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Fig. 7.2.5: Plots of slope against position along the circular sections of the assumed toroidal 

wavefront in the G60 tilt: (a) u60(xR
60); (b) v60(yR

60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be reliable ones. However, in the G90 tilt and the G60 tilt cases acceptable fits were 

attained along the directions of the principal meridians of the surface, and two different 

radii of curvature were measured for the toroidal wavefront incident on the Ronchi 

ruling. The values obtained in both orientations of sample P30025A may be seen to be 

quite similar. The angular misalignment values, that is, the angular values associated 

with tilts and displacements of the sample surface relative to the incident wavefront, 

have quite different values in both orientations of the sample, as could be expected 

from Fig. 7.2.4a and 7.2.4b, where both data sets can be seen to impinge on different 

areas of the Ronchi ruling, because of the different misalignments of the sample 

relative to the incident wavefront at both orientations. It must be observed that an 

additional misalignment possibility has been introduced in the experimental setup 

through the rotation of the samples, unless the vertex of the sample surface is placed 

exactly at the Z axis of the experimental setup. 

 We have thus been able to measure a toroidal wavefront using our approach to 

Ronchi deflectometry. The next step is to ray-trace these slopes and positions at the 

Ronchi ruling to the tangent plane to the sample surface at its vertex, and, using the 

known position of the source, to measure the local normals to the sample surface at a 

set of points. No data on the reflected wavefront at the tangent plane to the surface is 

provided, as in Section 6.2 it was shown to be almost equivalent to the values of 
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curvature and misalignment obtained at the surface. It should be remembered that the 

similarity of the values of the reflected wavefront to those of the surface were used in 

Section 6.2 to justify ray-tracing to the tangent plane to the surface instead of to the 

surface itself under our experimental outline.  

 Figure 7.2.6 shows the different plots representing position against position, and 

the components of the local normal against their corresponding position values for the 

G60 and G90 tilts. Conclusions are similar to those of Fig. 7.2.4: two different slope 

values may be seen in Fig. 7.2.6c and 7.2.6e, following a linear plot as in the case of 

G90 these sections of the toroidal surface coincide with the principal meridians of the 

surface. When comparing Fig.7.2.6 with Fig.7.2.4, however, the slope difference is 

smaller between both meridians. In the case of G60 the NX(xS) and NY(yS) plots are not 

so close to straight lines as they do not follow any circular section of the toroidal 

surface. However, the departure from the theoretical straight line is less noticeable than 

in Fig. 7.2.4d or 7.2.4f. When the same graphs are plotted following the direction of the 

circular sections of the toroidal surface, plots closer to the linear shape are obtained 

(Fig. 7.2.7). These plots of the components of the local normal along the principal 

meridian direction will hereafter be named NX
60(xR

60) and NY
60(yR

60). 

 Table 6.2.2 shows the fitted values for the curvature and angular misalignment 

of the surface. The radius of curvature values thus obtained are the ones that will be 

used as final results of our measurement using two-dimensional fitting. 

 

Table 7.2.2: Two-dimensional fitting results for the curves corresponding to the G90 and G60 

tilts, and to the circular sections of the G60 tilt measurement on the tangent plane to the 

surface. A y=Cξ+K curve was fitted with ξ being either xR, yR, xR
60 or yR

60. y may be either NX, 

NY, NX
60 or NY

60. C stands for curvature, K for angular misalignment, r2 for the correlation 

coefficient and R for the measured radius of curvature of the sample. 

Sample P30025A  C(mm-1) K(rad) r2 R(mm) 

NX (xR) 5.8093 10-3 -2.2969 10-3 0.999998 172.14  

G90 NY (yR) 6.2176 10-3 7.1790 10-3 0.999998 160.83 

NX (xR) 5.8943 10-3 -2.6519 10-3 0.999075 169.65  

G60 NY (yR) 6.0941 10-3 9.7510 10-4 0.999070 164.09 

NX
 60(xR

60) 5.8045 10-3 2.6617 10-3 0.999998 172.28 G60 

rotated NY
 60(yR

60) 6.2219 10-3 -5.9517 10-4 0.999994 160.72 
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Fig. 7.2.6: Measured sample surface; (a) yR(xR) for the G90 tilt; (b) yR(xR) for the G60 tilt;  

(c) NX(xR) for the G90 tilt; (d) NX(xR) for the G60 tilt; (e) NY(yR) for the G90 tilt; (f) NY(yR) for the 

G60 tilt. 
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Fig. 7.2.7:  Plots of components of the local normal against position along the circular sections 

of the assumed toroidal wavefront in the G60 tilt: (a) NX
60(xR

60) plot ; (b) NY
60(yR

60) plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As expected from the plots, a reduction in curvature differences when 

comparing both principal meridians is observed, and the plots not aligned with the 

principal meridians display better correlation coefficients than the equivalent values in 

the Ronchi ruling plane. However, the linear fits achieved along the circular sections of 

the surface are much better than the ones obtained along directions different from 

those of the principal meridians (shadowed rows in Table 7.2.2). The robustness of the 

technique will be further studied in Section 7.3, but the curvature values obtained for 

the G60 and G90 tilts along the principal meridians of the surface are quite close to 

each other. It is interesting to notice how the radius of curvature values not fitted along 

the principal meridians have intermediate curvature values from those obtained at the 

principal meridians. Angular misalignment values still vary with the rotation of the 

sample, as it depends on the position of the vertex of the surface and its rotation axis 

relative to the Z axis of our experimental setup. Although comparison of the final radius 

of curvature values with the reference estimate will be performed in Section 7.2.3, 

these values may be seen to be quite close to the values provided for sample P30025A 

in Table 7.1.2. So, radius of curvature measurements of toroidal surfaces have been 

performed regardless of the sample’s orientation [Arasa 1998][Royo 1998]. 
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 Once the local normals to the surface and their relative positions have been 

determined, the surface reconstruction step may be performed and three-dimensional 

fitting procedures obtained. The sampled area and height range values of the 

topographic reconstruction are close to the ones obtained with spherical samples. The 

measured area is 257.1mm2 and the measured height range is 0.42mm in the G90 tilt 

measurement, while in the G60 tilt the measured area is 278.9mm2 and the measured 

height range is 0.45mm [Royo 1999]. In Section 7.3 these will be shown to be typical 

values of our approach to the Ronchi test technique.  

Fig. 7.2.8 shows the three-dimensional plot and residual for both G90 and G60 

tilts of the sample. In this case, residuals are the differences of the sampled data points 

relative to the best fitted spherocylindrical surface (see Section 7.1). Notice how the 

sharp edges in the residual plot correspond to software interpolation of the surface of 

the residuals; data points present smooth variations in the available field of view.   

As previously seen in Section 6.2, this sort of three-dimensional plot is very 

spectacular but it becomes difficult to compare them in subjects such as, for instance, 

the rotation of the sample. Pseudocolor contour plots with fixed step increments along 

each of the samples provide an easier comparison of the results. Again, our decision 

was to fix step increments in all the measurements of a given sample. This means that, 

as our integration procedures do not leave all surfaces with their vertex at a given 

height, some small absolute positioning differences between topographies might be 

seen. However, the shape of the reconstructed surface is suitably obtained at each 

measurement, as may be seen  either in the topographic pseudocolor plots or in the 

three-dimensional fitting results. 

Fig. 7.2.9 again presents the data of Fig. 7.2.8 in the form of pseudocolor plots, 

so the reader may compare both kinds of representations. In Fig.7.2.9 the contour step 

of the topography plots was set at 29µm and the contour steps of the residual plots at 

49nm. This kind of plot allows us to see qualitatively how topographies of tilted samples 

are tilted by the same amount. It is again stated that the blue contour line stands for 

minimum deviations from the best fit spherocylindrical surface. Notice how residual 

plots of the G60 and G90 tilts have three almost parallel blue bands, which may be 

seen in Fig. 7.2.9b and 7.2.9d. These three blue bands may be seen to rotate at both 

residual plots following the rotation of the sample surface. As in the case of spherical 

surfaces, pseudocolor contour plots will be adopted for all remaining topographic and 

residual plots because of their ease of interpretation. 
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Fig. 7.2.8: Three-dimensional plots: (a) Topography, G90 tilt; (b) Residual from the best 

fit ,G90 tilt; (c) Topography,G60 tilt ; (d) Residual from the best fit,G60 tilt 

 

 

Table 7.2.3 shows the values obtained when performing three-dimensional 

fitting procedures to the measured data. A spherocylindrical surface described as  
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Fig. 7.2.9: Pseudocolor plots. (a) Topography, G90 tilt; (b) Residual from the best fit, G90 tilt; (c) 

Topography, G60 tilt; (d) Residual from the best fit,G60 tilt. The contour step is 29µm in the 

topography plots and 49nm in the residual plots. 

 

where the parameters to fit will be R1, R2, radius of curvature of the toroidal surface 

along its principal meridians; (x0,y0), position of the vertex of the surface, and θ 

direction of the principal meridians. x and y are simply tilted coordinates from the 

measured xS and yS values. This should not be considered as being a parametric 

equation, as all coordinates are combined in a single expression valid in the complete 

spatial domain. Eq.7.2.1 has been divided into three parts in order to make it more 
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understandable to the reader. It should be noted that R1 and R2 may be either the 

radius of curvature of the base curve of the surface or the cross curve of the surface, 

(RB or RC), as both curves may be placed along the X or Y axis. Furthermore, the θ 

parameter may display two valid angular values, that is α and α+90°, depending on the 

position of the considered meridian. In our Tables, θ will always be given a value 

between 0 and 90°. So θ should be considered the angular position of the principal 

meridian placed in the 0°-90° interval, that is, in the first quadrant. 

 
 Table 7.2.3: Results of fitting the measured data to a spherocylindrical surface (Eq. q. 

7.2.1). RB  stands for the radius of curvature of the base curve of the toroidal surface; RC  for the 

radius of curvature of the cross curve; (x0,y0) for the measured coordinates of the vertex of the 

surface; θ for the direction of the principal meridian contained in the first quadrant; r2 for the 

correlation coefficient of the fit. 

Sample P30025A  RB(mm) RC(mm) x0(mm) y0(mm) θ(°) r2 

G90 171.87 160.96 0.3945 1.1545 0.1 0.9999993 

G60 172.42 160.47 0.0388 0.8947 59.3 0.9999996 

 

The curve-fitted results agree quite well in the measured radius of curvature 

values of the base and cross curves of the toroidal surface, which are very close to 

each other. The direction of the principal meridians is also suitably calculated by the θ 

parameter, which greatly coincides with the theoretical tilt applied to the sample. The 

vertex of the surface position, although varying from one tilt to another,  is also easily 

measured through curve fitting. 

 

 To sum up, a full topographic reconstruction and radius of curvature 

measurement process has been carried out at two tilted orientations of a toroidal 

sample, showing the main differences of its measuring process relative to what was 

presented in Section 6.2 for spherical surfaces. Radius of curvature measurements 

have been made using both two-dimensional and three-dimensional procedures. Two 

dimensional procedures will work, given that the slope against position curve 

considered was taken along a circular section of the toroidal surface. In Section 7.3 

complete results for the six samples described in Table 7.1.2 will be presented. 
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7.2.2.- Error analysis 

 In order to continue with the pattern used in Section 6.2, the numerical results 

for the data in the G60 and G90 tilts will be presented, in the form of the standard 

deviations and confidence intervals of two and three-dimensional curve-fitting 

procedures. The estimate for the accuracy in the measurement of a single slope value 

is still Cx= 8.61 10-3 ± 1.8 10-4 mm-1, as calculated in Section 4.3.1. As the uncertainty in 

the quality of the fitting procedure depends on the experimental values available, these 

will be presented in detail for the G90 and G60 tilts, as part of the typical experiment 

presented in this Section. 

 The closeness of all correlation coefficients to unity allows a prediction that all 

standard deviation values will be very small, and confidence intervals very narrow. This 

may be seen in Table 7.2.4, where the absolute and relative values for standard 

deviation and the interval where the “real” measured value may be found with 0.95 

probability are described for the two-dimensional fitting procedures of the G60 and G90 

tilts. Only fittings along the principal meridians of the toroidal surface will be 

considered. 

 
Table 7.2.4: Error analysis in two-dimensional curve-fitted curvature values for the X and Y 

directions of the G60 and G90 tilts. σ stands for the standard deviation of the data, %σ for its 

relative value, CMIN
95  and CMAX

95 for the limits of the confidence interval where the real curvature 

value is found within a probability of 0.95, R for the radius of curvature and ∆R for its variation in 

the interval of curvatures C±σ. 

Sample 

P30025A  

C 

(mm-1) 

σ 

(mm-1) 

%σ CMIN
95   

(mm-1) 

CMAX
95  

(mm-1) 

R 

(mm) 

∆R 

(mm) 

G90 NX(xS) 5.8093 10-3 1.1 10-7 2 10-3 5.8091 10-3 5.8095 10-3 172.14 6.5 10-3  

 NY(yS) 6.2176 10-3 1.2 10-7 2 10-3 6.2174 10-3 6.2178 10-3 160.83 6.2 10-3 

G60 NX
60(xS

60) 5.8045 10-3 8.4 10-8 1 10-3 5.8043 10-3 5.8046 10-3 172.28 5.0 10-3 

 NY
60(yS

60) 6.2219 10-3 1.8 10-7 3 10-3 6.2215 10-3 6.2222 10-3 160.72 9.3 10-3 

 

Standard deviations in all fits have extremely low values, as they are all 

microstepped experiments with a large amount of data points and good correlation 

coefficients. These standard deviations are comparable to the ones obtained in Section 

6.2.2 for spherical surfaces, in the microstepped experiments. The intervals of 

confidence and the radius of curvature variations in the C±σ interval show that limits in 
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the measurement technique will not be placed by the uncertainties in the fitting 

procedures, but by the uncertainties embedded in the experimental setup, which were 

described in Section 4.3.1 and are much larger than the ones introduced in the curve-

fitting procedures. 

 An error analysis on angular misalignment values will also be performed this 

way, as was done in the case of spherical surfaces. Their results may be seen in Table 

7.2.5, and give the same conclusions as those of Table 7.2.4: fitting uncertainties are 

one hundred times smaller than slope measurement uncertainties, and these values 

are fully comparable to the ones we obtained when developing spherical surface 

topographies (see Table 6.2.6).  

 

Table 7.2.5: Error analysis in two-dimensional curve-fitted angular misalignment values for the X 

and Y directions of the G60 and G90 tilts. K stands for angular misalignment,  σ for the standard 

deviation of the data, %σ for its relative value, KMIN
95  and KMAX

95 for the limits of the confidence 

interval where the real curvature value is found within a probability of 0.95,  

Sample P30025A  K(rad) σ(rad) %σ KMIN
95  (rad) KMAX

95 (rad) 

NX(xS) -2.2969 10-3 5.5 10-7 0.02 -2.2981 10-3 -2.2959 10-3  

G90 NY(yS) 7.1790 10-3 5.8 10-7 8 10-3  7.1778 10-3 7.1801 10-3 

NX
60(xS

60) 2.6617 10-3 4.2 10-7 0.02 2.6608 10-3 2.6625 10-3  

G60 NY
60(yS

60) -5.9517 10-4 8.2 10-7 0.14 -5.9677 10-3 -5.9356 10-3 

 

Three dimensional curve-fitting procedures will also be analyzed this way, 

although we must expect results similar to the ones presented as the correlation 

coefficients are also close to unity and the amount of data points involved is quite large. 

The main difference will be that no circular section of the surface needs to be assumed, 

as the fitting will involve the whole surface, and that a spherocylindrical surface shape 

is being assumed as an approximation to the real toroidal surface of the samples. 

Table 7.2.6 presents the absolute and relative standard deviation, and the confidence 

intervals for 0.95 probability, for the five parameters involved in three-dimensional 

curve-fitting, that is RB, RC, x0, y0 and θ. Results are presented for the G90 and G60 

tilts. 

Table 7.2.6 closely follows the conclusions drawn from the error analysis of 

Tables 7.2.4 and 7.2.5. The limits to the measurement technique are placed in the 

experimental setup, as the standard deviations of the fitted data are very small, and 
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lead to confidence intervals in radius of curvature measurements around 0.01mm, both 

in two-dimensional and three-dimensional curve fitting procedures. Such accuracy is 

beyond our experimental limits, as, for instance, the differences in the measured radius 

of curvature of the surface are around 0.5mm when comparing the values obtained 

using the G60 and G90 tilts. Enhancements to the measurement technique will involve 

improvements in the quality and stability of the measurements through enhancements 

in the experimental setup. 
 

Table 7.2.6: Error analysis in three-dimensional curve fitting, for the radius of curvature of the 

base curve (RB) and the cross curve (RC),  the vertex position of the sample surface  (x0 and y0), 

and the direction of the principal meridian present in the first quadrant (θ). σ stands for standard 

deviation, %σ for its relative value and ξ for the variable considered in the corresponding row. 

Sample P30025A  Fit σ %σ ξMIN
95  ξMAX

95  

RB(mm) 171.87 2.6 10-3 2 10-3 171.86 171.87 

RC(mm) 160.96 2.5 10-3 2 10-3 160.95 160.96 

x0(mm) 0.3945 1.1 10-4 0.03 0.3943 0.3948 

y0(mm) 1.1545 5.4 10-5 5 10-3 1.1544 1.1546 

 

 

G90 

θ(°) 0.11 5.8 10-3 6 10-3 0.11 0.13 

RB(mm) 172.42 1.7 10-3 1 10-3 172.42 172.43 

RC(mm) 160.47 1.9 10-3 1 10-3 160.47 160.48 

x0(mm) 0.0388 1.1 10-4 0.28 0.0386 0.0390 

y0(mm) 0.8948 2.5 10-5 2 10-3 0.8947 0.8948 

 

 

G60 

θ(°) 59.32 6.4 10-3 0.01 59.31 59.33 

 

 

7.2.3.- Validity of the measured values 

 Once the measurement of radius of curvature and its accuracy have been 

calculated, we have to consider how far the obtained values coincide with the reference 

ones. All measured radii values are presented in Table 7.2.7. However, it should be 

remembered that the reference radius of curvature values provided by the Möller-

Wedel high precision radioscope lack the accuracy of the measurements achieved in 

spherical surfaces. The radioscope only provides a rough estimate of the 

measurements with an uncertainty around ±1mm. 
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Table 7.2.7: Comparison of measured radius of curvature with the reference Möller-Wedel 

radioscope measurement. % deviation refers to relative differences between the measured and 

radioscope values for  the base and cross curves. 

Measurement method RB(mm) σ(mm) RC(mm) σ(mm) %Deviation 

G90 172.1 3.4 10-3   160.8 3.0 10-3 0.1 0.7  

2D  fitting G60 172.3 2.5 10-3  160.7 4.7 10-3 0.2 0.6 

G90 171.9 2.6 10-3 161.0 2.5 10-3 0.1 0.2  

3D fitting G60 172.4 1.7 10-3 160.7 1.9 10-3 0.2 0.6 

Möller-Wedel radioscope 172.0±1.0mm 159.7±1.0mm  

 

With this consideration in mind, the deviations of the measured radius of 

curvature of the base and the cross curves using Ronchi deflectometry and direct 

measurement through the radioscope should only be considered as a comparison 

between radius of curvature values measured using different techniques, as no reliable 

reference is available. However, the dispersion of the radius of curvature values 

measured with two-dimensional fitting, three-dimensional fitting and radioscope 

measurements is very small, showing the technique to be reliable. All measurements 

performed using our approach to Ronchi deflectometry show a maximum dispersion of 

0.8mm in their values, which is inside the uncertainty range of 2% which was fixed in 

Section 4.3.1. This uncertainty value has to be considered as an overestimate, as,  

according to the measured results, the technique may be assumed to measure radius 

of curvature of toroidal surfaces with an accuracy of at least ±1mm, which amounts to 

just a 0.6% relative error. 

 As in the case of spherical surface measurements, no validation procedure was 

available for our surface topographies and residuals. However, in the following section 

it will be seen how the same topography and residual is repeatedly obtained in all 

positions and tilts of the sample, and how tilted sample positions give topographies 

tilted by the same amount, as could be observed from the residuals in Fig. 7.2.9. 


