative, 90% 

of the proteins encoded by the human genome still lack an identified 

biologically active ligand. Under this scenario, there is an urgent need for 

new approaches to chemically address these yet untargeted proteins. It is 

widely recognised that the best starting point for generating novel small 

molecules for proteins is to exploit the expected polypharmacology of 

known active ligands across phylogenetically related proteins following the 

paradigm that similar proteins are likely to interact with similar ligands. Here 

we introduce a computational strategy to identify core scaffolds that, when 

chemically expanded, are highly probable of containing active small 

molecules for untargeted proteins. The protocol was first tested on a set 

of 250 currently targeted proteins for which the year before their first 

reported active ligand there were at least two protein family members with 

known active ligands. A core scaffold contained in active ligands that were 

identified in the following years was correctly anticipated for 80 of those 

targeted proteins, a lower-bound performance estimate when considering 

data incompleteness. When applied to a set of 128 untargeted proteins, the 

identification of privileged core scaffolds present in known bioactive ligands 

of protein-family siblings allowed for extracting a priority list of 

commercially available small molecules. Assuming a minimum success rate 

of 32%, the chemical library selections should be able to deliver active 

ligands for at least 41 currently untargeted proteins. 
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Introduction 
 

The Illuminating the Druggable Genome (IDG) initiative was launched in 

2014 by the US National Institutes of Health (NIH) as an effort to quantify 

the amount of biomedical and pharmacological data available for human 

proteins and to ultimately increase our knowledge of the understudied 

human proteome.1 Based on the type and amount of data available, proteins 

were assigned a target development level (TDL). Under the TDL scheme, 

it was found that only 10% of the proteins are mechanism-of-action targets 

of an approved drug (Tclin) or have at least one bioactive ligand deposited in 

public sources (Tchem). The remaining 90% of the human proteome is 

composed by chemically neglected proteins that nonetheless have well 

established implications in biological processes (Tbio) or their primary 

sequences is all what is currently known (Tdark).
2 Accordingly, illuminating 

the chemical space (ICS) of untargeted proteins remains a major challenge 

for the chemical biology and drug discovery communities and new 

approaches to accelerate current trends in protein deorphanisation and 

chemicallisation are needed.3-5 

The TDL progression of proteins from Tdark/Tbio to Tchem/Tclin levels is 

not an easy endeavour and requires ample coordinated efforts. Some of the 

reasons hindering the identification of bioactive ligands for understudied 

proteins include the difficulty of identifying ligand binding sites in ligand-

independent orphan targets,6,7 the absence of optimal assays to detect the 

activation of receptors with atypical coupling,8,9 and the absence of protein 

family members with already known bioactive ligands.5 All these aspects, 

added to increased high-throughput screening costs and more stringent 

safety regulations, justify that research in this field prefers investing on 

generating novel chemical series for already Tchem/Tclin targeted proteins 
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over initiating high risk projects on Tdark/Tbio untargeted proteins.3,5 The 

development of computational strategies to define the chemical space likely 

to contain bioactive small molecules for a large number of untargeted 

proteins could have a major impact in promoting Tdark/Tbio proteins to 

Tchem/Tclin levels. 

One of the most successful and frequently applied strategies to unveil 

the ligand space of Tbio/Tdark proteins consists of using the chemical space 

of their phylogenetically-related proteins following the paradigm 

that  similar proteins are likely to bind similar ligands.10-12 Despite being a 

standard in drug discovery processes, especially in those within a 

polypharmacological setting,13,14 no systematic quantification of the 

effectiveness of this approach has been carried out to our knowledge. 

Neither a generalized protocol to be applied across different proteins 

families has been proposed beyond ligand similarity searches.15,16 With the 

aim of helping fill this gap, here, we introduce computational strategy to 

help ‘Illuminating the Chemical Space’ (ICS) of yet untargeted proteins 

based on the identification of privileged core scaffolds that best represent 

the chemical series enriched in bioactive compounds within the protein 

family of the untargeted protein. Applying a leave-one-out procedure to 

already Tchem/Tclin targets, the protocol is evaluated on its ability to recover 

bioactive molecules containing those privileged core scaffolds. Then, the 

protocol is applied to true Tdark/Tbio proteins that have phylogenetically close 

Tchem/Tclin targets, and the privileged scaffolds obtained are then used to 

identify commercially-available compounds that are candidate bioactive 

ligands for the proteins. This final list of purchasable compounds for 

experimental testing is provided as Supplementary Material. 
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Methods 

 

In this work we selected ChEMBL17 as a representative database of the 

ligand-target interactome currently known in the public domain, and 

ZINC18 as an open repository of purchasable and ready-to-test ligands. In 

its 28th release ChEMBL contains 4,440 human proteins and around 2 

million small molecules. In its 20th release, ZINC contains over 90 million 

compounds commercially available for testing. 

 

Target Development Level assignment. For these 4,440 human 

proteins, their associated ligand-protein bioactivities in ChEMBL were 

extracted. A protein having at least one small molecule (antibodies and 

biologics discarded) with a bioactivity value passing the family-specific 

thresholds specified by the IDG will be referred to as a targeted protein 

(Tchem/Tclin).
1 Moreover, given the purpose of our analysis, we added two 

extra requirements for a protein to be considered as targeted: (i) that the 

bioactivity data come from a direct single protein assay (ChEMBL 

confidence score equal to 9) and (ii) that the source documents from which 

the bioactivities were extracted are annotated with their publication year. All 

other proteins will be considered untargeted proteins (Tdark/Tbio). 

 

Protein subfamily assignment. Hierarchical protein family classification 

codes were retrospectively generated for ChEMBL proteins. When the first 

levels of the code corresponded with a major protein family, they were 

abbreviated with the protein family prefix as follows: ‘1.6.1100.*’ code 

corresponds to protein kinases family and is abbreviated with the ‘KC.*’ 

prefix. According to this, proteins sharing the same full classification code 

(or until their penultimate level in the case of enzymes, nuclear receptors 
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and cytochrome P450s) where classified in the same protein subfamily and 

defined as sibling proteins (Figure 1). 

 

 

Figure 1. List of protein families (left) and protein subfamily assignment (right). 

 

ICS protocol. The protocol to define the chemical space likely to be 

enriched in bioactive ligands for untargeted proteins consists of 7 steps as 

follows: 

(1) Protein subfamily assignment. Assign the protein to a protein subfamily 

containing at least two Tclin/Tchem targets to be used as reference. 

(2) Bioactive molecules collection. For these Tclin/Tchem sibling targets, collect their 

bioactive molecules available in ChEMBL fulfilling the conditions 

mentioned above. 

(3) Molecules to frameworks conversion. Convert these siblings’ bioactive 

molecules into their molecular frameworks, defined as the initial molecule 



Results 

123 

with all bonds converted into single ones and all atoms converted into 

carbons. In this way, molecular heterogeneity is reduced. 

(4) MCS of similar frameworks calculation. Calculate the Maximum Common 

Substructures (MCSs) for those pairs of molecular frameworks coming 

from different siblings in the subfamily, that have a Dice similarity between 

their Morgan fingerprints with radius 2, equal or above 0.8. For MCS 

calculation, the RDKit19 function rdFMCS.FindMCS with the parameter 

ringMatchesRingOnly activated is used. 

(5) Core frameworks extraction. Rank MCSs by the amount of sibling targets 

that have a bioactive molecule covered by it, and by the total amount of 

siblings’ molecules covered. Then, collapse low-ranked MCSs into high-

ranked ones when the second ones are substructures of the first ones. Select 

the top 5 ones to constitute the collection of the named ‘core frameworks’. 

(6) Core scaffolds extraction. Decorate the core frameworks with the original 

bond-types and atom-types of the substructures of the original molecules 

covered by them, to recover the molecular specificity reduced at step (3). 

The set of decorated frameworks will constitute the named ‘core scaffolds’. 

(7) Candidate compounds screening. Use the core scaffolds to screen a repository 

of purchasable compounds, such as ZINC, in search of candidate 

compounds to be tested against the untargeted protein. In this case, we used 

the has-substructure function from the RDKit PostgreSQL cartridge with 

the adjustDegree parameter deactivated and the adjustRingCount parameter 

activated. 
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Results and discussion 

 

Target coverage. Following the criteria specified above, we found that 

from the 4,440 protein targets in ChEMBL, 4,224 (95%) have annotated 

bioactivities to small molecules. From them, 3,042 (69%) have quantitative 

bioactivities with a pChEMBL value annotated and 2,673 (60%) have a 

pChEMBL value passing the family-specific threshold. From the resulting 

set, only 2,262 (51%) come from assays with confidence score equal to 9, 

and from them 1,929 (43%) come from a source document with the year of 

publication annotated. This final collection of 1,929 (43%) proteins 

constitute our Tclin/Tchem dataset, while the remaining 2,511 (57%) proteins 

are classified as Tbio/Tdark (Table 1). Analysing these datasets across protein 

families, we found that most of Tbio/Tdark are classified as enzymes (768) or 

in other protein families beyond the major ones (1,257), including proteins 

with family classifications annotated as ‘Uncharacterized’.  

Among the proteins collected, there were identified a total of 144 protein 

subfamilies with at least two Tclin/Tchem sibling targets, containing a median 

of 2 to 5 siblings with the exception of the transcription factors family, 

where all the 40 siblings are grouped in the same subfamily (Figure 1). These 

144 families group 31% (599) of the total amount of Tclin/Tchem proteins and 

only 5% (128) of Tbio/Tdark ones (Table 2, Figure 2). The remaining 69% and 

95% were not assigned to any subfamily. In all the protein subfamilies 

analysed the fraction of targets assigned to a subfamily within Tdark/Tbio 

proteins is much smaller than within Tclin/Tchem ones indicating that the lack 

of information associated to untargeted proteins occurs not only at the 

chemical annotation level but also at the physiological function annotation 

level, manifested in the absence of specific protein classification annotations 

for them. This notwithstanding, there is still a set of 128 yet untargeted 
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human proteins that can be assigned to a protein subfamily of at least two 

Tclin/Tchem sibling targets, to which our bioactive chemical space prediction 

protocol can be applied. 

 

Table 1. Distribution of Tclin/Tchem and Tbio/Tdark targets in ChEMBL. 

Protein family Targets Tclin/Tchem Tbio/Tdark 

Cytochrome P450s 34 25 (74%) 9 (26%) 

Enzymes 1,559 791 (51%) 768 (49%) 

Epigenetic factors 132 81 (61%) 51 (39%) 

GPCRs 357 241 (68%) 116 (32%) 

Ion channels 212 118 (56%) 94 (44%) 

Kinases 421 321 (76%) 100 (24%) 

Nuclear receptors 47 37 (79%) 10 (21%) 

Transcription factors 40 12 (30%) 28 (70%) 

Transporters 150 72 (48%) 78 (52%) 

Other 1,488 231 (16%) 1,257 (84%) 

Total 4,440 1,929 (43%) 2,511 (57%) 
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Figure 2. Distribution of 599 Tclin/Tchem and 128 Tbio/Tdark targets assigned to a protein 

subfamily. GPCRs, G-protein coupled receptors. TF, transcription factors. 
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Table 2. Distribution of Tchem/Tclin and Tdark/Tbio targets assigned to a protein subfamily. 

Protein family Subfamilies 
Targets  

in subfamily 

Tclin/Tchem  

in subfamily 

Tbio/Tdark  

in subfamily 

Cytochrome P450s 5 12 (35%) 11 (44%) 1 (11%) 

 Enzymes 23 184 (12%) 155 (20%) 29 (4%) 

Epigenetic factors 13 72 (55%) 51 (63%) 21 (41%) 

GPCRs 42 187 (52%) 178 (74%) 9 (8%) 

Ion channels 10 92 (43%) 58 (49%) 34 (36%) 

Kinases 37 103 (24%) 99 (31%) 4 (4%) 

Nuclear receptors 12 34 (72%) 33 (89%) 1 (10%) 

Transcription 
factors 

1 40 (100%) 12 (100%) 28 (100%) 

Transporters 1 3 (2%) 2 (3%) 1 (1%) 

Other 0 0 (0%) 0 (0%) 0 (0%) 

Total 144 727 (16%) 599 (31%) 128 (5%) 
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Validation against Tclin/Tchem proteins. To evaluate the efficacy of the 

protocol in identifying a collection of core scaffolds that represent the 

chemical series characteristic of the bioactive chemical space of a protein 

subfamily, and that are able to predict bioactive molecules for Tbio/Tdark 

proteins, we performed a virtual de-targeting exercise. This consists of (1) 

selecting as a validation dataset current Tclin/Tchem that were found within a 

protein subfamily of at least two Tclin/Tchem sibling targets the year before 

the first bioactive molecule was deposited for them in ChEMBL, (2) 

applying the prediction protocol to the chemical space known for their 

sibling targets at that year, and (3) using the obtained siblings’ core scaffolds 

to try to recover any of the bioactive molecules currently annotated to them. 

The results of this exercise are shown in Table 3. The validation dataset is 

composed by 250 Tclin/Tchem targets (13% of initial ones), most of them 

classified as enzymes (98) or GPCRs (69). For 82% of them (205), a core 

scaffold was identified, indicating that for the remaining 18% (45) no inter-

sibling pairs of molecular frameworks with a similarity value equal or above 

0.8 to extract an MCS were found. For half of the targets processed, 

between 1 and 6 MCS frameworks collapsed were obtained, with few outlier 

cases with up to 283 core frameworks corresponding to large protein 

subfamilies with very diverse chemical series associated. These core 

frameworks were found to be very specific for the subfamilies, most of 

them occuring in only 1 subfamily with the exception of the staurosporin 

scaffold appearing in 5 protein kinases subfamilies, as expected.  

When trying to recover currently known bioactive molecules for these 

targets we relaxed the bioactivity cutoff for all the protein families to 4.6 

(the lowest cutoff found in Oprea et al. (2017)1) to get the most of the 

coverage. Then, using the siblings’ core scaffolds obtained, we found out 

that in 32% (80) of the cases an active molecule was recovered, in 1 (<1%) 
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case only inactive (bioactivity below 4.6) molecules were recovered and in 

the remaining 50% (124) neither active nor inactive molecules were 

recovered. The low percentage of targets with only inactive molecules 

recovered (<1%) compared to the 32% of targets with bioactive molecules 

recovered shows the efficacy of our protocol in identifying bioactive 

chemical series for the protein subfamily and, thus for the false Tbio/Tdark 

protein. On the other hand, when looking closer to the 50% of the cases 

where the core scaffolds derived from the siblings’ chemical space were not 

able to recover any bioactive molecule of the target analysed, we found that 

this lack of cross-targeting between targets that are known to be sequence- 

and structurally-similar is explained by the lack data completeness at the 

ligand-target interaction level, so widely discussed for years.20,21,22 Assuming 

the cross-pharmacology between sibling proteins in the same subfamily, 

researchers at the medicinal chemistry area tend to select single 

representative ones for the experimental testing in search for bioactive 

ligands and use them as sentinels23 to project the results obtained to their 

siblings. Thus, it is very typical to found protein subfamilies with one target 

having many bioactivities associated compared to the few ones associated 

to the other siblings. Our results show that this completeness issue is 

particularly acute in protein families like enzymes, ion channels and 

transcription factors, with less than half of the targets analysed having at 

least one active molecule recovered. The design of efficient algorithms for 

the prediction of targets chemical space is dependent on ligand-target 

matrices completeness as shown here and in other publications,24 to help 

mitigate this issue a complete list of the bioactive molecules associated to 

the Tclin/Tchem targets considered for the validation, annotated to their 

pChEMBL value, their deposition year in ChEMBL and whether they are 
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or not recovered by the siblings’ core scaffolds extracted is provided in the 

Supplementary Table S1. 

 

Table 3. Illuminating the Chemical Space protocol applied to 250 Tclin/Tchem proteins one 

year before their first active molecule was deposited in ChEMBL. Percentages are 

calculated with respect to the targets in the first column. 

Protein family Targets 
Targets with 

core scaffolds 
identified 

Targets with 
molecules 
recovered 

Targets with 
no molecules 

recovered 

Cytochrome P450s 1 1 (100%) 1 (100%) 0 (0%) 

Enzymes 98 87 (89%) 23 (23%) 63 (64%) 

Epigenetic factors 19 17 (89%) 12 (63%) 5 (26%) 

GPCRs 69 61 (88%) 32 (46%) 29 (42%) 

Ion channels 34 23 (68%) 2 (6%) 21 (62%) 

Kinases 16 10 (63%) 9 (56%) 1 (6%) 

Nuclear receptors 3 1 (33%) 1 (33%) 0 (0%) 

Transcription 
factors 

10 5 (50%) 0 (0%) 5 (50%) 

Transporters 0 0 (-) 0 (-) 0 (-) 

Other 0 0 (-) 0 (-) 0 (-) 

Total 250 205 (82%) 80 (32%) 124 (50%) 
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In Figure 3 some illustrative examples of the protocol validation across 

different protein families are shown. The first one corresponds to the 

coagulation factor IX/VIII (F9) classified in the serine protease S1A 

subfamily (EC.1028.1079.1136.38) and with the first active ligand deposited 

in ChEMBL in 2004. In 2003 (2004–1), there were 17 Tclin/Tchem sibling 

targets, including the thrombin and coagulation factor VII (F7), the 

thrombin and coagulation factor X (F10) and the thrombin and trypsin (F2). 

The top core framework found for them at that time covered molecules 

annotated to 7 of these siblings and with only one of the two core scaffolds 

derived from this top1 core framework we are able to recover one of the 

bioactive molecules currently associated to F9 in ChEMBL, named 

CHEMBL327715. When considering the final set of all core scaffolds 

derived from the top5 core frameworks, a total of 4 bioactive molecules 

currently associated to the false Tbio/Tdark protein are recovered showing the 

efficacy of our protocol. The second example corresponds to the D(1A) 

dopamine receptor (DRD1) classified in the dopamine receptors subfamily 

(GR.1020.1088.1266.535) and with the first active ligand deposited in 

ChEMBL in 1996. In 1995 (1996–1), there were 3 Tclin/Tchem sibling targets, 

the D(2) dopamine receptor (DRD2), the D(3) dopamine receptor (DRD3) 

and the D(4) dopamine receptor (DRD4). There were obtained 3 core 

frameworks for them at that year that, when decorated, derived in 13 core 

scaffolds. The top ranked core framework was able to recover one of the 

bioactive molecules currently associated to DRD1, named CHEMBL54, 

and a second molecule was also recovered when considering all the top3 

core frameworks, named CHEMBL2158640. This second example shows 

the efficacy of the protocol also for small protein subfamilies. The third 

example corresponds to the voltage-gated potassium channel subunit Kv1.6 

(KCNA6) classified in the voltage-gated potassium channels subfamily 
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(IC.1019.667.118), abbreviated as VG K, and with the first active ligand 

deposited in ChEMBL in 2017. In 2016 (2017–1), there were 17 Tclin/Tchem 

sibling targets, including the voltage-gated potassium channel subunit Kv4.3 

(KCND3), the voltage-gated potassium channel subunit Kv7.2 (KCNQ2) 

and the voltage-gated potassium channel subunit Kv1.4 (KCNA4). The top 

ranked core framework obtained for the siblings at 2016 derives into 6 core 

scaffolds with one of them (the one shown in fig. 3) recovering one of the 

bioactive molecules currently associated to KCNA6, named 

CHEMBL444449. The fourth and last example corresponds to the 

disintegrin metalloproteinase domain-containing protein 33 (ADAM33) 

classified in the metalloprotease M12B subfamily (EC.1028.1081.1131.84), 

abbreviated as M12B. The first active ligand for this target was deposited in 

ChEMBL in 2014, and in 2013 (2014–1) there were 5 Tclin/Tchem sibling 

targets, including the disintegrin metalloproteinase domain-containing 

protein 10 (ADAM10), the disintegrin metalloproteinase domain-

containing protein 17 (ADAM17) and the A disintegrin and 

metalloproteinase with thrombospondin motifs 5 (ADAMTS5). The top 

core framework identified for the sibling targets covered molecules 

annotated to 4 of these siblings at 2013 year and with only one of the two 

core scaffolds derived from this framework, one of the bioactive molecules 

currently associated to ADAM33 in ChEMBL is recovered, named 

CHEMBL3643916. When considering the final set of all core scaffolds 

derived from the top5 core frameworks, a total of 9 bioactive molecules 

currently associated to the false Tbio/Tdark protein are recovered showing the 

efficacy of our protocol. 
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Figure 3. Illustrative cases of Tclin/Tchem proteins in the validation dataset. 
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Application to Tbio/Tdark proteins. Having validated the performance of 

the prediction protocol on the 250 Tclin/Tchem targets, the next step was to 

apply it to the set of 128 current Tbio/Tdark proteins that can be assigned to 

a protein subfamily with at least two Tclin/Tchem sibling targets. The results 

obtained are collected in Table 4. For 91% of them (116), a core scaffold 

was identified, above the 82% obtained for the validation dataset. The 

median amount of core frameworks per target increases with respect to the 

median amount obtained for the validation dataset to up to 46 indicating 

that the chemical space associated to protein subfamilies that contain 

Tbio/Tdark proteins is more heterogeneous and cannot be collapsed into few 

MCSs frameworks. However, they are found again to be very specific for 

the subfamilies, all of them occuring in only 1 or two subfamilies. 

The core scaffolds identified for the 116 Tbio/Tdark targets sum up to 

1,439 unique structures that come from 150 unique core frameworks. This 

core frameworks have a median amount of 5 core scaffolds each one. For 

the reader to have a feeling of the structures obtained, in Figure 4 we show 

a sample of the core scaffolds resulting from the selection of one 

representative scaffold of the top1 ranked core frameworks extracted for 

each of the unique subfamilies containing these 116 Tbio/Tdark protein. 
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Figure 4. Sample of core privileged scaffolds obtained for a selection of the 128 untargeted 

protein in enzymes, ion channels, epigenetic factors and GPCRs. 
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Figure 4. (continued)  
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Contrary to the results obtained when applying the molecular recovery 

step (step 7) to the validation dataset, which resulted in only 32% of the 

targets analysed having a bioactive molecule recovered by the siblings’ core 

scaffolds, in this case at least one molecule in ZINC database could be 

identified with the core scaffolds extracted in up to 77% (98) of the 

Tbio/Tdark targets processed. The ZINC molecules recovered sum a total of 

494,274 (Table 4) unique compounds in-stock ready to be purchased and 

tested against the yet untargeted proteins. The probability of finding a 

bioactive molecule for the target among them equals 32±50%, as we 

concluded from the validation analysis. The complete list of ZINC 

compounds recovered is provided in the Supplementary Table S2 mapped 

to their corresponding Tbio/Tdark targets. For those targets with no ZINC 

compounds found but with a core scaffold identified, the collection of core 

scaffolds obtained are also provided as an starting point for de novo candidate 

drug design. 

As a closing of this section, we selected an exemplary Tbio/Tdark target for 

a detailed and step-by-step description of how the protocol is applied and 

which results are obtained. The selected protein is the lethal(3)malignant 

brain tumor-like protein 4 (L3MBTL4) classified within the MBT domain 

subfamily (EP.837.858.861) (fig. 5). Together with the L3MBTL4 protein, 

this subfamily contains two Tclin/Tchem siblings, the Lethal(3)malignant brain 

tumor-like protein 3 (L3MBTL3), with the first deposited bioactivity in 

ChEMBL in 2013, and the Lethal(3)malignant brain tumor-like protein 1 

(L3MBTL1), with the first deposited bioactivity in ChEMBL in 2017. When 

collecting ChEMBL bioactivities for the sibling targets we found that 

L3MBTL3 has 55 active molecules annotated while L3MBTL1 has 1,118, 

evidencing the completeness bias towards one target in the subfamily as the 

representative ones mentioned before. Among the molecules collected, a 3-
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ring PS is detected in both siblings’ chemical space. This substructure is 

exemplified and labelled in orange in Figure 4 step (2) in the molecule 

CHEMBL2426373 associated to L3MBTL3 with a pIC50 equal to 6.46, and 

in CHEMBL1348716 associated to L3MBTL1 with a potency value equal 

to 8.7. Apart from this chemical series, many others are found associated to 

L3MBTL1 which we exemplify with the CHEMBL1257003 molecule that 

has a pIC50 equal to 6.55. As it can be appreciated, the PS highlighted has 

a constant molecular framework but different atom and bond types 

decorating the ring. This justifies step (3) molecule-to-framework 

conversion in order to increase the MCS signal at step (4) and facilitate the 

detection of an inter-siblings enriched substructure. At MCS calculation 

step, CHEMBL1257003 is left behind and only CHEMBL2426373 and 

CHEMBL1348716 molecules are retained for the next steps. In this 

particular case only one framework is shown so it is selected as the single 

core framework at step (5) covering 2 out of the 2 siblings clustered in the 

MBT domain subfamily. One the core framework is identified, it is 

decorated back to the initial substructures where it was found in the original 

molecules to give rise to the collection of final core scaffolds exemplified 

here with the two substructures at step (6). With them, ZINC database was 

screened and we discovered 61 molecules containing the core scaffolds as 

substructures, such as ZINC19715644 and ZINC12543865. This molecules 

are ready to be purchased for testing against L3MBTL4. 
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Table 4. Illuminating the Chemical Space protocol applied to 128 Tbio/Tdark proteins. 

Percentages are calculated with respect to the targets in the first column. 

Protein family Targets 
Targets with 
core scaffold 

found 

Targets with  

ZINC 
molecules 
identified 

Unique 

ZINC 
molecules 
identified 

Cytochrome P450s 1 1 (100%) 0 (0%) 0 

Enzymes 29 28 (97%) 27 (93%) 317,814 

Epigenetic factors 21 13 (62%) 7 (33%) 164,819 

GPCRs 9 9 (100%) 5 (56%) 3,070  

Ion channels 34 34 (100%) 28 (82%) 101 

Kinases 4 3 (75%) 3 (75%) 72 

Nuclear receptors 1 0 (0%) 0 (0%) 0 

Transcription 
factors 

28 28 (100%) 28 (100%) 8,398  

Transporters 1 0 (0%) 0 (0%) 0 

Other 0 0 (-) 0 (-) 0 

Total 128 116 (91%) 98 (77%) 494,274 
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Figure 5. Illustrative example of prediction protocol applied to a Tbio/Tdark protein. 
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Conclusions 

It is widely established that if a small molecule binds to a given protein, it 

may bind also to other proteins related by sequence identity. Target 

phylogeny is thus a property worth exploiting in the quest for bioactive 

small molecules of untargeted proteins belonging to protein families with 

already targeted protein members. The connection between target 

phylogeny and ligand polypharmacology motivated more than a decade ago 

the implementation of chemogenomics strategies in drug discovery, aiming 

at organising research around target families as a means to maximise 

efficiency of chemistry and biology resources and to improve hit rates.10-12 

In a sense, this work is an attempt to recover the lost chemogenomics 

spirit. By maximally exploiting the structural contents of the growing 

number of bioactive ligands contained in public sources, we have been able 

to define a computational strategy to identify privileged core scaffolds likely 

to be enriched with bioactive ligands across multiple members of a protein 

family. In those protein families with untargeted proteins, the information 

on family-wide privileged scaffolds is then used to extract commercially 

available small molecules containing them. It is expected that these focussed 

chemical sets will accelerate the discovery of bioactive ligands for many 

untargeted proteins. All molecular sets are made publicly available for the 

benefit of the entire chemical biology and drug discovery communities. 
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Supplementary Material 

Supplementary Table S1 

File: chembl28_Tclin_Tchem.csv.gz 

Tclin/Tchem | chembl_id | pChEMBL | year | recovered (True/False) 

Supplementary Table S2 

File: chembl_28_Tbio_Tdark.csv.gz 

Tbio/Tdark | core_scf | zinc_id | SMILES 
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III.4 A map of the proteome targetable by dual-

acting agents 

 

 

Falaguera, M. J. & Mestres, J. A map of the proteome targetable by  

dual-acting agents. In preparation.  

 

As a closing chapter of this section, here I present a new ontology to help 

map current poly-pharmacological opportunities for targeting the human 

proteome by dual-acting agents. 
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Introduction 

 

In the last 20 years, polypharmacology1 has emerged as a very promising 

therapeutic strategy for the treatment of complex diseases such as cancer 

and central nervous system (CNS) disorders, with demonstrated efficacy 

and safety improvements compared to magic bullet-based therapies and 

drug combiantions.2 The intricate framework of protein-protein 

interactions (PPI), protein-metabolite interactions, compensatory signalling 

routes and feedback mechanisms3,4 that characterize these kind of diseases 

ensures the robustness of the systems when one of its elements is perturbed5 

and makes extremely difficult, if not impossible, for single-action 

therapeutics to overcome the system resistance. Although the standard 

treatments in this kind of settings have for years consisted in the 

administration of drug combinations (‘drug cocktails’),6 safety issues derived 

from drug-drug interactions, negative synergistic effects and dosage 

selection that are associated to drug mixtures2 is making multi-action drugs 

to be considered more and more the suitable alternative for therapy. 

As the knowledge on the molecular mechanisms behind drugs action 

increases, it is becoming more evident that many drugs approved in the past 

as single-action ones, in fact owe their efficacy to their multi-action 

behaviour.7 This is prompting a shift in the perception of drug off-targets 

effects in the medicinal chemistry community. From being considered as 

prone to safety issues, undesirable and necessary to be removed, they are 

progressively been seen as promising opportunities for muti-target drugs’ 

discovery.7 

The simplest level of polypharmacology applied to drug discovery are 

dual-action drugs (DADs). These are compounds approved on purpose to 
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act simultaneously on pairs of protein targets at similar efficacious dose.9 

Some examples of DADs approved in the last years include bosutinib, a 

dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid 

leukaemia;10 lapatinib, a dual EGFR/ERBB2 inhibitor for the treatment of 

breast cancer;11 bupropion, a dual serotonin/dopamine receptors blocker 

used as antidepressant;12 and clozapine, another dual serotonin/dopamine 

receptors blocker approved as an antipsychotic.13 And several other agents 

are at research and pre-clinical phases as clinical candidates for a variety of 

diseases.9 

Although some attempts to globally map the ligand-target space of some 

therapeutically relevant protein families have been made in the last 20 

years,7,14,15 no systematic assessment of dual-action, and by extent, multi-

action drug opportunities across the whole targetable proteome has been 

carried out to our knowledge. Thus, starting from the lowest level, and with 

the possibility of extending it to higher ones, here we propose a novel whole 

ontology to help describe target vs target links space in the context of DADs 

possibilities and the derived space of dual-agent vs target vs target triads. The 

described ontology is applied to analyse current dual-pharmacology 

situations and opportunities for the targetable proteome defined by the 

Illuminating the Druggable Genome (IDG) initiative.16 

The paper is organized as follows, first we define different categories to 

describe what we name as dual agents, according to their mechanism of 

action (MoA) association with the proteins targeted.  Secondly, we define 

different categories to describe target pairs categories according to their 

target development level (TDL)16 proposed by the IDG. Finally, we use the 

defined concepts to build a map of the proteome targetable by dual-acting 

agents and discuss future opportunities for dual pharmacology. 
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Dual agents categories 

 

We define a dual agent as a compound with biologically relevant activity (see 

Databases and Methods) for a pair of protein targets. They can be 

subclassified in three categories according to their maximum (pre)clinical 

phase and their mechanism of action association with the pair of proteins 

targeted, as follows: 

- Dual action drug (DAD): approved drug designed on purpose to 

combine two different pharmacological actions at similar efficacious 

dose. 

- Dual interacting drug (DID): approved drug not designed on 

purpose as a DAD, which has clinically-relevant activity for two protein 

targets. They can be subclassified in three subcategories according to 

the pair of targets covered: 

 DIDMOA, if both targets are defined as its MoA (putative DADs); 

 DIDMIX, if only one of the targets is defined as its MoA; and 

 DIDOFF, if none of the targets are defined as its MoA, but as off-

targets. 

- Dual interacting ligand (DIL): non-approved ligand with clinically-

relevant activity for two protein targets. 
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Target pairs categories 

 

The TDL system designed by the IDG initiative classifies human proteins 

into four categories (named Tclin, Tchem, Tbio and Tdark) according to their 

known biomedical and pharmacological relevance. Tclin (clinic) targets refer 

to those having an approved drug annotated as its mechanism of action 

(MoA). Tchem (chemistry) proteins stand for those that lack a MoA-based 

link to approved drugs but that are known to bind to small molecules with 

high potency. Ligand-target interaction bioactivities for Tclin vs Tchem 

discrimination are extracted from ChEMBL17 and DrugCentral18 databases. 

On the other hand, Tbio (biology) refers to those proteins with known 

biological role and some evidences of linkage to a disease phenotype despite 

lacking an identified small molecule or approved drug with biological 

activity for them. Finally, Tdark (dark genome) assignments refer to the 

remaining proteins that have been manually-curated at the primary sequence 

level in UniProt,19 yet do not meet any of the criteria for Tclin, Tchem or Tbio. 

According to this, protein pairs targeted by dual agents can be classified into 

three categories, as follows: 

- TclinTclin (clinic): target pair constituted by two Tclin proteins. They can 

be subclassified into four subcategories according to the MoA of the 

dual agent targeting them, if available: 

 TclinTclin|MOA (clinic MOA), if both Tclin are targeted by the same 

DIDMOA and are annotated as the drug MoA; 

 TclinTclin|MIX (clinic MIX), if both Tclin are targeted by the same 

DIDMIX and one of them is annotated as the drug MoA; 

 TclinTclin|OFF (clinic OFF), if both Tclin are targeted by the same 

DIDOFF with none of them annotated as its MoA; and 
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 TclinTclin|LIG (clinic LIG), if both Tclin are targeted by the same 

DIL. 

- TclinTchem (mixed): target pair constituted by one Tclin and one Tchem 

proteins. They can be subclassified into three subcategories according 

to the dual agent MoA when found: 

 TclinTchem|MIX (mixed MIX), if both proteins are targeted by the 

same DIDMIX and the Tclin is annotated as the drug MoA; 

 TclinTchem|OFF (mixed OFF), if both proteins are targeted by the 

same DIDOFF with none of them annotated as its MoA, and so 

considered as off-targets; and 

 TclinTchem|LIG (mixed LIG), if both proteins are targeted by the 

same DIL. 

- TchemTchem (chemistry): target pair constituted by two Tchem proteins. 

They can be subclassified into two subcategories according to the dual 

agent: 

 TchemTchem|OFF (chemistry OFF), if both Tchem are targeted by the 

same DIDOFF; and 

 TchemTchem|LIG (chemistry LIG), if both Tchem are targeted by the 

same DIL. 

On the other hand, target pairs can also be classified according to the 

phylogenetic relation between their targets as follow: 

- TTintra (intra-family), if both targets are within the same protein 

family; and  

- TTinter (inter-family), if targets are classified in different protein 

families. 
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Map of dual agent vs target vs target triads 

 

When applying the concepts defined to the Tchem and Tclin targets available 

at the Target Central Resource Database (TCRD)20 (see Databases and 

Methods), a dataset of 134,270 dual agent vs target vs triads is generated.  

Dual agents coverage.  The triads identified are targeted by a total of 130 

unique DIDMOA, 195 unique DIDMIX/DIDOFF, and 47,689 DILs. As 

expected, DIDMOA found are mainly anticancer therapeutics targeting 

multiple tyrosine-kinases; such as bosutinib, crizotinib, dasatinib and 

lapatinib; and antidepressants acting on multiple receptors of the same 

protein family; such as dexmedetomidine, cariprazine, butorphanol and 

bazedoxifene. They are represented in Figure 1 by the clusters of yellow 

connections accumulated at the Tclin section, which are specially enriched 

within kinases and G protein-coupled receptors (GPCRs) families. Our 

findings contradict the general viewpoint that approved dual-acting agents 

are the product of a rational drug design process.21 Instead, it is more likely 

that this was a result of serendipity as mentioned above. 

Target pairs coverage. The 134,270 triads identified can be collapsed into 

9,549 unique target pairs. They are distributed in 2,717 (28%) TclinTclin, 4,009 

(42%) TclinTchem and 2,823 (30%) TchemTchem (tab. 1, fig. 2). This means that 

almost three quarters of the target pairs found imply a target which is known 

to be clinically relevant. The TchemTchem found correspond mainly to pairs of 

kinases and other enzymes targeted by tyrosine kinase inhibitors (TKI), so 

well known for their promiscuity.7 TclinTclin pairs are mainly GPCRs (592), 

enzymes (599), kinases (429) and ion channels (193). This is not surprising, 

since these protein families have been intensively targeted by the 

pharmaceutical industry for decades due to their therapeutic interest in 
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cancer, channelopathies and neuropsychiatric disorders.16 In addition to the 

6,842 (72%) intra-family pairs found, we identified 2,707 (28%) inter-family 

dyads, with GPCRs vs ion channels being the most populated subgroup. 

The majority of these TTinter imply one or two safety-related targets and 

come from the testing of approved drugs in search for off-target undesirable 

adverse drug reactions.22 These safety-related targets include the potassium 

voltage-gated channel subfamily H member 2 (KCNH2 or hERG), whose 

blockade is associated with potentially fatal cardiac arrhythmias;23 the 

muscarinic acetylcholine receptors, which have a fundamental role in 

physiology and should not unintendedly perturbed; the 5-

hydroxytryptamine receptor 2B (5-HT2B), associated with potential cardiac 

valvulopathy and pulmonary hypertension; and some tyrosine-protein 

kinases like Fyn, Lck, FLT3 and ABL1 that are regarded as ‘sentinel’ 

representatives of the adverse drug reactions-related kinases.22 The other 

non-safety-related inter-family target pairs imply in most of the cases a 

cytochrome P450, a carbonic anhydrase, a poly(ADP-ribose) polymerase 

(PARP), a cyclooxygenase, cholinesterase or acetylcholinesterase. In the 

Supplementary Material an exemplary list of intra-family and inter-family target 

pairs is provided. 
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Intra-family target pairs 

 

 

 

Inter-family target pairs 
 

Figure 1. Map of the targetable human proteome targeted by dual agents. Nodes in the 

circles represent the initial Tclin/Tchem targets in the analysis. Those that are interconnected 

represent target pairs sharing a common dual agent. 
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a) 

 

b) 

 

Figure 2. Distribution of 9,549 target pairs across protein families. a) Percentages of the 

target pairs categories. b) Target pairs categories across protein families. GPCR, G protein-

coupled receptor. 
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Table 1. Target pairs categories. 

Protein family Targets TclinTclin TclinTchem TchemTchem 

Enzymes 2,112 500 (24%) 750 (36%) 862 (41%) 

Kinases 2,804 429 (15%) 1,264 (45%) 1,111 (40%) 

Cytochrome P450s 39 0 (0%) 0 (0%) 39 (100%) 

Epigenetic proteins 212 55 (26%) 21 (10%) 136 (64%) 

GPCRs 1,259 592 (47%) 498 (40%) 169 (13%) 

Ion channels 263 193 (73%) 54 (21%) 16 (6%) 

Transporters 40 4 (10%) 6 (15%) 30 (75%) 

Nuclear receptors 113 45 (40%) 49 (43%) 19 (17%) 

Inter-family 2,707 899 (33%) 1,367 (50%) 441 (16%) 

Total 9,549 2,717 (28%) 4,009 (42%) 2,823 (30%) 

GPCR, G protein-coupled receptor. 
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Target pairs relative coverage. In the previous section, we analysed the 

amount of protein pairs found to be targeted by a common dual agent in 

terms of absolute coverage. Now, a complementary analysis in terms of 

relative coverage is carried out to put the absolute coverage figures in the 

context of the initial Tclin+Tchem dataset. We calculated relative coverages 

across target pairs’ categories and across target pairs’ families by dividing 

absolute coverage values by the sum of all the theoretically possible target 

pairs that we could have at each group. For example, in an ideal case where 

a dual agent could be found for every target pair in the kinases family, based 

on the initial 425 (373+52) Tclin+Tchem proteins (see Supplementary 

Material), the 2,804 target pairs found to be covered by a dual agent would 

represent a relative coverage equal to 3% (2,804/(425*(425–1)/2). We are 

aware that ‘not all target pair combinations will be accessible to a single 

agent with drug-like properties’,1 and that more realistic estimates of the 

amount of empirically possible targetable target pairs could be devised. Still 

this approach could shed some light on relative coverages at this point. 

Results obtained from our target pairs’ relative coverage analysis are 

shown in Table 2. According to it, clinical pairs (0.9%) are on average 8 

times better covered than chemical ones (0.1%), which was expected given 

their known therapeutic utility. This contrast with absolute coverage results 

where clinical (29%, 2,717/9,549) and chemical (30%, 2,823/9,549) targets 

pairs showed almost equal values. This evidences the bias that analysing 

absolute coverages alone may introduce. Focusing on protein families, 

TclinTclin epigenetic factors appear to be the most relatively covered family 

(83%). After TclinTclin epigenetic factors, TchemTchem cytochrome P450s have a 

relative coverage of 50%, stemming from compounds tested against 

different cytochrome P450s to assess metabolic liabilities. TclinTclin kinases 

follow, with up to 32% relative coverage, which is explained by the large 
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number of highly-promiscuous TKI having affinity for the ATP-binding 

site characteristic for protein-tyrosine kinases. Two other promiscuous 

families are nuclear receptors, with a TclinTclin relative coverage equal to 29%; 

and GPCRs, with a TclinTclin relative coverage of 13%. This is explained by 

the presence of highly conserved binding sites for monoamine 

neurotransmitters reception in most GPCRs and by the fact that they are 

the largest family of druggable targets in the human genome, with between 

20% and 30% of approved drugs acting on them.16 On the contrary, families 

with the lowest relative coverages are enzymes, ion channels and 

transporters with values below 3%. Again, family-based relative coverage 

results contrast with absolute one since enzymes were was the second most 

absolutely covered protein family (22%). Finally, as expected, relative 

coverages for inter-family pairs are below 1%, which further confirms that 

when two proteins are phylogenetically closer, it is easier to find a dual-

acting agent. 

 

 

Conclusions 

 

The classical view of the compound vs target interactome as a 1-dimension 

map, might not be sufficient anymore to map the vast range of 

polypharmacological opportunities that might be enclosed in currently 

known chemical and biological spaces, and new terms and tools with a 

network-based perspective should be proposed. In this work, a novel 

ontology of terms to help map dual-pharmacological opportunities present 

in the human proteome has been proposed. When applied to compound vs 

target bioactivity data available in public sources, a set of almost 10 

thousand protein pairs with a bioactive dual agent targeting them was 
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obtained. Almost three-fourths of these target pairs imply at least one 

mechanism-of-action target of an approved drug or/and imply two 

phylogenetically-related targets classified within the same protein family. 

Proposed as a starting point for the analysis of dual-pharmacological 

opportunities, new layers of complexity could be added in the future to 

explore a wider range of polypharmacological opportunities.  

 

 

 
Absolute coverages 

 
Relative coverages 

 

TT 

/9,549 

TclinTclin 

/2,717 
 

TT TclinTclin TclinTchem TchemTchem 

Enzymes      22.1% 18.4% 
 

0.8% 2.9% 0.7% 0.6% 

Kinases 29.4% 15.8% 
 

3.1% 32.4% 6.5% 1.6% 

Cyt. P450s 0.4% 0.0% 
 

50.0% - - 50.0% 

Ep. proteins 2.2% 2.0% 
 

5.5% 83.3% 2.3% 4.8% 

GPCRs 13.2% 21.8% 
 

24.9% 13.0% 3.7% 1.7% 

Ion channels 2.8% 7.1% 
 

1.2% 2.5% 0.5% 0.4% 

Transporters 0.4% 0.1% 
 

0.8% 1.1% 0.3% 1.1% 

Nuclear rec. 1.2% 1.7% 
 

17.0% 29.4% 14.3% 11.1% 

Inter-family 28.3% 33.1% 
 

0.2% 0.9% 0.3% 0.1% 

 

Table 2. Target pairs absolute coverage vs relative coverage. Absolute coverages are 

calculated by dividing the total amount of target pairs and the total amount of TclinTclin pairs 

in each family by 9,549 and 2,717, respectively. Relative coverages are calculated by dividing 

the total amount of target pairs at each family and category by the sum of all theoretically 

possible targetable target pairs within each family and category.  
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Databases and Methods 

 

Protein targets. The target development level (TDL) is a knowledge-based 

classification scheme, conceived as part of the Illuminating the Druggable 

genome (IDG) initiative, that groups proteins in four categories reflecting 

the depth of investigation from a clinical (Tclin), chemical (Tchem), 

therapeutical (Tbio), and biological (Tdark) standpoint. We downloaded the list 

of Tclin and Tchem proteins from the Target Central Resource Database 

v5.4.2exp and selected those targets classified by the Drug Target Ontology 

(DTO) as enzymes, kinases, cytochrome P450s, epigenetic proteins, G-

protein coupled receptors (GPCRs), ion channels, transporters and nuclear 

receptors. See Supplementary Material for a summary of the initial dataset 

size. 

Molecule vs target bioactivities. From ChEMBL v26, we downloaded 

bioactivities annotated to the Tclin and the Tchem in our list of targets, that 

fulfil the following conditions: (i) come from a binding (‘B’) or functional 

(‘F’) assay (ii) with a confidence score equal to 9, (iii) imply a small molecule, 

(iii) have an activity type like IC50, EC50, Ki or Kd and (iv) have a 

pChEMBL value equal or above the Oprea’s et al. (2018)15 family-specific 

thresholds: ≤30 nM for kinases, ≤100 nM for GPCRs and nuclear 

receptors, ≤10 µM for ion channels and ≤1 µM for other target families. 

Using DrugCentral v2020 we annotated ChEMBL interactions linked by 

mechanism of action. 

Dual agent vs target pair triads. We cross-matched the list of targets in 

order to obtain all the combinations of proteins sharing a common bioactive 

molecule (InChiKeys-based). This resulted in the final set of 134,270 dual 
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agent vs target vs triads. Triads coming from Staurosporine, the only pan-

inhibitor found, were discarded to avoid bias in the analysis. 
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Supplementary Material 

 

Supplementary Table S1. Initial dataset of target proteins. 

 

Protein family 

 

Targets 

 

Tclin 

 

Tchem 

Enzymes 740 187 553 

Kinases 425 52 373 

Cytochrome P450s 13 0 13 

Epigenetic proteins 88 12 76 

GPCRs 238 96 142 

Ion channels 211 126 85 

Transporters 101 27 74 

Nuclear receptors 37 18 19 

Total 1,853 518 1,335 
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Supplementary Table S2. Examples of TclinTclin pairs covered by a dual agent. 

Intra-family TTs 

Target1 (gene) Target2 (gene) Dual agent pAct1 pAct2 

TclinTclin|MOA 

Mast/stem cell growth 
factor receptor Kit (KIT)* 

Platelet-derived growth 
factor receptor alpha 
(PDGFRA)* 

Imatinib 7.84 7.85 

Carbonic anhydrase 12 
(CA12)* 

Carbonic anhydrase 2 
(CA2)* 

Acetazolamide 8.23 7.86 

TclinTclin|MIX 

D(2) dopamine receptor 
(DRD2)* 

Muscarinic 
acetylcholine receptor 
M1 (CHRM1) 

Olanzapine 7.73 8.00 

Estrogen receptor 
(ESR1)* 

Progesterone receptor 
(PGR) 

Fulvestrant 8.86 9.68 

TclinTclin|OFF 

Alpha-2C adrenergic 
receptor (ADRA2C) 

5-hydroxytryptamine 
receptor 2C (HTR2C) 

Amitriptyline 8.07 8.50 

Fibroblast growth factor 
receptor 1 (FGFR1) 

Vascular endothelial 
growth factor receptor 1 
(FLT1) 

Cabozantinib 7.95 7.92 

TclinTclin|LIG 

Sodium-dependent 
noradrenaline transporter 
(SLC6A2) 

Sodium-dependent 
dopamine transporter 
(SLC6 A3) 

(R,S)-Indatraline 7.74 7.61 

Mast/stem cell growth 
factor receptor Kit (KIT) 

Platelet-derived growth 
factor receptor alpha 
(PDGFRA) 

Cediranib 9.45 9.39 

D(2) dopamine receptor 
(DRD2) 

5-hydroxytryptamine 
receptor 2A (HTR2A) 

Blonanserin 9.85 9.09 

Histone deacetylase 4 
(HDAC4) 

Histone deacetylase 11 
(HDAC11) 

CHEMBL42278
98 

8.12 8.12 
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Supplementary Table S2. (continued). *Target annotated as the MoA of the dual agent. 

Inter-family TTs 

Target1 (gene) Target2 (gene) Dual agent pAct1 pAct2 

TclinTclin|MOA 

Sodium-dependent 
noradrenaline transporter 
(SLC6A2)* 

Histamine H1 receptor 
(HRH1)* 

Doxepin 7.54 9.84 

5-hydroxytryptamine 
receptor 2C (HTR2C)* 

Sodium-dependent 
serotonin transporter 
(SLC6A4)* 

Trazodone 7.33 6.99 

TclinTclin|MIX 

Sodium-dependent 
serotonin transporter 
(SLC6A4)* 

Muscarinic 
acetylcholine receptor 
M4 (CHRM4) 

Amitriptyline 8.07 9.13 

5-hydroxytryptamine 
receptor 2A (HTR2A)* 

Sodium-dependent 
serotonin transporter 
(SLC6A4) 

Ziprasidone 9.44 7.11 

Mu-type opioid receptor 
(OPRM1)* 

Sodium channel 
protein type 5 subunit 
alpha (SCN5A) 

Loperamide 9.28 6.62 

TclinTclin|OFF 

5-hydroxytryptamine 
receptor 2A (HTR2A) 

Sodium-dependent 
serotonin transporter 
(SLC6A4) 

Chlorpromazine 8.46 7.44 

Rod cGMP-specific 3',5'-
cyclic phosphodiesterase 
subunit alpha (PDE6A) 

Adenosine receptor 
A2a (ADORA2A) 

Sildenafil 8.1 6.78 

Acetylcholinesterase 
(ACHE) 

5-hydroxytryptamine 
receptor 2C (HTR2C) 

Fluoxetine 6.89 6.92 

TclinTclin|LIG 

Delta-type opioid 
receptor (OPRD1) 

Gamma-aminobutyric 
acid receptor subunit 
alpha-2 (GABRA2) 

Amentoflavone 7.44 8.22 
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Patents as a source of novel chemical space 

 

The new generation of patent chemical repositories obtained by means of 

artificial intelligence (AI) algorithms88 is disclosing a whole novel chemical 

space of biological relevance. The main limitation is their incapability to 

discriminate between compounds of pharmacological relevance and other 

starting materials and intermediate products also appearing in the patent 

document.18 To address this situation, in Chapter III.1, I introduce a new 

unsupervised filtering protocol able to automatically select the core 

chemical structures best representing a congeneric series of 

pharmacologically relevant molecules in a patent. Validated with the 

manually curated ChEMBL14 patents, and applied then to the recently 

released SureChEMBL patent chemical database,18 a final set of ~6 million 

molecules conforming congeneric chemical series in ~0.2 million patents is 

disclosed. Open access to this filtered SureChEMBL version enriched with 

molecules of pharmacological relevance, named SureChEMBLccs, is 

available for download at the EMBL-EBI web site.89 The protocol 

presented could be used to generate regular updates of SureChEMBLccs 

and be extended to other AI-generated chemical patent databases, such as 

Google Patents,90 for a greater coverage of patent-derived 

pharmacologically-relevant chemical space. 

Complementary, I believe that future research in this line should be 

devoted to devising approaches to illuminate the biological space contained 

in patent documents as well. Protein targets and disease indications for the 

claimed compounds can also be found between patent documents’ lines, so 

mapping patent-derived chemical information to patent-derived biological 

information would help us close the so sought-after circle of drug vs target 

vs disease. 
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The chemical scope of patent applications 
 

The sets of molecules claimed in patents can be chemically defined by a 

Markush structure, which is an abstract representation of the region of the 

chemical space protected by the patent. In Chapter III.2, I have 

demonstrated that this patent claimed chemical region tend to be, on the 

one hand, narrow enough to retain only chemical series of compounds 

acting on the same mechanism-of-action target(s) or having similar cellular 

phenotype(s), while on the other hand, wide enough to cover as much as 

possible compounds with these characteristics to ensure the exclusivity of 

the invention.  

This same trend is observed both in patents deposited in manually-

curated databases like ChEMBL and in automatically-generated ones like 

SureChEMBL. However the second ones show greater compounds 

coverage compared to the first ones, without losing their high molecular 

congenericity degree. What is left to know is whether this coverage increase 

occurs only in terms of quantity or, what is more interesting, in terms of 

diversity. If it is the second, facilitating early patent access and developing 

reliable and efficient tools to explode their content will be extremely 

valuable for advancing in the discovery of medicinal chemistry solutions. 

The similarity-based approach introduced, was applied in this chapter to 

assess the molecular congenericity of collections of compounds claimed by 

patents. However, it could indistinctly serve to describe the molecular 

congenericity degree of any collection of molecules. Moreover, its capability 

to summarize compounds sets similarities in just a few descriptors allows 

for the easy comparison across different collections of molecules.  
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Illuminating the chemical space of untargeted 

proteins 

 

The IDG initiative estimates that 10% of the proteins are mechanism-of-

action targets of an approved drug or have at least one bioactive ligand 

deposited in public sources. The remaining 90% of the human proteome is 

composed by chemically neglected proteins that nonetheless have well 

established implications in biological processes or their primary sequences 

is all what is currently known.70 Some of the reasons hindering the 

identification of bioactive ligands for understudied proteins include the 

difficulty of identifying ligand binding sites in ligand-independent orphan 

targets,91,92 the absence of optimal assays to detect the activation of 

receptors with atypical coupling,93,94 and the absence of protein family 

members with already known bioactive ligands.68 All these aspects, added 

to increased high-throughput screening costs and more stringent safety 

regulations, justify that research in this field prefers investing on generating 

novel chemical series for already targeted proteins over initiating high risk 

projects on yet untargeted ones.68,95  

Following the paradigm that similar proteins are likely to interact with 

similar ligands, in Chapter III.3 I applied a similar concept to that of the 

core structures described in Chapter III.1, in order to identify those core 

scaffolds that are more enriched within families of phylogenetically-related 

proteins and that, when expanded, are highly probable of containing active 

small molecules for untargeted proteins included in the family. 

When applied to a set of 128 untargeted proteins, these privileged core 

scaffolds allowed for extracting a priority list of commercially available small 

molecules with a minimum success rate of delivering active ligands for the 

untargeted proteins equal to 32%. 
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A novel ontology to help DADs discovery 

 

As the knowledge on the molecular mechanisms behind drugs action 

increases, it is becoming more evident that many drugs approved in the past 

as single-action ones, in fact owe their efficacy to their multi-action 

behaviour.96 This is prompting a shift in the perception of drug off-targets 

effects in the medicinal chemistry community. From being considered as 

prone to safety issues, undesirable and necessary to be removed, they are 

progressively been seen as promising opportunities for muti-target drugs’ 

discovery.96 

The classical view of the compound vs target interactome as a 1-

dimension map, might not be sufficient anymore to map the vast range of 

polypharmacological opportunities that might be enclosed in currently 

known chemical and biological spaces, and new terms and tools with a 

network-based perspective should be proposed. To contribute, in Chapter 

III.4, I present a novel ontology of terms to help describe and catalogue the 

current human proteome that might be targetable by a dual-acting agent. A 

list of target pairs with a dual-acting agents of therapeutic interest is also 

provided for future research.  

The analysis is initially proposed for the lowest level of 

polypharmacology (dual-pharmacology) since dual-action drugs with 

efficacy in the treatment of CNS disorders and different types of cancer 

have already been approved.81-87 However, new layers of complexity could 

be added in the future to explore a wider range of polypharmacological 

opportunties. 
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The main contributions of this Thesis can be summarized as follows: 

 

i) A new unsupervised protocol has been designed to automatically 

identify the core chemical structures best representing the congeneric 

series of pharmacologically-relevant molecules in patents. 

 

ii) The protocol has been applied to generate a new filtered version of 

SureChEMBL database enriched with molecules of pharmacological 

relevance, which is available for download at an EMBL ftp site under 

the name of SureChEMBLccs. 

 

iii) This new SureChEMBLccs database gives direct access to a 

pharmacologically-relevant chemical space of ~6 million molecules 

selected from ~0.2 million US pharmacological patents. This could 

be enriched with future updates of the database and by extending the 

application of the protocol to other chemical patent-derived 

databases. 

 

iv) A similarity-based method to analyse quantitatively the degree of 

structural congenericity of collections of compounds has been 

introduced. 

 

v) The method has been applied to evaluate the degree of congenericity 

of claimed compounds in patent applications, demonstrating its 

efficacy to differentiate between patents exemplifying highly 

congeneric compounds of a structurally compact and well defined 

chemical series, from patents containing a more diverse set of 

compounds around a more vaguely described patent claim. 
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vi) The method has been applied to evaluate the congenericity of patent 

molecular compositions coming from different chemical sources; 

namely SureChEMBL, SureChEMBLccs and ChEMBL; concluding 

that filtered molecules in SureChEMBLccs show overlapping 

congenericities with the manually curated sets in ChEMBL. 

 

vii) A new computational protocol to identify those core scaffolds that 

are more enriched within families of phylogenetically-related proteins 

has been proposed to help illuminate the biologically-active chemical 

space of yet untargeted proteins included in the families. 

 

viii) The protocol has been applied to a set of 128 proteins that still lack a 

bioactive ligand in public sources. The core scaffolds obtained have 

allowed for extracting a priority list of commercially available small 

molecules with a minimum success rate of delivering active ligands 

for the untargeted proteins equal to 32%. 

 

ix) A novel ontology to help map dual-pharmacological opportunities 

present in the human proteome has been proposed, revealing that a 

dual-acting agent with biologically-relevant activity exists for almost 

10 thousand protein target pairs. 

 

x) Almost three-fourths of these target pairs for which a dual-acting 

agent was identified involve phylogenetically-related targets classified 

within the same protein family and have at least one mechanism-of-

action target of an approved drug. The remaining one-fourth is 

composed of pairs of proteins coming from different families 

yet neglected as mechanism-of-action drug targets despite having 

known bioactive ligands deposited in public sources
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Poster presented at the Symposium to Celebrate 10 Years of the ChEMBL 

Database, 2019, Hinxton (UK). It summarizes the article in Chapter III.1. 

 

 



 

 

 

 


