UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Universitat Politecnica de Catalunya

Computer Architecture Department

Real-Time High-Performance Computing for
Embedded Control Systems

Alejandro Josué Calderdn Torres

A thesis submitted for the degree of
Doctor of Philosophy in Computer Architecture

Advisor: Leonidas Kosmidis

Barcelona Supercomputing Center (BSC)
Computer Architecture and Operating Systems Group

Co-advisor: Carlos Fernando Nicolds Ramirez

Ikerlan Technology Research Centre
Dependable Embedded Systems Department

Tutor: Francisco Javier Cazorla Almeida

Universitat Politecnica de Catalunya
Barcelona Supercomputing Center (BSC)
Computer Architecture and Operating Systems Group

June 2022

Alejandro Josué Calder6n Torres

Real-Time High-Performance Computing for Embedded Control Systems
June 2022

Advisors: Leonidas Kosmidis and Carlos Fernando Nicolds Ramirez
Tutor: Francisco Javier Cazorla Almeida

Universitat Politécnica de Catalunya
Computer Architecture Department
Carrer de Jordi Girona, 1, 3

08034 Barcelona

The work reported in this thesis has been conducted in collaboration between the Universitat
Politecnica de Catalunya, the Dependable Embedded Systems department of Ikerlan Technology
Research Centre and the Computer Architecture and Operating Systems (CAOS) group of the
Barcelona Supercomputing Center (BSC).

Abstract

Critical real-time systems include a wide spectrum of computer systems whose
correct behavior is dictated not only by correct functionality but also by their timely
execution with respect to predefined deadlines. The increasing demand for higher
performance in these systems has led the industry to recently include embedded
Graphics Processing Units (GPUs), mainly for machine learning and computer vision
tasks. In the real-time control systems industry, there is a trend moving towards the
consolidation of multiple computing systems into fewer and more powerful ones,
aiming for the reduction of Size, Weight and Power (SWaP). The highly parallel
architecture of GPUs could help to develop more advanced, energy efficient, and
scalable control systems. However, GPUs are known about their closed source
and non-deterministic nature, which complicates the resource provisioning analysis
for the implementation of real-time systems. On the other hand, in the real-time
time control systems industry, a Model-Based Design (MBD) approach is used for
the development and testing of this kind of systems to manage their diversity and
complexity. Recently, MBD tools have been enhanced with GPU code generation
capabilities for machine learning acceleration, a feature that could also be leveraged
for the development of real-time control systems. However, there is no indication
whether these tools are ready for the design of time-sensitive systems.

This thesis addresses these problems. First, we present a methodology and an
automated tool to extract the properties of GPU memory allocators. This tool allows
the computation of the real amount of memory used by GPU applications, facilitating
a correct resource provisioning analysis. Then, we present a library which allows
the characterization of the use of dynamic memory in GPU applications. We use
this library to characterize GPU benchmarks and we identify memory allocation
patterns that could be modified to improve performance and memory consumption
in embedded GPUs. Based on these results, we present a tool to optimize the use
of dynamic memory in legacy GPU applications executed on embedded platforms.
Afterwards, we analyze the timing of control algorithms executed in embedded
GPUs and we identify techniques to achieve an acceptable real-time behavior. Finally,
we evaluate MBD tools in terms of integration with GPU hardware and GPU code
generation, and we propose a source-to-source transformation tool to improve the
model-based generated GPU code.

Acknowledgement

I would like to express my deepest gratitude towards the many people who have
contributed in making this thesis successful. I want to show my greatest appreciation
for my advisors, Dr. Leonidas Kosmidis and Dr. Carlos Fernando Nicolds, and
my tutor Dr. Francisco Javier Cazorla. I am forever grateful for their knowledge,
guidance and encouragement through this whole process. Their recurrent support
and contributions have made this thesis a reality.

I would like to extend my gratitude to Mr. Peio Onaindia, Dr. Mikel Azkarate-
askatsua and Dr. Jon Perez, for taking on the role of supervisors, always lending a
helping hand and words of advice when I needed it most. Their encouragement kept
me focused and motivated throughout challenging times. I am thankful to Ikerlan
for allowing me to be a part of their team and providing funds for my thesis, this is
truly an opportunity of a lifetime. I wish to thank the wonderful people from the
Dependable Embedded Systems area, especially my workmates from the Real-Time
Systems team. Daily challenges are much more enjoyable to work on when you have
such a reliable team by your side, I am constantly learning from all of them.

I am truly grateful for the warm welcome the CAOS group from the BSC extended
to me while I worked with them in Barcelona. It was a rich learning experience to
be able to work with such qualified professionals.

I would like to thank my wonderful family and friends for being by my side during
this process. I am forever grateful to my mother and my father, my brothers and
sisters, who have always believed in me, this is also their achievement. Many
thanks to my amazing friends, my Kuadrila, I feel truly blessed to count with their
support. Finally, I wish to thank my loving wife Gina, her unconditional support and
encouragement made this thesis possible.

This work was supported with a PhD fellowship at Ikerlan Technology Research
Centre, through the EMAITEK program. The publications of this thesis have also
received partial support by the Spanish Ministry of Economy and Competitiveness
under grants PID2019-107255GB and FJCI-2017-34095, the HiPEAC Network of
Excellence and the European Commission through the H2020 UP2DATE project
(grant agreement 871465).

Contents

Listings

1 Introduction

2

3

1.1
1.2
1.3
1.4

XV
Real-Time Systems and the Need for High Performance
Resource Provisioning in Critical Real-Time Systems 2
Model-Based Design for Critical Real-Time Systems 4
Contributions o 6
1.4.1 Reverse Engineering and Analysis of GPU Memory Allocator
Properties L 6

1.4.2 Characterization of Dynamic Memory Use in GPU Applications 6
1.4.3 Optimization of Dynamic Memory Use in Embedded GPUs . . 7
1.4.4 Timing Characterization of GPU- accelerated Control Algorithms 7
1.4.5 Assessment and Improvement of Model-Based Design for GPU

Control Systems v v v i i e e e e 8

1.5 Thesis Organizationo v v v i v v v i 9
1.6 Listof Publications 10
1.6.1 Accepted Publications 10
1.6.2 Other Publications 10
Background 13
2.1 Control Systems. e e e 13
2.2 Model-Based Design 14
2.3 Graphics Processing Units (GPUs) 15
2.3.1 GPU Architecture and Terminology 15
2.3.2 GPU Programming Fundamentals 18
2.3.3 Memory AllocationinGPUs 23

2.4 GPUsin Critical Systems v i oo 27
Methodology and Experimental Setup 29
3.1 Methodology e 29
3.2 Embedded GPU Platforms 30
3.3 GPU Software Configuration 33

vii

viii

3.4 GPUBenchmarks i i i it 34

3.5 Model-Based Design Frameworks 35
3.6 Compiler Frameworks 36
3.7 Other Software Utilities 37
4 Analysis of Dynamic Memory Allocation in GPUs 39
4.1 Motivational Example 39
4.2 Background on Memory Allocators 41
4.3 Reverse Engineering GPU Memory Allocators 43
4.3.1 Reverse Engineering CUDA Memory Allocators 43
4.3.2 Reverse Engineering OpenCL Memory Allocators 48
4.4 GMALI: GPU Memory Allocator Inspector 50
4.5 Results e 52
4.5.1 Obtained Properties of CUDA Allocators 52
4.5.2 Obtained Properties of OpenCL Allocators 54
4.5.3 Exploiting the Knowledge of GPU Allocators in Automotive
Case Studies’ Resource Provisioning 56
4.6 RelatedWork 62
4.7 SUMMATY v v v e e e e e e e e e e e e e e e 64
5 Characterization of Dynamic Memory Usage in GPU Applications 65
5.1 Design of the Memory Characterization Library 66
5.2 Evaluation e 69
5.2.1 Memory Characterization of Rodinia Benchmarks 69
5.2.2 Memory Characterization of Parboil Benchmarks 74
5.2.3 Memory Characterization of PolyBench-ACC Benchmarks . . . 77
53 Summary e e e e e e e e e 80

6 Optimization of Dynamic Memory Use in Embedded GPU Platforms 81

6.1 Design and Implementation 81
6.1.1 XeroZerox AnalysisPhase 83
6.1.2 XeroZerox Optimization Phase 84

6.2 Evaluation 87
6.2.1 Memory Consumption 87
6.2.2 Performance Evaluation 89

6.3 SUMMAIY . . . v v v e 90

7 Timing Characterization of Control Algorithms Executed on Embed-
ded GPUs 93
7.1 Case Study: Parallel Control of Permanent Magnet Synchronous Motors 94

7.2 ExperimentsDesign. 98

7.2.1 Timing Characterization Scenarios 98
7.2.2 Timing Measurement 101
7.2.3 SystemsUnderTest. 101
7.2.4 ProofofConcept 102
7.3 Results e e e 105
7.3.1 Timing Characterization Scenarios 105
7.3.2 ProofofConcept 109
7.4 SUMMATY . . . ¢ v v vttt e e e e e e e e e e e 112

8 Assessment and Improvement of Model-Based Design for GPU-Accelerated

Control Systems 113
8.1 Case Study: Design and Implementation of a GPU-Accelerated Parallel
Control System i i e e e e e e 114
8.1.1 Preliminaries 114
812 TheModel. 115
8.2 Evaluation e e 117
8.2.1 Experimental Setup. 117
8.2.2 Validationofthe Models 118
8.2.3 Integration with External Hardware 119
8.2.4 Evaluation of Generated CUDACode 119
8.3 Improvement of Generated CUDACode. 122
8.3.1 Manual Improvement of Generated CUDA Code 123
8.3.2 Automatic Improvement of Generated CUDA Code 124
8.4 Summary e e e e e e e 133
9 Conclusions and Future Work 135
9.1 Summary of Contributions 135
9.2 Impact e e e e e 137
9.3 Future Work e 139

Bibliography 141

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Heterogeneous CPU-GPU architectures 16
CUDA memory models in embedded GPUs 24
Iterative methodology for the development of the thesis 29
Architecture of the NVIDIA JetsonNano 30
Architecture of the NVIDIA Jetson TX2 31
Architecture of the NVIDIA Jetson Xavier NX 32
Architecture of the NVIDIA Jetson AGX Xavier 32

Execution times for GPU related calls shown in Listing 4.1 with same
size, using pinned allocations. 40
Execution times for GPU related calls shown in Listing 4.1 with different
size, using pinned allocations. 40
Execution times for GPU related calls shown in Listing 4.1 with same
size, using device allocations. 41
Execution times for GPU related calls shown in Listing 4.1 with different

size, using device allocations. 41
GPU Memory Allocator Inspector (GMAI) workflow 51
GPU memory characterization workflow 68
Example of an interactive memory characterization plot 69
Rodinia benchmarks distribution of maximum total memory used . .. 71
Memory characterization of Rodinia benchmarks 73
Parboil benchmarks distribution of maximum total memory used ... 75
Memory characterization of Parboil benchmarks 76
PolyBench-ACC benchmarks distribution of maximum total memory used 78
Memory characterization of PolyBench-ACC benchmarks 79
XeroZerox analysis and optimization workflow 83
Generation of the optimization profile 84
Traditional memorymodel 85
XeroZerox memorymodel 86

Xi

Xii

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

8.1
8.2
8.3
8.4
8.5
8.6

Driving inverter topology and PMSM structure [86] 94

PMSM optimal torque angle 95
FOC currents and equivalentpulls. 95
FOC transformations [86] 96
Field Oriented Control process 96
Latency plots of Jetson platforms with real-time Linux 102
PMSM control using Delfino platform 103
PMSM control using Teensy platform 104
PMSM control using Jetson TX2 platform 104
Maximum execution times of FOC algorithms in stock system scenario 106
Execution times of FOC algorithms in real-time system scenario 107
Execution times of FOC algorithms in persistent kernel scenario 109
PMSM speed control using Teensy platform 110
PMSM speed control using Jetson TX2 CPU 110
PMSM speed control using Jetson TX2GPU 111
Simulink model of a parallel PMSM FOC controller 115
Reference and actual speeds of parallel PMSMs 118
Phase voltages of parallel PMSMs 118
Maximum execution times of generated code and proposed improvementsl 24
Performance scalability of improved CUDAcode 124
CUDA code generation and automatic improvement workflow 125

List of Tables

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3

6.1
6.2
6.3

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5

Equivalent terms between CUDA and OpenCL terminology 17
List of benchmarks in the Rodinia suite 34
List of benchmarks in the Parboil suite 35
List of benchmarks in the PolyBench-ACC suite 36
Tested NVIDIA GPU Platforms 52
Tested OpenCL GPU Platforms 54
GPU memory allocations in Edge Detection Task 57
GPU memory allocator usage in Edge Detection (NVIDIA TX2) 57
Real GPU memory usage in Edge Detection Task (NVIDIA GPUs) 58
GPU memory allocator usage in Edge Detection (ARM Mali-T860) . . . 59
GPU memory allocations in Pedestrian Detection 60

GPU memory allocator usage in Pedestrian Detection Task (NVIDIA TX2) 61
Real GPU memory usage in Pedestrian Detection Task (NVIDIA GPUs) . 61
GPU memory allocator usage in Pedestrian Detection Task (Mali-T860) 62

Rodinia benchmarks characterizationresults 70
Parboil benchmarks characterizationresults 75
PolyBench-ACC benchmarks characterization results 77
Platforms used for XeroZerox evaluation 87
Memory consumption results for Rodinia benchmarks 88
Maximum execution times of Rodinia benchmarks (s) 90
Execution times of FOC algorithms in stock system scenario (us) 106

Execution times of FOC algorithms in real-time system scenario (us) . 107
Execution times of FOC algorithms in persistent kernel scenario (us) . 108

Embedded GPU Platforms 118
Execution time of generated CUDA code (4s)« « v v v v v v .. 121
Profiling results for discrete memory model (us) 121
Profiling results for unified memory model (us) 121
Profiling results for unified memory mode fixed (us) 122

xiii

Xiv

8.6

Execution time of improved CUDA code versions (us)

Listings

2.1 CUDA vector addition program 18
2.2 OpenCL vector addition kernel 20
2.3 OpenCL platform initialization. 20
2.4 OpenCL vector addition kernel creation 21
2.5 OpenCL vector addition kernel execution 22
4.1 Motivational Example 40
4.2 NVIDIA TX2 memory allocator report 53
4.3 GeForce GTX 1080 Ti memory allocator report 53
4.4 Mali-T860 OpenCL memory allocator report 55
4.5 Mali-G72 OpenCL memory allocator report. 55
4.6 Pseudocode of memory allocations in the pedestrian detection case

study . . . e e 60
5.1 Examples of function interposition at compile time 67
8.1 MATLAB function for velocity control 126
8.2 Original kernel prototype 126
8.3 Transformed kernel prototype 126
8.4 Original kernel implementation 127
8.5 Transformed kernel implementation 128
8.6 Original control function 129
8.7 Main function created from original control function 129
8.8 Original device pointers and allocations 130
8.9 Transformed device pointers and assignments 130
8.10 Original memory transfers and kernel launch 131
8.11 Transformed kernel launch and controlloop 132
8.12 Original device memory deallocations 132
8.13 Transformed zero-copy memory deallocations 133

XV

1.1

Introduction

Real-Time Systems and the Need for High
Performance

Real-time systems are computing systems whose correct behavior is dictated not
only by correct functionality, but also by their timely execution with respect to
predefined deadlines. In real-time systems, each task has an activation period and a
known worst-case execution time. The time between the activation of a task and
its completion must be bounded by its deadline. A real-time task that always has
to meet its deadlines is considered to have hard real-time requirements. On the
other hand, if it is acceptable for a real-time task to miss some deadlines, the task is
considered to have soft real-time requirements.

In the domain of critical real-time systems, we find a wide spectrum of computer
systems. On one end of the spectrum we have safety critical systems, ranging from
transportation to medical and control systems. Since human lives are at stake,
such systems usually have hard real-time requirements. On the other end, we find
business and mission critical systems which although do not impose a threat to
human safety, their correct and timely execution is essential to fulfill their mission,
typically to provide valuable services to science, society and economy. Examples of
such systems are banking and commerce services, communications and scientific
space missions, which have somewhat less strict timing requirements, but they are
still important for their operation and justification of their high cost.

A recent trend is the adoption of GPUs in the critical domains, in order to satisfy
the performance demand of advanced features. Probably the most well-known case
is in automotive, where automakers are working on autonomous driving prototype
vehicles [1] powered by GPUs mainly for cognitive tasks and artificial intelligence.
The medical domain and finance are also employing GPUs [2] mainly for image
processing and high-computational capacity, as well as the space domain [3]. Other
critical domains are expected to follow as well, especially whenever there is a need
for inference based on artificial intelligence (AI) or high compute performance.

1.2

To this aim, the GPU market lead vendor NVIDIA has performed significant
investments in the automotive and industrial automation sector by designing embed-
ded GPU systems meeting the temperature and reliability needs of these markets,
such as the NVIDIA PX2 and its development board Jetson TX2, the NVIDIA Jetson
Nano, the NVIDIA AGX Xavier and its latest addition the NVIDIA Xavier NX. Other
vendors such as Imagination Technologies have also automotive compliant products
like the PowerVR Series6XT GX6650 GPU incorporated in the Renesas R-CAR H3
platform or the latest product lines PowerVR Series8 and Series9, as well as ARM
which collaborated with Samsung to produce the GPU platform Exynos Auto V9 to
be used in Audi’s cars, based on its Mali-G76 GPU [4].

Despite the important performance benefits provided by GPUs, they are notori-
ously known about their closed source and non-deterministic nature, which intro-
duces several challenges in the development of GPU-accelerated critical real-time
systems. In this thesis, we address some of these challenges, focusing particularly
on GPU suitability for real-time control systems.

Resource Provisioning in Critical Real-Time
Systems

Critical real-time systems are very diverse and have very different particular require-
ments, however, all of them have a common property: they require high availability.
The key to achieve high availability is the careful resource provisioning of the system,
in order to guarantee that each of the tasks of the system has enough resources to
be efficiently executed, at the same time preventing from exceeding a limit that can
jeopardize the entire system or impact the other tasks.

In particular, one of the most extreme cases of resource provisioning is found in
avionics [5], whose operating system standard, namely ARINC653 [6] enforces strict
memory and time budgets for each task. This requires that the system engineer needs
to figure out the exact memory usage of each task and ensure that the total memory
usage does not exceed the size of the system memory. Similarly in timing, the worst
case execution time of each task has to be determined, and ensure that it is smaller
than its deadline and that the overall system has enough capacity to accommodate
the execution of all tasks. Automotive operating systems, AUTOSAR-compliant [7],
follow a similar approach in resource allocation, as well as the operating systems
in other critical domains like the Integrity RTOS which is used in industrial control
systems [8].

Chapter 1 Introduction

In less critical systems built on general purpose operating systems like Unix-
based ones, although the operating systems do not impose these limitations for each
task, system engineers still perform the same type of analysis. For example, although
these operating systems do allow the use of more memory than the one physically
present in the system, based on virtual memory and disk-backed memory (a feature
known as paging or swap) and/or compression, the performance of the system
is severely affected when this feature is used, compromising its timing behavior
and under heavy memory pressure even the stability of the system is jeopardized.
Therefore, the accurate resource provisioning allows to prevent such scenarios,
guaranteeing that the total capacity of the system is not exceeded.

The introduction of GPUs in critical real-time systems creates new challenges
in terms of resource provisioning. In particular, NVIDIA GPUs are programmed in
CUDA, a proprietary programming language developed by NVIDIA. The GPU execu-
tion model in its rudimentary form follows an accelerator approach, in which the
programmer has to explicitly allocate GPU memory and manage transfers between
the CPU and the GPU, as well submitting code to be executed in the GPU, in the
form of tasks known as kernels. Although this explicit resource allocation provides
the delusion of full control over the resource management, the actual resource
consumption both in memory and timing is larger, hidden behind closed source
layers. The reason is that the actual resource management takes place within the
CUDA runtime and GPU driver, which are closed source. The GPU products from
other vendors are programmed in OpenCL, which despite its name is not more open.
OpenCL has a similar programming model to CUDA, which is also implemented in a
closed source runtime and GPU driver provided by each vendor.

As a consequence, an accurate resource provisioning of GPU applications is
complicated, leading either to underestimation or overestimation of resource provi-
sioning. Although this problem is not yet very evident in the existing under-utilized
prototype systems, based on Unix-like operating systems such as Linux, it will soon
be a roadblock as these systems will require the deployment of more software func-
tionalities in the same platform. Even more important, the problem will be more
pronounced when these systems will be moved to operating systems for critical
systems with strict and explicit resource provisioning per task like AUTOSAR and
ARINC653.

1.2 Resource Provisioning in Critical Real-Time Systems

1.3 Model-Based Design for Critical Real-Time Systems

Critical real-time systems have strong safety and security requirements, which in
case they are violated can have severe consequences like endangering human lives.
In particular, the safety of these systems depends on their correct functionality as
well as their timely response. Thus, it is necessary to prove or collect sufficient
evidence that safety and security demands are met in order to achieve functional
safety certification, so that the system is permitted to be used according to the law.

Each critical domain has a different functional safety standard which describes
the procedures to be followed for the design and verification of its systems for each
criticality level. For example, in the automotive domain, the ISO 26262 highly
recommends the use of MBD tools for the highest criticality (ASIL D) software
functionalities. Other standards, like the DO-178C used in avionics, the IEC 61508
used in industrial automation and the IEC 62279 used in railway have similar
recommendations.

MBD allows the automatic generation of software based on a high-level de-
scription of some form. This way, the absence of the human factor prevents the
introduction of model to code translation errors which can compromise the safety of
the system. In addition, the mathematical properties of the model can be verified
and most importantly the generated software is correct by construction. Probably
the most prominent example of MBD is SCADE, a software generator based on the
Lustre language, which is extensively used in avionics and other domains for the
highest criticality software of their systems. Other widely used MBD tools across
multiple industries are MATLAB-Simulink and LabView.

In addition to safety, security is very important in critical domains since a com-
promised system can have adverse consequences varying from dangerous operations
and system destruction to a complete denial of service of essential infrastructure
in sectors such as energy, telecommunications, transportation etc. In the recent
years, several attacks on industrial systems have been experienced, halting industrial
control systems [9] or disabling energy providers [10]. MBD methodologies can im-
prove the security of critical infrastructures [11][12] by enforcing additional security
policies and allowing strong verification methods such as model-checking [13][14]
to be used.

Modern MBD tools began supporting GPU code generation in their newest
releases to leverage the computational power of these graphics processors, which
have been successfully used to accelerate the machine learning or Al inference

4 Chapter 1 Introduction

workloads that are increasingly needed in many industrial applications. Moreover,
GPUs have been started being considered for use in safety critical systems, since
they can provide the increased performance required for the implementation of
advanced features as well as for the consolidation of several functionalities in a
single computing platform in order to achieve reduced SWaP.

While MBD tools have been traditionally used for the design and implementation
of critical systems based on single core platforms, there is no study of their GPU
code generation capabilities for use in such critical context beyond the obvious field
of machine learning.

1.3 Model-Based Design for Critical Real-Time Systems

1.4

1.4.1

1.4.2

Contributions

In this section, we present an overview of the contributions of this thesis regarding
overcoming the aforementioned challenges introduced by the use of GPUs in high-
performance real-time control systems, in terms of resource provisioning and model-
based design.

Reverse Engineering and Analysis of GPU Memory Allocator
Properties

GPUs are known about their closed source nature. The real resource consumption
of GPU applications is hidden behind closed source layers. As a consequence, an
accurate resource provisioning of GPU applications is complicated. In Chapter 4, we
present a methodology to reverse engineer GPU memory allocators and extract their
internal properties. Based on this methodology, we present a tool to automatically
extract the memory allocator properties and calculate the real amount of memory
used by GPU applications. At first, our analysis is oriented to NVIDIA GPUs [15].
Then, we show that our methodology is general enough to work with GPUs of other
vendors, which are programmed with OpenCL [16]. With these contributions, we
allow the accurate resource provisioning for GPU-based critical real-time systems.

Characterization of Dynamic Memory Use in GPU
Applications

GPU dynamic memory allocation can have a negative impact on the launch time
of GPU kernels due to the overhead added by the memory allocation system when
creating new memory pools. Knowing how dynamic memory is allocated and
deallocated can help system engineers to identify patterns that can potentially harm
the execution time of GPU tasks. On the other hand, GPU applications can use
different types of dynamic memory. Knowing how much of each type of dynamic
memory is used in a GPU application could be useful to optimize the memory
utilization when porting code written for a discrete GPU to an embedded GPU
platform. In Chapter 5, we present a library that allows the characterization of the
use of dynamic memory in GPU applications. We use our library to characterize
three popular GPU benchmark suites, and we identify memory allocation patterns

Chapter 1 Introduction

1.4.3

1.4.4

that could be modified to improve performance and memory consumption when
deploying these applications in embedded GPUs.

Optimization of Dynamic Memory Use in Embedded GPUs

Using GPUs in critical systems presents several challenges, since GPU programming
models rely on explicit dynamic memory management. Moreover, when dynamic
memory allocation is used, it is critical to compute the exact amount of memory
used as well as to minimize it. In embedded GPU platforms, both the CPU and the
GPU share the same DRAM, having both host allocations and device allocations
served from the same physical memory. In this scenario, using the traditional GPU
memory model would cause duplicate memory allocations and unnecessary memory
transfers. In Chapter 6, we present a tool that optimizes the use of dynamic memory
in GPU applications that use the traditional memory model when they are executed
in embedded GPUs. With this contribution, we allow legacy GPU applications to be
used in a critical setup without rewriting them, while at the same time minimizing

their memory consumption and memory management runtime overhead.

Timing Characterization of GPU- accelerated Control
Algorithms

Control systems are real-time systems that regulate the behavior of devices or
equipment using feedback control loops. These control loops must be executed
periodically, with sampling rates according to the needs of the system under con-
trol. An unexpectedly long execution time of a control algorithm could delay the
action of the controller on the system under control, possibly causing an unwanted
situation. Most real-world control algorithms are simple enough to be executed on
embedded microprocessors. The highly parallel architecture of embedded GPUs
could be leveraged to replace multiple embedded microprocessors for the implemen-
tation of scalable parallel control systems. However, GPUs are known about their
non-deterministic nature, which complicates their use for implementing real-time
systems. In Chapter 7, we characterize the timing of control algorithms executed in
embedded GPUs using multiple configurations and we identify techniques to achieve
an acceptable real-time behavior. Some of our proposed configurations have served
for the selection of the baseline research platforms in [17].

1.4 Contributions

1.4.5 Assessment and Improvement of Model-Based Design for
GPU Control Systems

In industry, MBD is the preferred choice for developing and testing real-time control
systems. Recently, MBD tools have been enhanced with GPU code generation
capabilities for deep learning and computer vision acceleration, a feature that could
also be leveraged for the development of parallel real-time control systems. Howevet,
there is no indication whether these tools are ready for the design of time-sensitive
systems. In Chapter 8, we analyze the suitability of commercial MBD toolsets for the
development of real-time control systems. We evaluate the integration with GPU
hardware and the GPU code generation capabilities [18]. We propose improvements
for the generated GPU code, and we present a source-to-source transformation tool
that automatically applies our proposed improvements to the generated GPU code.
With this contribution, we facilitate the inclusion of embedded GPUs in the classical
control system development cycle.

8 Chapter 1 Introduction

1.5 Thesis Organization

Each of the major contributions of this thesis is presented in a different chapter,
following the next structure:

* In Chapter 2 we present the necessary background on GPU programming,
model-based design and control systems. We also present some previous works
related to the use of GPUs in critical systems.

* In Chapter 3 we describe the methodology and the experimental setup used for
the evaluation of the contributions of this thesis. In particular, we describe the
hardware platforms, benchmarks, and tools used to carry out the evaluations
in the rest of the chapters.

* In Chapter 4 we present a methodology and an automated tool to extract
information about the internal properties of the GPU memory allocators. We
apply our tool in two automotive case studies to show how a system engineer
can be benefited by this information, in order to provision the correct amount
of memory.

* In Chapter 5 we present a tool to characterize the use of dynamic memory in
GPU applications. We use our tool to characterize three popular GPU bench-
mark suites and we identify potential improvements to memory allocation
patterns.

* In Chapter 6 we present a tool to optimize the use of dynamic memory in
legacy GPU applications executed on embedded platforms.

* In Chapter 7 we analyze the timing of control algorithms executed in embedded
GPUs and we identify techniques to achieve an acceptable real-time behavior.

* In Chapter 8 we evaluate MBD tools in terms of integration with GPU hardware
and GPU code generation, and we propose a source-to-source transformation
tool to improve the model-based generated GPU code.

* Finally, in Chapter 9 we present the main conclusions and potential future
directions of research of this thesis.

1.5 Thesis Organization

1.6 List of Publications

In this section, we list the publications which were produced as a direct contribution
of the research carried out during the development of this thesis.

1.6.1 Accepted Publications

* Understanding and Exploiting the Internals of GPU Resource Allocation

for Critical Systems

Alejandro J. Calderon, Leonidas Kosmidis, Carlos F. Nicolds, Francisco J. Ca-
gorla, Peio Onaindia

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2019

GMALI: Understanding and Exploiting the Internals of GPU Resource Allo-
cation in Critical Systems

Alejandro J. Calderon, Leonidas Kosmidis, Carlos F. Nicolds, Francisco J. Ca-
gorla, Peio Onaindia

ACM Transactions on Embedded Computing Systems (TECS), 2020

Assessing and Improving the Suitability of Model-Based Design for GPU-
Accelerated Railway Control Systems

Alejandro J. Calderdn, Leonidas Kosmidis, Carlos F. Nicolds, Javier de Lasala,
Ion Larrafiaga

International Conference on Architecture of Computing Systems (ARCS), 2021

1.6.2 Other Publications

10

In addition, although they do not constitute explicit contributions of this Thesis, the
following publications are tightly related to it.

¢ The UP2DATE Baseline Research Platforms

Alvaro Jover-Alvarez, Alejandro J. Calderdn, Ivan Rodriguez, Leonidas Kosmidis,
Kazi Asifuzzaman, Patrick Uven, Kim Griittner, Tomaso Poggi, Irune Agirre
Design, Automation & Test in Europe (DATE), 2021

Chapter 1 Introduction

* GPU Devices for Safety-Critical Systems: A Survey
Jon Perez-Cerrolaza, Jaume Abella, Leonidas Kosmidis, Alejandro J. Calderdn,
Francisco J. Cagorla, Jose Luis Flores
ACM Computing Surveys, 2022

* On the Safe Deployment of Matrix Multiplication in Massively Parallel
Safety Systems
Javier Ferndndez, Irune Agirre, Alejandro J. Calderdn, Jon Perez, Jaume Abella,
Francisco J. Cazorla
Applied Sciences - Special Issue in Machine Learning and Software Intensive
Systems: Theory, Methods and Applications, 2022

Finally, the following publication has been recently submitted and is currently under

review.

* Unraveling the Mystery of NVIDIA’s Unified Memory for Safety-Critical
GPU Systems
Xabier Arauzo, Alejandro J. Calderon, Leonidas Kosmidis, Irune Yarza
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2022

1.6 List of Publications

11

2.1

Background

In this chapter, we provide the background related to this thesis in terms of control
systems, model-based design and Graphics Processing Units (GPUs). We introduce
basic terminology and fundamental concepts to understand the context of this thesis.
We also provide references to some previous works related to the use of GPUs in
critical systems.

Control Systems

Control systems regulate the behavior of devices or equipment using feedback control
loops. Most of modern control systems implementations involve digital embedded
microprocessors. Such embedded microprocessors provide interfaces to sensors
and actuators, and hard real-time scheduling to guarantee the timely execution of
synchronous feedback algorithms. Embedded controllers for real-world applications
typically execute multiple cascaded control loops. This control structure tends to
require multiple sampling rates; the inner the loop in the code control structure, the
higher its required sampling rate is.

An unexpectedly long execution time could delay the action of the controller on
the system under control, eventually bringing the system to an inconvenient or risky
situation. Therefore, determining the worst-case execution time of the control loop
is of uttermost importance for controllers operating critical or protection systems.

Scenarios involving the parallel control of multiple systems can be found in
industrial controllers in applications demanding high computational throughput
and scalability —e.g., as required by power converters for distributed propulsion
systems comprising tens of motors, as proposed for electrification of airborne vehicles
[19]1[20], or power-related applications such as distributed power converters for
charging stations or distributed power generation.

13

2.2

14

Model-Based Design

In industry, model-based design is the preferred choice for developing and testing
control systems. A key attractor for adopting MBD to develop industrial applications
is the separation of concerns, where the desired functionality can be described by a
pure mathematical representation, i.e. the model. Afterwards, this will be step-wise
refined until achieving a description that will be partitioned and allocated to the
computing platform.

Equipment manufacturers relying on third-party embedded computing platforms
expect MBD to isolate their own intellectual property, related to the functionality
of the embedded software, from the particular features of a given hardware, which
could jeopardize portability and make platform replacement costly. This expec-
tation typically sacrifices optimal performance when compared to a hand-written
implementation tailored to a specific platform. To this end, several authors pro-
posed similar approaches to preserve the platform independence, for example, the
Y-development process [21], or the Platform-Based Design (PBD) [22][23] among
others.

MBD product development yields many additional advantages: MBD enables
the validation of specifications by analysis and simulation, and allows designers to
unveil potential design pitfalls at early project stages, which in turn cuts the overall
development cost by lowering the time and effort required to fix undesirable behavior.
Moreover, when provided with trustworthy models of the system environment, MBD
enables the systematic exploration of a multiplicity of what-if scenarios under
unlikely conditions, which could be hard or completely impossible to fully reproduce
in real-world tests.

A typical MBD development process starts with a pure simulation model, known
as Model-in-the-Loop (MIL), which is refined and analyzed in relevant simulated
scenarios until an acceptable behavior is achieved. Then an initial model-to-code
transformation yields a second executable implementation. Depending on whether
this implementation could be (cross-)compiled and run on the same host platform
or has to be executed on the final target, the configuration is named Software-in-
the-Loop (SIL) or X-in-the-Loop (XIL). In addition, depending on the target used
in XIL it can be specialized as Processor-in-the-Loop (PIL), FPGA-in-the-Loop (FIL)
or in the context of this thesis GPU-in-the-loop (GIL). Moreover, with the advent of
increasingly capable platform simulation tools, these configurations can be exercised
in a co-simulation environment coupling both the modeling environment - e.g.,
Simulink - and a virtual platform simulator.

Chapter 2 Background

2.3

2.3.1

Among the latter, we can mention Mentor Graphics QuestaSim or ModelSim
to host-simulate the behavior of programmable logic, while QEMU, Imperas Open
Virtual Platform, or WindRiver Simics could be used to simulate diverse micropro-
cessors. At this stage, the trustworthiness of the verification results depends on the
reliability of the simulators used, thus the immediate afterwards step is to exercise
the obtained application in the final platform by injecting the same stimuli from the
simulated scenarios to the implementation under test and verifying the equivalence
of the outputs with regard to the previously validated realizations.

Recently, GPUs started attracting a strong interest for developing embedded
control applications, particularly for real-time controllers involving non-conventional
computations —e.g., Deep Neural Networks (DNNs) or Convolutional Neural Net-
works (CNNs). This also motivated the introduction of MBD toolsets intending to
ease the development of GPU applications using the same modeling environments
already in use for the other types of computing platforms mentioned before. The
novelty of these GPU toolsets, coupled with the special programming patterns re-
quired by them, pose several challenges and face many limitations. For example,
ensuring the suitability of the languages to describe functionality in a way that
can be unambiguously translated to a parallel programming language adequate for
coding a GPU, such as CUDA.

Graphics Processing Units (GPUs)

GPUs are high-performance co-processors initially developed for handling computa-
tionally intensive tasks related to rendering computer graphics. Modern GPUs have
become more powerful and generalized, enabling them to be applied to accelerate
time-consuming general-purpose parallel computing tasks with excellent perfor-
mance and high power efficiency. This section presents GPU-related terminology
and fundamental concepts relevant to understanding the rest of the thesis.

GPU Architecture and Terminology

GPUs are massively parallel computing devices with a many-core architecture. The
term many-core is usually used to describe multi-core architectures with tens or
hundreds of cores. Even though the term core can be used to describe the processing
elements of CPUs and GPUs, a GPU core is very different from a CPU core. A CPU
core is a robust unit designed for complex control logic, seeking to optimize the

2.3 Graphics Processing Units (GPUs)

15

16

execution of sequential programs, while a GPU core (scalar core) is a lightweight
unit optimized for data-parallel tasks with simple control logic, focusing on the
throughput of parallel programs [24].

Currently, GPUs are not independent platforms but devices that operate as
co-processors of a CPU. Therefore, GPUs must work as a part of a heterogeneous
architecture in conjunction with a CPU host. For this reason, in GPU computing
terminology, the CPU side of this architecture is called the host and the GPU side
is called the device. As shown in Figure 2.1, there are two different versions of the
heterogeneous CPU-GPU architecture.

________ Host GPUDevice e SPUSOC
§ I ' sM1 w2z || | !’ SM 1 vz || |
Pl crut || cpu2 : ‘ B | B || cPU1 || CPU2 FEEE || B
5 P |loooy|oog|| | oo@||oo|||
! . SM3 SMN || ' sM3 SMN i
P|lerus | eeun | ! cPU3 || CPUN o ||
5 P (lDDEjooa]) oomE||0o@ ||
§ ‘ Cache ‘ : i ‘ Cache ‘ : ’ Cache ‘ ’ Cache ‘ i
i Host Memory E i Device Memory | | :‘ ’ Interconnect ‘ ,':

PCle Bus Global Memory
(a) Discrete architecture (b) Embedded architecture

Figure 2.1: Heterogeneous CPU-GPU architectures

In a discrete architecture (Figure 2.1a), GPUs are separate adapter cards that
are plugged into the host computer using the PCle bus. The GPU cards have their
own DRAM memory, which is different from the memory of the host computer.
To operate, the data must be copied from host memory to device memory (and
vice-versa) through the PCle bus. This is the typical architecture for servers and
desktop computers. In an embedded architecture (Figure 2.1b), the CPU and GPU
are integrated into the same System on Chip (SoC) and share the same DRAM
memory. This architecture is common in mobile and embedded devices.

Using CUDA terminology, a GPU is composed by one or more Streaming Mul-
tiprocessors (SMs). Each SM contains several scalar cores (CUDA cores) and other
resources such as registers, shared memories and warp schedulers. The compute
capability of a SM is a version number that identifies the hardware features available
on the SM. A scalar core is a pipelined Arithmetic Logic Unit (ALU) capable of
executing integer and floating-point operations. The scalar cores execute groups of

Chapter 2 Background

Table 2.1: Equivalent terms between CUDA and OpenCL terminology

CUDA terminology OpenCL terminology

Streaming Multiprocessor Compute Unit
Scalar Core (CUDA Core) Processing Element

Warp Wavefront

Grid Computation Domain
Block Work-group

Thread Work-item

32 lockstep threads known as warps, in a Single Instruction Multiple Threads (SIMT)
fashion. The warp schedulers decode and issue instructions to be executed by each
warp. During the execution, resources like shared memory and registers are shared
by the warps being scheduled. The warp schedulers take advantage of memory stalls
by swapping a stalled warp with a different warp to run on the set of 32 scalar cores
assigned to it. This way, the warp schedulers can hide the latency related to memory
accesses.

On the software side, a GPU application consists of two parts: host code and
device code. Host code runs on the CPU and is responsible for managing the data
and execution parameters before loading the compute intensive task into the GPU.
Device code is executed on the GPU in the form of functions known as kernels.
Before launching a kernel in a discrete architecture, the user prepares the data to be
processed using host memory, reserves the corresponding amount of device memory,
and triggers a copy operation from host to device memory. Once the kernel execution
is finished, it is required to copy the results from device memory to host memory. In
an embedded architecture, since CPU and GPU share DRAM memory, this can be
done more efficiently by defining a single region of shared memory to avoid memory
copy operations. However, in this scenario, memory coherency mechanisms must be
taken into account. When launching a kernel to the GPU, the user specifies a grid
configuration with the number of blocks and threads per block to be executed, which
will vary according to the size of the problem.

So far, we have described the architecture and basic functionality of GPUs using
CUDA terminology, which applies to NVIDIA GPUs. However, a similar terminology
applies to GPUs of other vendors, which are programmed using the OpenCL language.
Table 2.1 shows the equivalent terms used for OpenCL devices. For convenience, in
the rest of this thesis we will use CUDA terminology.

2.3 Graphics Processing Units (GPUs)

17

2.3.2 GPU Programming Fundamentals

© 00 ~NO O WN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

18

CUDA Programming Model

CUDA is a parallel computing platform and programming language for NVIDIA GPUs.
CUDA extends the C/C++ and Fortran languages by allowing the programmer to
define functions called kernels, which are executed in parallel by several CUDA
threads on a GPU.

__global__ void vectorAdd(int *A, int *B, int *C)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
Cl[id] = A[id] + B[id]l;
}
int main()
{
int *h_A, *h_B, *h_C;
int *d_A, *d_B, *d_C;
int blocks = 2;
int threads = 32;
int n_elements = blocks * threads;
size_t bytes = n_elements * sizeof (int);
h_A = (int*)malloc(bytes);
h_B = (int*)malloc(bytes);
h_C = (int*)malloc(bytes);
cudaMalloc(&d_A, bytes);
cudaMalloc(&d_B, bytes);
cudaMalloc(&d_C, bytes);
cudaMemcpy(d_A, h_A, bytes, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_B, h_B, bytes, cudaMemcpyHostToDevice) ;
vectorAdd<<<blocks, threads>>>(d_A, d_B, d_C);
cudaDeviceSynchronize() ;
cudaMemcpy (h_C, d_C, bytes, cudaMemcpyDeviceToHost) ;
free(h_A);
free(h_B);
free(h_C);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
return O;
}

Listing 2.1: CUDA vector addition program

Chapter 2 Background

The structure of a typical CUDA program has the next steps: allocate host
memory to prepare data on the host side, allocate device memory on the GPU side,
copy data from host memory to device memory, launch a kernel to process the data
on the GPU, copy the results from device memory to host memory, and finally, free
the allocated host and device memory. To exemplify this process, Listing 2.1 shows a
CUDA vector addition program.

In CUDA, both the host code and the device code can be part of the same
program. The NVIDIA nvcc compiler takes care of each part and divides the code to
be executed on the host from the code to be executed on the device. In Listing 2.1,
the device code is in lines 1 to 5, which is a CUDA kernel to add the values of two
vectors and store the results into a third vector (C = A + B). This kernel does not
execute automatically in the GPU, it has to be launched from the CPU side. Lines 7 to
41 show the host code, which executes on the CPU. First, we allocate host memory
(lines 17 to 19) and device memory (lines 21 to 23) for the three vectors. Then,
we copy the data of the two vectors we want to add from host memory to device
memory (lines 25 and 26). For simplicity, we do not show code to initialize the host
vectors before copying the values.

When the data is ready to be processed at the GPU side, we launch the GPU
kernel (line 28). When launching a kernel, the programmer specifies the distribution
of the threads through the threads per block and blocks per grid values. In this
case, we are launching a grid of 2 blocks with 32 threads each, for a total of 64
threads, which will calculate in parallel the addition of vectors with 64 elements.
We used one-dimensional integer values to specify the number of blocks and threads
according to the complexity of our problem. However, CUDA supports 3-dimensional
variables (dim3) to launch 3-dimensional grids to solve more complex problems.
The grid configuration will vary according to the size of the problem being solved
and the characteristics of the GPU hardware. Since individual blocks are assigned
to specific SMs, and each SM has a determined number of CUDA cores and warp
schedulers, the size of the grid could be defined taking into account this information
to make use of the resources efficiently.

After launching the GPU kernel, the CPU can continue executing other tasks
without waiting for the GPU to finish. However, we can also wait for the GPU using a
synchronization function (line 29). When the GPU finishes the kernel execution, we
copy the results from device memory to host memory. Finally, we release both host
and device memory (lines 33 to 38) before finishing the program to avoid memory
leaks.

2.3 Graphics Processing Units (GPUs)

19

a b wWwN -

© 00N O WN -

e e e =
g d W NN~ O

20

OpenCL Programming Model

OpenCL follows a similar programming model with CUDA, however it is a lower
level language than CUDA. This means that the same functionality is implemented
with more API calls which offer finer grained control, at the expense of programming
complexity. The structure of a typical OpenCL program has the next steps: initialize
the platform, load and compile the kernel code, allocate host memory to prepare
data on the host side, allocate device memory on the device side, copy data from
host memory to device memory, prepare kernel arguments, launch kernel to process
the data on the device, copy the results from device memory to host memory, and
finally, free the allocated host and device memory.

__kernel void vectorAdd(__global int *A, __global int *B, __global int *C)

{
int id = get_global_id(0);
C[id] = A[id] + B[id];

Listing 2.2: OpenCL vector addition kernel

To compare with CUDA, we use an OpenCL version of the vector addition
program. First, in OpenCL, the device code and the host code are always written in
different files. Listing 2.2 shows the contents of the OpenCL kernel file for vector
addition. We can observe that the OpenCL syntax for writing the device code is very
similar to the CUDA syntax.

#include <CL/cl.h>
#define MAX_SOURCE_SIZE (0x100000)

int main()

{
cl_platform_id platform_id;
cl_device_id device_id;
cl_uint num_platforms;
cl_uint num_devices;
cl_int ret;

clGetPlatformIDs(1, &platform_id, &num_platforms);
clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, &num_devices);

cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);
cl_command_queue c_queue = clCreateCommandQueue(context, device_id, 0, &ret);

Listing 2.3: OpenCL platform initialization

On the host side, the OpenCL program starts with the platform initialization,
as shown in Listing 2.3. The platform initialization is necessary because OpenCL

Chapter 2 Background

16
17
18
19
20
21

22
23

not only works with GPUs but also with other computing platforms like multi-core
microprocessors and FPGAs. Since OpenCL assumes that there can be different
computing platforms in the system, the first step is to specify the platform ID and
the device type (lines 12 and 13). With this information, we create an OpenCL
context (line 14) and a command queue (line 15) to send execution commands to
the specified device. In CUDA, it is also possible to select a specific device when
more than one GPU is present in the system. However, the CUDA context creation is
transparent to the user, and it is done automatically by the runtime system.

After the platform initialization, it is necessary to load the source code of the
kernel and compile it, as shown in Listing 2.4. Since the source file can contain more
than one kernel, it is necessary to specify the name of the kernel when creating the
kernel object (line 23).

FILE *file = fopen("vectorAddKernel.cl", "r");

char *source_str = (char*)malloc(MAX_SOURCE_SIZE);

size_t source_size = fread(source_str, 1, MAX_SOURCE_SIZE, file);
fclose(file);

cl_program program = clCreateProgramWithSource(context, 1, (const
< char*x)&source_str, (const size_t*)& source_size, &ret);
clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, "vectorAdd", &ret);

Listing 2.4: OpenCL vector addition kernel creation

Once the device has been selected, and the context, command queue and kernel
objects have been created, we are ready to prepare and launch the kernel execution.
Listing 2.5 shows the host code needed to prepare the memory objects and launch
the kernel execution into the device. First, we allocate host memory (lines 28 to 30)
and device memory (lines 32 to 34) for the three vectors. Then, we enqueue the
memory copy of the two input vectors to pass their data from host memory to device
memory (lines 36 and 37). Before launching the kernel, it is necessary to set the
kernel arguments (lines 39 to 41).

When the data is ready to be processed at the device side, we enqueue the
kernel launch (line 43). When launching a kernel, the programmer specifies the
distribution of the threads in the form of a computation domain. A computation
domain is defined with two sizes: the global size, which is the total number of work-
items, and the local size, which is the number of work-items per work-group. Like
in CUDA, these sizes can have up to three dimensions to model complex problems.
Because of the simplicity of this example, we use a computation domain of one
dimension, with 64 total work-items and 32 work-items per work-group, meaning

2.3 Graphics Processing Units (GPUs)

21

that we will divide the work into 2 work-groups. Each work-item will calculate the
addition of one element of the first input vector with the corresponding element of
the second input vector.

24 size_t global_size = 64;

25 size_t local_size = 32;

26 size_t bytes = global_size * sizeof (int);

27

28 int *h_A = (int*)malloc(bytes);

29 int *h_B = (int*)malloc(bytes);

30 int *h_C = (int*)malloc(bytes);

31

32 cl_mem d_A = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, &ret);

33 cl_mem d_B = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, &ret);

34 cl_mem d_C = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, &ret);

35

36 clEnqueueWriteBuffer(c_queue, d_A, CL_TRUE, O, bytes, h_A, 0, NULL, NULL);

37 clEnqueueWriteBuffer (c_queue, d_B, CL_TRUE, O, bytes, h_B, 0, NULL, NULL);

38

39 clSetKernelArg(kernel, O, sizeof(cl_mem), (void*)&d_A);

40 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&d_B);

41 clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&d_C);

42

43 clEnqueueNDRangeKernel (c_queue, kernel, 1, NULL, &global_size, &local_size, O,
— NULL, NULL);

44 clEnqueueReadBuffer(c_queue, d_C, CL_TRUE, O, bytes, h_C, 0, NULL, NULL);

45

46 free(h_A);

a7 free(h_B);

48 free(h_C);

49 clReleaseMemObject (d_A);

50 clReleaseMemObject (d_B) ;

51 clReleaseMemObject(d_C);

52 clFlush(c_queue);

53 clFinish(c_queue);

54 clReleaseKernel (kernel);

55 clReleaseProgram(program) ;

56 clReleaseCommandQueue (c_queue) ;

57 clReleaseContext (context);

58

59 return O;

60 }

Listing 2.5: OpenCL vector addition kernel execution

After the kernel execution, we copy the results from device memory to host
memory (line 44). Finally, we release the host allocations (lines 46 to 48), the device
allocations (lines 49 to 51), and we destroy the command queue, context and kernel
objects (lines 52 to 57).

22 Chapter 2 Background

2.3.3 Memory Allocation in GPUs
Memory Allocation in CUDA

In the traditional CUDA programming model, the programmer is in charge of
explicitly managing memory for both the CPU and the GPU, including allocation,
deallocation and transfers between the host memory and the device memory. Regular
CPU memory ie. allocated using malloc is by default paged, which means that the
operating system can swap it out to the disk if needed, typically due to memory
oversubscription. On the other hand, GPU memory, allocated with cudaMalloc is
always non-paged, that is, it is always present in the memory. Copies between
CPU and GPU memory are performed by DMA (Direct Memory Access) operations.
However, as DMA transfers are asynchronous with respect to the CPU execution,
they can operate only when the pages are guaranteed to be resident in the memory.
Since this is not always the case for paged memory, the transfers need to pass from
a staging area of non-paged memory. In other words, in a CPU to GPU transfer,
memory needs to be copied first to this intermediate buffer using the CPU and
therefore synchronously, before the DMA can kick in to perform the asynchronous
transfer to the device. This results in additional memory and additional timing
overhead in GPU transfers.

In order to avoid these overheads, the programmer can allocate non-paged CPU
memory, also known as pinned memory or paged-locked memory using cudaMallocHost.
However, this type of memory in the system is limited and its allocation is more
expensive since it requires a user space to kernel space switch. This allows the use
of fully asynchronous transfers using cudaMemcpyAsync.

There is also the option to allocate another type of pinned memory in the
CPU side, which is also memory-mapped to the GPU, using cudaHostAlloc and
specifying the flag cudaHostAllocMapped. This means that no explicit copies are
required between the CPU and GPU, which gives the name zero-copy. Depending on
the type of the GPU, this is implemented in a different way. In a discrete GPU, the
copies are performed in a fine-grained manner using the DMA engines to transfer
the data over the PCle link. On the other hand, in embedded GPUs which share the
same main memory with the CPU, the GPU directly accesses the same memory as the
CPU. Of course, in both cases it is up to the programmer to ensure the consistency
of the shared memory between CPU and GPU. This functionality is supported by a
feature known as UVA (Unified Virtual Addressing), which allows both the CPU and
the GPU to operate using the same virtual address.

2.3 Graphics Processing Units (GPUs) 23

Finally, CUDA also provides a feature called Unified Memory, which takes away
the responsibility of transferring data between CPU and GPU. Unified Memory
allows the programmer to do a single allocation for both CPU and GPU using
cudaMallocManaged, which eliminates the need of memory copies and simplifies
the code writing. Unified Memory is also implemented using the UVA feature, which
allows the use of a single memory pointer accessible from both the host side and
the device side. Data transfers between CPU and GPU are done internally by the
CUDA runtime, which migrates memory pages on demand. Despite the increase
in productivity, the performance of this feature heavily depends on the memory
access patterns of each application, and it adds even more black-box behavior to the
memory management.

_________________ GPUSOC . oo GPUSOC L
ll i 1/ \
H SM 1 SM 2 H H SM 1 SM 2 H
i Oo@|(|d0Oom i OO0 |(|O0C0m
: SM 3 SM N 1 i SM 3 SMN '
1 i ' '
! Ofo@||ofo| ' ! OO0 || O0m !
1 i ' '
1 i ' '
:’ Cache ‘ ’ Cache ‘: H H
' J | J
T T Global Memory 1| T T Global Memory T
Host . COE% \ Device Zero-Copy
Allocation Allocation Allocation
(a) Traditional memory model (b) Zero-copy memory model
_________________ GPUSOC __ _ _ _____. el BPUSOC_ .
l/ \I II \|
| SM 1 SM 2 | , SM 1 SM 2 |
i OoE|(|00m i i OO0OE(|(|O00m i
1 SM 3 SM N 1 i SM 3 SM N '
1 1 1 1
' OfomE||obo|E ' ! Oo@E||O00m !
1 1 1 1
1 1 1 1
o bl e][e]
H HW I/0 f ' '
\ Coherency ! \ 1
e T (Coherency | , N S | ,
Global Memory Global Memory

Zero-Copy Unified
Allocation i
UM Logical Space Alizeiien

(c) Zero-copy with HW 1/0 coherency model (d) Unified memory model

Figure 2.2: CUDA memory models in embedded GPUs

Since the CPU cores and the integrated GPU share the same physical memory in
embedded GPU platforms, different considerations must be taken into account to
select the appropriate memory model to achieve better performance and efficient

24 Chapter 2 Background

memory consumption of GPU applications. Figure 2.2 shows a visual representation
of how the different CUDA memory models work in embedded GPU platforms.

When using the traditional memory model (Figure 2.2a), the memory is parti-
tioned into two logical spaces, one for host allocations and the other one for device
allocations. Before a kernel execution, the data is copied from the host logical space
to the device logical space. Once the kernel execution finishes, the results are copied
back from the device logical space to the host logical space. In this scenario, both
the CPU and GPU caches are enabled, which can accelerate data transfers. Moreover,
the data access synchronization between the CPU cores and the integrated GPU
is guaranteed by design. However, in most of the cases, the use of caches is not
enough to completely hide the data transfers overhead. Additionally, the memory
consumption is not optimal, since both CPU and GPU allocations are served from
the same physical memory.

The zero-copy memory model provides a more efficient approach. Since both
CPU and GPU share the same physical memory, it allows the CPU to share pointers
to pinned host allocations that the GPU can directly access without relying on
DMA transfers over the PCle bus. This eliminates the need for memory copies and
reduces memory consumption compared to the traditional memory model. However,
having a shared memory space requires the system to guarantee cache coherence
between CPU and GPU. Since software-based cache coherency mechanisms can
add extra overhead, some platforms, such as the NVIDIA embedded GPUs with
compute capability less than 7.2, address the cache coherency problem by disabling
the last level caches from both CPU and GPU (Figure 2.2b). This solution can
negatively affect the performance of cache-dependent GPU applications. For this
reason, NVIDIA recommends the use of zero-copy memory for smalls buffers, since
the caching effect is negligible for those buffers. Zero-copy memory can also be
beneficial in applications with large buffers if the memory access patterns does not
rely on caches.

To reduce this limitation, most recent NVIDIA embedded platforms with compute
capability 7.2 or higher implement a hardware-based I/0O coherency mechanism
(Figure 2.2c). I/0 coherency is a feature that allows an I/0 device such as a GPU
to read the latest updates in the CPU caches. It removes the need to perform CPU
cache management operations when the same physical memory is shared between
CPU and GPU. However, the GPU cache management operations still need to be
performed because the coherency is one way. For this reason, the GPU cache remains
disabled when using zero-copy memory on these platforms.

2.3 Graphics Processing Units (GPUs)

25

26

In embedded GPU platforms, unified memory allocations are pointers to a
single unified logical space, which can be accessed by both the CPU and the GPU
(Figure 2.2d). However, the implementation of unified memory in embedded GPUs
is quite different from that for discrete GPUs. Instead of having on-demand page
migrations between host memory and device memory, the embedded implementation
of unified memory is similar to the zero-copy memory model with single allocations
for both CPU and GPU, reducing memory consumption. Nevertheless, unlike the
zero-copy memory model, both CPU and GPU caches are enabled in the unified
memory model, which requires the runtime system to perform software-based cache
coherency maintenance operations. The overhead caused by these operations is
higher in embedded platforms with compute capability less than 7.2, as they lack
hardware I/O coherency. It is important to note that, according to NVIDIA, software-
managed coherency is by nature non-deterministic and not recommended in a
safe context. Therefore, in these applications, it is preferable to use the zero-copy
memory model [25].

Memory Allocation in OpenCL

In OpenCL, memory allocations are handled via memory objects, using the c1_mem
type. Generic memory allocations are known as buffer objects and are created us-
ing the clCreateBuffer function. This function receives a flags parameter which
controls how the memory will be accessed by the device. By default, the mem-
ory allocated by this function belongs to the device, and the value of flags is
CL_MEM_READ WRITE, which indicates that the device can read and write in this
region of memory. However, it also can be configured to be read-only using the
CL_MEM_READ_ONLY flag or write-only using the CL_MEM_WRITE_ONLY flag.

The flags parameter can also be used to specify which kind of memory will be
allocated. The CL_MEM_USE_HOST_PTR flag indicates that OpenCL should use the
memory referenced by a host pointer passed to the function instead of allocating
a new memory region. This means that the user is responsible of allocating this
region of host memory before calling the c1CreateBuffer function. According to
the standard, OpenCL implementations can cache the contents of the host memory
region in device memory.

The CL_MEM_ALLOC_HOST_PTR flag indicates OpenCL to create the allocation
using host accessible memory. Usually this is the flag used to allocate pinned memory
in OpenCL implementations. The CL._MEM_ALLOC_HOST_PTR flag can be used with the
CL_MEM_COPY_HOST_PTR flag to initialize the contents of the new allocated memory

Chapter 2 Background

2.4

with the values stored in a buffer referenced by a host pointer passed to the function.
To read or write data to a buffer created using the CL_MEM_ALLOC_HOST_PTR flag,
the user should use the c1EnqueueMapBuffer function to map the memory region,
operate on the buffer and then use the clEnqueueUnmapMemObject function to
unmap the memory region.

The zero-copy behavior is not explicitly defined in the OpenCL standard. It
is important to take into account that the OpenCL standard is just a set of ab-
stract definitions, and each vendor is responsible for their implementation. For
example, in the Intel implementation of OpenCL, the buffers created using the
CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR flags are by default zero-copy
buffers [26], however, this may not be the case with the implementation of other
vendors.

GPUs in Critical Systems

GPUs have been initially introduced as special purpose accelerators, in particular
for the production of visual content. However, their massively parallel architecture
and the introduction of general purpose programmability allowed their use for
computationally intensive tasks, including the extremely demanding Al processing,
enabled with deep learning.

Autonomy is becoming an important aspect of future critical systems for sec-
tors such as the automotive with the introduction of autonomous driving vehicles,
avionics with Unmanned Aerial Vehicles (UAVs), space, and planetary exploration
with autonomous navigation as well as in industrial automation in industry 4.0
applications to name a few. For this reason, GPU manufacturers started addressing
these sectors with the introduction of embedded GPU designs incorporating func-
tional safety features. However, this domain is still in its infancy with several open
challenges which are currently addressed by the research community.

Several works in the literature address the real-time behavior of GPUs. As
a complex hardware design with a black box non-preemptive behavior, GPU re-
quires novel approaches for scheduling of real-time tasks [27][28][29], preemp-
tion [30][31][32], reduction of offloading overheads [33], characterization of
contention [34][35][36][37] as well as the computation of worst case execution
times [38]. Regarding time determinism in GPU applications, some authors have
used the persistent threads model of programming, introduced in [39]. This model
improves determinism by launching a GPU kernel only once, which remains running

2.4 GPUs in Critical Systems

27

28

during the whole execution of the application. The threads of the persistent kernel
spin-wait for work to execute, and the CPU application can send and receive data via
memory transfers. This way, the persistent threads model bypasses the traditional
launching mechanism. This model has been applied in works like [40] [41] and [42]
to improve the performance and time determinism of GPU applications. It also
has been applied in works like [43] and [44] for the implementation of alternative
GPU schedulers. In [33] the persistent threads model is listed as one of the novel
methodologies for achieving predictable behavior when launching GPU tasks.

Other works analyze the necessary properties which need to be taken into ac-
count when GPUs are used in the context of critical systems. For example, [45][46]
reverse engineered non-obvious aspects of the GPU behavior which need to be taken
into account when GPUs are used in real-time systems. Other authors address the
compliance of GPUs regarding functional safety certification [47][48][49] by propos-
ing the use of language subsets or the adaptation of safety standards. Regarding
industrial applications, some works analyze the challenges of using GPUs in embed-
ded systems [50][51][52], while others analyze the exploitation of GPUs parallelism
when executing common control workloads [53][54] or advanced control techniques
like predictive control [55] and reinforcement learning-based control [56].

In brief, so far GPUs are mainly employed for high throughput computations
but not latency sensitive ones. However, embedded GPUs targeting particularly
the automotive and other critical domains are constantly improving in that matter.
For example, in the keynote of the GPU Technology Conference 2020 a new GPU
architecture and software infrastructure was presented, which will allow to deliver
low-latency conversational Al for use in the automotive sector [57]. This is an
indication that the latency capabilities of embedded GPUs will be soon competing
with other architectures, which were preferred so far for the implementation of such
tasks.

Chapter 2 Background

3.1

Methodology and
Experimental Setup

In this Chapter we describe the methodology used to develop and evaluate the
proposals for the thesis, as well as the experimental setup for their evaluation.

Methodology

The approach we follow in order to develop the contributions of this thesis is based
on the iterative methodology shown in Figure 3.1. We start by selecting each of the
technologies under analysis in this thesis and then evaluate its properties regarding
its suitability for implementing critical real-time systems. With this evaluation, we
identify the limitations of the current technology and we propose improvements
to overcome those limitations. After applying our proposals, we go through a
cyclic refinement process returning to the evaluation phase to verify the impact of
the applied improvements. In this process, we discard the solutions that do not
have an acceptable impact in the problem and, if necessary, we suggest alternative
approaches. Once we have confirmed that the proposed improvements are suitable
for overcoming the limitations found in the evaluation phase, we develop a final
implementation in the form of a reusable tool.

\ 4
A s A A A
Current State of Evaluate Identify Propose Develop Final
—> —> —> >

Technology Properties) | Limitations | | Improvements) L Implementationj

J

Figure 3.1: Iterative methodology for the development of the thesis

We repeat the same approach for the different contributions in this thesis. The
methodology described in Figure 3.1 is a general overview of the process. Each
contribution has specific characteristics and scenarios, which will be described
thoroughly in the corresponding chapter. In the same way, we use a different
experimental setup with a determined toolset for each contribution. The following
sections provide a description of the main platforms and tools used to create the

29

3.2

30

experimental setup of the different chapters. Then, on each chapter, we specify
which of these platforms and tools are used.

Embedded GPU Platforms

The contributions presented in this thesis are evaluated in discrete and embedded
GPUs from different vendors. However, due to its increasing use in autonomous
systems research, we focus mainly on the NVIDIA Jetson family of embedded GPUs
for most of our contributions. At the time of writing this thesis, the NVIDIA Jetson
family is composed by the Jetson Nano, the Jetson TX2, the Jetson Xavier NX and
the Jetson AGX Xavier platforms. Not all platforms are used for all our contributions,
since they became available in different points during the evolution of the thesis.

Jetson Nano

The smallest platform of the NVIDIA Jetson family is the Jetson Nano. The architec-
ture of the Jetson Nano SoC is composed by a quad-core 1.43 GHz ARM Cortex-A57
64-bit processor and an integrated NVIDIA Maxwell GPU, which has compute ca-
pability 5.3. The four Cortex-A57 cores share a 2 MB L2 cache. The Maxwell GPU
contains a single SM with 128 CUDA cores that share a 256 KB L2 cache. The CPU
cores and the integrated GPU share 4 GB of 1.6 GHz DRAM memory. Figure 3.2
shows the architecture of the NVIDIA Jetson Nano.

NVIDIA Jetson Nano SoC

——

Cortex-A57 cores Maxwell GPU
SM 0
CPUO CPU 1 CPU 2 CPU3
0.
‘ L2 cache ‘ ‘ L2 cache ‘

| |

‘ Memory Controller ‘

e e mmmmm e m s
N e e e e e e

Global Memory

Figure 3.2: Architecture of the NVIDIA Jetson Nano

Chapter 3 Methodology and Experimental Setup

Jetson TX2

The Jetson TX2 platform incorporates a quad-core 2.0 GHz ARM Cortex-A57 64-bit
processor, a dual-core 2.0 GHz superscalar 64-bit NVIDIA Denver processor, and an
integrated NVIDIA Pascal GPU, which has compute capability 6.2. There are two 2
MB L2 caches, one shared by the four Cortex-A57 cores and the other one shared by
the Denver cores. The Pascal GPU contains 256 CUDA cores divided into two SMs
of 128 CUDA cores each. The SMs share a 512 KB L2 cache. The CPU cores and
the integrated GPU share 8 GB of 1.866 GHz DRAM memory. Figure 3.3 shows the
architecture of the NVIDIA Jetson TX2.

NVIDIA Jetson TX2 SoC

Cortex-A57 cores Pascal GPU

CPUO CPU1

Denver cores

CPU 2 CPU 3 CPUO CPU1

’ L2 cache ‘ ’ L2 cache ‘ ’ L2 cache ‘

I I |

’ Memory Controller ‘

R e L L LN
L 4

Global Memory

Figure 3.3: Architecture of the NVIDIA Jetson TX2

Jetson Xavier NX

The Jetson Xavier NX platform includes a 6-core 1.4 GHz NVIDIA Carmel 64-bit

processor and an integrated NVIDIA Volta GPU, which has compute capability 7.2.

The six Carmel cores share a 6 MB L2 cache and a 4 MB L3 cache. The Volta GPU
contains 384 CUDA cores and 48 Tensor cores, divided into six SMs of 64 CUDA
cores and 8 Tensor cores each. The SMs share a 512 KB L2 cache. The CPU cores
and the integrated GPU share 8 GB of 1.866 GHz DRAM memory. Figure 3.4 shows
the architecture of the NVIDIA Jetson Xavier NX.

3.2 Embedded GPU Platforms

31

32

NVIDIA Jetson Xavier NX SoC

Carmel cores Volta GPU
SM 0 SM 1 SM 2

CPUO CPU 1 CPU 2 W W W

Ooom || o0f@E || 00mE
SM3 M4 SM5

CPU3 CPU 4 CPU 5

Oom || 0f@ || 00O

‘ L2/L3 cache ‘ ‘ L2 cache ‘

| |

‘ Memory Controller ‘

.

Global Memory

Figure 3.4: Architecture of the NVIDIA Jetson Xavier NX

Jetson AGX Xavier

The Jetson AGX Xavier platform is composed by an 8-core 2.26 GHz NVIDIA Carmel
64-bit processor and an integrated NVIDIA Volta GPU, which has compute capability
7.2. The eight Carmel cores share a 8 MB L2 cache and a 4 MB L3 cache. The Volta
GPU contains 512 CUDA cores and 64 Tensor cores, divided into eight SMs of 64
CUDA cores and 8 Tensor cores each. The SMs share a 512 KB L2 cache. The CPU
cores and the integrated GPU share 32 GB of 2.133 GHz DRAM memory. Figure 3.5
shows the architecture of the NVIDIA Jetson AGX Xavier.

NVIDIA Jetson AGX Xavier SoC

Carmel cores Volta GPU
SMO SM1 SM2 SM3

cruo || oo || ceua || cpuz | | CEEEEER | EEEEEEE || FHFEEEEE || BEHE

oom | ooE || oo | ooE

SM 4 SM5 SM 6 SM7

CPU3 || CPU4 || CPUS || CPUS W W Hﬁﬁ Hﬁfﬁj

oo oo j|oom)oo@

‘ L2/L3 cache ‘ ‘ L2 cache ‘

[] |1

‘ Memory Controller ‘

e { ___________________ _I ___________________________

Global Memory

S

Figure 3.5: Architecture of the NVIDIA Jetson AGX Xavier

Chapter 3 Methodology and Experimental Setup

3.3 GPU Software Configuration

The board support package provided by NVIDIA for the boards of the Jetson family
is the Jetson Linux for Tegra Driver Package (L4T) [58]. This package includes the
Linux kernel, a bootloader, NVIDIA drivers, flashing utilities, a sample file system
based on Ubuntu 18.04, and tools for GPU software development. During the
development of this thesis, we used different versions of L4T up to version 32.5.
Independently from the version used, for the contributions of this thesis, we focused
on two different base setups for L4T.

Stock System Setup: In this setup we use an off-the-shelf version of L4T, using the
standard packages provided by NVIDIA. We use this setup in scenarios where we
want to characterize the standard behavior of the Jetson platforms.

Real-time System: For this setup, we compile the Linux kernel applying the
PREEMPT-RT real-time patches. Then, we use the flashing tools provided by NVIDIA
to install the customized kernel into the Jetson platforms. The PREEMPT-RT patches
enable the full preemptive mode of the Linux kernel. We use this setup in scenar-
ios where we want to reduce the latency introduced by the operating system and
secondary tasks.

To avoid undesired interference while running experiments on the GPUs, and to
improve the overall performance of the system, we apply the next configurations to
both setups after installing the system in any of the Jetson platforms:

* Stop and disable the GNOME Display Manager (GDM): L4T is a full Linux
distribution which includes the GNOME desktop environment. Since this
service may use the GPU for graphics processing, it is important to disable it to
avoid interference in experiments where we use the GPU.

* Change the default boot to text mode: By default, L4T boots in graphical
mode, which can enable services that use the GPU and cause interference
while running experiments. We configure the system to forcefully boot in text
mode.

* Set the CPU frequency scaling to performance mode: In Linux, CPU frequency
scaling enables the operating system to scale the CPU frequency to save power.
Dynamically changing the CPU frequency can have a negative impact on
performance. To avoid this, we configure the Linux scaling governor to remain
always in performance mode.

3.3 GPU Software Configuration

33

3.4

34

GPU Benchmarks

For the evaluation of the functionality of some of our contributions, in this thesis,
we use three benchmark suites that are widely used in the GPU research community:
Rodinia [59], Parboil [60] and PolyBench-ACC [61].

The Rodinia benchmark suite was released by the University of Virginia to
support the research in the field of parallel computing with accelerators. The suite
contains 23 benchmarks of different domains, including medical imaging, bioin-
formatics, fluid dynamics, data mining and physical simulation. Each benchmark
has CUDA, OpenMP and OpenCL implementations. Table 3.1 shows a list of the
benchmarks included in the Rodinia benchmark suite.

Table 3.1: List of benchmarks in the Rodinia suite

Benchmark Description

backprop Back Propagation machine-learning algorithm

bfs Breadth-First Search algorithm

b+tree B+ Tree graph traversal

cfd CFD solver for unstructured grids

dwt2d Discrete Wavelet Transform

gaussian Gaussian elimination for linear systems

heartwall Tracking movement of a mouse heart in ultrasound images
hotspot Estimation of processor temperature based on simulation
hotspot3D Structured grid for physics simulation

huffman Huffman lossless data compression

hybridsort Hybrid Sort sorting algorithm

kmeans K-means clustering algorithm for data-mining

lavaMD Calculation of particle potential and relocation

leukocyte Detection and tracking of leukocytes in video frames

lud LU Decomposition for linear equations

mummergpu High-throughput parallel pairwise local sequence alignment
myocyte Model and simulation of the behavior of heart muscle cells
nn K-nearest Neighbors from an unstructured data set

nw Needleman-Wunsch method for DNA sequence alignments
particlefilter Statistical estimator for tracking cells

pathfinder Find a path with the smallest accumulated weights on 2-D grids
srad Speckle Reducing Anisotropic Diffusion

streamcluster Clustering of a stream of input points based on nearest centers

The Parboil benchmark suite was created by the IMPACT Research Group in the
University of Illinois at Urbana-Champaign for studying the performance of through-
put computing architecture and compilers. The suite is a collection of applications
from different fields, including image processing, biomolecular simulation, fluid

Chapter 3 Methodology and Experimental Setup

3.5

dynamics, and astronomy. It contains 11 benchmarks in total, with CUDA, OpenMP
and OpenCL implementations. Table 3.2 shows a list of the benchmarks included in
the Parboil benchmark suite.

Table 3.2: List of benchmarks in the Parboil suite

Benchmark Description

bfs Breadth-First Search algorithm

cutcp Distance-Cutoff Coulombic Potential

histo Saturating Histogram

Ibm Lattice-Boltzmann Method for Fluid Dynamics
mri-gridding Magnetic Resonance Imaging - Gridding
mri-q Magnetic Resonance Imaging - Q

sad Sum of Absolute Differences

sgemm Dense matrix-matrix multiply

spmv Sparse-Matrix Dense-Vector Multiplication
stencil 3-D stencil operation

tpacft Two Point Angular Correlation Function

The PolyBench-ACC benchmark suite was created in the University of Delaware
as a version for accelerators of the PolyBench suite, which was created in the
University of California at Los Angeles. The suite is a collection of applications for
data mining, linear algebra and stencil computations. It contains 21 benchmarks
in total, with implementations in CUDA, OpenCL, OpenMP, OpenACC and HMPP.
Table 3.3 shows a list of the benchmarks included in the PolyBench-ACC benchmark
suite.

Model-Based Design Frameworks

As stated in Section 2.2, model-based design is the preferred choice in industry
for developing and testing control systems. Although in the market exist different
MBD frameworks, in this thesis we focus in Mathworks MATLAB-Simulink, since
it is one of the most widely used frameworks in industry. Moreover, currently
MATLAB-Simulink is the only industry-ready MBD framework that support custom
code generation for GPUs, through its GPU Coder toolbox [62]. GPU Coder is a
MATLAB-Simulink toolbox oriented to the generation of optimized CUDA code for
NVIDIA GPUs, with special focus on tasks related to deep learning, embedded vision
and autonomous systems. During the development of this thesis, we have used
different versions of these tools, however, we focus mainly in MATLAB-Simulink
version 2021a and GPU Coder version 2.1.

3.5 Model-Based Design Frameworks

35

Table 3.3: List of benchmarks in the PolyBench-ACC suite

Benchmark Description

correlation Correlation computation

covariance Covariance computation

2mm 2 matrix multiplications

3mm 3 matrix multiplications

atax Matrix transpose and vector multiplication
bicg BiCG sub kernel of BiCGStab linear solver
doitgen Multi-resolution analysis kernel

gemm Matrix-multiply

gemver Vector multiplication and matrix addition
gesummy Scalar, vector and matrix multiplication
mvt Matrix vector product and transpose
syr2k Symmetric rank-2k update

syrk Symmetric rank-k update

gramschmidt Gram-Schmidt decomposition

lu LU decomposition

adi Alternating Direction Implicit solver

convolution-2d
convolution-3d
fdtd-2d
jacobi-1d
jacobi-2d

Convolution with 2-D filter and data
Convolution with 3-D filter and data
2-D Finite Different Time Domain kernel
1-D Jacobi stencil computation

2-D Jacobi stencil computation

3.6 Compiler Frameworks

36

One of the main parts of our work consists in the analysis and improvement of
automatically generated GPU source code. For this task, we use Clang [63], which is
part of the LLVM compiler infrastructure [64]. Clang provides a language front-end
and a tooling infrastructure for languages in the C family (C, C+ +, Objective-C,
OpenCL, CUDA) for the LIVM project. Clang is a project under active development,
making its API evolve very fast. This can cause the tools based on older versions to
become obsolete or incompatible with the newest versions of Clang. For this reason,
we use the latest available version for our contributions, which at the time of writing
this thesis is Clang 14.0.0.

Among the tools provided by the Clang framework, we use mainly LibTool-
ing and LibASTMatchers. LibTooling is a library aimed to support the writing of
standalone tools based on Clang. LibTooling provides mechanisms to ease the devel-
opment of tools for syntax checking, automatic code formatting, code refactoring,
and source-to-source transformation, among others. To do any of these tasks, Clang

Chapter 3 Methodology and Experimental Setup

3.7

needs to process the source code of a target application and create an Abstract
Syntax Tree (AST) that represents the original source code. The AST must represent
all the possible complexity that can appear in the source code without losing any
details, for which it can be complex and challenging to work with. To ease this
task, LibASTMatchers provides a domain-specific language to locate and manipulate
patterns in the AST.

Other Software Utilities

Given the black-box nature of current commercial GPU platforms, it has been
necessary to use reverse engineering techniques to analyze their behavior and
uncover properties that are not present in the official documentation. For this task,
we use other software utilities that are present in any Linux distribution. First, we
use the strace utility to capture the system calls generated by GPU applications and
get information about the use of system resources. Then, we use the GNU Project
Debugger gdb to get extra details about resources consumption and to automate the
extraction of information through its .gdbinit automation script. Finally, we use
the library-preloading features of the GNU Dynamic Linker 1d to inject out analysis
functions to GPU applications and get information about resources consumption at
run-time.

3.7 Other Software Utilities

37

4.1

Analysis of Dynamic Memory
Allocation in GPUs

Critical real-time systems require strict resource provisioning in terms of memory
and timing. The increasing demand for higher performance in these systems has led
the industry to recently include GPUs. However, GPU software ecosystems are by
their nature closed source, forcing system engineers to consider them as black boxes,
complicating resource provisioning.

In this chapter, we expose for the first time the internal resource allocation
mechanism of a GPU system. This way, we allow the accurate resource provisioning
for a GPU-based critical real-time system. We start by demonstrating the basis of
our methodology with a small motivational example. Next, we describe in detail our
methodology to discover the properties of the memory allocator used in a GPU-based
system. Subsequently, we present the implementation of GPU Memory Allocator
Inspector (GMAI), a tool which allows to extract automatically the properties of
the memory allocator of a GPU and allows to analyze the memory consumption
of GPU applications written in both CUDA and OpenCL. Finally, we present our
findings for a wide range of GPUs from different vendors and we use the information
obtained from GMAI about the internals of the memory allocator to demonstrate the
benefits of accurate resource provisioning with two case studies, showing that the
actual memory consumption is significantly higher than the one requested by the
software.

Motivational Example

We start our analysis by showing a motivational example which explains the need for
understanding the internals of GPU memory allocation. We execute the instructions
shown in Listing 4.1 on a Jetson TX2 platform, and we measure the execution time
of the 6 GPU-related calls shown in the listing using nvprof, NVIDIAs profiler. For
the memory allocations, we use two different types of dynamic memory that can be
allocated with CUDA: pinned host memory and device memory.

39

D O W NN

40

223.65ms 223.7ms 223.75ms 223.8ms 223.85 ms 2239 ms 223.95ms 224 ms 224.05 ms 224.1 ms 224.15ms

Host/cpy | [[) [cud... Jcudatou... IR cudatau... S cuda...]
GPU] =] 5] 5]

B cudaHostAlloc [cudalaunch [Kernel execution

Figure 4.1: Execution times for GPU related calls shown in Listing 4.1 with same size, using
pinned allocations.

223.5ms 223.6 ms 223.7 ms 223.8ms 223.9ms 224 ms 224.1ms 224.2ms

Host/CPU [cusmostioe i cudtaunen R cudorostaioc | cugatsunen————————— I . I |
Gy 7} 7} B n

B cudaHostAlloc @ cudalaunch [Kernel execution

Figure 4.2: Execution times for GPU related calls shown in Listing 4.1 with different size,
using pinned allocations.

Allocate X bytes;
Launch kernel;
Allocate Y bytes;
Launch kernel;
Launch kernel;
Launch kernel;

Listing 4.1: Motivational Example

In Figure 4.1 we show the results of running the example with two pinned
memory allocations of the same size (1024 bytes). We notice that the first allocation
takes considerable time, while the second one is shorter, and the same happens with
the first and second kernel launches. The third and fourth kernel launches are used
as a reference to compare the execution times. As shown in the figure, the execution
time of the second kernel launch is very similar to the execution time of the third
and fourth kernel launches.

However, when we allocate two chunks of memory with different sizes (1024
and 4096 bytes), we notice that both allocations take a similar long time, and the
next kernel launch after each allocation takes longer than the third and fourth kernel
launches (Figure 4.2). As we can see, the first allocation of a determined size takes
longer than the next allocations of the same size. In addition, the execution time of
a kernel kernel launch is longer when it is next to the first allocation of a determined
size. We notice the same patterns when we use device memory instead of pinned
memory, as shown in Figure 4.3 and Figure 4.4.

This observation indicates that the underlying memory allocator implemented
in the closed source GPU runtime/driver manages each of the memory allocations

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

4.2

243.875 ms 243.925 ms 243.975 ms 244.025 ms 244.075 ms 244.125 ms 244.175 ms 244.225 ms

ST coemaioc I udataunch | | cud. | cudataunch | | cudatounch | |_cudatauncn]
GPU m =] =] =]

W cudaMalloc @ cudalLaunch [Kernel execution

Figure 4.3: Execution times for GPU related calls shown in Listing 4.1 with same size, using
device allocations.

237.55ms 237.6 ms 237.65ms 237.7ms 237.75 ms 237.8 ms 237.85 ms 237.9ms 237.95 ms

Host/CPU [cudamaioc i cudataunch | | cudamaiioc Ji cudataunch | [cudataunch [cudaL... |
GPU =] =) =) =]

B cudaMalloc B cudaLaunch B Kernel execution

Figure 4.4: Execution times for GPU related calls shown in Listing 4.1 with different size,
using device allocations.

of different sizes in a separate way. The question that is raised is following: can
we determine the internals of this memory allocator, so that we can know the exact
system memory allocated and predict which of the GPU related calls are expected to
take longer? In the following sections we will introduce our methodology to discover
the GPU memory allocator internals in both CUDA and OpenCL devices.

Background on Memory Allocators

A memory allocator provides memory to a program when requested and takes it
back when the program frees it. It also keeps track of the regions of memory that
have been assigned and the regions that are free to assign, using an auxiliary data
structure. The main goal of an allocator is to do these tasks in the least possible
amount of time, while at the same time minimizing memory waste [65].

Initially the memory allocator reserves a contiguous chunk of memory which
is used as pool, to satisfy dynamic memory requests. When the pool is full, the
allocator expands by reserving a new pool. Depending on whether the allocator is
implemented in the operating system or at user space, the memory for its pool is
reclaimed by using a predefined range of addresses or a preallocated memory region
in the former case, or using the break or mmap system calls in the latter. Custom
memory allocators can also use the standard C library calls such malloc.

A common challenge for a memory allocator is that programs may free the
allocated memory in any order, creating holes between used blocks. Note that
for efficient representation, block sizes are usually powers of two and they have

4.2 Background on Memory Allocators

41

42

a minimum granularity. The proliferation of small holes leads to the creation of
unusable blocks of memory, a problem known as fragmentation.

Fragmentation leads to memory waste, incrementing the amount of memory
used by the allocator. External fragmentation occurs when the available free blocks
are too small for the requested size or when the allocator is unable to split bigger
blocks to satisfy smaller requests. Internal fragmentation occurs when a block
larger than needed is assigned, leaving wasted memory inside the block. To avoid
fragmentation, techniques like splitting free blocks (to satisfy smaller requests) and
coalescing free blocks (to create larger blocks) are used in conjunction with an
allocation policy.

As stated in [65][66][67] there are different policies and mechanisms used by
memory allocators to manage memory efficiently:

Sequential fits: memory allocators in this category are based in a single linear list
to manage the free blocks of memory. A best fit allocator searches the smallest free
block in the list large enough to satisfy a request. A first fit allocator searches from
the beginning of the list and uses the first free block large enough to satisfy the
request. A next fit allocator begins the search from the last used position. A worst fit
allocator looks for the largest free block in the list.

Segregated free lists: such memory allocators use an array of free lists, having one
list for each block size. When a program requests memory, the allocator uses the
list with the smallest block size large enough to satisfy the request. The fit of the
allocations is not always perfect because the available block sizes are limited, which
causes some internal fragmentation. Some segregated free lists allocators use size
classes to put together a range of sizes in the same list.

Buddy systems: these allocators allocate memory in fixed block sizes which are split
in two parts (or coalesced together) repeatedly to obtain blocks of the requested
size. A free block can only be merged with it’s buddy, so coalescing usually is fast.

Indexed fits: some memory allocators, instead of searching sequentially in a free
list, use a more complex indexing data structure like a tree or a hash table to keep
track of unallocated blocks. The use of this type of indexed structures leads to faster
searches and allocations.

Bitmapped fits: these allocators use a bitmap to keep a record of the used areas of
the heap. A bitmap is a vector of one-bit flags where each bit represents a word in
the heap. The search in a bitmap is slower than in an indexed structure, however,

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

4.3

4.3.1

the memory consumption is lower because it does not need to store the size of the
blocks.

Reverse Engineering GPU Memory Allocators

In this section we present our methodology to discover the internals of the GPU
memory allocators. Note that we are after obtaining only the key parameters of the
memory allocator which affect its memory consumption and timing behavior, but
we are not after obtaining every single detail about its design ie. whether its free list
is implemented using a list, tree or a bitmap, since such a task may not be entirely
possible to achieve or at least not with a reasonable amount of effort. Furthermore,
these details do not affect time and space resource provisioning in the same degree
to the other parameters.

Reverse Engineering CUDA Memory Allocators

Without loss of generality, in this subsection we focus on the Jetson TX2, the same
platform we used for the motivational example. In fact, as we show in Section 4.5,
the same methodology is applicable to all NVIDIA GPUs we tried, ranging from old
to bleeding edge GPU models. Moreover, since our methodology does not depend
on CUDA, it can also be applied to non-NVIDIA GPUs programmed in OpenCL, as
we explain in the next subsection.

Starting from the pinned memory scenario, we want to identify the basic design
of the memory allocator which is used in order to allocate pinned memory in the
CUDA runtime and driver. The fact that the allocation for different sizes results in
significantly longer execution times for the first allocation means that the allocator
follows a segregated free list design. Therefore, the next step is to identify its size
classes as well as the pool size of each free list. In order to achieve our goal, we
design carefully crafted memory allocation experiments and observe their behavior
to extract the information we are after. In Section 4.4 we present a tool that fully
automates our methodology and can be executed in any system featuring a GPU to
extract its memory allocator properties.

Pool Size: In order to identify the pool size of each free list, we first create an
experiment in which we allocate the minimum amount of memory as shown in
Algorithm 1. Since pinned memory has to be requested from the operating system, a
user space to kernel space transition based on a system call is required. We monitor

4.3 Reverse Engineering GPU Memory Allocators

43

44

Algorithm 1: Pool size extraction
Output: pool size

1 Allocate 1 byte of pinned memory

2 Capture mmap system call

3 Extract [en argument from mmap system call
4 pool_size < len

5 Free memory allocated

Algorithm 2: Granularity calculation
Input: pool size
Output: granularity

Allocate 1 byte of pinned memory

allocations <+ 1

while a new mmap is not generated do
Allocate 1 byte of pinned memory
allocations < allocations + 1

end while

granularity < pool_size/allocations

Free memory allocated

® N b~ WD

the system calls of the executing process using the strace utility, which intercepts
the system calls as well as their parameters.

We notice that the memory allocation call generates a mmap system call during
the allocation process, whose second argument corresponds to the size of the memory
pool for the list. In our reference platform, this size is 2 MB.

As a validation, running strace on the example of Listing 4.1 reveals a single
mmap of 2 MB, only on the first allocation of each size. This means that, when the
two allocations are for the same size, such as in Figure 4.1, only a pool of 2 MB is
created to satisfy both allocations. However, when the allocations have different
sizes, which is the case in Figure 4.2 a pool of 2 MB is created for each allocation,
which explains the execution time of both memory allocations in that scenario.

Allocation Granularity: Once we know the memory pool size, we need to identify
the minimum memory size which corresponds to a single entry within the free list.
We achieve this by applying Algorithm 2. The idea is simple: we try to repeatedly
allocate the minimum size, until the free list is expanded, by using a new memory
pool, which is indicated by a mmap call in strace. In our reference platform, this
happens after 4096 allocations, which means that each allocation reserved a 512
bytes entry within the free list.

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Algorithm 3: Size classes extraction

Input: granularity
Output: size classes information

inferior_size < granularity

superior_size <— granularity

size_class <+ 0

while not all classes extracted do

Allocate inferior_size bytes of pinned memory

size_class < size_class + 1

while a new mmap is not generated do
superior_size <— superior_size + granularity
Allocate superior_size bytes of pinned memory
Free last allocation

end while

Save size_class, inferior_size and superior_size — granularity

inferior_size <— superior_size

14 Free memory allocated

15 end while

O 0 N O A W=

- e e
w N = O

Size Classes: Knowing the size of each free list and the allocation granularity, we can
focus on detecting how many free lists are kept by the allocator, each corresponding
to a different size class. In Algorithm 3 we start creating allocations of increasing
sizes, by using the granularity as an increment factor. If a new pool is not created
(no new mmap is detected), we free the allocation and try the next size. This way we
prevent the case that the existing pool used for the current size class is expanded
and therefore generating a false positive mmap.

In this experiment, we also validate that the pool size and granularity obtained
for the first size class using Algorithms 1 and 2 respectively, hold also for each
of the other free lists corresponding to the rest of the size classes. However, this
validation is not shown in Algorithm 3 for clarity. This is achieved by using the
same algorithms, but instead of allocating 1 byte, we allocate the minimum size
corresponding to the examined size class. We confirm that in all our experiments,
these values are consistent among all the size classes for the examined systems
described in Section 4.5.

Allocation Policy: Having obtained all the parameters of the memory allocator, it
only remains to identify the policy used in a free list. For this reason, we created
validation tests for each type of the four main policies: first fit, best fit, next fit and
worst fit. Algorithm 4 shows one these tests checking for the best fit policy. We first
create a number of allocations with a decreasing size corresponding to the entire

4.3 Reverse Engineering GPU Memory Allocators

45

46

Algorithm 4: Best fit ascending test
Input: inferior size, superior_size
Output: Determines if the policy used is best fit

1 for size = superior_size to inferior_size do
‘ Allocate size bytes of pinned memory
end for
foreach other_allocation do
Store size of other_allocation
Free other_allocation
end foreach
for size = min_stored_size to max_stored_size do
‘ Allocate size bytes of pinned memory
end for
Check if all new allocations were assigned using best fit policy
Free memory allocated

O 0 N N 1A WN

- e
N = O

range of allowed sizes for a given size class, so that all allocations are held in the
same free list (lines 1-3). Since at this point the free list is empty, each allocation
takes the next available free block, resulting in consecutive allocations in the list.

Next, we start freeing every other allocation, creating free blocks of decreasing
size and keeping track of their size (lines 4-7). In the final step, we start allocating
the same size of blocks that were released in the previous step, but in the reverse
order (lines 8-10). That is, each new allocation best fits in the last block of the
free list. If the allocator follows a best fit policy, it will result in allocating the same
positions as the ones that were freed in the previous step. Otherwise, eg. if the
allocator follows a first fit policy, then the allocations would be suboptimal, resulting
in an expansion of the original pool.

In order to perform the validation, we use multiple measures. First we use
strace to validate that there is no expansion of the pool during lines 8-10. Moreover,
we keep track of the addresses returned by each and make sure that the new
allocations correspond to their best locations, which were their old locations.

Note that the presented example is only one of the variations of the policy
validation tests, which are not shown here because they are quite similar. In
particular, we have versions which perform the allocations in reverse order, or
applying the last step (lines 8-10) in random order, in order to check whether the
policy instead of best fit follows a LIFO (Last-In First-Out, stack-like) policy. Another
variation of this test uses allocations of the same size, in order to identify what is
the allocation policy in the presence of multiple equal size blocks.

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Coalescing: In this experiment we perform a series of allocations with arbitrary
sizes which however can be rounded up to the same size in a given size class. Next,
we create two neighboring free blocks in the middle of the free list. In the following,
we allocate a single block with size equal to the addition of the free blocks and we
check whether the allocator merges the two free blocks or creates a new allocation
in the free list.

Splitting: This experiment is similar to the previous one, with the difference that
only one block is freed in the free list. Then a smaller size block is allocated, to
check whether the allocator splits the free block to serve the new allocation, or the
new allocation takes place elsewhere in the free list.

Expansion Policy: For this experiment, we perform allocations for a given size class,
until the pool is expanded one or multiple times. Then we check whether the pool is
expanded when it is full — after allocating exactly the same size of allocations with
the pool size — or earlier, when an occupancy threshold in the list is exceeded.

Pool Usage: For this experiment, we create multiple pools for a given size class.
Then we free a block from the first pool, and perform a new allocation. This way we
can check whether the allocation policy is applied across all the pools of the same
size, or whether an alternative policy is applied eg. only to the last allocated pool.

Shrinking: Finally, we check whether the memory allocated for expanded memory
pools is returned to the system. This is similar to the previous experiment. We
perform allocations of the same size class until the memory pool is expanded several
times and then we free all the allocations of a given memory pool. We validate
whether the memory pool is returned to the system by observing a munmap after
its last block is freed. Moreover we check whether only a certain memory pool is
returned eg. only the last allocated or any of them.

Timing: The methodology we presented so far corresponded to the case of pinned
memory and in particular with zero-copy. In this case, in addition to the mmap
during memory allocation calls, we obtain also ioctl system calls during the kernel
launches. These system calls are used in order to communicate with device drivers.
We observe that in the first kernel execution after a new pool is created for a new
size class, the kernel invocation has an extra ioctl call. We attribute the longer
execution time of these kernels to this additional ioctl, which we speculate that is
responsible for performing the memory mapping of the host pinned memory to the
GPU’s Memory Management Unit (MMU).

Device Memory Allocator: To observe the internals of the memory allocator used
to allocate device memory we need a slightly different methodology. In particular,

4.3 Reverse Engineering GPU Memory Allocators

47

43.2

48

the device memory allocations do not require a user-to-kernel switch and therefore
its parameters cannot be obtained using strace. However, we assume that the
same allocator design used for pinned memory for CUDA is also used for device
memory within CUDA, in order to reduce development and verification costs. As we
comment in the Section 4.5, this assumption is fully validated. Since strace is not
applicable in this case, the observation of the memory allocator’s behavior is applied
by instrumenting the code with gdb in order to obtain the API call parameters and
the returned pointers to the allocated blocks. Also, the timing behavior is observed
as previously, using NVIDIAs profiler. With these modifications, we validate that the
device memory allocator has the same properties as the pinned memory allocator.

Reverse Engineering OpenCL Memory Allocators

As we have already mentioned, OpenCL follows as similar programming model
with CUDA. In this subsection, we adapt the algorithms presented in the previous
subsection to the memory allocation calls supported by OpenCL.

A significant difference between OpenCL and CUDA is that each vendor has its
own implementation of OpenCL, which can result in different memory allocators
for each vendor. For illustration purposes, we have selected a Mali-T860 GPU as
OpenCL reference platform. Using this GPU we have applied our reverse engineering
methodology trying to extract the same information we extracted from NVIDIA
GPUs.

Pool Size: The same way we did with CUDA, we create an experiment in which we
allocate the minimum amount of memory as shown in Algorithm 1, intercepting the
generated system calls with the strace utility. In this case, the memory allocation
also generates a mmap system call, whose second argument corresponds to the size
of the memory pool for the list. In our OpenCL reference platform, this size is 256
KB.

Allocation Granularity: To identify the minimum memory size which corresponds
to a single entry within a pool, we also apply Algorithm 2. We create a memory pool
and then repeatedly allocate 1 byte of memory until a new mmap is generated, which
indicates that a new pool has been created. In our OpenCL reference platform, this
happens after 4096 allocations. Having a pool size of 256 KB, this means that each
allocation reserved 64 bytes within the first memory pool.

Size Classes: Having the pool size and the allocation granularity within each pool,
we focus on detecting whether the allocator uses size classes. In Algorithm 5 we

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

start creating an allocation with the minimum size. Then, we create allocations of
increasing sizes, by using the granularity as an increment factor, until we reach the
pool size. If a new pool is not created (no new mmap is generated) it means that all
possible sizes within a memory pool are compatible, so size classes are not used.

Algorithm 5: Use of size classes

Input: pool_size, granularity
Output: size classes_used

1 inferior_size < granularity
2 superior_size <— granularity
3 size_classes _used < false
4 Allocate in ferior_size bytes of pinned memory
5 while superior_size < pool_size do
6 superior_size <— superior_size + granularity
7 Allocate superior_size bytes of pinned memory
8 if a new mmap is generated then
9 size_classes_used < true
10 Free last allocation
11 break
12 end if
13 Free last allocation

14 end while
15 Free first allocation

Allocation Policy: To determine the allocation policy used by the allocator we
created validation tests for each type of the four main allocation policies, in a similar
way we did with CUDA. First we create a simple test doing several allocations of
different sizes and releasing some of them in specific positions. After creating the
free spaces, we create a new allocation and check which space is used. This way we
deduce the allocation policy used.

To validate the deduced policy we use some tests similar to the one shown
in Algorithm 4 or its random variant. The main difference between the CUDA
implementation and the OpenCL implementation of these tests is that with CUDA
we need to check different size classes.

Coalescing: For this experiment we perform a series of allocations with the same
size of the internal granularity of a pool. Next, we free two neighboring allocations
to create a continuous free space in the middle of the pool. Then, we perform a
new allocation with size equal to the double of the granularity to check whether the
allocator merges the free blocks or creates a new allocation in the pool.

4.3 Reverse Engineering GPU Memory Allocators

49

4.4

50

Splitting: This experiment is similar to the previous one, with the difference that
only one block is freed in the pool. Then a smaller size block is allocated, to check
whether the allocator splits the free block or the new allocation takes place elsewhere
in the pool.

Expansion Policy: For this experiment we perform several allocations with the
same size of the granularity until a new pool is created. Then we check whether the
new pool is created when the previous one is full or when an occupancy threshold
in the pool is exceeded.

Pool Usage: To determine how the pools are used when there are several pools
created, we perform a series of allocations until we have two full pools and a third
one with free space. Next, we create a big free space in the first pool and a smaller
one in the second pool. Then, we try to make an allocation with the size of the
smaller free space to check if the allocator uses the lastly created pool or if it uses
the best space available in the previous pools.

Shrinking: Finally, we check how the memory allocated for the pools is returned to
the system. In a similar way we did with CUDA, we perform several allocations to
create several pools of memory. Then, we free all the allocations and corresponding
to a pool and check when is generated the corresponding munmap system call. This
way we determine if the pools are returned to the system immediately after freeing
its last block or if they are returned at the end of the program.

GMAI: GPU Memory Allocator Inspector

Based on the methodology defined in Section 4.3, we implemented GMAI (GPU
Memory Allocator Inspector), which is a tool that can be executed in any system
featuring a GPU and extract its memory allocator properties. GMAI consists of two
parts: the first part is a set of scripts on which we implement the experiments we
defined in Section 4.3 to extract the properties of a GPU memory allocator. The
second part is a preload library which can be used to determine the real GPU memory
consumption of GPU-based applications. Figure 4.5 shows the GMAI workflow. The
source code of GMAI is available at [68].

GMAI can be used in two ways. In the first one we use reverse engineering
techniques to extract the memory allocator properties of a target GPU. With this
information we generate a configuration file which can be used to visualize the
extracted properties. This information could later be used by an engineer to manually

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Compute real

Scripts Memory allocator Preload library GPU memory
- configuration - consumption
> >~
CFG . SO TXT
K|
K]
f
o
Strace + GDB =
o d}
£ E
5 =}
e S
z g
GPU g g
g g
& <
/ /
Target GPU Target application

Figure 4.5: GPU Memory Allocator Inspector (GMAI) workflow

analyze the GPU memory consumption of GPU-based applications. However, the
second way of using this tool consists on a preload library which can be used to
automatically compute the real GPU memory consumption of a target application
based on the memory allocator properties stored in the configuration file.

For the implementation of GMAI we have used different debugging techniques.

For the initial analysis of the system calls generated by a GPU application we have
used the strace utility. This way we know what are the functions and parameters
we have to look at to get the information we are after for. Using this information, we
have used gdb to execute our experiments and extract the values we needed in each
of them. Having a functional set of gdb commands to extract the information for all

the experiments, we have automated the debugging process using the gdbinit file.

This way we automatically generate the configuration file by executing the necessary
gdb commands over our experiments.

For intercepting the GPU memory allocation calls of a GPU application, we
have used the preloading technique, which is a feature of 1d, the dynamic linker
in UNIX-like systems. With preloading we can override arbitrary function calls in a
program, by using the environment variable LD_PRELOAD to specify a library with
wrappers for the functions we are interested in. With this technique we implemented
our own versions of the GPU functions used to allocate memory in both CUDA and
OpenCL. In our function wrappers we keep track of their parameters before calling
the actual functions. This way we can intercept those functions from a GPU running
application and use their parameters by combining them with the properties of the
GPU memory allocator stored in the configuration file to compute the application’s
real GPU memory consumption. An important detail to take into account is that, even
though our solution could be adapted to be used in systems where multiple CPUs

4.4 GMAI: GPU Memory Allocator Inspector

51

Table 4.1: Tested NVIDIA GPU Platforms

Device Name Compute Runtime/ Kernel GPU
Capability = Driver Version Type
GeForce 9300M GS 1.1 6.5 3.19.0 Discrete
Quadro FX 3700 1.1 6.5 3.12.9 Discrete
GeForce GTX 960M 5.0 10.0 4.15.0 Discrete
GeForce GTX 1050 Ti 6.1 9.2 4.15.0 Discrete
GeForce GTX 1080 Ti 6.1 9.2 4.15.0 Discrete
V100-PCIE-16GB7.0 7.0 10.0 4.15.0 Discrete
Tesla T4 7.5 10.0 4.15.0 Discrete
Tegra X1 (Nano) 5.3 10.0 4.9.140 Integrated
Tegra X2 (TX2) 6.2 9.0 4.4.38 Integrated
Xavier 7.2 10.0 4.9.108 Integrated

share the same GPU, or feature more than one GPU, in the current implementation
we assume that only one GPU is being analyzed at a time.

4.5 Results

4.5.1 Obtained Properties of CUDA Allocators

In this subsection, we provide the results we have obtained using our methodology
on a wide range of NVIDIA GPUs, ranging from very old products with compute
capability 1.1 to the latest NVIDIA embedded SoCs Nano and Xavier, as shown in
Table 4.1.

As explained in the previous section, we have implemented our methodology in
the GMAI tool which automates completely the process. Once GMAI is executed, in a
few seconds a report is generated with the information about the memory allocator.
In the Listing 4.2 we can see the generated report about the NVIDIA TX2 platform,
which we used in the discussion of the previous sections. In Listing 4.3 we can see
the generated report about the NVIDIA GeForce GTX 1080Ti, which we use as a
discrete GPU reference platform.

52 Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Device name: NVIDIA Tegra X2
Compute capability: 6.2

CUDA runtime version: 9.0
CUDA driver version: 9.0

Pool size: 2097152 bytes
Granularity: 512 bytes

Size classes

1 to 2 blocks of 512 bytes [1 to
3 to8 blocks of 512 bytes [1025 to
9 to 32 blocks of 512 bytes [4097 to
33 to 128 Dblocks of 512 bytes [16385 to
129 to 512 Dblocks of 512 bytes [65537 to
513 to 3583 blocks of 512 bytes [262145 to
Larger allocations: mmap size next 4096 bytes

O O WN -

Allocator policy: Best fit

Coalescing support: Yes

Splitting support: Yes

Expansion policy: When full

Pool usage: Last created

Shrinking support: Yes. Any pool deleted

1024 bytes
4096 bytes
16384 bytes
65536 bytes
262144 bytes
1834496 bytes
multiple

]
]
]
]
]
]

Listing 4.2: NVIDIA TX2 memory allocator report

Device name: GeForce GTX 1080 Ti
Compute capability: 6.1

CUDA runtime version: 9.2

CUDA driver version: 9.2

Pool size: 2097152 bytes
Granularity: 512 bytes

Size classes

1 to 2 blocks of 512 bytes [1 to
3 to8 blocks of 512 bytes [1025 to
9 to 32 Dblocks of 512 bytes [4097 to
33 to 128 blocks of 512 bytes [16385 to
129 to 512 blocks of 512 bytes [65537 to
513 to 3583 blocks of 512 bytes [262145 to
Larger allocations: mmap size next 4096 bytes

OO WN -

Allocator policy: Best fit

Coalescing support: Yes

Splitting support: Yes

Expansion policy: When full

Pool usage: Last created

Shrinking support: Yes. Any pool deleted

1024 bytes
4096 bytes
16384 bytes
65536 bytes
262144 bytes
1834496 bytes
multiple

]
]
]
]
]
]

Listing 4.3: GeForce GTX 1080 Ti memory allocator report

4.5 Results

53

45.2

54

Table 4.2: Tested OpenCL GPU Platforms

Device Name Vendor Architecture OpenCL Kernel GPU
Version Version Type
Mali-T860 ARM Midgard 1.2 4.4.154 Integrated
Mali-G72 ARM Bifrost 2.0 4.9.78 Integrated
GeForce GTX 1050 Ti NVIDIA Pascal 1.2 4.15.0 Discrete
GeForce GTX 1080 Ti NVIDIA Pascal 1.2 4.15.0 Discrete

In both GPUs, we observe that the pool size is 2 MB and the minimum allocation
granularity is 512 bytes. The allocator is using 6 size classes, with the last one
ranging up to the pool size. Larger allocations are always rounded up to the next
4 KB multiple, which is the system’s page size. The allocator is implementing a
Segregated Free Lists Allocator with best fit policy. In the event of expansion, the
allocator is keeping a stack of pools. Deallocations can happen to any of the pools,
however new allocations are only allocated in the last created pool. Finally, the
allocator frees the memory used by any pool when all its blocks are freed.

Regardless of the version of the driver or the hardware, we obtained exactly the
same results with the NVIDIA GPUs GTX 1050 Ti, Tesla V100, Tesla T4 and Xavier.
For the GPUs GeForce GTX 960M and TX1 Nano we also obtained identical results
but with the pool size being 1 MB. For the older NVIDIA GPUs, Quadro FX 3700
and GeForce 9300M GS we obtained a pool size of 1 MB and a granularity of 256
bytes.

Obtained Properties of OpenCL Allocators

In this subsection, we provide the results we have obtained applying our method-
ology to some OpenCL compatible GPUs, which are shown in Table 4.2. Our main
reference platforms for this subsection are the ARM Mali GPUs since they are the
first non-NVIDIA GPUs we analyze. We include two OpenCL compatible NVIDIA
GPUs for comparison purposes.

As we did with CUDA, we also automated our methodology to extract the
information about the memory allocators of OpenCL GPUs by incorporating it in the
GMALI tool. Listing 4.4 and Listing 4.5 show the generated report for Mali-T860 and
Mali-G72 GPUs respectively.

We observe that the only difference between these ARM GPUs is the granularity
of the memory allocator, which is 64 bytes in the Mali-T860 GPU and 128 bytes in the

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Device name: Mali-T860
OpenCL driver version: 1.2

Pool size: 262144 bytes
Granularity: 64 bytes

Size classes: Not used
Large allocations: mmap size next 4096 bytes multiple

Allocator policy: Best fit

Coalescing support: Yes

Splitting support: Yes

Expansion policy: When full

Pool usage: Best available

Shrinking support: No. Pools deleted at the end

Listing 4.4: Mali-T860 OpenCL memory allocator report

Device name: Mali-G72
OpenCL driver version: 2.0

Pool size: 262144 bytes
Granularity: 128 bytes

Size classes: Not used
Large allocations: mmap size next 4096 bytes multiple

Allocator policy: Best fit

Coalescing support: Yes

Splitting support: Yes

Expansion policy: When full

Pool usage: Best available

Shrinking support: No. Pools deleted at the end

Listing 4.5: Mali-G72 OpenCL memory allocator report

Mali-G72 GPU. The pool size is 256 KB in both GPUs and the allocator does not use
size classes. This is a significant difference between the NVIDIA memory allocators
we examined in the previous subsection. We speculate that this decision is related to
the smaller size of memory available in these platforms (4 GB) and therefore the
memory allocator this way wastes less memory due to internal fragmentation.

Allocations larger than the pool size are rounded to the next 4 KB multiple,
which is the page size. The allocator implements a best fit policy and supports
coalescing and splitting of free blocks. The allocator expands creating new pools
when there is no enough space on the previous pools. When there are multiple pools
with free space, the allocator applies the best fit policy across the pools. However,
even when the pools are created consecutively in memory, the allocator does not use

4.5 Results

55

45.3

56

a free region shared by two pools to satisfy the space required by a new allocation.
Another difference we observed compared to the NVIDIA allocators, is that in NVIDIA
GPUs only the last created pool is used for new allocations, even when there is free
space in other pools. Finally, we found out that the OpenCL allocator on ARM
GPUs does not free the memory used by a pool when all its blocks are freed, unlike
the CUDA allocators. Instead, the memory is released at the end of the program.
However, we observed that those regions of memory are reused for the creation of
new pools.

We also tested GMAI on two OpenCL compatible NVIDIA GPUs (GTX 1050 Ti
and GTX 1080 Ti) which we analyzed in the previous subsection. Repeating these
experiments with OpenCL we got the same results shown in Listing 4.3. This means
that the NVIDIA OpenCL implementation internally uses the same memory allocator
used by CUDA. When doing these tests, we also observed that in Mali GPUs the
memory is reserved when we create the corresponding c1_mem object. However, in
the NVIDIA implementation, the memory pools are created until we map a region of
a cl_mem object.

Exploiting the Knowledge of GPU Allocators in Automotive
Case Studies’ Resource Provisioning

The ultimate purpose of exposing the internals of the GPU allocators is this knowl-
edge to be leveraged to compute precisely the amount of memory used by real-time
applications. This will be essential when GPUs will be incorporated in avionics
and automotive real-time operating systems. Moreover, in current general purpose
operating systems, it allows to make sure that the system can safely accommo-
date the memory and timing requirements of the application, without the use of
unpredictable swap memory.

In order to demonstrate these benefits, we apply our knowledge on two au-
tomotive case studies used in modern vehicles’ environment perception: a sobel
filter for edge detection and a pedestrian detection task [69]. The former, edge
detection, is very common in both Advanced Driving Assistance Systems (ADAS)
and autonomous driving for numerous tasks such as lane departure [70], sign [71]
and car detection [72]. Pedestrian detection is also used for ADAS, eg. automated
breaking as well as for autonomous driving.

As we described in Section 4.4 when we execute GMAI on a given platform,
it generates a configuration file with the properties of the memory allocator. At

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Table 4.3: GPU memory allocations in Edge Detection Task

Variable Type Size (bytes)
Input Image (640x480) int8 RGB 921600
Filter Kernel (3x3) int8 9
Output Image (640x480) int8 307200
Total (bytes): 1228809

Table 4.4: GPU memory allocator usage in Edge Detection (NVIDIA TX2)

Variable Size Size Occupied Occupied
Class (bytes) 512b Blocks Size (bytes)

Input Image 6 921600 1800 921600
Filter Kernel 1 9 1 512
Output Image 6 307200 600 307200
Total (bytes): 1229312

runtime, we execute the GPU program with the GMAI preload library which exposes
the GPU memory allocation API calls. This way GMAI intercepts all memory requests
and their sizes, and based on the configuration file, it provides details about the
actual memory consumption of the allocator, which we present in the results of the
two case studies next.

Edge Detection

The edge detection task explicitly allocates dynamic memory for the variables shown
in Table 4.3, which are needed for the GPU implementation of the sobel filter. We
notice that the input is a 3-component (RGB) image 640x480 and a 3x3 filter
kernel, while the output is a single component 640x480 image, containing the
detected edges. Without knowing the internals of the GPU memory allocator, when
the task is executed on a platform with zero-copy pinned memory a system engineer
might provision 1228809 bytes memory consumption.

Edge detection allocations with CUDA: Table 4.4 shows the actual memory used
by the memory allocator when the edge detection algorithm is executed on the
NVIDIA TX2 platform with zero-copy allocations. We notice that we have allocations
from two different size classes. This means that two memory pools are created, with
2 MB each. Each of these creations will increase the execution time of two memory
allocation calls, the first ones corresponding to these size classes, as well as the
execution time of the first kernel invocation following these allocations.

4.5 Results

57

58

Therefore, the total memory consumption to be provisioned is 4 MB for this
platform and configuration, which is 3.4 x more than it was expected, due to internal
fragmentation. The memory allocator, however, is only using a fraction of that. In
the first free list, the 3x3 kernel is occupying a single block of 512 bytes instead of 9
bytes due to the minimum block granularity, while in the other free list 1228800
bytes are occupied compared to the 2 MB of the pool, resulting in 58% free list
occupancy.

On the other hand, in the NVIDIA Jetson Nano platform, each memory pool
occupies 1 MB. However, the two images exceed the memory pool size for size class
6, requiring the memory pool to expand. Therefore the allocator uses 3 MB for its
pools, which is 2.6 x larger that the memory explicitly allocated by the application.
In older NVIDIA GPUs like the GeForce 9300M GS, the figures are almost identical,
with the difference of the block size of 256, which slightly changes the occupied size
in the pool for the filter kernel. Table 4.5 shows a summary of this analysis.

Table 4.5: Real GPU memory usage in Edge Detection Task (NVIDIA GPUs)

Sample GPU Pool size Required pools Real GPU memory used

TX2 2 MB 2 4 MB
Nano 1 MB 3 3 MB

If the application is configured to either use non-mapped pinned memory or
pageable memory for the host side, and device memory for the GPU side, the above
numbers are also correct. The only difference is that in these cases both CPU and
GPU memory is used, which doubles the aggregate memory consumption?.

Edge detection allocations with OpenCL: For the OpenCL scenario, Table 4.6
shows the memory used by the memory allocator in an ARM Mali-T860 GPU. In
this platform, the memory is allocated in pools of 256 KB with a granularity of 64
bytes. However, when an allocation is larger than 256 KB, the pool size is the next
multiple of 4 KB. This means that for the input image the allocator will create a
pool of 925696 bytes, using 921600 bytes and leaving 4096 bytes free. For the filter,
we only need a block of 64 bytes which can be allocated in the free space of the
previously created pool. For the output image the allocator will create a pool of
311296 bytes, which is the next 4 KB multiple.

n fact, in the case of CPU pageable memory, the memory consumption is closer to the explicitly
allocated memory using malloc, since the GNU memory allocator [73] only uses 8 byte aligned
blocks in 32-bit platforms and 16 byte aligned blocks in 64 bit ones and it does not use segregated
lists. Moreover, the memory pool in CPU is lazily allocated, which means that the OS only reserves
the pages of the heap which have been accessed. However, considering equal CPU and GPU memory
consumption simplifies the CPU side memory analysis and provides a safe upper bound for a safety
critical system in which lazy allocation is not used.

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Table 4.6: GPU memory allocator usage in Edge Detection (ARM Mali-T860)

Variable Size Occupied Occupied
(bytes) 64b Blocks Size (bytes)
Input Image 921600 14400 921600
Filter Kernel 9 1 64
Output Image 307200 4800 307200
Total (bytes): 1228864

The total memory consumption to be provisioned is 1236992 bytes, which is
8183 bytes more than the memory explicitly allocated by the application. However,
it only represents a 0.67% of increment. Using a Mali-G72 GPU the only difference
is that for the filter the allocator will reserve a block of 128 bytes, since this is the
granularity in this platform. However, the results will be the same because in this
case the filter can also be allocated in the free space of the pool created for the input
image.

Pedestrian Detection

This application is significantly more complex than the previous task and it is
obtained from the open source implementation of the benchmark described in [69].
In addition to the input and output images, this task uses a complex dynamically
allocated cascade classifier structure. This structure consists of numerous smaller
dynamically allocated structures with sizes ranging from 32 bytes to 84 bytes
arranged in arrays, requiring a total of 7534 dynamic memory allocations. The order
in which the memory for these structures is allocated is shown in Listing 4.6.

The different dynamic GPU allocations of the application are summarized in
Table 4.7. Without knowing the internals of the GPU allocator, a system engineer
would provision 1484912 bytes, out of which 870512 correspond to the structure of
the classifier.

Pedestrian detection allocations with CUDA: Table 4.8 shows the actual memory
consumption within the memory allocator when the pedestrian detection algorithm
is executed on the NVIDIA TX2 platform with zero-copy allocations. Again, we
notice that the allocations are rounded up to 512 byte multiples, since this is the
minimum allocation granularity in the allocator, which penalizes small allocations.
In this task, 3 different size classes are used.

4.5 Results

59

W ~NO D WN -

60

N_MAX_STAGES = 30;
N_MAX_CLASSIFIERS = 250;
Allocate sizeof (Struct_A)
Allocate sizeof (Struct_B)
for i = 1 to N_MAX_STAGES do
Allocate sizeof (Struct_C) = 8000 bytes;
for j = 1 to N_MAX_CLASSIFIERS do
Allocate sizeof (Struct_D) = 84 bytes;
end for
end for
Allocate 307200 bytes for input_image;
Allocate 307200 bytes for output_image;

32 bytes;
480 bytes;

Listing 4.6: Pseudocode of memory allocations in the pedestrian detection case study

Table 4.7: GPU memory allocations in Pedestrian Detection

Variable Allocations Individual Size Total Size
(bytes) (bytes)

Input Image (640x480) 1 307200 307200
Output Image (640x480) 1 307200 307200
Classifier
Struct A 1 32 32
Struct B (30x 16 array) 1 480 480
Struct C (250x 32 array) 30 8000 240000
Struct D 7500 84 630000
Total: 7534 1484912

In platforms like the NVIDIA TX2 where the size of memory pools is 2 MB, a
single pool is enough for size classes 3 and 6. However, for size class 1, the total
size exceeds 2 MB, which requires the free list to expand to accommodate the total
of 3841024 bytes required for this size class. Therefore, the allocator uses 8 MB in
total, which is 5.6 x more than the initially provisioned memory.

For platforms like the Nano with 1 MB pool size, again the size classes 3 and
6 can use a single pool, while the size class 1 requires 4 pools. Therefore, the
total consumption of the allocator is 6 MB, 4.2x bigger than the memory explicitly
requested by the application. Table 4.9 shows a summary of this analysis.

Pedestrian detection allocations with OpenCL: For the OpenCL scenario, Ta-
ble 4.10 shows the memory used by the memory allocator in an ARM Mali-T860
GPU. As shown in Listing 4.4, this allocator does not use size classes, which means
that the order in which the allocations are made will dictate the order in which the
memory pools will be created and used. Listing 4.6 shows the order in which the
allocations are made. As mentioned earlier, this allocator creates pools of 256 KB

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Table 4.8: GPU memory allocator usage in Pedestrian Detection Task (NVIDIA TX2)

Variable Size Individual Occupied Allocations Total
Class Size (bytes) Size (bytes) Size (bytes)
Input Image 6 307200 307200 1 307200
Output Image 6 307200 307200 1 307200
Classifier
Struct A 1 32 512 1 512
Struct B 1 480 512 1 512
Struct C 3 8000 8192 30 245760
Struct D 1 84 512 7500 3840000
Total: 7534 4701184

Table 4.9: Real GPU memory usage in Pedestrian Detection Task (NVIDIA GPUs)

Sample GPU Pool size Required pools Real GPU memory used

TX2 2 MB 4 8 MB
Nano 1 MB 6 6 MB

with a granularity of 64 bytes. For Struct A, the allocator will create a new pool of
256 KB and will use only a block of 64 bytes. For Struct B the allocator will use 512
bytes of the previously created pool, leaving 261568 bytes free. On each iteration of
the outer loop the allocator will allocate 8000 bytes for Struct C and 32000 bytes for
Struct D. The free space in the first pool will be enough for the allocations of the first
6 iterations. To allocate the 960000 bytes required by the other 24 iterations, the
allocator will create 4 extra pools of 256 KB. Finally, for each image, the allocator
will create a pool of 311296 bytes.

The total memory consumption to be provisioned is 1933312 bytes, which is
1.3x larger than the memory explicitly allocated by the application. Using a Mali-
G72 GPU, which has a granularity of 128 bytes, the difference is that the allocator
will reserve 128 bytes for Struct A and 8064 bytes for each allocation of Struct C.
However, even with these differences, 5 pools of 256 KB are enough to allocate all
the structures. For this reason, the memory consumption will be the same.

We notice that in both case studies, the amount of extra memory allocated
due to the internal fragmentation in the ARM OpenCL memory allocators is lower
than the one in NVIDIA platforms when it is compared to the amount of memory
requested by the programmer. This difference comes from the fact that the ARM
implementations do not use size classes in their memory allocators and use smaller
pool size and granularity. For this reason, we speculate that this has been a design
choice due to the limited amount of memory present in these devices.

4.5 Results

61

Table 4.10: GPU memory allocator usage in Pedestrian Detection Task (Mali-T860)

Variable Individual Occupied Allocations Total
Size (bytes) Size (bytes) Size (bytes)
Input Image 307200 307200 1 307200
Output Image 307200 307200 1 307200
Classifier
Struct A 32 64 1 64
Struct B 480 512 1 512
Struct C 8000 8000 30 240000
Struct D 84 128 7500 960000
Total: 7534 1814976

4.6 Related Work

62

In this section, we present some previous works in the literature similar to our work.
We can categorize these works in articles related to resource allocation and reverse
engineering techniques in GPUs and CPU memory allocators.

GPU Memory Allocators. Multi-core memory allocators like the one proposed by
Berger et al. [74], have been shown not to scale well with many-core architec-
tures like GPUs. For this reason, some authors have approached the GPU resource
management topic by creating custom memory allocators suited for many-core
architectures.

Huang et al. [75, 76] proposed XMalloc, a memory allocator based in two
techniques: allocation coalescing (aggregation of memory allocation requests from
SIMD-parallel threads to be handled by the CUDA allocator) and buffering of freed
blocks for faster reuse using parallel queues. Results on a NVIDIA G480 GPU showed
that XMalloc magnified the CUDA allocator throughput by a factor of 48.

Steinberger et al. [77] showed that traditional memory allocation strategies used
by CPUs are not suited for the use on GPUs and proposed ScatterAlloc. This allocator
reduces collisions by scattering memory requests using hashing. Experimental results
showed that ScatterAlloc was about 100 times faster than the CUDA allocator and
up to 10 times faster than XMalloc.

Widmer et al. [78] proposed FDGMalloc, which makes use of the SIMD paral-
lelism present in GPUs to significantly speed-up the allocation of dynamic memory.
The authors compared their implementation with the CUDA allocator and with
ScatterAlloc, achieving a speed-up of several orders of magnitude.

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

A common characteristic in all these works is that they focus their analysis in
comparing the performance of their allocators with the performance of the CUDA
allocator, without trying to understand its internal structure or the way it works as
we do in this chapter. Moreover, these works obtain their memory through the CUDA
memory allocator, so they are still susceptible to the timing effects of its usage.

Reverse Engineering Works on GPUs. The black box nature of the GPUs has led
to the creation of some research works oriented to the use of reverse engineering
techniques to get information about their internal characteristics.

Wong et al. [79] developed a microbenchmark suite to measure various undis-
closed characteristics of the processing elements and memory hierarchies of a NVIDIA
GTX280 GPU. Their results validated some of the hardware characteristics publicly
available and revealed some other undocumented hardware structures used for
control flow and caching. Following a similar approach, Mei et al. [80] exposed
previously unknown characteristics about the memory hierarchy of Fermi, Kepler
and Maxwell NVIDIA GPUs.

Amert et al. [45] applied black-box experimentation to a NVIDIA TX2 GPU.
Based on the results, they defined a set of rules describing the behavior of the
NVIDIA TX2 scheduler. The same group later extended their work on software and
disclosed a set of non-obvious pitfalls to avoid when using CUDA-enabled GPUs for
safety-critical systems [46].

All these works are based in applying reverse engineering techniques to hard-
ware or software of GPUs, however, none of them is oriented to get information
about the memory allocation system and leverage it, which is the focus of our
study.

Reverse Engineering Memory Allocators. Eventhough memory allocation is an
extensively researched area, the only work to our knowledge related to reverse
engineering memory allocators is the MemBrush tool, proposed by Chen et al. [81].
The purpose of MemBrush is to detect the API functions of custom memory allocators
in stripped binaries. MemBrush has been used to improve other reverse engineering
tools like Howard [82], which is used to extract data structures from C binaries
without having any symbol tables.

To the best of our knowledge, our work is the first one oriented to extract
information (real memory usage, size classes and allocation policy) about a closed
source GPU memory allocator and to analyze the benefits of this information for
real-time systems.

4.6 Related Work

63

4.7

64

Summary

In this chapter, we presented a methodology and an automated tool to extract
information about the internals of the GPU memory allocators. We applied our
methodology to a wide range of GPUs from different vendors, supporting both
CUDA and OpenCL. We identified that there is only a slight difference between
different CUDA GPUs, in the amount of memory used internally as a pool and the
granularity, in particular in older GPUs. On the other hand, we found out that
OpenCL memory allocators do not use different size classes, but they serve all their
memory allocations from a single size class.

We have presented GMAI (GPU Memory Allocation Inspector) which allows the
extraction of the memory allocator properties in an automatic way and based on
this information it enables the computation of the actual memory consumption of
GPU applications.

We have applied GMALI in two automotive case studies, showing how a system
engineer can be benefited by this information, in order to provision the correct
amount of memory. In particular we have shown that the actual memory consump-
tion of the memory allocator can be up to an order of magnitude higher than the
amount requested by the application, by running our tests in several GPUs from
various vendors.

Chapter 4 Analysis of Dynamic Memory Allocation in GPUs

Characterization of Dynamic
Memory Usage in GPU
Applications

In the previous chapter, we showed how dynamic memory allocation can have a neg-
ative impact on the execution time of GPU kernels due to the overhead added by the
memory allocation system when creating new memory pools. We reverse-engineered
the GPU memory allocator and extracted its internal properties to understand under
which conditions memory pools are created and to know the real amount of memory
used in their creation. Then we presented GMAI, a tool that automates the extraction
of the memory allocator properties. GMAI provides a preload library that captures
the GPU memory function calls of a target application and extracts data to calculate
its actual GPU memory consumption based on the GPU memory allocator properties.
Since dynamic memory allocation can have a negative impact on the execution time
of GPU applications, we can further extend the functionality of the preload library to
capture the behavior of all GPU dynamic memory operations and identify memory
allocation patterns that can harm the execution time.

In this chapter, we propose extending GMAI to characterize the way dynamic
memory is allocated and deallocated in real GPU applications. We present a memory
characterization library that captures the dynamic memory operations of a target
GPU application and extracts data to generate a memory characterization report
and an interactive plot. Then, we use our library to characterize three popular GPU
benchmark suites and we identify memory allocation patterns that could be modified
to improve performance and memory consumption in embedded GPU platforms. It is
worth noting that while the motivation of our work was initiated by its applicability
in the safety critical domain, the contribution of this chapter extends beyond the
domain of real-time and critical systems. Understanding the dynamic GPU memory
allocation patterns and GPU memory usage of real-life applications is interesting for
research in GPU programming in general such as in High Performance Computing or
programming models. To our knowledge, this is the first work analyzing the memory
behavior of GPU benchmarking suites, which is as important as their performance
characterization, which has been studied extensively in the literature.

65

5.1 Design of the Memory Characterization Library

The main objective of this work is to extend the functionality provided by GMAI to
characterize the use of dynamic memory in GPU applications. Our goal is to create
a tool to generate the memory characterization of a GPU application showing the
evolution of the different types of dynamic memory used in the application and the
location of the related function calls in the source code. This allows users to observe
the dynamic memory behavior of a target GPU application and trace back interesting
function calls to their location in the source code. To implement this functionality,
we need to capture all GPU-related dynamic memory calls and extract data related
to the requested memory size, assigned addresses, and location of the function calls
in the source code.

GPU applications can use different types of dynamic memory. For each type
of memory, there are specific functions we need to capture. For device memory,
we must keep track of cudaMalloc and cudaFree calls. For pinned memory, we
must capture calls to cudaMallocHost, cudaHostAlloc and cudaFreeHost. In the
host side, GPU applications can also use dynamic pageable memory, which usually
is allocated with malloc and deallocated with free. However, the allocation of
pageable memory can also be done with other functions such as calloc, so we must
keep track of those function calls as well.

The use of pageable memory (i.e. dynamic memory allocated by malloc) in
GPU applications is not exclusive for GPU tasks, so keeping track of all pageable
memory operations can add noise and unnecessary overhead to our analysis. We are
interested in tracking only the subset of pageable memory allocations that are used
to transfer data between host and GPU. This way, the characterization could be used
to identify possible memory optimizations for embedded GPU platforms, where a
pageable memory allocation and a device memory allocation can be replaced by a
single zero-copy or unified memory allocation. Then, besides capturing the pageable
allocations, we must also keep track of the cudaMemcpy function calls to identify
which pageable allocations are used for GPU data transfers.

To capture the target memory functions, we use a technique known in the
literature as function interposition, which consists in replacing the target functions
with user-defined wrapper functions. These wrapper functions can then be used to
add extra functionality to the original functions, in our case, to extract information
from the arguments. In UNIX-like systems, function interposition can be done at
run time using the environment variable LD_PRELOAD [83] that we used in GMAI,

66 Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

B W N

at load time using the --wrap argument of the 14 linker [84], or at compile time,
replacing the target function calls at the source code level.

Since GMAI uses LD_PRELOAD to implement function interposition at run time,
our first approach was to extend the GMAI preload library to add the memory
characterization functionality. However, with this approach, the extraction of source
code information is not optimal. To implement it, we must assume that the target
application has been compiled with debugging information. Then, for each function
call, we must extract the debugging symbols from the compiled binary. We created
a prototype using this approach, and we found that the extraction of source infor-
mation added much processing overhead on function calls. Moreover, while this
approach works well with CUDA functions, for more generic functions like malloc
it generates recursion problems since malloc is used internally by functions like
dlsym, which we use inside the wrapper functions to invoke the real functions.

Due to the limitations of the LD_PRELOAD approach, we opted to create a new
library implementing function interposition at compile time. With this approach, the
target function calls are replaced in the source code using #define directives. One
of the advantages of this approach is that the extraction of source code information
is easier to implement. In C/C+ +, we have access to the __FILE__and __LINE__
macros which expand to the full path of the current file and the current line number,
respectively [85]. In our library, these macros are added as extra arguments into the
wrapper functions to get the source information of every function call. Listing 5.1
shows some examples.

#define malloc(size) chr_malloc(size,_ _FILE _, LINE_)

#define free(ptr) chr_free(ptr,__FILE__,__LINE__)

#define cudaMalloc(devPtr,size) chr_cudaMalloc(devPtr,size,_ _FILE__,_ _LINE__)
#define cudaFree(devPtr) chr_cudaFree(devPtr, _FILE _, LINE_)

D

Listing 5.1: Examples of function interposition at compile time

We defined the replacements required for each target function in a header file
of the memory characterization library. In order to replace the original function calls
with the wrapper functions, this header file must be included in the source files of the
target application. When the application is compiled, the memory characterization
functionality is added to the function calls. Figure 5.1 shows the entire workflow of
the GPU memory characterization library.

The memory characterization library uses as input the configuration file gener-
ated by GMALI. From this file, we get information such as the pool size and the size
classes used by the GPU memory allocators. Using these values, we keep track of the

5.1 Design of the Memory Characterization Library

67

68

Memory Memory

GMAI Memory allocator characterization Compiled characterization Interactive
configuration library - application results ~ plot
>~ >~ >~
CFG - cpp - csv HTML
L «
(=
2
i)
c
E l
o >
£ S
g § s
£ 13 o
2) e
GPU ° cu F T PY @
n 4 o
a [o
F 1 3 8
U c =
Je J - Memory / &
Target GPU Target application characterization Plot generation
source code report script

Figure 5.1: GPU memory characterization workflow

creation of memory pools and we calculate the real amount of device memory and
pinned memory reserved by the CUDA allocators.

To create the memory characterization of a target application, first we must
include the library header in the source files we want to track. This way we replace
the target function calls at the source code level. Then, the target application
must be compiled together with the memory characterization library to add the
characterization functionality.

When the compiled application is executed, each wrapper function gathers
information about its corresponding memory operation. At the end of the execution,
the memory characterization library creates a report with information such as the
maximum amount of dynamic memory used by the application, the number of
memory pools created, the number of memory transfers, and the detected memory
leaks. The library also creates a csv file with information about the use of the
different types of memory in the target application.

For the final part of the workflow, we created a script that transforms the
information stored in the csv file into an interactive memory characterization plot,
like the one shown in Figure 5.2.

The interactive memory characterization plot shows the evolution of pageable
host memory, pinned host memory, and device memory through the execution of the
application. For device and pinned memory, it shows the values requested by the
user as Device memory (user) and Pinned memory (user) respectively.It also shows the
real amounts of memory reserved by the CUDA memory allocators as Device memory
(allocator) and Pinned memory (allocator), based on the information extracted with
GMAL At each point, the Total memory is calculated as the sum of pageable host

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

5.2

5.2.1

Memory characterization of cutcp

——— Pageable memaory

Device memory (user)

—— Device memory (allocator)

~—— Pinned memory (user)
Pinned memory (allocator)
Total memory

8M

m Function: cudaMalloc(2725888)
File: src/cudalcutoff6overlap.cu
oM Line: 569

Total memory: 6082688 bytes

5M

4M

3M

2M

Amount of memory (bytes)

M

Q 1 2 3 4 5 6 7 8

Memory operation number

Figure 5.2: Example of an interactive memory characterization plot

memory plus the amount of device memory and pinned memory reserved by the
CUDA allocators. For each memory operation, the plot shows the current state
of all types of memory and the information of each function call. As an example,
Figure 5.2 shows that the third memory operation of the cutcp benchmark was a
cudaMalloc call to reserve 2725888 bytes of device memory, the function call is at
line 569 of the cutoff6overlap.cu source file, and the total amount of GPU-related
dynamic memory used at this point of the program execution is 6082688 bytes.

Evaluation

In this section, we provide the results of the memory characterization of the bench-
marks of three popular GPU benchmark suites: Rodinia [59], Parboil [60] and
PolyBench-ACC [61] performed using the tool we have developed. To carry out the
evaluation, we compiled all the benchmarks and executed them on a Jetson TX2
platform.

Memory Characterization of Rodinia Benchmarks

The Rodinia benchmark suite contains 23 benchmarks with CUDA, OpenMP and
OpenCL implementations. Due to compilation issues, we do not include the mum-
mergpu benchmark in the evaluation. The cfd, particlefilter and srad benchmarks
have multiple versions, but we consider that selecting one version of each of these
benchmarks is enough for characterization purposes. For cfd we selected the euler3d

5.2 Evaluation

69

70

version, for particlefilter we selected the particlefilter float version, and for srad we
selected the srad_v1 version.

To carry out the evaluation, we compiled the CUDA version of the benchmarks
including our memory characterization library in the compilation process. Then,
we executed the resulting applications to generate the memory characterization
reports and we generated the corresponding interactive memory characterization
plots. Table 5.1 shows a summary of the information obtained in the memory
characterization reports.

Table 5.1: Rodinia benchmarks characterization results

Benchmark Max. memory Pools H2D D2H Leaked
used (bytes) created transfers transfers (bytes)
backprop 20455632 3 5 3 0
bfs 79202120 5 18 13 2097152
b+tree 84762324 5 15 3 0
cfd 17094144 6 3 1 0
dwt2d 36700160 12 1 3 0
gaussian 2097296 1 3 3 0
heartwall 46035288 21 24 4 0
hotspot 7340032 2 2 1 2097152
hotspot3D 50331648 3 2 1 0
huffman 10487808 5 4 2 0
hybridsort 90218496 20 12 12 0
kmeans 205642200 3 5 2 680
lavaMD 16359296 3 4 1 0
leukocyte 3779072 6 32 7 0
lud 2359296 1 1 1 0
myocyte 3517200 1 7800 7800 1419600
nn 2268208 1 1 1 0
nw 83976204 2 2 1 0
particlefilter 2305544 1 6 3 8552
pathfinder 82097280 2 2 1 0
srad 9315952 4 5 201 0
streamcluster 147656756 524 3223 3222 2097152

As we can see in the results, there are some benchmarks with interesting
characteristics. First, we detected memory leaks in the bfs, hotspot, kmeans, myocyte,
particlefilter and streamcluster benchmarks. We validated these results by manually
verifying the source lines of the memory leaks indicated in the reports. In bfs, the
memory leak corresponds to 1 byte of device memory not being released, causing
a whole pool of 2 MB to remain reserved. In hotspot, the memory leak is caused
by two allocations of 1 MB of pageable host memory, which are not released in

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

the end. In kmeans, the memory leak corresponds to a non-released pageable host
allocation of 680 bytes. In myocyte, there is an allocation used to create an array
of pointers, and then, for each position in the array, there is an allocation of 364
bytes of pageable host memory. In the end, the memory allocated for the array
of pointers is released, but the memory reserved for each position of the array
remains reserved. The corresponding code is executed several times, causing an
accumulation of 1419600 bytes of leaked host memory. In particlefilter, the memory
leaks are caused by two allocations of pageable host memory (8000 bytes and 552
bytes) that are not released in the end. Finally, in streamcluster, the memory leak is
caused by a non-released allocation of 2 MB of pageable host memory.

Regarding memory transfers, Table 5.1 shows the number of host-to-device and
device-to-host memory transfers (H2D and D2H respectively) for each benchmark.
The benchmarks with the highest number of memory transfers are myocyte, srad
and streamcluster. When executing applications like these benchmarks on embedded
GPU platforms, replacing the pageable allocations and their corresponding device
allocations with zero-copy allocations could help to improve performance, since all
related memory transfers could be avoided.

In terms of memory consumption, Table 5.1 shows the peak of maximum dy-
namic memory used for each benchmark. The kmeans and streamcluster benchmarks
are the ones with more memory consumption. In the case of streamcluster, the
allocation activity is more intensive, creating device memory pools up to 524 times.
The maximum memory used value is composed of different types of dynamic memory.
To better understand its composition, Figure 5.3 shows the percentage corresponding
to each type of memory in the maximum peak value for all the benchmarks.

H Device memory M Pageable memory ™ Pinned memory
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
R & o
S f & & & & o

\.
Ry S S S
N4 ¢ ¢ T & W @ \e\’ N

o O o
X X X

o
S

Percentage of maximum
memory used
o
xRN

o
xX

> o
& & & s ©

Figure 5.3: Rodinia benchmarks distribution of maximum total memory used

As we can see, in almost all the benchmarks the peak is composed only by
pageable host memory and device memory. The only benchmark using pinned host

5.2 Evaluation

71

72

memory is dwt2d. There are some benchmarks like backprop, bfs, hotspot, hotspot3D,
lavaMD, leukocyte, nw, pathfinder, and streamcluster where the memory is almost
evenly distributed between host memory and device memory. When executing
applications like these benchmarks on embedded GPU platforms, replacing the
pageable allocations and their corresponding device allocations with zero-copy
allocations could help to reduce the memory consumption approximately to the
half.

In applications like cfd, dwt2d, gaussian, heartwall, huffman, lud, myocyte, nn,
particlefilter and srad, where the amount of device memory is significantly larger
than the amount of host memory, the replacement with zero-copy allocations will not
represent a big difference in memory consumption. However, in cases like srad, it
could be still beneficial to make the replacement to avoid the high amount of memory
transfers. It is important to note that, in gaussian, lud, myocyte, nn and particlefilter,
the unbalance between host and device memory is due to the pool size used by
the CUDA allocator when reserving device memory. For example, in the gaussian
benchmark, the user allocates 144 bytes of host memory and 144 bytes of device
memory. However, to allocate 144 bytes of device memory, the allocator reserves
2 MB, which is the pool size on the Jetson TX2 platform as shown in Listing 4.2.
For this reason, the percentage of maximum used memory corresponding to device
memory in the gaussian benchmark is 99.9%, as shown in Figure 5.3. In myocyte
the unbalance may not be very evident because most of the reported pageable host
memory corresponds to the accumulation of leaked memory.

To analyze the behavior of Rodinia benchmarks in terms of how memory is
allocated and deallocated, Figure 5.4 shows the memory characterization plots for
all the benchmarks. In typical GPU applications, memory for different variables is
allocated gradually, presenting an increasing behavior until reaching the peak of
maximum memory used by the application. Then, these allocations are gradually
released after use, presenting a decreasing behavior until the total memory used
is zero. In this category we have benchmarks like backprop, bfs, gaussian, hotspot,
hotspot3D, kmeans, lavaMD, lud, nn, nw, particlefilter, pathfinder and srad. This is
the desired behavior for most GPU applications. We just need to make sure that all
allocations are grouped at the beginning of the application and that all deallocations
are done in the end. This way, we can avoid the creation of memory pools in the
middle of the execution, which can have a negative timing impact when launching
GPU kernels as we have demonstrated in the previous Chapter.

There are other applications like b+tree, cfd and huffman which have two
or more peaks of memory allocation with different shapes. These peaks usually

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

80M

g JAN
2 151
S cou oy ——
2 10m
g om
i \ o
z 2o \ 200
& /=\= /:L
£ o — o o /\
0 s 10 15 20 0 s o o1 o o 0 20 w0 0 s 10 15 20
Memory operation number Memory operation number Memory operation number Memory operation number

(a) backprop (b) bfs (c) b+tree (d) cfd

7 ™M m
g
2 som Ao M
< 15m
g 3om
£ 2om m
E wm 20m
l
£ oM 05 om ™
3
E
< o o - o
o 5 10 15 20 0 5 10 o 500 1000 o 2 4 6 8 10
Memory operation number Memory operation number Memory operation number Memory operation number

(e) dwt2d (f) gaussian (g) heartwall (h) hotspot

7 SM oM 200m
< 80M
& aom
= oM 150M
z som
S aom 6M
g 100m
E 40M
< 20m
- \ am f \
5 N\ 2 20m | \ 50M
5 1om \ M | \
E
< o o o o
o 5 10 o 10 20 30 0 20 0 60 80 o 5 10
Memory operation number Memory operation number Memory operation number Memory operation number

(i) hotspot3D (j) huffman (k) hybridsort (1) kmeans

15M

g
= M El
z ™
§ 1om 15m
5 HnimimimimiE By
H | T | T w
5
S N \ N
E oM
3
3
< 0 o o o
o s 10 15 o s0 100 0 1 2 3 4 0 000 2000 3000 4000
Memory operation number Memory operation number Memory operation number Memory operation number

(m) lavaMD (n) leukocyte (o) lud (p) myocyte

80M som

g
H M ™M Tttt
= 60M | | 60M
2 1a 15w \ \
£ / \
5 /
E “om / \ ™ [| Ao
5 / \ | |
€ osm o/ AN 05M. | | 20M
-3 / E
2 . -
< o [[of
0 2 4 6 o 2 4 6 8 10 0 10 20 30 r o 2 4 6 8 10
Memory operation number Memory operation number Memory operation number Memory operation number

(r) nw (s) particlefilter (t) pathfinder

—_

K]

-~
=
=

150M
—— Pageable memory

oM
Loom —— Device memory (user)
oM
—— Device memory (allocator)
am)
SoM —— Pinned memory (user)
" Pinned memory (allocator)
o o
10 2 2

o 2000 1000 w000 Total memory

Amount of memory (bytes)

Memory operation number Memory operation number

(u) srad (v) streamcluster

Figure 5.4: Memory characterization of Rodinia benchmarks

correspond to different processing phases, which translates into the launching of
different GPU kernels. In this scenario, there is a set of variables allocated at
the beginning and deallocated at the end of each phase. Modifying the memory
allocation patterns in applications like these can represent a trade-off between
performance and memory consumption. Suppose we allocate all the memory at the
beginning of the application, in that case, the creation of memory pools will not

5.2 Evaluation

73

5.2.2

74

affect the intermediate kernel launches. However, all the memory needed for the
different kernels will be reserved for the entire duration of the application.

Finally, there are applications like dwt2d, heartwall, hybridsort, leukocyte, my-
ocyte and streamcluster which have multiple uniform memory allocation peaks. This
behavior usually corresponds to iterative blocks of code with allocations and deal-
locations inside a loop. It is common in applications which execute the same GPU
kernel several times, like applications processing images or frames in a video. In
the context of this thesis, this behavior could also be present in control applications
since control algorithms are executed iteratively. The problem with applications like
these is not the iterative behavior, but to include the allocations and deallocations
inside the processing loop. The reason is that for each allocation and deallocation
the application needs to interact with the CUDA runtime, which adds processing
overhead on each iteration. Moreover, some allocations can trigger the creation of
new memory pools, which can add timing overhead on the execution time of the
next GPU kernel launch. This behavior can be improved by taking the allocations
and deallocations out of the processing loop and reusing the same variables for all
the iterations, allocating memory before entering the loop and deallocating after the
last iteration.

Memory Characterization of Parboil Benchmarks

The Parboil benchmark suite contains 11 benchmarks in total, with CUDA, OpenMP
and OpenCL implementations. These benchmarks are a collection of throughput
computing applications from different fields, including image processing, biomolecu-
lar simulation, fluid dynamics, and astronomy. We compiled the CUDA version of all
the benchmarks including our memory characterization library in the compilation
process. Then, we executed the resulting applications to generate the memory char-
acterization information. Table 5.2 shows a summary of the information obtained in
the memory characterization reports.

As we can see in the results, bfs is the only benchmark where we detected
memory leaks. The memory leaks in this benchmark correspond to three device
allocations of 4 bytes and two device allocations of 4000000 bytes which are not
released in the end. To serve the three allocations of 4 bytes, the CUDA allocator
creates a pool of 2 MB, which is the pool size in the reference platform. For each
allocation of 4000000 bytes, the allocator reserves 4001792 bytes, which is the next
multiple of the page size in the reference platform. Adding these values, we get a
total of 10100736 bytes of device memory leaked.

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

Table 5.2: Parboil benchmarks characterization results

Benchmark Max. memory Pools H2D D2H Leaked

used (bytes) created transfers transfers (bytes)
bfs 137983504 7 14 10 10100736
cutcp 8179840 2 1 1 0
histo 272595200 7 1060 21 0
Ibm 776601600 2 2 1 0
mri-gridding 599351296 15 1 4 0
mri-q 2146304 2 8 3 0
sad 19945776 2 1 1 0
sgemm 2097152 1 2 1 0
spmv 2146448 1 4 1 0
stencil 8388608 2 1 1 0
tpacf 2719556 1 1 1 0

Regarding memory transfers, histo is the benchmark with the highest activity,
with a total of 1081 memory transfers between CPU and GPU. The rest of the
benchmarks present a significantly lower number of memory transfers, being bfs in
second place with only 24 memory transfers in total.

In terms of memory consumption, [bm, mri-gridding, histo and bfs are the
benchmarks that use more dynamic memory. Figure 5.5 shows the distribution of
the different types of dynamic memory at the point of maximum use for all the

&
@
&

&
&
&

Parboil benchmarks.

M Device memory M Pageable memory I Pinned memory

100%
90% ‘
80% ‘
70% ‘
60% 1
50%
40%
30%
20%
10%
0%
< &&& ‘{\\«;»o ®@ \b&o% é\{\'(* c;ob @(\@ %Qéé
§

)
&

Percentage of maximum
memory used

Figure 5.5: Parboil benchmarks distribution of maximum total memory used

Similar to what we observed in Rodinia, in Parboil, almost all the benchmarks
use only pageable host memory and device memory. The only benchmark using
pinned host memory is mri-gridding. In the bfs, cutcp, lbm, sad and stencil bench-
marks, the memory is almost evenly distributed between host memory and device
memory, which makes them good candidates for replacing their pageable and device

5.2 Evaluation

75

76

allocations with zero-copy allocations to reduce the memory consumption in em-
bedded GPU platforms. In applications like histo, mri-q, sgemm and spmv where the
amount of device memory is significantly larger than the amount of host memory,
replacing all the allocations with zero-copy allocations will not improve memory
consumption. However, in benchmarks like histo with a high number of memory
transfers between CPU and GPU, the use of zero-copy allocations could still improve
the execution time.

To analyze the behavior of Parboil benchmarks in terms of how memory is
allocated and deallocated, Figure 5.6 shows the memory characterization plots
for all the benchmarks. The bfs, cutcp, histo, sad, sgemm, spmv, stencil and tpacf
benchmarks show a one-peak behavior, meaning that the dynamic memory is incre-
mentally allocated, and then deallocated after use. The lbm, mri-gridding and mri-q
benchmarks present two peaks of memory allocation, probably corresponding to two
different processing phases in the GPU. None of the Parboil benchmarks present a
behavior with multiple uniform memory allocation peaks, meaning that, if there are
cyclic processing phases in any of the benchmarks, the allocations and deallocations
are done correctly outside of the processing loop.

800M

7 M
g 250M =
g 00
=4 600M
> 100M oM 200
s
] ™ 1som 400 L\
5 50 100M
2 200m
50M /\
o o — S o
0 10 20 30 0 2 4 6 8 0 5 10 15 0 2 4 6 8 10
Memory operation number Memory operation number Memory operation number Memory operation number

600M _ 20M

15M
400m

N t 10m w
200M u
osm i i s osm
B e
2 4 6

Amount of memory (bytes)

o

0 10 20 20 a0 0 5 10 15 o 8 0 2 4 6

Memory operation number Memory operation number Memory operation number Memory operation number
(e) mri-gridding (f) mri-q (g) sad (h) sgemm

. — M 25 —— Pageable memory
e —— Device memory (user)
" - 15M —— Device memory (allocator)
m —— Pinned memory (user)
osm M . .
Pinned memory (allocator)
o —ee 0 o

o s o o1 o o 2 . s s o 2 . s s Total memory

Amount of memory (bytes)

Memory operation number Memory operation number Memory operation number

(i) spmv (j) stencil (k) tpacf

Figure 5.6: Memory characterization of Parboil benchmarks

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

5.2.3 Memory Characterization of PolyBench-ACC Benchmarks

The PolyBench-ACC benchmark suite contains 21 benchmarks in total, with imple-
mentations in CUDA, OpenCL, OpenMP, OpenACC and HMPP. We compiled the
CUDA version of all the benchmarks including our memory characterization library
in the compilation process. Then, we executed the resulting applications to gener-
ate the memory characterization information. Table 5.3 shows a summary of the
information obtained in the memory characterization reports.

Table 5.3: PolyBench-ACC benchmarks characterization results

Benchmark Max. memory Pools H2D D2H Leaked
used (bytes) created transfers transfers (bytes)
correlation 85999616 3 5 1 0
covariance 85991424 3 3 1 0
2mm 46137344 5 5 1 0
3mm 16777216 4 7 1 0
atax 136380416 2 4 1 0
bicg 136413184 2 5 2 0
doitgen 35717120 3 3 1 0
gemm 8388608 2 3 1 0
gemver 136462336 2 9 1 0
gesummyv 270598144 3 5 1 136314880
mvt 136413184 2 5 2 0
syr2k 29360128 3 3 1 0
syrk 20971520 2 2 1 0
gramschmidt 83886080 3 1 1 0
lu 50331648 1 1 1 0
adi 33554432 3 3 2 0
convolution-2d 268435456 2 1 1 0
convolution-3d 335544320 2 2 1 0
fdtd-2d 119539664 4 4 1 0
jacobi-1d 2162688 1 2 2 0
jacobi-2d 25165824 2 2 2 0

As we can see in the results, gesummyv is the only benchmark on which we
detected memory leaks. The memory leak can clearly be observed at the end of the
memory characterization plot in Figure 5.8j, where the final values of the Device
memory (allocator) and Total memory lines are not zero. We reviewed the memory
characterization report and determined that the memory leak corresponds to three
device memory allocations of 16384 bytes and two device memory allocations
of 67108864 bytes that are not released at the end. The total 136314880 bytes
of leaked device memory is composed by the addition of the two allocations of

5.2 Evaluation

77

78

67108864 bytes plus 2 MB, which is the size of the pool created by the CUDA
allocator to serve the three allocations of 16384 bytes.

Regarding memory transfers between CPU and GPU, all the PolyBench-ACC
benchmarks present a low number of memory transfers, being 11 the maximum
number of total memory transfers (in 3mm and gemver benchmarks). Likewise, the
number of created memory pools is low in all the benchmarks.

In terms of memory consumption, Table 5.3 shows the maximum amount of
dynamic memory used for each benchmark, having gesummv, convolution-2d and
convolution-3d as the benchmarks with higher memory use. Figure 5.7 shows the
percentages corresponding to each type of memory in the point of maximum memory

M Device memory M Pageable memory M Pinned memory

2 \\" «
© $ RO

use for all the benchmarks.
& RGNS @é‘

100%
90%
80%
70%
60%
5
40%
30%
20%
10%

0%
Ay S

() ~o
N o & e 0 2 O o
S & & S S O S
> & S \@ @

Percentage of maximum
memory used
o
N

o
X

Figure 5.7: PolyBench-ACC benchmarks distribution of maximum total memory used

As shown in the Figure, in all the PolyBench-ACC benchmarks, the point of
maximum memory use is composed only by pageable host memory and device
memory. Furthermore, in almost all the benchmarks, the memory is evenly dis-
tributed between these two types of memory. As previously stated, when executing
applications like these on embedded GPU platforms, the use of dynamic memory
can be reduced approximately to the half if every pageable host allocation and its
corresponding device allocation are replaced by a single zero-copy allocation. The
only benchmark that could not benefit from zero-copy replacements is jacobi-1d,
because, in this benchmark, the amount of device memory is significantly higher
than the amount of pageable host memory.

To analyze the behavior of PolyBench-ACC benchmarks in terms of how memory
is allocated and deallocated, Figure 5.8 shows the memory characterization plots
for all the benchmarks. As we can see in the Figure, some benchmarks have similar
behavior with other benchmarks. For example, correlation, covariance, 3mm, doitgen,

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

H aom 1M
g
2 oo Gom o
E S e AN 10m
g \
g aom oM Jom \
H | AN om
£ 2om 20M 10M N\
5 \
3
< o 0 0 0
o 5 10 15 o s 10 o s 10 15 20 o) 20 20
Memory operation number Memory operation number Memory operation number Memory operation number
2 8
) 3om
< 100m 100M oM
§
3 20M
2 am
5 soM soM
: 10m - o
3
E
< o o 0o 0
o 5 10 15 o 5 10 15 20 o 5 10 o 5 10
Memory operation number Memory operation number Memory operation number Memory operation number

(e) atax (f) bicg (g) doitgen (h) gemm

_ 30m

4 250M

S 25M

B

< 100 200M 100M

2 20m

s

] Loom 15M --

E \

5 s 100M 50M 10M \

3 50M s

E

< o o o — o

o 10 20 30 o 5 10 15 0 5 10 15 20 0 5 10

Memory operation number Memory operation number Memory operation number Memory operation number

(i) gemver (j) gesummv (k) mvt (1) syr2k

7 20m Bom oM
g aom
B aom
> 15w 6o
g A\ 30 20M —
g 1om / aom / N\ AN
5 N\ / \ 20M / \\ \
H \ / \. 10M A\
EREY M \ o \ \
3 \ \
3
< 0 0 0 0
o 2 4 6 8 10 o 2 4 6 8 10 o 2 4 6 o s 10 15
Memory operation number Memory operation number Memory operation number Memory operation number

_

m) syrk (n) gramschmidt (o) Iu (p) adi

B o 000 B [\

) 100M | \

S 200 [\

> 15M [\

§ [\

2 o 200M / \ [\

g / V m [\

5 100M -- / \ o [\

2 oM/ \ | \

5 / \ 0sM [\

3 som \ | \

£ | \

< 0 0 0 o .

o 2 4 6 8 o 2 4 6 8 10 o 5 10 15 0 5 10
Memory operation number Memory operation number Memory operation number Memory operation number

(q) convolution-2d (r) convolution-3d (s) fdtd-2d (t) jacobi-1d

g = —— Pageable memory

> i

g) —— Device memory (user)

E 15w N —— Device memory (allocator)
R —— Pinned memory (user)
HE /\ Pinned memory (allocator)

o

o . o Total memory

Memory operation number

(u) jacobi-2d

Figure 5.8: Memory characterization of PolyBench-ACC benchmarks

gemm and fdtd-2d have similarities between them, 2mm, syr2k, syrk, gramschmidt,
lu, adi, convolution-2d, convolution-3d and jacobi-2d have similarities between them,
and atax, bicg, gemver, gesummv and mvt have similarities between them. Howevet,
in general, all the benchmarks have the same behavior: the memory is gradually
allocated until reaching the peak of maximum memory use and then it is gradually
deallocated after use. In this case, what defines the differences in the shape of the

5.2 Evaluation

79

5.3

80

characterization plots is the size of some allocations and the order on which host
and device allocations are done.

Summary

In this chapter, we presented a library to characterize the use of dynamic memory
in GPU applications. To evaluate our library, we applied it to three popular GPU
benchmark suites that include GPU applications from different domains. As a result
of the evaluation, we found that our library can be used to characterize the use of
dynamic memory in GPU applications and identify memory allocation behaviors that
can be modified to improve performance and memory consumption, especially when
targeting embedded GPU platforms.

In particular, we have identified the following patterns: since GPU applications
use different types of dynamic memory, it is a common mistake to forget to free
some of the memory allocations, causing memory leaks. Most of the evaluated
applications use the traditional CUDA memory model, on which the user needs
to allocate pageable host memory and device memory, which is not optimal in
embedded GPU platforms. Moreover, in some of these applications, the number
of memory transfers between host and device is very high, causing unnecessary
overhead. We also found applications with cyclic allocation/deallocation patterns, a
behavior that can be modified to improve performance. In the next chapter, we take
into account these results to propose a solution to improve the execution of legacy
GPU applications on embedded GPU platforms.

Chapter 5 Characterization of Dynamic Memory Usage in GPU Applications

6.1

Optimization of Dynamic
Memory Use in Embedded
GPU Platforms

Autonomous systems require high performance processing capabilities, which de-
mand for powerful accelerators such as GPUs. However, using GPUs in critical
systems presents several challenges, since GPU programming models rely on explicit
dynamic memory management. Traditionally, dynamic memory allocation in such
systems is restricted in certain controlled scenarios, which require programs to
be rewritten, so that all the required memory is allocated in the beginning of the
program and released at its end. However, as we have seen in Chapter 5, many GPU
applications do not follow this approach. Moreover, as we have shown in Chapter 4,
when dynamic GPU memory allocation is used, it is critical to compute the exact
amount of memory used as well as to minimize it, in order to guarantee that it fits
in the physical system memory.

In the previous chapter, we analyzed legacy GPU applications included as part
of popular GPU benchmark suites, and we identified memory allocation patterns
that could be modified to improve performance and memory consumption when
targeting embedded GPU platforms. In this chapter, we present XeroZerox, a tool
designed to tackle these memory allocation patterns. XeroZerox allows legacy GPU
applications to be used in a critical setup without rewriting them while at the same
time minimizing their memory consumption and memory management runtime
overhead.

Design and Implementation

In this section, we present the design and implementation of XeroZerox. The main
objective of XeroZerox is to minimize the memory consumption of legacy GPU
applications when executed in embedded GPU platforms. Legacy GPU applications
normally use the traditional CUDA memory model, in which the programmer must
define and initialize a set of variables in the host side using dynamic pageable

81

82

memory, and define an equivalent set of variables in the GPU side, using dynamic
device memory. Furthermore, before a kernel execution, the programmer must
explicitly copy the initial values from host to device, and after the kernel execution,
copy the results back from device to host. As explained in Section 2.3.3, in embedded
GPU platforms, both host and device allocations are served from the same physical
memory. Therefore, when an application that uses the traditional GPU memory
model is executed in an embedded GPU platform, its memory consumption is not
optimal, and it performs unnecessary memory transfers.

XeroZerox has been designed to automatically detect the allocations of the tra-
ditional memory model and replace them with allocations served from a centralized
memory pool. This memory pool is created using zero-copy or unified memory, and
its size is calculated based on the amount of memory used by the target application.
This way, XeroZerox reduces the memory consumption and eliminates the need
for memory transfers. XeroZerox interacts with the CUDA runtime system at the
beginning of the application to create the centralized memory pool and then at the
end of the application to release the memory pool. All the allocations requested by
the application are internally served by XeroZerox using the centralized memory
pool. This way, XeroZerox minimizes the overhead produced when interacting
with the CUDA runtime memory management system. Furthermore, since all the
allocations are served from the centralized memory pool, XeroZerox avoids memory
leaks by releasing the whole memory pool when the application finishes.

The functionality of XeroZerox is divided into two different libraries: the analysis
library and the optimization library. Like the memory characterization library we
presented in the previous chapter, both XeroZerox libraries are implemented using
function interposition at compile time. In fact, the XeroZerox analysis library is an
extended version of the memory characterization library. As shown in Figure 6.1,
XeroZerox is applied in two different phases. In the first phase, the XeroZerox
analysis library must be included in the compilation process of the target application.
The analysis library contains wrapper functions for every key function required
for dynamic memory management in CUDA applications. Each wrapper function
gathers the information required for the analysis before calling the corresponding
real function. When the resulting compiled application is executed, it generates a
file we term optimization profile that is used in the next phase. The details about the
analysis phase are discussed in Section 6.1.1.

In the second phase, the target application must be compiled again, including
the XeroZerox optimization library in the compilation process. This library contains
alternative function replacements for all functions used for dynamic GPU memory

Chapter 6 Optimization of Dynamic Memory Use in Embedded GPU Plat-
forms

6.1.1

management in CUDA applications. The alternative functions implement optimized
versions of the original functions. To work properly, these functions require the
information included in the optimization profile generated in the previous phase.
The details about the optimization phase are discussed in Section 6.1.2.

Application compiled
for analysis

Phase 1

Apalysis
library l Analysis execution
-
cu XeroZerox Il
CFG Optimization
profile
P Optimized
Target application - "
source code ﬁl Srecuton
[cpp ., Compiled

application

Optimization
library

Figure 6.1: XeroZerox analysis and optimization workflow

XeroZerox Analysis Phase

The functionality required for the XeroZerox analysis phase is implemented in the
analysis library. As a part of this library, we created a header file with #define
directives to replace the target memory management functions with wrapper func-
tions. To carry out the memory analysis, first, the header file must be included in
the source code of the target application adding a simple #include directive. This
way, the memory management functions are replaced at the source code level. Then,
the application must be compiled, including the analysis library in the compilation
process.

When the compiled application is executed, the wrapper functions gather infor-
mation to create the optimization profile, as shown in Figure 6.2. The optimization
profile is a file that contains information about the correspondence between host
and device allocations, the sizes requested for each allocation, and the maximum
amount of memory needed by the application. This information is required to carry
out the optimization phase. To create the optimization profile, first, the host memory
allocation wrappers (malloc/calloc/cudaMallocHost) and the cudaMalloc wrap-
per gather information about the allocation sizes requested by the application and
assign an identifier to each allocation. Then, it is necessary to know which host

6.1 Design and Implementation

83

6.1.2

84

allocation is related to which device allocation. For this purpose, we take advantage
of the cudaMemcpy function. The cudaMemcpy wrapper identifies the correspondence
between a host allocation and device allocation and creates the corresponding match
in the optimization profile.

Line identifiers Target source code
id1 » h_varl = malloc(sizel);
id2 » h_var2 = malloc(size2);

cudaMalloc(&d_varl, sizel);
cudaMalloc(&d_var2, size2);

id3
id4

vy

Optimization profile

cudaMemcpy(d_varl, h_varl, sizel, cudaMemcpyHostToDevice); »id3 idl sizel

cudaMemcpy (h_var2, d_var2, size2, cudaMemcpyDeviceToHost); »id4 id2 size2

Figure 6.2: Generation of the optimization profile

To calculate the maximum amount of memory needed by the application, the
analysis library keeps track of the amounts of memory requested on each individual
allocation using the malloc, calloc, cudaMallocHost and cudaMalloc wrappers. It
also keeps track on how these allocations are released, using wrappers for the free,
cudaFreeHost and cudaFree functions. With that information, the analysis library
continuously updates the current amount of memory used and keeps track of the
maximum reached value. At the end of the execution, the maximum registered value
is stored in the optimization profile as the maximum amount of memory needed by
the application.

XeroZerox Optimization Phase

The functionality required to apply the XeroZerox optimizations is implemented
in the optimization library. For this library, we also created a header file with
#define directives to replace the original memory management functions with
alternative functions served by XeroZerox. To carry out the optimization, the header
file must be included in the source code of the target application. This way, the
memory management functions are replaced at the source code level. Then, the
target application must be compiled together with the optimization library. In the
compilation process, the optimization library must be configured to use either zero-
copy memory or unified memory to create the centralized memory pool. When the
resulting compiled application is executed, it uses the XeroZerox functions instead of
the traditional memory model functions to serve the allocations using the centralized
memory pool.

Chapter 6 Optimization of Dynamic Memory Use in Embedded GPU Plat-
forms

As shown in Figure 6.3, when using the traditional memory model in an em-
bedded GPU platform, the memory is partitioned into one logical space for the host
allocations and one logical space for the device allocations. The host allocations are
served by a host allocator in the system, while the device allocations are served by
an NVIDIA allocator. As previously stated, the memory consumption in this scenario
is not optimal since both CPU and GPU allocations are served from the same physical
memory. Also, it requires the application to perform memory transfers between
both logical spaces, which can negatively impact performance. Furthermore, as we
have shown in Chapter 4, the NVIDIA allocator can create multiple memory pools
according to predefined size classes, which can negatively impact both memory
consumption and performance.

SoC DRAM
~

Memory Multiple Pools

Transfers
QUIEEN

alloc_2 |€ <——p

v
QL
H1Ee)
<he |l
N

alloc N |€ Crm— alloc_n

. b iniinininininiataiateteieieieieiuiuie o J

.

.

.
‘
l
l
1
1
'
I
l
1
1
1
'
1
1
1
1
1
'
l
|
T

r \

Host Allocator] [NVIDIA Allocator

AAA AAA AAA AAA
Allocations Deallocations

\. J

CPU GPU

Figure 6.3: Traditional memory model

XeroZerox proposes an alternative memory model, which we show in Figure 6.4.
When an application optimized with XeroZerox is executed, it first reads the opti-
mization profile and loads the information required for optimization. The first value
it reads is the maximum amount of memory needed, which is used as a reference to
create the centralized memory pool. For this task, XeroZerox requests the NVIDIA
allocator to reserve either zero-copy memory or unified memory, according to the
memory type configured in the compilation process. It is important to note that
the minimum amount of memory reserved for the centralized memory pool still
depends on the NVIDIA allocator and the configured memory type. As explained
in Chapter 4, for zero-copy memory, the minimum amount of memory reserved by
the NVIDIA allocator is the pool size, which can be 1 MB or 2 MB depending on the
platform. In the case of unified memory, the minimum amount of memory reserved

6.1 Design and Implementation

85

86

by the NVIDIA allocator in the Jetson platforms is 4 KB, which is the page size. For
sizes larger than the pool size in zero-copy, or the page size in unified memory, the
amount of memory reserved by the NVIDIA allocator is the next multiple of the page
size.

SoC DRAM
~

Centralized Pool

(o e |
BN) A
A A

i alloc_n |« !

NVIDIA Allocator

Allocate Deallocate
Pool (| Pool
XeroZerox
7
AAA AAA AAA AAA
Allocations Deallocations

Figure 6.4: XeroZerox memory model

After creating the centralized memory pool, XeroZerox works as a sub-allocator,
attending the allocation requests from the application based on the matches loaded
from the optimization profile. Since each match represents a host allocation and a
device allocation, XeroZerox only allocates memory for the first of the two allocation
requests it receives. When it receives the second allocation request, it returns a
pointer to the region of memory that has been already allocated for the first one. This
way, XeroZerox transforms two matching host and device allocations into a single
allocation served from the centralized memory pool. Similarly, XeroZerox deallocates
a memory region only when it receives the two corresponding deallocation requests.
At the end of the application execution, XeroZerox deallocates the centralized
memory pool using the corresponding CUDA function.

It is worth noting that, while the zero-copy and unified memory models allow
the reduction in memory consumption, the performance of the applications when
using these memory models will depend on the memory access patterns of each
application and the coherency mechanisms of the underlying platform, as explained
in Section 2.3.3. Even when XeroZerox can improve the performance of an appli-

Chapter 6 Optimization of Dynamic Memory Use in Embedded GPU Plat-
forms

6.2

6.2.1

cation by eliminating the need for memory transfers and reducing the interaction
with the runtime system, this performance improvement can be overshadowed by
the limitations of the zero-copy and unified memory models.

Evaluation

This section presents the results we obtained after applying the XeroZerox optimiza-
tions to the benchmarks of the Rodinia benchmark suite. To carry out the evaluation,
we first compiled the CUDA version of the benchmarks, including the XeroZerox
analysis library in the compilation process. Then, we executed the compiled bench-
marks to obtain the optimization profiles. Finally, we compiled the benchmarks
again using the XeroZerox optimization library, and generated one version optimized
with zero-copy memory and one version optimized with unified memory for all
the benchmarks. We used two different platforms from the NVIDIA Jetson family
to perform the evaluation. The details of the selected platforms are provided in
Table 6.1. We selected one platform with hardware I/O coherency and another
without hardware I/0 coherency to illustrate the different behaviors we can expect
in the performance of the applications when using zero-copy and unified memory.

Table 6.1: Platforms used for XeroZerox evaluation

Jetson GPU Compute SMs CUDA HWI/O Pool
platform architecture capability cores coherency size
X2 Pascal 6.2 2 256 No 2 MB
Xavier NX Volta 7.2 6 384 Yes 2 MB

Memory Consumption

To evaluate XeroZerox in terms of reduction in memory consumption, we executed
the zero-copy and unified memory versions of the benchmarks in the selected
embedded GPU platforms. Since the memory page size is the same in all Jetson
platforms, and both selected platforms share the same pool size, the memory
consumption results are identical for both platforms. While doing the evaluation,
we realized that the hybridsort and the kmeans benchmarks were not compatible
with XeroZerox. By design, XeroZerox works with legacy GPU applications on which
the correspondence between host allocations and device allocations is one-to-one.
If an application has one-to-many correspondences between host allocations and

6.2 Evaluation

87

88

device allocations, applying XeroZerox would result in undesirable behavior. For this

reason, these benchmarks are not included in the evaluation. Table 6.2 shows the

results we obtained for the rest of the benchmarks.

Table 6.2: Memory consumption results for Rodinia benchmarks

Memory consumption (bytes)

Benchmark Original XeroZerox Reduction %
Required Allocated ZC UM ZC UM
backprop 9437460 20455632 9441280 9441280 53.85 53.85
bfs 38999881 79202120 39002112 39002112 50.76 50.76
b+tree 62377684 84762324 62377984 62377984 26.41 26.41
cfd 12824064 17094144 12824576 12824576 24.98 24.98
dwt2d 32505856 36700160 32505856 32505856 11.43 11.43
gaussian 144 2097296 2097152 4096 0.01 99.80
heartwall 43350996 46035288 43352064 43352064 5.83 5.83
hotspot 3145728 7340032 3145728 3145728 57.14 57.14
hotspot3D 25165824 50331648 25165824 25165824 50.00 50.00
huffman 6301704 10487808 6303744 6303744 39.89 39.89
lavaMD 7856000 16359296 7856128 7856128 51.98 51.98
leukocyte 1681920 3779072 2097152 1683456 44.51 55.45
lud 262144 2359296 2097152 262144 11.11 88.89
myocyte 812 3517200 2097152 4096 40.37 99.88
nn 513168 2268208 2097152 516096 7.54 77.25
nw 50380812 83976204 50384896 50384896 40.00 40.00
particlefilter 516392 2305544 2097152 520192 9.04 77.44
pathfinder 40400000 82097280 40402944 40402944 50.79 50.79
srad 7364992 9315952 7368704 7368704 20.90 20.90
streamcluster 72941620 147656756 72945664 72945664 50.60 50.60

In the table, the Allocated column shows the amount of memory allocated in

the original Rodinia benchmarks using the traditional memory model. The Required
column shows the maximum amount of memory required by each benchmark, which
has been calculated in the XeroZerox analysis phase. The XeroZerox columns present
the size of the centralized memory pool in both zero-copy (ZC) and unified memory
(UM) versions of the benchmarks. Finally, the Reduction % columns present the
percentage of reduction in memory consumption for both ZC and UM versions with
respect to the memory allocated in the original benchmarks.

As shown in the table, the ZC and UM versions present an identical percentage of
reduction in the cases where the required amount of memory is larger than the pool
size, which in the selected platforms is 2 MB. This is an expected result since, in the
Jetson platforms, all unified memory allocations and the zero-copy allocations larger

Chapter 6 Optimization of Dynamic Memory Use in Embedded GPU Plat-
forms

6.2.2

than the pool size are reserved using the same rule: reserve the next multiple of 4
KB. On the other hand, in the benchmarks that require small amounts of memory,
like gaussian, lud, myocyte, nn and particlefilter, the percentage of reduction of the
UM version is higher than the percentage of the ZC version. This is due to the
minimum pool size that can be allocated with each type of memory. For example,
to serve the 144 bytes required for the gaussian benchmark, it is more efficient the
minimum 4 KB that can be reserved with unified memory than the minimum 2 MB
that can be reserved with zero-copy memory.

The most significant reduction in memory consumption is obtained in bench-
marks like backprop, bfs, hotspot, hotspot3D, lavaMD, leukocyte, nw, pathfinder and
streamcluster, where the percentage of reduction is around 50% with both ZC and
UM versions. As shown in Figure 5.3, in these benchmarks, the memory used is
almost evenly distributed between host memory and device memory, which makes
possible the reduction in memory consumption to approximately the half. On the
contrary, in benchmarks like ¢fd, dwt2d, heartwall and srad, where the memory is not
evenly distributed, we get less than 25% of reduction in memory consumption.

Performance Evaluation

As explained in Section 2.3.3, the performance of applications using the zero-
copy and the unified memory models depends on the memory access patterns of
the application and the coherency mechanisms used in the underlying platform.
Therefore, to evaluate the performance of the Rodinia benchmarks after applying the
XeroZerox optimizations, we executed several times the original, the zero-copy, and
the unified memory versions of the benchmarks on both embedded GPU platforms
and registered their maximum execution times. The results are shown in Table 6.3.

As shown in the table, the performance of the cfd, heartwall and streamcluster
benchmarks is severely affected when we use zero-copy memory in the Jetson TX2
platform. If we compare these results with the results obtained when we use unified
memory in the same platform, we can see that the performance is not affected in the
same way. This means that these applications are cache-dependent. In embedded
NVIDIA platforms without hardware 1/0 coherency, like the Jetson TX2, the last level
caches of both CPU and GPU are disabled when using zero-copy memory but remain
enabled when using unified memory. In the case of the Jetson Xavier NX, there are
no significant changes in the performance of the applications when using zero-copy
or unified memory instead of the traditional memory model. Due to the presence of

6.2 Evaluation

89

6.3

90

hardware I/O coherency in this platform, the performance of the benchmarks is no
longer affected when using zero-copy memory.

Table 6.3: Maximum execution times of Rodinia benchmarks (s)

Jetson TX2 Jetson Xavier NX
Benchmark . . XeroZerox . . XeroZerox
Original Original
ZC UM ZC UM
backprop 0.199 0.282 0.214 0.223 0.222 0.227
bfs 3.811 4,225 3.846 3.624 3.655 3.058
b+tree 3.144 3.534 3.328 2.824 2913 2.799
cfd 12.604 41.396 13.618 6.878 7.590 6.662
dwt2d 0.275 0.287 0.163 0.177 0.194 0.230
gaussian 0.087 0.083 0.083 0.129 0.129 0.131
heartwall 2.037 64.415 2.064 0.763 0.817 0.846
hotspot 0.691 0.776 0.736 0.788 0.671 0.686
hotspot3D 17.880 21.860 21.405 9.714 9.920 9.433
huffman 0.225 0.459 0.235 0.222 0.210 0.211
lavaMD 1.173 1.236 1.177 0.979 0.989 0.985
leukocyte 0.759 0.813 0.760 0.676 0.614 0.670
lud 0.115 0.130 0.121 0.153 0.164 0.160
myocyte 1.130 0.436 0.548 0.971 0.517 0.535
nn 0.120 0.173 0.135 0.198 0.190 0.184
nw 0.244 0.268 0.220 0.196 0.293 0.290
particlefilter 0.130 0.288 0.138 0.202 0.224 0.226
pathfinder 2.897 2904 2.921 2.566 2.302 2.675
srad 0.307 0.982 0.334 0.299 0.319 0.322

streamcluster 15.553 49.666 14.371 9.001 7.785 10.306

It is worth noting that the performance of the myocyte benchmark is improved
in both platforms when using either zero-copy or unified memory. As shown in
Table 5.1, this benchmark performs 7800 host-to-device and 7800 device-to-host
memory transfers, which are completely eliminated when using XeroZerox. This
means that the amount of memory transfers in most of the benchmarks is not enough
to obtain a significant performance improvement when using XeroZerox.

Summary

In this chapter, we presented XeroZerox, a tool designed to minimize the memory
consumption and memory management overhead of legacy GPU applications when
executed in embedded GPU platforms. To evaluate XeroZerox, we applied it to the

Chapter 6 Optimization of Dynamic Memory Use in Embedded GPU Plat-
forms

benchmarks of the Rodinia benchmark suite and executed the resulting applications
in two different embedded GPU platforms. The results show that XeroZerox can
reduce to approximately 50% the memory consumption in applications where the
use of memory is evenly distributed between host allocations and device allocations.
In terms of performance, we provided results to show the impact of zero-copy
and unified memory on the performance of the applications, depending on the
coherency mechanisms used by the underlying platform. In the Jetson TX2, we
observed that zero-copy memory could negatively affect the performance of cache-
dependent applications due to the absence of hardware I/0 coherency mechanisms.
On the other hand, in the Jetson Xavier NX, which includes hardware I/O coherency,
the performance of the benchmarks was not significantly affected. Finally, we
observed that even when XeroZerox can improve the performance of an application
by eliminating the memory transfers and reducing the interaction with the runtime
system, the performance improvement can be overshadowed in applications with a
small number of memory transfers.

6.3 Summary

91

Timing Characterization of
Control Algorithms Executed
on Embedded GPUs

As we have discussed in the Background Chapter, control systems are real-time
systems that regulate the behavior of devices or equipment using feedback control
loops. These control loops must be executed periodically, with sampling rates
according to the needs of the system under control. An unexpectedly long execution
time of a control algorithm could delay the action of the controller on the system
under control, possibly causing an unwanted situation. For this reason, control
systems usually have hard real-time constraints.

Most real-world control algorithms are simple enough to be executed in micro-
controllers or embedded microprocessors. In this scenario, if the computational
power of a single GPU core can be compared to the power of a microcontroller, the
highly parallel architecture of embedded GPUs could be leveraged to implement
scalable parallel control systems, replacing multiple microcontrollers. However,
GPUs are known about their non-deterministic nature, which complicates their use
for implementing real-time systems.

In this Chapter, we characterize the timing of control algorithms executed in
embedded GPUs. We start by defining a case study for the parallel control of multiple
motors. We introduce the theory needed to understand the control techniques used
in this domain and we describe the corresponding control algorithms. Then, we
define different scenarios for the configuration of embedded GPU platforms and
show the timing behavior of the control algorithms on each scenario. Using this
methodology, we identify which configurations and techniques help to improve real-
time behavior. Finally, we propose a proof of concept implementation to validate
the feasibility of the identified configurations by controlling an actual motor using
an embedded GPU platform. We show that not only it is possible to meet real-time
performance of control tasks using a platform based on an embedded GPU, but that
the same platform can be used in order to perform multiple control tasks in parallel,
without a slow down.

93

7.1

94

Case Study: Parallel Control of Permanent Magnet
Synchronous Motors

A Permanent Magnet Synchronous Motor (PMSM) is a rotating electrical machine
with phase windings in the stator and permanent magnets in the rotor. To operate,
it requires the interaction of the magnetic field created by the stator coils and the
magnetic field created by the permanent magnets. To apply currents through the
windings, it needs external electronic commutation. For this purpose, a three-phase
driving inverter topology is used. Figure 7.1 shows the inverter topology and the
structure of a PMSM.

+

PWM A High PWM B Hig PWM C Higl

Vdc To Phase A To Phase B To Phase C

PWM A Low |s— PWM B Low |— PWM C Low [FH—

Figure 7.1: Driving inverter topology and PMSM structure [86]

The three stator coils of a PMSM are permanently energized with a sinusoidal
current which is 120 degrees apart on each phase, which creates a rotating North/-
South magnetic field. The maximum torque is produced when the magnetic vector of
the rotor is at 90 degrees to the magnetic vector of the stator as shown in Figure 7.2.
Therefore, in order to make the motor turn optimally, we need to know the angular
position of the rotor in real time and then apply voltage on the three wires so that
the magnetic field on the stator is 90 degrees apart. Having this information, a
logical control solution would consist in reading continuously the rotor angle and
applying the corresponding voltages to create the magnetic field 90 degrees apart.
However, control based on the values of three sinusoidal currents can be complex

and time consuming.

To simplify the control of PMSMs, a vector control technique known as Field
Oriented Control (FOC) is used. The basic idea of the FOC technique is to de-
compose the stator currents into a flux-producing part (direct current I;) and a
torque-producing part (quadrature current /,). Both components can be controlled

separately after decomposition.

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

Figure 7.2: PMSM optimal torque angle

As shown in Figure 7.3, the direct current and the quadrature current are the
ones causing the outward pull and the perpendicular pull respectively. The main
goal of the FOC technique is to measure those two currents and adjust the phase
of the voltages in order to bring the direct current I, to zero, leaving only the I,
current to control the torque.

Pull direction

Perpendicular pull

Outward pull

Figure 7.3: FOC currents and equivalent pulls

To convert the stator currents into direct and quadrature currents, the FOC
algorithm first transforms three-phase quantities into equivalent two-phase quan-
tities, in a stationary reference frame, by applying a Clarke transformation. Then,
the two-phase quantities are transformed from the stationary reference frame to a
rotating reference frame by applying a Park transformation. Figure 7.4 shows the
transformations in the different reference frames. After the transformation, the reg-
ulation of torque and flux is done using Proportional-Integral (PI) controllers. The
adjusted voltage values are then transformed into three-phase values by applying
the inverse Park and inverse Clarke transformations.

7.1 Case Study: Parallel Control of Permanent Magnet Synchronous
Motors

95

96

Three-phase 120° reference frame Two-phase reference frame Rotating reference frame

Ib I I
A" A
Ia é I IA“"&‘ ‘_'__.'Id
,: / P >a Yo]9
[.)
I Ly I,
X e 1
D AN AN - Ig
\
/
N>~

Figure 7.4: FOC transformations [86]

Figure 7.5 shows a diagram of a typical FOC process. The FOC algorithm is
divided into two control loops that execute at different frequencies. The first control
loop is the slower one and is a simple PI controller, which is used to control the
velocity of the motor. Algorithm 6 shows the steps executed in the velocity control

loop.
Reference Park ! 29 > 3¢
speed * <) Speed PI iq Ref * M\ iy Torque Pl Vq vy v,PWM
- controller - controller dq Clarkde'1 v, PWM 3-phase
an :
. y +
Vg /B |V SVPWM v.PWM inverter
Rotor angle (6)
2¢ € 3¢
iy e
dq o, B i
i i K
. /B ’ /abc le
Park Clarke

V\J
Motor actual speed
P Speeq Motor
calculation
Sensor

Figure 7.5: Field Oriented Control process

The output of this control loop is used as the reference value for the quadrature
current (reference_iq) in the second control loop. The second control loop is more
complex and runs at a higher frequency. This control loop performs the needed
coordinate transforms of the currents to determine the time-invariant values of
torque and flux of the motor. These values are then controlled using PI controllers.
Algorithm 7 shows the steps executed in the current control loop.

First, the three-phase currents of the stator are converted to a stationary two-
axis system by applying a Clarke transform. This stationary two-axis system is then

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

Algorithm 6: Velocity control algorithm

Input :reference_speed, measured_speed
Output :reference iq
InOut :accumulated_error

Parameter : kp, ki, dt

// PI controller for speed

speed_error <— reference_speed — measured_speed
accumulated_error < accumulated_error 4 speed_error * dt
reference_iq < kp * speed_error + ki x accumulated_error

AW N -

Algorithm 7: Current control algorithm

Input :reference iq, ia, ib, angle
Output :va, vb, vc
InOut :accumulated_error_id, accumulated_error _iq

Parameter : kp, ki, dt

// Clarke transform

1alpha <+ ia;

ibeta < (1/sqrt(3)) = (ia + (2 x b))

// Park transform

id < cos(angle) x ialpha + sin(angle) * ibeta
iq < cos(angle) x ibeta — sin(angle) * ialpha
// PI controller for id

id_error < —id

O 0 NN U AW =

accumulated_error_id <— accumulated_error _id + id_error x dt
vd < kp *x id_error + ki x accumulated_error_id
// PI controller for iq

- e
N = O

iq_error < reference_iq — iq

accumulated_error_iq < accumulated_error_iq + iq_error x dt
vq < kp xiq_error + ki x accumulated_error_iq

// Inverse Park transform

valpha < cos(angle) * vd — sin(angle) * vq

vbeta <+ sin(angle) x vd + cos(angle) * vq

// Inverse Clarke transform

va valpha

vb < (—valpha + (sqrt(3) = vbeta))/2

ve < (—valpha — (sqrt(3) = vbeta))/2

N N = o e e e e e
= O Vv 0 N O U1 AW

rotated to align with the rotor flux by applying a Park transform, using as reference
the angle of the rotor measured in the last iteration of the control loop. The resulting

values of this operation are the direct current (id) and the quadrature current (iq).

The direct current controls the rotor magnetizing flux and the quadrature current
controls the torque output of the motor. The purpose is to control the torque using
as reference the last reference_iq value produced by the velocity controller. For this

7.1 Case Study: Parallel Control of Permanent Magnet Synchronous
Motors

97

7.2

7.2.1

98

task, these values are fed to the corresponding PI controllers to get the values vd
and vq, which are the voltage vectors that we need to apply to the motor. The final
three-phase motor voltages (va, vb and vc) are generated by applying the inverse
Park transform, and then applying the inverse Clarke transform combined with some
space vector modulation techniques to derive the PWM signals required for the
inverter switches.

The sampling rates required to execute both FOC algorithms depend on the
switching frequency of the three-phase inverter and the physical characteristics of the
motor. The period of the velocity control loop is usually around a few milliseconds,
while the period of the current control loop is typically inferior to 100 microseconds.
As a general rule, the velocity control loop should be executed once for every
ten iterations of the current control loop. Therefore, for the timing evaluation in
this chapter, we consider 1 millisecond and 100 microseconds as the maximum
execution times acceptable for the velocity control loop and the current control loop,
respectively.

Experiments Design

This section describes the different software configurations we used to run our ex-
periments, the methodology we applied to measure the timing on each scenario, the
embedded GPU platforms we selected, and the technologies we used to implement
the proof of concept prototype.

Timing Characterization Scenarios

To observe the attainable time determinism when executing control algorithms on
embedded GPUs, we created CUDA versions of algorithms 6 and 7 and executed
them on different scenarios. On these CUDA implementations, we used the zero-copy
memory model to avoid the overhead of memory transfers. The three scenarios we
defined are described next.

Stock System Scenario: In this scenario, we execute the FOC algorithms using the
stock system setup described in Section 3.3. We installed the stock 14T version
32.5 on the selected platforms, and we applied the typical configurations a user
would apply to gain performance. The goal of this setup is to observe the timing
behavior of control algorithms executed on a stock Jetson system configured for

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

maximum performance. To run the experiments in this scenario, we applied the
next configurations:

* Set NVIDIA power model to maximum performance: The Jetson boards have
different power models which can be enabled using the nvpmodel tool. The
power model defines the number of CPU cores enabled and the maximum
frequencies allowed for the CPU and the GPU.

» Switch the CPU, GPU and memory to maximum frequencies: After setting the
maximum allowed frequencies with nvpmodel, it is necessary to switch the
system to the maximum frequencies. This is done setting the minimum frequen-
cies equal to the maximum frequencies with the command jetson_clocks.

* Isolate a CPU core: The Linux kernel allows the isolation of CPU cores from
the general scheduler to reserve them for specific applications. The isolation
of core n is done by adding the isolcpus=n parameter on the APPEND section
of the /boot/extlinux/extlinux.conf file.

* Attach the process to an isolated CPU core: Once we have isolated a CPU
core, we can attach a process to run alone on it. We used the function
sched_setaffinity to specify the core on which our experiments have to run.

* Lock the process in memory: Virtual memory allows the use of more memory
than the one present in the system. However, memory swapping can negatively
affect the deterministic behavior of a program. To avoid the delays that can be
caused by memory swapping in Linux, we lock the process in memory using
the function mlockall (MCL_CURRENT | MCL_FUTURE).

Real-time System Scenario: For this scenario, we applied the real-time system
setup described Section 3.3 to the selected embedded platforms. We installed L4T
version 32.5 with the PREEMPT-RT patches applied to the Linux kernel, to enable the
full preemptive mode. The goal of this scenario is to observe the gain in determinism
we can get when using a real-time Linux kernel, compared to the stock system
scenario. To run the experiments in this scenario, we applied the performance
configurations we used in the stock system scenario, and also applied the next
configurations:

* Assign a real-time priority to the process: We assigned to our experiments a
real-time priority 98 and enabled the SCHED_FIFO scheduler using the function

sched_setscheduler.

7.2 Experiments Design

100

* Disable real-time throttle: Real-time throttle is a mechanism that limits the
amount of CPU time given to processes with real-time priority. With this
feature, processes with real-time priority can get interrupted every certain time
to allow the execution of processes with lower priority. In our experiments,
the process run alone in an isolated core, so it is safe to disable this feature
using the command:

echo -1 > /proc/sys/kernel/sched_rt_runtime_us

* Disable kernel watchdog: The kernel watchdog timer is used to detect and
recover from software faults. It requires a regular timer interrupt which can
cause jitter. We can trade lower error detection for better time determinism by
disabling it:

echo 0 > /proc/sys/kernel/watchdog

* Delay virtual memory statistics timer: This is used for collecting virtual memory
statistics. We can reduce the amount of jitter caused by this feature, configuring
a large interval in seconds:

echo 1000 > /proc/sys/vm/stat_interval

* Increase flush time to disk: We configure the write-back of dirty memory pages
to occur less often using the command:

echo 1500 > /proc/sys/vm/dirty_writeback_centisecs

Persistent Kernel Scenario: Besides the configurations we can apply at the operat-
ing system level to improve the time determinism of GPU applications, we must also
consider the possible improvements in the GPU programming model. It is known
that the GPU programming model itself has some characteristics which can cause
a non-deterministic behavior. For example, one of the sources of non-determinism
in GPU applications is the interaction between the CPU and the GPU driver when
launching GPU tasks [33]. As introduced in Subsection 2.4, some authors have used
the persistent threads model of programming [39] to improve the time determinism
when launching GPU kernels. In this scenario, we created a persistent threads
version of the FOC algorithms to compare the level of determinism we can get using
this model. To run the experiments, we used L4T 32.5 with a real-time Linux kernel
and applied the same configurations we used in the real-time system scenario.

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

7.2.2

7.2.3

Timing Measurement

To measure the timing of each experiment in the different scenarios, we run 10
million iterations of the control algorithms, from which we get the maximum
execution time, the average execution time, and the standard deviation. To get
the execution time of each iteration of the control algorithm, we use the function
clock_gettime with the CLOCK_MONOTONIC system clock before and after launching
the GPU workload. To calculate the standard deviation on each experiment, we
first calculate the variance using Welford’s Method [87][88]. Welford’s Method is
an online algorithm for computing the sample mean and variance without storing
a large number of values. This allows us to execute a large number of control
iterations.

To measure the scalability of each scenario, we opted to run the control algorithm
with 32, 64, 128, 256, 512, and 1024 threads for each set of configurations. The
reason for using those limits is that 32 is the minimum number of threads executed
in parallel on NVIDIA GPUs (because of the warp size), and 1024 threads is the
maximum size of a block in the selected platforms. This way, we can launch
experiments using only one block of threads, avoiding the overhead of any inter-
block synchronization mechanism.

Systems Under Test

Initially, we planned to run the timing experiments on the four currently available
platforms from the NVIDIA Jetson family, which are described in section 3.2. How-
ever, we realized that both Jetson Xavier platforms presented unexpectedly long
results in some simple timing tests during the preparation and testing of the real-time
system scenario. To know if the operating system was causing the latency, we exe-
cuted the latency test recommended by the Open Source Automation Development
Lab (OSADL) [89] on the four embedded GPU platforms, using a fresh installation of
L4T 32.5 with the PREEMPT-RT patches applied to the Linux kernel. The latency test
runs several cyclictest iterations and creates a latency plot showing a distribution
curve of the obtained latency values for each CPU core. In addition, the latency plot
shows the maximum latency value obtained during the test.

According to OSADL, currently, there is no standard way to determine the correct
maximum latency of a system. However, following a rule of thumb, a system with a
1 GHz processor should get a maximum latency inferior to 100 microseconds. The
results obtained in the four Jetson platforms are shown in Figure 7.6. As we can

7.2 Experiments Design

101

7.2.4

102

1x107 g T T 1x107

100000 [

1x10° ¢ cPu2 1 1x10° £ cPu2
100000 F

10000 { 10000 l‘

[
1000 ¥ 1000 ¢ |

Number of latency samples
Number of latency samples

-
1)
5]

wp

-

= o
= 1S 5]
-

L L L L L L L E
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Latency (us), max 37 us Latency (us), max 44 us

(a) Jetson Nano (b) Jetson TX2

1x107 T 1x107

1x10° CcPU2 E 1x108

100000 100000
10000 10000
1000 1000

100

Number of latency samples
Number of latency samples

3 10

Las I I I I PR L L L L E
150 200 250 300 350 400 100 150 200 250 300 350 400
Latency (us), max 745 us Latency (us), max 790 us

(c) Jetson Xavier NX (d) Jetson AGX Xavier

Figure 7.6: Latency plots of Jetson platforms with real-time Linux

see in the results, we obtained a maximum latency of over 700 microseconds in
both Jetson Xavier platforms. In comparison, in the Jetson Nano and Jetson TX2,
the maximum latency is inferior to 50 microseconds. We tried the same test with
previous versions of L4T, but the results were similar. At this point, we are not
sure about the source of latency in those systems, but we concluded that currently,
the PREEMPT-RT patches are not fully compatible with the Jetson Xavier platforms.
For this reason, we selected the Jetson Nano and the Jetson TX2 to run the timing

experiments.

Proof of Concept

To validate the feasibility of the previous configurations in a real-life scenario, we
created a proof of concept prototype application to control a real motor using an
embedded GPU platform. For this purpose, we first selected a baseline platform to
establish a comparison point. Our approach involves implementing a version of the
FOC algorithms into the baseline platform and then translating the implementation
to an embedded GPU platform and comparing results. The GPU implementation
should be based on the configurations with better timing behavior, according to the
results of the scenarios presented in the first part of this section.

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

The first platform we considered as baseline is the Texas Instruments C2000
Delfino MCU F28379D LaunchPad development kit [90], which was designed specif-
ically for the control of PMSMs. This development kit consists of a LAUNCHXL-
F28379D Delfino board, a BOOSTXL-DRV8305EVM driver module, and a Teknic
M-2310P-LN-04K motor. Figure 7.7 shows a block diagram of a PMSM control setup
using the Delfino platform.

Tl Delfino
PWM >
Driver
ADC DRV8305
MCU
SPI
QEP l

Figure 7.7: PMSM control using Delfino platform

After the first test with the Delfino platform, we realized that it works with
optimized precompiled software modules to implement different parts of the control
task, complicating the use of our implementation of the control algorithms. Moreover,
it complicates the addition of the instrumentation code we need to extract the results
of our experiments. For this reason, we decided to replace the Delfino board in our
initial setup with a more open alternative platform.

To be able to communicate with the driver and motor included with the Delfino
platform, the alternative board must include Pulse-Width Modulation (PWM) mod-
ules to generate complex pulse width waveforms with minimal microcontroller
intervention, Analog to Digital Converter (ADC) modules to read and convert the
values of the PMSM currents, a Serial Peripheral Interface (SPI) to configure the
driver, and a Quadrature Encoder Pulse (QEP) module to read the values of the
PMSM encoder and calculate the rotation angle. We selected the Teensy platform for
this purpose, which fulfills all these requirements [91]. Moreover, Teensy is an open
platform compatible with Arduino, which eases the development of our version of
the FOC algorithms and their instrumentation. Figure 7.8 shows a block diagram of
the baseline setup using the Teensy platform.

To implement the proof of concept setup, we selected the Jetson TX2 platform.
Initially, we evaluated the possibility of connecting the DRV8305 driver and the
motor directly to the Jetson TX2; however, the Jetson platforms lack ADC and QEP
modules. The PWMs can be implemented via General Purpose Input Output (GPIO)
pins, but this is not recommended since the signals might not be stable [92]. For

7.2 Experiments Design

103

Teensy
PWM
Driver
ADC DRV8305
MCU
SPI

ar I

Figure 7.8: PMSM control using Teensy platform

these deficiencies, we decided to use the Teensy as an external board to provide the
missing modules to the Jetson TX2. To communicate the two boards, we used the
Inter-Integrated Circuit (I2C) bus, as shown in Figure 7.9. The Teensy acts as an
interface between the Jetson TX2 and the driver/motor in this setup.

Jetson TX2 Teensy
PWM
¢ Driver
ADC DRV8305
CPU GPU MCU
SPI
12C | 12C QEP [« ,

Figure 7.9: PMSM control using Jetson TX2 platform

We are aware that the I12C bus is a bottleneck since it may not be fast enough
to comply with the timing required by the FOC algorithms. However, for a proof
of concept, it may be enough. Therefore, to have a fair comparison point, we slow
down the control frequency on the baseline setup to match the extra time the Jetson
TX2 requires for the I2C communication. Then, we implement the FOC algorithms
in the CPU of the Jetson TX2 to observe the effect of changing the control execution
from one platform to the other one and adding the I12C bus to the setup. Lastly, we
implement the GPU version of the control algorithms and compare the results with
the previous ones.

104 Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

7.3 Results

7.3.1

This section presents the timing results we obtained in the timing characterization
scenarios and the control results we obtained with the different configurations of
the proof of concept prototype.

Timing Characterization Scenarios

To evaluate the timing behavior of the FOC control algorithms on the previously
defined scenarios, we executed timing experiments with different threads configura-
tions on both selected Jetson platforms. We run 10 million control iterations on each
experiment, and we register the average execution time, the maximum execution
time, and the standard deviation (appearing as Avg, Max, and S.D. respectively in
the following tables).

Stock System Scenario

Table 7.1 shows the results of the timing experiments in the stock system scenario
for both Jetson platforms. As shown in the table, the average execution time for
both control algorithms in the Jetson Nano is approximately 30 microseconds. In
the case of the Jetson TX2, the average execution time for both control algorithms
is about 20 microseconds. While the average execution times are in an acceptable
range, the maximum execution times are very high in some cases.

It is important to note that the high values of the maximum execution times
are not directly related to the number of threads being executed. As shown in Fig-
ure 7.10, in both platforms, there are thread configurations on which the maximum
execution time of one algorithm is very high and the maximum execution time of
the other one is low.

Since these experiments have been executed on an isolated CPU core, it is not
likely that another user application causes the interference. However, in Linux, some
system processes run with high priority, and they can interrupt user tasks even when
running on isolated CPU cores. On the other hand, the source of latency may also
be related to the interaction of the application with the GPU runtime system. In the
following scenarios, we evaluate these cases.

7.3 Results

105

106

Table 7.1: Execution times of FOC algorithms in stock system scenario (us)

Platform Threads Velocity Current
Avg Max S.D. Avg Max S.D.
32 29.1 93.5 1.5 29.7 1911.0 1.6
64 28.9 1918.6 1.8 30.0 290.2 1.3
Jetson Nano 128 29.3 327.8 1.5 30.6 1912.1 1.5
256 28.7 3830.5 2.6 303 3304 1.3
512 28.7 4117.6 24 304 2917.8 2.0
1024 28.7 1927.8 1.9 32.3 321.6 1.2
32 18.9 75.9 0.9 21.2 3909.7 2.0
64 19.2 3900.8 1.9 20.9 83.3 0.9
128 19.0 83.8 0.8 20.8 81.8 0.9
JetsonTX2 556 19.0 740 0.9 209 39428 2.0
512 19.4 3895.7 1.9 214 75.2 0.9
1024 19.0 68.4 0.9 21.8 3962.9 2.6

(a) Jetson Nano (b) Jetson TX2

Figure 7.10: Maximum execution times of FOC algorithms in stock system scenario

In conclusion, using a stock L4T system is not appropriate to fulfill the timing
requirements of a control application, even when it is configured for maximum
performance and CPU isolation and memory locking techniques are used.

Real-time System Scenario

Table 7.2 shows the results of the timing experiments in the real-time system scenario
for both Jetson platforms. As shown in the table, the maximum execution times are
in an acceptable range for all the threads configurations in the Jetson TX2. However,

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

in the Jetson Nano, there is one case where the maximum execution time of the
current control algorithm is greater than 100 microseconds.

Table 7.2: Execution times of FOC algorithms in real-time system scenario ()

Platform Threads Velocity Current
Avg Max S.D. Avg Max S.D.
32 31.8 86.3 3.0 33.8 91.0 2.7
64 33.3 86.5 2.8 335 84.8 2.8
Jetson Nano 128 31.6 80.4 3.0 33.3 105.5 2.9
256 31.7 804 3.0 34.1 85.7 2.6
512 31.0 96.1 3.0 345 83.0 2.6
1024 324 81.7 29 351 83.1 2.5
32 19.6 63.5 1.2 214 62.2 1.2
64 19.9 485 1.2 21.6 56.5 1.2
128 19.7 49.8 1.2 221 51.7 1.2
Jetson TX2 556 195 484 1.2 220 514 1.1
512 19.9 53.3 1.2 22.0 53.1 1.2

1024 20.1 47.6 1.2 227 54.0 1.2

Even when the real-time configurations we used in this scenario dramatically
improved the maximum execution times in all the cases, the timing behavior still
has room for improvement. As shown in Figure 7.11, there is a big difference
between the average execution time and the maximum execution time in all the
cases. Moreover, the behavior of the maximum execution times does not seem to be
affected by the number of threads being executed.

100 601
/‘\ _a
———— 4 \
804 ~— .
—e— Velocity max
Current max

I Velocity avg
Current avg

u
o

IN
o

—e— Velocity max

60 1 Current max

mm Velocity avg
Current avg

I

w
o

404

Execution time (us)
Execution time (us)

S
H
H
H
H
H
H

I

201

=
o

32 64 128 256 512 1024 32 64 128 256 512 1024
Threads Threads

(a) Jetson Nano (b) Jetson TX2

Figure 7.11: Execution times of FOC algorithms in real-time system scenario

In conclusion, using L4T with a real-time kernel and applying the configurations
we used in this scenario can be enough to achieve the timing requirements of
a control application. However, there is still a source of latency that causes the

7.3 Results

107

108

maximum execution times to be greater than expected. This latency could be related
to the interaction of the application with the GPU runtime system when launching
the GPU kernels. In the following scenario, we evaluate a workaround for this
problem.

Persistent Kernel Scenario

In this scenario, we use the same operating system and configurations used in the
real-time system scenario. However, in the implementation of the control algorithms,
we replace the traditional kernel launch with a persistent kernel launch to avoid
repeated interactions with the GPU runtime system when executing the control
iterations. Table 7.3 shows the results of the experiments for both Jetson platforms.
As shown in the table, the maximum execution times are in an acceptable range for
all the threads configurations in both platforms. Moreover, the standard deviation
indicates that most of the results are close to the average execution time in all
cases.

Table 7.3: Execution times of FOC algorithms in persistent kernel scenario (us)

Platform Threads Velocity Current
Avg Max S.D. Avg Max S.D.
32 2.5 8.8 0.2 44 10.6 0.2
64 2.8 8.9 0.3 46 10.7 0.3
Jetson Nano 128 3.0 9.1 0.4 4.7 11.3 0.2
256 59 11.9 0.2 8.0 14.0 0.3
512 10.7 17.5 0.3 12.8 204 0.3
1024 206 27.1 0.3 23.0 30.7 0.4
32 2.5 9.4 0.2 4.3 11.0 0.2
64 2.5 9.2 0.2 4.2 11.3 0.2
128 3.0 9.6 0.2 4.7 11.6 0.2
JetsonTX2 oo¢ 60 12.0 02 7.9 139 02
512 114 17.0 04 134 20.2 0.2

1024 22.1 284 0.1 23.7 31.5 0.3

To evaluate the scalability of this approach, Figure 7.12 shows the execution
times for all the threads configurations in both platforms. It is worth noting that
the X-axis in these figures is not linear, which means that the increase in execution
time is not exponential as it first looks. Each thread configuration is the double of
the previous one. In fact, the scalability of this approach is very efficient. In both
platforms, an increment of 32x in the number of threads (from 32 to 1024 threads)
produces only an increment of approximately 3x in execution time.

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

7.3.2

—e— Velocity max —e— Velocity max
Current max Current max

mmm Velocity avg mmm Velocity avg
Current avg | Current avg

w
=3

w

o

N
[

N

o

N
o

N

o

Execution time (us)
—
G

Execution time (us)
—
w

-
o

10 A

v

32 64 128 256 512 1024 32 64 128 256 512 1024
Threads Threads

(a) Jetson Nano (b) Jetson TX2

Figure 7.12: Execution times of FOC algorithms in persistent kernel scenario

In conclusion, the configurations and techniques applied in this scenario sig-
nificantly improve the time determinism of control applications. Furthermore, the
scalability of the proposed approach is very efficient, which makes it applicable in
systems with a high number of devices to control.

Proof of Concept

We created a C control program including both FOC algorithms to obtain the baseline
results using the Teensy platform. In this program, the velocity control function is
executed once for every ten executions of the current control function. To establish
a fair comparison point, the period of these control functions is defined taking into
account a realistic period achievable by the Jetson TX2 platform when using the
I2C bus. For this purpose, we executed experiments between the Jetson TX2 and
the Teensy, sending the control data and receiving the sensor values via 12C several
times, measuring their execution times.

The maximum execution time obtained for 12C send is 105 microseconds and for
I12C receive is 192 microseconds, which means that approximately 300 microseconds
are required just for the I2C communication. Based on this information, we define
a period of 350 microseconds for the current control function, meaning that the
velocity control function will execute every 3500 microseconds approximately. Using
these periods, we executed the control program on the Teensy platform, establishing
a reference speed of 150 rad/s and registering the motor response for 30 seconds.
As shown in Figure 7.13, the motor speed reaches a steady-state in approximately 5
seconds and then oscillates around the reference value. This response is not ideal,

7.3 Results

109

110

but considering the limitations of the system, we consider it an acceptable reference
point.

Speed (rad/s)

20 —— Actual speed
—— Reference speed

0 5 10 15 20 25 30
Time (s)

Figure 7.13: PMSM speed control using Teensy platform

After obtaining the Teensy baseline results, we created two control programs
to be executed on the Jetson TX2. The first one is an adaptation of the original C
program for the Teensy, which runs on the CPU of the Jetson TX2 and uses the 12C bus
to communicate with the Teensy. The results of this version are considered baseline
results for the Jetson TX2 platform. We executed this version with a control period
of 350 microseconds on the Jetson TX2 using L4T 32.5 with real-time configurations.
We set a reference speed of 150 rad/s and registered the motor response during
30 seconds. As shown in Figure 7.14, the motor speed reaches a steady-state in
approximately 5 seconds, like in the baseline. However, the oscillations are more
noticeable. Since we are using the same control algorithms, the same configurations
for the PI controllers, and the same period we used in the baseline, the behavior
should be similar. The main difference from the baseline setup is the use of the 12C
bus to transfer control data. Therefore, we conclude that this behavior could be
caused by unexpected delays in the I2C communication.

Speed (rad/s)

20 —— Actual speed
—— Reference speed

0 5 10 15 20 25 30
Time (s)

Figure 7.14: PMSM speed control using Jetson TX2 CPU

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

The second control program is a GPU version of the FOC algorithms implemented
in a persistent kernel. In this version, both velocity and current algorithms are
integrated inside the same persistent kernel, executing the velocity control every
ten iterations. This way, we avoid the overhead of interacting with two persistent
kernels. The host part of the CUDA program communicates with the Teensy via 12C
to send and receive control data. Note that, since this is a GPU version, the control
executes for at least 32 motors in parallel (because of the warp size), even when we
are controlling only one real motor. For comparison purposes, we also execute the
control for 1024 motors. The results are shown in Figure 7.15.

Speed (rad/s)
Speed (rad/s)

20 —— Actual speed 20 —— Actual speed
—— Reference speed —— Reference speed

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)

(a) Executing control for 32 motors (b) Executing control for 1024 motors

Figure 7.15: PMSM speed control using Jetson TX2 GPU

As shown in the figure, in both configurations, the motor speed reaches a steady-
state in approximately 5 seconds, like in the previous cases. However, the motor
speed noticeable oscillates more than in the baseline Teensy case, probably due
to delays in the I12C communication. Nevertheless, even when the response of the
system is not optimal, it is important to note that the GPU is able to control a real
motor and get a response similar to the one obtained with the CPU version of the
controller. Moreover, the GPU is able to maintain that behavior even when executing
the control of up to 1024 motors in parallel.

In conclusion, existing embedded GPUs can support the timing requirements of
control algorithms to implement parallel control systems, provided that the platform
is correctly configured with a real-time Linux kernel and techniques like persistent
threads are applied to minimize the overhead of interacting with the GPU runtime
system. However, to be used in real parallel control scenarios, these platforms still
lack the physical interfaces required to communicate with multiple external devices
efficiently. For this reason, future embedded GPU platforms used in these scenarios,
need to include the required physical interfaces.

7.3 Results

111

7.4

112

Summary

In this chapter, we have characterized the timing of control algorithms executed in
embedded GPU platforms. We have defined a case study for the parallel control
of multiple motors, and we have executed the required control algorithms in three
different scenarios. In the first scenario, we have executed the control algorithms in
a stock L4T system configured for maximum performance, and we have concluded
that the applied configurations are not enough to fulfill the timing requirements
of control applications. In the second scenario, we have executed the control
algorithms in a real-time L4T system, and we have observed that the timing behavior
improves significantly. However, while the obtained behavior may be enough for
some control applications, we have observed that it is still affected by the overhead
of the interaction with the GPU runtime system. In the third scenario, we have
transformed the control algorithms into persistent kernels to overcome this limitation.
We have significantly improved the timing behavior with the proposed approach,
and we have proved that its scalability is very efficient.

To validate the feasibility of the proposed approach in a real-life scenario, we
have created a proof of concept prototype to control a real motor using an embedded
GPU platform. We have concluded that, while existing embedded GPU platforms
can provide the computational power and timing requirements of parallel control
systems, they will need to obtain hardware support for the physical interfaces
required to communicate with multiple external devices before they are adopted in
this domain.

Chapter 7 Timing Characterization of Control Algorithms Executed on Em-
bedded GPUs

Assessment and
Improvement of Model-Based
Design for GPU-Accelerated
Control Systems

As discussed in the Background Chapter, MBD is the preferred choice to attain
by construction the safety and security requirements of critical systems. Recently,
MBD tools have been enhanced with GPU code generation capabilities, which can
be used to leverage the computational performance of these high-performance
accelerators. So far in this Thesis we have seen potential future use cases of GPUs
in the critical systems domain, particularly for control systems. Critical systems
engineers are getting interested in GPU adoption, seeking to satisfy their ever
increasing performance requirements. However, there is no analysis in the literature
showing whether model-based GPU code generation tools are ready for the design
of such systems.

In this chapter, we analyze the suitability of commercial MBD toolsets by de-
signing and deploying a model-based parallel control case study on embedded GPU
platforms, similar to the hand-developed one we presented in Chapter 7. We evalu-
ate the generated code in functionality, resource consumption and scalability terms.
Similar to our contribution in the timing characterization chapter, while our results
show promising feasibility and scalability evidence, they also reveal shortcomings
in resource consumption which should be addressed before these toolsets become
fit for developing critical systems. We propose certain improvements that have to
be incorporated in these tools to achieve this goal. By implementing our proposals
in the generated code, we experimentally show their effectiveness on two NVIDIA
embedded GPUs. Finally, we propose a source-to-source transformation tool that
takes the GPU code generated by the MBD tools and automatically applies the
improvements we suggest.

113

8.1

8.1.1

114

Case Study: Design and Implementation of a
GPU-Accelerated Parallel Control System

Preliminaries

The primary objective of this work is to assess the capabilities of MBD tools regarding
GPU code support for the implementation of parallel real-time control systems.
To carry out a comprehensive assessment, we opted to implement another case
study from the control domain, similar to the hand-developed one we presented
in Chapter 7. The main difference is that while in the previous case study we
deployed our case study in a real platform, driving a real motor, in this chapter we
follow a complete MBD approach, starting with model-in-the-loop simulation and
we gradually refine it for execution on the GPU platform. However, the motor in
this case is simulated in order to reduce the complexity of the evaluation, since the
possibility of controlling a real motor has been already demonstrated.

We are interested specifically in the evaluation of parallel code generation
capabilities of a GPU-compatible MBD toolchain and the integration with GPU
hardware for PIL or HIL testing. After researching the state-of-the-art in these tools,
we concluded that currently, there are only two MBD tools which provide that kind
of support: MathWork’s MATLAB-Simulink through its GPU Coder toolbox [62] and
LabView with its GPU Analysis Toolkit [93]. However, the GPU support in the latter
is very limited. It only uses the GPU for the acceleration of some computations such
as matrix operations and Fast Fourier Transform (FFT) through the CUDA provided
libraries, but does not support custom code generation for GPUs.

For this reason, we focus our analysis exclusively on MATLAB-Simulink, which
is the only industry-ready MBD tool to support this functionality. However, if in the
future any existing or new MBD tool includes GPU code generation, our methodology
and proposed case study can be applied in order to benchmark its capabilities.

GPU Coder is a MATLAB-Simulink toolbox oriented to the generation of opti-
mized CUDA code for NVIDIA GPUs, with special focus on tasks related to deep
learning, embedded vision and autonomous systems. However, to the best of our
knowledge, there is no previous analysis on the application of GPU Coder — or any
other industrial or academic GPU-compatible MBD tool — towards the development
of a real-time application, such as a control system.

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

8.1.2

| Embedded GPU Model
| Discrete GPU Model

- MATLAB Code Model

- Field Oriented Controller

+
’ \
\
\
2 \
H \
3 \
2 \
\
\
\
3

’

VS plant 2

+
EE
X

>
|
I

g
\
\

2 :T_[
, \

/)

¢

a) Top model

¢) PMSM model

Figure 8.1: Simulink model of a parallel PMSM FOC controller

The Model

To evaluate the capabilities of GPU Coder and the integration with MATLAB-Simulink,
we created an initial model to simulate the control of 8 PMSMs, as shown in
Figure 8.1a. We see suitable to start with controlling 8 motors in order to justify
the use of the GPU in the system, since a lower number of cores can already be
accelerated with existing platforms, such as the TI Delfino platform which supports
control of 2 motors [90]. Note however that while our initial model which is
described next uses 8 motors, in Section 8.3 we perform a full scalability study for
the control of up to 1024 motors. This is a reasonable upper bound of the number
of potential motors which can realistically be present in a cyber-physical system and
controlled together. Moreover, this is the maximum number of threads per block
supported by a single SM in a GPU and it is the number of threads supported by our
embedded GPU platforms, since the embedded GPU of the smaller of them contains
a single SM.

In our implementation, we follow the classic model-based development pro-
cess with gradual refinement as introduced in Section 2.2. First, we start with a
mathematical model validating its correct behavior through a MIL simulation. Then
we refine the model by generating code executed in the discrete GPU of the host
computer where MATLAB-Simulink is installed. This way we perform a HIL/GIL

8.1 Case Study: Design and Implementation of a GPU-Accelerated

Parallel Control System

115

116

validation, ensuring that its behavior is identical to the model. Finally, we create the
final model which is executed on our target embedded GPU platforms, where the
actual evaluation is performed. In that model in particular, we assess not only its
identical functionality with the previous models, but also analyze its memory and
timing properties.

In our top model shown in Figure 8.1a, each one of the 8 PMSM plants has the
internal structure shown in Figure 8.1c. The core of this structure is a Simscape
PMSM block connected to a mechanical circuit which is necessary to simulate the
physical properties of the motor. The structure also includes a subsystem used for
the PWM generation and a three-phase inverter circuit to simulate the commutation
needed to produce rotation in the motor.

As shown in Section 7.1, PMSMs are controlled using the field oriented control
technique, which is composed by a velocity control loop and a current control loop.
Based on these control loops, we defined the structure of a field oriented controller
subsystem, as shown in Figure 8.1b. In this configuration, the output of the velocity
controller is used as reference value in the current controller. However, since both
control loops are executed at different frequencies, a rate transition buffer is used to
hold the reference value.

In the model shown in Figure 8.1a, the Parallel Controller block is a Simulink
variant subsystem on which we implemented three different models for the field
oriented control structure, as shown in Figure 8.1b. The three models implemented
in the Parallel Controller are discussed next.

MATLAB Code Model

In the first model, we implemented the velocity and current control algorithms
using MATLAB code. The reason for using MATLAB code instead of Simulink blocks
is that GPU Coder has the limitation that it can only generate CUDA code from
MATLAB code. To be able to control multiple PMSMs in parallel, we created parallel
versions of Algorithms 6 and 7 with MATLAB code, using vectors instead of scalar
variables and replacing the scalar operators with MATLAB element-wise operators.
To integrate the parallel MATLAB code into the Simulink model, we used MATLAB
Function Simulink blocks. This first version of the field oriented controller allowed
us to validate the correctness of our setup and to register the behavior of the PMSM
plants when interacting with the controller, using a MIL simulation. For this task,
we applied different reference input signals for the 8 PMSM plants, as shown in
Section 8.2.

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

8.2

8.2.1

Discrete GPU Model

For the second model, we used GPU Coder to generate CUDA code from the MATLAB
version of the control algorithms. First, we generated a dynamic-link library with the
CUDA version of the velocity and current controllers. Then, we invoked this external
library from MATLAB. In the Simulink model, we included two MATLAB Function
blocks to invoke the corresponding CUDA functions. This way, at each step of the
Simulink simulation, the velocity and current control calculations are executed in
the GPU of the host computer and their output is returned to Simulink to drive the
simulated motors. In the generated code, each thread in the GPU is in charge of
driving a different motor.

Embedded GPU Model

For the third model, we executed the generated CUDA code in the target embedded
GPUgs, to evaluate the capabilities of GPU Coder to interact with external hardware.
GPU Coder includes a support package for the deployment of CUDA code in em-
bedded NVIDIA GPUs such as the Jetson and DRIVE platforms [94]. Moreover, the
support package provides the functionality to create a PIL session between MATLAB-
Simulink and a target embedded GPU platform, which allows the remote execution
of code. We implemented this model using a similar approach to the previous one,
but creating a PIL session as opposed to creating a dynamic-link library. In addition
to the equivalence checking between the MATLAB-Simulink and the generated code
for all models, we also evaluate the performance and memory consumption of this
version of the application in a standalone setup instead of PIL, as described in Sec-
tion 8.2.4. Then, in Section 8.3 we propose improvements for the generated code,
which we implement and evaluate experimentally, showing their effectiveness.

Evaluation

Experimental Setup

We used the MathWorks MATLAB-Simulink toolset release 2021a with GPU Coder 2.1
to develop our parallel control case study, running on a computer equipped with an
NVIDIA GeForce GTX 1650Ti discrete GPU. For the final embedded GIL evaluation,
we used the same two NVIDIA Jetson platforms we used in the previous chapter. The
details of each embedded platform are provided in Table 8.1. For the performance

8.2 Evaluation

117

8.2.2

118

PMSM 1 PMSM 3 PMSM 5 PMSM 7

Figure 8.2: Reference and actual speeds of parallel PMSMs

PMSM 1 PMSM 3 PMSM 5 PMSM 7

: 1 |) i
.

- O i

13

]I[WWWJ Lu s ﬁ; - ==
o p
\

PMSM 2 PMSM 4 PMSM 6
15 15

KRR JU A iﬂm[w \MM«Rmﬁmm«’\m o R %{ﬂ

10- - 10+

B o o 9
o 02 08 10 02 04 06 [10 02 04 06 08 10 02 [[

Figure 8.3: Phase voltages of parallel PMSMs

evaluation on the embedded platforms, we installed Linux for Tegra (L4T) 32.5
with the PREEMPT RT patches. Moreover, to avoid external interference, all the
experiments have been executed with a real-time priority of 98, on an isolated CPU
core and with memory swapping disabled. To guarantee the maximum performance,
jetson_clocks has been enabled with the maximum nvpmodel profile for each
embedded GPU platform. In summary, we apply all the methods which according to
our evaluation performed in Chapter 7 show an improvement in the GPU timing.

Validation of the Models

For the models validation task, we designed 8 different reference input signals for the
PMSM plants, which represent changes in the target speed of each motor, as shown
in Figure 8.2 with a continuous red line. We applied the reference signals to the
controller based on MATLAB code and registered the outputs of the simulation. With

Table 8.1: Embedded GPU Platforms

Platform GPU Compute SMs CUDA Max. threads RAM
architecture capability cores per block

Jetson Nano Maxwell 5.3 1 128 1024 4GB

Jetson TX2 Pascal 6.2 2 256 1024 8GB

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

8.2.3

8.2.4

this MIL simulation, we validated that the configuration was correct and that the
parallel controller was in fact capable of controlling different plants with different
set-points. Figure 8.2 shows also the response of the system with a blue dashed line,
trying to adapt the speed of each motor to the requested speed. In Figure 8.3 we can
see the changes in the phase-voltages of each motor in response to the changes of
the requested speed. As expected, identical results have been obtained also with the
GIL simulations of the discrete and embedded GPUs of the target platforms, which
are omitted because they do not offer any additional value except confirming the
functional equivalence of the MATLAB model and the generated CUDA code.

Integration with External Hardware

In the third model, we used the GPU Coder support package for embedded NVIDIA
GPUs to establish a PIL session between MATLAB-Simulink and the Jetson boards
to run the simulation. In this setup, Simulink only simulates the physical motors,
while the parallel control algorithm is executed in the embedded GPU. As stated
in Section 8.2.2 this is functionally equivalent to the other models. However, we
identified two important limitations:

First, in the PIL simulation mode, the system establishes a single communication
channel at a time to execute a single CUDA kernel on the target. This means that in
cases such as our application where multiple CUDA kernels are used, their execution
is serialized. Second, for this same reason, the execution frequency of the target
GPU is limited by the communication latency between the host and the target which
initiates each kernel execution, increasing the physical execution time required for
the simulation.

Evaluation of Generated CUDA Code
Performance of generated CUDA code

In order to evaluate the actual performance of the generated CUDA code, we ran
our case study directly on the target platforms, without a Simulink PIL setup but
as a standalone application. From a control systems perspective, we are interested
in measuring the execution time of the instructions that will be executed on each
iteration of the control loops: copying values from CPU to GPU, launching the
kernel, executing the kernel, and copying the results back from GPU to CPU. On
each experiment we execute one million control iterations and we register the

8.2 Evaluation

119

120

average execution time, the maximum execution time and the standard deviation
(appearing as Avg, Max and S.D. respectively in the following Tables). To measure
the execution time of each iteration, we used the clock_gettime function with the
CLOCK_MONOTONIC clock, which has a resolution in nanoseconds.

GPU Coder can generate CUDA code which uses either the discrete or the unified
memory models. As we discussed earlier in this Thesis, unified memory allows the
CPU and the GPU to share the same address space, which matches the physical
memory configuration of the embedded Jetson boards. However, it requires the
driver and system software to manage coherence, and software managed coherence
is by nature non-deterministic and not recommended in a safe context according
to NVIDIA [25]. Regardless, we perform our evaluation with both memory models,
since in Chapter 6 we have shown that unified memory can offer the potential
of improvements of both timing and memory consumption, depending on the
application and the target embedded GPU platform.

In the evaluation, we identified that GPU Coder generates cudaMemcpy calls to
transfer data between CPU and GPU when using unified memory, which in this model
are unnecessary even when using discrete GPUs, given that the CUDA runtime system
automatically migrates data between CPU and GPU. This is the first shortcoming
we identified. For comparison purposes, we created a fixed version of the code
generated for the unified memory model, removing these unnecessary cudaMemcpy
calls.

Table 8.2 shows the execution times of the code generated for the discrete and
unified memory models on the two target platforms. We also include the execution
times of the fixed version of the unified memory code. Note that the execution
times of the original unified memory code are significantly higher than the execution
times of the fixed version, due to the overhead caused by the extra cudaMemcpy
calls. Therefore, there is room for improvement in the GPU Coder code generation
in order to achieve the requirements of a control system.

As stated in Section 7.1, the sampling rates needed for the FOC algorithms
depend on the physical characteristics of the inverters and the motors. The period
of the velocity control loop is usually around a few milliseconds, while the period
of the current control loop is typically inferior to 100 microseconds. As shown in
Table 8.2, while the maximum execution times of the velocity controller are in an
acceptable range, the maximum execution times of the current controller are very
high, limiting the maximum control frequency of the system.

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

Table 8.2: Execution time of generated CUDA code (us)

Platform Memory mode Velocity Current
Avg Max S.D. Avg Max S.D.
Discrete 265.2 3509 9.7 489.1 606.0 304
Nano Unified 663.8 1086.7 13.5 1335.1 2045.5 37.3
Unified fixed 80.7 152.7 2.8 90.6 167.2 3.1
Discrete 154.2 2734 5.7 296.6 383.6 95
TX2 Unified 395.1 5743 143 816.5 1013.5 17.9

Unified fixed 49.7 92.1 2.0 65.6 1119 8.0

Table 8.3: Profiling results for discrete memory model (us)

Velocity Current
Avg Min Max Avg Min Max

Kernel execution 2.0 2.0 2.0 2.6 2.5 2.6
Nano cudaLaunchKernel 50.3 45.5 60.0 56.0 47.2 69.8

Platform Call name

cudaMemcpy 46.0 30.9 749 503 320 89.0
Kernel execution 1.5 1.4 1.6 20 1.9 2.1
X2 cudaLaunchKernel 30.8 27.4 43.3 40.0 31.7 51.9
cudaMemcpy 29.1 20.6 529 31.0 19.7 84.7

Table 8.4: Profiling results for unified memory model (1:s)

Platform Call name Velocity Current
Avg Min Max Avg Min Max
Kernel execution 2.8 2.7 3.1 3.9 3.7 4.1
Nano cudaLaunchKernel 769 66.6 96.7 86.6 77.0 98.9
cudaMemcpy 101.4 83.3 142.6 116.1 93.5 173.7
cudaDeviceSynchronize ~ 46.7 44.9 50.6 53.7 50.5 57.3
Kernel execution 24 24 2.5 3.5 3.4 3.7
TX? cudaLaunchKernel 56.6 50.5 719 64.6 484 86.9
cudaMemcpy 64.6 50.0 1140 73.2 57.0 120.4

cudaDeviceSynchronize 29.9 26.9 40.3 33.7 284 44.7

To better understand the maximum execution times, we executed some iterations
of the control loops using the NVIDIA nvprof profiler. Tables 8.3 and 8.4 show the
results reported by nvprof for the discrete and unified memory models respectively.
Table 8.5 shows the profiling results for the fixed unified memory code.

In all versions, the maximum execution time for the actual kernel execution
is in the target range for both the velocity and current controllers. The rest of the

8.2 Evaluation

121

8.3

122

Table 8.5: Profiling results for unified memory mode fixed (u.s)

Platform Call name Velocity Current
Avg Min Max Avg Min Max
Kernel execution 2.8 2.7 3.0 4.1 3.7 6.9
Nano cudaLaunchKernel 76.1 65.8 944 81.1 65.5 104.9
cudaDeviceSynchronize 47.6 44.7 52.5 54.8 49.3 615
Kernel execution 2.4 2.4 2.6 3.5 3.4 3.7
X2 cudaLaunchKernel 52.0 42.8 72.2 604 51.3 80.5

cudaDeviceSynchronize 28.1 249 31.8 324 30.2 394

time is spent on cudaMemcpy and kernel launch/synchronization calls. Therefore, if
the time spent on these calls is reduced or eliminated, it is feasible to achieve the
timings required for the control system. Based on this analysis, on Section 8.3 we
propose some further improvements for the generated code.

Memory overhead of generated CUDA code

In addition to the performance of the generated code, we also used GMAI to evaluate
its memory consumption. GMAI reports that the generated CUDA code performs
20 individual allocations and memory copies for each of the GPU variables, which
is inefficient. Although the allocations occur at the application startup and thus
do not affect timing, the individual memory copies significantly impact the timing,
since they are quite costly as shown in Table 8.3. On the other hand, in terms
of absolute memory consumption, this allocation strategy is beneficial, since all
individual memory allocations are quite small and of the same size, so they are
allocated from the same size class of the memory allocator, occupying a single
memory pool which has a size of 1 MB in the Nano and 2 MB size in the TX2. Note
that each of the generated GPU variables corresponds to an array with size as many
elements as the number of the motors which are controlled. In total, for the 8 motor
configuration, the total requested size for GPU memory from the application is less
than 1 KB.

Improvement of Generated CUDA Code

As we have seen in the previous section, the generated GPU code by MATLAB/Simulink
is suboptimal in terms of memory and timing for deployment in safety critical sys-

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

8.3.1

Table 8.6: Execution time of improved CUDA code versions (u.s)

Velocity Current
Avg Max S.D. Avg Max S.D.

Zero-copy memory 32.7 741 3.0 344 812 29
Persistent kernel 2.9 8.8 0.2 4.0 9.8 0.3

Zero-copy memory 20.3 55.5 1.3 31.5 619 7.3
Persistent kernel 3.0 88 0.2 41 9.8 0.2

Platform Improvement

Jetson Nano

Jetson TX2

tems. For this reason, in this section we perform improvements and evaluate their
impact. First we apply these improvements manually, and next we present the
implementation of a source-to-source tool which performs the same modifications in
an automated way.

Manual Improvement of Generated CUDA Code

In embedded platforms where CPU and GPU share the same physical memory such
as the ones we consider in our work, the memory copy overhead can be eliminated
using the zero-copy memory model. This feature allows the allocation of memory
regions shared between CPU and GPU, eliminating redundant allocations as well as
the copying task itself.

Regarding the kernel launch overhead, it can be reduced using the persistent
threads model [39]. In this model, a persistent kernel is launched only once, which
iterates waiting for work. Then, the CPU can assign new work to the persistent
kernel by just changing values in memory, avoiding the kernel launch process.

Based on these two approaches, we modified the generated code in two steps,
creating two versions in order to evaluate the benefit obtained from each one. In the
first step, we replaced the traditional memory allocations with zero-copy allocations
to avoid using cudaMemcpy calls. In the second step, besides using zero-copy memory,
we replaced also the kernel launch/synchronization with a persistent kernel launch.
Table 8.6 shows the resulting execution times of the control algorithms with these
improvements. Figure 8.4 shows a comparison of the maximum execution times for
the different versions of velocity and current controllers on the target platforms.

Note that using zero-copy memory is enough to get maximum execution times
in the target range for both control algorithms. Furthermore, when this solution is
combined with a persistent kernel, the control loops can be executed significantly

8.3 Improvement of Generated CUDA Code

123

8.3.2

124

W Discrete ™ Unified ™ Unified fixed M Zero-copy ™ Persistent W Discrete M Unified ™ Unified fixed M Zero-copy M Persistent
2500 1200

ol |L il IL

Velocity Current Velocity Current

™
=3
S]
=3
=
o
1S3
S

= =
o @
S] <}
=3 1S3
IS ®
S <3
S} S

w
S
38
Maximum execution time (ps)
o
3
3

Maximum execution time (ps)

~
s}
S}

(a) Jetson Nano (b) Jetson TX2

Figure 8.4: Maximum execution times of generated code and proposed improvements

30 A 30

—e— Velocity max 1 —— Velocity max
Current max Current max
25 4 Bl Velocity avg 25 B Velocity avg
Current avg T Current avg T
g 20 g 201
o 3
£ £
=] S
515 g1s N
5 y I 3
% %
& 10 /.____./ @ 10
T e
31 = = ES ®] = = =

8 64 128 256 512 1024 8 64 128 256 512 1024
Threads Threads

(a) Jetson Nano (b) Jetson TX2

Figure 8.5: Performance scalability of improved CUDA code

faster on both platforms. This improvement by an order of magnitude can be
beneficial for even tighter control scenarios.

Finally, to evaluate the scalability of the improved code, we executed the control
algorithms with different threads configurations, to control up to 1024 motors in
parallel. Figure 8.5 shows the execution times on the target platforms. Note that
the most stable execution times are obtained with up to 128 threads, which is the
amount of CUDA cores per SM in both platforms. Even so, in all the cases, the
maximum execution times do not exceed 30 microseconds.

Automatic Improvement of Generated CUDA Code

After validating that our proposed modifications effectively improve the suitability of
the generated CUDA code to be applied in control systems, we opted to implement a
solution to apply these improvements into the generated source code automatically.

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

In terms of functionality, the two approaches provide identical results, therefore in
this subsection we only focus on the implementation of our solution.

We created a source-to-source transformation tool using the LibTooling and
LibASTMatchers libraries from the Clang framework. LibTooling provides mecha-
nisms to support the development of standalone Clang tools. On the other hand,
LibASTMatchers provides a domain-specific language to define AST matchers, which
are predicates used to locate patterns in the Clang abstract syntax tree.

We applied the following methodology to create the tool: first, we used GPU
Coder to generate CUDA code from a control function written in MATLAB code. Then,
we identified the locations in the source code where the proposed improvements
should be inserted. At each location, we identified which parts of the generated code
were reusable and which modifications were needed to insert the improvements.
Then, we defined AST matchers to find each location automatically, and we imple-
mented the corresponding functions to apply the transformations to the source code.
Finally, we put together all the AST matchers and the code transformation functions
using a LibTooling structure to create a standalone Clang tool.

Our source-to-source transformation tool extends the GPU Coder workflow, as
shown in Figure 8.6. First, GPU Coder takes as input a control algorithm written
in MATLAB. Then, it generates CUDA code corresponding to the MATLAB function.
In this process, GPU Coder generates extra files for initialization, termination, and
data types management, like other Mathworks code generation tools. However,
from this file structure, we only take the CUDA file where the control algorithm is
implemented. Our tool takes this file as input, modifies the CUDA code to add the
proposed improvements, and creates a main function to transform the CUDA source
file into a standalone program.

MATLAB Mathworks GPU Generated CUDA Source-to-source Improved CUDA
control algorithm Coder code transformation tool code

E_"_’ cu_’Qa_’ cu

Figure 8.6: CUDA code generation and automatic improvement workflow

To illustrate the code transformation process, we will use as an example the
MATLAB function for velocity control shown in Listing 8.1. First, we used GPU Coder
to generate CUDA code from this function, and then, we used our tool to improve
the generated code. The sections of interest of the generated CUDA code and the

8.3 Improvement of Generated CUDA Code

125

corresponding modifications applied by our source-to-source transformation tool are
shown next.

[

function [q_current, v_mem_out] = velocityControl(v_command, v_measured, dt, v_kp,
— v_ki, v_mem_in)

%#codegen

coder.gpu.kernelfun() ;

v_error = v_command - v_measured;

v_mem_out = v_mem_in + (v_error * dt);

gq_current = (v_kp .* v_error) + (v_ki .* v_mem_out);

~N o O wN

end

Listing 8.1: MATLAB function for velocity control

Kernel Prototype

The first section of interest in the generated CUDA code is the declaration of the
kernel prototype, which is shown in Listing 8.2. This prototype corresponds to the
GPU kernel that contains the code to control the velocity.

1 static __global__ void velocityControl_kernell(const float v_ki[32], const float
— v_kp[32], const float dt, const float v_mem_in[32], const float
— v_measured[32], const float v_command[32], float q_current[32], float
< v_mem_out[32]);

Listing 8.2: Original kernel prototype

Since one of the proposed improvements is the transformation of the CUDA
kernel into a persistent kernel, the only modification needed in this section is
the insertion of two extra variables that are used to control the persistent kernel:
gpu_locked and terminated. Listing 8.3 shows the resulting code after applying
the source-to-source transformation tool.

1 static __global__ void velocityControl_kernell(const float v_ki[32], const float
— v_kp[32], const float dt, const float v_mem_in[32], const float
— v_measured[32], const float v_command[32], float q_current[32], float
— v_mem_out[32], volatile int* gpu_locked, volatile int* terminated);

Listing 8.3: Transformed kernel prototype

126 Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

© 00 N O O W N

Tl o~ S ST S S T
OO W NN - O

static __global__ __launch_bounds__(32, 1) void velocityControl_kernell(const
— float v_ki[32], const float v_kp[32], const float dt, const float
— v_mem_in[32], const float v_measured[32], const float v_command[32], float
— g_current[32], float v_mem_out[32])
{
unsigned long threadId;
int i;
threadIld = static_cast<unsigned long> (mwGetGlobalThreadIndexInXDimension());
i = static_cast<int>(threadId);
if (i < 32) {
float f;
float £f1;
f = v_command[i] - v_measured[i];
f1 = v_mem_in[i] + f * dt;
v_mem_out[i] = f1;
f = v_kpli] * £ + v_ki[i] * £f1;
g_current[i] = f;

Listing 8.4: Original kernel implementation

Kernel Implementation

The next section of interest in the generated CUDA code is the kernel implementation,
which is shown in Listing 8.4. This section contains the CUDA code corresponding
to the MATLAB velocity control algorithm shown in Listing 8.1. As with the kernel
prototype, the modifications applied into this section of code are the ones needed
for the implementation of a persistent kernel. Listing 8.5 shows the resulting code
after applying the source-to-source transformation tool.

First, the variables gpu_locked and terminated, which are needed to control
the persistent kernel, are inserted as extra arguments in the kernel header. Then, the
calculation of the threadId variable in line 5 is replaced with a more straightforward
calculation. We do this modification because the original calculation uses the
mwGetGlobalThreadIndexInXDimension function, which is defined in an external
Mathworks library. Finally, we surround the control algorithm with the persistent
kernel structure: an infinite loop (line 8), the blocking code to wait for work and
finalize the kernel (lines 9 to 11), and the control execution code to synchronize the
persistent threads (lines 21 to 26).

8.3 Improvement of Generated CUDA Code

127

© 00 ~NO U WwWN

ORI ST I R R OO R R S O T O i i O G O G G T
OO NOOARNWNR,OOWOW~NO®O D™ WN R~ O

128

static __global__

—

an
s
-
{

__launch_bounds__(32, 1) void velocityControl_kernell(const
float v_ki[32], const float v_kp[32], const float dt, const float
v_mem_in[32], const float v_measured[32], const float v_command[32], float
q_current[32], float v_mem_out[32], volatile int* gpu_locked, volatile int*
terminated)

unsigned long threadId;
int i;
threadId = blockDim.x * blockIdx.x + threadldx.x;
i = static_cast<int>(threadId);
if (i < 32) {
while (1) {
while (*gpu_locked) { }
if (*terminated)
break;

float f;

float f1;

f = v_command[i] - v_measured[i];
f1 = v_mem_in[i] + f * dt;
v_mem_out[i] = f1;

f = v_kpli] * £ + v_ki[i] * £f1;
g_current[i] = f;

if (threadId == 0) {
__threadfence();
__threadfence_system();
*gpu_locked = 1;

}

__syncthreads();

Listing 8.5: Transformed kernel implementation

Main Function

On the host side, GPU Coder generates a control function with the same name as the
MATLAB function used as input. This function is meant to be called from an external
program sending as arguments the host variables, which have to be previously allo-
cated. The function allocates device memory, transfers data from the host arguments
to the device allocations, launches the kernel, copies the results from device memory
to host memory, and finally frees the device allocations. Unfortunately, this means
that all these operations must be executed on each control iteration, which adds
unnecessary overhead. Our approach is to transform this function into the main
function, where we enclose the control iterations into an inner loop to simplify their
execution. In addition, we replace the traditional memory model with the zero-copy

memory model and the kernel launch with a persistent kernel launch.

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

The source-to-source transformation tool uses the information provided in the
header of the original control function, shown in Listing 8.6, and creates a main
function with all the needed zero-copy allocations, as shown in Listing 8.7.

1 void velocityControl(const float v_command[32], const float v_measured[32], float
— dt, const float v_kp[32], const float v_ki[32], const float v_mem_in[32],
— float q_current[32], float v_mem_out[32])

Listing 8.6: Original control function

1 int main(int argc, charx argv[])

2 {

3 cudaSetDeviceFlags (cudaDeviceMapHost) ;

4

5 float* v_command;

6 float* v_measured;

7 float dt;

8 float* v_kp;

9 float* v_ki;

10 float* v_mem_in;

11 float* q_current;

12 float* v_mem_out;

13 volatile int* gpu_locked;

14 volatile int* terminated;

15

16 cudaHostAlloc((void**)&v_command, 32 * sizeof (float), cudaHostAllocMapped) ;
17 cudaHostAlloc((void**)&v_measured, 32 * sizeof(float), cudaHostAllocMapped);
18 cudaHostAlloc((void**)&v_kp, 32 * sizeof (float), cudaHostAllocMapped);

19 cudaHostAlloc((void**)&v_ki, 32 * sizeof (float), cudaHostAllocMapped) ;
20 cudaHostAlloc((void**)&v_mem_in, 32 * sizeof(float), cudaHostAllocMapped);
21 cudaHostAlloc((void**)&q_current, 32 * sizeof(float), cudaHostAllocMapped) ;
22 cudaHostAlloc((void**)&v_mem_out, 32 * sizeof (float), cudaHostAllocMapped);
23 cudaHostAlloc((void**)&gpu_locked, sizeof(int), cudaHostAllocMapped) ;
24 cudaHostAlloc ((void**)&terminated, sizeof(int), cudaHostAllocMapped);

Listing 8.7: Main function created from original control function

First, the header of the function is replaced with the typical header of a main
function (line 1). Then, for each array argument passed to the original function,
the tool creates a pointer declaration (lines 5 to 12) and inserts the correspond-
ing cudaHostAlloc call to allocate zero-copy memory (lines 16 to 22). The size
and type of the original arrays are used to determine the amount of zero-copy
memory to allocate. In this section, the tool also inserts the the call to enable the
cudaDeviceMapHost flag needed to allocate zero-copy memory (line 3), and the
declarations (lines 13 and 14) and memory allocations (lines 23 and 24) for the
gpu_locked and terminated variables.

8.3 Improvement of Generated CUDA Code

129

© 00 ~NO O WN -

e e e N TS S S T
~NOo O W NN = O

© 00N O WN -

e el el el
g WN - O

130

Device Pointers

In the original control function, GPU Coder generates arrays of pointers and
cudaMalloc calls to allocate all the device variables, as shown in Listing 8.8.

float (xgpu_q_current) [32];

float (xgpu_v_ki) [32];

float (*gpu_v_kp) [32];

float (xgpu_v_command) [32] ;

float (xgpu_v_measured) [32] ;

float (*gpu_v_mem_in) [32];

float (xgpu_v_mem_out) [32];

if (!isInitialized_velocityControl) {
velocityControl_initialize();

}

cudaMalloc (&gpu_v_mem_out, 128UL);

cudaMalloc(&gpu_q_current, 128UL);

cudaMalloc (&gpu_v_command, 128UL) ;

cudaMalloc (&gpu_v_measured, 128UL);

cudaMalloc(&gpu_v_mem_in, 128UL);

cudaMalloc (&gpu_v_kp, 128UL);

cudaMalloc (&gpu_v_ki, 128UL);

Listing 8.8: Original device pointers and allocations

In the zero-copy memory model, these device allocations are no longer needed.
However, it is still necessary to define device pointers and link them to the previous
zero-copy allocations shown in Listing 8.7, using the cudaHostGetDevicePointer
function. The source-to-source transformation tool takes advantage of this code struc-
ture and transforms the arrays of pointers into single pointers, and the cudaMalloc
calls into cudaHostGetDevicePointer calls, as shown in Listing 8.9.

float* gpu_q_current;
float* gpu_v_ki;
float* gpu_v_kp;
float* gpu_v_command;
float* gpu_v_measured;
float* gpu_v_mem_in;
float* gpu_v_mem_out;

cudaHostGetDevicePointer (&gpu_v_mem_out, v_mem_out, 0);
cudaHostGetDevicePointer (&gpu_q_current, q_current, 0);
cudaHostGetDevicePointer (&gpu_v_command, v_command, 0);
cudaHostGetDevicePointer (&gpu_v_measured, v_measured, O);
cudaHostGetDevicePointer (&gpu_v_mem_in, v_mem_in, 0);
cudaHostGetDevicePointer (&gpu_v_kp, v_kp, 0);
cudaHostGetDevicePointer(&gpu_v_ki, v_ki, 0);

Listing 8.9: Transformed device pointers and assignments

Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

~N o o WN -

oo

10

Kernel Launch

The kernel launch generated by GPU Coder in the original control function has the
typical kernel launch structure used when working with the traditional memory
model, as shown in Listing 8.10. First, data is transferred from host memory to
device memory using the cudaMemcpy function (lines 1 to 5). Then, the kernel is
launched (line 7), and finally, the results are copied back from device memory to
host memory (lines 9 and 10).

cudaMemcpy (*gpu_v_ki, v_ki, 128UL, cudaMemcpyHostToDevice) ;

cudaMemcpy (*gpu_v_kp, v_kp, 128UL, cudaMemcpyHostToDevice) ;

cudaMemcpy (*gpu_v_mem_in, v_mem_in, 128UL, cudaMemcpyHostToDevice) ;
cudaMemcpy (*gpu_v_measured, v_measured, 128UL, cudaMemcpyHostToDevice);
cudaMemcpy (*gpu_v_command, v_command, 128UL, cudaMemcpyHostToDevice) ;

velocityControl_kernell<<<dim3(1U, 1U, 1U), dim3(32U, 1U, 1U)>>>(xgpu_v_ki,
— *gpu_v_kp, dt, *gpu_v_mem_in, *gpu_v_measured, *gpu_v_command,
< *gpu_q_current, *gpu_v_mem_out);

cudaMemcpy (q_current, *gpu_q_current, 128UL, cudaMemcpyDeviceToHost) ;
cudaMemcpy (v_mem_out, *gpu_v_mem_out, 128UL, cudaMemcpyDeviceToHost) ;

Listing 8.10: Original memory transfers and kernel launch

The source-to-source transformation tool takes this section of code and trans-
forms it into a persistent kernel launch as shown in Listing 8.11. First, the tool
removes all the cudaMemcpy calls since they are not needed in the zero-copy memory
model. Then, the tool inserts the initialization of the terminated and gpu_locked
variables (lines 1 and 2) to control the persistent kernel. The persistent kernel
launch (line 3) is a slightly modified version of the original kernel launch. The arrays
of pointers are replaced with single pointers, and the gpu_locked and terminated
control variables are inserted as extra arguments. In addition to the persistent kernel
launch, the tool inserts the main loop structure where the control iterations are
executed (lines 4 to 9). The structure indicates where the user should add the code
to modify the input values (line 5) and read the output values (line 8). In the middle,
the control structure has instructions to indicate to the persistent kernel that there
is new work to process (line 6) and to wait for the GPU to finish the execution of
the current iteration (line 7). Finally, the tool inserts the instructions needed to
terminate the persistent kernel when the execution exits from the main control loop
(lines 10 to 12).

8.3 Improvement of Generated CUDA Code

131

1 *terminated 0;
*gpu_locked = 1;
velocityControl_kernell<<<dim3(1U, 1U, 1U), dim3(32U, 1U, 1U)>>>(gpu_v_ki,
— gpu_v_kp, dt, gpu_v_mem_in, gpu_v_measured, gpu_v_command, gpu_qg_current,
— gpu_v_mem_out, gpu_locked, terminated) ;
while (1) {
/* Modify input values herex*/
*gpu_locked = 0;
while (!(*gpu_locked)) { }
/* Read output values herex/

w N

© 00 N O O

}

10 *terminated = 1;

11 *gpu_locked = 0;

12 cudaDeviceSynchronize() ;

Listing 8.11: Transformed kernel launch and control loop

Memory Deallocations

The last part of the original control function contains the deallocation of the memory
reserved for device variables, as shown in Listing 8.12. Since the original control
function receives the host allocations as arguments, releasing them is not the respon-
sibility of the control function. Instead, it is assumed that those allocations will be
released in the external program that calls the control function.

cudaFree (*gpu_v_ki) ;
cudaFree (*gpu_v_kp) ;
cudaFree (*gpu_v_mem_in) ;
cudaFree (*gpu_v_measured) ;
cudaFree (*gpu_v_command) ;
cudaFree (*gpu_q_current) ;
cudaFree (*gpu_v_mem_out) ;

~N o O WN -

Listing 8.12: Original device memory deallocations

The source-to-source transformation tool takes these device deallocations and
transforms them into zero-copy deallocations using the cudaFreeHost function, as
shown in Listing 8.13. It also inserts two extra calls to deallocate the two persistent
kernel control variables (lines 8 and 9) and the return instruction to finalize the
main function (line 11).

132 Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

= O © 00 ~NO O P WN =

I

8.4

cudaFreeHost (v_ki) ;

cudaFreeHost (v_kp) ;

cudaFreeHost (v_mem_in) ;
cudaFreeHost (v_measured) ;
cudaFreeHost (v_command) ;
cudaFreeHost (q_current) ;
cudaFreeHost (v_mem_out) ;
cudaFreeHost ((void*)gpu_locked) ;
cudaFreeHost ((void*)terminated) ;

return O;

Listing 8.13: Transformed zero-copy memory deallocations
Summary

In this chapter, we assessed for the first time the GPU code generation capabilities of
MATLAB-Simulink for the design of real-time parallel control systems. We performed
this evaluation by designing a novel GPU-accelerated parallel control case study, as
a representative application of future parallel control systems, which we evaluate in
2 embedded GPU platforms.

Our results show that existing embedded GPU hardware can already support
the timing requirements of such a case study, scaling up to 1024 motors, provided
that the generated code is optimized according to our proposals. However, due to
code generation inefficiencies, the original MBD generated code cannot meet the
performance required by the control application. In particular, while the actual GPU
generated code is functional, we noticed inefficiencies in the API calls which control
the interaction of the GPU with the CPU part of the application. In terms of memory
consumption the generated code is reasonable, however the implementation of the
memory allocations and transfers is the limiting factor of the control loop frequency,
together with the kernel launch overhead.

For these reasons, we conclude that to enable the use of the MathWorks toolset
for model-based designing GPU-accelerated real-time control applications, it yet
requires to enhance its GPU code generation capabilities at least in the following
aspects: a) add support for zero-copy memory configuration which can eliminate the
overhead of memory copies, and b) add support for a method to reduce or eliminate
the kernel launch overhead, such as persistent threads.

In order to overcome these limitations, we evaluated the two aforementioned
proposed solutions and we provided a source-to-source transformation tool, which
can apply them automatically over the generated GPU code. To our knowledge, this

8.4 Summary

133

is the first automated tool capable of transforming a GPU application to the persistent
threads GPU programming model, which is beneficial not only for control systems
but also for other GPU applications with real-time requirements.

134 Chapter 8 Assessment and Improvement of Model-Based Design for GPU-
Accelerated Control Systems

9.1

Conclusions and Future Work

The real-time control systems industry is moving towards the consolidation of
multiple computing systems into fewer and more powerful ones, aiming for a
reduction in size, weight, and power. The increasing demand for higher performance
in other critical domains like autonomous driving has led the industry to recently
include embedded GPUs for the implementation of advanced functionalities. The
highly parallel architecture of GPUs could also be leveraged in the control systems
industry to develop more advanced, energy-efficient, and scalable control systems.
However, the closed-source and non-deterministic nature of GPUs complicates the
resource provisioning analysis required for the implementation of critical real-time
systems. On the other hand, there is no indication of the integration of GPUs in the
traditional development cycle of control systems, which is oriented to the use of
a model-based design approach. Motivated by these challenges, in this thesis, we
contributed to the state of the art of real-time control systems towards the adoption
of embedded GPUs by providing tools to facilitate the resource provisioning analysis
and the integration in the model-based design development cycle. In this chapter,
we summarize the main contributions of our research and its impact, and we present
open areas for future research work.

Summary of Contributions

This thesis contributed to the state of the art of real-time control systems by facilitat-
ing the adoption of embedded GPUs to implement future parallel control systems.
We achieved this goal by providing methodologies and tools to ease the resource
provisioning analysis of embedded GPUs and their integration in the model-based
development cycle. In particular, this thesis provided the following contributions:

* The first contribution of this thesis defined a methodology to extract informa-
tion about the internal properties of closed-source GPU memory allocators.
Based on this methodology, we presented GMAI, a tool that automatically
applies our reverse-engineering techniques and, based on the extracted infor-
mation, enables the computation of the real amount of memory consumed

135

136

by GPU applications. We applied GMAI to a wide range of GPUs of different
vendors, showing its compatibility with both CUDA and OpenCL. In addition,
we applied GMAI in two automotive case studies to show how it can be used
to make an accurate resource provisioning analysis.

With the purpose of extending the memory analysis functionality of GMAI, we
analyzed the GPU memory behavior and allocation patterns of several GPU
benchmarking suites, which can serve not only the safety critical domain that
is the focus of this Thesis, but also the broader GPU research community. As
part of this work, we created a library to characterize the use of dynamic
memory in GPU applications. This library uses the information extracted
with GMAI to keep track of the allocated memory and generates a visual
representation that shows the evolution of the different types of dynamic
memory in GPU applications. We applied our tool to three popular GPU
benchmark suites that include GPU applications from different domains. As a
result of the characterization, we identified memory allocation patterns that
could be modified to improve memory consumption and performance.

Based on the results obtained with the memory characterization of GPU bench-
marking suites as representative of real GPU applications, we designed XeroZe-
rox, a tool that minimizes the memory consumption and memory management
overhead of GPU applications when executed on embedded GPU platforms.
XeroZerox automatically changes memory allocation patterns of GPU applica-
tions to patterns that are favorable for embedded GPUs. We applied XeroZerox
to the Rodinia benchmarks suite and showed that it can reduce the memory
consumption to approximately 50% in legacy GPU applications executed in
embedded GPUs. Furthermore, we showed that using a centralized memory
model like zero-copy memory or unified memory impacts in different ways
the performance of GPU applications, depending on the hardware coherency
mechanisms present in the underlying platform, therefore creating a trade-off
between memory consumption, predictability and performance, depending on
the particular generation of embedded GPU platform which is used.

After finishing the resource analysis in terms of memory, we focused our
research to the timing domain. For this purpose, we performed a timing
characterization of control algorithms executed on embedded GPU platforms.
We presented a case study for the parallel control of multiple motors and
executed the required control algorithms in three different scenarios. After the
evaluation, we identified a set of configurations that allowed us to obtain an
acceptable behavior in terms of timing and scalability. To validate the feasibility

Chapter 9 Conclusions and Future Work

of the proposed approach in a real-life scenario, we created a proof of concept
prototype to control a real motor using an embedded GPU platform. We
concluded that existing embedded GPUs can provide the computational power
and timing requirements to implement parallel control systems. However,
we observed that they still require hardware support to communicate with
multiple external devices before being adopted in the control domain.

* Finally, in the last contribution of this thesis, we analyzed the integration of
embedded GPUs with Model-Based Design tools. First, we designed a parallel
control system model using MATLAB-Simulink and validated the integration
with GPU hardware for PIL/GIL testing. Then, we evaluated the GPU code
generation capabilities and identified some inefficiencies in the generated
GPU code. In particular, while the generated code is functional, its timing
behavior is not optimal for control systems due to the use of memory copies
and the overhead of the GPU kernel launches. Based on the results we obtained
in the timing characterization analysis, we proposed and manually applied
some improvements to the generated code. Finally, after validating that our
proposed modifications effectively improved the suitability of the generated
GPU code to be applied in control systems, we implemented a source-to-
source transformation tool to automatically apply the improvements into the
generated code. To our knowledge, this is the first automated tool capable of
transforming a GPU application to the persistent threads GPU programming
model, which is beneficial not only for control systems but also for other GPU
applications with real-time requirements.

9.2 Impact

Until the beginning of this Thesis, reverse engineering of the black-box behavior of
GPUs in the literature was only limited to their real-time properties. However, this
thesis has opened the door to research about the reverse engineering of GPU black-
box behavior in terms of memory management which is of equal importance for
safety critical systems, and as we have showed it is closely related to their real-time
behavior. The reason is that although dynamic memory allocation is prohibited or at
least discouraged for use in safety-critical systems, it is an essential part required for
the use of GPUs.

This Thesis has served as a starting point for a new PhD thesis topic which is
currently ongoing and extends our work to cover extensively memory management

9.2 Impact

137

138

in embedded GPUs and its interaction with GPU hardware. We believe that as work
in this area progresses, more open problems will be identified and targeted by other
PhD theses and research from other universities, research institutions and companies
across all safety critical domains, which are working towards the adoption of GPUs
in their products, such as in the automotive sector.

Moreover, our analysis of the memory allocation behavior of GPU applications
as performed in 3 of the major benchmarking suites, has the potential to influence
not only the safety-critical domain, but also the wider GPU research domain in-
cluding HPC. In particular, understanding the memory usage patterns and their
resource requirements can benefit not only application developers but also research
in programming models and compilers.

Regarding the integration of GPUs in the model-based development cycle, our
work has served as a basis for a project proposal on the integration in model-based
design tools used for space systems, which is currently under evaluation. In this
way, we can influence other domains where model-based design is extensively used
and GPUs are considered for adoption. Again, this is only the beginning, since other
project proposals will follow targeting other domains as well.

Apart from the theoretical contributions of this dissertation, during the develop-
ment of this thesis we have developed and released as open source a series of tools
that either enable reverse engineering of GPU memory allocations, or improve the
memory behavior of GPU applications. This can have a significant impact on the
continuation of this work by third parties, since it enables not only the replication of
our observations, but also covering new platforms and extending them with new
features. Moreover, our tools can provide important insights to GPU developers,
both the ones targeting safety-critical applications as well as other domains such as
high performance computing.

Our tools are currently used in the H2020 European Project UP2DATE, which
uses embedded GPU platforms such as the ones used in this thesis. In particular, our
tools are used for analysis and the optimization of the project use cases. This allows
the dissemination of our work to a wider audience and an evaluation with larger
applications.

Finally, another potential impact of this Thesis would be the adoption of our
contributions in industry, such as the implementation our approaches within com-
mercial or open source model-based design tools, GPU development and analysis
tools and programming models, or even GPU vendors in their software stacks.

Chapter 9 Conclusions and Future Work

9.3 Future Work

This thesis can be extended in multiple directions which are planned for future work,
while some of them are already on-going as described in the previous sub-section in
the framework of a PhD Thesis and the UP2DATE project.

The first direction in which the thesis can be extended is beyond the control
systems domain. In fact, already our contribution on the characterization of GPU
benchmarking suites in terms of dynamic memory behavior open the door towards
this path. Those analysis results, the proposed methodologies and tools presented
in this thesis can be applied for the development and analysis of GPU-based real-
time systems in other domains, possibly with modifications and extensions that
address their special needs. As we already mentioned, this can be the design of
aerospace and automotive systems, both of which used model-based design tools
and consider the adoption of GPUs. Moreover, the high performance computing
domain which extensively uses GPUs can benefit from our tools and methodologies,
since memory management resource provisioning and behavior is important for
performance reasons too.

In the real-time and safety critical domain, we plan also to cover new cases
in which GPU code with real-time properties is required. In this direction, we are
applying our tools within the UP2DATE project using the project’s use case. Moreover,
larger industrial case studies can be conducted and use of our tools with additional
real GPU applications.

Moreover, we can apply our proposed reverse engineering techniques to other
parts of the GPU software stack in order to obtain information to improve the
development of open-source alternatives such as the Nouveau driver and covering
new devices that will appear soon, such as upcoming embedded GPUs and GPU APIs
like Vulkan SC targeting the automotive and other safety critical domains.

Finally, as a future work we will try to transfer the contributions of this thesis
to industry, so that they are adopted for example in the code generation of model
based tools, or in profilers and analysis tools for GPU codes. For this, we will exploit
the large network of industrial collaborations we have in the institutions where
the research of this thesis was conducted. Other potential adopters which we will
target for technology transfer include companies working on embedded GPUs and
safety critical domain, including compilers and development tools, GPU drivers and
runtimes and real-time operating systems. In addition, we will work with industrial

9.3 Future Work 139

users developing GPU software for critical systems transferring our contributions in
their applications.

140 Chapter 9 Conclusions and Future Work

Bibliography

[1]INVIDIA Corporation. Self Driving Cars. Accessed April 2019. URL: https://www.nvidia.
com/en-us/self-driving-cars (cit. on p. 1).

[2]X. Yu, H. Wang, W. -. Feng, H. Gong, and G. Cao. “GPU-Based Iterative Medical CT
Image Reconstructions”. In: Journal of Signal Processing Systems 91.3-4 (2019), pp. 321-
338 (cit. on p. 1).

[3]R. L. Davidson and C. P. Bridges. “Error Resilient GPU Accelerated Image Processing
for Space Applications”. In: IEEE Transactions on Parallel and Distributed Systems 29.9
(2018), pp. 1990-2003 (cit. on p. 1).

[4]1Samsung. Exynos Auto V9. Accessed August 2021. URL: https://www.samsung. com/
semiconductor/minisite/exynos/products/automotiveprocessor/exynos-auto-
v9/ (cit. on p. 2).

[5]L. Kosmidis, C. Maxim, V. Jegu, F. Vatrinet, and F. J. Cazorla. “Industrial Experiences
with Resource Management under Software Randomization in ARINC653 Avionics
Environments”. In: [EEE/ACM International Conference on Computer-Aided Design, Digest
of Technical Papers, ICCAD. 2018 (cit. on p. 2).

[6]ARINC. Avionics Application Software Standard Interface: ARINC Specification 653P1-3.
Aeronautical Radio. 2010 (cit. on p. 2).

[7JAUTOSAR. AUTOSAR. Accessed April 2019. URL: https://www.autosar.org (cit. on
p- 2).

[8]Green Hills Software. Integrity RTOS. Accessed April 2019. 1996. URL: https://www.
ghs.com/products/rtos/integrity.html (cit. on p. 2).

[9]R. Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE Security and Privacy
9.3 (2011), pp. 49-51 (cit. on p. 4).

[10]Symantec. Dragonfly: Cyberespionage Attacks Against Energy Suppliers. 2014 (cit. on
p- 4.

[11]D. Mazeika and R. Butleris. “MBSEsec: Model-Based Systems Engineering Method for
Creating Secure Systems”. In: Applied Sciences (Switzerland) 10.7 (2020) (cit. on p. 4).

[12]R. Neisse, G. Steri, I. N. Fovino, and G. Baldini. “SecKit: A Model-based Security Toolkit
for the Internet of Things”. In: Computers and Security 54 (2015), pp. 60-76 (cit. on
p-4).

[13]N. Kekatos. “Formal Verification of Cyber-Physical Systems in the Industrial Model-Based
Design Process”. PhD thesis. Université Grenoble Alpes, 2018 (cit. on p. 4).

141

https://www.nvidia.com/en-us/self-driving-cars
https://www.nvidia.com/en-us/self-driving-cars
https://www.samsung.com/semiconductor/minisite/exynos/products/automotiveprocessor/exynos-auto-v9/
https://www.samsung.com/semiconductor/minisite/exynos/products/automotiveprocessor/exynos-auto-v9/
https://www.samsung.com/semiconductor/minisite/exynos/products/automotiveprocessor/exynos-auto-v9/
https://www.autosar.org
https://www.ghs.com/products/rtos/integrity.html
https://www.ghs.com/products/rtos/integrity.html

142

[14]R. Marinescu. “Model-Checking and Model-Based Testing of Automotive Embedded
Systems: Starting from the System Architecture”. PhD thesis. Malardalen University,
2014 (cit. on p. 4).

[15]A. J. Calderdn, L. Kosmidis, C. F. Nicolas, F. J. Cazorla, and P. Onaindia. “Understanding
and Exploiting the Internals of GPU Resource Allocation for Critical Systems”. In:
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers,
ICCAD. Vol. 2019-November. 2019 (cit. on p. 6).

[16]A. J. Calderdn, L. Kosmidis, C. F. Nicolas, F. J. Cazorla, and P. Onaindia. “GMAI:
Understanding and Exploiting the Internals of GPU Resource Allocation in Critical
Systems”. In: ACM Transactions on Embedded Computing Systems 19.5 (2020) (cit. on
p. 6).

[17]A. Jover-Alvarez, A. J. Calderdn, I. Rodriguez, et al. “The UP2DATE Baseline Research
Platforms”. In: Proceedings -Design, Automation and Test in Europe, DATE. Vol. 2021-
February. 2021, pp. 1340-1343 (cit. on p. 7).

[18]A. J. Calderdn, L. Kosmidis, C. F. Nicolas, J. de Lasala, and I. Larrafiaga. Assessing and
Improving the Suitability of Model-Based Design for GPU-Accelerated Railway Control
Systems. Vol. 12800 LNCS. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021,
pp. 68-83 (cit. on p. 8).

[19]H. D. Kim, A. T. Perry, and P. J. Ansell. “A Review of Distributed Electric Propulsion
Concepts for Air Vehicle Technology”. In: 2018 AIAA/IEEE Electric Aircraft Technologies
Symposium, EATS 2018. 2018 (cit. on p. 13).

[20]P. Schmollgruber, C. Déll, J. Hermetz, et al. “Multidisciplinary Exploration of DRAGON:
an ONERA Hybrid Electric Distributed Propulsion Concept”. In: AIAA Scitech 2019
Forum. 2019 (cit. on p. 13).

[21]D. D. Gajski, A. Gerstlauer, S. Abdi, and G. Schirner. “Embedded System Design: Model-
ing, Synthesis and Verification”. In: Embedded System Design: Modeling, Synthesis and
Verification. 2006, pp. 1-352 (cit. on p. 14).

[22]A. Sangiovanni-Vincentelli and G. Martin. “Platform-Based Design and Software Design
Methodology for Embedded Systems”. In: IEEE Design and Test of Computers 18.6
(2001), pp. 23-33 (cit. on p. 14).

[23]A. Sangiovanni-Vincentelli, L.. Carloni, F. De Bernardinis, and M. Sgroi. “Benefits and
Challenges for Platform-Based Design”. In: Proceedings - Design Automation Conference.
2004, pp. 409-414 (cit. on p. 14).

[24]J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming. 1st
edition. United Kingdom: Wrox Press Ltd., 2014 (cit. on p. 16).

[25]NVIDIA Corporation. CUDA for Tegra. Accessed September 2021. URL: https://docs.
nvidia.com/cuda/cuda-for-tegra-appnote/index.html (cit. on pp. 26, 120).

Bibliography

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html

[26]Intel Corporation. Getting the Most from OpenCL 1.2: How to Increase Performance
by Minimizing Buffer Copies on Intel Processor Graphics. Accessed October 2019. URL:
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-
12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-
processor-graphics (cit. on p. 27).

[27]G. A. Elliott and J. H. Anderson. “Real-World Constraints of GPUs in Real-Time Systems”.
In: Proceedings - 1st International Workshop on Cyber-Physical Systems, Networks, and
Applications, CPSNA 2011, Workshop Held During RTCSA 2011. Vol. 2. 2011, pp. 48-54
(cit. on p. 27).

[28]G. A. Elliott, B. C. Ward, and J. H. Anderson. “GPUSync: A Framework for Real-Time
GPU Management”. In: Proceedings - Real-Time Systems Symposium. 2013, pp. 33-44
(cit. on p. 27).

[29]N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru. “Deadline-Based Schedul-
ing for GPU with Preemption Support”. In: Proceedings - Real-Time Systems Symposium.
Vol. 2018-December. 2019, pp. 119-130 (cit. on p. 27).

[30]H. Zhou, G. Tong, and C. Liu. “GPES: A Preemptive Execution System for GPGPU Com-
puting”. In: Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS. Vol. 2015-May. 2015, pp. 87-97 (cit. on p. 27).

[31]G. Chen, Y. Zhao, X. Shen, and H. Zhou. “EffiSha: A Software Framework for Enabling
Efficient Preemptive Scheduling of GPU”. In: ACM SIGPLAN Notices 52.8 (2017), pp. 3-
16 (cit. on p. 27).

[32]C. Hartmann and U. Margull. “GPUart - An Application-based Limited Preemptive GPU
Real-Time Scheduler for Embedded Systems”. In: Journal of Systems Architecture 97
(2019), pp. 304-319 (cit. on p. 27).

[33]R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna. “Novel Methodologies for
Predictable CPU-to-GPU Command Offloading”. In: Leibniz International Proceedings in
Informatics, LIPIcs. Vol. 133. 2019 (cit. on pp. 27, 28, 100).

[34]R. Cavicchioli, N. Capodieci, and M. Bertogna. “Memory Interference Characterization
between CPU Cores and Integrated GPUs in Mixed-Criticality Platforms”. In: IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA. 2017,
pp. 1-10 (cit. on p. 27).

[35]N. Capodieci, R. Cavicchioli, P. Valente, and M. Bertogna. “SiGAMMA: Server Based
Integrated GPU Arbitration Mechanism for Memory Accesses”. In: ACM International
Conference Proceeding Series. Vol. Part F131837. 2017, pp. 48-57 (cit. on p. 27).

[36]B. Forsberg, A. Marongiu, and L. Benini. “GPUguard: Towards Supporting a Predictable
Execution Model for Heterogeneous SoC”. In: Proceedings of the 2017 Design, Automa-
tion and Test in Europe, DATE 2017. 2017, pp. 318-321 (cit. on p. 27).

[37]W. Ali and H. Yun. “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC
Platforms”. In: Leibniz International Proceedings in Informatics, LIPIcs. Vol. 106. 2018
(cit. on p. 27).

Bibliography

143

https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics

[38]K. Berezovskyi, K. Bletsas, and B. Andersson. “Makespan Computation for GPU Threads
Running on a Single Streaming Multiprocessor”. In: Proceedings - Euromicro Conference
on Real-Time Systems. 2012, pp. 277-286 (cit. on p. 27).

[39]1K. Gupta, J. A. Stuart, and J. D. Owens. “A Study of Persistent Threads Style GPU
Programming for GPGPU Workloads”. In: 2012 Innovative Parallel Computing, InPar
2012. 2012 (cit. on pp. 27, 100, 123).

[40]N. Capodieci and P. Burgio. “Efficient Implementation of Genetic Algorithms on GP-GPU
with Scheduled Persistent CUDA Threads”. In: Proceedings - International Symposium
on Parallel Architectures, Algorithms and Programming, PAAP. Vol. 2016-January. 2016,
pp. 6-12 (cit. on p. 28).

[41]A. Milluzzi and A. George. “Exploration of TMR Fault Masking with Persistent Threads
on Tegra GPU SoCs”. In: IEEE Aerospace Conference Proceedings. 2017 (cit. on p. 28).

[42]Allen, T. Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the
Jetson TX2. Tech. rep. Concurrent Real-Time, 2018. URL: https://www.concurrent-
rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-
CUDA-Persistent-Threads.pdf (cit. on p. 28).

[43]J. Anantpur and R. Govindarajan. “Taming Warp Divergence”. In: CGO 2017 - Proceed-
ings of the 2017 International Symposium on Code Generation and Optimization. 2017,
pp. 50-60 (cit. on p. 28).

[44]D. Troendle, T. Ta, and B. Jang. “A Specialized Concurrent Queue for Scheduling
Irregular Workloads on GPUs”. In: ACM International Conference Proceeding Series. 2019
(cit. on p. 28).

[45]T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. Donelson Smith. “GPU Schedul-
ing on the NVIDIA TX2: Hidden Details Revealed”. In: Proceedings - Real-Time Systems
Symposium. Vol. 2018-January. 2018 (cit. on pp. 28, 63).

[46]M. Yang, N. Otterness, T. Amert, et al. “Avoiding Pitfalls when Using NVIDIA GPUs
for Real-Time Tasks in Autonomous Systems”. In: Leibniz International Proceedings in
Informatics, LIPIcs. Vol. 106. 2018 (cit. on pp. 28, 63).

[47]M. M. Trompouki and L. Kosmidis. “BRASIL: A High-Integrity GPGPU Toolchain for
Automotive Systems”. In: Proceedings - 2019 IEEE International Conference on Computer
Design, ICCD 2019. 2019, pp. 660-663 (cit. on p. 28).

[48]S. Alcaide, L. Kosmidis, H. Tabani, et al. “Safety-Related Challenges and Opportunities
for GPUs in the Automotive Domain”. In: IEEE Micro 38.6 (2018), pp. 46-54 (cit. on
p- 28).

[49]S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf. “Future Automotive
Systems Design: Research Challenges and Opportunities”. In: 2018 International Con-
ference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2018. 2018
(cit. on p. 28).

[50]Y. Iwase, D. Abe, and T. Yakoh. “GPGPU Aided Method for Real-Time Systems”. In: IEEE
International Conference on Industrial Informatics (INDIN). 2012, pp. 841-845 (cit. on
p. 28).

Bibliography

https://www.concurrent-rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf
https://www.concurrent-rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf
https://www.concurrent-rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf

[51]D. Hallmans, M. Asberg, and T. Nolte. “Towards using the Graphics Processing Unit
(GPU) for Embedded Systems”. In: IEEE International Conference on Emerging Technolo-
gies and Factory Automation, ETFA. 2012 (cit. on p. 28).

[52]D. Hallmans, K. Sandstrom, M. Lindgren, and T. Nolte. “GPGPU for Industrial Con-
trol Systems”. In: IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA. 2013 (cit. on p. 28).

[53]M. Lindgren, K. Sandstrom, T. Nolte, and D. Hallmans. “Applicability of Using Internal
GPGPUs in Industrial Control Systems”. In: 19th IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA 2014. 2014 (cit. on p. 28).

[54]T. J. Maceina and G. Manduchi. “Assessment of General Purpose GPU Systems in Real-
Time Control”. In: IEEE Transactions on Nuclear Science 64.6 (2017), pp. 1455-1460
(cit. on p. 28).

[55]M. Kozubik and P. Vaclavek. “Speed Control of PMSM with Finite Control Set Model
Predictive Control Using General-purpose Computing on GPU”. In: IECON Proceedings
(Industrial Electronics Conference). Vol. 2020-October. 2020, pp. 379-383 (cit. on p. 28).

[56]A. Schmidt, F. Schellroth, M. Fischer, L. Allimant, and O. Riedel. “Reinforcement
Learning Methods Based on GPU Accelerated Industrial Control Hardware”. In: Neural
Computing and Applications 33.18 (2021), pp. 12191-12207 (cit. on p. 28).

[571J. Huang. Conversational AI, NVIDIA Jarvis. Keynote part 5, NVIDIA Technology Confer-
ence (GTC). 2020 (cit. on p. 28).

[58]NVIDIA Corporation. Jetson Linux. Accessed January 2022. URL: https://developer.

nvidia.com/embedded/linux-tegra (cit. on p. 33).

[59]S. Che, M. Boyer, J. Meng, et al. “Rodinia: A Benchmark Suite for Heterogeneous
Computing”. In: Proceedings of the 2009 IEEE International Symposium on Workload
Characterization, IISWC 2009. 2009, pp. 44-54 (cit. on pp. 34, 69).

[60]J. A. Stratton, C. Rodrigues, I. Sung, et al. Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing. IMPACT Technical Report, IMPACT-
12-01. University of Illinois, at Urbana-Champaign, Mar. 2012 (cit. on pp. 34, 69).

[61]S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. “Auto-Tuning a
High-Level Language Targeted to GPU Codes”. In: 2012 Innovative Parallel Computing,
InPar 2012. 2012 (cit. on pp. 34, 69).

[62]The MathWorks, Inc. GPU Coder—Generate CUDA code for NVIDIA GPUs. Accessed
September 2021. URL: https://www.mathworks . com/products/gpu-coder . html
(cit. on pp. 35, 114).

[63]The Clang Team. Clang: a C language family frontend for LLVM. Accessed January 2022.
URL: https://clang.1llvm.org/ (cit. on p. 36).

[64]LLVM Developer Group. The LLVM Compiler Infrastructure. Accessed January 2022. URL:
https://1lvm.org/ (cit. on p. 36).

Bibliography

145

https://developer.nvidia.com/embedded/linux-tegra
https://developer.nvidia.com/embedded/linux-tegra
https://www.mathworks.com/products/gpu-coder.html
https://clang.llvm.org/
https://llvm.org/

146

[65]P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic Storage Allocation: A
Survey and Critical Review. Vol. 986. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
1995, pp. 1-116 (cit. on pp. 41, 42).

[66]Y. Hasan and J. M. Chang. “A Tunable Hybrid Memory Allocator”. In: Journal of Systems
and Software 79.8 (2006), pp. 1051-1063 (cit. on p. 42).

[67]V. Shah and A. Shah. Proposed Memory Allocation Algorithm for NUMA-Based Soft Real-
Time Operating System. Vol. 814. Advances in Intelligent Systems and Computing. 2019,
pp. 3-11 (cit. on p. 42).

[68]A. J. Calderdn, L. Kosmidis, C. F. Nicolas, F. J. Cazorla, and P. Onaindia. GMAI: GPU
Memory Allocation Inspector. URL: https://github.com/ajcalderont/gmai (cit. on
p- 50).

[69]M. M. Trompouki, L. Kosmidis, and N. Navarro. “An Open Benchmark Implementation
for Multi-CPU Multi-GPU Pedestrian Detection in Automotive Systems”. In: IEEE/ACM
International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD.
Vol. 2017-November. 2017, pp. 305-312 (cit. on pp. 56, 59).

[70]U. Ozgunalp. “Combination of the Symmetrical Local Threshold and the Sobel Edge
Detector for Lane Feature Extraction”. In: Proceedings - 9th International Conference on
Computational Intelligence and Communication Networks, CICN 2017. Vol. 2018-January.
2018, pp. 24-28 (cit. on p. 56).

[71]H. Vishwanathan, D. L. Peters, and J. Z. Zhang. “Traffic Sign Recognition in Autonomous
Vehicles Using Edge Detection”. In: ASME 2017 Dynamic Systems and Control Conference,
DSCC 2017.Vol. 1. 2017 (cit. on p. 56).

[72]R. Younis and N. Bastaki. “Accelerated Fog Removal from Real Images for Car Detection”.
In: 2017 9th IEEE-GCC Conference and Exhibition, GCCCE 2017. 2018 (cit. on p. 56).

[73]Free Software Foundation. The GNU Allocator. Accessed April 2019. 2019. URL: %7Bhttps:
//www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html%7D
(cit. on p. 58).

[74]E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. “Hoard: A Scalable
Memory Allocator for Multithreaded Applications”. In: International Conference on
Architectural Support for Programming Languages and Operating Systems - ASPLOS.
2000, pp. 117-128 (cit. on p. 62).

[75]X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu. “XMalloc: A Scalable Lock-
Free Dynamic Memory Allocator for Many-Core Machines”. In: Proceedings - 10th IEEE
International Conference on Computer and Information Technology, CIT-2010, 7th IEEE
International Conference on Embedded Software and Systems, ICESS-2010, ScalCom-2010.
2010, pp. 1134-1139 (cit. on p. 62).

[76]X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu. “Scalable SIMD-Parallel
Memory Allocation for Many-Core Machines”. In: Journal of Supercomputing 64.3
(2013), pp. 1008-1020 (cit. on p. 62).

Bibliography

https://github.com/ajcalderont/gmai
%7Bhttps://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html%7D
%7Bhttps://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html%7D

[77]M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. “ScatterAlloc: Massively Paral-
lel Dynamic Memory Allocation for the GPU”. In: 2012 Innovative Parallel Computing,
InPar 2012. 2012 (cit. on p. 62).

[78]S. Widmer, D. Wodniok, N. Weber, and M. Goesele. “Fast Dynamic Memory Allocator
for Massively Parallel Architectures”. In: ACM International Conference Proceeding Series.
2013, pp. 120-126 (cit. on p. 62).

[79]H. Wong, M. -. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. “Demystifying
GPU Microarchitecture through Microbenchmarking”. In: ISPASS 2010 - IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software. 2010, pp. 235-246
(cit. on p. 63).

[80]X. Mei and X. Chu. “Dissecting GPU Memory Hierarchy through Microbenchmarking”.
In: IEEE Transactions on Parallel and Distributed Systems 28.1 (2017), pp. 72-86 (cit. on
p- 63).

[81]1X. Chen, A. Slowinska, and H. Bos. “Who Allocated My Memory? Detecting Custom
Memory Allocators in C Binaries”. In: Proceedings - Working Conference on Reverse
Engineering, WCRE. 2013, pp. 22-31 (cit. on p. 63).

[82]A. Slowinska, T. Stancescu, and H. Bos. “Howard: A Dynamic Excavator for Reverse
Engineering Data Structures”. In: Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS’11) (2011) (cit. on p. 63).

[83]M. Kerrisk. Linux Programmer’s Manual - ld.so(8). Accessed August 2021. 2021. URL:
https://man7.org/linux/man-pages/man8/1d.so.8.html (cit. on p. 66).

[84]S. Chamberlain. Using LD, The GNU Linker. Accessed August 2021. 1994. URL: https:
//ftp.gnu.org/old-gnu/Manuals/1d-2.9.1/html_node/1d_3.html (cit. on p. 67).

[85]Free Software Foundation. The C Preprocessor - Standard Predefined Macros. Accessed
August 2021. 2021. URL: %7Bhttps://gcc.gnu. org/onlinedocs/cpp/Standard-
Predefined-Macros.html#Standard-Predefined-Macros’7D (cit. on p. 67).

[86]Microsemi Corporation. SmartFusion Field Oriented Control of Permanent Magnet Syn-
chronous Motors Using HALL and Encoder. Tech. rep. Microsemi Corporation, 2012. URL:
https://www.microsemi.com/document-portal/doc_view/130910-sf-foc-pmsm—
using-hall-and-encoder-ug (cit. on pp. 94, 96).

[87]B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares and
Products”. In: Technometrics 4.3 (1962), pp. 419-420 (cit. on p. 101).

[88]T. F. Chan, G. H. Golub, and R. J. Leveque. “Statistical Computing: Algorithms for Com-
puting the Sample Variance: Analysis and Recommendations”. In: American Statistician
37.3 (1983), pp. 242-247 (cit. on p. 101).

[89]10pen Source Automation Development Lab (OSADL) eG. HOWTO: Create a latency
plot from cyclictest histogram data. Accessed February 2022. URL: https://www.osadl.
org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-
plot.0.html (cit. on p. 101).

[90]Texas Instruments, Inc. C2000 Delfino MCU F28379D LaunchPad. Accessed September
2021. URL: https://www.ti.com/tool/LAUNCHXL-F28379D (cit. on pp. 103, 115).

Bibliography

147

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
%7Bhttps://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html#Standard-Predefined-Macros%7D
%7Bhttps://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html#Standard-Predefined-Macros%7D
https://www.microsemi.com/document-portal/doc_view/130910-sf-foc-pmsm-using-hall-and-encoder-ug
https://www.microsemi.com/document-portal/doc_view/130910-sf-foc-pmsm-using-hall-and-encoder-ug
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html
https://www.ti.com/tool/LAUNCHXL-F28379D

[91]SparkFun Electronics. Teensy 3.6 Development Board. Accessed February 2022. URL
https://www.sparkfun.com/products/14057 (cit. on p. 103).

[92]Embedded Linux Community. Jetson PWM. Accessed February 2022. URL: https
//elinux.org/Jetson/PWM (cit. on p. 103).

[93]National Instruments Corp. GPU Analysis Toolkit. Accessed September 2021. URL: https:
//zone.ni.com/reference/en-XX/help/373575A-01/1vgpu/lvgpu/ (cit. on p. 114)

[94]The MathWorks, Inc. MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA

DRIVE Platforms. Accessed September 2021. URL: https://www.mathworks.com/help/
supportpkg/nvidia/index.html (cit. on p. 117).

148 Bibliography

https://www.sparkfun.com/products/14057
https://elinux.org/Jetson/PWM
https://elinux.org/Jetson/PWM
https://zone.ni.com/reference/en-XX/help/373575A-01/lvgpu/lvgpu/
https://zone.ni.com/reference/en-XX/help/373575A-01/lvgpu/lvgpu/
https://www.mathworks.com/help/supportpkg/nvidia/index.html
https://www.mathworks.com/help/supportpkg/nvidia/index.html

Bibliography 149

	Titlepage
	Abstract
	Acknowledgement
	Contents
	Listings
	1 Introduction
	1.1 Real-Time Systems and the Need for High Performance
	1.2 Resource Provisioning in Critical Real-Time Systems
	1.3 Model-Based Design for Critical Real-Time Systems
	1.4 Contributions
	1.4.1 Reverse Engineering and Analysis of GPU Memory Allocator Properties
	1.4.2 Characterization of Dynamic Memory Use in GPU Applications
	1.4.3 Optimization of Dynamic Memory Use in Embedded GPUs
	1.4.4 Timing Characterization of GPU- accelerated Control Algorithms
	1.4.5 Assessment and Improvement of Model-Based Design for GPU Control Systems

	1.5 Thesis Organization
	1.6 List of Publications
	1.6.1 Accepted Publications
	1.6.2 Other Publications

	2 Background
	2.1 Control Systems
	2.2 Model-Based Design
	2.3 Graphics Processing Units (GPUs)
	2.3.1 GPU Architecture and Terminology
	2.3.2 GPU Programming Fundamentals
	2.3.3 Memory Allocation in GPUs

	2.4 GPUs in Critical Systems

	3 Methodology and Experimental Setup
	3.1 Methodology
	3.2 Embedded GPU Platforms
	3.3 GPU Software Configuration
	3.4 GPU Benchmarks
	3.5 Model-Based Design Frameworks
	3.6 Compiler Frameworks
	3.7 Other Software Utilities

	4 Analysis of Dynamic Memory Allocation in GPUs
	4.1 Motivational Example
	4.2 Background on Memory Allocators
	4.3 Reverse Engineering GPU Memory Allocators
	4.3.1 Reverse Engineering CUDA Memory Allocators
	4.3.2 Reverse Engineering OpenCL Memory Allocators

	4.4 GMAI: GPU Memory Allocator Inspector
	4.5 Results
	4.5.1 Obtained Properties of CUDA Allocators
	4.5.2 Obtained Properties of OpenCL Allocators
	4.5.3 Exploiting the Knowledge of GPU Allocators in Automotive Case Studies' Resource Provisioning

	4.6 Related Work
	4.7 Summary

	5 Characterization of Dynamic Memory Usage in GPU Applications
	5.1 Design of the Memory Characterization Library
	5.2 Evaluation
	5.2.1 Memory Characterization of Rodinia Benchmarks
	5.2.2 Memory Characterization of Parboil Benchmarks
	5.2.3 Memory Characterization of PolyBench-ACC Benchmarks

	5.3 Summary

	6 Optimization of Dynamic Memory Use in Embedded GPU Platforms
	6.1 Design and Implementation
	6.1.1 XeroZerox Analysis Phase
	6.1.2 XeroZerox Optimization Phase

	6.2 Evaluation
	6.2.1 Memory Consumption
	6.2.2 Performance Evaluation

	6.3 Summary

	7 Timing Characterization of Control Algorithms Executed on Embedded GPUs
	7.1 Case Study: Parallel Control of Permanent Magnet Synchronous Motors
	7.2 Experiments Design
	7.2.1 Timing Characterization Scenarios
	7.2.2 Timing Measurement
	7.2.3 Systems Under Test
	7.2.4 Proof of Concept

	7.3 Results
	7.3.1 Timing Characterization Scenarios
	7.3.2 Proof of Concept

	7.4 Summary

	8 Assessment and Improvement of Model-Based Design for GPU-Accelerated Control Systems
	8.1 Case Study: Design and Implementation of a GPU-Accelerated Parallel Control System
	8.1.1 Preliminaries
	8.1.2 The Model

	8.2 Evaluation
	8.2.1 Experimental Setup
	8.2.2 Validation of the Models
	8.2.3 Integration with External Hardware
	8.2.4 Evaluation of Generated CUDA Code

	8.3 Improvement of Generated CUDA Code
	8.3.1 Manual Improvement of Generated CUDA Code
	8.3.2 Automatic Improvement of Generated CUDA Code

	8.4 Summary

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Impact
	9.3 Future Work

	Bibliography

