
5 IMPROVEMENTS IN SURFACE MEASUREMENTS 

5.1 

                                                                                                                                                                                                                                                                

 

 

  

 

 

 

 

 

 

 

 

 

 

 

5 Improvements in surface measurements 

 

 In the preceding sections, a technique for the measurement of surface profiles 

was presented, using the arrangement of the Ronchi test, whose theoretical 

interpretation was also worked out. As explained, a Ronchi ruling is used in order to 

sample the wavefront, two slope patterns being obtained by placing the ruling lines in 

two orthogonal positions. The patterns registered through a CCD camera have been 

termed ronchigrams, and a method for extracting from them the local normal to the 

surface has been presented. As each sampling point on the wavefront yields a 

measured value for the normal to the surface, therefore increasing the number of 

sampling points on the wavefront will lead to improvements in the surface 

reconstructions. Increasing the accuracy of slope measurements would also improve 

the measurements performed. 
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 In the following Section three techniques for improving the measured surface 

reconstructions are discussed: increasing the frequency of the ruling, the use of phase-

shifting techniques applied to the Ronchi test, and the use of a microstepping 

arrangement. Microstepping involves repetitive and precise displacements of the ruling 

achieved through linear encoder motors, and combining the results of a number 

(typically ten) of ronchigrams to perform as data coming from a single ronchigram. The 

number of sampled points on the wavefront will be two orders of magnitude larger. 

While Sections 5.1 and 5.3 deal with improvements in the sampling of the surface, 

Section 5.2 is oriented to enhancing the accuracy of the measured values. 

 

 

5.1  Ruling spacing techniques 

 

 The key element in the measurement process is obviously the one that samples 

the wavefront: the Ronchi ruling. An initial approach to improvements in the 

measurement technique will involve studying modifications to the ruling itself. 

 Some solutions have been proposed over the years in order to improve the 

results of the Ronchi test using special ruling designs. Design of different null Ronchi 

tests has been one of the most active research lines in the field. The stripes on a null 

test are given a particular shape in order to yield straight fringes in the observation 

plane. Detection of errors on the surface being tested is then reduced to observing 

deviations from the expected straight lines. Null tests have been proposed for 

aspherical surfaces [Malacara 1974], parabolic surfaces [Mobsby 1974], convex optical 

surfaces [Szulc 1997], and even for Hartmann deflectometry setups, yielding a matrix of 

straight rows and columns of dots on the observation plane [Cordero 1990]. Although 

null tests allow better detection of surface deformations, they are suited for one 

particular kind of surface whose parameters are known, thus allowing the shape of the 

stripes on the ruling to be calculated. This makes them a very useful technique in the 

testing of large mirrors in astronomical telescopes, but impractical for the kind of setup 

we are proposing, which is expected to measure different sample geometries. 

 Improvements in the visibility of the shadows caused by the Ronchi test have 

also been obtained by varying the size of the light and dark stripes on the ruling [Murty 

1973]. This type of ruling may be produced with preset ratios between light and dark 

stripes by using double-exposure techniques [Patorski 1980]. Notice that both null tests 
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and rulings with variable opening ratios are approaches which might improve the 

visibility of the lines in the ronchigrams, but which do not improve the sampling of the 

wavefront, as the same data points are collected under better visibility conditions. 

However, the visibility of the ronchigram lines is not a problem in our experimental 

setup, and does not need to be enhanced. 

 As the number of sampling points on the wavefront is directly related to the 

frequency of the ruling being placed in its path, increasing the number of lines per unit 

length on the ruling seems to be the simplest of the solutions in order to improve the 

sampling on the surface, as it might raise the number of sampled points at will. 

Incidentally, it must be recalled that a spatially and temporally coherent source together 

with a ruling with a square-wave transmittance profile is used in our setup. The incident 

wavefront will be diffracted to some extent, and diffractive effects will become more 

important as the frequency of the ruling is increased. This may lead the geometrical 

model on which our surface reconstruction procedure relies to be no longer valid. 

 In Section 3.2 it was shown how, when using low frequency rulings, the 

diffractive and geometrical theories of the Ronchi test were equivalent. It was supposed 

that the shear introduced by diffraction at the edges of the test could be ignored if its 

value was lower than T/8 for the first diffracted order (Eq.3.2.11). The geometrical 

model was shown to be valid if the shear of the first diffracted order fulfilled 
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 Therefore, given a set of experimental conditions, such as the focal length of the 

objective and the wavelength of the source, there is a theoretical limit in the ruling period 

for the geometrical model to remain valid. In our case λ=635nm and f'=50mm, so 

periods longer than 0.356mm are required. Table 5.1 shows the ruling frequencies and 

periods available in our laboratory, the amount of shear for the first diffracted order, and 

the ratio of the first order diffractive shear and the grating period in each case. The final 

ratio shows the importance of the diffractive effects of each particular ruling - for 

instance, diffractive effects in the 200lpi ruling introduce a shear that is almost as large 

as the ruling period, showing that the information on the zero diffracted order overlaps 

with the first diffracted order. The geometrical theory cannot account for the 

interferential effects bound to appear under these experimental conditions. As the 

described method for developing surface profiles relies on ray propagation, it becomes 

invalid under these experimental conditions. The use of high frequency rulings over 
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300lpi yields such diffractive effects that even phase reconstructions obtained through 

the diffractive theory are severely degraded [Wan 1993]. 

 

Table 5.1.1: Diffractive effects using the available Ronchi rulings. 

Frequency (lpi) Period(mm) 1ST order shear (mm) Shear/Period 

50 0.508 0.0312 0.061 

100 0.254 0.0625 0.246 

200 0.127 0.125 0.984 

300 0.0847 0.187 2.214 

 

 Fig.5.1.1 presents experimental ronchigrams for the three lower-frequency 

rulings of Table 5.1.1. All measurements have been carried out using an spherical 

surface of R=149.7mm (which will be measured as sample P175A in Section 6), placed 

at a distance of 192.4mm from the Ronchi ruling. The three presented ronchigrams 

have been acquired keeping the same position and sample surface, so the only 

difference between them is the frequency of the Ronchi ruling used. In all ronchigrams, 

the intensity signal measured along the central pixel row (pixel 256 along Y axis) is also 

provided in arbitrary units (a.u.), in order to show the numerical data values depicted by 

the figures. Experimental results for rulings with 50lpi, 100lpi and 200lpi frequencies are 

presented from top to bottom. The visibility of the bright lines may be seen to severely 

degrade as the ruling frequency is increased, showing to which extent diffractive effects 

may affect our measurements.  

 In order to reduce the diffractive effects caused by the high frequency terms 

present at the edges of the ruling, sinusoidal transmittance rulings may be used 

replacing the square wave transmittance of the standard Ronchi test technique. 

However, the use of this kind of rulings severely reduces the contrast between the lines 

from light and dark stripes of the test, increasing the uncertainty in the determination of 

the central pixel of each line. In addition, it has recently been shown that only quasi-

sinusoidal gratings are available experimentally. Real world sinusoidal rulings have non-

zero harmonic terms from their nominal frequency that cause diffractive effects to 

appear in the final intensity pattern. Such non-zero terms have even been quantified for 

a quasi-sinusoidal test obtained by exposing an interference pattern onto a photographic 

plate [Hibino 1997].  
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Fig.5.1.1: Experimental ronchigrams for the three lower-frequency rulings of Table 5.1.1. They have 

been acquired for a same sample at a same distance, using different ruling frequencies; (a) 

Ronchigram,50lpi ruling; (b) Intensity profile of the central pixel row, 50lpi ruling; 

(c) Ronchigram, 100lpi ruling; (d) Intensity profile of the central pixel row, 100 lpi ruling;   

(e) Ronchigram,200lpi ruling; (f) Intensity profile of the central pixel row, 200 lpi ruling.  
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Fig. 5.1.2: (a) Square wave transmittance function; (b) Sinusoidal transmittance function;  

(c) Apodized square wave transmittance function. 

 

 

 Rulings with an intermediate transmittance function were also tested, with 

enough contrast to allow a precise determination of the shadow centers without 

lowering the dynamic range of the test, but without the straight edges present in the 

square wave transmittance function that cause the important diffractive effects (Fig. 

5.1.2). This type of apodized square wave transmittance function was obtained using a 
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computer program allowing different exposure times for each column of pixels, which 

were then photographed using a conventional Nikon camera with a Vivitar Macro f/2.2 

50mm objective, using different exposure times. Different development conditions were 

also tested in order to improve the performance of the rulings. Although diffractive 

effects were reduced to some extent, they were not removed from the shadow pattern, 

so the expected increase of the ruling frequency was not achieved. Furthermore, a new 

problem arose as it was seen to be extremely difficult to obtain straight fringe patterns 

from photographs of the curved PC screen. This additional problem, together with the 

developed tests’ failure to eliminate the undesired diffractive effects, led us to abandon 

this approach. 

 

 

5.2 Phase-shifting techniques 

 

 Under this general term a very successful system for improving measurements 

made using interferometric techniques has been developed. The system is now widely 

applied, and all top-performance interferometric commercial equipment incorporates 

such techniques in order to improve its accuracy up to two orders of magnitude (λ/100). 

Its application to interferometry has been so successful that many related fields in 

optical testing have tried to incorporate such strategies [Omura 1988] [Pfeifer 1995]. 

 As phase-shifting techniques were originally applied to interferometric testing, 

we will first present a short description of how classical phase-shifting schemes are 

used in order to extract phase information from fringe patterns obtained through 

interferometric techniques. After presenting the original technique, the following sections 

will discuss in detail the aspects to be considered when applying phase-shifting 

techniques to ronchigrams. 

 

5.2.1.- Phase shifting interferometry 

 Interferometric fringe patterns have traditionally been recorded on photographic 

plates, extracting the data needed in order to achieve a wavefront reconstruction from 

them using digitizing tablets, on which the maxima of the fringe patterns were manually 

marked, and an order number was assigned to each fringe in an overall count. This 

approach yields a measurement precision of λ/2, as this would be the distance between 

consecutive maxima or minima. However, solid-state detectors can extract 
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intermediate intensity values from the fringe pattern, as the whole sinusoidal intensity 

pattern can be digitally recorded. Phase-shifting strategies exploit this amount of 

unused information when working with fringe maxima or minima, enhancing the 

performance of interferometric techniques by at least two orders of magnitude. 

 In order to illustrate our short description of the fundamentals of phase-shifting 

interferometry techniques, a particular example of a simple theoretical measurement 

application using phase-shifting techniques will be developed in this work. One-

dimensional intensity patterns and algorithms will be used in this example, as they fully 

reveal the main steps involved in a measurement process where phase-shifting 

techniques are used. A variety of alternatives to the procedure presented are workable, 

and will where possible be described in the course of the text. A broad review of phase-

shifting interferometry techniques may be found in [Greivenkamp 1992]. 

 A general fringe pattern from an interferometric measurement may be 

expressed as  

[ ]I x I x x xo( ) ( ) ( ) cos( ( ))= ⋅ + ⋅1 γ Φ  (5.2.1) 

where Io(x) is the dc intensity at each data position, γ(x) is the modulation of the 

measured fringe pattern and Φ (x) is the wavefront phase to be measured. These three 

values may be different at each data position, but are assumed to be stable in time. 

Although there are indeed spatial phase-shifting techniques that may be applied to fringe 

patterns varying in time along each register [Creath 1996], we will restrict ourselves to 

temporally stable interferograms. 

 In order to completely describe the measured fringe pattern, three unknowns 

must thus be determined at each point (Φ (x),γ(x), and Io(x)); obviously, at least three 

data values at each pixel position are needed. These new values may be obtained by 

introducing a known phase difference (a known "phase shift") in the reference arm of 

the interferometer and recording the resulting interference patterns, because the 

recorded intensity will have a known intensity profile, given by Eq. 5.2.1. The most usual 

way of applying this phase shift is through piezoelectric transducers (PZT), which 

displace the reference surface of the interferometer. However, many techniques 

involving Zeeman lasers, tilted plates, moving diffraction gratings, or Bragg cells have 

been described and applied [Creath 1988]. 

 

  If the phase shift is introduced in steps, and the interferogram is recorded at 

constant phase values, we are dealing with a phase-stepping technique. If the phase is 
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varied continuously while the interferogram is being recorded, we are using an 

integrating bucket technique. The intensity pattern for the i measurement of the phase-

stepping technique is described as 

  [ ]I x I x x xi o i( ) ( ) ( ) cos( ( ) )= ⋅ + ⋅ +1 γ αΦ   (5.2.2) 

with αi being the phase increment introduced in the i measurement. If the integrating 

bucket technique is applied, the intensity pattern is 

  ( )I x I x x sinc xi o i( ) ( ) ( ) cos ( )= ⋅ + ⋅


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⋅ +
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1
2

γ α∆ Φ   (5.2.3) 

where ∆ is the interval of phase variation, along which the signal is integrated. Practical 

reasons, such as transient oscillations of the PZT transducer after the movement of the 

reference surface, tend to make this smooth variation of the phase over time more 

practical, despite the additional modulation present in the intensity pattern. In order to 

present phase-shifting techniques, stepping techniques will be assumed in the following 

pages, as they are the techniques that are closest to those which could be applied in 

our experimental setup. Furthermore, the two techniques are equivalent except for the 

modulation term present in the signal.  

 Fig. 5.2.1 presents the theoretical intensity profile that is obtained when using 

interferometric techniques to measure a spherical wavefront with a radius of curvature 

of ten waves, with a flat wavefront (obtained, for example, using a flat mirror surface) 

used as a reference. An arbitrary one-dimensional area has been selected for the 

example, with its limits placed at x=±6.26λ, so the maximum height of the wavefront 

along Y axis will be 2.202 waves. Values of Io(x)=2, γ(x)=0.707 were used in Eq. 5.2.2 

for all the sampled points. 

Four phase increments between consecutive recordings were assumed to have 

been achieved through phase-stepping displacement of the flat reference mirror in the 

amounts: 

∆xT = +





⋅1
0 02

8
.
π

λ
  (5.2.4) 

therefore, the total displacement of the flat reference mirror would be 

∆xT = +





⋅1
0 02

2
.
π

λ
  (5.2.5) 

 

Fig. 5.2.1: Theoretical signal for a spherical wavefront with a radius of curvature of 10 waves.  

The four calculated phase-shifted intensity patterns are presented (see text). 
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and the phase displacement between interferograms would be 
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∆αi = +π
2

0 01.    (5.2.6) 

The reason for this choice will become clear later. Minima and maxima of the 

signal obviously correspond to dark and bright interference fringes of variable width. 

Four phase-shifted intensity patterns are assumed, so a set of four different intensity 

values are known at each pixel. A phase reconstruction algorithm will recover the values 

for the wavefront phase, which will allow the local height of the wavefront to be 

reconstructed at each sampled point. 

 However, notice that only three unknowns are present in Eq.5.2.2, as αi is 

determined, and four intensity patterns have been registered. Phase shifting algorithms 

usually work with oversampled signals to which least squares methods are applied. A 

number of algorithms have been proposed, from the simplest three-step algorithm 

(which does not need least squares methods) to complex error-compensating 

algorithms, insensitive to bias modulation [Surrel 1997], including general approaches to 

the design of algorithms tailored to compensate the most important errors in the 

considered setup [Surrel 1996] [Phillion 1997], or the analysis of the Fourier 

components of the window function, yielding algorithms with eight sampling points 

[DeGroot 1995] [Schmit 1996]. General self-correcting algorithms that calculate the 

wavefront phase together with the phase increments through least-squares fitting have 

also been reported [Kong 1995]. 

 In our simple example, the phase will be recovered from the signals in Fig. 5.2.1 

through the classic Carré algorithm, which requires four recorded interferograms with a 

constant phase increment between them, but does not apply any least-squares 

method, as the fourth signal is used in order to determine the phase step applied. If the 

recorded intensities (not writing the functionality on the position in order to make the 

expressions more readable) are 

[ ]I Io1 1= ⋅ + ⋅γ cos( )Φ    (5.2.7)  

[ ]I Io2 1= ⋅ + +γ cos( )Φ ∆α   (5.2.8) 

[ ]I Io3 1 2= ⋅ + +γ cos( )Φ ∆α   (5.2.9) 

[ ]I Io4 1 3= ⋅ + +γ cos( )Φ ∆α   (5.2.10) 

the expressions for the determination of the phase, the modulation and the phase 

increment are  
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[ ] [ ]
tan
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 (5.2.13) 

 Additional care must be taken in the phase reconstruction process in order to 

remove the ambiguities introduced by the intrinsic nondetermination present in the 

arctangent function, which only reports phase values from − π
2

 to π
2

rad. In order to 

achieve a full phase reconstruction from 0 to 2π radians, the signs for the sine and 

cosine must be calculated, so as to establish the appropriate quadrant for the 

computed phase value. In the Carré technique [Creath 1988] 

[ ]I I sin2 3− ∝ Φ    (5.2.14) 

[ ]I I I I2 3 1 4+ − − ∝ cosΦ   (5.2.15) 

 Fig. 5.2.2a presents the modulo 2π phase reconstruction, which contains all the 

information on the wavefront being measured. The calculated modulation (Fig. 5.2.2b) 

and phase increment (Fig. 5.2.2c) graphs are constant in this theoretical case, resulting 

in its exact value in the calculation of the phase increment ( ∆α = + ≈π
2

0 01 1581. . rad).  

Calculated modulation, however, may be seen to oscillate closely around its 

theoretical value (γ=0.707), as the modulation of the signal at different points is not 

equivalent in the present sampling conditions. The modulation value used in the 

calculations is the straight line in the figure. This effect is caused by round-off errors in 

the calculation, so the measured intensities do not exactly follow Eq.5.2.7 to Eq.5.2.10. 

In real-world experiments the effect of having a finite number of intensity levels in the 

recordings introduces this effect more significantly, as intensity patterns are usually 

digitized using 8-bit or 10-bit frame-grabbers, which yield 256 and 1024 intensity levels 

respectively. In our example, 1000 intensity levels were used, which would nearly equal 

the 1024 intensity levels of a signal recorded using a 10-bit frame-grabber. The effect is 

fittingly termed quantization noise, and is one of the many sources of errors that limit 

the performance of phase-shifting techniques. 
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Fig.5.2.2.- Values obtained from the signals in Fig. 5.2.1: (a) Reconstructed phase modulo 2π; (b) 

Calculated modulation; (c) Calculated phase increment.  
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 The procedure explained up to this point only accounts for phase variations 

modulo 2π, which cause the discontinuities in the measured phase, as the real phase 

will have the values: 

{ }Φ Φ( ) ( ) .x x nMOD= +2 2π π   (5.2.16) 

with an integer n that cannot be determined with the techniques discussed so far. 

Phase unwrapping techniques are used to determine the appropriate value for n at each 

sampled point and yield an absolute phase value. In a theoretical example such as ours, 

the procedure is as simple as looking for phase discontinuities above a certain 

threshold value. The final reconstructed wavefront is shown in Fig. 5.2.3. However, in 

real-world applications things are not quite as simple and complex strategies have been 

reported in order to suitably unwrap the phase under noisy environments [Huntley 1989] 

[Quiroga 1994]. When large amounts of aberration are present, aliasing effects will 

appear if fewer than two samples per period are measured; this limit frequency is the 

well-known Nyquist frequency. In some special cases, such as aspheric surface 

testing, some techniques have been presented that allow wavefront reconstructions 

with fringes well over the Nyquist frequency of the detector [Greivenkamp 1987].  

 

Fig.5.2.3.- Unwrapped phase of the signals in Fig. 5.2.1. 

 

The final step will involve the transformation of the phase measurements into 
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shape would be fitted to a set of polynomials. Zernicke polynomials are commonly used, 

because of their orthogonality, in order to study what aberrations are present in the 

measured wavefront, and to what extent [Malacara 1992b].  

 

Fig. 5.2.4.- Wavefront reconstruction from the signals in Fig. 5.2.1. 

 

 Real-world applications, however, present other problems apart from that of 

phase unwrapping. Systematic and random errors may affect measurement accuracy: 

the most important of these [Joenathan 1994] are the miscalibration of the phase shifter 

[Ai 1987] and the nonlinearities of the detector [Kinnstaetter 1988]. The effects of these 

two errors, and of other sources of error, such as random fluctuations of the measured 

phase, mechanical vibrations, or light source instabilities on the precision of the 

technique have been studied using linear approximations for phase-stepping and 

integrating-bucket techniques. This approach permits studies on how the ten most 

widely used classical algorithms are affected by these error sources [Van Wingerden 

1991]. 

 In order to give an elementary idea of the extent to which measurements may be 

degraded by experimental errors, a simple test was carried out, using the four-step 

algorithm [Creath 1988] to recover the wavefront phase from the intensity patterns in 

Fig. 5.2.1. The phase is recovered from the expression 

 tan
I I
I I

Φ = −
−

4 2

1 3
   (5.2.17) 

 The four-step algorithm assumes that phase differences between phase-shifted 

signals are exactly π
2 rad. As the phase increment applied to the signals in Fig. 5.2.1. 

was ∆α = +π
2 0 01. rad (Eq. 5.2.6), the situation is equivalent to applying the four-step 
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algorithm to a signal with a phase-shifter constant error of 0.01rad, accumulated at 

each step. Fig. 5.2.5 shows the differences between the recovered phases using the 

Carré and the four-step algorithms, once unwrapped and given the same origin. As the 

Carré algorithm requires constant phase increments but does not need a given phase 

value to be established, its values are assumed to be essentially correct, so the figure 

may be considered a plot of the error caused by the described phase-shift 

miscalibration. An asymmetrical error in the phase, dependent on the position, is 

introduced along the whole wavefront pattern; a slight modulation of the error function 

may also be appreciated. The example is also a simple demonstration of the influence 

of using one type of algorithm or another in the final measured value of the wavefront 

phase. 

 

Fig. 5.2.5: Errors in phase recovery using the four-step algorithm with a miscalibrated phase 

shifter with the signals in Fig. 5.2.1. 
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test technique measures surface areas and height variations larger than the ones 

normally found in interferometry, although it lacks the accuracy of interferometric 

techniques. Phase-shifting techniques are particularly well-suited to removing this main 

drawback to the Ronchi test, as they have enhanced the accuracy of interferometric 

techniques by two orders of magnitude. Section 5.2.2.1 will describe and discuss some 

of the reported applications of phase-shifting techniques applied to the Ronchi test. 

Section 5.2.2.2 will deal with the problem arising from the fact that the intensity profiles 

of ronchigrams cannot be described using a simple sinusoidal expression like that of 

Eq.5.2.2. 

 

5.2.2.1.- Review of reported applications 

 In the following section the reported applications of phase shifting techniques to 

the Ronchi test of which we are aware are presented in chronological order. Our aim is 

to present the ways in which other researchers have confronted the differences in the 

Ronchi test with interferometric techniques in order to implement phase-shifting 

systems. 

 The first report of a phase measurement using the Ronchi test which we know 

of is from [Yatagai 1984]. In this paper a synchronous phase-stepping measurement 

technique is used for obtaining quantitative measurements of the aberrations present in 

an aspherical surface. This technique obtains the intensity measurements in the same 

way as the techniques presented in Section 5.2.1, but the phase of the signal is 

retrieved using an algorithm coming from Fourier series analysis rather than from the 

least-squares techniques used in common phase shifting interferometry. The wavefront 

phase is recovered from 
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being δ π
i N

i= 2  the ith of the N applied phase steps [Greivenkamp 1992]. Yatagai uses a 

ruling with 0.2mm period in order to sample a wavefront coming from the sample lens 

under test. This lens receives an impinging wavefront consisting of a collimated beam 

obtained using a 40µm wide puntual source and a 40mm focal length aspherical lens.  


